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Preface

Preface to the second edition
Oneof the main goals motivating this new edition was to enhance the

elementary material. To this end, in addition to some rewriting and reorgani-
zation, several new sections have been added (covering, for example, spin, and
conservation laws), resulting in a fairly complete coverage of elementary topics.

A second main goal was to address the key physical issues of stability of
atoms and molecules, and mean-field approximations of large particle systems.
This is reflected in new chapters covering the existence of atoms and molecules,
mean-field theory, and second quantization.

Our final goal was to update the advanced material with a view toward
reflecting current developments, and this led to a complete revision and reor-
ganization of the material on the theory of radiation (non-relativistic quantum
electrodynamics), as well as the addition of a new chapter.

In this edition we have also added a number of proofs, which were omitted
in the previous editions. As a result, this book could be used for senior level
undergraduate, as well as graduate, courses in both mathematics and physics
departments.

Prerequisites for this book are introductory real analysis (notions of vec-
tor space, scalar product, norm, convergence, Fourier transform) and com-
plex analysis, the theory of Lebesgue integration, and elementary differential
equations. These topics are typically covered by the third year in mathematics
departments. The first and third topics are also familiar to physics undergrad-
uates. However, even in dealing with mathematics students we have found it
useful, if not necessary, to review these notions, as needed for the course.
Hence, to make the book relatively self-contained, we briefly cover these sub-
jects, with the exception of Lebesgue integration. Those unfamiliar with the
latter can think about Lebesgue integrals as if they were Riemann integrals.
This said, the pace of the book is not a leisurely one and requires, at least for
beginners, some amount of work.

Though, as in the previous two issues of the book, we tried to increase
the complexity of the material gradually, we were not always successful, and



VI Preface

first in Chapter 12, and then in Chapter 18, and especially in Chapter 19,
there is a leap in the level of sophistication required from the reader. One
may say the book proceeds at three levels. The first one, covering Chapters 1-
11, is elementary and could be used for senior level undergraduate, as well as
graduate, courses in both physics and mathematics departments; the second
one, covering Chapters 12 - 17, is intermediate; and the last one, covering
Chapters 18 - 22, advanced.

During the last few years since the enlarged second printing of this book,
there have appeared four books on Quantum Mechanics directed at mathe-
maticians:
F. Strocchi, An Introduction to the Mathematical Structure of Quantum Me-
chanics: a Short Course for Mathematicians. World Scientific, 2005.
L. Takhtajan, Quantum Mechanics for Mathematicians. AMS, 2008.
L.D. Faddeev, O.A. Yakubovskii, Lectures on Quantum Mechanics for Math-
ematics Students. With an appendix by Leon Takhtajan. AMS, 2009.
J. Dimock, Quantum Mechanics and Quantum Field Theory. Cambridge Univ.
Press, 2011.
These elegant and valuable texts have considerably different aims and rather
limited overlap with the present book. In fact, they complement it nicely.

Acknowledgment: The authors are grateful to I. Anapolitanos, Th. Chen, J.
Faupin, Z. Gang, G.-M. Graf, M. Griesemer, L. Jonsson, M. Merkli, M. Mück,
Yu. Ovchinnikov, A. Soffer, F. Ting, T. Tzaneteas, and especially J. Fröhlich,
W. Hunziker and V. Buslaev for useful discussions, and to J. Feldman, G.-M.
Graf, I. Herbst, L. Jonsson, E. Lieb, B. Simon and F. Ting for reading parts
of the manuscript and making useful remarks.

Vancouver/Toronto, Stephen Gustafson
May 2011 Israel Michael Sigal

Preface to the enlarged second printing
For the second printing, we corrected a few misprints and inaccuracies; for

some help with this, we are indebted to B. Nachtergaele. We have also added
a small amount of new material. In particular, Chapter 11, on perturbation
theory via the Feshbach method, is new, as are the short sub-sections 13.1
and 13.2 concerning the Hartree approximation and Bose-Einstein condensa-
tion. We also note a change in terminology, from “point” and “continuous”
spectrum, to the mathematically more standard “discrete” and “essential”
spectrum, starting in Chapter 6.

Vancouver/Toronto, Stephen Gustafson
July 2005 Israel Michael Sigal



Preface VII

From the preface to the first edition
The first fifteen chapters of these lectures (omitting four to six chapters

each year) cover a one term course taken by a mixed group of senior under-
graduate and junior graduate students specializing either in mathematics or
physics. Typically, the mathematics students have some background in ad-
vanced analysis, while the physics students have had introductory quantum
mechanics. To satisfy such a disparate audience, we decided to select material
which is interesting from the viewpoint of modern theoretical physics, and
which illustrates an interplay of ideas from various fields of mathematics such
as operator theory, probability, differential equations, and differential geome-
try. Given our time constraint, we have often pursued mathematical content
at the expense of rigor. However, wherever we have sacrificed the latter, we
have tried to explain whether the result is an established fact, or, mathemat-
ically speaking, a conjecture, and in the former case, how a given argument
can be made rigorous. The present book retains these features.

Vancouver/Toronto, Stephen Gustafson
Sept. 2002 Israel Michael Sigal
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1

Physical Background

The starting point of quantum mechanics was Planck’s idea that electromag-
netic radiation is emitted and absorbed in discrete amounts – quanta. Einstein
ventured further by suggesting that the electro-magnetic radiation itself con-
sists of particles, which were then named photons. These were the first quan-
tum particles and the first glimpse of wave-particle duality. Then came Bohr’s
model of an atom, with electrons moving on fixed orbits and jumping from or-
bit to orbit without going through intermediate states. This culminated first in
Heisenberg and then in Schrödinger quantum mechanics, with the next stage
incorporating quantum electro-magnetic radiation accomplished by Jordan,
Pauli, Heisenberg, Born, Dirac and Fermi.

To complete this thumbnail sketch we mention two dramatic experiments.
The first one was conducted by E. Rutherford in 1911, and it established the
planetary model of an atom with practically all its weight concentrated in
a tiny nucleus (10−13 − 10−12 cm) at the center and with electrons orbiting
around it. The electrons are attracted to the nucleus and repelled by each
other via the Coulomb forces. The size of an atom, i.e. the size of electron
orbits, is about 10−8 cm. The problem is that in classical physics this model
is unstable.

The second experiment is the scattering of electrons on a crystal conducted
by Davisson and Germer (1927), G.P. Thomson (1928) and Rupp (1928), after
the advent of quantum mechanics. This experiment is similar to Young’s 1805
experiment confirming the wave nature of light. It can be abstracted as the
double-slit experiment described below. It displays an interference pattern for
electrons, similar to that of waves.

In this introductory chapter, we present a very brief overview of the basic
structure of quantum mechanics, and touch on the physical motivation for
the theory. A detailed mathematical discussion of quantum mechanics is the
focus of the subsequent chapters.
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1.1 The Double-Slit Experiment

Suppose a stream of electrons is fired at a shield in which two narrow slits
have been cut (see Fig. 1.1.) On the other side of the shield is a detector
screen.

shield

screen

slits
electron

gun

Fig. 1.1. Experimental set-up.

Each electron that passes through the shield hits the detector screen at
some point, and these points of contact are recorded. Pictured in

are the intensity distributions observed on the screen when either of
the slits is blocked.

1P  (brightness)

Fig.1.2. First slit blocked.

Fig. 1.3
Fig. 1.2 and
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2P 

Fig.1.3. Second slit blocked.

When both slits are open, the observed intensity distribution is shown in
Fig. 1.4.

1 2P = P  + P 

Fig.1.4. Both slits open.

Remarkably, this is not the sum of the previous two distributions; i.e.,
P �= P1 + P2. We make some observations based on this experiment.

1. We cannot predict exactly where a given electron will hit the screen, we
can only determine the distribution of locations.

2. The intensity pattern (called an interference pattern) we observe when
both slits are open is similar to the pattern we see when a wave propagates
through the slits: the intensity observed when waves E1 and E2 (the waves
here are represented by complex numbers encoding the amplitude and
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phase) originating at each slit are combined is proportional to |E1+E2|2 �=
|E1|2 + |E2|2 (see Fig. 1.5).

Fig.1.5. Wave interference.

We can draw some conclusions based on these observations.

1. Matter behaves in a random way.
2. Matter exhibits wave-like properties.

In other words, the behaviour of individual electrons is intrinsically random,
and this randomness propagates according to laws of wave mechanics. These
observations form a central part of the paradigm shift introduced by the theory
of quantum mechanics.

1.2 Wave Functions

In quantum mechanics, the state of a particle is described by a complex-valued
function of position and time, ψ(x, t), x ∈ R

3, t ∈ R. This is called a wave
function (or state vector). Here R

d denotes d-dimensional Euclidean space,
R = R

1, and a vector x ∈ R
d can be written in coordinates as x = (x1, . . . , xd)

with xj ∈ R.
In light of the above discussion, the wave function should have the following

properties.

1. |ψ(·, t)|2 is the probability distribution for the particle’s position. That
is, the probability that a particle is in the region Ω ⊂ R

3 at time t is∫
Ω
|ψ(x, t)|2dx. Thus we require the normalization

∫
R3 |ψ(x, t)|2dx = 1.

2. ψ satisfies some sort of wave equation.

For example, in the double-slit experiment, if ψ1 gives the state beyond the
shield with the first slit closed, and ψ2 gives the state beyond the shield with
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the second slit closed, then ψ = ψ1 + ψ2 describes the state with both slits
open. The interference pattern observed in the latter case reflects the fact that
|ψ|2 �= |ψ1|2 + |ψ2|2.

1.3 State Space

The space of all possible states of the particle at a given time is called the state
space. For us, the state space of a particle will usually be the square-integrable
functions:

L2(R3) := {ψ : R
3 → C |

∫

R3
|ψ(x)|2dx <∞}

(we can impose the normalization condition as needed). This is a vector space,
and has an inner-product given by

〈ψ, φ〉 :=
∫

R3
ψ̄(x)φ(x)dx.

In fact, it is a Hilbert space (see Section 23.2 for precise definitions and math-
ematical details).

1.4 The Schrödinger Equation

We now give a motivation for the equation which governs the evolution of
a particle’s wave function. This is the celebrated Schrödinger equation. An
evolving state at time t is denoted by ψ(x, t), with the notation ψ(t)(x) ≡
ψ(x, t).

Our equation should satisfy certain physically sensible properties.

1. Causality: The state ψ(t0) at time t = t0 should determine the state ψ(t)
for all later times t > t0.

2. Superposition principle: If ψ(t) and φ(t) are evolutions of states, then
αψ(t) + βφ(t) (α, β constants) should also describe the evolution of a
state.

3. Correspondence principle: In “everyday situations,” quantum mechanics
should be close to the classical mechanics we are used to.

The first requirement means that ψ should satisfy an equation which is first-
order in time, namely

∂

∂t
ψ = Aψ (1.1)

for some operatorA, acting on the state space. The second requirement implies
that A must be a linear operator.

We use the third requirement – the correspondence principle – in order
to find the correct form of A. Here we are guided by an analogy with the
transition from wave optics to geometrical optics.
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Wave Optics → Geometrical Optics


 


Quantum Mechanics→ Classical Mechanics

In everyday experience we see light propagating along straight lines in accor-
dance with the laws of geometrical optics, i.e., along the characteristics of the
equation

∂φ

∂t
= ±c|∇xφ| (c = speed of light), (1.2)

known as the eikonal equation. On the other hand we know that light, like
electro-magnetic radiation in general, obeys Maxwell’s equations which can
be reduced to the wave equation (say, for the electric field in the complex
representation)

∂2u

∂t2
= c2Δu, (1.3)

where Δ =
∑3

j=1 ∂
2
j is the Laplace operator, or the Laplacian (in spatial

dimension three).
The eikonal equation appears as a high frequency limit of the wave equa-

tion when the wave length is much smaller than the typical size of objects.
Namely we set u = ae

iφ
λ , where a and φ are real and O(1) and λ > 0 is the

ratio of the typical wave length to the typical size of objects. The real function
φ is called the eikonal. Substitute this into (1.3) to obtain

ä+ 2iλ−1ȧφ̇− λ−2aφ̇2 + iλ−1aφ̈

= c2(Δa+ 2iλ−1∇a · ∇φ− λ−2a|∇φ|2 + λ−1aΔφ)

(where dots denote derivatives with respect to t). In the short wave approxi-
mation, λ� 1 (with derivatives of a and φ O(1)), we obtain

−aφ̇2 = −c2a|∇φ|2,

which is equivalent to the eikonal equation (1.2).
An equation in classical mechanics analogous to the eikonal equation is

the Hamilton-Jacobi equation

∂S

∂t
= −h(x,∇S), (1.4)

where h(x, k) is the classical Hamiltonian function, which for a particle of mass
m moving in a potential V is given by h(x, k) = 1

2m |k|2 + V (x), and S(x, t)
is the classical action. We would like to find an evolution equation which
would lead to the Hamilton-Jacobi equation in the way the wave equation
led to the eikonal one. We look for a solution to equation (1.1) in the form
ψ(x, t) = a(x, t)eiS(x,t)/�, where S(x, t) satisfies the Hamilton-Jacobi equation
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(1.4) and � is a parameter with the dimensions of action, small compared to a
typical classical action for the system in question. Assuming a is independent
of �, it is easy to show that, to leading order, ψ then satisfies the equation

i�
∂

∂t
ψ(x, t) = − �

2

2m
Δxψ(x, t) + V (x)ψ(x, t). (1.5)

This equation is of the desired form (1.1). In fact it is the correct equation, and
is called the Schrödinger equation. The small constant � is Planck’s constant;
it is one of the fundamental constants in nature. For the record, its value is
roughly

� ≈ 6.6255× 10−27 erg sec.

The equation (1.5) can be written as

i�
∂

∂t
ψ = Hψ (1.6)

where the linear operator H , called a Schrödinger operator, is given by

Hψ := − �
2

2m
Δψ + V ψ.

Example 1.1 Here are just a few examples of potentials.

1. Free motion : V ≡ 0.
2. A wall: V ≡ 0 on one side, V ≡ ∞ on the other (meaning ψ ≡ 0 here).
3. The double-slit experiment: V ≡ ∞ on the shield, and V ≡ 0 elsewhere.
4. The Coulomb potential : V (x) = −α/|x| (describes a hydrogen atom).
5. The harmonic oscillator : V (x) = mω2

2
|x|2.

We will analyze some of these examples, and others, in subsequent chapters.





2

Dynamics

The purpose of this chapter is to investigate the existence and a key property
– conservation of probability – of solutions of the Schrödinger equation for
a particle of mass m in a potential V . The relevant background material on
linear operators is reviewed in the Mathematical Supplement Chapter 23.

We recall that the Schrödinger equation,

i�
∂ψ

∂t
= Hψ (2.1)

where the linear operator H = − �
2

2m
Δ + V is the corresponding Schrödinger

operator, determines the evolution of the particle state (the wave function),
ψ. We supplement equation (2.1) with the initial condition

ψ|t=0 = ψ0 (2.2)

where ψ0 ∈ L2(R3). The problem of solving (2.1)- (2.2) is called an initial
value problem or a Cauchy problem.

Both the existence and the conservation of probability do not depend on
the particular form of the operator H , but rather follow from a basic property
– self-adjointness. This property is rather subtle, so for the moment we just
mention that self-adjointness is a strengthening of a much simpler property –
symmetry. A linear operator A acting on a Hilbert space H is symmetric if
for any two vectors in the domain of A, ψ, φ ∈ D(A),

〈Aψ, φ〉 = 〈ψ,Aφ〉.

2.1 Conservation of Probability

Since we interpret |ψ(x, t)|2 at a given instant in time as a probability distri-
bution, we should have
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∫

R3
|ψ(x, t)|2dx ≡ 1 (2.3)

=
∫

R3
|ψ(x, 0)|2dx

at all times, t. If (2.3) holds, we say that probability is conserved.

Theorem 2.1 Solutions ψ(t) of (2.1) with ψ(t) ∈ D(H) conserve probability
if and only if H is symmetric.

Proof. Suppose ψ(t) ∈ D(H) solves the Cauchy problem (2.1)-(2.2). We com-
pute

d

dt
〈ψ, ψ〉 = 〈ψ̇, ψ〉+ 〈ψ, ψ̇〉 = 〈 1

i�
Hψ,ψ〉+ 〈ψ, 1

i�
Hψ〉

=
1
i�

[〈ψ,Hψ〉 − 〈Hψ,ψ〉]

(here, and often below, we use the notation ψ̇ to denote ∂ψ/∂t). If H is
symmetric then this time derivative is zero, and hence probability is conserved.
Conversely, if probability is conserved for all such solutions, then 〈Hφ, φ〉 =
〈φ,Hφ〉 for all φ ∈ D(H) (since we may choose ψ0 = φ). This, in turn,
implies H is a symmetric operator. The latter fact follows from a version of
the polarization identity,

〈ψ, φ〉 =
1
4
(‖φ+ ψ‖2 − ‖φ− ψ‖2 − i‖φ+ iψ‖2 + i‖φ− iψ‖2), (2.4)

whose proof is left as an exercise below. �

Problem 2.2 Prove (2.4).

Problem 2.3 Show that the following operators on L2(R3) (with their nat-
ural domains) are symmetric:

1. xj (that is, multiplication by xj);
2. pj := −i�∂xj ;
3. H0 := − �

2

2mΔ;
4. for f : R

3 → R bounded, f(x) (multiplication operator) and f(p) :=
F−1f(k)F (here F denotes Fourier transform);

5. integral operators Kf(x) =
∫
K(x, y)f(y) dy with K(x, y) = K(y, x) and,

say, K ∈ L2(R3 × R
3).

2.2 Self-adjointness

As was mentioned above the key property of the Schródinger operator H
which guarantees existence of dynamics is its self-adjointness. We define this
notion here. More detail can be found in Section 23.5 of the mathematical
supplement.
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Definition 2.4 A linear operatorA acting on a Hilbert spaceH is self-adjoint
if A is symmetric and Ran(A± i1) = H.

Note that the condition Ran(A ± i1) = H is equivalent to the fact that the
equations

(A± i)ψ = f (2.5)

have solutions for all f ∈ H. The definition above differs from the one com-
monly used (see Section 23.5 of the Mathematical Supplement and e.g. [RSI]),
but is equivalent to it. This definition isolates the property one really needs
and avoids long proofs which are not relevant to us.

Example 2.5 The operators in Problem 2.3 are all self-adjoint.

Proof. We show this for p = −i�∂x on the space L2(R). This operator is
symmetric, so we compute Ran(−i�∂x + i). That is, we solve

(−i�∂x + i)ψ = f,

which, using the Fourier transform (see Section 23.14), is equivalent to (k +
i)ψ̂(k) = f̂(k), and therefore

ψ(x) = (2π�)−1/2

∫

R

eikx/�
f̂(k)
k + i

dk.

Now for any such f ∈ L2(R),

(1 + |k|2)1/2|ψ̂(k)| = |f̂(k)| ∈ L2(R),

so ψ lies in the Sobolev space of order one, H1(R) = D(−i�∂x), and therefore
Ran(−i�∂x + i1) = L2. Similarly Ran(−i�∂x − i1) = L2. �

Problem 2.6 Show that xj , f(x) and f(p), for f real and bounded, and Δ
are all self-adjoint on L2(R3) (with their natural domains).

In what follows we omit the identity operator 1 in expressions like A− z1.
The next result establishes the self-adjointness of Schrödinger operators.

Theorem 2.7 Assume that V is real and bounded. ThenH := − �
2

2mΔ+V (x),
with D(H) = D(Δ), is self-adjoint on L2(R3).

Proof. It is easy to see (just as in Problem 2.3) that H is symmetric. To
prove Ran(H ± i) = H, we will use the following facts proved in Sections 23.4
and 23.5 of the mathematical supplement:

1. If an operator K is bounded and satisfies ‖K‖ < 1, then the operator
1 +K has a bounded inverse.

2. If A is symmetric and Ran(A− z) = H for some z, with Im z > 0, then it
is true for every z with Im z > 0. The same is true for Im z < 0.
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3. If A is self-adjoint, then A− z is invertible for all z with Im z �= 0, and

‖(A− z)−1‖ ≤ 1
| Im z| . (2.6)

Since H is symmetric, it suffices to show that Ran(H + iλ) = H, for some
λ ∈ R, ±λ > 0, i.e. to show that the equation

(H + iλ)ψ = f (2.7)

has a unique solution for every f ∈ H and some λ ∈ R, ±λ > 0. Write
H0 = − �

2

2m
Δ. We know H0 is self-adjoint, and so H0 + iλ is one-to-one and

onto, and hence invertible. Applying (H0 + iλ)−1 to (2.7), we find

ψ +K(λ)ψ = g,

whereK(λ) = (H0+iλ)−1V and g = (H0+iλ)−1f . By (2.6), ‖K(λ)‖ ≤ 1
λ
‖V ‖.

Thus, for |λ| > ‖V ‖, ‖K(λ)‖ < 1 and therefore 1 + K(λ) is invertible,
according to the first statement above. Similar statements hold also for
K(λ)T := V (H0 + iλ)−1. Therefore

ψ = (1 +K(λ))−1g

Moreover, it is easy to see that

(H0 + iλ)(1 +K(λ)) = (1 +K(λ)T )(H0 + iλ)

and therefore ψ = (H0+iλ)−1(1+K(λ)T ) (show this). So ψ ∈ D(H0) = D(H).
Hence Ran(H + iλ) = H and H is self-adjoint, by the second property above.
�

Unbounded potentials. The Coulomb potential V (x) = α
|x| is not bounded.

We can extend the proof of Theorem 2.7 to show that Schrödinger operators
with real potentials with Coulomb-type singularities are still self-adjoint. More
precisely, we consider a general class of potentials V satisfying for all ψ ∈
D(H0)

‖V ψ‖ ≤ a‖H0ψ‖+ b‖ψ‖ (2.8)

(H0-bounded potentials) for some a and b with a < 1.

Problem 2.8 Show that V (x) = α
|x| satisfies (2.8) with a > 0 arbitrary and

b depending on a. Hint : Write V (x) = V1(x) + V2(x) where

V1(x) =

{
V (x) |x| ≤ 1
0 |x| > 1

, V2(x) =

{
0 |x| ≤ 1
V (x) |x| > 1.

Use that ‖V1ψ‖ ≤ sup |ψ|‖V1‖, that by the Fourier transform sup |ψ| ≤
(
∫
(|k|2 + c)−2dk)−1/2(‖Δψ‖ + c‖ψ‖), and the fact that

∫
(|k|2 + c)−2dk → 0

as c→∞.
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Theorem 2.9 Assume thatH0 is a self-adjoint operator and V is a symmetric
operator satisfying (2.8) with a < 1. Then the operator H := H0 + V with
D(H) = D(H0) is self-adjoint.

Proof. As in the proof of Theorem 2.7, it suffices to show that ‖V (H0 −
iλ)−1‖ < 1, provided λ is sufficiently large. Indeed, (2.8) implies that

‖V (H0 − iλ)−1φ‖ ≤ a‖H0(H0 − iλ)−1φ‖+ b‖(H0 − iλ)−1φ‖. (2.9)

Now, since ‖H0φ‖2 ≤ ‖H0φ‖2 + |λ|2‖φ‖2 = ‖(H0 − iλ)φ‖2 and ‖(H0 −
iλ)−1φ‖ ≤ |λ|−1‖φ‖, we have that

‖V (H0 − iλ)−1φ‖ ≤ a‖φ‖+ b|λ|−1‖φ‖. (2.10)

Since a < 1 we take λ such that a+b|λ|−1 < 1, which gives ‖V (H0− iλ)−1‖ <
1. After this we continue as in the proof of Theorem 2.7. �

Problem 2.10 Prove that the operator H := − �
2

2mΔ− α
|x| (the Schrödinger

operator of the hydrogen atom with infinitely heavy nucleus) is self-adjoint.

Theorem 2.9 has the following easy and useful variant

Theorem 2.11 Assume that H0 is a self-adjoint, positive operator and V is
symmetric and satisfies D(V ) ⊃ D(H0) and

〈ψ, V ψ〉 ≤ a〈ψ,H0ψ〉+ b‖ψ‖, (2.11)

with a < 1. Then the operator H := H0 + V with D(H) = D(H0), is self-
adjoint.

For a proof of this theorem see e.g. [RSII], Theorem X.17.
Now we present the following more difficult result, concerning Schrödinger

operators whose potentials grow with x:

Theorem 2.12 Let V (x) be a continuous function on R
3 satisfying V (x) ≥ 0,

and V (x)→∞ as |x| → ∞. Then H = − �
2

2mΔ+ V is self-adjoint on L2(R3)

The proof of this theorem is fairly technical, and can be found in [HS], for
example.

Remark 2.13 Here and elsewhere, the precise meaning of the statement “the
operator H is self-adjoint on L2(Rd)” is as follows: there is a domain D(H),
with C∞

0 (Rd) ⊂ D(H) ⊂ L2(Rd), for which H is self-adjoint, and H (with
domain D(H)) is the unique self-adjoint extension of − �

2

2mΔ+V (x), which is
originally defined on C∞

0 (Rd). The exact form of D(H) depends on V . If V is
bounded or relatively bounded as above, then D(H) = D(Δ) = H2(Rd).
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By definition, every self-adjoint operator is symmetric. However, not every
symmetric operator is self-adjoint. Nor can every symmetric operator be ex-
tended uniquely to a larger domain on which it is self-adjoint. For example, the
Schrödinger operator A := −Δ− c/|x|2 with c > 1/4 is symmetric on the do-
main C∞

0 (R3\{0}) (the infinitely differentiable functions supported away from
the origin), but does not have a unique self-adjoint extension (see [RSII]). It is
usually much easier to show that a given operator is symmetric than to show
that it is self-adjoint, since the latter question involves additional domain
considerations.

2.3 Existence of Dynamics

We consider the Cauchy problem (2.1)- (2.2) for an abstract linear operator
H on a Hilbert space H. Here ψ = ψ(t) is a differentiable path in H.

Definition 2.14 We say the dynamics exist if for all ψ0 ∈ H the Cauchy
problem (2.1)- (2.2) has a unique solution which conserves probability.

The main result of this chapter is the following

Theorem 2.15 The dynamics exist if and only if H is self-adjoint.

We sketch here a proof only of the implication which is important for us,
namely that self-adjointness of H implies the existence of dynamics, with
details relegated to the mathematical supplement Section 23.6 (for a proof
of the converse statement see [RSI]). We derive this implication from the
following result:

Theorem 2.16 If H is a self-adjoint operator, then there is a unique family
of bounded operators, U(t) := e−itH/�, having the following properties for
t, s ∈ R:

i�
∂

∂t
U(t) = HU(t) = U(t)H, (2.12)

U(0) = 1, (2.13)
U(t)U(s) = U(t+ s), (2.14)
‖U(t)ψ‖ = ‖ψ‖. (2.15)

Theorem 2.16 implies the part of Theorem 2.15 of interest to us here. Indeed,
the family ψ(t) := U(t)ψ0 is the unique solution of the Cauchy problem (2.1)-
(2.2), and also conserves probability. (The uniqueness follows from (2.3).)

The operator family U(t) := e−itH/� is called the propagator or evolu-
tion operator for the equation (2.1). The properties recorded in the equa-
tions (2.14) and (2.15) are called the group and isometry properties. The
operator U(t) = e−iHt/� is furthermore invertible (since U(t)U(−t) = 1).
Hence, as well as being an isometry (i.e. ‖U(t)ψ‖ = ‖ψ‖), each U(t) is more-
over unitary (see Section 23.6), and such a family is called a one-parameter
unitary group.
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Sketch of a proof of Theorem 2.16. We begin by discussing the exponential of
a bounded operator. For a bounded operator, A, we can define the operator
eA through the familiar power series

eA :=
∞∑

n=0

An

n!

which converges absolutely since

∞∑

n=0

‖An‖
n!
≤

∞∑

n=0

‖A‖n
n!

= e‖A‖ <∞.

With this definition, for a bounded operator A, it is not difficult to prove
(2.12) - (2.14) for U(t) = e−itA/�, and if A is also self-adjoint, (2.15).

Problem 2.17 For A bounded, prove (2.12) - (2.14) for U(t) = e−itA/�, and,
if A is self-adjoint, also (2.15).

Now for an unbounded but self-adjoint operator A, we may define the
bounded operator eiA by approximating A by bounded operators. Since A is
self-adjoint, the operators

Aλ :=
1
2
λ2[(A+ iλ)−1 + (A− iλ)−1] (2.16)

are well-defined and bounded for λ > 0. Using the bound (2.6), implied by
the self-adjointness of A, we show that the operators Aλ approximate A in
the sense that

Aλψ → Aψ as λ→∞ for ψ ∈ D(A). (2.17)

Since Aλ is bounded, we can define the exponential eiAλ by power series as
above. One then shows that the family {eiAλ , λ > 0} is a Cauchy family, in
the sense that

‖ (
eiAλ′ − eiAλ)ψ‖ → 0 (2.18)

as λ, λ′ → ∞ for all ψ ∈ D(A). This Cauchy property implies that for any
ψ ∈ D(A), the vectors eiAλψ converge to some element of the Hilbert space
as λ→∞. Thus we can define

eiAψ := lim
λ→∞

eiAλψ (2.19)

for ψ ∈ D(A). It follows from (2.15) that ‖eiAψ‖ ≤ ‖ψ‖ for all ψ in D(A),
which is dense in H. Thus we can extend this definition of eiA to all ψ ∈ H.
This defines the exponential eiA for any self-adjoint operator A.

If H is self-adjoint, then so is Ht/� for every t ∈ R. Hence the conclusions
above apply to Ht/�. This defines the propagator U(t) = e−iHt/�. Using
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Problem 2.17 and (2.19), we can prove that U(t) has the properties (2.12) –
(2.15). This implies Theorem 2.16. �

The theorem above, together with the Fourier transform (see Sec-
tion 23.14), also provides one method of defining functions of self-adjoint
operators:

Definition 2.18 Let A be a self-adjoint operator, and f(λ) be a function on
R whose inverse Fourier transform, f̌ , is integrable:

∫
R
|f̌(t)|dt <∞. Then the

operator

f(A) := (2π�)−1/2

∫

R

f̌(t)e−iAt/�dt (2.20)

is well-defined, is bounded, and is self-adjoint if f is real. It is a function of
the operator A.

Example 2.19 Theorem 2.16 allows us to define exponentials of the self-
adjoint operators on L2(R3) with which we are familiar: xj , pj := −i�∂xj ,
H0 := − �

2

2m
Δ, f(x) and f(p) (for f a real function).

Problem 2.20 Determine how the operators eixj and eipj act on functions
in L2(R3).

To summarize, if H is self-adjoint, then the operators U(t) := e−iHt/�

exist and are unitary for all t ∈ R (since Ht/� is self-adjoint). Moreover,
the family ψ(t) := U(t)ψ0 is the unique solution of the equation (2.1),
with the initial condition ψ(0) = ψ0, and it satisfies ‖ψ(t)‖ = ‖ψ0‖. Thus
for the Schrödinger equation formulation of quantum mechanics to make
sense, the Schrödinger operator H must be self-adjoint. As was shown in
Theorem 2.9, Schrödinger operators H := − �

2

2m
Δ+V (x) with potentials V (x)

satisfying (2.8) are self-adjoint, and therefore generate unitary dynamics.

2.4 The Free Propagator

We conclude this chapter by finding the free propagator U(t) = eiH0t/�, i.e.
the propagator for Schrödinger’s equation in the absence of a potential. Here
H0 := − �

2

2mΔ acts on L2(R3). The tool for doing this is the Fourier transform,
whose definition and properties are reviewed in Section 23.14.

Let g(k) = e−
a|k|2

2 (a Gaussian), with Re(a) ≥ 0. Then setting p := −i�∇
and using Definition 23.76 and Problem 23.73 (part 1) from Section 23.14, we
have

g(p)ψ(x) = (2πa�2)−3/2

∫
e−

|x−y|2
2a�2 ψ(y)dy.

Since −�
2Δ = |p|2, we can write this as

(ea�
2Δ/2ψ)(x) = (2πa�2)−3/2

∫
e−

|x−y|2
2a�2 ψ(y)dy. (2.21)
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Taking a = it
m�

here, we obtain an expression for the Schrödinger evolution
operator e−iH0t/� for the Hamiltonian of a free particle, H0 = − �

2

2mΔ:

(e−iH0t/�ψ)(x) =
(

2πi�t
m

)−3/2 ∫

R3
e
im|x−y|2

2�t ψ(y)dy. (2.22)

One immediate consequence of this formula is the pointwise decay (in time)
of solutions of the free Schrödinger equation with integrable initial data:

∣
∣
∣e−iH0t/�ψ(x)

∣
∣
∣ ≤

(
2π�t

m

)−3/2 ∫

R3
|ψ(y)|dy. (2.23)

As another consequence, we make a connection between the free Schrödinger
evolution, and the classical evolution of a free particle. Using the relation
|x− y|2 = |x|2 − 2x · y + |y|2, we obtain

e−iH0t/�ψ(x) =
(

2πi�t
m

)−3/2

e
im|x|2

2�t

∫
e−i

mx
t ·y/�

(

e
im|y|2

2�t ψ(y)
)

dy.

Denoting ψt(y) := ei
m|y|2
2�t ψ(y), we have

e−iH0t/�ψ(x) =
(
it

m

)−3/2

ei
m|x|2
2�t ψ̂t(mx/t) (2.24)

where (as usual) ψ̂ denotes the Fourier transform of ψ. One can show that if
ψ̂(k) is localized near k0 ∈ R

d, then so is ψ̂t(k) for large t, and therefore the
right hand side of (2.24) is localized near the point

x0 = v0t, where v0 = k0/m,

i.e., near the classical trajectory of the free particle with momentum k0.
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Observables

Observables are the quantities that can be experimentally measured in a given
physical framework. In this chapter, we discuss the observables of quantum
mechanics.

3.1 Mean Values and the Momentum Operator

We recall that in quantum mechanics, the state of a particle at time t is
described by a wave function ψ(x, t). The probability distribution for the
position, x, of the particle, is |ψ(·, t)|2. Thus the mean value of the position
at time t is given by

∫
x|ψ(x, t)|2dx (note that this is a vector in R

3). If we
define the coordinate multiplication operator

xj : ψ(x) �→ xjψ(x)

then the mean value of the jth component of the coordinate x in the state ψ
is 〈ψ, xjψ〉.

Using the fact that ψ(x, t) obeys the Schrödinger equation i�∂ψ∂t = Hψ,
we compute

d

dt
〈ψ, xjψ〉 = 〈ψ̇, xjψ〉+ 〈ψ, xj ψ̇〉 = 〈 1

i�
Hψ, xjψ〉+ 〈ψ, xj 1

i�
Hψ〉

= 〈ψ, i
�
Hxjψ〉 − 〈ψ, xj i

�
Hψ〉 = 〈ψ, i

�
[H,xj ]ψ〉

(where recall [A,B] := AB − BA is the commutator of A and B). Since
H = − �

2

2m
Δ+ V , and Δ(xψ) = xΔψ + 2∇ψ, we find

i

�
[H,xj ] = − i�

m
∇j ,

leading to the equation
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d

dt
〈ψ, xjψ〉 = 1

m
〈ψ,−i�∇jψ〉.

As before, we denote the operator −i�∇j by pj. As well, we denote the mean
value 〈ψ,Aψ〉 of an operatorA in the state ψ by 〈A〉ψ. Then the above becomes

m
d

dt
〈xj〉ψ = 〈pj〉ψ (3.1)

which is reminiscent of the definition of the classical momentum. We call the
operator p the momentum operator. In fact, pj is a self-adjoint operator on
L2(R3). (As usual, the precise statement is that there is a domain on which
pj is self-adjoint. Here the domain is just D(pj) = {ψ ∈ L2(Rd) | ∂

∂xj
ψ ∈

L2(Rd).)
Using the Fourier transform, we compute the mean value of the momentum

operator

〈ψ, pjψ〉 = 〈ψ̂, p̂jψ〉 = 〈ψ̂, kjψ̂〉 =
∫

R3
kj |ψ̂(k)|2dk.

This, and similar computations, show that |ψ̂(k)|2 is the probability distribu-
tion for the particle momentum.

3.2 Observables

Definition 3.1 An observable is a self-adjoint operator on the state space
L2(R3).

We have already seen a few examples of observables, including the position
operators, xj , the momentum operators, pj and the Hamiltonian operator,

H = − �
2

2m
Δ+ V =

1
2m
|p|2 + V

(here |p|2 =
∑3

j=1 p
2
j). But what is the meaning of this observable? We find

the answer below.
The reader is invited to derive the following equation for the evolution of

the mean value of an observable.

Problem 3.2 Check that for any observable, A, and for any solution ψ of
the Schrödinger equation, we have

d

dt
〈A〉ψ =

〈
i

�
[H,A]

〉

ψ

. (3.2)

We would like to use this result on the momentum operator. Simple com-
putations give [Δ, p] = 0 and [V, p] = i�∇V , so that i

�
[H, p] = −∇V and

hence
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d

dt
〈pj〉ψ = 〈−∇jV 〉ψ . (3.3)

This is a quantum mechanical mean-value version of Newton’s equation of
classical mechanics. Or, if we include Equation (3.1), we have a quantum
analogue of the classical Hamilton equations.

In general, we interpret 〈A〉ψ as the average of the observable A in the
state ψ. What is the probability, Probψ(A ∈ Ω), that measured values of the
physical observable represented by A in a state ψ land in an interval Ω ⊂ R?
As in the probability theory, this is given by the expectation

Probψ(A ∈ Ω) = 〈χΩ(A)〉ψ (3.4)

of the observable χΩ(A), where χΩ(λ) is the characteristic function of the set
Ω (i.e. χΩ(λ) = 1, if λ ∈ Ω and χΩ(λ) = 0, if λ /∈ Ω) and the operator-
function χΩ(A) can be defined according to the formula (2.20) and a limiting
procedure which we skip here. We call χΩ(A) the characteristic function of
the operator A. This definition can be justified using spectral decompositions
of the type (23.44) of Section 23.11, but we will not do so here.

3.3 The Heisenberg Representation

The framework outlined up to this point is called the Schrödinger represen-
tation of quantum mechanics. Chronologically, quantum mechanics was first
formulated in the Heisenberg representation, which we now describe. For an
observable A, define

A(t) := eitH/�Ae−itH/�.

Let ψ(t) be the solution of Schrödinger’s equation with initial condition ψ0:
ψ(t) = e−itH/�ψ0. Since e−itH/� is unitary, we have, by simple computations
which are left as an exercise,

〈A〉ψ(t) = 〈A(t)〉ψ0 (3.5)

and
d

dt
A(t) =

i

�
[H,A(t)]. (3.6)

Problem 3.3 Prove equations (3.5) and (3.6).

This last equation is called the Heisenberg equation for the time evolution of
the observable A. In particular, taking x and p for A, we obtain the quantum
analogue of the Hamilton equations of classical mechanics:

mẋ(t) = p(t), ṗ(t) = −∇V (x(t)). (3.7)

In the Heisenberg representation, then, the state is fixed (at ψ0), and the
observables evolve according to the Heisenberg equation. Of course, the
Schrödinger and Heisenberg representations are completely equivalent (by a
unitary transformation).
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3.4 Spin

Quantum mechanical particles may also have internal degrees of freedom,
which have no classical counterparts. The most important of these is spin. It
has properties of an angular momentum of orbital motion. The state space
for a particle of spin r is

L2(R3; C2r+1), (3.8)

the space of square integrable functions with values in C
2r+1, i.e. having

2r + 1 components, ψ(x) = (ψ1(x), . . . , ψ2r+1(x)), each of which belongs to
the familiar one-particle space L2(R3) = L2(R3; C). (Usually such functions
are written as columns, but for typographical simplicity we write them as
rows.) The spin observables Sj , j = 1, 2, 3, are the generators of the group
SU(2) (span the Lie algebra su(2)) and satisfy the commutation relations

[Sk, Sl] = i�εklmSm. (3.9)

Here εklm is the Levi-Civita symbol: ε123 = 1 and εklm changes sign under
permutation of any two indices. It is an experimental fact that all particles
belong to one of the following two groups: particles with integer spins, or
bosons, and particles with half-integer spins, or fermions. (The particles we
are dealing with – electrons, protons and neutrons – are fermions, with spin 1

2 ,
while photons, which we will deal with later, are bosons, with spin 1. Nuclei,
though treated as point particles, are composite objects whose spin could be
either integer or half-integer.) For spin r, the spin operators Sj act on C

2r+1.
For r = 1

2
, they can be written as Sj = �

2
σj , where σj are the Pauli matrices

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

. (3.10)

In this case, if we introduce the spin variable s = ±1/2 and use the notation
ψ(x, s) = (ψ(x, 1/2), ψ(x,−1/2)), we have the relations

S1ψ(x, s) = �|s|ψ(x,−s), S2ψ(x, s) = −i�sψ(x,−s), S3ψ(x, s) = �sψ(x, s).

The spin interacts with an external magnetic field and the energy of this
interaction (in the case of spin r = 1

2 ) is

e�

2mc
σ · B(x),

where e andm are the charge and mass of the particle andB(x) is the magnetic
field. Assuming the electro-magnetic field is dynamic and treating it as a
quantum field (i.e. quantizing Maxwell equations, see Chapter 19) leads to
corrections to this expression.
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3.5 Conservation Laws

We say that an observable A (or more precisely, the physical quantity rep-
resented by this observable) is conserved if its average in any evolving state
ψ(t) is independent of t:

〈A〉ψ(t) = 〈A(t)〉ψ0 = 〈A〉ψ0 , (3.11)

where ψ0 = ψ(0), A(t) := eitH/�Ae−itH/�, and ψ(t) solves the Schrödinger
equation:

i�
∂ψ

∂t
= Hψ. (3.12)

Due to (3.2) an observable A is conserved if and only if A(t) is constant,
which is equivalent to A commuting with the Schrödinger operator H , i. e.
[A,H ] = 0 (provided certain domain properties, which we ignore here, hold).
For example, since obviously [H,H ] = 0, we have 〈H〉ψ(t) =constant, which
is the mean-value version of the conservation of energy.

Most conservation laws come from symmetries of the quantum system in
question. For example

• Time translation invariance (V is independent of t) → conservation of
energy

• Space translation invariance (V is independent of x) → conservation of
momentum

• Space rotation invariance (V is rotation invariant, i.e. is a function of |x|)
→ conservation of angular momentum

• Gauge invariance (invariance of the equation under the transformation
ψ → eiαψ) → conservation of charge/probability.

Symmetries are often associated with one-parameter groups Us, s ∈ R, of
unitary operators. We say that Us is a symmetry if Us maps D(H) into itself
and

ψt is a solution to (3.12) → Usψt is a solution to (3.12), ∀s ∈ R.

Let A be a generator of a one-parameter group Us: ∂sUs = iAUs. Then (ig-
noring domain questions)

Us is a symmetry of (3.12) → A commutes with H.

Indeed, the fact that Us is a symmetry implies that (here again we disregard
domain questions and proceed formally) i�∂tUsψt = HUsψt. Inverting Us
gives i�∂tψt = U−1

s HUsψt. Differentiating the last equation with respect to
s and setting s = 0 and t = 0 we arrive at i[H,A]ψ0 = 0, where ψ0 = ψt=0.
Since this is true for any ψ0, we conclude that [H,A] = 0, i. e. A commutes
with H .

Examples of symmetry groups and their generators:
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• Spatial translations: Uy : ψ(x) → ψ(x + y), y ∈ R
3, with the generator

1
�
p = −i∇x =⇒ conservation of momentum

• Spatial rotation: UR : ψ(x) → ψ(R−1x), R ∈ O(3), with the generator
1
�
L = x× (−i∇x) ⇒ conservation of angular momentum

• Gauge invariance: Uα : ψ(x) → eiαψ(x), α ∈ R, with the generator i ⇒
conservation of probability.

Actually, Uy and UR are not one-parameter groups, but three-parameter ones:

UyUy′ = Uy+y′ and URUR′ = URR′ ,

the first one commutative, the second one not. They give unitary represen-
tations of the groups of translations and rotations of R

3, respectively, and
together form the group of rigid motions of R

3. They can be written as prod-
ucts of one parameter groups, so that the analysis relevant for us can be
reduced to the latter case.

3.5.1 Probability current

We discuss below how the probability distribution changes under the
Schrödinger equation and derive the differential form of the probability con-
servation law and formula for the probability current. A similar discussion
holds for other conservation laws.

Proposition 1. We have ∂t|ψ|2 = −divj(ψ) where j(ψ) is called the proba-
bility current (in the state ψ) and is given by

j(ψ) =
�

m
Im(ψ∇ψ). (3.13)

Proof. We compute ∂t|ψ|2 = ∂t(ψψ) = 1
i�
Hψψ + ψ 1

i�
Hψ= − i�

2m
Δψψ +

i�
2mψΔψ = i�

2mdiv(ψ∇ψ − ψ∇ψ). �

Write ψ as ψ = ae
iS
� where a and S are real-valued functions. Plug this

into the Schrödinger equation and take the real and imaginary parts of the
result to obtain

∂S

∂t
= − 1

2m
|∇S|2 − V +

�
2

2m
a−1Δa, (3.14)

∂a

∂t
= − 1

m
∇S · ∇a− 1

2m
aΔS. (3.15)

Problem 3.4 Derive these equations.

Set � = 0 in (3.14) (classical limit), to obtain

∂S0

∂t
+

1
2m
|∇S0|2 + V = 0, (3.16)
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which is the Hamilton-Jacobi equation of classical mechanics. Hence S0 is the
classical action. The equation (3.15) can be rewritten as

∂a2

∂t
= −div(

1
m
∇Sa2). (3.17)

By (3.16), we have j = a2 ∇S
m = ρv, where ρ is the probability density and

v = ∇S
m is the classical velocity. Thus j is the current density. Moreover, (3.17)

implies

m
dρ

dt
= −divj, (3.18)

The equations (3.16) and (3.18) describe classical non-interacting particles of
density ρ(x, t) = |ψ|2(x, t) and velocity v(x, t) = ∇S(x,t)

m
in the potential V (x).

Taking the gradient of (3.16), we obtain the following equation for the
velocity v = ∇S

m
= j

ρ

m
dv

dt
= −∇V, (3.19)

where dv
dt = (∂t + v · ∇)v is the material derivative.

Consider a stationary state ψ(x, t) = e−
iEt

� φ(x) where Hφ = Eφ. Then
S = −Et + χ and a = |φ| where χ is the argument of φ, φ = |φ|eiχ = aeiχ.
Hence,

∂S

∂t
= −E and

∂a

∂t
= 0

which together with (3.14) and (3.15) imply that

|∇S|2 − 2m(E − V ) =
�

2Δa

a
(3.20)

and
div(a2∇S) = 0. (3.21)

In the regime �/(classical action)→ 0 (the classical limit) we obtain a station-
ary flow of particle fluid. Hence in the classical limit, v = ∇S

m is interpreted as
velocity, and p = ∇S as momentum. Note that (3.20) implies that in the clas-
sical limit, |p| = √

2m(E − V ) (in the classically allowed region V (x) ≤ E).
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Quantization

In this chapter, we discuss the procedure of passing from classical mechanics
to quantum mechanics. This is called “quantization” of a classical theory.

4.1 Quantization

To describe a quantization of classical mechanics, we start with the Hamilto-
nian formulation of classical mechanics (see supplemental Section 4.4 for more
details), where the basic objects are as follows:

1. The phase space (or state space) R
3
x × R

3
k.

2. The Hamiltonian: a real function, h(x, k), on R
3
x × R

3
k (which gives the

energy of the classical system).
3. Classical observables : (real) functions on R

3
x × R

3
k.

4. Poisson bracket: a bilinear form mapping each pair of classical observables,
f, g, to the observable (function)

{f, g} =
3∑

j=1

(
∂f

∂kj

∂g

∂xj
− ∂f

∂xj

∂g

∂kj

)

.

5. Canonically conjugate variables: coordinate functions xi, ki, satisfying

{xi, xj} = {ki, kj} = 0; {ki, xj} = δij . (4.1)

6. Classical dynamics : Hamilton’s equations:

ẋ = {h, x}, k̇ = {h, k}. (4.2)

The corresponding fundamental objects in quantum mechanics are the follow-
ing:
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1. The state space L2(R3
x).

2. The quantum Hamiltonian: a Schrödinger operator, H = h(x, p) acting
on the state space L2(R3).

3. Quantum observables : (self-adjoint) operators on L2(R3
x).

4. Commutators: a bilinear form mapping each pair of operators acting on
L2(R3

x), into the commutator i
�
[·, ·].

5. Canonically conjugate operators : coordinate operators xi, pi, satisfying

[xi, xj ] = [pi, pj] = 0;
i

�
[pi, xj ] = δij . (4.3)

6. The dynamics of the quantum system can be described by the Heisenberg
equations

ẋ =
i

�
[H,x], ṗ =

i

�
[H, p].

The relations (4.3) are called the canonical commutation relations. To
quantize classical mechanics we pass from the canonically conjugate variables,
xi, ki, satisfying (4.1) to the canonically conjugate operators, xi, pi, i =
1, 2, 3, satisfying (4.3):

xi, ki −→ xi, pi. (4.4)

Hence with classical observables f(x, k), we associate quantum observables
f(x, p). This is a fairly simple procedure if f(x, p) is a sum of a function of x
and a function of p, but rather subtle otherwise. It is explained in the next
section.

If the classical Hamiltonian function is h(x, k) = |k|2/2m + V (x), the
corresponding quantum Hamiltonian is the Schrödinger operator

H = h(x, p) =
|p|2
2m

+ V (x) = − �
2

2m
Δ+ V (x).

Similarly, we pass from the classical angular momentum, lj = (x× k)j , to the
angular momentum operators, Lj = (x× p)j .

The following table provides a summary of the classical mechanical objects
and their quantized counterparts:
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Object CM QM
state R

3
x × R

3
k and L2(R3

x) and
space Poisson bracket commutator

evolution path in path in
of state phase space L2(R3)

observable real function self-adjoint operator
on state space on state space

result of measuring deterministic probabilistic
observable

object determining Hamiltonian Hamiltonian (Schrödinger)
dynamics function operator
canonical functions operators

coordinates x and k x (mult.) and p (differ.)

Quantization of classical systems does not lead to a complete description of
quantum systems. As was noted in the previous chapter, quantum mechanical
particles might have also internal degrees of freedom, such as spin, which
have no classical counterparts and therefore cannot be obtained as a result
of quantization of a classical system. To take these degrees of freedom into
account one should modify ad hoc the quantization procedure above, or add
new quantization postulates as is done in the relativistic theory.

4.2 Quantization and Correspondence Principle

The correspondence between classical observables and quantum observables,

f(x, k)→ f(x, p),

is a subtle one. It is easy to see that a classical observable f(x) is mapped under
quantization into the operator of multiplication by f(x), and an observable
g(k), into the operator g(p), defined for example using the Fourier transform
and the three-parameter translation group, e−ip·x/�:

g(p) := (2π�)−3/2

∫
ǧ(x)e−ip·x/�dx

where ǧ is the inverse Fourier transform of g (see Definition 2.20). However,
the following simple example shows the ambiguity of this correspondence for
more general functions of x and k. The function x·k = k ·x could, for example,
be mapped into any of the following distinct operators:

x · p, p · x, 1
2
(x · p+ p · x).

This ambiguity can be resolved by requiring that the quantum observables
obtained by a quantization of real classical observables are self-adjoint (or at
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least symmetric) operator. This selects the symmetric term above, for exam-
ple. The corresponding quantization is called the Weyl quantization. In this
case the operator A = a(x, p) associated with the classical observable a(x, k)
is given by

A = (2π�)−3

∫ ∫
â(ξ, x′)ei(ξ·x−x

′·p)/�dξdx′, (4.5)

where â is the Fourier transform of a in x and the inverse Fourier transform
in k and therefore

a(x, k) = (2π�)−3

∫ ∫
â(ξ, η)ei(ξ·x−η·k)/�dξdη. (4.6)

Reversing the quantization procedure one would like to show that classical
mechanics arises from quantum mechanics in the limit as �/(classical action)
→ 0. Assume we passed to physical units in which a typical classical action in
our system is 1, so that � is now the ratio of the Planck constant to the classical
action. First one would like to show that product of quantum observables is
given by a product of classical ones, e.g.

a(x, p)b(x, p) = (ab)(x, p) +O(�), (4.7)

and therefore the former can be identified with latter. Assuming that the
classical observables a and b satisfy

∫
(|ξ|+|η|)|â(ξ, η)|dξdη <∞, and similarly

for b (this condition is considerably stronger than needed), one can easily prove
(4.7). Indeed, we use the Baker-Campbell-Hausdorff formula:

eAeB = eA+B+1
2 [A,B], (4.8)

provided [A,B] is a multiple of the identity, which can be verified by comput-
ing

∂s(esAesB) = (A+ esABe−sA)esAesB

= (A+B +
∫ s

0

drerA[A,B]e−rA)esAesB

= (A+B + s[A,B])esAesB.

Using (4.8), (4.5) and the relation [ξ · x − η · p, ξ′ · x − η′ · p] = �ω, where
ω := ξ · η′ − η · ξ′, we compute for A := a(x, p) and B := b(x, p),

AB = (2π�)−6

∫
. . .

∫
â(ξ, η)b̂(ξ′, η′)eiΦ/�eiω/�dξdηdξ′dη′. (4.9)

where Φ := (ξ+ξ′)·x−(η+η′)·p. Now, we expand eiω = 1+O(|ω|) and evaluate
the contribution of the first term using property 5 of the Fourier transform
given in Section 23.14. Together with the definition of the convolution (f ∗
g)(x) :=

∫
Rd f(y)g(x − y)dy (see (23.47) of Section 23.14), this gives, after

changing the variables of integration as ξ → ξ − ξ′, η → η − η′,
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(2π�)−6

∫
. . .

∫
â(ξ, η)b̂(ξ′, η′)eiΦ/�dξdηdξ′dη′

= (2π�)−6

∫ ∫
(â ∗ b̂)(ξ, η)ei(ξ·x−η·p)/�dξdη = ab.

The remainder is simply estimated by taking the absolute value under the
integral.

Under the stronger condition
∫

(|ξ|2+|η|2)|â(ξ, η)|dξdη <∞, one can prove
the stronger statement,

a(x, p)b(x, p) = (ab− i

2
�{a, b})(x, p) +O(�2). (4.10)

To prove this, we expand eiω = 1 + iω+ 1
2
(iω)2 +O(|ω|2) and use Properties

3 - 5 of the Fourier transform in Section 23.14, to evaluate the contribution
of iω. This is done similarly to the first term above, once we write ξâ(ξ, η) =
−i�∇̂xa(ξ, η), ηâ(ξ, η) = i�∇̂ka(ξ, η) and similarly for b. The remainder term
here is treated similarly to the remainder above. Equation (4.10) implies that
in the next order, the commutators give Poisson brackets:

i[a(x, p), b(x, p)] = �{a, b}(x, p) +O(�2). (4.11)

The equation (4.11) allows one to connect the quantum and classical evo-
lutions. Indeed, let φt be the flow generated by the Hamilton equations
(4.2), i.e. the map φt : (x0, k0) → the solution of (4.2) with the initial con-
ditions (x0, k0) (see supplemental Section 4.4), and let αclt a = a ◦ φt and
αt(A) := eiHt/�Ae−iHt/� be the evolutions of classical and quantum observ-
ables (αclt is called the Liouville dynamics, and αt is nothing but the Heisen-
berg dynamics.) Denote the Weyl quantization map given in (4.5) by Q, so
that A = Q(a). One can show that for a certain class of classical observables a,
we have

αt(Q(a)) = Q(αclt a) +O(�), (4.12)

for t ≤ C �

sup |V | , as � → 0. Given (4.11), a proof of (4.12) is fairly sim-
ple. We give it here modulo one classical estimate. Using the Duhamel prin-
ciple (i.e. writing α−t(Q(αclt (a))) − Q(a) as the integral of its derivative
∂sα−s(Q(αcls (a))) = α−s([H,Q(αcls (a))]−Q({h, αcls (a)}))), we obtain

αt(A)−Q(a ◦ φt) =
∫ t

0

ds αt−s(R(a ◦ φs)), (4.13)

where R(a) := i
�
[H,A]−Q({h, a}). Since ‖αt(A)‖ = ‖A‖, this gives

‖αt(A)−Q(a ◦ αclt )‖ ≤
∫ t

0

ds‖R(a ◦ αcls )‖. (4.14)
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Note that the full evolution αt drops out of the estimate. Using estimate
(4.11) for the remainder R(a) and an appropriate estimate for the classical
observable αcls a = a ◦ φs, we arrive at (4.12).

In mathematics, operators obtained by a certain quantization rule from
functions f(x, k) satisfying certain estimates are called pseudodifferential op-
erators, while the functions themselves are called symbols. Differential opera-
tors with smooth coefficients, as well as certain integral and singular integral
operators are examples of pseudodifferential operators. The relation (4.11) is
one of the central statements coming from pseudo-differential calculus.

4.3 Complex Quantum Systems

Here we apply the rules discussed in the previous sections to describe more
complicated quantum systems not considered above.

A particle in an external electro-magnetic field. Here we consider a
quantum particle moving in an external electro-magnetic field. Of course, if
the external field is purely electric, E, then it is a potential field, E = −∇Φ,
for some Φ : R

3 	→ R, and fits within the framework we have considered above
with V (x) = Φ(x).

Suppose, then, that both electric and magnetic fields, E andB, are present.
These are vector fields on R

3, which in principle could be time-dependent,
B,E : R

3+1 	→ R
3. We know from the theory of electro-magnetism (Maxwell’s

equations) that these fields can be expressed in terms of the vector potential,
A : R

3 	→ R
3, and the scalar potential, Φ : R

3 	→ R via

E = −∇Φ− ∂tA, B = curlA

(we are using units in which the speed of light, c, is equal to one; for more
details see Section 4.4). For simplicity, in what follows we assume that the
electric and magnetic fields, E and B, are time-independent.

It is shown in Section 4.4 that the classical Hamiltonian function for a
particle of charge e subject to the fields E and B is,

h(x, k) =
1

2m
(k − eA(x))2 + eΦ(x).

According to our general quantization procedure, we replace the classical
canonical variables x and k with the quantum canonical operators x and
p. The resulting Schrödinger operator is

HA,Φ =
1

2m
(p− eA)2 + eΦ, (4.15)

acting on L2(R3). We remark that the self-adjointness of HA,Φ can be estab-
lished by using Kato’s inequality (see [CFKS]).
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An important feature of the operator HA,Φ is its gauge invariance. We
recall that in the theory of electro-magnetism, the vector potential A is not
uniquely determined by the magnetic field B. In fact, if we add the gradient
of any function χ to A (a gauge transformation), we obtain the same magnetic
field B:

curl(A+∇χ) = curlA = B.

Gauge invariance of the quantum Hamiltonian HA,Φ is reflected in the relation

HA+∇χ,Φ = eieχ/�HA,Φe
−ieχ/�. (4.16)

Problem 4.1 Check that equation (4.16) holds.

Thus if A and Ã differ by a gradient vector-field, then the operators H(A,Φ)
and H(Ã, Φ) are unitarily equivalent via the unitary map

ψ 	→ eieχ/�ψ

on L2(R3). Thus the two Hamiltonians are physically equivalent. Of course,
this is to be expected as A and Ã correspond to the same magnetic field.

One can impose restrictions (called gauge conditions) on the vector poten-
tial A in order to remove some, or all, of the freedom involved in the choice
of A. A common choice is divA = 0, known as the Coulomb gauge. By an ap-
propriate gauge transformation, the Coulomb gauge can always be achieved.

Many-particle systems. Now we consider a physical system consisting of
n particles of masses m1, . . . ,mn which interact pairwise via the potentials
Vij(xi − xj), where xj is the position of the j-th particle. Examples of such
systems include atoms or molecules – i.e., systems consisting of electrons and
nuclei interacting via Coulomb forces.

In classical mechanics such a system is described by the particle coordi-
nates, xj and momenta kj , j = 1, . . . , n, so that the classical state of the
system is given by the pair (x, k) where x = (x1, . . . , xn) and k = (k1, . . . , kn)
and the state space, also called the phase-space, of the system is R

3n
x × R

3n
k ,

or a subset thereof. The dynamics of this system is given by the classical
Hamiltonian function

h(x, k) =
n∑

j=1

1
2mj
|kj |2 + V (x)

where V is the total potential of the system, and the standard Poisson brackets

{f, g} =
n∑

j=1

(
∂f

∂kj
· ∂g
∂xj
− ∂f

∂xj
· ∂g
∂kj

)

where ∂f
∂xj

and ∂f
∂kj

are the gradients in xj and kj , respectively. Since in our
case the particles interact only with each other and by two-body potentials
Vij(xi − xj), V is given by



34 4 Quantization

V (x) =
1
2

∑

i�=j
Vij(xi − xj). (4.17)

Quantizing this system in exactly the same way as the one-particle one,
we associate with particle coordinates xj , and momenta kj , the quantum
coordinates xj , and momenta pj := −i�∇xj , which are operators. And so
the classical Hamiltonian h(x, k) leads to the Schrödinger operator Hn :=
h(x, p), p = (p1, . . . , pn), i.e.

Hn =
n∑

j=1

1
2mj
|pj |2 + V (x), (4.18)

acting on L2(R3n). This is the Schrödinger operator, or quantum Hamiltonian,
of the n−particle system.

Example 4.2 Consider a molecule with N electrons of mass m and charge
−e, and M nuclei of masses mj and charges Zje, j = 1, . . . ,M . In this case,
the Schrödinger operator, Hmol, is

Hmol =
N∑

1

1
2m
|pj|2 +

M∑

1

1
2mj
|qj |2 + V (x, y) (4.19)

acting on L2(R3(N+M)). Here x = (x1, . . . , xN ) are the electron coordinates,
y = (y1, . . . yM ) are the nucleus coordinates, pj = −i�∇xj is the momentum
of the j-th electron, qj = −i�∇yj is the momentum of the j-th nucleus, and

V (x, y) =
1
2

∑

i�=j

e2

|xi − xj | −
∑

i,j

e2Zj
|xi − yj| +

1
2

∑

i�=j

e2ZiZj
|yi − yj| (4.20)

is the sum of Coulomb interaction potentials between the electrons (the first
term on the r.h.s.), between the electrons and the nuclei (the second term),
and between the nuclei (the third term). For a neutral molecule, we have

M∑

j=1

Zj = N.

If M = 1, the resulting system is called an atom, or Z-atom (Z = Z1).

Identical particles. The issue of the state space for many-body systems is
actually more subtle than what appeared above. Many-particle systems dis-
play a remarkable new feature of quantum physics. Unlike in classical physics,
identical particles (i.e., particles with the same masses, charges and spins, or,
more generally, which interact in the same way) are indistinguishable in quan-
tum physics. To make this more precise we have to take into account particle
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spins. Assume we have n identical particles of spin r. In this case the operator
Hn acts on functions of the form

Ψ(x1, s1, . . . , xn, sn) ∈ L2(R3,C2r+1)⊗n ≡ L2(R3n,C(2r+1)n) (4.21)

where the term in the middle is the tensor product of n Hilbert spaces
L2(R3,C2r+1), defined as the Hilbert space spanned by the products of
elements of orthonormal bases in each L2(R3,C2r+1) (see Section 23.13 in
the mathematical supplement for a definition for abstract Hilbert spaces).

The indistinguishability of the particles means that all probability distri-
butions which can be extracted from an n-particle wave function (4.21), should
be symmetric with respect to permutations of the coordinates and spins of
identical particles. Since for bound states we can restrict ourselves to real
wave functions, this is equivalent to the property that Ψ(x1, s1, . . . , xn, sn) is
invariant under such permutations, modulo a change of sign.

Recall that all elementary (and composite) particles are divided into two
groups, the particles with half integer spins, which are called fermions (e.g.
electrons, protons, and neutrons have spin 1/2) and the particles with integer
spins, which are called bosons (particles related to interactions). For bosons,
the wave functions, Ψ(x1, s1, . . . , xn, sn), should be symmetric with respect
to permutations of the coordinates and spins of identical particles, and for
fermions, antisymmetric. In particular, the state space for fermions of spin 1

2
is

Hfermi := {Ψ ∈ L2(R3n,C2n) | TπΨ = (−1)#(π)Ψ} (4.22)

where π is a permutation of the n indices,

π : (1, 2, . . . , n)→ (π(1), π(2), ..., π(n)),

#(π) is the number of transpositions making up the permutation π (so
(−1)#(π) is the parity of π ∈ SN ), and

(TπΨ)(x1, s1, . . . , xn, sn) = Ψ(xπ(1), sπ(1), ..., xπ(n), sπ(n)).

Below we will write the space (4.22) as
∧n
i=1 L

2(R3,C2).
Since the Hamiltonian Hn does not act on the spin variables, by separa-

tion of variables, we may consider it acting on functions ψ(x1, . . . , xn) of the
coordinates only, which arise from (4.22) by, say, taking inner products in the
spin variables with functions of s1, . . . , sn. What are the symmetry properties
of these functions with respect to permutations of the coordinates? To answer
this question one has to dip into the theory of representations of the sym-
metric group Sn (the group of permutations of n indices). We do not do so
here, but just formulate the outcome of the theory. For fermions, the types of
transformations are labeled by partitions, α, of the number n into k ≤ 2r+ 1
ordered positive numbers α1 ≥ α2 ≥ · · · ≥ αk > 0. These can be visualized
as arrangements of n squares into k columns having α1, α2, . . . , αk squares
each, which are stuck side by side, and which are called Young diagrams. In
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particular, for spin one half, r = 1
2 , we have two-column Young diagrams.

With a Young diagram one associates a Young tableau, by filling in squares
with particles. Wave functions associated with a given Young diagram are
then symmetrized with respect to permutations of particles in the same row,
and antisymmetrized with respect to those in the same column. On the other
hand, for bosons, ψ(x1, . . . , xn) is symmetric with respect to permutations of
coordinates.

To summarize, for identical particles the state space is not L2(R3n), but
rather a subspace of it, defined by certain symmetry properties with respect to
permutations of the particles (in technical terms, determined by an irreducible
representation of the symmetric group Sn). Irreducible representations of Sn
can be connected, via Weyl’s theory of dual pairs of groups, to irreducible
representations of SU(2) carried by the spin space C

(2r+1)n and therefore
determine the total spin of corresponding wave functions.

The relation between the symmetry properties of wave functions and the
spin of particles, is known as the relation between spin and statistics. We
will not go into this topic here, and refer the interested reader to any of the
standard books on quantum mechanics given in the references.

4.4 Supplement: Hamiltonian Formulation of Classical
Mechanics

In this supplement we discuss briefly the hamiltonian formulation of classical
mechanics. (For more details and extensions see Mathematical Supplement
Chapter 24.)

The starting point here is the principle of minimal action: solutions of
physical equations minimize (more precisely, make stationary) certain func-
tionals, called action functionals. It is one of the basic principles of modern
physics. The action functional, S : φ 	→ S(φ), is the integral of the form

S(φ) :=
∫ T

0

L
(
φ(t), φ̇(t)

)
dt, (4.23)

where L : X × V → R is a twice differentiable function, called a Lagrangian
function, or Lagrangian, V is a finite-dimensional inner-product vector space,
called the space of velocities, X is an open subset of V , called the position,
or configuration space, and φ(t) is a differentiable path in X .

The functional S(φ) is defined on the space of paths Pa,b = {φ ∈
C1([0, T ];X) | φ(0) = a, φ(T ) = b}, for some a, b ∈ X . We can write Pa,b
in the form Pa,b = {φ0 + φ | φ ∈ P0} ≡ φ0 + P0, where φ0 is a fixed element
of Pa,b, and P0 := P0,0. Now, P0 is a vector space and consequently Pa,b is an
affine space. For classical mechanics, L(x, v) = 1

2
mv2 − V (x) : R

3 × R
3 → R

and φ(t) = x(t), and therefore the action functional is given by

S(φ) =
∫ T

0

(m
2
|φ̇|2 − V (φ)

)
dt. (4.24)
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The dynamics is given by critical points of this functional and dynamical
equation is the equation for critical points

S′(φ) = 0, (4.25)

called the Euler-Lagrange equation. Here S′(φ) is the differential or variational
derivative of S at φ, defined as follows. Let V ∗ be the space dual to V , i.e.
the space of bounded linear functions or functionals on V (see Section 23.1).
The action of l ∈ V ∗ is denoted as 〈l, v〉. We define S′(φ) : [0, T ] → V ∗ by
the equation ∫ T

0

〈S′(φ)(t), ξ(t)〉dt =
d

dλ
S(φλ)|λ=0, (4.26)

where φλ := φ+ λξ, for any ξ ∈ P0.
For simplicity, let V = R

m, and denote by ∂φL and ∂φ̇L the gradients
of L(φ, φ̇) in the variables φ and φ̇, respectively. Using (4.23), we compute
d
dλS(φλ)|λ=0 =

∫ T
0

(
∂φ̇L(φ)ξ̇ + ∂φL(φ)ξ

)
dt. Integrating the first term on the

r.h.s. by parts and using that ξ(0) = ξ(T ) = 0, we arrive at d
dλ
S(φλ)|λ=0 =

∫ T
0

(− ∂t(∂φ̇L(φ)) + ∂φL(φ)
)
ξ(t) dt. If d

dλS(φλ)|λ=0 = 0, for any ξ ∈ P0, this
implies the equation

− ∂t(∂φ̇L(φ, φ̇)) + ∂φL(φ, φ̇) = 0 (4.27)

(see Section 24.2 for more details and generalizations). Applying this to the
classical mechanics action functional (4.24), we arrive at Newton’s equation
of Classical Mechanics:

mφ̈ = −∇V (φ).

Suppose now that the dynamics of a system are determined by the action
principle, with a differentiable Lagrangian function/functional L : X×V → R

defined on a space X × V . We define the energy of a path φ as

energy (φ) :=
∂L

∂φ̇
· φ̇− L.

We have

Lemma 4.3 (Conservation of energy) If φ̄ is a critical path of the action
(4.23), then the energy is conserved, energy (φ̄) = const.

Proof. We compute

d

ds

(
∂L

∂φ̇
· φ̇− L

)

=
∂2L

∂φ̇2
φ̈ · φ̇+

∂2L

∂φ̇∂φ
φ̇ · φ̇

+
∂L

∂φ̇
· φ̈− ∂L

∂φ̇
· φ̈− ∂L

∂φ
· φ̇

=
(
d

ds

∂L

∂φ̇
− ∂L

∂φ

)

· φ̇.
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Since for φ̄, the expression on the right hand side vanishes, the result follows.
�

We pass now to the new variables (x, v) → (x, k), where k, as a function
of x and v, is given by

k = ∂vL(x, v). (4.28)

Note that k belongs to the space, V ∗, dual to V (see Section 23.1). We assume
that the equation (4.28) has a unique solution for v (which holds if L is strictly
convex in the second variable, which means

L(x, sv + (1− s)v′) < sL(x, v) + (1− s)L(x, v′), ∀s ∈ (0, 1), (4.29)

∀x ∈ X, v, v′ ∈ V, and it is guaranteed by the inequality d2
vL(x, v) > 0, ∀x ∈

X, v ∈ V ). With this in mind, we express the energy in the new variables, as

h(x, k) =
(〈k, v〉 − L(x, v)

)|v:∂vL(x,v)=k (4.30)

where the notation 〈·, ·〉 stands for the coupling between V ∗ and V (Sec-
tion 23.1). This defines the Hamiltonian function/functional, h : X×V ∗ → R.

Theorem 4.4 If L(x, v) and h(x, k) are related by (4.30), then the Euler-
Lagrange equation (4.27) for the action (4.23) is equivalent to the equations
(called Hamilton’s equations)

ẋ = ∂kh(x, k), k̇ = −∂xh(x, k). (4.31)

Proof. Assume (4.27) is satisfied. First, we note that the equations (4.30) and
(4.28) imply ∂kh(x, k) = v + (k − ∂vL(x, v))∂kv = v = ẋ and ∂xh(x, k) =
−∂xL(x, v) + (k − ∂vL(x, v))∂xv = −∂xL(x, v). Now, the last equation and
the equations (4.27) and (4.28) imply k̇ = −∂xh(x, k), which gives (4.31).
Now, assuming (4.31), we obtain (4.27) from (4.28), ∂xh(x, k) = −∂xL(x, ẋ)
and k̇ = −∂xh(x, k). �

Applying (4.30) to the classical mechanics Lagrangian, L(x, v) = mv2

2 −V (x),
we arrive at the classical Hamiltonian function

h(x, k) =
1

2m
|k|2 + V (x), (4.32)

which leads to Hamilton’s equations ẋ = 1
mk, k̇ = −∂xV (x), which are equiv-

alent to Newton’s equations.
Another example of a Lagrangian is that for a classical relativistic particle

(in units with speed of light c = 1):

L(x, ẋ) = −m
√

1− ẋ2.

(ds =
√

1− ẋ2 dt is the proper time of the particle.) The generalized mo-
mentum in this case is k = ∂vL(x, v) = mẋ√

1−ẋ2 and the Hamiltonian is

h(x, k) =
√|k|2 +m2.
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Problem 4.5 Prove this.

Next, we recognize that Hamilton’s equations (4.31) can be written as

żt = {z, h}(zt), zt = (x(t), k(t)) ∈ Z = X × V ∗, (4.33)

where now xj and kj together are thought of as a path in the phase space
Z, and for any pair f , g of differentiable functions on Z, {f.g} denotes the
function

{f, g} = ∇xf · ∇kg −∇kf · ∇xg. (4.34)
The map (f, g) → {f, g}, given by (4.34), is a bilinear map, which has the
following properties: for any functions f , g, and h from Z to R,

1. {f, g} = −{g, f} (skew-symmetry)
2. {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (the Jacobi identity)
3. {f, gh} = {f, g}h+ g{f, h}. (Leibniz rule)

Bilinear maps, (f, g) → {f, g}, having these properties, are called Poisson
brackets. The map (4.34) also obeys {f, g} = 0 ∀ g =⇒ f = 0. Poisson
brackets with the latter property are said to be non-degenerate. Note that a
space of smooth functions (or functionals), together with a Poisson bracket,
has the structure of a Lie Algebra.

The space Z together with a Poisson bracket on C∞(Z,R) is called a
Poisson space. A Hamiltonian system is a pair: a Poisson space, (Z, {·, ·}),
and a Hamiltonian function, h : Z → R. In this case Hamilton’s equations are
given by (4.33). Classical mechanics of one particle is a Hamiltonian system
with the phase space Z = R

3 × R
3, with bracket (4.34) and the Hamiltonian

(4.32).

Remark 4.6 Our definition of a Hamiltonian system differs from the stan-
dard one in using the Poisson bracket instead of a symplectic form. The reason
for using the Poisson bracket is its direct relation to the commutator.

Definition 4.7 Functions on a Poisson space, (Z, {·, ·}), are called classical
observables.

The classical evolution of observables is given by f(z, t) = f(zt), where zt is
the solution of (4.33) with the initial condition z. Note that f(z, t) solves the
equation

d

dt
f(z, t) = {f, h}(z, t).

with the initial condition f(z, 0) = f(z). Conversely, a solution of this equation
with an initial condition f(z) is given by f(z, t) = f(zt).

Problem 4.8 Prove this.

The equation above implies that an observable f(z) is conserved or is constant
of motion, i.e. f(zt) is independent of t, if and only if its Poisson bracket with
the Hamiltonian, h, vanishes: {f, h} = 0.
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The map t→ φt, where φt(z) := zt and zt is the solution of (4.33) with the
initial condition z, is called the flow associated with the differential equation
(4.33).

Particle coupled to an external electro-magnetic field. As an applica-
tion of the above machinery, we consider a system of charges interacting with
an electro-magnetic field. Of course, if the external field is purely electric,
then it is a potential field, and fits within the framework we have considered
already.

Suppose, then, that a magnetic field B, and an electric field, E, are present,
B,E : R

3+1 	→ R
3. The law of motion of a classical particle of mass m and

electric charge e is given by Newton’s equation with the Lorentz force,

mẍ(t) = eE(x(t), t) +
e

c
ẋ ∧B(x(t), t). (4.35)

To find a hamiltonian formulation of this equation we first derive it from the
minimum action principle. We know from the theory of electro-magnetism
(Maxwell’s equations) that the electric and magnetic fields, E and B, can be
expressed in terms of the vector potential A : R

3+1 	→ R
3, and the scalar

potential Φ : R
3+1 	→ R via

E = −∇Φ− 1
c
∂tA, B = curlA. (4.36)

The action functional which gives (4.35) is given by

S(φ) =
∫ T

0

(m
2
|φ̇|2 − eΦ(φ) +

e

c
φ̇ · A(φ)

)
dt. (4.37)

Indeed, we find the Euler-Lagrange equation (see (4.27)) for this functional.
Using that L(φ, φ̇) = m

2
|φ̇|2 − eΦ(φ) + e

c φ̇ ·A(φ), we compute

∂φ̇L(φ, φ̇) = mφ̇+
e

c
A(φ), ∂φL(φ, φ̇) = −e∇Φ(φ)− e

c
∇φ(φ · A(φ)).

Plug this into (4.27) and use the relations d
dtA(φ) = ∂tA(φ)+(φ̇·∇)A(φ), ∇(v·

A)− (v · ∇)A(φ) = v ∧ curlA and (4.36) to obtain (4.35).
Now, the generalized momentum is k = mẋ + e

c
A(x) and the classical

Hamiltonian function is hA,Φ(x, k) = k · v − L(x, v)|mẋ=k− e
cA(x), which gives

hA,Φ(x, k) =
1

2m
(k − e

c
A(x))2 + eΦ(x).

Defining the Poisson bracket as in (4.34), we arrive at the hamiltonian formu-
lation for a particle of mass m and charge e moving in the external electric
and magnetic fields E and B.
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Uncertainty Principle and Stability of Atoms

and Molecules

One of the fundamental implications of quantum theory is the uncertainty
principle – that is, the fact that certain pairs of physical quantities cannot be
measured simultaneously with arbitrary accuracy. In this chapter, we establish
precise mathematical statements of the uncertainty principle.

5.1 The Heisenberg Uncertainty Principle

We consider a particle in a state ψ and think of the observables x and p
as random variables with probability distributions |ψ|2 and |ψ̂|2 respectively.
Recall that the means of xj and pj in the state ψ (∈ D(xj)∩D(pj )) are 〈xj〉ψ
and 〈pj〉ψ , respectively. The dispersion of xj in the state ψ is

(Δxj)2 := 〈(xj − 〈xj〉ψ)2〉ψ
and the dispersion of pj is

(Δpj)2 := 〈(pj − 〈pj〉ψ)2〉ψ.

Theorem 5.1 (The Heisenberg uncertainty principle) For any state
ψ ∈ D(xj) ∩D(pj),

ΔxjΔpj ≥ �

2
. (5.1)

Proof. The basic ingredient is the commutation relation

i

�
[p, x] = 1

(this is a matrix equation, meaning i
�
[pj , xk] = δjk). For notational simplicity,

we assume 〈x〉ψ = 〈p〉ψ = 0. Note that for two self-adjoint operators A, B,
and ψ ∈ D(A) ∩D(B),
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〈i[A,B]〉ψ = −2 Im〈Aψ,Bψ〉. (5.2)

So assuming ψ is normalized (‖ψ‖ = 1), and ψ ∈ D(xj) ∩D(pj), we obtain

1 = 〈ψ, ψ〉 = 〈ψ, i
�
[pj , xj ]ψ〉 = −2

�
Im〈pjψ, xjψ〉

≤ 2
�
|〈pjψ, xjψ〉| ≤ 2

�
‖pjψ‖‖xjψ‖ =

2
�
(Δpj)(Δxj).

This does it. �

What are the states which minimize the uncertainty, i.e. the l.h.s. of (5.1)?
Clearly, the states for which − Im〈pjψ, xjψ〉 = ‖pjψ‖‖xjψ‖ would do this.
This equality is satisfied by states obeying the equation pjψ = iμxjψ for some
μ > 0. Solving the latter equation we obtain ψμ :=

∏
j

( μj

π�

)1/4
e−

∑
μjx

2
j/2�

for any μj > 0. Of course, shifting these states in coordinate and momentum
as

ψyqμϕ :=
∏

j

( μj
π�

)1/4

e(iq·x+iϕ−
∑
μj(xj−yj)

2/2)/� (5.3)

would give again states minimizing the uncertainty principle. These states
are called coherent states. They are obtained by scaling and translating the
Gaussian state φ := (π�)−3/4

e−|x|2/2� and can be written as

ψyqμϕ := ei
(
q·y+ϕ

)
/�Tyqφ, (5.4)

where Tyq is the shift operator in coordinate and momentum: Tyq :=

ei
(
q·x−p·y

)
/�. Note that

〈ψyqμϕ, xjψyqμϕ〉 = yj, 〈ψyqμϕ, pjψyqμϕ〉 = qj , (5.5)

〈ψyqμϕ, (x− yj)2ψyqμϕ〉 =
�

2μ
, (5.6)

〈ψyqμϕ, (p− qj)2ψyqμϕ〉 = �μ

2
. (5.7)

Problem 5.2 Prove (5.4) - (5.7).

5.2 A Refined Uncertainty Principle

The following result is related to the Heisenberg uncertainty principle.

Theorem 5.3 (Refined uncertainty principle) On L2(R3),

−Δ ≥ 1
4|x|2 .
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Recall that for operatorsA, B, we write A ≥ 0 if 〈ψ,Aψ〉 ≥ 0 for all ψ ∈ D(A),
and we write A ≥ B if A − B ≥ 0. So by the above statement, we mean
〈ψ, (−Δ− 1

4|x|2 )ψ〉 ≥ 0 for ψ in an appropriate dense subspace of D(−Δ). We
will prove it for ψ ∈ C∞

0 (Rd).

Proof. We will ignore domain questions, leaving these as an exercise for the
reader. Compute

d∑

j=1

i[|x|−1pj|x|−1, xj ] = |x|−1
d∑

j=1

i[pj, xj ]|x|−1 = �d|x|−2

(d = space dimension = 3). Hence, using (5.2) again,

�d‖|x|−1ψ‖2 = −2
d∑

j=1

Im〈|x|−1pj|x|−1ψ, xjψ〉

and therefore, using

pj |x|−1 = |x|−1pj + [pj , |x|−1] = |x|−1pj + i�
xj
|x|3 ,

we obtain

�(d− 2)‖|x|−1ψ‖2 = −2Im
d∑

j−1

〈pjψ, xj|x|2ψ〉.

Now the Cauchy-Schwarz inequality implies

|
d∑

j=1

〈pjψ, xj|x|2ψ〉| ≤ 〈ψ, |p|
2ψ〉1/2‖|x|−1ψ‖

(prove this!), which together with the previous equality gives

�|d− 2|‖|x|−1ψ‖2 ≤ 2〈ψ, |p|2ψ〉1/2‖|x|−1ψ‖.
Squaring this, and observing that ‖|x|−1ψ‖2 = 〈ψ, |x|−2ψ〉 and 〈ψ, |p|2ψ〉 =
�

2〈ψ,−Δψ〉 yields (for d ≥ 3)

〈ψ,−Δψ〉 ≥ |d− 2|2
4
〈ψ, 1
|x|2ψ〉

which, for d = 3, implies the desired result. �

5.3 Application: Stability of Atoms and Molecules

In classical mechanics, atoms and molecules are unstable: as the electrons orbit
the nuclei, they radiate away energy and fall onto the nuclei. The demonstra-
tion that this is not so in quantum mechanics was one of the first triumphs
of the theory.
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The statement that a quantum system (with the particles interacting via
Coulomb potentials) is stable with respect to collapse is expressed mathemat-
ically by the property that the Hamiltonian H (and therefore the energy), is
bounded from below. First we demonstrate the stability for the simplest quan-
tum system – the hydrogen atom. The latter is described by the Schrödinger
operator

Hhyd = − �
2

2m
Δ− e2

|x|
on L2(R3) (m and −e are the mass and charge of the electron respectively).
The refined uncertainty principle gives Hhyd ≥ �

2

8m|x|2 − e2

|x| . The right hand
side reaches its minimum at |x|−1 = 4me2/�2 and so

Hhyd ≥ −2me4

�2
. (5.8)

Thus, the energy of the hydrogen atom is bounded from below, and the elec-
tron does not collapse onto the nucleus.

Now we show how to extend the argument above to an arbitrary system of
electrons and nuclei, by considering for simplicity an atom with N electrons
and an infinitely heavy nucleus. According to (12.1), the Schrödinger operator
of this system is given by

Hat =
N∑

j=1

(− �
2

2m
Δxj
− e2Z

|xj | ) +
1
2

∑

i�=j

e2

|xi − xj | , (5.9)

acting on L2(R3N ). Here m and −e are the electron mass and charge, x =
(x1, . . . , xN ) are the electron coordinates, and the term

∑N
1 (− e2Z|xj| ) on the

r.h.s. is the sum of Coulomb interaction potentials between the electrons and
the nuclei (Ze is the charge of the nucleus) and the last term, between the
electrons. For a neutral atom, Z = N . For the moment, we ignore the fact
that the electrons are fermions.

To prove a lower bound on Hat we observe that the electron-electron inter-
action potential is positive and therefore we have the following lower bound
for Hat:

Hat ≥
N∑

1

(− �
2

2m
Δxj −

e2Z

|xj | ). (5.10)

Using, for each term on the r.h.s., the bound (5.8), with e2 replaced by e2Z,
we obtain

Hat ≥ −N 2m(e2Z)2

�2
. (5.11)

This bound works but it is rather rough. First of all it ignores the electron-
electron repulsion, but most importantly, it ignores that the electrons are
fermions. Recall that the state space of a system of N fermions of spin 1

2 is
given by (4.22),
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Hfermi :=
N∧

1

(L2(R3)⊗ C
2). (5.12)

Hence, after separation of spin variables and for N > 2, the ground state of
the operator

∑N
1 (− �

2

2m
Δxj− e2Z

|xj| ) cannot be given by the product
∏N

1 φ1(xj),

where φ1(x) is the ground state of the operator − �
2

2m
Δx − e2Z

|x| . A little con-
templation shows that it is given by the anti-symmetric product,

N
2∧

1

(φ2j−1(x2j−1)φ2j(x2j)),

(if N is even) of N
2

bound states, φj(x), corresponding to the N
2

lowest ener-
gies, say E1, . . . , EN

2
. (The case of N odd requires a slight modification.) In

this case, the ground state energy of
∑N

1 (− �
2

2mΔxj− e2Z
|xj| ) is given by 2

∑N
2
1 Ej ,

so that
N∑

1

(− �
2

2m
Δxj −

e2Z

|xj | ) ≥ 2

N
2∑

1

Ej .

Since the energies Ej behave roughly as −m(e2Z)2

2�2 j−2 (see Sections 7.5 and
10.2), this is a much larger number. Note that it is not easy to give a realistic

estimate of the sum 2
∑N

2
1 Ej . There is considerable activity in producing such

estimates, which are called Lieb-Thirring inequalities.
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Spectrum and Dynamics

Given a quantum observable (a self-adjoint operator) A, what are the possi-
ble values A can take in various states of the system? The interpretation of
〈ψ,Aψ〉 as mean value of the observable A in a state ψ, which is validated
by quantum experiments, leads to the answer. It is the spectrum of A. The
most important observable is the energy – the Schrödinger operator, H , of a
system. Hence the spectrum of H gives the possible values of the energy.

The goal of this chapter is to develop techniques for finding the spectra of
Schrödinger operators. A rough classification of the spectra is into discrete and
continuous (also called essential) components. Such a classification is related
to the space-time behaviour of solutions of the corresponding Schrödinger
equations. Thus our main thrust is toward describing these components. We
begin by presenting the general theory, and then proceed to applications.
In particular, we explain how the spectrum of a Schrödinger operator gives
us important information about the solutions of the Schrödinger equation.
Details of the general machinery are presented in Mathematical Supplement
Chapter 23.

6.1 The Spectrum of an Operator

We begin by giving some key definitions and statements related to the spec-
trum. More details can be found in Section 23.8. (Note we will often omit the
identity operator 1 in expressions like A− z1.)

Definition 6.1 The spectrum of an operator A on a Hilbert space H is the
subset of C given by

σ(A) := {λ ∈ C | A− λ is not invertible (has no bounded inverse)}.
The complement of the spectrum of A in C is called the resolvent set of A:
ρ(A) := C\σ(A). For λ ∈ ρ(A), the operator (A − λ)−1, called the resolvent
of A, is well-defined and bounded.

The following exercise asks for the spectrum of our favorite operators.
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Problem 6.2 Prove that as operators on L2(Rd) (with their natural do-
mains),

1. σ(1) = {1}.
2. σ(pj) = R.
3. σ(xj) = R.
4. σ(V ) = Ran(V ), where V is the multiplication operator on L2(Rd) by a

continuous function V (x) : R
d → C.

5. σ(−Δ) = [0,∞).
6. σ(f(p)) = Ran(f), where f(p) := F−1fF with f(k) the multiplication

operator on L2(Rd) by a continuous function f(k) : R
d → C.

The following two results state important facts about the spectrum. They
are proved in Section 23.8.

Theorem 6.3 The spectrum σ(A) ⊂ C is a closed set.

Theorem 6.4 The spectrum of a self-adjoint operator is real: A self-adjoint
=⇒ σ(A) ⊂ R.

For a self adjoint operator A and an interval Ω ⊂ R, the characteristic
function χΩ(A) of the operator A, discussed in Section 3.2, satisfies

χΩ(A) = χΩ∩σ(A)(A).

This result can be obtained from the formula (23.34) for functions of operators
given in the Mathematical Supplement – we do not prove it here. Due to the
relation (3.4), the above equation suggests that σ(A) can be interpreted as
the set of all possible values of the observable A.

One familiar reason for A − λ not to be invertible, is that (A − λ)ψ = 0
has a non-zero solution, ψ ∈ H. In this case we say that λ is an eigenvalue of
A and ψ is called a corresponding eigenvector.

The discrete spectrum of an operator A is

σd(A) = {λ ∈ C | λ is an isolated eigenvalue of A with finite multiplicity}
(isolated meaning some neighbourhood of λ is disjoint from the rest of σ(A)).
Here the multiplicity of an eigenvalue λ is the dimension of the eigenspace

Null(A− λ) := {v ∈ H | (A− λ)v = 0}.
Problem 6.5 1. Show Null(A− λ) is a vector space.
2. Show that if A is self-adjoint, eigenvectors of A corresponding to different

eigenvalues are orthogonal.

The rest of the spectrum is called the essential spectrum of the operator A:

σess(A) := σ(A)\σd(A).
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Remark 6.6 Some authors may use the terms “point spectrum” and “contin-
uous spectrum” rather than (respectively) “discrete spectrum” and “essential
spectrum’.

Problem 6.7 For the following operators on L2(Rd) (with their natural do-
mains), show that

1. σess(pj) = σ(pj) = R;
2. σess(xj) = σ(xj ) = R;
3. σess(−Δ) = σ(−Δ) = [0,∞).

Hint: Show that these operators do not have discrete spectrum.

Problem 6.8 Show that if U : H → H is unitary, then σ(U∗AU) = σ(A),
σd(U∗AU) = σd(A), and σess(U∗AU) = σess(A).

