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Foreword 

Founded in 1925 and 1926 by Werner Heisenberg, Erwin Schrödinger and Paul 
Dirac, quantum mechanics is nearly 100 years old. Being the basis of modern 
technology, it has given rise to countless applications in physics, chemistry and even 
biology. The relevant literature is very rich, counting works written in many 
languages and from various perspectives, addressing a broad audience, from 
beginner students and teachers to expert researchers in the field. 

Professor Sakho has chosen the former as the target audience of this book, 
connecting the quarter of a century that preceded the initiation of quantum 
mechanics and its first results. The book is organized in two volumes. The first deals 
with thermal radiation and the experimental facts that led to the quantization of 
matter. The second volume focuses on the Schrödinger equation and its applications, 
Hermitian operators and Dirac notations. 

The clear and detailed presentation of the notions introduced in this book reveals 
its constant didactic concern. A particular element of originality of this book is the 
broad range of approaches used throughout its chapters: 

– the course includes many solved exercises, which complete the presentation in 
a concrete manner; 

– the presentation of experimental devices goes well beyond idealized schematic 
representations and illustrates the nature of laboratory work; 

– more advanced notions (semiconductors, relativistic effects in hydrogen, Lamb 
shift, etc.) are briefly introduced, always in relation with more fundamental 
concepts; 

– the biographical boxes give the subject a human touch and invite the reader to 
anchor the development of a theory in its historical context. 
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The book concludes with a list of references and a detailed index. 

Science is a key element of contemporary culture. Researchers’ efforts to write 
the books required for students’ education are praiseworthy. Undergraduate students 
and teachers will find this work especially beneficial. We wish it a wide distribution. 

Louis MARCHILDON 
Professor Emeritus of Physics 

University of Quebec at Trois-Rivières 
July 2019 



 

Preface 

Quantum mechanics or the physics of the infinitely small (microcosm) is often 
contrasted with classical mechanics or the physics of macroscopic bodies 
(macrocosm). This book, whose title is Introduction to Quantum Mechanics 1, aims 
to equip the reader with the basic tools that are essential for a good understanding of 
the physical properties of atoms, nuclei, molecules, lasers, solid bodies and 
electronic materials, in short all that is infinitely small. Introductory courses on 
quantum mechanics generally focus on the study of the interaction between matter 
and radiation and the quantum states of matter. This book emphasizes the various 
experiments that led to discoveries within the set of physical phenomena related to 
the properties of quantum systems. Consequently this book is composed of  seven 
chapters organized in two volumes. Each chapter starts with a presentation of the 
general objective, followed by a list of specific objectives and finally by a list of 
prerequisites essential for a good understanding of the concepts introduced. 
Furthermore, the introduction of each law follows a simple application. Each chapter 
ends with a collection of various exercises and solutions that facilitate the 
assimilation of all the concepts presented.  Moreover, brief biographies of all the 
thinkers who contributed to the discovery of the studied physical laws or phenomena 
are given separately, as the chapter unfolds. The reader can this way acquire a sound 
scientific culture related to the evolution of scientific thought during the elaboration 
of quantum mechanics. Due to its structuring and didactic approach, this work is a 
modern and very original book. Volume 1 covers the study of the first four chapters 
related to thermal radiation and the experimental facts that revealed the quantization 
of matter.  

Chapter 1 deals with the study of the characteristics of thermal radiation. The 
study of the black body radiation spectrum makes it possible to establish the 
fundamental laws of radiation, namely Lambert’s law, Kirchhoff’s laws, the Stefan–
Boltzmann law, Wien’s laws, the Rayleigh–Jeans law and Planck’s law. The 
statement of these laws is an opportunity to introduce the main energy-related 
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quantities characterizing thermal radiation such as radiance, light intensity, total 
radiant exitance and monochromatic radiant exitance. Chapter 2 is dedicated to the 
wave and particle aspects of light. Light interferences, highlighting the wave nature 
of light, as well as the photoelectric effect and the Compton effect, evidencing the 
particle nature of light, are studied. The chapter is completed by the study of the 
wave–particle duality, combining wave and particle properties of light as a flow of 
photons. Chapter 3 reviews the main experiments leading to the discovery of the 
four quantum numbers of the electron. This chapter studies in particular Bohr’s 
model of the atom, which introduces the main quantum number, Sommerfeld’s 
model of the atom, which introduces the angular momentum quantum number, as 
well as the magnetic quantum number using the interpretation of the normal Zeeman 
effect. This is followed by the study of the Stern-Gerlach experiment and Uhlenbeck 
and Goudsmit hypothesis, which led to the introduction of electron spin. The chapter 
ends with an introduction of the spectroscopic notation of quantum states based on 
the properties of the total quantum number of the electron. This spectroscopic 
notation makes it possible to explain the fine structure of the energy levels arising 
from the spin-orbit coupling and also to interpret the anomalous (or complex) 
Zeeman effect. Chapter 4 focuses on the study of de Broglie’s wave theory based on 
the notion of matter waves and on Heisenberg’s uncertainty principle, which 
facilitated the elaboration of quantum mechanics. 

Volume 2 is dedicated to three chapters dealing with the study of Schrödinger’s 
equation and applications, Hermitian operators and Dirac notations, respectively. 

The book ends with a set of five appendices that help the reader gain in-depth 
knowledge on the physical phenomena studied in this work. Appendix 1 relates to a 
demonstration of Planck’s law that can be used to introduce photon gas, photon spin 
through the Sadovsky effect, and the notions of photon polarization, and to study the 
principle of decomposition of the electromagnetic radiation field into a sum of 
virtual harmonic oscillators. Appendix 2 is dedicated to the study of the link 
between Planck’s law and Einstein’s theory. This study makes it possible to describe 
the main processes of interaction between optical radiation and matter in relation  
to light absorption and stimulated and spontaneous emission, introduces Einstein 
coefficients and establishes the relations between them. Appendix 3 focuses on 
establishing Stefan’s law using the thermodynamic approach and then the theoretical 
approach according to the procedure used by Boltzmann. Appendix 4 relies on a 
brief study of Dirac’s relativistic theory that makes it possible to define the fine 
structure perturbing Hamiltonian, express the energy of weakly relativistic 
hydrogen-like systems and study the effects of the fine structure perturbing 
Hamiltonian on the levels of energy of the hydrogen atom. Appendix 5 describes 
fine structure and hyperfine structure phenomena. Topics such as Lamb shift, the 
notion of physical vacuum, nuclear spin, the lifetime of excited states, the 
anomalous Zeeman effect and the broadening of spectral lines due to the Doppler 
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effect are properly covered in this appendix. A list of references and an index can be 
found at the end of the book. 

I wish to thank Chrono Environnement Laboratory at the Université Franche 
Comté de Besançon for their hospitality during my stay from September 1 to  
November 2, 2018, as Visiting Professor. Many pages of this book were written 
during this period, which proved very favorable to this endeavor, both in terms of 
logistics and documentation. I would like to make a special mention to Jean-
Emmanuel Groetz, Senior Lecturer at Chrono Environnement Laboratory, who was 
in charge of my visiting professor request file. I wish to express my warmest thanks 
to Elie Belorizky, Professor of Physics at Université Joseph Fourier de Grenoble 
(France) for his critical remarks and suggestions, which made a great contribution to 
improving the scientific quality of this work. Many corrections brought to this book 
were made via telephone exchanges during my stay at the Université Franche Comté 
de Besançon. I express here my deep appreciation for him gracefully bearing the 
inherent expenses for the telephone calls related to this book review. Finally, I wish 
to address my deepest gratitude to Louis Marchildon, Professor Emeritus of Physics 
at the University of Quebec at Trois-Rivières (Canada), who spared no effort to 
review the entire book, and whose comments have enhanced the scientific quality of 
this work, of which the preface bears his signature. We started our collaboration in 
2013, when he invited me to host a conference at the Hydrogen Research Institute 
(HRI). I am deeply grateful for his kind and very fruitful collaboration. 

All human endeavor being subject to improvement, I remain open to and 
interested in critical remarks and suggestions that my readers can send me at the 
email address below. 

Ibrahima SAKHO 
aminafatima_sakho@yahoo.fr 

July 2019 
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Thermal Radiation 

General objective 

Gain knowledge on energy-related quantities and the laws of thermal radiation. 

Specific objectives 

On completing this chapter, the reader should be able to: 

– define thermal radiation; 

– know the origin of thermal radiation; 

– know the relations between energy, photon wavelength and frequency;  

– distinguish between black body and gray body; 

– define the energy-related quantities (flux, exitance, radiance and intensity); 

– apply the law of conservation of radiant flux; 

– state Lambert’s, Kirchhoff’s, Stefan-Boltzmann and Wien’s laws; 

– provide an interpretation of Planck’s law; 

– apply the laws of thermal radiation; 

– find the useful spectrum from a given isotherm of the black body. 

Prerequisites 

– structure of matter; 

 

                            
For color versions of the figures in this book, see www.iste.co.uk/sakho/quantum1.zip. 

Introduction to Quantum Mechanics 1: Thermal Radiation and Experimental Facts 
Regarding the Quantization of Matter, First Edition. Ibrahima Sakho. 

© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 



2     Introduction to Quantum Mechanics 1 

– modes of energy transfer; 

– range of electromagnetic waves. 

1.1. Radiation 

1.1.1. Definition 

An object at temperature T can emit or absorb light waves of several frequencies 
[PÉR 86, PER 11, SAK 12]. The distribution of the energy exchanged by the object 
with its external environment depends on the temperature T. When two objects at 
different temperatures are in contact, thermal energy (heat) is transferred from the 
hot object to the cold object. By contrast, radiation is energy that is carried by an 
electromagnetic wave. In this case, energy is transferred by emission and absorption 
of light waves. Hence, by definition, thermal radiation is the electromagnetic 
radiation emitted by any object at non-zero temperature T. 

1.1.2. Origin of radiation 

In 1900, Max Planck laid the foundations of quantum physics by studying the 
black body emission spectrum within the theory of quanta [BRO 25, PAI 82, PLO 
16]. He formulated the fundamental hypothesis according to which the energy 
generated by a periodic movement of frequency ν (rotation or vibration) has, similar 
to matter, a discontinuous structure. Consequently, radiant energy can only exist as 
bundles or quanta of energy hν. The number h is a universal constant known as the 
Planck constant. In 1905, Albert Einstein stated that light is made of particles 
subsequently called photons, each of which has an energy hν. Radiation results from 
electronic transitions between discrete levels of atomic or molecular systems. The 
energy exchanged during these transitions corresponds to photon absorption and 
emission processes. The energy E, angular frequency ω, frequency ν and wavelength 
λ of the photon are related by the following relations: 

2

2

cE h
hc hE

ων ω ν
π λ

λ π

= = = =   =  = 



                              [1.1] 

In relations [1.1], E is expressed in joules (J), ν in hertz (Hz), ω  in radian per 
second (rad ⋅ s−1) and λ in meters (m). The quantity c designates the speed of light in 
a vacuum and  is the h-bar (or reduced) Planck constant.  
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Numerical expression: 

h = 6.62606896 (33) × 10−34 J ⋅ s;  = 1.054571628 (53) × 10−34 J ⋅ s.  

c = 299792458 m ⋅ s−1 (exact value). 

The figures designate the absolute errors ΔX (uncertainties) of the given values 
of the measured X quantity. For example, h = (6.626 068 96 ± 0.000 000 33) × 10−34 
J ⋅ s.   

This means an absolute error Δh = (0.000 000 33) × 10−34 J ⋅ s. 

At the microscopic scale, it is convenient to use the electronvolt (eV) as a unit of 
energy:  

1 eV = 1.602179487 × 10−19 J. 

Photon absorption and emission processes are illustrated in Figure 1.1. 

Figure 1.1. Electronic transition between two discrete levels 

APPLICATION 1.1.–  

A He-Ne laser in a laboratory emits radiation whose wavelength is 633 nm. 
Calculate the energy E, frequency ν and angular frequency ω of a photon of this 
radiation. Express E in eV.  

Given data. h = 6.63 × 10−34 J ⋅ s; c = 3.0 × 108 m ⋅ s−1; 1 eV = 1.60 × 10−19 J. 

Solution. E = 1.96 eV; ν = 4.74 × 1014 Hz; ω = 2.98 × 1015 rad ⋅ s−1. 
 

Max Planck, in full Max Karl Ernst Ludwig Planck, was a German physicist. He founded 
quantum physics in 1900 with his fundamental hypothesis on the theory of quanta. He 
was awarded the Nobel Prize for physics in 1918 for his essential contribution to the 
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theory of quanta. Planck is also one of the founding fathers of quantum mechanics. He is 
also well known for his law giving monochromatic radiant exitance, which makes it 
possible to interpret the experimental observations related to black body isotherms.  

Box 1.1. Planck (1854–1947) 

1.1.3. Classification of objects 

Objects susceptible to exchange energy are classified into three categories: 

– transparent objects that allow radiation to pass through without attenuation. 
This is the case with glass, transparent plastic material, etc.;  

– opaque objects that absorb radiation and get heated. This is the case with solid 
bodies (metals, rocks, etc.), cardboard and some viscous liquids, such as paint; 

– translucent objects that absorb a part of the radiation and allow the rest to pass 
through. For these objects, radiation propagation is accompanied by absorption that 
increases the energy of the medium. A familiar example is that of oil. 

1.2. Radiant flux 

1.2.1. Definition of radiant flux, coefficient of absorption 

By definition, radiant flux denoted by Φ is the power emitted by a source 
throughout the space in which it can radiate. Radiant flux is expressed in Watts (W).  

Let us consider an object receiving an incident energy flux Φi. The surface of the 
object is chosen to allow radiation reflection, absorption and transmission 
(Figure 1.2). 

According to the law of conservation of energy, we have: 

Φi = Φr + Φa + Φt.         [1.2] 

In this relation, Φr is the reflected radiant flux, Φa designates the absorbed 
radiant flux and Φt represents the transmitted radiant flux. Let us consider ρ, α and 
τ as the coefficients of reflection, absorption and transmission, respectively, of the 
radiant flux. Their expressions are given as: 

; ;a tr

i i i

Φ ΦΦρ α τ
Φ Φ Φ

= = =       [1.3] 
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Figure 1.2. Decomposition of an incident radiant flux Φi 
at the contact with the surface of an object 

Implementing relations [1.3] in [1.2], the conservation of energy can be written 
as: 

 ρ  + α  + τ  = 1.                                         [1.4] 

Coefficients ρ, α and τ characterize the behavior of an object that is subjected to 
radiation. It is worth noting that the absorption coefficient α is the most important 
parameter. This coefficient measures the proportion in which incident 
electromagnetic radiation is converted into thermal energy. 

APPLICATION 1.2.– 

Let us consider an arbitrary process of reflection, absorption and transmission of 
an incident radiant flux. Calculate the absorbed flux.  

Given data. ρ = 30 %; τ  = 20 %; transmitted flux: 200 W. 

Solution.  Φa = 500 W. 

1.2.2. Black body and gray body 

There are two types of bodies: 

– gray bodies for which α < 1; 

– black bodies for which α = 1. 

 

 
 
 
 
 
 
 

Φi 

Φa 

Φt 

Φr 

object
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By definition, a black body is an ideal (therefore fictitious) object that has the 
specific property of perfectly absorbing the radiations of the visible spectrum 
irrespective of their frequency. The adjective “black” highlights only the fact that the 
object absorbs all the radiations of the visible spectrum so that it appears to be black. 
A black body can be actually realized by piercing a small orifice in the wall of a 
temperature-controlled cavity (whose walls are brought to a given temperature T). 
No radiation entering this cavity can escape. Hence the orifice behaves as a black 
body. It is nevertheless worth noting that an insignificant amount of thermal 
radiation leaves the cavity, but it is not sufficient to perturb the thermal equilibrium 
established in the cavity (but it is sufficient to be studied experimentally). Black 
velvet and black ink are simple examples of black bodies. Let us finally note that a 
gray body is not necessarily gray. This term designates any object whose absorption 
coefficient is α < 1. 

1.3. Black body emission spectrum 

1.3.1. Isotherms of a black body: experimental facts 

By definition, the electromagnetic energy density denoted by du in the band of 
angular frequency between ω and ω + dω (or of wavelength between λ and λ + dλ) 
is given by the expression:  

du = u (ω) dω = u (λ) dλ [1.5] 

In relations [1.5], the physical quantity u (ω) or u (λ) is called the spectral 
density of electromagnetic energy. u (ω) is expressed in J ⋅ rad−1⋅ s and u (λ) in J ⋅ 
m−1. 

Let us study the variation of the spectral density of electromagnetic energy 
depending on wavelength λ for each temperature T of the black body. Experience 
shows that these are asymmetrical curves known as black body isotherms. For each 
temperature value T, there is a corresponding curve that reaches a maximum for a 
specific wavelength value denoted as λmax (Figure 1.3). It should be kept in mind 
that λmax does not correspond to the maximal value of the wavelength of an isotherm 
taking place at temperature T of the black body. It is rather the wavelength 
corresponding to the peak of each isotherm. For example, for the isotherm at 5,500 
K, λmax ≈ 520 nm.  
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Figure 1.3. Black body isotherm curves 

1.3.2. Solid angle 

An angle θ (in radian) is defined as the length l of the arc cut off from a circle, 
centered at the vertex of the angle, divided by the radius R of this circle, which is θ 
= l/R. By analogy, the solid angle denoted as Ω (expressed in steradian) of a cone is 
defined as the area S cut off by this cone on a sphere centered at its vertex divided 
by the squared radius of the sphere (Figure 1.4), which is: 

2

S
R

Ω =  [1.6] 

– For the whole space, S = 4πR2  Ω = 4π steradian. 

– For a half-space, S = 2πR2  Ω = 2π steradian.  
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Figure 1.4. Surface S cut off by a cone on a sphere of radius R 

The solid angle under which an elementary area dS, whose dimensions are small 
compared to its distance r to point O, and whose normal makes an angle θ with the 

direction of the unit vector re


 (Figure 1.5), can be seen from a point O is very often 
interesting to consider. This elementary solid angle is present, for example, in the 
definition of the flux of a field of vectors through an elementary area dS. By 
definition, the elementary solid angle is given by the following relation: 

2 2

cosrdS e dSd
r r

θΩ ⋅= =
 

   [1.7] 
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Figure 1.5. Area dS seen from a point O at a distance r 

Let us finally express the solid angle of a cone of revolution of vertex O and 
half-angle at vertex θ. Let us consider for this purpose two cones of the same vertex 
O and the same axis, and half-angles α and α + dα (Figure 1.6).  

 
 

 
 
 
 O R 
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Figure 1.6. Cones of half-angles at vertex α and α + dα 

The (hatched) surface cut off from the sphere of radius R by the interval between 
the two cones is given by the relation: 

dS = 2πRsinαRdα = 2πR2sinαdα 

The corresponding elementary solid angle dΩ is then: 

2
2 sin= =dSd d

R
Ω π α α  [1.8] 

The solid angle Ω of a cone of revolution of vertex O and half-angle at the vertex θ 
is obtained by integration of equation [1.8] between the limits 0 and θ. This leads to: 

0
2 sin 2 (1 cos )d

θ
Ω π α α π θ= = −  [1.9] 

– For the entire space, θ = π  Ω = 4π steradian. 

– For a half-space, θ = π/2  Ω = 2π steradian.  

1.3.3. Lambert’s law, radiance 

Let us consider an emissive surface S. The fraction of flux d2Φ contained in the 
cone of solid angle dΩ in direction Ox making an angle θ with the normal N to the 
surface dS (Figure 1.7) is given by the relation: 

d2Φ = AdSdΩ                                         [1.10] 
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Figure 1.7. Solid angle seen from a point O, center of an emissive surface S 

Surface dS follows Lambert’s law if A = Lcosθ. The fraction of flux [1.10] is 
then written as: 

d2Φ = LcosθdSdΩ [1.11] 

The energy-related quantity L is known as the radiance of the emissive object. 
As relation [1.11] shows, radiance is by definition equal to the flux radiated by a 
solid angle unit and by a surface unit perpendicular to Ox. L is expressed in  
W ⋅ m−2 ⋅ sr−1. According to Lambert’s law, the radiance of an object is independent 
of the direction of axis Ox. Radiance depends only on temperature T and on the 
nature of the object surface (color, roughness, etc.). Moreover, total radiant intensity 
dI is equal to the fraction of the flux radiated in direction Ox (Figure 1.7) per unit 
solid angle dΩ , which is: 

dI = AdS = LcosθdS [1.12] 

Total radiant intensity is expressed in Watt per steradian (W ⋅ sr−1). 

1.3.4. Kirchhoff’s laws 

There are two Kirchhoff’s laws on thermal radiation. They explain the black 
body isotherms and the relation between radiance L of the gray body and radiance L0 
of the black body. Kirchhoff’s laws can be stated as follows: 

– first law: all black bodies at the same temperature have the same radiance; 

– second law: among all the objects brought to the same temperature, the black 
body is the most luminous. 

Considering a gray body of coefficient of absorption α, the mathematical 
expression of Kirchhoff’s second law leads to the relation between radiance L of the 
gray body and radiance L0 of the black body, which is: 

L= α L0 [1.13] 
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Johann Heinrich Lambert was a Swiss mathematician and astronomer. He is considered 
as one of the founders of photometry. He is well known in this field for the law that 
introduces the radiance of an emissive object and for the Beer–Lambert law stating that 
the decrease in light intensity is proportional to the number of particles absorbing light.  

Gustav Robert Kirchhoff was a German physicist. He is well known especially for his 
laws related to the conservation of currents and charges in electrical circuits. Kirchhoff is 
also known for his laws related to thermal radiation, which he formulated in 1859. 

Box 1.2. Lambert (1728–1777); Kirchhoff (1824–1887) 

1.3.5. Stefan–Boltzmann law, total energy exitance 

By definition, total energy exitance M is equal to the power radiated by the unit 
surface in all directions. Its relation with radiance is: 

/2

0
cos 2 cos sin .M L d L d

π
θ Ω π θ θ θ= =   

Considering x = cosθ , this leads to: 

0 0

1 1
2 cos cos 2M L d L xdxπ θ θ π= − = −   

or: 

M = πL. [1.14] 

M is expressed in W ⋅ m−2.  

For the black body, total radiant exitance denoted by M 0 is, according to [1.14]: 

M 0 = πL0 [1.15] 

Given the Stefan–Boltzmann law, total radiant exitance M 0 of the black body is 
proportional to the fourth power of its temperature T or (see demonstration in 
Appendix A.3): 

M 0 =σT4 [1.16] 

In this relation, σ is Stefan–Boltzmann constant.  
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Numerical expression: 

σ = 5.66897 × 10−8 W ⋅ m−2 ⋅ K−4 

Using relations [1.15] and [1.16], the radiance L0 of the black body can be 
written as: 

4
0L Tσ

π
=  [1.17] 

There is no need to memorize expression [1.17] of the radiance L0. It can be 
deduced, when needed. Only the laws and the definitions of the energy-related 
quantities studied in this section and in the following sections should be retained. 

APPLICATION 1.3.– 

Calculate the radiance and the radiant exitance of a gray body at temperature 3000 
K whose coefficient of absorption is 85%.                                                                                      

Given data. Stefan–Boltzmann constant: σ = 5.67 × 10−8 W ⋅ m−2 ⋅ K−4. 

Solution. L = 1.24 MW ⋅ m− 2 ⋅ sr−1; M = 3.9 MW ⋅ m− 2⋅ 
 

Joseph Stefan was an Austrian physicist. He is especially renowned for his work 
published in 1879 on the radiation of the black body in which he stated the law that bears 
his name. Based on this law, Stefan determined the Sun’s surface temperature (5430°C). 
Then his student Boltzmann offered a theoretical justification for the Stefan law. This is why 
this law is commonly known as the Stefan–Boltzmann law (for Boltzmann, see Box A.3). 

Box 1.3. Stefan (1835–1893)   

1.3.6. Wien’s laws, useful spectrum  

The two Wien’s laws give the abscissa λmax of the wavelength and the ordinate 
0
maxM  of the maximum monochromatic exitance for each temperature T of the black 

body (Figure 1.8). 

Wien’s first law 

The wavelength λmax at an isotherm peak shifts toward short wavelengths when 
temperature T increases according to the law: 

λmaxT = σw [1.18] 
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In this relation, σW designates the Wien constant: σ W = 2.898 × 10−3 m ⋅ K. 
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Figure 1.8. Isotherm curve of the black body at temperature T 
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Figure 1.9. Useful spectrum (hatched part of the isotherm curve) 

Wien’s law [1.19] shows that the value of λmax shifts toward short wavelengths 
when the temperature T increases. 

Wien’s second law 

The ordinate 0
maxMλ  of the maximum monochromatic exitance is proportional 

to the fifth power of temperature, which is: 

0 5
maxM BT=  [1.19] 
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In relation [1.19], 0
maxM  is expressed in W ⋅ m−3 (if the wavelength λmax is 

expressed in m) or in W ⋅ m–2 ⋅ µm−1 (if λmax is expressed in micrometers); the units 
of constant B depend on the unit of wavelength λmax.  

B = 1.28 ×10−5 [W ⋅ m−3 ⋅ K−5] if λmax is expressed in m.  

B = 1.28 ×10−11 [W ⋅ m−2⋅ µm− 1⋅ K− 5] if λmax is expressed in µm.     [1.20] 

Moreover, experience shows that when the wavelength of radiation is such that  
λ < 0.5λmax, there is practically no more radiated energy (approximately 1%)  
[PER 11].  

Furthermore, there is practically no more radiated energy when λ > 4.5λmax. By 
definition, the wavelength range 0.5λmax <λ < 4.5λmax is called the useful spectrum of 
the considered isotherm (hatched part in Figure 1.9). 

APPLICATION 1.4.– 

Let us consider an isotherm at the surface temperature of the Sun, which is 
assimilated to a black body. Find the useful spectrum corresponding to T = 6,000 
K.   

Given data. σW = 2.898 × 10−3 m ⋅ K. 

Solution. Useful spectrum: 0.5λmax <λ < 4.5λmax  (241.5 < λ < 2,173.5) nm. 
 
NOTE.– The useful spectrum contains radiations from ultraviolet to infrared. 
Therefore it contains all the radiations of the visible spectrum. 

APPLICATION 1.5.– 

What is the maximal monochromatic exitance of the isotherm of the black body at 
wavelength λmax= 1.184 µm at T = 2,500 K? 

Given data. B =1.28 ×10−11 W ⋅ m–2 ⋅ µm−1 ⋅K−5. 

Solution. 0
maxMλ = 1.25 MW ⋅ m–2 ⋅ µm−1. 

 
Wilhelm Wien was a German physicist. He is well known for the laws published in 1896 
that give the spectral distribution of the black body radiation for short wavelengths.  

Box 1.4. Wien (1864–1928)  
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1.3.7. The Rayleigh–Jeans law, “ultraviolet catastrophe”  

Let us consider a black body at thermodynamic equilibrium. The density of 
modes n (ω) (or the number of types of oscillators) in the angular frequency range 
[ω, ω + dω] is given by the following relation (see demonstration in Appendix A.1): 

2

2 3
( )n

c
ωω

π
=  [1.21] 

In this relation, c designates the speed of light in a vacuum. 

The spectral energy density is equal to the product of the density of modes n (ω) 
and the average energy ( )E Tω of the field of a single mode: 

( ) ( ) ( )u n E Tωω ω= ×  [1.22] 

For a classical oscillator, the average energy is ( )E T kTω = . Hence using 

[1.21], the classical formula of the Rayleigh–Jeans can be written as: 

2

2 3
( )u kT

c
ωω

π
= ×  [1.23] 

Expression [1.23] shows that spectral energy density u (ω) is a parabolic arc. Let 
us draw the graphical representation of the variation of u (ω) as a function of angular 
frequency ω compared to experimental observations. The resulting curves are 
represented in Figure 1.10. 

 

 

 

 

 

Figure 1.10. Comparison of the classical  
Rayleigh–Jeans law with experimental observations 
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Figure 1.10 shows that the classical Rayleigh–Jeans law is in agreement with the 
experimental observations for low frequencies ν (ν = ω/2π) or for long wavelengths 
λ (ω = 2πc/λ). On the other hand, it corresponds to an infinitely wide field of energy 
for high angular frequencies or for short wavelengths. This shift of the spectrum 
toward the ultraviolet region when angular frequency increases is known as 
“ultraviolet catastrophe”. 

John William Strutt Rayleigh was a British physicist. In 1900, he applied the laws of 
classical statistical mechanics to the field of radiation to establish the law expressing the 
distribution of the energy radiated by the black body depending on frequency. A factor 8 
error, due to erroneous counting in the phase space, was corrected in 1905 by Jeans  
[TAI 08].  

James Hopwood Jeans was a British physicist, mathematician and astronomer. He had 
significant scientific contributions to several fields of physics, such as thermal radiation, 
in which he co-authored with Rayleigh the law bearing their names. 

Box 1.5. Rayleigh (1842–1919); Jeans (1877–1946) 

1.3.8. Planck’s law, monochromatic radiant exitance 

In order to establish the quantum law of radiation by a generalization of the 
classical law [1.23] within the theory of quanta [BRO 25], Planck assimilated the 
black body cavity to a set of virtual harmonic oscillators. The problem posed is then 
to express the average energy of each of these oscillators. Considering that the 
average energy Eω  (T) of a mode is determined by the quotient of the discrete sum 
energies of the set of elementary oscillators by the total number of oscillators, the 
result is (see Exercise 1.4.3 for the demonstration): 

/
( )

( 1)kTE T
e

ω ω
ω=

−


 [1.24]
 

Using results [1.21] and [1.24], the quantum expression of the spectral density of 
electromagnetic energy known as Planck’s law is obtained: 

3

2 3 /

1
( )

( 1)kTu
c e ω

ωω
π

= ×
−


 [1.25] 

NOTE.– Depending on frequency ν (ω = 2πν), Planck’s law can be written as: 

3

3 /

8 1
( )

( 1)h kT
hu

c e ν
π νν = ×

−
  [1.26] 
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Figure 1.11 shows an illustration of classical [1.23] and quantum [1.26] 
predictions compared to experimental observations. It is worth noting that Planck’s 
quantum law is perfectly corroborated by experimental observations for all 
frequencies. Moreover, as indicated in Figure 1.11, the classical (Rayleigh–Jeans 
law) and quantum (Planck’s law) curves overlap for low values of angular 
frequency. This shows that Planck’s law is actually a generalization of the 
Rayleigh–Jeans’ law (see Application 1.6). 

 
 

 

 

 

Rayleigh-Jeans law

experiment

Planck’ s law

ω ωmax 0 

 

Figure 1.11. Comparison of classical and quantum  
predictions with experimental observations 

Moreover, there is another formulation of Planck’s law expressing the 

monochromatic exitance 0Mλ  of the black body as a function of wavelength λ and 

its absolute temperature T. This formulation can be written as: 

2

5
0 1

/( 1)C T
C

M
e

λ λ
λ−

=
−

  [1.27] 

In [1.27], C1 and C2 are constants: C1 = 2πhc2 and C2 = hc/k, where h designates 
the Planck constant, c designates the speed of light in a vacuum and k denotes the 
Boltzmann constant. Planck’s law [1.25] makes it possible to find Wien’s first law 
[1.19] (see Application 1.6) and deduce from it the theoretical expression of the 
Wien constant. 

APPLICATION 1.6.– 

Use Planck’s law [1.25] to find the Rayleigh–Jeans law. 

Solution. For low frequencies such that ω << kT, Planck’s law [1.25] gives: 
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3

2 3

1
( )

( / 1)
u

kTc
ωω

ωπ
≈

−





2

2 3
( )u kT

c
ωω

π
≈  

which actually corresponds to the classical Rayleigh–Jeans law [1.23]. 

1.4. Exercises 

1.4.1. Exercise 1 – Calculation of the Stefan–Boltzmann constant 

Let us consider a surface element dS of a black body. d²Φ is the power emitted 
by this element in the wavelength range [λ, λ+ dλ]. 

(1) Express d²Φ and the total exitance M0
 of the black body. 

(2) Deduce the expression of the Stefan–Boltzmann law. 

(3) Calculate the Stefan–Boltzmann constant.  

Given data. 

– h = 6.62606896 × 10−34 J ⋅ s; k =1.3806504 × 10−23 J ⋅ K−1. 

– c =2.99792458 × 108 m ⋅ s−1. 

– Spectral radiance of the black body: 

2
0

5 /

2 1

1hc kT
hcL

e
λ λλ

= ×
−

 

For all practical purposes, the following integral is given:  

3 4

0 151x
x

e
π∞

=
−  

1.4.2. Exercise 2 – Calculation of the Sun’s surface temperature 

The Sun, of radius R and surface area S, is assimilated to a black body at 
temperature T. The part of solar radiation reaching the Earth situated at distance d 
from the Sun is considered. P0 designates the solar power received by the Earth disc 
of surface area S0 and radius R0. Throughout the exercise, the Earth is assimilated to 
a gray body. 

(1) Express the power P radiated by the solar surface S as a function of R, T and 
σ (Stefan–Boltzmann constant). 
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(2) Draw a schematic representation of the relative positions of the Sun and 
Earth. Indicate on it the radii R and R0, surfaces S and S0 and the sphere of solar 
radiation of radius d and surface S’. Express P0 as a function of R, R0, T, d and σ.  

(3) Find the expressions of power Pa absorbed by the Earth and of power Pr 
radiated through its entire spherical surface of radius R0. 

(4) Express the temperature T of the Sun’s surface as a function of T0, d and R. 
Make the numerical application. 

Given data.  

– Ratio of the Sun’s radius R to the Earth–Sun distance d = R/d = 200. 

– Stefan–Boltzmann constant: σ = 5.670 × 10−8 W ⋅m−2⋅K−4.  

1.4.3. Exercise 3 – Average energy of a quantum oscillator, Planck’s 
formula 

According to Planck’s approach to black body radiation, the oscillations of an 
electromagnetic field can be assimilated to a set of elementary oscillators. Let us 
consider that En is the energy of an elementary mode constituted of a number n of 
photons. 

(1) Establish the relation between En and ω using Planck’s hypothesis. 

(2) At thermodynamic equilibrium, the number Nn of elementary oscillators 
obeys Boltzmann’s distribution law, which is: 

0
nE

nN N e β−=  

In this expression, β = 1/kT, where k is Boltzmann constant. 

Find the physical significance of N0. 

(3) Knowing that the average energy ( )E Tω of a mode can be calculated by 

the quotient of the discrete sum of energies of the set of elementary oscillators to the 
total number of oscillators, express ( )E Tω  as a function of Nn and En. 

(4) Considering a ω=   and ax e β−= , show that ( )E Tω  can be written as: 

1
( )

1

aE T
x

ω −=
−
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(5) Use this result to deduce the expression of energy ( )E Tω as a function of 

 , ω and T.  

(6) Find Planck’s formula. The expression of mode density is: 

2 2 3( ) /n cω ω π=  

1.4.4. Exercise 4 – Deduction of Wien’s first law from Planck’s formula 

Given Planck’s formula, the spectral exitance Mλ (or spectral radiant exitance) 
can be written as follows (in vacuum): 

2

5 /

2 1

1hc
hcM

e
λ β λλ

=
−

  

(1) Express the spectral exitance in a medium of refractive index nλ. 

(2) What is spectral exitance at the peak of light emission of the black body and 
at temperature T? 

(3) Use the previous results to deduce Wien’s first law. Consider x = hcβ/λ. 

(4) Estimate the Sun’s surface temperature corresponding to a maximum 
emission at a wavelength of 500 nm. 

Given data.  

– Unique positive solution of the equation:
1

1 0
5

xe x− + − = : x0 = 4.965. 

– k = 1.3806504 ×  10−23 J⋅K−1; h = 6.62606896 ×  10−34 J⋅s; c = 2.99792458 ×  
108 m ⋅ s−1. 

– Wien constant σW = 2.898 × 10−3m ⋅ K. 

1.4.5. Exercise 5 – Total electromagnetic energy radiated by the black 
body 

Let us consider a black cavity within which there is along all directions a light 
radiation emitted by the cavity walls at temperature T. Let us consider on the walls 
an emissive surface dS that obeys Lambert’s law. Let us denote d2Φ the flux 
contained in the cone of solid angle dΩ and direction Ox that makes an angle θ with 
the normal N to the surface dS. 
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(1) Use Lambert’s law to find the expression of d2Φ. Deduce from it the 
electromagnetic energy d3E exiting a black surface orifice of cross-section dS in the 
solid angle dΩ for a duration dt along the normal N. 

(2) The electromagnetic radiation is considered to be contained in a cylinder of 
height h = cdt and base surface area dS. Express the energy density per unit volume 
du as a function of dΩ, L0 and c (speed of light in a vacuum). 

(3) Show that the total energy per unit volume U(T) radiated by the black body 
can be written as U(T) = σ* × T 4, where σ* is a constant. Calculate σ*. 

(4) Calculate U(T) at T = 6,000 K. 

Given data. σ = 5.670400 × 10–8 W ⋅ m–2 ⋅ K–4. The values of other constants are 
among the given data in Exercise 1.5.3. 

1.5. Solutions 

1.5.1. Solution 1 – Calculation of the Stefan–Boltzmann constant 

(1) Expression of flux and total exitance of the black body 

An emissive surface following Lambert’s law radiates the light intensity: 

d²Φ= πLdS                          [1.28] 

The total exitance is M = d²Φ/dS. Hence for the black body: 

M0 = πL0 [1.29] 

(2) Expression of Stefan–Boltzmann law 

In the wavelength range [λ, λ+ dλ], radiance L0 of the black body is given by the 

integral of spectral radiance 0 ( )L Tλ  on all the wavelengths, which is: 

0
0

0

( )L L T dλ λ
∞

=                                                              [1.30] 

Using [1.29], the total exitance M0 of the black body is written as: 

0 0

0

( )M L T dλπ λ
∞

=     [1.31] 
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The spectral radiance is given by the following expression:  

2
0

5 /

2 1
( )

1hc kT
hcL T

e
λ λλ

= ⋅
−

 

Equation [1.31] becomes: 

0 2
5 /0

1 1
2

1hc kTM hc d
e λπ λ

λ

∞
= ⋅

−    [1.32] 

Let us consider: x = hc/λkT  dx = – (hc/λ2kT)dλ. After simplification, [1.32] 
gives: 

3
0 4 4

3 2 0

2

1x
xM k T dx

h c e
π ∞

=
−

 

[1.33] 

Taking the following result into account: 

3 4

0 151x
x dx

e
π∞

=
−  

leads to: 

5 4
4 4

0 3 2

2

15

kM T T
h c

π σ= =  [1.34] 

(3) Calculation of the Stefan–Boltzmann constant 

According to [1.34], the Stefan–Boltzmann constant can be written as: 

5 4

3 2

2

15

k
h c

πσ =  [1.35] 

 
N.A.– σ = 5.67040400 × 10–8 W ⋅ m–2 ⋅ K–4. 

The accepted value of the Stefan–Boltzmann constant is actually found: σ = 
5.670400 × 10–8 W ⋅ m–2 ⋅ K–4. Therefore, the result [1.34] corresponds to the 
Stefan–Boltzmann law. 
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1.5.2. Solution 2 – Calculation of the Sun’s surface temperature 

(1) Expression of the power P radiated by a solar surface 

The power radiated by the solar surface S = 4πR2 per unit time is P = SM0, or 
according to the Stefan–Boltzmann law [1.17]: 

P = 4πR2σT4 [1.36] 

(2) Schematization and expression of the power P0 received by the Earth disc 

– Schematization: see Figure 1.12. 

– Expression of power P0. 

The total power [1.36] is radiated in the sphere of radius d and surface S’ 
(Figure 1.12). The power P0 received by the Earth disc of surface S0 is (P → S’; P0→ 
S0): 

 0
0 '

S
P P

S
= ×  [1.37] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.12. Solar radiation sphere of radius d and surface S′ 

Taking [1.36] into account and knowing that S’ = 4πd2, relation [1.37] can be 
written as: 

2
2 4 0

0 2

R
P R T

d
πσ= ×  [1.38] 
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(3) Expressions of absorbed power Pa and radiated power Pr 

– Expression of absorbed power 

The Earth is assimilated to a gray body whose coefficient of absorption is α < 1. 
Hence, it only absorbs a fraction of power [1.38]. Let us consider: Pa = αP0. Using 
[1.38] leads to: 

2
' 2 4 0

0 2

R
P R T

d
απ σ= ×  [1.39] 

– Expression of radiated power 

If the Earth is brought to constant temperature T0, the power radiated throughout 
its spherical surface of radius R0 is: 

2 4
0 04rP R Tα π σ=  [1.40] 

(4) Expression of the Sun’s surface temperature, application 

When in thermodynamic equilibrium, the Earth radiates as much as it absorbs. 
Hence Pa = Pr. Placing expressions [1.39] and [1.40] in this equality leads, after 
simplification, to: 

1

4
2

0 02
4 2

d dT T T
RR

 
= × = ×  
 

 [1.41] 

N.A.– T = 6,000 K.  

In fact, the temperature of the solar surface (photosphere) is slightly below 6,000 
K. Its precise value is 5,800 K.  

1.5.3. Solution 3 – Average energy of a quantum oscillator, Planck’s 
formula 

(1) Relation between En and ω 

According to Planck’s hypothesis, the energy of a quantum oscillator can only 
take discrete values: 

nE n ω=   [1.42] 
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In this relation, n = 0, 1, 2,... and ω is the energy of a quantum of energy. 

(2) Physical significance N0 

– Expression of ( )E Tω  

At thermodynamic equilibrium, the number Nn of elementary oscillators of 
angular frequency ω follows the Boltzmann distribution law or, using [1.42]: 

0
n

nN N e β ω−=   [1.43] 

β = 1/kT 

In relation [1.43], N0 designates the number of elementary oscillators of angular 
frequency ω at ground state of energy E0 = 0 (n = 0) of the black body cavity. 

(3) Expression of ( )E Tω as a function of Nn and En 

The average energy ( )E Tω of a mode can be calculated by the quotient of the 

discrete sum of energies of the set of elementary oscillators to the total number of 
oscillators: 

– energy of the set of elementary oscillators: 

0
n n

n
N E

∞

=
×  

In this expression, Nn is given by relation [1.43]: 

– total number of oscillators: 

0
n

n
N

∞

=
  

Hence, the average energy of the set of modes can be written as: 

0

0

( )

n n
n

n
n

N E

E T

N
ω

∞

=
∞

=

×

=



 [1.44] 
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(4) Demonstration 

Using [1.43] and considering a ω=  , expression [1.44] becomes: 

0 0

0 0

( )

n n

n n

n n

n n

ne n x

E T a

e x

β ω

ω
ωβ

ω

∞ ∞
−

= =
∞ ∞

−

= =

= =
 

 




                                              [1.45] 

Since x < 1, we have at infinity: 

( )
2 3 4 11

1 ..... ( )
1

n nx x x x x x
x

Ο += + + + + + +
−

 

Hence: 

2 3
2

1 1
1 2 3 4 ....

1 (1 )

d x x x
dx x x

  = + + + + = −  −
 

Taking these results into account, expression [1.45] is written as: 

      
2 3 4 2 3

2 3 4 2 3 4

2 3 4 ........ 1 2 3 4 ........
( )

1 .......... 1 .........

x x x x x x xE T a a x
x x x x x x x x

ω
+ + + + + + + += × = ×
+ + + + + + + +

  [1.46] 

Using these last relations, [1.46] can be written as: 

( )
( ) ( )2

1
( )

11

x xE T a x a
xx

ω
−

= × = ×
−−

 

or by multiplying the numerator and denominator by x−1: 

1
( )

1

aE T
x

ω −=
−

 [1.47] 
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(5) Expression of Eω (T) as a function of ω,  and T 

Let us consider: a ω=  , ax e β−= , β = 1/kT. The average energy of the set of 
quantum oscillators is then written according to [1.47]: 

( )/
( )

1kT
E T

e
ω

ω

ω=
−


 [1.48]

 

Moreover, spectral energy density is given by the following relation: 

( ) ( ) ( )u n E Tωω ω= ×  [1.49] 

(6) Planck’s law 

The density of modes is given by the relation 2 2 3( ) /n cω ω π= . Planck’s law is 

written as: 

( )
3

2 3 /

1
( )

1kT
u

c e ω

ωω
π

= ×
−


 [1.50] 

1.5.4. Solution 4 – Deduction of Wien’s law from Planck’s law 

Using Planck’s formula, spectral exitance Mλ (or spectral radiance exitance) can 
be written (for a vacuum) in the form [1.51]: 

2

5 /

2 1

1hc
hcM

e
λ β λλ

=
−

 

(1) Expression of spectral exitance 

In a medium of refractive index nλ, spectral exitance Mλ can be written as: 

2

5 /

2 1

1hc
hc

M
e λ

λ
λ β λλ

=
−

 [1.52] 

with cλ = c/nλ, where c is the speed of light in a vacuum, nλ = 1. This leads to [1.51]. 
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(2) Spectral exitance at the peak of light emission of the black body 

At the peak of emission of the black body, spectral exitance is maximal. To put it 
differently, for λ = λmax, Mλ = constant. This is mathematically expressed by the 
following relation: 

max
0

dM
d

λ
λ λλ

=
=

 [1.53] 

(3) Deduction of Wien’s law 

Let us consider x = hcβ/λ. In this case, Planck’s law [1.51] can be written as: 

5

4 3 5

2

1x
xM

h c e
λ

β
= ×

−
            [1.54] 

Differentiating expression [1.54] and applying condition [1.53] lead to the 
required result. It is however simpler to differentiate the inverse of spectral exitance: 

 
4 3 5 4 3 5 5 4

5 10

1 1 5 ( 1)

2 2

x x xd h c d e h c x e x e
d M d x xλ

β β
λ λ

     − − −= × = ×             
 

If the result obtained is minimized with respect to λ, this leads to: 

5 4

10

5 ( 1)
0 5( 1) 0

x x
x xx e x e xe e

x
− − =  − − =  

The division by 5/xe x  leads to: 

1
1 0

5
xe x− + − =  

This equation has a unique solution x0 = 4.9651. Knowing that x = hcβ/λ, then: 

0
max max

hc hcx
kT

β
λ λ

= =  

or:  

max
0

hcT
kx

λ = = Cst                                   [1.55] 

Let us find the value of constant Cst in [1.55]. 
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Given k = 1.3806504 × 10−23 J ⋅ K−1, h = 6.62606896 × 10−34 J ⋅ s and c = 
2.99792458 × 108 m ⋅ s−1, the result is: Cst = 2.89776802 × 10−3m ⋅ K. 

But the Wien constant is σW = 2,898 × 10−3 m ⋅ K. It can be noted that Cst ≈ σW. 

Hence, relation [1.55] can be written as:  

λmaxT = σW. 

which actually corresponds to Wien’s first law [1.18]. 

(4) Estimation of Sun’s surface temperature 

Using Wien’s first law [1.18] leads to: 

max

wT
σ

λ
= .         [1.56] 

N.A.– λmax= 5 × 10−7 m; σW = 2.898 × 10−3 m ⋅ K. This leads to: T = 5,798 K. 

1.5.5. Solution 5 – Total electromagnetic energy radiated by the black 
body 

(1) Expression of the flux d2Φ and the electromagnetic energy d3E  

The flux contained in the solid angle dΩ and of direction Ox making an angle θ 
with the normal n


 to the surface dS is given by the following relation: 

d2Φ = AdSdΩ            [1.57] 

As the surface dS follows Lambert’s law, then A = Lcosθ. Hence [1.57] can be 
written as: 

d2Φ = LcosθdSdΩ            [1.58] 

In this relation, L designates the radiance of the emissive surface. 

For an elementary duration dt, the energy d3E exiting an orifice of area section 
dS of black surface in the solid angle dΩ is such that d3E = d2Φdt. Or considering 
[1.58] this leads to: 

d3E = L0cosθdSdΩdt                                                       [1.59] 
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Along the normal to the orifice (θ = 0), we have: 

d3E = L0dSdΩdt                                                                 [1.60] 

(2) Expression of the energy density per unit volume 

Electromagnetic radiation is constituted by photons moving at speed c. Light 
energy [1.60] is contained in an elementary cylinder of height h = cdt and volume dτ 
= dSh = cdSdt. Energy density per unit volume du is then given by the following 
relation:  

d3E = dudτ = ducdSdt [1.61] 

Equalization of [1.60] and [1.61] leads to: 

0
ddu L

c
Ω=  [1.62] 

(3) Demonstration, calculation of σ* 

Over the whole space, 4dΩ π= . Knowing that L0 depends on temperature, the 

total energy per unit volume U(T) radiated by the black body can be written 
according to [1.62]: 

0
4

( )U T L
c
π=  [1.63] 

According to the Stefan–Boltzmann law, the total energy exitance of the black 
body is M0 = πL0 = σT4. Black body radiance is expressed as a function of 
temperature as follows: 

4
0L Tσ

π
=  [1.64] 

Putting [1.64] in [1.63], total energy per unit volume U(T) radiated by the black 
body can be written as: 

4 4 44 4
( ) ( ) *U T T U T T T

c c
π σ σ σ

π
= ×  = =   [1.65] 

with:  

4
*

c
σσ =          [1.66] 
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– Calculation of constant σ*  

c =2.99792458 ×108 m ⋅ s−1; σ = 5.670400 × 10–8 W ⋅ m–2 ⋅ K–4 

Hence according to [1.66]: σ* = 7.565767 × 10−16 W ⋅ s ⋅ m–3 ⋅ K–4 = 7.565767 × 
10−16 J ⋅ m–3 ⋅ K–4.  

(4) Calculation of the total energy per unit volume radiated by the black body 

Using [1.65] leads to the numerical result T = 6000 K: U = 0.98 J. 





 2 

Wave and Particle Aspects of Light 

General objective 

Gain knowledge on the wave and particle properties of light. 

Specific objectives 

On completing this chapter, the reader should be able to: 

– define coherent sources; 

– describe Young’s experimental set-up; 

– define the interference field; 

– provide an interpretation of how interference fringes form; 

– define the path difference; 

– define the order of interference; 

– determine the spacing between fringes; 

– describe the experimental set-up for observing the photoelectric effect; 

– define the photoelectric effect; 

– provide an interpretation of the photoelectric effect; 

– use Einstein relation; 

– define the photoelectric threshold; 

– express the stopping potential; 

– define the saturation current; 
                            
For color versions of the figures in this book, see www.iste.co.uk/sakho/quantum1.zip. 
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– determine the quantum efficiency of a photoelectric cell; 

– define the sensitivity of a photoelectric cell; 

– experimentally determine Planck constant; 

– describe the experimental set-up for observing the Compton effect; 

– define the Compton effect; 

– provide an interpretation of the Compton effect; 

– define the Compton wavelength of the electron; 

– establish the Compton shift in wavelength; 

– express Planck–Einstein relations combining the wave and particle properties 
of light. 

Prerequisites 

– plane electromagnetic wave; 

– light diffraction; 

– photon characteristics; 

– energy and linear momentum of a relativistic particle. 

2.1. Light interferences  

2.1.1. Elongation of a light wave 

Light propagates in an arbitrary medium through vibrations of plane 
electromagnetic waves [STA 08, SAK 18]. These are transverse waves since the 
electric and magnetic fields are perpendicular to one another and to the propagation 
direction, which is given by the direction of the wave vector k . Let us consider a 
light wave that propagates along Ox and whose period is T. The elongation of the 
wave is given by the following expression: 

)sin(),( ϕω +−= kxtAtxa                                                                        [2.1] 

In this relation: 

– A is the amplitude of the wave, which is essentially positive: maximal value of 
a(x, t); 

– ω designates the angular frequency of the wave: ω = 2π/T = 2πf, f is the wave 
frequency; 
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– k is the norm of the wave vector: k = 2π/λ, λ is the spatial period of the wave 
and ϕ represents the phase of the wave. 

