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Preface

This textbook on Quantum Mechanics has been designed for use in two-semester
undergraduate courses and as a supplemental textbook in graduate courses. It is true
that there are many excellent books on the subject, like the classic examples of
Baym, Gottfried, Messiah, or Schiff, which, although written half a century ago, are
still fit to cover most of the basic material. Nevertheless, new topics have entered into
the realm of interest of the present-day student of physics that have to be included in
the basic material. In addition to that, each new book represents a challenge in the
selection of topics, in the emphasis on each of them and the overall organization
of the material, which is to a large extent subjective. The present book has come out
as a result of teaching Quantum Mechanics since 1982 at the University of Ioannina.
It aims to describe the basic concepts of Quantum Mechanics, to explain the use
of the mathematical formalism and to provide illustrative examples of both concepts
and methods. In that sense, its purpose is quite conventional as to the training of
physics students. Although it is intended to provide a mastery of the use of quantum
mechanics as a tool, it also provides some discussion on the meaning of quantum
concepts, despite the fact that no general consensus as to what its fundamental
principles mean has been reached. After a brief discussion of the basic features of
Quantum Mechanics in the framework of a simplified version of the two-slit
experiment, the reader is introduced to the Schroedinger equation and is familiarized
with its application on a number of simple one-dimensional systems. The following
chapters introduce the full mathematical formalism and basic postulates of Quantum
Mechanics. Further applications follow on a number of simple systems among which
two-state systems, the one-dimensional lattice, periodic potentials, etc. The following
chapters are devoted to angular momentum and spin. Next, three-dimensional systems
are considered with a number of applications in central potentials. The following
chapters deal with many-particle systems, atoms, and molecules. A chapter on particle
interactions with an external electromagnetic field is devoted to Landau levels and the
Bohm–Aharonov phenomena. The next chapter on approximation methods includes
the WKB method, the adiabatic approximation, variational methods, and perturbation
theory with a number of applications. A chapter on symmetries deals with rotations,
tensor operators, and the Wigner–Eckart theorem, discrete symmetries as well as
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dynamical symmetries. Scattering theory is considered next with a number of appli-
cations. A chapter on quantum behavior deals with the measurement process, the
concepts of mixed states and density matrices, entanglement, the EPR issue, and Bell’s
theorem. Next, a chapter is devoted to the quantization of the electromagnetic field and
its interaction with matter. Finally, the last chapter consists of an introduction on the
path integral formulation of Quantum Mechanics.

It is important to stress that the material of this book should not be approached
passively, a very important factor in the learning process being the initiative
exercised by the prospecting student. To this end, apart from about 60 worked out
examples within each chapter, there are around 200 problems and exercises at the
end of each chapter, which can be quite helpful, if not necessary, towards achieving
a command of the subject.

Ioannina, Greece Kyriakos Tamvakis
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Chapter 1
Introduction

1.1 A Thought Experiment

In order to illustrate some of the basic principles of quantumphysics, we shall employ
the ideal experimental setup [1] shown in Fig. 1.1. A tungsten wire, heated by electric
current, plays the role of an electron gun. A cylindrical metal box with a hole in it,
kept at a suitable opposite voltage with respect to the wire, can accelerate the emitted
electrons so that some of the electrons will pass through the hole. Thus, we obtain
a beam of electrons of, more or less, the same energy. A thin metal plate with two
holes (or slits) is placed in front of the electron beam. Finally, beyond this plate there
is another plate which stops all electrons that pass through the holes. On that final
plate, we place a movable electron detector (e.g., a Geiger counter). This detector
could very well be a photomultiplier connected to a loudspeaker. The whole system
is in a vacuum in order to avoid collisions of the electrons to air molecules.1

The electrons that reach the detector at the final plate are all detected through
almost identical detection signals. In case that we have incorporated a loudspeaker
to the detector, these signals materialize as sharp “click” noises. We can count the
number of electrons that arrive in the detector in a given time interval. This number
will be a fraction of the total number of electrons that arrive on the final wall in that
time interval. Provided that the electric current that flows through the heated wire
is constant, we shall have a constant total electron flux. The electron rate varies as
we move the detector at different locations. Nevertheless, the electrons are always

1Note that this is not an easy experiment to do. In order to see the phenomena,we are about to describe
the apparatus should be microscopic. Since a number of similar realistic microscopic experiments
have been done, it makes us confident to use the above oversimplified “ideal” experiment in order
to sketch the behavior of microscopic particles. In a realistic experimental setup, the size of the slits
should be of the order of 10−7 − 10−8 cm, while the accelerating voltage can be of the order of
100V. The distance of the two slits should not be more than a few per cents of a micron. Of course,
the role of the two-slit diaphragm is played by a microscopic system, such as a metallic crystal
layer.
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Fig. 1.1 The two-slit experiment

detected through identical sharp signals. If we were to decrease the current in the
emitting wire, we would get a decreased average electron flux and a decreased rate
of detection signals but the individual detection signals will stay exactly the same.

Common sense seems to dictate that the electrons arriving at the detector pass
either through slit 1 or slit 2. One would expect that the plot of the average fraction of
electrons detected at point x of the final plate N (x)/N would be the direct sum of the
corresponding fractions N1(x)/N , N2(x)/N with either of the two slits closed. Note
that, in the limit of large N , this fractional numbers correspond to the probabilities
P(x), P1, 2(x) of finding an electron at x with both slits open, or with either slit
closed. In contrast to common sense, the experimental plot is the one shown in
Fig. 1.2.

This plot has the characteristic shape of the interference pattern encountered in
the superposition of classical waves. Note that there are points x where the number of
electrons with both slits open is less than the number with one slit closed. This cannot
be interpreted as a catastrophic interference between electrons because it persists even
when the flux has been decreased so that the whole apparatus is traversed by one
electron at a time. Even if we were to assign to each electron some kind of wave, we
would have to consider interference of this wavewith itself, in contrast to the classical
wave picture, where we have interference of two different waves. Nevertheless, we
may adopt a pragmatic attitude for the above probability that displays the wave-like
interference pattern and treat it mathematically as the intensity of a classical wave.

Fig. 1.2 The electron interference pattern
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Since intensities are related to amplitudes as I ∝ |A|2, we introduce a probability
amplitude ψ(x) related to the probability as

P(x) = |ψ(x)|2 . (1.1)

Next, we may assume that a Superposition Principle, analogous to the Huygens
Principle for classical waves, holds and state that the probability amplitude for a
process, such as the detection of an electron at a point x , is the superposition (linear
combination) of the corresponding amplitudes for each alternative version of the
process. Thus, the amplitude to detect an electron at point x will be the superposition
of the corresponding amplitudes for the detection of electrons that have arrived at x
through slit 1 or 2, namely,

ψ(x) = ψ1(x) + ψ2(x) . (1.2)

For the corresponding probability, we have

P = |ψ1(x)|2 + |ψ2(x)|2 + ψ1(x)ψ
∗
2(x) + ψ∗

1(x)ψ2(x) (1.3)

or

P(x) = |ψ1(x)|2 + |ψ2(x)|2 + 2 |ψ1(x)| |ψ2(x)| cos(φ1(x) − φ2(x) ) , (1.4)

where φ1(x) and φ2(x) are the phases of the complex functionsψ1, 2(x) = |ψ1, 2(x)|
eiφ1,2(x). Note the existence of extrema at φ1(xn) − φ2(xn) = nπ, with n being an
integer. This is sufficient to show that, in general, an interference pattern will be
present. Note however that, in contrast to classical waves, here the amplitude ψ has
to be a complex number, since the phases are necessary for the occurrence of an
interference pattern.

The above assumption explains the experimental curve but, despite its mathemat-
ical simplicity, it seems to be in conflict with common logic since

P(x) �= P1(x) + P2(x) . (1.5)

Since our commonsense notion that each individual electron goes through one partic-
ular slit would imply the equality sign in (1.5), we may check if indeed the observed
electrons can be divided into these two classes. In order to do that, we modify our
apparatus by introducing a strong light source between the two slits. A sketch of the
modified apparatus is given in Fig. 1.3.

Each time that an electron passes through a particular slit, light coming from this
direction is observed.Thus, eachdetection signal or sharp sound from the loudspeaker
is accompanied by a flash of light coming from the neighborhood of a particular slit.
The electrons are clearly separated in two classes, namely, those accompanied by a
flash near slit 1 and those accompanied by a flash near slit 2. We, therefore, conclude
that electrons pass either from slit 1 or from slit 2. No electron passes simultaneously
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Fig. 1.3 The modified two-slit experimental apparatus

through both slits. Nevertheless, if we plot the associated probabilities we obtain the
plots shown in Fig. 1.4., the dotted plot corresponding to the some of the other two.

According to these plots, the probability with both slits open is the sum of prob-
abilities with either slit closed, namely,

P ′(x) = P ′
1(x) + P ′

2(x) , (1.6)

in agreement with common logic. No interference pattern is observed. We have
no alternative but to conclude that our modification of the experimental appara-
tus, designed so that it can distinguish the electrons according to which slit they
are coming from, has changed the final distribution of electrons and removed the
interference. This is not entirely unexpected, since the light scattered on electrons
transfers momentum which can modify the final distribution. What is new here is
that this phenomenon cannot be entirely removed. If we decrease the intensity of the
light source, we observe that each flash does not change in size. When we decrease
substantially the intensity of the source, the only thing that happens is that some

Fig. 1.4 Classical behavior
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electrons are detected without an associated flash of light.2 If we plot this last set
of measurements, corresponding to electrons for which we do not know from which
slit they are coming from, we recover the interference pattern. Thus, we are led to
the conclusion that, whenever we are in a position to determine the path of elec-
trons, we do not obtain an interference pattern. Equivalently, we may conclude that
knowledge of the path is complementary to interference. This is a particular mani-
festation of a general principle, according to which the particle aspects of a system
(e.g., well-defined path) are complementary to its wave aspects (e.g., interference).

Summarizing, we may generalize our conclusions as follows:
A quantum system is characterized by probability P to be in any given state. This

probability is the absolute square of a complex probability amplitude

P = |ψ |2 . (1.7)

If a quantum system can be in either of two states characterized by probability ampli-
tudes ψ1 and ψ2, then it can also be in any state corresponding to linear combination

ψ = a ψ1 + bψ2 . (1.8)

This is the so-called Superposition Principle.
Complete knowledge of the particle aspects of a system (e.g., path) is not com-

patible with complete knowledge of its wave aspects (interference pattern). This is
the so-called Complementarity Principle [2]. This principle expresses the fact that
for a quantum system its particle aspects are complementary to its wave aspects.

Related to the Principle of Complementarity is the Uncertainty Principle
[3]. In its simplest version it states that, if we make a (ideal) measurement on any
object and determine its position along a given direction with uncertainty �x , its
momentum along this direction will necessarily be known with uncertainty no less
than h

4π �x or

�x �px ≥ h

4π
, (1.9)

where h is Planck’s constant equal to 6.63 × 10−34 J s. Thus, viewed from a classical
viewpoint, in a microscopic system, complete knowledge of x and px is impossi-
ble. This is an inherent physical indeterminacy of nature not related to common
experimental uncertainties. The Uncertainty or Heisenberg’s Principle is irrelevant
at macroscopic scales due to the smallness of Planck’s constant.

2Light consists of photons and displays particle behavior. Decreasing the intensity of the source
amounts to decreasing the number of photons and not their momentum. As a result some electrons
pass without encountering a photon. If we attempt to decrease not the number of photons but their
frequency, then, their wavelength will increase and when it becomes of the order of magnitude
of the slit distance, the associated flashes will be so fuzzy that we shall not be in a position to
distinguish among flashes from different slits. In that case, we shall get an experimental plot with
an interference pattern.



6 1 Introduction

In order to complete the list of general principles obeyed by quantum systems, we
must also include theCorrespondencePrinciple [4], according towhich any quantum
physical quantity should tend to its classical counterpart in the macroscopic limit.
Thus, Classical Mechanics should in principle be recovered in that limit. Of course,
there are physical quantities with no classical counterpart (e.g., spin), which will
necessarily scale with Planck’s constant.

1.2 The de Broglie Relations

The analysis of the Compton effect, i.e., the inelastic scattering of photons by elec-
trons, made clear that light, classically thought to consist of electromagnetic waves,
should be associated with a particle, the photon. Not very long after, the reverse
question was asked of whether a particle like the electron could be associated with
a wave. Experimental support for this idea came from electron diffraction experi-
ments, the analysis of which, as well as other analogous experiments, leads us to a
quantitative relation between physical quantities that describe the particle aspects of
the system and those that describe its wave aspects. For a free particle of definite
momentum p and, therefore, of energy E = p2/2m, the corresponding wave with
amplitude ψ (probability amplitude) will be a monochromatic wave of wavelength
λ and frequency ν, related to the momentum and energy of the particle through the
simple relations [5]

λ = h

p
, ν = E

h
, (1.10)

where h is Planck’s constant. These are the so-called de Broglie relations. The de
Broglie wavelength characterizes the spatial order of magnitude of quantum phe-
nomena. For a macroscopic particle (g.e. m = 10 gr , v = 10m s−1), this length is
entirely negligible. In contrast, for a microscopic particle this length and the related
wave phenomena are important. For instance, for a proton (m ∼ 10−24 gr ) with
velocity v ≈ 3 × 105 m s−1, the de Broglie wavelength isλ ≈ 10−12 m. This length
is of the order of magnitude of the effective proton radius rp = 1.2 × 10−12 m.

The de Broglie relations can also be expressed in terms of the wave number
k ≡ 2π

λ
and the angular frequency ω ≡ 2π ν as

p = �k, E = � ω , (1.11)

where � ≡ h
2π . This implies the dispersion relation

ω(k) = �k2

2m
. (1.12)
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1.3 The Wave Function

Let ψ(x, t) be the amplitude of the wave associated with a point particle moving
in one dimension. The function ψ(x, t) is called the wave function of the particle.
The probability3 of finding the particle at the point x or its vicinity is proportional to
the absolute square of the wave function [6]. In fact, since space is continuous, the
probability of finding the particle in an infinitesimal space interval (x, x + dx) will
be infinitesimal and related to the wave function as

dP(x, t) = |ψ(x, t)|2 dx . (1.13)

This means that the probability density

P(x, t) = dP(x, t)

dx
(1.14)

to find the particle at some point x will be

P(x, t) = |ψ(x, t)|2 . (1.15)

Furthermore, the wave function of the particle (or any quantum system) characterizes
fully the state of the system at each instant of time. This is in sharp contrast to
the case of a classical particle where the state of the system is characterized by its
instantaneous position x(t) and velocity v(t). The classical concept of a well-defined
trajectory of the particle ceases to be meaningful for a quantum system of particles.

If |ψ(x, t)|2 is to be a meaningful probability density, its integral over all space
should give the probability of finding the particle anywhere. This is equal to 1, since it
corresponds to certainty. This is expressedmathematically through thewave function
normalization condition4

∫ +∞

−∞
dx |ψ(x, t)|2 = 1 . (1.16)

The concept of the wave function and that of the probability density is readily
generalizable to a particle moving in three-dimensional space as

ψ(r, t) =⇒ P(r, t) = |ψ(r, t)|2 (1.17)

and ∫
d3r |ψ(r, t)|2 = 1 . (1.18)

3For some of the introductory probability notions see the Mathematical Appendix.
4Note that for an acceptable wave function it is sufficient that it is normalizable, i.e., it is square-
integrable or

∫
dx |ψ(x)|2 = C < ∞ . Then, we can always define a normalized wave function

ψN (x) = ψ(x)/
√
C =⇒ ∫ +∞

−∞ dx |ψN (x)|2 = 1.
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A final remark before we close this section is that the wave function is in general
a complex number, although its absolute square is always a nonnegative real number
as a probability distribution should be. A second remark is that the normalization
condition should hold for all times or, equivalently, probability should be conserved
at all times, meaning that it is not possible for a particle to disappear or appear from
nothingness.

1.4 A Free Particle of Definite Momentum

Consider now a free particle of definite momentum p moving in one dimension.
Its energy will be E = p2

2m . Let ψ(x, t) be the amplitude of the probability wave
associated with the particle, i.e., its wave function. Since the definite momentum p
through the de Broglie relations corresponds to a definite wave number k = p/�,
this wave function will correspond to a monochromatic wave. Such a wave traveling
to the right5 will have an amplitude of the form

ψp(x, t) = A cos(kx − ωt) + B sin(kx − ωt) . (1.19)

Note however that for a free particle which is not subject to any kind of force, each
point in space should appear identical and the probability density to find the particle
should be independent of x . This amounts to

|ψp(x, t)|2 = |A|2 cos2(kx − ωt) + |B|2 sin2(kx − ωt)

+ (
AB∗ + A∗B

)
cos(kx − ωt) sin(kx − ωt)

being space independent. This can happen only if the coefficients are related by
A = ±i B. In that case, we have |ψp(x, t)|2 = |A|2 and

ψp(x, t) = A ei(kx −ωt) . (1.20)

The case A = −i B corresponds to the same situation replacing ψp with its complex
conjugate. The plane wave (1.20) has an infinite spatial extension and gives the
constant probability density |A|2. The particle can be observed at any point in space
with the same likelihood.This corresponds to an infinite uncertainty for the positionof
the particle (�x = ∞). Note that this is found to be in complete agreement with the
so-calledUncertainty Principle or Heisenberg’s Inequality, which will be elaborated
later on in this book. According to it the product of the uncertainties in position and
momentum has to be larger than Planck’s constant divided by 4π. Since the particle
has definite momentum p and the corresponding uncertainty in momentum vanishes
(�p = 0), the product (�x)(�p) can be finite and does not violate Heisenberg’s

5Alternatively, a monochromatic wave traveling to the left will have a phase kx + ωt .
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inequality. It should be stressed however that a particle of definite momentum is an
extreme abstraction and idealization. Realistic particles always have an uncertainty
δ p in their momentum value, having a momentum in an interval of size δ p. This
limits the extent of the corresponding wave function to a finite spatial interval of size
∼ �/δ p instead of the full real line.

An immediate consequence of the constancy of the probability density |ψp(x, t)|2
is that thiswave function is not square-integrable and cannot satisfy the normalization
condition ∫ +∞

−∞
dx |ψp(x, t)|2 = |A|2

∫ +∞

−∞
dx = ∞ . (1.21)

Nevertheless, as we remarked above this is a consequence of the fact that this
state, i.e., a particle with a definite momentum, is an extreme idealization. Square-
integrable wave functions describing realistic particles can always be constructed as
linear superpositions of plane waves of definite momentum.6

Closing this section we may return to (1.20) and fix by convention7 the factor
A (which otherwise should have been fixed by the normalization condition) to A =

1√
2π�

. Thus, finally, the “plane wave”wave function corresponding to a free particle
of momentum p moving in one or three dimensions will be

ψp(x, t) = e
i
�

(px−Et)

√
2π�

, ψp(r, t) = e
i
�

(p·r−Et)

(2π�)3/2
. (1.22)

Example 1.1 (Free particle motion in the half-line) Consider a particle of given
energy E that can move freely in one dimension for x > 0 but experiences an infinite
repulsive force for x ≤ 0. Are there any other points at which the probability density
to find the particle vanishes? (Fig. 1.5)

As a result of the infinite repulsive force the particle cannot penetrate in the region x ≤ 0 and
its probability density there will have to vanish or, equivalently, its wave function will be vanishing
there

ψ(x ≤ 0) = 0 . (1.23)

Nevertheless, in the region x > 0 the particle can move freely. Its wave function can be either

ψp(x) = e
i
�

(px−Et)

(2π�)1/2
or ψ−p(x) = e− i

�
(px+Et)

(2π�)1/2
. (1.24)

6The Superposition Principle—i.e., the fact that any linear combination of wave functions is
an acceptable wave function—enables us to construct arbitrary normalizable wave functions out
of these non-normalizable wave functions of definite momentum. For example, the wave func-
tions ψp,δ(x, t) = 1√

δ

∫ p+δ
p dp′ψp′ (x, t). It can be easily shown that these are normalizable. See

Messiah [7].
7This corresponds to “delta function normalization” to be employed later on.
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Fig. 1.5 Free motion in the half-plane

Thus, the wave function of the particle in this region must be a linear combination of the above.
The overall wave function will be

ψE (x, t) = ψE (x)e− i
�
Et with ψE (x) =

⎧⎨
⎩

0 (x ≤ 0)

A e
i
�
px + B e− i

�
px (x > 0),

(1.25)

where E = p2/2m. The probability, as a measurable physical quantity, has to be continuous every-
where. As a result, the wave function also has to be continuous and, therefore, we must have
A + B = 0 at x = 0. Thus, we are led to

ψE (x, t) =
⎧⎨
⎩

0 (x ≤ 0)

2i A sin(px/�) e− i
�
Et (x ≥ 0).

(1.26)

The corresponding probability density will be

PE (x, t) =
⎧⎨
⎩

0 (x ≤ 0)

|A|2 sin2(px/�) (x ≥ 0).
(1.27)

The points of vanishing probability—at which the particle cannot be—are

∀x ≤ 0 and xn = nπ�√
2mE

(n = 1, 2, . . . ) . (1.28)

Example 1.2 (Particle in a circle) Consider a particle of definite energy that can
move freely in a circle of radius R. Find the allowed values of the energy.

The position of the particle can be expressed in terms of an angle θ according to

x = θ R with 0 ≤ θ < 2π . (1.29)
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The values
x and x + 2πR (1.30)

correspond to the same point. The wave function will be

ψp(x, t) = A e
i
�

(xp−Et) . (1.31)

In order to have a single-valued wave function, we must have

e
i
�
2πRp = 1 =⇒ pn = n

�

R
for n = ±1, ±2, . . . (1.32)

Thus, the allowed energies are the discrete values

En = �
2n2

2mR2 . (1.33)

As a result of the compact nature of the space inwhich the particlemoves, the values of the energy are
“quantized”. This is in contrast to a particle moving in infinite space where the energy values span
a continuum. The corresponding wave functions are ψn(θ, t) = A einθ e−i En t/�. The coefficient A
can be determined from the normalization condition, demanding that the total probability is unity,
i.e., ∫ 2πR

0
dx |ψ(x, t)|2 = 1 =⇒ 2πR |A|2 = 1

or

ψn(θ, t) = einθ

√
2πR

. (1.34)

Note the “degeneracy” En = E−n , meaning that ψn(x, t), i.e., a right-moving particle and

ψ−n(x, t), i.e., a left moving one, have the same energy.

1.5 The Schroedinger Equation for a Free Particle

The free particle wave function (1.20) is manifestly a differentiable function of space
and time. Specifically, we have

∂ψp

∂t
= − i

�
E ψp and

∂2ψp

∂x2
= − p2

�2
ψp . (1.35)

However, in view of the energy–momentum relation E = p2/2m, the above deriva-
tives satisfy

− �
2

2m

∂2ψp

∂x2
= i�

∂ψp

∂t
. (1.36)
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This is the Schroedinger equation satisfied by the plane wave (1.20).
Notice that (1.36) is a linear partial differential equation. An immediate conse-

quence of that is that any linear combination (superposition) of solutions will also be
a solution. Acting with the “Schroedinger differential operator” on a superposition

ψ(x, t) =
∑
p

gp ψp(x), (1.37)

we get

(
− �

2

2m

∂2

∂x2
− i�

∂

∂t

) ∑
p

gp ψp =
∑
p

gp

(
− �

2

2m

∂2

∂x2
− i�

∂

∂t

)
ψp = 0

or

− �
2

2m

∂2ψ

∂x2
= i�

∂ψ

∂t
. (1.38)

Thus, the superposition of plane waves considered in (1.37) satisfies also the same
Schroedinger equation.

For a particle of any energy, moving freely in infinite space, there is no restriction
on its momentum values and, therefore, p should be a continuous variable taking
values over the full real line. Therefore, the symbolic sum in (1.37) should be replaced
with an integral

ψ(x, t) =
∫ +∞

−∞
dp√
2π�

g(p) e
i
�

(px−Et) . (1.39)

From a mathematical point of view, (1.39) is a Fourier transform.8 Thus, any free
particle of a general wave function (1.39) satisfies the Schroedinger equation.

The Schroedinger equation is a time-evolution equation of first order. Therefore,
ψ(x, t) can be determined for any time t in terms of ψ(x, 0) alone. Since the second
spatial derivative appears in the equation, not onlyψ(x, t) should be continuous (and,
of course, differentiable) but the first derivative ∂xψ should also be continuous.

Notice that the Schroedinger equation is a complex equation, since i is manifestly
present in it. As a result, even if the superposition (1.39) were to be chosen real, in
the course of time the wave function would necessarily develop an imaginary part.
This is in contrast to classical waves which can always be chosen to be real.

Closing this section we may write down the three-dimensional version of (1.38)
and (1.39) by replacing ∂2

∂x2 with
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 = ∇2. We obtain

− �
2

2m
∇2ψ(r, t) = i�

∂

∂t
ψ(r, t) , (1.40)

where

8See the Mathematical Appendix.
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ψ(r, t) =
∫

d3 p

(2π�)3/2
g(p) e

i
�

(p·r−Et) . (1.41)

1.6 Wave Packets

In contrast to a particle of sharply defined momentum, which has a wave function
of infinite extension, a realistic particle will have a wave function of a finite spatial
size, meaning that the probability to find the particle is nonzero only in a finite
spatial region.9 A characteristic example is a Gaussian wave packet, corresponding
to a wave function having the form of the Gauss distribution. To be specific, let’s
consider a free particle described by the wave function

ψ(x) =
(
2α

π

)1/4

e−α x2 . (1.42)

It can be checked that (1.42) satisfies the correct normalization condition10

∫ +∞

−∞
dx |ψ(x)|2 = 1 . (1.43)

The parameter α > 0 determines the extent of the localization of the particle.
For points beyond ±1/

√
2α, the probability density to find the particle diminishes

rapidly, being less than e−1 ≈ 37% of its maximum value. Thus, we may roughly
designate

�x ∼ 1√
2α

(1.44)

as the uncertainty in the position of the particle. Note that in the limit α → 0 the
wave function becomes approximately constant and the uncertainty becomes very
large. In the opposite limit α → ∞, the wave function is almost zero everywhere
except at the point x = 0, where it becomes very large. In this limit, the particle is
localized at the origin. For a value of the parameter α between these extremes, the
wave packet ψ(x) has a finite size.

The Gaussian wave packet ψ(x) is manifestly a square-integrable function (g.e.
condition (1.43) ) and, therefore, can be Fourier transformed according to

ψ(x) =
∫ +∞

−∞
dp√
2π�

g(p) e
i
�
px . (1.45)

9For a more general treatment of wave packets see Merzbacher [8].
10See the section on Gaussian Integrals in the Mathematical Appendix.
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This is exactly the kind of expression employed before in (1.39) when we discussed
the general solution of the Schroedinger equation as a superposition of planewaves.11

Wemay take a moment to discuss the physical interpretation of the function g(p).
Since ψp(x) = e

i
�
px/

√
2π� stands for the probability amplitude to find the particle

at the position x having momentum p, in order to obtain the probability amplitude
to find the particle at the position x whatever its momentum is, we would have to
multiply12 ψp(x) by the probability amplitude to find the particle having momentum
p whatever its position, and, then, sum over all possible momenta. Thus, we may
read from (1.45) that g(p) should be interpreted as the probability amplitude to find
the particle with momentum p. This justifies the fact that the name momentum wave
function is often used for g(p). As in the case of the standard wave function, the
probability density to find the particle with momentum p is equal to the absolute
square �(p) = |g(p)|2. It is interesting that by Plancherel’s Theorem, we have

1 =
∫ +∞

−∞
dx |ψ(x)|2 =

∫ +∞

−∞
dp |g(p)|2 (1.46)

and the probability that the particle has any momentum equals one as it should.
By virtue of the Fourier theorem (1.45) implies the inverse Fourier transform

g(p) =
∫ +∞

−∞
dx√
2π�

e− i
�
pxψ(x) . (1.47)

Substituting ψ(x) = (2α/π)1/4e−αx2 and carrying out the integration we obtain

g(p) = e− p2

4�2α

(2πα�2)1/4
. (1.48)

In Fig. 1.6., we have plotted the position and momentum (dotted line) probability
densities. From the Gaussian form of this amplitude, it is clear that the probability
to find the particle with momentum beyond ±�

√
2α is negligible. Thus, we may

conclude that the momentum uncertainty is roughly

�p ∼ �

√
2α . (1.49)

Therefore, the product of uncertainties

(�x) (�p) ∼ � (1.50)

is bounded and independent of α, in accordance with the anticipated Heisenberg’s
inequality.

11In this section the whole analysis refers to a particular instant of time taken to be t = 0. Thus,
ψ(x) stands for ψ(x, 0).
12See the note on conditional probability in the section onProbability of theMathematicalAppendix.
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Fig. 1.6 Gaussian position/momentum distributions

Example 1.3 (Time-evolved wave function from the Schroedinger equation) A free
particle is at t = 0 described by the Gaussian wave packet

ψ(x, 0) = (α/π)1/4e− α
2 x

2
. (1.51)

Use the Schroedinger equation to obtain ψ(x, t) at t > 0. Hint: Introduce the Ansatz

ψ(x, t) = N (t) e− 1
2 A(t)x2 (1.52)

into the free Schroedinger equation and solve for N (t) and A(t).

Introducing this Ansatz into the Schroedinger equation,

− �

2m
ψ′′ = i�ψ̇ =⇒ − �

2m

∂2

∂x2

(
N (t)e− 1

2 Ax
2
)

= i�
∂

∂t

(
Ne− 1

2 Ax
2
)

we obtain
�
2

2m
N A − i�Ṅ + x2

(
−i

�

2
N Ȧ + �

2

2m
N A2

)
= 0

or
Ȧ

A2 = − i�

m
=⇒ A(t) = α

1 − i�tα
m

(1.53)

and

Ṅ

N
= − i�

2m
A =⇒ N (t) = (α/π)1/4e

− i�α
2m

∫ t
0

dt

1− i�tα
m = (α/π)1/4

(
1 − i�tα

m

)−1/2
.

(1.54)
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Finally,

ψ(x, t) = (α/π)1/4
(
1 − i�tα

m

)−1/2

e
− αx2

2
(
1− i�tα

m

)
.

This can be set in a polar form

ψ = √
ψψ∗ e

1
2 ln(ψ/ψ∗) = √

P eiφ

with

P(x, t) =
√

α/π√
1 +

(
�tα
m

)2 exp

[
−αx2/

(
1 +

(
�tα

m

)2
)]

(1.55)

and

φ(x, t) = 1

2
arctan(�tα/m) − �tα2x2/2m(

1 +
(

�tα
m

)2) . (1.56)

Problems and Exercises

1.1 The wave function of a free particle at a particular instant (taken to be t = 0) is
real, i.e.,

ψ(x, 0) = ψ∗(x, 0) .

Show that the evolved wave function at time t has the property

ψ(x, t) = ψ∗(x,−t) .

1.2 A particle constrained to move in a circle of radius R has initially (t = 0) a wave
function

ψ(θ, 0) = 1

2
√

πR

(
eiπNθ + ei(N+1)πθ

)
,

where N is a given integer. Calculate the evolved probability density P(θ, t) at times
t > 0 and show that it is periodic in time.

1.3 Consider the wave functions

ψp(x) = N e
i
�
xp−εx2/2 with ε → 0 .

Show that, with a suitably chosen coefficient N , they satisfy the following orthonor-
mality relation: ∫ +∞

−∞
dx ψ∗

p(x)ψp′(x) =
⎧⎨
⎩
1 (p = p′)

0 (p �= p′).



1.6 Wave Packets 17

Show also the following completeness relation:

∫ +∞

−∞
dp ψp(x)ψ

∗
p(x

′) = 0 for x �= x ′ .

1.4 Consider the Gaussian wave packet of Example 1.3 Show that the Heisenberg
inequality (uncertainty relation) holds at any time t > 0.

1.5 A free particle has at a particular instant t0 an even wave function, i.e., one
satisfying

ψ(x, t0) = ψ(−x, t0) .

Show that this property holds at all times, i.e.,

ψ(x, t) = ψ(−x, t) ∀t .

Show that this property holds also for the case of an odd wave function.

1.6 Consider a particle of energy E = p2/2m whose wave function is the following
superposition of two plane waves of opposite direction:

ψ(x, t) = A√
2π�

eipx/�−i Et/� + B√
2π�

e−i px/�−i Et/�,

where A = |A|eiφa and B = |B|eiφb are complex coefficients. Find the points in
space characterized by vanishing probability density.

1.7 Anywave function can bewritten in a polar form, i.e., asψ(x, t) = (P(x, t))1/2

eiφ(x,t) . Prove the relation

�

m
φ′(x, t)P(x, t)

∣∣a−a = −dP�

dt
,

where P�(t) = ∫ a
−a dx P(x, t) is the probability to find the particle in a spatial

region � = [−a, a]. Verify this relation for the wave function of Example 1.3.

1.8 The Schroedinger equation for a free particle is invariant under spatial trans-
lations (x → x + α) as well as time translations (t → t + β). Show that the corre-
sponding momentum probability density is not affected by spatial translations of the
wave function.

1.9 Consider the general wave function for a free particle

ψ(x, t) =
∫ +∞

−∞
dp

(2π�)1/2
g(p) eipx/�−i Et/�

and by virtue of the inverse Fourier transform for g(p) rewrite it as
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ψ(x, t) =
∫

dx ′K(x, x ′; t) ψ(x ′, 0) where K(x, x ′; t) =
∫

dp

2π�
eip(x−x ′)/�−i Et/� .

Calculate the amplitude K(x, x ′; t). What is its physical interpretation?

1.10 Consider the system of a particle constrained to move (otherwise freely) on a
circle of radius R. Periodicity leads to momentum quantization according to pn =
nπ�/R with n = ±1, ±2, . . . (Example 1.2.). The wave functions corresponding to
definite momentum and energy En = �

2n2π2/2mR2 are ψn(θ) = einθ/
√
2πR. The

general wave function of the system, in terms of the unknown coefficients ψn , can
be written as13

ψ(θ, t) =
+∞∑

n=−∞
ψn e

inθ e−i En t/� .

Assuming that the initial (t = 0) wave function of the system is the function
ψ(θ, 0) = 2 cos2 θ/

√
3π , determine the exact evolved wave function at times t > 0.
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Chapter 2
The Schroedinger Equation

2.1 The Fundamental Time-Evolution Equation

In the previous chapter, we saw that starting from the particular form ei(kx−ωt) for
the wave function of a particle of definite momentum p = �k and energy E = �ω,
we were led to a wave equation satisfied by a general free particle wave function.
Alternatively, we could have started by postulating the wave equation, namely, the
Schroedinger equation (1.38), and subsequently derive particular solutions like the
above plane wave.

It is not difficult to see that for the case of a particle moving in a constant poten-
tial V0 we may write down the appropriate Schroedinger equation with a minimal
modification. Indeed, the equation

− �
2

2m
∇2ψ(r, t) + V0ψ(r, t) = i�

∂

∂t
ψ(r, t)

has plane wave solutions e
i
�

(p·r−Et) with the correct energy–momentum relation
E = p2

2m + V0.
Since any smooth potential function is approximately constant in the vicinity of

a particular point, it is a reasonable generalization to assume that the general wave
equation for a particle of mass m moving under the influence of a potential V (r) is

i�
∂

∂t
ψ(r, t) =

(
− �

2

2m
∇2 + V (r)

)
ψ(r, t) . (2.1)

This is the Schroedinger equation for an interacting particle.1

Again we note that this is a complex equation and if we consider its complex
conjugate, this will be a different equation

1For an unorthodox “derivation” of the Schroedinger equation, see [1].
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− i�
∂

∂t
ψ∗(r, t) =

(
− �

2

2m
∇2 + V (r)

)
ψ∗(r, t) , (2.2)

and, even if we were to start with an initially real wave function, time evolution
will generate a nonzero imaginary part. We shall always assume that the potential
function is a real function. It should also be stressed that in the presence of forces
the general solution of the Schroedinger equation is not anymore a superposition of
plane waves as in the free case. Nevertheless, we can always write the wave function
as a Fourier transform

ψ(r, t) =
∫

d3 p

(2π�)3/2
g(p, t) e

i
�
p·r , (2.3)

where the momentum space wave function g(p, t) does not have the simple expo-
nential time evolution as in the free particle case.2

Example 2.1 (Time-evolved wave function of a particle subject to a harmonic force)
Consider a particle moving in one dimension under the influence of a so-called
harmonic oscillator potential V (x) = 1

2mω2 x2. Assume that the particle is initially
(t = 0) in a state described by a Gaussian wave function

ψ(x, 0) = (α/π)1/4 e−αx2/2 (2.4)

with α > 0. Use the Schroedinger equation to show that the evolved wave function
at time t > 0 will also be Gaussian.

We may consider the ansatz ψ(x, t) = N (t) e− 1
2 A(t)x2 with N (0) = (α/π)1/4 and A(0) = α .

Substituting this ansatz into the Schroedinger equation, we obtain

Ṅ

N
= − i�

2m
A and

Ȧ

A2 − (mω
�

)2 = − i�

m
. (2.5)

Integrating with respect to A(t), we obtain

A(t) = α

(
1 + iβ tan(ωt)

1 + iβ−1 tan(ωt)

)
, (2.6)

where we have set β = mω/α�. The normalization factor is

N (t) = (α/π)1/4 e− i�
2m

∫ t
0 dt A(t) ,

2For a discussion on the general properties of the solutions of the Schroedinger equation see [2].
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postponing the integration in the exponent for later. The probability density is

P(x, t) =
√

α

π
e

�

m

∫ t
0 dt ′ Im(A(t ′)) e− 1

2 Re(A(t))x2 ,

the real and imaginary parts of A being

Re(A) = α

(
1 + tan2(ωt)

1 + β−2 tan2(ωt)

)
and Im(A) = α(β − β−1)

tan(ωt)

1 + β−2 tan2(ωt)
.

After a simple integration in the exponent we obtain

P(x, t) =
(

αβ2/π

(β2 − 1) cos2(ωt) + 1

)1/2

e
− α

2 x
2
(

1+tan2(ωt)
1+β−2 tan2(ωt)

)
. (2.7)

This is a periodic function with an oscillating spread �x in the interval defined by
√
2/α and

β−1√2/α, the upper bound being determined by whether β is smaller or larger than 1.

Example 2.2 (Motion in the half-plane) A particle of definite energy E moves in
two dimensions. Its motion is restricted in the half-plane (x < 0, y) where it moves
freely, while in the other half it experiences an infinite repulsive force. Determine its
wave function (Fig. 2.1).

Since the particle cannot enter the (x ≥ 0, y) region its wave function there must vanish. In
the (x < 0, y) half-plane, the solution of the (free) Schroedinger equation will be a superposition
of standard plane wave eik·r with different wave numbers. Two arbitrary wave number vectors are
sufficient to cover all possible directions in the plane (x, y). We may write

ψ(r, t) =

⎧⎪⎨
⎪⎩

0 (x ≥ 0, y)

(
A eik·r + B eik

′ ·r
)
e−i Et/� (x < 0, y).

(2.8)

Since

E = �
2k2

2m
= �

2k′2

2m
=⇒ k′ = k .

Continuity at x = 0, ∀y implies

k

k

θ

/θ

'

'

Fig. 2.1 Motion in the half-plane



22 2 The Schroedinger Equation

(
A eik(cos θx + sin θy) + B eik(− cos θ′x+sin θ′ y)

)∣∣∣
x=0

= 0

or
A eik sin θy + B eik sin θ′ y = 0 =⇒ θ′ = θ and B = −A .

The two terms of the wave function have the obvious interpretation as incident and reflected wave.
We see that the standard optical law of reflection is valid here. Thus, finally the solution is

ψ(r, t) =
⎧⎨
⎩

0 (x ≥ 0, y)

2i A eiky sin θ−i Et/� sin (kx cos θ) (x < 0, y).
(2.9)

2.2 Conservation of Probability

The probability to find the particle anywhere in space must be equal to one, i.e.,
certainty. This has to be true at any instant in time. Therefore, the normalization
condition on the wave function must hold for any t , namely,

∫
d3r |ψ(r, t)|2 = 1 =⇒ d

dt

∫
d3r |ψ(r, t)|2 = 0 . (2.10)

The integral is over all space. Therefore, proceeding with the left-hand side, we have

∫
d3r

∂

∂ t

(|ψ(r, t)|2) =
∫

d3r
(
ψ̇∗ ψ + ψ∗ ψ̇

)
,

where the dot indicates time derivative. Substituting Eqs. (2.1), (2.2), this becomes

i

�

∫
d3r

( (
− �

2

2m
∇2ψ∗ + Vψ∗

)
ψ − ψ∗

(
− �

2

2m
∇2ψ + Vψ

) )

or

− i�

2m

∫
d3r

(
ψ ∇2ψ∗ − ψ∗∇2ψ

) = i�

2m

∫
d3r ∇ · (

ψ∗∇ψ − ψ∇ψ∗ )

or
i�

2m

∮
dS · (

ψ∗∇ψ − ψ∇ψ∗ )
.

The last stepwas takenwith the help of theDivergence Theorem. The final expression
is a surface integral performed over a closed surface at infinity that encloses all space.
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On this surface, thewave function and its derivative vanish.3 Thus, this is indeed equal
to zero and probability is conserved at all times. Note that the above proof depends
on the reality of the potential. An imaginary part of the potential corresponds to an
instability of the system and, as a result, to a loss of probability.

The conservation of probability can be also expressed locally as follows:

∂

∂t
|ψ|2 = (

ψ∗ψ̇ + ψ̇∗ψ
) = · · · = i�

2m
∇ · (

ψ∗∇ψ − ψ∇ψ∗ )
, (2.11)

where the dots signify the use of theSchroedinger equation and its complex conjugate.
Here, we can introduce the Probability Current Density J as

J(r, t) ≡ �

2mi

(
ψ∗∇ψ − ψ∇ψ∗ )

. (2.12)

Then, (2.11) can be written as

∂

∂t
P(r, t) + ∇ · J(r, t) = 0 , (2.13)

where P = |ψ|2 is the probability density. This equation is called the Continuity
Equation and describes the local conservation of probability. It has the familiar
form of the analogous equation of Classical Electrodynamics expressing locally the
conservation of electric charge.

Example 2.3 A particle of mass m and energy E is moving in one dimension. The
wave function of the particle is

ψE (x, t) = 1√
2π

(
eikx + f (k) eik|x |

)
e−i Et/�.

Show that local conservation of probability (continuity equation) implies the follow-
ing relation f −1 + f ∗−1 + 2 = 0.

The current density corresponding to each branch of the wave function is

ψE (x, t) =

⎧⎪⎨
⎪⎩

(1 + f (k))eikx e−i Et/�√
2π

=⇒ J+ = �k
m(2π)

|1 + f (k)|2 (x ≥ 0)

(
eikx + f (k)e−ikx

) e−i Et/�√
2π

=⇒ J− = �k
m(2π)

(
1 − | f (k)|2 )

(x ≤ 0).

The probability density P = |ψ|2 is time-independent and, therefore, the continuity equation is just

3A normalizable wave function should be square-integrable, i.e.,
∫
d3r |ψ|2 < ∞ . This requires

that ψ vanishes at spatial infinity. For example, for ψ ∝ 1
rα with α > 3/2, the above integral

converges.
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∂ J (x)
∂x = 0 =⇒ J (x) = const. =⇒ J+ = J−, leading to the above relation

|1 + f |2 = 1 − | f |2 =⇒ 1 + | f |2 + f + f ∗ = 1 − | f |2 =⇒ 1

f
+ 1

f ∗ + 2 = 0 .

2.3 The Hamiltonian

Consider a classical system described by N generalized coordinates q j (t) and an
equal number of canonical momenta p j (t). The equations of motion are expressed
in terms of the Hamiltonian H(q, p). They have the form (Hamilton’s equations of
motion) [3]

dq j

dt
= ∂H

∂q j
,

dp j

dt
= −∂H

∂q j
. (2.14)

The physical meaning of the Hamiltonian is that of the energy of the system as a
function of coordinates and momenta.

A single particle of massm, described in terms of its position r(t) and momentum
p(t), subject to the force F = −∇V (r) that results from a potential V (r), has a
Hamiltonian

H = p2

2m
+ V (r) . (2.15)

On the other hand, the quantum version of this system is set up through the wave
function ψ(r, t) and the Schroedinger equation

i�
∂ψ

∂t
=

(
− �

2

2m
∇2 + V (r)

)
ψ . (2.16)

It is evident that the operator in parenthesis, appearing in the right-hand side, has
exactly the structure of the Hamiltonian (2.15). In fact the Schroedinger operator in
(2.16) can be obtained considering the Hamiltonian and replacing the momentum of
the particle with a differential operator

p j → p̂ j ≡ −i�
∂

∂x j
= −i�∇ j . (2.17)

Note that this is a highly nontrivial replacement since we substitute a set of real num-
bers with a differential operator. This is a particular case of a general correspondence
recipe (quantization): For any quantum system, we consider the Hamiltonian of its
classical analogue and we construct a Hamiltonian operator corresponding to it4

Ĥ( p̂ j , x̂ j ) by the substitution (2.17). Then, the Schroedinger equation, describing

4The position operator coincides with the real number position variables.
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the time evolution of the system is

i�
∂ψ

∂t
= Ĥψ , (2.18)

where hats denote operators in contrast to real or complex numbers. We are going
to come back to this correspondence which is the most important cornerstone in the
quantum mechanical description of physical systems.

2.4 Stationary States

Consider the Schroedinger equation

i�
∂ψ

∂t
=

(
− �

2

2m
∇2 + V (r)

)
ψ . (2.19)

Wehave remarked earlier that this is the time-evolution equation for the system.Aswe
have learnt in the simple case of the free particle of definite energy and momentum,
this time evolution for the wave function (plane wave) can be particularly simple
consisting of an exponential factor

ψp(r, t) = e
i
�

(p·r−Et)

(2π�)3/2
= ψp(r, 0) e− i

�
Et . (2.20)

As a result, the corresponding probability density of these states is time indepen-
dent. These plane-wave wave functions are simple special solutions of the free
Schroedinger equation.

Nevertheless, in the general case of an interacting particle we may still consider
special solutions of (2.19) of the form

ψE (r, t) = ψE (r) e− i
�
Et , (2.21)

where, of course, ψE (r) is not any more a plane wave. Inserting (2.21) in (2.19), we
obtain that ψE (r) must satisfy the equation

(
− �

2

2m
∇2 + V (r)

)
ψE (r) = E ψE (r) . (2.22)

This is the so-called Time-Independent Schroedinger equation. The wave functions
(2.21) correspond to a time-independent probability density

PE (r) = |ψE (r, t)|2 = |ψE (r)|2 (2.23)
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and are called Stationary States.
There is an alternative way to look at the time-independent Schroedinger equation

(2.22), namely, in terms of the Hamiltonian operator as

ĤψE (r) = E ψE (r) . (2.24)

According to this equation, the wave functions ψE (r) are such that the Hamiltonian
operator acts on them just as if it were a number E . This is a particular case of an
important concept on which we shall elaborate later, namely, the concept of eigen-
functions and eigenvalues of an operator. For each operator, there is a special set
of functions, characteristic of the operator, on which the operator acts as a number.
These are the eigenfunctions of the operator and the resulting numbers are its eigen-
values. Therefore, the stationary states are the eigenfunctions of the Hamiltonian or,
equivalently, of the energy of the system.

There is a crucial property of the energy eigenfunctions which will be proven
in a subsequent chapter but it is important to underline now and make use of it.
Stationary states represent mutually exclusive physical situations. For example, the
probability for the system to be in a state of energy E1 or E2 should be the sum of
the probabilities for each of the situations, namely,

∫
d3r |ψE1(r, t) + ψE2(r, t)|2 =

∫
d3r |ψE1(r)|2 +

∫
d3r |ψE2(r)|2 .

The immediate mathematical consequence of this is that no interference terms arise
or ∫

d3r ψ∗
E1

(r)ψE2(r) = 0 (E1 �= E2) . (2.25)

This property is called orthogonality of the energy eigenfunctions.

2.5 General Solution of the Schroedinger Equation

It is clear that any linear combination of solutions of the Schroedinger equation will
also be a solution. In particular, a superposition of stationary wave functions5

ψ(r, t) =
∑
E

CE ψE (r) e− i
�
Et (2.26)

5The summation symbol in this superposition is purely symbolic. It could verywell correspond to an
integral as, for example, in the case of a free particle where the energy eigenvalues are continuous. In
general, the energy spectrum (i.e., the set of eigenvalues) can consist of a discrete and/or continuous
part.
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will automatically satisfy (2.19). Aswe have remarked earlier, since the Schroedinger
equation is a differential equation first order in time, the time-evolved ψ(r, t)will be
fully determined in terms of the initial wave function ψ(r, 0). The general solution
expressedby the above superposition (2.26) involves the eigenfunctionsψE (r),which
are characteristic of the system at hand, and the coefficients CE , which should be
expressible in terms of the initial wave function.

Let’s consider (2.26) at an initial time chosen to be t = 0, namely,

ψ(r, 0) =
∑
E

CE ψE (r), (2.27)

multiply both sides with a particular-but arbitrary-eigenfunction ψ∗
E ′(r) and then

integrate. We get

∫
d3r ψ∗

E ′(r)ψ(r, 0) =
∑
E

CE

∫
d3r ψ∗

E ′(r)ψE (r) .

The sum in the right-hand side, thanks to the orthogonality property of the ener-
gy eigenfunctions (2.25), collapses to just the single term with E = E ′, namely,
CE ′

∫
d3r |ψE ′(r)|2, which, if the eigenfunctions are taken to be normalized, is just

CE ′ . Thus, finally, for any eigenvalue E , we can express the corresponding coefficient
in terms of the initial wave function as

CE =
∫

d3r ψ∗
E (r)ψ(r, 0) . (2.28)

The time-independent Schroedinger equation and the pair of (2.26), (2.28) com-
prise the general solution to the Schroedinger equation, consisting of first obtaining
the energy eigenfunctions and eigenvalues characteristic of the system, and then
writing down the expansion with coefficients determined by the initial state of the
system.

What is the physical meaning of the expansion coefficients CE? It is clear that
each number CE measures the degree of participation of the eigenfunction ψE (r) in
the wave functionψ(r, t). Therefore, the appropriate interpretation of the coefficient
CE is that it is the probability amplitude to find the particle in the stationary state
ψE (r, t).

Example 2.4 (Time evolution of a Gaussian wave packet) A free particle of mass
m is moving in one dimension. The wave function of the particle at an initial time
t = 0 is

ψ(x, 0) =
( m

�πa

)1/4
e− mx2

2�a , (2.29)

where a > 0 is a real parameter. Find the solution to the Schroedinger equation
ψ(x, t) at all times t > 0.
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Expanding ψ(x, t) in stationary states (plane waves), we have

ψ(x, t) =
∫ +∞

−∞
dk

eikx√
2π

ψ̃(k) e− i�k2 t
2m with ψ̃(k) =

∫ +∞

−∞
dx

e−ikx

√
2π

ψ(x, 0) ,

in which, substituting (2.29) in the integral for ψ̃(k), we calculate

( m

�πa

)1/4 1√
2π

∫ +∞
−∞

dx e−ikx e−
mx2
2�a =

( m

�πa

)1/4 1√
2π

∫ +∞
−∞

dx e
− m

2�a

(
x+ ik�a

m

)2
e−

�ak2
2m

and obtain

ψ̃(k) =
(

�a

mπ

)1/4

e− �ak2
2m . (2.30)

Substituting ψ̃(k) into the expression for ψ(x, t), we obtain

ψ(x, t) =
(

�a

mπ

)1/4 1√
2π

∫ +∞

−∞
dx eikx e− �a

2m (1+i t/a)k2

or

ψ(x, t) =
(ma

�π

)1/4
e−iπ/4 ei

max2
2�(t−ia)√
t − ia

, (2.31)

where we have completed the square in the exponent and performed the Gaussian integration (or

used the related formulae of the Mathematical Appendix). It may be checked explicitly that the

ψ(x, t) found is indeed a solution of the free Schroedinger equation. Note that it starts as a standard

Gaussian of a spread ∼ √
a at t = 0 and at times t >> a it evolves into a density |ψ(x, t)|2 ∝ t−1

that is spatially constant and decreasing in time with an infinite spread.

Problems and Exercises

2.1 Show that the time-independent Schroedinger equation cannot have acceptable
solutions corresponding to energies smaller than the minimum of the potential. As
an example, consider the potential step V (x) = V0�(x) and show that there are no
acceptable solutions with E < 0.

2.2 The wave function of a particle moving in one dimension is ψE (x) = 1√
2π(

eikx − eik|x |
1−iα k

)
, corresponding to energy E = �

2k2/2m. Find the corresponding

potential V (x).

2.3 Consider the system of a particle described by a wave function ψ(r, t). The
rate of change of the probability to find the particle in a spatial region of volume V
should be equal to minus the probability current through the surface S enclosing this
volume. Verify this for the wave function

ψ(r, t) = (α/π)3/4
(
1 − i�αt

m

)−3/2

e
− αr2

2(1− i�αt
m ) ,
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taking this region to be a sphere of radius R.

2.4 Derive the equation giving the rate of probability nonconservation in the case
of a system with a potential having an imaginary part (V ∗ �= V ).

2.5 A particle moves in one dimension under the influence of a potential of the form

V (x) =
⎧⎨
⎩

0 (x ≤ 0)

U (x) (x ≥ 0),

whereU (x) is a function with the propertyU (+∞) > 0. Show that the general form
of the wave function corresponding to energy E = �

2k2/2m > 0 in the region x < 0
will be

ψE (x) = N
(
eikx + eiα e−ikx

)
,

where N and α∗ = α parameters.

2.6 Consider the general solution to the Schroedinger equation and, substituting the
expression of the coefficients in terms of the initial wave function, rewrite it in the
form

ψ(r, t) =
∑
E

(∫
d3r ′ ψ∗

E (r′)ψ(r′, 0)
)

ψe(r) e−i Et =
∫

d3r ′ K(r, r′; t) ψ(r′, 0) .

Verify that
K(r, r′, 0) =

∑
E

ψE (r)ψE (r′) = δ(r − r′)

in the case of the particle moving in a circle.

2.7 Show that the momentum operator has the property

∫ +∞

−∞
d3r ψ∗

1(r, t) p̂ j ψ2(r, t) =
(∫ +∞

−∞
d3r ψ∗

2(r, t) p̂ j ψ1(r, t)
)∗

,

whereψ1 andψ2 arbitrarywave functions are describing possible states of the system.

2.8 Show that the Fourier transform of the wave function, defined by g(p, t) =∫ +∞
−∞

dx√
2π�

ψ(x, t)e−i px/�, satisfies the following integro-differential equation:

p2

2m
g(p, t) +

∫ +∞

−∞
dq√
2π�

Ṽ (p − q)g(q, t) = i�ġ(p, t) ,

where Ṽ (q) is the Fourier transform of the potential.



30 2 The Schroedinger Equation

References

1. G. Baym, Lectures in Quantum Mechanics, Lecture Notes and Supplements in Physics (ABP,
1969)

2. A. Messiah, Quantum Mechanics. (Dover publications, Mineola, 1958). Single-volume reprint
of the Wiley, New York, two-volume 1958 edn

3. H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3rd edn. (Pearson International, 2014)



Chapter 3
Some Simple Systems

3.1 The Infinite Square Well

Consider a particle moving in one dimension but confined only in a particular spatial
interval taken to be (−L , L). The particlemoves freely at−L < x < L but is subject
to an infinite repulsive force at ±L . As a result, the particle cannot propagate in
either of the regions x ≥ L , x ≤ −L . Such a situtation can be expressed in terms of
a potential function

V (x) =
⎧
⎨

⎩

0 (−L < x < L)

+∞ (|x | ≥ L)

(3.1)

In what follows we shall determine the energy eigenvalues and energy eigenfunc-
tions (stationary states) for this system (Fig. 3.1).

The time-independent Schroedinger equation is

(

− �
2

2m

d2

dx2
+ V (x)

)

ψE (x) = E ψE (x) . (3.2)

It is clear that in the |x | ≥ L outside region, where V = ∞, (3.2) can only be satisfied
with

∀ |x | ≥ L =⇒ ψE (x) = 0 . (3.3)

In the inside region, the potential vanishes and the particle moves freely with its wave
function satisfying the free Schroedinger equation

− �
2

2m

d2ψE

dx2
= E ψE . (3.4)

This equation can be set in the form
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Fig. 3.1 The infinite square well

ψ′′
E (x) = −k2 ψE (x) , (3.5)

in terms of the wave number k related to the energy via E = �
2k2

2m . Note that the
energy is positive while the wave number takes up positive and negative values.

The general solution of (3.5) is

ψE (x) = A eikx + B e−ikx (|x | < L) . (3.6)

Continuity of the wave function1 at x = ±L gives the conditions ψE (±L) = 0
or

A e−ikL + B eikL = 0 and A eikL + B e−ikL = 0 (3.7)

or
B = −A e−2ikL = −A e2ikL . (3.8)

This can only be true if

4ikL = 2inπ =⇒ k = n
π

2L
(n = ±1, ±2, . . . ). (3.9)

The resulting eigenvalues of the energy are

En = �
2n2π2

8mL2
(n = ±1, ±2, . . . ) . (3.10)

1Continuity of anymeasurable physical quantity—e.g., the probability density—is always a require-
ment. Therefore, the wave function must always be continuous. The same is true for the first spatial
derivative of the wave function provided the potential is non-singular. For the above case, at the
points where the potential is infinite, it is obvious that the second spatial derivative of the wave
function does not exist and, therefore, its first derivative is neither differentiable nor continuous.
Thus, here there is no continuity condition for the first derivative.
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Thus, the wave number and the energy are quantized. The corresponding eigenfunc-
tions are2 (symbolized now as ψn instead of ψE )

ψn(x) = A
(

ein πx
2L + (−1)n+1 e−in πx

2L

)
.

Note that sinceψn andψ−n are related by a just a phase factor it is sufficient to restrict
the quantum number n to positive integer values n = 1, 2, . . . . The coefficient A
is determined from the normalization condition

∫ L

−L
dx |ψn(x)|2 = 1

or

1 = |A|2
∫ L

−L
dx

(
1 + 1 + (−1)n+1

(
ein πx

L + e−in πx
L

) )
=

2|A|2
∫ L

−L
dx

(
1 + (−1)n+1 cos(nπx/L)

)
= 2|A|2

(

2L + L(−1)n+1

nπ
sin(nπx/L)|L−L

)

giving

A = eiφn

2
√

L
, (3.11)

where φn is an arbitrary phase that can be chosen at will. Thus, the eigenfunctions
are

ψn(x) = eiφn

2
√

L

(
ein πx

2L + (−1)n+1 e−in πx
2L

)
. (3.12)

The first few eigenfunctions are

ψ1(x) = eiφ1√
L
cos(πx/2L)

ψ2(x) = ieiφ2√
L
sin(πx/L)

ψ3(x) = eiφ3√
L
cos(3πx/2L)

ψ4(x) = ieiφ4√
L
sin(2πx/L)

. . .

. . .

(3.13)

The choice of the phase factor φn = −(1 + (−1)n)π/2 renders all eigenfunctions
real.

2Note that e±2ikn L = e±inπ = (−1)n .
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Fig. 3.2 Probability distribution for n = 1, 2

Thus, the eigenfunctions are grouped in the infinite sets

ψn =

⎧
⎪⎨

⎪⎩

1√
L
cos(nπx/2L) (n = 1, 3, 5, . . . )

1√
L
sin(nπx/L) (n = 2, 4, 6, . . . )

(3.14)

The corresponding probability distribution for the ground state and the first excited
state (dotted line) is shown in Fig. 3.2.

Let us take a pause and compare this quantum system with the corresponding
classical system of a classical particle trapped in such an infinite potential square
well. For the classical system the allowed energies span the continuum 0 ≤ E < ∞.
In contrast, in our case, the energy spectrum is discrete, expressible in terms of
an integer n = 1, 2, . . . as En = E1n2. Although the gap between two successive
energy levels increases with n as En+1 − En = (2n + 1)E1, the relative distance of
successive energy levels (En+1 − En)/En decreases as 1/n for very large values of n.
This means that at very large quantum numbers (n → ∞) the spectrum approaches
the continuum. Another point that is in sharp contrast with the classical system is that
for the quantum system there are points in the interval [−L , L] where the particle
cannot be present or, equivalently, points where the probability density vanishes. For
example, if the particle is in the first excited state (n = 2), the probability density
vanishes at the midpoint x = 0. Similarly for the second excited state (n = 3) the
probability density vanishes at the points x = ±L/3. No such behavior is possible
for the system of the trapped classical particle.

Parity. Observe that all eigenfunctions are grouped in two sets of even and odd
functions

ψ2ν+1(−x) = ψ2ν+1(x)

ψ2ν(−x) = −ψ2ν(x)

(3.15)

or just
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Table 3.1 Energy eigenfunctions of the infinite square well

n ψn(x) |ψn(x)|2 En P
1 1√

L
cos(πx/2L) 1

L cos2(πx/2L) �
2

8mL2 +1

2 1√
L
sin(πx/L) 1

L sin2(πx/L) �
2π2

2mL2 −1

3 1√
L
cos(3π x/2L) 1

L cos2(3πx/L) 9�
2π2

8mL2 +1

4 1√
L
sin(2πx/L) 1

L sin2(2πx/L) 2�
2π2

mL2 −1

.

.

.

.

.

.

.

.

.

.

.

.

ψn(−x) = (−1)n+1ψn(x) . (3.16)

We may talk about the “evenness” or “oddness” of a wave function in terms of the
concept of Parity P , defined as having the value +1 for even functions and the value
−1 for odd ones. Later on we shall introduce a Parity operator as a spatial reflection
operator

P̂�(x) = �(−x). (3.17)

For the time being, we write its action on the energy eigenfunctions found above and
obtain

P̂ψn(x) = ψn(−x) = (−1)n+1ψn(x) . (3.18)

Thus, we may say that the partity of the n-th eigenfunction is (−1)n+1.
The energy eigenfunctions found have alternating parity. Starting from the ground

state, i.e., the state of lowest energy (here E1 = �
2π2

8mL2 ), which has parity +1, we

move next to the first excited level (E2 = �
2π2

2mL2 ), which has parity −1, and so on
(Table 3.1).

The fact that the eigenfunctions came out to have a definite parity automatically
is just the particular manifestation of a general property relating to the symmetries
of the Hamiltonian. In our case, the Hamiltonian of the system is even under spatial
reflections

x → −x =⇒ H(−x) = H(x) . (3.19)

As we will demonstrate in a subsequent chapter this symmetry reflects on the energy
eigenfunctions, which will have automatically definite parity, or, in a more mathe-
matical language, will also be eigenfunctions of the parity operator.

Orthogonality and Completeness. The eigenfunctions (3.14) are well known to
be a set of mutually orthogonal functions. It can be easily shown that
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1
L

∫ L
−L dx cos((2m + 1)πx/2L) cos((2m ′ + 1)πx/2L) = δmm ′

1
L

∫ L
−L dx sin(2mπx/L) sin(2m ′πx/L) = δmm ′

1
L

∫ L
−L dx sin(2mπx/L) cos((2m ′ + 1)πx/2L) = 0

(3.20)

or collectively,
∫ L

−L
dxψ∗

n(x)ψn(x) = δnn′ . (3.21)

Since, they have also been constructed to be normalized, they are not only orthogonal
but orthonormal.

Furthermore, the set of eigenfunctions (3.14) are well known from Fourier Series
Analysis to be a complete set of functions, in the sense that any smooth function
�(x), defined in the interval [−L , L], can be expanded in terms of them as

�(x) =
∞∑

n=1

Cn ψn(x) . (3.22)

The expansion coefficients Cn can be readily obtained multiplying both sides of
(3.22) by one of the ψn’s, integrating and making use of the orthonormality relation

∫ L

L
dxψn′(x)�(x) =

∞∑

n=0

Cn

∫ L

L
dxψn′(x)ψn(x) =

∞∑

n=0

Cnδnn′

or

Cn =
∫ L

L
dx ψn(x)�(x) . (3.23)

Example 3.1 (Particle trapped in the infinite square well) The wave function of a
particle trapped in the infinite square well is at a time t = 0

�(x, 0) = 2√
3L

cos2(πx/2L) . (3.24)

Write down the evolved wave function �(x, t) for times t > 0 and calculate the
probability to find the particle at its ground state.

The wave function at any time can be expanded in terms of the energy eigenfunctions (3.14) as
in (2.26). The coefficients are

Cn =
∫ L

−L
dx ψ(x, 0)ψ∗

n (x) = 2√
3L

∫ L

−L
dx cos2(πx/2L) ψ∗

n (x).

Note however that, since �(x, 0) is an even function (i.e., �(−x, 0) = �(x, 0)), only the even
members of the set ψn(x), i.e., the cosines, will give a nonvanishing integral and contribute
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to the sum. In fact the coefficients corresponding to the sines will exactly vanish. Indeed,
∫ L
−L dx �(x, 0) sin(nπx/L) exactly vanish due to the oddness of the intergrand. Thus, we have

�(x, t) = 1√
L

∑
n=1,3,... Cn e− i

�
En t cos(nπx/2L) and

Cn = 2

L
√
3

∫ L

−L
dx cos2(πx/2L) cos(nπx/2L)

with n = 1, 3, 5, . . . . Proceeding to compute C1 we obtain the required probability to be (C1 =
4

π
√
3

∫ π/2
−π/2 dξ cos3 ξ = 4

π
√
3

∫ 1
−1 dη (1 − η2) = 16

3π
√
3
)

|C1|2 = (16)2

27π2 ≈ 0.9607 .

The corresponding probabilities for excited states decrease rapidly. For example, for the next excited

level, we obtain the probability to be |C3|2 = |C1|2/25 ≈ 0.036.

3.2 Piecewise Constant Potentials

Consider a particle moving in one dimension subject to a constant potential V0.
Classically, there is absolutely no difference than the case of vanishing potential
since the force is zero in both cases. Nevertheless, in the quantum case, since the
value of the potential enters in the Schroedinger equation, there is a slight difference.
The time-independent Schroedinger equation reads

− �
2

2m

d2ψE (x)

dx2
+ V0ψE (x) = EψE (x) . (3.25)

Let’s assume that E ≥ V0 as in the classical case. Introducing the shifted wave
number

q2 = 2m

�2
(E − V0) , (3.26)

in terms of which our equation becomes

ψ′′
E (x) = −q2ψE (x) , (3.27)

we obtain a general solution in the formof planewaves analogous to the zero potential
case

ψE (x) = A eiqx + B e−iqx . (3.28)

Next, we may consider the classically forbidden case of E < V0 and see whether
acceptable quantum solutions exist. The Schroedinger equation now takes the form

ψ′′
E (x) = +s2ψE (x) (3.29)
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in terms of

s2 = 2m

�2
(V0 − E) . (3.30)

The general solution of this equation is

ψE (x) = C esx + D e−sx . (3.31)

Nevertheless, if D is nonvanishing, this solution blows up as x → −∞, giving an
infinite probability density. Therefore, we must have D = 0. With an analogous
argument for x → +∞, the other coefficient C has to vanish as well. Thus, there
is no physically acceptable solution having E < V0, just as in the classical case. In
what will follow shortly we shall see that this depends crucially on the fact that the
classically disallowed region with E < V extends to infinity. We shall see shortly
that classically disallowed potential barriers of finite extend can be penetrated by
quantum particles.

Of course, the realistic potentials encountered by microscopic particles are not
constant.3 There are situations though in which the full range of a potential func-
tion can be subdivided in a number of smaller parts over which the potential is
approximately constant. Thus, the potential is approximated by a piecewise constant
potential. Apart from their applicability in realistic physical systems, piecewise con-
stant potentials thanks to their simplicity have a great pedagogical value in the study
of quantum behavior.

For a piecewise constant potential, if x0 is a point of discontinuity of the potential,
the Schroedinger equation dictates thatψ′′

E (x)will also be discontinuous at this point.
Nevertheless, existence of the second derivative presupposes the continuity of the
first derivative ψ′

E (x). Therefore, continuity of both the wave function ψE (x) and its
first derivativeψ′

E (x) has to be imposed at each point of discontinuity of the potential.

3.2.1 The One-Dimensional Potential Step

Consider a particle of energy E moving in one dimension under the influence of the
potential

V (x) =
⎧
⎨

⎩

0 (x < 0)

V0 (x > 0)
(3.32)

shown in Fig. 3.3.
The Schroedinger equation can be written as

3For an analysis of the general properties of the solutions of the one-dimensional Schroedinger
equation see [1].
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Fig. 3.3 Potential step

ψ′′
E (x) = −2m

�2
(E − V (x)) ψE (x) =

⎧
⎨

⎩

− 2m E
�2 ψE (x) (x < 0)

− 2m
�2 (E − V0)ψE (x) (x > 0)

(3.33)

We assume that V0 > 0. Classically of course E can only be positive. Nevertheless,
there is no harm in investigating whether acceptable solutions of negative energy
exist. For E = −|E | < 0, our equation in both regions has exponential solutions

ψE (x) =
⎧
⎨

⎩

C1 eq−x + C2 e−q−x (x < 0)

C3 eq+x + C4 e−q+x (x > 0),
(3.34)

where we introduced q− ≡
√

2m|E |
�2 , q+ ≡

√
2m(|E |+V0)

�2 . It is obvious that in order
to have a bounded probability density we must set C2 = C3 = 0. Furthermore, con-
tinuity of the wave function and its first derivative at the point x = 0 gives

C1 = C4, C1 q− = C4 q+ , (3.35)

which are incompatible for any V0 = 0. Therefore, we must conclude that there are
no physically acceptable solutions of negative energy. This is a particular case of a
general property, namely, that there are no acceptable solutions of the Schroedinger
equation of energy smaller than the minimum of the potential.

For E > 0 we still have two possibilities, namely, E > V0 or 0 < E < V0. We
proceed to analyze each of these cases.

The case E > V0. Introducing the wave numbers

k2 = 2m

�2
E, q2 = 2m

�2
(E − V0) (3.36)
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we can write the Schroedinger equation as

⎧
⎨

⎩

ψ′′
E = −k2ψE (x < 0)

ψ′′
E = −q2ψE (x > 0)

(3.37)

with general solution4

ψE (x) =
⎧
⎨

⎩

A eikx + B e−ikx (x < 0)

C eiqx + D e−iqx (x > 0)
(3.38)

The solution consists of plane waves each of which has an obvious interpretation.
A eikx stands for an incoming particle moving from the left towards the potential step.
B e−ikx stands for a particle moving towards the left away from the potential step and
can only be interpreted as a reflected particle. Similarly, C eiqx propagates towards
the right away from the potential step and D e−iqx is an incoming particle from the
right. We may simplify our solution, without any loss of generality, by assuming that
we are interested only in particles incident from the left. Thus, we may take D = 0
and designate A eikx as the incoming wave, B e−ikx as the reflected wave and C eiqx

the transmitted wave.
Continuity of ψE (x) and ψ′

E (x) at x = 0 gives

⎧
⎨

⎩

A + B = C

k (A − B) = q C
=⇒

⎧
⎨

⎩

B
A = k−q

k+q

C
A = 2k

k+q .

(3.39)

Notice that there is always a reflected wave (V0 = 0 =⇒ B = 0). In the classical
case for E > V0 there is no reflection and the particle propagates to the right.

In a previous chapter, discussing the local conservation of probability, we intro-
duced theProbability Current Density (2.12) and showed that it satisfies theContinu-
ity Equation (2.13). The one-dimensional version of this probability current density
and the corresponding continuity equation are

J (x, t) = �

2mi

(
ψ∗(x, t)ψ′(x, t) − ψ′∗(x, t)ψ(x, t)

)
(3.40)

∂ J

∂x
+ ∂P

∂t
= 0 , (3.41)

4Mathematically, the general solution could also be written in terms of sin(kx) and cos(kx). Never-
theless, in situationswith propagatingparticles it is always preferable to use planewave exponentials,
since they are associated with a sense of direction. In bound state problems however, in cases where
the potential has definite parity, it will be more profitable to write the solution in terms of cosines
and sines which are even and odd.
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where P = |ψ|2. Carrying this concept over to our study of stationary states, where
time dependence drops out, the above equations simplify to

JE (x) = �

2mi

(
ψ′

E (x)ψE (x) − ψ′
E

∗
(x)ψE (x)

)
and JE = constant . (3.42)

Thus, for stationary one-dimensional states the probability current density is con-
stant.

Applying the above in our problem, we obtain that

JE (x < 0) = JE (x > 0) =⇒ �k

m
|A|2 + (−�k)

m
|B|2 = �q

m
|C |2 . (3.43)

Each of the appearing terms has a straightforward interpretation, namely, �k
m |A|2

being the velocity of the incident particle times its probability density (incident cur-
rent density), (−�k)

m |B|2 being the velocity of the reflected particle times its probability

density (reflected current density) and �q
m |C |2 being the velocity of the transmitted

particle times its probability density (transmitted current density). Denoting these
partial current densities with

Ji = �k

m
|A|2, Jr = −�k

m
|B|2, Jt = �q

m
|C |2 , (3.44)

we can write the current conservation as

Ji + Jr = Jt . (3.45)

A nice way to express the reflection probability is through the quantity

R = |Jr |
Ji

(3.46)

which is called Reflection Coefficient. Similarly, we may define the Transmission
Coefficient

T = Jt

Ji
. (3.47)

Note that the current conservation equation, written in terms of these coefficients,
reads

R + T = 1 , (3.48)

simply expressing the fact that the incident beam can only be reflected and trans-
mitted. In our particular problem of the potential step these coefficients take the
values
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R = |B|2
|A|2 =

(
k−q
k+q

)2

T = q|C |2
k|A|2 = 4qk

(k+q)2
.

(3.49)

The case E < V0. This is not possible for a classical particle, since it would mean
that the particle has negative kinetic energy. Nevertheless, in the quantum case it is
the Schroedinger equation that will decide whether there exist physically acceptable
solutions. The Schroedinger equation takes the form

ψ′′
E (x) = 2m

�2
(V (x) − E) ψE (x) =⇒

⎧
⎨

⎩

ψ′′
E (x) = −k2ψE (x) (x < 0)

ψ′′
E (x) = s2ψE (x) (x > 0),

(3.50)
where

k2 = 2m

�2
E , s2 = 2m

�2
(V0 − E) . (3.51)

s and k are taken to be positive. The general solution of (3.50) is

ψE (x) =
⎧
⎨

⎩

A eikx + B e−ikx (x ≤ 0)

C e−sx (x ≥ 0)
(3.52)

No e+sx part has been included in the x > 0 branch of ψE , since it would blow up at
x → +∞.

Continuity at x = 0 for (3.52) and its derivative gives

A + B = C

A − B = is
k C

=⇒
⎧
⎨

⎩

B
A = k − is

k + is

C
A = 2k

k + is .

(3.53)

From these coefficients we can immediately compute the corresponding current den-
sities

Ji = �k

m
|A|2, Jr = −(�k)

m
|B|2 = −(�k)

m
|A|2

∣
∣
∣
∣
k − is

k + is

∣
∣
∣
∣

2

= −Ji

and

Jt = �

2mi

(
C∗e−sx (−s)Ce−sx − Ce−sx (−s)C∗e−sx

) = 0 .
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Thus, we have
R = 1 , T = 0 (3.54)

and there is no transmission but only total reflection.
Nevertheless, although there is no transmission, the fact remains that the wave

function is nonzero inside the classically forbidden region x > 0. Note however
that the x dependence of the wave function is such that it is appreciable only for
a range [0, 1/s]. Beyond 1/s the wave function and the corresponding probability
density dies out exponentially. If we were interested in locating the particle inside the
forbidden region we would at most face an uncertainty of �x ∼ 1/s. On the other
hand, theUncertainty Principle dictates that therewill necessarily be a corresponding
uncertainty in the particle’s momentum determination bounded from below through
the Heisenberg Inequality as

(�p) ∼ �/(�x) ∼ �s .

This implies a minimum uncertainty in the energy of the particle

�E ∼ (�p)2

2m
∼ �

2s2

2m
= V0 − E .

Thus, even if E was assumed to be smaller than V0, such an uncertainty could very
well lift the particle to the classically allowed region (E + �E ≥ V0). In otherwords,
due to the Uncertainty Principle, any attempt to locate the particle in the classically
forbidden region is accompanied with an uncertainty in energy that is larger than the
gap that separates it from allowed energies.

In the above analysis of the energy eigenfunctions the allowed values of the
energy E span a continuum 0 ≤ E < ∞. In the standard terminology used we say
that the energy spectrum is continuous. As in the case of the free particle, where
the spectrum was also continuous, the eigenfunctions are not normalizable. Note
however that they are orthogonal as in the case of the infinite square well energy
eigenfunctions. Later on, we shall see that they are normalizable in a generalized
sense and their orthonormality is expressible in terms of a delta function. This is a
general property of the continuous part of the spectrum, namely, that the continuum
eigenfunctions are “delta function-normalizable”.

Example 3.2 (Particle incident on an increasing potential) A particle of mass m
and energy E > 0 is moving in one dimension under the influence of the potential
V (x) = �(x) g2x3. What is the reflection coefficient in this potential?

The wave function of the particle is

ψ(x) =
⎧
⎨

⎩

A eikx + B e−ikx (x ≤ 0)

ψ+(x) (x ≥ 0),
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where the function ψ+(x) is unknown. Nevertheless, since the potential is infinite at x → +∞, the
wave function has to vanish there, i.e., ψ+(+∞) = 0. For a stationary state the probability current
density is a constant (J ′(x) = 0) and we have total reflection

J (x < 0) = J (x > 0) = J (+∞) = 0 =⇒ Jinc + Jre f = 0 =⇒ R = −Jre f

Jinc
= 1 .

3.2.2 The Square Barrier

In the case of a particle that encounters a potential step of height V0 > E we saw
that the particle does not propagate in the classically forbidden region. What if this
region does not extend to infinity but it is of finite extent? Consider a particle moving
in the potential shown in Fig. 3.4. (V0 > 0)

V (x) =
⎧
⎨

⎩

0 (|x | > L)

V0 (|x | < L).

(3.55)

We are interested in the E < V0 case in which a classical particle incident from
the left would not be able to penetrate the barrier and move to the x > L region but
would be reflected back to x < −L . The Schroedinger equation has the form

ψ′′
E (x) =

⎧
⎨

⎩

−k2ψE (x) (|x | > L)

s2ψE (x) (|x | < L),

(3.56)

where

Fig. 3.4 Square barrier
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k2 = 2m

�2
E , s2 = 2m

�2
(V0 − E) . (3.57)

The corresponding solutions are

ψE (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A eikx + B e−ikx (x < −L)

C e−sx + D esx (−L < x < L)

F eikx + G e−ikx (x > L)

(3.58)

Without loss of generalitywemay assume incidence only from the left and setG = 0.
Continuity at x = −L and x = L gives us

Ae−ikL + BeikL = C esL + De−sL

ik
(

Ae−ikL − BeikL
) = −s

(
CesL − De−sL

)

Ce−sL + DesL = FeikL

−s
(
Ce−sL − DesL

) = ik FeikL .

(3.59)

This system of four equations can be solved to determine the four ratios B/A, C/A,

D/A, F/A. Of particular interest is the last ratio, since it gives as the transmission
coefficient

T = Jt

Ji
= |F |2

|A|2 . (3.60)

Any nonzero value for T means that the barrier is penetrated. This is in sharp contrast
to the classical case where such a penetration is not possible. This is the so-called
quantum tunneling effect.

Proceeding to solve the system (3.59)we subtract the two last equations and obtain
D = −C e−2sL(ik + s)/(ik − s). Then, canceling the B-term between the first two
equations and inserting D we obtain C/A = 2ik(ik − s)e−ikLesL/[e2sL(ik − s)2 −
e−2sL(ik − s)2]. Inserting these to one of the equations for F , we obtain after a little
algebra

F

A
= −2ikse−2iks

[
(s2 − k2) sinh(2sL) − 2iks cosh(2sL)

] . (3.61)

The resulting transmission coefficient is

T =
∣
∣
∣
∣

F

A

∣
∣
∣
∣

2

= 4s2k2

[
(s2 − k2)2 sinh2(2sL) + 4k2s2 cosh2(2sL)

]
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or

T =
⎡

⎣1 + sinh2
(
2β

√
1 − E/V0

)

4
(
1 − E

V0

)
E
V0

⎤

⎦

−1

where β ≡
√
2mV0L2

�2
. (3.62)

β is a parameter characterizing the height and the width of the barrier. For a very
large β >> (i.e., high and/or wide barrier) we have an exponential dependence

T ≈ 4
E

V0

(

1 − E

V0

)

e−4β
√
1−E/V0 . (3.63)

Note that according to the expression (3.62), in the limit of very slow particles, i.e.,
E → 0, transmission tends to zero, while reflection is total, as it would be expected
(E → 0 =⇒ T → 0, R → 1 ).

Example 3.3 (Infinite square well with a central square barrier) A particle of mass
m is trapped in a symmetric infinite square well of width 2L that has a symmetric
central square barrier of width L and height V0. Investigate the existence of even
energy eigenstates of energy E > V0.

Setting k2 = 2m E/�
2 and q2 = 2m(E − V0)/�

2 we have the following solution

V (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+∞ (x ≤ −L)

0 (−L < x < −L/2)

V0 (−L/2 < x < L/2)

0 (L/2 < x < L)

+∞ (x ≥ L)

=⇒ ψE (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

A cos(kx) + B sin(kx)

C cos(qx)

A cos(kx) − B sin(kx)

0

Continuity of ψE (x) and ψ′
E (x) at ±L and ±L/2 gives

A cos(kL/2) − B sin(kL/2) − C cos(q L/2) = 0

Ak sin(kL/2) + Bk cos(kL/2) − Cq sin(q L/2) = 0

A cos(kL) − B sin(kL) = 0.

In order to have a solution for this system of three linear equations, the corresponding determinant
of coefficients has to vanish, i.e.,
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

cos(kL/2) sin(kL/2) − cos(q L/2)

k sin(kL/2) k cos(kL/2) −Cq sin(q L/2)

cos(kL) − sin(kL) 0.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 =⇒ tan(kL/2) tan(q L/2) = k/q

Setting ξ = kL/2 and β2 = mV0L2/2�
2, the condition reads
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tan ξ tan
√

ξ2 − β2 = ξ
√

ξ2 − β2
.

Plotting both sides of this equation for ξ > β we see that there is always at least one point of

intersection and, therefore, at least one even solution.

3.2.3 The Square Well

What if instead of the repulsion by the barrier of the previous section, the particle
is subject to an attractive force? This is the case of a square well potential which is
shown in Fig. 3.5.

V (x) =
⎧
⎨

⎩

0 (|x | > L)

−V0 (|x | < L)

(V0 > 0). (3.64)

The case of positive energy for this potential has no major surprises apart from
the fact that even with an attractive force there is still nonzero reflection. In fact the
equations are identical to those of the square barrier, the only necessary replacement
being that of s → is. The resulting square well transmission coefficient is

T =
∣
∣
∣
∣

F

A

∣
∣
∣
∣

2

= 4s2k2

[−(s2 − k2)2 sin2(2sL) + 4k2s2 cos2(2sL)
] . (3.65)

Fig. 3.5 Square well
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Note now that there are very specific values of the incomingmomentum forwhich the
well is entirely transparent with total transmission T = 1 and no reflection R = 0.
These are the special values for which sin(2sL) = 0 or

En = −V0 + n2π2
�
2

8mL2
(n = ±1, ±2, . . . ) . (3.66)

Such resonance phenomena are familiar in optics.
What about the case of negative energies E < 0?We have remarked earlier that in

general there exist no physically acceptable solutions of the Schroedinger equation
for energies smaller than the minimum of the potential.5 Here the potential is either
zero or −V0. Therefore, negative energies should be bounded from below as

− V0 ≤ E ≤ 0 . (3.67)

The Schroedinger equation takes the form

ψ′′
E (x) =

⎧
⎨

⎩

κ2ψE (x) (|x | > L)

−q2ψE (x) (|x | < L)

(3.68)

in terms the parameters

κ2 = −2m

�2
E = 2m

�2
|E |, q2 = 2m

�2
(E + V0) . (3.69)

The solutions of (3.68) are

ψE (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A eκx (x < −L)

C cos(qx) + D sin(qx) (−L < x < L)

B e−κx (x > L).

(3.70)

We have dropped the unacceptable terms e−κx in the x < −L region and eκx in the
x > L region. Note also that instead of plane wave exponentials we have used sines
and cosines to express the solution in the intermediate region. Since the potential
has a definite parity, being even, it will be useful to classify our solutions in terms of
their parity profile. Thus, we can have an even solution (B = A, D = 0)

5For an analysis of the issue of bound states in general one-dimensional potentials see [2].
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ψ(+)
E (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A eκx (x < −L)

C cos(qx) (|x | < L)

A e−κx (x > L)

=
⎧
⎨

⎩

A e−κ|x | (|x | > L)

C cos(qx) (|x | < L)

(3.71)

and an odd solution (B = −A, C = 0)

ψ(−)
E (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A eκx (x < −L)

D sin(qx) (|x | < L)

−A e−κx (x > L).

(3.72)

We proceed to study first the even solution. Continuity at x = L gives

Ae−κL = C cos(q L)

−κA e−κL = −q C sin(q L)

=⇒ C

A
= e−κL

cos(q L)
= κe−κL

q sin(q L)
. (3.73)

We observe that in addition to the determination of the coefficient ratio we obtain
also a condition on the energy, namely

tan(q L) = κ

q
. (3.74)

Themeaning of this condition is that solutions in the interval−V0 < E < 0 can exist
only for special values of the energy that will be extracted from this equation. From
a mathematical point of view (3.74) is a transcendental equation combining trigono-
metric functions with irrational ones. One of the ways to solve such an equation is
to employ a graphical method. This the line we shall follow here.

Let’s introduce the variable ξ ≡ q L and the parameter β ≡
√

2mV0
�2 L2, the latter

representing the strength of the attractive potential, depending on its depth and extent.
In terms of them, we can rewrite (3.74) as

tan ξ =
√

β2

ξ2
− 1 . (3.75)

In Fig. 3.6. We have plotted both the right hand side and the left hand side (dotted
line) of (3.75), the existing solutions corresponding to their intersection points.

We see that there will always be at least one solution. The number of intersection
points and, therefore, the number of solutions depends on the parameter β. For β < π
there is only one solution. For π < β < 3π/2 there are three and so on. As a result,
we obtain a set of increasing discrete energy eigenvalues
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Fig. 3.6 Even bound state
solutions

E (+)
1 , E (+)

2 , E (+)
3 , . . . (3.76)

The corresponding eigenstates are called bound states due to the fact that the wave
functions are localized in the potential well, decreasing exponentially out of it and,
thus, representing particles essentially bound inside the well.

Next, we proceed to study the odd branch of solutions. Continuity at x = L gives

D

A
= − e−κL

sin(q L)
= κe−κL

q cos(q L)
(3.77)

and the odd-eigenvalues condition is

tan(q L) = −q

κ
. (3.78)

In terms of the variable ξ and parameter β this is written as

tan ξ = − 1
√

β2

ξ2
− 1

. (3.79)

Both sides of this equation are plotted in Fig. 3.7, the dotted lines corresponding to the
right hand side for two different values of the parameter β. The existing intersection
points correspond to the solutions.

We can see that for β < π/2 there is no intersection and therefore no solution.
For β > π/2 we can have at least one solution or more, depending on how large is
the potential strength parameter β. Thus, we obtain a hierarchy of odd bound state
eigenvalues

E (−)
1 , E (−)

2 , E (−)
3 , . . . (3.80)

Note that as the parity of adjacent eigenstates changes so does the hierarchy of the
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Fig. 3.7 Odd bound state
solutions

corresponding eigenvalues, namely

ψ(+)
1 ψ(−)

1 ψ(+)
2 ψ(−)

2 . . .

↓ ↓ ↓ ↓ . . .

E (+)
1 < E (−)

1 < E (+)
2 < E (−)

2 < . . .

(3.81)

The state of lowest energy (ground state) is always even. There is always at least
one bound state independently of how small is β. Note that the square well is an
example of an energy eigenvalue spectrum that is mixed, consisting of a continuum
of scattering states of energy 0 ≤ E < ∞ and a finite number of discrete bound
states of energies (3.81).

Example 3.4 (Square well with an infinite wall) Consider a particle in the presence
of the potential

V (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+∞ (x ≤ 0)

−V0 (0 < x < L)

0 (x > L).

(3.82)

Investigate the existence of bound states.

For energies −V0 < E < 0 the solution to the Schroedinger equation is

ψE (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 (x ≤ 0)

A cos(qx) + B sin(qx) (0 ≤ x ≤ L)

C e−κx (x ≥ L).

(3.83)

Continuity at x = 0 implies A = 0. Then, these solutions coincide with the odd bound state

solutions of the standard square well. Solutions exist provided 2mV0L2/

�
2 > π2.
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3.2.4 The Delta Function Potential

Consider a square barrier of a height inversely proportional to its width. To be specific
we take

V (x) =
⎧
⎨

⎩

λ
2ε (|x | < ε)

0 (|x | > ε).
(3.84)

In the limit ε → 0 we have a potential that is everywhere zero except the point x = 0
where it has an infinite strength. At the same time the integral of the potential is finite
and equal to λ ∫ +∞

−∞
dx V (x) =

∫ +ε

−ε

dx λ

(
1

2ε

)

= λ .

Therefore, the potential in that limit can be modeled in terms of the delta function6

V (x) = λ δ(x) . (3.85)

Let’s consider the time-independent Schroedinger equation for a particle of mass
m and energy E moving under the influence of the delta function potential (3.85)

− �
2

2m
ψ′′(x) + λ δ(x)ψ(x) = E ψ(x) . (3.86)

The fact that the potential is singular at x = 0 means that the second derivative of the
wave function, appearing in the Schroedinger equation, will not exist at that point
and therefore its first derivative will not be continuous. Of course, the wave function
itself must be continuous everywhere. Integrating the Schroedinger equation in the
vicinity of the origin we obtain

− �
2

2m

∫ +ε

−ε

dx ψ′′(x) + λ

∫ +ε

−ε

dx δ(x)ψ(x) = E
∫ +ε

−ε

dx ψ(x)

or

− �
2

2m

(
ψ′(ε) − ψ′(−ε)

) + λψ(0) = E (2ε)ψ(0) = 0

or, for ε → 0,

ψ′(ε) − ψ′(−ε) = 2mλ

�2
ψ(0) . (3.87)

This equation determines the discontinuity of the derivative of the wave function at
the point x = 0.

6See the section on Generalized Functions in the Mathematical Appendix.
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Scattering in the Delta Function Potential (E > 0). The solution of the
Schroedinger equation is

ψk(x) =
⎧
⎨

⎩

A eikx + B e−ikx (x ≤ 0)

C eikx (x ≥ 0)
(3.88)

where E = �
2k2/2m. Without loss of generality, we have chosen incidence from the

left. Continuity of the wave function at x = 0 gives

A + B = C . (3.89)

The discontinuity at x = 0 according to (3.87) gives

ikC − ik (A − B) = 2mλ

�2
C . (3.90)

From (3.89) and (3.90) we obtain

B
A = 1

−1+ ik�2
mλ

C
A = ik�

2

mλ

−1+ ik�2
mλ

(3.91)

Note that the above expressions are equally valid for repulsive (λ > 0) or attrac-
tive (λ < 0) potential. It is straightforward to obtain the reflection and transmission
coefficients

R = Jr
Ji

= |B|2
|A|2 = 1

1+
(

�2k
mλ

)2

T = Jt
Ji

= |C |2
|A|2 =

(
�
2k

mλ

)2

1+
(

�2k
mλ

)2 .

(3.92)

Before we move to the study of bound states it is not difficult to see that the
solution ψk(x) that we have obtained can also be written in the form

ψk(x) = A eikx + A

−1 + ik�2

mλ

eik|x | . (3.93)

In this form, the wave function is the superposition of an incident plane wave eikx

and a scattered wave eik|x | propagating in both available directions. The coefficient
of the scattered wave corresponds to the so-called scattering amplitude

f (k) = 1

−1 + ik�2

mλ

. (3.94)
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Bound States of the Delta Function Potential (E < 0). Solutions with E < 0
exist only in the case of an attractive potential, namely for λ < 0. These are

ψb(x) =
⎧
⎨

⎩

A eκx (x < 0)

A e−κx (x > 0),
(3.95)

where

E = −�
2κ2

2m
< 0 . (3.96)

Equation (3.95) is written compactly as

ψb(x) = A e−κ|x | . (3.97)

The discontinuity at x = 0 reads

−κ A − κ A = 2mλ

�2
A

or

κ = m|λ|
�2

. (3.98)

Thus, there is one bound state of energy

Eb = −mλ2

2�2
. (3.99)

The coefficient of the wave function is determined by its normalization to be

∫ +∞

−∞
dx A2 e−2κ|x | = 1 =⇒ A = √

κ

and, finally the bound state wave function is

ψb(x) = √
κ e−κ|x | =

√
m|λ|
�2

e
−
√

m|λ|
�2 |x |

. (3.100)

Let’s return briefly to the scattering amplitude previously considered to note a peculiar
property. The scattering amplitude, considered as a function of the wave number
taking values in the complex k-plane, is written as

f (k) = mλ

i�2
(
k − kp

) , (3.101)
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where

kp = i
m|λ|
�2

.

Therefore, it has a pole at kp along the imaginary axis or, equivalently, at the negative
energy

E p = �
2k2

p

2m
= −mλ2

2�2
,

which is exactly the value of the bound state energy. This is a general property and
can be stated as follows: “The bound states correspond to poles of the scattering
amplitude considered in the complex k-plane.”

Closing this subsection, we briefly comment on the orthonormality and complete-
ness of the energy eigenfunctions, having repeatedly emphasized that the energy
eigenfunctions should be automatically orthogonal and complete. The orthogonal-
ity of the scattering eigenfunctions is promoted to orthonormality by adjusting the
coefficient A(k) through the orthonormality and completeness relations

⎧
⎨

⎩

∫ +∞
−∞ dx ψ∗

k (x)ψk ′(x) = δ(k − k ′)

∫ +∞
−∞ dx ψ∗

k (x)ψb(x) = 0
(orthonormality) (3.102)

∫ +∞

−∞
dk ψk(x)ψ∗

k (x ′) + ψb(x)ψb(x ′) = δ(x − x ′) (completeness). (3.103)

These can be verified explicitly.

Example 3.5 (Orthogonality of bound state and scattering eigenfunctions) Verify
explicitly that the bound state wave function is orthogonal to the scattering wave
functions.

We need to prove that
∫

dx ψk(x)ψb(x) = 0. We have

∫ +∞

−∞
dx

(
eikx + f (k)eik|x |) e−κ|x | =

∫ +∞

0
dx (1 + f (k)) e−(κ−ik)x

+
∫ 0

−∞
dx

(
e(ik+κ)x + f (k) e(−ik+κ)x

)
= 1 + 2 f (k)

κ − ik
+ 1

κ + ik
.

Noting that f (k) = 1

−1−i k�2
m|λ|

= − κ
κ+ik , we obtain

∫

dx ψk(x)ψb(x) = A
√

κ

(
1 − 2κ

κ+ik

κ − ik
+ 1

κ + ik

)

= A
√

κ

(
ik − κ

κ2 + k2
+ 1

κ + ik

)

= 0 .
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Example 3.6 (Potential step with delta function spike at the edge) Consider a poten-
tial step with a delta function at its edge, i.e., V (x) = V0�(x) + λ δ(x) and calcu-
late the reflection coefficient.

We have

ψ(x) =
⎧
⎨

⎩

eikx + Be−ikx (x < 0)

C eiqx (x > 0)
(3.104)

with E = �
2k2
2m , E − V0 = �

2q2

2m . The discontinuity of the derivative at x = 0 gives

ψ′(+0) − ψ′(−0) − 2mλ

�2
ψ(0) = 0 =⇒ iqC − ik(1 − B) − 2mλ

�2
C = 0

while the continuity of the wave function gives just 1 + B = C . Solving for B we obtain

= −
(

2mλ
�2 − i(q − k)

2mλ
�2 − i(q + k)

)

=⇒ R = |B|2 =
(
2mλ
�2

)2 + (q − k)2

(
2mλ
�2

)2 + (q + k)2
. (3.105)

Example 3.7 (Delta function potential next to an infinite wall) A particle is subject
to the potential

V (x) =
⎧
⎨

⎩

+∞ (x < 0)

−�
2g2

2m δ(x − a) (x > 0).
(3.106)

Investigate whether there are bound states (E < 0).

The wave function of energy E = − �
2κ2

2m < 0 is

ψ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 (x ≤ 0)

A sinh(κx) (0 ≤ x ≤ a)

B e−κx (x ≥ a)

(3.107)

The discontinuity/continuity relations at x = a are

κBe−κa + Aκ cosh(κa) = g2Be−κa

A sinh(κa) = Be−κa
=⇒ B

A
= cosh(κa)

g2

κ − 1
eκa = sinh(κa)eκa .

The energy eigenvalue condition can be written as (ξ = κa)

tanh ξ = 1
ag2

ξ − 1
. (3.108)

It is not difficult to see that the right and left hand sides plotted together intersect if g2a > 1, i.e.,

for a sufficiently attractive delta function potential there is one bound state.
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Example 3.8 (Infinite square well with an attractive delta function at its center) A
particle of mass m is trapped in a symmetric infinite square well of width 2L that
has an attractive delta function potential at its center V (x) = −�

2g2

2m δ(x). Investigate
the existence of even energy eigenstates.

We have

ψE (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 (x ≤ −L)

A cos(kx) + B sin(kx) (−L ≤ x ≤ 0)

C cos(kx) − D sin(kx) (0 ≤ x ≤ L)

0 (x ≥ L).

(3.109)

Evenness ψE (−x) = ψE (x) and continuity of ψE (x) at x = 0 implies C = A, D = B. The dis-

continuity of ψ′
E (x) at x = 0 gives B = g2

2k A. Therefore, we have

ψE (x) = A

(

cos(kx) − g2

2k
sin(k|x |)

)

. (3.110)

The condition ψE (±L) = 0 at the edges gives

tan(kL) = 2ka

g2a
, (3.111)

which always has solutions.

3.2.5 Scattering by Two Delta Functions and Resonances

Consider a particle moving in a potential of two repulsive delta function barriers at
x = −a and x = +a

V (x) = �
2g

2m
( δ(x + a) + δ(x − a) ) . (3.112)

The coupling strength of the potential has been suitably parametrized as �
2g/2m.

The resulting Schroedinger equation is

− ψ′′
k (x) + g δ(x + a)ψk(−a) + g δ(x − a)ψk(a) = k2 ψk(x) (3.113)

with E = �
2k2/2m. The discontinuity at x = −a is obtained by integrating the

Schroedinger equation in the interval [−a − ε,−a + ε] with ε → 0, where, apart
from the second derivative term, only the delta function contributes in this range.
Analogously, for the discontinuity at x = a, we integrate in the interval [a − ε, a +
ε]. We obtain the conditions
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ψ′
k(−a + ε) − ψ′

k(−a − ε) − gψk(−a) = 0

ψ′
k(a + ε) − ψ′

k(a − ε) − gψk(a) = 0.
(3.114)

The solution is everywhere a combination of plane waves e±ikx

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A eikx + B e−ikx (x < −a)

C eikx + D e−ikx (−a < x < a)

F eikx (x > a).

(3.115)

Without loss of generality, we have assumed incidence only from the left. The con-
tinuity/discontinuity equations are

Aξ−1 + Bξ = Cξ−1 + Dξ

ik(Cξ−1 − Dξ) − ik(Aξ−1 − Bξ)
= g(Cξ−1 + Dξ)

Fξ = Cξ + Dξ−1

ik Fξ − ik(Cξ − Dξ−1)

= g(Cξ + Dξ−1)

=⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aξ−1 + Bξ = Cξ−1 + Dξ

Aξ−1 − Bξ = (
1 + i g

k

)
Cξ−1 − (

1 − i g
k

)
Dξ

Fξ = Cξ + Dξ−1

Fξ = (
1 − i g

k

)
Cξ + (−1 − i g

k

)
Dξ−1,

where we have set ξ = eika . Subtracting the last two equations we obtain

D = − ig

k

Cξ2
(
2 + ig

k

) .

Canceling B among the first two equations and substituting D we get

C

A
= 2

(
2 + i g

k

)

[(
2 + i g

k

)2 + g2

k2 ξ
4
] =⇒ F

A
= 1

[(
1 + i g

2k

)2 + g2

4k2 e4ika
] . (3.116)

From this, we get the transmission coefficient

T =
[

1 + g2

k2

(
cos(2ka) + g

2k
sin(2ka)

)2
]−1

. (3.117)

Total transmission (resonances), corresponding to the condition T = 1, is satisfied
if

tan(2ka) = −2ka

ga
. (3.118)
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Fig. 3.8 Graphical solution
of two delta function
resonances

In Fig. 3.8. we have a common plot of the right and left hand sides of this equation
showing that there is always an intersection point and therefore an energy value
corresponding to a resonance.

Note that the amplitude F/A for very large g → ∞, corresponding to impene-
trable delta functions, has the form

F

A
≈ 4k2/g2

e4ika − 1
, (3.119)

exhibiting poles at kn = nπ/2a associatedwith energies which are exactly the energy
levels of the infinite square well. Note also that for large coupling g the condition
(3.118) is satisfied for

k ≈ π

a
− π

ga2
+ O(1/g2) . (3.120)

Problems and Exercises

3.1 Particles of mass m and energy E are incident from the left on the potential step
V (x) = −�(x)V0 with V0 > 0. Calculate the reflection coefficient.

3.2 Consider a particle of mass m and energy E > V0 > 0 incident on the potential
step V (x) = �(x)V0. Calculate the reflection coefficient for incidence from the right
and for incidence from the left and compare the results.

3.3 Consider the asymmetric square well

V (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V1 (x < 0)

−V0 (0 < x < L)

0 (x > L)
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with V1 and V0 positive. Investigate the existence of bound states.

3.4 A particle trapped in an infinite square well of width [−2L , 2L] has initially
(t = 0) a wave function7

ψ(x, 0) =
⎧
⎨

⎩

1√
L
cos(πx/2L) (|x | ≤ L)

0 (L ≤ |x | ≤ 2L).

Calculate the probability to find the system in its ground state.

3.5 Verify explicitly the orthogonality of the energy eigenfunctions8 of the potential
step V (x) = �(x)V0

∫ +∞

−∞
dx ψ∗

E (x)ψE ′(x) = 0 (E = E ′) .

3.6 A particle of mass m is trapped in an infinite square well of width [−L , L]. The
particle is initially (t = 0) in a state with wave function

ψ(x, 0) = 1√
2

(ψN (x) + i ψN+1(x) ) ,

where ψn(x) is the energy eigenfunction corresponding to energy En . Find the wave
function of the particle at times t > 0. Calculate the probability to find the particle in
the initial state at time t > 0.What is theminimum time that this probability becomes
one? Calculate the probability to find the particle at time t > 0 in the orthogonal state

ψ(⊥)(x) = 1√
2

( ψN (x) − iψN+1(x) ) .

3.7 A particle of mass m and energy E > 0 is incident from the right on a potential
step V (x) = −V0�(−x) with V0 > 0. What is the value of the ratio E/V0 if the
reflection coefficient is 1/4?

3.8 A particle of mass m is bound in a potential

V (x) =
⎧
⎨

⎩

+∞ (x ≤ 0)

−�
2g2

2m δ(x − a) (x > 0).

Calculate the probability to find the particle in the region a ≤ x < ∞.

7Such a situation can occur if a particle occupies the ground state of an infinite square well of width
[−L , L] and suddenly (in a time interval τ much smaller than the characteristic time of the system,
i.e., τ << 8mL2/�π2) the walls of the well move so that the width gets doubled.
8You may assume the regularization limx→∞ ei k x = limε→0 limx→∞ ei(x+iε)k = 0.



3.2 Piecewise Constant Potentials 61

3.9 A particle moves in the potential V (x) = g2 |x |. If the particle is in a state with
wave function

ψ(x) = N x e−α x2
,

where N , α > 0 are known parameters, calculate the probability to find the particle
in the ground state ψ0(x) of the energy. The exact form of ψ0(x) is not necessary.

3.10 Consider a particle moving in the potential of two attractive delta functions

V (x) = −�
2g2

2m
( δ(x + a) + δ(x − a) ) .

Investigate the existence of bound states (E < 0).

References

1. A. Messiah, Quantum Mechanics (Dover publications, Mineola, 1958). Single-volume reprint
of the John Wiley & Sons, New York, two-volume 1958 edition

2. F. Levin, An Introduction to Quantum Theory (Cambridge University Press, Cambridge, 2002)



Chapter 4
Physical Observables as Operators

4.1 Physical Quantities and Operators

In our discussion of the system of a quantum particle, we have mostly concentrated
on its wave function, i.e., its probability distribution in space. This is not the only
quantity of interest that may arise in the description of a physical system. Other
physical observables are also important as for example the energy of the system or
its momenta. The correspondence of each of these observables to measurements on
the system is not as straightforward as in classical physics. Nevertheless, since the
description of any quantum system is bound to be probabilistic, general concepts
like the “average” or “expectation values” of the various physical observables of
the system, central to probabilities, are of particular importance.

Consider such a physical quantity A and assume that it is subject to measurements
with outcome a set of values { α1, α2, . . . , αi , . . . , αN }. Its “average value” is
defined as

〈A〉 =
∑

i

αi Pi , (4.1)

where Pi is the probability of each value.1 Let us now apply the above definition
in the simple system of a particle moving in one dimension. Since |ψ(x, t)|2 is
the probability density to find the particle at a point x , the “average value” or
“expectation value” of the position will be given by the expression

〈x〉 =
∫ +∞

−∞
dx x |ψ(x, t)|2 , (4.2)

which is the analogue of (4.1) in the case of a variable that takes continuous values.

1See the section on Probability in the Mathematical Appendix.
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Assume now that the particle is free. Recall that the probability amplitude to find
the particle at x having momentum p is ei(xp−Et)/�/

√
2π�. Therefore, as we have

discussed earlier, the function g(p, t) = g(p)e−i Et/� in the Fourier transformation

ψ(x, t) =
∫ +∞

−∞
dp√
2π�

e
i
�

(xp−Et) g(p)

stands for the probability amplitude density to find the particle with momentum p,
or in other words its “momentum space wave function”. We shall assume that the
Fourier transform g(p, t) given by

ψ(x, t) =
∫ +∞

−∞
dp√
2π�

e
i
�
xp g(p, t) and g(p, t) =

∫ +∞

−∞
dx√
2π�

e− i
�
xpψ(x, t)

(4.3)
has the same interpretation in the general case of an interacting particle as well. In
terms of this, the corresponding expectation value of the momentum will be supplied
by the analogous expression in terms of themomentum probability density |g(p, t)|2
as

〈p〉 =
∫ +∞

−∞
dp p |g(p, t)|2 . (4.4)

Substituting the Fourier expression for g(p, t) and making use of the integral expres-
sion and the properties of the delta function,2 we obtain

〈p〉 = ∫
dx

∫
dx ′ ψ∗(x, t)ψ(x ′, t)

∫ dp
2π�

p e
i
�

(x−x ′)p

= ∫
dx

∫
dx ′ ψ∗(x, t)ψ(x ′, t)

∫ dp
2π�

(−i� ∂
∂x

)
e

i
�

(x−x ′)p

= ∫
dx ψ∗(x, t)

(−i� ∂
∂x

) ∫
dx ′ ψ(x ′, t) δ(x − x ′)

or

〈p〉 =
∫ +∞

−∞
dx ψ∗(x, t)

(
−i�

∂

∂x

)
ψ(x, t) . (4.5)

This is the same type of expression like the one we encountered for the position
expectation value with the place of the momentum taken by the operator −i� ∂

∂x or

p → p̂ = −i�
∂

∂x
. (4.6)

Recall thatwemade an analogous correspondence in order to obtain the Schroedinger
equation from the classical Hamiltonian. In contrast to momentum, the position
operator acts as an ordinary number on the position wave function, the position
expectation value being just

2See the section on Generalized Functions in the Mathematical Appendix.
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〈x〉 =
∫ +∞

−∞
dx ψ∗(x, t) x ψ(x, t) . (4.7)

Note that themost important difference of operators to ordinary numbers is the fact
that they do not commute. Since operators do not commute in general, an important
quantity for operators is the commutator of two operators, defined as

[
Â, B̂

]
≡ Â B̂ − B̂ Â . (4.8)

Of fundamental importance is the commutator of position and momentum, which
turns out to be [

x̂, p̂
] = i� . (4.9)

All these can be carried over to three dimensional motion as

r, p → r, −i�∇ . (4.10)

The corresponding commutation relations are
[
x̂i , x̂ j

] = [
p̂i , p̂ j

] = 0

[
x̂i , p̂ j

] = i�δi j .
(4.11)

These commutation relations are fundamental and go by the name Canonical Com-
mutation Relations.

Themathematical concept of operators is not restricted to position andmomentum
but will cover all other physical observables, as for example the energy, angular
momenum and others. Thus, the expectation value of a physical quantity represented
by an operator Â will be defined as in the case of (4.5) and (4.7) according to

〈A〉 =
∫

dx ψ∗(x) Âψ(x) . (4.12)

In case the wave function is not normalized to unity, the above definition generalizes
to

〈A〉 =
∫
dx ψ∗(x) Âψ(x)∫

dx |ψ(x)|2 . (4.13)

4.2 Eigenvalues and Eigenfunctions

Consider the wave function of a free particle moving in one dimension with a definite
momentum p

ψp(x) = e
i
�
px

√
2π�

. (4.14)
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We have dropped the time variable, assuming that our considerations take place at a
given instant in time, set to be t = 0. Acting on (4.14) with the momentum operator
we obtain

p̂ ψp(x) = −i�
∂ψp

∂x
= p ψp(x)

or
p̂ ψp(x) = p ψp(x) . (4.15)

Thus, it is evident that the momentum operator, acting on wave functions of definite
momentum, behaves just as a number. The wave functions of definite momentum
(plane waves) are referred to as the eigenfunctions of the momentum operator and
the corresponding momentum values that are produced upon acting on them by it
are called the momentum eigenvalues.3

In fact, this is a particular example of a general situation. For every operator
Â there is always a particular set of functions upon which the operator acts as an
ordinary number. These are the eigenfunctions4 ψa(x) of the operator

Âψa(x) = a ψa(x) , (4.16)

while a are the eigenvalues of the operator. The full set { a } of eigenvalues is called
the spectrum of the operator. The spectrum of an operator can be continuous or
discrete (or mixed). For example, the spectrum of the energy operator for a particle
trapped in the infinite square well is discrete, labeled by an integer. In contrast, the
energy spectrum of a particle moving in the presence of a finite square well consists
of a discrete part of negative energy eigenvalues (bound states) and a continuum of
positive energy eigenvalues (scattering states).

The eigenvalues of an operator can be degenerate if more than one eigenfunctions
correspond to the same eigenvalue. As an example, we may consider the energy
operator (Hamiltonian) of a free particle

Ĥ = p̂2

2m
. (4.17)

Note that the momentum eigenfunctions (4.14) ψp(x) and ψ−p(x) correspond to one

and the same energy eigenvalue E = p2

2m

Ĥψp = Eψp, Ĥψ−p = Eψ−p . (4.18)

3General considerations on the eigenvalue problem of operators acting on square-integral functions
can be found in books on Mathematical Methods, like Jackson [1], Mathews and Walker [2],
Arfken et al. [3], Dennery and Krzywicki [4] as well as in standard QM textbooks like Messiah [5],
Merzbacher [6], Levin [7].
4Sometimes we will be using also the terms eigenvector or eigenstate instead of eigenfunction. The
three terms are entirely equivalent at this level of discussion. A precise meaning to the terms vector
or state vector will be given when we shall be discussing the Hilbert space of states.
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In fact, any linear combination αψp + βψ−p is an eigenfunction of the energy with
eigenvalue E . Note that this degeneracy is associated with the physical equivalence
of motion toward the right and motion toward the left in free space.

4.3 Hermitian Conjugation and Hermitian Operators

Given an operator Â and any two (square-integrable) wave functions, we may con-
struct the complex number

∫
dx ψ∗

1(x) Âψ2(x) ,

which is refered to as amatrix element of the operator between these wave functions.
Consider now an operator Â†, in general different than Â, defined by the relation

∫
dx ψ∗

1(x) Â† ψ2(x) =
(∫

dx ψ∗
2 Âψ1(x)

)∗
. (4.19)

The operator Â† is called the Hermitian conjugate or Hermitian adjoint of Â.
For example, the Hermitian conjugate of the derivative operator d

dx is the opera-

tor
(

d
dx

)† = − d
dx . This can be easily shown. Applying the definition (4.19), we

obtain ∫
dx ψ∗

1

(
d

dx

)†

ψ2 =
(∫

dxψ∗
2ψ

′
1

)∗
=

∫
dx ψ2ψ

′
1
∗

=
∫

dx
(
(ψ2ψ

∗
1)

′ − ψ2ψ1
) = −

∫
dx ψ∗

1ψ
′
2 =

∫
dx ψ∗

1

(
− d

dx

)
ψ2 ,

using the fact that
∫∞
−∞ dx

(
ψ2ψ

∗
1

)′ = ψ2ψ
∗
1

∣∣∞−∞ = 0, since ψ1,2(±∞) = 0.
A special subset of operators are those which are equal to their Hermitian adjoints,

i.e., those that have the property

Â† = Â =⇒
∫

dx ψ∗
1(x) Âψ2(x) =

(∫
dx ψ∗

2 Âψ1(x)

)∗
. (4.20)

Such operators are called self-conjugate or self-adjoint or, simply, just, Hermitian.
An obvious example of a nontrivial Hermitian operator is the momentum operator

(
−i�

∂

∂x

)†

= −i�
∂

∂x
. (4.21)
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Applying the definition of Hermitian conjugation (4.19) on the expectation value
of an operator A, we deduce that the expectation value of the Hermitian conjugate
A† equals the complex conjugate of A, namely

〈A†〉 =
∫
dx ψ∗(x)Â†ψ(x)∫

dx |ψ(x)|2 =
(∫

dx ψ∗(x)Âψ(x)
)∗

∫
dx |ψ(x)|2 (4.22)

or
〈A†〉 = 〈A〉∗ . (4.23)

Thus, on account of (4.23) Hermitian operators have real expectation values

A† = A =⇒ 〈A〉∗ = 〈A〉 . (4.24)

It should be noted that the reality of expectation values, singles out Hermitian oper-
ators for the representation of physical observables, since only real numbers can
meaningfully result from experiment and real measurements will necessarily have
real averages.

Apart from the reality of expectation values, Hermitian operators have two very
important properties, namely [1–4]

(1) Hermitian operators have real eigenvalues
(2) Eigenfunctions of a Hermitian operator, corresponding to different eigenval-

ues, are orthogonal to each other, in the sense

∫
dx ψ∗

α(x)ψα′(x) = 0 (α �= α′) .

We proceed to prove each of these properties.
Starting with the eigenvalue conditions for two arbitrary eigenfunctions

Âψα = αψα, Âψα′ = α′ψα

and the hermiticity definition

∫
dx ψ∗

α′Âψα =
(∫

dx ψ∗
αÂψα′

)∗

we obtain

α

∫
dx ψα′ ∗ψα = α′∗

∫
dx ψ∗

α′ψα =⇒ (
α − α′∗)

∫
dx ψ∗

α′ψα = 0 . (4.25)

In case that the two eigenvalues coincide,5 the last relation reads

5For simplicity, we assume that there is no degeneracy.
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(
α − α∗)

∫
dx |ψα(x)|2 = 0 .