Problem 6.9 Let A be a self-adjoint operator on H. If λ is an accumulation
point of σ(A), then λ ∈ σess(A). Hint: use the definition of the essential
spectrum, and the fact that the spectrum is a closed set.

For a self-adjoint operator A the sets {span of eigenfunctions of A} and
{span of eigenfunctions of A}⊥, where

W⊥ := {ψ ∈ H | 〈ψ,w〉 = 0 ∀ w ∈ W},

are invariant under A in the sense of the definition

Definition 6.10 A subspace W ⊂ H of a Hilbert space H is invariant under
an operator A if Aw ∈W whenever w ∈ W ∩D(A).

Problem 6.11 Assume A is a self-adjoint operator. Show that

1. If W is invariant under A, then so is W⊥;
2. The span of the eigenfunctions of A, and its orthogonal complement are

invariant under A;
3. Suppose further that A has only finitely many eigenvalues, all of

them with finite multiplicity. Show that the restricted operator
A|{span of eigenfunctions of A} has a purely discrete spectrum;

4. Show that the restricted operator A|{span of eigenfunctions of A}⊥ has a
purely essential spectrum.

The spaces {span of eigenfunctions of A} and {span of eigenfunctions of A}⊥
are said to be the subspaces of the discrete and essential spectra of A.
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6.2 Bound and Decaying States

We show how the classification of the spectrum introduced in the previous
section is related to the space-time behaviour of solutions of the Schrödinger
equation

i�
∂ψ

∂t
= Hψ

with given initial condition
ψ|t=0 = ψ0,

where H is the self-adjoint Schrödinger operator acting on L2(R3). Naturally,
we want to distinguish between states which are localized for all time, and
those whose essential support moves off to infinity. We assume all functions
below are normalized.

Suppose first that ψ0 ∈ { span of eigenfunctions of H}. Then for any
ε > 0, there is an R such that

inf
t

∫

|x|≤R
|ψ|2 ≥ 1− ε. (6.1)

To see this, note that if Hψ0 = λψ0, then e−
iHt

� ψ0 = e−
iλt
� ψ0, and so

∫

|x|≥R
|ψ|2 =

∫

|x|≥R
|ψ0|2 → 0

as R→∞. Such a ψ is called a bound state, as it remains essentially localized
in space for all time. A proof of (6.1) in the general case is given at the end
of this section.

On the other hand, if

ψ0 ∈ {span of eigenfunctions of H}⊥,
where W⊥ := {ψ ∈ H | 〈ψ,w〉 = 0 ∀ w ∈ W}, then for all R,

∫

|x|≤R
|ψ|2 → 0 (6.2)

as t → ∞, in the sense of ergodic mean. Convergence f(t) → 0 in ergodic
mean as t→∞ means that

1
T

∫ T

0

f(t)dt→ 0

as T → ∞. This result is called the Ruelle theorem . We sketch the proof
below (see, eg, [CFKS,HS] for a complete proof). Such a state, ψ, is called a
decaying state, as it eventually leaves any fixed ball in space.

We say that a system in a bound state is stable, while in a decaying state,
unstable. This notion differs from the notion of stability in dynamical systems.
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Indeed, solutions of the Schrödinger equation are always dynamically orbitally
stable (see Section 13.1 for the relevant definitions). The notion of stability
here characterizes the space-time behaviour of the system, whether it stays
essentially in a bounded region of the space, or falls apart with fragments
departing from each other.

Now, we saw above that solutions of the Schödinger equation with initial
conditions in the discrete spectral subspace describe bound states, those in the
essential spectral subspace describe decaying states. Hence the spectral classi-
fication for a Schrödinger operatorH leads to a space-time characterization of
the quantum mechanical evolution, ψ = e−iHt/�ψ0. Namely, the classification
of the spectrum into discrete and essential parts corresponds to a classification
of the dynamics into localized (bound) states and locally-decaying (scattering)
states.

Finally, we give proof of (6.1) and (6.2). Proof of equation (6.1) in the
general case: if

ψ0 ∈ { span of eigenfunctions of H},
then ψ0 can be written as ψ0 =

∑
j ajψj where aj ∈ C,

∑
j |aj |2 = 1,

(we assume in what follows that ‖ψ0‖ = 1) and {ψj} is an orthonormal
set (〈ψj , ψk〉 = δjk) of eigenfunctions of H : Hψj = λjψj . We will assume
that the above sum has only a finite number of terms, say ψ0 =

∑N
j=1 ajψj .

Otherwise an additional continuity argument is required below. The solution
ψ = e−iHt/�ψ0 can be written as

ψ =
N∑

j=1

e−iλjt/�ajψj .

Multiplying this equation by the characteristic function of the exterior of the
R−ball, |x| ≥ R, taking the L2−norm and using the triangle inequality, we
obtain (∫

|x|≥R
|ψ|2

)1/2

≤
N∑

j=1

|aj |
(∫

|x|≥R
|ψj |2

)1/2

. (6.3)

To estimate the second factor on the right hand side, for any ε > 0, we choose
R such that for all j,

(∫

|x|≥R
|ψj |2

)1/2

≤ ε√
N
.

Using this estimate and applying the Cauchy-Schwarz inequality to the sum
on the right hand side of (6.3) and using that

∑N
j=1 1 = N and

∑
j |aj |2 = 1,

we obtain (∫

|x|≥R
|ψ|2

)1/2

≤ ε
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and so (6.1) follows. �
Sketch of proof of (6.2): in this proof we display the time dependence

as a subindex t. We suppose the potential V (x) is bounded, and so as a
multiplication operator ‖V ‖ = ‖V ‖∞, and therefore V ≥ −‖V ‖1. Since also
−Δ ≥ 0, the operator H is bounded below: H ≥ −‖V ‖1. Let λ > ‖V ‖+ 1 so
that H + λ > 1, and let φt := (H + λ)ψt = e−iHt(H + λ)ψ0. Defining

B := (−Δ+ λ)(H + λ)−1, (6.4)

and using that B = 1− V (H + λ)−1, which shows that B is bounded, we see
that ψt = (−Δ+ λ)−1Bφt. Let χΩ denote the characteristic function of a set
Ω ⊂ R

3 and let K(x, y) be the integral kernel of the operator χΩ(−Δ+λ)−1.
Using (6.4) and the notation Kx(y) := K(x, y), we obtain that

χΩψt = χΩ(−Δ+ λ)−1Bφt = 〈Kx, Bφt〉 = 〈B∗Kx, φt〉. (6.5)

We use the notation ‖ · ‖x for the L2−norm in the variable x and claim now
that

1
T

∫ T

0

dt‖〈B∗Kx, φt〉‖2x → 0, as T →∞. (6.6)

To prove this claim we use the fact that
∫ |K(x, y)|2dxdy <∞ to show that

|〈B∗Kx, φt〉| ≤ ‖B∗Kx‖‖φt‖ ≤ ‖B∗‖‖Kx‖‖(H + λ)ψ0‖ ∈ L2(dx)

(uniformly in t). Next, we want to prove that

∀x, 1
T

∫ T

0

dt|〈B∗Kx, φt〉|2 → 0, as T →∞. (6.7)

Then (6.6) follows from interchange of t− and x−integration on the l.h.s. and
the Lebesgue dominated convergence theorem.

The proof of (6.7) is a delicate one. First note that, since ψ0⊥ the eigen-
functions of H , so is φ0 := (H + λ)ψ0 (show this). Next, we write

|〈f, φt〉|2 = 〈f ⊗ f̄ , φt ⊗ φ̄t〉 = 〈f ⊗ f̄ , e−itL/�φ0 ⊗ φ̄0〉. (6.8)

where L is an operator acting on H⊗H given by L := H⊗1−1⊗H . The rela-
tion φ0⊥ (the eigenfunctions of H) implies that φ0 ⊗ φ̄0⊥ (the eigenfunctions
of H ⊗ 1− 1⊗H). Hence we can compute the time integral of the r.h.s.:

1
T

∫ T

0

dt〈f ⊗ f̄ , e−itL/�φ0 ⊗ φ̄0〉 = 1
T
〈f ⊗ f̄ , e

−iTL/� − 1
−iL/� φ0 ⊗ φ̄0〉. (6.9)

The delicate point here is to show that, for nice f and φ0, the r.h.s. is well-
defined and is bounded by CT−δ, δ > 0. We omit showing this here (this
can be done, for example. by using the spectral decomposition theorem, see
[RSI]). Then (6.7) holds, which completes the proof (since this shows that for
any bounded set Ω ⊂ R

3 we have that ‖χΩψt‖ → 0, in the sense of ergodic
mean, as t→∞, which is equivalent to (6.2)). �
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6.3 Spectra of Schrödinger Operators

We now want to address the question of how to characterize the essential
spectrum of a self-adjoint operator A. Is there a characterization of σess(A)
similar to that of σd(A) in terms of some kind of eigenvalue problem? In
particular, we address this question for Schrödinger operators. We begin with

Definition 6.12 Let A be an operator on L2(Rd). A sequence {ψn} ⊂ L2(Rd)
is called a spreading sequence for A and λ if

1. ‖ψn‖ = 1 for all n
2. for any bounded set B ⊂ R

d, supp(ψn) ∩B = ∅ for n sufficiently large
3. ‖(A− λ)ψn‖ → 0 as n→∞.

Clearly, if not for the second condition, a sequence consisting of a repeated
eigenfunction would fit this definition.

Theorem 6.13 If H = − �
2

2mΔ + V is a Schrödinger operator, with real po-
tential V (x) which is continuous and bounded from below, then

σess(H) = {λ | there is a spreading sequence for H and λ}.
We sketch a proof of this result later.

Now we describe the spectrum σ(H) of the self-adjoint Schrödinger op-
erator H = − �

2

2m
Δ + V . Our first result covers the case when the potential

tends to zero at infinity. Recall that we have proved in Section 2.2 that H is
self-adjoint.

Theorem 6.14 Let V : R
d → R be continuous, with V (x) → 0 as |x| → ∞.

Then σess(H) = [0,∞) (so H can have only negative isolated eigenvalues,
possibly accumulating at 0).

Proof. We have, by the triangle inequality,

‖(H − λ)ψn‖ − ‖V ψn‖ ≤ ‖(− �
2

2m
Δ− λ)ψn‖ ≤ ‖(H − λ)ψn‖+ ‖V ψn‖.

Suppose {ψn} is a spreading sequence. Then the term ‖V ψn‖ goes to zero
as n → ∞ because V goes to zero at infinity and {ψn} is spreading. So λ is
in the essential spectrum of H if and only if λ ∈ σess(− �

2

2mΔ). We have (see
Problem 6.7) σess(− �

2

2mΔ) = σess(Δ) = [0,∞), and consequently σess(H) =
[0,∞). �
Problem 6.15 Extend Theorems 6.13 and 6.14 to real potentials V (x) sat-
isfying (2.8).

The bottom, 0, of the essential spectrum, is called the ionization threshold,
since above this energy the particle is not longer localized, but moves freely.

Our next theorem covers confining potentials – that is, potentials which
increase to infinity with x. As we have mentioned in Section 2.2, Schrödinger
operators with such potentials are self-adjoint.
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Theorem 6.16 Let V (x) be a continuous function on R
d satisfying V (x) ≥ 0,

and V (x) → ∞ as |x| → ∞. Then σ(H) consists of isolated eigenvalues
{λn}∞n=1 with λn →∞ as n→∞.

Proof. For convenience of notation (and with no loss of generality) we take
�
2

2m = 1 so that H = −Δ + V . Suppose λ is in the essential spectrum of H ,
and let {ψn} be a corresponding spreading sequence. Then as n→∞,

0← 〈ψn, (H − λ)ψn〉 = 〈ψn,−Δψn〉+ 〈ψn, V ψn〉 − λ
=
∫
|∇ψn|2 +

∫
V |ψn|2 − λ

≥ inf
y∈supp(ψn)

V (y)− λ→∞

(because {ψn} is spreading), which is a contradiction. Thus the essential spec-
trum is empty.

Now we show that H has an infinite number of eigenvalues of finite multi-
plicities tending to +∞. Indeed suppose, on the contrary, that H has a finite
number of eigenvalues of finite multiplicities, and let f be a non-zero element
of L2 which is orthogonal to all the eigenfunctions of H . Then the equation
(H − z)ψ = f has a unique, in {span of eigenfunctions of H}⊥, solution
ψ = (H − z)−1f for any z ∈ C. (H − z)−1f is analytic in z ∈ C and satisfies
‖(H − z)−1f‖ ≤ | Im z|−1‖f‖. Hence (H − z)−1f = 0, a contradiction. Since
the essential spectrum is empty, the eigenvalues cannot accumulate, and since
H ≥ 0, they must tend to +∞. �

Sketch of the proof of Theorem 6.13. We will prove the theorem for Schrödinger
operators with H0-bounded potentials V – that is, potentials satisfying the
estimate (2.8).

Let {ψn} be a spreading sequence for H and λ, and let φn = (H−λ)ψn
‖(H−λ)ψn‖ .

Evidently, ‖φn‖ = 1. Since (H −λ)−1φn = ψn
‖(H−λ)ψn‖ , and ‖(H−λ)ψn‖ → 0,

we obtain that
‖(H − λ)−1φn‖ → ∞,

as n→∞. Therefore (H − λ)−1 is unbounded, which implies that λ ∈ σ(H).
We will prove that λ /∈ σd(H). Indeed, suppose on the contrary that
λ ∈ σd(H). Let M denote the eigenspace of λ. Then (H − λ) is invertible on
M⊥ (show this). Let P and P⊥ be the orthogonal projections on M and M⊥,
respectively. (For the definition and properties of projection operators see Sec-
tion 23.7.) We have P+P⊥ = 1. Since the sequence {ψn} is spreading and the
operator P can be written as P =

∑
j |φj〉〈φj |, where {φn} is an orthonormal

basis in M = RanP , we have ‖Pψn‖ → 0 and therefore ‖P⊥ψn‖ → 1. Hence
for the normalized sequence ψ⊥

n := P⊥ψn
‖P⊥ψn‖ , we have that (H−λ)ψ⊥

n → 0 and
therefore (H − λ) is not invertible on M⊥, a contradiction. Hence λ /∈ σd(H)
and therefore λ ∈ σess(H).
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Suppose now that λ ∈ σess(H). Then there is a sequence φn with ‖φn‖ = 1
and ‖(H − λ)−1φn‖ → ∞. Let ψn = (H−λ)−1φn

‖(H−λ)−1φn‖ . We claim that for every
bounded set Ω we have that ‖χΩψn‖ → 0 as n→∞. Indeed, we can assume
without loss of generality that V ≥ 0, which implies that (H+1) is invertible.
So

χΩψn = χΩ(−Δ+ 1)−1(−Δ+ 1)(H + 1)−1(H + 1)ψn. (6.10)

Now, we have

χΩ(−Δ+ 1)−1f =
∫
K(x, y)f(y)dy, (6.11)

with K ∈ L2(R3 × R
3).

Problem 6.17 Use properties of the Fourier transform to show that
K(x, y) = χΩ(x)G(x − y), where G(y) = C e−|y|

|y| and C is a constant.

Let Kx(y) := K(x, y). Define B := (−Δ+ 1)(H + 1)−1. The relation

B = 1− V (H + 1)−1, (6.12)

and the assumption that V is H0-bounded, imply that B is bounded. Using
this definition, and using that

(H + 1)ψn =
φn

‖(H − λ)−1φn‖ + (λ+ 1)ψn, (6.13)

we obtain that

χΩψn = χΩ(−Δ+ 1)−1B(λ+ 1)ψn + χΩ(−Δ+ 1)−1B
φn

‖(H − λ)−1φn‖
= (λ+ 1)〈Kx, Bψn〉+ χΩ(−Δ+ 1)−1B

φn
‖(H − λ)−1φn‖ . (6.14)

We consider the first term on the r.h.s.. Since B is bounded, we have
that ∀x, 〈Kx, Bψn〉 = 〈B∗Kx, ψn〉. If the vector B∗Kx were in the domain of
(H −λ)−1, then we would have 〈Kx, Bψn〉 = 1

rn
〈(H − λ)−1B∗Kx, φn〉, where

rn := ‖(H − λ)−1φn‖ → ∞, and therefore

∀x, 〈Kx, Bψn〉 → 0. (6.15)

In general, B∗Kx might not be in the domain of (H −λ)−1, but we can show
that the latter domain is dense and therefore B∗Kx can be approximated by
vectors from this domain: ∀ε > 0, there is fε such that ‖B∗Kx − fε‖ ≤
ε. Now, one can modify the argument above to show (6.15). (A different
argument showing (6.15) goes along the lines of the proof of Theorem 23.55
in the mathematical supplement.) Furthermore, since

∫ |K(x, y)|2dxdy <∞,
we have

|〈B∗Kx, ψn〉| ≤ ‖B∗Kx‖‖ψn‖ ≤ ‖B∗‖‖Kx‖ ∈ L2(dx).
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Hence, by the Lebesgue dominated convergence theorem, we have, using the
notation ‖ · ‖x for the L2−norm in the variable x, that

‖〈Kx, B(λ+ 1)ψn〉‖x = |λ+ 1|‖〈B∗Kx, ψn〉‖x → 0. (6.16)

For the second term on the r.h.s. of (6.14), we use that B is bounded, to
obtain that

‖χΩ(−Δ+ 1)−1B
φn

‖(H − λ)−1φn‖‖ ≤ ‖B‖‖
φn

‖(H − λ)−1φn‖‖ → 0. (6.17)

Thus we conclude that for any bounded set Ω ⊂ R
3,

‖χΩψn‖ → 0. (6.18)

Let B(R) be a ball of radius R centered at the origin and let Rm → ∞
as m → ∞. Since ‖χΩψn‖ → 0 as n → ∞ for any bounded set Ω we have
that ∀m, ‖χB(Rm)ψn‖ → 0 as n→∞. Hence using a diagonal procedure and
passing to a subsequence, if necessary, we obtain that ‖χBnψn‖ → 0, as n→
∞, for Bn := B(Rm(n)) and some subsequence m(n), satisfying m(n) → ∞,
as n→∞. Let

fn =
(1 − χBn)ψn
‖(1− χBn)ψn‖ .

Evidently ‖fn‖ = 1 and supp(fn) ∩ Ω = ∅ for all bounded Ω provided that
n is large (depending on Ω, of course). To finish the proof it suffices to show
that

‖(H − λ)fn‖ → 0. (6.19)

To prove this relation, we compute (H − λ)(1 − χBn)ψn = (1 − χBn)(H −
λ)ψn − [H,χBn ]ψn and [H,χBn ] = −((2∇χBn · ∇+ΔχBn). Therefore ‖(H −
λ)(1−χBn)ψn‖ ≤ ‖(1−χBn)(H−λ)ψn‖+‖[H,χBn ]ψn‖ ≤ ‖(1−χBn)‖‖(H−
λ)ψn‖+‖(2∇χBn ·∇+ΔχBn)ψn‖ → 0, as n→∞. Since ‖(1−χBn)ψn‖ → 1,
(6.19) follows. Hence fn is a spreading sequence for H and λ. �

To conclude this section, we present a result on the spectra of Schrödinger
operators on bounded domains with Dirichlet boundary conditions.

Theorem 6.18 Let Λ be a parallelepiped in R
d, and V a continuous function

on Λ. Then the Schrödinger operator H = −Δ+V , acting on the space L2(Λ)
with Dirichlet or periodic boundary conditions, has purely discrete spectrum,
accumulating at +∞.

To be precise, the operator “H on L2(Λ) with Dirichlet boundary conditions”
should be understood as the unique self-adjoint extension of H from C∞

0 (Λ).
This theorem is proved in Section 23.10.
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6.4 Supplement: Particle in a Periodic Potential

We consider a particle moving in a periodic potential. A primary example
of this situation is an electron moving in the potential created by ions or
atoms of a solid crystal lattice. Such a particle is described by a self-adjoint
Schrödinger operator

H = − �
2

2m
Δ+ V

on L2(R3), with the potential V (x), having certain periodicity properties
which we now explain.

First we identify the notion of physical crystal lattice with the mathemat-
ical (Bravais) lattice, L, which is defined as a subset of R

3 with the properties

• L is discrete, i.e. it has no finite limit points;
• L is a subgroup of the additive group of translations of R

3;
• L is not contained in any proper vector subspace of R

3.

These properties imply that L is a set of points in R
3 of the form

L = {m1s1 +m2s2 +m3s3 | m1,m2,m3 ∈ Z}
for some three linearly independent vectors s1, s2, s3 ∈ R

3, called a basis of
L. A basis in L is not unique.

We say V (x) is periodic with respect to a lattice L if V (x + s) = V (x)
for any s ∈ L. This implies that the operator H commutes with the lattice
translations,

TsH = HTs, ∀s ∈ L, (6.20)

where Ts is the translation operator, given by Tsf(x) = f(x + s). The latter
are unitary operators satisfying TtTs = Tt+s.

Problem 6.19 Show that Ts are unitary operators satisfying TtTs = Tt+s.

Due to (6.20), the operator H can be decomposed into a direct fiber in-
tegral, as follows. We first define Ω to be the basic lattice cell of the lattice
L, i.e. the cell spanned by the basis vectors s1, s2, s3. Let L∗ be the lattice
dual to L, i.e. the lattice with basis s∗1, s

∗
2, s

∗
3, satisfying s∗i sj = δij , and let

Ω∗ be a basic lattice cell in L∗. The dual group to L is the group consisting
of all characters of L, i.e., all homomorphisms from L → U(1). Explicitly, for
k ∈ Ω∗, we have the character χk given by

χk(t) = eik·t.

The dual group of L can be identified with the basic cell, Ω∗, of L∗ also known
as the Brillouin zone of L. Now for each k ∈ Ω∗, we define the Hilbert space
Hk := L2(Ω), and we then define the Hilbert space H to be the direct fiber
integral, denoted as

H =
∫ ⊕

Ω∗
Hkdk
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where dk is the standard Lebesgue measure on Ω∗, normalized so that∫
Ω∗ dk = 1, and defined as H = L2(Ω∗, dk;L2(Ω)).

Given operatorsHk, k ∈ Ω∗ acting onHk := L2(Ω), we define the operator
ψk(x)→ Hkψk(x) on H =

∫ ⊕
Ω∗ Hkdk and denote it

∫⊕
Ω∗ Hkdk.

Define U : L2(R3)→ H on smooth functions with compact support by the
formula

(Uv)k(x) =
∑

t∈L
χ−1
k (t)Ttv(x).

We now have the following Bloch decomposition result:

Proposition 6.20 The operator U extends uniquely to a unitary operator
and

UHU−1 =
∫ ⊕

Ω∗
Hkdk (6.21)

where Hk, k ∈ Ω∗, is the restriction of operator H to Hk, with domain
consisting of vectors v ∈ Hk∩H2 satisfying the boundary conditions Ttv(x) =
χk(t)v(x) for the basis elements t = s1, s2, s3.

Proof. We begin by showing that U is an isometry on smooth functions with
compact support. Using Fubini’s theorem we calculate

‖Uv‖2H =
∫

Ω∗
‖(Uv)k‖2Hk

dk =
∫

Ω∗

∫

Ω

∣
∣
∣
∣
∣

∑

t∈L
χ−1
k (t)Tyv(x)dx

∣
∣
∣
∣
∣

2

dk

=
∫

Ω

⎛

⎝
∑

t,s∈L
Ttv(x)τsv(x)

∫

Ω∗
χ−1
k (t)χk(s)dk

⎞

⎠ dx

=
∫

Ω

∑

t∈L
|Ttv(x)|2dx =

∫

R2
|v(x)|2dx.

Hence ‖Uv‖H = ‖v‖H and U extends to an isometry on all of H. To show
that U is in fact a unitary operator we define U∗ : H→ H by the formula

U∗g(x+ t) =
∫

Ω∗
χk(t)gk(x)dk,

for t ∈ L and x ∈ Ω. Straightforward calculations show that U∗ is the adjoint
of U and that it too is an isometry, proving that U is a unitary operator.

For (6.21), we need to first show that (Uv)k is in the domain of Hk. For
(Uv)k we have

Tt(Uv)k(x) =
∑

s∈L
χ−1
k (s)TtTsv(x)

=
∑

s∈L
χ−1
k (s)Tt+sv(x)

= χk(t)
∑

s∈L
χ−1
k (t+ s)ρt+sv(x)

= χk(t)(Uv)k(x).
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Hence if v ∈ D(H), then Uv ∈ D(Hk). Next, we have that

(Hk(Uv)k)(x) =
∑

t∈L
χ−1
k (t)HTtv(x)

=
∑

t∈L
χ−1
k (t)TtHv(x)

= (UHv)k(x),

which establishes (6.21). �

Since the resolvents of the operators H and Hk are related as U(H −
z)−1U−1 =

∫ ⊕
Ω∗(Hk − z)−1dk, we have that

σ(H) =
⋃

k∈Ω∗
σ(Hk). (6.22)

By Theorem 6.18, the spectra of Hk are purely discrete, say, {λn(k)}. This
shows that the spectrum of H is union of the sets {λn(k) |k ∈ Ω∗}, called the
bands. This is a key result in solid state physics.





7

Special Cases

In this chapter we will solve the Schrödinger eigenvalue equation in a few
special cases (i.e., for a few particular potentials) which not only illustrate
some of the general arguments presented above, but in fact form a basis for
our intuition about quantum behaviour.

7.1 The Infinite Well

Let W be the box [0, L]3 ⊂ R
3. We take

V (x) =
{

0 x ∈W
∞ x �∈W

as our potential. This means we take ψ ≡ 0 outside W , and that we impose
Dirichlet boundary conditions

ψ|∂W = 0 (7.1)

on the wave function inside W . It is a simple matter to solve the eigenvalue
equation

− �
2

2m
Δψ = Eψ (7.2)

in W with the boundary condition (7.1), using the method of separation of
variables. Doing so, we obtain eigenvalues (energy levels)

En =
�

2π2

2mL2

3∑

j=1

n2
j

with corresponding eigenfunctions (bound states)

ψn(x) =
3∏

j=1

sin(
πnjxj
L

)
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for each integer triple n = (n1, n2, n3), nj ≥ 1. We see that the eigenvalue En
occurs with degeneracy equal to #{(m1,m2,m3)|

∑
m2
j =

∑
n2
j}. We remark

that the ground-state (lowest) energy E(1,1,1) = 3�
2π2

2mL2 is non-degenerate.

Problem 7.1 Determine the spectrum of the operator x and the eigenvalues
of the operator p on L2(W ) with zero boundary conditions.

7.2 The Torus

Now we consider a particle on a torus T = R
3/Z3. This corresponds to taking

V ≡ 0 in the cube W , but this time imposing periodic boundary conditions.
That is, we solve the eigenvalue equation (7.2) with boundary conditions

ψ(x)|xj=0 = ψ(x)|xj=L

∂ψ/∂xk|xj=0 = ∂ψ/∂xk|xj=L

for all j, k. This leads to (separation of variables again) eigenfunctions

ψn(x) =
3∏

j=1

{
sin(2πnjxj

L
)

cos(2πnjxj

L )

}

with eigenvalues

En =
2π2

�
2

mL2

3∑

1

n2
j

for nj ≥ 0. The ground state energy, E(0,0,0) = 0 is non-degenerate, with
eigenfunction ψ(0,0,0) ≡ 1. The spacing between energy levels is greater than
for the infinite well, and the degeneracy is higher.

Problem 7.2 Determine the spectrum of x, and the eigenvalues of p, on
L2(W ) with periodic boundary conditions. Challenge: show that p has no
essential spectrum (hint – use the Fourier transform for periodic functions).

7.3 The Square Well

Now we consider a potential well of finite depth V0, and width a (see Fig. 7.1).

x

a/2

−V

−a/2

V(x)

Fig. 7.1. The finite well.
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The determination of the discrete and essential spectra is straightforward,
and is left as an exercise.

Problem 7.3 Show

1. σess(H) = [0,∞)
2. σd(H) ⊂ (−V0, 0)
3. the equations for the eigenvalues E, for −V0 ≤ E ≤ 0, are

k tan(ak/2) = K k cot(ak/2) = −K

where

K =

√

−2mE
�2

k =

√
2m(E + V0)

�2

We do not expect the “eigenvalue” problem, Hψ = Eψ, for E > 0, to have
L2 solutions, i.e. bound states, but we will show in Sect. 9.4 below that it has
bounded solutions. If we require these to converge to plane waves as x →
±∞, then the resulting collection of solutions, together with the bound states
found above, forms a complete ‘orthonormal’ system in L2(R) generalizing the
Fourier transform (it reduces to the Fourier transform if we set V (x) to 0).

7.4 A Particle on a Sphere

We consider a particle moving on the unit sphere S
2 = {x ∈ R

3 | |x| = 1} in
R

3. Its Hamiltonian is − �
2

2m
ΔΩ , the Laplace-Beltrami operator on S

2, given in
spherical coordinates (θ, φ), by

ΔΩ =
1

sin(θ)
∂

∂θ
(sin(θ)

∂

∂θ
) +

1
sin2(θ)

∂2

∂φ2
.

The eigenfunctions of ΔΩ are the well-known spherical harmonics,

Y kl (θ, φ) = clkP
|k|
l (cos(θ))eikφ (7.3)

where l = 0, 1, . . .; k ∈ {−l,−l + 1, . . . , l − 1, l}; clk is a constant; and the
Legendre function P kl can be written as

P kl (u) =
(1− u2)k/2

2ll!
(
d

du
)l+k(u2 − 1)l. (7.4)

The spherical harmonics satisfy

−ΔΩY
k
l = l(l+ 1)Y kl . (7.5)

Problem 7.4 Check (7.5) using (7.3) and (7.4) (unfortunately, this is a bit
tedious).
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It turns out that the spherical harmonics, Y kl , comprise an orthonormal basis
of the Hilbert space L2(S2; dΩ) of L2 functions on the sphere, with the measure
dΩ = sin(θ)dθdφ (see, eg, [LL]).

We make a few remarks about the connection to angular momentum. The
quantum-mechanical angular momentum L = (L1, L2, L3) is the self-adjoint
(vector-valued) operator

L = x× p
where p = −i�∇ as usual. We define also the squared magnitude of the angular
momentum, L2 = L2

1 + L2
2 + L2

3. The following facts are easily checked:

1. L2Y kl = �
2l(l + 1)Y kl

2. L3Y
k
l = �kY kl .

Thus we see that the spherical harmonics are simultaneous eigenfunctions of
the angular momentum operators L3 and L2.

7.5 The Hydrogen Atom

A hydrogen atom consists of a proton and an electron, interacting via a
Coulomb force law. Let us make the simplifying assumption that the nucleus
(the proton) is infinitely heavy, and so does not move. Placing the nucleus at
the origin, we have the electron moving under the influence of the external
(Coulomb) potential V (x) = −e2/|x|, where e is the charge of the proton, and
−e that of the electron. The appropriate Schrödinger operator is therefore

H = − �
2

2m
Δ− e2/|x|

acting on the Hilbert space L2(R3). In Section 12.1 we will see how to reduce
the problem of the more realistic hydrogen atom - when the nucleus has a
finite mass (a two-body problem) - to the problem studied here.

As usual, we want to study the spectrum of H . The first step is to invoke
Theorems 2.9 and 6.14 and Problem 6.15 to conclude that H is self-adjoint
and has essential spectrum filling in the half-line [0,∞). Our goal, then, is to
find the bound-states (eigenfunctions) and bound-state energies (eigenvalues).
It is a remarkable fact that we can find these explicitly. Indeed, aside from the
infinite well, the only multi-dimensional potentials for which the Schrödinger
eigenvalue problem can be solved explicitly are the harmonic oscillator and
the Coulomb potential.

Because the Coulomb potential is radially-symmetric (depends only on
r = |x|), it is natural to work in spherical coordinates (r, θ, φ), where

x1 = r sin(θ) cos(φ), x2 = r sin(θ) sin(φ), x3 = r cos(θ),

0 ≤ θ < π, 0 ≤ φ < 2π. In spherical coordinates, the Laplacian becomes
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Δ = Δr +
1
r2
ΔΩ

where Δr is the “radial Laplacian” given by

Δr =
∂2

∂r2
+

2
r

∂

∂r

(Δr depends only on the radial variable), and ΔΩ is the Laplace-Beltrami
operator on S

2, introduced in Section 7.4.
To solve the eigenvalue problem, we seek eigenfunctions of H in the

separated-variables form

ψ(r, θ, φ) = R(r)Y kl (θ, φ)

where Y kl is a spherical harmonic. Plugging this into the eigenvalue equation
Hψ = Eψ, we obtain

(
�

2

2m
[−Δr +

l(l+ 1)
r2

]− e2/r)R = ER. (7.6)

The solutions of the ODE (7.6) are well-studied (see, eg, [LL]). Without going
into details, we remark that one can show (by power-series methods) that (7.6)
has square-integrable solutions only for

n :=
e2

�

√−m
2E
∈ {l + 1, l+ 2, . . .}.

The corresponding eigenfunctions, Rnl are of the form

Rnl(r) = ρle−ρ/2Fnl(ρ)

where ρ = 2me2

n�2 r, and Fnl is a polynomial.
In full, then, the solutions of the eigenvalue problem Hψ = Eψ are

ψ(r, θ, φ) = Rnl(r)Y k
l (θ, φ)

where

l = 0, 1, 2, . . . ; k ∈ {−l,−l+ 1, . . . , l}; n ∈ {l+ 1, l+ 2, . . .};
and the eigenfunctions are

E (= En) = −
(
me4

2�2

)
1
n2
. (7.7)

So we see that the Hydrogen atom has an infinite number of bound states
below the essential spectrum (which starts at zero), which accumulate at zero
(this result is obtained in Section 8.3 by a general technique, without solving
the eigenvalue problem). The ground state energy, attained when l = k =
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0, n = 1, is E1 = −me4/2�
2. An easy count finds the degeneracy of the

energy level En to be
n−1∑

l=0

(2l + 1) = n2.

Finally, we note that the expression (7.7) is in agreement with the empirical
formula (“Balmer series”)

ΔE = R(
1
n2
f

− 1
n2
i

).

Here 1 ≤ nf < ni are integers labeling the final and initial states of the atom
in a radiation process, R is a constant, and ΔE is the difference of the two
energy levels. This formula predates quantum mechanics, and was based on
measurements of absorption and emission spectra.

7.6 The Harmonic Oscillator

The Hamiltonian of the quantum harmonic oscillator in r dimensions is

Hho = − �
2

2m
Δ+

1
2
m

r∑

i=1

ω2
i x

2
i ,

acting on the space L2(Rr). By Theorem 6.16, σ(H) consists of isolated eigen-
values, increasing to infinity. We will solve the eigenvalue problem explicitly
for this operator.

We derive a representation of the operator H which facilitates its spec-
tral analysis. It also prepares us for a similar technique we will encounter in
the more complex situation of second quantization and quantum electrody-
namics (see Chapters 18 and 19). We introduce the creation and annihilation
operators

aj :=
1

√
2m�ωj

(mωjxj + ipj) and a∗j :=
1

√
2m�ωj

(mωjxj − ipj). (7.8)

These operators are adjoint of each other and they satisfy the commutation
relation

[ai, a∗j ] = δij . (7.9)

Using that H =
∑r
i=1

( − �
2

2m
∂2
xi

+ 1
2
mω2

i x
2
i

)
, the Hamiltonian H can be re-

written in terms of ai and a∗i ’s as follows: on L2(Rr). It can be rewritten in
the form

Hho =
r∑

i=1

�ωi

(

a∗i ai +
1
2

)

, (7.10)

where ai and a∗i are the harmonic oscillator annihilation and creation opera-
tors. We say that this expression is in normal form because a∗ appears to the
left of a. Using (7.10) and (7.9), we derive easily
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Theorem 7.5 The spectrum of Hho is

σ(Hho) = {
r∑

i=1

�ωi(ni + 1/2) | ni = 0, 1, 2, . . .},

with eigenfunctions

ψ0 :=
r∏

i=1

(2πm�ωi)−1/4e−m
∑r

i=1 ωix
2
i /2�, ni = 0, ∀i, (7.11)

ψn =
r∏

i=1

(1/
√
ni!)(a∗i )

niψ0, n := (n1, . . . , nr). (7.12)

Proof. First we find the ground state and ground state energy of Hho. We
define the particle number operators

Ni := a∗i ai,

so that, by the expression (7.10),

Hho =
r∑

i=1

�ωi(Ni +
1
2
),

Now, because a∗i is the adjoint of a, Ni are non-negative Ni ≥ 0:

〈ψ,Niψ〉 = ‖aiψ‖2 ≥ 0

for any ψ. Therefore, ψ, with the smallest eigenvalue,
∑r

i=1
1
2
�ωi, (i.e. the one

that minimizes the average energy, 〈ψ,Hhoψ〉), satisfies Niψ = 0, ∀i, which
holds iff aiψ = 0, ∀i. These equations,

aiψ =
1√

2m�ωi
(mωixi + �∂/∂xi)ψ = 0,

can be easily solved, giving the unique family of solutions

ψ0i(xi) := ce−mωix
2
i /2

(c a constant). To normalized this function we set c := (2πm�ωi)−1/4. Thus
(7.11) is the (normalized) ground state of Hho with the ground state energy∑r
i=1

1
2�ωi.

To find the exited states we observe that (7.9) imply that the operators
Ni satisfy the relations

Niai = ai(Ni − 1), (7.13)

Nia
∗
i = a∗i (Ni + 1). (7.14)

The commutation relation (7.14) implies Nia∗ψ0 = a∗iψ0 and in general
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Ni(a∗i )
nψ0 = ni(a∗i )

nψ0.

Thus φni := (a∗i )
niψ0 is an eigenfunction of Ni with eigenvalue ni and

therefore φn :=
∏r
i=1(a

∗
i )
niψ0 is an eigenfunction of Hho with eigenvalue∑r

i=1 �ωi(ni + 1
2
).

Problem 7.6 Show that ‖φn‖2 =
∏r
i=1 ni!. Hint: write

‖φn‖2 = 〈ψ0,
∏r
i=1(ai)

ni(a∗i )
niψ0〉, then pull the ai’s through the a∗i ’s (includ-

ing the necessary commutators) until they hit ψ0 and annihilate it.

So ψn :=
∏r
i=1

1√
ni!

(a∗i )
niψ0, n := (n1, . . . , nr), is a normalized eigenfunction

of Hho with eigenvalue
∑r
i=1 �ωi(ni + 1/2).

We now show that these are the only eigenfunctions. To simplify the nota-
tion we do this in dimension 1, i.e. for r = 1. It follows from the commutation
relations that if ψ is any eigenfunction of N with eigenvalue λ > 0, then

Namψ = (λ−m)amψ. (7.15)

If we choose m so that λ −m < 0 we contradict N ≥ 0 unless amψ = 0. But
this implies

ajψ = cψ0

where j < m is the largest integer s.t. ajψ �= 0 and c �= 0 is a constant, so
by (7.15) and Nψ0 = 0, λ = j. Thus ψ corresponds to the eigenvalue j. If ψ is
not proportional to ψj , then we can choose it to satisfy 〈ψ, ψj〉 = 0. However,
by ajψ = cψ0, we have that 〈ψ, ψj〉 = c �= 0, a contradiction. So we are done.
�

Remark 7.7 One can extend the last part of the proof above to show that
any function f ∈ L2(Rr) can be written as

f(x) =
∑

n

cnψn =
∑

n

cn

r∏

i=1

1√
ni!

(a∗i )
niψ0.

Hence the set {ψn} form an orthonormal basis in L2(Rr) and the space L2(Rr)
is isometric to the space F (r) := ⊕∞

n=0C
n
sym, where C

n
sym is equal to {0}

for n = 0 and to C
n/Sn for n ≥ 1. Here Sn is the symmetric group of

permutations of n indices.

Remark 7.8 Since ψ0 is positive and normalized,
∫
ψ2

0 = 1, the operator U :
f → ψ−1

0 f maps unitarily the space L2(Rr, drx) into the space L2(Rr, ψ2
0d
rx).

Under this map the operator Hho is mapped into L := UHU−1 acting on the
space L2(Rr, ψ2

0d
rx). We compute

L =
r∑

j=1

�ωjb
∗
j bj, (7.16)
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where bj := UajU
−1 and b∗j = Ua∗jU

−1 is the adjoint to bj in the space
L2(Rr, ψ2

0d
rx). Explicitly,

bj =

√
�

2mωj
∂xj , b

∗
j = −

√
�

2mωj
∂xj +

√
2mωj

�
xj . (7.17)

The operator L, with � = 1, 2m = 1, is the generator of the Ornstein-
Uhlenbeck stochastic process (see [GJ]).

7.7 A Particle in a Constant Magnetic Field

We consider a particle moving in a constant magnetic field with no electric
field present. According to (4.15), the quantum Hamiltonian of such a system
is

H(A) =
1

2m
(p− eA)2,

acting on L2(R3), where A is the vector potential of the magnetic field B and
therefore satisfies

curlA = B.

We fix the gauge by choosing a special solution of the latter equation. A
possible choice for A is

A(x) =
1
2
B × x. (7.18)

Another possibility, supposing B to be directed along the x3 axis (B =
(0, 0, b)) is

A(x) = b(−x2, 0, 0). (7.19)

Problem 7.9 Check that both (7.18) and (7.19) yield the magnetic field B,
and that the two are gauge-equivalent.

For the first choice of A, we chose the x3 axis along B so that B = (0, 0, b),
and therefore A = 1

2 (−x2, x1, 0).

Problem 7.10 Under (7.18), show that Schrödinger operator H(A) is of the
form

H(A) =
1

2m
[p2

1 + p2
2 +

1
4
e2b2(x2

1 + x2
2)− ebL3 + p2

3],

where L3 is the third component of the angular momentum.

Furthermore, for the same choice of A, we may introduce the harmonic oscil-
lator annihilation and creation operators, α and α∗, with

α := (∇A)1 + i(∇A)2 = ∂x1 + i∂x2 +
b

2
x1 +

ib

2
x2. (7.20)
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These operators satisfy the standard commutation relations:

[α, α∗] = 2 curlA = 2b. (7.21)

The operator H(A) can be expressed in terms of these operators as H(A) =
1

2m
[α∗α+ b+ p2

3].

Problem 7.11 Verify the above statements. Use them to find the spectrum
of H(A).

Using the second choice for A, the appropriate Schrödinger operator is

H(A) =
1

2m
[(p1 + ebx2)2 + p2

2 + p2
3].

To analyze H(A), we apply the Fourier transform to only the first and third
variables (x1,3 �→ k1,3). This results in the unitarily equivalent operator

H̃ =
1

2m
p2
2 +

mω2

2
(x2 +

1
eb
k1)2 +

1
2m

k2
3

where ω = eb/m and k1, k3 act as multiplication operators. We remark that
H̃ acts as a harmonic oscillator in the variable x2, and as a multiplication
operator in k1 and k3. In the following problem you are asked to determine
the spectrum of this operator.

Problem 7.12

1. Show that the energy levels of H̃ (called Landau levels) are given by

(n+
1
2
)�ω +

α2

2m

where n = 0, 1, 2, . . . and α ∈ R. Show that the corresponding generalized
eigenfunctions are

ψn,α(k1, x2, k3) = φn(x2 + k1/eb)δ(k3 − α)

where φn is the nth eigenfunction of the harmonic oscillator.
2. Analyze the same problem in two dimensions, with the magnetic field

perpendicular to the plane.

7.8 Linearized Ginzburg-Landau Equations
of Superconductivity

One of the greatest achievements of the Ginzburg-Landau theory of supercon-
ductivity is A.A. Abrikosov’s discovery of vortex lattice solutions. Abrikosov
found these solutions using the linearized Ginzburg-Landau equations and
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taking into account the nonlinearity in the first order of perturbation theory.
The Abrikosov problem can be formulated as the eigenvalue problem

−ΔAψ = λψ, (7.22)

whereA is a vector potential of a constant external magnetic field b, curlA = b,
and ψ is a bounded, twice differentiable function such that |ψ|2 (the density of
superconducting electron pairs) is periodic with respect to some lattice L, i.e.
|ψ|2(x + s) = |ψ|2(x), ∀s ∈ L. (A definition of the lattice is given in Section
6.4.) We call such ψ’s, L-lattice states.

One can show that ψ ∈ H1
loc(R

2; C) is an L-lattice state if and only if
translation by an element of the lattice results in a gauge transformation of
the state, that is, for each s ∈ L, there exists a function gs ∈ H2

loc(R
2; R) such

that
ψ(x+ s) = eigs(x)ψ(x)

almost everywhere. In particular, if we fix the gauge as A(x) = b
2Jx, where J

is the symplectic matrix,
(

0 1
−1 0

)

, then one can choose gs as gs(x) = b
2s ·Jx.

Let Ω be a fundamental cell of the lattice L. Clearly, we can reduce the
eigenvalue problem above to the Sobolev space of order two, H2(Ω,C), whose
elements satisfy the quasiperiodic boundary condition

ψ(x + s) = e
ib
2 s·Jxψ(x), (7.23)

for s running through basis vectors for Ω. This quasiperiodic boundary con-
dition is consistent with the fact that ψ is a single valued function if and
only if the magnetic flux, b|Ω|, through the fundamental cell Ω is quantized:
b|Ω| = 2πn, for some integer n.

We define the shape of a lattice, by identifying x ∈ R
2 with z = x1 + ix2 ∈

C, and viewing L as a subset of C, and setting τ = r′
r for a basis r, r′. Although

the basis is not unique, the value of τ is, and we will use that as a measure of
the shape of the lattice. Using the rotation symmetry we can assume that if
L has as a basis { re1, rτ }, where r is a positive real number and e1 = (1, 0).

A key step in proving existence of Abrikosov vortex lattice solutions is the
following

Theorem 1. The smallest λ for which the problem (7.22)- (7.23) with the
quantization condition b|Ω| = 2πn has a non-trivial solution is λ = b. In this
case the solutions span the n−dimensional space

{ e in
2 x2(x1+ix2)

∞∑

k=−∞
cke

ik
√

2π Im τ(x1+ix2) | ck+n = einπτei2kπτ ck}. (7.24)

Here n is the integer entering the quantization of the flux condition, b|Ω| =
2πn.
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Proof. Let L denote the operator −ΔA on the space L2(Ω,C), with the do-
main consisting of functions fromH2(Ω,C) satisfying the boundary conditions
(7.23). We find the spectrum of L explicitly. We introduce the harmonic os-
cillator annihilation and creation operators, α and α∗, with

α := (∇A)1 + i(∇A)2 = ∂x1 + i∂x2 +
b

2
x1 +

ib

2
x2. (7.25)

One can verify that these operators satisfy the following relations:

1. [α, α∗] = 2 curlA = 2b;
2. L− b = α∗α.

As for the harmonic oscillator (see the previous two sections), this gives σ(L) =
{ (2k + 1)b : k = 0, 1, 2, . . .}. Furthermore, the second property implies

Null(L− b) = Null α. (7.26)

We find Null α. A simple calculation gives the following operator equation

e
b
4 |x|2αe−

b
4 |x|2 = ∂x1 + i∂x2 .

This immediately proves that ψ ∈ Null α if and only if ξ = e
b
4 |x|2ψ satisfies

∂x1ξ+ i∂x2ξ = 0. We now identify x ∈ R
2 with z = x1 + ix2 ∈ C and see that

this means that ξ is analytic. We therefore define the entire function Θ to be

Θ(z) = e−
b
4 (z′)2ξ (z′) = e

b
4 (|z′|2−(z′)2)ψ (z′) , z′ :=

r

π
z,

where, recall, the number r enters the definition of the basis { re1, rτ } of L.
The quasiperiodicity of ψ transfers to Θ as follows,

Θ(z + π) = Θ(z),

Θ(z + πτ) = e−2inze−inπτΘ(z).

To complete the proof, we now need to show that the space of the analytic
functions which satisfy these relations form a vector space of dimension n.
It is easy to verify that the first relation ensures that Θ has an absolutely
convergent Fourier expansion of the form

Θ(z) =
∞∑

k=−∞
cke

2kiz .

The second relation, on the other hand, leads to a relation for the coefficients
of the expansion. Namely, we have ck+n = einπτe2kiπτ ck and that means such
functions are determined solely by the values of c0, . . . , cn−1 and therefore
form an n-dimensional vector space. This completes the proof of Theorem 1.
�
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Abrikosov considered the case n = 1. In this case, the space (7.24) is one-
dimensional and spanned by the function

ψ := e
i
2x2(x1+ix2)

∞∑

k=−∞
cke

ik
√

2π Im τ(x1+ix2), ck = ceikπτ
k−1∏

m=1

ei2mπτ . (7.28)

This is the leading approximation to the Abrikosov lattice solution ([A]). The
normalization coefficient c cannot be found from the linear theory and is
obtained by taking into account nonlinear terms by perturbation theory (see
[TS] and references therein for a rigorous treatment and [GST] for a review).
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Bound States and Variational Principle

In this chapter we develop powerful techniques for proving existence of bound
states (eigenfunctions) corresponding to isolated eigenvalues. We also give
estimates of their number.

8.1 Variational Characterization of Eigenvalues

We consider, for the moment, a self-adjoint operator H , acting on a Hilbert
space H. The main result of this chapter is the following important charac-
terization of eigenvalues of H in terms of the minimization problem for the
“energy” functional 〈ψ,Hψ〉.
Theorem 8.1 (1) The Ritz variational principle: for any ψ ∈ D(H),

inf
‖ψ‖=1

〈ψ,Hψ〉 = inf σ(H).

(2) The left hand side has a minimizer if and only if Hψ = λψ, with λ :=
inf σ(H).
(3) If there is a ψ (called a test function) with ‖ψ‖ = 1 and

〈ψ,Hψ〉 < inf σess(H),

then H has at least one eigenvalue below its essential spectrum.

As an example application of this theorem, we consider the bound state prob-
lem for the Hydrogen atom. The Schrödinger operator for the Hydrogen atom
is

H = − �
2

2m
Δ− e2

|x|
acting on the Hilbert space L2(R3) (see Section 5.3). Take the (normalized)
test function ψ(x) =

√
μ3/πe−μ|x| for some μ > 0 to be specified later and

compute (passing to spherical coordinates)
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〈ψ,Hψ〉 =
�

2

2m

∫
|∇ψ|2 − e2

∫
1
|x| |ψ|

2

=
�

2

2m
μ3

π
4π
∫ ∞

0

e−2μrr2dr − e2μ
3

π
4π
∫ ∞

0

e−2μrrdr.

To compute the above integrals, note
∫ ∞

0

e−αrr2dr =
d2

dα2

∫ ∞

0

e−αrdr

and ∫ ∞

0

e−αrrdr = − d

dα

∫ ∞

0

e−αrdr.

Since
∫∞
0
e−αrdr = α−1, we find

∫∞
0
e−αrr2dr = 2α−3, and

∫∞
0
e−αrrdr =

α−2. Substituting these expressions with α = 2μ into the formula for 〈ψ,Hψ〉,
we obtain

〈ψ,Hψ〉 = �
2

2m
μ2 − e2μ.

The right hand side has a minimum at μ = me2/�2, which is equal to

〈ψ,Hψ〉|μ=me2/�2 = −me
4

2�2
.

Since σess(H) = [0,∞) (according to Theorem 6.14, which can be extended
to cover singular potentials like the Coulomb potential – see Problem 6.15
in Section 6.3) we conclude that H has negative eigenvalues, and the lowest
negative eigenvalue, λ1, satisfies the estimate

λ1 ≤ −me
4

2�2
.

This should be compared with the lower bound

λ1 > −2me4

�2

found in Section 5.3.
The rest of this section is devoted to the proof of this theorem and a

generalization. We begin with some useful characterizations of operators in
terms of their spectra.

Theorem 8.2 Let H be a self-adjoint operator with σ(H) ⊂ [a,∞). Then
H ≥ a (i.e. 〈u,Hu〉 ≥ a‖u‖2 for all u ∈ D(H)).

Proof. Without loss of generality, we can assume a = 0 (otherwise we can
consider H − a1 instead of H). First we suppose H is bounded (we will pass
to the unbounded case later). If b > ‖H‖, then the operator (H + b)−1 is
positive, as follows from the Neumann series
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(H + b)−1 = b−1(1 + b−1H)−1 = b−1
∞∑

j=0

(−b−1H)n

(see (23.33)). For all λ > 0, the operator (H + λ)−1 is bounded, self-adjoint,
and differentiable in λ (in fact it is analytic – see Section 23.9). Compute

∂

∂λ
(H + λ)−1 = −(H + λ)−2 < 0,

Hence for any 0 < c < b,

(H + c)−1 = (H + b)−1 +
∫ b

c

(H + λ)−2dλ

and therefore (H + c)−1 > (H + b)−1 > 0. Now any u ∈ D(H) can be written
in the form u = (H + c)−1v for some v ∈ H (show this). Since

〈u, (H + c)u〉 = 〈v, (H + c)−1v〉 > 0

for any c > 0, we conclude that 〈u,Hu〉 ≥ 0 for all u ∈ D(H), as claimed.
In order to pass to unbounded operators, we proceed as follows. Let c > 0

and A := (H + c)−1, a bounded operator since −c /∈ σ(H). For any λ �= 0, we
have

A+ λ = (H + c)−1 + λ = λ(H + c)−1(H + c+ λ−1). (8.1)

Hence for λ > 0, the operator A + λ is invertible, and so σ(A) ⊂ [0,∞) (in
fact, one can see from (8.1) that A + λ is also invertible if λ < −c−1, and
so σ(A) ⊂ [0, c−1]). By the proof above, A := (H + c)−1 ≥ 0. Repeating the
argument at the end of this proof, we find that H + c ≥ 0. Since the latter is
true for any c > 0, we conclude that H ≥ 0. �.

Theorem 8.3 Let S(ψ) := 〈ψ,Hψ〉 for ψ ∈ D(H) with ‖ψ‖ = 1. Then
inf σ(H) = inf S. Moreover, λ := inf σ(H) is an eigenvalue of H if and only if
there is a minimizer for S(ψ) among ψ ∈ D(H) with the constraint ‖ψ‖ = 1.

Proof. As in the proof of Lemma 23.21, we compute, for ψ ∈ D(A) and z ∈ R

satisfying z < inf S =: μ,

‖(A− z1)ψ‖2 = 〈(A− z1)ψ, (A− z1)ψ〉
= ‖(A− μ)ψ‖2 + 2(μ− z)〈ψ, (A− μ)ψ〉+ |μ− z|2‖ψ‖2.

(8.2)

Since 〈ψ, (A− μ)ψ〉 ≥ 0, this gives

‖(A− z1)ψ‖ ≥ |μ− z|‖ψ‖. (8.3)

As in the proof of Lemma 23.21, this shows that the operator A − z1 is
invertible and therefore z /∈ σ(H). Therefore inf S ≤ inf σ(H). Now let λ :=
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inf σ(H). By Theorem 8.2, 〈ψ,Hψ〉 ≥ λ‖ψ‖2 for any ψ ∈ D(H). Hence inf S ≥
λ = inf σ(H), and therefore inf S = inf σ(H) as required.

Now if λ = inf σ(H) is an eigenvalue of H , with normalized eigenvector
ψ0, then

S(ψ0) = 〈ψ0, Hψ0〉 = λ = inf S,

and therefore ψ0 is a minimizer of S. On the other hand, if ψ0 is a minimizer
of S, among ψ ∈ D(H), ‖ψ‖ = 1, then it satisfies the Euler-Lagrange equation
(see Section 24.5)

S′(ψ0) = 2λψ0

for some λ. Since S′(ψ) = 2Hψ (see again Section 24.5), this means that ψ0

is an eigenvector of H with eigenvalue λ. Moreover,

S(ψ0) = 〈ψ0, Hψ0〉 = λ‖ψ0‖2 = λ.

Since S(ψ0) = inf S = inf σ(H), we conclude that λ = inf σ(H) is an eigen-
value of H (with eigenvector ψ0). �
Proof. of Theorem 8.1: Theorem 8.3 gives the proof of the first part of the
theorem - the Ritz variational principle: for any ψ ∈ D(H),

〈ψ,Hψ〉 ≥ λ = inf σ(H)

and equality holds iff Hψ = λψ.
To obtain the second part of the theorem, stating that if we can find ψ

with ‖ψ‖ = 1 and 〈ψ,Hψ〉 < inf σess(H) then we know that H has at least
one eigenvalue below its essential spectrum, we note that, by Theorem 8.3,

inf σ(H) = inf S < 〈ψ,Hψ〉 < inf σess(H),

so λ = inf σ(H) must be an (isolated) eigenvalue of H . �
The variational principle above can be extended to higher eigenvalues.

Theorem 8.4 (Min-max principle) The operator H has at least n eigen-
values (counting multiplicities) less than inf σess(H) if and only if λn <
inf σess(H), where the number λn is given by

λn = inf
{X⊂D(H) | dimX=n}

max
{ψ∈X | ‖ψ‖=1}

〈ψ,Hψ〉. (8.4)

In this case, the n-th eigenvalue (labeled in non-decreasing order) is exactly
λn.

Sketch of proof. We prove only the “if” part of the theorem. The easier “only
if” part is left as an exercise. We proceed by induction. For n = 1, the state-
ment coincides with that of Theorem 8.3. Now assume that the “if” statement
holds for n ≤ m−1, and we will prove it for n = m. By the induction assump-
tion, the operator H has at least m − 1 eigenvalues, λ1, . . . , λm−1 (counting
multiplicities), all < inf σess(H). We show that H has at least m eigenval-
ues. Let Vm−1 denote the subspace spanned by the (normalized) eigenvectors
ψ1, . . . , ψm−1, corresponding to λ1, . . . , λm−1. Then
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1. the subspace Vm−1, and its orthogonal complement, V ⊥
m−1, are invariant

under the operator H , and
2. the spectrum of the restriction, H |V ⊥

m−1
, of H to the invariant subspace

V ⊥
m−1 is σ(H)\{λ1, . . . , λm−1}.

Problem 8.5 Prove statements 1 and 2.

Now apply Theorem 8.3 to the operator H |V⊥
m−1

to obtain

inf
{ψ∈V ⊥

m−1∩D(H) | ‖ψ‖=1}
〈ψ,Hψ〉 = inf{σ(H)\{λ1, . . . , λm−1}}. (8.5)

On the other hand, let X be any m-dimensional subspace of D(H). There
exists φ ∈ X such that φ ⊥ Vm−1, and ‖φ‖ = 1. We have

〈φ,Hφ〉 ≥ inf
{ψ∈V⊥

m−1∩D(H) | ‖ψ‖=1}
〈ψ,Hψ〉.

Hence for any such X

max
{ψ∈X | ‖ψ‖=1}

≥ inf
{ψ∈V⊥

m−1∩D(H) | ‖ψ‖=1}
〈ψ,Hψ〉

and therefore λm defined by (8.4) obeys

λm ≥ inf
{ψ∈V ⊥

m−1∩D(H) ||;‖ψ‖=1}
〈ψ,Hψ〉. (8.6)

Since λm < inf σess(H) by assumption, and due to (8.5), we have

λ′m := inf{σ(H)\{λ1, . . . , λm−1}} < inf σess(H) (8.7)

is the m-th eigenvalue of H . Moreover, Equations (8.5)-(8.7) imply that λm ≥
λ′m.

Now we show that λm ≤ λ′m. Let ψm be a normalized eigenvector corre-
sponding to λ′m, and let Vm = span{ψ1, . . . , ψm}. Then

λm ≤ max
ψ∈Vm,‖ψ‖=1

〈ψ,Hψ〉 = λ′m.

Hence λm = λ′m. Thus we have shown that H has at least m eigenval-
ues (counting multiplicities) < inf σess(H), and these eigenvalues are given
by (8.4). �

This theorem implies that if we find an n-dimensional subspace X , such
that

μn := sup
ψ∈X,‖ψ‖=1

〈ψ,Hψ〉 < inf σess(H),

then H has at least n eigenvalues less than inf σess(H), and the largest of
these eigenvalues satisfies the bound
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λn ≤ μn.

This result will be used in Section 8.3.
There is another formulation of the min-max (more precisely sup-inf) prin-

ciple, in which Equation 8.4 is replaced by the equation

λn = sup
{X⊂D(H) | dimX=n}

inf
{ψ∈X⊥ | ‖ψ‖=1}

〈ψ,Hψ〉.

A proof of this theorem is similar to the proof above.
The following useful statement is a simple consequence of the min-max

principle. Suppose A and B are self-adjoint operators with A ≤ B. Denote
the j-th eigenvalue of A below its essential spectrum (if it exists) by λj(A)
(and similarly for B). Suppose also that the eigenvectors of B corresponding
to the eigenvalues λ1(B), . . . , λj(B) lie in D(A). Then λj(A) ≤ λj(B). To see
this, let Vj denote the span of the first j eigenvectors of B, and observe that
max{ψ∈Vj |‖ψ‖=1}〈ψ,Bψ〉 = λj(B). Since Vj ⊂ D(A), (8.4) gives

λj(A) ≤ max
{ψ∈Vn | ‖ψ‖=1}

〈ψ,Aψ〉

≤ max
{ψ∈Vn | ‖ψ‖=1}

〈ψ,Bψ〉 = λj(B).

Another useful criterion for finding eigenvalues of self-adjoint operators
goes as follows. If for some λ ∈ R and ε > 0, there is a function ψ ∈ D(A)
such that

‖(A− λ)ψ‖ ≤ ε‖ψ‖, (8.8)

then the operator A has spectrum in the interval [λ− ε, λ+ ε]:

σ(A) ∩ [λ− ε, λ+ ε] �= ∅.

To prove this statement we use the inequality

‖(A− z)−1‖ ≤ [dist(z, σ(A))]−1

for z ∈ ρ(A), which extends the inequality (23.11). For a proof of this in-
equality see [HS, RSI]. Now if A has no spectrum in [λ − ε, λ + ε], i.e. if
[λ− ε, λ+ ε] ⊂ ρ(A), then

‖(A− λ)−1‖ < 1
ε

which contradicts (8.8), since (8.8) implies ‖φ‖ ≤ ε‖(A − λ)−1φ‖ for φ :=
(A− λ)ψ.
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8.2 Exponential Decay of Bound States

Consider the Schrödinger operator H = − �
2

2m
Δ + V with the potential V :

R
d → R which is continuous and decays V (x)→ 0 as |x| → ∞. Recall that H

is self-adjoint and its essential spectrum, σess(H), fills in the semi-axis [0,∞).
hence the spectrum on the negative axis consists of isolated eigenvalues of
finite multiplicities.

Theorem 8.6 If H has a bound state, ψ(x), with an energy E < 0 (i.e. below
the ionization threshold 0), then ψ(x) satisfies the exponential bound

∫
|ψ(x)|2e2α|x|dx <∞, ∀α < √−E. (8.9)

Proof. Let J be a real, bounded, smooth function supported in {|x| ≥ R}. By
the condition on the potential V , there is ε = ε(R)→ 0, as R→∞, s.t.

JHJ ≥ −εJ2. (8.10)

We assume now that ∇J is supported in {R ≤ |x| ≤ 2R}. Let f be a bounded
twice differentiable, positive function and define Hf := efHe−f . We compute

Hf = H − �
2

2m
[|∇f |2 −∇f · ∇ −∇ · ∇f ]. (8.11)

Then (Hf −E)Φ = 0, where Φ := efΨ , and therefore (Hf −E)JΦ = [Hf , J ]Φ.
On the other hand, by (8.11) and (8.10) and the fact that the operator ∇f ·
∇+∇ · ∇f is anti-self-adjoint, we have

Re〈JΦ, (Hf − E)JΦ〉 = 〈JΦ, (H − �
2

2m
|∇f |2 − E)JΦ〉

≥ δ‖JΦ‖2.

where δ := −ε−E− �
2

2m supx∈suppJ |∇f |2. Then the last two equations imply,

δ‖JΦ‖2 ≤ Re〈JΦ, (Hf − E)JΦ〉 ≤ ‖JΦ‖‖[Hf , J ]Φ‖.
Now we take for f a sequence of bounded functions approximating α(1 +
|x|2)1/2, with α <

√−E. Taking the limit in the last inequality gives (8.9). �

8.3 Number of Bound States

Let H = − �
2

2m
Δ+ V (x) be a Schrödinger operator acting on L2(R3). Assume

V (x)→ 0 as |x| → ∞. In this section, we address the questions

• Does H have any bound states?
• If so, how many bound states does it have?
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We begin with a very simple example. Suppose that V (x) ≥ 0. Clearly
H ≥ 0, and so H certainly has no negative eigenvalues. On the other hand,
σess(H) = [0,∞) by Theorem 6.14. So H has no isolated eigenvalues.

The next example is physically clear, but mathematically more subtle:

If x · ∇V (x) ≤ 0, i.e. V (x) is repulsive,
then H has no eigenvalues.

Let us assume here that V is twice differentiable, and that V (x), together
with x ·∇V (x), vanish as |x| → ∞. The proof of the above statement is based
on the following virial relation: define the self-adjoint operator

A :=
1
2
(x · p+ p · x).

This operator is the generator of a one-parameter group of unitary transfor-
mations called dilations:

ψ(x) �→ e3θ/2ψ(eθx)

for θ ∈ R. Let us show formally (i.e. ignoring domain issues) that if ψ is an
eigenfunction of H , then

〈ψ, i[H,A]ψ〉 = 0. (8.12)

Letting λ be the eigenvalue corresponding to ψ, and using (5.2), we have

〈ψ, i[H,A]ψ〉 = 〈ψ, i[H − λ,A]ψ〉 = −2Im〈(H − λ)ψ,Aψ〉.

Since (H − λ)ψ = 0, (8.12) follows.
On the other hand, a simple computation (left as an exercise) yields

i[H,A] = −�
2

m
Δ− x · ∇V (x). (8.13)

Therefore i[H,A] ≥ −�
2

m
Δ by the repulsivity condition on V (x), which implies

〈ψ, i[H,A]ψ〉 ≥ �
2

m
‖∇ψ‖2 > 0,

a contradiction to (8.12). Thus the operator H , with V (x) satisfying x ·
∇V (x) ≤ 0 has no eigenvalues.

Problem 8.7 Show (8.13).

We turn our attention now from a situation where there are no bound
states, to one where there are many. In particular, we will prove that the
Schrödinger operator

H = − �
2

2m
Δ− q

|x| (8.14)
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with q > 0, has an infinite number of bound states. The potential V (x) =
−q/|x| is called the (attractive) Coulomb potential. For appropriate q, the
operator H describes either the the Hydrogen atom, or a one-electron ion. In
Section 7.5, we went further, solving the eigenvalue problem for H exactly,
finding explicit expressions for the eigenfunctions and (infinitely many) eigen-
values. Nevertheless, it is useful to be able to prove the existence of infinitely
many bound states using an argument that does not rely on the explicit solv-
ability of the eigenvalue problem.

We would first like to apply Theorem 6.14 to locate the essential spectrum.
However, the fact that the Coulomb potential is singular at the origin is a
possible obstacle. In fact, Theorem 6.14 can be extended to cover this case
(see Problem 6.15 and, eg, [CFKS]), and we may conclude that H is self-
adjoint, with essential spectrum equal to the half-line [0,∞).

To prove that the operator (8.14) has an infinite number of negative eigen-
values, we will construct an infinite sequence of normalized, mutually orthog-
onal test functions, un(x), such that

〈un, Hun〉 < 0. (8.15)

The “min-max principle” (described in Section 8.1) then implies that H has
an infinite number of eigenvalues.

We begin by choosing a single function, u(x), which is smooth, and which
satisfies

‖u‖ = 1 and supp(u) ⊂ { x ∈ R
3 | 1 < |x| < 2 }.

Then we set un(x) := n−3/2u(n−1x) for n = 1, 2, 4, 8, . . ..

Problem 8.8 Show that 〈um, un〉 = δmn, and that 〈um, Hun〉 = 0 if m �= n.

Given the results of the exercise, it remains to show (8.15) for n sufficiently
large. Indeed, changing variables to y = n−1x, we compute

〈un, Hun〉 =
�

2

2m

∫
|∇un(x)|2dx− q

∫
1
|x| |un(x)|

2dx

= n−2 �
2

2m

∫
|∇u(y)|2dy − n−1q

∫
1
|y| |u(y)|2dy

< 0

for n sufficiently large, as the second term – the potential term – prevails for
large n. Thus we have proved that the operator (8.14) has an infinite number
of negative eigenvalues.

With this example in mind, we address the question of whether the
Schrödinger operator

H = − �
2

2m
Δ+ V (x)
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has a finite (including possibly 0) or infinite number of negative eigenvalues.
Assume V (x) behaves at infinity as

V (x) = c|x|−α for |x| sufficiently large (8.16)

for some constant c. We test the operator H on the functions un(x) con-
structed above. It is left as an exercise to show that, as above, 〈um, Hun〉 = 0
for m �= n, and

〈un, Hun〉
{
< 0 if α < 2 and c < 0
> 0 otherwise

for n sufficiently large.

Problem 8.9 Prove these last two statements.

LetXn be the n-dimensional subspace spanned by the functions um, . . . , um+n,
for m sufficiently large. The results of Problems 8.8 and 8.9 imply that

sup
ψ∈Xn,‖ψ‖=1

〈ψ,Hψ〉 < 0

for all n, provided α < 2 and c < 0. Invoking the min-max principle again,
we see that if α < 2 and c < 0, then the operator H has an infinite number
of bound states.

It is shown below that H has only a finite number of bound states if α > 2.
The borderline for the question of the number of eigenvalues is given by the
inequality

−Δ ≥ 1
4|x|2

(the Uncertainty Principle – see Section 5.2). This inequality shows that the
kinetic term − �

2

2mΔ dominates at ∞ if α > 2, or if α = 2 and 2m
�2 c > − 1

4 .
Otherwise, the potential term favouring eigenvalues wins out. This simple
intuition notwithstanding, there is presently no physically motivated proof of
the finiteness of the discrete spectrum for α > 2. The proof presented below
uses mathematical ingenuity rather than physical intuition.

We now prove finiteness of the number of eigenvalues for α > 2. To simplify
the argument slightly, we assume the potential V (x) is non-positive and denote
U(x) := −V (x) ≥ 0. Let λ < 0 be an eigenvalue of H with eigenfunction φ.
The eigenvalue equation (H − λ)φ = 0 can be re-written as

(− �
2

2m
Δ− λ)φ = Uφ.

Since λ < 0 is in the resolvent set of the operator − �
2

2m
Δ, we can invert

(− �
2

2mΔ− λ) to obtain

φ = (− �
2

2m
Δ− λ)−1Uφ,
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the homogeneous Lippmann-Schwinger equation. By introducing the new func-
tion v := U1/2φ, this equation can be further re-written to read v = K(λ)v
where the operator K(λ) is defined as

K(λ) := U 1/2(− �
2

2m
Δ− λ)−1U1/2.

We can summarize the above derivation as follows:

λ < 0 EV H ↔ 1 EV K(λ)

and so
#{λ < 0 | λ EV H} = #{λ < 0 | 1 EV K(λ)}. (8.17)

The next step is to prove that

#{λ < 0 | 1 EV K(λ)} = #{ν > 1 | ν EV K(0)}. (8.18)

To prove (8.18), we begin by showing that

∂

∂λ
K(λ) > 0 ∀ λ ≤ 0 (8.19)

and
K(λ)→ 0 as λ→ −∞. (8.20)

Writing

〈φ,K(λ)φ〉 = 〈U1/2φ, (− �
2

2m
Δ− λ)−1U1/2φ〉

and differentiating with respect to λ, we obtain

∂

∂λ
〈φ,K(λ)φ〉 = 〈U1/2φ, (− �

2

2m
Δ− λ)−2U 1/2φ〉

= ‖(− �
2

2m
Δ− λ)−1U1/2φ‖2 > 0

which proves (8.19). To establish (8.20), we need to derive the integral kernel
of the operator K(λ). Using the fact that the operator (− �

2

2mΔ − λ)−1 has
integral kernel

(− �
2

2m
Δ− λ)−1(x, y) =

m

2π�2|x− y|e
−
√

2m|λ|
�2 |x−y|

(see Equation (23.48)), we find that the integral kernel for K(λ) is

K(λ)(x, y) = U(x)1/2
m

2π�2|x− y|e
−
√

2m|λ|
�2 |x−y|

U(y)1/2

(see Section 23.3). Using the estimate
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‖K‖ ≤
(∫

R3×R3
|K(x, y)|2dxdy

)1/2

(see again Section 23.3), we obtain

‖K(λ)‖ ≤ m

2π�2

(∫

R3×R3

U(x)U(y)
|x− y|2 e

−2
√

2m|λ|
�2 |x−y|

dxdy

)1/2

.

Since exp(−
√

2m|λ|
�2 |x− y|)→ 0 as λ→ −∞, Equation (8.20) follows.

Now we show that the relations (8.19) and (8.20) imply (8.18). By (8.20),
for all λ sufficiently negative, all of the eigenvalues of K(λ) are less than 1.
By (8.19), the eigenvalues, νm(λ), of K(λ) increase monotonically with λ.
Hence if νm(λm) = 1 for some λm < 0, then νm(0) > νm(λm) = 1. Similarly,
if νm(0) > 1, then there is a λm < 0 such that νm(λm) = 1. In other words,
there is a one-to-one correspondence between the eigenvalues νm(0) of K(0)
which are greater than 1, and the points λm at which some eigenvalue νm(λ)
crosses 1 (see Fig. 8.1).

λ

1

Fig. 8.1. Eigenvalues of K(λ).

Thus (8.18) follows.
The relations (8.17) and (8.18) imply

#{λ < 0 | λ EV H} = #{ν > 1 | ν EV K(0)}. (8.21)

The quantity on the left hand side of (8.21) is what we would like to
estimate, while the quantity on the right hand side is what we can estimate.
Indeed, we have

#{ν > 1 | ν EV K(0)} =
∑

νm>1,νmEVK(0)

1 ≤
⎛

⎝
∑

νm>1,νmEVK(0)

ν2
m

⎞

⎠

1/2

≤
⎛

⎝
∑

νmEVK(0)

ν2
m

⎞

⎠

1/2

=
(
tr(K(0)2)

)1/2

(8.22)
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(see Section 23.11 for the definition of tr, the trace). On the other hand (see
Section 23.3),

tr(K(0)2) =
∫
|K(0)(x, y)|2dxdy =

( m

2π�2

)2
∫
U(x)U(y)
|x− y|2 dxdy (8.23)

Collecting equations (8.21)- (8.23) and recalling that V (x) = −U(x), we ob-
tain

#{λ < 0 | λ EV H} ≤ m

2π�2

(∫ |V (x)V (y)|
|x− y|2 dxdy

)1/2

.

Under our assumption (8.16) on the potential V (x), with α > 2,
∫ |V (x)V (y)|

|x− y|2 dxdy <∞,

so that the number of negative eigenvalues of the operator H is finite. This is
the fact we set out to prove.

The argument used above (Equation (8.21) in particular) is called the
Birman-Schwinger principle, and the operator K(λ) is the Birman-Schwinger
operator.
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Scattering States

In this chapter we study scattering states in a little more detail. As we saw in
Section 6.2, scattering states are solutions of the time-dependent Schrödinger
equation

i�
∂ψ

∂t
= Hψ (9.1)

with initial condition orthogonal to all eigenfunctions of H :

ψ|t=0 = ψ0 ∈ H⊥
b (9.2)

where Hb := span{ eigenfunctions of H} is the subspace of bound states of
H .

We will have to make a more precise assumption on the potential V (x) en-
tering the Schrödinger operatorH = − �

2

2m
Δ+V (x): we assume, for simplicity,

that
|∂αx V (x)| ≤ C(1 + |x|)−μ−|α| (9.3)

for |α| ≤ 2 and for some μ > 0 (and C a constant). The notation needs a little
explanation: α is a multi-index α = (α1, α2, α3) with each αj a non-negative
integer, |α| = ∑3

j=1 αj , and

∂αx =
3∏

j=1

∂αj
xj
.

The question we want to address is what is the asymptotic behaviour of
the solution ψ = e−iHt/�ψ0 of (9.1)-(9.2) as t → ∞. First observe that (6.2)
shows that ψ moves away from any bounded region of space as t→∞. Hence,
since

V (x)→ 0 as |x| → ∞, (9.4)

we expect that the influence of the potential V (x) diminishes as t→∞. Thus
the following question arises: does the evolution ψ approach a free evolution,
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say φ = e−iH0t/�φ0, where H0 = − �
2

2mΔ, for some φ0 ∈ L2(R3), as t → ∞?
Put differently, given ψ0 ∈ H⊥

b , is there φ0 ∈ L2(R3) such that

‖e−iHt/�ψ0 − e−iH0t/�φ0‖ → 0 (9.5)

as t → ∞? This (or a modification of this question discussed below) is the
problem of asymptotic completeness. It is the central problem of mathematical
scattering theory. It conjectures that all the possible free motions, together
with the bound state motions, form a complete set of possibilities for the
asymptotic behaviour of solutions of time-dependent Schrödinger equations.

There are two principal cases depending on the decay rate, μ, of the po-
tential V (x) (more precisely, the decay rate, μ+1, of the force −∇V (x)), and
it is only in the first of these cases that the asymptotic completeness property
formulated above holds. We now discuss these cases in turn.

9.1 Short-range Interactions: µ > 1

In this case, asymptotic completeness can be proved under condition (9.3). We
can reformulate the asymptotic completeness property by defining the wave
operator, Ω+:

Ω+φ := lim
t→∞ eiHt/�e−iH0t/�φ. (9.6)

Below we will show that under the condition (9.3) with μ > 1, the limit exists
for any φ ∈ L2(R3). Further, the operator Ω+ is an isometry:

‖Ω+φ‖ = ‖φ‖. (9.7)

Indeed, (9.6) implies

‖Ω+φ‖ = lim
t→∞ ‖e

iHt/�e−iH0t/�φ‖ = ‖φ‖

since the operators eiHt/� and e−iH0t/� are isometries.
The existence of the wave operator Ω+ means that given a free evolution

e−iH0t/�φ0, there is a full evolution e−iHt/�ψ0 such that (9.5) holds. To see
this, note that since eiHt/� is an isometry, (9.5) can be re-written as

‖ψ0 − eiHt/�e−iH0t/�φ0‖ → 0

as t→∞, which is equivalent to the relation

ψ0 = Ω+φ0. (9.8)

Thus the existence of the wave operator Ω+ is equivalent to the existence of
scattering states – i.e. states e−iHt/�ψ0 for which (9.5) holds for some φ0.

We have
Ran(Ω+) ⊂ H⊥

b .
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Indeed, for any φ0 ∈ L2(R3) and g ∈ Hb such that Hg = λg, we have

〈g,Ω+φ0〉 = lim
t→∞〈g, e

iHt/�e−iH0t/�φ0〉 = lim
t→∞〈e

−iHt/�g, e−iH0t/�φ0〉
= lim
t→∞ eiλt/�〈g, e−iH0t/�φ0〉.

(9.9)

There is a general theorem implying that the right hand side here is zero, but
we will prove it directly. Recalling expression (2.22) for the action of the free
evolution operator e−iH0t/�, we find

〈g, e−iH0t/�φ0〉 =
(

2πi�t
m

)−3/2 ∫

R3

∫

R3
ḡ(x)eim|x−y|2/(2�t)φ0(y)dydx

and therefore, if φ0 and g are integrable functions, i.e.,
∫

R3
|φ0(x)|dx <∞ and

∫

R3
|g(x)|dx <∞,

we have

|〈g, e−iH0t/�φ0〉| ≤
(

2π�t

m

)−3/2 ∫

R3
|g|

∫

R3
|φ0|

and thus the right hand side of (9.9) vanishes. For general φ0 and g the result
is obtained by continuity. This argument can also be extended to cover the
case where g is a linear combination of eigenfunctions.

We can similarly define the wave operator Ω− describing the asymptotic
behaviour as t→ −∞:

Ω−φ := lim
t→−∞ eiHt/�e−iH0t/�φ.

This operator maps free states e−iH0t/�φ0 into states e−iHt/�ψ0 which ap-
proach these free states as t→ −∞. We have (in an appropriate sense)

HΩ± = Ω±H0. (9.10)

Indeed, by changing variables, we can obtain the following intertwining rela-
tions

e−iHt/�Ω± = Ω±e−iH0t/�. (9.11)

Differentiating these relations at t = 0, we obtain 9.10.
Let Hsc := RanΩ+, the set of scattering states. We have shown that

Hsc ⊂ H⊥
b . The property of asymptotic completeness states that

Hsc = H⊥
b or Hb ⊕RanHsc = L2(R3)

i.e., that the scattering states and bound states span the entire state space
L2(R3). We will prove this property under some restrictive conditions below.

One can also define the scattering operator
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S := Ω+∗
Ω−

which maps asymptotic states at t = −∞ into asymptotic states at t =∞:

e
−iH t/ ho

+φ

−iH t/ ho
−φe

Fig.9.1. S : φ− → φ+

Equations (9.11) and (9.10) imply e−iH0t/�S = Se−iH0t/� and

H0S = SH0.

The property of asymptotic completeness implies that the Hamiltonian H
restricted to the invariant subspace H⊥

b is unitarily equivalent to the free
Hamiltonian H0:

H = Ω±H0Ω
±∗ on H⊥

b .

Let Ω±(x, y) be the integral kernels of the operators Ω±, and let ψ±(x, k)
denote their Fourier transforms with respect to the second variable, y. Equa-
tion (9.10) implies that

Hψ±(x, k) =
|k|2
2m

ψ±(x, k). (9.12)

In other words, ψ±(x, k) are generalized eigenfunctions of the operator H ,
with eigenvalue |k|2/2m. These generalized eigenfunctions are of the form

ψ±(x, k) = e±ik·x +O

(
1
|x|

)

as |x| → ∞ (see, eg., [Ya,RSIII]). They are called scattering eigenfunctions of
H .

Problem 9.1 Prove relation (9.12).

9.2 Long-range Interactions: µ ≤ 1

In this case, the relation (9.5) must be modified to read
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‖eiHt/�ψ0 − e−iS(t)φ0‖ → 0

as t → ∞, where for 1
2
< μ ≤ 1, the operator-family S(t) is defined to be

S(t) = S(p, t), where the function S(k, t) satisfies the equation

∂

∂t
S(k, t) = H0(k) + V

(
1
m
kt

)

.

Here H0(k) = 1
2m |k|2 is the classical free Hamiltonian function. The oper-

ator S(p, t) is defined according to the rules described in Section 4.2. Note
that in this equation, the coordinate x in the potential V (x) is replaced by
its free, classical expression, 1

mkt. With this modification, the asymptotic
completeness property can again be established under assumption (9.3) with
1
2 < μ ≤ 1. For 0 < μ ≤ 1

2 , the expression for the operator-family S(t) is
more complicated (see [DG]). As in the short-range case, one can introduce
modified wave operators and investigate their properties (see the references
given in Chapter 25).

9.3 Wave Operators

As promised, we prove the existence and completeness of the wave operators
Ω±. To simplify the proof, we impose a somewhat stronger condition on the
potential: V (x) ∈ L2(R3). Below, we also make use of the space

L1(R3) := {ψ : R
3 → C |

∫

R3
|ψ(x)|dx <∞}.

Theorem 9.2 If V ∈ L2(R3), then the wave operators Ω±, introduced for-
mally above, exist.

Proof. Denote Ωt := eiHte−iH0t (we drop the � in what follows, just to sim-
plify the notation). Since ‖Ωt‖ ≤ const, uniformly in t (in fact, ‖Ωt‖ = 1), it
suffices to prove the existence of the limit (9.6) (and similarly for t→ −∞) on
functions φ ∈ L2(R3)∩L1(R3) (the existence of the limit for φ ∈ L2 will then
follow by approximating φ by elements of the dense subspace L2 ∩ L1). For
t ≥ t′, we write the vector-function Ωtφ−Ωt′φ as the integral of its derivative:

Ωtφ−Ωt′φ =
∫ t

t′

d

ds
Ωsφds.

Using the relation d
ds
eiHs = iHeiHs, and similarly for e−iH0s (see Chapter 2),

we find

d

ds
Ωs = iHeiHse−iH0s + eiHs(−iH0)e−iH0s = ieiHsV e−iH0s,
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as H − H0 = V . Since ‖eiHs‖ = 1, and using the Minkowski inequality
‖ ∫

φ(s)ds‖ ≤ ∫ ‖φ(s)‖ds (see eg. [Fo]), we have

‖Ωtφ−Ωt′φ‖ ≤
∫ t′

t

‖V e−iH0sφ‖ds. (9.13)

We estimate the integrand as follows:

‖V e−iH0sφ‖2 =
∫

R3
|V (x)

(
e−iH0sφ

)
(x)|2dx

≤ sup
x′∈R3

| (e−iH0sφ
)
(x′)|2

∫

R3
|V (x)|2dx,

yielding
‖V e−iH0sφ‖ ≤ ‖V ‖L2 sup

x′
|(e−iH0sφ)(x′)|.

Finally, recalling the bound (see (2.23))

∣
∣
∣
(
e−iH0s/�φ

)
(x)

∣
∣
∣ ≤

(
2π�s

m

)−3/2 ∫

R3
|φ(x)|dx (9.14)

from Section 2.4, we obtain

‖V e−iH0sφ‖ ≤ (const)s−3/2‖V ‖L2‖φ‖L1

and so ∫ ∞

1

‖V e−iH0sφ‖ds ≤ (const)‖V ‖L2‖φ‖L1 .

This shows that the right hand side in (9.13) vanishes as t′, t → ∞. In other
words, for any sequence tj →∞, {Ωtjφ} is a Cauchy sequence, and so {Ωtφ}
converges as t→∞. Convergence for t→ −∞ is proved in the same way. �

Finally, as promised, we prove asymptotic completeness in a special case.

Theorem 9.3 Assume V ∈ L∞ ∩ L1 with ‖V ‖L∞ and ‖V ‖L1 sufficiently
small. Then RanΩ± = H. Consequently, Hb is empty, and asymptotic com-
pleteness holds.

Proof. We begin by proving that for any ψ ∈ L1∩L2, e−itHψ has some decay
in time, as measured in the ‖ · ‖L2+L∞ norm, which is defined by

‖f‖L2+L∞ := inf
f=g+h

(‖g‖L2 + ‖h‖L∞).

In fact, we claim

‖e−itHψ‖L2+L∞ ≤ (const)(1 + |t|)−3/2. (9.15)
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To show this, set M(t) := sup0≤s≤t(1 + |s|)3/2‖e−isHψ‖L2+L∞ . Writing, as
above,

eisH0e−isHψ − ψ =
∫ s

0

d

dτ
eiτH0e−iτHψdτ

and applying e−isH0 , we arrive at the Duhamel formula

e−isHψ = e−isH0ψ − i
∫ s

0

e−i(s−τ)H0V e−isHψds.

We estimate as follows:

‖e−isHψ‖L2+L∞ ≤ ‖e−isH0ψ‖L2+L∞ +
∫ s−1

0

‖e−i(s−τ)H0V e−iτHψ‖L∞dτ

+
∫ s

s−1

‖e−i(s−τ)H0V e−iτHψ‖L2dτ.

Using (9.14) as above, together with Hölder’s inequality, we find

‖e−isHψ‖L2+L∞ ≤ (const)
[
(1 + |s|)−3/2‖ψ‖L1∩L2

+
∫ s−1

0

|s− τ |−3/2‖V ‖L1∩L2‖e−iτHψ‖L2+L∞dτ

+
∫ s

s−1

‖V ‖L2∩L∞‖e−iτHψ‖L2+L∞dτ.

]

≤ (const)[(1 + |s|)−3/2‖ψ‖L1∩L2 + ‖V ‖L1∩L∞M(s)×

×
[∫ s−1

0

|s− τ |−3/2(1 + |τ |)−3/2dτ +
∫ s

s−1

(1 + |τ |)−3/2dτ

]

]

and so multiplying through by (1 + |s|)3/2, and taking supremum over s ≤ t,
we find

M(t) ≤ (const) [‖ψ‖L1∩L2 + ‖V ‖L1∩L∞M(t)] (9.16)

where we used the fact that

sup0≤s≤t(1+ |s|)3/2[

∫ s−1

0

|s−τ |−3/2(1+ |τ |)−3/2dτ +

∫ s

s−1

(1+ |τ |)−3/2dτ ] ≤ (const).

Thus if ‖V ‖L1∩L∞ is sufficiently small (so that (const)‖V ‖L1∩L∞ ≤ 1/2, say),
(9.16) implies M(t) ≤ (const) for all t, and so (9.15) holds.

Now denote W (t) := eiH0te−iHt, and, as above, write

W (t)−W (t′) = i

∫ t

t′
eiH0sV e−iHsds.

Using Hölder again, for ψ ∈ L1 ∩ L2 we find
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‖(W (t)−W (t′))ψ‖L2 ≤
∫ t

t′
‖V ‖L2∩L∞‖e−iHsψ‖L2+L∞ds

≤ (const)
∫ t

t′
(1 + |s|)−3/2ds→ 0

as t > t′ → ∞. Hence {W (t)ψ} is a Cauchy sequence in L2, and therefore
limt→∞W (t)ψ exists for all ψ ∈ L1 ∩L2. Since the operator W (t) is bounded
uniformly in t, this limit exists for all ψ ∈ L2.

Denote W±ψ := limt→±∞W (t)ψ. We want to show that Ω±W± = 1,
W±Ω± = 1 and W± = Ω∗

±. Indeed, since Ω± = s− lim eiHte−iH0t and W± =
s − lim eiH0te−iHt we have that Ω±W± = s − lim eiHte−iH0teiH0te−iHt = 1
and similarly for the other relations. The relation Ω±W± = 1 implies that
RanΩ± = H, i.e., Ω± is unitary. This implies the asymptotic completeness.

9.4 Appendix: The Potential Step and Square Well

Potential step. In the one-dimensional case one can say much more about
scattering process. In particular, one can introduce very useful reflection and
transmission coefficients as illustrated in the example of the one-dimensional
potential

V (x) =
{
V0 x > 0
0 x ≤ 0

with V0 > 0. Consider the “eigenvalue” problem

− �
2

2m
ψ′′ + V ψ = Eψ. (9.17)

We put the term eigenvalue in quotation marks because we will allow solutions,
ψ, which are not L2-functions. Solving this eigenvalue problem separately in
the two different regions gives us a general solution of the form

ψ =

{
Aeik0x +Be−ik0x (�

2k2
0

2m = E) x < 0
Ceik1x +De−ik1x (�

2k2
1

2m = E − V0) x > 0
.

There are no bound states (L2 solutions), but we can say something about
the scattering states.

Suppose 0 < E < V0, and take k1 = iK where K =
√

(2m/�2)(V0 − E) >
0. Then for a bounded solution, we require D = 0. Imposing the condition
that ψ be continuously differentiable at 0, that is

ψ|0− = ψ|0+, ∂ψ/∂x|0− = ∂ψ/∂x|0+,
leads to the equations

A+B = C, ik0(A− B) = −KC.
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After some manipulation, we find that

B

A
=
k0 − iK
k0 + iK

,

or making the dependence on the energy E explicit,

B

A
=

√
E − i√V0 − E√
E + i

√
V0 − E

.