In the international system of units ω is expressed in radian per second (rad ⋅ s−1); 
T in seconds (s), f in hertz (Hz), k in meters to negative 1 power (m−1); λ in meters 
(m) and ϕ in radians (rad). Figure 2.1 indicates the principle of measurement of the 
temporal period T and the spatial period λ (wavelength) of a light wave whose 
elongation is given by [2.1]. 

 
 

 

 

 

 

0 x 

λ= 2π/k 

 

k
→

 

0 t 

T = 2π/ω 

 vibration at constant x  vibration at constant t  
 

 

Figure 2.1. Temporal period T and spatial period λ of a light wave 

2.1.2. Total elongation of synchronous light sources 

     Let us consider two synchronous (same period T) light sources S1 and S2 whose 
waves propagate along Ox axis. Their respective elongations a1 (x, t) and a2 (x, t) are 
given by the following relations:  

)sin(),( 11 ϕω +−= kxtAtxa                                                             [2.2] 

)sin(),( 22 ϕω +−= kxtAtxa                         [2.3] 

According to the principle of superposition, the sum of the two elongations is: 

)sin()sin(),( 21 ϕωϕω +−++−= kxtAkxtAtxa                       [2.4] 

Using the trigonometric relation: 

2
cos

2
sin2sinsin

βαβαβα −+=+                                      [2.5] 

and considering: 

)(;)( 21 ϕωβϕωα +−=+−= kxtkxt  
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Relation [2.4] can be written as: 





 +−−+−+−++−=

2

)()(
cos

2

)()(
sin2),( 2121 ϕωϕωϕωϕω kxtkxtkxtkxtAtxa  

which is: 








 −






 ++−=

2
cos

2
sin2),( 2121 ϕϕϕϕω kxtAtxa   [2.6] 

The phase shift between two sources S1 and S2 is the phase difference Δϕ given by 
the relation: Δϕ = ϕ1 − ϕ2. By definition, two sources are known as coherent if they 
are synchronous (they have the same period) and if their phase shift is constant in 
time (Δϕ = constant). The two sources S1 and S2 are in phase if the phase shift is zero:  

Δϕ = ϕ1 −ϕ2 = 0 ϕ1 = ϕ2 = ϕ  

In this case, elongation [2.6] is written as: 

( )ϕω +−= kxtAtxa sin2),(   [2.7] 

In practice, two coherent sources can be obtained from a single source of 
monochromatic light using Young’s experimental set-up. 

2.1.3. Young’s experimental setup 

A schematic diagram of Young’s experimental setup, which is used for studying 
light interferences, is presented in Figure 2.2. In brief, this setup is composed of a 
light source S (main source) and a thin sheet pierced by two small slits S1 and S2, 
referred to as Young’s slits (secondary sources), so that SS1 = SS2. The main source 
light is a monochromatic radiation generated by a laser beam [SAK 16]. 
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Figure 2.2. Young’s experimental setup for observing light interferences 
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S1S2 is a distance of the order of several dozens of millimeters. A screen (E) 
parallel to the sheet is placed at a distance D from the latter. 

2.1.4. Interference field, fringes of interference 

A monochromatic light source S (laser source) lights the slits S1 and S2. The 
waves emerging from the two slits overlap in a space known as interference field. 
The screen (E) shows light or bright bands and dark or obscure bands known as 
fringes of interference (Figure 2.3). The physical phenomenon observed on the 
screen is called interference. Light interference occurs, provided that the two waves 
that superpose in a propagation medium are emanated by two coherent sources.  

 
 

 

 

 

 

Figure 2.3. Light interference fringes 

2.1.5. Interpretation, interference as concept 

Light coming from source S undergoes diffraction when it reaches slits S1 and S2. 
Diffracted waves overlap in the interference field. The points where the amplitude of 
vibrations is maximal and those where the amplitude of vibrations is minimal are 
distributed on surfaces called hyperboloids and form the fringes of interference. 
These fringes should appear as curved. But given that the interference phenomenon 
is observed in a very limited region of the screen and at a distance D from sources S1 
and S2 that is very long compared to the space between them (D >> S1S2), the curve 
of fringes cannot be perceived. Parallel and equally spaced fringes are observed at 
the intersection of the mediating plane of the two sources with the screen. Light 
diffraction due to secondary sources S1 and S2 and the formation of fringes of 
interference support the wave aspect of light. 

Interference field 
 
 
 
 
 

S1 

S 

S2 
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Let us now adopt a mathematical perspective and analyze the interference 
phenomenon using the complex notation of waves [STA 08, PÉR 86]. Given Ψ1(x, t) 
and Ψ2(x, t), waves that propagate along the same axis Ox and emanate from slits S1 
and S2, respectively, the following relations can be written as: 

)1(
011 ),( ϕω +−Ψ=Ψ tkxietx   [2.8] 

)2(
022 ),( ϕω +−Ψ=Ψ tkxietx   [2.9] 

At any point M of the interference field, the global wave function Ψ(x, t) results 
from the superposition of waves Ψ1(x, t) and Ψ2(x, t), which can be written as: 

)2(
02

)1(
01),( ϕωϕω +−+− Ψ+Ψ=Ψ tkxitkxi eetx                             [2.10] 

By definition, light intensity I is equal to the average value in time of the squared 
module |Ψ(x, t)|2 = Ψ(x, t) Ψ*(x, t) of the wave function Ψ(x, t), which is: 

tt txtxtxtxtxtxI )],(),([)],(),([),(*),( *
2

*
121 Ψ+Ψ×Ψ+Ψ=ΨΨ=        [2.11] 

Using [2.11], this gives: 

t
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22
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1 ΨΨ+ΨΨ+Ψ+Ψ=         [2.12] 

Considering expressions [2.8] and [2.9], relation [2.12] can be written as: 
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Knowing that partial intensities are 2
011 Ψ≡I and 2

022 Ψ≡I , this finally leads to: 

12212121 2cos2 IIIIIIII ++=++= ϕ   [2.13] 

Result [2.13] shows that the intensity I of the wave resulting from the 
superposition of light waves from secondary sources S1 and S2 is not the sum of 
partial intensities I1 and I2. The third term ϕcos2 2112 III =  containing the phase 

difference between the two waves ϕ = (ϕ1 − ϕ2) is known as interference term. 

As sources S1 and S2 are identical in all respects (originating from the same main 
source S and being symmetrical with respect to the mediating plane containing the  
central fringe, see Figure 2.2), then I1 = I2. Hence [2.13] can be written as: 

)cos1(2cos22 000 ϕϕ +=+= IIII   [2.14] 

Relation [2.14] has two extremely important consequences: 

– when ϕ = 0, the two waves are in phase and I = 4I0: in this case, interferences 
are constructive. Bright fringes or fringes of maximal amplitude are obtained; 

– when ϕ = π, the two waves are out of phase and I = 0: the result is darkness. 
Interferences are destructive. This corresponds to dark fringes or to fringes of zero 
amplitude. In this case, “light added to light” results in darkness. This supports the 
purely wave-like character of light. 

APPLICATION 2.1.– 

Let us consider two non-polarized (non-coherent) sources S1 and S2, whose light 
intensities are I1 = 10 W ⋅ m−2 and I1 = 20 W ⋅ m−2, respectively. Find intensity I at 
point M where the waves coming from S1 and S2 meet.  

Solution. Being non-polarized and non-coherent, the two sources S1 and S2 do not 
interfere. The interference term I12 is therefore zero. Hence: I = 30 W ⋅ m−2.   

2.1.6. Path difference 

Let M be a point on the screen in the interference field (Figure 2.4). By 
definition, the path difference denoted δ between the light rays emitted by the two 
secondary sources S1 and S2 is given by the relation: 

δ = |MS2 − MS1|               [2.15] 
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where MS1, MS2 and δ are expressed in meters. 

Let λ be the wavelength of light radiations emitted by the monochromatic source 
S. 

– Interferences are constructive if, in M, δ = kλ; k is a natural integer. 

– Interferences are destructive if, in M, δ = (k +
2
1 )λ= k λ +

2

λ ; k is a natural 

integer.  

 

 

 

 

Figure 2.4. Definition of the path difference δ  = |MS2 − MS1| 

For k = 0, δ =|MS2 − MS1|= 0 |MS1|=|MS2|: this corresponds to the bright 
central fringe contained in the mediating plane of S1S2 passing through point O 
(Figure 2.4). In order to obtain the expression of the path difference, let us consider 
Figure 2.5. 

The path difference can be deduced from relation [2.15] if we find the 
expressions of lengths MS1= r1 and MS2 = r2. According to Figure 2.5: 
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Using [2.16] leads to: 
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which is: 

axaxaxaxaxrrrr 2
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Figure 2.5. Finding the expression of the path difference 

Young’s experimental setup is such that (r1 + r2) ≈ 2D. Then relation [2.17] can 
be written as: 

D
axrraxrrD =−=− 2121 22   [2.18]         

A comparison between result [2.18] and relation [2.15] leads to the expression of 
the path difference, which is: 

D
ax=δ      [2.19] 

2.1.7. Fringe spacing, order of interference 

By definition, fringe spacing denoted by i is the distance between two fringes of 
the same nature. The principle of measurement of fringe spacing is shown in Figure 
2.6. Fringe spacing can be determined by measuring the spacing between the 
midpoints of two consecutive fringes of the same nature (in practice, the length l 
filled by a large number of fringe spacings is measured, to minimize measurement 
errors, for example: l =10i). 
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Figure 2.6. Principle of measurement of fringe spacing i 

Moreover, the term order of interference (or order of an interference fringe) 
designates the integer k involved in path difference calculation. 

– For a bright fringe of order k:  
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By definition, fringe spacing i is given by the relation: 

i = xk+1 – xk  [2.22] 

Using [2.20] or [2.21] leads to the same result: 

a
Di λ=   [2.23] 

Relation [2.23] shows that fringe spacing i is proportional to the wavelength λ of 
light waves. Therefore, the measurement of i makes it possible to determine λ. 

APPLICATION 2.2.– 

Let us consider a point M located at a distance x from the center O of a screen 
displaying interference fringes. The radiation used has a wavelength of 633 nm. 
What is the distance between point O and the dark fringe of order 9? 

Given data. a = 500 µm; D = 2.0 m 
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Solution. Dark fringes result from zero-amplitude vibrations. Their positions are 
given by relation [2.21], which yields:  

a
Dkxk

λ






 +=

2

1 
a
Dx λ×=

2

19
9  

 
N.A.– x9 = 0.024054 m = 2.4 cm 

Thomas Young was a British physicist, physician and Egyptologist. In physics, he is 
well-known for his double slit experiment in optics, known as Young’s double slit 
experiment, in his honor. In 1801, Young sent a light beam through two parallel slits and 
observed its projection on a screen. Light is diffracted when passing through the slits and 
produces alternating bright and dark bands on the screen, known as interference fringes. 
Young offered an interpretation of the observed phenomenon, which supported the wave-
like nature of light. 

Box 2.1. Young (1773–1829) 

APPLICATION 2.3.– 

A light interference experiment is set up using a He-Ne laser source. For a spacing 
between slits a = 350 µm and a screen located at distance D = 4 m, the 
experimentally measured value of the fringe spacing is i = 7.2 mm. Find the 
wavelength of the laser beam used. Compare the result with the manufacturer 
specification: λ0 = 632.8 nm. 

Solution. Relation [2.23] is used to deduce the expression of the wavelength. This 
gives: 

D
ai=λ                                                                                                [2.24] 

 
N.A.– λ = 630.0 NM. 

The experimental value is λexp = 630.0 nm. This value is close to the wavelength 
specification λ0 = 632.8 nm provided by the manufacturer. Relative deviation is 
approximately 0.44%. 
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2.2. Photoelectric effect 

2.2.1. Experimental setup, definition 

The photoelectric effect was first observed by Heinrich Hertz in 1887, when 
exposing an initially negatively charged zinc plate to ultraviolet (UV) radiation 
[PÉR 86, DUA 08, SAK 12, PAR 15, SAK 16]. He noted a discharge inside an 
electroscope connected to the zinc plate. The experimental set-up currently used for 
the observation of the photoelectric effect is schematically shown in Figure 2.7.  

A freshly etched zinc plate amalgamated with mercury is placed on a negatively 
charged electroscope. The plate is lighted by a halogen lamp with quartz crystal 
envelope (UV-rich light). Rapid discharge of the electroscope can be noted, which 
proves that electrons are removed from the lighted zinc plate: this is referred to as 
photoelectric effect.  

 

 
 
 
 
 
 
 
 
 
 

 

 

Figure 2.7. Experimental setup for the observation of the photoelectric effect 

If light passes through a glass plate that fully absorbs ultraviolet radiations, the 
electroscope does not discharge; this proves that the removal of electrons due to 
photoelectric effect requires short wavelength light. By definition, p-hotoelectric 
effect is the extraction of electrons from a metal exposed to adequate (UV-rich) 
light. Electrons removed by light are known as photoelectrons. 

2.2.2. Interpretation, photon energy 

The photoelectric effect is explained within Einstein’s photon theory. Light is a 
set of particles called photons. Therefore, the photoelectric effect results from a 
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collision between a photon of light radiation and an electron of the lighted metal. 
Two outcomes are possible: 

 

 

 

Figure 2.8. Interpretation of the photoelectric effect: photonelectron collision 

– if photon energy is not sufficient (long wavelength light), the photon rebounds 
off the metal and the electron is not removed (Figure 2.8(a)); 

– if photon energy is sufficient (short wavelength light), the photon is absorbed 
by the metal, which absorbs all its energy: one electron is then removed and set in 
motion with maximal speed v (Figure 2.8(b)). 

 In conclusion, the photoelectric effect supports the particle nature of light. 

Heinrich Rudolf Hertz was a German engineer and physicist. He is especially well- 
known for his discoveries in the field of electromagnetism. He discovered the 
photoelectric effect in 1887. In 1888, he discovered electromagnetic waves, which he 
named Hertzian waves.  

Box 2.2. Hertz (1857–1894) 

2.2.3. Einstein relation, energy function 

According to Planck’s theory of quanta, each photon of light radiation has an 
energy E = hν. When photon energy E is high enough, it is partly (W0) used to 
remove the electron, while the remaining energy is transmitted to the electron as 
kinetic energy Ec. According to energy conservation law: E = Ec + W0. As the 
ejected electron is a classical particle, its maximal kinetic energy is: 

0
2

2

1 Whmv −= ν   [2.25] 

Energy denoted by W0 is known as work function. Relation [2.25] is referred to 
as Einstein photoelectric equation. In equation [2.25], m is expressed in kilograms 
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(kg), v in meters per second (m ⋅ s−1), h in joule second (J ⋅ s), ν in hertz (Hz) and W0 in 
joule (J). The values of the work function for several metals are provided in Table 2.1. 

 Cesium Lithium Zinc Tungsten Chromium Silver Platinum 

Symbol Cs  Li  Zn  W  Cr  Ag  Pt  

W0 (eV) 1.8 2.3 3.4 4.5 4.6 4.8 5.3 

Table 2.1. Work function for several metals 

Work function is generally expressed in eV: 1 eV ≈ 1.60 × 10−19 J 

Albert Einstein was a theoretical physicist of several citizenships: German, Swiss and 
American. He published his theory of special relativity in 1905 and his theory of gravity 
known as the theory of general relativity in 1915. Einstein contributed to the development 
of quantum mechanics and was awarded the Nobel Prize in Physics in 1921 for his 
interpretation of the photoelectric effect. Einstein has also become famous for his 
equation E = mc2 expressing the mass–energy equivalence.        

Box 2.3. Einstein (1879–1955) 

APPLICATION 2.4.– 

A photon of energy 5.44 × 10−19 J is fully absorbed by a metal used for the study of 
photoelectric effect. The final speed of the consequently ejected electron is zero. 
What is the chemical nature of the metal? To answer the question, use the values 
W0 summarized in Table 2.1. 

Solution. Einstein equation [2.25] is used; given that electron speed is zero after 
photon absorption: W0 = 5.44 × 10−19 J = 3.4 eV, hence the metal is zinc (Zn). 

2.2.4. Photoelectric threshold 

When the extracted electron is not set into motion, its speed is v = 0. According 
to equation [2.25]: 
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In [2.26], ν andν0 are expressed in hertz (Hz), λ and λ0 in meters (m), W0 in joule 
(J), h is Planck constant and c designates the speed of light in vacuum. 
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Using [2.26], Einstein equation [2.25] can be written as: 
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The kinetic energy of the electron being positive, photoelectric effect does not 
occur unless the frequency ν or the wavelength λ of the radiation employed satisfies 
the inequality: 

ν >ν0 or λ < λ0  [2.28] 

By definition, ν0 and λ0 are the threshold frequency and the threshold wavelength 
of the photoelectric effect, respectively. 

APPLICATION 2.5.– 

A photon whose wavelength is 260 nm hits a tungsten plate whose work function 
is 4.49 eV. Does photoelectric effect occur? 

If yes, calculate the speed of the ejected electron.  

Given data. m = 9.109 × 10−31 kg; hc = 1.986 × 10−25 SI; 1 eV = 1.602 × 10−19 J 

Solution. 

1. According to Einstein equation, the photoelectric effect is observed provided 
that:  
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or: 

λ
hcE =   

N.A.–  E = 4.77 eV > W0 = 4.49 eV: photoelectric effect is therefore observed. 

2. Speed is given by the following relation: 

m
WEv )(2 0−= : v = 3.14 × 105 m ⋅ s−1                             [2.30] 
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2.2.5. Stopping potential, saturation current 

The experimental set-up for the study of the photoelectric effect is schematically 
represented in Figure 2.9. This shows the photoelectric cell constituted of a UV 
transparent glass envelope in which there is high vacuum.  

Figure 2.9. Experimental setup for the study of photoelectric effect 

Voltage U is applied between the light sensitive photoelectric cathode and the 
anode. Using a source of monochromatic light, the variations in photocurrent 
intensity I due to photoelectrons are studied as a function of voltage U for various 
increasing values of light output P. The observed characteristics are represented in 
Figure 2.10.  

 

 

 

 

 

Figure 2.10. Variations of photocurrent intensity I as a function of the  
applied voltage U, under increasing light output P 
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For a given light output, the following can be noted: 

– Intensity I increases when voltage U increases. Then it reaches a maximum Is 
irrespective of the value of U.  

– For a certain voltage U = U0, the current is zero. 

By definition, the current of intensity IS is known as saturation current. 
Saturation is reached when all the photoelectrons in the metal are ejected. Let n be 
their number. The intensity of saturation current per unit time is given by the 
following relation (resulting from q = It = ne, where e is the elementary charge): 

Is = ne                                                                                                     [2.31] 

To clarify the physical significance of U0, let us consider the potential difference 
U = VA − VC= − U0. If the origin of electric potential is chosen at photocathode level 
(VC = 0), then: VA = − U0. When U = − U0, current intensity is zero. Consequently, 
all photoelectrons are rejected by the anode (VA = − U0). This explains the curved 
trajectories shown in Figure 2.11. Voltage U0 is thus known as stopping potential. 

 
 

 

 

 

 

Figure 2.11. Paths of photoelectrons rejected by the  
anode brought at electric potential VA = − U0 

Let us now fix light output P and vary frequency ν. It can be noted that stopping 
potential U0 increases with frequency (Figure 2.12). 

The application of work–energy theorem between cathode and anode can 
provide a theoretical interpretation of the observations shown in Figure 2.12. This 
gives: 

EcA – EcC = – eU0 

photoelectron 

 anode  

cathode  
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Figure 2.12. Variation of stopping potential U0 with frequency ν of light radiation 

Using Einstein equation [2.25] leads to (photoelectrons are rejected by the 
anode: therefore their speed upon arriving at the anode is 0): 

00
2 )(

2

1
0 eUWEmv −=−−=−  

Hence: 










−×=

−×=

e
W

e
hcU

e
W

e
hU

0
0

0
0

1

λ

ν
  [2.32] 

The first equation of system [2.32] clearly shows that stopping potential U0 
increases when light frequency increases, according to experimental observations 
(Figure 2.12. Moreover, the experimental study of the curve U0 = f (ν) or of U0 = f 
(1/λ) makes it possible to measure Planck constant h and identify the photocathode 
by measuring the work function W0 (see Exercise 2.5.6). For example, the curve U0 
= f (1/λ) is a straight line of slope a = hc/e and ordinate at the origin b = − W0/e. 

APPLICATION 2.6.– 

An aluminum photocathode at zero potential is bombarded by photons of energy 
8.4 eV. Knowing that the work function is 4.2 eV, calculate the stopping potential. 

Solution. It can be noted that E = 2W0  

According to the work–energy theorem: 

eU0 = E – W0 = W0 U0 = W0 /e. Or: U0 = 4.2 V 
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2.2.6. Quantum efficiency of a photoelectric cell 

The quantum efficiency η of a photoelectric cell is equal to the ratio of the 
number n of photoelectrons emitted by the photocathode to the number N of incident 
photons of the light radiation, which is:η = n/N. Using [2.31] leads to n = IS/e. 
Knowing that N = P/hν, then: 

P
h

e
Is νη ×=   [2.33] 

Quantum efficiencies of photoelectric cells range between 0.2% and 20%. These 
low quantum efficiencies are explained by the fact that there are very few effective 
photons in the set of received incident photons. 

APPLICATION 2.7.– 

A photocathode is irradiated with a 2 mW He-Ne laser emitting monochromatic 
light whose wavelength is 630 nm. The measured number of effective photons per 
second is 9.495 × 1014. Find the quantum efficiency of the photoelectric cell.  

Given data. hc = 1.986 × 10−25 SI 

Solution. The quantum efficiency of the cell is η = n/N; the number of effective 
photons per second is equal to the number n of photoelectrons emitted per unit 
time. Light output P is given by the following relation: 

hc
PNNhcNhP λ

λ
ν ===  

or: 

λ
η

P
nhc= η ≈ 15%                                                                                    [2.34] 

2.2.7. Sensitivity of a photoelectric cell 

By definition, the sensitivity of a photoelectric cell denoted s is the quotient of 
the saturation current by the light output received by the photocathode, which is: 

P
Is s=   [2.35] 



52     Introduction to Quantum Mechanics 1 

Sensitivity is expressed in ampere per watt (A ⋅ W−1). 

As a function of wavelength, sensitivity is given by the relation: 

λη
ν

η
ν

×====
hc
e

h
e

Nh
en

P
Is s .  

If the number N of incident photons is assumed equal to the number n of effective 
photons, then the following relation is eventually obtained (η = 100%): 

ehchc
es

/

λλ =×=        [2.36] 

Numerical expression: 

99
19

34

10124010839.1239
10602179487.1

2997924581062606896.6 −−
−

−

×≈×=
×
××=

e
hc  

Hence sensitivity [2.36] can be written as: 

1240

)(nms λ=       [2.37] 

Result [2.37] shows the linear variation of theoretical sensitivity with 
wavelength. Nevertheless, the number of effective photons within the set of received 
incident photons being small, actual sensitivity is not proportional to the wavelength 
(Figure 2.13). Theoretical predictions are erroneous for λ = λ0 (maximal sensitivity) 
while actual sensitivity is zero. Photoelectric effect occurs for λ < λ0: sensitivity 
cannot be measured for λ >λ0. 

 
 
 
 
 
 
 
 
 

 

Figure 2.13. Variation of theoretical and actual sensitivities of a  
photoelectric cell with wavelength 
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2.3. Compton effect 

2.3.1. Experimental setup, definition 

The simplified experimental set-up for the observation of the Compton effect is 
schematically represented in Figure 1.19.  

 

Figure 2.14. Experimental set-up for the observation of Compton effect 

A monochromatic X-ray beam hits a target crystal. Scattered light waves are 
observed with a crystal spectrometer [GRO 85, SAK 12, PAR 15]. 

 
 

 

 

 

 

Figure 2.15. Spectrum of rays due to Compton effect 

For the molybdenum ray of wavelength λ = 71.2 pm and for a scattering angle  
θ = 80°, a spectrum of rays as shown in Figure 2.15 is observed. It can then be noted 
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that the spectrum of scattered waves involves two rays: one ray of wavelength λi 
equal to that of the incident waves and another ray of wavelength λd >λi: this is 
known as the Compton effect.  

By definition, the Compton effect is the scattering of a photon by an electron at 
rest, accompanied by energy loss (at the expense of the incident photon). The 
positive difference  Δλ = (λd − λi) is referred to as Compton shift in wavelength. 
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Figure 2.16. Variation of Compton shift in wavelength with scattering angle θ 

When the scattering angle θ varies, then Compton shift Δλ increases when θ 
increases, as shown in Figure 2.16.  
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2.3.2. Energy and linear momentum of a relativistic particle 

Compton effect is explained within Einstein’s theory of special relativity. It is 
therefore important to first clarify the main characteristics of a relativistic particle, 
in contrast to a particle known as classical. A particle of relativistic mass m and rest 
mass m0, which is moving at speed v (with respect to a given reference frame), has a 
total energy E and a linear momentum p given by the following expressions [GRO 
85]: 
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  [2.38] 

When the particle is at rest, v = 0  m = m0 and E =E0 = m0c2. E0 is known as 
rest energy of the particle. Moreover, by definition, the kinetic energy of the 
relativistic particle is Ec = E – E0. Relation [2.38] leads to: 
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The quantity γ is known as Lorentz factor defined as: 

2

2
1

1

c
v−

=γ  

Using this factor, relations [2.38] and the first expression [2.39] are simplified as 
follows: 

γ0mm = ; γ2
0cmE = ; vmp γ0= ; )1(2

0 −= γcmEc             [2.40] 

Moreover, since p = mv and E = mc2, then v = pc2/E. Let us replace v by pc2/E in 
the second expression of relations [2.38]. Total relativistic energy E is then written 
as (maintaining the positive value, since E = mc2 > 0): 

42
0

22 cmcpE +=         [2.41] 
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The rest mass of the photon is m0 = 0 (current experimental measurements 
indicate a mass below 10−54 kg). Using [2.41], photon energy and linear momentum 
verify the following relations: 

λλ
hphcpcE ===   [2.42] 

Relativistic effects can be noted from a speed v ≥ c/10 γ ≥ 1.0050. 

2.3.3. Interpretation, photon linear momentum, and Compton shift 

The previous observations (Figure 2.16) can be interpreted by applying the 
energy and linear momentum conservation laws to the Compton scattering of a 
photon by the electron in the scattering crystal. This makes it possible to establish 
the theoretical expression of the Compton shift in wavelength. To be able to do this, 
a diagram will be used to illustrate the Compton scattering of an incident photon by 
an electron that is initially at rest (Figure 2.17). 

 
 

 

 

 

 

 

Figure 2.17. Compton scattering of a photon 

Let us describe the incident photon, the scattered photon and the ejected electron 
by pairs of quantities (a, b), where a denotes energy and b denotes linear 
momentum. Then we have: 

Before scattering After scattering 
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– incident photon: (Ei, pi) 

– scattered photon: (Ed, pd) 

– ejected electron: (Ee, pe) 

Let us then consider the diagram represented in Figure 2.18: 

– before scattering: 

- total energies:  

2
00; cmEEhcE e

i
i ===

λ
                                                               [2.43] 

- linear momentum:  

0; == e
i

i php
λ

                                                       [2.44] 

– after scattering: 

- total energies:  

42
0

22; cmcpEhcE ee
d

d +==
λ

                                                        [2.45] 

- linear momentum:  

0; ≠= e
d

d php
λ

             [2.46] 

Applying the energy and linear momentum conservation laws we have: 
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Using these relations, the result is: 
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Expanding the first equation of the latter system leads to: 
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Equalizing these two equations [2.47] and expanding the first term on the right 
of the first equation leads after simplification and arrangement to: 

)cos1()( 2
0 θ−=− didi ppcmcpcp                                                     [2.48] 

Knowing that p = h/λ, equation [2.48] can be written as: 

( )θ
λλλλ

cos12
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didi
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This equation is simplified as follows: 

( ) ( )θλλλ cos1
0

−=−=Δ
cm

h
id                                                              [2.49] 

This corresponds to Compton equation. Since (1 – cosθ) is dimensionless, the 
quantity h/m0c has the dimension of a wavelength. By definition, the Compton 
wavelength of the electron is denoted by λc and is given by the relation: 

cm
h

c
0

=λ                                                                                             [2.50] 
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Knowing that h = 6.62606896 × 10−34 J ⋅ s; c = 2.99792458 × 108 m ⋅ s−1;  

m0 = 9.10938215 × 10−31 kg, then: λc = 2.43 pm. This wavelength is within the range 
of γ rays. Compton shift in wavelength [2.49] is then written in a simplified form: 

( )θλλ cos1 −=Δ c                                                                                  [2.51]
 

Quantity λc is known as Compton wavelength of an electron. It is worth noting 
that the Compton effect supports the particle-like aspect of light. 

APPLICATION 2.8.– 

An experiment of Compton scattering of a photon by an electron at rest is 
conducted. The wavelength of the incident photon is λ = 71.2 pm. The measured 
Compton shift in wavelength is 3.6 pm. Calculate the energy of the scattered 
photon in keV and the angle θ. 

Given data. λc = 2.43 pm; h = 6.63 × 10−34 J ⋅ s; c = 3.0 × 108 m ⋅ s−1; 1 eV = 1.60 
× 10−19 J 

Solution. 

1. Energy of the scattered photon: Compton shift in wavelength:  

Δλ = λd − λI λd = Δλ + λi                                                                     [2.52] 

hence: λd = 74.8 pm. The energy of the scattered photon is given by the following 
relation: 

d
d

hcE
λ

=  Ed = 16.62 keV                                                                        [2.53] 

2. Scattering angle: The Compton shift in wavelength is given by the relation: 

Δλ = λc (1 – cosθ)  θ  = cos–1 (1 – Δλc);  θ  ≈ 119°                            [2.54] 

2.4. Combining the particle- and wave-like aspects of light 

2.4.1. Particle- and wave-like properties of the photon 

Light diffraction and interference are phenomena that support the wave-like 
aspect of light. Wave-like properties of light are characterized by the wave vector of  
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module k = 2π/λ and angular frequency ω = 2πc/λ. Photoelectric effect and 
Compton effect support the particle-like aspect of light: light has a dual wave and 
particle nature. These two aspects coexist, but they never manifest simultaneously. 
The wave-like and particle-like combination of light properties is reflected by the 
following Planck–Einstein relations. 

– Quantities specific to wave-like properties: 

λ
π

λ
πω 2

;
2 == kc

            [2.55] 

– Quantities specific to particle-like properties: 

λλ
hphcE == ;                           [2.56] 

2.4.2. Planck–Einstein relation 

Planck–Einstein relations reflect the combination of wave- and particle-like 
properties of light. They connect in pairs the wave- and particle-like quantities. 
Using [2.55] and [2.56] leads to: 

khhpchhcE ×=×==×=×== 
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Hence the Planck–Einstein relations can be written as: 

kpE  == ;ω                 [2.57] 

Arthur Compton was an American physicist. He was awarded one half of the Nobel 
Prize for Physics in 1927 (the other half being received by Charles Wilson) for the 
discovery of the Compton effect proving the particle-like aspect of light (which had also 
been evidenced by the photoelectric effect discovered by Hertz in 1887). The Compton 
effect has made it possible to confirm the existence of the photon.  

Charles Thomson Rees Wilson (1869–1959) was a British (Scottish) physicist. He was 
awarded half of the Nobel Prize for Physics in 1927 for building the cloud chamber that 
constituted the first particle detector. 

Box 2.4. Compton (1892–1962) 
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2.5. Exercises 

2.5.1. Exercise 1 – Single-slit diffraction, interferences 

Twin sisters Amina and Fatima conduct a light interference experiment using the 
experimental set-up shown in Figure 2.18. They have at their disposal the following:  

– a collimated laser diode emitting a monochromatic light radiation of 
wavelength λ = 670 nm; 

– a thin rectangular slit of width l = 100 µm pierced on a film slide; 

– pairs of thin and parallel slits on film slide and separated by distance a. 

 

 

 

 

Figure 2.18. Experimental setup of single-slit diffraction 

(1) Amina and Fatima light the thin slit located at approximately d = 10.0 cm 
from the laser source. For a distance D = 2.0 m, they note on a screen a horizontal 
figure constituted of bright spots regularly arranged around a larger central spot, as 
shown in Figure 2.19.  

 

 

 

Figure 2.19. Spacing xn of midpoints of various regular bright spots 
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It can be theoretically proven that the spacing xn of the midpoints of various 
black spots that are symmetrical with respect to the central bright spot satisfy the 
following relation: 

D
l

nxn
λ

2= , n is a natural integer. 

Prove that the theoretical predictions are corroborated by the experiment.  

(2) Amina and Fatima then replace the previous thin slit with a pair of slits 
separated by distance a.  

(2.1) Is the observed phenomenon similar to the previous one (question 1)? If 
not, what is the observed phenomenon?  

(2.2) For D = 4 m, they measure on the screen a length l = 76 mm filled by the 
centers of 11 bright fringes. Given this data, deduce a. What is the measuring 
accuracy knowing that the manufacturer specification is a0 = 350 µm? 

2.5.2. Exercise 2 – Order of interference fringes 

An experimental set-up (Figure 2.20) is used to observe light interferences in air. 
S1 and S2 are two slits constituting coherent and synchronous sources. The yy’ axis 
coincides with the perpendicular bisector of S1S2. The two slits are first lighted with 
yellow monochromatic light of wavelength λ1 = 600 nm. 
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y
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Figure 2.20. Experimental setup for the study of light interference 

It can be noted that the distance between the midpoint of the zero-order central 
fringe and the midpoint of the bright fringe of order k1 = 10 is x1 = 6 mm. The two 
slits are then lighted with monochromatic red light of wavelength λ2. The distance 
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between the midpoint of the central fringe and the midpoint of the bright fringe of 
order k2 = 12 is x2 = 8.64 m. 

Given data. c = 3.0 × 108 m ⋅ s−1 

(1) Show that the wavelength is: 

1
12

21
2 λλ

xk
xk=  

Calculate λ2.  

(2) Calculate the frequencies ν1 and ν2 corresponding to radiations of 
wavelengths λ1 and λ2, respectively. 

(3) Slits S1 and S2 are exposed to two radiations of wavelengths λ1 and λ2; the 
“naked eye” perceives an “orangy” light at point H, where yy’ axis intersects the 
screen. 

(3.1) Provide a qualitative explanation of this screen appearance (orangy shade). 

(3.2) The total width of the interference field on the screen E is 18 mm. How 
many times is the aspect observed at H present? 

2.5.3. Exercise 3 – Experimental measurement of Planck constant and 
of the work function of an emissive photocathode  

An experimental study of photoelectric effect on cesium has led to the 
measurement of the stopping potential U0 corresponding to several wavelengths. The 
results are summarized in Table 2.2. 

λ (nm) 405.0 436.0 467.0 515.0 546.0 577.0 589.0 615.0 

U0 (V) 1.190 0.970 0.780 0.535 0.400 0.245 0.230 0.145 

Table 2.2. Experimental values of the stopping potential corresponding to  
several wavelengths for a cesium photocathode 

(1) Express U0 as a function of wavelength λ.  

(2) Draw the curve U0 = f (1/λ). Choose the appropriate scale. 
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(3) Use the experimental curve to determine Planck constant and the work 
function. Determine the measuring accuracy. 

(4) Use the same experimental curve to determine the work function W0. Then 
find the measuring accuracy. 

(5) Show that the wavelengths employed are well suited to the experimental 
study conducted. 

Given data.  

– output potentials of several metals: Pt (5.30 V); Cs (1.80 V); Cr (4.60 V) 

– accepted value of Planck’s constant: h = 6.62606896 × 10–34 J ⋅ s 

– elementary charge: e = 1.602179487 × 10−19 C 

2.5.4. Exercise 4 – Experimental study of the behavior of a 
photoelectric cell, quantum efficiency and sensitivity 

An experiment is conducted for the study of a photoelectric cell irradiated by a 
source of monochromatic light. The threshold wavelength of the photocathode used 
is λ0 = 666.7 nm. The results obtained for (I, U) pairs of values are summarized in 
Table 2.3. 

I (µA) 0.00 1.65 2.00 3.00 4.00 5.00 5.20 5.30 5.30 

U (V) –0.80 0.00 0.22 0.60 1.10 2.00 3.00 4.00 5.00 

Table 2.3. Experimental values of the voltage between the anode and the cathode of 
a photoelectric cell corresponding to several measured values of photocurrent 

(1) Draw the I = f (U) characteristic of the cell. 

(2) Use the curve to determine: 

(2.1) The total number of emitted photoelectrons. 

(2.2) The maximal speed gained by a photoelectron upon leaving the cathode. 

(2.3) The frequency ν of the monochromatic light used. Is this result consistent 
with the photoelectric emission? Justify. 



Wave and Particle Aspects of Light     65 

(3) Calculate the quantum efficiency η and the sensitivity s of the photoelectric 
cell employed if light output is P = 10−4 W. 

Given data. e = 1.60 × 10−19 C; m = 9.10 × 10−31 kg; c = 3.0 × 108 m ⋅ s−1; h = 
6.63 × 10–34 J ⋅ s 

2.5.5. Exercise 5 – Compton backscattering 

A Compton scattering experiment is conducted. The measured Compton shift in 
wavelength is 4.86 pm. Moreover, the electron in the crystal lattice is ejected at a 
speed v = 0.89 c. 

(1) Prove that the experiment corresponds to Compton backscattering. 

(2) Can this backscattering be studied in the context of classical mechanics? Use 
calculation to support your answer.  

(3) Calculate the linear momentum of the ejected electron. Express this result in 
keV/c. 

(4) Find the total energy of the ejected electron. Use the result to deduce its 
kinetic energy. Express the results in MeV. 

(5) Calculate the wavelength of the incident photon, if the energy of the scattered 
photon is half the total energy of the ejected electron. Locate this wavelength in the 
spectrum range of electromagnetic radiations. 

Given data. m0c2 = 0.511 MeV; c = 3.0 × 108 m ⋅ s−1; h = 6.63 × 10–34 J ⋅ s 

2.5.6. Exercise 6 – Energy and linear momentum of scattered photons 
and of the electron ejected by Compton effect 

An incident X-photon strikes an electron that is initially at rest. The direction of 
the Compton scattered photon makes an angle θ with the initial direction of the 
incident photon. 

(1) Recall the expression of the Compton shift in wavelength. 

(2) Express the following quantities as a function of the initial energy Ei of 
incident photons, of the rest energy m0c2 of the electron and of the angle θ: 

(2.1) Energy of scattered photons. 
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(2.2) Final kinetic energy of the electrons. 

(3) Calculate the numerical values for Ei = m0c2/29 and θ = π  

Given data. m0c2 = 0.511 MeV; λc = hc/m0c2 

2.5.7. Exercise 7 – Inverse Compton effect 

On their path, photons bump into electrons in motion. The frontal collision 
between a photon of energy Ei and an electron of total energy E and linear 
momentum p is studied within the laboratory frame of reference. After collision, the 
photon is scattered in a direction making an angle θ with its initial direction. Let Ed 

be the energy of the scattered photon. 

(1) Draw a schematic representation of the photon–electron interaction. This 
representation should include the linear momentum vectors of the incident and 
scattered photons and of the electron before and after collision. 

(2) Using the conservation laws to be specified, express Ed as a function of Ei, E, 
p and θ. Then justify the “inverse Compton effect” designation. 

(3) Prove that result of (2) leads to finding the expression of the Compton shift in 
wavelength in case of Compton scattering. 

2.6. Solutions 

2.6.1. Solution 1 – Single-slit diffraction, interferences 

(1) Theoretical confirmation of experimental observations 

Figure 2.19 provides the experimental values of spacings xn of the midpoints of 
various black spots that are symmetrical with respect to the central bright spot: 

x1exp = 2.7 cm; x2exp = 5.5 cm; x3exp = 8.0 cm  [2.58] 

The spacings are theoretically given by the following relation: 

D
l

nxn
λ

2=   [2.59] 

Given that λ = 6.70 × 10−7 m, l = 1.0 ×10−4 m and D = 2.0 m, then: 

x1 = 0.0268 m; x2 = 2x1 = 0.0536 m; x3 = 3x1 = 0.0804 m 
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or: 

x1theo ≈ 2.7 cm; x2theo ≈ 5.5 cm; x3theo ≈ 8.0 cm  [2.60] 

Results [2.60] actually prove that the theoretical predictions are very much in 
agreement with experimental observations. 

(2) Replacement of previous thin slit with a pair of slits separated by distance a  

(2.1) Observations 

When Amina and Fatima replace the thin slit with a pair of slits separated by 
distance a, each of these slits diffracts the light passing through it. The observed 
pattern is no longer a horizontal one constituted of bright spots regularly arranged 
around a central spot. The waves coming out of slits are overlapped beyond the film 
slide. Then interference fringes are observed on the screen. 

(2.2) Value of distance a between slits, measuring accuracy 

– Value of distance a between slits 

For D = 4 m, Amina and Fatima measure on the screen a length l = 76 mm filled 
by the centers of 11 bright fringes. These results can be used to determine the 
spacing between fringes i. 

Let us use an aiding diagram to find the expression of i. For the sake of clarity, 
fringes are arranged horizontally (Figure 2.21). 

 
 

 

 

Figure 2.21. Calculation principle of spacing between fringes: l = 10i 

By definition, fringe spacing i is given by the expression: 

D
a

i λ=  D
l

a λ
10=   [2.61] 

N.A.– λ = 6.70 ×10−6 m, l = 7.6 × 10−2 m and D = 4.0 m. Hence: a = 353 µm  
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– Measuring accuracy 

Δa/a0 ≈ 0.86% 

2.6.2. Solution 2 – Order of interference fringes 

(1) Proof, calculation of λ2 

– Proof 

Let xj be the distance between the midpoint of zero-order central fringe and the 
midpoint of the bright fringe of order kj. For a bright fringe, the following relations 
can be written as: 

a
Diikx jjjjj λ== ;                          [2.62] 

This leads to: 

a
Dkx jjj λ=             [2.63] 

Hence: 
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– Value of λ2  

λ1 = 0.6 µm; k1 = 10; x1 = 6 mm; k2 = 12; x2 = 8.64 mm 

N.A.– Using [2.65] leads to: λ2 = 720 nm  

(2) Calculation of frequencies ν1 andν2 

By definition:  

2
2

1
1 ;

λ
ν

λ
ν

λ
ν ccc

j
j ===                                                    [2.65] 

N.A.– λ1 = 600 nm λ2 = 720 nm. Hence: ν1 = 5.0 × 1014 Hz;ν2 = 4.2 × 1014 Hz 
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(3) Slits S1 and S2 are exposed 

(3.1) Screen appearance explained 

The observed orangy shade is due to the overlapping of yellow radiations 
(wavelength λ1 = 600 nm) and red radiations (wavelength λ2 = 720 nm). 

(3.2) Number of orange fringes 

Let l be the total width of the interference field on the screen (Figure 2.22).  

 
 

 

 

Figure 2.22. Total width l of the interference field 

The same aspect observed in H is due to the coincidence of bright fringes. Let n 
be the number of times that an orangy shade is observed at H and ij the fringe 
spacing given by [2.62]. At a point of abscissa x on the screen, bright fringes 
coincide if: 

a
Dn

a
Dnininx 2

2
1

12211
λλ ×=×==                                                  [2.66] 

The ratio can be calculated from [2.66] knowing that λ1 = 600 nm λ2 = 720 nm: 
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×===
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n
n

λ
λ                                                       [2.67] 

Hence n1 = 6n and n2 = 5n  

Furthermore, according to [2.66] and knowing that n1 = 6n and x1 = k1i1 [2.62], 
then: 

1

1
111 66

k
xnniinx ×===                                                                      [2.68] 

screen 

 

x 0 

l = 18 mm
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Distance x1 is considered, given that it is the smallest (x1 < x2). The objective is 
therefore to find the number of coincidences in x1. According to Figure 2.22, and 
taking into account equalities [2.68], this leads to: 

2
60

2
0

1

1 l
k
xnlx ≤×≤≤≤   [2.69] 

Hence: 

2

108.1

10

106
60

23 −− ×≤××≤ n 
6.32

18
0

×
≤≤ n  

Therefore, n ≤ 2.5  n = 2 

Two rays are observed on both sides of the central fringe. Hence, a total of four 
orangy shade fringes beyond H. This finally gives five fringes, if the central fringe at 
H is added. 

2.6.3. Solution 3 – Experimental measurement of Planck constant and 
of the work function of an emissive photocathode  

(1) Stopping potential  

Let us apply the work–energy theorem between the cathode (vC = v) and the 
anode (vA = 0). This leads to: 

2
0 2

1 mveU =    [2.70] 

According to Einstein equation 

0
0

2

2

1

λ
νν hchWhmv −=−=                                                           [2.71] 

Using [2.70] and [2.71] gives: 

000 . WhcWheU −=−=
λ

ν  
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Hence: 

e
W

e
hcU 0

0
1 −×=
λ

  [2.72] 

(2) Curve plot 

Let us consider the values summarized in Table 2.4. 

1/λ (× 105 m−1) U0 (× 10−1 V) 
24.7 11.90 
22.9 9.70 
21.4 7.80 
19.4 5.35 
18.3 4.00 
17.3 2.45 
17.0 2.30 
16.3 1.45 

Table 2.4. Values of the stopping potential as a function of inverse wavelength 

Appropriate scale: 

– 1 cm for 105 m−1 on the abscissa axis; 

– 1 cm for 10−1 V on the ordinate axis. 

The plot of U0 = f (1/λ) curve is shown in Figure 2.23 (several experimental 
points have been considered, as well as those that make it possible to find the slope 
of the resulting line).   

(3) Planck constant and work function, measuring accuracy 

The experimental curve is a line of equation:  

baU +×=
λ
1

0   [2.73] 

A comparison between [2.72] and [2.73] leads to finding the expressions of slope 
a and of the ordinate at origin b, hence: 

e
Wb

e
hca 0; −==   [2.74] 
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Figure 2.23. Curve of the stopping potential U0 as a function of 1/λ 

– Planck constant, measuring accuracy 

The trend curve is displayed in Figure 2.23: y = 1.2544 x – 19.047. Given the 
scale, the graphical result is: 

90.1
1

1025.1 6
0 −××= −

λ
U  (V)  [2.75] 

A comparison between relations [2.73] and [2.75] leads to the values of the slope 
a and of the ordinate at the origin b.  

Hence: a = 1.25 × 10−6 V ⋅ m; b = – 1.90 V                                         

Considering [2.74], we have: 

c
aeh

e
hca .==                                                                       [2.76] 

N.A.– e = 1.602179487 × 10−19 C; a = 1.25 × 10−6 V ⋅ m; c = 299792458 m⋅ s−1 
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The use of the latter relation [2.76] leads to:  

hexp = 6.68 × 10−34 J ⋅ s  

– Accuracy of experimental measurements 

Let us consider h ≈ 6.63 × 10–34 J ⋅ s. Then: 

Δh/h ≈ 0.75% 

The experimental result is acceptable. 

(4) Work function, measuring accuracy 

According to [2.74]: 

ebW
e

Wb −=−= 0
0   [2.77] 

N.A.– b = – 1.90 V                                         

Using [2.78] leads to: W0 = 1.90 eV. Let us consider the output potentials of 
metals Pt (5.30 V), Cs (1.80 V) and Cr (4.60 V). Knowing that W0 = eV, it can be 
noted that W0 = 1.90 eV # 1.80 eV: it is a cesium (Cs) photocathode. 

– Measuring accuracy 

ΔW/W0 ≈ 5.5% 

Though quite acceptable, the experimental result can be improved. 

(5) Consistency of wavelength values 

Let us calculate the photoelectric threshold wavelength. By definition: 

eb
hcebhcW −=−== 0

0
0 λ

λ
  [2.78] 

N.A.–  λ0 = 652.5 nm                                         

In practice, electromagnetic radiations that give effective photons are exclusively 
those of wavelengths ranging between 405.0 nm ≤ λ ≤ 546.0 nm, for which λ < λ0. 
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2.6.4. Solution 4 – Experimental study of the behavior of a photoelectric 
cell, quantum efficiency and sensitivity 

(1) Plot of the cell’s I = f (U) characteristic  

The I = f (U) curve is represented in Figure 2.24. 

(2) Use of the curve 

(2.1) Total number of emitted photoelectrons 

The saturation current is IS = n.e. The total number of emitted photoelectrons is:  

n = IS/e.  [2.79] 

The experimental value of the saturation current is IS = 5.3 µA  

N.A.–   n = 3.31 × 1013 photoelectrons.                                         

 

Figure 2.24. I = f (U) characteristic of the studied photoelectric cell 

(2.2) Maximal speed acquired by a photoelectron  

Let us use the work–energy theorem. Then, the maximal speed v acquired by a 
photoelectron ejected from the cathode satisfies the following equation: 

2
0 2

1 mveU = 
m
Uev 0.2=                  [2.80] 
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Experimentally, U0 = 0.8 V  

N.A.–  v = 5.3 × 105 m ⋅ s−1                                         

(2.3) Frequency ν of the monochromatic light used and consistency 

Relation [2.71] leads to: 

0
00 λ

νν hchWheU −=−=                                                [2.81] 

Relation [2.81] gives the light frequency expression, which is: 

0

0

λ
ν c

h
eU +=                                                         [2.82]

 

N.A.– ν = 6.43 × 1014 Hz                                         

The value of the monochromatic frequency ν is consistent with the photoelectric 
emission if: 

ν >ν0 = c/λ0 = 3.0 × 108/6.667 × 10−7 = 4.50 × 1014 Hz                                        

which is consistent with the conducted experiment. 

(3) Quantum efficiency and sensitivity 

– Quantum efficiency 

The quantum efficiency of a cell is equal to the ratio of the number n of emitted 
photoelectrons to the number N of effective photons, which is:η = n/N. Knowing 
that n = IS/e and N = P/hν, this leads to: 

P
h

e
IS νη ×=   [2.83] 

N.A.– η = 14%.                                         

– Cell sensitivity 

By definition, the sensitivity s of the photoelectric cell is the quotient of the 
saturation current by the light intensity received by the photocathode, which is:  
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P
Is S=   [2.84] 

N.A.–  s = 53 mA ⋅W−1                                         

2.6.5. Solution 5 – Compton backscattering 

(1) Proof 

The data provided by the exercise show that the shift in wavelength is Δλ= 2λc. 
According to Compton equation: 

Δλ = λc (1 – cosθ) = 2λc  (1 – cosθ) = 2                         [2.85] 

Relation [2.85] leads to: θ = π . This actually corresponds to backscattering. 

(2) Scattering mechanics 

Given that the electron is ejected at very high speed v, within the range of 
relativistic particle speed values for which v > c/10, where c is the light speed in 
vacuum, Compton scattering cannot be studied in the context of classical mechanics. 

– Justification  

According to the theory of special relativity, Lorentz factor is: 

22/1

1

cv−
=γ                           [2.86]

 – For a slow particle (or for a particle at rest), γ  = 1.0: the motion of the particle 
can be studied according to classical mechanics. 

– For a rapid particle, γ > 1: the motion of the particle can be studied according 
to relativistic mechanics.  