Since
∫ +∞
−∞ dx |ψα(x)|2 > 0, necessarily6 the eigenvalues must be real

α = α∗ ∀α . (4.26)

Returning to (4.25) we have, for α �= α′

(
α − α′)

∫
dx ψ∗

α′ψα = 0 .

This necessarily implies that

∫ +∞

−∞
dx ψ∗

α(x)ψα′(x) = 0 ∀α �= α′ . (4.27)

This is the so-called orthogonality condition. The underlying physicalmeaning of the
orthonality property is that for a wave function that is a superposition of orthogonal
eigenfunctions

ψ(x) = ψα(x) + ψα′(x) ,

the corresponding probability

Pα∪α′ =
∫

dx |ψα(x)|2 +
∫

dx |ψα′ (x)|2 +
∫

dx ψ∗
α(x)ψα′ (x) +

∫
dx ψ∗

α′ (x)ψα(x)

will be just the sum of the probabilities for each eigenfunction

Pα∪α′ = Pα + Pα′ ,

signifying that the two alternatives are independent. Thus, no interference pattern
can arise between the alternatives that are represented by each of the orthogonal
eigenfunctions.

If the eigenfunctions ψα(x) are normalizable, i.e., if we can write

∫ +∞

−∞
dx ψ∗

α(x)ψα(x) = 1 ,

we may promote (4.27) into an orthonormality condition

∫ +∞

−∞
dx ψ∗

α(x)ψα′(x) = δαα′ . (4.28)

6The integral
∫
dx |ψα|2 cannot be zero, since thiswould correspond to awave function that vanishes

everywhere, i.e., an empty system.
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In the case of a continuous spectrum, for which the eigenfunctions are not normal-
izable, the orthonormality condition is expressed in terms of the delta function as

∫ +∞

−∞
dx ψ∗

α(x)ψα′(x) = δ(α − α′) . (4.29)

In addition to the above proven properties of orthonormality of the eigenfunctions
and of the reality of eigenvalues of a Hermitian operator, there is a third important
property stated as follows [1–4]:

(3) The eigenfunctions of a Hermitian operator form a complete set of functions
in terms of which any square-integrable function can be expanded.

Thus, any function �(x) can be expanded as

�(x) =
∑

α

Cα ψα(x) , (4.30)

in terms of calculable coefficients Cα. As a substitute for a rigorous proof we may
proceed to determine the expansion coefficients in (4.30) in the following fashion.We
multiply (4.30) with the complex conjugate of an arbitrary eigenfunction, integrate

∫
dx ψ∗

β(x)�(x) =
∑

α

Cα

∫
dx ψ∗

β(x)ψα(x) =
∑

α

Cα δβα = Cβ

and, using orthonormality, we conclude

Cβ =
∫

dx ψ∗
β(x)�(x) . (4.31)

This property is referred to as completeness and stated as

�(x) =
∑

α

Cα ψα(x) with Cα =
∫

dx ψ∗
α(x)�(x) . (4.32)

In the case of a continuous spectrum, the completeness of the set of eigenfunctions
is expressed as

�(x) =
∫

dαC(α)ψα(x), with C(α) =
∫

dx ψ∗
α(x)�(x) . (4.33)

An alternative mathematical statement of the completeness can be obtained as fol-
lows:

�(x) =
∑

α

Cαψα =
∑

α

(∫
dx ′ ψ∗

α(x ′)�(x ′)
)

ψα(x) =
∫

dx ′
(
∑

α

ψα(x)ψ∗
α(x ′)

)
�(x ′)
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or ∑

α

ψα(x)ψ∗
α(x ′) = δ(x − x ′) . (4.34)

For a continuous spectrum this property is written as

∫
dα ψα(x)ψ∗

α(x ′) = δ(x − x ′) . (4.35)

4.4 Physical Observables

Let us consider a Hermitian operator Â and its orthonormal and complete set of
eigenfunctionsψα and real eigenvaluesα. The expectation value of Â for an arbitrary
(square-integrable) wave function ψ(x) will be

〈A〉 =
∫
dx ψ∗(x)Âψ(x)∫

dx |ψ(x)|2 , (4.36)

allowing for the case that ψ(x) is not normalized. As we showed earlier the expec-
tation value of a Hermitian operator is a real number.

Let us now expand the wave function ψ(x) in terms of the complete set of eigen-
functions of Â

ψ(x) =
∑

α

Cαψα(x). (4.37)

Substituting (4.37) in (4.36) we obtain

〈A〉 =
∫
dx

∑
α,α′ C∗

αCα′ψ∗
α(x)Âψα′(x)

∫
dx

∑
α,α′ C∗

αCα′ψ∗
α(x)ψα′(x)

=
∑

α,α′ C∗
αCα′α′ ∫ dx ψ∗

α(x)ψα′(x)
∑

α,α′ C∗
αCα′

∫
dx ψ∗

α(x)ψα′(x)

or, using the orthonormality of ψα,

〈A〉 =
∑

α |Cα|2α∑
α′ |Cα′ |2 . (4.38)

The expectation value 〈A〉 is manifestly real since the eigenvalues α are real. The
expansion coefficients are determined in terms of the wave function as (see (4.33))

Cα =
∫

dx ψ∗
α(x)ψ(x) . (4.39)

For a normalized wave function the sum
∑

α |Cα|2 equals unity. In any case the
number |Cα|2/∑α′ |Cα′ |2 corresponds to the probability of each eigenvalue α.
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Measurements of various physical quantities like the position or the momentum
of a particle come out as real numbers. The operators that represent these quantities
at the quantum level should necessarily lead to real eigenvalues and, therefore, real
expectation values. This is always satisfied if these operators are Hermitian. Thus,
physical observables should correspond to Hermitian operators. Furthermore, as
the expression (4.38) clearly indicates, the expectation values of these observables
are entirely determined by the eigenvalues and the relative frequency (probability)
with which these eigenvalues show up. In fact, the eigenvalues are the only possible
outcomes ofmeasurement. Thiswill be further clarified in our discussion on quantum
measurements. From now on the term “physical observable” will rigorously refer
to a quantity represented by a Hermitian operator [5–7].

4.5 Uncertainty

It is an outcome of Statistics that for a large number of measurements of a quantity A
themean or average value 〈A〉 coincides with themost probable value. Nevertheless,
very often two different series of measurements with the same average value differ
in their spread of values around the mean value. This difference is depicted by higher
statistical moments. Of particular importance in the case of quantum probability
distributions is the so-called Standard Deviation �A defined as7

(�A)2 ≡ 〈 (A − 〈A〉)2 〉 . (4.40)

Larger values of (�A) correspond to a greater spread of individual measurements
and, thus, greater uncertainty as to where any subsequent measurement would lie.
Thus, (�A) is ameasure of theUncertainty in the distributionof a physical observable
and is often referred to by this name.

Expanding the square in the average value we have

(�A)2 = 〈 ( A2 + 〈A〉2 − 2A〈A〉 ) 〉 = 〈A2〉 + 〈A〉2 − 2〈A〉 〈A〉 ,

giving the alternative expression for (�A)

(�A)2 = 〈A2〉 − 〈A〉2 . (4.41)

For a quantum system characterized by a normalized wave function ψ(x) and
a physical quantity A represented by a Hermitian operator Â, the above definition
reads

(�A)2 =
∫

dx ψ∗(x) Â2ψ(x) −
(∫

dx ψ∗(x) Âψ(x)

)2

. (4.42)

7See the section on Probability in the Mathematical Appendix.
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Note that if the system occupies an eigenstate ψα of the physical quantity at hand,
the corresponding uncertainty vanishes, namely

(�A)2 =
∫

dxψ∗
αα2ψα −

(∫
dxψ∗

ααψα

)2

= 0 .

Thus, in away,when a system is in an eigenstate of a particular physical observable A,
a precise value can be assigned to this quantity, namely, the corresponding eigenvalue
α, in contrast to the case of a general wave function for which no particular value
can be assigned to it but only a distribution of values.

Example 4.1 (A Gaussian wave packet) As an example, we may consider the case
of a free particle with a Gaussian wave function (1.42) discussed previously

ψ(x) =
(
2α

π

)1/4

e−αx2 (4.43)

and compute the uncertainty in the position x using the definition (4.40) or (4.41).

First, note that the expectation value of the position vanishes, namely,

〈x〉 =
√
2α

π

∫ +∞

−∞
dx x e−2αx2 = 0 , (4.44)

since the integrand is odd and integrated over all space gives zero. Then, we have

(�x)2 = 〈x2〉 =
√
2α

π

∫ +∞

−∞
dx x2 e−2αx2 = · · · = 1

4α
. (4.45)

The corresponding uncertainty for themomentumcan also be computed in a straightforward fashion.
Note that the average momentum vanishes. This is easily seen either as a result of oddness of the
integrand or as a result of the fact that the wave function is real

〈p〉 = −i�
∫ +∞

−∞
dx ψ(x)ψ′(x) = − i�

2

∫ +∞

−∞
dx

dψ2

dx
= − i�

2
ψ2(x)

∣∣∣
+∞
−∞ = 0 ,

since a square-integrable wave function should vanish at infinity. Next, we proceed to compute 〈p2〉
and have

(�p)2 = 〈p2〉 = −�
2
∫ +∞

−∞
dx ψ(x)

∂2

∂x2
ψ(x) = −�

2

√
2α

π

∫ +∞

−∞
dx(4α2x2 − 2α)e−2αx2

or
(�p)2 = −4α2

�
2〈x2〉 + 2α�

2 = �
2α . (4.46)

The product of the uncertainties is

(�x)2(�p)2 = �
2/4 (4.47)

and it is independent of α. This result is in agreement with the Heisenberg Uncertainty Relation
between position and momentum

(�x)(�p) ≥ �

2
. (4.48)
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The fact that in our particular case we got an equality instead of inequality, simply signifies that the

wave function chosen in our example corresponds to a minimal uncertainty wave packet.

4.6 The Heisenberg Inequality

In this section, we shall give a general proof of the Heisenberg Inequality between
the position and momentum. For an arbitrary normalized wave function ψ(x)we can
always introduce the shifted operators

p̂′ = p̂ − 〈p〉, x̂ ′ = x̂ − 〈x〉, (4.49)

which, since themean values are real, are Hermitian aswell. In addition, we introduce
also the functions

χ = x̂ ′ψ, φ = p̂′ψ , (4.50)

simply corresponding to χ(x) = (x − 〈x〉)ψ(x) and φ(x) = −i�ψ′(x) − 〈p〉ψ(x).
These functions will also be square integrable.

Consider now the uncertainties (�x)2 and (�p)2. We have

(�x)2 = 〈(x − 〈x〉)2〉 = 〈x ′2〉 =
∫

dx ψ∗ x̂ ′2ψ

=
∫

dx ψ∗ x̂ ′χ =
(∫

dx χ∗ x̂ ′ψ
)∗

=
∫

dx |χ|2

and

(�p)2 = 〈(p − 〈p〉)2〉 = 〈p′2〉 =
∫

dx ψ∗ p̂′2ψ

=
∫

dx ψ∗ p̂′φ =
(∫

dx φ∗ p̂′ψ
)∗

=
∫

dx |φ|2

Next, we consider the Schwartz inequality that holds true for any two square-
integrable functions

(∫
dx |χ(x)|2

)(∫
dx |φ(x)|2

)
≥

∣∣∣∣
∫

dx χ∗(x)φ(x)

∣∣∣∣
2

. (4.51)

The left-hand side of this inequality is just the product (�x)2(�p)2. The right-hand
side is the absolute square of the complex number8

8We make use of the operator rules (AB)† = B†A†. For more, see the section on Operators in the
Mathematical Appendix.
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∫
dx

(
x̂ ′ψ

)∗
p̂′ψ =

(∫
dx ψ∗ p̂′ x̂ ′ψ

)∗
=

∫
dx ψ∗

(
p̂′ x̂ ′

)†
ψ

=
∫

dx ψ∗ x̂ ′ p̂′ψ = 1

2

∫
dx ψ∗

(
x̂ ′ p̂′ + p̂′ x̂ ′ + x̂ ′ p̂′ − p̂′ x̂ ′

)
ψ

= 1

2

∫
dx ψ∗

(
(x̂ ′ p̂′ +

(
x̂ ′ p̂′

)† )
ψ + 1

2

∫
dx ψ∗

[
x̂ ′, p̂′

]
ψ .

Since, [
x̂ ′, p̂′

]
= [

x̂, p̂
] = i� ,

the second term is just i�/2. The first term is a real number, since

∫
dx ψ∗

(
x̂ ′ p̂′

)†
ψ =

(∫
dx ψ∗ x̂ ′ p̂′ψ

)∗
.

Thus, the right-hand side has the form | i�2 + R|2, R being a real number depending
on ψ. Therefore, we have the inequality

(�x)2(�p)2 ≥
∣∣∣∣
i�

2
+ R

∣∣∣∣
2

≥ �
2

4

or

(�x)2(�p)2 ≥ �
2

4
. (4.52)

An analogous general inequality can be proven for any two observables Â, B̂
following the same steps. The result takes the form

(�A)2(�B)2 ≥ 1

4

∣∣∣
〈[

Â, B̂
]〉∣∣∣

2
. (4.53)

Example 4.2 Verify the validity of the Heisenberg inequality between position and
momentum for the energy eigenfunctions of the infinite square well.

Since |ψn(x)|2 is always even, the expectation value 〈x̂〉 vanishes due to the oddness of the inte-
grant. Similarly, 〈 p̂〉 = −i�

∫ +∞
−∞ dx ψ∗

n(x)ψ
′
n(x) = 0 due to the oddness of ψnψ

′
n . Thus, the cor-

responding uncertainties will be (�x)2n = 〈x̂2〉n, (�p)2 = 〈 p̂2〉n . We proceed to compute (�x)2

and have

〈x̂2〉n = 1

2L

∫ L

−L
dx x2

(
1 + (−1)n+1 cos(nπx/L)

)
.

The first term is integrated trivially and gives L2/3. The second term requires the integral

∫ L

−L
dx x2 cos(αx) = − ∂2

∂α2

∫ L

−L
dx cos(αx) = −2

∂2

∂α2

(
sin(αL)

α

)
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which for α = nπ/L gives just (−1)n4L3/(nπ)2. Therefore, we finally obtain (�x)2n
= L2

3

(
1 − 6

(nπ)2

)
. The momentum uncertainty is easier to obtain. We have (�p)2n = 2m〈H〉n =

2mEn = �
2(nπ)2

4L2 . Thus, the uncertainty product is

(�x)2n (�p)2n = �
2

4

(
n2π2

3
− 2

)
, (4.54)

which is in full agreement with Heisenberg’s inequality, since n2π2 > 9.

4.7 Commuting Observables

According to the Heisenberg Inequality proven in the previous section pairs of
commuting physical observables can have simultaneously vanishing uncertainties.
This ultimately means that these observables can be measured simultaneously with
complete accuracy. An obvious example is given by a particle moving in three-
dimensional space. Among its variables any of the triplets (x̂, p̂y, p̂z), (ŷ, p̂x , p̂z),
(ẑ, p̂x , p̂y), (x̂, ŷ, p̂z), (x̂, ẑ, p̂y), (ŷ, ẑ, p̂x ) and, of course (x̂, ŷ, ẑ), ( p̂x , p̂y, p̂z)
makeup sets of mutually commuting observables that are simultaneously measurable
with complete accuracy. In what follows we shall show that, if two such quantities
commute, it follows that they possess common eigenfunctions. Also the inverse will
be shown to be true, namely that if two observables have common eigenfunctions,
they will necessarily commute.

Consider the observables A and B and assume that
[
Â, B̂

]
= 0 . (4.55)

Let the eigenvalue equations for each of then be

Âψα = α ψα, B̂ ψβ = β ψβ . (4.56)

With ψα and α we have symbolized the eigenfunctions and the eigenvalues of A,
while ψβ and β are those of B. For simplicity we shall assume that there is no
degeneracy in their spectra.

From the vanishing commutator of the two observables we obtain

B̂ Â = Â B̂ .

Acting with this operator relation on one of the eigenstates of B̂, say ψβ , we get

B̂ Âψβ = Â B̂ψβ =⇒ B̂
(
Âψβ

)
= β

(
Âψβ

)
,
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whichmeans that Âψβ is an eigenfunction of B̂ with eigenvalue β. Since, by assump-
tion, there is no degeneracy, this state has to be proportional to the designated eigen-
function corresponding to the eigenvalue β, namely, ψβ . This is written as

Âψβ ∝ ψβ or Âψβ = αψβ

and simply means that ψβ is a common eigenstate of both B̂ and Â. A more appro-
priate symbolization would be ψα,β . Summarizing, we have

[
Â, B̂

]
= 0 =⇒

⎧
⎨

⎩

Âψα,β = αψα,β

B̂ψα,β = βψα,β .

(4.57)

The inverse is also true. Assume that the following hold

Âψα,β = αψα,β , B̂ψα,β = βψα,β . (4.58)

Multiplying the first with B̂ and the second with Â gives

B̂ Âψα,β = αB̂ψα,β = αβψα,β , Â B̂ψα,β = β Âψα,β = αβψα,β (4.59)

and subtracting, gives us [
B̂, Â

]
ψα,β = 0 . (4.60)

Since any wave function ψ can be expanded in terms of the complete set ψα,β as
ψ = ∑

α,β Cα,βψα,β , the relation (4.60) is equivalent to [ Â, B̂]ψ = 0 for any ψ.
Therefore, we conclude with the operator relation

[
Â, B̂

]
= 0 . (4.61)

4.8 Time Evolution of Expectation Values

The expectation values of physical observables depend on time through the time
dependence of the wave function. Consider such an observable and the Hermitian
operator corresponding to it. Assuming a normalized wave function for simplicity,
we have

〈A〉t =
∫

d3r ψ∗(r, t) Âψ(r, t) . (4.62)

Differentiating this expression with time we obtain
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d〈A〉
dt

=
∫

d3r
(

ψ̇∗(r, t) Âψ(r, t) + ψ∗(r, t) Â ψ̇(r, t)
)

(4.63)

and, using the Schroedinger equation,

d〈A〉
dt

= i

�

∫
d3r

( (
Ĥψ

)∗
Âψ − ψ∗ÂĤψ

)
. (4.64)

Recalling the definition of hermitian conjugation, this becomes

d〈A〉
dt

= i

�

(∫
d3r ψ∗Â† Ĥψ

)∗
− i

�

∫
d3r ψ∗ÂĤψ (4.65)

and, using ÂĤ = Â† Ĥ † =
(
ĤÂ

)†
,

d〈A〉
dt

= i

�

(∫
d3r ψ∗

(
ĤÂ

)†
ψ

)∗
− i

�

∫
d3r ψ∗ÂĤψ

= i

�

∫
d3r ψ∗ ĤÂψ − i

�

∫
d3r ψ∗ÂĤψ (4.66)

or, finally
d〈A〉
dt

= i

�

〈[
Â, Ĥ

]〉
. (4.67)

This is a differential equation giving the rate of temporal change of the expectation
value of any given physical observable. Note that if the operator Â corresponding to
this physical quantity commutes with the Hamiltonian of the system, the expectation
value of this quantity in any state ψ(r, t) will not change with time. Such physical
quantities are said to be conserved and often go by the name constants of the motion.
As a very obvious example, consider the momentum of a free particle. Since its
Hamiltonian is just Ĥ = p̂2/2m and [Ĥ , p̂] = [ p̂2, p̂] = 0, according to (4.67),
〈 p̂〉 is conserved for any state.

4.9 Ehrenfest’s Theorem

Consider the simple system of a particle of mass m moving in a potential V (r).
Applying the expectation value evolution law (4.67) for the position of the particle,
we obtain

d〈x̂ j 〉
dt

= i

�

〈[
Ĥ , x̂ j

]〉
= i

2m�

〈[
p̂2, x̂ j

]〉
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= i

2m�

〈
∑

k

p̂k
[
p̂k, x̂ j

]
〉

+ i

2m�

〈
∑

k

[
p̂k, x̂ j

]
p̂k

〉
= 〈 p̂ j 〉

m

or
d〈r̂〉
dt

= 〈p̂〉
m

. (4.68)

Doing the same for the momentum of the particle, we obtain

d〈 p̂ j 〉
dt

= i

�

〈[
Ĥ , p̂ j

]〉
= i

�

〈[
V (r̂), p̂ j

]〉 = −
〈
∂V

∂ x̂ j

〉

or
d〈p̂〉
dt

= − 〈∇V (r̂)
〉
. (4.69)

The Eqs. (4.68) and (4.69) can be combined to the equation

m
d2〈r̂〉
dt2

= − 〈∇V (r̂)
〉
. (4.70)

Equations (4.68), (4.69) or their combination (4.70) are known as Ehrenfest’s The-
orem. Note that in the case that the potential function is quadratic in the position
(harmonic forces), the expectation values satisfy the classical equations of motion.

Example 4.3 A particle of mass m and electric charge q is moving in three-
dimensional space under the influence of a homogeneous electric field E . At an
initial time t = 0 the particle occupies a state that corresponds to the given position
andmomentum expectation values 〈r〉0 and 〈p〉0. Find the corresponding expectation
values at later times t > 0.

The potential corresponding to the electric force is V = −qE · r. Ehrenfest’s theorem gives

d〈p〉
dt

= −〈∇V 〉 = qE and
d〈r〉
dt

= 〈p〉
m

. (4.71)

Integrating the first of these equations we obtain

〈p〉t = 〈p〉0 + qEt . (4.72)

Substituting and integrating the second equation we obtain

〈r〉t = 〈r〉0 + 〈p〉0
m

t + q

2m
Et2 . (4.73)
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4.10 The Virial Theorem

Consider the system of an interacting particle and the operator

Ĝ = r · p + p · r (4.74)

The time evolution Eq. (4.67) of its expectation value is

d〈Ĝ〉
dt

= i

�

〈[
Ĥ , Ĝ

]〉
. (4.75)

Computing the commutator

[
p̂2

2m
+ V (r), x̂ j p̂ j + p̂ j x̂ j

]
= 1

m
[ p̂i p̂i , p̂ j x̂ j ] + 2[V, p̂ j x̂ j ]

= p̂ j

m
[ p̂i p̂i , x̂ j ] + 2i�x j∇ j V = −2i�

p2

m
+ 2i�x j∇ j V ,

we obtain
d〈Ĝ〉
dt

= −4i�〈T 〉 + 2i�〈r · ∇V 〉 . (4.76)

If the state of the system is a stationary state, we have

〈Ĝ〉t = 〈 ei Et/�Ĝe−i Et/�〉0 = 〈Ĝ〉0 ,

which is time-independent. Therefore, the left-hand-side of (4.75) vanishes and we
have

〈T 〉 = 1

2
〈r · ∇V 〉 . (4.77)

This is the so-called Virial Theorem.
In the case that potential is of the form V = grν , we have r · ∇V = ν V and the

Virial Theorem takes the form
〈T 〉 = ν

2
〈V 〉 . (4.78)

Thus, in the case of the attractive Coulomb potential −r−1, we have 〈V 〉 = −2〈T 〉
and 〈E〉 = −〈T 〉. In the case of the isotropic harmonic oscillator potential r2, we
have 〈T 〉 = 〈V 〉.
Example 4.4 Consider the operator Ĝ = r · p + p · r. Show that its expectation
value in a state with real wave function (ψ∗(r) = ψ(r)) vanishes.

We have

〈Ĝ〉 = −i�
∫

d3r (ψ r · ∇ψ + ψ∇ · (rψ) ) = . . . =
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−i�
∫

d3r
(
r · ∇(ψ2) + ψ2∇ · r

)
= −i�

∫
d3r ∇ ·

(
rψ2

)
= −i�

∮
dS ·

(
rψ2

)
= 0 .

Problems and Exercises

4.1 A particle of mass m is trapped in an infinite square well of width 2L having a
wave function

ψ(x) =
√

8

5L
cos3(xπ/2L) .

Calculate the probability to find the particle in an eigenstate of energy �
2π2

8mL2 .

4.2 Show that the expectation value of the momentum 〈p〉 of a particle having a real
wave function (ψ∗(x) = ψ(x)) vanishes. Show also that the expectation value of the
position 〈x〉 or the momentum 〈p〉 in a wave function of a definite parity (even or
odd) vanishes.

4.3 Consider a quantum system with a purely discrete energy spectrum {En}.
Assume that initially (t = 0) the system is in the state corresponding to the wave
function

ψ(x, 0) = 1√
2

(
ψN (x) + eiαψN+1(x)

)
,

where α = α∗ known parameter. Calculate (�E)2/〈E〉2 at any time t , where 〈E〉 is
the expectation value of the energy. Assume that EN = E1/N 2 and comment on the
limit of this ratio at large quantum numbers (N → ∞). Do the same for the cases
EN = E1N 2 and EN = E0(2N + 1).

4.4 The state of a particle of mass m and of definite energy E = 4�
2a2

m is described
by the wave function

ψ(x) =
√
a

cosh(2ax)
,

where a > 0 is a known parameter. Find the potential acting on the particle. Calculate
the uncertainty in the momentum.

4.5 A particle of mass m is subject to a constant force F. Calculate the expectation
values 〈r〉t and 〈p〉t at any time t > 0 in terms of the initial expectation values 〈r〉0
and 〈p〉0 which can be computed from the initial wave function of the particle

ψ(r, 0) = N x e−α(x2+y2+z2)+iqz ,

where α > 0 and q known real parameters.
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4.6 Consider a hermitian operator Â and a normalizedwave functionψ(r). Ifχ(r) =
Âψ(r), show that

〈A2〉 =
∫

d3r |χ(r)|2

and

(�A)2 =
∫

d3r

∣∣∣∣χ(r) − ψ(r)
∫

d3r ′ψ∗(r′)χ(r′)
∣∣∣∣
2

.

4.7 Consider a set of three hermitian operators Â, B̂, Ĉ, satisfying the following
commutation relations

[
Â, B̂

]
= i�Ĉ,

[
B̂, Ĉ

]
= i�Â,

[
Ĉ, Â

]
= i�B̂ .

Show that
[
Â, Â2 + B̂2 + Ĉ2

]
=

[
B̂, Â2 + B̂2 + Ĉ2

]
=

[
Ĉ, Â2 + B̂2 + Ĉ2

]
= 0 .

What is the maximal subset of mutually commuting operators among the Â, B̂, Ĉ
and the sumof their squares?Assume now that the physical systemdescribed by these
operators has a Hamiltonian Ĥ = ω Â, where ω is a known parameter. Derive the
time-evolved expectation values 〈A〉t , 〈B〉t and 〈C〉t in terms of the corresponding
initial (t = 0) expectation values 〈A〉0, 〈B〉0 and 〈C〉0 for any state of the system.

4.8 Consider a particle ofmassmmoving in one dimension and subject to a harmonic
force arising from the potential 1

2mω2x2 (harmonic oscillator). The initial (t = 0)
wave function of the system is

ψ(x, 0) = 1√
2

(mω

�π

)1/4
(
1 + x

√
2mω

�

)
e− mω

2�
x2 .

Find the expectation values 〈x〉t and 〈p〉t for t > 0.

4.9 The exponential of an operator is defined through the corresponding series
expansion as

eÂ =
∞∑

n=0

(
Â
)n

n! = 1 + Â + 1

2
Â2 + · · · .

Evaluate the commutator [
e

i
�
a·p, x j

]
,

where p is the momentum operator. The operator T̂ (a) = e
i
�
a·p is not hermitian.

Find its eigenfunctions and eigenvalues. For the latter show that they are complex
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numbers of measure one. Show that the hermitian conjugate of T̂ coincides with its
inverse satisfying T̂ †T̂ = 1.

4.10 A hermitian operator Â has a degenerate spectrum. Thus, the pair of eigen-
functions ψ(1)

α and ψ(2)
α correspond to one and the same eigenvalue α, namely

Âψ(1)
α = αψ(1)

α , Âψ(2)
α = αψ(2)

α .

These eigenfunctions are not orthogonal, i.e.,
∫
dx ψ(1)

α
∗
ψ(2)

α �= 0. Out of this pair
constructs an orthonormal pair.
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Chapter 5
Basic Principles of Quantum Mechanics

5.1 Basic Postulates

Aswe have remarked in the very beginning of our discussion ofQuantumMechanics,
the concept of the state of a quantum system is very different than that of a classical
one. In the latter case, the state of the system is determined by a set of variables
x(t), ẋ(t), . . . which are directly measurable and can be known at any instant of
time. In the case of a quantum system the state of the system is determined by a
function of certain of its variables ψ(x, . . . ) related to the probability distribution of
these variables. This is the wave function of the system. In contrast to the case of a
classical system the connection of measurements and the state represented by ψ is
very indirect.

One of the basic outcomes of the various experiments that established the wave
function as the basic concept characterizing quantum systems is the fact that wave
functions obey a Superposition Principle. This means that the space of states is
endowed with an addition operation, thus, being a vector space. In contrast, the states
of a classical system do not correspond to any such mathematical structure. Shortly
we shall go into this mathematical concept of vector space of states with considerable
detail. For the moment we will just state the general principles or axioms on which
the analysis of any quantum system is based.1

1. “Axiom”-1. Each dynamical state of a quantum system corresponds to an ele-
ment of an abstract vector space.

1In what follows we shall use by convention the term “axioms”, borrowed from rigorous math-
ematics, since each of these principles has a mathematical content. These often go by the name
“Dirac-Von Neumann Axioms” [1]. Nevertheless, our presentation of these principleswill be limited
to a non-rigorous level.

© Springer Nature Switzerland AG 2019
K. Tamvakis, Basic Quantum Mechanics, Undergraduate Texts in Physics,
https://doi.org/10.1007/978-3-030-22777-7_5

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22777-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-22777-7_5


86 5 Basic Principles of Quantum Mechanics

The wave functions obeying the superposition principle correspond to these
abstract vectors as the coordinates correspond to a position vector in standard
position space.

What about the various physical quantities like position, momentum, energy,..
etc.? These quantities are the objects that we want to measure. They will be
referred to as physical observables. InQuantumMechanics thesewill correspond
toHermitian operators acting in the above introduced vector space of states. This
is the second general principle stated as

2. “Axiom”-2. Physical observables are represented by Hermitian operators act-
ing in the vector space of states.

The above two “axioms” refer to vectors and operators. These abstract objects
will be related to the numbers that are the outcomes of experiments either through
inner products of vectors or through expectation values of operators. We know
already that the Hermitian operator corresponding to each physical observable
has its unique set of eigenvalues and eigenstates. Furthermore its expectation
values are expressible in terms of its eigenvalues. In this framework, we state
our third “axiom” as

3. “Axiom”-3. The only outcomes of the measurement of a physical observable A
are its eigenvalues {α1, α2, . . . }.

According to “axiom”-3 the outcome of an experiment will be a collection of
different eigenvalues of the measured quantityA, say {α1, α2, . . . }, the relative
number of times each eigenvalue appears being its probability. These probabili-
ties determine the state of the system before the measurement. This is the fourth
“axiom” stated as

4 “Axiom”-4. The state of the system before the measurement of A is a superpo-
sition of A-eigenstates ψ = ∑

α Cαψα, where |Cα|2 is the probability of each
measured eigenvalue.

What is the state of the system after a particular eigenvalueα has beenmeasured?
This is answered by the fifth “axiom” stated as

5 “Axiom”-5. The state of the system after a measurement of A that has given the
eigenvalue α is the corresponding eigenstate ψα. Any subsequent measurement
of A will yield exactly the same eigenvalue α and the system will continue to
occupy the same eigenstate ψα.

The previous three “axioms” refer to the process of a quantum measurement
and could have been combined into one “axiom”. What about the evolution of
the system when no measurement is performed on it? We already know that its
time evolution is determined by the Schroedinger equation. This can be stated
again as a final “axiom”
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6 “Axiom”-6.When no measurement is performed on the system the wave function
evolves with time following the Schroedinger equation

Ĥψ(t) = i�
∂ψ(t)

∂t
. (5.1)

Note that the evolution of the system according to the last axiom is purely
deterministic in contrast to what happens as a result of measurement when the
only possible predictions are statistical in nature. The fact that quantum systems
behave under measurements in this indeterministic fashion has been the cause
of endless ongoing debates aiming at a correct interpretation.

Since the measurement process embodies the concept of probabilities and that
of the acausal evolution of the state, being both the main departures from classical
theory, it is important to clarify further its basic aspects. Consider a quantumsystem in
an arbitrary state�(x) and an apparatus designed to measure a particular observable
Q of the system. Whatever is the state of the system at the instant prior to the
measurement the measured value of Q is bound to be one of its eigenvalues q. That
means that the system will necessarily occupy one of the eigenstates ψq(x) of Q.
This is consistent with the fact that the eigenstates are the only states with vanishing
uncertainty �Q. Any subsequent measurements ofQwill yield the same eigenvalue
q, meaning that the system continues to occupy the same eigenstate ψq(x). It is said
that the system has been prepared in the state ψq(x).

Consider now that instead of a single measurement of Q that yielded the eigen-
value q we performed a series of measurements under the exact same conditions
or equivalently measurements on a statistical ensemble of identical copies of the
system. The result would be a series of, different in general, eigenvalues of Q

q ′, q ′′, . . . (5.2)

For a large number of measurements the frequency (probability) of each particu-
lar eigenvalue P(q) can be used to determine the state |ψ〉 of the system prior to
measurement through the rule

Pq = |Cq |2 = |
∫

dxψ∗
q(x)�(x)|2 . (5.3)

The fact that as a result of the measurement the system has made a transition from a
superposition of eigenstates to a single eigenstate

�(x) =
∑

q ′
Cq ′ψq ′(x) =⇒ ψq(x) (5.4)

has been termed collapse of the wave function.
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5.2 The Hilbert Space of States

The states of a quantum system correspond to the elements of an abstract vector
space E [2–5]. We shall use an abstract notation for these state vectors, namely
{ |ψ〉, |χ〉, . . . }. Sometimes we shall use for these state vectors the name “ket” given
to them by P.A.M. Dirac.2 Shortly we will see their precise relation to our familiar
wave functions. The definition of a vector space is that of a set endowed with two
operations, namely

(1) Addition |a〉, |b〉 ∈ E =⇒ |c〉 = |a〉 + |b〉 ∈ E
with the following properties

|a〉 + |b〉 = |b〉 + |a〉

|a〉 + ( |b〉 + |c〉 ) = ( |a〉 + |b〉 ) + |c〉

|a〉 + 0 = 0 + |a〉 = |a〉 .

(5.5)

Note that the addition of states is the mathematical expression of the superposition
principle.

(2) Multiplication by a complex number λ ∈ C, |a〉 ∈ E =⇒ λ|a〉 ∈ E
with the following properties

λ (|a〉 + |b〉) = λ|a〉 + λ|b〉

(λ + μ)|a〉 = λ|a〉 + μ|a〉

1|a〉 = |a〉

0|a〉 = 0.

(5.6)

Note that the position of the complex number is purely conventional andλ|a〉 = |a〉λ.
Note also that given a vector |ψ〉, all vectors λ|ψ〉, obtained by multiplying |ψ〉 by a
complex number (called a ray of the vector space) are thought to represent the same
state.

In addition to these two operations, the vector space of quantum states is also
endowed with a third operation that promotes it into a Euclidean Vector Space. This
operation is the inner product of two vectors and allows us to define a norm for each
vector. The Euclidean Vector Space of quantum state vectors is called the Hilbert
space of states.

2Dirac in his monumental textbook on Quantum Mechanics [6] gave the “ket” to the state vectors
|ψ〉 and the name “bra” to their duals 〈χ|, obviously inspired by the “bracket” symbol for the inner
product of the two vectors 〈χ|ψ〉.
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(3) The Inner Product, defined as |a〉, |b〉 ∈ E =⇒ 〈a|b〉 ∈ C ,

has the following properties

〈a|b〉 = 〈b|a〉∗

|c〉 = λ|a〉 + μ|b〉 =⇒ 〈c|d〉 = λ∗〈a|d〉 + μ∗〈b|d〉

|c〉 = λ|a〉 + μ|b〉 =⇒ 〈e|c〉 = λ〈e|a〉 + μ〈e|b〉

〈a|a〉 ≥ 0

|〈a|b〉|2 ≤ 〈a|a〉 〈b|b〉.

(5.7)

The last property goes by the name Schwartz Inequality.
A set of kets are said to be linearly independent if no linear relation can be written

in terms of them. For example, no linear relation can be written between the i, j and
k orthonormal unit vectors in the standard three-dimensional Euclidean space. The
maximum number of linearly independent vectors of a space is called the dimen-
sionality N of the space. A set of linearly independent vectors {|e1〉, |e2〉, . . . , |eN 〉}
equal in number to the dimensionality N of the space can be used to write linear
relations of them with any other vector. This is because the set of the N linearly
independent vectors plus any additional vector |ψ〉 will be a set of N + 1 linearly
dependent vectors among which a linear relation of the form

|ψ〉 = c1|e1〉 + c2|e2〉 + . . . + cn|eN 〉 (5.8)

is possible.
A set of linearly independent vectors equal in number to the dimensionality of the

space is said to be a basis. The linear relation (5.8) can be thought as an expansion
of |ψ〉 in terms of the above basis vectors {|e j 〉}. Note that the dimensionality of the
Hilbert space can be infinite. Furthermore, a set of basis vectors could be labeled in
terms of a continuous index. In that case, even for a finite interval of values of this
index, the number of basis vectors is infinite and so is the space dimensionality.

Among the various possible bases, the so-called orthonormal bases are particu-
larly useful. By definition the elements of an orthonormal basis satisfy orthonormality
relations

〈e j |ek〉 = δ jk . (5.9)

Writing
|ψ〉 =

∑

j

ψ j |e j 〉 (5.10)
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we may compute the coefficients ψ j by taking the inner product with one of the basis
vectors, say |ek〉. Then, we obtain

〈ek |ψ〉 =
∑

j

ψ j 〈ek |e j 〉 =
∑

j

ψ jδ jk = ψk =⇒ ψ j = 〈e j |ψ〉 . (5.11)

For a continuous orthonormal basis the orthonormality is expressed with the help of
the delta function and these relations take the form

|ψ〉 = ∫ α2

α1
dα ψ(α)|α〉 ( 〈α|α′〉 = δ(α − α′)

)

〈α′|ψ〉 = ∫ α2

α1
dα ψ(α) δ(α′ − α) =⇒ ψ(α) = 〈α|ψ〉.

(5.12)

Note that a basis is also by definition complete because any vector belonging to the
Hilbert space can be expressed in terms of it. Although this and analogous statements
seem trivial, their rigorous realization in infinite dimensionality spaces often has to
circumvent convergence questions. Starting from the expansion of an arbitrary ket
in terms of the basis vectors |ψ〉 = ∑

i 〈ei |ψ〉 |ei 〉, we may arrive at the following
formal expression of completeness

∑

i

|ei 〉 〈ei | = 1 or
∫

dα |α〉 〈α| = 1 . (5.13)

Note that the above expressions feature outer products of vectors |a〉〈b| which stand
for operators in contrast to inner products 〈a|b〉 that are numbers.

Given an orthonormal basis {|e j 〉} the arbitrary abstract ket |ψ〉 can be represented
by the column ψi = 〈ei |ψ〉

|ψ〉 =⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ1

ψ2

.

.

ψN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.14)

This is exactly the same with what is done in ordinary Euclidean space where the
position vector r in a given basis is represented by a triplet of coordinates (x, y, z),
the coordinates being just the inner products x = (r · i), y = (r · j), z = (r · k).
All operations can be carried in terms of the coordinate columns without reference
to the abstract vectors. For example, the inner product between two kets 〈χ|ψ〉 can
be written

〈χ|ψ〉 =
∑

j

χ∗
j 〈e j |ψ〉 =

∑

j

∑

k

χ∗
jψk〈e j |ek〉 =

∑

j

χ∗
jψ j
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or

〈χ|ψ〉 = (
χ∗
1, χ∗

2, . . . , χ∗
N

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψ1

ψ2

.

.

ψN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= χ†ψ . (5.15)

It is interesting that the norm takes the following familiar pythagorean form

〈ψ|ψ〉 = ψ†ψ = |ψ1|2 + |ψ2|2 + . . . + |ψN |2 . (5.16)

For a continuous basis {|ξ〉} the ket |ψ〉 will be represented not by a column but
by a function

|ψ〉 =⇒ 〈ξ|ψ〉 = ψ(ξ) . (5.17)

Inner product expressions take the form of integrals

〈χ|ψ〉 =
∫

dξ χ∗(ξ)ψ(ξ), 〈ψ|ψ〉 =
∫

dξ|ψ(ξ)|2 . (5.18)

Notice that the orthogonality between two states takes the familiar orthogonality
form of wave functions encountered earlier

〈ψ1|ψ2〉 = 0 =⇒
∫

dξ ψ∗
1(ξ)ψ2(ξ) = 0 . (5.19)

5.3 Operators in the Hibert Space

Operators are by definition objects that can act on vectors. The result of the action of
an operator on a vector will be another vector. The matrix element of an operator Â
between the states |ψ1〉 and |ψ2〉 is the inner product of |ψ1〉 with the ket that results
from the action of Â on |ψ2〉. It is depicted as

〈ψ1| Â|ψ2〉

and the operator is thought to act on the right.
We restrict ourselves to linear operators, namely operators with the property3

Â (λ |χ〉 + μ |ψ〉 ) = λ Â|χ〉 + μ Â|ψ〉 . (5.20)

3There will be only one case we shall encounter antilinear operators with the property Âλ|ψ〉 =
λ∗ Â|ψ〉. That will be the case of of the Time Reversal Operator.
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The Hermitian Conjugate Â† of an operator Â is defined as follows

〈ψ1| Â†|ψ2〉 =
(
〈ψ2| Â|ψ1〉

)∗
. (5.21)

Note that, if we denote with Â|ψ1〉 = |ψ3〉 in the above relation, we get

〈ψ1| Â†|ψ2〉 = 〈ψ2|ψ3〉∗ = 〈ψ3|ψ2〉

or
Â|ψ1〉 = |ψ3〉 =⇒ 〈ψ1| Â† = 〈ψ3| . (5.22)

Thus, Hermitian conjugation transforms kets to bras and operators to the Hermitian
conjugates (and, of course, numbers to their complex conjugates).

Consider an operator Â and a given orthonormal basis
{|e j 〉

}
of the Hilbert space.

The quantities
Ai j = 〈ei | Â|e j 〉 (5.23)

will be the matrix elements of the observable Â. They form a square matrix that
represents the observable in the same way that the column vectors represent the kets.
Any relation between operators and kets can be translated into an equivalent relation
between the matrices (5.23) and the columns. For example, a relation Â|ψ〉 = |χ〉
gives

∑

j

ψ j Â|e j 〉 =
∑

j

χ j |e j 〉 =⇒ 〈ek |
⎛

⎝
∑

j

ψ j Â|e j 〉
⎞

⎠ =
∑

j

χ j 〈ek |e j 〉 = χk

or
Â|ψ〉 = |χ〉 ⇐⇒

∑

j

Ak jψ j = χk ⇐⇒ Aψ = χ . (5.24)

In the case of a continuous basis the matrix elements of an operator are defined in
an analogous fashion

A(α, α′) = 〈α| Â|α′〉 (5.25)

and operator relations are translated to convoluted integrals

Â|ψ〉 = |χ〉 =⇒
∫

dα′ A(α, α′)ψ(α′) = χ(α) . (5.26)

Physical observables are represented by Hermitian (i.e., self-conjugate) operators.
The corresponding matrices (with respect to an orthonormal basis)Ai j are hermitian
matrices satisfying
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Ai j = 〈ei | Â|ei 〉 = 〈e j | Â|ei 〉∗ = A∗
j i

or
A = A† = (AT

)∗
. (5.27)

The eigenvalue problem for a Hermitian operator is set up as

Â|ψa〉 = a|ψa〉 . (5.28)

We can prove the orthogonality of eigenstates and the reality of eigenvalues in the
frameworkof the abstractHilbert space following the steps of the correspondingproof
for wave functions. Taking the inner product of (5.28) with one of the eigenvectors
we obtain

〈ψa′ | Â|ψa〉 = a〈ψa′ |ψa〉 .

Using Hermiticity in the left-hand side, we get

〈ψa| Â|ψa′ 〉∗ = a〈ψa′ |ψa〉 =⇒ a′∗〈ψa|ψa′ 〉∗ = a〈ψa′ |ψa〉

or (
a − a′∗) 〈ψa′ |ψa〉 . (5.29)

For a′ = a the relation (5.29) gives

(
a − a∗) 〈a|a〉 = 0 =⇒ a = a∗ , (5.30)

meaning that the eigenvalues are real. Note that 〈a|a〉 cannot be zero, since that would
mean it is the null state, i.e., the zero of the Hilbert space, which has no physical
content as a state of a physical system.

Now, since the eigenvalues have been proven to be real the relation (5.29) reads

(
a − a′) 〈ψa′ |ψa〉 = 0 . (5.31)

If a �= a′, the only way to satisfy it is by 〈ψa|ψa′ 〉 = 0. Thus, the eigenvectors cor-
responding to different eigenvalues are orthogonal.4 Since, they can always be nor-
malized, we can write an orthonormality relation

〈a|a′〉 = δaa′ . (5.32)

It is clear that the eigenvectors of Hermitian operators that represent the vari-
ous physical observables of a quantum system provide orthonormal bases of the
Hilbert space, discrete or continuous-or mixed- depending on the particular observ-

4Again, we have assumed for simplicity that there is no degeneracy.
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able. These bases are not only orthonormal but also complete. There is an elegant
expression of completeness as an operator relation. For any ket we may write

|ψ〉 =
∑

a

〈a|ψ〉 |a〉 =
∑

a

|a〉 〈a|ψ〉

or5 ∑

a

|a〉 〈a| = I . (5.33)

This is the Completeness Relation, which, together with the Orthonormality Rela-
tion above, are satisfied by the eigenvectors of any Hermitian operator and define a
complete and orthonormal basis of the Hilbert space of states.

The basis of the energy eigenfunctions. The energy is of particular impor-
tance among observables since the Hamiltonian appears in the Schroedinger equa-
tion that determines the time evolution of any system. In fact, the time-independent
Schroedinger equation is nothing else but the energy eigenvalue equation

Ĥ |E〉 = E |E〉 . (5.34)

We have symbolized with |E〉 the energy eigenstates. As a result of hermiticity we
automatically have

〈E |E ′〉 = δE E ′ ,
∑

E

|E〉 〈E | = 1 . (5.35)

The Schroedinger equation for the state of the system at time t is

i�
d|ψ(t)〉

dt
= Ĥ |ψ(t)〉 . (5.36)

Expanding |ψ(t)〉 in the basis {|E〉} as

|ψ(t)〉 =
∑

E

ψE (t)|E〉 (5.37)

and substituting in the Schroedinger equation

0 =
∑

E

(
i�ψ̇E (t) − ψE (t)Ĥ

)
|E〉 =

∑

E

(
i�ψ̇E (t) − ψE (t)E

) |E〉 ,

we obtain
ψE (t) = ψE (0) e− i

�
Et . (5.38)

5The unit operator I or 1, defined as I|ψ〉 = |ψ〉 on any vector, coincides with the real number 1.
So, we could just write

∑
a |a〉〈a| = 1.
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Thus, the general solution to the Schroedinger equation reads

|ψ(t)〉 =
∑

E

ψE (0)e− i
�

Et |E〉 . (5.39)

The coefficients ψE (0) are just the projections of the initial state |ψ(0)〉 on the basis
vectors

ψE (0) = 〈E |ψ(0)〉 . (5.40)

An additional property of this basis, related to the conservation of energy, is that
any observable depending on the energy will have time-independent expectation
values. Consider6

〈ψ(t)|F(Ĥ)|ψ(t)〉 =
∑

E,E ′
ψ∗

E (0)ψE ′(0)e− i
�

(E ′−E)t 〈E |F(Ĥ)|E ′〉

=
∑

E,E ′
ψ∗

E (0)ψE ′(0)e− i
�

(E ′−E)t F(E)δE E ′ =
∑

E

|ψE (0)|2F(E) .

For instance, for any state,

(�E)2t = 〈ψ(t)|Ĥ 2|ψ(t)〉 −
(
〈ψ(t)|Ĥ |ψ(t)〉

)2 = (�E)20 .

Projection Operators. The completeness relation (5.33) of the eigenstates of a
Hermitian operator is an example of the use of “outer products” of Hilbert space
vectors. The result of such a product is an operator. The easiest way to see that for a
product |ψ〉 〈χ| is to consider an orthonormal basis {|a〉} and substitute in the place
of kets and bras the columns and rows that represent them. Then,

|ψ〉 〈χ| =⇒ ψaχ
∗
a′ =⇒

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψ1χ1∗ ψ1χ
∗
2 . . . . . .

ψ2χ
∗
1 ψ2χ

∗
2 . . . . . .

. . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.41)

Thus, clearly, |ψ〉〈χ| is an operator corresponding to a matrix with respect to a given
basis.

6Functions of operators can be defined through a power series definition

F( Â) =
∑

n

F (n)(0)

n! Ân .
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Furthermore, any object |b〉〈b|, where |b〉 is any normalized ket, is a Projection
Operator

�̂b = |b〉〈b| , (5.42)

having the property
�̂b|ψ〉 = 〈b|ψ〉|b〉 , (5.43)

which amounts to projecting any state vector |ψ〉 toward the direction of |b〉. If |ψ〉
were orthogonal to |b〉, the result would be zero. More than that a projection operator
has no powers, since

�̂2
b|ψ〉 = 〈b|ψ〉�̂b|b〉 = 〈b|ψ〉|b〉

or
�̂2

b = �̂b or �̂b

(
�̂b − I

)
= 0 . (5.44)

Note also that any projection operator |b〉〈b| is a Hermitian operator. As such it is
expected to have real eigenvalues and orthogonal eigenstates. If |	〉 are the eigen-
vectors and 	 are the corresponding eigenvalues, we have from (5.44)

�̂b

(
�̂b − I

)
|	〉 = 0 =⇒ 	 (	 − 1) = 0 , (5.45)

meaning that the only eigenvalues are 0 and 1.
With the help of the projection operators we may rewrite any Hermitian operator

in terms of its eigenvectors and eigenvalues, namely

Â = Â I = Â
∑

a

|a〉〈a| =
∑

a

|a〉 a 〈a| =
∑

a

a �̂a . (5.46)

The projection operators satisfy

∑

a

�̂a = I and �̂a�̂b = δab�̂a . (5.47)

Projection operators can be used to describe the measurement process [8, 9]. The
basic axioms of Quantum Mechanics dictate that when the system is subject to a
measurement of the observable � and the system is in a state |ψ〉,

(1) as a result of themeasurementwe shall obtain an eigenvalueλk with probability

pk = |〈ψ|k〉|2 = 〈ψ|�̂k |ψ〉 (5.48)

(2) the system will make a transition to the eigenstate |k〉
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|ψ〉 → |k〉 = 1√
pk

�̂k |ψ〉. (5.49)

This is the so-called collapse of the wavefunction.
Unitary Operators. Not all operators acting on the Hilbert space vectors need

to represent observables. A set of useful operators are those that describe transfor-
mations of states and, in particular, transformations that conserve inner products,
i.e., probability amplitudes. These are the Unitary Operators defined so that their
Hermitian adjoint equals their inverse

ÛÛ † = Û †Û = I . (5.50)

Their action on states is such that inner products are conserved, namely

Û |ψ〉 = |ψ′〉 =⇒ 〈ψ′
1|ψ′

2〉 = 〈ψ1|Û †Û |ψ2〉 = 〈ψ1|ψ2〉 . (5.51)

Writing down the eigenvalue problem for a unitary operator, namely

Û |u〉 = u |u〉, 〈u|Û † = u∗〈u| , (5.52)

and taking the inner product, we obtain

〈u|Û †Û |u〉 = |u|2〈u|u〉 =⇒ |u|2 = 1 , (5.53)

which means that the eigenvalues of a unitary operator are always of the form eiα.
Aunitary operator can always bewritten as the exponential of aHermitian operator

times an “i”, namely7

Û = ei Â where Â† = Â . (5.54)

5.4 General Proof of the Heisenberg Inequality

Consider two physical observables Â and B̂. For an arbitrary normalized state |ψ〉,
the corresponding uncertainties are

(�A)2 = 〈ψ|
(

Â − 〈 Â〉
)2 |ψ〉, (�B)2 = 〈ψ|

(
B̂ − 〈B̂〉

)2 |ψ〉 . (5.55)

Next, we may introduce the operators8

Ā ≡ Â − 〈 Â〉, B̄ ≡ B̂ − 〈B̂〉 , (5.56)

7Obviously ÛÛ† = ei Âe−i Â = I.
8We have omitted the “hat” for reasons of notational economy.
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which are obviously hermitian as well. Then, we have

(�A)2 = 〈 Ā2〉 = ∣
∣
∣
∣ Ā|ψ〉∣∣∣∣2 , (�B)2 = 〈B̄2〉 = ∣

∣
∣
∣B̄|ψ〉∣∣∣∣2 . (5.57)

Applying the Schwartz inequality (5.7) we obtain

∣
∣
∣
∣ Ā|ψ〉∣∣∣∣ ∣

∣
∣
∣B̄|ψ〉∣∣∣∣ ≥ ∣

∣〈ψ| Ā B̄|ψ〉∣∣ (5.58)

or
(�A)2(�B)2 ≥ ∣

∣〈 Ā B̄〉∣∣2 . (5.59)

The product of two operators can always be written in terms of their commutator and

their anticommutator, the latter defined as
{

Â, B̂
}

≡ Â B̂ + B̂ Â. Thus, we have

Ā B̄ = 1

2

[
Ā, B̄

] + 1

2

{
Ā, B̄

}
. (5.60)

Note however that
[
Ā, B̄

] =
[

Â, B̂
]
. Note also that the expectation value of the

commutator of two hermitian operators will always be a purely imaginary number.
This goes as follows:

〈[
Â, B̂

]〉
= 〈 Â B̂〉 − 〈

(
Â B̂

)†〉 = 〈 Â B̂〉 − 〈 Â B̂〉∗ = 2i I m〈 Â B̂〉 . (5.61)

In contrast, the expectation value of the anticommutator of these operators is always
a real number, namely

〈{
Ā, B̄

}〉 = 〈 Ā B̄〉 + 〈( Ā B̄
)†〉 = 〈 Ā B̄〉 + 〈 Ā B̄〉∗ = 2Re〈 Ā B̄〉 . (5.62)

Therefore, we may write

∣
∣〈 Ā B̄〉∣∣2 = 1

4

∣
∣
〈[

Ā, B̄
]〉∣
∣2 + 1

4

∣
∣
〈{

Ā, B̄
}〉∣

∣2 . (5.63)

Obviously,
∣
∣〈 Ā B̄〉∣∣2 ≥ 1

4

∣
∣
〈[

Ā, B̄
]〉∣
∣2 . (5.64)

Thus, we conclude that for any pair of hermitian operators and any normalizable
state, the following inequality is always true

(�A)2(�B)2 ≥ 1

4

∣
∣
〈[

Ā, B̄
]〉∣
∣2 . (5.65)

This is Heisenberg’s Inequality, incorporating the Uncertainty Principle.
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5.5 The Position and Momentum Representations

We started our discussion of the basic quantum concepts considering the simple
system of a particle moving in one space dimension. Our central object was the wave
function of the particle ψ(x) representing its probability amplitude to be found at a
position x . In the framework of Hilbert space a definite position should correspond
to an eigenstate of the position operator x̂ . The position eigenstates are defined by9

x̂ |x ′〉 = x ′|x ′〉 with

⎧
⎨

⎩

〈x ′|x ′′〉 = δ(x ′ − x ′′)

∫ +∞
−∞ dx ′ |x ′〉 〈x ′| = I.

(5.66)

The eigenvalue spectrum is continuous.
An arbitrary state |ψ〉 can be expanded in this basis as

|ψ(x)〉 =
∫ +∞

−∞
dx ψ(x) |x〉 , (5.67)

where
ψ(x) = 〈x |ψ〉 . (5.68)

This is the wave function of the system. In the language of the Hilbert space, it is just
the projection of the state vector |ψ〉 on a position eigenstate |x〉. All inner products
are readily expressible in terms of wave functions with the help of (5.67)

〈ψ1|ψ2〉 =
∫

dx
∫

dx ′ψ∗
1(x)ψ2(x ′)〈x |x ′〉 =

∫ +∞

−∞
dxψ∗

1(x)ψ2(x). (5.69)

Special case of this is the familiar normalization of the wave function

〈ψ|ψ〉 = 1 =⇒
∫ +∞

−∞
dx |ψ(x)|2 = 1 . (5.70)

The momentum operator p̂ and its action in this basis can be defined either pos-
tulating the fundamental commutation relation

[
x̂, p̂

] = i� (5.71)

or by specifying the transformation elements 〈x |p〉 to the momentum eigenstates.
Following the former course of quantization by postulating the commutator we act
by it on a bra 〈x | and a ket |x ′〉. We get

〈x | (x̂ p̂ − p̂x̂
) |x ′〉 = i�δ(x − x ′) =⇒ (x − x ′)〈x | p̂|x ′〉 = i� δ(x − x ′) .

9See also [7–9].
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This equation gives the matrix elements 〈x | p̂|x ′〉 of the momentum operator in the
position basis and it is solved by the substitution10

〈x | p̂|x ′〉 = −i�
∂

∂x
δ(x − x ′) = −i�

∂

∂x
〈x |x ′〉 . (5.72)

Note that for any |ψ〉 we also have

〈x | p̂|ψ〉 =
∫

dx ′ ψ(x ′)〈x | p̂|x ′〉 = −i�
∂

∂x

∫

dx ′ δ(x − x ′)ψ(x ′) = −i�
∂

∂x
〈x |ψ〉

or just

〈x | p̂ = −i�
∂

∂x
〈x | . (5.73)

In a less formal notation we may conclude that in the {x}-representation

p̂ =⇒ −i�
∂

∂x
. (5.74)

Next, let’s consider the momentum eigenstates, defined as

p̂|p′〉 = p′|p′〉 with

⎧
⎨

⎩

〈p′|p′′〉 = δ(p′ − p′′)
∫

dp′ |p′〉 〈p′| = I.
(5.75)

A state |ψ〉 can be expanded in momentum eigenstates as

|ψ〉 =
∫

dp ψ̃(p)|p〉 , (5.76)

where ψ̃(p) is the momentum space wave function, which we previously (Chaps. 1
and 2) denoted as g(p)

ψ̃(p) = 〈p|ψ〉 . (5.77)

In order to find the relation between ψ(x) and ψ̃(p) we need to know how the two
bases transform to each other, namely the inner products 〈x |p〉. Actually these inner
products are the spatial wave functions of the momentum eigenstates

ψp(x) = 〈x |p〉 ⇐⇒ −i�
∂

∂x
ψp(x) = pψp(x) , (5.78)

10Substituting we get

(x − x ′)(−i�)
∂

∂x
δ(x − x ′) = −i�

∂

∂x

(
(x − x ′)δ(x − x ′)

) + i�
∂(x − x ′)

∂x
δ(x − x ′) = i�δ(x − x ′)

We have used the property of the delta function (x − x ′)δ(x − x ′) = 0.
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from which, integrating, we deduce that

〈x |p〉 = e
i
�

xp

(2π�)1/2
. (5.79)

The normalization factor was chosen so that they satisfy the orthonormality condition

∫ +∞

−∞
dx ψ∗

p(x)ψp′(x) = δ(p − p′) . (5.80)

The relation between the wave functions ψ(x) and ψ̃(p) is now easily derived
using the completeness formulas for either basis. We have

ψ(x) = 〈x |ψ〉 =
∫

dp, 〈x |p〉 〈p|ψ〉 =
∫

dp√
2π�

e
i
�

xpψ̃(p)

and

ψ̃(p) = 〈p|ψ〉 =
∫

dx 〈p|x〉 〈x |ψ〉 =
∫

dx√
2π�

e− i
�

xpψ(x) .

These expressions are the familiar Fourier transforms that we have previously
encountered.

How does the position operator act on momentum eigenstates? Projecting x̂ on a
momentum eigenstate and using completeness, we obtain

〈p|x̂ =
∫

dx ′ 〈p|x ′〉〈x ′|x̂ =
∫

dx ′ e− i
�

x ′ p

(2π�)1/2
x ′〈x ′| = +i�

∂

∂ p

∫

dx ′ e− i
�

x ′ p

(2π�)1/2
|x ′〉

= +i�
∂

∂ p

∫

dx ′ 〈p|x ′〉〈x ′| = +i�
∂

∂ p
〈p| .

In a less formal language we conclude that in the {p}-representation the momentum
acts as a number on the momentum space wave functions while the position operator
acts according to

x̂ =⇒ +i�
∂

∂ p
. (5.81)

5.6 Parity

Since the wave function is the central object of the spatial description of a quantum
system it is expected that the symmetry properties of the wave functions will play
a role in the dynamics. Among possible symmetry operations, the space reflection
symmetry (Parity) is of particular importance. The parity transformation on the wave
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function is defined as
P̂ψ(x) = ψ′(x) = ψ(−x) . (5.82)

In the ket notation this goes as

P̂|ψ〉 = |ψ′〉 such that 〈x |ψ′〉 = 〈−x |ψ〉 .

Equivalently
〈x |P̂ = 〈−x | . (5.83)

Note that Parity is not just a transformation but it is also a physical observable, being
a Hermitian operator. Indeed we have

〈ψ1|P̂|ψ2〉 =
∫ +∞

−∞
dxψ∗

1(x)ψ2(−x) =
∫ +∞

−∞
dx ′ψ∗

1(−x ′)ψ2(x ′) = 〈ψ2|P̂|ψ1〉∗ ,

which implies hermiticity
P̂† = P̂ . (5.84)

Parity is also a unitary operator, since

P̂2ψ(x) = P̂ψ(−x) = ψ(x)

or
P̂ P̂† = P̂2 = I . (5.85)

Parity anticommutes with the position operator since

〈x |P̂ x̂ = 〈−x |x̂ = −x〈−x | = −x〈x |P̂ = −〈x |x̂ P̂

or
x̂ P̂ = −P̂ x̂ ⇐⇒ P̂ x̂ P̂ = −x̂ . (5.86)

The action of Parity on momentum can be easily guessed from the effect of x →
−x on the momentum operator in the {x} representation −i� ∂

∂x → i� ∂
∂x . The ket

relation can also be shown in one line

〈p|P̂ =
∫ +∞

−∞
dx〈p|x〉〈x |P̂ =

∫ +∞

−∞
dx〈p|x〉〈−x | =

∫ +∞

−∞
dx〈−p| − x〉〈−x |

or
〈p|P̂ = 〈−p| . (5.87)

From this we may easily also show
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p̂ P̂ = −P̂ p̂ ⇐⇒ P̂ p̂ P̂ = − p̂ . (5.88)

Next, let us consider the Parity eigenvalue problem. Denoting with 	 the Parity
eigenvalues, we have, in terms of wave functions

P̂ψ(x) = 	 ψ(x)

P̂2 = I
=⇒ 	2 = 1 . (5.89)

As a result of hermiticity the possible eigenvalues are real and therefore 	 = ±1,
meaning that

P̂ψ(+)(x) = ψ(+)(x), P̂ψ(−)(x) = −ψ(−)(x) . (5.90)

Thus, as expected, the eigenfunctions of Parity are the even and odd functions.
As it has been proven, if the Hamiltonian of a system commutes with Parity,

the eigenfunctions of the energy will be necessarily eigenstates of Parity, i.e., even
and odd functions. We have seen this occurring automatically in the solution of the
time-independent Schroedinger equation for the square well.

Problems and Exercises

5.1 Consider the energy eigenstates |ψn〉 of the infinite square well. Show that the
position matrix elements between states of the same parity vanish, namely

〈ψ2k |x |ψ2k ′ 〉 = 〈ψ2k+1|x |ψ2k ′+1〉 = 0 .

Calculate the matrix elements11 〈ψ2k+1|x |ψ2k ′ 〉 .

5.2 Set up the energy eigenvalue problem in a discrete orthonormal basis {|ei 〉} for
a system with Hamiltonian matrix

Hi j = 〈ei |Ĥ |e j 〉 .

Work out the special case of dimensionality N = 3 and

H =

⎛

⎜
⎜
⎜
⎜
⎝

0 α α

α 0 α

α α 0

⎞

⎟
⎟
⎟
⎟
⎠

,

11You may use
∫

dx x sin(αx) = α−2 sin(αx) − xα−1 cos(αx).
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where α is a known real parameter, determining eigenvalues and eigenvectors.

5.3 Consider a system with a purely discrete energy spectrum and express the wave
vector and the Hamiltonian of the system as a column and a square matrix in a given
orthonormal basis. Derive the Schroedinger equation in matrix form. Specialize in
the case of system with a Hilbert space of dimensionality N = 2 and assume the
following properties of the basis |1〉, |2〉

Ĥ |1〉 = iα |2〉, Ĥ |2〉 = −iα|1〉 ,

where α known real parameter and Ĥ the Hamiltonian operator. Solve the
Schroedinger equation.

5.4 A system is described by two non-commuting observables which in a given
orthonormal basis are represented by the matrices

A =
⎛

⎝
0 1

1 0

⎞

⎠ , B =
⎛

⎝
0 −i

i 0

⎞

⎠

A measurement of A is performed on a statistical ensemble of identical copies of
the system. What are the possible outcomes? The value A → +1 came up with
probability 1/2. What will be the resulting state of the system for this branch? What
is the state prior to measurement? Assume now that on the branch of A → +1 a
measurement of B is performed. What are the possible outcomes and what will be
their relative probabilities?

5.5 Consider again the system of the problem 5.4 and the state

|ψ〉 = 1√
1 + λ2

(|1〉 + iλ |2〉 ) ,

where λ is a real parameter. Calculate the uncertainties (�A) and (�B) in this state
and verify Heisenberg’s inequality.

5.6 Consider two linearly independent state vectors |ψ〉, |χ〉which are normalizable
but neither normalized nor orthogonal. Construct an equivalent pair of orthonormal
kets. The following are given:

〈ψ|ψ〉 = 2, 〈χ|χ〉 = 3/2, 〈ψ|χ〉 = i .

5.7 Prove that
d〈p〉t

dt
= − m

�2
〈
[

Ĥ ,
[

Ĥ , r̂
] ]

〉 .
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5.8 Show that for any system of a particle with Hamiltonian Ĥ = p2/2m + V (r)
the following is true

[ [
Ĥ , x̂i

]
, x̂ j

]
= −�

2

m
δi j .

Based on that, prove the identity

∑

n

|〈ψn|r|ψ0〉|2 (En − E0) = �
2

2m
,

where |ψn〉 are the eigenstates of energy En and n = 0 corresponds to the ground
state. Verify this identity for the case of one-dimensional infinite square well.

5.9 Consider the Schroedinger equation for a particle moving in one dimension

(
p̂2

2m
+ V (x̂)

)

|ψ(t)〉 = i�
d|ψ(t)〉

dt

and write it in the {p} representation applying the recipe12

x̂ → +i
∂

∂ p
, p̂ → p .

5.10 The quantum mechanical treatment of any system starts by considering its
classical analogue and replacing its canonical variables and momenta with the cor-
responding operators. This correspondence is not always straightforward and the
ordering of operators has to be arranged so that hermiticity is valid. As an example
consider a particle subject to velocity dependent forces with a classical Hamiltonian

H = 1

2m
(p − mω × r)2 ,

whereω is a constant parametric vector. Consider the corresponding operator Hamil-
tonian Ĥ and show that it is automatically hermitian. Derive the time evolution
equations for the expectation values 〈r〉t and 〈p〉t .
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Chapter 6
Time Evolution

6.1 The Time-Evolution Operator

As we saw in the previous chapter one of the postulates of Quantum Mechanics
states that the time evolution of the state vector of a system obeys the Schroedinger
equation.1 An alternative way to think about the time evolution of state vectors is
to consider time evolution as a transformation in terms of a time-evolution operator
Û (t)

|ψ(t)〉 = Û (t)|ψ(0)〉 . (6.1)

Imposing probability conservation

〈ψ(t)|ψ(t)〉 = 〈ψ(0)|ψ(0)〉 ,

leads to
〈ψ(0)|Û †(t)Û (t)|ψ(0)〉 = 〈ψ(0)|ψ(0)〉 ,

which forces Û (t) to be unitary, i.e.,

Û †(t)Û (t) = Û (t)Û †(t) = I . (6.2)

Recall that in Classical Mechanics the conservation of the energy of a system is
directly related to the homogeneity of time, i.e., to invariance in time translations
t → t + α. If an analogue of this is to persist in the quantum world, it would mean
that the time-evolution operator should somehow be related to the energy operator,
i.e., the Hamiltonian Ĥ . This is actually what is dictated by “axiom”-6, which states
that the time evolution of the state vector (6.1) should obey the Schroedinger equation

1For the material in this chapter see also [1–3].
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i�
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 =⇒ i�

dÛ

dt
= ĤÛ . (6.3)

Assuming that Û depends only on Ĥ as we argued above, (6.3) can be integrated to
give

Û (t) = e− i
�
Ĥ t =⇒ |ψ(t)〉 = e− i

�
Ĥ t |ψ(0)〉 . (6.4)

This can be generalized to

|ψ(t)〉 = e− i
�
Ĥ(t−t0)|ψ(t0)〉 . (6.5)

Equation (6.5) can be thought of as an operator solution of the Schroedinger equation.
All the above analysis was carried out in the case that the Hamiltonian is time

independent. In the case of an open system with time-dependent Hamiltonian, we
shall assume that the Schroedinger equation still holds. The evolution operator is still
meaningful but the operator differential equation that it satisfies

i�
dÛ (t)

dt
= Ĥ(t)Û (t) . (6.6)

does not have a simple solution.2

6.2 The Schroedinger Versus the Heisenberg Picture

In the previous section on the time-evolution operator, we implicitly assumed that all
time dependence is carried by the state vectors while the physical observables do not
dependon time.This is only onewayof describing things. It is called theSchroedinger
“Picture”. There is an alternative way according to which the state vectors do not
depend on time while the physical observables carry all the time dependence. This
description is named the Heisenberg “Picture”. The two “pictures” should predict
exactly the same matrix elements of physical observables (numerically), since these
are the quantities that are measured and not the abstract kets or operators.

Let’s denote by

|ψS(t)〉, |ψH (t)〉, ÂS(t), ÂH (t)

2In many problems of time-dependent perturbations, it is useful to write down an operator equation
like (6.6) for the perturbing part of the Hamiltonian and obtain a formal solution in terms of a so-
called time-ordered exponential Û (t) = T exp [−i

∫ t dt ′ Ĥ(t ′)/�], to be explained in a subsequent
section.
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the states and observables in either picture. Taking an initial time t0, we define

|ψS(t)〉 = Û (t − t0)|ψS(t0)〉 ÂS(t) = ÂS(t0)

|ψH (t)〉 = |ψH (t0)〉 ÂH (t) �= ÂH (t0)
(6.7)

where Û (t − t0) = e− i
�
Ĥ(t−t0). The time evolution of ÂH (t) will be determined

shortly. We can always assume that the two descriptions coincide at the initial time,
namely,

|ψS(t0)〉 = |ψH (t0)〉, ÂS(t0) = ÂH (t0) . (6.8)

The two “pictures” have to agree at any time giving the same matrix elements,
namely

〈χS(t)| ÂS(t)|ψS(t)〉 = 〈χH (t)| ÂH (t)|ψH (t)〉 (∀ t) . (6.9)

Substituting (6.7) into the left-hand side of (6.9), we obtain

〈χS(t0)|Û†(t − t0) ÂSÛ (t − t0)|ψS(t0)〉 = 〈χH (t0)|Û†(t − t0) ÂH (t0)Û (t − t0)|ψH (t0)〉

= 〈χH (t)|Û †(t − t0) ÂH (t0)Û (t − t0)|ψH (t)〉

and comparing it to the right-hand side we conclude that the invariance of matrix
elements requires that the Heisenberg “picture” time-evolution law for observables
be (see Table6.1)

ÂH (t) = Û †(t − t0) ÂH (t0)Û (t − t0) . (6.10)

This operator relation can be differentiated with respect to time and give as an oper-
ator differential equation

d ÂH

dt
= i

�

[
Ĥ , ÂH

]
Heisenberg Equation. (6.11)

In the case that an operator depends explicitly on time the above equation is modified
to

d ÂH

dt
= ∂ ÂH

∂t
+ i

�

[
Ĥ , ÂH

]
. (6.12)

Table 6.1 Heisenberg versus Schroedinger picture

Schroedinger |ψS(t)〉 = e− i
�
Ĥ t |ψ(0)〉 ÂS(t) = ÂS(0)

Heisenberg |ψH (t)〉 = |ψH (0)〉 ÂH (t) = Û† (t) ÂH (0)Û (t)
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Note that if we take the expectation value of Heisenberg’s equation in any state |ψH 〉,
we obtain

〈ψH | d
dt

ÂH |ψH 〉 = i

�
〈ψH |[Ĥ , ÂH ]|ψH 〉

or, since the Heisenberg states do not evolve with time,

d

dt
〈ψH | ÂH |ψH 〉 = i

�
〈ψH |[Ĥ , ÂH ]|ψH 〉 .

Then, since matrix elements are picture independent, we simply have

d〈 Â〉
dt

= i

�
〈[Ĥ , Â]〉 , (6.13)

which holds in any picture. It should be no surprise then that (6.13) coincides with
Eq. (4.67), previously derived in the Schroedinger description.

It is clear that if an observable commutes with the Hamiltonian, it will not change
in the course of time, i.e.,

[
Ĥ , Ĉ

]
= 0 =⇒ ĈH (t) = Ĉ(0) . (6.14)

Such an observable is called a constant of the motion. For instance, the energy itself
is a constant of the motion and Ĥ(t) = Ĥ(0) .

It should be noted that the fundamental equal time commutation relation of posi-
tion and momentum is picture invariant, namely

[
x̂H (t), p̂H (t)

] =

Û †(t)x̂H (0)Û (t)Û †(t) p̂H (0)Û (t) − Û †(t) p̂H (0)Û (t)Û †(t)x̂H (0)Û (t) =

Û †
[
x̂H (0), p̂H (0)

]
Û (t) = Û †

[
x̂S, p̂S

]
Û (t) = i�Û †(t)Û (t) = i�

or [
x̂(t), p̂(t)

] = i�. (6.15)

In contrast, other commutation relations change drastically. For example,
[x̂(t), x̂(0)] �= 0.

Example 6.1 (Solving the Heisenberg Equation For a Free Particle) For a free particle

(Ĥ = p̂2

2m ) the Heisenberg equation of x̂H (t) is

dx̂(t)

dt
= i

�

[
Ĥ(t), x̂(t)

]
= i

2�m

(
p̂(t)

[
p̂(t), x̂(t)

] + [
p̂(t), x̂(t)

]
p̂(t)

) = i(−2i�)

2�m
p̂(t)

or
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dx̂(t)

dt
= p̂(t)

m
. (6.16)

Similarly, we have

d p̂(t)

dt
= i

�

[
Ĥ(t), p̂(t)

]
= i

2�m

[
p̂2(t), p̂(t)

]
= 0

and
p̂(t) = p̂(0) . (6.17)

Integrating (6.16) we obtain

x̂(t) = x̂(0) + p̂(0)

m
t . (6.18)

Note that
[
x̂(t), x̂(0)

] = t

m

[
p̂(0), x̂(0)

] = − i�t

m
. (6.19)

Example 6.2 Consider a particle moving on the two-dimensional plane under the
influence of a two-dimensional delta function potential V (r) = λ δ(r) = λ δ(x)
δ(y). Show that the operator

D̂ = Ĥ
t

m
− 1

4m
(r · p + p · r) (6.20)

is a constant of the motion.
We have [

D̂, Ĥ
]

= . . . = i�

2m2 p̂
2 − iλ�

2m
(r · ∇) δ(r) =

i�

2m2 p̂
2 − iλ�

2m
( ∇ · (rδ(r)) − (∇ · r) δ(r) ) = i�

m
Ĥ .

We have used the facts that rδ(r) = 0 and that in two dimensions ∇ · r = 2. Thus,

d D̂

dt
= ∂ D̂

∂t
+ i

�

[
Ĥ , D̂

]
= Ĥ

m
− Ĥ

m
= 0 .

6.3 The Time–Energy Uncertainty Relation

Consider a system characterized by its Hamiltonian operator Ĥ and a number of
observables Â1, Â2, . . . . Heisenberg’s inequality for the Hamiltonian and any of
these observables takes the form

(�E)2(� Â)2 ≥ 1

4

∣
∣
∣
〈[

Â, Ĥ
]〉 ∣

∣
∣
2

, (6.21)

�E standing for (�Ĥ). Using (6.13), we obtain
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(�E)(� Â) ≥ �

2

∣
∣
∣
∣
∣
d〈 Â〉
dt

∣
∣
∣
∣
∣

=⇒ (�E)

⎛

⎝ (� Â)
∣
∣
∣ d〈 Â〉

dt

∣
∣
∣

⎞

⎠ ≥ �

2
. (6.22)

Consider now the quantity

τA = (� Â)
∣
∣
∣ d〈 Â〉

dt

∣
∣
∣
, (6.23)

appearing in (6.22). This quantity has the dimensions of time. It is large if the spread
of the values (�A)t is large in comparison to the rate of change of its mean value.
τA is small when (�A)t is small in comparison to the rate of change of 〈A〉t . Thus,
it represents the characteristic time of change of the distribution of the observable
A. Among the observables that characterize the system there will be one that is the
most sensitive and its characteristic time τ will be the smallest

τ ≤ τA (∀A) .

This will be the characteristic time of change of the system as a whole. Obviously,

(�E)τA ≥ (�E)τ ≥ �

2
.

Thus, we may write the Time–Energy Uncertainty Relation

(�E) τ ≥ �

2
, (6.24)

where

τ = min{A}

⎛

⎝ (� Â)
∣
∣
∣ d〈 Â〉

dt

∣
∣
∣

⎞

⎠ . (6.25)

Example 6.3 A particle of mass m and electric charge q moves under the influence
of a constant electric field �E . The particle wave function at an initial time t = 0 is

ψ(r, 0) = (α/π)3/4 e−αr2/2 .

(a) Calculate the expectation values 〈r〉t , 〈p〉t , 〈H〉 and the uncertainties (�r)t ,
(�p)t , (�E) at a time t > 0.
(b) Determine the characteristic times of change for the observables of the system
τr , τp.
(c) Write down and verify the “time–energy” uncertainty inequality.
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Solving the Heisenberg equation, we obtain

dp
dt = q �E =⇒ p(t) = p(0) + q �Et
dr
dt = p

m =⇒ r(t) = r(0) + p(0)
m t + q �E

2m t2
(6.26)

The initial expectation values vanish

〈r〉0 = (α/π)3/2
∫
d3r �re−αr2 = 0

〈p〉0 = −i�(α/π)3/2
∫
d3r e−αr2/2∇e−αr2/2 = i�α(α/π)3/2

∫
d3r �re−αr2 = 0

because of oddness. We also have

〈p2〉0 = 3
2α�

2

〈r2〉0 = 3
2α

〈r · p + p · r〉0 = . . . = 0

〈p4〉0 = 15
4 �

4α2

(6.27)

(For the calculation of these integrals see the section of the Appendix on Gaussian integrals). The
expectation values of the energy do not depend on time and, therefore, we have

〈H〉 = 〈p2〉0
2m − q �E · 〈�r〉0 = 3α�

2

4m

〈H2〉 = 1
4m2 〈p4〉0 + q2EiE j 〈xi x j 〉0 − q

2m Ei 〈xi p2 + p2xi 〉0
(6.28)

The last term in the expression of 〈H2〉 vanishes because of parity, while in the second, due to the
spherical symmetry of the initial wave function, we may have

〈xi x j 〉0 = δi j

3
〈r2〉0 . (6.29)

Thus, finally, we have

〈H2〉 = 15

16

�
4α2

m2 + q2E2

2α
and (�E)2 = 3

8

�
4α2

m2 + q2E2

2α
. (6.30)

The time-evolved expectation values are

〈p〉t = q �Et

〈r〉t = q �E
2m t2

〈p2〉t = 3
2α�

2 + q2E2t2

〈r2〉t = 3
2α + q2E2t2

4m2 + 3α�
2t2

2m2

(6.31)

The corresponding uncertainties are

(�r)2t = 3
2α

(
1 + �

2α2t2

m2

)

(�p)2t = 3
2α�

2

(6.32)
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The characteristic response times of the position and momentum are

τr = (�r)t∣
∣
∣ d〈r〉t

dt

∣
∣
∣

= m
qE

√
3
2α

(
1
t2

+
(

�α
m

)2)

τp = (�p)t∣
∣
∣ d〈p〉t

dt

∣
∣
∣

= �

qE

√
3α
2

(6.33)

Note that always τp < τr . Thus, the characteristic response time of the system is

τ = �

qE

√
3α

2
. (6.34)

The “energy–time” uncertainty relation reads

(�E) τ = �

2

√
3

√

1 + 3α

4

(
�2α

qEm

)2

≥ �

2
(6.35)

and is obviously verified.

6.4 The Interaction Picture

The Schroedinger and the Heisenberg pictures are two extreme cases among the
many equivalent3 descriptions of time evolution. It is often more convenient to use
a description (i.e., “picture”) in which part of the time evolution is carried out by
the state vectors and part is carried out by the operators. This is the case of time-
dependent Hamiltonians of the form H = H0 + Hint (t), composed of a “known”
or “free” part H0 and a time-dependent interaction part Hint (t). The Schroedinger
equation and its formal operator solution are

i�
d

dt
|ψ(t)〉 =

(
Ĥ0 + Ĥint (t)

)
|ψ(t)〉 =⇒ |ψ(t)〉 = Û (t, t0) |ψ(t0)〉 . (6.36)

Since, in general
[
Ĥ0, Ĥint (t)

]
�= 0, the expression for Û will not be a simple

product of exponentials. Note however that, in view of

|ψ(t)〉 = Û (t, t0) |ψ(t0)〉 =⇒ d

dt
|ψ(t)〉 = dÛ

dt
|ψ(t0)〉 = dÛ

dt
Û †|ψ(t)〉

the operator Û has to satisfy

3Different “pictures” are related through a unitary transformation and, therefore, give the same
expectation values of physical observables.
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(
d

dt
Û (t, t0)

)

Û †(t, t0) = − i

�

(
Ĥ0 + Ĥint (t)

)
. (6.37)

Nevertheless, the evolution operator can always be put in the form

Û (t, t0) = Û0(t, t0) ÛI (t, t0) , (6.38)

where Û0(t, t0) = e− i
�

(t−t0)Ĥ0 is the standard evolution operator corresponding to
the known piece Ĥ0, while ÛI (t, t0) is an “unknown” piece that involves the inter-
action. Starting from the parametrization (6.38) the “Interaction Picture” is defined
as follows. State vectors evolve in time through the action of the “interacting” part
ÛI (t, t0), while the operators that correspond to physical observables evolve through
the “known” or “free” part alone

|ψI (t)〉 = ÛI (t, t0)|ψI (t0)〉

Q̂I (t) = Û †
0 (t, t0) Q̂I (t0) Û0(t, t0).

(6.39)

We may assume that at the initial time t0 the Interaction and Schroedinger pictures
coincide

|ψI (t0)〉 = |ψ(t0)〉, Q̂I (t0) = Q̂(t0) . (6.40)

The differential version of (6.39) can be obtained by differentiating with respect to
time. We have

d

dt
|ψI (t)〉 =

(
d

dt
ÛI (t, t0)

)

|ψI (t0)〉 = d

dt

(
Û †

0 (t, t0)Û (t, t0)
)

|ψI (t0)〉

=
(
dÛ †

0

dt
Û + Û †

0

dÛ

dt

)

|ψI (t0)〉 =
(
dÛ †

0

dt
Û + Û †

0

dÛ

dt
Û †Û

)

|ψI (t0)〉

= i

�

(
Ĥ0Û

†
0 − Û †

0

(
Ĥ0 + Ĥint

) )
Û |ψI (t0)〉 = − i

�
Û †

0 Ĥint Û0ÛI |ψI (t0)〉

or, finally

i�
d

dt
|ψI (t)〉 = ĤI (t) |ψI (t)〉 , (6.41)

where
ĤI (t) = Û †

0 (t, t0) Ĥint (t) Û0(t, t0) . (6.42)

Thus, the “interaction picture” states |ψI (t)〉 satisfy a Schroedinger equation with
Hamiltonian the interacting part time evolved through the “known” part. On the
other hand, differentiating the evolution equation for operators, we obtain
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dQ̂I

dt
= i

�

[
Ĥ0, Q̂I

]
, (6.43)

which is Heisenberg’s equation with the free part of the Hamiltonian. Therefore, in
the Interaction Picture of time evolution, states evolve with the interacting part of
the Hamiltonian, while observables with the free part. The relation of the interaction
picture state vectors to the Schroedinger ones is quite simple. Indeed, we have

|ψI (t)〉 = ÛI (t, t0)|ψI (t0)〉 = Û †
0 (t, t0)Û (t, t0)|ψS(t0)〉 = Û †

0 (t, t0)|ψS(t)〉 .

(6.44)

6.5 Time-Ordered Exponentials

The Schroedinger equation for a time-dependent Hamiltonian has the form

i�
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 (6.45)

in both the Schroedinger and the Interaction picture. It is easy to convert (6.45) into
an integral equation. Integrating, we get

|ψ(t)〉 = |ψ(t0)〉 − i

�

∫ t

t0

dt ′ Ĥ(t ′)|ψ(t ′)〉 . (6.46)

A series of successive approximations to this equation is

|ψ(t)〉(0) = |ψ(t0)〉

|ψ(t)〉(1) = |ψ(t0)〉 − i
�

∫ t
t0
dt ′ Ĥ(t ′) |ψ(t0)〉

|ψ(t)〉(2) = |ψ(t0)〉 − i
�

∫ t
t0
dt ′ Ĥ(t ′) |ψ(t0)〉 − 1

�2

∫ t
t0
dt ′

∫ t ′
t0
dt ′′ Ĥ(t ′)Ĥ(t ′′)|ψ(t0)〉

. . .

(6.47)
Considering |ψ(t)〉(2), we may rewrite the last term as

− 1

2�2

∫ t

t0

dt ′
∫ t

t0

dt ′′ �(t ′ − t ′′)
(
Ĥ(t ′)Ĥ(t ′′) + Ĥ(t ′)Ĥ(t ′′)

)

= − 1

2�2

∫ t

t0

dt ′
∫ t

t0

dt ′′
(

�(t ′ − t ′′)Ĥ(t ′)Ĥ(t ′′) + �(t ′′ − t ′)Ĥ(t ′′)Ĥ(t ′)
)
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The product of operators in parenthesis is called a time-ordered product, defined in
general as

T (Q1(t)Q2(t
′)
) =

⎧
⎨

⎩

Q1(t)Q2(t ′) (t > t ′)

Q2(t ′)Q1(t) (t ′ > t)
(6.48)

Obviously, T (Q1(t)Q2(t ′)
) = T (Q2(t ′)Q1(t)

)
.

Thus, the last term in |ψ(t)〉(2) is written as

− 1

�2

∫ t

t0

dt ′
∫ t

t0

dt ′′ T
(
Ĥ(t ′)Ĥ(t ′′)

)
.

An analogous time-ordered expression can be written for the nth order terms

∫ t

t0
dt1

∫ t1

t0
dt2 . . . Ĥ(t1)Ĥ(t2) . . . Ĥ(tn) = 1

n!
∫ t

t0
dt1

∫ t

t0
dt2 . . . T

(
Ĥ(t1) . . . Ĥ(tn)

)

All these terms, having an 1/n! coefficient can be summed to an exponential. There-
fore, the series of successive terms is summed up to give the solution

|ψ(t)〉 = T
(
e− i

�

∫ t
t0
dt ′ Ĥ(t ′)

)
|ψ(t0)〉 . (6.49)

Although the expression (6.49) is just a formal solution of (6.46) it turns out that
it is very useful when expanded in a series, e.g., when (6.45) is considered in the
interaction picture and the interaction Ĥint is “small” in comparison to the “free”
part. Then, the expansion of (6.49) is very likely to converge, since higher powers of
the interaction get smaller and smaller.

Problems and Exercises

6.1 The Hamiltonian operator of a system is a sum of two terms Ĥ = Ĥ0 + Ĥ1.
Prove the identity

e− i
�
Ĥ(t−t0) = e− i

�
Ĥ0(t−t0) − i

�

∫ t

t0

dt ′ e− i
�
Ĥ0(t−t ′) Ĥ1 e

− i
�
Ĥ(t ′−t0) .

6.2 A system is described by a Hilbert space of dimension N = 3. For a given
orthonormal basis |1〉, |2〉, |3〉 the Hamiltonian of the system is represented by the
square matrix
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H =

⎛

⎜
⎜
⎜
⎜
⎝

0 α 0

α 0 α

0 α 0

⎞

⎟
⎟
⎟
⎟
⎠

,

where α a known real parameter. If the initial (t = 0) state of the system is

|ψ(0)〉 = 1√
3

(|1〉 + |2〉 + |3〉) ,

calculate the probability to find the system at a time t > 0 in this state. What is the
minimum time that this probability becomes certainty?

6.3 Show that if the commutator [ Â, B̂] of the two operators Â and B̂ is just a
complex number, the following is true

eÂ+B̂ = eÂ eB̂ e− 1
2 [ Â, B̂] .

Then, consider a system with a Hamiltonian Ĥ = Ĥ0 + Ĥ1 for which the commu-
tator [Ĥ0, Ĥ1] is a just a complex number and apply this property to calculate the
interaction picture evolution operator ÛI (t).

6.4 Consider a particle of mass m and electric charge q subject to a homogeneous
electric field E. Solve Heisenberg’s equations for the position and momentum oper-
ators and calculate the commutators

[
x̂i (t), x̂ j (t

′)
]
,

[
p̂i (t), p̂ j (t

′)
]
,

[
x̂i (t), p̂ j (t

′)
]

.

6.5 Consider a particle of mass m moving freely in one dimension. Calculate the
“matrix” representing the time-evolution operator in the position representation
{|x〉 }

K(x, x ′; t) = 〈x |e− i
�
Ĥ t |x ′〉 .

What is the physical meaning of the probability amplitude K(x, x ′; t)?
6.6 Consider the hermitian operator Â(t) in the framework of the Heisenberg pic-
ture. The corresponding eigenvalue problem will be stated as

Â(t)|α, t〉 = α |α, t〉 .

Show that the states |α, t〉 satisfy the orthonormality and completeness relations at
any time t . Show also that they satisfy the equation

Ĥ |α, t〉 = −i�
d|α, t〉
dt
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which has the opposite sign than the Schroedinger equation.

6.7 Derive the time-evolution operator for a two-state systemwith a time-dependent
Hamiltonian

H =
⎛

⎝
ε η(t)

η(t) ε

⎞

⎠ ,

where ε is a given parameter and η(t) is a given function of time.

6.8 A two-state system, in a given orthonormal basis, has a Hamiltonian matrix

H =
⎛

⎝
0 E

E 0

⎞

⎠ ,

where E a known real parameter. An observable of the system, in the same basis, is
represented by the matrix

A =
⎛

⎝
0 −i

i 0

⎞

⎠ .

Find the corresponding Heisenberg picture matrix AH (t).

6.9 Aphysical system of dimensionality N = 2 is characterized by the Hamiltonian
Ĥ and two other physical observables Â and B̂. Using as a basis the eigenvectors of
Â the three observables are represented by the three matrices

Ĥ =
⎛

⎝
0 E

E 0

⎞

⎠ , Â =
⎛

⎝
α 0

0 −α

⎞

⎠ , B̂ =
⎛

⎝
0 −iβ

iβ 0

⎞

⎠ ,

where E, α, and β real parameters. Ameasurement of the observable Â is performed
at time t = 0 yielding the value −α. A subsequent measurement of the observable
B̂ is then performed on the system at a later time t > 0. What is the probability to
find the system in the eigenstate of Â corresponding to the eigenvalue +α?

6.10 Consider the projection operator to a normalized state vector |ψ〉

ρ̂ = |ψ〉〈ψ| .

This is the so-called density matrix. In the framework of the Schroedinger picture,
study the time evolution of ρ̂, on the one hand expressing it through the time-evolution
operator and, on the other hand, deriving a differential equation of motion for it. As
an example, consider a two-state system with Hamiltonian
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H =
⎛

⎝
0 −i E

i E 0

⎞

⎠

and derive the time-evolved density matrix that results from the choice

ψ1(0) = ψ2(0) = 1/
√
2 =⇒ ρ(0) = 1

2

⎛

⎝
1 1

1 1

⎞

⎠ .
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Chapter 7
Some More Simple Systems

7.1 The Harmonic Oscillator

Electrons and nuclei in atoms and molecules are in general subject to complicated
forces. Nevertheless, since, at least classically, their equilibria correspond to the
minimaof the potential energy, ifwe are interested in studying their behavior for small
displacements from their equilibrium positions, wemay adopt a linear approximation
to these forces, or, equivalently, a quadratic approximation to the potential. In the
simplest possible case of a particle moving in one dimension, its potential can be
Taylor-expanded around its minimum x0, defined by V ′(x0) = 0, V ′′(x0) > 0, as

V (x) ≈ V (x0) + 1

2
V ′′(x0)(x − x0)

2 + 1

6
V ′′′(x0)(x − x0)

3 + · · · . (7.1)

As long as we stay in the vicinity of x0, the dominant term is the quadratic term.1

Keeping only the quadratic term amounts to the so-called harmonic approximation
shown in Fig. 7.1.

A classical particle subject to such a quadratic potential performs oscillations
around the equilibrium point, justifying the name harmonic oscillator. We can sim-
plify the expression of the potential without any loss of generality taking the poten-
tial to vanish at the minimum and taking the coordinate system such that x0 = 0.
Then, introducing a parameter ω with the dimensions of frequency, we may set
V ′′(0) = mω2. As a result, the potential becomes just 1

2mω2x2 and the Hamiltonian
for the particle will be

H = p2

2m
+ 1

2
mω2x2 . (7.2)

The harmonic oscillator potential is shown in Fig. 7.2.

1This can be quantified to |x − x0| << 3V ′′(x0)/|V ′′′(x0)|.
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Fig. 7.1 Harmonic approximation to a general potential

7.1.1 Energy Eigenvalues of the Harmonic Oscillator

Consider the Hamilton operator2

Ĥ = p̂2

2m
+ 1

2
mω2 x̂2 . (7.3)

Notice that the Hamiltonian is the sum of two squares. It is not difficult to see that
for any operator, written in terms of two Hermitian operators a and b as z = a + ib,
the following is true:

a2 + b2 = z†z + 1

2
[z, z†] .

Applying this observation to our Hamiltonian, we see that, since z is a linear expres-
sion of the position and momentum, the commutator will be a constant and, thus, our
Hamiltonian will be of the form z†z up to an additive constant. This form has certain

Fig. 7.2 The harmonic oscillator

2In solving the harmonic oscillator energy eigenvalue problem,we shall follow the algebraicmethod
originally employed by [1]. The alternative differential equation method can be found, e.g., in [2].
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advantages in comparison to the initial form, since now the solution of the eigenstate
problem will be determined by the properties of a single operator, namely, z.

We therefore introduce the following operators:

â = √mω
2�

x̂ + i√
2m�ω

p̂

â† = √
mω
2�

x̂ − i√
2m�ω

p̂,
(7.4)

They obey the very simple commutation relation

[
â, â†

] = 1 . (7.5)

The Hamiltonian is expressed in terms of them as

Ĥ = �ω

(
â†â + 1

2

)
. (7.6)

These operators will be given the name creation (â) and annihilation operators (â†)
due to their properties of increasing or decreasing the energy eigenvalues. These
properties will be analyzed shortly.

Thus, it is clear by (7.6) that the eigenvalue problem of the Hamiltonian corre-
sponds to the eigenvalue problem of the Hermitian operator

N̂ = â†â . (7.7)

Denoting by |n〉 the corresponding eigenstates, the eigenvalue problem reads

N̂ |n〉 = n|n〉 . (7.8)

The eigenstates |n〉 are also eigenstates of the Hamiltonian �ω
(
N̂ + 1/2

)
, i.e.,

energy eigenstates. The energy eigenvalues are related to n as

En = �ω

(
n + 1

2

)
. (7.9)

Assuming that the eigenstates |n〉 are normalized, we obtain from (7.8)

〈n|N̂ |n〉 = n =⇒ 〈n|â†â|n〉 = n

or
n = ∣∣∣∣ â|n〉 ∣∣∣∣2 ≥ 0 . (7.10)

Therefore, n is nonnegative and En ≥ �ω/2. We shall be referring to the number n
as occupation number. The eigenstate of lowest energy (ground state) will be the
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one corresponding to n = 0. It corresponds to the eigenvalue E0 = �ω/2 and will
be denoted as |0〉. Note that the lowest energy state (configuration) of a classical
oscillator has vanishing energy, corresponding to a motionless particle sitting at
the minimum of the potential. In contrast, the ground state energy of the quantum
oscillator is nonzero. This fact is related to the uncertainty principle and will be
discussed shortly.

Proceeding to restrict further the energy spectrum and determine the eigenstates,
we may consider the commutators of â and â† with the Hamiltonian. We get

[
Ĥ , â

]
= −�ω â

[
Ĥ , â†

]
= �ω â†,

(7.11)

Acting with the first of these commutator relations on a state |n〉, we obtain

Ĥ â|n〉 − âEn|n〉 = −�ω|n〉 =⇒ Ĥ
(
â|n〉) = �ω

(
n + 1

2
− 1

) (
â|n〉)

or
Ĥ
(
â|n〉) = En−1

(
â|n〉) , (7.12)

meaning that the state â|n〉 is also an eigenstate of the energy but with occupation
number reduced by one. Assuming that there is no degeneracy, this means that this
state must be proportional to the state |n − 1〉, namely,

â|n〉 = Cn|n − 1〉 . (7.13)

Taking the norm of this state, we obtain 〈n|â†â|n〉 = 〈n|N̂ |n〉 = |Cn|2 orCn = √
n.

Thus, we have
â|n〉 = √

n |n − 1〉 . (7.14)

Further action with â on the ground state cannot take us to a state of lower energy as
we obtain the null state of the Hilbert space

â|0〉 = 0 . (7.15)

Next, considering the commutation relation of the creation operator â† with the
Hamiltonian and acting on a state |n〉,

[
Ĥ , â†

]
|n〉 = �ωâ†|n〉 ,

we obtain
Ĥ
(
â†|n〉) − En

(
â†|n〉) = �ω

(
â†|n〉)
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or
Ĥ
(
â†|n〉) = En+1

(
â†|n〉) , (7.16)

meaning that the state â†|n〉 is an eigenstate corresponding to an eigenvalue En+1 =
�ω(n + 1 + 1/2). We may write

â†|n〉 = C ′
n|n + 1〉 .

Taking the norm and recalling that ââ† = â†â + 1 = N̂ + 1, we obtain C ′
n =√

n + 1 and
â†|n〉 = √

n + 1|n + 1〉 . (7.17)

Note that we can start from the ground state and obtain the states

â†|0〉 = |1〉, (
â†
)2 |0〉 = √

2|2〉, (
â†
)3 |0〉 = √

3!|3〉, . . .

or (
â†
)n

√
n! |0〉 = |n〉 . (7.18)

Assume now that we start from a state |n〉 and act with the annihilation operator
m times, m being an integer equal to or just below n (i.e., n − 1 < m ≤ n). If n is
not an integer, then n − m would be a number between 0 and 1 and an additional
action of the annihilation operator would take us to states labeled by a negative
occupation number, which is impossible. Thus, the integer m has to be equal to n
in order to end up at the ground state. Therefore, we conclude that the occupation
number eigenvalues n are the nonnegative integers n = 0, 1, 2, . . . and the energy
eigenvalues correspond to discrete “quanta”.

Summarizing our conclusions, we have obtained the energy eigenvalues

En = �ω

(
n + 1

2

)
(n = 0, 1, 2, . . . ) (7.19)

and the energy eigenstates

|0〉, |1〉, |2〉, . . . , |n〉, . . . (7.20)

which can be all obtained from the ground state through (7.18).
As we noted earlier the lowest energy state of a classical oscillator has vanishing

energy, corresponding to amotionless particle sitting at theminimumof the potential.
In contrast, the ground state energy of the quantum oscillator has the nonzero value
�ω/2.This fact is related to the uncertainty principle and should have been anticipated
according to the following argument. Assume that the equilibrium position of the
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oscillator has some uncertainty d. The corresponding uncertainty in the momentum
will be at least �/d. Then, the energy of the oscillator will be

E(d) = �
2

2md2
+ 1

2
mω2(d/2)2

Minimizing this expression with respect to d, we obtain

E ′(d0) = 0 =⇒ d0 =
√

2�

mω
.

This spatial uncertainty corresponds to a compromise between the kinetic energy
and the potential energy of the oscillator. The corresponding minimum value of the
energy will be

E(d0) = �ω

2
,

which is the “zero-point energy” found above.

7.1.2 The {x} Versus the {N} Representation

The energy eigenstates define a discrete basis in Hilbert space in terms of which the
various operators and observables are represented by infinite matrices. In particular,
the operators â and â† are represented by the matrices

〈n|â|n′〉 = √
n′〈n|n′ − 1〉 = √

n′ δn,n′−1

〈n|â†|n′〉 = √
n′ + 1〈n|n′ + 1〉 = √

n′ + 1 δn,n′+1

(7.21)

or

a =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 . . . . . .

0 0
√
2 . . . . . .

0 0 0
√
3 . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, a† =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 . . . . . .

1 0 0 . . . . . .

0
√
2 0 . . . . . .

0 0
√
3 . . . . . .

. . . . . . . . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (7.22)
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The Hamiltonian matrix can be obtained multiplying these matrices and comes out
correctly as a diagonal matrix

Hnn′ = �ω

(
∑

n′′

√
n′′ + 1δn,n′′+1

√
n′δn′′,n′−1 + 1

2
δnn′

)

= �ω

(
n + 1

2

)
δnn′ = Enδnn′ .

In order to build the {x} representation, we need the inner products 〈x |n〉 that will
take us fromone basis to the other. These inner products are the energy eigenfunctions

ψn(x) = 〈x |n〉 . (7.23)

We may start from the ground state that has the property

â|0〉 = 0 =⇒ 〈x |â|0〉 = 0

or

〈x |
(√

mω

2�
x̂ + i√

2m�ω
p̂

)
|0〉 = 0 =⇒

√
mω

2�
x〈x |0〉 + �√

2m�ω

d

dx
〈x |0〉 = 0 (7.24)

or
dψ0(x)

dx
= −x

(mω

�

)
ψ0(x) . (7.25)

Integrating, we obtain
ψ0(x) = ψ0(0) e

− mω
2�

x2 .

The coefficient ψ0(0) is obtained by normalization to be

1 = |ψ0(0)|2
∫ +∞

−∞
dx e− mω

�
x2 = |ψ0(0)|2

√
�π

mω
=⇒ ψ0(0) =

(mω

�π

)1/4
.

Thus, the ground state wave function is

ψ0(x) =
(mω

�π

)1/4
e− mω

2�
x2 . (7.26)

The excited state eigenfunctions can be readily obtained through

ψn(x) = 〈x |
(
â†
)n

√
n! |0〉 (7.27)
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or

ψn(x) = 1√
n!

(√
mω

2�
x −

√
�

2mω

d

dx

)n

ψ0(x). (7.28)

Thus, we obtain

ψ1(x) = (
mω
�π

)1/4√ 2mω
�

x e− mω
2�

x2

ψ2(x) = 1√
2

(
mω
�π

)1/4 ( 2mω
�

x2 − 1
)
e− mω

2�
x2

. . .

(7.29)

Note that, as expected, since the Hamiltonian is even and, therefore, commutes with
parity, the energy eigenfunctions are automatically parity eigenstates, i.e., even and
odd. We have

P̂ψn(x) = (−1)nψn(x) . (7.30)

The wave functions (7.29) are in the form of a polynomial times the exponential
e− mω

2�
x2 . In the literature they are usually expressed in terms of the Hermite Polyno-

mials Hn(ξ) as

ψn(x) =
(mω

�π

)1/4 Hn(ξ)√
2nn!e

−ξ2/2

(
ξ ≡

√
mω

�
x

)
. (7.31)

The Hermite polynomials can be generated from the Rodrigues formula

Hn(ξ) = (−1)n e ξ2 dn

dξn
e−ξ2 . (7.32)

The first few are
H0(ξ) = 1

H1(ξ) = 2ξ

H2(ξ) = 4ξ2 − 2

H3(ξ) = 8ξ3 − 12ξ

H4(ξ) = 16ξ4 − 48ξ2 + 12

. . .

(7.33)

Note also

H2n+1(0) = 0, H2n(0) = (−1)n
(2n)!
n! , (7.34)



7.1 The Harmonic Oscillator 129

and the very beautiful completeness relation

∞∑

n=0

zn

n! Hn(ξ)Hn(ξ
′) = 1√

1 − 4z2
e− 4z2

1−4z2
(ξ2+ξ′2)+ 4z

1−4z2
ξξ′

. (7.35)

A meaningful question that may be asked in the framework of the {x} repre-
sentation is about the spatial and momentum uncertainty of the energy eigenstates
(�x)n and (�p)n . In order to answer it, we must calculate the expectation values
〈n|x̂ |n〉, 〈n|x̂2|n〉, 〈n| p̂|n〉, and 〈n| p̂2|n〉. Note, however, that the matrix elements
〈n|x̂ |n〉 and 〈n| p̂|n〉 vanish because of parity. Indeed we have, thanks to (5.86),

〈n|x̂ |n〉 = −〈n|P̂ x̂ P̂|n〉 = −(−1)n(−1)n〈n|x̂ |n〉 = −〈n|x̂ |n〉

and, therefore, 〈x̂〉n = 0. Similarly for 〈 p̂〉n .
From the definition of creation/annihilation operators in (7.4), we obtain that

x̂ =
√

�

2mω

(
â + â†

)

p̂ = −i
√

m�ω
2

(
â − â†

)
.

(7.36)

From these, we have

〈n|x̂2|n〉 = �

2mω

∣∣∣∣(â + â†
) |n〉∣∣∣∣2 = �

2mω

∣∣∣
∣∣∣
√
n|n − 1〉 + √

n + 1|n + 1〉
∣∣∣
∣∣∣
2

or

〈n|x̂2|n〉 = �

2mω
(2n + 1) . (7.37)

Similarly we get

〈n| p̂2|n〉 = m�ω

2

∣∣∣∣(â − â†
) |n〉∣∣∣∣2 = m�ω

2

∣∣∣
∣∣∣
√
n|n − 1〉 − √

n + 1|n + 1〉
∣∣∣
∣∣∣
2

or

〈n| p̂2|n〉 = m�ω

2
(2n + 1) . (7.38)

Thus, the corresponding uncertainties are

(�x)2n = �

2mω
(2n + 1)

(�p)2n = m�ω
2 (2n + 1)

=⇒ (�x)2n(�p)2n = �
2

4
(2n + 1)2. (7.39)
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Note that the ground states saturates the lower limit ofHeisenberg’s inequality having

(�x)0(�p)0 = �/2

and being a state of minimum uncertainty.

Example 7.1 A particle of massm and electric charge q is moving in one dimension,
being subject to a harmonic force −mω2x and a constant electric force qE , arising
from a homogeneous electric field E . Find the eigenvalues and eigenfunctions of the
energy.

The Hamiltonian of the system is

Ĥ = p̂2

2m
+ 1

2
mω2x2 − qEx . (7.40)

An equivalent expression for Ĥ is obtained by combining the last two terms in a square as

Ĥ = p̂2

2m
+ 1

2
mω2

(
x − qE

mω2

)2

− q2E2

2mω2 . (7.41)

The time-independent Schroedinger equation is
{

− �
2

2m

d2

dx2
+ 1

2
mω2

(
x − qE

mω2

)2

− q2E2

2mω2

}

ψ̃E (x) = E ψ̃E (x) (7.42)

or {
− �

2

2m

d2

dx ′2 + 1

2
mω2x ′2

}
ψ̃E (x) =

(
E + q2E2

2mω2

)
ψ̃E (x) , (7.43)

where

x ′ = x − qE
mω2 .

It is clear from the form of the Schroedinger equation for ψ̃E that

ψ̃E (x) = ψn(x
′) = ψn(x − qE/mω2) and E = �ω

(
n + 1

2

)
− q2E2

2mω2 , (7.44)

where ψn(x) are the energy eigenfunctions of the standard harmonic oscillator centered at x = 0.

Example 7.2 A simple harmonic oscillator is initially (t = 0) in a state with wave
function

ψ(x, 0) = 1√
2

(
1 − x

|x |
)

f (x) , (7.45)

where f (x) is a real, normalized, odd function

f (−x) = − f (x),
∫ +∞

−∞
dx f 2(x) = 1 . (7.46)

(a) Is ψ(x, 0) normalized?
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(b) What is the probability at t = 0 to find the particle anywhere in the region
x ≤ 0? What about the region x ≥ 0?

(c) Is there some time t1 at which the particle will be with certainty in the region
x ≥ 0?

(d) Is there some time t2 at which the particle will be with certainty in the region
x ≤ 0?

(e) Is there some time t3 at which the probability to find the particle in the x ≥ 0
region will be equal to the probability to find the particle in the x ≤ 0 region?

(a) Obviously, from ψ(x, 0) =
⎧
⎨

⎩

(x < 0)
√
2 f (x)

(x > 0) 0
we get

∫ +∞

−∞
dx |ψ(x, 0)|2 = 2

∫ 0

−∞
dx f 2(x) = 2

1

2

∫ +∞

−∞
dx f 2(x) = 1 . (7.47)

(b) The probability to find the particle initially (t = 0) in the region x ≤ 0 is 1 (certainty), while
the probability to find it anywhere in the x ≥ 0 region vanishes.

(c) The wave function at a later time t > 0 is

ψ(x, t) = e−iωt/2
∞∑

n=0

Cn e
−inωt ψn(x) , (7.48)

where (Note that the harmonic oscillator energy eigenfunctions are real)

Cn =
∫ +∞

−∞
dx ψn(x) ψ(x, 0) = √

2
∫ 0

−∞
dx ψn(x) f (x) = C∗

n . (7.49)

The corresponding probability density is

|ψ(x, t)|2 =
∣∣∣∣∣

∞∑

n=0

Cn e
−inωt ψn(x)

∣∣∣∣∣

2

. (7.50)

Notice that for t1 = π/ω we have exp[−inωt1] = exp[−iπn] = (−1)n . Thus, we have

|ψ(x, t1)|2 =
∣∣∣∣∣

∞∑

n=0

Cn (−1)nψn(x)

∣∣∣∣∣

2

=
∣∣∣∣∣

∞∑

n=0

Cn ψn(−x)

∣∣∣∣∣

2

= |ψ(−x, 0)|2 , (7.51)

making use of the fact that ψn(−x) = (−1)nψn(x). Since

ψ(−x, 0) =
⎧
⎨

⎩

(−x < 0)
√
2 f (−x)

(−x > 0) 0
=
⎧
⎨

⎩

(x > 0) −√
2 f (x)

(x < 0) 0

at time t1 = π/ω we have a particle being exclusively in the x ≥ 0 region.
(d) Notice that for t2 = 2π/ω we have exp[−inωt2] = exp[−i2πn] = 1. Thus, we have

|ψ(x, t1)|2 =
∣∣∣∣∣

∞∑

n=0

Cn ψn(x)

∣∣∣∣∣

2

= |ψ(x, 0)|2 , (7.52)
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which describes a particle exclusively in the x ≤ 0 region.
(e) At the time t3 = π/2ω we have

|ψ(x, t3)|2 =
∣∣∣∣∣

∞∑

n=0

Cn (−i)n ψn(x)

∣∣∣∣∣

2

(7.53)

and

|ψ(−x, t3)|2 =
∣∣∣∣∣

∞∑

n=0

Cn (−i)n (−1)nψn(x)

∣∣∣∣∣

2

=
∣∣∣∣∣

∞∑

n=0

Cn i
n ψn(x)

∣∣∣∣∣

2

= |ψ∗(x, t3)|2 (7.54)

or
|ψ(−x, t3)|2 = |ψ(x, t3)|2 . (7.55)

Thus, at t = t3 = π/2ω the probability density is even.

7.1.3 Coherent States

As we saw the ground state of the harmonic oscillator is a state of minimal spreading
for which the position/momentum Heisenberg relation becomes an equality. It turns
out that we can define suitable superpositions of the energy eigenstates that share
this property. Actually, these states are characterized by quite a few remarkable
properties. They are called coherent states.3 They may be introduced as

|z〉 = e−|z|2/2
∞∑

n=0

zn√
n! |n〉 , (7.56)

in terms of the complex parameter z. Note that the exponential factor in front has
been chosen so that 〈z|z〉 = 1. An equivalent closed expression can be obtained if
we make use of the fact that |n〉 = (â†)n√

n! |0〉. Then, (7.56) becomes

e−|z|2/2
∞∑

n=0

(zâ†)n

n! |0〉 = e−|z|2/2 ezâ
† |0〉

or
|z〉 = e−|z|2/2 ezâ

† |0〉 . (7.57)

The states (7.56) have been constructed so that they are eigenstates of the annihi-
lation operator â, namely,

â|z〉 = z|z〉 . (7.58)

This is shown as follows:

3More on the subject of coherent states in various quantum systems can be found in [3].
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â|z〉 = e−|z|2/2
∞∑

n=0

zn√
n!

√
n|n − 1〉 = e−|z|2/2

∞∑

n′=n−1=0

zn
′+1

√
n′! |n

′〉 = z|z〉 .

As we mentioned in the beginning of this subsection, the property that makes
coherent states interesting is the fact that they exhibit minimal position and momen-
tum uncertainties. Furthermore, what makes this property even more interesting is
that this happens at all times. Therefore, in order to compute the time-evolved uncer-
tainties in these states, we consider the relevant Heisenberg operators. From the
Heisenberg equation for â(t), we obtain

dâ(t)

dt
= i

�

[
Ĥ(t), â(t)

]
= iω

[
â†(t)â(t), â(t)

] = −iω â(t)

which, integrated, gives

â(t) = â(0) e−iωt , â†(t) = â†(0) eiωt . (7.59)

Then, from (7.36) we obtain

x̂(t) =
√

�

2mω

(
â(0)e−iωt + â†(0)eiωt

)

p̂(t) = −i
√

m�ω
2

(
â(0)e−iωt − â†(0)eiωt

)
,

(7.60)

where â(0), â†(0) are equal to the Schroedinger operatorswith the previously studied
lowering and raising properties. Then, thanks to (7.58), we get

〈z|x̂(t)|z〉 =
√

�

2mω

(
z e−iωt + z∗ eiωt

)

〈z| p̂(t)|z〉 = −i
√

m�ω
2

(
z e−iωt − z∗ eiωt

)
(7.61)

and

〈z|x̂2(t)|z〉 = �

2mω

(
1 + 2|z|2 + z2e−2iωt + z∗2e2iωt

)

〈z| p̂2(t)|z〉 = m�ω
2

(
1 − 2|z|2 − z2e−2iωt − z∗2e2iωt

) (7.62)

giving finally
(�x)2t = �

2mω

(�p)2t = �mω
2

=⇒ (�x)2t (�p)2t = �
2

4
. (7.63)

A valid question that could be asked iswhat is the physical meaning of the param-
eter z? This could be clarified if we calculate the average number of quanta in a
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coherent state. This can be seen in the relation

〈N 〉 = 〈z|â†â|z〉 = |z|2 . (7.64)

Next, writing down the uncertainty in the number of quanta

(�N )2 = 〈z|N 2|z〉 − 〈z|N |z〉2 = 〈z|â†ââ†z|z〉 − |z|4 =

z 〈z|â† (1 + â†â
) |z〉 − |z|4 = |z|4 + |z|2 − |z|4

or
(�N )2 = |z|2 . (7.65)

Thus, z is related to the uncertainty in the number of quanta.Wemay further conclude
that

(�N ) = √〈N 〉 . (7.66)

Resetting this formula in the form

(�N )

〈N 〉 = 1√〈N 〉 , (7.67)

we may conclude that as the number of quanta increases, their relative uncertainty
decreases. In the limit 〈N 〉 → ∞ we get (�N )/〈N 〉 → 0.