Similarly, if E > V0, we obtain

B

A
=

√
E −√E − V0√
E +

√
E − V0

,

and

R(E) :=
∣
∣
∣
∣
B

A

∣
∣
∣
∣

2

=
1
V 2

0

[2E − V0 − 2
√
E

√
E − V0]2

(R(E) is called the reflection coefficient). In particular, if E−V0
V0
� 1, then

R(E) ≈ 1− 4
√
E − V0

V0

and almost all of the wave is reflected. This is in spite of the fact that the
energy of the particle lies above the barrier. In classical mechanics, the particle
would pass over the barrier.
The square well. We consider the “eigenvalue” problem Hψ = Eψ for
the square well potential defined in Sect. 7.3, for positive energies E > 0.
Explicitly, the “eigenvalue” equation is given by the same expression (9.17),
but V here is different. We do not expect this equation to have L2 solutions,
i.e. bound states. So we look for bounded solutions which converge to plane
waves as x→ ±∞. Such solutions were above called scattering states.

Consider the situation where a plane wave ψinc(x) = Aeikx is incoming
from the left. Then on the left of the well, ψ is a superposition of incoming
and reflected plane waves:

ψ = Aeikx +AB(E)e−ikx x < −a/2
while on the right of the well, ψ is an outgoing (transmitted) plane wave:

ψ = AC(E)eik(x−a) x > a/2

Problem 9.2 Show that

C(E) = [cos(k̄a)− i k̄
2 + k2

2k̄k
sin(k̄a)]−1

where
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k̄ =

√
2m(E + V0)

�2
and k =

√
2mE
�2

.

This implies

T (E) := |C(E)|2 =
[

1 +
V 2

0

4E(E + V0)
sin2(ak̄)

]−1

(T (E) is the transmission coefficient) which is sketched in Fig. 9.2.

0

1

Fig. 9.2. Transmission coefficient.

We see that at the energies satisfying sin(k̄a) = 0, i.e.

E = −V0 +
n2π2

�
2

2ma2
> 0, n = 1, 2, . . .

T (E) has maxima (T (E) = 1) which are called resonances. The corresponding
values of E are the resonance energies. We remark that for large n these are
approximately equal to the energy levels of the infinite well of the same width.
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Existence of Atoms and Molecules

In this chapter we prove existence of stationary, well localized and stable
states of atoms and, in a certain approximation, molecules. These are the
lowest energy states, and their existence means that our quantum systems
exist as well-localized objects, and do not disintegrate into fragments under
sufficiently small perturbations.

General many-body systems are considered in Chapter 12.

10.1 Essential Spectra of Atoms and Molecules

Recall from Section 4.3 that a molecule withN electrons of massm and charge
−e, and M nuclei of masses mj and charges Zje, j = 1, . . . ,M, is described
by the Schrödinger operator

Hmol = −
N∑

1

�
2

2m
Δxj −

M∑

1

�
2

2mj
Δyj + V (x, y) (10.1)

acting on L2
sym(R3(N+M)). Here L2

sym(R3(N+M)) is a symmetry subspace of
L2(R3(N+M)) reflecting the fact that electrons and some of the nuclei are
identical particles, x = (x1, . . . , xN ) and y = (y1, . . . yM ) are the electron and
nucleus coordinates, respectively, and

V (x, y) =
1
2

∑

i�=j

e2

|xi − xj | −
∑

i,j

e2Zj
|xi − yj | +

1
2

∑

i�=j

e2ZiZj
|yi − yj | , (10.2)

the sum of Coulomb interaction potentials between the electrons (the first
term on the r.h.s.), between the electrons and the nuclei (the second term),
and between the nuclei (the third term). (See Section 4.3.) For a neutral
molecule, we have

M∑

j=1

Zj = N.
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If M = 1, the resulting system is called an atom, or Z-atom (Z = Z1). In the
case of atoms, the last term in (10.2) is absent.

Since nuclei are much heavier than electrons, in the leading approximation
one can suppose that the nuclei are frozen at their positions. (For a more
precise statement and discussion of this point see Section 11.4 below.) One
then considers, instead of (10.1), the Schrödinger operator

HBO
N (y) = −

N∑

1

�
2

2m
Δxj + V (x, y) (10.3)

acting in L2
sym(R3N ), the positions y ∈ R

3M of the nuclei appearing as pa-
rameters. This is called the Born-Oppenheimer approximation. It plays a fun-
damental role in quantum chemistry, where most computations are done with
the operator HBO

N (y). We discuss the justification of this approximation in
Section 11.4.

Theorem 10.1 (Kato theorem) The operatorsHmol and HBO
N (y) are self-

adjoint and bounded below.

Proof. The fact that the operators Hmol and HBO
N (y) are bounded below was

shown in Section 5.3. Next, to fix ideas we prove the self-adjointness for Hmol

only. The self-adjointness for HBO
N (y) is proven similarly. As in Problem 2.8

we have

‖ 1
|xi − xj |ψ‖ ≤ a‖(−

1
2m

Δxi −
1

2m
Δxj )ψ‖+ b‖ψ‖,

‖ 1
|xi − yj |ψ‖ ≤ a‖(−

1
2m

Δxi
− 1

2mj
Δyj

)ψ‖+ b‖ψ‖,
(10.4)

with a > 0 arbitrary and b depending on a and for all ψ ∈ D(H0), where
H0 := −∑N

1
1

2mΔxj −
∑M

1
1

2mj
Δyj . Let V be given in (10.2). Then the last

two estimates imply
‖V ψ‖ ≤ a‖H0ψ‖+ b‖ψ‖ (10.5)

with a > 0 arbitrary and b depending on a. By Theorem 2.9, this implies that
the operator Hmol is self-adjoint. �

To simplify the exposition, in what follows we consider only atoms and
molecules with fixed (infinitely heavy) nuclei and denote the corresponding
quantum Hamiltonians by HN . Thus HN is equal to HBO

N (y), where in the
case of atoms (M = 1) y ≡ y1 is set to 0. For atoms the assumption of fixed
nuclei is a minor one and can be easily removed; for molecules, it is a crucial
one. A rigorous existence theory for molecules, apart from hydrogen, still does
not exist.

We begin with the HVZ theorem describing the essential spectra of atoms
and Born-Oppenheimer (BO) molecules.
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Theorem 10.2 (HVZ theorem for atoms and BO molecules)
σess(HN ) = [ΣN ,∞), where ΣN = inf σ(HN−1).

This theorem is a special case of the general HVZ theorem proven in
Chapter 12, so we omit its proof. The energy ΣN = inf σ(HN−1) is called
the ionization threshold. To obtain σess(HN ) we take one of the electrons to
infinity and let it move freely there. The rest of the atom is placed in the
ground state, so that the energy of the atom is

Energy = ΣN +
1

2m
|k|2 ∀k (10.6)

where k is the momentum of the electron which is placed at infinity. Varying
|k| from 0 to ∞ we see that (10.6) ranges over [ΣN ,∞). For molecules with
mobile nuclei, the bottom of the essential spectrum is likely below its ion-
ization threshold. However, the theorem above would imply the existence of
bound states of Hmol, with m/minmj sufficiently small, likely smaller then
it is for real molecules (see Section 11.4).

10.2 Bound States of Atoms and BO Molecules

Are atoms or BO molecules stable? To answer this question we have to deter-
mine whether HN has at least one bound state.

Theorem 10.3 For N < Z + 1, HN has an infinite number of eigen-
values below its ionization threshold ΣN = inf σ(HN−1). Bound states,
Ψ

(i)
N (x1, x2, ..., xN ), of HN , with energies E(i)

N < ΣN , satisfy the exponential
bound ∫

|Ψ (i)
N (x)|2e2α|x|dx <∞, ∀α <

√
ΣN − E(i)

N . (10.7)

Proof. To simplify the exposition, we assume the ground states, if they exist,
are unique. In the case without statistics, i.e. on the entire L2(R3N ), this is
not hard to prove (see [RSIV]). In the case with statistics, this is not known,
and is probably not true. However, a generalization of the proof below to the
case of multiple ground states is straightforward.

We prove this theorem by induction in N . (This is strictly speaking not
necessary, but is convenient.) We have shown already that it holds for the
hydrogen atom, i.e. N = 1. Assume now it holds for k ≤ N − 1 and prove
it for k = N . Let ΨN−1(x1, x2, ..., xN−1) be the normalized ground state of
HN−1 with the ground state energy EN−1 < EN−2.

First, for simplicity, we ignore the statistics and consider HN on the entire
space L2(R3N ). We use the variational principle with the test function

φ = ΨN−1(x1, ..., xN−1)f(xN ), (10.8)

where f ∈ L2(R3), ‖f‖ = 1. Using that HN = HN−1 − �
2

2mΔxN + IN , with
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IN (x) :=
N−1∑

i=1

e2

|xi − xN | −
e2Z

|xN | , (10.9)

and HN−1ΨN−1 = EN−1ΨN−1, we obtain

HNφ = (EN−1 + IN )φ+ ΨN−1(− �
2

2m
ΔxN )f. (10.10)

This implies that

〈φ,HNφ〉 = EN−1 + 〈f,− �
2

2m
Δf〉+ 〈φ, INφ〉. (10.11)

By the exponential bound (10.7) for ΨN−1, i.e.
∫ |ΨN−1(x)|2e2α|x|dx <∞, for

any α < EN−2 − EN−1, it follows that

|〈ΨN−1, (IN (x)− IN (xN ))ΨN−1〉L2(RN−1)| ≤ (const)|xN |−2,

where IN (xN ) := IN (x)|xi=xN∀i. Observe that IN (xN ) = −q/|xN |, where
q := (Z −N + 1)e2, which implies

〈ΨN−1, IN (x)ΨN−1〉L2(RN−1) ≤ − q

|xN | +
const
|xN |2 , (10.12)

which, in turn, together with (10.11) and ‖φ‖ = 1, gives

〈φ, (HN −ΣN)φ〉 ≤
〈

f,

(

− �
2

2m
ΔxN −

q

|xN | +
const
|xN |2

)

f

〉

L2(R3)

.

Let f ∈ C∞
0 (R3) and satisfy ‖f‖ = 1 and

supp(f) ⊂ {xN ∈ R
3 | 1 < |xN | < 2}.

Then the functions

fn(xN ) = n−3/2f(n−1xN ), n = 1, 2, 4, 8, . . . ,

are orthonormal, and have disjoint supports. Thus the corresponding trial
states φn(x) = ΨN−1(x1, ..., xN−1)fn(xN ) satisfy 〈φn, HNφm〉 = 0 for n �= m,
and

〈φn, (HN −ΣN )φn〉 ≤ −c1 q
n

+ c2
1
n2

< 0,

for c1 =
∫

1
|x| |f(x)|2dx and some positive constant c2, if n is sufficiently large.

Using this one can show thatHN possesses infinitely many discrete eigenvalues
below the threshold ΣN .

Taking into account statistics. Now we show how to modify the proof
above to the case of spinless fermions, i.e. for the state space L2

sym(R3N ) :=
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∧N1 L2(R3). (The fact that electrons have spin 1
2 can be accommodated simi-

larly.) As before, let SN be the group of permutations of N indices and define
the anti-symmetrization projection

PANΨ =
1
N !

∑

π∈SN

(−1)#(π)Ψ(xπ(1), ..., xπ(N))

where, recall, #(π) is the number of transpositions making up the permutation
π ((−1)#(π) is the parity of π ∈ SN ). We replace the test function (10.8) by
the function φ = PAN (ΨN−1 ⊗ f)/‖PAN (ΨN−1 ⊗ f)‖. This gives φ :=

∑N
j=1 φ

(j)

where, with the normalization constant c,

φ(j) := ±cΨN−1(x1, ..., xj−1, xj+1, ..., xN )f(xj). (10.13)

Let Ij :=
∑
i:i�=j

e2

|xi−xj | − e2Z
|xj| . We take fα(x) = α

3
2 f(αx) with ‖f‖ = 1 and

denote by φα and φ
(i)
α the corresponding test functions. Then we have, for

i �= j,

|〈φ(i)
α , (− �

2

2m
Δxj

+ Ij)φ(j)
α 〉| �

α3

N
. (10.14)

and, similarly,

〈φα, HNφα〉 ≤ EN−1 + 〈fα, (− �
2

2m
Δx − q

|x| )fα〉 +O(α3N). (10.15)

For α → 0, (10.14) implies that the normalization constant c in (10.13) is
c � O( 1√

N
). Then the equation (10.15) implies

〈φα, HNφα〉 ≤ EN−1 + 〈fα, (− �
2

2m
Δx − q

|x| )fα〉 +O(α3N).

Hence 〈φα, HNφα〉 < EN−1, if α� 1√
N

and α < 〈f, q
|x|f〉/〈f,− �

2

2m
Δf〉. This

proves the existence of the ground state energy for HN ∀N .
Finally, the bound (10.7) is a special case of the general exponential bound

for many-body bound states given in Theorem 12.7, Section 12.6 (see also
Theorem 8.6 of Section 8.2). �

Problem 10.4 Go over the proof above and, where necessary, fill in the de-
tails.

A more refined estimate of 〈φ, INφ〉 (replacing (10.12)). Consider the
one-electron density

ρN (y) :=
∫
|ΨN (y, x2, ..., xn)|dx2...dxN . (10.16)

Assume that for anyN , ρN (y) is spherically symmetric. Then we have a bound
considerably stronger than (10.12):
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〈φ, INφ〉 ≤ − (Z −N + 1)e2

|xN | . (10.17)

Indeed, we write 〈φ, INφ〉 = 〈f,Wf〉 where

W (xN ) =
∫
IN |ΨN−1(x1, ..., xN−1)|2dN−1x. (10.18)

We compute

W (xN ) = (N − 1)e2
∫

ρN−1(y)
|x− xN |dy −

e2Z

|xN | , (10.19)

where ρN−1(x1) =
∫ |ΨN−1|2dx2...dxN−1. It is not hard to show that ρN−1 is

spherically symmetric. Hence we have by Newton’s theorem
∫

R3

ρN−1(y)dy
|y − xN | =

1
|xN |

∫

|y|≤|xN |
ρN−1(y)dy +

∫

|y|≥|xN |

1
|y|ρN−1(y)dy.

(10.20)
Using that

∫
ρN−1(y)dy = 1, this can be estimated as

∫

R3

ρN−1(y)dy
|y − xN | ≤

1
|xN |

∫

R3
ρN−1(y)dy =

1
|xN | . (10.21)

(Moreover, ρN−1(x) = O(e−δ|x|) =⇒ ∫
|y|≤|xN | ρN−1(y)dy = 1 +O(e−δ|xN |).)

The equations (10.18) - (10.17) imply (10.21).

Remark 10.5 The accumulation of eigenvalues at ΣN can be studied by
similar arguments. Consider trial wave functions, φnm, constructed as above,
with fnm(xN ) a hydrogen atom eigenfunction of energy −n−2 (in suitable
units). Then one can show

‖(HN − En)φnm‖ ≤ (const)n−α

for some α > 3, where En = Σ − n−2. This implies that HN has groups
of eigenvalues close to En compared to the spacing En+1 − En as n → ∞
(Rydberg states). This analysis can be easily extended to take into account
the particle statistics.

Problem 10.6 Show that the Schrödinger operator describing the Helium
atom with infinitely heavy nucleus has at least one discrete eigenvalue (isolated
eigenvalue of finite multiplicity).

10.3 Open Problems

Though atoms and molecules have been studied since the advent of quantum
mechanics, there are many open problems in their rigorous theory. We mention
here two of these problems:
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1. Existence of molecules.
2. Non-existence of negative atomic ions with more than a few extra elec-

trons.
3. Uniqueness or non-uniqueness of the ground states.

It is easy to prove the uniqueness of the ground states on the entire space, say
L2(R3N ), however there are no techniques available to deal with the fermionic
subspace (see Section 4.3).
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Perturbation Theory: Feshbach-Schur Method

As we have seen, many basic questions of quantum dynamics can be reduced
to finding and characterizing the spectrum of the appropriate Schrödinger
operator. Though this task, known as spectral analysis, is much simpler than
the task of analyzing the dynamics directly, it is far from trivial. The problem
can be greatly simplified if the Schrödinger operator H under consideration
is close to an operator H0 whose spectrum we already know. In other words,
the operator H is of the form H = Hκ, where

Hκ = H0 + κW, (11.1)

H0 is an operator at least part of whose spectrum is well understood, κ is a
small real parameter called the coupling constant, andW is an operator, called
the perturbation. (All the operators here are assumed to be self-adjoint.)

If the operatorW is bounded relative to H0, say in the sense that D(H0) ⊂
D(W ) and

‖Wu‖ ≤ c‖H0u‖+ c′‖u‖
for some c, c′ ≥ 0, for all u ∈ D(H0),

(11.2)

then “standard” perturbation theory applies, and allows us to find or estimate
eigenvalues of Hκ (see [RSIV,Ka,HS]).

In this chapter, we describe a powerful technique which allows us to es-
timate eigenvalues of Hκ even in cases where W is not bounded in terms of
H0. This is important in applications. We consider several examples of appli-
cations of this method, one of which is the hydrogen atom in a weak constant
magnetic field B. Combining the expressions derived in Sections 7.5 and 7.7,
we see that the Schrödinger operator for such an atom is

HB :=
1

2m
(p− eA)2 − e2

|x| , (11.3)

where e < 0 denotes the electron charge, and we have kept units in which
the speed of light is c = 1. Recall that the vector potential A is related to
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the magnetic field B by B = ∇ × A. In the notation of Section 7.7, HB =
H(A,−e2/|x|). Expanding the square in (11.3), we find

HB = H0 +WB (11.4)

where H0 = 1
2m
p2 − e2/|x| is the Schrödinger operator of the hydrogen atom

(see Section 7.5), and

WB =
|e|
m
A · p+

e2

2m
|A|2. (11.5)

Here we have assumed the gauge condition ∇ ·A ≡ 0. The small parameter κ
here is the strength |B| of the magnetic field.

Now we know from Section 7.5 that the operator H0 has a series of eigen-
values

En := −
(
me4

2�2

)
1
n2
, n = 1, 2, . . .

as well as continuous spectrum in [0,∞). One would expect that for weak
magnetic fields B, the operator HB has eigenvalues EB,n close to En, at least
for the few smallest En’s. This is not so obvious as it might seem at first
glance, since the perturbation WB is not bounded relative to H0 – i.e., (11.2)
does not hold for any c and c′, small or large. (The perturbation (11.5) grows
in x: take for example A := B

2
(−x2, x1, 0).) The method we present below

does show rigorously that such eigenvalues exist, though we will make only
formal computations of EB,n.

Two other examples we present below display different physical phenom-
ena, which conceptually and technically are considerably more complicated.

11.1 The Feshbach-Schur Method

Before returning to our perturbation problem, we state a general result used
below, which allows us to reduce a perturbation problem on a large space to
one on a small space. (For some motivating discussion see Appendix 11.5.)
Let P and P̄ be orthogonal projections (i.e. P ,P̄ are self-adjoint, P 2 = P ,
and P̄ 2 = P̄ ) on a separable Hilbert space X , satisfying P + P̄ = 1. Let
H be a self-adjoint operator on X . We assume that RanP ⊂ D(H), that
HP̄ := P̄HP̄ �RanP̄ is invertible, and

‖RP̄ ‖ <∞ , ‖PHRP̄‖ <∞ and ‖RP̄HP‖ <∞ , (11.6)

where RP̄ = P̄H−1
P̄
P̄ . We define the operator

FP (H) := P (H −HRP̄H)P �RanP . (11.7)

The key result for us is the following:
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Theorem 11.1 Assume (11.6) hold. Then the operators H and FP (H) are
isospectral at 0, in the sense that

(a) 0 ∈ σ(H)⇔ 0 ∈ σ(FP (H)),
(b) Hψ = 0⇔ FP (H)φ = 0

where ψ and φ are related by φ = Pψ and ψ = Qφ, with the (bounded)
operator Q given by

The following (bounded) operator also plays an important role in our analysis:

Q = Q(H) := P −RP̄HP. (11.8)

A proof of this theorem is given in an appendix, Section 11.6.
Moreover, under the conditions above

H is self-adjoint =⇒ FP (H) is self-adjoint. (11.9)

The latter property is an example of the transmission properties of the
Feshbach-Schur map (which, like analyticity, usually go both ways).

Now we return to our general perturbation problem. Thus we consider a
family, Hκ, κ > 0, of self-adjoint operators of the form (11.1). Assume the
operator H0 has an isolated eigenvalue λ0 of finite multiplicity. Let P be the
orthogonal projection onto the eigenspace Null(H0 − λ0) spanned by all the
eigenfunctions of H0 corresponding to the eigenvalue λ0, and let P̄ := 1− P .

We apply Theorem 11.1 to the family of operators H = Hκ − λ for some
λ close to λ0, with the projections P and P̄ defined as above. Observe that

λ ∈ σd(Hκ) ↔ 0 ∈ σd(Hκ − λ), (11.10)

and that FP (Hκ−λ), if it is well-defined, is a family of m×m matrices, where
m is the multiplicity of the eigenvalue λ0 of the operator H0 (indeed, P is
a rank-m projection – i.e., dim RanP = m). Thus the perturbation problem
reduces the problem of finding an eigenvalue (and an eigenfunction) of an
(infinite-dimensional) operator H , to the problem of finding the values λ for
which

0 ∈ σ(FP (Hκ − λ)).

Such values are called singular values of the family FP (Hκ − λ).
We need to discuss the problem of finding singular values of the family

FP (Hκ−λ) of matrices, but first we address the issue of defining FP (Hκ−λ).
Write

HP̄ = H0P̄ + κWP̄ ,

where we are using the notation AQ := QAQ �RanQ.
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Assume the operators W and H0 satisfy the conditions

WP and PW are bounded, (11.11)

P̄HκP̄ − λ0 is invertible on RanP̄ for κ < κ0. (11.12)

(If H0 and W are self-adjoint and if WP is bounded, then so is PW .) Since
P̄HκP = κP̄WP , the condition (11.6) is satisfied forHκ−λ with λ sufficiently
close to λ0, and therefore FP (Hκ − λ) is well-defined. (In this case, RP̄ =
P̄ (HP̄−λ)−1P̄ , HP̄ := P̄HκP̄ �RanP̄ .)

The operator H0P̄ has no spectrum near λ0. The same is true, as can
be readily verified, for the operator HP̄ = H0P̄ + κP̄WP̄ for |κ| sufficiently
small. If the operatorW is bounded relative toH0 in the sense (11.2), then this
assumption is readily verified. Otherwise, justifying the assumption (11.12) is
a delicate matter, and is done on a case-by-case basis. For the example of the
hydrogen atom in a weak constant magnetic field, and of a particle system in
a weak time-periodic (electric) field, we address this question below. Under
the assumptions above, conditions (11.6) hold. Consequently, the operator
FP (Hκ − λ) is well-defined for λ close to λ0.

Now let’s compute the operator FP (Hκ − λ). We write it as the sum of
three terms

FP (Hκ − λ) = HP − κ2U(λ)− λ (11.13)

where HP := PHκP �RanP and

U(λ) := PWR̄(λ)WP �RanP , with R̄(λ) = P̄ (P̄HκP̄ − λ)−1P̄ . (11.14)

The matrix family U(λ) is called the level shift operator. Since PH0 = H0P =
λ0P and PP̄ = 0, we have

PH0P = λ0P, PHP̄ = κPWP̄ , P̄HP = κP̄WP.

These relations yield

FP (Hκ − λ) = κWP − κ2U(λ) + λ0 − λ. (11.15)

Theorem 11.1 and equations (11.10) and (11.15) imply the relation

λ ∈ σd(Hκ) ↔ λ− λ0 ∈ σd(κWP − κ2U(λ)).

Note that the operator on the right itself depends on the spectral parameter
λ. Expanding the resolvent

R̄(λ) = P̄ (H0P̄ − λ0 + κWP + λ0 − λ)−1P̄

in a Neumann series in κWP + λ0 − λ we obtain

R̄(λ) = R̄0 +O(|κ| + |λ− λ0|)
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where R̄0 = P̄ (H0P̄ − λ0)−1P̄ . Consequently,

U(λ) = U0 +O(|κ| + |λ− λ0|)

where U0 := PWR̄0WP �RanP . Therefore any eigenvalue λκ of Hκ sufficiently
close to λ0 has the form

λκ = λ0 + κμk +O(|κ|3)

where μκ ∈ σd(WP −κU0). Similarly, we can obtain expressions for λκ to any
order in κ. Observe that if λ0 is a simple eigenvalue (i.e. of multiplicity one)
of H0, with normalized eigenfunction ψ0, then WP and U0 are just the real
numbers 〈ψ0,Wψ0〉 and 〈Wψ0, R̄0Wψ0〉, and we have

λκ = λ0 + κ〈ψ0,Wψ0〉+ κ2〈Wψ0, R̄0Wψ0〉+O(|κ|3). (11.16)

Our next step is to examine the structure of the quadratic term in more de-
tail. Suppose that the operator H0 is self-adjoint and has isolated eigenvalues
λj , j = 0, 1, . . ., counting multiplicities, with

λj < inf σess(H0).

Let {ψj} be corresponding normalized eigenfunctions, and let Pψj be the
rank-one orthogonal projections onto these eigenfunctions:

Pψj = |ψj〉〈ψj |, or Pψjf = 〈ψj , f〉ψj .

Then we have
P̄ =

∑

j �=0

Pψj + Pess

where Pess := 1−∑
j Pψj is the projection onto the essential spectral subspace

of H0. Then we can write

〈P̄Wψ0, R̄0P̄Wψ0〉 =
∑

j �=0

|〈ψj ,Wψ0〉|2(λj − λ0)−1

+ 〈PessWψ0, (H0,ess − λ0)−1PessWψ0〉
(11.17)

where H0,ess := PessH0Pess is the essential spectrum part of the operator H0.
Now we can interpret the coefficient 〈ψ0,Wψ0〉 in (11.16) as due to a direct
interaction of the bound state ψ0 with itself, the term |〈ψj ,Wψ0〉|2(λj−λ0)−1

as due to the interaction of ψ0 with itself via the bound state ψj , and the last
term in (11.17) as due to the interaction of ψ0 with itself via the essential
spectral states of H0.

To conclude this section, we sketch a proof of an extension of the central
theorem of perturbation theory.
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Theorem 11.2 Assume (11.11) hold, the operator H0 has an isolated eigen-
value λ0 of finite multiplicity m, and there is κ0 > 0 s.t. (11.12) holds. Then
for |κ| sufficiently small, the operator Hκ has eigenvalues λ(i)

κ near λ0 of total
multiplicity equal to m. Moreover, if Hκ is self-adjoint, then the eigenvalues
λ

(i)
κ have expansions of the form (11.16)–(11.17).

Sketch of proof. For |λ− λ0| < ‖(P̄HκP̄ − λ0)−1‖−1, the operator P̄HκP̄ − λ
is invertible on RanP̄ and therefore, due to (11.11), FP (λ) exist. Moreover,
the eigenvalues, λ(i)

κ , of Hκ near λ0, if they exist, are also eigenvalues of
FP (λ(i)

κ ). Let νj(λ, κ) be the eigenvalues of FP (λ) (remember that, though
we do not display this, the latter operator depends on κ). To simplify the
exposition, assume they are simple. The general case is treated similarly. Then
the eigenvalues λ(i)

κ must solve the equation

λ = νi(λ, κ).

To show that this equation has a unique solution for κ sufficiently small and
this solution is close to λ0, we observe that, due to (11.15), νi(λ, κ) is a
differentiable function, λ0 = νi(λ0, 0), |νi(λ, κ) − λ0| � κ, and ∂λνi(λ, κ) =
O(κ). Therefore by the implicit function theorem, the equation λ = νi(λ, κ)
has a unique solution, λ(i)

κ , and this solution satisfies λ(i)
κ = λ0+O(κ). Proving

the expansions of the form (11.16)–(11.17) follows the arguments leading to
these expansions. �

As was mentioned above, the condition (11.12) is satisfied if W is H0−
bounded (show this). It also holds if H0 is self-adjoint and W is non-negative,
and either λ0 is the ground state energy, or we take for P the orthogonal
projection onto the eigenspace corresponding to the eigenvalues ≤ λ0. In the
last section of this chapter we consider the celebrated Born-Oppenheimer
approximation for which no condition of the theorem above holds, but which
still can be handled by the present technique. This little discussion indicates
the power of the present method.

11.2 Example: the Zeeman Effect

We can apply the theory developed above to compute the energy levels of the
Schrödinger operator of a hydrogen atom in a weak homogeneous magnetic
field (the Zeeman effect). Recall that for any magnetic field this operator is
given by the expression (11.4)- (11.5). For a constant magnetic field B, we
can choose the vector potential to be A(x) = 1

2B × x (see Equation (7.18)).
Then the perturbation WB can be re-written as

WB = κB̂ · L+
m

2
κ2(B̂ × x)2

where L := x × p is the operator of angular momentum (see Section (7.4)),
κ = |e|

2m |B|, and B̂ := |B|−1B. Thus κ is a small parameter in our problem.
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Let λ0 = En be the n-th energy level of the Hydrogen atom Schrödinger
operator H0. One can show that if λ is close to λ0, then the operator HBP̄ has
no spectrum near λ0, and therefore the Feshbach-Schur operator FP (HB −λ)
is well-defined. We will not do this here, but mention only that this follows
from the inequality (H0P̄ − λ0)−1WB(H0P̄ − λ0)−1 ≥ −cκ on RanP̄ for some
uniform c > 0 and for κ sufficiently small. The idea of a proof of this inequality
is that (H0P̄ −λ0)−1 controls the p entering WB through L, and the x entering
WB through L is controlled by the positive term m

2
κ2(B × x)2.

We compute formally the perturbation expansion for the eigenvalue λκ =
En,B of the operatorHB near the eigenvalue λ0 = En of the operatorH0. This
computation is slightly more complicated than the corresponding computation
in the abstract case considered above, since our perturbation is of the form

WB = κW1 + κ2W2

where W1 := B̂ · L and W2 := m
2 (B̂ × x)2, rather than of the form κW

considered above.
First, we take the x3-axis to be in the direction of the magnetic field vector

B, so that W1 = L3 (see Section 7.4) and W2 = m
2 r

2
⊥, where r2⊥ = x2

1 + x2
2.

Second, since the operator H0 is invariant under rotations, we know that
L commutes with P :

[L,P ] = 0,

and therefore

PWB P̄ = κ2PW2P̄ , and P̄WBP = κ2P̄W2P.

Third, by the results of Section 7.5, the projection P on the eigenspace
corresponding to the eigenvalue En is given by

P =
n−1∑

l=0

l∑

k=−l
Pnlk

where Pnlk = |ψnlk〉〈ψnlk|, and ψnlk(x) = Rnl(r)Y kl (θ, φ) is the normalized
eigenfunction derived in Section 7.5. Since L3ψnlk = �kψnlk, this gives

PW1P =
n−1∑

l=0

l∑

k=−l
�kPnlk (11.18)

and

PW2P =
n−1∑

l,l′=0

min(l,l′)∑

k=−min(l,l′)

|ψnlk〉〈ψnl′k|〈ψnlk, m2 r
2
⊥ψnl′k〉. (11.19)

Proceeding as in the abstract case, we find that En,B −En is an eigenvalue of
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κPW1P + κ2(PW2P +−PW1R̄0W1P ) +O(|κ|3). (11.20)

Thus for n �= 1, we have in the leading order

En,B = En + μ|B|k +O(|B|2),

where μ := |e|�/2m is the Bohr magneton, for k = −l, . . . , l and l = 0, . . . , n−
1. Thus the magnetic field lifts the degeneracy of the energy levels in the
direction of the angular momentum. This is called the Zeeman effect.

For the ground state energy En=1, the term linear in κ vanishes and the
expansion yields

E1,B = E1 +
me2

3
|B|2r̄2 + a(e|B|)4 +O(|B|5)

where

r̄2 =
∫
|x|2|ψ100|2 and a =

m2

4
〈r2⊥ψ100, P̄ (H0P̄ − E0)−1P̄ r2⊥ψ100〉.

Here we have used spherical coordinates to simplify the first integral.

11.3 Example: Time-Dependent Perturbations

Our second example is an atom placed in a spatially localized but time-
periodic electric field. We write the total Schrödinger operator as in (11.1):

Hκ = H0 + κW,

whereH0 is the Schrödinger operator of an atom, or, to fix ideas, a one-particle
Schrödinger operator

H0 = − �
2

2m
Δ+ V (x)

with V (x) continuous and decaying to zero as |x| → ∞ as in Theorem 6.14,
so that σess(H0) = [0,∞). (Of course, for an atom, the potential V (x) has
singularities, but the analysis below can be easily generalized to this case.)
We also suppose H0 has discrete eigenvalues Ej < 0 with corresponding nor-
malized eigenfunctions φj(x), j = 0, 1, . . .. The perturbation W = W (x, t) is
assumed to be smooth, vanishing as |x| → ∞, and time-periodic with period
T = 2π

ω
.

Since the perturbation W depends on time, so does the operator Hκ =
Hκ(t), and the spectrum of Hκ (at each moment of time) does not tell us much
about the dynamics – that is, the solution of the time-dependent Schrödinger
equation

i�
∂ψ

∂t
= Hκ(t)ψ. (11.21)
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So we have to deal with this equation directly. The question we address is what
happens to the bound states ψj(x, t) := φj(x)e−iEjt/� of the unperturbed
equation

i�
∂ψ

∂t
= H0ψ

when the perturbation κW (x, t) is “switched on”? More precisely, are there
time-(quasi) periodic solutions ψκ,j(x, t) of (11.21) which are L2 functions of
x, and such that ψκ,j → ψj as κ→ 0 in, say, the L2(R3)-norm? If so, then we
would like to find an approximate expression for such solutions. If not, what
are the descendants of ψj(x, t)?

We fix j and consider the perturbation theory for the j-th state ψj(x, t).
We look for a solution to (11.21) of the form

ψκ,j(x, t) = φκ,j(x, t)e−iEκ,j t/� (11.22)

where the function φκ,j is time-periodic with period T , and L2 in x, and
with φκ,j → φj (in the L2-sense) and Eκ,j → Ej as κ → 0. Plugging the
expression (11.22) into (11.21), we find the equation for φκ,j :

(Hκ(t)− i� ∂
∂t
− Eκ,j)φ = 0. (11.23)

We look for solutions of this equation in the space L2(Rn × ST ) where ST
is the circle of circumference T – i.e., we assume that the function φ(x, t) is
periodic in t with period T , and satisfies

∫ T

0

∫

Rn

|φ(x, t)|2dxdt <∞.

Thus we can treat Equation (11.23) as an eigenvalue equation for the operator

Kκ := Hκ(t)− i� ∂
∂t

on L2(Rn × ST ).

We call this operator the Bloch-Floquet Hamiltonian, since the general ap-
proach we describe here, of reducing the time-dependent problem (11.21) to
an eigenvalue problem on a larger space, follows the outlines of the theory
laid out in parallel by F. Bloch in solid state physics and by Floquet in math-
ematics.

Thus our task is to find out whether the operator Kκ on L2(Rn×ST ) has
an eigenvalue Eκ,j close to the eigenvalue Ej of the operator H0. Since κ is
assumed to be small, we treat this as a perturbation problem:

Kκ = K0 + κW.

We begin by examining the spectrum of the operator K0 := H0 − i� ∂
∂t on

L2(Rn × ST ). Using the facts that
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σess(H0) = [0,∞) and σd(H0) = {Ej}Nj=0

and, on L2(ST ),

σ

(

i�
∂

∂t

)

= σd

(

i�
∂

∂t

)

= {�ωn}∞n=−∞ ,

where, recall, ω = 2π/T (see Section 7.2), and separation of variables, we find
that

σess(K0) =
∞⋃

n=−∞
[�ωn,∞)

and
σpp(K0) = {�ωn+ Em | n ∈ Z, m = 0, 1, . . .}.

Here σpp denotes the full set of eigenvalues (including non-isolated ones). Thus
the essential spectrum of K0 fills the entire real axis R, and the eigenvalues
of K0 (which are infinite in number) lie on top of the essential spectrum,
or, as it is said, are embedded in the essential spectrum. The eigenfunctions
corresponding to the eigenvalues Emn = Em + �ωn are given by

ψmn(x, t) := φm(x)e−iωnt.

Note that the Ej ’s themselves are eigenvalues of K0, with eigenfunctions
ψj0(x) = φj(x):

K0ψj0 = Ejψj0.

Now we apply the Feshbach projection method to the operator K0 + κW
in order to find its eigenvalues near Ej . Let us assume, for simplicity, that Ej
is a simple eigenvalue of H0 (for example, j = 0 and E0 is the ground state
energy), and that

Em + �ωn �= Ej ∀ (m,n) �= (j, 0)

(in other words, that there is no “accidental” degeneracy in the spectrum of
K0). As the projection P we use the orthogonal rank-one projection onto the
eigenspace of K0, spanned by the eigenfunction ψj0 = φj , corresponding to
the eigenvalue Ej , that is P = |ψj0〉〈ψj0|. Then we will find from (11.16) the
expansion for the desired eigenvalue Eκ,j :

Eκ,j = Ej + κEj1 + κ2Ej2 +O(κ3) (11.24)

where
Ej1 := 〈〈ψj0,Wψj0〉〉

and
Ej2 := 〈〈P̄Wψj0, R̄0P̄Wψj0〉〉.

Here, recall that P̄ = 1 − P and R̄0 = P̄ (P̄K0P̄ − Ej − i0)−1P̄ , and 〈〈·〉〉 is
used to denote the inner product in the space L2(Rn × ST ):
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〈〈u, v〉〉 :=
∫ T

0

∫

Rn

ūvdxdt.

Notice that we inserted −i0 into the resolvent above. This was not there in
our previous discussion of the Feshbach perturbation theory, and the reason
for it will become apparent shortly.

Let Pmn = Pψmn be the rank-one orthogonal projections onto the eigen-
functions ψmn of the operator K0. Then

Pess := 1−
∑

mn

Pmn

defines the projection onto the essential spectral subspace of K0. Thus

P = Pj0 and P̄ =
∑

(m,n) �=(j,0)

Pmn + Pess.

By the definition of the inner product we have

Ej1 = 〈φj ,W0φj〉

where W0(x) :=
∫ T
0
W (x, t)dt, and the inner product on the right is the

L2(Rn) inner product.
Now we compute the third term on the right hand side of (11.24) – that

is, the coefficient of κ2. It can be written as (see (11.17))

Ej2 =
∑

(m,n) �=(j,0)

|〈〈ψmn,Wψj0〉〉|2
Emn − Ej + 〈〈PessWψj0, R̄0PessWψj0〉〉. (11.25)

By the definition of the ψmn’s, we have

〈〈ψmn,Wψj0〉〉 =
∫ T

0

〈φm,W (t)φj〉eiωntdt = 〈φm,Wnφj〉 (11.26)

where Wn is the n-th Fourier coefficient of W :

Wn :=
∫ T

0

W (t)eiωntdt.

This simplifies the expression of the first term on the right hand side of (11.25).
Now we analyze the second term. By separation of variables,

Pess =
∑

n

PH0
ess ⊗ Pn

where PH0
ess is the projection onto the essential spectral subspace of the oper-

ator H0,
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PH0
ess := 1−

∑

m

Pψm ,

and Pn is the projection onto the eigenfunction e−iωnt of the operator i∂/∂t.
Inserting this into the last term in (11.25), and using

PH0
ess ⊗ PnWψj0 =

∫ T

0

PH0
essW (t)φjeiωntdt = PH0

essWnφj

and

〈〈PH0
essf ⊗ e−iωnt, R̄0(PH0

essf ⊗ e−iωnt)〉〉
= 〈PH0

essf, (H0ess − �ωn− Ej − i0)−1PH0
essf〉,

where H0ess := H0P
H0
ess , we find

〈〈PessWψj0, R̄0PessWψj0〉〉
=

∑

n

〈PH0
essWnφj , (H0ess − �ωn− Ej − i0)−1PH0

essWnφj〉.

Substituting (11.26) and (11.27) into (11.25), we obtain

Ej2 =
∑

(m,n) �=(j,0)

|〈φm,Wnφj〉|2
Em + �ωn− Ej

+
∑

n

〈PH0
essWnφj , (H0ess − Ej − �ωn− i0)−1PH0

essWnφj〉.
(11.27)

Thus we have obtained detailed expressions for the first and second order
coefficients in the expansion of Eκ,j in κ. Now let’s analyze the expression for
Ej,2 a little further. Start with the well-known formula

∫ ∞

−∞

f(λ)
λ+ i0

dλ := lim
ε→0+

∫ ∞

−∞

f(λ)
λ+ iε

dλ

= PV

∫ ∞

−∞

f(λ)
λ

dλ− 2πi
∫ ∞

−∞
f(λ)δ(λ)dλ

where PV
∫ ∞
−∞ denotes the principal value of the singular integral, defined by

PV

∫ ∞

−∞

f(λ)
λ

dλ := lim
ε→0+

(∫ −ε

−∞
+

∫ ∞

ε

)
f(λ)
λ

dλ,

and δ(λ) denotes the Dirac delta function (centred at zero). Thus we find that
Ej2 is a complex number of the form

Ej2 = ERej2 − iΓj,
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whose real part, ERej2 , is the sum of the first term on the right hand side
of (11.27) and the real part (or principal value) of the second term. The
imaginary part is −Γj , where

Γj = 2π
∑

n

〈PH0
essWnφj , δ(H0ess − �ωn− Ej)PH0

essWnφj〉.

The last expression is known as the Fermi golden rule. Since δ(λ) ≥ 0, we
have Γ ≥ 0. Then for “generic” perturbations (that is, barring an accident),
we expect

Γj > 0.

This means that for κ sufficiently small, Eκ,j is a complex number of the form

Eκ,j = EReκ,j − iκ2Γj +O(κ3)

where EReκ,j := κEj1+κ2ERej,2 . This suggests that for generic perturbations, and
for κ sufficiently small, the operator Kκ has no eigenvalues near Ej . So what
happened to the eigenvalue Ej of K0 (or H0)? It is apparently unstable under
small generic perturbations. But does it just disappear without a trace, or is
something left behind? It turns out that the eigenvalue Ej of H0 (or K0) gives
rise to a resonance of H0 (or K0). A theory of resonances is briefly described
in Chapter 16. The method of complex deformations indicated there, together
with the Feshbach method described in this section, can be used to establish
the existence of resonance ’eigenvalues’s Eκ,j born out of Ej (see [CFKS] and
references therein). The number − ImEκ,j is called the width of the resonance
at Eκ,j , and Tκ,j := �(− ImEκ,j)−1 gives the lifetime of the resonance. The
Fermi golden rule gives the leading order of the resonance width

− ImEκ,j = κ2Γj +O(κ3)

(in fact O(κ3) can be replaced by O(κ4)).
A physical interpretation of the phenomenon of instability of bound states

under time-periodic perturbations is that an atom in a photon field becomes
unstable, as photons of sufficiently high energy can break it up. This photo-
electric effect was predicted by Einstein in 1905. To develop a consistent theory
of the photoelectric effect, one has to use quantized the electro-magnetic field
(or Maxwell equations) given in Chapter 19.

11.4 Born-Oppenheimer Approximation

We consider a molecule with N electrons and M nuclei of massesm1, . . . ,mM .
Its Schrödinger operator, acting on a symmetry subspace L2

sym(R3(N+M)) of
L2(R3(N+M)), is given by (10.1). We reproduce it here

Hmol = −
N∑

1

1
2m

Δxj −
M∑

1

1
2mj

Δyj + V (x, y). (11.28)
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Here x = (x1, . . . , xN ) and y = (y1, . . . , yM) are the electron and nuclear
coordinates, and V (x, y) is the sum of Coulomb interaction potentials between
the electrons, between the electrons and the nuclei, and between the nuclei
(see (10.2)).

A key fact here is that nuclei are much heavier than electrons. In the Born-
Oppenheimer approximation one proceeds in two steps. First, one supposes
that the nuclei are frozen at their positions and considers, instead of (11.28),
the Schrödinger operator

HBO
N (y) := −

N∑

1

1
2m

Δxj + V (x, y). (11.29)

The operatorHBO
N (y), called the Born-Oppenheimer Hamiltonian, depends on

the coordinates, y, of the nuclei, as parameters, and therefore its eigenvalues
are functions of y, as well. On the second step, the ground state energy E(y)
of HBO

N (y) is considered as the potential (interaction) energy of the nuclear
motion and consequently one introduces the new Hamiltonian

Hnucl := −
M∑

1

1
2mj

Δyj + E(y).

One expects that due to the ratio of the electron and nuclear mass being very
small, the eigenvalues of Hnucl give a good approximation to the eigenvalues
of Hmol. This is called the Born-Oppenheimer approximation.

The Born-Oppenheimer approximation plays a fundamental role in quan-
tum chemistry. For instance, minimizing with respect to y the ground state
energy, E(y), of the operator HBO

N (y) gives the equilibrium positions of the
nuclei, i.e. the shape of the molecule.

One can justify the Born-Oppenheimer approximation by using the Fesh-
bach - Schur method. We briefly sketch how it works in the present context
ignoring the particle statistics (i.e. that electrons are fermions with spin 1

2 ).
First we use a rescaling to pass to dimensionless variables so that mj become
the ratios of nuclear masses to the electronic one. The small parameter in our
problem is

κ := 1/min
j
mj .

What are H0 and W in the present case? We can obviously write Hmol =
HBO
N (y) −∑M

1
1

2mj
Δyj , so H0 := HBO

N (y) and κW := −∑M
1

1
2mj

Δyj . How-

ever, the operator HBO
N (y), as an operator on L2

sym(R3(N+M)), does not have
an isolated eigenvalue (it acts on functions of the form ψBO(x, y)f(y) as a
multiplication operator by E(y)). The analysis of Chapter 10 shows that the
function E(y) increases as |y| → ∞. Hence it has a minimum λ∗ := miny E(y).
(The corresponding minimum points – there could be several – determine the
shape of the Born-Oppenheimer molecule.) The value λ∗ will serve in place of
the unperturbed eigenvalue. To construct the Feshbach - Schur map, we have
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to define an appropriate orthogonal projection. Assume for simplicity that
the electronic ground state energy E(y) of HBO

N (y) is non-degenerate (which
is not hard to prove on L2(R3N ), but is not known, and might in certain
cases be false, on L2

sym(R3N )), and denote the corresponding ground state by
ψBO(x, y). We define P to be the orthogonal projection

(PΨ)(x, y) = ψBO(x, y)
∫
ψBO(x, y)Ψ(x, y)dx (11.30)

where the ground state ψBO(x, y) is normalized as
∫ |ψBO(x, y)|2dx = 1.

(Check that PBO is an orthogonal projection. Note that it has infinite rank.)
We want to apply the Feshbach - Schur map to Hmol − λ, with the spec-

tral parameter λ close to λ∗. Interestingly, with the definitions above, the
conditions (11.11) and (11.12) fail in the present case. However the origi-
nal condition, (11.6), can be shown to be satisfied. To show this partway,
we observe that since −∑M

1
1

2mj
Δyj is non-negative, we have P̄HmolP̄ ≥

HBO
N (y)P̄ ≥ E′(y)P̄ ≥ λ∗P̄ , where E′(y) is the first excited state energy of

HBO(y) above E(y). Therefore, for λ close to λ∗, HP̄ := P̄ (Hmol−λ)P̄ �RanP̄

is invertible and, with some more effort which we skip here, leaving it to the
interested reader, one can show that (11.6) indeed holds. Thus for λ close
to λ∗, FP (Hmol − λ) is well defined, and according to the statement (b) of
Theorem 11.1,

λ ∈ σd(Hmol) ↔ 0 ∈ σd(FP (Hmol − λ)),

with the corresponding eigenfunctions related accordingly.
Now remember that according to the decomposition (11.13) of the Feshbach-

Schur operator, we have to compute the terms HP := PHP �RanP and U(λ)
defined in (11.14). We begin with PHP . Let Ψ(x, y) ∈ H2(R3(N+M)). Using
the decomposition Hmol = HBO

N (y) −∑M
1

1
2mj

Δyj of the molecular Hamil-
tonian (11.28), and the eigenequation HBO

N (y)ψBO(·, y) = E(y)ψBO(·, y), we
compute

(HmolPΨ)(x, y) =
[
ψBO(x, y)(−

M∑

1

1
2mj

Δyj + E(y)) +Ax
]
f(y) (11.31)

where f(y) :=
∫
ψBO(x, y)Ψ(x, y)dx and Ax := [−∑M

1
1

2mj
Δyj , ψBO(x, y)],

and we used that PΨ = ψBOf . Computing the commutator in Ax, we find

Ax := −
M∑

1

1
2mj

(ΔyjψBO + 2(∇yjψBO)∇yj ). (11.32)

Equation (11.31) implies for any Ψ ∈ H2(R3(N+M)),

PHmolPΨ = ψBO(Hnucl + v)f, (11.33)
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where f is as above and v := Re
∫
ψBO(x, y)Axdx. Using the identities

ψΔψ = ∇(ψ∇ψ) − |∇ψ|2 and Re∇(ψ∇ψ) = Δ|ψ|2, and the normaliza-
tion

∫ |ψBO|2dx = 1 which implies that Re
∫
dxψBO(∇yjψBO) · ∇yj =

∇yj
∫
dx|ψBO|2 · ∇yj = 0, we find

v :=
M∑

1

1
2mj

∫
|∇yjψBO|2dx.

We see that v = O(κ). Note that RanP can be identified with L2(R3) and
therefore the operator PHmolP on RanP , with Hnucl + v on L2(R3).

Now we consider the term U(λ), defined in (11.14). Using (11.31) and
P̄ = 1 − P , we compute P̄ (Hmol − λ)PΨ = P̄κWPΨ = Kf, where K is the
first order differential operator given by K := P̄Ax = Ax− v. This expression
and the definition (11.14) show that the U−term is formally of the order
O(κ2) and is of the form U(λ)Ψ = ψBOT (λ)f where the operator T (λ) acts
on L2(R3M ). (Note that due to (11.32), T (λ) involves derivatives in y up to
the second order; it is a second order integro-differential operator.) Hence we
obtain that the ground state energy E0 of Hmol, is the ground state energy
of the operator

Hnucl + v + w

with w := T (E0), acting on L2(R3M ), and to order O(κ), is given by the
ground state energy of the operator Hnucl, and to order O(κ2), by the ground
state energy of the operator Hnucl + v.

The excited states of Hmol come from excited states of Hnucl + v and from
bound states of the operator obtained by projecting onto the exited states of
HBO
N (y).

11.5 Appendix: Projecting-out Procedure

Let H be a Hilbert space, and P a projection on H (i.e. an operator satisfying
P 2 = P ). Let A be an operator acting on H. Then PAP is an operator acting
on Ran(P ): i.e. PAP : H → Ran(P ) and consequently PAP : Ran(P ) →
Ran(P ).

The simplest example is when P is a rank-one projection: P = |φ〉〈φ| for
some φ ∈ H, ‖φ‖ = 1. Here we have used Dirac’s bra-ket notation

|φ〉〈φ| : ψ �→ φ〈φ, ψ〉.
Then PAP = 〈φ,Aφ〉P acts on Ran(P ) = {zφ | z ∈ C} as multiplication
by the complex number 〈φ,Aφ〉. This example can be easily generalized to a
finite-rank projection, say P =

∑m
i=1 |φi〉〈φi| where {φj} is an orthonormal set

in H. In this case the number 〈φ,Aφ〉 is replaced by the matrix (〈φi, Aφj〉)ij .
For another typical example, takeH = L2(R) and take P to be multiplica-

tion of the Fourier transform by the characteristic function, χI , of an interval
I ⊂ R:
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(Pf)(x) = (2π)−1/2

∫ ∞

−∞
eikxχI(k)f̂(k)dk = (2π)−1/2

∫

I

eikxf̂(k)dk,

where f̂(k) = (2π)−1/2
∫ ∞
−∞ e−ikxf(x)dx is the Fourier transform of f . P is a

projection since χ2
I = χI . For a given operator A on H, the operator PAP

(assuming it is well-defined) maps functions whose Fourier transforms are
supported on I into functions of the same type.

Of interest to us is the following situation: the projection P acts on a space
H = H1 ⊗H2 as P = P1 ⊗ 1, where P1 is a rank-one projection on H1, say
P1 = |φ1〉〈φ1|, with φ1 ∈ H1. If A is an operator on H, then the operator
PAP is of the form

PAP = 1⊗A2

where A2 is an operator on H2 which can formally be written as A2 =
〈φ1, Aφ1〉H1 .

11.6 Appendix: Proof of Theorem 11.1

First, in addition to (11.8), we define the operator

Q# = Q#(H) := P − PHRP̄ . (11.34)

The operators P , and Q, have the following properties:

NullQ ∩NullH ′ = {0} and NullP ∩NullH = {0} (11.35)

and
HQ = PH ′ , (11.36)

where H ′ = FP (H). These relations are proved below.
The operators P , Q, and Q# have the following properties:

Q#H = H ′P, (11.37)

where H ′ = FP (H). We prove relations (11.35)–(11.37). The second relation
in (11.35) is shown in Proposition 11.3, while the first one follows from the
inequality

‖Qu‖2 = ‖Pu‖2 + ‖RP̄HPu‖2 ≥ ‖Pu‖2.
In the first equality, we used the fact that the projections P and P̄ are or-
thogonal.

Now we prove relations (11.36) - (11.37). Using the definition of Q(H), we
transform

HQ = HP −HP̄H−1
P̄
P̄HP

= PHP + P̄HP − PHP̄H−1
P̄
P̄HP − P̄HP̄H−1

P̄
P̄HP

= PHP − PHP̄H−1
P̄
P̄HP

= PFP (H).

(11.38)
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Next, we have

Q#H = PH − PHP̄H−1
P̄
P̄H

= PHP + PHP̄ − PHP̄H−1
P̄
P̄HP − PHP̄H−1

P̄
P̄HP̄

= PHP − PHP̄H−1
P̄
P̄HP

= FP (H)P.

This completes the proof of (11.35)–(11.37).

Proposition 11.3 Assume conditions (11.6) are satisfied. Then (11.35)-
(11.37) imply that 0 ∈ σ(H) ⇒ 0 ∈ σ(H ′) (the part of property (a) which is
crucial for us). Moreover, we have NullP ∩NullH = {0}.
Proof. Let 0 ∈ ρ(H ′). Then we can solve the equation H ′P = Q#H for P to
obtain

P = H ′−1
Q#H . (11.39)

The equation P + P̄ = 1 and the definition HP̄ = P̄HP̄ imply

P̄ = P̄H−1
P̄
P̄HP̄ = P̄H−1

P̄
(P̄H − P̄HP ) . (11.40)

Substituting expression (11.39) for P into the r.h.s., we find

P̄ = P̄H−1
P̄

(P̄ − P̄HPH ′−1
Q#)H .

Adding this to Equation (11.39) multiplied from the left by P , and using
P + P̄ = 1, yields

1 =
[
P̄H−1

P̄
P̄ − P̄H−1

P̄
P̄HPH ′−1

Q# + PH ′−1
Q#

]
H.

Since by our conditions P̄H−1
P̄
P̄HP is bounded, the expression in the square

brackets represents a bounded operator. Hence H has a bounded inverse. So
0 ∈ ρ(H). This proves the first statement.

The second statement follows from the relation

1 = QP +RP̄H , (11.41)

which, in turn, is implied by Equation (11.40) and the relation P + P̄ = 1.
Indeed, applying (11.41) to a vector φ ∈ NullP ∩ NullH , we obtain φ =
QPφ+RP̄Hφ = 0. �

Now we proceed directly to the proof of Theorem 11.1. Statement (b)
follows from relations (11.35)-(11.36). Proposition 11.3 implies that 0 ∈ ρ(H)
if 0 ∈ ρ(H ′), where H ′ := FP (H), which is half of statement (a). Conversely,
suppose 0 ∈ ρ(H). The fact that 0 ∈ ρ(H ′) follows from the relation

H ′−1 = PH−1P (11.42)
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which we set out to prove now. We have by definition

H ′PH−1P = PHPH−1P − PHP̄H−1
P̄
P̄HPH−1P

= PH(1− P̄ )H−1P − PHP̄H−1
P̄
P̄H(1− P̄ )H−1P

= P .

Similarly one shows that PH−1PH ′ = P . Hence H ′ has the bounded inverse
PH−1P .

So we have shown that 0 ∈ ρ(H)⇔ 0 ∈ ρ(FP (H)), which is equivalent to
0 ∈ σ(H)⇔ 0 ∈ σ(FP (H)). �
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General Theory of Many-particle Systems

In this chapter, we extend the concepts developed in the previous chapters to
many-particle systems. Specifically, we consider a physical system consisting
of N particles of masses m1, . . . ,mN which interact pairwise via the potentials
Vij(xi − xj), where xj is the position of the j-th particle. Examples of such
systems include atoms or molecules – i.e., systems consisting of electrons and
nuclei interacting via Coulomb forces. They were considered in Chapter 10.

12.1 Many-particle Schrödinger Operators

Recall from Section 4.1 that quantizing a system of n particles of masses
m1, . . . ,mN interacting via pair potentials Vij(xi − xj), we arrive at the
Schrödinger operator (quantum Hamiltonian)

Hn =
n∑

j=1

1
2mj

p2
j + V (x) (12.1)

acting on L2(R3n). Here pj := −i�∇xj and V is the total potential of the
system, given in this case by

V (x) =
1
2

∑

i�=j
Vij(xi − xj). (12.2)

A key example of a many-body Schrödinger operator, that of a molecule, was
given in (4.19), Section 4.1.

As in Theorem 10.1, one can show that if the pair potentials Vij satisfy
the condition

Vij ∈ L2(R3) + L∞(R3)

(i.e. each Vij can be represented as the sum of an L2 function and an L∞

function) then the operatorHn is self-adjoint and bounded below. Indeed, the
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above conditions imply that the potential V (x) satisfies the inequality (2.8),
with H0 :=

∑n
j=1

1
2mj

p2
j and a < 1. Observe that the Coulomb potentials

Vij(y) = eiej |y|−1 satisfy this condition:

|y|−1 = |y|−1e−|y| + |y|−1(1− e−|y|),

for example, with |y|−1e−|y| ∈ L2(R3) and |y|−1(1 − e−|y|) ∈ L∞(R3). After
this one proceeds exactly as in the proof of Theorem 10.1.

The spectral analysis of the operator Hn for n ≥ 3 is much more delicate
than that of the one-body Hamiltonians we have mostly considered so far. (We
will show shortly that for n = 2, the operator Hn is reduced to a one-body
Hamiltonian.) We are faced with the following issues:

• identical particle symmetries
• separation of the center-of-mass motion
• complicated behaviour of the potential V (x) at infinity in the configuration

space R
3n.

In Section 4.3 we commented on the first issue. In the subsequent sections,
we will deal with the last two issues in some detail. In the remainder of
this section, we comment briefly on them. In what follows, we shall assume
Vij(x)→ 0 as |x| → ∞, though for many considerations this condition is not
required.

Separation of the centre-of-mass motion. The Schrödinger operator (12.1)
commutes with the operator of total translation of the system

Th : ψ(x1, . . . , xn) �→ ψ(x1 + h, . . . , xn + h)

and one can show that, as a result, its spectrum is purely essential. So in
order to obtain interesting spectral information about our system, we have to
remove this translational invariance (“break” it). One way of doing this is by
fixing the centre of mass of the system at, say, the origin:

n∑

j=1

mjxj = 0.

We will describe a general mathematical procedure for fixing the centre
of mass below, but first will show how to do it in the case of two particles
(n = 2). In this case, we change the particle variables as follows:

x1, x2 �→ y = x1 − x2, z =
m1x1 +m2x2

m1 +m2
. (12.3)

Here y is the coordinate of the relative position of the two particles, and z is
the coordinate of their centre of mass. Using this change of variables in the
two-particle Schrödinger operator
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H2 =
1

2m1
p2
1 +

1
2m2

p2
2 + V (x1 − x2)

acting on L2(R6), we arrive easily at the operator

H̃2 =
1
2μ
p2 +

1
2M

P 2 + V (y)

where p = −i�∇y, P = −i�∇z, μ = m1m2
m1+m2

(the reduced mass), and M =
m1+m2 (the total mass). In fact, it can be shown thatH2 and H̃2 are unitarily
equivalent, with the equivalence given by a unitary realization of the change
of coordinates (12.3).

The point now is that one can separate variables in the operator H̃2. In
formal language, this means that H̃2 can be written in the form

H̃2 = H ⊗ 1 + 1⊗HCM

on L2(R6) = L2(R3
y)⊗ L2(R3

z) where

H =
1
2μ
p2 + V (y)

acts on L2(R3
y), and

HCM =
1

2M
P 2

acts on L2(R3
z) (see the mathematical supplement, Section 23.13, for a de-

scription of the tensor product, ⊗). Clearly H and HCM are the Schrödinger
operators of the relative motion of the particles, and of their centre of mass
motion, respectively. It is equally clear that of interest for us is H , and not
HCM . Note that H has the form of a one-particle Schrödinger operator with
external potential V (y). All the analysis we developed for such operators is
applicable now to H .

Behaviour of V (x) at infinity. The second issue mentioned above arises
from the geometry of the potential (12.2). The point is that V (x) does not
vanish as x → ∞ in certain directions, namely in those directions where
xi = xj for at least one pair i 	= j (we assume here that Vij(0) 	= 0). This
property is responsible for most of the peculiarities of many-body behaviour.
In particular, the spectral analysis of Chapter 6 does not work in the many-
body case, and must be modified in significant ways by taking into account
the geometry of many-body systems.

12.2 Separation of the Centre-of-mass Motion

This section is devoted to a description of a general method for separating the
centre-of-mass motion of a many-body system. After applying this method,
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one is left with a many-body system whose centre-of-mass is fixed at the
origin.

We begin by equipping the n-body configuration space R
3n with the inner-

product

〈x, y〉 :=
n∑

i=1

mixi · yi (12.4)

where m1, . . . ,mn are the masses of the n particles, and xi · yi is the usual
dot-product in R

3. Next, we introduce the orthogonal subspaces

X := {x ∈ R
3n |

n∑

i=1

mixi = 0} (12.5)

and
X⊥ := {x ∈ R

3n | xi = xj ∀ i, j} (12.6)

of R
3n. Recall that orthogonality (X ⊥ X⊥) means 〈x, y〉 = 0 for any x ∈ X ,

y ∈ X⊥. To see that X ⊥ X⊥, suppose x ∈ X , and y ∈ X⊥. Since yj = y1 for
all j, we have

〈x, y〉 =
n∑

y=1

mixi · yi = y1 ·
n∑

y=1

mixi = 0

by the definition of X . We recall here the definition of the direct sum of
subspaces.

Definition 12.1 If V1, V2 are orthogonal subspaces of a vector space, V , with
an inner product, then V1 ⊕ V2 denotes the subspace

V1 ⊕ V2 := {v1 + v2 | v1 ∈ V1, v2 ∈ V2}.
Problem 12.2 Show that

R
3n = X ⊕X⊥. (12.7)

X is the configuration space of internal motion of the n-particle system,
and X⊥ is the configuration space of the centre-of-mass motion of this system.
The relation (12.7) implies that

L2(R3n) = L2(X)⊗ L2(X⊥) (12.8)

(see Section 23.13 for an explanation of the tensor product, ⊗).
Let Δ denote the Laplacian on R

3N in the metric determined by (12.4),
i.e.

Δ =
n∑

j=1

1
mj

Δxj .

Under the decomposition (12.8), the Laplacian decomposes as

Δ = ΔX ⊗ 1X⊥ + 1X ⊗ΔX⊥ (12.9)

where 1X and 1X⊥ are the identity operators on L2(X) and L2(X⊥) respec-
tively (see again Section 23.13).
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Problem 12.3 Show thatΔX⊥ = 1
MΔxCM whereM =

∑n
j=1mj and xCM =

1
M

∑n
j=1mjxj .

Let πX be the orthogonal projection operator from R
3n to X (see Sec-

tion 23.7 for background on projections). Explicitly,

(πXx)i = xi − 1
∑N
j=1 mj

n∑

j=1

mjxj . (12.10)

Problem 12.4 Show that (12.10) is the orthogonal projection operator from
R

3n to X . Find the orthogonal projection operator, πX⊥ , from R
3n to X⊥.

Equation (12.10) implies that

(πXx)i − (πXx)j = xi − xj .

Hence the many-body potential (4.17) satisfies

V (x) = V (πXx). (12.11)

Equations (12.9) and (12.11) imply that the operator Hn given in (12.1) can
be decomposed as

Hn = H ⊗ 1X⊥ + 1X ⊗ TCM (12.12)

where

H = −�
2

2
ΔX + V (x)

is the Hamiltonian of the internal motion of the system, and

TCM = −�
2

2
ΔX⊥

is the Hamiltonian of the motion of its centre-of-mass. Equation (12.12) is
the centre-of-mass separation formula, and H is called the Hamiltonian in the
centre-of-mass frame. It is a self-adjoint operator under the assumptions on
the potentials mentioned above. It is the main object of study in many-body
theory.

12.3 Break-ups

Here we describe the kinematics of the break-up of an n-body system into non-
interacting systems. First we introduce the notion of a cluster decomposition

a = {C1 . . . Cs}
for some s ≤ n. The Cj are non-empty, disjoint subsets of the set {1, . . . , n},
whose union yields the whole set:
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s⋃

j=1

Cj = {1, . . . , n}.

The subsets Cj are called clusters. An example of a cluster decomposition for
n = 3 is a = {(12), (3)}. The number of clusters, s, in the decomposition a
will be denoted by #(a).

There is only one cluster decomposition with #(a) = 1, and one with
#(a) = n. In the first case, the decomposition consists of a single cluster

a = {(1 . . . n)},
and in the second case the clusters are single particles:

ā = {(1) . . . (n)}.
In the first case the system is not broken up at all, while in the second case
it is broken into the smallest possible fragments.

To each cluster decomposition, a, we associate the intercluster potential

Ia(x) :=
∑

(ij) �⊂a
Vij(xi − xj),

where the notation (ij) 	⊂ a signifies that the indices i and j belong to different
clusters in the decomposition a. Similarly, we associate to a the intracluster
potential

Va(x) :=
∑

(ij)⊂a
Vij(xi − xj)

where (ij) ⊂ a signifies that i and j belong to the same cluster in a. Thus
Ia(x) (resp. Va(x)) is the sum of the potentials between particles from different
(resp. the same) clusters of a.

The Hamiltonian of a decoupled system (in the total centre-of-mass frame)
corresponding to a cluster decomposition, a, is

Ha := −�
2

2
ΔX + Va(x)

acting on L2(X). For a = {C1, . . . , Cs}, the Hamiltonian Ha describes s non-
interacting sub-systems C1, . . . , Cs. For s = 1, Ha = H , and for s = N ,
Ha = −�

2

2
ΔX . The operators Ha are also self-adjoint. Note that

H = Ha + Ia. (12.13)

If s > 1, then the system commutes with relative translations of the clus-
ters C1 . . . Cs:

ThHa = HaTh,

for h ∈ X satisfying
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hi = hj if (ij) ⊂ a.
Here

Th : ψ(x1, . . . , xn)→ ψ(x1 + h1, . . . , xN + hn)

for h = (h1, . . . , hn). As a result, one can show that the spectrum of Ha is
purely essential. This is due to the fact that the clusters in a move freely.
One can separate the centre-of-mass motions of the clusters C1 . . . Cs in a and
establish a decomposition for Ha similar to that for Hn (equation (12.12));
we will do this later.

12.4 The HVZ Theorem

In this section we formulate and prove the key theorem in the mathematical
theory of n-body systems – the HVZ theorem. The letters here are the initials
of W. Hunziker, C. van Winter, and G.M. Zhislin. This theorem identifies the
location of the essential spectrum of the many-body Hamiltonian, H .

Theorem 12.5 (HVZ Theorem) We have

σess(H) = [Σ,∞),

where
Σ := min

#(a)>1
Σa, with Σa := min(σ(Ha)).

Note that Σ is the minimal energy needed to break the system into indepen-
dent parts.

Proof. We begin by showing that σ(Ha) ⊂ σ(H) for #(a) > 1. Suppose
λ ∈ σ(Ha). Then for any ε > 0, there is ψ ∈ L2(X) with ‖ψ‖ = 1, such that
‖(Ha−λ)ψ‖ < ε. Let h ∈ X satisfy hi = hj if (ij) ⊂ a, and hi 	= hj otherwise.
For s > 0, let Tsh be the operator of coordinate translation by sh. Note that
Tsh is an isometry. As remarked in the previous section, Tsh commutes with
Ha, and so

‖(Ha − λ)Tshψ‖ = ‖Tsh(Ha − λ)ψ‖ < ε.

On the other hand, HTshψ → HaTshψ as s → ∞, because the translation
Tsh separates the clusters in a as s → ∞. So for s sufficiently large, ‖(H −
λ)Tshψ‖ < ε. Since ε > 0 is arbitrary, and ‖Tshψ‖ = ‖ψ‖ = 1, we see
λ ∈ σ(H).

So we have shown σ(Ha) ⊂ σ(H). As we remarked earlier, Ha has purely
essential spectrum. In other words, σ(Ha) = [Σa,∞). Thus we have shown
[Σ,∞) ⊂ σ(H).

It remains to prove that σess(H) ⊂ [Σ,∞). To do this, we introduce a
“partition of unity”, i.e., a family {ja} of smooth functions on X , indexed by
all cluster decompositions, a, with #(a) > 1, such that
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∑

#(a)>1

j2a(x) ≡ 1. (12.14)

We can use {ja} to decompose H into pieces which are localized in the sup-
ports of the ja, plus an error term:

H =
∑

#(a)>1

jaHja −
∑

#(a)>1

�
2

2
|∇ja|2. (12.15)

Indeed, summing the identity

[ja, [ja, H ]] = j2aH +Hj2a − 2jaHja

over a, and using (12.14), we obtain

H =
∑

#(a)>1

(jaHja +
1
2
[ja[ja, H ]]).

Computing [ja, [ja, H ]] = −�
2|∇ja|2 finishes the proof of (12.15).

Now we construct an appropriate partition of unity, namely one satisfying

min
(jk) �⊂a

|xj − xk | ≥ ε|x| for |x| ≥ 1, x ∈ supp(ja) (12.16)

for some ε > 0. Indeed, the sets

Sa := {x ∈ X | |x| = 1; |xj − xk| > 0 ∀ (jk) 	⊂ a}
form an open cover of the unit sphere, S, of X (i.e., Sa are open sets and S ⊂⋃
a Sa). For each a, let χa be a smooth function supported in Sa, and equal to

1 in a slightly smaller set (such that these smaller sets still cover S). Then the
functions ja := χa/(

∑
χ2
a)1/2 form a partition of unity on S, with supp(ja) ⊂

Sa. In fact, (12.16) holds (with |x| = 1), because supp(ja) is compact. We
extend ja(x) to all of X by setting ja(x) := ja(x/|x|) for |x| > 1, and for
|x| < 1, choosing any smooth extension of ja(x) which preserves (12.15).
Thus the partition {ja} satisfies

ja(λx) = ja(x) for |x| ≥ 1, λ ≥ 1 (12.17)

as well as (12.16). By (12.17),

|∇ja(x)|2 → 0 as |x| → ∞.
By (12.16),

ja(H −Ha)ja = jaIaja → 0 as |x| → ∞.
Returning to (12.15), we conclude that

H =
∑

#(a)>1

jaHaja +K
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where K is multiplication operator vanishing at infinity. An argument similar
to the proof of the second part Theorem 6.14 shows that

σess(H) = σess

⎛

⎝
∑

#(a)>1

jaHaja

⎞

⎠ .

Since H ≥ (inf σ(H))1 for any self-adjoint operator, H , we see

〈ψ, jaHajaψ〉 = 〈jaψ,Hjaψ〉
≥ Σa‖jaψ‖2 ≥ Σa‖ψ‖2

for any ψ ∈ X (note Σa ≤ 0). Thus jaHaja ≥ Σa, and therefore
∑

a jaHaja ≥
Σ, yielding σess(

∑
a jaHaja) ⊂ [Σ,∞), and consequently σess(H) ⊂ [Σ,∞).

This completes the proof of the HVZ theorem. �

12.5 Intra- vs. Inter-cluster Motion

As was mentioned in Section 12.3, the Hamiltonians Ha describing the system
broken up into non-interacting clusters have purely essential spectra. This
is due to the fact that the clusters in the decomposition move freely. To
understand the finer structure of many-body spectra, we have to separate
the centre-of-mass motion of the clusters, as we did with the centre-of-mass
motion of the entire system. Proceeding as in Section 12.2, we define the
subspaces

Xa := {x ∈ X |
∑

j∈Ci

mjxj = 0 ∀ i}

and
Xa := {x ∈ X | xi = xj if (ij) ⊂ a}.

Problem 12.6 Show that these subspaces are mutually orthogonal (Xa ⊥
Xa) and span X :

X = Xa ⊕Xa. (12.18)

Xa is the subspace of internal motion of the particles within the clusters
of the decomposition a, and Xa is the subspace of the centre-of-mass motion
of the clusters of a. As before, (12.18) leads to the decomposition

L2(X) = L2(Xa)⊗ L2(Xa)

of L2(X) and the related decomposition of the Laplacian on X :

ΔX = ΔXa ⊗ 1Xa + 1Xa ⊗ΔXa

where ΔXa and ΔXa are the Laplacians on the spaces Xa and Xa (or L2(Xa)
and L2(Xa)) in the metric (12.4). Again, if πXa is the orthogonal projection
from X to Xa, then
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Va(x) = Va(πXax)

and consequently we have the decomposition

Ha = Ha ⊗ 1Xa + 1Xa ⊗ Ta, (12.19)

where

Ha = −�
2

2
ΔXa + Va(x)

is the Hamiltonian of the internal motion of the particles in the clusters of
a, and Ta = −�

2

2
ΔXa is the Hamiltonian of the centre-of-mass motion of the

clusters in a.
Applying the HVZ theorem inductively, we arrive at the following repre-

sentation of the essential spectrum of H :

σess(H) =
⋃

λ∈τ(H)

[λ,∞),

where the discrete set τ(H), called the threshold set of H , is defined as

τ(H) :=
⋃

#(a)>1

σd(Ha)
⋃
{0},

the union of the discrete spectra of the break-up Hamiltonians and zero. The
points of τ(H) are called the thresholds. Thus one can think of the essential
spectrum of a many-body Hamiltonian H (in the centre-of-mass frame) as a
union of branches starting at its thresholds and extending to infinity.

12.6 Exponential Decay of Bound States

Theorem 12.7 If H has a bound state, Ψ(x), with an energy E < Σ (i.e.
below the ionization threshold Σ, see Theorem 12.5), then Ψ(x) satisfies the
exponential bound

∫
|Ψ(x)|2e2α|x|dx <∞, ∀α < √Σ − E. (12.20)

Proof. Let J be a real, bounded, smooth function supported in {|x| ≥ R}.
Proceeding as in the prove of the HVZ theorem above, we show that there is
ε = ε(R)→ 0, as R→∞, s.t.

JHJ ≥ (Σ − ε)J2. (12.21)

Denote by ∇X the gradient on the space (12.5) with the metric (12.4). We
assume now that ∇XJ is supported in {R ≤ |x| ≤ 2R}. Let f be a bounded
twice differentiable, positive function and define Hf := efHe−f . We compute
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Hf = H − �
2

2
[|∇Xf |2 −∇Xf · ∇X −∇X · ∇Xf ]. (12.22)

Then (Hf −E)Φ = 0, where Φ := efΨ , and therefore (Hf −E)JΦ = [Hf , J ]Φ.
On the other hand, by (12.22) and (12.21) and the fact that the operator
∇Xf · ∇X +∇X · ∇Xf is anti-self-adjoint, we have

Re〈JΦ, (Hf − E)JΦ〉 = 〈JΦ, (H − �
2

2
|∇Xf |2 − E)JΦ〉

≥ δ‖JΦ‖2.

where δ := Σ − ε − E − supx∈suppJ
�
2

2m
|∇Xf |2. Then the last two equations

imply
δ‖JΦ‖2 ≤ Re〈JΦ, (Hf − E)JΦ〉 ≤ ‖JΦ‖‖[Hf , J ]Φ‖.

Now we take for f a sequence of bounded functions approximating α(1 +
|x|2)1/2, with α <

√
Σ − E. Taking the limit in the last inequality gives

(12.20). �

12.7 Remarks on Discrete Spectrum

For n = 2, the results in Section 8.3, show that the discrete spectrum of H is
finite if the potential V (x) is “short-range”, whereas a “long-range” attractive
potential produces an infinite number of bound states. The borderline be-
tween short- and long-range potentials is marked by the asymptotic behaviour
V (x) ∼ |x|−2 as |x| → ∞ (which is different than the borderline asymptotic
behaviour of |x|−1 which we encountered in scattering theory in Chapter 9).
For n > 2, however, the question of whether σd(H) is finite or infinite cannot
be answered solely in terms of the asymptotic fall-off of the intercluster po-
tentials, Ia(x); the nature of the threshold Σ at the bottom of the essential
spectrum plays a decisive role.

Now we comment on bound states of molecules with mobile nuclei. Here
the nature of the threshold Σ at the bottom of the essential spectrum plays
a decisive role. We restrict our attention to the case where Σ is a two-cluster
threshold. This means that for energy Σ and slightly above, the system can
only disintegrate into two bound clusters, C1 and C2. This fits the case of
molecules with dynamic nuclei which break up into atoms or stable ions. How-
ever, our next assumption, that the lowest energy break-ups originate from
charged clusters (having, of course, opposite total charges), is not realistic.

Ignoring particle statistics, the disintegration of the system into the clus-
ters corresponding to a partition a can be represented by a product wave
function

φ(x) = Ψ(xa)f(xa), (12.23)

where Ψ is the eigenfunction ofHa with eigenvalueΣ,HaΨ = ΣΨ , and xa and
xa denote the components of x along the subspaces Xa and Xa respectively.
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Here f is chosen so that 〈f, Taf〉 is arbitrarily small. The condition that Σ is
a two-cluster threshold means that Σ is a discrete eigenvalue of Ha, and as a
consequence it can be shown that Ψ(xa) decays exponentially as |xa| → ∞:

|Ψ(xa)| ≤ (const)e−α|x
a| (12.24)

for some α > 0. Using states of the form (12.23) as trial states to make
〈φ,Hφ〉 < Σ, we can show the existence of an infinite number of bound states,
provided that the lowest energy break-ups originate from charged clusters
(having, of course, opposite total charges). This means that the intercluster
potential

Ia(x) =
∑

i∈C1,k∈C2

eiek
|xi − xk| ,

satisfies (
∑

i∈C1
ei)(
∑

k∈C2
ek) < 0. Using the exponential bound (12.24), it

follows that

|〈φ, (Ia(x)− Ia(xa))φ〉L2(Xa)| ≤ (const)|xa|−2.

Observe that Ia(xa) = −q/|xa| with q > 0. Since H = Ha⊗1a+1a⊗Ta + Ia
(see (12.13) and (12.19)) and Haφ = Σφ, the last inequality implies

〈φ, (H −Σ)φ〉 ≤
〈

u,

(

Ta − q

|xa| + (const)|xa|−2

)

f

〉

L2(Xa)

.

As in Section 8.3, we let f ∈ C∞
0 (R3) satisfy ‖f‖ = 1 and

supp(f) ⊂ {xa | 1 < |xa| < 2}.
Then the functions

fk(xa) = k−3/2f(k−1xa), k = 1, 2, 4, 8, . . .

are orthonormal, and have disjoint supports. Thus the corresponding trial
states φk(x) = Ψ(xa)fk(xa) satisfy 〈φk, Hφm〉 = 0 for k 	= m, and

〈φk, (H −Σ)φk〉 ≤ −(const)
q

k
+ (const)

1
k2

< 0,

for some positive constants, if n is sufficiently large. We can now apply the
min-max principle (see Section 8.1) to conclude that H possesses infinitely
many discrete eigenvalues below the threshold Σ.

12.8 Scattering States

Unlike in the one-body case, the many-body evolution ψ = e−iHt/�ψ0 be-
haves asymptotically as a superposition of several (possibly infinitely many)
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free evolutions, corresponding to different scenarios of the scattering problem.
These scenarios, called scattering channels, can be described as follows. For
a given scattering channel, the system is broken into non-interacting clusters
C1, . . . , Cs corresponding to some cluster decomposition a, and its motion in
each cluster is restricted to a cluster bound state. (If a given decomposition
contains a cluster for which the cluster Hamiltonian has no bound state, then
this cluster decomposition does not participate in the formation of scattering
channels.) In other words, a scattering channel is specified by a pair (a,m),
where a is a cluster decomposition such that the operatorHa has some discrete
spectrum, and m labels the the eigenfunction ψa,m of Ha (we suppose that
for fixed a, the ψa,m are chosen orthonormal). The evolution in the channel
(a,m) is determined by the pair

(Ha,m, Ha,m)

where Ha,m := ψa,m ⊗ L2(Xa) is the channel Hilbert space, and

Ha,m := Ha�Ha,m
= Ea,m + Ta

where Ea,m is the eigenvalue of Ha corresponding to the eigenfunction ψa,m.
Thus the channel evolution is given by

e−iHa,mt/�(ψa,m ⊗ f)

for f ∈ L2(Xa).
As in the one-body case (see Chapter 9), the existence and asymptotic

form of scattering states for t→∞ depends crucially of the rate at which the
potentials tend to zero for large separations. We suppose that the intercluster
potentials satisfy

∂(α)Ia(x) ≤ (const)|x|−μ−|α|
a (12.25)

as |x|a →∞, for |α| ≤ 2. Here |x|a is the intercluster distance, i.e.

|x|a := min
(jk) �⊂a

|xj − xk|.

As in the one-body case, μ = 1 marks the borderline between short-range
and long-range systems, for which the scattering theory is quite different.

Short-range systems: μ > 1. In this case, for a given scattering channel,
(a,m), the wave operator

Ω+
(a,m) = s-limt→∞eiHt/�e−iHa,mt/�

can be shown to exist on Ha,m. The proof is similar to that for the one-body
case (see Chapter 9). This wave operator maps free channel evolutions to full
evolutions: setting

ψ := Ω+
(a,m)(ψ

a,m ⊗ f),

we have
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e−iHt/�ψ → e−iHa,mt/�(ψa,m ⊗ f)

as t→∞. The wave operator Ω+
a,m is an isometry from Ha,m to H. Moreover,

the ranges H+
a,m := Ran(Ω+

a,m) satisfy

H+
a,m ⊥ H+

b,n if a 	= b or m 	= n

which follows from the fact that

lim
t→∞〈e

−iHa,mt/�(ψa,m ⊗ f), e−iHb,nt/�(ψb,n ⊗ g)〉 = 0

if a 	= b or m 	= n. Therefore, the outgoing scattering states form a closed
subspace

H+ :=
⊕

a,m

H+
a,m ⊂ L2(X).

Under the condition (12.25) with μ > 1, it has been proved that the property
of asymptotic completeness holds – i.e., that H+ = L2(X) (see Chapter 25 for
references). In other words, as t→∞, every state approaches a superposition
of channel evolutions and bound states (the bound states are the channel with
#(a) = 1).

Long-range systems: μ ≤ 1. As in the one-body case, it is necessary to
modify the form of the channel evolutions in the long-range case. The evolution
e−iHa,mt/� with Ha,m = λa,m + Ta is replaced by

e−iHa,mt/�−iαa,t(pa)

where pa = −i�∇Xa. Here αa,t(pa) is an adiabatic phase, arising from the fact
that classically, the clusters are located at xa = pat(1 + O(t−μ)) as t → ∞.
The modification αa,t(pa), whose precise form we will not give here, is similar
to that for the one-body case (see Chapter 9). We refer the interested reader
to the references listed in Chapter 25 for further details. We remark only that
with this modification in place, the existence of the (modified) wave operators,
and asymptotic completeness, have been proved for μ not too small.
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Self-consistent Approximations

Even for a few particles the Schrödinger equation is prohibitively difficult
to solve. Hence it is important to have approximations which work in vari-
ous regimes. One such approximation, which has a nice unifying theme and
connects to large areas of physics and mathematics, is the one approximat-
ing solutions of n-particle Schrödinger equations by products of n one-particle
functions (i.e. functions of 3 variables). This results in a single nonlinear equa-
tion in 3 variables, or several coupled such equations. The trade-off here is
the number of dimensions for the nonlinearity. This method, which goes un-
der different names, e.g. the mean-field or self-consistent approximation, is
especially effective when the number of particles, n, is sufficiently large.

13.1 Hartree, Hartree - Fock and Gross-Pitaevski
equations

For simplicity we consider a system of n identical, spinless bosons. It is
straightforward to include spin. To extend our treatment to fermions requires
a simple additional step (see discussion below). The Hamiltonian of the system
of n bosons interacting with each other, and moving in an external potential
V is

Hn :=
n∑

j=1

hxi
+

1
2

∑

i�=j
v(xi − xj), (13.1)

where hx = �
2

2m
Δx + V (x), acting on the state space �n

1L
2(Rd), d = 1, 2, 3.

Here v is the interaction potential, and � is the symmetric tensor product.
As we know, the quantum evolution is given by the Schrödinger equation

i�
∂Ψ

∂t
= HnΨ.

This is an equation in 3n+ 1 variables, x1, ..., xn and t, and it is not a simple
matter to understand properties of its solutions. We give a heuristic derivation
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of the mean-field approximation for this equation. A rigorous derivation is
sketched in Section 18.6. First, we observe that the potential experienced by
the i-th particle is

W (xi) := V (xi) +
∑

j �=i
v(xi − xj).

Assuming v(0) is finite, it can be re-written, modulo the constant term v(0),
which we neglect, as W (xi) = V (xi) + (v ∗ ρmicro)(xi). Here, recall, f ∗ g
denotes the convolution of the functions f and g, and ρmicro stands for the
(operator of) microscopic density of the n particles, defined by

ρmicro(x, t) :=
∑

j

δ(x− xj).

Note that the average quantum-mechanical (QM) density in the state Ψ is

〈Ψ, ρmicro(x, t)Ψ〉 = ρQM (x, t)

where ρQM (x, t) := n
∫ | Ψ(x, x2, ..., xn) |2 dx2...dxn, the one-particle density

in the quantum state Ψ .
In the mean-field theory, we replace ρmicro(x, t) with a continuous function,

ρMF (x, t), which is supposed to be close to the average quantum-mechanical
density, ρQM (x, t), and which is to be determined later. Consequently, it is
assumed that the potential experienced by the i-th particle is

WMF (xi) := V (xi) + (v ∗ ρMF )(xi).

Thus, in this approximation, the state ψ(x, t) of the i-th particle is a solution
of the following one-particle Schrödinger equation i�∂ψ∂t = (h + v ∗ ρMF )ψ
where, recall, h = − �

2

2m
Δx + V (x). Of course, the integral of ρmicro(x, t) is

equal to the total number of particles,
∫

R3 ρ
micro(x, t)dx = n. We require that

the same should be true for ρMF (x, t):
∫

R3 ρ
MF (x, t)dx = n. We normalize

the one-particle state, ψ(x, t), in the same way
∫

R3
|ψ(x, t)|2dx = n. (13.2)

Consider a situation in which we expect all the particles to be in the same
state ψ. Then it is natural to take ρMF (x, t) = |ψ(x, t)|2. In this case ψ solves
the nonlinear equation

i�
∂ψ

∂t
= (h+ v ∗ |ψ|2)ψ. (13.3)

This nonlinear evolution equation is called the Hartree equation (HE).
If the interparticle interaction, v, is significant only at very short distances

(one says that v is very short range, which technically can be quantified by
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assuming that the “particle scattering length” a is small), we can replace
v(x)→ 4πaδ(x), and Equation (13.3) becomes

i�
∂ψ

∂t
= hψ + 4πa|ψ|2ψ (13.4)

(with the normalization (13.2)). This equation is called the Gross-Pitaevski
equation (GPE) or nonlinear Schrödinger equation. It is a mean-field ap-
proximation to the original quantum problem for a system of n bosons. The
Gross-Pitaevski equation is widely used in the theory of superfluidity, and in
the theory of Bose-Einstein condensation (see Appendix 13.2).

Reconstruction of solutions to the n-particle Schrödinger equation. How
do solutions of (HE) or (GPE) relate to solutions of the original many-body
Schrödinger equation? One can show rigorously (see [ESY1,ESY2,Pi1]) that
the solution of the Schrödinger equation

i�
∂Ψ

∂t
= HnΨ, Ψ |t=0 = ⊗n1ψ0

satisfies, in some weak sense and and in an appropriate regime of n→∞ and
a→ 0 with 4πna =: λ fixed,

Ψ −⊗n1ψ → 0

where ψ satisfies, depending on the limiting regime, either (HE) or (GPE) with
initial condition ψ0. For the mean-field regime (replacing for the moment v
by gv) of n→∞ and g → 0, with ng fixed, we have (HE) (see [He,GV2,FGS,
FKS,BGGM,BEGMY]).

The Hartree equation is the Euler-Lagrange equation for stationary points
of the action functional

S(Ψ) :=
∫ {

−�

2
Im〈Ψ, ∂tΨ〉 − 1

2
〈Ψ,HnΨ〉

}

dt,

considered on the set of functions

{Ψ := ⊗n1ψ|ψ ∈ H1(R3)}.
Here (⊗n1ψ) is the function of 3n variables defined by (⊗n1ψ)(x1, ..., xn) :=
ψ(x1)...ψ(xn). (See Chapter 24 for material on variational calculus.),

For (spinless) fermions, we consider the action S(Ψ) on the following func-
tion space

{Ψ := det[ψi(xj)]|ψi ∈ H1(R3) ∀i = 1, ..., n}
where [ψi(xj)] stands for the n×n matrix with the entries indicated. Then the
Euler-Lagrange equation for S(Ψ) on the latter set gives a system of nonlinear,
coupled evolution equations

i�
∂ψj
∂t

= (h+ v ∗
∑

i

|ψi|2)ψj −
∑

i

(v ∗ ψiψ̄j)ψi, (13.5)
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for the unknowns ψ1, ..., ψn. This systems plays the same role for fermions as
the Hartree equation does for bosons. It is called the Hartree-Fock equations
(HFE).

Finally, we mention another closely related nonlinear equation: the
Ginzburg-Landau equations of superconductivity.

Properties of (HE), (HFE) and (GPE). The Hartree and Gross-Pitaevski
equations have the following general features

1. For space dimensions d = 2, 3 and assuming v is positive definite, (HE) and
(HFE) have solutions globally in time; for (GPE) solutions exist globally
(in time) if a > 0, but blow-up for certain initial conditions in finite time
if a < 0.

2. (HE), (HFE) and (GPE) are Hamiltonian systems (see Section 18.6).
3. (HE), (HFE) and (GPE) are invariant under the gauge transformations,

ψ(x)→ eiαψ(x), α ∈ R,

and, for v = 0, the translations, ψ(x)→ ψ(x+y), y ∈ R, and the Gallilean
transformations, v ∈ R

3,

ψ(x)→ ei(mv·x+
mv2t

2 )/�
2
ψ(x− vt).

Moreover, (HFE) is invariant under time-independent unitary transfor-
mations of {ψ1, ..., ψn}.

