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Preface

This book is intended for a course on nonrelativistic quantum mechanics for
physics students: it is the English version (due to my friend and colleague
Emilio d’Emilio) of a book based on the lectures I gave to the students of the
University of Pisa. The encouraging and long-lasting acceptance of the Italian
version led d’Emilio to consider the opportunity of the English version. He
eventually convinced me to undertake the task.

In the present version there are a few additions with respect to the original
Italian edition: for instance, a chapter introductive to the theory of collisions
and a section on Bell’s inequalities. It certainly covers more than the program
of a two-term course, thus giving the lecturer some possibility of choice.

Although oversized for a two-term course, the book skips some important
topics: for instance, the WKB approximation and the Stern—Gerlach exper-
iment. The last subject is presented in the form of a problem in the book
written with E. d’Emilio: “Problems in Quantum Mechanics (with solutions)”
(Springer 2011) that is to be considered as a complementary tool for the learn-
ing of the subject: for quantum mechanics (much as for many other subjects,
but maybe a little more) a step-by-step painstaking verification of the under-
standing of the new ideas is advisable and, for this purpose, problem solving
is — in my opinion — a particularly effective mean.

There are many excellent books more complete than the present one and I
do not intend to compete with those: when first writing this book (the Italian
version) the objective I had in mind was to help students in their first approach
to this beautiful, although not easy, subject: I did not underestimate the
difficulties a student may encounter, after two years profitably spent learning
classical physics, in accepting that a particle (a photon, a neutron, an electron
...) does not follow a well definite path but two, or even more, at the same
time (the which-way problem).

For this reason, after a reasonable space dedicated to the issues that de-
termined the crisis of classical physics and the Einstein—Bohr—de Broglie ideas
that were seminal for the birth of quantum mechanics, the principles of quan-
tum mechanics are presented in an inductive way through real experiments
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(as those of neutron interferometry), and their abstract formulation is given a
‘psychological preparation’. After that, the student is taken step by step from
the very birth of quantum mechanics to the more affordable applications of
the theory, to end up with the still alive and more intriguing aspects con-
nected with the paradoxes of quantum mechanics and a mention to the Bell
inequalities and Aspect’s experiments.

The collaboration of Emilio d’Emilio I took advantage of in writing this
book must be acknowledged: not only he translated the Italian version, but
from the very beginning of my task he assisted me day after day with advices
and suggestions, outcome of his everyday experience with students undertak-
ing the study of this subject. It is an understatement to assert that this book
would had never been written without his collaboration.

Neither would had been written if, long time ago, I did not benefit of such
great masters as Franco Bassani, Elio Fabri and Luigi A. Radicati.

Pisa, June 2015
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Chapter 1

The Crisis of Classical Physics

1.1 Atomic Models

Let us shortly summarize the development of our knowledge about the struc-
ture of the atom, taking as starting point the notions that were firmly acquired
by the end of the 19-th century.

e The existence of the atoms was introduced as a hypothesis suitable to
explain two fundamental laws in chemistry: the law of definite proportions
and that of multiple proportions.

e Asaconsequence, to any single chemical element there corresponds a single
type of atom.

e Electrolysis, thermionic effect, photoelectric effect, electric conduction in
gases and in metals, the fact that atoms can absorb and emit radiation,
namely electromagnetic waves, etc. — all these facts hint at the necessity of
admitting that atoms, that per se are neutral, contain both positive and
negative charges.

e The negative charges contained in atoms are corpuscles all equal to one
another called electrons. This is proven by the fact that measurements of
mass and charge performed on the negative charges extracted by different
methods (thermionic effect, photoelectric effect etc.) and from the most
diverse atoms, always provide the same result.

The ratio e/m, (charge/mass of the electron) was measured by J.J. Thomson
(electric and magnetic field spectrometer); later R.A. Millikan measured e.
We report here the numerical values of m, and e:

me=09x10"2"g~10"%g

e=1.6x10""C =4.8 x 107 %esu (electrostatic units)

(by e we shall always denote the absolute value of the electron charge).
We recall here the definition of an energy unit that is extremely significant
in atomic physics, the electronvolt (eV): 1eV equals the kinetic energy an

© Springer International Publishing Switzerland 2016 1
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2 1 The Crisis of Classical Physics

electron gains when it goes from a point to another point, the difference in
electric potential between the two points being 1 volt. As a consequence:

1eV=16x10"2Cx1V=16x10"J=1.6x10"2erg.

Since a gram-atom of any element consists of Na = 6.02 x 10?% atoms (Nj is
Avogadro’s number), one can extract the mass of a single atom. For example,
for hydrogen H, whose atomic weight is A = 1, one obtains:

My=Ni'g=17x10"%g, My = 1836 me .

This teaches us that the contribution of the electrons to the mass of an atom
is negligible. We can also estimate the size of an atom: let us take a solid of
some monatomic substance, e.g. gold, Au. We know that its atomic weight is
A =197, which amounts to say that in 197 g of Au there are No atoms; gold
density is about 19 g/cm3, so a gram-atom occupies 10 cm?® . It follows that the
volume per atom is about 10/Na ~ 17 x 10~2*cm? . Since we are dealing with
a solid substance, the atoms are very close to each other so that this can be
identified, to a good approximation, with the volume of one atom. Therefore
the linear size of an atom is about 1078 cm . This quantity, of common use in
atomic physics, takes its name after A.J. Angstrom:

1A=10"%cm.

Let us summarize: any atom is made out of a positive charge that carries
practically all the mass (10724 + 10723 g): this charge is balanced by a certain
number of electrons, each of them endowed with charge —4.8 x 107'% esu and
mass 0.9 x 10727 g. The linear atomic size is about 1 A .

One has now to establish in which way the electrons and the positive charge
are arranged within the atom — in other words one has to build up a ‘model’.

The first somewhat successful model was proposed by J.J. Thomson in
the beginning of the 20-th century and monopolized the attention of the com-
munity of physicists for about ten years. Thomson suggested that the atom
consisted of a sphere of uniformly distributed positive charge (whose linear
size is about 1A) within which are the electrons — taken as pointlike corpus-
cles — in a such a number as to make the whole atom neutral (the number
of the electrons in an atom is called atomic number and is denoted by 7).
When the system — i.e. the atom — is in equilibrium, all the electrons should
occupy a position where the attractive force toward the center is balanced by
the repulsive forces among them.

Thomson was able to explain several phenomena by means of this model.
For example, the absorption and emission of electromagnetic radiation was
attributed to the motion of the electrons around their equilibrium posi-
tions. Likewise other phenomena were explained, at least qualitatively, by
this model: it had been shown that the conditions for electrostatic equilib-
rium imply that the electrons arrange themselves at the vertices of regular
concentric polygons, each of them with no more than eight vertices — a fact
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that suggested the possibility of explaining the regularity of the periodic table
of the elements.

Let us consider for example the hydrogen atom (Z = 1). The potential
due to the distribution of positive charge is (a stands for the radius of the
sphere within which the charge is distributed):

) 3e 1ler?
r) = —
v 2a 2 a
The equilibrium position of the electron is in the center of the sphere and the
ionization energy of the atom — i.e. the energy that is necessary to take the
electron at infinity with vanishing kinetic energy — is

(1.1)

3 e?

Bi= ¢ (p(00) —00)) =, © . (1.2)
a

Since it is known from experiments that F; = 13.6eV, it follows that a ~

1.6 x 1078 cm . The motion of the electron within the charge distribution is

harmonic with frequency:

1 e? 15 —1
y:% e 0 =12x10"s (1.3)

therefore the atom should emit electromagnetic radiation with a wavelength
A\ =c/v=12400A.

Another atomic model that, as the previous one, provided an explana-
tion for quite a lot of experimental facts, was due to E. Rutherford (indeed
Rutherford was not the first to propose the model that now brings his name).
Rutherford suggested that the positive charge was concentrated in a ‘kernel’
or nucleus whose size is much smaller than that of the atom. The nucleus
should carry a charge equal in magnitude, but opposite in sign, to the sum
of the charges of all the electrons in the atom. It should also carry a mass
‘practically’ equal to the mass of the atom. According to this model, the
electrons ‘orbit’ around the nucleus at an average distance of about 10~% cm.

The atom is therefore looked at as a small planetary system — the sub-
stantial difference being that the forces among electrons are repulsive whereas
those among planets are attractive. In addition the repulsive electrostatic
forces are of the same order of magnitude as the electrostatic attraction by
the nucleus, while in the planetary system the attraction exerted by the Sun
is considerably stronger than the attractions among planets.

Let us again consider the hydrogen atom, but now according to the Ruther-
ford model. Let us assume that the electron goes a circular orbit of radius a.
In this case the (kinetictpotential) energy is

1 e 1e?
E= _mev?>— =-— 1.4
2mv a 2 a (1.4)

whence:
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Fr=—-F=136eV = a=0053A. (1.5)

The revolution frequency of the electron is

1 e?

=5 s = 166 107571 = A=455A.  (1.6)

In the days of Thomson and Rutherford the question was: which of the two
models is ‘right’? It is important to remark that the word ‘right’ has — in
physics — no absolute signification: one can only ask which of the two models
is more suitable to explain the experimental data. This amounts to say that,
if one wants to choose between the two models, “Nature must be questioned”
by means of an experiment whose result can be understood in terms of only
one of the two models.

One of the merits of Rutherford was to understand how crucial was, in this
respect, the role of the experiments that H. Geiger and E. Marsden had been
performing already since 1909. Geiger and Marsden sent o particles produced
by some radioactive substance (o-particles are particles endowed with charge
+2e and mass four times that of the H atom: today we know they are nuclei of
He*, atoms with Z = 2 and A = 4) against a very thin (thickness ~ 10~% cm)
golden foil (Z = 79) and observed how the o particles were scattered off their
original trajectory. Now, on the one hand, it is obvious that the o particles,
being subject to the electrostatic forces due to the presence of charges in the
atoms, should somehow be scattered; on the other hand, what called both
Geiger’s and Rutherford’s attention was the fact that, on the average, one a
particle over 10* was scattered at angles greater than 90°: this fact was in
contrast with Thomson model. Let us give a qualitative explanation of this
fact. In the Thomson model the electric field attains its maximum e/a? at the
boundary of the atom and decreases linearly down to 0 as the distance from
the center decreases down to 0. In the Rutherford model, on the contrary, since
the nuclear charge is considered pointlike (i.e. much smaller than the atomic
size), the electric field goes like 1/72 and there is no limit on the intensity of
the force the a particle may be subject to, provided it passes close enough
to the nucleus. In the experiment the o particles had a somewhat high speed
v =~ 10%cm/s (i.e. kinetic energy Ejy ~ 10% = 107eV = 1 + 10MeV) so that,
in order to produce a remarkable deviation, a remarkable force — i.e. a very
strong electrostatic field — was needed. Let us note, in particular, that for a
particle, shot with sufficient kinetic energy (i.e. exceeding 2 x S(Z e?/a) ~
3.2 x 10%eV = 3.2keV) head-on the center of the atom, there is no deflection
according to the Thomson model; on the contrary, according to the Rutherford
model, the same particle is deflected even backwards.

Of course the analysis of Geiger—-Marsden experiments is rather complex:
for example, one must show that the observed large scattering angles are not
due to multiple collisions — what Rutherford did by introducing, perhaps for
the first time, statistical methods in the interpretation of experimental data.

To summarize, the situation was the following: o particles scattered at
large angles and with a non-negligible frequency were observed; such large
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deviations were necessarily produced in single collisions and only the Ruther-
ford model was able to provide a reasonable explanation for this fact. One
was then entitled to assume the Rutherford model as the ‘right’” one.

1.2 The Problems of Atomic Size and Radiative Collapse

In the very moment Thomson model was abandoned by the scientific com-
munity in favour of Rutherford’s, several difficulties stemmed from the latter
model that classical physics — the physics that was consolidated by the begin-
ning of the 20-th century — could not explain.

The first problem was that relative to the stability of the sizes of atoms:
even by 1910 it was known that all atoms, even relative to different elements,
had sizes of the order of 1078 cm . From a classical point of view one knows that
the size of the orbit of an electron (think of the simplest case of the H atom)
does depend on the energy and cannot, therefore, be determined without
knowing the value of the latter: no reason can be envisaged to maintain that all
the H atoms in different conditions and obtained by the most diverse methods
(e.g by dissociating molecules of Ha, or molecules of H2O, etc.) should have
about the same energy. Furthermore, even if it were so, which energy should
they have? The same argument can be extended to molecules and lattice
spacings in crystals: it should be evident that there must exist a fundamental
quantity with dimensions of a length and of the order of magnitude of some
angstrom.

From a formal point of view, in the equations that rule the motion of
the electrons around the nucleus (we mean Newton’s F = ma in the non-
relativistic approximation) only the electron charge e and mass me enter as
parameters: the solution of the problem may be very complicated, but if —
regardless of the initial conditions — there must be some ‘natural’ size of the
system, this may only depend on e and m.. The point is that no length can be
constructed by only e and m,. If one takes into account relativistic corrections
(but in light atoms the velocity of electrons is about 1/100 of the velocity of
light ¢), then in the equations of motions also ¢ intervenes and it is possible to
construct a quantity with the dimensions of a length, the so called classical
radius of the electron:

e2

~28x 10 B cem

re = ~
Me C2

which simply is too small to be useful to explain a size that is five orders of
magnitude larger.

It should be noted that, from this point of view, Thomson atom has no
such problem, since the atomic size is the same as the size of the positive
charge distribution, and the latter, by assumption, is of the order of 10~8 cm,
practically the same for all atoms. One could even say that Thomson model
was made on purpose to ‘explain’ the stability of atomic sizes.

The second problem was that of radiative collapse: it shows up when one
tries to treat the emission of electromagnetic radiation by the atom in the
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framework of classical electrodynamics. It is known that an accelerated charge
radiates, i.e. it emits electromagnetic waves thus loosing energy. This should
be so also for the electrons of an atom: they should loose energy down to a
complete stop, but — inasmuch as in the Rutherford model the only stable
equilibrium position is that in which all the electrons stick to the nucleus — all
the electrons should fall on the nucleus and the stable size of the atom would
be that of the nucleus, namely about 1073 cm

This would not be a real difficulty, provided the time needed to the atom
to reach this condition is very long (e.g. several billions of years): it would
mean we are observing atoms that did not yet appreciably suffer from the
‘collapse’ and their sizes would be ‘practically’ stable.

Let us then try to estimate the time of collapse in the simplest case of the
H atom. We shall make two assumptions useful to simplify the calculation, by
means of which we only want to obtain an order of magnitude.

1. The initial conditions are such that, in absence of radiation, the electron
would move on a circular (instead of elliptic) orbit.

2. Due to energy loss by radiation, the electron will go a spiral: in order to
perform the calculation we shall approximate at any point the orbit of the
electron with a circle.

The second approximation is legitimate if the energy lost by the electron in a
turn is much less then the energy it possesses. The power W radiated by an
accelerated charge e (in this case an electron) is

2 2 |2_ dFE

W=galdlh=—g

(1.7)

where E is the energy of the atom, and since we approximate the orbit as a
circle:

1 e? dE e? dr
E=— e o 1.
2 7’ At 2r2 dt (18)
Since |@| = e?/mer?, by (1.7) and (1.8) one has:
22 et e? dr
= 1.
3 ¢ mZrt 272 dt ’ (1.9)
whence: g 2
mec 2
dt = 4 o T dr . (1.10)

The time of collapse 7 is obtained by integrating (1.10) from R (initial radius
of the orbit) to ry (nuclear radius); one obtains:

3 2.3 0 T 1 2.3
—4m24c / r2dr:/ at = T:4m24c R (R>ry). (1.11)
R 0

Upon inserting numerical values into (1.11) (with R ~ 1078cm) one finds
7~ 1071%s. The time of collapse of an atom is therefore extremely short and,
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in addition, in this short time interval the atom should radiate an energy of
the order of €2/rg ~ 1 MeV !

A further problem, not independent of the previous one, is that of the
emission of light by atoms and of the spectral features of the emitted light: if
the atoms of a gas are excited in some way (e.g. by means of collisions), each
of them emits radiation on some discrete and precise frequencies (spectral
lines) that are characteristic of that particular atom (or molecule) one is
examining and are independent of the treatment the gas has undergone. The
set of such frequencies constitutes the spectrum of that atom and it is a
feature of the type of atom (hydrogen, helium, ...) one is considering: a kind
of ‘barcode’ of the atom that enables us to reveal its presence in a substance
by means of spectroscopic analysis. The case of helium (He) is emblematic:
in 1868, during an eclipse, P.J.C. Jenssen, while investigating the radiation
emitted by the solar crown, spotted a spectral line that could not be attributed
to any of the known atoms (helium, quite abundant in the Universe, is rather
rare on the Earth). He was so led to conjecture the existence of a new element
on the Sun (Helios, in ancient Greek), whence its name.

In the framework of classical electrodynamics, the emission of waves of a
given frequency requires that the electric dipole moment of the system that
is emitting varies with time according to a harmonic law. Now an atom has
a finite number of degrees of freedom, so its possible ‘normal modes’ (those
motions of the electrons such that the atomic electric dipole moment does vary
with harmonic law) also are in finite number. For light atoms such as hydrogen,
helium, lithium etc. their number is of the order of unity, whereas also the
spectra of these atoms (as well as those of heavier atoms) are very rich, i.e.
they contain a large (possibly infinite) number of spectral lines. Furthermore,
the frequencies of the spectral lines are not in simple numerical ratios among
them, as it is for a fundamental frequency and its harmonics (which, in the
emission of an oscillating dipole, are always there — even if with intensities
much weaker than that of the fundamental line): the spectral lines of any
atom are distributed in such a complicated way that no explanation has been
found within classical electrodynamics.

1.3 Difficulties Related with Heat Capacities

The kinetic theory of gases makes a well defined prediction about the values
of molar heat capacities at constant volume Cy for all gaseous substances.

For example, for monatomic gases (He, Ne, Ar,...) Cy = 3 R, where R =
1.93 cal/mol K is the ideal gas constant, for diatomic gases (Ha, Na, Og,---)
Cy = gR. In addition, for monatomic crystalline solids (as e.g. metals),
Cy = 3 R (~ 6 cal/mol K: Dulong—Petit law).

So, according to classical physics, molar heat capacities do not depend on
the temperature T'. Before examining how the above results are derived from
classical statistical mechanics, let us have a glance at the situation from the
experimental point of view.
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1. For monatomic gases the agreement between the theoretical prediction
;’ R and the experimental situation is very good practically for all tem-
peratures, provided the conditions are such that the gas can be considered
an ideal gas.

2. For diatomic gases, always in the conditions of ideal gases, the agreement
is good for a wide range of temperatures around room temperature, let
us say for T from 10K to 500K. For low temperatures Cy decreases
with decreasing 7" and tends to the value g’ R. For high temperatures Cy
increases with increasing T'. The dependence of Cy on the temperature
is particularly noticeable in the case of Hs, where Cy = gR only for
T ~ 300 K.

3. For metals the experimental situation 1€V o,
is less favourable: only in a few cases 3R
Cy = 3 R at room temperature and, Cu

as a rule, the experimental value is
smaller than the theoretical one. In
Fig. 1.1 the experimental data relative
to lead, copper and diamond (carbon)
are reported. Note that all Cy — 0
for T — 0. Fig. 1.1

Let us now describe how classical physics is able to make a prediction for the

Cy of the several substances discussed above. By definition:

300K T

where U is the internal energy of a gram-molecule (or gram-atom) of the
substance one is examining. It is necessary to know U, which is provided by
statistical mechanics. Let us consider a thermodynamic system, for example
a gas, consisting of N identical subsystems (the molecules of the gas) that
interact weakly with one another, i.e. let us suppose that the gas is almost
ideal. Let f be the number of degrees of freedom of each molecule, ¢, ..., gf
a set of Lagrangian coordinates for the single molecule, pq, ..., py the set of
corresponding canonically conjugate momenta. If the system is in the con-
dition of thermodynamic equilibrium at a given temperature 7', the number
dn(q,p) (better: the most probable number) of molecules whose coordinates
and momenta respectively have values between ¢; and ¢; +dgqi, ..., ¢r and
gs +dgs; p1 and py+dpi, ..., pr and py +dpy is given, according to classical
statistical mechanics, by the Maxwell-Boltzmann distribution:

dn(q,p) = Be PE@P dgdp,  dgdp=dgi --- dgydpy --- dpy  (1.13)

where E(q,p) is the energy of a single molecule whose coordinates and mo-
menta are qi, ..., g and p1, ..., ps (i.e. E(q,p) is the Hamiltonian of the
molecule), B =1/ksT, kg = 1.38 x 10716 erg/K is the Boltzmann constant
and T is the absolute temperature. B is a constant that is determined by
requiring:
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N

d =N B= +—+——. 1.14
Jantan =N = B= oo (114
From (1.13) it immediately follows that
E(q,p)e P Edgdp
U= [ E(q,p)dn(q,p) =N J Bla.p) (1.15)
E
JeBEdgdp

Note that the numerator in (1.15) is, apart from its sign, the derivative of the
denominator with respect to 5. By defining the partition function:

Z(B) (i:ef/e*ﬂEdqdp (1.16)
one can write: )
n

Let us now assume that the energy F of the subsystems be a positive quadratic
form of its arguments:

f
E(g,p) =Y (a:ip] +biq7), ai, b >0 (1.18)

i=1

(in the case of a gas the quadratic terms in the coordinates correspond to the
potential energy of the normal modes of vibration of the molecule about the
equilibrium configuration and the number of b; # 0 is less than f). Then:

N
Na

1
U=Nx IsTxv = Cv=n'R, n (1.19)

2

where v it the total number of nonvanishing a; and b; (f <v < 2f).
This result, that we are now going to demonstrate, is known as

Theorem of Equipartition of Energy: each quadratic term in the Hamil-
tonian of the whole system provides a contribution %ijT to the internal en-
ergy.

If the subsystems are weakly interacting, the Hamiltonian of the whole
system is approximated with the sum of the Hamiltonians of the single sub-
systems. Then, by (1.16) and (1.18), one has:

f
Z(B) = /eXp ( — B> (aip? +bi qf)) dgy -+ dpy . (1.20)

Restricting to the variables ¢; and p; that appear with nonvanishing coeffi-
cients in (1.18), let us perform the change of variables ¢} = /8¢, pi = VB pi
that makes the dependence of the integrand on [ disappear and brings a factor
£7V/2. Thanks to the fact that the integrand is Gaussian with respect to each
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of these variables, the limits of integration can in any event be taken from —oo
to 400 and so are not modified by the change of variables. The integration
over the coordinates that do not appear in (1.18) (e.g. the coordinates of the
center-of-mass of the molecule) gives a constant factor (also: finite, since the
volume available for the system is finite), so in conclusion:

ZB) xBV? = U= Nxﬁ—N kBT:n;RT. (1.21)
The proof can be extended to the case where the a; depend on the ¢’s, as it
happens when some of the ¢’s are not Cartesian coordinates.

In particular, since the kinetic energy of a system always is a quadratic
form of the p’s, one may say that the average kinetic energy associated to
each degree of freedom of the system is ékBT

Applications
Monatomic gas. The atoms are schematized as pointlike (i.e. their internal
structure is ignored); for a mole:

f=v=3,

=%(p12+p22+p32) = U= Z)RT, Cv = Z)R-
Diatomic gas. The molecule is schematized as two
(pointlike) atoms at a fized distance, then f =
(three translational and two rotational degrees of
freedom):

1 1%
Fig. 1.2 E= 2M (PP + PP+ <p92+sin¢59) (1.22)
where M is the total mass of the molecule, § and ¢ are the polar angles of Fig.
1.2 and I is the moment of inertia with respect to an axis passing through the
center of mass and orthogonal to the axis of the molecule (pg + P 2/sin? @ =
L2, the square of the angular momentum). Note that in this case the coefficient
of py does depend on 6. Therefore:

5 5
U= 5 RT, Cy = 9 R.

Solids. Most solids consist of several micro-crystals randomly oriented. In a
crystal the ions, due to their mutual interactions, are arranged in a regular
manner at the vertices of a lattice and, as long as the amplitude of their mo-
tions around their equilibrium positions can be considered sufficiently small,
one can think that they effect harmonic oscillations. According to this picture
(Einstein model), each ion is looked upon as a three-dimensional harmonic
oscillator that oscillates independently of the other ions: the solid is therefore
an ‘ideal gas of harmonic oscillators’. For each atom one has:

1 1
E:%(P12+P22+P32)+2(k1q12+k2q22+k3q32) (123)
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where k; are the elastic constants. If the solid is not monatomic, as e.g. sodium
chloride NaCl, we shall consider both En, and F¢;, which however have the
same form, even if with different values of m and of the k;’s. So for a solid
f = 3n, n being the number of atoms that make up the molecule, and

L{:gnRT, Cy =3nR.

Note that this time also the potential energy contributes to U, as much as
kinetic energy does. For metals n = 1 and Cy = 3 R. For NaCl, n = 2 and
Cy =6 R, etc.

We have already examined the experimental situation. We shall know make
some comments of general character.

1. The dependence of Cy on T (with the exception of monatomic gases) takes
place as if, with the decrease of T, also the number of degrees of freedom,
contributing to the calculation of U, decreased — or, alternatively, as if at
low temperatures a (non-integer!) number of degrees of freedom were ‘frozen’
(i.e. did not contribute to ). For example, as for a diatomic gas Cy — g R
for T — 0, it is as if one had a gradual freezing of the rotational degrees
of freedom of the molecule. It should be clear that speaking, in this context,
about the freezing of degrees of freedom only is a figurative way to visualize the
experimental situation — in no way is it an attempt to explain the mechanism
responsible for the dependence of Cy on T'.

2. We have seen that for certain temperatures there is a good agreement
between theoretical values and experimental results. However, also in this
case, we have very good reasons to be astonished about this agreement. Indeed,
think about a diatomic gas: the molecule has been schematized as two atoms
at a fized distance, i.e. rigidly connected.

Now in Nature such rigid connections do not V(r)

exist, it is more realistic to state that the two
atoms interact via a potential of the type rep-
resented in Fig. 1.3 endowed with a minimum
when the atoms are at a certain distance d — of
the order of a few angstrom — from each other. d T
The molecule can effect oscillations about this \/
equilibrium position. Such oscillations, as long Fig. 1.3

as one can consider them of small amplitude, will

be harmonic. Therefore it seems more appropriate to schematize the diatomic
molecule as a pair of atoms held together by a spring: the rigid connection
of the previous schematization is now replaced by a very ‘hard’ spring. But
one is then confronted with a difficulty: no matter how ‘hard’ the spring is
(provided it is not rigorously rigid), the Hamiltonian of the molecule is of the
type:

1 1 1
E=—"—7p24+_— 52 k(r —d)? 1.24
oy PE+ gy PR+ k(= d) (1.24)
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where pj and p> are the momenta of the two atoms, r is the relative distance
and k is the elastic constant of the spring between the two atoms. Note that
now f = 6 and that there is one more quadratic term — the potential — so
that, for any value of k (i.e. for any hardness of the spring), one should have
U=T7RT and Cy =] R.

At this point the problem is the following: the model with the spring certainly
is more plausible than the previous schematization; so how is it that for a large
interval of temperatures the experimental value of Cy is g R? Indeed we know
also that, for large T', Cy > g R, so it seems that the vibrational degree of
freedom is frozen up to T" ~ 500 K and that, when T is further increased, it
starts unfreezing.

Another difficulty of the type of the previous one is the following: we have
schematized the atoms as pointlike — which indeed is not the case. For this
reason, for example, in the discussion of the diatomic gas, we should have
kept into account also the degree of freedom of rotation around the axis of
the molecule, the axis that joins the two atoms. This degree of freedom should
bring a further contribution éR to the molar heat capacity, about which there
is no trace in Nature. More to it: in metals, in addition to the ions that make
up the crystal lattice, there are some completely free electrons (conduction
electrons) in a number that is quite comparable to that of ions. Each electron
should contribute 3 kg to the heat capacity, so for a gram-atom of a metal they
should add a g R to the Cy: to sum up, one should have Cy ~ 3 R—i—g R = g R,
whereas we have seen that, most times, not even 3 R is reached!

3. The core of the previous discussion is the following: according to classical
physics, the calculation of Cy is based upon the counting of the number of
degrees of freedom. Now the concept of degree of freedom is somewhat loose
— it rather is a mathematical abstraction, much as that of point mass is. So, if
we ask ourselves how many degrees of freedom a lead pellet has got, we may
legitimately answer three — if we are interested in a ballistic problem. But,
if we are instead interested in the motion of the pellet on an inclined plane,
then the number of degrees of freedom is six. In the case we would like to
compute its heat capacity, then the number becomes ~ 10%4! And one could
go even further, by counting the number of electrons in the Pb atom, how
many nucleons in its nucleus, how many quarks in each nucleon, and so on.
The classical theory of heat capacities is therefore in a very unsatisfactory
situation: it hinges upon a concept that, from the point of view of physics, is
not well defined and, nonetheless, it has the pretention to predict numbers to
be compared with experimental data!

1.4 Photoelectric Effect

Among the several phenomena that do not find an explanation in the frame-
work of classical physics, let us finally consider the photoelectric effect. It
will be the starting point, thanks to Einstein’s ideas, to come in touch with
the profound modifications one has to effect on classical physics in order to
overcome the difficulties one was confronted with in those days.
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First of all, let use examine the phenomenology of photoelectric effect: if
a beam of light of short wavelength is let to strike a surface (e.g. that of a
metal), the expulsion of electrons is observed. From a quantitative standpoint,
the experiments show that the following three laws hold.

1. For every substance there exists a minimum frequency vy (photoelectric
threshold) such that the effect is observed only with radiation whose fre-
quency v is greater than vy.

2. The maximum kinetic energy of the extracted electrons is independent
of the intensity of the incident radiation, but depends linearly on the

frequency v:
EX* =h(v—w), h>0. (1.25)

3. For a fixed frequency v the rate of extraction of electrons (number of
electrons per unit time) is proportional to the intensity of the incident
radiation.

The device by which the above laws can be verified light
is sketched in Fig. 1.4. It represents a photocell;

light of a given frequency v is sent on the photo-

cathode, that is polarized positively with respect to G
the anode. Therefore the extracted electrons find
a counteracting field that slows them down: only
those endowed with kinetic energy Fx > exV (V
is the difference of potential between cathode and
anode) will pass. The potentiometer allows one to
vary V until the galvanometer G stops indicating a flow of current. In this way
one is certain that all the photoelectrons have a kinetic energy Ey < exV,
so the maximum kinetic energy exactly is ex V.

Upon changing the frequency of the light and re- Bpax

peating the measurement one obtains the linear de- ~
pendence expressed by (1.25) (see Fig. 1.5). s

In order to verify the third law, the intensity of /
light is varied and the intensity of the current flow- ~
ing through G is measured: the latter is proportional o
to the number of electrons extracted from the pho- Fig. 1.5
tocathode.

Let us now see why classical physics is unable to explain the laws of pho-
toelectric effect. Let us consider the case of a metal. We already know that
in a metal there are ions at almost fixed positions: in this lattice conduction
electrons move almost freely. It is known from thermionic effect that a cer-
tain energy (work: function) W of the order of some electronvolt must be
provided to an electron, in order that it can be removed from the metal:

Fig. 1.4

Sy

Wna =2.7eV, Wg,=32eV, Wcy=34eV, Wp,=6eV.

In the photoelectric effect this energy is evidently provided by the incident
radiation. What one expects is that the energy absorbed by the electrons is,
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for fixed frequency, proportional to the intensity of the incident radiation so
that, for any fixed frequency and provided the intensity is sufficiently high,
the emission of electrons should show up. In addition, the kinetic energy of the
photoelectrons, having to equal the absorbed energy less the work function W,
should be a linear function of the intensity. In this way neither the existence
of a threshold nor the second law are explained.

Let us consider another aspect of the problem. Imagine to put the photocell
1m away from a 2watt bulb. Let us make the (very optimistic) assumption
that all the light incident on the photocathode is absorbed by the conduction
electrons close to the surface of the photocell; since there is roughly one con-
duction electron per atom and each atom occupies a volume about 10724 cm3,
each electron can absorb, at most, all the energy arriving on an area about
10~ cm?. As the bulb radiates uniformly in all directions, the energy ab-
sorbed by one electron in a second is

10—16
- =16x10""Mergs ' =10"%eVs ",  (1.26)

_ 7
E_(2X10)X47r><10

As we know that the work function W of an electron is of the order of some
electronvolt, the result is that one should wait about 10? seconds before the
photoelectric effect is detected (meanwhile the electrons would loose the ac-
quired energy in several collisions!). From the experimental point of view,
photoelectric effect practically is instantaneous (1078 + 1079).

In conclusion, classical physics, besides being unable to explain photoelec-
tric effect, leads to conclusions that are in blatant contradiction with experi-
ment.



Chapter 2

From Einstein to de Broglie

2.1 Photons

According to classical physics, the energy associated with a monochromatic
electromagnetic wave is proportional to its intensity; the intensity can have
any value above zero, and can therefore be varied with continuity. Furthermore
this energy is distributed in space in a continuous way.

In order to explain the laws of photoelectric effect, in 1905 Einstein formu-
lated an hypothesis in open contradiction with what we have reported above:
an electromagnetic wave of frequency v carries energy in ‘packets’ of energy
FE proportional to the frequency:

E=hv. (2.1)

In other words, the energy associated to such a wave can only take the val-
ues 0, hv, 2hv, -+, nhv, ---. That is to say that the energy of a wave of
frequency v is “quantized”. These energy packets, or “quanta’, or photons,
are indivisible entities: the ‘half photon’ does not exist. For what regards
the spatial and temporal distributions of such photons, Einstein makes no
assumptions about their regularity: photons are randomly distributed.

The constant h had been introduced a few years before (1900) by M.
Planck, whose name it brings, to interpret the spectrum of the radiation emit-
ted by a black body. From Einstein relation (2.1) it appears that & has the
dimensions of an action, namely an energy times a time, or equivalently of an
angular momentum, or also of a linear momentum times a length: in general,
of a coordinate times its canonically conjugate momentum. The numerical
value of h taken from experiments is:

h=6.6x10"%"ergs .

How much is the energy of a photon? Obviously this depends on the radiation
one considers, namely on v. Just to have an idea, let us consider radiation
from the visible spectrum, i.e. with its wavelength satisfying

4000 A < X < 7000 A (visible spectrum).
© Springer International Publishing Switzerland 2016 15
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Let us take for example A = 4000 A . Then (1eV = 1.6 x 10~ 2 erg):

c (6.6 x107%7) x (3 x 1019
E=hv=h_ = V ~ 3eV
YT (4 x 1075 x (1.6 x 10-12) ¢V T 7€

that is of the same order of the energies occurring in the photoelectric effect,
e.g. the work function W.

Let us now see how the laws of photoelectric effect are explained by means
of the Einstein hypothesis. According to the classical mechanism of interaction
among charges and the electromagnetic field, the radiation can transfer an
arbitrarily small quantity of energy to the electrons. Now, instead, according
to the quantum hypothesis, an electron is allowed either not to absorb energy
at all or to absorb an entire quantum (the probability it absorbs two or more
quanta, we shall see, is extremely small, so we will neglect this possibility).
Then it is clear that, if hv < W, no electron can jump out of the metal and
that the minimum frequency for which the effect is observed is vy = W/h.
If v > vy, the electrons leave the metal with a maximum kinetic energy
Ey = h(v — 1) (maximum because, in leaving the metal, the electrons may
loose energy by collisions). So, incidentally, h can be determined by measuring
the slope of the straight line in Fig. 1.5. Furthermore, for a fixed frequency,
the intensity of the radiation is proportional to the number of photons that
arrive on the metal per unit time and, therefore, to the number of extracted
electrons.

Let us reconsider, in the light of this interpretation, the example of the
bulb discussed at the end of Sect. 1.4. If we keep on accepting the somewhat
optimistic assumptions that have led to (1.26) and if we suppose that the
frequency of the radiation emitted by the bulb corresponds to photons with
energy of the order of some eV, then (1.26) must be reinterpreted by saying
that in a second there arrives, on the average, one photon every 10% atoms
and, as a consequence, every second only one electron over a hundred receives
the energy necessary to jump out of the metal (indeed much less than this,
for part of the energy is taken by the lattice).

Thanks mainly to the assumptions made to arrive at (1.26), this discussion
is somewhat superficial. What one wants to emphasize is the following: accord-
ing to classical physics, owing to the fact that the energy of a monochromatic
wave is uniformly distributed, the electrons share ‘democratically’ the incom-
ing energy and each of them takes too little of it to be able to jump out of the
metal; according to the quantum hypothesis, instead, some (a few) electrons
take the incoming energy and most of them take nothing at all. These few
electrons give rise to the photoelectric effect.

The example of the bulb also shows how unlikely it is that an electron may
absorb two ore more quanta of energy: the arrival of another photon should
take place in the time interval one quantum is absorbed (107%s), but from
(1.26) it follows that in 10~®s there arrives one photon every 10'° atoms!

There are many phenomena that depend on the photoelectric effect and
that, therefore, exhibit a threshold. One is in the old — i.e. pre-digital — pro-
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cess of taking a photograph, particularly the formation of the latent image.
The photographic plate is covered with a layer of AgBr crystals: the primary
effect that (according to a mechanism we shall not describe) gives rise to the
formation of the latent image exactly is the photoelectric effect triggered by
the incident light. In this way one understands how it is that either infrared
or red light does not impress the plate, whereas this happens with a light of
lesser wavelength, even if of weak intensity.

It may be helpful to have at one’s disposal a mnemonic rule to obtain
quickly the photon energy associated to a given radiation and viceversa. If,
as customary in atomic physics, we characterize radiation by means of its
wavelength A\ expressed in angstrom and express energy in electronvolt, then
it suffices to recall that hc = 12400eV x A, so that from E = hc/\ one

obtains:
12400

AL

Photoelectric effect does not prove that an electromagnetic wave carries energy
in quanta, it rather proves that its energy is absorbed in quanta. It is natural to
wonder what happens with emission, namely whether electromagnetic energy
is emitted either in quanta or with continuity.

EleV] (photons) . (2.2)

Let us consider the production of X-rays (A ~ e N
|

1A): electrons emitted by means of thermionic —_—= 3

effect are accelerated by a difference of poten- e

tial about 10V (Fig. 2.1) and then are let
to hit a metal plate. Penetrating the metal, _ |+
the electrons are suddenly decelerated and ra- I }—l |
diate. The spectrum of the emitted radiation —
bremsstrahlung (deceleration radiation) spec-
trum — is a continuous spectrum on which some spectral lines are superposed,
their position depending on the metal the plate is made of. The interesting
thing is that, no matter what metal is used, the continuous spectrum has an
upper limit at a certain frequency vg, that depends only on the accelerating
potential V| indeed it is proportional to it. The interpretation of this fact is
straightforward, if one admits that also emission of electromagnetic radiation
takes place by quanta: each electron looses the kinetic energy EFx < exV
by emitting one or more photons, whose frequencies are therefore such that
hv < exV, namely v < exV/h ie. limited from above. The frequency
vo = exV/h is emitted when an electron looses all its energy by emitting only
one photon. From the classical point of view, the spectrum should extend up
to infinity, because the decelerated motion of the electron is not periodic.

Fig. 2.1

2.2 Compton Effect

It is known that, in classical physics, an electromagnetic wave carries linear
momentum, according to the relationship p = E/c. Since we now know that
energy is carried by photons, it is natural to wonder whether these photons
bring a linear momentum p = E/c = hv/c. This conclusion can be reached
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by analyzing the Compton effect: if a beam of “hard” X-rays (wavelength
Mo < 1A) is shot against whatever substance, one observes that X-rays scat-
tered at an angle 6 with respect to the direction of the incident radiation are
endowed with a wavelength A(6) slightly higher than Ag. The variation of the
wavelength is independent of the particular substance off which X-rays are
scattered and depends on 6 according to:

AB) — Ao =0.024 (1 — cosf) A . (2.3)

Compton effect can be easily explained by attributing it to the interaction
between radiation and electrons and by interpreting this interaction as the
collision process between a photon, of energy hv and momentum hv/c, and
a free electron (the binding energy of electrons, at least the outer ones, is of
the order of some eV, whereas that of photons is ~ 10°eV). In the photon-
electron collision total linear momentum and total energy are conserved, so it
is clear that the larger the angle # by which the photon is scattered, the higher
the momentum and the energy transferred to the electron, and the larger the
wavelength A(f) of the photon itself. Indeed, let ko be the momentum of
the incident photon and k and p respectively those of the photon and the
electron after the collision (the initial momentum of the electron ~ /2m F
is neglected, since typically it is two orders of magnitude smaller than that of
the photon), one has:

{cko—l—mec2 = ck+/m2c*+ c?p?

ko—k=p = p>=k+k?®—2kok cost

(ko —k+mec)> =m2c? +p* =mZc + ki + k% — 2ko k cos 6 =

1 1 1
mec (ko — k) = kok (1 — cosf) = k—kozmec(l—cm&)
and, if k= hwv/c= h/A, one finally obtains:
A0) — X = (1 —cos®) . (2.4)

Me C

The quantity Ac = h/mec (that has the dimension of a length) is called the
electron Compton wavelength and its numerical value is about 0.024 A, in
agreement with (2.3). We can then conclude that photons behave as corpus-
cles of energy hr and momentum hv/c. According to special relativity, the
relationship p = E/c is typical of massless particles: photons are therefore
corpuscles of vanishing mass.

2.3 General Features of Spectra. Bohr Hypotheses

Any substance can absorb and emit only electromagnetic radiations of well
defined frequencies, typical of the substance itself. The frequencies a substance
can absorb give rise to its absorption spectrum, those it can emit give rise
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to its emission spectrum. We shall mainly be concerned with the spectra
of gaseous substances and vapours.
A device suitable to obtain absorption hght

and emission spectra of a substance is —— Gas
schematized in Fig. 2.2: white light hits a ? Verau
cell containing the gas or vapour one is in-

terested in; a spectrograph, schematized l

as the prism Py, breaks the light trans-

mitted by the gas up into its monochro- >
matic components before they impress ? /
the photographic plate L;: a uniform il-

lumination (due to the continuous spec-
trum transmitted by the gas) will appear
on Ly, with the exception of some dark lines in correspondence with the fre-
quencies absorbed by the gas. These dark lines make up the absorption spec-
trum. In order to obtain the emission spectrum it is necessary to provide
energy to the gas: this energy will be re-emitted as electromagnetic radiation.
This can be done in several ways, for example either by heating the gas by a
flame, or provoking an electric (arc) discharge, or even sending light on the
substance, as in Fig. 2.2.

For the sake of simplicity, we shall refer to the last method of excitation
of the gas or vapour. If one wants to analyze the emission spectrum of the
substance, one will observe the light emitted in a direction orthogonal to the
direction of the incident light: in this way the latter will not disturb the obser-
vation. The prism P5 separates the monochromatic components that impress
the plate Ly. On Ly, on a dark background, there will appear some bright
lines in correspondence with the frequencies emitted by the gas. These lines
make up the emission spectrum. The first thing one notes is that the emission
and absorption spectra of a substance are different from each other: the emis-
sion spectrum is richer that the absorption one, with all the absorption lines
appearing in the emission spectrum. If, in addition, the incident radiation has
a spectrum consisting of frequencies v higher than a given v, in the emis-
sion spectrum of the gas there appear also lines corresponding to frequencies
smaller than v.

In order to explain emission and absorption spectra, in 1913 N. Bohr put
forward some hypotheses that, as Einstein hypothesis, are in contrast with
classical physics which, by the way, is unable to explain spectra.

Fig. 2.2

1-st Bohr Hypothesis: For any atom only a discrete set of energies, starting
from a minimum value on, Eg < B4 < --- < E,, < ---, are allowed.

These energies are called energy levels of the atom. Note that, from the
classical point of view, the allowed energies for a system always make up a
continuous set.

The first hypothesis concerns the bound states of an atom, namely those
states that correspond to orbits limited in space (think e.g. of ellipses or
circles in the hydrogen atom). For unbounded — or ionization — states, all the
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classically possible energies are allowed. The state of a system corresponding
to the minimum allowed energy is called the ground-state of the system.

2-nd Bohr Hypothesis: When the system is in one of the above mentioned
energy states, it does not radiate; either emission or absorption of electromag-
netic radiation only takes place in the transition from a state with energy E,
to a state with energy E,, and the frequency of the radiation is:

_ |En = En|

nm 2.
v . (25)

If the transition is from a state with higher energy to a state with lower energy,
there occurs emission; in the contrary case one has absorption.

In the next section we will enunciate the third Bohr hypothesis that allows
one to calculate the allowed energies Ey < Fy < --- < E, < --- in simple
cases. Let us now examine the consequences of the first two Bohr hypotheses.
This discussion mainly concerns the hydrogen atom.

1. It s clear that spectra are made out of lines whose frequencies are given
by (2.5) with all possible E,, and E,,. Any substance may also exhibit a
continuous spectrum that corresponds to transitions from a bound state
to an ionization state (the latter are also called continuum states since
for them the hypothesis of discrete energies does not apply).

2. Bohr hypotheses are compatible with Einstein hypothesis. Rather it is
probably more correct to state that Bohr was led to the formulation of
his hypotheses as a consequence of Einstein’s. Indeed, if an atom radiates
quanta, when it either emits or absorbs a photon of frequency v, its energy
varies by hv. As it was known that an atom either emits or absorbs only
certain frequencies, it looks reasonable to assume that only certain ener-
gies are allowed for the atom, i.e. those for which the observed frequencies
are given by (2.5).

3. One can understand why emission spectra are richer than absorption spec-
tra. Indeed (we shall come back to this point) at room temperature the
great majority of the atoms are in their ground state. As a consequence,
only the lines with frequencies vy, = (F,, — Ep)/h are observed in absorp-
tion: the latter correspond to the transitions from the lowest energy level
Ey to a generic level E,,. After the atom has been excited to the level F,,,
in a very short time (1077 + 107?s) it re-emits radiation effecting one or
more transitions to lower energy levels until the ground state is reached.
In this way one observes in emission the entire spectrum given by (2.5).

4. Tt follows from the above discussion that all the frequencies of the emis-
sion spectrum are obtained by making all the possible differences of the
frequencies of the absorption spectrum:

En - EO Em - EO |En - m|
[von — vom| = |—F— — =

h h h = Vnm

This fact was already known as Ritz combination principle.
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5. Bohr explanation of Ritz combination principle is consequence also of
the fact that the energies F, can be derived from the knowledge of
the absorption spectrum. Indeed, Planck constant i being known, the
absorption spectrum enables one to determine FE; — Fy, Fs — Ey, ...,
E, — Ey - E,, — Ey i.e. all the energies up to the constant Ey. If we
set to zero the energy corresponding to the ionization threshold, namely
to the limiting value F,, one obtains Ey = —h v, where vy, is the lim-
iting frequency of the spectrum of lines: for higher frequencies one has a
continuous spectrum, corresponding to the ionization of the atom.

6. The above discussion suggests an experimental verification of Bohr hy-
pothesis. Indeed |Fy|, measured by the absorption spectrum, is the ion-
ization energy FEip of the atom. But the atom can be ionized by collisions
with electrons or other atoms, instead of absorbtion of light. One can then
measure the energy necessary to ionize an atom by collisions and compare
the result with the value measured (or predicted) by spectroscopic way.

7. Spectroscopists had succeeded in grouping the lines of a spectrum in
series, in such a way that the frequencies, or better the wavenumbers
1/A = v/c corresponding to the lines of a spectrum could be expressed as
differences between spectroscopic terms: 1/A =v/c =T(n) —T(m)
(n, m integers > 0), and each series is identified by the value of n. So, for
example, the first series, that is the absorption series, corresponds to the
wavenumbers:

1/Am =T(0) = T(m), m>1.

Now, according to Bohr, the spectroscopic terms T'(n) are nothing but
the energy levels divided by he: T(n) = —E, /(hc¢) and each series cor-
responds to the transitions that (in emission) have in common the arrival
level; the different series are identified by the arrival energy level.

2.4 Hydrogen Energy Levels According to Bohr

The problem that has been left open is that of determining the energy levels
of a system. In this section we will limit our discussion to the case of hydrogen
and hydrogen-like atoms. Hydrogen-like atoms are atoms ionized one or more
times in such a way that only one electron is left, for example He™, LiT™,
Be™ ™t etc. In all such cases one deals with systems with only one electron in
the field of a nucleus of charge Ze, where Z is the atomic number.

In general the orbits are ellipses (bound states!), and it is known from
classical physics that energy only depends on the major axis of the ellipse. So,
stating that only some energies are allowed is the same as saying that only
certain orbits are allowed: the problem is to calculate which ones. Let us limit
ourselves, as Bohr did, to circular orbits.

The relationship between the energy and the radius of the orbit is (see
(1.4) and (1.8))

1 1 Ze?
E= 9 V= 5 . (2.6)

r
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In order to determine the allowed energies, i.e. radii, Bohr put forward the
following hypothesis:

3-rd Bohr Hypothesis: The allowed orbits are those for which the angular
momentum Is an integer multiple of h/2m.

This rule can be enunciated in a more general (Bohr-Sommerfeld) form in
the following way:

/ pdg=nh, n=1,2 - (2.7)
orbit

where ¢ and p are canonically conjugate variables and the integral is to be
taken along one orbit. In any event, for circular orbits, the third Bohr hypoth-
esis requires that:

HeVT =nh (2.8)
where pe = me M/(me + M) is the reduced mass of the electron-nucleus

two-body system. As it is customary in quantum mechanics, we have set:

ho_ 1.05 x 10~ " ergs .

hzﬁ

Squaring (2.8) and recalling that Eyx = }pucv? = —1 V, one obtains

O ) Z e?
V= = 2.9
2'u v 2t T2 27 (2.9)
whence:
n2h? n? K2
Ty = m =, (me/ o) as ag = e (2.10)

where ap is the Bohr radius. Equation (2.10) says which are the allowed
orbits, according to Bohr. By inserting (2.10) into (2.6) one finally obtains
the allowed energies:

1 Z%e* (me/ pie)

FE, = =1,2, . 2.11
2 n?ag " ( )
Putting:
e’ (me/ pte) He et
R= = 2.12
2ag hc 4 h3 ¢ ( )
one can write: R
c
B, =-7° poal (2.13)

The reason why we have written (2.11) in the form (2.13) is in the fact
that spectroscopists had already experimentally determined the spectroscopic
terms of hydrogen and had found T'(n) = Ry/n? with Ry = 109677.6 cm™!
(Rydberg constant for hydrogen). The fact that Ry was known with seven
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significant digits is due to the high precision by which spectroscopic exper-
iments were made even in that time. Presently Rydberg constant is known
with a precision higher than one part over 10'!: if R, stands for Rydberg
constant with M = oo (ue = me), one has Ro, = 109737.31568508(65) cm !
(2014 CODATA recommended values”).

It is worth calculating the value of Ry predicted by (2.12) to realize the
excellent agreement with the experimental value: we leave this exercise to the
reader. We can conclude that the spectroscopic terms deduced from Bohr the-
ory are in very good agreement with the corresponding experimental values.

Let us now examine in detail the consequences of the obtained results. Let
us start with
Hydrogen: Z =1

If the difference between reduced mass and electron mass is neglected
(me/Mg ~ 0.5 x 1073), one has:

2 o 0s3A E L (2.14)

rn =n”ag, ag = =0. , - )

" B B me e2 " 2 n?ag
where ap is the radius of the first al-

. . EleV] .

lowed orbit for the atom in its ground X continuum
state. The value of ag is satisfactory be- _, sIT—=—o==x= """

Ce . ) Wy —
cause it is in agreement with the value —1.5 Pasch n=3

. . aschen

expected for atomic size. Note that now, a4 I

having at one’s disposal the Planck con- Balmer
stant, it is possible to form a length with
the right order of magnitude. Further-
more, the atom in its first orbit cannot
collapse, exactly because it is in the state
of minimum energy.

The energy levels given by (2.14) are
negative and decrease, in absolute value,
towards 0: the position of these level is —13.6 rp— n=1
illustrated in Fig. 2.3 (in scale). The en-
ergy Fi of the ground state is, apart from
its sign, the ionization energy of the atom (since the minimum value of the
quantum number n is in the present case 1, we prefer to call F; instead of
Ey the energy of the ground state). One has E; = —e?/2ag = —13.6eV. The
energies of the different levels, expressed in eV, are therefore:

Fig. 2.3

13.6
E,[eV] = - (2.15)
So Fy =—-34, F3=—-15,---. !

How does the hydrogen spectrum look like? |
The first series (Lyman series) is that consisting 7 | ]
of all transitions to level n = 1 (Fig. 2.3): the lines "1 V2 V3 Veo
get denser and denser in the neighborhood of a Fig. 2.4
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limiting line (Fig. 2.4). The first line corresponds to a transition with AE =
E;—FE; =10.2eV and has therefore a wavelength A; = 12400/10.2 ~ 1200 A;
the limiting line corresponds to AE = 13.6eV and Ay, =~ 900 A: both )\ and
Ao are in the ultraviolet, and so is all the series. Since this is the series that is
observed in absorption, one understands why hydrogen is transparent: it does
not absorb in the visible part of the electromagnetic spectrum.

The second series (Balmer series) corresponds to all transitions from
levels with n > 2 to the first excited level (n = 2) (Fig. 2.3). The structure
of this series still is of the type reported in Fig. 2.4, but in comparison with
Lyman series it is shifted towards lower frequencies. Indeed:

12400 12400
A = o = 6500 A, Moo = =1 ~ 3700 A

namely A; is in the orange and Ay is in the near ultraviolet so that almost
all the series is in the visible. As for the third series (Paschen series), it all
lies in the infrared.

Let us now consider the case of

Hydrogen-like atoms: Z > 1
The most remarkable effects are

(i) the size of the orbits decreases with increasing Z, due to the 1/Z factor in
(2.10);
(ii) the energies increase, in absolute value, like Z2.

So, for example, the ionization energy of Het (also called second-ionization
energy of He) is 4 x 13.6 = 54eV. As a consequence also all the energetic
jumps increase by a factor Z? with respect to H and all the spectral lines
are shifted toward higher frequencies. Note that the factor Z2 has a twofold
origin: a factor Z in the potential energy — and, as a consequence of (2.6), in
the energy — and a factor Z~! in the allowed radii.

Another, less conspicuous but important, effect is due to the fact that the
nuclei of hydrogen-like atoms have different masses: this entails differences,
although small, in the reduced masses of the systems upon which the Rydberg
constant (2.12) and, in the very end, the energy levels (2.13) depend.

As me < M, one can write pe = me/(1 + me/M) =~ me(1l — me/M).
The term me/M, that for hydrogen is about 1/2000, for deuterium is half
such value (deuterium D is an isotope of hydrogen: the nucleus of deuterium
consists of a proton and a neutron), for He is four times smaller.

Thus we see that the Rydberg constant slightly varies for the different
atoms we have considered:

Ry = 109677cm™!
Rp = 109707cm™!
Ryt = 109722cm™!

Rpj++ = 109728 cm™!
R, = 109737cm!
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with differences smaller than 0.5% with respect to R, (the limiting case of
nucleus with infinite mass), as had to be expected. No matter how small, the
variation of the Rydberg constant is well detectable, given the precision of
spectroscopic measurements.

However the most important fact is that the dependence of R — and there-
fore of the spectrum — on the nuclear mass allows one to distinguish the
different isotopes of a single element. As well known, one calls ¢sotopes those
elements that have the same atomic number Z but different atomic weight
A, due to the different number of neutrons in the nucleus, as is the case of
hydrogen and deuterium.

So, for example, if one analyzes a mixture of
hydrogen H (Z = 1, A = 1) and deuterium D
(Z=1,A=2),0or He? and He* (Z =2, A= 3,4
respectively), one finds a spectrum of doubled
lines, as in Fig. 2.5. In the case of H and D the res-
olution Av/v = AM/A necessary to distinguish Fig. 2.5
the lines of the doublets is Au/p ~ 2.8 x 107%. The relative intensity of the
spectral lines enables one to find the composition of the mixture (for example,
the percentage of heavy water DO in a sample of water).

Such effect is known as isotopic effect and, therefore, allows one to es-
tablish either the presence or the absence of an isotope in a given substance.

The fact that the energy levels of even order in the spectrum of He™ coin-
cide, up to corrections of reduced mass, with the levels of H had induced the
interpretation of the spectrum of some stellar radiations as due to hydrogen:
only thanks to Bohr theory it was correctly attributed to He™.

In conclusion Bohr theory had explained several questions left unsolved by
the Rutherford atomic model: stability of atomic sizes, emission of line spectra,
absence of radiative collapse. All this made it possible that the theory had
been very favourably welcome since, by postulating something new, provided
the explanation of many facts.

We shall see in the forthcoming sections that the solution of other problems
and further experimental verifications reinforce even more the validity of this
theory, even if (not only) from a conceptual point of view there still remain
many open problems.

2.5 Energy Levels for an Oscillator and for a Particle in a Segment

After the successful application of the Bohr quantization condition to the
hydrogen atom, we feel encouraged to apply it to other systems and to explore
its consequences. Both for its simplicity and, mainly, for the interest it has in
almost all the fields of physics, we shall now apply the quantization condition
to the harmonic oscillator. In order to emphasize the importance this system
has in physics, we recall that we have already considered harmonic oscillators
with regard to the heat capacities of both solids and diatomic gases.

In order to determine the energy levels of a harmonic oscillator, we shall use
the Bohr-Sommerfeld condition (2.7). Recalling that p = m¢ and dg = ¢dt,
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(2.7) becomes:
/ mq¢?dt =nh (2.16)
period

the integral being taken over a period 7 = 27/w. It is known (and the veri-
fication is straightforward) that for the harmonic oscillator the average (over
one period) of the kinetic energy equals a half of the total energy E (virial
theorem), so from (2.16) one obtains:

2
/ mEdt="F =
period w

E,=nhw, n>0 (harmonic oscillator) (2.17)

so the energy levels of a harmonic oscillator are equidistant and their distance
is hw.

One can ask why in this case n may also be 0, whereas for the hydrogen
atom this is not the case: indeed, on this point Bohr theory provides no answer.
In this particular case starting from either n = 0 or n = 1 makes no difference
because, the energy levels being equidistant, it is the same as shifting them
all by the additive constant hw (it is however the case to anticipate that the
result provided by quantum mechanics will be E,, = hw (n + ;), n > 0).

If the oscillator carries an electric charge, it can either emit or absorb radi-
ation. Due to the second Bohr hypothesis, the frequency of the either emitted
or absorbed radiation equals the frequency vy of the oscillator, provided the
transition takes place between two adjacent energy levels; otherwise it will
be an integer multiple of v, namely it will correspond to a higher harmonic.
Also according to classical physics an oscillator emits all the frequencies that
are integer multiples of the fundamental frequency, however — when the dipole
approximation holds (velocity of the oscillator v(t) < ¢) — higher harmonics
are much less intense. One of the flaws of Bohr theory just is its incapability
at predicting the intensity of the radiation emitted in the various transitions.

Let us examine one more example of application of the quantization rule
(2.7).

Consider a particle constrained to move in V(z)

a segment of length a (in three dimensions
this would be the problem of a particle con- | |
strained within a box). From a physical point | |
of view such a problem is encountered when _a)z | a‘/2
considering the motion of a particle subject
to a potential V'(z) that can be approximated
by a constant in a region of size a and rapidly grows to another constant of
higher value out of the considered region: in such cases the potential is schema-
tized as a potential well, as shown in Fig. 2.6. There are several examples:
the molecules of a (perfect) gas within a box; a free electron within a metal;
a free electron within a crystal cell (size: a few angstrom) that makes up an
impurity in a given material (colour centers); ... .
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In this case (2.7) gives

h

nh:j{pdq:2ap = p=n
2a

and, since E = p?/2m, one obtains the following energy levels:

h2n?

B, = ——
8m a?

n>0(?7) (potential well) (2.18)
(in the present case, according to quantum mechanics, n > 1).
We will complete the present section with a few observations.

1. The dependence on n of the energy levels is different for each system
(o< n~2 for the hydrogen atom, o n for the oscillator, oc n? for the particle
in the potential well);

2. the quantization condition has been applied, and can be applied, only
if the orbit is finite; consider, for example, the case of the particle in a
segment: if a — oo, the integral §pdg diverges and therefore, in this
case, there is no quantization condition. A different way to look upon the
same thing is the following: the distances among the energy levels given
by (2.18) are proportional to a~?; if @ — oo they tend to 0, i.e. one finds
the continuum of energies from 0 to co of classical physics. Therefore, for
example, in the case of a potential such as that of Fig. 2.6, the result
expressed by (2.18) holds only for E, < Vj, whereas for energies higher
than Vj all the values are admissible (much as for the ionization states of
the hydrogen atom).

3. Thanks to Stokes’ theorem the integral on the left hand side of (2.7) equals
the area enclosed by the orbit of energy E,,, therefore (2.7) means that the
number of states (i.e. energy levels) in a (two-dimensional) volume {2 of
the phase-space is given by £2/h. In general, if 2f is the dimension of the
phase-space, the quantization condition implies that k' is the phase-space
volume per state.

2.6 Einstein and Debye Theories for the Heat Capacities of Solids

If one accepts Bohr hypothesis about the existence of discrete energy levels,
there are several things that must be re-examined from this point of view: first
of all, the theory of heat capacities. Indeed, the theory of heat capacities was
based on the calculation of the average energy (theorem of equipartition of
energy) that is obtained from the expression [ E(q,p)dn(g,p) by integrating
over all the phase space, i.e. over all the classically admitted states. Now,
according to the first Bohr hypothesis, only some states with energies E,
are allowed and, as a consequence and in the first place, the very Boltzmann
distribution (1.13)
dn(q,p) = Be " E(a:p) dq dp

is meaningless and needs to be reformulated. Instead of asking oneself which
is the (most probable) number of subsystems with coordinates and momenta
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between ¢ and g + dg, and p and p + dp, one must ask which is the (most
probable) number n; of subsystems with energy E;, where the E; are the
allowed energies. This problem is solved by the same reasoning that has led
to (1.13), so a formally analogue result will obtain

n;, =B e_ﬁ Bi
where again B can be found by requiring > n; = N. Finally:

e_B E;

= Niz,e—BEj (2.19)
J

Uz

namely Boltzmann distribution still applies to the number of subsystems in
the energy level F; (the n; are also called populations of the levels E;).
Indeed, (2.19) is not quite correct, it must be modified according to

e B E:

> 95 e P B

where the g; are integer numbers (normally of the order of a few units), called
degree of degeneracy of the level E;, whose origin is not easy to explain
now: they represent the number of states corresponding to the level E;; we
shall clarify in the sequel the exact meaning of this statement. They can be
ignored in the discussion of the forthcoming sections.