Example 7.3 Prove that the coherent states |z〉 ≡ e−|z|2/2 ezâ† |0〉 satisfy the “com-
pleteness relation”

1

π

∫
dz
∫

dz̄ |z〉〈z| = 1 . (7.68)

Using the polar description for the complex number z = ρ eiφ, we have

1

π

∫ ∞
0

dρ ρ

∫ 2π

0
dφ e−ρ2

∞∑

n,n′=0

ρn+n′
√
n!n′! e

i(n−n′)φ |n〉〈n′| = 1

π

∫ ∞
0

dρ ρ e−ρ2
∞∑

n=0

ρ2n

n! |n〉〈n|

where we used the fact
∫ 2π
0 dφ ei(n−n′)φ = 2π δnn′ . Doing the integral

∫∞
0 dρ ρ e−ρ2 ρ2n = 1

2

∫
∞ dξ ξn e−ξ = n!

2 , we obtain

1

π

∞∑

n=0

(2π)
n!
2

1

n! |n〉〈n| =
∞∑

n=0

|n〉〈n| = 1 .
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7.2 The Ammonia Molecule

The ammonia molecule is a characteristic example of a system with an approximate
two-dimensional—and therefore quite simple—Hilbert space of states. The ammonia
molecule, consisting of one nitrogen and three hydrogen atoms, has many states but,
in a given state of rotation, there are two possible configurations of the molecule,
corresponding to different positions of the nitrogen atom with respect to the plane of
the hydrogen atoms, that amount to two different states of the molecule (Fig. 7.3.).

The characteristic energy of states corresponding to electron excitations within
the atoms of the molecule is in the ultraviolet or optical range, while the character-
istic energies of vibrations of the molecule are in the infrared and, finally, those of
rotational excitations in the far infrared. In contrast, the energy difference between
the configurational states of the molecule mentioned above is much, much less than
those, namely, in the microwave region. Thus, when we investigate phenomena in
that energy region, the ammonia molecule behaves effectively as a two-state system.

Let’s denote the two different states of the system by the two orthogonal kets |1〉,
|2〉, taken also to be normalized as well. Thus, we have

〈i | j〉 = δi j (i, j = 1, 2) . (7.69)

The state of the system at any time t can be expanded in this basis as

Fig. 7.3 The ammonia molecule
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|ψ(t)〉 = ψ1(t)|1〉 + ψ2(t)|2〉 =⇒
⎛

⎝
ψ1(t)

ψ2(t)

⎞

⎠ . (7.70)

Normalization corresponds to

〈ψ(t)|ψ(t)〉 = 1 =⇒ |ψ1(t)|2 + |ψ2(t)|2 = 1 . (7.71)

Note that this holds at all times. The Hamiltonian of the system with respect to the
above basis of states will correspond to a matrix of the form

Hi j = 〈i |Ĥ | j〉 =⇒ H =
⎛

⎝
E11 E12

E∗
12 E22

⎞

⎠ , (7.72)

in terms of the real numbers E11, E22 and the complex number E12. This is the most
general form dictated by Hermiticity. For the ammonia molecule under study, the
measured values of these parameters are such that it suffices to take

E11 ≈ E22 = E0 and E12 = E∗
12 = A << E0 ,

although in order to keep this analysis more general we shall not need to make use of
the last approximation. Thus, we start with the phenomenological assumption that
the Hamiltonian matrix in the above basis is

H =
⎛

⎝
E0 A

A E0

⎞

⎠ . (7.73)

The time evolution of the system is dictated by the Schroedinger equation

i�
d|ψ(t)〉

dt
= Ĥ |ψ(t)〉 . (7.74)

Equivalent to the Schroedinger equation is its operator solution in terms of the time-
evolution operator

|ψ(t)〉 = Û (t) |ψ(0)〉 . (7.75)

The dynamics of the system is embodied in the following central question:
Given that the system is initially (t = 0) in a state |ψ(0)〉, what is its state |ψ(t)〉

in a future time t > 0?
There are more than one alternative ways to arrive at the answer to this question.

We shall analyze two of them for pedagogical reasons. Without loss of generality,
we shall assume that the initial state of the system is |ψ(0)〉 = |1〉.
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(1) Solution through the Schroedinger equation. One rather straightforward
approach to the problem is to transform the Schroedinger equation into a matrix
equation in the given basis and solve the resulting system of differential equations.
This goes as follows:

i�〈i | d
dt

|ψ(t)〉 = 〈i |Ĥ |ψ(t)〉 =⇒

i�〈i | d
dt

⎛

⎝
∑

j

| j〉〈 j |
⎞

⎠ |ψ(t)〉 = 〈i |Ĥ
⎛

⎝
∑

j

| j〉〈 j |
⎞

⎠ |ψ(t)〉

or

i�
dψi (t)

dt
=
∑

j

Hi jψ j (t) , (7.76)

where ψi (t) = 〈i |ψ(t)〉. Substituting the explicit form of H, this becomes

⎛

⎝
dψ1(t)
dt

dψ2(t)
dt

⎞

⎠ = − i

�

⎛

⎝
E0 A

A E0

⎞

⎠

⎛

⎝
ψ1(t)

ψ2(t)

⎞

⎠ . (7.77)

This is equivalent to the system of equations

dψ1

dt = − i
�
E0ψ1 − i

�
Aψ2

dψ2

dt = − i
�
E0ψ2 − i

�
Aψ1.

(7.78)

Adding and subtracting the above, we obtain the equivalent pair

ψ̇1 + ψ̇2 = − i
�
(E0 + A) (ψ1 + ψ2)

ψ̇1 − ψ̇2 = − i
�
(E0 − A) (ψ1 − ψ2)

or, introducing the alternative components4

ψ± = 1√
2

(ψ1 ± ψ2) ψ1,2 = 1√
2

(ψ+ ± ψ−) , (7.79)

we obtain two decoupled equations

4The 1/
√
2 factor guarantee that the ψ± obey the same normalization condition

|ψ+(t)|2 + |ψ−(t)|2 = 1

as the ψ1,2.
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ψ̇± = − i

�
(E0 ± A)ψ± (7.80)

that can be readily integrated to give

ψ±(t) = ψ±(0) e− i
�

(E0±A)t . (7.81)

Using the inverse relations giving our original components, we have

ψ1(t) = 1√
2
ψ+(0)e− i

�
(E0+A)t + 1√

2
ψ−(0)e− i

�
(E0−A)t

ψ2(t) = 1√
2
ψ+(0)e− i

�
(E0+A)t − 1√

2
ψ−(0)e− i

�
(E0−A)t .

(7.82)

Our initial state corresponds to

ψ1(0) = 〈1|ψ(0)〉 = 〈1|1〉 = 1, ψ2(0) = 〈2|ψ(0)〉 = 〈2|1〉 = 0 .

Therefore,

ψ+(0) = ψ−(0) = 1√
2

.

Thus, finally the evolved state is

⎛

⎝
ψ1(t)

ψ2(t)

⎞

⎠ = e− i
�
E0t

⎛

⎝
cos(At/�)

−i sin(At/�)

⎞

⎠ (7.83)

or in ket language

|ψ(t)〉 = e− i
�
E0t [ cos(At/�)|1〉 − i sin(At/�)|2〉 ] . (7.84)

This is the state vector of the system at any time t . We may answer a number of
possible questions in terms of it. First of all, we see that the probability for the
molecule to occupy any particular state |χ〉 is periodic in time. Indeed, we have

Pχ(t) = |〈χ|ψ(t)〉|2 = ∣∣χ∗
1 cos(At/�) − iχ∗

2 sin(At/�)
∣∣2 .

Since the system is periodic, there is nonzero probability that at a certain time it will
return to the initial state. The corresponding probability is

P1(t) = |〈1|ψ(t)〉|2 = cos2(At/�) .

This means that at the times
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tn = n�π

A
with n = 1, 2, . . .

the system will return to its initial state.
We may also ask whether the system ever goes to the orthogonal state |2〉. Indeed,

since
P2(t) = |〈2|ψ(t)〉|2 = sin2(At/�) ,

this happens at the times

t∗n = (2n + 1)
π�

2A
.

(2) Solution through the energy eigenvalue problem. An alternative way to deter-
mine the evolution of the system is to first solve the energy eigenvalue problem and
then employ the general solution of the Schroedinger equation |ψ(t)〉 expanded in
energy eigenfunctions (stationary states).

The energy eigenvalue problem consists of determining the eigenvectors |E〉 and
eigenvalues E satisfying

Ĥ |E〉 = E |E〉. (7.85)

Again we transform this operator relation into a matrix equation projecting on the
given basis

〈i |Ĥ
⎛

⎝
∑

j

| j〉〈 j |
⎞

⎠ |E〉 = E〈i |E〉

or ∑

j

Hi jCE j = ECEi , (7.86)

where we denoted
CEj ≡ 〈 j |E〉 . (7.87)

For our specific molecular Hamiltonian, this is

⎛

⎝
E0 A

A E0

⎞

⎠

⎛

⎝
CE1

CE2

⎞

⎠ = E

⎛

⎝
CE1

CE2

⎞

⎠ . (7.88)

This matrix equation is really a homogeneous system of linear equations

(E0 − E)CE1 + ACE2 = 0

ACE1 + (E0 − E)CE2 = 0.
(7.89)
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As is known from the theory of linear systems of equations, in order for this system to
possess a nontrivial solution, its determinant of coefficients should be zero, namely,

∣∣∣∣∣∣

E0 − E A

A E0 − E

∣∣∣∣∣∣
= 0 . (7.90)

This amounts to an equation determining the eigenvalues5

(E0 − E)2 − A2 = 0 =⇒ E± = E0 ± A . (7.91)

For each of these eigenvalues, we have a corresponding eigenvector represented by

the column

(
C (±)
1

C (±)
2

)
. The eigenvectors are determined by inserting into (7.88) the

values of the energy eigenvalues. We have for the “+” eigenvalue

⎛

⎝
E0 A

A E0

⎞

⎠

⎛

⎝
C (+)
1

C (+)
2

⎞

⎠ = (E0 + A)

⎛

⎝
C (+)
1

C (+)
2

⎞

⎠ =⇒ C (+)
2 = C (+)

1 .

Similarly for the “−” eigenvalue

⎛

⎝
E0 A

A E0

⎞

⎠

⎛

⎝
C (−)
1

C (−)
2

⎞

⎠ = (E0 − A)

⎛

⎝
C (−)
1

C (−)
2

⎞

⎠ =⇒ C (−)
2 = −C (−)

1 .

Note that, since the system of equations is homogeneous, one of the coefficients will
be undetermined and will be fixed by normalizing the eigenvectors. Summarizing,
we obtain

E+ = E0 + A =⇒ |E+〉 =⇒ 1√
2

⎛

⎝
1

1

⎞

⎠

E− = E0 − A =⇒ |E−〉 =⇒ 1√
2

⎛

⎝
1

−1

⎞

⎠

(7.92)

We have normalized the eigenvectors taking C (±)
1 = 1/

√
2. The eigenvectors can

also be written in ket language as

|E±〉 = 1√
2

( |1〉 ± |2〉 ) , (7.93)

5The equation determining the eigenvalues is det (H − E I) = 0 .
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the inverse relations being

|1〉 = 1√
2

(|E+〉 + |E−〉) , |2〉 = 1√
2

( |E+〉 − |E−〉 ) . (7.94)

Note that, as eigenvectors of a Hermitian operator, they are automatically orthogonal

〈E+|E−〉 = 1

2
(1, 1)

(
1

−1

)
= 0 .

Having determined the energy eigenvectors and eigenvalues, we are in a position
to use them as an alternative basis. The evolved state of the system, written in terms
of the evolution operator, is

|ψ(t)〉 = Û (t) |ψ(0)〉 = e− i
�
Ĥ t |ψ(0)〉

= e− i
�
Ĥ t

(
∑

E

|E〉〈E |
)

|ψ(0)〉 =
∑

E

〈E |ψ(0)〉 e− i
�
Et |E〉 (7.95)

and using the fact that |ψ(0)〉 = |1〉,

|ψ(t)〉 = C (+)
1 e− i

�
(E0+A)t |E+〉 + C (−)

1 e− i
�

(E0−A)t |E−〉 =

1√
2
e− i

�
E0t

(
e− i

�
At 1√

2
(|1〉 + |2〉) + e

i
�
At 1√

2
(|1〉 − |2〉)

)

or
|ψ(t)〉 = e− i

�
E0t [ cos(At/�)|1〉 − i sin(At/�)|2〉 ] . (7.96)

Example 7.4 Consider a two-state system described by its Hamiltonian Ĥ and
another physical observable P̂ (parity). In a given orthonormal basis, these observ-
ables take the form

H =
⎛

⎝
E0 A

A E0

⎞

⎠ , P =
⎛

⎝
1 0

0 −1

⎞

⎠ . (7.97)

A measurement of the parity of the system is performed at t = 0 and the parity is
determined to be +1. Subsequently, at time t > 0, a measurement of the energy is
performed. What are the possible outcomes and what is the probability of each?

Since parity comes out as a diagonal matrix in the given basis |1〉, |2〉, these vectors are the
eigenvectors of parity, |1〉 being the eigenstate of parity +1 and |2〉 being the eigenstate of parity
−1. The measurement of parity at t = 0 prepares the system in the initial state |ψ(0)〉 = |1〉. Using
the calculation above, we know that the evolved state at time t > 0 will be

|ψ(t)〉 = e− i
�
E0t [ cos(At/�)|1〉 − i sin(At/�)|2〉 ] . (7.98)
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Introducing back the energy eigenstates, this is written as

|ψ(t)〉 = 1√
2

[
e− i

�
E+t |E+〉 + e− i

�
E−t |E−〉

]
. (7.99)

Thus, the probability of each energy eigenvalue is 50%.

Example 7.5 For the system of previous example (7.4.) construct the evolution oper-
ator Û (t) and determine the Heisenberg operator for the parity P̂(t).

We have

Û (t) = e− i
�
t Ĥ = e− i

�
t Ĥ
∑

a

|Ea〉〈Ea | = e− i
�
E+t |E+〉〈E+| + e− i

�
E−t |E−〉〈E−| (7.100)

or

U(t) = 1

2
e− i

�
E+t
(
1
1

)
(1, 1) + e− i

�
E−t
(

1
−1

)
(1, −1)

= 1

2
e− i

�
E0t

⎛

⎝
cos(At/�) −i sin(At/�)

−i sin(At/�) cos(At/�)

⎞

⎠ . (7.101)

The parity operator is
P̂(t) = Û†(t) P̂(0) Û (t) (7.102)

or

P(t) =
⎛

⎝
cos(2At/�) −i sin(2At/�)

i sin(2At/�) − cos(2At/�)

⎞

⎠ . (7.103)

Example 7.6 Consider a three-state system described by a Hamiltonian H . Let
|E1〉, |E2〉, |E3〉 be three eigenstates of the energy corresponding to the eigenvalues
E1, E2, E3. An observable A of the system has the following properties:

Â|E1〉 = α (|E1〉 + |E3〉) , Â|E2〉 = α|E2〉

Â|E3〉 = α (|E1〉 + |E3〉) . (7.104)

Assume that initially (t = 0) the system occupies the state

|ψ(0)〉 = 1√
3

(|E1〉 + |E2〉 + |E3〉) . (7.105)

(a) Calculate the expectation value 〈E〉 and the uncertainty (�E) of the energy.

(b) Calculate the expectation value 〈A〉 and the uncertainty (�A) at any time t > 0.

(c) Verify the inequality

(�E)2(�A)2t ≥ 1

4

∣∣∣〈
[
Ĥ , Â

]
〉t
∣∣∣
2

(7.106)
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in the case E1 = E2.

(a) Note that all expectation values of the Hamiltonian or its powers are time-independent. Thus,
we have

〈H〉 = 1

3
(1, 1, 1)

⎛

⎜⎜⎜
⎝

E1 0 0

0 E2 0

0 0 E3

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

1

1

1

⎞

⎟⎟⎟
⎠

= 1

3
(E1 + E2 + E3) (7.107)

and

(�E)2 = 〈H2〉 − (〈H〉)2 = 1

3

(
E2
1 + E2

2 + E2
3

)
− 1

9
(E1 + E2 + E3)

2

= 1

9

(
(E1 − E2)

2 + (E1 − E3)
2 + (E2 − E3)

2
)

. (7.108)

(b) From the above relations satisfied by Â, we conclude that

A =

⎛

⎜⎜⎜
⎝

α 0 α

0 α 0

α 0 α

⎞

⎟⎟⎟
⎠

, A2 =

⎛

⎜⎜⎜⎜
⎝

2α2 0 2α2

0 α2 0

2α2 0 2α2

⎞

⎟⎟⎟⎟
⎠

(7.109)

and

〈 Â〉t = 1

3

(
e

i
�
E1t , e

i
�
E2t , e

i
�
E3t
)

⎛

⎜⎜⎜
⎝

α 0 α

0 α 0

α 0 α

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎝

e− i
�
E1t

e− i
�
E2t

e− i
�
E3t

⎞

⎟⎟⎟⎟⎟
⎠

= α

3
(3 + 2 cos((E1 − E3)t/�) ) . (7.110)

Similarly

〈 Â2
t 〉 = 1

3

(
e

i
�
E1t , e

i
�
E2t , e

i
�
E3t
)

⎛

⎜⎜⎜⎜
⎝

2α2 0 2α2

0 α2 0

2α2 0 2α2

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎝

e− i
�
E1t

e− i
�
E2t

e− i
�
E3t

⎞

⎟⎟⎟⎟⎟
⎠

= α2

3
(5 + 4 cos((E1 − E3)t/�) ) . (7.111)

Therefore,

(�A)2t = α2

9

(
6 − 4 cos2((E1 − E3)t/�)

)
. (7.112)
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(c) We have

[H, A] = α(E1 − E3)

⎛

⎜⎜⎜
⎝

0 0 1

0 0 0

−1 0 0

⎞

⎟⎟⎟
⎠

and

〈 [H, A]〉 = 1

3
α(E1 − E3)

(
e

i
�
E1t , e

i
�
E2t , e

i
�
E3t
)

⎛

⎜⎜⎜
⎝

0 0 1

0 0 0

−1 0 0

⎞

⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎝

e− i
�
E1t

e− i
�
E2t

e− i
�
E3t

⎞

⎟⎟⎟⎟⎟
⎠

= 2iα

3
(E1 − E3) sin((E1 − E3)t/�) .

Therefore (�E)2(�A)2t ≥ 1
4 |〈[A, H ]〉t |2 amounts to

1

9

(
(E1 − E2)

2 + (E1 − E3)
2 + (E2 − E3)

2
) (

6 − 4 cos2((E1 − E3)t/�)
)

≥ (E1 − E3)
2 sin2((E1 − E3)t/�) . (7.113)

In the case E1 = E2 we have

2

9

(
6 − 4 cos2(E1 − E3)

)
≥ sin2(E1 − E3) → 1

9
cos2(E1 − E3) ≥ −1

3
,

which is always true.

7.3 The One-Dimensional Lattice

A very simple model that mimics the behavior of electrons in solids is a one-
dimensional periodic array of identical atoms (positively charged ions, really) and
an electron that can sit at the location of the atoms but can also make transitions
between neighboring atoms (ultimately due to tunneling phenomena through the
potential barriers between atoms). Let the lattice of atoms consist of N atoms at the
fixed locations

a, 2a, 3a, . . . , Na

a being the constant distance between successive atoms. In place of position eigen-
vectors |x〉, we may consider the states |n〉 each of which corresponds to the elec-
tron having a fixed position at the nth atom. The Hilbert space of states is an N -
dimensional vector space spanned by these states which, as mutually exclusive, are
assumed to be orthogonal and, therefore, to constitute an orthonormal basis. If no
transitions between atoms were possible, the Hamiltonian in this basis would be a
diagonal matrix
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H0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E0 0 0 . . . . . .

0 E0 0 . . . . . .

0 0 E0 0 . . . ,

. . . . . . . . . . . . . . .

. . . . . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (7.114)

Since all atomic sites are equivalent, the energy eigenvalues E0 are equal. The corre-
sponding Hamilton operator Ĥ0 can be expressed in terms of the projection operators
�n = |n〉〈n| as

Ĥ0 =
N∑

n=1

E0 |n〉 〈n| . (7.115)

This is the so-called tight-binding approximation inwhich transitions between atomic
sites do not occur. We may include now the possibility for transitions by adding to
(7.114) non-diagonal terms between first neighbors as

Ĥ =
N∑

n=1

E0 |n〉 〈n| − g

N−1∑

n=1

( |n〉 〈n + 1| + |n + 1〉 〈n| ) , (7.116)

where g is a parameter measuring the transition probability between neighboring
sites. In matrix form (7.116) is

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E0 −g 0 . . . . . .

−g E0 −g . . . . . .

0 −g E0 −g . . . ,

. . . . . . −g . . . . . .

. . . . . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (7.117)

The eigenvalue problem of (7.116) is

Ĥ |ψE 〉 = E |ψE 〉 . (7.118)

Expanding the eigenstate in the {n} basis
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|ψE 〉 =
N∑

n=1

ψn|n〉 (7.119)

and substituting it into (7.118), we obtain

N∑

n′=1

(
E0|n′〉 〈n′| − g|n′ + 1〉〈n′| − g|n′〉〈n′ + 1|)

N∑

n=1

ψn|n〉 = E
N∑

n=1

ψn|n〉

or
N∑

n=1

( E0 ψn − E ψn − gψn+1) |n〉 − g

N∑

n′=1

ψn′ |n′ + 1〉 = 0

or
N∑

n=1

( E0 ψn − E ψn − gψn+1) |n〉 − g

N∑

n=2

ψn−1|n〉 = 0

or

(E − E0)ψn + g (ψn+1 + ψn−1) = 0 with n = 1, 2, . . . , N , (7.120)

keeping in mind that, since the lattice starts up at a and ends up at Na, ψ0 =
ψN+1 = 0.

Let us now look for a solution to (7.120) in the form of a plane wave

ψ(x) = eikx√
L

=⇒ ψn = eik(na)

√
N

(7.121)

with k a wave number parameter to be related to the energy eigenvalues E . Indeed,
substituting (7.121) into (7.120), we get

E = E0 − 2g cos(ka) . (7.122)

Note, however, that if we change the wave number by an integer times 2π/a, i.e.,

k → k + 2π

a
, (7.123)

the eigenfunction and the eigenvalue do not change. It suffices to restrict the values
of k in the range

− π

a
≤ k <

π

a
. (7.124)
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This region has the name Brillouin Zone.6 Positive k corresponds to electron motion
toward the right while negative k motion toward the left. Notice that spatial discrete-
ness has led us to restricting the momentum in the Brillouin zone. This is the inverse
of what we have encountered in the case of the infinite square well where spatial
compactness has led to discreteness of momentum.

At low momenta k << 1/a or, equivalently, in the a → 0 limit (continuum), the
energy eigenvalues are

E ≈ E0 − g + g

2
(ka)2 = �

2k2

2m∗ + constant , (7.125)

where m∗ ≡ �
2

ga2 is an effective mass of the low-energy electrons.

Example 7.7 Calculate the uncertainty in position for any state |ψE 〉 and compare
with the localized states |n〉, which have (�x)n = 0.

We have

〈ψE |x̂ |ψE 〉 = a

N

N∑

n=1

n = a

2
(N + 1)

and

〈ψE |x̂2|ψE 〉 = a2

N

N∑

n=1

n2 = a2

6
(N + 1)(2N + 1).

Thus, we obtain

(�x)2E = 1

12
(N 2 − 1) . (7.126)

This means that the energy eigenstates are extremely delocalized extending over the entire lattice

((�x)E ∼ O(N )), in contrast to the position eigenstates |n〉.

Example 7.8 Consider a periodic lattice for which ψN+1 = ψ1 and show that there
is a further restriction on k imposed by periodicity, namely, k j = j 2π

Na ( j =
1, . . . , N ) and there are N eigenstates corresponding to N energy eigenvalues.
Demonstrate the orthonormality of these eigenstates.

The periodicity condition ψ1 = ψN+1 implies

eika = ei(N+1)ka =⇒ k = 2π

Na
j

with j = 1, . . . , N . The orthonormality of the states |ψE j 〉 follows in a straightforward fashion.
We have7

〈ψE j |ψE j ′ 〉 =
⎧
⎨

⎩

( j �= j ′) 1
N

∑N
n=1 e

2πin
N ( j ′− j) = 0

( j ′ = j) 1
N

∑N
n=1 = 1

. (7.127)

6See any of the standard solid state textbooks, e.g., [4].
7∑N

n=1 b
n = b (1−bN )

(1−b) .
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7.4 Periodic Potentials

In the case of a free particle, the energy eigenstates are simultaneously momentum
eigenstates since [Ĥ , p̂] = 0. This is related to the translational invariance of the
free-particle system. This is no longer true in the presence of forces since [Ĥ , p̂] �= 0
in general. Nevertheless, in a system like the previously considered lattice, a discrete
version of translational invariance exists, namely, invariance under x → x + a,
where a is the lattice spacing. This is in contrast to the continuous translational
invariance x → x + β of the free-particle systemwhere β is a continuous parameter.

The TranslationOperator. Let us introduce a translation operator T̂ (β) defined
by its action on a wave function as

T̂ (β)ψ(x) = ψ(x + β) . (7.128)

It is not difficult to see that such an operator has the property

T̂ (β) T̂ (γ) = T̂ (β + γ) . (7.129)

Of course, T̂ (0) = I and, therefore,

T̂ (β) T̂ (−β) = I =⇒ T̂ (−β) = T̂−1(β) . (7.130)

Next, we can show that T̂ (β) is a unitary operator. Starting from the definition of
Hermitian conjugation 〈ψ1|T̂ (β)|ψ2〉 = 〈ψ2|T̂ †(β)|ψ1〉∗, we obtain

∫
dx ψ∗

1(x)ψ2(x + β) =
∫

dx ψ2(x)
(
T̂ †(β)ψ1(x)

)∗ =⇒
∫

dx ψ∗
2(x)T̂

†(β)ψ1(x) =
∫

dx ψ∗
2(x + β)ψ1(x) =

∫
dx ψ∗

2(x)ψ1(x − β)

or
T̂ †(β)ψ1(x) = ψ1(x − β) =⇒ T̂ †(β) = T̂ (−β) (7.131)

and
T̂ (β) T̂ †(β) = T̂ †(β) T̂ (β) = I . (7.132)

The definition (7.128) of the translation operator can also be written in terms of
a Taylor expansion in β as

T̂ (β)ψ(x) = ψ(x + β) =
∞∑

n=0

βn

n! ψ(n)(x) =
∞∑

n=0

βn

n!
dn

dxn
ψ(x) . (7.133)
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Nevertheless, the derivative can be replaced by the momentum operator as d
dx = i

�
p̂

and ∞∑

n=0

βn

n!
dn

dxn
ψ(x) =

∞∑

n=0

i nβn

�nn! p̂
nψ(x) = e

i
�

β p̂ψ(x) .

Thus, we may write

T̂ (β)ψ(x) = e
i
�

β p̂ψ(x) =⇒ T̂ (β) = e
i
�

β p̂ . (7.134)

All the above can be straightforwardly carried over to three dimensions

T̂ (a) = e
i
�
a·p̂ . (7.135)

It is evident that a translationally invariant system must obey

[
Ĥ , T̂ (β)

]
= 0 . (7.136)

This is, however, equivalent to [ Ĥ , p̂ ] = 0 or momentum conservation. Of course,
this is not true in general in the case of interactions.

Bloch’s Theorem. In the case of a system with a periodic potential,8 the Hamil-
tonian obeys discrete translational invariance by the given length a

x → x + a . (7.137)

Therefore, the Hamiltonian must commute with T̂ (a)

[
Ĥ , T̂ (a)

]
= 0 (7.138)

and the energy eigenstates will also be eigenstates of T̂ (a). Since T̂ (a) is a unitary
operator, its eigenvalues will be of the form eiθ. We may label its eigenstates with
some wave number parameter k and have

T̂ (a)ψk(x) = eika ψk(x) . (7.139)

Nevertheless, this implies also

ψk(x + a) = eika ψk(x) . (7.140)

Note that there is an arbitrariness in labeling the eigenstates with the wave number
k, since k + n(2π)/a gives the same eigenvalue. This degeneracy is avoided if we

8An introduction to periodic potentials and Bloch’s theorem in considerable detail can be found in
standard solid state textbooks like [4].
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restrict the value range of k in the region

− π

a
≤ k <

π

a
. (7.141)

This the Brillouin Zone that we also encountered in the one-dimensional lattice.
Let us return to (7.140) and write the wave functions as

ψk(x) = eikx uk(x) . (7.142)

Substituting it in (7.140) we obtain that uk(x) has to be periodic, namely,

uk(x + a) = uk(x) . (7.143)

This is Bloch’s Theorem which states:
In a periodic potential V (x) = V (x + a) all energy eigenstates can be written as

ψk(x) = eikxuk(x), where uk(x) = uk(x + a) is periodic and k lies in the Brillouin
Zone.

Energy Bands and Gaps. Among the most important properties of periodic
potentials is that they predict the distinction between conductors and insulators. This
follows directly from the existence of gaps in the energy spectrum. The proof is very
general.

If ψ(x) is a solution of the time-independent Schroedinger equation with a peri-
odic potential (V (x + a) = V (x)), so is ψ(x + a). Since we have a second-order
differential equation, we shall have two independent solutions ψ1(x), ψ2(x). This
pair will have to be linearly related to ψ1(x + a), ψ2(x + a) through a relation

ψi (x + a) = Fi j (E)ψ j (x) , (7.144)

where F(E) will be a 2 × 2 matrix dependent on the energy. This is the “Flocket
Matrix”. There will also be an analogous relation to (7.144) for the derivatives

ψ′
i (x + a) = Fi j (E)ψ′

j (x) . (7.145)

We can now introduce the matrix

W(x) =
⎛

⎝
ψ1(x) ψ′

1(x)

ψ2(x) ψ′
2(x)

⎞

⎠ . (7.146)

Using the Schroedinger equation, it is straightforward to prove that the determinant
of W is a constant

det (W(x)) = ψ1(x)ψ
′
2(x) − ψ2(x)ψ

′
1(x) =⇒ (det(W))′ = 0 . (7.147)
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From (7.144) and (7.145), we can write the matrix equation

W(x + a) = F(E)W(x) (7.148)

and taking its derivative arrive at

det(F) = 1 . (7.149)

The solution of (7.144) will depend on the eigenvalues f± of F(E). These are
determined by the equation

det (F − f I) = 0 =⇒ f 2 − Tr(F) f + det(F) = 0 (7.150)

or just

f 2 − Tr(F) f + 1 = 0 =⇒ f± = 1

2

(
Tr(F) ±

√
(Tr(F))2 − 4

)
.

(7.151)
Note that, because det(F) = 1, we must have f+ f− = 1.

For |Tr(F)| < 2, the solutions will be complex. Then, they can always be written
in the form

f± = e±ika (7.152)

in terms of a parameter k. If η± are the eigenvectors corresponding to f±, we can
obtain from (7.144)

η(T )
± ψ(x + a) = η(T )

± F(E)ψ(x) = f± η(T )
± ψ(x)

or
ψ±(x + a) = e±ika ψ±(x) , (7.153)

where ψ± = η(T )
± ψ = η±,iψi . These states correspond to the bands of the energy

spectrum.
For |Tr(F)| > 2, the eigenvalues will be of the form

f± = e± qa (7.154)

for some real q. Through analogous steps, we can arrive at

ψ±(x + a) = e±qa ψ±(x) . (7.155)

However, these states are not admissible since they diverge either at +∞ or −∞.
Therefore, they must be rejected. This is the proof that there will be gaps in the
energy spectrum.
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The Kronig–Penney Model. As an example of a solvable periodic potential, we
may consider an infinite periodic series of delta functions

V (x) =
+∞∑

n=−∞
V0 δ(x − na) . (7.156)

The solution of the Schroedinger equation in the region (0, a), where the potential
vanishes, will be

ψ(x) = Aeiqx + Be−iqx (E = �
2q2

2m
) . (7.157)

Note that we have used the symbol q for the wave number in order to avoid confusion
with the symbol k appearing in Bloch’s theorem. Now, Bloch’s theorem dictates that

ψ(0) = u(0) = u(a) = ψ(a) e−ika, (7.158)

which for our particular wave function gives

A + B = (
Aeiqa + Be−iqa

)
e−ika . (7.159)

In addition to this, we have the discontinuity of the derivative at the location of the
delta function. At the point x = 0, we have

− �
2

2m

(
ψ′(+0) − ψ′(−0)

) + V0ψ(0) = 0 (7.160)

or

− �
2

2m

(
u′(+0) − u′(−0)

) + V0 u(0) = 0 . (7.161)

Using the fact that u′(x + a) = u′(x) at the point x = 0 − ε gives u′(−ε)=u′(a − ε),
the above relation becomes

− �
2

2m

(
u′(ε) − u′(a − ε)

) + V0 u(0) = 0 . (7.162)

Since ε and a − ε lie in the region where the expression (7.157) holds, we obtain

− iq
�
2

2m

(
A − B − Aei(q−k)a + Be−i(q+k)a

)+ V0(A + B) = 0 . (7.163)

The Eqs. (7.159) and (7.163) are just a homogeneous two-equation system leading
to a value for the ratio B/A and to the condition on the energy

cos(ka) = cos(qa) + mV0

�2q
sin(qa) . (7.164)
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Fig. 7.4 Energy bands and gaps in the Kronig–Penney model

This equation gives the allowed values of k in terms of the energy E . Whenever
the value of q is such that the right-hand side exceeds 1, these values of energy are
not allowed (gaps). Due to the periodicity of the right-hand side in qa, for a given
value of k in the Brillouin zone −π/a < k < π/a, there is an infinite number of
corresponding values of qa satisfying this equation. In Fig. 7.4, we have plotted the
right-hand side of (7.164) in terms of qa formV0a/�

2 = 5.Note the gaps between the
energy bands, corresponding to the intervals where the values of the plotted function
exceed the allowed values of a cosine (e.g., the gap between qa = c and qa = d).

7.5 Other Potentials

We saw that in the case of the harmonic oscillator the Hamilton operator had the
positive definite form Ĥ = �ω â†â with â = x̂

√
mω/2� + i p̂/

√
2m�ω (up to a

constant �ω/2). This form led to a number of properties. We may explore this by
allowing for a general position dependence of â and investigate Hamiltonians of the
form9

Ĥ = Q̂†Q̂ = 1

2m

(−i p̂ + W (x̂)
) (
i p̂ + W (x̂)

)
. (7.165)

The operator Q̂ stands for

Q̂ = 1√
2m

(
i p̂ + W (x̂)

)
, (7.166)

9For more examples, see [5].
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whereW (x) is a general function of the position. In the case of the simple harmonic
oscillator W = mωx . The Hamiltonian (7.165) can be worked out to take the form

Ĥ = p̂2

2m
− �

2m
W ′(x) + W 2(x)

2m
(7.167)

from which the potential can be read off to be

V (x) = − �

2m
W ′(x) + W 2(x)

2m
. (7.168)

Before we proceed to study specific examples of potentials belonging to this class,
let’s consider the time-independent Schroedinger equation. It is

Q̂†Q̂|ψE 〉 = E |ψE 〉 . (7.169)

It is clear that the energy eigenvalues have to be nonnegative, i.e.,

E ≥ 0 . (7.170)

Depending on the value of the potential at infinity, the energy spectrum can be
composed of scattering states as well as discrete states. In the case that the potential
vanishes at infinity, the only possible bound state is one of the zero energy. Actually,
for a vanishing energy solution, we can immediately obtain that the corresponding
eigenfunction satisfying the Schroedinger equation with E = 0 is

ψ0(x) = ψ0(0) e
− 1

�

∫ x
0 dx ′ W (x ′) . (7.171)

The Volcano potential. Consider a particle moving in a potential of the type
(7.168) with

W (x) = N �

(
x

x2 + a2

)
. (7.172)

We have

V (x) = �
2N

2m

(
(N + 1)x2 − a2

)

(
x2 + a2

)2 . (7.173)

This potential is plotted in Fig. 7.5.
The potential vanishes at infinity. There is a zero energy bound state with a cor-

responding normalizable wave function

ψ0(x) = ψ0(0) e
− 1

�

∫ x
0 dx ′W (x ′) = ψ0(0)

(
x2/a2 + 1

)N . (7.174)
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Fig. 7.5 Volcano potential (N = 1)

Problems and Exercises

7.1 Consider the system of a quantum particle of mass m moving in one dimension
and subject to a harmonic force F = −mω2x . The system is initially (t = 0) in
the state with wave function ψ(x, 0) = �(x)ψ1(x), where ψ1(x) is the energy
eigenfunction of the first excited state. Calculate the probability to find the system
in the ground state at any time t > 0.

7.2 Find the energy eigenfunctions and eigenvalues for the system of a particle in
the potential

V (x) =
⎧
⎨

⎩

+∞ (x < 0)

1
2mω2x2 (x > 0)

7.3 A particle of mass m moves in one dimension subject to a potential

V (x) = 1

2
mω2x2 − λx ,

where λ and ω are known parameters.
(a) Find the energy eigenstates and eigenvalues of the system.
(b) Assume that initially (t = 0) the system occupies the state with wave function

ψ(x, 0) =
(mω

�π

)1/4
e− mω

2�
x2 .

Calculate the probability to find the particle in the state of lowest energy.

7.4 A harmonic oscillator (H = p2/2m + mω2x2/2) is initially (t = 0) in the state

|ψ(0)〉 = 1√
2

(|0〉 + eiα|1〉 ) ,
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where α is a real parameter and |n〉 the energy eigenstates. Calculate the expectation
values

〈x〉t , 〈p〉t , 〈x2〉t , 〈p2〉t
and verify Heisenberg’s inequality for the position and momentum at any time.

7.5 Calculate the following commutators of Heisenberg operators for a harmonic
oscillator: [

x̂(t), x̂(t ′)
]
,
[
p̂(t), p̂(t ′)

]
,
[
x̂(t), p̂(t ′)

]
.

7.6 Calculate the quantity
〈1|e i

�
λ p̂|1〉

for a harmonic oscillator. |1〉 is the first excited energy eigenstate and λ a real param-
eter. (Hint: You may use the operator identity eA+B = eAeBe− 1

2 [A,B], valid whenever
the commutator [A, B] is a number.)
7.7 A two-state system, in the framework of an orthonormal basis |1〉, |2〉, has a
Hamiltonian matrix

H =
⎛

⎝
0 E0

E0 0

⎞

⎠ ,

with E0 a real parameter. The initial state of the system is

|ψ(t)〉 = 1√
2

(|1〉 + eiα|2〉 )

with α a real parameter. Find the probability to return in this state as a function of
the time t > 0.

7.8 Prove that a harmonic oscillator (H = p2/2m + mω2x2/2) in an arbitrary state
will have an uncertainty (�x)2t which will be a periodic function of time with period
(2ω)−1.

7.9 Consider a harmonic oscillator (H = p2/2m + mω2x2/2) in the state

|ψ〉 = e
i
�

λ p̂|n〉 ,

where |n〉 is an energy eigenstate andλ is a real parameter. Calculate the uncertainties
in position and momentum and verify the Heisenberg inequality.

7.10 Consider a two-state system characterized by the three physical observables
Â, B̂, Ĉ . For a given orthonormal basis |1〉, |2〉 the corresponding operators are
represented by the matrices
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A =
⎛

⎝
0 1

1 0

⎞

⎠ , B =
⎛

⎝
0 −i

i 0

⎞

⎠ , C =
⎛

⎝
1 0

0 −1

⎞

⎠ .

(a) Find the eigenstates and eigenvalues of Â and B̂.
(b) Assume that a measurement of Ĉ is performed and the outcome is the value
+1. Immediately afterward, the system is subject to a measurement of B̂. What
is the probability of an eigenvalue +1? Assume that the outcome of the second
measurement is the eigenvalue +1. Immediately afterward, the system is subject to
a third measurement of Ĉ again. What is the probability of an eigenvalue −1?

7.11 A particle of mass m moves in one dimension subject to the potential

V (x) = − �

2m
W ′(x) + W 2(x)

2m
.

Verify that there exists a zero energy bound state and write down its wave function
for W (x) = mωx + λx3 (with ω and λ real parameters).

7.12 For a particle moving in one dimension, the probability amplitude to make a
transition from a point x to a point x ′ in time T is given by

K(x ′, x; T ) = 〈x ′|e− i
�
T Ĥ |x〉 .

If the particle is subject to a periodic potential V (x + a) = V (x), show that

K(x ′ + a, x + a; T ) = K(x ′, x; T ) .

Show that the opposite is also true, namely, if K is periodic, the potential will have
to be periodic as well.

7.13 For the periodic potential V (x) = ∑+∞
−∞ V0δ(x − na) (Kronig–Penney

model) the allowed values of the Bloch wave number k are given in terms of the
energy wave number q = √2mE/�2 by the equation

cos(ka) = cos(qa) + mV0

�2q
sin(qa) .

Show that at the end points of the Brillouin zone kn = nπ/a with nπ very large

q(kn) ≈ nπ

a
+ εn

with εn << 1. Determine the possible values of εn .

7.14 Consider the “double harmonic oscillator”, i.e., a particle of mass m moving
in the potential
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Fig. 7.6 Double oscillator

V (x) = 1

2
mω2 (|x | − a)2

shown in Fig. 7.6.
You may assume that the distance between the two minima 2a is much larger

than the characteristic oscillator length a >>
√

�/mω. It is expected that the ground
statewill have the propertyψ(x) ≈ ψ0(x + a) for x << 0 andψ(x) ≈ ψ0(x − a) for
x >> 0, whereψ0(x) is the ground state wave function of the simple harmonic oscil-
lator. Therefore, a reasonable estimate for the ground state of the system is ψ(x) =
N ( ψ0(x + a) + ψ0(x − a) ) . Calculate the expectation value of the energy in this
state. Do the same for the state ψ̃(x) = Ñ (ψ0(x + a) − ψ0(x − a) ) . The follow-
ing approximation is assumed to be valid

∫∞
0 dξ ξ e−(ξ+a

√
mω/�)2 ≈ �

4mωa2 e
− mω

�
a2 .

Hint: You may use the identities Ĥψ0(x ± a) = �ω
2 ψ0(x ± a) for x < 0 and x > 0

correspondingly.

7.15 Consider the simple harmonic oscillator and rewrite the corresponding creation
and annihilation operators in terms of the number operator N̂ and a “phase” operator
φ̂ as

â =
(
N̂ + 1

)1/2
ei φ̂, â = e−i φ̂

(
N̂ + 1

)1/2
.

Prove the commutation relations10

[
ei φ̂, N̂

]
= ei φ̂,

[
e−i φ̂, N̂

]
= −e−i φ̂, [cos φ̂, N̂ ] = i sin φ̂, [sin φ̂, N̂ ] = −i cos φ̂ .

Finally, show that for any state the following is true:

10The trigonometric phase operators are defined as

cos φ̂ = 1

2

(
ei φ̂ + e−i φ̂

)
, sin φ̂ = 1

2i

(
ei φ̂ − e−i φ̂

)
.
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(�N )2(� cosφ)2 ≥ 1

4
|〈sin φ〉|2 .
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Chapter 8
Angular Momentum

8.1 Angular Momentum as a Quantum Observable

Aparticlemoving in three-dimensional space, apart from its position andmomentum,
is also characterized by its angular momentum.1,2

L̂ = r̂ × p̂ . (8.1)

In terms of components, this is3

L̂ i = εi jk x̂ j p̂k =⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L̂ x = ŷ p̂z − ẑ p̂y

L̂ y = ẑ p̂x − x̂ p̂z

L̂ z = x̂ p̂y − ŷ p̂x

(8.2)

Since L̂ is an observable, it has to be a Hermitian operator. Indeed, we have

L̂†
i = εi jk

(
x̂ j p̂k

)† = εi jk p̂k x̂ j = εi jk
(
x̂ j p̂k − i�δ jk

) = L̂ i + εi j j = L̂ i

1Sometimes, it is called orbital angular momentum in order to be differentiated from the spin or
intrinsic angular momentum.
2The cross product of vector operators is defined in the same way as the cross products of c-

number vectors, taking into account the non-commutativity of operators. For example,
(
Â × B̂

)

i
=

εi jk Â j B̂k �= εi jk B̂k Â j .
3Note that here and elsewhere we have adopted the “Einstein convention” according to which a
repeated index signifies summation, unless otherwise stated, e.g., Ai j a j stands for

∑
j Ai j a j .
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or
L̂† = L̂ . (8.3)

In contrast to the position or momentum operators of which different components
are commuting, in the case of the angular momentum different components do not
commute. After some manipulations4 we obtain

[
L̂ x , L̂ y

]
= i� L̂ z

[
L̂ y, L̂ z

]
= i�L̂ x

[
L̂ z, L̂ x

]
= i�L̂ y

(8.4)

or collectively [
L̂ i , L̂ j

]
= i� εi jk L̂k . (8.5)

Note however that the square of the angular momentum operator

L̂2 = L̂2
x + L̂2

y + L̂2
z (8.6)

commutes with all components. Without much effort we can show that

[
L̂2, L̂ i

]
= 0 . (8.7)

The fact that
[
L̂ x , L̂ y

]
�= 0 means that Lx and Ly cannot have common eigenstates.

Therefore, they cannot be determined simultaneously.5 In fact they satisfy a nontrivial
uncertainty relation

(�Lx )
2(�Ly)

2 ≥ �
2

4

∣
∣
∣〈L̂ z〉

∣
∣
∣
2

. (8.8)

4We have

[L̂ x , L̂ y] = [ŷ p̂z − ẑ p̂y, ẑ p̂x − x̂ p̂z] = [ŷ p̂z, ẑ p̂x ] − [ŷ p̂z, x̂ p̂z] − [ẑ p̂y, ẑ p̂x ] + [ẑ p̂y, x̂ p̂z]

= ŷ[ p̂z, ẑ] p̂x + p̂y[ẑ, p̂z]x̂ = i�
(
x̂ p̂y − ŷ p̂x

) = i�L̂ z

and similarly for the rest.
5There is a trivial exception to this, namely,whenwe are in a statewith vanishing angularmomentum
L|ψ〉 = 0 and all three components vanish simultaneously.
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8.2 Central Forces

In Classical Mechanics, the topic of central forces between macroscopic objects
(particles or planets) is a very well studied subject. By definition, central forces are
directed toward an attraction or repulsion center and depend only on the distance
from it. Such forces, like the universal gravitational attraction or the Coulomb force
are of the type F = r̂ F(r) = −r̂ V ′(r), arising from potentials V (r) that depend
only on the radius r . The fact that the trajectories of classical particles or even planets
moving in a central potential are planar is intimately connected to the conservation
of angular momentum, which is predicted to be a constant vector perpendicular to
the plane of motion. These properties have their quantum analogue for microscopic
particles moving in central potentials.

In order to investigate whether the angular momentum of a quantum particle
moving in a central potential V (r) is a constant of the motion it is most convenient to
consider this question in the framework of the Heisenberg picture of time evolution.
The Heisenberg equation for the angular momentum operator is6

dL
dt

= i

�

[
Ĥ , L̂

]
= i

2m�

[
p̂2, r

] × p + i

�
r × [

V (r), p
]
. (8.9)

Proceeding to calculate these commutatorswenote that theHamiltonian, as a constant
of the motion, does not depend on time. Thus, the momentum and position operators
within theHamiltonian can be taken to be at time t . Next, we recall that the equal-time
commutator of the position and momentum is the same as the Schroedinger picture
commutator. This last property leads to the fact that [p̂, V (r)] = −i� ∇V (r), where
p̂ and r are Heisenberg operators. These manipulations give for the first commutator
in (8.9) [ p̂2, x j ] = −2i� p̂ j that leads to no contribution since

[ p̂2, r] × p = −2i�p × p = 0 .

The second commutator is [V (r), p] = i�∇V (r) = −i�F and does not contribute
either since, for a central force ∇V = r̂V ′(r) or F = −r̂ V ′(r), and

r × [V (r), p] = −i�r × F = 0 .

Thus, we have
dL
dt

= 0 =⇒ L = constant (8.10)

and the angular momentum is a constant of the motion for a particle that moves in
a central potential.

6We have dropped the “hat” from the position operators in order to avoid confusion with the
corresponding “hat” on the position unit vector. Note also that all appearing commutators are
equal-time commutators.
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8.3 The Angular Momentum in the {x} Representation

In the position representation, the angular momentum operator is

L = r × p =⇒ −i� (r × ∇) . (8.11)

It is immediately evident that position rescalings

x j → α x j

by a parameter α will leave the angular momentum unaffected because the position
variables enter in the combinations εi jk x j

∂
∂xk

. Thus, the angular momentum operator
in (8.11) cannot depend on the radius r . If we employ spherical coordinates (see the
appropriate section of theMathematical Appendix), the angular momentum operator
will depend only on the angles θ and φ. The appearing gradient differential operator
has the following form:

∇ = r̂
∂

∂r
+ θ̂

r

∂

∂θ
+ φ̂

r sin θ

∂

∂φ
. (8.12)

Inserting this in (8.11), we get

L → −i�

(

φ̂
∂

∂θ
− θ̂

sin θ

∂

∂φ

)

. (8.13)

The corresponding Cartesian coordinates are

L̂ x → i�
(
sin φ ∂

∂θ
+ cosφ cot θ ∂

∂φ

)

L̂ y → −i�
(
cosφ ∂

∂θ
− sin φ cot θ ∂

∂φ

)

L̂ z → −i� ∂
∂φ

.

(8.14)

The square of the angular momentum is

L̂2 → −�
2

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

)

. (8.15)

In the framework of spherical coordinates, the separation of the kinetic energy of
a particle into translational and rotational parts becomes quite transparent. Starting
from

L̂2 = −�
2 (r × ∇)2 = −�

2εi jkεi�mx j∇k x�∇m
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= −�
2
(
δ j�δkm − δ jmδk�

)
x j∇k x�∇m = −�

2
(
x j∇k x j∇k − x j∇k xk∇ j

)

= −�
2 (

x jδk j∇k + r2∇2 − 3x j∇ j − x j xk∇k∇ j
) = −�

2 (
r2∇2 − 2x j∇ j − x j xk∇k∇ j

)

It can be shown—by brute force—that

1

r

(
∂

∂r

)2

r = 1

r

(r
r

· ∇
)2

r = 1

r

( xk
r

∇k
x j

r
∇ j

)
r = 2

x j

r2
∇ j + x j xk

r2
∇ j∇k .

Thus, we have7

L̂2

r2
= −�

2∇2 + �
2 1

r

(
∂

∂r

)2

r

or equivalently

− �
2∇2 = L̂2

r2
− �

2

(
1

r

∂

∂r
r

)(
1

r

∂

∂r
r

)

. (8.16)

This expression calls for a definition of a radial momentum operator

p̂r ≡= −i�

(
1

r

∂

∂r
r

)

= −i�

(
∂

∂r
+ 1

r

)

. (8.17)

In terms of it

p̂2 = L̂2

r2
+ p̂2r (8.18)

and the kinetic energy separates in a translational part (or radial) part p̂2r
2m and a

rotational part L̂2

2mr2 .

Note that pr as defined above is aHermitian operator.8 Theproof is straightforward

∫
d3r ψ∗

1

(−i� 1
r

∂
∂r r

)†
ψ2 = (∫

d3r ψ∗
2

(−i� 1
r

∂
∂r r

)
ψ1

)∗

= i�
∫
d3r ψ2

1
r

∂
∂r

(
rψ∗

1

) = i�
∫
d�

∫ ∞
0 dr r ψ∗

1
∂
∂r (rψ2)

= i�
∫

d� rψ∗
1rψ2

∣
∣
∣
∣

∞

0︸ ︷︷ ︸
=0

−i�
∫
d�

∫
dr rψ∗

1
∂
∂r (rψ2)

7Since the angular momentum depends only on angles and therefore commutes with the radius r2,

it makes no difference to write 1
r2
L̂2 = L̂2 1

r2
= L̂2

r2
.

8In contrast, the operator −i� ∂
∂r is not.
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Fig. 8.1 Rotation around the
ẑ-axis

O xx’

y

y’

φ

φ+δφ

r

r

'

' ''

or

∫

d3rψ∗
1

(

−i�
1

r

∂

∂r
r

)†

ψ2 =
∫

d3r ψ1 ∗
(

−i�
1

r

∂

∂r
r

)

ψ2 =⇒ p̂†r = p̂r .

(8.19)

8.4 Angular Momentum and Rotations

A rotation is a transformation of the position coordinates that preserves the lengths
of vectors. It can be represented by a matrixR as9

x j → x ′
j = R jk xk . (8.20)

Demanding that lengths are conserved, namely, r2 = x j x j = x ′
j x

′
j = r ′2, corre-

sponds to restricting the matrix R to be orthogonal10 R⊥R = RR⊥ = I , which
means that its transpose (R⊥

i j = R j i ) is equal to its inverse.
Let’s consider a rotation around the z-axis by an angle φ, as shown in Fig. 8.1.

We have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′ = x cosφ − y sin φ

y′ = x sin φ + y cosφ

z′ = z

=⇒ R =
⎛

⎝
cosφ − sin φ 0
sin φ cosφ 0
0 0 1

⎞

⎠ (8.21)

9See also [1–4].
10An orthogonal matrix is a unitary matrix with real elements.
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For an infinitesimal rotation by a small angle δφ, we have sin δφ ≈ δφ and
cos δφ ≈ 1 − O(δφ2). It is represented, up to first order in δφ, in terms of vectors
as follows:

⎧
⎨

⎩

x ′ ≈ x − y δφ

y′ ≈ y + x δφ
=⇒ r′ = r + δφ

(
ẑ × r

)
(8.22)

or in terms of a matrix as

x ′
i = Ri j x j with Ri j ≈ δi j − ε3i j (δφ) . (8.23)

Consider nowsuch an infinitesimal rotation actingon the quantumsystemof a particle
and transforming a wave function ψ into a rotated wave function ψ′. Demanding that
probability amplitudes are invariant under it corresponds to a statement that the
rotated wave function has to satisfy

ψ′(r′) = ψ(r) (8.24)

or
ψ′(r + δr) = ψ(r) =⇒ ψ′(r) = ψ(r − δr)

with δr = δφ
(
ẑ × r

)
. Taylor-expanding we obtain

ψ′(r) ≈ ψ(r) − δr · ∇ψ(r) = ψ(r) − δφ
(
ẑ × r

) · ∇ψ(r)

= ψ(r) − δφ ẑ · (r × ∇) ψ(r) = ψ(r) − i

�
δφ ẑ · L̂ψ(r) .

The result

ψ′(r) ≈ ψ(r) − i

�
δφ L̂ zψ(r) (8.25)

can be extended to a finite rotation by an angle φ around the ẑ-axis as

ψ′(r) = e− i
�

φL̂ zψ(r) =⇒ |ψ′〉 = e− i
�

φL̂ z |ψ〉 . (8.26)

The rotation operator
Û (φ) = e− i

�
φL̂ z (8.27)

is a unitary operator
Û (φ) Û †(φ) = Û †(φ)Û (φ) = I

conserving the inner products. The fact that the rotation operator depends directly on
the orbital angular momentum is sometimes referred to as “the angular momentum
being the generator of rotations”. What is easy to show is that invariance under
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rotations is directly related to angular momentum conservation. Indeed, we have

Û ĤÛ † = Ĥ =⇒ [Ĥ , Û ] = 0 =⇒ [Ĥ , L̂] = 0 =⇒ L̂ = const. (8.28)

Scalar,Vector, andAxialVectorOperators. Let’s consider the expectation value
of the position operator in the rotated state |ψ′〉 = Û (a)|ψ, where Û (a) = e− i

�
a·L̂

is a rotation operator corresponding to a rotation by an angle a around an axis defined
by the direction of the constant vector a,

〈ψ′|r|ψ′〉 = 〈ψ|Û †(a) r Û (a)|ψ〉 . (8.29)

Demanding that this object transforms under rotations as the c-number position
coordinates

〈xi 〉′ = Ri j 〈x j 〉 (8.30)

leads to the following transformation law under rotations for the position operator xi

Û †(a) xi Û (a) = Ri j x j . (8.31)

For an infinitesimal rotation around the ẑ-axis this law becomes

(

I + i

�
δa L̂z

)

xi

(

I − i

�
δa L̂z

)

= xi + i

�
δa

[
L̂ z, xi

]
= xi − δa ε3ik xk

or [
L̂ z, xi

]
= i�ε3ik xk . (8.32)

This is easily generalized to
[
L̂ i , x j

]
= i� εi jk xk . (8.33)

This can be checked to be true explicitly. Any operator V̂i that has the same type of
commutation relation with L̂ as the position operator, namely

[
L̂ i , V̂ j

]
= i� εi jk V̂k (8.34)

is called a “vector” operator. Note that this commutation relation is equivalent to
the relation

Û †(a) V̂i Û (a) = Ri j V̂ j . (8.35)

Apart from the position, the momentum and the angular momentum itself are vector
operators since

[
L̂ i , p̂ j

]
= i� εi jk p̂k,

[
L̂ i , L̂ j

]
= i� εi jk L̂k . (8.36)
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Operators that commute with the angular momentum or, equivalently, are invariant
under rotations are called scalars

Û †(a) Ŝ Û (a) = Ŝ ↔
[
L̂, Ŝ

]
= 0 . (8.37)

The squares of vector operators are easily shown to be scalars

[
r2, L̂

]
=

[
p̂2, L̂

]
=

[
L̂2, L̂

]
= 0 . (8.38)

There is a further differentiation of vector operators according to their behavior under
spatial reflection (parity). Vector operators that change sign under parity are called
polar vectors or, simply, just vectors. Such are the position and the momentum

P̂ r P̂ = −r, P̂ p̂ P̂ = −p̂ . (8.39)

In contrast, vector operators that commute with parity are called axial vectors or
pseudovectors. An example of axial vector is the angular momentum

P̂L̂P̂ = L̂ ↔
[
P̂, L̂

]
= 0 . (8.40)

Problems and Exercises

8.1 Show that the angular momentum commutation relations can be written in the
form

L̂ × L̂ = i�L̂ .

8.2 Show that for any representation {|n〉} for which L̂ x and L̂ y are represented by
real matrices, L̂ z will be represented by a purely imaginary matrix.

8.3 Show that if an operator commutes with two of the components of angular
momentum, it will necessarily commute with the third component also.

8.4 A particle moves in a potential V = V (x2 + y2) that does not depend on the
azimuthal angle φ. The initial wave function of the particle is spherically symmetric,
i.e. ψ(r, t = 0) = ψ(r). What is the angular momentum of the particle in the ẑ-
direction at times t > 0?

8.5 Consider the operator

Q̂i j ≡ V̂i V̂ j − 1

3
δi j V̂

2 ,
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where V̂i is a vector operator. This is an example of a tensor operator. Show that the
following commutation relation is true

[
Q̂i j , L̂k

]
= i�

(
Q̂i�ε jk� + Q̂ j�εik�

)
.

8.6 The wave function of a particle at time t = 0 is a function of the radius, i.e.,
ψ(r, t = 0) = ψ(r). The Hamiltonian of the system is unspecified. It is known that
at a time t1 the wave function is

ψ(r, t1) =
(
1 + α

z

r

)
f (r) ,

where f (r) a function of the radius and α a constant. Use this information in order

to conclude whether or not the commutator
[
Ĥ , L̂

]
vanishes.

8.7 Let V̂ be a vector operator satisfying the definition [L̂ i , V̂ j ] = i�εi jk V̂k in terms
of the angular momentum L̂. Prove the identity

[
L̂2, L̂ × V̂

]
= 2i�2

(
L̂2V̂ −

(
L̂ · V̂

)
L̂

)
.

8.8 Consider the operator P̂x = P̂ e− i
�

π L̂ x , consisting of a rotation by π around the
x̂-axis and a parity transformation. Show that this operator describes reflection on
the (y, z)-plane. Show that the following identity is true

P̂†
x L̂ i P̂x = L̂ i − 2L̂ xδi x .

Show also that
P̂†
x V̂i P̂x = L̂ i − 2V̂xδi x

for any vector operator (e.g. r̂, p̂, . . . ).

8.9 A particle has a Hamiltonian of the form

Ĥ = p̂2

2m
+ V (r) − αL̂ z ,

where V (r) is spherically symmetric and α stands for a known parameter. Deter-
mine the expectation value of the angular momentum 〈L̂〉t at time t in terms of the
expectation value 〈L̂〉0 at t = 0. Show that, if the system occupies at t = 0 a state
with real wave function, the expectation value of the angular momentum vanishes at
all times.

8.10 For a state represented by the wave function

ψ(r) = N x e−αr2 ,
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whereα > 0 and N normalization constant to be computed, calculate the uncertainty

in angular momentum (�L)2 = 〈L̂2〉 −
(
〈L̂〉

)2
.
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Chapter 9
Eigenstates of the Angular Momentum

9.1 The Angular Momentum Eigenvalue Problem

From the angular momentum commutation relations (8.5) and (8.7) it is clear that
the maximal subset of commuting observables of angular momentum consists of the
pair of L2 and one of the components. Taking this component to be Lz , the operators
that have common eigenvectors and are knowable with extreme accuracy are L̂2, L̂ z .
Before we write down the corresponding eigenvalue equations it should be noted that
the eigenvalues of the operator L̂2 are nonnegative. Denoting with λ the eigenvalues
of L̂2 and with |λ〉 the corresponding eigenstates, we have

L̂2|λ〉 = λ|λ〉 =⇒ 〈λ|L̂2|λ〉 = λ 〈λ|λ〉
or

λ 〈λ|λ〉 = 〈λ|L̂2
x |λ〉 + 〈λ|L̂2

y |λ〉 + 〈λ|L̂2
z |λ〉 = 〈λ|L̂†

x L̂ x |λ〉 + 〈λ|L̂†
y L̂ y |λ〉 + 〈λ|L̂†

z L̂ z |λ〉

or ∣
∣
∣

∣
∣
∣L̂ x |λ〉

∣
∣
∣

∣
∣
∣

2 +
∣
∣
∣

∣
∣
∣L̂ y|λ〉

∣
∣
∣

∣
∣
∣

2 +
∣
∣
∣

∣
∣
∣L̂ z|λ〉

∣
∣
∣

∣
∣
∣

2 = λ 〈λ|λ〉 =⇒ λ ≥ 0 .

Thus, the eigenvalues of L̂2 are nonnegative. In what follows we shall denote these
eigenvalues in terms of a quantum number � as

λ = �
2�(� + 1) .

It is clear that � has to be nonnegative. The justification for this seemingly lopsided
parametrization will be clear when the quantum number �will prove to obtain integer
values.

Let us denote the eigenvalues of L̂ z and L̂2 as �m and �
2�(� + 1) in terms of the

two parameters (quantum numbers) m and �, of which we already know that � ≥ 0.
We also denote the common eignvectors as |�,m〉. We have
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L̂2|�,m〉 = �
2�(� + 1)|�,m〉, L̂ z|�,m〉 = �m|�,m〉 . (9.1)

We proceed to determine the allowed values for the quantum numbers �, m and
the corresponding eigenstates. We shall follow an algebraic method similar to the
one employed in the harmonic oscillator which will make no explicit reference to
the position-momentum definition of the angular momentum but will be based ex-
clusively to the commutation relations and the hermiticity of the angular momentum
operators.1 To emphasize that we shall use the symbol J for the angular momentum
operators and the symbols j, m for the corresponding eigenvalues. We have already
demonstrated that j has to be nonnegative. Our only assumptions will be

[

Ĵi , Ĵ j
]

= i� εi jk Ĵk

Ĵ 2| j,m〉 = �
2 j ( j + 1)

Ĵz| j,m〉 = �m| j,m〉.

and J† = J (9.2)

As a result, our conclusions will be applicable in the case of spin, a quantum observ-
able that will be introduced shortly. Spin satisfies the same commutation algebra but
is entirely unrelated to position and momentum, having no classical analogue.

Let us define the operators

Ĵ± = Ĵx ± i Ĵy ( Ĵ †
± = Ĵ∓) . (9.3)

Note that
Ĵ+ Ĵ− = Ĵ 2

x + Ĵ 2
y − i

[

Ĵx , Ĵy
]

= Ĵ 2 − Ĵ 2
z + � Ĵz

Ĵ− Ĵ+ = Ĵ 2
x + Ĵ 2

y + i
[

Ĵx , Ĵy
]

= Ĵ 2 − Ĵ 2
z − � Ĵz .

(9.4)

Subtracting, we also obtain
[

Ĵ+, Ĵ−
]

= 2� Ĵz . (9.5)

Similarly, we obtain
[

Ĵ±, Ĵz
]

= ∓� Ĵ± . (9.6)

Acting with Ĵ± on the Ĵz-eigenstate equation we get

Ĵ±
(

Ĵz| j,m〉
)

= �m Ĵ±| j,m〉

1See also [1–4].
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or, using (9.6), we obtain

(

Ĵz Ĵ± ∓ � Ĵz
)

| j,m〉 = �m Ĵ±| j,m〉)

or
Ĵz

(

Ĵ±| j,m〉
)

= �(m ± 1)
(

Ĵ±| j,m〉
)

. (9.7)

This means that Ĵ±| jm〉 is an eigenstate of Ĵz corresponding to an eigenvalue �(m ±
1). We may write

Ĵ±| j,m〉 = C± | j,m ± 1〉 . (9.8)

Thus, Ĵ± act on the Ĵz-eigenstates as raising and lowering operators, increasing
or decreasing eigenvalues by one unit of �. The coefficient C± can be fixed by
normalization as follows:

〈 j,m| Ĵ∓ Ĵ±| j,m〉 = |C±|2〈 j,m ± 1| j, m ± 1〉 = |C±|2

〈 j,m| Ĵ∓ Ĵ±| j,m〉 = 〈 j,m|
(

Ĵ 2 − Ĵ 2
z ∓ � Ĵz

)

| j,m〉 = |C±|2

or
C± = �

√

j ( j + 1) − m(m ± 1) . (9.9)

Positivity of the expression under the square root symbol constrains the quantum
numbers j,m by the conditions

m2 ± m − j ( j + 1) ≤ 0

or ⎧

⎨

⎩

( j + m)( j + 1 + m) ≥ 0

( j − m)( j + 1 − m) ≥ 0
=⇒ − j ≤ m ≤ + j . (9.10)

Therefore, we can write

Ĵ±| j,m〉 = �

√

j ( j + 1) − m(m ± 1) | j,m ± 1〉 . (9.11)

Acting with Ĵ+ on the state of maximum m = j , namely | j, j〉, we obtain

Ĵ+| j, j〉 = 0 (9.12)

due to vanishing of the coefficient. Similarly, acting with Ĵ− on the state of minimum
m = − j , namely | j, − j〉, we get

Ĵ−| j,− j〉 = 0 . (9.13)
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Thus, the possible Ĵz eigenstates are

| j,− j〉, | j, − j + 1〉, . . . . . . , | j, j − 1〉, | j, j〉 .

Starting from the eigenstate | j, j〉, corresponding to the maximum Ĵz-eigenvalue
m = j and acting with the lowering operator Ĵ− successively we can end up in the
eigenstate | j,− j〉 corresponding to the minimum Ĵz-eigenvaluem = − j only if our
number of successive steps is 2 j + 1, i.e., if 2 j + 1 is an integer. This means that in
principle j can take up the integer or half-integer values

j = 0,
1

2
, 1,

3

2
, 2, . . . and − j ≤ m ≤ j . (9.14)

Let us now restrict ourselves to the case of orbital angular momentumL = r × p.
In this case, we know that there is an intimate relation with spatial rotations. We may
consider an eigenstate |�, m〉 and apply on it a rotation by 2π. Of course, we expect
to end up with the same state, i.e.,

e
i
�
2π L̂ z |�,m〉 = |�, m〉 =⇒ eim(2π)|�,m〉 = |�,m〉 .

Thus, m can only be an integer and, therefore, for the orbital angular momentum the
half-integer eigenvalues are excluded, namely

� = 0, 1, 2, . . . and − � ≤ m ≤ � . (9.15)

Example 9.1 Rigid macroscopic bodies, subject to rotational motion around an axis,
are described by a Hamiltonian H = L2

2I , where L is their angular momentum and I
their moment of inertia. This picture (Rigid Rotator) is also useful for the description
of the rotational states of molecules. Consider such a system starting at t = 0 in the
state

|ψ(0)〉 = 1√
6

( |1,−1〉 + |2, 1〉 − 2|2, 0〉 ) . (9.16)

(a) Find the state of the system at times t > 0 and calculate the probability of
return to its original state.

(b)Calculate the uncertainties (�Lx ), (�Ly) and (�Lz) andverify the uncertainty
relation (�Lx )(�Lz) ≥ �|〈Ly〉|/2.

(a) We have

|ψ(t)〉 = 1√
6

(

e− i�
I t |1,−1〉 + e− 3i�

2I t |2, 1〉 − 2e− 3i�
2I t |2, 0〉

)

. (9.17)

The return probability is

|〈ψ(0)|ψ(t)〉|2 = 1

36

∣
∣
∣e− i�

I t + e− 3i�
2I t + 4e− 3i�

2I t
∣
∣
∣

2
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= 1

36

∣
∣
∣1 + 5 e− i�

I t
∣
∣
∣

2 = −5

9
sin2(�t/2I ) . (9.18)

(b) The expectation values of L̂ and L̂2 will be independent of time, since the angular momentum
commutes with the Hamiltonian and it is a constant of the motion. We have

L̂+|ψ(0)〉 = �√
6

(√
2|1, 0〉 + 2|2, 2〉 − 2

√
6|2, 1〉

)

, L̂−|ψ(0)〉 = � ( |2, 0〉 − 2|2,−1〉)

and

L̂ x |ψ(0)〉 = �

2

(

1√
3
|1, 0〉 +

√

2
3 |2, 2〉 − 2|2, 1〉 + |2, 0〉 − 2|2,−1〉

)

L̂ y |ψ(0)〉 = − i
2

(

1√
3
|1, 0〉 +

√

2
3 |2, 2〉 − 2|2, 1〉 − |2, 0〉 + 2|2,−1〉

)

L̂ z |ψ(0)〉 = �√
6

(−|1,−1〉 + |2, 1〉)

(9.19)

Note also that 〈ψ|L̂2
j |ψ〉 = 〈ψ|L̂†

j L̂ j |ψ〉 =
∣
∣
∣

∣
∣
∣L̂ j |ψ〉

∣
∣
∣

∣
∣
∣

2
. From these we obtain

〈L̂ x 〉 = 〈L̂ z〉 = 0, 〈L̂ y〉 = − 2�√
6

and 〈L̂2
x 〉 = 〈L̂2

y〉 = 5�2

2
, 〈L̂2

z 〉 = �
2

3

and, finally

(�Lx )
2 = 5�2

2
, (�Ly)

2 = 11�2

6
, (�Lz)

2 = �
2

3
. (9.20)

Thus, the inequality (�Lx )(�Lz) ≥ �|〈Ly〉|/2 reduces to 5 > 1, which is obviously true.

9.2 Spherical Harmonics

In this section, we shall consider the angular momentum eigenstates in the {x} repre-
sentation. The corresponding eigenfunctions go by the name Spherical Harmonics

Y�m(θ,φ) = 〈r|�,m〉 . (9.21)

where θ andφ are the polar and azimuthal angles of spherical coordinates. Sometimes
we shall collectively refer to the pair of these angles in terms of the corresponding
solid angle � and denote the spherical harmonics as Y�m(�). Using the expressions
of the angular momentum operators in this basis, given by (8.14), (8.15), we may
cast the relevant eigenvalue equations

L̂2|�,m〉 = �
2�(� + 1)|�,m〉 L̂ z|�,m〉 = �m|�,m〉 (9.22)

in the form
1

sin θ
∂
∂θ

(

sin θ ∂Y�m
∂θ

)

+ 1
sin2 θ

∂2Y�m
∂φ2 = −�(� + 1)Y�m

−i ∂Y�m
∂φ

= m Y�m

(9.23)
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The second of these equations can be readily integrated to give

Y�m(θ,φ) = Y�m(θ, 0) eimφ . (9.24)

Next, let’s consider the maximal L̂ z-eigenfunction Y�� which satisfies the equation

L̂+|�, �〉 = 0 =⇒ −i�eiφ
(

i
∂

∂θ
− cot θ

∂

∂φ

)

Y��(θ,φ) = 0

or (
d

dθ
− � cot θ

)

Y��(θ, 0) = 0 (9.25)

with solution
Y��(θ,φ) = C� e

i�φ (sin θ)� . (9.26)

The coefficient C� will be fixed at the end by normalization. The rest of the eigen-
functions are determined by the repeated action of the lowering operator L̂−. For
example

Y�,�−1(θ, φ) = L̂−Y��(θ,φ) = i� eiφ
(

−i
∂

∂θ
− cot θ

∂

∂φ

)

Y��(θ,φ)

= C�

√
2� (sin θ)�−1 cos θ ei(�−1)φ . (9.27)

A general formula can be derived by induction as

Y�m(θ,φ) = N �m
eimφ

(sin θ)m

(
d

d cos θ

)�−m

(sin θ)2� for m ≥ 0 , (9.28)

where we have absorbed the constant C� in the overall factorN�m which is fixed by
the normalization condition2

∫ 2π

0
dφ

∫ 1

−1
d cos θ Y ∗

�m(θ,φ) Y�′m ′(θ,φ) = δ��′δmm ′ (9.29)

to be

N�m = (−1)�

2��!
{

(2� + 1)

4π

(� + m)!
(� − m)!

}1/2

. (9.30)

2Note that the Completeness relation is

∞
∑

�=0

�
∑

m=−�

Y�m(�) Y ∗
�m(�′) = δ(cos θ − cos θ′)δ(φ − φ′) .

.
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Table 9.1 Spherical harmonics

Y00 = 1√
4π

Y1,−1 =
√

3
8π e−iφ sin θ, Y10 =

√

3
4π cos θ, Y1,1 = −

√

3
8π eiφ sin θ

Y2,−1 =
√

15
8π e

−iφ cos θ sin θ, Y2,0 = −
√

5
16π

(

1 − 3 cos2 θ
)

, Y2,1 = −
√

15
8π e

iφ cos θ sin θ

Y2,−2 =
√

15
32π e−2iφ sin2 θ, Y2,2 =

√

15
32π e2iφ sin2 θ

The negative m spherical harmonics can be obtained by observing that

−i�
∂

∂φ
Y�m(θ, φ) = �m Y�m(θ,φ) =⇒ −i�

∂

∂φ
Y ∗

�m(θ, φ) = −�m Y ∗
�m(θ, φ),

which implies that up to a phase factor N , we have Y�,−m = N Y ∗
�m . This phase factor

is taken by convention to be (−1)m and we have

Y�,−m(θ,φ) = (−1)m Y ∗
�m(θ,φ) . (9.31)

The first few spherical harmonics are listed in Table9.1
Spherical harmonics with m = 0 can be seen to be independent of the azimuthal

angle φ. From the general expression (9.28) we get

Y�,0(θ) = N�0

(
d

d cos θ

)�

(sin θ)2� = (−1)�

2��!
(
2� + 1

4π

)1/2 (
d

d cos θ

)� (

1 − cos2 θ
)�

(9.32)

This is however proportional to the so-called Legendre Polynomials3 P�(x), defined
as

P�(x) ≡ (−1)�

2��!
(

d

dx

)�
(

1 − x2
)�

. (9.33)

Therefore, we have the relation

Y�,0(θ) =
√

4π

(2� + 1)
P�(cos θ) . (9.34)

The first few Legendre Polynomials are P0(x) = 1, P1(x) = x, P2 = 1
2 (3x

2 − 1).

3The Legendre Polynomials are a complete orthonormal set of functions in the interval [−1, 1].
Note the orthonormality relation

∫ +1
−1 dx P�(x)P�′ (x) = 2δ��′

(2�+1) .
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Closing this section it is important to note that, since the angular momentum is
invariant under spatial reflection (i.e., parity)

r → −r, p → −p =⇒ L → L (9.35)

the parity operator will commute with it, namely,
[

P̂, L̂
]

= 0, and the two ob-

servables will have common eigenvectors. In other words, the angular momentum
eigenfunctions (spherical harmonics) will be eigenfunctions of parity, i.e., will be
even and odd under spatial reflection. In spherical coordinates, the parity operation
reads

r → −r =⇒

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r → r

θ → π − θ

φ → π + φ.

(9.36)

Under this reflection, the general formula for spherical harmonics (9.28) gives

Y�m(π − θ, π + φ) = (−1)� Y�m(θ,φ) (9.37)

Thus, the parity of each |�,m〉 eigenstate is (−1)�.

Example 9.2 A rigid rotator is in a state with wave function

ψ(θ) =
√

3

4π
cos2 θ . (9.38)

Calculate the uncertainty (�L)2.

Note that

ψ(θ) = 1√
3

(

Y00 + 2√
5
Y20

)

(9.39)

We have

L̂2ψ(θ) = 4�
2

√

3

5
Y20(θ) and 〈ψ|L̂2|ψ〉 = 8�2

5
. (9.40)

We also have

L̂ψ =
(

x̂
1

2

(

L̂+ + L̂−
)

+ ŷ
1

2i

(

L̂+ − L̂−
)

+ ẑ L̂ z

)

ψ(θ)

= x̂�

√

2

5

(

Y21(�) + Y2,−1(�)
) − i ŷ�

√

2

5

(

Y21(�) − Y2,−1(�)
)

. (9.41)

From this we obtain

〈ψ|L̂|ψ〉 = 0 and (�L)2 = 〈ψ|L̂2|ψ〉 − 〈ψ|L̂|ψ〉2 = 8�2

5
. (9.42)
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Problems and Exercises

9.1 Show that the uncertainty (�Lx )
2 in an eigenstate |�,m〉 is

(�Lx )
2 = �

2

2

(

�(� + 1) − m2
)

.

9.2 A system is in a state

|ψ〉 = 1√
2
|1, 1〉 + 1

2
|1, 0〉 + 1

2
|1,−1〉 ,

where the states |�,m〉 are the eigenstates of angular momentum.

(a) Calculate the expectation values 〈L̂ x 〉 and 〈L̂2
x 〉.

(b) What are the possible values of L2 and Lz that can be the outcome of mea-
surements and what are the corresponding probabilities of each combination.

9.3 Consider a system with angular momentum � = 1. Construct the matrices
Lx , Ly, Lz that represent L̂ x , L̂ y, L̂ z in the basis |1, 1〉, |1, 0〉, |1,−1〉 and find
the corresponding eigenvalues and eigenvectors. Verify the following matrix equal-
ity

e− i
�

βLy = 1 − i

�
Ly sin β − 1

�2
L2

y(1 − cosβ) .

9.4 The Hamiltonian of a particle can be written in the form

Ĥ = αL̂2 + β L̂− L̂2
+ L̂− ,

where α, β positive numbers. Verify that this Hamiltonian is hermitian and find its
eigenvalues and eigenstates.

9.5 Consider a system characterized only by its angular momentum with Hamilto-
nian Ĥ = L̂2/2I , where I is a moment of inertia parameter (rigid rotor). The system
is in a state

|ψ〉 = N ( |1, 1〉 + a|1, 0〉 + |1,−1〉) ,

where N is a normalization constant and a a parameter. What are the possible values
of L2, Lz and what is their corresponding probability in the case of a measurement
of these quantities? Calculate 〈Lz〉 and (�Lz). Find the value of the parameter a for
which |ψ〉 becomes an eigenstate of L̂ x .

9.6 A system of angular momentum j = 1 is described by a Hamiltonian

Ĥ = a + b Ĵx ,
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with a, b real parameters. At a time t = 0 the system is subject to a measurement
of Jz with the value +� as outcome. Later on at a time t > 0 the system is subject
to a second measurement, this time of Jy . What is the probability of a possible
outcome −�?

9.7 A system of angular momentum j = 1 is described by a Hamiltonian

Ĥ = a

�
Ĵ 2
z + b

�

(

Ĵ 2
x − Ĵ 2

y

)

,

where a, b real parameters. If the system occupies initially a state |ψ(0)〉 = |1, 1〉,
find the state of the system |ψ(t)〉 at a later time t > 0. What is the probability for
the system to return to the initial state?

9.8 A rigid rotor with moment of inertia I , described by the Hamiltonian Ĥ = L̂2

2I ,
is in a state with wave function

ψ(θ) = N (1 + cos θ)2 ,

where N normalization constant. Express this wave function in terms of spherical
harmonics. What are the possible outcomes of energy measurements? What is the
probability of each outcome.

9.9 A rigid rotor with moment of inertia I , described by the Hamiltonian Ĥ = L̂2

2I ,
is initially (t = 0) in a state with wave function

ψ(θ) = 1√
8π

(

1 + √
3 sin θ cosφ

)

.

Find the wave function at a later time t > 0 and calculate the probability to find the
system again in the initial state.

9.10 A quantum system has total angular momentum j = 3/2. Construct the an-
gular momentum matrices in the basis of eigenvalues | jm〉 of Ĵ 2 and Ĵz .
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Chapter 10
Spin

10.1 The Stern–Gerlach Experiment

Not all physical observables of microscopic systems have a classical analogue. The
most important such property is the spin of elementary particles. The experiment
carried out in 1922 by Otto Stern and Walther Gerlach played a decisive role in the
discovery of the spin of the electron. The essential part of the Stern–Gerlach apparatus
is a beam of neutral atoms (Silver) deflected by the inhomogeneous magnetic field
produced by an electromagnet. Silver atoms consist1 of 47 electrons, 46 of which
form a sphere of zero angular momentum. All the angular momentum of the atom
comes exclusively from the forty-seventh electron. For the present discussion of
the Stern–Gerlach phenomena the whole atom can be essentially replaced by this
single electron. A classical particle having electric charge and angular momentum
would also have a magnetic dipole moment. Thus, the electron would be expected to
have a magnetic dipole momentm = eL

2mec , where me and e are its mass and charge.
The presence of the speed of light c is due to the particular system of units used.
In the presence of a magnetic field B, there will be a contribution to the potential
energy �H = −m · B and, for an inhomogeneous magnetic field, a resulting force
F = ∇ (m · B). The atomsof theStern–Gerlachbeam, to a very good approximation,
can be considered as a beam of single electrons. Assuming that these electrons are
in an angular momentum eigenstate |�, m〉, if the gradient of the magnetic field is
mostly along the +ẑ-direction, the force exerted on them simplifies to

F ≈ ẑ
e�m

2mec

(
∂Bz

∂z

)
. (10.1)

Atoms in an � = 1 state would be expected to be separated into three branches,
namely, those with m = 1 that will feel an upward force, those with m = 0 that will
feel no force at all, and those with m = −1 that will feel a downward force. Never-

1Apart from the nucleus that plays no role in the phenomena to be discussed.
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theless, the results of the Stern–Gerlach experiment are quite different. The atomic
beam exhibits an additional splitting in two branches, an upper branch attributable
to a term e�B ′

z/2mec and a downward branch attributable to a term −e�B ′
z/2mec.

The explanation of the results of the Stern–Gerlach experiment became ultimately
possible only with the hypothesis of the existence of a purely quantum attribute of
the electron without a classical analogue, namely, the electron spin. The electron
spin consists of three Hermitian operators Ŝx , Ŝy, Ŝz that satisfy the commutation
relation [

Ŝx , Ŝy

]
= i� Ŝz (10.2)

which is the same as the corresponding commutation relation for the orbital angular
momentum. The general eigenvalue problem of these operators is

Ŝ2|s, m〉 = �
2s(s + 1)|s, m〉, Ŝz|s, m〉 = �m|s, m〉 (10.3)

and in the case of the electron is

Ŝ2|1/2, m〉 = 3�2/4|1/2, m〉, Ŝz|1/2, m〉 = �m|1/2, m〉 , (10.4)

corresponding to the principle quantum number being s = 1/2 and the azimuthal
quantum number being m = ±1/2. The explanation of the Stern–Gerlach phenom-
ena requires the existence of an electron magnetic dipole moment due to spin

ms = geS
2mec

. (10.5)

The constant g is called Lande factor and for the electron it is to a very good approx-
imation g = 2. The corresponding interaction energy will be

�H = −ms · B ∼ − e

mec
Sz Bz . (10.6)

If the original beam consists of silver atoms with one active electron (the forty-
seventh) in a spherically symmetric state of zero angular momentum, then it will
only split in two branches, one resulting from atoms in the Sz = +�/2 state feeling

an upward force + e�m
2mec

(
∂Bz

∂z

)
and a second resulting from atoms in the Sz = −�/2

state feeling a downward force − e�m
2mec

(
∂Bz

∂z

)
.

It turns out that not only the electron but all elementary particles have spin. The
value of the s quantum number (s = 1/2 for the electron) is part of the identity of
each particle, together with other fundamental attributes like their mass. Although
many types of particles have spin s = 1/2 (electron, proton, neutrino,…), there exist
particles with other values, integers like s = 0, 1, 2, . . . (pion, photon, graviton,…),
or half-integers like 3/2, 5/2, . . . (exotic hadrons).
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10.2 Spin 1/2

The case of particles with s = 1/2 is not only the simplest realization of spin but
also the most common, since most of ordinary matter (electrons, protons, etc.) is
made up from spin-1/2 particles. It is important to keep in mind that since the spin
is not related to the degrees of freedom that have to do with the spatial motion of the
system, the spin operators Ŝ commute with the position, momentum, orbital angular
momentum, and all related operators2

[
Ŝ, r

]
=
[
Ŝ, p̂

]
=
[
Ŝ, L̂

]
= 0 . (10.7)

The spin operators Ŝ satisfy the angular momentum commutation algebra

[
Ŝi , Ŝ j

]
= i� εi jk Ŝk , (10.8)

with the indices i, j, k taking up any of the 1, 2, 3 values. The eigenvalue equations
are

Ŝ2|1/2, m〉 = 3

4
�
2 |1/2, m〉, Ŝz|1/2, m〉 = �m|1/2, m〉 (10.9)

and m can have only two values, since

− 1/2 ≤ m ≤ 1/2 =⇒ m = −1/2, +1/2 . (10.10)

We shall symbolize the spin eigenstates as3

|±〉 = |1/2,±1/2〉
⎧⎨
⎩

Ŝ2|±〉 = 3
4�

2|±〉

Ŝz|±〉 = ±�

2 |±〉.
(10.11)

All the operator machinery used in solving the general angular momentum eigen-
value problem in Chap.9 is in our disposal here. For example, raising and lowering
operators are defined as Ŝ± = Ŝx ± i Ŝy with the properties

Ŝ±|+〉 = 0, Ŝ−|−〉 = 0, Ŝ+|−〉 = �|+〉, Ŝ−|+〉 = �|−〉 . (10.12)

In the framework of the spin-eigenstate basis |+〉, |−〉, which is automatically
orthonormal, the spin operators are represented by 2 × 2 matrices

Sab = 〈a|Ŝ|b〉 with a, b = ± . (10.13)

2For the general theory of spin 1/2, see also [1–3].
3An alternative notation that can be more convenient at times is | ↑〉 = |+〉 and | ↓〉 = |−〉.



186 10 Spin

Starting from the simplest case of Ŝ2 and Ŝz , we have

〈±|Ŝ2|±〉 = 3
4�

2〈±|±〉 = 3
4�

2

〈±|Ŝ2|∓〉 = 3
4�

2〈±|∓〉 = 0
=⇒ S2 = 3

4�
2

⎛
⎝ 1 0

0 1

⎞
⎠

〈±|Ŝz|±〉 = ±�

2 〈±|±〉 = ±�

2

〈±|Ŝz|∓〉 = ∓�

2 〈±|∓〉 = 0
=⇒ Sz = �

2

⎛
⎝ 1 0

0 −1

⎞
⎠

(10.14)

as expected, since thematrix representing any observable in the basis of its eigenstates
is diagonal, having as diagonal elements the corresponding eigenvalues. For Sx , we
have

〈+|Ŝx |+〉 = 1
2 〈+|

(
Ŝ+ + Ŝ−

)
|+〉 = �

2 〈+|−〉 = 0

〈−|Ŝx |−〉 = 1
2 〈−|

(
Ŝ+ + Ŝ−

)
|−〉 = �

2 〈−|+〉 = 0

〈+|Ŝx |−〉 = 1
2 〈+|

(
Ŝ+ + Ŝ−

)
|−〉 = �

2 〈+|+〉 = �

2

〈−|Ŝx |+〉 = 1
2 〈−|

(
Ŝ+ + Ŝ−

)
|+〉 = �

2 〈−|−〉 = �

2

=⇒ Sx = �

2

⎛
⎝0 1

1 0

⎞
⎠ .

(10.15)
Similarly, for Sy , we get

〈+|Ŝy |+〉 = 1
2i 〈+|

(
Ŝ+ − Ŝ−

)
|+〉 = i �

2 〈+|−〉 = 0

〈−|Ŝy |−〉 = 1
2 〈−|

(
Ŝ+ − Ŝ−

)
|−〉 = i �

2 〈−|+〉 = 0

〈+|Ŝy |−〉 = 1
2i 〈+|

(
Ŝ+ − Ŝ−

)
|−〉 = −i �

2 〈+|+〉 = −i �

2

〈−|Ŝy |+〉 = 1
2i 〈−|

(
Ŝ+ − Ŝ−

)
|+〉 = i �

2 〈−|−〉 = i �

2

=⇒ Sy = �

2

⎛
⎝ 0 −i

i 0

⎞
⎠ .

(10.16)
On summarizing, we have

Sx = �

2

⎛
⎝0 1

1 0

⎞
⎠ , Sy = �

2

⎛
⎝ 0 −i

i 0

⎞
⎠ , Sz = �

2

⎛
⎝ 1 0

0 −1

⎞
⎠ . (10.17)
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The matrices corresponding to Ŝ± are

S+ =
⎛
⎝ 0 2

0 0

⎞
⎠ , S− =

⎛
⎝0 0

2 0

⎞
⎠ . (10.18)

The Pauli Matrices. The spin matrices obtained above are most conveniently
expressed in terms of the three so-called Pauli Matrices denoted by σ1, σ2, σ3 or
σx , σy, σz

σx =
⎛
⎝0 1

1 0

⎞
⎠ , σy =

⎛
⎝0 −i

i 0

⎞
⎠ , σz =

⎛
⎝ 1 0

0 −1

⎞
⎠ . (10.19)

Any 2 × 2 matrix with complex elements can be written as a superposition of
σ1, σ2, σ3 and the 2 × 2-unit matrix I

A =
⎛
⎝a b

c d

⎞
⎠ = a

2
(σz + I ) + b

2
(σx + iσy) + c

2
(σx − iσy) + d

2
(I − σz)

or

A = 1

2
(a + d)I + 1

2
(b + c)σx + i

2
(b − c)σy + 1

2
(a − d)σz . (10.20)

Thus, the four matrices I, σx , σy, σz are a basis in an abstract vector space defined
by all 2 × 2 complex matrices.

The Pauli matrices have a number of very useful properties summarized in a few
identities4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
σi , σ j

} = 0 for i = j

[
σi , σ j

] = 2iεi jkσk

σ2
x = σ2

y = σ2
z = I

=⇒ σiσ j = δi j I + iεi jkσk . (10.21)

In addition, we also have the important property

(a · σ)2 = a2 (10.22)

for any c-number vector a. This is proven as

(a · σ)2 = ai a jσiσ j = ai a j
(
δi j I + iεi jkσk

) = a2 + (a × a) · σ = a2 .

4With {A, B} = AB + B A we symbolize the anticommutator of two matrices or operators.
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With the help of the last property, we may compute

eia·σ =
∞∑

n=0

i n

n! (a · σ)n =
∞∑

k=0

i2k

(2k)! (a · σ)2k +
∞∑

k=0

i2k+1

(2k + 1)! (a · σ)2k+1

=
∞∑

k=0

(−1)k

(2k)! a2k + i
(
â · σ

) ∞∑
k=0

(−1)k

(2k + 1)!a
2k+1

or
eia·σ = cos a + i

(
â · σ

)
sin a , (10.23)

where â is the unit vector a/a.

10.3 Spinors

Consider the system of a particle of spin 1/2. Any state |�〉 of the system can be
expanded in spin eigenstates as

|�〉 = �+|+〉 + �−|−〉 , (10.24)

and represented in terms of a column “spinor”

|�〉 =⇒ � =
⎛
⎝�+

�−

⎞
⎠ . (10.25)

The spin eigenstates themselves are represented by column spinors, namely,

χ+ =
⎛
⎝ 1

0

⎞
⎠ , χ− =

⎛
⎝ 0

1

⎞
⎠ . (10.26)

An arbitrary spinor is written in terms of them as

χ =
⎛
⎝α

β

⎞
⎠ = α χ+ + β χ− . (10.27)

Normalization of such a spinor reads

χ†χ = 1 ↔ (
α∗, β∗)

⎛
⎝α

β

⎞
⎠ = |α|2 + |β|2 = 1 . (10.28)
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If we are describing the spatial degrees of freedom of the system in the {x} repre-
sentation, then we have a spinor wave function

|�〉 =⇒ �(r) =
⎛
⎝�+(r)

�−(r)

⎞
⎠ . (10.29)

Normalization of the ket that describes a system with both spatial and spin degrees
of freedom reads

〈�|�〉 = 1 =⇒
∫

d3r �†(r)�(r) =
∫

d3r
( |�+(r)|2 + |�−(r)|2 ) = 1

(10.30)
or ∫

d3r |�+(r)|2 +
∫

d3r |�−(r)|2 = 1 . (10.31)

10.4 Spin Measurements

Although we have not gone into a detailed discussion of measurement processes in
quantum systems, the basic rules for quantum measurements were included among
the “Axioms”5 of Quantum Mechanics stated in Chap.5. If we put aside the spatial
degrees of freedom, the behavior of a particle with spin under spin measurements is
particularly simple and yet highly nontrivial and very instructive.

Let us consider such a system of a particle with spin (an electron) and assume
that we have a Stern–Gerlach type of apparatus that measures the spin in any desired
direction. Suppose that the apparatus has been arranged so that it measures the spin
in the x̂-direction and we feed it with a beam of electrons in the state |+〉, i.e., having
spin Sz → +�/2. After the measurement, the only possible states will be eigenstates
of Sx and the only possible values will be the eigenvalues of Sx . Let’s determine the
eigenstates and eigenvalues of Sx by solving the corresponding eigenvalue problem.
Working in our standard Sz-eigenvector basis we may denote the eigenvalues by λ
and the eigenvectors by a collumn vector η. We have

η =
[

a
b

]
=⇒ Sx η = λ η =⇒ �

2

⎛
⎝ 0 1

1 0

⎞
⎠
⎛
⎝a

b

⎞
⎠ = λ

⎛
⎝a

b

⎞
⎠ (10.32)

51. The only outcomes of the measurement of an observable are its eigenvalues. 2. The state
of the system before the measurement of an observable A is a superposition of A-eigenstates
ψ = ∑

α Cαψα, where |Cα|2 is the probability of each measured eigenvalue. 3. The state of the
system after a measurement of A that has given the eigenvalue α is the corresponding eigenstate
ψα. Any subsequent measurement of A will yield exactly the same eigenvalue α and the system
will continue to occupy the state ψα.
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and
∣∣∣∣∣∣
−λ �/2

�/2 −λ

∣∣∣∣∣∣ = 0 =⇒ λ = ±�/2 and η± = 1√
2

⎛
⎝ 1

±1

⎞
⎠ . (10.33)

Thus, the Sx -eigenstates are

|Sx ,±�/2〉 = 1√
2

(|+〉 ± |−〉) . (10.34)

The probability to measure Sx → +�/2 is

P(Sx = �/2) = |〈+|Sx ,+�/2〉|2 = 1

2
. (10.35)

Assume now that we perform instantaneously a measurement of Sz on the branch
corresponding to spin Sx = +�/2. What is the probability to measure Sz = −�/2?
According to our rules, it must be

P(Sz = −�/2) = |〈−|Sx ,+�/2〉|2 = 1

2
. (10.36)

10.5 Time Evolution in a Homogeneous Magnetic Field

Consider the system of a particle of spin 1/2 under the influence of a homogeneous
magnetic fieldB and let’s ignore the spatial degrees of freedom. The system could be
just an electron or an atomic nucleus. If the particle is in the presence of a homoge-
neous magnetic field, the magnetic dipole moment associated with spin6 ms = egS

2Mc
will contribute to the energy with a term −ms · B. Having put aside the spatial
degrees of freedom, assuming that they will not play any role in the phenomena to
be discussed, the Hamiltonian of the system will be

Ĥ = − eg

2Mc
Ŝ · B = − egB

2Mc
S · n̂ , (10.37)

where the unit vector n̂ corresponds to the direction of the homogeneous magnetic
field. We may write n̂ in terms of two angles as

6In the case of a nucleus e, g, and M stand for the corresponding charge, Lande factor (g = 2), and
mass. Note, however, that even electrically neutral particles (e.g., the neutron) can have nonzero
magnetic dipole moment due to their spin.
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n̂ = nx x̂ + ny ŷ + nz ẑ with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nx = sinα cosβ

ny = sinα sin β

nz = cosα

(10.38)

and, introducing the parameter7

ω = |e|gB

2Mc
, (10.39)

we obtain the Hamiltonian matrix, expressed in the basis of Ŝ2, Ŝz eigenstates as

H = �ω

2

(�σ · n̂
) = �ω

2

⎛
⎝ nz nx − iny

nx + iny −nz

⎞
⎠ . (10.40)

Let’s assume now that the system is initially (t = 0) in a state |ψ(0)〉. The evolved
state will be

|ψ(t)〉 = e− i
�

Ĥ t |ψ(0)〉 . (10.41)

Expressing the state of the system in the above basis, we get

⎡
⎣ψ1(t)

ψ2(t)

⎤
⎦ = e− i

2ωt (�σ·n̂)

⎡
⎣ψ1(0)

ψ2(0)

⎤
⎦ = [

cos(ωt/2) − i
(�σ · n̂

)
sin(ωt/2)

]
⎡
⎣ψ1(0)

ψ2(0)

⎤
⎦

=
⎡
⎣ cos(ωt/2) − i cosα sin(ωt/2) −i sinα e−iβ sin(ωt/2)

−i sinα eiβ sin(ωt/2) cos(ωt/2) + i cosα sin(ωt/2)

⎤
⎦
⎡
⎣ψ1(0)

ψ2(0)

⎤
⎦

=
⎡
⎣ (cos(ωt/2) − i cosα sin(ωt/2))ψ1(0) − i sinα e−iβ sin(ωt/2)ψ2(0)

−i sinα eiβ sin(ωt)ψ1(0) + (cos(ωt) + i cosα sin(ωt/2))ψ2(0)

⎤
⎦ .

(10.42)
Note that |ψ(t + 2π/ω)〉 = −|ψ(t)〉, the spinor |ψ(t)〉 being periodic in time with
a period 4π/ω.

There is a number of interesting questions that we may answer based on the
expression (10.42) of the time-evolved spinor wave vector. For example, we may ask
what is the probability to return at time t > 0 to the initial state |ψ(0)〉. This will be

7ω is the so-called Larmor frequency for the electron (e < 0, g ≈ 2).
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P(t) = |〈ψ(0)|ψ(t)〉|2 . (10.43)

We can always take one of the initial spinor components real, namely, ψ1(0) = C1,

and set ψ2(0) = C2eiγ with C1, C2 =
√
1 − C2

1 real. Then, after some manipula-
tions, we obtain

P(t) = cos2(ωt/2) + sin2(ωt/2)
(
cosα

(
C2
1 − C2

2

)+ 2C1C2 sinα cos(β − γ)
)2

.

(10.44)
For a spinor initially prepared in a |+〉 or a |−〉 state, the return probability is

P(t) = 1 − sin2(ωt/2) sin2 α . (10.45)

What about the expectation value 〈S〉t of the spin itself? The initial value of the
spin operator expectation value depends on the initial state |ψ(0)〉. It is

〈S〉0 = 〈ψ(0)|S|ψ(0)〉 = (
ψ∗
1(0), ψ∗

2(0)
)
⎛
⎝

�

2 ẑ �

2 (x̂ − i ŷ)

�

2 (x̂ + i ŷ) −�

2 ẑ

⎞
⎠
⎛
⎝ψ1(0)

ψ2(0)

⎞
⎠

or, in terms of the ψ1(0) = C1, ψ2(0) = C2eiγ parametrization,

〈S〉0 = �

2

(
ẑ(C2

1 − C2
2 ) + 2C1C2

(
x̂ cos γ + ŷ sin γ

) )
. (10.46)

In order to obtain 〈S〉t , it is equally convenient but more instructive to work in the
Heisenberg picture. The Heisenberg equation is

d Si

dt
= i

�

[
ω
(
S · n̂

)
, Si
] = −ω ε j ik Sk n̂ j = ω

(
n̂ × S

)
i (10.47)

or just
dS
dt

= ω n̂ × S . (10.48)

The spin vector operator is the sum of two orthogonal pieces

S = S|| + S⊥ , (10.49)

where
S|| ≡ n̂

(
n̂ · S) , S⊥ ≡ n̂ × S . (10.50)

On multiplying (10.48) by n̂, we obtain n̂ · Ṡ = 0 and conclude that S|| is a constant
of the motion, i.e.,

n̂ · S(t) = n̂ · S(0) . (10.51)
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The equation for S⊥ is

dS⊥
dt

= ω n̂ × S⊥ =⇒ d2S⊥
dt2

= ω2 n̂ × (n̂ × S⊥
) = −ω2S⊥ (10.52)

with solution
S⊥(t) = S⊥(0) cos(ωt) + (

n̂ × S(0)
)
sin(ωt) . (10.53)

The total spin is

S(t) = n̂
(
n̂ · S(0)

)
(1 − cos(ωt)) + S(0) cos(ωt) + (

n̂ × S(0)
)
sin(ωt)

(10.54)
and its expectation value is

〈S〉t = n̂
(
n̂ · 〈S〉0

)
(1 − cos(ωt)) + 〈S〉0 cos(ωt) + (

n̂ × 〈S〉0
)
sin(ωt). (10.55)

A thorough examination of (10.55) reveals that this solution describes a vector 〈S〉0
that has a constant projection on the n̂-axis, while its vertical part (〈S⊥〉0) describes
a circle with angular velocity ω. Thus, 〈S〉0 sweeps a cone having n̂ as its principal
symmetry axis. This has been sketched in Fig. 10.1. The expectation value 〈S〉t is
periodic with period T = 2π/ω. This is half the period of the Schroedinger picture
spinor.

Example 10.1 Consider a spin 1/2 system subject to a measurement of the quantity
� = Sx + αSy , withα a known parameter. At a later time, a secondmeasurement, of
Sx this time, is performed. The Hamiltonian of the system is Ĥ = −ω Ŝz . Calculate
the probability of each outcome.

The possible outcomes of the first measurement will be the eigenvalues of �. In the standard
|±〉 basis of Sz eigenvectors, the eigenvalue problem of � is

⎛
⎝ 0 1 − iα

1 + iα 0

⎞
⎠
⎛
⎝ η1

η2

⎞
⎠ = σ

⎛
⎝ η1

η2

⎞
⎠ (10.56)

with eigenvalues ∣∣∣∣∣∣
−σ 1 − iα

1 + iα −σ

∣∣∣∣∣∣ = 0 =⇒ σ = ±
√
1 + α2 (10.57)

and eigenvectors

η = 1√
2

⎛
⎝ 1

±
√
1+α2

1−iα

⎞
⎠ =⇒

|�1〉 = 1√
2

(
|+〉 +

√
1+α2

1−iα |−〉
)

|�2〉 = 1√
2

(
|+〉 −

√
1+α2

1−iα |−〉
)

.

(10.58)

Assume that the outcome is the eigenvalue
√
1 + α2. The state of the system at that instant (taken

to be t = 0) will be
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Fig. 10.1 Spin rotation around a constant magnetic field

|ψ(0)〉 = 1√
2

(
|+〉 +

√
1 + α2

1 − iα
|−〉
)

. (10.59)

This state will involve in time and at the later time t > 0 will be

|ψ(t)〉 = 1√
2

(
eiωt/2|+〉 +

√
1 + α2

1 − iα
e−iωt/2|−〉

)
. (10.60)

Right after the second measurement of Sx at a time t0 the system will occupy one of the eigenstates
|Sx = ±�/2〉. These states are easily found from the Sx -eigenvalue problem

⎛
⎝ 0 1

1 0

⎞
⎠
⎛
⎝ η1

η2

⎞
⎠ = σ

⎛
⎝ η1

η2

⎞
⎠ =⇒

∣∣∣∣∣∣
−σ 1

1 −σ

∣∣∣∣∣∣ = 0 =⇒ σ = ±1 (10.61)

and ⎛
⎝ 0 1

1 0

⎞
⎠
⎛
⎝ η1

η2

⎞
⎠ = ±

⎛
⎝ η1

η2

⎞
⎠ =⇒

|Sx = +�/2〉 = 1√
2

(|+〉 + |−〉)

|Sx = −�/2〉 = 1√
2

(|+〉 − |−〉) .

(10.62)
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Therefore, the probability for each outcome will be

P±(t0) = |〈Sx = ±�/2|ψ(t0)〉|2 = 1

4

∣∣∣∣∣eiωt0/2 ±
√
1 + α2

1 − iα
e−iωt0/2

∣∣∣∣∣
2

= 1

2

(
1 ± cos(ωt0) − α sin(ωt0)√

1 + α2

)
= 1

2
(1 ± cos(ωt0 + β)) =

⎧⎨
⎩
cos2( ωt0 + β)/2)

sin2( ωt0 + β)/2),
(10.63)

where we have set α = tan β.

10.6 Spin in a Time-Dependent Magnetic Field

Consider the system of a particle with spin 1/2 (electron or nucleus) under the influ-
ence of a two-component magnetic field consisting of a homogeneous component
(constant in time and space) and a time-dependent component perpendicular to it
with a periodic time dependence, namely,8

B = ẑ B0 + B1
(

x̂ cos(ωt) − ŷ sin(ωt)
)

. (10.64)

Assuming that the spatial degrees of freedom do not play any role in the phenomena
to be discussed and can be ignored, the only relevant observable is the spin. The
Hamiltonian operator will be

Ĥ = −ge

2Mc
Ŝ · B(t) = −ge

2Mc

(
B0 Ŝz + B1 Ŝx cos(ωt) − B1 Ŝysin(ωt)

)
. (10.65)

In terms of the Pauli matrices, it takes the form of the 2 × 2 matrix

H =
⎛
⎝ − ge�B0

4Mc − ge�B1

4Mc eiωt

− ge�B1

4Mc e−iωt ge�B0

4Mc

⎞
⎠ . (10.66)

As in the previous section, where we have examined the spin motion in the presence
of B0 alone, we introduce the same frequency, using now the symbol9 ω0, and a new
parameter η representing the relative ratio of the two magnetic fields, namely,

ω0 = geB0

2Mc
and η = B1

B0
, (10.67)

and have

8See also [1].
9We take e > 0 this time, having in mind applications in the case of nuclei.
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H = −1

2
�ω0

⎛
⎝ 1 η eiωt

η e−iωt −1

⎞
⎠ . (10.68)

Let us now assume that the initial state of the system is some state |ψ(0)〉. The
time-evolved state will come out as a solution of the Schroedinger equation

i

⎛
⎝ ψ̇1(t)

ψ̇2(t)

⎞
⎠ = −1

2
ω0

⎛
⎝ 1 η eiωt

η e−iωt −1

⎞
⎠
⎛
⎝ψ1(t)

ψ2(t)

⎞
⎠ . (10.69)

Note that since the Hamiltonian is time dependent, we do not have in our disposal
the simple expression in terms of the exponential evolution operator which is only
valid when the Hamiltonian is time independent. Therefore, we proceed to solve the
Schroedinger equation as it stands. It is equivalent to the system of equations

ψ̇1 = i ω0
2 ψ1 + i ω0

2 ηeiωtψ2

ψ̇2 = −i ω0
2 ψ2 + i ω0

2 ηe−iωtψ1.

(10.70)

To simplify matters, we make the change of variables

ψ1(t) = φ1(t) eiω0t/2, ψ2(t) = φ2(t) e−iω0t/2 (10.71)

and obtain ⎧⎨
⎩

φ̇1 = i
2ηω0 ei(ω−ω0)t φ2

φ̇2 = i
2ηω0 e−i(ω−ω0)t φ1.

(10.72)

Differentiating once more and substituting back (10.72), we obtain the decoupled
pair ⎧⎨

⎩
φ̈1 − i(ω − ω0)φ̇1 + 1

4η
2ω2

0φ1 = 0

φ̈2 + i(ω − ω0)φ̇2 + 1
4η

2ω2
0φ2 = 0.

(10.73)

Inserting the trial solution eiλt , we obtain the following possibilities:

φ1 ∝ eiλ1t =⇒ λ(±)
1 = 1

2 ( ω − ω0 ± β)

φ2 ∝ eiλ2t =⇒ λ(±)
2 = 1

2 ( −ω + ω0 ± β)

(10.74)

with

β =
√

(ω − ω0)2 + η2ω2
0 . (10.75)
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Thus, the general solution is

⎧⎪⎪⎨
⎪⎪⎩

φ1(t) = e− i
2 ω0t
(

A e
i
2 (ω+β)t + B e

i
2 (ω−β)t

)

φ2(t) = e
i
2 ω0t
(

C e
i
2 (−ω+β)t + D e

i
2 (−ω−β)t

) (10.76)

or ⎧⎨
⎩

ψ1(t) = A e
i
2 (ω+β)t + B e

i
2 (ω−β)t

ψ2(t) = C e
i
2 (−ω+β)t + D e

i
2 (−ω−β)t .

(10.77)

Instead of solving for the most general initial conditions, let’s simplify matters by
assuming that initially the particle occupies one of the eigenstates of the “undis-
turbed” static system (B1 = 0)

ψ1(0) = 1, ψ2(0) = 0 . (10.78)

Note that this implies also

ψ̇1(0) = iω0/2, ψ̇2(0) = iω0η/2 . (10.79)

These initial conditions lead to

A + B = 1, C + D = 0, A − B = (ω0 − ω)/β, C − D = ω0η/β

or

A = (β + ω0 − ω)

2β
, B = (β − ω0 + ω)

2β
, C = ω0η

2β
, D = −ω0η

2β
(10.80)

and the solution is

⎛
⎝ψ1(t)

ψ2(t)

⎞
⎠ =

⎛
⎜⎝

eiωt/2
(
cos(βt/2) + i

(
ω0−ω

β

)
sin(βt/2)

)

i ω0η
β

e−iωt/2 sin(βt/2)

⎞
⎟⎠ . (10.81)

One of the questions of physical interest concerning the system is what is the
probability that the time-dependent magnetic field removes particles from the “up”
state and populates the “down” state. This probability is

P−(t) = |〈−|ψ(t)〉|2 = ω2
0η

2

β2
sin2(βt/2) = (ω0β)2 sin2(βt/2)

(ω − ω0)2 + (βω0)2
. (10.82)

At the particular time tn = (2n + 1)π/β, this probability attains its maximum value
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P (max)
− (ω) = (ω0β)2

(ω − ω0)2 + (βω0)2
. (10.83)

This is a function of the external frequency ω and clearly displays resonance phe-
nomena, having a maximum at the Larmor frequency of the static system ω = ω0.
The resonance is sharpest in the limit ηω0 → 0. Thus, the resonance phenomena are
more intense for weak time-dependent magnetic fields B1 << B0.

The laboratory realization of these phenomena involves placing a given substance
under study (e.g., water) in a strong magnetic field B0. At the same time, the alter-
nating current of an electric coil can generate a weak rotating magnetic field B1(t)
of adjustable frequency ω. When we are close to ω ∼ ω0 the resonance phenomena
become sharper and the absorption of energy increases. This is the Nuclear Mag-
netic Resonance (NMR) setup and can serve as a very accurate method of measuring
the frequency ω0, characteristic of each particular substance. The active part of the
molecules is to a very good approximation their nuclear spin. The measured NMR
frequencies are not only characteristic of the given molecule under study but also of
the chemical environment it participates.

Example 10.2 Consider a particle of spin 1/2 with a Hamiltonian Ĥ = Ĥ0 + Ĥs

that consists of a spin-independent part Ĥ0(r) and a spin-dependent part that can be
parametrized as

Ĥs = −ωn̂ · S = −1

2
�ω

⎛
⎝ cosα sinα

sinα − cosα

⎞
⎠ . (10.84)

Find the energy eigenfunctions and their corresponding eigenvalues in terms of the
eigenfunctions and eigenvalues of the spin-independent part of the Hamiltonian.

By assumption [Ĥ0, Ĥs ] = 0. Substituting into the time-independent Schroedinger equation a

trial product spinor wave function � = ψE (r) χ with χ =
[

χ1
χ2

]
, we obtain the solutions

�+(r) = ψE (r)

⎛
⎝ cos(α/2)

sin(α/2)

⎞
⎠ =⇒ E+ = E − �ω/2

�−(r) = ψE (r)

⎛
⎝ sin(α/2)

− cos(α/2),

⎞
⎠ =⇒ E− = E + �ω/2

(10.85)

where Ĥ0ψE (r) = EψE (r).
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Problems and Exercises

10.1 Consider an atomic nucleus of spin s = 1/2, participating in the lattice of a
solid. If we ignore the spatial degrees of freedom, the nucleus is characterized only by
its spin. The Hamiltonian of the system in the presence of a homogeneous magnetic
field B = B ŷ is

Ĥ = − geN

2m N c
B · S ,

where eN > 0 and m N are the electric charge and the mass of the nucleus and g is
the corresponding Lande factor. Verify the Heisenberg inequality

(�Sx )
2(�Sy)

2 ≥ �
2

4

∣∣∣〈Ŝz〉
∣∣∣2 given that |ψ(0)〉 = 1√

2

(|+〉 + eiπ/3|−〉)

for all times t > 0.

10.2 An electron is moving in the presence of a homogeneous magnetic fieldB. The
Hamiltonian of the system is

Ĥ = 1

2me

(
p − e

c
A(r)

)2 − e

mec
B · S ,

where the electromagnetic vector potential isA(r) = 1
2B × r. Show that the Hamil-

tonian can be written in the form

Ĥ = 2

�2me

(
S ·
(
p − e

c
A(r)

) )2
.