The speed of a particle is evaluated as low or high with respect to the speed of 
light. For the considered Compton effect case, v = 0.89c. Using relation [2.86]: 

γ  = 2.193 > 1   

Compton effect results in the ejection of a relativistic electron. This is due to the 
very high energy of incident photons (X photons). 
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(3) Calculation of linear momentum 

For a relativistic particle, linear momentum is given by the following relation: 

22
0

0
/1 cv

vmvmp
−

== γ                                                                          [2.87] 

Knowing that v = 0.89c, relation [2.87] gives: 

22

0

/1
89.0

cv
cmp

−
=                                                                             [2.88] 

Let us introduce the rest energy m0c2 of the electron in [2.88]. This leads to: 

2

2
0

89.01
89.0

−
= cmpc                                                                           [2.89] 

N.A.– pc = 0.9974 MeV  p = 997.4 keV/c                                        

(4) Calculation of total energy and kinetic energy 

– Total energy of the ejected electron 

The total energy of the ejected electron is given by the relativistic expression: 

22

2
02

0
/1 cv

cmcmE
−

== γ   [2.90]          

N.A.– E = 1.1207 MeV  E = 1.121 MeV                                         

– Kinetic energy of the ejected electron 

The total energy E of a rapid particle is the sum of its kinetic energy Ec and its 
rest energy E0 = m0c2, hence:  

E = Ec + E0.  Ec = E – E0 = E – m0c2                                                 [2.91]          

N.A.– E = 0.6096 MeV  E = 0.610 MeV                                         
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(5) Calculation of the wavelength of the incident photon 

Let Ei, Ed and E be the total energies of the incident photon, of the scattered 
photon and of the ejected electron, respectively. According to the energy 
conservation principle: Ei = Ed + E.  In the hypothesis that Ed = E/2, then:  

Ei = (3/2) E  hc/λ = (3/2)E                                                       [2.92]          

This leads to: 

2

3

hc
E

l =                   [2.93]         

 N.A.– λ = 0.74 pm                                         

This wavelength is within the range of γ rays. 

2.6.6. Solution 6 – Energy and linear momentum of the scattered 
photons and of the electron ejected by Compton effect 

(1) Compton shift in wavelength 

The Compton shift in wavelength is given by the relation: 

( )θλλ cos1 −=Δ c                      [2.94]
 

(2) Expressions 

(2.1) Energy of scattered photons 

Relation [2.94] leads to: 

)cos1( θλλλ −=− cid  )cos1( θλλλ −+= cid                          [2.95]   

Considering the latter equality [2.94], the ratio Ed = hc /λd is expressed as: 

)cos1( θλλλ −+
=

cid

hchc 
)cos1( θλλ −+

=
ci

d
hcE                         [2.96]   

Or Ei = hc/λi. Expression [2.96] gives:  

i
ic

d E
Ehc

hcE
)cos1( θλ −+

=  
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The above expression is simplified by hc. As λc/hc = 1/m0c2, we finally obtain: 

i
i

d E
Ecm

cmE
)cos1(2

0

2
0

θ−+
=              [2.97]

 

(2.2) Final kinetic energy of the electrons 

Total energy conservation leads to: 

Ei + m0c2 = Ee + Ed = Ec + m0c2 + Ed  [2.98] 

The kinetic energy of electrons Ec = Ei – Ed. Using [2.97] leads to: 

i
i

c E
Ecm

cmE 










−+
−=

)cos1(
1

2
0

2
0

θ
                                            [2.99] 

(3) Numerical application 

Ei = m0c2/29 and θ = π; m0c2 = 0.511 MeV 

Using [2.97] and [2.99], the results are, respectively: 

N.A.– Ed = 0.01648 MeV = 16.48 keV; Ec = 0.001137 MeV = 1.14 keV               

NOTE.– Energy Ei = m0c2/29 approximately corresponds to the energy of X 
photons of the ray λ = 71.2 pm of molybdenum. Indeed:  

E = hc/λ = 6.63 × 10−34 × 3 × 108/(7.12 × 10−11 × 1.6× 10−19) = 17,459.6 eV 

m0c2 /17459.6 = 0.511 × 106/17459.6 = 29.27Ei ≈ m0c2/29 

2.6.7. Solution 7 – Inverse Compton effect 

(1) Schematic representation 

For schematic representation, see Figure 2.25. 

(2) Energy expression 

Given a particle, let us consider the pair of quantities (E, p), with E as energy and 
p as linear momentum: incident photon (Ei, pi); scattered photon (Ed, pd), incident 
electron (Eei, pei) and scattered electron (Eed, ped).  Let us write the energy and linear 
momentum conservation laws: 
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Figure 2.25. Inverse Compton scattering: scattering of an incident  
photon by an incident electron 

The projection of vector relation [2.100] on axes Ox and Oy (Figure 2.25) leads 
to: 
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Relations [2.101] give: 
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22
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Considering the system of equations [2.102], we have: 

( ) ( ) ( )222222 sincos θθ ddeiieidieded EEcpEEEEcpE −−−−+−=−   [2.103] 

 



Wave and Particle Aspects of Light     81 

Or for the electron, 

42
0

22 cmcpE eed +=  

Relation [2.103] then gives: 

42
0

22242
0

222 cmcpEcmcpE eedeed =−+=  

Hence: 

( ) ( ) ( )22242
0 sincos θθ ddeiieidi EEcpEEEEcm −−−−+−=    [2.104] 

Assuming that for the incident electron E = Eei and p = pei, we get according to 
[2.104]: 

( ) ( ) ( )22242
0 sincos θθ ddidi EEpcEEEEcm −−−−+−=              [2.105] 

After expansion and simplification, we have: 

( ) ( ) 0coscos =+−−++× pcEEEpcEEE iiid θθ  

which finally leads to: 

( )
( ) ( )θθ coscos1 pcEE

pcEEE
i

i
d ++−

+=                                                      [2.106] 

Result [2.106] shows that, unlike the normal Compton effect, where scattering 
involves a decrease in energy at the expense of the incident photon (Ed < Ei), in the 
Compton scattering of a photon by an electron in motion, there is an increase in 
energy at the expense of the incident electron (Ed > Ei) provided that (E > Ei) and θ ≠ 
0: this is the inverse Compton effect. 

(3) Proof 

In Compton scattering, the electron is initially at rest (p = 0). This gives E = E0 = 
m0c2. Expression [2.106] leads to: 

( ) 2
0

2
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cos1 cmE
cmEE

i
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⋅=

θ
          [2.107] 
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Using [2.106] leads to: 

( )[ ] 2
0

2
0cos1 cmEcmEE iid ⋅=+− θ  

Hence: 

)()cos1( 2
0 diid EEcmEE −=− θ                 [2.108] 

Knowing that Ed = hc/λd and Ei = hc/λi, [2.108] gives after simplification: 
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
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λλ
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λλ
11

cos1
1 0                                 [2.109]

 

After arranging and simplifying [2.109], the final result is: 

( )θλλ cos1
0

−⋅=−
cm

h
id                                         [2.110]

 

Result [2.110] actually corresponds to the Compton shift in wavelength given by 
expression [2.53]. 



 3 

Quantum Numbers of the Electron 

General objective 

Gain knowledge on the properties of the quantum numbers of the electron. 

Specific objectives 

On completing this chapter, the reader should be able to: 

– use the empirical Balmer formula; 

– define the Rydberg constant for hydrogen; 

– use the Ritz combination principle; 

– know the main limitations of the planetary model of the atom; 

– describe the shell model of electron configurations; 

– state the two postulates of Bohr’s theory; 

– describe Planck’s linear oscillator in the phase space; 

– deduce Bohr’s quantization principle using Planck’s linear oscillator; 

– know the properties of the principal quantum number; 

– distinguish between absorption and emission spectra; 

– establish the quantized expression of the energy of hydrogen-like systems; 

– provide an interpretation of the spectral series of hydrogen-like systems; 

– draw the energy level diagram for the hydrogen atom; 

– know the main advantages and limitations of Bohr’s model; 
                            
For color versions of the figures in this book, see www.iste.co.uk/sakho/quantum1.zip. 
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– define the reduced Rydberg constant; 

– describe the Bohr–Sommerfeld model; 

– write the electron configuration of an atom based on atomic orbitals; 

– know the properties of the angular momentum quantum number; 

– know the properties of the orbital magnetic quantum number; 

– provide an interpretation of normal Zeeman effect; 

– know the advantages and limitations of Bohr–Sommerfeld model; 

– provide an interpretation of the Stern–Gerlach experiment; 

– know the Uhlenbeck and Goudsmit hypothesis; 

– know the properties of electron spin and magnetic spin quantum number; 

– know the properties of the electron total quantum number; 

– define the degree of degeneracy of the energy levels of hydrogen-like systems; 

– apply the selection rules for hydrogen-like systems; 

– Define the orbital magnetic moment and the spin magnetic moment; 

– define the electron Landé factor and gyromagnetic ratio; 

– provide an interpretation of the spin–orbit interaction; 

– provide an interpretation of the Paschen–Back effect; 

– know the spectroscopic notation of the quantum states of hydrogen-like 
systems; 

– provide an interpretation of the fine structure of the energy levels of the 
hydrogen atom. 

Prerequisites 

– photon properties; 

– kinetic theory of gases; 

– magnetic force and magnetic field; 

– kinematics; 

– fundamental principles and theorems of mass point dynamics; 

– mechanical energy; 

– characteristics (energy, linear momentum, mass) of a relativistic particle. 
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3.1. Experimental facts  

3.1.1. Spectrometer  

The spectrometer is an optical device employed for direct visual observation of 
light decomposition into its various components. There are prism spectrometers and 
grating spectrometers [BIÉ 06]. A prism is formed of a transparent medium limited 
by two plane faces. It is characterized by its refractive index n and by its vertex 
angle A. Figure 3.1 shows a prism representation (a) and a prism cross-section (b). 

 

 

 

 

 

 

 

Figure 3.1. Descriptive representation of a prism 

The various elements of a prism spectrometer are shown in Figure 3.2. 

 

 

 

 

Figure 3.2. Various constituent elements of a prism spectrometer 
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– F designates the entrance slit of the spectrometer. The width of slit F varies 
(from several micrometers to several hundreds of micrometers) and its height 
depends on the prism dimensions and associated optics geometry; 

– L1 is a lens, known as collimating lens, which renders parallel the light rays 
exiting the slit F located at the focus of L1 lens. F and L1 constitute the collimator; 

– P is the prism with edges parallel to the slit F. P is the light dispersive element 
and it is located at minimum deviation in order to reduce the astigmatism of the 
optical device; 

– L2 is the objective (set of lenses) constituting the chamber lens of the 
spectrometer. The spectrum provided by L2 in its focal plane can be examined by 
means of an ocular (magnifier offering a clear image without accommodation of the 
eye); 

– E is the observation screen (or photographic plate). 

NOTE.– Astigmatism is an optical aberration (defect of an optical system) leading to 
image distortion. 

Incident light rays are deflected by the prism. Deviation denoted by D defines 
the angle between the (initial) incident light ray and the (final) emergent or refracted 
light ray. Deviation D depends on the refractive index n of the prism, which is itself 
a function of the wavelength λ due to the dispersive character of the prism. 

The variation of the refractive index of a given transparent medium as a function 
of wavelength is given by Cauchy dispersion formula: 

....
42

+++=
λλ
cban                                                                                [3.1] 

In Cauchy dispersion formula [3.1], a, b and c are constants characteristic of the 
transparent medium and λ is the wavelength of the light propagating through the 
medium. Constant a is dimensionless, while constants b and c are expressed in m2 
and m4, respectively. Equation [3.1] shows that the refractive index increases when 
the wavelength decreases, therefore when going from red to violet light. As a 
conclusion, red light is less deviated than violet light, according to experimental 
observations. Figure 3.3 illustrates white light decomposition into its various colors 
constituted of seven colors that can be observed due to water droplets producing the 
rainbow. The result is a continuous spectrum (Figure 3.3(a)). When light is emitted 
by a heated gas, for example, a discrete spectrum of rays constituted of spaced fine 
lines (Figure 3.3(b)) is obtained. Each of these rays marks the position of a clearly 
determined wavelength in the gas emission spectrum. 
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Figure 3.3. White light dispersion by a glass prism 

Augustin Louis Cauchy was a French mathematician. He is well-known in optics, 
especially for the Cauchy dispersion formula. 

Box 3.1. Cauchy (1789–1857)  

Visible light is defined in relation with the human eye. The wavelengths of 
electromagnetic radiations of the visible spectrum range between 400 and 800 nm. 
The colors composing white light vary continuously from violet to red going 
through indigo, blue, green, yellow and orange. Figure 3.3 shows only a few such 
colors.  

Table 3.1 summarizes the various colors composing white light depending on 
their wavelength λ0 in vacuum. 

Color Violet  Indigo Blue  Green  Yellow Orange Red 

λ0 (nm) 400 440 470 530 580 650 750 

Table 3.1. The seven colors composing white light depending on  
their wavelength λ0 in vacuum 

It is worth noting that similar experimental results to those above mentioned can 
be obtained using a grating spectrometer. Briefly, a grating is a plane or concave 
surface on which a large number of rectilinear, parallel and equidistant slits have 
been drawn.  
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3.1.2. First lines of the hydrogen atom identified by Ångström 

In 1862, Anders Ångström conducted experimental studies on the solar 
emission spectrum using a combination of spectrometer and photography. 
Ångström identified four visible lines belonging to the hydrogen atom (Figure 3.4). 
The wavelengths λ associated with these lines, which are usually denoted Hα 
(orange red), Hβ (blue green), Hγ (indigo blue) and Hδ (violet) are 656.3, 486.1, 
434.0 and 410.2 nm, respectively. 

 

Figure 3.4. The four Hα, Hβ, Hγ  and Hδ  lines of the hydrogen atom identified by 
Ångström in the solar spectrum. All the other lines (λε  ≤ 397.0 nm) are in the 

ultraviolet range 

The line denoted Hε with a wavelength λε = 397.0 nm represents the fifth limiting 
line of the series located in the ultraviolet range of the electromagnetic spectrum. It 
is worth noting that optical waves correspond to electromagnetic waves in the 
visible range (electromagnetic waves that can be perceived by the human eye) as 
indicated in Figure 3.5. 

 

 

 

Figure 3.5. Spectrum of electromagnetic radiations. Optical waves are 
electromagnetic waves in the visible spectrum 
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Anders Jonas Ångström was a Swedish physicist. He is one of the founders of 
spectrometry. Ångström is well-known for his experimental works on solar spectrum 
analysis, leading to his proof in 1862 of hydrogen presence in Sun’s atmosphere. The unit 
of wavelength, the angström (Å), was named in his honor. 1 Å = 10 − 10 m. 

Box 3.2. Ångström (1814–1874) 

3.1.3. Balmer’s formula 

Through the intermediary of the Swiss physicist Eduard Hagenbach (1833–
1910), Johannes Balmer had access to the wavelengths of the hydrogen atom 
measured by Ångström [CAR 79]. Balmer then tried to formulate a law that would 
make it possible to find the four lines Hα, Hβ, Hγ and Hδ. Finding out about the 
existence of Hε line of wavelength 397.0 nm observed by Ångström, Balmer 
discovered in 1885 that the wavelengths of the visible lines of the hydrogen atom 
follow the empirical law:  

42

2

0
−

=
m

mλλ   [3.2] 

In this law, m is a strictly positive integer and λ0 is the value of the limiting 
wavelength of the series obtained when m = ∞, which is λ0 = 364.56 nm. Knowing 
that m2 – 4 > 0, then m ≥ 3. Balmer’s empirical law [3.2] corresponds to the first 
spectral series of the hydrogen atom. With the exception of the four visible lines Hα, 
Hβ, Hγ and Hδ, all the other lines of the Balmer series, whose wavelengths range  
between 397.0 nm and 364.56 nm, are located in the ultraviolet range of 
electromagnetic radiations (Figure 3.5).  

APPLICATION 3.1.– 

Find the wavelengths of the four visible lines as well as that of Hε line in the 
hydrogen atom spectrum using Balmer’s empirical formula.  

Given data. λ0 = 364.56 nm 

Solution. 

m = 3: λ3 = 656.2 nm # 656.3 nm (line Hα) 

 

 

 



90     Introduction to Quantum Mechanics 1 

m = 4: λ4 ≈ 486.0 nm = 486.1 nm (line Hβ) 

m = 5: λ5 = 434.00 nm = 434.0 nm (line Hγ) 

m = 6: λ6 = 410.1 nm # 410.2 nm (line Hδ) 

m = 7: λ7 ≈ 397.0 nm = 397.0 nm (line Hε) 
 

Johann Jakob Balmer was a Swiss physicist and mathematician. In 1862, Ångström 
identified the four lines of the hydrogen atom denoted Hα, Hβ, Hγ and Hδ, which were all within 
the visible spectrum range (400–780 nm). Hagenbach communicated these spectral lines to 
Balmer, who succeeded in 1885 to establish the first spectral series of the hydrogen atom.  

Box 3.3. Balmer (1825–1898) 

3.1.4. Rydberg constant for hydrogen 

Having no knowledge on Balmer’s empirical law, Johannes Rydberg tried to 
establish a formula for the succession of wavelengths of the hydrogen atom spectral 
lines measured by Ångström. In 1888, Rydberg wrote his formula as follows: 

)(4 22

22

0
nm

nm
nm

−
= λλ                                                                               [3.3] 

In [3.3], m and n are integers so that n < m. Moreover, n = 2, 3, 4… For n = 2, 
[3.3] gives: 
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which is similar to Balmer’s empirical law [3.2]. 

Moreover, Rydberg formula [3.3] can be written in a convenient form using the 
inverse wavelength, or:  
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This leads to: 


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



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22
111

mn
RH

nmλ
                                [3.4] 

RH = 4/λ0  

By definition, RH is known as Rydberg constant for hydrogen.  

Numerical expression (λ0 = 364.56 nm): 

RH = 10,972,130.79 m−1                                                                          [3.5] 

Knowing the experimental value RHexp = 10,973,731.77 ± 0.83 m−1, the relative 
deviation is:  

ΔRH/RH = 0.015% 

The theoretical value [3.5] is therefore in excellent agreement with the 
experimental value. 

APPLICATION 3.2.– 

Use Rydberg’s formula [3.4] to find the first line of Balmer series. Consider RHexp 
= 10,973,731.77 m−1. 

Solution. For the Balmer series, n = 2.  The first line corresponds to m = 3. This 
gives λ23 = 656.1 nm.  

This is actually the wavelength of Hα line of the hydrogen Balmer series. 
 

Johannes Rydberg was a Swedish physicist. Rydberg is especially known for having 
elaborated in 1888 the formula bearing his name. This formula gives the wavelengths of 
radiations emitted when an atom changes its energy level. Rydberg’s constant, as well as the 
Rydberg, an energy unit, were named in his honor. Moreover, multi-electron atoms excited by 
increasing the number n, which determines the quantum state of the outer shell electron are 
known as Rydberg atoms. These atoms are very sensitive to the interaction with an 
electromagnetic field. The corresponding quantum states are known as Rydberg series, playing 
an important role in the study of the interaction between electromagnetic radiation and matter 
especially for stellar plasma diagnosis (see [SAK 18a] for further details on this subject). 

Box 3.4. Rydberg (1854–1919) 
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3.1.5. Ritz combination principle 

Before 1887, as the exact value of the speed of light was not known, 
spectroscopic techniques used instead of frequency ν = c/λ, the spectroscopic wave 
number λν /1=  (ν in m−1). Rydberg formula [3.4] shows that the spectroscopic 
wave number is the difference between two physical quantities that Walther Ritz 
called spectral terms.  

In 1908, Ritz formulated the fundamental law of spectroscopy, known as Ritz 
combination principle [SIV 86]. According to this principle, any spectral line of a 
given atom can be determined by pairing up a far smaller number (than the number 
of lines of the spectrum) of quantities called spectral terms (or simply terms). These 
terms are designated by the T letter. According to the Ritz combination principle, the 
spectroscopic wave number of each spectral line is given by the difference of two 
terms Tn1 and Tn2: 

21 nn TT −=ν                                [3.6] 

By convention, the terms are positive quantities that are numbered in such a way 
that the increase in the term number corresponds to a decrease of Tn term. A 
comparison between [3.5] and [3.6] leads to Tn expression: 

2n
RT H

n =                         [3.7] 

Walther Ritz was a Swiss physicist and mathematician. He is especially known for his 
works in spectroscopy for the formulation of the fundamental law of spectroscopy, known 
as Ritz combination principle. He is also well-known for the variational method bearing 
his name, which is very useful in atomic physics. 

Box 3.5. Ritz (1878–1909) 

3.2. Rutherford’s planetary model of the atom 

3.2.1. Rutherford’s scattering, atomic nucleus 

In 1911, Ernest Rutherford used a radioactive radiation of α particles emitted 
by a radium source to bombard thin metallic (gold) foils [SIV 86, SAK 11, PLO 16]. 
The simplified representation of the experimental setup is shown in Figure 3.6.  
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Figure 3.6. Experimental setup of Rutherford scattering 

The purpose of this experiment was to verify the first model of atom presented 
by Joseph John Thomson (1856–1940) in 1902, according to which the atom was 
made from positive matter in which a sea of electrons was immersed [SAK 11]. Two 
essential observations are possible due to this experiment: 

OBSERVATION 3.1.– Many particles travel through matter without being deflected 
(though theoretically, according to Thomson’s model, several deflections should be 
observed). 

OBSERVATION 3.2.– The path of alpha particles traveling in the proximity of the 
“center” suffers a large angle deflection. 

The first observation leads to the conclusion that positive particles, which, 
according to Thomson’s model were sparse, are in fact concentrated at the “center” 
of matter. As for the second observation, it proves that the “center” of matter 
repelling the alpha particles is a positively charged point particle. Rutherford proved 
that an α particle can be obtained by twice ionizing a helium atom: He → He2+ +  
2e−. The α particle is a helium nucleus He2+. The positive “center” of matter was  
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identified as the nucleus of an atom. Drawing inspiration from the astronomical 
model of the solar system proposed by Johannes Kepler (1571–1630), Rutherford 
proposed the planetary model of the atom, in which electrons orbit the nucleus. 

NOTE ON COLLIMATORS.– A collimator is a block of lead, tungsten or other high 
atomic number metal pierced by cylindrical or conical holes along a given system of 
axes. The partition between two neighboring holes is called septum. The role of the 
collimator is to “filter” the particles emitted by the source toward the crystal, and 
eliminate the scattered particles. Only those particles coming from the part of the 
device located on the vertical of the holes can reach the target or the detector. The 
rest are stopped by the septa. 

3.2.2. Limitations of the planetary model 

The planetary model has at least two limitations: 

1) it does not explain the existence of spectral lines such as those of the hydrogen 
atom, evidenced by Balmer starting with 1885; 

2) as charged particles, electrons are subjected to centripetal acceleration due to 
their orbital motion. According to classical electrodynamics predictions, any 
charged particle submitted to acceleration radiates energy. According to the 
planetary model, electrons should radiate energy and end up falling on the nucleus. 
This is not the case in reality. 

Lord Ernest Rutherford of Nelson was a New Zealand and British physicist and 
chemist. Rutherford is considered the founder of nuclear physics due to his well-known 
discoveries in this field. He discovered α (helium nuclei) radiation and β− (electron) 
radiation. Rutherford also discovered that radioactivity is accompanied by disintegration 
of chemical elements. For this discovery, he was awarded the Nobel Prize for chemistry in 
1908. Together with the British radiation chemist Frederick Soddy (1877–1956), 
Rutherford formulated in 1909 the experimental law of radioactive decay. Drawing on his 
experiments on the scattering of α particles on gold foils, Rutherford proved the existence 
of the atomic nucleus in 1911.  

Box 3.6. Rutherford (1871–1937) 

It is in this context that the first major scientific congress was organized, known 
as the Solvay conference (Brussels, 1911) mainly devoted to “the theory of radiation 
and the quanta”. This conference was expected to eliminate some of the drawbacks 
of the Rutherford model [CAR 79]. However, when this international meeting 
ended, the participants were still not able to explain why electrons orbiting the  
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nucleus did not radiate energy. Two years would pass until the puzzling model of 
Rutherford would be solved, thanks to the inventing genius of Niels Bohr, who had 
not attended the conference in 1911. 

3.3. Bohr’s quantized model of the atom 

3.3.1. Shell model of electron configurations 

Electron shells have been historically designated by letters K, L, M, etc., used in 
X-ray spectroscopy. The electron configuration of an atom can be described as Ka 
Lb Mc, etc. Shells K, L, M, etc., are associated with numbers 1, 2, 3, 4, etc., 
respectively. According to the planetary model, electrons are orderly distributed in 
shells, starting with the first one, K. For a given configuration described as Ka Lb 
Mc, etc., the atomic number Z verifies the following relation: 

Z = a + b + c + …                                                                                     [3.8] 

Depending on the number Z of electrons in the atom, shells K, L, M, etc., are 
saturated at 2, 8, 18, etc., electrons, respectively.   

As an example, let us write the electron configurations of hydrogen H, helium 
He and argon Ar. These are: 

H (Z = 1): K1; He (Z = 2): K2; Ar (Z = 18): K2 L8M8                           [3.9] 

3.3.2. Bohr’s postulates, principal quantum number 

As already mentioned above, the first Solvay conference in 1911 had ended 
without explaining the origin of spectral lines, and particularly those of the hydrogen 
atom. Moreover, the fact that electrons orbiting the nucleus, according to the 
planetary model, did not radiate energy remained to be explained by the participants 
to the conference. In an attempt to shed light on these two enigmas raised by the 
planetary model of Rutherford, Niels Bohr formulated in 1913 two fundamental 
postulates as the basis for his semiclassical theory on the hydrogen atom [SIV 86, 
HLA 00, GUY 03, BIÉ 06, PÉR 86, SAK 08, MOI 16, PLO 16]. 

FIRST POSTULATE.– 

Though according to classical mechanics, electrons in an atom are allowed an 
infinity of circular orbits, in fact they orbit the nucleus only on certain orbits known 
as stationary states, in which they emit no radiation. These allowed orbits are 



96     Introduction to Quantum Mechanics 1 

determined by a quantization condition imposed on the angular momentum L of the 
electron: 

π2

hnmvrL ==                           [3.10] 

where 

– m: mass of the electron; 

– v: linear velocity of the electron on its orbit; 

– r: radius of the electron orbit; 

– n: principal quantum number, n∈ {1 ; 2 ; 3 ; ...∞}; 

– h: Planck constant. 

SECOND POSTULATE.– 

Each allowed orbit corresponds to a discrete level of energy. Transitions of the 
electron from one orbit to another involve quantum jumps and are accompanied by 
the emission or absorption of a quantum of energy such that:  

ΔE = |Ef – Ei|= hν  [3.11] 

where

– Ei: energy corresponding to the initial orbit; 

– Ef: energy corresponding to the final orbit; 

– ν: frequency of the emitted or absorbed radiation. 

Relation [3.11] expresses Bohr frequency condition. 

The first postulate introduces the notion of stationary state characterized by a 
discrete value of energy En. The energy of the hydrogen atom is therefore quantized. 
This postulate introduces the first quantum number of the electron: the principal 
quantum number n. 

The second postulate introduces the notion of electron transition between 
stationary states corresponding to photon absorption and emission (Figure 3.7). 
Figure 3.8 illustrates two processes of absorption and emission of a photon between 
two energy levels Ep and En. The discrete character of the energy levels shows that 
the hydrogen atom can absorb energy, and it consequently passes from a lower level 
of energy Ep to a higher level of energy En absorbing a photon hν.  
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Figure 3.7. Bohr’s model of quantized atom 

This absorption process is not possible unless the photon has precisely the 
required energy ΔE = Ep − En equal to the energy difference between the final and 
the initial transition level, according to Bohr frequency condition [3.11]. Bohr’s 
theory presents the model of quantized atom (Figure 3.7). 

 
 

 

 

 

Figure 3.8. Absorption (a) and emission (b) of a photon of energy hν 

Likewise, the hydrogen atom can emit a photon if its energy is equal to the 
energy difference between the two levels En and Ep. As a consequence of Bohr’s 
theory, the energy of the absorbed photon (Figure 3.8(a)) is similar to that of the 
emitted photon (Figure 3.8(b)).  

 
 
 
 
 
 
 

En 
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En 
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hν hν 



98     Introduction to Quantum Mechanics 1 

3.3.3. Absorption spectrum, emission spectrum 

As previously noted, according to Bohr’s theory, the frequency of the absorbed 
radiation is equal to that of the emitted radiation. In other terms, when a hydrogen 
sample is exposed to a polychromatic beam constituted of a flow of photons of 
various wavelengths, only the photons having precisely the energy required to 
trigger the allowed transitions between n and p levels can be absorbed. A continuous 
spectrum is observed under these conditions, and it corresponds to the photons that 
have traveled through the sample without interaction. The resulting continuous 
spectrum is scattered with a set of absorption lines corresponding to the absorption 
spectrum of the hydrogen atom. For an atom, absorption corresponds to selectively 
absorbed photons, which consequently disappear from the polychromatic light beam 
for certain wavelengths characteristic to the studied atom. Moreover, during the de-
excitation process corresponding to electron transitions from higher energy levels to 
lower energy levels, the hydrogen atom can release several photons of various 
wavelengths. The set of emitted wavelengths constitutes the emission spectrum.  

 

 

 

 

 

Figure 3.9. Emission (a) and absorption (b) spectra of the hydrogen atom in the 
visible range. It can be noted that the emission lines and the absorption lines overlap 

Knowing that the emitted and absorbed photons have the same wavelengths, the 
position of the black lines on a continuous colored background of the absorption 
spectrum (Figure 3.9(a)) is exactly the same as that of the colored lines of the 
emission spectrum (Figure 3.9(b)). Atomic absorption and emission spectra 
generally overlap. 

 
 
 
 
 
 
 
 
 
 
 λ (nm)   656.3   486.1   434.0     410.2   

 Hα  Hβ Hγ Hδ 

(a) 

(b) 
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3.3.4. Principle of angular momentum quantization 

Let us consider a particle of mass m executing a circular motion at velocity 

v around a point O in space. By definition, the angular momentum L of the particle 

with respect to point O is the cross-product of its position vector and its linear 

momentum p : 

prpOML ∧=∧=                                                                    [3.12] 

The angular momentum vector L is perpendicular to the plane formed by the 

directions of the position vector r and linear momentum vector p . Its direction is 

such that ( r , p , L ) is a right-handed trihedron (Figure 3.10). 

 

 

 

 

 

 

Figure 3.10. Angular momentum 

L  of a particle in circular motion 

As r and vmp =  are orthogonal vectors, the norm of the angular momentum is: 

L = rp = mvr            [3.13] 

In the context of Bohr’s theory, the first postulate is supported by a principle of 
angular momentum quantization, which intuitively justifies the stationary character 
of the quantum states or of the electron circular orbits of the hydrogen atom. The 
principle of quantization of the electron angular momentum in the hydrogen atom is 
expressed by relation [3.10] according to Bohr. These are rewritten here using the 
reduced Planck constant or Dirac constant π2/h= : 

nhnL ==
π2

                          [3.14] 

For the proof of relation [3.14], please see Exercise 3.7.21. 
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3.3.5. Quantized expression of the energy of the hydrogen atom 

In the elaboration of his theory, Bohr assumed that the electron in the hydrogen 
atom is a classical particle. To determine the quantized expression of the energy of 
the hydrogen atom, Bohr applied the laws of classical mechanics. We should, 
nevertheless, keep in mind that the properties of atomic systems are correctly 
studied in the context of quantum mechanics, which was elaborated 13 years after 
Bohr’s theory, in 1926. Bohr had at his disposal only the laws of classical 
mechanics, in which he integrated purely quantum concepts, such as the stationary 
states, the discrete character of the atom energy, etc. This is why Bohr’s theory is 
referred to as semiclassical. In what follows, the rest mass m0 of the electron is 
denoted by m (“0” index is useless here; it is however very important in relativistic 
mechanics, see [2.38]). 

 
 
 
 
 
 
 
 

 
 
 
 

Figure 3.11. Hydrogen-like {nucleus–electron} system 

In order to determine the quantized expression of the energy of the hydrogen 
atom within Bohr’s theory, let us consider the general case of a hydrogen-like system 
defined as an atomic system constituted of a nucleus of +Ze charge orbited by only 
one electron (Figure 3.11). It is the case of the hydrogen atom and its isoelectronic 
ions: He+, Li2+, Be3+, etc.  

In order to express the mechanical energy of hydrogen-like systems as a function 
of the radius r of the electron orbit, let us use the principle of inertia and the theorem 
of the center of inertia to express the centrifugal force. Since the electron is in 
uniform circular motion on an orbit of radius r (Figure 3.11), the vector sum of 
external forces acting on the electron is zero, hence: 
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The last equality of the above relations leads to the expression of the kinetic 
energy Ec of the electron as a function of radius r: 
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By definition, the total mechanical energy E (r) of a hydrogen-like system is 
given by the following relation: 
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The last equality [3.16] leads to: 
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In the international system, the electric constant is k = 1/4πε0 = 9 ×109 SI. 

Equalizing relations [3.13] and [3.14] leads to: 

nmvr =                   [3.19] 

Relation [3.19] implicitly shows that the velocity v of the electron as well as the 
radius r of the electron orbit (mass m is constant) are quantized quantities. 
Therefore, the quantized energy En of hydrogen-like systems is related to the 
quantized radius rn of the electron orbit by the relation [3.18]: 
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The quantized expression of rn can be used to deduce the expression of energy En 
from relation [3.20]. Squaring relation [3.19] leads to: 
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Inserting the expression of v2 given by the second equality in [3.21] in the second 
equality [3.20] leads to: 
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From this last relation the quantized expression of radius rn can be deduced: 
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For n = 1 and for the hydrogen atom (Z = 1), the radius of the first orbit is: r1 = 
a0. By definition, the radius a0 is referred to as Bohr radius, which is given by the 
expression: 
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a =     [3.23] 

Numerical expression:  

a0 = 0.5280375987 × 10−10 m ≈ 0.53 Å 

APPLICATION 3.3.– 

Calculate the radius of the first orbit of the electron of He+ ion and the radius of 
the third orbit of C5+ ion. Consider a0= 0.529 Å. 

Solution. Using [3.22]: 

– radius of the first orbit of the electron of He+ ion: n = 1; Z = 2. Hence: r1 = 0.265 
Å; 

– radius of the third orbit of the electron of C5+ ion: n = 3; Z = 6. Hence: r3 = 0.794 
Å. 

 
Let us now express the energy En using [3.20] and [3.22]. We have: 
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In atomic physics, it is very convenient to express the quantized energy of a 
hydrogen-like system as a function of the rest energy of the electron m0c2 and of the 
fine structure constant α defined by: 

c
e


2
=α             [3.25] 

In relation [3.24], α is a dimensionless quantity and the other quantities are 
expressed in electromagnetic unit centimeter gram second (emu cgs). 

Numerical expression:  

α  = 7.297379866 × 10−3 ≈ 1/137.0354865 

Moreover, in emucgs, the electric constant k = 1. Inserting the fine structure 
constant α and the rest energy of the electron mc2, expression [3.24] can be written 
as: 
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mcZEn

α−=             [3.26] 

In relation [3.25], α2 = 5.325135412  × 10−5; mc2 = 0.510999910 MeV. For the 
hydrogen atom, Z = 1. According to [3.26]: 

2

22

2n
mcEn

α−=                                         [3.27] 

Expression [3.27] makes it possible to introduce an energy unit that is commonly 
used in atomic physics: the Rydberg abbreviated as Ryd (values of energies 
expressed in joule are significant at microscopic scale, see Application 3.4). Using 
[3.27], the Rydberg can be expressed as a function of α and mc2. Hence: 

Ryd =
2

22mcα                           [3.28] 

Numerical expression:  

Ryd = 13.60571858 eV 

Moreover, another energy unit that is very convenient to use in atomic physics 
can be introduced: atomic unit (a.u.), where 1 a.u.  = 2 Ryd. Hence, the quantized 
energy of hydrogen-like systems expressed in Ryd and in a.u. can be written as: 
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2

2

n
ZEn −=  (Ryd);

2

2

2n
ZEn −= (a.u.)  [3.29] 

APPLICATION 3.4.– 

Calculate the energy of the ground state of the hydrogen atom, as well as the 
energy of the second excited state of the hydrogen-like He+ ion. Express the results 
in joule, emu cgs, electronvolt, Rydberg and atomic units. Draw a conclusion. 

Given data. 1 Ryd = 13.60580 eV; 1 eV = 1.602179487 × 10−19 J; 1 erg = 1.0 × 
10−7 J 

Solution. Use [3.29]. 

The ground state of the hydrogen atom H (Z = 1) corresponds to n = 1 and the 
second excited state of He+ ion (Z = 2) corresponds to n = 3. Hence: 

– in joule: E1 (H) = −2.17989 × 10−18 J; E3 (He+) = −9.68841 × 10−18 J 

– in uemcgs: E1(H) = −2.17989 × 10−11 erg; E2 (He+) = −9.68841 × 10−11 erg 

– in eV: E1(H) = −13.60580 eV; E2 (He+) = −6.04702 eV 

– in Rydberg: E1(H) = −1 Ryd; E2 (He+) = −0.444 Ryd 

– in atomic units: E1 (H) = −2 a.u.; E2 (He+) = −0.889 Ryd 
 
CONCLUSION.– The joule and the erg are not fit as units for atomic physics. Energy 
values are more relevant when expressed in electronvolt. 

3.3.6. Interpretation of spectral series  

Let us consider the p → n electron transition (Figure 3.8). Using Bohr frequency 
condition [3.11] and expression [3.25], we have: 
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Hence: 
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For the hydrogen atom (Z =1), [3.30] leads to: 
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Let us compare expression [3.31] to Rydberg formula [3.4], reminded below: 
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This leads to the expression of Rydberg constant RH for hydrogen: 
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Spectral series [3.30] of hydrogen-like systems are then written as a function of 
Rydberg constant for hydrogen: 
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For the hydrogen atom, [3.33] leads to: 
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Let us calculate RH  considering: 

α2  = 5.325135412 × 10−5; mc2 = 0.51099991 MeV; 1 eV = 1.602179487 × 
10−19 J; c = 2.99792458 ×108  m ⋅ s−1; h = 6.62606896 × 10−34 J ⋅ s 

Numerical expression:  

RH = 10,973,773.3 m− 1 
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Moreover, a comparison between [3.34] and [3.4.bis] series reveals the physical 
significance of numbers p and m in Rydberg formula [3.4]: these are principal 
quantum numbers according to Bohr’s theory.  

Furthermore, [3.34] makes it possible to express all the observed spectral series 
of the hydrogen atom. They are presented here in their chronological order. 

3.3.6.1. Balmer series (1885): p = 2  
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λ
, n ≥ 3 [3.35] 

– First line: n = 3: 1/λ = 10,973,731.77 × (1/4 – 1/9) λ = 656.1 nm; 

– Limiting line: n = ∞. 1/λ = 10,973,731.77/4 λ∞  = 364.5 nm.  

Hence: 364.0 nm < λ < 657.0 nm. The Balmer series is in the visible range (the 
first four lines Hα (orangy red), Hβ (blue green), Hγ (indigo blue) and Hδ (violet)) 
and in the ultraviolet range (see Figure 3.4). 

3.3.6.2. Lyman series (1906): p = 1 
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– First line: n = 2 : 1/λ = 10,973,731.77 × (1 – 1/4) λ = 121.5 nm; 

– Limiting line: n = ∞. 1/λ = 10,973,731.77 λ∞  = 91.1 nm.  

Hence: 90.0 nm < λ < 122.0 nm. Lyman series is in the ultraviolet range. 

3.3.6.3. Paschen series (1908): p = 3 
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– First line: n = 4. 1/λ = 10,973,731.77 × (1/9 – 1/16) λ = 1,874.6 nm; 

– Limiting line: n = ∞. 1/λ = 10,973,731.77/9 λ∞  =  820.1 nm.  

Hence: 820.0 nm < λ < 1,875.0 nm. Paschen series is in the infrared range. 
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3.3.6.4. Brackett series (1922): p = 4 
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– First line: n = 5. 1/λ = 10,973,731.77 × (1/16 – 1/25) λ = 4,050.1 nm; 

– Limiting line: n = ∞. 1/λ = 10,973,731.77/16 λ∞  = 1,458.0 nm.  

Hence: 1,457.0 nm < λ < 4,051.0 nm. Brackett series is in the far infrared range. 

3.3.6.5. Pfund series (1924): p = 5 
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– First line: n = 6. 1/λ = 10,973,731.77 × (1/25 – 1/36)  λ = 7,455.8 nm; 

– Limiting line: n = ∞. 1/λ = 10,973,731.77/25 λ∞  =  4,556.3 nm.  

Hence: 4,556.0 nm < λ < 7,456.0 nm. Pfund series is in the far infrared range. 

3.3.7. Energy diagram of the hydrogen atom, ionization energy 

Considering the approximation 1 Ryd = 13.60 eV, let us use [3.29] to calculate in 
eV the hydrogen atom energies for the first five levels. The results are: 

E1 = −13.60 eV; E2 = −3.40 eV; E3 = −1.51 eV; E4 = −0.86 eV  

E5  = −0.54 eV 

Moreover, for n = ∞, E∞ = 0 eV: the hydrogen atom is ionized, the proton and the 
electron are separated, and the H+ ion (proton) is obtained. Electron energy is no 
longer quantized. The corresponding states are unbound states forming a continuum. 
By definition, the ionization energy Ei of the hydrogen atom is the energy it must 
receive while in its ground state, in order to move the electron to infinity where its 
final velocity is zero. Hence: Ei = E∞ − E1 = 13.6 eV.  

Figure 3.12 shows the energy diagram of the hydrogen atom. Several electron 
transitions corresponding to emission lines belonging to Lyman, Balmer and 
Paschen series are represented in this diagram. 
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Figure 3.12. Energy diagram of the hydrogen atom 

Theodore Lyman was an American physicist. Lyman is known for his works in 
spectroscopy. In 1906, he established the second spectral series of the hydrogen atom 
situated in the ultraviolet range of electromagnetic radiations. 

Friedrich Louis Carl Heinrich Paschen was a German physicist. Paschen is known for 
his works on electric discharges and mainly related to spectroscopy. In 1889, he 
established the Paschen curve used in plasma physics. Then in 1908 he established the 
third spectral series of the hydrogen atom situated in the infrared range of electromagnetic 
radiations. 

Frederik Sumner Brackett and August Herman Pfund were American physicists. 
Their names are especially related to the spectral series of the hydrogen atom discovered 
in 1922 and 1924, respectively. These two series are both in the far infrared range. 

Box 3.7. Lyman (1874–1954); Paschen (1865–1947); Brackett (1896–1988);  
Pfund (1879–1949) 
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APPLICATION 3.5.– 

Using the energy diagram of the hydrogen atom, calculate the minimal frequency 
of the transition line in the Lyman series.  

Given data. h = 6.63 × 10−34 J · s; 1 eV = 1.60 × 10−19 J 

Solution. According to Bohr frequency condition, ΔE = hν. The minimal 
frequency ν of a transition line corresponds to the smallest energy gap ΔE. For the 
Lyman series, it corresponds to 2 → 1 transition. Hence:  

ΔE= 10.2 eV 

The value of the minimal frequency is then: ν = ΔE/h 

Hence:ν = 2.46 × 1015 Hz  

3.3.8. Advantages and limitations of Bohr’s model 

Bohr’s model is an important stage in understanding the quantum theory of the 
atom. This model introduces the principal quantum number and consistently 
explains the emission and absorption spectra of hydrogen-like systems. It is however 
a simplified model for describing the electron behavior in hydrogen-like systems.  

The following limitations of Bohr’s theory are worth retaining: 

1) Bohr’s theory ignores relativistic effects such as electron mass variation with 
velocity formulated by Albert Einstein (1879–1955) in 1905 while elaborating the 
theory of special relativity; 

2) Bohr’s theory cannot explain why some spectral lines are brighter than 
others. In this model, frequencies of the emitted lines can be calculated without 
determining their brightness; 

3) Bohr’s model is not applicable to multielectron atoms; 

4) Bohr’s theory cannot explain the polarization (and splitting) of spectral lines, 
as energy does not depend on the angular momentum quantum number (and on 
electron spin); 

5) The major limitation of Bohr’s theory is that it treats the electron of the 
hydrogen atom as a classical particle, while introducing the notion of stationary 
states, which is alien to classical mechanics. This limitation of Bohr’s model has 
been noted with a touch of irony by the English physicist William Henry Bragg  
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(1862–1942) according to whom “Bohr’s theory uses the laws of classical 
mechanics on Mondays, Wednesdays and Fridays and quantum mechanics on 
Tuesdays, Thursdays and Saturdays” [SIV 86]. 

Niels Henrik David Bohr was a Danish physicist. His renown is especially due to his 
contribution to the elaboration of quantum mechanics, for which he received many 
honors. He was awarded the Nobel Prize for physics in 1922 for his contributions to the 
research on the structure of atoms (quantization of the levels of energy) and on the 
radiation they emit (spectral lines). 

Box 3.8. Bohr (1885–1962) 

3.3.9. Reduced Rydberg constant  

Bohr’s model of quantized atom relies on the approximation of a fixed nucleus of 
infinitely large mass. If M designates the nucleus mass, then the ratio m/M → 0 
according to the approximation adopted by Bohr. But nucleus mass is actually finite. 
One of the first corrections to be brought to Bohr’s theory is to consider the reduced 
mass of the {nucleus – electron} system, denoted µ and defined by the relation:  
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If the mass m of the electron is replaced by the reduced mass µ given by [3.40] in 
the expression of the spectral series [3.30], then: 
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Taking into account the expression of RH given by [3.34], relation [3.41] is 
written as: 
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The Rydberg constant for hydrogen RH is very often noted R∞ to reflect the fact 
that the mass of the nucleus is assumed infinite. This explains the writing of the last 
term of relation [3.42]. By definition, the reduced Rydberg constant denoted Rµ is 
given by the relation: 

)/1( Mm
RRµ +

= ∞                               [3.43] 

The expression of R∞ is given by [3.34] since R∞ = RH. 
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Taking into account the reduced mass µ, the spectral series of hydrogen-like 
systems is written according to [3.42]: 
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APPLICATION 3.6.– 

In order to put into evidence the difference between Rydberg constants RH and RHe, 
calculate the wavelength of the Lyman-α line of the He+ ion using [3.33] and 
[3.44]. Then justify the isotope displacement effect of spectral lines.  

Given data. RH = 10,973,731.77 m−1; RHe = 10,978,231.0 m−1 

Solution. The wavelength of the Lyman-α line results from the 2 →1 transition.  

According to [3.33], for RHe = RH: λ = 30.376 nm   

According to [3.44], for RHe # RH: λ = 30.363 nm                                        [3.45] 
 

Because RHe is slightly above RH, the results [3.45] actually show that the 
spectral lines of He+ ion are slightly shifted toward short wavelengths: it is the 
isotope displacement effect of spectral lines. 

3.4. Sommerfeld’s atomic model 

3.4.1. Experimental facts: normal Zeeman effect 

Bohr’s model provides the possibility to correctly interpret the lines of the 
hydrogen atom and of its isoelectronic ions.  

According to experimental observations, when an atomic vapor gas is exposed to 
a strong magnetic field, and an electric discharge is generated in the gas, the spectral 
lines multiply, and this cannot be explained using only the principal quantum 
number n. This phenomenon resulting from the splitting up of spectral lines under 
the action of a magnetic field was discovered in 1896 by Pieter Zeeman and is 
referred to as Zeeman effect in his honor. The main elements of the experimental  
set-up for the study of the Zeeman effect are indicated in Figure 3.13.  

For a strong magnetic field, the normal Zeeman effect can be observed (Figure 
3.14(a)). For a weak magnetic field B << 37 T, the anomalous or complex Zeeman 
effect can be observed (Figure 3.14(b)). 
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Figure 3.13. Experimental set-up for the study of Zeeman effect 

 

The Zeeman effect cannot be explained within Bohr’s theory, which takes into 
consideration only the principal quantum number n. For sodium vapor, Bohr’s 
model predicts only one yellow line denoted D, resulting from the 3p → 3s electron 
transition. 

When a strong magnetic field is applied, the simple Zeeman–Lorentz triplet is 
observed (Figure 3.14(a)). Using a high-resolving power device (by definition, 
resolving power is the ability of a device to produce separate images of two very 
close points), the experiment shows that the yellow sodium D-line is constituted of 
two very close lines denoted D1 (589.0 nm) and D2 (589.6 nm). Under the effect of a 
weak magnetic field, these two lines split into four and six components, respectively 
(Figure 3.14(b)). A theoretical explanation of the normal and anomalous Zeeman 
effect is provided in sections 3.4.4 and 3.5.5, respectively.  

 
 
 
 
 

Figure 3.14. Normal Zeeman effect (a) and anomalous Zeeman effect  
(b) on the yellow sodium D-line 
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Pieter Zeeman was a Dutch physicist. In spectroscopy, he is especially well-known for 
his works related to the effect of magnetic fields on the emission spectra of atoms. In 
1886, Zeeman discovered that the spectral lines of a light source subjected to a magnetic 
field split into several components, each of which has a certain polarization. This 
phenomenon is known as Zeeman effect in his honor. For this discovery, in 1902 he was 
awarded the Nobel Prize for physics, which he shared with the Dutch physicist Antony 
Hendrix Lorentz for his significant contributions to electromagnetism. Lorentz has also 
become famous for formulating the electromagnetic force acting on a charged particle 
moving in an electromagnetic field (known as Lorentz force) as well as for formulating 
the linear transformations of symmetry of electrodynamics laws. Known as Lorentz 
transformations, they opened the way to special relativity.  

Box 3.9. Zeeman (1865–1943); Lorentz (1853–1928) 

APPLICATION 3.7.– 

Let us designate by E1 the energy of the ground state (1) of the sodium atom. Let 
E2 and E3 be the energies corresponding, respectively, to the excited levels (2) and 
(3), state (3) being the higher energy state. (2) → (1) and (3) → (2) transitions are 
associated with wavelengths λ1 = 568.8 nm and λ2 = 589.0 nm, respectively. When 
the sodium atom, which is in the initial state (1), is lighted by a monochromatic 
beam of wavelength λ, it can go directly from level (1) to level (3). Express λ as a 
function of λ1 and λ2. Calculate the numerical value. 

Solution. 
21

21

λλ
λλλ

+
×= = 289.5 nm 

3.4.2. Bohr–Sommerfeld model, angular momentum quantum number 

The normal Zeeman effect can be interpreted within Sommerfeld atom model of 
elliptical orbits of electrons. Bohr’s model relies, among others, on the 
approximation of circular orbits of the electrons.  

In 1916, Arnold Sommerfeld proposed that electron orbits are rather elliptical; 
circular orbits adopted by Bohr were particular cases. According to Bohr–
Sommerfeld model [PAR 01, MOI 16], the nucleus is located in one of the foci (here 
F) of the elliptical orbit (Figure 3.15).  