4. The energy, E(ψ), and the number of particles, N(ψ), (see below) are
conserved quantities. Moreover, (HFE) conserves the inner products,
〈ψi, ψj〉, ∀i, j.

The last item shows that the natural object for (HFE) is the subspace spanned
by {ψi}, and the equation can be rewritten as an equation for the correspond-
ing projection γ :=

∑
i |ψi〉〈ψi|.

To fix ideas, we will hereafter discuss mainly (GPE). For (HE) and (HFE)
the results should be appropriately modified. For (GPE) the energy functional
is

E(ψ) :=
∫

R3

{
�

2

2m
|∇ψ|2 + V |ψ|2 + 2πa|ψ|4

}

dx.

The number of particles for (GPE) and (HE) is given by

N(ψ) :=
∫

R3
|ψ|2dx

while for (HFE), byN(ψ) :=
∑

i

∫
R3 |ψi|2dx. Note that the energy and number

of particle conservation laws are related to the time-translational and gauge
symmetries of the equations, respectively.

The above notions of the energy and number of particles are related to
corresponding notions in the original microscopic system. Indeed, let Ψ :=
1√
n
⊗n1 ψ. Then
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〈Ψ,HnΨ〉 = E(ψ) +O
( 1
n

)

where E(ψ) is the energy for (HE) and

n

∫
| Ψ(x1, ..., xn) |2 dx1...dxn =

∫
| ψ(x) |2 dx.

The notion of bound state can be extended to the nonlinear setting as
follows. The bound states are stationary solutions of (HE) or (GPE) of the
form

ψ(x, t) = φμ(x)eiμt

where the profile φμ(x) is in H2(R3). Note that the profile φμ(x) satisfies the
stationary Gross-Pitaevski equation:

hφ+ 4πa|φ|2φ = −�μφ (13.6)

(we consider here (GPE) only). Thus we can think of the parameter −μ as a
nonlinear eigenvalue.

A ground state is a bound state such that the profile φμ(x) minimizes the
energy for a fixed number of particles:

φμ minimizes E(ψ) under N(ψ) = n

(see Chapter 24 which deals with variational, and in particular minimiza-
tion problems). Thus the nonlinear eigenvalue μ arises as a Lagrange multi-
plier from this constrained minimization problem. In Statistical Mechanics μ
is called the chemical potential (the energy needed to add one more parti-
cle/atom, see Section 18.7).

Remark 13.1 1. Mathematically, the ground state can be also defined as a
stationary solution with a positive (up to a constant phase factor) profile,
ψ(x, t) = φμ(x)eiμt with φμ(x) > 0. Let δ(μ) := ‖φμ‖2. Then we have (see
[GSS])

δ′(μ) > 0 =⇒ φμ minimizes E(ψ) under N(ψ) = n.

2. The Lagrange multiplier theorem in Section 24.5 implies that the ground
state profile φμ is a critical point of the functional

Eμ(ψ) := E(ψ) + �μN(ψ).

In fact, φμ is a minimizer of this functional under the condition N(ψ) = n.

If φμ is the ground state of (GPE), then ⊗n1φμ is close to the ground
state of the n−body Hamiltonian describing the Bose-Einstein condensate (see
[DGPS] for a review, and [LSY,LSSY] and the Appendix below for rigorous
results).

It is known that for natural classes of nonlinearities and potentials V (x)
there is a ground state. Three cases of special interest are
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1. h := − �
2

2mΔ+ V (x) has a ground state, and 2m
�2 n|a| 
 1

2. V has a minimum, 2m
�2 n|a| � 1, and a < 0

3. V (x)→∞ as |x| → ∞ (i.e. V (x) is confining) and a > 0.

(The first and third cases are straightforward and the second case requires
some work [FW,Oh,ABC].)

Stability. We discuss now the important issue of stability of stationary
solutions under small perturbations. Namely, we want to know how solutions
of our equation with initial conditions close to a stationary state (i.e. small
perturbations of φμ(x)) behave. Do these solutions stay close to the stationary
state in question, do they converge to it, or do they depart from it? This is
obviously a central question. This issue appeared implicitly in Section 6.2 (and
in a stronger formulation in Chapter 9) but has not been explicitly articulated
yet. This is because the situation in the linear case that we have dealt with
so far is rather straightforward. On the other hand, in the nonlinear case,
stability questions are subtle and difficult, and play a central role.

We say that a stationary solution, φμ(x)eiμt, is orbitally (respectively,
asymptotically) stable if for all initial conditions sufficiently close to φμ(x)eiα

(for some constant α ∈ R), the solutions of the evolution equation under
consideration stay close (respectively, converge in an appropriate norm) to a
nearby stationary solution (times a phase factor), φμ′(x)ei(μ

′t+β(t)). Here μ′

is usually close to μ, and the phase β depends on time, t. The phase factors
come from the fact that our equations have gauge symmetry: if ψ(x, t) is a
solution, then so is eiαψ(x, t) for any constant α ∈ R. One should modify
the statement above if other symmetries are present. The notion of orbital
stability generalizes the classical notion of Lyapunov stability, well-known in
the theory of dynamical systems, to systems with symmetries.

For the linear Schrödinger equation, all bound states, as well as station-
ary states corresponding to embedded eigenvalues, are orbitally stable. But
they are not asymptotically stable in general. For most nonlinear evolution
equations in unbounded domains, the majority of states are not even Lya-
punov/orbitally stable.

For (GPE), if V → ∞ as |x| → ∞ (i.e. V is confining), the ground states
are orbitally stable, but not asymptotically stable. If V → 0 as |x| → ∞,
the ground states can be proved to be asymptotically stable in some cases
(see [SW2,TY,GNT,GS1,GS2] and references therein).

13.2 Appendix: BEC at T=0

In this appendix we consider briefly the phenomenon of Bose-Einstein con-
densation, predicted by Einstein in 1925 on the basis of analysis of ideal bose
gases and experimentally discovered 70 years later in 1995 in real gases by
two groups, one led by Wieman and Cornell at Boulder, and another by Ket-
terle at MIT. The Gross-Pitaevskii equation arises in the description of this
phenomenon. We concentrate on zero temperature.
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First we consider a system of n non-interacting bosons in an exter-
nal potential V . The state space of such a system is the Hilbert space
�n

1L
2(Rd), d = 1, 2, 3, and the Hamiltonian operator is

Hn :=
n∑

j=1

(

− �
2

2m
Δxi + V (xi)

)

.

(acting on �n
1L

2(Rd)). By separation of variables, the lowest energy for
this Hamiltonian is ne0, where e0 is the lowest energy for the one-particle
Schrödinger operator − �

2

2mΔx + V (x). The corresponding eigenfunction – the
ground state of Hn – is given by �n

1φ0, where φ0 is the ground state of the op-
erator − �

2

2m
Δx+V (x). And that’s it – at zero temperature, and in the ground

state, all particles are in the same state φ0!
Now we consider a system of n interacting bosons subject to an external

potential V , which is described by the Hamiltonian

Hn :=
n∑

j=1

(

− �
2

2m
Δxi + V (xi)

)

+
1
2

∑

i�=j
v(xi − xj),

acting on the Hilbert space �n
1L

2(Rd). Here v is the potential of interaction
between the particles. Let Φn,0(x1, . . . , xn) be a ground state of Hn. How do
we tell if in this state all (or the majority of) the particles are individually in
some one-particle state, say φ0?

To begin with we would like to describe, say, the coordinate or momentum
distributions for a single particle. To extract one-particle information from
Φn,0, we use the information reduction principle elucidated in Section 17.1:
we pass to density operators (Φn,0 → PΦn,0 = the rank 1 orthogonal projection
on the state Φn,0) and contract (n−1)−particle degrees of freedom. This leads
to the one-particle density operator:

γn1 := Trn−1PΦn,0

where Trn−1 is the trace over n − 1 of the 3 dimensional coordinates (see
Section 17.1). The one-particle density matrix satisfies

• 0 ≤ γn1 ≤ 1
• Trγn1 = 1
• Φn,0 = ⊗n1φ0 ⇔ γn1 = Pφ0

Let λ1 ≥ λ2 ≥ · · ·λj ≥ · · · be the eigenvalues of γn, counting their mul-
tiplicities, and let χ1, χ2, · · ·χj , · · · be corresponding eigenfunctions. We have
the spectral decomposition

γn1 =
∞∑

j=1

λjPχj ,

∞∑

j=1

λj = 1
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(see Mathematical Supplement, Section 23.11).The eigenvalues λj are inter-
preted as the probabilities for a single particle to be in the states χj .

The Penrose-Onsager criterion of BEC says that the property of the
ground state Φn,0 of the Hamiltonian Hn

max eigenvalue of γn1 → 1 as n→∞ (POC)

corresponds to 100% condensation. The criterion (POC) implies

γn1 − Pχ1 → 0 as n→∞

so that for large n, almost all the particles are in the single state χ1.
A rigorous proof of BEC in the Gross-Pitaevski limit, in which the number

of particles n → ∞ and the scattering length a → 0, so that na =: λ/(4π)
is fixed, is given in [LiS1] (see also [LSY]). Moreover, they show that in the
trace norm,

γn1 − PφGP
n
→ 0

where φGPn is the Gross-Pitaevski ground state. They also prove convergence
for the ground state energies.
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The Feynman Path Integral

In this chapter, we derive a convenient representation for the integral ker-
nel of the Schrödinger evolution operator, e−itH/�. This representation, the
“Feynman path integral”, will provide us with a heuristic but effective tool for
investigating the connection between quantum and classical mechanics. This
investigation will be undertaken in the next section.

14.1 The Feynman Path Integral

Consider a particle in R
d described by a self-adjoint Schrödinger operator

H = − �
2

2m
Δ+ V (x).

Recall that the dynamics of such a particle is given by the Schrödinger equa-
tion

i�
∂ψ

∂t
= Hψ.

Recall also that the solution to this equation, with the initial condition ψ|t=0 =
ψ0, is given in terms of the evolution operator U(t) := e−iHt/� as

ψ = U(t)ψ0.

Our goal in this section is to understand the evolution operator U(t) =
e−iHt/� by finding a convenient representation of its integral kernel. We denote
the integral kernel of U(t) by Ut(y, x) (also called the propagator from x to y).

A representation of the exponential of a sum of operators is provided by
the Trotter product formula (Theorem 14.2) which is explained in Section 14.3
at the end of this chapter. The Trotter product formula says that

e−iHt/� = ei(
�
2t

2mΔ−V t)/� = s-limn→∞Kn
n
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where Kn := e
i�t
2mnΔe−

iV t
�n . Let Kn(x, y) be the integral kernel of the operator

Kn. Then by Proposition 23.12,

Ut(y, x) = lim
n→∞

∫
· · ·

∫
Kn(y, xn−1) · · ·Kn(x2, x1)Kn(x1, x)dxn−1 · · · dx1.

(14.1)
Now (see Section 23.3)

Kn(y, x) = e
i�tΔ
2mn (y, x)e−

iV (y)t
�n

since V , and hence e−iV t/n�, is a multiplication operator (check this).
Using the expression (2.22), and plugging into (14.1) gives us

Ut(y, x) = lim
n→∞

∫
· · ·

∫
eiSn/�

(
2πi�t
mn

)−nd/2
dx1 · · · dxn−1

where

Sn :=
n−1∑

k=0

(mn|xk+1 − xk|2/2t− V (xk+1)t/n)

with x0 = x, xn = y. Define the piecewise linear function φn such that
φn(0) = x, φn(t/n) = x1, · · · , φn(t) = y (see Fig. 14.1).

φ

s

y

x

t/n (n−1)t/n t2t/n

Fig. 14.1. Piecewise linear function.

Then

Sn =
n−1∑

k=0

{

m
|φn((k + 1)t/n)− φn(kt/n)|2

2(t/n)2
− V (φn((k + 1)t/n))

}

t/n.

Note that Sn is a Riemann sum for the classical action

S(φ, t) =
∫ t

0

{m
2
|φ̇(s)|2 − V (φ(s))

}
ds
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of the path φn. So we have shown

Ut(y, x) = lim
n→∞

∫

Pnx,y,t

eiSn/�Dφn (14.2)

where Pnx,y,t is the (n − 1)-dimensional space of paths φn with φn(0) = x,
φn(t) = y, and which are linear on the intervals (kt/n, (k + 1)t/n) for k =
0, 1, . . . , n− 1, and Dφn = (2πi�t

nm
)−nd/2dφn(t/n) · · · dφn((n− 1)t/n).

Heuristically, as n→∞ φn approaches a general path, φ, from x to y (in
time t), and Sn → S(φ). Thus we write

Ut(y, x) =
∫

Px,y,t

eiS(φ,t)/�Dφ. (14.3)

Here Px,y,t is a space of paths from x to y, defined as

Px,y,t := {φ : [0, t]→ R
d|

∫ t

0

|φ̇|2 <∞, φ(0) = x, φ(t) = y}.

This is the Feynman path integral. It is not really an integral, but a formal
expression whose meaning is given by (14.2). Useful results are obtained non-
rigorously by treating it formally as an integral. Answers we get this way are
intelligent guesses which must be justified by rigorous tools.

Note that Pnx,y,t is an (n − 1)-dimensional sub-family of the infinite-
dimensional space Px,y,t. It satisfies Pnx,y,t ⊂ P 2n

x,y,t and limn→∞ Pnx,y,t = Px,y,t
in some sense. We call such subspaces finite dimensional approximations
of Px,y,t. In (non-rigorous) computations, it is often useful to use finite-
dimensional approximations to the path space other than the polygonal one
above.

We can construct more general finite-dimensional approximations as fol-
lows. Fix a function φxy ∈ Px,y,t. Then

Px,y,t = φxy + P0,0,t.

Note P0,0,t is a Hilbert space. Choose an orthonormal basis {ξj} in P0,0,t and
define

Pn0,0,t := span {ξj}n1
and

Pnx,y,t := φxy + Pn0,0,t.

Then Pnx,y,t is a finite dimensional approximation of Px,y,t. Typical choices of
φxy and {ξj} are

1. φxy is piecewise linear and {ξj} are “splines”. This gives the polygonal
approximation introduced above.
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2. φxy is a classical path (a critical point of the action functional S(φ))
and {ξj} are eigenfunctions of the Hessian of S at φxy (these notions are
described in the Supplement on the calculus of variations, Chapter 24).
In this case, if η ∈ Pn0,0,t, then we can represent it as

η =
n∑

j=1

ajξj ,

and we have

Dη =
(

2πit�
m

)−d/2 (
2πn
t

√
m

�

)n n∏

j=1

daj .

It is reasonable to expect that if

lim
n→∞

∫

Pnx,y,t

eiS(φ,t)/�Dφ

exists, then it is independent of the finite-dimensional approximation, Pnx,y,t,
that we choose.

Problem 14.1

1. Compute (using (14.3) and a finite-dimensional approximation of the path
space) Ut for
a) V (x) = 0 (free particle)
b) V (x) = mω2

2
x2 (harmonic oscillator in dimension d = 1).

2. Derive a path integral representation for the integral kernel of e−βH/�.
3. Use the previous result to find a path integral representation for Z(β) :=

tr e−βH/� (hint: you should arrive at the expression (15.11)).

14.2 Generalizations of the Path Integral

Here we mention briefly two extensions of the Feynman path integral we have
just introduced.

1. Phase-space path integral:

Ut(y, x) =
∫

Px,y,t× anything
ei

∫ t
0 (φ̇π−H(φ,π))/�DφD/π

where D/π is the path measure, normalized as
∫
e−

i
2

∫
t
0 ‖π‖2

D/π = 1
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(in QM, d/ 3p = d3p/(2π)3/2). To derive this representation, we use the
Trotter product formula, the expression e−iεH ≈ 1− iεH for ε small, and
the symbolic (pseudodifferential) composition formula. Unlike the rep-
resentation

∫
eiS/�Dφ, this formula holds also for more complicated H ,

which are not quadratic in p !
2. A particle in a vector potential A(x). In this case, the Hamiltonian is

H(x, p) =
1

2m
(p− eA(x))2 + V (x)

and the Lagrangian is

L(x, ẋ) =
m

2
ẋ2 − V (x) + eẋ · A(x).

The propagator still has the representation

Ut(y, x) =
∫

Px,y,t

eiS(φ)/�Dφ,

but with

S(φ) =
∫ t

0

L(φ, φ̇)ds =
∫ t

0

(
m

2
φ̇2 − V (φ))ds + e

∫ t

0

A(φ) · φ̇ds.

Since A(x) does not commute with ∇ in general, care should be exercised
in computing a finite-dimensional approximation: one should take

∑
A(

1
2
(xi + xi+1)) · (xi+1 − xi)

or ∑ 1
2
(A(xi) +A(xi+1)) · (xi+1 − xi)

and not
∑

A(xi) · (xi+1 − xi) or
∑

A(xi+1) · (xi+1 − xi).

14.3 Mathematical Supplement: the Trotter Product
Formula

Let A, B, and A+B be self-adjoint operators on a Hilbert spaceH. If [A,B] �=
0, then ei(A+B) �= eiAeiB in general. But we do have the following.

Theorem 14.2 (Trotter product formula) Let either A and B be
bounded, or A, B, and A+B be self-adjoint and bounded from below. Then
for Re(λ) ≤ 0,

eλ(A+B) = s− lim
n→∞(eλ

A
n eλ

B
n )n
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Remark 14.3 The convergence here is in the sense of the strong operator
topology. For operators An and A on a Hilbert space H, such that D(An) =
D(A), An → A in the strong operator topology (written s-limn→∞An = A)
iff ‖Anψ − Aψ‖ → 0 for all ψ ∈ D(A). For bounded operators, we can take
norm convergence. In the formula above, we used a uniform decomposition of
the interval [0, 1]. The formula still holds for a non-uniform decomposition.

Proof for A,B bounded: We can assume λ = 1. Let Sn = e(A+B)/n and Tn =
eA/neB/n. Now by “telescoping”,

Snn − T nn = Snn − TnSn−1
n + TnS

n−1
n + · · · − T nn

=
n−1∑

k=0

T kn (Sn − Tn)Sn−k−1
n

so

‖Snn − T nn ‖ ≤
n−1∑

k=0

‖Tn‖k‖Sn − Tn‖‖Sn‖n−k−1

≤
n−1∑

k=0

(max(‖Tn‖, ‖Sn‖))n−1‖Sn − Tn‖

≤ ne‖A‖+‖B‖‖Sn − Tn‖.

Using a power series expansion, we see ‖Sn − Tn‖ = O(1/n2) and so ‖Snn −
Tnn ‖ → 0 as n→∞. �

A proof for unbounded operators can be found in [RSI].
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Quasi-classical Analysis

In this chapter we investigate some key quantum quantities – such as quantum
energy levels – as �/(typical classical action)→ 0. We hope that asymptotics
of these quantities can be expressed in terms of relevant classical quantities.
This is called quasi-classical (or semi-classical) analysis. To do this, we use the
Feynman path integral representation of the evolution operator (propagator)
e−iHt/�. This representation provides a non-rigorous but highly effective tool,
as the path integral is expressed directly in terms of the key classical quantity
– the classical action.

The heuristic power of path integrals is that when treated as usual conver-
gent integrals, they lead to meaningful and, as it turns out, correct answers.
Thus to obtain a “quasi-classical approximation”, we apply the method of
stationary phase. Recall that the (ordinary) method of stationary phase ex-
pands the integral in question in terms of the values of the integrand at the
critical points of the phase, divided by the square root of the determinant of
the Hessian of the phase at those critical points. The difference here is that the
phase – the classical action – is not a function of several variables, but rather
a “functional”, which (roughly speaking) is a function of an infinite number of
variables, or a function on paths. Critical points of the classical action are the
classical paths (solutions of Newton’s equation) and the Hessians are differen-
tial operators. Thus we need some new pieces of mathematics: determinants
of operators and elements of the calculus of variations. These are presented
in supplementary Section 23.12 and Chapter 24 respectively.

Below we consider a particle in R
d described by a Schrödinger operator

H = − �
2

2m
Δx + V (x). (15.1)

We want to pass to physical units in which a typical classical action in our
system is 1, so that � is now the ratio of the Planck constant to the classical
action, so that the regime we are interested in is the one for which �→ 0. Let
L be a length scale for the potential, and g its size. So roughly, g = supx |V (x)|
and L = g(supx |∇V (x)|)−1. Re-scaling the variable as x→ x′ = x/L, we find
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H = gH ′ where

H ′ = − �
′2

2m′Δx′ + V ′(x′)

where V ′(x′) = g−1V (Lx′) and �
′/
√
m′ = �/(L

√
mg). Now the potential

V ′(x′) is essentially of unit size and varies on a unit length scale. The param-
eter �

′ is dimensionless. If h′/
√
m′ � 1, we can consider it a small parameter.

As an example suppose V (x) is of the order 100me4/�2, where me4/�2 is
twice the ionization energy of the ground state of the hydrogen atom, and
varies on the scale of the Bohr radius (of the hydrogen atom) L = �

2/(me2).
Then �

′/
√
m′ = 1/10. In the expansions we carry out below, we always have

in mind the operator H ′ and the dimensionless parameter �
′ with the primes

omitted; that is, we think of (15.1) in dimensionless variables.

15.1 Quasi-classical Asymptotics of the Propagator

The path integral (14.3) has the form of oscillatory integrals extensively stud-
ied in physics and mathematics. One uses the method of stationary phase in
order to derive asymptotic expressions for such integrals. It is natural, then, to
apply (formally) this method – with small parameter � – to the path integral,
in order to derive a quasi-classical expression for the Schrödinger propagator
e−itH/�(y, x). We do this below. But first, we quickly review the basics of the
method of stationary phase (in the finite-dimensional setting, of course).

The stationary phase method. We would like to determine the asymp-
totics of oscillatory integrals of the form

∫

Rd

eiS(φ)/�dφ

as � → 0 (here φ is a finite dimensional variable). The basic idea is that as
� → 0, the integrand is highly oscillating and yields a small contribution,
except where ∇S(φ) = 0 (i.e., critical points). We now make this idea more
precise. Set

I(�) :=
∫

Rd

f(φ)eiS(φ)/�dφ

where f ∈ C∞
0 (Rd) and S is smooth, and consider two cases:

Theorem 15.1 (stationary phase method) 1. If supp(f) contains no
critical points of S, then

I(�) = O(�N ) ∀ N as �→ 0.

2. If supp(f) contains precisely one non-degenerate critical point of S, i.e.
∇S(φ̄) = 0 and the matrix of second derivatives S′′(φ̄) is invertible, then
as �→ 0,
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I(�) = (2π�)d/2| detS′′(φ̄)|−1/2ei
π
4 sgn(S′′(φ̄))f(φ̄)eiS(φ̄)/�[1 +O(�)]

(15.2)
where for a matrix A, sgn(A) denotes the number of positive eigenvalues
minus the number of negative ones.

Proof. To prove the first statement, define the operator

L :=
�

i

∇S(φ)
|∇S(φ)|2 · ∇.

Note that LeiS(φ)/� = eiS(φ)/�, and that for smooth functions f and g,
∫

Rd

fLgdx =
∫

Rd

(LT f)g

where

LT f := −�

i
∇ ·

[ ∇S
|∇S|2 f

]

.

So for any positive integer N ,

|I(�)| = |
∫

Rd

f(φ)LNeiS(φ)/�dφ| = |
∫

Rd

[(LT )Nf(φ)]eiS(φ)/�dφ|

≤ (const)�N ,

establishing the first statement.
Turning to the second statement, suppose supp(f) contains only one criti-

cal point, φ̄ of S, which is non-degenerate. We begin with a formal calculation,
and then explain how to make it rigorous. Writing φ− φ̄ =

√
�α, we obtain

S(φ)/� = S(φ̄)/� +
1
2
αTS′′(φ̄)α+O(

√
�|α|3). (15.3)

So
I(�) = �

d/2eiS(φ̄)/�

∫

Rd

f(φ̄+
√

�α)eiα
TS′′(φ̄)α/2eiO(

√
�|α|3)dα.

Now we use the formula

lim
R→∞

∫

|α|≤R
eiα

TS′′(φ̄)α/2dα = (2πi)d/2[detS′′(φ̄)]−1/2. (15.4)

We can derive this expression by analytically continuing
∫
e−aα

TS′′α from
Re(a) > 0, though the integral is not absolutely convergent. Some care is
needed in choosing the right branch of the square root function. An unam-
biguous expression for the right hand side is

(2π)d/2| detS′′(φ̄)|−1/2eiπ·sgn(S′′(φ̄))/4
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Using f(φ̄ +
√

�α) = f(φ̄) + O(
√

�), yields (15.2). Though this computation
shows what is going on, it is not rigorous, since the integral in the remainder
diverges.

A more careful computation is based on the Fourier transform, and pro-
ceeds as follows. First, as a replacement for (15.3), we use the fact, known
as the Morse Lemma, that there is a change of variables which makes S(φ)
quadratic near φ̄. More precisely, there exists a smooth function Φ : R

d → R
d

with Φ(φ̄) = φ̄, DΦ(φ̄) = 1, and

S(Φ(φ)) = S(φ̄) +
1
2
(φ− φ̄)TS′′(φ̄)(φ − φ̄)

for φ in a sufficiently small ball, Bε(φ̄), around φ̄. A proof of this can be found
in [Ev], for example. By the first statement of Theorem 15.1, we can assume
that (supp f) ⊂ Bδ(φ̄) with δ small enough so that Φ−1(Bδ(φ̄)) ⊂ Bε(φ̄). Then
we have

I(�) =
∫

Bδ(φ̄)

f(φ)eiS(φ)/�dφ =
∫

Φ−1(Bδ(φ̄))

f(Φ(y))eiS(Φ(y)/�)| detDΦ(y)|dy

= eiS(φ̄)/�

∫

Φ−1(Bδ(φ̄))

ei(y−φ̄)TS′′(φ̄)(y−φ̄)/(2�)f(Φ(y))| detDΦ(y)|dy

= eiS(φ̄)/�

∫

Φ−1(Bδ(0))

eix
TS′′(φ̄)x/(2�)f(Φ(φ̄+ x))| detDΦ(φ̄+ x)|dx.

Now we use the Plancherel formula
∫

Rd

a(x)b(x)dx =
∫

Rd

â(ξ)b̂(−ξ)dξ

together with the fact (see Section 23.14) that for an invertible symmetric
matrix A,

(eix
TAx/(2�))ˆ(ξ) = �

d/2| detA|−1/2eiπsgn(A)/4e−i�ξ
TA−1ξ/2,

to obtain

I(�)= �
d/2| detS′′(φ̄)|−1/2eiπsgn(S′′(φ̄)/4eiS(φ̄)/�

∫

Rd

e−i�ξ
T (S′′(φ̄))−1ξ/2b̂(−ξ)dξ

= �
d/2| detS′′(φ̄)|−1/2eiπsgn(S′′(φ̄)/4eiS(φ̄)/�

∫

Rd

(1 +O(�|ξ|2))b̂(−ξ)dξ,

where b(x) := f(Φ(φ̄ + x))| detDΦ(φ̄ + x)|χ|x|≤δ. Finally, observing that
∫

Rd
b̂(−ξ)dξ = (2π)d/2b(0) = (2π)d/2f(φ̄), we arrive at the second statement

of Theorem 15.1.

Now we would like to formally apply the method outlined above to the
infinite-dimensional integral (14.3). To this end, we simply plug the path in-
tegral expression (14.3) into the stationary phase expansion formula (15.2).
The result is
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e−iHt/�(y, x) =
∫

Px,y,t

eiS(φ)/�Dφ

=
∑

φ̄ cp of S
Mφ̄(detS′′(φ̄))−1/2eiS(φ̄)/�(1 +O(

√
�))

(15.5)

where Mφ̄ is a normalization constant, and the sum is taken over all critical
points, φ̄, of the action S(φ), going from x to y in time t. Critical points and
Hessians of functionals are discussed in the mathematical supplement, Chap-
ter 24. Note that the Hessian S′′(φ̄) is a differential operator. The problems
of how to define and compute determinants of Hessians are discussed in the
mathematical supplement Section 23.12.

We will determine M := Mφ̄, assuming it is independent of φ̄ and V . For
V = 0, we know the kernel of the propagator explicitly (see (2.22)):

e−iH0t/�(y, x) = (2πi�t/m)−d/2eim|x−y|2/2�t.

So in particular, e−iH0t/�(x, x) = (2πi�t/m)−d/2. Now the right-hand side of
the expression (15.5) for e−itH0/�(x, y) is (to leading order in �)

M(detS′′
0 (φ0))−1/2eiS0(φ0)/�

where the unique critical point is φ0(s) = x + (y − x)s/t. Thus S0(φ0) =
m|y−x|2/2t, and S′′

0 (φ0) = −m∂2
s , an operator acting on functions satisfying

Dirichlet boundary conditions.
Comparison thus gives us

M = (det(−m∂2
s ))

1/2(2πi�t/m)−d/2

and therefore

e−iHt/�(y, x) =
∑

φ̄ cp S

(
2πit�
m

)−d/2 (
det(−m∂2

s )
detS′′(φ̄)

)1/2

eiS(φ̄)/�(1 +O(
√

�))

(15.6)
as �→ 0. This is precisely the quasi-classical expression we were looking for.

We now give a “semi-rigorous” derivation of this expression. We assume
for simplicity that S has only one critical point, φ̄, going from x to y in
time t. Let {ξj}∞j=1 be an orthonormal basis of eigenfunctions of S′′(φ̄) acting
on L2([0, t]) with zero boundary conditions (the eigenfunctions of such an
operator are complete – see the remark in Section 23.11). So S′′(φ̄)ξj = μjξj
for eigenvalues μj . For the n-th order finite dimensional approximation to
the space of paths in the path integral, we take the n-dimensional space of
functions of the form

φ(n) = φ̄+
n∑

j=1

ajξj

with aj ∈ R. Expanding S(φ(n)) around φ̄ gives
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S(φ(n)) = S(φ̄) +
1
2
〈ξ, S′′(φ̄)ξ〉+O(‖ξ‖3)

where

ξ := φ(n) − φ̄ =
n∑

j=1

ajξj .

We also have

Dφ(n) = Cn

n∏

j=1

daj

(Cn some constant). Now using the fact that

〈ξ, S′′(φ̄)ξ〉 =
n∑

i,j=1

aiaj〈ξi, S′′(φ̄)ξj〉 =
n∑

j=1

μja
2
j ,

we have
∫

φ(n):x→y

eiS(φ(n))/�Dφ(n) = eiS(φ̄)/�

∫
ei

∑
μja

2
j/2�(1 +O(a3/�))Cndna

(as in Section 15.1, the integrals here are not absolutely convergent). Setting
bj := aj/

√
� this becomes

�
n/2Cne

iS(φ̄)/�

∫
ei

∑
μjb

2
j/2(1 +O(b3

√
�))dnb

which is (see (15.4))

Cn(2πi�)n/2(det(S′′(φ̄)|Fn))−1/2eiS(φ̄)/�(1 +O(
√

�))

where Fn := {∑n
1 ajξj} so that det(S′′(φ̄)|Fn) =

∏n
1 μj . To avoid determining

the constants Cn arising in the “measure” Dφ, we compare again with the
free (V = 0) propagator. Taking a ratio gives us

e−iHt/�(y, x)
(2πi�t

m )−d/2
= lim
n→∞

Cn(2πi�)n/2(det(S′′(φ̄)|Fn))−1/2eiS(φ̄)/�

Cn(2πi�)n/2(det(−m∂2
s |Fn))−1/2

(1 +O(
√

�))

which reproduces (15.6).

15.2 Quasi-classical Asymptotics of Green’s Function

Definition 15.2 Green’s function GA(x, y, z) of an operator A is (A −
z)−1(y, x), the integral kernel of the resolvent (A− z)−1.
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For A self-adjoint,

(A− z)−1 =
i

�

∫ ∞

0

e−iAt/�+izt/�dt

converges if Im(z) > 0. Taking z = E + iε (E real, ε > 0 small), and letting
ε→ 0, we define

(A− E − i0)−1(y, x) =
i

�

∫ ∞

0

e−iAt/�(y, x)eiEt/�dt.

Note that the −i0 prescription is essential only for E ∈ σess(A), while for
E ∈ R\σess(A), it gives the same result as the +i0 prescription. Here we are
interested in the second case, and so we drop the −i0 from the notation.

The above formula, together with our quasi-classical expression (15.6) for
the propagator e−iHt/�, yields in the leading order as �→ 0

(H − E)−1(y, x) =
i

�

∫ ∞

0

∑

φ̄ cp S

Kφ̄e
i(S(φ̄)+Et)/�dt

where the sum is taken over the critical paths, φ̄, from x to y in time t, and

Kφ̄ :=
( m

2πit�

)d/2 (
det(−m∂2

s )
detS′′(φ̄)

)1/2

.

We would like to use the stationary phase approximation again, but this time
in the variable t. Denote by t̄ = t̄(x, y, E) the critical points of the phase
S(φ̄) + Et. They satisfy the equation

∂S(φ̄)/∂t = −E.
The path ωE := φ̄|t=t̄ is a classical path at energy E (see Lemma 15.13 of
Section 15.5). Introduce the notation S0(x, y, t) := S(φ̄) for a classical path
going from x to y in time t. Then the stationary phase formula gives (in the
leading order as �→ 0)

(H − E)−1(y, x) =
i

�

∑

ωE

D1/2
ωE e

iWωE
/�, (15.7)

where the sum is taken over classical paths going from x to y at energy E.
Here we have used the notation D1/2

ωE := KωE (2πi�)1/2(∂2S0/∂t
2)−1/2|t=t̄ and

we have defined WωE (x, y, E) := (S0(x, y, t)+Et)|t=t̄ (so WωE is the Legendre
transform of S0 in the variable t).

Lemma 15.3

DωE =
(

1
2πi�

∂2S0

∂t2

)d−1

det
[
∂2WωE

∂x∂y

∂2WωE

∂E2
− ∂2WωE

∂x∂E

∂2WωE

∂y∂E

]

. (15.8)
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Proof. We just sketch the proof. The first step is to establish

det(−m∂2
s)

det(S′′(ω))
=

(
−m
t

)−d
det

(
∂2S0

∂x∂y

)

(15.9)

(we drop the subscript E for ease of notation). To see this, we use the fact
that if for an operator A we denote by JA the d × d matrix solving AJ = 0
(the Jacobi equation) with J(0) = 0 and J̇(0) = 1, then (see (23.45))

det(−m∂2
s )

det(S′′(ω))
=

detJ−m∂2
s
(t)

detJS′′(ω)(t)
.

Next, we use

− 1
m
JS′′(ω)(t) =

(
∂2S0

∂x∂y

)−1

(Equation (15.13) of Section 15.5), and for the free classical path φ0 = x +
(y − x)(s/t),

− 1
m
J−m∂2

s
(t) =

(
∂2S(φ0)
∂x∂y

)−1

= −
(m
t

)−1

1

to arrive at (15.9).
We can then show that

det
(
∂2S0

∂x∂y

) (−∂2S0

∂t2

)−d∣∣
∣
∣
∣
t=t̄

equals the determinant on the right hand side in equation (15.8) (see the
appendix to this section for details). �

We will show in Section 15.5 (see Lemma 15.14) that the function WωE

(the action at energy E) satisfies the Hamilton-Jacobi equation

h(x,−∂WωE

∂x
) = E.

Differentiating this equation with respect to y gives

∂h

∂k

∂2WωE

∂x∂y
= 0,

and we see that the matrix (∂2WωE/∂x∂y) has a zero-eigenvalue. Thus its
determinant is zero. So if d = 1, (15.8) yields

DωE = −∂
2WωE

∂x∂E

∂2WωE

∂y∂E
(d = 1). (15.10)

Formula (15.7), together with (15.8) or (15.10), is our desired quasi-classical
expression for Green’s function (H − E)−1(y, x).
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15.2.1 Appendix

Proposition 15.4 At t = t̄,

det
(
∂2S0

∂x∂y

)

=
(−∂2S0

∂t2

)d
det

[
∂2WωE

∂x∂y

∂2WωE

∂E2
− ∂2WωE

∂x∂E

∂2WωE

∂y∂E

]

.

Proof. We drop the subscripts from S0 and WωE to simplify the notation.
Differentiating W = S + Et|t=t̄ with respect to x, we obtain

∂W

∂x
=
∂S

∂x
+
∂S

∂t

∂t

∂x
+ E

∂t

∂x
,

which due to the relation ∂S/∂t = −E gives

∂W

∂x
=
∂S

∂x
.

Similarly,
∂W

∂y
=
∂S

∂y
and

∂W

∂E
= t.

This last equation, together with ∂S/∂t = −E yields

∂2W

∂E2
=

∂t

∂E
= −

(
∂2S

∂t2

)−1

.

Furthermore,

∂2S

∂x∂y
=
∂2W

∂x∂y
+

∂2W

∂x∂E

∂E

∂t

∂t

∂y

=
∂2S

∂t2

[

− ∂
2W

∂x∂y

∂2W

∂E2
+

∂2W

∂x∂E

∂2W

∂E∂y

]

and the result follows. �

15.3 Bohr-Sommerfeld Semi-classical Quantization

In this section we derive a semi-classical expression for the eigenvalues (energy
levels) of the Schrödinger operator H = − �

2

2mΔ + V . We use the Green’s
function expansion (15.7) from the last chapter. For simplicity, we will assume
d = 1.

Application of the expression (15.7) requires a study of the classical paths
at fixed energy. Consider the trajectories from x to y at energy E. We can
write them (using informal notation) as

φn = φxy ± nα
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where α is a periodic trajectory (from y to y) of minimal period, at the energy
E, while φxy is one of the four “primitive” paths from x to y at energy E,
sketched in Fig. 15.1.

E

V(x) V(x)

x y x y

E

Fig. 15.1. Primitive paths at energy E.

All these paths are treated in the same way, so we consider only one, say
the shortest one. The space time picture of φn in this case is sketched in
Fig. 15.2.

φ ny

t

x

Fig. 15.2. Turning points of φn.

For this path we compute

Wφn = Wφ + nI

where φ = φxy and

I =
∫ t

0

L(α, α̇)ds+ Et.

But α is a critical path so its energy is conserved (see Lemma 4.3)

m

2
α̇2 + V (α) = E

and so

I =
∫ t

0

{mα̇2 − E}+ Et =
∫

α

k · dx,

where k(s) = mα̇(s) and dx = α̇(s)ds.



15.4 Quasi-classical Asymptotics for the Ground State Energy 165

Let ω be a classical path at energy E, and let us determine Dω. We will
show later (see (15.18) and Lemma 15.9) that

∂Wω

∂x
=
∂S0

∂x
|t=t̄ = −k(0)|t=t̄ = ∓

√
2m(E − V (x))

and
∂Wω

∂y
=
∂S0

∂y
|t=t̄ = k(t)|t=t̄ = ±

√
2m(E − V (y)).

Differentiating these relations with respect to E and using (15.10), we obtain

Dω = − m2

k(x)k(y)
.

At a turning point x0, k(x0) = 0 and k changes sign (we think about k(x) as
a multi-valued function, or a function on the Riemann surface of

√
z, so at a

turning point
√
k(x) crosses to a different sheet of the Riemann surface).

Because k changes sign at each of the two turning points of the periodic
trajectory, we conclude that

D
1/2
φn

= D
1/2
φ (−1)n.

So our semi-classical expression (15.7) for Green’s function GE(y, x) is

GE(y, x) =
∞∑

n=0

N exp[i(Wφ/� + n

[
1
�

∫

α

k · dx− π
]

)]

= NeiWφ/�
1

1− ei(
∫
α
k·dx/�−π)

(N is a constant). We conclude that as �→ 0, GE(y, x) has poles (and hence
H has eigenvalues) when

∫

α

k · dx = 2π�(j + 1/2)

for an integer j. This is the Bohr-Sommerfeld semi-classical quantization con-
dition (for d = 1). It is an expression for the quantum energy levels (the
energy E appears in the left hand side through the periodic path α at energy
E), which uses purely classical data!

Problem 15.5 Show that for the harmonic oscillator potential, the Bohr-
Sommerfeld condition gives all of the energy levels exactly.

15.4 Quasi-classical Asymptotics for the Ground State
Energy

Here we derive a quasi-classical expression for the ground state energy
(the lowest eigenvalue) of the Schrödinger operator H = − �

2

2mΔ+V when
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V (x)→∞ as |x| → ∞ (as fast as some power of |x|, say); i.e., V (x) is a
confining potential.

We first define a couple of quantities which are familiar from statistical
mechanics (see Chapter 17 for details and discussions).

Definition 15.6 The partition function, Z(β), at inverse temperature β > 0
is

Z(β) := tr e−βH

(the trace is well-defined since σ(H) = {En}∞0 with En →∞ sufficiently fast).

Definition 15.7 The free energy, F , is

F (β) := − 1
β

lnZ(β).

The free energy is a useful quantity for us here because of the following
connection with the ground state energy of the Schrödinger operator H :

lim
β→∞

F (β) = E0.

This is the Feynman-Kac theorem of Section 17.2.
Our goal is to find the semi-classical asymptotics for E0 by deriving an

asymptotic expression for Z(β) from a path integral.
As we have seen (Problem 14.1), the path integral expression for Z(β) is

Z(τ/�) =
∫

φ a path of period τ

e−Se(φ)/�Dφ (15.11)

where Se(φ) =
∫ β
0
{m

2
|φ̇|2 +V (φ)} (note that this is not the usual action - the

potential enters with the opposite sign).

Remark 15.8 The path integral appearing in (15.11) can be rigorously de-
fined. We refer the reader to [Sim3,GJ,RSII] for details.

Mimicking the procedure we used for the Schrödinger propagator (i.e., the
stationary phase method, which in the present context is called the Laplace
method), we see that the quasi-classical expression for Z(τ/�) is

Z(τ/�) ≈
∑

minimal paths ω

NB1/2
ω e−Se(ω)/� (15.12)

(N a constant) where by a minimal path, we mean a path minimizing Se, and
where

Bω :=
detS′′

0 (ω0)
detS′′

e (ω)

with S0(φ) =
∫ τ
0

(m/2)|φ̇|2. A critical path for Se is a classical path for the
inverted potential −V . We specialize to d = 1 for simplicity, and we assume V
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has only one minimum, at x0. Then the minimal path is ω(s) ≡ x0 (a constant
path), and

S′′
e (ω) = −m∂2

s + V ′′(x0).

Because x0 minimizes V , V ′′(x0) > 0 and we write V ′′(x0) = mω2. Then using
the method (23.45) of computing ratios of determinants (see Section 23.12
below), we easily obtain

Bω =
2ωτ

eωτ − e−ωτ .

Also, Se(ω) = τV (x0). In this way, we arrive at the leading-order expression

F (τ/�) ≈ V (x0) + �ω/2 +O(1/τ)

as � → 0. Letting β = τ/� → ∞ and using the Feynman-Kac formula, we
obtain

E0 ≈ V (x0) +
1
2

�ω

which is the desired asymptotic (as � → 0) expression for the ground state
energy. It is equal to the classical ground state energy, V (x0), plus the ground
state of the harmonic oscillator with frequency

√
V ′′(x0)/m. This suggests

that the low energy excitation spectrum of a particle in the potential V (x) is
the low energy spectrum of this harmonic oscillator.

15.5 Mathematical Supplement: The Action of the
Critical Path

In this section we consider the situation of Example 24.1 no. 6, and its special
case, Example 24.1 no. 5. Thus we set

X = {φ ∈ C1([0, t]; Rm) | φ(0) = x, φ(t) = y},

and

S(φ) =
∫ t

0

L(φ(s), φ̇(s))ds.

Suppose φ̄ is a critical path for S with φ̄(0) = x and φ̄(t) = y. We will
denote the action of φ̄ by S0(x, y, t) := S(φ̄) (the action from x to y in time
t).

Recall that the momentum at time s, is k(s) := (∂L/∂φ̇)(φ̄(s), ˙̄φ(s)).

Lemma 15.9 We have

∂S0

∂x
= −k(0) and

∂S0

∂y
= k(t).
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Proof. Again, we specialize to L = m|φ̇|2/2− V (φ). Using the chain rule and
integration by parts, we find

∂S(φ̄)/∂x =
∫ t

0

{m ˙̄φ · ∂ ˙̄φ/∂x−∇V (φ̄) · ∂φ̄/∂x}ds

=
∫ t

0

{(−m ¨̄φ−∇V (φ̄)) · ∂φ̄/∂x}+m ˙̄φ · ∂φ̄/∂x|t0

which, since φ̄ is a critical point, (∂φ̄/∂x)(t) = 0, and (∂φ̄/∂x)(0) = 1, is
just −m ˙̄φ(0) = −k(0), as claimed. The corresponding statement for ∂S0/∂y
is proved in the same way, using (∂φ̄/∂y)(0) = 0, and (∂φ̄/∂y)(t) = 1. �

This lemma implies ∂k(0)/∂y = −∂2S0(x, y, t)/∂x∂y. On the other hand,
for L = m

2
|φ̇|2−V (φ), ∂k(0)/∂y = (∂y/∂k(0))−1 = mJ−1(t) (as m(∂y/∂k(0))

is the derivative of the classical path φ̄ at t with respect to the initial velocity
k(0)/m = ˙̄φ(0)). This gives

∂2S0(x, y, t)
∂x∂y

= −mJ−1(t) (15.13)

which establishes the following result:

Proposition 15.10 If y is a conjugate point to x then det(∂
2S0(x,y,t)
∂x∂y ) =∞.

The following exercise illustrates this result for the example of the classical
harmonic oscillator.

Problem 15.11 Consider the one-dimensional harmonic oscillator, whose
Lagrangian is L = m

2 φ̇
2 − mω2

2 φ2. Compute

S0(x, y, t) =
ω

2 sin(ωt)
[(x2 + y2) cos(ωt)− 2xy]

and so compute
∂2S0(x, y, t)/∂x∂y = − ω

sinωt
.

Note that this is infinite for t = nπ/ω for all integers n. Thus the points
φ(nπ/ω) are conjugate to φ(0).

Lemma 15.12 (Hamilton-Jacobi equation) The action S0(x, y, t) satis-
fies the Hamilton-Jacobi equation

∂S0/∂t = −h(y, ∂S0/∂y) (15.14)

where h is the classical Hamiltonian function associated with L.

Proof. The integrands below depend on s (as well as the parameters x,y, and
t), and ˙̄φ denotes ∂φ̄/∂s. Since S0 = S(φ̄) =

∫ t
0 L(φ̄, ˙̄φ)ds, we have
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∂S(φ̄)/∂t = L(φ̄, ˙̄φ)|s=t +
∫ t

0

(∂L/∂φ̄ · ∂φ̄/∂t+ ∂L/∂ ˙̄φ · ∂ ˙̄φ/∂t)ds

= L(φ̄, ˙̄φ)|s=t + ∂L/∂ ˙̄φ · ∂φ̄/∂t|s=ts=0

+
∫ t

0

(∂L/∂φ̄− d/ds(∂L/∂ ˙̄φ)) · ∂φ̄/∂t.

Since φ̄(s) = y + ˙̄φ(t)(s − t) +O((s− t)2) (here we used φ̄(t) = y), we have

∂φ̄

∂t
|s=t = − ˙̄φ(t).

Using this, the fact that φ̄ is a critical point of S, and ∂φ̄/∂t|s=0 = 0, we find

∂S(φ̄)/∂t = −((∂L/∂ ˙̄φ) · ˙̄φ− L(φ̄, ˙̄φ))|s=t
= −h(φ̄, ∂L/∂ ˙̄φ)|s=t.

Since φ̄|s=t = y and, by Lemma 15.9, (∂L/∂ ˙̄φ)|s=t = ∂S0/∂y, the result
follows. �

We want to pass from a time-dependent to a time-independent picture of
classical motion. We perform a Legendre transform on the function S0(x, y, t)
to obtain the function Wφ̄(x, y, E) via

Wφ̄(x, y, E) = (S0(x, y, t) + Et)|t:∂S0/∂t=−E . (15.15)

We denote by t̄ = t̄(x, y, E), solutions of

∂S0/∂t|t=t̄ = −E. (15.16)

There may be many such solutions, so in the notation Wφ̄, we record the
classical path φ̄ we are concerned with (for which φ̄(0) = x, φ̄(t̄) = y).

Note that by the definition of the Hamilton function, ∂L
∂φ̇
· φ̇ − L =

h(φ, ∂L
∂φ̇

), and from the energy conservation law (see Lemma 4.3 of Section

4.4)
(
∂L
∂φ̇
· φ̇− L

)
|φ=φ̄ is constant, and therefore

(
∂L

∂φ̇
· φ̇− L

)

|φ=φ̄ = E.

By (15.15), Wφ̄(x, y, E) =
∫ t̄
0
(L(φ̄(s), ˙̄φ(s)) + E)ds and therefore we have

Wφ̄(x, y, E) =
∫ t

0

∂L

∂ ˙̄φ
· ˙̄φds =

∫

φ̄

k · dx,

where
∫
φ̄ k · dx :=

∫ t
0 k(s) · ˙̄φ(s)ds and, recall, k(s) = ∂L/∂φ̇|φ=φ̄.
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Lemma 15.13 φ̄|t=t̄ is a classical path at energy E.

Proof. By the Hamilton-Jacobi equation (15.14) and the conservation of en-
ergy (Lemma 4.3), φ̄|t=t̄ is a classical path with energy −∂S0(x, y, t)/∂t|t=t̄,
which, by (15.16), is just E. �

Lemma 15.14 Wφ̄ satisfies the Hamilton-Jacobi equation

h(x,−∂Wφ̄/∂x) = E. (15.17)

Proof. Using (15.16) and Lemma 15.9, we compute

∂Wφ̄

∂x
=
∂S0

∂x
|t=t̄ + (

∂S0

∂t
+ E)|t=t̄ ∂t̄

∂x
=
∂S0

∂x
|t=t̄ = −k(0). (15.18)

So by conservation of energy, E = h(x, k(0)) = h(x,−∂Wφ̄/∂x). �

15.6 Appendix: Connection to Geodesics

The next theorem gives a geometric reinterpretation of classical motion.
We consider a classical particle in R

d with a potential V (x). Recall the
notation f(x)+ := max(f(x), 0).

Theorem 15.15 (Jacobi theorem) The classical trajectory of a particle at
an energy E is a geodesic in the Riemannian metric

〈u, v〉x = 2(E − V (x))+u · v

(where u · v is the inner product in R
n) on the set {x ∈ R

n|V (x) ≤ E} (the
classically allowed region).

Proof. By the conservation of energy (Lemma 4.3), a classical path φ̄ has a
fixed energy E = m| ˙̄φ|2/2 + V (φ̄). Hence φ̄ is a critical point of the action
S(φ) =

∫
(m|φ̇|2/2−V (φ))ds among paths in M := {φ | m|φ̇|2/2+V (φ) ≡ E}.

Using the relation m|φ̇|2/2 + V (φ) = E, we can write m|φ̇|2/2− V (φ) as

m|φ̇|2/2− V (φ) = m|φ̇|2 = m
√

2(E − V (φ))/m|φ̇|.

Hence φ̄ is a critical point of the functional

L(φ) :=
∫
m|φ̇|

√
2(E − V (φ))/mds

on M . This functional gives the length of the path in the metric above.
On the other hand, we can re-parameterize any path with V (φ) < E so

that it satisfies m|φ̇|2/2 + V (φ) = E. Indeed, replacing φ(s) with φ(λ(s)), we
note |φ̇(λ)|2 = (λ̇(s))2|φ̇(λ(s))|2. We must solve
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(λ̇(s))2 =
2
m

E − V (φ(λ(s)))
|φ̇(λ(s))|2

which we can re-write as
∫ s

0

|φ̇(λ(s′))|λ̇(s′)
√
E − V (φ(λ(s′)))

ds′ =

√
2
m
s

which can be solved. Since the functional L(φ) is invariant under reparame-
terizations (if λ = α(s), α′ > 0, then |φ̇(s)|ds = |φ̇(λ)|∂λ

∂s
∂s
∂λ
dλ = |φ̇(λ)|dλ),

if φ̃ is a critical point of L(φ), then so are different reparameterizations of φ̃,
and in particular the one, φ̄, with the energy E. This φ̄ is also a critical point
of L(φ) on M , and, by the above, a critical point of S(φ) at energy E. Thus
classical paths are geodesics up to re-parameterization (so they coincide as
curves). �

Problem 15.16 Check that the Euler-Lagrange equation for critical points
of L(φ) on M yields Newton’s equation.
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Resonances

The notion of a resonance is a key notion in quantum physics. It refers to a
metastable state – i.e., to a state which behaves like a stationary (bound)
state for a long time interval, but which eventually breaks up. In other words,
the resonances are states of the essential spectrum (i.e. scattering states),
which for a long time behave as if they were bound states. In fact, the notion
of a bound state is an idealization: most of the states which are (taken to
be) bound states in certain models, turn out to be resonance states in a more
realistic description of the system.

In this chapter, we sketch briefly the mathematical theory of resonance
states and apply it to the analysis of the important physical phenomenon
of tunneling, on which we illustrate some of the mathematics and physics
involved. In Chapter 21, we apply the resonance theory to the problem of
radiation.

16.1 Complex Deformation and Resonances

In this section we introduce the powerful tool of complex deformations, which
allows for an efficient way to define resonances. We begin with a definition.

Definition 16.1 A family of operators, H(θ), for θ in a complex disk {|θ| <
ε}, will be called a complex deformation of H if H(0) = H , H(θ) is analytic
in {|θ| < ε}, and H(θ) is an analytic continuation of the family

H(θ) = U(θ)−1HU(θ) (16.1)

for θ ∈ R, where U(θ), θ ∈ R, is a one-parameter unitary group, leaving the
domain of H invariant.

(We say that the family H(θ) of unbounded operators is analytic iff all
H(θ) have the same domain, D, for every ψ ∈ D, the family of vectors H(θ)ψ
is analytic and the family (H(θ) − z)−1 of bounded operators is analytic, as
long as the spectrum of H(θ) stays away from z.)
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For Schrödinger operators, H := − �
2

2mΔ+V (x), acting on L2(Rd), the choice
of the family H(θ) depends on analytic properties of the potentials V (x). The
simplest and most important choice is provided by the notion of dilatation
analyticity. Let U(θ) be the one-parameter group of dilatations:

U(θ) : ψ(x) �→ edθ/2ψ(eθx)

for ψ ∈ L2(Rd). This is a unitary implementation of the rescaling x �→ eθx for
θ ∈ R and is the key example of a one-parameter unitary group U(θ) used for
complex deformation. We compute

U(θ)−1HU(θ) = e−2θ(− �
2

2m
Δ) + V (eθx). (16.2)

Assume the family θ → V (eθx) has an analytic continuation into a complex
disk {|θ| < ε} as operators from the Sobolev space H2(Rd) to L2(Rd) (the
corresponding potentials are called dilatation analytic). Then the family on the
r.h.s. of (16.2) is analytic in {|θ| < ε} and therefore is a complex deformation,
H(θ), of H .

As an example of the above procedure we consider the complex deforma-
tion of the hydrogen atom Hamiltonian Hhydr := − 1

2mΔ− α
|x| :

Hhydrθ = e−2θ(− �
2

2m
Δ)− e−θ α|x| .

Let ehydr
j be the eigenvalues of the hydrogen atom. Then the spectrum of this

deformation is
σ(Hhydrθ) = {ehydr

j } ∪ e−2 Im θ[0,∞).
In general, one can show that:
1) The real eigenvalues of Hθ, Imθ > 0, coincide with eigenvalues of H

and complex eigenvalues of Hθ, Imθ > 0, lie in the complex half-plane C
−;

2) The complex eigenvalues of Hθ, Imθ > 0, are locally independent of θ.
The typical spectrum of Hθ, Imθ > 0, is shown in Fig. 16.1

Spec H

Spec Hq

θ

Fig. 16.1. Typical spectrum of Hθ.

We call complex eigenvalues of Hθ, with Imθ > 0, the resonances of H .
Often resonances arise as a result of perturbation of eigenvalues embedded

into the essential (continuous) spectrum; that is, when the operator H is of
the formH = H0+κW , whereH0 is a self-adjoint operator with an eigenvalue
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λ0 embedded in its essential spectrum, W is a symmetric operator and κ is a
small real parameter (coupling constant). This happens, for example, for an
atom in a constant electric field (the Stark effect).

Another example is the problem of time-periodic perturbations, we con-
sidered in Section 11.3. There the isolated eigenvalues Em of the unperturbed
operator H0 lead to the eigenvalues, Emn, of the unperturbed Bloch-Floquet
Hamiltonian K0 embedded into the essential spectrum of K0. The computa-
tions of Section 11.3 suggest that they turn into resonance eigenvalues, Eκmn,
of the perturbed operator, Kκ. (In Section 11.3 we considered only the case
of n = 0.) This can be proved rigorously by using the complex deformation
theory above, which allows also to derive the expansions (11.24) and (11.27).
We explain this briefly. Apply the complex deformation with the dilatation
group to the Bloch-Floquet Hamiltonian Kκ to obtain, as in (16.2),

U(θ)−1KκU(θ) := Hκθ(t)− i� ∂
∂t

on L2(Rn × ST ).

Here, for θ ∈ R, Hκθ := H0θ+κWθ(t), H0θ = −e−2θ �
2

2mΔ+V (eθx), Wθ(t) :=
W (eθx, t). If the potentials V (x) and W (x, t) are dilatation analytic in the
sense of the definition above, then the family on the r.h.s. which we denote
Kκθ can be continued analytically into a neighbourhood {|θ| < ε}. Again, the
spectrum of K0θ can be easily computed:

σess(K0θ) =
∞⋃

n=−∞
�ωn+ e−2 Im θ[0,∞)

plus the collection of the eigenvalues Emn = Em + �ωn, n ∈ Z, m = 0, 1, . . . ,
where, recall, ω = 2π/T, T is the time-period of W , and Em are the eigenval-
ues of H0. Now, barring an accidental degeneracy (i.e. Emn = �ωn′ for some
m,n, n′), the eigenvalues Emn = Em+�ωn are isolated and have finite multi-
plicity. The application of the Feshbach-Schur map becomes a standard affair
and gives, for κ sufficiently small, the eigenvalues, Eκmn of Kκθ emerging from
Emn. (Here we assumed for simplicity that the eigenvalues Em are of multi-
plicity one.) These eigenvalues are, in general, complex, and, as we saw above,
are independent of θ and in general have negative imaginary parts, ImEκ,j .
They can be computed by the perturbation expansion (11.16) - (11.17) to give
(11.24) and (11.27).

Resonances as poles. We know from Section 23.9 of the mathematical
supplement that the resolvent (H − z)−1 of the Hamiltonian H is analytic
away from its spectrum. One can show that H has an isolated eigenvalue at
a point z0 iff matrix elements of the resolvent (H − z)−1 has a pole at z0.
Similar to eigenvalues, we would like to characterize the resonances in terms
of poles of matrix elements of the resolvent (H − z)−1. To this end we have
to go beyond the spectral analysis of H . Let Ψθ = UθΨ , etc., for θ ∈ R and
z ∈ C

+. Use the unitarity of Uθ for real θ, to obtain
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〈Ψ, (H − z)−1Φ〉 = 〈Ψθ̄, (Hθ − z)−1Φθ〉. (16.3)

Assume now that for a dense set of Ψ ’s and Φ’s (say, D, defined below), Ψθ and
Φθ have analytic continuations into a complex neighbourhood of θ = 0, and
continue the r.h.s of (16.3) analytically, first in θ into the upper half-plane,
and then in z across the continuous spectrum (the Combes argument). This
meromorphic continuation has the following properties:

• The real eigenvalues of Hθ give real poles of the r.h.s. of (16.3) and there-
fore they are the eigenvalues of H .

• The complex eigenvalues of Hθ are poles of the meromorphic continuation
of the l.h.s. of (16.3) across the spectrum of H onto the second Riemann
sheet.

The complex poles manifest themselves physically as bumps in the scattering
cross-section or poles in the scattering matrix.

An example of the dense set D mentioned above is given by

D :=
⋃

a>0

Ran
(
χ|T |≤a

)
. (16.4)

Here T is the self-adjoint generator of the one-parameter group Uθ, θ ∈ R.
(It is not hard to show that it is dense: ∀ψ ∈ H, χ|T |≤aψ → ψ, as a→∞.)

Resonance states as metastable states. While bound states are sta-
tionary solutions of the Schrödinger equation, one expects that resonance
eigenvalues lead to almost stationary, long-living solutions. This is proven,
so far, only for resonances arising from a perturbation of bound states with
eigenvalues embedded into the essential (continuous) spectrum. In this case,
for initial condition ψ0 localized in a small energy interval around the unper-
turbed eigenvalue, λ∗, or a small perturbation of the corresponding eigenfunc-
tion φ∗, one shows that the solutions, ψ = e−iHt/�ψ0, of the time-dependent
Schrödinger equation, i�∂tψ = Hψ, are of the form

ψ = e−iz∗t/�φ∗ +Oloc(t−α) +Ores(κβ), (16.5)

for some z∗ ∈ C
−, z∗ = λ∗ + O(κ), and α > 0 (depending on ψ0). These are

metastable states with resonance eigenvalue z∗ ∈ C
−. Here κ is the perturba-

tion parameter (the coupling constant) and the error term Oloc(t−α) satisfies,
for some ν > 0,

|(1 + |x|)−νOloc(t−α)‖ ≤ Ct−α.

Eqn (16.5) implies that the negative of the imaginary part of the resonance
eigenvalue, −Imz∗, called the resonance width, gives the decay probability per
unit time, and (−Imz∗)−1, can be interpreted as the life-time of the resonance.
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16.2 Tunneling and Resonances

Consider a particle in a potential V (x), of the form shown in Fig. 16.2; i.e.,
V (x) has a local minimum at some point x0, and V (x0) > lim supx→∞ V (x),
for x in some cone, say.

If V (x) → −∞ as x → ∞ (in some cone of directions), then the corre-
sponding Schrödinger operator, H , is not bounded from below.

x

tunnels under barrier

escape to

bound state"
"would be V(x)

Fig. 16.2. Unstable potential.

If the barrier is very thick, then a particle initially located in the well
spends lots of time there, and behaves as if it were a bound state. However,
it eventually tunnels through the barrier (quantum tunneling) and escapes to
infinity. Thus the state of the particle is a scattering state. It is intuitively
reasonable that

1. the energy of the resonance ≈ the energy of a bound state in the well
2. the resonance lifetime is determined by the barrier thickness and height,

and �.

Since the resonances are very close to bound states if the barrier is large or
� is small (there is no tunneling in classical mechanics), we try to mimic our
quasi-classical treatment of the ground state (Section 15.4). But right away
we run into a problem: if V (x)→/ ∞ as x→∞ in some directions, then

Z(β) = Tre−βH =∞.

The paradigm for this problem is the divergence of the integral

Z(λ) =
∫ ∞

0

e−λa
2/2da

for λ ≤ 0. However, we can define this integral by an analytic continuation.
Z(λ) is well-defined for Re(λ) > 0, and it can be continued analytically into
λ ∈ R

− as follows. Move λ from Re(λ) > 0 into Re(λ) ≤ 0, at the same time
deforming the contour of integration in such a way that Re(λa2) > 0 (see
Fig. 16.3).
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λ

Fig. 16.3. Contour deformation.

Of course, in this particular case we know the result:

Z(λ) =
(

2λ
π

)−1/2

= −i
(

2|λ|
π

)−1/2

for λ < 0 (which is purely imaginary!).
There is a powerful method of rotating the contour which is applicable

much beyond the simple integral we consider. It goes as follows. For θ ∈ R,
we change variables via a = e−θb. This gives

Z(λ) = e−θ
∫ ∞

0

e−λe
−2θb2/2db. (16.6)

The integral here is convergent and analytic in θ as long as

Re(λe−2θ) > 0. (16.7)

We continue it analytically in θ and λ, preserving this condition. In particular,
for λ ∈ R

−, we should have π/4 < Im(θ) < 3π/4.
Now observe that the right hand side of (16.6) is independent of θ. Indeed,

it is analytic in θ as long as (16.7) holds, and is independent of Re(θ) since the
latter can be changed without changing the integral, by changing the variable
of integration (b �→ e−θ

′
b, θ′ ∈ R). Thus we have constructed an analytic

continuation of Z(λ) with Re(λ) > 0 into a region with Re(λ) < 0. In fact,
we have continued this function onto the second Riemann sheet!

Finally, we define Z(λ), for λ < 0, by (16.6) with θ obeying (16.7).

16.3 The Free Resonance Energy

With a bit of wisdom gained, we return to the problem of defining the partition
function Z(β) and free energy F (β) (see Definitions 15.6) in the case when
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V (x) →/ ∞, as x→ ∞, in some directions (or more precisely, supx∈Γ V (x) <
∞ for some cone Γ ).

Assume that we can construct a complex deformation, H(θ), of H , such
that

Z(β) = Tre−βH(θ) <∞ (16.8)

for Im(θ) > 0, or more generally for |θ| ≤ ε, Im(θ) > 0. ( Let, for example,
V (x) = −Cx3 for x ≥ 0 and = 0 for x ≤ 0. Then V (eθx) = −Ce3θx3 for
x ≥ 0 and = 0 for x ≤ 0. Take θ = −iπ/3. Then V (eθx) = Cx3 is positive
for x ≥ 0. In fact, it is not a simple matter to define the exponential e−βH(θ)

rigorously – see [SV]. Below we will deal formally with e−βH(θ), assuming it
has all the properties which can be derived from the power series expression
for the exponential.)

Proposition 16.2 If Tre−βH(θ) < ∞ for θ ∈ Ω ⊂ {|θ| < ε}, then Tre−βH(θ)

is independent of θ.

Proof. e−βH(θ) is analytic in {|θ| ≤ ε}, and satisfies

e−βH(θ+s) = U(s)−1e−βH(θ)U(s)

for s ∈ R. This last relation can be derived using the expression H(θ + s) =
U(s)−1H(θ)U(s) (which follows from (16.1)) and a power series expansion of
the exponential (or Equation (23.34)). By cyclicity of the trace (Tr(AB) =
Tr(BA)),

Tre−βH(θ+s) = Tre−βH(θ).

Hence Tre−βH(θ) is independent of Re(θ), and so is independent of θ. �

If there is a complex deformation, H(θ), of H , such that (16.8) holds,
we call Z(β) = tre−βH(θ) an adiabatic partition function for H , and F (β) =
−(1/β) lnZ(β) the resonance free energy for H . We interpret

E(β) := ReF (β)

as the resonance energy at the temperature 1/β,

Γ (β) := − ImF (β)

as the resonance decay probability per unit time (or resonance width) at the
temperature 1/β, and

T (β) :=
1

Γ (β)

as the resonance lifetime at the temperature 1/β. The resonance eigenvalue
for zero temperature is given by

zr = Er − iΓr := lim
β→∞

F (β).
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Usually, | ImZ(β)| << |ReZ(β)|. Hence,

E(β) = ReF (β) ≈ − 1
β

ln(ReZ(β))

and
Γ (β) = − ImF (β) =

1
β

Im ln(1 + i
ImZ(β)
ReZ(β)

) ≈ 1
β

ImZ(β)
ReZ(β)

.

In fact, one can show that for 1
ΔE � t� Γ−1, where ΔE is the average gap

between eigenvalues of H(θ) ( 1
ΔE gives a time scale for H),

e−iHt/�ψ0 = e−izrt/�ψ0 + small

if ψ0 lies near Er in the spectral decomposition of H (see [SV,FP]). Note that

e−izrt/� = e−Γrt/�e−iErt/�

exhibits exponential decay at the (slow) rate Γr. This is consistent with our
picture of a resonance as a metastable state.

Remark 16.3 The example given after Definition 16.1 does not lead to a
unique self-adjoint Schrödinger operator H = − �

2

2mΔ + V (x). Presumably,
F (β) is independent of the self-adjoint extension chosen. For a large class
of self-adjoint Schrödinger operators, Condition (16.8) does not hold, and the
trace has to be regularized (see [SV]). In such a case, the potential can be mod-
ified at infinity in such a way that for the modified potential, Condition (16.8)
holds. We expect that such a modification can be chosen so that it leads to a
sufficiently small error in the tunneling probabilities. In any case, the results
we discuss below (which are obtained by applying another non-rigorous tech-
nique – path integrals) coincide with those given by more involved rigorous
analysis, wherever the latter is possible.

16.4 Instantons

To compute Z(β) for the potential sketched in Fig. 16.2, we proceed as in
the ground state problem; we represent Z(β) formally as a path integral, and
then derive the formal quasiclassical expansion (see (15.12)):

Z(τ/�) =
∑

ω

NB1/2
ω e−Se(ω)/�

(as usual, we ignore the factor (1 + O(
√

�))). The sum is taken over criti-
cal points ω of the “action” Se(φ), of period τ . N is a normalization factor
independent of ω and H , and

Bω =
detS′′

0 (ω0)
detS′′

e (ω)
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where the operators S′′
e (ω) and S′′

0 (ω0) are defined on L2([0, τ ]) with zero
boundary conditions. Now ω is a periodic classical path in imaginary time (or
in the inverted potential −V (x)), with period τ , which we take large (see
Fig. 16.4).

V(x)

x

static

a

"bounce"

Fig. 16.4. Paths in inverted potential.

Two periodic solutions of arbitrarily large period are

ωs(s) ≡ 0

(the subscript “s” for “static”) and

ωb(s) : 0 �→ a �→ 0

(“b” for “bounce”). The solution ωb is called an instanton or “bounce”. Since
ωs is a minimum of V , V ′′(ωs) > 0, and so

S′′
e (ωs) = −∂2

s +Ω2

where Ω2 = V ′′(0). We computed earlier

Bωs =
Ωτ

sinh(Ωτ)
≈ 2Ωτ
eΩτ

for τ large. Moreover, Se(ωs) = 0. We will show later (Section 16.6) that

B1/2
ωb

= −iτS−1/2
b

(
| det⊥ S′′

e (ωb)|
detS′′

0 (ω0)

)−1/2

(16.9)

where
Sb := Se(ωb) =

∫

ωb

k · dx

is the action of the “bounce”, and

det⊥A := det(A|
(Null A)⊥) (16.10)

is the determinant of A restricted to the orthogonal complement of the null
space, NullA, of A. Collecting these results, we have (for large τ)
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E ≈ −�

τ
ln(ReZ) ≈ �Ω

2

and

Γ ≈ −�

τ

ImZ

ReZ
≈ �S

−1/2
b

(
| det⊥ S′′

e (ωb)|
detS′′

e (ωs)

)−1/2

e−Sb/�.

So the probability of decay of the state inside the well, per unit time, is

Γ = (const)e−Sb/�

where Sb = Se(ωb) is the action of the instanton (which equals the length
of the minimal geodesic in the Agmon metric ds2 = (V (x) − E)+dx2). This
explains the sensitivity of the lifetimes of unstable nuclei to small variations
of the parameters (for example, isotopes with different masses can have very
different lifetimes).

Finally, we note that

detS′′
e (ωs) ≈ eΩτ

2Ω
.

16.5 Positive Temperatures

Here we consider quantum tunneling at positive temperatures (T = β−1 > 0).
We use the same approach as above, but let the parameter β be any positive
number. Now we have to consider all three critical paths of period τ = �β
(see Fig. 16.5): ω1 = ωs ≡ xmin, ω2, and ω3 ≡ xmax, where ω2 is a classical
periodic trajectory in the potential −V (x) of period τ = �β.

xa

ω
ω ωV(x)

1

2
3

Fig. 16.5. Paths of period τ .

Since V ′′(xmin) > 0, ω1 is a minimal trajectory. As we will see, ω2 is a
saddle point of Morse index 1 (see Section 24.4). Finally, V ′′(xmax) < 0, and
so ω3 is also a saddle point. For k = 1, 3,

Se(ωk) = V (ωk)τ
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and for k = 2, 3,
Se(ω1) < Se(ωk).

The quasi-classical expression for the decay probability works out to be

Γ = − 1
τBω1

(ImBω2e
−S(ω2)/� + ImBω3e

−S(ω3)/�).

Through which trajectory, ω2 or ω3, does the tunneling take place? ω3

corresponds to a thermally driven escape (due to thermal fluctuations), and
ω2 corresponds to a quantum tunneling escape. If τ is very small (large tem-
perature), the transition occurs through ω3, as only ω3 can have arbitrarily
small period. On the other hand, if τ is very large (small temperature), ω2

sits close to the bottom of the well, and one can show that Se(ω2) < Se(ω3).
In this case, the transition occurs through ω2.

There is a critical value of τ , τc ≈ 2π/Ωmax where Ω2
max = −V ′′(xmax),

at which a transition occurs; the transition is between the situations in which
decay is due to tunneling, and in which it is due to thermal fluctuations. (Note
that for τ < τc, the decay rate differs from Γ by the factor Ωmaxτ

2π (see [Af])).
This transition can take place either continuously or discontinuously, depend-
ing on whether the energy of the periodic classical trajectory in the inverted
potential −V (x) depends on its period continuously or discontinuously. In
the first case, as temperature decreases below 1/τc (i.e. τ increases above τc)
the tunneling trajectory bifurcates from ω3 and slips down the barrier (see
Fig. 16.6). For τ < τc tunneling takes place through ω3.

τ  <  τ

τ  <
cτ

τ  =

c

jump for

Fig. 16.6. Continuous transition.

In the second case (see Fig. 16.7), there are no closed trajectories with
period > τc, so the transition is discontinuous: decay jumps from ω3 to a
trajectory at the bottom of the barrier.

τ

τ  =

τ < 
for

τ > τ c c

no trajectorie s
for

jump 

Fig. 16.7. Discontinuous transition.
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Thus for intermediate temperatures, the nature of decay depends radically on
the geometry of the barrier.

The results above support the following physical picture of the tunnel-
ing process. With the Boltzmann probability (const)e−E/T , the particle is at
an energy level E. The probability of tunneling from an energy level E is
(const)e−SE/� where SE is the action of the minimal path at energy E. The
probability of this process is (const)e−E/T−SE/�. Thus the total probability
of tunneling is

(const)
∫
e−E/T−SE/� ≈ (const)e−E0/T−SE0/�

where E0 solves the stationary point equation

∂

∂E
(
E

T
+
SE
�

) =
1
T

+
1
�

∂SE
∂E

= 0.

Here −∂SE/∂E is the period of the trajectory under the barrier at the energy
level −E, and SE0 + �E0/T is the action of a particle (in imaginary time) at
energy E0 corresponding to the period �/T = τ .

16.6 Pre-exponential Factor for the Bounce

The bounce solution, ωb, presents some subtleties. Since ωb breaks the trans-
lational symmetry of Se(φ), ω̇b is a zero-mode of S′′

e (ωb):

S′′
e (ωb)ω̇b = 0.

To establish this fact, simply differentiate the equation ∂Se(ωb) = 0 with
respect to s and use the fact that S′′

e = ∂2Se (see Section 24.3).
As a result, we have two problems:

1. S′′
e (ωb) has a zero eigenvalue, so formally

[detS′′
e (ωb)]−1/2 = (const)

∫
e−〈ξ,S′′

e (ωb)ξ〉/2�Dξ =∞ (16.11)

2. ω̇b has one zero (see Fig. 16.8), and so the Sturm-Liouville theory (from
the study of ordinary differential equations) tells us that, in fact, S′′

e (ωb)
has exactly one negative eigenvalue.

s

ω b

Fig. 16.8.
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This gives a second reason for the integral (16.11) to diverge.

To illustrate these divergences, we change variables. Let {ξk} be an or-
thonormal basis of eigenfunctions of S′′

e (ωb) with eigenvalues λk, in increasing
order. For φ near ωb, write φ = ωb + ξ with

ξ =
∞∑

k=0

akξk.

Then

Se(φ) ≈ Se(ωb) +
∞∑

0

λka
2
k.

But λ0 < 0 and λ1 = 0, hence we have two divergent integrals:
∫ ∞

−∞
e−λja

2
j/2�daj =∞

for j = 0, 1. We already know that we can define the first integral by an
analytic continuation to be

∫ ∞

−∞
e−λ0a

2
0/2�da0 =

(
2λ0

π�

)−1/2

= −i
∣
∣
∣
∣
2λ0

π�

∣
∣
∣
∣

−1/2

.

The second integral, correctly treated, is shown to contribute (see the following
section)

S
−1/2
b τ

√
2π� (16.12)

where Sb is the action of the “bounce”, Se(ωb). Hence
∫

near ωb
e−Se(φ)/� ≈ Bωbe−Sb/�

where

B1/2
ωb

= −iτS−1/2
b

(
| det⊥ S′′

e (ωb)|
detS′′

0 (ω0)

)−1/2

(this is (16.9)) and det⊥ is defined in (16.10).

16.7 Contribution of the Zero-mode

The virial theorem of classical mechanics gives

Sb = Se(ωb) =
∫
ω̇b

2.
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Define the normalized zero eigenfunction

ξ1 = S
−1/2
b ω̇b.

Then

(ωb + c1ξ1)(s) = ωb(s) + c1S
−1/2
b ω̇b(s) ≈ ωb(s+ c1S

−1/2
b ).

Hence
φ ≈ ωb(s+ c1S

−1/2
b ) +

∑

n�=1

cnξn

and therefore ∏

n

dcn = S
−1/2
b ds

∏

n�=1

dcn.

Integrating in s from 0 to t gives (16.12).

16.8 Bohr-Sommerfeld Quantization for Resonances

The goal of this section is to derive a semi-classical formula for the resonance
eigenvalues of a Schrödinger operator with a tunneling potential. We proceed
by analogy with the treatment of a confining potential in Section 15.3 which
led to the Bohr-Sommerfeld quantization rule.

As in the rest of this chapter, we consider a tunneling potential of the form
sketched in Fig. 16.9.

φ

φ

E

x

1

2

(real)

(complex)

classically forbidden

V(x)

Fig. 16.9. Resonance potential.

The path-integral expression for Green’s function of H is, as in Sec-
tion 15.2,

GH(E, y, x) =
i

�

∫ ∞

0

∫

Px,y,t

ei(S(φ,t)+Et)/�Dφdt. (16.13)

We seek critical points (because, as always, we wish to apply the method of
stationary phase) which are closed trajectories (x = y) at the fixed energy E.
The trajectories in phase space are shown in Fig. 16.10.
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p

x

Fig. 16.10. Phase portrait.

At energy E, phase space is partitioned into classically allowed, and clas-
sically forbidden regions. Classical trajectories at energy E are shown in
Fig. 16.11.

classically forbidden

p

x

classically allowed

Fig. 16.11. Phase portrait at fixed energy.

If we complexify the phase space

R× R �→ C× C

then the phase space at a fixed energy E becomes connected as shown in
Fig. 16.12.

Im(p)

x

Re(p)

Fig. 16.12. Complexified phase space at fixed energy.

Thus, in addition to real paths, φ(s), we consider complex paths of the
form α(σ) = ψ(−iσ). Setting t = −iτ , the action for such a path is

S(α,−iτ) =
∫ τ

0

(−m
2
ψ̇2 − V (ψ))(−i)dσ = iA(ψ, τ),

where
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A(ψ, τ) =
∫ τ

0

m

2
ψ̇2 + V (ψ),

and so
∂αS = i∂ψA, and

∂S(α,−iτ)
∂τ

= i
∂A(ψ, τ)

∂τ
.

Thus the phase in (16.13) is

S(α,−iτ) + E(−iτ) = i(A(ψ, τ) − Eτ).
Now, the real critical point (φ1(s), t) satisfies

∂φS = 0,
∂S(φ1, t)

∂t
= −E,

so φ1 has period t, and mφ̈1 = −∇V (φ1) (as in Fig. 16.9). This has a phase

W1 = S(φ1, t)− Et|∂S/∂t=−E.

The complex critical point (φ2(σ) = ψ2(−iσ), iτ) satisfies

∂φS(α,−iτ) = i∂ψA(ψ, τ) = 0

and
∂S(φ2,−iτ)

∂τ
= i

∂A(ψ2, τ)
∂τ

= iE,

so ψ2 has period τ , and mψ̈2 = ∇V (ψ2) (as in Fig. 16.9). Hence the phase
is

iW2 = i(A(ψ2, τ)− Eτ)| ∂A(ψ2 ,τ)
∂τ =E

We can characterize a general closed critical orbit by the list

(1,m1, 1,m2, 1,m3, . . .),

meaning the real closed critical point is traversed once, the complex closed
critical point is traversed m1 times, the real critical point is followed again,
then the complex critical point m2 times, etc. (we follow the real critical point
several times in succession if some of the mi are zero). Applying the stationary
phase method, we obtain the following contribution to the path integral (up
to a constant, in the leading order as �→ 0):

∞∑

n=0

∑

m1...mn

ei(1+n)W1/�−(m1+···+mn)W2/� = eiW1/�
∑

n≥0

(

eiW1/�

∞∑

m=0

e−mW2/�

)n

= eiW1/�

∞∑

n=0

(

eiW1/�
1

1− e−W2/�

)n

= eiW1/�
1

1− eiW1/� 1
1−e−W2/�

=
eiW1/�(1− e−W2/�)
1− eiW1/� − e−W2/�

.
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We want to identify values of E for which Green’s function has a singu-
larity, with resonance eigenvalues. Writing the lowest resonance eigenvalue as
E0 − iΔE and expanding eiW1(E)/� to first order around E0, and e−W2(E)/�

to zeroth order, gives the equation

eiW1(E0)/� = 1, or W1(E0) = 2π�n, n = 0,±1, . . .

for E0 (i.e. E0 is the ground state energy, as before), and the expression

ΔE = �

(
∂W1(E0)
∂E

)−1

e−W2(E0)/�

for ΔE. The last two equations represent the Bohr-Sommerfeld quantization
for resonances.
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Quantum Statistics

In this chapter we address the issue of the information reduction in quantum
mechanics. Namely, we would like to find out how to describe a subsystem of a
larger system in terms of its own degrees of freedom. This leads us to the notion
of an open system, whose states are described by positive, trace class operators
on the L2 state space (density operators). This replaces the wave functions,
i.e. square integrable functions of the particle coordinates – elements of the
L2− space, of quantum mechanics. This topic is closely related to quantum
statistical mechanics. The notions of trace and trace class operators, which
are extensively used in this section, are defined in Mathematical Supplement,
Section 23.11.

17.1 Information Reduction

Assume we are interested in measuring only properties of a subsystem of a
given system, e.g. averages for its various observables. Let x and y be the
coordinates of the subsystem of interest, and of the rest of the total system,
which we call an environment. Assume the total system is described by a
wave function, say ψ(x, y). The question we would like to understand is: is
there a subsystem wave function ϕ(x), such that measuring the average of
any observable A = Ax associated with the subsystem in ϕ(x) gives the same
result as measuring it in ψ(x, y); i.e. is, for any A = Ax,

〈ψ,Aψ〉 = 〈ϕ,Aϕ〉 ?

Here the inner products on the l.h.s. and r.h.s. are in the spaces L2(dx, dy)
and L2(dx). The answer is that this holds if and only if the subsystem and
environment are not correlated: ψ(x, y) = ϕ(x)η(y) for some η. If we take, for
example, ψ(x, y) = α1ϕ1(x)η1(y) + α2ϕ2(x)η2(y), then 〈ψ,Aψ〉 �= 〈ϕ,Aϕ〉 for
any ϕ(x).
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So what does it take to describe a state of the subsystem in this case
without referring to the environment? We postpone answering this question
and consider another physical situation.

Consider a physical system described by a quantum Hamiltonian H acting
on a Hilbert space H (say, H = − �

2

2m
Δ + V (x) on L2(R3)). Let {ψj} be an

orthonormal basis in H. Then any state ψ ∈ H can be expanded as ψ =∑
ajψj . Given an arbitrary observable A (say, position or a characteristic

function of position), its average in the state ψ is given by

〈A〉ψ := 〈ψ,Aψ〉 =
∑

m,n

āman〈ψm, Aψn〉 . (17.1)

Now suppose that we know only that for each n the system is in the state
ψn with a probability pn. We thus have much less information than before.
Now the average, 〈A〉, of an observable A is given by the expression

〈A〉 =
∑

n

pn〈ψn, Aψn〉 . (17.2)

This corresponds to the situation when the parameters an in (17.1) are in-
dependent random variables with zero mean and variance E(|an|2) = pn.
Observe that (17.2) can be written as

〈A〉 = Tr(Aρ) , (17.3)

where ρ =
∑

n pnPψn
. Here Pψ stands for the rank-one orthogonal projection

onto the vector ψ, i. e. Pψf = 〈ψ, f〉ψ, or Pψ = |ψ〉〈ψ| in Dirac’s notation
(see Sections 23.7 and 23.11 for the definition and discussion of projections
and trace).

Problem 17.1 Show that Tr(APψ) = 〈ψ,Aψ〉.
Note that ρ is a trace class, positive (since pn ≥ 0 and Pψn ≥ 0) operator,

with trace 1: Trρ =
∑

n pn = 1. We extrapolate from this the assumption
that generalized states are given by positive, trace class operators ρ on H,
normalized so that Trρ = 1. Such operators are called density matrices or
density operators.

If the vectors ψn in the expression ρ =
∑
pnPψn evolve according to the

Schrödinger equation, i�∂ψ∂t = Hψ, then the equation governing the state ρ
is:

i
∂ρ

∂t
=

1
�
[H, ρ]. (17.4)

One takes this equation to be the basic dynamical equation of quantum sta-
tistical mechanics, or quantum statistics. We call it the Landau-von Neumann
equation, or the quantum Liouville equation.

Problem 17.2 Derive equation (17.4) for ρ =
∑
pnPψn with ψn as above.
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If ψi are bound states of H (i.e. Hψi = λiψi), then ρ =
∑
i piPψi , for any

pi ≥ 0,
∑
pi = 1, is a static solutions of the equation i∂ρ∂t = 1

�
[H, ρ]. (Show

this.)
An important example of density matrices are rank-one orthogonal pro-

jections ρ = Pψ. Indeed, we have

Pψ ≥ 0 and TrPψ = ‖ψ‖2 = 1.

Problem 17.3 Show these relations.

There is one-to-one correspondence between rays of normalized L2−func-
tions and rank-one orthogonal projections: {eiαψ} → Pψ and any rank-one
orthogonal projection P can be written as Pψ for any normalized function
ψ ∈ RanP . Wave functions, ψ, or rank-one projections, Pψ, are called pure
states. Density operators, ρ, such ρ �= Pψ for any ψ, are called mixed states.
Thus p1Pψ1 + p2Pψ2 is a mixed state.

Now we return to the question, we started this section with: How to de-
scribe a state of the subsystem without referring to the environment. The
answer is to do this in terms of the density operators. Namely, with any total
wave function, ψ(x, y), we associate the density operator, ρ = ρψ, for our
subsystem, so that

〈ψ,Aψ〉 = Trsyst(Aρ) (17.5)

for any subsystem observable A. Here Trsyst is trace of the subsystem degrees
of freedom. Indeed, the operator ρ is defined by its integral kernel

ρ(x, x′) =
∫
ψ(x, y)ψ(x′, y)dy. (17.6)

Problem 17.4 Check that (17.5) holds for any operator A acting on the
variable x, provided ρ is given by (17.6).

Now, as was mentioned above, the wave function, ψ, of the total system can
be associated with a density operator acting on the total system coordinates,
namely the rank-one projection R := Pψ, so that, as an exercise above shows,

〈ψ,Aψ〉 = Tr(APψ) (17.7)

for any operator (observable) A. With this, if A is a system observable, i.e.,
an operator which acts only on the variables x, then (17.5) can be rewritten
as

Tr(APψ) = Trsyst(Aρ). (17.8)

Now, assume the total system is described by a density operator R and
assume that again we do observations only on the system. Is there a den-
sity operator for the system which gives the results of these observations?
The answer to this question is positive: the state of the system described
by the reduced density matrix ρ = TrenvirR, obtained from R by tracing
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out the variables of the environment, gives the same observational values of
systems observables as R.

To define the partial trace TrenvirR, we specify state Hilbert spaces Hs =
L2(dx) and He = L2(dy) of the system and environment. Here x and y the
variables of the system and environment, respectively. Then the state space of
the total system (small system plus environment) is Htotal = L2(dxdy). Then
the partial trace, Trenvir, of R over the environment variables is defined by

〈φ,TrenvirRψ〉 =
∑

i

〈φχi, Rψχi〉, (17.9)

for any φ, ψ ∈ L2(dx) and for any orthonormal basis {χj} in L2(dy). Here
(ψχ)(x, y) := ψ(x)χ(y).

Problem 17.5 Show that the r.h.s. of (17.9) is independent of the choice of
the orthonormal basis {χj}.

One can also define the partial trace in terms of the integral kernels
R(x, y, x′, y′) and ρ(x, x′) of R and ρ as

ρ(x, x′) :=
∫
R(x, y, x′, y)dy. (17.10)

This is nothing but a generalization of (17.6). Thus, the operator ρ in (17.5)
is given by ρ = Trenvir Pψ.

Problem 17.6 Check that the definitions of partial trace given by (17.10)
and (17.9) are equivalent.

The definition above implies that for any system observable A we have

Tr(AR) = Trsyst(Aρ), ρ = TrenvirR. (17.11)

To prove this we write the inner product in L2(dxdy) as 〈·〉 = 〈〈·〉en〉syst, i.e.
first as the inner product in L2(dx) and then in L2(dy). Let {φj} and {χj} be
orthonormal bases in L2(dx) and L2(dy), respectively. Then {φiχj} defines
an orthonormal basis in L2(dxdy) and we have

Tr(AR) =
∑

ij

〈φiχj, ARψiχj〉 =
∑

ij

〈(A∗φi)χj , Rψiχj〉

=
∑

i

〈A∗φi,
∑

j

〈χj , Rχj〉enψi〉syst

=
∑

i

〈A∗φi, (TrenvirR)φi〉syst

=
∑

i

〈φi, Aρφi〉syst =: Trsyst(Aρ).
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The operator ρ = TrenvirR, acting on the system state space, is called the
reduced density operator. It has the following properties:

1) ρ acts on the state space of the system;
2) ρ is positive if R is positive;
3) Trsyst ρ = TrR.
Thus ρ is a density operator of the system. It is analogous to the conditional

expectation in the probability theory.
Now, we demonstrate another way to show (17.5). If A is a system ob-

servable, i.e., an operator which acts only on the variables x, then taking the
trace first with respect to the environment variables, and then over the system
variables (see Mathematical Supplement, Section 23.11) one obtains

Tr(APψ) = TrsystTrenvir(APψ)

= Trsyst

[
ATrenvir(Pψ)

]
.

With the notation ρ := Trenvir(Pψ), this gives (17.5).

Remark 17.7 In tensor product notation we write φ ⊗ χ, and A ⊗ I for
ψ(x)χ(y) and an observable A acting only on x, respectively.

We summarize our conclusions. In the situation when we are interested
only in a subsystem of a given system, or when only partial information about
a quantum system is available – namely, we know only that the system occu-
pies certain states with certain probabilities – we can describe states of such
a system by positive trace-class operators ρ ≥ 0 (normalized by Trρ = 1),
called density operators or density matrices, with the equation of motion
given by (17.4), and averages of observables computed according to the pre-
scription (17.3). The totality of quantum systems to which coupling of a given
system cannot be neglected is called the environment, while a given system,
whose interaction with the environment cannot be neglected but which is
described in terms of its own degrees of freedom, is called an open system.