10.3 A particle of spin s = 1/2 is in a normalized spinor state

|ψ〉 = a|+〉 + b|−〉 ,

where |±〉 are the eigenstates of Ŝz . Show that you can determine the coefficients
a, b from the expectation values 〈Ŝx 〉, 〈Ŝy〉, 〈Ŝz〉.
10.4 A system of spin 1/2 has a Hamiltonian

Ĥ = a + b Ŝy ,

with a, b real constants. The system is subject at time t = 0 to a measurement of Ŝx

with the outcome +�/2. At a later time t > 0, a second measurement is performed,
this time of Ŝz . What is the probability of a value −�/2?

10.5 For a system of spin 1/2 consider the operators
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b̂ = 1

�

(
Ŝx − i Ŝy

)
, b̂† = 1

�

(
Ŝx + i Ŝy

)
.

Show that they are analogous to the raising and lowering operators of the harmonic
oscillator—albeit with the commutators replaced by anticommutators—having the
properties {

b̂, b̂†
}

= 1,
{

b̂, b̂
}

=
{

b̂†, b̂†
}

= 0

and
b̂†|−〉 = |+〉, b̂|+〉 = |−〉, b̂|−〉 = b̂†|+〉 = 0 .

10.6 Consider a system with spin S and orbital angular momentum L. Show that, if
the definition of a vector operator is generalized to

[
V̂i , Ĵ j

]
= i�εi jk V̂k ,

with J ≡ L + S, then the operators r, p̂, L̂, Ŝ, Ĵ are vectors. Show also that Ĵ and
Ŝ are axial vectors.

10.7 Consider a system with spin s = 1/2 orbital angular momentum L. Show that

e
i
�
a·Ĵ Ŝ e− i

�
a·Ĵ = cos(a)

(
Ŝ − â

(
â · Ŝ

) )
+ â

(
â · Ŝ

)
+ sin(a)

(
â × Ŝ

)
,

where a a parametric vector, â = a/a the corresponding unit vector, Ŝ the spin
operator, and J ≡ L + S the total angular momentum operator.

10.8 Consider a nucleus of mass mN , positive charge eN , and spin s = 1 in the
presence of a homogeneous magnetic field B = ẑ B. If we ignore the spatial degrees
of freedom, the initial state of the system is the spinor

|ψ(0)〉 = cos(α/2)|1, 1〉 + sin(α/2)|1,−1〉 ,

where α is a known parameter. Calculate the time-evolved state |ψ(t)〉 and the uncer-
tainty in spin (�S).

10.9 System of general spin s is described by a Hamiltonian Ĥ = −ω Ŝz . Derive the
expectation value 〈S〉t for t > 0 and for an arbitrary state in terms of the expectation
value 〈S〉0 at t = 0.

10.10 Consider a particle of spin 1/2 with a Hamiltonian Ĥ = Ĥ0 + Ĥs that con-
sists of a spin-independent part Ĥ0(r) and a spin-dependent part arising from an
inhomogeneous magnetic field that can be parametrized as

Ĥs = Vs(r)

⎛
⎝ 1 0

0 −1

⎞
⎠ .



10.6 Spin in a Time-Dependent Magnetic Field 201

Consider the special case in which the particle is constrained to move only in the
x-dimension, subject to harmonic forces V0(x) = 1

2mω2x2 and Vs = λ x . Solve the
energy eigenvalue problem.
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Chapter 11
Addition of Angular Momenta

11.1 Addition of Two Spins

In cases of many-particle systems or in the cases of composite particles like the
nuclei, it is meaningful and useful to consider the total spin of the system. In the case
of two independent spins S1 and S2, the total spin is

Ŝ = Ŝ1 + Ŝ2
(

[Ŝ1, Ŝ2] = 0
)

. (11.1)

A maximal set of mutually commuting operators of the combined system is

Ŝ2
1 , Ŝ1z, Ŝ2

2 , Ŝ2z . (11.2)

However, an equivalent set is the following:

Ŝ2
1 , Ŝ2

2 , Ŝ2, Ŝz . (11.3)

For s1 = s2 = 1/2, we have Ŝ2
1 = Ŝ2

2 = 3�2/4 and these two operators commute
with everything. The fact that the remaining two of the second set commute can be
shown easily as follows:

[
Ŝ2, Ŝz

]
=

[
Ŝ2
1 + Ŝ2

2 + 2Ŝ1 · Ŝ2, Ŝ1z + Ŝ2z

]
= 2

[
Ŝ1 · Ŝ2, Ŝ1z + Ŝ2z

]

=
[

Ŝ1 j , S1z

]
Ŝ2 j + Ŝ1 j

[
Ŝ2 j , Ŝ2z

]
= i�ε j3k Ŝ1k Ŝ2 j + i�ε j3k Ŝ1 j Ŝ2k

= i�ε j3k Ŝ1k Ŝ2 j + i�εk3 j Ŝ1k Ŝ2 j = i�
(
ε j3k + εk3 j

)
Ŝ1k Ŝ2 j = 0 .
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We shall denote the eigenstates of the first set of commuting operators (11.2) as
|s1, m1; s2, m2〉. They are defined by

Ŝ2
1 |s1, m1; s2, m2〉 = 3

4�
2|s1, m1; s2, m2〉

Ŝ2
2 |s1, m1; s2, m2〉 = 3

4�
2|s1, m1; s2, m2〉

Ŝ1z|s1, m1; s2, m2〉 = �m1|s1, m1; s2, m2〉

Ŝ2z|s1, m1; s2, m2〉 = �m2|s1, m1; s2, m2〉.

(11.4)

We may denote the eigenstates of the second set (11.3) as |S, M〉 in terms of the
total spin quantum numbers S and M . The corresponding eigenvalue problem reads

Ŝ2
1 |S, M〉 = 3

4�
2|S, M〉

Ŝ2
2 |S, M〉 = 3

4�
2|S, M〉

Ŝ2|S, M〉 = �
2S(S + 1)|S, M〉

Ŝz|S, M〉 = �M |S, M〉

. (11.5)

Note that, since the total spin satisfies the angular momentum commutation algebra,
its eigenvalues and eigenstates have the standard properties. Therefore,

− S ≤ M ≤ S . (11.6)

Let’s consider the ẑ-component of the total spin and act on an eigenstate of the first
set. We have

Ŝz|s1, m1; s2, m2〉 =
(

Ŝ1z + Ŝ2z

)
|s1, m1; s2, m2〉 = �(m1 + m2)|s1, m1; s2, m2〉 .

From this we conclude that the Sz eigenvalues �M must be related to the Ŝ1z, Ŝ2z

eigenvalues �m1, �m2 by
M = m1 + m2 . (11.7)

Since the possible values of m1, m2 are ±1/2, we conclude that the possible values
of M are

M = −1, 0, 1 . (11.8)

Furthermore, since −S ≤ M ≤ S, the appropriate values of S must be

S = 0, 1 . (11.9)
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Therefore, we have four possible total spin eigenstates, namely,

|0, 0〉, |1,−1〉, |1, 0〉, |1, 1〉 . (11.10)

Note that the multiplicity of these eigenstates is the same as the multiplicity of the
other set of eigenstates |s1 = 1/2, m1; s2 = 1/2, m2〉, namely,1

|1/2; 1/2〉, | − 1/2; 1/2〉, |1/2; −1/2〉, | − 1/2; −1/2〉 . (11.11)

The total spin eigenstates can be easily deduced as linear combinations of the
set (11.11). For example, the M = 0 eigenstates can only be combinations of
| ± 1/2;∓1/2〉, i.e.,

|1, 0〉 = a|1/2; −1/2〉 + b| − 1/2; 1/2〉 (11.12)

and |0, 0〉 = c|1/2; −1/2〉 + d| − 1/2; 1/2〉 . (11.13)

The coefficients can be computed substituting these expressions in the Ŝ2 eigenvalue
equation (see Example 11.1.). On the other hand, the M = −1, 1 can only be

|1,±1〉 = | ± 1/2; ±1/2〉 . (11.14)

Thus, we finally have the triplet of symmetric combinations

|1,−1〉 = | − 1/2; −1/2〉

|1, 0〉 = 1√
2
( |1/2;−1/2〉 + | − 1/2; 1/2〉)

|1, 1〉 = |1/2; 1/2〉

(11.15)

and the antisymmetric singlet

|0, 0〉 = 1√
2

(|1/2;−1/2〉 − | − 1/2; 1/2〉) . (11.16)

The 1/
√
2 factors arise from the normalization of the states.

The triplet and the singlet are also expressible in spinorial notation as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χ1,−1 = χ(1)
↓ χ(2)

↓

χ1,0 = 1√
2

(
χ(1)

↑ χ(2)
↓ + χ(1)

↓ χ(2)
↑

)

χ1,1 = χ(1)
↑ χ(2)

↑

(11.17)

1Symbolized for notational economy as |m1; m2〉.
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and

χ0,0 = 1√
2

(
χ(1)

↑ χ(2)
↓ − χ(1)

↓ χ(2)
↑

)
. (11.18)

Example 11.1 Determine the |S, M = 0〉 states in termsof the states | ± 1/2, ∓1/2〉.
Consider the expressions

|1, 0〉 = a|1/2; −1/2〉 + b| − 1/2; 1/2〉 (11.19)

and
|0, 0〉 = c|1/2; −1/2〉 + d| − 1/2; 1/2〉 (11.20)

with the coefficients a, b, c, d to be determined from the eigenvalue equations

Ŝ2|0, 0〉 = 0, Ŝ2|1, 0〉 = 2�
2|1, 0〉 . (11.21)

The operator Ŝ2 can be analyzed as follows:

Ŝ2 =
(
Ŝ1 + Ŝ2

)2 = Ŝ2
1 + Ŝ2

2 + 2Ŝ1 · Ŝ2 = 3�2

2
+ 2Ŝ1x Ŝ2x + 2Ŝ1y Ŝ2y + 2Ŝ1z Ŝ2z

= 3�2

2
+ 1

2

(
Ŝ1+ + Ŝ1−

) (
Ŝ2+ + Ŝ2−

)
− 1

2

(
Ŝ1+ − Ŝ1−

) (
Ŝ2+ − Ŝ2−

)
+ 2Ŝ1z Ŝ2z

= 3�2

2
+ Ŝ1+ Ŝ2− + Ŝ1− Ŝ2+ + 2Ŝ1z Ŝ2z . (11.22)

Acting with it on |0, 0〉, we obtain for Ŝ2|0, 0〉

�
2 ( c|1/2; −1/2〉 + d| − 1/2; 1/2〉 ) +

(
Ŝ1+ Ŝ2− + Ŝ1− Ŝ2+

)
( c|1/2; −1/2〉 + d| − 1/2; 1/2〉 )

= �
2 ( c|1/2; −1/2〉 + d| − 1/2; 1/2〉 ) + �

2 ( c| − 1/2; 1/2〉 + d|1/2; −1/2〉 )

or
Ŝ2|0, 0〉 = (c + d)�2 ( |1/2; −1/2〉 + | − 1/2; 1/2〉 ) , (11.23)

which implies d = −c. Similarly, we have

Ŝ2|1, 0〉 = (a + b)�2 ( |1/2; −1/2〉 + | − 1/2; 1/2〉 ) . (11.24)

Orthogonality is automatic. Normalizing these states, we obtain
⎧
⎪⎨
⎪⎩

|1, 0〉 = 1√
2

(|1/2; −1/2〉 − | − 1/2; 1/2〉 )

|0, 0〉 = 1√
2

(|1/2; −1/2〉 + | − 1/2; 1/2〉 ) .

(11.25)
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11.2 Addition of Two Angular Momenta

We are ready now to attack the general problem of adding two arbitrary angular
momenta J1 and J2, which could be spins or orbital angular momenta. The only
requirement is that they satisfy the general angular momentum commutation algebra
which is common to both spins and orbital angular momenta.2 Assuming that they
are independent ([J1, J2] = 0), their sum

J = J1 + J2 (11.26)

will also satisfy this algebra

[
Ĵ1i , Ĵ1 j

]
= i�εi jk Ĵ1k

[
Ĵ2i , Ĵ2 j

]
= i�εi jk Ĵ2k

=⇒
[

Ĵi , Ĵ j

]
= i�εi jk Ĵk . (11.27)

As in the case of the addition of two spins, we have the following two complete sets
of commuting operators:

Ĵ 2
1 , Ĵ 2

2 , Ĵ1z, Ĵ2z (11.28)

and3

Ĵ 2
1 , Ĵ 2

2 , Ĵ 2, Ĵz . (11.29)

The eigenvalue problem for each of these sets reads as follows4:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĵ 2
1 | j1, j2, m1, m2〉 = �

2 j1( j1 + 1)| j1, j2, m1, m2〉

Ĵ 2
2 | j1, j2, m1, m2〉 = �

2 j2( j2 + 1)| j1, j2, m1, m2〉

Ĵ1z| j1, j2, m1, m2〉 = �m1| j1, j2, m1, m2〉

Ĵ2z| j1, j2, m1, m2〉 = �m2| j1, j2, m1, m2〉

(11.30)

and

2For a detailed account of angular momenta addition see also [1–3].
3The proof that [ Ĵ 2, Ĵz] = 0 proceeds as in the case of the addition of two spins.
4An alternative equivalent notation to | j1, j2, m1, m2〉 is | j1, m1; j2, m2〉.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĵ 2
1 | j1, j2; j, m〉 = �

2 j1( j1 + 1)| j1, j2; j, m〉

Ĵ 2
2 | j1, j2; j, m〉 = �

2 j2( j2 + 1)| j1, j2; j, m〉

Ĵ 2| j1, j2; j, m〉 = �
2 j ( j + 1)| j1, j2; j, m〉

Ĵz| j1, j2; j, m〉 = �m| j1, j2; j, m〉.

(11.31)

The multiplicity of the first set is (2 j1 + 1)(2 j2 + 1). It will have to be equal to the
multiplicity of the second set, namely,

∑
j (2 j + 1).

Considering the ẑ-component of the total angular momentum and acting on an
eigenstate of the first set, we obtain

Ĵz| j1, j2, m1, m2〉 =
(

Ĵ1z + Ĵ2z

)
| j1, j2, m1, m2〉,= �(m1 + m2)| j1, j2, m1, m2〉

from which we conclude that
m = m1 + m2 . (11.32)

Note now that the maximal values of m1, m2 are j1 and j2. Therefore, the maximal
value of m must be j1 + j2 or

jmax = j1 + j2 . (11.33)

What is the minimal value jmin? This can be deduced from the requirement that the
multiplicity of states has to be the same, namely,

(2 j1 + 1)(2 j2 + 1) =
jmax∑
jmin

(2 j + 1) .

We may use the mathematical fact that
∑n=N2

n=N1
(2n + 1) = (N2 + 1)2 − N 2

1 . This
implies

(2 j1 + 1)(2 j2 + 1) = ( j1 + j2 + 1)2 − j2min =⇒ j2min = ( j1 − j2)
2

or, finally, that
| j1 − j2| ≤ j ≤ j1 + j2 (11.34)

and, of course, − j ≤ m ≤ j .
The two sets of eigenstates, being both legitimate bases in the Hilbert subspace

of angular momentum eigenstates, can be related by expanding either set in terms
of the other. The total angular momentum eigenstates are expressed in terms of the
individual angular momenta eigenstates as
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| j1, j2; j, m〉 =
∑
j ′
1 j ′

2

∑
m1,m2

〈 j ′
1 j ′

2m1m2| j1 j2 jm〉 | j ′
1, j ′

2, m1, m2〉 . (11.35)

The expansion coefficients 〈 j ′
1 j ′

2m1m2| j1 j2 jm〉 are called Clebsch–Gordan coeffi-
cients. These coefficients are not all independent, satisfying a number of relations.
Note also that some of them vanish identically, namely, those that correspond to
m �= m1 + m2. Indeed, acting on (11.35) by Ĵz = Ĵ1z + Ĵ2z we see that the two
m1, m2 summations must satisfy m = m1 + m2, giving vanishing Clebsch–Gordan
coefficients otherwise.

Apart from that, we have a number of further constraints. Consider the matrix
element 〈 j ′′

1 , j ′′
2 , m ′′

1, m ′′
2| Ĵ 2

1 | j1, j2, j, m〉 and substitute in it (11.35)

〈 j ′′
1 , j ′′

2 , m ′′
1, m ′′

2| Ĵ 2
1 | j1, j2, j, m〉 =

〈 j ′′
1 , j ′′

2 , m ′′
1, m ′′

2| Ĵ 2
1

∑
j ′
1 j ′

2

∑
m1,m2

〈 j ′
1 j ′

2m1m2| j1 j2 jm〉 | j ′
1, j ′

2, m1, m2〉

=
∑
j ′
1 j ′

2

∑
m1,m2

〈 j ′
1 j ′

2m1m2| j1 j2 jm〉 〈 j ′′
1 , j ′′

2 , m ′′
1, m ′′

2| Ĵ 2
1 | j ′

1, j ′
2, m1, m2〉

=
⎧⎨
⎩

�
2 j1( j1 + 1)〈 j ′′

1 , j ′′
2 , m ′′

1, m ′′
2| j1, j2, j, m〉

�
2 j ′′

1 (2 j ′′
1 + 1)〈 j ′′

1 , j ′′
2 , m ′′

1, m ′′
2| j1, j2, j, m〉,

which means that the coefficients with j1 �= j ′′
1 are zero. Similarly, considering the

matrix element of Ĵ 2
2 , we conclude the same for the entry j2. Thus, the summation

on j ′
1, j ′

2 in (11.35) collapses and we have5

| j1, j2; j, m〉 =
∑

m1+m2=m

〈 j1 j2m1m2| j1 j2 jm〉 | j1, j2, m1, m2〉 . (11.36)

We also have the inverse expansion

| j1, j2, m1, m2〉 =
j1+ j2∑

j=| j1− j2|

j∑
m=− j

〈 j1 j2 jm| j1 j2m1m2〉 | j1, j2, j, m〉 . (11.37)

Multiplying by 〈 j1 j2m ′
1m

′
2|, we obtain the orthonormality condition

j1+ j2∑
j=| j1− j2|

j∑
m=− j

〈 j1 j2m ′
1m

′
2| j1 j2 jm〉 〈 j1 j2 jm| j1 j2m1m2〉 = δm1m ′

1
δm2m ′

2
. (11.38)

5For notational compactness, we may drop the commas as 〈 j1, j2, m1, m2| j1, j2, j, m〉 =
〈 j1 j2m1m2| j1 j2 jm〉.
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Another relation can also be obtained from the initial expansion (11.36) multiplying
by 〈 j1 j2 j ′m ′|. We get

〈 j1 j2 j ′m ′| j1 j2 jm〉 =
∑

m1+m2=m

〈 j1 j2m1m2| j1 j2 jm〉 〈 j1 j2 j ′m ′| j1 j2m1m2〉
(11.39)

or

∑
m1+m2=m

〈 j1 j2m1m2| j1 j2 jm〉 〈 j1 j2 j ′m ′| j1 j2m1m2〉 = δ j j ′δmm ′ . (11.40)

In order to calculate the Clebsch–Gordan coefficients, we make use of the raising
and lowering operators Ĵ± = Ĵx ± i Ĵy . As an example, consider

〈 j1 j2m1m2| Ĵ±| j1 j2 jm〉 = �

√
j ( j + 1) − m(m ± 1) 〈 j1 j2m1m2| j1 j2 j, m ± 1〉.

On the other hand, since Ĵ± = Ĵ1± + Ĵ2±, we have

〈 j1 j2m1m2| Ĵ±| j1 j2 jm〉 = �

√
j1( j1 + 1) − m1(m1 ∓ 1) 〈 j1 j2, m1 ∓ 1, m2| j1 j2 jm〉

+ �

√
j2( j2 + 1) − m2(m2 ∓ 1) 〈 j1 j2m1, m2 ∓ 1| j1 j2 jm〉 , (11.41)

which gives us the very useful relation

〈 j1 j2m1m2| j1 j2 j, m ± 1〉 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
j1( j1+1)−m1(m1∓1)

j ( j+1)−m(m±1) 〈 j1 j2, m1 ∓ 1, m2| j1 j2 jm〉

+
√

j2( j2+1)−m2(m2∓1)
j ( j+1)−m(m±1) 〈 j1 j2m1, m2 ∓ 1| j1 j2 jm〉

.

(11.42)
Note that now the nonvanishing condition for the Clebsch–Gordan coefficient of
the left-hand side is m1 + m2 = m ± 1. The relation (11.42) will prove to be quite
useful in the complete determination of Clebsch–Gordan coefficients. We shall not
go any further along that line which is technically quite tedious. Nevertheless, we
shall consider a special case of (11.42) for future use. For m2 = j2 and the lower
sign, the second term of the right-hand side vanishes, and we obtain the relation

〈 j1 j2m1 j2| j1 j2 j, m − 1〉 =
√

j1( j1 + 1) − m1(m1 + 1)

j ( j + 1) − m(m − 1)
〈 j1 j2, m1 + 1, j2| j1 j2 jm〉 .

(11.43)
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By the successive use of (11.42) and the various normalization relations we obtained
we can calculate all Clebsch–Gordan coefficients6 [1]. A general formula for m > 0
and j1 > j2 is the following:

〈 j1 j2 jm| j1 j2m1m2〉 =

δm,m1+m2

(
(2 j+1)( j+ j1− j2)!( j− j1+ j2)!( j1+ j2− j)!

( j1+ j2+ j+1)!
)1/2

× (( j + m)!( j − m)!( j1 − m1)!( j1 + m1)!( j2 − m2)!( j2 + m2)!)1/2

×∑
k

(−1)k

k!( j1+ j2− j−k)!( j1−m1−k)!( j2+m2−k)!( j− j2+m1+k)!( j− j1−m2+k)! .

(11.44)

The sum terminates for the k thatmakes the argument of any of the factorials negative.
For the coefficients with m < 0 and j1 < j2, we may use the following relations:

〈 j1 j2 jm| j1 j2m1m2〉 = (−1) j− j1− j2〈 j1 j2, −m1, −m2| j1 j2 j, −m〉

= (−1) j− j1− j2〈 j2 j1m2m1| j2 j1 jm〉 . (11.45)

The case of addition of spin 1/2 and orbital angular momentum is of particular
interest. For a physical system that possesses nonzero spin, we may define a total
angular momentum operator

Ĵ = L̂ + Ŝ . (11.46)

Since the spin commutes with the orbital angular momentum
([

L̂, Ŝ
]

= 0
)
, the

total angular momentum satisfies the standard angular momentum algebra as well.
According to our previous analysis, the total angular momentum quantum num-

bers will take the values
� − 1/2 ≤ j ≤ � + 1/2 (11.47)

and, of course, − j ≤ m ≤ j .
The Clebsch–Gordan coefficients 〈m�, ms | j = � ± 1/2, m〉 can be obtained from

the formula (11.44). For example,

〈m� = m − 1/2, ms = 1/2| j = � + 1/2, m〉 =
√
2� + 2m + 1

2(2� + 1)
. (11.48)

6Note that they can be taken to be real.
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11.3 Total Angular Momentum and Rotations

In the presence of spin, the rotation operator introduced in (8.27) in terms of the
angular momentum can be modified by replacing the orbital angular momentum
with the total angular momentum operator

Ĵ = L̂ + Ŝ . (11.49)

The rotation operator becomes

Û (a) = e− i
�
a·Ĵ. (11.50)

A vector operator is now defined as an operator satisfying the transformation relation

Û † V̂i Û = Ri j V̂ j , (11.51)

which, for an infinitesimal rotation, reduces to the commutation relation

[
Ĵi , V̂ j

]
= i�εi jk V̂k . (11.52)

This relation, applied for the position, momentum, angular momentum, and spin, is

[
Ĵi , x j

]
= i�εi jk xk,

[
Ĵi , p̂ j

]
= i�εi jk p̂k

[
Ĵi , L̂ j

]
= i�εi jk L̂k,

[
Ĵi , Ŝ j

]
= i�εi jk Ŝk .

(11.53)

Thus, spin is also a vector operator. Nevertheless, although r and p̂ are true vectors,
since they anticommute with parity, the angular momentum and spin commute with
parity and are axial vectors

[
Ĵ, P̂

]
=

[
L̂, P̂

]
=

[
Ŝ, P̂

]
= 0 . (11.54)

Example 11.2 Protons and neutrons are elementary particle of spin sp = 1/2 that
make up the various nuclei of atoms. They interact strongly with other particles
among which is the ρ-meson, an elementary particle of spin sρ = 1. Ignore spatial
degrees of freedom, consider a proton-ρ-meson state

|p, ρ〉 = |sp = 1/2, m p = −1/2; sρ = 1, mρ = 1〉 (11.55)

and express this state in terms of eigenstates of the total spin |sp = 1/2, sρ =
1, S, M〉 .

Applying the general formula (11.44) we obtain
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〈sp = 1/2, sρ = 1; S = 3/2, M = 1/2|sp = 1/2, m p = −1/2; sρ = 1, mρ = 1〉 = 1√
3

〈sp = 1/2, sρ = 1; S = 1/2, M = 1/2|sp = 1/2, m p = −1/2; sρ = 1, mρ = 1〉 =
√

2
3 .

Therefore, we have
|p, ρ〉 = |1/2,−1/2; 1, 1〉 =

〈1/2, 1; S = 3/2, M = 1/2|1/2,−1/2; 1, 1〉 |1/2, 1; S = 3/2, M = 1/2〉
+ 〈1/2, 1; S = 1/2, M = 1/2|1/2,−1/2; 1, 1〉 |1/2, 1; S = 1/2, M = 1/2〉

= 1√
3
|1/2, 1; S = 3/2, M = 1/2〉 +

√
2

3
|1/2, 1; S = 1/2, M = 1/2〉 . (11.56)

Problems and Exercises

11.1 The system of two spin 1/2 particles (not identical) has a Hamiltonian

Ĥ = A
(

Ŝ1z + Ŝ2z

)
+ B

(
Ŝ1 · Ŝ2

)
,

with A and B are known parameters. Find and classify the energy eigenvalues.

11.2 The hydrogen atom, being the system of an electron and a proton, has a total
spin Ŝ = Ŝ1 + Ŝ2, where s1 = 1/2 is the spin of the electron and s2 = 1/2 is the spin
of the proton. Neglecting spatial degrees of freedom, assume that the Hamiltonian
could be approximated by

Ĥ = C0 + C1

(
Ŝ1 · Ŝ2

)
,

where C0 and C1 are known constants. If the system starts at t = 0 in a state
|1/2,−1/2〉, find the time-evolved state |ψ(t)〉 and calculate the probability to be
found in the state | − 1/2, 1/2〉 at time t > 0.

11.3 The positronium system is a short-lived bound state of an electron and a
positron7 Assume that a positronium in an external homogeneous magnetic field,
if we neglect the spatial degrees of freedom, could be described approximately with
the Hamiltonian

Ĥ = a
(
Ŝ1 · Ŝ2

)
+ b

(
Ŝ1z − Ŝ2z

)
,

where a is a parameter expressing the interaction between electron and positron and
b is a parameter dependent on the external magnetic field.

(a) Show that the total spin eigenstates |1, 1〉 and |1,−1〉 are eigenstates of the
Hamiltonian.

7A particle of the same mass and spin as the electron but opposite electric charge.
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(b) The states |1, 0〉 and |0, 0〉 are not eigenstates of the Hamiltonian. Find two
linear combinations of them that are eigenstates. Find also the corresponding eigen-
values.

11.4 Let | j1 j2 jm〉 be a common eigenstate of Ĵ 2
1 , Ĵ 2

2 , Ĵ 2, Ĵz with eigenvalues
�
2 j1( j1 + 1), �

2 j2( j2 + 1), �
2 j ( j + 1), �m. Verify that this state is also an eigen-

state of the operator Ĵ1 · Ĵ2 and express its eigenvalues in terms of j1, j2, j , and m.
Do the same for the operators Ĵ · Ĵ1 and Ĵ · Ĵ2. Investigate the possiblem-dependence
of these eigenvalues.

11.5 Consider two spinless particles with orbital angular momentum �1 = �2 = 1.
What are the possible values of the total orbital angular momentum L̂ = L̂1 + L̂2?
Calculate the relevant Clebsch–Gordan coefficients to prove that the state |1, 1; � =
0, m = 0〉, expressed in terms of |�1, �2, m1, m2〉 states, is

|1, 1; 0, 0〉 = 1√
3

( |1, 1, 1,−1〉 − |1, 1, 0, 0〉 + |1, 1,−1, 1〉 ) .

11.6 Show that the total angular momentum of a particle with spin Ŝ and orbital
angular momentum L̂ satisfies the angular momentum algebra. Calculate the expec-
tation value

〈�, 1/2, m�, ms | Ĵ 2|�, 1/2, m�, ms〉 .

11.7 Consider the case of addition of the orbital angular momentum � = 1 and
spin s = 1/2. The state with j = 3/2, m j = 1/2 can only arise as a linear combi-
nation of |1, 1/2, m� = 1, ms = −1/2〉 and |1, 1/2, m� = 0, ms = 1/2〉. Compute
theseClebsch–Gordan coefficients directly actingwith Ĵ 2 on |1, 1/2, j = 3/2, m j =
1/2〉.
11.8 Consider a system of spin Ŝ and orbital angular momentum L̂. Show that the
total angular momentum Ĵ = Ŝ + L̂ satisfies the commutation relation

[
Ĵ 2, Ĵ × Ŝ

]
= 2i�

(
Ĵ 2Ŝ −

(
Ĵ · Ŝ

)
Ĵ
)

.

Show also

〈 jm ′|Ŝ| jm〉 =
〈 jm ′|

(
Ĵ · Ŝ

)
Ĵ| jm〉

�2 j ( j + 1)
.

11.9 Consider an electron with orbital angular momentum � and total angular
momentum j = � ± 1/2. Use the last formula of Problem 11.8. to calculate the
expectation value

〈�, 1/2, j = � ± 1/2, m|Ŝz|�, 1/2, j = � ± 1/2, m〉.
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Use this result to calculate the expectation value of the magnetic dipole moment

μ = −e
2mec

(
L̂ z + 2Ŝz

)
in these states.

11.10 Consider the electron system of Problem 11.9. Show that the following is also
true:

〈 jm ′|Ŝ| jm〉 =
〈 jm ′|

(
Ĵ · Ŝ

)
| jm〉

�2 j ( j + 1)
〈 jm ′|Ĵ| jm〉 .
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Chapter 12
Motion in Three Dimensions

12.1 Separation of Variables

We are already familiar from Chap.2 with the Schroedinger equation for a particle
moving freely in three-dimensional space

− �
2

2m
∇2ψ(r, t) = i�

∂ψ(r, t)
∂t

=⇒ ψ(r, t) =
∫

d3 p

(2π�)3/2
g(p)e

i
�

(p·r−Et) .

(12.1)
Its general solution above can be viewed as a superposition of products of one-
dimensional plane wave solutions

ψ(r, t) =
∫

d3 p g(p)

⎛
⎜⎝e

i
�

(
px x− p2x

2m t

)

(2π�)1/2

⎞
⎟⎠

⎛
⎜⎝e

i
�

(
py y− p2y

2m t

)

(2π�)1/2

⎞
⎟⎠

⎛
⎜⎝e

i
�

(
pz z− p2z

2m t

)

(2π�)1/2

⎞
⎟⎠ .

Note also that theHamiltonian is a sum of threemutually commutingone-dimensional
Hamiltonians

Ĥ = − �
2

2m
∇2 =

(
− �

2

2m

∂2

∂x2

)
+

(
− �

2

2m

∂2

∂y2

)
+

(
− �

2

2m

∂2

∂z2

)
.

This applies also to the time-independent Schroedinger equation

{(
− �

2

2m

∂2

∂x2

)
+

(
− �

2

2m

∂2

∂y2

)
+

(
− �

2

2m

∂2

∂z2

) }
�E (x, y, z) = E�E (x, y, z) ,

the corresponding eigenfunctions being

�E (x, y, z) =
(

e
i
�
px x

(2π�)1/2

) (
e

i
�
py y

(2π�)1/2

)(
e

i
�
pz z

(2π�)1/2

)
with E = p2x

2m
+ p2y

2m
+ p2z

2m
.
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This is the simplest case of a general circumstance: whenever the Hamiltonian is
a sum of independent terms, there are partial Schroedinger equation solutions in the
form of products of independent wave functions. This is the basis of the Separation
of Variables Method.1 This method is applicable for the solution of the Schroedinger
equation whenever the Hamiltonian is a sum of commuting (i.e., independent) terms

Ĥ(q1, q2, . . . ) =
∑

a=1,2,...

Ĥa(qa) with
[
Ĥa, Ĥb

]
= 0 . (12.2)

Then the Schroedinger equation has the form

(
Ĥ1(q1) + Ĥ2(q2) + · · ·

)
�(q1, q2, . . . ) = E �(q1, q2, . . . ) . (12.3)

Consider now a wave function in the form of a product

�(q1, q2, . . . ) = ψ1(q1)ψ2(q2) · · · (12.4)

and substitute it in the time-independent Schroedinger equation as a trial solution for
the energy eigenvalue problem. We get

(
Ĥ1(q1) + Ĥ2(q2) + Ĥ3(q3) + · · ·

)
ψ1(q1)ψ2(q2) · · · =

(
Ĥ1(q1)ψ1(q1)

)
ψ2(q2)ψ3(q3) · · · + ψ1(q1)

(
Ĥ2(q2)ψ2(q2)

)
ψ3(q3) · · · + · · ·

= E ψ1(q1)ψ2(q2)ψ3(q3) · · ·
(12.5)

If each of the factors satisfies an equation

Ĥaψa(qa) = Ea ψa(qa) (12.6)

and the Ea’s are such that
E =

∑
a=1,2,...

Ea , (12.7)

then, the above product is a solution of the Schroedinger equation. Obviously, the
most suitable type of coordinates to be used for the application of thismethod depends
on the geometrical symmetry of the Hamiltonian.

A variant of the abovemethod arises in the case that the Hamiltonian depends on a
set of operators Q̂1, Q̂2, . . . , Q̂N , amongwhich one, say Q̂N , commuteswith all the
rest. Then, if ψN (qN ) are the eigenfunctions of Q̂N (i.e., Q̂NψN (qN ) = qNψN (qN )),
then, the eigenvalue problem of the Hamiltonian admits solutions in the form of a
product, namely,

1See any of Mathematical Methods textbooks, e.g., [1].
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Ĥ(Q̂1, . . . , Q̂N )�(q1, . . . , qN ) = E�(q1, . . . , qN )

=⇒ Ĥ(Q̂1, . . . , Q̂N−1, qN )ψ̃(q1, . . . , qN−1) = E ψ̃(q1, . . . , qN−1) (12.8)

with
�(q1, . . . , qN ) = ψ̃(q1, . . . , qN−1)ψN (qN ) . (12.9)

For example, the eigenvalue problem (
p̂2

2m + V (r) − e
mc Bz(r)Sz)�(r, Ŝz) =

E�(r, Sz) is reduced to the eigenvalue problem (
p̂2

2m + V (r) ∓ e�
2mc Bz(r))ψ̃±(r) =

E±ψ̃±(r) in terms of a product eigenfunction ψ̃±(r)χ±, where Ŝzχ± = ±�

2χ± .

12.2 The Three-Dimensional Infinite Square Well

Consider a particle trapped inside a cube. The particle is free to move inside the cube
but it experiences an infinite repulsion at the walls. The quantum analogue of such a
situation is that of a particle moving in the potential

V (x, y, z) =
⎧⎨
⎩

0 |x | < L , |y| < L , |z| < L

+∞ |x | ≥ L , |y| ≥ L , |z| ≥ L .

(12.10)

This is the three-dimensional version of the infinite square well we studied in one
dimension. The time-independent Schroedinger equation is

Ĥ(x, y, z)ψE (x, y, z) = E ψE (x, y, z) (12.11)

or

− �
2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
ψE (x, y, z) = E ψE (x, y, z) , (12.12)

with the conditions at the boundary and beyond

ψ(x, y, z) = 0 ∀ |x | ≥ L , |y| ≥ L , |z| ≥ L . (12.13)

Note that the Hamiltonian is the sum of the three mutually commuting operators

Ĥ1(x) = − �
2

2m

∂2

∂x2
, Ĥ2(y) = − �

2

2m

∂2

∂y2
, Ĥ3(z) = − �

2

2m

∂2

∂z2
(12.14)

[
Ĥi , Ĥ j

]
= 0 . (12.15)
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Therefore, we can apply the separation of variables method considering a trial solu-
tion of (12.12) in the form of a product

ψ(x, y, z) = X (x) Y (y) Z(z) . (12.16)

Substituting it into the Schroedinger equation, we obtain

− �
2

2m

X ′′(x)
X (x)

− �
2

2m

Y ′′(y)
Y (y)

− �
2

2m

Z ′′(z)
Z(z)

= E , (12.17)

which features the sum of three terms being equal to a constant parameter E while
each of them depends on a different variable. The only way this can be true is if each
of these terms is a constant and the sum of these three constants equals E . Thus, we
conclude

X ′′(x) = −k2x X (x) =⇒ X (x) = Ax eikx x + Bx e−ikx x

Y ′′(y) = −k2y Y (y) =⇒ Y (y) = Ay eiky y + By e−iky y

Z ′′(z) = −k2z Z(z) =⇒ Z(z) = Az eikz z + Bz e−ikz z

(12.18)

and
�
2k2x
2m

+ �
2k2y
2m

+ �
2k2z
2m

= E . (12.19)

Applying the boundary condition of vanishing wave function on the walls, we obtain

Bx = −Ax e2ikx L = −Ax e−2ikx L =⇒ kx = nx
π
2L

By = −Ay e2iky L = −Ay e−2iky L =⇒ ky = ny
π
2L

Bz = −Az e2ikz L = −Az e−2ikz L =⇒ kz = nz
π
2L ,

(12.20)

where

nx , ny, nz = 1, 2, . . . , and Enxnynz = �
2π2

8mL2

(
n2x + n2y + n2z

)
. (12.21)

The resulting solutions are

Xnx (x) = Ax
(
ei

nx π
2L x + (−1)nx+1e−i nx π

2L x
)

Yny (y) = Ay

(
ei

nyπ

2L y + (−1)ny+1e−i
nyπ

2L y
)

Znz (z) = Az

(
ei

nzπ
2L z + (−1)nz+1e−i nzπ2L z

)
.

(12.22)
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The coefficients Ax , Ay, Az are determined by normalization of the solution

∫
d3r |X (x)Y (y)Z(z)|2 = 1 =⇒

(∫ L

−L
dx |X (x)|2

)(∫ L

−L
dy|Y (y)|2

)(∫ L

−L
dz|Z(z)|2

)
= 1

satisfied by

(∫ L

−L
dx |X (x)|2

)
=

(∫ L

−L
dy|Y (y)|2

)
=

(∫ L

−L
dz|Z(z)|2

)
= 1 (12.23)

and giving

Ax = Ay = Az = 1

2
√
L

(12.24)

up to an arbitrary phase. Thus, finally, we have the energy eigenfunctions

ψnxnynz (x, y, z) = Xn(x) Yny (y) Znz (z) , (12.25)

where
Xnx (x) = 1

2
√
L

(
ei

nx π
2L x + (−1)nx+1e−i nx π

2L x
)

Yny (y) = 1
2
√
L

(
ei

nyπ

2L y + (−1)ny+1e−i
nyπ

2L y
)

Znz (z) = 1
2
√
L

(
ei

nzπ
2L z + (−1)nz+1e−i nzπ2L z

)
.

(12.26)

The general solution will be a superposition of the above partial solution for different
values of the positive integers nx , ny, nz

�(x, y, z) =
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

Cnxnynz Xnx (x) Yny (y) Znz (z) . (12.27)

These energy eigenfunctions are also parity eigenfunctions

P̂ψnxnynz (x, y, z) = (−1)nx+ny+nz+1 ψnxnynz (x, y, z) . (12.28)

Note that we can define spatial reflection operators that correspond to a reflection
with respect to a plane. For example

P̂x �(x, y, z) = �(−x, y, z) . (12.29)

Obviously, these operators share the same properties as the standard parity, i.e.,

P2
x = I, P†

x = Px . (12.30)
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The product of these reflection operators on the three Cartesian planes equals the
standard parity

P̂x P̂y P̂z = P̂ . (12.31)

Degeneracy. In contrast to the one-dimensional infinite square well, in the three-
dimensional problem there are more than one states that correspond to the same
energy. For example, although the lowest energy eigenvalue E111 = 3�2π2

8mL2 corre-
sponds to just one state

ψ111(x, y, x) = L−3/2 cos(πx/2L) cos(πy/2L) cos(πz/2L) , (12.32)

and, therefore, the ground state is unique, the first excited energy level is triply
degenerate with three eigenfunctions corresponding to the same energy

ψ2 1 1(x, y, z) = 1
L3/2 sin(πx/L) cos(πy/2L) cos(πz/2L)

ψ1 2 1(x, y, z) = 1
L3/2 cos(πx/2L) sin(πy/L) cos(πz/2L)

ψ1 1 2(x, y, z) = 1
L3/2 cos(πx/2L) cos(πy/2L) sin(πz/L)

=⇒ E112 = 3�2π2

4mL2
.

(12.33)
The same is true for the next level E221 = 9�2π2/8mL2 which has three states cor-
responding to it, namely, ψ122, ψ212, and ψ221. The degree of degeneracy increases
rapidly with energy. For example, the energy level E123 = 7�2π2/4mL2 has sixfold
degeneracy, having the six states ψ123, ψ213, ψ132, ψ312, ψ321, and ψ231. The occur-
rence of degeneracy is always an indication of the existence of some symmetry. Here
the degeneracy is a result of the symmetries of the cube. If the edges of the cube
had different lengths Lx 
= Ly 
= Lz the degeneracy would be entirely lifted and
E112 
= E121 
= E112.

Density of States. The integers nx , ny, nz define an orthogonal lattice. Each
lattice point defines a possible state of the system. Let’s introduce now the quantity
�(E) defined as “the number of states with energy smaller than a certain value E”

�(E) =
∑
nx

∑
ny

∑
nz

∣∣∣∣∣∣
�2π2

8mL2
(n2x+n2y+n2z )≤E

. (12.34)

The relative distance between neighboring points of the lattice is

�nx

nx
= 1

nx
∝

√
E111

E

which is a small number for energies that are large in comparison to the ground
state energy. Thus, we may consider the continuum limit and replace the sums with
integrals as
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�(E) =
∫

dnx

∫
dny

∫
dnz

∣∣∣∣
�2π2

8mL2
(n2x+n2y+n2z )≤E

(12.35)

or

�(E) =
∫

d�

∫ √
8mL2E/�2π2

0
dn n2 . (12.36)

Since nx , ny, nz are positive, the angular integration is only over an octant. Thus,

�(E) = π

2

∫ √
8mL2E/�2π2

0
dn n2 = (2L)3

6π2
k3 , (12.37)

where k2 = 2mE2/� the standard continuum wave number, or

�(E) = V

6π2

(
2mE

�2

)3/2

(12.38)

with V = (2L)3 the volume of the box. In terms of the quantity �(E), we may define
the density of states as

g(E) = d�

dE
= V

4π2

(
2m

�2

)3/2 √
E = mVk

2π2�2
. (12.39)

Example 12.1 (Reflection and transmission in a two-dimensional potential step)
Solve the time-independent Schroedinger equation for a particlemoving in the (x, y)
plane under the influence of a step function potential

V (x, y) =
⎧⎨
⎩

0 (x < 0, ∀y)

V0 (x > 0, ∀y)
(12.40)

for E > V0.
Introducing the product solution we have

�(x, y) = X (x)Y (y) =⇒

⎧⎪⎪⎨
⎪⎪⎩

− �
2

2m X ′′(x) =
(

�
2k2x
2m − V0�(x)

)
X (x)

− �
2

2m Y ′′(y) = �
2k2y
2m Y (y)

(12.41)

with E = �
2k2
2m = �

2h2x
2m + �

2k2y
2m .
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The solution is

�(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X (x) =
⎧⎨
⎩

Aeikx x + Be−ikx x (x < 0)

C eiqx x (x > 0)

Y (y) = eiky y

, (12.42)

where
�
2q2x
2m

= �
2k2x
2m

− V0 . (12.43)

The corresponding plane waves are shown in Fig. 12.1. Continuity at x = 0 gives

A + B = C, kx (A − B) = qx C =⇒

⎧⎪⎨
⎪⎩

B
A = qx−kx

qx+kx

C
A = 2qx

qx+kx

. (12.44)

Thus, the solution is

x

y

V(x,y)=0 V(x,y)=V 0

θ
θ

θ
i

R
T

k

k

q

'

Fig. 12.1 Two-dimensional potential step
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�(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X (x) = A

⎧⎪⎪⎨
⎪⎪⎩
eikx x +

(
qx−kx
qx+kx

)
e−ikx x (x < 0)

(
2qx

qx+kx

)
eiqx x (x > 0)

Y (y) = eiky y

. (12.45)

The solution parametrized above in terms of kx , ky , and qx can also be parametrized by E and the
incidence angle

θi = arctan(ky/kx ) , (12.46)

in terms of which we have

kx =
√
2mE/�2 cos θi , ky =

√
2mE/�2 sin θi (12.47)

and

qx =
√
2m

�2

(
E cos2 θi − V0

)
. (12.48)

Snell’s law. We may introduce an incident wave vector

ki = (k cos θi , k sin θi ) , (12.49)

a reflected wave vector
kr = (−k′ cos θr , k

′ sin θr
)

(12.50)

and a transmitted wave vector
kt = (

k′′ cos θt , k
′′ sin θt

)
, (12.51)

where θr and θt are the reflection and transmission angles. The solution can be written as

�(r) = �(−x)
(
A eiki ·r + B eikr ·r

)
+ �(x)C eikt ·r , (12.52)

provided that

θr = θi , k′ = k =
√
2mE

�2
(reflection laws) (12.53)

and
k′′ cos θt = qx , k′′ sin θt = ky , (12.54)

from which we obtain

(k′′)2 = q2x + k2y = 2m

�2

(
E cos2 θi − V0 + E sin2 θi

)
=⇒ k′′ =

√
2m

�2
(E − V0) (12.55)

and
k sin θi = k′′ sin θt (refraction law) . (12.56)

The last relation is Snell’s law
sin θt

sin θi
= k

k′′ = 1√
1 − V0

E

. (12.57)

Note that for V0 > 0, we have θt > θi , while for V0 < 0, we have θt < θi .



226 12 Motion in Three Dimensions

12.3 The Three-Dimensional Harmonic Oscillator

General forces acting on a particle in three dimensions, described by a potential V (r),
can be approximated near equilibrium by a harmonic oscillator potential

V (r) ≈ V (r0) + 1

2

∑
i, j

Vi j (xi − x0i )(x j − x0 j ) + · · · , (12.58)

where the stable equilibriumpoint is defined by aminimumcondition on the potential

at the point r0, i.e., ∂V
∂x j

∣∣∣
r0

= 0 and the requirement that all eigenvalues of the matrix

Vi j = ∂2V
∂xi∂x j

∣∣∣
r0
are positive. Since a real symmetric matrix can always be diagonal-

ized with a rotation that will leave the kinetic term unaffected, we may always cast
the Hamiltonian in the form

Ĥ = p̂2x
2m

+ p̂2y
2m

+ p̂2z
2m

+ 1

2
mω2

x x
2 + 1

2
mω2

y y
2 + 1

2
mω2

z z
2 (12.59)

or

Ĥ =
∑

a=x,y,z

Ĥa where Ĥa = p̂2a
2m

+ 1

2
mω2

ax
2
a . (12.60)

Since
[Ĥx , Ĥy] = [Ĥy, Ĥz] = [Ĥz, Ĥx ] = 0

the separation of variables method is applicable and the eigenvalue equation is sat-
isfied by product solutions

Ĥ�E (r) = E�E (r) with �(r) = ψ(x)(x)ψ(y)(y)ψ(z)(z) ,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
p̂2x
2m + 1

2mω2
x x

2
)

ψ(x)(x) = Ex ψ(x)(x)

(
p̂2y
2m + 1

2mω2
y y

2
)

ψ(y)(y) = Ey ψ(y)(y)

(
p̂2z
2m + 1

2mω2
z z

2
)

ψ(z)(z) = Ez ψ(z)(z)

(12.61)

for
Ex + Ey + Ez = E . (12.62)

The eigenfunctionsψ(a) are the standard one-dimensional harmonic oscillator energy
eigenfunctions, each corresponding to a different frequency ωa and labeled by an
integer na = 0, 1, 2, . . . . The eigenvalues Ea are �ωa(na + 1/2). Thus,
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Enxnynz = �ωx

(
nx + 1

2

)
+ �ωy

(
ny + 1

2

)
+ �ωz

(
nz + 1

2

)
(12.63)

with nx , ny, nz = 0, 1, 2, . . . . For example, the ground state is

�000(r) =
(mωx

�π

)1/4 (mωy

�π

)1/4 (mωz

�π

)1/4
e− mωx

2�
x2 e− mωy

2�
y2 e− mωz

2�
z2 (12.64)

with the ground state energy

E000 = 1

2
�

(
ωx + ωy + ωz

)
. (12.65)

The isotropic harmonic oscillator. If the harmonic force is independent of the
direction, i.e.,

ωx = ωy = ωz (12.66)

wehave the so-called isotropic harmonic oscillator [2, 3].Denotingbyω the common
frequency, we have the eigenvalues

Enxnynz = �ω

(
nx + ny + nz + 3

2

)
with

nx = 0, 1, 2, . . .

ny = 0, 1, 2, . . .

nz = 0, 1, 2, . . .

(12.67)

and the eigenfunctions

�nxnynz (r) = ψnx (x)ψny (y)ψnz (z) , (12.68)

where ψna (xa) are the one-dimensional harmonic oscillator energy eigenfunctions
of the same frequency. For example, the ground state has energy 3�ω/2 and eigen-
function

�000(r) =
(mω

�π

)3/4
e− mω

2�
r2 . (12.69)

The first excited level corresponds to the energy 5�ω/2 but it has a threefold degen-
eracy corresponding to three different eigenfunctions, namely,

�100(r) = x
√

2mω
�

(
mω
�π

)3/4
e− mω

2�
r2

�010(r) = y
√

2mω
�

(
mω
�π

)3/4
e− mω

2�
r2

�001(r) = z
√

2mω
�

(
mω
�π

)3/4
e− mω

2�
r2 .

The degeneracy is a common feature of all higher excited energy levels, which
increases as we go to higher energies. There is however an alternative set of energy
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eigenstates of the isotropic oscillator which are common eigenstates of the Hamilto-
nian and the angularmomentum.We shall analyze this set in a subsection of Chap.13.

12.4 The Two-Dimensional Isotropic Oscillator

It is possible that harmonic forces are isotropic only within a particular plane and
the corresponding Hamiltonian is of the form [3]

Ĥ = Ĥ|| + Ĥ⊥ (12.70)

with
Ĥ|| = p̂2z

2m + 1
2mω2

||z2

Ĥ⊥ = p̂2x
2m + p̂2y

2m + 1
2mω2

⊥(x2 + y2).

(12.71)

The energy eigenfunctions will be products of the transverse eigenfunctions
ψ(⊥)(x, y) and the longitudinal onesψ(||)(z), the latter being just the one-dimensional
oscillator energy eigenfunctions. The energy eigenvalues will be

E = E⊥ + �ω||
(
n|| + 1

2

)
(n|| = 0, 1, . . . ). (12.72)

The transverse energy eigenvalues E⊥ are determined by the transverseSchroedinger
equation

(
p̂2x
2m

+ p̂2y
2m

+ 1

2
mω2

⊥(x2 + y2)

)
ψ(⊥)(x, y) = E⊥ ψ(⊥)(x, y) . (12.73)

In what follows, we proceed to solve (12.73). Of course, we already know a set of
solutions, namely, products of eigenfunctionsψnx (x)ψny (y)with same frequencyω⊥
and the eigenvalues parametrized as E⊥ = �ω⊥(nx + ny + 1). Nevertheless, herewe
are going to pursue a different solution consisting of eigenfunctions of the energy
that are common eigenfunctions of the angular momentum L̂ z .

Let us introduce the two operators

â± =
√
mω⊥
4�

(x ± iy) + i√
4m�ω⊥

(
p̂x ± i p̂y

)
(12.74)

as well as their conjugates â†±. They satisfy the commutation relations

[
â±, â†±

]
= 1 and

[
â±, â∓

] = 0 . (12.75)
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In terms of them, the Hamiltonian is written as

Ĥ⊥ = �ω⊥
(
â†+â+ + â†−â− + 1

)
(12.76)

or, introducing the “number operators” N̂± = â†±â±, as

Ĥ⊥ = �ω⊥
(
N̂+ + N̂− + 1

)
. (12.77)

The energy eigenstates are commoneigenstates of the number operators, the eigenval-
ues of which, as can be shown in exactly the same fashion as in the one-dimensional
oscillator, are the nonnegative integers n+ and n−. Then, the energy eigenvalues will
be

E⊥ = �ω⊥ (n+ + n− + 1) (n+, n− = 0, 1, . . . ) . (12.78)

The operators â± satisfy the following commutation relations:

[
Ĥ⊥, â±

]
= −�ω⊥â±,

[
Ĥ⊥, â†±

]
= �ω⊥â†± . (12.79)

We proceed denoting the energy eigenstates as |n+, n−〉. From the first commutator
above, it is clear that the state of lowest energy (n+ = n− = 0) has to satisfy

â±|0, 0〉 = 0 . (12.80)

Furthermore, the eigenstates satisfy

â+|n+, n−〉 = √
n+ |n+ − 1, n−〉

â−|n+, n−〉 = √
n− |n+, n− − 1〉

â†+|n+, n−〉 = √
n+ + 1 |n+ + 1, n−〉

â†−|n+, n−〉 = √
n− + 1 |n+, n− + 1〉

=⇒ |n+, n−〉 =
(
â†+

)n+ (
â†−

)n−

√
n+!n−! |0, 0〉.

(12.81)

Nevertheless, the Hamiltonian Ĥ⊥ is invariant under rotations in the (x, y)-plane.
This symmetry should be reflected in the conservation of the angular momentum L̂ z .
Indeed, the angular momentum operator

L̂ z = x p̂y − y p̂x = �

(
â†+â+ − â†−â−

)
= �

(
N̂+ − N̂−

)
(12.82)

commutes with the Hamiltonian. The L̂ z eigenvalues are

L̂ z|n+, n−〉 = �(n+ − n−)|n+, n−〉 . (12.83)
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Problems and Exercises

12.1 Consider a particle moving in the x-y plane, subject to isotropic harmonic
forces (two-dimensional isotropic harmonic oscillator). Construct the ground state
wave function and the degeneratewave functions of the first excited state in the {x, y}-
representation. Verify explicitly that they are eigenstates of the angular momen-
tum L̂ z .

12.2 Particleswith energy E > V0 move in a rectangular tube of square cross section
with infinitely repulsive walls. This is described by the potential

V (x, y, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (|x | < L , |y| < L , z < 0)

V0 (|x | < L , |y| < L , z > 0)

+∞ (|x | ≥ L , |y| ≥ L , ∀z)

.

Find the reflection coefficient of the potential step at z = 0.

12.3 A free particle of mass m is moving on the two-dimensional plane. Calculate
the probability amplitude to make a transition from a point (x, y) to a point (x ′, y′)
in time t , namely,

K(x ′, y′; x, y; t) = 〈x ′, y′|e− i
�
Ĥ t |x, y〉 .

12.4 An electron is bound on the surface of a solid with a potential that is to a good
approximation harmonic but anisotropic

V (x, y) = 1

2
mω2

x x
2 + 1

2
mω2

y y
2 .

When the system is subject to an external homogeneous electric field the potential
is modified by the extra term

�V = −eE (x cos θ + y sin θ) .

Solve the eigenvalue problem of the energy finding eigenvalues and eigenfunctions.

12.5 Consider the three-dimensional Schroedinger equation in a region without
potential. Show that, apart from the known plane wave solution eik·r, the spheri-
cal wave eikr

r is also a solution (for r 
= 0). In contrast, show that eikr is not.

12.6 Consider a two-dimensional infinite square well. Write down the energy eigen-
functions and eigenvalues. Assume that at time t = 0, the system is in a state

1√
2

( |nx = 0〉|ny = 1〉 + eiα|nx = 1〉|ny = 0〉) ,
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where α is a known real parameter. Calculate the uncertainties (�x)2t and (�y)2t at
a time t > 0.

12.7 A particle of mass m is constrained to move on an infinite stripe of width 2L
on the plane x-y. At the same time, the particle is subject to a harmonic force parallel
to the direction of the stripe. This is equivalent to a potential

V (x, y) =
⎧⎨
⎩

1
2mω2y2 (|x | < L , ∀y)

+∞ (|x | ≥ L , ∀y)
.

Find the energy eigenfunctions and eigenvalues.
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Chapter 13
Central Potentials

13.1 Particle Motion in a Central Field

Consider a particle ofmass1 μmoving in three-dimensional space under the influence
of a central potential V (r), depending solely on the distance from a given center,
taken to be the origin of the coordinate system.2 The Hamilton operator will be

Ĥ = p̂2

2μ
+ V (r) . (13.1)

Wemay recall at this point that the operators p̂2 and r commute with angular momen-
tum [

p̂2, L̂
]

=
[
r, L̂

]
= 0 . (13.2)

Thus, theHamiltonian commuteswith angularmomentum and the energy eigenstates
|E, �, m〉 are common eigenstates of Ĥ , L̂2, L̂ z

[
Ĥ , L̂

]
= 0 =⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ĥ |E, �, m〉 = E |E, �, m〉

L̂2|E, �, m〉 = �
2�(� + 1)|E, �, m〉

L̂ z|E, �, m〉 = �m|E, �, m〉

. (13.3)

In the {x} representation, the energy eigenvalue equation (time-independent
Schroedinger equation) has the form

1In this and subsequent chapters we shall denote the particle mass as μ in order to avoid confusion
with the angular momentum quantum number m.
2For the material on central potentials treated in this chapter see also [1–4].
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{
− �

2

2μ
∇2 + V (r)

}
ψE�m(r, θ,φ) = E ψE,�,m(r, θ,φ) . (13.4)

However, we know from (8.18) that in spherical coordinates, we may separate the
kinetic operator as

− �
2∇2 = −�

2

r

∂2

∂r2
r + L̂2

r2
. (13.5)

Thus, the Schroedinger equation takes the form

{
− �

2

2μ

1

r

∂2

∂r2
r + L̂2

2μr2
+ V (r)

}
ψE�m(r, θ,φ) = EψE�m(r, θ,φ) . (13.6)

Since r2 Ĥ consists of two commuting parts, namely, L̂2 that depends on angles
and −�

2r ∂2

∂r2 r that depends on the radius, we have grounds to apply the method of
separation of variables and introduce a trial solution in the form of a product. Thus,
we consider

ψE�m(r, θ,φ) = RE,�(r) Y�m(θ,φ) , (13.7)

where Y�m(θ,φ) are the eigenfunctions of angular momentum (spherical harmonics).
Substituting it into the Schroedinger equation, we get

Y�m(θ,φ)

(
− �

2

2μ

1

r

d2

dr2
(
r RE,�(r)

) + (V (r) − E) RE,�(r)

)

+ RE,�(r)

(
�
2�(� + 1)

2μr2
Y�,m(θ,φ)

)
= 0 (13.8)

or

− �
2

2μ

1

r

d2(r RE�)

dr2
+ �

2�(� + 1)

2μr2
RE� + V (r)RE� = E RE� . (13.9)

This is the radial Schroedinger equation and RE,�(r) is the radial wave function. The
normalization of the radial wave functions follows directly from the normalization
of the full wave function

∫
d3r |ψE�m(r)|2 = 1 =⇒

∫
d� |Y�,m(�)|2

∫ ∞

0
dr r2 |RE,�(r)|2 = 1

or ∫ ∞

0
dr r2 |RE,�(r)|2 = 1 . (13.10)

The “one-dimensional” wave function. It is possible to introduce an alternative
radial wave function as
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RE,�(r) = uE,�(r)

r
or uE,�(r) = r RE,�(r) . (13.11)

Substituting (13.11) into the radial Schroedinger equation, it simplifies to

− �
2

2μ

d2uE�(r)

dr2
+ �

2�(� + 1)

2μr2
uE�(r) + V (r)uE�(r) = E uE�(r) (13.12)

which has exactly the one-dimensional form. This is why uE�(r) is called the “one-
dimensional radial wave function”. Note however the modification in comparison
to one-dimensional problems due to the presence of a repulsive centrifugal potential
term arising from the nonzero angularmomentum.Note also that uE�(r) has to satisfy
a special boundary condition at the origin

RE�(0) < ∞ =⇒ uE�(0) = 0 . (13.13)

The normalization condition on uE�(r) simplifies to

∫ ∞

0
dr |uE�(r)|2 = 1 . (13.14)

Let’s go back to (13.9) and see if we can draw any general conclusions about
the behavior of its solutions. In all cases of physical interest, we have to deal with
potentials that are bounded everywhere with a possible exception of the origin r = 0
where they may have at most a Coulomb-like singularity. Thus, we can assume that

lim
r→0

{
r2V (r)

} = 0 . (13.15)

Then, the radial equation near the origin is dominated by the kinetic and the cen-
trifugal terms and can be approximated by

− 1

r

d2(r R)

dr2
+ �(� + 1)

r2
R ≈ 0. (13.16)

Substituting a trial power ansatz ∼ rα we obtain two power solutions for α = � + 1
and α = −�, namely,

lim
r→0

{RE�(r)} = A r � + B r−(�+1) . (13.17)

The second of these solutions is singular and, therefore, unacceptable as a wave
function. Even a superposition of such solutions cannot lead to a square integrable
wave function. As a result, only the regular solution is acceptable, behaving as r �

near the origin and, therefore, being finite.
In many cases of physical interest, we will have a short range potential that

vanishes in the asymptotic region like
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lim
r→∞ {r V (r)} = 0 . (13.18)

For such a potential, the energy spectrum will have a continuous part with E > 0
corresponding to scattering states. Depending on the details of the potential in the
near region, there might be also a discrete part in the energy spectrum corresponding
to bound states. In general, the energy spectrum will be mixed, although there are
cases where it could be fully continuous (e.g., a repulsive short range potential).
A fully discrete spectrum is also possible for potentials that are increasing in the
asymptotic region.

Each energy eigenvalue of the continuous spectrum is infinitely degenerate, since
there are

∑∞
�=0(2� + 1) = ∞ eigenfunctions ψE�m corresponding to it. The energy

eigenvalues of the discrete spectrum, since they result from an equation that contains
�, will depend on � but also on some additional quantum number that labels them, like
what happens in one-dimensional bound state problems. Each of these eigenvalues,
symbolized as En�, will have (2� + 1)-fold degeneracy corresponding to the 2� + 1
different values of m (i.e., directions of Lz) that do not change the energy. For special
potentials, depending on their symmetries, the degree of degeneracy may be much
larger. For example, in the case of the discrete spectrum of the attractive Coulomb
potential the energy eigenvalues depend only on the quantum number n and the
degeneracy is

∑n
�=0(2� + 1) = n2.

13.2 The Free Particle

The problem of the three-dimensional motion of a free particle is a problem that has
been solved at the very early stages of our discussion on QuantumMechanics. There,
we saw that the plane waves

ψp(r) = e
i
�
p·r

(2π�)3/2
(13.19)

are eigenfunctions of the energy corresponding to the eigenvalues E = p2

2μ . These
eigenfunctions are simultaneous eigenfunctions of the energy and the momentum p̂.
Nevertheless, since a free-particle motion is a trivial case of a central force problem
with V (r) = 0, we may apply on it the alternative description in terms of simultane-
ous eigenfunctions of the energy Ĥ0 = p̂2/2μ and the angular momentum L̂2, L̂ z

⎧⎪⎨
⎪⎩

Ĥ0, p̂ =⇒ ψp(r) = e
i
�

p·r
(2π�)3/2

(plane waves)

Ĥ0, L̂2, L̂ z =⇒ ψE,�,m(r) = RE,�(r)Y�m(�) (spherical waves)

. (13.20)
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Therefore, setting V = 0 and applying the analysis of the previous section we obtain
the set of common eigenfunctions of L̂2, L̂ z and Ĥ0 = p̂2/2μ, denoting them as

ψk�m(r, θ,φ) = Rk,�(r) Y�,m(θ,φ). (13.21)

We have labeled them in terms of the wave number k, related to the energy through
E = �

2k2/2μ, and the angular momentum quantum numbers. The radial wave func-
tion satisfies the radial Schroedinger equation

− �
2

2μr

d2(r Rk�)

dr2
+ �

2�(� + 1)

2μr2
Rk� = �

2k2

2μ
Rk� (13.22)

or
d2Rk�(r)

dr2
+ 2

r

d Rk�(r)

dr
− �(� + 1)

r2
Rk�(r) + k2Rk�(r) = 0 (13.23)

or
d2Rk�

d(kr)2
+ 2

r

d Rk�

d(kr)
− �(� + 1)

(kr)2
Rk� + Rk� = 0. (13.24)

Thus, the independent variable of this equation is not r but kr . Therefore, we may
denote Rk,�(r) = R�(kr) and have

R′′
� (kr) + 2

kr
R′

�(kr) − �(� + 1)

(kr)2
R�(kr) + R�(kr) = 0 . (13.25)

This is a well-known differential equation

y′′
� (x) + 1

x
y′
�(x) − �(� + 1)

x2
y�(x) + y�(x) = 0 (13.26)

with well-known solutions the so-called spherical Bessel functions j�(x) and the
spherical Neumann functions n�(x), the latter being singular at the origin x = 0.
Thus, for the free particle, only j�(kr) is acceptable as a radial wave function. Thus,
the radial wave function of the free particle will be just Rk�(r) = j�(kr).

Digression on the spherical Bessel functions. The behavior of the spherical
Bessel functions j�(x) and spherical Neumann functions n�(x) near the origin x ∼ 0
is

j�(x) ∼ x�

1 · 3 · 5 · · · (2� + 1)
, n�(x) ∼ 1 · 3 · · · (2� − 1)

x�+1
. (13.27)

Their asymptotic behavior (x ∼ ∞) is

j�(x) ∼ sin(x − �π/2)

x
, n�(x) ∼ −cos(x − �π/2)

x
. (13.28)
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Table 13.1 Spherical Bessel and Neumann functions

j0(x) = sin x
x n0(x) = − cos x

x

j1(x) = sin x
x2

− cos x
x n1(x) = − cos x

x2
− sin x

x

j2(x) =
(

3
x3

− 1
x

)
sin x − 3

x2
cos x n2(x) = −

(
3
x3

− 1
x

)
cos x − 3

x2
sin x

In many cases, it is useful to introduce the spherical Hankel functions

h(±)
� (x) = n�(x) ± i j�(x) (13.29)

with asymptotic behavior

h(±)
� (x) ∼ −(±i)�

e∓i x

x
. (13.30)

The first few of these spherical functions are shown in Table13.1.
The spherical Bessel functions satisfy orthonormality relations

∫ ∞
0 dr r2 j�(kr) j�(k ′r) = π

2k2 δ(k − k ′)

∫ ∞
0 dk k2 j�(kr) j�(kr ′) = π

2kr2 δ(r − r ′).
(13.31)

Spherical wave analysis of a plane wave. We can always write down an expan-
sion of a plane wave in terms of the complete set of states |E, �, m〉, i.e., in terms of
spherical waves

eik·r

(2π)3/2
=

∞∑
�=0

�∑
m=−�

C�,m(k̂) Y�m(θ,φ) j�(kr) . (13.32)

In order to determine the coefficients C�,m(k̂) of this expansion, we shall use without
proof the following identity3:

∫
d3reik·rY ∗

�m(θ,φ) j�(k
′r) = 2π2

k2
(−i)�Y�m(θk,φk)δ(k − k ′) , (13.33)

where θk, φk are the angles corresponding to the direction k̂. Multiplying both sides
of the expansion (13.32) with Y ∗

�′m ′(θ,φ) j�′(k ′r), integrating with respect to r and
using the orthonormality of spherical harmonics and spherical Bessel functions, we
obtain

C�,m(k̂) = i�

√
2

π
Y ∗

�m(θk,φk) (13.34)

3See [1].
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and, finally, the expansion takes the form

eik·r

(2π)3/2
=

√
2

π

∞∑
�=0

�∑
m=−�

i� Y ∗
�m(θk,φk) Y�m(θ,φ) j�(kr) . (13.35)

In the case that the direction of k coincides with the ẑ-axis, this expression cannot
depend on the azimuthal angle or, equivalently,

L̂ ze
ikz = 0 =⇒ eikz

(2π)3/2
=

√
2

π

∞∑
�=0

i�Y�,0(0)Y�,0(θ) j�(kr)

or, using the relation to the Legendre polynomials, we obtain

Y�,0(θ) = √
(2� + 1)4πP�(cos θ) =⇒ eikz =

∞∑
�=0

i�(2� + 1)P�(cos θ) j�(kr) .

(13.36)

13.3 Examples of Central Potentials

13.3.1 A Spherical Cavity

Consider a particle trapped in an impenetrable spherical cavity. This can be described
by the following central potential:

V (r) =
⎧⎨
⎩

0 (0 ≤ r < a)

+∞ (r ≥ a)

. (13.37)

The radial equation inside the cavity is just the free-particle one

− �
2

2μ

1

r

d2(r Rk�)

dr2
+ �

2�(� + 1)

2μr2
Rk� = �

2k2

2μ
Rk� (13.38)

with boundary condition
Rk�(a) = 0 , (13.39)

since the wave function has to vanish beyond the cavity. The solution of (13.38) is
just

R�(kr) = A j�(kr) (13.40)

with A fixed by normalization. Applying the boundary condition (13.39), we get a
condition on the energy

j�(ka) = 0 . (13.41)
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The s-wave case (� = 0). Let’s consider first the case of spherical waves (� = 0).
In this case, the energy condition reads

sin(ka) = 0 =⇒ kn = n
π

a
with n = 1, 2, . . . (13.42)

and

En = �
2n2π2

2μa2
. (13.43)

The normalized eigenfunctions are

Rn,0(r) =
√
2

a

sin(nπr/a)

r
. (13.44)

The p-wave case (� = 1). In this case, we have

R1(kr) = A j1(kr) = A

(
sin(kr)

(kr)2
− cos(kr)

(kr)

)
. (13.45)

The boundary condition corresponds to the condition on the allowed energies

j1(ka) = sin(ka)

(ka)2
− cos(ka)

(ka)
= 0 (13.46)

or
tan(ka) = ka . (13.47)

This is an equation that can be solved graphically as we did in the case of one-
dimensional square well. The graphical solution is depicted in Fig. 13.1. The dotted

Fig. 13.1 Graphical solution of for p-waves
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line corresponds to the right-hand side (ka) andwe see that it intersectswith all infinite
branches of the left-hand side (tan(ka)). Thus, we have an infinity of solutions.

Example 13.1 A particle of mass μ is trapped in a spherical region of inner radius a
and outer radius 2a. This situation can be described with a potential

V (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+∞ (0 ≤ r ≤ a)

0 (a < r < 2a)

+∞ (r ≥ 2a)

.

Find the radial wave function and the energy spectrum for � = 0.

The particle satisfies the free Schroedinger equation in the region (a, 2a) and its wave function
is zero for r ≥ 2a and r ≤ a. The radial wave function in the inner region is

R�(kr) = A j�(kr) + B n�(kr) . (13.48)

By continuity we must have
A j�(ka) + B n�(ka) = 0

A j�(2ka) + B n�(2ka) = 0
(13.49)

or ∣∣∣∣∣∣
j�(ka) n�(ka)

j�(2ka) n�(2ka)

∣∣∣∣∣∣
= 0 =⇒ j�(ka)n�(2ka) − j�(2ka)n�(ka) = 0 . (13.50)

For � = 0, this amounts to

sin(ka) cos(2ka) − sin(2ka) cos(ka) = 0

or
sin(ka)

(
2 cos2(ka) − 1

)
− 2 sin(ka) cos2(ka) = 0

or
sin(ka) = 0 =⇒ kn = nπ

a
(n = 1, 2, . . . ) . (13.51)

Going back to the system of equations, we conclude that B = 0 and the solution is

R(n)
0 (kr) = A

sin(nπr/a)

nπr/a
, En = �

2n2π2

2μa2 . (13.52)

The coefficient A is determined by normalization

∫ 2a

a
dr r2 R2

0(r) = 1 =⇒ An = nπ
√
2a−3/2 . (13.53)

Finally, we get

R(n)
0 (kr) =

√
2

a

sin(nπr/a)

r
, En = �

2n2π2

2μa2 . (13.54)
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13.3.2 Hard Sphere

Consider a spherical region of radius a that is impenetrable, exerting an infinite
repulsive force. This situation can be described by a potential

V (r) =
⎧
⎨
⎩

+∞ (0 ≤ r ≤ a)

0 (r > a)

. (13.55)

The wave function vanishes in the region [0, a], while the particle moves freely in
the outside region r > a, having a radial wave function (E = �

2k2/2μ)

R�(kr) = A j�(kr) + B n�(kr) , (13.56)

with the boundary condition

R�(ka) = 0 =⇒ B = −A
j�(ka)

n�(ka)
. (13.57)

The wave functions

R�(kr) ∼ n�(ka) j�(kr) − j�(ka) n�(kr) (13.58)

correspond to scattering states with a continuous energy spectrum. In the asymptotic
region r ∼ ∞, the radial wave function is

R�(kr) ∼ 1

kr
( n�(ka) sin(kr − �π/2) − j�(ka) cos(kr − �π/2) ) (13.59)

or

R�(kr) = C
sin(kr − �π/2 + δ�)

kr
, (13.60)

where

tan δ� = j�(ka)

n�(ka)
. (13.61)

The parameter δ� is called the phase shift and measures the difference in the phase
of the outside spherical wave from what it would if the potential were absent.

In the case � = 0, things simplify a lot and we have

R0(kr) = C
sin(k(r − a))

kr
and δ0 = −ka . (13.62)

For general � at low energies, i.e., for ka << 1, we may use the behavior of the
spherical Bessel functions near the origin and get
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δ� ≈ − (ka)2�+1

(2� + 1)!!(2� − 1)!! , (13.63)

where (2� ± 1)!! = 1 · ·3 · 5 . . . (2� ± 1).

13.3.3 The Spherical Well

Consider the potential

V (r) =
⎧⎨
⎩

−V0 (0 ≤ r ≤ a)

0 (r > a)

(13.64)

with V0 > 0. For a particle of energy E moving in this potential, there are in general
solutions of the Schroedinger equation both for E > 0 (scattering states) and for
−V0 < E < 0 (bound states). First, we shall consider the case of scattering (E > 0).

Scattering states (E > 0). In this case, the radial Schroedinger equation is

− �
2

2μr
d2(r R)

dr2 + �
2�(�+1)
2μr2 R =

(
�
2k2

2μ + V0

)
R = �

2q2

2μ R (0 ≤ r ≤ a)

− �
2

2μr
d2(r R)

dr2 + �
2�(�+1)
2μr2 R = �

2k2

2μ R (r > a)

(13.65)

where

E = �
2k2

2μ
and

�
2q2

2μ
= E + V0 . (13.66)

The corresponding solutions are

RE�(r) =
⎧⎨
⎩

A j�(qr) (0 ≤ r ≤ a)

B j�(kr) + C n�(kr) (r ≥ a)

. (13.67)

Note however that it is more convenient to express the outgoing part of the solution
in terms of the alternative pair of Hankel functions

h(±)
� (kr) = n�(kr) ± i j�(kr) . (13.68)

The reason is that h(±)
� (kr) have a direct interpretation as outgoing (h(−)

� ) and incom-
ing (h(+)

� ) spherical waves.4 In contrast, j� and n� do not have any sense of propa-
gation direction associated with them. Thus, we adopt the following expression for
the solutions:

4The asymptotic behavior of the Hankel functions is h(±)
� (x) ∼ e∓i x

x .
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RE�(r) =
⎧⎨
⎩

A j�(qr) (0 ≤ r ≤ a)

F h(−)
� (kr) + G h(+)

� (kr) (r ≥ a)

(13.69)

The ratios F/A and G/A are determined from the continuity of the wave function
and its derivative at r = a as

F
A h(−)

� (ka) + G
A h(+)

� (ka) = j�(qa)

F
A

d
dr h(−)

�

∣∣∣
ka

+ C
A

d
dr h(+)

�

∣∣∣
ka

= d
dr j�

∣∣
qa

.

(13.70)

Let’s be specific and concentrate on the simplest � = 0 case. Then, we have

j0(kr) = sin(kr)

kr
, h(+)

0 (kr) = −e−ikr

kr
, h(−)

0 (kr) = −eikr

kr

and the wave function becomes

R0(r) =

⎧⎪⎨
⎪⎩

A sin(qr)

qr (0 ≤ r ≤ a)

−F eikr

kr − G e−ikr

kr (r ≥ a)

. (13.71)

The continuity Equations (13.70) are

sin(qa)

qa = − F/A
ka eika − G/A

ka e−ika

cos(qa)

a − sin(qa)

qa2 = (F/A)
(

1
ka2 − i

a

)
eika + (G/A)

(
1

ka2 + i
a

)
e−ika .

From these, we can obtain the coefficients F/A and G/A. These are solved to give

⎧⎪⎪⎨
⎪⎪⎩

F/A = − 1
2i e−ika

(
cos(qa) + i k

q sin(qa)
)

G/A = 1
2i eika

(
cos(qa) − i k

q sin(qa)
) . (13.72)

Note that the radial probability current density

Jr = r̂
�

2μi
|Y�m(�)|2 (

R∗
e�(r)R′

E�(r) − RE�(r)R′
E�

∗
(r)

)
(13.73)

vanishes. The incoming part is equal to the outgoing one as expected from probability
current conservation

J (out)
r = J (in)

r =⇒ �k

mr2
|Y�m(�)|2|F |2 = �k

mr2
|Y�m(�)|2|G|2 , (13.74)
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since G/A = (F/A)∗ as it was derived above.
Note that we can always write the coefficients F and G using the polar expression

for complex numbers as

F/A = − 1
2i e−ika

[
cos2(qa) + k2

q2 sin2(qa)
]1/2

ei arctan((k/q) tan(qa))

G/A = 1
2i eika

[
cos2(qa) + k2

q2 sin2(qa)
]1/2

e−i arctan((k/q) tan(qa))

(13.75)

or, introducing
δ0 = arctan ((k/q) tan(qa)) − ka (13.76)

F/A = − 1
2i

[
cos2(qa) + k2

q2 sin2(qa)
]1/2

eiδ0

G/A = 1
2i

[
cos2(qa) + k2

q2 sin2(qa)
]1/2

e−iδ0 .

(13.77)

Then, the outside wave function takes the form

R0(r) = A

[
cos2(qa) + k2

q2
sin2(qa)

]1/2 sin(kr + δ0)

kr
. (13.78)

Bound states (E < 0). In this case, we may define

E = −�
2κ2

2μ
, E + V0 = �

2q2

2μ
. (13.79)

The radial Schroedinger equation takes the form

− 1
r

d2(Rr)

dr2 + �(�+1)
r2 R = q2R (0 ≤ r ≤ a)

− 1
r

d2(Rr)

dr2 + �(�+1)
r2 R = −κ2R (r ≥ a).

(13.80)

The solution in the region of the potential is the same as in the previous case of
scattering states. The solution in the outside region can be deduced also from the
previous analysiswith the replacement k → iκ. Using the sphericalHankel functions
again, we may write the outside solution as a linear combination of h(+)

� (iκr) and
h(−)

� (iκr). Thus, we have

RE�(r) =
⎧⎨
⎩

A j�(qr) (0 ≤ r ≤ a)

B h(+)
� (iκr) + C h(−)

� (iκr) (r ≥ a)

. (13.81)
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Note however that from the asymptotic behavior of Hankel functions h�(x) ∼
−(±i)�e∓i x/x , we have for κr >> 1

h(+)
� (iκr) ∼ −i�−1 eκr

κr
and h(−)

� (iκr) ∼ (−i)�−1 e−κr

κr

and only h(−)
� (iκr) is acceptable as a normalizable wave function. Thus, the radial

wave function is

RE�(r) =
⎧⎨
⎩

A j�(qr) (0 ≤ r ≤ a)

C h(−)
� (iκr) (r ≥ a)

. (13.82)

From continuity, we have

A j�(qa) = C h(−)
� (iκa)

A d j�(qr)

dr

∣∣∣
r=a

= C dh(−)
� (iκr)

dr

∣∣∣
r=a

.

(13.83)

From these, we get one relation between the coefficients and a condition on the
energy eigenvalues for which a negative energy solution is possible

A
C = h(−)

� (iκa)

j�(qa)

h(−)
� (iκa)

j�(qa)

d j�(qr)

dr

∣∣∣
r=a

= dh(−)
� (iκr)

dr

∣∣∣
r=a

.

(13.84)

We proceed by considering the simplest case of � = 0. In this case, the eigenvalue
condition reduces to

tan(qa) = −q

κ
. (13.85)

This is analogous to conditions we had in the case of the one-dimensional square
well. In fact, it is the same condition we obtained there for eigenvalues corresponding
to odd eigenstates. Recall that this condition, depending on the parameters of the
potential, may or may not have a solution. Thus, in contrast to the one-dimensional
well, the three-dimensional sphericalwell does not always have bound state solutions.
In order to quantify all these, we may proceed to describe the graphical solution to
(13.85). Defining

ξ = qa, β =
√
2mV0a2

�2
=⇒ ξ2 = (qa)2 = −(κa)2 + β2 , (13.86)

the Eq. (13.85) becomes

tan ξ = − ξ√
β2 − ξ2

. (13.87)
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Fig. 13.2 Graphical solution
for the bound states of the
spherical well

ξ

In Fig. 13.2, We have depicted its graphical solution. It is clear from the plot of the
right-hand side and the left-hand side (dotted lines, plotted for two different values
of β) of this equation that in order for them to intersect and, thus, supply us with a
solution, the parameter β has to be larger than π/2.

13.3.4 The Delta-Shell Potential

Consider a particle moving freely in three dimensions with the exception of a very
thin spherical shell where it experiences an infinite force. Such a situation can be
modeled in terms of a delta-shell potential

V (r) = �
2λ

2m
δ(r − a) (13.88)

parametrized by a strength parameter λ. The force experienced at r = a is attractive
for λ < 0 or repulsive for λ > 0.

Scattering (E > 0). The radial Schroedinger equation is

− 1

r2
d2

dr2
r2RE,�(r) + �(� + 1)

r2
RE,�(r) + λ δ(r − a)Re,�(a) = k2Re,�(r) ,

(13.89)
where E = �

2k2/2μ. Integrating from a − ε to a + ε with ε → 0, we obtain the
discontinuity of the radial wave function derivative at r = a

R′
E,�(a + ε) − R′

E,�(a − ε) = λ RE,�(a) . (13.90)

The radial wave function is

RE,�(r) =
⎧⎨
⎩

j�(kr) (0 ≤ r ≤ a)

B j�(kr) + C n�(kr) (r ≥ a)

. (13.91)
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Continuity of RE,�(r) and the discontinuity (13.90) of the derivative give us a system
of two equations that determine the coefficients B and C

B j�(ka) + C n�(ka) = j�(ka)

B j ′
�(ka) + C n′

�(ka) = j ′
�(ka) + λ j�(ka),

(13.92)

where the prime denotes differentiation with respect to the radius r . The solution is

B = j�(ka)n′
�(ka)−n�(ka)(λ j�(ka)+ j ′

�(ka))
j�(ka)n′

�(ka)− j ′
�(ka)n�(ka)

C = λ j2� (ka)

j�(ka)n′
�(ka)− j ′

�(ka)n�(ka)
.

(13.93)

Reparametrizing the wave function as

B = A cos δ�, C = −A sin δ� , (13.94)

we can write the outside (r > a) wave function as

RE,�(r) = A ( cos δ� j�(kr) − sin δ� n�(kr) ) (13.95)

which, in the asymptotic region r ∼ ∞, is

RE,�(r) ∼ A

kr
sin(kr − �π/2 + δ�) . (13.96)

The parameter δ� is the phase shift. Using the derived expressions for the coefficients,
we have

tan δ� = −C

B
= − λ j2� (ka)[

j�(ka)n′
�(ka) − n�(ka) j ′

�(ka) − λn�(ka) j�(ka)
] . (13.97)

In the technically simplest case of s-waves (� = 0), we have5

tan δ0 = −λ sin2(ka)

[k + λ cos(ka) sin(ka)] . (13.98)

Bound States (E < 0). Solutions of negative energy exist only in the case of
attractive potential λ < 0. Setting E = −�

2κ2

2μ , we have the solution

5 j ′0(ka) = − sin(ka)/ka2 + cos(ka)/a and n′
0(ka) = cos(ka)/ka2 + sin(ka)/a.
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RR,�(r) =
⎧⎨
⎩

A j�(iκr) (0 ≤ r ≤ a)

B h(−)
� (iκr) (r ≥ a)

. (13.99)

No termwith h(+)
� (iκr) is allowed, since the asymptotic behavior ofHankel functions

is h(±)
� (x) ∝ e∓i x and, therefore, we would have to deal with h(+)

� (iκr) ∝ e+κr . The
wave function continuity condition reads

A j�(iκa) = B h(−)
� (iκa) . (13.100)

In order to get the discontinuity relation at a, we integrate over an interval [a −
ε, a + ε] with ε → 0 and obtain

B h(−)
�

′
(iκa) − A j ′

�(iκa) + |λ|Aj�(iκa) = 0 . (13.101)

From Eqs. (13.100), (13.101), we obtain the condition

h(−)
�

′
(iκa)

h(−)
� (iκa)

= −|λ| + j ′
�(iκa)

j�(iκa)
. (13.102)

In the technically simplest case of � = 0, this condition reduces to

2κa

1 − e−2κa
= |λ|a . (13.103)

Agraphical analysis of the above equation shows that there is one bound state solution
for |λ|a > 1.

Example 13.2 Consider the case of a repulsive delta function shell of infinite strength
(λ → ∞) and show that the interior (i.e., 0 ≤ r ≤ a) radial wave function coincides
with that of a particle trapped in a spherical cavity,while the energy spectrumbecomes
discrete.

In the limit λ → ∞, the exterior wave function becomes

RE,�(r) = − λ j�(ka)

[ j�(ka)n′
�(ka) − j ′�(ka)n�(ka)] ( n�(ka) j�(kr) − j�(ka)n�(kr) )

and vanishes at r = a. The interior wave function is just j�(kr) as in the case of a particle in a
spherical cavity. Continuity forces the interior wave function to satisfy the condition

j�(ka) = 0
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which is satisfied by a set of discrete values of the wave number. Note however that this condition

forces the exterior wave function to vanish everywhere. Thus, in the limit λ → ∞ the delta-shell

potential can be mapped to the spherical cavity potential.6

13.3.5 The Isotropic Harmonic Oscillator

Up to now,wehave considered examples of central forces that correspond to localized
potentials that fall at infinity faster than the Coulomb potential. As an example of
central forces that increase at large distances, we shall consider the case of isotropic
harmonic forces. The three-dimensional harmonic oscillator has been discussed in a
previous chapter. There, the Hamiltonian, expressed in Cartesian coordinates, being
the sumof three commuting terms, each being a one-dimensional harmonic oscillator,
led to a set of energy eigenfunctions which were common eigenfunctions of these
terms. In the case that these oscillators have a common mass and frequency, we
have the isotropic harmonic oscillator, for which, as a central potential problem,
we may pursue the alternative approach of considering common energy and angular
momentum eigenfunctions

ψE�m(r) = RE�(r) Y�m(θ,φ) . (13.104)

The radial Schroedinger equation is

{
− �

2

2μ

(
d2

dr2
+ 2

r

d

dr

)
+ �

2�(� + 1)

2μr2
+ 1

2
μω2r2

}
RE�(r) = E RE�(r) .

(13.105)
The energy eigenvalues were found in the previous chapter to be Enx ny nz = �ω( nx +
ny + nz + 3/2). We may write them in terms of a nonnegative integer quantum
number n = nx + ny + nz as

En = �ω

(
n + 3

2

)
. (13.106)

There are (n + 2)(n + 1)/2 ways to obtain the same sum from three different non-
negative integers. Thus, each energy level is (n + 2)(n + 1)/2-fold degenerate.

Let us now look for possible solutions of the radial Schroedinger equation. In
the neighborhood of the origin r ∼ 0, the potential is negligible and only the first
three terms are appreciable. Then, the equation is satisfied with a power law type of
solution

RE�|r→0 ∼ r � . (13.107)

6There is an alternative conclusion that can be obtained in this limit: By multiplying the radial wave
function by a constant before we take the above limit we could have the interior wave function to
vanish, while the exterior wave function would coincide with that of the infinitely hard sphere.
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In contrast, in the asymptotic region r ∼ ∞, apart from the kinetic term only the
potential r2-term matters and we have an approximate solution

RE�|r→∞ ∼ e− μω
2�

r2 . (13.108)

Therefore, we may factor out the above behaviors at the two ends of the spatial range
and write the radial wave function in the form

RE�(r) = r � e− μω
2�

r2 �E�(r
2) . (13.109)

Introducing (13.109) into the radial Schroedinger equation, after quite a bit of algebra,
we arrive at

{
r2

d2

d(r2)2
+

(
� + 3

2
− μω

�
r2

)
d

dr2
+ μω

2�
(n − �)

}
�(r2) = 0 , (13.110)

which is of the general form of the Laguerre differential equation

d2Lq
p

dx2
+

(
q + 1

x
− 1

)
d Lq

p

dx
+ p

x
Lq

p = 0 (13.111)

with solutions the generalized Laguerre polynomials7 Lq
p(μωr2/�) with q = � + 1

2

and p = 1
2 (n − �). Thus, �(r2) stands for L�+1/2

n/2−�/2(μωr2/�). The values of the
energy quantum number n are determined from the condition

n = 2p + � . (13.112)

Since p is a nonnegative integer, for every value of n, we have

⎧⎨
⎩

n = even =⇒ � = 0, 2, . . . , n − 2, n

n = odd =⇒ � = 1, 3, . . . , n − 2, n
. (13.113)

For every given �we have (2� + 1) possible values of m = −�, . . . , +�. As a result,
the degeneracy of each n-level will be

7The first two are
L p
0 (x) = 1, L p

1 (x) = 1 + p − x .

The rest can be obtained through the recursion formula

L p
k+1(x) = 1

(k + 1)

[
(2k + 1 + p − x)L p

k (x) − (k + p)L p
k−1(x)

]
.
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∑
�= ..., n−2, n

(2� + 1) = 1

2
(n + 2)(n + 1) . (13.114)

Thus, finally, the radial energy eigenfunctions are

Rn�(r) = Nn� r � e− μω
2�

r2 L�+1/2
n/2−�/2(μωr2/�) , (13.115)

where Nn� is a normalization factor to meet
∫ ∞
0 drr2R2 = 1. The first few wave

functions are
R00 = N00 e−μωr2/2�

R11 = N11 r e−μωr2/2�

R20 = N20
(
3/2 − μωr2/�

)
e−μωr2/2�

R22 = N22 r2 e−μωr2/2�.

(13.116)

Problems and Exercises

13.1 Consider the spherical Bessel and spherical Neumann functions j�(x), n�(x).

(a) Prove that the expression x2
(

j�(x)n′
�(x) − n�(x) j ′

�(x)
)
is a constant independent

of x . Evaluate this constant.
(b) Show that the integral expression j�(x) = x�

2�+1�!
∫ 1
−1 ds(1 − s2)�eixs implies the

relation x j ′
�(x) + (� + 1) j�(x) = x j�−1(x) .

13.2 Consider a particle of mass μ and energy E > 0, subject to a central potential,
in an energy/angular momentum eigenstate ψE�m(r) = RE�(r)Y�m(�). Derive the
expression for the probability current density J and show that its divergence vanishes.
Consider the case of scattering in a spherical potential well and verify explicitly that
the total radial current vanishes.

13.3 Consider the case of a particle of mass μ in the potential

V (r) =
⎧⎨
⎩

+∞ (0 ≤ r ≤ a)

−�
2g2

2μ δ(r − b) (r > a)

.

Investigate the existence of bound states (E < 0) in the case � = 0.

13.4 Consider a particle of mass μ moving in the central potential

V (r) = V0�(a − r) + �
2g2

2μ
δ(r − a) ,
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with V0 > 0. Calculate the phase shift for � = 0.

13.5 Consider a particle of mass μ in the attractive delta-shell potential V (r) =
−�

2g2

2μ δ(r − a) with E < 0. Use the identity shown in Problem 13.1. to rewrite the
discontinuity condition of the derivative of the radial wave function in the form
1 = iκa2g2h(−)

� (iκa) j�(iκa). Are there any solutions of angular momentum � and
zero binding energy? Show that if there is an integer �0 so that g2a < 2�0 + 1, then,
there will be bound states of angular momentum � ≤ �0.

13.6 A particle of mass μ is subject to harmonic forces described by an isotropic
harmonic oscillator potential μω2r2/2. The particle occupies a state ψ(r) = 1√

2
(ψ000 + ψ110) ,whereψn�m are the eigenfunctions of the energy. Calculate the expec-
tation values 〈r〉, 〈r〉, 〈r2〉 and the uncertainties (�r)2 and (�r)2.

13.7 A particle of mass μ and zero angular momentum is bound in an attractive
delta-shell potential. Calculate the probability to find the particle inside the shell.

13.8 Show that an attractive spherical well (of depth V0 and width a) that can have a
zero energy bound state with � �= 0 will have to have suitable parameters that satisfy
j�−1(q0a) = 0 , where q2

0�
2/2μ = V0.

13.9 Investigate the existence of very small energy bound states (κa << 1) with
� = 0 in a spherical potential well. Show that the width a and the depth V0 of the
well have to satisfy

2μV0a2

�2
≈ π2

4
+ 2κa +

(
1 − 4

π2

)
(κa)2 .

13.10 A particle of energy E and angular momentum � = 0 experiences a potential
which can be approximated as

V (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (0 ≤ r ≤ a)

V0 (a < r < b)

0 (r ≥ b)

,

where V0 > 0. Determine the eigenfunctions of the energy for E < V0. In the case
that

√
2μ(V0 − E)/�2(b − a) >> 1, are there values of the energy for which the

probability to find the particle outside the nucleus is negligible (quasi-stationary
levels)?
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Chapter 14
Systems of Particles

14.1 Systems of Many Degrees of Freedom

The quantum mechanical treatment of systems of more than one particle is essen-
tially the same as the treatment of the system of one particle. We start with a classical
analogue of the system, identifying its independent variables and writing down its
Hamiltonian. Then, we quantize the system promoting its independent canonical
variables to operators satisfying canonical commutation relations. In order to illus-
trate the procedure let’s consider a general system of N independent particles, each
associated with a set of variables

r1, p1, S1, . . . , r2, p2, S2, . . . . . . , ra, pa, Sa, . . . (a = 1, 2, . . . , N ).

(14.1)
By definition, the independence of two particles corresponds to the statement that
all their respective variables commute

[
r1, p2

] = 0, [S1, S2] = 0, . . . etc. (14.2)

Thus, the commutation relations of the system variables are

[
xi a, p̂b j

] = i� δab δi j

[
Ŝa i , Ŝb j

]
= i� εi jkδab Ŝa k

[
xa i , xb j

] = [
p̂a i , p̂b j

] = 0.

(14.3)

The indices i, j, k, . . . are spatial indices, while the indices a, b = 1, 2, . . . , N are
indices denoting different particles. The Hamilton operator of the above system will
be

Ĥ = p̂21
2m1

+ p̂22
2m2

+ · · · p̂2a
2ma

+ · · · + V (r1, r2, . . . ) , (14.4)
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where V is a potential describing interactions of the particles among themselves or
with an external source. V could in general be spin-dependent.

The state of the system is, at every time instant, described by the multiparticle
wave function

�(r1, r2, . . . ; t) (14.5)

with the straightforward interpretation that the probability amplitude to find the
particle-1 in the volume d3r1, the particle-2 in the volume d3r2, etc. is

d3r1 d
3r2 · · · d3rN |�(r1, r2, . . . )|2 . (14.6)

The corresponding normalization condition is

∫ ∫
· · ·

∫
d3r1 d

3r2 · · · d3rN |�(r1, r2, . . . )|2 = 1 . (14.7)

The time-evolution of the system is controlled by the multiparticle Schroedinger
equation

Ĥ� = i�
∂�

∂t
. (14.8)

The states of the above multiparticle system |�〉 span a Hilbert space [1, 2]

E = E1 ⊗ E2 ⊗ · · · ⊗ EN , (14.9)

which is the tensor product of the individual single-particle Hilbert spaces (see the
Appendix). Each of the above single-particle operators, say O1, is generalized to an
operator in E which acts as before in E1 but acts as the unit operator on each of the
Ea with a �= 1. Operators referring to the composite system as, for example, the total
spin

Ŝ = Ŝ1 + Ŝ2 + · · · + ŜN , (14.10)

act on the full tensor product space. The Hilbert space of the composite system can
be built by tensor products of single-particle states. In the above example the tensor
products of single-particle eigenstates

|S21 , S1z〉 ⊗ |S22 , S2z〉 × ⊗|S2N , SNz〉 (14.11)

can serve as a basis for the composite Hilbert space E . Note that in a shorthand
notation the ⊗ symbol will be often omitted and the tensor product will be simply
denoted as |a〉|b〉, provided it is understood that |a〉 refers to E1 while |b〉 refers
to E2. Also operator tensor products Ŝ1i ⊗ Ŝ2 j are written just as Ŝ1i Ŝ2 j with the
understanding that Ŝ1 acts on E1 while Ŝ2 acts onS2. Similarly, Ŝ1 + Ŝ2 is a shorthand
in the place of the rather cumbersome Ŝ1 ⊗ ÎN−1 + Ŝ2 ⊗ ÎN−2.
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The multiparticle wave function (14.5) is obtained from the state vector of the
multiparticle system |�〉, expanded in the tensor product basis of position eigenvec-
tors

|r1, r2, . . . , rN 〉 = |r1〉 ⊗ |r2〉 · · · ⊗ |rN 〉 (14.12)

as
�(r1, . . . , rN ) = 〈r1, r2, . . . , rN |�〉 . (14.13)

Orthonormality and completeness for the basis (14.12) followsdirectly fromorthonor-
mality and completeness of single particle states

〈r1, r2, . . . , rN | r′
1, r

′
2, . . . , r′

N 〉 = δ(r1 − r′
1) . . . δ(rN − r′

N ) (14.14)

∫
d3r1

∫
d3r2 . . .

∫
d3rN |r1, r2, . . . , rN 〉 〈r1, r2, . . . , rN | = I . (14.15)

Only in the special case that the state vector itself is a tensor product of single-
particle kets, only then, the wave function is a product of single-particle wave func-
tions, e.g.,

|�〉 = |ψ1〉 ⊗ . . . |ψN 〉 =⇒ �(r1, r2, . . . , rN ) = ψ1(r1) . . . ψN (rN ),

(14.16)
where ψa(ra) = 〈ra|ψa〉.

In this basis ({x}-representation) the one-particle operator p̂a acts on |r1, r2, . . . 〉
exactly as it would act on the single-particle state |ra〉. Therefore, we have again
p̂a → −i�∇a . Thus, the Schroedinger equation

Ĥ |�〉 = i�
d|�〉
dt

(14.17)

takes the form

{

−
N∑

a=1

�
2

2ma
∇2
a + V (r1, . . . , ra)

}

�(r1, . . . , ra) = i�
∂

∂t
�(r1, . . . , ra) .

(14.18)
The so-called time-independent Schroedinger equation, corresponding to the energy
eigenvalue problem Ĥ |�E 〉 = E |�E 〉, is

{

−
N∑

a=1

�
2

2ma
∇2
a + V (r1, r2, . . . )

}

�E (r1, r2, . . . ) = E �E (r1, r2, . . . ) .

(14.19)
In the case that the Hamiltonian is the sum of commuting parts (e.g., the free case of
V = 0 or the case of external potential of the form

∑
a V (ra))
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Ĥ =
N∑

a=1

Ĥa(ra, p̂a) (14.20)

the eigenfunctions are products

�E (r1, r2, . . . ) = ψ1(r1)ψ2(r2) . . . ψN (rN ) , (14.21)

where
Ĥa ψa(ra) = εa ψa(ra) (14.22)

and the eigenvalues are sums of the single-particle eigenvalues εa

E = ε1 + ε2 + · · · + εN . (14.23)

14.2 The Two-Body Problem

Consider the system of two independent but in general interacting particles of masses
m1 and m2. The Center of Mass of the system of the two particles is defined as the
point

R = m1r1 + m2r2
m1 + m2

. (14.24)

It is a very common situation that the potential depends on the distance between the
two particles |r1 − r2|. Then, we may introduce also the relative position

r = r1 − r2 (14.25)

and make the change of coordinates

r1, r2 =⇒ R, r .

The pair R, r are called Center of Mass variables. The inverse relations to (14.24)
and (14.25) are

r1 = R + m2
M r

r2 = R − m1
M r,

(14.26)

where M = m1 + m2 is the total mass.
It is not difficult to see that the correct canonical momenta corresponding to the

center of mass variables are
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P = p1 + p2

p = m2
M p1 − m1

M p2.
(14.27)

This choice satisfies the fundamental commutation relations

[xi a, p̂ j b] = i�δi jδab =⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
Xi , P̂j

]
= i�δi j

[
xi , p̂ j

] = i�δi j

[
xi , P̂j

]
= [

Xi , p̂ j
] = 0.

(14.28)

The kinetic energy in terms of P, p becomes

p21
2m1

+ p22
2m2

= P2

2M
+ p2

2μ
, (14.29)

where μ is the so-called reduced mass

1

μ
= 1

m1
+ 1

m2
=⇒ μ = m1m2

m1 + m2
. (14.30)

Note that, if m2 
m1, the reduced mass is to a good approximation equal to the
mass of the lightest of the two particles

μ = m1

1 + m1
m2

≈ m1 − m2
1

m2
+ · · · .

Now, if the potential depends only on the distance between the particles

V (|r1 − r2|) = V (r)

the Hamiltonian separates into two commuting pieces

Ĥ = P2

2M
+ p2

2μ
+ V (r)

︸ ︷︷ ︸
Ĥrel

, (14.31)

the second of which describes only the relative motion of the system. Following what
has been said at the end of last section, the energy eigenfunctions will be products
of a “Center of Mass wave function” and a “relative motion wave function”

�E (R, r) = ψCM(R)ψrel(r) , (14.32)
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where
⎧
⎪⎨

⎪⎩

P2

2M ψCM(R) = ECM ψCM(R)

{
p2

2μ + V (r)
}

ψrel(r) = ε ψrel(r)
with E = ECM + ε . (14.33)

We can actually proceed further and solve the center of mass equation which is free.
We obtain

ψCM(R) = eiK·R

(2π)3/2
and ECM = �K 2

2M
. (14.34)

Therefore, the two particle problem has been reduced to the problem of one particle
(the reduced mass particle) moving under the influence of a central potential.

14.3 Identical Particles

Consider a system of two particles, which are identical, i.e., have all their properties,
like mass, electric charge, spin,… etc., the same (e.g., two electrons). Two such parti-
cles are not automatically distinguishable. If they are macroscopic particles obeying
the laws of Classical Mechanics, their trajectories can be followed at any time and
we can identify them, despite the fact that they are physically identical. Neverthe-
less, for microscopic particles like electrons their distinguishability presupposes the
existence of an experiment that could tell them apart. If one were to follow along the
lines of what is done in the above case of classical particles and follow the evolution
of their respective wavepackets, he would have to face sooner or later the fact that
due to spreading their wavepackets would overlap, something that would amount to
the loss of identity. What lies behind that is, of cource, the uncertainty principle. In
any case, we may conclude that identical particles1 obeying the laws of Quantum
Mechanics are not distinguishable.

For a system of two identical particles, putting aside the spin in order to simplify
notation, we proceed to write down the corresponding energy eigenvalue problem

Ĥ(r1, p̂1; r2, p̂2)�E (r, r′) = E �E (r, r′) . (14.35)

Nevertheless, we can also have

Ĥ(r2, p̂2; r1, p̂1)�E (r′, r) = E �E (r′, r) . (14.36)

But, since the particles are identical, the Hamiltonian will be invariant in the inter-
change of their variables, namely

1By definition particles that have all their properties, like mass, electric charge, spin,… etc., the
same will be called identical particles.
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Ĥ(r1, p̂1; r2, p̂2) = Ĥ(r2, p̂2; r1, p̂1) . (14.37)

Therefore, the above two statements of the eigenvalue problem can be written

⎧
⎨

⎩

Ĥ(r1, p̂1; r2, p̂2)ψE (r, r′) = E ψE (r, r′)

Ĥ(r1, p̂1; r2, p̂2)ψE (r′, r) = E ψE (r′, r)
(14.38)

which means that any combination of �(r, r′) and �(r′, r), e.g.,

C1 ψE (r, r′) + C2 ψE (r′, r) (14.39)

is also an eigenstate of the same eigenvalue E . This phenomenon is called exchange
degeneracy. We shall see shortly that only two types of linear combinations are
allowed.

Since the two particles are identical, the probability density for one of them being
at r and the other being at r′ should be equal to the probability density with the two
particles interchanged, namely

P(r, r′) = P(r′, r) (14.40)

or
|�(r, r′)|2 = |�(r′, r)|2 . (14.41)

As a result, the wave functions should be equal up to a phase

�(r, r′) = eiφ �(r′, r) . (14.42)

Interchanging the positions once more, we obtain

�(r′, r) = eiφ �(r, r′) = e2iφ�(r′, r) . (14.43)

This means that
e2iφ = 1 =⇒ φ = 0, π . (14.44)

Therefore, the effect of the interchange is

�(r′, r) = ±�(r, r′) . (14.45)

Thus, the two-particlewave functions of two identical particles canonly be symmetric
or antisymmetric in the particle interchange

�S(r, r′) = �S(r′, r) symmetric

�A(r, r′) = −�A(r′, r) antisymmetric.
(14.46)
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It can be shown that particles of half-integer spin (1/2, 3/2, . . . ) always have anti-
symmetric wave functions. Such particles (electrons, protons,… etc.) are called
fermions. The wave function of two electrons will always be antisymmetric in the
exchange of the two particles. Fermions obey Fermi-Dirac Statistics. Particles of
integer spin (0, 1, 2, . . . ) always have symmetric wave functions. Such particles
(photons, pions, ρ-mesons,…) are called bosons. The wave function of two pions
will always be symmetric in the interchange of the two particles. Bosons obey Bose-
Einstein Statistics. This fact, supported by all experiments, can be proven if we go
beyond nonrelativistic Quantum Mechanics. It can be shown in the framework of
relativistic Quantum Field Theory, where it is known under the name of “Spin and
Statistics Theorem”. Added to the set of axioms of Quantum Mechanics as the so-
called Symmetrization Postulate, it holds that for any number of identical particles,
e.g., the wave function of N fermions has to obey2

�(1, 2, . . . , i, . . . , j, . . . , N ) = −�(1, 2, . . . , j, . . . , i, . . . , N ) , (14.47)

while the wave function of N bosons has to obey

�(1, 2, . . . , i, . . . , j, . . . , N ) = �(1, 2, . . . , j, . . . , i, . . . , N ) . (14.48)

Note that the symmetric/antisymmetric nature of the wave function refers to all kinds
of variables, spatial as well as spin.

The Pauli Principle. Consider a pair of identical fermions (e.g., two electrons).
Their wave function will be antisymmetric satisfying

�(r1, Sz1; r2, Sz2) = −�(r2, Sz2; r1, Sz1) . (14.49)

If the two particles occupy the same space point and have the same spin, their wave
function has to obey

�(r1, Sz1; r1, Sz1) = −�(r1, Sz1; r1, Sz1) =⇒ �(r1, Sz1; r1, Sz1) = 0.
(14.50)

This means that the probability amplitude to find two electrons at the same point,
having the same spin is zero. This is the so-called Exclusion Principle or Pauli
Principle according to which two identical fermions cannot be in the same state.
However, the Exclusion Principle allows two fermions to occupy the same point and
have opposite spins.

Consider the systemof two electrons and let’s assume that to a good approximation
the forces between them are spin-independent and, therefore, the Hamiltonian does
not depend on spin. Then, the wave function is a product of a spatial wave function
times a spin wave function (spinor)

�(r1, S1; r2, S2) = ψ(r1, r2)χ(S1, S2) . (14.51)

2See also [1–4].
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The Pauli Principle demands that the productwave function is antisymmetric. This
can bemet if the spatial part is antisymmetric and the spinor part is symmetric or if the
spatial part is symmetric and the spinor part antisymmetric. We already know that if
we adopt for the spinor part an eigenfunction of the total spin it comes automatically
either as symmetric or antisymmetric. Thus, for the spinor wave function we can
take the triplet (symmetric)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

χ1,−1 = χ(1)
↓ χ(2)

↓

χ1,0 = 1√
2

(
χ(1)

↑ χ(2)
↓ + χ(1)

↓ χ(2)
↑
)

χ1,1 = χ(1)
↑ χ(2)

↑

(14.52)

and the singlet (antisymmetric)

χ0,0 = 1√
2

(
χ(1)

↑ χ(2)
↓ − χ(1)

↓ χ(2)
↑
)

. (14.53)

Therefore, there are two possibilities for a totally antisymmetric wave function

⎧
⎨

⎩

ψS(r1, r2)χ0,0

ψA(r1, r2)χ1,m

(14.54)

The first of these does not vanish when the electrons are at the same point because
their spins are opposite. The second however gives zero for r1 = r2.

Let’s assume now, as it is very often the case, that the two electrons interact
through forces dependent only on their relative distance. Then, the potential is V =
V (|r1 − r2|). Going into center of mass coordinates

R = 1

2
(r1 + r2) , r = r1 − r2 , (14.55)

the Hamiltonian of the system becomes (M = 2me, μ = me/2)

Ĥ = P2

2M︸︷︷︸
HCM

+ p2

2μ
+ V (r)

︸ ︷︷ ︸
Hrel

, (14.56)

which is the sum of two commuting parts. Therefore, the spatial wave function is a
product of the center of mass wave function ψCM(R) and the relative motion wave
function ψrel(r)

ψ(r1, r2) = ψCM(R)ψrel(r), (14.57)
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where

ψCM(R) = eiK·R

(2π)3/2
.

In center of mass coordinates the particle interchange operation is

r1 → r2 =⇒
⎧
⎨

⎩

R → R

r → −r
(14.58)

Thus, it amounts to a spatial reflection (parity) of the relative coordinate. Note that
Ĥrel commutes with the relative angular momentum r × p. Thus, the Ĥrel eigenstates
can be products of spherical harmonics and radial wave functions

ψrel(r) = Y�m(θ, φ) RE�(r), (14.59)

where r, θ, φ are the spherical coordinates corresponding to r.
Summarizing, our possible energy eigenfunctions are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eiK·R

(2π)3/2
Y�m(θ,φ) RE�(r)

︸ ︷︷ ︸
sym

χ00

eiK·R

(2π)3/2
Y�m(θ,φ) RE�(r)

︸ ︷︷ ︸
antisym

χ1m

(14.60)

The relative coordinate parity operation in spherical coordinates amounts to

θ, φ → π − θ, π + φ =⇒ Y�m(θ, φ) → (−1)�Y�m(θ, φ) .

Therefore, we must have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eiK·R

(2π)3/2
Y�m(θ,φ) RE�(r)

︸ ︷︷ ︸
�=0,2,...

χ00

eiK·R

(2π)3/2
Y�m(θ,φ) RE�(r)

︸ ︷︷ ︸
�=1,3,...

χ1m

=⇒
⎧
⎨

⎩

� = 0, 2, . . . S = 0

� = 1, 3, . . . S = 1
(14.61)

Thus, the system of two electrons interacting with forces depending only on the
relative distance can exist in energy eigenstates of even values of the relative angular
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momentum and antiparallel electron spins (S = 0) or of odd values of the relative
angular momentum and total spin S = 1.

Isolated electrons. The central new concept established in the present chapter
is that of symmetrization or antisymmetrization of the wave function of systems
of identical particles. This means that the wave function of all electrons has to be
antisymmetrized. Does this mean that we cannot consider and study the system of
one electron, forgetting about the rest of the electrons in the Universe, as we have
been doing up to now? The answer is that it is possible to ignore all other elec-
trons and study the one particle of interest if the overlap3 of its wave function with
the wave functions of the rest is negligible. To illustrate this, consider a system of
two electrons. The system will be described with an antisymmetric wave function
�(r1, r2) = −�(r2, r1). We suppress the spinor variables for simplicity of nota-
tion. The probability density to find one electron anywhere would be

P(r) =
∫

d3r1 |�(r1, r)|2 +
∫

d3r2 |�(r, r2)|2 . (14.62)

Suppose now that one of the electrons is localized in the greater area of London,
having the wave function ψL , while a second electron is localized in Paris, having
the wave function ψP . The two electrons are far enough not to have any appreciable
interaction. The wave function of the system will be an antisymmetric combination
of products of one-particle wave functions

�(r1, r2) = 1√
2

(ψL(r1)ψP(r2) − ψP(r1)ψL(r2) ) . (14.63)

Assuming that the overlap of the wave functions ψL and ψP is negligible, i.e.,

ψL(r)ψP(r) ∼ 0 ∀r , (14.64)

we may substitute (14.63) into (14.62) and obtain

P(r) ∼ |ψL(r)|2 + |ψP(r)|2 . (14.65)

For a point r in the London area, ψP(r) ≈ 0 and the second term in (14.65) can be
neglected. The probability density will be just

P(r) ∼ |ψL(r)|2 . (14.66)

This is the standard one-particle result, meaning that the existence of the second
electron can be ignored.

Composite particles. Ordinary matter is organized in the form of atoms and
molecules which are composite structures consisting of more than one particles.

3Two functions f and g have a negligible overlap if f (r) g(r) ∼ 0 for every point r.
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What kind of wave functions should we be using for systems of identical atoms or
other composite particles? Consider the case of two hydrogen atoms consisting each
of one proton (nucleus) and one electron. Both protons and electrons are fermions
of spin 1/2. The wave function of the system of the two atoms will be (again, for
simplicity we suppress the spin variables)

�(re1, rp1︸ ︷︷ ︸
H1

; re2, rp2︸ ︷︷ ︸
H2

).

Any interchange between the two electrons will generate a minus sign due to anti-
symmetry. Any interchange between the two protons will also generate a minus sign
because of antisymmetry. In contrast, any interchange between electron and pro-
ton does not dictate a change in sign, since electrons and protons are not identical
particles. As a result, we may have

�(re1, rp1; re2, rp2) = −�(re2, rp1; re1, rp2) = �(re2, rp2; re1, rp1)

or
�(H1; H2) = �(H2; H1) . (14.67)

This means that the two hydrogen atoms behave as bosons. This is in perfect agree-
mentwith the fact that the spin of the hydrogen atom is an integer. This is quite general
dictating that composite particles are classified as bosons or fermions according to
their total spin. Composite particles consisting of an even number of fermions are
bosons, while composites consisting of an odd number of fermions are fermions.

Systems of noninteracting identical particles. Consider N identical particles
which do not interact or, in any case, their interaction could be neglected. The Hamil-
tonian of the system is the sum of commuting single-particle Hamiltonians

Ĥ =
N∑

i=1

Ĥi where Ĥi = p̂2i
2m

+ V (ri ) . (14.68)

The identical one-particle Hamiltonians will have the same set of energy eigenvalues
εa corresponding to one-particle eigenfunctions ψa .