In Sommerfeld’s atomic model, the position of the electron in the orbital plane is 
defined by the radius r and the azimuthal angle ϕ. 
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Figure 3.15. Bohr–Sommerfeld atomic model of elliptical orbit 

If a is the semi-major axis of the ellipse and b is the semi-minor axis, then 
Sommerfeld established that: 

1+
=


n
b
a                                         [3.46] 

In relation [3.46], n is the principal quantum number and   designates a new 
quantum number referred to as azimuthal quantum number or secondary quantum 
number or, finally, angular momentum quantum number. For the circular orbit,  
a = b. Hence, according to [3.46]:  

1+= n = n – 1            [3.47] 

The above equality [3.47] makes it possible to determine all the values taken by 
the angular momentum quantum number: 

n ≥ 1;   = 0, 1, …. n – 1               [3.48] 

3.4.3. Atomic orbital, electron configuration 

Well before Sommerfeld’s theory, the electron configuration of an atom was 
written according to the shell model. While the quantum number n reflects the 
number of a given shell, there are also subshells, denoted in spectroscopy by s, p, d, 
f, etc.; the number of a subshell is reflected by the angular momentum quantum 
number  . Several equivalences between shells and subshells are summarized 
below. 
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Shells  K L M N 
Numbers n 1 2 3 4 

 Subshells  s p d f.                        [3.49] 
Numbers   0 1 2 3 

Hence, starting with 1916, the electron configurations of atoms could be 
described according to the model of atomic orbitals. As an example, the electron 
configurations of hydrogen H, helium He and argon Ar according to the shell model 
can be written using the atomic orbitals denoted nl. Using [3.48] leads to: 

H (Z = 1): K1 (1s1); He (Z = 2): K2 (1s2)  

Ar (Z = 18): K2 L8M8 (1s22s22p63s23p6)                                                [3.50] 

Ni (Z = 28): K2 L8 M18 (1s22s22p63s23p63d84s2)  

The electron configurations between parentheses show that ns orbitals are each 
saturated with two electrons, while np orbitals are each saturated with six electrons. 
The d orbital is saturated with 10 electrons. Nevertheless, starting with 3p6, the 
order of filling of atomic orbitals changes: ns orbital (n > 3) is first saturated before 
nd orbital (n ≥ 3) according to Klechkowski’s rule. This rule is an empirical method 
that makes it possible to quite accurately predict the order in which orbitals (s, p, d, 
f, etc.) fill with electrons in neutral atoms that are in ground state.  

Considering the possible values of the sum (n + ) defined by [3.48], the 
principle that underlies Klechkowski’s rule is to fill the orbitals in ascending order 
of atomic number  Z and in ascending order [WIK 17] of: 

1) values (n + ) defining the atomic orbitals; 

2) values of n when several orbitals have equal values of (n + ). 

Therefore, the order for filling of subshells of electrically neutral atoms in 
ground state, ranked in ascending order of atomic number is: 

1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p  

→ 6s → 4f → 5d → 6p → 7s → 5f → 6d → 7p [3.51] 

Klechkowski’s rule is very often applied as a schematic representation called 
Klechkowski’s diagram, that can be used to easily find the sequence [3.51] 
according to the following principle (Figure 3.16): 
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– all the subshells are diagonally arranged; 

– subshells p, d, f,…, etc. are added one after the other on the same line; 

– the diagram is read column by column. 

 
 
 
 
 
 
 
 

Figure 3.16. Klechkowski’s diagram. Atomic orbitals are filled in the direction 
indicated by the arrow. Each column corresponds to a value of (n +  )  

Vsevolod Mavrikievich Klechkowski was a Russian chemist. His renown in chemistry is 
especially due to his works on radioisotopes and on their use in agriculture. In 1962, he 
proposed a justification of Madelung’s rule, making it possible to quite accurately predict 
the order in which orbitals (s, p, d, f, etc.) are filled with electrons in neutral atoms at 
ground state.  

Erwin Madelung (1881–1972) was a German physicist. He specialized in atomic physics 
and quantum mechanics. In 1936, Madelung clarified the rules of filling the electron 
subshells, on the empirical basis of ground states determined by analysis of atomic 
spectra. This rule stipulates that atomic orbitals are filled in ascending order of the sum of 
quantum numbers (n +  ). In 1962, Klechkowski presents the first theoretical justification 
of Madelung’s rule. This explains why the Anglo-Saxon literature mentions Madelung’s 
rule, unlike the French literature, which has retained Klechkowski’s rule. A consensus has 
been reached by some authors, who mention the Madelung-Klechkowski rule. This does 
justice to both scientists. 

Box 3.10. Klechkowski (1900–1972); Madelung (1881–1972) 

A more common alternative representation of Klechkowski’s diagram  places ns 
orbitals in the first column, np orbitals in the second column, nd orbitals in the third 
column and so on (Figure 3.17).  
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Figure 3.17. More common representation of Klechkowski’s diagram, in which  
each diagonal arrow corresponds to a value of (n + ) 

It is worth noting that, though quite accurate, Klechkowski’s rule does not 
provide information on the order of filling of atomic orbitals. This rule provides no 
indication on the number of electrons that each orbital can contain. Moreover, this 
rule is not applicable to the filling of electron configurations of ions and of the 
excited states of atomic systems. For example, the electron configuration of Fe4+ ion 
is written as 1s22s22p63s23p63d4, abbreviated as [Ar]3d4, instead of 1s22s22p63s23p6 

4s23d2 ([Ar]4s23d2) according to Klechkowski’s rule.  

The use of orbitals or electron subshells in writing electron configurations 
justifies the importance of the principal quantum number n and of the angular 
momentum quantum number  , which facilitate the understanding of many physical 
and chemical properties of the atomic systems starting with 1916. 

3.4.4. Interpretation of normal Zeeman effect, angular momentum 
quantum number 

Let us consider an electron orbit in the horizontal plane of center O and radius r. 
In the absence of magnetic field, the orbital angular momentum l of the electron is 

perpendicular to the orbit plane (discontinuous line in Figure 3.18).  

For an interpretation of the normal Zeeman effect, let us consider the electron on 
its path as a circular current loop equivalent to a small magnet. Under the action of 
a magnetic field of direction Oz, the small magnet is subjected to a torque that 
directs the orbital angular momentum of the electron with respect to the direction of 
the magnetic field (Figure 3.18). The angle between the direction of the magnetic 

field B and that of the angular momentum is designated by θ [SAK 08]. 
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Figure 3.18. Orientation of the angular momentum  
under the action of a magnetic field 

Projecting the angular momentum vector on the direction of the magnetic field 
vector, we have:  

lz = lcosθ            [3.52] 

By analogy with Bohr’s principle for angular momentum quantization ( nL = ), 
the orbital angular momentum in Sommerfeld’s approach is also considered 
quantized. Hence: 

l =                           [3.53]                                      

Inserting [3.53] in [3.52], we obtain: 

θcos=zl  [3.54] 

This equation shows that the projection of the angular momentum on the Oz axis 
takes the maximal value +  for θ = 0 and the minimal value −  for θ = π. This 
shows that the lz component of the angular momentum is quantized. Therefore relation 
[3.54] can be written in a form of type [3.53] considering: 

mlz =             [3.55] 
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The integer in relation [3.55] is a third quantum number of the electron, known as 
magnetic quantum number and it satisfies the double inequality:  

−≤ m ≤ +             [3.56]  

Given [3.56], it can be readily noted that the magnetic quantum number m  takes all 

the integer values ranging from −  to + , hence a total of (2+1) values.  

When the magnetic quantum number m  is considered, the normal Zeeman effect 
(this terminology will be clarified in section 3.5.5) can be consistently explained. For this 
purpose, let us consider as an example the yellow sodium D-line generated by the 3p → 
3s transition. Line splitting under the action of magnetic field is due to the properties of 
the magnetic quantum number m : 

– for the 3s state,   = 0  m = 0: 3s level does not split; 

– for the 3p state, = 1  m =− 1, 0, +1: 3p level splits in three sublevels. 

 

 

 

 

Figure 3.19. The normal Zeeman effect on the yellow sodium D-line 

Thanks to the properties of quantum numbers   and m , Sommerfeld’s model 

can be used to establish the first selection rules defining the allowed transitions 
between quantized atomic systems. Hence, a transition between two quantized levels 
is only allowed if: 
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When taking into account the selection rules [3.57], the splitting of the yellow 
sodium line into three components (Figure 3.19) according to experimental 
observations (Figure 3.14(a)) can be consistently explained. The three transition 
lines obtained by the Zeeman effect (Figure 3.19) constitute what is referred to as 
the Zeeman-Lorentz triplet (see Exercise 3.7.12). 

3.4.5. Advantages and limitations of the Bohr–Sommerfeld model 

At least three advantages of the Bohr–Sommerfeld model are worth being 
retained. It makes it possible to: 

1) interpret the normal Zeeman effect based on the properties of the angular 
momentum quantum number and of the magnetic quantum number; 

2) write the electron configuration of atoms using s, p, d, f, etc. values (possible 
values of the angular momentum quantum number) [3.50]; 

3) establish the first selection rules that determine the allowed transitions 
between quantized energy levels of the atomic systems [3.57]. 

As any model, the Bohr–Sommerfeld approach has its limitations, which are at 
least four. This model does not offer the possibility of: 

1) interpreting the anomalous Zeeman effect (due to spin, see section 3.5); 

2) setting the maximum number of electrons per energy level (spin contribution); 

3) establishing the general selection rules. 

Arnold Sommerfeld was a German physicist. One of his major contributions to 
spectroscopy is related to the generalization of Bohr’s model of circular orbits to elliptical  
orbits (1916). This has offered the possibility to introduce the angular momentum 
quantum number and to consistently interpret the normal Zeeman effect. Moreover, 
Sommerfeld explained the fine structure of the lines of hydrogen atom and thus 
introduced the fine structure constant α, which is one of the fundamental physical 
constants. 

Box 3.11. Sommerfeld (1868–1951) 

3.5. Electron spin  

3.5.1. The Stern–Gerlach experiment 

In 1922, Otto Stern and Walther Gerlach conducted an experiment in which 
they vaporized a beam of silver atoms in an oven (E) at temperature T = 1,000 K.  
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This experiment proved that atoms have a new quantum property [SIV 86, GRI 95, 
SAK 08]. A brief description of the experimental setup used by Stern and Gerlach is 
shown in Figure 3.20.  

A beam of neutral atoms focused by a diaphragm F that selects the atoms whose 
velocity is directed along Oy (v = 500 m ⋅ s−1) is sent through high vacuum. This 
beam crosses the air-gap of an electromagnet before condensing on a plate P. The 
applied magnetic field is strongly inhomogeneous and perpendicular to the direction 
Oy of the atomic beam, each atom being at ground state.  

The experiment shows that the beam splits into two components that hit the 
screen and form two spots T+ and T− that are symmetrical with respect to the initial 
direction Oy of the beam and have the same intensity (Figure 3.20).  

 

 

 

 

 

Figure 3.20. Stern–Gerlach experimental setup 

Nevertheless, Stern and Gerlach advanced no theoretical explanation of the 
splitting of the beam of silver atoms into two components under the action of 
component Bz of the magnetic field. 

3.5.2. The Uhlenbeck and Goudsmit hypothesis, electron spin 

Using the order of filling of electron subshells [3.50], the electron configuration 
of the ground state of the silver atom with Z = 47 electrons is obtained. Hence: 

1s2 2s2 2p6 3s2 3p6 4s23d10 4p6 5s1 4d10        [3.58] 
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Let us note that configuration [3.58] of the silver atom does not correspond 
exactly to sequence [3.51] (since the 5s orbital is not saturated). Indeed, 
Klechkowski’s rule has its limitations, even for certain neutral atoms such as Ag. 
The electron configuration [3.58] can be formally written as [Kr] 4d10 5s1. This 
shows that at ground state the silver atom behaves as a particle with only one 
electron (the inner shells are all completed). In other terms, the physical and 
chemical properties of the silver atom at ground state are determined by the outer 
electron occupying the 5s orbital. For this orbital, the angular momentum quantum 
number is = 0. Consequently, the magnetic quantum number is m  = 0. It follows 

that the splitting of the beam of silver atoms is not due to the properties of quantum 
numbers and m .  

Besides its orbiting the nucleus, the electron spins about its own axis as a 
classical spinning top. Knowing that the orbital motion of the electron around the 
nucleus is characterized by the angular momentum quantum number  , by analogy, 
the spin of the electron is characterized by another intrinsic quantum number.  

This is how, in 1925, Georges Uhlenbeck and Samuel Goudsmit formulated 
the hypothesis of the electron spin, denoted s. It is worth noting that the term 
“spinning” designates the rotation on its own axis. The symbol “s” denotes the 
electron spin.  

By analogy with the magnetic quantum number m taking (2  + 1) values, the 

spin s is also assumed to have a corresponding magnetic spin quantum number, 
denoted ms and taking (2s + 1) possible values. In order to determine the spin value, 
a fundamental hypothesis is adopted, namely that the two components observed in 
Stern–Gerlach experiments correspond to the two possible values of the magnetic 
spin quantum number ms. Hence: 

(2s +1)  = 2  s = 1/2            [3.59] 

Result [3.59] shows that ms takes two possible values: ms = +1/2 (spin up) and ms 
= −1/2 (spin down). Hence, for ms = +1/2, a number N+ of silver atoms are deviated 
upwards and form the spot T+. For ms = −1/2, a number N− of silver atoms are 
deviated downwards and form the spot T−. On the other hand, Stern–Gerlach 
experiments showed that the two spots T+ and T− are symmetrical with respect to the 
initial direction Oy of the silver atom beam and have the same intensity. Hence: N+ = 
N− (see Exercise 3.7.14).  

Taking electron spin into account, the electron configuration of an atom can be 
written according to the quantum cells model that involves the spin up and spin 
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down concepts, symbolized by ascending and descending arrows respectively. A 
quantum cell can only contain a maximum of two electrons of opposite spins.  

Starting with 1925, there were three models for writing the electron 
configurations of atoms: the shell model, the atomic orbital model and the quantum 
cell model. Figure 3.21 compares the electron structures of hydrogen H (Z = 1), 
helium He (Z = 2) and sodium Na (Z = 11) atoms. 

    
    

Figure 3.21. Comparison of various models of electron configurations 

This illustration shows that a quantum cell is saturated with two electrons whose 
principal quantum number n, angular momentum quantum number  and magnetic 
angular momentum m can be equal, while the values of their magnetic spin 

quantum number ms must differ: one of the two electrons has a spin up (ms = +1/2) 
and the other has a spin down (ms = −1/2). Taking into account the electron spin 
contributes to consistently explain the anomalous Zeeman effect (see Exercises 
3.7.16 and 3.7.17).  

NOTE.– Lorentz’s objection to spin hypothesis: in 1925, physicists had different 
perceptions on the Uhlenbeck and Goudsmit hypothesis. While Bohr was very 
enthusiastic, scientists such as Lorentz, who presided at the Solvay conference in 
1911, raised serious objections related to the electron spin idea advanced by 
Uhlenbeck and Goudsmit. Relying on Einstein’s theory of special relativity, 
Lorentz explained that by modeling the electron as a sphere of radius r, and 
assuming that the Coulomb energy e2/r of the sphere is equal to the rest energy mc2, 
the resulting radius of the electron is r = e2/mc2 (classical radius of the electron). A 
value of the angular momentum L = mvr = |ms|= 2/  requires an equatorial velocity 
of the electron ve =c2/2e2 = c/2α, where α is the fine structure constant. Knowing 
that α ≈ 1/137, then ve ≈ 68 c > c: an unacceptable result, since c designates the 
upper limit speed. However, this objection has at least two weaknesses: the electron 
is not a point mass; therefore it is not possible to define an electron radius.  
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Furthermore, there is no classical equivalent of the intrinsic angular momentum of 
the electron of the mvr type: spin is a purely quantum property of particles. 

3.5.3. Degree of degeneracy of energy levels 

Taking into account the angular momentum quantum number and the spin 
quantum number makes it possible to determine the total number of quantum states 
that can be achieved from a state of given n. This number of states is known as  
degree of degeneracy or multiplicity of the energy levels often denoted by gn.   

As explained above, for a state of given  , the magnetic quantum number takes a 
total of (2  + 1) values. Knowing that   varies between 0 and (n − 1), the total 
number of quantum states corresponding to a given value of n is equal to 


−

=
+

1

0

)12(
n


 . Similarly, for a state of given n, the magnetic spin quantum number ms 

takes (2s + 1) values. Knowing that s = 1/2, the degree of degeneracy of the energy 
levels of hydrogen-like systems is equal to: 

2
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0
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n

n =++= 
−

=
   [3.60] 

Result [3.60] shows that a level of energy of a hydrogen-like system is 2n2 times 
degenerate. This means that for a given n, there are 2n2 quantum states characterized 
by the same energy. It is notably the case of the energy levels of the hydrogen atom 
as described within Bohr’s theory. Let us illustrate this degeneracy in the particular 
cases of the ground state (n = 1) and the first excited state (n = 2). 

– For n = 1, = 0, we obtain g1 = 2. Therefore, there are two different quantum 
states due to the projection of electron spin. In the first state, ms = +1/2 and in the 
second state, ms = −1/2. The global state corresponds to the ground state 1s, which is 
therefore 2 times degenerate. 

– For n = 2 (= 0 or 1), we obtain g2 = 8. There are, therefore, eight quantum 
states that are determined at the same time by the values of the magnetic quantum 
number m  and by the values of the magnetic spin quantum number ms. For = 0, a 

2s state is obtained. For this state, m = 0 and ms =  ± 1/2. The 2s state is then two 

times degenerate (which amounts to two states). For = 1, we obtain a 2p excited 
state for which m  = − 1, 0, + 1; each state characterized by a value of m is 2 times 

degenerate due to spin (ms =  ± 1/2). For the 2p state this gives a total: 2 × 3 = 6 
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quantum states. Overall, the first excited level n = 2 is then 2 + 6 = 8 times 
degenerate. 

Otto Stern was a German physicist. He was an outstanding experimenter whose work 
contributed to the development of molecular beam epitaxy (a technique used in the 
fabrication of quantum wells of semiconductor materials) at the measurement of magnetic 
moment of atoms. His famous experiment conducted in cooperation with Gerlach in 1922 
evidenced the quantization of the electron spin. The hypothesis explaining this 
phenomenon was formulated much later, in 1925, by Uhlenbeck and Goudsmit. Stern was 
awarded the Nobel Prize for physics in 1943, as recognition of his important contributions 
to the development of molecular beam epitaxy.  

Walther Gerlach was also a German physicist. He is well-known in physics, especially 
for having experimentally evidenced the spin magnetic moment (Stern–Gerlach 
experiment).  

Georges Uhlenbeck and Samuel Goudsmit were both American physicists of Dutch 
origin. They are known especially for having proposed the hypothesis of the electron spin 
in 1925. 

Box 3.12. Stern (1888–1969); Gerlach (1889–1979); Uhlenbeck (1900–1988); 
Goudsmit (1902–1978) 

3.5.4. Total quantum number, selection rules 

For a hydrogen-like system, the total angular momentum j is defined by the 

relation:  

slj +=        [3.61] 

When the quantum numbers   and s have determined values, the possible values 
of the total quantum number j are (s =1/2): 

2

1±= j             [3.62] 

If  is an integer number, j is always a half-integer. 
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Moreover, the squared angular momenta j , l  and s have determined values: 

)1(2
2

+= jjj  ; )1(22
+= l ; )1(2

2
+= sss  .           [3.63] 

Moreover, quantum numbers  , s and j have corresponding magnetic quantum 

numbers m , ms and jm that determine the projections of l , s  and j


 vectors, 

respectively, along a preferential direction (for example Oz). Hence: 

mlz = ; sz ms = ; jz mj =   [3.64] 

When quantum numbers  , s and j are given, quantum numbers m , ms and 

jm have the following values: 

– m  = − , − (− 1), ….., + (+1), +  

–  ms= −s, − (s− 1), ….., + (s + 1), + s               [3.65] 

– jm  = −j, − (j  − 1), ….., + (j  + 1), + j 

Wolfgang Pauli was an Austrian physicist. In 1925, Pauli proposed a physical principle 
known as the Pauli exclusion principle, according to which electrons cannot 
simultaneously occupy the same quantum state. Pauli was awarded the Nobel Prize for 
physics in 1945 for the formulation of the exclusion principle. The matrices used in 
quantum mechanics for spin representation (see Exercise 6.8.5) are known as Pauli 
matrices in his honor. 

Box 3.13. Pauli (1900–1958) 

Moreover, during the quantum jumps through which an electron passes from one 
state to another, only certain electric dipole transitions are allowed, namely those 
following the selection rules defined by relations [3.66] (that complete the partial 
selection rules [3.57]): 
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3.6. Electron magnetic moments 

3.6.1. Orbital and spin magnetic moments  

In what follows, the angular momentum of the electron is denoted by a small 

letter l to avoid confusion with the angular momentum L defined within Bohr’s 

theory. The orbital angular momentum l is defined by the same expression [3.12] 

that can be rewritten as follows: 

prl ∧=             [3.67] 

The hydrogen-like system is subjected to a uniform magnetic field B along (Oz). 

The angle between the directions of the angular momentum and of the magnetic 
field is θ.  

 

 

 

 

Figure 3.22. Hydrogen-like system subjected to a magnetic field 

The electron motion on the assumed circular orbit generates a current of constant 
intensity i (Figure 3.22) such that: 

T
ei −=   [3.68] 

In relation [3.68], T is the period of the motion of angular frequency ω. As the 
motion is circular: 

ω
π2=T ; v = rω                  [3.69] 
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Using relations [3.69], expression [3.67] can be written as: 

r
evi
π2

−=                           [3.70] 

Moreover, according to classical electrodynamics, a circular loop through which 
a current of intensity i flows has a magnetic moment defined by: 

Si=M             [3.71] 

In this definition, S  is the surface vector perpendicular to the plane of the loop. 
Introducing expression [3.69] of intensity i in [3.71], we obtain: 

S
r

ev
π2

−=M                                     [3.72]    

 
 
 

 

 

 

 

Figure 3.23. Orbital magnetic moment 

Let us designate by u  the unit vector along the direction that is common to the 

surface vector and orbital angular momentum vector (Figure 3.23). Knowing that S 
= πr2, the magnetic moment [3.72] is written as: 

uerv
2

−=M             [3.73] 

Multiplying the numerator and the denominator of the expression on the right of 
equation [3.73] by the mass m of the electron, we get: 
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2

e mvru
m

= −

 
M                   [3.74] 

Figure 3.22 shows that: 

umvrprl =∧=                        [3.75] 

Taking into account [3.75], expression [3.74] of the orbital magnetic moment 
can be written as: 

lγ=M                           [3.76]  

In relation [3.76], the physical quantity γ is referred to as gyromagnetic ratio of 
electron defined by: 

m
e

2
−=γ                                      [3.77]  

As the constant γ is negative, relation [3.76] indicates that the orbital magnetic 
moment of the electron is always opposite to the angular momentum; this explains 
its direction, as shown in Figure 3.23. Moreover, relation [3.77] indicates that an 
orbital magnetic moment is associated with electron orbiting. It can thus be thought 
that a spin magnetic moment, though it has no classical equivalent, can be associated 
with electron spinning. By analogy to the orbital magnetic moment given by [3.76], 
the spin magnetic moment is defined by:  

sgs γ=M                          [3.78] 

In relation [3.78], g is a constant known as Landé factor of the electron, which is 
given by:  







 +=

π
α
2

12g                                 [3.79] 

In this relation, α is the fine structure constant defined above [3.24].  

Numerical value: 

α = 1/137.036 

A calculation of the Landé factor according to [3.79] gives: g = 2.00232. This 
value is generally approximated as 2.00 and leads to: 
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ss γ2=M                           [3.80] 

Referring to equation [3.79], it is worth noting that the second-order corrections 
α2 and higher order corrections are considered negligible, though they can be 
calculated in quantum electrodynamics. 

3.6.2. Magnetic potential energy 

In a magnetic field of preferred direction (Oz), each of the orbital magnetic 
moments [3.76] and spin magnetic moments [3.78] of the electron has a determined 
value: 

zz sgl γγ == szz MM ;
           [3.81] 

In quantum mechanics, projections lz and sz, of the orbital angular momentum  l  

and spin angular momentum s


 respectively, are quantized according to relations 

[3.64].  Taking into account these results, relations [3.80] become: 

 smgm γγ == szz MM ;     [3.82] 

In [3.82], the magnetic quantum numbers m  and ms satisfy the relations: −  ≤ 

m ≤ +  and ms = ± ½ respectively. When the hydrogen-like system is immersed in 

a magnetic field B , the orbital and spin magnetic moments [3.82] interact with the 

magnetic field B . This generates an additional magnetic potential energy given by: 

BW ⋅−= M              [3.83] 

In this relation, M is the sum of the orbital and spin magnetic moments of the 

electron. Using relations [3.76] and [3.78], this can be expressed as follows:  

BsglW ⋅+−= )(γ              [3.84] 

Using [3.84] makes it possible to correctly interpret the anomalous Zeeman 
effect (see Exercises 3.7.17 and 3.7.20). 

Alfred Landé was a German physicist. His renown is especially due to having 
determined the g factor, known as the Landé factor in his honor. This factor has 
contributed to a major advance in quantum mechanics, particularly in the interpretation of 
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the anomalous Zeeman effect. Between 1925 and 1926, he studied the quantum theory of 
radiation, light coherence, spontaneous emission and stimulated emission, the latter two 
processes being involved in the theory of laser emission. In 1925, together with Back (see 
Box 3.15), Landé published the work entitled “Zeeman effect and the multiplet structure 
of spectral lines” (Springer, Berlin). 

Box 3.14. Landé (1888–1976)  

3.6.3. Spin–orbit interaction, spectroscopic notation of states 

In the case of hydrogen-like systems, the main interaction is the Coulomb 
interaction between electron and nucleus. However, because of the electron orbital 
motion, an additional interaction due to electron spin and the nuclear charge is 
observed. This is referred to as spin–orbit interaction or spin–orbit coupling, 
denoted by LS coupling. Let us further illustrate this notion in the particular case of 
the hydrogen atom.  

For this purpose, let us consider a reference frame attached to the electron 
moving around the proton. With respect to this reference frame, in which the 

electron is at rest, the proton is moving and generates a magnetic field 0B acting on 

at the location of the electron. This field acts on the spin magnetic moment sM of 
the electron.  

As the absolute values of proton and electron charges are equal, the magnetic 
field generated by the proton is similar to the one that the electron orbiting the 
proton would create in a fixed reference frame. This is why the spin–orbit 
interaction is formally assimilated to an interaction between the orbital magnetic 
moment and the spin magnetic moment of the electron. Knowing that the direction 

of the magnetic moment sM can be parallel or antiparallel to the direction of the 

magnetic field 0B , in the first case, the potential energy of interaction of the 
{electron–nucleus} system increases, and in the second case, it decreases. This is 
why each energy level of the atom splits into two sublevels under the effect of the 
spin–orbit interaction.  This splitting does not occur when the atom is in n2s1/2 states, 
for which there is no spin–orbit interaction, as the orbital magnetic moment is zero. 
Moreover, the notation used for a quantum state is: 

n2s+1Lj                          [3.85]  

In this notation, the number (2s +1) designates what is known as multiplicity of 
the energy level under consideration, and L denotes the quantum state being 
considered, which is determined by the value of the orbital quantum number  .  
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For example, for   = 0, L ≡ s; for   = 1, L ≡ p; for   = 2, L ≡ d; etc. When spin–
orbit interaction is taken into account, the physical significance of (2s +1) level 
multiplicity in notation [3.85] can be clarified. For a hydrogen-like system, s = 1/2 
and (2s +1) = 2. Consequently, level multiplicity indicates the various possible 

directions of spin s


 (or of the spin magnetic moment s g s=
 
M γ ) with respect to the 

direction of the orbital angular momentum l


 (or of the orbital magnetic moment 

lg=
 
M ).  Hence, given the spin–orbit interaction, all the energy levels of the 

hydrogen-like systems whose orbital angular momentum is non-zero split into two 
sublevels and form what are referred to as doublets of n2Lj type, which reads “n, 
doublet Lj”.   

Let us illustrate this reading mode by several examples of specific cases of 
ground state n = 1 and excited levels n = 2 and n = 3. 

– for n = 1, = 0  (L ≡ s); this corresponds to s state (it is worth noting that the 
same letter is used to designate the s subshell of the s orbital and the spin s of the 
electron) or s = 1/2. Therefore the multiplicity is (2s + 1) = 2 and the total quantum 
number j = 1/2 (j = + 1/2 = 1/2; the value j = − 1/2 = − 1/2  is not allowed, 
because j > 0). The resulting state is denoted 12s1/2 (one, doublet s one-half); 

– for n = 2, = 0 or 1 (L ≡ s or p).  

- for = 0, j = 1/2: the spin magnetic moment is therefore parallel to the 
orbital magnetic moment. We obtain the state denoted by 2 2s1/2  (two, doublet p1/2); 

- for = 1, j =   − 1/2 = 1/2: the spin magnetic moment is antiparallel to the 
orbital magnetic moment. We obtain the state denoted by 2 2p1/2 (two, doublet p1/2); 

- for = 1, j = + 1/2 = 3/2: the spin magnetic moment is parallel to the 
orbital magnetic moment. We obtain the state denoted by 2 2p3/2  (two, doublet p3/2); 

– for n = 3, a similar reasoning leads to obtaining five quantum states: 3 2s1/2, 3 
2p1/2, 3 2p3/2, 3 2d3/2  and 3 2d5/2. 

 
The same doublets are noted for all the states defined by a value   ≥ 1. The 

quantum states n 2s1/2, though read “n, doublets1/2”, are an exception to the rule, as 
there is no spin–orbit interaction for these states. They are therefore formally 
referred to as “doublets”. 

3.6.4. Fine structure of the levels of energy of the hydrogen atom 

As explained above, due to the spin–orbit interaction, the levels of energy 
characterized by a non-zero angular momentum quantum number split into several 
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components. This LS coupling effect on the energy levels of the atoms determines 
what is referred to as the fine structure of spectral terms or fine structure of the 
energy levels [SIV 86, COH 77, GRI 95, SAK 08]. The splitting of a spectral line 
into several components is known as the fine structure of the spectral lines, 
determined by the allowed electronic transitions between the sublevels formed as 
result of the spin–orbit interaction. As an example, let us examine the fine structure 
of the lines for the specific cases of the Lyman alpha (Lα) and Balmer alpha (Hα) 
line of the hydrogen atom. 

– The wavelength of the Lα line is λ = 121.6 nm. It corresponds to the transition 
from the first excited level n = 2 to the ground state n =1. Let us recall for these two 
levels the corresponding spectral terms. For n = 1 level, we obtain only one term: 1s1/2. 
For n = 2, we obtain the three terms: 2s1/2, 2p1/2  and 2p3/2. The structure of the Lyman 
alpha line of the hydrogen atom is illustrated in Figure 3.24. 

 

Figure 3.24. Fine structure of the Lα  line of the hydrogen atom 

In Figure 3.24, the 2p → 1 s transition has been added to the Lyman series as an 
illustration. This transition has not been observed. Only the two lines resulting from 
2p3/2 → 1s1/2 and 2p1/2→ 1s1/2 transitions actually exist, and they satisfy the selection 
rules [3.66] reminded below: 
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Given the [3.66] rules, 2s → 1s transition is not allowed, as it corresponds to 0=Δ . 

For this reason, the 2s level is not represented in Figure 3.24. Let us recall that the 
selection rules [3.66] are rigorously verified only in the absence of any field of external 
forces that may induce forbidden transitions. Hence, as a result of spin–orbit coupling, 
the fine structure of level n = 2 gives a doublet formed of two very close lines separated 
by a distance Δλ = 5.3×10−4 nm (see Exercise 3.7.18). Each of the other lines Lα, Lγ, Lδ, 
etc. in the Lyman series has a doublet fine structure. 

– The wavelength of Hα line is λ = 656.3 nm and corresponds to the transition 
from the second excited level n = 3 to the first excited level n = 2.  For these two 
levels, we obtain the spectral terms: 2 2s1/2, 2 2p1/2, 2 2p3/2 and 3 2s1/2, 3 2p1/2, 3 2p3/2,  
3 2d3/2 and 3 2d5/2, respectively. Hα line splits into seven components (Figure 3.25) 
resulting from the transitions allowed by the selection rules [3.66].  

 
 
 

 

 

 

 

 

 

 

Figure 3.25. Fine structure of the Hα line of the hydrogen atom 

It is worth noting there are no spectral lines due to 3s1/2, → 2s1/2 and 3p1/2, → 
2p1/2 transitions, which are forbidden, as they correspond to 0=Δ . The same is 

applicable to the lines corresponding to 3d5/2 → 2s1/2, 2p1/2 transitions for which Δj = 2 
are forbidden by the selection rule Δj = 0, ± 1. Similar to Hα line, Hβ, Hγ, Hδ, etc., lines 
in the Balmer series have each a fine structure. It can be noted that the levels of 
energy of hydrogen-like systems characterized by a non-zero value of the angular 
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momentum quantum number, naturally split due to spin–orbit interaction and not 
because of the Zeeman effect. It follows that when a hydrogen-like system (in a state 
with ≠ 0), is subjected to a magnetic field, the splitting due to spin–orbit 
interaction and the Zeeman effect are competing. This competition is worth being 
studied in further detail.  

When an atom is subjected to a weak magnetic field, the spin–orbit interaction is 
such that the behavior of orbital angular momentum l


and spin angular 

momentum s  cannot be studied separately. Only the total angular momentum 

slj +=  is conserved and becomes a constant of the motion. For a quite high 

intensity of the magnetic field, the width of splitting of the energy levels due to the 
magnetic field-orbital magnetic moment becomes predominant compared to the 
splitting of energy levels due to spin-orbit interaction. In this case, the spin–orbit 
interaction can be ignored and the complex Zeeman spectrum becomes the simple 
Zeeman–Lorentz triplet: this is the Paschen–Back effect (experimentally observed in 
1912 by Paschen and Back).  Let us note that the set of sublevels resulting from the 
spin–orbit interaction are referred to as multiplets. 

Ernst Back was a German physicist. He is known for his works on the influence of 
magnetic fields on the line spectrum of atoms. In 1912, he observed with Paschen (see 
Box 3.7), that when an atom is subjected to a strong magnetic field, the complex Zeeman 
spectrum is reduced to the simple Zeeman–Lorentz triplet, the phenomenon referred to as 
the Paschen–Back effect. Moreover, in 1925, Back, together with Landé, published the 
book entitled “Zeeman effect and the multiplet structure of spectral lines”. In 1976, a 
lunar crater was named Back in his honor. 

Box 3.15. Back (1881–1959)  

3.7. Exercises 

Numerical data for the exercises: 

– Planck constant: h = 6.626 × 10–34 J · s 

– speed of light in a vacuum: c = 2.998 × 108 m · s − 1  

– elementary charge: e = 1.602 × 10−19 C 

– rest mass of the electron: m = 9.109 × 10−31 kg 

– electric constant: k = 1/(4πε0) = 9.0 ×109 SI 

– 1 eV = 1.602 × 10−19 J 
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3.7.1. Exercise 1 – Spectrum of hydrogen-like ions 

(1) The focus is on the spectral series of the hydrogen atom. 

(1.1) Express the spectroscopic wave number for the n → p transition based on 
the Ritz combination principle and Balmer’s expression of spectral terms. Then 
prove that the wavelengths λnp of the radiations emitted by the hydrogen atom during 
the n → p transition can be calculated using the formula: 











−×=

221
111

np
R

npλ
        (1) 

In this relation, R1 is a constant to be defined. 

(1.2) Express R1 as a function of the ionization energy EI of the hydrogen atom, 
Planck’s constant h and the speed of light in a vacuum c. Calculate R1 in m−1. 
Explain why this unit is appropriate. 

(2) In the spectrum of the hydrogen-like He+ ion let us consider four lines 
numbered (1), (2), (3) and (4) and whose spectroscopic wave numbers in the Lyman 
series are respectively equal to:  

3.292 × 107 m−1; 3.901 × 107 m−1; 4.115 × 107 m−1; 4.213 × 107 m−1 

(2.1) Verify numerically that these values are compatible with the relation: 


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111

np
R

npλ
                                                                    (2) 

In this relation, n = 2, 3, 4 and 5 for the lines (1), (2), (3) and (4) respectively, 
and R2 is a constant to be calculated in m−1.  

(2.2) Express R2 as a function of R1 based on an approximation to be specified. 
Then deduce the atomic number of the helium ion He+.  

(2.3) Find relation (2) using Bohr’s model applied to hydrogen-like systems. 

Given data. EI = 13.605680 eV; Rydberg expression: Ryd = α2mc2/2. 

3.7.2. Exercise 2 – Using the energy diagram of the lithium atom 

Figure 3.26 shows the simplified diagram of the energy levels of the Li atom. 
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Figure 3.26. Simplified diagram of the energy levels of the lithium atom 

(1) Calculate the wavelength λ of the radiation emitted when the lithium atom 
passes from excited state 3 to ground state 1.  

(2) A sample of lithium atoms that are all in ground state is lighted. The 
polychromatic light used is constituted of photons of wavelengths λ1 = 528.0 nm,  
λ2 = 323.0 nm and λ3 = 205.0 nm. 

(2.1) Which of these three photons can be absorbed by a lithium atom in the 
sample? What is the excited state of the lithium atom after absorption? 

(2.2) What happens in the case of the photon of wavelength λ3 = 205.0 nm? 
Deduce the kinetic energy of the resulting electron. 

(3) A lithium atom in ground state is hit by an electron of mass m and kinetic 
energy Ec = 5.00 eV. It consequently passes to state 4. Find the speed of the electron 
after its collision with the lithium atom (the motion of the lithium atom is assumed 
beyond the influence of this event). 

The numerical data provided at Exercise 3.7.1 shall be used. 

Given data. m = 9.19 × 10−31 kg. 

3.7.3. Exercise 3 – Spectra of the hydrogen atom, application to 
astrophysics 

The Orion Nebula (Figure 3.27) comprises four hot stars immersed in a wide 
“cloud” of interstellar gas largely composed of hydrogen atoms. 
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Figure 3.27. Orion Nebula 

The wavelength of the light radiated by the stars is below 91.2 nm, in the range 
of ultraviolet waves. 

(1) The light emitted by certain nebulae rich in hot but low-pressure gaseous 
hydrogen is due to the electron transition between energy levels n = 2 and n = 3.  

(1.1) Calculate the wavelength resulting from the 3 → 2 electron transition.  

(1.2) Explain the color of such a nebula, as perceived by a terrestrial observer.  

(2) A terrestrial observer photographs the spectrum of light received from the 
star. They use the same film under the same experimental conditions to capture the 
emission spectrum of argon, a chemical element that is used as reference. The 
spectral lines of the star are numbered from 1 to 27 (Figure 3.28). The reference 
argon wavelengths are given in nm (433–668 nm). 

(2.1) Besides a continuous and colored light spectrum, the film capturing the 
light coming from the observed star also shows dark lines. What phenomenon 
explains the presence of these dark lines?                                                                           

 

Figure 3.28. Film showing the line spectrum of the studied star 

(2.2) When a grating spectrometer is used, the wavelength differences between 
the lines are proportional to the distances between them. Use Figure 3.28 to 
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accurately determine the scale of correspondence e between the wavelength 
difference (in nm) and the distance d (in cm) between them.  

(2.3) The argon line whose wavelength is 603 nm serves as a reference for the 
measurements to be conducted. Using the previously determined scale, identify, 
based on its number in the spectrum of the star, the absorption line Hβ of the 
hydrogen atom of wavelength λβ = 486 nm.  

(2.4) The line number 5 belongs to the spectrum of one of the elements presented 
in the data. Identify this element simply by reading Figure 3.28.   

Given data. 

– Energy of the ground state of the hydrogen atom: E1 = −13.60568 eV. 

– Colors of several radiations: 

 

 

 

To identify the lines, the following wavelengths expressed in nanometer (nm) can 
be used: 

– Balmer series of H atom: Hβ: 486; Hγ: 434; Hδ: 410; Hε: 397; 

– He atom: 389; 405; 447; 471; 493; 502; 505; 588; 668; 707; 728. 

3.7.4. Exercise 4 – Atomic resonance 

Let us consider a sodium lamp emitting practically monochromatic orangy-
yellow light. This lamp is used to intensely light a glass bowl filled with sodium 
vapor. An attenuation of the emerging beam is observed (Figure 3.29).  

 

 

 

 

Figure 3.29. Atomic resonance for sodium 
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Consequently, the lighted sodium vapor emits photons in all directions (Figure 
3.29). This phenomenon is known as atomic resonance: the frequency of the 
exciting wave (exciter) is equal to that of the irradiated vapor (resonator). 
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Figure 3.30. Simplified diagram of sodium energy levels 

(1) The analysis of the emission spectrum of a sodium lamp reveals the presence 
of lines of well-defined wavelengths. Figure 3.30 shows a simplified diagram of 
sodium energy levels (not a scale representation). This spectrum is due to the 
electron transitions from the outer shell of the sodium atom at its ground state. 

(1.1) Provide an interpretation of the experimental observations (attenuation of 
the incident beam and emission of photons by the sodium vapor). 

(1.2) Use a postulate to justify the discontinuity of the sodium atom spectrum, 
which is schematically represented above (Figure 3.30).  

(1.3) Write the electron configuration of sodium (Z = 11). Which one of the 
electrons generates the observed sodium emission spectrum? 

(1.4) Is it possible to find the ground state energy of the sodium atom using 
Bohr’s theory? Provide a theoretical justification for the answer.  

Given data. 1 Ryd ≈ 13.60 eV. 

(2) The sodium atom is considered in its ground state. 
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(2.1) Specify the levels of energy that are involved in the emission of the yellow 
sodium D-line. How does this atom behave when it absorbs a photon whose 
wavelength is λ = 589.0 nm?  

(2.2) What happens if the energy of the photon is 3.00 eV? Can the sodium atom 
be then excited? Justify the answer.   

(3) The sodium atom, considered in its ground state, is hit by an electron whose 
kinetic energy is 3.00 eV. The sodium atom is practically fixed during the 
interaction, and it thus passes to an excited state n that has to be determined.  

(3.1) After the interaction, the residual kinetic energy of the electron is 0.89 eV. 
Determine the excited level of the sodium atom after collision. 

(3.2) The sodium atom, still in its ground state, is lighted with radiation whose 
wave number is 4.82946 × 106 m−1. What phenomenon occurs? Write the balance 
equation for this phenomenon. Find the speed of the ejected electron.  

Consider the mass of the electron: m = 9.109 × 10−31 kg.              

3.7.5. Exercise 5 – X-ray spectrum 

X-rays are generated in X-ray tubes, also known as Coolidge tubes or hot 
cathode tubes (Figure 3.31). The X-ray production principle is described below. 

                  

Figure 3.31. X-ray production in a Coolidge tube 
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Electrons emitted by a cathode (a filament most commonly made from tungsten, 
heated by an electric current flow) are accelerated by a high potential difference 
(from 10 to 150 kV) toward a target constituted from a metallic (also tungsten) 
anode. X-rays are emitted by the target by two mechanisms: 

– deceleration of the electrons by the target atoms produces a continuous 
radiation (braking radiation or Bremsstrahlung), which is partly in the X-ray range; 

– accelerated electrons have enough energy to excite certain atoms of the target, 
perturbing their inner electron shells. These excited atoms emit X-rays when they 
return to their ground state. 

(1) A monokinetic beam of electrons emitted by the heated filament is 
accelerated by a 40,000 V voltage. Electrons emitted with zero initial velocity hit a 
copper plate target. 

(1.1) Determine in keV the kinetic energy of emitted electrons. 

(1.2) Can the emitted electrons be dealt with as relativistic particles? Provide a 
theoretical justification for the answer.  

Given data. m0c2 = 0.511 MeV. 

(2) Figure 3.32 shows a relative arrangement of several levels of energy of the 
electrons in K, L and M shells of copper atoms. The diagram is not a scale 
representation. 

                                            

Figure 3.32. Relative arrangement of K, L and M shells of copper atoms 

(2.1) Is the kinetic energy acquired by one of the electrons in the above 
mentioned monokinetic beam sufficient to extract a K electron from the copper 
atom?   
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(2.2) Assuming that the entire kinetic energy of an incident electron in the  
monokinetic beam is transmitted to the electrons in the K shell, what is the kinetic 
energy of a K-electron ejected from the copper atom? Express the result in keV. 

(3) Once the K-electron is ejected, another electron coming from the L shell or 
from the M shell can pass in the K shell.  

(3.1) Draw a schematic representation of the two expected recombination 
processes (electron–hole recombination). Represent in this figure the two emitted X 
photons by undulating arrows. 

(3.2) Deduce the wavelengths of the two emitted radiations, characteristic to the 
spectrum emitted by the X-ray tube (Kα and Kβ lines of the spectrum).                                                    

William David Coolidge was an American physicist. He is known for his work leading to 
the use of tungsten as a filament in light bulbs.  In 1913, he invented the X-ray tube, 
known as the Coolidge tube in his honor. This tube, which also used tungsten as a 
filament, was a major progress in medical physics, especially in the beginning of 
radiology. 

Box 3.16. Coolidge (1873–1975)  

3.7.6. Exercise 6 – Lifetime of the hydrogen atom according to the 
planetary model 

The objective is to explain the instability of the planetary model of the atom by 
calculating the lifetime of the hydrogen atom. The electron in the hydrogen atom is 
assumed in motion around the proton, as described by Rutherford’s planetary model. 

(1) Prove that the electron is subjected to a centripetal acceleration. 

(2) According to classical electrodynamics, any charged particle in accelerated 
motion emits electromagnetic waves. The loss of energy per unit time (radiated 
power) is expressed by the relation: 

2
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In this expression, a designates the acceleration. 

Moreover, the total energy of the {nucleus–electron} system is given by the 
relation: 
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(2.1) Is the Rutherford atomic model stable according to the theory of classical 
electrodynamics? Justify the answer. 

(2.2) Prove that the radius r of the electron orbit verifies the equation: 
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 where A is a constant to be clarified. 

(2.3) Considering the fall of the electron from its initial position r = a0, express 
the duration Δt of the fall of the electron on the proton. Deduce from it the lifetime 
of the hydrogen atom. 

(2.4) Using a postulate, explain why the hydrogen atom is stable, contrary to the 
predictions of classical electrodynamics. 

Given data (Bohr radius). a0 = 5.29 nm. 

3.7.7. Exercise 7 – Correspondence principle, quantization of the 
angular momentum 

The objective is to find Bohr’s principle of quantization of the angular 
momentum of the electron from the correspondence principle.  

Let L be the module of the angular momentum of the electron with respect to the 
center O of the electron orbit assumed to be circular and of radius r. 

(1) Let us consider the n → p electron transition, with n > p. 

(1.1) Using the Ritz combination principle, express as a function of wavelength, 
the spectroscopic wave number corresponding to the n → p electron transition. 

(1.2) Find the expression of the spectroscopic term Tn according to Balmer. 
Deduce from it the expression of the spectroscopic wave number.  

(1.3) Let En be the quantized energy of the hydrogen-like systems. Using the 
Bohr frequency condition, prove that: 

En × n = C                                                                                      (1) 
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where C is a constant. 

(2) Let us now study the motion of the electron of hydrogen-like systems, 
according to the approximation of circular orbits. Let Z be the atomic number. 

(2.1) Using the principle of inertia, express the angular frequency ωrot of the 
rotational motion of the electron as a function of L, e, r and Z. 

(2.2) Express the total mechanical energy E of a hydrogen-like system. Deduce 
from it the expression of ωrot as a function of E and L. 

(2.3) Assuming that for high values of n and small variations Δn relation 1 is 
satisfied, prove that the angular frequency of the emitted line can be written as: 

n
n

En
e Δ−=


2ω                                                                                (relation 2) 

(2.4) Explain why it is possible to approximate En ≈ E for high values of the 
quantum number n. 

(2.5) According to the correspondence principle, the ground state angular 
frequency of the emitted line for which Δn = 1 coincides with the angular frequency 
of the electron orbiting the nucleus. Use the correspondence principle to deduce the 
rule for the quantization of the angular momentum L of the electron according to 
Bohr’s theory. 

3.7.8. Exercise 8 – Franck–Hertz experiment: experimental confirmation 
of Bohr’s atomic model   

In 1914, James Franck and Gustave Hertz (see Box 3.17) performed an 
experiment on the measurement of the ionization potential of atoms. This 
experiment validated Bohr’s model of quantized atom [SIV 86, RAP 06, SAK 08, 
SAK 12]. In their experiment, Franck and Hertz sent a beam of adequately 
accelerated electrons through the gas to be studied (mercury vapor in this case). 
After collision, the electrons excite the atoms whose excited states have each a well 
determined energy.   

In their study, Franck and Hertz varied the density of the mercury vapor by 
placing several drops of mercury in a tube, which was then put in an oven whose 
adjustable temperature was maintained constant throughout the experiment. Franck 
and Hertz’s experimental setup is schematically presented in Figure 3.33. 

To make sure that the current that heats the cathode has a constant value, an 
ammeter A is used. A potential difference UAB = U is applied between the hot 
cathode K and the grid S in order to accelerate the electrons. If their kinetic energies 
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are sufficient, the electrons pass through the grid S after having penetrated the 
deceleration potential barrier V1 (whose value is around 0.5 V). They reach the 
collector P, which leads to the detection of an electric current through the 
galvanometer G inserted in the circuit. 
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Figure 3.33. Simplified representation of Franck–Hertz experimental setup 

For the mercury vapor used, the Franck–Hertz experiment has shown that the 
intensity I of the electron current varies with voltage U according to the curve 
represented in Figure 3.34. 

 

 

 

 

 

Figure 3.34. Variation of current intensity I with voltage U 

It is worth noting that the I = f (U) curve has maxima and minima. The gap 
between two maxima or two minima is approximately 4.9 V.  
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(1) In their experiment, Franck and Hertz used relatively dense mercury vapor.  

(1.1) Explain why Franck and Hertz did not use a rarefied gas. 

(1.2) Explain why a successful experiment requires the kinetic energy of the 
electrons to be equal to or above a certain minimal value. Use one of Bohr’s 
postulates as specified. 

(1.3) How can the existence of maxima and minima of the experimental curve 
representing the variation of current intensity I with voltage U be explained? 

(2) For the mercury atom, the wavelength of the line of transition between the 
ground level and the first excited level is 2,536.52 Å.  

(2.1) Deduce the energy E1 of the first excited level of the mercury atom with 
respect to the ground level. 

(2.2) Is the previous result (value of E1) confirmed by the Franck–
Hertz experiment? Justify the answer. Which Bohr postulate(s) is (are) thus 
confirmed?  

(2.3) What is the nature (elastic or plastic) of the collision between an electron 
and a mercury atom when the kinetic energy Ec of the electron is below E1? Should 
we take into account the transfer of electron kinetic energy to the mercury atoms 
when Ec < E1? Provide a theoretical justification for the answer. 

(2.4) Justify the increase in current intensity I with voltage U. 

(2.5) What happens when the kinetic energy of an electron is above or equal to 
E1? What is the nature of the collisions between electrons and atoms? How does the 
current I vary with voltage U in case of plastic collisions? Is this variation confirmed 
by the Franck–Hertz experiment? Justify. 

(2.6) Explain why the intensity I of the electrical current is not equal to zero 
when the kinetic energy of an electron is equal to E1? 

(2.7) Similarly, explain why the maxima of the curve I = f (U) are located around 
the atom excitation energy equal to E1.  

(2.8) Justify the occurrence of successive maxima, according to experimental 
observations. 

(2.9) Draw a general conclusion from the results of the Franck–Hertz 
experiment. 
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Given data.  

– Mass of the mercury atom: m(Hg) = 202.0 u;  

– Mass of the electron: m = 5.486 × 10–4 u;  

– u: atomic mass unit. 

James Franck and Gustav Ludwig Hertz (nephew of Heinrich Rudolf Hertz, see  
Box 2.2) were German physicists. Their renown in quantum physics is especially due to 
their experiment (the Franck–Hertz experiment) which proved the quantization of the 
energy levels of atoms, thus confirming Bohr’s model of the quantized atom. Conducted 
in 1914, this is one of the fundamental experiments in quantum physics and brought 
Franck and Hertz the Nobel Prize for physics in 1925. 

Box 3.17. Franck (1882–1964); Hertz (1887–1975) 

3.7.9. Exercise 9 – Identification of a hydrogen-like system   

Depending on the fine structure constant α and on the rest energy mc2 of the 
electron, the energy of the hydrogen atom and of its isoelectronic ions (hydrogen-
like ions) can be written in the form (in eV): 

2

222

2n
mcZEn

α−=   

Figure 3.35 shows a representation of several levels of the energy diagram of a 
hydrogen-like ion that needs to be identified. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.35. Energy diagram of the hydrogen-like ion under study 
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(1) Without making the calculation, compare λ, λ’ and λ’’ wavelengths ranking 
them in ascending order of their values. 