Before proceeding any further, we wish to briefly discuss (2.19), from which
it follows that, for a given temperature, the average number of systems that
are in the energy level E; decreases exponentially with the increase of the
energy. It follows that, if F, < F,, always one has n, > ng, so the higher
the level the lower the population. It is interesting to evaluate the ratio of the
populations relative to two energy levels E, and E: for temperature T and
putting AFE = E, — E,, one has:

n; = Ngi (220)

ny - BeiEr/kBT _ efAE/kBT (2 21)
ne Be Bs/ksT — ' '

Let us evaluate, for example, the ratio na/n; between the populations of the
first excited and the lowest energy level for an atomic system. The energy
differences are of the order of some eV (an exception is provided by hydro-
gen, for which Fy — E; ~ 10eV): this is proven by the fact that, normally,
the absorption spectrum lies in the visible region (1.5 + 4eV). Now for such
differences of energy one realizes that, at room temperature, the excited level
practically is unpopulated. Indeed, for T ~ 300 K, one has:

(1.38x107'%) x 300 1

FuTo = 1.6 x 10— 12 =40

eV . (2.22)

Both this relationship and the equivalent:
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keT =1eV = T ~12000K (2.23)

are very useful as they allow for a quick evaluation of kg7 for any temperature.
In conclusion, for AE ~ 1eV and T ~ 300K, the ratio between the
populations, according to (2.21), is

efAE/kBT _ 6740 ~ 10716 (ea: ~ 100.49:) .

In order to have an appreciable population also for the excited levels, kgT ~
AE will be needed. As exp(—AE/kgT) — 1 for T — oo, one can say that
only at very high temperatures the energy levels tend to become all equally
(un)populated.

The fact that, at room temperature, practically all the atoms are in the
ground state explains why the atoms of the same type all have the same size,
whatever their past history (stability of atomic sizes), and also explains the
fact that in the absorption spectrum of a substance (in normal conditions)
only the first series is observed, namely only the transitions that start from
the ground state.

It should be said that (2.19) applies to systems that only possess discrete
energy levels (as the harmonic oscillator); for the systems that also possess
a continuum of energies (as atoms, molecules ... ), no quantization condition
existing for them, (1.13) still holds. So we shall have:

(2.24)

n; = Be AP (discrete levels)
dn(q,p) = B e PE@P) dq dp/hf (continuous levels)

where .
B :N(Z'Q—BEJ‘ +/e_BE(q’p)dqdp/hf)
J

the factor h/ dividing dgdp is there because, as discussed at the end of Sect.
2.5, dgdp/h/ is the number of quantum states in the cell dgdp.

Equation (2.24) may be useful, for example, in the calculation of the de-
gree of ionization of a gas in the condition of thermal equilibrium: indeed,
observe that, even if the population fast decreases as E increases, the degree
of ionization can nonetheless be appreciable, owing to the great number of
continuum states.

Let us now go back to the problem of the heat capacities. Having now
(2.19) at one’s disposal, the expression for the average energy of a subsystem
(with only discrete levels) is

 Eing Eie P B 9
P Zznn _ Zi efan =55 nZ) (2.25)
3 J

where

Z2B) =) e’
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Not always the series that defines the partition function can be explicitly
summed.
In the case of the harmonic oscillator, as F,, = n hw, the thing is simple
since one is dealing with a geometric series
(o]

= n 1
Z(ﬁ)zze_ﬁE” :Z(e_ﬁhw) = {1 _oBhw
n=0

n=0
so, by use of (2.25), the average energy for a quantum oscillator reads:

o e (2.26)

ehw/kpT _ q

In Fig. 2.7 both E as the function of T' given by
(2.26) and (dashed line) the graph of the classical .
expression (E. = kgT) are reported; we have put .
T. = hw/kg (T, is called characteristic temper- -
ature). Note that, contrary to the classical result, p
the average energy E depends on the frequency of >

. . T, T
the oscillator: now the quantum theory is able to Fie. 9.7
distinguish ‘harder’ oscillators from the less ‘hard’ & <
ones; at high temperatures, (2.26) is well approximated by the classical value,
up to an irrelevant additive constant. This happens when kgT > hw: indeed,
in such a case, one can expand in series (2.26) and obtain:

_ hw
1+ hw/kgT+---—1

E

~ kT  (T>T)

(if the next term in the expansion of the exponential is kept, also the constant
term is recovered: E ~ kgT — Jhw).

The result could have been predicted, indeed hAw is the jump between
two adjacent energy levels of the oscillator: saying that kg1 > hw is the
same as saying that the levels are very close to one another (with respect
to thermal energy scale kgT') and the quantization does not show up; the
result is therefore the same one has classically (it could also be said that for
hw < kgT the series in (2.25) can be approximated by integrals and one is
back to the classical case).

E, . E, .
T—0: kgT<AE -

quantization essential

T—oo: kpT>AE
quantization undetectable

(continuous energies) (energy levels)

kpT AE

| AE keT 1L

Fig. 2.8a Fig. 2.8b

For T'— 0, (2.26) becomes E = hw exp(—hw/ksT) that tends very fast to
0, as is seen in Fig. 2.7. The two limiting cases (T' > T, and T <« T.) are
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shown in Figs. 2.8a and 2.8b. Let us now see the consequences of the above
discussion for what concerns the heat capacities of solids.

As we have already seen in Sect. 1.3, according to the Einstein model, a
solid (for the sake of simplicity we shall deal with a monatomic solid) is made
out of many identical oscillators, with frequency v and non-interacting with
one another (‘ideal gas of oscillators’). As the oscillators are three-dimensional,
the internal energy of a gram-atom of substance is given by U = 3N F, with
E given by (2.26). The atomic heat capacity is therefore:

ou hw \2
Cv =g = 3Naks (k:BT> (

It is easy to verify that, for T"— 0, Cy — 0 OCv

whereas, for T — oo, Cy — 3R. In Fig. 2.9 3E

we have reported the graph of Cy as a func-

tion of the temperature: the figure shows that

Cy reaches its classical value — up to less than

10% — already for T = T, = hw/kg, while at

temperatures one order of magnitude smaller, T. T

T ~T./10, Cy is practically vanishing. Fig. 2.9

Furthermore, we can examine how things change if we consider different
solids, i.e. solids made out of oscillators with different frequencies. First of all,
note that the Cy given by (2.27) is a universal function of the ratio T/T,
where only T, = hw/kg depends on the considered solid (through w = 27 v),
so that for different solids the curve is the same, apart from the scale of
abscissae.

Let us compare, for example, lead and diamond; their physical features
(e.g. the melting points) lead us to think that the oscillators the diamond
consists of are harder (namely have an elastic constant with a higher value)
than those of Pb: it follows that vpy, < vc and consequently TF b < TCC. But
we have seen that for T'= T, the atomic heat capacity is practically equal to
the classical Dulong—Petit value, so the curve relative to Pb should reach the
value 3R at a lower temperature than that of diamond: this is exactly what
happens experimentally (see Fig. 1.1).

In conclusion, the Einstein model — together with the quantization of the
energy levels of the harmonic oscillator — accounts fairly well for the heat
capacities of solids. Fairly well but not quite, because while (2.27) predicts
that, for T — 0,

ehw/k}BT

ehw/ksT _1)2

_ hv \2 —hv/kgT
Cv = 3R (kB T) e (2.28)
(recall that Aw = hv), namely that Cy — 0 with all its derivatives, the
curves relative to experimental data indicate that Cy — 0 only as 7. This
depends on the fact that the schematization of the solid, typical of the Einstein
model, is rather inaccurate. Indeed, as we have said, Einstein identifies the
solid with a collection of identical and independent oscillators. One should
instead think that the interactions among the oscillators are not negligible: it
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is sufficient to recall that hitting a metal gives rise to a sound, which proves
the propagation of the perturbation along the whole piece of metal, i.e. the
existence of elastic waves and, in turn, the existence of interactions among
the oscillators.

It was P. Debye who proposed a model more complicated, but more plau-
sible, assuming that the oscillators are not independent, but elastically bound
to each other: this amounts to considering the small vibrations of the lattice
ions around their equilibrium positions. Let V(x1, -+ ,z3y) the potential
energy of the system consisting of N ions (3N degrees of freedom). By ex-
panding V in Taylor series around the equilibrium positions 2 and keeping
only the first significant terms of the expansion (namely restricting to small
vibrations) one has:

(x; x?)(xj — x?) + e (2.29)

Or

Vizs, o z3n) Z 83: 83:
i O

x

that is the potential energy of a system of N coupled oscillators. Since the right
hand side of (2.29) is a quadratic form, there always exists a suitable change
of variables that takes such a system to a system of 3N one-dimensional in-

dependent oscillators, whose frequencies we shall denote by v;, i =1, ... ,3N.
As an example, consider the system consisting of only
two coupled oscillators (Fig. 2.10a): it is straightfor- Fig. 2.10a

ward to realize that the possible motions of such a
system are linear combinations of two fundamental
harmonic motions, in which the oscillators vibrate
either with the same phase (Fig. 2.10b) or with op-
posite phases (Fig. 2.10c), with different frequencies Fig. 2.10c

v1 and vs. It is in this sense that one says that two identical, elastically bound
oscillators are equivalent to a system consisting of two independent, but dif-
ferent (i.e. different frequencies) oscillators.

In the case at hand, one is dealing with many interacting oscillators that,
similarly, are equivalent to as many independent oscillators with different fre-
quencies that start from a certain minimum vy;, up to a maximum Vpax.
The frequencies v; are no longer frequencies relative to the single ions: they
rather are collective oscillations (as in the case of Fig. 2.10), i.e. they are
frequencies (characteristic frequencies) of the crystal as a whole. One un-
derstands that vpy,;, must be of the order of magnitude of acoustic vibrations,
ie. ~103s7 L

From the point of view of classical theory, since E does not depend on
v, there is no difference between Einstein and Debye models. Instead, apply-
ing the quantization condition to the oscillators, the Debye model leads to a
different result.

Indeed, the average energy of the i-th oscillators is given by (2.26):

Fig. 2.10b

hVi

Ei = ehl’i/kBT _ 1
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3N
and the total energy is U = Z‘_ E; (sum over all the oscillators).
For a fixed temperature T, put vy = ksT/h

and assume that vmin < vr < Vmax: the os- {

cillators whose frequency is v; < vp — given Pmin vr Vinax
that for them hl/i < kBT — contribute to unfrozen frozen

the total energy with E; ~ kg7 (the classi- Fig. 2.11

cal value). For this reason such oscillators are
said ‘unfrozen’ (Fig. 2.11). On the contrary, the oscillators for which v; > v,
having hv; > kgT, give a contribution to the energy — and to the heat ca-
pacity — that tends to 0 as v increases: they are said ‘frozen’. It follows that,
by increasing T', and therefore vp, all the oscillators tend to unfreeze until
the classical value 3R for the atomic heat capacity is obtained. Instead, by
decreasing T', more and more oscillators become frozen and Cy — 0. The
temperature such that all the oscillators are unfrozen, called Debye charac-
teristic temperature and denoted by ©, is defined by:

def h Vmax

0 = s

(2.30)

and gives an indication of the temperature at which the specific heat reaches
the classical value of the Dulong—Petit law.

So, at a certain temperature T, the solids for which T > © certainly will
follow the Dulong—Petit law, those for which instead T <« © will still be far
away from the classical behaviour. Experimentally one has:

Or. = 450K, Ocy = 315K, Op, = 90K, O¢ =2000K

(the last datum refers to diamond carbon).

The values given above for © and (2.30) enable one to obtain that vyax is
of the order of 10**s~1.

It is interesting to note that vy, depends on the velocity v of the sound
in the solid, according to the following relationship:

s/ N
max =2 2.31
1% v Vv ( )

where N is the number of atoms contained in the volume V. The origin of
(2.31) lies in the fact that, since a solid is not a continuous medium, the
minimum wavelength admissible for the vibrations of the solid is of the order
of magnitude of the interatomic distance, i.e. (V/N)l/?’7 and Vmax >~ U/ Amin-
Also (2.31) leads, for vmax, to values of the order of 10% = 10571,

The difference between Einstein model and Debye’s is therefore in the fact
that, while for the first all the oscillators — being identical — either freeze or
unfreeze all together (this is the reason why Cy — 0 too fast for T'— 0), in
the second model the oscillators freeze gradually when T — 0, which entails
a vanishing of Cy slower (< T°) than in the former case.
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2.7 Heat Capacities of Gases

In this section we shall examine in which way the hypothesis of discrete energy
levels allows one to overcome the difficulties associated with the heat capacities
of gases, discussed in Sect. 1.3.

Monatomic Gases

In this case we had found no discrepancy between classical theory and experi-
mental data. Indeed, the atoms of the gas — schematized as pointlike particles
— are free particles and therefore Bohr quantization condition does not apply:
the classical treatment needs no modification. One could object that the gas
is closed in a vessel and the atoms are bound to move within precise limits,
so that also in this case one will have energy levels.

To provide an answer to this objection, it is convenient to have a glance at
the situation from a quantitative point of view. Let us take, for the sake of
simplicity, the energy levels of a particle in a segment, given by (2.18). By
choosing a (size of the vessel) = 1cm and m = 10~2*g, one has:

h2

E,=n*E; E, =
s T 8ma?

~107%eV . (2.32)

We must now ask what is the relationship between kg7 and the distance
among the energy levels. However this time, contrary to the case of harmonic
oscillators, the distance between the energy levels is not constant but grows
with n; indeed, for n > 1:

En+1 — En ~ 2n E1 . (233)

Of course we are interested in comparing kg7 with the distances among
the levels that are appreciably populated, namely those levels for which
E, < kgT. Equation (2.32) implies that this happens for n < /kgT/E;.

Thanks to (2.33), the energy distances we are interested in are of the order of
AE < \/E1 ksT .

The conditions AE < kgT or AE > kgT take respectively the form:

VvV E1 < \VEkgT or vV E1 > A ksT . (2.34)

Recalling now that, for example, for T = 1K, kg7 = 1/12000eV, (2.32)
implies that for any temperature +/kgT/E1 > 1 (e.g. He becomes liquid at
about 4K), and therefore quantization is undetectable and the atomic heat
capacity Cy always is 5 R.

Diatomic Gases

In the discussion of Sect. 1.3 we had, initially, schematized the molecule as
made out of two (pointlike) atoms at a fixed distance d. The Hamiltonian is
given by (1.22): it can be written as

H= Htr + Hrot
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namely the sum of the first term that represents the translational motion of the
center-of-mass, and of the second term that represents the energy associated
with rotations.

The discussion made about monatomic gases teaches us that, as for the
part relative to the translational degrees of freedom, quantization does not
show up and, as a consequence, Hy, contributes gR to the molar heat capacity
Cy . Let us now examine the contribution of H,u to Cy .

In order to determine the energy levels associated to the rotational degrees
of freedom, it is convenient to recall the physical meaning of H,t. For the sake
of simplicity we shall restrict to the case of identical atoms: one has

1 2 1 2
H,ot = oMmu{ + 5mug .

In the center-of-mass frame, however, v1 = vo so that

(mvd)> L2

Hro = 2= = 57
e me md? 2l

where L is the angular momentum of the system and I is the moment of inertia
with respect to an axis passing through the center of mass and orthogonal to
the segment joining the two atoms.

Thanks to the Bohr quantization condition L = n h already used for the
hydrogen atom (see (2.8))7 one finds:

h2n?
E, =
21

(rigid rotator) (2.35)

(actually, the energy levels we shall find later by quantum mechanics are
given by E,, = (h%/2I)n(n+ 1); the difference with the levels given by (2.35)
decreases with the increase of the quantum number n)

To discover under which conditions the effect of quantization is detectable
— recall the discussion made for monatomic gases (note that also in that case
E, o« n?) that has led to (2.34) — we must compare kg7 with h?/2I. In
other words we can, for every gas, define a characteristic temperature T'°" =
h?/(21 kg): for T > T we expect to find again the classical value R as
contribution to Cy by the two rotational degrees of freedom, while for T <«
Tr! we expect that the effect of quantization shows up with a C‘(/mt) tending
to 0 for T" — 0. Indeed, in order to calculate U, and therefore Cy, at low
temperatures for whatever system endowed with discrete energy levels, we
may limit ourselves to consider only the first two levels (in the case the third
is not too close to the second): the lower the temperature, the lesser the
contributions to the average energy of the excited levels.

So, putting AE = Fs — Ey, one has

E; e BEL E, e BE2 e~ BAE
U= N — —NE+NAE | §

whence:
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AE N2 .
Cv =R (—) e AB/kaT T < AE/ky (2.36)
kg T
(as a confirmation of the generality of this result, note that (2.36) coincides
with (2.27) derived directly from (2.26)).
Let us now give the values of T¥* for some gases:

He: 85K, Ne: 3K, 0s: 2K, NaCl: 15K

and it appears from these data that the effect of quantization, in practice, is
detectable only for Hs: in this case AE = h?/2I ~ 10~2eV, whereas for the
other gases AFE is smaller by a factor 10 =+ 100.
In the present case, contrary to the case of os-
cillators, it is not possible to calculate U(T")
analytically, and the same is true for Cy (T');
the numerical calculation is however possi-
ble. The solid curve in Fig. 2.12 has been ob-
tained by making use of the correct quantum
expression for the energy levels, including the
degeneracy factors g, that, in this case, are et
gn = 2n + 1; only five levels have been taken Fig. 2.12
into consideration (the lowest and the first four excited energy levels) and
we have verified that, at least for 7' < 27%°", and up to 1%, the curve is not
modified by the inclusion of 20 further levels: as it is evident, for T > 0.5 T*°,
CV ~ R.

The dashed curve is the one obtained by taking into consideration only the
first two levels: in agreement with (2.36) the curve reproduces very well the
behaviour of Cy at low temperatures, whereas for high temperatures tends to
0, given that for a system with a finite number of energy levels the internal
energy tends to a constant that corresponds to the equipopulation of the
levels.

Let us now consider the problem of the other degrees of freedom of the
diatomic molecule: in the first place let us consider the degree of freedom
relative to the rotation around the line that joins the nuclei. Also for this
rotational degree of freedom we shall have energy levels of the type:

Sy

o,

En:ﬁn

in which, in comparison with (2.35), only the moment of inertia is changed.
A diatomic molecule has the structure reported in - -

Fig. 2.13: the nuclei are heavy, but small (107" + = //fjf;:{;/;\'(}":Q;\‘\\\
10~ cm), so the main contribution to I’ is given by 7 | (11 ® yui @ i
the electrons that are light, but rotate at a distance = AN
of about 10~% cm from the nuclei. So, for example, in i ﬁ )

Hs, since the ratio between the masses of nuclei and )
electrons is about 2000, it follows that I’ ~ I,/2000. Fig. 2.13
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As a consequence, in this case, the AFE and the characteristic temperature
are about 2000 times higher than in the previous case: AE ~ 10eV = T, ~
105 K. Therefore this degree of freedom does not contribute to Cy inasmuch
as permanently frozen, even at temperatures of some thousand degrees.
Finally, to conclude, let us consider the vibrational degree of freedom of
the diatomic molecule. As of now, it will be clear that, in order to under-
stand whether this degree of freedom contributes to Cy or not at a given
temperature, one must compare the kg7 we are interested in with the AF
that, dealing with a harmonic oscillator, equals hw. Clearly hw depends on
the ‘hardness’, i.e. on the elastic constant of the ‘spring’ that binds the two
atoms. Ay
Let us therefore try to get an idea of how
much is w for a molecule. We know the po-
tential V(r) that binds the atoms is of the
type reported in Fig. 1.3. In the approxima-
tion of small oscillations around the equi- \ . >

librium point, we are interested in approxi- \\ ¢ // "
mating V'(r) around the point r = d as (Fig. NS
2.14): | Fig. 2.14

V() =k (r—d)* = Vp . (2.37)

Let us try to estimate k by exploiting the following information:

i) an energy of the order of some electronvolt is needed to dissociate a
molecule, so Vy >~ 1eV;

ii) the distance between the atoms is of the order of the angstrom; so also
the distance among the points where VP (r) ~ 0 will be of the same
order of magnitude.

These data are sufficient to determine & in (2.37) and, apart from numerical
factors, it turns out that (M is the mass of the nuclei; better: the reduced

mass):
k= = W= = = 10MsT (2.38)

The result is reasonable, the fact that a molecule radiates in the infrared being
known. In conclusion: AE = hw ~10"1eV.

It appears that at room temperature (kg7 = 1/40€eV) this degree of free-
dom practically is frozen, but at temperatures even not so higher (7' ~ 10 K)
it may give an appreciable contribution to the Cy . We report, as an exam-
ple, the characteristic temperatures TV = hw/ky relative to the vibrational
degrees freedom for some molecules:

Hy: 6100K, Ny : 3340K, Oz : 2230K.

Let us summarize in a table the results we have found, reporting for the several
degrees of freedom of a diatomic molecule the typical values of AE and the
relative characteristic temperatures T .
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translations AFE ~ 0, T.~0
rotations Q—L AE: 1074 =10 2eV, T.: 1=100K
vibrations | AE ~10"teV, T.~ 103K
(electrons AE ~1eV, T. ~ 10* K)
(rotations e e AE ~10eV, T.~10°K)

Here is how the hypothesis of energy levels solves the problem of the ambiguity
in the counting of the degrees of freedom: let us attribute to the system all
the degrees of freedom we wish (electrons in the atoms, nucleons in the nuclei,
quarks in the nucleons ...), but in the end, in order to decide whether they
do contribute to the Cy, we must check how much is the distance between
the energy levels associated with such degrees of freedom; for the electrons we
shall find a AFE of the order of some eV, for nucleons of some MeV, ...and
in all such cases we discover that these degrees of freedom can be ignored at
any reasonable temperature.

2.8 Wave-like Behaviour of Particles: the Bragg and
Davisson—Germer Experiments

In the previous sections of this chapter we have introduced a certain number
of hypotheses:

1. the existence of photons;

2. the Bohr hypothesis of quantization;

3. the Bohr hypothesis that relates the frequency radiated in a transition
with the energy jumps.

These hypotheses have then been used with a remarkable success to explain
several experimental facts. At this point it is natural to ask what survives of
classical physics: are the above hypotheses a sort of ‘amendments’ to the laws
of classical physics that, however, keeps its structure substantially untouched
or, rather, the success of the above hypotheses hints at the necessity of pro-
foundly modifying the concepts of classical physics? At the end of the present
section there will be no doubt about which the answer should be.

In 1923, about ten years after Bohr had proposed his theory, L. de Broglie
put forward the following problem. The electromagnetic radiation, to which
always and correctly a wave-like nature had been attributed, also behaves in
a totally different way, i.e. in a corpuscular way (photons). The relationship
between the two aspects, wave-like — corpuscular, is provided by Planck’s
constant h. But h also enters, through Bohr—-Sommerfeld quantization condi-
tion, problems where particles are dealt with. Furthermore, in the quantization
condition integer numbers n do intervene: any physicist knows by experience
that the presence of integer numbers often indicates one is dealing with un-
dulatory phenomena (for example: interference fringes, standing waves on a
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string, ...). In conclusion: could it not be that, through A, one should make
the contrary step, namely look for a wave-like behaviour in what has always
been considered corpuscular (particles)?

Let us consider, for example, a particle going a certain orbit (an electron
in a circular orbit in hydrogen, or a particle in a segment): then the Bohr—
Sommerfeld condition §pdg =nh entails:

pL=nh (L = length of the orbit) (2.39)

If we rewrite (2.39) in the form

L=n 2.40
» (2.40)

and recall that for a photon h/p = A, then (2.40) suggests the following
interpretation

de Broglie hypothesis: a wave is associated with each particle. The re-
lationship between the wavelength \ and the momentum p is given, as for
photons, by A = h/p. The allowed orbits are those that contain an integer
number of wavelengths.

Bohr quantization condition is therefore looked upon in a totally new light.

But so far we are in the field of hypotheses. Is de Broglie’s hypothesis only
a new terminology or there is something more in it? What kind of wave is one
talking about? We know two types of waves: elastic waves and electromagnetic
waves. Certainly one is not dealing with elastic waves and, presumably, not
even with electromagnetic waves, inasmuch as the de Broglie hypothesis does
not necessarily refer to charged particles. It is likely that we shall have to
deal with a third type of waves. In this case intuition is of little help: it is
convenient to ask oneself which are the general features of waves. Waves are
entities that can be summed with each other or, in loose terms, waves are
things that interfere. So, if these de Broglie waves really exist, they must be
revealed by means of interference phenomena.

Before thinking of an experiment that emphasizes the wave-like aspect
of particles, it is convenient to realize the size of the wavelengths one has
to deal with. Let us consider free particles: from the relations A = h/p and
p =/2m E one obtains the de Broglie wavelength:

h

= Jomp " (2.41)

If, as customary, we express A in A and E in eV, for an electron one has

MNA] = % (for electrons) (2.42)

i.e. for an electron of energy 1eV, A =12.4A.
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Note that, while for photons A is proportional to 1/FE, for massive (non-
relativistic) particles A is proportional to 1/v/E. In addition, the higher the
mass, the lower — for a given energy — the wavelength A. In conclusion, for
electrons with energy of the order of 100eV, X is of the order of the angstrém,
i.e. of the same order of magnitude of the X-ray wavelengths.

A way to show that X-rays are electromag-
netic waves consists in analyzing the reflection of
X-rays by a crystal (Bragg reflection). Let us
consider a crystal; the regularity of the arrange- T
ment of the atoms (or ions) determines many
families of lattice planes: in Fig. 2.15 one of these
families is represented, for example that parallel
to a face of the crystal. The distance d between Fig. 2.15
the lattice planes (of a family) is called lattice spacing: d normally is of the
order of a few angstrom.

If we let some monochromatic X-rays impinge on the crystal, at an angle
6 with respect to the crystal face, and observe the specularly reflected (i.e.
emerging at the same angle #) radiation, one notes that the radiation is re-
flected only for certain particular values of 6 : 64, 65, ---. More precisely,
very sharp maxima in the intensity of the reflected radiation are observed in
correspondence of the angles 61, 03, -- -, alternating with minima in which
the intensity is practically vanishing.

The explanation of this fact is the follow-
ing: X-rays are reflected by the various lat-
tice planes (Fig. 2.15): the waves reflected 0 4

by two adjacent planes (Fig. 2.16) go op- TN ‘ d
tical paths whose difference is 2d sin@
(the darker segments in Fig. 2.16). When
2d sin 6 is an integer multiple of the wave-
length A, all the reflected waves are in phase with one another and there occurs
a constructive interference, i.e. a maximum in the reflected intensity. If, on the
contrary, 2d sinf is an odd integer multiple of A/2, the waves reflected by two
adjacent lattice planes are in opposition of phase and there occurs destructive
interference, i.e. no reflected radiation is observed. In the intermediate cases
there occurs destructive interference among the waves reflected by several lat-
tice planes, which results in an almost vanishing intensity. In conclusion the
maxima in the intensity of the reflected radiation occur for those angles 6 that
satisfy the Bragg condition:

Fig. 2.16

2d sinf =nAX. (2.43)

The number of maxima observed when 6 is let to vary from 0 to 7/2 is the
maximum integer contained in 2d/A: this explains why, in order to easily
observe the phenomenon with X-rays (A ~ lA), it is necessary that d be
of the same order of magnitude of A, i.e. why crystals are used in this type
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of experiments. It is also clear that the knowledge of the angles 6§ satisfying
(2.43) allows for the determination of \, given d; or viceversa of d, given \.

The same experiment was made by C. Davisson and L. Germer in 1927
replacing X-rays with a sharp beam of (as much as possible) monoenergetic
electrons.

It was observed that in this case also the electrons were specularly reflected
only for some values of 6 in agreement with (2.43): this proves that also
electrons possess a wave-like behaviour. Furthermore, the Davisson—Germer
experiment allows one to determine A from (2.43) and to verify the relationship
(2.41) between A and E'.

We add that, along with the development of experimental techniques,
Davisson—Germer experiment has been repeated also with different particles:
protons, neutrons, He atoms, ions; and in all these cases the Bragg condition
has been confirmed for matter particles.

So the de Broglie idea of associating a wave with each particle was not
simply a smart theoretical speculation, but a well precise physical reality
corresponded to it.

Davisson experiment first, and Davisson—Germer experiments later had an
accidental origin: as a consequence of the explosion of a bottle of liquid air
in the laboratory where Davisson was making experiments that used electron
beams, a vacuum tube with an electrode of poly-crystalline nickel went bro-
ken; owing to the thermal treatment the electrode underwent in order to be
fixed, nickel crystallized in coarse grains and this led to results that, for what
regarded the angular distribution of the electrons reflected by the electrode,
were completely different from the previous ones.



Chapter 3

Introduction to the Postulates of Quantum
Mechanics

3.1 Introduction

In the previous chapter we have exposed some of the fundamental steps of
what is now referred to as “Old Fashioned Quantum Mechanics” and that,
from 1905 until 1925, had obtained several important results, particularly in
the framework of atomic physics, in addition to those we have already told.
For example Sommerfeld, hinging on a refinement of the Bohr quantization
condition, had been even able to calculate the relativistic corrections to the
energy levels of hydrogen.

However, the set of hypotheses and rules that allowed to obtain such results
scarcely could be considered a ‘theory’. Too many questions had no convincing
answer, one in particular: the dualism wave/corpuscle, required by both the
notion of photon and by the de Broglie hypothesis, still was a very misty
concept. Above all, putting all these ideas together in a well arranged and
consistent theoretical scheme was still lacking. It was quite clear that many
paradigms of classical physics had to be abandoned, but the new paradigms
were not yet in sight.

In this chapter we will critically analyze some simple experiments (many
of which really performed), the so called ‘one photon experiments’ (or one
neutron experiments). The purpose will be to emphasize the contradictions
between the concepts of classical physics — according to which a particle is
a particle and a wave is a wave — and the experimental facts: in this way
we shall understand how we must change our schemes of reasoning, in order
to reconcile the existence of both the wave-like and the corpuscular aspect
belonging to one single entity. The discussion we shall make has the twofold
purpose of both introducing in an inductive way the postulates of quantum
mechanics and, also, of ‘psychological preparation’ to its abstract formulation.

The ‘key’ according to which the next sections should be read is the fol-
lowing: we will expose the facts and try to draw some conclusions; the latter
have to be regarded upon as the first steps to arrive at the interpretation of
the facts, namely to build up a ‘theory’. The conclusions we shall propose
(maybe not always the only possible, but — without any doubt — the simplest
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and, in some sense, the most ‘natural’ ones) are those that gave rise to the so
called Copenhagen interpretation of quantum mechanics. To the present
day (2014), such interpretation still is under discussion, but it has not yet been
replaced by another one. The Copenhagen Institute of Physics, since 1921 di-
rected by Niels Bohr, was — together with that in Géttingen, where Max Born
worked — the center of all the discussions that regarded the then springing
quantum mechanics. Many among the greatest physicists, like P.A.M Dirac,
W. Heisenberg and E. Schrodinger spent there some of their time.

The next section stands, is some sense, for itself: it contains a short de-
scription of the Mach—Zehnder interferometer, to which we shall refer in the
sequel. The reason to illustrate it in advance is not to interrupt the discussion
of Sect. 3.3.

3.2 The Mach-Zehnder Interferometer

Mach—Zehnder interferometer, represented in Co
Fig. 3.1, consists of four mirrors parallel to |
one another, arranged at the vertices of a s2 s4

rectangle and forming angles of 45° with the
edges of the rectangle. Two such mirrors (so
and s3) are normal mirrors, whereas the other
two (s1 and s4) are semi-transparent mirrors:
a beam of light that hits one of them is par-
tially reflected and partially transmitted (beam splitters): we shall assume
that 50% of the incident intensity is reflected and 50% transmitted.

A beam of light, coming from the left, hits s;: the transmitted beam is
reflected by s3 and hits sy, where it undergoes a partial reflection towards
the counter C; and a partial transmission towards the counter C,. The beam
reflected by s; is reflected by ss, and is finally split by sy, a part towards Cy,
the other part towards Cs. So on each of the counters there arrive both part of
the beam coming from the arm s, —s4 and part of the beam coming from the
arm s3 — 84: these two beams interfere with each other and the intensities I
and I recorded at the two counters are the results of the interference between
the two beams that arrive at each of them. In the case one of the two beams
(no matter which) should be intercepted, e.g. by interposing an absorbing
material in one of the two paths, the two counters C; and Cs would both
record the same intensity, the 25% of the intensity of the incident beam.

Let us take the z-axis in the direction of the incident beam. Let us assume
that the incident light is a plane wave that, for the sake of simplicity, we shall
assume linearly polarized (although this assumption is not strictly necessary).
In this way the wave can be written as:

S1 S3

Fig. 3.1

E(z,t) = Eg cos(kx —wt) (3.1)

where FE(z,t) is the only nonvanishing component of the electric field.
Since the intensity of the wave is quadratic in the amplitude FEy, the am-
plitudes of both the waves transmitted and reflected by the beam splitter are
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reduced by a factor V2 with respect to the incident wave. So the wave that
arrives at C; following the path sy — s — 84 is

1

5 Ey cos(wt+ 1) (3.2)
and the wave that arrives at C; following the path s; — s3 — s4 is

1

5 Ey cos(wt+ 2) . (3.3)

If the optical paths s; — so — s4 and s; — s3 — s4 were exactly equal — in
length — to each other, one would have ¢; = 5. However, on the one hand,
it is impossible to gauge the interferometer in such a way that the difference
of the optical paths be much less than the wavelength and, on the other hand,
it may be useful to introduce a phase shift between the two waves, then in
(3.2) and (3.3) we shall keep 1 # w2 and put ¢ = @1 — ps.

So, since the intensity of the wave incident on s; is the time-average over
a period of (c/4m)E?(x,t), i.e.

c

c
— EZ2
dr 0

8

I=—E} cos?(kx —wt) =

the intensity at C; is

c 1

I = —
Y7 4n 4

1
E§ (cos(wt+ 1)+ cos(wt + @2))2 =, I(1+cosp). (3.4)
As a consequence, given that I; + Is = I, one has:
1
I = 5 I(1—cosyp). (3.5)

The intensity at each of the counters may thus vary from 0 to I as a function
of the phase shift. The phase shift may itself be varied with continuity by
inserting a thin slab of glass in one of the arms of the interferometer and
varying its inclination in such a way as to change the thickness of the glass
gone through by the beam: if n stands for the refraction index of the glass,
the phase shift one introduces in this way is dp = k(n—1)d =27 (n—1)d/\,
d being the thickness gone through.

3.3 One-Photon Interference Experiments

A beam of monochromatic light hits an opaque screen on which two holes A
and B (or two parallel slits), small and very close to each other, have been
made. In crossing the holes, the light undergoes diffraction and, on a photo-
graphic plate put some distance away from the screen, interference fringes are
observed in the zone in which the two diffraction pattern produced by A and
B overlap — i.e. where light arrives from both A and B (Fig. 3.2). This is the
proof of the wave character of light (T. Young experiment, 1802).
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How is the above result interpreted in terms

of photons? Clearly, where the fringes are RN _
brighter there arrive many photons, where ,\\\\ “al - -

they are darker there arrive less. Se } r < - } —
It looks as if the photons interacted with Bl

one another in such a way as to give rise to 7 l\ T

the interference pattern on the plate. But i

what happens if one reduces the intensity Fig. 3.2

up to the point that, on the average, there is

just one photon at a time in the path between the source and the photographic
plate? Certainly it happens that one has to increase the exposure time of the
plate in such a way as to allow many photons to arrive on it, but in the end,
after developing the image, one finds the same interference pattern as before. If
instead the plate is exposed for a short time, many very tiny spots, arranged
randomly, are observed: the spots represent the ‘points’ where the photons
have arrived and have produced the chemical reaction that has impressed the
plate. If one repeats the experiment with longer and longer exposure times,
one observes that the distribution of photons on the plate more and more
looses its appearance of randomness and, more and more, reproduces the
distribution of the interference pattern.

Then the interpretation in terms of interacting photons does not hold:
photons do not interact with one another and the only ‘simple’ conclusion is
that interference depends on the single photon (it is as if it were ‘encoded’ in
the single photon).

Now, however, according to the corpuscu-
lar model, a photon that leaves the source and A B
arrives at the plate, either passes through A or
through B. But, this being the alternative, we
do not succeed in explaining the interference
pattern: indeed, if the photon passes through
A, it is as if B were closed, and the photon
should be able to arrive at all the points that
can be reached while forming the diffraction
pattern of hole A, even at those points where there are dark fringes — where,
clearly, there arrive no photons (see Fig. 3.3 where the intensity curves of
the diffraction patterns of holes A and B, as well as the intensity curve C of
the interference pattern, are reported). The same happens if we say that the
photon goes through B. So, as 50% of the photons would go through A and
50% through B, the result on the plate should be the sum of the diffraction
patterns separately produced by the holes: it is as if, after receiving the light
from A only, the plate were exposed to the light coming from B only. The
result would have nothing to do with the interference pattern C (Fig. 3.3)
that is, instead, observed.

Fig. 3.3

Before proceeding any further we wish to present another experiment,
similar to the previous one, but — perhaps — more surprising: an experiment
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of interference in which, instead of photons, neutrons produced in a nuclear
reactor are used.

Neutron interferometer, realized for the first Cs

time in the 70’s of the 20-th century, is W T

similar to the Mach-Zehnder interferome- o 4
ter used for light (Figs. 3.1 and 3.4). e
The ‘mirrors’ are silicon crystals that partly

transmit and partly reflect neutrons a la - - *
Bragg: for simplicity we treat so and s3 as
totally reflecting mirrors. Neutrons hit the
mirror s; and are counted by the counters C; and Cs. In one arm of the
interferometer (the arm so — 84 in Fig. 3.4) a small aluminum wedge W is
inserted (aluminum does not absorb neutrons and has the same task as the
glass slab in the interference of light). When the wedge is pushed inside the
beam, the thickness gone through by neutrons is increased — the phase shift ¢
is changed — and one observes that the number of neutrons registered by the
two counters varies according the interference laws given by (3.4) and (3.5). In
this case the problem of reducing the intensity does not show up: the intensity
is so low that, when a neutron arrives at a counter, the next neutron has not
yet been produced within the reactor!

A

Fig. 3.4

So interference is not a feature of photons: also neutrons (as well as other
particles like electrons, atoms, . .. ) give rise to the same phenomena and also in
this case the partition of the neutrons between the two counters — the analogue
of the partition of photons among the many fringes — cannot be ascribed to an
interaction among neutrons, it rather depends on the behaviour of the single
neutron.

Also in this case, according to common sense, a neutron inside the inter-
ferometer either goes the path sy — so — s4 or the path s; — s3 — s4:
but, if thing were this way, the countings at C; and C; should be identical,
regardless of the position of the wedge.

There must exists a third possibility — not conceivable from the classical
point of view — and the same conclusion applies to the photons of the Young
experiment.

We now introduce an important concept, that of state of a system. In
classical physics, for example, the state of a particle at a given time is defined
by position and velocity at that time. In the ‘new physics’, given that one
cannot even say if a neutron follows either a path or another, one must be
very cautious: the state of a system (photon, neutron, ... ) is defined by all the
pieces of information regarding the way it has been ‘prepared’. For example, in
the case of the Young experiment, the state of the photon is defined by saying
which source has been used (i.e. which is its frequency), which polaroid sheet it
has gone through (therefore which is its polarization), how far from the source
is the screen with the holes located, in which way the holes have been made,
how much is the distance between them, ... : in general, all what is needed
to characterize completely and reproducibly the experimental situation.
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Therefore, the information that defines the state of a system exclusively re-
gards quantities under our control, i.e. that we can modify (type of source,
shape and positions of the holes, ...): it is the task of the theory to specify
which pieces of information indeed matter in the definition of the state of
a system (which state could, in principle, even require the knowledge of the
entire past history of the system — in the latter case we would better give up
and look for another job!).

Then, in the Young experiment, the state A, defined by the fact that the
hole B is closed (state that we describe by saying that the photon goes through
A), obviously is different from the state B in which A is closed, and the state
C, defined by the fact that both holes are open, obviously is different from
both A and B (Fig. 3.3), and — less ‘obviously’ — it is not: ‘sometimes A,
sometimes B’ (otherwise, as we have already said, the intensity on the plate
should be the sum of the intensities of the diffraction patterns, namely the
sum of the curves A and B of Fig. 3.3), even if — in some sense — C ‘must
have something to do’ with both A and B.

In other words, photons go through neither A nor B (neutrons go neither
the path s; — s3 — s4 nor the path s; — s3 — s4), but it is as if each of them
went simultaneously through both A and B (...it is as if each neutron simul-
taneously went both the paths): clearly the state C has no right of citizenship
in classical physics.

The words we have used to describe the state C (“... it is as if each neutron
simultaneously went both ...”) are suggested by the wave-like interpretation
of the phenomenon of interference: if only hole A is open, one has a wave
A(z,y, z,t) between the screen and the plate; if only B is open, one has a
wave B(z,y, z,t) beyond the screen. If instead both holes are open, the wave
is neither A(z,y,2,t) nor B(x,y, z,t), but it is C(x,y,z,t) = A(z,y,2,t) +
B(x,y, z,1).

So far, however, our conclusions are only speculative in character: we have
said that the idea that the photon goes through either A or B, or that a
neutron follows a well defined path, cannot be maintained. But what do ex-
periments say? Could one set up a ‘which way experiment’, i.e. an experiment
able to say, photon by photon (or neutron by neutron), which path has it
gone?

For example, what should one expect if two photomultipliers F

and Fy (counters that detect the photons by exploiting photoelec- A

tric effect) are put just after the two holes A and B (Fig. 3.5) and | Ie
then a photon is let to leave the source? Should one expect that p| IF
F; and Fy click simultaneously?
Were it so, we would succeed in splitting a photon in two parts! Fig. 3.5
What instead happens is that each time only one photomultiplier

clicks and, by repeating the experiment several times, one sees that, on the
average, half of the times F; clicks, the other half Fs clicks. Does this fact
mean that the previous conclusion about the existence of a state C is wrong?
And that, indeed, any photon is either in the state A or B and, in conclusion —
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and contrary to what we have stated — the state C is ‘sometimes A, sometimes
B’?

Before taking this conclusion as a good one, let us observe that the inser-
tion of the photomultipliers F'; and F5 does allow us to know which path has
been taken by the photons, but destroys the observability of the interference
fringes: indeed the photons are absorbed by the photomultipliers!

Perhaps by a smarter experiment one can both see which path is taken by
the photons and observe the interference fringes.

Let us imagine the following variation on the theme of
the Young experiment: just after each hole one puts two
mirrors one of which (the thinner ones in Fig. 3.6) is a

very light mobile mirror kept in place by a spring; whena  ----- -
photon crosses the screen, the observation of which mirror N---
has recoiled enables one to know which path the photon Lo
has followed. Put in this way, it is a “Gedankenexperi- ~ B| 7

mente”; but, set up in a much more refined way, it can
really be performed by using neutrons.

The result is that, if we are able to detect the recoils of Fig. 3.6
the mobile mirrors, the interference fringes are no longer
observable: we will come back to this point at the end of this chapter. In the
case of neutrons, if for examples mirrors s; and s3 are mobile and their recoil
can be detected, then I; = I, regardless of the position of the wedge.

We can conclude that the observation of interference is incompatible with
the possibility of establishing which path has been followed by either the
neutron or the photon.

We conclude this section by briefly summarizing the important concepts
introduced in this discussion.

1. Interference fringes are observed even by sending one photon at a time:
therefore it is the single photon that “interferes with itself”.

2. The single photon goes through neither A nor B: there exists a third
possibility, not allowed in classical physics, namely a state C that in some
way (yet to be established) is in relationship with both A and B.

3. A measurement that enables one to know whether the photon has gone
through either A or B modifies (perturbs) the state of the photon to such
an extent that the interference fringes are no longer observed: either we
know which path or we observe the fringes, never both the two things.

3.4 Description of the Polarization States of a Photon

In the previous section we have seen that the interference phenomena, being
ascribable to the behaviour of a single particle, lead us to admit the existence
of states that have no classical analogue. In order to substantiate the theory,
we have to give a formal status to this concept, i.e. we have to establish which
is the mathematical framework suitable to describe the states of a system
and which operations can be performed on them (e.g. in classical physics the
states of a system are represented by the points of the phase space).
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The magic word to open this door is the word ‘interference’: interference
means superposition principle, i.e. linearity, namely linear combinations — and
this takes us to assume that the states of a system are represented by entities
for which such operations are possible: the elements of a vector space.
Which kind of vector space? Real or complex? Finite or infinite-dimensional?
Endowed with a scalar product or not? To be able to give an answer to these
questions, let a simple example guide us: the description of the polarization
states of a photon.

To describe a system means to give the pieces of information necessary and
sufficient to characterize it: for example, we know very well that in an electro-
magnetic wave there are both the electric and the magnetic field, but for its
description the electric field is sufficient; so, if one has a plane monochromatic
wave that propagates in the direction of the z-axis, the wave is described by

E.(z,t) = Eg, cos(kz —wt+ ¢1)
Ey(z,t) = Egy cos(kz —wt + ¢2) (3.6)
E.(z,t)=0.

Putting Ey, = Eo cost, Egy = Ep sind, (3.6) can be written in the form:

Ey(z,t) = § Ey cosd (e k2wt 4 c.c.)
Ey(z,t) = § Ey sind (ei2elkz=wt) 4 cc) (3.7)
E.(2,t)=0

(c.c. stands for “complex conjugate”); if €; and € denote the unit vectors of
the z and y axes, one has:

—

1 : . .
E(z,t) = 5 [(cose'#1 & + sind e 2 &) eilkz—wt) 4 cel . (3.8)

As for the pieces of information on the type of wave (frequency, polariza-
tion, intensity, direction of propagation), the c.c. is superfluous: it is there
only to recall us that the electromagnetic field is real. The piece of informa-
tion concerning the intensity of the wave is contained in the factor Ejy: so, if
one is interested in the single photon, all the information is contained in the
expression:

(cos¥ el ¥t &) + sind e ¥2 &) el k2wt (3.9)

Indeed the description (3.9) is redundant: we can write (3.9) as
et ¥1 (cos¥ @ +sinv e ? &) ellkz—wt) (3.10)

where ¢ = @1 —o. The phase factor e!¥! has no role in establishing the state
of the photon: already in (3.6) it possesses no physical meaning (inasmuch as
it can be changed by redefining the origin of time or of the coordinates) and,
as a consequence, in all the expressions that follow. Therefore, whatever the
value of 1 may be in (3.10), the polarization state of the photon is always the
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same. Note that, instead, ¢ = p1 — @2 cannot be changed by a redefinition of
the origin of time or of the coordinates: in other word ¢; and @9 are defined
up to the same additive constant.

Equation (3.10) is therefore a possible way to characterize the state of a
monochromatic photon:

from k z one deduces that the photon propagates along the z-axis;

e from w the frequency can be derived, then the energy of the photons (this
piece of information is already contained in k: w = ck);

e from the vector cos¥é; + sin® e'¥é&, the state of polarization of the
photon is known.

So, in order to describe our photon, it would suffice to give the triple (E, 39, @):

state of the photon : (k, 9, ) = |k, U, ) (3.11)

inasmuch as from this (3.10) is immediately recovered (the reason for the
notation | - --) will become clear in the next chapter).

Let us now assume we are dealing with photons all having the same E, ie.
the same state of motion; in this case what distinguishes the various photons
is their polarization state. This is determined by the complex vector (from
now on vectors will be written omitting the arrow):

epp =cosve Plep +sindel P2 ey = e (cos? e +sinde?er) . (3.12)

The states of linear polarization are those in which ¢ = 0 (namely ¢1 = @a:
the components of the electric field vibrate in phase); in particular, if ey, =
e1 (e2), the photon is polarized along the x (y) direction, whereas the states
of (either right or left) circular polarization are given (up to a phase factor)
by
€op = é (e1 tieq) . (3.13)

One sees that the polarization states of a photon are described by the elements
of a two-dimensional complex linear space Hs and that vectors proportional to
each other by a phase factor represent the same polarization state. They can
be expressed as linear combinations, i.e. superposition, of either the basis
vectors e; and eg, as in (3.12), or of any other basis (e.g. the vectors e, ).

Not only is the phase factor exp(ipi) in (3.10) irrelevant, but also the
multiples (by an arbitrary complex factor) of ey, do not possess any par-
ticular significance: all the possible polarization states of a single photon are
completely described by the vectors (3.12) by varying ¥ and ¢ = ¢1 — p2.
We can then adopt the following
Convention: vectors proportional to each other (by a complex proportion-
ality factor) represent the same state.

The set of vectors proportional to one another constitute a ray: we then
have a bijective correspondence between the polarization states of a photon
and the rays of H.
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We are able to provide an answer to some of the questions we have posed
at the beginning of this section. The vector space H by which we represent
the states of a system is a complex vector space. The dimension of H depends
on the system one is considering; normally it is infinite: in the example of the
polarization states of a photon the dimension of # is finite because, dealing
with photons all in the same state of motion, we have decided to neglect the
latter. If also the states of motions are taken into consideration, the states are
no longer representable in a finite-dimensional space.

The discussion of the next section will convince us that H must be endowed
with a Hermitian scalar product.

3.5 Discussion of Experiments with Polaroid Sheets

The light emitted by a monochromatic source, e.g. by a sodium lamp (yellow
light), is a statistical mizture of photons (because any atom emits indepen-
dently of the others) with the same frequency, but with different polarizations
(there exist different atomic states that belong to the same energy level and
the polarization of the emitted photon depends on both the initial and the
final state involved in the transition between two energy levels). Therefore a
beam of natural light never is polarized.

There exist in Nature — but they are also commercially available — some
plastic substances (polaroid sheets) that allow one to obtain linearly polarized
light: such substances possess the feature of being totally transparent for the
light polarized in a given direction (called optical axis), to absorb completely
the light polarized in a direction orthogonal to the optical axis, and to have a
linear behaviour: the outgoing field depends linearly on the ingoing field (what
is being described here is the ideal polaroid: transparency and absorption
never are complete, and the same is true as far as linearity is concerned).

Let us consider a plane wave propagating in the direction of the z-axis, and
let us position a polaroid sheet orthogonal to the direction of propagation and
take, for example, the x axis parallel to the direction of the optical axis. The
plane wave is described by (3.6) and can be considered as the superposition of
two polarized waves, the first E; (z,t) = (Egq, 0, 0) cos(k z—wt+p1) parallel
to the z-axis, the second Es(z,t) = (0, Eyy, 0) cos(kz —wt+ ¢2) parallel to
the y-axis.

Thanks to the linearity of the polaroid sheet, the first wave is completely
transmitted, the second is completely absorbed; so the outgoing wave is po-
larized in the direction of the x-axis, namely parallel to the optical axis of the
polaroid sheet.

If we denote by I the intensity of the ingoing wave, by I, that of the
transmitted wave and by Ej the vector whose components are (Eoz, Eoy, 0),

one has: . c
=—FE}, I,=-—E} = Iy=1Icos’V (3.14)

I
81

where ¥ is the angle formed by Ej and the optical axis.
Equation (3.14) is known as Malus Law.
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If unpolarized light hits the polaroid, the transmitted light is polarized
parallel to the optical axis: it is in this way that, at the expense of the intensity,
a beam of polarized light can be obtained. This can be shown experimentally
having at one’s disposal two polaroid sheets with parallel optical axes and
verifying that all the light transmitted by the first sheet is transmitted also
by the second (or, alternatively, if the optical axes are orthogonal to each
other, that the system consisting of the two sheets is completely opaque).

Let us now imagine we have at our disposal a source of linearly polarized
light and a polaroid sheet put in place in such a way that its optical axis makes
an angle ¥ with the direction of the polarization of the light. Let us reduce
the intensity to such an extent as to have, on the average, only one photon at
a time in the path between the source and the polaroid sheet. Downstream of
the sheet we put something (e.g. a photomultiplier) that enables us to count
the photons that cross the sheet. After many photons have been sent on the
polaroid sheet we note the following facts:

1. if ¥ = 0°, all the photons cross the sheet;

2. if ¥ = 90°, no photon crosses the sheet;

3. for generic ¥, N cos? ¥ photons are transmitted and N sin? 9 are absorbed,
N being the total number of the sent photons.

The first two points confirm that the concept of polarization applies also to
the single photon, not only to a beam consisting of many photons: it therefore
makes sense to talk about polarized photons.

The third point, on the one side, confirms that Malus law holds for photons
as well; on the other side it poses a problem: when a photon polarized in the
direction 9 # 0°,90° hits the polaroid sheet, what will it do? Will a fraction
cos? 0 of it go through? If it were so and if Einstein relation (2.1) (relating
the energy of the photon with its frequency) holds, the transmitted photon
should have the frequency v/ = v cos? 9. That things are not in this way is
witnessed by the obvious observation that if the ingoing light is yellow (or red
or green), the light that emerges from the polaroid sheet is yellow (or red or
green), namely it has the same frequency as the ingoing light. Here is another
example of the conflict between the wave nature of light — expressed by the
superposition principle — and the corpuscular nature introduced by Einstein
relation (2.1).

The best thing to do is to control, photon by photon, when the photomulti-
plier clicks: it happens that sometimes the photon passes through, sometimes
no. In the beginning, until only few photons have been sent, it looks as if the
fact that a photon either crosses or not the sheet is totally random; in the
long run, instead, one sees that about N cos?¥ have gone through and, the
higher N, the more this result is precise.

For any photon that arrives at the polaroid sheet we cannot know whether
it will pass or not. All that we can say, by the definition of probability, is
that one has a probability cos? ¥ the photon will pass and a probability sin? 9
it will be absorbed: indeed, the probability of an event is defined, repeating



54 3 Introduction to the Postulates of Quantum Mechanics

many time the experiment (i.e. sending many times a photon), by the ratio
[number of favourable events]/[number of possible cases] (statistical definition
of probability). In the experiment described here the number of possible cases
is N and the number of favourable events is N cos® ¥.

Only in the two cases when either ¥ = 0° or ¥ = 90° we know a priori
and with certainty how the photon sent on the polaroid sheet will behave; in
all the other cases we can only say how much is the probability it will either
pass or not.

We have then made a measurement on the photons: indeed we are using
instruments, the polaroid sheet and the photomultiplier, able to provide an
answer to a precise question: “does the photon go through the polaroid or
not?” and the conclusion of the above discussion is that, even knowing ev-
erything about the photon (polarization state, frequency, etc. — i.e. its state)
and about the measuring apparatus, the result of such a measurement cannot
be predicted a priori (apart from the cases ¢ = 0°, ¥ = 90°), but it is only
statistically determined.

The same thing happens in the experiment of Fig. 3.5: we know that, in
the long run, 50% of the times F} clicks, 50% of the times I clicks; but every
time we send a photon, we do not know whether Fy or F» will click. (Usually
a measurement provides a numerical result: no problem, it is sufficient to
have at one’s disposal a display showing (whatever) number if F; clicks and
a different number if F5 clicks.)

The fact that the result of a measurement, even knowing the state of
the system, cannot be predicted with certainty, but only statistically, is a
new fact that has no analogue in classical physics. It is true that, if a die is
thrown, one cannot predict the number that will come out, but can only say
that the probability for a given number is 1/6. However this is a consequence
of the insufficient information at one’s disposal: according to the classical
schemes, if one knew with great precision the density distribution of the die,
the forces exerted in the throwing, the effect of friction etc., then, for given
initial conditions, one would be able to determine a priori the number that will
come out. The difference between the case of the photon and that of the die
(i.e. between the quantum and the classical points of view) lies exactly in this:
in the case of the die the statistical character of predictability is eliminable,
in the case of the photon it is ineliminable, i.e. it is an intrinsic fact.

In the Young experiment the photographic plate that records the arrival
position of each photon is a measurement instrument (in the experiment with
neutrons the instrument consists of the two counters): also in this case we
cannot know a priori in which point of the plate will the photon be absorbed,
but, since in the long run we will find the whole interference pattern on the
plate, we know that the probability a photon will arrive at a certain point
is proportional to the intensity of the interference pattern in that point. Ev-
idently, the probabilistic information regarding the points of the plate where
the photons can go — and where they must not go — is written in the state
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of the photons (all the photons are in the same state, since they have been
“prepared” in the same way).

In the ‘variation on the theme’ of Young experiment with mobile mirrors
the measurement instrument consists of the mirrors themselves plus, of course,
the device that records the momentum transferred to the mirrors, and the
result of the measurement is that 50% of the times the photon hits A, 50% of
the times B.

The important thing that emerges in this case (we have already hinted at
in Sect. 3.3) is that the measurement perturbs the state of the photons:
indeed, without the mirrors (or with all mirrors fixed) the interference pattern
does form on the plate, with mobile mirrors it does not. The same fact we
find again in the experiment with polaroid sheets: we know that, after crossing
a polaroid sheet, all the photons are polarized in the direction parallel to its
optical axis, so the polaroid sheet changes the polarization state of the photons
initially polarized in the direction ¥ # 0° and 9 # 90°.

The polaroid sheet is not the ideal object for this discussion, for it has the
flaw it makes the system (i.e. the photons) disappear in all the cases they do
not, cross it.

Let us instead consider a birefringent crystal: it is o
a crystal that has different refraction indices for - /:
light linearly polarized in a given direction and for - - — — — -~ E

light polarized in the orthogonal direction; so, as

depicted in Fig. 3.7, a beam of light, in crossing

the crystal, is split in an extraordinary ray E, Fig. 3.7
polarized parallel to the direction of the optical axis, and an ordinary ray O,
polarized in the orthogonal direction.

All we have seen for the polaroid sheets applies to the birefringent crystal;
in particular Malus law holds: if the incident photons are all polarized in a
direction that forms the angle ¥ with the optical axis of the crystal, N cos? ¢
of them will be revealed to emerge in the extraordinary ray and are polarized
parallel to the optical axis, N sin? 9 of them will emerge in the ordinary ray
and are polarized orthogonally to the optical axis. The only difference with
the polaroid sheet is that in the latter the ordinary ray is absorbed and only
the extraordinary one emerges.

The reason why we prefer to deal with the birefringent crystal instead of
the polaroid sheet is the following: in discussing what happens while making a
measurement on a system (the photon, in the present case), we are interested
in that the instrument perturbs the system as little as possible. The flaw of the
polaroid sheet is that it even makes the photons disappear — all those do not
go through it. This kind of perturbation can be eliminated just by replacing
the polaroid sheet with the crystal. The type of perturbation we shall never
succeed in eliminating is the one already discussed: if a photon polarized in
the direction 9 with respect to the optical axis is sent, it emerges either in the
direction of O or in the direction of E (Fig. 3.7). In both cases its polarization
state is different from the initial one: also in this case the measurement — that
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consists in detecting, e.g. by means of mobile mirrors, whether the photon
emerges in either O or E — perturbs the system. If, instead, mobile mirrors
are not used, it is possible to recombine the two rays that emerge from the
crystal and, by suitably adjusting the optical paths, operate in such a way
that each photon will be in the very end in a given polarization state (e.g.
the initial one): in this case the state of the photon has not been perturbed,
indeed we have not made a measurement: the system has been allowed to
causally evolve in another state. We shall come back on this point (that is
a very important one) in the next chapter, when discussing the difference
between a statistical mixture and a pure state.

Note that, in the case a measurement is made, after the measurement the
photon can be in either one or the other of two precise states of polarization,
that parallel and that orthogonal to the optical axis. So the measurement
perturbs the system forcing it to go in either one or the other (according to
some probabilities) of particular states connected with the measurement one
is making (if one used a birefringent crystal with its optical axis put in a
different direction, the states of the photons after the measurement would,
accordingly, be different).

This happened already in the different situations discussed in Sect. 3.3: for
example, in that described in Fig. 3.6, the photon in the state C was forced,
as consequence of the measurement with mobile mirrors, to go either in the
state A or in the state B.

Denoting by e; and es the vectors that represent the polarization states
respectively parallel and orthogonal to the optical axis of the crystal, i.e. the
only states that are possible after the measurement, the (linear) polarization
state of the incident photons is

eyg =cosve; +sindey . (3.15)

The theory must enable us to calculate the probabilities that, after the mea-
surement, the system be in either the state e; or the state es: if in Ho we
introduce the Hermitian scalar product defined by

(e1,e1) =1=(e2,e2), (e1,e2)=0; (u,v)= (v, u)" (3.16)
such probabilities are given by

Pley — e1) = cos?d = |(eg, e1)|?
P(eg = e3) = sin®9 = |(eyg, e2)|?

P1
D2

(3.17)

and this shows the necessity that in H a scalar product be defined, inasmuch
as it is by means of it that it will be possible to express the probabilities of
the several result a measurement may yield.

The discussion of this section has emphasized that in quantum mechanics
the concept of measurement plays a fundamental role that has no counter-
part in classical physics: the reason lies in the fact, although even in classical
physics it is true that any measurement perturbs the system, it is understood
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that such a perturbation can be made as small as one wishes by improving
the measurement apparatus. This is not possible in quantum mechanics: the
perturbation induced by the measurement is an intrinsic fact and cannot be
eliminated.

Einstein, to whom we owe the birth of quantum mechanics, never accepted
the idea that the laws of physics might be intrinsically probabilistic and consid-
ered this fact a signal of the incompleteness of the theory: quantum mechanics
in the Copenhagen interpretation was for Einstein a provisional version of the
definitive theory, which necessarily had to be a deterministic theory, much as
classical physics is: his statement “God doesn’t play dice” is famous. To the
present day a way of thinking inspired by Einstein ideas receives much atten-
tion and activity: roughly speaking, the idea is that the (polarization) state
is not completely determined by the vector ey, but also by an additional
variable € (called hidden variable) that can assume certain values (e.g. be-
tween 0 and 1): any photon ‘is born’ with a well determined value of € and
the latter determines whether the photon will end in either the ordinary or
the extraordinary ray. It seems that the experiments exclude this possibility,
at least in the form told above. We shall come back to this point in the last
chapter.

Let us summarize the fundamental concepts introduced in the present
section.

1. The result of a measurement, apart from particular cases (¢ = 0° and
¥ = 90° in the case illustrated above), is not determined a priori, we can
only know the probability of the various results.

2. Apart from particular cases (again ¥ = 0° and ¥ = 90°) a measurement
perturbs the state of the system. The perturbation caused by the mea-
surement cannot be eliminated by using ‘more refined’ instruments.

3. After a measurement, the system can be in one and only one from a precise
set of states.

3.6 Compatible and Incompatible Measurements:
Heisenberg Uncertainty Relation

Suppose one wants to determine both the polarization state and the frequency
— i.e. the energy — of a photon. After determining the polarization state in
some way (e.g. by means of a birefringent crystal), in order to determine its
frequency it will suffice to let it go through a prism. Since the prism does
not change the polarization state, we can simultaneously know polarization
and frequency of the photon. One then says that the two measurements, of
polarization and frequency, are compatible with each other.

It is then clear that in the quantum scheme there may exist measurements
incompatible with one another: this happens when the second measurement
perturbs the state of the system in such a way that the information, acquired
with the first measurement, gets lost. In this case the two quantities one wants
to measure cannot be simultaneously known.
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A typical example of quantities that cannot be simultaneously known is
that of position and velocity of a particle.