An energy eigenfunction of the full system �(r1, r2, . . . ) will be a product of
the single-particle eigenfunctions ψa(ri ), namely

�(r1, r2, . . . ) = ψa(r1)ψb(r2) . . . ψc(rN ) . (14.69)

However, since the particles are identical this product must be either symmetric in
the particle exchange or antisymmetric.

For N identical bosons we have
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�S(r1, r2, . . . ) = 1

N !
∑

P

P �(r1, r2, . . . ) , (14.70)

where P signifies any permutation of the particles involved. For N identical fermions
we have

�A(r1, r2, . . . ) = 1

N !
∑

P

(−1)P P �(r1, r2, . . . ) . (14.71)

The factor (−1)P stands for a minus sign associated with every odd permutation.
To illustrate the above let’s consider three identical fermions in the states

ψa, ψb, ψc. There are six ways in which three particles can be accommodated in
these three states corresponding to permutations of a starting configuration (a, b, c).
These are

(a, b, c), (b, a, c), (c, b, a), (a, c, b), (b, c, a), (c, a, b) .

These can be obtained from (a, b, c) by the permutations

P(ab), P(ac), P(bc), P(ab)P(ac), P(cb)P(ac) .

The antisymmetrised wave function of the three fermions will be

�(r1, r2, r3) = 1

6
{ψa(r1)ψb(r2)ψc(r3) − ψb(r1)ψa(r2)ψc(r3) − ψc(r1)ψb(r2)ψa(r3)

−ψa(r1)ψc(r2)ψb(r3) + ψb(r1)ψc(r2)ψa(r3) + ψc(r1)ψa(r2)ψb(r3)} . (14.72)

It can be expressed as the Slater Determinant

�(r1, r2, r3) = 1

3!

∣∣∣∣∣
∣∣∣∣∣

ψa(r1) ψa(r2) ψa(r3)

ψb(r1) ψb(r2) ψb(r3)

ψc(r1) ψc(r2) ψc(r3)

∣∣∣∣∣
∣∣∣∣∣

. (14.73)

The Slater determinant can be generalized to N fermions.

Example 14.1 Consider the system of two particles of the same mass m, electric
charge q and spin s = 1/2. The system is subject to an external homogeneous mag-
netic field B.
(a) Write the Hamiltonian in the Center of Mass System. The magnetic field is suf-
ficiently weak to justify neglecting the corresponding quadratic term.
(b) Write down the Heisenberg equations for R, r, P, p and solve the CM motion.
(c) Consider the case that the two particles are identical fermions that initially (t = 0)
have a Gaussian spatial wave function � and spin wave function χ.
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�(r1, r2, 0) = (
α
π

)3/2
e− α

2 (r21+r22 ) ei(q1·r1+q2·r2)

χ = 1√
2

(
χ(1)

↑ χ(2)
↑ − χ(1)

↓ χ(2)
↓
)

.

(14.74)

Calculate the uncertainty in their center of mass position (�RCM)2t at later times
t > 0.

(a) The Hamiltonian of the system is

Ĥ = 1

2m

(
p1 − q

c
A(r1)

)2 + 1

2m

(
p2 − q

c
A(r2)

)2 − qg

2mc
B · (s1 + s2) , (14.75)

with A = 1
2B × r, assuming that the Lande factor g is the same for both particles. Taking B = Bẑ

we rewrite the Hamiltonian as

Ĥ = 1

2m

(
p21 + p22

)
− q

2mc
B · (L1 + L2) + q2B2

8mc

(
x21 + y21 + x22 + y22

)

+ q2

|r1 − r| − qgB

2mc
(s1z + s2z) . (14.76)

Introducing the Center of Mass operators

P = p1 + p2, p = 1
2 (p1 − p2)

R = 1
2 (r1 + r2) , r = r1 − r2

, (14.77)

we get the Hamiltonian as a sum of three commuting terms in the form

Ĥ = ĤCM + Ĥr + Ĥspin (14.78)

where
ĤCM = P2

4m − q
2mcB · L + q2B2

16mc

(
X2 + Y 2

)

Ĥr = p2

m − q
2mcB · Lr + q2B2

4mc

(
x2 + y2

) + q2

r

Ĥspin = − qgB
2mc Sz

(14.79)

and, where L = R × P is the total orbital angular momentum, Lr = r × p the relative one and
S = s1 + s2 the total spin.

(b) Setting ω = qB/2mc we have

Ṗ = −ω ẑ × P, Ṙ = P
2m

− ωẑ × R (14.80)

and

ṗ = −∇
(
q2

r

)
− ωẑ × p, ṙ = 2

p
m

− ωẑ × r . (14.81)
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The Center of Mass momentum operators are solved to be

⎧
⎨

⎩

P̂x (t) = P̂x (0) cosωt + P̂y(0) sinωt
P̂y(t) = P̂y(0) cosωt − P̂x (0) sinωt
P̂z(t) = P̂z(0)

(14.82)

Substituting the Center of Mass velocity equation into the momentum equation we obtain

R̈ + 2ωẑ × Ṙ + ω2 ẑ
(
ẑ · R) − ω2R = 0 (14.83)

⎧
⎨

⎩

Ẍ − 2ωẎ − ω2X = 0
Ÿ + 2ω Ẋ − ω2Y = 0
Z̈ = 0

=⇒

⎧
⎪⎨

⎪⎩

X̂(t) = X̂(0) cosωt + Ŷ (0) sinωt
Ŷ (t) = Ŷ (0) cosωt − X̂(0) sinωt

Ẑ(t) = Ẑ(0) + P̂z (0)
2m t

(14.84)

and

R(t) = x̂
(
X̂(0) cosωt + Ŷ (0) sinωt

)
+ ŷ

(
Ŷ (0) cosωt − X̂(0) sinωt

)
+ ẑ

(

Ẑ(0) + P̂z(0)

2m
t

)

.

(14.85)
Note that

R̂2(t) = R̂2(0) + t2

4m2 P̂
2
z (0) + t

2m

(
Ẑ(0)P̂z(0) + P̂z(0)Ẑ(0)

)
. (14.86)

(c) The initial spatial wave function can be written

�(R, r, 0) = ψCM (R, 0) ψr (r, 0) =
((

2α

π

)3/4

e−αR2
eiq+·R

)(( α

2π

)3/4
e− α

4 r
2
eiq−·r

)
,

(14.87)
where q+ = q1 + q2 and q− = 1

2 (q1 − q2). The initial CM expectation values are

〈R〉0 = ( 2α
π

)3/2 ∫
d3R e−2αR2

R = 0,

〈P〉0 = −i�
( 2α

π

)3/2 ∫
d3R (−2αR + iq+) e−2αR2 = �q+

(14.88)

using parity. Therefore,

〈R〉t = ẑ
�(q+)z t

2m
. (14.89)

We also have

〈R2〉0 = ( 2α
π

)3/2 ∫
d3R e−2αR2

R2 = − 1
2

( 2α
π

)3/2 ∂
∂α

∫
d3R e−2αR2 = 3

4α

〈P̂2
z 〉0 = −�

2
( 2α

π

)3/2 ∫
d3R e−αR2

e−iq+·R ∂2

∂Z2 e
−αR2

eiq+·R = . . . = �
2
(
α + (q+)2z

)

〈Ẑ P̂z + P̂z Ẑ〉 = −i� − 2i�
( 2α

π

)3/2 ∫
d3R e−αR2

e−iq+·RZ ∂
∂Z e

−αR2
eiq+·R = . . . = 0

(14.90)
Thus, finally, we have

〈R̂2〉t = 3

4α
+ �

2t2

4m2

(
α + (q+)2z

)
=⇒ (�R)2t = 3

4α

(

1 + 1

3

(
�tα

m

)2
)

. (14.91)
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Example 14.2 Two identical fermions of spin 1/2 interact in terms of a potential

V =
⎧
⎨

⎩

+∞ (|r1 − r2| ≥ a)

0 (|r1 − r2| < a)

(14.92)

A measurement of the relative orbital angular momentum is performed with the
outcomes � = 1 and � = 2 with 50% probability each.What is the state of the system
prior to the measurement?

Applying the analysis of the system of two identical fermions in a potential V (|r1 − r2|), we
obtain that the relativemotion is that of a particle ofmassm/2 trapped in a spherical cavity of radiusa
with the allowed energies for each relative orbital angular momentum � being given by the condition
j�(ka) = 0. Then, the two possible totally antisymmetric outcomes are j2(k2r)Y2,m(r̂)χ0,0 and
j1(k1r)Y1,m′ (r̂) χ1,ms and, since they are equiprobable, the state has to be

1√
2

(
j2(k2r)Y2,m(r̂)χ0,0 + eiβ j1(k1r)Y1,m′ (r̂) χ1,ms

)
, (14.93)

up to a phase β. The wave numbers k1 and k2 are given by the conditions j1(k1a) = j2(k2a) = 0.

Problems and Exercises

14.1 Consider a system of N interacting particles with a Hamiltonian

Ĥ =
N∑

a=1

p̂2a
2ma

+
∑

a

Va(ra) + 1

2

∑

a �=b

Vab(ra, rb) .

Consider the one-particle current probability density ja = 1
ma

Re
{
�∗p̂a�

}
, where

�(r1, . . . , rN ) is the systemwave function. Introduce the density and current density
operators

ρ̂(r) ≡
N∑

a=1

δ(r − ra) and Ĵ(r) ≡
N∑

a=1

1

2ma

{
p̂a, δ(r − ra)

}

and prove that the quantities

ρ(r, t) = 〈�|ρ̂(r)|�〉, J(r, t) = 〈�|Ĵ(r)|�〉

satisfy the continuity equation ∂ρ
∂t + ∇ · J = 0 .

14.2 Three identical bosons are trapped inside a one-dimensional infinite square
well [−L , L]. Measurement of each boson energy has given the values
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9�2π2

8mL2
,

9�2π2

8mL2
,

2�
2π2

mL2
.

Write down the wave function of the system.

14.3 Two electrons are in the same spin state and their total momentum vanishes.
The two electrons are constrained to move in one dimension and interact through the
potential

V (|x1 − x2|) =
⎧
⎨

⎩

−|V0| (|x1 − x2| ≤ a)

0 (|x1 − x2| > a)

What is the lowest possible energy of the system?

14.4 (a) Consider two particles, each with orbital angular momentum � = 1, m� =
0.Write down the possible values of the total orbital angularmomentumand calculate
the probability that a measurement will find each of these values. (b) Assume that the
two particles are electrons and that their spatial wave functions are identical. Predict
the total spin and total angular momentum of the system.

14.5 Two noninteracting identical particles of mass m are trapped in a one-
dimensional infinite square well of width 2L . The particles occupy the n = 1 and
n = 2 energy eigenstates. Calculate the uncertainty (�x)2B = 〈(x1 − x2)

2〉 in the
case that the two particles are bosons of zero spin. Calculate the same quantity
(�x)2D = 〈(x1 − x2)

2〉 assuming that the two particles are distinguishable. What
conclusions can you draw about effective forces between the particles from the sign
difference � = (�x)2B − (�x)2D?

14.6 Consider the system of two particles of massm each, kept at a constant relative
distance R. The rotational motion of the system is described by the Hamiltonial
Ĥ = L̂2/2I , where I is the moment of inertia with respect to the center of mass.
Which are the possible eigenvalues and eigenstates of the system if the two particles
are (a) spin-1/2 fermions, (b) spin-0 bosons? or (c) distinguishable particles?

14.7 The 3He is a nucleus consisting of two protons and one neutron, while 4He is
an isotope consisting of two protons and two neutrons. Protons and neutrons are spin
1/2 fermions. Ignore spatial degrees of freedom and possible interactions between
these particles and write down the possible wave functions for 3He and 4He.

14.8 The spatial part of the wave function of two identical spin 1/2 fermions con-
strained to move in one dimension is

ψ(x1, x2) = N cos(π(x1 − x2)/L) sin(π(x1 + x2)/L) .

What is the total spin and the full wave function?

14.9 Consider five identical particles of spin 3/2. The particles are not interacting
among each other but are subject to isotropic harmonic oscillator forces of frequency
ω. What is the energy of the ground state?
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Chapter 15
Atoms

Matter under normal conditions is organized in bound systems of particles, namely
atoms. It was shown by Rutherford’s experiments that atoms are composed of elec-
trons bound by the electromagnetic field of a nucleus. It turns out that nuclei are
themselves composites of protons and neutrons bound by another type of force, the
nuclear force. Electromagnetic forces can also hold together larger bound systems
of more than one nuclei, namely molecules. Atoms and molecules are quantum sys-
tems that wouldn’t exist as stable structures in the framework of classical physics. In
contrast to analogous classical systems like, for example, the solar system, that could
exist at many possible sizes depending on initial conditions, atoms have well-defined
size in their ground state, determined by the uncertainty principle.

15.1 The Hydrogen Atom

The Hydrogen atom is just the system of an electron and a proton, both fermions
of spin 1/2, of very different mass and opposite charges (e < 0 for the electron
and −e > 0 for the proton). The dominant force between electron and proton is the
Coulomb attraction1

V (r) = −e2

r
, (15.1)

where r is the electron-proton relative distance. The static Coulomb attraction is only
part of the forces of electromagnetic origin that act between two moving charged
particles. Nevertheless, the extra dynamical electromagnetic contributions are sub-
dominant and will be treated at a later stage as perturbative corrections. Since the
Coulomb force depends only on the relative distance of elecron and proton, we know
from our analysis of the two-body problem in the previous chapter that the dynamics
can be reduced to the motion of the center of mass, which is trivial, and to the relative

1See also [1, 2].
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motionwhich is equivalent to themotion of a particle ofmassμ = mem p/(me + m p)

(reduced mass) in the central potential (15.1). Nevertheless, due to the fact that
μ = me/(1 + me/m p) ≈ me(1 + O(10−3)), the relevant Hamiltonian of the sys-
tem will be to a very good approximation

Ĥ = p̂2

2me
− e2

r
. (15.2)

Since the potential tends to zero at very large distances, beingnegative at all points, the
energy spectrumwill consist of a continuumwith E > 0, corresponding to scattering
states and possibly a set of discrete energy levels of negative energies E < 0 (bound
states). We shall concentrate in solving the latter part of the energy eigenvalue prob-
lem, obtaining the atomic energy levels and eigenfunctions of the Hydrogen atom.
The corresponding radial Schroedinger equation is

− �
2

2me

1

r

d2

dr2
r RE�(r) + �

2�(� + 1)

2mer2
RE�(r) − e2

r
RE�(r) = E RE�(r) (15.3)

or the one-dimensional one is

− �
2

2me

d2uE�

dr2
+ �

2�(� + 1)

2mer2
uE�(r) − e2

r
uE�(r) = E uE�(r) (15.4)

in terms of u = r R. Then, introducing

E = −�
2κ2

2me
and λ2 = 2mee2

�2κ
, (15.5)

we can rewrite (15.4) in terms of the variable

ρ = κr (15.6)

as {
d2

dρ2
− 1 + λ2

ρ
− �(� + 1)

ρ2

}
uκ�(ρ) = 0 . (15.7)

We have more conveniently labeled the one-dimensional eigenfunction as uκ�(ρ).
At a great distance from the origin (ρ → ∞) we may neglect the inverse powers in
(15.7) and obtain an approximate solution

lim
ρ→∞ {uκ�(ρ)} = e−ρ . (15.8)

Note that this is not any different than what we would expect from our analysis of
finite range central potentials, although the Coulomb potential is of infinite range
(limr→∞ {r V (r)} �= 0).
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Next we proceed to solve the differential equation (15.7) by the power series
method. It is convenient to factor out the asymptotic behaviour (15.8) by introducing
a radial function vκ�(ρ) as

uκ�(ρ) = e−ρ vκ�(ρ) . (15.9)

The differential equation satisfied by vκ� is actually more complicated. It is

{
d2

dρ2
− 2

d

dρ
+ λ2

ρ
− �(� + 1)

ρ2

}
vκ�(ρ) = 0 . (15.10)

We should not forget that the one-dimensional radial wave function has to satisfy the
boundary condition uκ�(0) = 0. If we assume now that in the vicinity of the origin

vκ�(ρ) ∼ ρα with α > 0 , (15.11)

substituting in (15.10) we obtain

(α(α − 1) − �(� + 1)) ρα−2 + O(ρα−1) ∼ 0 =⇒ α = � + 1 . (15.12)

Therefore, we may write a trial power series solution as

v(ρ) =
∞∑

ν=0

Cν ρν+�+1 . (15.13)

Inserting this power series in (15.10) we get

∞∑
ν=0

Cν ((� + ν + 1)(� + ν) − �(� + 1)) ρν−1 +
∞∑

ν=0

Cν

(
λ2 − 2(� + ν + 1)

)
ρν = 0.

(15.14)
Note that the first term of the first series vanishes and this sum really starts from
ν = 1. Changing the summation index to ν + 1 we can rewrite (15.14) as

∞∑
ν=0

[
((� + ν + 2)(� + ν + 1) − �(� + 1)) Cν+1 +

(
λ2 − 2(� + ν + 1)

)
Cν

]
ρν = 0, ,

(15.15)
which, supposedly being true for every ρ, implies that every term of the series should
vanish. However, this can occur only if the coefficients obbey the recursive relation

Cν+1

Cν
= 2(� + ν + 1) − λ2

[(� + ν + 2)(� + ν + 1) − �(� + 1)]
for ν = 0, 1, 2, . . . (15.16)

For large ν values the coefficient ratio behaves as
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ν → ∞ =⇒ Cν+1

Cν
∼ 2

ν
. (15.17)

Notice that the power series for e+2ρ has exacly the above large ν recursive relation(
2ν+1/(n + 1)!) / (2ν/n!) = 2/(n + 1) ≈ 2/n. Such an asymptotic behaviour is
unacceptable, since it overpowers the e−ρ factor of uκ�(ρ) and gives

uκ�(ρ) = e−ρ vκ�(ρ) ∼ e+ρ ,

which is not a square integrable wave function. The only way out is if the power
series somehow terminates and vκ�(ρ) is just a polynomial. This is possible only if

λ2 = 2(ν + 1 + �) (15.18)

for some ν. Then, Cν+1 and all subsequent coefficients would vanish and vκ�(ρ)

would be a polynomial of order ν. Of course, this requires the special values of the
parameter λ given by (15.18). Since, λ is related to the energy through its definition
(15.5), these correspond to special values of the energy

E = − me e4

2�2(ν + 1 + �)2
. (15.19)

Thus, we obtain a discrete bound state spectrum labeled by the integers ν =
0, 1, 2, . . . and � = 0, 1, 2, . . .. We are free however to replace the power series
index ν with the so-called principal quantum number n, defined as

n = ν + � + 1 =⇒ n = 1, 2, . . . (15.20)

that, since n = 2(ν + 1 + �) = λ2 > 0, takes positive integer values. In terms of it
the energy levels of Hydrogen are

En = − mee4

2�2n2
. (15.21)

Nevertheless, now � is constrained by (15.20) to obtain values limited by n, namely
� = n − ν − 1 = (n − 1), (n − 2), . . . , 1, 0 or

� = 0, 1, . . . , n − 1 . (15.22)

The fact that many states with different � have the same energy is not explained
by the spherical symmetry of the system. The spherical symmetry can only account
for the 2� + 1 states of different m having the same energy. The existence of the
additional degeneracy means that the system possesses further symmetries beyond
the spherical symmetry. We are going to return to this point in a later chapter. For
the moment we may calculate that the overall degeneracy is
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n−1∑
�=0

(2� + 1) = n2 . (15.23)

Thus, n2 different energy eigenfunctions will correspond to a single eigenvalue of
the energy En = −e4me/2�

2n2.
It is remarkable that the energy of the ground state of the Hydrogen atom can

be estimated by a simple argument based on the uncertainty principle. Something
analogous was done in the case of the simple harmonic oscillator. The argument
goes as follows. Let r0 be the radius of the atom beyond which the probability to
find the electron is negligible. The order of magnitude of the potential energy will be
−e2/r0. The uncertainty principle puts a lower bound on the momentum p ∼ �/r0
and, therefore, the kinetic energy will be at least �

2/2mr20 . Putting these together
into the total energy

E(r0) = �
2

2mer20
− e2

r0

we may ask which is the value r0 for which E has a minimum. This amounts to

E ′(r0) = 0 =⇒ − �
2

mer30
+ e2

r20
= 0 =⇒ r0 = �

2

mee2

and gives the energy

E0 = −mee4

2�2
,

which is exactly the ground state energy obtained by solving the Schroedinger equa-
tion. This result cries out for the interpretation that the size of the atom is entirely
a consequence of the uncertainty principle and its stability a consequence of the
balancing between kinetic and potential energy.

At this point, it is usefull to introduce the so-called Bohr radius a0 defined as

a0 = �
2

mee2
. (15.24)

As we saw above in our estimate of the ground state energy through the uncertainty
principle the combination �

2/mee2 gives the characteristic size of the atom. In terms
of the Bohr radius, the energy levels are

En = − e2

2n2a0
. (15.25)

The numerical value of the Bohr radius is

a0 = 0.52912 . . . × 10−8 cm (15.26)
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and leads to a value for the Hydrogen ground state energy

|E1| = e2

2a0
= 13.606 . . . eV (15.27)

The excited energy levels are En = −|E1|/n2. Although this is not yet explained
within the above framework of Coulomb interaction,2 transitions between energy
levels are possible provided the energy difference is emitted or absorbed in the
form of electromagnetic radiation. The relation of the energy differences between
neighboring levels and the corresponding radiation wavelength is

�n = En+1 − En = (2n + 1)|E1|
n2(n + 1)2

=⇒ λn = hc

�n
. (15.28)

For �1 this wavelength is

λ1 = hc

�1
= 4hc

3|E1| ≈ 1200 × 10−8 cm

corresponding to the ultraviolet.
The Hydrogen atom energy eigenfunctions. Our next goal is to determine the

radial wave functions Rn�(ρ). From our analysis we have determined that they are
of the form

Rn� ∼ e−ρ ρ� �n�(ρ) or vn�(ρ) ∼ ρ�+1 �n�(ρ) , (15.29)

where �n�(ρ) is a polynomial of degree n − � − 1. Substituting this into (15.10) we
obtain for �n� the equation

d2�n�

dρ2
+ 2

(
� + 1

ρ
− 1

)
d�n�

dρ
+ 2

(n − � − 1)

ρ
�n� = 0 . (15.30)

Comparing this to the Laguerre differential equation

d2Lq
p

dx2
+

(
q + 1

x
− 1

)
d Lq

p

dx
+ p

x
Lq

p = 0 , (15.31)

which has as solutions the classified associated Laguerre polynomials Lq
p(x), we

conclude that�n�(ρ) stands for L2�+1
n−�−1(2ρ). Thus, we obtain the radial energy eigen-

functions as
Rn�(ρ) = Nn� e−ρ ρ� L2�+1

n−�−1(2ρ) , (15.32)

where Nn� is a normalization factor tomeet
∫ ∞
0 drr2R2 = 1.The associatedLaguerre

polynomials can be constructed from the ordinary Laguerre polynomials Ls(x)

2Radiation absorption and emmission phenomena will be discussed in a future chapter.
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Table 15.1 Associated laguerre polynomials

n = 1, � = 0 L1
0(x) = 1

n = 2, � = 0 L1
1(x) = 2 − x

n = 2, � = 1 L3
0(x) = 1

n = 3, � = 0 L1
2(x) = 3 − x

n = 3, � = 1 L3
1(x) = 4 − x

n = 3, � = 2 L5
0(x) = 1

according to the formula

Lq
p(x) = (−1)q dq

dxq
L p+q(x) where Ls(x) = 1

s!ex ds

dxs

(
e−x xs

)
. (15.33)

Based on these definitions we can show that

Lq
0(x) = 1, Lq

1(x) = 1 + q − x . (15.34)

Some relevant associated Laguerre polynomials are shown in Table 15.1.3

The associated Laguerre polynomials satisfy the following normalization relation

∫ ∞

0
dx e−x x2(�+1)

(
L2�+1

n−�−1(x)
)2 = 2n(n + �)!

(n − � − 1)! . (15.35)

The resulting Hydrogen energy eigenfunctions are

ψn�m(r) = Nn� Y�m(�) e−κr (κr)� L2�+1
n−�−1(2κr) . (15.36)

Note that κ has a dependence on n, given by

κ =
√
2me|E |

�2
= mee2

�2n
or κ = 1

na0
. (15.37)

Thus, the general eigenfunction can be written

ψn�m(r) = Nn� (na0)
−� Y�m(�) e−r/a0n r � L2�+1

n−�−1(2r/a0n) . (15.38)

Normalization determines the constant Nn� to be

3Note that an alternative normalization is sometimes used in the literature in which the 1/s! factor
in the generating formula for Laguerre polynomials is missing. Nevertheless, apart from a modifi-
cation of the wave function normalization factor, we obtain ultimately the same Hydrogen energy
eigenfunctions.
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Nn� = a−3/2
0

2�+1

n2

√
(n − � − 1)!

(n + �)! . (15.39)

The first few radial wave functions are

R10(r) = 2
a3/2
0

e−r/a0

R20(r) = 1√
8a3

0

e−r/2a0
(
2 − r

a0

)

R21(r) = 1√
6a3

0

e−r/2a0 r
2a0

(15.40)

Some very usefull radial expectation values are the following:

〈r〉n� = a0
2

(
3n2 − �(� + 1)

)

〈r2〉n� = a2
0
2 n2

(
5n2 + 1 − 3�(� + 1)

)

〈r−1〉n� = 1
a0n2

〈r−2〉n� = 1
a2
0n3(�+ 1

2 )

〈r−3〉n� = 1
a3
0n3�(�+1)(�+ 1

2 )

, (15.41)

where

〈r j 〉 =
∫ ∞

0
dr r2 r j (Rn�(r))2 .

Finally, the complete expression for the energy eigenfunctions is

ψn�m(r) = a−3/2
0

2�+1

n2

√
(n − � − 1)!

(n + �)! Y�m(�) e−r/a0n (r/na0)
� L2�+1

n−�−1(2r/a0n)

(15.42)
The first few eigenfunctions are given in Table 15.2.

Closing this section, it is useful for subsequent discussions on atomic structure to
mention the established terminology. TheHydrogen eigenstates are classified accord-
ing to the values of � as s, p, d, f, g, . . . corresponding to � = 0, 1, 2, 3, 4, . . ..
Thus, the state n = 1, � = 0 is referred to as 1s, the state n = 2, � = 0 as 2s, the
state n = 2, � = 1 as 2p. Analogously, the state n = 3, � = 2 is referred to as 3d.

Example 15.1 Calculate the expectation value of the Hydrogen atom radius 〈r〉.
What is the probability to find the electron at a point r ≥ 〈r〉?

The expectation value of the Hydrogen atom radius in the state ψ100(r) = (πa3
0)

−1/2e−r/a0 is
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Table 15.2 Hydrogen energy eigenfunctions

ψ100(r) = (πa3
0)

−1/2 e−r/a0

ψ200(r) = (32πa3
0)

−1/2 e−r/2a0
(
2 − r

a0

)
ψ21−1(r) = (16πa3

0)
−1/2 e−iφ sin θ e−r/2a0 r

2a0

ψ210(r) = (8πa3
0)

−1/2 cos θ e−r/2a0 r
2a0

ψ211(r) = −(16πa3
0)

−1/2 eiφ sin θ e−r/2a0 r
2a0

〈r〉 =
∫

d3r r ψ2
100(r) = (πa0)

−1
∫

d�

∫ ∞

0
dr r3 e−2r/a0 =

a0
4

∫ ∞

0
dξ ξ3 e−ξ = a0

4
3! = 3

2
a0

The probability to find the electron at a point r > 3a0/2 is

P =
∫

d�

∫ ∞

3a0/2
dr r2 (πa0)

−1 e−2r/a0 = 1

2

∫ ∞

3
dξ ξ2 e−ξ = 17

2e3
≈ 0.423 .

Example 15.2 Calculate the probability current density for aHydrogen energy eigen-
state and verify that, being stationary, it is divergenceless, namely that ∇ · J = 0.

By definition we have

J = �

2mei

(
ψ∗

n�m∇ψn�m − ψn�m∇ψ∗
n�m

)
. (15.43)

We note thatψn�m = Rn�(r) Y�m(θ,φ) = Rn�(r) Y�m(θ, 0) eimφ ,where Rn�(r) and Y�m(θ, 0) are
real. Substituting the gradient in spherical coordinates, we obtain

J = · · · = �

2mei
(Rn�(r)Y�m(θ, 0))2

(
e−imφ φ̂

r sin θ

∂

∂φ
eimφ − c.c.

)

or

J = �m

mer
(Rn�(r)Y�m(θ, 0))2

φ̂

sin θ
. (15.44)

The divergence of this current density should vanish, since it corresponds to a stationary state.
Indeed, we have

∇ · J =
(

r̂
∂

∂r
+ θ̂

r

∂

∂θ
+ φ̂

r sin θ

∂

∂φ

)
· �m

mer
(Rn�(r)Y�m(θ, 0))2

φ̂

sin θ
= · · ·

= �m

mer sin θ

∂

∂φ

(
(Rn�(r)Y�m(θ, 0))2

r sin θ

)
= 0 . (15.45)

Example 15.3 Consider the Hydrogen atom and
(a) Calculate the expectation value 〈 1r 〉n�m in an energy eigenstate ψn�m(r).4

4You may use the property of associated Laguerre polynomials
∫ ∞
0 dxxα e−x

(
Lα

n (x)
)2 =

�(n + α + 1)/n! .
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(b) Determine the Hydrogen atom energy eigenvalues using the Virial Theorem.

(a) We have
〈
1

r

〉
n�m

= N 2
n�

∫
d� |Y�m(�)|2

∫ ∞

0
dr r e−2r/na0 (r/na0)

2�
(

L2�+1
n−�−1(2r/na0)

)2

= 1

a0n2

(n − � − 1)!
(n + �)!

∫ ∞

0
dx x2�+1 e−x

(
L2�+1

n−�−1(x)
)2 = 1

a0n2 . (15.46)

(b) The Virial Theorem states that 〈T 〉 = 1
2 〈r · ∇V (r)〉 , where the expectation value refers to a

stationary state. Thus, in the case of the Hydrogen atom Coulomb potential V (r) = −e2/r and for
an energy eigenstate |n�m〉, we obtain

〈T 〉n�m = e2

2

〈
1

r

〉
n�m

= e2

2a0n2 . (15.47)

We also have

〈V 〉n�m = −e2
〈
1

r

〉
n�m

= − e2

a0n2 . (15.48)

The energy eigenvalues will be

En = 〈T 〉n�m + 〈V 〉n�m = − e2

2a0n2 . (15.49)

15.2 The Zeeman Effect

A charged particle possessing angular momentum has a magnetic dipole moment.
This is true for the electronwith the important addition of themagnetic dipolemoment
due to its spin. A homogeneous magnetic field B acting on a Hydrogen atom will
induce interaction terms between the magnetic dipole moments of the electron and
the magnetic field. The interaction terms in the Hamiltonian will be [2, 3]5

�Ĥ = −m · B − ms · B , (15.50)

where the corresponding magnetic dipole moments are

m = e

2mec
L , ms = ge

2mec
S . (15.51)

5In a subsequent chapter we are going to consider the general problem of a charged particle in a
magnetic field. There, we will see that in addition to the interaction term linear in the magnetic
field there is also an interaction term quadratic in the magnetic potential. Such a term turns out
to be negligible in atoms subject to magnetic fields of moderate size. Nevertheless, it can become
relevant in the presence of very strong magnetic fields, as the ones encountered in astrophysical
environments.
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The Lande factor g for the electron is to a very good approximation equal to 2.
Without loss of generality, we can take the ẑ-axis to be along the direction of the
magnetic field. Then, the above correction to the Hamilton operator is

�Ĥ = − eB

2mec

(
L̂ z + 2Ŝz

)
. (15.52)

The full Hamiltonian is

Ĥ = Ĥ0 − eB

2mec

(
L̂ z + 2Ŝz

)
with Ĥ0 = p2

2me
− e2

r
. (15.53)

Ĥ0 is the “unperturbed” part with eigenvalues En = − mee4

2n2�2 . It is not difficult to see
that the products

ψn�m(r)χ (15.54)

of the standard unperturbed Hydrogen energy eigenfunctions of Ĥ0 times a spinor
χ that is an eigenstate of Ŝz are eigenfunctions of Ĥ . Denoting by E ′

n the corrected
eigenvalues we have

(
Ĥ0 − eB

2mec

(
L̂ z + 2Ŝz

) )
ψn�m(r)χ = E ′

n ψn�m(r)χ . (15.55)

Taking

Ŝzχ = �ms χ = ±�

2
χ , (15.56)

we obtain
(

En − eB�

2mec
(m + 2ms)

)
ψn�m(r)χ = E ′

n ψn�m(r)χ (15.57)

and the corrected eigenvalues

E ′
n m, ± = En − eB�

2mec
(m ± 1) . (15.58)

for the eigenfunctions
�n�m;± = ψn�m(r)χ± . (15.59)

As a result of the presence of the homogeneous magnetic field each of the Hydro-
gen energy levels splits into 2(2� + 1) levels. The 2n2-fold degeneracy of the Hydro-
gen spectrum is lifted due to the partial breaking of rotational invariance. These phe-
nomena are known by the name “Zeeman effect”. For historical reasons, the part
of the effect due to the electron spin bears the erroneous name anomalous Zeeman
effect.
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15.3 Fine Structure

Even in the absence of external fields, like the homogeneous magnetic field of the
Zeeman effect, theCoulombHamiltonian Ĥ0 = p2/2me − e2/r is an approximation.
The Coulomb potential describes the interaction of two static point charges, while
in the case of the Hydrogen atom we have a moving electron, which in its rest
frame “observes” a moving proton and should experience the intrinsic magnetic
field generated by the moving proton electric current. This magnetic field is6

B = 1

c
v × E =⇒ B = 1

mc
p × E = − e2

mc
p × ∇

(
1

r

)
. (15.60)

The effect of this field on the spin dipole magnetic moment of the electron generates
the energy correction

− e

mc
S · B = e2

m2c2
S ·

(
p × ∇

(
1

r

))
= − e2

m2c2r3
S · (p × r) = e2

m2c2r3
S · L

This derivation was based on the formula B = 1
cv × E which does not take into

account the accelerated circular motion of the electron. A detailed derivation arrives
at an analogous result with an extra 1/2 factor. Thus, we have the so-called LS-
coupling correction to the Hamiltonian [2–4]

�H1 = e2

2m2c2
(S · L)

r3
. (15.61)

Our next step will be to determine the eigenstates and eigenvalues of the corrected
Hamiltonian

Ĥ = Ĥ0 + �H1. (15.62)

Note however that the eigenfunctions of Ĥ0, namelyψn�mχ, are not eigenfunctions of
Ĥ . The L · S operator appearing in (15.62) depends on the total angular momentum
J = L + S, i.e., the sum of orbital angular momentum of the electron and its spin.
In fact, we have

L · S = 1

2

(
J 2 − L2 − S2

) = 1

2

(
J 2 − L2 − 3�2

4

)
. (15.63)

Thatmeans that wewill have to resort to the basis of Ĵ 2 eigenstates. Beforewe do that
we shall digress briefly on the general method of computation of small corrections
to the energy spectrum (perturbation theory).

6In the discussion of corrections to the Hydrogen atom Hamiltonian we may also include the fact
that the proton is not immovable by simply replacing the electron mass with the reduced mass
m = mem p/(me + m p).
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Digression on the computation of Small Corrections to the Energy Spectrum.
The problem of incorporation of perturbative, i.e., “small”, corrections to the Hydro-
gen energy spectrum is addressed in the framework of Perturbation Theory, which
will be the subject of a subsequent chapter. Nevertheless, the effect of the above
small corrections to the Hydrogen Hamiltonian is simple enough to allow the first
acquaintance with this method here.

Assume that we have a Hamiltonian Ĥ = Ĥ0 + δ Ĥ that is the sum of a standard
part Ĥ0 (with known eigenstates and eigenvalues Ĥ0|ψ(0)

n 〉 = E (0)
n |ψ(0)

n 〉) and a small
perturbation δ Ĥ .We expect that the exact eigenstates |ψn〉will only differ from |ψ(0)

n 〉
by a small part. Similarly for the eigenvalues

|ψn〉 = |ψ(0)
n 〉 + δ|ψn〉 and En = E (0)

n + δEn . (15.64)

Substituting in the exact eigenvalue equation and neglecting O(δ2) terms that are
much smaller, we obtain

Ĥ |ψn〉 = En|ψn〉 =⇒ (15.65)

(
Ĥ0 + δ Ĥ

) (|ψ(0)
n 〉 + δ|ψn〉

) = (
E (0)

n + δEn
) (|ψ(0)

n 〉 + δ|ψn〉
)

(15.66)

or
δ Ĥ |ψ(0)

n 〉 + Ĥ0δ|ψn〉 = E (0)
n δ|ψn〉 + δEn|ψ(0)

n 〉 . (15.67)

Taking the inner product with 〈ψ(0)
n | we obtain

〈ψ(0)
n |δ Ĥ |ψ(0)

n 〉 + 〈ψ(0)
n |Ĥ0 (δ|ψn〉) = E (0)

n 〈ψ(0)
n | (δ|ψn〉) + δEn (15.68)

or
δEn = 〈ψ(0)

n |δ Ĥ |ψ(0)
n 〉 . (15.69)

Thus, to first order in the approximation the corrections to the energy eigenvalues
are equal to the matrix elements of the “perturbing” part of the Hamiltonian in the
unperturbed eigenstates.

Returning to the specific case of the L · S coupling correction �Ĥ1, we note that
the set of eigenfunctions ψn�mχ ∼ Rn�Y�mχ are not the most suitable as the set of
unperturbed eigenfunctions7 |ψ(0)

n 〉, since they are not eigenstates of the operator L ·
S. Instead,wemay use as a basis the equivalent set of the eigenstates |n; �, s; j, m j 〉,
i.e., Rn� for the radial part and the L2, S2, J 2, Jz eigenstates |�, s; j, m j 〉 for the
angular momentum and spin part. This last set we have considered before in the
chapter on angular momentum addition. There we found that the allowed values for
j are � + 1/2 and � − 1/2. Acting with L · S we obtain

7These are eigenstates of L2, Lz, S2, Sz and, of course, Ĥ0.
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⎧⎨
⎩
L · S| j = � + 1/2, m j 〉 = � �

2

2 | j = � + 1/2, m j 〉

L · S| j = � − 1/2, m j 〉 = −(� + 1) �
2

2 | j = � − 1/2, m j 〉
(15.70)

Therefore, the corresponding matrix elements will be

〈n; �, s; j, m j |�Ĥ1|n; �, s; j, m j 〉 = e2�2

4m2c2

∫ ∞

0
dr r2

R2
n�(r)

r3

⎧⎨
⎩

�

−(� + 1)

Copying 〈r−3〉n� from (15.41) we get

〈n; �, s; j, m j |�Ĥ1|n; �, s; j, m j 〉 = me8/4�
4c2

n3�(� + 1/2)(� + 1)

⎧⎨
⎩

�

−(� + 1)
(15.71)

Note that there seems to be a problem with this correction in the case of � = 0, how-
ever, this will go away as soon as we add an extra correction of the same significance
as �Ĥ1. This will be done immediately.

The correction �Ĥ1 is a relativistic correction of order O(c−2). Our analysis
would be incorrect if we do not include all corrections of that order. So the relevant
question is “are there any other corrections of order O(c−2)?”. The answer is positive
and comes from the kinetic part of theHamiltonian. The nonrelativistic kinetic energy
p2/2m should be replaced by the relativistic expression

√
c2 p̂2 + m2c4 ≈ mc2

(
1 + p̂2

2m2c2
− p̂4

8m4c4
+ · · ·

)
(15.72)

The first term is just a constant that plays no role.8 The first significant correction is

�Ĥ2 = − p̂4

8mc2
. (15.73)

Let’s compute now the correction to the Hydrogen energy levels resulting from this
term. As in the case of�Ĥ1 we consider the basis eigenvectors |n; �, s; j, m j 〉. Thus,
the corrections we look for will be

〈n; �s jm j |�Ĥ2|n; �s jm j 〉 = − 1

2mc2
〈n; �s jm j |

(
p̂2

2m

)2

|n; �s jm j 〉 (15.74)

or

8A constant in the energy can always be subtracted away and has no physical effect. Such a constant
becomes relevant only in the framework of the theory of gravity (General Relativity).
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〈n; �s jm j |�Ĥ2|n; �s j, m j 〉 = − 1

2mc2
〈n; �s jm j |

(
Ĥ0 + e2

r

)2

|n; �s jm j 〉 =

− 1

2mc2
〈n; �s jm j |

(
En + e2

r

)2

|n; �s jm j 〉 = E2
n + 2e2En〈r−1〉n� + e4〈r−2〉n�

(15.75)
or, copying from (15.41) the expressions for 〈r−1〉n� and 〈r−2〉n�,

〈n; �, s; j, m j |�Ĥ2|n; �, s; j, m j 〉 = − me8

4�4c2

(
2

n3(� + 1/2)
− 3

2n4

)
. (15.76)

Adding the two corrections we obtain

�E = 〈n; �, s; j, m j |
(
�Ĥ1 + �Ĥ2

)
|n; �, s; j, m j 〉

= me8

4�4c2

⎛
⎝ 3

2n4
− 2

n3(� + 1/2)
+ 1

n3(� + 1/2)

⎧⎨
⎩
1/(� + 1)

−1/�

⎞
⎠

or

�E = me8

4�4c2

(
3

2n4
− 2

n3( j + 1/2)

)
(15.77)

or, introducing the so-called fine-structure constant α = e2

�c ,

(�E)nj = −α2 |En|
n

(
1

j + 1/2
− 3

4n

)
, (15.78)

where En = −me4/2n2
�
2 = −e2/2n2a0 the unperturbed energy eigenvalues. Note

that, since α ≈ 1/137, this is a rather small correction, namely

�E

E
∼ (1/137)2 ∼ 0.53 × 10−4 .

15.4 Hyperfine Structure

In addition to the corrections considered in the previous section, which are due to
the relativistic motion of the electron, referred to by the name fine structure of the
energy spectrum, there are additional even smaller corrections, referred to by the
name hyperfine structure. Their origin is the magnetic field of the nucleus, arising
from the nuclear magnetic dipole moment due to the proton spin
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mp = − egp

2m pc
Sp , (15.79)

where Sp is the proton spin (sp = 1/2). From standard Electrodynamics it is known
that amagnetic dipolemomentmp will generate amagnetic field, the vector potential
of which is given by

A(r) = mp × r
4πr3

. (15.80)

The corresponding magnetic field is

Bi = (∇ × A)i = − 1

4π

(
m pi∇2(1/r) − (

mp · ∇) ∇i (1/r)
)

. (15.81)

Because of this magnetic field, there will be a correction to the Hamiltonian due
to its coupling to the electron magnetic dipole moment me = eSe

mec . We have added
a subscript in the electron spin to distinguish it from the proton spin. Notice also
the sign difference in the dipole moments due to the opposite charge of the proton
(−e > 0). The correction is

�Ĥ3 = −me · B . (15.82)

Substituting the expression of the magnetic moment, we obtain [2, 3]

�Ĥ3 = − e2gp

8πm pmec2
( (
Se · Sp

)∇2(1/r) − (
Sp · ∇)

(Se · ∇(1/r))
)

. (15.83)

We shall restrict ourselves to the correction of the ground state level

�E = 〈n = 1, � = m� = 0; Sez, Spz|�Ĥ3|n = 1, � = m� = 0; Sez, Spz〉
(15.84)

or

�E = − e2gp

8πm pmec2
χ†Jχ , (15.85)

where χ are the spinor wave functions and

J =
∫

d3r |ψ100(r)|2 ( (
Se · Sp

)∇2(1/r) − (
Sp · ∇)

(Se · ∇(1/r))
)

. (15.86)

Note that, since |ψ100(r)|2 is spherically symmetric, we have

∫
d3r |ψ100(r)|2∇i∇ j (1/r) = δi j

3

∫
d3r |ψ100(r)|2∇2(1/r) . (15.87)

Thus, we have

J = 2

3

(
Se · Sp

)
,

∫
d3r |ψ100(r)|2 ∇2(1/r) (15.88)
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Using the fact that ∇2(1/r) = −4πδ(r), we obtain

J = −8π

3

(
Se · Sp

) |ψ100(0)|2 (15.89)

and

�E = e2gp

3m pmec2
|ψ100(0)|2 χ†

(
Se · Sp

)
χ . (15.90)

The operator Se · Sp can be written in terms of the total, i.e., nuclear and electronic,
spin

S = Se + Sp (15.91)

as

Se · Sp = 1

2

(
Ŝ2 − Ŝ2

e − Ŝ2
p

)
= 1

2

(
Ŝ2 − 3�2

2

)
. (15.92)

If we choose the spinors χ to be eigenstates of the total spin S, we obtain

�E = e2gp�
2

6m pmec2
|ψ100(0)|2 (S(S + 1) − 3/2) . (15.93)

For the two possible eigenvalues of S we have

S = 1 =⇒ �Eortho = gp

6π α 4
(
mec2

) (
me
m p

)
(1/2)

S = 0 =⇒ �E para = gp

6π α 4
(
mec2

) (
me
m p

)
(−3/2)

(15.94)

The ortho-Hydrogen corresponds to electron-proton spins parallel, while the para-
Hydrogen to spins antiparallel. Numerically this correction is9

�E

|E1| ∼ α2

6π
× me

m p
≈ 10−6 .

The wavelength of radiation emmitted during transitions between these two levels is
109 times larger than the characteristic atomicwave length, being in the neighborhood
of microwaves

λ ∼ 21.1 cm .

92|E1| = mee4�2 = (mec2) e4

�2c2
= α2(mec2).
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15.5 Other Atoms

15.5.1 Hydrogenic Ions and Other Atoms

Theanalysis carriedout in thepreceding sections on theHydrogen atomcanbe carried
over without drastic changes to the case of single electron ions with a nucleus of−Ze
charge, where Z corresponds to the number of protons making up the nucleus. The
energy spectrum is obtained with the replacement

e2 → Z e2 (15.95)

to be

E (Z)
n = Z2 E (Z=1)

n = − Z2e4

2�2n2
. (15.96)

The eigenfunctions, expressed in terms of the Bohr radius a0 = �
2/mee2, are

obtained with the single replacement

a0 → a0

Z . (15.97)

The fine structure and hyperfine structure corrections, being both proportional to e8,
are just multiplied with Z4.

Neutral atoms beyond the Hydrogen atom require the addition of extra electrons.
As a consequence, the dynamical problem is not any more a two-body problem.
Furthermore, the Pauli Exclusion Principle has to be taken into account, limiting
the available possibilities and leading us to specific options. For example, if for
instance we assume that the hydrogen energy levels are not significantly modified
by the presence of a second electron, the ground state can only be occupied by two
electrons of opposite spin. This would be the case of the simplest element beyond
Hydrogen, provided that the nuclear charge is doubled by the addition of a second
proton. This way of building up the atoms, is, of course, a crude approximation,
since the hydrogen energy levels are modified by the addition of the extra electrons
and their mutual repulsion. A quantitative study of chemical elements requires the
systematic use of approximation methods.
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15.5.2 The Helium Atom

TheHelium atom10 has a nucleus11 of atomic number, i.e., postive chargeZ = 2, and
two electrons. In addition to the attraction of the electrons by the nucleus, the potential
includes the mutual repulsion of the two electrons. Ignoring to a first approximation
the motion of the nucleus, the Hamiltonian is

H = p2
1

2me
+ p2

2

2me
− Ze2

r1
− Ze2

r2
+ e2

|r1 − r2| . (15.98)

We have also ignored relativistic corrections and L · S coupling phenomena analo-
gous to the hydrogen fine structure, phenomena analogous to the Thomas precession
related to the relative motion of the two electrons and, finally, hyperfine structure
corrections.

The Hamilton operator (15.98) is made of a solvable piece consisting of two
independent hydrogen-type Hamiltonians and the repulsion term

Ĥ =
∑
i=1,2

Ĥ (i)
0 + V̂ with

⎧⎪⎨
⎪⎩

Ĥ (i)
0 = p2

i
2me

− Ze2

ri

V̂ = e2

|r1−r2| .
(15.99)

The repulsion term cannot be treated as a perturbation, since it is not a priori small.
Nevertheless, wemay analyze the features of the approximate solution that we obtain
if we ignore it. In this case, we have just a pair of two mutually noninteracting elec-
trons. The corresponding energy eigenfunctions will be products of single electron
ones. Their spatial part will be

ψn1�1m1(r1)ψn2�2m2(r2) . (15.100)

The energy eigenvalues will be sums

E = En1 + En2 = −Z2e2

2a0

(
1

n2
1

+ 1

n2
2

)
. (15.101)

With n1 and n2 we have denoted the principal hydrogen quantum number for each
electron, taking up the standard positive integer values.

Since, the two electrons are indentical particles, their totalwave function should be
antisymmetric. The lowest energy eigenvalue (ground state), corresponding to n1 =
n2 = 1 and �1 = �2 = 0, has a symmetric spatial part ψ100(r1)ψ100(r2). Thus, we
must necessarily have an antisymmetric spinorial part. Recall that the antisymmetric

10See also [2, 3].
11Helium exists in the form of two isotopes, namely as 3He, with a nucleus of two protons and a
neutron, and as 4He, with a nucleus of two protons and two neutrons. The two types of nuclei have
drastically different properties due to the fact that the former is a fermion, while the latter a boson.
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combination of two spins is the so-called singlet with total spin S = Sz = 0

χ0,0 = 1√
2

(
χ(1)

↑ χ(2)
↓ − χ(1)

↓ χ(2)
↑

)
. (15.102)

Therefore, in this approximation of mutually non-interacting electrons, the total
ground state wave function will be

�0(1, 2) = ψ100(r1)ψ100(r2)
1√
2

(
χ(1)

↑ χ(2)
↓ − χ(1)

↓ χ(2)
↑

)
, (15.103)

where

ψ100(r) =
(

8

πa3
0

)1/2

e− 2r
a0 . (15.104)

Within this approximation, the state in which one of the electrons has n = 1, � =
0, while the other has a higher n, corresponds to a series of excited levels. The total
wave function for such a state will be either

1√
2

(ψ100(r1)ψn�m(r2) + ψ100(r2)ψn�m(r1) )χ0,0 (15.105)

or
1√
2

(ψ100(r1)ψn�m(r2) − ψ100(r2)ψn�m(r1) ) χ1,ms (15.106)

whereχ1,ms stands for the triplet spinor wave function of the total spin (ms = 0,±1).
In the framework of this approximation the energy of the ground state is

En1=n2=1 = −8|E1| = −108.8eV, where E1 = −13.6eV stands for the Hydrogen
ground state energy. The next excited energy level corresponds to En1=1, n2=2 =
−4|E1| = −54.4eV. Note however that the ionization energy corresponds to the dif-
ference between E11 = −8|E1| and the energy of an one-electron-ion −4|E1|, i.e.,
Ei = −4|E1| − (−8|E1|) = 4|E1| = 54.4eV. Therefore, the continuum starts at
E ≥ E11 + Ei = −54.4eVand the secondwould-be excited state (E22 = −2|E1| =
−27.2eV) is part of the continuum.

Next, let’s consider the repulsion term and let’s treat it as if it were a perturbation.
Wemay compute the correction to the energy of the ground state following our recipe
for the computation of small corrections to the energy spectrumof Sect. 15.3.Accord-
ing to that the correction to the ground state energy in the lowest approximation will
be

�E =
∫

d3r1

∫
d3r2 |�0(r1, r2)|2 e2

|r1 − r2| (15.107)

or
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�E = e2
(

8

πa3
0

)2 ∫ ∞

0
dr1r

2
1 e− 2Zr1

a0

∫ ∞

0
dr2r

2
2 e− 2Zr2

a0

∫ ∫
d�1d�2

|r1 − r2| . (15.108)

Without loss of generality we may choose ẑ2 along the direction of r1 and have

∫
d�2

|r1 − r2| =
∫ 2π

0
dφ2

∫ 1

−1

d cos θ2√
r21 + r22 − 2r1r2 cos θ2

= 2π

r1r2
(r1 + r2 − |r1 − r2|) .

The remaining angular integration is trivial giving just 4π. Thus, we have

�E = 8 e2
(

8

a3
0

)2 ∫ ∞

0
dr1r1e− 4r1

a0

∫ ∞

0
dr2r2e− 4r2

a0 (r1 + r2 − |r1 − r2|) .

(15.109)
Performing the tedious but, otherwise, straightforward integrations, we obtain

�E = 5

4

e2

a0
∼ 34 eV . (15.110)

Including this correction, we obtain for the ground state energy

E ∼ −74.8 eV , (15.111)

which is not very different from the actual measured ground state energy of
−78.975eV. A better estimate can be obtained employing the non-perturbative varia-
tional method which will be analyzed in a subsequent chapter on systematic approx-
imation methods.

Problems and Exercises

15.1 Verify that for the Hydrogen atom

En = −〈n, �, m| p̂2

2me
|n, �, m〉 = −1

2
〈n, �, m|e2

r
|n, �, m〉 .

15.2 Calculate the expectation values

〈r〉, 〈r〉, 〈r2〉, 〈r−1〉, 〈r−2〉

for the ground state of the Hydrogen atom.
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15.3 For a Hydrogen atom in the state

1

6

[
4|1, 0, 0〉 + 3|2, 1, 1〉 − |2, 1, 0〉 + √

10 |2, 1,−1〉
]

calculate the expectation value of the energy, the expectation value of L̂2 and the
expectation value of L̂ z .

15.4 Consider a Hydrogen atom in its ground state. Calculate the probability to find
the electron at a distance larger than the Bohr radius a0.

15.5 For the ground state of the Hydrogen atom calculate the uncertainties (�x)

and (�px ) and verify the Heisenberg inequality.

15.6 A Hydrogen atom is in the state

|ψ〉 = N [|1, 0, 0〉 + (1 + i)|2, 1, 1〉 + i |3, 2,−1〉] .

Calculate the constant N . Calculate the expectation value of the energy. Calculate
the uncertainty (�Lz). Assume that the atom is in this state at t = 0, obtain the
time-evolved state at t > 0 and calculate the probability to find the atom in |ψ〉 at a
time t > 0.

15.7 Consider a Hydrogen atom in the presence of a uniform time-independent
magnetic field directed along the ẑ-axis. Assume that at t = 0 the particle is in a
state |n, �, 1/2; j, m〉 with j = � + 1/2. Find the probability that at time t > 0 the
particle is in a state |n′, �′, 1/2; j ′, m ′〉 with j ′ equal to either � + 1/2 or � − 1/2.

15.8 Consider a Hydrogen atom subject simultaneously to a homogeneous mag-
netic and a homogeneous electric field, generating the extra interaction terms
ĤB = − e

2mecB · (L + 2S) and ĤE = −er · E. Show that

∣∣∣〈n, �, m, ms |
(

ĤB + ĤE

)
|n′, �′, m ′, m ′

s〉
∣∣∣2 =

∣∣∣〈n, �, m, ms |ĤB |n′, �′, m ′, m ′
s〉

∣∣∣2 +
∣∣∣〈n, �, m, ms |ĤE |n′, �′, m ′, m ′

s〉
∣∣∣2

and that one of these two terms will be zero.

15.9 Consider the Hydrogen energy eigenfunctions. Explain why the radial wave
functions Rn�(r) can always be chosen to be real. Show that ψn�m=0 are also real.

(a) Consider the state |ψ〉 = a|2, 0, 0〉 + b|2, 1, 0〉, with a, b real coefficients,
and calculate the expectation values 〈ψ|r|ψ〉, 〈ψ|p|ψ〉. Do the same for the nonsta-
tionary state |ψ′〉 = a|1, 0, 0〉 + b|2, 1, 0〉. Note and explain the difference between
the expectation values of the position and those of the momentum.

(b) Assume that at time t = 0 the Hydrogen atom is in the above state |�(0)〉 =
|ψ′〉. Calculate the expectation values of r and p at a time t > 0.
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15.10 Consider the “one-dimensional” radial equation for the Hydrogen atom and
make the transformation of variables

r = Cr ′2, u(r) = √
r ′ u′(r ′) .

With the appropriate choice of the constant C , show that the equation for u′(r ′) is
that of the isotropic oscillator. Exhibit the relation for the energy eigenvalues and the
radial quantum numbers for the two systems.
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Chapter 16
Molecules

16.1 Born–Oppenheimer

Molecules are composite structures made up of electrons and more than one nuclei.
The simplest molecule is the Hydrogen ion H+

2 made up of two Hydrogen nuclei
(protons) and a single electron. As in the case of atoms beyond the Hydrogen atom
the molecule energy eigenvalue problem corresponds to a very complicated system
of Schroedinger equations that can only be treated in the framework of approxi-
mation methods. The active degrees of freedom in molecules are clearly more than
those of atoms. For example, H+

2 has six degrees of freedom (three for the relative
distance of the two protons and three for the electron position). A simplifying fact is
that the nuclei are much heavier than electrons (me/MN ∼ 10−3) and, to a leading
approximation, the motion of the nuclei could be ignored. In this approximation, the
relative nuclei distances will appear as parameters in the effective Hamiltonian that
describes the motion of the electrons. This picture can be corrected by taking into
account the slow nuclear motion.

We may begin by writing down the exact Hamilton operator for a general molec-
ular system

Ĥ = T̂e + T̂N + V̂ee + V̂eN + V̂N N . (16.1)

The appearing terms are

T̂e =
∑

j

p2j
2me

Kinetic Energy of Electrons

T̂N =
∑

α

P2
α

2Mα

Kinetic Energy of Nuclei

Vee =
∑

i> j

e2

|ri − r j | Electron Coulomb Repulsion
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VeN = −
∑

α

∑

j

Zαe2

|Rα − r j | Electron-Nuclei Coulomb Attraction

VNN =
∑

α,β

ZαZβe2

|Rα − Rβ | Nuclei Coulomb Repulsion

The nuclear kinetic energy due to the large nuclear masses can be considered as a
perturbation. This is the so-called Born–Oppenheimer Approximation Method [1,
2]. In this approach, an expansion can be set up characterized by the small parameter
me/MN . The essence of the Born–Oppenheimer method is that, since the nuclei are
moremassive and, therefore, slow, their wave functions aremore localized than those
of the electrons. Thus, in the leading approximation, where their kinetic energy could
be neglected, their positions can be treated as fixed parameters and the molecular
dynamics evolve entirely in terms of the electrons. At a higher level of precision we
may solve for the nuclei dynamics.

The exact Hamiltonian can be separated into “nuclear” and “electronic” parts1

as
Ĥ = ĤN + Ĥe , (16.2)

where

Ĥe = −�
2

2me

∑
j ∇2

j + ∑
i> j

e2

|ri−r j | − ∑
α, j

Zαe2

|Rα−r j | + ∑
α,β

Zα Zβe2

|Rα−Rβ |

ĤN = −∑
α

�
2

2Mα
∇2

Rα

(16.3)

The Schroedinger equation for the electronic Hamiltonian is

⎧
⎨

⎩
−�

2

2me

∑

j

∇2
j +

∑

i> j

e2

|ri − r j | −
∑

α, j

Zαe2

|Rα − r j |

⎫
⎬

⎭ψn(r,R) =

⎛

⎝εn(R) −
∑

α,β

ZαZβe2

|Rα − Rβ |

⎞

⎠ ψn(r,R) . (16.4)

The eigenfunctions of the electronic Hamiltonian ψn(. . . r j . . . , . . .Rα . . . ) are a
complete orthonormal basis in terms of which we may expand any molecular wave
function. Specifically, the exact eigenstates of the full Hamiltonian (16.1), defined
by

Ĥ �(r, R) = E �(r, R) (16.5)

1It is understood that this is not a very precise terminology, since the “electronic” part contains
the mutual repulsion term of the nuclei. Nevertheless, this separation embodies the fact that all
dynamical effects of the nuclei are generated by the “nuclear” part.
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can always be expanded in terms of the ψn’s as

�(r, R) =
∑

n

χn(R) ψn(r,R) . (16.6)

Here and in what follows r and R stand for the set of position operators of all
electrons and all nuclei. Substituting (16.6) into the full Schroedinger equation and
using (16.1) we obtain

∑

n

(
εn(R) + T̂N

)
χn(R) ψn(r,R) = E

∑

n

χn(R) ψn(r,R) . (16.7)

Multiplying with ψ∗
n′(r,R) and integrating with respect to the electron positions r,

we obtain

(E − εn′(R)) χn′(R) = −
∑

n

∫
d3rψ∗

n′(r,R)
∑

α

�
2

2Mα

∇2
Rα

(χn(R)ψn(r,R)) .

(16.8)
The integration

∫
d3r stands symbolically for the multiple integration of all electron

positions. In order to proceed we note the identity

∇2
R(χψ) = (∇2

Rχ)ψ + χ(∇2
Rψ) + 2(∇Rχ) · (∇Rψ) (16.9)

in terms of which the right-hand side of (16.8) becomes

−
∑

α

�
2

2Mα

∑

n

∫
d3r ψ∗

n′
(
(∇2

Rα
χ)ψ + φ(∇2

Rα
ψ) + 2(∇Rα

χ) · (∇Rα
ψ)

)

= −
∑

α

�
2

2Mα

∇2
Rα

χn′(R) + 	n′ , (16.10)

where 	n stands for

	n′ ≡ −
∑

α

�
2

2Mα

∑

n

∫
d3r ψ∗

n′
(
χ(∇2

Rψ) + 2(∇Rχ) · (∇Rψ)
)

. (16.11)

We finally arrive at a modified nuclear Schroedinger equation

(
T̂N + εn′(R)

)
χn′(R) = E χn′(R) − 	n′ . (16.12)

Thus, the molecule eigenvalue problem has been finally put in the form of the
following set of equations
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
−�

2

2me

∑
j ∇2

j + ∑
i> j

e2

|ri−r j | − ∑
α, j

Zαe2

|Rα−r j |
}

ψn(r,R) =
(
εn(R) − ∑

α,β

Zα Zβe2

|Rα−Rβ |
)

ψn(r,R)

(
T̂N + εn(R)

)
χn(R) = E χn(R) − 	n

�(r, R) = ∑
n χn(R) ψn(r,R)

	n′ ≡ −∑
α

�
2

2Mα

∑
n

∫
d3r ψ∗

n′
(
χn(∇2

Rψn) + 2(∇Rχn) · (∇Rψn)
)
.

(16.13)

The term 	n is naturally of order me/MN or smaller and to the leading Born–
Oppenheimer approximation it may be ignored. We may also assume that ψn(r,R)

do not have a strong dependence on the nuclei positions, i.e. ∇Rα
ψn ≈ 0, at least

near the minimum of the electron energy eigenvalues

∇R {εn(R)}|R0
= 0 . (16.14)

Thus, ignoring the 	n’s we can write the Schroedinger equation for the nuclei wave
functions as (

T̂N + εn(R)
)

χn(R) = E χn(R) . (16.15)

Furthermore, expanding the electron energy eigenvalues

εn(R) ≈ εn(R0) + 1

2

∑

α

(Xai − X (0)
ai )(Xaj − X (0)

aj )

(
∂2εn

∂Xia∂Xaj

)

R0

+ · · ·
(16.16)

we may conclude that, within these approximations, the nuclei move under the influ-
ence of harmonic forces. Estimating the characteristic order of magnitude of elec-
tronic energies from the uncertainty principle

ε ∼ (�/R)2

2me
, (16.17)

we may conclude from (16.16) that the vibrational energies of molecules will be of
the order of

Mω2 = ∂2ε

∂R2
∼ �

2

meR4
, (16.18)

leading to frequencies
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ω ∼
(me

M

)1/2 �
2

meR2
. (16.19)

The ratio of vibrational energies to electronic energies will be

εosc

ε
∼ �ω

ε
∼

(me

M

)1/2 ∼ O(10−1) . (16.20)

Finally, the order of magnitude of molecular rotational energies will be

εR ∼ �(� + 1)�2

2I
∼ �

2

MR2
(16.21)

and
εR

ε
∼ me

M
∼ O(10−3) . (16.22)

Thus, molecules display a triple hierarchy in their spectrum

εR � εosc � ε (16.23)

with correspondingwavelengths in themicrowave (rotational), infrared (vibrational),
and ultraviolet (electronic) regions.

16.2 The Hydrogen Ion H+
2

The simplest example of the application of the Born–Oppenheimer procedure is on
the formation of theHydrogen ion H+

2 consisting of two protons and a single electron
[1]. The exact Hamiltonian is

Ĥ = P2
1

2Mp
+ P2

2

2Mp
+ p2

2me
− e2

|r − R1| − e2

|r − R2| + e2

|R1 − R2| . (16.24)

Applying the Born–Oppenheimer procedure we write down the Schroedinger equa-
tion for the electronic part

{
− �

2

2me
∇2 − e2

|r − R1| − e2

|r − R2| + e2

|R1 − R2|
}

ψn(r, R) = εn(R) ψn(r, R)

(16.25)
while determining the proton positions from the minimization equation

∂εn

∂R
= 0 . (16.26)
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Within the lowest order Born–Oppenheimer approximation, where the nuclei posi-
tions are parameters, we may take the middle of the proton distance as the origin of
the coordinate system and simplify the potential as

− e2

|r − R/2| − e2

|r + R/2| + e2

R
. (16.27)

Then, the electronic Schroedinger equation is

{
− �

2

2me
∇2 − e2

|r − R/2| − e2

|r + R/2| + e2

R

}
ψn(r, R) = εn(R) ψn(r, R).

(16.28)
Although this is the lowest order approximation in the Born–Oppenheimer expansion
procedure, it is still a rather complicated problem. The way to proceed is to introduce
an ansatz for the ground state, calculate the corresponding ground state energy and
apply theminimization (16.26). This would be a simple application of theVariational
Approximation Method to be described in a systematic way in a subsequent chapter.

As an ansatz we may adopt a wave function that represents the superposition of
two extreme situations, namely to the cases in which the electron is attached to either
one of the nuclei, being in the ground state, while ignoring the existence of the other
nucleus. Since the Hamiltonian is parity invariant, wemay choose the adopted ansatz
to have a definite parity being even or odd. Therefore, we introduce the trial wave
function

ψ±(r) = N± ( ψ1(r − R/2) ± ψ1(r + R/2)) , (16.29)

where

ψ1(r) = e−r/a0
√

πa30

. (16.30)

More explicitely, we have

ψ±(r) = N±√
πa30

(
e−|r−R/2|/a0 ± e−|r+R/2|/a0 )

. (16.31)

The normalization factor can be calculated to be

N± = 1√
2(1 ± S)

with S =
(
1 + R

a0
+ R2

3a20

)
e−R/a0 . (16.32)

The expectation value of the electronic energy in this state will be

εn±(R) =
∫

d3rψ∗
±(r)

(
− �

2

2me
∇2 − e2

|r − R/2| − e2

|r + R/2| + e2

R

)
ψ±(r).

(16.33)
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Fig. 16.1 Plot of ε+/|E1|

Fig. 16.2 Plot of ε−/|E1|

Substituting our ansatz, we obtain after some calculation

ε±(R) = 2N2±

{
E1 + e2

R
e−2R/a0

(
1 + R

a0

)
±

(
E1 + e2

R

)
S ∓ e2

a0

(
1 + R

a0

)
e−R/a0

}

(16.34)

where E1 = −e2/2a0 is the Hydrogen atom ground state energy. Plotting ε±/E1 in
Figs. 16.1 and 16.2, we see that only the even branch possesses a minimum. Thus,
the ground state wave function of the H+

2 ion is approximated by ψ+(r) and the
estimated ground state energy is ε+ ≈ −1.76eV, while the internuclear size of the
ion is at R0 ≈ 1.3Å. The experimental values are not very far, being ε = −2.8eV
and R = 1.08Å.

Problems and Exercises

16.1 Calculate the expectation value of the energy of the Hydrogen ion ε± for the
trial wave function
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ψ±(r) = N±√
πa30

(
e−|r−R/2|/a0 ± e−|r+R/2|/a0 )

.

16.2 Write down the electronic Hamiltonian for the Hydrogen molecule. Assume
that an acceptable approximation for the ground state of the molecule is a prop-
erly symmetrized wave function of two mutually noninteracting electrons, each in
a Hydrogen ground state. Find the correction to the energy in the presence of an
external homogeneous magnetic field.

16.3 A one-dimensional molecule. Consider a particle moving in one dimension and
subject to a double square well potential

V (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 |x | > L + a

−V0 a < |x | < L + a

0 |x | < a

Assume that the distance between the two wells is much greater than the width
of each well, i.e., a�L . If ψ1 is the wave function of the lowest energy bound
state localized in the left well and ψ2 is the wave function of the lowest energy
bound state localized in the right well, with corresponding energies E1 = E2 = E0,
calculate the expectation value of the energy for each of the trial wave functions
ψ = 1√

2
(ψ1 ± ψ2) , in terms of the integral A = ∫

dx ψ1 Ĥψ2. You may assume
that the overlap of ψ1 and ψ2 is very small, so that A�E0. Which of the two choices
corresponds to the ground state of the system?
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Chapter 17
Particle Interactions with EM Fields

17.1 General Considerations

We have already discussed simple cases of the motion of charged particles under the
influence of static electric and magnetic fields, as is the case of Coulomb force or
the case of the magnetic dipole moment coupling to a homogeneous magnetic field.
In these cases, the electromagnetic fields were treated classically while the particles
were quantized. Such a framework can only be approximate, since ultimately the
electromagnetic field has to be quantized as well. Despite that, it turns out it is
a reliable approximation within the realm of non-relativistic Quantum Mechanics.
Such is the case of theHydrogen atomwith characteristic energies of O(10 eV),much
smaller than energiesmec2 ∼ O(105 eV). In contrast, the explanation of phenomena
outside this realm, i.e., with characteristic energy scales of O(mc2), can be achieved
only in the framework of a theory with an infinite number of degrees of freedom,
namely a (relativistic) Quantum Field Theory. In such a theoretical framework both
the matter particles (electrons, protons, etc.) and electromagnetic radiation (photons)
are treated quantum mechanically. In the present chapter, we shall remain within the
framework of one or more quantized particles (electrons or others) interacting with
a classical electromagnetic field, leaving the case of the fully quantized system of
particles and photons for a later chapter.

Let’s begin considering the classical system of a particle of charge e interacting
with an electromagnetic field. Recall that the electric field E(r, t) and the magnetic
fieldB(r, t) can be expressed in terms of the electromagnetic potentials φ(r, t) (scalar
potential) and A(r, t) (vector potential) as1

1Electric and magnetic fields satisft Maxwell’s equations

∇ · E = 4πρe, ∇ × E = − 1
c

∂B
∂t

∇ · B = 0, ∇ × E = 4π
c Je + 1

c
∂E
∂t

The pair of homogeneous Maxwell’s equations are “solved” by the potentials. The inhomogeneous
ones imply local charge conservation expressed by the continuity equation ∇ · Je + ∂ρe

∂t = 0.
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E = −∇φ − 1

c

∂A
∂t

, B = ∇ × A . (17.1)

The electric and magnetic fields are invariant under gauge transformations of the
potentials

φ → φ − 1

c

∂�

∂t
, A → A + ∇� (17.2)

in terms of an arbitrary function �. The classical equation of motion for the particle
is simply Newton’s equation with the Lorentz force in the right-hand side

m
d2r
dt2

= e

(
E + 1

c
v × B

)
(17.3)

c stands for the velocity of light.2 It is not difficult to show that the Lorentz force
law (17.3) emerges from a Lagrangian

L = 1

2
mv2 + e

c
v · A − eφ . (17.4)

Indeed, we have

d
dt

(
∂L
∂vi

)
= m dvi

dt + e
c

d Ai
dt = m d2xi

dt2 + e
c

∂ Ai
∂t + e

c
dx j

dt
∂ Ai
∂x j

∂L
∂xi

= e
c v j

∂ A j

∂xi
− e ∂φ

∂xi

Therefore, Lagrange’s equations read

d

dt

(
∂L

∂vi

)
− ∂L

∂xi
= 0 =⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m d2xi
dt2 = −e∇iφ + e

c
∂ Ai
∂t + e

c

(
v j∇ j Ai − v j∇i A j

)

or

m d2xi
dt2 = eEi + e

c (v × B)i

The Lagrangian (17.4) is invariant under the above considered gauge transforma-
tions. This goes as follows

L → L + e

c
v · ∇� + e

c

∂�

∂t
= L + e

c

d�

dt
. (17.5)

2In the system of units used fields and charges are related to those in the MKSA system as

q ′ = q
√
4πε0, E ′ = E/

√
4πε0, B ′ = B

√
μ0/4π

and c = 1/
√

μ0ε0.
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A total time derivative has no contribution to the Action or to the equations of motion
and, therefore, the Lagrangian is invariant.

Dynamics can equally well be described in terms of the Hamiltonian function of
momenta and positions. The canonical momentum of the particle is defined in terms
of the Lagrangian as

p = ∂L

∂v
= mv + e

c
A . (17.6)

It is important to note that the momentum of a charged particle in a magnetic field is
not just its velocity times its mass. An extra magnetic momentum pm = e

cA is added
by the presence of the magnetic field. The Hamiltonian can now be obtained from
its standard definition

H(r, p) = p · v − L = 1

m
p ·

(
p − e

c
A

)
− 1

2m

(
p − e

c
A

)2 − e

mc

(
p − e

c
A

)
· A + eφ

(17.7)
or

H(r, p) = 1

2m

(
p − e

c
A

)2 + e φ . (17.8)

Quantization proceeds in a straightforward fashion by the standard replacement
of the classical physical variables with operators

x j → x̂ j = x j , p j → p̂ j = −i�∇ j (17.9)

obeying canonical commutation relations

[xi , p̂ j ] = i�δi j , [xi , x j ] = [ p̂i , p̂ j ] = 0 . (17.10)

However, note that the velocity operators v = (p − eA/c) /m obey nontrivial com-
mutation relations with different components having a nonzero commutator

[
v̂i , v̂ j

] = − i�e

cm2

(∇i A j − ∇ j Ai
) = − i�e

cm2
εi jk (∇ × A)k (17.11)

or [
v̂i , v̂ j

] = − i�e

cm2
εi jk Bk . (17.12)

The Schroedinger equation is

{
1

2m

(
−i�∇ − e

c
A

)2 + e φ

}
ψ = i�

∂ψ

∂t
. (17.13)

It is very important to note that, in contrast to the classical case, the quantumdynamics
of a charged particle is not determined by the electric and magnetic fields alone but
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depends directly on the electromagnetic potentials. Another important point is that
the Schroedinger equation is invariant under a gauge transformation provided that
the wave function changes as

ψ → e
ie
�c � ψ . (17.14)

We’ll come back to this point in a subsequent section.
Local conservation of probability can be formulated in terms of the probability

density |ψ|2 and a probability current density suitably defined. The correct gauge-
invariant probability current can be deduced recalling that the corresponding current
in the absence of electromagnetic fields could also be written as

J = �

2mi

(
ψ∗∇ψ − ψ∇ψ∗) == 1

m
Re

(
ψ∗pψ

)
.

Generalizing this expression to

J = 1

m
Re

(
ψ∗

(
p − e

c
A

)
ψ

)
(17.15)

we obtain

J = �

2mi

(
ψ∗∇ψ − ψ∇ψ∗ − ie

c�
A|ψ|2

)
. (17.16)

In terms of this current, we have local conservation of probability through a gauge-
invariant continuity equation

∇ · J + ∂|ψ|2
∂t

= 0 . (17.17)

Example 17.1 Consider a particle of charge e < 0 in a homogeneous magnetic field
B and calculate the expectation values 〈r〉t at any time t in an arbitrary normalizable
state. Take as a vector potential the symmetric choice A = B

2

(
x ŷ − yx̂

)
.

Starting with the Hamiltonian in the form

Ĥ = m

2
v2 with v = 1

m

(
p − e

c
A

)
. (17.18)

From Heisenberg’s equation, we obtain

d v̂i

dt
= i

�

[
Ĥ , v̂i

]
= · · · = − eB

mc
εi j3v̂ j (17.19)

or
d v̂x

dt
= ω v̂y,

d v̂y

dt
= −ω v̂x ,

d v̂z

dt
= 0 , (17.20)

where ω ≡ − eB
mc . Note that these equations are linear and, therefore, will also be satisfied by the

corresponding expectation values. The longitudinal motion is solved trivially to give

v̂z(t) = v̂z(0) =⇒ z(t) = z(0) + v̂z(0)t (17.21)
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or
〈z〉t = 〈z〉0 + 〈 p̂z〉0 t

m
. (17.22)

Diferentiating the transverse equations once more we decouple them and obtain

d2 v̂x
dt2

= −ω2 v̂x

d2 v̂y

dt2
= −ω2 v̂y

(17.23)

Their solutions are
v̂x (t) = v̂x (0) cos(ωt) + Cx sin(ωt)

v̂y(t) = v̂y(0) cos(ωt) + Cy sin(ωt)
(17.24)

The constants Cx , Cy are obtained by substituting these solutions in the original coupled equations.
Thus, we obtain

v̂x (t) = v̂x (0) cos(ωt) + v̂y(0) sin(ωt)

v̂y(t) = v̂y(0) cos(ωt) − v̂x (0) sin(ωt)
(17.25)

or equivalently

v̂x (t) = 1
m

(
p̂x (0) + eB

2c y(0)
)
cos(ωt) + 1

m

(
p̂y(0) − eB

2c x(0)
)
sin(ωt)

v̂y(t) = 1
m

(
p̂y(0) − eB

2c x(0)
)
cos(ωt) − 1

m

(
p̂x (0) + eB

2c y(0)
)
sin(ωt)

(17.26)

Integrating we obtain

x(t) = x(0) + 1
mω

(
p̂x (0) + eB

2c y(0)
)
sin(ωt) − 1

mω

(
p̂y(0) − eB

2c x(0)
)

(cos(ωt) − 1)

y(t) = y(0) + 1
mω

(
p̂y(0) − eB

2c x(0)
)
sin(ωt) + 1

mω

(
p̂x (0) + eB

2c y(0)
)

(cos(ωt) − 1)

(17.27)

Thus, we finally arrive at the expectation values

〈x〉t = 〈x〉0 + 1
mω

(〈px 〉0 − mω
2 〈y〉0

)
sin(ωt) − 1

mω

(〈py〉0 + mω
2 〈x〉0

)
(cos(ωt) − 1)

〈y〉t = 〈y〉0 + 1
mω

(〈py〉0 + mω
2 〈x〉0

)
sin(ωt) + 1

mω

(〈px 〉0 − mω
2 〈y〉0

)
(cos(ωt) − 1)

(17.28)
The motion described by these expectation values is a circle in the transverse plane and coincides
with the motion of the classical particle. Combining this with the longitudinal motion we obtain a
circular helix with its principal axis along the magnetic field. These equations simplify in case our
initial state has a definite parity and 〈r〉0 = 0. Then, we have

(
〈x〉t − 〈py〉0

mω

)2

+
(

〈y〉t + 〈px 〉0
mω

)2

= 1

(mω)2

(
〈px 〉20 + 〈py〉20

)
(17.29)

and 〈z〉t = 〈pz 〉0
m t . The transverse circle has its center at the point

( 〈py 〉0
mω , −〈px 〉0

mω

)
and has a radius(〈px 〉20 + 〈py〉20

)1/2
/mω.
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17.2 Landau Levels

In this section, we shall consider the system of a charged particle in a homogeneous,
i.e., constant in space and time, magnetic field B and solve the energy eigenvalue
problem obtaining the energy eigenvalues and eigenfunctions [1, 2]. Since there is no
electric field present the corresponding scalar potential appearing in the Hamiltonian
(17.8) will be set to zero. There is a relative freedom3 in choosing the vector potential
A that yields the magnetic field B. A suitable choice is

A = 1

2
B × r . (17.30)

Taking B = ẑ B corresponds to

A = 1

2
B

(
x ŷ − yx̂

)
. (17.31)

Substituting into the Hamiltonian we obtain

Ĥ = 1

2m

( (
p̂x + eB

2c
y

)2

+
(

p̂y − eB

2c
x

)2

+ p̂2
z

)
. (17.32)

The Hamiltonian is the sum of two commuting parts, describing the motion in the
(x, y) plane on the one hand and the (free) motion along the z-direction on the other

Ĥ = Ĥ⊥ + Ĥ|| =⇒
⎧⎨
⎩

Ĥ⊥ = 1
2m

(
p̂x + eB

2c y
)2 + 1

2m

(
p̂y − eB

2c x
)2

Ĥ|| = p̂2
z

2m
(17.33)

The eigenfunctions will be products

ψE (r) = ψ(⊥)(x, y)
eikz

√
2π

(17.34)

while the eigenvalues will be sums of the eigenvalues of the “transverse” part E⊥
plus the “longitudinal” energy �

2k2/2m

E = E⊥ + �
2k2

2m
. (17.35)

In what follows we proceed to solve the transverse eigenvalue problem ignor-
ing the longitudinal free motion or, equivalently, restricting ourselves to the k = 0
case. The structure of the transverse Hamiltonian motivates the introduction of the
hermitian operators

3i.e., freedom under gauge transformations.
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Q̂ = 1√
2

(
y + 2c

eB
p̂x

)
, P̂ = 1√

2

(
p̂y − x

eB

2c

)
, (17.36)

which satisfy a canonical commutation relation

[
Q̂, P̂

]
= i� . (17.37)

Furthermore, the transverse Hamiltonian takes the form

Ĥ⊥ = P̂2

m
+ m

(
eB

2mc

)2

Q̂2 (17.38)

or, introducing the parameter with dimensions of frequency

ω = |e|B
2mc

(17.39)

we have

Ĥ⊥ = 2

(
P̂2

2m
+ 1

2
mω2 Q̂2

)
. (17.40)

This is twice the Hamiltonian of a simple harmonic oscillator. We may introduce
creation/annihilation operators in the standard fashion as

â =
√

mω

2�
Q̂ + i√

2m�ω
P̂, â† =

√
mω

2�
Q̂ − i√

2m�ω
P̂ (17.41)

obeying the standard commutation relation

[
â, â†

] = 1 . (17.42)

In terms of them the transverse Hamiltonian is

Ĥ⊥ = 2�ω

(
â†â + 1

2

)
. (17.43)

Its eigenvalues are twice the standard harmonic oscillator eigenvalues

E⊥n = �ω ( 2n + 1 ) with n = 0, 1, 2, . . . (17.44)

Thus, the spectrum of the transverse Hamiltonian is the above discrete set of energy
levels, the so-called Landau levels.

At this point, it is important to note that the Hamiltonian commutes with the
angular momentum along the z-direction. In fact, we can write
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Ĥ = p2

2m
− eB

2mc
L̂z + e2B2

8mc2
(x2 + y2) (17.45)

and, therefore, [
Ĥ , L̂ z

]
=

[
Ĥ⊥, L̂ z

]
= 0 . (17.46)

Thus, symbolizing the commoneigenstates of the transverseHamiltonian and angular
momentum as |n, M〉, the ground state |0, M〉 is defined as

â|0, M〉 = η√
4�mω

{
p̂x + iη p̂y − imω (x + iη y)

} |0, M〉 = 0 , (17.47)

where η is the sign of the charge e. In the {x, y}-reprsentation, this reads
η√

4�mω

{ −i�
(∇x + iη ∇y

) − imω (x + iη y)
}
ψ(⊥)
0,M(x, y) = 0 . (17.48)

At this point, it is convenient to consider separately the cases of a particle with
positive or negative charge.

A particle of positive charge. For η = +1 the last equation is

1√
4�mω

{ −i�
(∇x + i ∇y

) − imω (x + i y)
}
ψ(⊥)
0,M(x, y) = 0 . (17.49)

Introducing polar coordinates this is rewritten as

eiφ

√
4m�ω

[
−i�

(
∂

∂ρ
+ i

ρ

∂

∂φ

)
− imω ρ

]
ψ(⊥)
0,M(ρ,φ) = 0 . (17.50)

However, since ψ(⊥)
0,M is an eigenfunction of L̂ z ,

− i�
∂ψ(⊥)

0,M

∂φ
= �Mψ(⊥)

0,M =⇒ ψ(⊥)
0,M(ρ,φ) = ψ(⊥)

0,M(ρ, 0) ei Mφ . (17.51)

Therefore, we have

−i�ei(M+1)φ

√
4�mω

[
d

dρ
− M

ρ
+ mω

�
ρ

]
ψ(⊥)
0,M(ρ, 0) = 0 , (17.52)

which, after integrating, leads to the solution

ψ(⊥)
0,M(ρ,φ) = N ρM e− mω

2�
ρ2 ei Mφ . (17.53)

The normalization factor can be calculated to be N = √
(mω/�)M+1/πM ! . The

absence of a singularity at the origin requires M ≥ 0.
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Excited energy eigenstates can be created from the ground state acting on it with
â†. The first excited state â†|0, M〉 of energy 3�ω corresponds to the eigenfunction

ψ(⊥)
1 (ρ,φ) = Ñ ei(M−1)φ

(
M

ρ
− mω

�
ρ

)
ρM e− mω

2�
ρ2 . (17.54)

Note that this is an eigenfunction of angular momentum �(M − 1). Thus, the ascend-
ing energy eigenfunctions, defined by repeated n applications of the creation operator
â†, correspond to eigenstates of angular momentum �(M − n)

(â†)n

√
n! |0, M〉 = |n, M − n〉 . (17.55)

This is a consequence of the commutation rules

[
â†, L̂ z

]
= �â†,

[ (
â†

)2
, L̂ z

]
= 2�

(
â†

)2
, . . . (17.56)

or generally [ (
â†

)n
, L̂ z

]
= �n

(
â†

)n
. (17.57)

The obvious interpretation of Eq. (17.55) is that â† is a anhillation operator for L̂z ,
although it is a creation operator for Ĥ⊥. Each energy level corresponding to n can
have angular momentum −n, −n + 1, . . . , +∞. The energy spectrum is infinitely
degenerate.

A particle of negative charge. For η = −1 the ground state is defined by

− 1√
4�mω

{ −i�
(∇x − i ∇y

) − imω (x − i y)
}
ψ(⊥)
0,M(x, y) = 0 (17.58)

or, introducing polar coordinates,

i�√
4�mω

e−iφ

(
∂

∂ρ
− i

ρ

∂

∂φ
+ mω

�
ρ

)
ψ(⊥)
0,M(ρ,φ) = 0 (17.59)

or
i�√
4�mω

ei(M−1)φ

(
d

dρ
+ M

ρ
+ mω

�
ρ

)
ψ(⊥)
0,M(ρ, 0) = 0 . (17.60)

This is satisfied by
ψ(⊥)
0,M(ρ,φ) = N ρ−M e− mω

2�
ρ2 ei Mφ . (17.61)

The absence of a singularity at the origin requires M ≤ 0. The first excited energy
eigenstate is |1〉 = â†|0, M〉 and corresponds to the wave function



314 17 Particle Interactions with EM Fields

ψ(⊥)
1 (ρ,φ) = N ′ei(M+1)φ

(
M

ρ
+ mω

�
ρ

)
ρ−M e− mω

2�
ρ2 . (17.62)

This is an eigenstate of angular momentum �(M + 1). The commutation relations

[
(â†)n, L̂ z

]
= −n� (â†)n (17.63)

imply now that the states (â†)n|0, M〉 are |n, M + n〉 angular momentum eigenstates

(â†)n

√
n! |0, M〉 = |n, M + n〉 . (17.64)

Thus, each energy level corresponding to n can have angular momentum quantum
number values n, n − 1, n − 2, . . . − ∞. Again the energy spectrum is infinitely
degenerate.

The above picture of charged particles under the influence of a magnetic field is
incomplete for electrons or fermions in general since we have not included the spin
interaction part in the Hamiltonian

− ms · B = −egB

2mc
Sz (17.65)

or, specifically for electrons in a homogeneous magnetic field, just 2ωSz in terms
of the ω-definition (17.39). The energy eigenfunctions will be just products of the
eigenfunctions obtained above times the Sz spin-up and spin-down eigenstates

ψE (r)χ = ψE (r)

⎧⎨
⎩

χ↑

χ↓
(17.66)

The eigenvalues will be shifted to

E⊥n = �ω (2n + 1) ± �ω . (17.67)

With the addition of spin, the system acquires an additional very interesting sym-
metry. The spin part of the Hamiltonian can be written

− egB

2mc
Ŝz = 2�ω

(
b̂†b̂ − 1

2

)
, (17.68)

where

b̂ = 1

�
Ŝ− = 1

�

(
Ŝx − i Ŝy

)
. (17.69)

The operators b̂, b̂† have the following properties
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b̂2 = (b̂†)2 = 0 and
{

b̂, b̂†
}

= 1 . (17.70)

The operators b̂, b̂† are annihilation and creation operators of N̄ = b̂†b̂ quanta with
the crucial difference that the only eigenvalues of N̄ are 0 and 1. Indeed, we have

b̂| . . . , 0〉 = 0 b̂†| . . . , 0〉 = | . . . , 1〉 (17.71)

and
(b̂†)2| . . . , 1〉 = b̂2| . . . , 1〉 = 0 . (17.72)

The quanta created by b̂† satisfy a kind of Pauli principle, since no states exist with
more than one. The operators b̂, b̂† commute with all operators that do not depend
on the spin, e.g., [b̂, â] = [b̂, â†] = 0. With the addition of spin, the full transverse
Hamiltonian can be written as

Ĥ⊥ = 2�ω
(

â†â + b̂†b̂
)

. (17.73)

The energy eigenfunctions ψ(⊥)
nM found above, corresponding to the states |n, M〉,

should also be labeled with the N̄ = b̂†b̂ quantum number n̄ as |n, n̄, M〉. Note that
n̄ = 0, 1, although n = 0, 1, . . . ,∞.

Introduce now the operator

Q̂ ≡ √
2�ω âb̂† . (17.74)

Note that this operator commutes with the Hamiltonian Ĥ⊥
[

Ĥ⊥, Q̂
]

= 0 . (17.75)

This operator has the property to remove “type-a” quanta and add “type-b” ones.
Starting from the commutators

[
N̂ , Q̂

]
= −Q̂,

[ ˆ̄N , Q̂
]

= Q̂ (17.76)

we obtain the relations

N̂ Q̂|n, n̄〉 = (n − 1)Q̂|n, n̄〉, ˆ̄N Q̂|n, n̄〉 = (n + 1)Q̂|n, n̄〉 , (17.77)

from which it is clear that

Q̂|n, n̄〉 ∝ |n − 1, n̄ + 1〉 . (17.78)
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Note that the operators Q̂ and Q̂† have vanishing squares and that their anticommu-
tator is equal to Ĥ⊥ {

Q̂, Q̂
}

=
{

Q̂†, Q̂†
}

= 0 (17.79)

{
Q̂, Q̂†

}
= Ĥ⊥ . (17.80)

The fact that the operator Q̂ commutes with the Hamiltonian means that it is a
constant of the motion and it corresponds to a symmetry. This symmetry should be
manifest in the energy spectrum. Indeed, the state |n, n̄〉 has the same energy with the
state |n − 1, n̄ + 1〉, meaning that the removal of a “type-a” quantum is equivalent
to the addition of a “type-b” quantum. Since, there is no limitation on the number
of n-quanta, we may loosely refer to these quanta as bosons, while referring to the
n̄-quanta as fermions. The existing symmetry, which may be called supersymmetry,
amounts to the fact that a state |0, 1〉, with no bosons and one fermion is degenerate
with a state |1, 0〉 of one boson and no fermion.

17.3 The Bohm–Aharonov Effect

Consider the setup shown in Fig. 17.1. A solenoid confining magnetic flux is placed
between the slits of a two-slit experiment. Although there is no magnetic field in
the outside region, there is nonzero vector potential (being just a gradient A = ∇�),
which however has to be continuously matched with the non-trivial vector potential
inside the solenoid.

The Schroedinger equation in the outside region, where A = ∇�, is

{
1

2m

(
−i�∇ − e

c
A

)2 + V (r)
}

ψ(r) = Eψ(r) (17.81)

V (r) is any possibly existing potential. This equation can be rewritten as

{
− �

2

2m
∇2 + V (r)

}
ψA(r) = EψA(r) (17.82)

in terms of
ψA(r) = e

ie
�c �ψ(r) = e

ie
�c

∫ r dr·Aψ(r) . (17.83)

Note that the integral in the exponential is path-dependent. The particles arriving
on the final screen have to be described with a superposition of wave functions
corresponding to the two distinct paths (above and below the solenoid), namely

ψ(r) = ψ(I )
A (r) + ψ(I I )

A (r) = e
ie
�c

∫ r
I dr·A ψ(I )(r) + e

ie
�c

∫ r
I I dr·A ψ(I I )(r) (17.84)
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B=/=0

B=0

Fig. 17.1 The two-slit Bohm–Aharonov experimental setup

or
ψ(r) = e

ie
�c

∫ r
I dr·A

(
ψ(I )(r) + e

ie
�c

∮
dr·A ψ(I I )(r)

)
. (17.85)

The line integral on the closed loop is related via Stokes theorem to the surface
integral enclosing the magnetic field

∮
dr · A =

∫
S

ds · (∇ × A) =
∫

S
dS · B = � (17.86)

which is the magnetic flux passing through the solenoid. Thus, we have

|ψ(r)|2 =
∣∣∣ ψ(I )(r) + e

ie
�c � ψ(I I )(r)

∣∣∣2 (17.87)

and there is a measurable phase factor between the two wave function terms e
ie
�c �

that will create an observable interference pattern. This is the Bohm–Aharonov effect
[1–4]. This phenomenon implies that in contrast to classical physics, in quantum
mechanics the electromagnetic potentials have an imprint on physics.

There is a related setup, shown very schematically in Fig. 17.2, where the same
phenomena have other very interesting conclusions. A superconducting fluid subject
to a magnetic field displays the so-called Meisner effect according to which the
superconducting phase expels the magnetic field so that the magnetic flux is confined
in bounded regions of normal phase like the central region shown in the figure.

In contrast to the two-slit Bohm–Aharonov setup, where the electrons correspond
to scattering states, the charged particles of the superconducting phase (“Cooper
pairs” of charge q = 2e composed of two electrons) circulating around the region
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B=/=0

Fig. 17.2 Bound-state Bohm–Aharonov setup

that confines the magnetic flux, have wave functions that wrap around the flux tubes.
Each circle endows them with a phase factor e

iq
�c �. However, single-valuedness of

the wave function demands that this phase is an integer multiple of 2π, namely

� = nhc/q . (17.88)

Therefore, the superconducting versus normal phase regions are adjusted so that the
area supporting the magnetic flux is such that it satisfies the above flux quantization
condition. The effect has been observed experimentally. In addition, it has been
verified that the charge appearing in the above formula is 2e justifying that indeed
the superconductivity carriers are Cooper pairs.

Example 17.2 (A Bohm–Aharonov Toy Model) Consider a particle circulating
in a circle of radius R, while in a concentric region of radius a < R there is a
homogeneous magnetic field perpendicular to the plane of motion of the particle.
Solve the energy eigenvalue problem.

First let’s consider the corresponding energy eigenvalue problem in the absence of the mag-
netic field, which is a compact version of free one-dimensional motion with the position variable
replaced by the polar angle 0 ≤ φ ≤ 2π according to r = R

(
cosφ x̂ + sin φŷ

)
. The momentum is

replaced by p = −i�∇ = − i�
R φ̂ d

dφ . The Schroedinger equation is solved by plane wave-type of
eigenfunctions

1

2m

(
− i�

R

d

dφ

)2

�(φ) = �
2k2

2m
�(φ) =⇒ �(φ) = eik Rφ

√
2πR

. (17.89)

Note however that, because of the required single-valuedness of the wave function, we must have

�(φ + 2πn) = �(φ) =⇒ k = n

R
(n = ±1, ±2, . . . ) . (17.90)

As a result, the energy eigenvalues will be
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En = �
2n2

2m R2 (n = ±1, ±2, . . . ) . (17.91)

Consider now that a cylindrical region of radius a < R carries a homogeneous magnetic field
B = ẑ B perpendicular to the plane of motion of the particle, which is also assumed to carry electric
charge e. A continuous vector potential that can represent the constant magnetic field is

A =

⎧⎪⎨
⎪⎩

1
2 (B × r) = B

2

(−yx̂ + x ŷ
) = B

2 ρ φ̂ (ρ ≤ a)

B
2

a2

ρ2

(−yx̂ + x ŷ
) = B

2
a2
ρ φ̂ (ρ ≥ a)

(17.92)

This A leads to the magnetic field

B = ∇ × A =
⎧⎨
⎩

ẑ B (ρ ≤ a)

0 (ρ > a)

(17.93)

Note that the vector potential in the outside region is just a gradient

A(ρ ≥ a) = ∇� with � = B

2
a2 φ = B

2
a2 arctan(y/x) (17.94)

and gives a vanishing magnetic field.
Now the Schroedinger equation for a charged particle orbiting in a circle of radius R > a will

be
1

2m

(
− i�

R

d

dφ
− eBa2

2cR

)2

�(φ) = E�(φ) . (17.95)

Substituting �(φ) ∝ eik Rφ we obtain

E = 1

2m

(
�k − eBa2

2cR

)2

. (17.96)

Again, single-valuedness dictates that k = n/R. Finally, we may write the above correction to the
energy eigenvalues in terms of the magnetic flux � = πa2 B as

En = �
2

2m R2

(
n − e�

2πc�

)2

. (17.97)

Problems and Exercises

17.1 Consider a gauge transformation A → A′ = A + ∇� and show that
e

ie
�c �

(
p − e

cA
)

e− ie
�c � = p − e

cA
′ . Then, show that the Schroedinger equation is

gauge-transformed to

1

2m

(
p − e

c
A′

)2
ψ′(r) = E ψ′(r) with ψ′(r) = e

ie
�c � ψ(r) .
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17.2 For a homogeneous magnetic field B = ẑ B choose the asymmetric vector
potential A = Bx ŷ and solve the energy eigenvalue problem.

17.3 Consider a charged particle in a homogeneous magnetic field. Show that a
translation of the state T̂ (a)|ψ〉 = e

i
�
a·p|ψ〉 is equivalent to a gauge transformation.

17.4 A particle of mass m and electric charge e is subject to an external electric
field E. The Schroedinger equation is

(
− �

2

2m
∇2 + eφ

)
ψ = i�ψ̇

where φ(r, t) is the scalar potential corresponding to the electric field. Consider
now a gauge transformation φ → φ + 1

c �̇. Show that the following Schroedinger
equation {

1

2m

(
−i�∇ − e

c
∇�

)2 + eφ − e

c
�̇

}
ψ� = i�ψ̇�

is satisfied by ψ� = e
ie
�c �ψ.

17.5 Two identical fermions of spin 1/2 and electric charge q are subject to an
external strong homogeneous magnetic field. The two particles have also a mutual
interaction expressed through a potential that depends on the relative distance of the
two particles. Write down the Hamiltonian in center of mass coordinates and deter-
mine the eigenvalues corresponding to the center of mass part of the Hamiltonian.
If we neglect the mutual interaction, what are the eigenvalues of the energy? In the
latter case, what is the ground state wave function of the system?

17.6 A beam of neutrons (neutral spin 1/2 fermions possessing a magnetic moment
due to their spin) splits in two halves, one of them passing through a region of homo-
geneous magnetic field B. Ignore spatial degrees of freedom and assume that the
Hamiltonian of the neutron system is Ĥ = E0 − 2μN

�
S · B, where μN is the neu-

tron magnetic moment. If the initial state of the beam is |ψ(0)〉 = |±〉, and the two
branches interfere at time T , write down the evolved state |ψ(T )〉 and the corre-
sponding probability amplitude, showing a sinusoidal variation as a function of the
magnetic field. Find the difference in B required to produce two successive maxima
of the amplitude.

17.7 Consider a charged particle subject to a strong homogeneous magnetic field.
Ignore the part of the Hamiltonian associated with motion parallel to the magnetic
field. Consider the ground state of the transverse part of theHamiltonian and calculate
for this state the uncertainty in the radius ρ = √

x2 + y2.

17.8 Consider a particle of mass m and electric charge q > 0 subject to a homoge-
neous magnetic field B and simultaneously to a homogeneous electric field E. Solve
the Heisenberg equations and determine the velocity v(t) = (

p(t) − q
c A(r(t))

)
/m,

where A = 1
2B × r is the vector potential related to the magnetic field.
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Chapter 18
Approximation Methods

18.1 General Considerations

Only a few physical systems correspond tomathematical equations that can be solved
analytically. Therefore, the development of approximation methods has been very
important since the very early days of QuantumMechanics. Approximation methods
can be roughly separated into two broad categories, namely, perturbative methods
and non-perturbative ones. The applicability of perturbative approximation methods
requires the existence of a small parameter in the problem at hand. Denoting this
small parameter by λ, such a perturbative approximation method can be applied if
we know the solution of the problem for λ = 0. From a physical point of view, we
might say that the method has application on problems which are infinitesimally
close to a solved problem. For example, in the case of the Zeeman effect, as long
as the magnetic field is small, the correction to the Hamiltonian e

2mc (L + 2S) · B
can be treated as a small perturbation. The term small has to be quantified. To make
the statement “small correction to the energy” meaningful requires comparison to
the characteristic energy of the solved unperturbed problem, i.e., in this particular
case e�B/mc � me4/�

2. Note, however, that the smallness of a parameter does not
guarantee the success of the perturbative method. For example, in the case of an
anharmonic perturbation λ x4 to the simple harmonic oscillator, there will always
be distances x for which such a term will stop being small, no matter how small λ
is. Furthermore, there are aspects of the solution to a physical problem that cannot
be obtained by perturbative methods. A characteristic very simple example is the
case of bound states of the one-dimensional square well. We know that at least one
bound state exists no matter how shallow is the well. On the other hand, using the
depth of the well as our small parameter, it is a fact that we will never obtain a bound
state solution starting from the free-particle solution and treating the potential well as
perturbation. Nevertheless, as a general rule, the success of the perturbative method
should always be judged a posteriori, i.e., after numerical results have been obtained
and compared with measured values.
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The common characteristic of non-perturbative approximationmethods is the fact
that a small parameter is not available for the given problem at hand. Then, a way to
proceed is to consider a set of trial candidate solutions characterized by one or more
free parameters and fix the values of these parameters in order to obtain agreement
with the known (experimental) data for physical observables. A guiding principle
for the choice of trial solutions is that they should embody as much as possible the
basic qualitative physical characteristics expected. For example, the central idea of
the Variational Method is to consider a trial wave function, parametrized suitably
in terms of a set of parameters, calculate the corresponding expectation value of the
energy, and then minimize it with respect to the parameters, estimating in this way
the ground state energy of the system.

18.2 The WKB Method

Consider a classical particle moving in one dimension under the influence of a poten-
tial V (x). The expression for its conserved energy E = p2

2m + V (x) can be solved
for the momentum as

p(x) = √
2m (E − V (x)) . (18.1)

Note that classically only E > V (x) is allowed. Whenever the particle reaches a
point at which the energy equals the potential, or, equivalently, its kinetic energy
vanishes, it turns around and moves backward. The situation for a quantum particle,
of course, is quite different. Assume that in a “small enough” region around a point
we can approximate the potential with a constant. Then, the wave function will be
approximately in the form of a plane wave

ψ(x) ≈ e
i
�

p(x)x , (18.2)

where p(x) is the expression (18.1). Note, however, that for the points E ≤ V (x),
where thewave function unavoidably extends, p(x) becomes imaginary and thewave
function has a decaying behavior as expected.

The WKB method [1–3]1 is essentially a systematic quantitative application of
the above ideas. We start writing the Schroedinger equation

d2ψ

dx2
+ 2m

�2
(E − V (x)) ψ = 0 (18.3)

and search for solutions of the form

ψ(x) = e
i
�

W (x) . (18.4)

1The name is an acronym of the names of Wenzel, Kramers, and Brillouin.
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Substituting this expression into the Schroedinger equation we obtain

i�
d2W

dx2
−
(

dW

dx

)2

+ p2 = 0 , (18.5)

where p(x) is that of Eq. (18.1). We may then set up a small � or semiclassical
expansion as

W (x) = W0(x) + � W1(x) + �
2 W2(x) + . . . (18.6)

Substituting into (18.5) we obtain the order by order “solution”

p2(x) − (
W ′

0(x)
)2 + �

(
iW ′′

0 (x) − 2W ′
0(x)W ′

1(x)
) + O(�2) = 0 . (18.7)

To lowest order we get

W ′
0(x) = ±p(x) =⇒ W0(x) = ±

∫ x

dx p(x) . (18.8)

The next order gives

W ′
1(x) = i

2

W ′′
0 (x)

W ′
0(x)

= i

2

p′(x)

p(x)
=⇒ W1(x) = i

2
ln p(x) + const. (18.9)

Thus, the O(�) WKB solution is

ψ(x) ≈ e± i
�

∫ x dx p(x)

√
p(x)

. (18.10)

The validity of the expansion rests on the condition

i�W ′′(x)� (W ′)2

or
i� p′(x)� (p(x))2 . (18.11)

This is usually expressed in terms of the De Broglie wavelength λ = h/p as

∣∣∣∣
λ′(x)

2π

∣∣∣∣ � 1 . (18.12)

This condition can be rephrased into λ(x)|V ′(x)| � p2(x)/2m, which states that the
change of the potential over distances comparable to λ should be much smaller that
the kinetic energy.
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It is clear that the WKB approximation can be valid in the E � V (x) and the
E � V (x) regions but it is never valid at the turning point p(x0) = 0 where E =
V (x0). This problem is dealt with by matching the WKB solution with a different
solution obtained near the turning point. For the latter, we turn to the Schroedinger
equation and expand the potential around the turning point keeping the lowest order
linear term

ψ′′(x) ≈ 2m

�2

(
(x − x0)V ′(x0) + · · · )ψ(x) . (18.13)

Considering the case V ′(x0) > 0, we define

z = (x − x0)

(
2mV ′(x0)

�2

)1/3

. (18.14)

Then, the Schroedinger equation becomes

d2ψ(z)

dz2
= z ψ(z) . (18.15)

This is a well-known differential equation, the Airy equation, having as solutions the
Airy functions

Ai(z) = 1

π

∫ z

0
dt cos

(
t3

π
+ zt

)

, Bi(z) = 1

π

∫ z

0
dt

(

sin

(
t3

π
+ zt

)

+ e− t3
π +zt

)

.

(18.16)
Thus, we have

ψ(z) = α Ai(z) + β Bi(z) . (18.17)

The asymptotic behavior of the Airy functions is

Ai(z) ∼

⎧
⎪⎨

⎪⎩

z−1/4

2
√

π
e− 2

3 z3/2 (z � 0)

(−z)−1/4√
π

cos
(− 2

3 (−z)3/2 − π
4

)
(z � 0)

(18.18)

and

Bi(z) ∼

⎧
⎪⎨

⎪⎩

z−1/4√
π

e
2
3 z3/2 (z � 0)

− (−z)−1/4√
π

sin
(− 2

3 (−z)3/2 − π
4

)
(z � 0)

(18.19)

Ai(z) has a decaying behavior beyond the turning point, while it oscillates before
it reaches it. This is the physically expected behavior, since z > 0 corresponds to
E < V (x) and z < 0 to E > V (x). In contrast, Bi(z) blows up away from the turning
point and, if the classically forbidden region continues to infinity, it is physically
unacceptable.
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Fig. 18.1 Turning points

Let’s proceed now to see how matching works in the case of a potential with an
everywhere positive slope shown in the left-hand plot of Fig. 18.1.

In the z � 0 region, we have

2m

�2
(V (x) − E) = 2m

�2
(x − x0)V ′(x0) = z

(
2mV ′(x0)

�2

)2/3

or

− z = 2m

�2
(E − V (x))

(
�
2

2mV ′(x0)

)2/3

. (18.20)

Note that

2

3
(−z)3/2 = −

∫ z

0
dz′(−z′)1/2 = 1

�

∫ x

x0

dx ′√2m (E − V (x ′)) . (18.21)

Thus, if we take the wave function in the classically forbidden region x � x0 (i.e.,
z � 0) to correspond to the decreasing exponential

ψ(x) ∼ 1√
π

(2m�V ′(x0))1/6

(2m (V (x) − E))1/4
e− 1

�

∫ x
x0

dx ′√2m(V (x ′)−E)
, (18.22)

this will be matched in the region x � x0 with the wave function

ψ(x) ∼ 2√
π

(2m�V ′(x0))1/6

(2m (E − V (x)))1/4
cos

(
1

�

∫ x0

x
dx ′√2m (E − V (x ′)) − π

4

)
.

(18.23)
General matching formulae can be written as shown in Table 18.1, where

p(x) = √
2m (E − V (x)) and π(x) = √

2m (V (x) − E).
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Table 18.1 WKB matching formulae

For V ′(x0) > 0

ψ(x) ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p−1/2(x)
(
2A cos

( 1
�

∫ x0
x dx ′ p(x ′) − π

4

) − B sin
( 1

�

∫ x0
x dx ′ p(x ′) − π

4

))
(x � x0)

π−1/2(x)

(
Be

1
�

∫ x
x0

dx ′π(x ′) + A e
− 1

�

∫ x
x0

dx ′π(x ′)
)

(x � x0)

For V ′(x0) < 0

ψ(x) ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π−1/2(x)
(

A e
1
�

∫ x0
x dx ′π(x ′) + B e− 1

�

∫ x0
x dx ′π(x ′)

)
(x � x0)

p−1/2(x)
(
2B cos

(
1
�

∫ x
x0

dx ′ p(x ′) − π
4

)
− A sin

(
1
�

∫ x
x0

dx ′ p(x ′) − π
4

))
(x � x0)

18.2.1 Bound States and WKB

Consider the potential shown in Fig. 18.2.
For a given energy E , the turning points are at x = a and x = b. In the region

x � a the WKB wave function is

ψ(x) ∼ 1√
π(x)

e− 1
�

∫ a
x dx ′π(x ′) , (18.24)

Fig. 18.2 Bound states in WKB
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Similarly, in the opposite asymptotic region x � b the WKB wave function will be

ψ(x) ∼ 1√
π(x)

e− 1
�

∫ x
b dx ′π(x ′) , (18.25)

where π(x) = √
2m (V (x) − E). In the intermediate region far away from the turn-

ing points the WKB approximate wave function will be

ψ(x) ∼ 2√
p(x)

cos

(
1

�

∫ b

x
dx ′ p(x ′) − π

4

)

or

ψ(x) ∼ 2√
p(x)

cos

(
1

�

∫ x

a
dx ′ p(x ′) − π

4

)
. (18.26)

The last two expressions must agree. This implies that

cos

(
1

�

∫ b

x
dx ′ p(x ′) − π

4

)
= ± cos

(
1

�

∫ x

a
dx ′ p(x ′) − π

4

)

or

cos

(
1

�

∫ b

x
dx ′ p(x ′) − π

4

)
= ± cos

(
−1

�

∫ x

a
dx ′ p(x ′) + π

4

)

or ∫ b

a
dx ′√2m (E − V (x ′)) =

(
n + 1

2

)
�π , (18.27)

where n = 0, 1, 2, . . . .
If we apply this condition to the case of the simple harmonic oscillator V (x) =

mω2x2/2, we get

∫ +
√

2E/mω2

−
√

2E/mω2
dx ′ √2m E − (mωx ′)2 = Eπ/ω , (18.28)

which leads to the standard oscillator spectrum En = (n + 1/2)�ω. Of course, this is
a happy coincidence. Inmost cases, the result will be an approximation that improves
with increasing n, i.e., when we approach the large quantum number or semiclassical
limit.

18.2.2 Tunneling in WKB

Let’s apply now theWKBmethod to calculate the transmission rate through a poten-
tial barrier as the one shown in Fig. 18.3. Assuming that the WKB approximation
holds, no special assumption will be made for the exact shape of the potential.
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Fig. 18.3 Barrier penetration in WKB

We start with the outgoing wave function in the region x � b

ψ(x � b) ∼ F e−iπ/4

√
p(x)

e
i
�

∫ x
b dx ′ p(x ′) , (18.29)

which can be written as

ψ(x � b) = F√
p(x)

(
cos

(
1

�

∫ x

b
dx ′ p(x ′) − π

4

)
+ i sin

(
1

�

∫ x

b
dx ′ p(x ′) − π

4

))
.

(18.30)

From the connection formulae for a downward slope, we connect this with the
dominant part of the wave function in the classically inaccessible region

ψ(a � x � b) ∼ −i
F√
π(x)

e
1
�

∫ b
x dx ′ π(x ′) = −i

Fe
1
�

∫ b
a dx ′ π(x ′)

√
π(x)

e− 1
�

∫ x
a dx ′ π(x ′).

(18.31)
This is matched at the upward slope as

ψ(x � a) ∼ −2i
Fe

1
�

∫ b
a dx ′ π(x ′)

√
p(x)

cos

(
1

�

∫ a

x
dx ′ p(x ′) − π

4

)
. (18.32)

The ingoing part of this wave function is

ψinc(x) ≈ −i
Fe

1
�

∫ b
a dx ′ π(x ′)

√
p(x)

e
i
�

∫ x
a dx ′ p(x ′) . (18.33)
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Since the transmitted wave function is

ψtrans(x) ≈ Fe−iπ/4

√
p(x)

e
i
�

∫ x
b dx ′ p(x ′), (18.34)

the transmission coefficient will be

T = vtrans |ψtrans |2
vinc|ψinc|2 ≈ e− 2

�

∫ b
a dx

√
2m(V (x)−E) . (18.35)

Example 18.1 Consider the potential

V (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 (x ≤ 0)

V1
(
1 − x

b

)
(0 < x ≤ b)

0 (x > b).

Calculate the transmission coefficient for a particle of energy E < V1 incident from
the left in the WKB approximation.

The turning points are at x = 0 and at x = a, where E = V (a) or a = b
(
1 − E

V1

)
. Starting

with the transmitted wave function

ψ(x � a) ∼ Fe−iπ/4

√
p(x)

e
i
�

∫ x
a dx ′ p(x ′) , (18.36)

we connect it with the intermediate wave function

ψ(0 < x � a) ∼ −i
F√
π(x)

e
1
�

∫ a
0 dx ′ π(x ′) e− 1

�

∫ x
a dx ′ π(x ′) . (18.37)

Next, we apply continuity at the point x = 0 between the exact wave function2 (E = �
2k2/2m)

ψ(x < 0) = A√
�k

sin(kx + ϕ) (18.38)

and the approximate WKB wave function obtained above

ψ(x ∼ 0) ≈ −i
F√
π(0)

e
1
�

∫ a
0 dx ′ π(x ′) e− 1

�

∫ x
a dx ′ π(x ′) , (18.39)

where π(0) = √
2m(V1 − E). We get

A√
�k

sinϕ = −i
F√
π(0)

e
1
�

∫ a
0 dx ′ π(x ′),

A√
�k

k cosϕ = i

�
F
√

π(0)e
1
�

∫ a
0 dx ′ π(x ′) . (18.40)

2We have parametrized the exact wave function in the WKB fashion.
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From these, we obtain

tanϕ = −1/
√

V1/E − 1 =⇒ sinϕ = −
√

E

V1
(18.41)

and

F = −i A

√(
1 − E

V1

)
e− 1

�

∫ a
0 dx

√
2m(V (x)−E) . (18.42)

Therefore, the transmission coefficient T = Jtr /Jinc = (|ψtr |2vtr
)
/
(|ψinc|2vinc

)
will be3

T = |Fe−iπ/4/
√

�k|2�k

|Aeiϕ/2i
√

�k|2�k
= 4

(
1 − E

V1

)
e− 2

�

∫ a
0 dx

√
2m(V (x)−E) (18.43)

or

T = 4 (1 − E/V1) exp

(
−
(
32mV1a3/9�2b

)1/2)
. (18.44)

18.3 The Adiabatic Approximation

Consider a quantum system characterized by a set of parameters. Imagine a gradual
change of these parameters. Such a process is characterized as adiabatic4 if the char-
acteristic time of change of the parameters Text (external timescale) is much larger
than the characteristic timescale of change of the system Tint (internal timescale).
For example, for the system of a particle bound in a square well, consider a slow
change of the depth of the potential at a rate V̇0/V0. Such a process can be character-
ized adiabatic if the characteristic time of change Text ∼ V0/V̇0 is much larger than
the characteristic timescale of the system given by the period of stationary states
Tint ∼ �/�E ∼ O(�/V0).