(2) Based on its chemical formula, identify the hydrogen-like ion. 

(3) Calculate λ and the highest frequency in the emission spectrum of the 
identified hydrogen-like ion. 

(4) Determine the value of the quantum number p of the energy level Ep 

corresponding to the absorption of a photon of wavelength λ’ = 108.8 nm. 

(5) While in ground state, the hydrogen-like ion absorbs a photon of energy 
48.353eV. What will be its state after the absorption? 

(6) The hydrogen-like ion absorbs a photon of energy 48.353 while on p-level. 
Show that an α particle is emitted after absorption.  

Given data. 1 Ryd = 13.606 eV.  

3.7.10. Exercise 10 – Nucleus drag effect: discovery of deuteron   

Bohr’s theory relies on the approximation of an infinitely heavy nucleus. Hence, 
in the laboratory frame of reference, the electron of mass m orbits the proton 
assumed to be fixed. However, the mass M of the proton is finite. To account for the 
nucleus drag effect, the reduced mass {electron–nucleus} system is considered in the 
center of the mass frame of reference.  

In 1932, Harold Urey discovered in the emission spectrum of hydrogen a 
specific line of wavelength λ = 485.9975 nm, very close to the Hβ line in the Balmer 
series of wavelength λβ = 486.132 0 nm. The line of wavelength λ is emitted by an 
aX atom whose nucleus mass is denoted by M’. Our objective is to identify the aX 
atom. We consider M’ = aM. 

(1) Express the reduced mass µ of the {electron–nucleus} system. 

(2) Using the Bohr frequency condition, prove that λµ = A, where A is a constant 
to be clarified. 

(3) Express the a constant as a function of M/m and λ/λβ ratios. 

(4) Determine the value of the constant a and then identify the aX atom based on 
its formula and name. Is this atom a hydrogen-like system? 
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Given data. Proton mass to electron mass ratio: M/m = 1,836. 

Harold Clayton Urey was an American chemist. He discovered the ²H hydrogen isotope, 
for which he proposed the name of deuterium and notation by letter D. In 1931, he 
proved, together with his collaborators, the existence of heavy water (deuterium oxide, 
D2O). This discovery brought him the Nobel Prize for chemistry in 1934. 

Box 3.18. Urey (1893–1981) 

3.7.11. Exercise 11 – Normal Zeeman effect on the Lyman alpha line of 
the hydrogen atom 

The objective is to illustrate the normal Zeeman effect on the resonance line of 
the hydrogen atom corresponding to the Lyman alpha line (Lα line) resulting from 
the  2p → 1s transition.  

(1) Using atomic orbitals, prove that there is a theoretical possibility for the Lα 
line to result from two transitions. Specify which one of these transitions is allowed. 

(2) Prove that under the effect of a uniform magnetic field, the 2p subshell splits 
into three sublevels. What happens to the ground state? 

(3) Draw a diagram to illustrate the fine structure of the Lα line of the hydrogen 
atom. Use this diagram to represent the line in the absence of the magnetic field and 
the observable lines in the presence of the magnetic field. 

3.7.12. Exercise 12 – Zeeman–Lorentz triplet, Larmor precession 

The normal Zeeman effect makes it possible to observe that the resonance line 
Hα (656.3 nm) of the hydrogen atom in the Balmer series splits into three 
components corresponding to the Zeeman–Lorentz triplet. One of the three lines has 
a frequency ω0 equal to the frequency of the transition line in the absence of the 
magnetic field and the other two lines of frequencies ω1 and ω2 are shifted with 
respect to frequency ω0 by an amount /EΔ±  (Figure 3.36), which will be 
calculated in this exercise.  

Let us consider a hydrogen-like system submitted to a uniform magnetic field of 

intensity B. Let E be the energy of the atom in the field B  of direction Oz.  E0 is the 
energy of the hydrogen-like system when B = 0. Electron spin is not taken into 
account. 
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Figure 3.36. Zeeman–Lorentz triplets ω1 and ω2 are shifted relative to frequency ω0 

(1) Express E as a function of E0, B  and l (electron angular momentum). 

(2) Using Bohr frequency condition, express the Zeeman–Lorentz triplet 
according to experimental observations (Figure 3.36). 

(3) Using the selection rules, indicate the value(s) of the variation m  

corresponding to vibrations that are parallel or transversal to the direction of the 
magnetic field. 

(4) Verify that the module of the magnetic moment does not depend on time.  

(5) Does the angle θ between the directions of the orbital magnetic moment and 
the magnetic field vary in time? Provide a theoretical justification of the answer. 

(6) Prove that the magnetic moment executes a precession motion (Larmor 
precession) with an angular speed denoted Ω to be defined and calculated. Use a 
schematic representation to illustrate this precession. 

NOTE.– Nuclear magnetic resonance (NMR) and electron paramagnetic resonance 
(EPR) are experimental methods for the study of quantum spin systems [HAM 90, 

BLI 15, DUT 16]. As a general case, a material of magnetic moment μ  placed in an 

isotropic medium is considered. When a static magnetic field H  is applied, the 

direction of moment μ  follows that of H  and starts to execute a precession motion 

around it at Larmor frequency ω0 = γH (γ is the gyromagnetic ratio). If the material 
is subsequently applied a microwave field of frequency ω0 (generated by an 

electromagnetic wave), perpendicular to the direction of the static magnetic field H , 
then the material reaches resonance by absorbing electromagnetic energy: it is the 
magnetic resonance phenomenon. If the magnetic moment is generated by the 
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electron spin, the phenomenon is referred to as EPR. When the magnetic moment is 
generated by the nuclear spin, the phenomenon is referred as NMR. NMR and EPR 
have concrete applications in organic chemical analysis and in the medical field 
(biomedical applications, medical imaging, etc.). For further details on this subject, 
the reader is referred to the doctoral thesis of Rémi Blinder [BLI 15] on NMR and 
to that of Charles-Emmanuel Dutoit [DUT 16] on EPR. 

Joseph Larmor was an Irish physicist, mathematician and politician. In physics, he published, 
in 1897, 2 years before Lorentz (see Box 3.9), a form of the spatial transformation laws that are 
currently known as Lorentz transformations. Larmor also proved that the angular momentum 
of an atom subjected to a magnetic field undergoes a rotational motion about the direction of 
the external magnetic field. This rotational motion is called  Larmor precession in his honor 
and the angular speed of the motion is also known as Larmor frequency. Let us note that 
Larmor precession plays a very important role in nuclear magnetic resonance and in electron 
paramagnetic resonance (see the previous note). 

Box 3.19. Larmor (1857–1942) 

3.7.13. Exercise 13 – The Stern–Gerlach experiment, magnetic force  

The Stern–Gerlach experiment conducted in 1922 proved that the atoms have 
quantized magnetic moments. Silver atoms are vaporized in an oven and a neutral 
atom beam is obtained in a high vacuum. This beam is focused using a diaphragm 
that selects the atoms whose speed is aligned along the Oy axis. The beam travels 
through the air gap of an electromagnet and then deposits on a collector plate P. The 
magnetic field applied is strongly inhomogeneous and perpendicular to the Oy 
direction of the atomic beam, each atom being in ground state.  

   

 

 

 

 

Figure 3.37. Spots T1 and T2 observed in the Stern–Gerlach experiment 
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(1) The beam of silver atoms is considered a beam of particles with non-zero 
magnetic moment. 

(1.1) Express the potential energy W of an atom in the magnetic field. 

(1.2) Express the magnetic force F exerted on a silver atom. Then deduce the 

component Fz of the force F , the Oz axis being vertical. Explain why it is important 
to apply an inhomogeneous magnetic field. 

(1.3) Draw a schematic representation of the Stern–Gerlach experimental setup. 
Represent the Oy and Oz axes, as well as the trajectory of an atom both in the 
absence and in the presence of a magnetic field.  

(1.4) Does the theory predict the observation of a point where the atoms impact 
the screen P? If not, what should be observed? 

(2) Nevertheless, the experiment shows the presence of two spots centered in two 
points T1 and T2 that are symmetrical with respect to O (Figure 3.37) and have equal 
intensities. 

(2.1) Provide a classical interpretation and then a quantum interpretation of the 
observations resulting from the Stern–Gerlach experiment. 

(2.2) Prove that the silver atom in ground state behaves as a single electron atom. 
The atomic number of the silver atom is Z = 47. 

(2.3) Is the split observed on the screen P due to the orbital magnetic moment? 
Justify the answer. What does the split of the atomic beam suggest? 

3.7.14. Exercise 14 – Intensities of the spots in the Stern–Gerlach 
experiment 

The objective of this exercise is to determine the intensity of the spots in the 
Stern–Gerlach experiment. The numerical data to be used are given at the end of the 
exercise. Let us consider: 

– L is the distance between the center of the air gap and the collector plate P; 

– l  is the length of the path of atoms in the air gap; 

– d is the distance between the spots on the plate.  
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(1) The magnetic force is assumed to have a constant intensity f in the magnetic 
field space. 

(1.1) Draw a simplified diagram of the Stern–Gerlach experiment that should 
include the air gap, the velocity vector of a silver atom along Oy, the direction of the 
component of the magnetic field along Oz and the d, l and L. 

(1.2) Show that the trajectory of the center of inertia of a silver atom of mass m 
in the air gap is a parabolic curve.  

(1.3) Determine the expression of the force f acting on a silver atom of the beam 
as a function of m, u (root mean square velocity), d, l and L. 

(1.4) Express the magnetic moment M of a silver atom. Make the numerical 
application. Then deduce f. 

(1.5) According to the predictions of classical electrodynamics, the intrinsic 
magnetic moment of the electron (spin magnetic moment) µe is: 

µe = (1.0011596522091 ± 31) µB 

where µB is the Bohr magneton. 

Is this theoretical value corroborated by the experimental result obtained in 
question 14.1.4? 

(2) If N designates the total number of atoms in the beam, the number of atoms 
Ni making a spot at point Ti follows Boltzmann statistical distribution. Hence: 

kTiW
i eN /−= α  

In this expression, α is a constant and Wi is the potential energy of interaction 
between the magnetic field and the spin magnetic moment of the atom for a given 
level i. 

(2.1) Express W1 and W2 as a function of the Bohr magneton and intensity B of 
the magnetic field. 

(2.2) Prove the following relations: 

εε

ε

−+

+

+
×=

ee
eNN1

; 
εε

ε

−+

−

+
×=

ee
eNN2
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In these expressions, ε is a quantity to be expressed. 

(2.3)  The temperature T at which the atoms leave the oven is deduced from the 
kinetic theory of gases. The average kinetic energy of an atom due to thermal 
agitation is proportional to T. Express and then calculate T. 

(2.4)  Calculate ε. Prove that the spots observed in Stern–Gerlach experiment 
have the same intensity within experimental errors. 

Given data. 

– intensity of the magnetic field: B = 5 T; 

– gradient of the magnetic field: dB/dz =15 T⋅ m−1; 

– root mean square velocity: u = 350 m ⋅ s−1; 

– distance between air-gap center and collector plate: L = 1.0 m; 

– length of the path of atoms in the air gap: l = 10 cm;  

– distance between the spots on the plate: d = 1.3 mm; 

– molar mass of a silver atom: M = 107.9 g ⋅ mol−1; 

– Avogadro constant: NA = 6.02 × 1023 mol−1  

– Planck constant: h = 6.63 × 10 − 34 J ⋅ s; 

– Bohr magneton: µB = 9.27 × 10−24 Am2. 

3.7.15. Exercise 15 – Normal Zeeman effect on the 2p level of hydrogen-
like systems 

A hydrogen-like system is subjected to a magnetic field B assumed uniform in 

direction Oz. The electron spin is not taken into account and the potential energy of 
interaction between the magnetic moment of the atom and the magnetic field is 
designated by W. 

(1) Express W as a function of the magnitude B of the magnetic field. 

(2) Find the degree of degeneracy of the 2p level. 

(3) Express the energy gap between the 2p sublevels appearing under the effect 
of the magnetic field. This gap should be expressed as a function of the Bohr 
magneton µB and of the intensity of the magnetic field B. 
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(4)  Use a diagram to illustrate the normal Zeeman effect on the 2p level of 
hydrogen-like systems. Represent on this diagram the 2p level when B = 0, the 

values of the orbital magnetic quantum number m corresponding to various 

sublevels formed when B ≠ 0 as well as the energy gaps between the sublevels 
resulting from the splitting of the 2p level. 

3.7.16. Exercise 16 – Anomalous Zeeman effect on the ground state of 
hydrogen-like systems 

The objective is to study the effect of a uniform magnetic field B of direction Oz 
acting on a hydrogen-like system in ground state. The potential energy of  
interaction between the magnetic moment of the hydrogen-like system and the 
magnetic field is denoted by W. 

(1) What is the electron property that explains the anomalous Zeeman effect? 

(2) Express W as a function of the magnitude B of the magnetic field. 

(3) Determine the degree of degeneracy of the ground level. 

(4) Express the energy gap between the sublevels generated as a result of the 
magnetic field. Express this gap as a function of the Bohr magneton µB and of the 
intensity of the magnetic field B.  

(5) Use a diagram to illustrate the anomalous Zeeman effect on the ground level 
of hydrogen-like systems. Represent on this diagram the ground level when B = 0, 
the values of ms corresponding to various sublevels formed when B ≠ 0 as well as 
the previously determined energy gap. 

3.7.17. Exercise 17 – Anomalous Zeeman effect on the 2p level of 
hydrogen-like systems 

A hydrogen-like system is subjected to a uniform magnetic field of direction Oz. 
Let us study the effect of this field on the 2p excited level. 

(1) Express the total magnetic moment of a hydrogen-like system. Deduce from 
it the expression of the potential energy W of interaction between the total magnetic 

moment of the atom and the magnetic field B . 
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(2) Find the degree of degeneracy of 2p level. 

(3) Use a diagram to illustrate the anomalous Zeeman effect on the 2p level of 
hydrogen-like systems. Represent on this diagram the 2p level when B = 0, the 
values of ms and m corresponding to the various sublevels formed when B ≠ 0. 

3.7.18. Exercise 18 – Fine structure of the resonance line of the 
hydrogen atom 

The objective is to study the fine structure of the resonance line (Lyman alpha 
line) of the hydrogen atom. According to Dirac relativistic theory, the energy of 
hydrogen-like systems in the weakly relativistic domain is given by the following 
formula: 








 −
+

−−=
njn

mcZ
n

mcZEnj 4

3

2/1

1

22 3

244

2

222 αα  

In this expression, j is the total quantum number, α  is the fine structure constant 
and mc2 designates the rest energy of the electron. 

(1) Find the value of the wavelength of the resonance line Lα of the hydrogen 
atom. Express this result in nanometers. 

(2) Prove that the Lα line has a fine structure whose physical origin will be 
clarified. Use a diagram to illustrate this fine structure (the spectroscopic notations 
related to the states involved in the concerned transitions will be represented). 

(3) Using the Dirac formula, find the wavelengths λ1 and λ2 of the two lines into 
which the Lα line is split. Then deduce the gap Δλ between them. 

Given data. Ryd/hc = RH; RH = 10,967,758 m−1. 

NOTE.– For Dirac’s biography, please see Chapter 2 Volume 2. 

3.7.19. Exercise 19 – Fine structure of n = 2 level of the hydrogen atom 

The objective of this exercise is to study the effect of the spin–orbit interaction 
on the excited n = 2 level of hydrogen-like systems. 

As a result of Lamb and Retherford experiments, it is known that the 2s1/2 and 
2p1/2 levels of the hydrogen atom do not coincide (Figure 3.38). The energy gaps 
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indicated in Figure 3.38 have been measured by Willis Lamb and his student 
Robert Retherford in 1949 (and published in several articles between 1950 and 
1952).  

According to Dirac relativistic theory, the total energy of a hydrogen-like system 
is given in Exercise 3.7.18. 

 

 

 

 

 

Figure 3.38. Relative positions of 2s1/2, 2p1/2 and 2p3/2  levels of the hydrogen atom; 
the energy gaps measured by Lamb and Retherford have been represented 

(1) Is there a theoretical explanation for the relative positions of 2s1/2 and 2p1/2 

levels using Dirac theory? Justify the answer.  

(2) Express the energy gap between 2s1/2 and 2p3/2 sublevels. Calculate in cm−1 
the previous gap and then compare the result with the experimental data obtained by 
Lamb and Retherford. 

(3) Is it possible to detect in the spectrum of the hydrogen atom a spectral line 
due to the 2s1/2 → 2p1/2 transition? Justify the answer.  

(4) Answer the same question (3) considering the 2p1/2 → 2p3/2 transition. Justify 
the answer.                                                                                          

Numerical data: 1 eV/hc = 8,066 cm−1; α2 = 5.325 × 10− 5; mc2 = 0.511 MeV. 

NOTE.– For Lamb’s biography, see Appendix A4. 
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3.7.20. Exercise 20 – Illustration of complex Zeeman effect on the 
yellow sodium line, selection rules 

Let us consider the 3p → 3s transition in the sodium atom corresponding to the 
yellow D-line. Experiments show that this line is constituted of two very close lines 
denoted D1 (589.0 nm) and D2 (589.6 nm). 

(1) Use a diagram to illustrate the complex Zeeman effect. Indicate the electron 
transitions corresponding to the yellow sodium D1 and D2 lines. 

(2) Explain why the transition between the sublevels of the fine structure of the 
3p level is forbidden. 

3.7.21. Exercise 21 – Linear oscillator in the phase space, Bohr’s 
principle for angular momentum quantization  

Bohr’s principle for angular momentum quantization, as stated in the first 
postulate, follows logically from a generalization of the Planck postulate related to 
the quantum states of the linear oscillator. This generalization relies on the 
conservation of the mechanical energy of the oscillator. In this perspective, 
canonical coordinates q (generalized coordinate) and p (generalized momentum) in a 
non-Cartesian space called phase space are introduced.  

Spring constant k is related to the opposing spring force by the relation f = − kq. 
Moreover, according to the Planck hypothesis, the quantized energy of the harmonic 
oscillator is given by the relation En = nhν, where n is a positive integer, h is the 
Planck constant and ν represents the frequency of the oscillator. 

Given data. Equation (1) and area (2) of an ellipse of semimajor axis a along Oy 
and semiminor axis b along Oz in the Cartesian space: 

1
2

2

2

2
=+

b
z

a
y

  (1)  

abdyz π=      (2) 

(1) The objective is to express first the quantization condition for the Planck 
linear oscillator.  

(1.1) Draw a schematic representation of the oscillator trajectory in the phase 
space. 
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(1.2) Find the expression of the mechanical energy of a classical linear oscillator 
of elongation y. Deduce from it the differential equation of the classical harmonic 
oscillator considered as a conservative system. Find the expression of the frequency 
ν of the oscillator. 

(1.3) Deduce from (1.2) the expression of the mechanical energy of the linear 
oscillator in the phase space. 

(1.4) Prove that the trajectory of the oscillator is an ellipse. 

(1.5) Express the area of the ellipse in the phase space as a function of energy E 
and frequency ν of the linear oscillator. 

(1.6) Deduce the quantization condition of Planck linear oscillator. 

 

 

 

 

 

Figure 3.39. Circular orbit of an electron located by the azimuthal angle ϕ 

(2) Let us now determine Bohr’s condition for the quantization of the angular 
momentum. It is worth recalling that according to Bohr’s model, the electron 
executes a uniform circular motion around the nucleus. Let r be the radius of the 
circle and v the orbital speed of the electron. A single variable can be used for the 
characterization of the circular orbit, namely the azimuthal angle ϕ (Figure 3.39). 

(2.1) Prove the following relations: 

q = rϕ ; 
dt
dmrp ϕ=  
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(2.2) Prove that within Bohr’s model, the angular momentum L is constant. 

(2.3) Determine Bohr’s quantization principle of the angular momentum. 

3.8. Solutions  

3.8.1. Solution 1 – Spectrum of hydrogen-like ions 

(1) Spectral series of the hydrogen atom 

(1.1) Proof 

Let us consider two terms Tp and Tn. According to Ritz combination principle, 
the spectroscopic wave number npnp λν /1= corresponding to the n → p transition 

is given by relation: 

np
np

np TT −==
λ

ν 1                [3.86] 

On the other hand, for a hydrogen-like system spectral terms can be written 
according to Balmer: 

R
n
ZTR

p
ZT np 2

2

2

2
; ==             [3.87] 

In relation [3.87], R is the Rydberg constant for the hydrogen-like system under 
consideration. Using [3.87], relation [3.86] becomes for the hydrogen atom: 



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Comparing [3.88] to relation (1), which is: 



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It can be noted that R1 = RH: the Rydberg constant for hydrogen. 
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(1.2) Expression of R1, numerical application 

By definition, the ionization energy of the hydrogen atom corresponds to the 
energy provided to the hydrogen atom in its ground state in order to move the 
electron to infinity, where its final speed is zero. This corresponds to 1 → ∞ 
transition. The corresponding variation of energy is written as: 

∞
Ι =−=Δ=

1
1 λ

hcEEE                          [3.89] 

or, according to [3.88]: 

HR=
∞1

1

λ
. [3.90] 

The combination of relations [3.90] and [3.89] leads to the expression of the 
Rydberg constant R1. Hence: 

hc
ERhcRE Ι

Ι == 11            [3.91] 

N.A.–  R1 = 10,973,739.1 m−1 

It is very convenient to use the Rydberg constant expressed in m−1, as it offers the 
possibility of directly calculating the wavelength in meters from relation [3.88]. 

(2) Hydrogen-like He+ ion 

Let us recall the four lines (1), (2), (3) and (4), whose spectroscopic wave 
numbers in the Lyman series are, respectively, equal to:  

3.292 × 107 m−1; 3.901 × 107 m−1; 4.115 × 107 m−1; 4.213 × 107 m−1. 

(2.1) Numerical verification 

The objective is to verify that the values of the above wave numbers are 
compatible with the law expressed by relation (2) of the formula that can be 
rewritten as follows: 



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In this relation, n = 2, 3, 4, and 5 for lines (1), (2), (3) and (4), respectively. As 
the spectroscopic wave numbers are in the Lyman series, then p =1. We then express 
the constant R2 using [3.92]: 

1

1
1

2

2

12221
−

×=



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


−×=

n
nR

n
R nn νν                                         [3.93] 

The use of [3.93] leads to the results summarized in Table 3.2.  

n 2 3 4 5 

νn1 (× 107 m−1) 3.292 3.901 4.115 4.213 

R2 (× 107 m−1) 4.389333 4.388625 4.389333 4.388542 

Table 3.2. Values of the Rydberg constant R2 of the hydrogen-like ion 

Using the results listed in the last line of the table, the average value of R2 can be 
found, which is: 2R = 4.389 × 107 m−1. 

(2.2) Expression of R2, atomic number of the helium ion 

According to Bohr’s approximation of the infinitely heavy nucleus, the spectral 
series of the hydrogen-like systems can be written according to [3.86] and [3.87]: 
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A comparison between [3.92] and [3.94] reveals that: 

1

2
1

2
2 R

RZRZR ==                           [3.95] 

N.A.–  R1 = 1.097 × 107 m−1 m−1; R2 = 4.389 × 107 m−1. Hence: Z = 2 

This is actually the atomic number of helium. 

(2.3) Proof 

According to Bohr’s theory, the quantized energy (in Rydberg) of the hydrogen-
like systems is given by the relation: 



164     Introduction to Quantum Mechanics 1 

2

2

n
ZEn −=  Ryd           [3.96] 

But, given the data, Ryd = α2mc2/2. Therefore, expression [3.96] is written as: 

2

222

2n
mcZEn

α−=             [3.97] 

Moreover, given the Bohr frequency condition (second Bohr postulate), the 
wavelength of the n → p transition is given by the relation: 

np
pn

hcEEE
λ

=−=Δ                        [3.98] 

Using expression [3.97], relation [3.98] can be written as: 
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Using [3.99], the ionization energy of the hydrogen atom can be written 
according to [3.90] and [3.91] as: 

 
1
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Using [3.100], the spectral series [3.99] can be written in the following form: 
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This is actually relation (2) if R2 = Z2R1 according to [3.95]. 

3.8.2. Solution 2 – Using the energy diagram of the lithium atom 

(1) Wavelength calculation 

The wavelength λ of the radiation emitted when the lithium atom passes from 
excited state 3 to ground state can be deduced from the Bohr frequency condition 
using [3.98]. Hence: 
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31
31 EE

hchcEEE
−

==−=Δ λ
λ

.  [3.102] 

N.A.–  According to Figure 3.26: E3 = −2.01 eV; E1 = −5.39 eV. Hence: λ =  
366.82 nm. 

(2) Polychromatic light constituted of photons of the following wavelengths: 

λ1= 528.0 nm, λ2= 323.0 nm and λ3= 205.0 nm. 

(2.1) Absorbed photon(s), excited level 

A photon of wavelength λi cannot be absorbed by the lithium atom unless the 
corresponding radiation is generated by a transition between quantized levels of the 
lithium atom. For a 1 → n transition, relation [3.102] leads to: 

i
i

i
i

hcEE
EE

hc
λ

λ +=
−

= 1
1

           [3.103] 

To ease the calculations, let us express the numerator hc of [3.103] so that the 
wavelength λi is expressed in nm and the energies in eV. This leads to: 

1

1239.8
i

i

E E
λ

= +   [3.104] 

Let us calculate the energy Ei of the excited (i) level for various wavelengths λ1, 
λ2 and λ3. Using [3.104] and E1 = −5.39 eV, we obtain the following results: 

– For λ1 = 528.0 nm: E1 = −3.04 eV. 

– For λ2 = 323.0 nm: E2 = −1.55 eV.                                        [3.105] 

– For λ3 = 205.0 nm: E3 = +0.66 eV. 

The diagram in Figure 3.26 shows that only the photon of wavelength λ2 = 323.0 
nm can be absorbed (atomic resonance takes place). After absorption, the lithium 
atom reaches excited state 4. 

(2.2) Observed phenomenon 

The photon of wavelength λ3 = 205.0 nm triggers the ionization of the lithium 
atom. The electron reaches the continuum with a kinetic energy of 0.66 eV. 
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(3) Speed of the electron 

When the lithium atom in ground state is hit by an electron of initial kinetic 
energy Ec = 5.00 eV, it passes to excited state 4. The energy in excess  ΔΕ = Ec +E4 

is then transmitted to the electron as kinetic energy. Hence: 

m
EvmvE Δ==Δ 2

2

1 2     [3.106] 

N.A.– ΔΕ = 3.45 eV  v = 1.1 × 106 m · s−1 

3.8.3. Solution 3 – Spectra of the hydrogen atom, application to 
astrophysics 

(1) Electron transition  

(1.1) Calculation of the wavelength 

The relation between the energy En of the hydrogen atom and the energy E1 of 
the ground state is: 

2
1

n
EEn =      [3.107] 

According to the second Bohr postulate, the wavelength corresponding to the  
3 → 2 transition is given by the relation: 

hc
EE 231 −

=
λ


15

36

E
hc−=λ .         [3.108] 

N.A.– λ = 656.19 nm. 

(1.2) Justification 

The wavelength λ = 656.19 nm corresponds to the red–orange line Hα in the 
Balmer series. This explains the red color on a part of the nebula. 

(2) Spectrum of light 

(2.1) Phenomenon due to dark lines 

Absorption of photons is shown. 
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(2.2) Scale of correspondence, distance 

Let d be the distance between two wavelengths of argon coinciding with 
numbers 5 and 27 (see Figure 3.40). 

 

Figure 3.40. Distance d between the two wavelengths of  
argon coinciding with numbers 5 and 27 

ATTENTION.– Figure 3.28 may be reduced as result of the book layout. Distances 
between wavelengths may be modified. Nevertheless, this modification has no 
impact on the results to be obtained.  

The scale of correspondence e is then given by the following relation: 

dd
e )470668( −=Δ= λ  (nm/cm)         [3.109] 

N.A.– The distance measured on the film (Figure 3.40) is d ≈ 11.3 cm  e ≈  
17.5 nm/cm. 

(2.3) Number of the absorption line 

The argon line whose wavelength is 603 nm is chosen as a reference. Let x be the 
distance between the wavelength λr of the reference line of argon and the 
wavelength λβ of the absorption line Hβ of the hydrogen atom. According to  
[3.109], we have: 

e
x

x
e )486603( −=

Δ= λ (nm/cm)  [3.110] 

N.A.– e = 17.5 nm/cm  x = 6.686 cm; hence x ≈ 6.7 cm 

Locating this value on the film (Figure 3.40), it can be seen that the absorption 
line Hβ of the hydrogen atom corresponds to number 6 on the star spectrum.  
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(2.4) Identification 

Line number 5 corresponds to argon wavelength λ = 470 nm. This line coincides 
with the line of wavelength 471 nm of the helium atom. Therefore, the element is 
helium. 

NOTE.– Hydrogen and helium are the most abundant elements in the universe. Lines 
no. 18 (587.6 nm ≈ 588 nm: verify this result by measuring x’ and using [3.109]) 
and no. 27 (668 nm) give evidence of the presence of helium in the star cloud. 

3.8.4. Solution 4 – Atomic resonance phenomenon 

(1) Emission spectrum of a sodium vapor lamp 

(1.1) Interpretation of the experimental observations 

–  Attenuation of the incident beam: absorption of a part of the incident photons 
by the sodium vapor. 

–  Emission of photons by the sodium vapor: the absorbed photons excite the 
sodium atoms, which start emitting photons in all directions. 

(1.2) Justification of the spectrum discontinuity 

The energy levels of the sodium atom are quantized according to Bohr’s first 
postulate. 

(1.3) Electron configuration of sodium, electron responsible for the emission 
spectrum 

Using Klechkowski’s rule, sodium (Z = 11) configuration at ground state is: 1s2 
2s2 2p6 3s1. Therefore, the electron of the 3s orbital is responsible for sodium 
emission spectrum. 

(1.4) Deduction of the energy of the ground state of the sodium atom 

According to Bohr’s theory, the quantized energy is given by the relation: 

2
1

n
En −= Ryd  [3.111] 

Bohr’s theory is applicable to hydrogen-like systems containing a single electron 
in 1s orbital. The sodium atom contains 11 electrons. Though erroneous, the result 
of the application of Bohr’s theory is justified. Ignoring the electrons in the inner 
shells of the sodium atom leads to the following result for the 3s electron:  
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E3 = − 13.6/9 = − 1.51 eV ≠ − 5.14 eV as indicated in Figure 3.30 

The 10 “core” electrons have an important role in the calculation of the energy of 
the ground state of the sodium atom.  

(2) The sodium atom is in its ground state 

(2.1) Energy levels involved in the emission of the yellow line, behavior 

– Energy levels: 3p and 3s levels (3p → 3s transition); 

– Behavior: by absorbing a photon of wavelength λ = 589.0 nm, the sodium 
atom passes from the 3s state to the 3p excited state (3s→ 3p transition). 

(2.2) Behavior of the sodium atom 

For a photon of 3.00 eV, the energy gap is ΔE = (3.00 – 5.14) eV = –2.14 eV. 
This energy does not correspond to any of the discrete levels of the sodium atom 
(see Figure 3.30): the photon is not absorbed and the sodium atom remains in its 
ground state. 

(3) Sodium atom still in its ground state 

(3.1) Excited level n 

The sodium atom in its ground state of energy E1 is hit by an electron of kinetic 
energy Ec = 3.00 eV. After interaction, the residual kinetic energy of the electron is 
Ecr = 0.89 eV. The sodium atom being fixed, according to the energy conservation 
we have:  

En − E1 = Ec − Ecr En = E1 + (Ec − Ecr)         [3.112] 

N.A.– En = –5.14 + (3.00 − 0.89) eV = –3.03 eV: first excited level n = 2 

(3.2) Observed phenomenon, speed of the electron 

– Observed phenomenon 

The sodium atom in its ground state is lighted with a radiation whose wave 
number is 4.82946 × 106 m−1. The corresponding energy is given by the relation: 

ν
λ

hchcE == 1
      [3.113] 

N.A.– ν =  4.82946 × 106 m−1 E = 5.987 eV 
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It can be noted that E = 5.987 eV ≈ 5.99 eV > |E1| = 5.14 eV: the sodium atom is 
ionized. The ionization phenomenon generating the Na+ ion can then be observed, 
and the following balance equation can be written:  

hν + Na → Na+ + e−          [3.114] 

– Speed of the ejected electron 

The excess energy ΔΕ = Ec +E1 is transmitted to the electron in the form of 
kinetic energy. Hence: 

m
EvmvE Δ==Δ 2

2

1 2    [3.115] 

N.A.– ΔΕ = 0.85 eV v = 5.47 × 10 5 m · s−1 

3.8.5. Solution 5 – X-ray spectrum 

(1) Homokinetic beam of electrons accelerated under a voltage U, emitted electrons 
have no initial speed 

(1.1) Kinetic energy of the electrons  

Applying the work–energy theorem (Eci = 0, Ecf = Ec), we have: 

Ec = eU                           [3.116] 

N.A.– U = 40 kV  Ec = 40 keV 

(1.2) Relativistic nature of the electrons 

The relativistic kinetic energy of a particle is given by the relation: 

Ec = m0c2 (γ − 1)                       [3.117] 

It should be recalled that the relativistic factor γ in [3.117] has the expression: 

22 /1

1

cv−
=γ   [3.118] 

Let us calculate the relativistic factor using [3.117]. We obtain: 

2
0

)1(
cm

Ec=−γ   [3.119] 

N.A.– m0c2 = 511 MeV  (γ −1) = 0.07828. Hence: γ = 1.07828 
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Electrons are actually relativistic particles. The value of the v/c  ratio can be 
found using [3.118]: v/c ≈ 0.374 > 1/10 (for a classical particle moving at speed v, 
v/c < 1/10). 

NOTE.– A 1% error is generally accepted for the limit between classical and 
relativistic mechanics. The limit between classical and relativistic speed amounts to 
one-tenth (10%) of the speed of light, hence 0.1 c. Ultra-relativistic speeds are 
reached by particles in extreme cases. They can reach speeds above 99% of the 
speed of light (0.99 c). 

(2) Energy levels of the copper atom (Figure 3.31)  

(2.1) Value of the acquired kinetic energy 

The minimal energy needed to extract an electron from the K shell is 8.979 keV. 
But the kinetic energy of an electron in the constant velocity beam is 40 keV. It is 
therefore sufficient to extract a K electron from the copper atom. 

(2.2) Kinetic energy of the electron 

Let Eci be the kinetic energy of an electron in the beam and EK = – 8.979 keV, 
the ionization energy from the K shell. According to the energy conservation: 

Ec = Eci – |EK|   [3.120] 

N.A.– Eci = 40 keV; EK = 8.979 keV  Ec = 31.021 keV 

(3) X-ray emission 

    E (eV)                            
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Figure 3.41. Electron-hole recombination process 
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(3.1) Diagram, recombination process 

The hole (vacant orbital) in the K shell can be occupied by an electron of the M 
shell with emission of an X1 photon or by an electron of the L shell with emission of 
an X2 photon (see Figure 3.41). 

(3.2) Wavelengths of two emitted radiations 

Let us consider two arbitrary levels of energy, Q and N. According to the Bohr 
frequency condition, we have:  

i
NQ

hcEEE
λ

=−=Δ                 [3.121] 

The wavelengths associated with the Kα and Kβ lines of the X-ray spectrum are 
deduced from [3.121]. We obtain: 

KL EE
hc
−

=αλ ; 
KM EE

hc
−

=βλ   [3.122] 

N.A.– λα = 154.075 pm; λα = 139.247 pm. 

3.8.6. Solution 6 – Lifetime of the hydrogen atom according to the 
planetary model 

(1) Centripedal acceleration 

Let us consider Figure 3.42. The velocity of the electron with respect to the 

Frenet basis (M, n ,τ ) is given by the relation: 

τvv =       [3.123] 

 

 

 

Figure 3.42. Frenet basis (M, n, τ) 
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Using relation [3.123], acceleration can be written as: 

dt
dv

dt
dv

dt
vda ττ +==                 [3.124]   

Knowing that v = rω = rdθ/dt, we obtain:  

dt
d

d
dv

dt
dva θ

θ
ττ +=  n

r
v

dt
dva

2
+= τ   [3.125] 

According to the planetary model, the motion of the electron is uniform circular. 
Hence, v = cst. Then relation [3.125] gives: 

n
r

vaa n
2

==   [3.126] 

(2) Power radiated by the electron 

The total mechanical energy of the {nucleus–electron} system and the power 
radiated by the electron orbiting the nucleus are, respectively, given by the following 
relations: 

r
kerE
2

)(
2

−=                      [3.127] 

2
3

0

2

43

2 v
c

e
dt
dE 

πε
×=−           [3.128] 

(2.1) Stability of Rutherford’s atomic model 

During its orbiting motion, the electron is subjected to a centripetal acceleration 
[3.126]. It should therefore radiate energy and end up by falling on the nucleus. 
Rutherford’s atomic model is therefore unstable according to classical 
electrodynamics theory. 

(2.2) Proof  

Knowing that rvav n /2==  according to [3.126], the loss of energy per time 

unit [3.128] can be written as: 

2

4

3

2

3

2

r
v

c
ke

dt
dE ×=−                  [3.129] 
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Moreover, for a system governed by a central force proportional to 1/r2, such as 
the {nucleus–electron} system, the kinetic energy Ec (r) is equal to the opposite of 
the total energy E (r) [3.127] of the system, hence: 

r
ekmvrEc 22

1
)(

2
2 ==                  [3.130] 

From relation [3.130], we obtain: 

22

4
24

rm
ekv =                                             [3.131] 

Taking [3.131] into account, equation [3.129] can be written as: 

432

63 1

3

2

rcm
ek

dt
dE ⋅×=−           [3.132] 

The differentiation of [3.127] with respect to time leads to: 







−=

rdt
dke

dt
rdE 1

2

)( 2
         [3.133] 

Equalizing [3.132] and [3.133], we obtain: 

432

42 1

3

41

rcm
ek

rdt
d ⋅×=






  

Hence: 

4

1

r
A

rdt
d =






     [3.134]   

where: 

32

42

3

4

cm
ekA =            [3.135] 
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(2.3) Duration of the electron fall 

Using [3.134], we obtain: 

dt
r
A

r
dr

42
=−   Adtdrr =− 2                            [3.136] 

At t = 0, the electron is on its orbit at a distance r = a0 from the nucleus. Falling 
on the nucleus at tc, r = 0. The integration of equation [3.136] yields: 

 =− ct
ta

dtAdrr
0

0

0

2   

Hence:  

Δt = A(tc – t0) = 3
0a /3           [3.137]  

Replacing A by its expression [3.135], we finally obtain: 

42

3
0

32

4 ek
acmt =Δ                         [3.138] 

N.A.– Δt = 1.6 × 10−11 s 

(2.4) Postulate, explanation 

According to Bohr’s first postulate, the electron on the ground level is in a 
stationary state and does not radiate energy, which contradicts the predictions of 
classical electrodynamics. This justifies the stability of the hydrogen atom. 

3.8.7. Solution 7 – Correspondence principle, angular momentum 
quantization principle 

(1) Let us consider the n → p electron transition, where n > p. 

(1.1) Expression of the spectroscopic wave number 

According to the Ritz combination principle, the spectroscopic wave number of 
the line corresponding to the n → p electron transition is given by the difference 
between the two terms Tn and Tp: 

np TT −==
λ

ν 1                                                                                 [3.139] 
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(1.2) Expressions of Tn and of the spectroscopic wave number  

By convention, Tn terms are of the Balmer type, hence: 

R
n
ZTn 2

2
=                                                                                         [3.140] 

In [3.140], R is the Rydberg constant and n is the principal quantum number. 

Using [3.140], expression [3.141] can be written as: 

2

2

2

21

n
RZ

p
RZ −=

λ
                          [3.141]                  

(1.3) Proof 

According to Bohr’s second postulate, we have: 

pn EEch −=
λ

   

Hence: 

hc
E

hc
E pn −=

λ
1

                           [3.142]                  

From [3.141] and [3.142], we obtain the expression of En: 

2
2 1

n
chRZEn ×−=                     [3.143]                  

hence: 

CnEn =× 2           [3.144]                  

where  chRZC 2−=  = constant. 
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(2) Hydrogen-like systems 

(2.1) Expression of the angular frequency of the rotational motion 

By definition, the angular momentum L of the electron is given by: 

prL ∧=  

The norm of this vector is: 

L = mvr   [3.145]   

According to [3.130], for the hydrogen-like systems of atomic number Z we 
have: 

2

22

r
ekZ

r
vm =           [3.146]   

Hence: 

2)( kZevmvr =  

Knowing that v = r.ω, we get: 

2)( kZermvr =ω                         [3.147]   

Considering relations [3.145] and [3.147], we get:  

2kZeLr =ω                                [3.148] 

From the above, we obtain the rotational frequency ωrot of the electron (ω = ωrot) 

Lr
kZe

rot
2

=ω                        [3.149] 

(2.2) Expression of the total mechanical energy 

The total mechanical energy E of a system can be obtained by a generalization of 
[3.127]: 

r
ekZE
2

2
−=         [3.150] 
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Comparing [3.149] and [3.150], we get: 

L
E

rot 2−=ω                        [3.151] 

(2.3) Proof 

Applying the natural logarithm to equation [3.144], we get: 

CnEn lnln2ln =+  

Hence: 

0202 =Δ+Δ
=+

n
n

E
E

n
dn

E
dE

n

n

n

n    [3.152] 

or: 

n
n

EE n Δ−=Δ 2                        [3.153] 

According to Bohr’s frequency condition, we have: 

pn EEE −==Δ ω  

or according to [3.153]:
 

n
n
En

e Δ−=


2ω                         [3.154] 

(2.4) Explanation 

For large values of n, the hydrogen-like system behaves like a classical system 
(the discrete structure of the energy levels becomes blurred). Consequently, we can 
approximate En ≈ E. Based on this approximation, expression [3.154] becomes: 

n
n
E

e Δ−=


2ω                         [3.155] 

(2.5) Deduction of the correspondence principle 

According to the correspondence principle, the ground state frequency of the 
emitted line [3.155] for which Δn = 1 coincides with the rotational frequency of the 
electron [3.151]. This leads to: 

n
E

L
E


22 =  nL =              [3.156] 
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Result [3.156] is actually the expression of Bohr’s rule for the quantization of the 
angular momentum of the atom. 

3.8.8. Solution 8 – Experimental confirmation of Bohr’s model: Franck–
Hertz experiment 

Figure 3.43 shows the graphical representation of I = f (U). The voltage gaps  
ΔU ≈ 4.9 V between two maxima or two minima of I = f (U) curve are marked in the 
figure, as they have been observed in Franck–Hertz experiment. 

 

 

 

 

Figure 3.43. Voltage gaps between two maxima or two minima  
of the I = f (U) experimental curve 

(1) Gas employed: relatively dense mercury vapor 

(1.1) Use of relatively dense gas 

Franck and Hertz have used relatively dense mercury vapor in their experiment 
to increase the frequency of electron–mercury atom collisions. A rarefied gas (low 
pressure) does not facilitate such collisions. 

(1.2) Excitation threshold 

Given that the energy levels are discrete, in accordance with Bohr’s first 
postulate, the kinetic energy of the electrons must be equal to or higher than a 
certain minimal value to be able to excite the mercury atoms. 

(1.3) Origin of extremes 

The existence of maxima and minima of the experimental curve I = f(U) is 
related to the discrete character of the energy levels of the (mercury) atoms. This 
confirms Bohr’s first postulate. 

    I (A)                                    
 
 
 
 
 
 

 
 
 U (V)

4.9 V

4.9 V 
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(2) Transition line of wavelength 2,536.52 Å 

(2.1) First excitation energy of mercury 

Let E0 be the energy of the ground state of the mercury atom. E1 is the energy of 
the first excited level. According to the Bohr frequency condition [3.11], we have: 

λ
Δ hcEEE =−= 01   [3.157] 

If the energies of the excited levels are considered with respect to the ground 
level of energy E0 = 0, according to [3.157] we obtain: 

λ
hcE =1

   [3.158] 

N.A.– E1 = 4.88857 eV ≈ 4.9 eV  [3.159] 

(2.2) Experimental confirmation, postulate(s) 

– Confirmation  

The experimental curve (Figure 3.34) shows that the voltage gap between two 
maxima or two minima is: ΔU ≈ 4.9 V.  This corresponds to mercury excitation 
energy Eexct = eΔU = 4.9 eV. This is in very good agreement with the theoretical 
result [3.159]. 

– Confirmed Bohr postulate(s): both postulates 

- first postulate: discrete character of the energy levels;  

- second postulate: validity of Bohr frequency condition.   

(2.3) Nature of collisions, energy transfer process 

– Nature of the electron–mercury atom collision 

For Ec < E1, the kinetic energy Ec of the electron is not sufficient for the 
excitation of a mercury atom: therefore the collision between the electron and the 
mercury atom is elastic. 

– Kinetic energy transfers are taken into account 

If Ec < E1, the electron rebounds off the atom after collision. The energy Ec can 
be transferred to a mercury atom that would in this way increase its kinetic energy.  
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This energy transfer process must, nevertheless, be taken into account, given that the 
ratio of the mass of the mercury atom (mHg) to the mass of the electron (me) is equal 
to: mHg/me = (202/5.486 × 10–4) = 368,209.989 ≈ 400,000.  

Let us provide a theoretical justification for this assertion and calculate the 
kinetic energy of a mercury atom after the energy transfer process. For the sake of 
simplicity, let us designate by m and M the masses of the electron and mercury 
atom, respectively. Without limiting the scope of the proof, a specific case will be 
considered. The linear momenta of the interacting electron and mercury atom are 
directed horizontally before and after collision. The linear momenta of the electron 
before and after collision are designated by p and p’, respectively. Let P be the linear 
momentum of a mercury atom after collision (the mercury atom is assumed to be 
initially fixed). 

According to the laws of conservation of energy and linear momentum:  
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Let us now express the ratio of the kinetic energies EcM and Ece of the interacting 
mercury atom and electron, respectively, taking into account [3.160]. We obtain: 

22

2

2 22

2








+
×=








×=×=

mM
M

M
m

E
E

p
P

M
m

p
m

M
P

E
E

ce

cM

ce

cM  

 



182     Introduction to Quantum Mechanics 1 

Hence: 

2 2

4 4

1
cM

ce

E Mm m
E ( M m ) M( m / M )

= =
+ +

                                          [3.161] 

But m/M = 5.486 × 10 – 4/202 ≈ 3 × 10 – 6  m/M ≈ 1 

Therefore, [3.161] leads in the end to: 

4
0 00001086cM

cM ce
ce

E m E . E
E M

≈  ≈  [3.162] 

Result [3.162] actually shows that the mercury atoms are practically immobile 
after the elastic collisions between electrons and atoms. We can therefore consider 
EcHg = 0.  

(2.4) Justification of the increase in current intensity 

Because of the accelerating voltage, electrons acquire kinetic energies that allow 
them to penetrate the decelerating potential barrier U0 = 0.5 V (minimal energy is 
around 0.5 eV). Thus, they reach the collector and consequently intensity I 
increases, as long as collisions are elastic. 

(2.5) Behavior, current variation 

– Behavior, nature of collisions 

When the kinetic energy of an electron is higher than or equal to E1, an electron 
of the beam can spend all or part of its energy to excite a mercury atom. Under these 
conditions, the collisions between electrons and mercury atoms become plastic. 

– Current variation with voltage, experimental confirmation 

When the collisions are plastic, after having transferred their energy to excite the 
mercury atoms, the electrons may be left with insufficient residual energy to 
penetrate the decelerating potential barrier. In this case, they are not able to reach the 
collector. This leads to a decrease in the intensity I of the electric current, a 
consequence that is corroborated by the experimental curve obtained by Franck and 
Hertz. 

(2.6) Current intensity is zero  

Not all the electrons that leave the hot cathode K have the same ejection velocity 
(velocities are dispersed due to the width of the electron exit slit). After the plastic 
collisions, some of the electrons that excite the mercury atoms have enough energy 
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to penetrate the decelerating potential barrier and reach the collector. Moreover, 
some electrons have no collision and are able to penetrate the decelerating potential 
barrier and reach the collector. This explains why the current does not suddenly drop 
to zero when Ec = E1.   

(2.7) Justification of the curve maxima 

After a plastic collision, the velocity of an electron can have any direction. But 
only the longitudinal component (parallel to the direction of the electric field) plays 
a role during the penetration of the potential barrier. The direction of this component 
changes after each collision leading to a smoothing of the I = f(U) curve. This is why 
the observed maxima are located around the excitation energy, which is E1 = 4.9 eV. 

(2.8) Justification of successive maxima 

When the accelerating voltage increases, an electron can acquire sufficient 
energy to bring a mercury atom to the first excited level E1. Consequently, after a 
plastic collision, it can remain in the accelerating field and acquire again the energy 
required for bringing a mercury atom to the energy level E1, and so on and so forth. 
These multiple excitations of the first level for energies equal to E1, 2E1, 3E1, etc., 
justify the successive maxima observed in Franck–Hertz experiment. 

(2.9) Conclusion 

The experimental results obtained by Franck and Hertz have brought a 
resounding confirmation of the Bohr postulates. 

NOTES.–  

(1) The existence of a contact potential difference between cathode K and grid S 
falsifies the indications of the voltmeter measuring the UAB voltage. This shifts the 
curve entirely to the left or to the right. This is why successive maxima do not 
correspond to points of abscissa V1 = 4.9 V; 2 V1 = 9.8 V; 3 V1 = 14.7 V, etc. Hence, 
for an accurate measurement of the value of E1, the gap between two successive 
maxima or minima is considered, as this gap does not depend on the contact 
potential difference.  

(2) An electron having energy E1 cannot excite a mercury atom and continue 
acquiring energy. Therefore, it can have enough energy to excite the second level of 
energy E2 or the third level of energy E3 of a mercury atom. This makes it possible 
to measure various excitation potentials of these atoms. It may be that other maxima 
emerge on the experimental curve I = f (U) at various points of abscissa 4.9 V; 9.8 
V; 14.7 V, etc. In quite dense gases, these maxima cannot be observed. Indeed, an 
electron can have enough energy to excite an energy level above E2, for example, it 
must travel, without undergoing collisions, a large distance in the accelerating field 
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compared to the length of the mean free path between two successive plastic 
collisions. This condition is not achievable in gases of quite high density. This was 
the case of Franck–Hertz experiment, the pressure of the mercury vapor being  
24 mm Hg at a temperature of 210 °C. The cathode must be heated at low 
temperatures enabling pressures of 0.5 mm Hg in order to excite the higher levels of 
mercury atoms. 

3.8.9. Solution 9 – Identification of a hydrogen-like system   

Let us recall the quantized energy of hydrogen-like systems (in eV): 

2

222

2n
mcZEn

α−=            [3.163] 

(1) Comparison 

According to Bohr’s second postulate, the energy gap between two levels is: 

E
hchcE
Δ

==Δ λ
λ

          [3.164] 

The last equality in [3.164] shows that the wavelength is all the shorter as the 
energy gap ΔE is larger. Hence: λ’ > λ > λ’’. 