However, every system, unless it is the entire universe, can be considered
as a subsystem of a larger system. Hence, in reality no quantum system is
isolated. It is coupled to nearby quantum systems and so is an open system.

17.2 Stationary States

Stationary, i.e. time-independent, solutions of equation (17.4) are given by
various functions, f(H) (defined, say, by the formula (2.20)), of the quantum
Hamiltonian H . Indeed, such operators, if well-defined, commute with H .
However, they represent density matrices (up to normalization) only if they are
positive and trace-class. The latter holds if and only if the functions f(λ) are
supported on the discrete spectrum of H and, if the latter extends to infinity,
decay sufficiently fast at infinity. As an example consider an operatorH whose
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spectrum consists of isolated eigenvalues (of finite multiplicity) converging to
∞. (For example, H is a Schrödinger operator with the potential |x|4.) Then
an operator f(H) is trace class for any function f vanishing at ∞ sufficiently
fast (see Section 23.11). Thus, for any such positive function, f(H) is a density
matrix (up to normalization).

To summarize, if the operator H has purely discrete spectrum, then
Eqn (17.4) has an infinite-dimensional space of time-independent solutions –
stationary states – which are density operators. These operators are of the
form f(H), where f is a positive function, decaying sufficiently fast at infinity.

However, the states above are not seen in nature if the number of particles
is very large. What is seen in this case, are the states of thermal equilib-
rium – the (thermal) equilibrium states. The latter can be isolated as follows.
Assume we have only one conserved quantity – the energy. Then, following
the second law of thermodynamics, we can characterize the equilibrium states
in a finite volume as states ρ which maximize the von Neumann entropy,
S(ρ) := −Tr(ρ ln ρ), given the internal energy E(ρ) := Tr(Hρ):

ρ maximizes S(ρ), provided E(ρ) is fixed (E(ρ) = E, say) . (17.12)

The criterion above is called the principle of maximum entropy. This principle
can be extended in an appropriate form to infinite systems.

Variational problem (17.12) can be easily solved (see Mathematical Sup-
plements, Chapter 24) to give the following one-parameter family of positive
operators

ρT = e−H/T /Z(T ) , where Z(T ) := Tre−H/T ,

as equilibrium states (for a definition of the operator e−H/T , see Section 2.3).
These states are called the Gibbs states and T , which is the inverse of the La-
grange multiplier, is called the temperature. The quantity Z(T ) = Tre−H/T (or
Z(β) = Tre−βH for β = 1/T ) is called the partition function ( at temperature
T , of the system described by the Hamiltonian H).

It is conjectured that in the absence of conserved quantities other than the
energy, all equilibrium states of infinite systems of infinite degrees of freedom
can be obtained as (weak) limits of Gibbs states.

The Lagrange multiplier theorem of variational calculus (see Section 24.5)
implies that an equilibrium state minimizes the Helmholtz free energy

FT (ρ) := E(ρ)− TS(ρ)

where T , or β = T−1, is the Lagrange multiplier to be found from the relation
Tr(HρT ) = E.

Problem 17.8 Show this.

By a straightforward computation, the equilibrium free energy, F (T ) :=
FT (ρT ), is given by

F (T ) = −T lnZ(T ) .
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The next result connects Gibbs states and the free energy, to ground states
and the ground state energy. Let ψ0 be the (unique) ground state of the
Hamiltonian H , and E0 the corresponding ground state energy. Let Pψ denote
the rank-one projection onto the vector ψ. We have

Theorem 17.9 (Feynman-Kac Theorem) As T → 0,

ρT → Pψ0 and F (T )→ E0 .

Proof. Let E0 < E1 ≤ E2 ≤ · · · be the eigenvalues of H (our standing
assumption is that H has purely discrete spectrum, running off to∞), and let
ψ0, ψ1, . . . be corresponding orthonormal eigenstates. Then by completeness
of the eigenstates, and the spectral mapping theorem (see Section 23.11),

ρT =
∞∑

n=0
pnPψn where pn = e−En/T /Z(T ). We can rewrite pn as

pn = e−(En−E0)/T /

∞∑

n′=0

e−(En′−E0)/T .

We see that pn ≤ 1 and as T → 0

pn →
{

1 n = 0
0 n ≥ 1

It follows easily that ‖ρT − Pψ0‖ → 0 as T → 0. Furthermore, since

F (T ) = −T ln
( ∞∑

n=0

e−En/T
)

= E0 − T ln
(
1 +

∞∑

n=1

e−(En−E0)/T
)
,

we see that F (T )→ E0 as T → 0. �

17.3 Quantum Statistics: General Framework

We formalize the theory above by making the following postulates:

• States: positive trace-class operators onH (as usual, up to normalization);
• Evolution equation : i�∂ρ∂t = [H, ρ];
• Observables : self-adjoint operators on H;
• Averages : 〈A〉ρ := Tr(Aρ).

We call the theory described above quantum statistics. The last two items lead
to the following expressions for the probability densities for the coordinates
and momenta:

• ρ(x;x) - probability density for coordinate x;
• ρ̂(k; k) - probability density for momentum p.
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Above, ρ̂(k; k′) is the integral kernel of the operator ρ̂ := FρF−1, i.e.

ρ̂(k; k′) = (2π�)−3

∫ ∫
e−

ik·x
� e

ik′·x′
� ρ(x;x′) dx dx′. (17.13)

Problem 17.10 Show that the integral kernel of the operator ρ̂ := FρF−1

is given by (17.13).

In particular, if ρ = Pψ, then

ρ(x;x) = |ψ(x)|2
ρ̂(k; k) = |ψ̂(k)|2

as should be the case according to our interpretation.
Note that the state space here is not a linear space but a positive cone in

a linear space. It can be identified with the space of all positive (normalized)
linear functionals A→ ω(A) := Tr(Aρ) on the space of bounded observables.
Denote the spaces of bounded observables and of trace class operators onH as
L∞(H) and L1(H), respectively. There is a duality between density matrices
and observables

〈ρ,A〉 = Tr(Aρ) (17.14)

for A ∈ L∞(H) and ρ ∈ L1(H). In the sense of this duality, the evolution
of density matrices, α∗

t : ρ→ e−
iHt

� ρe
iHt

� (Landau-von Neumann evolution),
and of observables, A→ e

iHt
� Ae−

iHt
� (Heisenberg evolution), are dual:

〈ρ, α∗
t (A)〉 = 〈αt(ρ), A〉,

where
αt(ρ) := e−

iHt
� ρe

iHt
� and α∗

t (A) = e
iHt

� Ae−
iHt

� .

Quantum mechanics is a special case of this theory, and is obtained by
restricting the density operators to be rank-one orthogonal projections:

{eiαψ, ∀α ∈ R} ⇔ ρ = Pψ

〈ψ,Aψ〉 = Tr(APψ)

i�
∂(e

iµt
� ψ)
∂t

= He
iµt
� ψ, for some μ ∈ R, ⇔ i

∂ρ

∂t
=

1
�
[H, ρ] for ρ = Pψ .

Problem 17.11 Show ⇒.

We show ⇐: Using Dirac’s notation we have that i ∂ρ∂t = 1
�
[H, ρ] and ρ = Pψ

imply |χ〉〈ψ| − |ψ〉〈χ| = 0 where χ = i�∂ψ
∂t
−Hψ, which yields that χ = μψ

for some real μ. This implies that the family of vectors ψ̃ := e
iµt
� ψ satisfies

i� ∂ψ̃
∂t = Hψ̃. �
Recall that the states (density operators) which are rank-one operators –

i.e. which are of the form ρ = Pψ for some normalized wave function ψ – are
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called pure states. They are equivalent to wave functions in the sense that
they are in one-to-one correspondence with wave functions, up to a phase,
and produce exactly the same expectations for arbitrary observables as the
corresponding wave functions.

We have shown that quantum mechanics is a special case of quantum
statistics (with ρ→ Pψ). Now we show that another special case of quantum
statistics is probability. Recall that the average of A in a state ρ is 〈A〉ρ =
Tr(Aρ). We introduce the following interpretation:

• A quantum random variable is an observable A.
• A quantum event is an orthogonal projection operator P (↔ subspace

RanP ).
• The probability of event P in state ρ is Probρ(P ) = Tr(Pρ).

Consider observables and orthogonal projections which are multiplication
operators by measurable functions. For a projection P this means that it is
the multiplication operator by a characteristic function, χQ, of a measurable

set Q ⊆ R
3 (i.e. χQ(x) =

{
1 x ∈ Q
0 x /∈ Q ). For an observable, A, which is a

multiplication operator by measurable function ξ : R
3 → R, the average is

〈A〉ρ = Tr(Aρ) =
∫

R3
ξ(x)ρ(x, x) dx,

while the probability of the event P = χQ is

Probρ(P ) = Tr(Pρ) =
∫

R3
χQ(x)ρ(x, x) dx. (17.15)

Thus, if we restrict ourselves to observables and projections, both of which are
multiplication operators (and form a commutative subalgebra of the algebra
of all observables), we obtain a standard probabilistic theory:

• The probability space (R3,P) where dP(x) = ρ(x, x)dx;
• Random variables which are measurable functions ξ : R

3 → R;
• Events which are measurable subsets Q ⊆ R

3 ↔ characteristic functions,
χQ.

Note that the reduced density operator ρ = TrenvirR (see (17.11) above)
generalizes the notion of marginal distribution.

17.4 Hilbert Space Approach

Quantum statistical dynamics can be put into a Hilbert space framework as
follows. Consider the space HHS of Hilbert-Schmidt operators acting on the
Hilbert space H. These are the bounded operators, K, such that K∗K is
trace-class (see Section 23.11). There is an inner-product on HHS , defined by

〈F,K〉 := Tr(F ∗K). (17.16)
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Problem 17.12 Show that (17.16) defines an inner-product.

This inner-product makes HHS into a Hilbert space (see [BR,RSI]). On the
space HHS , we define an operator L via

LK =
1
�
[H,K],

where H is the Schrödinger operator of interest. The operator L is symmetric.
Indeed,

�〈F,LK〉 = Tr(F ∗[H,K]).

Using the cyclicity of the trace, the right hand side can be written as

Tr(F ∗HK − F ∗KH) = Tr(F ∗HK −HF ∗K) = Tr([F ∗, H ]K)
= Tr([H,F ]∗K) = �〈LF,K〉

and so 〈F,LK〉 = 〈LF,K〉 as claimed. In fact, for self-adjoint Schrödinger
operators, H , of interest, L is also self-adjoint.

Now consider the Landau-von Neumann equation

i
∂k

∂t
= Lk (17.17)

where k = k(t) ∈ HHS . Since k(t) is a family of Hilbert-Schmidt operators,
the operators ρ(t) = k∗(t)k(t) are trace-class, positive operators. Because k(t)
satisfies (17.17), the operators ρ(t) obey the equation

i
∂ρ

∂t
= Lρ =

1
�
[H, ρ]. (17.18)

If ρ is normalized – i.e., Trρ = 1 – then ρ is a density matrix satisfying the
Landau-von Neumann equation (17.18). The stationary solutions to (17.17)
are just eigenvectors of the operator L with eigenvalue zero.

To conclude, we have shown that instead of density matrices, we can con-
sider Hilbert-Schmidt operators, which belong to a Hilbert space, and dynam-
ical equations which are of the same form as for density matrices. Moreover,
these equations can be written in the Schrödinger-type form (17.17), with
self-adjoint operator L, sometimes called the Liouville operator.

17.5 Quasi-classical Limit

Unlike the Schrödinger equation and the wave function, the von Neumann
equation, ∂ρ

∂t
= − i

�
[H, ρ], as well as the density matrix, has a well-defined

quasiclassical limit, i.e. the limit as �/(typical classical action) → 0. In this
section we explore this limit.
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We pass to physical units in which a typical classical action in our system
is 1, so that � is now the ratio of the Planck constant to the classical action
(cf. Chapter 15). Let the operators Ty,k and I be defined as

Ty,k = e−i(kx+yp)/� and I : ψ(x)→ ψ(−x). (17.19)

We introduce the following transformation of density operators ρ→Wρ(y, k),
where

Wρ(y, k) := (2π�)−
d
2 Tr(T2y,kIρ), (17.20)

called the Wigner transform. It maps density matrices (quantum statistical
states) into functions of the classical phase space which look like classical
statistical states.

To formulate properties of the Wigner transform we recall a few definitions,
beginning with that of the Fourier transform ρ̂(k, k′) of ρ(x, x′), as given by
(17.13). Let A be the Weyl quantization of the classical observable (symbol)
a(y, k) (cf. Section 4.1):

A = (2π�)−d
∫ ∫

â(ξ, η)ei(ξx+ηp)/�dξdη, (17.21)

where
a(y, k) = (2π�)−d

∫ ∫
â(ξ, η)ei(ξx+ηk)/�dξdη. (17.22)

Theorem 17.13 (Properties of Wigner transformation) We have
1) ρ = ρ∗ =⇒ Wρ is real;
2)

∫
dkWρ(y, k) = ρ(y, y) (probability density in y);

3)
∫
dyWρ(y, k) = ρ̂(k, k) probability distribution in k;

4) Assuming that our system consists of two subsystems labeled as 1 and 2,
ρ1 = Tr2(ρ) =⇒ Wρ1(y1, k1) =

∫
dy2dk2Wρ(y1, y2, k1, k2).

5) Tr(Aρ) =
∫∫
aWρdydk.

Discussion. 2) and 3) imply that
∫ ∫

Wρdydk = Tr ρ and Probρ(x ∈ Ω) =∫
Ω

∫
R3 Wρdydk, Probρ(k ∈ Ω∗) =

∫
R3

∫
Ω∗ Wρdydk where Probρ(x ∈ Ω) =∫

Ω
ρ(x, x)dx, and similarly, for Probρ(k ∈ Ω∗). Note that Wρ(y, k) does not

have to be positive and therefore cannot be interpreted as a probability dis-
tribution in the phase space. (However, it becomes positive as � → 0. This
interpretation is confirmed by the equation in 5): the r.h.s of this equation is
like the classical average of the classical observable a in the ”probability dis-
tribution” Wρ. The above property implies that Wρ(y, k) is an approximate
probability distribution in the phase space:

Prob(x ∈ Ω, p ∈ Ω′) ≈
∫

Ω

∫

Ω′
Wρdydk. (17.23)

Before proving these statements we find a convenient representation ofWρ.
To this end we use the Baker-Campbell-Hausdorff formula:
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e
−ikx

� e
−iyp

� = e−i
(kx+yp)

� e−i
yk
2� (17.24)

(see (4.8)). Using (17.24) in (17.20), we obtain that Wρ(y, k) = (2π�)−
d
2

e
iyk

� TrB. where B = e−
ikx

� e−i
2yp

� Iρ. Compute the integral kernel B(x, x′) of
B: B(x, x′) = e−

ikx
� ρ(−x + 2y, x′), where ρ(x, x′) is the integral kernel of ρ.

This gives

Wρ(y, k) = (2π�)−
d
2

∫
e−

ik(x−y)
� ρ(2y − x, x)dx. (17.25)

Changing the variable of integration as x→ x′ = x− y, we obtain

Wρ(y, k) = (2π�)−
d
2

∫
e−

ikx
� ρ(y − x, y + x)dx. (17.26)

Problem 17.14 Prove 1), 3), 4), 5). Hint for 1): use that ρ(x, x′) = ρ(x′, x).
Hint for 3): use that x = 1

2 (x + y) + 1
2(x − y). Hint for 4): 4) follows from 3)

and y · k = y1 · k1 + y2 · k2, etc.

We show 2). We use that for functions f , with integrable Fourier trans-
forms, (2π�)−

d
2

∫
dkf̂(k) = f(0), which follows by setting x = 0 in

(2π�)−
d
2

∫
dke

ixk
� f̂(k) = f(x). Using this relation we obtain

∫
dkWρ(y, k) =

ρ(y − x, x+ y)|x=0 = ρ(y, y), which is 2).
To formulate the main result of this section we recall the definition of the

Poisson bracket of classical mechanics:

{a, b} =
n∑

j=1

(∂yja∂kjb− ∂yjb∂kja) (17.27)

Theorem 17.15 (quasi-classical limit) If h(y, k) = 1
2m |k|2 + V (y) and

H = − �
2

2mΔ+ V (x), then

W i
�
[H,ρ] = {h,Wρ}+O(�∇2

kWρ)
and therefore

∂ρ

∂t
= − i

�
[H, ρ] =⇒ ∂tWρ = −{h,Wρ}+O(�∇2

kWρ).

Discussion. a) This theorem implies that in the quasi-classical limit the
Landau-von Neumann equation ∂ρ

∂t = − i
�
[H, ρ] becomes the classical Liouville

equation of statistical physics,

∂tw = −{h,w}, (17.28)

for the quasi-classical limit w of the Wigner transform Wρ of the density
operator ρ. Thus, in the limit � → 0, quantum statistics becomes classical
statistics.

b) In classical mechanics the equation (17.28) is obtained as follows. Let
w(y, k) be the particle density in the classical phase space. Assume now that
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y and k satisfy the Hamilton equations and we want to see how w(y, k) moves
with the flow. Differentiate w(y, k) w.r.to time to obtain

∂tw(y, k) = ∂ywẏ + ∂kwk̇ = ∂yw∂kh− ∂kw∂yh, (17.29)

which is (17.28).
c) Taking a rank-one, orthogonal projection as the initial condition for the

Landau-von Neumann equation, we relate Schrödinger’s equation to Newton’s.
Proof of Theorem 17.15. Integrating by parts several times, we obtain

W i
�
[H0,ρ](y, k) =

i

�

−�
2

2m
(2π�)−

d
2

∫
(∂2
y − ∂2

y′)ρ(y − x, y′ + x′)|y′=y,x′=xe
ixk

� dx

= − i�

2m
1

�
d
2

∫
(−∂y∂x − ∂y′∂x′)ρ(y − x, y′ + x′)|x=x′,y=y′e

ixk
� dx

= − i�

2m
1

�
d
2

∫
[(∂y∂x′ + ∂y′∂x)ρ+

ik

�
(∂y + ∂y′)ρ]|x′=x,y′=ye

ixk
� dx

= − i�

2m
1

�
d
2

∫
[(∂y∂y′ − ∂y′∂y)ρ|x′=x,y′=y +

ik

�
∂yρ]eixk�dx

=
k

m
∂y

1

�
d
2

∫
ρeixk�dx =

k

m
∇yWρ

where we used that (∂y + ∂y′)ρ|x′=x,y′=y = ∂y(ρ|x′=x,y′=y). Furthermore, we
have

W i
�
[V,ρ](y, k) =

i

�2

∫
(V (y − 1

2
x)− V (y +

1
2
x))ρe

ixk
� dx

=
i

�2

∫
[−∇V (y)x+O(x2)]ρe

ixk
� dx

=
i

�2

∫
[−∇V (y)(−i�∇k) +O((�∇)2)]ρe

ixk
� dx

= (−∇V (y)∇k +O(�∇2
k))Wρ.

Recall the definitions of the classical Hamiltonian, h(y, k) = 1
2m
|k|2 + V (y),

and of the Poisson bracket, (17.27), which give ( k
m
∇y − V (y)∇k)Wρ =

{h,Wρ}. Hence the sum of the last two equations gives the desired equation.
�

17.6 Reduced Dynamics

We found in Section 17.1, that if the total system is described by a wave
function, say ψ(x, y), where x and y are the coordinates of the system of
interest and of the environment, respectively, or more generally by a density
operator R, acting on the total system state space L2(dxdy), then the open
system is described by the density operator ρ = TrenvirR, so that for any
observable A = Ax, associated with the system
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Tr(AR) = Trsyst(Aρ), ρ = TrenvirR, (17.30)

where, recall, Trenvir is the partial trace of R over the environment variables
defined in (17.9). Recall that the operator ρ = TrenvirR, acting on the system
state space, is called the reduced density operator and that it has the following
properties:

1) ρ acts on the state space of the system;
2) ρ is positive if R is positive;
3) Trsyst ρ = TrR.

Assume now our total system, consisting of the given system and envi-
ronment, described by the Schrödinger operators, Hsyst and Henvir, acting on
L2(dx) and L2(dy), respectively, evolves according to the Landau-von Neu-
mann equation

i
∂Rt
∂t

=
1
�
[Htot, Rt], Rt=0 = R0, (17.31)

whereHtot is the Schrödinger operator of the total system acting on L2(dxdy):

Htot = Hsyst ⊗ 1envir + 1syst ⊗Henvir + λv. (17.32)

The solution of this equation, with an initial condition R0, is given by Rt =
αt(R0), where αt(R) = e−

iHtott
� Re

iHtott
� .

Now, the reduced density operator of the system at time t is given by
ρt := TrenvirRt. The map ρ0 := TrenvirR0 → ρt depends not only on ρ0 and
αt but also on R0. In general, it is not even a linear map for fixed t. To remedy
this we consider the particular class of R0 of the form R0 = ρ0 ⊗ ρe0 for some
fixed ρe0 and define

βt(ρ0) = Trenvir αt(R0) for ρ0 := Trenvir(ρ0 ⊗ ρe0). (17.33)

The family βt is called the reduced evolution. In this case, βt is linear. What
can we say about this evolution?

Theorem 17.16 The family βt has the following properties
1) βt is linear;
2) βt is positivity preserving (ρ ≥ 0 =⇒ βt(ρ) ≥ 0);
3) βt preserves the trace;
4) βt(ρ∗) = βt(ρ)∗

5) βt(ρ) =
∑

n VntρV
∗
nt, where Vnt are bounded operators satisfying∑

n V
∗
ntVnt = 1 (strong convexity).

Remark 17.17 In fact, 5) implies 1) - 4).

Problem 17.18 Show that 5) implies 1) - 4) and show 1) - 4) directly.
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Proof. We show only the properties 2) and 5). In this proof we drop the
subindex t, let U := e−i

Htott
� and let {χi} be orthonormal basis in the envi-

ronment space L2(dy). By the definition of β, we have ∀φ, ψ ∈ L2(dx),

〈φ, β(ρ0)ψ〉 =
∑

i

〈φχi, α(ρ0 ⊗ ρe0)ψχi〉 =
∑

i

〈U∗φχi, ρ0 ⊗ ρe0U∗ψχi〉.
(17.34)

Taking here φ = ψ, we see the r.h.s is non-negative, provided ρ0 is non-
negative. This gives 2).

To prove 5), we write the inner product in L2(dxdy) as 〈·〉 = 〈〈·〉syst〉en,
i.e. first as the inner product in L2(dx) and then in L2(dy). Let χi be an
orthonormal basis of eigenfunctions of ρe0 with eigenvalues λj . Then ρe0 =∑
λjPχj =

∑
λj |χj〉〈χj |, so that, using (17.34), we obtain

〈φ, β(ρ0)ψ〉 =
∑

i,j

〈√λj〈χj , U∗φχi〉syst, ρ0

√
λj〈χj , U∗ψχi〉syst〉en

=
∑

i,j

〈V ∗
ijφ, ρ0V

∗
ijψ〉en, (17.35)

where V ∗
ijφ :=

√
λj〈χj , U∗φχi〉syst, and therefore 〈φ, β(ρ0)ψ〉 =

〈φ,∑i,j Vijρ0V
∗
ijψ〉. Now

〈Vijφ, ψ〉syst = 〈φ, V ∗
ijψ〉syst =

√
λj〈φ, 〈χj , U∗ψχi〉en〉syst

=
√
λj〈Uφχj , ψχi〉 = 〈

√
λj〈Uφχj , χi〉en, ψ〉syst.

This implies
Vijφ =

√
λj〈χi, Uφχj〉en,

which, in turn, gives
∑

i,j

V ∗
ijVijφ =

∑

i,j

V ∗
ij

√
λj〈χi, Uφχj〉en

=
∑

ij

λj〈χj , U∗〈χi, Uφχj〉enχi〉en.

=
∑

j

λj〈χj , U∗ ∑

i

〈χi, Uφχj〉enχi〉en.

Since
∑
i〈χi, Uφχj〉enχi = Uφχj , this gives

∑

i,j

V ∗
ijVijφ =

∑

j

λj〈χj , U∗Uφχj〉en =
∑

λj〈χj , φχj〉en. (17.36)

Since 〈χj , φχj〉en = φ and
∑
λj = Tr ρe0 = 1, we have

∑
i,j V

∗
ijVijφ = φ. �
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Definition 17.19 1) Maps satisfying the conclusions of Theorem 17.16 are
called quantum (dynamical) maps or quantum channels.

2) We will call an evolution βt satisfying the conclusions of Theorem 17.16
(quantum) dissipative evolution.

3) A reduced evolution βt is called Markov iff

βt ◦ βs = βt+s ∀t, s ≥ 0. (17.37)

For a Markov dissipative evolution βt we define the generator by

K(ρ) := ∂tβt(ρ)|t=0, (17.38)

so that
∂tβt(ρ) = K(βt(ρ)). (17.39)

Theorem 17.20 Under certain technical continuity conditions on βt, gener-
ators of Markov dissipative evolutions are of the form

K(ρ) = − i
�
[H, ρ] +

∞∑

j=0

(WjρW
∗
j −

1
2
{W ∗

jWi, ρ}) (17.40)

where H is self-adjoint, {A,B} := AB+BA and
∑
W ∗
jWj converges strongly.

Recall coupling between density operators and observables:

〈ρ,A〉 = Trsyst(Aρ). (17.41)

Define the reduced evolution of observables by

〈ρ, β∗
t (A)〉 = 〈βt(ρ), A〉. (17.42)

Then, if a reduced evolution βt satisfies the conclusions of Theorem 17.16,
then its dual, β∗

t , satisfies
1) β∗

t is linear;
2) β∗

t is positivity preserving (A ≥ 0 =⇒ β∗
t (A) ≥ 0);

3) β∗
t (1) = 1;

4) β∗
t (A

∗) = β∗
t (A)∗

5) β∗
t (A) =

∑
n V

∗
ntAVnt,

where Vnt are bounded operators satisfying
∑
n V

∗
ntVnt = I (strong convexity).

If a dissipative evolution βt is Markov, then so is its dual: β∗
t is Markov.

The latter implies that it satisfies the differential equation ∂
∂t
β∗
t = Lβ∗

t where
L = K∗ is the generator of Markov dissipative evolution of observables and is
given by

L(A) =
i

�
[H,A] +

∑

i

(W ∗
j AWj − 1

2
{W ∗

jWj , A}). (17.43)
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For the relation of quantum dynamical maps to completely positive maps
see [T4], Statement 3.1.4 and [BR], Remarks to Section 5.3.1.

Quantum dynamical maps, or quantum channels, is one of the key no-
tions in quantum information theory. They generalize the notion of classical
channel. If a quantum channel β satisfies [β(ρ), ρ] = 0 for any ρ, then it
is in fact a classical one. Indeed, since β and β(ρ) commute, they have a
common orthonormal basis {ψi} of eigenfunctions. So let ρ =

∑
i piPψi and

ρ′ = β(ρ) =
∑

i p
′
iPψi , where {pi} and {p′i} are the corresponding eigenvalues

of the density operators ρ and ρ′, respectively. Then {pi} and {p′i} can be
thought of probability distributions, and β, as the mapping {pi} → {p′i}, i.e.
as a classical channel.

17.7 Irreversibility

A quantum dynamical map β is said to be irreversible iff β is not invertible
(within the class of dynamical maps). If β(ρ) = UρU∗, where U is unitary,
then β is reversible.

How to quantify the notion of irreversibility? In classical mechanics
we encounter irreversibility when we pass from Newton’s equation to the
Boltzmann equation. While Newton’s equation is reversible ((x(t), p(t)) →
(x(−t),−p(−t)) is a symmetry of Newton’s equation), the Boltzmann equa-
tion is irreversible: the Boltzmann entropy

H(f) = −
∫
f log f, (17.44)

for the particle densities, f(x, v, t), which solve the Boltzmann equation, in-
creases along the evolution (the celebrated Boltzmann H-theorem).

In quantum mechanics, we saw above that while the Schrödinger equation
is reversible, the reduced evolution, say, ρt = βt(ρ0) (or ∂

∂t
ρt = Kρt, in the

Markov case) it leads to when some information is ’integrated out’, is irre-
versible. Hence we look for an analogue of the Boltzmann entropy, and it is
natural to define

S(ρ) = −Tr(ρ log ρ), (17.45)

which is nothing but the von Neumann entropy. (The operator function log ρ
is defined for any ρ ≥ 0 as the operator A s.t. eA = ρ. Alternatively, if λj
and φj are eigenfunctions and eigenvalues of ρ so that ρ = −∑

λjPφj , then
S(ρ) = −∑

λj logλj = H({λj}).)
We list properties of S(ρ):

1) ρ = Pψ is a pure state =⇒ S(ρ) = 0;
2) S(UρU∗) = S(ρ), for unitaries U ;
3) S(

∑
λjρj) ≥

∑
λjS(ρj), for λj ≥ 0,

∑
λj = 1,

4) For any density operator, ρAB, of a composed system A+ B,

S(ρAB) ≤ S(ρA) + S(ρB) (17.46)
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where ρA and ρB are the marginals of ρAB :

TrBρAB = ρA and TrAρAB = ρB.

(The relation 3) holds due to concavity of log.) However, there is noH-theorem
for S(ρ), i.e in general S(ρ) does not decrease (or increase) under the evolution.
We look for a more general object which has monotonicity properties. Such a
candidate is the relative entropy:

S(ρ1, ρ2) = Tr(ρ1(log ρ1 − log ρ2)), (17.47)

if Ranρ1 = Ranρ2 and∞ otherwise. We have the following result whose proof
can be found in [T4], Statement 3.1.12:

Theorem 17.21 (Generalized H-theorem (Lindblad)) If β is a dynam-
ical map, then

S(β(ρ1), β(ρ2)) ≤ S(ρ1, ρ2). (17.48)

Note: if β(ρ) = UρU∗, where U is unitary, then

S(β(ρ1), β(ρ2)) = S(ρ1, ρ2). (17.49)
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The Second Quantization

In this chapter we describe a powerful technique used in the analysis of quan-
tum many-body systems – the method of second quantization. In rough terms,
it allows one, instead of working with a fixed number of particles, to let the
number of particles fluctuate, while keeping the average number fixed. We ap-
ply this method to derive a useful mean-field limit for many-body dynamics.
The method also provides a natural language for quantum field theory (see
Chapters 19 and 20) and can be used to preview, in a much simpler setting,
some of the issues arising there.

18.1 Fock Space and Creation and Annihilation
Operators

Consider a system of n identical particles moving in an external potential
W (x) and interacting via pair potentials v(xi − xj). Its Schrödinger operator
is given by

Hn =
n∑

i=1

(− �
2

2m
Δxi +W (xi)) +

1
2

∑

i�=j
v(xi − xj). (18.1)

We assume the particles are bosons. In this case Hn acts on the space
L2
sym(R3n) of L2 functions on R

3n which are symmetric w.r.t permutations of
the particle coordinates x1, ..., xn ∈ R

3. We define the new Hilbert space

Fbos := ⊕∞
n=0Fn, (18.2)

of sequences Φ = (Φ0, Φ1, . . . ) ≡ ⊕∞
n=0Φn, Φn ∈ Fn, where F0 = C, and

Fn = L2
sym(R3n), n ≥ 1, equipped with the inner product

〈Ψ, Φ〉 =
∞∑

n=0

∫
Ψn(x1, ..., xn)Φn(x1, ..., xn)dnx, (18.3)
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where Ψn and Φn are the n−th components of Ψ and Φ. The space Fbos is
called the bosonic Fock space. On Fbos we define the operator

H = ⊕∞
n=0Hn, (18.4)

where H0 = 0, H1 = − �
2

2mΔx + W (x) and Hn, n ≥ 2, are as above,
so that HΨ = ⊕∞

n=0HnΨn. The operator H is called the 2nd quantized
Schrödinger operator. The reason for this name will become clear later. The
vector Ω := (1, 0, 0, ...) ∈ Fbos is called the vacuum vector in Fbos. Note that,
by construction, HΩ = 0.

Problem 18.1 Assuming the pair potentials, v(xi−xj), are real and bounded,
show that H is self-adjoint.

One of the advantages of the 2nd quantization is the representation of op-
erators on the Fock space Fbos in terms of annihilation and creation operators
(raising and lowering the number of particles). These are the operator-valued
distributions f → a(f) and f → a∗(f), where f ∈ L2(R3) and a(f) and a∗(f)
are operators on Fbos, defined as

(a(f)Ψ)n =
√
n+ 1

∫
f(x)Ψn+1(x, x1, ..., xn)dx, (18.5)

and a(f)Ω = 0, and

(a∗(f)Φ)n+1 =
√
n+ 1(f�Φn) (18.6)

for n ≥ 0. Here f�Φn = PSn+1(f ⊗ Φn), with PSn the orthogonal projection
from L2(R3n) to L2

sym(R3n):

(PSn f)(x1, . . . , xn) :=
1
n!

∑

π∈Sn
f(xπ(1), . . . , xπ(n)),

where, recall, Sn is the symmetric group of permutations of n indices. The
operators a(f) and a∗(f) are unbounded and satisfy

〈a∗(f)Φ, Ψ〉 = 〈Φ, a(f)Ψ〉. (18.7)

Indeed, we compute, using (18.5), on vectors Φ, Ψ , with finite numbers of
components

〈Φ, a(f)Ψ〉 =
∑

n

〈Φn, (a(f)Ψ)n〉

=
∑

n

√
n+ 1

∫
dx1...dxn+1Φn(x1, ...xn)f(xn+1)Ψn+1(x1, ..., xn+1).

It is easy to see by relabeling the variables of integration that Φn(x1, . . . , xn)
f(xn+1) can be replaced by PSn+1(f(xn+1)Φn(x1, . . . , xn)) = 1

n+1∑
j Φn(x1, . . . , xj−1, xj+1, . . . , xn+1) to obtain
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〈Φ, a(f)Ψ〉
=

∑

n

√
n+ 1

∫
dn+1xPSn+1(Φn(x1, ..., xn)f(xn+1))Ψn+1(x1, ..., xn+1),

which, together with (18.6), implies (18.7). Moreover, a∗(f) is adjoint to the
operator a(f) : a∗(f) = a(f)∗.

Problem 18.2 Show that

[a(f), a∗(g)] = 〈f, g〉, [a(f), a(g)] = [a∗(f), a∗(g)] = 0. (18.8)

The operators a(f), a∗(f) are operator-valued distributions and it is con-
venient to introduce the formal notation a#(x) = a#(δx), so that, formally,

a(f) =
∫
f(x)a(x)dx, a∗(f) =

∫
f(x)a∗(x)dx. (18.9)

We consider a(x), a∗(x) as formal symbols satisfying

[a(x), a∗(y)] = δ(x− y), [a#(x), a#(y)] = 0. (18.10)

Representation of vectors in terms of creation operators.

Proposition 2. Any Φ = ⊕Φn can be written as

Φ =
∑

n

1√
n!

∫
Φn(x1, ..., xn)

n∏

j=1

a∗(xj)Ωdnx. (18.11)

Proof. Using the definition of a∗(x), we compute

(a∗(yn)...a∗(y1)Ω)m =
√
n!PSn (

n∏

j=1

δ(xi − yi))δn,m. (18.12)

Problem 18.3 Show (18.12). Hint: Use induction starting with

(a∗(y1)Ω)n(x1) =
√

1PS1 (δ(x1 − y1))δn,1
and

(a∗(y2)a∗(y1)Ω)n(x1, x2) =
√

2PS2 (δ(x1 − y1)δ(x2 − y2))δn,2.
The equation (18.12) implies that

1√
n!

∫
Φn(y1, ..., yn)

∏
a∗(yj)Ωdny = PSn Φn(x1, ..., xn), (18.13)

which implies the statement of the proposition. �
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18.2 Many-body Hamiltonian

One-particle operators. Let b be an operator on L2(R3). We write it as an
integral operator bxf(x) =

∫
b(x, y)f(y)dy, where b(x, y) is the integral kernel

of b. We think of bxa(x) as the operator b acting on the parameter x, bxa(x) =∫
b(x, y)a(y)dy. We define an operator B on Fbos by the formula

B =
∫
a∗(x)bxa(x)dx. (18.14)

We call operators of this type one-particle operators. The equation (18.14) is
an integral of the product of operator-valued distributions and it is not clear
whether it is well-defined to begin with. However, if one thinks about (18.14)
as a formal expression and uses formally the definitions of a(x) and a∗(x), one
finds that the operator B defined by (18.14) is equal to

B = ⊕∞
n=0Bn, B0 = 0, Bn :=

n∑

i=1

bi, n ≥ 1, (18.15)

where bi ≡ bxi stands for the operator b acting on the variable xi. The latter
expression makes a perfect sense.

One can demonstrate (18.15) formally as follows. Using the definitions of
a(x) = a(δx) and a∗(x) = a∗(δx) and (18.5) and (18.6)

(BΦ)n =
√
n

∫
dxPSn [δ(x1 − x)(bxa(x)Φ)n−1(x2, ..., xn)]

=
√
n

∫
dxPSn [δ(x1 − x)bx

√
nΦn(x, x2, ..., xn)]

= nPSn [bx1Φn(x1, ..., xn)]

=
n∑

i=1

bxiΦn(x1, ..., xn),

as claimed.
There is a different representation of (18.14) which is well defined directly.

Let {fi} be an orthonormal basis in L2(R3) and define the operators ai :=
a(fi) and a∗i := a∗(fi). Assume fi ∈ D(b) and let bij := 〈fi, bfj〉 be the matrix
associated with the operator b and the basis {fi}. Consider the expression

B =
∑

ij

a∗i bijai, (18.16)

defined on vectors for which the sum on the r.h.s. converges (say, on vectors
with a finite number of components).

Problem 18.4 Show that the operator
∑

ij a
∗
i bijai acts as (18.15).
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Formally, the expression (18.16) is obtained from (18.14) one by inserting
the partition of unity

∑
n |fn〉〈fn| = 1 into the latter expression. Though

(18.14) needs an additional interpretation, it is much more convenient to work
with and is used commonly.

Consider a few examples. The free Schrödinger operator:

H0 =
∫
a∗(x)(− �

2

2m
Δx)a(x)dx. (18.17)

The equation (18.15) shows thatH0 =⊕∞
n=0H0n, whereH0n=

∑n
i=1(− �

2

2mΔxi)
is the free n-particle Schrödinger operator (V = 0).

We define the number operator N =
∫
a∗(x)a(x)dx and momentum opera-

tor P =
∫
a∗(x)(−i�∇x)a(x)dx. Then N = ⊕∞

n=0n1 and P = ⊕∞
n=0Pn where

Pn =
∑n

j=1 pj, respectively. We have

[H0, N ] = 0, [H0, P ] = 0. (18.18)

These equations imply the conservation of the particle number and total mo-
mentum. We prove [H0, P ] = 0:

[H0, P ] = [
∫
dxa∗(x)(− �

2

2m
Δx)a(x),

∫
dya∗(y)(−i�∇y)a(y)]

=
∫ ∫

dxdya∗(x)(−�
2

2
Δx)[a(x), a∗(y)](−i�∇y)a(y)

+
∫ ∫

a∗(y)(−i�∇y)[a(x), a∗(y)](−i�Δx)a(x)

=
∫
dxa∗(x)[− �

2

2m
Δ,−i�∇]a(x) = 0,

where in the last step we used that [a(x), a∗(y)] = δ(x − y).
Problem 18.5 Show that [a∗(x)Δxa(x), a(y)] = [a∗(x), a(y)]Δxa(x).

Problem 18.6 Show (18.18).

In mathematics, one denotes the operator in (18.15) as dΓ (b).

Problem 18.7 Show formally that [dΓ (b1), dΓ (b2)] = dΓ ([b1, b2]).

We can generalize (18.17) to a particle moving in an external field W :

HW =
∫
a∗(x)(− �

2

2m
Δx +W (x))a(x)dx. (18.19)

Two-particle operators. Let

V =
1
2

∫
a∗(x)a∗(y)v(x − y)a(x)a(y)dxdy. (18.20)
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(The integrand on the r.h.s. annihilates particles at x and y, acts with v(x−y),
and then creates particles at x and y.) We claim that

(V Φ)n =
1
2

∑

i�=j
v(xi − xj)Φn(x1, ..., xn). (18.21)

Indeed, consider a(x)a(y)
∏n

1 a
∗(xj)Ω. Using this expression and (18.20) and

using a(y)a∗(z) = a∗(z)a(y)+ δ(y−z), we pull a(y) through
∏n
j=1 a

∗(xk) and
use a(y)Ω = 0, to obtain

a(x)a(y)
n∏

i=1

a∗(xj)Ω = a(x)
n∑

i=1

δ(y − xi)
∏

k �=i
a∗(xi)Ω. (18.22)

Then we pull similarly a(x) through
∏
k �=i a

∗(xk) and use a(x)Ω = 0 to find

a(x)a(y)
n∏

i=1

a∗(xj)Ω =
n∑

i=1

δ(y − xi)
∑

j �=i
δ(x− xj)

n∏

k �=i,j
a∗(xk)Ω. (18.23)

Let Φn = 1√
n!

∫
Φn(x1, ..., xn)

∏n
1 a

∗(xj)Ωdnx. Using (18.23) and (18.20) and
integrating the delta-functions, we arrive at

V Φn =
1√
n!

n∑

i=1

∑

j �=i
v(xi − xj)Φn(x1, ..., xn)

n∏

i=1

a∗(xk)Ω, (18.24)

which gives (18.21). �
The equations (18.19) and (18.21) show that the Hamiltonian (18.4) in-

troduced at the beginning of this chapter can be written as

H =
∫
a∗(x)(− �

2

2m
Δx +W (x))a(x)dx

+
1
2

∫
a∗(x)a∗(y)v(x− y)a(x)a(y)dxdy.

(18.25)

Problem 18.8 Show that [V,N ] = 0, [V, P ] = 0, [H,N ] = 0, [HW=0, P ] = 0.

18.3 Evolution of Quantum Fields

Consider the Heisenberg evolution of a(x): a(x, t) = e
iHt

� a(x)e−
iHt

� . Then
a(x, t) satisfies the Heisenberg equation,

i�
∂

∂t
a(x, t) = −[H, a(x, t)]. (18.26)

Using that [H, a(x, t)] = e
iHt

� [H, a(x)]e−
iHt

� , and computing the commutator
[H, a(x)], one can show that a(x, t) satisfies the differential equation
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i�
∂

∂t
a(x, t) = (− �

2

2m
Δx +W (x))a(x, t)

+
∫
dyv(x− y)a∗(y, t)a(y, t)a(x, t).

(18.27)

Problem 18.9 Show (18.26) and (18.27).

Note that if v = 0, then (18.27) is the Schrödinger equation but for the
operator valued function a(x, t), called a quantum field. This is the origin of
the term the second quantization.

18.4 Relation to Quantum Harmonic Oscillator

Assume the potential W is positive and confining, so that the operator
− �

2

2m
Δx + W (x) has positive, purely discrete spectrum {λj} accumulating

to infinity. Let {fj} be an orthonormal basis of its eigenfunctions. Then ap-
plying to the operator HW the formula (18.16), with this basis and using that
the matrix of the operator − �

2

2mΔx +W (x) in this basis is diagonal with the
diagonal elements {λj}, we obtain

HW =
∑

j

λja
∗
jaj . (18.28)

On the other hand, consider the r-dimensional quantum harmonic oscillator,
described by the Schrödinger operator

Hho = − �
2

2m
Δ+

1
2

r∑

i=1

mω2
i x

2
i (18.29)

on L2(Rr). As we know from Section 7.6, it can be rewritten in a form similar
to (18.28):

Hho =
r∑

i=1

�ωi

(

a∗i ai +
1
2

)

, (18.30)

where, recall, ai and a∗i are the harmonic oscillator annihilation and creation
operators,

aj :=
1

√
2m�ωj

(mωjx+ ipj) and a∗j :=
1

√
2m�ωj

(mωjxj − ipj). (18.31)

(These operators satisfy the commutation relation [ai, a∗j ] = δij .) We see that,
modulo the additive constant, 1

2

∑r
i=1 �ωi, (18.30), with �ωj = λj , is a finite-

dimensional approximation to (18.28).
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18.5 Scalar Fermions

As before, to simplify notation slightly we consider scalar (or spinless)
fermions. (For fermions with spin we would have to introduce one more vari-
able - spin- for each particle and require that functions below are antisym-
metric with respect to permutations of particle coordinates and spins.) We
define the Fock space for scalar fermions as

Ffermi := ⊕∞
n=0Fn, (18.32)

where F0 = C, and Fn = L2
asym(R3n), n ≥ 1, with L2

asym(R3n) the space
of functions, Ψ ∈ L2(R3n), anti-symmetric w.r.t permutations of coordinates
x1, ..., xn ∈ R

3:

Ψ(xπ(1), . . . , xπ(n)) = (−1)#(π)Ψ(x1, . . . , xn), π ∈ Sn,

where, recall Sn is the symmetric group of permutations of n indices and #(π)
is the number of transpositions in the permutation π. We equip this space with
the inner product (18.3). Again, the vector Ω := (1, 0, 0, ...) ∈ Ffermi, is called
the vacuum vector in Ffermi. The second quantized hamiltonian H is again
defined by (18.4) and HΩ = 0.

The creation and annihilation operators are defined now as

(a(f)Ψ)n =
√
n+ 1

∫
f(x)Ψn+1(x, x1, ..., xn)dx, (18.33)

for n ≥ 0, and a(f)Ω = 0, and

(a∗(f)Φ)n+1 =
√
n+ 1PAn+1(f(x1)Φn(x2, ..., xn+1)), (18.34)

where PAn is the orthogonal projection of L2(R3n) to L2
asym(R3n). As before,

a∗(f) is adjoint to the operator a(f) : a∗(f) = a(f)∗. However, unlike the
bosonic annihilation and creation operators, the fermionic ones anti-commute

[a(f), a∗(g)]+ = 〈f, g〉, [a(f), a(g)]+ = [a∗(f), a(g)]+ = 0, (18.35)

where [A,B]+ := AB + BA. A remarkable fact is that the fermionic annihi-
lation and creation operators are bounded.

Problem 18.10 Show this. Hint: Use the anti-commutation relation
a(f)a∗(f) + a∗(f)a(f) = ‖f‖2.
The second-quantized operator (18.4) is still expressed in the form (18.25)
and the derivations above concerning (18.25) remain true.
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18.6 Mean Field Regime

We introduce the coupling constant g into our Hamiltonian (18.25) by replac-
ing v by gv and consider regime where g 
 1 and the number of particles
n� 1 but ng = O(1) so that the kinetic and potential energy terms in (18.1)
are of the same order. We rescale our Hamiltonian by defining:

a(f) =
1√
g
ψg(f) and a∗(f) =

1√
g
ψ∗
g(f).

The rescaled creation and annihilation operators are operator-valued distri-
butions obeying commutation relations

[
ψg(x) , ψ∗

g(y)
]

= g δ3(x− y), and rest = 0.

The Hamiltonian H can be written in terms of ψg(x) and ψ∗
g(x) as H = g−1Ĥ

with

Ĥ =
∫

ψ∗
g(x) (− �

2

2m
Δ+W (x)) ψg(x)d3x

+
∫

ψ∗
g(x1) ψ∗

g(x2) v(x1 − x2) ψg(x1)ψg(x2)d3x1dx2.

(18.36)

In the mean-field limit, as g → 0, the rescaled creation and annihilation
operators, ψg(x) and ψ∗

g (x), commute, and our quantum theory converges to
the classical one, which is a Hamiltonian theory with the phase space given by
a space of differentiable functionals (classical field observables) A(ψ,ψ), with
the Poisson bracket defined (for two functionals A(ψ, ψ) and B(ψ,ψ)) as

{A,B}(ψ, ψ) =
i

�

∫
(∂ψ(x)A∂ψ(x)B − ∂ψ(x)A∂ψ(x)B)dx, (18.37)

and the Hamiltonian functional given by

H (ψ, ψ) :=
∫

ψ(x) hx ψ(x)d3x

+
∫

ψ(x1) ψ(x2) v(x1 − x2) ψ(x1)ψ(x2)d3x1d
3x2,

(18.38)

with hx := − �
2

2m
Δ + W (x). With ψ considered as an evaluation functional

ψ → ψ(x), the Hamilton equation is given by

∂tψ = {H(ψ,ψ), ψ}, (18.39)

which has the form similar to (18.26). (For details and discussions see math-
ematical supplement, Chapter 24, and especially Section 24.6.) Using (18.38)
and (18.37) this equation can be written explicitly as
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i�∂tψ = (− �
2

2m
Δ+W (x) + v ∗ |ψ|2)ψ, (18.40)

which is the Hartree equation introduced in Section 13.1. Thus we arrived
at the Hartree Hamiltonian system with the Hamiltonian functional H(ψ, ψ)
and the Poisson bracket {A,B}(ψ,ψ) and with dynamics given by the Hartree
equation (18.40). For more details see Sections 4.4, 24.6 and 24.7.

To formalize this heuristic analysis we consider analytic functionals,
A(ψ, ψ), i.e. functionals of the form

A(ψ, ψ) :=
∑

pq

∫ p∏

1

ψ(xi)apq(x1, . . . , xp; y1, . . . , yq)
q∏

1

ψ(yi)dxdy, (18.41)

where apq(x1, ..., xp; y1, ..., yq) are the integral kernels of bounded operators
apq, with series converging in an appropriate topology.

Now, consider the Wick quantization, i.e. association with classical obsev-
ables A = A(ψ, ψ) their quantum counterparts:

A = A(ψ,ψ) −→ Â = A(ψg, ψ∗
g),

according to the rule

Â :=
∑

pq

∫ ∫ p∏

i=1

ψ∗
g(xi)apq(x1, . . . , xp; y1, . . . , yq)

q∏

i=1

ψg(yi)dpxdqy. (18.42)

The operator Â is said to be the Wick quantization of the classical field ob-
servable A and A is said to be the Wick symbol of the operator Â.

Let Φt be the flow generated by the Hartree equation (18.39), or (18.40),
i.e. for any reasonable ψ0, Φt(ψ0) is the solution of (18.40) with the initial con-
dition ψ0. It defined the classical evolution of classical observables according
to αclt (A) := A ◦Φt where (A ◦Φt)(ψ, ψ̄) = A(Φt(ψ), Φt(ψ)). Furthermore, let
αt(Â) := eiĤt/gÂe−iĤt/g be the Heisenberg dynamics of quantum observables.
Finally, let N := g−1

∫
ψ∗
g(x) ψg(x)d

3x be the particle number operator and
τ := �

8‖v‖∞
. One can show (see [FKP,AnS]) that for a certain class of classical

observables A and on states Ψ satisfying ‖NΨ‖ ≤ c/g, we have for t ≤ τ , as
g → 0,

αt(Â) = ̂αclt (A) +O(g). (18.43)
We sketch a proof of (18.43). Using the Duhamel principle (i.e writing

α−t( ̂αclt (A))−Â as the integral of derivative ∂τα−τ (α̂clτ (A))=α−τ ([Ĥ, α̂clτ (A)]
− {H, α̂clτ (A)})), we obtain

αt(Â)− α̂cls (A) =
∫ t

0

dsαt−s(R(αcls (A))), (18.44)
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where R(A) := i
g [Ĥ, Â]− {̂H,A}, which gives

‖αt(Â)− ̂αclt (A)‖B(FN≤n) ≤
∫ t

0

ds‖R(A ◦ Φs)‖B(FN≤n). (18.45)

Note that the full evolution αt drops out of the estimate. Now, we have to
obtain appropriate estimates of the remainder R(A) and the classical ob-
servable A ◦ Φs. First, we find a convenient expression for the remainder
R(A) := i

g
[Ĥ, Â] − {̂H,A}. Let the operators Â and B̂ have the symbols,

A(ψ,ψ) and B(ψ,ψ) and assume B(ψ, ψ) is a monomial of degree m in ψ
and ψ, separately. Then the commutator operator Ĉ = [Â, B̂], has the symbol
C(ψ, ψ) given by (see e.g. [AmN])

C(ψ, ψ) =
m∑

k=1

gk

k!
{A,B}k(ψ, ψ), (18.46)

where
{A,B}k :=

∫ ∫
(∂kψA, ∂

k
ψ
B − ∂kψB, ∂kψA). (18.47)

The definition of the HamiltonianH(ψ, ψ) and Eqns (18.46) and (18.47) imply

i[Ĥ, Â] = g{̂H,A}+
g2

2
̂{V,A}2. (18.48)

It is not hard to show that ‖ ̂{V,A}2‖ ≤ C‖A‖∗ with C ≤ ∞ and ‖A‖∗ an
appropriate norm of A. This implies (cf. (4.11))

i[Ĥ, Â] = g{̂H,A}+O(g2). (18.49)

Comparing the relation (18.48) with the expression for the remainder R(A)
we see that R(A) =

g

2
̂{V,A}2 = O(g) which together with (18.44) implies, in

turn, (18.43). Finally, one has to estimate the norm ‖A ◦Φs‖∗ of the classical
evolution, and this is the part where our restrictions enter, and which we skip
here. This completes our sketch.

Thus the mean-field regime is nothing else but the quasiclassical regime of

the quantum many-body field theory with the reciprocal,
1
n

= g, of the num-
ber of particles playing role of the quasiclassical parameter. As the number
of particle increases a quantum system starts behaving classically. In the op-
posite direction it is shown in ([FKP]) that the many-body theory described
by the quantum Hamiltonian (18.25) can be obtained by quantizing the clas-
sical field theory described by the classical Hamiltonian (18.38) and Poisson
brackets (18.37).
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18.7 Appendix: the Ideal Bose Gas

As an example of an application of the second quantization, we compute the
partition function, pressure, and the equation of state for an ideal bose gas (i.e.
a gas with no interparticle interactions) placed in the box Λ =

[−L2 , L2
]d ⊂ R

d.
The Schrödinger operator for such a system is

HΛ =
∫

Λ

a∗(x)(− �
2

2m
ΔΛ)a(x)dx, (18.50)

where ΔΛ is the Laplacian on L2(Λ) with periodic boundary conditions. The
Gibbs equilibrium state with a fixed average number of particles and for the
inverse temperature β (grand canonical ensemble) is

ρβ,μ := e−β(HΛ−μNΛ)/ZΛ(β, μ),

where NΛ =
∫
Λ
a∗(x)a(x)dx is the number of particles operator in the volume

Λ ⊂ R
3 and ZΛ(β, μ) = Tr e−β(HΛ−μNΛ) is the partition function. Here μ

is the chemical potential entering as a Lagrange multiplier due to fixing the
average number of particles. This state is obtained by maximizing the entropy,
while leaving the average energy and average number of particles fixed (hence
two Lagrange multipliers, β and μ, appear, see Section 17.2).

Note that in our case, the one particle configuration space is the flat torus,
which is Λ =

[−L2 , L2
]d

with opposite sides identified (i.e. R
d/ 2π

L Z
d) and the

corresponding momentum space is the lattice 2π
L Z

d.
Using separation of variables, and the result of Section 7.2 for a single

particle in a box with periodic boundary conditions, or verifying directly that∏
k∈ 2π

L Zd
(a∗(k))nkΩ are eigenvectors of HΛ with eigenvalues

∑
k∈ 2π

L Zd
εknk,

we conclude that the spectrum of the operator HΛ is

σ(HΛ) = {
∑

k∈ 2π
L Zd

εknk | nk = 0, 1, . . .∀k}.

Here εk = 1
2m
|k|2, and each eigenvalue has multiplicity 1. Using equa-

tion (23.41) from the Mathematical Supplement, which expresses the trace
of an operator in terms of its eigenvalues, we obtain the following expression
for ZΛ(β, μ):

ZΛ(β, μ) =
∑

nk

z
∑
nke−β

∑
εknk , (18.51)

where z = eβμ, is called the fugacity. The latter expression can be transformed
as

ZΛ(β, μ) =
∏

k

( ∞∑

n=0

zn e−β εk n
)

=
∏

k

(1− z e−β εk)−1. (18.52)
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Note in passing that if for a self-adjoint operator A with a purely discrete
spectrum {λj} accumulating at 1, we define detA :=

∏∞
j=1 λj whenever this

is finite, then we can rewrite (18.52) as

ZΛ(β, μ) = det (1− z e−β H1,Λ)−1

where H1,Λ = − 1
2m

ΔΛ is the one particle Hamiltonian acting on L2(Λ) with
periodic boundary conditions.

Next, we consider the quantity PV (β, μ) := 1
V β

ln ZΛ(β, μ), where V :=
vol(Λ), called the pressure. We have

PV (β, μ) = − 1
V β

∑

k

ln (1 − z e−β εk)

= − 1
V β

Tr ln(1− z e−βH1,Λ) .
(18.53)

Using that, as V →∞,

(2π)d

V

∑

k∈ 2π
L Zd

f(k)→
∫
f(k) d k ,

we see that formally PV (β, μ) converges, as V →∞, to

P (β, μ) = − 1
(2π)d β

∫
ln (1− z e−β εk) d k

= − 1

(2π)d β
d+2
2

∫
ln (1− z e−εk) d k.

(18.54)

To get the last integral, we changed variables k → k/
√
β.

We compute average number of particles, n̄ = Tr(NΛρβ,μ). This definition
implies the relation n = z ∂

∂z ln ZΛ(β, μ) , from which we obtain the expression

n/V =
1
V

∑

k∈ 2π
L Zd

z e−β εk

1− z e−β εk . (18.55)

To have n ≥ 0, we should take 0 ≤ z ≤ 1. The terms in the sum on the
right hand side are, as can be easily checked, the average numbers of particles
having momenta k,

nk = Tr (Nk ρβ,μ)

where Nk := a∗(k)a(k). To show this, one uses that, by (18.51), nk =
− 1
β
∂εk ZΛ(β, μ) , where ZΛ(β, μ) is considered as a functional of ε = εk,

to obtain

nk =
z e−β εk

1− z e−β εk .
Equations (18.54) and (18.55) constitute the equation of state of the ideal

Bose gas (parameterized by z). More precisely, solving Equation (18.55) for
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z as a function of the density ρ = n/V , and temperature T = 1/β, and
substituting the result into Equation (18.54), we find the pressure P as a
function of ρ and T .

However, if we seek the equation of state as a relation between P , E and
V (which is, of course, equivalent to the expression involving P , ρ and T ), the
answer is much simpler. Indeed, using the definition of E

E = E(β, μ, V ) := Tr (HΛ ρβ,μ,Λ)

and considering the partition function, ZΛ(β, z), as a function of β and z (and
V ) rather than of β and μ (and V ), and similarly for the pressure, we find

E = − ∂

∂β
ln ZΛ(β, z) = − ∂

∂β
(V β P (β, z)) . (18.56)

Taking into account (18.54) and setting d = 3 we find

E =
3
2
P V . (18.57)

This is the equation of state of the ideal Bose gas.

Problem 18.11 It is an instructive exercise to re-derive the results of this
section for the ideal Fermi gas.

Now, we consider the ideal Bose gas in the domain Λ with a fixed number,
n, of particles. Its Hamiltonian is

HΛ,n =
n∑

i=1

− 1
2m

Δxi

acting on the space ©S n
1 L

2(Λ) := L2
sym (Λn) with periodic boundary condi-

tions. Here©S is the symmetric tensor product, and L2
Sym (Λn) is the L2 space

of functions symmetric with respect to permutations of variables belonging to
different factors in the product Λn. Assume we want to compute the canonical
partition function,

ZΛ,n(β) = Tr e−βHΛ,n . (18.58)

This is not a simple matter (try it!). We show how to derive it from the grand
canonical one, ZΛ(β, μ). The considerations below are heuristic, but can be
made rigorous.

Using expression (18.52) one can show that as a function of z = eβμ,
ZΛ(β, μ) is analytic in the disk {|z| ≤ ε} for some ε > 0. Next, by the
definition of ZΛ(β, μ), we have ZΛ(β, μ) =

∑∞
n=0 ZΛ,n(β)zn. Hence ZΛ,n can

be computed by the Cauchy formula

ZΛ,n(β) =
1

2πi

∮

|z|=ε
ZΛ(β, μ)

dz

zn+1
. (18.59)
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By the definition of PΛ(β, μ), we can write ZΛ(β, μ) = eV βPΛ(β,μ). Writing
also z−n = e−n ln z = e−V ν ln z, where ν = n/V , (18.59) becomes

ZΛ,n(β) =
1

2πi

∮

|z|=ε
eV (βPΛ(β,μ)−ν ln z) dz

z
.

Now we take V = |Λ| and n large, while ν = n/V remains fixed. Taking into
account the fact that PΛ(β, μ) has a limit as V →∞, and applying (formally)
the method of steepest descent to the integral above, we find

ZΛ,n ≈ ce−βμnZΛ(β, μ), (18.60)

where | ln c| is uniformly bounded in V , and μ solves the stationary phase
equation

μ : βz∂zPΛ(β, μ) = n/V,

or equivalently (passing from z to μ) μ : ∂μPΛ(β, μ) = n/V. Define PΛ,n(β) :=
1
βV

lnZΛ,n(β). Then relation (18.60) can be rewritten as

PΛ,n(β) ≈ (−βμn+ PΛ(β, μ))|∂μPΛ(β,μ)=n/V .

That is, PΛ,n(β), as a function of n, is (in the leading order as V → ∞) the
Legendre transform of PΛ(β, μ), considered as a function of μ.

Similarly, we can pass from ZΛ(β, μ) to ZΛ,n(β) by taking the Legendre
transform in the variable ν = n/V .

18.7.1 Bose-Einstein Condensation

We analyze formula (18.55) for the average number of particles. From now on
we set d = 3. We would like to pass to the thermodynamic limit, V →∞. The
point is that Equation (18.55) is the relation between the average number of
particles n (or the average density ρ = n/V ), the temperature T = 1/β, and
the chemical potential μ (or fugacity z = eβ μ). Recall also that 0 ≤ z ≤ 1. As
long as ρ and β are such that z < 1, the right hand side of (18.55) converges
to the integral

1
(2π)3

∫
z e−β εk

1− z e−β εk d k

as V →∞. However, if the solution of Equation (18.55) for z yields, e.g., z =
1−O(V −1), then we have to consider the k = 0 term in the sum on the right
hand side of (18.55) separately. In this case we rewrite (18.55) approximately
as

ρ =
n0

V
+

∫
z e−β εk

1− z e−β εk d k , (18.61)

where we put n0 = z
1−z . Now using εk = |k|2

2m , changing the variable of inte-

gration as k′ =
√

β
2m k, and passing to spherical coordinates, we obtain
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∫
z e−β εk

1− z e−β εk d k = λ−3 g3/2(z) ,

where λ =
√

2π β/m (the thermal wave length), and

g3/2(z) =
∫ ∞

0

z e−x
2

1− z e−x2 x2 dx .

Thus Equation (18.61) can be rewritten as

ρ =
n0

V
+ λ−3 g3/2(z) . (18.62)

Recall that n0 = z
1−z , and that this equation connects the density ρ, the

thermal wave length λ (or temperature T = 2π/mλ2), and the fugacity z (or
chemical potential μ = 1

β
ln z), and is supposed to be valid in the entire range

of values, 0 < z < 1, of z.
Can z really become very close to 1 (within O(1/V )), or is the precaution

we took in the derivation of this equation by isolating the term n0/V spurious?
To answer this question we have to know the behaviour of the function g3/2(z)
for z ∈ (0, 1). One can see immediately that

g3/2(0) = 0 , g′3/2(z) > 0 and g′3/2(1) =∞ .

The function g3/2(z) is sketched below.

2
_3

2
g (z)g(1) _3

z
1

Fig. 18.1. Sketch of g3/2(z).

We see now that if ρ λ3 < g3/2(1) (with g3/2(1)−ρ λ3 ≥ a positive number,
independent of V ), then the equation

ρ λ3 = g3/2(z) , (18.63)

which is obtained from (18.62) by omitting the V -dependent term n0
V

, has
a unique solution for z which is less than 1, and is independent of V . Con-
sequently, taking into account the term n0/V = z

V (1−z) would lead to an
adjustment of this solution by a term of order O(1/V ), which disappears in
the thermodynamic limit V →∞.
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However, for ρ λ3 = g3/2(1), the solution of this equation is, obviously,
z = 1, and for ρ λ3 > g3/2(1), the above equation has no solutions at all. Thus
for ρ λ3 ≥ g3/2(1) we do have to keep the term n0/V . Moreover, we have an
estimate

n0

V
= ρ λ3 − g3/2(z∗) ≥ ρ λ3 − g3/2(1)

(here z∗ is the solution to Equation (18.62)) which shows that in the case
ρλ3 > g3/2(1), a macroscopically significant (i.e. proportional to the volume
or the total number of particles) fraction of the particles is in the single, zero
momentum – or condensed – state. This phenomenon is called Bose-Einstein
condensation. The critical temperature, Tc, at which this phenomenon takes
place can be found by solving the equation

ρ λ3 = g3/2(1)

describing the borderline case for λ, and remembering that T = 2π
mλ2 . As a

result we have

Tc =
2π
m

(
ρ

g3/2(1)

)2/3

.

From Equation (18.62) we can also find the fraction of particles, n0/V , in
the zero momentum (condensed) state as a function of temperature. This
dependence is shown in the diagram below.

n

Tc
T

1

/V0

Fig. 18.2.

In this elementary situation, we have stumbled upon one of the central
phenomena in macrosystems – the phenomenon of phase transition. Indeed,
the states for which all the particles are in the single quantum state corre-
sponding to zero momentum, and those for which the macroscopic fraction
of the particles in the quantum state of zero momentum (and consequently
in every single quantum state) is zero, can be considered two distinct pure
phases of ideal Bose matter (gas). The first pure phase – called the conden-
sate – occurs at T = 0, while the second pure phase takes place for T ≥ Tc. In
the interval 0 < T < Tc of temperatures, the Bose matter is in a mixed state
in which both phases coexist.
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Bose-Einstein condensation exhibits a typical property of phase transi-
tions of the second kind: though all the thermodynamic functions and their
first derivatives are continuous at the phase transition, some of the second
derivatives are not. Typically one looks at the specific heat

CV :=
∂ E(T, μ, V )

∂ T
,

the change of heat or energy per unit of temperature. Using Equations (18.54)
and (18.56), one can show that while CV is continuous at T = Tc, its derivative
with respect to T is not. CV as a function of T is plotted below (see [Hua],
Sect. 12.3]):

Cv/n

T3/2T

cT

~

2
_3

~
Fig. 18.3. Specific heat of the ideal Bose gas.

One can show that the thermodynamic properties (eg., the equation of
state – a relation between pressure, temperature and volume) of Bose-Einstein
condensation are the same as those of an ordinary gas – liquid condensation.
The modern theory relates the phase transitions to superfluid states in liquid
helium (He2) and to superconducting states in metals and alloys, to the phe-
nomenon of Bose-Einstein condensation. In the mean field description of the
phenomena of superfluidity and superconductivity, the wave function of the
condensate – the fraction of particles (or pairs of particles, in superconduc-
tivity) in the quantum zero momentum state – called the order parameter,
is the main object of investigation. Of course, in both cases one deals with
interacting particles, and one has to argue that Bose-Einstein condensation
persists, at least for weakly interacting Bose matter.

Problem 18.12 Extend the above analysis to an arbitrary dimension d.
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Quantum Electro-Magnetic Field - Photons

To have a theory of emission and absorption of electromagnetic radiation by
quantum systems, not only should the particle system be quantized, but the
electro-magnetic field as well. Hence we have to quantize Maxwell’s equa-
tions. We do this by analogy with the quantization of classical mechanics as
we have done this in Section 4.1. This suggests we have to put the classical
electro-magnetic field theory, which is originally given in terms of Maxwell’s
PDEs, into a Hamiltonian form. As before we do this in two steps: by in-
troducing the action principle, and performing a Legendre transform. Then
we define the quantization map by associating with canonically conjugate
classical fields the corresponding operators, and quantizing observables cor-
respondingly. Since Maxwell’s equations are wave equations for vector fields
with constraints, to provide the reader with a simpler guide, we first quantize
the scalar Klein-Gordon equation, which yields the wave equation in the limit
of vanishing mass. The reader familiar with the quantization of the Klein-
Gordon equation can proceed directly to the next section on quantization of
the Maxwell equations. In what follows, we work in physical units in which
the Planck constant and speed of light are equal to 1: � = 1, c = 1.

19.1 Klein-Gordon Classical Field Theory

19.1.1 Principle of minimum action

We construct the Hamiltonian formulation of the Klein-Gordon equation. We
consider a scalar (real or complex) field φ(x, t) on R

d satisfying the evolution
equation

(� +m2)φ = 0, (19.1)

where, recall, � := ∂2
t −Δ is the D’Alembertian operator and the parameter

m ≥ 0 is interpreted as mass. For m > 0 this is the Klein-Gordon equation,
once proposed to describe relativistic particles, and for m = 0 this is the wave
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equation (assumed to describe massless particles). The corresponding theory
is called the Klein-Gordon classical field theory.

We write the equation (19.1) as a Hamiltonian system. This is done in two
steps: introducing the action principle, and performing a Legendre transform.
Then we quantize the resulting infinite dimensional Hamiltonian system. To
fix ideas, we consider from now on only real fields. We remark on complex
fields at the end.

As for classical mechanics, we begin with the principle of minimal action
(properly, of “stationary” action). Recall that it states that an evolution equa-
tion for physical states is an Euler-Lagrange equation for a certain functional
called the action.

More precisely, one considers a space of functions φ, defined on space-time,
called the fields. The equation of motion for φ is given by S′(φ) = 0, where S
is an action functional on the space of fields. This functional is of the form

S(φ) =
∫ T

0

∫

Rd

L(φ(x, t),∇xφ(x, t), φ̇(x, t))dxdt (19.2)

for φ : R
d
x × Rt → R (for the moment we consider only real fields). Here,

L : R × R
d × R → R is the Lagrangian density. The space integral of the

Lagrangian density,

L(φ, φ̇) :=
∫

Rd

L(φ(x, t),∇xφ(x, t), φ̇(x, t))dx, (19.3)

is called the Lagrangian functional. Recalling from in Section 4.4 the defi-
nitions of critical points and the derivation of the Euler-Lagrange equations
(see also Section 24.2 of Mathematical supplement), it is easy to show that
critical points of satisfy the Euler-Lagrange equation

− ∂t(∂φ̇L(φ, φ̇)) + ∂φL(φ, φ̇) = 0. (19.4)

Now, we turn to the Klein-Gordon equation. Let f : R→ R be a differen-
tiable function. Consider the Lagrangian functional

L(φ, φ̇) =
∫

Rd

{
1
2
|φ̇|2 − 1

2
|∇xφ|2 − f(φ)

}

dx (19.5)

defined on some subspace of H1(Rd)×L2(Rd) such that f(φ(x)) is integrable.
The corresponding Lagrangian density is L(φ, φ̇) = 1

2
|φ̇|2 − 1

2
|∇xφ|2 − f(φ).

The critical point equation for the corresponding action functional S(φ) =
∫ T
0 L(φ(t), φ̇(t))ddxdt is the (nonlinear) Klein-Gordon equation:

�φ+ f ′(φ) = 0. (19.6)

One can generalize the above construction by considering the action
S(φ) =

∫ T
0 L(φ(t), φ̇(t))dt, defined on the space of paths
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Pφ0,φT = {φ ∈ C1([0, T ];X) | φ(0) = φ0, φ(T ) = φT},
for some φ0, φT ∈ X , where the Lagrangian functional L(φ, η) is defined on
X×V . HereX is an open subset of a normed space V (or manifold).X is called
the configuration space of the physical system, and its elements are called
fields. In an examples above, X is some functional space, say X = H1(Rd,R).
(If X is a non-linear space, then the Lagrangian functional would be defined
on (a subset of) TX , the tangent bundle of X .) The Euler-Lagrange equation
in this case is

− ∂t(∂φ̇L(φ, φ̇)) + ∂φL(φ, φ̇) = 0 (19.7)

where ∂φL and ∂φ̇L are variational or G̊ateaux derivative of L with respect
φ and φ̇, respectively. (See Mathematical Supplement, Section 24.2 for the
definition.)

19.1.2 Hamiltonians

We generalize the construction we used in classical mechanics. Suppose the
dynamics of a system are determined by the minimum action principle with
a Lagrangian functional L : X × V → R, which is differentiable. Here V and
X are a Banach space and an open subset of V . We pass to the new variables
(φ, φ̇)→ (φ, π), where π ∈ V ∗, as a function of φ and φ̇, is given by

π = ∂φ̇L(φ, φ̇). (19.8)

(Recall that V ∗ is the space dual to V , see Mathematical Supplement, Sec-
tion 23.1.) We assume that the equation (4.28) has a unique solution for φ̇.
(Typically, L is convex in the second variable.) With this in mind, we define
the Hamiltonian functional, H : X × V ∗ → R, as

H(φ, π) =
(〈π, φ̇〉 − L(φ, φ̇)

)|φ̇:∂φ̇L(φ,φ̇)=π. (19.9)

As in Classical Mechanics, the space Z := X × V ∗ is called a phase space of
the system.

Theorem 19.1 If L(φ, φ̇) and H(φ, π) are related by (19.8)-(19.9), then the
Euler-Lagrange equation (19.4) for the action (19.2) is equivalent to the Hamil-
ton equations

φ̇ = ∂πH(φ, π), π̇ = −∂φH(φ, π). (19.10)

The proof of this theorem is a straightforward generalization of the proof of
Theorem 4.4.

Problem 19.2 Prove this theorem.

This gives a hamiltonian formulation of CFT.
For the Klein-Gordon classical field theory, the Lagrange functional is

L(φ, χ) =
∫ {

1
2 (|χ|2 − |∇φ|2)− f(φ)

}
dx, and, consequently, the Klein-

Gordon Hamiltonian is
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H(φ, π) =
∫ {

1
2
(|π|2 + |∇φ|2) + f(φ)

}

dx. (19.11)

Problem 19.3 Show (19.11).

19.1.3 Hamiltonian System

Suppose that Z = X × V ∗ is a space of functions Φ(x) = (φ(x), π(x)) on
R
d. The functional on X which maps X � φ 	→ φ(x) is called the evaluation

functional (at x), which we denote (with some abuse of notation) as φ(x), and
similarly for V .

Problem 19.4 Show that ∂φφ(y) = δy and ∂ππ(y) = δy.

Now, we recognize that the Hamilton equations equations (19.10) can be writ-
ten, for all x, as

Φ̇t(x) = {Φ(x), H}(Φt) (19.12)

where {F,G} is the Poisson bracket on Z defined for any pair differentiable
functionals F, G on Z as

{F,G} = 〈∂φF, ∂πG〉 − 〈∂πF, ∂φG〉
=

∫
{∂πF∂φG− ∂φF∂πG}dx.

(19.13)

(See Section 4.4 for the notion and another example of the Poisson brackets.)

Problem 19.5 Prove this.

One can show, formally, that with the Poisson bracket given in (19.13),

{π(x), φ(y)} = δ(x− y), {φ(x), φ(y)} = 0, {π(x), π(y)} = 0. (19.14)

Problem 19.6 Show (19.14).

Equation (19.14) says that the evaluation functionals, π, and φ, are canonical
coordinates. To have a rigorous interpretation of the first equation in (19.14),
we introduce, for f ∈ C∞

0 (Rd), the functionals

φ(f) : φ 	→ 〈f, φ〉 and π(f) : π 	→ 〈f, π〉.
Then (19.14) means that {π(f), φ(g)} = 〈f, g〉, etc, for all f, g ∈ C∞

0 (Rd).
Note that a path Φt in Z solves (19.12) iff, for all functionals F ,

d

dt
F (Φt) = {F (Φt), H}. (19.15)

Definition 19.7 A Hamiltonian system is a triple, (Z, {·, ·}, H), a Poisson
space (Z, {·, ·}) (a Banach space Z, with a Poisson bracket) together with a
Hamiltonian functional H defined on that space.
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For the Klein-Gordon classical field theory the phase, or state, space is
Z = H1(Rd)×H1(Rd), the Hamiltonian is given by (19.11), and the Poisson
brackets are defined on it as

{F,G} =
∫
{∂πF∂φG− ∂φF∂πG}. (19.16)

(In principle we could consider a larger phase space, Z = H1(Rd) × L2(Rd),
but the space above is more convenient.)

For a more general situation see Mathematical Supplement, Section 24.6.

Remark 19.8 Our definition of a Hamiltonian system differs from the stan-
dard one in using the Poisson bracket instead of a symplectic form. The reason
for using the Poisson bracket is its direct relation to the commutator.

19.1.4 Complexification of the Klein-Gordon Equation

With the view to quantization, it is convenient to pass from the real phase
space Z = H1(Rd)×H1(Rd) ≡ H1(Rd,R2), with the Poisson bracket (19.16),
and with the canonical real fields, φ(f) and π(f), to the complex one, Zc =
H1(Rd,C), with the Poisson bracket

{F,G} = i

∫ {
∂α(x)F∂ᾱ(x)G− ∂ᾱ(x)F∂α(x)G

}
dx, (19.17)

where ∂α(x) := ∂Reα(x) − i∂Imα(x) and ∂ᾱ(x) := ∂Reα(x) − i∂Imα(x), and with
the canonical complex field α(f), and its complex conjugate ᾱ(f), defined by

α(f) =
1√
2

(
φ(C−1/2f) + iπ(C1/2f)

)

ᾱ(f) =
1√
2

(
φ(C−1/2f)− iπ(C1/2f)

)
,

(19.18)

where C is an operator on L2(Rd). The Poisson brackets (19.16) and (19.17),
imply, for f, g ∈ C∞

0 , the Poisson brackets

{α(f), ᾱ(g)} = 〈f̄ , g〉, {α(f), α(g)} = {ᾱ(f), ᾱ(g)} = 0. (19.19)

Problem 19.9 Prove the above statement.

Thus (19.18) is a canonical transformation. Consider the free classical field
theory, i.e. the Hamiltonian (19.11) with

F (φ) =
1
2
m2|φ|2, (19.20)

with m > 0. Since −Δ+m2 > 0, we can take

C = (−Δ+m2)−1/2. (19.21)

Then the free Klein-Gordon Hamiltonian is expressed in terms of the fields
(19.18) as

H(α, ᾱ) =
∫
ᾱC−1αdx, (19.22)
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19.2 Quantization of the Klein-Gordon Equation

We are now ready to attempt to quantize the free Klein-Gordon theory, i.e.
(19.11) - (19.16), with (19.20). The Klein-Gordon equation (19.1), or the cor-
responding Hamiltonian system, (19.11) - (19.16), with (19.20), look like a
continuum of classical harmonic oscillators. The link becomes especially ex-
plicit if pass in the classical fields φ(x, t) and π(x, t) to the Fourier transform
in the x variable: φ̂(k, t) and π̂(k, t). The Fourier transformed fields satisfy
the equation (∂2

t + |k|2)φ̂ = 0, and have the Hamiltonian

H(φ̂, π̂) =
1
2

∫
{|π̂|2 + ω(k)2|φ̂|2}ddk, ω(k) :=

√
|k|2 +m2. (19.23)

Thus we want to quantize the free Klein-Gordon classical field as a continuum
of harmonic oscillators. In the finite dimensional case we can quantize the cor-
responding hamiltonian system in any set of canonically conjugate variables.
In the infinite dimensional case, the choice of such variables makes the dif-
ference between a meaningful and meaningless quantum theory. Recall, that
we obtained a representation (7.16) of the harmonic oscillator, which can be
rewritten, with m = 1 and � = 1, as H =

∑r
j=1 ωja

∗
jaj on the space

L2(Rr, dμc), dμc(x) := [det(2πc)]−1/2e−〈x,c−1x〉drx,

where c := diag(�/ωi), so that 〈x, c−1x〉 =
∑r

i=1 ωix
2
i and drx =

∏r
i=1 dxi is

the Lebesgue measure on R
r, and the operators aj and their adjoints a∗j , are

defined on the space L2(Rr, dμc) by

aj :=

√
1

2ωj
∂xj , a

∗
j = −

√
1

2ωj
∂xj +

√
2ωjxj . (19.24)

dμc is Gaussian measure of mean zero and covariance c. The point here is
that unlike the standard representation, where the harmonic oscillator Hamil-
tonian acts on the space L2(Rr, drx), which has no r → ∞ limit, the new
representation is on the space L2(Rr, dμc), which can be considered as a finite-
dimensional approximation of the Gaussian space L2(Qs, dμC). Here

Qs = {f | (−Δ+ |x|2 + 1)−s/2f ∈ L2(Rd)},

for s sufficiently large, and dμC is the Gaussian measure on Qs of mean 0
and covariance operator C, acting on L2(Rd) and having the matrix c as
a finite–dimensional approximation. Elements of the space L2(Qs, dμC) are
functionals F (φ) on Qs such that

∫

Qs

|F (φ)|2dμC(φ) <∞.
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We explain this in more detail later, in Subsection 19.3 below. The repre-
sentation (19.22) can be thought of as coming from quantization of the clas-
sical hamiltonian system with the hamiltonian h(α, ᾱ) := 〈α, c−1α〉, where
α := (αj).

Motivated by this representation, we associate with the complex fields
α(f), and ᾱ(f), the annihilation operator a(f), and its adjoint, the creation
operator a∗(f), acting on the space L2(Qs, dμC), with some covariance oper-
ator C, for s sufficiently large, according to the relations

a(f) = 〈C1/2f, ∂φ〉, a∗(f) = −〈C1/2f∂φ〉+ 〈C−1/2fφ〉. (19.25)

(More precisely, a(f)F = 〈C1/2f, ∂φF 〉 = ∂λ|λ=0F (φ + λC1/2f), etc.) These
operators satisfy the commutation relations

[a(f), a∗(g)] = 〈f̄ , g〉,
[a(f), a(g)] = [a∗(f), a∗(g)] = 0,

where f, g ∈ C∞
0 . It is convenient to introduce the operator-valued distribu-

tions, a(x) and a∗(x) by a(f) =
∫
a(x)f̄ (x)dx and a∗(f) =

∫
a∗(x)f(x)dx.

Then

a(x) = C1/2∂φ(x), a
∗(x) = −C1/2∂φ(x) + C−1/2φ(x). (19.26)

With this correspondence, the Hamiltonian functional H(α, ᾱ) =
∫
ᾱC−1α is

mapped into the quantum Hamiltonian operator

Hf =
∫
a(x)∗C−1a(x)dx, (19.27)

acting on the space L2(Qs, dμC). (The subindex f stands for the ”field”.) Here
we put the creation operator a(x)∗ on the left of the annihilation operator a(x)
for a reason, to be explained later. Recall, that for the Klein-Gordon CFT,
the covariance operator is given by (19.21). In this case it is convenient to
pass to the Fourier representation, a(k) = (2π)−d/2

∫
e−ik·xa(x)dx, and use

the Plancherel theorem, to obtain

Hf =
∫
ω(k)a∗(k)a(k)dk, (19.28)

where ω(k) =
√|k|2 +m2 (and the meaning of the integral on the r.h.s. is

explained in Section 18.2).
Define the particle number and the momentum operators (cf. Section 24.8

of Mathematical Supplements and Problem 19.13)

N =
∫
a∗(x)a(x)dx and Pf =

∫
a∗(x)(−i∇x)a(x)dx. (19.29)

Problem 19.10 Show (formally) that the operators P , H , and N commute.
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19.3 The Gaussian Spaces

We sketch a definition of the Gaussian measure, dμC(φ), on Qs, of mean 0
and covariance operator C, acting on L2(Rd). (For detailed exposition see
[GJ, Sim1, Sim2].) One way to describe dμC is through finite-dimensional
approximations, X , of Q∗

s = Q−s given in terms of cylinder sets. For each
f ∈ Q∗

s, we define the linear functional on Qs,

f(φ) :=
∫
fφdx

where the integral on the r.h.s. is understood as
∫

(−Δ+ |x|2 +1)s/2f · (−Δ+
|x|2 + 1)−s/2φd3x. Let n = dimX . Given n linearly independent vectors
f1, . . . , fn from X , we associate with each Borel set B in R

n, the X− cylinder
set

CB := {φ | (f1(φ), . . . , fk(φ)) ∈ B}.
With every measurable function g on R

n we associate the functional G(φ) =
g(φ(f1), . . . , φ(fn)) on Q∗

s, called a X−cyliner function. We define dμC(φ) by
giving its integrals of X−cyliner functions over X−cylinder sets

∫

CB

G(φ)dμC (φ) =
∫

B

g(x1, . . . , xn)dμXC (x) (19.30)

for every B and g and for increasing sequence of finite-dimensional spaces X ,
whose limit is Q∗

s. Here dμXC is the finite-dimensional Gaussian measure on
R
n,

dμXC (φ) = (det 2πCX)−1/2e−〈x,C−1
X x〉/2dnx

where dnx is the usual Lebesgue measure on R
n (here we display the dimension

of the measure) and CX is the matrix (〈fi, Cfj〉). dμC(φ) can be extended
to a measure on the σ−algebra generated by cylinder sets which leads to the
notion of the integral of measurable w.r.to this algebra complex functionals.

Next, as usual we define L2(Qs, dμC) to be the space of measurable com-
plex functionals F (φ) on Qs such that

∫
Qs
|F (φ)|2dμC(φ) < ∞. The basic

examples of square integrable functionals are

F : φ ∈ Qs 	→ p(φ(f1), . . . , φ(fn))

where p(t1, . . . , tn) are polynomials in t1, . . . , tn and f1, . . . , fn ∈ Q∗
s. In fact,

one can show that, by our construction,

the span of vectors of the form
n∏

1

φ(fj)Ω, n ≥ 1, is dense in L2(Qs, dμC).

(19.31)
Proving this latter fact requires some general considerations from the theory
of functional spaces. (See however the corresponding proof for the harmonic
oscillator.)
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We introduce the expectation of a functional F with respect to dμC :

E(F ) :=
∫
F (φ)dμC(φ).

The terminology “mean 0” and “covariance C” corresponds to the properties

E(φ(f)) = 0 and E(φ(f)φ(g)) = 〈f, Cg〉,
or formally,

E(φ(x)) = 0 and E(φ(x)φ(y)) = C(x, y)

where C(x, y) is the integral kernel of C. These formulae can be easily proven
by using finite dimensional approximations (19.30).

What should s be? Compute the expectation of the square of the norm
functional φ→ ‖φ‖2Qs := 〈φ, (−Δ+ |x|2 + id)−sφ〉 =

∫
φ(x)Ks(x, y)φ(y)dxdy,

where Ks(x, y) is the integral kernel of the operator (−Δ + |x|2 + id)−s. We
have formally

E(‖φ‖2Qs) =
∫ ∫

δ(x− y)Ks(x, y)E(φ(x)φ(y))dxdy

=
∫ ∫

δ(x− y)Ks(x, y)C(x, y)dxdy.

Since C(x, y) = C(y, x), this gives E(‖φ‖2Qs ) = Tr((−Δy + |x|2 + id)−sC).
Now, the operator C is bounded and the operator (−Δy+ |x|2 +id)−s is trace
class if s > d = 3. So in this case E(‖φ‖2Qs) < ∞. If we know more about
C, we can relax the condition s > d = 3. For example, for the Klein-Gordon
theory, C = (−Δ+m2)−1/2 and we have s > d− 1 for the dimension d ≥ 2.

The integration by parts formula in our space is
∫

Qs

F̄ (−i∂φG)dμC(φ) =
∫

Qs

(−i∂φ + iC−1φ)FGdμC(φ). (19.32)

To prove (19.32) we use
∫

Qs

F̄ (−i∂φG)dμC(φ) =
∫

Qs

(−i∂φF )GdμC(φ) + i

∫

Qs

F̄G∂φdμC(φ)

and the relation
∂φdμC (φ) = −C−1φdμC(φ).

To see the latter relation, think formally about the Gaussian measure as being

dμC(φ) = const e−〈φ,C−1φ〉/2Dφ.

The integration by parts formula implies that −i∂φ is not symmetric on
L2(Qs, dμC):

(−i∂φ)∗ = −i∂φ + iC−1φ.

However, the above implies that the operator π := −i∂φ + 1
2 iC

−1φ is sym-
metric. In fact, it is self-adjoint: π∗ = π.
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19.4 Wick Quantization

We now describe a systematic way to quantize observables, called Wick quan-
tization. To see why we need a special procedure let us quantize naively
the free Klein-Gordon Hamiltonian (19.11), with (19.20), which we rewrite
as H(φcl, πcl) = 1

2

∫ {(πcl)2 + (C−1φcl)2}dx, where C is given in (19.21) and
where we denote for the moment the classical coordinate and momentum field
by φcl and πcl, respectively. First we observe that the quantum fields corre-
sponding to the classical fields φcl and πcl are

φ(x) =
1√
2
C1/2(a(x) + a∗(x)) and π(x) =

1
i
√

2
C−1/2(a(x)− a∗(x)). (19.33)

Here, remember, φ(x) is considered as an operator of multiplication by the
evaluation functional φ(x). The second equation gives

π := −i∂φ +
1
2
iC−1φ.

We have shown in Subsection 19.3 that this operator is symmetric. Using this
expression, one can show that

i[π(x), φ(y)] = δ(x− y) (19.34)

i[π(x), π(y)] = i[φ(x), φ(y)] = 0.

Problem 19.11 Derive formally the commutation relations above.

Now in the expression (19.11), with (19.20), we replace the classical fields by
the quantum ones above to obtain

H(φ, π) =
1
2

∫
{π2 + (C−1φ)2}dx

=
1
2

∫
{[ i

2
C−1/2(a∗ − a)]2 + [

1
2
C−1/2(a∗ + a)]2}dx

=
1
4

∫
{C−1/2a∗C−1/2a+ C−1/2aC−1/2a∗}dx

=
1
2

∫
a∗C−1a+

1
4

∫
(C−1δx)dx

where we have used the commutation relation for a and a∗, and the self-
adjointness of C−1/2. The first term on the right hand side is non-negative,
and the second is infinite (recall (19.21), which gives C−1 = (−Δ+m2)1/2),
and therefore the r.h.s. is infinite.

We can make this argument rigorous as follows. First, we move to momen-
tum space via the Fourier transform: a(x) 	→ a(k), a∗(x) 	→ a∗(k) (we omit
the ’hats’ over a(k) and a∗(k)). We wish to show that

∫
ω(k)a(k)a∗(k)dk =∞,
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where ω(k) = (|k|2 +m2)1/2 (the dispersion law). Let R
d = ∪α∈ZdBα (a dis-

joint union), where Bα is the unit box with center at a lattice point in Z
d,

aα =
∫
Bα

a, and ωα = mink∈Bα ω(k). Then

[aα, a∗β] = δα,β

so that ∫
ωaa∗ ≥

∑

α∈Z3

ωαaαa
∗
α.

On the other hand,
∑

ωαaαa
∗
α =

∑
ωαa

∗
αaα +

∑
ωα =∞.