Let’s assume that the Hamiltonian of the system depends on the set of parameters
{α} = {α1, α2, . . . }. The eigenstates and eigenvalues will also be α-dependent

Ĥ(α) |En(α)〉 = En(α) |En(α)〉 . (18.45)

Consider now an adiabatic change in these parameters

α j → α j (t) . (18.46)

Adiabaticity corresponds to the assumption that the rate of parameter change α̇ j/α j

is much smaller than the characteristic rate of change in the system defined by the
energy splittings (En − En′)/�.

The general solution to the Schroedinger equation

Ĥ |ψ(t)〉 = i�
d

dt
|ψ(t)〉 (18.47)

3 p(x � a) = �k
4See also Griffiths [3].
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can be written as an expansion in {|En(α)〉} according to

|ψ(t)〉 =
∑

n

Cn(t) eiϕn(t) |En(α)〉 . (18.48)

In the absence of any parameter change, theCn’s are time-independent and the phases
ϕn are the standard −Ent/�.

We may adopt the following Ansatz for the ϕn’s:

ϕn(t) = −1

�

∫ t

0
dt ′ En(α(t ′)) (18.49)

and proceed to determine the Cn’s by substituting it into the Schroedinger equation.
We obtain ∑

n

{
dCn

dt
eiϕn |En〉 + Cn eiϕn

d

dt
|En〉

}
= 0 . (18.50)

Taking an inner product with one of the states, say |Em〉, we get
dCm

dt
= −

∑

n

Cnei(ϕn−ϕm )〈Em | d

dt
|En〉 = −

∑

n

∑

j

Cnei(ϕn−ϕm )α̇ j 〈Em | ∂

∂α j
|En〉.

(18.51)
The right-hand side can be separated as

− Cm

∑

j

α̇ j 〈Em | ∂

∂α j
|Em〉 −

∑

n =m

∑

j

Cn ei(ϕn−ϕm ) α̇ j 〈Em | ∂

∂α j
|En〉 (18.52)

or, introducing

A(m)
j = −i〈Em | ∂

∂α j
|Em〉 , (18.53)

as

− iCm

∑

j

α̇ jA(m)
j −

∑

n =m

∑

j

Cn ei(ϕn−ϕm ) α̇ j 〈Em | ∂

∂α j
|En〉 . (18.54)

Thus, the equation for the coefficients Cn’s is

dCm

dt
= −iCm

∑

j

α̇ jA(m)
j −

∑

n =m

Cn ei(ϕn−ϕm )
∑

j

α̇ j 〈Em | ∂

∂α j
|En〉 . (18.55)

Note that, up to now, we have not made any use of the adiabatic nature of the
change and the last equation is exact. Going back to the statement of the eigenvalue
problem Ĥ |En〉 = En|En〉 and taking a derivative with respect to a parameter αk ,
we obtain
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∂ Ĥ

∂αk
|En〉 + Ĥ

∂

∂αk
|En〉 = ∂En

∂αk
|En〉 + En

∂

∂αk
|En〉. (18.56)

Multiplying with an eigenstate |Em〉 for m = n, we obtain

〈Em | ∂ Ĥ

∂αk
|En〉 + Em〈Em | ∂

∂αk
|En〉 = En〈Em | ∂

∂αk
|En〉 (18.57)

or

(Em − En) 〈Em | ∂

∂αk
|En〉 = −〈Em | ∂ Ĥ

∂αk
|En〉 . (18.58)

This implies

∑

j

α̇ j 〈Em | ∂

∂α j
|En〉 = −

∑

j

〈Em | ∂ Ĥ

∂α j
|En〉 α̇ j

(Em − En)
. (18.59)

For an adiabatic process, the right-hand side is by hypothesis a rather small number.
Therefore, the second term in (18.55) can be ignored. Then, we have

dCm

dt
= −iCm

∑

j

α̇ jA(m)
j =⇒ Cn(t) = Cn(0) e−i

∑
j

∫ t
0 dt α̇ jA(n)

j . (18.60)

If we assume that we start at t = 0 in an eigenstate |E0〉 (i.e., Cn = δn0), then

Cn(t) = δn0 e−i
∫

dα·A(0)
. (18.61)

Thus, the system remains in the state |E0〉 as we vary the α’s. This is the Adiabatic
Theorem.

Summarizing, the system during the adiabatic change will stay in the same state,
which, however, acquires a phase

|ψ(t)〉 = e
i
(
ϕ0(t) −∫

dα jA(0)
j

)

|E0〉 (18.62)

with

ϕ0(t) = −1

�

∫ t

0
dt E0(α(t)) and A(0)

j = −i〈E0| ∂

∂α j
|E0〉 . (18.63)

The phase acquired by the eigenstate consists of two parts. In contrast to the first
part φn (dynamical phase) that depends on the total time of change, the second part
(geometric phase) does not. In fact, for an adiabatic change that returns to the initial
parameter values, it is
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ϕB =
∮

dα · A (18.64)

and depends only on the path taken in parameter space. This is the so-called Berry
phase, related nontrivially to the topology of parameter space.

Note that (18.61) is only a lowest order result and if we wanted to go beyond this
approximation we should have kept the exact Eq. (18.55). This can be transformed
to an equivalent integral equation going back to its initial form

dCm

dt
= −

∑

n

Cn(t)e
i(ϕn(t)−ϕm (t))

∑

j

α̇ j (t)〈Em | ∂

∂α j
|En〉

and integrating

Cm(t) = Cm(0) −
∑

n

∫ t

0
dt ′Cn(t

′)ei(ϕn(t ′)−ϕm (t ′))
∑

j

α̇ j (t
′)〈Em | ∂

∂α j
|En〉 .

(18.65)
A first approximation to this equation consists in replacing the coefficients in the
integral with their initial values

Cm(t) = Cm(0) −
∑

n

Cn(0)
∑

j

∫
dα j ei(ϕn−ϕm )〈Em | ∂

∂α j
|En〉 . (18.66)

This line of approximations can be continued in an iterative way and, thus, define
a perturbative approach. For example, the second-order approximation would be to
substitute (18.66) for the coefficients inside the integral of (18.65).

Example 18.2 Consider a two-state system characterized by the Hamiltonian matrix

H =
⎛

⎝
ε η eiδ

η e−iδ −ε

⎞

⎠ , (18.67)

where ε, η are constant real parameters, while the real parameter δ(t) varies with
time. We shall assume that η � ε. Determine the evolution of the state of the system
assuming the adiabatic approximation.

The energy eigenvalues are

E± = ±
√

ε2 + η2 ≈ ±
(

ε + η2

2ε

)
(18.68)

and do not depend on δ(t). The corresponding eigenvectors are

χ+ ≈
⎛

⎝
1

η
2ε e−iδ

⎞

⎠ , χ− ≈
⎛

⎝
η
2ε

−e−iδ

⎞

⎠ . (18.69)
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The state of the system can be written as

ψ(t) = C+(t) eiφ+(t) χ+ + C−(t) eiφ−(t) χ− , (18.70)

where the dynamical phases are just

φ±(t) = − 1

�

∫ t

0
dt ′ E± = ∓ E±

t

�
. (18.71)

The coefficients satisfy the differential equations

Ċ+ = −iC+δ̇A(+) − C−ei(φ−−φ+) δ̇χ†
+ ∂

∂δ χ−

Ċ− = −iC−δ̇A(−) − C+ei(φ+−φ−) δ̇χ†
− ∂

∂δ χ+
, (18.72)

where

A(+) = −iχ†
+

δ

δ
χ+ ≈ −i

η2

4ε2
, A(−) = −iχ†

−
δ

δ
χ− = −i . (18.73)

We also have

χ†
+

∂

∂δ
χ− = χ†

−
∂

∂δ
χ+ ≈ iη

2ε
. (18.74)

Therefore, in the adiabatic approximation, we shall have

Ċ+ ≈ 0, Ċ− ≈ i δ̇ C− ,

giving
C±(t) = C±(0) eiγ± with γ+ = 0, γ− = δ(t) − δ(0) . (18.75)

Example 18.3 A simple harmonic oscillator is subject to a time-dependent external
force α(t). Assuming that initially (t = 0) the system is in an eigenstate of the
unperturbed harmonic oscillator (α(0) = 0), find the probability to make a transition
to another eigenstate at times t > 0.

The Hamiltonian of the system is

Ĥ(α) = p̂2

2m
+ 1

2
mω2 x̂2 − α x̂ (18.76)

and can be written as

Ĥ(α) = p̂2

2m
+ 1

2
mω2

(
x̂ − α

mω2

)2 − α2

2mω2

or

Ĥ(α) = e
−i α p̂

�mω2 Ĥ(0)ei α p̂
�mω2 − α2

2mω2 . (18.77)

Then, it is clear that the eigenvalue problem

Ĥ(α)|ψn(α)〉 = En(α)|ψn(α)〉 (18.78)

has the solution

|ψn(α)〉 = e
−i α p̂

�mω2 |ψn〉

En(α) = En − α2

2mω2 ,

(18.79)

where |ψn〉 and En = �ω(n + 1/2) are the standard harmonic oscillator eigenstates and eigenvalues
for α = 0.
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A general state |ψ(t)〉 can be written

|ψ(t)〉 =
∑

n

Cn(t)eiϕn(α)|ψn(α)〉 , (18.80)

where

ϕn(α) = − 1

�

∫ t

0
dt ′ En(α(t ′)) = −ω t

(
n + 1

2

)
+ 1

2�mω2

∫ t

0
dt ′α2(t ′), (18.81)

and the coefficients Cn(t) obey the equation

dCn

dt
= −α̇(t)

∑

n′
Cn′ (t)ei(ϕn′ −ϕn )〈ψn(α)| ∂

∂α
|ψn′ (α)〉 . (18.82)

The matrix element appearing in this formula is

〈ψn(α)| ∂

∂α
|ψn′ (α)〉 =

∫ +∞

−∞
dx ψn

(
x − α

mω2

) ∂

∂α
ψ∗

n

(
x − α

mω2

)

= −mω2
∫ +∞

−∞
dx ψ∗

n(x)
∂

∂x
ψn′ (x) = i

�
〈ψn | p̂|ψn′ 〉 =

√
mω

2�
〈ψn |

(
â − â†

)
|ψn′ 〉

=
√

mω

2�

(√
n′ δn,n′−1 − √

n′ + 1 δn,n′+1

)
. (18.83)

Note that only transitions to neighboring levels are allowed. Therefore, we obtain

dCn(t)

dt
= −α̇

√
mω

2�

(
Cn−1(t)

√
n − 1 ei(ϕn−1−ϕn ) − Cn+1(t)

√
n + 1 ei(ϕn+1−ϕn )

)

= −α̇

√
mω

2�

(
Cn−1(t)

√
n − 1 eiωt − Cn+1(t)

√
n + 1 e−iωt

)
. (18.84)

Integrating we obtain

Cn(t) = Cn(0) −
√

mω

2�
( . . . )

with

· · · = √
n − 1

∫ t

0
dt ′α̇(t ′)Cn−1(t

′)eiωt ′ − √
n + 1

∫ t

0
dt ′α̇(t ′)Cn+1(t

′)e−iωt ′ . (18.85)

Assuming that we have an adiabatic rate of change and α̇ is small (i.e., α̇/α �ω), we may approx-
imate the coefficients inside the integral with their initial values and have a first-order result

Cn(t) ≈ Cn(0) −
√

mω

2�

(√
n − 1Cn−1(0)D∗(t) − √

n + 1Cn+1(0)D(t)
)

, (18.86)

where D ≡ ∫ t
0 dt ′α̇(t ′)eiωt ′ . If α(0) = 0 and initially the system occupies an eigenstate |ψ�〉 of

the standard harmonic oscillator, Cn(0) = δn� and

Cn(t) ≈ δn� −
√

m�ω

2�

(
δn,�+1

∫ t

0
dt ′ α̇(t ′) eiωt ′ − δn,�+1

∫ t

0
dt ′ α̇(t ′) e−iωt ′

)
, (18.87)

which means that transition is possible only to the immediately neighboring eigenstates with prob-
ability

Pn→n±1(t) = (n ± 1)
mω

2�

∣∣∣∣

∫ t

0
dt ′ α̇(t ′)eiωt ′

∣∣∣∣

2

. (18.88)
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18.3.1 The Berry Phase

As we saw above, for an adiabatic process, the expansion coefficients in (18.48)
change only by acquiring a phase

Cn(t) = Cn(0) e−i
∑

j

∫ t
0 dt ′ α̇ j (t ′)A(n)

j . (18.89)

As a result, if the system is initially in an energy eigenstate |ψn〉, its state at a later
time will be

|ψn(t)〉 = eiϕn eiγn |ψn〉 , (18.90)

whereϕn = − 1
�

∫ t
0 dt ′ En(α(t ′)) is a dynamical phase and γn = −∑

j

∫ t
0 dt ′ α̇ j (t ′)

A(n)
j is a geometrical phase. The quantityA(n) = −i〈ψn(α)| ∂

∂α
|ψn(α)〉 is called the

Berry connection. Assume now that the system makes a closed curve in parame-
ter space returning to the same values of the parameters α j (0) = α j (t). Then, the
geometric phase will be

γn = −
∮

dα j A(n)
j . (18.91)

This is the Berry phase [3]. The value of this phase will depend on the closed path
taken in parameter space and will not be in general zero. It is not difficult to see that
the Berry phase vanishes if the eigenfunctions ψn(x,α) are real. We have

γn = i
∮

dα

∫
dx ψn(α, x)

∂

∂α
ψn(α, x) = i

2

∮
dα

∂

∂α

∫
dx ψ2

n(α) = 0 .

Another question that could be asked is whether γn is real. This is crucial because
an imaginary part in γn would signal a violation of the conservation of probability,
since the norm of the state (18.90) has to be conserved. Starting from

0 = ∂

∂α
〈ψn(α)|ψn(α)〉 =

(
∂

∂α
〈ψn(α)|

)
|ψn(α)〉 + 〈ψn(α)|

(
∂

∂α
|ψn(α)〉

)

we have

γ∗
n = −i

∮
dα

(
〈ψn(α)| ∂

∂α
|ψn(α)〉

)∗
= −i

∮
dα

∂

∂α
(〈ψn(α)|) |ψn(α)〉

= i
∮

dα 〈ψn(α)| ∂

∂α
(|ψn(α)〉) = γn ,

which proves its reality.

Example 18.4 As an example of a system that develops a nontrivial Berry phase
during an adiabatic process,wemay consider the systemof a particle (an electron) in a
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homogeneous magnetic field. Ignoring the particle’s spatial motion, the Hamiltonian
is Ĥ = − e

mecB · S.
Parameterizing the direction of the magnetic field in terms of a polar angle θ and an azimuthal

angle parameter φ, the Hamiltonian in the space of spin eigenstates corresponds to the matrix

H = �ω

⎛

⎝
cos θ e−iφ sin θ

eiφ sin θ − cos θ

⎞

⎠ , (18.92)

where ω = |e|B/2mec. The energy eigenvalues are E± = ±�ω, the corresponding eigenstates
being

χ+ =
⎛

⎝
cos(θ/2)

eiφ sin(θ/2)

⎞

⎠ χ− =
⎛

⎝
sin(θ/2)

−eiφ cos(θ/2)

⎞

⎠ . (18.93)

Assume now that initially the system is in an energy eigenstate, say χ+, and the direction of the

magnetic field changes slowly with time, i.e., θ(t), φ(t) vary, in an adiabatic fashion (θ̇, φ̇� ω).

The change is such that the magnetic field returns to its initial direction tracing a circular path in

parameter space as shown in Fig. 18.4. Here the parameter space coincides with the direction in

ordinary space. The corresponding Berry phase will depend on the path followed.
Starting from the expression for the Berry phase in terms of the Berry connection

A = −iχ†
+∇χ+ , (18.94)

we have

γ = −
∮

dr · A = −
∫

dS · (∇ × A) , (18.95)

where the surface integral is over a segment of a spherical surface defined by the closed loop in
parameter space. We have

A = − i

r
χ†

+

(

θ̂
∂

∂θ
+ φ̂

sin θ

∂

∂φ

)

χ+ = φ̂
sin2(θ/2)

r sin θ
(18.96)

and

∇ × A = 1

r2

(

θ̂
∂

∂θ
+ φ̂

sin θ

∂

∂φ

)

×
(

φ̂
sin2(θ/2)

sin θ

)

Fig. 18.4 Adiabatic rotation
of the direction of the
magnetic field
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= r̂

r2
∂

∂θ

(
sin2(θ/2)

sin θ

)
+ sin2(θ/2)

r2 sin2 θ

(

φ̂ × ∂φ̂

∂φ

)

=

r̂

r2
∂

∂θ

(
sin2(θ/2)

sin θ

)
+ sin2(θ/2)

r2 sin2 θ

(
sin θθ̂ + cos θr̂

)
= r̂

2r2
+ sin2(θ/2)

r2 sin θ
θ̂ . (18.97)

Therefore, we obtain

γ = −
∫

d� r2 r̂ ·
(

r̂

2r2

)
= −1

2

∫
d� =⇒ γ = −1

2
� , (18.98)

where � is the total solid angle traced by the circular path of the magnetic field direction.

18.4 The Variational Method

The central idea of the Variational Method [1, 3–5] is to parametrize the possible
solutions to a given problem in terms of a set of suitable parameters and seek the
actual solution as the one that minimizes a physical quantity (e.g., the energy). The
method is particularly useful in placing an upper bound on the ground state energy
of a system.

Consider a given quantum system and its energy eigenvalue problem

Ĥ |ψn〉 = En|ψn〉 , (18.99)

assuming that the system has a discrete energy spectrum. For a given normalized
state

|ψ〉 =
∞∑

n=0

ψn|ψn〉
( ∞∑

n=0

|ψn|2 = 1

)

, (18.100)

we consider the expectation value of the energy

〈E〉 =
∞∑

n,n′
ψ∗

nψn′ 〈ψn|Ĥ |ψn′ 〉 =
∞∑

n=0

|ψn|2En . (18.101)

If by |ψ0〉 we denote the ground state, we can write

〈E〉 = |ψ0|2E0 +
∞∑

n≥1

|ψn|2En =
(

1 −
∞∑

n≥1

|ψn|2
)

E0 +
∞∑

n≥1

|ψn|2En

or

〈E〉 = E0 +
∞∑

n≥1

|ψn|2 (En − E0) . (18.102)
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Since, by hypothesis, E0 is the ground state energy and En > E0 for ∀n ≥ 1, we
must have

〈E〉 ≥ E0 . (18.103)

Therefore, the expectation value of the energy in any normalized state |ψ〉 obeys the
inequality

〈E〉 = 〈ψ|Ĥ |ψ〉 ≥ E0 , (18.104)

where E0 is the ground state energy.
Since the state |ψ〉 is an arbitrary state, we may consider a family of normalizable

states depending on a set of parameters α1, α2, . . . . The expectation value of the
energy for any such state will depend on these parameters

E(α) = 〈ψ(α)|Ĥ |ψ(α)〉
〈ψ(α)|ψ(α)〉 . (18.105)

According to what was shown above, we must have

E(α) ≥ E0 . (18.106)

Wemay derive an upper bound for the ground state energy byminimizing the quantity
E(α) with respect to the parameters α, obtaining

E0 ≤ E(ᾱ) , (18.107)

where E(ᾱ) will be the minimum of E(α), defined by the condition for an extremum

∂E(α)

∂α j

∣∣∣∣
ᾱ

= 0 (18.108)

and the requirement for a minimum, corresponding to the matrix ∂2E
∂αi ∂α j

∣∣∣
ᾱ
having

positive eigenvalues.
As a simple example of the above we may consider the system of a particle bound

in the one-dimensional potential

V (x) = g2 |x | . (18.109)

Since we are seeking to determine its ground state energy, we note that for small
values of x the potential is not very different from a harmonic oscillator potential
and we may adopt for a trial wave function a Gaussian

ψ(x,α) = N (α) e− α
2 x2

, (18.110)
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parametrized in terms of a parameter α that determines its width. The coefficient
N (α) is fixed by normalization to be N (α) = (α/π)1/4. Introducing this trial function
into the expression for the expectation value of the energy, we obtain

E(α) = �
2α

4m
+ g2√

πα
. (18.111)

The minimum occurs at

ᾱ =
(
2g2m

�2
√

π

)2/3

=⇒ E(ā) = 3

2

(
�
2g4

2πm

)1/3

. (18.112)

Thus, we may conclude that

E0 ≤ 3

2

(
�
2g4

2πm

)1/3

. (18.113)

Example 18.5 Consider a particle in the potential V (x) = g2|x |. Using the varia-
tional method estimate an upper bound for the first excited state energy.

The ground state energy for this potential was estimated above to be

E0 ≤ 3
2

(
�
2g4

2πm

)1/3
using the trial wave function ψ(x,α) = (α/π)1/4 e− α

2 x2 . The parity invari-

ance of the Hamiltonian implies that the energy eigenstates will be parity eigenstates. The ground
state will be an even function (ψ0(−x) = ψ0(x)), while the first excited state will be an odd function
(ψ1(−x) = −ψ(x)). The expectation value of the energy in any normalized state |ψ〉 will be

〈E〉 =
∑∞

n=0 |〈ψ|ψn〉|2 En∑∞
n=0 |〈ψ|ψn〉|2 . (18.114)

For an odd wave function ψ(−x) = −ψ(x) we have 〈ψ|ψ0〉 = 0 and therefore

〈E〉 = E1|〈ψ|ψ1〉|2 + ∑
n>1 |〈ψ|ψn〉|2 En

|〈ψ|ψ1〉|2 + ∑
n>1 |〈ψ|ψn〉|2 =⇒ 〈E〉 ≥ E1 . (18.115)

Using the odd trial wave function ψ1(x,α) = √
2
(

α3

π

)1/4
x e− α

2 x2 we compute the expectation

value of the energy E(α) minimizing it,t we obtain

E1 ≤ 3

(
3g4�2

4mπ

)1/3

≈ 2.72

(
g4�2

mπ

)1/3

. (18.116)

This is correctly above the previously estimated ground state energy

E0 = 3

2

(
�
2g4

2πm

)1/3

≈ 1.19

(
�
2g4

πm

)1/3

. (18.117)
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18.4.1 Application on the Helium Atom

The Hamilton operator for the Helium atom

Ĥ = p21
2me

+ p22
2me

− Ze2

r1
− Ze2

r2
+ e2

|r1 − r2| (18.118)

is made of a solvable part, consisting of two hydrogen-type Hamiltonians, and the
electron repulsion term. This term is not a priori small and cannot be safely treated as
a perturbation. The obvious alternative is to apply the variational method. A starting
point would be to observe that the effective charge of the nuclei felt by each of
the electrons is not exactly Z = 2 but is lowered due to the presence of the second
electron. This motivates us to treat Z as a variable parameter and introduce a trial
wave function corresponding to two independent copies of a hydrogen-like atom
with atomic numberZ . Thus, we embark in an application of the variational method,
taking as our trial wave function

�(r1, r2) = ψ100(r1)ψ100(r2) (18.119)

with

ψ100(r) =
(Z ′

a0

)3/2 e−Z ′r/a0

√
π

. (18.120)

We can rewrite the Hamiltonian as

Ĥ = p21
2me

+ p22
2me

− Z ′e2

r1
− Z ′e2

r2
− e2(2 − Z ′)

(
1

r1
+ 1

r2

)
+ e2

|r1 − r2| . (18.121)

The expectation value of the energy in this state is

E(Z ′) = −Z ′2e2

a0
− 2e2(2 − Z ′)

〈
1

r

〉
+ e2

∫
d3r1

∫
d3r2

|ψ100(r1)|2|ψ100(r2)|2
|r1 − r2| . (18.122)

The quantity 〈 1r 〉 is
〈
1

r

〉
= 1

π

(Z ′

a0

)3 ∫
d3r

e−2Z ′r/a0

r
= Z ′

a0
. (18.123)

The repulsion integral has been computed before in Sect. 15.5.2 for the case Z = 2.
We can obtain its value here by the replacement a0 → a0(2/Z ′). We obtain

e2
∫

d3r1

∫
d3r2

|ψ100(r1)|2|ψ100(r2)|2
|r1 − r2| = 5

8
Z ′ e2

a0
. (18.124)

Summing up we have
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E(Z ′) = − e2

a0

(
Z ′2 + 2Z ′(2 − Z ′) − 5

8
Z ′

)
. (18.125)

Minimizing we obtain

Z̄ = 2 − 5

16
=⇒ E0 = E(Z̄) = − e2

a0

(
2 − 5

16

)2

. (18.126)

The corresponding numerical value is −77.5eV, not far from the experimental value
of −79.0eV.

18.4.2 Variational Arguments on the Existence of Bound
States

The variational method is based on the fact that the ground state energy is always
smaller than the expectation value of the energy in any (trial) state. In the case of a
particle that moves in a localized potential with its value at infinity taken to be zero,
a bound state is a state with negative energy. Since the ground state energy is smaller
than the expectation value of the energy of any state, finding one trial wave function
with negative energy would be sufficient proof for the existence of a bound state. As
an example we may consider a particle moving under the influence of the Yukawa
potential V (r) = − g2

r e−r/r0 . Using a hydrogen-like trial wave function

ψ(r, α) = α3/2

√
π

e−αr (18.127)

we calculate the expectation value of the energy as

〈E〉α = �
2α3

2m
− 4g2α3

(
2α + 1

r0

)2 . (18.128)

It is clear that for

g2 >
�
2

8mr20
=⇒ 〈E〉α < 0 (18.129)

and, therefore,
E0 < 〈E〉α < 0 =⇒ E0 < 0 . (18.130)

It is useful to note that theVirial Theorem, combinedwith the above argument, can
also be used to answer the question of the existence of bound states. For monomial
nonnegative central potentials of the form V (r) = λ rn the Virial theorem takes
the form 〈T 〉 = n

2 〈V 〉, which implies that 〈E〉 = (
2
n + 1

) 〈T 〉 and negative energy
arises for n ≥ −2.
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18.5 Time-Independent Perturbation Theory

Consider a physical system with a Hamiltonian

Ĥ = Ĥ0 + λ V̂ (18.131)

that is composed of two parts, a solvable part Ĥ0, with a known set of eigenstates and
eigenvalues, and a part λ V̂ that can be considered as a perturbation,5 characterized
by a “small” parameter λ. Let |ψ(0)

n 〉 and E (0)
n be the eigenstates and eigenvalues of

the soluble part6

Ĥ0|ψ(0)
n 〉 = E (0)

n |ψ(0)
n 〉 (18.132)

and let |ψn〉 and En be the exact eigenstates and eigenvalues of the full Hamiltonian

Ĥ |ψn〉 = En |ψn〉 . (18.133)

The basic idea of Perturbation Theory is to obtain approximate solutions to
(18.133) in the form of power series in λ, namely,

En = E (0)
n + λ E (1)

n + λ2 E (2)
n + . . .

|ψn〉 = |ψ(0)
n 〉 + λ |ψ(1)

n 〉 + λ2 |ψ(2)
n 〉 + . . .

(18.134)

The success of the perturbation theory procedure depends on the form of each partic-
ular perturbation V and from a mathematical point of view relies on the convergence
or, at least, on the asymptotic character of the perturbation series (18.134).

We assume that the unperturbed eigenstates are normalized in the standard way,
namely,

〈ψ(0)
n |ψ(0)

n′ 〉 = δnn′ . (18.135)

Although we could normalize the exact eigenstates |ψn〉 in the same way, we are free
to adopt an unconventional normalization, the merit of which will become clear in
what is to follow. Therefore, we normalize the exact eigenstates according to

〈ψ(0)
n |ψn〉 = 1 . (18.136)

Note that this implies

〈ψ(0)
n | ( |ψ(0)

n 〉 + λ|ψ(1)
n 〉 + λ2|ψ(2)

n 〉 + . . .
) = 1

5For the treatment of perturbation theory see also [1, 3–5].
6We assume that the spectrum is discrete. The formulation of perturbation theory in the case of
continuous spectrum will be presented in the chapter on Scattering. In addition, here, we assume
that the eigenvalue spectrum is nondegenerate. We shall deal with the case of degeneracies in a
particular subsection.
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or
〈ψ(0)

n |ψ( j)
n 〉 = 0 for j ≥ 1 . (18.137)

Substituting the expansions (18.134) into (18.133) we obtain

(
Ĥ0 + λV̂

) (|ψ(0)
n 〉 + λ |ψ(1)

n 〉 + λ2 |ψ(2)
n 〉 + . . .

) =
(

E (0)
n + λ E (1)

n + λ2 E (2)
n + . . .

) (|ψ(0)
n 〉 + λ |ψ(1)

n 〉 + λ2 |ψ(2)
n 〉 + . . .

)
.

(18.138)

After some manipulations, equating the coefficients of each power of λ, we obtain

Ĥ0|ψ(1)
n 〉 + V̂ |ψ(0)

n 〉 = E (0)
n |ψ(1)

n 〉 + E (1)
n |ψ(0)

n 〉

Ĥ0|ψ(2)
n 〉 + V̂ |ψ(1)

n 〉 = E (0)
n |ψ(2)

n 〉 + E (1)
n |ψ(1)

n 〉 + E (2)
n |ψ(0)

n 〉
. . . . . .

(18.139)

or, generally for j ≥ 1

Ĥ0|ψ( j)
n 〉 + V̂ |ψ( j−1)

n 〉 = E (0)
n |ψ( j)

n 〉 + E (1)
n |ψ( j−1)

n 〉 + . . . + E ( j)
n |ψ(0)

n 〉 .

(18.140)

The first of the relations (18.139) allows us to determine the first-order correction to
the energy eigenvalue. Taking the inner product with |ψ(0)

n 〉 we obtain

〈ψ(0)
n |Ĥ0|ψ(1)

n 〉 + 〈ψ(0)
n |V̂ |ψ(0)

n 〉 = E (0)
n 〈ψ(0)

n |ψ(1)
n 〉 + E (1)

n 〈ψ(0)
n |ψ(0)

n 〉 (18.141)

or, after we take into account (18.137)

E (1)
n = 〈ψ(0)

n |V̂ |ψ(0)
n 〉 . (18.142)

We may also use the first-order relation of the set (18.139) to obtain the first-order
correction to the corresponding eigenstate. Multiplying with a different unperturbed
eigenstate |ψ(0)

m 〉, we obtain

〈ψ(0)
m |Ĥ0|ψ(1)

n 〉 + 〈ψ(0)
m |V̂ |ψ(0)

n 〉 = E (0)
n 〈ψ(0)

m |ψ(1)
n 〉 + E (1)

n 〈ψ(0)
m |ψ(0)

n 〉 (18.143)

or
E (0)

m 〈ψ(0)
m |ψ(1)

n 〉 + 〈ψ(0)
m |V̂ |ψ(0)

n 〉 = E (0)
n 〈ψ(0)

m |ψ(1)
n 〉 (18.144)

or

〈ψ(0)
m |ψ(0)

n 〉 = 〈ψ(0)
m |V̂ |ψ(0)

n 〉
E (0)

n − E (0)
m

. (18.145)

Using completeness, we have
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|ψ(1)
n 〉 =

∑

m =n

|ψ(0)
m 〉〈ψ(0)

m |ψ(1)
n 〉 (18.146)

or

|ψ(1)
n 〉 =

∑

m =n

〈ψ(0)
m |V̂ |ψ(0)

n 〉
E (0)

n − E (0)
m

|ψ(0)
m 〉 . (18.147)

Note that, if degeneracies occur and more than one state corresponds to the same
energy level, the denominator vanishes and the above expression is not valid. Thus,
here we explicitly assume that no degeneracies occur. The treatment of degeneracies
will be treated in a subsequent subsection on Degenerate Perturbation Theory.

Having obtained these first-order corrections, we can proceed and compute the
next order corrections. For example, the second-order correction to the energy eigen-
values is obtained by multiplying the corresponding relation in (18.139) with |ψ(0)

n 〉

〈ψ(0)
n |Ĥ0|ψ(2)

n 〉 + 〈ψ(0)
n |V̂ |ψ(1)

n 〉 = E (0)
n 〈ψ(0)

n |ψ(2)
n 〉 + E (1)

n 〈ψ(0)
n |ψ(1)

n 〉 + E (2)
n 〈ψ(0)

n |ψ(0)
n 〉

or
E (2)

n = 〈ψ(0)
n |V̂ |ψ(1)

n 〉 (18.148)

and, using (18.147),

E (2)
n =

∑

m==n

|〈ψ(0)
n |V̂ |ψ(0)

m 〉|2
E (0)

n − E (0)
m

. (18.149)

Similarly, multiplying the second equation of the set (18.139) by an eigenstate |ψ(0)
m 〉

for m = n, we obtain

〈ψ(0)
m |Ĥ0|ψ(2)

n 〉 + 〈ψ(0)
m |V̂ |ψ(1)

n 〉 = E (0)
n 〈ψ(0)

m |ψ(2)
n 〉 + E (1)

n 〈ψ(0)
m |ψ(1)

n 〉 + E (2)
n 〈ψ(0)

m |ψ(0)
n 〉

or

〈ψ(0)
m |ψ(2)

n 〉 = 〈ψ(0)
m |V̂ |ψ(1)

n 〉
E (0)

n − E (0)
m

(18.150)

and using completeness

|ψ(2)
n 〉 =

∑

m =n

〈ψ(0)
m |V̂ |ψ(1)

n 〉
E (0)

n − E (0)
m

|ψ(0)
m 〉 . (18.151)

The complete second-order expressions are
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E (2)
n = ∑

m =n
|〈ψ(0)

n |V̂ |ψ(0)
m 〉|2

E (0)
n −E (0)

m

|ψ(2)
n 〉 = ∑m ′ =n

m =n
〈ψ(0)

m |V̂ |ψ(0)
m′ 〉〈ψ(0)

m′ |V̂ |ψ(0)
n 〉

(E (0)
n −E (0)

m′ )(E (0)
n −E (0)

m )
|ψ(0)

m 〉 − ∑
m =n

〈ψ(0)
m |V̂ |ψ(0)

n 〉〈ψ(0)
n |V̂ |ψ(0)

n 〉
(E (0)

n −E (0)
m )2

|ψ(0)
m 〉.

(18.152)

Example 18.6 Consider a simple harmonic oscillator subject to an anharmonic per-
turbation λ x4 and calculate the first-order correction to the energy eigenvalue and
eigenstate of the ground state.

We have

E (1)
0 = 〈0|x4|0〉 =

∣∣∣
∣∣∣x2|0〉

∣∣∣
∣∣∣
2 = �

2

4(mω)2

∣∣∣∣

∣∣∣∣
(

a + a†
)2 |0〉

∣∣∣∣

∣∣∣∣
2

= �
2

4(mω)2

∣∣∣
∣∣∣
(

a2 + a†2 + a†a + aa†
)

|0〉
∣∣∣
∣∣∣
2 = �

2

4(mω)2

∣∣∣
∣∣∣
(

a2 + a†2 + 2a†a + 1
)

|0〉
∣∣∣
∣∣∣
2

= �
2

4(mω)2

∣∣∣
∣∣∣
√
2|2〉 + |0〉

∣∣∣
∣∣∣
2 = 3�2

4(mω)2
. (18.153)

For the corresponding correction to the ground state, we have

|ψ(1)
0 〉 =

∞∑

n=1

〈n|x4|0〉
E (0)
0 − E (0)

n

|n〉 . (18.154)

In particular, we have

x2|n〉 = �

2mω

(
a2 + a†2 + 2a†a + 1

)
|n〉 =

�

2mω

(√
n(n − 1)|n − 2〉 + √

(n + 1)(n + 2)|n + 2〉 + (2n + 1)|n〉
)

(18.155)

and

x2|0〉 = �

2mω

(√
2|2〉 + |0〉

)
. (18.156)

Therefore,

〈n|x4|0〉 = �
2

4(mω)2

(
δn,4

√
4
√
3
√
2 + 6

√
2δn,2

)
. (18.157)

Finally, we have

|ψ(1)
0 〉 = −�

4m2ω3

∞∑

n=1

1

n

(
δn,4

√
4
√
3
√
2 + 6

√
2δn,2

)
|n〉 = −�

8m2ω3

(
6
√
2|2〉 + √

6|4〉
)

.

(18.158)
The complete first-order eigenvalue and state are

E0 = 1
2�ω + 3λ�

2

4(mω)2

|ψ0〉 = |0〉 − �λ
8m2ω3

(
6
√
2|2〉 + √

6|4〉
)

.

(18.159)
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18.5.1 An Application: The Stark Effect

Consider a hydrogen atom subject to a homogeneous electric field EEE . The corre-
sponding potential energy term is −eEEE · r. Assuming that the field is weak enough,
it can be treated as a perturbation. This assumption is substantiated as

e2

a0
� |eE |a0 =⇒ |eE | � e2/a3

0 . (18.160)

Although the unperturbed energy spectrum is degenerate, it is instructive to apply the
previously analyzed machinery of perturbation theory to explore the basic features
of the corrections. The lowest order correction to the energy eigenvalues has to be
proportional to the matrix elements 〈n, �, m|r|n, �′, m ′〉. Note, however, that r is odd
under parity and PrP = −r. Thus, we have

〈n, �, m|r|n, �′, m′〉 = −〈n, �, m|PrP|n, �′, m′〉 = −(−1)�+�′ 〈n, �, m|r|n, �′, m′〉,

which implies that this matrix element vanishes unless � + �′ is a odd number. With-
out loss of generality we can choose the ẑ-axis along the direction of the electric field.
Then, the relevant matrix elements are 〈n, �, m|z|n., �′, m ′〉. Since z is unaffected by
rotations around the ẑ-axis (i.e., e

i
�

αL̂ z ze− i
�

αL̂ z = z), we have

〈n�m|z|n′�′m ′〉 = 〈n�m|e i
�

αL̂ z ze− i
�

αL̂ z |n′�′m ′〉 = ei(m−m ′)α〈n�m|z|n′�′m ′〉,

which implies that matrix elements with only m ′ = m arise. Thus, the first-order
correction to the energy levels (Linear Stark Effect) is

E (1)
n��′ = −eE〈n, �, m|z|n, �′, m〉 (18.161)

with �′ + � = odd. Note that the operator involved in the linear Stark effect is the
electric dipole moment operator de = e r. Specifically, for the ground state energy
the first-order correction vanishes, since it is proportional to 〈100|z|100〉. In contrast,
for the first excited set of states |2, �, m〉 there is nonvanishing first-order correction

E (1)
2 = −eE

⎛

⎝
〈2, 0, 0|z|2, 0, 0〉 〈2, 0, 0|z|2, 1, 0〉

〈2, 1, 0|z|2, 0, 0〉 〈2, 1, 0|z|2, 1, 0〉

⎞

⎠ = 3eEa0

⎛

⎝
0 1

1 0

⎞

⎠ ,

(18.162)
where, inserting the specific wave functions, we obtain 〈2, 0, 0|z|2, 1, 0〉 = −3a0.
Thus, to first order, the n = 2 energy eigenstates are

|2,±〉 = 1√
2

(|2, 0, 0〉 ± |2, 1, 0〉) =⇒ En=2 = − e2

4a0
± 3Ea0 . (18.163)
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Since there is no first-order correction to the ground state energy, we proceed to
consider the second-order correction

E (2)
100 = e2E2

∞∑

n=2

n−1∑

�=odd

|〈1, 0, 0|z|n, �, 0〉|2
E (0)
1 − E (0)

n

. (18.164)

The matrix elements involved are

〈1, 0, 0|z|n, �, 0〉 =
∫

d� Y ∗
00Y�0 cos θ

∫ ∞

0
dr r3 R10(r) Rn�(r)

= 1√
3

∫
d� Y ∗

10Y�0

∫ ∞

0
dr r3 R10(r) Rn�(r)

or

〈1, 0, 0|z|n, �, 0〉 = δ�1√
3

∫ ∞

0
dr r3 R10(r) Rn1(r) . (18.165)

Thus, the above sum reduces to

E (2)
100 = e2E2

3E (0)
1

∞∑

n=2

∣∣∫∞
0 drr3R10Rn1

∣∣2

1 − 1/n2
. (18.166)

The integral involved on dimensional grounds will be proportional to a0. Therefore,
the final expression will be in the form

E (2)
100 = E2a3

0 C2 , (18.167)

where C2 stands for

C2 = 1

3

∞∑

n=2

| ∫∞
0 dx x3 R10(x)Rn1(x)|2

1 − 1/n2

with x = r/a0 in the argument of radial wave functions. The exact value of this sum
is C2 = 9/4. Therefore, the second-order correction of the ground state (Quadratic
Stark Effect) is

E (2)
100 = 9

4
E2a3

0 . (18.168)

18.5.2 An Application: van der Waals Forces

Consider two hydrogen atoms. The Hamiltonian of the full system can be written as
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Ĥ = Ĥ0 + V̂ , (18.169)

where Ĥ0 is the soluble part of two hydrogen atom Hamiltonians

Ĥ0 = p2
1

2me
+ p2

2

2me
− e2

r1
− e2

r2
(18.170)

and V̂ is

V̂ = e2

R
− e2

|R + r2| − e2

|R − r1| + e2

|R + r2 − r1| . (18.171)

We are treating the distance R between the atoms as a parameter and assume that it
is quite large in comparison to the size of the atoms (R � a0). Thus, the interaction
term is proportional to inverse powers of R and can be treated as a perturbation.
Expanding in 1/R we obtain

V̂ ≈ e2

R3
(x1x2 + y1y2 − 2z1z2) + O(R−4) . (18.172)

For the ground state of Ĥ0, i.e., ψ100(r1)ψ100(r2), the first-order shift to the energy
vanishes and we must consider the second-order correction

E (2)
1 = −a0e2

R6

∑

n1,n2 =1

|〈100, 100| (x1x2 + y1y2 − 2z1z2) |n1�1m1, n2�2m2〉|2
2 − 1

n2
1
− 1

n2
2

.

(18.173)
This sum is of the form

E (2)
1 = − e2

2a0

(a0

R

)6
C2 , (18.174)

where C2 is a dimensionless number to be computed by performing the integral.

18.5.3 Neighboring Energy Levels

It often occurs that two energy levels are very close. As a result, very large terms
of the form 〈ψ(0)

n |V̂ |ψ(0)
m 〉/ (E (0)

n − E (0)
m

)
may arise, something that would make the

convergence of the perturbation series problematic.Away to circumvent this problem
is to consider separately this set of states. We shall illustrate this procedure in the
simple case of two such states.

The potential operator can be written as

V̂ =
∑

i, j

|ψ(0)
i 〉 Vi j 〈ψ(0)

j | , (18.175)
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where Vi j = 〈ψ(0)
i |V̂ |ψ(0)

j 〉. Isolating the two problematic states |ψ(0)
n 〉, |ψ(0)

m 〉, we
have

V̂ = V̂1 + V̂2 , (18.176)

where

V̂1 = |ψ(0)
m 〉〈ψ(0)

m |Vmm + |ψ(0)
m 〉〈ψ(0)

n |Vmn + |ψ(0)
n 〉〈ψ(0)

m |Vnm + |ψ(0)
n 〉〈ψ(0)

n |Vnn

(18.177)
and

V̂2 =
∑

i, j =n,m

|ψ(0)
i 〉 Vi j 〈ψ(0)

j | . (18.178)

The Hamiltonian Ĥ1 = Ĥ0 + V̂1 can be solved exactly. This goes as follows: Any
state |ψ(0)

j 〉with j = n, m is an eigenstate of Ĥ1 because of orthogonality. Therefore,

Ĥ1|ψ(0)
j 〉 = Ĥ0|ψ(0)

j 〉 = E (0)
j |ψ(0)

j 〉 . (18.179)

Then, acting on a linear combination of the neighboring states and demanding that
it corresponds to an eigenstate

Ĥ1
(

C |ψ(0)
n 〉 + D|ψ(0)

m 〉) = E
(

C |ψ(0)
n 〉 + D|ψ(0)

m 〉) , (18.180)

we obtain the system of equations

(
E (0)

n + Vnm − E
)

C + Vnm D = 0

VmnC + (
E (0)

m + Vmn − E
)

D = 0.
(18.181)

The corresponding determinant of the system leads to the E-eigenvalue equation

∣∣∣∣∣∣

E (0)
n + Vnn − E Vnm

Vmn E (0)
m + Vmn − E

∣∣∣∣∣∣
= 0 (18.182)

E± = 1

2

(
E (0)

n + E (0)
m + Vnn + Vmm ± √

�
)

, (18.183)

where� = (
E (0)

n − E (0)
m + Vnm − Vmn

)2 + |Vnm |2 . The corresponding solution for
the coefficients reads

C = −D
Vnm

E (0)
n + Vnn − E±

(18.184)

and, after normalization, D = 1/
√
1 + |Vnm |2/(E (0)

n + Vnn − E±)2.

Next, we can replace the states |ψ(0)
n 〉, |ψ(0)

m 〉 with the states
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|ψ(0)
± 〉 = C |ψ(0)

n 〉 + D|ψ(0)
m 〉 =⇒ E± . (18.185)

Now, the set of unperturbed eigenstates
{
|ψ(0)

± 〉, |ψ(0)
j 〉

}
with j = n, m does not

contain any states of neighboring eigenvalues. Note that

E+ − E− =
√

(Vmm − Vnn)
2 + 4|Vnm |2 , (18.186)

which is not necessarily small. Thus, we may proceed to formulate perturbation

theory for V̂2 using as the “unperturbed set” the set
{
|ψ(0)

± 〉, |ψ(0)
j 〉

}
.

Example 18.7 Consider the case of a three-level system7 with the Hamiltonian

H = H0 + λV =

⎛

⎜⎜⎜⎜
⎝

E + δ 0 0

0 E − δ 0

0 0 E ′

⎞

⎟⎟⎟⎟
⎠

+ λ

⎛

⎜⎜⎜⎜
⎝

0 1 1

1 0 1

1 1 1

⎞

⎟⎟⎟⎟
⎠

. (18.187)

Calculate the second-order corrections to the energy eigenvalues.

If δ is small (i.e., of the order of λ), in order to avoid large numbers of O(1/δ) occurring to
second order, we may apply the above procedure and redefine the problem as

H = H̄0 + λV̄

with

H̄0 =

⎛

⎜⎜⎜
⎝

E + δ λ 0

λ E − δ 0

0 0 E ′

⎞

⎟⎟⎟
⎠

and V̄ =

⎛

⎜⎜⎜
⎝

0 0 1

0 0 1

1 1 1

⎞

⎟⎟⎟
⎠

The eigenvalues of H̄0 are given by
∣∣∣∣∣∣

E + δ − Ē λ

λ E − δ − Ē

∣∣∣∣∣∣
= 0 =⇒ Ē = E ±

√
λ2 + δ2 , (18.188)

while the corresponding eigenstates are

¯|1〉 = N1
(
λ|1〉 + (Ē+ − E − δ)|2〉)

¯|2〉 = N2
(
λ|1〉 + (Ē− − E − δ)|2〉)

(18.189)

with N1,2 = (
λ2 + (Ē± − E − δ)2

)−1/2
.

7The eigenvalue problem of any two-level system is trivially soluble. This is not the case, however,
of a general three-level system, since it involves a cubic equation, the algebraic solution of which
is rather hairy.
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The first-order corrections are

Ē (1)
1 = ¯〈1| V̄ ¯|1〉 = 0, Ē (1)

2 = ¯〈2| V̄ ¯|2〉 = 0 (18.190)

and
Ē (1)
3 = 〈3| ˆ̄V |3〉 = 1 . (18.191)

The second-order correction of E1 is

E (2)
1 =

∣∣ ¯〈1| V̄ ¯|2〉∣∣2
Ē1 − Ē2

+
∣∣∣ ¯〈1| ˆ̄V |3〉

∣∣∣
2

Ē1 − E3
= |N+|2

∣∣λ + (Ē+ − E − δ)
∣∣2

Ē+ − E ′ (18.192)

and similarly for

E (2)
2 = |N−|2

∣∣λ + (Ē− − E − δ)
∣∣2

Ē− − E ′ , E (2)
3 =

∣∣〈3|V̄ ¯|1〉∣∣2
E3 − Ē+

+
∣∣〈3|V̄ ¯|2〉∣∣2
E3 − Ē−

= |N+|2 |λ + Ē+ − E − δ|2
E ′ − Ē+

+ |N−|2 |λ + Ē− − E − δ|2
E ′ − Ē−

. (18.193)

18.5.4 Degenerate Perturbation Theory

Degeneracies in the energy spectrum are very common among most soluble three-
dimensional problems for the same reason that these problems are soluble, i.e.,
because of the occurrence of symmetries. For example, in the case of the hydrogen
atom there are n2 different eigenstates |n, �, m〉 of the same energy En = −e2/2n2a0.
As a result, in the expressions of perturbative expansions as presented so far, there
will be terms with vanishing denominators like

〈n�m|V̂ |n�′m ′〉
E (0)

n − E (0)
n

= ∞ .

A method to treat this problem, similar to the one employed for neighboring energy
levels, is to isolate the group of degenerate states and introduce an equal number
of linear combinations of them that diagonalize the perturbing potential, since only
off-diagonal matrix elements arise in the perturbative expansion series.

Consider a set of eigenstates

|ψ(0)
na

〉, |ψ(0)
nb

〉, . . . , |ψ(0)
n f

〉 , (18.194)

all corresponding to one and the same eigenvalue E (0)
n , namely,

Ĥ0|ψ0)
ni

〉 = E (0)
n |ψ(0)

ni
〉 (i = a, b, . . . , f ) . (18.195)

Note that any linear combination of these states will also be an eigenstate with the
same eigenvalue. We therefore are free to introduce an equal number of eigenstates
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|ψ(0)
nα

〉 =
∑

i=a,b,... f

Dα i |ψ(0)
ni

〉 . (18.196)

We demand that the matrix Dα i is such that the above states diagonalize the operator
V̂ , namely,

〈ψ(0)
nα

|V̂ |ψ(0)
nβ

〉 = Vαδαβ . (18.197)

This leads to the condition

∑

i, j

D∗
α i V (n)

i j Dβ j = V (n)
α δαβ . (18.198)

We have introduced the notation

V (n)
i j = 〈ψ(0)

ni
|V̂ |ψ(0)

n j
〉, V (n)

α = 〈ψ(0)
nα

|V̂ |ψ(0)
nα

〉 . (18.199)

Orthonormality of the states |ψ(0)
nα

〉 implies

∑

i

D∗
α i Dβ i = δαβ . (18.200)

Thus, the relation (18.198) can be written as

∑

i

D∗
α i

⎛

⎝
∑

j

V (n)
i j Dβ j − V (n)

α Dβ i

⎞

⎠ = 0 , (18.201)

which in turn implies ∑

j

V (n)
i j Dβ j = V (n)

β Dβ i . (18.202)

Thus, for each β the corresponding D-column is the eigenvector of the matrix V (n)
i j

with eigenvalue V (n)

β .

Example 18.8 Consider the three-level system of Example 18.7 in the degenerate
case of δ = 0. Apply the above procedure and compute the second-order corrections
to the energy eigenvalues.

We have

Ĥ0 =

⎛

⎜⎜⎜
⎝

E 0 0

0 E 0

0 0 E ′

⎞

⎟⎟⎟
⎠

V̂ = λ

⎛

⎜⎜⎜
⎝

0 1 1

1 0 1

1 1 1

⎞

⎟⎟⎟
⎠

. (18.203)
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Instead of the unperturbed eigenstates

|1〉 =⇒
⎛

⎝
1
0
0

⎞

⎠ , |2〉 =⇒
⎛

⎝
0
1
0

⎞

⎠ , |3〉 =⇒
⎛

⎝
0
0
1

⎞

⎠ , (18.204)

we use as a basis the set

|+〉 =⇒ 1√
2

⎛

⎝
1
1
0

⎞

⎠ , |−〉 =⇒ 1√
2

⎛

⎝
1

−1
0

⎞

⎠ , |3〉 =⇒
⎛

⎝
0
0
1

⎞

⎠ , (18.205)

which correspond to the same set of eigenvalues of Ĥ0, namely, E, E, E ′ and have the property
〈+|V̂ |−〉 = 0. Thus, we have

E (1)
1 = 〈+|V̂ |+〉 = 1

2
(V11 + V22 + V12 + V21) = 1 (18.206)

E (1)
2 = 〈−|V̂ |−〉 = 1

2
(V11 + V22 − V12 − V21) = −1 (18.207)

E (1)
3 = 〈3|V̂ |3〉 = V33 = 1 (18.208)

and

E (2)
1 = |V+3|2

E − E ′ = 1

2

(V13 + V23)
2

E − E ′ = 2

E − E ′ (18.209)

E (2)
2 = |V−3|2

E − E ′ = 1

2

(V13 − V23)
2

E − E ′ = 0 (18.210)

E (2)
3 = |V3+|2

E ′ − E
+ |V3−|2

E ′ − E
= 1

2(E ′ − E)

(
(V31 + V32)

2 + (V31 − V32)
2
)

= 2

E ′ − E
. (18.211)

18.6 Time-Dependent Perturbation Theory

When atoms are subject to electromagnetic radiation, we have a case of charged
particles (electrons) under the influence of time-dependent electric and magnetic
fields. In view of the smallness of the electron charge (e2/�c ∼ 1/137), a problem
like this can be treated in the framework of Time-Dependent Perturbation Theory [1,
4, 5].

A problem of time-dependent perturbations corresponds to a Hamiltonian of the
form

Ĥ = Ĥ0 + Ĥint (t) , (18.212)

consisting of a known part and a time-dependent perturbation Ĥint (t), which is
somehow “small”. An ideal starting point to formulate time-dependent perturbation
theory is the interaction picture in which the Schroedinger equation takes the form

d

dt
|ψI (t)〉 = ĤI (t)|ψI (t)〉 , (18.213)
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where

ĤI (t) = Û †
0 (t, t0) Ĥint (t) Û0(t, t0)

(
Û0(t, t0) = e− i

�
Ĥ0(t−t0)

)
. (18.214)

The relation of interaction picture state vectors to the Schroedinger ones is quite
simple, namely,

|ψI (t)〉 = Û †
0 (t, t0)|ψS(t)〉 . (18.215)

We may transform (18.213) into an integral equation by integrating with respect
to time. We have

|ψI (t)〉 = |ψI (t0)〉 − i

�

∫ t

t0

dt ′ ĤI (t
′)|ψI (t

′)〉 . (18.216)

A series of successive approximations to this equation is

|ψI (t)〉(0) = |ψI (t0)〉

|ψI (t)〉(1) = |ψI (t0)〉 − i
�

∫ t
t0

dt ′ ĤI (t ′) |ψI (t0)〉

|ψI (t)〉(2) = |ψI (t0)〉 − i
�

∫ t
t0

dt ′ ĤI (t ′) |ψI (t0)〉 − 1
�2

∫ t
t0

dt ′
∫ t ′

t0
dt ′′ ĤI (t ′)ĤI (t ′′)|ψI (t0)〉

. . .

(18.217)
Assume now that initially, at t0, the system occupies an eigenstate8 |0〉 of Ĥ0, corre-
sponding to the unperturbed energy eigenvalue E0

|ψI (t0)〉 = |ψS(t0)〉 = |0〉 . (18.218)

A quantity of interest is the probability amplitude to make a transition to another
eigenstate |n〉 = |0〉 of Ĥ0 at time t > t0

〈n|ψS(t)〉 = 〈n|Û0(t, t0)|ψI (t)〉 = e− i
�

En(t−t0)〈n|ψI (t)〉 . (18.219)

To a first approximation the corresponding probability of such a transition is

P0→n(t) = |〈n|ψS(t)〉|2 = 1

�2

∣∣∣∣

∫ t

t0

dt ′〈n|ĤI (t
′)|0〉

∣∣∣∣

2

(18.220)

or

P0→n(t) = |〈n|ψS(t)〉|2 = 1

�2

∣∣∣∣

∫ t

t0

dt ′e
i
�

(En−E0)(t ′−t0)〈n|Ĥint (t
′)|0〉

∣∣∣∣

2

. (18.221)

8|0〉 should not be confused with the harmonic oscillator ground state.
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18.6.1 Temporal Step-Function Potential

Let’s consider the case that a potential is turned on at some time t0 and stays constant
for all subsequent times

Ĥint (t) = V̂0 �(t − t0) . (18.222)

Taking t0 as our initial time we have

P0→n(t) = |〈n|ψS(t)〉|2 = 1

�2

∣∣∣〈n|V̂0|0〉
∣∣∣
2
∣∣∣∣

∫ t

t0

dt ′e
i
�

(En−E0)(t ′−t0)

∣∣∣∣

2

. (18.223)

The time integral is

∫ t

t0

dt ′e
i
�

(En−E0)(t ′−t0) = − i�

(En − E0)

(
ei(t−t0)(En−E0)/� − 1

)

= 2�e
i
2�

(En−E0)(t−t0)

(En − E0)
sin

(
(En − E0)(t − t0)

2�

)
(18.224)

and the probability is given by

P0→n(t) = 1

�2

∣∣∣〈n|V̂0|0〉
∣∣∣
2

⎛

⎝
sin

(
(En−E0)(t−t0)

2�

)

(En−E0)

2�

⎞

⎠

2

. (18.225)

In Fig. 18.5, we have plotted the transition probability as a function of time. For small
time intervals t − t0 ∼ 0 the transition probability P0→n behaves as t2 for all En’s.
At later times the probability develops maxima at E0 ± (2n+1)π�

(t−t0)
, proportional to t2

and with a spread ∼ 1/t . The eigenvalues En of maximal probability are contained
in the region

|En − E0| <
2π�

(t − t0)
. (18.226)

Suppose now that the state |n〉 is a member of continuum of states {n}. Then, the
total transition rate 0 → {n} will be

P0→{n}(t) = 1

�2

∑

n

∣∣∣〈n|V̂0|0〉
∣∣∣
2

⎛

⎝
sin

(
(En−E0)(t−t0)

2�

)

(En−E0)

2�

⎞

⎠

2

. (18.227)

For a continuum of final states the sum is symbolic and should be replaced by an
integral

∫
dn . . . or an integral over the energy

∫
d E ρ(E) . . . , where ρ(E) is the

density of states, defined as the “number of states” per unit of energy, i.e., dn/d E .
Thus, we may write
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Fig. 18.5 Transition probability

P0→{n}(t) = 1

�2

∫
d E ρ(E)

∣∣∣〈E |V̂0|0〉
∣∣∣
2

⎛

⎝
sin

(
(E−E0)(t−t0)

2�

)

(E−E0)

2�

⎞

⎠

2

. (18.228)

At very late times t − t0 → +∞ we may use the fact that

lim
t→∞

(
sin2(xt)

x2t

)
= π δ(x) . (18.229)

Then, we have

P0→{n}(t) = 2π

�

∫
d Eρ(E)|〈E |V̂0|0〉|2δ(E − E0)(t − t0) = 2π

�
(t − t0)|〈0|V̂0|0〉|2ρ(E0).

(18.230)
Dividing this probability by the time, we obtain the total rate of transitions

�0→{n} = 2π

�
ρ(E0)

∣∣∣〈0|V̂0|0〉
∣∣∣
2

. (18.231)

This is the so-called Fermi’s Golden Rule.
It is possible that the abovefirst-order contribution to the transitionprobabilitymay

vanish. Then, assuming that 〈0|V̂0|n〉 = 0, the second-order contribution becomes
important. Going back to (18.217) we have

〈n|ψI (t)〉(2) = − 1

�2

∫ t

t0

dt ′
∫ t ′

t0

dt ′′ e
i
�

En(t ′−t0)e− i
�

E0(t ′′−t0)〈n|V̂0e− i
�

Ĥ0(t ′−t ′′)V̂0|0〉

= − 1

�2

∑

m

∫ t

t0

dt ′
∫ t ′

t0

dt ′′ e
i
�

En(t ′−t0)e− i
�

E0(t ′′−t0)〈n|V̂0|m〉〈m|V̂0|0〉 e− i
�

Em (t ′−t ′′) ,
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having inserted a complete set of unperturbed eigenstates
∑ |m〉〈m| = I. Note that

the sum does not include m = 0, n, since the corresponding matrix element contri-
butions vanish. Doing the time integrals we obtain

〈n|ψI (t)〉(2) = i
1

�

∑

m

〈n|V̂0|m〉〈m|V̂0|0〉
(Em − E0)

{
e

i
2�

(En−E0)(t−t0) sin [(En − E0)(t − t0)/2�]

(En − E0)/2�

−e
i
2�

(En−Em )(t−t0)
sin [(En − Em)(t − t0)/2�]

(En − Em)/2�

}
. (18.232)

Considering the very-late-times limit t � t0 andmaking use of the property (18.229),
we see that the second term is proportional to δ(En − Em). However, since Em = En ,
this term will necessarily vanish. Thus, our result is

〈n|ψI (t)〉(2) = i

�
e

i
2�

(En−E0)(t−t0)
sin [(En − E0)(t − t0)/2�]

(En − E0)/2�

∑

m

〈n|V̂0|m〉〈m|V̂0|0〉
(Em − E0)

(18.233)
and the corresponding probability for t � t0 will be

P0→n(t) = 1

�2

(
sin [(En − E0)(t − t0)/2�]

(En − E0)/2�

)2
∣∣∣∣∣

∑

m

〈n|V̂0|m〉〈m|V̂0|0〉
(Em − E0)

∣∣∣∣∣

2

(18.234)

or

P0→n(t) = 2π

�
δ(En − E0)

sin [(En − E0)(t − t0)/2�]

(En − E0)/2�

∣∣∣∣
En=E0

∣∣∣∣∣

∑

m

〈n|V̂0|m〉〈m|V̂0|0〉
(Em − E0)

∣∣∣∣∣

2

= 2π

�
δ(En − E0) (t − t0)

∣∣∣∣∣

∑

m

〈n|V̂0|m〉〈m|V̂0|0〉
(Em − E0)

∣∣∣∣∣

2

. (18.235)

The total probability of transitions to a continuum {n} will be

P0→{n}(t) =
∫

d E ρ(E)
2π

�
δ(E − E0) (t − t0)

∣∣∣∣∣

∑

m

〈n|V̂0|m〉〈m|V̂0|0〉
(Em − E0)

∣∣∣∣∣

2

(18.236)
or

P0→{n}(t) = 2π

�
ρ(E0) (t − t0)

∣∣∣∣∣

∑

m

〈n|V̂0|m〉〈m|V̂0|0〉
(Em − E0)

∣∣∣∣∣

2

. (18.237)

Thus, the corresponding rate will be
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�0→{n} = 2π

�
ρ(E0)

∣∣∣∣∣

∑

m

〈n|V̂0|m〉〈m|V̂0|0〉
(Em − E0)

∣∣∣∣∣

2

. (18.238)

This second-order transition amplitude can be interpreted as a two-stage process,
consisting of a transition |0〉 → |m〉 and a second transition |m〉 → |n〉. Note also
that although the two intermediate transitions (virtual transitions) do not conserve
the energy (E0 = Em and Em = En), the overall process conserves the energy, since
En = E0.

Example 18.9 A simple harmonic oscillator is subject to an external time-dependent
force

Ĥint (t) = J (t) x(t) with J (t) = J0 �(t − t0) . (18.239)

At times t < t0 the system occupies the harmonic oscillator ground state |0〉.
(a) Use the interaction picture time-ordered exponential formula to calculate the

probability that the system stays in this state at times t > t0.
(b) Calculate the above probability to lowest nontrivial order in time-dependent

perturbation theory.

For the part (a) we have P(t) = |〈0|ψI (t)〉|2 = |〈0|ÛI (t, t0)|0〉|2 . The evolution operator is

ÛI (t, t0) = T
(

e
− i

�

∫ t
t0

dt ′ J0 x̂ I (t ′)
)

= T
(

eÂ+B̂
)

, (18.240)

where

Â(t) = − i J0√
2�mω

∫ t

t0
dt ′â†

I (t
′), B̂(t) = − i J0√

2�mω

∫ t

t0
dt ′âI (t

′) . (18.241)

From the interaction picture equation of motion for operators we have

dâI

dt
= i

�

[
Ĥ0, âI

]
= −iωâI =⇒ âI (t) = e−iω(t−t0)âI (t0) . (18.242)

Then, we have

Â(t) = − J0√
2m�ω

â†
I (t0) eiω(t−t0)/2 sin(ω(t−t0)/2)

ω

B̂(t) = J0√
2m�ω

âI (t0) e−iω(t−t0)/2 sin(ω(t−t0)/2)
ω

[
Â, B̂

]
= − J 2

0
2�mω

∫ t
t0

dt ′
∫ t

t0
dt ′′

[
â†

I (t0), âI (t0)
]

eiω(t ′−t0) e−iω(t ′′−t0).

(18.243)

The commutator, since âI (t0) = âS , reduces to

[
Â, B̂

]
= J 2

0

2�mω

∣∣∣∣

∫ t

t0
dt ′ eiω(t ′−t0)

∣∣∣∣

2

= 2J 2
0

�ωm

(
sin(ω(t − t0)/2)

ω

)2

. (18.244)

Since the commutator of Â and B̂ is a c-number, the following formula is true

eÂ+B̂ = eÂ eB̂ e
− 1

2

[
Â, B̂

]

(18.245)
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and we obtain

ÛI (t, t0) = T
(

eÂ eB̂
)

e
− J20

m�ω

(
sin(ω(t−t0)/2)

ω

)2

= eÂ eB̂ e
− J20

m�ω

(
sin(ω(t−t0)/2)

ω

)2

. (18.246)

We have dropped the time-ordering since the operators in Â and B̂ are at the same time t0. Further-
more, we have

〈0|eÂ = 〈0| and eB̂ |0〉 = |0〉 . (18.247)

Thus, finally

P(t) = e
− J20

2m�ω

(
sin(ω(t−t0)/2)

ω/2

)2

. (18.248)

For the (b) part, we may start from the lowest order formula

|〈0|ψS(t)〉|2 = |〈0|Û0(t, t0)|ψI (t)〉|2 =
∣∣∣∣〈0|

(
1 − i

�

∫ t

t0
dt ′ ĤI (t

′) + . . .

)
|0〉

∣∣∣∣

2

. (18.249)

The first-order vanishes, since

〈0|ĤI (t
′)|0〉 = J (t ′)〈0|Û†

0 (t ′, t0)x̂ I (t0)Û0(t
′, t0)|0〉 = J (t ′)〈0|x̂S |0〉 = 0

because of parity. Thus, we have the second-order

P(t) = 1 − 2

�2
Re

{∫ t

t0
dt ′ J (t ′)

∫ t ′

t0
dt ′′ J (t ′′)〈0|x̂ I (t

′)x̂ I (t
′′)|0〉

}

= 1 − 2J20
�2

Re

{∫ t

t0
dt ′

∫ t ′

t0
dt ′′〈0|ei Ĥ0(t

′−t0)/� x̂ I (t0)e
−i Ĥ0(t

′−t ′′)/� x̂ I (t0)e
−i Ĥ0(t

′′−t0)/�|0〉
}

= 1 − 2J 2
0

2�mω
Re

{∫ t

t0
dt ′

∫ t ′

t0
dt ′′eiω(t ′−t0)/2e−iω(t ′′−t0)/2〈0|âS e−i Ĥ0(t ′−t ′′)/� â†

S |0〉
}

= 1 − J 2
0

�mω
Re

{∫ t

t0
dt ′

∫ t ′

t0
dt ′′eiω(t ′−t0)/2e−iω(t ′′−t0)/2〈1|e−i Ĥ0(t ′−t ′′)/�|1〉

}

= 1 − J 2
0

�mω
Re

{∫ t

t0
dt ′

∫ t ′

t0
dt ′′eiω(t ′−t0)/2e−iω(t ′′−t0)/2e−3iω(t ′−t ′′)/2

}

or

P(t) = 1 − J 2
0

�mω2

∫ t

t0
dt ′ sin(ω(t ′ − t0)) = 1 − J 2

0

2�mω

(
sin(ω(t − t0)/2)

ω/2

)2

, (18.250)

which is just the lowest nontrivial approximation of the exact formula obtained in (a).

18.6.2 Sinusoidal Perturbations

The electrons in an atom, subject to an external electromagnetic field
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E = E0 cos(k · r − ωt), B = B0cos(k · r − ωt) , (18.251)

will acquire a time-dependent electric dipole moment—as well as a magnetic dipole
moment—interaction terms in the Hamiltonian that can be put in the general form

Ĥint (t) = V̂0 eiωt + V̂ †
0 e−iωt , (18.252)

where V̂0 will depend on the atomic variables. The first-order probability of transition
|0〉 → |n〉 is given by (18.221). In our case it is

P0→n(t) = 1

�2

∣∣∣∣

∫ t

t0

dt ′ei(En−E0)(t ′−t0)/�〈n|
(

V̂0eiωt ′ + V̂ †
0 e−iωt ′) |0〉

∣∣∣∣

2

. (18.253)

Integrating with respect to time, we obtain

P0→n(t) = 1

�2

∣∣∣∣∣
〈n|V̂0|0〉

(En − E0 + �ω)

(
ei(En−E0+�ω)t/� − ei(En−E0+�ω)t0/�

) +

〈n|V̂ †
0 |0〉

(En − E0 − �ω)

(
ei(En−E0−�ω)t/� − ei(En−E0−�ω)t0/�

)
∣∣∣∣∣

2

=
∣∣∣∣〈n|V̂0|0〉 ei(En−E0+�ω)(t+t0)/2�

sin [(En − E0 + �ω)(t − t0)/2�]

(En − E0 + �ω)/2�
+

〈0|V̂0|n〉∗ ei(En−E0−�ω)(t+t0)/2�
sin [(En − E0 − �ω)(t − t0)/2�]

(En − E0 − �ω)/2�

∣∣∣∣

2

. (18.254)

For very late times t � t0 we have

sin [(En − E0 ± �ω)(t − t0)/2�]

(En − E0 ± �ω)/2�
→ 2π�δ(En − E0 ± �ω) (18.255)

and

(
sin [(En − E0 ± �ω)(t − t0)/2�]

(En − E0 ± �ω)/2�

)2

→ (t − t0) 2π�δ(En − E0 ± �ω) .

(18.256)
Thus, we have

�0→n(t) = 2π

�
δ(En − E0 + �ω)|〈n|V̂0|0〉|2En=E0−�ω

+ 2π

�
δ(En − E0 − �ω)|〈0|V̂0|n〉|2En=E0+�ω (18.257)
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or

�0→{n} = 2π

�
ρ(En)|〈n|V̂0|0〉|2En=E0−�ω + 2π

�
ρ(En)|〈0|V̂0|n〉|2En=E0+�ω .

(18.258)

The two terms have a different interpretation, the first may be interpreted as induced
emmission, where from the initial state of energy E0 the system goes to a final state
of reduced energy by emitting a quantum of energy �ω, and the second as induced
absorption, where from the initial state of energy E0 the system makes a transition
to a state of increased energy by absorbing a quantum of energy �ω

�
(em)
0→{n} = 2π

�
ρ(En)|〈n|V̂0|0〉|2En=E0−�ω

�
(abs)
0→{n} = 2π

�
ρ(En)|〈0|V̂0|n〉|2En=E0+�ω

(18.259)

Note that both the electric and magnetic dipole interactions involve Hermitian oper-
ators and, therefore, 〈0|V̂0|n〉 = 〈n|V̂0|0〉∗ . Then, the following relation is true:

�
(em)
0→{n}/�

(abs)
0→{n} = ρ(E0 + �ω)/ρ(E0 − �ω) , (18.260)

expressing the equilibrium between the processes of emission and absorption.

Example 18.10 A hydrogen atom is initially in its ground state |1, 0, 0〉, while it
interacts with a monochromatic electromagnetic wave of wavelength much larger
than the Bohr radius λ � a0 through the electric dipole interaction term

Ĥint (t) = −er · E0 cos(k · r − ωt) . (18.261)

Calculate the rate of transitions to the first excited state |2, �, m〉 in the first order of
perturbation theory.

By hypothesis we have k · r ∼ a0/λ � 1 and, therefore, eik·r ≈ 1 . The corresponding prob-
ability for t � t0 will be

P(1,0,0)→(2,�,m) = e2E2
0

�2

∣∣∣∣

∫ t

t0
dt ′ei(E2−E1)t ′/�〈2, �, m|z|1, 0, 0〉 cos(ωt ′)

∣∣∣∣

2

= e2E2
0

4�2

∣∣∣∣

∫ t

t0
dt ′

(
ei(3|E1|/4+�ω)t ′/� + ei(3|E1|/4−�ω)t ′/�

)∣∣∣∣

2

(18.262)

or

P(1,0,0)→(2,�,m) = e2πE2
0

2�
δ(3|E1|/4 − �ω)(t − t0) |〈2, �, m|z|1, 0, 0〉|2 . (18.263)

The corresponding rate will be

�(1,0,0)→(2,�,m) = e2πE2
0

2�
δ(3|E1|/4 − �ω)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 � = 0

0 � = 1, m = ±1

|〈2, 1, 0|z|1, 0, 0〉|2 � = 1, m = 0

(18.264)
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Note that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈100|z|200〉 = −〈100|z|200〉 = 0

0 = 〈100| [Lz, z
] |2, 1, ±1〉 = −〈100|z|2, 1, ±1〉 (±�) =⇒ 〈100|z|2, 1, ±1〉 = 0

〈100|z|2, 1, 0〉 = ∫
d3r ψ100(r)zψ210(r) = . . . = 4

√
2
(
2
3

)5
a0

(18.265)

Problems and Exercises

18.1 Consider a particle of mass m bound in the potential

V (x) =
⎧
⎨

⎩

+∞ (x ≤ 0)

1
2mω2x2 (x > 0)

Apply the WKB method to derive the allowed energy levels.

18.2 A particle of mass m is subject to the potential

V (x) =
⎧
⎨

⎩

+∞ (x ≤ 0)

mgx (x > 0)

where g > 0 is a coupling parameter. Apply the WKB method to derive the allowed
energies of the system. This is a quantum analogue of a bouncing ball subject to
gravity.

18.3 Use the WKB approximation to calculate the transmission coefficient of a
particle of mass m and energy E < V0 in a square barrier of height V0 and width
[−a, a]. Compare to the exact result.

18.4 Consider electrons subject to a spatially constant magnetic field. Ignoring spa-
tial degrees of freedom the Hamiltonian is just H = − e

mcB · S. The direction of the
magnetic field is parametrized as B̂ = x̂ sin θ cosφ + ŷ sin θ sin φ + ẑ cos θ. Assume
that the beam of electrons, which are in an eigenstate of the energy, is split into two
parts, the second of which is subject to an adiabatic rotation of the magnetic field in
a complete circle in the x, y plane. Calculate the acquired geometric phase for the
second beam. Consider now the interference of the two beams and relate the distance
between maxima to the rest of parameters.

18.5 Consider a particle in the ground state of an infinite square well. The width
of the well increases adiabatically at a constant rate L̇/L = 1

τ
� �π2/8mL2

i from
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its initial value 2Li at t = 0 to a final value 2L f at t > 0. Calculate the dynamical
phase acquired by the wave function. Is there a corresponding geometrical phase?

18.6 Estimate the ground state energy of a hydrogen atom using a Gaussian trial
wave function ψ(r,β) = N (β) e−βr2 .

18.7 Consider a systemwith a Hamiltonian Ĥ0 that has a ground state |ψ0〉 of energy
ε0 and a first excited state |ψ1〉 of energy ε1 > ε0. Assume now that a perturbation
V̂ acts on the system with the property 〈ψ0|V̂ |ψ0〉 = 〈ψ1|V̂ |ψ1〉 = 0. The matrix
element 〈ψ0|V̂ |ψ1〉 = η < 0 is known. Apply the variational method to estimate the
ground state energy using the trial wave function ψβ = cosβ ψ0 + sin β ψ1.

18.8 A particle of mass m is bound in a central potential V (r) = λ2 r3, where λ is
a known coupling parameter. Estimate the energy of the ground state using a trial
wave function ψ(r) = N (α) e−α r2 , where α > 0 is a variable parameter.

18.9 Consider an electron of a linear polymer subject to forces that can be approx-
imated by a potential V (x) = 1

2mω2
0 x2 + λ (1 − cos(kx) ) , where the appearing

parameters satisfy λ � �ω . Treat the term λ(1 − cos kx ) as a perturbation and cal-
culate the first-order corrections to the energy eigenvalues and to the eigenstates
|n〉.
18.10 A harmonic oscillator is at times t < 0 in its ground state. At t = 0, a pertur-
bation �Ĥ = λ x2 e− t

τ acts on the system. Calculate the probability for the system
to make a transition to any excited state at times t � τ .

18.11 A particle trapped in a two-dimensional infinite square well is subject to a
perturbing potential V (x, y) = λ x y with λ � �

2/mL4, where m is the mass of the
particle and 2L × 2L is the size of the well. Calculate the first nontrivial correction
to the energy levels.

18.12 A two-dimensional isotropic harmonic oscillator is subject to a perturbation
�V = 1

2mω2 δ x y
(
x2 + y2

)
, where δ � √

�/mω. Calculate the first-order correc-
tions to the first three energy levels.

18.13 Ahydrogen atom is subject to an external time-dependent electric fieldE(t) =
E0 e−t/τ �(t). The atom at t < 0 is in its ground state. Calculate, to first order in
the electric field, the probability to make a transition to the state n = 2, � = 1,
m = −1, 0, 1 at times t � τ . What about transitions to the state n = 2, � = m = 0?

18.14 The relativistic correction to the kinetic energy of a particle of mass m is
�H = p4/8m3c2. For a simple harmonic oscillator, calculate the first-order correc-
tion to the energy levels.

18.15 Calculate the first-order correction to the energy levels of the infinite square
well [−L , L] in the presence of the perturbation V (x) = λ |x |.
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Chapter 19
Symmetries

19.1 General Considerations

The conservation of a particular physical observable is intimately connected with the
existence of a symmetry and a set of transformations that leave measurable quanti-
ties invariant. The importance of symmetries, already greatly appreciated in Classical
Physics, is even more important in Quantum Mechanics. The absence of a classical
analogue in many cases makes it difficult not only to determine the correct Hamilto-
nian of the system but more importantly to proceed with the solution of the motion
of the system, something that makes the use of symmetries a powerful tool enabling
us to circumvent the difficult problem of the detailed solution of a system and arrive
at many useful conclusions about its measurable properties.

A set of transformations corresponding to a symmetry of a quantum system is
by definition a mapping of states and operators that leaves the measurable quantities
(such as inner products) invariant. The following theorem is true (Wigner’s Theorem):
Any symmetry transformation is represented by either a linear and unitary operator
or antilinear and antiunitary operator1 acting in the Hilbert space of states. One
of the most interesting cases of this mapping of transformations to operators is
the case of rotations. In this case, the corresponding unitary operators constitute a
group mapped isomorphically to the group of transformations. These operators are
differentiable functions of the parameters of rotation (angles) and belong to a special
type of groups named Lie groups. Any element of a Lie group of operators can be
put in the form Û (α1,α2, . . . ) = ei

∑
i αi �i , where �i are Hermitian operators, the

so-called group generators. Note, however, that there exist groups of interest which
are not characterized by any continuous parameters. These are called discrete groups.

1An antilinear operator is defined by the property Qc = c∗Q for any complex number c. This is
in contrast to linear operators which commute with complex numbers.
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19.2 Rotations and Angular Momentum

Consider the system of a particle with a wave function ψ(r). A rotation of the
system consists of a transformation of the spatial coordinates of the system as well
as a transformation on its wave function

x ′
i = Ri j x j and ψ → ψ′ , (19.1)

whereR is an orthogonal matrix (R⊥R = RR⊥ = I). Since all measurable phys-
ical quantities should be preserved by the rotation, we must have

ψ′(r′) = ψ(r) . (19.2)

The relation between the corresponding state vectors will be necessarily expressed
in terms of a unitary operator [5]

|ψ′〉 = R̂|ψ〉 . (19.3)

Indeed, we have2

〈ψ′|ψ′〉 =
∫

d3x ′ |ψ′(r′)|2 =
∫

d3r |ψ(r)|2 = 〈ψ|ψ〉 = 〈ψ′|R̂ R̂†|ψ′〉

and, therefore
R̂ R̂† = R̂† R̂ = I . (19.4)

The various observables of the physical system will also be transformed under a
rotation

R : Â → Â′ . (19.5)

Nevertheless, measurable quantities should not change. Therefore, we must have

〈ψ′| Â′|ψ′〉 = 〈ψ| Â|ψ〉 . (19.6)

This is equivalent to
Â′ = R̂ Â R̂† . (19.7)

Different observables behave differently under rotations. A scalar �̂ is defined
as simply an operator that does not change at all under rotations, namely,

�̂′ = �̂ or �̂ = R̂ �̂ R̂† (19.8)

2Since R is orthogonal, the Jacobian of the transformation is unity (detR = 1) and d3r ′ = d3r .
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or [
�̂, R̂

]
= 0 . (19.9)

A vector operator is one that transforms as the position operator transforms. It is not
difficult to see that the correct transformation for the position operator corresponding
to a rotation x ′

i = Ri j x j is

R̂x̂i R̂† = R−1
i j x̂ j = x̂ ′

i . (19.10)

Indeed, from the condition ψ(r) = ψ′(r′) we have |r′〉 = R̂|r〉 and

R̂x̂i R̂†|r′〉 = R−1
i j x̂ j |r′〉 =⇒ R̂x̂i |r〉 = R−1

i j x ′
j |r′〉

or
xi |r′〉 = R−1

i j x ′
j |r′〉 =⇒ xi = R−1

i j x ′
j ,

which is the correct coordinate rotation. Therefore, a vector operator is generally
defined by the law

R̂V̂i R̂† = R−1
i j V̂ j = V̂ ′

i . (19.11)

This definition preserves the expectation values

〈ψ′|V̂ ′|ψ′〉 = 〈ψ|V̂ |ψ〉 . (19.12)

More general tensor operators are defined accordingly. A tensor operator of rank k
Qi1i2...ik is defined by the rotation transformation rule

R̂ Q̂i1i2...ik R̂† = R−1
i1 j1

R−1
i2 j2

. . .R−1
ik jk

Q̂ j1 j2... jk . (19.13)

In Chap.14, we discussed rotations around a given axis and their relation to the
orbital angular momentum. There, we saw that a rotation around the ẑ-axis by an
infinitesimal angle α is described by the matrix

R =

⎛

⎜
⎜
⎜
⎜
⎝

1 −α 0

α 1 0

0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

(19.14)

and leads to a rotated wave function

ψ′(r) ∼ ψ(r) − i

�
α (r × (−i�∇) )z ψ(r) + O(α2) (19.15)
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or

|ψ′〉 = R̂ẑ(α)|ψ〉 with R̂ẑ(α) ∼ 1 − i

�
αL̂ z . (19.16)

If the angle α is finite, we may consider a superposition of N → ∞ infinitesimal
rotations by an infinitesimal angle α

N around the ẑ-axis and obtain

R̂ẑ(α) = �N→∞
(

1 − iα

�N
L̂z

)N

= e− i
�

αL̂ z . (19.17)

Furthermore, for a rotation around an arbitrary axis we may rewrite (19.17) as

R̂(a) = e− i
�
a·L , (19.18)

where a is a vector with direction along the axis of rotation and magnitude equal to
the rotation angle.

For a system with nonzero spin, the above formula of the rotation operator is
generalized to

R̂(a) = e− i
�
a·J , (19.19)

where J = L + S stands for the total angularmomentum. Since any rotation around
an axis can be expressed in terms of J as in (19.19), the total angular momentum is
called the generator of rotations. Note that the unitarity of R̂ is a direct consequence
of the Hermiticity of J.

The various observables, classified under their distinct behavior under rotations,
in view of (19.19) and its infinitesimal version

R̂(a) = 1 − i

�
a · J (19.20)

lead to the following commutation relations3:

R̂�̂ R̂† = �̂ =⇒
[
�̂, Ĵi

]
= 0

R̂V̂i R̂† = R−1
i j V̂ j =⇒

[
V̂i , Ĵ j

]
= i�εi jk V̂k

R̂ Q̂i j R̂† = R−1
i i ′ R−1

j j ′ Q̂i ′ j ′ =⇒
[

Q̂i j , Ĵk

]
= i�

(
εik� Q̂k� + ε jk� Q̂i�

)
.

(19.21)

The rotation by 2π around an axis n̂, represented by the operator

3Note that

R ≈ 1 +
⎛

⎝
0 −α 0
α 0 0
0 0 0

⎞

⎠ =⇒ Ri j = δi j − αk εi jk + O(α2).
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R̂n̂(2π) = e− 2πi
�

n̂·J , (19.22)

should leave all probability densities unaffected. Note, however, that (19.22) is not
necessarily the unit operator.4 Taking n̂ = ẑ and acting on a Jz eigenstate, we obtain

R̂ẑ(2π) → e−2iπm = ±1 , (19.23)

the sign depending on whether the azimuthal quantum number m obtains an integer
or a half-odd value. The fact that a rotation by 2π may change the sign of the wave
function does not necessarily produce any observable result, since, for instance, the
probability density stays invariant. A way to express the invariance under rotations
by 2π is to demand that for any observable Â we must have

[
Â, R̂n̂(2π)

]
= 0 . (19.24)

19.2.1 The Rotation Group

The matrices R that define rotations satisfy the requirements of the mathematical
structure called a group. The basic requirement of a group5 is the existence of an
operation—in this case, the matrix multiplication—in terms of which the product of
two rotations is also a rotation. In mathematical language, symbolizing the group as

G = {R1, R2, . . . } , (19.25)

its basic property is

R1, R2 ∈ G =⇒ (R1)i j (R2) jk = (R3)ik ∈ G . (19.26)

The rest of the group “axioms” are

(R1R2)R3 = R1 (R2R3)

∃ I =⇒ RI = IR = R

∀R, ∃ R−1 =⇒ RR−1 = R−1R = I.

(19.27)

Rotations are not anAbelian Group, meaning that general rotations do not necessarily
commute6

4Nevertheless
(

R̂(2π)
)2 = R̂(4π) = I, meaning that the rotation by 4π must be the unit operator.

5See any of the standard Mathematical Methods textbooks, e.g., Mathews and Walker [3].
6Nevertheless, rotations around the same axis are commutative.
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R1R2 �= R2R1 .

Thematrices representing rotations in the three-dimensional space are the orthogonal
3 × 3 matrices with determinant equal to +1. This is a so-called representation of
the O(3) group.

For a quantum system, for every rotation described byR, there is a corresponding
unitary operator R̂ in Hilbert space acting on the state vectors. The set of these oper-
ators shares the group property of the rotation matrices, the corresponding operation
being that of operator multiplication in Hilbert space.7 All the group axioms satisfied
by the rotation matrices correspond to analogous relations satisfied by the rotation
operators which supply a unitary representation of the rotation group

∀ R̂(a), R̂(b) ∈ G =⇒ R̂(a) R̂(b) = R̂(c) ∈ G . (19.28)

In the case of general rotations, with the axes of rotation not being the same, the
actual law of rotation composition is quite complicated.

The rotation operators are differentiable functions of the rotation angles. In that
sense they belong to a special class of groups, the so-called Lie groups. It can be
shown that every element of a Lie group can be written as the exponential of an
anti-Hermitian operator or, equivalently, as

Û (λ) = ei
∑

a λa Ĥa with Ĥ †
a = Ĥa , (19.29)

where a sums over the possible parameters defining the group elements (in the case
of rotations, three angles). The Hermitian operators Ĥa in the exponent are called
the generators of the group and they satisfy the so-called Lie Algebra. In the case of
rotations, each rotation operator is cast in the form

R̂(a) = e− i
�
a·J

and the three generators of the rotation group are the three components of the angular
momentum J, satisfying the corresponding Lie Algebra

[
Ĵi , Ĵ j

]
= i�εi jk Ĵk ,

which is just the familiar angular momentum commutation relation.

7The relation of the rotation operator to the rotation matrix was introduced through
〈R1 {r} |R̂1|ψ〉 = 〈r1|ψ1〉 = 〈r|ψ〉. Obviously, we have 〈R2R1 {r} |R̂2 R̂1|ψ〉 = 〈r|ψ〉. Thus, the
product R̂2 R̂1 will be the rotation operator corresponding to the rotation matrixR2R1. The product

operator is unitary, since R̂2 R̂1

(
R̂2 R̂1

)† = R̂2 R̂1 R̂†
1 R̂†

2 = I.
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19.2.2 The Rotation Matrices d( j)

A rotation cannot change the magnitude of the angular momentum but only its
direction. This corresponds to the mathematical fact that for R̂(a) = e− i

�
a·J, we

have [
R̂(a), J2

]
= 0 . (19.30)

Acting with R̂(a) on an angular momentum eigenstate | jm〉, we shall obtain a super-
position of eigenstates of the same j but of different m, namely,

R̂(a)| jm〉 =
j∑

m=− j

| jm ′〉 d( j)
m ′m(a) . (19.31)

The coefficients d( j)
m ′m of this superposition are (2 j + 1) × (2 j + 1)matrices andwill

be referred to as rotation matrices [2, 4, 5]. They are obviously the matrix elements

d( j)
mm ′(a) = 〈 jm|R̂(a)| jm ′〉 = 〈 jm|e− i

�
a·J| jm ′〉 (19.32)

and are fully determined by the parameters defining the rotation at hand, independent
of the physical system.

It is expected that the group property of rotations expressed by (19.28) will be
reflected on an analogous expression among the d( j)’s. Indeed, we have

〈 jm|R̂(c)| jm ′〉 = 〈 jm|R̂(a)

⎛

⎝
∑

j ′′

m ′′= j ′′
∑

m ′′=− j ′′
| j ′′m ′′〉〈 j ′′m ′′|

⎞

⎠ R̂(b)| jm ′〉

= 〈 jm|R̂(a)

⎛

⎝
m ′′= j∑

m ′′=− j

| jm ′′〉〈 jm ′′|
⎞

⎠ R̂(b)| jm ′〉 =
m ′′= j∑

m ′′=− j

d( j)
mm ′′(a) d( j)

m ′′m ′(b) .

Thus, we have arrived at the relation

d( j)
mm ′(c) =

m ′′= j∑

m ′′=− j

d( j)
mm ′′(a) d( j)

m ′′m ′(b) (19.33)

or in matrix shorthand
d( j)(c) = d( j)(a) d( j)(b) . (19.34)
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These matrices are obviously unitary.8 They constitute a (2 j + 1) × (2 j + 1)-
dimensional representation of the rotation group.

It should be stressed that a rotation acting on any | jm〉 reduces it into a linear
combination of 2 j + 1 states corresponding to the different values of m. There is
no subset of these states that transforms to itself under rotation. This can also be
seen by the fact that we can construct all the | jm〉 states starting from | j j〉 and
acting with Ĵ−. We say that the rotation operators R̂(a) act on the states | jm〉 for
fixed j in an irreducible fashion. This reflects on the rotation matrices d( j)(a) which
constitute an irreducible representation of rotation group. In contrast, a reducible
representation would have the property that a basis exists in which they would all
have a “block-diagonal” form. This is not the case and the d( j)’s are irreducible.

Consider now a system of two independent angular momenta J1 and J2. A rotation
operator for the system would be e− i

�
a·J, where J = J1 + J2 is the total angular

momentum of the system. Rotations will not act irreducibly on states | j1 j2m1m2〉,
since these states are linear combinations of states | j1 j2 jm〉 and we know that states
with different j’s do not mix. The set of the (2 j1 + 1)(2 j2 + 1) states | j1 j2m1m2〉
will break up into groups of states, each corresponding to the different values of
j . These subgroups will transform among themselves under rotations. A rotation
e− i

�
a·J = e− i

�
a·J1 e− i

�
a·J2 on | j1 j2m1m2〉 will give

e− i
�
a·J| j1 j2m1m2〉 =

∑

m ′
1

| j1m ′
1〉 d( j1)

m ′
1m1

∑

m ′
2

| j2m ′
2〉 d( j2)

m ′
2m2

or
e− i

�
a·J| j1 j2m1m2〉 =

∑

m ′
1m ′

2

| j1 j2m ′
1m

′
2〉 d( j1)

m ′
1m1

d( j2)
m ′

2m2
. (19.35)

It is clear that the rotation matrices of the system

〈 j1 j2m ′
1m

′
2|e− i

�
a·J| j1 j2m1m2〉 = d( j1)

m ′
1m1

d( j2)
m ′

2m2
(19.36)

are the tensor product

(
d( j1)(a) ⊗ d( j2)(a)

)
m ′

1m ′
2,m1m2

= d( j1)
m ′

1m1
d( j2)

m ′
2m2

. (19.37)

Such tensor product matrices are automatically block-diagonal and, therefore, a
reducible representation, i.e.,

d( j1) ⊗ d( j2) =

⎛

⎜
⎜
⎜
⎜
⎝

(
. .

. .

)

0

0

(
. .

. .

)

⎞

⎟
⎟
⎟
⎟
⎠

, (19.38)

where the submatrices refer to different j values.

8Note that d( j)(−a) = (
d( j)(a)

)†
.
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19.2.3 General Rotations and Euler Angles

An arbitrary rotation in three-dimensional space can be performed in three succes-
sive steps. These are conveniently parametrized in terms of the three Euler angles,
corresponding to each of these steps [1, 2, 4, 5]. Thus, a general rotation can be
performed by

(1) rotating around the ẑ-axis by an angle ϕ,
(2) rotating around ŷ′-axis (the ŷ-axis after the first rotation) by an angle θ, and
(3) rotating around ẑ′-axis (the ẑ-axis after the second rotation) by an angle ψ.

This is depicted in Fig.19.1.
The corresponding rotation operator is

R̂(ϕ, θ,ψ) = e− i
�

ψ Ĵz′ e− i
�

θ Ĵy′ e− i
�

ϕ Ĵz . (19.39)

At this point we can make use of the relation R̂V̂i R̂† = V̂ ′
i for Ĵy and have

e− i
�

ϕ Ĵz Ĵye
i
�

ϕ Ĵz = Ĵy′ . (19.40)

Note also that

e− i
�

ϕ Ĵz Ĵ 2
y e

i
�

ϕ Ĵz = e− i
�

ϕ Ĵz Ĵye
i
�

ϕ Ĵz e− i
�

ϕ Ĵz Ĵye
i
�

ϕ Ĵz = Ĵ 2
y′ (19.41)

and, therefore, we shall have

Fig. 19.1 The Euler angles
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e− i
�

θ Ĵy′ = e− i
�

ϕ Ĵz e− i
�

θ Ĵy e
i
�

ϕ Ĵz . (19.42)

Similarly, we also have

e− i
�

ψ Ĵz′ = e− i
�

θ Ĵy′ e− i
�

ψ Ĵz e
i
�

θ Ĵy′ (19.43)

or
e− i

�
ψ Ĵz′ = e− i

�
ϕ Ĵz e− i

�
θ Ĵy e

i
�

ϕ Ĵz e− i
�

ψ Ĵz e− i
�

ϕ Ĵz e
i
�

θ Ĵy e
i
�

ϕ Ĵz . (19.44)

Substituting in R̂ we obtain

R̂ = e− i
�

ϕ Ĵz e− i
�

θ Ĵy e
i
�

ϕ Ĵz e− i
�

ψ Ĵz e− i
�

ϕ Ĵz (19.45)

and, since e− i
�

ψ Ĵz e− i
�

ϕ Ĵz = e− i
�

ϕ Ĵz e− i
�

ψ Ĵz ,

R̂(ϕ, θ,ψ) = e− i
�

ϕ Ĵz e− i
�

θ Ĵy e− i
�

ψ Ĵz . (19.46)

From this expression it is not difficult to deduce the corresponding rotation matrix.
We have

d( j)
mm ′(ϕ, θ,ψ) = 〈 jm|e− i

�
ϕ Ĵz e− i

�
θ Ĵy e− i

�
ψ Ĵz | jm ′〉 = e−imϕ−im ′ψ〈 jm|e− i

�
θ Ĵy | jm ′〉

(19.47)
or

d( j)
mm ′(ϕ, θ,ψ) = e−imϕ−im ′ψd( j)

mm ′(θ) , (19.48)

where the last rotation matrix refers to a rotation around the ŷ-axis by an angle θ.

19.3 Tensor Operators and the Wigner–Eckart Theorem

In a previous section, we classified the various operators corresponding to physical
observables according to their transformation properties under rotations, namely,
as scalars, vectors or in general as tensor operators. Here we shall be more spe-
cific and introduce the concept of irreducible tensor operators, i.e., tensor operators
that transform among themselves under rotations. By the term irreducible tensor
operators T̂ (k) of order k we shall refer to a set of 2k + 1 operators T̂ (k)

q with
q = −k, −k + 1, . . . , k − 1, k,which transform among themselves under rotations
according to

R̂ T̂ (k)
q R̂† =

k∑

q ′=−k

T̂ (k)
q ′ d(k)

q ′q . (19.49)

The irreducibility of the set of T̂ (k)
q follows directly from the irreducibility of the

rotation matrices d(k)
q ′q .
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Let’s apply the transformation law (19.49) in the case of an infinitesimal rotation

R̂(a) ≈ 1 − i

�
a · J . (19.50)

We have

T̂ (k)
q − i

�

[
a · J, T̂ (k)

q

]
=

∑

q ′
T̂ (k)

q ′ 〈kq ′|
(

1 − i

�
a · J

)

|kq〉 (19.51)

or [
J, T̂ (k)

q

]
=

∑

q ′
T̂ (k)

q ′ 〈kq ′|J|kq〉 , (19.52)

leading to [
Ĵz, T̂ (k)

q

]
= �qT̂ (k)

q

[
Ĵ±, T̂ (k)

q

]
= � T̂ (k)

q±1

√
k(k + 1) − q(q ± 1)

(19.53)

Any vector operator, defined through the commutation relation of its Cartesian
components [

Ĵi , V̂ j

]
= i�εi jk V̂k ,

can be expressed as an irreducible order-1 tensor in terms of the components

V̂q=1 = − 1√
2

(
V̂x + i V̂y

)

V̂q=0 = V̂z

V̂q=−1 = 1√
2

(
V̂x − i V̂y

)
.

(19.54)

It is straightforward to verify for V̂q the relations (19.53). Along these lines we may
introduce the so-called spherical components of the position operator as

r1 = − 1√
2
(x + iy) = − r

2 sin θ eiφ

r0 = z = r cos θ

r−1 = 1√
2
(x − iy) = r

2 sin θe−iφ.

(19.55)

Consider now an eigenstate of angular momentum |λ, j1, m1〉, where λ denotes
collectively all other quantum numbers. When we act with a tensor operator T (k)

q

on this state, we obtain an eigenstate of Ĵz with eigenvalue �(q + m1). This follows
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immediately from the first of the relations (19.53). Indeed, we have

[
Ĵz, T̂ (k)

q

]
|λ, j1, m1〉 = �qT̂ (k)

q |λ, j1, m1〉

or
Ĵz T̂ (k)

q |λ, j1, m1〉 − T̂ (k)
q (�m1)|λ, j1, m1〉 = �qT̂ (k)

q |λ, j1, m1〉

or
Ĵz T̂ (k)

q |λ, j1, m1〉 = �(q + m1)T̂
(k)

q |λ, j1, m1〉 .

It follows then that the matrix elements

〈λ′, j ′, m ′|T̂ (k)
q |λ, j, m〉 = 0 unless m ′ = q + m . (19.56)

So, the action of the tensor operator on the eigenstate |λ, j1, m1〉 is analogous to the
addition of angular momenta Jz . Note, however, that the states T̂ (k)

q |λ, j, m〉 are not
eigenstates of J 2.

Consider now the second of the relations (19.53) applied on a state |λ, j, m〉 and
take the inner product with a state 〈λ′, j ′, m ′|. We have

〈λ′, j ′, m ′|
[

Ĵ±, T̂ (k)
q

]
|λ, j, m〉 = � 〈λ′, j ′, m ′|T̂ (k)

q±1|λ, jm〉√
k(k + 1) − q(q ± 1)

(19.57)
or

√
j ′( j ′ + 1) − m′(m′ ∓ 1)〈λ′ j ′m′ ∓ 1|T̂ (k)

q |λ jm〉 − √
j ( j + 1) − m(m ± 1)〈λ′ j ′m′|T̂ (k)

q |λ jm ± 1〉

= 〈λ′, j ′, m ′|T̂ (k)
q±1|λ, jm〉√

k(k + 1) − q(q ± 1) .

Notice that if wemake the substitution j ′ → j, m ′ → m, j → j1,m → m1, k → j2
and q → m2, the irreducible tensor operator relation becomes

√
j ( j + 1) − m(m ∓ 1)〈λ′ jm ∓ 1|T̂ ( j2)

m2 |λ j1m1〉 − √
j1( j1 + 1) − m1(m1 ± 1)〈λ′ j ′m′|T̂ ( j2)

m2 |λ jm ± 1〉

= 〈λ′, j, m|T̂ ( j2)
m2±1|λ, j1m1〉

√
j2( j2 + 1) − m2(m2 ± 1)

and these two relations are similar. They are both of the form

∑

j

Ci j x j = 0 and
∑

j

Ci j y j = 0 (19.58)

with the same coefficients Ci j . Therefore, their solutions must be proportional or
x j = Cyj with C a universal coefficient. Thus, we may conclude that

〈λ′, j ′, m ′|T̂ (k)
q±1|λ, j, m〉 = C 〈 j, k, m, q ± 1| j, k, j ′, m ′〉 , (19.59)
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where the coefficientC will not depend on the azimuthal quantum numbers m, q, m ′.
This is the Wigner–Eckart Theorem [2, 4, 5], usually stated as

〈λ′, j ′, m ′|T̂ (k)
q |λ, j, m〉 = 〈 j, k, m, q| j, k, j ′, m ′〉 〈λ

′ j ′||T̂ (k)||λ j〉√
2 j + 1

, (19.60)

the last factor being just a way to symbolize the universal coefficient.

19.4 Translations in Time and Space

We are already quite familiar with the evolution in time of quantum systems in
terms of the unitary time-evolution operators. Time evolution can be seen as a time
translation transformation

t → t + T . (19.61)

In the Schroedinger picture, this amounts to

|ψ(t + T )〉 = Û (t + T, t) |ψ(t)〉 . (19.62)

For a conservative system, the evolution operator is simply

Û (t + T, t) = e− i
�

Ĥ T . (19.63)

Invariance under the transformations (19.61), often referred to as homogeneity of
time, implies the conservation of a physical quantity. This is a general rule of sym-
metries and here it simply corresponds to the fact that the Hamiltonian is a constant
of the motion or, equivalently, to the conservation of energy.

The set of operators Û is a one-parameter Lie group with a single generator,
namely, the Hamiltonian Ĥ . The group property can be expressed as

Û (t, t ′) Û (t ′, t ′′) = Û (t, t ′′) . (19.64)

The group of time translations is commutative (Abelian). This, together with the rest
of group properties, goes as follows:

Û (t1, t2)Û (t2, t3) = Û (t2, t3)Û (t1, t2)

(
Û (t1, t2)Û (t2, t3)

)
Û (t3, t4) = Û (t1, t2)

(
Û (t2, t3)Û (t3, t4)

)

Û (t1, t2)Û (t2, t1) = I =⇒ Û−1(t1, t2) = Û (t2, t1)

Û (t, t) = I.

(19.65)
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In addition to these, we also have unitarity

Û †(t, t ′) = Û−1(t, t ′) = Û (t ′, t) . (19.66)

The effect of time translations on physical observables can be seen in the
Heisenberg picture as

Â(t) = Û †(t, t0) Â(t0) Û (t, t0) . (19.67)

An observable that is invariant in time (constant of the motion) will necessarily have
to commute with all the Û (t, t0), namely,

Ĉ(t) = Û †(t, t0)Ĉ(t0)Û (t, t0) = Ĉ(t0) =⇒
[
Û (t, t0), Ĉ(t0)

]
= 0 . (19.68)

Next, we may consider the case of spatial translations

r → r + a . (19.69)

We are already familiar with these transformations and especially in the case of
periodic systems. For the system of a quantum particle, the corresponding set of
unitary operators is

T̂ (a) = e
i
�
a·p . (19.70)

This is a three-parameter commutative (Abelian) Lie group. The basic group property
is

T̂ (a1) T̂ (a2) = T̂ (a1 + a2) . (19.71)

The group axioms read

T̂ (a1)T̂ (a2) = T̂ (a2)T̂ (a1)

(
T̂ (a1)T̂ (a2)

)
T̂ (a3) = T̂ (a1)

(
T̂ (a2)T̂ (a3)

)

T̂ (−a)T̂ (a) = I =⇒ T̂ −1(a) = T̂ (−a)

T̂ (0) = I.

(19.72)

In addition to these, we also have unitarity

T̂ †(a) = T̂ −1(a) = T̂ (−a) . (19.73)

It is straightforward to see that the action of T̂ (a) on the position operator amounts
to a translation by a, namely,
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T̂ (a) r T̂ †(a) = r + a . (19.74)

The general action of T̂ (a) on an arbitrary observable will be

T̂ (a) Ô T̂ †(a) = Ô′ . (19.75)

In the case that the observable Ô is translationally invariant, we shall have

T̂ (a) Ô T̂ †(a) = Ô =⇒
[
Ô, T̂ (a)

]
= 0 . (19.76)

Invariance in space translations is not a property as general as time translational
invariance. In the absence of forces, spatial translational invariance is true and it is
often referred to as homogeneity of space. The conserved quantity in the case of
translational invariance is the momentum. Thus, translational invariance is linked to
momentum conservation.

A set of transformations similar to spatial translations, which, however, do not by
themselves correspond to any common symmetry, is the translations in momentum
space. For the system of a quantum particle, the corresponding unitary operators are
�̂(k) = e−ik·r. They act on the momentum operator as

�̂(k)p �̂†(k) = p + �k . (19.77)

Example 19.1 Consider the group of Galilean Transformations to a (primed) refer-
ence frame moving with velocity V

r → r′ = r − Vt, p → p′ = p − mV . (19.78)

(a) Show that the unitary operator that can realize the above Galilean Transfor-
mation on the position and momentum operators is

Ĝ = e
i
�
V·(mr−tp) . (19.79)

(b) Find how Ĝ acts on the wave function of a particle.
(c) Show that the operators Ĝ(V) are an Abelian group.

(a) The proposed Galilean operator is of the form Ĝ = eÂ+B̂ with [ Â, B̂] being a c-number. There-

fore, the special case of the Baker–Hausdorff formula eÂ+B̂ = eÂeB̂e− 1
2 [ Â,B̂] applies and we have

Ĝ(V) = e
− i

�

(
mV 2
2

)
t

e
i
�

mV·r e− i
�

tV·p . (19.80)

Thus, we have
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ĜrĜ† = e
i
�

mV·r e− i
�

tV·pre
i
�

tV·pe− i
�

mV·r = e
i
�

mV·r (r − Vt) e− i
�

mV·r = r − Vt

ĜpĜ† = e
i
�

mV·r e− i
�

tV·ppe
i
�

tV·pe− i
�

mV·r = e
i
�

mV·r p e− i
�

mV·r = p − mV.

(19.81)

(b) We have

Ĝ|ψ〉 = |ψ′〉 =⇒ e
− i

�

(
mV 2
2

)
t

e
i
�

mV·r e−tV·∇ψ(r, t) = ψ′(r, t) . (19.82)

or

ψ′(r, t) = e
− i

�

(
mV 2
2

)
t

e
i
�

mV·r ψ(r − Vt, t) . (19.83)

(c) We have

Ĝ(V1)Ĝ(V2) = e− im
2�

(V 2
1 +V 2

2 )t e
i
�

mV1r e− i
�
V1pt e

i
�

mV2r e− i
�
V2pt

= e− im
2�

(V 2
1 +V 2

2 )t e
i
�

mV1r e
i
�

mV2r e− i
�

mV2re− i
�
V1pt e

i
�

mV2r
︸ ︷︷ ︸ e− i

�
V2pt

= e− im
2�

(V 2
1 +V 2

2 )t e
i
�

m(V1+V2)·re− i
�
V1·(p−mV2)t e− i

�
V2·pt

= e− im
2�

(V1+V2)
2t e

i
�

m(V1+V2)·re− i
�

(V1+V2)·pt = Ĝ(V1 + V2) . (19.84)

19.5 Discrete Transformations

Wehave alreadymet a transformation that does not depend on any continuous param-
eter. This is the familiar transformation of spatial reflection or parity

P : r → −r . (19.85)

The corresponding unitary operator, defined by

〈r|P̂|ψ〉 = 〈−r|ψ〉 ∀|ψ〉 , (19.86)

is both unitary and Hermitian

P̂−1 = P̂† = P̂ . (19.87)

From its definition, we can immediately deduce its action on the position operator

P̂ r P̂ = −r (19.88)

as well as on other observables

P̂pP̂ = −p,
[
L, P̂

]
=

[
S, P̂

]
=

[
J, P̂

]
= 0 . (19.89)
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All these observables, characterized as vector operators due to their behavior under
rotations, are divided as polar vectors, if they anticommute with parity, or axial
vectors, if they commute.

It is possible to define transformations that correspond to a reflection with respect
to a plane, for example, a reflection on the (x, z)-plane

Pŷ : x, y, z → x, −y, z . (19.90)

We may symbolize such a transformation with Pn̂ where n̂ is the unit vector per-
pendicular on the plane of reflection. The corresponding unitary operator has all the
properties of the usual parity (unitarity, Hermiticity) and is symbolized as P̂n̂ . Note,
however, that it can always be expressed as the product of the standard parity and a
rotation

P̂n̂ = P̂ R̂(πn̂) = P̂ e− i
�

πn̂·J . (19.91)

As an example, consider n̂ = x̂ . Acting with P̂x̂ on the wave function, we obtain

P̂x̂ψ(x, y, z) = ψ(−x, y, z) .

However, acting with P̂ R̂(πx̂) we obtain exactly the same result

P̂ R̂(πx̂)ψ(x, y, z) = P̂ψ(x,−y,−z) = ψ(−x, y, z) .

An interesting result appears when we consider the square of these operators. We
get

P̂2
n̂ = P̂e

i
�

πn̂·J P̂e
i
�

πn̂·J = P̂2e
i
�
2πn̂·J

or
P̂2

n̂ = e
2πi
�

n̂·J . (19.92)

If j obtains half-odd values, this rotation by 2π gives P̂2
n̂ = −1. This is a property we

have encountered earlier. Spinors can come out with a reversed sign after a rotation
by 2π, nevertheless, without any unwanted observable consequences.

Consider now the Schroedinger equation for a particle

{

− �
2

2m
∇2 + V (r)

}

ψ(r, t) = i�
∂

∂t
ψ(r, t) . (19.93)

Its complex conjugate

{

− �
2

2m
∇2 + V (r)

}

ψ∗(r, t) = −i�
∂

∂t
ψ∗(r, t) = i�

∂

∂(−t)
ψ∗(r, t) (19.94)
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takes the same form if we make the change t → −t . Thus, apart from (19.93) we
also have the equation

{

− �
2

2m
∇2 + V (r)

}

ψ∗(r,−t) = i�
∂

∂t
ψ∗(r,−t) , (19.95)

meaning that the wave functionψ∗(r,−t) is also a solution of the same Schroedinger
equation. This is not very different from what happens for a classical particle for
which the variables r(−t), −v(−t) (describing a time-inverted course of motion)
satisfy the same equations of motion with the variables r(t), v(t). This reflects the
property of both Newtonian physics and the Schroedinger equation that they are
invariant in the transformation

C : t → −t . (19.96)

This is the Time Reflection transformation [2, 4, 5] and the corresponding symmetry
is the Time Reflection Invariance. Since ψ(r, t) and ψ∗(r,−t) are both solutions of
the same equation, there should be a relation between them in terms of an operator,
representing the above transformation in Hilbert space. From (19.93) and (19.95),
we have for the time-reversed ket |ψ′〉

|ψ′(t)〉 = Ĉ0|ψ(−t)〉 . (19.97)

Nevertheless, these two solutions differ by a complex conjugation and a relation in
terms of a linear operator is not possible. Therefore, they must be related through the
action of an antilinear operator9 (and according to Wigner’s theorem, antiunitary)
that involves a complex conjugation operation

Ĉ0 {ψ(r)} = ψ∗(r) =⇒ 〈r|Ĉ0|ψ〉 = 〈ψ|r〉 . (19.98)

A repeated action of Ĉ0 should take us back to the original state, namely,

〈r|Ĉ2
0 |ψ〉 = 〈r|Ĉ0|ψ〉∗ = 〈r|ψ〉 =⇒ Ĉ2

0 = I . (19.99)

For an antilinear operator, it is important to indicate whether the operator acts on the
left or on the right of a matrix element. The following identity concerning the inner
products involving antilinear operators is true

{
〈ψ1| Â

}
|ψ2〉 = 〈ψ1|

{
Â|ψ2〉

}∗
. (19.100)

9For an antilinear operator, we have Ĉi = −i Ĉ .
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Thus, the definition of Hermitian conjugation for an antilinear operator Â is modified
to10

〈ψ1|
{

Â†|ψ2〉
}

= 〈ψ2|
{

Â|ψ1〉
}

. (19.101)

Applying this for the operator Ĉ0, we get

〈ψ1|
{

Ĉ†
0 |ψ2〉

}
=

{
〈ψ2|Ĉ0

}
|ψ1〉 = 〈ψ1|ψ2〉∗ = 〈ψ2|ψ1〉 = 〈ψ1|

{
Ĉ0|ψ2〉

}
,

(19.102)
implying that Ĉ0 is Hermitian

Ĉ†
0 = Ĉ0 . (19.103)

Summarizing we have
Ĉ−1
0 = Ĉ†

0 = Ĉ0 . (19.104)

Since Ĉ0 only amounts to a complex conjugation, we may define its relation to
the position and momentum operators of a particle according to

Ĉ0 r Ĉ0 = r

Ĉ0 p Ĉ0 = −p.

(19.105)

As a result, the orbital angular momentum will obey

Ĉ0 L Ĉ0 = −L . (19.106)

Having not included spin yet in our analysis, we move to generalize the time
reversal operator in the case of spin. For spin operators we note that under complex
conjugation the Pauli matrices change according to

σ∗
1,3 = σ1,3 and σ∗

2 = −σ2 .

Thus, we may impose

Ĉ0 Ŝx Ĉ0 = Ŝx , Ĉ0 ŜyĈ0 = −Ŝy, Ĉ0 ŜzĈ0 = Ŝz .

Note, however, the identity
σ2σiσ2 = −σ∗

i .

Thus, we are led to define the complete time reversal operator as

Ĉ = −iσ2 Ĉ0 . (19.107)

10Compare this to Hermitian conjugation for a linear operator 〈ψ1|L̂†|ψ2〉 = 〈ψ2|L̂|ψ1〉∗.
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Under this definition
Ĉ r Ĉ = r Ĉ p Ĉ = −p

Ĉ L Ĉ = −L, Ĉ S Ĉ = −S.