Suppose one has an electron whose velocity is ,'\Pl

known. We want now to determine the position of N

the electron. To this end it is necessary to observe ’ :

it: we therefore send some monochromatic light on N )/

it and collect the light scattered by the electron . N /;/ light
by means of a lens (microscope); this light will be = v /
focalized in a point P’ of a photographic plate (im- Fig. 1;.8

age point) and from the knowledge of the position
of this point one can find the position of the electron (Fig. 3.8). This is the
basic idea to measure the position of the electron (Heisenberg microscope).
Let us now examine how the microscope works. First of all, let us recall
that any optical instrument has a finite resolution power: this means that,
given two points P; and P, a distance § apart from each other (Fig. 3.9),
there exists a dmin such that, for § < dpin the instrument (lens) is not able to
distinguish them. Why does this happen? A lens ‘cuts’ a portion of the wave
front of the incident light, the size of this portion being equal to that of the
lens — much as a hole in a screen — and so gives rise to the phenomenon of
diffraction: we could say a lens is a “hole of glass in the vacuum”.
So the images of points are not points, but diffrac-
tion patterns produced by the lens, i.e. small spots. ERa
Since, due to diffraction, any ray incident on the < L Tl
lens gives rise to a cone of rays, whose aperture is © P
sing ~ A\/d (Fig. 3.9), d being the diameter of the
lens, it follows that the image of a point is a spot
whose linear size is ls sing = la \/d. Fig. 3.9

The images of points P; and P>, will be distinguished if the relative spots
do not overlap: this happens if Io \/d < §l3/ly, i.e.if §/l3 > A/d.

If the source — in the present case the electron — emits (or scatters) only
one photon, its arrival will be recorded in a precise point of the photographic
plate; according to the discussion of Sect. 3.3, the photon could have arrived in
whatever point of the small ‘image spot’: this means that, from the knowledge
of the point the photons arrives at (image point), one can trace back the
position of the source up to an uncertainty Omin = I3 \/d.

Note that, in order to improve the resolution power of an instrument, it is

necessary either to decrease A or to increase d, or both. d
Going back to our experiment, one realizes that the R .
position of the electron is known with an uncertainty AN .’ .
Az ~ I3 \/d = \/(2sin¢), in which 2¢ is the angle e !
under which the electron ‘sees’ the lens (Fig. 3.10). e
It is our choice to make this Az big or small, ac- A
& ’ Fig. 3.10

cording to our wish, by varying the parameters l1, A, d.
Once the position has been measured with the desired precision, let us see
what happened to the velocity of the electron.
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If the electron has been seen by the microscope, it means that at least one
photon has been scattered by the electron and has gone through the lens: we
record its arrival at P’ (Fig. 3.8), but we do not know in which point it has
crossed the lens, namely in which direction it has been scattered. This entails
that we cannot precisely know the momentum of the scattered electron and,
therefore, the momentum exchanged between electron and photon. Quanti-
tatively: the z component of the momentum h/A of the scattered photon is
determined only up to Ap, = 2(h/\) sin¢ which, by momentum conserva-
tion, is also the uncertainty by which we know the momentum of the electron
after the position measurement. Also Ap, can be made either big or small as
much as one wishes, by varying Iy, A, d, but at the expense of Az. Indeed:

AxxApy ~h (3.18)

that is known as Heisenberg uncertainty relation.

The consequences of (3.18) are evident: not only it is impossible to know
simultaneously position and momentum of a particle (Az =0 and Ap, = 0),
but the better we know one of the two, the worse we know the other.

It should be clear from the above discussion that Ap, # 0 has been
caused by the perturbation that the measurement of position has produced
on the electron. Let us then see why this perturbation can be eliminated in the
classical scheme, whereas it cannot in the quantum description. Indeed, while
we can make Az as small as we wish — for example by decreasing A —, we can
simultaneously (according to the classical scheme) decrease the intensity of
the radiation used to illuminate the electron, and this makes the momentum
transferred to the electron decrease as much as one wants. The reason why
this description is not realistic is that it does not take into account photons,
i.e. the existence of the quantization, that prevents one from decreasing ‘as
much as one wishes’ the intensity of the radiation, once A has been fixed.

From the historical point of view, (3.18) has played a fundamental role
in the passionate discussions among, on the one side, the supporters of the
Copenhagen interpretation and, on the other side, those (as Einstein himself)
who did not adhere to it. It is exactly because of this role that in some contexts
it is dubbed as indeterminacy principle: indeed, within the quantum theory,
it is not a principle, but a theorem (it follows from other ‘principles’) and will
therefore be referred to as uncertainty relation.

When, in the next chapter, we shall demonstrate the uncertainty relation,
we shall see that its correct form is

1
Az xAp, > 5 h. (3.19)

The inequality sign and the fact that the right hand side is % h, instead of h,
do not alter the conceptual meaning of (3.18) that we have derived without
paying too much attention to numerical factors.

We have now the means to understand, at least qualitatively, why in the
Young experiment with the mobile mirrors (Fig. 3.6) the formation of the
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interference pattern is incompatible with the observation of the recoil of the
mirrors. Indeed, two conditions should be satisfied: first, the formation of
the interference pattern requires that the uncertainty in the length of optical
path of the photons must not exceed A, and this puts an upper limit to the
uncertainty As of the position of the mobile mirrors; second, the possibility
of observing the recoil of the mirrors (i.e. the momentum transferred by the
photons whose momentum is h/\), puts an upper limit to the uncertainty
Aps of the momentum of the mirrors. These two conditions turn out to be
incompatible with the uncertainty relation (3.18) (or (3.19)) applied to the
mirrors.

Actually (3.19) has a more precise (and general) meaning than that emerg-
ing from the way we have derived (3.18) (which is Heisenberg’s), and that can
give rise to misunderstandings (as witnessed by the discussions we have hinted
at): indeed, the arguments we have used to derive (3.18) may induce one to
think that both the position and the momentum uncertainties arise from the
instrumental impossibility of knowing where does the photon start from and
which direction does it take, but that the latter — in spite of the fact that we
cannot know them — are well determined.

It is then understandable that somebody would like to maintain the fol-
lowing point of view: ‘the fact that no experiment will enable one to exactly
determine position and velocity of a particle does not prevent from thinking
that the particle has at any given time a well determined position and a well
determined velocity’. One is of course free to think whatever he wishes, how-
ever this attitude can be criticized for two reasons. The first is that in this
way one will end up in considering reality as something different from what
can be measured — this is however a problem we shall leave to philosophers.
The second, for us more important, is the following: it is as if, concerning the
two-slit experiment, we insisted in maintaining that the photon goes through
either A or B, even if no measurement will ever enable us to control whether
this is true or not. But we know that in this way we are not able to explain
how is it that the interference fringes, not the superposition of the diffraction
patterns, are observed. Similarly: if the electron at any time ‘has’ a well de-
termined position and velocity, then in the Davisson—Germer experiment the
electron necessarily will be reflected by one (and only one) lattice plane: we
do not know which one, the electron does. But again, as in the just discussed
Young experiment, we are not able to explain why specular reflection occurs
only for those angles that satisfy the Bragg condition (2.43). Also in this case
we must admit that the electron is simultaneously reflected by many lattice
planes — which is clearly incompatible with the idea of the electron as a cor-
puscule, i.e. endowed with well determined position and velocity. More: if the
neutron in the interferometer of Fig. 3.4 ...



Chapter 4

The Postulates of Quantum Mechanics

4.1 The Superposition Principle

Most of the fundamental concepts that are at the basis of quantum mechanics
have already emerged during the discussion of the previous chapter. Now the
problem is to formalize these concepts within a coherent structure, namely to
go ‘from words to facts’. We will try to proceed in this process of formalization
both by making good use of the already discussed examples and by arriving at
the formal aspects of the theory as much as possible from the physical point
of view (for example, this is the way we shall succeed in establishing that
observable quantities are represented by operators on the space of states).

In Sect. 3.4 we have already recognized the necessity to describe the states
of a system by means of the vectors of a complex vector space: this is the first
fundamental principle at the basis of quantum mechanics, known as

Superposition Principle: the states of a system are represented by the
elements (vectors) of a vector space H over the complex field. Vectors propor-
tional to one another (by a complex factor) represent the same state. Therefore
the states are in correspondence with the rays of H.

Moreover, in Sect. 3.5, we have seen that — in order to give a predictive
character to the theory — it is necessary that the space H be endowed with a
Hermitian scalar product.

The dimension of H depends on the system under consideration: normally
it is infinite.

The space H, that we shall assume complete, is therefore a Hilbert space.
We also assume that H be separable (namely it admits a countable orthonor-
mal basis).

As far as the (infinite) dimension and the separability are concerned, these
— in the case of one or more particles — will be deduced by the quantization
postulate to be introduced in the sequel.

One can now ask oneself if the correspondence between states of the system
and rays of H is a bijective one, namely if to any vector (or ray) of H there
always corresponds a state of the system. It is likely that this assumption is
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not true and not even necessary; on this point, that is rather marginal, we shall
come back later and we shall see that, probably, it is sufficient to assume that
the physical states are in correspondence with a dense, algebraically closed
(i.e. closed under finite linear combinations) subset of H. However there is
no doubt that the hypothesis that H be a complete space is extremely useful
from the mathematical point of view — indeed it is an hypothesis one cannot
simply give up: that is why we shall assume it is fulfilled. This (probably)
means that the vectors representative of physical states are immersed in a
larger (closed) ambient. We have used a dubitative form because, usually, one
takes for granted that the correspondence states/rays is bijective.

The vectors of H will be denoted by the symbol | ---), called “ket” (Dirac
notation). The scalar product between two vectors | A) and | B) is denoted
by the ‘bra’-‘ket’:

(B|A)=(A|B) (4.1)

and is linear in | A) and antilinear in | B) ; the scalar product between «| A)
and 8|B) (a, 8 complex numbers) is f*a (B | A): it is the same as saying
that one takes the scalar product between the “ket” «|A) and the “bra”
B*( B| (by the way we note that | A) and «|A) represent the same state).

The important physical aspect of the superposition principle is that it
expresses the fact that the states, being represented by vectors, may ‘interfere’
with each other: if |A) and | B) represent two states, then

alA)+B|B) for any a, 8 € C (4.2)

still represents a state different from both |A) and |B) — just as for the
polarization states of light (represented by the vectors (3.12)) and, in general,
for waves.

Note that the states (4.2) are (varying a and 3) c0?, not oo* (o and 3 are
complex numbers!) because o and 8 can be multiplied by the same complex
factor: a|A)+ S| B) and o' |A) + '| B) represent the same state if and
onlyif a: o/ =p5:p.

In the example discussed in Sect. 3.3 | A) and | B) represent two states
of the photon: | A) (| B)) represents the state one has when only the hole A
(B) is open: when both holes are open the state of the photon is represented
by

|C)=|A)+|B). (43)

The vague expression used in Sect. 3.3 for the state C that ‘has to do with’
the states A and B is now translated into a precise mathematical form: the
vector |C') that represents the state C of the photon is a linear combination
of the vectors | A) and | B) that represent the states of the photon when
either only hole A or only hole B is open.

(Sometimes, in order keep the terminology quick enough, we shall simply say
‘the state | A)’ instead of ‘the state represented by the vector |A)’. The
abbreviation is not appropriate for two reasons: (i) there is no correspondence
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between states and vectors, only between states and rays; (ii) one thing is the
state of the system, another thing is the way we represent it.)

Always referring to the Young experiment (or to its analogue with neu-
trons) we now ask how the oo? states a|A) + B|B) can by physically
realized: we may change at our wish the ratio |a/8| by varying, by means of
diaphragms, the sizes of the two holes (or — in the experiment with neutrons
of Fig. 3.4 — by making use, for the semi-transparent mirror s;, of a crystal
with suitable reflection and transmission coefficients); the relative phase be-
tween o and f can be varied by putting (in the Young experiment) a small
glass slab of suitable thickness in front of one of the holes (it will have the
same effect as either the glass slab in the Mach—Zehnder interferometer or the
aluminum wedge in the neutron interferometer of Fig. 3.4). If we now send
many photons and then develop the photographic plate, we see that, accord-
ing to the value of |a/f]|, the contrast among the bright and the dark fringes
of the interference pattern changes; and if either a« — 0 or  — 0, the latter
becomes the diffraction pattern of the open hole, whereas in the second case
(i.e. in presence of the phase shifter) we see that all the interference pattern
has undergone a translation. There exist, indeed, oo? interference patterns.

In the case of the states of polarization of light, we know that the oo?
states corresponding to the vectors (3.12) are the co? states of elliptic polar-
ization of the photons.

In Sect. 3.3 we have said that the state of a system is defined by the way
in which the system is prepared: the postulates we will introduce in the next
sections will teach us how this information is codified in the vector | A) that
represents the state.

4.2 Observables

We call observables the quantities that can be measured on a system: in most
cases one has to do with the same quantities that can be measured according
to classical physics (an exception is provided by the spin, that has no classical
analogue). For example, in the case the system is a particle, energy, angular
momentum, the components ¢;, 1 = 1, 2, 3 of the position of the particle, the
components of its linear momentum etc. are observables (with some proviso
on the last two): in general the functions f(q, p).

We already know the fundamental role played in quantum mechanics by
the process of measurement; therefore we think to associate one or more in-
struments of measurement with each observable: for example we associate
a Heisenberg microscope with the observable ‘position ¢;’, a magnetic field
spectrometer with the observable ‘momentum |7/, etc.

From now on, by the term ‘observable’ we shall mean both the quantity
that can be measured and an instrument suitable for measuring it.

Let £ be an observable and &, &3, --- & --- the possible results of the
measurements of £ on the system. The real numbers &; are called the eigen-
values of ¢ (we shall see later that the denumerability of the eigenvalues
follows from the separability of H).
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For example, the possible results of the measurements we have cited in the
previous chapter, when either dealing with the Young experiment modified by
the presence of mobile mirrors (Sect. 3.3) or with the experiment involving
the birefringent crystal (Sect. 3.5), were two (either one of the mirrors was
hit), and we can couple a device to our apparatus exhibiting a number on its
display, e.g. the numbers +1 and —1, depending on the result. In the latter
case the eigenvalues are two: & = +1, & = —1.

More: the energies allowed for a system, i.e. its energy levels, are the
eigenvalues of the observable ‘energy’.

It will be a specific task of the theory to specify which are the eigenvalues
relative to each observable. Indeed one of the main problems of quantum
mechanics precisely is the determination of the eigenvalues for the different
observables and, among these, energy will have a privileged role.

In general, if the observable ¢ is measured on a system in the state | A),
the result of the measurement is not a priori determined (see the experiments
with polaroid sheets), but all the numbers &; can be found as result, with
probabilities p; that depend on the state | A). In other words, if the mea-
surement of ¢ is made many times on the system, that any time is in the
state | A) (this means that many copies of the system, all prepared in the
same way, are at one’s disposal), the different results &; will be obtained with
frequencies proportional to p; .

We shall call eigenstates of £ those particular states on which the result
of measurements of £ is determined a priori, therefore it is always the same
(example: the two rectilinear polarization states of a photon, respectively par-
allel and orthogonal to the optical axis of a birefringent crystal, are eigenstates
of the observable associated with the crystal) and we shall call eigenvectors
of & the vectors of H that represent the eigenstates of £ (the abuse made in
using the words ‘eigenvectors’ and ‘eigenvalues’, that have a precise meaning
in the framework of linear algebra, will be justified later).

An eigenstate of £ corresponding to the eigenvalue §&; is a state
for which the result of the measurement always is & (so to any eigenstate
there corresponds one of the eigenvalues; we shall shortly see that also the
viceversa is true): therefore for it p; = 1 whereas, if 7 # ¢, p; = 0; a
representative vector of it is denoted by | ) and is called an eigenvector
of & corresponding to &; (we shall often improperly say ‘the eigenstate
| &)’ instead of ‘the eigenstate of £ represented by the vector |&;)’).

We postulate that:

If ¢ is measured on a system and the result is &;, immediately after the
measurement the system is in an eigenstate of £ corresponding to &; .

So, if the system is in a state |A) and a measurement of ¢ is made,
we cannot know a priori which result we will obtain and in which state the
system will be after the measurement, but when the measurement has been
made and has given the result &;, we know that the system is in an eigenstate
of ¢ corresponding to the eigenvalue &;: therefore, if immediately after the
first measurement of £ a second measurement of the same observable is made,
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certainly the same result will be obtained (and therefore to any eigenvalue
there corresponds at least one eigenvector).

So, in general, a measurement perturbs the state of the system: |A) —
| &) (an exception is provided by the case in which | A) itself is an eigenstate
of ). Note that this postulate expresses in general what we have seen about
the birefringent crystal in the previous chapter.

It is easy to realize that in many measurement processes this postulate
is contradicted. It must therefore be understood in the following sense: it
defines which are the ‘ideal’ instruments of measurement that correspond to
observables quantities, fixing their behaviour (so, in this sense, it is a definition
rather than a postulate). In addition, it postulates that for any observable
there exists at least one ‘ideal’” instrument suitable to measure it.

There may exist one or more eigenstates corresponding to a given eigen-
value & of the observable £: in the first case we will say that the eigenvalue
& is nondegenerate, while in the second we will say that the eigenvalue &;
is degenerate. The physical importance of this definition is the following: if
a measurement of £ yields the eigenvalue §; as result, and if this is nonde-
generate, then we know in which state the system is after the measurement.
In the contrary case, if & is a degenerate eigenvalue, we only know that af-
ter the measurement the system is in an eigenstate of £ corresponding to the
eigenvalue &;, but we do not know which one.

A nondegenerate observable is an observable such that to any of its
eigenvalues there corresponds only one eigenstate, i.e. all of its eigenvalues are
nondegenerate; in most cases the observables are degenerate.

According to the above discussion, a measurement of a nondegenerate
observable always completely determines the state of the system after the
measurement; if instead, in correspondence with the eigenvalue found as a
consequence of the measurement there exists more than one eigenstate (de-
generate eigenvalue), the information on the state of the system after the
measurement is only partial.

We shall see in Sect. 4.4 that a postulate, known as von Neumann pos-
tulate, will enable us to determine the state immediately after the measure-
ment even when the result is a degenerate eigenvalue. For the time being,
consistently with this postulate (that we shall be able to enunciate only after
proving that the set of the eigenvectors of on observable, corresponding to a
given eigenvalue, is a linear manifold), we may assume that:

If a measurement of the observable ¢ is made on the system in the state | A),
the state after the measurement is univocally determined by the initial state
| AY and by the found eigenvalue &; .

We shall see that the von Neumann postulate will allow us to state that
the ‘arrival state’, within the set of all the possible eigenstates corresponding
to the found degenerate eigenvalue, is that for which the initial state has
undergone the least possible perturbation.

Example: the birefringent crystal is a nondegenerate observable if the sys-
tem is the photon regardless of its state of motion (i.e. the state space is Ha2 );
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if instead the system is ‘all’ the photon, then it is a degenerate observable:
indeed it allows us to determine the polarization state of the photons, not
their state of motion. In any event, von Neumann postulate allows us to state
that if we take a photon in a well determined state (for example it propagates
in a given direction with energy F = hv) and is linearly polarized at an angle
¥ with respect to the optical axis of a birefringent crystal, after the measure-
ment has established whether the photon emerges either in ordinary or in the
extraordinary ray, the photon is in a well determined state that depends only
on the initial state and on the result of the measurement: the polarization
state is either parallel or orthogonal to the axis of the crystal, according to
whether the photon has emerged respectively either in the extraordinary or
in the ordinary ray and, if our instrument is ‘ideal’ (in the above said mean-
ing), the state of motion (i.e. energy and direction of motion) has been left
unchanged.

A device that allows us to determine both the polarization and the motion
state of the photons (crystal 4+ prism + etc.) is instead a nondegenerate
observable.

Provisionally we take the following statement as a further postulate, even
if it will be seen to be a consequence of the other postulates we will enunciate
in the sequel:

Any state is eigenstate of some nondegenerate observable.

From the point view of physics this means that any state can be ‘prepared’
by the measurement of a suitable observable: i.e. one uses the observable as
a filter (much as the polaroid or the birefringent crystal to prepare linearly
polarized photons) by making measurements on the system and accepting only
the state that is obtained when the measurement yields the desired result.

It therefore emerges that a type of information sufficient to characterize
the state of a system consists in knowing which nondegenerate observable has
been measured on the system and the result of such a measurement: it is not
necessary to know all the past history of the system.

4.3 Transition Probabilities

Let £ be an observable. We know that a measurement of £ on a system in
the state | A) will give one of the eigenvalues &; as a result and that, owing
to the measurement process, the system makes a transition to an eigenstate
| &) . Therefore the probability p; of finding a given eigenvalue &; as a result
is also called transition probability from |A) to |&; ). Let in general | A)
and | B) be the representative vectors of two states; the probability that,
owing to a measurement on the system in the state | A), the system goes in
the state | B) is called transition probability from |A) to |B).

One postulates that the above transition probability P(|A) — | B)) does
not depend on the (‘ideal’) instrument used to perform the measurement and
is given by:

(B 4)[°

P(|A>—>|B>):W- (4.4)
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Definition (4.4) is a ‘good definition’: indeed

e P does not depend on the arbitrary factor present in the correspondence
states <> vectors: it does depend, as it must be, on the states, not on the
vectors chosen to represent them. Indeed, if o and 8 are complex numbers,
a|A) and B|B) represent the same states as | A) and |B) and one
has

a2 |82 [(B | A)
[a?(A | A) |B*(B|B)

| 2

P(a|A) = B|B)) = = P(]A) = |B)).

e (< P <1:it follows from the Schwartz inequality.

Note that P(|A) —|B)) =0 ifand only if | A) and | B) are orthogonal to
each other: there occur no transitions among states (represented by vectors)
orthogonal to one another; whereas P = 1 if and only if |A) and |B)
represent the same state.

Usually it is convenient to represent the states by vectors normalized to 1:

(A]A)=1=(B|B)
in which case (4.4) reads:
P(|A)—|B))=|(B]| A)f2 (valid for normalized vectors).  (4.5)

The transition probability between two states |A) and |B) is, from the
operational point of view, always well defined inasmuch as we have postulated
that for any state | B) there always exists (at least) one observable that has
such a state as an eigenstate corresponding to a nondegenerate eigenvalue.
In any event, even if & is a degenerate eigenvalue of £, the probability
p; that a measurement of £ on a state | A) gave & as a result is given by

(A | §§>|2 (normalized vectors), where |£}) is that eigenstate of £ that,
thanks to von Neumann postulate, is univocally determined by the initial
state | A) and by the eigenvalue ¢&;.

Example: let us consider a photon in the linear polarization state
leg) =cosd|er)+sind|es) .

The probability that, owing to a measurement (e.g. by means of a birefringent
crystal) it makes a transition to the state |e; ), is given by

2
P(leg) = ler)) =|(e1]es)|” =cos?V.
Indeed, the two vectors |e;) and |es) are orthogonal to each other (as

elements of H3) because a measurement on photons in the state |e;) will
never give photons in the state | ez ). One is back to Malus law.
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4.4 Consequences and von Neumann Postulate

Let us now analyze some consequences of the postulates so far introduced.
We will firstly discuss the case of

Nondegenerate observables

Let ¢ be a nondegenerate observable, &; its eigenvalues and |¢;) its eigen-
states that we will assume gormalized to 1.

The quantity |(fi | &5 >| is the probability that, owing to a measurement,
e.g. of the observable £, a transition from |¢;) to |&;) or viceversa has taken
place. But, if ¢ # j, this probability is 0 because a measurement of £ on the
state |&;) will always give & as a result, never ¢;. Therefore:

0 ifij

4.6
1 ifi=j. (4.6)

<&|®>=@j={

Namely: the normalized eigenvectors of an observable £ are an orthonormal
system of vectors. Let us demonstrate that such a system is also complete.
We will reason by contradiction: if a vector | A) orthogonal to all the |&;)

existed, one would have p; = P(|A) = |&)) = |(& | A>|2 = 0 for any ¢,
which is absurd since, by definition of probability, >, p; = 1. Therefore:

the eigenvectors of the (nondegenerate) observable { form an orthonormal
basis.

Any vector | A) of the space H can therefore be expanded in series of the
vectors of the basis (Fourier series):

>=Zaz‘|€i>- (4.7)

The coeflicients a; of the Fourier series are calculated by taking the scalar
product of both sides of (4.7) with the generic (normalized) vector belonging
to the basis:

(&l A) ZCZJ &Gil&)=ai. (4.8)

Equation (4.7) can then be rewritten by substituting the expression (¢; | A)
to the a;:

=> &)&|A). (4.9)
1=1

Note that, thanks to (4.6), (A | A) (the squared norm of the vector | A)) is
given by

(A]A) Za a; (& | &) :Z|a¢|2<oo (4.10)
i=1

so, only if >, |a;|? < 0o, does (4.7) define a vector belonging to H.
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If the vector | A) is normalized, the coefficients a; have a rather direct
meaning: |a;|? is the transition probability p; from |A) to |&) (and from
(4.10) one has ) ., p; =1):

2
pi= (A& =lail?. (4.11)
If the |&;) are normalized, but | A) is not, then
i = |ai|*
(AlA)

The fact that only the |a;|? and not directly the a; have been given a physical
meaning should not lead one to think that only the absolute value of the a; is
endowed with a physical meaning: once the basis is fixed (i.e. once the vectors
| &) are fixed), changing the a; by a phase factor, a; — exp(ig;) a; , amounts
to changing the state, unless the ; are all equal to one another, in which
case |A) —exp(ip)|A), and the state is not changed.

Example: the states of polarization of a photon , represented by the vectors
ley) =cosd|er) +sind|ex), lep,) = cost e ) +sinde?|ey)

are different from each other: linear polarization in the first case, elliptic in
the second, even if

P(les) = le1)) = P(lesy) = le1))
P(|679>—)|€2>) ZP(|€19¢>—)|€2>).

If instead we want the probability of transmission through a polaroid sheet
with its optical axis at 45° in the z-y plane, i.e. the transition probability to
the state

%(|e1>+|e2>)7

the latter is different for the two states | ey ) and | ey, ) . Therefore, in general,
two states represented by the vectors:

|4) =D a;1&), |B) =) a;c'¥ |&) (4.12)
Jj=1 j=1

are different, even if they behave in the same way as far as the measurements
of the observable § are concerned (the probabilities |A) —[&;) and |B) —
|&;) are equal to each other), but — just because they are different states —
there will certainly exist some other observable 7, measuring which will give
rise to a different behaviour of |A) and | B).

Let us now discuss the case of

Degenerate Observables

Let us now examine how the previous results are modified if £ is a degen-
erate observable. Also in this case one has that
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the eigenvectors of an observable corresponding to different eigenvalues are
orthogonal to one another

and that
the set of all the eigenvectors of an observable is complete.

The proofs, that we omit, are similar to those of the nondegenerate case (it
is however necessary to make use of another consequence of the von Neumann
postulate: if, owing to a measurement of the observable &, | A) — |, ), then,
from among all the eigenstates of ¢ corresponding to the eigenvalue &;, the
vector |&;) is that for which the probability transition is a maximum).

We can no longer state that the eigenvectors of the (degenerate) observ-
able £ form an orthonormal basis: we are not guaranteed (and it is not true)
that different eigenvectors corresponding to the same eigenvalue are mutually
orthogonal. Indeed the following important theorem holds:

Theorem: any linear combination of the eigenvectors of an observable cor-
responding to the same eigenvalue still is an eigenvector of the observable
corresponding to the same eigenvalue.

Let & Dbe a degenerate eigenvalue: the theorem states that if |[£]) and
|£7) represent two eigenvectors of £ corresponding to the same eigenvalue
&1, any vector a|&]) + 8|} ) represents an eigenstate of £ corresponding to
the eigenvalue &; .

Proof: let us put |A) = a[&]) + 3£ ). In order to show that [A) is
an eigenstate of £ corresponding to the eigenvalue &7, one must show that a
measurement of £ on | A) always gives & as result, which is equivalent to
say that a measurement of £ will never give &;, i > 2,, namely p; = 0 for
1 > 2. Let us reason by contradiction: suppose we find & (i > 2) as a result.
Then the system after the measurement is in an eigenstate of £ corresponding

to & : |& ). The transition probability |A) — |&;) is p; = |<A | &) 2, but
(Al&)=a"(& &) +B7(& &) =0

for (&1 1&) = (& | &) =0 (orthogonality of eigenvectors corresponding to
different eigenvalues), therefore p; = 0, against the hypothesis.

Thanks to the continuity of the scalar product, the conclusion extends to
linear combinations of whatever (either finite or infinite) number of eigenvec-
tors and we can in conclusion state that

The set of all the eigenvectors of an observable corresponding to the same
eigenvalue is a (closed) linear subspace of the Hilbert space H.

This linear manifold is called the eigenspace of the observable corre-
sponding to the eigenvalue &; .

The dimension of this manifold (that can be either finite or infinite), i.e. the
number of independent vectors it contains, is called degree of degeneracy
of the eigenvalue. For a nondegenerate eigenvalue the degree of degeneracy is
therefore 1. The g;’s of (2.20) are precisely the degrees of degeneracy of the
eigenvalues of the observable energy, i.e. the number of independent states
corresponding to the energy level E;.
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We have seen that, for a degenerate observable, the set of its eigenvectors
is complete, but — contrary to the nondegenerate case — is not an orthonormal
system: indeed, in every degenerate eigenspace of an observable obviously
there exist vectors not orthogonal to one another. However, it is known that
from a complete set it is always possible, by means of an orthonormalization
process, to extract a complete orthonormal set. Therefore we are able to form
an orthonormal basis consisting of eigenvectors of a (degenerate) observable
&: such a basis contains all the eigenvectors corresponding to nondegenerate
eigenvalues and a system of mutually orthogonal vectors corresponding to
any degenerate eigenvalue, whose number equals its degree of degeneracy, i.e.
a system that is complete in the considered eigenspace. The choice of the
orthonormal basis is not unique, because clearly in any degenerate eigenspace
of the observable infinite choices of mutually orthogonal vectors are possible.
In any event, once an orthonormal basis is fixed: | 5%1) N 5(2) )RR f(l) )y
one can still expand any vector |A) in terms of it:

4) =ai" &) +a?e?) + - +ag 1)+ (4.13)

The coefficients agl), a§2>, RN agl), .-+ are obtained as in (4.8) and (4.10)
still holds.
Two problems remain open:

1. how much is the probability p; that a measurement of £ on | A) gives the
degenerate eigenvalue &; as a result? and
2. which is the state of the system after such a measurement?

To both questions the von Neumann postulate (we already have partially
enunciated and utilized) gives the answer:

von Neumann Postulate: if a measurement of £ on | A) gives the (degen-
erate) eigenvalue ; as a result, the state after the measurement is represented
by the (ray to which belongs the) vector | €, ) that is obtained by orthogonally
projecting | A) onto the eigenspace of £ corresponding to the eigenvalue &; .

If |A) is given by (4.13), then:
1) =a 1My +aP1eP )+ 4 aM ey 4 (4.14)

(the sum extends only to the vectors | §i(k) ) that correspond to the eigenvalue
& and, if | A) is normalized to 1, in general the vector |¢;) is not).
Now also the answer to the first problem is straightforward:

¢ 1 2 n 2
pv:P(|A>_>|§’,>) _ (A | &)I? _ (|a§~ )|2+|a§ )|2_|_..._|_|al( )|2_|_”')
(&1&)  laPP+1a® R+ + a2 +
= |az(‘1)|2+|a§2)|2+'~-+|a§”)|2+... (4.15)

Therefore p; is the sum of the transition probabilities |A) — &), |A) —
|€/), -+ from | A) to the vectors of whatever orthonormal set of eigenvectors
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of £ corresponding to the eigenvalue §;, in number equal to the degree of
degeneracy, i.e. complete in the considered eigenspace.

Note that, since the vector representing the state after the measurement is
obtained by projection of the vector | A), an equivalent way of expressing the
von Neumann postulate is to state that: the system effects the transition to
the state, from among the eigenstates of £ corresponding to &;, for which the
probability transition is a maximum; or that: the measurement has perturbed
the system the least possible; indeed, the orthogonal projection is, in the
manifold of the eigenvectors corresponding to &;, the vector ‘closest’ to the
initial vector | A).

An obvious consequence of von Neumann postulate is that, if the ini-
tial state | A) already is an eigenstate of £ corresponding to the (degener-
ate) eigenvalue &;, the state is not perturbed by the measurement: indeed
the projection of | A) coincides with | A); therefore, in particular, even if
(& 1&7) # 0, a measurement of £ will never be able to induce the transi-
tion &) — | €/ ): the measurement of another observable 7, for which |&})
is not one of its eigenstates but |&/') is, will be necessary to induce such a
transition.

4.5 Operators Associated with Observables

In the process of formalization of physical concepts we are pursuing, we have
represented the states of a system by means of vectors in a Hilbert space; there
now remains to understand in which way we shall formalize (i.e. by means of
which mathematical entities we shall represent) the observables that, from the
physical point of view, are characterized by the existence of those particular
states that we have called eigenstates and by the eigenvalues.

The terms we have used (eigenvectors, eigenvalues) have not been intro-
duced casually, but they constituted an anticipation of what will be the result
of this process of formalization. Indeed, it is possible to associate, in a quite
natural way, an operator £°P on H (namely a linear application from H onto
H) to each observable ¢ in the following way: no matter how a basis consisting
of the eigenvectors |&; ) of the (possibly degenerate) observable £ is chosen,
one defines £°P on the vectors of this basis as

def

EP1E&) = &il&) (4.16)

and, just to start, one extends the definition by linearity to all the finite linear
combinations formed with the vectors of the basis: if |A) =37 a;|& ),

fOp|A>défZai§Op|fi>Zzaifi|§i> : (4.17)
i=1 i=1

Then, when it is possible, the definition is extended to the infinite linear
combinations: if [A) =3""a;|&) (being > 77 |a;|* < 00),

€°p|A>d=efnli_>H;o daikil|&) =) aililé) . (4.18)
=1 =1
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Let us firstly check that the definition is a ‘good definition’, namely indepen-
dent of the choice of the basis (although still consisting of eigenvectors of &):
indeed, within any eigenspace of the observable &, £°P is a multiple of the
identity application:

€)= arle™) = e = a&lg”)=gl&) (419)

and, as a consequence, does not depend on the basis chosen in the eigenspace.
Why did we say ‘when it is possible’ before writing (4.18)7 Since

H zn:aifﬂfﬁ ‘2 = zn:ff |ai|?,
=1 i=1

one realizes that, if the series Y " &7 |a;|? does not converge, by (4.10) the
series 1" a; & | &) does not define a vector in H. Then, unless || < M for
any i (bounded operator: in this case Y.7° &2 |a;|* < M? Y77 |ai|* < 00), it
is not possible to define the operator £°P on all H: the domain D¢ of the
operator £°P, namely the set of vectors on which it is defined, consists of those
vectors for which Y77 &7 |a;|? < oo and the latter (indeed already the set of
finite linear combinations) form a set that is dense in H; for the vectors that
belong to D¢ one has therefore:

EPIAY =) ai&il&), |AYeDe, De=H. (4.20)

We will not exceedingly worry about these technical (domain) problems, that
certainly are important from the mathematical point of view, but absolutely
marginal from the physical standpoint. More to it: in principle, one should
state that from the physical point of view all the observables are represented by
bounded operators ( |£;| < M for any i), since no instrument can yield results
‘as large as one wishes’: the scale of an instrument is always bounded both
from above and from below. The only reason for which, in practice, we cannot
totally forget domain problems lies in the fact that almost all the operators
associated with the observables f(q,p) (owing to the quantization postulate
we have not yet enunciated) will exhibit an unbounded spectrum: one can
say that such operators do not faithfully represent the physical observables,
namely the measurement instruments, but they rather provide a mathematical
schematization for them. Stated in different words, the root of the domain
problems is in the mathematical schematization, not in physics.

4.6 Properties of the Operators Associated with Observables

Let us now examine the properties of £°P.

1. £°P is a self-adjoint operator: £°P = (£°P)f .

Consistently with the just made statement that we do not want to be over-
whelmed by domain problems, in the case of unbounded operators we give
neither the definition of adjoint operator nor that of self-adjoint operator.
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For bounded operators, defined on the whole H, such definitions coincide
with those of the finite-dimensional linear spaces: a bounded operator 1 (de-
fined on all H) by definition is known when, for any vector | A), the vector
|C) =n|A) is known; but any vector |C') is itself known when, for any
| B), the scalar products (B | C') are known (the knowledge of the scalar
products between | C') and the elements of an orthonormal basis is sufficient:
in the latter case |C') is given by an expression of the type (4.7)), so 7 is
determined by the knowledge of the scalar products (B |n| A) for any | A)
and for any |B) ((B | n | A) stands for the scalar product of |B) and
1C) =n|A)).

The adjoint 1" of 7 can then be defined by the following equation:

(B|n'|A)= (A]n|B)* (4.21)

(normally mathematicians write n* instead of f, whereas we will reserve the
asterisk for the complex conjugation of numbers); 7 is self-adjoint if n = n'.
Therefore £°P = (£°P)t (bounded) is equivalent to:

(B|€P|A)=(A|€P|BY forall |A),|B)eH. (4.22)

If £°P is not bounded, (4.22) — holding for all the vectors | A), | B) in the
domain of £°P — only expresses the fact that £°P is Hermitian (as D¢ is
dense, the correct term would be symmetric, however we will always use the
term Hermitian, which is the one normally used by physicists); in order that
&°P be self-adjoint, something more is needed (the domains, on which £°P
and (£°P)T are defined, must coincide).

We will limit ourselves to show that £°P is Hermitian (i.e. symmetric).

Proof: (use will be made of: (4.9), the linearity of £°P, the linearity of the
scalar product: (B[ (Y, |4:)) =Y ,(B| A;), its Hermiticity, expressed by
(4.1), and the reality of the eigenvalues &;)

(BIEP|A)=(BIEPY |&)(& | A) =) (BIEPI& )& | A)
=D &G(Bl&)x(&|A) =) &(A]&) x(&|B)
= (X &tAl€)x(&B)) =A€7 B)

2. We have always used the terminology |¢&; ) : eigenvectors; &; : eigenvalues.
This terminology has a precise mathematical meaning, however ours has not
been an abuse of terms: indeed all the eigenvectors and eigenvalues of £°P (in
the mathematical sense) are the eigenvectors and eigenvalues of the observable
¢ (in the physical sense) and viceversa. The second part of the proof lies in the
definition of £°P and (4.19). There remains to show that, if £€°P|pu) = pu|p),
then p is one of the eigenvalues &; of the observable £°P and | ) is one of the
| &) : however, this is an exercise we leave to the reader.

Let us summarize: every observable £ corresponds to a self-adjoint operator
£°P; the eigenvectors and eigenvalues of £°P are all and only the eigenvectors



4.6 Properties of the Operators Associated with Observables 75

and eigenvalues of £&. We are therefore authorized, from now on, to identify,
and as a consequence to represent by the same symbol &, the observable and
the operator associated with it: therefore £ simultaneously represents both a
physical quantity, the instrument (or the instruments) suitable to measure it
and the linear operator that corresponds to it: so we shall no longer use the
notation £°P.

It is natural, at this point, to ask whether any self-adjoint operator is
associated with an observable.

Before answering this question we recall that the eigenvalues of a self-
adjoint operator are real and that eigenvectors corresponding to different
eigenvalues are orthogonal to one another: we recall the proof of these two
facts, just to practice with the formalism.

By taking the scalar product of |7’} with n|n’) =7"|n’) one obtains:

(' [nln")y=n'{n"1n")
and as n = n', from (4.22) it follows that (n/ = {9 "V* and,
n=mn ninin ninin

as a consequence, 1’ is real.
Let now

nln'y=x"17"),  nln")y=9"|9"), n#n'.

By taking the scalar product of the first with |7”) and of the second with
|7n') one has

(" Inlny=o"" 10"y, ' Inla")y=0"(n"|n")

and by subtracting the first from the complex conjugate of the second (7 =
nt!) one finds:

0 =n")Yn"In)y=0 = (9"[n)=0.

It therefore seems that self-adjoint operators have the right properties to be
considered as operators associated with observables. It is however necessary
to keep in mind that, from this point of view, in a (separable) Hilbert space
there may occur very unpleasant things. It may happen that a self-adjoint
operator does not have enough eigenvectors as to form a basis, while we know
that the set of the eigenvectors of an observable forms a basis (example: in
the space La(a,b) consisting of the square-integrable functions f(x) in the
interval @ < x < b, the operator f(z) — x f(x) is self-adjoint and has
no eigenvector: indeed the equation z f(z) = A f(z) has the only solution
f(@) ~0).

The self-adjoint operators whose eigenvectors form a basis are the oper-
ators with purely discrete spectrum, while the others are the operators with
continuous spectrum plus — possibly — a discrete component (see Fig. 2.3).

We then postulate that

Any self-adjoint operator with purely discrete spectrum is associated with an
observable.
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Any operator associated with an observable will itself be called an ‘observ-
able’: we will identify in this way, not only in the notation but even in the
name, measurement instruments and operators.

We shall however see in the sequel that it is not only advisable but even
right to attribute the name ‘observable’ also to self-adjoint operators that do
not have a purely discrete spectrum (as e.g. the energy of the hydrogen atom:
there are energy levels that form the discrete component of the spectrum,
and there is the continuum of the ionization states). We shall see that they
can be considered as ‘limits’ (in a sense to be specified) of operators endowed
with discrete spectrum and therefore correspond to limiting cases of bona fide
observables (also in this case one deals with those ‘limit’ concepts so frequent
in physics: point mass, instantaneous velocity, . .. ).

Also in this case (much as in the case of the bijective correspondence
between states and rays) perhaps it is neither true nor necessary to assume
that all the self-adjoint operators represent some observable.

What we had provisionally assumed, namely that for any state | A) there
exists at least one observable that possesses | A) as an eigenstate correspond-
ing to a nondegenerate eigenvalue, follows from the last postulate we have
enunciated: indeed, it is sufficient to take the observable corresponding to the
projector onto the one-dimensional linear manifold generated by the vector
| A) (the definition of projection operator will be recalled in the next section).
Anyway, in Sect. 6.3 we will come back to this problem.

There still remains a problem: given an observable quantity (e.g. energy,
angular momentum, ...) how do we know the operator that must be asso-
ciated with it? This problem will be given its answer by the quantization
postulate we will enunciate in Sect. 4.12.

4.7 Digression on Dirac Notation

The aim of this section only is to compare the notation used by mathemati-
cians with Dirac’s, the latter being the one used in almost all the texts on
quantum mechanics. Therefore, in the following formulae, all the technical
issues that concern domain problems etc., will be omitted.

The differences between the two types of notation originate from

1. the fact that mathematicians represent vectors simply by the letters of

the alphabet: wu, v, ---, whereas we use the letters of the alphabet (or
any other symbol) boxed within the “ket” | ): |u), [v); |+), |—);
[1), 14); 1©), |®); --- (even these fancy symbols we will make use
of);

2. the different notation for the scalar product: (u, v) for mathematicians,
(u]wv) for us.

Indeed, Dirac “bra” (u| is the element of another vector space: the space
dual to H, i.e. the space of the linear and continuous functionals on #H. This is
totally legitimate thanks to the Riesz theorem, according to which the space
dual to H is isomorphic to H itself.
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Let us now examine the main notational differences that follow from the
above points: let £ be a (not necessarily self-adjoint) linear operator; the vector
that results from the application of £ to a vector is £ u for mathematicians
and £|u) (not |u)) for us. So we will write (v | £ | w) that has the
same meaning as (v, £u) for mathematicians. Moreover the adjoint &' of an
operator ¢ is defined by means of the equation (£fv, u) = (v, £u) that we
can write with our notation only after taking the complex conjugate of both
sides:

(u, )= (v, €u)" = (ul€v)=(v|E]u)".
The last equation amounts to saying that the “bra” corresponding to the
“ket” &|u) is (u|€T, and if &|u) =|v), then (u|&T = (v]; in particular,
if | &) is an “eigenket” of & = &1, (& | is an “eigenbra” of ¢ corresponding to
the eigenvalue &;: (&£ =& (&]|.

Let us list some properties of the Hermitian conjugation (& — ¢) that
immediately follow from the definition of adjoint operator:

(ET)TT = &
E?—?n)* - ?Tirﬂ 4.23)
Ent = gt

Dirac notations are not favourably looked at by the mathematicians, whereas
for the physicists, that have to make a large use of them, they are rather
comfortable because follow rules of easy applicability: for example, to take
the scalar product of |u) with |v) means to ‘glue’ the bra (v| and the ket
| ) ; moreover, much as the conjugate of « is a* and the conjugate of an
operator £ is £, the conjugate of a ket (bra) is the corresponding bra (ket);
this rule, that ensues from (4.21) and (4.23), allows one to write in an almost
automatic way an expression like (v | &n ¢ ---| u)*: it suffices to conjugate
any element and reverse their order:

(vl €n¢ - fu)y =(ul--¢Tntet o).

We conclude this section by recalling the definition of projection operators
and showing how also these can be easily expressed with the Dirac notation.

Let |v) € H, (v | v) = 1. The projection operator P, onto the (one-
dimensional) manifold generated by |v) is defined by

forall ueH: Polu)y=1]v){v|u)

so, since applying P, to |u) is equivalent to ‘glue’ |v)(v| to |u), we can
write:

Py =lv)(v].
Let now V be a (closed) linear manifold of arbitrary dimension included in #.
If |[v;) € V, i =1,2,--- is whatever set of orthonormal vectors that

generate V, the projection operator Py onto V is defined by:
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for all |u) e H : Py|u>zzi|vi><m|u>
and we can therefore write:
Py=23 lvi){vil. (4.24)

In particular, if |£;) is an orthonormal basis in H, the identity operator 1 —
i.e. the projector onto all H: 1|u) = |u) — can be written as

1:Zi|€i><€i|~ (4.25)

Equation (4.25) is known as the completeness relation because it expresses
the fact the vectors | &) form a complete orthonormal set.

So, for example, by applying both sides of (4.25) to the vector |u), one
(re)obtains (4.9). Moreover:

(uluy=(ul1]u) =3 (ul &) (& u) =3 [(u] &)

i.e. (4.10).
If P is a projection operator, it is straightforward to verify that

P =P, P2="P. (4.26)

If £ is (the operator associated with) an observable and we denote by P; the
projector onto the manifold consisting of the eigenvectors of ¢ corresponding
to the eigenvalue &; (the eigenspace of £ corresponding to &; ), by (4.25) and
(4.24) one has:

D Pi=l = f=fxl=€) Pi=) &Pi=) |&)&G(&] (4.27)

where the sum appearing in the last expression extends to all the vectors of
an orthonormal basis of eigenvectors of &; so if a given eigenvalue is n times
degenerate (n < o0), in the sum there are n eigenvectors corresponding to
that eigenvalue (in the last term of (4.27) the eigenvalue &; is placed between
the bra and the ket only for aesthetical reasons).

4.8 Mean Values

If we make N measurement of the observable £ on the system in the state | A )
(we recall that this means to have at one’s disposal N copies of the system, all
in the state | A), and that any measurement is made on one of such copies),
we find the eigenvalues & —each N; times (> N; = N ) — as results.

We can define the mean value £ of the observable £ in the state | A) as
the mean value of the obtained results; if N is very large, one has:

def 1 N;
£ = N ZifiNi = Zifipi» Pi=- (4.28)
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Let us take (A | A) = 1. Due to (4.15) (von Neumann postulate), if P; is (as
in the previous section) the projector onto the eigenspace of £ corresponding
to the eigenvalue §;, one has

(AP A))

pi=P(|A) = 1&)) =P(|A) = Pi|A)) =

(the denominator is (& | &) ), and as (see (4.26)) P> = P; and, in addition,
(A|Pi|A)y=(A|P?|A) >0, one has

pi=(A|P;i|A) (4.29)

(we have rewritten (4.15) using projectors).
Therefore, owing to (4.27),

E=Y G(AIP|A)= (A &P | A)=(A|€]A).  (430)

Unless the contrary is specified, (A | A) =1 will be always assumed.

The quantity (A | £ | A) usually is more correctly called “expectation
value of the observable £ in the state | A)” because, p; being the prob-
abilities provided by the theory — i.e. theoretical probabilities — £ is what,
according to the theory, should be expected as mean value of the results of
the measurements of £ on | 4).

Let us now consider the operator ¢? and let us examine its properties:
all the eigenvectors | &; ) of ¢ also are eigenvectors of £€2 corresponding to the
eigenvalues £ :

&) =ExEIE)=€&1&) =& E|&) =E2 &)

and, as the | &) form a complete set, also £2 is an observable: if the applica-
tion & — &7 is injective (i.e. if € has no opposite eigenvalues), then € and &2
have all and only the same eigenvectors and the observable corresponding to
£? is obtained by simply changing the scale of the instrument that measures
&; in the contrary case the instruments that measure £ and ¢2 are different,
since there are eigenvectors of ¢2 that are not eigenvectors of ¢.

Incidentally, in the same way we can define f(£) as the operator that has
the same eigenvectors of € and eigenvalues f(&;): if & — f(&;) is injective,
then f(£) does not differ, except for the scale, from the observable &.

The expectation value of £2:

E=(A|€|A)= &

is the quadratic mean value of the results of the measurements of £ on | A) .

The mean-square deviation A& = \/ &2 ¢ ? is therefore given by

(A = (A€ [A)—(A]¢]A)? (4.31)
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or equivalently by:
(A& = (A (€-€)?*[A). (4.32)

Indeed: (§—£)2=(E2-2£€+€°)=€2-¢ .

The meaning of A& is well known: it represents the size of the dispersion
of the results around the mean value; moreover, in the present framework one
has the following

Theorem: A¢ =0 ifand only if | A) is an eigenvector of &.
Indeed, if £|A) =¢&'| A) one has:

(AlelA)=¢(A[A)=¢ and (A|€[A)=¢HA|A)=¢7
whence A& =0. If, viceversa, A& = 0, then:

0=(A*=(A[(E-Ox(E-&|A)

and, since the latter is the squared norm of the vector (§—¢&)|A) (recall that
(€ =€) = (€&, it must be that

E-914)=0 = £lA)=¢[A).

For this reason A¢ is also called uncertainty of £ in |A): if A§ =0 the
value of £ in | A) is completely determined. As a consequence, by means of the
only knowledge of the expectation values, it is possible to establish whether
a given state is an eigenstate of an observable and, in the affirmative case,
to know the corresponding eigenvalue. More to it: thanks to (4.29), also the
transition probabilities can be expressed as expectation values.

So all the physical information that characterizes the state of a system —
transition probabilities, mean values of the observables, observables of which
the state is eigenstate and the corresponding eigenvalues — can be traced back
to expectation values of observables, and in this sense the knowledge of a state
is equivalent to the knowledge of all the expectation values in the state itself.
It is even possible to reformulate quantum mechanics by defining the state of a
system as the collection of the expectation values of all the observables (linear
positive functionals on the algebra of observables), instead of a vector of the
Hilbert space. This formulation has been proposed by J. von Neumann, L.E.
Segal, R. Haag and D. Kastker, and is equivalent, for a system of particles,
to the ‘Hilbert’ formulation due to Dirac.

4.9 Pure States and Statistical Mixtures

We have already insisted on the fact that, since the interpretation of quantum
mechanics is a statistical interpretation, saying ‘the state represented by the
vector | A)’ presupposes the possibility that one can prepare many copies of
the system in the same state | A): in this case one says that the system is in
a pure state.

Let us now assume we have Nj > 1 copies of the system in the state
| A) and N3 > 1 copies of the same system in the state | B) and that we



4.9 Pure States and Statistical Mixtures 81

measure, on each of thebe N = N;j + Ny systems, an observable £: the theory
predicts that, if p ) and p( ) are the probabilities of finding the eigenvalue
& respectively when the system is in either the state | A) or the state | B,
we will find the eigenvalue &; a number N; pEA) + No pl(B)
with a probability

of times, therefore

1 By _ M ) N
pi = N(Nlp + Nap; ) Npi + N p; " (4.33)
Therefore the mean value of the results of the measurements is:
Ny
Zm— (A€l A)+ (Bl B). (4.34)

For example, the N = N; 4+ N, states could have been obtained by sending
N photons in the same polarization state on a birefringent crystal with the
optical axis at an angle ¥ with respect to the polarization direction: in the
latter case p; = N1/N = cos’® and py = No/N = sin?¢ (N; and Ns
are respectively the numbers of photons emerging in the extraordinary and
ordinary ray) are not ‘certain numbers’, but are themselves probabilities that
indeed have (in the present case) their origin in the probabilistic nature of
quantum mechanics, but are such because we have not recorded (e.g. by means
of mobile mirrors) how many photons emerged in the extraordinary ray and
how many in the ordinary ray — just as if we threw the die and did not look
at the result. For this reason we have preferred to use, in (4.34), a notation
different from that used in (4.28) for the mean value of £: ((£)) is a ‘classical
mean of quantum means’.

In general, if a collection of quantum systems consists of systems in the
(not necessarily orthogonal) states |uy ), |ua), --+, |uy ), - -+ respectively in
percentages pi, P2, -, Pn, - (2., Pn = 1), one says that the collection of
our systems is a statistical mixture: the numbers p, can be either ‘certain
percentages’ or percentages due to our ignorance, namely due to the fact that
we have only partial information about how the systems have been prepared.
Statistical mixtures are, for example, either the set of states of a system after
that on them some observable has been measured (see the above example with
photons), or any thermodynamic system (e.g. a gas): it is a statistical mixture
of its subsystems (the molecules).

A statistical mixture is therefore described by the set of pairs

{lur), prs lu2), p2s -5 [un) oy o} (4.35)
and (4.33) and (4.34) are generalized in the form:
P(mixture =+ [w)) =D pal{un [u)* (€)= pulun[€]un) (4.36)

namely the mean value of any observable in a statistical mixture is the ‘mean
of the means’.
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Assume now that |u) and |v) are two orthogonal states; let us consider
a system in the pure state

la) = cifu) +ealv), le1]? + e =1 (4.37)

(the S, ensemble) and the statistical mixture of states |u) and |v) with
percentages p; = |c1]? and py = |e2|? that we represent as

{|u1>,p1=|01|2; |U2>7p2=|02|2} (438)

(the Sm ensemble): we ask ourselves in which way the two ensembles can be

distinguished, since in both cases the probability to find the system in the

state |u) being p; and the probability to find it in the state |v) being ps .
If £ is an observable, the mean value of £ in the ensemble S, is:

§=(ci(ul+cs(v]) & (aru) +efv)) =
= ler(u €] w) + le2*(v [€] v) + clea(u €] v) + cier(v €] u) (4.39)

whereas the mean value of £ in the ensemble Sy, is given by (4.36):

(&) =larl{ul € lu)+leal*(v] €| v) (4.40)

so that the two mean values differ by the quantity 2Re (cjca(u | £ | v))
that appears in (4.39) because the states |u) and |v) may interfere: this is
expressed by the fact that the state |a) is a coherent superposition of |u)
and |v), while in the ensemble Sy, we have an incoherent mixture of the
states |u) and |v): in (4.37) also the phases of the complex number c¢;
and cp are relevant (better: their relative phase) whereas in (4.38) only the
absolute values intervene.

If only observables having |u) and/or |v) as eigenstates are measured,
(u]&|vy=0 (by assumption |u) and |v) are orthogonal) and we cannot
distinguish the two ensembles, but — in general — (u | £ | v) # 0 and the two
ensembles provide different results.

For example, assume that the ensemble S}, consists of systems in the state
la) = 12 (Ju)+|v)) while the ensemble Sy, is {|u), p1 = 1; [v), p2 =3 }
and we ask how much is, in the two cases, the probability to find a system in
the state [b) = \}2 (Ju) = |v)) . In the first case the probability is 0, since
the two states |a) and |b) are orthogonal to each other; in the second case,
instead:

1 1 1 1 1
p=mxP(Ju) = [b)) +p2xP(|v) = |b)) = 5 %o + 5Xo = o
The difference between pure state and statistical mixture is well exemplified
by the experiment of neutron interferometry cited in Sect. 3.3 (Fig. 3.4), in the
two cases in which the mirrors s, and s3 are either fixed or mobile mirrors
able to detect the transit of neutrons.
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Referring to Fig. 4.1, let us call |z) the state of a neutron that travels ‘hor-
izontally’ (in the figure) and |y) that of a neutron that travels upwards. So
the neutrons that arrive at the semi-transparent mirror s; are in the state
|z) and downstream of s; are in the state

|a>=%(|x>+eia|y>>.

We have assumed equal transmission and Ca
reflection coefficients of s;; the factor e'® W
is compatible with this assumption and a s2 s4
priori we cannot exclude that it be intro-
duced by the reflection (indeed, we shall see . 2y s
that, owing to reasons of probability conser- — - :
vation, it must be equal to £1). In the re-
flections at mirrors s and s3 |z) — |y)
and |y) — |x) (the phase factors introduced by the reflections at sp and
s3 are equal to each other, therefore irrelevant). So, if the mirrors so and sg
are fixed:

Fig. 4.1

1 1
V2 V2

The wedge W on the path s, — s4 introduces the phase shift :

(s1) ia (s2,83)
lz) — la)=— (lz) +e'%[y)) == |b)

(ly) +e']z)).

by ™ b, = £(|y>+ei<a+¢>|x>)

and finally the state |b,) hits the semi-transparent mirror s; where (by
symmetry)

|x>+%(|x>+eia|y>); |y>+%(|y>+eia|x>)

therefore:

15,) 3 ey = 2 (

g () et o)) e 2 (|x>+eia|y>))

V2 \v2
1/, ; )
=, (249 |a) + (14 @ |y)).

The probabilities p; and ps that either the counter C; or the counter Cs
clicks are respectively given by:

1 ; 1
p=[(cla)f = 4|1+e“"|2 = 2(1+cos<p)
1 . 1
pe=|{c|y)2= 4|1+el(2a+tp) 2 = 2(1+cos(2a—|—<p))

from which it follows that, owing to p1 + p2 = 1, « = +7/2, i.e. we have
found again the result (3.4).
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Let us now assume that ss and s3 are mobile mirrors able to detect the
collision of a neutron. In the latter case

1
=7
therefore, downstream of s and s3 the system is no longer in a pure state,

but in a statistical mixture. The wedge W has no effect on the 50% of neutrons
that take the path s; —s4 (e'?|x) ~ |2 )), therefore:

(s1) i (s2,83)
|z) = |a) (lz) +ely)) =" {lz),p =3 ly)p2=13}

. { LUy +eiely)), p= 1
{|x>7p1:§7 |y>7p2:%} —4>
Ll +eela),pm=11}.

According to the first of (4.36), each of the two components of the mixture

has a probability
Ly
27 \2/ 4

to be detected by either C; or Cs, i.e. — as we have already said in Sect. 3.3
— the two counters always record the same number of neutrons (probability
2 X 411)7 independently of the position of the wedge.

In conclusion, the difference between the pure state and the statistical
mixture

|b>:£(|y>+eia|x>), {le),pr=3i1y)p2=131}

that we have downstream of the mirrors ss, ss, lies in that in the first case
it is possible — by inserting the semi-transparent mirror s, in the apparatus
— to make the two components |z) and |y) interfere with each other, while
in the second case there is no such possibility.

4.10 Compatible Observables

In classical physics, given the state of a system, any observable has a well
determined value in that state: for example, given position and velocity of a
particle (i.e. its state) energy, angular momentum etc. are known. It is not
so in quantum mechanics: first of all, if £ is an observable, only in the case
| A) represents an eigenstate of £ it makes sense to say that £ has a value
in | A) (the corresponding eigenvalue); in the contrary case we can say, for
example, which is the mean value of £ in | A), or which is the probability
that a measurement of £ yields a given result. In summary, in this case only
statistical information is available.

Furthermore, if we have two observables £ and 7 and if [£) is an eigen-
vector of £, then £ has a value in |£'), but in general i does not possess
a value in this state. If it happens that a certain state simultaneously is an
eigenstate of both ¢ (eigenvalue ¢') and 7 (eigenvalue 7’ ), than both ¢ and
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7 have a determined value in that state that we will accordingly represent by
[€,n" ). One has therefore, at least as far as the state |£’,7n’) is concerned, a
kind of compatibility of the two observables £ and 7. If the states on which &
and 7 are compatible (i.e. states that are simultaneous eigenstates of £ and 7)
are enough as to form a basis, then we will say that £ and n are compatible
observables. In other words:

1-st definition: two observables are said compatible if they admit a complete
set of simultaneous eigenvectors.

So, for, example, if the system is a photon, two birefringent crystals whose
optical axes are neither parallel nor orthogonal to each other, certainly are not
compatible observables, inasmuch as there exists no (polarization) state that is
simultaneous eigenstate of both; they are instead compatible observables both
in the case the optical axes are parallel and in the case they are orthogonal
to each other.

We have already introduced in Sect. 3.6 the concept of compatible observ-
ables, but at first sight it does not seem that the two definitions have anything
to do with each other. The connection is provided by the fact that there is
complete equivalence between the definition given above and the following;:

2-nd definition: two observables & and n are said compatible if it happens
that, given any eigenstate |£') of £ and, having made a measurement of n
in it, the state after such a measurement still is an eigenstate of £ (therefore
corresponding to the eigenvalue &' : P(|&') — &) =0 if & #£¢').

It is known that the state, immediately after the measurement of 7, is an
eigenstate of 7: it is therefore a simultaneous eigenstate of £ and n: |£,n').

In general, if ¢ is a degenerate eigenvalue, the state |¢',n') after the
measurement of 7 is different from the state |£’) in which 7 is measured.

More than giving demonstration of the equivalence of the two definitions
(that we will however give), it is important to emphasize the physical signifi-
cance of the compatibility of two observables, as it emerges from the second
definition: it indeed says that two observables are compatible if they can both
be measured in a state and the second measurement, even if it perturbs the
state in which the system is after the first measurement, is such that the in-
formation acquired with the first measurement is not lost; more to it: if the
first observable one measures is nondegenerate, the second measurement does
not perturb the state. Schematically:

|A> measurement of § measurement of 7
_ _ >

1<) 1€ ")
and if ¢ is nondegenerate, then [&' ) n') =|¢&").

The proof of the equivalence of the two definitions, under the assumption
that & and n are nondegenerate, is very simple: if £ and 7 are compatible
according to the first definition, since £ and n have the same eigenvectors
(they are nondegenerate!), the measurement of 7 is a repetition of the first
measurement (only the scale of the instrument changes) and therefore does
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not perturb the state: schematically (the sign = means ‘by assumption equal
t0)
3
|4) = €)= 1) == 1)
If instead & and n are compatible according to the second definition, the
proof is outlined in the following diagram, where the sign = follows from the

hypothesis of nondegeneracy of £, and therefore there exist only one eigenstate
corresponding to the eigenvalue £’ :

14) 5 ¢y ey =€)

We propose the demonstration of the equivalence without the nondegeneracy
assumption of the observables just as an exercise.