Now we describe the quantization procedure which avoids the above prob-
lem. Fix the covariance C. Recall that we denote for the moment the classical
coordinate and momentum fields by φcl and πcl, respectively. Classical ob-
servables are functionals A(φcl, πcl) of φcl and πcl. We express A(φcl, πcl) in
terms of the functions α and ᾱ, using

φcl =
1√
2
C1/2(α + ᾱ) and πcl =

1
i
√

2
C−1/2(α − ᾱ)

(see (19.18)): A(φcl, πcl) = B(α, ᾱ). We consider functionals B(α, ᾱ) :
L2(Rd) × L2(Rd) → C, analytic in α and ᾱ, of the sense of the convergent
power series,

B(α, ᾱ) =
∑

m,n

∫
Bm,n(x1, . . . , xm+n)

m∏

i=1

ᾱ(xi)
m+n∏

i=m+1

α(xi)d(n+m)x.

We associate with classical observables, A(φcl, πcl), quantum observables, i.e.
operators A on the state space L2(Qs, μC), according to the rule

A(φcl, πcl) 	→ A :=: A(φ, π) : ≡ : B(a∗, a) : (19.35)

where : B(a∗, a) : is a Wick ordered operator defined by

: B(a∗, a) : =
∑

m,n

∫
Bmn(x1, . . . , xm+n)

m∏

i=1

a∗(xi)
m+n∏

i=m+1

a(xi)d(n+m)x.

(19.36)
Here are some examples of Wick ordering:

Example 19.12

: φ2 : = : [C−1/2(a+ a∗)]2 :

= : (C−1/2a)2 + (C−1/2a∗)2 + C−1/2a∗C−1/2a+ C−1/2aC−1/2a∗ :

= (C−1/2a)2 + (C−1/2a∗)2 + 2C−1/2a∗C−1/2a.
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Using above, we compute

Hf =
1
2

∫
: {π2 + |∇φ|2 +m2φ2} : dx =

1
2

∫
a∗C−1adx. (19.37)

Problem 19.13 Show that the momentum operator Pf =
∫
a∗(x)(−i∇x)

a(x)dx can be written as (cf. (24.26))

Pf =
∫

: π(x)∇xφ(x) : dx.

Problem 19.14 (see [GJ]) Let c = 〈f, Cf〉 = E(φ(f)2). Show

1. : φ(f)n := cn/2Pn(c−1/2φ(f)) where Pn is the nth Hermite polynomial
2. : eφ(f) := eφ(f)−c/2.

19.5 Fock Space

Using the definitions (19.26) of the annihilation operator a(x), we see that
the only solution to the equation aΩ = 0 is Ω = const. We thus set Ω ≡ 1,
and call it the vacuum. Now we show that any element of L2(Q, dμC) can
be obtained by applying creation operators to the vacuum. From now on, we
omit the subindex s in Qs. Let ©S denote the symmetrized tensor product
and L2

sym(Rnd), the subspace of L2(Rnd) consisting of functions which are
symmetric with respect to permutations of the n variables xj ∈ R

d.

Theorem 19.15 Any vector F ∈ L2(Q, dμC) can be written uniquely as

F =
∞∑

n=0

1√
n!

∫
Fn(x1, . . . , xn)a∗(x1) · · · a∗(xn)Ωdx1 · · · dxn (19.38)

where Fn ∈ L2
sym(Rnd) =©Sn1L2(Rd).

Proof. For simplicity, we will denote the right hand side in (19.38) by
∑

n
1√
n!∫

Fn(a∗)nΩ. We first remark that for any Gn ∈ L2(Rnd),
∫
Gn(a∗)nΩ =

∫
Gsymn (a∗)nΩ (19.39)

where

Gsym(x1, . . . , xn) =
1
n!

∑

π∈Sn
G(xπ(1), . . . , xπ(n)) ∈ L2

sym(Rnd)

is the symmetrization of φ. Here Sn is the group of permutations of the n
variables, and for π ∈ Sn, π(1, . . . , n) = (π(1), . . . , π(n)).

Next, we have by straightforward computation

〈
∫
Fn(a∗)nΩ,

∫
Gm(a∗)mΩ〉 =

{
0 n �= m

n!〈Fn, Gn〉 n = m.
(19.40)
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Problem 19.16 Show (19.40).

Thus, for two vectors, F and G, of the form (19.38), we have

〈F,G〉 :=
∞∑

n=1

〈Fn, Gn〉. (19.41)

Now we use the fact that the span of vectors of the form
∏n

1 φ(fj)Ω, n ≥ 1,
is dense in L2 (see (19.31)). By the relation (19.33), we have

n∏

1

φ(fj) =
n∏

1

1√
2
(a(C1/2fj) + a∗(C1/2fj)).

Using the commutation relation, a(f)a(f)∗ = a(f)∗a(f)+ 〈f, g〉, to pull a’s to
the right of a∗’s, we transform the product

∏
(a + a∗) to the normal form∏n

1 (a + a∗) =
∑

k+l≤n
∫
Akl(a∗)kal. But (a∗)kalΩ = 0 unless l = 0, so

∏n
1 φ(fj)Ω =

∑
k≤n

∫
Ak0(a∗)kΩ. By (19.39), this can be rewritten as

n∏

1

φ(fj)Ω =
∑

k≤n

∫
1√
n!
Fk(a∗)kΩ

where Fk ∈ L2
sym(Rkd) = ©Sk1symL2(Rd). Thus vectors of the form

∑
1
n!∫

Fn(a∗)nΩ are dense in L2. On the other hand, by (19.41), the subspace
{

F =
∑

n

1√
n!

∫
Fn(a∗)nΩ | Fn ∈ L2

sym(Rnd)

}

(19.42)

is closed. Since by above, it contains a dense set, it is the whole L2 space.

Definition 19.17 The (bosonic) Fock space is

F :=
∞⊕

n=0

[
n

©S
1
L2(Rd)] with 〈F,G〉 :=

∞∑

n=1

〈Fn, Gn〉.

We call Fn :=©Sn1 L2(Rd) the n-particle sector. By convention, F0 = C.

The previous theorem provides a unitary isomorphism

L2(Q, dμC) � F
given by

∑ 1√
n!

∫
φn(a∗)nΩ ↔

∞⊕

n=0

φn ≡ (φ0, φ1, φ2, . . . ) .

Moreover it is easily checked that
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E(F ) :=
∫

Q

FdμC = 〈Ω,FΩ〉

and on F ,
a(f) : φn ∈ Fn 	→

√
n〈f, φn〉 ∈ Fn−1

and
a∗(f) : φn ∈ Fn 	→

√
n+ 1f©Sφn ∈ Fn+1.

Proposition 3. In the Fock space representation, the Hamiltonian, Hf =∫
a∗C−1a, the momentum operator Pf =

∫
a∗(−i∇)a and particle number,

N =
∫
a∗a, operators (see (19.27) and (19.29)) are of the form

Hfφ ↔
∞⊕

n=0

( n∑

1

C−1
xj φn

)
, Pfφ ↔

∞⊕

n=0

( n∑

1

pxjφn
)
,

Nφ ↔
∞⊕

n=0

(
nφn

)
,

where the subscript xj in Cxj indicates that this operator acts on the variable
xj .

This is simply a matter of using the commutation relations. We leave the
proof as an exercise.

Thus we have obtained a very simple realization of our state space
L2(Q, dμC) which is independent of C, and in which the Klein-Gordon Hamil-
tonian acts as a direct sum of simple operators in a finite but increasing num-
ber of variables:

Hf = ⊕∞
n=0

n∑

1

√
−Δxi +m2.

In particular, the spectrum of Hf is

σ(Hf ) = {0} ∪ {∪n≥1[nm,∞)}

where the zero-eigenfunction is the vacuum, Ω. Physically, this theory de-
scribes non-interacting particles (bosons) of mass m.

Problem 19.18 Find the spectrum of the momentum operator

Pf =
∫
a∗(x)(−i∇x)a(x)dx.

Remark 19.19 For connections with stochastic fields and with infinite di-
mensional pseudodifferential calculus, see [Zi] and Berezin [Ber], respectively.
There is also a relation to the Wiener chaos expansion used in stochastic
differential equations.
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19.6 Quantization of Maxwell’s Equations

Maxwell’s equations as a hamiltonian system. As a prelude to quan-
tizing Maxwell’s equations we have first to write them in Hamiltonian form.
Recall that we work in physical units in which the Planck constant and speed
of light are equal to 1: � = 1, c = 1. The Maxwell equations for vector fields
E : R

3+1 → R
3 (the electric field) and B : R

3+1 → R
3 (the magnetic field) in

vacuum are
∇ ·E = 0 ∇×B =

∂E

∂t
(19.43)

∇× E = −∂B
∂t

∇ ·B = 0. (19.44)

The third and fourth equations are actually constraints. They can be used to
reduce number of unknowns by introducing the potentials U : R

3+1 → R and
A : R

3+1 → R
3 such that

B = ∇×A, E = −∂A/∂t−∇U. (19.45)

Then the last the equations (19.44) are satisfied automatically. There is still a
redundancy in the choice of A and U . Specifically, any gauge transformation

A 	→ A+∇χ, U 	→ U − ∂χ/∂t (19.46)

for χ : R
3+1 	→ R, results in new potentials A and U which yield the same

fields E and B. By appropriate choice of χ, we may take

∇ · A = 0

which is called the Coulomb gauge. From now on, we work in this gauge. The
equation for U is ΔU = 0, so we can take U = 0, which gives

E = −∂A/∂t, B = ∇×A.
Now, the first, third and fourth equations in (19.43) - (19.44) are automatically
satisfied while the second equation results in

�A = 0, ∇ · A = 0. (19.47)

Thus the vector potential A is a transverse vector field satisfying a wave
equation. (A vector field f : R

3 → R
3 is called transverse (or incompressible

or divergence free) if ∇ · f = 0.)
Similarly as for the Klein-Gordon equation, one shows that Equa-

tion (19.47) is the Euler-Lagrange equation for the action

S(A) =
1
2

∫ T

0

∫

R3
{|Ȧ|2 − |∇ ×A|2}dxdt (19.48)

where the variation is among transverse vector fields. Again repeating the
steps we went through in the Klein-Gordon case, we arrive, for Maxwell’s
equations, at
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1. the phase space, which is the direct sum of two Sobolev spaces of trans-
verse vector fields (i.e. the derivatives are considered in distributional
sense),

Z = H1,trans(R3; R3)⊕H1,trans(R3; R3);

2. the Hamiltonian functional (the Legendre transform of the Lagrangian
L(A, Ȧ) :=

∫
R3{|Ȧ|2 − |∇×A|2}),

H(A,E) =
1
2

∫
{|E|2 + |∇ ×A|2}dx

=
1
2

∫
{|E|2 + |B|2}dx

(19.49)

where −E is the canonically conjugate field to A : ∂ȦL(A, Ȧ) = Ȧ = −E,
and ∇ · E = 0;

3. the Poisson bracket

{F,G} := 〈∂AF, T∂EG〉 − 〈∂EF, T∂AG〉 (19.50)

(on Z), where T be the projection operator of vector fields onto transverse
vector fields:

TF := F − (Δ)−1∇(∇ · F );

4. Canonically conjugate fields are A and E. If Tij(x − y) is the matrix
integral kernel of the operator T , then

{Ei(x), Aj (y)} = Tij(x− y).
Note that by the definition, ∂AF = T∂AF and similarly for ∂EF . The Hamil-
ton equations for the above system are

Φ̇ = JT ∂ΦH(Φ), JT :=
(

0 −T
T 0

)

, Φ = (A,E). (19.51)

Note that the first Hamilton equation yields, as expected,

Ȧ = T∂EH(A,E) = −TE = −E.
Problem 19.20 Check that ∇ · (TF ) = 0.

Problem 19.21 Check that Maxwell’s equations are equivalent to the Hamil-
ton equations (19.51). (Cf. Problem 19.2.)

Quantization of the EM field. We quantize the Maxwell hamilto-
nian system in the same way as the Klein-Gordon one, but replacing scalar
generalized operator-functions, say a(x), by generalized transverse operator-
vector-fields, say a(x) = (a1(x), a2(x), a3(x)) with ∇ · a(x) = 0, and using
the projection T onto the be the transverse vector fields, when needed. Here
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∇ · a(x) is understood as a distributional divergence of the operator-valued
distribution,

∫
∇ · a(x)f̄ (x)dx = −

∫
a(x) · ∇f̄(x)dx = −a(∇f),

i.e. a symbolic way to represent the operator-valued functional −a(∇f). The
resulting theory can be summarized as follows:

1. The quantum state space is L2(Qtrans, dμC), where, for s sufficiently large,

Qtrans = {A : R
3 → R

3 | (−Δ+ |x|2 + id)−s/2A ∈ L2, divA = 0}

and dμC is the Gaussian measure of Qtrans with the covariance operator
C = (−Δ)−1/2.

2. The quantized A(x) and E(x) are operator-valued transverse vector fields,
acting on the space L2(Qtrans, dμC) as the multiplication operator byA(x)
and E(x) := −i∂A(x) + 1

2
iC−1A(x), respectively. They give canonically

conjugate fields with the non-trivial commutation relation

i[Ek(x), Al(y)] = Tkl(x− y)1

where T (x − y) is the integral kernel of the projection operator, T , onto
the transverse vector fields (recall our convention � = 1).

3. A(x) and E(x) are expressed in terms of the annihilation and creation
operators, a(x) and a∗(x), as

A(x) =
1√
2
C1/2(a(x)+a∗(x)), E(x) =

1
i
√

2
C−1/2(a(x)−a∗(x)). (19.52)

Here a(x) and a∗(x) are operator-valued transverse vector-fields, a(x) =
(a1(x), a2(x), a3(x)) with ∇ · a(x) = 0, satisfying the commutation rela-
tions

[ai(x), a∗j (y)] = Tkl(x− y)1, [ai(x), aj(y)] = 0 = [a∗i (x), a
∗
j (y)].

(19.53)

4. The quantum Hamiltonian operator acts on the space L2(Qtrans, dμC)
and is given by

Hf =
1
2

∫
: |E|2 + |∇ ×A|2 : dx =

∫
a(x)∗ · √−Δa(x)dx, (19.54)

where a(x)∗ ·√−Δa(x) =
∑
i ai(x)

∗ ·√−Δai(x). (Here again the subindex
f stands for the ”field” and the precise definition of the integral on the
r.h.s can be found in Section 19.2.)
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Note an essential difference in the EM case: there is no mass (m = 0). That
is, the covariance operator is C = (−Δ)−1/2.

The equations (19.52) - (19.54) give the full description of the quantized
electro-magnetic field in vacuum.

For the Maxwell theory, the Fock space is built on the one-particle
space L2

transv(R3,R3) := {f ∈ L2(R3,R3)|divf = 0}, instead of L2(Rd) ≡
L2(Rd,C). The Maxwell Hamiltonian acts on it as

Hf = ⊕∞
n=0

n∑

1

√
−Δxi .

This representation can be used to obtain the spectrum of H :

σ(Hf ) = {0} ∪ {∪n≥1[0,∞)}
where the zero-eigenfunction is the vacuum, Ω. Physically, this theory de-
scribes non-interacting massless particles (bosons), called photons.

The Fourier transforms, a(k) and a∗(k), of the operators a(x) and a∗(x)
satisfy a(k) = (a1(k), a2(k), a3(k)) with k · a(k) = 0. The commutation rela-
tions for ai(k), a∗i (k) are

[ai(k), a∗j (k)] = (δij − kikj
|k|2 )δ(k − k′), [ai(k), aj(k′)] = 0 = [a∗i (k), a

∗
j (k

′)].

(19.55)

In these terms, the Maxwell quantum Hamiltonian is of the form

Hf =
∫
ω(k)a∗(k) · a(k)dk,

with ω(k) = |k|, and the quantized vector potential, A(x), is given by

A(x) =
∫
{eix·ka(k) + e−ix·ka∗(k)} dk

√
ω(k)

. (19.56)

In the Fourier representation, we can choose an orthonormal basis eλ(k) ≡
e(k, λ), λ ∈ {−1, 1} in k⊥ ⊂ R

3, satisfying k · eλ(k) = 0. The vectors eλ(k) ≡
e(k, λ), λ ∈ {−1, 1} are called polarization vectors. We can write the operator-
valued transverse vector fields a#(k) as

a#(k) :=
∑

λ∈{−1,1}
eλ(k)a

#
λ (k),

where a#
λ (k) ≡ a#(k, λ) := eλ(k) · a#(k), the components of the creation and

annihilation operators a#(k) in the direction transverse to k; they satisfy the
commutation relations

[
a#
λ (k) , a#

λ′(k′)
]

= 0,
[
aλ(k) , a∗λ′(k′)

]
= δλ,λ′δ3(k − k′). (19.57)
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Now the Hamiltonian Hf and the quantized vector potential, A(x), can be
written as

Hf =
∑

λ

∫
ω(k)a∗λ(k)aλ(k)dk

and

A(x) =
∑

λ

∫
{eix·kaλ(k) + e−ix·ka∗λ(k)}eλ(k)

dk
√
ω(k)

. (19.58)

Elements of Fn can be written as ψn(k1, λ1, . . . , kn, λn), where λj ∈ {−1, 1}
are the polarization variables. Roughly in the case of photons, compared with
scalar bosons, one replaces the variable k by the pair (k, λ) and adds to the
integrals in k also the sums over λ.





20

Standard Model of Non-relativistic Matter

and Radiation

In this chapter we introduce and discuss the standard model of non-relativistic
quantum electrodynamics (QED). Non-relativistic QED was proposed in the
early days of Quantum Mechanics (it was used by Fermi ([Fermi]) in 1932 in
his review of theory of radiation). It describes quantum-mechanical particle
systems coupled to a quantized electromagnetic field, and appears as a quan-
tization of the system of non-relativistic classical particles interacting with a
classical electromagnetic field (coupled Newton’s and Maxwell’s equations). It
is the most general quantum theory obtained by quantizing a classical system.

20.1 Classical Particle System Interacting with an
Electro-magnetic Field

We consider a system of n classical particles of masses mi and electric charges
ei interacting with electro-magnetic field. Recall that we work in physical
units in which the speed of light is equal to 1: c = 1. The coupled Newton’s
and Maxwell’s equations, describing interacting particles and electromagnetic
field are

miẍi(t) = ei[E + ẋi ∧B](xi(t), t), (20.1)

∇ · E = ρ, ∇×B =
∂E

∂t
+ j, (20.2)

∇× E = −∂B
∂t
, ∇ · B = 0. (20.3)

Here ρ and j are the charge and current densities: ρ(x, t) =
∑
i eiδ(x− xi(t))

and j(x, t) =
∑

i eiẋi(t)δ(x − xi(t)). The first equation is Newton’s equation
with the Lorentz force. The last four equations are Maxwell’s equations in
presence of charges and currents.

To find a hamiltonian formulation of these equation we first present the
minimum action principle for this system. As before, we express the electric
and magnetic fields, E and B, in terms of the vector potential, A : R

3+1 �→ R
3,
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and the scalar potential, U : R
3+1 �→ R via (19.45). The action functional

which gives (20.1) is given by

S(γ|U,A) =
∫ T

0

∑

i

(mi

2
|γ̇i|2 − eiU(γi) + eiγ̇i ·A(γi)

)
. (20.4)

Indeed, let us compute the Euler-Lagrange equation for this functional (see
(4.27)). Using the Lagrangian functional L(γ, γ̇|U,A) =

∑
i

(
mi
2
|γ̇i|2−eU(γi)−

eγ̇i ·A(γi)
)
, we compute

∂γ̇L(γ, γ̇|U,A) = mγ̇ + eA(γ), ∂γL(γ, γ̇|U,A) = e∇U(γ) + e∇γ̇ ·A(γ).

Plug this into (4.27) and use the relations d
dtA(γ) = ∂tA(γ)+(γ̇ ·∇)A(γ), ∇(γ̇ ·

A)− (γ̇ · ∇)A(γ) = γ̇ ∧ curlA, and (19.45) to obtain (20.1).
To (20.4) we add the action of electromagnetic field found in the previous

chapter, but with a non-zero scalar potential,

Sem(U,A) =
1
2

∫ T

0

∫

R3

(|Ȧ+∇U |2 − |∇ ×A|2)(x, t)dxdt.

(We do not have to assume the Coulomb gauge, divA = 0, here.) Using that
eU(x(t), t) =

∫
R3 ρ(x, t)U(x, t)dx and eẋ(t) ·A(x(t), t) =

∫
R3 j(x, t) ·A(x, t)dx,

to rewrite the last two terms in (20.4), we obtain the action functional of the
coupled system

S(γ, U,A) = Sp(γ) + Sem(U,A) + Sint(γ, U,A), (20.5)

where Sp(γ) =
∫ T
0

∑
i
mi
2 |γ̇i|2dt is the action of the free particle, familiar to

us from Section 4.4, Sem(U,A) is the action of a free electro-magnetic field
given above, and Sint(φ,U,A) is the interaction action, coupling them,

Sint(γ, U,A) =
∫ T

0

∫

R3

(− ρ(x, t)U(x, t) + j(x, t) · A(x, t)
)
dxdt. (20.6)

It is easy to check that the Euler-Lagrange equation for the action (20.5) gives
the Newton - Maxwell system (20.1) - (20.3).

Gauge invariance. The fields E and B are not changed under gauge trans-
formations (19.46) of A and U . Hence we would like to make sure that the
action (20.6) gives the same equations of motion for different A and U , con-
nected by a gauge transformation (19.46). Under (19.46), the action (20.6)
changes as S(γ, U,A)→ S(γ, U,A) + Λ(γ, χ), where

Λ(γ, χ) :=
∫ T

0

∫

R3

(
ρ∂tχ+ j(x, t) · ∇χ)

dxdt (20.7)
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=
∫ T

0

∫

R3

(
∂t(ρχ) +∇ · (jχ)− (∇ · j + ∂tρ)

)
dxdt. (20.8)

Hence the gauge transformation leads to an equivalent action/Lagrangian, i.e.
to the action which gives the same Euler-Lagrange equation.

Covariant formulation. Geometrically, the electric field is a one-form,
while the magnetic field is a two-form. One can form the field tensor F :=
−E∧dx0 +B, as a two-form on the Minkowskii space M3+1, with coordinates
(x0, x1, x2, x3), where x0 = t, and the metric g = diag(1,−1,−1,−1). By the
last two Maxwell’s equations, F is a closed form, dF = 0, and therefore it is
exact, i.e. there is a one-form A, s.t. F = dA. (A can be thought of as a con-
nection, and F as a curvature on a U(1)−bundle.) Then the action functional
can be written as a ’Dirichlet’ integral, S(A) = − 1

16π

∫
M3+1(‖dA‖2 + 〈J ,A〉),

where J := (ρ, j) on the Minkowskii space M3+1, with the norm and inner
product related to the Minkowskii metrics, g = diag(1,−1,−1,−1). This gives
the first two of Maxwell’s equations as d∗F = J , where d∗ is the operator
adjoint to d.

Elimination of scalar potential. Note that the time derivative of scalar
potential U does not enter this Lagrangian. This indicates that U is not a
dynamical variable and we can eliminate it from the action. We do this in the
Coulomb gauge, divA = 0, as follows. Varying the action S(γ, U,A) w.r. to
U , we obtain the first of Maxwell’s equations

−ΔU = ρ. (20.9)

Furthermore, divA = 0 implies, after integration by parts, that
∫

R3 |Ȧ +
∇U |2dx =

∫
R3

(|Ȧ|2+|∇U |2)dx. Using this and
∫

R3 |∇U |2dx =
∫

R3 U(−Δ)Udx
=

∫
R3 Uρdx, we see that the terms involving U add to − 1

2

∫
R3 Uρdx. Now,

solving the Poisson equation (20.9) for U as U = (−Δ)−1ρ, we obtain
∫

R3
ρUdx =

∫

R3
ρ(−Δ)−1ρdx = Vcoul(x),

where x = (x1, . . . , xn), plus the infinite Coulomb self-energy term. Here
Vcoul(x) := 1

2

∑
i�=j

eiej
|xi−xj| . With this and dropping the Coulomb self-energy

term, we can write the action as

Scoul(γ,A) = Scoulp (γ) + Sf (A) + Scoulint (γ,A), (20.10)

where Scoulp (γ) =
∫ T
0

( ∑
i
mi
2
|γ̇i|2 − Vcoul

)
dt, Sf (A) = 1

2

∫ T
0

∫
R3

(|Ȧ(x, t)|2 −
|∇ ×A(x, t)|2)dxdt is the free action of electromagnetic field, encountered in
the previous chapter, and

Scoulint (φ,A) =
∫ T

0

∫

R3
j(x, t) · A(x, t)dxdt. (20.11)
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Hamiltonian formulation. Now, we pass to the hamiltonian formulation.
To this end we impose the Coulomb gauge, divA = 0 and use the La-
grangian given by the above action. The generalized particle momenta are
ki = miẋi + eA(xi), while the field momentum is −E = Ȧ, the same as
in the free case. The classical Hamiltonian functional is H(x, k,A,E) =
k · v − L(x, v, A,E)|miẋi=ki−eA(xi),Ȧ=−E , which gives

H(x, k,A,E) =
∑

i

1
2mi

(ki − eiA(xi))2 + Vcoul(x) +Hf (A,E)

where k = (k1, . . . , kn) and Hf (A,E) is the Hamiltonian functional of the free
electro-magnetic field. Defining the Poisson bracket as the sum of classical
mechanics one, (4.34), and electro-magnetic one, (19.50), we arrive at the
hamiltonian formulation for a system of n particles of masses m1, . . . ,mn and
charges e1, . . . , en interacting with electromagnetic field, (E, B).

20.2 Quantum Hamiltonian of Non-relativistic QED

According to our general quantization procedure, we replace the classical
canonical variables xcli and kcli and classical fields Acl(x), and Ecl(x) by the
quantum canonical operators xi, pi, A(x), and E(x) (see (4.4) and (19.52)),
acting on the state space

L2(R3n)⊗ L2(Qtrans, dμC) 
 L2(R3n)⊗F ≡ Hpart ⊗Hf . (20.12)

In the units in which the Planck constant divided by 2π and the speed of light
are equal to 1, � = 1 and c = 1, the resulting Schrödinger operator, acting on
Hpart ⊗Hf , is

H =
n∑

i=1

1
2mi

(pi − eiA(xi))2 + Vcoul(x) +Hf , (20.13)

where, recall, mi and ei are the mass (in fact, the ’bare’ mass, see below)
and charge of the i-th particle. Recall the the quantized vector potential A(x)
and quantum Hamiltonian Hf are given in terms of the annihilation and cre-
ation operators a(k) =

∑
λ eλ(k)aλ(k) and a∗(k) =

∑
λ eλ(k)a

∗
λ(k) (obeying

canonical commutation relations (19.57)) by

A(x) =
∫
{eix·ka(k) + e−ix·ka∗(k)} d3k

√
ω(k)

(20.14)

and
Hf =

∫
ω(k)a(k)∗ · a(k)dk. (20.15)
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Note that in the units we have chosen, various physical quantities entering the
quantum hamiltonian are not dimensionless. We choose these units in order
to keep track of the particle mass.

Also note that we omitted the identities 1part and 1f on Hpart and Hf ,
respectively, and a careful notation would have Vcoul(x)⊗ 1f and 1part ⊗Hf ,
instead of Vcoul(x) and Hf . In what follows, as a rule, we do not display these
identities.

Gauge principle (minimal coupling). We see that the full, interacting
Hamiltonian, is obtained by replacing the particle momenta pj by the covari-
ant momenta pA,j = pj− ejA(xj), and adding to the result the field Hamilto-
nian, Hf , responsible for the dynamics of A(x). This procedure is called the
minimal coupling and it is justified by a gauge principle requiring the global
gauge symmetry of the particle system also to be the local one.

Ultra-violet cut-off. The quantum Hamiltonian H we obtained above is ill-
defined: its domain of definition contains no non-zero vectors. The problem is
in the interaction (p − eA(x))2 − p2 = −2eA(x)p + e2A(x)2 (written here in
the one-particle case). The A(x) is too rough an operator-valued function. It
has the empty domain. E. g.

A(x)(f(x) ⊗Ω) = f(x)A(x)Ω

= f(x)
∫
e−ix·ka∗(k)Ω

d3k
√
ω(k)

/∈ L2(R3)⊗F .

To remedy this we institute an ultraviolet cut-off. It consists of replacing
A(x) in (20.14) by the operator Aχ(x) := χ̌ ∗ A(x) where χ̌ is a smooth
well-localized around 0 (i.e. sufficiently fast decaying away from 0) function:

A(x) �→ Aχ(x) := χ̌ ∗A(x). (20.16)

Recall that χ̌ denotes the inverse Fourier transform of a function χ. We choose
χ̌ to be a positive function whose integral is equal to 1 (a smoothed-out δ-
function). In fact, the specific shape of χ̌ is not important for us. Now, Aχ(x)
is of the form

Aχ(x) =
∫

(eik·xa(k) + h.c.)
χ(k)

√
ω(k)

dk. (20.17)

Assuming that the ultra-violet cut-off χ decays on the scale κ, we arrive, as a
result, at the Hamiltonian of non-relativistic matter interacting with radiation:

Heκ =
n∑

j=1

1
2mj

(pAχ,j)
2 + e2jVcoul(x) +Hf (20.18)

acting on Hpart ⊗ Hf , where pAχ,j = pj − ejAχ(xj), and pj = −i∇xj (note
that the parameter e enters the definition of the operator pAχ,j). This is the
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standard model of non-relativistic QED. We show below that Heκ is well-
defined and is self-adjoint.

To sum up, we arrived at a physical system with the state space H =
Hp ⊗ Hf and the quantum Hamiltonian Heκ. Its dynamics is given by the
time-dependent Schrödinger equation with

i∂tψ = Heκψ,

where ψ is a differentiable path in the Hilbert space H = Hp ⊗ Hf . A few
comments are now in order.

Choice of κ. We assume that our matter consists of electrons and the
nuclei and that the nuclei are infinitely heavy and therefore are manifested
through the interactions only). We reintroduce the Planck constant, � and
speed of light, c, for a moment. The electron mass is denoted by mel. Since
we assume that χ(k) decays on the scale κ, in order to correctly describe the
phenomena of interest, such as emission and absorption of electromagnetic
radiation, i.e. for optical and rf modes, we have to assume that the cut-off
energy, �cκ, is much greater than the characteristic energies of the particle
motion. The latter motion takes place on the energy scale of the order of the
ionization energy, i.e. of the order α2melc

2, where α = e2

4π�c ≈ 1
137 is the

fine-structure constant. Thus we have to assume α2melc
2 � �cκ.

On the other hand, for energies higher than the rest energy of the the
electron (melc

2) the relativistic effects, such as electron-positron pair creation,
take place. Thus it makes sense to assume that �cκ� melc

2. Combining the
last two conditions we arrive at the restriction α2melc

2 � �cκ � melc
2 or

α2melc/�� κ� melc/�. In our units (� = 1, c = 1) this becomes

α2mel � κ� mel.

Free parameters. We will see later that the physical mass, mel, is not
the same as the parameter m ≡ mj (the ’bare’ mass) entering (20.18), but
depends on m and κ. Inverting this relation, we can think of m as a function
of mel and κ. If we fix and the particle potential V (x) (e.g. taking it to be
the total Coulomb potential), and mel and e, then the Hamiltonian (20.18)
depends on one free parameter, the bare electron mass m (or the ultraviolet
cut-off scale, κ).

Gauge equivalence. We quantized the system in the Coulomb gauge.
Assume we quantized the system in a different gauge, say the Lorentz gauge,
how is the latter Hamiltonian related to the former one? As we saw above,
classically, different gauges give equivalent descriptions of a classical system.
Do they lead to equivalent descriptions of the corresponding quantum sys-
tem? The answer is yes. One can show that quantum Hamiltonians coming
out of different gauges, as well as other observables, are related by unitary
(canonical) transformations.
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20.2.1 Translation invariance

The system of particles interacting with the quantized electromagnetic fields
is invariant under translations of the particle coordinates, x → x + y, where
y = (y, . . . , y) (n− tuple) and the fields, A(x)→ A(x− y), i.e. Heκ commutes
with the translations

Ty : Ψ(x,A)→ Ψ(x+ y, tyA), (20.19)

where (tyA)(x) = A(x−y). (We say that Heχ is translation invariant.) Indeed,
we use (20.19) and the definitions of the operators A(x) and E(x), to obtain
TyA(x) = (tyA)(x)Ty and TyE(x) = (tyE)(x)Ty , which, due to the definition
of Heχ, give

TyHeκ = HeκTy,

In the Fock space representation (20.19) becomes

Ty : ⊕nΨn(x, k1, . . . , kn)→ ⊕neiy·(k1+...kn)Ψn(x+ y, k1, . . . , kn)

and therefore can be rewritten as Ty : Ψ(x)→ eiy·PfΨ(x+ y), where Pf is the
momentum operator associated to the quantized radiation field,

Pf =
∑

λ

∫
dk k a∗λ(k)aλ(k).

As we know from Section 3.5, typically, symmetries of a physical system
lead to conservation laws. (In the classical case, this is the content of the
Noether theorem.) In our case, of a particular importance is space-time trans-
lational symmetry, which leads to conservation laws of the energy, Heχ, and
the total momentum. We check this for the spatial translations. It is straight-
forward to show that Ty are unitary operators and that they satisfy the rela-
tions Tx+y = TxTy (and therefore y → Ty is a unitary Abelian representation
of R

3). Finally, we observe that the group Ty is generated by the total mo-
mentum operator, Ptot, of the electrons and the photon field: Ty = eiy·Ptot .
Here Ptot is the selfadjoint operator on H, given by

Ptot :=
∑

i

pi ⊗ 1f + 1part ⊗ Pf (20.20)

where, as above, pj := −i∇xj , the momentum of the j−th electron and Pf is
the field momentum given above. Hence [Heκ, Ptot] = 0.

20.2.2 Fiber decomposition with respect to total momentum

Since the Hamiltonian Heκ commutes with translations, Ty, it has a fiber de-
composition w.r.to the generator Ptot of the translations (cf. Section 6.4). We
construction this decomposition. Let H be the direct integral H =

∫ ⊕
R3 HPdP,
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with the fibers HP := L2(X) ⊗ F , where X := {x ∈ R
3n | ∑

imixi =
0} 
 R

3(n−1), (this means that H = L2(R3, dP ;L2(X) ⊗ F)) and define
U : Hel ⊗ Hf → H on smooth functions, compactly supported in x, by the
formula

(UΨ)P (x′) =
∫

R3
ei(P−Pf)·xcmΨ(x′ + xcm)dy, (20.21)

where x′ are the coordinates of the n particles in the center-of-mass frame and
xcm = (xcm, . . . , xcm) (n− tuple), with xcm = 1∑

imi

∑
imixi, the center-of-

mass coordinate, so that x = x′ +xcm. Then U extends uniquely to a unitary
operator (see below). Its converse is written, for ΦP (x′) ∈ L2(X)⊗F , as

(U−1Φ)(x) =
∫

R3
e−ixcm·(P−Pf )ΦP (x′)dP. (20.22)

The functions ΦP (x′) = (UΨ)P (x′) are called fibers of Ψ .

Lemma 1. The operations (21.8) and (20.22) define unitary maps L2(R3n)⊗
F → H and H → L2(R3n)⊗F , and are mutual inverses.

Proof. By density, we may assume that Ψ is a C∞
0 in x. Then, it follows from

standard arguments in Fourier analysis that

(U−1UΨ)(x) =
∫
dP e−i(P−Pf )xcm

∫
dy ei(P−Pf )·y Ψ(x′ + y)

=
∫
dy

∫
dP e−iP ·(xcm−y)eiPf ·(xcm−y) Ψ(x′ + y)

=
∫
dy δ(xcm − y) eiPf ·(xcm−y) Ψ(x′ + y)

= Ψ(x) . (20.23)

On the other hand, for Φ ∈ H,

(UU−1Φ)P (x′) =
∫
dy ei(P−Pf )y

∫
dq ei(q−Pf )y Φq(x′)

=
∫
dq

∫
dy ei(p−q)y Φq(x′)

=
∫
dq δ(P − q)Φq(x′)

= ΦP (x′) . (20.24)

From the density of C∞
0 in x functions, we infer that (20.23) and (20.24) define

bounded maps which are mutual inverses. Unitarity can be checked easily. �

Since Heκ commutes with Ptot, it follows that Heκ admits the fiber decompo-
sition

UHeκU
−1 =

∫ ⊕

R3
Heκ(P )dP, (20.25)
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where the fiber operators Heκ(P ), P ∈ R
3, are self-adjoint operators on

the space fibers HP . The latter means that UHeκU
−1ΦP = Heκ(P )ΦP for

ΦP (x′) ∈ ∫ ⊕
R3 HPdP . We computeHeκ(P ). Using a(k)e−iy·Pf = e−iy·(Pf+k)a(k)

and a∗(k)e−iy·Pf = e−iy·(Pf−k)a∗(k), we find∇yeiy·(P−Pf )Aχ(x′+y)eiy·(P−Pf) =
0 and therefore

Aχ(x)eiy·(P−Pf ) = eiy·(P−Pf)Aχ(x− y). (20.26)

Using this and (20.22), we compute

Heκ(U−1Φ)(x) =
∫

R3
eixcm·(P−Pf )Heκ(P )Φ(P )dP,

where the fiber Hamiltonians Heκ(P ) are given explicitly by

Heκ(P ) =
∑

j

1
2mi

(
P − Pf − i∇x′

j
− eiAχ(x′j)

)2
+ Vcoul(x′) +Hf (20.27)

where x′i = xi−xcm is the coordinate of the i−th particle in the center-of-mass
frame.

20.3 Rescaling and Decoupling Scalar and Vector
Potentials

In order to simplify the notation and some of the analysis from now on we
assume that our matter consists of electrons and the nuclei and that the nuclei
are fixed (the Born-Oppenheimer approximation in the case of molecules,
see Section 10.1) and therefore are manifested through the interactions only.
Recall that we work in physical units in which the Planck constant and speed
of light are equal to 1: � = 1 and c = 1, so that e2/4π = α ≈ 1

137
, the

fine-structure constant. In the original units, α = e2

4π�c
.

In the Hamiltonian (20.18) the coupling constant - the electron charge e -
enters in two places - into the particle system itself (the Coulomb potential)
and into coupling the particle systems to the quantized electro-magnetic field
and thus has two different effects onto the total system. To decouple these
two effects, we rescale our Hamiltonian as follows:

x→ 1
α
x , k → α2k ,

Under this rescaling, the Hamiltonian Heκ is mapped into the Hamiltonian
α2H(ε), where

H(ε) =
n∑

j=1

1
2m

(i∇xj + εAχ(xj))2 + V (x) +Hf , (20.28)
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where ε = 2
√
πα3/2, Aχ(x) = Aχ(αx) with χ(k) replaced by χ(α2k), and

V (x) = Vcoul(x, αR). We write out the operator Aχ(x):

Aχ(x) =
∫

(eik·αxa(k) + h.c.)
χ(α2k)
√
ω(k)

d3k. (20.29)

The Hamiltonian H(ε) is, of course, equivalent to our original Hamiltonian
Heκ.

After the rescaling performed above the new UV cut-off momentum scale,
κ′ = α−2κ, satisfies

mel � κ′ � α−2mel,

which is easily accommodated by our estimates (e.g. we can have κ′ =
O(α−1/3mel)). From now on we fix κ′ and we do not display α in the cou-
pling function in (20.29) (the presence of α multiplying x above only helps
our arguments).

At this point we forget about the origin of the potential V (x), but rather
assume it to be a general real function satisfying standard assumptions, say

(V) V ∈ L2(R3N ) + L∞(R3N )ε,

i.e. V can be written as a sum of L2− and L∞−functions, where the second
component can be taken arbitrary small. It is shown in Section 20.3.1 that a
sum of Coulomb potentials satisfies this condition and it is shown in Section
20.3.1 that under conditions (V), the operator

Hpart := −
n∑

j=1

1
2m

Δxj + V (x)

is self-adjoint on the domain D(
∑n

j=1
1

2m
Δxj ). The Hamiltonian H(ε) is a

key object of our analysis.

20.3.1 Self-adjointness of H(ε)

The key properties of a quantum Hamiltonian are boundedness below and
self-adjointness. One way to approach proving these properties is to use the
gaussian space representation (20.12) and the Kato inequality (see [CFKS],
cf. Section 4.3). This would give the result for for all coupling constants ε.
(See also a proof of the self-adjointness of H(ε) for an arbitrary ε, using path
integrals by [Hiro].) We take a different approach which demonstrates some
of estimates we need later, but proves these properties only for ε sufficiently
small.

Theorem 20.1 Assume ε is sufficiently small. Then the Hamiltonian H(ε)
is defined on D(H(0)) and is self adjoint and bounded below.
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Proof. To keep the notation simple we consider one-particle systems (n = 1).
We decompose the Hamiltonian (20.28) into unperturbed part and perturba-
tion as

H(ε) = H(0) + I(ε). (20.30)

In this proof we omit the super-index χ and write A(x) for Aχ(x) in (20.28).
Using (20.28), we find

I(ε) = −εp · A(x) +
1
2
ε2|A(x)|2. (20.31)

Now the self-adjointness of H(ε) follows from the self-adjointness of H(0) =
Hpart ⊗ 1f + 1part ⊗ Hf , Proposition 20.2 below, the smallness of ε and an
abstract result, Theorem 2.11 of Section 2.2 . �

The next statement shows that Iε is a relatively bounded perturbation in the
sense of forms.

Proposition 20.2 There is an absolute constant c > 0, s. t.

〈ψ, I(ε)ψ〉 ≤ cε(〈ψ,H(0)ψ〉+ ‖ψ‖2). (20.32)

Proof. Let ‖ · ‖F stand for the norm in the Fock space F . First we prove the
bounds

‖a(f)ψ‖2F ≤
∫ |f |2

ω
‖H1/2

f ψ‖2F (20.33)

and

‖a∗(f)ψ‖2F ≤
∫ |f |2

ω
‖H1/2

f ψ‖2F +
∫
|f |2‖ψ‖2F . (20.34)

The first inequality follows from the relations

‖a(f)ψ‖F ≤
∫
|f |‖aψ‖F

≤
(∫ |f |2

ω

)1/2 (∫
ω‖aψ‖2F

)1/2

.

(20.35)

(due to the Schwarz inequality) and
∫
ω‖aψ‖2 = 〈ψ, ωa∗aψ〉 = 〈ψ,Hfψ〉. The

second inequality follows from the first and the relation

‖a(f)∗ψ‖2F = 〈ψ, a(f)a(f)∗ψ〉F = ‖a(f)ψ‖2F +
∫
|f |2‖ψ‖2F . (20.36)

The inequalities (20.33) and (20.34) yield the following bound ‖A(x)ψ‖F ≤
c
(‖H1/2

f ψ‖F + ‖ψ‖F
)
, which implies that

‖A(x)(Hf + 1)−1/2‖ ≤ c . (20.37)

Now, chose c′ s.t. Hpart +c′1 ≥ 1. Using the equation H(0) = Hpart⊗1f +
1part⊗Hf and using repeatedly that for any positive operator B, ‖B 1

2ψ‖2 =



258 20 Standard Hamiltonian of Non-relativistic Matter and Radiation

〈ψ,Bψ〉 and that 〈ψ,Hpartψ〉 ≤ 〈ψ,H(0)ψ〉 (since Hf ≥ 0) and 〈ψ,Hfψ〉 ≤
〈ψ, (H(0) + c′1)ψ〉, we find that

‖(Hf + 1)
1
2 (H(0) + c′1)−

1
2 ‖ ≤ 1,

‖‖(Hpart + c′1)
1
2 (H(0) + c′1)−

1
2 ‖ ≤ 1.

These inequalities together with the estimates ‖pψ‖ ≤ c‖(Hpart + c′1)
1
2ψ‖,

and (20.37) give,

‖(Hpart +Hf + c′1)−1/2pA(x)(Hpart +Hf + c′1)−1/2‖ ≤ c. (20.38)

Similarly, (20.37) implies that

‖(Hpart +Hf + c′1)−1/2A(x)2(Hpart +Hf + c′1)−1/2‖ ≤ c. (20.39)

The estimates (20.39) and (20.38) together with the relation (20.31) imply
(20.32). �

One can also prove a bound on I(ε) itself, not just on its form 〈ψ, I(ε)ψ〉, so
that the self-adjointness of H(ε) would follow from the Kato-Rellich theorem
2.9. This is done in Appendix 21.8.

20.4 Mass Renormalization

In this section we study electron mass renormalization. First we analyze the
definition of (inertial) mass in Classical Mechanics. Consider a classical parti-
cle with the Hamiltonian h(x, k) := K(k)+V (x), where K(k) is some function
describing the kinetic energy of the particle. To find the particle mass in this
case we have to determine the relation between the force and acceleration at
very low velocities. The Hamilton equations give ẋ = ∇kK and k̇ = F , where
F = −∂xV is the force acting on the particle. Assuming that K has a min-
imum at k = 0, we expand ∇kK(k) around 0 to obtain ẋ = K ′′(0)k, where
K ′′(0) is the hessian of K at k = 0. Differentiating the above relation w.r. to
time and using the second Hamilton equation, we obtain ẍ = K ′′(0)F (x). This
suggests to define the mass of the particle as m = K ′′(0)−1, i.e. as the inverse
of the Hessian of the energy, in the absence of external forces, as a function
of momentum, at 0. (K(k) is called the dispersion relation.) We adopt this as
a general definition: the (effective) mass of a particle interacting with fields is
the inverse of the Hessian of the energy of the total system as a function of
of the total momentum at 0.

Now, we consider a single non-relativistic electron coupled to quantized
electromagnetic field. Recall that the charge of electron is denoted by −e and
its bare mass is m. The corresponding Hamiltonian in our units is

H(1)
eκ :=

1
2m

(− i∇x ⊗ 1f + Aχ(x) )2 + 1part ⊗Hf , (20.40)
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acting on the space L2(R3) ⊗ F ≡ Hpart ⊗ Hf . It is the generator for the
dynamics of a single non-relativistic electron, and of the electromagnetic ra-
diation field, which interact via minimal coupling. Here recall Aχ(x) and Hf

are the quantized electromagnetic vector potential with ultraviolet cutoff and
the field Hamiltonian, defined in (20.17) and (20.15)

The system considered is translationally invariant in the sense that H(1)
eκ

commutes with the translations, Ty,

TyH
(1)
eκ = H(1)

eκ Ty,

which in the present case take the form

Ty : Ψ(x,A)→ Ψ(x+ y, tyA), (20.41)

where (tyA)(x,A) = A(x − y). This as before leads to H(1)
eκ commuting with

the total momentum operator,

Ptot := Ppart ⊗ 1f + 1part ⊗ Pf , (20.42)

of the electron and the photon field: [H(1)
eκ , Ptot] = 0. Here Pel := −i∇x and

Pf =
∑
λ

∫
dk k a∗λ(k)aλ(k), the electron and field momenta. Again as in Sec-

tion 20.2.2, this leads to the fiber decomposition

UH(1)
eκ U

−1 =
∫ ⊕

R3
H(1)
eκ (P )dP, (20.43)

where the fiber operators H(1)
eκ (P ), P ∈ R

3, are self-adjoint operators on F .
The computation of the operatorH (1)

eκ (P ) is the same as of thje corresponding
fiber operator in Section 20.2.2. Specifying (20.27) to the present case (i.e.
taking x′ = 0), we obtain

H(1)
eκ (P ) =

1
2m

(
P − Pf − eAχ)2 +Hf (20.44)

where Aχ := Aχ(0). Explicitly, Aχ is given by

Aχ =
∑

λ

∫
dk

κ(|k|)
|k|1/2 eλ(k) { aλ(k) + a∗λ(k) }. (20.45)

Consider the infimum, E(p) := inf σ(H(1)
eκ (P )), of the spectrum of the fiber

Hamiltonian H (1)
eκ (P ). Note that for e = 0, E(P )|e=0 =: E0(P ) is the ground

state energy of H0(P ) := H
(1)
eκ (P )|e=0 = 1

2m

(
P − Pf

)2 +Hf with the ground

state Ω and is E0(P ) = |P |2
2m . Moreover, it is easy to show that E(p) is

spherically symmetric and has a minimum at P = 0 and is twice differentiable
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P = 0. Following the heuristic discussion at the beginning of this section, we
define the renormalized electron mass as

mren := E′′(0)−1,

where, recall, E′′(0) is the Hessian of E(P ) at the critical point P = 0. A
straightforward computation gives

(
HessE(P )

)
ij

=
(
δij − PiPj

|P |2
)∂|P |E(P )

|P | +
PiPj
|P |2 ∂

2
|P |E(P ) (20.46)

Since E(P ) is spherically symmetric and C2 at P = 0, and satisfies ∂|P |E(0) =
0, we find HessE(0)

)
ij

= PiPj
|P |2 ∂

2
|P |E(0) and therefore as

mren :=
1

∂2
|P |E(0)

.

Recalling our discussion at the beginning of this section, the kinematic
meaning of this expression is as follows. The ground state energy E(P ) can be
considered as an effective Hamiltonian of the electron in the ground state. (The
propagator exp(−itE(P )) determines the propagation properties of a wave
packet formed of dressed one-particle states with a wave function supported
near P = 0 – which exist as long as there is an infrared regularization.) The
first Hamilton equation gives the expression for the electron velocity as

v = ∂PE(P ) .

Expanding the right hand side in P we find v = HessE(0)P + O(P 2). Since
E(P ) is spherically symmetric, and C2 in |P | near P = 0, this becomes

v = ∂2
|P |E(0, σ)P + O(P 2) .

This suggests taking (∂2
|P |E(0))−1 as the renormalized electron mass.

It is shown in [BCFS2, Ch, ChFP1] that the infimum, E(P ) =
inf spec(H(1)

eκ (P )), of the spectrum ofH(1)
eκ (P ) is twice differentiable and P = 0

and the expression for mren is computed to the order e3.

20.5 Appendix: Relative bound on I(ε) and
Pull-through Formulae

Proposition 20.3 There is an absolute constant c > 0, s. t.

‖I(ε)ψ‖ ≤ cε(‖H(0)ψ‖+ ‖ψ‖) . (20.47)
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Proof. We use the pull-through formula a(k)f(Hf ) = f(Hf +ω(k))a(k), valid
for any piecewise continuous, bounded function, f , on R, proven in Appendix
21.8. Applying it to the function f(λ) := (λ+ 1)−

1
2 gives

a(k)(Hf + 1)−
1
2 = (Hf + ω(k) + 1)−

1
2 a(k). (20.48)

Using this relation we obtain

‖a(g)a(f)ψ‖ ≤
∫
|f |‖a(g)a(k)ψ‖

=
∫
|f |‖a(g)(Hf + ω(k) + 1)−

1
2 a(k)(Hf + 1)

1
2ψ‖

≤
∫
|f |‖a(g)(Hf + ω(k) + 1)−

1
2 ‖‖a(k)(Hf + 1)

1
2ψ‖.

Applying now the bounds (20.33) and (20.35) and using that ‖H1/2
f (Hf +

ω(k) + 1)−
1
2ψ‖ ≤ ‖ψ‖ and ‖H1/2

f (Hf + 1)
1
2ψ‖ ≤ ‖(Hf + 1)ψ‖, we obtain

‖a(g)a(f)ψ‖ ≤
(∫ |f |2

ω

)1/2 (∫ |g|2
ω

)1/2

‖(Hf + 1)ψ‖.

Now, using this relation together with (20.33), (20.35) and (20.36), we find

‖a∗(g)a(f)ψ‖2 ≤
∫ |f |2

ω

∫ |g|2
ω
‖(Hf + 1)ψ‖2

+
∫ |f |2

ω

∫
|g|2‖H1/2

f ψ‖2,

and

‖a∗(g)a∗(f)ψ‖ ≤ 2
(∫ |f |2

ω

)1/2 (∫ |g|2
ω

)1/2

‖(Hf + 1)ψ‖

+ 3
∫ |f |2

ω

∫
|g|2‖H1/2

f ψ‖2

+ 3
∫
|f |2

∫
|g|2‖ψ‖2.

The above estimates imply

‖A(x)A(x)ψ‖ ≤ c(‖Hfψ‖+ ‖ψ‖) . (20.49)

Finally, using the estimates (20.37) and ‖pψ‖ ≤ c‖(Hpart + c′1)
1
2ψ‖, for c′

s.t. Hpart + c′1 ≥ 1, and the fact that Hpart and A(x) commute, we find

‖pA(x)ψ‖ ≤ c‖A(x)(Hpart+c′1)
1
2ψ‖ ≤ c‖(Hf+1)

1
2 (Hpart+c′1)

1
2ψ‖. (20.50)
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Using the equation H(0) = Hpart ⊗ 1f + 1part ⊗ Hf and using repeatedly
that for any positive operator B, ‖B 1

2ψ‖2 = 〈ψ,Bψ〉 and that 〈ψ,Hpartψ〉 ≤
〈ψ,H(0)ψ〉 and 〈ψ,Hfψ〉 ≤ 〈ψ, (H(0)+c′1)ψ〉, we find that ‖(Hf+1)

1
2 (Hpart+

c′1)
1
2ψ‖ ≤ ‖(H(0) + c′1)ψ‖. This inequality together with (20.50) gives

‖pA(x)ψ‖ ≤ c‖(H(0) + c′1)ψ‖. (20.51)

The relation (20.31) and estimates (20.49) and (20.51) imply (20.47).

Now we prove the very useful “pull-through” formulae (see [GJ,BCFS2])
used above:

a(k)f(Hf ) = f(Hf + ω(k))a(k) (20.52)

and
f(Hf )a∗(k) = a∗(k)f(Hf + ω(k)), (20.53)

valid for any piecewise continuous, bounded function, f , on R.

Problem 20.4 Using the commutation relations above, prove rela-
tions (20.52)- (20.53) for f(H) = (Hf − z)−1, z ∈ C/R̄+.

Using the Stone-Weierstrass theorem, one can extend (20.52)- (20.53) from
functions of the form f(λ) = (λ − z)−1, z ∈ C\R̄+, to the class of functions
mentioned above. Alternatively, (20.52)- (20.53) follow from the relation

f(Hf )
N∏

j=1

a∗(kj)Ω = f(
N∑

i=1

ω(ki))
N∏

j=1

a∗(kj)Ω.

Problem 20.5 Prove this last relation, and derive (20.52)- (20.53) from it.
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Theory of Radiation

Emission and absorption of electromagnetic radiation by systems of non-
relativistic particles such as atoms and molecules is a key physical phe-
nomenon, central to the existence of the world as we know it. Attempts to
understand it led, at the beginning of the twentieth century, to the birth of
quantum physics. In this chapter we outline the theory of this phenomenon.
It addresses the following fundamental physical facts:

(a) a system of matter, say an atom or a molecule, in its lowest energy
state is stable and well localized in space, while

(b) the same system placed in the vacuum in an excited state, after awhile,
spontaneously emits photons and descends to its lowest energy state.

The starting point of theory of radiation is the Schrödinger equation

i
∂ψ

∂t
= H(ε)ψ,

describing quantum particles interacting amongst themselves, and with quan-
tized electro-magnetic field. Here ψ is a path in the state space Hpart ⊗ Hf
and the quantum Hamiltonian operator H(ε) entering it acts on Hpart ⊗Hf
and is given by (see (20.28)):

H(ε) =
n∑

j=1

1
2m

(i∇xj + εAχ(xj))2 + V (x) +Hf , (21.1)

with the notation explained in the previous chapter. (Recall that we use the
units � = 1 and c = 1 and, as a rule, we do not display the identities 1part and
1f on Hpart and Hf , respectively. A careful notation would have Vcoul(x)⊗1f
and 1part ⊗Hf , instead of Vcoul(x) and Hf .)

The mathematical manifestation of the fact (a) is that H(ε) has a ground
state, which is well localized in the particle coordinates, while the statement
(b), rendered in mathematical terms, says that the system in question has no
stable states in a neighbourhood of the excited states of the particle system,
but ‘metastable’ ones.
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21.1 Spectrum of Uncoupled System

To understand the spectral properties of the operator H(ε), we first examine
a system consisting of matter and radiation not coupled to each other. Such
a system is described by the Hamiltonian

H(0) = Hpart ⊗ 1f + 1part ⊗Hf , (21.2)

which is obtained by setting the parameter ε in (20.28) to zero. The corre-
sponding time-dependent Schrödinger equation is

i
∂ψ

∂t
= H(0)ψ. (21.3)

The dynamics of a system of quantum matter (atom, molecule, etc., with
fixed nuclei) is described by the Schrödinger operator

Hpart =
n∑

j=1

1
2m

p2
j + V (x)

acting on Hpart = L2(R3n) (or a subspace of this space of a definite symmetry
type). Recall the spectral structure of the Schrödinger operator Hpart. By
HVZ theorem (see Section 12.4), we have

σ(Hpart) = {negative EV’s, Ej} ∪ { continuum [0,∞) }. (21.4)

Here j = 0, 1, . . . and we assume E0 < E1 ≤ . . . . The eigenfunction, ψpart
0 ,

corresponding to the smallest eigenvalue, E0 is called the ground state, while
the eigenfunctions ψpart

j for the higher eigenvalues Ej with j ≥ 1, are called
the excited states. The generalized eigenfunctions of the essential spectrum
are identified with the scattering states (see Fig. 21.1).

x x

scattering statesbound states

x
0E

0
. . . E1

Fig. 21.1. Spectrum of Hpart

For the field, σess(Hf ) = [0,∞) and σd(Hf ) = {0}. The eigenvalue 0 is
non-degenerate, and corresponds to the vacuum vector: HfΩ = 0.

Using separation of variables, we obtain the eigenfunctions and the gener-
alized eigenfunctions,

ψpart
j ⊗Ω, and ψpart

j ⊗
s∏

i=1

a∗(ki)Ω, (21.5)
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for various s ≥ 1 and k1, . . . , ks in R
3, of H(0), corresponding to the eigen-

values Ej , j = 0, 1, . . ., and the spectral points Ej(k) = Ej +
∑s
i=1 ω(ki) ∈

[Ej ,∞), respectively. This leads to the following stationary solutions

e−iEjt(ψpart
j ⊗Ω) and e−iEj(k)

(
ψpart
j ⊗

s∏

i=1

a∗(ki)Ω
)
,

of the time-dependent Schrödinger equation (21.3). The first of these states
describes the particle system in the state ψpart

j with no photons around, while
the second one corresponds to the system in the state ψpart

j and s photons
with momenta k1, . . . , ks. Both states are stationary in time. In the absence
of coupling between matter and radiation, the system of matter and radiation
placed in one of these states remains in the same state forever. Radiation is
neither absorbed nor emitted by this system.

Note finally that various eigenfunctions and generalized eigenfunctions
above lead to different branches of the spectrum of H(0), which, as a set,
is of the form

σ
(
H(0)

)
= {EV′s Ej}

⋃

j≥0

{continuum [Ej ,∞)} ∪ continuum [0,∞) (21.6)

(see Section 23.13 of the Mathematical Supplements).
The spectrum of H(0) is pictured in Figure 21.2.

x

bound states

branches of the continuous spectrum

0
xx

1E . . . 
0E

Fig. 21.2. Spectrum of H(0).

The question we want to address is: how does this picture change as an
interaction between the matter and radiation is switched on? This is the main
problem of the mathematical theory of radiation.

21.2 Complex Deformations and Resonances

In this section we discuss a key notion of the (quantum) resonance. It gives
a clear-cut mathematical description of processes of emission and absorption
of the electro-magnetic radiation. In this description, the process of radiation
corresponds to formation of resonances out of the excited states of particle
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systems. The most effective way to define resonances is to use complex trans-
formation of the Hamiltonian under consideration (see Section 16.1) which we
proceed to describe in the present setting.

Define the dilatation transformation, Ufθ, on the Fock space, Hf ≡ F , as
the unitary group of operators, given by

UfθΩ = Ω and Ufθ
∏

a∗(fj)Ω =
∏

a∗(uθfj)Ω. (21.8)

Here uθ is the rescaling transformation acting on L2(R3), given by

(uθf)(k) = e−3θ/2f(e−θk). (21.9)

(Ufθ is the second quantization of uθ.) This definition implies Ufθ := eiTθ

where T :=
∫
a∗(k)ta(k)dk and t is the generator of the group uθ (see Chapter

18 for the careful definition of the integral
∫
a∗(k)ta(k)dk) and

Ufθa
#(f)U−1

fθ = a#(uθf) (21.10)

where a#(f) stands for either a(f) or a∗(f). Applying this transformation
to the photon Hamiltonian Hf , we find Hfθ = e−θHf . Denote by Upθ the
standard dilation group on the particle space: Upθ : ψ(x)→ e

3n
2 θψ(eθx) where,

recall, n is the number of particles (cf. Section 16.1). We define the dilation
transformation on the total space H = Hp ⊗Hf by

Uθ = Upθ ⊗ Ufθ. (21.11)

For θ ∈ R the above operators are unitary and map the domains of the
operators H(ε) into themselves. Consequently, we can define the family of
Hamiltonians originating from the Hamiltonian H(ε) as

Hε,θ := UθH(ε)U−1
θ . (21.12)

We would like to extend this family analytically into complex θ’s. To this
end we impose the following condition (in addition to condition (V)):

(A) Vθ(x) := V (eθx), as a multiplication operator from D(Δx) to Hpart, has
an analytic continuation, Vθ, in θ from R into a complex neighbourhood
of θ = 0, which is bounded from D(Δx) to Hpart.

Furthermore, we fix the ultra-violet cut-off χ(k) from now on so that χθ(k) :=
e−3θ/2χ(e−θk) is an analytic function in a neighbourhood of θ = 0, vanishing
sufficiently fast at ∞, e.g. by taking χ(k) = e−|k|2 .

Under Condition (A), there is a family H(ε, θ) of operators Type-A ana-
lytic ([Ka,RSIV,HS]) in the domain |Imθ| < θ0, which is equal to (21.12) for
θ ∈ R and s.t. H∗(ε, θ) = H(ε, θ) and

H(ε, θ) = UReθH(ε, iImθ)U−1
Reθ. (21.13)
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Indeed, using (20.28), we decompose H(ε) = Hpart + Hf + I(ε), where I(ε)
is defined by this relation: I(ε) =

∑n
j=1[i∇xj · εAχ(xj) + 1

2
ε2Aχ(xj)2], where

we used that divAχ = 0. Using this decomposition, we write for θ ∈ R

H(ε, θ) = Hp(θ) ⊗ 1f + e−θ1p ⊗Hf + I(ε, θ) , (21.14)

Furthermore, using (21.10) and the definitions of the interaction I(ε), we see
that I(ε, θ) is obtained from I(ε) by the replacement a#(k) → e−

3θ
2 a#(k)

and, in the coupling functions only,

k → e−θk and xj → eθxj . (21.15)

This gives the required analytic continuation of (21.12). We call H(ε, θ) with
Imθ > 0 the complex deformation of H(ε).

One can show show that:
1) The essential spectrum of moves (e.g. the spectrum of the deformation

Hfθ is σ(Hfθ) = {0} ∪ e− Im θ [0,∞));
2) The real eigenvalues of H(ε, θ), Imθ > 0, coincide with eigenvalues of

H(ε) and that complex eigenvalues of H(ε, θ), Imθ > 0, lie in the complex
half-plane C

−;
3) The complex eigenvalues of H(ε, θ), Imθ > 0, are locally independent

of θ.
Let Ψθ = UθΨ , etc., for θ ∈ R and z ∈ C

+. Use the unitarity of Uθ for real
θ, to obtain (the Combes argument)

〈Ψ, (H(ε)− z)−1Φ〉 = 〈Ψθ̄, (H(ε, θ)− z)−1Φθ〉. (21.16)

Assume now that for a dense set of Ψ ’s and Φ’s (say, D, defined below), Ψθ
and Φθ have analytic continuations into a complex neighbourhood of θ = 0
and continue the r.h.s analytically first in θ into the upper half-plane and then
in z across the continuous spectrum.

• The real eigenvalues of H(ε, θ) give real poles of the r.h.s. of (21.16) and
therefore they are the eigenvalues of H(ε).

• The complex eigenvalues of H(ε, θ) are poles of the meromorphic contin-
uation of the l.h.s. of (21.16) across the spectrum of H onto the second
Riemann sheet.

The poles manifest themselves physically as bumps in the scattering cross-
section or poles in the scattering matrix.

An example of a dense set D for which the r.h.s. of (21.16) has an analytic
continuation into a complex neighbourhood of θ = 0, is

D :=
⋃

n>0,a>0

Ran
(
χN≤nχ|T |≤a

)
. (21.17)

Here N =
∫
d3ka∗(k)a(k) be the photon number operator and T be the self-

adjoint generator of the one-parameter group Uθ, θ ∈ R. It is easy to show
that the set D is dense.
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We define the the resonances of H(ε) as the complex eigenvalues of H(ε, θ)
with Imθ > 0. Thus to find resonances (and eigenvalues) of H(ε) we have to
locate complex (and real) eigenvalues of H(ε, θ) for some θ with Imθ > 0.

21.3 Results

The rigorous answer to the question of how the spectral properties of H(0)
change as the interaction is switched on is given in the theorem below. This
theorem refers to the notion of resonance described in Section 21.2 (see also
Section 16.1). We have

Theorem 21.1 Let ε 
= 0 be sufficiently small. For statements (ii) and (iii),
we assume, besides (V), Condition (A). Then

(i) H(ε) has a unique ground state, ψε. This state converges to ψpart
0 ⊗ Ω

as ε → 0, and is exponentially localized in the particle coordinates: i.e,
‖eδ|x|ψε‖ <∞ for some δ > 0.

(ii) H(ε) has no other bound states. In particular, the excited states of Hpart

(i.e. ψpart
j ⊗Ω, j ≥ 1) are unstable.

(iii) The excited states of Hpart turn into resonances of H(ε), ε 
= 0 (see
Fig. 21.3).

Fig. 21.3. Bifurcation of eigenvalues of H(0)(the second Riemann sheet).

Statement (ii) uses in addition to (V) and (A) a technical condition called
(positivity of) the Fermi Golden Rule, which is satisfied except in a few “de-
generate” cases).

This theorem gives mathematical content to the physical picture based on
formal calculations performed with the help of perturbation theory. Statement
(i) says that a system of matter, say an atom or a molecule, in its lowest energy
state is stable and well localized in space, and according to statements (ii) and
(iii), the excited states of the particle system disappear and give rise to long-
living, metastable states of the total system.The latter are solutions of the
time-dependent Schrödinger equation

i
∂ψ

∂t
= H(ε)ψ

which are localized for long intervals of time, but eventually disintegrate.
(Recall that a metastable state is another term for a resonance.) These
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metastable states are responsible for the phenomena of emission and absorp-
tion of radiation and their life-times tell us how long, on average, we have to
wait until a particle system emits (or absorbs) radiation.

The real parts of the resonance eigenvalues – the resonance energies – pro-
duce the Lamb shift, first experimentally measured by Lamb and Retherford
(Lamb was awarded the Nobel prize for this discovery). The imaginary parts
of the resonance eigenvalues – the decay probabilities – are given by the Fermi
Golden Rule (see, eg, [HuS]).

In the rest of this chapter we outline the main steps of the proof of Theorem
21.1, with more machinery given in the next chapter.

21.4 Idea of the Proof of Theorem 21.1

A complete proof of statements (i)-(iii) can be found in [Sig2] (see also [BFS1,
BCFS1]). We will describe the proof of (i) in this chapter and in Chapter 22.
The proofs of (ii) and (iii) are similar. Namely, techniques developed in the
proof of (i) are applied to the family H(ε, θ), Im θ > 0, instead of H(ε). Since
we are dealing only with the ground state, we will not need the analyticity
Condition (A) above.

The proof of statement (i) of Theorem 21.1 – existence of the ground
state – is done in two steps. On the first step, after performing a convenient
canonical transformation, we map the family H(ε)−z1 into a family H0(ε, z),
acting on the subspace of the Fock space Hf ≡ F corresponding to the photon
energies ≤ ρ for some ε � ρ ≤ Epart

1 − Epart
0 , where Epart

0 and Epart
1 are the

ground state and the first excited state energies of Hpart. On the second step,
done in Chapter 22, we apply to H0(ε, z) a spectral renormalization group
which brings it isospectrally into a very simple form which can be analyzed
easily.

We explain some intuition underlying the proof. To understand the prob-
lem we are facing we look at the spectrum of H(ε = 0), i.e., when the interac-
tion is turned off (see Figure 21.4). We see that the unperturbed ground state
energy is at the bottom of the continuous spectrum. This suggests that only
the ground state ψpart

0 of Hpart and the low energy states of Hf are essential.

xx

interest
region of 

. . . E1E0

Fig. 21.4. Region of interest w.r.t. specH(0).

Hence - and this is the key idea - we would like to project out the inessential
parts of the spectrum without distorting the essential ones. But how do we do
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this? Let us try the first idea that comes to mind:

H → QρHQρ , (21.18)

where Pρ is the spectral projection for H(0) associated with the interval
[E0, E0 + ρ]. The operator Qρ can be written explicitly as

Qρ = P part
0 ⊗ E[0,ρ](Hf ) . (21.19)

Here P part
0 is the orthogonal projection onto ψpart

0 and E[0,ρ](Hf ) is the spec-
tral projection of Hf corresponding to the interval [0, ρ], defined as follows.
First, recall that Hf =

⊕∞
n=0Hf,n on F =

⊕∞
n=0 Fn, where Hf,0 is the oper-

ator of multiplication by 0 on F0 := C, and for n ≥ 1, Hf,n =
∑n

i=1 ω(ki) are
multiplication operators on Fn :=©S n

1L
2(R3). Next, let χΔ be the character-

istic function of the set Δ ⊂ R. Now we define

EΔ(Hf ) = ⊕∞
n=0EΔ(Hf,n)

where for n ≥ 1, EΔ(Hf,n) is the operator of multiplication by the function
χΔ(

∑n
k=1 ω(ki)), acting on Fn, and EΔ(Hf,0) is the operator of multiplica-

tion by χΔ(0) on F0. The operator E[0,ρ](Hf ) “cuts-off” the energy states of
Hf with energy above ρ. The new operator QρH(ε)Qρ acts on the subspace
L2(R3)⊗F which consists of states of the form

ψpart
0 ⊗ φ , φ ∈ RanE[0,ρ](Hf )

(see Section 11.5). This is exactly what we want. However, the low energy
spectrum of the operator QρH(ε)Qρ is different from that of the operator
H(ε). So we have lost the spectral information we are after. In Section 11.1,
we learned how to project operators to smaller subspaces without losing the
spectral information of interest. (We will refine this procedure in Sections 21.6
and 22.3.) But, as usual, there is a trade-off involved. While the map (21.18)
acting on operators H is linear, the new map we introduce is not. This new
map is called the decimation map (or Feshbach-Schur map). The result of
application of this map to the family H(ε)− z1 is a family Hz(ε) of operators
which act on the subspace RanE[0ρ](Hf ) of the Fock space F and which is a
small perturbation of the operator Hf plus a constant. In fact, for technical
reasons it is convenient to use not the Feshbach-Schur map, but its exten-
sion - the smooth Feshbach-Schur map. (The latter is more difficult to define
but much easier to use.) This is done below. In the next chapter we apply
a renormalization group, based on the smooth Feshbach-Schur map, which
brings isospectrally the operators Hz(ε) arbitrarily close to operators of the
form E · 1 + wHf , with E ∈ R and w > 0.

21.5 Generalized Pauli-Fierz Transformation

In order to improve the infra-red behaviour of the Hamiltonian H(ε), in this
section we apply to it a canonical transformation. To simplify notation we
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only consider the case n = 1 and m = 1. (The generalizations to an arbitrary
number of particles is straightforward.) In this case we have

H(ε) =
1
2
(i∇x + εAχ(x))2 + V (x) +Hf , (21.20)

where x ∈ R
3. The vector potential operator Aχ(x) is still given by (20.29).

Now Hpart = − 1
2
Δ + V (x) acts on Hpart = L2(R3), so that H(ε) acts on

L2(R3)⊗Hf .
Now, we introduce the generalized Pauli-Fierz transformation

Hε := e−iεF (x)H(ε)eiεF (x), (21.21)

where F (x) is the self-adjoint operator on the state space H given by

F (x) =
∑

λ

∫
(f̄x,λ(k)aλ(k) + fx,λ(k)a∗λ(k))

d3k
√|k| , (21.22)

with the coupling function fx,λ(k) chosen as (recall we do not display α in
the coupling function in (20.29))

fx,λ(k) := e−ikx
χ(k)
√|k|ϕ(|k| 12 eλ(k) · x). (21.23)

The function ϕ is assumed to be C2, bounded, with bounded second derivative,
and satisfying ϕ′(0) = 1. We assume also that ϕ has a bounded analytic
continuation into the wedge {z ∈ C| | arg(z)| < θ0}. We call the resulting
Hamiltonian, Hε, the generalized Pauli-Fierz Hamiltonian. We compute

Hε =
1
2
(p− εA1(x))2 + Vε(x) +Hf + εG(x) (21.24)

where A1(x) = Aχ(x)−∇F (x), Vε(x) := V (x)+ ε2

2

∑
λ

∫ |k||fx,λ(k)|2d3k and

G(x) := −i
∑

λ

∫
|k|(f̄x,λ(k)aλ(k)− fx,λ(k)a∗λ(k))

d3k
√|k| . (21.25)

(The terms εG and Vε − V come from the commutator expansion
e−iεF (x)Hfe

iεF (x) = −iε[F,Hf ] − ε2

2
[F, [F,Hf ]].) Observe that the operator-

family A1(x) is of the form

A1(x) =
∑

λ

∫
(χx,λ(k)aλ(k) + χx,λ(k)a∗λ(k))

d3k
√|k| , (21.26)

where the coupling function χλ,x(k) is defined as follows

χλ,x(k) := eλ(k)e−ikxχ(k)−∇xfx,λ(k).
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It satisfies the estimates

|χλ,x(k)| ≤ constmin(1,
√
|k|〈x〉), (21.27)

with 〈x〉 := (1 + |x|2)1/2, and
∫
d3k

|k| |χλ,x(k)|
2 < ∞. (21.28)

The fact that the operators A1 and G have better infra-red behavior than
the original vector potential A, is used in proving, with a help of a renor-
malization group, the existence of the ground state and resonances for the
Hamiltonian Hε and therefore for H(ε). We note that for the standard Pauli-
Fierz transformation, the function fx,λ(k) is chosen to be χ(k)eλ(k) ·x, which
results in the operator G (which in this case is proportional to (the electric
field at x = 0) · x) growing as x. This transformation can be used if our sys-
tem is placed in an external confining potential W (x) satisfying the estimate
W (x) ≥ c|x|2, for |x| ≥ R, for some c > 0 and R > 0.

For further reference, we mention that the operator (21.24) can be written
as

Hε = H0ε + Iε , (21.29)

where

H0ε = H0 +
ε2

2

∑

λ

∫
(|fx,λ(k)|2 +

|χλ,x(k)|2
2|k| )d3k, (21.30)

with H0 := H(ε = 0) = Hpart + Hf (see (21.20)), and Iε is defined by this
relation. Note that the operator Iε contains linear and quadratic terms in
creation- and annihilation operators, with coupling functions (form-factors)
in the linear terms satisfying estimate (21.27) and with coupling functions in
the quadratic terms satisfying a similar estimate. Moreover, the operator H0ε

is of the form H0ε = Hpart
ε +Hf where

Hpart
ε := Hpart +

ε2

2

∑

λ

∫
(|fx,λ(k)|2 + |χλ,x(k)|22|k|)d3k, (21.31)

where, recall, Hpart = − 1
2Δ+V (x). Note that similar to Proposition 20.3 one

can show the following

Proposition 21.2 We have

‖G(x)ψ‖, ‖A(x)ψ‖ ≤ c(‖H1/2
f ψ‖+ ‖ψ‖) . (21.32)

This theorem implies that Iε is a relatively bounded perturbation of H0ε.
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21.6 Elimination of Particle and High Photon Energy
Degrees of Freedom

Since we are looking at a vicinity of the ground state energy of H(ε), the de-
grees of freedom connected to the excited particle states and to high photon
energies should not be essential. So we eliminate them isospectrally using
the smooth Feshbach-Schur (decimation) map. In this section we construct
this map and use it to pass isospectrally from the family Hε − z · 1 to a
family H0(ε, z) of operators which act non-trivially only on the subspace
RanE[0,ρ](Hf ), where recall E[0,ρ](λ) is the characteristic function of the in-
terval [0, ρ], of the Fock space Hf ≡ F . The advantage of this family is that it
is even smaller perturbation of Hf plus a constant and that it can be treated
by the renormalization group approach developed in the next chapter. Passing
from Hε − z · 1 to H0(ε, z) will be referred to as elimination of the particle
and high photon energy (actually photon energy ≥ ρ) degrees of freedom.

As was already mentioned, the smooth Feshbach-Schur map is a gener-
alization of the Feshbach-Schur map, discussed in Section 11.1, and it arises
when the projections P and P̄ := 1−P are replaced by more general operators
P and P̄ forming a partition of unity

P 2 + P̄ 2 = 1. (21.33)

Here we give a quick definition of the smooth Feshbach-Schur map. For more
details see Section 22.3. Consider operators H on a Hilbert space H with
specified decompositions H = H0 + I. We define

HP̄ := H0 + P̄ IP̄ . (21.34)

Assume now that

IP and PI extend to bounded operators on H (21.35)

and that z is s.t.

HP̄ − z is (bounded) invertible on Ran P̄ . (21.36)

We define smooth Feshbach-Schur map, F smooth
P , as

F smooth
P (H − z1) := H0 − z1 + PIP

− PIP̄ (HP̄ − z)−1P̄ IP .
(21.37)

Definition 21.3 We say that operators A and B are isospectral at a point
z ∈ C iff

(a) z ∈ σ(A)⇔ z ∈ σ(B),
(b) Aψ = zψ ⇔ Bφ = zφ
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where ψ and φ are related by φ = Pψ and ψ = Qφ for some bounded operators
P and Q.

We have the following theorem :

Theorem 21.4 Assume H − z1 is in the domain of F smooth
P . Then the op-

erators H and F smooth
P (H − z1) + z1 are isospectral at z, in the sense of the

definition above, with the operator P , the same as in F smooth
P and the operator

Q defined by
QP (H − z1) := P − P̄ (HP̄ − z)−1P̄ IP. (21.38)

This theorem generalizes Theorem 11.1 of Section 11.1; its proof is similar
and is sketched in Section 22.3.

Now we adapt these notions to the families of operators (21.24). In this
case, a partition (P, P̄ ) (see (21.33) ) is defined as follows. Let χρ ≡ χρ(Hf ) :=
χHf/ρ≤1 and χ̄ρ ≡ χ̄ρ(Hf ) := χHf/ρ≥1, where χλ≤1 and χλ≥1 are smooth
functions satisfying the relations

χ2
λ≤1 + χ2

λ≥1 = 1,

0 ≤ χλ≤1, χλ≥1 ≤ 1, and χλ≤1 =
{

1 if λ ≤ 4
5

0 if λ > 1 (and the corresponding relation

for χλ≥1). Thus χρ(Hf ) = χHf≤ρ is an almost the spectral projection for the
operator Hf onto energies ≤ ρ. With the definition (21.31), let furthermore

Ppart
0 = orthogonal projection onto the ground state eigenspace of Hpart

ε ,
(21.39)

and P̄ part
0 := 1− P part

0 . (Recall that Hpart
ε is defined in (21.31).) Assume the

ground state of Hpart
ε is simple and the corresponding eigenspace is spanned

by a function ψpart
0 . Then, in the Dirac notation, P part

0 = |ψpart
0 〉〈ψpart

0 |. We
introduce a pair of almost projections

Pρ := P part
0 ⊗ χρ(Hf ) (21.40)

and P ρ := P̄ part
0 +P part

0 ⊗χ̄ρ(Hf ), which form a partition of unity P 2
ρ+P

2

ρ = 1.
Note that Pρ and Pρ commute with H0ε. Let E0 and E1 be the ground state
energy and the first excited state energy of Hpart

ε and set

Ωρ := {z ∈ C | Rez ≤ E0 +
1
4
ρ}. (21.41)

Now we have

Theorem 21.5 Let |ε| � ρ ≤ E1 − E0. Then F smooth
Pρ

is defined on for the
families of operators, Hε − z · 1, z ∈ Ωρ, where Hε is given by (21.24), with
the decomposition (21.29), and is isospectral (in the sense of Theorem 21.4).
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Proof. The first part of the theorem follows from the definition of the domain
of the map F smooth

P given above and Propositions 21.9 and 21.10 given in
Appendix 21.10 below. The isospectrality follows from the first part of the
theorem and Theorem 21.4. �

Let, as above, E[0,ρ](λ) be the characteristic function of the interval [0, ρ]. We
define the subspace

Xρ := ψpart
0 ⊗ E[0,ρ](Hf )Hf ≈ E[0,ρ](Hf )Hf

of Hpart ⊗Hf . Here ≈ stands for the isomorphic isomorphism. The subspace
Xρ and its orthogonal complement, X⊥

ρ , are invariant under F smooth
Pρ

(Hε−z1)
and span Hpart ⊗Hf .

Let ΔE = E1 − E0. We choose ρ0 such that ε � ρ0 < min(1, ΔE). We
apply F smooth

Pρ0
to the families of operators (21.24) with the decomposition

Hε = H0ε + Iε, as given in (21.29) - (21.30), to obtain the new Hamiltonian

H0(ε, z) := F smooth
Pρ0

(Hε − z1)|Xρ0 . (21.42)

We claim that for Rez ≤ E0 + 1
4ρ0 and 0 < ρ0 ≤ E1 − E0,

Hε − z1 and H0(ε, z) are isospectral at 0. (21.43)

Indeed, since Pρ = 0 on X⊥
ρ , we have that

F smooth
Pρ (Hε − z1)|X⊥

ρ
= (H0ε − z1)|RanX⊥

ρ
. (21.44)

Therefore, for Rez ≤ E0 + 1
4
ρ and 0 < ρ ≤ E1 − E0,

F smooth
Pρ (Hε − z1)|X⊥

ρ
≥ 3

4
ρ > 0 (21.45)

and, in view of Theorem 21.4, (21.43) holds.
Observe that since the projection P part

0 has rank 1, the operator H0(ε, z)
is of the form

H0(ε, z) =
[〈ψpart

0 , F smooth
Pρ

(Hε − z1)ψpart
0 〉Hpart

]|RanE[0,ρ0](Hf ). (21.46)

Since we are interested in the part of the spectrum which lies in the set
{z ∈ R | Re z ≤ E0 + 1

4ρ0}, we can study H0(ε, z), which acts on the space
Xρ0 ≈ RanE[0,ρ0](Hf ), instead of Hε. Thus we have passed from the operator
Hε acting on Hpart ⊗ Hf to the operator H0(ε, z) acting on the subspace,
RanE[0,ρ](Hf ), of the Fock space Hf ≡ F , which is isospectral (in the sense
of Definition 21.3) to Hε − z1 at 0, provided z is in the set (21.41). We
eliminated, in an isospectral way, the degrees of freedom corresponding to
the particle and to the photon energies ≥ ρ0; i.e., we projected out the part
Ran (1−P part

0 ) of the particle space Hpart, and the part Ran(1−E[0,ρ0](Hf ))
of the Fock space Hf ≡ F . The parameter ρ0 is called the photon energy scale.



276 21 Theory of Radiation

21.7 The Hamiltonian H0(ε, z)

Key properties of H0(ε, z) are summarized in the next theorem.

Theorem 21.6 Let z ∈ Ωρ0 and ε � ρ0 ≤ ΔE (ρ0 is the scale parameter
entering the definition of H0(ε, z)). The operator H0(ε, z) has a generalized
normal form,

H0(ε, z) = H0,00 +
∑

r+s≥1

χρ0H0,rsχρ0 , H0,00 := h0,00(Hf )

H0,rs :=
∫ ( r∏

j=1

a∗(kj)
)
h0,rs(Hf , k1 . . . kr+s)

r+s∏

i=r+1

a(ki)dr+sk,
(21.47)

with coupling functions h0,rs which are analytic in z ∈ Ω, and satisfy the
estimates

|∂nμh0,rs(μ, k)| ≤ (const)ρ0

r+s∑

i=1

ω(ki)
1
2

r+s∏

j=1

(
const · ε · ρ−1

0 · ω(kj)−
1
2
)
, (21.48)

for any i, 1 ≤ i ≤ r + s, μ ∈ [0, 1], and n = 0, 1,where the product is absent
in the case r = s = 0, and

|h0,00(0)| ≤ (const)|E0 − z +O(ε2)|, |∂μh0,00(μ)− 1| ≤ (const)ε2/ρ2
0 ,

(21.49)
for μ ∈ [0,∞).

We note that the crucial for the future analysis term
∑r+s
i=1 ω(ki)

1
2 is due

to the estimate (21.27) gained in the generalized Pauli-Fierz Hamiltonian
(21.24). The proof of this theorem is simple but lengthy. It can be found in
[BCFS1,FGSi]. Below we sketch its main ideas.

Sketch of proof of Theorem 21.6. Using the definition of the smooth
Feshbach-Schur map F smooth

Pρ0
(Hε − z1), we write the operator H0(ε, z) in the

form
H0(ε, z) = Hf + χρ0Wχρ0 ,

where with the same definitions as in the proof of Proposition 21.10,

W = Iε − 〈ψpart
0 , IεR̄ρ0(z)Iεψ

part
0 〉Hpart ,

with R̄ρ(z) = P̄ρ(H0ε + Pρ0IεPρ0 − z)−1P̄ρ. Now we use estimates obtained
in the proof of Proposition 21.10 of Appendix 21.10 below, to expand the
resolvent (H0ε+Pρ0IεPρ0−z)−1 in a Neumann series, which with the notation
I = Iε, P = Pρ0 , P̄ = P̄ρ0 , and R0,P̄ = P̄

(
H0ε − z

)−1
P̄ can be written as

W =
∞∑

n=0

〈ψpart
0 , I(−R0,P̄ I)

nψpart
0 〉 . (21.50)
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Next we bring each term on the right hand side of (21.50) to the generalized
normal form. To this end we observe that the terms on the right hand side
of (21.50), with n ≥ 1, consist of sums of products of five operators: R0,P̄ ,
P̄ , p, a(k) and a∗(k). We do not touch the operators R0,P̄ , P̄ and p, while we
move the operators a(k) to the extreme right and the operators a∗(k) to the
extreme left. In doing this we use the following rules:

1. a(k) is pulled through a∗(k) according to the relation

a(k)a∗(k′) = a∗(k′)a(k) + δ(k − k′)
2. a(k) and a∗(k) are pulled through R0,P̄ according to the relations

a(k)R0,P̄ = R
ω(k)

0,P̄
a(k)

R0,P̄ a
∗(k) = a∗(k)Rω(k)

0,P̄
,

where Rω(k)

0,P̄
= R0,P̄

∣
∣
Hf→Hf+ω(k)

, and similarly for pulling a(k) and a∗(k)

through other functions of Hf , such as P̄ (see the equations (20.52) of
Appendix 21.8).

The procedure above brings the operator H0(ε, z) to generalized normal form
(21.47), at least formally. It remains to estimate the coupling functions h0,rs

entering (21.47). A direct estimate produces large combinatorial factors which
we must avoid. So we use a special technique which amounts to a partial
resummation of the series, in order to take advantage of cancelations. This
can be found in [BCFS1,FGSi]. �

21.8 Estimates on the Operator H0(ε, z)

Though the operator H0(ε, z) looks rather complicated, we show now that
the complicated part of it gives a very small contribution. To this end we use
Proposition 21.11 of Appendix 21.11 and the estimates (21.48) and

∫

∑n
1 ω(kj)≤ρ

n∏

j=1

(
Jj(kj)2

ω(kj)

)

d3nk ≤ 1
n!

n∏

j=1

(∫
J2
j

ω

)

(valid for any functions Ji and used for Ji = ω−1/2 or = 1), to obtain for
r + s ≥ 1,

‖χρ0H0,rs(ε, z)χρ0‖ ≤ (r!s!)−1/2(
√

4περ−1/2
0 )r+sρ3/2

0 . (21.51)

With choosing, say, ρ0 = ε9/5, these estimates and the relation

h0,00(Hf )− h0,00(0)−Hf =

1∫

0

(h′0,00
(
sHf )− 1

)
dsHf
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imply that the operator H0(ε, z) is of the form

H0(ε, z) = (E0 +Δ0E − z) · 1 + w(Hf )Hf +O
(
ε

9
5
)
,

where E0 + Δ0E − z = h0,00(0) and w(Hf ) = 1 + O
(
ε

1
5
)
. Here Δ0E is a

explicitly computable energy shift of the order O(ε2). Since the spectrum
of the operator Hf + E0 + Δ0E fills in the semi-axis [E0 + Δ0E,∞), the
isospectrality Theorem 21.4 implies that specH(ε) = specHε ⊂ [E0 +Δ0E+
O

(
ε

9
5
)
,∞), which implies the following intermediary result:

Theorem 21.7 Assume ε 
= 0 is sufficiently small and that the ground
state of the particle Hamiltonian, Hpart, is non-degenerate. Define E0(ε) =
inf σ(H(ε)), the ground state energy of H(ε). Then

E0(ε) = E0 +Δ0E +O
(
ε

9
5
)
,

with explicitly computable energy shift Δ0E of the order O(ε2).

Applying the renormalization transformation iteratively (see the next chapter)
to quantum Hamiltonians of the form (21.47) - (21.49), given in Theorem 21.6,
we find energies E(n) = E0 +O(ε2) and numbers w(n) = 1+O(ε

1
5 ), such that

for ρ = 0(ε)� 1 and any n ≥ 1,

Hε (or H(ε)) is isospectral to E(n) + w(n)Hf +O(ε2ρn)

in the disk D(E(n), ρn). This will give us a much more precise information
about the spectral properties of the Hamiltonian H(ε). The above procedure
is at the heart of the renormalization group approach.

Remark 21.8 The property that the interaction vanishes under renormaliza-
tion transformations, i.e. when we go closer and closer to the ground energy
(or farther and farther from the particle system) is called infrared asymptotic
freedom.

Note that the spectrum of the operatorHf+E0+Δ0E contains the eigenvalue
E0 + Δ0E, with eigenfunction Ω, and the continuum [E0 + Δ0E,∞), with
generalized eigenfunctions ψpart

0 ⊗Πa∗(kj)Ω. Hence, extending the results of
Theorem 21.4, QPρ0 (Hε − z)Ω, where QP (H − z1) is given by (21.38), gives
an approximate eigenfunction of Hε with approximate eigenvalue, E0 +Δ0E
and similarly for the continuum.