(2) Identification of a hydrogen-like ion 

The ionization energy of the hydrogen atom H is equal to the opposite of its 
ground state energy E1. Using [3.163], we obtain (Z = 1 for the hydrogen atom):  

2

22mcE α=Ι            [3.165]  

Using [3.165], the energy [3.163] of hydrogen-like systems can be written as: 

2
2

n
EZEn

Ι−=        [3.166]  

E1 = − 54.4 eV. Knowing that EI = 13.6 eV, relation [3.166] gives Z = 2: the  
hydrogen-like ion is a helium ion He+. 
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(3) Wavelength, frequency 

– Calculation of the wavelength λ 

Using [3.164] and considering Figure 3.35, we get: 

12 EE
hc
−

=λ                          [3.167] 

N.A.– λ = 30.392 nm 

– Calculation of the highest frequency 

The highest frequency in the emission spectrum of the He+ ion corresponds to 
the largest energy gap, according to [3.164]. Therefore, it corresponds to the 
frequency at which the He+ ion can be ionized in its ground state. Hence: 

ΔE = E∞ – E1 = hν 
h
EΙ=ν  [3.168] 

N.A.– ν = 3.289 × 10 15 Hz 

(4) Determination of p 

Using [3.168] leads to: 
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λ
λ       [3.169] 

N.A.– λ’ = 108.8 nm; Ep = –2.2 eV 

Using [3.166], we get for the He+ ion: 

2

606.13
4

p
E p ×−=   p = 5  [3.170] 

(5) Identification of the excited state 

The hydrogen-like ion absorbs a photon of energy E = 48.353 eV on the ground 
level. Let En be the energy of the He+ ion after photon absorption. Applying the 
energy conservation principle and replacing p by n in relation [3.170], we get: 

E = En − E1  En = −6.0 eV  n = 3 (second excited state) 
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(6) Behavior of the He+ ion 

The He+ ion absorbs a photon of energy 48.353 eV from the excited level p = 5. 
The energy of this level is E5 = –2.2 eV: therefore, the He+ ion is ionized according 
to the following balance equation: 

hν + He+→ He2+ + e−                   [3.171] 

In [3.171], He2+ is the α particle (helium nucleus). 

3.8.10. Solution 10 – Nucleus drag effect: discovery of the deuton   

(1) Expression of reduced mass 

By definition, the reduced mass µ of the {electron–nucleus} system is such that: 

mM
111 +=

μ
;

mM
Mm

+
=μ                        [3.172] 

(2) Proof 

According to the infinitely heavy nucleus approximation, the wavelength of the 
radiation emitted by the hydrogen atom during a p → n transition is given by the 
following relation ([3.163] has been used):  










 −=
2

22

2

22

2

1

p
np

hcn
mcα

λ
               [3.173] 

In this expression, the mass m of the electron should be replaced by the reduced 
mass µ of the {electron–nucleus} system. This leads to: 










 −=
2

22

2

22

2

1

p
np

hcn
µcα

λ
 

hence: 












−
=

22

2

22

22

np
p

c
hcnµ

α
λ                                                                    [3.174] 
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For a given p → n transition, the quantity: 

A
np

p
c

hcn =










− 22

2

22

22

α
 

Hence: 

 λµ = A                                                                                   [3.175] 

(3) Expression  

The mass of the nucleus of atom aX is denoted by MX and we have MX = aM, 
where M is the mass of the nucleus of atom H. According to [3.175], we have: 

λβµβ = λµ          [3.176] 

Moreover, according to [3.172]: 

mM
Mmµ

+
=β ;

mM
mMµ

X

X
+

=   [3.177] 

Using [3.177], relation [3.176] gives: 

mM
mM

mM
Mm

X

X
+

×=
+

× λλβ  

Hence: 

M
M

mM
mM X

X
×

+
+=

1)/(

1)/(

λ
λβ  

This leads to: 

M
M

mMMM
mM X

X
×

+×
+=

1)/()/(

1)/(

λ
λβ       [3.178] 

Knowing that a = MX/M, relation [3.178] gives: 

a
mMa

mM ×
+×

+=
1)/(

1)/(

λ
λβ  
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Hence: 

( )λλ
λλ

β

β
/1)/(1

/

−+
=

mM
a                         [3.179] 

(4) Numerical application, identification of the atom 

N.A.– λβ/λ = 486.1320/485.9975; M/m = 1,836  a = 2.03 ≈ 2 

Therefore, the atom is deuterium 2H, a hydrogen isotope. 

NOTE.– 1 m3 of water contains 35 mg of deuterium in the form of  2H2O. 

3.8.11. Solution 11 – Normal Zeeman effect on the Lyman alpha line of 
the hydrogen atom 

(1) Justification 

The Lα line is generated by the transition from the first excited state n = 2 
corresponding to 2s and 2p orbitals toward the ground level n = 1 (1s orbital). In the 
absence of any external field, 2s → 1s transition is forbidden by the selection 
rule 1±=Δ . The only allowed electron transition is 2p →1s. 

(2) Explanation 

The atom in the 2p state has a magnetic moment, which interacts with the 
magnetic field. Consequently, the energy depends on the magnetic quantum number 

m . For the 2p level, 1= . The magnetic field induces the split of the 2p level into 

three components determined by three possible values of m , namely −1, 0, +1. On 

the other hand, for the ground level m  = 0, there is no effect of the magnetic field. 

Therefore, the ground level remains a single level. 

(3) Fine structure illustration 

The splitting of spectral lines into several lines is known as fine structure of 
lines. The 2p level splits into three components according to the normal Zeeman 
effect, as shown in Figure 3.44. 
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Figure 3.44. Fine structure of the Lα line of the hydrogen  
atom due to the normal Zeeman effect 

3.8.12. Solution 12 – Zeeman–Lorentz triplet, Larmor precession 

(1) Energy expression 

Let E0 be the energy of the hydrogen-like system of magnetic moment M . 
When subjected to a magnetic field B , the atom’s total energy is equal to the sum of 

energy E0 and potential energy of interaction between moment M and magnetic 
field: BMW ⋅−= . Hence: 

BMEE ⋅−= 0                                    [3.180] 

The spin being ignored, the magnetic moment of the atom is reduced to its 
orbital magnetic moment so that:   

lM γ=  [3.181] 

In this relation, γ is the gyromagnetic ratio of the electron (γ = − e/2m). Inserting 
[3.181] in [3.182] we obtain: 

BlEE .0 γ−=                        [3.182] 

(2) Expression of Zeeman–Lorentz triplet 

Knowing that the magnetic field is directed along Oz, equation [3.182] gives: 

BlEE zγ−= 0                          

  

                                      B ≠ 0  
                     

                  B = 0   
 2p 

 
 
              Lα 

 
 

 1s 

 

+1 
   

  0 
 

−1 

 

m

0
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Knowing that lz is quantized: 

BmEE γ−= 0          [3.183] 

According to Bohr frequency condition, ω=ΔE . Hence, according to [3.183]: 

 mBEE Δ−Δ=Δ γ0  

Hence: 

mBΔ−= γωω 0                                                                              [3.184] 

Knowing that mΔ  is a number, the positive quantity −γB has the dimension of 

an angular frequency known as Larmor frequency denoted by Ω expressed as: 

Ω = −γB          [3.185] 

Using [3.185], angular frequency [3.184] is written as: 

mΩΔ+= 0ωω               [3.186] 

Taking into account the selection rules verified by mΔ , we can determine the 

Zeeman–Lorentz triplet. Hence: 










+=ΔΩ+==

=Δ=

−=ΔΩ−==

1;'

0;'

1;'

023

02

011







m

m

m

ωωω
ωω

ωωω
    [3.187] 

Results [3.187] properly corroborate experimental observations (Figure 3.45). 

 

 

Figure 3.45. Experimentally observed Zeeman–Lorentz triplet 
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NOTE.– The Zeeman effect has been observed by Zeeman, but its theoretical 
interpretation has been given by Lorentz. This explains why the three angular 
frequencies are known as the Zeeman–Lorentz triplet [3.187]. 

(3) Parallel and transverse vibrations 

Electron transitions are governed by the values of the electric dipole moment of 
the atom. When transitions are allowed, the mean value of the electric dipole 
moment is an oscillating function of time. Such a dipole radiates energy. In the 
specific case of the Zeeman effect: 

– for mΔ = − 1, the angular frequency of the emitted line is ω1 = ω0 − Ω. 

According to the classical theory, dipole radiation is emitted along the Oz direction 
of the magnetic field vector and it is left-circularly polarized (σ− component); 

– for mΔ = 0: the dipole linearly oscillates along Oz. Polarization is rectilinear 
or linear (component π); 

– for mΔ = +1, the angular frequency of the emitted line is ω2 = ω0 + Ω. The line 

is right-circularly polarized (component σ+). The dipole’s rotation direction is 
opposite to that of the left-circularly polarized with mΔ = − 1.  

Figure 3.46 illustrates the linear polarization and left- and right-circular 
polarizations of Zeeman–Lorentz lines, which have been observed from a direction 
that is perpendicular to that of the magnetic field. 

                
           
   ⊥                            ⊥ 
 σ−          π                 σ+       
 

ω0 

ω0 + Ω ω0 − Ω 

ω 

 

Figure 3.46. Illustration of linear, left- and right-circular  
polarizations of Zeeman–Lorentz lines 

NOTE.– Let us consider an electrostatic dipole constituted of two opposite charges –
q and +q located in two arbitrary points A and B in space. By definition, the dipole 
moment denoted by p is equal to:   

uqaABqp ==                                                                                       [3.188] 
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The direction of the dipole moment goes from the negative charge toward the 
positive charge since q > 0. The unit of the dipole moment is the coulomb meter (C ⋅ 
m). However, at atomic or molecular scale, the convenient unit of the dipole 
moment is debye (Dy), whose definition is: 1 Dy = (1/3) × 10−29C ⋅ m. For further 
details on the electric dipole moment, see [SAK 18]. 

(4) Verification 

In the magnetic field, the magnetic moment of the atom is subjected to a 
magnetic torque: 

BM ∧=Γ   [3.189] 

Given the angular momentum theorem: 

Γ=
dt
ld    [3.190] 

Inserting [3.190] in [3.189], we get: 

BM
dt
ld ∧=           [3.191] 

Knowing that the orbital magnetic moment is lM γ= , equation [3.191] leads to: 

BM
dt
Md ∧= γ          [3.192] 

Let us make the scalar multiplication of this equation by M . Given the properties 
of the vector product, we have: 

( ) 0=∧⋅=⋅ BMM
dt
MdM γ    [3.193] 

But the term on the left of equation [3.193] verifies the following relation: 

( )
dt
Md

dt
MdM

2

2

1=⋅  
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Taking this result into account, [3.193] leads to: 

( )
0

2
=

dt
Md        [3.194] 

The angular momentum module is therefore constant (time independent). 

(5) Time-invariance of θ angle 

Let us make the scalar multiplication of [3.192] by B . We obtain: 

( ) 0=∧⋅=⋅ BMB
dt
MdB γ  

Hence: 

( )
0=⋅

dt
MBd                                      [3.195] 

Knowing that θcosBMMB =⋅  and that B and M are constant, then according to 
[3.195]: 

0=
dt
dBM θ

θ = Cst                       [3.196] 

(6) Precession motion, calculation of angular speed, illustration: Larmor precession 

Let us consider Figure 3.47 knowing that θ is constant. Let P be the point such 
that MOP = . This point can move on a circle of radius r at speed: 

dt
Md

dt
OPdv ==                     [3.197] 

Taking [3.192] into account, relation [3.197] can be written as: 

BOP
dt
Mdv ∧== γ                                      [3.198] 
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Figure 3.47. Precession of the magnetic moment about  
the direction of the magnetic field  

According to Figure 3.47 and using [3.198], we get: 

PPOPOP ''+=  ( ) BPPOPv ∧+= ''γ    [3.199] 

Taking into account that 0' =∧ BPP , the last equality [3.199] gives 

BOPv ∧= 'γ                         [3.200] 

Moreover, as indicated in Figure 3.47, the vector product is: 

urBuBOPBOP −=−=∧ ''   

Equation [3.200] leads to the following relation: 

urBv γ−=                        [3.201] 

Relation [3.201] shows that the velocity has the direction of the unit vector u


, 
since γ < 0.  For a circular motion, v = rω. The rotational angular velocity can be 
written according to [3.201] as: 

ω = Ω = −γB                        [3.202] 

Therefore, the head P of the magnetic moment executes a uniform circular 
motion. Consequently, the magnetic moment executes a rotational motion known as 
Larmor precession at Larmor frequency Ω [3.202]. 

             z 
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N.A.– γ = − e/2m = −8.79 × 1010  C ⋅ kg−1; Ω = 8.79 × 109 rad ⋅ s−1 

3.8.13. Solution 13 – Theoretical interpretation of the Stern–Gerlach 
experiment, magnetic force  

(1) The silver atom beam has a non-zero magnetic moment 

(1.1) Expression of the potential energy 

If the magnetic moment M  is non-zero, the potential energy W of an atom in the 
magnetic field can be written as: 

BMW ⋅−=          [3.203] 

(1.2) Expression of the magnetic force, justification 

– Expression of Fz component 

Given that the magnetic moment of a silver atom in the beam is not zero in 
ground state, each atom is subjected to the force: 

WF ∇−=                                       [3.204] 

Inserting [3.203] in [3.204], we get: 

)( BMF ⋅∇−=                         [3.205] 

The Fz component of the magnetic force [3.205] along the Oz direction of the 
magnetic field is given by the expression: 

z
BMBM

z
F zzz ∂

∂=
∂
∂= )(     [3.206] 

– Justification 

Expression [3.206] clearly shows why it is important to apply an inhomogeneous 
magnetic field: this force would be zero if the field was uniform (which is the case 
in the Zeeman experiment). This justifies the use of a highly inhomogeneous field in 
the Stern–Gerlach experiment. 

(1.3) Schematic representation 

Figure 3.48 shows the simplified diagram of Stern–Gerlach experiment. The 
trajectory of the atomic beam is rectilinear when the magnetic field is zero. 
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Therefore the beam is deflected within the air gap by the gradient [3.206] of the 
magnetic field and in the end it condenses at point P on the plate. 

(1.4) Theoretical predictions 

Given the finite width of the slit and the velocity dispersion, no impact point can 
be observed in P. The atoms in the beam should therefore condense in various points 
on the plate and form a spot centered in P. Moreover, from a classical point of view, 
the measurement of the Mz component of the magnetic moment should yield all the 
values between −|Mz| and +|Mz|. This would also result in a single spot in P.  

 

 

 

 

Figure 3.48. Simplified diagram of Stern–Gerlach experimental setup 

(2) Experimental observations 

(2.1) Interpretation 

Contrary to the theoretical predictions, the experiment proves the existence of 
two spots centered in two points T1 and T2 that are symmetrical with respect to O 
(Figure 3.49).  

Experimental observations (Figure 3.49) prove that the measure of Mz can only 
have two possible results. In other terms, the measure of Mz is quantized 
(quantization of the measure) contrary to the theory predicting all the values of Mz  
between −|Mz| and +|Mz|. 

(2.2) Proof 

Let us use Klechkowski’s rule. The following electron configuration is obtained 
for the silver atom (Z = 47) (reminder of [3.58]): 

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d10 or [Kr] 4d105s1   
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The physical and chemical properties of the silver atom in ground state are 
determined by the electron of 5s orbital: therefore, it behaves similarly to a single 
electron system. 

 
 
 
 
 

 

Figure 3.49. Spots centered in two points T1 and T2 observed  
in the Stern–Gerlach experiment 

(2.3) Justification  

In ground state, the orbital quantum number is zero. The magnetic moment 
evidenced by the Stern–Gerlach experiment is therefore not due to the orbital 
magnetic moment. Consequently, the observed splitting suggests the existence of an 
intrinsic magnetic moment of the 5s electron. The spin magnetic moment of the 
electron is given by the following expression:  

sM γ2−=          [3.207] 

Relation [3.207] takes into account the approximation gs ≈ 2 (gs = 2.00232). The 
direction of the magnetic field being along Oz, we have: 

szzz mMsM γγ 22 −=−=    [3.208] 

Using the Bohr magneton µB = − γ, we obtain: 

Bsz µmM 2=           [3.209] 

Knowing that ms = ± 1/2, expression [3.209] theoretically justifies the 
quantization of the measure of Mz component of the spin angular momentum 
according to the Stern–Gerlach experimental observations. Inserting [3.209] in 
[3.206], the component Fz of the magnetic force acting on a silver atom is expressed 
as a  function of the magnetic spin quantum number ms. Hence: 

z
BµmF z

Bsz ∂
∂−= 2           [3.210] 
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Taking [3.210] into account, the splitting of the silver atom beam into two 
components that are symmetrical with respect to the initial direction, as shown in 
Figure 3.50, can be easily explained. 

 

 

 

 

Figure 3.50. Splitting of the silver atom beam into two components  
under the action of the magnetic force 

3.8.14. Solution 14 – Intensities of the spots in the Stern–Gerlach 
experiment  

(1) The magnetic force has a constant intensity f in the region governed by the 
magnetic field 

(1.1) Schematic representation 

For more details, see Figure 3.48. 

(1.2) Proof 

The position vector of the center of inertia of a silver atom that is moving in a  
magnetic field can be written as: 

0
2

2

1 OGtvtaOG ++=       [3.211] 

According to Newton’s second law (theorem of the center of inertia): 

Fz = f = ma          [3.212] 

As the motion takes place in the yOz plane, and the position G0 of the center of 
inertia at t = 0 coincides with the origin of coordinates, the projection of equation 
[3.211] taking into account [3.212] leads to: 

 

2
1−=−= sms

2
1+=+= sms

z 

O 

 

y 

T1

T2 
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tvtyt
m
ftz == )(;

2

1
)( 2  [3.213] 

Eliminating the time variable in [3.213], the Cartesian equation of the trajectory 
of the center of inertia of a silver atom in the magnetic field is: 

2
22

1 y
mv

fz =                         [3.214] 

Equation [3.214] is actually a parabolic curve. 

(1.3) Expression of intensity f 

Let us reconsider Figure 3.48. The point S where the beam exits the air gap has 
the coordinates (ys = l/2, zs). Moreover, the tangent of angle Î satisfies the relations: 

L
d

l
zI s

2

2ˆtan == ; l
L

dzs 4
=   [3.215] 

The point S belongs to trajectory [3.214], hence: 

2
22

1 l
mv

fzs =                             [3.216] 

After equalization of relations [3.215] and [3.216] and rearrangement we have: 

lL
dvmf

2

2
=    [3.217] 

(1.4) Expression of the magnetic moment, deduction 

According to [3.206], the magnitude of the magnetic force is: 

dz
dBMf z=          [3.218] 

Taking [3.217] into account, the projection of the magnetic moment of a silver 
atom along Oz is expressed by the relation: 

dz
dBLl

dvmM z
2

2
=                         [3.219] 
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N.A.–  Mz = 9.5 × 10−24 A ⋅ m2 

The magnitude of f results from [3.218].  

Hence:  f = 1.4 × 10−22 N 

This force is weak but very significant at the atomic scale if compared to the 
weight of the electron P = mg, as evidenced by the value of f/P ratio: 

N.A.– f/mg = 1.4 ×10−22/(9.1 × 10−31 × 10) = 15,680,000            [3.220] 

The result [3.220] shows that the magnitude f of the magnetic force due to the 
magnetic field gradient is therefore around 16 million times higher than the electron 
weight. 

(1.5) Experimental confirmation 

According to the predictions of quantum electrodynamics, the intrinsic magnetic 
moment of the electron is equal to: 

Mz = (1.0011596522091 ± 31) µB    [3.221] 

Given the Bohr magneton µB = 9.27× 10−24 A ⋅ m2 and using the result [3.221], 
we obtain: 

Mz/µB = 9.5/9.27 = 1.0248 Mz = 1.024 8 µB   [3.222] 

The experimental result [3.222] is slightly above the predictions [3.221] of 
quantum electrodynamics. The gap is due to the classical approach of the calculation 
of the intrinsic angular momentum of the electron. Nevertheless, the classical result 
[3.222] has the advantage of showing that the electron magnetic moment due to spin 
is slightly higher than the Bohr magneton, according to the predictions of quantum 
electrodynamics [3.221]. 

(2) Number of atoms Ni generating a spot at point Ti 

kTW
i ieN /−= α                         [3.223] 

(2.1) Expressions 

According to [3.203], we have: 

BMBMW z−=−= .                         [3.224]
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But the Mz component of the spin magnetic moment is quantized according to 
[3.209]. As a result, energy W is also quantized. Hence: 










+=+=

−=−=

2

1
;

2

1
;

2

1

sB

sB

mBµW

mBµW           [3.225] 

(2.2) Proof 

According to [3.223], and taking into account [3.225], the populations N1 and N2 
of levels (1) and (2), respectively, are  given by the relations: 







=

=
−

−

kTW

kTW

eN

eN
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2

/1
1

α
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
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kTBBµ

kTBBµ

eN

eN
/

2

/
1

α

α                                      [3.226] 

Let us note ε = µBB/kT. Knowing that N = N1 + N2, we have: 







=

=
−

+

ε

ε

α

α

eN

eN

2

1  Nee =+ −+ εε αα     

The last equality in the above system leads to:  

εεα −+ +
=

ee
N                         [3.227] 

Using [3.227], we can write the populations N1 and N2 according to [3.226]: 

εε

ε

εε

ε

−+

−

−+

+

+
=

+
=

ee
eNN

ee
eNN 21 ;    [3.228] 

In these expressions, ε = µBB/kT. 

(2.3) Expression of temperature, numerical application 

Let us express the root mean square velocity u according to the kinetic theory of 
gases. The average kinetic energy due to thermal agitation is equal to: 

kTvmEc 2

3

2

1 2 ==                     [3.229] 
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Using [3.229], we have: 

k
um

k
vmT

33

22
==  ; = 2vu          [3.230] 

N.A.– T = 530 K 

(2.4) Value of ε, spot intensity 

The quantity ε = ε = µBB/kT.  

N.A.–  µB = 9.27× 10−24 A ⋅ m2: ε ≈ 0.006 

Expressions [3.228] can be written in the form: 
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          [3.231] 

Inserting the value of ε in [3.231], we have: 

1 2 0.006

2 2 0.006

1

1

1

1

N N
e

N N
e

− ×

+ ×

 = × +

 = ×
 +


1

2

1

1 0.98807 2

1

1 1.01207 2

NN N

NN N

 = × ≈ +

 = × ≈
 +

                         [3.232]

 

Results [3.232] indicate that the total number N of atoms in the beam exiting the 
oven is nearly equally divided in two components: the two spots observed in the 
Stern–Gerlach experiment are practically equally intense. 

3.8.15. Solution 15 – Normal Zeeman effect on the 2p level of hydrogen-
like systems 

The hydrogen-like system under consideration is subjected to a uniform 
magnetic field B of direction Oz. The electron spin is not taken into consideration. 

(1) Potential energy due to magnetic interaction 

The potential energy W is given by [3.203]. If the electron spin is ignored, the 
potential energy W due to the interaction between the magnetic moment of the atom 
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and the magnetic field is given by the following expression (knowing that lz is 
quantized): 

BmBlW γγ −=⋅−=                 [3.233]

 
(2) Degree of degeneracy 

The degree of degeneracy g of an energy level (spin is ignored) is given by the 
possible values of the magnetic quantum number m . Hence: 

)12( += g ; for the 2p level, 1= . Hence: g = 3 

(3) Expression of the gap between two successive sublevels  

The 2p sublevels appearing due to the magnetic field are determined by the 
various values of m . Knowing that the Bohr magneton is Bµ = − γ , expression 

[3.233] can be written as: 

BmµW B =                            [3.234]  

The potential energy relative to the three 2p sublevels is then: 


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
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
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=

+=+
=

1;

0;0

1;







mBµ
m
mBµ

W

B

B
 |ΔW|= µBB  [3.235] 

(4) Schematic illustration of the normal Zeeman effect 

Figure 3.51 illustrates the normal Zeeman effect on the 2p level of hydrogen-like 
systems. This diagram indicates the 2p level when B = 0, the values of m  
corresponding to various sublevels formed when B ≠ 0, as well as the energy gaps 
[3.235] (the spin–orbit interaction is not taken into account). 

 

 

 

Figure 3.51. Schematic illustration of the normal Zeeman effect  
on the 2p level of hydrogen-like systems 
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3.8.16. Solution 16 – Anomalous Zeeman effect on the ground level of 
hydrogen-like systems 

The hydrogen-like system under consideration is in the ground state and is 
submitted to a uniform magnetic field B of direction Oz. 

(1) Quantum number clarification  

The anomalous or complex Zeeman effect is due to the properties of the electron 
spin s. 

(2) Expression of the potential energy 

The potential energy W is given by [3.203]. For the ground level, 0= . The 
magnetic moment of the hydrogen-like system is therefore due to the spin. The 
energy W is given by the following expression (knowing that sz is quantized): 

BmBsgW sγγ 2−=⋅−=               [3.236] 

(3) Finding the degree of degeneracy 

The degree of degeneracy g of an ns2 level is given by the possible values of the 
magnetic spin quantum number ms. Hence: g = 2s + 1; s = 1/2. Therefore, g = 2. 

(4) Expression of the gap between two successive sublevels 

The 1s sublevels appearing due to the magnetic field are determined by the 
various values of ms. Expression [3.236] can be written as a function of Bohr 
magneton: 

W = 2µBBms          [3.237] 

The potential energy related to the two sublevels 1s is then: 










−=−

+=+
=

2

1
;

2

1
;

sB

sB

mBµ

mBµ
W .  [3.238] 

Hence: 

|ΔW|= 2µBB                                  [3.239] 
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(5) Schematic illustration of the anomalous Zeeman effect  

Figure 3.52 illustrates the anomalous Zeeman effect on the ground level of 
hydrogen-like systems. The figure also indicates the ground level when B = 0, the 
values of ms corresponding to the two sublevels formed when B ≠ 0, as well as the 
energy gap [3.239]. 

 
 
 
 
 
 

Figure 3.52. Illustration of the anomalous Zeeman effect on the  
ground level of hydrogen-like systems 

3.8.17. Solution 17 – Anomalous Zeeman effect on the 2p level of 
hydrogen-like systems 

The hydrogen-like system under study is subjected to a uniform magnetic field 

B of direction Oz. Spin contribution is taken into account. 

(1) Expressions of the total magnetic moment and potential energy 

If the spin is considered, the magnetic moment of a hydrogen-like system is 
given by the relation: 

jgM jj γ−=  ; slj +=  [3.240] 

Knowing that jz is quantized, the potential energy W of interaction between the 
total magnetic moment of the atom and the magnetic field is given by the 
expression: 

BjgW j ⋅−= γ   BmgW jj γ−=   [3.241] 

(2) Degree of degeneracy 

The degree of degeneracy g is given by the possible values of the magnetic 
quantum number mj. Hence: gj = 2j +1. The sum of this number is also equal to  
 
 

 
 

 
 

 
     B = 0             B ≠ 0 

2μBB

ms = + 1/2 

1s 

ms = − 1/2  
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)12()12( +×+= sg . For the 2p level, 1=  and s = 1/2. Hence, g = 6. This 

number can be found from the formula gj = 2j + 1, where 1 2j s /= ± = ±  . 

Knowing that 1= , then 2/1=j or 3/2. For j =1/2, g = 2; for j =3/2, g = 4. 

Summing up, the result is actually g = 6. 

(3) Schematic illustration of the anomalous Zeeman effect 

The anomalous Zeeman effect on the 2p level is illustrated in Figure 3.53. The 
2p level when B = 0 has been indicated, the values of the magnetic quantum number 
mj taking values from– j to + j, hence (2j + 1). This leads to four sublevels for the 2 
2p3/2 state and two sublevels for the 2 2p1/2 and 1 2s1/2 states. Transition (a) reflects the 
theoretical Lyman alpha line generated by the 2p → 1s transition. Transitions (b) 
reflect the fine structure of the 2p level due to spin–orbit interaction. Transitions (c) 
reflect the anomalous Zeeman effect due to the fact that the intensity of the  
spin–orbit interaction outweighs the action of the magnetic field applied. A total of 
10 transitions are allowed. 

 

 

 

 

 

 

Figure 3.53. Illustration of the anomalous Zeeman effect on the  
2p level of hydrogen-like systems 

3.8.18. Solution 18 – Fine structure of the resonance line of the 
hydrogen atom 

The quantized energy of weakly relativistic hydrogen-like systems is given by 
the following Dirac formula: 

 
2p 

1 s 

   1 2s1/2 

  2 2p1/2 

   2 2p3/2 

+ 3/2 

mj 

+ 1/2

− 1/2 

− 3/2 

+ 1/2

− 1/2 

+ 1/2 
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B = 0 B ≠ 0 
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(1) Wavelength of the resonance line 

The spectral series corresponding to n → p electron transitions are given by the 
formula: 











−=

22
111

pn
RHλ

                         [3.243] 

The wavelength of the resonance line of the hydrogen atom corresponds to the 
first line in the Lyman series (1 ↔ 2 transition), or according to [3.243]: 

HR3

4=αλ                          [3.244a] 

N.A.–  RH = 10,967,758 m−1 λα = 121.6 nm 

(2) Fine structure of Lyman alpha line, schematic illustration 

According to the Bohr–Sommerfeld theory, the Lyman alpha transition involves 
the quantum states: 1s (n = 1,   =  0) and 2s (n = 2,   = 0),  2p  (n = 2, = 1). Using 
the spectroscopic notation, the 1s state corresponds to 12s1/2 level and the 2p state to 
22p1/2 and 22p3/2 levels. 

 
 
 
 
 

 

 

Figure 3.54. Fine structure of the Lyman alpha line of the hydrogen atom 
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The splitting of the 2p level due to the spin–orbit coupling determines the 
splitting of the Lyman alpha line into three components. This reflects the fine 
structure of this line, as indicated in Figure 3.54. 

(3) Determination of wavelengths λ1 and λ2, Δλ gap 

The two wavelengths λα1 and λα2 involved in the fine structure of the resonance 
line of the hydrogen atom result from the transitions: 

– λα1: 2
2p1/2→12s1/2  transition; 

– λα2: 2
2p3/2→12s1/2 transition. 

Moreover, according to the Bohr frequency condition, we obtain: 

2/1,12/3,22/1,12/1,2
21

; EEhcEEhc −=−=
αα λλ

                        [3.244b] 

Using [3.242], for the hydrogen atom (Z =1) we obtain: 
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Hence: 
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Knowing that Ryd/hc = RH = 10,967,770 m−1, we obtain: 
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Hence: 
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N.A.– α2 = 5.325 × 10−5 λα1 = 121.5668329 nm; λα2  = 121.5662934 nm. The 
wavelength gap is then: Δλ =λα1 − λα2  =  5.395 ×10−4 nm. 

3.8.19. Solution 19 – Fine structure of n = 2 level of the hydrogen atom 

Figure 3.55 indicates the energy gaps measured by Lamb and Retherford. 

 
 
 
 
 
 

 
 

 

Figure 3.55. Energy gaps between 2p3/2  and 2s1/2 levels and  
between 2p1/2  and 2s1/2 sublevels 

(1) Theoretical explanation 

The 2s1/2 and 2p1/2 levels have the same energy as indicated by the formula 
[3.242]. The relative arrangement of these levels cannot be theoretically explained 
using Dirac theory. 

(2) Expression, comparison 

Using [3.242], the energy gap ΔE between the 2s1/2 and 2p3/2 levels is equal to: 
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After arrangement: 

32

24mcE α=Δ                         [3.247] 

Inserting the spectroscopic number 
λ

ν 1= , we have: 

32

24mchchcE αν
λ

Δ ===  

Hence: 







×=

hc
eVmc

32

24αν                                                                    [3.248] 

N.A.–  365.0=ν cm−1; ΔE = 4.528 ×10−5 eV. 

The theoretical result 365.0=ν cm−1 is in good agreement with the measures 

resulting from Lamb and Retherford experiments giving the value 0.330 cm−1.  The 
accuracy of the calculations is however average, since |0.365 − 0.330|/0.330 = 
10.6%. This is mainly due to the fact that Dirac theory does not integrate the 
properties due to photon vacuum and that are responsible for the Lamb shift (see 
section A5.1) between 2s1/2 and 2p1/2 levels. For example, Dirac theory predicts a 
zero gap between 2s1/2 and 2p1/2 levels, while experiments indicate a value of 0.035 
cm−1 (see Figure 3.55). 

(3) Spectral line due to 2s1/2 → 2p1/2 transition 

The spectrum of the hydrogen atom contains a spectral line due to the 2s1/2→ 
2p1/2 transition. This line is allowed by the selection rule 1±=Δ .                                                  

(4) Spectral line due to 2p1/2 → 2p3/2 transition 

The 2p1/2 → 2p3/2 electronic transition is forbidden, as it breaks the selection 
rule 1±=Δ . 
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3.8.20. Solution 20 – Illustration of complex Zeeman effect on the 
yellow line of sodium, selection rules 

The yellow sodium D-line resulting from the 3p → 3s transition is constituted by 
two very close lines denoted D1 (589.0 nm) and D2 (589.6 nm). 

(1) Schematic illustration 

The electron configuration of sodium 23Na is: 1s22s22p63s1.  

 

 

 

 

 

Figure 3.56. Illustration of the fine structure of the yellow sodium D-line 

Knowing that the valence electron occupies the 3s1 state (n = 3, = 0, 1 or 2), 
according to the spectroscopic notation 2S+1LJ, we obtain the following states: S = ½. 
Level multiplicity is 2S +1 = 2. 

– For  = 0, J =1/2: we obtain the 3 2S1/2 level; 

– For = 1, J = 1/2 or 3/2: we obtain the two terms 3 2P1/2 and 3 2P3/2. The 
yellow D-line due to radiative 3s → 3p transition is therefore double.  

We obtain the two D1 and D2 lines whose respective wavelengths are: 

λ1 = 589.5930 nm (32P1/2 → 3 2S1/2) and  λ2 = 588.9963 nm (32P3/2 → 32S1/2)  

This corresponds to a wavelength gap Δλ = 0.5967 nm ≈ 0.6 nm. These 
transitions are illustrated in Figure 3.56. 
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(2) Explanation 

The 3 2P3/2 → 3 2P1/2 transition is forbidden by the selection rule Δ = ±1. 

3.8.21. Solution 21 – Linear oscillator in the phase space, Bohr’s 
angular momentum quantization principle 

Expressions [3.249] correspond respectively to the equation and to the area of an 
ellipse whose semimajor axis along Oy is a and semiminor axis along Oz is b in the 
Cartesian space: 

1
2

2

2

2
=+

b
z

a
y ; abdyz π=    [3.249] 

(1) Linear oscillator quantization condition 

(1.1) Schematic representation 

For more details, see Figure 3.57. 

 

 

 

Figure 3.57. Trajectory of the linear oscillator in the phase space 

(1.2) Expression of the mechanical energy, differential equation 

– Mechanical energy  

The mechanical energy of a classical linear oscillator of elongation y is given by 
the relation: 

)(
2

1
)( 2 yVmvyVEE c +=+=                          [3.250] 

The opposing spring force (verify that the curl of the opposing spring force is 
zero: therefore, it results from the gradient of a scalar function denoted by V): 

 

O 

p

q
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b
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dy
ydVkyf )(−=−=                         [3.251] 

Using [3.251], we obtain: 

)0(
2

1
)( 2 VkyyV +=                         [3.252] 

Choosing the origin of coordinates so that V(0) = 0, the mechanical energy 
[3.250] can then be written knowing that v = p/m as follows: 

22

2

1

2

1 kymvE +=                                         [3.253] 

– Differential equation 

The classical harmonic oscillator is a conservative system. Mechanical energy 
[3.253] is therefore constant. Hence: 

0=+=
dt
dyky

dt
dvmv

dt
dE  

This leads to: 

0=

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
 + y

m
k
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dvv  

Knowing that v ≠ 0, the differential equation of the harmonic oscillator can be 
written as: 

00 2
2

2
=+=+ y

dt
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m
k
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dv ω                         [3.254] 

Angular frequency ω and frequency ν of the oscillator are given by the relations: 

m
k

m
k

ππ
ωνω

2

1

2
; ===                               [3.255] 

(1.3) Expression of the mechanical energy in the phase space 

The mechanical energy of a linear oscillator in the phase space is deduced from 
[3.253] by substituting y by the generalized coordinate q and replacing v by p/m. 
Hence: 
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2
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m
pE += .                          [3.256] 

(1.4) Proof 

If divided by E, equation [3.256] has the form of the equation of an ellipse: 
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mE
p                           [3.257] 

The last equation [3.257] is actually an ellipse, provided that we make the 
following notations: 

mEbkEa 2;/2 ==    [3.258] 

Expressions [3.258] show that in the phase space, the semiminor axis b and the 
semimajor axis a are determined by the energy E of the linear oscillator. 

(1.5) Expression 

The area of an ellipse in the phase space is deduced from the second equation 
[3.249] if y and z are substituted by q and p, respectively, and [3.258] is taken into 
account. Hence: 

abdqp π=  

The following is obtained: 

ν
π E

k
mEdqp == 2                                      [3.259] 

Considering the last expression [3.255], we finally get: 

ν
Edqp =                              [3.260] 

The result [3.260] proves that the area of the ellipse in the phase space is 
determined by the ratio of energy E to frequency ν of the linear oscillator. 
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(1.6) Planck’s quantization condition 

According to the theory of quanta, the energy of the quantum oscillator is  
E = nhν. This yields E/ν = nh. Planck’s quantization condition of the linear 
oscillator according to [3.260] can be written as: 

nhdqp =                         [3.261] 

NOTE.– It should be kept in mind that the energy of the one-dimensional quantum 
oscillator is not equal to nhν. In fact, the precise expression of this energy is the 
following: 

 





 +=
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 +=

2
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2

1 nhnEn νω   [3.262] 

According to [3.262], the oscillation energy of the photon vacuum (n = 0) in the 
black body cavitation is E0 = hν/2. The energy of Planck oscillator is therefore equal 
to: 

E = En – E0 = nhν [3.263] 

(2) Bohr’s condition for the quantization of the angular momentum 

(2.1) Proof 

The speed of the electron is given by the relation: 

dt
dqrv == ω  ;

dt
dϕω =              [3.264] 

This leads to: 

ϕϕ rq
dt
rd

dt
dq == )(  ; ωrmmvp == . 

Hence: 

dt
drmp ϕ=           [3.265] 
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(2.2) Proof 

Bohr’s model relies on the approximation of the uniform circular motion. 
Therefore, the speed v and the radius r of the electron orbit are constant. The angular 
momentum L = mrv is consequently constant. 

(2.3) Bohr’s quantization condition 

Considering Planck’s linear oscillator quantization condition [3.261] and 
relations [3.265], we obtain: 

nhdLnhdmvr ==  ϕϕ    [3.266] 

Let us consider Figure 3.58. 

 

 

 

 

 

Figure 3.58. Circular orbit characterized by the azimuthal angle ϕ 

Angle ϕ varies between 0 and 2π, the orbit orientation being given by the motion 
direction, which is determined by the direction of the electron velocity (Figure 3.58). 
Hence [BEL 03, MOI 16]: 

nhnLnhdL === π
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0
.  [3.267] 

The above result is actually the angular momentum quantization condition, 
according to Bohr’s first postulate [3.10]. 
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Matter Waves – Uncertainty Relations 

General objective 

Gain knowledge on the properties of de Broglie’s plane waves and on the 
physical contents of Heisenberg’s uncertainty relations. 

Specific objectives 

On completing this chapter, the reader should be able to: 

– make the connection between light wave–particle duality and matter wave–
particle duality; 

– distinguish between light wave dispersion relation and matter wave dispersion 
relation; 

– define de Broglie’s plane wave; 

– know the limits of de Broglie’s plane wave; 

– define the phase velocity and the group velocity of a matter wave; 

– provide an interpretation of the phase velocity and group velocity of a matter 
wave; 

– use de Broglie’s relation; 

– deduce Bohr’s quantization principle from de Broglie’s relation; 

– provide an interpretation of the experiments of Davisson and Germer; 

– know the physical contents of Heisenberg’s uncertainty relations; 

– provide evidence for the uncertainty principle by means of Heisenberg’s 
microscope. 
                            
For color versions of the figures in this book, see www.iste.co.uk/sakho/quantum1.zip. 

Introduction to Quantum Mechanics 1: Thermal Radiation and Experimental Facts 
Regarding the Quantization of Matter, First Edition. Ibrahima Sakho. 

© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Prerequisites 

– particle and wave aspect of light; 

– Planck–Einstein relations; 

– structure of an electromagnetic plane wave; 

– quantization of energy levels; 

– energy and linear momentum of a relativistic particle; 

– integration by parts. 

4.1. De Broglie’s matter waves 

4.1.1. From light wave to matter wave  

Until 1923, particles in the microcosm (electron, proton, nucleus, atom, etc.) 
were treated as such, being exclusively characterized by their particle-specific 
properties. A particular case is that of light constituted of photons, as light 
interference phenomena, photoelectric effect and Compton scattering indicate that 
light has both a wave- and a particle-like nature.  

Toward 1923, Louis de Broglie proposed that matter particles have both wave- 
and particle-like properties, by analogy with the photon [BRO 25, SIV 86, PHI 03, 
SAK 08, SAK 11]. In his doctoral thesis (1924), he advanced the revolutionary 
hypothesis according to which any free matter particle of velocity v is associated 
with a matter wave or pilot wave.  Here is an excerpt of his writing:  

“The fundamental idea of [my 1924 thesis] was the following: ‘The 
fact that, following Einstein’s introduction of photons in light waves, 
one knew that light contains particles which are concentrations of 
energy incorporated into the wave, suggests that all particles, like the 
electron, must be transported by a wave into which it is incorporated. 
[…] My essential idea was to extend to all particles the coexistence of 
waves and particles discovered by Einstein in 1905 in the case of light 
and photons’. ‘Every particle of matter of mass m and velocity v must 
be ‘associated’ with a real wave’ linked to the linear momentum by 
the relation λ = h/p […]”. 

The de Broglie wave is a plane wave given by the expression: 

 )(
0),( trkietr ω−Ψ=Ψ                                                                              [4.1] 
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In this expression, k is the wave vector, r  designates the position vector of the 
particle with respect to an origin O of the reference frame in which the particle is in 
uniform translational motion with velocity v, ω  is the angular frequency of the wave 
and Ψ0 is a constant.  

Matter waves were experimentally proven to exist in 1927 by the experiments of 
Davisson and Germer on the diffraction of electrons by crystals (see section 4.1.4). 
It should however be kept in mind that de Broglie’s plane wave [4.1] cannot 
represent the physical state of a particle. Indeed, from the point of view of quantum 
mechanics, which was elaborated two years later (1926), the quantity denoted by 

2
),( trΨ designates the density of probability of finding (see section 4.2.2) the 

particle at point r   within element volume dr3 at instant t.  

Using de Broglie plane wave [4.1], we obtain:  

 2
0

2
)*,(),(),( Ψ=ΨΨ=Ψ trtrtr                                                                [4.2] 

From a physical point of view, [4.2] reflects the fact that the probability of 
finding the particle at any point of space and at any instant is the same. This is quite 
obviously impossible, since the particle is necessarily located somewhere in space. 
De Broglie’s wave theory was nevertheless the starting point in the elaboration of 
quantum mechanics, in which the wave function describing the physical state of a 
particle is a superposition of monochromatic plane waves of type [4.1] (see Chapter 1, 
Volume 2).  

4.1.2. De Broglie’s relation 

The combination of wave- and particle-like properties of light is reflected by the 
following Planck–Einstein relations: 

ω=E  ; kp =   [4.3]   

In the formulation of his wave theory, de Broglie sought to unify the wave–
particle duality into a universal characteristic common to both photon and matter 
particles. Consequently, Planck–Einstein relations [4.3] established for the photon 
are also valid for any particle of matter driven by a wave of type [4.1]. Knowing that 
k = 2π/λ, we obtain: 

λπ
hkhp ==

2
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In the end, the wavelength of a particle of matter moving with linear momentum 
p = mv is given by de Broglie’s relation: 

p
h=λ   [4.4]   

Let us note that de Broglie’s relation [4.4] is valid for any free classical or 
relativistic particle in motion. λ is known as the de Broglie wavelength. 

Louis Victor de Broglie was a French mathematician and physicist. In physics, he is 
well-known for having postulated in 1924 the existence of waves associated with the 
particles of matter, which was confirmed by the experiments of Davisson and Germer in 
1927. This postulate laid the foundation for wave mechanics and opened the way for the 
elaboration in 1926 of quantum mechanics formalism, which relies on the fundamental 
concept of a “wave”. De Broglie was awarded the Nobel Prize for physics in 1929, at a 
very young age, 37, for his discovery of the wave nature of the particles of matter in 
motion. 

Box 4.1. De Broglie (1892–1987) 

APPLICATION 4.1.– 

A particle of mass m, charge q and virtually zero initial velocity is accelerated 
under constant voltage U = 20 kV. Calculate the de Broglie wavelength for: 

– electron (m = 9.1 × 10−31 kg) 

– proton (m = 1.67 × 10−27 kg) 

– α particle (m2 = 6.64 × 10−27 kg)  

Given data. e = 1.6 × 10−19 C; h = 6.63 × 10−34 J ⋅ s 

Solution. According to the work–energy theorem: 

m
Uq

vmvUq
2

2

1 2 ==                                                                        [4.5] 

Using [4.5], the de Broglie wavelength [4.4] can be written as follows: 

Umq
h

2
=λ                                                                                                       [4.6] 
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N.A.–  

   −  electron: λ1 = 8.7 × 10−12 m = 8.7 pm  

   − proton: λ2 = 2.0 × 10−13 m = 0.2 pm  

   − α  particle (He2+): λ3 = 7.2 × 10−14 m = 0.07 pm 

The calculated wavelengths are very short compared to atomic sizes of the order 
of 1 Å = 10−10 m (the interplanar spacing of the crystal lattice used in the 
experiments of Davisson and Germer is d = 2.150 × 10−10 m). This is due to the high 
accelerating voltage of 20 kV. Nevertheless, these results suggest that electrons 
should be used to provide evidence of the existence of waves associated with 
particles of matter using lower accelerating voltages. This was the approach adopted 
by Davisson and Germer during their experiments of electron diffraction by nickel 
crystals with a voltage ranging between 32.0 and 42.5 V (see section 4.1.6). 

4.1.3. Law of dispersion of matter waves 

The following relations are verified for the photon: 

λ
πω c2=  ; 

λ
π2=k               [4.7] 

The dispersion relation for a monochromatic plane light wave propagating 
through a vacuum can be deduced from [4.4]: 

ω (k) = ck              [4.8] 

For relativistic particles whose rest mass m0 is non-zero, the total energy E and 
linear momentum p are related by [2.41]. Hence: 

42
0

222 cmcpE +=  

This leads to: 

( )20
2

2

cmp
c
E =−





             [4.9] 

Using relations [4.3], we obtain: 

( ) ( )20
2

2

cmk
c

=−





 ω              [4.10] 
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Equation [4.10] expresses the law of dispersion of de Broglie matter waves. It 
can be noted that it is a generalization of the relation of dispersion of a 
monochromatic plane wave [4.8] resulting from [4.10] if m0 = 0 for the photon. 
Hence, the de Broglie plane wave undergoes dispersion during propagation. This 
dispersion further supports the fact that the plane wave [4.1] cannot represent the 
physical state of a particle.  

APPLICATION 4.2.– 

Prove that for a free classical particle, the law of dispersion of matter waves has 
the form ω (k) = f (k), where f (k) is a function of k to be specified. 

Solution. A free particle is not subjected to any force field. Therefore, the 
potential energy of the {particle-field} system is zero. The total energy E of the 
classical particle is therefore equal to its kinetic energy. If v is substituted by 
p/m and relations [4.3] are taken into account, we have: 

m
kE

2

22=  

Hence: 

m
kk

2
)(

2=ω                                                                                           [4.11] 

 
Dispersion relation [4.11], which is valid for a free classical particle, is very 

different from dispersion relation [4.8] of a plane light wave. 

4.1.4. Phase velocity and group velocity 

Let us consider a one-dimensional plane wave that is propagating in the 
ascending direction of x, for example. Using [4.1], we obtain: 

( ) )(
0, tkxietx ω−Ψ=Ψ   [4.12] 

The phase velocity of the de Broglie wave can be evaluated if a constant value of 
the wave phase is chosen: ϕ (t) = kx – ωt = constant. Hence: 

0=−=
dt
dt

dt
dxk

dt
d ωϕ             [4.13] 
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If vϕ designates the phase velocity (vϕ = dx/dt), we have according to [4.13]: 

0=−= ωϕ
ϕkv

dt
d

 

Hence: 

k
v ω
ϕ =                                         [4.14] 

According to relations [4.3] postulated by de Broglie for the free particle, we 
have: ω/k = E/p. Hence, the phase velocity can be written according to [4.14]:  

p
Ev =ϕ                                         [4.15] 

Moreover, for a relativistic particle, the total energy is E = mc2 and the linear 
momentum p = mv. Therefore, expression [4.15] can be written as: 

v
cv

2

φ =                           [4.16] 

Knowing that c designates the limit velocity, then v < c. Relation [4.16] then 
shows that phase velocity is above the limit velocity: vph > c. This obviously has no 
physical meaning. This result is a further confirmation of the lack of validity of  
de Broglie waves for the description of a physical state of the particle. Let us note 
that a plane light wave propagates in vacuum with v = c. Consequently, according to 
[4.16], vϕ = c. This is a satisfactory result, since no constraint is imposed to the 
phase velocity. The phase velocity of plane light waves that are propagating in 
vacuum is vϕ = c irrespective of the wave frequency: there is no dispersion in 
vacuum. 

Such waves undergo dispersion only in a medium of refractive index n since in 
this case, vϕ = c/n. It is the case of the prism (see Figure 3.2) whose law of 
dispersion is given by Cauchy formula [3.1]. 

Moreover, within de Broglie’s wave model, the particle of matter moves at 
velocity v. We should then be able to use the pilot wave [4.1] to find this velocity. 
This requires the use of a wave packet constituted of [4.1] type of plane waves.  

For the sake of simplicity, let us consider a wave packet or a wave group 
constituted of two monochromatic plane waves Ψ1 (x, t) and Ψ2 (x, t) of the same 
amplitude A that propagate in the ascending direction of x. Using [4.12], we have: 
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( ) )(
1 11, txkieAtx ω−=Ψ ; ( ) )(

2 22, txkieAtx ω−=Ψ                             [4.17] 

The global wave function corresponding to the wave packet is: 

( ) ( ) ( ) )()(
21 2211,,, txkitxki eAeAtxtxtx ωω −− +=Ψ+Ψ=Ψ                     [4.18] 

Let us give [4.18] the form of [4.12]. For this purpose, we write: 

k1x −ω1t = (k1x − ω1t) − (k2x − ω2t) + (k2x − ω2t) 

k2x −ω2t = (k2x − ω2t) − (k1x − ω1t) + (k1x − ω1t) 

Hence: 

k1x − ω1t = (k1 − k2)x − (ω1 − ω2)t + (k2x − ω2t)  [4.19] 

k2x − ω2t = − (k1 − k2)x + (ω1 − ω2)t + (k1x − ω1t) 

Let us insert the following variations and mean values: 

Δk = (k1 − k2 )/2; Δω = (ω1 − ω2 )/2; k0 = (k1 + k2)/2 ; ω0 = (ω1 + ω2)/2 

Using these relations, we have: 

k1 = k0 +Δk ; k2 = k0 −Δk ; ω1= ω0 + Δω ;ω2 = ω0 −Δω  [4.20] 

Using [4.20], relations [4.19] become: 

k1x − ω1t = 2Δk x − 2Δω t + (k2x − ω2t)  [4.21] 

k2x − ω2t = − 2Δk x + 2Δω t + (k1x − ω1t) 

Relations [4.21] are real irrespective of the frequencies of the two waves [4.17]. 
In particular, for waves of very close frequencies, the approximation k1 ≈ k2 ≈ k0 and 
ω1 ≈ ω2 ≈ ω0 can be adopted. Relations [4.21] can therefore be written as follows: 

k1x − ω1t = 2Δk x− 2Δω t + (k0x − ω0t)  [4.22] 

k2x − ω2t = − 2Δk x + 2Δω t + (k0x − ω0t) 

Using [4.22], the global wave function [4.18] can be written in the form: 

( ) )()(2)()(2 0000, txkitxkitxkitxki eeeeAtx ωωωω −Δ−Δ−−Δ−Δ ×+×=Ψ  
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Hence: 

( ) [ ] )()(2)(2 00, txkitxkitxki eeeAtx ωωω −Δ−Δ−Δ−Δ ×+=Ψ             [4.23] 

Expanding the factor between square brackets, we have: 

( ) )( 00)(2cos2, txkietxktx ωω −×Δ−Δ=Ψ   [4.24] 

Let us consider: 

A0 (x, t) = 2A cos 2(Δk x−Δω t)  [4.25] 

The wave function [4.24] is written as: 

( ) )(
0

00),(, txkietxAtx ω−=Ψ                      [4.26] 

The global wave function [4.26] would be a de Broglie plane wave [4.12] if its 
amplitude [4.25] was constant. But amplitude A0 (x, t) is constant if: 

Φ = Δkx − Δω t = Cte                      [4.27] 

Let us then consider an observer that travels with velocity vg = dx/dt along Ox 
axis. For such an observer, amplitude [4.25] verifies condition [4.27]. Hence  
[PÉR 86]: 

kdt
dxvtddxk

dt
d

g Δ
Δ===Δ−Δ=Φ ωω 0    [4.28] 

By definition, velocity vg is referred to as group velocity, a characteristic of the 
group or wave packet [4.18]. By extension, for an arbitrary packet of plane waves of 
variable amplitude, group velocity is equal to the derivative of the angular frequency 
ω with respect to the wave number k, hence: 

dk
dvg

ω=                                         [4.29] 

Knowing that E = ω  and p = k, we have:  

dp
dEv g =       [4.30] 
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APPLICATION 4.3.– 

Prove that the group velocity of matter waves is equal to the velocity v of the free 
particle. Draw a conclusion. 