Let us assume, according to the first definition, that £ and n have a com-
plete set of simultaneous eigenvectors One has

1A) S e L), ) =al€a )+ ), &AE

but, since by assumption the transition probability |£') — |7') is nonvanish-
ing and equals |a|2><|(£’ | & n >|2 , one must have a # 0; furthermore, owing
to von Neumann postulate, such probability must be a maximum, whence
lal =1, ¢; = 0. In conclusion, |n') =& 7).

Viceversa, let us assume (second definition) that for any | &)

&) L |€0).

Let us consider the (closed) linear manifold V generated by all the simultane-
ous eigenvectors and let us assume (by contradiction) that V # H . Let then
|¢) € V) (it exists!). But then, as | &', ) € V, we arrive at the contradiction
that P([¢) -5 |€,1')) =0.Then V =%H.

There is now an important algebraic characterization concerning compat-
ible observables, expressed by the following

Theorem: Two observables are compatible if and only if

En=n¢ (4.41)

holds for the operators associated with them.

In the latter case one says that & and 7 commute with each other. The
expression:

(£, n]=¢En—n¢
is called the commutator of £ and 7, then (4.41) reads:
[§,n]=0.

The demonstration we will give has not the status of a rigorous demonstration
because, as usual, we shall ignore the problems relative to the domains of
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the two operators: it rather aims at emphasizing the intuitive aspects of the
problem.

If £ and 7 are compatible, by definition the set of their simultaneous eigen-
vectors | &', n') is complete. One has:

Enl& ')y =€l )y =1&0") &7
n&l& 'y =nl& ) =0)n¢.

Therefore the operators £n and n¢ give the same results on the vectors
[€,n"); but, since the vectors of the type | &', n') generate the whole Hilbert
space, (4.41) follows.

The viceversa needs to be shown, namely that if [, n] = 0, then £ and
7 have a complete set of simultaneous eigenvectors.

We start by showing a lemma that, owing to its importance and the fre-
quent use we will make of it in the sequel, deserves to be taken out of the
demonstration of the theorem.

Lemma: if [§,n] =0 andif £|&)=¢"|¢&"), then n|&") still is an eigen-
vector of £ belonging to the eigenvalue £':

Emlg)) =€ mle)) - (4.42)

Indeed:

Enlg) =ngle)=ne'[&)=¢Enl¢)
(notice that it was not even necessary to assume that n be a self-adjoint
operator).

Let us now conclude the demonstration of the theorem. Let us first consider
the case in which one of the two observables, e.g. £, is nondegenerate. In
this case, since by assumption [£, n] = 0, the lemma immediately takes
us to the result: indeed, since 7|&’) is an eigenvector of £ belonging to the
nondegenerate eigenvalue &', it must be a multiple of |£’), namely:

nl&)=n"1¢)

i.e. any eigenvector |£’) of &€ must also be an eigenvector of 7.

Let us now consider the degenerate case. Let H; be the eigenspace of &
belonging to the eigenvalue &; ; owing to the lemma, applying 1 to any vector
in H; always gives, as a result, a vector in H,;, i.e. any eigenspace of £ is
invariant under n: n acts in independent ways on each #,;. Even now it is
intuitive that the restriction of n to H; has a set of eigenvectors complete in
H; ; but all the vectors of H; are eigenvectors of £, therefore in each H; we
have a complete set of simultaneous eigenvectors: |&;,n; ). In this way a set
of simultaneous eigenvector of £ and 7, complete for the whole #, is obtained.

Let us now prove what we left to the intuition, namely that 1 has a set of
eigenvectors complete in H,; .

Let |nx), k=1,2,--- be a set of eigenvectors of n, complete in H. It is
known that it is possible to effect, in a unique way, the decomposition
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i L i L L L
)=l + ) ) e M I ) e MY Y =@,
But, from n|nk) =1k |nk ), one has

7 1 7 1
a0y + 0y = e 0y e g

and, since 7| n,(f) ) € H; and |n,(f) ) € 'HEL) , owing to the uniqueness of the

decomposition of the vector n|nx ), one must have:

7 7 s s
a0y =m0y, ity = me )y

Let now |A) € H; be orthogonal to all the |77,(f) Y. As |A) € H;, it is

orthogonal to all the |77,(Cl) ), therefore to all the |7, ). So | A) is the null
vector and, as a consequence, the set of all the |n,(j) ) is complete in H; .
For the reader that has understood the theorem, the following remarks

should be superfluous.

1. The theorem does not say that, if [£, n] = 0, then any eigenvector of one
observable also is an eigenvector of the other; it says that there exists (i.e.
one can find) a complete set of simultaneous eigenvectors. For example
the identity operator 1 commutes with any operator and any vector is an
eigenvector of 1, but certainly it is not true that any vector also is an
eigenvector of whatever observable.

2. Tt is nonetheless true that, if one of the observables — e.g. £ — is nonde-
generate, then any eigenvector of £ also is an eigenvector of 7.

3. If [£,n] # 0, it may happen that £ and 7 have some simultaneous
eigenvector, certainly not as many as to form a complete set.

The results we have obtained can be generalized to the case of more than
two observables: the observables &, n, , --- are compatible if the operators
associated with them all commute with one another. It can be then shown
that there exists a complete set of simultaneous eigenvectors |£',n',¢"---) of
such observables; and viceversa: if a set of observables possesses a complete
set of simultaneous eigenvectors, then they commute with one another.

Let us now introduce the concept of complete set of compatible (or
commuting) observables: if £, n, (, --- are n compatible observables, any
simultaneous eigenstate is identified by a n-tuple of eigenvalues &;, n;, (i, - -:
|& ,m;,Ck,- ). It may happen that for a given n-tuple there is more than
just one simultaneous eigenstate. If instead there never are two or more si-
multaneous eigenstates of &, n, (, --- belonging to the same n-tuple, than we
say that &, n, ¢, --- form a complete set of compatible observables.

This definition generalizes the concept of nondegenerate observable to the
case of two or more observables. In less precise but more intuitive terms one
could say that a set of compatible observables is complete when, any single
observable being (possibly) degenerate, the set is globally nondegenerate.

The physical importance of this concept is the same as that of a nondegen-
erate observable: given the n-tuple of eigenvalues &;, 1;, Ck, - - -, the state of
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the system is known. We leave to the reader the demonstration of the fact that,
much as for a nondegenerate observable, the set of the simultaneous eigen-
vectors of a complete set of compatible observables makes up an orthogonal
basis, and viceversa.

4.11 Uncertainty Relations

Let £ and 7 be two (either compatible or not) observables, A¢ and An the
root mean squares of the results of measurements of £ and n on a system in the
generic state |s). The following important theorem due to H. P. Robertson,
relating the product of the uncertainties A¢ and An with the mean value of
the commutator of £ and 7 in the state |s), follows:

Uncertainty Relation:

AeAy > !

NICISEIIENE (4.43)

Let us demonstrate (4.43). We introduce the non-Hermitian operators:
a=E+ixn, ol =¢—ixy

where z is a real parameter. Let us consider the product of a (pay attention
to the order of the factors, for in general £ and 1 do not commute):

afa=(E—ian) (E+izn) =+ 20 +iz[E, n]. (4.44)
Note that, if (s|s) =1, for any operator « the inequality
(s|afa|s)>(s|al|s)x(s|als) (4.45)

holds as a consequence of either the Schwartz inequality applied to the vectors
als) and |s)(s| a | s), or the completeness relation (4.25): indeed, if the
vectors |s;) make up a basis of which |s) is an element, e.g. |s) =s1),
then:

(slalals)=3" (slal[s:){sials)
= (slal [s)(slals) + 3 (slal [si)(silals).

In the above relation all the terms of the last sum (7 > 1) are positive
(=1(si | @] s)*), whence the thesis.
Then from (4.44) and (4.45) one has:

(s (2 +a?nt +ial€,n])|s) = (s | (€—izn) |s)x(s| (€+izn)|s)

i.e.
. 2
E+a?n2+zil¢,n]>¢ +a?n?
that is:
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2 (An)® + zi[€, n]+ (A* >0.

Since the sign > must hold for any real x, the discriminant of this quadratic
form in the variable z must be <0:

(iwlen) 4 (887 an? <0

from which (4.43) immediately follows.
The case in which the commutator [, n] is a multiple of the identity
operator 1 is particularly important. Note that, as ¢f = ¢ and nf =9,

(€0 =En—nO)l =nt—¢n=-1¢, 1]

(i.e. [€, n] is an anti Hermitian operator) then, if [£, n] is a multiple of 1,
the multiplicative factor must be a pure imaginary number:

[§,n]=icl, ceR

(from now on the identity operator will be omitted, as 1 |s) =|s) : numerical
quantities and multiples of the identity operator — there is no substantial
difference between the two — are often called c-numbers).

In the latter case, i.e. when the commutator [£, n] is a multiple of the
identity operator, (4.43) becomes:

A¢EAn > ;|c| (valid if [&,n]=1ic) (4.46)

i.e. the product of the uncertainties is greater of or equal to a fixed quantity
that does not depend on the state one is considering.

4.12 Quantization Postulate

The main difference between classical physics and quantum mechanics lies
in the fact that, while in the classical scheme the observables give rise to a
commutative algebra (for example: ¢p and pg are the same thing), in the
quantum scheme the observables — being represented by operators — in general
do not obey the commutative property.

Now, given a physical system and having established which are its observ-
ables, the (quantum) theory is complete if it enables us to find the eigenvalues
and eigenvectors of the several observables, the degeneracies of the eigenvalues
and the probability transitions among any two states of the system: it can be
shown that all this is possible if for any pair of observables the commutator
is known. We will not give a proof of the above statement, but we shall have
several occasions to realize that it is true.

The quantum scheme we have discussed so far is a general scheme and
makes no reference to any particular physical system. From now on the phys-
ical systems we shall be concerned with will consist of one or more particles:
indeed, we have in mind to apply quantum theory to atoms and to show how
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it is possible to arrive at a no less than quantitative understanding of the
properties of even complex atoms.

Which are the observables of a system consisting of n particles? Classically
we have the positions ¢; and momenta p; (i =1,2,---, 3n) and their func-
tions (by the ¢; we shall always understand the Cartesian coordinates: as in
Nature there are no constraints, there is no reason not to make such a choice).
We make the hypothesis that the above quantities are the observables for the
system, even when it is considered from the quantum point of view. Whether
this hypothesis is right or wrong will emerge from the comparison between the
predictions of the theory and the experimental results: for example, we shall
see that, in the case of electrons, other observables (the spin) will be needed.

According to the discussion of the previous sections, to any observable
there corresponds a self-adjoint operator. So, for example, ¢; — ¢;*, p; — p;¥
(we provisionally go back to the notation £°P).

If we now have an observable f(q,p), we postulate that the operator
associated with it is obtained by replacing ¢ and p in f respectively with ¢°P
and p°P: in other words we postulate that f°P = f(¢°P,p°P). So, for example,
in the case of the harmonic oscillator to the energy

1
H= _— (p2 2 2 2
o (P + P )

there corresponds the self-adjoint operator:

1
HOP — op2+m2w2 op2.
5, |P7) ()]
Sometimes an ambiguity arises, due to the fact that, while in f(q,p) the order
of factors is unessential, in f(g°P,p°P) it is important, so that the resulting
operator may be not Hermitian. In practice this ambiguity is not very relevant:
for example one can write:

1 1 (o) O O (o)
qp = 2(qp+pq) - 2(61 PpoP 4 p°P ¢°P)

that is Hermitian. From now on we will no longer write the symbol °P to
distinguish the quantum operators: by ¢, p, f(g,p) we will positively denote
the operators associated with the corresponding observables.

According to the above discussion , it is necessary to know the commuta-
tor of any pair of observables f(q,p) and ¢(g,p). It can be seen that such
commutators are known if the following commutators:

[gi, qi], [gi,pj], [pi, pj] (4.47)

are known. This can be achieved by means of the following essential
Formal Properties of Commutators:

Let &, n, ¢ be operators. One has:
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L& n]=-[n, ¢,

2. [¢&,n]"=~[n,¢] it £=¢t n=n9",

3. &+l =[& n]+[€, ¢, (4.48)
4. €, nCl=n[& I+[€. n]C,

5. [En.Cl=¢&n, CI+ [, ¢,

6. [&, [n, C1]+ [, [¢ €]+ ¢, (€ m]] =

Note — this observation may provide a good mnemonical rule — that 4 and 5
recall the Leibniz rule for the derivative of a product; 5 follows from 1 and 4;
6 is known as Jacobi identity.

It should be clear that, according to the above rules, the calculation of a
commutator of any f(q,p) and g(g,p) that are either polynomials or power
series in ¢ and p is led back to the ‘elementary’ commutators (4.47). So,
in order to complete the scheme, it is necessary and sufficient to know the
commutators (4.47). Let us firstly note that not all of them can be vanishing:
if it were so, all the observables would commute with one another and one
would be taken back to the classical case.

In order to determine the commutators (4.47) we shall resort to an anal-
ogy between the quantum commutators and the Poisson brackets of classical
mechanics — an analogy that, as it will be seen a posteriori, will enable us to
recover classical mechanics as a limiting case of quantum mechanics.

As well known, in classical mechanics the Poisson Bracket [f, g],, be-
tween f(gq,p) and g(q,p) is defined in the following way:

X df a9 df dg
[fvg]PB:;<a_%a_m_a_ma_(h>' (4'49)

The Poisson brackets enjoy the same formal properties of commutators listed
n (4.48) (for the Poisson brackets, however, the order of factors in 4 and
5 is unessential) and play an important role e.g. in the theory of canonical
transformations, or even in the equations of motions that can be written in
the form:

T =7, Hl,y (4.50)

H being the Hamiltonian of the system. Due to both the importance of Poisson
brackets in classical mechanics and to formal analogy with commutators, we
assume the following:

Quantization Postulate: the commutators (4.47) are proportional to the
corresponding Poisson brackets.

From (4.49) one has:

[C]i»(Ij]pBZO» [C]i»pj]pB:(Sij7 [plvpj]pBZO

so the only nonvanishing commutator between ¢; and p; must be propor-
tional to d;; . Which is the value of the proportionality constant? Note that
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owing to 2 of (4.48), such a constant must be pure imaginary and must have
the dimensions of an action: we postulate that it is i/ (the choice of the sign
brings along no physical consequences, since the transformation i — —i does
not touch upon the properties that define the imaginary unit: i? = —1 and
i*=—i).

So, in the end, we have the following commutation rules, or quantization
conditions, or Canonical Commutation Relations (usually referred to as CCR):

[¢i, q;]=0, [qi, pj] =1h0y, [pi,pi]=0. (4.51)

The CCR (4.51) express an important property: observables referring to dif-
ferent (i # j) degrees of freedom are compatible. There is instead incompat-
ibility between any ¢; and its canonically conjugate momentum p; : for such
observables, whose commutator is a multiple of the identity, the uncertainty
relation can be written in the form (4.46):

1
Agi Ap; > 9 h (4.52)

that must be compared with (3.18); in the present case, however, Az and
Ap, have a precise meaning given by (4.31): they are the root mean squares
of the results of measurements of z and p, in the same state.

Those states for which (4.52) holds with the equality sign (we shall en-
counter an example in the next chapter) are called minimum uncertainty
states.

Thanks to the proportionality between (4.51) and the corresponding Pois-
son brackets, and to the formal properties (4.48) shared by both, it follows
that in many cases one has:

[f,g]l=1ih[f, glpy - (4.53)

The equality (4.53) may break down due to the order of factors that is relevant
only in the left hand side. For example:

(>, p*]=qlq.p*]+[a,p°]qa=2ih (gp+pq)
whereas
ih (¢ p*loy =4ihqp.

In any event, when the problem of the order of factors does not show up, (4.53)
holds and may provide a quick way to calculate complicated commutators.
For example, in such a way the following important commutators can be
calculated:

[f(q), 9(q)] = 0 [f(p),9(p)]=0;

[gi, f(p)] = ihgz‘i; [pi, f(@)] = —ih

of (4.54)
9qi .




Chapter 5

The Harmonic Oscillator

5.1 Positivity of the Eigenvalues of Energy

The first truly significant application of the quantization conditions of the
previous chapter concerns the determination of the eigenvalues of the energy
for a one-dimensional oscillator. In this section we shall limit ourselves to
obtain only some qualitative conditions on the energy levels of the oscillator,
mainly with the purpose of giving to the reader the occasion to get acquainted
with some techniques and concepts of quantum mechanics.

The energy of a linear harmonic oscillator expressed in terms of g and p),
i.e. the Hamiltonian, is

1
H = %(p2+m2w2q2) (5.1)
where ¢ and p are self-adjoint operators that satisfy the commutation rela-
tion
[a,p]=ih. (5.2)

Let Ey, Ey, --- be the eigenvalues of H and |Ey),|E1), -+ the corre-
sponding eigenvectors. The first result is the following:

1. The eigenvalues of H are all nonnegative: E, >0, n=0,1,---.

Indeed, let | A) be an arbitrary vector that, for the sake of simplicity, we
will assume normalized. If we show that

H=(A|H|A)>0 for any |A) (5.3)

then the desired result follows because the eigenvalues themselves are mean
values of H on particular states, the eigenstates of H.

In order to show (5.3) it suffices to observe that ( A | p? | A) is the squared
norm of the vector p| A) (p = p'!) and, as such, is > 0 — the equality sign
holding only if p| A) = 0. Likewise ( A|q¢?|A) > 0, whence (5.3).

Note that the equality sign in (5.3) holds only if both p|A) = 0 and
q|A) =0, ie. if there exists a simultaneous eigenstate of p and ¢: but such
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a state cannot exist for it would be in contradiction with the uncertainty
relation (4.52) and with the commutation relation (5.2) of which (4.52) is a
consequence.

So H > 0 and one has the stronger result:

2. All the E,, are positive.

In classical physics the minimum energy of an oscillator is zero, correspond-
ing to the state in which the oscillator is at rest in the origin (¢ =0, p=0).
According to quantum mechanics, instead, Ey > 0 and this, as just seen, is
a consequence of the uncertainty relation (4.52): in other words, due to the
incompatibility of ¢ and p, a quantum state like the classical one, in which
both position and momentum are well determined, is not possible.

3. The mean values of q and p in the eigenstates of H are vanishing:

The equality (5.4) holds under more general hypotheses, i.e. it holds for any
system whose Hamiltonian has the form:

2
H=241v()

2m

with arbitrary potential V'(g). Not even the fact that the system be one-
dimensional is necessary.
Let us show (5.4) in general. Since, thanks to (4.54) [V(¢), ¢] = 0, one

has
1

[H,q]= %W, q] = %(p[p,Q]+[p,Q]p) =—in (5.6)

whence it follows that
S B B = (B 1 a) | B = (B | (Ha— g H) | By)
but, due to H = HT,
H|E,)=E,|E,) = (E,|H' = (E,|H=E, (E,|
so that
(En|(Hq—qH) | En)=En(En|q|En)—(En|q|En)E,=0

and in conclusion, thanks to (5.6), (E, |p| Fn)=0.
Equation (5.5) can be shown in a similar way: it suffices to observe that

1 .
[H,p]=2mw2[q2,p]=lhwq

and one can proceed exactly as above.
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4. The lowest energy level Ey satisfies Eg > jhw.
Indeed, if (Fy | Ep) =1, one has:

1
E0=<E0|H|Eo>=%(<Eo|p2|E0>+m2w2<Eo|q2|E0>)

1
= (p2 4+ m2w?a?).
o (72 + % )
But we have seen that p and ¢ are vanishing, so p? = (Ap)? and ¢% = (Aq)?
and consequently:

By = 5 ((Ap)? + m?? (Ag)?)

Now, thanks to the inequality a?+4 b2 > 2ab with a = Ap, b = mw Aq and
to (4.52), one finally has:

1 1
Ey> —2mwAqAp > hw.
2m 2

In the next section we will show that Ey = %hw: this entails that in the above
inequalities with the sign > (equation (4.52) and a®+b > 2ab) the equality
sign always holds, therefore in the state | Ey ) one has (the second equality
follows from a? +b* =2ab < a=0b):

1h, Ap=mwlAq.

ApAq = 5

So the ground state of the linear harmonic oscillator is a minimum uncertainty
state and moreover (as p? = (Ap)? and ¢* = (Aq)?)

1
2

20 L o 1

mwgt = o p —2E0 (5.7)
i.e. the mean value of the kinetic energy equals the mean value of the poten-
tial energy: the same result holds for the classical oscillator (virial theorem),
although with a different meaning of the term ‘mean value’: for the classical
oscillator the mean is taken over a period, i.e. with respect to time, whereas
for the quantum oscillator (in the ground state, but we shall see that the re-
sult applies to the other eigenstates of the Hamiltonian as well) one is dealing
with the mean of the results of measurements respectively of the kinetic and
the potential energy.

5.2 The Energy Levels of the Harmonic Oscillator

In order to determine the eigenvalues of the Hamiltonian of the one-dimen-
sional harmonic oscillator, instead of using p and ¢, we will use the following
non-Hermitian operators:

1
=—— (p—imwyq), =—— (p+imwyq). 5.8
n 2mwh(p q) n 2mwh(p q) (5.8)
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In terms of n and nf, p and ¢ are given by:

o=yl =m. p=" . 69

One has:
1 hw
to 2 2.2 2 . _ (H——)
=g —— (PP +miwt e +imwlg, p]) = 5 =
1 1
Tn=—"H- _. 5.10
= 5 (5.10)
Likewise: 1 L
f— g
i hw +2
therefore, also directly from (4.51),
[(n,n']=1. (5.11)

Let us now calculate the commutators [H , ] and [H , n']. From (5.10) and
(5.11) one has
[H,n]=hwln'n, n]=~hwn, (5.12)

whose adjoint is
[H, ') =hw[n"n,n'] = +hwn'. (5.13)

Let now | E) be an eigenvector of H belonging to the eigenvalue E: H |E) =
E|E) and consider the vector n|E): if n|E) # 0, it is an eigenvector of
H belonging to the eigenvalue E — hw . Indeed, by use of (5.12) one has:

Hy|B)=nH|E)—hwn|E) = (E—hw)n|E).  (5.14)

Owing to this property, 1 is called either a step down or a lowering op-
erator, because when applied to an eigenvector | E') of H — if the result is
nonvanishing — it transforms | ') into another eigenvector corresponding to
another eigenvalue: the eigenvalue £ decreased by the quantity hw.

Let us now start with the vector |E) and apply 7 to it; then, if the
result is nonvanishing, let us apply 1 once more ... and so on until this
chain possibly stops by giving the null vector. In this way the eigenvalues
FE,F—hw, F—2hw, --- are obtained. But this chain must necessarily stop
somewhere, otherwise we would find negative eigenvalues when, instead, we
know that all the eigenvalues must be > éhw. Therefore there must exist a
minimum eigenvalue FEy such that

n|Ey)=0. (5.15)
Then:
1 1 1 1
= f = — H - —(—E, —
0=(Eo|n'n|Eo)=(Eo| z—H— | E)=(7=Eo— ) (Eo|Eo)
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whence Ey = jhw.

It is easy to see that n' is a step up or a raising operator, i.e. if | E') is an
eigenvector of H belonging to the eigenvalue E, then n' | E) is an eigenvector
of H belonging to F + hw . Indeed, by use now of (5.13) one has:

Hy'|E)=n"H|E)+hwn'|E) = (E+hw)n'|E).

So, starting with | Ey), we can repeatedly apply n' and obtain a chain of
eigenvectors of H belonging to the eigenvalues Fy, Eg+hw, Fyg+2hw, ---
Should this chain stop somewhere? In other words, may it happen that there
exists a vector | E') such that n | E') = 07 Let us see: if such a vector existed,
one should have
_ HEY=(E| “Hy By = (L 1)
0=(B|ny | B)=(B| —H+ |B)=(;_E+ )(E|E)

that is absurd inasmuch as E + %hw never vanishes. So the ascending chain
never interrupts and all the

En:<n+;)hw n=0,1,2, (5.16)

are eigenvalues of H. Clearly there exist no other eigenvalues different from
those given by (5.16): if one existed, the descending chain starting from it,
not passing through the value ;hw but overstepping it, would imply the
existence of negative eigenvalues. The values given by (5.16) are all and only
the eigenvalues of H. One should still investigate whether such eigenvalues
are degenerate or not: they are nondegenerate, but we will show this property
later on, in a more general context.

Also a proof that the | E,, ) form a complete set would be essential: this
would be a verification of the internal consistency of the theory, because H,
being an operator associated with an observable, must have precise properties,
among which the completeness of its eigenvectors: should it turn out that
H does not possess these properties, it would mean that the quantization
postulate (4.51), namely the postulate that determines the properties of the
operator H, is not compatible with the previous postulates, in particular the
assumption that H is an observable, i.e. a self-adjoint operartor. However,
although we will not make a demonstration and not even will we spend a
word about what should be demonstrated, we state that the states | E,, ) do
form a complete set. Therefore, for the time being, everything is all right.

Let us now simplify the notation: we shall denote by [n) (n=0,1,2,--)
the eigenvectors of H: |0) represents the ground state, | 1) the state corre-
sponding to the first excited level and so on. They are all obtained by repeat-
edly applying the operator 1T to the vector |0) : for example |[n) = (n7)"|0).
However such vectors are not normalized. If we want to normalize them, we
must calculate

(nln)=(0]n"u")"0)

and to this purpose we need the following expression
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[n, ()" ] =n (n")"~ (5.17)

that we demonstrate by induction. It holds for n = 1. We then see that, if
(5.17) holds with n replaced by n — 1, i.e. if [n, ()"~ = (n—1) ("2,
then also (5.17) holds. Indeed:

(n, )" T =10, 0" ()" T=n"[n, @)1+ [, 9" ] (")
=(n-Dn )"+ @) =n@H .
Then
(09" ()™ 10)y=(0]n" "n(n")™ [0)=(0[n"""[n, (n")"]10)

(the last step follows from (5.15): ]0) = 0), then, by use of (5.17):

(07" ("™ 10) =n(0 7"~ ()" [0) .

By repeating n times this calculation, that has lowered the exponents of n
and 1" from n to n — 1, one obtains:

(07" ("™ 0)=nl(0]0) .

We redefine the vectors |n) as

In)=——(n")"]0) (5.18)

1
Vn!
so that, if (0]0)=1,also (n|n)=1.

(Operators like 7' and 7 satisfying the commutation relation (5.11) have
an important role in the theory of quantum fields, where they are also re-
ferred to as creation and destruction operators since, in that context, they
respectively increase and decrease by one unit the number N of particles).



Chapter 6

Representation Theory

6.1 Representations

Let |e,), n=1,2,--- be an orthonormal basis of vectors:
(em | en) = 0mn (orthonormality)
Yoalen)en| =1 (completeness).

Then, for any vector | A) € H one has

[A) = anlen), an={ea|A), (A]A)=3" Ja,J* <oc.

Then any vector determines and is determined by the sequence of complex
numbers {a,} such that Y |a,|? < oo:

|A) = {an} . (6.1)

The {a,} are called the representatives of | A) in the basis |e, ).

Given the two vectors | A) and | B), their scalar product ( B | A) may be
expressed by means of the respective representatives {a,} and {b,}: indeed,
thanks to the completeness relation

(BIA) =3 (Blea)en| A) =3 bia, .

In the above way we have established an isomorphism between the space H
and the space ¢ consisting of the square summable sequences. This is called
a representation of H on (5.

Of course, if the basis | e, ) is changed, the representatives of any vector
change, i.e. the isomorphism changes.

Let now ¢ be an operator and | A) any vector in H. Let us put

|B)=10|A).
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How are the representatives {a,} and {b,} of | A) and | B) related to each
other? One has

bn:<en|B>:<€n|Q|A>:Zm<en|Q|em><€m|A>:Zanmam

having put
onm =(en 0] em) .

The numbers g,,, are called the matriz elements of the operator ¢ in the
basis | e, ) ; they are completely determined by the operator (and by the chosen
basis) and they completely determine it inasmuch as, by means of them, the
action of p on any vector is known:

o—{onm}, g|A>—>{bn:ngnmam} (6.2)

Let us now examine some properties of the representation of operators.

1. The representatives of the identity operator are, in any basis, &, .

2. Let £ and 7 be two operators. Which are the representatives {(€ 1)pnm } of
the product £ 7 in terms of the representatives of £ and 1n? By use of the
completeness relation one has

(EMnm = <€n|€7l|€m>zz <€n|€|ek><€k|n|€m>zzk§nknkm-

k

Therefore any operator is represented by a matrix of numbers and the
matrix representing the product is the product of the matrices, according
to the ‘row by column’ multiplication law (of course one is dealing with
infinite-dimensional matrices).

3. Concerning Hermitian conjugation, one has

(fT)nm:<€n|€T|em>:<em|§|en>*:€;¢n~ (6.3)

Therefore the matrix representing &' is the Hermitian conjugate (= com-
plex conjugate and transposed) of the matrix representing &.

Normally the basis | e,, ) that identifies the representation consists of the eigen-
vectors of some observable &; however, if £ is degenerate, we know that there
exists some arbitrariness in the choice of an orthonormal basis consisting of
eigenvectors of &.

If | &, ) is an orthonormal basis of eigenvectors of ¢,

E={(&l€1&n) =1{&bnm}, E1A) = {&ant. (6.4)

In general, if the basis consists of simultaneous eigenvectors | &k, 77, Cim,y <)
of a complete set of compatible observables &, n, (, -+, for each of these
observables, say &, one has:

<£k7nl7Cm7"'|§|£k’7nl’7<m’7 >:£k 6kk/5ll’6mm/
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Therefore, £ is represented by a diagonal matrix, the diagonal matrix ele-
ments are the eigenvalues of £ and each of them appears as many times as its
degree of degeneracy. The same applies for 7, ¢, ---. For this reason one says
that the considered representation is a representation in which &, n, ¢, --- are
simultaneously diagonal.

Viceversa, as we know that compatible observables possess a complete set
of simultaneous eigenvectors, it is always possible to choose a basis in which
such observables are simultaneously diagonal. As in (6.4), diagonal observables
act multiplicatively on the representatives of states.

Let now £ be an observable and |, ) a basis of eigenvectors of £. Let n be
an operator that commutes with . How is 7 represented in the basis | &, )7
Let us distinguish two cases.

(i) If the vectors | &, ) are simultaneous eigenvectors of both £ and 7, then we
are in the situation previously described, i.e. 1 is represented by a diagonal
matrix. This certainly happens if £ is nondegenerate.

(ii) If not all the | &, ) are also eigenvectors of 7, i.e. £ is degenerate, then by
the lemma of p. 87 (Sect. 4.10) one has that all the matrix elements of n
between eigenvectors of £ belonging to different eigenvalues are vanishing;
if, viceversa, |&,) and |&, ) belong to the same eigenvalue of &, then
(&, | n | &» ) may be nonvanishing. In the latter case 1,,, is a “block-
diagonal” matrix (see Fig. 6.1b), i.e. a matrix possibly nonvanishing only
within square blocks on the principal diagonal, whose dimension coincide
with the degree of degeneracy of the eigenvalue of ¢ the block refers to
(see Fig. 6.1a).

& 0000 0 - M1 2 m3 0 0 0
0& 000 0 - M21 M22 23 0 0 0
00& 000 - ms1me2 ez 0 0 0
esl000&00- |, [0 0 0 w0 0
0000¢&O0 - 0 0 0 0 755 76 -
00000 E¢&- 0 0 0 0 mnes me6 -
Fig. 6.1a Fig. 6.1b

Another very important fact has to be remarked: even in the case £ is a
nondegenerate observable (or, more in general, a complete set of commuting
observables), the representation is not completely specified by saying that the
vectors | &, ) forming the basis are eigenvectors of &: indeed, if the vectors
|&n) form an orthonormal basis of £, also the vectors

&) =€ &) (6.5)

are such. So the statement ‘the representation in which £ is diagonal’ is not
correct inasmuch as many such representations do exist; one better says ‘a

)

representation ... .
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Let us examine the differences between two representations in which the
nondegenerate observable ¢ is diagonal. As the bases are connected by (6.5),
for the representatives {a,} and {al} of a vector | A) in the bases | &, ) and
| &, ) one has

a, =e ¥ a,
and for the representatives of an operator

anm — ei (Pm—¢n) Onm -
So only the diagonal elements of an operator are not changed; in particular the
representation of diagonal operators (i.e. represented by diagonal matrices),
such as e.g. &, is not affected. In order to fully characterize a representation in
which ¢ is diagonal it is necessary to somehow fix the phases of the eigenvectors
of €. We shall see in each case how this can be done. Note that we are here
interested in the relative phases: indeed the case in which all the ¢,, in (6.5)
are equal to the same ¢ is totally irrelevant because the representative of
operators are left unchanged, whereas the representatives of any vector | A)
become those of the vector e=1¥| A) | that represents the same state.

We conclude this section with a quite relevant observation about the in-
ternal consistency of the theory. More precisely: what warranty are we given
about the existence of operators obeying the commutation relations (4.51)?
That the question is not obvious is shown by the fact that, if H had finite
dimension, (4.51) could not hold: indeed — calling N the dimension of H, and
k), (k= 1,2,---, N) any orthonormal basis that defines the representa-
tion — taking the trace of both sides of 1% = [q, p] gives rise to a contradiction
(remember that Tr(AB) = Tr(B A) ):

iNh="Tr(gp) — Tr(pq) =0

(if the dimension of H is infinite, the trace of the commutator is co — 00).

As a consequence, operators that fulfill (4.51) (that they do exist will be
seen in the next section) necessarily operate on an infinite-dimensional space,
as already anticipated in Chap. 4.

6.2 Heisenberg Representation for the Harmonic Oscillator

Any representation in which the Hamiltonian operator is diagonal is given
the name of Heisenberg representation . In the case of the linear harmonic
oscillator the Hamiltonian is nondegenerate. The relative phases of the vectors
that form the basis are defined if we take, as we will indeed do, the basis | n )
of the eigenvectors of H given by (5.18).

The representation of H is obvious and is not worth any further comment.
Let us instead see the representation of the operators 7, n', ¢ and p. One has

(1Y nm = (| 7 | m) = J%m | ()™ [ 0)
(m+1)!

=" (nim+1)=vVm+16,me1 -
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Since n' is represented by a real matrix, the representation of 7 is obtained
by taking its transpose:

00 0 0 01 0 0 -
1 0 0 0 0 020 -
a0 v2 o0 0 . | 00 03
0 0 V30 0 0 0 0 -

The operators ¢ and p are then expressed in terms of n and 1’ by (5.9),

therefore:
0 -1 o0 0
. 1 0 -2 0 -
q—>—i\/ 0 V2 0 —V3 .- : (6.6)
2mw 0 0 V3 0 -
0 1 0 0
. 1 0 V2 o
p— B 0 V20 VB (6.7)
2 0 0 V3 0

It is straightforward to verify that the matrices (6.6) and (6.7) satisfy the
commutation relation (5.2), namely:

Zk (an Pkm — Pnk ka) = lh(;nm .

The substitution of (6.6) and (6.7) into (5.1) gives H in diagonal form, with
the eigenvalues E, = hw (n+ 3) on the diagonal.

We have exhibited a ‘concrete’ representation of the abstract theory and
this is important for two reasons:

1. it shows that the set of operators satisfying (5.2) is non-empty;

2. all the discussion of Chap. 5 about the harmonic oscillator is based on
the assumption that H has at least one eigenvector: so the existence of
a concrete representation, that reproduces all the results found with the
above assumption in Chap. 5 in an abstract way, is something more than
a mere verification, it rather is a proof of existence.

Note that ¢ is represented by a matrix whose elements are all pure imaginary,
whereas p is represented by a real matrix: in several textbooks the situation
is reversed, i.e. q is represented by a real matrix, p by a purely imaginary one.
This depends on the different choice of the phases of the vectors that form
the basis, precisely it corresponds to taking as the basis that characterizes the
representation the following vectors:
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(=9)"

D)) (6.9

[n) = (=1)"|n) =

instead of (5.18), which is perfectly legitimate. One must only pay attention
not to use results obtained by one representation within a problem where use
of the second is being made.

6.3 Unitary Transformations

Let |e,) and |é,) two orthonormal bases and U the operator such that
Ulen)=1én) . (6.9)

The operator U is defined by linearity on any vector | A) € H:

|A>:Zn“”|6”> = U|A>=U(Znan|en>> :Znan|én>'

By use of (6.9) and its conjugate (&, |= (e,|U' one has

<€n|UTU|6m>:<én|ém>:§nm

UUT:U<Zk|ek>(ek |) Ut=3" Jek) (e =1.

So both products UTU and UUT coincide with the identity operator, i.e.
Ut is the inverse of the operator U:

vut=Uutu=1 = Ut=u-! (6.10)

and in the latter case one says that U is a unitary operator.

In an infinite dimensional space UV = 1 is not sufficient to conclude
that U = V~! also VU = 1 is needed: for example the operator defined
by Ven) = |€,) = |ens1) satisfies VIV =1 (it transforms orthonormal
vectors into orthonormal vectors) but not V VT =1 (it does not transform
a complete set into a complete set).

Viceversa, if U is a unitary operator and |e,) (n = 1,2, --+) an or-
thonormal basis, then

[én)=Ulen), n=1,2, -

is an orthonormal basis: the demonstration is straightforward.
Since unitary operators preserve the norm of vectors:

(A|UTU | A)=(A]A)

they are bounded operators, therefore they are defined onto the whole H and
for them no domain problem arises.
If U is a unitary operator, thanks to U~' = U', the operators

G=UqU™, pi=UpU! (6.11)
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are self-adjoint and, in addition, satisfy the commutation relations (4.51):
(6,91 =Uaq U Up; U =Up; U UqU ' =Ulqi,p;[U ' =ihdy

and likewise for the others. In classical mechanics the transformations that
preserve the Poisson brackets are the canonical transformations: we then see
that the unitary transformations correspond to canonical transformations.

The transformation ¢ — ¢, p — p induces on any observable (more in
general, on any operator) f(g,p) the transformation f(q,p) — f(¢,p) and
one has

f@p) =fUqU " UpU ) =U fla,p)U" (6.12)
and, if £]€)=¢|¢) and €=U U, setting |€/) = U |¢') one has
€1y =¢1¢). (6.13)

The last equation is immediate; in order to justify the last step of (6.12) let
us start with the case in which f(g,p) is a polynomial:

F@p) =) tnm@"p™ = [@GH) =D anmi"p" =
n times m times

=S twm UqU™Y)---(UqU ) (UpU™)--- (UpU™Y) =
= U(Z anmq"pm) U '=Uf(gpU*'.

Furthermore, unitary transformations preserve algebraic relations, so that
if, for example, f(q,p) is a polynomial and ¢(¢,p) = 1/f(q,p), thanks to
(&n)~t=n"1¢"", one has

9(3,9) = [f(@p) " =[U flep) U 1 '=U[f(g,p) U =Uglg,p)U".

In this way (6.12) can be demonstrated at least for all functions defined by
algebraic relations.

Viceversa, for systems with a finite number of degrees of freedom (e.g. a
system with a fixed number of particles), if the transformation:

4% = ¢, Pi—Dis il =a, P =p (6.14)
preserves the commutation relations (4.51) ([§;, p;] =1k J;; etc.) then there
exists a unitary operator U such that (6.11) hold: one says that U imple-
ments the transformation (6.14). (Since unitary operators do not change the
physical dimensions of a variable, it is understood that ¢ and ¢ have the same
dimensions, as well as p and p).

The above result is a very important one and is known as von Neumann
theorem .

The basic idea of the proof, if all domain problems (which however are
relevant for a correct demonstration) are ignored, is very simple: with ¢ and
p as in the harmonic oscillator, let |n )y, and |71)g; (n, 7 = 0,1, ---) be
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respectively the eigenvectors of the operators p? + mw?q? and p? + mw?@>
(m and w arbitrary); the operator U defined by

Uln)gp =1n)gp

implements the transformation (6.14): obviously it is sufficient to verify that
(n and 7] defined as in (5.8))

UnU=tn)g =iln)g, Un'U ' n)g=10"n)gp  foralln)g.
Indeed (and similarly for the second of the above equations):
UnU~tn)g=Un|n)ey =vnU|n—1)gp=vnln—1)g5=17q|n)s-

Clearly U and e'¥U are equivalent to each other; we now show the converse:
two operators U; and Us that implement the same transformation differ by
a phase factor. Indeed, the (unitary) operator V = U, ' U; implements the
identity transformation ¢ — ¢, p — p; so V commutes with any f(q,p):

VHgp)V I =f(VqV ' VpV H=f(gp) = Vfle.p)=f(lae,p)V .

We now exploit the fact that any state | A) is eigenstate of some observable
corresponding to a nondegenerate eigenvalue: from this and the lemma of
p. 87 it follows that any state | A) is eigenstate of the unitary operator V,
and this is possible only if V' is a multiple of the identity: V = ¢1; since V'
is unitary (VIV =1), |¢[> =1 follows.

Just for completeness we can now exhibit one observable such that the (ar-
bitrary) state | A) is eigenstate corresponding to a nondegenerate eigenvalue:
indeed, | A) can be taken (in infinitely many ways) to be a member of an or-
thonormal basis |e,, ) and let W be the unitary operator such that W |n) =
|en ), where |n) are the eigenvectors of the operator p? + m2w?¢®> whose
eigenvalues we know are nondegenerate; therefore | A) is an eigenvector cor-
responding to a nondegenerate eigenvalue of the operator W (p?+m?w?¢?)WT.

What’s more, if V' were not equivalent to the identity operator: V #£ e'? 1,
the statement made at the end of Sect. 4.8 according to which the collection
of all the expectation values univocally determines the state, would not be
trues with | B) = V| A), (A| f(a,p) | A) = (B| f(a, p) | B).

The fact that any operator that commutes with all the observables is a
multiple of the identity entails that no subspace of H is left invariant by
the whole set of the observables: one then says that the representation of the
observables on H is ¢rreducible (the connection between the above statement
and Schur’s lemma should not have gone unnoticed); thanks to von Neumann’s
theorem all irreducible representations are (unitarily) equivalent.

It is worth noticing that the irreducibility of the representation of the
observables is also implicit in the superposition principle: if H;1 and Ho are
invariant subspaces of H (i.e. no observable has matrix elements between the
vectors of 71 and Hz) then, with | A1) € Hy and | A2 ) € Ha), all the vectors
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a1| A1) + ag| Aa) with given |aq| and |as| represent the same state, which
therefore is the statistical mixture {| A1), |a1]?; | A2), |aa|? }.

An instructive application of the von Neumann theorem is given by the
following example: the transformation

(==, pop=-mwgq (6.15)
muw

is a canonical transformation ([§, p] = ih), so there exists a unitary oper-
ator that implements it. The Hamiltonian (5.1) of the harmonic oscillator is
invariant under the transformation (6.15): H(q,p) = H(q,p), therefore

UH(q,p)U™" = H(q,p) = UH=HU.

Since U commutes with H and H is nondegenerate, thanks to the lemma of
p. 87, the eigenvectors of the latter also are eigenvectors for U:

UIE)=AE); (E|E)=(E|U'U|E) = =1
(the eigenvalues of unitary operators are complex numbers of modulus 1). So,
since (E|UT---U|E)Y=|\*E|---|EY=(E|---|E),

2 =2
- — P _ L 2o
(Bl o | E)=(E|5—|E)=(E| mwyq |E)

that extends (5.7) to any eigenstate of the Hamiltonian.

6.4 The Schrédinger Representation: Preliminary Considerations

One of the problems of quantum mechanics is that of determining eigenvalues
and eigenvectors of the observables: it would therefore be advisable to have
at one’s disposal a rather general technique apt to solve this problem. The
representation theory discussed in Sect. 6.1 may be useful for this purpose:
indeed, if we know a representation of the operators ¢ and p, as e.g. that given
by (6.6) and (6.7), then we know the representation of any observable f(g,p)
of the theory.

Therefore problem is that of finding eigenvalues and eigenvectors of an infi-
nite dimensional matrix. For example, if we are interested in the Hamiltonian,
we shall have to solve the equations:

ZankckE:EckE, n=1,2--- (6.16)

that translate in terms of representatives the equation H |E) = FE|FE).
The unknowns in (6.16) are the eigenvalues E and, in correspondence with
each of them, the representatives {cZ} of the eigenvector | E).

Regarding the {cZ}, the acceptable solutions are those for which the con-
dition Y, |c¥|? < oo holds, i.e. {cF} € ¢35 (we will come back to this point
in the next section, although the context will be slightly different).
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So by means of (6.16) (or the analogue for other observables) one can solve,
in principle, the problem of finding eigenvalues and eigenvectors of an observ-
able. In practice things go in a different way because the equations (6.16)
are a system of infinite linear and homogeneous equations in the unknowns
{cE} and there is no sufficiently general method of solution at one’s disposal.
There also is one further problem: (6.6) and (6.7) are just one out of many
possible representations for ¢ and p: therefore the problem of understanding,
case by case, which representation is the more convenient arises. One is led
to think that, in view of the fundamental role ¢ and p have in the whole the-
ory, a representation, in which one of such observables be diagonal, should be
particularly meaningful.

Let us then assume we want to find a representation in which the ¢’s are
diagonal: in the first place, it is necessary to find eigenvalues and eigenvectors.
Here we find the first difficulty: the q’s have no eigenvectors.

The above statement can be proved is several — more or less rigorous —
ways: for example, if | ) is an eigenvector of ¢ belonging to the eigenvalue z,
from ih =[q, p] and ¢' = q one has the contradiction:

ih(xlz)=(x|(gp—pg|z)=a(z|plz)—(x|[p|lx)z=0.

The proof is not rigorous for it assumes that | z ) lies in the domain of definition
of the operator p: we have reported it because by means of ‘demonstrations’
of this type several paradoxes can be invented.

Let us examine a rigorous and more instructive demonstration.

Consider, for any real a, the transformation ¢ - §=qg—a, p—>p=p.
Since commutation relations and self-adjointness are preserved, thanks to the
von Neumann theorem there exist a unitary operator U(a) that implements
the transformation ¢ = ¢, p — p:

Ula)qU(a)™ =q—a, Ula)pU(a) ' =p. (6.17)
By multiplying the first of (6.17) from the right by U(a) we get:
[¢,U(a)] =alU(a). (6.18)

Let us now assume (by contradiction) that |x) be an eigenvector of g be-
longing to the eigenvalue z : since (6.18) has the same structure as (5.12) and
(5.13), also in the present case one has that U(a)|z) is an eigenvector of ¢
belonging to the eigenvalue x + a:

U@ |e) = (@+a)U(a)|e) « Ula)|z)=|z+a).  (6.19)

But a is an arbitrary real number, therefore a continuous set of eigenvalues
is obtained: this is the contradiction, because in a separable Hilbert space
H the eigenvalues of an operator form a countable (either finite or infinite)
set, otherwise there would exist orthonormal bases with the cardinality of the
continuum. In conclusion ¢ has neither eigenvectors nor eigenvalues (in #).
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The same situation occurs for p: it is sufficient to consider the canonical
transformation:

V) gV(b) "t =q, V(®)pVE) '=p—> (6.20)

and proceed as above. So also p has neither eigenvectors nor eigenvalues.

The above result is very unpleasant: indeed, if ¢ and p are operators as-
sociated with observables, they should possess eigenvectors and eigenvalues.
But this does not happen, so g and p are not observables, contrary to all what
we have said so far!

Note that all this is a consequence of the commutation rules (4.51): it
appears that the quantization postulate is incompatible with the postulate
that ¢ and p be observables. But eventually the situation is not so dramatic.
Also from a physical point of view it is clear that, for example, ¢ is not
an observable in the strict sense: think. e.g, of the Heisenberg microscope
as the instrument suitable to measure the position of a particle. It is clear
from the discussion of Sect. 3.6 that, in order to make a precise measurement
of position (i.e. to find an eigenvalue of the position ¢) radiation of infinite
frequency should be at one’s disposal, which is clearly impossible: in other
words the position of a particle can be measured with an arbitrarily high,
but not infinite, accuracy: Az may be as small as one wishes, but never
vanishing. It is the same as saying that no device can measure the position
exactly, but that there exist instruments that measure it with an arbitrarily
high accuracy (Heisenberg microscopes with smaller and smaller \). So ¢ is
not an observable, but it can be considered as the limit of observables: guided
by these considerations of physical character, in Sect. 6.9 we shall extend
the name of observables also to operators like ¢ and p, by giving a precise
mathematical form to the idea of ‘limit of observables’.

We conclude this section by first exhibiting the explicit expression in terms
of the operators g and p of the unitary operator U(a), then with a discussion
about its physical meaning.

Since U(a) commutes with p, it must exclusively be a function of p, then
from (6.18) and (4.54) one has
dU (a) dU(a) ia

» C o Tk U(a) (6.21)

[¢,U(a)] =aU(a) =ih

and the last equality is just the definition of the exponential, therefore (up to
an unessential phase factor):

Ula) = eipa/h (6.22)

(by the way, V(b) = e*19%/": the +i in the exponent is due to the change of
sign of the commutator [g,p] =ik if ¢ and p are interchanged).

As far as the physical meaning is concerned, the transformation (6.17)
represents a translation and if we adopt the active point of view, it corre-
sponds to a translation of +a of the apparata associated with the observables
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(if instead we adopt the passive point of view, it corresponds to a translation
by —a of the Cartesian axes): if in some sense (that we will clarify in Sect.
6.9) g represents an Heisenberg microscope, ¢ represents the same microscope
translated by a.

Clearly, as p = p, if a device existed for measuring momentum, this should
be invariant under translations and, therefore, infinitely extended: this helps
understanding that not even p (as we have already seen for ¢) may be consid-
ered an observable in the strict sense.

Let now | A) be a vector (normalized to 1) representing some state of a
system. The vector

| Aa) =U(a)|A)

represents the translated state, i.e. the state that is prepared exactly as the
state | A), but with the instruments translated by a: indeed, for any observ-
able f(g,p) one has

(Aa | [(@.p) | Aa) = (A|UT (Uf(@,p) U ) U | A)=(A]| flg,p) | A)

and this is exactly the relation that defines the translated state: all the ex-
pectation values do not change if both states and instrument are translated
in the same way.

6.5 The Schrédinger Representation

We started with the idea of finding a representation in which the g¢; are
diagonal and we have immediately found the difficulty that the ¢; have no
eigenvectors.

So such a representation does not exist, at least according to the meaning
we have given to this term in Sect. 6.1.

In order to understand how we should proceed, and with the purpose that
our exposition will not sound too abstract and deductive, we start with some
heuristic considerations in which the mathematical rigour is provisionally ig-
nored, but that will give us an intuition about the path to be taken.

We are interested in a representation in which the ¢; are ‘diagonal’: for
the sake of simplicity, we will focus on a system with just one ¢ and one p
(one degree of freedom) and let us reason as if ¢ had a basis of eigenvectors.
Moreover we positively admit that any real number z is an eigenvalue of
g and that, for each of them, ¢ possesses an eigenvector |z ). Therefore ¢
has a continuous set of eigenvalues and eigenvectors (once the mistake of
admitting that ¢ has an eigenvalue has been made, (6.19) forces us to consider
all the real numbers as eigenvalues). If we now proceed formally as in Sect.
6.1, one has that the representatives of any vector | A) in the ‘basis’ |z)
(—oo <z < +00)are (x| A), i.e. they are functions of x. Therefore:

[ A) = (2| A) =da(@) .

The function ©4(z) is named wavefunction of the state represented by
the vector | A). How is the scalar product (B | A) expressed in terms of
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the wavefunctions ¥4 (x) and ¥p(x)? Given that z is a continuous variable
(that takes the place of the index n of Sect. 6.1), it is natural to write the
completeness relation (4.25) as

/|x>dx(x|:]l

(the dz is put between the ket and the bra only for aesthetical reasons); in
this way one has

<B|A>=/<B|x><x|A>dx=/%(w)¢,4(x)dx

that is the scalar product in the space Ly of the square summable functions.
We have therefore obtained a representation of H on Lo . Let us now examine
how the operator ¢ is represented in this representation. One has

qlA) = (z|qlA)
but, as ¢ = ¢, (z|q¢= 2 (x| and in conclusion
q[A) = (z[q|A) =x¢a(z)

i.e. q is represented in the space Lo of wavefunctions by the multiplication by
2, much as in a representation on ¢s a diagonal operator acts multiplicatively
on the representatives of any vector (see (6.4)). In this sense we may say that,
in our representation, ¢ is diagonal.

We have arrived at an interesting result, even if in a way that is all but
rigorous: what can be legitimately considered a representation in which ¢ is
diagonal is a representation on Lo in which ¢ is represented by the multi-
plication by z. What is not rigorous in the above reasoning is the use of the
basis |z ), so we will now try to obtain the same results without using it.

Indeed, in Sect. 6.1 a representation was nothing but an isomorphism of
the abstract space H on the ‘concrete’ space f3: the use of the basis |e, )
only was a tool to build up a particular isomorphism. From this point of
view we can call ‘representation’ whatever identification (isomorphism) of the
space H with a ‘concrete’ Hilbert space, as e.g. the space Lo (all separable
Hilbert spaces are isomorphic with one another), regardless of whether this
isomorphism is realized either by means of an orthonormal basis (as in Sect.
6.1) or in a different way, as we will now do.

If the system has n degrees of freedom, let us consider the space Lg") of the
square summable functions of n variables. One must establish an isomorphism
between the space H of the state vectors and the space Lg"): while in Sect. 6.1
we first established the isomorphism between H and ¢; (namely the represen-
tation of the state vectors) and only after we determined the representation
of the operators, now — viceversa — we will first establish the representation
of the operators and from this we will determine the representation of the
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vectors. Of course it is sufficient to state how we represent the ¢’s and the p’s
to be able to find the representation of any f(g,p). There exist infinite ways
to represent the ¢’s and the p’s, i.e. infinite representations of  on Lg”) , but
we shall consider only two of them. The first is the

Schrédinger (or Coordinate) Representation
In this representation to any vector | A) of the space H there corresponds
a wavefunction Ya(x1,--- ,x,) € Lg") :

|A) «— alxr, -, ) (6.23)

and, this correspondence being an isomorphism, one has
(B1A) = [Uhlar, - m) balor, o a)don - day

where the right hand side is the scalar product in Lg") .

Obviously infinite isomorphisms of H on Lg") exist: we choose the one in
which the ¢; are represented by the multiplication by x;:

|AI> =g |A> A ¢A'($17 Tty xn) :xi¢A(xl7 R} an) . (624)

The above requirement (6.24) does not yet completely fix the isomorphism
(6.23). This can be understood, for example, by referring to the heuristic
presentation in the beginning of the present section: indeed there still remains
the possibility of changing any vector |z ) of the basis by an arbitrary phase
factor e'¥(*)

The equivalent of this is, in the presentation we are proposing, a certain
arbitrariness in the way of representing the p;: we have said ‘a certain arbi-
trariness’ because the commutation relations (4.51) must be satisfied by the
representations of the ¢; and the p;. The Schrodinger representation is that
for which the p; are represented by —ihd/0x; (since we will see that in this
way the (4.51) are satisfied):

|AN> :pl|A> — ¢A”('x17 Tty xn) = _lhaaxz

Ya(ze, -+, xn) . (6.25)

The Schrodinger representation is therefore defined by

|A) +— Yaler, -, z) € LY, a4 — i, pi—>—ihaa (6.26)

Ty
At this point we must ask ourselves two things:

1. whether the operators x; and —ih 0/Jx; are self-adjoint operators on
Lgn) ;

2. whether the representation of the ¢; and the p; is compatible with the
commutation relations (4.51).
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Let us start with the first problem: as usual we will only show that the oper-

ators are Hermitian. As for the x;, it is necessary to verify that the equation
(B|q|A)=(A] ¢ | B)* holds also for the representatives, i.e.

/¢E($1, ,xn)xi¢A(aj17... 7$n)d$1 <o day,
= (/¢2(£1, ,xn)xﬂﬁB(ajl’-.- 73;n)dx1 dxn)*

that is obviously true. Likewise, in order to show that —i/Ad/0xz; is Hermitian,
one must verify that

. . 0
_1h/w3(xl>"'>$n) ¢A($1,7J3n)d$1dxn=
0 «
) Dl ) dan)

Ox
= (=i [t ) 5

Indeed, by performing a partial integration in the right hand side one has

(i fwi g vmde) =i [ v v
:—m/lpg %¢Adx+ih/%(¢g¢A)dx.

But the last term is vanishing for functions in L, that vanish at infinity, and
these are dense in Lo . This shows that the p; are represented by Hermitian
operators.

As for the second problem, we must show that, much as the following
equations

(g, aj11A) =0, [pi,pi]|A)=0, [ai,p;]lA)=1hédi;|A) (6.27)

hold in #H, in Lén) one has

(a:ixj —Zj JS@)¢A($1,"' >xn) =0,
0 0 0 0
_j2 _ 7 —
L (8:@ Ox;  Ox; 8xi) vaer, -, 2) =0, (6.28)
, 8" 9 :
~ih (o Oz; O zi) Yal@r o @0) = ih 8y Yaler, - wa) -

The first two equations obviously are satisfied. As for the third, one has

. 0 . 9] . 0
_1h<xl oz, — oz xl) Pa=—ihx; oz, Pa+ih 8%(96”/),4)
~ipg 2%A s hop %A
=—ihxz; oz, +ihdijva+ih x; oz, =1ihd;j ¢4 .

It is useful to remark that (6.28) cannot be written for whatever function
Pa € Lén): for example, in order that the first of (6.28) be meaningful in Lg"),
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it is necessary that z; x; Y a(x1, - -+, xy,) still is square summable; whereas for
the second of (6.28) it is necessary that ¥4 (x1, - -+ ,2,) is twice differentiable
and that 021 ,4/0z; Oz; still is square summable. Likewise for the third of
(6.28).

Not all the functions ¥4 € Lén) satisfy the above conditions, they only
form a dense set. Indeed we know that unbounded operators are not defined
on all the vectors in H, but only on a dense subset of vectors: this is the
case for the ¢; and p;, for which equations (6.27) had a meaning not for all
the vectors | A) € H, but only for vectors | A) in a suitable dense subset of
H. Therefore both (6.27) and (6.28) for the representatives hold on a dense
subset, respectively in H and in Ly .

We have come back to domain problems of unbounded operators, like
gi and p; on H and z; and —ihd/dz; on Lén), not only for the sake of
correctness: it is indeed an important problem, but any further discussion
about it is beyond the scope of this presentation. In any event, and not only
to relieve our conscience, we will shortly come back to this point in the end
of this section.

The representation given by (6.26) of the ¢; and p; being now known,
any observable f(g;,p;) is represented by f(z;, —ih0/0x;). In particular, an
observable f(q1, -+ ,qn) is represented by f(z1, - -,x,) that acts multi-
plicatively on wavefunctions:

f(Q17 7qn)|A> _>.f(x17 7xn)¢A(x17 7'1:”)'

The idea of seeking a representation in which the ¢ are diagonal had arisen
from the necessity of solving the problem of the determination of eigenvector
and eigenvalues of the several observables of the system: let us see what has
been gained, in this respect, by the introduction of the Schrédinger represen-
tation (SR).

Let us, for example, consider the problem of determining eigenvalues and
eigenvectors of the energy for a system of particles (n degrees of freedom).
The Hamiltonian (in the absence of magnetic fields) has the form:

n 2
p;
=1

and, since

0 0 0?
2 . . _ 52 9
pi%( lhaa:)( Niaa:i) h Oz}
(and not p?|A) — (0¢a/0x)? !), the eigenvalue equation for H in the

Schrédinger representation takes the form:

S
(;—QTR 8%12 + Vi(xy,--- ,xn)> Ye(r1, -, xn)=EvYp(x, - ,z,) (6.29)
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that, for historical reasons, is named Schrédinger equation (this is due
to the particular importance that the determination of the energy levels of
a system has always had, for which (6.29) has been written by Schrodinger
before quantum mechanics had taken the form we are presenting here).

Equation (6.29) is a second order homogeneous linear differential equation
(it contains indeed derivatives at most of the second order): it is true that not
always the solution of this equation can be explicitly found (it all depends on
the particular form of the potential V(z1, --- ,zy) ), however for differential
equations we do have several techniques for an either exact, or approximate
or numeric solutions — much more than we have for equations of the type
(6.16). Therefore, from this point of view, the introduction of the Schrodinger
representation is a remarkable step forward.

In the equation H|E) = E|E) the unknowns are both the eigenvalues
E and the corresponding eigenvectors | E'). In the case of (6.29) the un-
knowns are the eigenvalues E and the g (z1, -+ ,x,): it is worth spending
some words to understand in which sense F is an unknown in (6.29). Indeed,
existence theorems for differential equations ensure that (6.29) possesses so-
lutions for any value of E; but we should remember that we are interested
only in those solutions g (z1, -+ ,x,) that are square summable (and that,
therefore, vanish at infinity sufficiently fast). Now not only (6.29) possesses a
solution for any value of E, but indeed it possesses so many of them (for it is a
partial differential equation); however what happens is that square summable
solutions exist only for particular values of E that form a discrete — finite or
infinite — set. The determination of such values of E for which (6.29) admits
solutions in Lg") is therefore an essential part of the problem of solving (6.29)
itself.

Having introduced the Schrédinger representation in which the ¢; ‘are
diagonal’, we can introduce in the same way a second representation in which
— with the same meaning, i.e. of being represented by operators that act
multiplicatively — the p; are diagonal: this is the

Momentum Representation

The momentum representation is obtained by interchanging the role of the
g; with that of the p; in (6.26): any vector | A) is represented by the function
walky, - kp) € Lg") (we use k instead of x for the independent variables
only to distinguish the momentum from the Schrédinger representation), the
p; are represented by the multiplication by k; and the ¢; by i%9/0k; (the
change of sign in the latter, with respect to the Schrodinger representation of
pi, is due, as already pointed out, to the fact that interchanging the roles of
g and p changes the sign of the commutator: [p;, ¢;] = —1hd;; )

All what has been said for the Schrédinger representation can be repeated
for the momentum representation. Either one of the two representation can
be used to determine eigenvalues and eigenvectors of some observable f(q,p),
depending on which one provides the simplest equation. If, for example, the
observable is the Hamiltonian, normally the Schrodinger representation is the
more convenient because usually the potential is a complicated function of
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the ¢ and it is therefore preferable that it be represented by a multiplicative
operator V(z1, -+ ,x,), rather than by a complicated differential operator
V(-iho/0xy, -+ ,—1hD/0x,) .

In the sequel we will make use of the following terminology: if | A) is
an eigenvector of some observable f(q,p), the wavefunction ¥a(x1, -+, )
(or walky, - kn) ) that corresponds to it in the Schrédinger representation
(respectively in the momentum representation) will be called eigenfunction
in the Schrodinger representation (in the momentum representation) of the
observable f(q,p).

We conclude this section with the following observations: von Neumann
theorem ensures us that all the representations of the ¢ and p that obey the
commutation rules (4.51) are unitarily equivalent to one another (therefore,
for example, if ¢4 and p4 are the wavefunctions of the state | A) respec-
tively in the Schrédinger and momentum representation, there exists a unitary
transformation U such that U4 = ¢4 for any | A) ), so the Schrodinger rep-
resentation has no privileged role: the results found in this representation hold
in any representation, therefore in the abstract space H.