21.9 Ground State of H(ε)

Let Ufθ be a unitary group of operators, given by (21.8). We define the rescal-
ing transformation, Sρ, on operators on the Fock space F by

Sρ(H) := UfθHU
−1
fθ , θ = − ln ρ. (21.52)
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In particular, we have (see (21.10))

Sρ(a#(k)) = ρ−3/2a#(ρ−1k), (21.53)

so that
Sρ(Hf ) = ρHf and Sρ(χρ) = χ1. (21.54)

Define H(0)(ε, z) := ρ−1
0 Sρ0

(
H0(ε, z)

)
, where, recall, H0(ε, z) is defined in

(21.42). The operator H(0)(ε, z) is of the form

H = H00 +
∑

r+s≥1

χ1Hrsχ1, H00 := h00(Hf )

Hrs :=
∫ ( r∏

j=1

a∗(kj)
)
hrs(Hf , k1 . . . kr+s)

r+s∏

i=r+1

a(ki)dr+sk,
(21.55)

acting on acting on the space E[0,1](Hf )F , where recall E[0,ρ](λ) denotes the
characteristic function of the interval [0, ρ], and with coupling functions hrs
satisfying the estimates

|∂nμhrs(μ, k)| ≤ (const)ρn0
r+s∑

i=1

ω(ki)
1
2

r+s∏

j=1

(
ξ0 · ε · ω(kj)−

1
2
)
, (21.56)

for any i, 1 ≤ i ≤ r + s, μ ∈ [0, 1], ξ0 > 0, and n = 0, 1,where the product is
absent in the case r = s = 0, and

|h00(0)| ≤ const
ρ0
|E0 − z +O(ε2)|, |∂μh00(μ)− 1| ≤ const

ρ2
0

ε2 , (21.57)

for μ ∈ [0,∞). To prove this we use (21.53). Then Theorem 21.4 implies that

z ∈ σ#

(
Hε

) ↔ 0 ∈ σ#

(
H(0)(ε, z)

)
(21.58)

as long as z is in the set Ωρ0 := {z ∈ R | z ≤ E0 + 1
4
ρ0}. Next,

let S := {w ∈ C|Rew ≥ 0, |Imw| ≤ 1
3
Rew}. Theorem 21.6 above im-

plies that for ε sufficiently small, the operators H(0)(ε, z) (more precisely,
H(0)(ε, z) − 〈H(0)(ε, z)〉Ω) satisfy the assumptions of Theorem 22.1 of the
next chapter, which implies, in particular, that

• H(0)(ε, z) has a simple eigenvalue λ(0)(ε, z) ∈ D(0, cε2);
• σ#

(
H(0)(ε, z)

) ⊂ λ(0)(ε, z) + S.

With some extra work (in which the analyticity of λ(0)(ε, z) in z ∈ Ωρ0
plays an important role) we show that the equation λ(0)(ε, z) = 0 for z has a
unique solution. Let E0(ε) solve this equation. By (21.58), this gives that E0(ε)
is a simple eigenvalue of Hε and σ#

(
H(ε)

) ⊂ S. This together with (21.58)
shows that E0(ε) is the ground state energy of the operator Hε.
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Finally, if φ is the eigenfunction of H(0)(ε, E0(ε)) corresponding to the
eigenvalue 0, then QPρ(Hε−E0(ε)1)φ, where QP (H−z1) is given by (21.38),
is an eigenfunction of Hε corresponding to the eigenvalue E0(ε).

Finally, we use the relation σ#

(
Hε

)
= σ#

(
H(ε)

)
with a simple relation

between the eigenfunctions to transfer the spectral information from Hε to
H(ε). �

21.10 Appendix: Estimates on Iε and HP̄ρ
(ε)

Recall that we consider the Hamiltonian Hε, given in (21.24), whose decom-
position into unperturbed part and perturbation is given in (21.29) - (21.30).
In this section we omit the subindex 1 in A1(x), entering (21.24), so that the
operator-family A(x) is given by

A(x) =
∑

λ

∫
(χx,λ(k)aλ(k) + χx,λ(k)a∗λ(k))

d3k
√|k| , (21.59)

with the coupling function χλ,x(k) satisfying the estimates (21.27) - (21.28).
Using (21.29)-(21.30), we find

Iε = −p ·A(x) +
1
2
ε|A(x)|2 +G(x).

Proposition 21.9
‖IεPρ‖ ≤ C|ε| . (21.60)

Proof. We write P , P̄ for Pρ, P̄ρ, respectively. Since p is bounded relative to
Hpart, we have ‖P · p‖ ≤ C . Finally, since ρ ≤ c, the bound (21.32) implies
that

‖PG(x)‖, ‖PA(x)‖ ≤ C.
Collecting the last four estimates and using the fact that Re z ≤ E0 + ρ, we
arrive at (21.60). �

In the present context, the operator HP̄ , introduced in (21.34), is given by

HP̄ρ(ε) := H0ε + P̄ρIεP̄ρ. (21.61)

Proposition 21.10 Assume |ε| � ρ. Then Ωρ ⊂ ρ(HP̄ρ(ε)) and, for z ∈ Ωρ,
the inverse of HP̄ρ(ε)− z satisfies the estimate

‖P̄ρ(HP̄ρ(ε)− z)−1‖ ≤ Cρ 1
2 . (21.62)

Proof. To simplify notation we assume z is real. If we omit the subindexes ρ
and ε and denote P = Pρ, P̄ = P̄ρ and I = Iε (e.g. IP̄ stands for P̄ρIεP̄ρ).
Recall the definition (21.39) (P = Ppart

0 ⊗ χρ(Hf )) and the definitions before
and after this equation. We have
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P̄ = P̄ part
0 ⊗ 1f + P part

0 ⊗ χ̄ρ(Hf ) . (21.63)

Now using Hpart
ε P̄ part

0 ≥ E1P̄
part
0 , Hpart

ε ≥ E0 and Hf ≥ 0, Hf χ̄ρ(Hf ) ≥
ρχ̄ρ(Hf ) , where recall E0 and E1 are the ground state energy and the first
excited state of Hpart

ε , and using that H0ε = Hpart
ε ⊗ 1f + 1part ⊗ Hf , we

estimate

P̄H0εP̄ ≥ (E1 +Hf )P̄
part
0 ⊗ 1f

+ (E0 +
2
3
ρ+

1
3
Hf )1part ⊗ χ̄ρ(Hf ).

Setting δ := 3 min(E1 −E0 − 1
4
ρ, 1

3
ρ) ≥ ρ. Since for z ∈ Ωρ, z ≤ E0 + 1

4
ρ , we

conclude that
P̄ (H0ε − z)P̄ ≥ 1

3
(δ +Hf )P̄ 2. (21.64)

Due to (21.64) and the fact that H0ε commutes with P̄ , we can define, for any
real α, the invertible, positive operatorRα

0,P̄
:= P̄ (H0ε−z)−α = (H0ε−z)−αP̄ ,

satisfying Rα
0,P̄
R−α

0,P̄
= P̄ 2 so that the following identity holds:

P̄ (HP̄ (ε)− z)P̄ = R
−1/2

0,P̄
[1 +K]R−1/2

0,P̄
, (21.65)

whereK = R
1/2

0,P̄
IR

1/2

0,P̄
. Next we show that ‖K‖ ≤ const ε. Using the definition

of I, we find

‖K‖ ≤ ε‖pR1/2

0,P̄
‖‖A(x)R1/2

0,P̄
‖

+
ε2

2
‖R1/2

0,P̄
A(x)‖‖A(x)R1/2

0,P̄
‖

+ ε2‖R1/2

0,P̄
‖‖G(x)R1/2

0,P̄
‖ .

(21.66)

The relative bound on A(x) proven above implies that

‖A(x)R1/2

0,P̄
‖ ≤ c(‖H1/2

f R
1/2

0,P̄
‖+ ‖R1/2

0,P̄
‖). (21.67)

Now let u = R
1/2

0,P̄
v . Then the estimate (21.64) can be rewritten as

‖(δ +Hf )1/2R
1/2

0,P̄
u‖ ≤

√
3‖P̄ u‖ .

This gives, in particular, that, for z ∈ Ω ∩R,

‖H1/2
f R

1/2

0,P̄
‖ ≤
√

3 (21.68)

and
‖R1/2

0,P̄
‖ ≤
√

3δ−1/2. (21.69)
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Next, using that ‖pv‖2 = 〈v, p2v〉 ≤ 〈v, (H0ε + C)v〉 and taking v := R
1/2

0,P̄
u,

we obtain
‖pR1/2

0,P̄
‖ ≤ Cδ−1/2. (21.70)

Estimates (21.66) - (21.70) imply ‖K‖ ≤ Cερ−1 , if z ∈ Ωρ. Pick now |ε| � δ
so that ‖K‖ ≤ 1/2 and therefore the right hand side of (21.65) is invertible
and satisfies (21.62). �

21.11 Appendix: Key Bound

Recall that E[0,ρ](λ) denotes the characteristic function of the interval [0, ρ].

Proposition 21.11 (Key bound) Let Hrs be an rs-monomial of the form

∫ ( r∏

j=1

a∗(kj)
)
hrs(Hf , k1 . . . kr+s)

r+s∏

i=r+1

a(ki)dr+sk , (21.71)

where hrs(μ, k), k = (k1 . . . kr+s), are measurable functions on [0, 1]×R
3(r+s),

called coupling functions, and let Ωrs(ρ) := {k ∈ R
3(r+s) |

r∑

j=1
ω(kj) ≤

ρ,
r+s∑

j=r+1

ω(kj) ≤ ρ}. Then we have the following bound:

‖E[0,ρ](Hf )HrsE[0,ρ](Hf )‖2 ≤ ρr+s
∫

Ωrs(ρ)

supμ |hrs(μ, k)|2
r+s∏

j=1

ω(kj)
dr+sk

(21.72)

Proof. In this proof we denote Eρ := E[0,ρ](Hf ). Using the form (21.71) of
Hrs, taking the norm under the integral sign, and using the norm inequality
for the product of operators, as well as ‖A∗‖ = ‖A‖, we have

‖EρHrsEρ‖ ≤
∫ ∫

‖arEρ‖‖hrs‖‖asEρ‖ . (21.73)

Here ‖hrs‖ is the operator norm of hrs(Hf , k). So ‖hrs‖ = supμ |hrs(μ, k)|.
Let f be a positive, continuous function on R

3n. We will prove the estimate
∫
f‖anEρ‖ ≤

(
ρn

∫

∑
ωj≤ρ

f2

n∏

1
ωj

)1/2
, (21.74)

where ωj = ω(kj), which will imply (21.72).
First, we prove the estimate for n = 1. By the pull-through formula (20.52),

we have
a(k)Eρ = Eρ(Hf + ω(k))a(k)Eρ.
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Since Hf ≥ 0, this implies

‖a(k)Eρ‖ ≤ χω(k)≤ρ‖a(k)Eρ‖.
Proceeding as in the proof of the relative bound on a(k) (see (20.33)), we
obtain

∫
f‖a(k)Eρ‖ ≤

∫

ω≤ρ
f‖a(k)Eρ‖

≤
(∫

ω≤ρ

f2

ω

)1/2

‖H1/2
f Eρ‖

≤
(

ρ

∫

ω≤ρ

f2

ω

)1/2

(21.75)

which implies (21.74) for n = 1. Now we prove (21.74) for arbitrary n ≥ 1.
First of all, applying the pull-through formula (20.52) n times, we find

n∏

1

a(kj)Eρ(Hf ) = Eρ(Hf +
n∑

1

ω(kj))
n∏

1

a(kj)Eρ.

Hence ∫
f‖anEρ‖ ≤

∫

∑n
1 ωj≤ρ

f‖anEρ‖. (21.76)

Secondly, applying the pull-through formula (20.52) n times again, we obtain

n∏

1

a(kj)Eρ =
n∏

1

a(kj)H
−1/2
f H

1/2
f Eρ

= (Hf +
n∑

1

ω(kj))−1/2
n∏

1

a(kj)H
1/2
f Eρ.

This formula and inequalities (21.75) and (21.76) give

∫
f‖anψ‖ ≤

∫ (∫

∑
ωj≤ρ

f2

ω
dkn

)1/2

‖an−1H
1/2
f Eρ‖dn−1k.

Proceeding in the same fashion we arrive at (21.74).
Applying the bound (21.74) with n = r to the integral

∫ ‖arEρ‖‖hrs‖drk,
we bound the r.h.s. of (21.73) by

∫
‖asEρ‖

(

ρr
∫

∑ r
1 ωj≤ρ

‖hrs‖2∏r
1 ωj

drk

)1/2

dsk.

Applying bound (21.74) with n = s to the outer integral gives (21.72). �
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Renormalization Group

In this chapter we investigate spectral properties of quantum Hamiltonians of
the form (21.55) - (21.57). To this end we develop a spectral renormalization
group method. It consists of the following steps (see Sections 22.2-22.5):

• Pass from a single operator H (= Hε) to a Banach space, B, of
Hamiltonian-type operators (of the form (21.55) - (21.57));

• Construct a map, Rρ, on B, with the following properties:
(a) Rρ is isospectral in the sense of Definition 21.3;
(b) Rρ removes the photon degrees of freedom related to energies ≥ ρ.

• Relate the dynamics of semi-flow, Rnρ , n ≥ 1, to spectral properties of
individual operators in B.

The map Rρ is called the renormalization map. It is of the form

Rρ = ρ−1Sρ ◦ Fρ
where Fρ is the smooth Feshbach-Schur (decimation) map, and Sρ is a simple
rescaling map (see Sections 21.9 and 22.4). Fρ maps operators which act non-
trivially only on the subspace RanE[0,1](Hf ) consisting of states with photon
energies ≤ 1, to operators which act non-trivially on states with photon en-
ergies ≤ ρ. The rescaling Sρ brings us back to the subspace RanE[0,1](Hf ).
By design, the renormalization map Rρ is isospectral in the sense that the
operators K and Rρ(K) have the same spectrum near 0, modulo rescaling.

The renormalization map gives rise to an isospectral (semi-)flow Rnρ , n ≥
1, (called renormalization group (RG)) on the Banach space B. We will see
that orbits of this flow, with appropriate initial conditions approach the op-
erators of the form ωHf (for some ω ∈ C) as n → ∞. In fact, CHf is a line
of fixed points of the flow (Rρ(ωHf ) = ωHf ). By studying the behaviour of
the flow near this line, we can relate the spectrum of an initial condition, H ,
near 0 to that of Hf , which we know well. This is the basic idea behind the
proof of Theorem 21.1.



286 22 Renormalization Group

22.1 Main Result

In this section we formulate the main result of this chapter. It concerns the
spectra of quantum Hamiltonians of the form (21.55) - (21.57),

H = H00 +
∑

r+s≥1

χ1Hrsχ1, H00 := h00(Hf ), (22.1)

Hrs :=
∫ ( r∏

j=1

a∗(kj)
)
hrs(Hf , k1 . . . kr+s)

r+s∏

i=r+1

a(ki)dr+sk, (22.2)

acting on the space Hred := E[0,1](Hf )F , where recall E[0,ρ](λ) denotes the
characteristic function of the interval [0, ρ]. Here χρ := χρ(Hf ) are the oper-
ators defined in Section 21.6 (the shorthand we use from now on) and the
coupling functions, hrs : I ×Br+s → C, satisfy the estimates

|∂nμhrs(μ, k)| ≤ γ0

r+s∑

i=1

ω(ki)
1
2

r+s∏

j=1

(
ξ0 · ω(kj)−

1
2
)
, (22.3)

for any i, 1 ≤ i ≤ r + s, μ ∈ [0, 1], ξ0 > 0, and n = 0, 1, where the product is
absent in the case r = s = 0, and

|h00(0)| ≤ α0, |∂μh00(μ)− 1| ≤ β0 , (22.4)

for μ ∈ [0,∞). Here Br denotes the unit ball in R3r, I := [0, 1] and, recall,
k = (k1, . . . , kr+s).

Note that, in order to be able to apply our theory to the analysis of reso-
nances of Hε, the space of operators H , should include non-selfadjoint ones.

Let D(0, r) stand for the disc in C of the radius r and centered at 0. We
denote by Ds the set of operators of the form (22.1) - (22.4) with h00(0) = 0.
We define a subset S of the complex plane by

S := {w ∈ C| Rew ≥ 0, |Imw| ≤ 1
3
Rew}. (22.5)

Recall that a complex function f on an open set A in a complex Banach space
W is said to be analytic if ∀H ∈ A and ∀ξ ∈ W , f(H + τξ) is analytic in the
complex variable τ for |τ | sufficiently small (see [Berg]). We are now prepared
to state the main result of this chapter.

Theorem 22.1 Assume that β0 and γ0 are sufficiently small. Then there is
an analytic map e : Ds → D(0, cγ2

0) such that for H ∈ Ds the number e(H)
is a simple eigenvalue of the operator H and σ(H) ⊂ e(H) + S. Moreover,
e(H) ∈ R, for H = H∗.
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Note that our approach also provides an effective way to compute the
eigenvalue e(H) and the corresponding eigenvector.

Operators on the Fock space of the form (22.1) - (22.4) will be said to
be in generalized normal (or Wick) form. Operators of the form (22.2) will
be called (rs)-monomials. Though Hf can be expressed in the standard Wick
form, Hf =

∫
ωa∗a , the corresponding coupling function, ω(k1)δ(k1 − k2), is

more singular than we allow. But even if this coupling function were smooth,
finding the Wick form of operators like χρ(Hf ), or the hrs, is not an easy
matter. In what follows we manipulate the operators a∗(k), a(k) and Hf as if
they were independent, using only the commutation relations

[a(k), Hf ] = ω(k)a(k) ,

etc.

22.2 A Banach Space of Operators

In this section we define the Banach space of operators on which the renor-
malization group acts. We consider formal expressions of the form (22.1) -
(22.4) acting on RanE[0,1](Hf ).

For ξ, ν > 0, we define the Banach space, Bξν , consisting of formal expres-
sions, (22.1) - (22.2) acting on the space Hred := E[0,1](Hf )F and satisfying
‖H‖ξν <∞, where

‖H‖ξν :=
∑

r+s≥0

ξ−(r+s) ‖Hrs‖ν (22.6)

with ‖Hrs‖ν := ‖hrs‖ν and

‖hrs‖ν :=
1∑

n=0

max
j

sup
μ,k

[Ω(r+s)
j |∂nμhrs|] <∞ , (22.7)

where Ω(n)
j = 1 for n = 0, and Ω(n)

j = ω(kj)−ν
∏n
i=1

√
ω(ki) for r + s ≥ 1.

Similarly to (21.51) we obtain

Proposition 22.2 Let Hrs be as above. Then for any ν ≥ 0,

‖χρHrsχρ‖ ≤ (r!s!)−1/2(
√

4πρ)r+sρν‖Hrs‖ν. (22.8)

Thus
∑

r+s≥1 χρHrsχρ converges in norm.

Next we state without proof that the map {hrs} �→
∑ ∫

(a∗)hrsas is one-
to-one (see [BCFS1, Thm. III.3]). Here the {hrs} satisfy (22.7). Hence the
normed space Bξν is indeed a Banach space.
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For the future analysis it is important to know how different operators
behave under rescaling, more precisely, under the action of the rescaling map
ρ−1Sρ, defined in (21.52), as ρ → 0 (or of (ρ−1Sρ)n as n → ∞, which in the
present case is the same). We have for r + s ≥ 1

ρ−1Sρ(Hrs) =
∫

(a∗)rh(ρ)
rs a

s, (22.9)

where
h(ρ)
rs (Hf , k) = ρ3/2(r+s)−1hrs(ρHf , ρk) . (22.10)

If Hrs ∈ Bνξ, then hrs behaves for small |kj |’s like
∑r+s
i=1 ω(ki)ν

∏r+s
j=1 ω(kj)−

1
2 .

Since by (21.53), Sρ(a#(k)) = ρ−3/2a#(ρ−1k), we have for r + s ≥ 1

ρ−1Sρ(Hrs) ∼ ρr+s−1+νHrs . (22.11)

In the r + s = 0 case, we have to specify the behaviour of the function
h00(μ) at μ = 0. In our case, h00(μ)− h00(0) ∼ μ and therefore

ρ−1Sρ(H00 − 〈H00〉Ω) ∼ H00 − 〈H00〉Ω),

ρ−1Sρ(〈H00〉Ω) = ρ−1〈H00〉Ω .
(22.12)

where we used the notation 〈A〉Ω := 〈Ω,AΩ〉. Hence, Hrs, r+s ≥ 1, contract,
H00−〈H00〉Ω are roughly invariant, while 〈H00〉Ω expand under our rescaling.
This suggests to decompose the Banach space Bξν into the direct sum

Bξν = C · 1 + T +W , (22.13)

of the subspaces which expand, are roughly invariant or contract under our
rescaling:

T = {T (Hf) | T : [0,∞)→ C is C1 with T (0) = 0} , (22.14)

and
W := {

∑

r+s≥1

χ1Hrsχ1 ∈ Bξν }. (22.15)

This decomposition will plat an important role below.

Remark 22.3 The subspace T can be further decomposed into the invariant
substace C ·Hf and and contracting one,

Ts = {T (Hf ) | T : [0,∞)→ C is C1 with T (0) = T ′(0) = 0} . (22.16)

The decomposition of the Banach space Bξν into the subspaces C · 1, C ·Hf

and Ts +W is related to the spectral decomposition of the map ρ−1Sρ.
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22.3 The Decimation Map

In this section we construct a map which projects out the degrees of freedom
corresponding to high photon energies. We use the smooth Feshbach-Schur
map, which we define here in a greater generality than in Section 21.6, and
formulate its important isospectral property. Let χ, χ be a partition of unity
on a separable Hilbert space H, i.e. χ and χ are non-negative operators on
H whose norms are bounded by one, 0 ≤ χ, χ ≤ 1, and χ2 + χ2 = 1. We
assume that χ and χ are nonzero. Let τ be a (linear) projection acting on
closed operators on H with the property that operators in its image commute
with χ and χ. We also assume that τ(1) = 1. Let τ := 1− τ and define

Hτ,χ# := τ(H) + χ#τ (H)χ#, (22.17)

where χ# stands for either χ or χ.
Given χ and τ as above, we denote by Dτ,χ the space of closed operators,

H , on H which belong to the domain of τ and satisfy the following three
conditions:

D(τ(H)) = D(H) and χD(H) ⊂ D(H), (22.18)

Hτ,χ is (bounded) invertible on Ranχ, (22.19)

τ(H)χ and χτ (H) extend to bounded operators on H. (22.20)

(For more general conditions see [BCFS1,GrH].)
The smooth Feshbach-Schur map (SFM) maps operators on H belonging

to Dτ,χ to operators on H by H �→ Fτ,χ(H), where

Fτ,χ(H) := H0 + χWχ − χWχH−1
τ,χχWχ. (22.21)

Here H0 := τ(H) and W := τ (H). Note that H0 and W are closed operators
on H with coinciding domains, D(H0) = D(W ) = D(H), and H = H0 +W .
We remark that the domains of χWχ, χWχ, Hτ,χ, and Hτ,χ all containD(H).

Define operator

Qτ,χ(H) := χ − χH−1
τ,χχWχ. (22.22)

The following result ([BCFS1]) generalizes Theorem 11.1 of Section 11.6.

Theorem 22.4 (Isospectrality of SFM) Let 0 ≤ χ ≤ 1 and H ∈ Dτ,χ

be an operator on a separable Hilbert space H. Then we have the following
results:
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(i) Hψ = 0 =⇒ Fτ,χ(H)ϕ = 0, ϕ := χψ ∈ Ranχ.
(ii)Fτ,χ(H)ϕ = 0 =⇒ Hψ = 0, ψ := Qτ,χ(H)ϕ ∈ H.
(iii) dim NullH = dim NullFτ,χ(H).
(iv)H is bounded invertible on H if and only if Fτ,χ(H) is bounded invertible

on Ranχ. In this case

H−1 = Qτ,χ(H) Fτ,χ(H)−1 Qτ,χ(H)# + χH−1
χ χ, (22.23)

Fτ,χ(H)−1 = χH−1 χ + χ τ(H)−1χ. (22.24)

We also mention the following useful property of Fτ,χ:

H is self-adjoint ⇒ Fτ,χ(H) is self-adjoint. (22.25)

The proof of this theorem is similar to the one of Theorem 11.1 of Section 11.6.
We demonstrate only the proof of the statement (ii) which we use extensively
below and refer for the rest of the proof to [BCFS1]. The statement (ii) follows
from the relation

H Qτ,χ(H) = χFτ,χ(H). (22.26)

Now we prove the latter relation, using the shorthand Q ≡ Qτ,χ(H), Hχ ≡
H0 + χW χ, Hχ ≡ H0 + χW χ:

H Q = Hχ − HχH−1
χ χWχ = χHχ

+ χ2Wχ − (
χHχ + χ2Wχ

)
H−1
χ χWχ . (22.27)

Since χHχH
−1
χ χWχ =

(
χH0 + χ2Wχ

)
H−1
χ χWχ = χ2Wχ, the r.h.s. gives

χFτ,χ(H).
The Feshbach-Schur map is a special case of the smooth Feshbach-Schur

map and is obtained from the latter when χ is a projection, χ2 = χ, by taking
τ = 0. Then Fτ,χ becomes Fχ(H) := χ

(
H − HχH−1

χ χH
)
χ, Hχ := H0χ =

χHχ, as defined in Section 11.1.

For Hamiltonians of the form H =
∑

r+s≥0

Hrs considered in Sections 22.1-

22.2, we define the decimation map as

Fρ ≡ Fτ,χ, (22.28)

where Fτ,χ is the smooth Feshbach-Schur map and the operators τ and χ are
chosen as

τ(H) = H00 := h00(Hf ) and χ := χρ = χρ(Hf ) ≡ χρ−1Hf≤1, (22.29)

where the cut-off function χλ≤1 is defined in Section 21.6. To isolate a set on
which the map Rρ is defined we write H = H00 +

∑

r+s≥1

χ1Hrsχ1 ∈ Bξν as

H = E + T + χ1Wχ1, (22.30)
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where E := 〈Ω,HΩ〉 = h00(0), T := H00−E and W :=
∑

r+s≥1

Hrs (cf. (22.13)

- (22.15)) and define the following polydisc in Bξν :

Dξν(α, β, γ) :=
{
H ∈ Bξν

∣
∣
∣ |h0,0[0]| ≤ α, (22.31)

sup
r∈[0,∞)

|h′0,0[r]− 1| ≤ β, ‖W‖ξν ≤ γ
}
.

The following lemma shows that the domain of the decimation map Fρ con-
tains Dξν(α, β, γ), for appropriate numbers α, β, γ > 0.

Lemma 22.5 Fix 0 < ρ < 1, ν ≤ 1/2, and 0 < ξ ≤ (4π)−1/2. Then it follows
that the polydisc Dξν(ρ/8, 1/8, ρ/8) is in the domain of the decimation map
Fρ.

Proof. Let H ∈ Dξν(ρ/8, 1/8, ρ/8). We observe that χ1Wχ1 := H − h0,0

defines a bounded operator on F , and we only need to check the invertibility
of Hτχρ on Ranχρ. Now the operator h0,0 is invertible on Ranχρ since for all
r ∈ [3ρ/4,∞)

Re h0,0[r] ≥ r − |h0,0[r] − r|
≥ r

(
1 − sup

r
|h′0,0[r]− 1|) − |h0,0[0]|

≥ 3 ρ
4

(1− 1/8) − ρ

8
≥ ρ

2
. (22.32)

Furthermore, by (22.8),
∥
∥χ1Wχ1‖ ≤ ‖W‖ξν ≤ γ = ρ/8. Hence Re(h0,0 +

χ1Wχ1) ≥ ρ
3

on Ranχρ, i.e. Hτ,χρ is invertible on Ranχρ. �

Note that the decimation map, Fρ maps isospectrally operators which act
nontrivially on Ranχ1 into those which nontrivially on Ranχρ.

22.4 The Renormalization Map

Using that the subspace RanE[0,1](Hf ) is invariant under the composition map
Sρ ◦ Fρ, we define the renormalization map as a composition of a decimation
map and a rescaling map on the domain of the decimation map Fρ (see (22.28))
as

Rρ := ρ−1Sρ ◦ Fρ |RanE[0,1](Hf ) (22.33)

where Sρ is the rescaling map defined in (21.52). By Lemma 22.5, its domain
contains the polydiscsDξν(α, β, γ), with α, β, γ ≤ ρ

8
. Note that the map Sρ◦Fρ

acts on the orthogonal complement, RanE[0,1](Hf )⊥, trivially:

ρ−1Sρ ◦ Fρ = ρ−1Sρ ◦ τ on RanE[0,1](Hf )⊥ (22.34)
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where the map τ is defined in (22.29). Note that while the standard Feshbach-
Schur maps have the semigroup property (see Supplement 22.6): Rρ2 ◦Rρ1 =
Rρ2ρ1 , the smooth ones have this property only under certain conditions on
ρ1 and ρ2.

Next, we list some elementary properties of the map Rρ which follow
readily from the definitions

1. Rρ is isospectral in the sense that ρ ·Rρ(H) and H are isospectral at 0 in
the sense of Theorem 22.4,

2. Rρ(wHf + z1) = wHf + 1
ρ
z1 ∀w, z ∈ C.

In particular, CHf is a complex line of fixed points of Rρ: Rρ(wHf ) =
wHf ∀w ∈ C, and C ·1 is (a part of) the unstable manifold. The first property
follows from the relations (22.34).

Problem 22.6 Prove the statements above.

Describing the range of the renormalization map Rρ on polydiscs Dξν
(α, β, γ) is considerably harder. The following result, proven in [FGSi], shows
that contraction is actually a key property of along ’stable’ directions.

Theorem 22.7 Let ε0 : H → 〈Ω,HΩ〉, and μ := ν > 0. Then, for any
σ ≥ 1, 0 < ρ < 1/2, α, β ≤ ρ

8 , and γ � 1, we have that

Rρ − ρ−1ε0 : Dξν(α, β, γ)→ Dξν(rρ(α, β, γ)). (22.35)

continuously, with ξ := 1
4 and, for an absolute constant c,

rρ(α, β, γ) := (cγ2/ρ, β + cγ2/ρ, cρνγ). (22.36)

Moreover, Rρ(H) and H are isospectral (modulo rescaling) at 0.

Remark 22.8 Subtracting the term ρ−1ε0 from Rρ allows us to control the
expanding direction during the iteration of the map Rρ. In [BCFS1], such a
control was achieved by changing the spectral parameter λ, which controls
〈Ω,HΩ〉.

The proof of this theorem is similar to the proof of Theorem 21.6 which we
outlined above: expand Rρ(H) in the perturbation W := H−H00, reduce the
resulting series to generalized normal form, and estimate the obtained coupling
functions. To bring the operators we deal with into generalized normal form,
we use the “pull-through” formulae (20.52) and (20.53).

To explain the result above, we, as usual in the study of nonlinear dy-
namics, consider the linearization (variational derivative) of ∂Rρ(w ·Hf ) in
order to understand the dynamics of the map Rρ near its near its fixed points
w · Hf , w ∈ C. The variational derivative of the map Rρ at a point H0 is
defined as

∂Rρ(H0)ξ :=
∂

∂s
Rρ(H0 + sξ)

∣
∣
s=0
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for any ξ ∈ Bξν . Thus ∂Rρ(H0) is a linear operator on Bξν . By the definition
of the map Fρ we have the relation Fρ(w ·Hf + sξ) = w ·Hf + sτ(ξ) +O(s2),
which in turn implies (informally) that ∂Dρ(w ·Hf )ξ = τ(ξ)+χρτ̄ (ξ)χρ. Using
this and the relation Sρ(χρ) = χ1, we obtain

∂Rρ(w ·Hf )ξ = ρ−1Sρ(ξ) . (22.37)

Scaling properties of Hrs =
∫

(a∗)rhrsas are given in (22.11) - (22.12). They
suggest that for ν > 0, the termsHrs, r + s ≥ 1 contract, the terms H00 −
〈H00〉Ω are essentially invariant, and the terms 〈H00〉Ω expand. In the physics
terminology and for ν > 0,

r + s ≥ 1 ↔ irrelevant terms,
H00 − 〈H00〉Ω ↔ marginal terms,

〈H00〉Ω ↔ relevant terms.

where we used the notation 〈A〉Ω := 〈Ω,AΩ〉.
The following equation follows from Eqs (22.9) - (22.10) :

‖ρ−1Sρ(Hrs)‖ξν = ρ(1+ν)(r+s)−1‖Hrs‖ξν = ρ−1‖Hrs‖ρ−1−νξ,ν . (22.38)

Applying these equalities to operators of the form W =
∑

r+s≥1

Hrs, we find

‖ρ−1Sρ(W )‖ξν ≤ ‖W‖ρ−νξ,ν ≤ ρν‖W‖ξν . (22.39)

(Recall that ν ≥ 0.) Let Rlin
ρ := ∂Rρ(w ·Hf ) = ρ−1Sρ and

rlinρ (α, β, γ) := (0, β, ρνγ). (22.40)

The estimate (22.39), together with the relations ρ−1Sρ(E1) = ρ−11 and
ρ−1Sρ(wHf ) = wHf , implies that

Rlin
ρ − ρ−1ε0 : Dξν(α, β, γ)→ Dξν(rlinρ (α, β, γ)). (22.41)

This is the linearization of the estimate (22.35). Theorem 22.7 deals essentially
with controlling the nonlinear part of the map Rρ.

In the next section we address the dynamics of Rnρ as n→∞ in a vicinity
of the fixed point manifold Mfp ⊇ CHf , and connect this dynamics with
spectral properties of operators of interest.

22.5 Dynamics of RG and Spectra of Hamiltonians

To describe the dynamics of Rkρ we need some definitions. Consider an initial
set of operators to be D := Dξν(α0, β0, γ0), with α0, β0, γ0 � 1. We let
Ds := Dξν(0, β0, γ0) (the subindex s stands for ’stable’). We fix the scale ρ so
that
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α0, β0, γ0 � ρ ≤ 1
2
. (22.42)

Below, we will use the n−th iteration of the numbers α0, β0, γ0 under the
map (22.36): ∀n ≥ 1

(αn, βn, γn) := rnρ (α0, β0, γ0).

For H ∈ D we denote Hu := 〈H〉Ω and Hs := H −〈H〉Ω 1 (the unstable- and
stable-central-space components of H , respectively). Note that Hs ∈ Ds. It is
shown in [FGSi] that the following objects are defined inductively in n ≥ 1
(with e0(Hs) = 0 ∀Hs ∈ Ds)

Vn := {H ∈ D| |Hu − en−1(Hs)| ≤ 1
12
ρn+1}; (22.43)

En(H) :=
(Rnρ (H)

)
u
, H ∈ Vn; (22.44)

en(Hs) is the unique zero of the function λ→ En(Hs − λ1)

in the disc D(en−1(Hs),
1
12
ρn+1),

(22.45)

and have the following properties:

Vn ⊂ Vn−1 ⊂ D(Rnρ ); (22.46)

Rnρ (Vn) ⊂ Dμ,ξ(ρ/8, βn, γn); (22.47)

∂λEn(λ) ≤ −4
5
ρ−n; (22.48)

|en(Hs)− en−1(Hs)| ≤ 2αnρn; (22.49)

en(Hs) ∈ R, if H = H∗. (22.50)

Proof (Proof of Theorem 22.1). Now we prove the first statement of Theorem
22.1. By (22.49), the limit e(Hs) := limj→∞ ej(Hs) exists pointwise for H ∈
D. Iterating Eqn (22.49) and using that (cρμ)2ρ ≤ 1/2, we find the estimate

|en(Hs)− e(Hs)| ≤ 2αn+1ρ
n+1, n ≥ 0. (22.51)

Since e0(Hs) = 0, for n = 0 this estimate gives |e(Hs)| ≤ 2α1ρ = cγ2
0 ,

which shows that e : Ds → D(0, 2α1ρ). Moreover, (22.50) shows that e(Hs) ∈
R, if H = H∗. We skip the proof of analyticity of e(Hs) in Hs.

Next, we prove that e(Hs) is a simple eigenvalue. We omit the reference
to Hs and set e ≡ e(Hs). Let H := H(0) − e1 ∈ ⋂

n Vn. (22.46) implies that⋂
n Vn ⊂ D(Rkρ), ∀k. Hence we can define a sequence of operators (H(n))∞n=0

in Bμ,s ⊆ B(Hred) by H(n) := Rnρ
(
H(0)

)
. Recall the definitions of Sρ and Uθ
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in (21.52) and (21.8) and let Γρ := Uθ, ρ = e−θ. Then the definition (22.33)
of Rρ implies that, for all integers n ≥ 0,

H(n) =
1
ρ
Γρ

(
Fρ

(
H(n−1)

))
Γ ∗
ρ , (22.52)

where, recall, Fρ is defined in (22.28). We will use the operators Qτχ defined
in (22.22), and the identity (22.26) (HQτχ = χFτχ(H)) which they satisfy.
Let

Q(n) := Qτχ
(
H(n)

)
, (22.53)

with τ and χ = χρ given in (22.29). Then the equation H (n)Q(n) =
χρFρ(H(n)) together with (22.52), implies the intertwining property

H(n−1) Q(n−1) Γ ∗
ρ = ρ Γ ∗

ρ χ1 H
(n) . (22.54)

Eq. (22.54) is the key identity for the proof of the existence of an eigenvector
with the eigenvalue e.

For the construction of this eigenvector, we define, for non-negative inte-
gers β, vectors Ψk in H by setting Ψ0 := Ω and

Ψk := Q(0) Γ ∗
ρ Q

(1) Γ ∗
ρ · · ·Q(k−1) Ω . (22.55)

We first show that this sequence is convergent, as k → ∞. To this end, we
observe that Ω = Γ ∗

ρ χρΩ and hence

Ψk+1 − Ψk = Q(0) Γ ∗
ρ Q

(1) Γ ∗
ρ · · ·Q(k−1) Γ ∗

ρ

(
Q(k) − χρ

)
Ω . (22.56)

Since ‖χρ‖ ≤ 1, this implies that

∥
∥Ψk+1 − Ψk

∥
∥ ≤ ∥

∥Q(k) − χρ
∥
∥
β−1∏

j=0

{
1 +

∥
∥Q(j) − χρ

∥
∥
}
. (22.57)

To estimate the terms on the r.h.s. we consider the j-th step Hamiltonian
H(j). By (22.30) and (22.47), we can write H(j) as

H(j) = Ej · 1 + Tj + Wj , (22.58)

with
|Ej | ≤ ρ

8
and ‖Wj‖ ≤ γj ≤ ρ

16
. (22.59)

Recalling the definition (22.53) of Q(j), we have

χρ −Q(j) = χρ
(
Ej + Tj + χρWj χρ

)−1
χρWj χρ . (22.60)

By (22.59), for all j ∈ N, we may estimate

‖χρ −Q(j)‖ ≤
(ρ

8
− ‖Wj‖

)−1

‖Wj‖ ≤ 16 γj
ρ

. (22.61)
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Inserting this estimate into (22.57) and using that
∏∞
j=0(1 + λj) ≤

exp
[ ∑∞

j=0 λj

]
, for λj ≥ 0, we obtain

∥
∥Ψk+1 − Ψk

∥
∥ ≤ 16 γk

ρ

k−1∏

j=0

{
1 +

16 γj
ρ

}

≤ 16 γk
ρ

exp
[
32 γ0 ρ

−1
]
, (22.62)

where we have used that
∑∞
j=0 γj ≤ 2γ0 (recall the definition of γj after Eqn

(22.42)). Since
∑∞
j=0 γj <∞, we see that the sequence (Ψk)k∈N0 of vectors in

H is convergent, and its limit Ψ∞ := limk→∞ Ψk , satisfies the estimate

∥
∥Ψ∞ −Ω

∥
∥ =

∥
∥Ψ∞ − Ψ0

∥
∥ ≤ 32 γ0

ρ
exp

[
32 γ0 ρ

−1
]
, (22.63)

which guarantee that Ψ(∞) �= 0.
The vector Ψ∞ constructed above is an element of the kernel of H(0), as

we will now demonstrate. Observe that, thanks to (22.54),

H(0) Ψk =
(
H(0) Q(0) Γ ∗

ρ

) (
Q(1) Γ ∗

ρ · · ·Q(k−1) Ω
)

= ρΓ ∗
ρ χ1

(
H(1) Q(1) Γ ∗

ρ

)(
Q(2) Γ ∗

ρ · · ·Q(k−1) Ω
)

...
= ρk

(
Γ ∗
ρ χ1

)k
H(k) Ω . (22.64)

Eq (22.58) together with the estimate (22.59) and the relation TkΩ = 0
implies that

∥
∥H(k) Ω

∥
∥ =

∥
∥ (Wk + Ek)Ω

∥
∥ (22.65)

≤ γk + 8α2
k ≤ 2γk .

Summarizing (22.64)–(22.65) and using that the operator norm of Γ ∗
ρ χ1 is

bounded by 1, we arrive at
∥
∥H(0) Ψk

∥
∥ ≤ 2γk → 0 (22.66)

as k →∞. Since H(0) ∈ B(H) is continuous, (22.66) implies that

H(0) Ψ∞ = lim
k→∞

(
H(0) Ψk

)
= 0. (22.67)

Thus 0 is an eigenvalue of the operator H(0) := H − e1, i.e. e is an eigenvalue
of the operator H , with the eigenfunction Ψ∞.

Finally, we prove the second statement of Theorem 22.1. To simplify ex-
position we restrict ourself to self-adjoint operators. We omit the reference to
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Hs and set e ≡ e(Hs) and en ≡ en(Hs). Let H(n)(λ) := Rnρ (Hs − λ) and,
recall, En(λ) := H(n)(λ)u. Using the equation En(en) = 0, the mean value
theorem and the estimate (22.48), we obtain that En(λ) ≥ − 4

5
ρ−n(λ − en),

provided λ ≤ en. Hence, if λ ≤ en − θn, with θn � γnρ
n and θn → 0 as

n→∞, then H(n)(λ) ≥ 4
5
ρ−nθn−O(γn) ≥ 1

2
γn. This implies 0 ∈ ρ(H(n)(λ))

and therefore, by Theorem 22.4, 0 ∈ ρ(Hs − λ) or λ ∈ ρ(Hs). Since en → e
and θn → 0 as n→∞, this implies that σ(Hs) ⊂ [e,∞), which is the second
statement of the theorem for self-adjoint operators. �

We discuss the geometrical meaning of the results obtained above. Let
H ∈ Vn ⊂ D(Rn+1

ρ ). According to (22.30), H(n) := Rnρ (H) can be written as

H(n) = En1 + Tn +Wn, (22.68)

where Tn ≡ Tn(Hf ) with Tn(r) ∈ C1 and Tn(0) = 0. By (22.47) we have
|∂rTn(r)−1| ≤ βn and ‖Wn‖Ws

op
≤ γn. Hence the function τn(r) := Tn(r)/r =

∫ 1

0
T ′(sr)ds is continuous and satisfies |τn(r)−1| ≤ βn. One can also show that

τn → τ = (constant) forH ∈ ⋂
n Vn. By the definition of Vn, |En−en−1(Hs)| ≤

1
12ρ

n+1. Hence

Rnρ (H)→ e(Hs) + τHf in the norm of Bξν , (22.69)

where e(Hs) := limj→∞ ej(Hs), as n→∞. In other wordsMs :=
⋂
n Vn is the

(local) stable manifold for the invariant manifoldMfp := CHf of fixed points.
(Formally, a local stable manifold can be defined as a manifold invariant under
Rρ and such that Ms = {H ∈ Bξν

∣
∣ Rnρ (H) → Mfp as n → ∞}.) By the

definition of Vn, it is the graph of the map e : Ds → Vu:

Ms = {H ∈ D | 〈H〉Ω = e(Hs)}. (22.70)

One can show that Ms is invariant under Rρ.
Consider the invariant manifoldsMu, Mfp andMs. SinceMs is of the co-

dimension one and contains the manifold CHf of fixed points, whileMu := C1
is invariant and expanding under Rρ, we see CHf =: Mfp and Mu := C1
are fixed point and unstable manifolds, respectively.

The subspaces Vu := C · 1, Vc := C ·Hf and Vc + Vs := T +W spanning
the Banach space Bξν (see Section 22.2) are tangent spaces to the manifolds
Mu, Mfp and Ms at Mfp.

.H−z1

Hf

u Hf=C. +C .1

C .1

fp .C=
s

Fig. 22.1. RG flow.
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22.6 Supplement: Group Property of Rρ

The Feshbach-Schur maps has the semi-group property:

Proposition 22.9 (semigroup property) Assume the projections P1 and P2

commute. Then FP1 ◦ FP2 = FP1P2

Proof. Assume for simplicity that H and FP2(H) are invertible. Then the
statement follows by applying equation (11.42) twice. �



23

Mathematical Supplement: Spectral Analysis

We have seen already in the first chapter that the space of quantum-
mechanical states of a system is a vector space with an inner-product (in fact
a Hilbert space). We saw also that an operator (a Schrödinger operator) on
this space enters the basic equation (the Schrödinger equation) governing the
evolution of states. In fact, the theory of operators on a Hilbert space provides
the basic mathematical framework of quantum mechanics. This chapter de-
scribes some aspects of operator theory and spectral theory that are essential
to a study of quantum mechanics. To make this chapter more self-contained,
we repeat some of the definitions and statements from the chapters in the
main text.

23.1 Spaces

In this section we review briefly some background material related to linear (or
vector) spaces. We introduce the simplest and most commonly used spaces,
Banach and Hilbert spaces, and describe the most important examples. We
begin with the basic definitions.

Vector spaces. A vector space V is a collection of elements (here denoted
u, v, w, ...) for which the operations of addition, (u, v) → u + v and multipli-
cation by a (real or complex) number, (α, u)→ αu, are defined in such a way
that

u+ v = v + u (commutativity)
u+ (v + w) = (u + v) + w (associativity),
u+ 0 = 0 + u = u (existence of zero vector),

α(βu) = (αβ)u,
(α+ β)u = αu+ βu,

α(u + v) = αu+ αv,
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0v = 0, 1v = v.

We also denote −v := (−1)v. Elements of a vector space are called vectors.
Here are some examples of vector spaces:

(a) R
n = {x = (x1, ..., xn)| − ∞ < xj < ∞ ∀ j}– the Euclidean space of

dimension n;
(b)C(Ω) – the space of continuous real (or complex) functions on Ω, where

Ω is R
n, or a subset of R

n;
(b)Ck(Ω) – the space of k times continuously differentiable real (or complex)

functions on Ω, k = 1, 2, 3, . . . .

The addition and multiplication by real/complex numbers in these spaces
is defined in the pointwise way:

(x+ y)j = xj + yj and (αx)j = αxj ∀ j
and

(f + g)(x) := f(x) + g(x) and (αf)(x) := αf(x) ∀x ∈ Ω.
Problem 23.1 Show that R

n, C(Ω) and Ck(Ω) are vector spaces.

Norms. To measure the size of vectors, one uses the notion of norm. A norm
on a vector space V is defined to be a map, V � u→ ||u|| ∈ [0,∞), which has
the following properties:

(a) ‖u‖ = 0 ⇐⇒ u = 0;
(b) ‖αu‖ = |α|‖u‖;
(c) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.
The last inequality is called the triangle inequality. We give some examples of
norms:

(a) ‖x‖ := |x| = (
∑
i x

2
i )

1/2 in R
n;

(b) ‖f‖∞ = supx∈Ω |f(x)| in C(Ω) (also denoted ‖f‖C);
(c) ‖f‖Ck = max0≤j≤k supx∈R

| djdxj f(x)| in Ck(R);
(d) ‖f‖p := (

∫
Ω
|f(x)|pdx)1/p in C(Ω)

For examples (b) and (d), clearly, ||f ||p = 0⇔ f = 0, ||αf ||p = |α| ||f ||p, ∀α ∈
C, and for p = 1,∞, ||f + g||p ≤ ||f ||p + ||g||p. We will prove the triangle
inequality for 1 < p <∞ later.

A vector space equipped with a norm is called a normed vector space. Here
are some examples of normed vector spaces

(a) R
n with the norm ‖x‖ = |x|;

(b)The subspace Cb(Ω) of C(Ω) consisting of all continuous, bounded func-
tions on Ω ⊂ R

n, equipped with the norm ‖f‖∞;
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(c) The space Ck(Ω), for Ω = [0, 1], equipped with the norm ‖f‖Ck or the
norm ‖f‖p.

Problem 23.2 Show that Cb(Ω) is a normed vector space.

Banach spaces. A normed vector space is said to be complete, if Cauchy
sequences in it converge; that is, if uj ∈ V , j = 1, 2, . . . is such that
limj,k→∞ ‖uj−uk‖ = 0, then there exists u ∈ V such that limj→∞ ‖uj−u‖ =
0. A normed vector space which is also complete is called a Banach space.
Examples of Banach spaces include

(a) R
n with the norm ‖x‖ = |x|;

(b)Cb(Ω) with the norm ‖f‖∞;
(c) Ck(Ω), for Ω = [0, 1] with the norm ‖f‖Ck;
(d) For 1 ≤ p <∞, the Lp-space

Lp(Ω) := { f : Ω → C |
∫

Ω

|f(x)|pdx <∞ }

with the norm ‖f‖p.
Dual spaces. Next we define the important notion of dual space.

1. A bounded linear functional on a vector space V , with a norm ‖ · ‖, is a
map l : V → C (or→ R if V is a real, rather than a complex vector space)
such that

l(αξ + βη) = αl(ξ) + βl(η)

for all ξ, η ∈ V , and α, β ∈ C (or R), and there is C <∞ such that

|l(ξ)| ≤ C‖ξ‖
for all ξ ∈ V .

2. The dual space of a normed vector space V , is the space V ∗ of all bounded
linear functionals on V .

Note that on a finite dimensional space all linear functionals are bounded.
The dual space V ∗ is also a normed vector space, under the norm

‖l‖V ∗ := sup
ξ∈V,‖ξ‖V =1

|l(ξ)|.

If V is a Banach space, then so is V ∗, under this norm. One often denotes the
action of l ∈ V ∗ on ξ ∈ V by

〈l, ξ〉 := l(ξ).

Inner products and Hilbert spaces. Now let H be a (complex) vector
space. We assume H is endowed with an inner product, 〈·, ·〉. This means the
map

〈 , 〉 : H×H → C

satisfies the properties
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1. linearity (in the second argument):

〈v, αw + βz〉 = α〈v, w〉 + β〈v, z〉
2. conjugate symmetry: 〈w, v〉 = 〈v, w〉
3. positive definiteness: 〈v, v〉 > 0 for v �= 0

for any v, w, z ∈ H and α, β ∈ C. It follows that the map ‖ · ‖ : H → [0,∞)
given by

‖v‖ := 〈v, v〉1/2
is a norm on H. If H is also complete in this norm – that is, if it is a Banach
space – then H is called a Hilbert space.

Our main example of a Hilbert space is the space of square-integrable
functions, the L2-space (the state space of a a quantum system):

L2(Rd) := {ψ : R
d → C |

∫

Rd

|ψ|2 <∞}

with the inner-product

〈ψ, φ〉 :=
∫

Rd

ψ̄φ.

Here and throughout, we will often use the simplified notations
∫
f or

∫
Rd
f

for
∫

Rd
f(x)dx.

Another important example of a Hilbert space is the Sobolev space of order
n, n = 1, 2, 3, . . .:

Hn(Rd) := {ψ ∈ L2(Rd) | ∂αψ ∈ L2(Rd) ∀ α, |α| ≤ n}.
Here α is a multi-index: α = (α1, . . . , αd), αj non-negative integers, and |α| :=
∑d
j=1 αj . The expression ∂αψ denotes the partial derivative ∂α1

x1
· · · ∂αdxd ψ of

order |α|. In other words, Hn(Rd) is the space of functions all of whose deriva-
tives up to order n lie in L2(Rd). The inner-product that makes Hn(Rd) into
a Hilbert space is

〈ψ, φ〉Hn :=
∑

0≤|α|≤n
〈∂αψ, ∂αφ〉

where 〈·, ·〉 is the L2 inner-product defined above. The Fourier transform – see
Section 23.14 – provides a very convenient characterization of Sobolev spaces:

ψ ∈ Hn(Rd) ⇐⇒
∫

Rd

(1 + |k|2n)|ψ̂(k)|2dk <∞. (23.1)

We recall here two frequently used facts about Hilbert spaces (see, eg., [Fo]
or [RSI] for proofs).

Proposition 23.3 (Cauchy-Schwarz inequality) For v, w ∈ H, a Hilbert
space,

|〈v, w〉| ≤ ‖v‖‖w‖.
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A set {vn} ⊂ H, n = 1, 2, . . . is called orthonormal if ‖vn‖ = 1 for all n
and 〈vn, vm〉 = 0 for n �= m. It is a complete orthonormal set (or basis) if
the collection of finite linear combinations of the vn’s is dense in H. Recall
that for a subset D ⊂ H to be dense in H means that given any v ∈ H and
ε > 0, there exists w ∈ D such that ‖v − w‖ < ε. A Banach space which has
a countable dense subset is said to be separable. A Hilbert space is separable
if and only if it has a a countable orthonormal basis.

Proposition 23.4 (Parseval relation) Suppose {vn} ⊂ H is a complete
orthonormal set. Then for any w ∈ H,

‖w‖2 =
∑

n

|〈w, vn〉|2.

If H is a Hilbert space, then we can identify its dual, H∗, with H itself,
via the map H � u→ lu ∈ H∗ with luv := 〈u, v〉 for v ∈ H (here the notation
〈·, ·〉 indicates the Hilbert space inner-product). The fact that this map is an
isomorphism betweenH andH∗ is known as the Riesz representation theorem.

23.2 Operators on Hilbert Spaces

In this section we explain the notion of a linear operator on a Hilbert space H
(often just called an operator), which abstracts some of the key properties of
the Schrödinger operator introduced in Chapter 1. Operators are maps, A,
from H to itself, satisfying the linearity property

A(αv + βw) = αAv + βAw

for v, w ∈ H, α, β ∈ C. Actually, we only require an operator A to be defined
on a domain D(A) ⊂ H which is dense in H:

A : D(A)→ H.

An example of a dense subset of L2(Rd) is C∞
0 (Rd), the infinitely-

differentiable functions with compact support. (Recall, the support of a func-
tion f is the closure of the set where it is non-zero:

supp(f) := {x ∈ Rd | f(x) �= 0}.

Thus a function with compact support vanishes outside of some ball in R
d. For

Ω ⊂ R
d, C∞

0 (Ω) denotes the infinitely differentiable functions with support
contained in Ω.)

Here are some simple examples of linear operators,A, acting on the Hilbert
space L2(Rd). In each case, we can simply choose D(A) to be the obvious
domain D(A) := {ψ ∈ L2(Rd) | Aψ ∈ L2(Rd)}.
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1. The identity map
1 : ψ �→ ψ

2. Multiplication by a coordinate

xj : ψ �→ xjψ

(i.e. (xjψ)(x) = xjψ(x))
3. Multiplication by a continuous function V : R

d → C

V : ψ �→ V ψ

(again meaning (V ψ)(x) = V (x)ψ(x)).
4. The momentum operators (differentiation)

pj : ψ �→ −i�∂jψ

5. The Laplacian

Δ : ψ �→
d∑

j=1

∂2
jψ

6. A Schrödinger operator

H : ψ �→ − �
2

2m
Δψ + V ψ

7. An integral operator

K : ψ �→
∫
K(·, y)ψ(y)dy

(i.e. (Kψ)(x) =
∫
K(x, y)ψ(y)dy). The function K : R

d×R
d → C is called

the integral kernel of the operator K.

The domain of the first example is obviously the whole space L2(Rd). The do-
main of the last example depends on the form of the integral kernel, K. The
domains of the other examples are easily seen to be dense, since they con-
tain C∞

0 (Rd) (assuming V (x) is a locally bounded function). If the potential
function V (x) is bounded, then the largest domain on which the Schrödinger
operator, H , is defined, namely D(H) := {ψ ∈ L2(Rd) | Hψ ∈ L2(Rd)}, is
the Sobolev space of order two, H2(Rd).

Remark 23.5 If the kernel K is allowed to be a distribution (a generalized
function), then the last example above contains all the previous ones as special
cases.

It is useful in operator theory to single out those operators with the prop-
erty of boundedness (which is equivalent to continuity).



23.2 Operators on Hilbert Spaces 305

Definition 23.6 An operator A on H is bounded if

‖A‖ := sup
{ψ∈H | ‖ψ‖=1}

‖Aψ‖ <∞. (23.2)

In fact, the expression (23.2) defines a norm which makes the space B(H)
of bounded operators on H into a complete normed vector space (a Banach
space). As we will see, bounded operators are, in some respects, much easier
to deal with than unbounded operators. However, since some of the most
important operators in quantum mechanics are unbounded, we will need to
study both.

Problem 23.7 Which of the operators in Examples 1-7 above are bounded?
In particular, show that the operators pj := −i�∂j and H0 := − �

2

2m
Δ are

unbounded on L2(Rd).

Often we can prove a uniform bound for an operator A on a dense domain,
D. The next lemma shows that in this case, A can be extended to a bounded
operator.

Lemma 23.8 If an operator A satisfies ‖Aψ‖ ≤ C‖ψ‖ (with C independent
of ψ) for ψ in a dense domain D ⊂ H, then it extends to a bounded operator
(also denoted A) on all H, satisfying the same bound: ‖Aψ‖ ≤ C‖ψ‖ for
ψ ∈ H.

Proof. For any u ∈ H, there is a sequence {un} ⊂ D such that un → u as
n→∞ (by the density of D). Then the relation

‖Aun − Aum‖ ≤ C‖un − um‖
shows that {Aun} is a Cauchy sequence, so Aun → v, for some v ∈ H (by
completeness ofH), and we set Au := v. This extends A to a bounded operator
on all of H (with the same bound, C). �

A converse statement – that an operator defined on all of H must be bounded
– holds for certain important classes of operators. One such class is closed
operators:

Definition 23.9 An operator A on H is called closed if whenever {uj}∞j=1 ⊂
D(A) is a sequence with uj → u and Auj → v as j → ∞, u ∈ D(A) and
Au = v. Another way to say this is that the graph of A, {(u,A(u)) | u ∈
D(A)} ⊂ H×H, is closed.

A second such class is symmetric operators – i.e., those satisfying

〈u, Av〉 = 〈Au, v〉 (23.3)

for all u, v ∈ D(A). As we have seen, the operators of most importance in
quantum mechanics are symmetric (indeed, self-adjoint). Symmetric and self-
adjoint operators will be discussed in more detail below.
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Theorem 23.10 A closed or symmetric operator, defined on the entire
Hilbert space, is bounded.

Proof. For a closed operator, this is the “Closed Graph Theorem” of functional
analysis. For a symmetric operator, this is the “Hellinger-Toeplitz” theorem
– see, eg., [RSI].

We conclude this section with a useful definition.

Definition 23.11 The commutator, [A,B], of two bounded operators A and
B is the operator defined by

[A,B] := AB −BA.

Defining the commutator of two operators when one of them is unbounded
requires caution, due to domain considerations. Given this warning, we will
often deal with commutators of unbounded operators formally without giving
them a second thought.

23.3 Integral Operators

Let K be an integral operator on L2(Rd):

(Kψ)(x) :=
∫

Rd

K(x, y)ψ(y)dy

where K : R
d × R

d → C is the integral kernel of the operator K. Examples
include

1. K = g(−i�∇) for which the kernel is

K(x, y) = (2π�)−d/2ǧ(x− y) (23.4)

(here ǧ denotes the inverse Fourier Transform of g – see Section 23.14).
2. K = V (multiplication operator) for which the kernel is

K(x, y) = V (x)δ(x − y).

The following statement identifies the kernel of the composition of integral
operators. The proof is left for the reader.

Proposition 23.12 If K1 and K2 are integral operators (with kernels K1 and
K2), then the integral kernel of K := K1K2 is

K(x, y) =
∫

Rd

K1(x, z)K2(z, y)dz.

Problem 23.13 Prove this.
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Proposition 23.14 LetK be an integral operator with kernel,K(x, y), which
lies in L2 of the product space: K(x, y) ∈ L2(Rd ×R

d). Then K is a bounded
operator on L2(Rd), and

‖K‖2 ≤
∫

Rd×Rd

|K(x, y)|2dxdy. (23.5)

Proof. To show that the operator K is bounded, we estimate by the Cauchy-
Schwarz inequality,

∣
∣
∣
∣

∫
K(x, y)u(y)dy

∣
∣
∣
∣ ≤

(∫
|K(x, y)|2dy

)1/2(∫
|u(y)|2dy

)1/2

.

This implies

‖Ku‖2 ≤
∫
|K(x, y)|2dxdy

∫
|u(y)|2dy

which in turn yields (23.5). �

23.4 Inverses and their Estimates

A key notion of theory of operators is that of the inverse operator. Given an
operator A on a Hilbert space H, an operator B is called the inverse of A if
D(B) = Ran(A), D(A) = Ran(B), and

BA = 1|Ran(B), AB = 1|Ran(A).

Here
Ran(A) := {Au | u ∈ D(A)}

denotes the range of A. It follows from this definition that there can be at
most one inverse of an operator A. The inverse of A is denoted A−1. Put
differently, finding the inverse of an operator A is equivalent to solving the
equation Au = f for all f ∈ Ran(A).

A convenient criterion for an operator A to have an inverse is that A be
one-to-one: that is, Au = 0 =⇒ u = 0, or equivalently that it has trivial
kernel or nullspace:

Null(A) := {u ∈ D(A) | Au = 0} = { 0 }. (23.6)

The operator A is said to be invertible if A has a bounded inverse. Since
by definition a bounded operator is defined on all of H, an invertible operator
A, in addition to being one-to-one, must also be onto: that is,

Ran(A) = H. (23.7)
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Remark 23.15 Conditions (23.6) and (23.7) ensure that A−1 exists and is
defined on allH. In fact, they are enough to ensure that A is actually invertible
(i.e. that A−1 is also bounded) in some important cases, namely:

• if A is a closed operator, since by Definition 23.9 then so is A−1, and so
by Theorem 23.10, A−1 is bounded;

• if A is symmetric, since then so is A−1, and so by Theorem 23.10, A−1 is
bounded.

Problem 23.16 Show that if operators A and C are invertible, and C is
bounded, then the operator CA is defined on D(CA) = D(A), and is invert-
ible, with (CA)−1 = A−1C−1.

The following result provides a widely used criterion for establishing the
invertibility of an operator.

Theorem 23.17 Assume the operator A is invertible, and the operator B
is bounded and satisfies ‖BA−1‖ < 1. Then the operator A + B, defined on
D(A+B) = D(A), is invertible.

This theorem follows from the relation A+B = (1+BA−1)A, Problem 23.16
above, and Problem 23.18 below.

Problem 23.18 Suppose an operator K is bounded, and satisfies ‖K‖ < 1.
Show that the series

∑∞
n=0(−K)n is absolutely convergent (i.e.

∑∞
n=0 ‖(−K)n‖ <

∞) and provides the inverse of the operator 1 +K.

In other words, if ‖K‖ < 1, then the operator 1 +K has an inverse given by

(1 +K)−1 =
∞∑

n=0

(−K)n. (23.8)

The series (23.8) is called a Neumann series, and is used often in this book.

23.5 Self-adjointness

To make this section more self-contained, we repeat the definitions of sym-
metric and self-adjoint, as well as some basic results for self-adjoint operators
from Section 2.2 of the main text. Recall,

1. A linear operator A acting on a Hilbert space H is symmetric if

〈u, Av〉 = 〈Au, v〉 (23.9)

for all u, v ∈ D(A).
2. A linear operator A acting on a Hilbert space H is self-adjoint if it is

symmetric, and Ran(A± i) = H.
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Note that the condition Ran(A ± i) = H is equivalent to the fact that the
equations

(A± i)ψ = f (23.10)

have solutions for all f ∈ H.

Example 23.19 On H = L2(Rd), the operators xj , pj := −i�∂xj , H0 :=
− �

2

2m
Δ (on their natural domains), f(x) and f(p) for f real and bounded,

and integral operators Kf(x) =
∫
K(x, y)f(y) dy with K(x, y) = K(y, x) and

K ∈ L2(Rd × R
d), are all self-adjoint. (See Section 23.14 for the definition of

f(p) using the Fourier transform.)

Proof. As an example, we show this for the operator p = −i� d
dx

on L2(R)
with domain D(p) = H1(R). This operator is symmetric, so we compute
Ran(−i�∂x + i). For f ∈ L2(R), solve

(−i�∂x + i)ψ = f,

which, using the Fourier transform (see Section 23.14), is equivalent to

(k + i)ψ̂(k) = f̂(k),

and therefore

ψ̂(k) =
f̂(k)
k + i

, ψ(x) = (2π�)−1/2

∫
eikx/�

f̂(k)
k + i

dk.

Notice (1+|k|2)|ψ̂|2 = |f̂ |2, so since f ∈ L2 (and hence f̂ ∈ L2), by (23.1), ψ ∈
H1(R) = D(p), and therefore Ran(−i�∂x + i) = L2. Similarly Ran(−i�∂x −
i) = L2. �

Problem 23.20 Show that on L2(Rd), xj ,− �
2

2m
Δ (on their natural domains),

and f(x) and f(p) for f : R
d → R bounded are self-adjoint (the last two are

bounded operators, and so have domain all of L2(Rd)).

The next result provides important information about the invertibility of
self-adjoint operators.

Lemma 23.21 Let A be a symmetric operator. If Ran(A− z) = H for some
z with Im z > 0, then it is true for every z with Im z > 0. The same holds for
Im z < 0. Moreover, if A is self-adjoint, then A − z is invertible for every z
with Im z �= 0 and satisfies the estimate

‖(A− z)−1‖ ≤ 1
| Im z| . (23.11)
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Proof. Write z = λ+ iμ with λ, μ ∈ R. Then, since A is symmetric, we have

‖(A−z)u‖2 = 〈(A−z)u, (A−z)u〉 = ‖(A−λ)u‖2+‖μu‖2 ≥ |μ|‖u‖2. (23.12)

Hence, if Im z > 0 (or Im z < 0), then Null(A − z) = { 0 }. If also Ran(A −
z) = H, then (A − z)−1 is defined on all of H. Further, (23.12) implies that
(A − z)−1 is bounded, with bound (23.11) (if one defines v := (A − z)u),
and so in particular (A − z) is invertible. Then, by Theorem 23.17, A− z′ =
(A− z) + (z − z′) is invertible for |z′ − z| < ‖(A− z)−1‖−1. Therefore, A− z′
is invertible if |z′ − z| < | Im z|, so we can extend invertibility of A − z′ to
all Im z′ > 0 (or Im z′ < 0). if A is self-adjoint, then Ran(A ± i) = H and
therefore A− z is invertible and satisfies (23.11) for every z in C/R. �

This lemma shows that if A is self-adjoint, then αA+ β is self-adjoint for
any real α �= 0 and β, and also that

A is self-adjoint ⇒ (A− z)ψ = f has a unique solution ∀ Im z �= 0. (23.13)

The next theorem shows that for bounded operators, self-adjointness is
easy to check.

Theorem 23.22 If A is symmetric and bounded, then A is self-adjoint.

Proof. By Lemma 23.21, it suffices to show that Ran(A + iλ) = H provided
|λ| is sufficiently large. This is equivalent to solving the equation

(A+ iλ)ψ = f (23.14)

for all f ∈ H and such a λ. Now, divide this equation by iλ to obtain

ψ +K(λ)ψ = g,

where K(λ) = (iλ)−1A and g = (iλ)−1f . Let |λ| > ‖V ‖. Then ‖K(λ)‖ =
1
|λ|‖A‖ < 1 and we conclude that 1 + K(λ) is invertible, as shown in Prob-
lem 23.18 above. �

As an example, we consider an integral operator K with kernel, K(x, y),
which lies in L2 of the product space: K(x, y) ∈ L2(Rd × R

d), and satisfies
K(x, y) = K(y, x). Then the integral operator K is symmetric (see Prob-
lem 2.3). By Proposition 23.14 it is bounded, and therefore by the theorem
above, it is a self-adjoint operator on L2(Rd).

The property of self-adjointness can also be described in terms of the
general notion of adjoint of an operator.

Definition 23.23 The adjoint of an operator A on a Hilbert space H, is the
operator A∗ satisfying

〈A∗ψ, φ〉 = 〈ψ,Aφ〉 (23.15)

for all φ ∈ D(A), for ψ in the domain

D(A∗) := {ψ ∈ H | |〈ψ,Aφ〉| ≤ Cψ‖φ‖ for some constant Cψ
(independent of φ), ∀φ ∈ D(A)}.
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It is left as an exercise to show this definition makes sense.

Problem 23.24 Show that equation (23.15) defines a unique linear operator
A∗ on D(A∗) (hint: use the “Riesz lemma” – see, eg., [RSI]).

The subtleties surrounding domains in the definition above are absent for
bounded operators: if A is bounded, then by Lemma 23.8 we may assume
D(A) = H. Since

|〈ψ,Aφ〉| ≤ ‖ψ‖‖A‖‖φ‖,
for ψ, φ ∈ H, we have D(A∗) = H.

Not surprisingly, one can show that an operator A is self-adjoint according
to our definition above, if and only if A = A∗ (that is, A is symmetric, and
D(A∗) = D(A)).

We conclude this section with a useful definition.

Definition 23.25 A self-adjoint operatorA is called positive (denoted A > 0)
if

〈ψ,Aψ〉 > 0

for all ψ ∈ D(A), ψ �= 0. Similarly, we may define non-negative, negative, and
non-positive operators.

Problem 23.26 Show that the operator −Δ on L2(Rd) is positive (take
D(−Δ) = H2(Rd)). Hint: integrate by parts (equivalently, use the diver-
gence theorem) assuming that ψ ∈ Dβ := {ψ ∈ C2(Rd) | |∂αψ(x)| ≤
Cα(1 + |x|)−β ∀ α, |α| ≤ 2} for some β > d/2, Then use the fact that Dβ

is dense in H2(Rd) to extend the inequality to all ψ ∈ H2(Rd).

23.6 Exponential of an Operator

In this section we construct the exponential e−itA for a self-adjoint operator
A, which allows us to solve the abstract Schrödinger equation

i
∂ψ

∂t
= Aψ (23.16)

where ψ : t → ψ(t) is a path in a Hilbert space H and A is a self-adjoint
operator on H. In our applications, �A is a Schrödinger operator. As before,
we supplement equation (23.16) with the initial condition

ψ|t=0 = ψ0 (23.17)

where ψ0 ∈ H. Our goal is to prove Theorem 2.16 of Section 2.3 which shows
that self-adjointness of A implies the existence of dynamics. We restate this
theorem here in terms of an operator A:
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Theorem 23.27 If A is a self-adjoint operator, then there is a unique family
of bounded operators, U(t) := e−itA, having the following properties, for
t, s ∈ R,

i
∂

∂t
U(t) = AU(t) = U(t)A, (23.18)

U(0) = 1 and U(t)ψ → ψ, as t→ 0, (23.19)

U(t)U(s) = U(t+ s), (23.20)

‖U(t)ψ‖ = ‖ψ‖. (23.21)

Proof. We will define the exponential eiA for an unbounded self-adjoint oper-
ator A, by approximating A by bounded operators, and then using the power
series definition of the exponential for bounded operators:

eA :=
∞∑

n=0

An

n!
(23.22)

which converges absolutely since

∞∑

n=0

‖An‖
n!
≤

∞∑

n=0

‖A‖n
n!

= e‖A‖ <∞.

We have already shown in Section 2.3 that Theorem 23.27 holds for bounded,
self-adjoint operatorsA. (The self-adjointness is only needed for (23.21).) Now,
we extend it to unbounded operators. By Lemma 23.21, the operators

Aλ :=
1
2
λ2[(A+ iλ)−1 + (A− iλ)−1]

are well-defined and bounded for λ > 0. The operators Aλ approximate A in
the sense that Aλψ → Aψ as λ→∞ for all ψ ∈ D(A). To see this, note first
that

Aλ = BλA, Bλ :=
1
2
iλ[(A+ iλ)−1 − (A− iλ)−1] (23.23)

and
1−Bλ =

1
2
[(A+ iλ)−1 + (A− iλ)−1]A.

So using the estimate

‖(A± iλ)−1‖ ≤ 1
λ
,

which is established in Lemma 23.21, we find, for any φ ∈ D(A),

‖(1−Bλ)φ‖ = ‖1
2
[(A+ iλ)−1 + (A− iλ)−1]Aφ‖

≤ 1
λ
‖Aφ‖ → 0 as λ→∞.



23.6 Exponential of an Operator 313

And since D(A) is dense and ‖Bλ‖ ≤ 1, we have Bλφ→ φ as λ→∞ for any
φ ∈ H. Finally, taking φ = Aψ for any ψ ∈ D(A), we conclude by (23.23),
that

Aλψ → Aψ as λ→∞ for ψ ∈ D(A), (23.24)

as required.
Since Aλ is bounded, we can define the exponential eiAλ by power series.

We will show now that the family {eiAλ , λ > 0} is a Cauchy family, in the
sense that

‖ (eiAλ′ − eiAλ)ψ‖ → 0 (23.25)

as λ, λ′ → ∞ for all ψ ∈ D(A). To prove this fact, we represent the operator
inside the norm as an integral of a derivative:

eiAλ′ − eiAλ =
∫ 1

0

∂

∂s
eisAλ′ ei(1−s)Aλds. (23.26)

Since Aλ is symmetric and bounded, it is self-adjoint (Theorem 23.22). Us-
ing (23.18) and (23.21) in (23.26), we find (noting that Aλ and Aλ′ commute)

‖(eiAλ′ − eiAλ)ψ‖ = ‖
∫ 1

0

eisAλ′ ei(1−s)Aλi(Aλ′ −Aλ)ψds‖

≤
∫ 1

0

‖eisAλ′ ei(1−s)Aλ i(Aλ′ −Aλ)ψ‖ds

=
∫ 1

0

‖(Aλ −Aλ′)ψ‖ds = ‖(Aλ′ −Aλ)ψ‖.

(23.27)

(The inequality used in the first step – the Minkowski inequality – can be
proved by writing the integral as a limit of Riemann sums and using the
triangle inequality – see [Fo]). Due to (23.24), relation (23.25) follows.

The Cauchy property (23.25) shows that for any ψ ∈ D(A), the vectors
eiAλψ converge to some element of the Hilbert space as λ→∞. Thus we can
define

eiAψ := lim
λ→∞

eiAλψ (23.28)

for ψ ∈ D(A). Since we have already shown that the theorem holds for bounded
operators, we have that ‖eiAψ‖ ≤ ‖ψ‖ for all ψ in D(A), which is dense in H.
Thus, as in Lemma 23.8, we can extend this definition of eiA to all ψ ∈ H.
This defines the exponential eiA function for any self-adjoint operator A.

Now we prove (23.18). We use the definition (23.28) and the fact Aλ is
a bounded operator and therefore e−itAλ satisfies (23.18). Formally bringing
the differentiation into the limit, we obtain, for φ ∈ D(H),

i�
∂

∂t
〈φ, e−itAψ0〉 = i

∂

∂t
lim
λ→∞

〈φ, e−itAψ0〉 = i lim
λ→∞

〈φ, ∂
∂t
e−itAψ0〉

= lim
λ→∞

〈φ,Aλe−iAλtψ0〉 = lim
λ→∞

〈Aλφ, e−iAλtψ0〉
= 〈Aφ, e−iAtψ0〉.
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This exchange of limits is readily justified (the reader is invited to supply the
details). Furthermore, if ψ0 ∈ D(A), one can show that e−iAtψ0 ∈ D(A), and
therefore i ∂∂te

−itAψ0 = Ae−itAψ0. So ψ(t) := e−itAλψ0 satisfies (23.16) and
therefore (23.18) holds.

Next, clearly U(0) = 1. Moreover, for any ψ0 ∈ D(A),

U(t)ψ0 − ψ0 = i

∫ t

0

U(s)Aψ0ds→ 0 as t→ 0.

Hence (23.19) holds.
Now we prove that U(t) has the group property (23.20). To this end we

again use representation (23.28). By Problem 2.17, e−iAλt has the group prop-
erty (23.20). Given this result, for any ψ, φ ∈ H,

〈ψ,U(t)U(s)φ〉 = 〈U(t)∗ψ,U(s)φ〉 = lim
λ→∞

〈eiAλtψ, e−iAλs/�φ〉
= lim
λ→∞

〈ψ, e−iAλ(t+s)φ〉 = 〈ψ,U(t+ s)φ〉

which proves (23.20). �

The theorem above has the following corollary

Corollary 23.28 If A is self-adjoint, then the Cauchy problem (23.16)-
(23.17) has a unique solution which conserves probability.

Indeed, the family ψ(t) := U(t)ψ0 is a solution of the Cauchy problem (23.16)-
(23.17), which conserves the probability. It is the unique solution of (23.16)-
(23.17), since, if there are two solutions, then their difference, ψ̃, solves (23.16)
with ψ̃|t=0 = 0, and therefore by conservation of probability (a consequence
of symmetry of A), ‖ψ̃(t)‖ = ‖ψ̃(0)‖ = 0 for all t and hence ψ̃ ≡ 0.

The operator family U(t) := e−itA is called the propagator or evolution
operator for the equation (23.16). The properties recorded in the equa-
tions (23.20) and (23.21) are called the group and isometry properties. The
operator U(t) = e−itA is invertible (since U(t)U(−t) = 1) and is isometry
(i.e. ‖U(t)ψ‖ = ‖ψ‖). Such operators are called unitary. More precisely,

Definition 23.29 An operator U is called unitary if UU ∗ = U∗U = 1.

To show that U(t) = e−itA is unitary, we observe that ‖U(t)ψ‖ = ‖ψ‖ im-
plies 〈ψ, ψ〉 = 〈U(t)ψ,U(t)ψ〉 = 〈ψ,U∗(t)U(t)ψ〉, from which U∗(t)U(t) = 1
follows. Similarly, U(t)U∗(t) = 1. So U∗(t) = U(−t) = (U(t))−1. This if A is
self-adjoint, the operator U(t) := e−iAt exists and is unitary for all t ∈ R.

The following very simple example illustrates the connection between uni-
tarity and self-adjointness.

Example 23.30 If φ : R
d → R is continuous, then the bounded operator

U : ψ �→ eiφψ



23.7 Projections 315

is easily checked to be unitary on L2(Rd) (just note that U∗ is multiplication
by e−iφ). Now φ is bounded as a multiplication operator iff it is a bounded
function. Note, however, that U is well-defined (and unitary) even if φ is
unbounded.

Remark 23.31 If A is a positive operator, then we can define the opera-
tor e−A in a way similar to our definition of eiA above. We take e−A :=
limλ→∞ e−Aλ where Aλ = (A+ λ)−1λA is a family of bounded operators.

23.7 Projections

Let H be a Hilbert space. A bounded operator P on H is called a projection
operator (or simply a projection) if it satisfies

P 2 = P.

This relation implies ||P || ≤ ||P ||2, and so ||P || ≥ 1 provided P �= 0. We have

v ∈ RanP ⇐⇒ Pv = v and v ∈ (RanP )⊥ ⇐⇒ P ∗v = 0. (23.29)

Indeed, if v ∈ RanP , then there is a u ∈ H s.t. v = Pu, so Pv = P 2u = Pu =
v; the second statement is left as an exercise.

Problem 23.32 Prove that (a) P ∗v = 0 if and only if v ⊥ RanP , (b) RanP
is closed and (c) P ∗ is also a projection.

Example 23.33 The following are projection operators:

1. let H = L2(Rd) and let E be a subset of R
d. Then

χx∈E : f(x) �→ χE(x)f(x)

where

χE(x) :=
{

1 x ∈ E
0 x /∈ E

is a projection.
2. again let H = L2(Rd) and let E be a subset of R

d. Then

χp∈E = F−1χk∈E F : u(x) �→ (χE(k)û(k))̌ (x)

is a projection.
3. let H be any Hilbert space, and ϕ, ψ ∈ H satisfying 〈ϕ, ψ〉 = 1. Then

f �→ 〈ϕ, f〉ψ

is a projection.
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4. as in 3), but now let {ψi}Ni=1 be an orthonormal set (i.e. 〈ψi, ψj〉 = δij).
Then

f �→
N∑

1

〈ψi, f〉ψi

is a projection.

Definition 23.34 1. A projection P is said to be of rank r < ∞ if
dimRanP = r.

2. A projection P is called an orthogonal projection if it is self-adjoint, i.e.
if P = P ∗.

If P be an orthogonal projection, then (23.29) implies that

v ⊥ RanP ⇐⇒ Pv = 0, i.e. NullP = (RanP )⊥. (23.30)

The projections in Examples 1), 2) and 4) above are orthogonal. The
projection in Example 3) is orthogonal if and only if ϕ = ψ.

Problem 23.35 Let P be an orthogonal projection. Show that

1. ||P || ≤ 1, and therefore ||P || = 1 if P �= 0 (Hint: Use (23.29));
2. 1−P is also an orthogonal projection, Ran(1−P )⊥RanP , and Null(1−
P ) = RanP ;

3. H = RanP ⊕NullP .

Remark 23.36 Orthogonal projections on H are in one-to-one correspon-
dence with closed subspaces of a Hilbert space H. This correspondence is ob-
tained as follows. Let V = RanP . Then V is a closed subspace of X . To show
that V is closed, let {vn} ⊂ V , and vn → v ∈ X , and show that v ∈ V . Since
P is a projection, we have vn = Pvn, so ||v − Pv|| = ||v − vn − P (v − vn)|| ≤
||v− vn||+ ||P || ||v− vn|| → 0, as n→∞. Therefore v = Pv, so v ∈ V , and V
is closed. Conversely, given a closed subspace V , define a projection operator
P by

Pu = v, where u = v + v⊥ ∈ V ⊕ V ⊥. (23.31)

Problem 23.37 Show that P defined in (23.31) is an orthogonal projection
with RanP = V . For any given V , show that there is only one orthogonal
projection (the one given in (23.31)) such that RanP = V .

23.8 The Spectrum of an Operator

Again to keep this section self-contained we repeat some definitions and results
from Section 6.1 of the main text.

Definition 23.38 The spectrum of an operator A on a Hilbert space H is the
subset of C given by

σ(A) := {λ ∈ C | A− λ is not invertible (has no bounded inverse)}
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(here and below, A− λ denotes A− λ1). The complement of the spectrum of
A in C is called the resolvent set of A: ρ(A) := C\σ(A). For λ ∈ ρ(A), the
operator (A− λ)−1, called the resolvent of A, is well-defined.

The following exercise asks for the spectrum of our favourite operators.

Problem 23.39 Prove that as operators on L2(Rd) (with their natural do-
mains),

1. σ(1) = {1}.
2. σ(pj) = R.
3. σ(xj) = R.
4. σ(V ) = range(V ), where V is the multiplication operator on L2(Rd) by a

continuous function V (x) : R
d → C.

5. σ(−Δ) = [0,∞).
6. σ(f(p)) = range(f), where f(p) := F−1fF with f(k), the multiplication

operator on L2(Rd) by a continuous function f(k) : R
d → C.

Theorem 23.40 The spectrum σ(A) is a closed set.

Proof. We show that the complement of the spectrum, ρ(A) := C/σ(A), called
the resolvent set, is an open set. Indeed, let z ∈ ρ(A). Then A− z is invertible
(has a bounded inverse) and therefore by Theorem 23.17, so is A − z′ =
(A− z)[1 + (z − z′)(A − z)−1], if |z′ − z| < ‖(A− z)−1‖−1. �

We observe that self-adjoint operators have real spectrum.

Theorem 23.41 If A = A∗, then σ(A) ⊂ R.

Proof. This follows immediately from Lemma 23.21. �

One familiar reason for A−λ not to be invertible is that (A−λ)ψ = 0 has
a non-zero solution ψ ∈ D(A) ⊂ H. In this case we say that λ is an eigenvalue
of A and ψ is called a corresponding eigenvector.

Definition 23.42 The discrete spectrum of an operator A is

σd(A) = {λ ∈ C | λ is an isolated eigenvalue of A with finite multiplicity}

(isolated meaning some neighbourhood of λ is disjoint from the rest of σ(A)).

Here the multiplicity of an eigenvalue λ is the dimension of the eigenspace

Null(A− λ) := {v ∈ H | (A− λ)v = 0}.

Problem 23.43 1. Show Null(A − λ) is a vector space.
2. Show that if A is self-adjoint, eigenvectors of A corresponding to different

eigenvalues are orthogonal.
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The rest of the spectrum is called the essential spectrum of the operator A:

σess(A) := σ(A)\σd(A).

Remark 23.44 Some authors may use the terms “point spectrum” and “con-
tinuous spectrum” rather than (respectively) “discrete spectrum” and “essen-
tial spectrum’.

Problem 23.45 For the operators xj and pj on L2(Rd) show that

1. σess(pj) = σ(pj) = R;
2. σess(xj) = σ(xj ) = R;
3. σess(−Δ) = σ(−Δ) = [0,∞).

Hint: Show that these operators do not have discrete spectrum.

Problem 23.46 Show that if U : H → H is unitary, then σ(U∗AU) = σ(A),
σd(U∗AU) = σd(A), and σess(U∗AU) = σess(A).

Problem 23.47 Let A be an operator on H. If λ is an accumulation point
of σ(A), then λ ∈ σess(A). Hint: use the definition of the essential spectrum
and Theorem 23.40.

For a self-adjoint operator A the sets {span of eigenfunctions of A} and
{span of eigenfunctions of A}⊥, where

W⊥ := {ψ ∈ H | 〈ψ,w〉 = 0 ∀ w ∈ W},

are invariant under A in the sense of the definition

Definition 23.48 A subspaceW ⊂ H of a Hilbert spaceH is invariant under
an operator A if Aw ∈W whenever w ∈ W ∩D(A).

Problem 23.49 Assume A is a self-adjoint operator. Show that

1. If W is invariant under A, then so is W⊥;
2. The span of the eigenfunctions of A and its orthogonal complement are

invariant under A;

23.9 Functions of Operators and the Spectral Mapping
Theorem

Our goal in this section is to define functions f(A) of a self-adjoint operator
A. We do this in the special case where A is bounded, and f is a function
analytic in a neighbourhood of σ(A).
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Problem 23.50 Let A be a bounded self-adjoint operator. Show σ(A) ⊂
[−‖A‖, ‖A‖]. Hint: use that if |z| > ‖A‖, then ‖(A− z)u‖ ≥ (|z| − ‖A‖)‖u‖.

Suppose f(λ) is analytic in a complex disk of radius R, {λ ∈ C | |λ| < R},
with R > ‖A‖. So f has a power series expansion, f(λ) =

∑∞
n=0 anλ

n, which
converges for |λ| < R. Define the operator f(A) by the convergent series

f(A) :=
∞∑

n=0

anA
n. (23.32)

We have already encountered an example of this definition: the exponential
eA discussed in Section 2.3. As another example, consider the function f(λ) =
(λ− z)−1, for |z| > ‖A‖, which is analytic in a disk of radius R, with ‖A‖ <
R < |z|, and has power-series expansion

f(λ) = −1
z

1
1− λ/z = −1

z

∞∑

j=0

(λ/z)j .

The corresponding operator defined by (23.32) is the resolvent

(A− z)−1 = −1
z

∞∑

j=0

z−jAj . (23.33)

(Recall that the series in (23.33) is a Neumann series.) Of course, the resolvent
is defined for any z in the resolvent set ρ(A) = C\σ(A). In fact, (A− z)−1 is
an analytic (operator-valued) function of z ∈ ρ(A). To see this, we start with
the relation

(A− z)−1 = (A− z0)−1 − (z0 − z)(A− z0)−1(A− z)−1

for z, z0 ∈ ρ(A), which the reader is invited to verify (this relation is called
the first resolvent identity). Thus

(A− z)−1 = [1− (z − z0)(A− z0)−1]−1(A− z0)−1.

If |z − z0| < (‖(A− z0)−1‖)−1, the first inverse on the right hand side can be
expanded in a Neumann series, yielding

(A− z)−1 =
∞∑

j=0

(z − z0)j(A− z0)−j−1.

Thus (A− z)−1 is analytic in a neighbourhood of any z0 ∈ ρ(A).
The following useful result relates eigenvalues and eigenfunctions of A to

those of f(A).

Theorem 23.51 (Spectral mapping theorem) Let A be a bounded op-
erator, and f a function analytic on a disk of radius > ‖A‖. If Aφ = λφ, then
f(A)φ = f(λ)φ.
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Proof. If {aj} are the coefficients of the power series for f , then

f(A)φ =
∞∑

j=0

ajA
jφ = (

∞∑

j=0

ajλ
j)φ = f(λ)φ.

�
We conclude with a brief discussion of alternatives to, and extensions of,

the above definition. Suppose f is analytic in a complex neighbourhood of
σ(A). We can replace definition (23.32) by the contour integral (called a Riesz
integral)

f(A) :=
1

2πi

∮

Γ

f(z)(A− z)−1dz (23.34)

where Γ is a contour in C encircling σ(A). The integral here can be understood
in the following sense: for any ψ, φ ∈ H,

〈ψ, f(A)φ〉 :=
1

2πi

∮

Γ

f(z)〈ψ, (A− z)−1φ〉dz

(knowledge of 〈ψ, f(A)φ〉 for all ψ, φ determines the operator f(A) uniquely).

Problem 23.52 Show that the definition (23.34) agrees with (23.32) when
f(λ) is analytic on {|λ| < R} with R > ‖A‖. Hint: by the Cauchy theorem,
and analyticity of the resolvent, the contour Γ can be replaced by {|z| = R0},
‖A‖ < R0 < R. On this contour, (A− z)−1 can be expressed as the Neumann
series (23.33).

A similar formula can be used for unbounded operators A to define certain
functions f(A) (see [HS]).

If A is an unbounded self-adjoint operator, and f is a continuous, bounded
function, the bounded operator f(A) can still be defined. One example of this
is the definition of eiA in Section 23.6. The definition of f(i∇) using the
Fourier transform (Section 23.14) provides another example. More generally,
the Fourier transform, together with Theorem 23.27, allows one to define
functions of self-adjoint operators as follows:

Definition 23.53 Assume A is a self-adjoint operator and f(λ) is a function
whose inverse Fourier transform, f̌ is integrable,

∫ |f̌(t)|dt < ∞. Then the
operator

f(A) := (2π�)−1/2

∫ ∞

−∞
f̌(t)eiAt/�dt (23.35)

is well-defined, bounded, and is self-adjoint if f is real.

We present without justification a formula connecting the equations (23.34)
and (23.35) (i.e. connecting the propagator and the resolvent):

e−iAtf(A) =
1
π

∫ ∞

−∞
dλf(λ)e−iλtIm(A− λ− i0)−1. (23.36)

The reader is referred to [RSI] for the general theory.
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23.10 Weyl Sequences and Weyl Spectrum

We now want to address the question of how to characterize the essential
spectrum of a self-adjoint operator A. Is there a characterization of σess(A)
similar to that of σd(A) in terms of some kind of eigenvalue problem? To
answer this question, we observe that there is another reason forA−λ not to be
invertible, besides λ being an eigenvalue of A, namely (A−λ)ψ = 0 “almost”
having a non-zero solution. More precisely, there a sequence {ψn} ⊂ H s.t.

1. ‖ψn‖ = 1 for all n
2. ‖(A− λ)ψn‖ → 0 as n→∞
3. ψn → 0 weakly as n→∞ (this means 〈φ, ψn〉 → 0 for all φ ∈ H).

We say {ψn} ⊂ H is a Weyl sequence for A and λ if these statements hold.

Definition 23.54 The Weyl spectrum of an operator A is

σw(A) = {λ | there is a Weyl sequence for A and λ}.

The following result says that when A is self-adjoint, the sets σd(A) and
σw(A) are disjoint, and comprise the whole spectrum:

Theorem 23.55 (Weyl) If A is self-adjoint, then σess(A) = σw(A), and
therefore the spectrum of A is the disjoint union of the discrete spectrum of
A and the Weyl spectrum of A:

σ(A) = σd(A) ∪ σw(A).