Solution. According to the special theory of relativity, the total energy E and the 
linear momentum p of a particle are linked by relation [2.41]: 

42
0

222 cmcpE +=  EdE = pc2dp                                                       [4.31] 

Using [4.31], we obtain according to [4.30]: 

v
mc
mvc

E
pc

dp
dEvgr ====

2

22
                                                                     [4.32] 

Result [4.32] shows that the group velocity of de Broglie matter waves is equal to 
the velocity of the free particle.  

 
CONCLUSION.– Unlike phase velocity, group velocity is an observable (measurable) 
quantity.    

4.1.5. Bohr’s quantization principle and de Broglie hypothesis 

According to de Broglie’s theory of matter waves applied to hydrogen-like 
systems, for example, the pilot wave associated with the electron oscillates along the 
Bohr circular orbit, as shown in Figure 4.1. As it can be noted in the same figure, the 
pilot wave associated with the electron is stationary. The wave amplitude is the same 
at any point, the energy carried by the wave being confined in the electron. 
Therefore, no energy is lost by radiation.  

 

 

 

 

Figure 4.1. De Broglie wave orbit 
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The condition for wave orbit stability requires the circumference of the electron 
circular orbit to be a multiple of the de Broglie wavelength. Hence: 

2πr = nλ          [4.33] 

Using the de Broglie relation [4.4] and [4.33], we obtain [SIV 86, MOI 16]:   

π2

hnmvr =  

The above can finally be written as: 

nL =                                                      [4.34] 

This corresponds to Bohr’s principle for angular momentum quantization. 

APPLICATION 4.4.– 

Is the de Broglie wave a standing wave if the number of nodes is odd? 

As a first step, define the notions of nodes and antinodes of a wave function and 
then use a diagram to answer the question. Consider 10 nodes and then 5 nodes. 

Solution. By definition, the number of nodes of a wave function is equal to the 
number of points in space where the wave function is zero. In other terms, it is the 
set of points where the wave function does not oscillate (the amplitude of the wave 
function is zero in a considered node). The points of maximal amplitude where the 
wave function oscillates are known as antinodes. For a de Broglie plane wave, 
nodes and antinodes alternate. It is worth noting that the distance between two 
successive nodes is λ/2 (Figure 4.2). 

 

 

 

 

Figure 4.2. Antinodes and nodes of a de Broglie plane wave 
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Figure 4.2 shows a total number of nodes N = 10. The corresponding number of 
wavelengths is:  

λλ
5

2
== Nn                                                                                                    [4.35] 

Result [4.35] signifies that the number of nodes is a multiple of the wavelength (an 
equivalent statement is that the circumference of the electron circular orbit is a 
multiple of the wavelength): the wave function is therefore stationary and the 
electron orbit is stable. Let us now consider the case of an odd number of nodes; 
for example, N = 5. Then the number of wavelengths is:    

λλ
2

5

2
== Nn                                                                                 [4.36] 

Result [4.36] reflects the fact that the circumference of the electron circular orbit is 
a half-integer multiple of the wavelength: the wave function is no longer stationary 
and the electron orbit is unstable. 

4.1.6. Experimental confirmation, experiment of Davisson and Germer 

The experiment involving electron diffraction by crystals conducted in 1927 by 
Clinton Davisson and Lester Germer made it possible to confirm de Broglie’s 
wave hypothesis. Indeed, if matter waves were associated with electrons, as  
de Broglie proposed, then these waves should be diffracted by the atoms in a crystal 
lattice. For certain values of the diffusion angle θ, the diffracted waves should add 
up (constructive interferences) in the interference field [DAV 27, GUY 03, PÉR 86, 
SIV 86, THO 10]. For other values of θ, these waves should cancel out (destructive 
interferences).  

According to Bragg’s condition, interferences are constructive if: 

2 dsinθ = nλ            [4.37] 

In Bragg’s law expressed by [4.37]: 

– d is the interplanar spacing (i.e. the perpendicular distance between two crystal 
planes); 

– θ (Bragg’s angle) is the deviation half-angle: (half of the angle between the 
direction of the initial beam and the direction of the detector);   

– n is the order of diffraction (strictly positive integer); 

– λ designates the wavelength of X-rays. 
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In the international system, d and λ are expressed in meters (m) and θ in radians 
(rad). 

William Lawrence Bragg was an Australian physicist. He is especially known for his 
analysis of crystal structures using X-rays.  In 1912, together with his father, Sir William 
Henry Bragg (1862–1942), he discovered the empirical law of X-rays diffraction by 
crystals.  Known as Bragg’s law in their honor, this law makes it possible to calculate the 
position of atoms in a crystal by using how the crystal lattice diffracts the X-rays. Henry 
Bragg taught at the University of Adelaide in Australia during 1886–1908, which explains 
the Australian nationality of his son. Lawrence Bragg and his father were the recipients of 
the Nobel Prize for physics in 1915 for their work on X-ray diffraction by crystal 
structures.  

Box 4.2. Bragg (1890–1971) 

Figure 4.3 illustrates the diffraction of a beam of X photons by a crystal. The 
Bragg angle, as well as the interplanar spacing, is indicated in this figure. 

 

 

 

 

 

Figure 4.3. Elastic scattering of electrons by a crystal: the incident beam encounters 
a regular alignment of crystal atoms and scattered under an angle θ 

Between 1925 and 1927, Davisson and Germer conducted electron diffraction 
with nickel crystals. The simplified experimental setup used by these authors is 
schematically represented in Figure 4.4. An electron gun emits electrons that are 
accelerated under an accelerating voltage U = V1 – V2. They hit a nickel Ni 
monocrystal and are then scattered under an angle θ with respect to their incident 
direction. When the electron beam hits the crystal lattice, the matter waves 
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associated with the electrons are diffracted by the nickel atoms. A mobile detector is 
used to study the dependence of the angle on the intensity of the diffracted beam. A 
galvanometer that is not shown in the figure measures the intensity i due to electrons 
whose associated waves are diffracted. 

Intensity is then maximal for scattering angles θ for which the diffracted waves 
are in phase. Figure 4.5 shows an extract of the intensity i variation with accelerating 
voltage U. The current is maximal for θ = 80° and U = 33 V [PÉR 86].  

 
 

 

 

 

 

 

 

Figure 4.4. Simplified diagram of the Davisson and Germer experimental setup 
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Figure 4.5. Variation of electronic current intensity i with accelerating voltage U 
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Table 4.1 summarizes several experimental results obtained by Davisson and 
Germer corresponding to maximal values of the electric current intensity i measured 
by the galvanometer G. The measurements are conducted in two lattice planes {100} 
and {111} (see Note (1) of this chapter).  

 Lattice plane {100} 

θ (°) 60 65 70 75 80 

U (V) 42.5 38.5 36.0 35.0 33.0 

 Lattice plane {111} 

θ (°) 60 65 70 75 80 

U (V) – 35.0 36.5 35.0 34.0 

Table 4.1. Excerpt of the experimental results of Davisson and Germer [DAV 27] 

According to experiments, diffracted electrons have a preferred direction. 
Diffracted waves meet de Bragg’s condition [4.37]. Figure 4.6 reproduces an excerpt 
of the diffraction curves, indicating a maximum of intensity for a scattering angle of 
50° corresponding to a voltage of 54 V [DAV 27]. 

 

Figure 4.6. Diffraction curve indicating a maximum of intensity for a diffraction  
angle of  50° corresponding to an accelerating voltage of 54 V 

The next step is the theoretical interpretation of the experimental observations 
(Figure 4.6) using de Broglie’s model of matter waves. Relation [4.4] will be used 
for this purpose, as it involves the only experimentally verifiable quantity in the 
wave model. 
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According to the work–energy theorem applied between anode A and cathode C 
(output velocity at the cathode can be considered negligible compared to velocity v 
of the electrons flowing through a hole in the anode), we obtain: 

Ec = eU  eU
m

p =
2

2

                         [4.38] 

Or according to de Broglie’s relation [4.4], λ = h/p. Using [4.38], we have: 

Ume
h

2
=λ                           [4.39]   

Considering Bragg’s condition [4.37], we can deduce the expression of the 
wavelength λ. Equalizing the resulting relation with [4.39], we have: 

me
h

d
nU

22
sin =θ                     [4.40] 

Formula [4.40] provides evidences for the order of interferences of the waves 
associated with electrons. Assuming that one of the peaks observed in the 
experiments of Davisson and Germer corresponds to n = 2, we have: 

AU =θsin    [4.41] 

with: 

med
hA
2

=                           [4.42] 

Let us calculate constant A. 

Given data. h = 6.626 × 10−34 J ⋅ s; d = 2.150 × 10−10 m; m = 9.109 × 10−31 kg;  
e = 1.602 × 10−19 C  A = 5.71 

Using the A value, [4.41] can be theoretically written as follows: 

θsinU = 5.71                          [4.43] 

θ (°) 60 65 70 75 80 

U (V) 42.5 38.5 36.0 35.0 33.0 

 5.646 5.623 5.638 5.714 5.657 

Table 4.2. Experimental values of the product Usinθ = A . The values are  
deduced from the experiment of Davisson and Germer  
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If the waves associated with electrons exist, the experiments of Davisson and 
Germer must corroborate the theoretical result [4.43]. For this purpose, let us 
determine the values of the product θsinU  using the experimental results 
summarized in Table 4.1. Results are grouped in Table 4.2. 

Let us determine the mean of the product θsinU  using the data in Table 4.2. 
We obtain: 

AU =≈=× 71.5652.5sinθ                      [4.44] 

CONCLUSION.– The experiments of Davisson and Germer conducted in 1927 have 
brightly confirmed the existence of plane waves associated with matter particles, as 
stated by de Broglie’s hypothesis in 1924.    

Let us note that result [4.43] is valid for a single maximal value of the diffraction 
angle θ corresponding to a well-determined value of the accelerating voltage U. 
Strictly speaking, the order of interference n = 2 would correspond to θ = 75° and  
U = 35.0 V, as indicated by the results grouped in the fifth column of  Table 4.2.  

It is interesting to take advantage of the experimental results presented in  
Figure 4.6 using the lattice formula. Let us express the path difference δ between 
two waves issued by two neighboring slits separated by a distance a = d. As shown 
in Figure 4.3, we have: δ = d (sini + sinθ). Waves diffracted in different directions 
interfere for angles θ  such that [BIE 06]: 

δ = d (sini + sinθ) = nλ                 [4.45] 

Relation [4.45] expresses what is known as the lattice formula, which gives the 
deviation θ of the order n. Let us use relation [4.45] considering the experimental 
peak of Davisson and Germer, for which θmax = 50° and U = 54.0 V (Figure 4.6). 
Supposing that this peak has been obtained for an incidence angle i = 0 and that it 
corresponds to n = 1 [THO 10], we have: 

λ = d sinθmax = 2.150 × 10−10 sin 50 ≈ 1.65 Å  [4.46] 

Let us now calculate the de Broglie wavelength using relation [4.39]. We 
consider the peak obtained by Davisson and Germer for which U = 54.0 V. Using 
the above numerical data, we find: 

λ = 1.67 × 10−10 m = 1.67 Å 
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The de Broglie wavelength λ = 1.67Å associated with diffracted electrons is in 
very good agreement with the experimental result λexp = 1.65 Å [4.46]. The relative 
deviation is approximately 1.3%. 

APPLICATION 4.5.– 

Diffractions of slow neutrons (or thermal neutrons) were observed in 1946 in 
nuclear reactors. Provide a theoretical justification for these observations.  

Given data. 

– Temperature of thermal agitation of neutrons: T = 300 K 

– Mass of the neutron: m = 1.675 × 10−27 kg 

– Boltzmann constant: k = 1.381 × 10−23 J ⋅ K −1 

Solution. A thermal or slow neutron is a neutron whose kinetic energy is equal to 
the energy of thermal agitation, hence: 

m
kTvkTvmEc

3

2

3

2

1 2 ===                                                                       [4.47] 

Using the de Broglie relation [4.4], we have according to [4.47]: 

kTm
h

3
=λ  

 
N.A.– λ = 1.452 × 10−10 m ≈ 1.45 Å     [4.48]    

Result [4.46] shows that the wavelength of thermal neutrons has the same order 
of magnitude as the distances between atoms. This justifies the occurrence of 
neutron diffraction phenomena on crystals. 

NOTES.–  

(1) Table 4.1 indicates the experimental results obtained by Davisson and Germer for 
two lattice planes denoted by {100} and {111}. In the French literature, the notation 
of these planes features square brackets: [100] and [111]. Let us briefly explain this 
notation.  By convention, a family of lattice rows is designated by three integers 
denoted by u, v and w. These integers are known as indices of the family of lattice 
rows and are written between square brackets. Indices u, v and w are the coordinates 
of the first node from the origin located on the lattice row of the family passing 

through the origin of a ,b , c  frame of reference. This is known as a [u, v, w] family 
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of lattice rows. The set of three relative integers h, k, l thus defined fully 
characterizes the family of planes considered. These three relative integers, arranged 
between brackets, are known as Miller indices of the family of planes. The family of 
lattice planes is denoted by (hkl), where h, k and l (except for the signs) are the 
numbers of equal segments cut by the family of planes (hkl), respectively, on the 

three base vectors a ,b , c  [MIL 14]. Figure 4.7 indicates the lattice rows [100], 
[010] and [001] as well as the lattice rows [110] and [111] corresponding to the 

directions indicated by vectors a ,b , c . 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7. Examples of indices of the main families of lattice rows 

(2) The first neutron diffraction experiment was conducted in 1945 by the American 
physicist Ernest Omar Wollan (1902–1984) at the Oak Ridge National Laboratory 
in the United States. In 1946, together with the American physicist Clifford 
Glenwood Shull (1915–2001), he established the basic principles of the neutron 
diffraction technique, which was successfully applied to several different materials. 
Neutrons are nucleons in the nucleus. Due to their relatively short lifetime (around 
15 min), free neutrons in nature cannot be used for neutron scattering experiments. 
This is why free neutrons generated through nuclear fission in reactors are used. A 
monochromator makes it possible to obtain a monokinetic neutron beam. Fissile 
sources are mainly uranium 235 (235U) or plutonium 239 (239Pu) nuclei. Neutrons 
thus generated are slowed down by heavy water D2O  (see Box 3.18, Chapter 3, 
Volume 1) in order to reach a wavelength of the order of angström (10−10 m), which is 
the same order of magnitude of the distances between atoms in crystals. This makes 
it possible to use them in diffraction experiments, similarly to electrons (Davisson 

[001] 

[111] 

[010] 

[100] 

[110]

c 

b 

a 
→

→

→



236     Introduction to Quantum Mechanics 1 

and Germer experiments, Figure 4.4) or X-rays (Compton scattering experiments, 
Figure 2.14).    

Clinton Joseph Davisson and Lester Halbert Germer were American physicists. In 
1927, they conducted the landmark experiment (known as Davisson and Germer’s 
experiment) that confirmed the existence of the matter waves postulated by de Broglie in 
1924. Davisson shared with the British physicist George Pager Thomson (1892–1975) 
the Nobel Prize for physics in 1935 for their discovery of electron diffraction by crystals. 
Let us note in passing that George Pager Thomson is the son of the British physicist 
Joseph John Thomson (1856–1940), who received the Nobel Prize for physics in 1906 
for his theoretical and experimental works on the electrical conductivity of gases, which 
provided concrete proof of electron existence. 

Box 4.3. Davisson (1881–1958); Germer (1896–1971) 

4.2. Heisenberg’s uncertainty relations 

4.2.1. Uncertainty principle  

In classical mechanics, the dynamics of a particle is fully determined if its 
position q and linear momentum p in a one-dimensional context are known at each 
instant. The values of these two real and continuous dynamic quantities range 
between −∞ and +∞.  

In the phase space of the particle defined by the (q, p) pair,  any physical 
quantity can be represented by a real function f (q, p). If the position and velocity of 
a particle at instant t0 are known, one can simultaneously and precisely determine 
the position and velocity of the particle at instant t0 + Δt. 

Things are completely different in quantum mechanics. The precise value of a 
physical quantity, such as position or velocity, can only be determined by 
measurement. In fact, the particles in the microcosm have wave-like properties. The 
measurement of a physical quantity defined for an arbitrary system involves the 
wave function describing the state of the system. This state is known as state vector 
(see Chapter 2). But during the measurement of one of the physical quantities of a 
system, the state vector undergoes an unpredictable leap, which in quantum 
mechanics is known as fundamental perturbation [COH 77]: any measurement 
process perturbs the physical system under study.  

Hence, contrary to classical mechanics predictions, if the position of a particle is 
precisely known, its linear momentum is completely undetermined and vice versa. 
This indeterminism is rooted in a purely quantum principle referred to as the 
indeterminacy principle stating that the precision with which two complementary 
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physical quantities of the same particle can be simultaneously known is 
fundamentally limited. This principle was proposed in 1927 by Heisenberg. It is 
therefore referred to as Heisenberg’s uncertainty principle.  

4.2.2. Probabilistic interpretation of the wave function 

As mentioned above, the de Broglie monochromatic plane waves do not actually 
exist. A plane wave undergoes dispersion during its propagation: therefore it fills all 
the space. The particle associated with the plane wave is, so to speak, present 
throughout the space, at any point and at any instant. But a physical wave is always 
located at a point in space at a given instant t. This explains why the fundamental 
notion of the wave function has been introduced in quantum mechanics. The wave 
function corresponds to the representation of the physical state of a system (electron, 
nucleons, atom, molecule, etc.). The wave function describing the physical state of 

an arbitrary particle is a complex function denoted by ),( trΨ .  

In 1926, Max Born proposed a probabilistic interpretation of the wave function. 

For bound states, the density of the probability ρ ( r , t) of finding a particle at point 

r  in space at an instant t is given by the relation: 

2
),(),( trtr Ψ=ρ                                  [4.49] 

In the definition [4.49], ),( trΨ designates the amplitude of the probability of 
presence of the particle. This definition implies that the probability of finding the 

particle at point r  in space at a given instant t, within the elementary volume d3r, is 
given by the following relation: 

rdtrrdP 3
2

),()( Ψ=           [4.50] 

But the probability of a given event varies between 0 and 1. Knowing that the 
particle is present somewhere in the space, the integral of probability [4.50] is 
convergent, hence: 


+∞

∞−

+∞

∞−
=Ψ= 1),()( 3

2
rdtrrdP  [4.51] 
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),( trΨ  functions are particular cases of square-summable wave functions for 

which the integral [4.51] is finite. The general properties of square-summable wave 
functions are presented in Chapter 5. 

NOTE.– Copenhagen interpretation. The Copenhagen school or the Copenhagen 
interpretation is a school of thought providing a consistent interpretation of quantum 
mechanics. The probabilistic interpretation of the wave function advanced by Max 
Born was developed by the physicists of the Copenhagen school grouped around 
Niels Bohr. The Copenhagen interpretation considers that Heisenberg’s uncertainty 
relations are due to the inevitable interaction between the measurement apparatus 
and the system subjected to measurement. Moreover, according to the Copenhagen 
interpretation, it makes no sense to speak about objects independently of any 
measurement; furthermore, it is impossible to know the evolution of a system 
between two measurements. This interpretation was proposed by Niels Bohr, 
Werner Heisenberg, Pascual Jordan and Max Born.    

4.2.3. Root mean square deviation 

According to the uncertainty principle, only a statistical distribution of the 
values of measured physical quantities is perfectly determined at any instant. Due to 
the randomness of detection, any measurement, no matter how precise, is always 
accompanied by a statistical uncertainty. To better understand this assertion, let us 
consider the measurement of a particle position x. This involves conducting the 
same measurement N times on N particles that are in the same state Ψ(x, t). Position 
x no longer has a single well-defined value. From a quantum point of view, the 
particle can be found in various regions in space with certain probabilities. The 
measurement of position x yields a set of results characterized by a mean value 

x and a root mean square deviation or spatial extension Δx. The mean value x  

is defined by [COH 77, PHI 03]: 

 
+∞

∞−
Ψ= dxtxxx 2

),(                                     [4.52] 

From a statistical perspective, the dispersion of measurements around the mean 
value x is measured by the root mean square deviation defined by: 

 ( ) 2222 2)( xxxxxxx +−=−=Δ  
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Hence: 
222)( xxx −=Δ                 [4.53] 

A similar result is obtained for the linear momentum px = p. Hence: 

 222)( ppp −=Δ                                           [4.54] 

Using relations [4.48] and [4.49], we obtain the root mean square deviations (or 
standard deviations): 

22 xxx −=Δ ; 22 ppp −=Δ                                         [4.55] 

If the precision δx of the measurement apparatus is below Δx, we have a proper 
representation of a localized particle. However, if δx is above Δx, the result of a 
measurement of the position x cannot be stated with certainty. This is why Δx is 
called uncertainty of x.  

We should nevertheless keep in mind that quadratic deviations Δx and Δp have 
no relation with the resolution of the measurement apparatus. These quadratic 
deviations are intrinsically related to the interaction between the measurement 
apparatus (considered at macroscopic scale) and the quantum system (at 
microscopic scale).  

4.2.4. Spatial uncertainty relations, complementary variables 

Heisenberg’s spatial uncertainty relations express the inequalities, indicating the 
higher precision limit attainable during simultaneous measurements of position and 
momentum variables. The variables satisfying Heisenberg’s uncertainty relations are 
known as complementary variables. For spatial coordinates, we have the 
complementary variables grouped in (x, px), (y, py) and (z, pz) pairs.  

Let us specify the order of magnitude of the product ΔqΔpq, q = x, y or z. For this 
purpose, let us consider an experiment of diffraction of particles by a slit of width a. 
The particle is all the more localized as the slit is thin. The larger the diffraction 
spot, the higher the indeterminacy of the linear momentum p. Let us designate by θ  
the angular half-width of the central diffraction spot (Figure 4.8).  
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Figure 4.8. Single-slit diffraction of a particle of linear momentum p 

Let us place the observer at the level of the central spot, which concentrates the 
majority of the diffracted particles. The uncertainty of position x is of the order of 
magnitude of the diffraction slit. Moreover, due to diffraction, the component px of 
the linear momentum along direction Ox varies between + p sinθ  and −p sinθ. The 
uncertainty of linear momentum px is then of the order of p sinθ. To summarize: 

 Δx ≈ a; Δpx  ≈ p sinθ  ΔxΔpx  ≈ ap sinθ                           [4.56] 

Using the lattice formula [4.45] and admitting that the central spot corresponds 
to n = 1, we obtain: 

 
pa

h
p
ha === θλθ sinsin                             [4.57] 

Using [4.57], expression [4.56] is written (circular permutation is subsequently 
applied) as: 

ΔxΔpx ≈ h; ΔyΔyx ≈ h; ΔzΔpz ≈ h                                         [4.58] 

Results [4.58] provide only the orders of magnitude for ΔqΔpq products. The 
uncertainty relations established by Heisenberg are generally written as follows: 

2
;

2
;

2

 ≥ΔΔ≥ΔΔ≥ΔΔ  pz py px zyx                            [4.59] 

According to [4.59], if, for example, Δx → 0, then Δpx → ∞ and vice versa. The 
uncertainty relations express the impossibility to simultaneously measure with 
precision the position q and the linear momentum p of a particle. However,  

x 

a
O

z 

p 
Δx 

→
θ
θ
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ΔqiΔpj (i, j = x, y or z) does not admit a non-zero lower limit for i ≠j (ΔxΔpy  = 0).  
Moreover, relations [4.59] reject the classical notion of a trajectory, for which a 
particle’s position and velocity are perfectly determined at every instant. 

    If the requirement is to confine the particles at a given point in space, their 
velocities (therefore their linear momenta) will be dispersed. Reciprocally, if the 
requirement is to have particles with well-determined velocities, the indeterminacy 
of their location is high; particles are then delocalized. Relations [4.59] are found 
using the quadratic deviations [4.55] and the momentum operator (see Chapter 5). 

APPLICATION 4.6.  

Figure 4.8 is reconsidered by adding a second slit of width a. Explain the interest 
of using a highly monokinetic beam of particles in order to observe an interference 
figure. Specify the order of magnitude of the quadratic deviation Δx with respect to 
the distance between the two slits. 

Solution. For a beam of monokinetic particles, their velocity is very well-defined. 
Component Δvx (hence Δpx) is consequently small. According to Heisenberg’s 
uncertainty relations [4.57], xpx Δ≈Δ 2/ . A significant quadratic deviation Δx is 

then obtained. This is a necessary condition for being able to observe an 
interference figure. However, Δx must be larger than the distance between the two 
slits. 

4.2.5. Time–energy uncertainty relation, width of lines  

 Bohr’s theory has introduced the notion of stationary states. Consequently, the 
lifetime of a stationary state is infinite. Or, according to experiments, a given 
spectral line has a natural width (Figure 4.9), which is incompatible with the notion 
of stationary states. Indeed, the unit of the Planck constant h (J ⋅ s) can be used to 
deduce that time t and energy E are complementary quantities. Heisenberg’s fourth 
time–energy uncertainty relation is written as follows: 

2

≥ΔΔ  Et   [4.60] 

Let E be the energy of a physical system in a given stationary state and Δt = τ  the 
system’s lifetime in this state. Using the uncertainty relation [4.60], the lifetime of 
the stationary state can be written as follows:  

E
 

Δ
≈

2

τ                  [4.61] 
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The energy of the system in a stationary state is perfectly determined. 
Consequently, ΔE = 0. Hence according to [4.61], the lifetime of the stationary state 
is τ → ∞. However, the lifetimes of quantum states are actually finite. For atoms, 
they range between 10−6 s and 10−8 s. Let us note that for a stable atomic level, the 
natural width is zero. Consequently, for the ground level, ΔE = 0. 

The experimental measurement of ΔE is rendered difficult by the influences due, 
on the one hand, to interactions between atoms, and, on the other hand, to the 
Doppler effect (see Appendix 5.5).  

4.2.6. Heisenberg’s microscope 

Heisenberg’s microscope is in fact a thought experiment. It was elaborated by 
Heisenberg, as an argument in support of his uncertainty principle [PÈR 86, BEL 03, 
ATT 05].  
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Figure 4.9. Measurement of position x and linear momentum  
p of an electron using Heisenberg’s microscope. The objective  

lens is limited by a cone whose opening is 2θ 

In summary, this microscope is constituted of an objective lens and an eyepiece 
(Figure 4.9). 

A monochromatic beam of photons γ is sent to light an electron located on the 
Ox axis of the spatial frame of reference employed. The measurement of the electron 
of position x is possible provided that at least one photon is scattered and enters the 
objective lens of the microscope. Photons that enter the eyepiece deviate from the 
vertical Oy by an angle θ  and impart a momentum p’ to the electron during their 
scattering. Let p be the momentum of a photon. As indicated by Figure 4.9, the 
momenta of the scattered photons vary between −p sinθ and +p sinθ along the Ox axis. 
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Let us write the law of momentum conservation (the electron is at rest before 
scattering) considering the two limits of the projection pdx of the momentum of the 
scattered photon: 

 






−=−=

+=+=

θ
θ

sin

sin
''''

''

ppppp

ppppp

xdxx

xdxx                             [4.62] 

Relation [4.62] can be used to obtain the uncertainty of the electron momentum, 
which is: 

θsin2''' pppp xxx =−=Δ    [4.63] 

The width Δx of the diffraction spot has the same order of magnitude as the 
interplanar spacing (Δx ≈ d). Using [4.37] and the wavelength formula [4.4], we 
have (for the central spot n = 1): 

xp
h

p
hx

Δ
===Δ

2
sinsin2 θλθ  [4.64] 

Considering [4.63] and [4.64], we finally have [BEL 03, ATT 05]:  

Δx Δpx  ≈ h  [4.65] 

As already mentioned above, a proper representation of a localized particle is 
obtained if the resolving power δx of the measurement devices is above Δx. To 
achieve this, one can choose to increase δx or decrease Δx using X or γ photons 
(decreasing Δx amounts to decreasing the wavelength according to the first equality 
[4.64]). 

REFRESHER ON THE  MICROSCOPE.– The microscope is essentially composed of two 
converging optical systems that can be equated with two thin lenses: 

      – the objective is a converging lens whose focal distance is of the order of 
several millimeters. The objective gives a real, reversed and highly magnified image 
of a very small object located in front of it; 

     – the eyepiece is also a converging lens whose focal distance is of several 
centimeters. The eyepiece operates as a magnifier when examining the image 
provided by the objective. 

The objective L1 and the eyepiece L2 are centered on the same axis; the distance 
between their optical centers O and O’ ranges between 15 and 20 cm. The distance 
between the image focal point F1

’ of the objective and the object focal point F2 of 
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the eyepiece is known as the optical range (sometimes denoted by Δ). Figure 4.10 
illustrates the path of light rays through a microscope. 

 
 
 
 
 
 
 
 

Figure 4.10. Path of light rays in a microscope 

Werner Heisenberg was a German physicist. In 1925, in parallel to Schrödinger (see 
Chapter 5), he developed the first theory of quantum mechanics using the matrix 
formalism (while Schrödinger adopted a more wave-like approach, which involved the 
resolution of differential equations).  In 1927, Heisenberg formulated the indeterminacy 
principle, rejecting the notion of the trajectory of a microscopic particle. He was awarded 
the Nobel Prize for physics in 1933 for his work in the field of quantum mechanics. 

Box 4.4. Heisenberg (1901–1976) 

4.3. Exercises 

Numerical data. 

– elementary charge: e = 1.602 × 10−19 C 

– Planck constant: h = 6.626 × 10−34 J ⋅ s 

– mass of electron: m = 9.109 × 10−31 kg 

– Bohr radius: a0 = 0.53 Å 

– range of optical waves: 400–800 nm 

4.3.1. Group velocity of de Broglie waves in the relativistic case  

Let us consider a relativistic particle whose rest energy is m0c2. The particle is 
moving with velocity v with respect to a fixed observer. The Lorentz factor is given 
by the expression: 
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22 /1

1

cv−
=γ  

(1) Express the total energy of a relativistic particle as a function of its rest 
energy and the Lorentz factor. 

(2) Prove that group velocity can be written in the following form: 

dp
dcmvgr
γ2

0=   

In this relation, p designates the linear momentum of the relativistic particle. 

(3) Prove that the group velocity of the de Broglie wave associated with a 
relativistic particle is equal to its translational velocity v. Draw a conclusion. 

4.3.2. Observing an atom with an electron microscope 

The possibility to observe an atom by means of an electron microscope is one of 
the interesting applications of Heisenberg’s spatial uncertainty relations. This 
microscope uses an electron beam to light a sample and form its highly magnified 
image. By comparison with an optical microscope, an electron microscope has a 
higher resolving power. It makes it possible to obtain much higher magnifications of 
up to 5 million times, while the best optical microscopes do not go beyond 2,000 
times magnification.  

In an electron microscope, electromagnetic lenses (instead of the glass lenses in 
an optical microscope) are used to form the image created by the controlled electron 
beam that converges on a well-defined plane with respect to the studied sample. The 
principle of an electron microscope is presented below. 

Electrons are emitted by a heated tungsten or lanthanum hexaboride 
filament. They are afterwards accelerated under a voltage of about 200 kV in the 
high vacuum tube of the microscope. The resulting electron beam is focused by 
magnetic lenses constituted of an iron-core coil. Focal distance variation leads to 
magnification variation. The image captured by the camera can be visually observed.  

Figure 4.11 shows a simplified representation of an electron microscope. 
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Figure 4.11. Simplified representation of an electron microscope 

Let us consider an atom located at point O of the object plane of the microscope. 
A plane wave associated with an electron is sent along the Oz direction. This wave 
interacts with the atom in O and is scattered in all directions. Scattered waves are 
distributed within a cone whose opening angle is 2θ. Let σ be the spectroscopic 
wave number. 

Given data. θ  ≈ 10−2 rad. 

(1) Prove that component '
xσ of 'σ  vector ranges between two extrema. Deduce 

Δσx as a function of θ  and λ. 

(2) The wave group that can be detected in the image plane is such that  
ΔxΔσx ≥ 1. Find the expression of Δx0 size of the smallest detail discernible by the 
electron microscope. 

(3) The accelerating voltage of the electron beam is 100 kV. Calculate Δx0. 

(4) Is it possible to see an atom with an electron microscope? Provide a 
justification. 

(5) Answer the same question (4) for an optical microscope. 

4.4. Solutions 

4.4.1. Group velocity of de Broglie waves in the relativistic case  

The Lorentz factor is given by: 

22 /1

1

cv−
=γ                                                         [4.66] 
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(1) Expression of total energy 

The energy E = mc2 of a particle of relativistic mass m = γm0 and rest energy 
m0c2 can be written as follows: 

2
0cmE γ=                             [4.67] 

(2) Proof 

Using [4.67] and the definition of group velocity, we have: 

dp
dEvgr = 

dp
dcmvgr
γ2

0=                              [4.68] 

(3) Expression of group velocity 

The linear momentum of the relativistic particle is p = mv = γm0v. Using [4.66], 
we have: 

0m
pv

γ
= 

22
0

22/1

1

cmp γ
γ

−
=                      [4.69] 

Squaring and rearranging the above relation, we have: 

22
0

2
2 1

cm
p+=γ 

22
0cm
dppd =γγ                           

Hence: 

22
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γ
γ == 

2
0cm
v

dp
d =γ               [4.70] 

Using [4.68] and [4.70], we have: 

2
0

2
0 cm

vcmvgr ×= vgr = v 

CONCLUSION.– de Broglie’s theory of matter waves is valid in both classical 
mechanics, for which γ  = 1, and relativistic mechanics, for which γ  > 1.    
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4.4.2. Observing an atom with an electron microscope 

(1) Proof 

The incident wave and the wave scattered by the atom have the same 
wavelength. Therefore, the wave number σ’ = σ. Figure 4.11 shows that the 
projections of 'σ  on the Ox axis take all the values ranging between −σsin  θ  and 
+σsin θ. Hence: 

−σ sin θ ≤ '
xσ ≤ +σ sin θ  [4.71] 

Using the extreme values and knowing that θ is very small, we have: 

λ
θθσσ 2

sin2 ≈=Δ x
                         [4.72] 

(2) Expression of Δx0 

 Knowing that ΔxΔσx ≥ 1, the size Δx0 of the smallest detail discernible by the 
electron microscope is given by the expression according to [4.72]. 

θ
λ
20 ≈Δx   [4.73] 

(3) Calculation of Δx0 

In relation [4.73], the wavelength is the only unknown. According to the  
work–energy theorem, we have: 

m
pmveU
22

1 2
2 ==   [4.74] 

Using de Broglie’s relation λ = h/p, we have: 

2

2

2 λm
heU = 

meU
h

2
=λ    [4.75] 

Inserting the wavelength expression [4.75] in [4.73], we find: 

meU
hx

8
0 θ

≈Δ  [4.76] 

N.A.– U = 100 kV  Δx0  ≈ 1.94 × 10−10 m  
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(4) Observing an atom with an electron microscope  

The radius of a hydrogen atom in ground state is a0 = 0.53 Å. Knowing that the 
size of the smallest detail discernible by an electron microscope is Δx0 ≈ 1.94 Å, we 
obtain: 

Δx0/a0 ≈ 3.66  Δx0 ≈ 4 a0                                                           [4.77] 

Result [4.77] actually indicates that an atom (except for the hydrogen atom, since 
Δx0 > a0) can be observed with an electron microscope. Many heavy atoms 
(nitrogen, boron, etc.) bound in organic molecules have been observed nowadays. 
Atom observation nevertheless requires proper interpretation of the images obtained, 
as well as a good understanding of the processes of interaction between electrons 
and the studied object.  

(5) Observing an atom with an optical microscope 

Let us calculate Δx0 using [4.73] for the extreme wavelengths of the optical 
spectrum (400–800 nm). For θ  ≈ 10−2 rad we have: 

20 µm ≤ Δx0 ≤ 40 µm                                        [4.78] 

Result [4.78] indicates that the size of the smallest detail discernible by the 
optical microscope is of the order of several dozen micrometers. Atomic dimensions 
of the order of angström are 10,000 times smaller. Therefore, it is not possible to 
observe an atom with an optical microscope. This is due to the fact that optical 
wavelengths are longer than the wavelengths of waves associated with electrons. 
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 Appendix 1 

Planck’s Law 

A1.1. Photon gas 

The study of the distribution of black body electromagnetic radiation was the 
point of departure for Max Planck formulating the law of variation of spectral 
density of electromagnetic energy known as Planck’s law. To establish the expression 
of this law, let us consider an enclosure of volume V as a black body simulation. 

Consider a cavity whose walls are maintained at constant temperature T. Due to 
thermal agitation motion, the particles that compose the walls emit and absorb 
photons. This is how the photon gas is generated in the cavity enclosure. Each time 
a photon of energy E is absorbed or reflected by the wall, the latter receives a 
momentum p. The wall in turn bounces back upon photon emission. As result of all 
these processes, the photon gas exerts a radiation pressure on the cavity walls. 

For an enclosure of volume V containing N particles, the pressure P exerted by the 
N particles on the walls of the enclosure is given by the following relation [HUL 86]: 

pvnpv
V
NP ⋅=⋅=

3

1

3

1  [A1.1] 

where n = N/V is the density of particles, and v and p  are, respectively, the 

velocity and momentum vectors of the particle that hits the wall. 

For the photon, v = c. Moreover, the relation between the energy E and the 
momentum p of the photon is E = pc. Taking this relation into account, [A1.1] leads to: 

NEPV
3

1=                                        [A1.2] 

                            
For color versions of the figures in this book, see www.iste.co.uk/sakho/quantum1.zip. 
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In this relation, N designates the number of photons in the enclosure.  

In contrast with a gas of N classical particles that can be neither created nor 
destroyed, the number N of photons is a variable quantity due to photon annihilation 
and creation processes in the cavity. Denoting NEE = the mean energy of the 

photon gas, the radiation pressure verifies the following relation: 

EPV
3

1=                                        [A1.3]                                                   

The 1/3 factor in equation [A1.3] accounts for the isotropic propagation of the 
electromagnetic radiation in the cavity. 

A1.2. Photon spin and polarization 

In 1889, the Russian physicist A.I. Sadovski theoretically proved that circularly 
or elliptically polarized light had an angular momentum. This phenomenon, known 
as Sadovski effect, made it possible to observe the photon spin s = 1 [SIV 86]. The 
magnetic spin quantum number is then ms = ± s, hence: ms = − 1, 0 or + 1, which 
amounts to (2s + 1) values. 

Moreover, the quantum number ms indicates the various directions of photon 

propagation. When the projection of photon spin s on the propagation axis is equal 

to + 1 (spin parallel to the direction of propagation), the light wave has a right hand 
polarization (right-handed helicity). Otherwise (ms = − 1: spin antiparallel to the 
direction of propagation), the polarization is left hand (left-handed helicity). These 
two states of polarization of the photon are illustrated in Figure A.1. 

 
 

 

 

 

Figure A1.1. The two possible states of polarization of the photon. (a) Right-handed 
helicity (right-hand circular polarization). (b) Left-handed helicity (left-hand circular 

polarization) 
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The state in which the photon had the spin vector projection equal to ms = 0 was 
a puzzling question. According to the current state of knowledge, quantum 
electrodynamics proves that such a state does not exist. Since electromagnetic waves 
are constituted of a flow of photons and the electromagnetic field can be described 
by two directions of propagation, the photon has two possible polarizations:  

– a right-hand polarization (ms = + 1) corresponding to the right-handed helicity 

1, +=smk  (Figure A1.1(a)); 

– a left-hand polarization (ms = − 1) corresponding to the left-handed helicity 

1, −=smk  (Figure A1.1(b)). 

The norm of the wave vector is k = ω /c. If u designates the light propagation 

direction, then: 

uu
c

k
λ
πω 2==                          [A1.4] 

A1.3. Decomposition of electromagnetic radiation field 

Let us consider an enclosure of volume V that simulates a black body and is 
filled with electromagnetic radiation. This radiation is assumed to be generated by 
the vibration of a large number of virtual quantum harmonic oscillators. Each 
energy level is characterized by the quantum number n. Let us formally consider that 
n designates also the average number of photons per oscillator. As presented, each 
oscillator is assimilated to a monochromatic electromagnetic wave of angular 
frequency ω and wave vector of norm k = ω/c.  

Let us consider that the electromagnetic wave propagates along Ox axis. The 
wave vector is then written according to [A1.4]: 

i
c

k ω=                                      [A1.5] 

Moreover, for an electromagnetic wave, the vector potential A  is given by the 

relation in complex notation [ANN 74, SAK 18]: 





= −⋅− )(*

0),( trkieARtrA ω               [A1.6] 
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In this relation, ϕieAA 0
*
0 = designates the complex amplitude of the vector 

potential and ϕ is the wave phase. 

Along the propagation direction, the vector potential is: 





=

−−− )(
0),(

ϕωtxki
eARtxA           [A1.7]    

Considering the real part of [A1.7], we have: 

)cos(),( 0 ϕω −−= txkAtxA   [A1.8]    

Let us write [A1.8] in the following form: 

[ ])()(cos),( 0 txkAtxA ωϕ −+−=                                             [A1.9]    

Considering the trigonometric transformation 

cos (a + b) = cosa cosb − sina sinb  

relation [A1.9] is written in the form: 

[ ])sin(sin)cos(cos),( 0 ϕωϕω −+−= xktxktAtxA              

Hence: 

)sin()('')cos()('),( 00 ϕϕ −+−= xktAxktAtxA                  [A1.10]    

In relation [A1.10], we have considered: 

tAtAtAtA ωω sin)('';cos)(' 0000 ==  

Let us then write [A1.10] in the form: 

),(''),('),( txAtxAtxA +=  [A1.11] 

with  

)sin()('),('';)cos()('),(' 00 ϕϕ −=−= xktAtxAxktAtxA     [A1.12]  
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Each of [A1.12] terms is a vector potential oscillating along Ox axis, and the two 
terms characterize a plane electromagnetic wave. 

Let us consider one of the vector potentials [A1.12], for example ),(' txA . This 

amounts to considering an elementary volume dV in the wall containing 

electromagnetic waves characterized by the vector potential ),(' txA .  

Let us then consider the particular case of a one-dimensional oscillator. Oy axis 
is arbitrarily chosen. In other terms, we consider an elementary volume dV 
containing the electromagnetic waves whose polarizations are such that the vector 

potential ),(' txA oscillates along Oy. As indicated by [A1.3], radiation pressure is 

isotropic, so there is no privileged direction. The choice of Oy axis does not 
influence the final result. We therefore have (changing A’ in A): 

jxktAjtxAtxA y )cos()(),(),( 0 ϕ−==                                         [A1.13]  

In electromagnetism, electric and magnetic field vectors are defined by the 
following relations [ANN 74, SAK 18]:  
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As photons are not subjected to any field of forces, scalar potential is zero. We 
therefore have along Oy axis: 
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    [A1.15]    

Using [A1.13], equations [A1.15] lead to: 
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Moreover, within volume dV, the density of electromagnetic energy u can be 
written in the form [ANN 74, SAK 18]:  

0

22

0 22 μ
ε BEu +=

           [A1.17]  

The total mean energy of the electromagnetic field throughout volume V is: 
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Using [A1.16], the mean energy [A1.18] can be written as: 
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therefore:  
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And:  
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Hence: 
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In relation [A1.19], we have considered: 
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Knowing that in vacuum k =ω /c, equation [A1.20] can be written as: 
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But in vacuum µ0ε0c2 = 1. Therefore, after arrangement the above expression can 
be written as follows: 
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Let us consider q = A0. This equation is then written in the form: 
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If 0)( EEEq −=ω , then [A1.23] becomes: 
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But the energy of a classical harmonic oscillator of mass m and angular 
frequency ω is given by the expression: 
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Since: 

dt
dqv =   and 

m
k=ω   

then after arrangement and factorization equation [A1.25] can be written as: 
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The differential equation [A1.26] is analogous to equation [A1.24]. Black body 
radiation can therefore be considered as a set of virtual quantum harmonic 
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oscillators of “mass” m = ε0V (obviously, the dimension of this quantity is not that of 
a mass; this explains why, among others, the fact that the quantum harmonic 
oscillators in this study are qualified as “virtual”).  

It should, nevertheless, be kept in mind that comparing [A1.19] and [A1.21] 
leads to E = − E0. Hence: Eq (ω) = E − E0 = 2E. If we had considered Eq (ω) 
= 2E, then − E0 = 2E. The use of Eq (ω) = 2E in equation [A1.22] should be 
avoided. Otherwise, a 1/4 factor would be obtained in equation [A1.24], which 
would then differ from the classical equation [A1.26] that contains a 1/2 factor. 

A1.4. Definition of spectral density of energy 

Let us consider a closed enclosure of volume V whose walls are maintained at 
constant temperature T. This enclosure is assimilated to a black body. At thermal 
equilibrium, the enclosure is filled with a large number of photons that taken as a 
whole form the black body radiation. Let us delimit in this enclosure a sphere of 
volume V, filled with electromagnetic radiation, and of radius equal to the norm k of 
the wave vector. In this sphere, the wave vector is defined by its three components 
kx, ky and kz (Figure A1.2).  

 
 
 
 
 
 
 
 
 
 

Figure A1.2. Enclosure of volume V in the three-dimensional space of wave vectors 

By definition, the spectral density of electromagnetic energy denoted ρ (ω) is 
given by the following relation: 

ωωρ ddu )(=                                                  [A1.27] 

In this relation, du designates the density of energy per unit volume. 
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Let dE (ω,T) be the mean energy of the set of quantum oscillators present in the 
volume V whose walls are maintained at temperature T, then: 

V
TdE

du
),(ω

=                                                                               [A1.28] 

Using this relation, we have: 

V
TdE

d
),(

)(
ω

ωωρ =                  [A1.29]                                       

If dE (ω, T) is known, we can express ρ (ω). For this purpose, let us find the 
number of harmonic oscillators or the number of electromagnetic waves contained 
in volume V. 

A1.5. Number of quantum harmonic oscillators 

A1.5.1. Elementary volume in the space of wave vectors 

In the sphere of radius k, let us cut an element of volume dV (Figure A1.2) 
containing a small cube of edge a and volume V0 = a3. The edge a is chosen in such 
a way that the volume V0 contains only two waves that differ by their polarization. 

One of the waves has a right-hand polarization ( 1, +=smk state) and the other 

one has a left-hand polarization ( 1, −=smk state).  

Because photons are bosons (integer spin particles), each state 

1, ±=smk contains a very large number of photons. Moreover, volume V0 being 

chosen in the space of k , any “length” will be defined on one of the three axes Okx, 

Oky and Okz. Intuitively, the edge a is a function of the norm of the wave vector. Let 
us consider: a = a(k). But the photon cannot be confined in a space whose dimension 
is below λ3, where λ is the wavelength of the photon. Hence: 

a = a (k) > λ       [A1.30]    

Moreover, the number of waves contained in a one centimeter long interval is 
referred to as spectroscopic wave number denoted by ν . By definition, λν /1= .  

Since a (k) < k (V0 < V), let us consider λν kkka == / )(   



262     Introduction to Quantum Mechanics 1 

Volume V0 is therefore equal to: 

V0 = a3(k) = (kλ)3        [A1.31]    

A1.5.2. Number of waves with angular frequencies ranging between ω 
and ω + dω 

Since volume V0 contains only two waves, there will be twice as many waves as 
elements of volume V0 in dV (see Figure A1.2). Therefore, the number of waves dnω 
in dV is equal to: 

0
2

V
dVdn ×=ω                        [A1.32]               

The volume V being that of a sphere of radius k = ω/c , we have: 
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The elementary volume dV is then given by the expression: 

 ωωπ d
c

dV 2
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4=   [A1.34] 

Inserting result [A1.34] in [A1.32], we obtain: 

ωωπ
ω d

cV
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3
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8=                       [A1.35]  

The total number of waves dNω or still the total number of harmonic oscillators 
whose angular frequencies range between ω and ω + dω present throughout the  
volume V of the enclosure is dNω = Vdnω. Knowing that k = 2π/λ, then V0 = (kλ)3 = 
8π3 and using relation [A1.35] we have: 

ωω
π

ω d
c

VdN 2
32

=         [A1.36]                                                   

Let us consider: 
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In this case, expression [A1.36] can be written in the form: 

dNω = f(ω)dω                     [A1.38] 

This expression shows that dNω actually designates the total number of waves 
with angular frequencies ranging between ω and ω + dω present throughout volume 
V. The function f (ω) is then interpreted as density of these waves in the angular 
frequency interval dω. 

A1.6. Expression of Planck’s law 

Each electromagnetic wave is interpreted as a set of quantum harmonic 
oscillators. If E (ω,T) designates the mean energy of one of these oscillators, then 
the total mean energy dE (ω,T) of the set of quantum oscillators present in the  
volume dV whose walls are maintained at temperature T is equal to dNω E (ω,T). 
Hence: 

dE (ω, T) = dNω E (ω, T) 

This leads to: 

ωωωω dfTETdE )(),(),( =
 

                                                           

[A1.39] 

Using relations [A1.29] and the last relation [A1.39], we have: 

ωω
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ωωρ df
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)( =   [A1.40] 

The spectral density of electromagnetic energy ρ (ω) is then written as follows: 
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Using [A1.37], expression [A1.41] can be written as: 

),()(
32

2
TE

c
ω

π
ωωρ =             [A1.42] 

For a classical harmonic oscillator, the mean energy of thermal agitation is  
E (ω,T) = kT. It can immediately be noted that this classical energy does not 
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depend on the angular frequency ω. Expression [A1.42] gives in this case the 
following: 

kT
c32

2
)(

π
ωωρ =                                [A1.43] 

This corresponds to the classical Rayleigh-Jeans law [1.23] in which spectral 
density is denoted by u(ω). The mean energy of thermal agitation of a quantum 
harmonic oscillator is given by [1.48] (we have considered Eω  (T) = E (ω,T)):  
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It is worth noting that the mean energy [A1.44] depends on the angular 
frequency ω or frequency ν. Inserting expression [A1.44] in [A1.42], we obtain 
Planck’s law [1.25], which is: 
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Planck’s law can also be expressed as a function of frequencyν. Let us note that 
by replacing ω = 2πν in [A1.45], we do not obtain the correct expression of spectral 
density ρ (ν). To establish the correct expression of ρ (ν), [A1.36] must be used for 
deducing the total number of waves dNν with frequencies ranging between ν  and ν  
+ dν present throughout volume V, hence: 

ννπ
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The wave density ( )f v  in the angular frequency interval dν is then: 
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The spectral density of electromagnetic energy ( )vρ  can be written using 

[A1.41]: 
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Inserting [A1.47] in [A1.48], we have: 
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Using the second expression in [A1.44], relation [A1.49] gives: 
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We have therefore deduced Planck’s law. 