In particular, in the Schrédinger representation it is easy to identify a dense
(in Lé”)) set of functions on which the z; and the 9/0x; and, more in general,
all the polynomials P(x;, —1h0/0x;) are well defined as operators on Lg”) (i.e.
when applied to the elements of this set give, as a result, square summable
functions): we mean the Schwartz space S of the infinitely differentiable
functions (of n variables) that share the property of fast decrease at infinity
(i.e. that, for |z| — oo, vanish with all their derivatives faster that the inverse
of any polynomial, as e.g. " e_mz): S is dense in Lg").

Therefore, thanks to von Neumann theorem, it is true in any representa-
tion, and therefore in the abstract space H , that at least the operators that
can be expressed as (or can be approximated by) polynomial functions of the
¢; and the p; are always well defined.

Let us consider, for example, the translation operator U(a) given by
(6.22): in the Schrédinger representation one has (—ip/h — —d/dx)

Ua)|A) B ead/de g () .

Then:

efad/da: Q/JA(IL') _ Z (_a)n (dnwA(x)) _ wA(x o a)

n nl dzm

for any entire function (i.e. a function whose Taylor series converges for any
a). Since such functions constitute a set that is dense in Lo and moreover
[U(a) ba(@)]| = [Ya(®)], the equation

Ula)Ya(z) = P(z —a) (6.30)

can be, without any problem, extended by continuity to any ¥4 € H.
Recalling the problem hinted at in the beginning of Chap. 4, namely
whether all the vectors in H do represent states of the system, it looks natu-
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ral, at this point, to consider the space S as a good candidate for a bijective
projective (i.e. up to a factor) correspondence with the states of the system.

6.6 Physical Interpretation of Schrodinger and Momentum
Representations

Schrodinger and momentum representations not only are a useful mathemat-
ical tool to solve the problem of the determination of eigenvalues and eigen-
vectors of the various observables, but have an important physical meaning.
Let us first consider the Schrodinger representation.

Let ¥a(x1, -+ ,zy,) be the normalized wavefunction of the vector | A):

/|¢A(.’E17 7.’En)|2d$1 dxn: <A|A>:1

The mean values of ¢; and p; in the state represented by | A) respectively
are

g = (Alql|A) 2/1@;(%1, cxp) wivale, o op)dey - doy,,

= /xi [Ya(@r, -+ xn)Pday - day

: . 0
pi= (Alpi] A) = =ih [Wi(on, o ) o balon, oo ) day - da,

i

and the mean value of a generic f(q1, -+ ,qn) is

.f(q17 7qn) = f(xh 7‘1:77«) |wA(x17 ,In)|2d$1 dl‘n . (631)

In the expression of the mean value of ¢; and in general of f(q1, -+, ¢n) (but
not of p; and of any generic f(q,p)) the factor |a(z1, -+ ,xn)|> appears:
we want now to establish the physical meaning of this quantity.
Let us first consider, for the sake of sim-
plicity, the case of one degree of freedom; AEp ()
later we will generalize the result. Con-
sider, on the z-axis, a small interval A cen- 1
tered around the point z’ and let us also
consider the operator Ea ,/(¢) that in the
Schrodinger representation is represented x z
by the function Ea ,/(z) whose value is
1 inside the interval A and 0 outside of it Fig. 6.2
(EAJ/(x) — that acts multiplicatively — is called characteristic function of the
interval A : see Fig. 6.2).

It is evident that the eigenvalues of this self-adjoint operator Ea ./ (q)
(or Ea,p(x) in the Schrédinger representation) are only 0 and 1. Indeed all
and only the functions v (z) that are nonvanishing only inside the interval

— A
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A belong to the eigenvalue 1, while all and only those that are nonvanishing
only outside of it belong to the eigenvalue 0. In addition, there exist no other
eigenvalues, because the eigenfunctions of Ea 4/ (x) corresponding to either 0
or 1 form a complete set: any function 1 (z) can indeed be written as the sum
of a function 1o (z) nonvanishing only out of the interval and a function 1 (x)
nonvanishing only inside it. So Ea ,/(x) is a (very degenerate) observable.
(Note that all the above follows immediately from the fact that the self-adjoint
operator Ea o(x) is a projection operator: Ea /() Ea o (z) = EAJC/(J:))
(see (4.26)).

Which is its physical meaning? Let us think of the corresponding classical
observable: one is dealing with the observable whose value is 1 if the particle is
inside the interval and is 0 if the particle is elsewhere. This being the meaning
of Ea (q), the probability p; that a measurement of Ea ,(gq) gives as
a result the eigenvalue 1 also is the probability to find the particle inside
the interval A, whereas the probability pg to find the eigenvalue 0 is the
probability to find the particle outside of A.

The expectation value of Ea ,/(q) is given by

Enq(q) =0xpo+1xpr =p1

i.e. it coincides with p; . Let now | A) be the state of the particle and 14 (x)
the corresponding wavefunction. According to (6.31) one has

pi= Eale) = [ Bas@Wa@Pe = [ oa@)P o vae)xa

the last step holding only if A is small enough. So |¢)4(7)|? dx is the proba-
bility of finding the particle with a value of its abscissa between z and z+dz
(we have replaced A with dz) and, as a consequence, |4 (z)|? is the den-
sity of probability relative to the position of the particle. This is a very
important result: given a state | A) and consequently a wavefunction ¥4(z),
[ha(x)|? gives us all the information we want about the probability of finding
the particle either in a region or in another one of the z-axis: in particular,
if in a region of the x-axis 14 (z) is vanishing, the corresponding probability
to find the particle in that region is vanishing as well; likewise, if ©¥4(x) is
nonvanishing only in a given interval, one has the certainty to find the particle
in that interval.

The probabilistic interpretation of the wavefunction was proposed by M.
Born in 1926, in a series of works that appeared immediately after the works
in which Schrodinger used the equation, that now bears his name, to find the
energy levels of the hydrogen atom.

The fact we have given a physical meaning to |14 (z)|? and not directly to
Y a(z) should not make one think that all the information content of 4 (x)
is completely contained in |14 (z)|? or, in other words, that the knowledge
of the state be determined by the only knowledge of |14 (x)|?: for example,
for the calculation of p the knowledge of 14 () is needed, that of |14 (x)|?
is not sufficient.

| 2
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More to the point: the two wavefunctions 1 () and s (z) = e #(®) 4 (z),
with real ¢(x), possess the same modulus and are undistinguishable if only
position measurements (i.e. measurements of observables f(g)) are per-
formed, but being different wavefunctions (if ¢(z) is not a constant), they
represent different states, so they must be distinguishable by measuring some
other observables (for example, the expectation value of p is different). Note
that this discussion is identical with that made after (4.11) concerning the
physical meaning of the representatives {a;} of a vector |A) in the basis
| &) : one is indeed dealing with the same problem.

The generalization to the case of many degrees of freedom is immediate:

[a(xy, - -, 2,)|?dzy - - - day, is the probability to find the system (of parti-
cles) with coordinates between 7 and 7 +dwzy, z2 and zg +dxe, - - ,
and z, + dx, .

Consider, as an example, the system consisting of two particles, 1 and 2
(e.g. an electron and a proton), described by the coordinates © = (x1,y1, 21)
and 7y = (z2,y2,292). In the present case the wavefunctions of the system
are functions of the six variables 7 and 7 : (71, 72); |Ya (71, 72) > dVi dVa
is the probability to find simultaneously particle 1 in the small volume dV;
around the point 7 and particle 2 in the small volume dV5 around 7% ;
the probability to find particle 1 in dV; (we are now uninterested in where
particle 2 is) is given by

(/|¢A(F1,F2)|2dv2) v .

All what we have said for the Schréodinger representation can be repeated for
the momentum representation: if @ (k1, -+, ky,) is the normalized wavefunc-
tion corresponding to the vector | A) in the momentum representation, for
the mean values of ¢; and p; in the state represented by | A) one has

. y 0
qizm/soA(klf-nkn) ok, - k) dky - dk,
Ok1
piz/kim(kl,--- ) [2dky - by,

and by the same reasoning as in the case of the Schrédinger representation
one arrives at the result that |pa(k1, -+, k) |>dky - - dk, is the probability
to find the system (of particles) with momenta between k; and ki + dkp,
ky and ko +dko, -+ k, and k, + dk, . Therefore |@a(ki, --- ,ky)|? is the
probability density relative to the momenta of the particles.

6.7 The Improper Eigenvectors of q; and p;

We have already insisted on the fact that the Schrédinger representation can
be considered as a representation in which the ¢; are diagonal inasmuch as
the ¢; are represented by operators that act in a multiplicative way on wave-
functions, but not in the sense that is a representation determined by a basis
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of eigenvectors of the ¢; , because the ¢; do not possess eigenvectors. Nonethe-
less, we want to develop the formalism of the Schrodinger representation in
such a way that, at least in a formal way (but the content of the present
section has a mathematical dignity largely superior to what we let appear:
it is related to what in mathematics is known as ‘rigged Hilbert space’ or
‘Gelfand triple’), there is a more cogent analogy between the Schrodinger (or
the momentum) representation and those discussed in Sect. 6.1.
Let © ={z1, -+ ,2,} and

Ya(z) =(z]A), Palz) = (Alz) (6.32)

understanding that, provisionally, (6.32) only stands for a change in notation.
Since

4| A) = wia(x)
with the notation (6.32) one has

zi(z|A) =zivalz) =(z|q|A)
so, taking the complex conjugate,
(Algi|z)=azi(Alz). (6.33)
Since (6.33) holds for arbitrary | A ), we set
gilx)=ax;|z) . (6.34)

The meaning of (6.34) is only formal, because we know that in H there exists
no eigenvector of the ¢;: (6.34) is meaningful only if it is multiplied on the
left by a vector | A) in H (more precisely: by any vector in the domain of ¢):
it is nothing but a shortened way for writing (6.33). These objects |z ), that
are not vectors in H, are called improper vectors (and it would perhaps be
advisable to use for them a notation different from that used for the vectors
of H). So we say that |z), i.e. |21, -,z ), is an improper eigenvector of
the ¢;, corresponding to improper eigenvalues z; that form a continuous
spectrum: —oo < z; < +00.
Let us now consider (dx =dxq, --- ,dxn)

<B|A>=/¢E(ﬂﬁ)¢A(ﬂﬁ)dx=/<Blw><x|A>d33 (6.35)

and therefore in the same sense in which we have passed from (6.33) to (6.34)
we may write

/|J;>da:<a:|:]1 (6.36)

that, as usual, has a meaning only if both sides are multiplied by two arbitrary
vectors (B | on the left and | A) on the right. Equation (6.36) is the analogue
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of (4.25): it is the completeness relation for the improper basis consisting of
the improper eigenvectors of the g; .

In the case of a basis |n) of eigenvectors of some observable one has the
orthogonality relation (n | m) = dpy, . We will now find the analogue relation
for the improper basis, i.e. we want to calculate (x | 2’ ). Indeed it would not
be legitimate to pose this problem since |z ) and |2’) are not vectors in H,
so the scalar product between them is not defined. We shall therefore pose the
problem in the following terms: if we want to give a sense to the expression
(x| '), what should this expression be?

We begin by considering the one-dimensional case.

Let us start from 9 4(z) = (x| A) and use (6.36):

<x|A>=/<x|x'><x'|A>da:'

i.e. putting (z | 2') = g(x,2'):

Valw) = / g2, 7) a(a) da’ (6.37)

The problem then is to determine the g(x,x’) that satisfies (6.37) for any
Ya(z). Start with observing that (6.37) is satisfied also when g(z,2") is
replaced by g(z + a,z’ 4+ a) with any real a. Indeed, putting ¥ (z + a) =
Ya(z'), one has

[ote+as +ayuae)ds' = [ g+ as' +0)da’ +a)do’
— [ga+a.) Gaw)dy = va(o)

This means that g depends only on the difference = — ', so we write
gla,a) = o(w — ')
ie.
ha(x) = /5(x — ") a(a)da . (6.38)
By a similar reasoning one sees that (6.38) is still satisfied if §(x — ') is

replaced by d(—x +2'), i.e. §(x) = §(—x). Putting x =0 in (6.38) one has

$a(0) = / 5@ paa’) da . (6.39)

Let us now see which are the meaning and the properties of the §(z) that
satisfies (6.39).

1. For © # 0, 6(x) = 0 (up, at most, to a set of measure 0). It is indeed
sufficient to take 14 (z) = 1 in an interval A that does not contain the
point z =0, and ¥4 (z) = 0 outside of it. Then
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[ 8 de = va0) =0
A

for any A, which proves the statement.
2. If we now take the interval A (where ¥4(x) = 1) straddling the point
x =0, one has

[ 8t do = va0) =1
A

whatever the length of the interval A | and therefore also

/+m§(x)dx:1.

— 00

The above two properties clearly show that §(x) is not a function: no function
is nonvanishing only in a point (x = 0) and its integral equals 1! Think of
a unitary point mass placed in the origin: obviously in this case the mass
distribution (or density) p(x) is not defined (as a function), but if one insists
in defining it, then clearly p(z) = 0 for z # 0 and, in addition, [ p(z)dz =1,
i.e. p(z) has the same properties as the 6(z).

For this reason one says that d(x) is a distribution. The §(z) is also
called generalized function or Dirac delta function.

We can think of the Dirac § as the limit, for ¢ — 0, of the function whose
value is 1/e for —e/2 <z < +¢/2 and 0 for |z| > €/2. The 6(z—a’) has the
same properties as §(z): it is vanishing for « # 2’ and [d(z —2')da’ =1.

It s not surprising that (x | ') is such an unusual thing as §(x — 2’),
i.e. a distribution: this result expresses the fact that (x| 2’) is not a scalar
product of vectors in H, therefore for & = 2z’ it is not a number. For the
improper eigenvectors one has in conclusion the orthogonality relation:

(z|2') = 6z —2). (6.40)
In the case of many degrees freedom (6.40) becomes:
(@1, o yap [, o2, ) = 0(wy — 2h) 0(w2 — ah) -+ O(an —af,)  (6.41)

where the product §(z1) §(z2) -+ §(z,) is defined by the equation:
/5(331)5(322) e 5(mn) V(@ - w) Aoy - Ao = (0, -+, 0)  (6.42)

analogous to (6.39).

6.8 The Relationship between Coordinate and Momentum
Representations

We now face the problem of finding the momentum representation wave func-
tion @(ki1, -+ ,k,) in terms of the coordinate representation wavefunction
Y(x1, -+ ,2p), and viceversa. In order to solve this problem, we will use the
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notation introduced in the previous section. We often will write x and k in-
stead of the n-tuples {z1, -+, z,} and {k1, -, kn}; we will explicitly use
the n-tuples when we will want to emphasize the presence of many degrees of
freedom.

Let us assume that ¢a(z) = (z | A) is known: we want to determine
pa(k)=(k|A).

By means of the completeness relation (6.36) one has

@A<k>=<k|A>=/<k|x><x|A>dx=/<k|x>¢A<x>dx.

If viceversa p4(k) is known and ¢ a(z) is to be found, by means of the
completeness relation of the (improper) eigenvectors of momentum, one has

wA<x>=<x|A>:/<x|k><k|A>dk=/<x|k>@A<k>dk.

It appears that the passage from ¥a(x) to wa(k), as well as its inverse, is
possible once (z | k) is known, because (k|z)= (x| k)*.

The ‘transformation function’ (z | k) to be found also is the wavefunc-
tion in the Schrodinger representation of the improper vector | k), i.e. of the

improper simultaneous eigenvector of pi, --- ,p, belonging to the eigenvalues
k1, -+, kn. It is true that | k) (i.e. | k1, - kn) ) does not represent a phys-
ical state, but we shall see in the next section that there exist physical states
that can be considered approximate eigenvectors of pi, ---,p, and possess
wavefunctions that approximate (x| k). We then have two good reasons to
calculate (@1, -+, zp | k1, -, kn ).
One has
pi|k17"'7kn>:ki|k17'“7kn>7 7;:1,"',71

whence, multiplying on the left by (x1, -+, 2 |,

<$1,"' y I |pl | kl)"' 7kn> :ki<$1,"' y I | kl)"' 7kn>7 1= 17 e,

But, thanks to (6.25),

<Z‘1,"',$n|p1‘|k1,"',kn>:—ih <$1,"',an|k1,"',]€n>

(%ci
therefore
.0
_lhax <IE1, o, I | kl» 7k’n> :ki<x17 o, T | k17 7kn> . (643)

The transformation function is therefore determined by the differential equa-
tions (6.43). The first of them
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has the solution

(@1, [ Ky, oo k) = [, o mn) B o /0
where f(zo, ---,x,) is the arbitrary constant (with respect to x;) of inte-
gration, so it is an arbitrary function of x5, ---, x, . The second equation

(6.43) becomes

., 0
_lhaxz f(xa, - an) = ko f(@2, -+ ,2n)

whose solution is

f(JfQ, ,xn) :g(xB, 7Jjn)eik2w2/h

so that, at the end of this procedure one has

(z1, - @ | k1, oo Ky ) = ¢ ol (R @rtha ot otk @)/h (6.44)

where c is an arbitrary constant, i.e. it does not depend on any of the z. This
constant can be determined by the normalization condition

ie.
/(klmkn|x1~-~xn><x1~-~xn|k1-~-k;>dx1-~-dxn
= 0(k1—Kky) - 6(kn — k)
whence

|C|2/efi[(krk’l)a:1+~~~+(k7rk;)wn]/h dey - dzy = (ki —k)) - 6(kn—k.) .

The integral in the left hand side is the product of n integrals of the type
J e 1(k=K)2/h g and from the theory of Fourier transform one knows that its
value is 27 h §(k — k') . So it must be that

lel>rh)" =1.

As expected, c is determined only up to a phase factor (because the vectors
| k) themselves are determined up to a common phase factor, and likewise for
the |x)); if we arbitrarily chose a real positive ¢, one has ¢ = 1/(27 h)"/?
and, as a consequence,

1

(2 h)n/? ol (Fr@itke zot - +kn xn)/h (6.45)
™

<x17"'7xn|k1»"'7kn>:

so that in the end
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(pA(kJ) = (2,”;/)“/2 /e_ikr/h¢A($)d$
_ 1 eagh (6.46)
Ya(x) (2 hyn/? e pa(k)dk

We thus have two results.

1. In the Schrédinger representation the eigenfunctions of momentum are

of the type €#7/".So the eigenfunctions of the momentum of a particle
(three degrees of freedom) are el*7/
wavelength (spatial periodicity) A = 2 h/|k| = h/|k|, which precisely is
the de Broglie wavelength for a particle of momentum k.
Eventually one understands that de Broglie waves associated with a parti-
cle are the wavefunctions of the particle itself. They have a quite different
nature from the waves known in classical physics, as e.g. either electro-
magnetic or elastic waves. The latter have a direct physical meaning and
can be measured in any point, while wavefunctions are only a way to rep-
resent the states of the system (and, just to make it clear, the momentum
representation is as good a way as the Schrodinger representation to rep-
resent the states of the system), and in any point only [¢(x)|? has got a
direct physical meaning (even if, as we know, [¢)(x)|* does not exhaust
all the information contained in the wavefunction (z)).

2. The Schrédinger and momentum representation wavefunctions corre-
sponding to the same state are (up to the presence of i in e'¥®/") the
Fourier transform of each other: if we denote by 1 the Fourier transform
of ¢, one has that, up to the factor i"/2,

p(k) = P(k/D) . (6.47)

Note. From now on, in order to comply with current use notation, we will
denote by ¢(p) the wavefunctions in momentum representation: we shall use
the same symbol p both for the momentum operator and for the argument of
©. As a consequence, we will denote by p (possibly p’, p”, - --) also the eigen-
values of the momentum operator. The letter k& will be reserved to indicate
the quantity p/h,i.e. 2/A; so k = p/h is the wave vector.

So, for example, for the eigenfunction of the momentum (z | p) one has

, i.e. they are plane waves with a

eipr/h eik’z

B Vorh - Vorh'

(v 1p) (p18) = 80— p) = , 6k~ )

(use has been made of the relation §(az) = |a|~*(z)) and the first of (6.46)
can be written as
1

—ipx _ 1 —ikx
27rh)”/2/e P/ (g) da = (%h)n/g/e ko y(p)de (6.48)

o(p) = (

whereas (6.47) becomes
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w(p) = ¥ (p/h) = (k) . (6.49)

The relationship we have found between Schrédinger and momentum repre-
sentations, as expressed e.g. by (6.49), gives us the possibility of looking at
the uncertainty relations Ap Ag > % h from a new point of view. It is a con-
sequence of a theorem on Fourier transform, according to which, if a function
¥(x) has a width Az defined by

o [ =) @) da
Bl =" )P

then its Fourier transform (k) has a width Ak such that
1
Az Ak > 5 (6.50)

This is a general theorem that finds applications not only in quantum me-
chanics, but in all the cases in which one deals with wave-like phenomena:
optics, acoustics etc.: the physical meaning of the uncertainty relations that
ensue from them depends on the physical meaning of the variables = and k,
i.e. on the physical meaning of the Fourier transform: in quantum mechanics
k = p/h and therefore from (6.50) the uncertainty relation between position
and momentum of a particle follows; in optics k = 27/\ = 27 v/c so that
(6.50) entails

Az Av > 4£ (6.51)

™

that relates the spatial length Ax of an electromagnetic wave with its spectral
width Av: (6.51) then states that the shorter (in space) the wave packet, the
less its monochromaticity or, with the current terminology, the larger is the
frequency band, and viceversa.

From (6.51) one can also deduce that At Av > 1/(4w) where At = Az/c
is the ‘time duration’ of the wave packet (or train): the analogue for a particle
in quantum mechanics, that is obtained by setting v = E/h where E is the
energy, namely AtAE > é R, even if often cited, is neither obvious (¢ is not

an observable), nor possesses an obvious interpretation (what is the meaning
of At?).

6.9 The q and p as Observables

We have seen that the ¢ and p, as observables, are ‘pathological’ in the sense
that they possess neither eigenvectors nor eigenvalues. They possess instead
a continuous set of improper eigenvalues and a basis of improper eigenvectors.

This type of pathology shows up for many observables f(q,p) (think,
e.g., of the hydrogen atom, for which the energy has discrete eigenvalues, but
also continuous eigenvalues that correspond to the electron-proton scattering
states), so that it is worth examining this problem in some depth in order
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to understand in which sense these can be considered observables as well.
For the sake of simplicity we shall discuss only the case of one single ¢ (one
degree of freedom), but what will be said regarding this particular case can
be generalized to all other observables (as e.g. p or the Hamiltonian of the
hydrogen atom) that share the same type of pathologies.

In Sect. 6.6 we have already introduced the operator Ea ,/(¢) whose
eigenvalues are 0 and 1; as a consequence, the eigenvalues of the operator
2’ Ea 4(q) obviously are 0 and z’. Let us now partition the z-axis into small
intervals A,,, e.g. all equal to one another and of length A, centered around
the points z,, (n both a positive and a negative integer) and let us consider
the operator ¢, that, in the Schrédinger representation, is represented by the
function (see Fig. 6.3)

n=—oo
qA(x) = Z Tn EA:wn (x) :
n=—oo
It is easy to realize (by the same reasoning as in an(z) 4

Sect. 6.6 for the operator Ea .(q) ) that the eigen-
values of ¢, are the z, (—oc0 <z, < 4+00), and
that the eigenvectors of ¢, form a complete set.
Therefore g, is an observable.

The physical meaning of this observable can be
deduced by the discussion we have made in Sect.
6.6 about the physical meaning of Fa o/(q): g is Fig. 6.3
the observable whose value is x,, when the particle
is inside the interval A,, around =z, : namely it is an observable that measures
the position of the particle with an (experimental) uncertainty +A/2: think
of a measuring rod by which the tenth of millimeter can be estimated; by
means of it, the position of the particle can be measured with an uncertainty
+0.05 mm.

In less macroscopic terms we could say that g, is a(x)p
the observable that corresponds to the Heisenberg
microscope able to measure the position with an
uncertainty Az = A. From the physical meaning
of g, and from the comparison of Fig. 6.3 and
Fig. 6.4 where the Schrodinger representation of ¢
is drawn, one sees that the smaller A, the better
g, approximates g. This statement can be made
precise by noting that g, —¢|| = A, i.e. that

‘H
]

Y

Fig. 6.4

lim —-q)=0
AS (qa — 9)
in which the “norm convergence” (also called “uniform convergence”: it is a
very strong one) is to be understood.

So the g, are observables that approximate g as much as we wish, pro-
vided A is chosen sufficiently small. For this reason, in all the expressions
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that concern the observables (in the strict meaning of the word) ¢, we can
replace g, with ¢, up to an error of the order of A. For example:

Ga=(Alga|A)~q=(AlqlA), Agn ~ Aq

if A is smaller then the desired precision.

Having fixed the degree of approximation by which we wish to measure
the position of a particle, we will say that a vector |25 ) approzimately is an
eigenvector of ¢ belonging to the eigenvalue z’ if in the state represented by
|2’y ) the conditions Ag < A and ¢ ~ 2’ are fulfilled (the ~ sign means ‘up
to an error of the order of A’). The degree of approximation is measured by
the root mean square Agq: indeed, the smaller Agq, the closer the situation
one would have if ¢ had eigenvectors, as for them (if they existed!) Ag=0.

The eigenvectors of g, (but they are not the only ones) are approximate
eigenvectors of ¢, according to the definition given above: indeed the eigen-
functions of g, are functions whose support is (i.e. they are nonvanishing in)
one of the intervals A,,, so for them Ag < A.

Note that (x| 2') = §(z — 2’) is the wavefunction of the improper eigen-
vector |2’) of ¢: so, in some sense, the wavefunction of |2/, ) approximates
that of the improper vector | z') — in some sense: indeed, while the functions
that approximate Dirac’s § function have an Ly norm that diverges like A~!
as A — 0, the Lo norms of the wavefunctions of the |2/, ) stay finite (e.g.
equal to 1) whatever the value of A.

In conclusion: even if ¢ does not possess eigenvectors and eigenvalues (in
the strict sense), we have succeeded in giving both a physical and a mathemat-
ical precise meaning to the concepts of approximate eigenvalues and eigenvec-
tors for the operator g. From this point of view ¢, its improper eigenvectors
and eigenvalues are now entitled to have ‘citizenship’ within the theory, inas-
much as they can be considered as limits of physically meaningful entities: ¢
as limit of the ¢, , |z) as ‘limit’ (as specified above) of the vectors |za )
that correspond to physically feasible states.

As we have said in the beginning of this discussion, the above conclusions
hold also for all the observables that have a continuous spectrum of eigenval-
ues (in addition to, possibly, a discrete spectrum) and therefore, in particular,
for the observable p. Let us now examine which are for this observable the
wavefunctions in the Schrodinger representation corresponding to its approxi-
mate eigenstates. The improper eigenfunctions are ¢'?*/": in order to obtain
an approximate eigenfunction it will suffice to take a function that: equals
e'P#/h for |z| < L, tends to 0 in a continuous and differentiable way in the
intervals L < |z| < L', and equals 0 for |z| > L’. This function belongs to
Ly and has Ap ~ h/(2L) so that the higher L, the better it can be considered
an eigenfunction of p. If in addition we want to normalize it, we shall have
to divide it by a number of the order of v/2L (the exact value of the nor-
malization factor depends on the behaviour of the functions in the intervals
L < |z| < L"): note that, as L is increased, this function tends to 0 pointwise,
so there exists no ezxact eigenfunction of p. In alternative, one can multiply
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eiP=/h by a very wide Gaussian: elP@/he=e"/4L’
made above apply to this function as well.

The previous discussion has emphasized that also the improper eigenval-
ues of an observable are meaningful from the physical point of view: it is
therefore clear that, given an observable, the determination of the improper
(or continuous) eigenvalues is just as important as the determination of the
proper (or discrete) eigenvalues — the whole spectrum must be found.

Now, in principle, we know how to proceed for the discrete spectrum: one
has to solve an eigenvalue equation in H (or in Lo if we are in the Schrédinger
representation); but, if we want to determine the improper eigenvalues, cer-
tainly not in H (or Lo ) the eigenvalue equation must be solved. There arises
the problem in which space the solutions of the eigenvalue equation must be
searched for. For example, if we are in the Schrédinger representation, the
problem is that of knowing in which class of functions one has to look for the
improper eigenfunctions of the observable we are interested in. The problem
just enunciated is one whose solution is not easy and also is a very technical
one, so we shall not discuss it in general: we will face it in a particular case in
the next chapter, and from this we will draw some general indications quite
sufficient for our purposes.

and all the considerations



Chapter 7

Schrodinger Equation for One-Dimensional
Systems

7.1 The Hamiltonian for the Free Particle

In this section we will be concerned with the relatively simple problem of
determining the eigenvalues of the Hamiltonian of the free particle. We will
discuss the one-dimensional case. Our system consists therefore of a particle
constrained to move on a straight line. The Hamiltonian is

»?

H = o (7.1)
i.e. only the kinetic energy. Clearly H and p commute with each other:
[H,p] = 0; therefore they have a complete set of (improper) simultane-
ous eigenvectors. Furthermore, as p is nondegenerate (i.e. to each eigenvalue
p’ there corresponds, up to a factor, only one improper eigenvector | p')), each
eigenvector of p is an eigenvector of H. Therefore the vectors |p’) are a basis
of eigenvectors for H and the corresponding eigenvalues E are obtained by

2 /2
Elp')=H|p")= ;—mlp’>= g—mlp’>
whence: o
Ezg—m.

As —oo < p’ < 400, the eigenvalues of H are continuous and are all the real
numbers E > 0. In the present case H only has improper eigenvalues.

What is the degree of degeneracy of the eigenvalues E of H? Given E > 0,
there exist two and only two eigenvectors in the basis that correspond to the
same eigenvalue of the energy: they are the vectors | +p’) and | —p’) with
P’ =+v2m E. So all the eigenvalues F > 0 of H are twice degenerate (for the
E = 0 eigenvalue we prefer to say nothing); this means that all and only the
vectors of the type:

al +p' )Y+ 8| —-p'), a, BeC (7.2)
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are the eigenvectors of H belonging to E. Note that, H being degenerate,
the vectors | p’) are complete, but they are not all the eigenvectors of H: the
vectors of the type (7.2) are all the eigenvectors of H.

The physical meaning of the twofold degeneracy of the eigenvalues of H is
evident: as the energy is only kinetic, provided the velocity keeps its magni-
tude, the energy is unchanged regardless of whether the particle moves either
from the right to the left or from the left to the right.

Observe however the difference between the classical and the quantum
situation: classically, for given energy F, the only possible states of motion are
those in which the momentum (or the velocity) is either positive or negative;
in quantum mechanics, owing to the superposition principle, there exist states
of motion (those described by (7.2) with both @ and 8 nonvanishing) in which
the direction of the motion of the particle is not defined: it travels both from
the left to the right and viceversa.

How can such a situation be achieved? As we have to deal with improper
vectors, we may only look for physical situations that are described by vectors
that approximate those given in (7.2) in a region (of the x-axis) as large as
we want, but finite.

Think e.g. that a very far mirror (for exam-

ple either a crystal or an electric field) is avail- e~ ik

able and that particles are sent on it in a state of

quasi-defined momentum: Ap < /L, where L is ik .
the distance between the observation region and xz
the mirror: the particles are described by a wave- Fig. 7.1

function that, in the Schrédinger representation, is ¢'*? in a region whose
length is > L. This “wave packet” (or “wave train”) is reflected by the mirror
and returns at the observation region in which, the packet being very long, for
a certain time interval both the incident e'*? and the reflected e™'** waves
are present (Fig. 7.1). In this example, however, |a| = |5| since the mirror is
totally reflecting.

Once the problem of finding the (improper) eigenvalues, degeneracies and
eigenvectors of the Hamiltonian (7.1) has been completely solved, let us re-
examine the same problem in the Schrédinger representation: the reason for
this repetition is the one put forward at the end of the previous chapter,
namely that, taking advantage of already knowing the solution of the problem,
we want to understand in which set of functions the improper eigenfunctions
of the Hamiltonian are to be searched for. For our system described by the
Hamiltonian (7.1), the Schrodinger equation writes:

h? d2y

o' (2) = Bv(@), V=

in which the unknowns are both E and v(z). Since (7.3) is of the second
order, the general solution depends on two arbitrary constants: for any value
of E (either real or complex) it has the form

(7.3)

w(x) _ Oéei\/Qm,Eat/h_'_Be—i\/QmEr/h7 a, B eC (74)
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in which v2m E is a complex number. It clearly appears that (7.3) possesses
solutions for any, even complex, value of E, while in the previous discussion we
have found that £ must be real and positive. What distinguishes the solutions
of (7.4) with E > 0 from all the other ones? If E > 0, the exponents in
(7.4) are pure imaginary and in this case the solutions (7.4) stay bounded
for ¥ — +oo. If either E < 0, or if E is complex, the exponents in (7.4)
contain a real part, so that each one of the two exponentials diverges, either
for £ — +o0 or for x — —o0.
The rule might be the following:

If we want to determine improper eigenvalues and eigenvectors of some ob-
servable, we must keep only those solutions of the eigenvalue equations that,
in the Schrodinger representation, stay bounded for x — +o00 and reject those
that diverge.

Even if this is not the general rule, at least in the cases we are interested
in where the observable is the Hamiltonian, this rule works.

Note eventually that (7.4) with E > 0 is nothing but the Schrédinger
representation of (7.2) and that the twofold degeneracy of H comes by as a
consequence of the fact that (7.3) is a differential equation of the second order.

7.2 Degeneracy Theorem. Spatial Inversions

In many cases it is not possible to find the eigenvalues of an observable.
Nonetheless, there exist general arguments that allow one to obtain informa-
tion on the degree of degeneracy of the eigenvalues of the observable one is
studying. We will have many a time the occasion to appreciate the importance
of this information, particularly when we will apply the developed theory to
the study of atomic structure and atomic spectroscopy.

The starting point of the general arguments we have hinted at is the fol-
lowing
Theorem: if two observables 1 and ( both commute with some observable £,
but do not commute with each other:

[5777]:07 [£7C]:07 [n7C]7éO

then £ is degenerate.

The proof is straightforward: if £ were nondegenerate, any of its eigenvec-
tors should be an eigenvector also of n and (, therefore 7 and ¢ would have
a complete set of simultaneous eigenvectors and, as a consequence, would
commute with each other — in contradiction with the assumption.

The above theorem alone does not say which is the degree of degeneracy
of the eigenvalues of £: this result can be achieved in any single case by means
of the detailed knowledge of how many and which observables do commute
with £ and which are the commutation relations they have with one another.
We will have the occasion to discuss also this aspect of the problem.

As an application of the degeneracy theorem — and also to understand the
mechanism by which & must be degenerate — we will re-examine the problem
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discussed in the previous section, in which we have seen that all the eigenvalues
E > 0 of the Hamiltonian (7.1) are twice degenerate: we try to find this
degeneracy as a consequence of the just shown theorem. As H commutes with
p, it is necessary to find another observable that commutes with H and that
does not commute with p. The space-inversion operator I, that we will now
define, just is what we need: it will suffice to put ¢ = H, n=p and ( =1
in the degeneracy theorem.

Space-Inversion operator

The space-inversion operator can be defined in two equivalent ways: first,
the transformation ¢ =+ —¢q, p — —p being canonical, there exist a unitary
operator I such that IqI~! = —g, IpI~! = —p; as an alternative the
operator I can be defined by its action on the states of the system; we follow
this second possibility.

In the Schrédinger representation the space-inversion operator I is defined
on any wavefunction 14 (z) in the following way:

ITpa(z) = pa(-2) . (7.5)

Properties of I:

1. I? =1, namely I?94(z) = a(z) . It is evident.
2. I=1I",namely (A|I|B)=(B|I|A)*.Indeed

+oo +oo
(AI11B)= | v4@Ivs@de = [ ¥4(@)vs(-r)de
+o0 * - *
= ([ wnmva@dr) = (| vp@)va(-2)(~da))
. i

= (| vs@Ival@yaz) =(B|1]A)
(in the second line of the above equation the change of variable x — —x
has been performed).

3. It follows from 1 and 2 that not only I is self-adjoint, but it also is unitary:
It=1-1.

4. The eigenvalues w of I are w = +1 and w = —1. Indeed, let ¥, (z) an
eigenfunction of I belonging to the eigenvalue w:

Ty (x) = wiby(x) .

By applying I to both sides of the above equation and recalling that I? = 1
one has

Y () = wlhy(z) = w? Y ()

whence w? =1,ie w==+l.
5. The eigenfunctions of I are therefore those functions such that:

P(—x) = £Y(x) .



7.2 Degeneracy Theorem. Spatial Inversions 137

Those belonging to the eigenvalue +1 are the functions even with respect
to the spatial inversion © — —x: (x) = ¢(—2); those belonging to the
eigenvalue —1 are the odd functions: 1 (x) = —1(—=x). The eigenvalue w
indicates the parity of the corresponding eigenfunction.

. The eigenfunctions of I form a complete set. This follows from the fact
that any (x) can be expressed as a linear combination of an even and
an odd function, thanks to the identity:

Y(@) = 5 (V@) +¥(-2)) + 5 (¥() — ¥(-z))

in which clearly ¥(x) + ¢(—x) is even and ¥ (z) — ¥ (—z) is odd.
. The operator I anticommutes with g and p:

IgI™'=—¢q, Ipl™t=—p (7.6)
or, also, multiplying by I on the right:
Iqg=—qlI, Ip=—pl. (7.7)

Let us demonstrate the first of (7.7). By applying I ¢ to a generic vector
| A) and going to Schrodinger representation one has:

IqlA)— I(xz/JA(x)) =—xPa(—2x) = —ql|A).
As for the second one has (z// = dw/dx)
Ip|A) —>I<—ihz//(x)) = —ih,y(~2)

d
pl|A) — —iha Ya(—z) = +ihyy(—x).

Equations (7.6) tell that I is the operator that changes the sign of both the

coordinate ¢ and the momentum p, whence the name of space-inversion.

Properties 1-7 hold unchanged for the space-inversion operator I defined,

in the case of many degrees of freedom, by

T(xy, - xn) =(—x1, -+, —y) . (7.8)

In particular:

5’. The eigenfunctions of I are those functions such that:

¢(£17 7$n):i¢(_$1, ,—J)n)7

7'. The action of I on coordinates and momenta obviously is

I It =—q, Ip, I7' = —p;, i=1,-,n. (7.9)
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It goes without saying that, for example in the case of a particle in three
dimensions, it is possible to define the operator that inverts with respect to
each of the coordinate planes: © — —z,or y - —y,orz — —z.
The operator I defined by (7.5) commutes with the Hamiltonian (7.1):
1 _ p?

P’ 1
I T = —IpIltIplt=_—(—p)?
2m

2m 2m T om

In the same way one sees that I commutes with any observable f(g,p) such
that f(q,p) = f(—¢,—p) . Indeed — see (6.12) — one has that

If(q7p) I71 = f(_qv _p)

holds even in the case of many degrees of freedom. So, in particular, I com-
mutes with any Hamiltonian of the type:

2
H=2"1v()

2m
provided V(q) = V(—q), i.e. if V(q) is an even function of the ¢’s (e.g. the
harmonic oscillator, both isotropic and anisotropic, in whatever number of
dimensions).

Going back to the problem of the degeneracy of the Hamiltonian H given
by (7.1), one finally has that both I and p are observables that commute with
H, but — due to (7.6) — do not commute with each other. This entails, thanks
to the degeneracy theorem, that H must be degenerate.

Let us now try to understand the mechanism by which H must be degen-
erate and, at the same time, let us try to obtain more detailed information
about the degree of degeneracy of H.

Let us consider a simultaneous eigenvector of H and p: |p’ ), belonging to
the eigenvalue F of H; one has

Ilp')y=1-9p") (7.10)

that is easily shown in the Schrédinger representation: Ie'P'® = e iP'e

Owing to the lemma of p. 87 (Sect. 4.10), the vector I|p’), ie. | —p'),
still is an eigenvector belonging to the same eigenvalue E of H, as the vector
|p") one starts with; but, if p’ #0, |p’) and | —p’) are independent vectors
so that the eigenvalue F is degenerate at least twice. If we now apply [ to the
vector | —p’ ), nothing new is obtained (we mean, no eigenvector independent
of the previous ones is obtained) because I? = 1. So the degeneracy theorem
guarantees that the degree of degeneracy of each eigenvalue E > 0 of H is at
least two.

The same strategy can be followed by starting with a simultaneous eigen-
vector of H and I and applying the ‘third’ operator p to the latter. Let us
check that one arrives at the same result. Which are in the Schréodinger rep-
resentation the simultaneous eigenfunctions of H and I? As (7.4) display all
the eigenfunctions of H, the simultaneous eigenfunctions of H and I must
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be searched for among them. It is easily seen (possibly by means of the sym-
metrization and antisymmetrization procedure used in point 6 above) that
the simultaneous eigenfunctions of H and I are

cos(p'z/h), w=+1; sin(p’x/h), w=-1.

Let us consider one of them, e.g. the first and let us apply p, i.e. —ihd/dz, to
it. Up to constant factors, one finds the second and, always as a consequence
of the lemma of p. 87, (Sect. 4.10), these functions both correspond to the
same eigenvalue of H. In this way the twofold degeneracy is re-obtained.

7.3 General Features of the Solutions of Schrédinger Equation
in the One-Dimensional Case

The study of one-dimensional problems is not only academic in character,
because — as we shall see — in many cases the solution of a problem in many
dimensions is brought back to that of a one-dimensional problem (for ex-
ample: a particle in a central field and, more in general, any case when the
Schrodinger can be solved by ‘separation of variables’). It is for this reason
that we shall dedicate an exhaustive — although mostly qualitative — discus-
sion to the general features of the eigenvalues and of the eigenfunctions of the
Hamiltonian of a particle constrained to move along a straight line, subject
to a potential V(q) (not particularly pathologicall).
The Hamiltonian is
P2

HZ%‘FV(Q)

and the corresponding eigenvalue equation in the Schrodinger representation
(Schrodinger’s equation) is

o () + V(@) () = B () (7.11)
or also 5
W (z) = hif (V(z) — E) () . (7.12)

As we have already emphasized, (7.11) is a differential homogeneous linear
equation of the second order: as such, it possesses solutions (indeed, two inde-
pendent solutions) whatever the value of E, either real or complex: we will be
interested in those solutions (normally denoted by either v, (z) or ¥p(z))
that either

i) belong to Ly and, in particular, tend to 0 as z — +o00;

these are the proper eigenfunctions of H and correspond to the bound states
of the system (indeed the probability to find the particle at |z| > L tends to
0 for L — o0 ); the corresponding eigenvalues are the proper eigenvalues, i.e.
the discrete energy levels of the system:;

or, if the solutions are not in Ls, they
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ii) stay bounded for z — +o0;

these are the improper eigenfunctions of H and the corresponding eigenvalues
are improper eigenvalues that, we shall see, form a continuous spectrum.

First of all, let us note that we can limit ourselves to consider only the
real solutions of (7.11): in effect, whatever the value of E in (7.11) provided
it be real (and there is no reason to consider complex values of E, as the
eigenvalues of H must be real), if ¥ (z) is a solution also *(x) is a solution:
this is so because the (7.11) is an equation with real coefficients; therefore we
can separately study Re(x) and Imp(x) that also are solutions of (7.11)
and are real valued.

Having arbitrarily fixed a value of F in either (7.11) or (7.12) (not neces-
sarily an eigenvalue), the x axis is divided in regions for which:

L Vi)-E<0 (E>V), (these will be called type I  regions);
1L Viz)-E>0 (E<V), (these will be called type II regions).

If we think of the corresponding classical problem, the type I regions are those
in which a particle endowed with total energy E can move, whereas type 11
regions are inaccessible to a particle with energy F, because the kinetic energy
should be negative. The points that separate the regions of type I and II, i.e.
the points where E = V(x), are called inversion points as these are the
points where the classically moving particle inverts its motion. From (7.12)
one has that:
1" ¢//
E < 0 in type I regions, -— >0 in type II regions .

(4
yi(a) 4o ()

/D N

\/ ; / !
tipe I region /t;H region

Fig. 7.2a Fig. 7.2b

Now the value of " in a point gives the size of the curvature of 1 in that
point; in particular, if " > 0, the graph of 1 is concave upwards whereas,
if " < 0, the graph of 1 is concave downwards. So in regions of type I
(Fig. 7.2a), where 1 > 0 the concavity is downwards and where ¢ < 0 the
concavity is upwards. In the type II regions (Fig. 7.2b) the contrary occurs:
where 1) > 0 the concavity is upwards and where 1 < 0 the concavity is
downwards. In the inversion points the graph of ¢ exhibits an inflection point;
inflection points are also all the points where ¥ = 0: indeed (7.12) shows that
wherever 1) =0 also 1" = 0. The inflection points coinciding with either the
inversion points or the points where ¥ = 0 are easily understood: in all these
points the graph of v either passes from one type of region to the other type,
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or crosses the z-axis: in any event the curvature of ¢ changes its sign, so the
point must be an inflection point.

To summarize: in the regions of type I the behaviour of ¢ is oscillating
around the value ¥ = 0, i.e. — as exemplified in Fig. 7.3 — it may cross the
x-axis zero or many times, always keeping its concavity towards the z-axis (in
Fig. 7.3a the dashed parts of the graph are in regions of type II); the typical
behaviours of ¢ in regions of type II are exemplified in Fig. 7.4 (the dashed
lines are there for future reference).

4¥(=) Ao (@)

iy A ()

-

[2Y I
o
8y
Y I
o
sy
N
Sy

Fig. 7.4a Fig. 7.4b Fig. 7.4c

7.4 Solutions of Schrodinger Equation: Discrete Eigenvalues

We now take advantage of the obtained results in order to determine, for
several types of potentials V(x), the general features of the spectrum of H,
the form of its eigenfunctions, the relative degeneracy.

Let us first consider the case in which

Viz) = o0, x — +o0

and let us see for which values of E' do acceptable solutions of the Schrédinger
equation occur. We will distinguish two cases:

1. E smaller than the minimum of V(z): E < Vi, . In the present case all
the z-axis is a type II region; it is easy to see that there exist no acceptable
solutions: indeed, let us consider a point z¢ such that ¥ (zo) # 0 and let us
also assume that ¢(zg) > 0 (if this is not the case, one can multiply ()
by —1: this is legitimate, for equation (7.11) is homogeneous); let us also
consider the tangent to the graph in the point xy (dashed lines in Fig. 7.4): it
is then evident that, since we always are in a region of type II, if ¢'(x¢) > 0
(Figs. 7.4a and 7.4c) at the right of z the graph of i (z) always is above the
tangent in zy (as ¥’ > 0, 1’ increases), therefore ¢ (z) — oo for z — +oo;
on the contrary, if 9/(z9) < 0 (Fig. 7.4b), t(x) stays above the tangent at



142 7 Schrédinger Equation for One-Dimensional Systems

the left of xg, therefore ¢ (z) — oo for £ — —oo. In neither case ¥ (z) is an
acceptable solution.

Alternatively, as we already argued in the case of the harmonic oscillator
(Sect. 5.1), in any state |A), and in particular in the eigenstates of the
Hamiltonian,

2
H=(A|H|A)= 4+ V(@) 2 Vin

since
2
oo ad V(= /V(a:) ()2 dz > Vi -

2. E > Viyin . In this case, whatever the value of F, there exist two points x
and x such that the two regions —oco < z < 1 and z3 < x < +00 are of
type II. Between x; and x5 there certainly exists at least one region of type
I (Fig. 7.5). In the two type II external regions the 1 (x) either diverges or
tends to zero (Fig.7.4): in other words it cannot either oscillate or, more in
general, stay bounded without going to zero. This means that only discrete,
i.e. proper eigenvalues may occur: they correspond to those functions ), (x)
that tend to zero both in the type II region at the right (z — +o00) and in
the type II region at the left (z — —o0).

AV (z) AV ()

|

|

|
Y N2 11 11 e @2 11

Fig. 7.5a Fig. 7.5b

It is interesting to try to understand the mechanism by which only for par-
ticular values of E — that form a discrete set — there occur acceptable (in the
present case Lo ) solutions. Let us indeed assume that, given a value of E, we
choose a point z( in the type II region at the left (z¢ < z1 ) and fix the value
of ¢ in xy at our will (this is legitimate due, as usual, to the homogeneity of
the Schrodinger equation (7.11)) and let, for example, 1(zg) > 0.

Since the equation is of the second order, it is com-
pletely determined if we also give ¢’(z) . Clearly
the behaviour of the solution at the left (i.e. for
x — —oo) depends on the value of o'(xg): if
¥’ (xp) is either negative or positive but not too
large, then ¢(x) — +oo for  — —oo never
crossing the x-axis (curves 1 and 2 of Fig. 7.6);
if instead 1’(zg) is positive and large, the graph 3
of ¢(x) will cross the z-axis and will tend to —oco

¥(z)
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for x — —oo (curve 3 of Fig. 7.6). Therefore there will exist an intermediate
(positive) value of 9/ (xg) such that 1(x) tends to zero for x — —oo (curve
4 of Fig. 7.6).

Let us now study the solution ¥ (z) determined by the above-mentioned
value of ¥’(xzp) and let us examine, in particular, its behaviour for z — 4o00.

Y(@) Yo(z) ¥(@)
= ‘ I‘Q > ‘ T2 . ‘ IIQ >
Fig. 7.7a Fig. 7.7b Fig. 7.7c

Let us assume, for the sake of simplicity, that the interval z; < =z < 9
be all a region of type I (as it is the case if V(z) is that of Fig. 7.5b). As
a consequence, between x; and zo ¥(x) has an oscillating behaviour: if we
have chosen a value of E slightly higher than Vi, , 1(z) never vanishes for
x between z1 and x5 and one of the three situations plotted in Fig. 7.7 will
take place: if the case of Fig. 7.7b occurs, then #(x) is acceptable and F is an
eigenvalue: E = Ej. If the case of Fig. 7.7a occurs, then E is not an eigenvalue
and we can say that F is smaller than Ey (case of Fig. 7.7b): actually, in order
to pass from case a to case b, one must increase — in absolute value — the value
of ¢/(xz2), i.e. increase the curvature of ¥(x) in the interval z1 < z < x2. By
(7.12) this is achieved by increasing E: note that between x; and zo ¥ (x)
is negative so that increasing F makes ¢”(x) more negative. Likewise: if the
case of Fig. 7.7c occurs, then F > Fj.

It is clear that, starting from E = V., , and by taking into consideration
larger and larger values of E, one shall pass from a situation like that described
by Fig. 7.7a to one like that of Fig. 7.7c: between the two there always is a
value of E for which (x) is an acceptable solution. Such values of E — the
eigenvalues — clearly constitute a discrete set.

From this discussion it emerges that the eigenfunction of H belonging to
the lowest eigenvalue (i.e. the lowest energy level) never vanishes for finite z,
i.e. it has no nodes.

By increasing the energy, the type I and II regions Y1 (@)
change (in particular the inversion points z; and V\
xo respectively move to the left and to the right),

but — more important — the curvature of ¥ (z) in M ‘

the region between x; and xo increases: as a con-

sequence, the graph of ¢ (z) may perform more Fig. 7.82
oscillations, i.e. cross once or more than once the o ()
z-axis. So the eigenfunctions of H corresponding

to the excited levels may have behaviours like, for /\ /\
example, those reported in Fig. 7.8, where one ex- z
pects that the ¥(x) of Fig. 7.8b corresponds to an

eigenvalue higher than that to which the eigenfunc- Fig. 7.8b

tion of Fig. 7.8a belongs. As a matter of fact, if the eigenfunction v (x) of H
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belonging to the lowest eigenvalue Ey never vanishes, certainly the eigenfunc-
tions belonging to the excited levels must possess nodes: this is a consequence
of the fact that the eigenfunctions of H corresponding to different eigenvalues
are orthogonal:

/z/;o(x) P1(x)de =0

(we have not written tg(z) because we know we may consider real wave-
functions), and since 1o(z) has a definite sign, the integral may vanish only
if 41 (x) does not possess a definite sign. The above considerations, that we
have illustrated by means of a discussion that is qualitative in character, are
confirmed and made precise by the following

Oscillation Theorem: consider a system with one degree of freedom. Let

Ey < Ey < -+ < E, --- be the (proper) eigenvalues of the Hamiltonian
in increasing order, and let o(x), 1 (z), -+, Yn(x), -+ the corresponding
eigenfunctions. Then y(x) has no nodes (i.e. it never vanishes inside its
domain of definition), ;(x) has one node, ---, 1,(x) has n nodes.

(It is implicit in the formulation of the above theorem that the proper eigen-
values of the Hamiltonian are nondegenerate, as we will shortly prove.)

The validity of the above theorem — that we will not demonstrate — is quite
general, i.e. it does neither require that V' (z) has only one minimum nor — as
in the case considered above — that H has only discrete eigenvalues: if H pos-
sesses both discrete and continuous eigenvalues, the oscillation theorem only
applies to the eigenfunctions that belong to discrete eigenvalues. It should be
clear that, in the case we have been considering so far, (V(x) — 4oo for
r — :l:oo) in which only discrete eigenvalues occur, the number of eigenval-
ues must be infinite, because the space H of the state vectors has infinite
dimension and, as anticipated, the eigenvalues are nondegenerate. Indeed,
the problem concerning the degeneracy of the eigenvalues is solved by the
following

Nondegeneracy Theorem: for any one-dimensional system the (proper)
eigenvalues of the Hamiltonian are nondegenerate.

Proof: let 97 (x) and t2(x) two eigenfunctions of H belonging to the same
eigenvalue F:

_ 2m _ 2m

(@) = 25 (V@) = E)in(e), (@) = 5 (V@) — E) ala)

Multiplying the first of the above equations by w9(x) and the second by
11(x) and subtracting side by side one has

() Yo(x) —p1(z) Yy (x) =0

or, equivalently:

;—x (V1 (2) a2 (x) — Y1 (z) Yy(x)) = 0.
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By integrating with respect to x one arrives at

i (x) Pa(x) — 1 (z) Yh(z) = constant . (7.13)

As by assumption F is a discrete eigenvalue, both 17 and 1), vanish for
r — oo and, as a consequence, also the constant in the right hand side
vanishes (note — this will be useful in the sequel: in order that the constant in
the right hand side of (7.13) vanishes, it is sufficient that i1 and s vanish
either for x — 400 or for © — —o00). In conclusion, from (7.13) one has
! !/
% = % ie. % logy = % log 1)

that, upon integration with respect to x, yields 11 (z) = C'¢2(x) or, in other
words, 11 and 5 are not independent, i.e. E is nondegenerate.

Let us finally consider the particularly meaningful case in which V' (z) is
an even function of the coordinate: V(x) = V(—z) (we are now relaxing the
hypothesis that V(z) — oo for £ — £00). In this case the Hamiltonian H
commutes with the space-inversion operator I: [H, I] = 0. The operators I
and H have, as a consequence, a complete set of simultaneous eigenfunctions;
but since the (proper) eigenvalues of H are nondegenerate, any eigenfunction
of H corresponding to a discrete eigenvalue must also be an eigenfunction
of I, i.e. it must have definite parity. Note that even functions either have
an even number of nodes or vanish an infinite number of times, whereas odd
function have an odd (or infinite) number of zeros. Indeed, if a function with
a well defined parity (either +1 or —1) vanishes in a point = # 0, it must
vanish also in the point —x; in addition, odd functions must vanish also in
the origin (f(0) = —f(0) = 0), while even functions, if they vanish in the
origin, the first derivative — being an odd function — must vanish as well,
but the solutions of the Schrédinger equation cannot possess zeros of order
higher than the first: if in a point both v and v’ vanish then, as these data
univocally determine the solution, 1 vanishes everywhere.

By combining the latter result with the oscillation theorem one finds that,
if By, By, -+, Ey, --- are the eigenvalues of H in increasing order, the corre-
sponding eigenfunctions ¥ (x), ¢¥1(z), -, wn(x), - - - alternatively are even
and odd and in particular the wavefunction of the ground state is even.

7.5 Solutions of Schrédinger Equation: Continuous Eigenvalues

Let us carry on the discussion on the general b ()
properties of the solutions of the Schrédinger
equation, by now examining the case of a po-
tential (like e.g. that of Fig. 7.9) that diverges
at one side, e.g. for © — —oo, and tends, for T
x — +o0, to a finite value that we can put \\/
equal to zero (given that any potential is de-
fined up to a constant) and has the minimum Fig. 7.9
of negative sign:




146 7 Schrédinger Equation for One-Dimensional Systems
V(z) = 400 T — —00
( ) Vinin < 0.

V(iz)— 0 T — +00

Let us distinguish three cases:

1. E < Vi : all the z-axis is a type II region and, as discussed in the previous
section, there exist no eigenvalues.

2. Vimin < E < 0: there exist x1 and x2 such that the regions = < x; and
x > xo are type II regions and between x; and zo there is at least a region
of type I. Also this case has been faced in the previous section and we have
concluded that only discrete eigenvalues are possible.

Note that, if V(x) — 0 sufficiently fast for x — 400, asymptotically, where
|V (2)| < |E|, the general solution of (7.11) (with E < 0) has the form:

o eV2mIEle/h | 3 o—V/2m|E|z/h 7 a, BeC, T — 400 (7.14)

i.e. it is a linear combination of real exponentials, the first of which diverges
whereas the second tends to zero. Given a generic value of E between Vi,
and 0, and having chosen the solution that vanishes for z — —oo, normally
it will happen that for £ — +oo the wavefunction ¥(z) is of the type (7.14)
with both « and § nonvanishing; only if it happens that for z — +o00 ¥(x)
is of the type (7.14) with « = 0 (so that ¥(x) — 0), is ¥(z) an acceptable
solution and the corresponding F an eigenvalue of H.

The number of discrete eigenvalues depends in this case on the potential:
it can be shown that, if V(z) is bounded from below and, for x — +oo,
V(z) — 0 faster than 272, then there is a finite number (possibly vanishing)
of discrete eigenvalues.

3. E > 0: in this case, for = large and negative, the x axis is a type II region,
whereas for x large and positive, it is a type I region. Therefore, given whatever
value E > 0, it is possible — as discussed in the previous section — to find a
solution ¥ (z) of the Schrodinger equation that vanishes for © — —oo; the
behaviour of ¥(x) for © — 400, i.e. in the type I region, will be oscillatory
and 9(z) stays bounded: in effect in this case the general solution of (7.11)
(with F > 0) asymptotically has the form:

o ei\/2mEa:/h+ﬁ efi\/2mEx/h7 = 400

and is always acceptable. Therefore, contrary to the previously discussed cases,
there is no problem to find a ‘well behaved’ solution also for x — 400: no
(x) tends to zero, but all of them stay bounded. So any E > 0 is an improper
eigenvalue of H, i.e. the eigenvalues E > 0 constitute a continuous spectrum.
In this case the improper eigenvalues are nondegenerate: indeed, as all the
acceptable solutions tend to zero for  — —oo, the non-degeneracy theorem
shown in the previous section applies. On the other hand, one understands
that, for any FE, it is possible to find a solution of (7.11) that tends to zero
for £ — —oo, but no more than one, up to a factor.
Let us finally consider a third type of potential V(x) (Fig. 7.10):
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V(z) = Vs - - bV (e
(x) ? * o ‘/min<‘/1<‘/2~ ()
Vi) =WV z— 40 D FTI
1
There arise four cases. T
1. E < Vipin : there exist no eigenvalues.

2. Vain < E < Vi: for x large, both positive
and negative, the x-axis is a type II region, in
between there is at least one region of type I.

Therefore, in the present case, only discrete eigenvalues can occur.

Fig. 7.10

3. Vi < E < Vy: for x large and negative the z-axis is a type II region, while
for z large and positive it a type I region. All the F are improper, nondegen-
erate eigenvalues of H. We may explicitly see that for any value of E only
one solution can be found that vanishes for x — —oo: indeed, in this case,
asymptotically for  — —oo the general solution of (7.11) is

o e\/zm(VTE)a:/h e ef\/2m(V27E)a:/h 7 I — —00

and it is sufficient to choose the solution with 8 =0.

4. E > Vy: for large — both positive and negative — values of = one has type
I regions; what happens in the middle depends on the form V' (z) (in the case
of Fig. 7.10 all the z-axis is a type I region). Then for both  — —oco and
r — +o0o any 9 has an oscillatory behaviour and stays bounded:

W(z) =ae \/2m(E7V2)w/h+ﬁ o—iV2m(E=Va)a/h 7 I — —00

W(z) =~ ei\/Qm(E—Vl)m/h +6 e—i\/Qm(E—Vl)z/h : T — +00 .

Therefore any solution is acceptable and any E is an improper eigenvalue of
the Hamiltonian H. Since the Schrédinger equation is of the second order,
the independent solutions are two (the four coefficients a,,v,d are not
independent): this means that any F > V5 is a twofold degenerate (improper)
eigenvalue.

It appears from the above discussion that, for a given potential V(z) and
for a given interval of values of E, the type of eigenvalues and their degeneracy
exclusively depends on the type of regions one has for *+ — —oo and for
r — +00.

We can therefore summarize the results we have found in the following
scheme, in which the different cases are distinguished by the type of regions
one has for £ — —oo and for z — +00.

1. All the z-axis is a type II region: no eigenvalue.

2. II, II: discrete nondegenerate eigenvalues.

3. II, T or I, II: continuous nondegenerate eigenvalues.
4. 1, I: continuous twofold degenerate eigenvalues.
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The above are not all the possible cases: it may indeed happen (as e.g in the
case of a periodic potential) that for either © — —oo or  — +00, or both,
one as an alternation of regions of the two types. The latter case, of remarkable
physical interest, would deserve a separate discussion. We shall limit ourselves
by only saying that a kind of ‘compromise’ between discrete and continuous
eigenvalues takes place: the energy levels display a band structure, consisting
of discrete sets of continuous eigenvalues (the bands may sometimes even
partially overlap).



Chapter 8

One-Dimensional Systems

8.1 The One-Dimensional Harmonic Oscillator
in the Schrodinger Representation

In Chap. 5 we have found the eigenvalues and the eigenvectors of the Hamil-
tonian of the one-dimensional harmonic oscillator. We want now to find the
eigenfunctions ¢Yn(r) — ,(z) of the Hamiltonian in the Schrédinger rep-
resentation. A way to find such functions is that of solving the Schrodinger
equation:

h? " 1 2,2
_%wn(x) + U U (x) = Epthp () .

The problem is not difficult and many books on quantum mechanics solve it.
We shall instead follow a shorter way, that takes advantage of the fact that
we have already solved the problem in abstract way.

We want to calculate ¥, (z) = (x| n)’ where the vectors |n)’ are given
by (6.8). Then
(="

- Vn!

Since the Schrédinger representation of 7 is

Yn(x) (x| @mH" o).

t ; (—ihi—i-imwx)
K V2mhw dx

one has (with the choice of phases given by (6.8) instead of (5.18), the ¢,
are real):

1 d n
wn(x):m@mhw)_"p(—hg—i—mwx) (z|0). (8.1)
So the problem is brought back to that of determining o (z) = (x| 0).