Proof. Suppose first that λ ∈ σess(A). Then inf‖ψ‖=1,ψ∈D(A) ‖(A− λ)ψ‖ = 0,
for otherwise A−λ would be invertible. Hence there is a sequence ψn ∈ D(A)
such that ‖ψn‖ = 1 and ‖(A − λ)ψn‖ → 0 as n → ∞. By the Banach-
Alaoglu theorem (see, eg., [RSI]), there is a subsequence {ψn′} ⊂ {ψn} and
an element ψ0 ∈ H such that ψn′ → ψ0 weakly as n′ →∞ (we drop the prime
in n′ henceforth). This implies that for all f ∈ D(A),

〈(A− λ)f, ψ0〉 = lim
n→∞〈(A− λ)f, ψn〉 = lim

n→∞〈f, (A− λ)ψn〉 = 0.

Hence ψ0 ∈ D(A) (since D(A) = D(A∗) = {ψ ∈ H | |〈Af, ψ〉| ≤ C‖f‖ ∀f ∈
D(A)} and |〈Af, ψ0〉| = |λ〈f, ψ0〉| ≤ |λ|‖ψ0‖‖f‖) and Aψ0 = λψ0. If ψ0 = 0,
then {ψn} is a Weyl sequence for A and λ, and so λ ∈ σw(A). If ψ0 �= 0,
this implies that λ is an eigenvalue of A. So λ must therefore have infinite
multiplicity or be non-isolated. If λ is an eigenvalue of infinite multiplicity,
then an orthonormal basis of Null(A − λ) yields a Weyl sequence for A and
λ, and therefore λ ∈ σw(A). If λ is not isolated, then consider a sequence
λj ∈ σ(A)\{λ} with λj → λ. If there is a subsequence consisting of distinct
eigenvalues, a corresponding sequence of normalized eigenvectors is orthonor-
mal, and so converges weakly to 0 – hence it is a Weyl sequence for A and λ.
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On the other hand, if the sequence λj consists (eventually) of non-eigenvalues,
then, arguing as above for each λj , one can construct a diagonal sequence
which is Weyl for A and λ. So we conclude λ ∈ σw(A), and we have shown
that σess(A) ⊂ σw(A). Now suppose λ ∈ σw(A), and let ψn be a corresponding
Weyl sequence. Then certainly λ ∈ σ(A), otherwise

‖ψn‖ = ‖(A− λ)−1(A− λ)ψn‖ ≤ ‖(A− λ)−1‖‖(A− λ)ψn‖ → 0,

a contradiction. Suppose λ is an isolated eigenvalue of finite multiplicity. For
simplicity, suppose the multiplicity is one (the argument is straightforward to
generalize), and let ψ0 be a normalized eigenvector. Write ψn = cnψ0 + ψ̃n
with cn = 〈ψ0, ψn〉 and 〈ψ̃n, ψ0〉 = 0. Since ψn → 0 weakly, cn → 0, and
so ‖ψ̃n‖ → 1. Also (A − λn)ψ̃n → 0. Because λ is isolated in the spectrum,
(A− ζ)−1 is uniformly bounded on (ψ0)⊥ for ζ near λ, and so

‖ψ̃n‖ = ‖(A− λn)−1(A− λn)ψ̃n‖
≤ (const)‖(A− λn)ψ̃n‖ → 0,

a contradiction. Thus λ ∈ σess(A), showing σw(A) ⊂ σess(A) and completing
the proof of Theorem 23.55.

As an application of the Weyl theorem we consider a Schrödinger operator
on a bounded domain, with Dirichlet boundary conditions.

Theorem 23.56 Let Λ be a cube in R
d, and V a continuous function on Λ.

Then the Schrödinger operator H = −Δ+V , acting on the space L2(Λ) with
Dirichlet boundary conditions, has purely discrete spectrum, accumulating at
+∞.

To be precise, the operator “H on L2(Λ) with Dirichlet boundary conditions”
should be understood as the unique self-adjoint extension of H from C∞

0 (Λ).

Proof. Suppose Λ = [0, L]d. Consider the normalized eigenfunctions of the
operator −Δ on L2(Λ) with Dirichlet boundary conditions:

φk(x) =
(

2
L

)d/2 d∏

j=1

sin(kjxj), k ∈ π

L
(Z+)d

(see Section 7.1), so that
−Δφk = |k|2φk . (23.37)

Now we recall that the eigenfunctions φk, k ∈ π
L
(Z+)d, form an orthonormal

basis for L2(Λ):
ψ =

∑

k∈ π
L (Z+)d

〈φk, ψ〉φk

for any ψ ∈ L2(Λ) (this is a special case of a general phenomenon valid for
self-adjoint operators).
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We show now that the operator H has no essential spectrum. Assume on
the contrary that λ ∈ σess(H), and let un be a corresponding Weyl sequence;
i.e. ‖un‖ = 1, un → 0 weakly, and ‖(H−λ)un‖ → 0. By the triangle inequality

‖(H − λ)un‖ ≥ ‖(−Δ− λ)un‖ − ‖V un‖ ≥ ‖(−Δ− λ)un‖ −max |V | (23.38)

since ‖un‖ = 1. Writing
un =

∑

k

aknφk

where akn = 〈φk, un〉, and using (23.37), we compute

(−Δ− λ)un =
∑

k

(|k|2 − λ)aknφk

and so by the Parseval relation (Proposition 23.4)

‖(−Δ− λ)un‖2 =
∑

k

(|k|2 − λ)2|akn|2. (23.39)

The Parseval relation also gives

1 = ‖un‖2 =
∑

k

|akn|2. (23.40)

Now choose K such that |k|2 − λ ≥ √2(max |V | + 1) for |k| ≥ K. Then
by (23.39) and (23.40),

‖(−Δ−λ)un‖2 ≥ 2(max |V |+1)2
∑

|k|≥K
|akn|2 = 2(max |V |+1)2(1−

∑

|k|<K
|akn|2).

Since un → 0 weakly,
akn = 〈φk, un〉 → 0

as n→∞, for each k. Choose N sufficiently large that |akn| ≤ (2K#)−1/2 for
k with |k| < K and n ≥ N , where

K# := #
{
k ∈ π

L
(Z+)d | |k| < K

}
.

Then for n ≥ N ,
∑

|k|<K |akn|2 ≤ 1/2, and so

‖(−Δ− λ)un‖2 ≥ (max |V |+ 1)2.

Returning to (23.38), we conclude that for n ≥ N , ‖(H − λ)un‖ ≥ 1, which
contradicts the property ‖(H − λ)un‖ → 0. Hence no finite λ can be a point
of the essential spectrum of H .

Proceeding as in the proof of Theorem 6.16, one can show that H has an
infinite number of eigenvalues which accumulate at ∞. �
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Next, we present a result characterizing the essential spectrum of a
Schrödinger operator in a manner similar to the characterization of the dis-
crete spectrum as a set of eigenvalues.

Theorem 23.57 (Schnol-Simon) Let H be a Schrödinger operator with a
bounded potential. Then

σ(H) = closure {λ | (H − λ)ψ = 0 for ψ polynomially bounded }.
So we see that the essential spectrum also arises from solutions of the eigen-
value equation, but that these solutions do not live in the space L2(R3).

Proof. We prove only that the right hand side ⊂ σ(H), and refer the reader
to [CFKS] for a complete proof. Let ψ be a polynomially bounded solution of
(H − λ)ψ = 0. Let Cr be the box of side-length 2r centred at the origin. Let
jr be a smooth function with support contained in Cr+1, with jr ≡ 1 on Cr,
0 ≤ jr ≤ 1, and with supr,x,|α|≤2 |∂αx jr(x)| < ∞. Our candidate for a Weyl
sequence is

wr :=
jrψ

‖jrψ‖ .

Note that ‖wr‖ = 1. If ψ �∈ L2, we must have ‖jrψ‖ → ∞ as r → ∞. So for
any R, ∫

|x|<R
|wr|2 ≤ 1

‖jrψ‖2
∫

|x|<R
|ψ|2 → 0

as r →∞. We show that
(H − λ)wr → 0.

Let F (r) =
∫
Cr
|ψ|2, which is monotonically increasing in r. We claim there

is a subsequence {rn} such that

F (rn + 2)
F (rn − 1)

→ 1.

If not, then there is a > 1 and r0 > 0 such that

F (r + 3) ≥ aF (r)

for all r ≥ r0. Thus F (r0 + 3k) ≥ akF (r0) and so F (r) ≥ (const)br with
b = a1/3 > 1. But the assumption that ψ is polynomially bounded implies
that F (r) ≤ (const)rN for some N , a contradiction. Now,

(H − λ)jrψ = jr(H − λ)ψ + [−Δ, jr]ψ.
Since (H − λ)ψ = 0 and [Δ, jr] = (Δjr) + 2∇jr · ∇, we have

(H − λ)jrψ = (−Δjr)ψ − 2∇jr · ∇ψ.
Since |∂αjr| is uniformly bounded,
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‖(H − λ)jrψ‖ ≤ (const)
∫

Cr+1\Cr
(|ψ|2 + |∇ψ|2) ≤ (const)

∫

Cr+1 Cr

|ψ|2.

So

‖(H − λ)wr‖ ≤ CF (r + 2)− F (r − 1)
F (r)

≤ C(
F (r + 2)
F (r − 1)

− 1)

and so ‖(H − λ)wrn‖ → 0. Thus {wrn} is a Weyl sequence for H and λ. �

In the rest of this section, by way of illustration, we construct Weyl se-
quences for the coordinate and momentum operators. We assume, for simplic-
ity, d = 1.

Thus for any λ ∈ R, we will find a Weyl sequence for x and λ. This sequence
is such that its square approximates the delta-function δλ(x) = δ(λ−x) which
formally solves the equation

(x− λ)δλ = 0

exactly. Such a sequence is sketched in Fig. 23.1.

1

2

ψ

3

λ

ψ

ψ

Fig.23.1. Weyl sequence for x, λ.

How do we construct such a sequence ψn? Let φ be a fixed non-negative
function supported on [−1, 1], and such that

∫
|φ|2 = 1.

We compress this function, increasing its height, and shift the result to λ:

ψn(x) := n1/2φ(n(x − λ)).

Then ∫
|ψn|2 =

∫
|φ|2 = 1

and

‖(x− λ)ψn‖2 =
∫
|x− λ|2n|φ(n(x− λ))|2dx =

1
n2

∫
|y|2|φ(y)|2dy → 0
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as n→∞. Thus λ ∈ σ(x), at least. Now we show that ψn → 0 weakly. Indeed,
for any f ∈ L2(Rd),

∣
∣
∣
∣

∫
ψnf

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∫

|x−λ|≤1/n

ψnf

∣
∣
∣
∣
∣
≤
(∫
|ψn|2

)1/2
(∫

|x−λ|≤1/n

|f |2
)1/2

which → 0 as n → ∞ by a well-known result of analysis. Thus, λ ∈ σess(x).
It is easy to convince yourself that x has no eigenvalues.

Now we construct a Weyl sequence, {ψn}, for p and λ. Using properties of
the Fourier transform, we have

‖(p− λ)ψn‖ = ‖((p− λ)ψn )̂‖ = ‖(k − λ)ψ̂n‖.

Take for ψ̂n the Weyl sequence constructed above:

ψ̂n = n1/2φ̂(n(k − λ))

for φ̂ supported on [−1, 1], and
∫ |φ̂|2 = 1. So we have ‖ψn‖ = ‖ψ̂n‖ = 1 and

∫
f̄ψn =

∫
¯̂
fψ̂n → 0

for any f ∈ L2(Rd). Further,

‖(k − λ)ψ̂n‖ → 0 =⇒ ‖(p− λ)ψn‖ → 0

and so ψn is a Weyl sequence for p and λ. Thus σ(p) = σess(p) = R. Now let
us see how ψn looks. We have

ψn(x) = (2π�)−1/2

∫
eik·x/�n1/2φ̂(n(k − λ))dk = eix·λ/�n−1/2φ(x/n).

Suppose, for example, that φ ≡ 1 for |x| ≤ 1/2. Then ψn looks like a plane
wave (with amplitude n−1/2 and wave vector λ), cut off near ∞ by φ(x/n)
(|ψn| is sketched in Fig. 23.2).

n| ψ   |

−n/2

1/  n

n/2

Fig.23.2. Weyl sequence for p, λ.

We remark that the fact σ(pj) = σess(pj) = R also follows directly from
the fact σ(xj) = σess(xj) = R, together with Problem 23.46 and properties of
the Fourier transform.
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23.11 The Trace, and Trace Class Operators

This section gives a quick introduction to the notion of the trace of an operator,
a generalization of the familiar trace of a matrix. More details and proofs can
be found in [RSI], for example.

Let ρ be a bounded operator on a (separable) Hilbert space, H. Since
ρ∗ρ ≥ 0, we can define the positive operator |ρ| := √ρ∗ρ (this operator can
be defined by a power series – see [RSI]; see also Section 23.9). The operator
ρ is said to be of trace class if

∑

j

〈ψj , |ρ|ψj〉 <∞

for some orthonormal basis {ψj} of H. If ρ is a trace class operator, we define
its trace to be

Tr ρ =
∑

j

〈ψj , ρψj〉

for some orthonormal basis {ψj} of H. This definition is independent of the
choice of basis.

Problem 23.58 Show that the trace is well-defined by showing the that the
right-hand side is independent of the choice of basis. Hint: consider another
orthonormal basis {φj} and let ψi =

∑
j cijφj . Show that

∑

i

c̄ikcil = δkl,

using the fact that ∑

i

〈φk, ψi〉〈ψi, φl〉 = 〈φk, φl〉,

and then use that to show that
∑

j

〈ψj , ρψj〉 =
∑

j

〈φj , ρφj〉.

Properties of the trace:

1. Tr ρ∗ = Tr ρ, and Tr ρ ≥ 0 if ρ ≥ 0.
2. If ρ is trace class and A is bounded, then Aρ and ρA are trace class with

Tr(Aρ) = Tr(ρA) (cyclicity of the trace).
3. Tr(αA+ βB) = αTrA+ β TrB.
4. If (Kf)(x) =

∫
K(x, y)f(y) dy, then TrK =

∫
K(x, x) dx.

5. If ρ is trace class, then σess(ρ) ⊂ { 0} and
∑

i |λi| <∞, where λi are the
eigenvalues of ρ.
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The trace class operators form a Banach space under the norm

‖ρ‖1 := Tr|ρ|,
and the trace is a linear functional on this space.

Let us look at a few examples of trace class operators.
The first example is useful in the preceeding sections. Let A be an un-

bounded, self-adjoint operator, bounded from below, with purely discrete
spectrum. Let E0 ≤ E1 ≤ E2 ≤ · · · be the eigenvalues of A (since there
is no essential spectrum, we must have Ej →∞ if j →∞). It is a general fact
(see [BeS,RSI]) that the set of eigenvectors of A forms a basis in the under-
lying Hilbert space. Since the eigenvectors of A can be chosen to be mutually
orthogonal, there is an orthonormal basis of eigenvectors. Suppose f : R→ C

is a continuous function.

Proposition 23.59 f(A) is trace class with

Tr(f(A)) =
∑

j

f(Ej), (23.41)

provided the sum on the r.h.s. converges absolutely.

Proof. Let {ψj} be an orthonormal basis of eigenvectors corresponding to the
eigenvalues {Ej} of A. By the spectral mapping theorem (see Section 23.9),
|f(A)|ψj = |f(Ej)|ψj , so

∑

j

〈ψj , |f(A)|ψj〉 =
∑

j

|f(Ej)| <∞

by assumption. Hence f(A) is trace class, and we may compute its trace as

Tr(f(A)) =
∑

j

〈ψj , f(A)ψj〉 =
∑

j

f(Ej).

�

Integral operators provide another useful example.

Proposition 23.60 Let K be a continuous function on [a, b]2. Then the in-
tegral operator K on L2([a, b]) defined by

Kf(x) =
∫ b

a

K(x, y)f(y)dy

is trace class, with

TrK =
∫ b

a

K(x, x)dx.

A bounded operator K is called Hilbert-Schmidt if K∗K is trace class. We
have
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Proposition 23.61 An integral operator K on L2(Rd) with kernel K ∈
L2(Rd × R

d) is Hilbert-Schmidt, and

TrK∗K =
∫

Rd×Rd

|K(x, y)|2dxdy.

Proof. Let {ψj} be an orthonormal basis in L2(Rd). Then by the definition
of the trace,

TrK∗K =
∑

j

〈ψj ,K∗Kψj〉 =
∑

j

〈Kψj ,Kψj〉

=
∑

j

‖Kψj‖2 =
∑

j

∫

Rd

|
∫

Rd

K(x, y)ψj(y)dy|2dx

=
∫

Rd

∑

j

|
∫

Rd

K(x, y)ψj(y)dy|2dx.

By the Parseval relation, this is

TrK∗K =
∫

Rd

|
∫

Rd

|K(x, y)|2dy|dx =
∫

Rd×Rd

|K(x, y)|2dxdy

as required. �

A final example of a trace-class operator is a finite rank projection.

Problem 23.62 Show that if P is a rank-r projection, then P is trace class.
If, in addition, P is an orthogonal projection, then TrP = r.

We end this section by describing the spectra of trace-class operators.

Theorem 23.63 If ρ is a trace class operator, then its spectrum consists of
isolated eigenvalues with finite multiplicity, and possibly the point 0. Thus
eigenvalues can accumulate only at 0.

Proof. We prove the theorem for ρ positive. We begin with

Lemma 23.64 If ρ ≥ 0 is a trace class operator, ψj → 0 weakly, and ‖ψj‖ ≤
M for all j, then

〈ψj , ρψj〉 → 0. (23.42)

Proof. Let {φn} be an orthonormal basis in our Hilbert space. Writing

ψj =
∑

n

〈φn, ψj〉φn,

we find
〈ψj , ρψj〉 =

∑

n,m

〈φn, ψj〉〈φm, ψj〉〈φn, ρφm〉.
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Since ρ = ρ1/2ρ1/2, we have

|〈φn, ρφm〉| = |〈ρ1/2φn, ρ
1/2φm〉| ≤ ‖ρ1/2φn‖‖ρ1/2φm‖

= 〈φn, ρφn〉1/2〈φm, ρφm〉1/2.
The last two relations yield

〈ψj , ρψj〉 ≤
(
∑

n

|〈φn, ψj〉|〈φn, ρφn〉1/2
)2

≤ 2

⎛

⎝
∑

n≤N
|〈φn, ψj〉|〈φn, ρφn〉1/2

⎞

⎠

2

+ 2

(
∑

n>N

|〈φn, ψj〉|〈φn, ρφn〉1/2
)2

.

Applying the Cauchy-Schwarz inequality, we obtain

〈ψj , ρψj〉 ≤ 2

⎛

⎝
∑

n≤N
|〈φn, ψj〉|2

⎞

⎠

⎛

⎝
∑

n≤N
〈φn, ρφn〉

⎞

⎠

+ 2

(
∑

n>N

|〈φn, ψj〉|2
)(

∑

n>N

〈φn, ρφn〉
)

.

Since ρ is trace class, given any ε > 0, there is N(ε) such that
∑

n>N(ε)

〈φn, ρφn〉 ≤ ε.

Since ψj converges weakly to zero, for any ε > 0 and N > 0, there is J(ε,N)
such that ∑

n≤N
|〈φn, ψj〉|2 ≤ ε for all j ≥ J(ε,N).

The last three inequalities imply that for all j ≥ N(ε,N(ε)),

〈ψj , ρψj〉 ≤ 2εTrρ+ 2‖ψj‖2ε, (23.43)

where we used ∑

n≤N
〈φn, ρφn〉 ≤

∑

n

〈φn, ρφn〉 = Tr ρ

and ∑

n>N

|〈φn, ψj〉|2 ≤
∑

n

|〈φn, ψj〉|2 = ‖ψj‖2.

Since ‖ψj‖ ≤M , the inequality (23.43) completes the proof of the lemma. �
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Lemma 23.65 If ρ ≥ 0 is trace class, then so is ρ2.

Proof. Since

〈φ, ρ2φ〉 = 〈ρφ, ρφ〉 = ‖ρφ‖2
= ‖ρ1/2ρ1/2φ‖2 ≤ ‖ρ1/2‖2‖ρ1/2φ‖2 = ‖ρ1/2‖2〈φ, ρφ〉,

for any orthonormal basis {φj},
∑

j

〈φj , ρ2φj〉 ≤ ‖ρ1/2‖2
∑

j

〈φ, ρφ〉 <∞.

Hence ρ2 is trace class.

Now we are ready to prove our spectral statement. Let {ψj} be a sequence
with ψj → 0 weakly, and ‖ψj‖ = 1. Then by Lemmas 23.64 and 23.65,

‖(ρ− λ)ψj‖2 = 〈ψj , (ρ2 − 2λρ+ λ2)ψj〉
= 〈ψj , ρ2ψj〉 − 2λ〈ψj , ρψj〉+ λ2 → λ2.

Hence ρ and λ �= 0 have no Weyl sequence. Thus by Theorem 23.55, λ �= 0 is
not a point of the essential spectrum of ρ. Thus σess(ρ) ⊂ {0}. �

Theorem 23.66 Let ρ be a self-adjoint trace class operator on a Hilbert
space H. Then the normalized eigenvectors of ρ form a basis in H.

Proof. The normalized eigenvectors of ρ are independent, since ρ is self-
adjoint. Let V denote the span of the normalized eigenvectors of ρ, and define
ρ⊥ to be the operator ρ restricted to V ⊥. Then ρ⊥ is a self-adjoint trace-class
operator on V ⊥. It cannot have non-zero eigenvalues, since all such eigenvec-
tors would lie in the space V . Hence σ(ρ⊥) ⊂ {0}. Since ρ⊥ is self-adjoint
and non-negative, we apply Theorem 8.2 to ρ⊥ and −ρ⊥ to conclude that
〈ψ, ρ⊥ψ〉 = 0 for all ψ ∈ V ⊥, and so ρ⊥ = 0. That means V ⊥ must consist of
zero-eigenvectors of ρ, and hence must be empty. Thus V = H. �

A self-adjoint trace-class operator ρ can be written in the form

ρ =
∑

j

pjPψj (23.44)

where {ψj} are orthonormal eigenfunctions and pj are the corresponding
eigenvalues, ρψj = pjψj . Indeed, since by Theorem 23.66, {ψj} forms a basis
in H, any φ ∈ H can be written as φ =

∑
j〈ψj , φ〉ψj , and so

ρφ =
∑

j

pj〈ψj , φ〉ψj =
∑

j

pjPψjφ.

Since TrPψ = 1 and Tr(
∑

j Aj) =
∑

j TrAj , the last relation implies the
relation Trρ =

∑
j pj .
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23.12 Operator Determinants

In this section we discuss determinants of differential operators, which appear
in the stationary phase expansion of the path integrals developed in Chap-
ter 15.

For a square matrix A, the determinant function has the properties

1. A is invertible iff detA �= 0
2. A = A∗ ⇒ detA ∈ R

3. det(AB) = det(A) det(B)
4. A > 0⇒ detA = eTr(lnA)

5. detA =
∏
λ ev of A λ

We would like to define the determinant of a Schrödinger operator.

Example 23.67 Let H = −Δ+ V on [0, L] with zero boundary conditions
(assume V is bounded and continuous). Then using the fact that for n ∈ Z,
sin(πnx/L) is an eigenfunction of −Δ with eigenvalue (πn/L)2, we obtain

‖(H−(πn/L)2) sin(πnx/L)‖ = ‖V (x) sin(πnx/L)‖ ≤ (max |V |)‖ sin(πnx/L)‖,
and spectral theory tells us thatH has an eigenvalue in the interval [(πn/L)2−
max |V |, (πn/L)2 + max |V |]. Since {√2/L sin(πnx/L) | n = 1, 2, . . .} is an
orthonormal basis in L2[0, L], we have

σ(H) = {(πn/L)2 +O(1) | n ∈ Z}.
So trying to compute the determinant directly, we get

∏
λ ev H λ =∞.

For a positive matrix, A, we can define ζA(s) := TrA−s =
∑

λ ev of A λ
−s.

Problem 23.68 Show in this case that det(A) = e−ζ
′
A(0).

Now for H = −Δ+ V on [0, L]d with zero boundary conditions,

ζH(s) = tr H−s :=
∑

λ ev of H
λ−s

exists for Re(s) > 1/2 (see Example 23.67 for d = 1). If ζH has an analytic
continuation into a neighbourhood of s = 0, then we define

detH := e−ζ
′
H(0).

So defined, detH enjoys Properties 1-4 above, but not Property 5. It turns
out that for H = −Δ+ V , ζH does have an analytic continuation to a neigh-
bourhood of 0, and this definition applies.

It is difficult, however, to compute a determinant from this definition. In
what follows, we describe some useful techniques for computation of determi-
nants.
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Using the formula

λ−s =
1

Γ (s)

∫ ∞

0

ts−1e−tλdt

for each λn ∈ σ(H) leads to

ζH (s) =
1

Γ (s)

∫ ∞

0

ts−1
∑

n

e−tλndt.

Now λ is an eigenvalue of H iff e−tλ is an eigenvalue of e−tH (this is an
example of the spectral mapping theorem – see Section 23.9), and so e−tλn is
the n-th eigenvalue of e−tH . Thus

ζH(s) =
1

Γ (s)

∫ ∞

0

ts−1Tre−tHdt.

This formula can be useful, as it may be easier to deal with Tr(e−tH) =∫
e−tH(x, x)dx than Tr(H−s).

Example 23.69 We consider H = −Δ in a box B = [−L/2, L/2]d with
periodic boundary conditions. In this case

e−tH(x, y) ≈ (2πt)−d/2e−|x−y|2/2t

in B ×B, if B is very large, and so

Tre−tH =
∫

B×B
e−tH(x, x)dx ≈

∫

B

(2πt)−d/2 = (2πt)−d/2vol(B).

But calculation of detH by this method is still a problem.

Remark 23.70 Often (and in all cases we consider here), we have to compute
a ratio, detA

detB
, of determinants of two operators A and B, such that detA

and detB must be defined through a regularization procedure such as the
one described above, but the determinant of the ratio AB−1 can be defined
directly. Since detA

detB = det(AB−1), we can make sense of the ratio on the left
hand side without going to regularization.

The most useful calculational technique for us is as follows. Let A and B be
Schrödinger operators on L2([0, T ]; Rd) with Dirichlet boundary conditions.
Denote by JA the solution to AJA = 0 with JA(0) = 0, J̇A(0) = 1 (J a d× d
matrix valued function on [0, T ]). Then one can show (see, eg., [LS,Kl])

detA
detB

=
detJA(T )
detJB(T )

. (23.45)

Remark 23.71 If A = S′′(φ̄) for a critical path φ̄, then JA is the Jacobi
matrix along φ̄ (see Section 24.4).
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Problem 23.72 Let A(T ) be the operator−∂2
t+q(t) defined on L2([0, T ]; Rd)

with Dirichlet boundary conditions, and let JA be the corresponding Jacobi
matrix. Show that the functions detA(T ) and detJ(T ) have the same zeros of
the same multiplicities (t0 is a zero of f(t) of multiplicity n if ∂k/∂tkf(t0) = 0
for k = 0, . . . , n− 1 and ∂n/∂tnf(t0) �= 0).

23.13 Tensor Products

We collect here a few facts about tensor products of Hilbert spaces, and tensor
products of operators and their spectra (see [RSI] for details and proofs).

Let H1 and H2 be two separable Hilbert spaces. The tensor product of H1

and H2 is a Hilbert space H1 ⊗ H2 constructed as follows. To ψ1 ∈ H1 and
ψ2 ∈ H2, we associate a map

ψ1 ⊗ ψ2 : H1 ×H2 → C

(f1, f2) �→ 〈f1, ψ1〉H1〈f2, ψ2〉H2

which is conjugate linear in each component (ψ1 ⊗ ψ2(αf1, f2) = ᾱψ1 ⊗
ψ2(f1, f2), ψ1 ⊗ ψ2(f1 + g1, f2) = ψ1 ⊗ ψ2(f1, f2) + ψ1 ⊗ ψ2(g1, f2), and the
same for the second component). On the vector space, V , of all finite linear
combinations of such conjugate bilinear maps, we define an inner-product by
setting

〈ψ1 ⊗ ψ2, φ1 ⊗ φ2〉 := 〈ψ1, φ1〉H1〈ψ2, φ2〉H2 (23.46)

and extending by linearity (it is straightforward to check that this is well-
defined). Then H1 ⊗ H2 is defined to be the completion of V in the inner-
product determined by (23.46).

A simple example, which appears in Section 12.1, is

L2(Rm)⊗ L2(Rn) ≈ L2(Rm+n)

for positive integers m,n. This Hilbert space isomorphism is determined by
the map

f ⊗ g �→ f(x)g(y)

(see, eg., [RSI] for details).
Given bounded operators A and B acting on H1 and H2, the operator

A⊗B, which acts on H1 ⊗H2, is defined by setting

A⊗B(ψ1 ⊗ ψ2) = Aψ1 ⊗Bψ2,

extending by linearity to all finite linear combinations of elements of this
form, and then by density of these finite linear combinations, to H1 ⊗ H2.
This produces a well-defined operator.

This construction can be extended to unbounded self-adjoint operators A
and B, yielding a self-adjoint operator A⊗B (see, eg., [RSI]).
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Of particular interest for us are operators of the form A ⊗ 1 + 1 ⊗ B,
acting on H = H1 ⊗ H2, where A and B are operators acting on H1 and
H2 respectively. This is an abstract version of the “separation of variables”
situation of differential equations. It is intuitively clear that we should be
able to reconstruct characteristics of such operators from the corresponding
characteristics of the operatorsA and B. As an example, we have the following
important (and simple) description of the spectrum of A ⊗ 1 + 1⊗ B under
certain conditions on A and B, and, in particular, for A and B self-adjoint:

σ(A⊗ 1 + 1⊗B) = σ(A) + σ(B)
σd(A⊗ 1 + 1⊗B) ⊂ σd(A) + σd(B) ⊂ { ev’s of A⊗ 1 + 1⊗B}

σess(A⊗ 1 + 1⊗B) = σess(A) + σess(B)
∪ [σess(A) + σd(B)]
∪ [σd(A) + σess(B)].

Rather than prove any such statements (an involved task, requiring further
assumptions), let us just do a simple, suggestive computation. Suppose Aψ1 =
λ1ψ1 and Bψ2 = λ2ψ2. Then note that

(A⊗ 1 + 1⊗B)ψ1 ⊗ ψ2 = Aψ1 ⊗ ψ2 + ψ1 ⊗Bψ2

= λ1ψ1 ⊗ ψ2 + ψ1 ⊗ (λ2ψ2) = λ1(ψ1 ⊗ ψ2) + λ2(ψ1 ⊗ ψ2)
= (λ1 + λ2)ψ1 ⊗ ψ2,

which shows, in particular, that σd(A) + σd(B) ⊂ { ev’s of A⊗ 1 + 1⊗B}.

23.14 The Fourier Transform

The Fourier transform is a useful tool in many areas of mathematics and
physics. The purpose of the present section is to review the properties of
the Fourier transform, and to discuss the important role it plays in quantum
mechanics.

The Fourier transform is a map, F , which sends a function ψ : R
d → C

to another function ψ̂ : R
d → C where for k ∈ R

d,

ψ̂(k) := (2π�)−d/2
∫

Rd

e−ik·x/�ψ(x)dx

(it is convenient for quantum mechanics to introduce Planck’s constant, �,
into the Fourier transform). We first observe that ψ̂ = Fψ is well-defined if ψ
is an integrable function (ψ ∈ L1(Rd), meaning

∫
Rd
|ψ(x)|dx < ∞), and that

F acts as a linear operator on such functions.
In the following exercise, the reader is asked to compute a few Fourier

transforms.

Problem 23.73 Show that under F
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1. e−
|x|2
2a�2 �→ (�a)d/2e−

a|k|2
2 (Re(a) > 0). Hint: try d = 1 first – complete

the square in the exponent and move the contour of integration in the
complex plane.

2. e−
1

2�2 x·A−1x �→ �
d/2(detA)1/2e−

1
2k·Ak (A a positive d × d matrix). Hint:

diagonalize and use the previous result.

3.
√

π
2�

e−
√
b/�2|x|
|x| �→ (|k|2 + b)−1 (b > 0, d = 3). Hint: use spherical coordi-

nates. Alternatively, see Problem 23.75 below.

In the first example, if Re(a) > 0 then the function on the left is in L1(Rd),
and the Fourier transform is well-defined. However, we can extend this result
to Re(a) = 0, in which case the integral is convergent, but not absolutely
convergent.

Properties of the Fourier Transform. The utility of the Fourier transform
derives from the following properties.

1. The Plancherel theorem: F is a unitary map from L2(Rd) to itself (note
that initially the Fourier transform is defined only for integrable (L1(Rd))
functions – the statement here is that the Fourier transform extends from
L1(Rd) ∩ L2(Rd) to a unitary map on L2(Rd)).

2. The inversion formula: the adjoint F∗ of F on L2(Rd) is given by the map
ψ �→ ψ̌ where

ψ̌(x) := (2π�)−d/2
∫

Rd

eix·k/�ψ(k)dk

(and by the Plancherel theorem, this is also the inverse, F−1).
For the next four statements, suppose ψ, φ ∈ C∞

0 (Rd).
3. −i�∇̂xψ(k) = kψ̂(k).
4. x̂ψ(k) = i�∇kψ̂(k).
5. φ̂ψ = (2π�)−d/2φ̂ ∗ ψ̂.
6. φ̂ ∗ ψ = (2π�)d/2φ̂ψ̂.

Here
(f ∗ g)(x) :=

∫

Rd

f(y)g(x− y)dy (23.47)

is the convolution of f and g. The last four properties can be loosely sum-
marized by saying that the Fourier transform exchanges differentiation and
coordinate multiplication, and products and convolutions.

Proof. The proof of Property 1 is somewhat technical and we just sketch it
here (see, eg, [Fo] for details). In particular, we will show that ‖f‖ = ‖f̂‖.
Suppose f ∈ C∞

0 , and let Cε be the cube of side length 2/ε centred at the
origin. Choose ε small enough so that the support of f is contained in Cε. One
can show that

{Ek := (ε/2)d/2eik·x/� | k ∈ ε�πZ
d}
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is an orthonormal basis of the Hilbert space of functions in L2(Cε) satisfy-
ing periodic boundary conditions. Thus by the Parseval equation (Proposi-
tion 23.4),

∫

Rd

|f |2 =
∫

Cε

|f |2 =
∑

k∈ε�πZd

|〈Ek, f〉|2

= (πε�)d
∑

k∈ε�πZd

|f̂(k)|2 →
∫

Rd

|f̂ |2

as ε→ 0.

Problem 23.74 Show that {Ek} is an orthonormal set.

We will prove Property 3, and we leave the proofs of the other properties as
exercises. Integrating by parts, we have

−i�∇̂ψ(k) = (2π�)−d/2
∫
e−ix·k/� · (−i�∇)ψ(x)dx

= k · (2π�)−d/2
∫
e−ix·k/�ψ(x)dx = kψ̂(k).

�

Problem 23.75 1. Show that for b > 0 and d = 3, under F−1,

(|k|2 + b)−1 �→
√

π

2�

e−
√
b/�2|x|

|x|
(hint: use spherical coordinates, then contour deformation and residue
theory).

2. Show that under F−1,

δ(k − a) �→ (2π�)−d/2eia·x/�.

Here δ is the Dirac delta function – not really a function, but a distribution
– characterized by the property

∫
f(x)δ(x−a)dx = f(a). The exponential

function on the right hand side is called a plane wave.

Functions of the derivative. As an application, we show how the Fourier
transform can be used to define functions of the derivative operator. Recall
our notation p := −i�∇. Motivated by Property 3 of the Fourier transform,
we define an operator g(p) (for “sufficiently nice” functions g) on L2(Rd) as
follows.

Definition 23.76 ĝ(p)ψ(k) := g(k)ψ̂(k) or, equivalently,

g(p)ψ := (2π�)−d/2ǧ ∗ ψ.
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Let us look at a few examples.

Example 23.77 1. If g(k) = k, then by Property 3 of the Fourier transform,
the above definition gives us back g(p) = p (so at least our definition makes
some sense).
2. Now suppose g(k) = |k|2. Then ĝ(p)ψ(k) = |k|2ψ̂.

Problem 23.78 Show that −�
2Δ̂ψ = |k|2ψ̂.

Thus we have |p|2 = −�
2Δ. Extending this example, we can define g(p) when

g is a polynomial “with our bare hands”. It is easy to see that this definition
coincides with the one above.
3. Let g(k) = ( 1

2m
|k|2 + λ)−1, λ > 0, and d = 3. Then due to Problem 23.75,

we have

((H0 + λ)−1ψ)(x) =
m

2π�2

∫

R3

e−
√

2mλ
�

|x−y|

|x− y| ψ(y)dy (23.48)

where we have denoted H0 := 1
2m
|p|2 = − �

2

2m
Δ.

Problem 23.79 Let y ∈ R
d be fixed. Find how the operator eiy·p acts on

functions (here y · p =
∑d

j=1 yjpj , pj = −i�∂xj ).
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Mathematical Supplement: The Calculus of

Variations

The calculus of variations, an extensive mathematical theory in its own right,
plays a fundamental role throughout physics. This supplement contains an
overview of some of the basic aspects of the variational calculus. This material
will be used throughout the book, and in particular in Chapters 15 and 16 to
obtain useful quantitative results about quantum systems in the regime close
to the classical one.

24.1 Functionals

The basic objects of study in the calculus of variations are functionals, which
are just functions defined on Banach spaces (usually spaces of functions).
(Recall that a Banach space is a complete normed vector space.) If we specify
a space, X , then functionals on X are just maps S : X → R (or into C).

In the calculus of variations, one often uses spaces other than L2(Rd),
and which are not necessarily Hilbert spaces. Among the most frequently
encountered spaces are the Sobolev spaces Hs(Rd), s = 1, 2, . . ., introduced
in Section 23.1. Recall that the Sobolev spaces are Hilbert spaces.

Spaces of continuously differentiable functions also arise frequently. For
k ∈ {0, 1, 2, . . .}, and an open set Ω ⊂ R

d, we define Ck(Ω; Rm) to be the set
of all functions φ : Ω → R

m such that ∂αφ is continuous in Ω for all |α| ≤ k,
and for which the norm

‖φ‖Ck(Ω;Rm) :=
∑

|α|≤k
sup
x∈Ω
|∂αφ(x)|

is finite. Equipped with this norm, Ck(Ω; Rm) is a Banach space.

Example 24.1 Here are some common examples of functionals, S, and
spaces, X , on which they are defined.
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1. X = L2([a, b]; R), f ∈ X∗ = X is a fixed function (X∗ denotes the dual
space to X , as explained in Section 23.1), and

S : φ �→
∫ b

a

f(x)φ(x)dx.

Note that S(φ) is well-defined, by the Cauchy-Schwarz inequality.
2. Evaluation functional: X = C([a, b]), x0 ∈ (a, b) fixed, and

S : φ �→ φ(x0)

Compare this with the first example by taking f(x) = δ(x − x0) (∈ X∗;
in this case X∗ �= X).

3. Let V : R
m → R be continuous. Set X = {φ : R

d → R
m | V (φ) ∈

L1(Rd)}, and take

S : φ �→
∫

Rd

V (φ(x))dx.

4. Dirichlet functional: X = H1(Rd), and

S : φ �→ 1
2

∫

Rd

|∇φ|2dx.

5. Classical action: fix x, y ∈Rm, set X =Pxy := {φ∈C1([0, T ]; Rm) | φ(0) =
x, φ(T ) = y}, and define

S : φ �→
∫ T

0

{
1
2
m|φ̇|2 − V (φ)

}

dt.

6. Classical action: Let L : Rm × Rm → R be a twice differentiable function
(a Lagrangian function), and

S : φ �→
∫ T

0

L(φ, φ̇)dt.

Here, X = Pxy is as in Example 5.
7. Action of a classical field theory: fix f, g,∈ H1(Rd; Rm), set

X = {φ ∈ H1(Rd × [0, T ]; Rm) | φ(x, 0) = f(x), φ(x, T ) = g(x)}, (24.1)

and define

S : φ �→
∫ T

0

∫

Rd

{

−1
2
|∂tφ|2 +

1
2
|∇xφ|2 + f(φ)

}

dxdt

where f : R
m → R is a differentiable function.
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8. Lagrangian functional: Suppose L : R
m × R

d+1 → R (a Lagrangian den-
sity) is a twice differentiable function, and set

S : φ �→
∫ ∫
L(φ(x, t),∇x,tφ(x, t))dxdt

(hereX is an appropriate space of vector functions from space-time R
d
x×Rt

to R
m, whose specific definition depends on the form of L).

We encountered many of these functionals when we considered the problems of
quantization and of (quasi-)classical limit in quantum mechanics and quantum
field theory.

24.2 The First Variation and Critical Points

The notion of a critical point of a functional is a central one. It is a direct
extension of the usual notion of a critical point of a function of finitely many
variables (i.e., a place where the derivative vanishes). The solutions of many
physical equations are critical points of certain functionals, such as action or
energy functionals.

In what follows, the spaces X on which our functionals are defined will
generally be linear (i.e. vector) spaces or affine spaces. By an affine space, we
mean a space of the form X = {φ0 +φ | φ ∈ X0}, where φ0 is a fixed element
of X , and X0 is a vector space. We will encounter examples of functionals
defined on non-linear spaces when we study constrained variational problems
in Section 24.5.

Let X be a Banach space, or else an affine space based on a Banach space
X0. (Recall that the notion of Banach space is defined in Section 23.1 of the
previous mathematical supplement.)

Definition 24.2 A path, φλ, in X is a differentiable function I 
 λ �→ φλ
from an interval I ⊂ R containing 0, into X .

Definition 24.3 The tangent space, TφX , to X at φ ∈ X is the space of all
“velocity vectors” at φ:

TφX :=
{
∂φλ
∂λ

∣
∣
∣
∣
λ=0

| φλ is a path in X,φ0 = φ

}

.

If X is a Banach space, then TφX = X (and if X is an affine space based on
the Banach space X0, TφX = X0). To see this, just note that for any ξ ∈ X ,
φλ := φ+ λξ is a path in X , satisfying φ0 = φ and ∂φλ/∂λ = ξ (the reader is
invited to check the corresponding statement for affine spaces).

So the tangent space to a linear space is not very interesting. The notion
of a tangent space is useful when working in non-linear spaces (we will see an
example of this shortly).
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Definition 24.4 A variation of φ ∈ X along ξ ∈ TφX is a path, φλ in X ,
such that φ0 = φ and ∂φλ/∂λ|λ=0 = ξ.

Example 24.5 One of our main examples is the classical action, Example 6
above (and (4.23)), defined on Pxy = {φ ∈ C1([0, T ], X) | φ(0) = x, φ(T ) =
y} (an affine space). Then TφPxy = P00 (see Fig. 24.1), and an example of a
variation of φ ∈ Pxy in the direction ξ ∈ P00 is φλ = φ+ λξ ∈ Xxy.

ξ

φ

φ + λ ξ

xy

00

x

y

Fig. 24.1. Variations of a path.

We wish to define a notion of differentiation of functionals which is a direct
extension of usual differentiation of functions of a finite number of variables.
To do so, we use the concepts of the dual space X∗ to X and the notation
〈·, ·〉 for the coupling between the X∗ to X , described in Section 23.1.

Definition 24.6 Let S : X → R be a functional on a real Banach space
X , and let φ ∈ X . We say that S is differentiable at φ if there is a linear
functional, ∂S(φ) ∈ X∗, such that

d

dλ
S(φλ)|λ=0 = 〈∂S(φ), ξ〉 (24.2)

for any variation φλ of φ along ξ ∈ X . The functional ∂S(φ) is the (variational)
derivative of S at φ.

Remark 24.7 1. The notion of differentiability introduced here is often
called Gâteaux differentiability. A stronger notion of differentiability,
called Fréchet differentiability, demands (for linear spaces) that

S(φ+ ξ) = S(φ) + 〈∂S(φ), ξ〉 + o(‖ξ‖X)

as ‖ξ‖X → 0. The reader can check that if S is continuously (Gâteaux)
differentiable at φ0 ∈ X (i.e. ∂S(φ) exists in a neighbourhood of φ0, and
is a continuous map from this neighbourhood into X∗), then S is Fréchet
differentiable at φ0.

2. We will sometimes use the notation S′(φ) for the variational derivative
∂S(φ).

3. Recall that if X is a Hilbert space, then we can identify its dual, X∗,
with X itself, via the map X 
 φ �→ lφ ∈ X∗ with lφξ := 〈φ, ξ〉 for
ξ ∈ X (here the notation 〈·, ·〉 indicates the Hilbert space inner-product).
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(The fact that this map is an isomorphism between X and X∗ is known
as the Riesz representation theorem.) Thus when X is a Hilbert space,
we can identify ∂S(φ) with an element of X . This element is called the
gradient of S at φ (in the inner product of X), and is sometimes denoted
by gradXS(φ).

Example 24.8 We compute the derivatives of some of the functionals in
Example 24.1. We suppose that whenever X is a space of functions, it is a
subspace of an L2-space. Then the variational derivative can be identified with
a function (or distribution), using integration by parts where necessary. This
is related to the L2 gradient as discussed above.

1. For the functional S(φ) =
∫ b
a
fφdx, we compute

〈∂S(φ), ξ〉 =
d

dλ
S(φλ)|λ=0 =

∫ b

a

f
∂

∂λ
φλdx|λ=0

=
∫ b

a

fξdx = 〈f, ξ〉.

Thus we identify ∂S(φ) = f .
3. For S(φ) =

∫
Rd
V (φ), we compute

〈∂S(φ), ξ〉 =
d

dλ
S(φλ)|λ=0 =

d

dλ

∫

Rd

∂

∂λ
V (φλ)|λ=0dx

=
∫

Rd

∇V (φ) · ξdx = 〈∇V (φ), ξ〉

and so we identify ∂S(φ) = ∇V (φ).
4. For S(φ) = 1

2

∫
Rd
|∇φ|2, we compute

〈∂S(φ), ξ〉 =
d

dλ
S(φλ)|λ=0 =

1
2

∫

Rd

∂

∂λ
|∇φλ|2|λ=0dx

=
∫

Rd

∇φ · ∇ξdx =
∫

Rd

(−Δφ)ξdx = 〈−Δφ, ξ〉

where we integrated by parts (Gauss theorem), and used the fact that the
functions decay at ∞. Thus we identify ∂S(φ) = −Δφ.

We leave the remaining examples as an exercise.

Problem 24.9 Compute the variational derivatives for the remaining func-
tionals in Example 24.1. You should find

5. ∂S(φ) = −mφ̈−∇V (φ)
6. ∂S(φ) = − d

dt
(∂φ̇L) + ∂φL

7. ∂S(φ) = �φ+∇f(φ) where � := ∂2
t −Δ is the D’Alembertian operator

8. ∂S(φ) = −∇x,t · (∂∇φL) + ∂φL
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As in the finite-dimensional case, a critical point is a place where the
derivative vanishes.

Definition 24.10 An element φ ∈ X is a critical point (CP) of a functional
S : X → R if ∂S(φ) = 0.

In fact, many physical equations are critical point equations for certain func-
tionals.

Example 24.11 Continuing with the same list of examples of functionals
above, we can write down some of the equations describing their critical points:

4. Δφ = 0 (Laplace equation, φ a harmonic function)
5. mφ̈ = −∇V (φ) (Newton’s equation)
6. d

dt
(∂φ̇L) = (∂φL) (Euler-Lagrange equation)

7. �φ+∇f(φ) = 0 (nonlinear wave/Klein-Gordon equation)
8. −∇x,t · (∂∇φL) + ∂φL = 0 (classical field equation)

The following connection between critical points and minima (or maxima)
is familiar from multi-variable calculus.

Theorem 24.12 If φ locally minimizes or maximizes a differentiable func-
tional S : X → R, then φ is a critical point of S. (We say φ is a local minimizer
(resp. maximizer) of S if there is some δ > 0 such that S(φ̃) ≥ S(φ) (resp.
S(φ̃) ≤ S(φ)) for all φ̃ with ‖φ̃− φ‖X < δ.)

Problem 24.13 Prove this (hint: it is similar to the finite-dimensional case).

Recall that a function f(v) is called strictly convex if

f(sv + (1− s)v′) < sf(v) + (1 − s)f(v′), ∀s ∈ (0, 1),

∀ v, v′ ∈ V . This condition holds if f is twice differentiable and has positive
Hessian, d2

vf(v) > 0, ∀v ∈ V . A function f(v) is called strictly concave iff
−f(v) is strictly convex.

Theorem 24.14 Assume f(v) is a differentiable and strictly convex/concave
function on a finite-dimensional space V . Then it has a unique critical point,
and this critical point minimizes/maximizes f .

We sketch a proof of this theorem. To fix ideas we consider only the convex
case. Assume for simplicity that f(v) is twice differentiable. Then as was
mentioned above d2

vf(v) > 0, ∀v ∈ V . Hence every critical point is a (local)
minimum. Assume there are two critical points, v1 and v2. Then the function
f(sv1 +(1−s)v2) would have a maximum for some s ∈ (0, 1), a contradiction.
Hence f(v) has at most one critical point. One can show furthermore that
f(v)→∞, as ‖v‖ → ∞ and therefore f(v) has at least one minimizing point.
�

To extend this theorem to the infinite-dimensional case one would have
to make some additional assumptions, i.e. that f(v) is weakly lower semi-
continuous and V is reflexive (see e.g. [RSI]).
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24.3 The Second Variation

In multi-variable calculus, if one wishes to know if a critical point is actually
a minimum (or maximum), one looks at the second derivative. For the same
reason, we need to define the second derivative of a functional.

Definition 24.15 Let η, ξ ∈ TφX . A variation of φ along η and ξ is a two-
parameter family, φλ,μ ∈ X , such that φ0,0 = φ, ∂

∂λφλ,μ|λ=μ=0 = ξ, and
∂
∂μφλ,μ|λ=μ=0 = η.

Definition 24.16 Let S : X → R be a functional. We say S is twice differ-
entiable is there is a bounded linear map ∂2S(φ) : TφX → (TφX)∗ (called the
Hessian or second variation of S at φ) such that

∂2

∂λ∂μ
S(φλ,μ)|λ=μ=0 = 〈∂2S(φ)η, ξ〉 (24.3)

for all ξ, η ∈ TφX and all variations φλ,μ of φ along ξ and η.

Remark 24.17 1. The Hessian ∂2S(φ) can also be defined as the second
derivative of S(φ), i.e., ∂2S(φ) = ∂ · ∂S(φ). That is, we consider the map
φ �→ ∂S(φ) and define, for η ∈ TφX , ∂2S(φ)η := ∂

∂λ
∂S(φλ), where φλ is

a variation of φ along η.
2. We will often use the notation S′′(φ) to denote ∂2S(φ).

Computations of the second derivatives of the functionals in our list of
examples are left as an exercise (again, we suppose where appropriate that
the action of the dual space is just given by integration).

Problem 24.18 Continuing with our list of examples of functionals above,
show that

3. S′′(φ) = D2V (φ) (a matrix multiplication operator).
4. S′′(φ) = −Δ (the Laplacian).
5. S′′(φ) = −m∂2

t − D2V (φ) (a Schrödinger operator) acting on functions
satisfying Dirichlet boundary conditions: ξ(0) = ξ(T ) = 0.

6.

S ′′(φ) = − d

dt
(∂2
φ̇
L)

d

dt
−

(
d

dt
∂2
φφ̇
L

)

+ ∂2
φL, (24.4)

with Dirichlet boundary conditions. (The first term on the r.h.s. is a prod-
uct of three operators while the second one is the time-derivative of ∂2

φφ̇
L.

7. S′′(φ) = � + V ′′(φ), with Dirichlet boundary conditions: ξ(x, 0) =
ξ(x, T ) = 0.

8.

S′′(φ) = −∇x,t
(

∂2L

∂(∇φ)2

)

∇x,t −∇x,t
(

∂2L

∂(∇φ)∂φ

)

+
∂2L

∂φ2
.
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The following criterion for a critical point to be a minimizer is similar to
the finite-dimensional version, and the proof is left as an exercise.

Theorem 24.19 Let φ be a critical point of a twice continuously differen-
tiable functional S : X → R.

1. If φ locally minimizes S, then S′′(φ) ≥ 0 (meaning 〈S′′(φ)ξ, ξ〉 ≥ 0 for all
ξ ∈ TφX).

2. If S′′(φ) > c, for some constant c > 0 (i.e. 〈S′′(φ)ξ, ξ〉 ≥ c‖ξ‖2X for all
ξ ∈ TφX), then φ is a local minimizer of S.

Problem 24.20 Prove this.

Let us now pursue the question of whether or not a critical point of the
classical action functional

S(φ) =
∫ T

0

L(φ(s), φ̇(s))ds

(which is a solution of the Euler-Lagrange equation – i.e., a classical path)
minimizes the action. As we have seen, the Hessian S′′(φ) is given by (24.4).
We call ∂2

φ̇
L the generalized mass.

Theorem 24.21 Suppose ∂2
φ̇2L > 0. Suppose further that ∂2

φL is a bounded
function. Then there is a T0 > 0, such that S′′(φ) > 0 for T ≤ T0.

Proof for L = m
2 φ̇

2−V (φ). In this case S′′(φ) = −md2/ds2−V ′′(φ), acting on
L2([0, T ]) with Dirichlet boundary conditions. Since inf σ(−d2/ds2) = (π/T )2,
we have, by Theorem 8.2, −d2/ds2 ≥ (π/T )2. So S′′(φ) ≥ m(π/T )2 −
max |V ′′|, which is positive for T sufficiently small. �

Corollary 24.22 For T sufficiently small, a critical point of S (i.e., a classical
path) locally minimizes the action, S.

24.4 Conjugate Points and Jacobi Fields

In this section we study the classical action functional and its critical points
(classical paths) in some detail. While such a study is of obvious importance in
classical mechanics, it is also useful in the quasi-classical analysis of quantum
systems that we undertook in Chapters 15 and 16.

Thus we consider the action functional

S(φ) =
∫ t

0

L(φ(s), φ̇(s))ds.

We have shown above that if t is sufficiently small, then S′′(φ) > 0, provided
(∂2L/∂φ̇2) > 0. So in this case, if φ̄ is a critical path, it minimizes S(φ). On
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the other hand, Theorem 24.19 implies that if φ̄ is a critical path such that
S′′(φ̄) has negative spectrum, then φ̄ is not a minimizer. We will show later
that eigenvalues of S′′(φ̄) decrease monotonically as t increases. So the point
t0 when the smallest eigenvalue of S′′(φ̄) becomes zero, separates the t’s for
which φ̄ is a minimizer, from those for which φ̄ has lost this property. The
points at which one of the eigenvalues of S ′′(φ̄) becomes zero play a special
role in the analysis of classical paths. They are considered in this section.

In this discussion we have used implicitly the fact that because S′′(φ̄) is
a Schrödinger operator defined on L2([0, t]) with Dirichlet (zero) boundary
conditions, it has a purely discrete spectrum running off to +∞. We denote
this spectrum by {λn(t)}∞1 with λn(t) → +∞ as n → ∞. Note that if φ̄ is a
critical point of S on [0, t], then for τ < t, φ̄τ := φ̄|[0,τ ] is a critical point of S
on [0, τ ]. Thus for τ ≤ t, {λn(τ)} is the spectrum of S′′(φ̄τ ) = S′′(φ̄) on [0, τ ]
with zero boundary conditions.

We specialize now to the classical action functional

S(φ) =
∫ t

0

{m
2
|φ̇(s)|2 − V (φ(s))}ds

on the space X = {φ ∈ C1([0, t]; Rd) | φ(0) = x, φ(t) = y}, and continue to
denote by φ̄, a critical point of this functional (classical path).

Theorem 24.23 The eigenvalues λn(τ) are monotonically decreasing in τ .

Sketch of proof. Consider λ1(τ), and let its normalized eigenfunction be ψ1.
Define ψ̃1 to be ψ1 extended to [0, τ + ε] by 0. So by the spectral variational
principle Theorem 8.1,

λ1(τ + ε) ≤ 〈ψ̃1, S
′′(φ̄)ψ̃1〉 = λ1(τ).

Further, equality here is impossible by uniqueness for the Cauchy problem
for ordinary differential equations, which states the following: if a solution of
a linear, homogeneous, second-order equation is zero at some point, and its
derivative is also zero at that point, then the solution is everywhere zero. To
extend the proof to higher eigenvalues, one can use the min-max principle. �

Definition 24.24 A point φ̄(τ0) such that λn(τ0) = 0 for some n is called a
conjugate point to φ̄(0) = x along φ̄.

So if c = φ̄(τ0) is a conjugate point to x, then S′′(φ̄) on [0, τ0] has a 0
eigenvalue. That is, there is some non-zero ξ ∈ L2([0, τ0]) with ξ(0) = ξ(τ0) =
0 such that

S′′(φ̄)ξ = 0. (24.5)

This is the Jacobi equation. A solution of this equation with ξ(0) = 0 will be
called a Jacobi vector field.

Definition 24.25 The index of S′′(φ̄) is the number of negative eigenvalues
it has (counting multiplicity) on L2([0, t]) with zero boundary conditions.
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We recall that for τ small, S′′(φ̄) has no zero eigenvalues on [0, τ ] (Theo-
rem 24.21). Combining this fact with Theorem 24.23 gives the following result.

Theorem 24.26 (Morse) The index of S′′(φ̄) is equal to the number of
points conjugate to φ̄(0) along φ̄, counting multiplicity (see Fig. 24.2).

φ t

t

spec[S"(   )]

Fig. 24.2. Index = # of conjugate points.

The picture that has emerged is as follows. For sufficiently small times, a
classical path φ̄(0) locally minimizes the action. As time increases, the path
might lose this property. This happens if there is a point in the path conjugate
to φ̄(0).

Example 24.27 An example of a conjugate point is a turning point in a
one-dimensional potential (see Fig. 24.3, and remember that we are working
with the functional of Example 24.1, no. 5).

φ

V(x)

a b

x

Fig. 24.3. A turning point.

The classical path φ starts at a, and turns back after hitting b at time τ . Now

S′′(φ) = −m∂2
s − V ′′(φ)

and it is easy to check that S′′(φ)φ̇ = 0 (just differentiate Newton’s equation).
Since φ̇(0) = φ̇(τ) = 0 (the velocity at a turning point is zero), b is conjugate
to a.

We return to the Jacobi equation (24.5), and consider its fundamental
solution, J(s). J(s) is the d× d matrix satisfying
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S′′(φ̄)J = 0

with the initial conditions

J(0) = 0 and J̇(0) = 1.

J is called the Jacobi matrix.

Proposition 24.28 The Jacobi matrix has the following properties

1. For any h ∈ Rd, Jh is a Jacobi field. Conversely, any Jacobi field is of the
form Jh for some h ∈ Rd.

2. φ̄(τ0) is a conjugate point to φ̄(0) iff J(τ0) has a zero-eigenvalue, i.e.
detJ(τ0) = 0.

Proof. 1. The first part is obvious. To prove the second part let ξ be a
Jacobi field, and let h = ξ̇(0). Then ξ̃ := Jh satisfies the same differential
equation as ξ with the same initial conditions. Hence ξ = ξ̃, and therefore
ξ = Jh.

2. We have shown above that φ̄(τ0) is a conjugate point iff there is a Jacobi
field ξ such that ξ(τ0) = 0. By the previous statement, there is h �= 0 such
that ξ = Jh, which implies J(τ0)h = 0. So J(τ0) has a zero eigenvalue
(with eigenvector h), and detJ(τ0) = 0.
�

Now we give the defining geometric/dynamic interpretation of J . Consider
a family of critical paths φv(s) starting at φ̄(0) with various initial velocities
v ∈ R

d. Denote v̄ = ˙̄φ(0). Then

J(s) =
∂φv(s)
∂v

|v=v̄

is the Jacobi matrix (along φ̄). Indeed, φv satisfies the equation ∂S(φv) =
0. Differentiating this equation with respect to v, and using that S′′(φ) =
∂φ∂S(φ), we find

0 =
∂

∂v
∂φS(φv) = S′′(φv)

∂φv
∂v

.

Thus, ∂φv/∂v|v=v̄ satisfies the Jacobi equation. Next,

∂

∂v
φv(0) =

∂

∂v
φ̄(0) = 0

and
∂

∂v
φ̇v(0) =

∂

∂v
v = 1

which completes the proof.
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24.5 Constrained Variational Problems

Let S and C be continuously differentiable functionals on a real Banach space
X . We consider the problem of minimizing the functional S(φ), subject to the
constraint C(φ) = 0. That means we would like minimize S(φ) for φ in the
(non-linear) space

M := {φ ∈ X | C(φ) = 0}.
We assume that C′(φ) �= 0 for φ ∈ M (here, and below, C′(φ) and S′(φ)
denote the variational derivatives of the respective functionals considered as
functionals on all of X , rather than just M).

If C is a C2 (twice continuously differentiable) functional, then (see eg.
[FGJS])

TφM = {ξ ∈ X | 〈C ′(φ), ξ〉 = 0}.
To see this, suppose φλ is a variation of φ in M . Differentiating the relation
C(φλ) = 0 with respect to λ at λ = 0 yields 〈C′(φ), ξ〉 = 0, where ξ =
∂
∂λφλ|λ=0. Thus TφM ⊂ {ξ ∈ X | 〈C′(φ), ξ〉 = 0}. Conversely, given ξ ∈ X
such that 〈C′(φ), ξ〉 = 0, one can show (using the “implicit function theorem”)
that there is a path φλ ∈M satisfying φ0 = φ and ∂

∂λφλ|λ=0 = ξ. So ξ ∈ TφM .
Concerning the constrained variational problem, we have the following

result:

Theorem 24.29 (Lagrange multipliers) Let S be a C1 and C a C2 func-
tional on a Banach (or affine) space X . Suppose φ̄ locally minimizes S(φ)
subject to the constraint C(φ) = 0 (i.e. φ̄ locally minimizes S on the space
M) and C ′(φ̄) �= 0. Then φ̄ is a critical point of the functional S − λC on
the space X , for some λ ∈ R (called a Lagrange multiplier). In other words, φ̄
satisfies the equations

S′(φ̄) = λC ′(φ̄) and C(φ̄) = 0

(the first equation is as linear functionals on X).

Proof. The fact that φ̄ minimizes S over M implies that φ̄ is a critical point
of S considered as a functional on M . This means that S′(φ̄) = 0 on Tφ̄M .
Recall

Tφ̄M = {ξ ∈ X | 〈C′(φ̄), ξ〉 = 0}.
Let ρ ∈ X be such that 〈C′(φ̄), ρ〉 �= 0. Then for all ξ ∈ X ,

η := ξ − 〈C
′(φ̄), ξ〉

〈C ′(φ̄), ρ〉ρ ∈ Tφ̄M.

Hence

0 = 〈S′(φ̄), η〉 = 〈S′(φ̄), ξ〉 − λ〈C′(φ̄), ξ〉, λ :=
〈S′(φ̄), ρ〉
〈C′(φ̄), ρ〉 .

Thus S′(φ̄) is a multiple of C′(φ). �
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Example 24.30 Quadratic form: let B be a a self-adjoint operator on a
Hilbert space, X = D(B), and set

S : φ �→ 1
2
〈φ,Bφ〉 (24.6)

and C(φ) := 1
2 (‖φ‖2 − 1). Easy computations show ∂S(φ) = Bφ and

∂C(φ) = φ. Hence by the result above, any critical point of S(φ) subject
to the constraint C(φ) = 0 (‖φ‖ = 1) satisfies the equation

Bφ = λφ (24.7)

for some Lagrange multiplier λ ∈ R. This is an eigenvalue equation for B with
the eigenvalue being the Lagrange multiplier.

24.6 Legendre Transform and Poisson Bracket

Passing from the lagrangian to hamiltonian constitutes a Legendre transform,
defined formally as:

g(π) := sup
u∈X

(〈π, u〉 − f(u)). (24.8)

Here f is a function (or functional) on a normed vector space, V , while g
is defined on the dual space V ∗, and 〈π, u〉 is a coupling between V and V ∗

(See the previous mathematical supplement, Section 23.1 for definitions of the
dual space and the coupling 〈π, u〉.) Of course, for the supremum in (24.8) to
exist we have to make some assumptions on on the class of functions on which
the Legendre transform is defined. In the finite-dimensional case, it suffices to
assume that f is differentiable and strictly convex, i.e. ∀v, v′ ∈ V,

f(sv + (1− s)v′) < sf(v) + (1 − s)f(v′), ∀s ∈ (0, 1).

In the infinite-dimensional case, we have to make extra assumptions. In
order not to complicate the exposition, we make an assumption which is much
stronger than needed, but which suffices for our needs. Namely, we assume
that f is of the form f(u) := 1

2
〈u, Lu〉 where the linear operator L : V → V ∗

is invertible and satisfies 〈v, Lw〉 = 〈Lv,w〉 and 〈v, Lv〉 ≥ δ‖v‖2, δ > 0. In
this case, like in the finite-dimensional one, the function 〈π, u〉 − f(u) has a
unique critical point satisfying is ∂f(u) = π, (in this case, u = L−1π), and
this point is a maximum point. Hence

g(π) = (〈π, u〉 − f(u))|u:∂f(u)=π. (24.9)

Problem 24.31 Show that g is differentiable, convex and that

(Legendre transform)2 = 1.

Hint: use the fact that ∂g(π) = u(π) where u(π) solves ∂f(u(π)) = π.
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Problem 24.32 Show that the Legendre transform maps the functional
f(ψ) = 1

2

∫ |ψ|2 on X = L2(Rd) into g(π) = 1
2

∫ |π|2.
The equation (24.9) shows that the classical and Klein-Gordon Hamilto-

nians, (4.32) and

H(φ, π) =
∫

Rd

{
1
2
|π|2 +

1
2
|∇φ|2 + f(φ)

}

dx (24.10)

(see (19.11)), are the Legendre transforms of the classical and Klein-Gordon
Lagrange functionals, (4.24) and

L(φ, χ) =
∫ {

1
2
|χ|2 − 1

2
|∇φ|2 − f(φ)

}

dx

in the second variables,

h(x, k) := sup
v∈V

(〈k, v〉 − L(x, v)). (24.11)

and
H(φ, π) := sup

η∈V
(〈π, η〉 − L(φ, η)). (24.12)

Now we consider the Poisson brackets, which were defined in Section 4.4. If
Z is a real inner-product space, on which there is a linear invertible operator
J : Z∗ → Z such that J∗ = −J (J is called a symplectic operator), then we
can define a Poisson bracket of functions (or functionals) F and G as

{F,G} := 〈∂F, J∂G〉. (24.13)

For one-particle Classical Mechanics with the phase space Z = R
3 × R

3, the
symplectic operator is

J =
(

0 1
−1 0

)

, (24.14)

yielding the Poisson bracket (4.34). For the phase space Z = H1(Rd,Rm) ×
H1(Rd,Rm), the symplectic operator is (24.14) (but defined on a different
space), yielding the Poisson bracket

{F,G} =
∫
{∂πF · ∂φG− ∂φF · ∂πG}dx. (24.15)

Suppose that Z = X × V ∗ is a space of functions Φ(x) = (φ(x), π(x)) on
R
d. Recall that the functional on X which maps X 
 φ �→ φ(x) is called the

evaluation functional (at x), which we denote (with some abuse of notation)
as φ(x), and similarly for V . Consider the Hamilton equations

Φ̇t(x) = {Φ(x), H}(Φt) (24.16)
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where {F,G} is a Poisson bracket on Z. If this Poisson structure is given by
a symplectic operator J as in (24.13) with 〈φ, π〉 :=

∫
φ(x) · π(x)dx, then, by

Problem 19.4,

{Φ(x), H}(Φ) =
∫

(∂Φ(x))(y)J∂H(Φ)(y)dy

=
∫
δx(y)J∂H(Φ)(y) = J∂H(Φ)(x)

which gives
{Φ,H}(Φ) = J∂H(Φ),

which leads to Hamilton’s equation

Φ̇ = J∂H(Φ). (24.17)

Example 24.33 The Klein-Gordon Hamiltonian theory: the phase space is
X = H1(Rd,Rm) × H1(Rd,Rm), the Poisson bracket (24.13), with J given
in (24.14), and the Hamiltonian given by (24.10). So for Φ(t) = (φ(t), π(t)) a
path in H1(Rn)×H1(Rn), Equation (24.17) is

(
φ̇
π̇

)

= J

(−Δφ+∇f(φ)
π

)

,

and we recover the Klein-Gordon equation φ̈ = Δφ+∇f(φ).

For a general Hamiltonian system (Z, {·, ·}, H) Hamilton’s equation can
be written as

Φ̇ = {Φ,H}, (24.18)

where we identified the derivation F → {F (Φ, t), H} with the vector field XH

on Z, determined by this derivation. The map t→ Φt(Φ0), where Φt(Φ0) is the
solution to (24.18) with the initial condition Φ0 is called the flow generated
by (24.18). Consider the equation

d

dt
F (Φ, t) = {F (Φ, t), H}, (24.19)

with an initial condition F (Φ, 0) = F0(Φ), where F0(Φ) is a smooth functional
on Z. The solution of this equation for various F0(Φ) defines the flow Φt(Φ0)
on Z, by the equation F0(Φt(Φ0)) = F (Φ0, t). This is the flow for the vector
field XH on Z.

We conclude this section with brief remarks about an important classical
field theory which does not fit the above framework, the Schrödinger CFT.
Assume V = W ⊕W and define the Lagrangian on V ⊗ V by

L(ψ, χ) = 〈J−1ψ, χ〉 − E(ψ),

where J : V ∗ → V is a symplectic operator as above (i.e. a linear invertible
operator satisfying J∗ = −J , e.g. (24.14) w.r.to the decomposition V = W ⊕
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W ) and E(ψ) is a functional on V . The generalized momentum now is π =
J−1ψ. Then using the equations

H(ψ, π) = (〈π, χ〉 − L(ψ, χ))|χ:∂χL(ψ,χ)=π (24.20)

and ∂χL(ψ, χ) = J−1ψ we see that 〈π, χ〉 and 〈J−1ψ, χ〉 cancel and we obtain

H(ψ) = E(ψ). (24.21)

The phase space here is V and the Poisson bracket is given by (24.13) (where
the derivatives are understood to be w.r.to ψ).

24.7 Complex Hamiltonian Systems

In this section we sketch the Lagrangian and Hamiltonian formalism on com-
plex Banach spaces. We begin with a specific complex Banach space and
discuss an abstract case briefly at the end of this section. We consider the
space

X = {φ ∈ H1(Rd × [0, T ]; C) | φ(x, 0) = h(x), φ(x, T ) = g(x)},

where h, g,∈ H1(Rd; C) are fixed functions. We identify X with the real space
(24.1) with m = 2 (i.e. with ReX ⊕ ImX), as

φ⇐⇒ −→φ := (φ1, φ2), φ1 := Reφ, φ2 := Imφ.

With this identification, we can define the variational (or Gâteaux or Fréchet)
differentiability and derivative, ∂−→

φ
S(φ), for any functional S(φ) on X , and

specifically partial derivatives, ∂φ1S(φ) and ∂φ2S(φ), with respect the real, φ1,
and imaginary, φ2, parts of the field φ. After that we introduce the derivatives
with respect φ and φ̄ as follows

∂φS(φ) := ∂φ1S(φ)− i∂φ2S(φ) ∂φ̄S(φ) := ∂φ1S(φ) + i∂φ2S(φ). (24.22)

To fix ideas, we consider the complex Klein-Gordon and Schrödinger field
theories.

Complex Klein-Gordon CFT. Here the action is given as in the item
(7) of Example 24.1, i.e. by

S(φ) :=
∫ T

0

∫

Rd

{|∂tφ|2 − |∇xφ|2 − f(φ)
}
dxdt,

where f : C→ R is a continuous function.
The equation ∂φ̄S(φ) = 0 for critical points gives the complex non-linear

Klein-Gordon equation, as follows from
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∂φ̄S(φ) = −∂2
t φ+Δxφ− ∂φ̄f(φ).

Here ∂φ̄f(φ) is the regular complex derivative of a function. With the La-
grangian L(φ, φ̇) :=

∫
Rd

{|∂tφ|2 − |∇xφ|2 − f(φ)
}
, the generalized momen-

tum is π = ∂φ̇L(φ, φ̇) = ∂tφ̄. This gives the same Hamiltonian as in (24.10).
The Legendre transform is defined as above, (24.8). The Poisson bracket is
given now by again by (24.15), but with complex derivatives w.r.to φ and π.

Schrödinger CFT. The action for the nonlinear Schrödinger classical
field theory, with the self-interaction described by a differentiable function
f : C→ R, is given by

S(ψ) :=
∫ T

0

∫

Rd

{− Im(ψ̄∂tψ)− |∇xψ|2 − V |ψ|2 − f(ψ)
}
dxdt,

on the same space as above. (We think of
∫ T
0

∫
Rd

Im(ψ̄∂tψ)dxdt, modulo an
additive constant, as either

∫ T
0

∫
Rd

1
i ψ̄∂tψdxdt or

∫ T
0

∫
Rd

−1
i
∂tψ̄ψdxdt.) The

critical point equation ∂φ̄S(ψ) = 0 gives the non-linear Schrödinger equation.
Indeed, we compute

∂ψ̄S(ψ) = i∂tψ − (−Δx + V )ψ − ∂ψ̄f(ψ).

With the LagrangianL(ψ, ψ̇) :=
∫

Rd

{− Im(ψ̄∂tψ)− |∇xψ|2 − V |ψ|2 − f(ψ)
}
,

the generalized momentum is π = ∂ψ̇L(ψ, ψ̇) = ψ̄. This gives the Hamiltonian

H(ψ, ψ̄) :=
∫

Rd

{|∇xψ|2 + V |ψ|2 + f(ψ)
}
dx.

The Legendre transform is as above and it gives the Hamiltonian above. In
this case, the phase space is the complex Hilbert space, H1(Rd,C) and the
Poisson bracket is given now by

{F,G} =
∫
{∂ψF∂ψ̄G− ∂ψ̄F∂ψG}dx. (24.23)

The symplectic operator is J = multiplication by − i, so that {F,G} :=
Re〈∂F, (−i)∂G〉. Finally the Hamilton equation for this system is ψ̇ = {ψ,H},
or in detail,

i∂tψ = (−Δx + V )ψ + ∂ψ̄f(ψ). (24.24)
Now we describe briefly an abstract construction. Let X be a complex

Banach space, or else an affine space based on a complex Banach space X0.
Assume there is an antilinear map, C, on X satisfying C2 = 1, so that one
can define a real part, X1 := 1

2 (1 + C)X , and imaginary, X2 := 1
2i (1− C)X ,

part of X ( 1
2 (1 + C) and 1

2 (1 − C) are projection operators). Then we can
identify X with the real space X1 ⊕X2, as

φ⇐⇒ −→φ := (φ1, φ2), φ1 :=
1
2
(1 + C)φ, φ2 :=

1
2i

(1− C)φ.

With this identification, we can define the variational (or Gâteaux or Fréchet)
differentiability and derivatives with respect to φ and φ̄ as in (24.22)
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24.8 Conservation Laws

As in classical mechanics, an observable F (Φ) is conserved or is a constant
of motion, i.e. F (Φt), where Φt is a solution of the Hamilton equation, is
independent of t, if and only if its Poisson bracket with the Hamiltonian, H ,
vanishes, {F,H} = 0. This follows from the equation (19.15),

d

dt
F (Φt) = {F (Φt), H}. (24.25)

As in classical mechanics, conservation laws often arise from symme-
tries. Assume a system has a symmetry in the sense that there exists a
one-parameter group τs, s ∈ R, of bounded operators on the space V , s.t.
TsH = H, ∀s ∈ R, where

TsH(φ, π) := H(τsφ, τ ′−sπ),

with τ ′s being the dual group action of τs on V ∗, defined by 〈τ ′sπ, φ〉 = 〈π, τsφ〉
(recall that 〈·, ·〉 is the coupling between X and X∗). Let A be the generator
of the group τs, ∂sτs = Aτs. Then the classical observable Q(φ, π) := 〈π,Aφ〉
has vanishing Poisson bracket (”commutes”) with the Hamiltonian,

{H,Q} = ∂sH(τsφ, τ ′−sπ)|s=0 = 0,

and consequently is conserved under evolution: Q(φt, πt) is a constant in t
where Φt = (φt.πt) is a solution to (24.18). In analogy with quantum mechan-
ics we formulate this as

Us is a symmetry of (24.18) → 〈π,Aφ〉 is conserved

For the Schrödinger CFT, the one-parameter group τs, s ∈ R, can be cho-
sen to be unitary and the dual group is given by τ ′s = Cτ−sC, where C is the
complex conjugation, so that, since π = ψ̄, we have τ ′−sπ = τsψ. Hence the
operator Ts acts on H as TsH(ψ,ψ) := H(τsψ, τsψ). The conserved classical
observable is defined as Q(ψ, ψ̄) := 〈ψ, iAψ〉 where A is the (anti-self-adjoint)
generator of the group τs, ∂sτs = Aτs, and 〈ψ, φ〉 is the standard scalar prod-
uct on L2(Rd,C). As above, it has vanishing Poisson bracket (”commutes”)
with the Hamiltonian, {H,Q} = ∂sH(τsφ, τsψ)|s=0 = 0, and consequently is
conserved under evolution: Q(ψt, ψ̄t) is a constant in t where ψt is a solution
to (24.24).

We list some examples of symmetries and corresponding conservation laws
for a CFT with the phase space Z = H1(Rd,C)×H1(Rd,C)

• Time translation invariance ((τsψ)(x, t) := ψ(x, t + s), s ∈ R) → conser-
vation of energy, H(ψ, ψ̄);

• Space translation invariance ((τsψ)(x, t) := ψ(x+ s, t), s ∈ Rd)→ conser-
vation of momentum P (ψ, ψ̄) :=

∫
ψ̄(−i∇)ψdx;
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• Space rotation invariance ((τRψ)(x, t) := ψ(R−1x, t), R ∈ SO(Rd)) →
conservation of angular momentum L(ψ, ψ̄) :=

∑
ψ̄(x ∧ −i∇)ψdx;

• Gauge invariance ((τγψ)(x, t) := eiγψ(x, t), γ ∈ R) → conservation of
‘charge/number of particles’

∫ |ψ|2dx.
Note that, except for the first case, the families above are multi-parameter
groups, but as mentioned in Section 4.4, they can be reduced to one-parameter
ones. As an example we also give the momentum field on the phase space
Z = H1(Rd,R)×H1(Rd,R):

P (φ, π) :=
∫
π∇φdx. (24.26)

Sometimes real theories have complex representations and these complex
theories have gauge symmetries which lead to the conservation of the num-
ber of particles, which is not obvious in the original real representation. We
encountered an example of this phenomenon in Section 19.2, where we found
that the real Klein-Gordon theory is equivalent to a complex theory on the
space H1(Rd,C) with the latter theory having gauge symmetry, resulting in
the conservation of the number of particles.
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Comments on Literature, and Further Reading

General references

There is an extensive literature on quantum mechanics. Standard books in-
clude [Bay,LL,Me,Schi]. More advanced treatments can be found in [Sa,BJ,
DR].
For rigorous treatments of quantum mechanics see [BeS,T3,FY,St,Ta,St,Dim].
Mathematical background is developed in the following texts: [Ar,BiS,CFKS,
Fo,HS,LiL,RSI,RSII].
Further mathematical developments and open problems are reviewed in [Fe,
HuS,Li2,LiS2,Sim4].

Chapter 2

The definition of self-adjointness given in this section and in Section 23.5 of
the Mathematical Supplement is different from the one commonly used, but
is equivalent to it. It allows for a straightforward verification of this property,
avoiding an involved argument.

Chapter 4

For a discussion of the relation between quantization and pseudodifferential
operators and quasiclassical asymptotics, see [BeS,Bu,BuF,BuG,DS,Fe,Hel,
Ho,Ro1,Shu].

Detailed discussions of identical particles can be found in most books on
quantum mechanics. For a particularly nice discussion of the relation between
spin and statistics see [Fr4].

Chapter 5

Extensive development and discussion of coherent states can be found in
[CoRo,HaJ1] For more discussion about the relation between the uncertainty
principle and the stability of atoms, see [Fe,Li1].
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For stability of bulk matter see [Fe,Li1,Li2] and the book [LiS2] (the papers
[Li1,Li2] can be found in [Li4]).

Chapter 9

The wave operators for short-range interactions were introduced in [Mø], and
for long-range interactions, in [Do,BuM].
Scattering theory is presented in the textbooks mentioned above, as well as
in [GW,Mel,Ne].
A modern mathematical treatment of scattering theory can be found in [HuS,
DG,Ya].

Chapter 10
Certain aspects of the theory of Coulomb systems (atoms, molecules, and
aggregates thereof) are reviewed in [Fe,Li1,Li3,Li4,Sig1,T3].
The result on existence of bound states of atoms is due to G.M. Zhislin.

Existence of the hydrogen molecule was proven in [RFG].

Chapter 11

The Feshbach projection method was introduced by H. Feshbach in connec-
tion with perturbation problems in Nuclear Physics (see [Me]) and by I. Schur
in theory of matrices. A similar method, called the method of Lifshitz matrix,
was developed independently in systems theory and in linear partial differen-
tial equations, where it is called the Grushin problem. See [BCFS1,GrH] for
further extensions and historical remarks
The abstract results presented in this chapter follow the work [BFS1], which
introduced the notion of Feshbach-Schur map FP : H → FP (H) and used
it as a basis of a renormalization group (RG) approach to spectral problems
(which is presented in Chapter 22).
There is an extensive physics literature on the Zeeman effect, and on pertur-
bation of atoms by time-periodic electric fields (see e.g. [LL, Me]). The first
rigorous results on the Zeeman problem were obtained in [AHS], and on the
time-periodic one, in [Y,Hw]. See [CFKS] and [Hu] for further discussion and
references.
A rigorous approach to the Fermi Golden Rule was proposed by Simon
([Sim1]).
The Born-Oppenheimer approximation plays an important role in quantum
chemistry, and there is an enormous literature on the subject. We mention
here only rigorous works: [CDS,Ha1,Ha2,HaJ2,KMSW,MSo,PST,SpT,Te].
For more on perturbation theory, see [Bau,Ka,Re,RSIV].
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Chapter 12

This chapter is somewhat more advanced than the chapters preceding it. Rec-
ommended reading for this chapter includes [CFKS,HuS,Ag].
The key result of quantum many-body theory - the HVZ theorem - is due to
W. Hunziker, C. van Winter, and G.M. Zhislin.
Recently, mathematical many-body theory, especially scattering theory for
many-particle systems, has undergone rapid and radical development. It is
covered in [HuS,DG,GL].

Chapter 13
For the rigorous derivation of Hartree and Hartree-Fock equations see [He,
Sp1,GV1,BEGMY,BGGM,EESY1,EESY2,ESY1,ESY2,ES,FGS,FKS,FKP,
Ab,RoS,Pi1,Pi2,KnPi,An].

The Gross-Pitaevski equation was proposed independently by Gross and
Pitaevski in connection with the problem of many bosons (boson gas) which we
consider here. It was derived by [ESY1] with the derivation simplified in [Pi1,
Pi2]. (For additional important aspects see [KM,ChP,ChPT].) Earlier [LSY]
have shown that the bosonic many-body ground state looks asymptotically
(in the Gross-Petaevski regime, in which the number of particles n→∞ and
the scattering length a → 0, so that na =: λ/(4π) is fixed), as the product
of the ground states of the Gross-Pitaevski equation. For detailed discussion
and references see [LSSY].
For the first result on the Hartree-Fock theory see the paper [LiS], with further
mathematical developments in [Lio]. (See [Li4,LeL] for more references.)
For asymptotic stability of the Gross-Pitaevski, nonlinear Schrödinger and
Hartree equations see [SW2, FTY, TY, GS1, GS2, GNT, Cuc] and references
therein. Other interesting properties (in particular, the blow-up) and gener-
alizations are described in [KLe,Le,LeLe].
See [SS] and [Ca] for background and results on the nonlinear Schrödinger
equations.
A rigorous proof of BEC in the Gross-Pitaevski limit is given in [LiS1] (see
also [LSY]).

Chapter 14

Standard references on path integrals are [FH,Kl,Schu,Rö].
Rigorous results can be found in [Sim3].
Important original papers are [La,Co,LS].

Chapter 15

An extensive rigorous treatment of quasiclassical asymptotics can be found in
[Bu,Hel, Iv,Mas,MF,Ro1,Ro2,Ro3].
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Chapter 16

The mathematical theory of resonances started with the paper [Sim1], whose
impetus came from the work [AC, BC]. A classic, influential review of the
theory of resonances is [Sim2].
See [HS] for earlier rigorous references and [BZ,CS,MS,SW], for some recent
ones. Our analysis of the resonance free energy is close to [SV], its physical
predecessors are [La,Co,CL,Af,LO1,LO2]. For complex classical trajectories,
see, eg., [Bu,BuF,BuG,Vo1,Vo2]. A more careful treatment of positive temper-
atures would involve the coupling of a quantum system to a thermal reservoir,
or, as an intermediate step, replacing the commutator with the Hamiltonian by
Lindblad generator, discussed in Chapter 17. Resonances (metastable states)
at zero and positive temperatures are a subject of intensive study in con-
densed matter physics, quantum chemistry, nuclear physics, and cosmology.
See [CL, BFGLV, HTB, VS, SV, DHIKSZ] for reviews and further references.
For formal treatment of tunneling of extended objects see [OvSi].

Moreover, [RSIV] gives an excellent exposition of the perturbation theory
of resonances.

Chapter 17

More material on density matrices can be found in [T4].

The form of generators K was found by Lindblad and Gorini, Kossakowski
and Sudarshan (see [CE] for the most general result).

One of the most important and intensively debated issues in theory of open
systems is the issue of decoherence. The physics literature on it is enormous,
too extensive to bring it up here. However, there are only few rigorous results
on the subject - [MBS1,MBS2,MSB]. (These papers contain also a very brief
review of the relevant physics literature.)

Chapter 18

A standard reference for mathematical treatment of the second quantization
is [Ber].
The result on the comparison of the quantum and Hartree (mean-field) dy-
namics was obtained in [FKP]. The sketch of its proof follows [AnS]. The
expansion (18.46) - (18.47) was derived in [AmN]; it follows from the sym-
bol composition formula of [Ber]. It was shown in [FKP] that the quantum
many-body theory with the quantum Hamiltonian (18.25) can be obtained
by quantizing the classical field theory described by the classical Hamiltonian
(18.38) and Poisson brackets (18.37).

Chapter 20

The renormalization of the electron mass and one-particle states were studied
in [Fr1, Fr2,Piz1,Piz2,HaS,HirSp,BCFS1,BCFS2,Ch,ChF,ChFP1,ChFP2].
See [Ba] for the review and references.
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Chapter 21

The results on the theory of radiation, as well as the renormalization group ap-
proach, are taken from [Sig2,FGSi], which builds upon [BFS1,BFS2,BCFS1].
(Theorem 21.1 was established for systems with the coupling to photons reg-
ularized at spatial infinity in [BFS1]-[BFS2]. It would have been applicable
to confined systems, i.e. systems in external potentials, growing at infinity
sufficiently fast.) These works assume that the fine-structure constant is suf-
ficiently small. The method in these papers also provides an effective compu-
tational technique to any order in the electron charge, something the conven-
tional perturbation theory fails to do. For other approaches and references see
the book [Sp2] and a recent reviews [Ba,Sig3].
The existence of the ground state for the physical range of the parameters
was proved in [GLL].
The notion of resonance in the non-relativistic QED was introduced in [BFS1,
BFS2].

The generalized Pauli-Fierz transformation was introduced in [Sig2].
Theorem 21.4 was proven in [BCFS1].

Chapter 22

The spectral renormalization group method, described in this chapter is due
to [BFS1], with further development due to [BCFS1, FGSi, HaH1, HaH2].
We follow [FGSi] It shares its philosophy with the standard renormalization
group due to Wilson and others which can be found in any standard book
on quantum field theory or statistical mechanics (for some papers see e.g.
[GaW, Weg]) and which is treated rigorously in a large number of papers;
see [BG,Dim,FFS,BDH,FKT,Fel,Bal,FFS,GaK,Sal] for a review of rigorous
results. The Feshbach-Schur map could be also used for the problem at hand.
In fact, the Feshbach-Schur maps were introduced in [BFS1] for exactly this
purpose. However, for technical reasons, it is convenient to use its present
generalization.

Chapters 23 and 24

These chapters cover standard material though many of the proofs are simpler
or require less advanced material than those found in standard books.
For a discussion of determinants, see also [BuN, BR, Kl, LS, Rö, Schu, Schw]
and references therein.
For elementary facts on the calculus of variations, one can consult [GF,BB].
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[SW] A. Soffer, M. Weinstein, Time-dependent resonance theory, Geom. Fun.
Anal. 8 (1998) 1086-1128.

[SW2] A. Soffer, M. Weinstein, Selection of the ground state for nonlinear
Schrödinger equations. Rev. Math. Phys. (2005).

[Sp1] H. Spohn, Kinetic Equations from Hamiltonian dynamics. Rev. Mod.
Phys 52 (1980), no. 3, 569-615.

[SpT] H. Spohn and S. Teufel, Adiabatic decoupling and time-dependent Born-
Oppenheimer theory, Commun. Math. Phys. 224, 113132 (2001).

[Sp2] H. Spohn, Dynamics of Charged Particles. Cambridge Univ. Press, 2004.
113132 (2001).

[St] F. Strocchi, Introduction to Mathematical structure of Quamtum Me-
chanics. A Short Course for Mathematicians, World Scientific, 2005.

[SS] C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation. Self-
Focusing and Wave Collapse. Springer, New York (1999).

[Ta] L. Takhtajan, Quantum Mechanics for Mathematicians. AMS, 2008.
[Te] S. Teufel, Adiabatic perturbation theory in quantum dynamicsdynamics,

Lecture Notes in Mathematics 1821, Springer (2003).
[T3] W. Thirring, A Course in Mathematical Physics, Vol. 3: Quantum Me-

chanics of Atoms and Molecules. Springer, 1980.
[T4] W. Thirring, A Course in Mathematical Physics, Vol. 4. Quantum Me-

chanics of Large Systems. Springer-Verlag, 1983.
[TY] T.-P. Tsai, H.-T. Yau, Asymptotic dynamics of nonlinear Schrödinger

equations: resonance-dominated and dispersion-dominated solutions.
Comm. Pure Appl. Math. 55 (2002) 153–216.

[TS] T. Tzanateas, I.M. Sigal, Abrikosov lattice solutions of the Ginzburg-
Landau equations, in Spectral Theory and Geometric Analysis, M.
Braverman, et al, editors. Contemporary Mathematics, AMS 2011.



References 375

[VS] A. Vilenkin, E.P.S. Shellard, Cosmic Strings and other Topological De-
fects. Cambridge, 1994.

[Vo1] A. Voros, Spectre de l’équation de Schrödinger et méthod BKW. Publi-
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