 Appendix 2 

Planck’s Law and Einstein’s Theory 

Planck’s law has its well-deserved place in Einstein’s theory on the absorption 
and emission of electromagnetic radiation by quantum systems. One of its most 
remarkable consequences is the possibility to use stimulated emission for light 
amplification for the generation of laser radiation, with myriad applications, both in 
industry and in fundamental research. The objective of this appendix is to review the 
main processes of interaction between optical radiation and matter [TAR 79, FRI 
85]. This offers the opportunity to introduce Einstein B12 coefficient of stimulated 
absorption and B21 coefficient of stimulated emission, as well as the A21 coefficient 
of spontaneous emission.  

A2.1. The main processes of interaction between optical radiation and 
matter 

The term optical radiation covers the range of electromagnetic waves emitted in 
the visible range. The corresponding wavelengths are therefore in the (400 nm < λ < 
780 nm) range. 

A2.1.1. Stimulated absorption and emission, and spontaneous 
emission 

Let us consider an enclosure containing quantum systems (atoms, ions, nuclei, 
etc.) at thermodynamic equilibrium at temperature T. Let E1 and E2 be two non-
degenerate discrete electron levels that can be filled by one of these systems. When 
radiation interacts with the quantum systems, light absorption and emission 
processes take place, in accordance with Bohr’s theory (Figure A2.1).  

                            
For color versions of the figures in this book, see www.iste.co.uk/sakho/quantum1.zip. 

Introduction to Quantum Mechanics 1: Thermal Radiation and Experimental Facts 
Regarding the Quantization of Matter, First Edition. Ibrahima Sakho. 

© ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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According to Bohr frequency condition, we have:  

21211212 EEEE −==−= ωω                                                        [A2.1] 

Relation [A2.1] shows that within Bohr’s theory, a quantum system emits 
exactly the same amount of energy it has absorbed. Moreover, if the absorption 
process (Figure A2.1(a)) is stimulated (induced) by the incident photon of energy 

12ω , at a first analysis, nothing justifies the emission process (Figure A. 2.1(b)). 

 
 
 
 
 
 

Figure A2.1. Absorption (a) and emission (b) of optical radiation 

Assuming that E1 represents the fundamental level, the excited level E2 is 
characterized by a certain lifetime τ. Consequently, there must be a relation between 
the lifetime τ and the de-excitation of quantum systems from a higher level of energy 
E2. This relation cannot be explained within Bohr’s semiclassical theory.  

A2.1.2. Spontaneous emission 

In 1917, Albert Einstein shed light on the relation between the lifetime of an 
excited state and the de-excitation from this state by describing the absorption and 
emission of radiation in terms of probability of transition. He introduced the notion 
of stimulated emission. Taking into account stimulated emission makes it possible to 
consistently explain the lifetime of a quantum system in an excited state and the 
possibility (probability) for this system to move to a lower level by emitting 
electromagnetic radiation.  

Spontaneous emission plays a fundamental role in light generation by laser 
systems, in which certain excited states referred to as metastable have an abnormally  
long lifetime (compared to the mean lifetime ranging from 10−7 s to 10−8 s). Figure 
A2.2 [SAK 13] illustrates a laser example (optical fiber doped with erbium ions 
Er3+).  

 

          E2                    E2

  12ω                                                    21ω  
 
 
           E1                            E1 

                    (a)                           (b) 
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Electrons that are initially on the ground level E1 are driven to the higher level E3 
(group of very close levels or energy band) by a mechanism known as optical 
pumping. Lifetime τ32 being very short (1 µs) compared to that of the metastable 
intermediary level of energy E2 (lifetime τ21 = 1 ms), electrons consequently move to 
level 2, where they accumulate. 

                   τ32 = 1 μs 

                                          

                                Non radiative transition 
                                       
                                          τ21 = 1 ms 
                                                  E2 

 
Pumping                                                                       
                                   Laser radiation 
                                           (stimulated emission) 

 

E3 

E1 

 

Figure A2.2. Laser operating levels in an optical fiber doped with Er 3+ ions 

This “stand by” of electrons on level E2 proves the random character of the de-
excitation (stimulated emission) toward the ground level. The relation between the 
stimulated light emission from excited state E2 and the lifetime of electrons in this 
state can be easily understood. Let us note that non-radiative transitions E3 → E2 
(without light emission) generate what is known as population inversion. Absorption 
of an incident photon is therefore sufficient to trigger the stimulated emission of 
laser radiation (laser effect) corresponding to E2 → E1 transition. Finally, it is worth 
noting that the energy absorbed (E3 − E1) by the erbium ions is not equal to the 
energy (|E1 − E2|) emitted by laser effect, contrary to Bohr’s theory, which predicts 
the same energy according to relation [A2.1]. 

A2.2. Einstein’s theory of absorption and emission processes 

A2.2.1. Einstein coefficients 

Let us consider a quantum system with two discrete levels (1) and (2), whose 
respective energies are E1 and E2. The probability of absorption of the quantum 
system in the time unit dt from level (1) to level (2) is proportional to the spectral 
density of electromagnetic radiation ρ (ω12) [TAR 79, FRI 85]:  
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dtBdP )( 121212 ωρ=           [A2.2] 

In this relation, B12 is a coefficient. 

For the emission process, two cases can be distinguished according to Einstein’s 
theory: 

– a stimulated emission process, whose probability of transition is proportional 
to the spectral density of electromagnetic energy ρ (ω12): 

dtBdP )(' 122121 ωρ=                      [A2.3] 

where B21 is a coefficient; 

– a spontaneous (not induced by radiation) emission process whose probability 
of transition is given by the expression: 

dtAdP 2121'' =                             [A2.4] 

where A21 is a coefficient. 

The overall probability of transition of the quantum system in the time unit dt 
from level (2) to level (1) is then written as follows: 

dtBAdP ])([ 12212121 ωρ+=                              [A2.5]         

In summary, the transition probabilities that govern the processes of radiation 
absorption and emission by quantum systems are written as follows: 
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121212

ωρ
ωρ    [A2.6] 

Coefficients A21, B21 and B12 are known as Einstein coefficients, and are 
independent of temperature and spectral density of electromagnetic energy ρ (ω12). 

Unlike the stimulated absorption and emission processes, the spontaneous 
emission process is purely random. Consequently, it has no relation with the 
stimulated emission process (no correlation). This explains why transition 
probabilities [A2.5] are added. Nevertheless, Einstein coefficients A21, B21 and B12 

are not independent. The relations between them are deduced in the following 
section. 
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A2.2.2. Populations N1 and N2 of the levels of a quantum system 

Let N1 and N2 be the populations of levels (1) and (2) of a quantum system. Let gi 
be the degree of degeneracy of the level i considered. The population Ni of level i of 
energy Ei is given by Boltzmann statistics: 

 −

−
=

i
iE

i

iE
i

i
eg

egNN β

β
             [A2.7]                                             

In relation [A2.7], =
i

iNN is the total number of quantum systems in the unit 

volume and β = 1/kT, where k is Boltzmann constant and T is the absolute 
temperature. Populations of levels (1) and (2) considered can be deduced from 
[A2.7] as follows: 


=

−

−
=

2

1

1
1

1

i

iE
i

E

eg

egNN
β

β
                                                                              [A2.8] 


=

−

−
=

2

1

2
2

2

i

iE
i

E

eg

egNN
β

β
                                                                             [A2.9] 

Let us consider: 
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 (N0 is constant)  

Expressions [A2.8] and [A2.9] are simplified as follows: 
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A2.2.3. Number of transitions between energy levels 

Since Ni designates the number of quantum systems present on level i of energy 
Ei and dPij is the probability of i → j transition of one of the quantum systems in the 
time unit dt, the number of transitions Ni → j is then given by the expression:  

dt
dP

NN ij
iji =→                      [A2.11]  

Using [A2.6], we have: 
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Using relations [A2.10] and [A2.11] and applying the principle of microscopic 
reversibility also known as law of detailed balance, the relations between Einstein 
coefficients are established. 

A2.2.4. Relation between B12 and B21 coefficients 

Using [A2.10], we have (replacing β by 1/kT): 
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Moreover, according to the principle of microscopic reversibility, in 
thermodynamic equilibrium state, the number of direct transitions, whatever their 
nature, must be equal to the number of inverse transitions [CHP 78]. Hence: 

1221 →→ = NN                                      [A2.14] 

Consequently, according to [A2.12] we have: 
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Since Einstein coefficients A21, B21 and B12 are independent of temperature, 
relation [A2.13] is verified irrespective of T. In particular, for T → ∞ , we have: 
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Hence: 
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N =                        [A2.16]  

Similarly, Einstein coefficients A21, B21 and B12 are independent of the spectral 
density of electromagnetic energy ρ (ω12). When density ρ (ω12) is very high, 
expression [A2.15] is reduced to: 
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Using [A2.13] and [A2.13], the relation between coefficients B21 and B12 is 
found. Hence: 

212121 BgBg =                  [A2.18]                                                  

For simple (non-degenerate) levels, Einstein coefficients B21 and B12 are equal: 
B12 = B21 (since statistical weights g1 = g2 = 1). 

A2.2.5. Relation verified by A21 coefficient 

For large values of angular frequency, the spectral density of electromagnetic 
energy satisfies the Rayleigh–Jeans law [A.1.43], which is: 

kT
c32

2
)(

π
ωωρ =

 
Moreover, combining [A2.15] and [A2.13], we have: 
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Hence: 

 kT
EE

kT
EE

eAgeBgBg
)12(

212

)12(

21212112)(

−−−−
=
















−ωρ  

which leads to: 

( )212
/)12(

121

212
12)(

BgeBg

Ag

kTEE −

=
−

ωρ   [A2.19] 

The classical Rayleigh–Jeans law is valid at low angular frequencies, therefore 
when condition 12)12(>> ω=− EEkT  is verified. The expansion up to second order of 

the exponential in [A2.19] following powers of kT/12ω  leads to: 
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Taking [A2.18] into account, we have after arrangement: 
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But expression [A2.20] coincides with the Rayleigh–Jeans law [A.1.43]. Hence: 
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Taking [A2.18] into account, the above leads to: 
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 Appendix 3 

Stefan–Boltzmann Law 

In 1879, Joseph Stefan (1835–1893) discovered experimentally the law 
according to which radiant exitance M0 (radiated power) per unit surface of a black 
body is proportional to the fourth power of temperature T: 

M 0 = σT4                                                                                [A3.1] 

In the law [A3.1], σ  designates Stefan constant. In 1884, Ludwig Boltzmann, a 
PhD student under Stefan’s supervision, provided the theoretical proof for the 
empirical law [A3.1]. This is why it is often referred to as Stefan–Boltzmann law. 
The objective in what follows is to prove the law [A3.1] using first a thermodynamic 
approach and then Boltzmann’s approach. 

A3.1. Thermodynamic approach to establishing Stefan’s law 

Let us consider a black enclosure of volume V whose walls maintained at 
temperature T emit in the vacuum an electromagnetic radiation that constitutes the 
black body radiation. Let u be the density of electromagnetic energy per unit 
volume. The internal energy is U = uV. Hence: 

VduudVdU +=                                                                     [A3.2] 

According to the first law of thermodynamics [HUL 86]: 

WQdU ∂+∂=                                                                                          [A3.3] 

In relation [A3.3], ∂Q and ∂W designate, respectively, the amounts of heat and 
work exchanged by the system with its environment. 
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As already explained in Appendix A1, the emergence of a photonic gas in the 
enclosure induces a radiation pressure of the gas on the walls of the cavity, 
according to expression [A.1.3]. In this expression, we have [HUL 86, NGÔ 08]: 

V
EP

3

1=
                                                                                                   

[A3.4]
 

Since E designates the total mean energy radiated throughout volume V, the 

VE /  ratio represents the density of electromagnetic energy per unit volume u. 

Therefore, the electromagnetic radiation pressure is written as: 

3

uP =   
                                                                                                    

[A3.5] 

Moreover, due to the pressure exerted on the walls, an elementary work is done: 

PdVW −=∂
 

Using [A3.5], we have: 

dVuW
3

−=∂                                 [A3.6]
 

Furthermore, the elementary work [A3.6] is correlated with an exchange of heat 
between walls and radiation. This amount of heat is related to the entropy of the 
photonic gas by the relation: 

T
QdS ∂=         [A3.7]

  

Using [A3.3], relation [A3.7] can be written as: 
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Considering [A3.2] and [A3.6], we have:
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Hence: 

du
T
VdV

T
udS +=

3

4                         [A3.8] 

A3.1.1. Mathematics refresher 

Let f (x, y) be a function of two independent variables x and y. Its differential df 
is written as: 

dy
y
fdx

x
fdf

∂
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∂
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x
fyxA
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∂=),(  and

y
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∂=),( . We have: 

dyyxBdxyxAdf ),(),( +=  

Differential df is a total exact differential and it verifies the property of equality 
of cross-derivatives: 

yx x
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y
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∂
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∂
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 [A3.9]
  

Given that variables u (density of electromagnetic energy per unit volume) and V 
are independent, and in thermodynamics the only variations of state functions 
(internal energy U, entropy S, enthalpy H, etc.) are total differentials, using [A3.8] 
and [A3.9] leads to: 
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Knowing that the internal energy U = uV, then the density of electromagnetic 
energy per unit volume depends on temperature similarly to U (e.g., the internal 
energy of a perfect gas depends only on temperature according to Joule’s first law). 
Equation [A3.10] is then transformed as follows: 
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which is: 

du
dT

T
u

TT 23

41

3

41 −=

                                

[A3.11]

 

After separation of variables u and T, we have: 

T
dT

u
du

4=  [A3.12]   

The integration of differential equation [A3.12] leads to: 

( )4lnln4ln TT
C
u
te ==






                           [A3.13] 

If in [A3.13] we have Cte = a, then:  

4aTu =    
                                                

[A3.14]

CAUTION.– Result [A3.14] does not correspond to Stefan–Boltzmann law. The 
relation between the density of electromagnetic energy per unit volume u and the 
radiance L0 of the black body must be expressed. For this purpose, let us consider a 
luminous body radiating through a surface dS in the solid angle dΩ (Figure A3.1). 

 

 

 

Figure A3.1. Body radiating through an elementary surface dS in the solid angle dΩ 

Let n be the vector perpendicular to dS. The energy d3E radiated in the time 
interval dt by the surface dS in the solid angle dΩ is proportional to the product 
dSdΩ. Since the radiative surface dS follows Lambert’s law, we have: 

d3E = Lcosθ dSdΩdt                            [A3.15] 

                                   n  
 
 

              dS                       dΩ 
 

θ
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                                cdt 

                                                             n  
 

                                               dS 
 

 
   

 
    dS 

It is worth recalling that L is the radiance of the radiative surface corresponding 
to the light flux (light output) emitted in the solid angle by the unit of radiative 
surface. 

Let us now assume that the radiative surface is that of a black body of radiance 
L0. Since the black body radiation is isotropic, let us consider the specific case of θ = 
0. The energy exiting a cylinder of base area dS and length l = cdt and generators 
parallel to the direction of propagation (Figure A3.6) is considered to be: 

d3E = L0dSdΩdt  [A3.16] 

Moreover, the energy contained in the cylinder is: 

d3E = dudV = dudScdt         [A3.17]
 

In [A3.17], du is the fraction of the density of electromagnetic energy contained 
in the cylinder and in the solid angle dΩ.

 
 

 

 

 

Figure A3.2. Black body radiating in a cylinder of base dS and length cdt 

Equalizing [A3.16] and [A3.17], we have: 

Ωd
c

Ldu 0=   [A3.18] 

Moreover, the solid angle Ω = 2π (1 − cosθ). For all the space, θ = π and Ω = 4π. 
Integrating [A3.18] along all the directions in space, we then have: 

0
4 L
c

u π=                       [A3.19] 

Using [A3.13], relation [A3.19] leads to: 

4
0 4

TcaL =π
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Let us then consider that σ = ca/4. In this case, we have: 

4
0 TL σπ =   [A3.20]

 

Result [A3.20] actually corresponds to Stefan–Boltzmann law knowing that the 
radiant exitance of the black body M 0 = πL0. It now remains to deduce the law 
[A3.20] following the approach adopted by Boltzmann. This will make it possible to 
theoretically express Stefan constant σ. 

A3.2. Stefan’s law according to Boltzmann approach 

Several mathematical formulae will prove useful in what follows, so they are 
summarized below.  

(1) For a gamma integral (Γn), we have: 
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(2) Let us consider the following integral: 
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Integrals In verify a recurrence relation, as follows: 
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(3) Riemann series have the form: αn

1
. They are convergent if α >1. 

(4) A geometric progression: 
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is convergent if |q| < 1 
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Its sum Sn is: 

q
qUS

n
n −

−=
+

1

1 1

0 , q ≠ 1 

n is the number of terms in the progression whose common ratio is q and first term 
is U0. 

(5) For a function f (x), the Taylor series expansion around x0 is written as: 
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The binomial expansion around x0 = 0 (α is a real number) can be deduced from 
the above: 
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(6) Finally, Bernoulli coefficients are denoted by Bk and they have the following 
mathematical properties: 
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These six points reviewed above are sufficient for proving Stefan–Boltzmann 
law. 

The volume density of electromagnetic energy is related to the spectral density 
of energy by relation [A1.27], as follows: 

du = ρ (ω)dω)
 

Let us replace ρ (ω) by its expression [A1.45] in [A1.27], which leads to: 
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where  

32 c
A

π
=              [A3.22] 

Let us highlight in [A3.21] an integral of Γn type. We then obtain: 
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Let us consider: 1−=−= − αωβ ex . Hence: 
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The Taylor series expansion of the term between parentheses in integral [A3.23] 
leads to: 
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Considering ωβ −= eq , we have: 
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At infinity, we have: 
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Result [A3.25] shows that the series ( ) 1
1

−−− ωβ e in equation [A3.23] is 

convergent. It can therefore be written as a Taylor series expansion to which the cut-
off condition is applied at  n −1 order (from 0 to n −1, there are actually n terms). We 
then obtain: 
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Each integral in [A3.26] is of Γn type (considering an = nβ  ). Hence: 
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The Riemann series in relation [A3.27] is convergent because α > 1. Moreover, 
it can be noted that [A3.27] can be written in the form (considering k = 2): 
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Or as a function of Bernoulli coefficients: 

2

24

!)2(2

)2(1
6

=

×







=

k
k

k
B

k
Au π

β 

Hence: 

2

44

!)4(2

)2(1
6 BAu π

β
×








=


  [A3.29] 

Knowing that B2 = 1/30, β = 1 /kT and 32/ cA π=  [A3.22], result [A3.29] is 

written as: 
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Using [A3.19], we have: 
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Result [A3.31] actually leads to Stefan–Boltzmann law: 

4
0 TL théoσπ =

In this relation: 
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We actually get the theoretical expression of Stefan–Boltzmann constant [1.35] 
if in [A3.32] we consider= h/2π. 
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Ludwig Boltzmann was an Austrian philosopher and physicist. In 1884, Boltzmann 
provided a theoretical proof of Stefan’s empirical law (see Box 1.3). He is considered as 
the founder of statistical physics. In 1860, the Scottish physicist James Clerk Maxwell 
(1831–1879) established the distribution of molecular velocities in a gas at thermal 
equilibrium. Boltzmann generalized Maxwell’s results. This led to the establishment of 
Maxwell–Boltzmann distribution law in the kinetic theory of gases. Constant k in this law 
was named Boltzmann constant in his honor. Moreover, in 1877, Boltzmann formulated 
the relation between the entropy of a system in a given macroscopic state and the number 
of microscopic states that are consistent with it (Boltzmann formula). This led to the 
formulation of the second law of thermodynamics. 

Box A3.1. Boltzmann (1844–1906) 





 Appendix 4 

Dirac’s Relativistic Theory 

A4.1. Fine structure perturbing Hamiltonian 

Dirac’s theory aims to unify quantum mechanics and the special theory of 
relativity. The formalism leading to the establishment of Dirac’s relativistic wave 
equation is quite complex. Several notes related to this subject can be found in the 
references [DIR 67, COH 92, BIÉ 06, ASL 06]. The focus here will be on the 
analysis of the solution of Dirac’s wave equation applied to hydrogen-like systems in 
the weakly relativistic domain. The Hamiltonian for weakly relativistic systems can 
be written as follows: 

H = mc2 + H0 + W                                                                                 [A4.1]  

In equation [A4.1], mc2 is the rest energy of the electron, H0 designates the 
Hamiltonian of a hydrogen-like system in the Coulomb field of potential energy V(r) 
= − Ze2/r and W is the set of relativistic effects that have been ignored in Bohr’s 
theory. The term W is known as fine structure Hamiltonian. In Dirac’s theory, the 
fine structure Hamiltonian appears in the power expansion of v/c of the relativistic 
Hamiltonian H: 
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This expansion features the rest energy of the electron mc2 and the non-
relativistic Hamiltonian H0 (also known as unperturbed Hamiltonian): 
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The fine structure Hamiltonian can then be written according to [A4.1] and 
[A4.2]: 
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[A4.3]  

The terms featuring in this expansion are known as fine structure terms and their 
significance is explained below: 

1) The term related to the electron’s mass variation with velocity: 
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2) The term related to the spin-orbit interaction: 
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3) Darwin’s term taking into account the fact that the nucleus is not a point 
charge; it is also known as contact term: 
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Considering these terms, the fine structure Hamiltonian [A4.3] can be written in 
the following form:  

.......+++= DSOmv WWWW       [A4.4] 

The effects of these various terms are the following: 

– Wmv and WD make it possible to account for the global downward shift of the 
energy levels of the hydrogen-like systems with respect to Bohr semiclassic levels of 
energy; 

– WSO makes it possible to remove the degeneracy of the energy levels 
characterized by the same value of the angular momentum quantum number  , but 
with a different value of the total quantum number sj ±=  , s is the spin of the 

electron. 
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A4.2. Energy of the weakly relativistic hydrogen-like systems 

Finding the exact solution of Dirac’s relativistic wave equation, we have: 
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Expanding expression [A4.5] as powers of ,Za  we have: 
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    [A4.6]

Solution [A4.6] includes the rest energy mc2 of the optical electron of hydrogen-
like systems. Moreover, the relativistic correction introduces a term that is 
proportional to (Zα)4, compared to Bohr energy − (Zα)2/2n2.   

Dirac’s theory makes it possible to account for many phenomena that are not 
explained within Bohr theory, such as the spin of the electron, the fine structure of 
the hydrogen atom, etc., but it is not a complete description of the hydrogen atom. 
For example, it cannot explain the hyperfine structure of the hydrogen atom 
requiring the consideration of the nuclear spin ignored in Dirac’s theory or Lamb 
shift due to zero-point oscillations (T = 0K) of the  phonic vacuum.  

A4.3. Effects of the fine structure perturbing Hamiltonian 

Compared to the rest energy mc2 of the electron, the total energy of hydrogen-
like systems in the weakly relativistic domain is provided by the truncated 
expression according to Dirac’s formula [A4.6]:  








 −
+

−−=
njn

mcZ
n
mcZEnj 4

3

2/1

1

22 3

244

2

222 αα     [A4.7] 
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Similarly, compared to the rest energy mc2 of the electron, the relativistic 
Hamiltonian of hydrogen-like systems can be written in the following form: 

mv
jWHH += 0            [A4.8] 

In expression [A4.8], mv
jW  is known as fine structure Hamiltonian or perturbing 

Hamiltonian, whose mean value is written according to [A4.8]: 








 −
+

−=
njn

mcZW mv
jn 4

3

2/1

1

2 3

244

,
α                                          [A4.9] 

The mean values of the fine structure Hamiltonian for 1s1/2, 2s1/2, 2p1/2, 2p3/2, 
3s1/2, 3p1/2, 3p3/2, 3d3/2 and 3d5/2  quantum levels are the following: 

– 1s1/2 level:             244
2/1,1 8

1 mcZW mv α−=  

– 2s1/2 and 2p1/2 levels:       244
2/1,2 128

5 mcZW mv α−=  

      – 2p3/2 level:                   244
2/3,2 128

1 mcZW mv α−=                                      [A4.10] 

– 3s1/2 and 3p1/2 levels:       244
2/1,3 72

1 mcZW mv α−=  

– 3p3/2 and 3d3/2 levels:       244
2/3,3 216

1 mcZW mv α−=  

– For 3d5/2 level:          244
2/5,3 648

1 mcZW mv α−=  

Results [A4.10] indicate a degeneracy of the energy levels having the same value 
of the internal quantum number j but with a different value of the angular 
momentum quantum number  . 

The effect of the fine structure Hamiltonian mv
jW  on the levels for which n = 1 

and n = 2 of the hydrogen atom can be illustrated using diagrams. Under the effect 
of the fine structure Hamiltonian, the ground level of the hydrogen atom shifts 
downwards with an amount equal to − (1/8)α4mc2 (Figure A4.1). It is worth noting 
that the Hamiltonian mv

jW  features no fine structure on the ground level. Its effect is 

a shift of 1 s1/2 level as a whole. 
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Non-relativistic ground level 0
1E  

 
 

                                 24

8

1 mcα−  

 
           Perturbed ground level 

 
 
 
 
 
 
 
 

Figure A4.1. Effect of the fine structure Hamiltonian on the ground  
level of the hydrogen atom 

As for the first excited level n = 2, the Hamiltonian mv
jW  generates its split into 

three sublevels 2s1/2, 2p1/2 and 2p3/2, all shifted downwards with respect to level n = 
2, as predicted by Bohr theory. These relative shifts are indicated in Figure A4.2.  

 

 

 

 

Figure A4.2. Effect of the fine structure Hamiltonian on the first excited level of the 
hydrogen atom. This level splits into three sublevels. The degeneracy of 2s1/2 and 

2p1/2 is worth noting 

Figure A4.2 indicates that the perturbing Hamiltonian mv
jW does not lift the 

degeneracy of 2 s1/2 and 2 p1/2 levels. Taking into consideration the zero-point 
oscillations of the photonic vacuum removes this degeneracy. This point will be 
clarified in Appendix A5. 

Non-relativistic excited level n = 2 ( 0
2E ) 
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 Appendix 5 

Fine and Hyperfine  
Structures, Natural Width 

A5.1. Lamb shift, physical vacuum 

As already noted, all the quantum states of the hydrogen atom characterized by 
the same value of the principal quantum number n and the total quantum number j 
are degenerate and have therefore the same energy. This is due to the fact that, 
according to Dirac’s relativistic theory, the energy of the hydrogen-like atom does 
not depend on the angular momentum quantum number  .  

Furthermore, in accordance with Dirac’s theory, 2s1/2 and 2p1/2 levels overlap, and 
so do 3s1/2 and 3p1/2  levels, and 3p3/2 and 3 d3/2 levels, as indicated by the mean values 
[A4.10]. To confirm Dirac’s predictions, the degeneracy of 2s1/2 and 2p1/2 levels has 
been verified by analyzing the fine structure of the Hα line of the hydrogen atom.  

In 1947, Willis Eugene Lamb and his student Robert Retherford conducted the 
first experiments related to the electron excitation of hydrogen atoms at the ground 
state [SIV 86]. The initial idea in Lamb and Retherford experiments was that the 
excited 2p1/2 level is unstable, while 2s1/2 level is metastable (the lifetime of the 
hydrogen atom on 2s1/2 level being approximately 108 times longer than in 2p1/2 state).  

Moreover, 2p1/2 → 1s1/2 electron transition is allowed by the selection rule Δ  = 
± 1, whereas 2s1/2 → 1s1/2 transition is forbidden, since Δ  = 0. Therefore, 2p1/2 → 
1s1/2 electron transition is 108 faster than 2s1/2 → 1s1/2 transition (given that the 
lifetime of an atom in an excited state is equal to the inverse of the probability of 
spontaneous transition between the excited state and the underlying state).  

                            
For color versions of the figures in this book, see www.iste.co.uk/sakho/quantum1.zip. 
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The simplified experimental set-up used by Lamb and Retherford is 
schematically shown in Figure A5.1.  

 

 

 

 

Figure A5.1. Lamb and Retherford experimental setup 

Dihydrogen molecules are thermally dissociated in furnace F. The resulting 
hydrogen atoms are all in ground state 1s1/2. The atoms with horizontal velocities 
escape and hit a metallic target C that is connected to a galvanometer G. In this case, 
the galvanometer indicates no passage of electric current. This proves that the atoms 
are actually in the ground state, hence there is no energy transfer between these 
atoms and the free electrons in target C.  

Making the junction of the atom beam with an electron beam some atoms are 
excited and pass to 2s1/2 and 2p1/2 states. Atoms that are in 2p1/2 state de-excite 
almost instantaneously and never reach the target. Only the atoms brought to 
metastable 2s1/2 state can reach the target. When they hit the target, they transfer an 
excitation energy of 10.2 eV (13.6 – 3.4 eV) to the free electrons in the target. This 
generates a flow of electrons and consequently the presence of an electric current 
that is sensed by the galvanometer. Assuming that 2s1/2 and 2p1/2 states do not 
overlap, the action of a magnetic field (of cyclic variation) on the hydrogen atoms 
that are in metastable 2s1/2 state generates stimulated transitions between 2s1/2 and 
2p1/2 states. 

When the rotational frequency of the magnetic field is equal to the frequency of 
the line of transition between 2s1/2 and 2p1/2 states, magnetic resonance takes place 
(as result of the magnetic moment constantly directing the total angular momentum 
of the atom in parallel or antiparallel direction with respect to the magnetic field).  
Since 2s1/2 levels are above 2p1/2 level, excited hydrogen atoms pass from 2s1/2 level 
to 2p1/2 level, then instantaneously to ground level 1s1/2. This is why some atoms that 
are in metastable state 2s1/2 de-excite to 2p1/2 state and never manage to reach the 
target. This leads to a decrease in the current intensity measured by the 
galvanometer. The minimum current intensity is then observed at resonance or when 
the speed of transitions between 2s1/2 and 2p1/2 states stimulated by the acting 
magnetic field is maximal.  
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Noting the minimum of this intensity enables us to determine the resonance 
frequency of the magnetic field, as well as the energy gap between the two quantum 
states 2s1/2 and 2p1/2. Lamb and Retherford experiments have shown that subshells 
2s1/2 and 2p1/2 of the hydrogen atom are distinct and separated by a distance of 
1,057.845 ± 0.09 MHz (Figure A5.2). This difference, and more generally any  
frequency difference between fine structure levels characterized by the same value 
of the principal quantum number n and internal quantum number j, but by different 
values of the angular momentum quantum number  is known as Lamb shift.  

Let us note that since 2s1/2 level is above 2p1/2 level, 2s1/2 → 2p1/2 transitions that 
are allowed by the selection rule Δ  = ±1 can take place in the absence of any 
external field. Nevertheless, knowing that the probability of spontaneous transition 
is proportional to the cube of the frequency of the transition between the respective 
levels (see [A5.25]), then 2s1/2 → 2p1/2 transition has an extremely weak probability 
to occur, given that the difference between these two levels is very small. 

                                    2 p3/2 

  
 
         9910 MHz 
                          
                       

                                             2 s1/2 

        1057.80 MHz           

                                              2 p1/2 

 

 

Figure A5.2. Lamb shift of 2s1/2 and 2p1/2 levels 

In general, the mean lifetime of the excited states of atomic systems is of about 
10−6–10−8 s. The 2s1/2 state has a lifetime of 10−4 s. This is 100 to 10,000 times longer 
than the mean lifetime of an excited state. The 2s1/2 level is thus described as 
metastable state. Figure A5.3 illustrates the relative position of 2s1/2, 2p1/2 and 2p3/2 
levels observed in Lamb and Retherford experiments. 

 2s 2p 

 
                                                      
 

                                  
                                         

 
                                            

2 s1/2

2 p3/2

2 p1/2

0.330 cm − 1       

0.035 cm − 1       

 
Figure A5.3. Relative positions of 2s1/2, 2p1/2 and 2p3/2 levels into  

which the n = 2 excited level of the hydrogen atom splits 
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The degeneracy of 2s2p levels, its lifting under the effect of the fine structure 
Hamiltonian and the Lamb shift of 2s1/2 and 2p1/2 levels are particularly worth noting 
in this figure. 

Willis Eugene Lamb was an American physicist. In 1947, Lamb and his student Robert 
Retherford observed the Lamb shift. He was awarded half of the 1955 Nobel Prize for 
physics “for his discoveries related to the fine structure of the hydrogen atom spectrum”.  
The other half was awarded to the German-American physicist Polykarp Kusch (1911–
1993) for having very precisely determined the magnetic moment of the electron. 

Box A5.1. Lamb (1913–2008) 

A5.2. Hyperfine interaction, nuclear spin of the hydrogen atom 

If the finite dimensions of the atomic nucleus and its motion-related effects are 
ignored, the energy of an atom is influenced only by the Coulombian nucleus – 
electrons and electron – electron interactions, as well as by the mutual interactions 
between electron spins (spin-spin coupling), the interaction between the orbital and 
spin magnetic moments of the electrons (spin-orbit coupling) and the dependence of 
electron mass on velocity, which is significant for the inner electrons of heavy 
atoms. If the nuclear spin denoted by I is non-zero, the spin magnetic moment of the 
nucleus and the orbital and spin magnetic moments of the electron interact. This 
interaction generates what is known as hyperfine structure.  

In 1928, the Russian physicists Dobretsov and Terenin, and independently the 
German physicist Schüler, discovered the hyperfine structure of sodium 23Na [FRI 
85] when studying the radiative transition 3 2S1/2 → 3 2P1/2,3/2. This transition 
corresponds to doublets denoted D1 and D2 of respective wavelengths λ1 = 589.5930 
nm (3 2P1/2 → 3 2S1/2 transition) and λ2 = 588.9963 nm (3 2P3/2 → 3 2S1/2 transition). 
According to these studies, each of D1 and D2 lines splits into two other lines 
distanced by 2.3 pm and 2.1 pm, respectively (Figure A5.4) [SAK 08]. However, 
given the improvement of spectroscopic measurements, it was noted that in fact line 
D1 splits into four components (quadruplet) and line D2 into six components 
(sextuplet).  

Taking the nuclear spin into consideration makes it possible to explain the split 
of D1 and D2 lines into several components or the hyperfine structure of the yellow 
line D of sodium. The electron configuration of the ground state of sodium 23Na is: 
1s2 2s2 2p6 3s1. Knowing that the valence electron occupies the state 3s1 (n = 3,  = 0, 
1 or 2), using the spectroscopic notation 2S + 1LJ, the following spectral terms are 
obtained: S = 1/2   level multiplicity 2S + 1 = 2; for   = 0, J = 1/2: the spectral 
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term 3 2S1/2 is obtained; for  = 1, J = 1/2 or 3/2: two spectral terms 3 2P1/2 and 3 
2P3/2 are obtained. 

 

 

 

 

 

 

 

Figure A5.4. Hyperfine structure of sodium D1 and D2 lines 

Moreover, if J is the total angular momentum summing the orbital and spin 

angular momenta of the valence electrons and I is the spin nuclear momentum, then 

the total angular momentum F of the atom is defined by the following relation: 

IJF +=           [A5.1] 

The quantum number F takes all the values ranging between J + I  and  |J − I|, 
therefore a total of (2I +1) values (if J  ≥  I). If  J  ≤  I, F takes a total of (2J + 1) 
values.  

For sodium 23, the nuclear spin is I = 3/2.  

– for 3 2S1/2 and 3 2P1/2 terms, J = 1/2, therefore there are 2J + 1 = 2 values for F, 
hence: F = 3/2 +1/2 = 2 and F = 3/2 − 1/2 = 1 

– for  3 2P3/2 term, J = 3/2; therefore 2J +1 = 2I +1 = 4 values for F; hence: F = 
3/2 + 3/2 = 3; F = 3/2 + 3/2 – 1 = 2 ; F = 3/2 + 3/2 – 2 = 1 and finally F = 3/2 − 3/2  
= 0 
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In addition, for the hydrogen atom, the nuclear spin is I = 1/2 and the total 
quantum number is J = 1/2. Then the quantum number F takes the values 0 and 1. 
The hyperfine transition 1 → 0 then generates the 21 cm wavelength (1,420 MHz; 
5.9 × 10 − 6 eV) line emitted by hydrogen in interstellar space. This line discovered in 
1951 by Edward Mills Purcell and Harold Ewen marked the beginning of radio 
astronomy. The development in 1963 of the hydrogen maser made it possible to 
measure with excellent precision the frequency of 1 → 0 transition, hence:  

ν = 1420405751.768 ± 0.001 Hz 

Edward Mills Purcell was an American physicist. He is especially well-known for his 
works on nuclear magnetic resonance. He shared the 1952 Nobel Prize for physics with 
the Swiss physicist Felix Bloch (1905–1983) “for their development of new methods for 
fine nuclear magnetic measurements and the subsequent discoveries”.  

Harold Ewen was an American radio astronomer. He is especially known for his 
discovery together with Purcell of the 21 cm wavelength line of the hydrogen atom.  

Box A5.2. Purcell (1912–1997); Ewen (1922–2015)  

A5.3. Anomalous Zeeman effect on the yellow line of sodium 

Taking the electron spin into account, the experiments show that when a sodium 
atom is exposed to a uniform magnetic field, D1 line splits into four components and 
D2 line into six components. Our objective here is to theoretically verify these 
observations. A sodium atom in a magnetic field has the following energy: 

BEE J ⋅−= M0          [A5.2] 

In [A5.2], the magnetic moment JM of the atom is given by: 

JgJ γ=M                                     [A5.3] 

In [A5.3], the quantity g designates what is known as Landé factor, defined by 
the following expression: 

1 1

2 2 1
s sg g g g S( S ) L( L )g

J( J )
+ - + - +

= + ´
+

 
   [A5.4]  
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Knowing that g  = 1 and gs = 2, Landé factor [A5.4] can be written in the 

following form: 

)1(2

)1()1(

2

3

+
+−++=

JJ
LLSSg                           [A5.5] 

Inserting [A5.3] in [A5.2] and considering that the projection of the angular 
momentum on the direction of the magnetic field is quantified, we obtain: 

BgmEE Jγ−= 0         [A5.6]                  

Inserting Larmor frequency Ω in this relation, we have: 

Ω+= JgmEE 0   [A5.7] 

Formula [A5.7] determines the fine structure of the energy levels of the sodium 
atom and, consequently, the number of sublevels into which each level splits under 
the action of the magnetic field (assumed weak, to avoid the emergence of Paschen–
Back effect). Radiative transitions between sublevels are governed by the selection 
rules: 

0,1±=JmΔ                             [A5.8]
  

Let us now theoretically explain the anomalous Zeeman effect on sodium D1 and 
D2 lines corresponding, respectively, to 32P1/2 → 32S1/2 and 32P3/2 → 3 2S1/2 electron 
transitions. We first evaluate the Landé factor for each of these three sublevels 
32P3/2, 3

2P1/2 and 32S1/2. Using [A5.11], we find: 

– for 32P3/2 : L = 1, S = 1/2, J = 3/2  g =  4/3 

– for 32P1/2 : L = 1, S = 1/2, J = 1/2  g =  2/3 

– for 32S1/2: L = 0, S = 1/2, J = 1/2  g = 2 

According to [A5.13], the frequencies of the emitted lines are given by the 
relation: 

0 JE E ( gm )D =D +D W                            [A5.9]  

It is worth noting that in [A5.9] Landé factor is not constant, therefore the 
variation of (gmJ) product should be taken into account. We therefore obtain: 

 ω = ω0 + Δ (gmJ)Ω                         [A5.10] 
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The values of quantities mJ and gmJ relative to the three sublevels 32P3/2, 3
2P1/2 

and 32S1/2 of the fine structure are grouped in Table A5.1 (in this table, the total 
magnetic quantum number mJ takes values from − J to + J). 

 2P3/2
 2P1/2

2S1/2
 

mJ
 − 3/2 − 1/2

 
+ 1/2 + 3/2 − 1/2 +1/2 − 1/2 +1/2

 

gmJ
 − 2 − 2/3

 
+ 2/3 + 2 − 1/3 +1/3 − 1 +1

 

Table A5.1. Values of quantities mJ and gmJ relative to levels 3 2P3/2, 3 2P1/2  
and 3 2S1/2 of the sodium atom 

Using formula [A5.10] and the results summarized in Table A5.1, we determine 
the frequencies of the allowed lines resulting from the transitions between the fine 
structure sublevels of the sodium atom.  The results summarized in Table A5.2 show 
that the 32P1/2 → 32S1/2 line splits into four components, while the 32P3/2 → 32S1/2 
line splits into six components, which confirms the experimental observations. 

Transition Line: 3 2P1/2 → 3 2S1/2 

mJ
(1) → mJ

(2) (gmJ)1 → (gmJ)2 Frequency  

− 1/2 → +1/2 −1/3 − 1 = − 4/3 ω0 − (4/3)Ω 

− 1/2 → − ½ −1/3 + 1 = 2 /3 ω0 + (2/3)Ω 

+1/2 → +1/2 1/3 − 1 = − 2/3 ω0 − (2/3)Ω 

+1/2 → − ½ −1/3 +1 =  4/3 ω0 + (4/3)Ω 

− 1/2 → +1/2 −1/3 − 1 = − 4/3 ω0 − (4/3)Ω 

− 3/2 → +1/2 Forbidden − 

− 3/2 → − 1/2 −2 + 1 = −1 ω0 − Ω 

− 1/2 → +1/2 −2 /3 − 1 = − 5/3 ω0 − (5/3)Ω 

− 1/2 → −1/2 −2/3 + 1 =  1/3 ω0 + (1/3)Ω 

+1/2 → +1/2 2/3 − 1 =  − 1/3 ω0 − (1/3)Ω 

+1/2 → −1/2 2/3 + 1 =   5/3 ω0 + (5/3)Ω 

+3/2 → +1/2 2 − 1 =  1 ω0 + Ω 

+3/2 → −1/2 Forbidden − 

Table A5.2. Frequencies of allowed lines corresponding to transitions between the 
32P3/2, 3

2P1/2 and 32S1/2 fine structure sublevels of the sodium atom 



Appendix 5     301 
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                                             x 
 

Substance 

Figure A5.5 presents a schematic illustration of the anomalous Zeeman effect on 
sodium D1 and D2 lines. Theoretical predictions (Cal) are compared to experimental 
data (Obs) [CHP 78, SAK 08]. 
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Figure A5.5. Anomalous Zeeman effect on sodium D1 and D2 lines  

A5.4. Lifetime of excited states 

As already explained in Chapter 4, the experiments show that a given spectral 
line has a natural width (Figure 4.9) that can be explained based on the fourth 
Heisenberg’s time-energy uncertainty relation [4.60]. 

 

 

Figure A5.6. Light beam of frequency ν  crossing a substance of thickness dx 

One of the indirect methods for determining lifetime relies on the study of 
absorption lines. For this purpose, let us consider a light beam of frequency ν and 
initial intensity J0ν penetrating a given substance of thickness dx (Figure A5.6). 
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Light is partly absorbed when crossing through the substance, which results in an 
attenuation of intensity Jν. 

The decrease in intensity dJν  is then written as: 

dxJadJ ννν −=        [A5.11] 

In this expression, aν designates the coefficient of absorption of the studied 
substance. The variation of the coefficient of absorption as a function of frequency 
in the range of the absorbed line is shown in Figure A5.7.  

 

 

 

Figure A5.7. Variation of the coefficient of absorption aν of a substance  
as a function of frequency 

The area enclosed by the contour of the line of width at half-height Δν and the 
abscissa axis is given by the following integral relation:  

τπ
λνν

N
g
gda ⋅⋅=

1

2
2
0

8
        [A5.12] 

In relation [A5.12], λ0 designates the light wavelength corresponding to the 
maximum of absorption (ν0 = c/λ0), g1 and g2 are the statistical weights of the energy 
levels between which absorption occurs, N is the number of atoms in 1 cm3 of 
substance and τ is the mean lifetime of atoms in the considered excited state. 
Determining the area enclosed by the absorption curve (Figure A5.7) makes it 
possible to measure the natural width of the spectral line, since Δν = ΔE/ ∼ 1/τ.   

In the general case, the lifetime is of the order of 10–8 to 10–7 s and in some cases 
it can reach 10–6 s, as for example in the case of the 51S0 – 53P1 transition line of 
cadmium Cd (Table A5.3).   

Appendix A2 has introduced Einstein integral coefficient of spontaneous 
emission A21 [A2.16] reflecting the probability of spontaneous transition 2 → 1 

aν                                                                          
                         

     
2
maxνa

                    

ν0 ν 

aνmax 
Δν 
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(Figure A2.1) per time unit of the considered quantum system µ. This coefficient is 
therefore expressed in s−1. In what follows, we shall prove that the lifetime of an 
excited state is the inverse of coefficient A21.  

Let N2 (t) be the number of quantum systems filling the higher level 2 (Figure 
A2.1) at the moment t. The number dN2 of transitions of the quantum systems 
toward the lower level 1 between t and t + dt is given by the expression: 

− dN2 (t) = A21N2 (t)dt  [A5.13] 

The “−” sign before the left term of equation [A5.13] reflects the decrease in 
time of population N2 (t). The integration of [A5.13] between the limits t = 0 and t 
leads to: 

eNtN tA21
202

−=)(                  [A5.14] 

As already specified in Chapter 4, the lifetime of an excited state cannot be 
rigorously determined due to the randomness of the de-excitation of the levels of 
quantum systems.  

A quantum system that is in excited state at moment t can deexcite at moment t + 
dt or remain in excited state for an infinitely long duration. This is why the overall 
lifetime of the quantum system is first determined and then the mean lifetime is 
deduced.  

In the time interval between t and t + dt,− dN2 quantum systems have de-excited. 
Each of these quantum systems has therefore lived a duration t in excited state. The 
lifetime dT of − dN2 quantum systems is then: 

dT = − tdN2 (t)  [A5.15] 

Using [A5.13] and [A5.14], relation [A5.15] is written as: 

dtNAdT et tA212021
−=   [A5.16] 

The overall lifetime is obtained by integrating equation [A5.16] between the time 
limits 0 and ∞, hence: 


∞

−=
0

21
2021 dtteNAT tA   [A5.17] 
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Integral [A5.17] is of the type: 

 
∞

+
− =

0
1

!
n

xn ndxex
α

α  

This then gives: 

 
( ) 2

21
2021

1

A
NAT ×=  

Hence: 

21

20
A
NT =   [A5.18] 

The mean lifetime is then T/N20, which according to [A5.18] is: 

21

1

A
=τ   [A5.19] 

CONCLUSION.– The mean lifetime of a quantum system is inversely proportional to 
the probability of spontaneous transitions. 

As an example, let us estimate the lifetime in the visible range. 

Einstein coefficient A21 depends on the squares of the matrix elements |d21|
2 of 

(electric or magnetic) dipole transitions of the quantum system µ and on the cubes 
of the dipole transition frequency ω21. According to quantum electrodynamics [CHP 
78], we have: 

3

3
21

2
21

21
3

4

c
d

A


ω
=   [A5.20] 

Knowing that ω = 2πc/λ, expression [A5.20] can be written as:  

3
21

2
21

3

21 3

32

λ
π


d
A =   [A5.21] 

Given data. λ21 = 500 nm, d21 = 1 D (Debye symbol, 1D = 10−18 uemcgs); c = 3 × 
1010 cm ⋅ s−1;  = 1.05 × 10−27 erg ⋅ s 
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Relation [A5.21] gives: 

A21 = 2.52 × 106 s− 1s 

Or according to [A5.19]:  

τ ≈ 4.0 × 10−7 s 

Table A5.3 summarizes several values of the mean lifetime in excited states of a 
certain number of atomic systems.  

Atom  Transition Wavelength (Å) Lifetime (s) 

H 2 2P — 1 2S1/2 1,216 1.2 × 10−8 

Na 3 2P — 3 2S1/2      5,896.59 1.6 × 10−8 

K 4 2P — 4 2S1/2      7,699.76 2.7 × 10−8 

Cd 5 3P1 — 5 1S0 3,261 2.5 × 10−6 

Hg 6 3P1 — 6 1S0 2,537 1.0 × 10−7 

Table A5.3. Mean lifetime of the excited states of several atomic systems 

NOTE.– Let us estimate the natural width ΔE of the ultraviolet line λ = 253.7 nm of 
the mercury atom. The lifetime of the excited state is τ = 1.0 × 10–7 s (see Table 
A5.3). According to Heisenberg’s fourth uncertainty relation:  

 ΔE/ ∼ 1/τ   ΔE ∼ /τ = h/(2πτ) 

N.A.– ΔE = 6.63×10–34/(2×π×10–7×1.6×10–19
) = 6.6×10–9 eV 

A5.5. Doppler effect, broadening of lines 

From an experimental perspective, it is difficult to measure width Δν  or ΔE (ΔE 
= hΔν) because of the influences due, on the one hand, to interactions between 
atoms and, on the other hand, to Doppler effect. By definition, the Doppler effect is 
the variation of the frequency of a light signal when the source and the emitter are in 
relative motion.  If quantum systems in gaseous state collide, their mean lifetimes 
become shorter than their natural lifetimes. This generates an additional broadening 
known as collisional broadening Δωcol [CHP 78]. This collisional broadening 
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increases with the pressure of the gas constituting the quantum systems. 
Consequently, the stronger the gas rarefaction, the more we have Δωcol → 0.  

Moreover, the dispersion of quantum systems velocities generates a broadening 
of the spectral lines by Doppler effect. To explain this effect, let us consider a 
quantum system S at rest with respect to a reference frame R0 that is in uniform 
rectilinear motion with velocity v with respect to an observer O attached to a fixed 
reference frame R (Figure A5.8). According to the laws of transformation of the 
wave four-vector ( )ck /, ω , we have [GRO 85]: 
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[A5.22]

 

In the transformation relations [A5.22],  

cv /=β  and ( ) 2121 /
)(

−−= βγ v .                                         [A5.23] 

 

 

 

 

Figure  A5.8. A quantum system S emits a wave whose wave vector is 


0k in the 
reference frame R0. With respect to the reference frame R attached to the fixed 

observer O, the wave vector is denoted by 

k  

Knowing that the projection kx of the wave vector along the axis Ox in the 
reference frame R is equal to kx = − kcosθ, the fourth relation among the 
transformation relations [A5.22] gives: 

( )θβωγω cos// )( kcc v +=0   [A5.24] 
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Knowing that k = ω/c, this leads to: 

( )θβωγω cos)( += 10 v   [A5.25] 

Replacing γ(v) and β  by their expressions [A5.22], we finally get: 

θ
ωω

cos

/

c
v

cv

+

−
=

1

1 22

0
   [A5.26] 

For weakly relativistic quantum systems, expression [A5.26] becomes: 







 −≅ θωω cos

c
v

10
  [A5.27] 

Expression [A5.27] shows that Doppler broadening disappears if radiation is 
emitted perpendicularly to the observation direction (θ = π/2). 
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