To this end we recall that the vector |0) is defined by 7]0) =0, i.e. in
the Schrédinger representation:
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d
(h£ + mwx) po(x) =0.
This is a first-order differential equation that allows us to determine g (x)
up to a factor. In effect, one has

Yvolxz) d mw _ 2

- 1 ¥ - — O o (mw/2m)a?

volz) — dz 08 Yo(x) P Yo(z) e
The constant C' is determined by imposing that the normalization condition
(0]0) =1 be satisfied, i.e.

—+oo
o [ e

As [exp(—ax?)dzr = \/7/a, one immediately obtains that, choosing it real
and positive, C' = (mw/7 h)'/* and, in conclusion, the normalized wavefunc-
tion of the ground state of the harmonic oscillator is

Wo(z) = (@)1/4 o—(mw/2n)a® (8.2)
mh

The o(x) is therefore a Gaussian. One can verify that its inflection points

occur at +mxg, with zy = /h/(mw), namely the points that satisfy the

equation V(xz) = Ep, i.e. the inversion points for a classical oscillator with

energy FEjy.

Note that, just as it must be, for —zy < & < 4z the concavity of g (x)
is downwards (1 is positive), whereas for |z| > zy the concavity is upwards.
Furthermore o (z) has no nodes and is an even function of x.

We take here the opportunity to discuss a typical and interesting aspect
of quantum mechanics: we know that, according to classical mechanics, the
motion of a particle of energy E can take place only in type I regions. Now we
have seen in general, and receive direct confirmation in the case of the har-
monic oscillator, that the eigenfunctions of the Hamiltonian are nonvanishing
even in the regions of type II, those classically forbidden. So there exists a
nonvanishing probability of finding a particle in a type II region, where the
potential energy alone exceeds F, and there is in addition the kinetic energy
that never is negative! It would seem that one is facing a situation in which
energy is not conserved.

To solve this apparent paradox one must keep in mind that the statement
‘there exists a nonvanishing probability to find a particle in a type II region’
implies that we make measurements on the system suitable to tell us where
the particle is: for instance, we measure some ¢, . After the measurement the
particle is in an eigenstate of g, : this means that its wavefunction is localized
in an interval of length A, for example, in a ‘classically forbidden’ zone. In
this state, however, the particle does not possess a definite energy, because it
is not in an eigenstate of the energy. However, the fact that, after finding the
particle in a classically forbidden zone, we are not entitled to say it has no
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definite energy does not fully solve the problem. This is so because, if we find
the particle in a forbidden zone, it is straightforward to check that in this state
the mean energy FE exceeds the energy it initially had. Now E > E means
that, if measurements of energy are made in this state, sometimes results
greater than E will be found, so a real increase of energy has taken place and
the question comes up again.

The explanation of the paradox is the following: the measurement of po-
sition (i.e. of some ¢, ), that allows us to find sometimes the particle in the
forbidden zone, perturbs the state of the system: it makes the system pass
from an eigenstate of the energy to an eigenstate of g, . This perturbation is
due to the interaction between the system (the particle) and the instrument
that measures g, , and during this interaction the instrument transfers an
uncontrollable quantity of energy to the system. Think that the instrument
can be for example an Heisenberg microscope: the light the microscope uses
interacts with the particle and transfers energy to it. There is no violation
of the principle of conservation of energy: the particle is not an isolated sys-
tem for it interacts with the measuring apparatus and its energy may be not
conserved at the expense of the energy of the instrument. The energy of the
isolated system ‘particle plus instrument’ is instead conserved.

Does it make any sense to ask whether the particle already was in the
forbidden region, before making the position measurement? Or should one
say that, until the position measurement is not effected, certainly the particle
is in an allowed region? To take either one of the above points of view is
a matter of taste: from the standpoint of the physicist both questions are
irrelevant, because the purpose of the physicist is to be able to predict the
results of specific measurements, not that of making statements that cannot
be subjected to a verification (like ‘until I do not make the measurement,
certainly the particle is in the allowed region’).

Let us go back to the problem of determining the 1, (z). Once g (z) is
known, (8.1) allows for the determination of all the others: in order to find
Yn(x) it suffices to apply n times the operator —hAd/dz + mwzx to ¥o(x).
Given the (Gaussian) form of #y(z), the result of this operation is, up to
the factor (mhw)™?, a polynomial H,(¢) of degree n in the dimensionless
variable £ = y/mw/hx, multiplied by o(z) .

In conclusion, from (8.1) and from the definition of H,, — that we shall
give in (8.4) — the normalized v, are:

V() = \/;T(:'Z;)M (Vmfha) emelnat (g3

The polynomials H,(§) bear the name of Hermite polynomials and it is
easy to see that, thanks to the way they are obtained, they have parity (—1)",
i.e. those with even n are even, those with odd n are odd. Since e~ (m«/2) @’
is even we find again what we already knew, i.e. that the v, (z) given by
(8.3) have parity (—1)". So Hi(§), being of the first degree and odd, is
proportional to & Ha(€) is of the form &2 + a and, since by the oscillation
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theorem 15(2z) must possess two nodes, a is negative:

d n 2
—e2/o
d§+§> ©

H0(5)217 Hl(f):2£7 H2(§):4§2_27

o o /\ /\UJ

=t€/2( _
H,(§) = /2 5

ltbo? ‘ j C\wlﬁ j 2|wzl2

x x x

Fig. 8.1

In Fig. 8.1 the first three (equally normalized) eigenfunctions of the Hamil-
tonian H are reported together with the corresponding probability densities

[Yn ()]

8.2 Potential Well

In several physically interesting situations (see Vi)
Sect. 2.5) it may happen one has to deal with
potentials V(z) that in a very short interval
(of length €) go from a value Vi to another
value V5, as shown in Fig. 8.2. Think e.g. of
an electron close to the surface of a metal: over
an interval of a few angstrom the potential goes
from the value it has inside the metal to that it assumes outside of it, with a
jump Vj that equals the work function W.
In situations of this type, both for the lacking V()
knowledge we have of the actual behaviour of
the potential in the zone where it grows from
the value Vi to the value V5, and to make
computations easier, one replaces the ‘true’ po-
tential with a ‘step potential’, like that shown z
in Fig. 8.3, that displays a discontinuity. Note Fig. 8.3
that one passes from the potential of Fig. 8.2
to that of Fig. 8.3 by taking the limit ¢ — 0. In addition, in other cases, the
intervening energies are so small with respect to 1{y that one is led to the
schematization in which also the limit V, — oo is taken.

In order to solve the Schrodinger equation in all these cases in which the
potential displays a (either finite or infinite) discontinuity, it is necessary to

Fig. 8.2

Vo
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know which conditions of continuity must be enforced on the eigenfunctions of
the Hamiltonian H in the points of discontinuity for V' (z). This problem can
be faced from a mathematical point of view by studying the domain (i.e. the
set of functions) that allows for the definition of H as a self-adjoint operator.
We instead will face this problem by recalling that, from the physical point of
view, a discontinuous potential is a schematization, i.e. a limit of continuous
potentials: we will therefore investigate which properties of continuity of the
eigenfunctions of H survive, and which do not, this limiting procedure.
Let us assume that V() is like in Fig. 8.2. The Schrodinger equation is

_2m

V@) = 5" (V@) - B) ba)

By integrating both sides between x =0 and x = € one has

V' (e) — ' (0) = 2%” /06 (V(a:) — E) P(x)dex . (8.5)

Since both V(x) and ¢ (x) are finite in the interval (0,¢), the right hand
side of (8.5) tends to zero for € — 0. Therefore ¢’(e) — ¢'(0).

We have shown that ’(z) remains continuous in the limit of step poten-
tial. Likewise one shows that also ¢ (x) remains continuous. So for the step
potential, i.e. with a finite discontinuity, me must require that both ¢ and )’
are continuous functions. Note that, instead, the Schrédinger equation entails

lim " (x) # liI(I)li P (x) .

z—0*t

As an application we now study the problem of Vi)
a particle subject to the ‘square well potential’, _ Vo m—
as in Fig. 8.4: 1 l
| |
| |
0 < | |
V(J)) = |£C| a —‘a ‘ (‘1 e
Vo |z] > a .
Fig. 8.4
The Schréodinger equation can be written as
2m E
@) =" b ol <a o
8.6
2m(Vp — FE
(@) ="y s,

If we want to find the bound states, then 0 < E < V; and in this case the
general solution of (8.6) is

Y(x)=A coskx+ B sinkzx, —a<z<+a (8.7)

where
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po V2mE (8.8)
h
and
Y(r) =Be "*+ B et T > +a (8.9)
P(x) =C et 4 O e "7 r<—a (8.10)
where
k= W ) (8.11)

h

In order for the solution to be acceptable, it must be L, and continuous to-
gether with its first derivative in the points x = +a . The square-integrability
condition demands that B’ =0 in (8.9) and C’ =0 in (8.10).

Before enforcing the continuity conditions, let us observe that V(x) is even
in x: V(z) = V(—=x). Therefore, since the discrete eigenvalues are nondegen-
erate, the bound states have definite parity. Let us start with the study of
the even states, among which there is the ground state. The wavefunctions
of such states are those for which A’ =0 in (8.7) and B = C in (8.9) and
(8.10) (where, we recall, already B’ = C’" = 0 has been imposed).

So the even solutions of the Schrédinger equation (8.6) have the form:

Betr® < —a
Y(x) =4 Acoskz —a<z<+a (8.12)
Be™"® T > +a.

Now it is sufficient to impose the continuity conditions in the point = = +a
because, thanks to the fact that (x) has a well defined parity, the latter
conditions will be automatically satisfied in the point x = —a . The continuity
conditions are:

(8.13)

Acoska= Be "¢
kAsinka= kK Be "%,

One is dealing with a system of two linear homogeneous equations in the
unknowns A and B, so the solution is A = B = 0, i.e. ¢(x) is identically
vanishing — unless the two equations are linearly dependent, i.e. the determi-
nant of the coefficients of (8.13) vanishes, namely:

ktanka =k . (8.14)

In other words the equations (8.13) possess a nontrivial solution only for those
values of E (k and « are functions of E, given by (8.8) and (8.11)) such that
(8.14) is satisfied. Such values of E are the eigenvalues of H for the eigenstates
with parity +1.

The odd solutions of (8.6) have the form:

—BeTr?® < —a
P(z) = Asinkx —a<z<+a (8.15)
Be™r® T > +a
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and the continuity conditions in x = +a are

Asinka = Be @
kAcoska= —k Be "%,

so that for the odd solutions:
k/tanka = —k . (8.16)
Usually a graphical method is used to solve (8.14) and (8.16). Let us put
ka=¢, Ka=mn
so that (8.14) and (8.16) become:

n==~&tan¢, n=—¢/tan¢ . (8.17)
Moreover, from (8.8) and (8.11) one has

_2mW a?

==z

In Fig. 8.5 the circumference (8.18) as \Etang; —¢/tané
well as the functions 7 = £ tan¢ (thicker
line) and n = —¢/ tané (thinner line)
are drawn: the abscissae £ of the intersec-
tion points between these two curves and
the circumference in the first quadrant (k
and k, i.e. £ and 7, must be positive) pro-
vide us with the values of k that satisfy
(8.14) and (8.16) and, via either (8.8) or
(8.11), the values of E we are looking for.
Fig. 8.5 shows that the number of bound
states is finite and that, whatever the value of V{ and a, there always exists
at least one bound state: for 2m Vya?/h? < 72/4 the system has only one
(even) bound state; the existence of at least one odd bound state requires
2mVya?/h* > % /4.

Let us now investigate what happens for V{) — oo, limiting ourselves to the
ground-state wavefunction o (z) (for the other t,(z) the same conclusions
will apply).

Always looking at Fig. 8.5 one realizes that, if V; — oo, the abscissa of the
first solution tends to m/2. So one has ka — 7/2, i.e. Ey — w2 h*/(8ma?).
We want also to investigate which continuity properties of 1g(z) in the point
x = a survive the limit V) — oo, and which do not. Starting from (8.12) and
solving the first of (8.13) for B one has

§2+,’72

A coska etr(@ta) T < —a
Yo(x) = ¢ Acoskx —a<z<+a (8.19)
A coska et (=) T > 4a.
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and, since ka — 7/2 and therefore coska — 0 in the limit V5 — oo, one
eventually has:

lim  4o(z) =

V[)—)OO

A cos ™%
{ cosi —a<z<-+ta (8.20)
|z] > a.
In conclusion, in the limiting case Vj = oo (well of infinite depth), o(x)
is nonvanishing only inside the well and vanishing outside of it. In addition
Yo(x) stays continuous, therefore vanishing, in the points x = +a; its first
derivative instead develops a discontinuity. Since this conclusion applies to all
the ¥, (z), and the latter constitute a basis, it follows that any wavefunction
¥(x) vanishes for |z| > a (not necessarily for 2 = +a): for this reason one
says that the particle is constrained to move in the segment (—a,+a). As a
consequence, one can disregard the regions |z| > a and solve the Schrédinger
equation only in the interval (—a,+a), enforcing on the eigenfunctions 1, (x)
of H the conditions:

n(+a) = Yp(—a) =0, (Vo =00 for |z|>a). (8.21)

The boundary conditions (8.21) are quite general: they must be enforced any
time one is searching for the eigenfunctions of H when Vp = oo for |z| > a
and whatever the form of V(z) for |z| <a.

As an example we will determine all the eigenfunctions and eigenvalues of
H for a particle constrained to move in a segment, with the potential that
vanishes inside the segment (infinite potential well). We could start from the
case already discussed, in which V; is finite, and take the limit Vj — oo,
but it is more instructive to face the problem from the scratch. In order to
give a unique treatment for both even and odd solutions, it is convenient to
choose the origin in one of the end-points of the segment and let * = a be
the other end-point (note that now the length of the segment is a, not 2a as
it was before). The Schrédinger equation is therefore:

2m E
W) = i), 0<r<a
with boundary conditions
P(0) =¢(a) =0. (8.22)
The general solution of the Schrodinger equation is
2mE
Y(r) =Asinkx + B coskz, k:\/: ) 0<z<a.

The condition ¥ (0) = 0 requires B = 0; then the condition (a) = 0
demands:

A sinka=0 = ka=nm, n=1,2,---. (8.23)
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Note that n = 0 is excluded for it would imply k& = 0 and vo(z) = 0; also the
negative integers n = —1, —2, - - - are excluded because sin(—k x) = —sink z:
they give raise to wavefunctions dependent on those obtained by limiting
oneself to positive values of n. From (8.23) and the relationship between k
and E one obtains:

e

) T
=02 ¢n(a:):Abln(n7ra>, n=1,2,---. (8.24)

Note that the energy levels (8.24) are the same as those obtained in Chap. 2
(see (2.18)) by means of either Bohr or de Broglie theory.

8.3 Tunnel Effect

Let us consider a potential V' (x) vanishing for both < 0 and =z > a and
satisfying 0 < V() < Vp in the region 0 < z < a (Fig. 8.6).

Consider, from the classical point of view,
the situation in which a particle is sent, e.g.
from the region = < 0, against this ‘poten-
tial barrier’: if the energy E of the particle
exceeds Vj, then the particle will cross the
barrier and will continue its motion in the
region x > a; if instead E <V, the par- Fig. 8.6

ticle will be reflected by the barrier and will go back.

According to quantum mechanics, on the contrary, even if E < Vj, there is
a nonvanishing probability that the particle crosses the barrier: this typically
quantum effect is called tunnel effect.

In order to discuss this problem, let us study the eigenfunctions ¢ g(z) of
the Hamiltonian. Since the asymptotic regions are type I regions, the eigen-
values are continuous and doubly degenerate: in the regions * < 0 and = > a
the general solution has the form

Aeika:+A/ efika: JZSO
Vp(r) = ik ik
C el 4 O emihe T >a

V(x)

where, since the Schrodinger equation is of the second order, only two from
among the four coefficients A, A’, C', C' are independent and k is given by
(8.8): k=+v2mE/h.

If we want to describe the situation of a particle incoming from the left
(and that can possibly cross the barrier) we search for those solutions with
k > 0 such that A # 0 and C’ = 0; moreover, since the Schrodinger equation
is homogeneous, we can set A = 1; redefining A’ one has (Fig. 8.7):

eika:_'_Aefika: <0
= . - .2

The states whose wavefunction has (in the one-dimensional case) the form
(8.25) are called scattering states.
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It is obvious that, whatever the form of

1%
V(z) and for any value of the energy, it 4 @
must happen that C' # 0: indeed the so- Aeike
lutions of the Schrédinger equation cannot ei? CT””)

vanish in a point together with the first
derivative in that point and, a fortiori, can-
not vanish in an interval. Therefore the Fig. 8.7
transmission of the particle through the

barrier actually takes place. For this reason, having set to 1 the coefficient
of the ‘incoming wave’ ¥ in (8.25), |C|? is named the transmission co-
efficient of the barrier, and |A|?> the reflection coefficient.

It is true that g (z) is an improper eigenfunction of the Hamiltonian and
does not represent a physical state, however we know that there exist physical
states whose wavefunction approximate g (z). So, for instance, if we start
with a an approximation to ¥ g(x) consisting of a state whose wavefunction
is of the form e!** in a very large but bounded region of the negative z-axis,
this state (as we will see in the next chapter) evolve in time and, as we will
explicitly show in Chap. 17, will give rise to both a reflected and a transmitted
wave; therefore for such states it is meaningful to talk about transmission and
reflection coeflicients, as probabilities of finding the particle beyond the barrier
or reflected backward.

Of course the values of A and C depend on the potential V' (x) but, what-
ever the form of V(z), the following relationship holds:

AP + |0 =1 (8.26)

namely, the sum of the transmission and the reflection coefficient equals 1:
this means that if we send many particles against the barrier and detect them
by means of counters, the numbers of the transmitted and of the reflected
particles equals the number of the incident ones.

Equation (8.26) is a consequence of the continuity equation that, for
further reference we prove in the three-dimensional case. In three dimensions
the Schrodinger equation is (A = 92/0x% + 02 /0y? + 0?/02? is the Laplace
operator):

2
I A+ Vi = B (8.27)
m

Let us multiply (8.27) by %}, and its complex conjugate by g ; subtracting
side by side we obtain:

UpAvE—YpAvE=0 = V- (6pVip-pViE) =0
so that, defining the probability current density by
j:

h
~i5— (Vb Ve —vp Vi) (8.28)
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(the prefactor —i%/2m is put in for reasons to be clarified in the next chapter),
if ¥ g is a solution of the Schrodinger equation (8.27), one has the continuity
equation:

V- J(z,y,2)=0. (8.29)
In the one-dimensional case — the one we are presently interested in — (8.29)
becomes:

(v —vp'y) =0

that, upon integration between x1 and zs, gives:
Sm (V1) vp(1)) = Sm (Vp(e2) ¥p(a2)) -

If 1 <0 and z9 > a in the ¥g(z) given by (8.25), then (8.26) follows.

It is interesting to remark that independently of the form of the potential,
the transmission and reflection coefficient are the same, regardless of whether
the particle hits the barrier on either the left or the right side. Indeed, since
the Schrédinger equation is real, if g is a solution of the type (8.25), ¢}, is
a solution independent of ¥ :

e—ikat_|_A* eikr <0
I = . - 8.30
Vi (@) {C* e i (530
As a consequence, the solution 1Z g corresponding to a particle incoming from
the right (i.e. the region x > 0) is a linear combination a g + B¢} :
~ a + BA%) kT 4 (a A+ B)e ik <0
¢E = {iceikx_'_)ﬁ C* efi(km B) (8'31)
such that 3C* =1 and a+ 8 A* = 0: from these conditions it follows that
B =1/C*, a= —A*/C* and therefore the reflection coefficient is |A|? =
|aC|? = |A|? and likewise the transmission coefficient |C]? = 1—|A|? = |C]?.
We now explicitly calculate the transmission and reflection coefficients for
the ‘rectangular barrier’

0 z <0
V(z)=< Wb >0 0<z<a (8.32)
0 r>a

considering, to begin with, the case 0 < E < Vp. If in (8.25) we redefine C:
C — e ke one has

eikw_’_Aefikw <0

YE(r) = Be"* 4+ B e "* 0<z<a (8.33)
Ceik(m—a) r>a
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where £ is given by (8.11): k = /2m (Vo — E)/h. The coefficients A, B, B',
C' are determined by the requirement of the continuity conditions of ¢ and
Yp in =0 and z=a:

1+A=B+B C =Be"a4 B e re
i(k/k)(1—A)=B—B'; C = —i(k/k) (Be"® — B/ e~ )

C=(B+ B')coshka+ (B— B')sinhka
C = —i(k/k) [(B— B') coshka+ (B+ B') sinhra]

(1+A)coshka+i(k/k)(1—A)sinhka
— A) coshka —i(k/k)(1+ A) sinhka

Q Q
||

(coshka —i(k/k) sinhka) — C = —(coshka +1i(k/k) sinhka)
A(coshka+1i(k/k) sinhka)+C = coshka—1i(k/k) sinhka

o
o
Ui

2
=
2cosh/£a—|—1((/£/k:) — (k/K)) sinhka
|C|2 _ 4E (VO — )
4E (Vo — E) + V2 sinh® ka
9 . 12 E<Vy. (834
A2 =1—|CJ2 = Vg sinh” ka

AE (Vo — BE) + Vg sinh®*ka

The case E > Vj is obtained by means of the substitution x — ik; =
iv/2m(E —Vy)/h:

|C|2 B 4E (E - V)
AE (E — Vo) + VZ sin’ky a
9 .. 9 E>W. (8.35)
A2 =1—|CJ? = Vi sin“ ki a
4B (E —Vp) + Vi sin’ ki a
We report in Fig. 8.8 the transmission coeffi- el

cient |C|?| as a function of E/Vj in the numer-
ical case 2mVpa?/h? = 9 that, for an electron
and Vj = 1eV corresponds to a ~ 6 A

The tunnel effect has very many techno- 1 2 3,
logical applications (scanning electron micro- ) E/Vo
scope, electronic devices like the tunnel diode, Fig. 8.8
the metal-oxide-semiconductor (MOS), Josephson junction, flash memories,
etc.).




Chapter 9

Time Evolution

9.1 Time Evolution in the Schrédinger Picture

So far we have mainly been concerned with the determination of eigenvalues
and eigenvectors of observables and we have not yet faced what in quantum
mechanics is a fundamental problem, i.e. the problem of determining how the
states of a system evolve in time — which is equivalent, in classical mechanics,
to solving the equations of motion.

In other words the discussion made so far regards the states of a system
at a given instant and we have not yet investigated how the states change as
time goes by.

The problem of time evolution in quantum mechanics is to be faced in
the same way as in classical mechanics: given the state of a system at a
certain instant and the forces acting on the system being known, the task is
to determine the state at any other instant. (In quantum mechanics the terms
‘interaction’ and ‘potential’ are preferred to the term ‘force’).

In order to solve this problem, we shall have to introduce a certain number
of assumptions (or postulates) that will be fully justified in an alternative
approach to be described in the next section.

We will use the following notation: if the system initially (¢ = 0, to be
concrete) is in the state described by the vector | A ), we will denote this vector
by | A,0) to emphasize the instant in which the system is in the state | A).
By | A,t) we will denote the vector that describes the state of the system at
the generic instant ¢, if the system initially was in the state | A,0). Namely,
due to time evolution:

|A70>aftcratimct|A,t> )

We have implicitly assumed that the state of the system at time ¢ is univocally
determined (the ‘forces’ being known) by the state at time 0: this is legitimate
if in the interval (0,t) no measurement is made on the system because, the
state of the system being only statistically determined after a measurement,
any causal relation between |A,0) and |A,t) would fail. Let us assume
that
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|A,t)y=U(t,0)|A,0) (9.1)

where U(t,0) a linear and unitary operator. The linearity of U(t,0) guaran-
tees that superposition relations are preserved over time: if

|C,0)=alA,0)+B[B,0)
then, thanks to the linearity of U(t,0),

|C,t)=U(t,0)|C,0)=U(0) (a|A,0)+ B]|B,0))
=alAt)+B|B,t).

The unitarity brings along the consequence that the scalar products (and
therefore the probability transitions) do not depend on time:

(A t|B,t)=(A,0|U(t0)U0)|A,0)=(A,0]B,0).

In particular, the norm of | A,¢) is the same as that of |A,0).
In general, if U(¢,to) is the time evolution operator between the (initial)
instant tg and the instant ¢, one has

Ulta, t1) U(t1,to) = Ulta, to) - (9.2)
Indeed:

| A, ta) = Ulte,to)| A, to) = Ulta, t1)| A t1)
=Ulte,t1) U(t1,t0) | A, to) -

If we limit ourselves to consider forces that do not depend on time, then
U(t,to) depends only on the interval ¢ — ¢ty and not on the initial instant ¢g:
in this case we shall write

Ut)=U(t,0)
and (9.2) takes the form:

U(tl) U(tQ) = U(tg) U(fl) = U(fl + tg) . (93)

If (9.3) holds (i.e. if the forces do not depend on time), one can show (Stone’s
theorem) that _
Uty =e ' Kt (9.4)

in which K is a self-adjoint operator. Note the likeness between the time
evolution operator in the form (9.4) and the space translation operator U(a)
given by (6.22).

It goes without saying that U(t), and therefore K, depend on the type of
forces acting on the system; in particular K is an operator that determines
the dynamics of the system. The analogy with the space translation operator
suggests to postulate that K is proportional to the Hamiltonian H of the
system. In effect, from the (classical) theory of canonical transformations we
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know that, much as the linear momentum p is the generator of space trans-
lations, H is the generator of time translations. The proportionality constant
must have the dimensions of the reciprocal of an action, so we will set

K=h'H = U@lt)y=e ¥ (9.5)

and the choice of the sign of the proportionality constant between H and
K will be justified by the requirement that, under suitable circumstances,
quantum mechanics reproduces the results of classical mechanics.

In conclusion, for systems subject to forces independent of time:

A t)=e HHUR 1A ). (9.6)

If we take the derivative of both sides of (9.6) with respect to ¢ (the deriva-
tive of a vector | A,t) is defined, as usual, as the limit of the ratio of the
increments; as far as the derivative of the operator e '/ is concerned,
the ordinary differentiation rules can be followed, as if H were a number: in

the expression e~ 7 /" there is nothing that does not commute with H ), we
obtain

d | A t}:—iH|A 0)

de ' h ’
ie.

d
i Aty=H|A,t). :
ih , 14.t)=H|A,t) (9.7)

Equation (9.7) is the differential form of (9.6) and is known as the time-
dependent Schrodinger equation.

Equation (9.7) has been deduced from (9.6), that holds only if the forces
do not depend on time. However, contrary to (9.6), (9.7) keep its validity
even in the case of time dependent forces (e.g. an atom under the action
of an electromagnetic wave); in the latter case H ezplicitly depends on the
(numeric) parameter t.

Equation (9.7) is a differential equation of the first order: this expresses
the fact that the solution | A,¢) is completely determined when the state at
time t = 0 is assigned — as it must be, inasmuch as (9.7) is equivalent to
(9.6).

In the Schrodinger representation (9.7) (in the general case of time depen-
dent forces) writes:

ihaatw(fmt)=H(x7—ih8/8x;t)w(x,t)7 xz(xh...’xn) (98)

where
Y(x,t) =(x | A,t).

If the system is subject to position-dependent and possibly time-dependent
(but not velocity-dependent) forces, in the same way as in Sect. 8.3 we have
derived the continuity equation (8.29), one now obtains:
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T 8p($,t>
V- J(z,t)+ 5

=0 (9.9)

where J is defined by (8.28) and p = [|? is the probability density; (9.9) is a
conservation equation, analogous to the conservation equation for the electric
charge, and expresses the conservation of probability.

Equation (9.7), that holds even when H explicitly depends on ¢, can be
written in the form

d
ihdt Ut)|A,0)=H(@)U(t)|A,0)

and, since it holds for any vector |A,0) (ignoring, as usual, the domain
problems), it is equivalent to the operator equation:

in S UM =HE)U®) (9.10)

that will be useful in the sequel. In general, with the exception of the case in
which H(t1) and H(tz) commute for arbitrary values of ¢; and to (this is
certainly so if H does not depend on time), the solution U(t) of (9.10) does
not share the form of the solution (9.5).

Let us go back to the case of forces independent of time and let us ask
ourselves whether there exist states that do not evolve in time: we will call
such states stationary states.

A state is a stationary state if, for any ¢, the vectors |A,t) =U(t)| A,0)
and | A,0) represent the same state: this happens if and only if | A,¢) and
| A,0) are proportional to each other:

|A,t)=C(t)] A,0) (9.11)

where the constant C(¢) may depend on ¢.
We will show that, for forces independent of time:

The stationary states of the system are all and only the eigenstates of H.
Indeed, if H|E)=FE|E), then

Ut)|E) =e YN E) =7 PURE) (9.12)

i.e. the eigenstates of H are stationary states. Viceversa, if a state is stationary,
(9.11) applies to it, therefore the Schrodinger equation (9.7) yields:

ihC(t)|A,0)=HI|A,0)C(t)

whence &)
. 4

Since the right hand side does not depend on ¢, the same must happen for the
left hand side, i.e. i C(t)/C(t) is constant with respect to t. If we call E this
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constant, (9.13) becomes H|A,0) = FE|A,0),ie.|A,0) isan eigenvector of

H corresponding to the eigenvalue E — the statement made above. Moreover,
note that from the equation
Ot

in ¢ _

cn = ) =1

one obtains C(t) = e P¥" in agreement with (9.12).

If one wants to determine explicitly the evolution of a state over time — i.e.
to determine | A, ¢) in terms of | A,0) — according to (9.6) one must apply the
operator e 1 H /" to the vector | A;0); usually this is not an easy task, so it is
convenient to operate in the following way: one first writes | A,0) as a linear
combination of eigenvectors of H, that form a basis (we will provisionally
assume that H only has discrete eigenvalues):

|A7O>:Z an|En>7 an:<En|A7O>
then applies the time evolution operator to both sides of the above equation:
e HHUR| A ) = 1 H/R Z an | En)

:Z anefth/h|En> :Z anefiEnt/h|En>

having used (9.12). In conclusion:
|At)=> aneUME) 4y =(E,|A0). (9.14)

Equation (9.14) shows that the problem of determining the time evolution of
a state is completely solved if we know the eigenvectors and eigenvalues of the
Hamiltonian H. It is therefore clear that, from among all the observables of
a system, the Hamiltonian has a privileged role. It is also for this reason that
one of the most important problems in quantum mechanics is that of finding
the eigenvectors and eigenvalues of H.

In the case H has continuous eigenvalues, instead of (9.14) one has

|A,t) :/a(E)e*iEf/h|E>dE, a(B)=(E|A,0). (9.15)

Very often, particularly when H is degenerate, the eigenstates of H are de-
noted by the eigenvalues of some (nondegenerate) observable that commutes
with H: in this case (9.14) and (9.15) are expressed in terms of the eigenvalues

of such an observable. For example, for the free particle
2
—i p
4,6) = [ @) PO ) ap. B =2

Formulae similar to (9.14) and (9.15) apply to the case in which H has both
discrete and continuous eigenvalues.
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In some sense one can say that in quantum mechanics the problem of time
evolution does not possess the primary importance it has in classical mechan-
ics: indeed we have seen that the problem of determining the eigenvectors
and eigenvalues of H is preliminary to that of time evolution; furthermore
the eigenstates of energy are stationary states so that, given the importance
(from the physical point of view) of the eigenstates of energy, stationarity is
almost more important than time evolution. Of course this statement should
be cautiously taken: for example, if H only has continuous eigenvalues, there
exist no proper eigenstates so that no state is rigorously stationary. But, even
if H only has discrete eigenvalues, as is the case for the harmonic oscillator,
not only the stationary states exist: the oscillators, after all, do oscillate! Let
us indeed assume we have a one-dimensional harmonic oscillator, initially in
the state | A,0) represented by the wavefunction 14 (z,0). One has

|A,O>=Znan|n>

A t) =) apetHa)eln) e 20t N g eIt n) - (9.16)
If T=2r/w,since e inw(+T) — o=inwt anq ¢=219T = _1 one has
|A7t+T>:_|A7t>

so after a period, although the vector has changed sign, the state has come
back the same: indeed, the factor e 2iwt g totally irrelevant. So in gen-
eral, and as expected, the time evolution of the nonstationary states of the
harmonic oscillator is periodic and the period is the same as in classical
physics. However, if in (9.16) only the a,, with even (odd) n are nonvanishing
(correspondingly the ¥(z,t) is an even (odd) function of x), the period of
the state is 7'/2 and this fact, as well as the existence of stationary states,
has no classical analogue. In general, after half a period, one has

| A t+T/2) = e 17/? Znan (=1)"|n)

and, since the space-inversion operator I acts on the eigenvectors of H ac-
cording to I|n)=(—1)"|n), one has

|At+T/2)=—iI|A,t) = Yalz,t +T/2) = —iths(—x, 1)

i.e. after half a period, up to the factor —i, we find the wavefunction reflected
with respect to the origin. During the interval (¢, ¢t +7/2) the wavefunction
does not preserve its form; indeed, if for example at time ¢ the wavefunction
is real, between the instants ¢ and ¢ + 7'/2 the wavefunction is complex (and
not only because of a constant phase factor): the time evolution of 14 is not
simply a shift of its graph.

As a byproduct we discover that, independently of the Hamiltonian of the
particle, a possible way of representing the space-inversion operator is given
by
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I= ie_%i”(pz/(mthm“qz/h) for any real m, w . (9.17)

The time evolution of a given state being known, we can establish how the
mean value of whatever observable £ of the system in that state changes over
time: the mean value of £ in the state at time ¢, that we will denote by &, , is

§=(At|E]At)=(A,0lUMEUM)|A,0). (9.18)

Note that if | A,¢) is a stationary state (i.e. if it is an eigenstate of H) the
mean value of any observable is independent of time: indeed, if the state does
not change, no mean value can change. Equation (9.18) provides us with the
same result: if |A,t)=e "F¥/"| A 0), then

(At &1 A ) =PI {A0]€6]A,0)e PV =(A,0]¢]A,0).

We now ask ourselves whether there exist observables such that, for any state
of the system and for any t fulfill ¢, =&, (i.e. & is independent of ¢). From
(9.18) it follows that one must have

(A,0[U®)EUE)|A,0)=(A,0]E]A,0). (9.19)
Since (9.19) must hold for any | A,0), it follows that
UTeU®) =¢. (9.20)

In addition, the latter having to be satisfied for any ¢, we can differentiate
both sides with respect to t: recalling that U(t) = e ' H /"

i Heth/hge—th/h . ;Leth/the—th/h) -0

and putting ¢t = 0 one finally obtains
[H,&]=0. (9.21)

Viceversa: if £ commutes with H, it commutes also with U(t) and (9.20)
is satisfied. Therefore all and only the observables that commute with the
Hamiltonian H have mean values that, in any state, do not depend on time.
Such observables are called constants of motion.

Indeed, if [H,£] =0 also [H, £],, =0 and, due to (4.50), { is a quan-
tum observable that corresponds to a classical constant of motion. Much as
in classical mechanics, also in quantum mechanics the knowledge of constants
of motion allows for a simplification of the problem of time evolution, thanks
to the following
Theorem: if ¢ is a constant of motion and if | A,0) is an eigenvector of &
corresponding to the eigenvalue &', also | A,t) is such.

Indeed, if £ is a constant of motion, £ and U(t) commute with each other
and thanks again to the lemma of p. 87 (Sect. 4.10) the thesis follow.

It then appears that the vector | A,¢) remains, for any ¢, in the subspace
of H consisting of the eigenvectors of £ corresponding to the eigenvalue &' .
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9.2 Time Evolution in the Heisenberg Picture

As we know, the states of a system are ‘described’ or represented by the
vectors of a Hilbert space H; in any event it is clear that a vector in H
completely describes a state only inasmuch as, by means of rules that should
by now be familiar, from the knowledge of the vector we can extract all the
pieces of information that characterize the state of the system: transition
probabilities, mean values of the observables, the observables for which the
state is an eigenstate and the corresponding eigenvalues, etc. We have seen
that all the above information can be deduced from the mean values of suitable
observables so that we can state that the knowledge of a state is equivalent
to the knowledge of the mean values of all the observables in that state.

Also the problem of time evolution can be considered from this point of
view: the knowledge of how the states evolve in time is equivalent to the
knowledge of how the mean values of the observables evolve in time. This can
be obtained, as has been made in the previous section by means of (9.18),
from the knowledge of | A,t), given | A,0). We emphasize that, in the above
scheme, time dependence is assigned to the vectors that represent the states:
such a scheme is known as the Schrédinger picture for time evolution. But
any other way of determining how the mean values of observables evolve in
time is acceptable as well, indeed equivalent.

It is clear from (9.18) that, if the state of the system at a given instant is
known —e.g. t =0 —and let | 4,0) a vector representative of such a state —
then for any observable £ we know ¢, if we know

s =umteu). (9.22)
In other word, as all one is interested in is
& =(A,01UMTEU®)|A,0)

we have the two equivalent possibilities of ‘sticking’ the time evolution oper-
ators either to the vectors, i.e.

ft: <A7t|§|Avt>

or of sticking the U(t) and U(t)" to the observable, as in (9.22), i.e.

& = <A70|£(t)|A70>'

The latter possibility takes the name of Heisenberg picture for time evo-
lution. Therefore in the Heisenberg picture the observable do carry the time
dependence:

§ after a time ¢ f(t)

whereas the vectors stay fixed. Equation (9.22) for the evolution of the ob-
servables in the Heisenberg picture therefore takes over (9.1) for the evolution
of the vectors in the Schrodinger picture.
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Time evolution in the Heisenberg picture appears in a way that is anal-
ogous to that of classical mechanics: in classical mechanics indeed the ¢ and
p, and in general the f(q,p), do depend on time according to a law that is
determined by the equations of motion (4.50).

The classical equations are in differential form: let us then find which is
the differential form of the quantum equations (9.22).

Taking U(t) = e " H# /" and differentiating with respect to ¢ both sides of
(9.22) (pay attention to the order of the operators!) one has

0=, U0 HEUW) — , U@ €HU()

h
therefore )
&=, UM [H. U (9:23)

or also, having in mind that H commutes with both U(t) and U(t)",

i

£(t) y L E0)] (9.24)

Equations (9.24) are known as Heisenberg equations. If we have in mind
the quantization postulate in the form (4.53), we see that (9.24) is identical
with (4.50), in other words:

Heisenberg equations are formally identical with the classical equations of
motion.

Of course the classical equations are equations for the number valued func-
tions q(t), p(t), f(q(t),p(t)), whereas (9.24) are equations for the corre-
sponding operator valued functions. But, apart from this — substantial — dif-
ference and the — less substantial — question of the ordering of factors (see the
discussion following (4.53)), they are identical with each other. This identity
(that, we shall see in the next section, plays a fundamental role in finding clas-
sical mechanics as a suitable limit of quantum mechanics) is a consequence of
the quantization postulate and of the postulates introduced in order to solve
the problem of time evolution: see in particular the postulated proportionality
between K and H expressed by (9.5).

As an exercise, let us write the Heisenberg equation for a particle whose

Hamiltonian is )

_pr
H—2m+V(q).

One has ) )
. 1 ) 1
it =, 15, )], B =, H.p0)].  (929)

How can we calculate the commutators between ¢(t), p(¢t) and H if we do

not yet know how ¢(t) and p(t) are expressed in terms of ¢ and p (i.e. we

have not yet solved the equations of motion)? To this end one takes advantage
of the form (9.23) of the Heisenberg equations, namely
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(H.qt)] = UM [H, q]U®) = U [ 2=, q]U()
= —ihUt)! f:b U(t) = —in(t); (9.26)
[H,pt)] =U®)'[H, p]U(1)
=U®"[V(g),p]U®) =ih 8‘/(82@)) : (9.27)
By inserting (9.26) and (9.27) into (9.25) one finally obtains
i) ="
Covi(a(t) (9.28)

dq

that are formally identical with the classical Hamilton equations.
For example, in the case of the harmonic oscillator, the equations of motion
being linear, the integration is made as in the classical case:

q(t) = A coswt+ B sinwt

where A and B are operators determined by the initial conditions ¢(0) = ¢
and ¢(0) = p/m, then

q(t) =q coswt + P sinwt , p(t)=pcoswt—mwgq sinwt
mw

from which the result expressed by (9.17) is found again: ¢(7w/w) = —gq,
p(m/w) = —p.

In the previous section we have defined constant of motion those observ-
ables that commute with H: we then see from either (9.23) or (9.22) that in
the Heisenberg picture the constant of motion are those observables that do
not depend on time: [{, H] = 0 entails £(t) = £; one finds again that the
mean values (and, more in general, the matrix elements) of the constants of
motion do not depend on time.

9.3 The Classical Limit of Quantum Mechanics

The purpose of this section is to establish the conditions under which the
results of classical mechanics for a system consisting of one particle are a
good approximation of the results provided by quantum mechanics.

The problems we must face are essentially two.

1. Which quantum states of the system admit a classical description.
2. In which conditions the classical scheme and the quantum scheme provide,
to a good approximation, the same results for the time evolution.
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As far as point 1 is concerned, according to classical mechanics the state of
a particle is determined by giving position and momentum of the particle;
according to quantum mechanics, instead, the state is determined by giving,
e.g. in the Schrédinger representation, the wavefunction (). The transition
from the quantum description to the classical one is realized by attributing a
position ¢. and a momentum p. that equal the mean values of ¢ and p in
the quantum state of the particle:

el = ¢, Pl =D .

If the above position is to make any sense, it is necessary that the fluctuations
Aq and Ap of the values that ¢ and p may take in the state of the particle
around their mean values be negligible. What determines whether Ag and
Ap are either small or large is, in essence, the resolution power of the in-
struments employed to measure ¢ and p and the intrinsic dimensions of the
problem (e.g. the dimensions of the holes of an accelerating grid in a cathode
ray tube, ...).

It appears that a classical description is possible only for particular quan-
tum states: i.e. those states that are not very far from being minimum uncer-
tainty states. In particular ¢ (x) must be nonvanishing only in a small region
of space and its Fourier transform {/?(k) must be itself appreciably nonvan-
ishing only in a small interval around the value k = p/h: the ¥(x) must be
what is called a ‘wave packet’; indeed 1 (x) is obtained by superposing — or
packing — plane waves e¢'*% with k in a small interval around k; for example:

kA _
¥(z) =/k e (k) dk

—-A

Once one has established in which way and for which quantum states a classi-
cal description is possible, the problem of time evolution must be now faced:
the state of the system evolves in time, so one must verify, from the one hand,
that the conditions allowing for a classical description of the state carry on
being satisfied over time (i.e. that Agq and Ap stay small) and, on the other
hand, that gq(t) and pa(t), obtained by solving the classical equations of
motion, do not differ too much from ¢(¢) and p(t) obtained by solving the
quantum equations of motion: in other words the center-of-mass ¢(t) of the
wave packet must evolve according to the classical laws of motion.
The equation that determines g¢.i(¢) is

m §a(t) = F(qa) - (9.29)

(F(q) is the force), whereas the equation for ¢(t) is obtained by the operator
equation
m {(t) = F(q)

that follows from the Heisenberg equations (9.25) or (9.28). Taking the mean
value of both sides in the state of the system
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m q(t) = F(q) . (9.30)

Comparison of (9.29) and (9.30) shows that, if we want that at any time
del = ¢, since F(qq) = F(q), it is necessary that

F(q) =F(q) . (9.31)

Equation (9.31) is satisfied only if F is a linear function of ¢: F(q) =aq+b,
so that the center-of-mass moves as a classical particle if the particle is:

i) a free particle;
ii) a particle subject to a constant force;
iii) a particle subject to a harmonic force.

With the exception of these particular cases, let us investigate under which
circumstances (9.31) is at least approximately satisfied.
Let us expand F(q) in a powers series of ¢ — ¢:

F(q) = F(q) + F'(q) (¢ — q) + R(q) (9.32)

with R(q) including all the powers of ¢ — ¢ higher than the first.
By taking the mean value of both sides of (9.32) one obtains

F(q) = F(q)+ R(q) -

The smaller R(q) with respect to F(q), the better (9.31) will be satisfied.
From

R(g) = / (@) R(z) de

it appears that R(xz) must be small (i.e. F(g) must differ not too much from
a linear function) in the region where |¢)(x)|? is appreciably different from
zero. In other words: the force must be ‘good’ and the wave packet small.
If one considers, for example, the first term in R(q), ie. 5 F"(q) (g — q)*
then, in order that its mean value 3 F”'(q) (Aq)? be small with respect to
F(q), both F"(q) and Ag must be small; more precisely: it is the variation
of F'(z) over an interval of the order of Ag around ¢ that must be small.

One could be tempted to conclude that the smaller Agq is, the better the
classical approximation holds. Indeed things are not in this way because a too
small Agq entails a too large Ap and, therefore, the state does not admit a
classical description. But there is more to the point: in general a too large
Ap takes along a spreading of the packet as time goes by, so equation (9.31)
is more and more poorly satisfied.

It appears that the conditions for the validity of the classical approxi-
mation are realized when a compromise situation is reached: Aq must be
small enough for (i) the wave packet be well described by the knowledge of its
center-of-mass, (ii) equation (9.31) be satisfied to a good approximation; on
the other hand Ag cannot be too small otherwise Ap is big, with the conse-
quence that the state does not admit a classical description and, in addition,
the wave packet spreads too much.
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The following discussion will, however, emphasize that for macroscopic
systems (a grain of size ~ 10~* ¢cm and mass ~ 1072 g can be considered a
macroscopic system from this point of view) there exists a large window in
which this compromise situation can be fulfilled.

Let us explicitly examine, to this end, how the width of a wave packet
changes in time for a free particle. This is the same as determining how Agq
depends on time: let us solve this problem in the Heisenberg picture for time
evolution.

By integrating (9.28) in the case V(q) = 0 one has

whence:

1 Ap)?
:(Aq)2+m(q—+p—q—2qp)t+(wg) 2. (9.33)

This shows that (Aq(t))2 is a positive definite quadratic function of ¢ (see
Fig. 9.1).

It appears that until some instant ¢y the
wave packet shrinks, then it spreads. So y 2
inevitably for large times the packet will EN10))
spread: this is an important observation for
it sets a limit to the time span during which
the packet can be treated as a classical par-
ticle. For sufficiently large times, assuming
that for ¢ = 0 the packet approximately

corresponds to a minimum uncertainty state t(i t
(ApAg =~ h), by (9.33) one has Fig. 9.1
Ap h
Ag(t)  —t ~ t. 9.34
any =P~ (934)

Equation (9.34) emphasizes the relevant parameters on which the rate of
spreading depends: h, m and Agq. It is worth evaluating this rate of spread-
ing in some typical cases.

1. A free electron with Ag ~ 1A: h/(mAq) ~ 10°cm s~'. This result
speaks for itself.

2. An electron with Ag ~ 1072 cm (for example an electron that has been
focalized either in a cathode ray tube or in an electron microscope):
h/(mAq) ~ 103cm s~!. This rate of spreading may seem large; note
however that an electron endowed with energy 10%eV should go a path
of about 10% cm in order that the spreading would result of the order of
magnitude of the initial Agq.
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3. A dust grain of mass 107'?g and with Ag ~ 10 %cm: h/(mAq) ~
107 %cm s

The phenomenon of the spreading of wave packets we have just discussed is
nothing but the well known phenomenon of diffraction that manifests itself
in any problem involving wave propagation. We may better emphasize this
fact by considering electrons of momentum =~ p that cross a slit of width d
and are detected on a screen a distance D away from the slit: initially the
transversal dimension of the packet associated with each electron is Aqg ~ d;
the electrons take a time 7 ~ m D/p to reach the screen, so by (9.34) the
transversal dimension of the packet on the screen (i.e. the dimension of the
diffraction pattern produced by the electrons) can be computed:

_hD

Aq(r) = pd _dD

that is a well known formula in diffraction theory.



Chapter 10

Angular Momentum

10.1 Angular Momentum: Commutation Rules

Given the importance angular momentum has in classical physics, it will be no
surprise to ascertain the fundamental role it also plays in quantum mechanics.
This is mainly due to the fact that, in many cases of physical interest (isolated
systems, particles in a central force field, etc.), the components of angular
momentum are constants of motion. We will furthermore see that the different
components of angular momentum do not commute with one another, so that
the assumptions of the degeneracy theorem discussed in Sect. 7.2 are verified
and this will enable us to find extremely relevant information on the degree
of degeneracy of energy levels.

Angular momentum is defined as in classical mechanics: for a particle
with coordinates § = (¢1,¢2,¢3) and momentum 7= (p1,p2,ps), the angular
momentum M is defined by

—

M=gnp (10.1)

and it is straightforward to verify that M= MT.
The total angular momentum of a system consisting of n particles is

n

M= GaAPa=)» M. (10.2)

In the sequel several symbols will be used to represent angular momenta:
L .5, S5, J , -+ each of them stands for a particular type of angular momen-
tum. In the general discussion of the present and the next section the angular
momentum will be denoted by M.

We now wish to determine the commutation rules of the components of
the angular momentum given by (10.1) with the components of § and 7, and
among the different components of M itself. Let us start with the calculation
of [M;, q;]. There are several ways to arrive at the result:

1. direct calculation;
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2. calculation of the Poisson brackets and of the commutators as a conse-
quence of (4.53);
3. to exploit the relationship between angular momentum and rotations.

We will follow the third way (but also the (4.53)), which certainly is the most
meaningful.

It is known from analytical mechanics that, if (¢,p) — (¢/,p’) is an in-
finitesimal canonical transformation of coordinates, then there exists a
function G(g,p), called the generating function of the transformation, such
that

(]3 :qj+€[G7 qj]PB (10.3)
P; =p; +€[G,pjley
in which € is the infinitesimal parameter of the transformation.

If the transformation is a rotation around some given axis, then G coin-
cides with the component of M parallel to the rotation axis. So, for example,
for a rotation by an angle ¢ around the 3 (or z) axis one has

Q1= q1cosp+qesing

g = —q1 5N+ s cos (10.4)
I

qd3 = 43

and if ¢ — € (infinitesimal):

h=qa+eq
GB=q@—€cq (10.5)
(15 =4q3 .

For the transformation (10.5) G = Ms, so that comparison of (10.3) with
(10.5) yields

[MB»Ql]pB:CI% [MB»(D]pB:_(]l? [M37q3]pB:0
whence:
(M3, q1]=ihga, (M3, ¢2] = —ihq, [Ms,q3]=0. (10.6)

The commutation rules of M7 and M> with the components of ¢ are found
likewise:

[Mlvql]zov [Mlqu]:ih(kh [th{’)]:—ih% (107)
[Ma, 1] =—ihgs, [M2,q]=0, [Ma2, q3] = ihg. ’
Equations (10.6) and (10.7) are summarized in the formula:
[M;, qj] =1h €ijr qr (10.8)

where in the right hand side, as usual, the sum over the repeated index k is
understood; € is the Ricci symbol, nonvanishing only if the indices ¢ j k are
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all different from one another, equals +1 if 7 jk are a cyclic permutation of
1,2,3 and equals —1 otherwise.

We have established (10.8) by means of a certainly longer way than the
direct calculation: we now know, however, that (10.8) are the consequence of
the fact that the components of ¢ are the components of a vector, i.e. they
transform under rotations according to (10.4) and its analogues for rotations
around axes different from the z-axis. We can therefore conclude that we
will find the same commutation rules between M and the components of any
vector ‘7, i.e.

[M“VJ]ZIH €ijka . (109)
In particular, for V= D
[M;, pj]=1h €k pr (10.10)
and for V = M :
[Ml,MJ]:lh EijkMk~ (1011)

The above are the commutation rules we had resolved to determine.

The advantages of the method we have followed for the determination of
(10.8), (10.10) and (10.11) appear also in another aspect of the problem of
determining the commutation rules between the components of M and the
observables f(g,p) of the theory. Indeed, for an infinitesimal transformation
(¢,p) = (¢',p'), from (10.3) one has (to the first order in €):

flap) = f(d0) = fla+€lG, qlpy, P+ €[G, plpy)
= f(q,p)+€zi< ! o7

0

aqi[G’qi]PB—i—aim[G?pi]PB)
of oG  of 0G

fap+e X, (=5 204 L) — ap el

i.e., in general, €[G, f],, exactly equals the variation §f = f(¢',p")— f(q,p)
of f(g,p) under the infinitesimal transformation generated by G. In this way
one has that, in the case of rotations, the Poisson brackets — and the commu-
tators — between the components of M and those observables f(gq,p) that are
invariant under rotations do vanish. The latter observables are called scalars:
for example, in the case of a single particle, G2, p'2, ¢-p and their functions
are scalars.
We thus have the general result, analogous to (10.9) that

the components of M commute with all the scalar operators S:
[M;,S]=0. (10.12)
In particular, for § = M2 = M2 + M2 + M

[M;, M?]=0. (10.13)
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Equation (10.11) expresses the fact that the different components of M are
not compatible observables whereas (10.13) ensures that M2 is compatible
separately with each component of M:asa consequence — with the exception of
a particular case we will discuss later — there exist no simultaneous eigenstates
of My, My and Ms, i.e. states with well defined angular momentum M ;
there exists however a complete set of states in which both M2 and a single
component M; have a well defined value.

As a consequence of (10.12) we find the well known result that for a
particle in a central force field all the components M; are constants of motion:
indeed the potential for a central force field is a function only of the distance
r=+/q +q3 + g} of the particle from the center, therefore

=2

p
H=Y_4v
5 TV

is a scalar, i.e. it commutes with any M; .

Concerning (10.9) and (10.12), note that they hold only if V and S respec-
tively are vectors and scalars built with the variables of the system (¢ and p'
in the case at hand): for example, the potential energy of an electron (charge
—e) in an external uniform electric field E is written as e E-g and the latter,
despite its appearance, is not a scalar because E , despite its appearance, is
not a vector: indeed E is an external field, i.e. it does not depend on the dy-
namical variables of the system (§ and p’) and therefore commutes with the
M, : one says (see Sect. 4.11) that E is a ‘c-number’ (in order to distinguish
it from the ‘g-numbers’, i.e. the operators).

Another way to see that E- G is not a scalar is the following: eE - q
is unchanged (i.e. it is a scalar) if both the electron and the capacitor that
generates the field are rotated, so it commutes with the angular momentum
of the whole system consisting of both the electron and the capacitor; but if,
as in the case we are considering, the system consists of the electron alone,
then, as the result of a rotation of the system (the electron), the components
of ¢ change, the components of E do not, therefore E -G changes, i.e. it is
not a scalar.

10.2 Angular Momentum: Eigenvalues

In this section we set out to determine the eigenvalues of the components M;
of the angular momentum, and of M?2. First of all, it should be clear that
all the M; have the same eigenvalues (but not the same eigenvectors!), so it
suffices to find the eigenvalues of one component of M: by tradition Mj is
chosen, but the same procedure would be used for M; or Ms and the same
results would be obtained.

Let u2h? stand for the eigenvalues of M2 and mh for those of Ms: in
this way u? and m are dimensionless numbers. Indeed, often ;2 and m will
be referred to (at the expense of precision) as the eigenvalues of M? and Ms:
one may consider the latter as a convenient terminology, or in alternative one
may think of measuring the angular momenta in units of 7.
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According to (10.13) the operators M2 and Ms commute with each other,
so they possess a complete set of simultaneous eigenvectors that we will de-
note by |42, m). One must however expect that M2 and Ms alone do not
form a complete set of compatible observables, so the state is not completely
determined by the knowledge of the eigenvalues ;2 and m. Let us then add to
M? and M3 a certain number of observables o1, o9, --- , globally denoted
by X, such that X, M 2. M35 form a complete set of compatible observables.
To this end it is necessary that X' commutes with both M? and Ms: this is
certainly true if X' (i.e. 01, 09, ---) commutes with all the M;, ie.if X isa
scalar — which we will assume from now on.

We can now consider the complete set of vectors | X/, pu?, m), X' —ie.
o),o0%, - — standing for the generic eigenvalue of X'.

The following calculation, with the aim of finding the eigenvalues of M?
and Mj, will automatically provide us with some information on the degen-
eracy of the eigenvalues X' of X': since normally in applications X (better:
one of the ;) is the Hamiltonian, the latter are also information about the
degeneracy of the energy levels.

The procedure to be followed to determine the eigenvalues of M? and
M3 strongly resembles that followed in Chap. 5 to determine the eigenvalues
of the Hamiltonian of the harmonic oscillator: let us introduce the operators

M, =M, +iM,, M_ =M, —iM,= (M), (10.14)
From (10.11) one obtains
[Ms, M) =h M, [Ms, M_]=—h M_ (10.15)
whereas from (10.12) and (10.13) one has
[My,X]=[M_,2]=0, [My,M?>]=[M_,M?>]=0. (10.16)

Equations (10.15), analogous to (5.12) and (5.13), express the fact that M
and M_ respectively behave as ‘step up’ and ‘step down’ operators by the
amount & for the eigenvalues of Mj3: from this, and from the lemma of p. 87
(Sect. 4.10), one has

0 or

10.17
5 m ) He

M+|2/7N27m>:{

0 or

10.18
S m 1) (10.18)

M_| X' p? m) = {
ie. My and M_ (if they do not give a vanishing result) make m change by
one unit, but neither X’ nor p? are changed (if | X', u?, m) is normalized,
the vectors | X/, u?, m £ 1) are not such).

Then, starting from a vector | X/, u?, m) and repeatedly applying to it
the operator M one obtains the ascending chain of vectors
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| D 12 m+1), |2 g mt2),

whereas if one applies the operator M_ to it one obtains the descending chain
|2 w2, m—1), |2, u?,m—2), .

Can these chains stop? In other words one is asking whether there exists a
maximum value for m — that we will denote by j — and a minimum — that we
will denote by 7 — such that

M| E W% §) =0, M_| 5 42, 3) =0. (10.19)
Both chains must interrupt: indeed
M2 = N2 ME — M2

and taking the mean value of this equation in the state | X'/, u2?, m) (that is
an eigenstate of both Mj — therefore of My — and of M ?) one has
m? < p? (10.20)

because the mean value of M + M3 is nonnegative. Therefore both the
ascending and the descending chain must interrupt, otherwise (10.20) would
be violated. When the first of (10.19) is satisfied, one has (we recall that
M_ = (M:)")

<2/,M2,j|M_M+|El,‘u2,j>20. (1021)

But

M_ M, = (M —iMy) (M, +iMs) = M2+ M2 +i[M,, M,]
= M?— M2 —h Ms (10.22)

that, inserted into (10.21), gives:
pr=530G+1). (10.23)

This relation provides us with the maximum value m may have, once p has
been fixed.
Likewise, when the second of (10.19) is satisfied, one has

(X W F I My M- | 2, 6, 7) =0. (10.24)
but
My My — (My +iMy) (My —iMy) = M? — M} +h Ms (10.25)
that, inserted into (10.24), gives:

pr=307-1. (10.26)
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From (10.23) and (10.26) one has
JUG+1)=750-1).

The above equation has two solutions: 7= —j and 7= j + 1 of which only
the first is acceptable, because j > 7. Therefore

m:_jv_j+17_j+27"'7j_]—7j

and, as a consequence 27 must be an integer, either positive or vanishing.
In conclusion:

1. the possible eigenvalues 2h? of M? are j (j+1)h? with j =0, 1,1, 3,
2, s

2. the possible eigenvalues of any component M; of M are mh with m
either integer or half-integer according to whether j is either integer or
half-integer;

3. given X/ and p? (i.e. j ), m may only take the values —j, —j+1, —j+2,
<o, j—1,7,1ie. 25+ 1 values: therefore there exist 25+ 1 independent
states in correspondence with any pair of eigenvalues of X' and M?2.

This means that both M2 and X (i.e. any scalar operator) are degenerate
observables. Note that this degeneracy is a consequence of the degeneracy
theorem of Sect. 7.2: it is due to the fact that M, M_ and Mjs, i.e. all the
components M; , commute with X' (as well as with M 2), but no two of them
commute with each other.

For an (isolated) atomic system, if X' is the Hamiltonian H, normally it
happens (the hydrogen atom is an exception to this rule) that for a given value
FE of H, i.e. for any energy level, only the states corresponding to one value of
M? are possible: in this case the knowledge of u?, i.e. the knowledge of the
angular momentum of the level, automatically brings along the knowledge of
the degeneracy of that level. Most times, instead, the value of p? is obtained
by the laboratory measurement (we shall see how) of the degeneracy of the
level.

Since we have seen that giving u? is the same as giving j, from now on
instead of writing | X'/, u%, m) we will write | X/, j, m) and will briefly say
that the latter ‘is a state of angular momentum j’, understanding that it is
an eigenstate of M2 with eigenvalue j (j + 1) h2.

The results found in the present section are quite general inasmuch as
depending only on the commutation rules (10.15) and (10.16) (namely on
(10.11) and (10.12)), but not on the fact that M is defined as in (10.1), or
(10.2) or even in a different way: for this reason one can’t take for granted
that for a particular system, i.e. for a particular type of angular momentum,

j may take all the values we have found as the possible ones: 0, é , 1, we
will indeed see in the next section that, for any given system, j may take only
either the integer values 0, 1, 2, ---, or the half-integer values % , g’ , g e

In Sect. 10.4 we will show that the first possibility (integer j) takes place if M
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is defined as in (10.1) or (10.2) (orbital angular momentum), while we will
later have the occasion to see that the second possibility (half-integer j) takes
place for example for the electron when one takes into account that, besides
the orbital angular momentum, it also possesses — as many other particles —
an additional intrinsic or spin angular momentum.

10.3 Rotation Operators

Let us consider a rotation by an angle ¢ around an arbitrary axis, that we will
call the 3 (or z) axis. The rotation induces the transformation (10.4) on the ¢;
and the analogue on the p;, thus being a canonical transformation. Therefore,
by the von Neumann theorem of Sect. 6.3, there exists a unitary operator
U(¢) (unique up to a phase factor) that implements the transformation. Since
the composition of two rotations by angles ¢; and ¢, is a rotation by the
angle ¢1 + ¢2 , one has that the operators U(¢1) U(¢2) and U(¢1 + ¢2) may
at most differ by a phase factor (possibly depending on ¢; and ¢9). It is
not obvious that it be possible to choose the phase factors, up to which the
operators U(¢) are defined, in such a way that

U(g1) U(d2) = U(¢1 + ¢2) for any ¢1, ¢o (10.27)

but for the group of rotations in R3 this is possible, thanks to a theorem by
V. Bargmann (Bargmann theorem).