(19.108)

An equivalent expression for Ĉ is11

Ĉ = e− i
�

π Ŝy Ĉ0 . (19.109)

Note that now

Ĉ2 = −iσ2Ĉ0(−iσ2)Ĉ0 = (−iσ2)
2Ĉ2

0 = −1 .

This happens generally if the systemcontains an oddnumber of fermions. The general
result is

Ĉ2 = (−1)NF . (19.110)

For a system with Ĉ2 = −1, the time reversal operator has to be anti-Hermitian,
namely,

Ĉ† =
(
−iσ2Ĉ0

)† = Ĉ0iσ2 = iσ2Ĉ0 = −Ĉ . (19.111)

In summary, for systems with odd number of fermions

Ĉ−1 = Ĉ† = −Ĉ . (19.112)

An observable Q̂ is designated as real if it commutes with Ĉ

[
Q̂, Ĉ

]
= 0 =⇒ Q̂ = real . (19.113)

Also a state |R〉 is characterized as real if

Ĉ |R〉 = |R〉 . (19.114)

Note, however, that if the system is such that Ĉ2 = −1, there can be no real vectors.
Applying the definition of Hermitian conjugation, we have

〈R|
{

Ĉ†|R〉
}

= 〈R|
{

Ĉ |R〉
}

= 〈R|R〉

but since Ĉ† = −Ĉ the left-hand side is just −〈R|R〉 implying that |R〉 is the null
vector. Note, however, that for a general vector |a〉, its complex conjugate Ĉ |a〉 will
be orthogonal to it, namely,

11e− i
�

π Ŝy = e−iπσ2/2 = cos(π/2) − iσ2 sin(π/2) = −iσ2.
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−〈a|
{

Ĉ |a〉
}

= 〈a|
{

Ĉ†|a〉
}

= 〈a|
{

Ĉ |a〉
}

= 0 .

Thus, in such a system, we may construct a basis of mutually complex conjugate
vectors.

Consider now a conservative system with a real Hamiltonian

[
Ĥ , Ĉ

]
= 0 . (19.115)

The following relation is true

Û (t, t0)Ĉ = Ĉ Û (t0, t) = Ĉ Û †(t, t0) . (19.116)

Multiplying with Ĉ† and using unitarity, we have

Ĉ† Û (t, t0)Ĉ = Û †(t, t0) . (19.117)

This relation is referred to as the principle of microreversibility and embodies the
time reversal invariance of conservative systems with real Hamiltonians. Consider
next the energy eigenvalue problem of such a system Ĥ |ψE 〉 = E |ψE 〉. Since Ĉ
commutes with Ĥ , the vector Ĉ |ψE 〉 will also be an eigenstate of the same energy

Ĥ
(

Ĉ |ψE 〉
)

= E
(

Ĉ |ψE 〉
)

. (19.118)

If the system contains an odd number of fermions and Ĉ2 = −1, we know that there
can be no real eigenvectors. Therefore, in the subspace spanned by the degener-
ate eigenvectors of each eigenvalue, we may choose a basis of complex conjugate
eigenvectors, meaning that this subspace will be of even dimension. This type of
degeneracy is the so-called Kramers Degeneracy.

19.6 Dynamical Symmetry

As we have seen, the symmetries of physical systems correspond to the existence
of transformations that leave the Hamiltonian invariant. This is equivalent to the
existence of physical observables that commute with the Hamilton operator and,
therefore, are constants of the motion. Thus, symmetry under rotations (spatial
isotropy) leads to angular momentum conservation, symmetry under spatial transla-
tions (homogeneity of space) leads to momentum conservation, and symmetry under
time translations (homogeneity of time) leads to energy conservation. Nevertheless,
these are not the only physical quantities that could be conserved and it is pos-
sible that there are additional physical observables that are conserved depending
on the details of the physical system at hand. In contrast to temporal and spatial
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homogeneity or spatial isotropy which are characterized as kinematical symmetries,
the additional symmetries arising in particular systems are often called dynamical
symmetries. Note, however, that this distinction is purely a convention, since, e.g.,
angular momentum conservation is intimately connected with the dynamics, i.e., the
potential of the model.

Avery important consequenceof the existenceof a conservedquantity is that itwill
have common eigenstates with theHamiltonian, since it commutes with it. As a result
the energy spectrum will be degenerate. Therefore, a symmetry implies degeneracy.
Note, however, that the opposite is also true. The existence of degeneracies revealed
in the calculation of the energy spectrum points out to the existence of symmetries,
even if these symmetries were not manifest to begin with. In this section, we will
discuss one such example of dynamical symmetry, namely, the case of the hydrogen
atom [1].

The large degeneracy of the hydrogen atom is directly related to an additional sym-
metry that is already present in the corresponding classical problem of the attractive
1/r potential. There, the motion is planar because of angular momentum conser-
vation, the plane of motion being perpendicular to the constant angular momentum
vector. Nevertheless, the closed elliptical trajectories do not exhibit any precession,
i.e., the direction of their principal axis is a constant of themotion as well. This would
not be true if the attractive potential were not exactly 1/r . The classical conserved
quantity (Runge–Lenz vector) is

R = 1

m
(p × L) − e2

r
r

(19.119)

but, as a quantum operator, because of the non-commutativity of momentum and
angular momentum, it has to be modified to

R = 1

2m
(p × L − L × p) − e2

r
r

. (19.120)

It is straightforward, although tedious, to see that indeed this is a constant of the
motion and [

Ĥ , R
]

= 0 . (19.121)

The existence of this additional constant explains why the degeneracy, although
expected to be only 2� + 1 due to rotational symmetry, is as large as

n−1∑

�=1

(2� + 1) = n2 .

Note also that
L · R = R · L = 0, (19.122)
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this being the quantum analogue of the fact that at the classical level the Runge–Lenz
vector, signifying the direction of the principal elliptical axis, is perpendicular to the
angular momentum. Next, we may compute the square of R. We find

R2 = e4 + 2

m
Ĥ

(
L2 + �

2
)

. (19.123)

Let us now try to analyze the operator R further by deriving its commutators with
the angular momentum. We obtain

[
L̂ i , R̂ j

]
= i� εi jk R̂k , (19.124)

verifying the R is indeed a vector operator, satisfying the same type of commutation
relation with angular momentum as the position and momentum operators.

Next, we may compute the commutator of the different components of R. After
some effort, we obtain

[
R̂i , R̂ j

]
= −2i

m
Ĥεi jk L̂k . (19.125)

The six commutation relations (19.124), (19.125) between the six operatorsL,R is a
so-called closed algebra, since these operators through these relations transform only
among themselves. This does not change by the presence of the Hamilton operator,
since this is a constant of the motion, commuting with all six of them and acting just
as a number.

Let us restrict ourselves to the Hilbert subspace spanned by the discrete energy
eigenstates (bound states), where H is just a negative number. Then, instead of the
R’s let’s introduce the three operators

K =
√−m

2H
R . (19.126)

The set of coupled commutation relations satisfied by all six K, L is

[
K̂i , K̂ j

]
= i�εi jk L̂k

[
L̂ i , K̂ j

]
= i�εi jk L̂k

[
L̂ i , L̂ j

]
= i�εi jk L̂k .

(19.127)

These relations can be decoupled if we introduce the operators

J(±) = 1

2
(L ± K) . (19.128)
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It turns out that J(+) and J(−) are independent and that they both satisfy standard
angular momentum-type commutation relations. We have

[
J(+), J(−)

] = 0

[
Ĵ (+)

i , Ĵ (+)
j

]
= i�εi jk Ĵ (+)

k

[
Ĵ (−)

i , Ĵ (−)
j

]
= i�εi jk Ĵ (−)

k .

(19.129)

These two angularmomentawill have common standard eigenstates and eigenvalues,
which may label accordingly

(
Ĵ (+)

)2 | j+, m+; j−, m−〉 = �
2 j+( j+ + 1)| j+, m+; j−, m−〉

Ĵ (+)
z | j+, m+; j−, m−〉 = �m+| j+, m+; j−, m−〉

(
Ĵ (−)

)2 | j+, m+; j−, m−〉 = �
2 j−( j− + 1)| j+, m+; j−, m−〉

Ĵ (−)
z | j+, m+; j−, m−〉 = �m−| j+, m+; j−, m−〉.

(19.130)

Note, however, that there is a constraint between them since K · L = 0 and

(
J(+)

)2 = 1

4

(
L2 + K2

) = (
J(−)

)2
. (19.131)

As a result of this constraint the angular momentum quantum numbers will be equal,
i.e., j+ = j−. Returning to the expression (19.123), we rewrite it as

R2 − 2

m
ĤL2 = − 2

m
Ĥ(K2 + L2) = e4 + 2�

2

m
Ĥ

or

− 2

m
Ĥ

( (
J(+)

)2 + (
J(−)

)2) = e4 + 2�
2

m
Ĥ . (19.132)

Solving for Ĥ , we obtain

Ĥ = − me4

2�2 + 4
( (

J(+)
)2 + (

J(−)
)2

) . (19.133)
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The corresponding relation for the energy eigenvalues is

E = − me4

2�2(2 j+ + 1)2
. (19.134)

Since j+ is the principal quantum number of a generalized angular momentum oper-
ator 2 j+ + 1 must be an integer n = 1, 2, . . . . Thus, we recover the hydrogen atom
spectrum

En = − me4

2�2n2
. (19.135)

The degeneracy is immediately explained by the existence of the two angular
momenta of equal principal quantum numbers. I will be

(2 j+ + 1) × (2 j+ + 1) = (2 j+ + 1)2 = n2 . (19.136)

Example 19.2 Consider the three-dimensional isotropic harmonic oscillator

Ĥ = p̂2

2m
+ 1

2
mω2r2 .

The corresponding classical system is known to have elliptical orbits. In contrast to
the case of the attractive 1/r potential, the attraction center is not one of the focal
points but coincides with the intersection of the principal and secondary axes of the
ellipse. The corresponding conserved quantity is not a vector but a tensor. Show that
this quantity is the traceless symmetric tensor

Q̂i j = mω

(

xi x j − 1

3
δi j r

2

)

+ 1

mω

(

p̂i p̂ j − 1

3
δi j p̂2

)

.

Derive the commutation algebra of Q̂i j with the angular momentum.

It is straightforward but tedious to prove that
[

Ĥ , Q̂i j

]
= 0 . (19.137)

Writing the angular momentum operators as

L̂i j = xi p̂ j − x j p̂i = εi jk L̂k , (19.138)

we may also derive the following commutator algebra:
[

L̂i j , L̂k�

]
= i�

(
δik L̂ j� + δ jk L̂�i + δi� L̂k j + δ j� L̂ik

)

[
L̂i j , Q̂k�

]
= i�

(
δik Q̂ j� − δ jk Q̂�i + δi� L̂k j − δ j� Q̂ik

)

[
L̂i j , L̂k�

]
= −i�

(
δ jk L̂�i + δ�j L̂ki + δki L̂�j + δi� L̂k j

)
.

(19.139)
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This is a closed Lie Algebra among the L̂i j and Q̂i j of which eight components are independent.

Out of these eight components we may define as linear combinations the eight generators of the

SU (3) group, i.e., the group of 3 × 3 unitary matrices with determinant equal to +1. The group

elements are expressed as e
i
2

∑8
a=1 θaλa in terms of the Hermitian generators λa that satisfy the

algebra [λa, λb] = 2i� fabcλc.

Problems and Exercises

19.1 If ψ(r, t) is the wave function of a particle, show that the wave function
ψ∗(r,−t) describes a particle having the opposite momentum.

19.2 A particle of spin s = 1 is described by the Hamiltonian

Ĥ = aŜ2
z + b

(
Ŝ2

x − Ŝ2
y

)
,

with a, b real parameters. Is the energy invariant under time reversal? How do the
energy eigenstates change under a time reversal?

19.3 Consider the three-dimensional isotropic harmonic oscillator. Prove that the
angular momentum L and the tensor operators Q̂i j = mω

(
xi x j − 1

3δi j r2
) + 1

mω(
p̂i p̂ j − 1

3δi j p̂2
)
satisfy the relation

L̂2 + 1

2
T r

(
Q̂2

)
= −3�2 + 4Ĥ 2

3ω2
.

19.4 Show that, if the Hamiltonian of a system is time reversal invariant, we can
always choose the wave function to be real. How is this compatible with the fact that
at some particular time the wave function of a free particle can be a plane wave eik·r?

19.5 Asystem consists of two particles of the samemass interacting through a poten-
tial V (|r1 − r2|). Discuss the rotational properties of the system and the associated
conserved quantities.

19.6 Let α, β, γ be the Euler angles. If U = e−iαX1 e−iβX2 e−iγX3 is to represent a
rotation, find the commutation relations that have to be satisfied by the X1, X2, X3.
Relate them to angular momentum.

19.7 Consider the Galilean Transformations Ĝ = e
i
�
V·K, where their generator is

K = mr − tp. Show that K is a vector operator.

19.8 Consider a sequence of Euler rotations represented by

D(1/2)(α, β, γ) = e−iσ3α/2 e−iσ2β/2 e−iσ3γ/2 .

Show that this is equivalent to a single rotation around an axis by an angle θ. Find θ.
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19.9 Consider the simple harmonic oscillator. Show that spatial reflection (parity)

can be represented by the operator −iei π Ĥ
�ω , where Ĥ is the Hamiltonian.

19.10 For the parity operator P̂n̂ = P̂ e− i
�

πn̂·J prove the following:

P̂n̂r P̂n̂ = r − 2n̂
(
n̂ · r)

P̂n̂pP̂n̂ = p − 2n̂
(
n̂ · p)

P̂n̂J P̂n̂ = −J + 2n̂
(
n̂ · J)
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Chapter 20
Scattering

20.1 The Scattering Cross Section

Most of the experiments on short-distance phenomena are scattering experiments,
where a target is struck by a beam of particles of well-defined energy. The density of
incident particles almost always is sufficiently small so thatmutual interactions can be
neglected. In such an experiment, appropriately placed counters can count the number
of scattered particles per unit time in various directions. In the majority of cases, the
scattering centers composing the target are distant enough so that interference effects
between waves scattered by each of them can be neglected. Let J be the incident
flux, i.e., the number of particles per unit time per unit surface placed perpendicular
to their direction of propagation. The number of particles dN scattered per unit time
into a solid angle d� should be proportional to J , i.e.,

dN = σJ d� . (20.1)

The proportionality constant σ is called differential cross section and depends on
the direction �. The expression (20.1) can be considered as the definition of the
differential scattering cross section, symbolized also as σ(�) = dσ

d�
. Therefore, the

differential scattering cross section is defined as the number of scattered particles
per unit time, per unit of incident flux, per unit of solid angle. The total scattering
cross section is defined as [1, 2]

σ =
∫

d�σ(�) , (20.2)

being the number of particles scattered in all directions per unit time, per unit of
incident flux. Both the differential and the total scattering cross sections have dimen-
sions of surface. Scattering experiments in Nuclear Physics involve distances of the
order of 10−12 − 10−13 cm and, therefore, since cross sections are expected to be
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O(10−24 cm2), the established cross-sectional measurement unit is the Barn equal
to 10−24 cm2.

20.2 Two-Particle Collisions

Consider a particle of massm1 and velocity v colliding with a target particle of mass
m2, which is at rest [1–3]. This is the Laboratory Frame description of the collision.
The Center of Mass of the two particles in this frame of reference moves with a
velocity V, which from momentum conservation is

(m1 + m2)V = m1v =⇒ V = m1

m1 + m2
v . (20.3)

In the Center of Mass Frame, the velocities of the incident and the target particles
will be

v
(CM)
1 = v − V = m2

m1 + m2
v, v

(CM)
2 = V = m1

m1 + m2
v . (20.4)

The velocity of the incident particle after the collision in the Laboratory Frame will
be

v(L)
1 = v(CM)

1 + V . (20.5)

This relation, written in terms of the angles shown in Fig. 20.1, gives us a relation
between the scattering angles in the two reference frames

⎧⎨
⎩
sin θ(L) v

(L)
1 = sin θ(CM) v

(CM)
1

cos θ(L) v
(L)
1 = V + cos θ(CM) v

(CM)
1

=⇒ tan θ(L) = sin θ(CM)

m1
m2

+ cos θ(CM)
.

(20.6)

It should be noted that the definition of the cross section introduced above is also
valid in the case of a moving target provided that it refers to the relative incident flux.
Since the same number of particles is scattered in the angle d�L in the Laboratory
Frame as scattered in the angle d�CM in the center of mass frame and we can write

σL(�L) d�L = σCM(�CM) d�CM . (20.7)

Of course, the total cross section is frame-independent

σtot =
∫

d�L σL(�L) =
∫

d�CM σCM(�CM) . (20.8)
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Fig. 20.1 Laboratory and center of mass frames kinematics

Using the relation (20.6) we have

σL(�L) = σCM(�CM)

(
d cos θCM

d cos θL

)
(20.9)

or

σL(�L) = σCM(�CM)

((
1 + (m1/m2)

2 + 2(m1/m2) cos θCM
)3/2

|1 + (m1/m2) cos θCM |

)
. (20.10)

20.3 The Scattering Amplitude

In the majority of collision problems, the forces between particles depend on the rel-
ative distance. In these cases, the problem of the scattering of two particles of masses
m1 andm2 reduces to the scattering problemof one particle ofmassm1m2/(m1 + m2)

moving in a potential depending on the relative distance. We may also restrict our-
selves in the case of short-range forces, i.e., forces corresponding to potentials that
fall off faster than the Coulomb potential at great distances, namely, such that1

1This includes all forces relevant at the subatomic level. The “long range” Coulomb potential will
be dealt with separately.
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Fig. 20.2 Plane wave scattering

lim
r→∞ {r V (r)} = 0 . (20.11)

The time-independent Schroedinger equation for scattering states (i.e., energies E =
�
2k2/2m > 0) is

(
− �

2

2m
∇2 + V (r)

)
ψE (r) = E ψE (r) . (20.12)

Wemay guess that in the asymptotic region (r → ∞) the solution will consist of two
terms, namely, a plane wave term, representing the incident particle, and a scattered
wave term that has the form of a spherical wave multiplied by an amplitude that
depends on the direction. This is depicted in Fig. 20.2. Thus, we may write down a
trial asymptotic solution

ψE (r) ∼ eik·r

(2π)3/2
+ f (�)

(2π)3/2

eikr

r
. (20.13)

Substituting (20.13) into the Schroedinger equation we see that it is indeed a
solution in the asymptotic region, provided that the potential is short range as assumed
by (20.11). The function f (�) is called the Scattering Amplitude [1, 3]. It is an
important quantity, since it is directly related to the scattering cross section. If we
calculate the probability current density J = �

2mi (ψ
∗∇ψ − ψ∇ψ∗), we arrive at an

asymptotic (i.e., r → ∞) expression with leading terms

J = �k
m(2π)3

+ �kr̂

m(2π)3

| f (�)|2
r2

+ · · · (20.14)

The dots signify interference or subleading terms. Remembering that the differential
cross section is defined as

σ(�) = 1

Jin

dNsc

d�
, (20.15)
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we note that

Jin = �k

m

∣∣∣∣ eik·r

(2π)3/2

∣∣∣∣
2

= �k

m(2π)3
.

Also, note that the number of the scattered particles per unit time in a solid angle d�

is just the radial flux2 multiplied by the spherical surface area

dNsc =
{

�k

m

∣∣∣∣ f (�)

(2π)3/2r

∣∣∣∣
2

r̂

}
· dS = �k

m(2π)3r2
| f (�)|2r2d� = �k

m(2π)3
| f (�)|2d�

(20.16)
Therefore, we have

σ(�) = 1

Jin

dNsc

d�
=

(
�k

m(2π)3

)−1 (
�k

m(2π)3
| f (�)|2

)
(20.17)

or just
σ(�) = | f (�)|2 . (20.18)

Thus, the scattering amplitude f (�) is a quantity directly related to the scattering
cross section, the latter being the absolute square of the former.

20.4 Wave Packet Scattering

Consider a wave packet with an initial (t = 0) wave function3

ψ(r, 0) =
∫

d3k

(2π)3/2
ψ̃(k) eik·(r−r0) . (20.19)

Themomentumwave function ψ̃(k) is a smooth function centered around somewave
number k0, fairly localized around it with a spread (�k). Similarly, the spatial wave
function ψ(r, 0) is also fairly localized around a point r0, which, without loss of
generality, can be taken to be parallel to k0. This wave packet represents the incident
particle moving toward the scattering center of a short-range potential V (r). As in
many problems in physics, we are basically interested in determining the evolved
wave function ψ(r, t) at times t >> 0. To do this it is necessary to solve the energy
eigenvalue problem4

Ĥψk = E ψk . (20.20)

2Or, equivalently the radial probability current density.
3See also [1, 3].
4The eigenvalues of the energy corresponding to scattering states E = �

2k2/2m (continuous spec-
trum) cover the positive real axis 0 < E < ∞, being the same as in the case where the potential is
absent and the eigenstates are just the plane waves eik·r. In other words, the spectrum of scattering
states coincides with that of the free particle.
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We already know the form of the eigenfunctions in the asymptotic region, namely,

ψk(r) ∼ 1

(2π)3/2

(
eik·r + f (�)

eikr

r

)
. (20.21)

Note that the initial wave function ψ(r, 0), although it is written as a superposition
of plane waves eik·r/(2π)3/2, it can also be written as a superposition of the above
scattering eigenstates as

ψ(r, 0) =
∫

d3k ψ̃(k) e−ik·r0 ψk(r) . (20.22)

This is a very good approximation in the asymptotic region. It amounts to

∫
d3k ψ̃(k) f (�) eikr ≈ 0 . (20.23)

This will be proven rigorously shortly.
Next, we write down a general expression for the evolved wave function

ψ(r, t) =
∫

d3k C(k) e−i �k2

2m t ψk(r) (20.24)

with the coefficients

C(k) =
∫

d3r ψ(r, 0)ψ∗
k(r) . (20.25)

We may use our approximation (20.22) and obtain

C(k) =
∫

d3r
∫

d3k ′ ψ̃(k′)e−ik′ ·r0 ψk′(r)ψ∗
k(r) (20.26)

=
∫

d3k ′ ψ̃(k′)e−ik′ ·r0
∫

d3r ψk′(r)ψ∗
k(r) =

∫
d3k ′ ψ̃(k′)e−ik′ ·r0δ(k − k′)

or
C(k) = ψ̃(k)e−ik·r0 . (20.27)

Thus, finally, we may have

ψ(r, t) =
∫

d3k ψ̃(k) e−ik·r0 e−i �k2

2m t ψk(r) . (20.28)

We may proceed now by doing some further approximations on the last expression.
The energy in the exponent can be written as



20.4 Wave Packet Scattering 403

�k2

2m
= �

2m

(
(k − k0)2 − 2k0 · (k − k0) − k2

0

) ≈ �

2m

(
2k · k0 − k20

)
,

where we have neglected the (k − k0)2, being much smaller than the linear term,
since by assumption the momentum distribution is localized around k0. We may also
introduce the symbols

ω0 = �k20
2m

and v0 = �k0
m

. (20.29)

Note that the approximation made in the exponent amounts to neglecting �(�k)2

2m t for
the characteristic times t involved in the scattering process. These times correspond
to traveling the distance to the scattering center r0/v0 and a distance of analogous
magnitude from the scatterer to the detector, meaning that t ∼ 2r0/v0. Thus, our
approximation amounts to 2r0�(�k)2/2mv0 ∼ r0(�k)2/k0 << 1.

Returning to the wave function, we have

ψ(r, t) ∼ eiω0t
∫

d3k ψ̃(k)ψk(r) e−ik·(r0 +v0t) (20.30)

or

ψ(r, t) ∼ eiω0t
∫

d3k

(2π)3/2
ψ̃(k) eik·(r−(r0 + v0t) )

+ eiω0t

r

∫
d3k

(2π)3/2
ψ̃(k) fk(r̂)e

ikr −ik(r0 + v0t) . (20.31)

We have symbolized appropriately the scattering amplitude as fk(r̂), since it depends
on thewave numberk and the direction r̂ , defined by the solid angle�. Since ψ̃(k) has
been assumed to be localized around k0, we can make an additional approximation
and replace fk(r̂) inside the integral of the second term with fk0(r̂) and move it
outside the integral. We end up with

ψ(r, t) ∼ eiω0t
∫

d3k

(2π)3/2
ψ̃(k) eik·(r−(r0 + v0t) )

+ eiω0t

r
fk0(r̂)

∫
d3k

(2π)3/2
ψ̃(k) eikr−ik·(r0 + v0t) . (20.32)

The exponential in the second term can be written as e
ik·

(
k̂r−r0−v0t

)
and this can

be approximated by e
ik·

(
k̂0r−r0−v0t

)
due to the localization around k0. Finally, the

evolved wave function can be written in terms of the initial wave packet as
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Fig. 20.3 Wave packet scattering

ψ(r, t) ∼ eiω0t ψ(r − v0t, 0) + eiω0t

r
fk0(r̂)ψ(k̂0r − v0t, 0) . (20.33)

This expression contains compactly all the physics of the scattering process as
depicted in Fig. 20.3. The first term, apart from a trivial phase factor, is just the
initial wave packet translated by v0t and represents the kinematical evolution of the
initial wave if there was no scattering at all. The second term is again the initial wave
packet

(1) translated by v0t ,
(2) rotated to the direction r → k̂0r ,
(3) multiplied by the scattering amplitude fk̂0(r̂), and
(4) decreased in proportion to 1/r.

This term represents the scattered part of the wave packet.
The probability to observe a scattered particle in the time interval [t, t + dt] and in
a surface element dS will be the product

J · dS dt = Jr r
2 d� dt = v0

∣∣∣∣ e
iω0t

r
fk0 (r̂) ψ(k̂0r − v0t, 0)

∣∣∣∣
2

r2 d� dt . (20.34)

For the total probability, we integrate over all time and get

v0 d� | fk̂0 (r̂)|2
∫ +∞

−∞
dt

∣∣∣ψ
(
k̂0(r − v0t), 0

)∣∣∣2 = d� | fk0 (r̂)|2
∫ +∞

−∞
dξ

∣∣∣ψ
(
k̂0ξ, 0

)∣∣∣2 .

(20.35)
Note, however, that this integral is just the probability per unit area for an incident par-
ticle to cross a surface perpendicular to the direction of incidence k̂0 or, equivalently,
the number of incident particles per unit area

I0 =
∫ +∞

−∞
dξ

∣∣∣ψ
(
k̂0ξ, 0

)∣∣∣2 . (20.36)

Then, the differential cross section will be the above scattering probability per unit
area | fk0(r̂)|2 I0 divided by the number of incident particles per unit area I0, i.e.,
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σ(�) = | fk0(r̂)|2 . (20.37)

Thus, for a rather sharply localized wave packet at k0, we have recovered the relation
of the differential cross section and the scattering amplitude at the central wave
number k0.

20.5 Integral Scattering Equation

The time-independent Schroedinger equation for scattering (E = �
2k2/2m) can be

written in the form ( ∇2 + k2
)
ψk(r) = U (r)ψk(r) , (20.38)

where we have introduced

U (r) = 2m

�2
V (r) . (20.39)

In the absence of the potential, the corresponding free equation is

(∇2 + k2
)
ψ(0)
k (r) = 0 . (20.40)

It is possible to view (20.38) as an inhomogeneous version of (20.40), although this
is not correct, since the “inhomogeneous” right-hand side contains the unknown
wave function ψk(r). Nevertheless, this might be useful in order to set it into a form
more susceptible to approximations. Thus, considering the right-hand side as an
inhomogeneity, we apply the Green’s functions method, consisting of the following
steps. First, we determine the Green’s function of the operator ∇2 + k2 solving the
Green’s function equation with the appropriate boundary conditions

(∇2 + k2
)
Gk(r, r′) = −4π δ(r − r′) . (20.41)

Next we have a “solution” of (20.38) as a sum of a solution of the homogeneous
equation (20.40) and a convoluted integral of the Green’s function and the “inhomo-
geneity” U (r)ψk(r)

ψk(r) = ψ(0)
k (r) − 1

4π

∫
d3r ′ Gk(r, r′)U (r′)ψk(r′) . (20.42)

Substituting (20.42) into the original Eq. (20.38), we verify that it is satisfied. Nev-
ertheless, (20.42) is not a solution but simply an integral equation equivalent to the
original Schroedinger differential equation.5 Its merit will become clear shortly after
we have determined the Green’s function by solving (20.41).

5See also [1, 3].
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Determination of the Green’s function. Consider a Fourier transformation of the
Green’s function Gk(r, r′)

Gk(r, r′) =
∫

d3k ′

(2π)3/2
g(k′) eik

′ ·(r−r′) . (20.43)

It is clear from the defining Eq. (20.41) that Gk(r, r′)will be a function of the differ-
ence r − r′ only, since the operator∇2 is invariant in spatial translations. Introducing
the Fourier transform in the Eq. (20.41), we obtain

g(k ′) =
(
2

π

)1/2 1

k ′2 − k2
(20.44)

and introducing this back to (20.43)

Gk(r − r′) = 1

2π2

∫
d3k ′ e

ik′ ·(r−r′)

k ′2 − k2
. (20.45)

Taking the r − r′ direction to be the ẑk-axis, we have

d3k ′ exp[ik′ · (r − r′)] = dφkd(cos θk)dk
′k ′2 exp[ik ′R cos θ′

k] ,

where
R = |r − r′| . (20.46)

Then, we have

Gk(R) = 1

π

∫ ∞

0

dk′k′2

k′2 − k2

∫ 1

−1
d(cos θ′

k)e
ik′R cos θ′

k = 1

iπR

∫ ∞

0

dk′k′

k′2 − k2

(
eik

′R − e−ik′R
)

= 1

iπR

∫ +∞

−∞
dk′ k′eik′R

k′2 − k2
= − 1

πR

d

dR

∫ +∞

−∞
dk′ eik

′R

k′2 − k2
. (20.47)

The integration at hand is ill-defined since the intergrand has poles on the real axis
at k ′ = ±k. One way to define the integral is giving the poles a small imaginary part
shifting them away from the real line. There are different choices leading to different
Green’s functions. Each of them corresponds to different boundary conditions at
infinity for the original Green’s function differential equation. The correct choice
in our case is the one leading to outgoing spherical waves. Thus, we shift the poles
according to6

k2 → k2 + iη ,

6k is taken to be positive.
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G

G

+

−

Fig. 20.4 Complex k-plane

corresponding to shifting the pole at k in the upper complex k ′-plane and the pole at
−k in the lower complex k ′-plane as shown in Fig. 20.4. Closing the contour in the
upper complex k ′-pane and applying the residue theorem, we obtain

∮
dz

eizR

z2 − k2 − iη
=

∫ +∞

−∞
dk′ eik

′R

k′2 − k2 − iη
+ lim

ρ→∞

∫ π

0
dθ

ρeiθeik
′ρR cos θ

ρ2e2iθ − k2
e−k′Rρ sin θ .

Therefore ∫ +∞

−∞
dk ′ eik

′R

k ′2 − k2 − iη
= 2πi

eikR

2k
. (20.48)

This leads us to the Green’s function

Gk(R) = eikR

R
. (20.49)

If we had made the alternative choice of pole-shifting, namely, k2 → k2 − iη, we
would have ended with the Green’s function Gk(R) = e−ikR/R, exhibiting behavior
of incoming spherical waves. We may then symbolize both choices as

G(±)
k (R) = e±ikR

R
(20.50)

the “+” sign corresponding to the presently physical behavior of outgoing waves.
Returning to the integral equation (20.42), we substitute the Green’s function

G(+)
k (R) and we obtain

ψ(+)
k (r) = ψ(0)

k (r) − 1

4π

∫
d3r ′ e

ik|r−r′ |

|r − r′| U (r′)ψ(+)
k (r′) . (20.51)

Wehave also designated the scatteringwave functionwith the “+” sign underlining its
association with G(+)

k and outgoing waves. For the solution of the free Schroedinger
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equation, wemay take a plane wave representing an incident particle of wave number
k, namely,

ψ(0)
k (r) = eik·r

(2π)3/2
. (20.52)

Next, we shall try to derive an approximate expression for (20.51) valid in the asymp-
totic region of large distances, assuming that the potential U (r) is short range.

Consider the relative length |r − r′|. Note that the values of r′ that contribute in
the integral (20.51) are those for which the potential is appreciable. Therefore, we
may assume that r >> r ′. Then, we have

|r − r′| =
√
r2 + r ′2 − 2r · r′ ≈ r

(
1 − r · r′

r2

)
= r − r̂ · r′

and
k|r − r′| ≈ kr − (kr̂) · r′ . (20.53)

At this point we introduce the wave number

k′ = kr̂ (20.54)

and we can write
k|r − r′| ≈ kr − k′ · r′ . (20.55)

Going back to the integral equation, we have

ψ(+)
k (r) ≈ eik·r

(2π)3/2
− eikr

4πr

∫
d3r ′ e−ik′ ·r′

U (r′)ψ(+)
k (r′) . (20.56)

Note that the last equation has exactly the form of the asymptotic scattering solution
(20.13) with the identification of the integral

fk(r̂) = −
√

π

2

∫
d3r ′ e−ik′ ·r′

U (r′)ψ(+)
k (r′) (20.57)

as the scattering amplitude.
As we have stated in the beginning of this approach, although it does not provide

a solution to the scattering problem, it is suitable for the development of systematic
approximations. For example, the most drastic approximation to (20.56) would be
to approximate the scattering wave function inside the integral with a plane wave,
namely,

ψ(1)
k (r) = eik·r

(2π)3/2
− eikr

4πr

∫
d3r ′

(2π)3/2
ei(k−k′)·r′

U (r′) . (20.58)
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This is the so-called Born approximation. The second-order approximation would
be to approximate the scattering wave function inside the integral with the Born
approximation just obtained, namely,

ψ(2)
k (r) = eik·r

(2π)3/2
− eikr

4πr

∫
d3r ′ e−ik′ ·r′

U (r′)ψ(1)
k (r′) . (20.59)

This iterative procedure can be continued until the desired level of accuracy is
achieved. The series generated this way is called the Born Series.

Considering now the scattering amplitude in the Born approximation, we have

f (B)
k (r̂) = −2m

�2

√
π

2

∫
d3r ′

(2π)3/2
ei(k−k′)·r′

V (r′). (20.60)

Note that this integral is just the Fourier transform of the potential

Ṽ (q) =
∫

d3r

(2π)3/2
eiq·r V (r) (20.61)

and

f (B)
k (r̂) = −2m

�2

√
π

2
Ṽ (q) . (20.62)

The wave number q, often referred to as momentum transfer, is

q = k − k′ =⇒ q2 = 2k2
(
1 − cos(r̂ · k̂)

)
= 4k2 sin2(r̂ · k̂/2) . (20.63)

Beforewe close this section on the scattering amplitude,we shall prove the relation
used in the previous section on wave packet scattering

∫
d3k ψ̃(k) e−ik·r0 fk(r̂) e

ikr = 0 , (20.64)

where ψ̃(k) is themomentumwave function of the incidentwave packet. This relation
is equivalent to

∫
d3k

(2π)3/2
ψ̃(k) eik·(r−r0) =

∫
d3k ψ̃(k) e−ik·r0 ψ(+)

k (r) . (20.65)

Substituting in (20.64) the integral expression for the scattering amplitude (20.57),
we obtain ∫

d3k ψ̃(k) e−ik·r0
∫

d3r ′ e
ik|r−r′ |

|r − r′|U (r′)ψ(+)
k (r′) . (20.66)
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Note that r is in the asymptotic region where the short-range potential is very small,
while the integration variable r′ is restricted in the range of the potential. The wave
number integral in this expression is

∫
d3k ψ̃(k) e−ik·r0+ik|r−r′ |ψ(+)

k (r′) ≈ ψ(+)
k0 (r′)

∫
d3k ψ̃(k) e

ik·
(

−r0 + k̂0|r−r′ |
)
,

where in the last step we made the approximations ψ(+)
k (r′) ≈ ψ(+)

k0 (r′) and k =
k · k̂ ≈ k · k̂0. These approximations are justified by the localization of the wave

packet around k0. Note, however, that the last integral is ψ
(
k̂0|r − r′|, 0

)
, which is

just the initial wave packet at the location k̂0|r − r′| ≈ k̂0 r . However, these points
are at the direction of incidence and behind the target, where the incident wave packet
ψ(r, 0) is practically zero. This justifies in neglecting the mother expression (20.64)
in our analysis of the previous section.

Example 20.1 Consider the asymptotic scattering wave function

ψ(+)
k (r) ∼ eik·r

(2π)3/2
+ fk(θ)

(2π)3/2

eikr

r
. (20.67)

Note that the probability current density J is a sum of the incident current density
Jinc due to the incident plane wave eik·r

(2π)3/2
, the scattered current densityJsc due to the

scattered spherical wave fk(θ)
(2π)3/2

eikr

r , and an interference term Jint , where both waves
contribute.

(a) Calculate all these current densities J , Jinc, Jsc, and Jint in the asymptotic
region.

(b) Calculate the surface integrals
∮
dS · J and

∮
dS · Jinc on a spherical surface

centered at the target.
(c) Use the expression

∮
dS · (Jsc + Jint ) in order to prove the so-called “Optical

Theorem” for the total scattering cross section

σ = 4π

k
Im ( fk(0)) . (20.68)

The following approximation can be used in the asymptotic region:

∫ 1

−1
d(cos θ) F(θ) e−ikr cos θ ≈ i

kr

(
F(0)e−ikr − F(π)eikr

) + O(1/r2) .

(20.69)
You may also assume that, due to cylindrical symmetry, there is no dependence of
the scattering amplitude on the azimuthal angle φ.
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From the standard expression of the current density, we have

J = �

2mi

(
ψ∗
k∇ψk − c.c.

) = Jinc + Jsc + Jint , (20.70)

where

Jinc = �k
m(2π)3

, Jsc = �kr̂

m(2π)3

| fk(θ)|2
r2

(20.71)

and

Jint = �

2mi(2π)3

{
r̂

(
ik

r

(
fk(θ)e

ikr(1−cos θ) + c.c.
)

− 1

r2

(
fk(θ)e

ikr(1−cos θ) − c.c.
))

+ k
i

r

(
fk(θ)e

ikr(1−cos θ) + f ∗
k (θ)e−ikr(1−cos θ)

)
+ θ̂ (. . . )

}
. (20.72)

Probability conservation for the stationary state ψ
(+)
k (r) implies

∮
dS · J = 0. In addition to this,

we have also
∮

dS · Jinc = �

m(2π)3
r2

∫
d� r̂ · k = �kr2

m(2π)2

∫ 1

−1
d(cos θ) cos θ = 0 . (20.73)

Therefore, we have
∮
dS · (Jsc + Jint ) = 0 or

∮
dS · Jsc = �k

m(2π)3

∫
d�| fk(θ)|2 = �k

m(2π)3
σ = −

∮
dS · Jint = −r2

∮
d� r̂ · Jint

= −�kr

2m(2π)2

∫ 1

−1
d(cos θ)

((
fk(θ)e

ikr(1−cos θ) + c.c.
)

+ cos θ
(
fk(θ)e

ikr(1−cos θ) + c.c.
))

.

Terms of O(1/r2) are omitted. We proceed with the angle integration using the suggested approx-
imation and we obtain

∮
dS · Jint = − �

im(2π)2

(
fk(0) − f ∗

k (0)
)
or

σ = 4π

k
Im( fk(0)) . (20.74)

This is the Optical Theorem telling us that the total scattering cross section is proportional to the

imaginary part of the scattering amplitude behind the target and, thus, demonstrating the extreme

wave-like nature of the scattering process of particle collisions in Quantum Mechanics.

Example 20.2 Verify that the integral equation

ψk(x) = eikx√
2π

− im

�2k

∫ +∞

−∞
dx ′ eik|x−x ′ | V (x ′)ψk(x

′) (20.75)

is equivalent to the Schroedinger equation describing one-dimensional scattering of
a particle of mass m and energy E = �

2k2/2m in the potential V (x).
(a) Consider the case of a finite range potential and use this equation for x >> x ′

in order to derive an expression involving the scattering amplitude fk .
(b) Consider the special case of the potential V (x) = −�

2g2

2m δ(x − a) and calculate
exactly the scattering amplitude.
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Acting on both sides of the integral equation with − �
2d2

2mdx2
we obtain7

− �
2

2m
ψ′′
k (x) = �

2k2

2m

eikx√
2π

+ i

2k

∫ +∞

−∞
dx ′ d2

dx2

(
eik|x−x ′|) V (x ′) ψk(x

′) =

�
2k2

2m

eikx√
2π

+ i

2k

∫ +∞

−∞
dx ′

(
ik

d2|x − x ′|
dx2

− k2
(
d|x − x ′|

dx

)2
)
eik|x−x ′| V (x ′)ψk(x

′)

= �
2k2

2m

eikx√
2π

+ i

2k

∫ +∞

−∞
dx ′ (

2ikδ(x − x ′) − k2
)
eik|x−x ′| V (x ′) ψk(x

′)

or

− �
2

2m
ψ′′
k (x) = �

2k2

2m

eikx√
2π

− V (x) ψk(x) − im

k

∫ +∞

−∞
dx ′ eik|x−x ′| V (x ′) ψk(x

′)

or

− �
2

2m
ψ′′
k (x) = −V (x) ψk(x) + E ψk(x) ,

which is just the Schroedinger equation.

(b) For the delta function potential, we have ψk(x) = eikx√
2π

− ig2

2k e
ik|x−a|ψk(a), from which we

obtain ψk(a) = eika/
√
2π

(
1 + ig2/2k

)
and substituting it into the above expression we have

ψk(x) = eikx√
2π

+
( −ig2/2k

1 + ig2/2k

)
eik|x−a|
√
2π

(20.76)

from which we can read off the scattering amplitude as

fk = −ig2/2k

1 + ig2/2k
. (20.77)

Example 20.3 Consider the scattering of particles of mass m and energy E by the
potential

V (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (0 ≤ r < a)

V0 (a < r < b)

0 (r > b)

(20.78)

(a) Calculate the scattering amplitude in the Born approximation.
(b) Consider the case of low energies (kb << 1) and using (a) calculate the total

scattering cross section.

7Note that

d|x |
dx

= �(x) − �(−x) and
d2|x |
dx2

= �′(x) − �′(−x) = 2δ(x).



20.5 Integral Scattering Equation 413

(a) We have

fk(r̂) = − m

2�2π

∫
d3r ′ eiq·r ′

V (r ′)

= − m

2�2π

∫ +∞

0
dr ′ r ′2 V (r ′)

∫ 2π

0
dφ′

∫ +1

−1
d(cos θ′) eiqr ′ cos θ′

, (20.79)

where

q = k − kr̂ =⇒ q2 = 2k2 − 2k2
(
k̂ · r̂

)
= 2k2 − 2k2 cos θ = 4k2 sin2(θ/2) . (20.80)

Proceeding further, we have

fk(θ) = −mV0
�2

∫ b

a
dr ′ r ′2

∫ +1

−1
d(cos θ′) eiqr ′ cos θ′ =

−2mV0
�2q

∫ b

a
dr ′r ′ sin(qr ′) = 2mV0

�2q

d

dq

∫ b

a
dr ′ cos(qr ′) = 2mV0

�2q

d

dq

(
1

q
(sin(qb) − sin(qa))

)

or

fk(θ) = 2mV0
�2q

(
− 1

q2
(sin(qb) − sin(qa)) + 1

q
(b cos(bq) − a cos(qa))

)
. (20.81)

(b) At low energies

(ka) < (kb) << 1 or (qa) < (qb) << 1,

we have (sin ε ∼ ε and cos ε ∼ 1 − ε2/2)

fk ≈ −mV0
�2

(
b3 − a3

)
(20.82)

and

σ =
∫

d� | fk |2 = 4πm2V 2
0

�4

(
b3 − a3

)2
. (20.83)

20.6 Scattering in Central Potentials

For a central potential V (r), the solutions ψ(+)
k (r) of the integral scattering equation

ψ(+)
k (r) = eik·r

(2π)3/2
− 1

4π

∫
d3r ′ e

ik|r−r′ |

|r − r′| U (r ′)ψ(+)
k (r′) (20.84)

exhibit cylindrical symmetry, depending only on the energy, i.e., k, on the radius r
and on the angle arccos(k̂ · r̂). Taking the direction of incidence k̂ as the polar axis ẑ
of the reference frame, the latter is the polar angle θ and ψ(+)

k (r) = ψ(+)
k (r, θ). Since

ψ(+)
k does not depend on the azimuthal angle φ, it will be an eigenfunction of L̂ z of

zero eigenvalue.
Since the Hamiltonian commutes with the orbital angular momentum, they can

have common eigenstates

Rk,�(r) Y�0(θ) ∝ Rk,�(r) P�(cos θ) , (20.85)
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where P�(cos θ) are the Legendre Polynomials.8 Thus, the solutions of (20.84) can be
expanded in terms of these angular momentum and energy eigenfunctions (spherical
waves) as9

ψ(+)
k (r, θ) =

∞∑
�=0

Rk,�(r) P�(cos θ). (20.86)

This is an analysis of ψ(+)
k in terms of spherical waves, in contrast to a Fourier trans-

formation which is an analysis in plane waves, i.e., eigenfunctions of the momentum.
We can actually go from one basis to the other by expanding a plane wave in terms of
spherical waves. At this point we shall use the expansion (13.36) which we discussed
earlier in Chap.13, expressing a plane wave as an infinite superposition of spherical
waves

eikz =
∞∑

�=0

i�(2� + 1) P�(cos θ) j�(kr) , (20.87)

where θ = arccos(k̂ · r̂). We can also expand the scattering amplitude fk(θ) in terms
of Legendre polynomials as

fk(θ) =
∞∑

�=0

f� P�(cos θ) . (20.88)

Substituting the expansions (20.87) and (20.88) in the asymptotic wave function,
we obtain

ψ(+)
k (r, θ) ∼ 1

(2π)3/2

∞∑
�=0

(
i�(2� + 1) j�(kr) + eikr

r
f�

)
P�(cos θ) . (20.89)

The radial part of the asymptotic wave function will be a combination of spherical
Bessel and spherical Neumann functions

ψ(+)
k (r, θ) =

∞∑
�=0

(A� j�(kr) + B�n�(kr) ) P�(cos θ) . (20.90)

Nevertheless, since these expressions are valid in the asymptotic region of r → ∞,
we may use the asymptotic expression for the spherical Bessel and Neumann func-

8P�(cos θ) =
√

4π
2�+1 Y�0(θ). From the orthonormality relation of spherical harmonics, we can

obtain an orthonormality relation for Legendre polynomials

∫
d� Y ∗

�0(θ, 0) Y�′0(θ, 0) = δ��′ =⇒
∫ 1

−1
dξ P�(ξ) P�′ (ξ) = 2δ��′

(2� + 1)
.

9See also [1–4].
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tions

j�(kr) ∼ sin(kr − �π/2)

kr
, n�(kr) ∼ −cos(kr − �π/2)

kr
.

Then, ψ(+)
k (r, θ) can always be written as10

ψ(+)
k (r, θ) ∼

∞∑
�=0

α�

kr
sin(kr − �π/2 + δ�) P�(cos θ) , (20.91)

i.e., in terms of the so-called phase shift δ�. Comparing (20.91)–(20.89), we obtain

α� sin(kr − �π/2 + δ�) = i�(2� + 1) sin(kr − �π/2) + k f� e
ikr (20.92)

leading to
α� = i�(2� + 1) eiδ�

f� = (2�+1)
2ik

(
e2iδ� − 1

)
.

(20.93)

Thus, finally, the scattering amplitude can be written as

fk(θ) =
∞∑

�=0

(2� + 1)

2ik

(
e2iδ� − 1

)
P�(cos θ) . (20.94)

All the scattering properties of the potential are incorporated in the phase shift δ�.
We can also obtain a very elegant expression for the total scattering cross section as
a series of partial wave cross sections. Starting from

| fk(θ)|2 = 1

4k2

∞∑
�=0

∞∑
�′=0

(2� + 1)(2�′ + 1)
(
e−2iδ� − 1

) (
e2iδ�′ − 1

)
P�(cos θ)P�′ (cos θ)

and integrating over all angles

1

4k2

∞∑
�=0

∞∑
�′=0

(2� + 1)(2�′ + 1)
(
e−2iδ� − 1

) (
e2iδ�′ − 1

) ∫
d� P�(cos θ))P�′(cos θ) ,

thanks to the orthogonality of Legendre polynomials, we obtain

σ = 4π

k2

∞∑
�=0

(2� + 1) sin2 δ� . (20.95)

10A� = α� cos δ�, B� = −α� sin δ�.
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A surprising relation between the total cross section and the scattering amplitude
emerges if we consider the scattering amplitude behind the target, i.e., at θ = 0.
Noting that P�(1) = 1, we have

fk(0) = 1

2ik

∞∑
�=0

(2� + 1)
(
e2iδ� − 1

)
= 1

2k

∞∑
�=0

(2� + 1) sin(2δ�) + i

k

∞∑
�=0

(2� + 1) sin2 δ�

or

Im( fk(0)) = 1

k

∞∑
�=0

(2� + 1) sin2 δ� .

Comparing with the expression for the total cross section we obtain

σ = 4π

k
Im( fk(0)) . (20.96)

This identity is the so-called Optical Theorem. It is generally valid and it is not
particular for central potentials (for a general proof see Example 20.1 in this chapter).
The Optical Theorem is an embodiment of the extreme wave-like nature of the
quantum scattering process, relating the total scattering probability to what happens
right behind the target, a region that would not be accessible in a classical particle
collision.

Scattering on a hard sphere. As an application of the above we shall consider the
scattering of particles of a given mass and energy by a spherical impenetrable region.
Such a situation is described by a infinitely repulsive central potential

V (r) =
⎧⎨
⎩

+∞ (0 ≤ r ≤ r0)

0 (r > r0)
. (20.97)

The radial wave function in the outside region r > r0 can be parametrized in terms
of the phase shift δ� as

Rk,�(r) = α� ( cos δ� j�(kr) − sin δ� n�(kr) ) . (20.98)

It has to vanish in the interior of the sphere. By continuity, we have

Rk,�(r0) = 0 =⇒ tan δ� = j�(kr0)

n�(kr0)
. (20.99)

The total cross section is

σ = 4π

k2

∞∑
�=0

(2� + 1) sin2 δ� = 4π

k2

∞∑
�=0

(2� + 1) j2� (kr0)(
j2� (kr0) + n2�(kr0)

) . (20.100)



20.6 Scattering in Central Potentials 417

In the case of low energies kr0 → 0 we may approximate the spherical Bessel
and Neumann functions by

j�(kr) ≈ (kr)�/(2� + 1)!!, n�(kr) ≈ (kr0)
−(�+1) (2� + 1)!!/(2� + 1)

and obtain an approximate expression for the total cross section, namely,

σ ≈ 4πr20

∞∑
�=0

(kr0)4�(2� + 1)3

((2� + 1)!!)4 ≈ 4πr20 + · · · (20.101)

The dominant term in this case is 4πr20 , being just the area of the sphere. Thus, we
may conclude that at low energies the total scattering cross section of a hard sphere
equals its area. In contrast to the classical case, where the cross section would be
expected to by πr20 , we see that in the quantum scattering case the whole spherical
area contributes to the scattering process, reflecting its wave-like nature.

In the case of high energies or kr0 >> �, we may use the approximate asymptotic
expressions of the spherical functions j�(x) ∼ sin(x − �π/2)/x and
n�(x) ∼ − cos(x − �π/2)/x and have

σ ≈ 4π

k2

kr0∑
�=0

(2� + 1) sin2(kr0 − �π/2) . (20.102)

The upper limit of the sum has been set to kr0, since our high energies assumption
is kr0 >> �. We may further approximate this sum with an integral according to

kr0∑
�=0

(2� + 1) . . . → 2
∫ kr0

0
d� � . . .

and obtain
σ ≈ 2πr20 . (20.103)

Again, in contrast to the classical case, where the cross section would be just πr20 ,
here, in the high energy limit kr0 >> 1 the wave nature of the process cannot be
ignored.

Before we close this first section on scattering in central potentials, we shall derive
a useful integral formula for the phase shift. Note that the scattering amplitude
has been expressed as a sum of terms, each corresponding to a different angular
momentum quantum number and depending, on the phase shift δ�, which embodies
all dependence on the scattering potential. Let’s write down the radial Schroedinger
equation for the scattering problem at hand using the one-dimensional wave function
uk,�(r) = r Rk,�(r). Remember that uk,�(0) = 0. We have



418 20 Scattering

{
− �

2

2m

d2

dr2
+ �

2�(� + 1)

2mr2
+ V (r)

}
uk,�(r) = E uk,�(r) . (20.104)

If the potential were absent, we would have the free radial Schroedinger equation

{
− �

2

2m

d2

dr2
+ �

2�(� + 1)

2mr2

}
u(0)
k,�(r) = E u(0)

k,�(r) . (20.105)

Of course, u(0)
k,�(r) is just r j�(kr). The energy values E (spectrum) would be the

same for both problems. Multiplying (20.104) by u(0)
k.�(r) and (20.105) by uk,�(r) and

subtracting them, we obtain

− �
2

2m

(
u(0)
k,�u

′′
k,� − uk,�u

(0)
k,�

′′) + V (r) u(0)
k,�uk,� = 0

or (
u(0)
k,�u

′
k,� − uk,�u

(0)
k,�

′)′ = 2m

�2
V (r)uk,�u

(0)
k,� .

Integrating, we obtain

u(0)
k,�(r) u

′
k,�(r) − uk,�(r)u

(0)
k,�

′
(r) = 2m

�2

∫ r

0
dr ′ V (r ′) u(0)

k,�(r
′)uk,�(r ′) . (20.106)

In the asymptotic region (r → ∞), we may replace the wave functions in the left-
hand side with their asymptotic forms

uk,� ∼ 1

k
sin(kr − �π/2 + δ�) and u(0)

k,� ∼ 1

k
sin(kr − �π/2) .

Then, we have

sin δ� ≈ −2mk2

�2

∫ ∞

0
dr ′ r ′ V (r ′) j�(kr ′) uk,�(r ′) . (20.107)

For a relatively weak potential, this can be further approximated by

sin δ� ≈ −2mk2

�2

∫ ∞

0
dr r2 V (r) j2� (kr) . (20.108)
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Example 20.4 Consider the scattering of particles of mass m and energy E by the
potential

V (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (0 ≤ r < a)

U0
r (a < r < 2a)

0 (r > 2a).

(20.109)

Calculate the scattering amplitude in the Born approximation. Are there special
values of the energy for which the Born approximate scattering amplitude vanishes?
We have

fk(�) = − mU0

2�2π

∫
r ′∈[a,2a]

dr ′ r ′2 eiq·r ′

r ′ = −mU0

�2

∫ 2a

a
dr ′ r ′

∫ 1

−1
d(cos θ′) eiqr ′ cos θ′

,

where q = k − r̂ k =⇒ q2 = 4k2 sin2(θ/2) or

fk(θ) = imU0

�2q

∫ 2a

a
dr ′ (eiqr ′ − e−iqr ′) = 2mU0

�2q2

(
2 cos2(qa) − 1 − cos(qa)

)
. (20.110)

This becomes zero for cos(qa) = 1, −1/2, e.g., qa = 2π/3 or sin(θ/2) = π
3(ka)

. This can only

happen for low values of (ka) < π/3.

20.7 Bound States and Resonances

In this section, we shall simplify our discussion on short-range central potentials by
considering potentials that are exactly zero beyond a radius a. As a matter of fact
any short-range potential could be approximated with such a potential that vanishes
beyond a certain effective range a. Since V (r ≥ a) = 0, the radial wave function in
the region r ≥ a is just

Rk,�(r) = ( j�(kr) cos δ� − n�(kr) sin δ�) (20.111)

with the asymptotic behavior

Rk,� ∼ 1

kr
sin(kr − �π/2 + δ�) .

Thewave function in the internal r < a region depends on the details of the potential.
In any case, it will be related to (20.111) through continuity. The same is true for its
derivative. We may express this continuity requirement in terms of the logarithmic
derivative at the cutoff point a
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λ� ≡ 1

Rk,�(a)

(
dRk,�

dr

)
r=a

. (20.112)

Substituting (20.111) in (20.112), we obtain

λ� = j ′�(ka) cos δ� − n′
�(ka) sin δ�

j�(ka) cos δ� − n�(ka) sin δ�

, (20.113)

where the primes denote derivative with respect to the radius r . We may use this
relation to express the phase shift in terms of the parameter λ� as

cot δ� = n′
�(ka) − λ� n�(ka)

j ′�(ka) − λ� j�(ka)
. (20.114)

Note that in the case of the hard sphere (λ� = ∞) this formula gives the right result
for the phase shift obtained in the previous section, namely, tan δ� = j�/n�.

The partial scattering amplitude and bound states. The expression (20.94) shows
the scattering amplitude as a sum over angular momenta (partial spherical waves)
with each term proportional to the quantity

S�(k) = e2iδ� − 1 (20.115)

which we may call partial scattering amplitude. This is an important quantity the
usefulness ofwhichwill be demonstrated shortly. Todo thiswe consider a particularly
simple example of central potential that belongs to the class of potentials that vanish
beyond a point, namely, the case of the spherical well V (r) = −V0 �(a − r) that
we considered in Chap.13. In order to make contact with our previous analysis, we
rephrase formula (20.114) in terms of Hankel functions11 and have

S�(k) + 1 = e2iδ� = h(+)
�

′
(ka) − λ�h

(+)
� (ka)

h(−)
�

′
(ka) − λ�h

(−)
� (ka)

. (20.116)

Let’s consider now S�(k) as a function of k in the full complex plane [1, 3, 4]. This
would include purely imaginary values of k which would correspond to negative
energies, i.e., energies below the value of the potential at infinity and, therefore,
bound states. It turns out that bound states correspond to poles of the scattering
amplitude located at the imaginary k-axis. A heuristic argument supporting this
statement is the following: Since the scattering amplitude S� is proportional to the
probability amplitude to find the particle in the scattering range of the potential for
a given incident flux, in the limit that the incident flux tends to zero, an infinite S�

is required in order to have a nonzero probability amplitude to find a particle in the
vicinity of the potential. This limiting situation of the presence of a particle without

11h(±)
� = n� ± i j�.
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any incident flux corresponds to the existence of bound states. Therefore, bound
states are related to the infinities of the scattering amplitude or, equivalently, to its
poles.

Going back to the expression for the scattering amplitude of the spherical well,
we see that its poles occur at wave numbers for which

h(−)
�

′
(ka)

h(−)
� (ka)

= λ� . (20.117)

On the other hand in our analysis of the spherical well in Chap.13, we calculated
from the internal wave function that the logarithmic derivative at a is

λ� = j ′�(qa)

j�(qa)

(
where

�
2q2

2m
= E + V0

)

and that the condition for bound states of energy E = −�
2κ2

2m is

h(−)
�

′
(iκa)

h(−)
� (iκa)

= j ′�(qa)

j�(qa)
. (20.118)

This condition coincides with the above pole condition (20.117) for k = iκ, i.e.,

S−1
� (iκa) = 0 . (20.119)

The fact that the poles of the scattering amplitude at the imaginary wave number
axis correspond to bound states is not special to the spherical well but is a general
property of all attractive potentials. Note also that the opposite is true, i.e., if there
are no poles on the imaginary axis, there are no bound states.

The partial scattering amplitude and low-energy resonances. We know that the
total cross section is a sum of terms

σ� = 4π

k2
(2� + 1) sin2 δ� .

It is clear that each partial cross section approaches a maximum whenever

δ�(E) = π

2
(20.120)

or, equivalently
S�(E) + 1 = e2iδ�(E) = −1 . (20.121)

Let’s see if such a situation can occur in the case of central potentials that vanish
beyond a point. We start from the formula (20.114) or its equivalent



422 20 Scattering

e2iδ� = h(+)
�

′
(ka) − λ� h

(+)
� (ka)

h(−)
�

′
(ka) − λ� h

(−)
� (ka)

(20.122)

and apply it at low-energies ka << 1,wherewemayuse the approximate expressions

h(±)
� (ka) ≈ (ka)−(�+1) (2� + 1)!!

(2� + 1)
± i

(ka)�

(2� + 1)!! (20.123)

and

h(±)
�

′
(ka) ≈ −k(� + 1)(ka)−(�+2) (2� + 1)!!

(2� + 1)
± ik�

(ka)�−1

(2� + 1)!! (20.124)

and obtain

e2iδ� ≈ � + 1 + aλ� − i(ka)2�+1(2� + 1) (� − aλ�)

� + 1 + aλ� + i(ka)2�+1(2� + 1) (� − aλ�)
. (20.125)

Now it is clear from this expression that, if for some energy ER the following is true

a λ�(ER) + � + 1 = 0 , (20.126)

the phase shift will be π/2 and the partial cross section will be maximum. This
value of the energy ER defines a so-called resonance. Expanding λ�(E) around a
resonance, we may write

λ�(E) ≈ λ�(ER) + (E − ER)λ′
�(ER) + · · · (20.127)

and obtain

e2iδ�(E) ≈ E − ER − i�

E − ER + i�
, (20.128)

where

� ≡ (kRa)2�+1 (2� + 1)2

aλ′
�(ER)

. (20.129)

Near a resonance the partial cross section is

σ� = 4π(2� + 1)

k2
sin2 δ� ≈ 4π(2� + 1)

k2

(
�2

(E − ER)2 + �2

)
. (20.130)

Thus, it is clear that at E = ER the cross section attains a maximum value of
4π(2� + 1)/k2. The quantity � signifies the “width” of the resonance and depends
on the details of the potential. The partial scattering amplitude near a resonance is
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S�(E) = −2i�

E − ER + i�
, (20.131)

implying that the resonances can be associated with poles at E = ER − i� in the
complex energy plane.

Closing this section, we should stress again that the analytic behavior of the
scattering amplitude in the complex plane and the association of bound states and
resonances with its poles is not special to central potentials or to the simple examples
of the square well or the class of potentials that vanish beyond a point but is a very
general property of all potentials.

20.8 Coulomb Scattering

Up to now we have considered potentials of finite range, i.e., potentials that tend to
zero at infinity faster than 1/r . The Coulomb potential, responsible for the interac-
tions of electrically charged particles, being ee′/r is of infinite range and was left
out of our discussion, since a number of assumptions made are not valid for it. The
difference from finite range potentials was already evident in the case of the dis-
crete spectrum. In contrast to the spherical well in which the asymptotic behavior
of the radial wave functions is proportional to e−κr/r , in the case of the hydrogen
atom the wave functions go as rn−1 e−κr = exp[−κr + (a0κ)−1 ln r ]/r , exhibiting
an additional phase γ ln r that grows logarithmically.

Like all central potential scattering problems, the Coulomb scattering exhibits
cylindrical symmetry. Nevertheless, the ideal type of coordinates to solve the time-
independent Schroedinger equation is not cylindrical coordinates but the so-called
parabolic coordinates, defined as [1]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ = r + z

η = r − z

ϕ = arctan(y/x)

(20.132)

The scattering of charged particles of mass m, electric charge e and energy
E = �

2k2/2m by an electrostatic potential e′/r results in a Coulomb potential
(energy)

V (r) = ee′

r
. (20.133)

Introducing the energy-dependent parameter

γ = mee′

�2k
, (20.134)
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we are led to the following form of the Schroedinger equation in terms of the above
parabolic coordinates

{
4

(ξ + η)

[
∂

∂ξ

(
ξ

∂

∂ξ

)
+ ∂

∂η

(
η

∂

∂η

)]
+ 1

ξη

∂2

∂ϕ2

}
ψ =

(
4γk

(ξ + η)
− k2

)
ψ.

(20.135)

Expecting, as we remarked, an axial symmetry, we search for solutions that will be
independent of ϕ. Then, we consider a trial solution in the form of a product

ψ(ξ, η) = f1(ξ) f2(η) . (20.136)

Inserting it into the Schroedinger equation, we obtain

(
ξ
f ′′
1

f1
+ f ′

1

f1
+ k2

4
ξ

)
+

(
η
f ′′
2

f2
+ f ′

2

f2
+ k2

4
η

)
= γk . (20.137)

Since the first parenthesis depends only on ξ while the second parenthesis depends
only on η, the only way that their sum could be a constant is if both of them are
constants ⎧⎪⎨

⎪⎩
ξ

f ′′
1
f1

+ f ′
1
f1

+ k2

4 ξ = c1

η
f ′′
2
f2

+ f ′
2
f2

+ k2

4 η = c2

(20.138)

and there is a condition
c1 + c2 = γk . (20.139)

The scattering solution we are looking for is expected to contain an incident wave

eikz = ei
k
2 (ξ−η)

and a outgoing wave
eikr = ei

k
2 (ξ+η) .

Thus, a factor eikξ/2 should be present in f1(ξ). Taking f1(ξ) to be exactly this factor

f1(ξ) = eikξ/2 , (20.140)

we determine the constant c1 from the first equation to be

c1 = ik/2 . (20.141)

The second equation becomes
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η
f ′′
2

f2
+ f ′

2

f2
+ k2

4
η = γk − ik/2. (20.142)

This equation can be transformed through the change of variable

f2(η) = g(η) e−ikη/2 (20.143)

into a mathematically familiar Hypergeometric equation

η g′′(η) + (1 − ikη) g′(η) − γk g(η) = 0 (20.144)

with a known tabulated solution

g(η) = 1F1(−iγ; 1; ikη) . (20.145)

The asymptotic (r → ∞ or η → ∞) behavior of 1F1(a; c; w) for purely imaginary
argument w is known to be

1F1(a; 1; w) ≈ |w|−a

�(1 − a)
e−iaπ/2 − i

|w|a−1 ew

�(a)
eiaπ/2 . (20.146)

From this, we deduce that

g(η) ≈ (kη)iγ

�(1 + iγ)
eγπ/2 − i

(kη)−1−iγeikη

�(−iγ)
eγπ/2 . (20.147)

We may use the property of gamma functions �(n + 1) = n�(n) for complex
arguments �(1 − iγ) = (−iγ)�(−iγ) and also set �(1 ± iγ) = |�(1 ± iγ)|e±iσ ,
where σ is a phase. Then, we have

g(η) = eγπ/2

|�(1 − iγ)|
(
e−iσ eiγ ln(kη) − γ

kη
e−iγ ln(kη)eikηeiσ

)
. (20.148)

The full asymptotic wave function will be

ψ(ξ, η) = eik(ξ−η)/2 g(η)

∼ eγπ/2

|�(1 − iγ)|
(
e−iσ eik(ξ−η)/2+ iγ ln(kη) − γ

kη
eik(ξ+η)/2−iγ ln(kη)eiσ

)

or

ψ(r, z) ∼ 1

(2π)3/2

(
eikz+iγ ln(k(r−z)) − γe2iσ

k(r − z)
eikr −iγ ln(k(r−z))

)
. (20.149)
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The scattered part of the wave function, written in terms of the radius r and the polar
angle θ, is

ψsc(r, θ) ∼ − γe2iσ

k(2π)3/2
(1 − cos θ)−1+iγ eikr−iγ ln(kr)

r
. (20.150)

From this, we can read off the scattering amplitude

fk(θ) = −γe2iσ

k
(1 − cos θ)−1+iγ (20.151)

and have an almost-standard expression for the scattered spherical wave

ψsc(r, θ) ∼ fk(θ)

(2π)3/2

eikr−iγ ln(kr)

r
. (20.152)

The Coulomb differential cross section is

σ(θ) = γ2

k2(1 − cos θ)2
= γ2

4k2 sin4(θ/2)
. (20.153)

According to our findings in previous sections, the poles of the scattering ampli-
tude at purely imaginarywave numbers in the case of the attractiveCoulombpotential
should correspond to the hydrogen atom energy levels. In this case

E → �
2(iκ)2

2m
= −�

2κ2

2m
and γ → i

me2

�2κ
. (20.154)

The scattering amplitude is proportional to

e2iσ = �(1 + iγ)

�(1 − iγ)
= iγ

�(iγ)

�(1 − iγ)
→ −me2

�2κ

�(−me2/�
2κ)

�(1 + me2/�2κ)
. (20.155)

The poles of gamma functions arise at negative integer values

�−1(−n) = 0 (n = 1, 2, . . .) .

Therefore, the scattering amplitude will have poles at

me2/�
2κ = n =⇒ En = − me4

2�2n2
, (20.156)

which are just the hydrogen energy levels.
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20.9 Scattering of Identical Particles

Up to now in our discussion of scattering, we have ignored the spin of particles. It
is straightforward to generalize most of what has been said to the case of spinning
particles and spin-dependent forces. However, there is a particular case where spin
plays a very important role with dramatic consequences. This is the case of scattering
of identical particles. Actually, the scattering of identical particles is the best way to
identify their bosonic or fermionic nature [1–3].

Identical boson scattering. Consider a pair of identical particles of integer spins.
As a working example we may consider a pair of π-mesons (spin zero bosons) and
assume for simplicity that their interaction potential depends only on the relative
distance. As we know the wave function in center of mass coordinates will be

�(r1, r2) = eiK·R ψ(r) , (20.157)

where R = 1
2 (r1 + r2) is their center of mass coordinate and r = r1 − r2 their rela-

tive position coordinate. Since the wave function of two identical bosons has to be
symmetric in their interchange, the relative wave function will have to be even

�(r1, r2) = �(r2, r1) =⇒ ψ(r) = ψ(−r) . (20.158)

If the system is in an eigenstate of angular momentum, it is clear that only states
of even � will be allowed, since Y�m(−r̂) = (−1)� Y�m(r̂). The asymptotic form
eikz + fk(θ)eikr/r will have to be replaced with a symmetrized expression12

ψ(r) ∼ 1

(2π)3/2

(
eikz + e−ikz + ( fk(θ) + fk(π − θ) )

eikr

r

)
. (20.159)

Thus, the scattering amplitude is

f (S)
k (θ) = fk(θ) + fk(π − θ) . (20.160)

The physical interpretation of the two terms is shown in Fig. 20.5. The two processes
shown are indistinguishable. The scattering cross section will be

σ(θ) = | fk(θ) + fk(π − θ) |2 = | fk(θ)|2 + | fk(π − θ)|2 + 2Re
{
f ∗
k (θ) fk(π − θ)

}
.

(20.161)

If the two particles were distinguishable, the cross section would be just the sum
of the first two terms. The existence of interference term is a measurable proof of
the indistinguishability of the two identical particles. For instance, if we consider
scattering at right angles, i.e., θ = π/2, we obtain σ(π/2) = 4| fk(π/2)|2, which is
twice what we would obtain if the two particles were distinguishable.

12Note that r → −r corresponds to θ, φ → π − θ, π + φ.
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θ

π−θ

Fig. 20.5 Identical particle scattering

Identical fermion scattering. If the two identical particles are fermions, we should
take into consideration their spin. For the sake of simplicity, wemay assume here that
their interaction potential does not depend on spin but only on their relative distance.
Then, their overall relative wave function can be a product of a spatial and a spinorial
part, the latter being an eigenfunction of the total spin of the pair S = s1 + s2, namely,
ψ(r) |S, Sz〉 . For two spin–1/2 identical fermions, |S, Sz〉 is one of the following:

triplet =⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|1, 1〉 = | ↑〉(1)| ↑〉(2)

|1, 0〉 = 1√
2

(| ↑〉(1)| ↓〉(2) + | ↓〉(1)| ↑〉(2))

|1,−1〉 = | ↓〉(1)| ↓〉(2)
(20.162)

and

singlet =⇒ |0, 0〉 = 1√
2

(| ↑〉(1)| ↓〉(2) − | ↓〉(1)| ↑〉(2)) . (20.163)

The Symmetrization Postulate dictates that the total wave function of two identical
fermions should be antisymmetric under their interchange. That leads to two possi-
bilities, namely, a symmetric spatial wave function with an antisymmetric spinorial
one (i.e., the singlet) and an antisymmetric spatial wave function with a symmetric
spinorial one (i.e., the triplet). If the system is in an eigenstate of the orbital angular
momentum, the first possibility requires even values of � = 0, 2, . . ., while the sec-
ond possibility requires odd values � = 1, 3, . . .. The corresponding cross sections
are

σS=0(θ) = | fk(θ) + fk(π − θ)|2

σS=1(θ) = | fk(θ) − fk(π − θ)|2.
(20.164)

Note that there is a vanishing cross section for triplet-scattering at right angles
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σS=1(π/2) = 0 . (20.165)

In contrast, singlet scattering of identical fermions gives the same cross sections as
in the case of identical bosons.

Example 20.5 Consider the scattering of two α-particles, i.e., 4He nuclei, inter-
acting through Coulomb forces due to their −2e positive charge. These particles,
composed of four nucleons (two protons and two neutrons), are bosons. Calculate
the corresponding differential cross section.

We have
σ(θ) = | fk(θ) + fk(π − θ)|2 , (20.166)

where the scattering amplitude is just the Coulomb scattering amplitude with γ = 4mαe2/�
2k, i.e.,

fk(θ) = −γ

k
e2iσ (1 − cos θ)−1+iγ . (20.167)

The phase σ is e2iσ = �(1 + iγ)/�(1 − iγ). Therefore, we have

σ(θ) = γ2

k2

(
(1 − cos θ)−2 + (1 + cos θ)−2 + (1 − cos2 θ)−1

(
e
iγ ln

(
1+cos θ
1−cos θ

)
+ c.c.

))

= γ2

4k2

(
1

sin4(θ/2)
+ 1

cos4(θ/2)
+ 2 cos (2γ ln(tan(θ/2)) )

sin2(θ/2) cos2(θ/2)

)
. (20.168)

Example 20.6 Consider the scattering of two 3He nuclei, interacting through
Coulomb forces due to their−2e positive charge. These particles, composed of three
nucleons (two protons and one neutron), are fermions. Calculate the corresponding
differential cross section assuming all spin states to be equally probable.

We know that the possible spin states are the triplet and the singlet correspondingly. The cross
section will be

σ(θ) = 3

4
| fk(θ) − fk(π − θ)|2 + 1

4
| fk(θ) + fk(π − θ)|2 . (20.169)

The factor 3/4 refers to the three spin states of the triplet out of the four possible spin states, while
the factor 1/4 refers to the singlet. Due to the antisymmetry of the overall wave function, the triplet
states have an antisymmetric spatial counterpart, while the singlet corresponds to a symmetrical
spatial wave function. Substituting the Coulomb scattering amplitude fk(θ), we end up with

σ(θ) = γ2

4k2

(
1

sin4(θ/2)
+ 1

cos4(θ/2)
− cos (2γ ln(tan(θ/2)) )

sin2(θ/2) cos2(θ/2)

)
. (20.170)

20.10 Scattering as a Transition Process

The scattering of particles by a finite range potential can be viewed as a transition
process [1, 2] from one unperturbed state to another, these states being possibly
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plane wave eigenstates of the free Hamiltonian Ĥ0 = p2/2m. In this point of view,
the scattering potential acts as a perturbation inducing transitions from an initial state
|k〉 to a final state |k′〉.

Consider a particle described by the Hamilton operator Ĥ = Ĥ0 + V̂ . We shall
denote the eigenstates of the “free” part Ĥ0 as |ψ(0)

n 〉 and the corresponding eigen-
values with E (0)

n , labeling them in terms of a discrete index n purely in a symbolic
fashion. We can always expand the state of the system—satisfying the Schroedinger
equation with the full Hamiltonian Ĥ—in terms of the complete set of eigenstates
|ψ(0)

n 〉 as
|ψ(t)〉 =

∑
n

cn(t) e
− i

�
E (0)
n t |ψ(0)

n 〉 . (20.171)

Substituting the above in theSchroedinger equation,weobtain a systemof differential
equations for the coefficients cn(t), namely,

i�
dcn
dt

=
∑
n′

Vnn′ cn′(t) eiωnn′ t , (20.172)

where we have introduced the matrix elements of the perturbation with respect to
the unperturbed states

Vnn′ = 〈ψ(0)
n |V̂ |ψ(0)

n′ 〉 (20.173)

and the frequencies

ωnn′ = 1

�

(
E (0)
n − E (0)

n′

)
. (20.174)

We shall assume that initially (t = −∞) the system occupies an initial state |ψ(0)
i 〉.

This is equivalent to assuming that

cni (−∞) = δni . (20.175)

Next, we may transform the differential equation (20.172) into an integral equation
as

cn(t) = δni − i

�

∑
n′

Vnn′

∫ t

t0

dt ′ cn′(t ′) eiωnn′ t ′+αt ′ . (20.176)

For technical reasons, we have replaced the lower integration limit with t0, although
we shall ultimately take t0 → −∞. We have also introduced a convergence factor
α → 0 to ensure convergence while we approach the lower integration limit.

First-order perturbation theory would give us a solution (cn′(t ′) → δn′i )

c(1)
n (t) ≈ δni − i

�
Vni

∫ t

t0

dt ′ eiωni t ′+αt ′ . (20.177)
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We may replace this approximate equation with an exact one of analogous form,
namely,

cn(t) = δni − i

�
Tni

∫ t

t0

dt ′ eiωni t ′+αt ′ , (20.178)

introducing the unknown quantity Tnn′ . This equation is essentially the definition of
the matrix Tnn′ . Equivalently, it can be considered as an Ansatz for the solution of
the original differential equation. Performing the time integration, we obtain, in the
limit αt → 0, αt0 → −∞,

∫ t

t0

dt ′ eiωni t ′+αt ′ = eiωni t

α + iωni
.

Thus, we have

cn(t) = δni − i

�

eiωni t Tni
(α + iωni )

. (20.179)

This equation enables us to replace the time-dependent coefficients Cn(t) with the
time-independent matrix elements Tnn′ . An equation depending exclusively on Tnn′ ,
which could in principle be solved, can be obtained by substituting the latter into the
original differential equation. Doing that, we get

Tin = Vin − i

�

∑
n′

Vin′Tn′n

(α + iωn′n)
. (20.180)

The matrix Tnn′ is called transition matrix for reasons that will become evident
shortly.

We are mostly interest in transitions from an initial state |ψ(0)
i 〉 at t0 → −∞ to a

final state |ψ(0)
f 〉 �= |ψ(0)

i 〉. Thus, the transition probability will be

|c f (t)|2 = 1

�2

|T f i |2
(ω2

i f + α2)
e2αt . (20.181)

The corresponding transition rate will be

d|c f |2
dt

= 1

�2

(
2α

ω2
i f + α2

)
|T f i |2e2αt . (20.182)

At this point we may remember that

lim
α→ 0

{
2α

ω2
i f + α2

}
= 2π δ(ωi f ) . (20.183)
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Therefore, the transition rate is

�i→ f = 2π

�
δ(E (0)

i − E (0)
f ) |T f i |2 . (20.184)

This exact formula for the transition rate has the form of theGolden Rule encountered
in first-order time-dependent perturbation theory, however with the potential matrix
element V f i having been replaced by the transition matrix element T f i . It is actually
the exact statement of the Golden Rule.

How is all this related to the cross section? In order to eventually arrive to that
let’s consider the total transition rate from an initial state |k〉 to a set of analogous
states

{|k′〉}, going at the same time to the continuum limit, since the wave number
labeling these states takes up continuous values

� =
∑
k′

d|ck′ |2
dt

=⇒ � = V

(2π)3

∫
d3k ′ 2π

�
δ(E − E ′) |Tk′k|2 . (20.185)

The continuum limit is taken by replacing the sum with an integral according to the
rule

1

V

∑
n

→
∫

d3k ′

(2π)3
,

where V is the total space volume. Using the fact that δ(E − E ′) = (2m/�
2k)

δ(k − k ′), we obtain
d�

d�
= Vmk

�3(2π)2
|Tk′k|2

∣∣
k ′=k

, (20.186)

where � corresponds to the k̂ ′ direction, i.e., the direction of the final state. This rate
is the total number of scattered particles per unit time. In order to connect this rate to
the differential cross section, wemust divide it by the incident flux (�k/m) × (1/V ).
Thus, we may write

dσ

d�
= Vm

�k

d�

d�
=

(
Vm

2π�2

)2

|Tk′k|2
∣∣
k ′=k . (20.187)

This expression should coincide with the standard differential cross section expres-
sion dσ/d� = | fk(k̂ ′)|2. Therefore, the following relation should be true

fk(k̂
′) = − Vm

2π�2
Tkk′ (20.188)

with k ′ = k. Let’s see if this is true, at least in the Born approximation. In the Born
approximation
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T (B)
kk′ = 〈k′|V̂ |k〉 =

∫
d3r

eik
′ ·r

√
V

V (r)
e−ik·r
√
V

= Ṽ (q)

(for q = k − k′), which, according to (20.62) is related to the Born-scattering ampli-
tude as

f (B)
k (k̂ ′) = −2m

�2

√
π

2

(
V

(2π)3/2

)
Ṽ (q) = − mV

2π�2
T (B)
kk′ ,

which is exactly the relation (20.188) above. We have inserted in (20.61) and (20.62)
an extra V/(2π)3/2 factor to account for keeping the volume finite. Actually, this
relation is not special to the Born approximation but can be proven to hold exactly.

20.11 The Lippmann–Schwinger Equation

Consider the transition matrix introduced in the previous section. Suppose that there
exist states |ψ(+)

n 〉 such that

Tn′n = 〈ψ(0)
n′ |V̂ |ψ(+)

n 〉 , (20.189)

where |ψ(0)
n 〉 are the unperturbed states. Consider now the equation satisfied by the

transition matrix, derived in the previous section

Tn′n = Vn′n − i

�

∑
m

Vn′mTmn

iωmn + α

and insert the above expression for the transition matrix. We have

〈ψ(0)
n′ |V̂ |ψ(+)

n 〉 = 〈ψ(0)
n′ |V̂ |ψ(0)

n 〉 − i

�

∑
m

1

iωmn + α
〈ψ(0)

n′ |V̂ |ψ(0)
m 〉〈ψ(0)

m |V̂ |ψ(+)
n 〉

or, dropping the 〈ψ(0)
n′ |V̂ on the left, we obtain

|ψ(+)
n 〉 = |ψ(0)

n 〉 − i

�

∑
m

|ψ(0)
m 〉 〈ψ

(0)
m |V̂ |ψ(+)

n 〉
iωmn + α

. (20.190)

Next, we may rewrite

i

�

∑
m

|ψ(0)
m 〉 1

iωmn + α
〈ψ(0)

m | = 1

Ĥ0 − En − i�α
.



434 20 Scattering

Note that we make no distinction between the energy eigenvalues E (0)
n of Ĥ0 and the

energy eigenvalues of En of the complete Hamiltonian, since the scattering spectrum
is exactly the same for both Hamiltonians. Returning to the equation, we write it in
the form

|ψ(+)
E 〉 = |ψ(0)

E 〉 + 1

E − Ĥ0 + i�α
V̂ |ψ(+)

E 〉 . (20.191)

This is the so-called Schwinger–Lippmann equation [1, 3].Multiplying it with (Ĥ0 −
E), we obtain, in the limit α → 0,

Ĥ |ψ(+)
E 〉 = E |ψ(+)

E 〉 . (20.192)

Thus, the states |ψ(+)
E 〉, originally defined through the transition matrix, are really

the scattering eigenstates of the full Hamiltonian.
The Lippmann–Schwinger equation can also be written in terms ofGreen’s oper-

ator, defined as a solution of the operator equation

(
Ĥ0 − E

)
Ĝ(E) = −I . (20.193)

There are two operators satisfying this equation, namely,

Ĝ(±)(E) = 1

E − Ĥ0 ± i�α
. (20.194)

It is Ĝ(+)(E) the one that is suitable for the scattering process,13 since its matrix
elements give the Green’s function with outgoing spherical wave behavior that we
have employed

〈r|Ĝ(+)(E)|r′〉 = − m

2π�2
G(+)

k (R) . (20.195)

In terms of the operator Ĝ(+)(E), the Lippmann–Schwinger equation is

|ψ(+)
E 〉 = |ψ(0)

E 〉 + Ĝ(+)(E) V̂ |ψ(+)
E 〉 . (20.196)

Note that this is exactly the same scattering integral equation

ψ(+)
k (r) = ψ(0)

k (r) − m

2π�2

∫
d3r ′ G(+)

k (r, r′) V (r′)ψ(+)
k (r′)

that we derived in a previous section written in a less formal way. Note also that
it is straightforward to translate the integral expression for the scattering amplitude

13There exist also states |ψ(−)
E 〉 satisfying the Schwinger–Lippmann equation with the Green’s oper-

ator Ĝ(−)(E), namely, |ψ(−)
E 〉 = |ψ(0)

E 〉 + 1
E−Ĥ0−i�α

V̂ |ψ(−)
E 〉. These states correspond to unphys-

ical ingoing spherical waves.
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(20.57) into

fk(k̂
′) = −4π2m

�2
〈ψ(0)

k′ | V̂ |ψ(+)
k 〉 = −4π2m

�2
Tk′k . (20.197)

This relation is exact. For a finite volume this has to be multiplied with an extra
V/(2π)3 factor and give

fk(k̂
′) = − mV

2π�2
Tk′k . (20.198)

We can formally “solve” the Lippmann–Schwinger equation as

|ψ(+)
E 〉 =

(
1 − Ĝ(+)(E) V̂

)−1 |ψ(0)
E 〉 . (20.199)

The “solution” rests on the knowledge of the inverse operator appearing above. We
have

(
1 − Ĝ(+)(E) V̂

)−1 =
(
Ĝ(+)(E)

(
E − Ĥ0 − V̂

) )−1 =
(
Ĝ(+)(E)

(
E − Ĥ

) )−1

(E − Ĥ)−1(E − Ĥ0) = (E − Ĥ)−1(E − Ĥ + V̂ ) = 1 + 1

E − Ĥ
V̂ .

Thus, the formal solution is

|ψ(+)
E 〉 = |ψ(0)

E 〉 + 1

E − Ĥ + i�α
V̂ |ψ(0)

E 〉 . (20.200)

We have to admit that this expression is not very useful. Although it contains only the
unperturbed states in the right-hand side, it has the full Hamiltonian acting on them.
Despite that, this expression could prove to be useful for a perturbative expansion.
Let’s try to write the above inverse operator in a more suitable form. We have

(
E − Ĥ + i�α

)−1 =
((

Ĝ(+)(E)
)−1 − V̂

)−1

=

((
Ĝ(+)(E)

)−1 (
1 − Ĝ(+)(E)V̂

))−1

= 1

1 − Ĝ(+)(E)V̂
Ĝ(+)(E) .

Then, our equation becomes

|ψ(+)
E 〉 = |ψ(0)

E 〉 + 1

1 − Ĝ(+)(E)V̂
Ĝ(+)(E)V̂ |ψ(0)

E 〉

or
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|ψ(+)
E 〉 =

∞∑
n=0

(
Ĝ(+)(E)V̂

)n |ψ(0)
E 〉 . (20.201)

This is the so-called Born Series

|ψ(+)
E 〉 = |ψ(0)

E 〉 + Ĝ(+)(E)V̂ |ψ(0)
E 〉 + Ĝ(+)(E)V̂ Ĝ(+)(E)V̂ |ψ(0)

E 〉 + · · ·
(20.202)

Example 20.7 Show that the scattering states |ψ(+)
E 〉 are orthonormal. Do the same

for the states |ψ(−)
E 〉. Are these sets complete?

We have

〈ψ(+)
E |ψ(+)

E ′ 〉 = 〈ψ(0)
E |

(
1 + V̂

1

E − Ĥ

)
|ψ(+)

E ′ 〉 (20.203)

= 〈ψ(0)
E |ψ(+)

E ′ 〉 + 1

E − E ′ 〈ψ
(0)
E |V̂ |ψ(+)

E ′ 〉 = 〈ψ(0)
E |ψ(+)

E ′ 〉 + 〈ψ(0)
E | 1

Ĥ0 − E ′ V̂ |ψ(+)
E ′ 〉

= 〈ψ(0)
E |ψ(+)

E ′ 〉 − 〈ψ(0)
E |

(
|ψ(+)

E ′ 〉 − |ψ(0)
E ′ 〉

)
= 〈ψ(0)

E |ψ(0)
E ′ 〉 = δ(E − E ′) . (20.204)

In an analogous fashionwe can show that 〈ψ(−)
E |ψ(−)

E ′ 〉 = δ(E − E ′). Each of these sets is complete,
provided that we include the bound states if they exist

∫ ∞

0
dE |ψ(±)

E ′ 〉〈ψ(±)
E | +

∑
�

|�〉〈�| = I . (20.205)

20.12 The Scattering Matrix

Let’s return to the definition of the transition matrix

c f (t) = δ f i − i

�
T f i

∫ t

t0

dt ′eiω f i t ′+αt ′ . (20.206)

The coefficient c f (t) is the probability amplitude to start from a state |ψ(0)
i 〉 at the

remote past t0 → −∞ and make a transition to a state |ψ(0)
f 〉 at the remote future

t → +∞. This amplitude can be written in terms of the time-evolution operator as

c f (+∞) = 〈ψ(0)
f |Û (+∞, −∞)|ψ(0)

i 〉 . (20.207)

This quantity, i.e., thematrix elements of the time-evolution operator from the remote
past to the remote future, between any two states,

S f i = 〈ψ(0)
f |Û (+∞,−∞)|ψ(0)

i 〉 (20.208)

is called the Scattering Matrix [1] or, simply the S-matrix between these states. The
S-matrix is expressed in terms of the transition matrix as
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S f i = δ f i − i

�
T f i lim

t,−t0→∞

{
eiω f i t+αt

iω f i + α

}
, (20.209)

having performed the time integration. The quantity in brackets in the limit t → ∞,

α → 0 and αt → 0 is just14 2πδ(ω f i ). Thus, we have

S f i = δ f i − 2πi δ(E f − Ei ) T f i . (20.210)

Let us now recall the equations

|ψ(±)
f 〉 = |ψ(0)

f 〉 + 1
E f −Ĥ±i�α

V̂ |ψ(0)
f 〉

|ψ(±)
i 〉 = |ψ(0)

i 〉 + 1
Ei−Ĥ±i�α

V̂ |ψ(0)
i 〉.

(20.211)

We may form the inner product

〈ψ(−)
f |ψ(+)

i 〉 = 〈ψ(0)
f |

(
1 − V̂

1

E f − Ĥ + i�α

)
|ψ(+)

i 〉 (20.212)

= 〈ψ(0)
f |ψ(0)

i 〉 + 〈ψ(0)
f | 1

Ei − Ĥ0 + i�α
V̂ |ψ(+)

i 〉 − 〈ψ(0)
f |V̂ 1

E f − Ĥ + i�α
|ψ(+)

i 〉

= δi f +
(

1

Ei − E f + i�α
− 1

E f − Ei + i�α

)
〈ψ(0)

f |V̂ |ψ(+)
i 〉 . (20.213)

The parenthesis is

1

Ei − E f + i�α
+ 1

Ei − E f − i�α
= −2i�α

(E f − Ei )2 + (�α)2
= −2πi δ(Ei − E f ).

(20.214)
Thus, finally we have

〈ψ(−)
f |ψ(+)

i 〉 = δ f i − 2πi δ(E f − Ei ) T f i . (20.215)

Comparing this to our identical earlier expression for the scattering matrix, we con-
clude that the S-matrix can also be defined as

S f i = 〈ψ(−)
f |ψ(+)

i 〉 . (20.216)

Since the S-matrix is defined as the matrix elements of the unitary time-evolution
operator, it is automatically unitary, i.e.,

14For t → ∞, α → 0 and αt → 0, we have e(iω+α)t/(iω + α) → 2πδ(ω).
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∑
n

S f n S
∗
in = δi f . (20.217)

Problems and Exercises

20.1 Calculate the differential cross section for the central potentials V (r) =
V0e−r/a and V (r) = V0e−r2/a2 in the Born approximation.

20.2 Consider the scattering of a particle of massm by a repulsive potential V (r) =
�(a − r)V0.

(a) Calculate the phase shift at high energies (�k)2 >> 2mV0.
(b) In the opposite limit (ka) << 1, show that the differential cross section has

the form σ(θ) = A + B cos θ with B << A.
(c) Suppose that ξ ≡ �

2/mV0a2 << 1. What is the meaning of that in the case
ka << 1? Calculate A and B in the limit ξ → 0, (ka) → 0.

(d) Calculate the phase shift for � = 0 exactly.

20.3 Consider the scattering of particles from a periodic potential V (r) = V (r + a).
Write down the expression for the scattering amplitude in the Born approximation
and show that it is nonzero for special values of the momentum transfer q.

20.4 Consider a particle of mass m and energy E > 0 moving in the short-range
central potential V (r). Show that the radial wave function satisfies the integral equa-
tion

RE,�(r) = j�(kr) − m

2�2π

∫ ∞

0
dr ′ r ′2 Gk,�(r, r

′) V (r ′) RE,�(r
′) ,

where the radial Green’s function is defined through the equation

(
1

r2
d

dr
r2

d

dr
− �(� + 1)

r2
+ k2

)
Gk,�(r, r

′) = −4π

r2
δ(r − r ′) .

Prove that the solution to this equation is

Gk,�(r, r
′) =

⎧⎨
⎩
4iπk j�(kr) h�(kr ′) (r ′ > r)

4iπk j�(kr ′) h�(kr) (r > r ′)

where h�(x) = j�(x) + in�(x).

20.5 Consider the system of two electrons interacting through their mutual Coulomb
repulsion e2/|r1 − r2|. Classify all the possible cases of total spin of the system and
calculate the differential cross section for each case.

20.6 Two spin-0 bosons of masses m1 and m2 interact through the potential
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V (r1, r2) =
⎧⎨
⎩

+∞ |r1 − r2| < a

0 |r1 − r2| > a

(a) Calculate the total scattering cross section at low energies.
(b) Do the same in the case that the two bosons are identical (m1 = m2).

20.7 The potential
V = Vab|a〉〈b| + Vba|b〉〈a| .

Consider the Schwinger–Lippmann equation |ψ〉 = |ψ0〉 + G(E)V |ψ〉 and deter-
mine the state |ψ〉.
20.8 Consider the potential

V (r) = − g2

(r2 + a2)2
.

(a) Calculate the scattering amplitude fk(θ) in the Born approximation.
(b) Using (a) calculate the total cross section.

20.9 Consider a double slit cut in a very thin material on the (x, y)-plane and a beam
of particles incident along the ẑ-axis. The situation can be modeled with a potential

V (x, y, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V0δ(z) for

⎧⎨
⎩
x ∈ [−b − a,−b + a] −c < y < c

x ∈ [b − a, b + a] −c < y < c

0 otherwise

where the centers of the slits are at the points x = ±b and their widths 2a << b.
Calculate the differential scattering cross section in the Born approximation for
incidence along the z-axis.

20.10 Consider scattering in a hard sphere (V (r) = +∞ for r ≤ a) in the case
� = 0. Investigate the existence of resonances, defined by δ0(E) = π/2.
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Chapter 21
Quantum Behavior

21.1 Quantum Measurements

Consider a quantum system in an arbitrary state |ψ〉 and an apparatus designed
to measure a particular observable Q of the system. Whatever is the state of the
system at the instant prior to the measurement the measured value of Q is bound
to be one of its eigenvalues q. This means that after the measurement the system
will necessarily occupy one of the eigenstates |q〉 of Q.1 This is consistent with
the fact that the eigenstates are the only states with vanishing uncertainty �Q. Any
subsequent measurements of Q will yield the same eigenvalue q, meaning that the
system continues to occupy the same eigenstate |q〉. It is said that the system has
been prepared in the state |q〉.

Consider now that instead of a single measurement of Q that yielded the eigen-
value q we performed a series of measurements under the exact same conditions
or equivalently measurements on a statistical ensemble of identical copies of the
system. The result would be a series of, different in general, eigenvalues of Q

q ′, q ′′, . . . (21.1)

For a large number of measurements, the frequency (probability) of each particu-
lar eigenvalue P(q) can be used to determine the state |ψ〉 of the system prior to
measurement through the rule

P(q) = |〈q|ψ〉|2 = |ψ(q)|2 . (21.2)

1The measurement of an observable Q, while the system is in a state |ψ〉, should not be confused
with the action of the corresponding operator in the Hilbert space, since the latter yields another
state |ψ′〉 (in general, a superposition of eigenstates of Q), while as a result of a measurement the
system will necessarily occupy one eigenstate of Q.
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The fact that as a result of the measurement the system has made a transition from a
superposition of eigenstates to a single eigenstate

|ψ〉 =
∑

q ′
ψ(q ′)|q ′〉 =⇒ |q〉 (21.3)

has been termed collapse of the wave function.2 This transition is in sharp contrast
to the unitary time evolution of the state that takes place when no measurement is
performed and it is central to the acausal and probabilistic behavior associated with
Quantum Mechanics.

Let us be more specific and consider the system of a particle characterized only
by its spin s = 1/2. Our spin measuring apparatus, based on the Stern–Gerlach
effect, can be oriented to measure any of the components Sx , Sy , or Sz . The result
will always be one of the eigenvalues ±�/2 of these operators. Let’s start with the
apparatus oriented so that it can measure Sz . As a result, after the measurement
the system will be prepared in an Sz eigenstate. Let’s assume that this is the one
corresponding to the eigenvalue +�/2, namely

|ψ〉 = | ↑〉 =⇒
[
1
0

]
. (21.4)

Then, we reorient the apparatus so that we measure Sx . After the measurement of
Sx , the system will occupy one of the states

|ψ+〉 = 1√
2

(| ↑〉 + | ↓〉) =⇒ 1√
2

[
1
1

]
(21.5)

or

|ψ−〉 = 1√
2

(| ↑〉 − | ↓〉) =⇒ 1√
2

[
1
−1

]
. (21.6)

A series of measurements will yield ±�/2 with equal probability 50%

|〈ψ±| ↑〉|2 = |〈ψ±| ↓〉|2 = 1

2
. (21.7)

Note that although prior to the measurement the system was prepared in the | ↑〉
state, it subsequently made a transition to a statistical mixture of “spin up” and“spin
down”. The state of the ensemble after the measurement cannot be represented in
terms a state vector. An appropriate representation for the “mixed state” of the system

2We leave aside themore ambiguous case of a degenerate eigenvaluewhich corresponds tomore than
one eigenstates |q(α)〉. A possible way around this problem is by replacing (21.2) with |〈q|�q |ψ〉|2
where �q = ∑

α |q(α)〉 〈q(α)| is the projection operator to the subspace spanned by the set of
eigenstates |q(α)〉 that correspond to the degenerate eigenvalue q.
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can be achieved in terms of the density matrix or density operator to be defined in
the next section.

There is an interesting way to view the measurement process as the action of a
projection operator. Following this line of thinking we may write any observable �

in the form
� =

∑

j

λ j | j〉〈 j | =
∑

j

λ j� j (21.8)

in terms of its eigenvalues and eigenstates and the corresponding projectors � j =
| j〉〈 j |. The projection operators satisfy

∑
j � j = I and �i� j = δi j�i . The basic

axioms of Quantum Mechanics dictate that when the system is subject to a mea-
surement of the observable � and the system is in a state |ψ〉, as a result of the
measurement, we shall obtain an eigenvalue λk with probability

Pk = |〈ψ|k〉|2 = 〈ψ|�k |ψ〉 (21.9)

and, furthermore, the system will make a transition to the eigenstate |k〉

|ψ〉 → |k〉 = 1√Pk
�k |ψ〉 . (21.10)

21.2 The Density Matrix

Up to now, whenever we have considered a quantum system we have assumed that
it is described by a state vector |ψ〉 in Hilbert space which evolves according to the
Schroedinger equation. The example discussed above of a system subject to a series
of measurements has shown that a different situation is also possible in which the
representation of the system in terms of a ket is not adequate. Nevertheless, whenever
the state of the system corresponds to just one ket in Hilbert space we say that the
system is in a “pure state”. The expectation value of any observable in a pure state
is 〈Q〉 = 〈ψ|Q|ψ〉. We can always introduce the operator

ρ = |ψ〉〈ψ| (21.11)

and write the above expectation value in terms of it as

〈Q〉 = Tr (Qρ) . (21.12)

This can be shown by expanding |ψ〉 in an orthonormal basis as |ψ〉 = ∑
j ψ j | j〉

and writing
〈Q〉 =

∑

i, j

ψ∗
i Qi jψ j =

∑

i j

Qi jρ j i = Tr (Qρ) (21.13)
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since ρi j = ψiψ
∗
j . The operator ρ is called a Density Matrix [1]. Notice that the

above-defined density matrix (21.11) for a pure state is a projection operator, having
the standard properties of projection operators, namely3

ρ† = ρ, ρ2 = ρ and Tr(ρ) = 1 . (21.14)

Although the introduction of the density matrix for a system in a state |ψ〉 seems
rather academic, it turns out that in more general situations the concept of a density
matrix is very useful. In order to illustrate such a more general situation, we shall
consider again the particularly simple system of a particle characterized by its spin
alone. The system is prepared in an Sz eigenstate and subsequently is subject to an
Sx measurement and ends up as a mixture of Sx eigenstates

|ψ±〉 = 1√
2

(| ↑〉 ± | ↓〉) , (21.15)

corresponding to Sx = ±�/2, each with a 50% probability. It is said that as a result
of the measurement the system is in a “mixed state”. A usefull way to represent the
mixed state is through a density matrix

ρ = 1

2
|ψ+〉〈ψ+| + 1

2
|ψ−〉〈ψ−| . (21.16)

Each term projects into the |ψ+〉 or |ψ−〉 state, while the number 1/2 multiply-
ing each projector is the probability of each state. Note that this is quite different
than being in a pure state that is a superposition |ψ〉 = 1√

2

(|ψ+〉 + eiφ |ψ−〉). For
instance, the expectation value of an observable in this state, say Sx , depends on the
phase difference of the superposed wave vectors (coherent superposition), namely,
〈ψ|Sx |ψ〉 = �

2 cosφ. In contrast, amixed state, defined by the densitymatrix (21.16)
does not depend on the possible phases of the superposed terms. In this sense, it repre-
sents an incoherent superposition. Note that in the above mixed state the expectation
value of Sx , reasonably defined as 〈· · · 〉 = ∑

a Pa〈ψa| · · · |ψa〉, is

〈Sx 〉 = 1

2
〈ψ+|Sx |ψ+〉 + 1

2
〈ψ−|Sx |ψ−〉 = 0 . (21.17)

Thus, for a general mixed state, we define the corresponding density matrix as

ρ =
∑

a

Pa|ψa〉〈ψa| , (21.18)

wherePa is the probability for each pure state participating in themixture. Expanding
the participating states in an orthonormal basis, we get

3We have assumed |ψ〉 to be a normalized state.
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ρ =
∑

a

Pa

∑

i, j

ψ∗
aiψaj |i〉〈 j | =

∑

i, j

|i〉ρ j i 〈 j | (21.19)

with
ρi j ≡

∑

a

Paψaiψ
∗
aj . (21.20)

The expectation value of an observable in such a mixed state is defined as

〈Q〉 =
∑

a

Pa〈ψa|Q|ψa〉 =
∑

i, j

∑

a

Paψ
∗
aiψajQi j =

∑

i, j

ρ j iQi j (21.21)

and can be put in the form of the trace formula

〈Q〉 = Tr (Qρ) . (21.22)

Note, however, that in contrast to the case of the density matrix for a pure state

ρ2 �= ρ . (21.23)

Nevertheless, still Tr(ρ) = 1, since

Tr(ρ) =
∑

α

PαTr (|ψα〉〈ψα|) =
∑

α

Pα〈ψα|ψα〉 =
∑

α

Pα = 1 , (21.24)

assuming that these states are normalized. We can also prove that for a mixed state

Tr(ρ2) < 1 . (21.25)

The proof goes as follows. For Tr(ρ2), we have

Tr

⎛

⎝
∑

α,β

PαPβ |ψα〉〈ψα|ψβ〉〈ψβ |
⎞

⎠ =
∑

αβ

PαPβ |〈ψα|ψβ〉|2 ≤
∑

α,β

PαPβ < 1 ,

in view of the Schwarz inequality 〈α|α〉 〈β|β〉 ≥ |〈α|β〉|2 and the fact that the prob-
abilities are numbers less than one.

The general properties of any density matrix, regardless of whether it represents
a pure or a mixed state, are

ρ† = ρ, Tr(ρ) = 1, and 〈ψ|ρ|ψ〉 ≥ 0 ∀|ψ〉 . (21.26)
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Any operator that satisfies these properties can be viewed as the density matrix of
some system. As a Hermitian operator, it has a set of orthogonal eigenstates and real
eigenvalues

ρ|ψ̃n〉 = 	n|ψ̃n〉 . (21.27)

Then, it can be written as
ρ =

∑

n

	n|ψ̃n〉〈ψ̃n| . (21.28)

Note that the last expression differs from (21.18) in that the states |ψα〉 in (21.18)
are not necessarily orthogonal, while the eigenstates |ψ̃n〉 in (21.28) are. The real
numbers 	n are the probabilities associated with each eigenstate. The important
thing is that any density matrix can be written in this form.

The state vectors |ψα〉 that define the mixed state evolve with time in the standard
way through the Schroedinger equation. At any instant of time t , we have

ρ(t) =
∑

α

Pα|ψα(t)〉〈ψα(t)| . (21.29)

Differentiating with respect to time, we have

dρ

dt
=

∑

α

Pα

(
d

dt
|ψα(t)〉

)
〈ψα(t)| +

∑

α

Pα|ψα(t)〉
(
d

dt
〈ψα(t)|

)
(21.30)

or

dρ

dt
=

∑

α

Pα

(
− i

�
H |ψα(t)〉

)
〈ψα(t)| +

∑

α

Pα|ψα(t)〉
(
i

�
H〈ψα(t)|

)
(21.31)

or
dρ

dt
= − i

�
[H, ρ] . (21.32)

This equation describes the time evolution of a mixed state. It is called the von
Neumann equation (or the quantum analogue of the Liouville equation). Notice
the difference in sign from the similar looking Heisenberg’s equation. The obvious
solution to (21.32) is

ρ(t) = U (t) ρ(0)U †(t) (21.33)

with U (t) = e− i
�
Ht the standard time-evolution operator.

The evolution rates of the expectation values of various observables in mixed
states can be obtained from (21.32) through the trace formulae as

d〈Q〉
dt

= Tr

(
Qdρ

dt

)
= − i

�
Tr (Q[H, ρ]) = − i

�
Tr (ρQH) + i

�
Tr (ρHQ)
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or
d〈Q〉
dt

= i

�
Tr (ρ[H,Q]) = i

�
〈[H,Q]〉 . (21.34)

This is the standard formula for the time evolution of the expectation values of pure
states as well.

It should be noted that there is not an one-to-one correspondence between amixed
state and a density matrix. Two different mixed states can correspond to the same
density matrix. We can illustrate this in the system of one spin. Consider a mixed
state corresponding to spin “up” and spin “down” with equal probability. The density
matrix will be

ρ = 1

2
| ↑〉〈↑ | + 1

2
| ↓〉〈↓ | =⇒

⎛

⎝
1/2 0

0 1/2

⎞

⎠ = 1

2
I . (21.35)

Nevertheless, a different mixed state with spin in the Sx = +�

2 state and in the
Sx = −�

2 state with equal probability corresponds to the same density matrix. We
have

ρ = 1

2
|ψ+〉〈ψ+| + 1

2
|ψ−〉〈ψ−| = . . . = 1

2
I (21.36)

with |ψ±〉 = 1√
2
(| ↑〉 ± | ↓〉).

In a composite system, it is possible to be in a pure state and yet have the density
matrix corresponding to a subsystem to represent a mixed state. Consider any com-
posite system E1 ⊗ E2 (See the section on tensor product spaces in the Appendix).
We may define a density matrix for the subsystem E1 as

ρ1 = Tr2(ρ) , (21.37)

where ρ is the density matrix of the composite system and the trace refers to summa-
tion over states of the subsystem E2. To be specific (but very general), we consider a
pure state of the full system

|�〉 =
∑

i1i2

�i1i2 |Ei1i2〉 , (21.38)

where
|Ei1i2〉 = |e(1)

i1
〉 ⊗ |e(2)

i2
〉 (21.39)

is an orthonormal basis. The corresponding density matrix will be

ρ = |�〉〈�| =
∑

i1i2 j1 j2

�i1i2�
∗
j1 j2

(
|e(1)

i1
〉 ⊗ |e(2)

i2
〉
) (

〈e(1)
j1

| ⊗ 〈e(2)
j2

|
)

. (21.40)
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Taking the partial trace over E2, we obtain

Tr2(ρ) =
(

∑

i2

�i1i2�
∗
j1i2

)
|e(1)

i1
〉〈e(1)

j1
| . (21.41)

Thus, we have
ρ1 =

∑

i1 j1

(ρ1)i1 j1 |e(1)
i1

〉〈e(1)
j1

| (21.42)

with
(ρ1)i1 j1 =

∑

i2

�i1i2�
∗
j1i2 . (21.43)

Note that although we started with a pure state for the full system, the subsystem
density matrix corresponds to a mixed state. This is related to a property of quantum
systems under the name Entanglement, which will be the subject of the next section.

Example 21.1 Consider the state of the combined system of two spins to be |ψ〉 =
1√
2
(| ↑〉| ↓〉 + | ↓〉| ↑〉). Construct the density matrix ρ̂1 of the subsystem of one

spin and study its properties.

The components of |ψ〉 in a tensor product basis |e(1)
i1

〉 ⊗ |e(2)
i2

〉 are ψi1i2 are

ψ↑↑ = 0, ψ↑↓ = 1√
2
, ψ↓↑ = 1√

2
, ψ↓↓ = 0 . (21.44)

The E1-density matrix will be
(ρ1) j1i1 =

∑

i2

ψ∗
i1i2ψ j1i2 , (21.45)

its elements being

(ρ1)↑↑ = ψ∗↑↑ψ↑↑ + ψ∗↑↓ψ↓↑ = 1
2

(ρ1)↑↓ = ψ∗↑↑ψ↑↓ + ψ∗↑↓ψ↓↓ = 0

(ρ1)↓↑ = ψ∗↓↑ψ↑↑ + ψ↓↓ψ↓↑ = 0

(ρ1)↓↓ = ψ∗↓↑ψ↑↓ + ψ↓↓ψ↓↓ = 1
2

=⇒ ρ1 =
⎛

⎝
1
2 0

0 1
2 .

⎞

⎠ (21.46)

In accordance with the previously stated general properties, we see that

Tr(ρ1) = 1 and Tr(ρ21) = 1/2 < 1 . (21.47)

21.3 Entanglement

In classical physics, if we happen to possess complete knowledge of the state of the
system, we will necessarily know also everything that is to know about its parts. This
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is not true anymore for a quantum system, i.e., although we may know the state of a
composite system, we shall not necessarily know the states of its subsystems. This
property of quantum systems is called Entanglement4 and we shall illustrate it in the
framework of the typical composite system of two particles of spin 1/2. Its simplest
version is when the spatial degrees of freedom are ignored and it reduces to a system
of two spins S1 and S2. Each one-particle subsystem can be described in terms of the
states | ↑〉 and | ↓〉. Thus, a general state of the particle-“1” subsystem is

|ψa〉 = a+ | ↑〉 + a−| ↓〉 .

Analogously for particle-“2” subsystem

|ψb〉 = b+ | ↑〉 + b−| ↓〉 .

Out of these one-particle states, we may obtain states corresponding to the combined
system through their tensor product such as | ↓〉 ⊗ | ↓〉 or | ↑〉 ⊗ | ↓〉. By convention
subsystem “1” is put to the left while subsystem “2” is put to the right. A simplified
notation is also | ↓〉| ↓〉 and | ↑〉| ↓〉. These product states |i〉 ⊗ | j〉 represent all
the possible outcomes for the individual spins and constitute an orthonormal basis
spanning the combined system Hilbert space E1∪2 = E1 ⊗ E2. Nevertheless, product
states are not the most general states of the combined system. A general state may
be refered to as |�ab〉 and can be analyzed in the above basis as

|�ab〉 = c++| ↑〉| ↑〉 + c+−| ↑〉| ↓〉 + c−+| ↓〉| ↑〉 + c−−| ↓〉| ↓〉 . (21.48)

Normalization corresponds to the condition

|c++|2 + |c+−|2 + |c−+|2 + |c−−|2 = 1 . (21.49)

Consider now the expectation values of the z-component of each spin in the above
general state

〈Ŝ1z〉 = �

2

(|c++|2 + |c+−|2 − |c−+|2 − |c−−|2)

〈Ŝ2z〉 = �

2

(|c++|2 − |c+−|2 + |c−+|2 − |c−−|2)
(21.50)

On the other hand, the expectation value of the product of these operators is

〈Ŝ1z Ŝ2z〉 = �
2

4

(|c++|2 − |c+−|2 − |c−+|2 + |c−−|2) . (21.51)

From these expressions after some algebra and using the normalization condition,
we may obtain

4See [2].
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〈Ŝ1z Ŝ2z〉 − 〈Ŝ1z〉 〈Ŝ2z〉 = �
2
(|c+−|2|c−+|2 − |c++|2|c−−|2) . (21.52)

Consider now the particular case of a state with c++ = c−− = 0 and c+− = c−+

|�〉 = 1√
2

(| ↑〉| ↓〉 + | ↓〉| ↑〉) . (21.53)

In this state
〈Ŝ1z〉 = 〈Ŝ2z〉 = 0 , (21.54)

while
〈Ŝ1z Ŝ2z〉 = −�

2 . (21.55)

This means that in this state, although each of the parts of the system has a vanishing
spin expectation value, this is not the case for the expectation value of the product
of spins. In sharp contrast, if the system is in a state that all outcomes are equally
probable ( e.g. c+− = c−+ = c++ = c−−) the quantity (21.52) will vanish and the
expectation value of the product factorizes into the product of the expectation values,
i.e.

〈Ŝ1z Ŝ2z〉2 − 〈Ŝ1z〉2 〈Ŝ2z〉2 = 0 (21.56)

and, since the square of an amplitude corresponds to a probability, we may conclude
that the vanishing of this expression corresponds to that fact that the two single
particle observables areuncorrelated. This is in linewith the fact that if the probability
distribution for two general observables factorizes

P(A, B) = P(A)P(B) , (21.57)

these are considered statistically independent and uncorrelated. Thus, the quantity

C(A, B) ≡ 〈A B〉 − 〈A〉 〈B〉 (21.58)

can be referred to as the correlation of the two observables A and B. If the correlation
is nonzero their measured values will be correlated.

Consider again the two spin state (21.48) in the particular case that it were a
product state, namely, if

c++c−− = c+−c−+ . (21.59)

Then, it is clear that in this case the state can be written as

|�〉 = 1

c++
(c−+| ↓〉 + c++| ↑〉) (c+−| ↓〉 + c++| ↑〉) , (21.60)

which is a tensor product. It is clear also that (21.59) and (21.60) lead to a vanishing
spin correlation (21.52)
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C(S1z, S2z) = 0 . (21.61)

This is general. Tensor product states have a vanishing correlation. Note that a
general state (21.48) is characterized by four complex numbers or eight real numbers
which are reduced to six due to the normalization condition and an irrelevant overall
phase. In contrast, a tensor product state is characterized by four real numbers (two
real numbers for each normalized factor), as one would expect, since a one-spin state
is characterized by two numbers and a state of two independent spins by four.