Equation (10.27) is similar to (9.3) and also in the present case one can
show (Stone’s theorem) that

U(g) =75

where G (: GT) is the generator of the rotations around the considered axis
(the 3-axis). The term ‘generator’ forewarns that G is proportional to Ms:
indeed, for infinitesimal rotations (¢ — €) one has

UE) U M)~ (1—ieG)q;(1+ieG) ~q —ie[G, g

and, thanks to (10.5) and (10.6) (and the analogues for p;) one has that
G = Mg/ﬁ: .
U(p) =e 1 Mad/h (10.28)

and in general, for a rotation around an axis parallel to the unit vector 7,
U(id, ¢) = e"iM7o/h (10.29)

Let us now assume that for a given system both integer values 7’ and half-
integer values j " are possible, and let | A) be whatever state. One has

[AY =31 m )+ D |G ) = A+ A7) (10.30)

in which the first sum is performed over the states with integer j and the
second over those with half-integer j. Let us make a rotation by 27 around
the z-axis: one has



10.4 Orbital Angular Momentum 183

U(27T)|Al> :Ze—Qwng/h| ~-~j’m’> :Ze—Qwim/| ~-~j/m/>

=|A") (10.31)
given that, for integer m’, e~2mm’ — 1 Tnstead, since for half-integer m” one
has e 2™m" = _1,

U2m) [A") =Y e 2mMa/h| iy = | A") . (10.32)
Of course |A”) and —|A”) represent the same state — as it must be, a

rotation of 27 being the identity transformation on the ¢; and p; and, more
in general, on all the observables (i.e. U(27) is a multiple of the identity);
but

U(r)|A) = U@r) (| A) +] A7) = |[A') — |[A") #]A).  (1033)

For this reason integer and half-integer angular momenta are not simultane-
ously possible: the rotations by 27 would not be equivalent to the identity
transformation.

10.4 Orbital Angular Momentum

The orbital angular momentum for a particle is defined by (10.1) and for it

the notation L will be used: .
L=gAyp. (10.34)

The eigenvalues of any component L; of L are still denoted by mh whereas
those of L2 are denoted by h21(I+1): instead of the letter j of the previous
section, the letter [ is used here.

For a system of several particles (10.2) defines the total angular momen-
tum: this is still denoted by E; in the latter case, however, upper case letters
are used to denote the eigenvalues of L; and L% eigenvalues of L; — M I
cigenvalues of L2 — L (L +1)h2.

We will now show that m, M — therefore [, L — are integer numbers; we
want also to find the Schrodinger representation of the states | X/, [, m ).

Let us first consider the case of a single particle. The Schrédinger repre-
sentation of L, (i.e. of Ls) is

L, SR _ih<x82y —y%) .
It is convenient to use spherical coordinates with the z-axis as the polar axis
(should we consider either L, or L, , we would respectively take either  or
y as the polar axis):
x =1 sinf cos¢
y =1 sinf sin¢
z =1 cosf

whence
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sk [/ 0 oy 00 90\ . 06 Oy O
L. 5 S N Pl AR G
— lh[(xay y@x)8r+(x8y yax)80+(x8y y8x>8¢}

but, as Or/dy = y/r and Or/dx = x/r, the coefficient of 9/dr vanishes. The
same happens for the coefficient of 9/96. There remains only the coefficient
of 9/0¢ that a direct calculation shows to be 1, so in conclusion:
L. =% —iha%. (10.35)
Equation (10.35) is analogous to p — —ihd/dz and it is understandable
that it must be so, because ¢ and L, are canonically conjugate variables,
much as z and p are (however the commutation rule [L,, ¢] = —i% presents
some delicate domain problems because, since ¢ varies between 0 and 27, the
multiplication by ¢ introduces a discontinuity).
The eigenvalue equation for L, (using spherical coordinates) is therefore:

—ih % Y (1,0, 0) =mh P (r,0,¢) . (10.36)
This equation is similar to (6.42) and its general solution is
Ui (r,0,0) = f(r,0)e™? (10.37)

in which f(r,0) is an arbitrary function of r and 6. Since the azimuth angle
¢ is defined modulo 27, (r,0,¢) and (7,0, ¢+ 27) represent the same point.
So it must be that

Ym (’I“, 0, ¢) = Pm (’I“, 0,6+ 277)

ie.
eim, ¢ _ eim, (p+2m)

that holds only if m is an integer number.

We have thus shown the orbital angular momentum of a particle only has
integer eigenvalues: m, and therefore [ are integer numbers.

Equation (10.37) displays the dependence of the eigenfunctions of L, on
the variable ¢ ; if we now want the eigenfunctions of L 2, the expression of L2
in the Schrédinger representation is needed; in spherical coordinates one has
(but we will skip proving it):

72 SR 32 1 2 . 2 1 82
L2 5% _p [sin@ o (Sln989>+sin205¢2 . (10.38)

In order to determine the simultaneous eigenfunctions of L? and L., one
must solve the system of equations:

1 0 0 1 02
—[. sing 2) ¢ L 2] om (1,0, 6) = LU+ 1) (7,0, 0)
sinf 060 ( 89) sin® @ 0¢ (10.39)

_ia% Yim(r,6,6) =m i (r,0,9) .
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We will not make this calculation. One can however note that the operators
L? and L, do not contain the variable r, so the Yim(r,0,¢) must have the
form:
wlm(rvaqu) = f(r)}/lm(ev(ﬁ) (1040)

where f(r) is an arbitrary function of r and the Y;,,(0,¢) are solutions
of (10.39). They are named spherical harmonics. Owing to (10.36) and
(10.37), the Y;,,(6,#) must depend on ¢ through the factor e'™?¢.

We report the spherical harmonics with [ =0 and [ = 1: the numerical
prefactors are chosen in such a way that they are normalized according to

[ Yo 0,00 Yo (6.6) 42 = b1t B (10.41)

Y11(0,¢) = “8% sinfe'?
1
Yoo(0,¢) = \/74_7r; Yio(0,9) = \/% cosf (10.42)

Via(0,6) = /o sinbe?

As far as Yy is concerned, it was foreseeable it should depend neither on 6 nor
on ¢: indeed, if [ =0, any component of L (not only the z component) may
only have the eigenvalue 0 (=1 < m < [): the states with angular momentum
Il = 0 are simultaneous eigenstates of all the components of L belonging to
the eigenvalue 0. This means that, regardless of how the polar axis is oriented,
Yp o must not depend on the corresponding azimuthal angle, i.e. Yy possesses
spherical symmetry or, in different words, it depends neither on 6 nor on ¢.
The fact that the components of L have simultaneous eigenstates (those with
vanishing angular momentum) is not in contradiction with the fact that the
components of the angular momentum do not commute with one another: the
states with vanishing angular momentum do not form a complete set of states.

We leave to the reader to verify that Y11, Y10, Y11 satisfy (10.39) with
Il =1 and m respectively equal to 1, 0, —1. If we rewrite the spherical har-
monics with [ = 1 by means of the Cartesian coordinates, up to a common
normalization factor, we obtain:

T +iy
Var '
In general the spherical harmonics of order [ are the product of ! with a
homogeneous polynomial of degree [ in the variables x, y and z .
Equation (7.9) immediately shows that the space-inversion operator I com-
mutes with the components of L:

L, I‘=1r,.

z
Y11 Yio= i Yi = (10.43)

Therefore I is a scalar. As a consequence the operators I, L? and L. have
a complete set of simultaneous eigenvectors whose wavefunctions, as all the
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eigenfunctions of L2 and L. , have the form (10.40): since f(r) is even under
r— —r,y — —Yy, z — —z, their parity is that of Y;,,, i.e. it is function of
[ and m. But I is a scalar, so all the states with the same [ and m between
—![ and [ have the same parity. This result is in agreement with what has
been stated before, i.e. that the Y;,, are, up to the factor —*, homogeneous
polynomials of degree [ and this also tells us that the parity of any state
| X7, 1, m) coincides with the parity of [, i.e. it is (—1)’.

Let us now consider the case of n particles: the total orbital angular mo-

mentum is
— n —
L= E L, .
a=1

It is clear that also in this case the eigenvalues L and M are integer numbers.
Indeed, since all the L, . commute with one another, they possess a complete
set of simultaneous eigenstates: | mq, mq ---); these also are a complete set
of eigenvectors of L, belonging to the eigenvalues M = my+mo+ -+ +my,
and, since each m,, is integer, also M is integer.

For historical reasons, whose origin will be told about in the sequel, the
states of a particle with [ = 0 are denoted by the letter s, those with [ =1
by p, those with | =2 by d, those with [ =3 by f. In the case of a system
consisting of several particles, the upper case letters S, P, D, F' are used
to indicate the eigenstates of the total angular momentum of the system,
respectively with L=0,1,2, 3.



Chapter 11

Particle in a Central Force Field

11.1 The Schrodinger Equation in a Central Force Field

If a particle is subject to a central force field, the potential depends only on
the distance r of the particle from the center of the force, that we will take
as the origin of our frame: V = V(r). In this case all the components of the
angular momentum L commute with the Hamiltonian and we will see that
this fact allows for a remarkable simplification of the Schréodinger equation.
We will need the expression of L2 in terms of ¢ and p: we will not make
this calculation, that we leave to the reader with the recommendation of not
interchanging the operators that do not commute with each other and of using
(4.54). The result is
L2=r252—rp?r (11.1)

where

r?=q*, pr=r""(G-7). (11.2)

The expression in the right hand side of (11.1) differs (as it must do) only for
the order of factors from the classical expression calculated without worrying
about the order of factors: indeed the ‘classical’ calculation gives

The operator p, defined in (11.2) is the radial momentum,, i.e. the projec-
tion of the momentum p’ along the radial direction ¢g. Observe that p, is not
a Hermitian operator: pl. = (- p')r~! # p,, therefore it is not an observable;
however we shall need just the p, defined in (11.2). Let us indeed examine

the Schrodinger representation of p,.. One has

3
(G- 7) SR O0x; 0
=r —_— — = —1 h .
br @7 Z: Z or 8:@ or
Therefore
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SR, ., O
pr — —ih o (11.3)

so, even if it is not Hermitian, p, has the advantage of having a simple
Schrédinger representation.

The reason why the operator —id/0x is Hermitian (Sect. 6.5), whereas
—i19/0r is not such, is in the factor r? appearing in the volume element in
polar coordinates intervening in the integral that defines the scalar product
between two wavefunctions.

Let us go back to (11.1): if both its sides are multiplied on the left by =2,
one obtains

—— 11.4
P (11.4)

(we have written L2 /r? and not r~2 L2 because L2 commutes with 72 that
is a scalar and therefore the notation L2/r2 is not ambiguous).

If we now divide both sides of (11.4) by 2m, the following expression for
the kinetic energy is obtained

=92 72
P11, L
2m  2m TpTT-I-

53 (11.5)
whose physical meaning (much as in the classical case) is evident: the first
term in the right hand side of (11.5) is the contribution to kinetic energy
due to the component of the velocity of the particle parallel to 7, whereas
the second term is the contribution due to the component orthogonal to
it is called centrifugal potential at fixed angular momentum. Indeed the
centrifugal force is

m2 w2 ,,,4 L2

F.=muw’r = 3 = 3
mr mr

whose potential at fixed L?is E2/2m r? (just the opposite of the centrifugal
potential at fixed angular velocity).
Once (11.5) is inserted into the expression for the Hamiltonian H, one has

2 1 T2

1
Hzi V = — 2
2m +V(r) 2m rpr T 2m r?

+V(r). (11.6)

As usual, the problem is that of determining eigenvalues and eigenvectors of
the Hamiltonian H.

As H, L? and L, commute with one another, we can search for the
simultaneous eigenvectors | E, I, m) of these three observables.

The vectors | E, I, m) being eigenvectors of L2 belonging to the eigen-
value [ (I + 1) A%, thanks to (11.6) the eigenvalue equation

H|E,I,m)=E|E,1,m)

takes the form:
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1 1 RPl(l+1
[2_ 2, 4 ( )

PET T V)| B L m) = BB Lm).  (1L7)

Let us now rewrite (11.7) in the Schrodinger representation recalling that

1B, L,m) 25 g1 (r,0,0) = Rei(r) Yim (6, ) (11.8)

(besides E and [, the radial wavefunction R(r) could in principle depend
also on the quantum number m; we will shortly see that this does not happen)
one has:

h2 1 82 ﬁQZ l 1
Y Ra) Vim0, 0) + LD R 0¥ 6,0

+V(r) Rpi(r)Yim(0,0) = E Rpi(r) Yim(0,¢)
that, since Y;,,(0,¢) can be factorized, boils down to

n% 1 62 R21(+1)

—5 gz U Rein) + =5 == Rei(r)+V (r)Rei(r)=E Re(r) (11.9)

that is a differential equation in which only the variable r appears.

One sees that in (11.9) only E and I, but not m, appear (do not confuse
the quantum number m with the mass!): so it is true that the radial function
only depends on the values of E and [. This fact expresses the existence
of degeneracy on m: indeed, for any solution Rg;(r) of (11.9) there exist
20 + 1 independent states with the same energy, whose wavefunctions are
Rei(r)Yim(0,¢) with =l <m < +1.

A further b1mphﬁcat10n is obtained if the reduced radial wavefunction
ug(r) is introduced, according to the definition:

ugi(r) =rRg(r) . (11.10)

Indeed, after multiplying (11.9) by 7, one obtains:

2

I3 Ri(l+1
(o) + LD

12 +V(7")] ugi(r) = E ug(r) . (11.11)

The eigenfunctions ¥ g, (r,0,¢) of the Hamiltonian must belong to the do-
main of the operator p'?, that in the Schrodinger representation (see (6.29))
is proportional to the Laplace operator A = Y. 9?/02?: it can be proved
that (in space-dimension n < 3) the functions belonging to the domain of
the Laplace operator are bounded; it then follows that the functions Rg;(r)
must be finite at » = 0 whence, by (11.10), the reduced radial wavefunctions
ug(r) must vanish at r =0:

uEl(O) =0. (11.12)

Equation (11.11), supplemented with the boundary condition (11.12), is for-
mally identical with the Schrodinger equation in one dimension for a particle
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constrained to move on the semi-axis r > 0, subject to the potential V(r)
plus the centrifugal potential h%[ (I +1)/2mr?.

If we are interested in the bound states of the system, we must impose
that the wavefunctions Rg;(r)Y; (0, ¢) be normalizable:

/ |REl(r)|27‘2 dr < oo
0

(see (10.41)), whence
/0 !uEl(r)|2d7‘ < 00 (11.13)

i.e. ug(r) must be Ly with respect to the measure dr, exactly as the wave-
functions of a one-dimensional problem.

In conclusion, the problem of a particle in a central force field has been
brought back to a one-dimensional problem (on a half line) not only because
the Schrodinger equation reduces to an ordinary differential equation, but also
because the conditions to be required for the solutions are identical to those
of a one-dimensional problem.

As an example, we will consider a particle subject to the “spherical well”
potential:

-V 0<r<a
Vir)= - 11.14
) { 0 r>a. ( )

The problem of finding eigenvalues and eigenfunc-
tions with [ = 0 (“s-states”) — the centrifugal po-
tential being absent in this case — is identical with
the problem of the one-dimensional well discussed =
in Sect. 8.2, limited to the odd states only: indeed

(11.11) (with { = 0) and the condition (11.12) de-

mand that the reduced radial wavefunction ug;(r) _y,
for 0 <r <a be Asinkr (instead of a linear com-

bination of sinkr and coskr), exactly as for the

odd states of the one-dimensional well. The ground state, if it exists, certainly
is a s-state because the centrifugal potential, being a positive definite oper-
ator, has the effect of raising the energies: we thus see that, contrary to the
one-dimensional case in which a bound state always exists, in the present case
— in which the ground state is the first odd state of the one-dimensional prob-
lem — the system possesses a bound state if and only if 2m Vg a?/h? > n%/4.

AV (r)

|

Fig. 11.1

11.2 Two-Particle Systems: Separation of Variables

Let us now consider a system consisting of two particles that interact with
each other by means of a potential that only depends on the relative distance
(that is certainly true if the two particle are structureless).

Let m; and mq be the two masses and (G1, p1), (2, p2) the respective
canonical variables. If the system is isolated , its Hamiltonian is
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) =2
gt %

V(g — gsl) . 11.15
ST 2m2+ (1g1 — gal) ( )

The standard procedure is that of making the change of variables that take
from (g1, p1) and (g2, p2) to the new canonical variables (¢, p), (Q, ]3)
that respectively refer to the relative motion of the two particles and to the
motion of the center-of-mass:

q=0—a G= M tm b
25': m2ﬁl —mq 172 . . m£+ mao (1116)
m1+m2 P:pl +p2

The meaning of ¢ and Cj is evident; p and P are defined in such a way as to
be conjugated respectively to ¢ and @, i.e.

[qi,pj]:ihéij, [Ql,PJ]:lh(SU (1117)

and all the other commutators are vanishing.
In terms of the new variables the Hamiltonian (11.15) has the form

D 2 172
H= 2M+5+V(| ql) (11.18)

where M = mj 4+ mso is the total mass and p = mqma/(m1 + msa) is the
reduced mass of the system.
The Hamiltonian (11.18) is one displaying separate variables:

H=H,+H,

i.e. it is the sum of an operator ( H; ) that depends only on the center-of-mass
variables (indeed only on P) and of an operator ( Hy ) that depends only on
the relative variables; so Hy; and Hs commute with each other and, as we
will shortly see, there is even more to the point.

The eigenfunctions of H are obtained by solving the Schrédinger equation:
since, due to (11.17)

SR 0 SR ., O
Di —ih 0z, P, —ih X,
and
-2 SR 2 — 32 0 0 0 52 S 2
A, =— — s+ P A
pr h 7 (5 2+8x2+8x3)’ —hAx

(Ax is the Laplace operator with respect to the X; variables), one has

K2 K2 = =
(—2MAX—EAI+V(|x|)) v(X,7)=Ev(X, 7). (11.19)
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In order to find all the eigenfunctions and eigenvalues of H it suffices to find a
complete set of eigenfunctions of H: let us search for those particular solutions
of (11.19) that have the form

(X, 1) = o(X) )(Z) (11.20)

and we will see that they form a complete set (method of separation of
variables).
Substituting (11.20) into (11.19):

) axe)] v

h? . - > = -
(= gy Be + VD) (@] #(X) = BO(X) v(2)
and then dividing both members by ®(X) (&) one obtains:

h2 AXQA))?) AL (x )—I—V(|f|)=E- (11.21)

(
C2M p(X 2u ()

The left hand side is the sum of two functions, one only depending on X ,
the other only depending on &, whereas the right hand side is a constant: the
two functions in the left hand side must therefore be both constants, which
constants we will call F; and FEs:

B Ax qﬁ(i?) B:¥@ vz =B (11.22)

ToM gy U 2u REGH
where E1 + E5 = E . Therefore:

72

oM

h2 ) N :
gy e V(@) T V() (@) = B (@)

Ax d(X) = E, &(X)
(11.23)

In other words one has to solve the two eigenvalue equations
Hy|Ey) =E1|Ey), Hy|Ez) = E3 | Ep)

that refer to different degrees of freedom, i.e. to different systems.

Once a complete set @,(X) of eigenfunctions of H; (complete in the
space of the functions of X ) and a complete set ,,(Z) of eigenfunctions
of Hy (complete in the space of the functions of #) have been found, their
products @, (X) ¢, (%) for all the pairs m, n form a complete set (in the
space of functions of both X and ) of eigenfunctions of H, belonging to the
eigenvalues E,, , = F1p+FE2., (m,n can be either discrete or even continuous
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indices): all this thanks to the fact that H (but it could be whatever operator)
is one exhibiting ‘separate variables’.

Since H; is the Hamiltonian of the free particle, a complete set of (im-
proper) eigenfunctions of Hi is given by (see (6.45))

F\ 1 iK-X 2 _ B 3

Pp(X) = (27rh)3/2€ , K=P/heR

so the problem is only that of determining eigenvalues and eigenvectors of Ho

that is formally identical with the Hamiltonian of a particle of mass p in a

central force field, for which the treatment of the previous section applies.
Let us now consider two examples.

Hydrogen-like atom

This is a system consisting of two particles (the nucleus endowed with
electric charge Z e and one electron) interacting via the Coulomb potential.
The Hamiltonian describing only the relative motion is

52 Z€2

H =
2 e r

(11.24)

In the next section we will be concerned with the problem of finding eigenval-
ues and eigenfunctions relative to only the bound states of (11.24).

Diatomic molecule

In the schematization in which the two (pointlike) atoms stay at a fized
distance d (in the relative motion the radial degree of freedom is frozen: see
Sect. 2.7) the kinetic energy 7 2/2u is given only by the centrifugal term:

L2 L2

2ud? 21

where [ is the moment of inertia of the molecule with respect to an axis
passing through the center of mass and orthogonal to the segment joining the
two atoms. The potential V' (r), r being fixed equal to d, is a constant that can
be put equal to zero. In conclusion the Hamiltonian of the relative motion is
72
- L
21

whose eigenvalues are
2

h
E=—1
T oar
each of them 2+1 times degenerate. Comparison with (2.35) shows that Bohr
theory provides the correct result only for large values of the quantum number
(nin (2.35), lin (11.25)). Furthermore we now have precise information about

the degeneracy of the energy levels of the molecule, i.e. on the g; of (2.20).

(1+1) (11.25)
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11.3 Energy Levels of Hydrogen-like Atoms

We now want to determine the energy levels of the hydrogen-like atoms, i.e.
the eigenvalues of the Hamiltonian (11.24). According to the discussion of
Sect. 11.1, we must solve the equation:

2 2 2
TR 1(z+1)u(r)_ze

o 211 . u(r) = Fu(r) (11.26)

with the boundary conditions (11.12) and (11.13) (we have omitted the indices
E and [ in the reduced radial wavefunction u(r)).

We immediately see that we can have discrete eigenvalues only for £ < 0:
indeed (11.26) is the Schrédinger equation in one dimension for a particle
subject to the potential

Rli+1)  Zé

U(r)= 2o 2 r
00 r<0.

r>0

Since U;(r) — 0 for r — oo and, in addition, the minimum of Uj(r) is
negative (for any value of ), the discussion of Chap. 7 entails that discrete
eigenvalues are possible only for £ < 0.

The first step in the solution of (11.26) consists in determining the asymp-
totic behaviour of u(r) for r — oo: this can be done by neglecting in (11.26)
both the centrifugal and the Coulomb potential (that tend to zero for r — oo)
with respect to |E|; since we are interested in the case F < 0, one has

u(r) 2 e T g

where
2te | E
K= % . (11.27)

The condition (11.13) demands ¢z = 0 whence

u(r) =3 e T, (11.28)
Then we put
u(r) = f(rye ™" (11.29)
that, after insertion into (11.26) and a little algebra, gives:
2t Z €2 I(1+1)
F(r) =26 f'(r) + =55 — f(r) = == f(r) = 0. (11.30)
Let us put
fr)y=r"> air, ap # 0 (11.31)
=0

where the exposition of the factor r* is needed to ensure ay # 0. Substituting
(11.31) into (11.30) yields:
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Z [ (s+i)(s+i—1)a;r*™ 2 =2k (s+i)a;r*T 1
i=0
2:u9Z€2 s+i— s+i—
+ a4+ e 2}:0. (11.32)
Let us rewrite the left hand side of (11.32) as a power series in 7: to this end

let us isolate the term with the lowest power (s — 2) and then change in the
first and the fourth term the index ¢ with ¢+ 1:

CL()[S(S—I) _l(l+1)]7,572_|_z|:(3+Z+1)(8+Z)a1+1—2/42(84—2)&1
=0
2t Z €2

+ 52

ai —1(+ 1)ai+1] ptil =g (11.33)

Since (11.33) must hold for any value of r > 0, all the coefficients of the series
must vanish; in particular, as ag # 0,

s(s=1)=1(+1)

whence either s = [+ 1 or s = —[: the solution s = —I[ is not accept-
able because, being | > 0, it would violate the condition (11.12) «(0) = 0.
Therefore:
F)y=> a;rttt, (11.34)
i=0

Note that, when [ > 0, the behaviour of f(r) at the origin is determined
by the centrifugal potential, not by the Coulomb potential, so it is the same
for all potentials, provided they do not diverge at the origin faster than the
centrifugal potential.

Equation (11.33) with s =1+ 1 becomes:

3 [(i+z+2)(i+z+1)ai+1—2H(i+z+1)ai
1=0
2t Z €2

+ 72

ai—l(l—l—l)aiﬂ]r”l:O

whence
2(k (i +141) — pe Z €2 /h?)

i+l+)+l+ ) —1(+1) "

Equation (11.35) determines the a; —i.e. f(r) — by recursion once ag is given:
actually ag is arbitrary because the Schrédinger equation is homogeneous.

We must now make sure that f(r) does not diverge faster than e®",
otherwise (11.28) is no longer true, therefore (11.13) is no longer satisfied.
The asymptotic behaviour of f(r) is obtained by studying (11.31) for large
values of 4, in which case (11.35) gives:

Ai+1 = ( (1135)

2K (2k)?
Qi1 = a5 r = a; = agp

- s 1> 1
7!
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that means that, for » — oo, f(r) ~ e?**" and therefore, due to (11.29),
u(r) — €e*" in contradiction with (11.28). So, in general, the solutions of
(11.26) that vanish at r = 0 diverge for r — oo and therefore are not
square summable, unless the summation in (11.31) is a sum involving a finite
number of terms, instead of a series. As a consequence, in order that (11.28)
be satisfied, it is necessary that f(r) be a polynomial in r: this happens if
and only if there exists a ¢ such that a,41 = 0 and, by (11.35), this is the
same as

,ueZez
kK(+14+1)= = (11.36)
As 1 and [ are integer numbers, we put
1+1l+1=n, n>1 (11.37)

so that (11.36), in view of (11.27), is equivalent to

pe Z2e* 1

2h2  n2’
In other words: only for those energies given by (11.38) f(r) is a polynomial
and the conditions (11.12) and (11.13) are fulfilled.

The E, are the eigenvalues we had in mind ro find and coincide with those
given by Bohr theory. We have already discussed the experimental verifications
of (11.38) that will not be discussed any further.

Let us now examine the degree of degeneracy of the E,, : by (11.37) a given
value of n, i.e. of E, , can be obtained by means of several choices of I:

En=-— n>1. (11.38)

=0, 1=n—1
b=1 L=mno2 i+l+1=n. (11.39)
l=n-1, 1 =10

namely, there exist n different ways to obtain a given value of n: by (11.35)
these n ways correspond to n different solutions of (11.30), i.e. of (11.26).
These solutions, that we will denote by w,;(r), differ in the value of I that,
as shown by (11.39), for a given value of n assumes all the (integer) values
from0to n—1.

Therefore the energy levels of the hydrogen-like atoms are degenerate with
respect to [: states with different values of the angular momentum are pos-
sible for a given energy. This degeneracy is typical of the systems endowed
with an attractive potential proportional to 1/r and corresponds to the fact
that, according to classical mechanics, the energy is a function exclusively of
the major axis of the (elliptic) orbit of the particle, while the minor axis is
proportional to the absolute value of the angular momentum: we will come
again to this point at the end of the present chapter.

In addition, for any value of [ there is the degeneracy on m (that classically
corresponds to the fact that orbits only differing by the orientation in space
have the same energy and angular momentum).
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Therefore the overall degeneracy of the level E, is

n—1

gn =y (2l+1)=n>.

=0

The simultaneous eigenvectors of H, L2 and L, for hydrogen-like atoms are
normally denoted by |n, [, m) and the corresponding eigenfunctions in the
Schrodinger representation by ¥y, 1m(r, 0, ¢) . One has

1pnlﬁl(ﬁ 07 ¢) = Rnl(r) Yzm(97 ¢) = r_l unl(r) Y2 m(ev ¢)
and, thanks to (11.29), (11.34), (11.36) and (11.37)
Vnim(r,0,0) = 1! (ag + -+ ap_— ") e ZT/mw YL (0,6)  (11.40)

where ag is the Bohr radius defined by either (2.10) or (2.14): ag = h*/(m. €?)

(actually, in (11.40) instead of ap we should write ap(me/fte) : from now on

we will neglect the difference between m, and the reduced mass ue).
Equation (11.40) emphasizes that:

1. the larger the value of [, the faster v, ,, vanishes for r — 0; so the higher
the angular momentum, the less the probability of finding the electron
close to the nucleus;

2. the behaviour of ;. for 7 — oo is determined by the exponential
e~ Z7/maB ;a5 p increases, it decreases more and more slowly;

3. owing to the presence of a polynomial in 7 of degree n —[—1 (Laguerre
polynomial), one expects that wu,;(r) — and therefore R, ;(r) — has
n — [ — 1 nodes inside the region of definition, i.e. for 0 < r < oo.
This result can be established by means of the oscillation theorem for
one-dimensional systems enunciated in Sect. 7.4. Indeed, for given [, the
un () are solutions of the one-dimensional Schrédinger equation (11.26),
and for each value of [ one has a different Schrodinger equation because the
centrifugal potential changes. We can then apply the oscillation theorem
to each of the above Schrodinger equations: ordering by increasing energies
the wu,(r) with the same [, one realizes that u,,; is the (n—1[)-th solution
with the given value of [ and that, by the oscillation theorem, it has
n — 1 — 1 nodes (the first is that with n =1+ 1, the second is that with
n=104+2, --,s0n—11is just the order number of the solution).

We report the radial functions R,,;(r) for n =1 and n =2 and in Fig. 11.2
the corresponding graphs:

Rio(r) = (Z>3/22€—Zr/as; Rao(r) = ( Z )3/2 (2 B Q) o7 r/2an

ag 2ap ag
7 )3/2 Zr o Zr/2ap

T (11.41)

Ro1(r) :(

2CLB
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A A

Rio Rao Roy

—
ap r aB [3 aB r

Fig. 11.2

Although it could seem the contrary, the three functions Ryg, Rog and Ro1
of Fig. 11.2 are equally normalized: the reason is in the fact that the volume
element in the normalization integral contains the factor r? that weighs more
the region r > ag/Z, where Ry and Rsq decrease slower than Rpo. We
report in Fig. 11.3 the radial probability densities:

pni(r) =12 |Rui(r)? / Yim (6, 9)|? dQ = 72 [Ry(r)|? (11.42)
P10 P20 P21
Fig. 11.3

that correspond to the three radial functions of Fig. 11.2.

In the first two chapters of the book we have discussed the problem of the
atomic sizes and we have seen, in the particular case of the hydrogen atom,
that Bohr theory attributes well definite sizes to the atom coinciding with
those of the orbits of the electron in the allowed energy levels. In the present
scheme the statement that the electron moves along a given orbit makes no
longer sense: the state of the electron is described by a wavefunction ¢ and the
electron can be found in any point where [¢)|? is nonvanishing. It is however
clear that talking about atomic sizes is still meaningful, at least in the sense of
‘average sizes’. Referring to the hydrogen atom, several definitions of atomic
sizes can be given: however all are equivalent with one another inasmuch as
they all give, for the hydrogen atom in the ground state, a number of the
order of magnitude of the Bohr radius ag.

One can for example define the atomic radius as:

1. the radius of the sphere such that the probability of finding the electron
inside is — say — 90 %;

2. the mean value of r: (n, I, m|r|n,l,m)=][3n*>—1(l+1)]ag;

3. the reciprocal of the mean value of #=': ({(n, I, m|r~'|n,, m))fl =

’I’L2 ag .
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The last definition may appear a little odd: however it is the only one that
exactly reproduces the result of Bohr theory, whereas the first two give a result
that, besides n, also depends on .

11.4 The Three-Dimensional Isotropic Harmonic Oscillator

The Hamiltonian of the three-dimensional isotropic harmonic oscillator is

H—ﬁ—l—lmwzﬂz (11.43)
Taom 21 '
Since the potential is a central potential, the eigenstates of the Hamiltonian
can be classified by means of the eigenvalues of H, L2 and L.: | E, I, m), and
the eigenvalues E can be determined, with the corresponding eigenfunctions,
by solving (11.11) with the boundary condition (11.12). If we limit ourselves
to the only states with [ = 0, as in the case of the spherical well discussed
in Sect. 11.1, (11.11) and (11.12) are the equations for the odd states of
the one-dimensional oscillator: so we find that the s-states (I = 0) have
energies g hw, ; hw, ---, corresponding to the values n =1, 3, --- of the
one-dimensional oscillator.

Obviously in this way we find neither all the eigenfunctions of H (we find
indeed only those with { = 0), nor all the eigenvalues, as the spacing between
those we find is 2fiw. So one should solve (11.11) without setting [ =0.

Equation (11.11) can be solved rather easily by a method similar to that
used for the hydrogen atom. It is however simpler and more instructive to
proceed in a different way. The Hamiltonian (11.43) can be written in the
form

2 2 2
D 1 D 1 D 1
H = (271n + 2m”2q12) * (272n + 2m“2q22> + (2}2 + 2m”2q32)
=H+Hy+ H; (11.44)

because in this way it appears that it is a separate variables one: in this way
the problem is led back to the determination of the eigenvalues of three one-
dimensional oscillators — identical with one another in the case at hand. We
already know the solution of this problem. So the eigenvalues of H are given
by (see (5.16))

Eninons = (nl + é)hw + (ng + é)hw + (n3 + %)hw = (n—|— g’)hw =F,
n=mny +ns+nsg, ny,ng,nz3=0,1,2, - (11.45)
and the corresponding eigenvectors are characterized by the quantum numbers

ny, ng, nN3:
|En1n2n3>:|n17n27n3> . (1146)

In the Schrodinger representation, putting H,(z) = H,(y/mw/hz) (see
(8.4)), one has:
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|1, n2, 13 ) = Gy oy (2,9, 2) = oy (2) oy (y) Hy () e 0/20 77
(11.47)
It goes without saying that the separation of the variables allows for the
solution of the problem even when the oscillator is not isotropic.
In the isotropic case the degree of degeneracy g, of the level F,, is given
by the number of the triples ni, ns, ng whose sum is n:

gnzZ(n+l—n1)=;(n+1)(n—|—2). (11.48)

ni =0

If instead the eigenstates of the Hamiltonian are classified as | E, I, m), the
degeneracy g, must correspond to the degeneracy on m and — possibly — on
l of the energy levels: let us therefore examine the way in which one passes
from the classification |ny, ne, ng) to the classification | E, I, m ).

Since the lowest energy level is nondegenerate (n; = ns = ng = 0), it nec-
essarily is a state with [ = 0. Indeed from (11.47) one sees that ¥yo0(z,y, )
is a spherically symmetric function: up to the normalization coefficient

Yooo(w,y, z) = e~ (mw/2mrE (11.49)

The level n = 1 is three times degenerate, so either it is a level with [ =1
(and m = £1,0) or I = 0 three times: the latter possibility is ruled out
because, for example, the parity of the level is (—1)"ttn2tns = (—1)" .

The level n = 2 is six times degenerate and even:

|n1, ne, ng) =12,0,0),10,2,0),]0,0,2),|1,1,0),|1,0,1),]0,1,1)

(11.50)
so either [ = 0 six times or [ = 2,1 = 0. The first possibility is excluded
because it would entail that all the states with n = 2 are s-states while
none of the six wavefunctions (11.47), corresponding to the states (11.50),
is spherically symmetric. Therefore the level n = 2 is degenerate with re-
spect to [. A question immediately arises: since none of the six wavefunction
is spherically symmetric, where is the state with [ = 07 The three states
[1,1,0),|1,0,1),]0,1,1) all have [ =2 (even if they are not eigenstates of
L.): for example

—(mw/2h) r? —(mw/2h) r?

Y110(x,y,2) xxye x 2 sin? 0 sin 2¢ e
whose integration with respect to the solid angle variables gives 0, i.e. it is
orthogonal to Yy (that is a constant).

The other three states (|2,0,0),--) are superpositions of states with

[ =2 and of the state with [ = 0: indeed, since Hz(z) o 2? + a,

2
Y200 + Yo20 + Yoo2 X (xQ _|_y2 +22 +3a)e—(mw/25)r

is spherically symmetric, so it is the wavefunction of a state with [ = 0;
therefore
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|E27l:O>: |27070>+|07270>+|07072>

The level with n = 3 is 10 times degenerate and in a similar way one sees
that there are 7 states with [ =3 and 3 states with [ =1.

In general, the n-th level contains states with values of the angular mo-
mentum ! = n,n —2,--- down to either / = 0 or [ = 1, depending on
whether n respectively is even or odd.

We have seen two cases in which the energy levels exhibit degeneracy on [:
the case of the Coulomb potential and that of the isotropic harmonic oscillator.
These are also the only central force potentials that give rise, in classical
mechanics, to closed orbits (the bounded ones, in the case of the Coulomb
potential). Both the closed orbits of the classical case and the degeneracy
(often improperly referred to as accidental) of the quantum case have their
origins in some constants of motion that are peculiar to these two problems
(and indeed we know, thanks to the degeneracy theorem of Sect. 7.2, that
there is a strict relationship between the degeneracy of the Hamiltonian and
the constants of motion): in the case of the Coulomb potential the components
of the Lenz vector

. 1 - 7 e?
N=—(@®ANL-LApD)—
2m(p/\ P) r

—

g

are constants of motion (they commute with H but not with L?2), whereas in
the case of the oscillator, defining — as in the case of the one-dimensional
oscillator — the ‘raising’ and ‘lowering’ operators nj, n, (i =1,2,3),
[n; 77;[] = 0;;5 , all the nine operators nj 7; commute with the Hamiltonian

3
1
H:Zhw(ngni+2>.
i=1

The three antisymmetric combinations n;r n; — n; 7, are proportional to the
components of the angular momentum E, > 77;7 7, is proportional to H — ghw
and the remaining five (symmetric) combinations are those responsible for the
degeneracy on I: indeed they do not commute with L 2.



Chapter 12

Perturbations to Energy Levels

12.1 Perturbation Theory: Heuristic Approach

There are only few cases in which it is possible to exactly determine eigenval-
ues and eigenvectors of the Hamiltonian and, unfortunately, just in the most
interesting cases (atoms with more than one electron, atoms in presence of
an external either electric or magnetic field etc.) the Hamiltonian is so com-
plicated that there is no hope to find the exact solution of the eigenvalue
problem. So, in order that the general theory be not fruitless, it is necessary
to develop as simple as possible methods capable to provide — albeit in an
approximate manner — eigenvalues and eigenvectors of complicated Hamilto-
nians. We will discuss one of such methods — the most used — which is known
under the name “perturbation theory for discrete energy levels”.
Let us assume that the Hamiltonian H of the system can be written in
the form
H=Ho+ H’ (12.1)

where Hy is exactly solvable (i.e. its eigenvalues and eigenvectors are known)
and H' is ‘small’. What does the statement ‘ H’' is small’ mean? Indeed, H’
is, in most cases, an unbounded operator and saying it is small has no clear
meaning: to clarify the meaning of such a statement is one of the purposes of
the following discussion.

The problem we are confronted with is that of establishing in an approxi-
mate way how the perturbation H' modifies the eigenvalues and eigenvectors
of Hy, i.e. how the eigenvalues and eigenvectors of H can approximately be
obtained from the knowledge of those of Hy. The modification caused by H’
will, in general, be twofold: shift of the levels and removal, either partial or
total, of their degeneracies.

Before carrying on with the general discussion, let us consider the example
of a hydrogen atom in a static and uniform electric field E. The Hamiltonian
for the relative motion is (—eq is the dipole moment of the electron—proton
system)

- e L
H=2 _° 4 cE.g (12.2)

20 r
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i.e. just of the form (12.1) if the positions

[\~

62

-, H =¢E-q (12.3)

r

Dy

Hy =

DO
=

are made. Let us firstly see what ¢ H' is small’ may mean in the present case.
If we limit ourselves to consider the modifications caused by H' to the lowest
energy levels of Hy, we can say — in a sense to be clarified in the sequel —
that H’ is of the order of magnitude of e E ag, with ag the Bohr radius, so
that if £~ 10*V/cm, then H’ is of the order of 10~%eV, which is positively
small with respect to the distances among the lowest energy levels of Hy.
It is worth remarking that, energies being always defined up to an additive
constant, the only things with which a comparison makes sense are precisely
the distances among energy levels.
We therefore expect that the presence of the electric field E :

1. modifies by a small amount (~ 10~*eV) the energy levels of the hydrogen
atom;

2. removes, at least partially, the degeneracy of the energy levels: indeed,
while Hy commutes with all the components of L (which gives raise to
the degeneracy on m), H only commutes with the component of L parallel
to the direction of the electric field, so that the conditions that allow for
the application of the degeneracy theorem no longer hold.

Let us go back to the general problem. Let us consider a representation in
which Hj is diagonal (see Sects. 6.1 and 6.2) and let |n) (n =1, ---) be
the basis of eigenvectors of Hy that characterizes such a representation. The
complete Hamiltonian H will then be represented by the (infinite-dimensional)
matrix:

Hym =B 6pm + H),,, (12.4)

where the E? are the eigenvalues of Hy, called unperturbed eigenvalues.

In order to find the exact eigenvalues of H we should diagonalize the matrix
H,, ., let us try to understand which approximations can be made to simplify
the present problem — and, as a matter of fact, to convert it into a possible
one.

The formal treatment will be presented in Sects. 12.3 and 12.4. We now
limit ourselves to consider the simple (and fictitious) case of a system possess-
ing only two independent states, i.e. a system that can be represented in a
two-dimensional Hilbert space. Then H will be represented by the 2x2 matrix

Elo + H{l H{Q
H— ( HY, B9+ H) (12.5)

In this case H can be exactly diagonalized (it suffices to solve the secular
equation that is a second degree equation) and the eigenvalues are
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1
By = [(BY + Hiy + S + Hyy) +
(B + By — (B9 + H) w4l | (20)

(the fact that, due to the Hermiticity of H, (H5,)* = H{, has been exploited).
Equation (12.6) can be written in the following form

1
By = |(E + Hiy + B3 + Hp) +
+ ((E0+H’ )—(BY + H} )) 1+[ 2/Hy)| r (12.7)
! H ? - (EY + H{y)— (B3 + Hi,) . .
If
|Hy | < [(BY + Hiy) — (B3 + Hy,))| (12.8)
the term [---]? in the argument of the square root can be neglected with

respect to 1 and we get:

{E+ = EP 4y (12.9)

_~E) 4+ H), .

Since V1422 = 1+ 2%+ ---, the terms we have neglected in (12.9) are
of the second order in the matrix elements of the perturbation H’ (i.e. they
are proportional to |Hb,|?): therefore, when condition (12.8) is fulfilled and
if we content ourselves to find the corrections of the first order in the matrix
elements of H’ to the unperturbed eigenvalues E{ and EJ, we can ‘set
the off-diagonal matrix elements Hj, and Hj; equal to 0 in (12.5)" and one
will say that the first-order perturbative approximation has been made.
If instead HYj, is either of the same order of magnitude as |(E + H{;) —
(EQ+ Hjy)| or even bigger (i.e. if (12.8) is not satisfied), the terms neglected
in (12.9) are as much or more important than those one has kept, so no
simplification is possible: in other words Hi, and H}; ‘cannot be set equal
to 0.

It usually happens that the matrix elements H{, and Hj, are of the same
order of magnitude as |Hj,|: in this case (12.8) takes the more expressive form

|Hiy| < |EY — EJ)| (12.10)

i.e. the off-diagonal matrix elements Hj, and Hj, are negligible if, in abso-
lute value, they are negligible with respect to difference between the unper-
turbed energies they refer to. If Hi,, Hjy and |Hj,| are of the same order
of magnitude, the hypothesis (12.10) concerning the validity of the first-order
perturbative approximation, thanks to (12.9) can be rephrased by saying that
the perturbative approximation is legitimate if the first order effect of the
perturbation on the unperturbed energies E and EJ is small with respect
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to the difference E — EJ . This provides us with an a posteriori criterion to
check the validity of the perturbative calculation.

Let us now go back to the problem of diagonalizing (12.4): what we have
learned about the two level system holds in general. In other words all the
matrix elements such that

Hy| < |E) = By (12.11)

‘can be set equal to 0’. After doing so, only those matrix elements of H’
referring to eigenstates of Hy with the same energy survive in (12.4) (i.e. the
diagonal elements and those between the states of a degenerate energy level
of Hp) and those that refer to eigenstates of Hy belonging to ‘close’ ener-
gies (“quasi-degenerate” levels of Hy): in this way H,,, becomes a “block-
diagonal” matrix, i.e. possibly nonvanishing within square blocks straddling
the principal diagonal, and it is possible to diagonalize separately the blocks
of which H is made out: if these are finite-dimensional, the diagonalization
is performed by solving the secular equation that is an algebraic equation of
finite degree.

Let us summarize: the off-diagonal matrix elements H,,,, in (12.4) be-
tween states of different energies contribute to the exact eigenvalues by terms
of the order ) ,

nm
B

(i.e. the second order) or higher. So if these terms are small, they can be
neglected, i.e. we can neglect all the terms that satisfy (12.11) and in this
way we correctly obtain the eigenvalues F,, perturbed up to the first order.
There are other general aspects of this perturbative procedure that deserve
a discussion, but instead of discussing them in abstract terms we prefer to
present them in the concrete example we are going to discuss in the next
section.

12.2 The Stark Effect in the Hydrogen Atom

Let us reconsider the example introduced in the previous section of an hydro-
gen atom in a uniform electric field E.

The Hamiltonian is given by (12.2). If we now choose the z-axis parallel
to the direction of E, it takes the form

H=Hy+eEz (12.12)

with Hy defined by (12.3).

We choose the representation in which Hj is diagonal as that given by
the basis |n, I, m) of the simultaneous eigenvectors of Hy, L? and L,. It
will become evident in a few lines that, having chosen the z-axis parallel to
the electric field, it is convenient to have L, diagonal instead of another
component of L — which would be perfectly legitimate. We must first decide
which matrix elements of the perturbation H’ = e E z can be neglected and
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which ones cannot. For sure we cannot neglect those between states with the
same n (i.e. the same energy). Regarding the matrix elements of H' between
states with different n, we can proceed in two different ways.

1. Evaluation of the order of magnitude of these matrix elements and com-
parison with the differences E? — EY .

2. First set to 0 all the matrix elements of H' referring to states with different
n, then accept a posteriori only those results for which the energy shift
due to the perturbation is small with respect to the distances from the
other levels.

Let us proceed according to the first choice. However, since the following is
not a rigorous discussion, an a posteriori control as described in point 2 will
be appropriate.

We are interested in the matrix elements of H' between states with differ-
ent energies, let us say EY and EY : they will depend on n and n’ and also
on the values of the angular momentum [ and [’. It is not worth to calculate
exactly such matrix elements: indeed, given we only have to make sure that
|H! .| < |E?— EY|, we may take into consideration only the nearest level,
i.e. ' =n+1, and in this case one can expect that the matrix elements of
z are of the order of magnitude of the radius of the n-th Bohr orbit, namely:

(n--|z|n+1---) ~nag,

whence
|H), i1l ~eEagn® . (12.13)

As a matter of fact, a more convincing way to obtain (12.13) is the following,
in which the first inequality can be shown in the same way as (4.45) and the
second is obvious:

(nlz|n )P =(n|z|n")}(n'|z|n)<(n|2*|n)<(n|r’|n)

holding for any n, n’. At this point, since we expect that ((n | 72 | n>)1/2
is of the order of the n-th Bohr orbit, (12.13) is found again in the stronger

form:
|H | <eE+\/(n|r?|n)~eFEagn?

(just to satisfy the curious reader: (n |7% |n) = in?[bn*+1-31(I+1)]a}).

Equation (12.13) shows that the larger n, the larger the matrix elements
H] , ... Since, in addition, the distance between adjacent levels decreases, it
is clear that the perturbative approximation will be legitimate only for the
energy levels with n not too large. Note however that, for electric fields even
rather strong as e.g. E ~ 10*V/cm, the right hand side of (12.13) is about
n? x107%eV, so only for the levels with n ~ 10 the matrix elements of
the perturbation are comparable with the distances between the unperturbed
levels.

As a consequence, in the perturbative approximation the matrix that rep-
resents the perturbation (12.12) in the basis |n, [, m) is block-diagonal only
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for n not too large, whereas from a given n on (its value depending on the
value of F and on the desired degree of accuracy) H is a unique block of
infinite dimension (see Fig. 12.1).

The finite blocks are matri- ]

ces of dimension 1x1, 4x4,

9 x 97 e because 1 , 4 .9, blocks of dimensions
1x1, 4x4, 9%x9, ---

etc. are the degeneracies of ---
the energy levels of the hy- | e
drogen atom. '—
As a consequence, the per- !
turbative calculation cannot
be made for all the levels of
hydrogen: we will limit ourselves to the study of the effect of the electric field
on the first two levels.

As far as the lowest energy level is concerned, being nondegenerate, the
first-order shift due to the perturbation simply is the mean value of H' in
the state | 1,0,0). We thus have to calculate

Fig. 12.1

(1,0,0|z1,0,0). (12.14)

There are several ways to see that this matrix element is zero. They are based
on arguments of general character known as selection rules.

Angular Momentum Selection Rule: the matrix elements of x, y and z
between s (i.e. | =0) states are vanishing.

Indeed, if | A) and | B) are two s states, i.e. with { =0, let us consider
(Alzi|B), i=1,2,3.

The wavefunction of the state | B) only depends on r: let it be f(r). That of
the state x;| B) therefore is z; f(r), that is the wavefunction of a p state (I =
1) (see (10.42) and (10.43)). Therefore the state | A) and the state z;| B)
are orthogonal to each other, inasmuch as belonging to different eigenvalues
of the operator L? — which proves the statement.

In the case at hand |A) = |B) = |1,0,0) and the mean value (12.14)
vanishes.

Space Inversion Selection Rule: the matrix elements of x,y and z be-
tween states with the same parity are vanishing.

Indeed, if | A) and | B) are two states with the same eigenvalue w = +1 of
the space-inversion operator I, recalling the properties of the space-inversion
operator given in Sect. 7.2:

I:IT:I_17 Ixif_lz—xi =4 IinT:—xi
one has

(Alx; | BY=(A|I'Ta; I'T | B) =w*(A| Iz, I" | B)
(AT I"|B)=—(A|z | B)
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whence (A|x; | B) =0.

In the case at hand |A) = |B) = |1,0,0) and the state |1,0,0) is an
eigenstate of I (belonging to the eigenvalue w = +1), so, once more, the
mean value (12.14) vanishes.

In conclusion the perturbation does not produce any effect, to the first
order, on the lowest energy level.

Let us now consider the first excited level: n = 2.

Its degeneracy is 4 (one state with [ = 0, three independent states with
I = 1). We thus have to determine, and then diagonalize, the 4 x4 matrix
that represents the Hamiltonian (12.12) in the basis |n, I, m) with n =2. So
we have to calculate the matrix elements (2, I, m | H | 2, ', m’ ). The matrix
elements of Hy are known: Hj is diagonal and the four matrix elements all
equal EJ ; there remain the matrix elements of H' i.e. of z.

Let us start with pinpointing those elements that certainly are vanishing:
(2,0,0 ] 2| 2,0,0) = 0 for the same reasons why (1,0,0 | z | 1,0,0) is
vanishing;

(2,1,m | 21]2,1,m') =0 for any m, m' = +1,0, —1 owing to the space-
inversion selection rule (the states with [ = 1 all have parity w = —1);
(2,0,0] 2]2,1,£1) = 0: this follows from another selection rule that we will
now demonstrate.

L, Selection Rule: the matrix elements of z between eigenstates belonging
to different eigenvalues of L, are vanishing.

Let us, indeed, consider (m | z | m'), where |m) and |m') are eigenvec-
tors of L, corresponding to the eigenvalues m and m’. The dependence on ¢
of the wavefunction of the state |m/) is €™ ¢ ; that of the state z|m’) still
is ™% since z =7 cosf. As a consequence, z|m’) still is an eigenvector of
L, belonging to the eigenvalue m’, so for m # m’ one has (m |z |m’')=0.

The same argument can be given a more abstract form and the same con-
clusion can be drawn by using the lemma of p. 87 (Sect. 4.10) after observing
that [z, L,]=0.

The use of the last selection rule is made possible by having chosen as
a basis in which Hy is diagonal precisely that in which L, is diagonal. Of
course also (2,1,4+1]212,0,0) =0 both owing to the L, selection rule and
because such matrix elements are complex conjugate of the previous ones.

There remains to consider the matrix element (2,0,0 | z | 2,1,0) and
its complex conjugate (2,1,0 | z | 2,0,0). None of the three selection rules
applies: not both the states |2,0,0) and |2,1,0) are s states, they do not
have the same parity and they do have the same m. Nothing prevents the
existence of a further selection rule enabling one to show that also this matrix
elements is vanishing.

However it is now important to note that the three selection rules we
have discussed and utilized refer to the quantum numbers (I, w, m) that
characterize the states |n, [, m) we are considering, i.e. to the eigenvalues of
observables that commute with Hj : once the set of the quantum numbers we
are able to attribute to such states is exhausted, the possibility of discovering
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new selection rules gives out. This shows (we will come back in the sequel
to this point) the importance of being able to classify the states by means
of — possibly overabundant — quantum numbers (in the just treated case we
already knew that the parity w is determined by the knowledge of [).

After the above considerations we are left with the direct calculation as
the only tool to determine the matrix element. One has

(2,0,01212,1,0) =

27 —+1 %)
= /d¢> dcos | Y(0,0) Rio(r) 7 cosd Yio(0, ¢) Ray () r2 dr
0 —1 0

(the asterisks are unnecessary, as both Yy and Ra arereal). The calculation
of the above integrals is not very instructive, in any event it can be made by aid
of (10.42) for the spherical harmonics and of (11.41) for the radial functions.
The result is

(2,1,0|212,0,0) =3ag .
To summarize, the 4 x4 matrix representing H in the basis | n, I, m) with
n=21is
[2,0,0) ]2,1,0) [2,1,+1) [2,1,—1)

EY  3cEag 0 0
(n=2) | 3eFag EJ 0 0
H — 0 0 By 0 (12.15)
0 0 0 EY

The diagonalization of this matrix is straightforward: one only has to diago-
nalize the upper left 2x2 block, since the remaining 2x2 block already is
diagonal. The eigenvalues of (12.15) are

E)—-3¢Eay, FEy+3eEaz, E), Ej.

It it clear, as predicted in the previous section, that the perturbation has only
partially removed the degeneracy of the level n = 2: from a level 4 times
degenerate in the absence of the external field one passes to a nondegenerate
level with energy EJ +3e E ag , a level with degeneracy 2 and energy EJ and,
finally, to a nondegenerate level with energy EJ — 3e Eap (Fig. 12.2).

The level shift due to the pertur-

bation is AE = 3¢ Eag that - 2 =Y B0 oveizo
as we have already seen — is of -7

4 I [2,1,1);]2,1,—1)
the order of 107* eV for a field ~

E of the order of 10* V/cm. [2,0,0)—2,1,0)
The distance between the n =2 Fig. 12.2

unperturbed level and that clos-

est to it, i.e. m = 3, is about 2eV: in these condition the validity of the

perturbative calculation is fully guaranteed.
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Let us now find the approximate eigenvectors of H corresponding to the
found eigenvalues. It is easy to check that the normalized eigenvectors of
matrix (12.15) are

+1 +1 0
1 ]1-1 1 | +1 1 0
— 5 —= ; , a,peC. 12.16
V2 8 V2 8 Va2 +1B[? g 219

The first two respectively correspond to the eigenvalues EY F 3¢ Eap and,
since we are in the representation | n, I, m) with n = 2, they represent the
normalized vectors
1 1
V2 V2

Finally, for any a and 3, the last one corresponds to the degenerate eigenvalue
EJ and represents all the vectors having the form

(12,0,0) —2,1,0)) ; (12,0,0)+12,1,0)) . (12.17)

al2,1,+1)+B]2,1,-1), o> + (82 =1. (12.18)

Observe that, while the approximate eigenvalues of H depend linearly on the
matrix elements of the perturbation H’, the approximate eigenvectors are
independent of the perturbation and still are eigenvectors of Hy: one then
obtains the eigenvalues approximated to first order in correspondence with
eigenvectors approximated to the order zero.

It is interesting to note that the vectors (12.17), i.e. those relative to the
‘shifted’ eigenvalues, are — from among all the vectors with n = 2 — those
respectively having the maximum and the minimum mean value of the com-
ponent, parallel to the electric field, of the electric dipole operator D of the
electron-proton system:

D=—eq (§=Ge—Gp)

(we leave the verification of this statement to the reader). These mean values
exactly equal +3eag, i.e. the result we have found. The mean value of D, is
instead vanishing in the states described by (12.18): this follows, for example,
by application of the space-inversion selection rule. Therefore the effect of the
electric field on them is vanishing as well.

The analogy with the corresponding classical problem appears evident:
there exists a first-order effect of the electric field on the level n = 2 since,
from among the states of the energy level n = 2 there exist states that have
— in the sense of the mean value — a nonvanishing dipole moment; in other
words, since the hydrogen atom in the n = 2 level possesses an intrinsic
dipole moment (but not in the ground state).

It is also important to note that the existence of such states endowed
with an intrinsic dipole moment is due to the fact that in hydrogen there is
the degeneracy on [: thanks to the space-inversion selection rule, in order to
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obtain a nonvanishing mean value of the dipole operator 13, it is necessary to
superpose states with opposite parities , i.e. with different [ — exactly as in the
case of the sates (12.17): the eigenfunctions in the Schrodinger representation
of these states are such that the corresponding [¢|?> exhibit an asymmetry
with respect to the plane z = 0: this provides an intuitive explanation for the
existence of a dipole moment for such states.

Let us discuss, as the final point, how the effect of the electric field on the
level n = 2 of hydrogen is experimentally observed. In the absence of the
field, the transitions between the levels n =1 and n = 2 give rise to the first
line of the Lyman series; as seen above, the effect of the electric field is that of
producing three levels with n = 2 and of leaving the level n = 1 unaffected.
As a consequence one should observe three lines in the transitions between
the levels n =1 and n = 2: the central one coincides with the first line of
the Lyman series; the other two are symmetrically placed with respect to this
one with frequency shifts given respectively by Av =+3eFag/h.

We shall see in the next chapter that the above three lines exhibit differ-
ent features, as far as polarization is concerned, and for this reason can be
simultaneously observed only in particular experimental conditions.

The effect just discussed is known as the Stark Effect, after the name of
one of its discoverers.

12.3 First-Order Perturbation Theory: Formal Treatment

This section does not contain any new result besides those enunciated in
the two previous sections; such results will be often repeated for the sake of
completeness, we here only present a formal derivation of the fact that the
terms of H' we have neglected do not contribute to the first-order shift of
the energy levels.

Let us start again from (12.1):

H=Hy+H

and let us put
H' =H)+ H" (12.19)

where the only nonvanishing matrix elements of H|, are those between states
with the same energy: as a consequence Hy and H|) respectively have, in any
representation in which Hjy is diagonal, the structure reported in Figs. 6.1a
and 6.1b.

The decomposition (12.19) is unique, i.e. independent of the choice of the
basis, and one has

[Ho, H)]=0.

Indeed, if P,, is the projection operator onto the eigenspace of Hy corre-

sponding to the eigenvalue E?, one has (3, P, =1):

ZP P ZP H' Py+ Y PoH'Pr © Hy+ H".

n#m
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We now exploit the fact that the separation (12.1) of H into a ‘solvable’ and
a ‘small’ term is arbitrary and set

H = (Hy+ H))+H" . (12.20)

For sure, if H’ is ‘small’, also H” is such (indeed, it may happen that H’
is not ‘small’; but H” is such), so that — if Hy 4+ H{ is ‘solvable’ — the
decomposition (12.20) is at least as legitimate as (12.1).

Let us observe that (Ho 4+ H{)nm is a block matrix the dimensions of
whose blocks equal the degrees of degeneracy of the several eigenvalues E
of Hy: at this point, in order to diagonalize such a matrix, one can separately
diagonalize the single blocks of which it is made out, and if these (or at least
those relative to the energy levels we are interested in) are finite-dimensional,
the diagonalization is achieved by solving the relative secular equations, that
are algebraic equations of finite degree. It is in this sense that we say that
also Hy+ H| is solvable. Obviously, since within any block H is a multiple
of the identity, it suffices to diagonalize the blocks representative of H/. As
a consequence, the diagonalization of the block corresponding to the generic
eigenvalue E? of Hp provides the eigenvalues
EM = E° 4 AWM v=1,---, g, = degree of degeracy of E? (12.21)

n, n,v

where the AS)V are the eigenvalues of the g, x g,, block of Hj,.

It is easy to realize that the corrections A(é,)l, to the unperturbed eigenval-
ues BV are of the first order in H’: this means that, if we multiply H’ by an

arbitrary parameter A, the A(ﬁ?l, are proportional to A. Indeed, if H' — A H',

also H{j — X\ H|, and, as a consequence, also the eigenvalues A(ﬁ?l, of Hj are
multiplied by A. In addition we will show that the term H" so far neglected
does not contribute to the first-order corrections to the unperturbed eigen-
values E: therefore we can conclude that the Er(Lll), given by (12.21) are the
eigenvalues of H corrected up to the first order in H'.

For this reason one says that (12.21) is the first-order approximation. The
effect of the perturbation H’ is evident already to the first order: shift of
energy levels (not all the Ag},, in general, vanish) and (at least partial)
removal of the possible degeneracies of Hy (for fixed n, in general not all the

A%lz, are equal to one another).

Corresponding to the approximate eigenvalues Er(Lll), of H we will have

(approximate) eigenvectors |Er(Lll), ): they are the eigenvectors of Hy + H|
and it should be evident (because of the block—diagonalization procedure)
that they also are eigenvectors of Hy (but not viceversal); actually, from
the fact that Hy and H} commute with each other it follows that Hp and
Hy + H{) have a complete set of simultaneous eigenvectors.

Let us now show what we have just stated, namely that H” does not
contribute to the first order of the eigenvalues of H. To this end we multiply
(only) H” by the real parameter A and put
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Hy = (Ho+ H))+ XH" .
The eigenvalue equation for H) is
[(Ho + H}) + AH"] | Enu(N) = Eny(N) | Bau(V) (12.22)

where, for A — 0: E,,(\) = ES) and |E,,(\) = |E) .
The statement that E,, ,(\) does not depend, to the first order, on A (and
therefore on H") is the same as saying that

dBn,(\)

=0. 12.2
dA ’A:O 0 ( 3)

In order to show that this is true, we take the derivative of (12.22) with respect
to A and put A = 0. Calling

4
dA

dE0)  dE,,(\)
A=0 dX d\ A=0

AE(0) = 55 [ Fus(A)]

one has

dE( )

(Ho + H)|dAE(0)) + H"| E{Y) )= |ES)) + EQ) | dAB(0))  (12.24)

and by taking the scalar product of both sides with the vector | Ey(lll), ):

dE(0)

(B | (Ho+ Hg— ELL) | daE(0)) + (ER) | H [ B ) = —

The first term is vanishing (the ‘bra’ (Ey(lll), | is an eigenvector of Ho + H}),
the second also is vanishing due to the very definition of H"” . Therefore

AE(O) _ d|E.,(\)|
dA dA A=0

This completes the treatment of perturbation theory to the first order which,
to sum up, consists in setting H” = 0, i.e. in the neglecting of all the ma-
trix elements of H’ between eigenstates of Hy corresponding to different
unperturbed energies.