The property that general states like (21.48) embody nonzero correlations, while
product states do not, is calledEntanglement. Entanglement is a quantitative property
in the sense that there are various degrees of entanglement. For example the state5

|0, 0〉 = 1√
2

( | ↑〉| ↓〉 − | ↓〉| ↑〉 ) , (21.62)

as it will become clear, is a state of maximum entanglement. We may compute the
spin expectation value in this state6 and find

〈S1〉 = 〈S2〉 = 0 . (21.63)

Note that this is in sharp contrast to the fact that for any normalized single spin state
α| ↑〉 + β| ↓〉 we have 〈S〉2 = �

2/4. This means that in single spin states not all
spin expectation values can be zero. This continues to be true for product states.
Nevertheless in the two spin state |0, 0〉 all spin expectation values vanish according
to (21.63), something that can be interpreted as ignorance about individual spins. In
view of the fact that

〈Ŝ21x 〉 = 〈Ŝ21y〉 = 〈Ŝ21z〉 = �
2

4

〈Ŝ22x 〉 = 〈Ŝ22y〉 = 〈Ŝ22z〉 = �
2

4

we are completely uncertain about the value of each individual spin. On the other
hand we obtain

〈S1x S2x 〉 = 〈S1y S2y〉 = 〈S1z S2z〉 = −�
2

4
,

which corresponds to a maximal correlation C for each of these spin operator prod-
ucts.

As we showed in the previous section, the subsystem density matrix will in gen-
eral correspond to a mixed state even if the composite system is in a pure state.

5This is the singlet eigenstate of total spin zero.
6We have

Ŝx | ↑〉 = �

2 | ↓〉, Ŝx | ↓〉 = �

2 | ↑〉

Ŝy | ↑〉 = i �

2 | ↓〉, Ŝy | ↓〉 = −i �

2 | ↑〉.
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Nevertheless, when the composite system is in a tensor product state

|�〉 = |ψ(1)〉|ψ(2)〉 =
∑

i1i2

ψ(1)
i1

ψ(2)
i2

(
|e(1)

i1
〉 ⊗ |e(2)

i2
〉
)

(21.64)

the subsystems E1 and E2 are in pure states. For example, the E1 density matrix

ρ(1) = Tr2(ρ) =⇒ ρ(1)
i1 j1

=
∑

i2

ρi1i2, j1i2 =
∑

i2

� j1i2�
∗
i1i2

=
∑

i2

ψ(1)
j1

ψ(2)
i2

{
ψ(1)
i1

}∗ {
ψ(2)
i2

}∗ = ψ(1)
j1

{
ψ(1)
i1

}∗ ∑

i2

∣∣∣ψ(2)
i2

∣∣∣
2 = ψ(1)

j1

{
ψ(1)
i1

}∗

(21.65)
or

ρ(1) = |ψ(1)〉〈ψ(1)| , (21.66)

meaning that the subsystem E1 is in the pure one-particle state |ψ(1)〉 and there is
no entanglement. Note that (21.66), as a projection operator has only one non-zero
eigenvalue equal to one, while all the other eigenvalues vanish.7

The case of a tensor product state is a very special one and in the general case
the E1-subsystem will occupy a mixed state. An extreme situation ofmaximal entan-
glement is when all eigenvalues of the density matrix ρ(1) are equal. Given that
Tr1(ρ(1)) = 1, this means that the eigenvalues are equal to 1/N , with N being the
dimension of E1. An example of such a maximally entangled state is the two spin
state |�〉 = 1√

2
(| ↑〉| ↓〉 − | ↓〉| ↑〉). Notice that in this case of maximal entangle-

ment whatever is the result of measurement of S1z in E1, the state of the E2 subsystem
is completely predictable. If our Siz outcome is the state |ψ(1)〉 = | ↑〉, we know
with certainty that the E2 will be in the state |ψ(2)〉 = | ↓〉. These and analogous
properties have given rise to the so-called EPR paradox.

21.4 Bell’s Theorem, etc.

The measurement process and the collapse of the wave function are intimately con-
nected with a nonlocal aspect of Quantum Mechanics that has puzzled physicists
and has led to various “paradoxes”. Characteristic is the so-called EPR “paradox”,
named after Einstein, Podolsky, and Rosen, who posed it as a gedanken experiment
[3]. A simplified variant of the EPR setup may consist of two spin 1/2 particles
prepared in a total spin zero state

7Equivalently, any matrix of the form αiα
∗
j like (21.65) has only one non-zero eigenvalue equal to

one, while all the other eigenvalues vanish.
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|0, 0〉 = 1√
2

(| ↑〉�| ↓〉r − | ↓〉�| ↑〉r )

and emitted at opposite directions (designated as “left” and “right”). When the parti-
cles are far apart an Sz measurement is performed at either of them. After a number of
trials, what is found is that whenever the spin of the particle on the left is found to be
“up”—and this occurs 50% of the time—the spin of the particle on the right is found
to be “down”. Analogously, whenever the spin of the particle on the left is found to
be “down”, the spin of the particle on the right is found to be “up”. This means that
measuring the spin of the particle on the right is enough to determine the spin of the
particle on the left. Note that the particle on the left was not in a spin “down” or spin
“up” state initially. So if for example the particle on the right was measured to have
spin “up”, the particle on the left must have “jumped” into a spin “down” state. Note
again that the measurements are performed when the particles are far enough so that
no light signal can communicate the result of each measurement. Although this is not
really a paradox, since no propagation of information faster than light takes place,
but can be accommodated in the entanglement properties of Quantum Mechanics,
it has prompted a class of physicists to view Quantum Theory as incomplete and
pursue alternative theories of so-called “hidden variables” that would circumvent
the concepts of probabilities at a fundamental level or the above nonlocal aspects of
entanglement. Nevertheless, a quantitative test of the predictions of any local hidden
variable theory versus the predictions of QuantumMechanics has been developed by
J. Bell and it has been experimentally verified that “no local8 hidden variable theory
can agree with all the predictions of Quantum Mechanics”. This is Bell’s Theorem
[4] and it has ruled out all local hidden variable theories. The related experiment was
performed in the early 80s by Aspect [5] and was based on the violation of Bell’s
inequality derived in 1964. Instead of deriving this inequality and giving a proof of
Bell’s theorem, we shall consider a simplified version of a thought experiment devel-
oped by D. Mermin that suffices to demonstrate its essential assertion that quantum
mechanical behavior cannot be reproduced by local hidden variable theories [6].

Consider again the previous EPR setupwith the additional specifications that each
of the detectors used for the above measurements has a switch with two positions
(say “1” and “2”) and two lights (red (R) and green (G)).When a switch is in position
“1” it is set to measure Sz , while, when it is in position “2” it is set to measure Sn (i.e.,
spin in some other direction n̂ making an angle θ with the ẑ axis). When “spin up” is
measured, the red light flashes, while, when “spin down” is measured, the flashing
light is the green one. After a number of trials, it is observed that9

(1) 12GG or 21GG never occurs;
(2) 22GG comes out α% of the time;
(3) 11RR never occurs.

8“Local” means that the theory does not contain any faster than light propagation.
912GG means that the left switch is on “1” and the left light is green, while the right switch is on
“2” and the right light is green and so on.
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In the framework of a hidden variable theory, each particle would be assumed to
be emitted always having a set of definite values of its variables. Thus, from (1) we
would draw the conclusion that if one of the particles can make a detector switched
to 2 to flash green, then the other particle would necessarily make the other detector
switched to 1 to flash red. Then, since 22GG comes out α% of the time, so would
11RR. However, according to the results this never occurs. Therefore, the above
reasoning, based on admitting the existence of definite values for all the particle
variables (manifest and hidden) at all times, must be wrong. The alternative is to
treat the situation with the rules of Quantum Mechanics. We have assumed that

|Sz = �/2〉 = |1, R〉, |Sz = −�/2〉 = |1,G〉

|Sn = �/2〉 = |2, R〉, |Sn = −�/2〉 = |2,G〉.
(21.67)

These kets are related by

|2,G〉 = cos(θ/2)|1, R〉 + sin(θ/2)|1,G〉

|2, R〉 = − sin(θ/2)|1, R〉 + cos(θ/2)|1,G〉.
(21.68)

We may choose now to prepare the particles leaving the source to be in a normalized
state10

|�〉 = β |1, R〉�|1,G〉r + β |1,G〉�|1, R〉r + γ |1,G〉�|1,G〉r . (21.69)

Our observations are
P12GG = P21GG = 0

P22GG = α%

P11RR = 0.

(21.70)

Let’s use now the rules ofQuantumMechanics to compute these probabilities. Setting
cos(θ/2) = c, sin(θ/2) = s for shorthand, we have

〈�|1,G〉�|2,G〉r = 〈�|1,G〉� (c|1, R〉r + s|1,G〉r ) =

= (β〈1, R|�〈1,G|r + β〈1,G|�〈1, R|r + γ〈1,G|�〈1,G|r ) |1,G〉� (c|1, R〉r + s|1,G〉r )

= βc + γs =⇒ P12GG = |β cos(θ/2) + γ sin(θ/2)|2 = 0 . (21.71)

〈�|2,G〉�|2,G〉r =

102β2 + γ2 = 1.
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〈�| (c2|1, R〉�|1, R〉r + cs|1, R〉�|1,G〉r + cs|1,G〉�|1, R〉r + s2|1,G〉�|1,G〉r
)

(21.72)

= 2βcs + γs2 =⇒ P22GG = ∣∣β2β cos(θ/2) sin(θ/2) + γ sin2(θ/2)
∣∣2 = α% .

(21.73)
Thus, we obtain

tan(θ/2) = −β/γ

γ sin2(θ/2) + 2β cos(θ/2) sin(θ/2) = √
α/10

(21.74)

or

θ = 2 arctan
(
−β/

√
1 − 2β2

)
and β2

√
1 − 2β2/(1 − β2) = √

α/10 . (21.75)

For the choice β2 = 3/8 (Mermin), we obtain θ ≈ 101.5o and α = 9. Thus, Quan-
tumMechanics can accommodate the results of the (gedanken) experiment while no
local hidden variable theory can. This suffices to rule out the whole class of these
theories. Note however that this rules out the classical notion of locality. Quantum
Mechanics is still local in the sence that no faster than light signals exist. Actually
the modern theoretical physics framework is that of local quantum field theory.

Problems and Exercises

21.1 A beam of particles with spin s = 1 are subject to measurement of Sx . The
resulting beam of spin+� is subject to a second measurement. What are the possible
results and the corresponding probabilities? Write down a density matrix to describe
the mixed state resulting from the final measurement.

21.2 Consider the system of a spin-1/2 particle. Ignoring spatial degrees of freedom
consider the state |ψ〉 = a| ↑〉 + b| ↓〉. Calculate the densitymatrix ρ̂ corresponding
to this state and verify that

Tr(ρ̂) = 1, and ρ̂2 = ρ̂ .

21.3 Consider the system of two spins in the state |�〉 = 1√
2
(| ↑〉| ↑〉 + | ↓〉| ↓〉).

Calculate the expectation values 〈S1z S2z〉, 〈S1z〉, and 〈S2z〉 in this state. Do the same
for the state |� ′〉 = 1√

2
(| ↑〉| ↓〉 − | ↓〉| ↑〉 ). Give an interpretation of the results

in terms of entanglement.

21.4 Consider the system of two spins in a general state

|�〉 = C++| ↑〉| ↑〉 + C+−| ↑〉| ↓〉 + C−+| ↓〉| ↑〉 + C−−| ↓〉| ↓〉.
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Construct the densitymatrix corresponding to this state.Verify the standardproperties
Tr(ρ) = 1 and ρ2 = ρ. Construct the density matrix of the spin-1 subsystem. Verify
again the property Tr(ρ1) = 1 and prove that Tr(ρ21) < 1.

21.5 Consider a system with a density matrix

ρ = p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2|

where |ψ1〉, |ψ2〉 is a pair of two nonorthogonal states. Find the eigenvalues of the
density matrix.

References

1. E. Merzbacher, Quantum Mechanics, 3rd edn. (Wiley, Hoboken, 1998)
2. L. Susskind, A. Friedman, Quantum Mechanics: The Theoretical Minimum (Basic Books, New

York, 2014)
3. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47(10), 777 (1935)
4. J. Bell, Speakable and Unspeakable in QuantumMechanics (Cambridge University Press, Cam-

bridge, 2004)
5. A. Aspect et al., Phys. Rev. Lett. 47, 460 (1981)
6. D. Mermin, Physics today (1985)



Chapter 22
Quantization of EM Fields

22.1 Classical Electrodynamics

The physics of classical electric E(r, t) and magnetic fields B(r, t) is described by
Maxwell’s equations1

∇ · E = ρ

∇ · B = 0

∇ × E = − ∂B
∂t

∇ × E = J + ∂E
∂t

(22.1)

in terms of the sources of electric charge density ρ(r, t) and electric current density
J(r, t). The pair of homogeneousMaxwell’s equations∇ · B = 0 and∇ × E + Ḃ =
0 can be solved in terms of the scalar and vector potential φ(r, t) andA(r, t) defined
by

E = −∇φ − 1
c

∂A
∂t

B = ∇ × A
(22.2)

The remaining two Maxwell’s equations, in terms of the potentials, can be set in the
form

1In the present and the next chapter, we adopt the Heaviside–Lorentz system of units for reasons of
notational simplicity. The only difference with previous chapters in the replacement of the electric
charge in Coulomb’s law according to e2 → e2/4π. The electromagnetic quantities q, E, B in the
Heaviside–Lorentz system are related to the analogous quantities q ′, E ′, B ′ in the MKSA system
by the rule

q ′ = q
√

ε0, E ′ = E/
√

ε0, B ′ = B
√

μ0

where ε0 and μ0 are the electric and magnetic susceptibility of the vacuum (ε0μ0 = c−2).
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−∇2φ + 1
c2

∂2φ
∂t2 − 1

c
∂
∂t

(
∇ · A + 1

c
∂φ
∂t

)
= ρ

−∇2A + 1
c2

∂2A
∂t2 + ∇

(
∇ · A + 1

c
∂φ
∂t

)
= 1

cJ

(22.3)

It is straightforward to see that acting on the first of these equations with 1
c

∂
∂t , taking

the divergence of the second and adding them, we obtain the continuity equation

∇ · J + ∂ρ

∂t
= 0 , (22.4)

expressing locally the conservation of electric charge.
Gauge invariance. The correspondence between electric and magnetic fields and

their potentials is not one to one. Different potentials can correspond to the same
fields. In fact, we may transform the potentials according to the rule

φ → φ′ = φ + ∂�
∂t

A → A′ = A − ∇�

(22.5)

in terms of the arbitrary function �(r, t), while the electric and magnetic field stay
the same

E′ = −∇φ′ − 1
c

∂A′
∂t = −∇φ − 1

c ∇�̇ − 1
c

∂A
∂t + 1

c ∇�̇ = E

B′ = ∇ × A′ = ∇ × A − ∇ × (∇�) = B .

These are the gauge transformations, encountered before. Although we have dis-
cussed gauge transformations already in Chap. 17 the next few lines serve as a
reminder of the basic points.

Gauge transformations can be used to our advantage in order to facilitate calcu-
lations. For example, starting with a pair of potentials φ, A we may choose a gauge
transformation function � such that

∇2� = ∇ · A .

Then, the transformed vector potential will satisfy

∇ · A′ = 0 .

The choice of � is called a gauge choice. Two very popular gauge choices are the
Coulomb or “transverse” gauge (∇ · A = 0) and the Lorentz gauge (∇ · A + 1

c
∂φ
∂t =

0). Maxwel’s equations in the Coulomb gauge take the form
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−∇2φ = ρ

−∇2A + 1
c2

∂2A
∂t2 + 1

c ∇φ̇ = J
c

(22.6)

where the scalar potential equation does not involve any time derivatives, being the
same as in the electrostatic case. In contrast, Maxwell’s equations in the Lorentz
gauge retain a more symmetrical form between scalar and vector potential, namely

−∇2φ + 1
c2

∂2φ
∂t2 = ρ

−∇2A + 1
c2

∂2A
∂t2 = J

c .

(22.7)

The equation for the scalar potential in the Coulomb gauge, not involving any time
derivatives, is not a dynamical equation of motion but a constraint equation that can
be solved as in the static case. Its solution is

Coulomb gauge =⇒ φ(r, t) = 1

4π

∫
d3r ′ ρ(r′, t)

|r − r′| . (22.8)

Electromagnetic sources. At the microscopic level electric charges manifest
themselves on point-like particles. A way to represent such a charge distribution in
terms of the densities ρ, J is as

ρ(r, t) = ∑
a qa δ(r − r(a)(t) )

J(r, t) = ∑
a qa ṙ(a)(t) δ(r − r(a)(t) ),

(22.9)

where ra(t) is the instantaneous position (trajectory) of the “a”-particle. Note that
these densities satisfy the continuity equation

ρ̇ =
∑

a

qa ẋ (a)
i

∂

∂x (a)
i

δ(r − r(a)(t) ) = −
∑

a

qa ẋ (a)
i

∂

∂xi
δ(r − r(a)(t) )

= −∇i

(∑
a

qa ẋ (a)
i δ(r − r(a)(t) )

)
= −∇ · J.

For a distribution of point charges the Coulomb gauge scalar potential takes the
familiar Coulomb law form

φ(r, t) =
∑

a

qa

|r − r(a)(t)| . (22.10)

Pure electromagnetism. In the absence of sources, Maxwell’s equations in the
Coulomb gauge reduce to
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−∇2φ = 0

−∇2A + 1
c2

∂2A
∂t2 + 1

c ∇φ̇ = 0
(22.11)

and are satisfied with a vanishing scalar potential φ = 0. Thus, the electromagnetic
field is represented only by A and the equation

− ∇2A + 1

c2
∂2A
∂t2

= 0 . (22.12)

Not all three components ofA are dynamical variables, since they have to satisfy the
Coulomb gauge condition ∇ · A = 0.

It is now straightforward to find solutions of the equation ofmotion (22.12). Partial
solutions in the form of plane waves

Ak ∝ e±ik·x ,

where
k · x = ωt − k · r,

exist, provided
ω(k) = c k . (22.13)

A general superposition of such solutions would be

A(r, t) =
∫

d3k

(2π)3/2
√
2ω

e(k)
(

ak e−ik·x + a∗
k eik·x) . (22.14)

The factor (2ω)−1/2 is just a convention and could have been absorbed in the functions
ak which are a shorthand fora(k).Nevertheless, theCoulomb transversality condition
∇ · A = 0 implies that the vectors e are orthogonal to the propagation direction of
eachmode k̂, namely e · k = 0. Since there are two linearly independent such vectors,
the most general solution reads

A(r, t) =
∑

λ=1,2

∫
d3k

(2π)3/2
√
2ω

e(λ)(k)
(

a(λ)
k e−ik·x + a(λ)

k

∗
eik·x

)
. (22.15)

The vectors e(λ)(k) are taken to be mutually orthogonal unit vectors and are called
polarization vectors and here are taken to be real. The triplet e(1)(k), e(2)(k), k̂
constitute a Cartesian orthonormal basis

e(λ)(k) · e(λ′)(k) = δλλ′ , k · e(λ)(k) = 0 . (22.16)
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Note that the wave number and frequency of each mode contributing to the super-
position of plane waves (22.15) satisfy the relativistic energy–momentum relation
for a particle of energy �ω, momentum �k, and vanishing mass

(�ω(k))2 − (�ck)2 = 0 . (22.17)

Of course, there is no particle at the classical level but only electromagnetic waves.
It is at the quantum level that relativistic particles of vanishing mass (photons) will
emerge out of the Maxwell theory.

The electromagnetic energy density is

U E M = 1

2
E2 + 1

2
B2 = 1

2c2

(
∂A
∂t

)2

+ (∇ × A)2 . (22.18)

The electromagnetic energy or, equivalently, the Hamiltonian of the electromagnetic
field, will be the integral of UE M over all space

HE M = 1

2

∫
d3r

(
1

2c2

(
∂A
∂t

)2

+ (∇ × A)2

)
. (22.19)

From the point of viewof the canonical formalism the fundamental canonical variable
of the system is the vector potential A(r, t), while the corresponding canonical
momentum � can be read off from Hamilton’s equation2

�̇ j = −∂HE M

∂ A j
=⇒ �̇ j = ∇2 A j = 1

c2
Ä j

or

� j = 1

c2
Ȧ j = − E j

c
. (22.20)

Thus, the canonical momentum is essentially the electric field. This is going to
be important to setup the quantization procedure of the system. Not all canonical
momenta are independent, since

∇ j� j = −1

c
(∇ · E) = 0 .

2The magnetic term in the energy density can be written as − 1
2 A j ∇2 A j up to total divergences,

which do not contribute to the energy since they reduce to surface integrals at infinity where the
fields vanish.
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22.2 Quantization of the EM Field

The starting point for the quantization of the system is to introduce the Hilbert space
operators that correspond to the canonical variables of the system and write down
their equal time commutation relations. In our case, we have

A j (r, t) → Â j (r, t)

� j (r, t) = 1
c2 Ȧ j (r, t) → �̂ j (r, t) = 1

c2
˙̂A j (r, t).

(22.21)

Note that the position r is just a real parameter labeling space points and doesn’t cor-
respond to the position of any physical object. By analogy with the simpler quantum
systems that we have encountered up to now, we write for their commutation relation

[
Âi (r, t), ˙̂A j (r′, t)

]
= i�c2 δi j δ(r − r′).

Nevertheless, this commutation relation is obviously wrong, since by acting from
the left with ∇i , we obtain, due to the transversality condition ∇ · A = 0, that
0 = i�∇iδ(r − r′), which is not true. Therefore, the correct commutation relation is
[1, 2] [

Âi (r, t), ˙̂A j (r′, t)
]

= i � c2 δ(⊥)
i j (r − r′) , (22.22)

where the delta function in the right-hand side has the property

∇iδ
(⊥)
i j (r − r′) = 0 . (22.23)

An obvious integral representation for the so-called transverse delta function δ(⊥) is

δ(⊥)
i j (r − r′) =

∫
d3k

(2π)3

(
δi j − ki k j

k2

)
eik·(r−r′) . (22.24)

The rest of the equal time commutation relations are trivial, namely

[
Âi (r, t), Â j (r′, t)

]
=

[
�̂i (r, t), �̂ j (r′, t)

]
= 0 . (22.25)

The Coulomb gauge equation of motion retains its classical form in terms of the
operator Âi (r, t) (

1

c2
∂2

∂t2
− ∇2

)
Âi (r, t) = 0 (22.26)

and has the same type of plane-waves expansion
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Âi (r, t) = c�
1/2

∑
λ=1,2

∫
d3k

(2π)3/2
√
2ω

e(λ)
i (k)

(
â(λ)

k e−ik·x + â(λ)
k

†
eik·x

)
(22.27)

with the crucial difference that the coefficients â(λ)
k are now operators. We have also

fixed the coefficient c�
1/2 in order to simplify the commutation relations to be derived

shortly. Differentiation by time gives us the corresponding plane wave expansion for

the canonical momentum �i = 1
c2

˙̂Ai

�i = − i
√

�

c

∑
λ

∫
d3k

(2π)3/2

√
ω

2
e(λ)

i (k)
(

e−ik·x â(λ)
k − eik·x â(λ)

k

†
)

. (22.28)

In order to find out what kind of commutation relations the operators a(λ)
k satisfy, we

proceed by substituting these expressions in the commutation relation (22.22). To
simplify matters, we assume from the beginning that the commutators [âk, âk ′ ] van-
ish, while the commutators [âk, â†

k ′ ] satisfy harmonic oscillator-type commutation
relations, namely, [

â(λ)
k , â(λ′)

k ′
† ]

= �δλλ′ δ(k − k′) . (22.29)

We obtain

[
Âi (r, t), �̂ j (r

′, t)
]

= − i�

2

∑

λ

∫
d3k

(2π)3
e(λ)

i (k)e(λ)
j (k)

(
eik·(r−r′) + e−ik·(r−r′)

)
.

Next we see that the symmetric matrix
∑

λ e(λ)
i e(λ)

j cannot by anything else but a
combination of the only existing symmetric matrices δi j and ki k j . Therefore, we
write ∑

λ

e(λ)
i (k)e(λ)

j (k) = C1δi j + C2 ki k j .

Taking the trace, we obtain

∑
λ

(
e(λ)

)2 = 3C1 + C2k2 =⇒ 2 = 3C1 + C2k2 .

Multiplying by ki , we obtain

∑
λ

(
k · e(λ)(k)

)
e(λ)

j (k) = C1k j + C2k2k j =⇒ 0 = C1 + k2C2 .

From these we get
C1 = 1, C2 = −1/k2 .

Thus, we have the identity
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∑
λ

e(λ)
i (k)e(λ)

j (k) = δi j − ki k j

k2
. (22.30)

Substituting above, we verify the correct commutators established earlier

[
Âi (r, t), �̂ j (r′, t)

]
= i�

∫
d3k

(2π)3

(
δi j − ki k j

k2

)
eik·(r−r′) = i�δ

(⊥)
i j (r − r′).

(22.31)
Summarizing, we conclude that the correct commutation relations for the operator
coefficients are [

â(λ)
k , â(λ′)

k ′
† ]

= δλλ′ δ(k − k′)

[
â(λ)

k , â(λ′)
k ′

]
= 0

[
â(λ)

k

†
, â(λ′)

k ′
† ]

= 0.

(22.32)

Photons. We may now proceed and obtain an expression of the Hamiltonian in

terms of the mode operators â(λ)
k and â(λ)

k

†
. After quite a bit of calculation, we may

arrive at the expression

Ĥ = �

2

∑
λ=1,2

∫
d3k ω(k)

(
â(λ)

k

†
â(λ)

k + â(λ)
k â(λ)

k

†
)

. (22.33)

An equivalent expression for the Hamiltonian is

�

2

∑

λ=1,2

∫
d3k ω(k)

(
2â(λ)

k
†
â(λ)

k + δ(k − k)

)
= �

∑

λ=1,2

∫
d3k ω(k) â(λ)

k
†
â(λ)

k + E0

where E0 is the infinite constant 4πc�
2δ(0)

∫ ∞
0 dkk3. This constant is unobservable3

and can be ignored. Thus, our final expression for the Hamiltonian is

Ĥ =
∑

λ=1,2

∫
d3k �ω(k) â(λ)

k

†
â(λ)

k . (22.34)

Taken togetherwith the commutation relations (22.32), this expression for theHamil-
tonian seems to tell us that the quantized electromagnetic field is a sixfold infinity of
independent harmonic oscillators, each characterized by a wave vector k, a polar-
ization e(λ)(k) and a frequency ω(k) = c|k|.

The Hamiltonian (22.34) is positive definite and its eigenvalues are nonnegative.
The lowest energy of the system (ground state energy) is zero and the ground state,
symbolized by |0〉 is defined as the state annihilated by â(λ)

k , for all k, and λ

3At least in the framework of flat spacetime.
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â(λ)
k |0〉 = 0 . (22.35)

Next, it is straightforward to prove that

[
Ĥ , â(λ)

k

†
]

= �ω(k) â(λ)
k

†

[
Ĥ , â(λ)

k

]
= −�ω(k) â(λ)

k .

(22.36)

Acting on the ground state with the first relation, we obtain

Ĥ
(

â(λ)
k

)† |0〉 −
(

â(λ)
k

)†
Ĥ |0〉 = �ω(k)

(
â(λ)

k

)† |0〉

or

Ĥ
(

â(λ)
k

)† |0〉 = �ω(k)
(

â(λ)
k

)† |0〉 , (22.37)

meaning that the state

|1(λ)
k 〉 ≡

(
â(λ)

k

)† |0〉 (22.38)

is an energy eigenstate of energy �ω(k). The obvious interpretation of this state is “a
state of one massless particle of momentum �k and energy �ω(k) = �c|k|, with two
possible polarizations λ.” These particles satisfy the relativistic energy–momentum
relation E2 = c2 p2 + m2c4 with vanishing mass

(�ω(k))2 = c2 (�k)2 . (22.39)

It is straightforward to construct multiparticle states as

|(N1)
(λ1)
k1 , (N2)

(λ2)
k2 , . . . 〉 = 1√

N1!N2! . . .
(

â(λ1)
k1

†
)N1

(
â(λ2)

k2

†
)N2

. . . |0〉 (22.40)

this being a state with N1 particles of k1,λ1, N2 particles of k2,λ2, and so on. It is
clear that these particles are bosons, since their states are symmetric by construction,
namely,

|1(λ1)
k1 , 1(λ2)

k2 〉 =
(

â(λ2)
k2

)† (
â(λ1)

k1

)† |0〉 =
(

â(λ1)
k1

)† (
â(λ2)

k2

)† |0〉 = |1(λ2)
k2 , 1(λ1)

k1 〉 .

These particles, being the quantum excitations of the electromagnetic field are the
photons, massless vector particles having two polarization states and analogous to
their classical counterparts, i.e., the transverse electromagnetic waves [1, 2].

Angular momentum and circularly polarized photons. It is known from Clas-
sical Electrodynamics that the classical electromagnetic field carries momentum.
The quantity
 = S/c = (E × B) /c is interpreted as the momentum density of the
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electromagnetic field. Similarly, the quantity

J = 1

c

∫
d3r r × (E(r, t) × B(r, t)) (22.41)

corresponds to the total angular momentum of the electromagnetic field [2]. This
expression can be directly carried over to the quantum case, as long as E and B refer
to the corresponding operators. There is no need to specify the ordering of operators
due to the form of the commutation relation. This formula can bemodified as follows:

(r × (E × B) )i = εi jkεk�mεmpq x j E�∇p Aq = εi jk
(
δkpδ�q − δkqδp�

)
x j E�∇p Aq

= εi jk x j E�∇k A� − εi jk x j E�∇� Ak = εi jk x j E�∇k A� − εi jk∇�

(
x j E� Ak

) + εi jkδ j� E� Ak

+ εi jk x j (∇ · E) Ak = E�

(
εi jk x j∇k

)
A� + εi jk E j Ak ,

where we have dropped a total divergence that will contribute to the integral over all
space only through a vanishing surface term at infinity. Finally, we have

Ĵi = 1

c

∫
d3r E (r × ∇)i A + 1

c

∫
d3r (E × A)i . (22.42)

The interpretation of the two terms is transparent, the first referring to the orbital
angular momentum, while the second referring to the photon spin. We may proceed
substituting into this expression the quantized electromagnetic field expansion in
terms of the operators â(λ)

k . However, the orbital term will not give any contribution
since ∫

d3r r × ∇ e±ik·r e±ik′ ·r ∝
∫

d3r r × (±k ± k′) e±ik·r e±ik′ ·r

∝ (±k ± k′) × ∇kδ(±k ± k′) = 0 .

The intrinsic angular momentum term gives

i�

2

∑
λ,λ′

∫
d3k

∫
d3k ′

√
ωk

ωk ′

(
e(λ)

k × e(λ′)
k ′

)(
â(λ)

k â(λ′)
k ′

∫
d3r

(2π)3
ei(k+k′)·r e−i(ωk+ωk′ )t

+ â(λ)
k â(λ′)

k′
†
∫

d3r

(2π)3
ei(k−k′)·r e−i(ωk−ωk′ )t − â(λ)

k

†
â(λ′)

k′

∫
d3r

(2π)3
e−i(k−k′)·r ei(ωk−ωk′ )t

− â(λ)
k

†
â(λ′)

k ′
†
∫

d3r

(2π)3
e−i(k+k′)·r ei(ωk+ωk′ )t

)
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= i�

2

∑
λλ′

∫
d3k

( (
e(λ)

k × e(λ′)
−k

)
â(λ)

k â(λ′)
−k e−2iωk t +

(
e(λ)

k × e(λ′)
k

)
â(λ)

k â(λ′)
k

†

−
(
e(λ)

k × e(λ′)
k

)
â(λ)

k

†
â(λ′)

k −
(
e(λ)

k × e(λ′)
−k

)
â(λ)

k

†
â(λ′)

−k

†
e2iωk t

)
.

Each of the time-dependent terms vanishes according to

∑

λ,λ′

∫
d3k

(
e(λ)

k × e(λ
′)

−k

)
â(λ)

k â(λ′)
−k e−2iωk t =

∑

λ,λ′

∫
d3k

(
e(λ)
−k × e(λ

′)
k

)
â(λ)
−k â(λ′)

k e−2iωk t

= −
∑
λλ′

∫
d3k

(
e(λ′)

k × e(λ)
−k

)
â(λ′)

k â(λ)
−k e−2iωk t = −

∑
λ′λ

∫
d3k

(
e(λ)

k × e(λ′)
−k

)
â(λ)

k â(λ′)
−k e−2iωk t .

Therefore, we finally obtain

J = i�

2

∑
λ,λ′

∫
d3k

( (
e(λ)

k × e(λ′)
k

)
â(λ)

k â(λ′)
k

† −
(
e(λ)

k × e(λ′)
k

)
â(λ)

k

†
â(λ′)

k

)
.

(22.43)
Since

(
e(λ)

k × e(λ′)
k

)
â(λ)

k â(λ′)
k

† =
(
e(λ)

k × e(λ′)
k

) (
â(λ)

k

†
â(λ′)

k + δλλ′δ(0)
)

=
(
e(λ)

k × e(λ′)
k

)
â(λ)

k

†
â(λ′)

k ,

we may simplify J to

J = i�

2

∑
λ,λ′

∫
d3k

(
e(λ)

k × e(λ′)
k

) (
â(λ′)

k

†
â(λ)

k − â(λ)
k

†
â(λ′)

k

)
(22.44)

or

J = i�
∫

d3k
(
e(1)

k × e(2)
k

) (
â(2)

k

†
â(1)

k − â(1)
k

†
â(2)

k

)
(22.45)

or

J = i�
∫

d3k k̂
(

â(2)
k

†
â(1)

k − â(1)
k

†
â(2)

k

)
. (22.46)

The one-photon states |1(λ)
k 〉, defined as eigenstates of momentum �k are not

angular momentum eigenstates. Acting with J on them changes their polarization

(
q̂ · Ĵ

)
|1(1)

q 〉 = i�
∫

d3k q̂ · k̂
(

â(2)
k

†
â(1)

k − â(1)
k

†
â(2)

k

)
â(1)

q
†|0〉
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= i�
∫

d3k â(2)
k

†
δ(k − q) |0〉 = i�â(2)

q
†|0〉 = i�|1(2)

q 〉

and similarly (
q̂ · Ĵ

)
|1(2)

q 〉 = −i�|1(1)
q 〉 .

At this point we may introduce the polarization vectors

e(±)
k = 1√

2

(
e(1)

k ± ie(2)
k

)
. (22.47)

The combination appearing in the plane wave expansion becomes

∑
λ

e(λ)
k â(λ)

k = 1√
2

( (
e(+)

k + e(−)
k

)
â(1)

k − i
(
e(+)

k − e(−)
k

)
â(2)

k

)

= e(+)
k

1√
2

(
â(1)

k − i â(2)
k

)
+ e(−) 1√

2

(
â(1)

k + i â(2)
k

)
.

Therefore, introducing

â(±)
k = 1√

2

(
â(1)

k ∓ i â(2)
k

)
(22.48)

we may write the expansion of A as

A(r, t) = �
1/2c

∑
a=±

∫
d3k

(2π)3/2
√
2ωk

e(a)
k

(
â(a)

k e−ik·x + â(a)
k

†
eik·x

)
. (22.49)

The states
|1(±)

k 〉 = â(±)
k

†|0〉 (22.50)

are angular momentum eigenstates. Indeed, we have

(
k̂ · Ĵ

)
|1(±)

k 〉 = ±�|1(±)
k 〉 . (22.51)

This is enough to convince us that the spin of the photon is j = 1. The fact
that no eigenstate of spin zero has arisen is entirely attributable to the trans-
verse gauge condition imposed. In fact, the standard angular momentum com-
mutation relation [ Ĵi , Ĵ j ] = i�εi jk Ĵk cannot be recovered unless the Coulomb
gauge transversality condition is put aside and a conventional commutation relation[

Âi (r, t), Ê j (r′, t)
]

= −i�δi jδ(r − r′) is adopted. The angular momentum algebra

is a direct reflection of the rotational symmetry, which has been broken by the gauge
condition.
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Problems and Exercises

22.1 Consider the quantized electromagnetic field in the absence of sources. Calcu-
late the commutators
[

Êi (r, t), Ê j (r′, t)
]
,

[
B̂i (r, t), B̂ j (r′, t)

]
, and

[
Êi (r, t), B̂ j (r′, t)

]
.

22.2 Consider regular functions4 f (r), g(r), . . . that quickly approach zero outside
a region of volume (�V ) and in terms of them define the Coulomb gauge operators

A[ f ] = 1

(�V )

∫
d3r f (r)A(r, t), E[g] = 1

(�V )

∫
d3r g(r)E(r, t) .

(a) Calculate the commutator
[

Âi [ f ], Ê j [g]
]
.

(b) Evaluate the uncertainties

(�A)2 = 〈0|A2[ f ]|0〉 − (〈0|A[ f ]|0〉)2 , (�E)2 = 〈0|E2[g]|0〉 − (〈0|E[g]|0〉)2

in the lowest energy state |0〉.
(c) Verify the Heisenberg inequality.

22.3 Starting from the quantized Coulomb gauge EM field

Âi (r, t) = c�
1/2

∑
λ=1,2

∫
d3k

(2π)3/2
√
2ω

e(λ)
i (k)

(
â(λ)

k e−ik·x + â(λ)
k

†
eik·x

)

derive the expression of the Hamiltonian in terms of creation–annihilation operators

Ĥ =
∑

λ=1,2

∫
d3k �ω(k) â(λ)

k

†
â(λ)

k .

22.4 Starting5 from the spin definition S = ∫
d3r E × A and using the commu-

tation relation
[
Ai (r, t), E j (r ′, t)

] = − iδi jδ(r − r ′), without using the Coulomb
gauge transversality condition, derive the spin angularmomentum algebra [Si , Sj ] =
iεi jk Sk .

22.5 Coherent states for the photon field can also be defined as in the case of the
simple harmonic oscillator, namely as

4Without loss of generality, we could take these functions to be Gaussians f (r) ∝
exp[−r2/(�V )2/3].
5c = � = 1 units are assumed.
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|z, n(λ)
k 〉 = e−|z|2/2

∞∑
n=0

zn

√
n! |n

(λ)
k 〉 = e−|z|2/2

∞∑
n=0

zn

n!
((

a(λ)
k

)†
)n

|0〉 .

(a) Show that the following relation is true:

1

π

∫
dz

∫
dz∗ |z〉〈z| = 1 .

(b) Show that any coherent state can be expressed linearly in terms of other
coherent states as

|z′〉 = 1

π

∫
dz

∫
dz∗ e−|z−z′ |2 e(z∗z′−zz′∗)/2|z〉 .
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Chapter 23
Matter–Radiation Interaction

23.1 The Interaction Hamiltonian

A nonrelativistic system composed of N electrically charged particles interacting
with an electromagnetic field is described by the Hamiltonian

Ĥm =
N∑

a=1

1

2ma

(
pa − qa

c
A(ra, t)

)2 + eφ(ra, t) + V (r1, r2, . . .) , (23.1)

where A, φ are the electromagnetic potentials and V the potential corresponding
to any additional interaction. The parameters ma and qa are the masses and electric
charges of the N particles. The set of the N charged particles may refer to the protons
and electrons composing atoms and molecules, however, due to their smaller mass
only electrons have a dominant role in the interactions with the electromagnetic field.
Furthermore, since in equilibrium conditions only a few of the bound electrons of
each atom or molecule can play an active role, the effective number N of active
charged particles is small. The above Hamiltonian is also written as

Ĥm = −
N∑

a=1

�
2

2ma
∇2
a +

N∑

a=1

i�qa
2mac

(∇a · A + A · ∇a) +
N∑

a=1

q2
a

2mac2
A2

+
N∑

a=1

qaφ(ra, t) + V (r1, r2, . . .) . (23.2)

In the Coulomb gauge, we impose the transversality condition, ∇ · A = 0 and make
the replacement ∇ · A + A · ∇ → 2A · ∇. We may also solve for the scalar poten-
tial from Laplace’s equation and obtain
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φ(r) = 1

4π

∫
d3r ′ ρ(r)

|r′ − r| =
N∑

b=1

1

4π

qb
|rb − ra| . (23.3)

As a result, the Hamiltonian becomes

Ĥm = −
N∑

a=1

�
2

2ma
∇2
a +

N∑

a=1

i�qa
mac

A(ra, t) · ∇a +
N∑

a=1

q2
a

2mac2
A2(ra, t)

+ 1

4π

N∑

a>b

qaqb
|rb − ra| + V (r1, r2, . . .) (23.4)

or, equivalently

Ĥm =
N∑

a=1

p2a
2ma

−
N∑

a=1

qa
mac

Aa · pa +
N∑

a=1

q2aA
2
a

2mac2
+ 1

4π

N∑

a>b

qaqb
|rb − ra | + V (r1, r2, . . .)

(23.5)
with the shorthand Aa = A(ra, t). Note however that there is an additional term due
to the interaction of the magnetic field and the spin magnetic dipole moment of the
particles −∑

a
gaqa
2mac

sa · B, where ga is the Lande factor of each particle. Thus, the
final expression for the matter-Hamiltonian is

Ĥm =
N∑

a=1

p2a
2ma

−
N∑

a=1

qa
mac

Aa · pa +
N∑

a=1

q2
aA

2
a

2mac2
−

N∑

a=1

gaqa
2mac

sa · Ba

+ 1

4π

N∑

a>b

qaqb
|rb − ra| + V (r1, r2, . . .) (23.6)

with Ba = ∇a × Aa .
The full Hamiltonian of the combined system of particles and electromagnetic

field includes also the Hamiltonian of the electromagnetic field itself in the absence
of matter

ĤEM = 1

2

∫
d3r

(
E2 + B2

) = 1

2

∫
d3r

(
1

c2
(
Ȧ

)2 + (∇ × A)2
)

. (23.7)

The Hamiltonian can be written as a sum

Ĥ = Ĥm + ĤEM = Ĥ (0)
m + ĤEM + Ĥint , (23.8)

where
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Ĥ (0)
m = ∑N

a=1
p2a
2ma

+ 1
4π

∑N
a>b

qaqb
|rb−ra | + V (r1, r2, . . .)

ĤEM = 1
2

∫
d3r

(
1
c2

(
Ȧ

)2 + (∇ × A)2
)

Ĥint = −∑N
a=1

qa
mac

Aa · pa + ∑N
a=1

q2
aA

2
a

2mac2
− ∑N

a=1
gaqa
2mac

sa · Ba

(23.9)

For a system corresponding to an atom or a molecule the eigenstates of Ĥ (0)
m are the

standard atomic or molecular states depending on the potential terms. On the other
hand, the eigenstates of ĤEM are the photon states |n(α)

k , n(β)
q , . . .〉 derived in the

previous chapter. The interaction part Ĥint can safely be treated as a perturbation
since the particle charges correspond to a small parameter (e2/4π�c = 1/137).
Thus, the problem of charged matter interacting with electromagnetic radiation can
be approached via perturbation theory [1, 2].

23.2 Emission and Absorption

Consider the combined system of an atom and electromagnetic radiation. To a very
good approximation, we may ignore the nuclei and restrict ourselves in the system
of radiation and (a few) electrons. Then, the interaction Hamiltonian is

Ĥint = − e

mec

N∑

a=1

Aa · pa + e2

2mec2

N∑

a=1

A2
a − e

mec

N∑

a=1

sa · Ba . (23.10)

The energy eigenstates of the unperturbed system of photons and electrons are1

|n(λ)
k 〉 |ψ〉 , (23.11)

where |n(λ)
k 〉 is an n-photon eigenstate of ĤEM and |ψ〉 is an eigenstate of the unper-

turbed atom Hamiltonian Ĥ0 (e.g., Hydrogen atom energy eigenstate). If the interac-
tion Ĥint were absent and the system occupied such an eigenstate it would continue
undisturbed in this state. Nevertheless, under the influence of the perturbation (23.10)
the system will make transitions between these and other eigenstates

|n(λ)
k 〉 |ψ〉 → |n(λ′)

k′ 〉 |ψ′〉 .

Examples of such processes are the photon emission

|n(λ)
k 〉 |ψB〉 → |(n + 1)k〉|ψA〉 (23.12)

1As usually, we use the shorthand |n(λ)
k 〉 ⊗ |ψ〉 = |n(λ)

k 〉|ψ〉.
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or the photon absorption

|n(λ)
k 〉 |ψA〉 → |(n − 1)k〉|ψB〉 . (23.13)

Processes like these have been instrumental in the developement of Quantum Theory
since the early time of the Bohr model, but their quantitative description requires the
quantum treatment of the electromagnetic field. Before we elaborate on each of these
elementary processes, let’s remind ourselves of the basic points of time-dependent
perturbation theory in the interaction picture.

Given a Hamiltonian Ĥ = Ĥ0 + Ĥint (in our case Ĥ0 = Ĥ (0)
m + ĤEM ) in the

interaction picture, observables evolve in time with Ĥ0, while the interaction-
picture state vectors obey a Schroedinger equation with a Hamiltonian ĤI (t) =
Û †

0 (t, t0)Ĥint (t)Û0(t, t0). The equivalent integral equation is

|ψI (t)〉 = |ψI (t0)〉 − i

�

∫ t

t0

dt ′ ĤI (t
′)|ψI (t

′)〉 .

The first-order probability of a transition |0〉 → |n〉 �= |0〉 is

P0→(t) = 1

�2

∣∣∣∣
∫ t

t0

dt ′ e
i
�

(En−E0)(t ′−t0)〈n|Ĥint (t
′)|0〉

∣∣∣∣
2

.

Spontaneous photon emission in the dipole approximation [2]. The term spon-
taneous emission refers to a process in which a photon is emitted while the atom
makes a transition from an excited state to a lower energy state, even if there are no
photons in the initial state. The transition probability for such a process is

P(t)|B→A+γ = 1

�2

∣∣∣∣
∫ t

t0

dt ′e
i
�

(EA−EB )(t ′−t0)〈A|〈1(λ)
k |Ĥint (t

′)|B〉|0〉
∣∣∣∣
2

. (23.14)

In the above matrix element it is clear that only the linear in A terms will contribute,
since the quadratic term A2 will give â2, â† 2 and ââ† terms, which, together with
the âk term from the one photon state have an overall odd annihilation signature and
give zero. Assuming that we have only one active electron in the atom, this matrix
element will be

〈A|〈1(λ)
k |

(
− e

mec
A · p − e

mec
s · (∇ × A)

)
|0〉|B〉 .

The relevant photonic part is

〈1(λ)
k |A|0〉 = �

1/2c
∑

λ′

∫
d3k ′

(2π)3/2
√
2ω′ e

(λ′)
k ′ 〈0|â(λ)

k â(λ′)
k ′

†|0〉eiω′t e−ik′ ·r
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= �
1/2c

∑

λ′

∫
d3k′

(2π)3/2
√
2ω′ e

(λ′)
k′ δλλ′δ(k − k′)eiω′t e−ik′ ·r = �

1/2c

(2π)3/2
√
2ω

e(λ)
k eiωt e−ik·r .

Therefore, the matrix element will be

〈A|〈1(λ)
k |Ĥint (t)|B〉|0〉 = − e�1/2

me(2π)3/2
√
2ω

e(λ)
k ·

(
〈A|e−ik·rp|B〉 − i〈A|e−ik·rs|B〉 × k

)
eiωt .

(23.15)

Next, we may assume that the radiation wavelength is considerably larger that the
effective size of the atom, i.e.,

λ >> a0 =⇒ k a0 << 1 ,

something that allows for the approximation

e−ik·r ≈ 1 . (23.16)

This approximation is called the dipole approximation for reasons that will be clear
shortly. A process that gives a nonzero transition amplitudewithin this approximation
is said to correspond to a E1 transition. Thus, the matrix element takes the form

〈A|〈1(λ)
k |Ĥint (t)|B〉|0〉 = − e�1/2

me(2π)3/2
√
2ω

(
e(λ)
k · pAB − ie(λ)

k · (sAB × k)
)
eiωt ,

(23.17)
where pAB = 〈A|p|B〉 and sAB = 〈A|s|B〉. However, since the atomic states were
supposed to be different, their spatial parts are orthogonal and the spinmatrix element
sAB will not contribute. Note also that the momentum matrix element can be related
to the position matrix element in the following way:

[
Ĥ0, xi

]
= 1

2me

[
p2, xi

] = − i�

me
pi =⇒ 〈A|

[
Ĥ0, r

]
|B〉 = − i�

me
pAB

or

pAB = ime

�
(EA − EB) rAB . (23.18)

Then, the matrix element becomes

〈A|〈1(λ)
k |Ĥint (t)|B〉|0〉 = − i(EA − EB)

(2π)3/2�1/2
√
2ω

(
e(λ)
k · dAB

)
eiωt , (23.19)

where d = er is the electric dipole operator. This justifies the terminology (electric
dipole transition or E1).
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Proceeding to the corresponding probability, we have

P(t)|B→A+γ = (EA − EA)
2

2ω(2π)3�3

∣∣∣e(λ)
k · dAB

∣∣∣
2
∣∣∣∣
∫ t

t0

dt ′ e
i
�

(EA−EB+�ω)t ′
∣∣∣∣
2

≈ (EA − EA)
2

2ω(2π)3�3

∣∣∣e(λ)
k · dAB

∣∣∣
2
(2π�)δ(EB − EA − �ω) t (23.20)

for t >> t0. The emission rate per unit solid angle for photons of any energy �ω(k)
and direction � will be

d� = d3k (P(t)/t) = d�

∫ ∞
0

dk k2
(EA − EA)2

2ω(2π�)2

∣∣∣e(λ)
k · dAB

∣∣∣
2
δ(EB − EA − �ω)

or
d�

d�

∣∣∣∣
B→A+γ

= ω3

8π2�c3
|e(λ)

k · dAB |2 , (23.21)

where ω = ck = (EB − EA)/�.
Selection rules. The atomic states |A〉 are usually eigenstates of angular mo-

mentum and parity. However, the fact that the position operator (and, of course, the
electric dipole moment operator) is a vector operator and anti-commutes with parity
implies a set of specific rules (Selection Rules) which have to be obeyed in order to
obtain a nonzero transition amplitude to this order of approximation.

Let’s write the position operator in terms of spherical components

V̂+1 = − 1√
2

(x − iy) , V̂ = 1√
2

(x + iy) V̂0 = z .

The Wigner–Eckart Theorem states that

〈 jA, mA|V̂q | jB,mB〉 = 〈 jB, 1,mB, q| jB, 1, jA,mA〉 〈A||V̂q ||B〉√
2 jA + 1

. (23.22)

The matrix element in the right-hand side vanishes unless

| ja − jB | = 1 (E1 selection rule). (23.23)

Similarly, under parity we have

P̂ r P̂ = −r

and, therefore,
〈A|r|B〉 = −�A�B〈A|r|B〉 ,
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where � are the parity eigenvalues of the atomic states, or

�A�B = −1 (E1 selection rule) . (23.24)

Summation over polarizations. The rate of spontaneous emission (23.21) depends
on the polarization of the emitted photon. In the case that this polarization is not
measured, we are interested on the rate regardless of the photon polarization and we
should add the overall possible polarizations. Therefore, we have

d�

d�

∣∣∣∣
B→A+γ

= ω3

8π2�c3

⎛

⎝
∑

λ=1,2

(
e(λ)
k

)

i

(
e(λ)
k

)

j

⎞

⎠ (dAB)i (dAB) j

= ω3

8π2�c3

(
δi j − ki k j

k2

)
(dAB)i (dAB) j . (23.25)

Taking dAB to be the ẑ-axis of the �k cartesian system of coordinates, we obtain

d�

d�

∣∣∣∣
B→A+γ

= ω3

8π2�c3
(dAB)2 sin2 θ . (23.26)

This is the rate per solid angle. The total rate is

�(tot)
∣∣
B→A+γ

= ω3

3π�c3
(dAB)2 = 4αω3

3c2
(rAB)2 . (23.27)

Electric quadrupole and magnetic dipole spontaneous emission [2]. In the
cases that the given states |A〉 and |B〉 are such that no electric dipole radiation is
permitted, the transition may still be feasible if we go beyond the dipole approxima-
tion. Indeed, keeping the linear term in the expansion of the exponential

e−ik·r ≈ 1 − ik · r + · · · , (23.28)

we obtain the following contribution to the matrix element:

〈A|〈1(λ)
k |Ĥint (t)|B〉|0〉 = ie�1/2

me(2π)3/2
√
2ω

〈A| (k · r)
(
e(λ)
k · p

)
|B〉 eiωt . (23.29)

The spin part does not contribute since by assumption the spatial part of 〈A|r|B〉
vanishes. Note that the order of operators does not matter, since k · e = 0, namely,

(k · r)
(
e(λ)
k · p

)
=

(
e(λ)
k · p

)
(k · r) + i�

(
k · e(λ)

k

)
=

(
e(λ)
k · p

)
(k · r) .

Thus, we have
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〈A|〈1(λ)
k |Ĥint (t)|B〉|0〉 = ie�1/2

me(2π)3/2
√
2ω

eiωt ki
(
e(λ)
k

)

j
〈A|xi p j |B〉 . (23.30)

We may write

xi p j = 1

2

(
xi p j + pi x j

) + 1

2

(
xi p j − pi x j

)
. (23.31)

The first term leads to the following contribution to the matrix element

ie�1/2

2me(2π)3/2
√
2ω

eiωt ki
(
e(λ)
k

)

j
〈A| (xi p j + pi x j

) |B〉 (23.32)

and transitions due to this terms are called electric quadrupole transitions or just E2.
The second term gives rise to the contribution

ie�1/2

2me(2π)3/2
√
2ω

eiωt ki
(
e(λ)
k

)

j
〈A| (xi p j − pi x j

) |B〉 (23.33)

and transitions due to this terms are calledmagnetic dipole transitions or justM1.We
shall see shortly that the selection rules for the two cases are mutually exclusive and
only one of the two contribution arises depending on the particular states |A〉, |B〉.

Making use of the identity

[
Ĥ0, xi x j

]
= 1

me

(
xi p j + pi x j

)
(23.34)

we obtain
〈A| (xi p j + pi x j

) |B〉 = me(EA − EB)〈A|xi x j |B〉 (23.35)

or

me(EA − EB )ki
(
e(λ)
k

)

j
〈A|xi x j |B〉 = me(EA − EB )ki

(
e(λ)
k

)

j
〈A|

(
xi x j − 1

3
δi j r

2
)

|B〉 ,

(23.36)

where the last term gives just ki
(
e(λ)
k

)

j
δi j = k · e(λ)

k = 0. Then, the quadrupole

term is written in terms of the quadrupole moment operator

T̂i j = xi x j − 1

3
δi j r

2 (23.37)

as

〈A|〈1(λ)
k |Ĥint (t)|B〉|0〉

∣∣∣
E2

= ie�1/2(EA − EB)

2(2π)3/2
√
2ω

eiωt ki
(
e(λ)
k

)

j
〈A|T̂i j |B〉 .

(23.38)
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The angular momentum selection rule corresponding to quadrupole transitions can
be easily deduced from the Wigner–Eckart theorem to be

| jA − jB | ≤ 2 ≤ jA + jB (E2 selection rule) . (23.39)

Similarly, for the parity selection rule we have

�A�B = +1 (E2 selection rule). (23.40)

Let us now concentrate on the magnetic dipole term. We have the identity

(k · r) (e · p) − (k · p) (e · r) = (k × e) · (r × p) = (k × e) · L .

Therefore, we may write the M1 contribution to the matrix element as

〈A|〈1(λ)
k |Ĥint (t)|B〉|0〉

∣∣∣
M1

= ie�1/2

2me(2π)3/2
√
2ω

eiωt (k × e) · 〈A|L|B〉 . (23.41)

The corresponding selection rules are

| jB − jA| ≤ 1 and �A�B = +1 (M1 selection rules) . (23.42)

Induced absorption and emission [2]. An absorption process is one that an atom
in a state |A〉 and radiation in a n-photon state make a transition to a state |B〉 and
radiation in a (n − 1)-photon state

A + nγ → B + (n − 1)γ (23.43)

The first-order transition probability for such a process is

P(t) = 1

�2

∣∣∣∣
∫ t

t0

dt ′e
i
�

(EB−EA)(t ′−t0)〈B|〈(n − 1)(λ)
k |Ĥint (t

′)|A〉|n(λ)
k 〉

∣∣∣∣
2

. (23.44)

The relevant matrix element is

− e

mec
〈B|〈(n − 1)(λ)

k |A · p|A〉|n(λ)
k 〉 (23.45)

with the photonic part

∑

λ′

∫
d3k′

(2π)3/2
√
2ω′ e

(λ′)
k′ 〈(n − 1)(λ)

k |â(λ′)
k′ |n(λ)

k 〉 e−iω′t eik
′ ·r =

√
n(λ)
k

(2π)3/2
√
2ω

e(λ)
k e−iωt eik·r.

Thus, we have
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P(t) = n(λ)
k e2

m2
e�

2(2π)32ω

∣∣∣∣
∫ t

t0

dt ′e
i
�

(EB−EA)(t ′−t0)e−iωt ′ 〈B|e(λ)
k · peik·r|A〉

∣∣∣∣
2

. (23.46)

For t >> t0, we have

�abs = lim
t→∞ {P(t)/t} ≈ n(λ)

k e2

8m2
eπ

2�ω
δ(EB − EA − �ω)

∣∣∣〈B|e(λ)
k · p e−ik·r|A〉

∣∣∣
2
.

(23.47)
Using the expression obtainted in the case of spontaneous emission in the dipole
approximation (e−ik·r ≈ 1)

e2

m2
e

|〈B|e(λ)
k · p|A〉|2 = (EB − EA)

2

�2
|e(λ)

k · dBA|2, (23.48)

we get �abs in the form

�abs = n(λ)
k (EB − EA)

2

(2π�)22ω
δ(EB − EA − �ω)|e(λ)

k · dBA|2. (23.49)

The absorption rate per solid angle will be

d�abs

d�
= n(λ)

k ω3

8π2�c3
|e(λ)

k · dBA|2, (23.50)

where �ω = EB − EA. The selection rules are the E1 selection rules encountered in
the case of spontaneous emission.

Entirely analogous is the case of induced emission

B + nγ → A + (n + 1)γ (23.51)

After similar steps we end up with the rate

d�em

d�
= (n(λ)

k + 1)ω3

8π2�c3
|e(λ)

k · dAB |2 . (23.52)

Application: black body radiation [2]. Consider a collection of atoms with two
active atomic energy levels EA < EB and the emission and absorption processes

B → A + γ A + γ → B (23.53)

the energy of the exchanged photon being EB − EA = �ω. We may approximately
treat the atoms as distinguishable particles obeying Boltzman statistics. Then, for
temperatures T >> EB/kB their energy level occupation numbers will be
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NB/NA ≈ e−(EB−EA)/kBT = e− �ω
kB T . (23.54)

The rate of photon absorption by level A will be NA �abs , while the rate of photon
emission by level B will beNB �em . Thermodynamic Equilibrium is achieved when
these two rates are equal, namely,

NA �abs = NB �em . (23.55)

Going back to the expressions for the absorption and emission rates, we have

�abs

�em
= |〈n(λ)

k − 1|〈B|e(λ)
k · peik·r|A〉|n(λ)

k 〉|2
|〈n(λ)

k + 1|〈A|e(λ)
k · pe−ik·r|B〉|n(λ)

k 〉|2

= n(λ)
k(

n(λ)
k + 1

) |〈B|e(λ)
k · peik·r|A〉|2

|〈A|e(λ)
k · pe−ik·r|B〉|2 . (23.56)

However, since2

〈B|(e · p)eik·r|A〉 = 〈A|e−ik·r(e · p)|B〉∗ = 〈A|(e · p)e−ik·r|B〉∗,

we have
�abs

�em
= n(λ)

k

n(λ)
k + 1

. (23.57)

Inserting this into the equilibrium condition, we obtain

n(λ)
k

n(λ)
k + 1

= e−�ω/kBT

or

n(λ)
k = 1

e�ω/kBT − 1
. (23.58)

This formula relates the number of photons of a given frequency to temperature and
can be used to derive Planck’s Law of Black Body Radiation. The energy density of
the gas of photons of frequencies in the interval (ω, ω + dω) is (integrating over all
directions)

U (ω)dω = 2
∫

d3k

(2π)3

�ω

e�ω/kBT − 1

or

2Note that (e · p)e±ik·r = e±ik·r(e · p) ± �(k · e)e±ik·r = e±ik·r(e · p).
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U (ω)dω = �
2

c3π2

(
dω ω3

e�ω/kBT − 1

)
. (23.59)

The factor of 2 corresponds to the two possible polarization states. This is Planck’s
Law giving us the frequency distribution of the black-body radiation spectrum. The
equilibrium condition for the two level system we analyzed above correspond to
those of a cavity that acts as a black body.

Problems and Exercises

23.1 Consider a charged particle bound by an isotropic harmonic oscillator potential
in its ground state interacting with quantized electromagnetic radiation. Calculate the
induced absorption rate per solid angle for the dipole transition

|A〉 + nγ → |B〉 + (n − 1)γ ,

where |A〉 is the ground state and |B〉 is one of the first excited states.

23.2 Calculate the spontaneous emission rate for the dipole transition of aHydrogen
atom from the 2p state to the ground state.

23.3 In order to describe two-photon processes A + γ → B + γ′ one has to employ
higher orders in perturbation theory involving matrix elements

C (2)(t) =
∫ t

t0

dt ′
∫ t

t0

dt ′′ei EB t ′/�e−i EAt ′′/�〈B|〈n(λ′)
k′ |T

(
Ĥint (t

′)Ĥint (t
′′)

)
|A〉|n(λ)

k 〉 .

Insert a complete set of atomic states and evaluate C (2) for arbitrary atomic states
|A〉, |B〉.
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Chapter 24
The Path Integral Formulation of QM

The basic objects of interest in the study of microscopic quantum systems are the
probability amplitudes. State vectors and hermitian operators are tools leading to
matrix elements and inner products that correspond to measurable probability ampli-
tudes. The central physical issue, of course, is the time evolution of these prob-
ability amplitudes. This is formulated in terms of a differential equation, namely
Schroedinger’s equation. Nevertheless, it has been realized quite a few years ago
that an alternative formulation of Quantum Mechanics is possible, not based on
operators and differential equations but on the concept of a generalized summa-
tion over possible paths of the system in configuration space. In this formulation of
Quantum Mechanics, employing the mathematical concept of functional integration
or path integrals, probability amplitudes are expressible as path integrals [1]. This
formulation is in some ways closer to classical thinking, having, of course, made the
drastic replacement of the classical trajectory with the concept of summation over
all possible paths (path integration). Although the path integral formulation seems
more complicated than the conventional operator approach in elementary problems,
it turns out that in advanced problems like the quantization of systems of an infi-
nite number of degrees of freedom, this method has been proven quite fruitful and
powerful in comparison to the standard methods of canonical quantization.

24.1 Propagators

Consider a system that is in a state |ψ(t0)〉 at an initial time t0. The state of the system
at a later time t > t0 will be

|ψ(t)〉 = e− i
�
Ĥ(t−t0)|ψ(t0)〉 , (24.1)
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where Ĥ is the Hamiltonian of the system. In the {x} representation, (24.1) is trans-
lated as follows:

〈x |ψ(t)〉 = 〈x |e− i
�
Ĥ(t−t0)|ψ(t0)〉 = 〈x |e− i

�
Ĥ(t−t0)

(∫ +∞

−∞
dx ′ |x ′〉 〈x ′|

)
|ψ(t0)〉 ,

or

ψ(x, t) =
∫ +∞

−∞
dx ′ K(x, x ′; t − t0)ψ(x ′, t0) , (24.2)

where
K(x, x ′; t − t0) ≡ 〈x |e− i

�
Ĥ(t−t0)|x ′〉 . (24.3)

The function K(x, x ′; t − t0) is called the propagator [2, 3] of the system and it
corresponds to the matrix elements of the evolution operator in the basis of position
eigenvectors. Its physical meaning is that of the probability amplitude to make a
transition from a position x ′ at time t0 to a position x at a later time t .

Let us calculate the propagator for a free particle moving in one dimension. We
have

K0(x, x
′; t − t0) = 〈x |e−i p̂2

2m�
(t−t0)|x ′〉 = 〈x |e−i p̂2

2m�
(t−t0)

(∫ +∞

−∞
dp|p〉〈p|

)
|x ′〉 ,

(24.4)
where we have inserted a complete set of energy eigenstates, which for the free
particle coincide with the momentum eigenstates. Next, we have

K0(x, x
′; t − t0) =

∫ +∞

−∞
dp e−i p2

2m�
(t−t0) 〈x |p〉 〈p|x ′〉 =

∫ +∞

−∞
dp

2π�
e−i p2

2m�
(t−t0) e

i
�
p(x−x ′) . (24.5)

Performing a Gaussian integration,1 we obtain

K0(x, x
′; t − t0) =

√
m

2π�i(t − t0)
ei

m(x−x ′)2
2�(t−t0) . (24.6)

This is generalized very easily to three dimensions. The three-dimensional free prop-
agator is

K0(r, r ′; t − t0) =
(

m

2πi�(t − t0)

)3/2

ei
m|r−r ′ |2
2�(t−t0) . (24.7)

Note that the propagator, even in the interacting case, will always be a function of
the time difference t − t ′ and not of the initial and final times separately, due to the
fact that time translation t → t + α is an exact symmetry of all our equations. Time
translation invariance is also referred to as homogeneity of time.

1
∫ +∞
−∞ dxe−ax2+bx =

√
π
a e

b2
4a . See the section on Gaussian integrals in the Appendix.
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An examination of the expressions (24.6) and (24.7) of the free propagator reveals
an interesting connection with the Classical Action of the system. For a classical
particle, its Classical Action S[x] is defined as the time integral of its Lagrangian L,
given in most cases as the difference of its kinetic energy minus its potential energy
T − V . The Action of a particle is a function of the initial and final positions of the
particle xi = x(t0) and x f = x(t) and its trajectory between those two points. Thus,
it is a function of the trajectory as a whole, having different values for different paths
followed. In mathematical terms, it is a functional (i.e., a function of a function) of
the path followed by the system. For a free particle, the Lagrangian is just the kinetic
energy and the action for one-dimensional motion is

S =
∫ t

t0

dt ′
1

2
mẋ2(t ′) . (24.8)

Since there is no force, we have ẋ = const. = (x ′ − x)/(t − t0) and

S = (t − t0)
1

2
m

(
x ′ − x

t − t0

)2

= m(x ′ − x)2

(t − t0)
. (24.9)

Thus, the free propagator is proportional to the exponential of the Action

K0(x, x
′; t − t0) =

( m

2πi�

)1/2
e

i
�
S . (24.10)

In ClassicalMechanics, the equations ofmotion of a system, according toHamilton’s
Principle or, equivalently, the Least Action Principle, correspond to an extremum
(minimum) of the Action. In other words, the physical trajectory of the system is the
one giving minimal Action. Classical Mechanics should be recovered in the limit
� → 0. This is the case indeed, since in that limit, the exponential of the propagator
e

i
�
S will give appreciable values only for that path that corresponds to a minimum

of S, namely the classical trajectory.
For the general case of an interacting system, we repeat the same steps inserting

a complete set of energy eigenstates

K(x, x ′; t − t0) = 〈x |e− i
�
Ĥ(t−t0)|x ′〉 = 〈x |e− i

�
Ĥ(t−t0)

(∑
E

|E〉〈E |
)

|x ′〉

=
∑
E

〈x |E〉 e− i
�
E(t−t0) 〈E |x ′〉 (24.11)

or
K(x, x ′; t − t0) =

∑
E

ψE (x) e− i
�
E(t−t0) ψ∗

E (x ′) , (24.12)



486 24 The Path Integral Formulation of QM

where ψE (x) = 〈x |E〉 are the energy eigenfunctions. The exact expression of the
propagator, of course, depends on the particular system and requires quite a bit of
mathematical machinery to evaluate. As an example, we may consider the harmonic
oscillator. Substituting in (24.12) the expressions for the wavefunctions in terms of
Hermite polynomials (7.31), we obtain

K(x, x ′; t) =
√
mω

�π
e− 1

2 (ξ2+ξ′2)e−iωt/2
∞∑
n=0

einωt

2nn! Hn(ξ)Hn(ξ
′) , (24.13)

where ξ = x
√

mω
�
. Now, using the completeness relation of Hermite polynomials

(7.35) with z = eiωt/2, and after some manipulation, we get the propagator in the
form

K(x, x ′; t) =
(

mω

2�πi sin(ωt)

)1/2

e
i mω
2�

[
(x2+x ′2) cot(ωt)− 2xx ′

sin(ωt)

]
. (24.14)

Note that in the free-particle limit ω → 0, the free propagator is recovered. Note also
that, in contrast to the free propagator, (24.14) is not a function of the difference x −
x ′. This is because only the free-particle system is invariant under spatial translations
x → x + α (homogeneity of space). This is not a symmetry anymore in the presence
of forces.

24.2 A Property of Propagators

Consider the system of a particle, in general subject to forces, and its propagator for
a transition between points x at time t0 and x ′ at time t . We can always divide the
time interval t − t0 in N equal segments considering the intermediate times

t0 < t1 < t2 < . . . . . . < tN−1 < tN = t =⇒ tn = t0 + n

N
(t − t0) (24.15)

with n = 0, 1, . . . , N . Each equal segment is (t − t0)/N . The propagator is

K(x, x ′; t − t0) = 〈x |e− i
�
Ĥ(t1−t0)e− i

�
Ĥ(t2−t1) . . . e− i

�
Ĥ(tN−tN−1)|x ′〉. (24.16)

Inserting complete sets of position eigenstates between the successive evolution
operators, we obtain

= 〈x |e− i
�
Ĥ(t1−t0)

(∫
dx1|x1〉〈x1|

)
e−

i
�
Ĥ(t2−t1)

(∫
dx2|x2〉〈x2|

)
. . . e−

i
�
Ĥ(tN−tN−1)|x ′〉
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=
∫

dx1

∫
dx2 . . .

∫
dxN−1K(x, x1; t1 − t0) . . . . . .K(xN−1, x

′; t − tN−1) .

(24.17)
Thus, the propagator has been written as a convoluted product of N propagators,
each corresponding to an intermediate time interval of equal length, with N − 1
integrations on intermediate positions between the start and end points x and x ′

K(x, x ′; T ) =
∫

dx1 . . .

∫
dxN−1K(x, x1; T/N ) . . .K(xN−1, x

′; T/N ) .

(24.18)
This expression means that the amplitude to make a transition between the points
x, x ′ is composed of the amplitudes for all possible paths traversed at intermediate
times.

24.3 The Feynman Path Integral

Let us now take the expression (24.18) and consider the limit of N → ∞ or an
infinitesimal time interval T/N = ε. The intermediate propagators are (to first order
in ε)

K(x j−1, x j ; ε) = 〈x j−1|e− i
�

ε(T̂+V (x̂))|x j 〉 ≈ 〈x j−1|e− i
�

εT̂

(
1 − i

�
εV (x̂)

)
|x j 〉

=
(
1 − i

�
εV (x j )

)
〈x j−1|e− i

�
εT̂ |x j 〉 = K0(x j−1, x j ; ε)

(
1 − i

�
εV (x j )

)

=
√

m

2π�iε
ei

m
2�ε (x j−1−x j )

2

(
1 − i

�
εV (x j )

)
(24.19)

or

K(x j−1, x j ; ε) ≈
√

m

2π�iε
e

i
�

ε

(
1
2m

(
x j−1−x j

ε

)2 −V (x j )

)
. (24.20)

Note now that, although a priori two intermediate points x j−1, x j could have any
values between (−∞, +∞), since the integrations are Gaussian

. . .

∫ +∞

−∞
dx j−1

∫ +∞

−∞
dx j e

i m
2�ε (x j−1−x j )

2

in the ε → 0 limit they will be dominated by neighboring points x j−1 ≈ x j . This
enables us to define an approximately continuous function x(t ′), such that t0 ≤ t ′ ≤ t
and

x(t j ) = x j , x(t0) = x, x(t) = x ′ . (24.21)
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Then, going back to the full expression (24.18), we have

K(x, x ′; T ) =
( m

2π�iε

)(N−1)/2
�N−1

j=1

∫
dx j e

i
�

ε
∑N

j=1

(
1
2m

(
x j−1−x j

ε

)2 −V (x j )

)
. (24.22)

In the exponent, we can now make the replacements

x j − x j−1

ε
→ dx(t ′)

dt ′
and ε

∑
j

· · · →
∫ t

t0

dt ′ . . . . (24.23)

Thus, the exponential becomes

e
i
�

∫ t
t0
dt ′( 1

2mẋ2(t ′)−V (x(t ′)) ) = e
i
�
S[x] . (24.24)

The collection of integrations over intermediate paths is defined to be the (functional)
integration measure

[Dx] = lim
ε → 0
N → ∞

⎧⎨
⎩
( m

2π�iε

)(N−1)/2
∫

dx1 . . .

∫
dxN−1︸ ︷︷ ︸

⎫⎬
⎭ . (24.25)

Thus, we have arrived at the expression of the propagator as the Feynman Path
Integral which expresses the time evolution of the transition probability amplitude
as an integral over all possible paths [1]

K(x, x ′; t − t0) =
∫ x(t)=x ′

x(t0)=x
[Dx] e i

�
S[x] , (24.26)

the exponent being the Classical Action

S[x] =
∫ t

t0

dt ′
(
1

2
mẋ2(t ′) − V (x(t ′))

)
. (24.27)

Note that the integration measure [Dx] signifies integration over a full space of
functions x(t), satisfying the given boundary conditions at the end points. A basic
property of the functional integration measure is that it is invariant under translation
by a given function

x(t) → x ′(t) = x(t) + f (t) =⇒ [Dx ′] = [Dx] , (24.28)

where f (t) is a known function (e.g., f (t) = cos(ωt)). This is essentially not different
than the property of an ordinary differential to be invariant under translation by a
constant (d(x + a) = dx) .
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Example 24.1 Rewrite the Feynman path integral for the propagator of a particle
moving in one dimension subject to a potential V (x) as a functional integral over
phase space.

We start with

K(x, x ′; T ) =
∫ x(T )=x ′

x(0)=x
[Dx] e i

�
S[x] (24.29)

with

S =
∫ T

0
dt

(
1

2
mẋ2 − V (x)

)
. (24.30)

This path integral is determined up to a multiplicative normalization constant, which we can take it
to be equal to the indefinite path integral

∫
[Dp] e− i

�

∫ T
0 dt p2

2m , (24.31)

which, thanks to the shift invariance of the integration measure, can be also written as

∫
[Dp] exp

[
− i

2m�

∫ T

0
dt (p − mẋ)2

]
. (24.32)

We insert this constant to our starting path integral and we obtain

K(x, x ′; T ) =
∫ x(T )=x ′

x(0)=x
[Dx]

∫
[Dp] e

i
�

∫ T
0 dt

(
pẋ − p2

2m −V (x)

)
(24.33)

or

K(x, x ′; T ) =
∫ x(T )=x ′

x(0)=x
[Dx]

∫
[Dp] e i

�

∫ T
0 dt ( pẋ −H(p,x)) . (24.34)

This is the propagator written as a path integral over the phase space x, p. Note that the momentum

path integral is indefinite.

Example 24.2 Evaluate the path integral for a simple harmonic oscillator

K(x, x ′; T ) =
∫ x(T )=x ′

x(0)=x
[Dx] e i

� ( 1
2mẋ2 − 1

2mω2x2) . (24.35)

We introduce the eigenfunctions of the differential operator − d2

dt2
− ω2

−
(

d2

dt2
+ ω2

)
un(t) = λn un(t) (24.36)

with homogeneous boundary conditions un(T ) = un(0) = 0. These are the orthonormal set

un(t) =
√

2

T
sin(πnt/T ) (n = 1, 2, . . .) . (24.37)

The corresponding eigenvalues are

λn = −ω2 +
(πn

T

)2
. (24.38)

Next we write the integration function as
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x(t) = x0(t) +
∞∑
n=1

x̃nun(t) , (24.39)

where x0(t) is a solution of
ẍ0 + ω2x0 = 0 (24.40)

with boundary conditions x0(T ) = x ′, x0(0) = x . This can be determined exactly to be

x0(t) = x [cos(ωt) − sin(ωt) cot(ωT )] + x ′ sin(ωt)
sin(ωT )

. (24.41)

Substituting x(t) in the action and using the boundary conditions, we obtain

S[x] = S[x0] + 1

2
m

∞∑
n=1

λn x̃
2
n . (24.42)

Actually, S[x0] can be computed to be

S[x0] = 1

2
mω

[(
x2 + x ′2) cot(ωT ) − 2xx ′(sin(ωT ))−1

]
. (24.43)

Therefore, the propagator is

K(x, x ′; T ) = e
i
�
S[x0]

∫ x̃(T )=0

x̃(0)=0
[Dx̃] e im

2�

∑∞
n=1 λn x̃2n . (24.44)

The integration measure is

[Dx̃] ∝ � j x̃(t j ) ∝ � j

∑
n

x̃n sin(πnt j/T ) . (24.45)

Note, however, that the “matrix” Snj =
√

2
T sin(nπt j/T ), thanks to the orthonormality of these

eigenfunctions, is unitary and, therefore, the integration measure is just

[Dx̃] ∝ �n x̃n = dx̃1 . . . dx̃n . . . . (24.46)

Thus, the integration reduces to a product of ordinary gaussian integrals with the simple result

K(x, x ′; T ) ∝ e
i
�
S[x0] �n

(
2πi�

mλn

)1/2

= e
i
�
S[x0] �n

⎛
⎝ 2πi�

m
(
−ω2 + ( nπ

T

)2)
⎞
⎠

1/2

. (24.47)

The multiplicative constant can be determined by the demand that the propagator reduces to the
known free one for ω = 0. Then, we obtain

K(x, x ′; T ) ∝ e
i
�
S[x0] �n

⎛
⎝ 1(

1 − (
ωT
nπ

)2)
⎞
⎠

1/2

. (24.48)

The appearing infinite product is known to be
√

ωT/ sin(ωT ). Finally, we obtain

K(x, x ′; T ) =
√

mω

2πi� sin(ωT )
e

imω
2�

[(
x2+x ′2

)
cot(ωT ) −2xx ′(sin(ωT ))−1

]
. (24.49)
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Problems and Exercises

24.1 Prove that the expression for the free propagator in the limit t f → ti reduces
to a delta function δ(r ′ − r).

24.2 Evaluate the Feynman path integral for the propagator K(x ′, x; t f , ti ) (x ′ =
x(t f ), x = x(ti )) of the forced harmonic oscillator

L = 1

2
mẋ2 − 1

2
mω2x2 + F(t)x .

24.3 Evaluate the Feynman path integral for the propagator K(x ′, x; t f , ti ) (x ′ =
x(+∞), x = x(−∞)) of the forced harmonic oscillator

L = 1

2
mẋ2 − 1

2
mω2x2 + F(t)x .
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Appendix
Mathematical Supplement

A.1 Probabilities

A.1.1 Basic Definitions

Consider a physical system on which we perform N measurements1 of a given
quantity A (e.g., the temperature of a liquid in an insulated container), under exactly
the same conditions.2 Let the set of distinct values measured be

α1, α2, α3, . . . (A.1)

and let N j = N (α j ) be the number of times a particular value α j turns up. The
relative frequency of the value α j will be

f j ≡ N j

N
. (A.2)

Obviously, we must have
f j ≤ 1 (A.3)

and ∑

j

f j = 1 . (A.4)

The Probability of a particular value is defined as the frequency of this value in
the limit of a large number of measurments N → ∞

1The termmeasurement here is used loosely in the classical sense and is not related to the nontrivial
issue of measurement on a quantum system.
2Equivalently, we may consider a set of N identical copies of the system (a so-called statistical
ensemble) and perform a measurement of A in each of them.
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Pj = N j

N
. (A.5)

The two defining properties of probability are

0 ≤ Pj ≤ 1,

∑
j Pj = 1.

(A.6)

Implicit in the above definition of probability is the fact that the measurements α j

and αk are mutually exclusive and that the probability of obtaining a value either α j

or αk is
Pj∪k = Pj + Pk . (A.7)

Note that the above definition of probability refers to single independent measure-
ments of the given quantity. It is possible to consider joint probabilities correspond-
ing to two simultaneous measurments (or, alternatively, single measurements in two
copies of the statistical ensemble) and ask the question “what is the probability
of a value α j and a value αk . In the case that the measurements are “statistically
independent” the probability for the pair (α j , αk) is the product

Pj∩k = Pj Pk . (A.8)

According to the Law of Large numbers of Probability Theory the most probable
value (e.g., the value for which the probability has amaximum), in the limit N → ∞,
approaches the so called expectation value (also mean or average value), defined as

〈A〉 =
∑

j

α j Pj . (A.9)

Similarly, the expectation value of any function F(A) is defined as

〈F(A)〉 =
∑

j

F(α j )Pj . (A.10)

Nevertheless, it is possible that two different probability distributions to yield the
same expectation value while they differ in their spreading of individual values
around it. A good measure of their difference is the so-called Standard Deviation
(�A), defined as

(�A)2 = 〈
( A − 〈A〉 )2

〉
. (A.11)

An equivalent expression for (A.11) is

(�A)2 = 〈A2〉 − 〈A〉2 . (A.12)

Notice that (A.11) ensures that always 〈A2〉 ≥ 〈A〉2.
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A.1.2 Continuous Distributions

It is often the case that the measured values of a given quantity cover a continuous
range. In that case, it is meaningful to talk about the probability of measured values
in a small, i.e., infinitesimal region [α, α + dα]. This probability must also be small,
i.e., infinitesimal as well, and, therefore, proportional to dα

dP(α, α + dα) ∝ dα . (A.13)

Then, it is useful to intoduce the concept of probability density

P(α) ≡ dP(α)

dα
. (A.14)

The defining property of the probability density is

∫ α2

α1

dαP(α) = 1 , (A.15)

where [α1, α2] is the full range of values taken by α. Such a continuous probability
density function is referred to as a probability distribution.

The definitions of the expectation value and the standard deviation follow in a
straightforward fashion from (A.9) and (A.11) as

〈A〉 = ∫ α2

α1
dα αP(α)

(�A)2 = ∫ α2

α1
dα α2 P(α) −

(∫ α2

α1
dα αP(α)

)2
.

(A.16)

As an example, wemay consider a Gaussian probability distribution for a position
variable x taking values in the entire real line. It is given by

P(x) =
(α

π

)1/2
e−αx2 , (A.17)

where α > 0 is a parameter. The coefficient
√

α/π in front of the exponential is just
what is necessary to meet the requirement that

∫
dx P = 1. The expectation value

vanishes independently of the parameter α as a result of the x → −x reflection
symmetry of the distribution

〈x〉 =
∫ +∞

−∞
dx x P(x) = 0 . (A.18)
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The standard deviation is

(�x)2 = 〈x2〉 =
∫ +∞

−∞
dx x2 P(x) = 1

2α
(A.19)

and depends strongly on the parameterα. Thus, forα  1we have a very large spread
in the values of x , while, for α � 1, we have a more or less localized distribution of
values around x = 0.

A.1.3 Probability Amplitudes

Probabilities or the probability densities are always real positive functions. It is
possible, however, to introduce a probability amplitude or a probability density
amplitude defined so that its absolute square gives the corresponding probability or
probability density

Pj = |� j |2 or P(α) = |ψ(α)|2 . (A.20)

The probability amplitude is a complex quantity. In terms of the probability ampli-
tude, the statement that the probability of obtaining any value is equal to certainty
reads ∑

j

|� j |2 = 1 or
∫ +∞

−∞
dα |ψ(α)|2 = 1 . (A.21)

A.2 Fourier Transforms

Consider a square-integrable function f (x) that takes up complex values. By
definition, ∫ +∞

−∞
dx | f (x)|2 < ∞ . (A.22)

Its Fourier transform is defined as

g(k) =
∫ +∞

−∞
dx√
2π

f (x) eikx . (A.23)

It can be shown that g(k) is also a square-integrable function, i.e.,

∫ +∞

−∞
dk |g(k)|2 < ∞ (A.24)
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and that the inverse Fourier transform exists, namely

f (x) =
∫ +∞

−∞
dk√
2π

g(k) e−ikx . (A.25)

Furthermore, the following relation is true (Plancherel’s Theorem):

∫ +∞

−∞
dx | f (x)|2 =

∫ +∞

−∞
dk |g(k)|2 . (A.26)

Fourier transformations can also be defined in three dimensions as

g(k) =
∫

d3r

(2π)3/2
f (r) eik·r and f (r) =

∫
d3k

(2π)3/2
g(k) e−ik·r , (A.27)

while Plancherel’s Theorem reads
∫

d3r | f (r)|2 =
∫

d3k |g(k)|2 . (A.28)

A.3 Generalized Functions

The Theta function or step function �(x) is defined as

�(x) =
⎧
⎨

⎩

0 (x < 0)

1 (x > 0).
(A.29)

Obviously, it is not continuous at x = 0 and �(0) is not defined. The derivative of
�(x) vanishes everywhere except at x = 0, where it does not exist. Despite that we
may write formally

∫ +∞

−∞
dx

d�

dx
= �(+∞) − �(−∞) = 1 . (A.30)

Therefore, we may introduce another generalized function that vanishes everywhere
except at x = 0, where it is infinite, but, despite that, it has an integral over the entire
real line equal to 1. This is the Dirac Delta function, defined as

δ(x) =
⎧
⎨

⎩

0 (x �= 0)

∞ (x = 0).
(A.31)
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and ∫ +∞

−∞
dx δ(x) = 1 . (A.32)

It is obvious that for any regular function f (x), we shall have

f (x) δ(x) = f (0) δ(x) (A.33)

or ∫ +∞

−∞
dx f (x) δ(x) = f (0) . (A.34)

All the above definitions and identities are generalized to an arbitrary point x0 as

δ(x − x0) =
⎧
⎨

⎩

0 (x �= x0)

∞ (x = x0)

(∫ +∞

−∞
dxδ(x − x0) f (x) = f (x0)

)
. (A.35)

Note also that the delta function is an even function

δ(x − x0) = δ(x0 − x) . (A.36)

There are many representations of the delta function as a limit of ordinary func-
tions. For example,

δ(x) = lim
ε→0

e−x2/ε

√
πε

. (A.37)

An alternative very useful integral representation, stated without proof for the sake
of economy, is

δ(x) =
∫ +∞

−∞
dk

2π
eikx . (A.38)

As a demonstration of the usefulness of the delta function we may use it to prove the
existence of the inverse Fourier transform and Plancherel’s theorem. We have

f (x) =
∫ +∞

−∞
dk√
2π

g(k)eikx =
∫ +∞

−∞
dk√
2π

(∫ +∞

−∞
dx ′
√
2π

f (x ′)e−ikx ′
)
eikx

=
∫ +∞

−∞
dx ′ f (x ′)

∫ +∞

−∞
dk

2π
eik(x−x ′) = ,

∫ +∞

−∞
dx ′ f (x ′)δ(x − x ′) = f (x) .

Similarly

∫ +∞

−∞
dx | f (x)|2 =

∫ +∞

−∞
dx

(∫ +∞

−∞
dk√
2π

g∗(k)eikx
) (∫ +∞

−∞
dk ′
√
2π

g(k ′)e−ik ′x
)
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=
∫ +∞
−∞

dk
∫ +∞
−∞

dk′ g∗(k)g(k′)
∫ +∞
−∞

dx

2π
eix(k−k′) =

∫ +∞
−∞

dk g∗(k)
∫ +∞
−∞

dk′ g(k′) δ(k − k′)

=
∫ +∞

−∞
dk|g(k)|2 .

When the argument of the delta function is a function itself it is easy to prove

δ( f (x)) =
∑

j

δ(x − x j )

| f ′(x j )| , (A.39)

where x j are the roots of the equation f (x) = 0. For example,

δ(x2 − x20 ) = 1

2|x0| ( δ(x − x0) + δ(x + x0) ) . (A.40)

A three-dimensional delta function can be defined in a straightforward way as a
product

δ(r − r0) = δ(x − x0)δ(y − y0)δ(z − z0) . (A.41)

In terms of it the defining property of the delta function takes the form

∫
d3r ′ f (r′) δ(r′ − r) = f (r) . (A.42)

The corresponding integral representation reads

δ(r − r0) =
∫

d3k

(2π)3
eik·r . (A.43)

A.4 Gaussian and Other Integrals

A.4.1 One-Dimensional Integrals

Consider the integral

I =
∫ +∞

−∞
dx e−x2 , (A.44)

often referred to asEuler’s integral orGaussian integral, since the integrated function
corresponds to the Gaussian distribution. It can easily be evaluated with elementary
methods considering its square and employing polar coordinates as
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I 2 =
∫ +∞

−∞
dx

∫ +∞

−∞
dy e−(x2+y2) =

∫ ∞

0
dr

∫ 2π

0
dθ r e−r2

= 2π
∫ ∞

0
dr r e−r2 = π

∫ ∞

0
dξ e−ξ = π =⇒

∫ +∞

−∞
dx e−x2 = √

π .

Starting from this integral, we can deduce the more general one

I (α) =
∫ +∞

−∞
dx e−αx2 =

√
π

α
with Re(α) ≥ 0 . (A.45)

Integrals involving a Gaussian exponential times a power can be easily computed
from I (α) by diferentation. For instance,

∫ +∞

−∞
dx x2 e−αx2 = − d I

dα
=

√
π

2α
√

α
(A.46)

or for general even powers

I2n(α) =
∫ +∞

−∞
dx x2n e−αx2 = (−1)n

dn I

dαn
= (−1)n

∂n

∂αn

(√
π

α

)
. (A.47)

Integrals with odd powers are automatically zero due to oddness

I2n+1(α) =
∫ +∞

−∞
dx x2n+1 e−αx2 = 0 . (A.48)

Integrals of the type

I (α, β) =
∫ +∞

−∞
dx e−αx2 + βx (A.49)

can also be computed in the following fashion:

I =
∫ +∞

−∞
dx e

−α
(
x2−2 β

α x+ β2

4α2

)

e
β2

4α = e
β2

4α

∫ +∞

−∞
dx ′ e−αx ′2

or

I (α,β) =
∫ +∞

−∞
dx e−αx2 + βx =

√
π

α
e

β2

4α . (A.50)

As a result, we may conclude that the Fourier transform of a Gaussian is also a
Gaussian, namely ∫ +∞

−∞
dx e−αx2+ikx =

√
π

α
e− k2

4α . (A.51)



Appendix: Mathematical Supplement 501

Table A.1 Usefull Integrals ∫ +∞
−∞ dx e−αx2 + βx = √

π
α e

β2

4α

∫ +∞
−∞ dx x2n e−αx2 = (−1)n ∂n

∂αn

(√
π
α

)

∫ +∞
−∞ dx x2n+1 e−αx2 = 0

∫ +∞
−∞ dx xn e−αx2+βx = √

π
α

∂n

∂βn exp (β2/4α)

∫ +∞
0 dx xn e−αx = n!

αn+1

From the above integral, we can also compute

In(α,β) =
∫ +∞

−∞
dx xn e−αx2+βx = ∂n I

∂βn
=

√
π

α

∂n

∂βn
exp (β2/4α) , (A.52)

for odd and even values of the integer n.
Another set of useful integrals that can be calculated with elementary methods

are the integrals

Jn =
∫ +∞

0
dx xn e−x . (A.53)

Introducing a parameter α we have

Jn(α) =
∫ +∞

0
dx xn e−αx = (−1)n

∂n

∂αn

∫ +∞

0
dx e−αx

= (−1)n
∂nα−1

∂αn
= (−1)n (−1)2(̇ − 1)3 . . . (−1)n α−(n+1) = n!

αn+1
. (A.54)

Thus, we obtain

Jn =
∫ +∞

0
dx xn e−x = n! . (A.55)

We have summarized our results in the Table A.1.

A.4.2 Three-Dimensional Integrals

Three-dimensional Gaussian integrals can also be derived in an analogous fashion.
Starting from the basic integral

I (α) =
∫

d3r e−αr2 =
(π

α

)3/2
, (A.56)

thanks to spherical symmetry, we have
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Ii j (α) =
∫

d3r xi x j e
−αr2 = δi j

3

∫
d3r r2 e−αr2

= −δi j

3

∂

∂α

∫
d3r e−αr2 = δi j

3

3

2

π3/2

α5/2

or

Ii j (α) =
∫

d3r xi x j e
−αr2 = δi j

2α

(π

α

)3/2
. (A.57)

Linear integrals I j (α) = ∫
d3r x j e−αr2 vanish due to oddness.

We can also compute

I (α, b) =
∫

d3r e−αr2+b·r = e
b2

4α

(π

α

)3/2
. (A.58)

Next, we may compute the vector integrals

Ji =
∫

d3r xi e
−αr2+b·r = ∂

∂bi
I (α,b)

or

J =
∫

d3r r e−αr2+b·r = b
2α

e
b2

4α

(π

α

)3/2
. (A.59)

General integrals of the type

Ii1i2...in (α,b) =
∫

d3r xi1 xi2 . . . xin e
−αr2+b·r (A.60)

can be calculated from the formula

Ii1i2...in (α,b) = ∂n I (α,b)

∂bi1∂bi2 . . .
=

(π

α

)3/2 ∂ne
b2

4α

∂bi1∂bi2 . . .
. (A.61)

A.5 Operator Identities

Addition and multiplication of operators are defined through the following rules:

A + B = B + A

A + 0 = 0 + A = A
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A + ( B + C ) = ( A + B ) + C

A ( B A ) = ( A B ) C

A I = I A = A

A A−1 = A−1 A = I.

(A.62)

Linear operators, satisfy
A a = a A , (a ∈ C). (A.63)

Only the case of Time Reversal corresponds to an antilinear operator satisfying

T a = a∗ T . (A.64)

The multiplication of operators is not commutative. For a string of operators, we
have

( A B C . . . )−1 = . . . C−1 B−1 A−1

( A B C . . . )† = . . . C† B† A†,

(A.65)

where † is the Hermitian conjugation operation.3 In contrast,

( A B C . . . )∗ = A∗ B∗ C∗ . . . . (A.66)

A useful quantity is the Commutator of two operators, defined as

[ A, B ] = A B − B A . (A.67)

The following set of commutator identities are useful:

[ a A + b B, C ] = a [ A, C ] + b [ B, C ] ,

[ A B, C ] = A [ B, C ] + [ A, C ] B,

[ [ A, B ] , C ] + [ [C, A ] , B ] + [ [ B, C ] , A ] = 0.

(A.68)

Functions of operators can also be defined for functions that are expandable
in power series. For example, for a function expandable around zero f (x) =∑∞

n=0
f (n)(0)
n! xn , we may define for an operator A, the operator

3The definition of Hermitian conjugation for operators acting on vectors |ψ1〉, |ψ2〉, . . . is
〈ψ1| Â†|ψ2〉 = 〈ψ2| Â|ψ1 〉∗.
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f (A) =
∞∑

n=0

f (n)(0)

n! An = I + f ′(0) A + 1

2
f ′′(0) A2 + . . . . (A.69)

Typical specific cases are

eA =
∞∑

n=0

An

n! , ln(1 + A) =
∞∑

n=1

(−1)n+1 A
n

n
. (A.70)

The exponentials of operators are of particular importance, since for anyHermitian
operator A, the exponential operator U (α) = eiα A, where α is a real number, is
unitary

U †(α) = e−iα A† = e−iα A = U−1(α) =⇒ U U † = U †U = I . (A.71)

For two non-commuting operators A and B, the product of their exponentials is
a complicated function that cannot be written in a closed form. There is, however, a
notable exception when their commutator is a complex number

[ A, B ] = c ∈ C =⇒ [ A, [ A, B] ] = [ B, [ A, B] ] = 0

and
eA eB = eA+B e

1
2 [A, B] . (A.72)

Note also the following version of this relation:

eA eB = eB eA e[A, B] . (A.73)

A.6 Coordinate Systems

Cartesian Coordinates and Differential Operators. In the standard Cartesian
Coordinates a position vector is analyzed in terms of the three unit vectors x̂, ŷ, ẑ
(the “hat” here does not denote an operator but a unit c-number vector) as

r = x x̂ + y ŷ + z ẑ (A.74)

or
r =

∑

i=1,2,3

xi x̂i , (A.75)
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where x1 = x, x2 = y, x3 = z. An arbitrary vector function will be

A = Ax x̂ + Ay ŷ + Az ẑ =
∑

i

Ai x̂i , (A.76)

where Ai = A · x̂i .
The Gradient operator is defined as

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
=

∑

i

x̂i
∂

∂xi
. (A.77)

The Divergence of a vector function is

∇ · A =
∑

i

∂Ai

∂xi
= ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
. (A.78)

The Curl of a vector function is defined as

∇ × B =

∣∣∣∣∣∣∣∣∣∣

x̂ ŷ ẑ

∂
∂x

∂
∂y

∂
∂z

Bx By Bz

∣∣∣∣∣∣∣∣∣∣

(A.79)

or

(∇ × B)i =
∑

j,k

εi jk
∂Bk

∂x j
. (A.80)

The Laplacian ∇2 of a scalar or vector function is the operator

∇2 =
∑

i

∂2

∂x2i
= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (A.81)

It is straightforward to show that the curl of a gradient and the divergence of a curl
vanish identically

∇ × ∇ f = 0, ∇ · (∇ × g) = 0 . (A.82)

Cylindrical Coordinates. These are defined in terms of the standard Cartesian
ones as ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ = √
x2 + y2

φ = arctan(y/x)

z = z

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = ρ cosφ

y = ρ sin φ

z = z

(A.83)
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with
0 ≤ ρ < ∞, −∞ < z < +∞, 0 ≤ φ ≤ 2π . (A.84)

A system of cylindrical unit vectors can be introduced as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ̂ = x̂ cosφ + ŷ sin φ

φ̂ = −x̂ sin φ + ŷ cosφ

ẑ = ẑ

with

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ̂ · φ̂ = ρ̂ · ẑ = φ̂ · ẑ = 0

ρ̂ × φ̂ = ẑ

φ̂ × ẑ = ρ̂.

(A.85)

The inverse relations are also usefull4

⎧
⎨

⎩

x̂ = ρ̂ cosφ − φ̂ sin φ

ŷ = ρ̂ sin φ + φ̂ cosφ.

(A.86)

In contrast to the Cartesian unit vectors ρ̂ and φ̂ are not constant but depend on the
angle φ. Thus, we have

∂ρ̂

∂φ
= φ̂,

∂φ̂

∂φ
= −ρ̂ . (A.87)

The position vector in terms of the cylindrical ones is

r = ρ ρ̂ + zẑ . (A.88)

An arbitrary vector function can also be decomposed as

A = ρ̂Aρ + φ̂Aφ + ẑAz . (A.89)

The gradient in cylindrical coordinates takes the form

∇ = ρ̂
∂

∂ρ
+ φ̂

ρ

∂

∂φ
+ ẑ

∂

∂z
. (A.90)

From this, we get easily the Laplacian

∇2 = ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2
∂2

∂φ2
+ ∂2

∂z2
. (A.91)

4Usefull relations are also

∂

∂x
= cosφ

∂

∂ρ
− sin φ

ρ

∂

∂φ
,

∂

∂y
= sin φ

∂

∂ρ
+ cosφ

ρ

∂

∂φ
.
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The divergence of (A.89) in cylindrical coordinates is

∇ · A = ∂Aρ

∂ρ
+ 1

ρ
Aρ + 1

ρ

∂Aφ

∂φ
+ ∂Az

∂z
. (A.92)

Similarly, we can obtain the curl of (A.89)

∇ × A = ρ̂

(
1

ρ

∂Az
∂φ

− ∂Aφ

∂z

)
+ φ̂

(
∂Aρ

∂z
− ∂Az

∂ρ

)
+ ẑ

(
∂Aφ

∂ρ
+ 1

ρ
Aφ − 1

ρ

∂Aρ

∂φ

)
. (A.93)

Spherical Coordinates. These are defined in terms of the Cartesian ones as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r = √
x2 + y2 + z2

θ = arctan(
√
x2 + y2/z)

φ = arctan(y/x)

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = r sin θ cosφ

y = r sin θ sin φ

z = r cos θ

(A.94)

with 0 ≤ r < ∞, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. Unit vectors can be introduced as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r̂ = x̂ sin θ cosφ + ŷ sin θ sin φ + ẑ cos θ

θ̂ = x̂ cos θ cosφ + ŷ cos θ sin φ − ẑ sin θ

φ̂ = −x̂ sin φ + ŷ cosφ

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r̂ · θ̂ = r̂ · φ̂ = θ̂ · φ̂ = 0

r̂ × θ̂ = φ̂

θ̂ × φ̂ = r̂.
(A.95)

We also have ⎧
⎪⎨

⎪⎩

∂r̂
∂θ

= θ̂ ∂r̂
∂φ

= sin θ φ̂

∂θ̂
∂θ

= −r̂ ∂θ̂
∂φ

= cos θ φ̂.

(A.96)

The gradient in spherical coordinates takes the form

∇ = r̂
∂

∂r
+ θ̂

r

∂

∂θ
+ φ̂

r sin θ

∂

∂φ
(A.97)

and the Laplacian is

∇2 = ∂2

∂r2
+ 2

r

∂

∂r
+ cot θ

r2
∂

∂θ
+ 1

r2
∂2

∂θ2
+ 1

r2 sin2 θ

∂2

∂φ2
. (A.98)

Consider now a vector function expanded in spherical coordinates

A = r̂ Ar + θ̂ Aθ + φ̂ Aφ . (A.99)
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Its divergence is

∇ · A = ∂Ar

∂r
+ 2

r
Ar + cot θ

r
Aθ + 1

r

∂Aθ

∂θ
+ 1

r sin θ

∂Aφ

∂φ
. (A.100)

Similarly, its curl is

∇ × A = r̂
r sin θ

(
cos θAφ + ∂Aφ

∂θ
− ∂Aθ

∂φ

)
+ θ̂

(
1

r sin θ

∂Ar

∂φ
− 1

r
Aφ − ∂Aφ

∂r

)

+ φ̂

(
1

r
Aθ + ∂Aθ

∂r
− 1

r

∂Ar

∂θ

)
. (A.101)

A.7 Tensor Products

Tensor Products. Consider two vector spaces E1 and E2. Their dimensions N1 and
N2 are in general different. A tensor product is an operation that maps any pair of
vectors that belong to E1 and E2 to a vector of a new vector space of dimension
N = N1N2 denoted by E1 ⊗ E2

|a〉 ∈ E1, |b〉 ∈ E2 =⇒ |a〉 ⊗ |b〉 ∈ E1 ⊗ E2. (A.102)

By convention the vector of space “1” is put on the left while the vector of space “2”
on the right. The operation is linear in the sense

(
α|a〉 + α′|a′〉) ⊗ |b〉 = α |a〉 ⊗ |b〉 + α′ |a′〉 ⊗ |b〉 (A.103)

and
|a〉 ⊗ (

β|b〉 + β′|b′〉) = β |a〉 ⊗ |b〉 + β′|a〉 ⊗ |b′〉 (A.104)

for any complex numbers α, α′, β, β′. In addition to that, the null element of each
vector space maps any vector to the null element of the tensor product space

0 ⊗ |b〉 = |a〉 ⊗ 0 = 0 . (A.105)

For Euclidean vector spaces with an inner product, the rules for the inner product
in the tensor product space is

(〈a| ⊗ 〈b|) · (|c〉 ⊗ |d〉) = 〈a|c〉 〈b|d〉 . (A.106)

For an orthonormal basis |ei1〉 in E1 and an orthonormal basis |εi2〉 in E2, we can
obtain an orthonormal basis in E1 ⊗ E2 as
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|Ei1 i2〉 = |ei1〉 ⊗ |εi2〉 =⇒ 〈Ei1i2 |Ei ′1i ′2〉 = δi1i ′1δi2i ′2 . (A.107)

Note, however, that not all vectors belonging to the tensor product space E are
tensor products of vectors of E1 and E2. For example, the vector

|�〉 = |a〉 ⊗ |b〉 + |c〉 ⊗ |d〉 (A.108)

clearly belongs to E and can be expanded in the basis |Ei1i2〉 as

|�〉 =
∑

i1i2

(
ai1bi2 + ci1di2

) |ei1〉 ⊗ |εi2〉 =
∑

i1i2

(
ai1bi2 + ci1di2

) |Ei1i2〉 . (A.109)

In terms of the given bases, vectors can be represented as collumns and rows. To
be concrete let’s take N1 = 2 and N2 = 3. Then, we have

|a〉 ∈ E1 =⇒
⎛

⎝
a1

a2

⎞

⎠ |b〉 ∈ E2 =⇒

⎛

⎜⎜⎜⎜⎝

b1

b2

b3

⎞

⎟⎟⎟⎟⎠
,

|a〉 ⊗ |b〉 =⇒
⎛

⎝
a1

a2

⎞

⎠ ⊗

⎛

⎜⎜⎜⎜⎝

b1

b2

b3

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1b1

a1b2

a1b3

a2b1

a2b2

a2b3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Operators that act in the spaces E1 and E2 acting on the states |a〉 ∈ E1 and |b〉 ∈ E2
have a straightforward generalization in product space. For example, an operator

Â ∈ E1 → Â|a〉 = |a′〉 (A.110)

is generalized to

Â ⊗ I →
(
Â ⊗ I

)
|a〉 ⊗ |b〉 = |a′〉 ⊗ |b〉 . (A.111)
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Similarly for an operator acting in E2 as B̂|b〉 = |b′〉

I ⊗ B̂ →
(
I ⊗ B̂

)
|a〉 ⊗ |b〉 = |a〉 ⊗ |b′〉 . (A.112)

Thus, a tensor product of operators Â ⊗ B̂ is defined to act according to

(
Â ⊗ B̂

)
|a〉 ⊗ |b〉 = |a′〉 ⊗ |b′〉 . (A.113)

Action on more general states is obvious

(
Â ⊗ B̂

)
( λ|c〉 ⊗ |d〉 + μ|e〉 ⊗ | f 〉 ) = λ|c′〉 ⊗ |d ′〉 + μ|e′〉 ⊗ | f ′〉 . (A.114)

A matrix representation of the tensor product of operators can be obtained in a
straightforward fashion as follows:

Â ⊗ B̂ =
⎛

⎝
∑

i1 j1

|ei1〉 Ai1 j1 〈e j1 |
⎞

⎠ ⊗
⎛

⎝
∑

i2 j2

|εi2〉 Bi2 j2 〈ε j2 |
⎞

⎠ =

∑

i1i2 j1 j2

(|ei1〉 ⊗ |εi2〉
)
Ai1 j1Bi2 j2

(〈e j1 | ⊗ 〈ε j2 |
) =

∑

i1i2 j1 j2

|Ei1i2〉 Ai1 j1Bi2 j2〈E j1 j2 |

or
Ĉ = Â ⊗ B̂ =⇒ Ci1i2, j1 j2 = Ai1 j1Bi2 j2 . (A.115)

As an example, we may consider the tensor product of two spin operators

six ⊗ s2x = �
2

2

⎛

⎝
0 1

1 0

⎞

⎠ ⊗
⎛

⎝
0 1

1 0

⎞

⎠ = �
2

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

⎛

⎝
0 1

1 0

⎞

⎠ 1

⎛

⎝
0 1

1 0

⎞

⎠

1

⎛

⎝
0 1

1 0

⎞

⎠ 0

⎛

⎝
0 1

1 0

⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= �
2

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Note that in a shorthand notation, the⊗ symbol will be often ommited and the tensor
product will be simply denoted as |a〉|b〉 or AB for the operators, provided that it is
understood that |a〉 and A refer to E1 while |b〉 and B refer to E2.
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Airy functions, 326
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Angular momentum, 161
Angular momentum conservation, 163
Angular momentum eigenstates, 173
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B
Basis, 89
Bell’s theorem, 452
Berry phase, 335, 338
Black body radiation, 480
Bloch’s theorem, 149
Bohm–Aharonov effect, 316
Bohr radius, 277
Born approximation, 409
Born-Oppenheimer approximation, 300
Born series, 409, 436
Bosons, 262
Bound states, 49, 245, 420
Bra, 88
Brillouin zone, 147, 150

C
Canonical commutation relations, 65
Center of mass, 258
Center of mass frame, 398
Center of mass wave function, 259
Central potential, 163, 233
Classical action, 485
Clebsch–Gordan coefficients, 209
Coherent states, 132
Collapse of wave function, 87, 442
Column vector, 90
Commutator, 65
Commuting observables, 76
Complementarity Principle, 5
Completeness, 70, 94
Conservation of probability, 22
Constant of the motion, 110
Continuity equation, 23
Correlation, 450
Correspondence Principle, 6
Coulomb gauge, 459
Coulomb scattering, 423
Creation operator, 123
Cross section, 397
Curl, 505
Cylindrical coordinates, 505

D
De Broglie wavelength, 6
Degeneracy, 222
Degenerate perturbation theory, 354
Delta function, 498
Delta function (3D), 499
Delta function potential, 52
Delta function resonances, 57
Delta-shell potential, 247

© Springer Nature Switzerland AG 2019
K. Tamvakis, Basic Quantum Mechanics, Undergraduate Texts in Physics,
https://doi.org/10.1007/978-3-030-22777-7

513

https://doi.org/10.1007/978-3-030-22777-7


514 Index
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Discrete transformations, 384
Divergence, 505
Dynamical phase, 334

E
Ehrenfest theorem, 78
Eigenfunctions, 26, 65
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Eigenvectors, 93
Electric dipole moment, 349
Electric dipole transition, 475
Electric field, 305
Electric quadrupole transition, 478
Emission (induced), 479
Emission (spontaneous), 474
Ensemble, 87, 441
Entanglement, 449
EPR paradox, 452
Euler angles, 377
Exchange degeneracy, 261
Expectation value, 63, 494
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Fermions, 262
Fermi’s golden rule, 359, 432
Fine structure, 284
Flocket matrix, 150
Flux quantization, 318
Fourier transform, 496

G
Galilean transformations, 383
Gauge invariance, 458
Gauge transformations, 308
Generator, 369
Geometrical phase, 334
Gradient operator, 505
Graphical solution, 49, 246
Green’s operator, 434
Group, 369

H
Hamiltonian, 24
Hard sphere, 242
Hard sphere scattering, 416
Harmonic approximation, 121
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Harmonic oscillator (3D-isotropic), 227, 250
Heisenberg equation, 110
Heisenberg inequality, 74, 97
Heisenberg picture, 108
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Hermite polynomials, 128
Hermitian conjugate, 67
Hermitian operator, 67
Hidden variables, 453
Hilbert space, 88
Homogeneity of space, 383
Homogeneity of time, 381
Homogeneous magnetic field, 190
Hydrogen atom, 273
Hydrogen atom degeneracy, 276
Hydrogen dynamical symmetry, 389
Hydrogen energy eigenfunctions, 280
Hydrogen energy eigenvalues, 277
Hydrogenic ions, 290
Hydrogen ion, 301
Hyperfine structure, 287

I
Identical boson scattering, 427
Identical fermion scattering, 428
Identical particles, 260
Infinite square well, 31
Infinite square well (3D), 219
Inner product, 89
Interaction picture, 114
Interference, 2

K
Ket, 88
Kramers degeneracy, 389
Kronig–Penney model, 152

L
Laboratory frame, 398
Lagrange’s equations, 306
Lagrangian, 307
Laguerre polynomials, 251
Landau levels, 310, 311
Legendre polynomials, 414, 415
Lippmann–Schwinger equation, 433
Lorentz force, 306
LS-coupling, 284
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M
Magnetic dipole moment, 183, 282
Magnetic dipole transition, 478
Magnetic field, 305
Magnetic momentum, 307
Matrix, 92
Matrix element, 91
Maxwell’s equations, 305, 457
Minimum uncertainty, 130
Mixed state, 444
Molecular rotational energies, 301
Molecule, 297
Momentum eigenstates, 99
Momentum operator, 64, 99
Momentum representation, 99
Momentum transfer, 409
Momentum wave function, 14, 64

N
Neighboring energy levels, 351
Normalization, 7
Nuclear magnetic resonance, 198

O
One-dimensional lattice, 144
Operators, 64, 91, 503
Optical Theorem, 416
Orthogonality, 69
Ortho-Hydrogen, 289
Orthonormality, 69, 93
Outer product, 90

P
Para-Hydrogen, 289
Parity, 35, 101, 384
Partial scattering amplitude, 420
Path integral, 487
Pauli matrices, 187
Pauli principle, 262
Periodic potential, 148
Phase shift, 415
Photons, 464
Physical observables, 63, 71
Plancherel’s theorem, 497
Planck’s law, 481
Plane wave, 8
Polarization vectors, 460
Polar vectors, 169
Position eigenstates, 99
Position representation, 99
Potential step, 38

Potential step (2D), 223
Probability, 3, 493
Probability amplitude, 3, 496
Probability current density, 23
Probability density, 7, 495
Projection operator, 96, 442
Propagator, 483
Pure state, 443

Q
Quanta, 125
Quantization, 24
Quantization of EM fields, 462
Quantum measurement, 441
Quantum tunneling, 45

R
Reduced mass, 259
Reflection coefficient, 41
Relative motion wave function, 259
Resonance, 48, 421
Rotation, 166, 212, 370
Rotational energies, 301
Rotation group, 373
Rotation matrices, 375
Runge-Lenz vector, 390

S
Scalar operator, 169
Scalar potential, 305
Scatteriing amplitude, 408
Scattering, 397
Scattering amplitude, 400
Scattering Green’s function, 406
Scattering in central potentials, 413
Scattering integral equation, 405
Scattering matrix, 436
Schroedinger equation, 12, 19
Schroedinger equation (radial), 234
Schroedinger picture, 108
Schwartz inequality, 89
Selection rules, 476
Separation of variables, 218
Short-range forces, 399
Singlet, 205
Sinusoidal perturbations, 362
Spatial reflection, 384
Spatial translation, 382
Spherical Bessel function, 237
Spherical cavity, 239
Spherical coordinates, 507



516 Index

Spherical harmonics, 177
Spherical Neumann function, 237
Spherical well, 243
Spin, 185
Spin measurement, 189
Spinor, 188
Square barrier, 44
Square well, 47
Standard deviation, 494
Stark effect, 349
State, 85
Stationary states, 25
Stern–Gerlach experiment, 183
Subsystem, 447, 449
Superconductivity, 318
Superposition Principle, 3
Supersymmetry, 316
Symmetrization postulate, 262
Symmetry, 369

T
Tensor product, 256, 508
Theta function, 497
Time-dependent magnetic field, 195
Time-dependent perturbation, 356
Time–energy uncertainty relation, 111
Time-evolution operator, 107
Time-independent perturbation, 345
Time-independent Schroedinger equation,

25
Time-ordered product, 117
Time reflection, 386
Time translation, 381
Transition matrix, 431
Translational invariance, 148
Translation operator, 148
Transmission coefficient, 41
Transverse delta function, 462
Trial wave function, 341

Triplet, 205
Tunneling in WKB, 329
Two-state system, 135

U
Uncertainty, 72
Uncertainty Principle, 5
Unitary operators, 97

V
Van der Waals forces, 350
Variational method, 340
Vector operator, 168
Vector potential, 305
Vector space, 85
Vibrational energies, 300
Virial theorem, 80
Volcano potential, 154
Von Neumann equation, 446

W
Wave function, 7
Wave function (1D radial), 234
Wave function (radial), 234
Wave packet, 13
Wave packet scattering, 401
Wigner–Eckart theorem, 378
Wigner’s theorem, 369
WKB approximation, 326
WKB matching formulae, 328
WKB method, 324
WKB turning points, 327

Z
Zeeman effect, 282
Zero-point energy, 126
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