12.4 Second-Order Perturbation Theory and Quasi-Degenerate
Levels

We have now to face the problem of establishing when the perturbative ap-
proximation is meaningful: to this end we will calculate the first nonvanishing
contribution of H” to the eigenvalues E()), i.e. — in the language of the
pervious section — the contribution of order A2 of A H” .

Taking two derivatives of (12.22) with respect to A, setting A = 0 and
recalling (12.23) one has
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d’E
(Ho + H3) |03 B(0)) + 21” |05 8(0) )= © D | BO)) 4+ B 1 022(0) )

Let us now take the scalar product of both sides with the vector |E7(lll),>
the contributions due to the first and the last term are equal to each other,
therefore

1 d2E(0) _ 1 d2E,,())

D e S| = (EW | H | GE©0) .

By use of the completeness relation >, | Elgli b Elgli | =1 one has

(B | H | aB(0)) = Y (B [ H [ EL (B | dAB(0))
k,k
where E,;H means that the terms with & = n are excluded from the sum
inasmuch as, by the definition of H”, (ET(LII), | H" | Ef},l) = 0. In order to
obtain the expression of (E,(Cl,z | dyE(0)), one takes the scalar product of
(12.24) with | E{)) (here k #n):
(B — B (B | aE©) = (B | H” | E()

whence

1 dQEn,u(A)’ - (B | B | BE))P
2 0 1 1
2 d) =0 £ EY) — El(@)

K

The first nonvanishing contribution of AH” is JA? x (d?E,,(A)/dA?) |A:0,

therefore that of H” is
1 1 1 1
A =y MBIV EGOE | o BB LT BGOE (o
n,w — 1 1 = - 1 1 .
k,k E]S:,.‘)Q - E7(ll)’ k,k El(f,/)-c - E7(ll)’

)

(we have replaced H” with H' as in >’ only the matrix elements with
k # n intervene). The minus sign in (12.25) is there because we have changed
the sign of the denominator: in a while we shall explain why.

Usually the perturbation H’ contains a parameter (not necessarily a di-
mensionless one: see e.g. the factor e E in (12.3)) that determines its order of
magnitude and that is the analogue of the parameter A we have introduced in
a formal way. In this case (12.25) contains (not meaningful) terms that — with
respect to the parameter of the perturbation — are of order higher than the
second: this is so since in the denominators there also are terms of the first
order. If in (12.25) the terms of higher order are neglected, the expression for
the energy shifts of the second order in the parameter of the perturbation is

B | H | EQ) )2

2 K
AR, =->" B0~ B0 : (12.26)
k,k n
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The minus sign emphasizes the fact that the second order contribution to
the energy of the ground state | Ef) always is negative (E? > EJ). In
general (12.26) shows that, for the second order effect on a given level E?,
the contribution of the upper levels ( EQ > E?) is negative whereas that of
the lower levels (E? < E?) is positive: one says that the levels ‘repel’ each
other.

The condition guaranteeing that, for a given energy level, the first-order
approximation is meaningful is:

Lif AD2£0: AP « AW,
2.if AW =0: A® « §E, where §FE, is the distance between the
unperturbed level and the one closest to it.

In any event, roughly, the condition is that the matrix elements of H’ be
much smaller than JFj .

It may happen that the levels of Hj exhibit a multiplet structure, i.e.
groups of levels F;, Es, --- close to one another, but far from other multiplets
(for example in atoms one has fine-structure multiplets). In such cases the
condition |H,,| < dEy may not be fulfilled, owing to the presence of small
0FEy’s, and not even the second order may be sufficient because higher orders
(the third, fourth, ...) are powers of the ratios |H},,/dEo| that are not small.
In such cases one proceeds by exploiting once more the arbitrariness in the
separation of H into a solvable term and a small term. Let us put:

Ho = HY + §Hy (12.27)

where HY is degenerate on every multiplet and 6 Hy has, within the multiplet,
the eigenvalues 6F;, 0o, --- (e.g: By = E{ +0E, Ey = EY +6Es, ---).
The decomposition (12.27) is not unique, but — as we shall see in a while —
this is not a problem; in any event note that [H{ , §Ho] = 0. Now we put

H=Hy+H =H + (§Hy+ H')

and treat (6Hp + H') as a perturbation to the first order: from the physical
point of view this procedure is just the inclusion into the perturbation of those
terms of Hy that are responsible for the multiplet structure.

In this way we have gone back to the case of Sect. 12.3, in which the
unperturbed Hamiltonian, now HJ, is degenerate; then we proceed according
to the decomposition (12.19):

(6Ho + H') = (6Ho + H)) + H"”
and the analogue of (12.20) is
H = (H{ + 6Ho+ H)) + H" = (Hy + H)) + H"

and now it is clear that the problem of the non-uniqueness of the decomposi-
tion (12.27) is not a real one.
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From now on one can proceed as in Sect. 12.3, i.e. one diagonalizes the
“unperturbed Hamiltonian” Hy + H| that is block diagonal: the dimensions
of the blocks are given by the degree of degeneracy of the eigenvalues of H,
i.e. they are those of the multiplets; the only difference with respect to the
case of Sect. 12.3 is that now Hy is not a multiple of the identity within each
block, namely within each multiplet; so it is not sufficient to diagonalize H],
but it is necessary to diagonalize the blocks of Hy + H{, (or of dHy + Hy).

Now the first-order result is acceptable because the neglected terms are
of the order of (|H,m/dEJ|)?, where now the denominators §EQ are large
because they are the distances between, not within, the multiplets.

To sum up, one takes the matrix H,,., , sets to 0 all the off-diagonal terms
between states belonging to different multiplets, then diagonalizes what has
survived.

Let us make an example: if, in the Hamiltonian of the hydrogen atom, we
consider the relativistic expression for the kinetic energy, the result is that
the degeneracy on [ is removed: e.g. the states with n =2 and { =0, 1 are
no longer degenerate in energy and one has Ej | — Ejy ~ 4 x107°eV (this is
not the only relativistic correction to the energy levels of the hydrogen atom:
as we will see in Chap. 16, the existence of spin entails other effects that are
relativistic in nature).

If we now consider, as in Sect. 12.2, the effect of an electric field on the
levels n = 2, we are in the just described situation of quasi-degenerate levels,
and the solution of the problem is provided by the diagonalization of the
matrix

EQO,0 3eFag 0 0
3eFEag EY, 0 0
0 T N (12.28)
0 0 0 EQOJ

that differs from (12.15) in that the diagonal terms are not all equal to one an-
other. Apart from the eigenvalue EQOJ twice degenerate, the other eigenvalues
of (12.28) are:

1
9 {(E20,0 + Ezo,l) + \/(5E0)2 +4x(3eFagp)? | , 0Ey = (E20,1 - Ezo,o)

and, as it was already clear a priori, with |3eFag| of the same order of JEy,
an expansion in powers of 3eFag/0Ey would be completely meaningless.



Chapter 13

Electromagnetic Transitions

13.1 Introduction

As the reader will remember, the incapability o classical physics to explain
the line structure of atomic spectra was one of the main motivations that
led physicist to the search for a new theory: one of the first attempts in this
direction was due to Bohr who, just to overcome the difficulties connected with
the problem of spectra, postulated the existence of discrete energy levels and
the well known relationship (2.5) connecting the emitted/absorbed frequencies
and the energy levels.

At this point we think it is convenient to point out that Bohr theory could
not be considered the ‘new theory’ but, rather, just the first fundamental
step in that direction: indeed some facts (hydrogen spectrum, specific heats
of solids, etc.) were very well explained, other facts only had a qualitative
explanation (in general, Bohr results are correct only for large values of the
quantum numbers), eventually some other facts had no explanation at all
(typically: intensity of spectral lines, selection rules, etc.).

It is however from a conceptual point of view that Bohr theory is lack-
ing: the foundations of classical physics are incompatible with Bohr hypothe-
ses and must, as a consequence, be modified — but Bohr does not say how.
Furthermore, in Bohr theory many questions have no answer: here are two
examples.

(i) Do there exist states other than those with energies Fy, Eq, -+ 7

(ii) In the time interval of about 10~8s during which the radiating electron
goes from the energy level E, to the level E, _1, does it pass through all
the intermediate energies?

And so on. On the other hand, a proof of the fact that, in Bohr’s time,
the situation was not considered satisfactory is given by the fact that de
Broglie felt the necessity of proposing another hypothesis in a spirit completely
different from that of Bohr hypotheses. And the fact that not even after de
Broglie ‘wave-like’ hypothesis the theory was in a satisfactory status is shown
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by all the problems that the experimental verifications of de Broglie hypothesis
raised (and which were the subject of the discussions presented in Chap. 3).

Quantum mechanics not only provides the overcoming of such conceptual
difficulties, but also — and mainly — it is a theory capable both to frame in
a single scheme the positive aspects of old quantum theories, and to provide
correct results in many cases in which the latter were unable to say anything.

In particular we have already extensively seen that both the existence of
energy levels and the wave-like properties of particles are consequences of the
new theory (essentially of the superposition principle and of the quantization
rules): the same thing can be said about the second Bohr hypothesis: it is to
this subject that we will dedicate the present chapter.

13.2 Perturbation Theory for Time Evolution

Let us assume we have an atom in the stationary state | E). At time t =
to we send electromagnetic radiation on the atom: the electromagnetic field
interacts with the atom so that the state | E”) ceases being a stationary
state (the Hamiltonian has changed) and will therefore evolve in time. Let us
denote, as usual, by | E, t) the state of the atom at time ¢. The experimental
conditions we will assume for the discussion of the interaction between atom
and radiation are — as we will specify in the next section — those of incoherent
radiation of low intensity: under such conditions the atom rarely interacts
with radiation and, if it does so, this interaction lasts for short time intervals
(7~ 1077 +1078s) and for most of the time the state of the atom evolves
freely. It is therefore meaningful — from the physical point of view — to ask
how much is the probability to find, at time ¢, the atom in given stationary
state | B ) : if the vectors | E?) and | E?) are normalized, such probability
is given by
— 0 0 2
pei(t) = |<Ef |Ei7t>| . (13.1)

pg;(t) is named transition probability from the initial state (at time ¢t =tg)
| E%) to the state | E{ ), called the final state.

The problem then is that of calculating | EC, t), i.e. the time evolution
of | E) . This is obtained by solving the Schrédinger equation (9.7): to this
end it is necessary to know the Hamiltonian H of the atom in presence of the
external electromagnetic field.

Let A (Z,t) be the vector potential of the electromagnetic field defined by
the equations: .

F--t2 B=vAA
c Ot
(we have set the scalar potential ¢ = 0: this is legitimate for a radiation field,
which is the case we are interested in). It is known from analytical mechanics
that, if Hy is the Hamiltonian of the atom, the field being absent:

Z =2
P - -
HO:Z%—FV((A, - ,qz) (13.2)

a=1
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(we have supposed the nucleus of infinite mass, fixed at the origin), the Hamil-
tonian of the atom in presence of the field is obtained by replacing the electron
momenta p, by the expressions (the electron charge is —e)

ﬁa"i’eg(qont)v ()é:l,"',Z
c

(the interaction of the electromagnetic field with the nucleus — even if not
supposed of infinite mass — can be neglected since of order m/M with respect
to that with the electrons). Therefore

Z e - ., 2 R .
=3 o Pt S AGa)] + V@ d) . (133)
Note that (but it is no news: the same can be said for the Coulomb potential
due to the nucleus of the hydrogen atom), although A(Z,t¢) is an external
field, in the expression (13.3) for the Hamiltonian it acts as an operator on the
atomic states inasmuch as 7 is replaced by the operators g, of the electrons.
By expanding the square in (13.3) one has

(]

1
=
M

Ha'Aﬁout Aﬁat
Do - A(Ga,t) + A(q o 2

The expression p' A+ A p can be simplified by choosing the vector potential
in such a way that =
V-A=0.

Indeed, in this case by (4.54) one has

prA-Ap= i[pl,Ai]:—ihV-ff:0
i=1
whence L B
p-A+A-p=2p-A
and H takes the form
z
H— HO"'izpa' (Gast) 2mc Z (13.4)

It is this H that determines the time evolution of the state | E\°, ¢ ): however
the methods of solution of the Schédinger equation discussed in Sect. 9.1
cannot be applied in the present case, since H explicitly depends on time
through the vector potential A (Z,t). We will therefore take advantage of a
method known as time-dependent perturbation theory.
Let
H=Hy,+H'(t) (13.5)
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with Hy independent of time, as in (13.4). Let U(¢,to) be the time evolution
operator of the system whose Hamiltonian is (13.5) and Uy(t,to) that of the
“unperturbed” system whose Hamiltonian is Hp. Thanks to (9.10):

d Uo(t, to)t = hUo(t to)' Hy . (13.6)

d i
U(t7t0)——hH(t)U(t,to), a

dt
Since

Uo(t, to) | B ) = o= FH0—00/M 0
by (13.1) and owing to |exp (i EX(t — to)/h)| =1, one has

pes() = (EC | U(t.to) | Q) = |[(E | Uo(t,to)T U(t,t0) | EX)|”

By putting _
U(t,to) = Uo(t,to)" U(t, t0) (13.7)

one has _ )
pei(t) = [(EF | Ut to) | B)[” - (13.8)

The operator U (t,t0) is called time evolution operator in the interac-
tion picture. The interaction picture is something midway between the
Schrodinger and the Heisenberg pictures for time evolution: states are evolved
by the operator U(t,ty) whereas the observables are evolved by the operator
Uy (t, to) :

§ = (A0 UMTEUE) | A,0) = (A0 U0 Uo(t) €Uo(t) U(#) | A,0) .

By (13.7) it is evident that, if H' =0, then U=1,ie U =U,. Therefore,
if the perturbation H’ is ‘small’, U only slightly differs from the identity,
namely a perturbative expansion is therefore possible for U. By (13.6) one
has

t to (((;t UO t to ) U(t,to) + Uo(t,to)T (jt U(t,to))
,;U (t.to) (Ho — H) U(t,to)
= " Uo(t, to) H'(£) Uo(t, to) U (t, to)

so that, putting

H'(t) = Uo(t, to)" H'(t) Uo(t, o) (13.9)
one has

d

y Ut to) = —;ﬁ’(t)ﬁ(t,to), Ulto, to) =1 . (13.10)

The perturbative expansion for U begins by setting U =1 in the right hand
side of (13.10):
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d r7(1) i, (1) i 7! (41 A4/
UN(t,te)=—,  H({t) = UV (tt)=1- H'(t)dt". (13.11)
dt h h i,

The second order is obtained by setting U=U (1)(t, to) in the right hand side
of (13.10), and so on for higher orders.

In the sequel we will only consider the first-order approximation (13.11):
in this case we are allowed to (indeed, we must) neglect the last term in the
Hamiltonian (13.4), the term proportional to €2, inasmuch as it is of the same
order as the second order contribution of the term proportional to e. As we
will explain in Sect. 13.4, from the physical point of view this means that we
will only consider those transition in which one single photon at a time can
be either emitted or absorbed.

If (E?|E®)=0, by inserting (13.11) into (13.8) and in view of (13.9),
one has

1 2

pfi(t) = h2

t
/ (B0 | B'(¢) | E)dt
to

t 2
: 0 0 ’
[ B ) | ) By | (13,12

to

1
h2

13.3 Semiclassical Theory of Radiation

We will use (13.12) in the problem of emission and absorption of electromag-
netic radiation by an atom or, in any event, by a system with discrete energy
levels. The theory we will present is called semiclassical because, while the
atom is considered as a quantum system, the electromagnetic field is consid-
ered from the classical point of view: the vector potential A (Z,t) and its
time derivative are the canonical variables of the electromagnetic field and for
them commutation relations analogous to (4.51) should hold; instead, in the
semiclassical approximation, they are considered as quantities that commute
with each other. We will come back on the meaning and the limitations of the
semiclassical approximation in the next section.
With the specification

zZ
e = -2
Hl(t) = me Zpa A (Gast)
a=1

equation (13.12) becomes:

z ¢ 2
€ 2 o o W(EL—EOY(H —
pal®)=(557) |20 [(BR | A Gast) | BY)oBEEC 0 g
mc =i
(13.13)

Let us assume that the radiation incident on the atom is produced by a lamp:
this means that A (Z,t) is not a unique coherent wave, but rather a statistical
mixture of photons that, from the classical point view, we describe as a set
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of ‘wave packets’, not necessarily all with the same frequency v, with relative
phases that are distributed in a totally random way.

Each packet has a finite time duration of the order of the lifetime 7 of
the transition responsible for the radiation emitted by the source (as we shall
see, typically 7 ~ 1072 +1077s); as a consequence — see (6.50) — the spectral
width Av of the packets is of the order of 1/7 and the spatial extension of
the order of c¢x7 ~ 30cm + 30 m.

Let us consider a packet of frequency v = w/27; in the time interval
(to,to + 7) in which, in the region occupied by the atom, the field is nonvan-
ishing, it has the form (see (3.8))

A(# 1) = ;1 (gei(k-f—w(t—to)) e omi(Fa-w (t-m))) , w>0 (13.14)

where € is the complex unit vector describing the polarization of the wave
(the same that in (3.12) was denoted by ey, ). Let us put

eA S oy ik-G
Fa 2 5<Ef0|(10a'€)e M | BO)

T:fx - (13.15)
Go = (E{ | (Po-€%)e M | EO)

and
wri = (B — E%)/h.

Then (13.13) writes

2
Z
pei(t) = Z ( / Hwnimo)(t'=to) g/ 4 G, / i (writw) (¢ —f0>dt)
4 1(wf,7w)(t7to) -1 el (weitw)(t—to) _ 1 ?
- Z ( TN ) . (13.16)
= i (wri —w) i (Wi + w)

Let us take t = tg + 7 and analyze the structure of (13.16): it contains terms
of the type

i(wgi—w) T 2 : :

e ( Fi—w) —1‘ _ Sln2[§(wfi—(;.))7] _ 2 snf[é(wfi—w);'] (13'17)
i(wei —w) (wri —w) [3(wri —w) 7]

i(wesitw) T 2 : :

e ( fitw) T _ 1’ _4 s1n2[§(wfi —|—¢2u) 7] _ Slnf[;(wfi —l—w);—] (13.18)
i(wei +w) (wri +w) [ (wei +w) 7]

and those that come out of the double products (“interference terms”).

The function sin®z/z? is well known: it is practically nonvanishing for
|z| < 1; this means that (13.17) is nonvanishing when w is a neighborhood
of we; of width ~ 1/7 (therefore, since w > 0, in this case wg; > 0),
whereas (13.18) is nonvanishing when w is a neighborhood of —ws; of width



13.3 Semiclassical Theory of Radiation 225

~ 1/7 (in this case wf; < 0). Since in the region of the optical transitions
1/7 ~108+10s ! and |we;| ~ 1014+-101° 571 it is evident that the two terms
given respectively by (13.17) and (13.18) can never simultaneously contribute
to the transition probability: for a given wg; 2 0 the region in which one of
the two terms is nonvanishing is separated by ~ 2|ws;| ~ 10°x1/7 from the
region in which the other one contributes.

As a consequence, the interference terms, that are of the order of the
square root of the product of (13.17) with (13.18)), never contribute to optical
transitions.

We have just seen that, in order that either (13.17) or (13.18) be nonvan-
ishing, it is necessary that w ~ |wyi|: in the first case E > E and one has
absorption of radiation, in the second case E? < E and one has induced
(or stimulated) emission.

This result demonstrates the second Bohr hypothesis:

In order that the transition |E°?) — | EP) be possible, it is necessary that
the frequency v of the radiation be (better: in the radiation be present the
frequency v) such that
E? - EP
v = % . (13.19)

Notice that the Bohr’s rule is here presented only as a necessary condition for
the transition to be possible: we will see that the occurrence of (13.19) does
not necessarily imply that the transition takes place.

In the light of what we have just seen, we can proceed by discussing sep-
arately the case of absorption and that of stimulated emission.

Let us start with absorption. By (13.16) and (13.17)
*[3wri —w) 7]
2

2 Sin

[5(wri — w) 7]

2
T

(13.20)

z
ei(w;T) = ‘ Z F,
a=1

is the probability that the single wave packet with frequency v = w/2w
induces the transition. As the several packets — both those with the same fre-
quency and those with a different frequency — are statistically independent,
the transition probability in the time interval (to,t) is the sum of the prob-
abilities due to the single packets; it is therefore evident that, if the intensity
of the incident radiation is constant, the probability is proportional to ¢ —tg,
i.e. to the number of packets that have arrived. In this case it is possible to
define the transition probability rate wil® (induced probability transition
per unit time): if N, (w)dw is the number of packets with frequency in the
interval w, w+dw that arrive in the time interval 7 (for the sake of simplicity
we have assumed that all the packets have the same time duration 7), then

pe;(7) = /thi(w;T) Ni(w)dw = w%’}d = /thi(w;r) N:(w)dw .
0 T Jo

In order to calculate N, (w)dw, let us consider the radiation in the frequency
interval w, w+dw and let I(w)dw be the intensity. The intensity is the time
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average over a period of the square modulus of the Poynting vector; for the
single packet given by (13.14)

c =2 1 AN 2 w?A?
I = — E2 = — —_— =
1@) 4 4me ( ot ) 8mc
whence o) d N
N (o) do = 2218 8TC (13.21)

Il w2 A2

and the transition probability rate is given by

1nd _ 87TC ‘ Z

Thanks to the property of the function sin®z/z2, only the region w ~ we;

contributes to the integral: therefore I(w)/w? can be taken out of the integral

and the lower limit can be taken to —oco so that, by putting x = ; (w—wri) T

one has 4
g 8Tc 2 [(wei) [T sin’z
wfid:F’ZFa / 2 dx .

Wri  J-oo z
The integral of sin®z/2? gives 7, so, in view of the first of (13.15) one has:

(w) SiHQ[% (we — w) 7]

[é(wﬁ — o)1) Tdw .

in 4dr2e? I(we; 7)ot 2
wfid_W‘ |Z 6 +kqa |E > Ef0>Ei0. (1322)

and in the case of stimulated emission little must be changed:

2

Ef < EP.

z

wil}d_47r e? I( Wfl o i Foda | B2

fi 2.2 E
m2ch?w —

(13.23)
Thanks to the transversality of electromagnetic waves, p, - € commutes with
k-G, (€1is orthogonal to k), therefore

7 T B
and it is possible to express both (13.22) and (13.23) in a unique formula
z 2

(EQ |3 (Fa- @) e Rl | B

a=1

EY < E? (13.24)

that holds both for absorption |E?) — | E?) and emission |E?) — |E2).

It is evident that, restricting to the first order, the absorption and emission
probabilities between two energy levels are identical with each other. It is
also clear that (13.19) alone is not sufficient to guarantee that the transition
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between the two states |E?) and |EC) be possible: it is necessary that
wind 7& 0
ba .

The treatment above is correct for incoherent radiation with spectral in-
tensity I(w) practically constant in the frequency interval |wg;| & 1/7; fur-
thermore, due to the use of perturbation theory, the result for the probability
transition p;;(¢) is reliable only until p;;(t) < 1, ie. for ¢ < 1/wiid: we
postpone to Sect. 13.5 the numerical analysis of the conditions of validity of
the theory presented above.

13.4 Spontaneous Emission

The result expressed by (13.23) has a main flaw: the probability for emission
is proportional to the intensity of the incident radiation, therefore, in par-
ticular, it is vanishing in the absence of radiation. Instead it is known from
everyday experience (think of an ordinary lamp) that, if an atom is excited
from the state | E) to the state | E®) in a nonradiative way, i.e. without
use of an external electromagnetic field (e.g. by collisions with different atoms
or electrons), the atom decays to lower energy states by emitting radiation.
One therefore has a spontaneous emission rate, i.e. a nonvanishing emis-
sion probability even in the absence of an external electromagnetic field, in
contradiction with (13.23).

This fact indeed is a limitation of the semiclassical treatment of the inter-
action between charges and electromagnetic radiation: since the postulates of
quantum mechanics apply to any kind of system — not only to particles — also
the electromagnetic field requires a quantum mechanical treatment, based on
quantization rules analogous to (4.51). As a matter of fact, only in this way
the original hypothesis of quantization of the electromagnetic field — i.e. the
existence of photons — arises as a consequence of a general theoretical setting
and the first-order approximation for the electromagnetic transitions corre-
sponds to considering transitions in which only one photon at a time may be
exchanged between atom and radiation.

Considering the electromagnetic field as a classical system is the same as
considering it as an external field: therefore the semiclassical treatment of
the interaction between charges and field may correctly explain the influence
of the field on the atom (absorption and stimulated emission), but not the
influence of the atom on the field (spontaneous emission).

Only in the framework of a complete quantum approach — quantum elec-
trodynamics — it is possible to treat also spontaneous emission of radiation
correctly. We will here derive the spontaneous emission rate by means of a
very beautiful argument that is statistical in nature and is due — as usual! —
to Einstein who, beyond showing the necessity of spontaneous emission, also
succeeds in calculating its rate.

Let us consider a black body, i.e. a cavity in which radiation and mat-
ter (atoms) are in thermodynamic equilibrium at temperature 7. Let | E?)
and | EQ) be two atomic states (E2 < E_); owing to the thermodynamic
equilibrium, the number N, of atoms in the state | E® ) and the number N,
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of atoms in the state | E) stay constant over time. Since the properties of
the black body are independent of the properties of the matter it is made of,
we can — for the sake of simplicity — assume that our atoms only have the
two energy levels EY and Eboz in this case the fact that N, and N, stay
constant entails that the number of transitions | E? ) — | E?) must equal the
number of transitions | EL) — |E?): if w(a — b) and w(b — a) are the
transition rates, it must happen that

Ngxw(a — b) = Nyxw(b — a) . (13.25)

If, in agreement with (13.22) and (13.23), w(a — b) = w(b — a), then also
N, = Ny, in contrast with the Maxwell-Boltzmann distribution according to
which Ny /N, = exp[—(E — E?)/ksT]. Then, with wi'd given by (13.24), let
us put

w(a — b) = wind w(b — a) = wid 4 wyh
and, by aid of (13.25), one has
sp ind ( Na 1nd (EL—ES)/kpT
WP = wine (ﬁ, - 1) d (o(By~E)/keT _ 1) (13.26)

If we consider only the radiation either absorbed or emitted by the atoms
around a direction within the solid angle df2 and in a given state of polarization
described by the complex unit vector €, then (13.25), and therefore (13.26),
keeps on holding true inasmuch as it guarantees that the radiation in the
cavity stays isotropic and unpolarized.

Let us take the expression (13.24) for witd: the spectral intensity I(w)
we must use in (13.24) is

(13.27)

where u(w) is the spectral density of energy of the black body at temperature
T and is given by the Planck distribution (u(w)dw = a(v)dv):

1 hw?
V) =53 Rw/kpT :
27 w2 3 (ehw/ksT — 1)

(13.28)

=
£
Il
|
[~

The factor § in (13.27) is due to the fact that the density of energy of the
radiation in an assigned state of polarization is é u(w).

Equations (13.25)+(13.28) give (we now write w5, d? in place of w))

2

) e wp Z
sp _ a —» 1k o
w)h, dQ) = 727rhm2 = E: €) el | B0 dQ . (13.29)

So the emission rate is different from the absorption rate: w’h does not de-
pend on the intensity of the incident radiation and, as a consequence, is the
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probability per unit time and per unit solid angle of spontaneous emission in
the direction of the vector k with polarization €.

Note that (13.24) and (13.29) are very similar to each other: only the
prefactor of the |--- |2 is different. However, while in (13.24) & and k refer
to the radiation sent on the atom, in (13.29) they refer to the observational
conditions: the direction of the vector k, whose modulus is 27 v/c, is the
direction in which one wants to observe the emitted radiation; € describes
the polarization state accepted by the detector. The meaning of (13.29) is,
in conclusion, that of probability per unit of time to observe spontaneously
emitted radiation in a given direction and in a given polarization state.

In the next section we will give a numerical estimate of the total probability
w9 of spontaneous emission between two levels (i.e. (13.29) integrated over
the solid angle and summed on the polarization states).

If on a given atom there arrives some electromagnetic radiation, both stim-
ulated and spontaneous emissions intervene: however, given that the radiation
due to stimulated emission has the same features as the incident radiation, it
will be possible to observe the spontaneously emitted radiation by means of
observations in directions different from that of the incident radiation.

We believe that many readers already have raised the following question:
how does one reconcile the statement that, for an isolated atom, the excited
states | E) are stationary states with the existence of spontaneous emission
that, over a time of the order of 1/(w!%!), enables the atom to perform a
transition to a lower energy state?

The point is that the states | E¥) are eigenstates of the atomic Hamil-
tonian H,;, whereas if one is interested in spontaneous emission, the system
necessarily is ‘atom + electromagnetic field’; independently of whether there
are photons around or not: the Hamiltonian of the system — regardless of the
state the system is in — is:

H = Hyy + Heom + Hing (13.30)

where Hey, is the Hamiltonian of the field (i.e. the energy properly expressed
by means of canonical variables) and H;, is the interaction between atom
and field. A basis of eigenvectors of H.y, is provided by states with 0 photons,
1 photon, 2 photons, ---, N photons, - --. The state with N = 0, namely that
in which there are no photons, is called the vacuum state (and, since the
number of photons is not just ‘a number’, but rather is a dynamical variable,
i.e. an observable, the vacuum state is a state like all the others). If Hiy
were not there, the system would be one with ‘separate variable’ — much as
the two particle system discussed in Sect. 11.2 — and it would be legitimate
to look only at the atom and forget about the electromagnetic field (or vicev-
ersa). In particular the state |e.m. field; atom) = |0 photons; E) would
be a stationary state. The matter is different if Hj, is taken into account:
Hine has nonvanishing matrix elements between the states | N photons; EO )
and | N £ 1 photons; E9, ), and in particular between |0 photons; E2 ) and
| 1 photon; EY, ) that exactly are those involved in the spontaneous emission.
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Therefore the eigenstates of the Hamiltonian (13.30) no longer display ‘sepa-
rate variables’, and no doubt are more complicated:

| 0 photons; E2 ) + |1 photon; ES, ) +

and, in addition (with the exception of the state |0 photons; E§ )), all are
improper states: therefore, strictly speaking, for the system ‘atom + field’,
the only stationary state is the lowest energy one |0 photons; EJ ).

13.5 Electric-Dipole Transitions

As we have seen in the previous sections, electromagnetic transitions are de-
termined by the matrix elements

|Z Do - €)eiFdo | BO) (13.31)

where |k| = 27/A. Since the transitions we are interested in usually corre-
spond to energy differences of the order of the electronvolt, the wavelength A
of the electromagnetic radiations is of the order of some thousand angstrém
(MA] = 12400/AE[eV]), therefore at least three orders of magnitude larger
than the atomic size. This means that the vector potential is practically uni-
form in the region occupied by the atom: under such conditions it is legitimate
to expand the field given by (13.14)

— A — .
A@t) =" e +ik @+ e iwltto) e, (13.32)
and neglect, in comparison to 1, the terms E-d4--
Since
- 1 8A iwA - :
E(Z,t) = = F(ltik -4 Ye t@lt-to) L @e 13.
(Z,t) vy o0 E(l+ik-Z+--)e +c.c (13.33)

the approximation e % ~ 1 in (13.32) is the same as considering an electric

field uniform in the region occupied by the atom, and a vanishing magnetic
field B = V A A: for this reason such an approximation is called electric-
dipole approximation. In this approximation the matrix element (13.31)
becomes

Eb |Z Po-€) | E2) (13.34)

and, as we shall see, when the matrix element (13.34) is nonvanishing, the
neglected terms k-Z+-- are expected to add a contribution starting from
the term (k- #)2, therefore smaller by a factor of order (as/A)2, ag being the
Bohr radius.

By taking advantage of the identity
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Hy being given by (13.2) (i.e. 5= m{ for the electrons of the unperturbed
atom), and since | E?) and | E) are eigenvectors of Hy, (13.34) becomes

[H07 Eja]

. Z
p (BY = ED(EP | Y edo-€| E)) = ~iwya (E) | D-&| B})  (13.35)

a=1

where
Z
D=-¢> {a (13.36)
a=1

is the electric-dipole moment operator of the atom (the g, are taken with
respect to the position of the nucleus).
So, in the electric-dipole approximation, (13.24) takes the form

2

ina 4w = 2
wb(LdZHQC](wba)|<Eb0|D-e|E(?>| : E? < E! (13.37)

and (13.29) (E,=E;, E, = Ex)
s _ “ha |ipo|5.e g0 EL) — | Ef 13.38
wlh = sobes (B |B-e* B[ |EY)—|ES).  (13.38)
When for two states | EL), |EQ) it happens that (EL | D | EQ) # 0,
one says that the transition between the two states is an electric-dipole
transition.

The term k- # in (13.32) gives rise to both the magnetic-dipole and the
electric-quadrupole interactions, whose matrix elements are smaller than those
of the electric-dipole by a factor of the order kag ~ ag/A and the correspond-
ing transition probabilities are, as a rule, smaller by a factor (kag)?: in the
next section we will see that when a transition is an electric-dipole transition
it cannot also be either a magnetic-dipole or an electric-quadrupole transition,
therefore there never occurs interference between the matrix elements of the
first with those relative to the latter ones.

At this point, thanks to (13.37), we can estimate the stimulated transition
rate: let us consider a transition corresponding to AFE = E, — E, = 2eV
= A\~ 6000 A (yellow light); for I(wp,) we will take the spectral intensity of
a black body, given by (13.27) and (13.28), at the temperature 7' = 3000 K,
that is the temperature typical of a lamp used in a laboratory (to a good
approximation a lamp emits as a black body); the most critical term is the
matrix element of the dipole operator that obviously depends on the particular
transition and that, furthermore, appears squared in (13.37): as a typical order
of magnitude we will take [(E? | D-&| E?)| ~ eap . With such data:

wind 47 % a2 H(wpa) = 47 e? a3 8 he
ba hgc a h2C )\3 (ehwha/kBT_ 1)
3273 (aB)2 c
o
e8—1\ A/ A

(13.39)
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where

e? 1 1
=~ —=137. 13.4
=, 137 (a 37.035999 76(50)) (13.40)
is the fine-structure constant and is dimensionless. By inserting numerical
values one has

wind ~ 0% (13.41)

and this means that perturbation theory provides us with acceptable results
for times smaller than 107> + 10~*s that, on the atomic scale (¢t ~ h/AE ~
1071%s) are long times.

The estimate of the spontaneous emission rate goes along in a similar way:
after integrating (13.38) with respect to the solid angle and summing over the
polarizations one obtains an expression in which the only important difference
with respect to (13.39) is the absence of the denominator e® — 1 ~ 3000. The
lifetime 7 of an excited state is the reciprocal of the sum of the transition
rates to all the levels with a lower energy and, at least for the low lying levels,
is of the order of 1072 + 10~8s. In Sect. 13.9 we will calculate the lifetime of
the states with n =2, [ =1 of the hydrogen atom.

13.6 Selection Rules I

We will be concerned only with electric-dipole transitions and will give nec-
essary conditions in order that (13.37) (or (13.38)) be nonvanishing. Such
condition are named selection rules for electric-dipole transitions: as
we have already seen in Sect. 12.2, in general selection rules for an operator
are conditions on the states | A), | B), i.e. on the quantum number that char-
acterize them, in order that the matrix element of the operator between | A)
and | B) may be different from zero.

In the particular case we are interested in, the operator is any component
of the electric-dipole operator D and the states between which we consider
the matrix elements are the stationary states | EL ), | EP), - -+ of the isolated
atom.

We must then establish which are the quantum numbers that characterize
the stationary states of the atom: what we are going to say now only has a
provisional character, because the introduction of the electron spin shall force
us to re-examine the classification we give now. For the same reason also the
discussion on the selection rules that concern the electric-dipole transition will
be made in two steps.

The quantum numbers that characterize the stationary states of the atom
are the eigenvalues of a complete set of compatible observables that includes
the Hamiltonian: for an isolated atom the invariance of the Hamiltonian under
both rotations and spatial inversion guarantees that, no matter how compli-
cated the expression of the Hamiltonian may be, we may certainly include,
along with he Hamiltonian Hy, the square of the total angular momentum
L 2 one component of L - say L, —, and the space-inversion operator I.
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Therefore we can characterize the stationary sates of the isolated atom in the
following way:
|E,L,M,w ---) (13.42)

in which - - - stands for possible other quantum numbers to be determined case
by case (we are using the capital letters L and M since we are considering
many electrons atoms). The selection rules we are going to discuss refer to
the quantum numbers L, M, w.

Space-Inversion Selection Rule: the matrix elements of D, , D, and D,
between states with the same parity are vanishing.

Indeed the components of D are odd operators under spatial inversion:
ID; "' =-D;

so the demonstration of the statement is the same as that in Sect. 12.2 for
the operators z; .
An equivalent way to express the above selection rule is the following;:

In order that the matrix elements of D, , D, and D, between eigenstates of
the space-inversion operator I may be nonvanishing, it is necessary that the
states have opposite parities:

<...w//...|Di|...w/...>#0 :> w//.w/:—]_. (13.43)

Magnetic-dipole and the electric-quadrupole transitions, instead, may occur
only between states with the same parity: indeed, owing to the extra factor
k-2 (with respect to the electric-dipole term), the terms responsible for such
transitions are even under spatial inversion. Therefore — as we have anticipated
— there is no interference between the electric-dipole transitions and either the
magnetic-dipole or the electric-quadrupole ones.

The next selection rules concern the angular momentum: since they are an
exclusive consequence of the commutation rules (10.9) among the components
of L and those of any wvector, they hold not only for 5, but for any vector
operator V.

Selection Rule on L,: let us introduce the operators
D, =D,+iD,, D_=D,—-iD,, D, .

Let us consider the matrix elements of D, D_ and D, between eigenstates
of L,. The following necessary conditions, in order that the above matrix
elements be nonvanishing, apply:

(«-M"- | Dy|--M-)#£0 = AM=+1
(++-M"--|D_|---M---Y£0 = AM=-1 (13.44)
(«:M"-|D,|---M-Yy#£0 = AM= 0

where AM = M" — M'.



234 13 Electromagnetic Transitions

In other words Dy, D_ and D, have nonvanishing matrix elements be-
tween eigenstates of L, only if, respectively:

MH:M/—i‘l, M/I:Ml—l, MH:MI.

Equations (13.44) are an immediate consequence of the commutation rules
among the components of L an those of D, given by (10.9). Indeed (10.9)
entails that

[L..,Dy]=+hD,, (L., D.]=0 (13.45)

analogous to (10.15). Let us consider the matrix elements of (13.45) between
|M"”) and [ M"):

(M"|[L,, DL]| M") =+h(M" | Dy |M"), (M"[[L.,D.]|M")=0
whence
(M"—M F1)(M" | Dy |M')Y=0, (M"'"—M)YM"|D,|M)=0

and in conclusion:

(M" | De | M'Y#0 = M'—M =+1
(M"|D, |M'Y#0 = M'—M = 0

i.e. (13.44). An equivalent way of demonstrating (13.44) consists in observing
that (13.45) express the fact that Dy and D_ respectively behave as raising
and lowering operators of one unit for the eigenvalue of L., whereas D,
owing to the lemma of p. 87 (Sect. 4.10) does not change the eigenvalue of
L.

For the Cartesian components D, and D, , that are obtained as linear
combinations of Dy and D_, owing to (13.44) one has:

(«-M"---|Dy|---M-)#£0 = AM==+l1

(---M".. | Dy|-M--)£0 = AM==+1. (13.46)

Note that, however, (13.44) contain more detailed information than (13.46).

As we have already pointed out, (13.44) give only necessary conditions
for the transition between the states | EY) and | EY ) to take place; however
when (EP | D | EQ) # 0, i.e. when the transition is possible, then (13.44) can
be read the opposite way: so, for instance, if the transition occurs between
states with the same M (i.e. AM = 0), then only D, has nonvanishing matrix
element between | EY ) and | Ef ). Similar conclusions if the transition occurs
between states with AM = +1, or with AM = —1.

Let us finally discuss the:

Selection Rule on L2: the components D; of D have nonvanishing matrix
elements between eigenstates of L2 only if the latter correspond to eigenvalues
differing at most by one unit, provided the eigenvalues themselves are not both
vanishing:
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(---L'-|Di|-- L' Y#0 = AL=41,0, L' +L"#0. (13.47)

The demonstration of this selection rule follows from the identity (that we
will not derive)

[L2,[L?, D;]] =20*(L?D; + D; L*) — 4k*(L - D) L; (13.48)

and is similar to that of (13.44). Equation (13.48) is general in the sense that
it follows only from the commutation rules (10.9); it will be used in the sequel.

Selection rules account for the experimentally verified fact that electric-
dipole electromagnetic transitions are possible only between particular pairs
of states: those on space-inversion I and L 2. that are the same for all the com-
ponents of D (and therefore hold for any polarization of the incident wave, i.e.
regardless of what the polarization unit vector in (13.37) and (13.38) may be),
establish that transitions are possible only between states with opposite pari-
ties and such that AL = £1, 0 — always maintaining that the transitions from
states with L = 0 to states with L = 0 are forbidden. It turns out that the
latter, called 0 — 0 transitions, are prohibited not only in the electric-dipole
approximation but, in general, for any type of (one photon) electromagnetic
transition. For this reason one says that the 0 — 0 transitions are rigorously
forbidden transitions: we now give the demonstration of this fact that is,
in turn, a consequence of the transversality of the electromagnetic fields with
respect to the direction of propagation of the wave. Let

(5 &) iR (13.49)

be the generic addend in (13.24) (or in (13.29) ). Let us choose the z-axis

parallel to the direction of k. Then €, that by the transversality condition
V-A=0is orthogonal to E, has the z component equal to 0: in this way
(13.49) takes the form

(pzex +pyey)eF=. (13.50)

Let us now apply the operator (13.50) to a state with L = 0: e!** commutes
with L, , therefore el*#| L = 0) still is a vector with M = 0. To the latter
vector we apply ps ez + pyey: for p, and py, that are the components of a
vector, the selection rule (13.46) we have found for D, and D, apply: ie.
they may have nonvanishing matrix elements only between e'*#| L = 0) , that
has M =0, and states with M = +1. As a consequence the matrix elements
of the operator (13.49) between states with L = 0 are always vanishing. The
above argument holds for any addend in the sum (13.24): we have thus shown
that the probability transition between S states (L = 0) is vanishing.

Let us go back to the electric-dipole transitions. The selection rules (13.44)
on L, are different for the different components of D and, as a consequence,
the variation of M in a given transitions depends on the polarization of the
incident wave. So, for example:

— for incident radiation polarized linearly in the direction of the z-axis, € =
(0,0,1), so that D-&= D, and therefore AM =0 (for an isolated atom the
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direction of the z-axis is arbitrary and may be taken parallel to the direction
of the linear polarization of the radiation, whatever it is);

— for incident radiation polarized circularly in the z-y plane and that, there-
fore, propagates either along the z-axis or opposite to it, if the electromag-
netic field rotates counterclockwise (COSQ_? =sind and ¢ = 7/2 in (3.12)),
€= (1,1,0) so that D-é=D,+iD,, D-é&* =D, —iD, and, as a conse-
quence, AM = +1 in absorption and AM = —1 in emission; if instead the
electromagnetic field rotates clockwise (¢ = —7/2), € = (1,—1,0) so that
D.é= D, —iD,, D.e* = D, +iD, and, as a consequence, AM = —1 in
absorption and AM = +1 in emission.

The transitions with AM = 0 are called w transitions, whereas those
with AM = +1 are called o transitions.

For polarizations different from the previous ones one can proceed in a
similar way; for an isolated atom, however, it is sometimes possible to bring
the discussion back to one of the just discussed cases by a suitable choice
of the z-axis (or, equivalently, by making use of selection rules analogous to
(13.44) for a suitable component of L).

The subject of the previous discussion has been the determination of the
variations that the quantum number M may have in transitions induced by
radiation with an assigned polarization: in Sect. 13.8 we will discuss the related
issue that shows up in spontaneous emission, i.e. that of determining the
polarization of the radiation emitted in a given direction as a consequence of
a transition with an assigned variation of M.

Note that, in the case of an isolated atom, the selection rules (13.44)
do not entail limitations for the existence of transitions between two energy
levels, unless both have L = 0: indeed any level is degenerate on M (all the
components of L commute with Hy) so that it is always possible to satisfy
(13.44) i.e. there always exist states belonging to the two levels such that the
difference in the value of M is either 0 or £1. We will see the effect of (13.44)
in the case of atoms in external (either electric or magnetic) fields that remove
the degeneracy on M.

Finally, consider the case of hydrogen: since it is a system with only one
electron, parity is related with the value of [ by the relationship w = (—1)!,
so that (13.43) and (13.47) are summarized in the single selection rule

Al =+1 (13.51)

because the transitions with Al = 0 violate (13.43). Moreover, owing to
the degeneracy on [, transitions between any pair of levels may always occur
without violating (13.51).

13.7 Atom in Magnetic Field: the Normal Zeeman Effect

In Sect. 12.2 we studied the effect of an electric field on the energy levels of
the hydrogen atom: this practically is the only case in which an electric field
produces an observable effect on atomic spectra (the Stark effect), inasmuch
as the existence of a first-order effect is due to the existence of unperturbed
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states with the same energy but opposite parities, which happens for hy-
drogen (where there is the degeneracy on [), but not in other atoms, where
the complexity of the Hamiltonian removes any degeneracy not imposed by
symmetry reasons: as a matter of fact, only the degeneracy on M, due to
rotational invariance, survives. This is the reason for the relatively scarce in-
terest in the exploitation of electric fields in experimental investigations of the
atomic structure.

By far more important and usual is instead the use of magnetic fields as
tool of investigation on every kind of atoms. For this reason we begin in this
section the study of the effects of a constant and uniform magnetic field on
the levels of an arbitrary atom.

The Hamiltonian of an atom in the presence of a magnetic field is given
by (13.4), where Hy is the Hamiltonian of the isolated atom and A (Z) is the
vector potential associated with the field B:

B=VAA

whose solution, even imposing V - A =0 is not unique; for the problem we
are presently interested in the following choice is convenient:

In this case one has

—

1 — 1 - _
ﬁa'A(Eja):_Qﬁa'(_ja/\B:_2_'a/\c_ja'B: LaB
so that (13.4) becomes

2 A
_ -1 e . = 9
H=Ho+5—L B+ Zl(quB) (13.52)

2
a=

where

is the total orbital angular momentum of the atom.

Let us examine the order of magnitude of the effects produced by the sec-
ond and the third term in (13.52). Of course it depends on the magnitude
of B: in a laboratory it is rather easy to produce magnetic fields of the or-
der of 10% gauss. We will always take this as reference value in the following
calculations.

The second term in (13.52) is of the order of

eh
2mece

(13.53)

The ratio ef/2m ¢ has the dimensions of a magnetic moment and takes the
name of Bohr magneton ug whose value is
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_eh
e = 2mec

~0.93 x 10~ ?% erg/gauss ~ 5.8 x 10~? eV /gauss . (13.54)

As a consequence, for B ~ 10% gauss, the effect of the second term in (13.52)
is of the order of 10~*eV. The third term in (13.52) (which is responsible for
the atomic diamagnetism) brings a contribution of the order of

e? 2 2
B“a 13.55
8m 2 ( )
where by a we mean the typical size of the atom, i.e. the Bohr radius ag =
h?/me?. As a consequence, the ratio of (13.55) over (13.53) may conveniently
be written, up to numerical factors, as the ratio of the magnetic energy (13.53)
over the atomic unit of energy e?/ap = 27.2eV:

2

e 1 ehB e?
Z B%a%/usB = _Z ( )/(—):ZB 10710
8m c? aB/'uB 2 % 2mc ag x10

so that, for B ~ 10% gauss, the effect of the third term in (13.52) is about
Z x 1075 times smaller than that due to the second. For this reason we feel
authorized to neglect the diamagnetic term in (13.52). In this case

e - -

H=Hy+ L-B (13.56)
me
or also .
H=Hy—ji,-B (13.57)
where .
iy = — 13.58
AL o ( )

is the orbital magnetic moment of the atom (the adjective is there to
distinguish it from the spin magnetic moment we will introduce later on):
indeed, classically an electron going a circular orbit of radius r with velocity v
is equivalent to a coil carrying the current ¢ = —ewv/(27rr) and the magnetic
moment associated with such a coil is orthogonal to the plane of the orbit and
has the magnitude

The problem is now to determine the eigenvalues and the eigenvectors of
(13.56). We point out that having neglected the terms of order B? in (13.52)
makes it possible to exactly solve the problem, once the eigenvectors and the
eigenvalues of Hy are supposed known. Indeed, since Hy commutes with all the
components of L, it also commutes with the term e/(2m ¢) L-B and, therefore,
with H. The Hamiltonians H and H, have, as a consequence, a complete set
of simultaneous eigenvectors, i.e. there exists a set of eigenvectors of Hy that
also are eigenvectors of H. If we take, for the sake of simplicity, the z-axis in
the direction of BB, (13.56) takes the form



13.7 Atom in Magnetic Field: the Normal Zeeman Effect 239

eB

H =H,+
2mece

L.. (13.59)

Let us consider the simultaneous eigenvectors of Hy, L%and L, :
|E°,L,M) . (13.60)
They are eigenvectors also of H:
h B
H|E°,L,M) = <E0+ 6—M) |EO, L, M).
2mc
Therefore the eigenvalues of H are
E=E°+usBM, ~L<M<+L (13.61)

where L is the angular momentum of the energy level E°. Therefore the
magnetic field totally removes the degeneracy on M: any energy level E° of
the isolated atom, to which corresponds a well defined value of L (because,
with the exception of the hydrogen, the levels of any atom are not degenerate
on L), splits up — owing to the magnetic field — into 2L + 1 levels, called
Zeeman sublevels: the distance between two adjacent sublevels always is

AFE = /JBB

independently of the unperturbed level E© one considers.

Note that, if the eigenvalues of Hy are nondegenerate on L, i.e. — contrary
to what happens for the hydrogen atom — to any unperturbed energy level
there corresponds a unique value of L, then L is a redundant quantum number
in (13.60) or — which is the same — the set Hy, L2, L, is a more than complete
set of compatible observables. However the importance of specifying in (13.60)
also the quantum number L should be evident:

— the selection rules (13.47) exactly refer to this quantum number;

— when L is known, the degeneracy of the level is known, i.e. the number of
Zeeman sublevels into which the level splits up in presence of a magnetic
field.

As a consequence of the splitting of the energy levels, a splitting of the spectral
lines is expected: indeed, let E? — Ef0 be a transition between two levels of
an atom in absence of magnetic field. In presence of a magnetic field we will
have the transitions:

E°+usBM — E°4+puzBM”
corresponding to the energy jumps
Ef —E’ 4+ ugB AM | AM =M" — M’ .

But the selection rules (13.34) demand AM = +1,0 so any line of the
spectrum splits up into three lines: if vy = |E? — EC|/h is the frequency of
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the line in absence of the field, the frequencies of the three lines in presence
of the field are:

) AM = 0: 7 lines
U=
vo + pusB/h AM =+1: o lines .

In Fig. 13.1 the Zeeman transitions between the
sublevels with L = 2 and those with L =1 are

reported: note that the nine transitions permit- NEIRSHE :;
ted by the selection rules give rise to only three ! o
different lines, because the distance between the ! X ! |
adjacent sublevels with L = 2 is the same as : ) H} % |
that between the sublevels with L = 1. L=1 __- ’u*f*fﬁ (1)
The result we have found is in agreement with [
Larmor’s theorem: indeed the quantity ugB/h Fig. 13.1

= eB/(4mrmc) is just the Larmor frequency.

This shows that the splitting of spectral lines (Zeeman effect), that was
already known before the advent of quantum mechanics, can be — and indeed
was — explained even in classical terms. However the point is that experiments
only partially confirm that any line splits up into to three lines, in agreement
with (13.62), and in this case one says one has normal Zeeman effect. In
many cases a splitting in more than three, not equally spaced, lines is observed:
in the latter case it is said that one has anomalous Zeeman effect.

We will see that the anomalous Zeeman effect, as well as other discrepan-
cies between theory and experiment that show up, for example, in the spectra
of alkali atoms, are explained by attributing to the electron an intrinsic mag-
netic moment and, correspondingly, an intrinsic angular momentum, the spin.

If the normal Zeeman effect occurs, the possibility of observing all the
three lines depends on the experimental conditions. Let us consider the case
of absorption: if, for example, radiation is sent on the atom in the direction
of B (i.e. in the direction of the z-axis), owing to the transversality of elec-
tromagnetic waves, the z component of the polarization vector € is vanishing:
€= (e, €y,0), whence D-¢=D, ez +Dy e, and, as a consequence of (13.44)
or (13.46), in general AM = 41 and AM = —1, i.e. only the central 7 line
is missing; but if the radiation is circularly polarized, only one of the two o
lines is observed. If instead the radiation propagates along a direction orthog-
onal to B and is polarized parallel to B (the z direction), then &= (0,0,1),
D.-¢=D, , therefore AM = 0 and only the 7 line is observed.

In conclusion one way, but not the only one, to produce all the three
transitions AM = 0,+1 is that of sending on the atom unpolarized radiation,
provided the direction of propagation is not parallel to that of the field, e.g.
along an orthogonal direction.

In the next section we will study the inverse problem, i.e. that of deter-
mining the polarization of the light emitted in the Zeeman transitions: the
problem is relevant only for spontaneous emission because, as we have al-
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ready said in Sect. 13.4, the radiation due to stimulated emission has the
same features — in particular the polarization — as the incident radiation.

13.8 Polarization and Angular Distribution of Emitted Radiation

Let us consider the spontaneous emission of radiation in the transition between
two well defined states: for example between two nondegenerate energy levels,
as in the Zeeman effect, and let us assume we observe the radiation emitted
along the direction pinpointed by the unit vector 7.

The intensity I(7,€) of the radiation detected by an observer in a given
state of polarization & orthogonal (the usual transversality of electromagnetic
waves) to 7 is proportional to the emission probability per unit time: in the
electric-dipole approximation, by (13.38)

1(ii,&) o« |[(EY|D-&* | BN, ein=0. (13.63)

The radiation observed in a given direction is polarized: indeed, what we are
considering is a measurement process and, thanks to von Neumann postulate
(Sect. 4.4), after the measurement the state of the system is well determined:
in the case of interest, as discussed in Sect. 13.4, the system consists of both the
atom and the emitted photon. Since the measurement consists in detecting
the state of the atom and the state of motion of the photon (energy and
direction of propagation), it follows that also the polarization state € of the
photon is determined: it is (always thanks to von Neumann postulate) the
state such that the emission probability, i.e. the right hand side of (13.63), is
a maximum. The latter is obtained in the following way: putting

d=(EY|D|E?) (13.64)

we must find the maximum of |d - &*| with the constraints - = 0 and
€* - €= 1: one can take advantage of the method of Lagrange multipliers by
maximizing

(@ -d)(d*e&)—AE* i) —p@E-e—1).

By taking the derivative with respect to €* one obtains
(d*&Vd—Ait—pe=0 = & o (d*&)d—\ii.
and imposing -7 = 0 we get A = (d*- &) (d- 1), whence

-

¢ d—(d-mi = 6:—), e .e=1 (13.65)

i.e. € is proportional to the projection of d onto the plane orthogonal to 7.
Let us examine some examples.
Suppose we have an atom in a magnetic field B parallel to the z-axis.

-

Consider a 7 transition ( AM = 0): then by (13.46) d = (0,0,d) is —up to a
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phase factor — a real vector, therefore also €, given by (13.65), is real, hence
the radiation is linearly polarized for any 7. If we choose 7i in the z-y plane,
then d-7 =0 and €= cf/ d, namely the direction of polarization is that of
the z-axis. If 77 d, the vector € is undetermined, but (13.63) is vanishing:
there is no emission of radiation in the direction of the B field.

Let us consider a o transition, for example with AM = +1: in such
a case (13.44) give d, =0 and d; —idy, =0 i.e. d = (d/v/2) (1,i,0). If we
choose 7 || B: @ = (0,0,1), then by (13.65) &€= (1,i,0)/+/2 which means that
the radiation is counterclockwise circularly polarized in the z-y plane. If 77 is
orthogonal to B, for example 7t = (1,0,0), then €= (0,i,0) and the radiation
is linearly polarized parallel to the y direction. If 77 is neither orthogonal nor
parallel to B , then the radiation is elliptically polarized. In general the content
of (13.65) can be summarized by a simple rule: the polarization of the emitted
radiation in a generic direction 77 is the same one would have, according to
classical radiation theory, for a dipole that

— oscillates parallel to the z-axis for transitions with AM =0;
— rotates in the x-y plane either counterclockwise or clockwise respectively
for transitions with AM =41 and AM = —1.

Indeed, according to the classical theory, the electric field associated with the
radiation emitted by an accelerated charge is in any point proportional to the
component of the acceleration orthogonal to the direction of observation 7i:
roughly speaking, the electric field ‘follows’ the projection of the motion of
the charge onto the plane orthogonal to 7.

Let us now apply the above rule to determine the polarization of the
radiation emitted in the transitions n =2 — n =1 of hydrogen in an electric
field E (Stark effect).

The levels with n = 2 are reported in Fig. 12.2: first of all, let us note that
all the three transitions from the levels with n = 2 to the level with n =1
are permitted by the selection rules (13.51) Al = +1: observe however that
the states (12.17) (those with energies EP=+3e Eag ) are not eigenstates of L2
and only the component with [ = 1 contributes to the transition probability.
As far as polarization is concerned, the two side lines correspond to Am =0,
i.e. they are 7 lines: they can be observed from any direction except the z-
axis (the direction of the electric field) and always are linearly polarized. The
central line is originated by a degenerate level in which both m = +1 and
m = —1: since normally the atoms are randomly distributed in all the states
of the type a|m = +1)+ | m = —1), each of which classically corresponds
to a dipole effecting a harmonic motion in the z-y plane, the line appears
completely unpolarized if it is observed from the direction of the electric field;
if instead it is observed from a direction orthogonal to the field, e.g. from
the direction of the x-axis, it appears linearly polarized along the direction of
the y-axis. Also in this case, much as in the conditions of the Zeeman effect,
in order to observe all the lines it suffices to make the observation from any
direction different from that of the electric field.
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We now consider the problem of finding the angular distribution of the
radiation emitted in a particular transition, i.e. the dependence of the tran-
sition rate on the direction of observation. To this end, substituting the unit
vector € given by (13.65) into (13.38) we obtain:

3
5 We - —
WP (7) dQ = i (d2—d-ﬁ2)dﬂ 13.66
B0 = S (10 P - \d 7| (13.66)
that coincides (as it must be, see (4.15)) with the sum of the transition prob-
abilities to any two polarization states €7, € orthogonal to each other and
to the vector 7i:

d-&?+|d-&P=|d-af +|d-&?+|d-7|>—|d-7)*=|d]> - |d-7|?

(usually one says that the ‘sum over final states’ is made).

Equation (13.66) reproduces the classical result, according to the rule we
have given above for the correspondence between the type of transition and
the type of motion of the classical dipole.

So, for example, in the case of a 7 transition, taken the z-axis along the
direction of the (real) vector d: d = |d|(0,0,1), one has |d-7i |2 = |d|? cos® 0,
then from (13.66)

wfl |d |2 2

W () d = b (0,0)d2 = o= sin?9dQ,  AM =0 (13.67)

and the probability transition integrated over the solid angle is
31712 +1 31712
tot _ Whild | 2 _Awpi|d |
Wei = m 2 ) sin“fdcosf = W . (1368)

In the case of a o transition (AM = +1), d = (|J’|/\/2) (1,+i,0), |d-7|? =
LId2(n2 +n2) = L|d (1 - cos? ), so, from (13.66),

Wi |d |2 1+ cos?0
2w hed 2
and also in this case the integration over the angles leads to (13.68): in the

next section we will see that the |d|? appearing in (13.69) is the same that
appears in (13.68).

wit (0, ¢) dQ = dQ,  AM =1 (13.69)

13.9 The Lifetime of the n = 2 Energy Level of Hydrogen Atom

We can use (13.68) to calculate the lifetime of the level n = 2 of the hydrogen
atom: the state n = 2,1 = 0 cannot decay to the sate n = 1 (strongly
forbidden 0 — 0 transition); the transition rate from the state [210) to the
state |100) is given by (13.68) with d = (0,0,d) , where

d=-e(1,0,0]2]2,1,0)
—e/Yoo @) cos0Y10(0, dQ/ Rio(r)r Ra1(r )r dr
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where the spherical harmonics are given by (10.42) and the radial functions
by (11.41). The integration over the angles gives 1/+/3, that with respect to
r gives (ap/v6)x(4/3)*, therefore d = —0.74 e ag, whence (A = 1216 A)

321% 10.7T4ap\ 2
wff = a5 (F) | =62x 10t =

=Wl =1.6x10""s. (13.70)
The same result, i.e. the same lifetime, is obtained for any state with n = 2,
I = 1: the integration over the angles in (13.66) can be carried out by noting
that

/|Cz’. 72 dQ = d;(/ninj dQ)dj =d} (adij)d,

- d;(4—” 5ij)dj _ AT g (13.71)
3 3

indeed the integration of the tensor n;n; with respect to the angles gives an
isotropic — i.e. invariant under rotations — tensor, therefore proportional to
d;; ; moreover, since the trace of the tensor n; n; is 1, and that of d;; is 3, the
proportionality constant « is 47 /3.

Therefore the integration of |cf |2— |Jﬁ |2 with respect to the angles always
gives (87/3)|d|?, therefore in any event (13.68) is obtained.

We still have to show that |d|> is independent of the initial state
|2,1,--)=alm=0)+F|m=1)+~y|m=-1).

A direct verification is possible, but we prefer to present an argument of
general character that we will use in the sequel. To this end we firstly show
the following

Theorem: the mean value of a scalar operator S on states of given angular
momentum L is independent of the state.

By ‘states of given angular momentum’ we mean the states belonging to
the (2L + 1)-dimensional manifold V;, generated by the vectors | X'/, L, M)
where, according to the notation of Sect. 10.2, X'/ (= o4, o} --+) is the generic
cigenvalue of the scalar observable X (= oy, 03 ---) that, together with L2
and L, forms a complete set of compatible observables.

It suffices to show that the matrix Sarnr = (X', L,M | S| X/, L, M)
is a multiple of the identity.

Indeed, by the lemma of p. 87 (Sect. 4.10), since [L,, S]=0 and in V,,
the eigenvalues of L, are nondegenerate, Sys s is diagonal; furthermore, by
(10.18) and (10.25)

L | L,M)=h\/L(L+1)—M2+M | X', L,M —1) (13.72)

(the vectors | X/ L M) and | X' LM — 1) in (13.72) are normalized); in ad-
dition .
L SL_ =SLyL_ =S(L*—L3+hLs) (13.73)
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therefore by (13.72) (X' omitted)
(L,L|LySL_|L,Ly=(L,L—1|S|L,L—1)xh*(L(L+1)—L*+L)
and by (13.73)
(L,L|LySL_|L,LYy=(L,L|S|L,L)xh*(L(L+1)—L*+1L) .

As a consequence Sp ;. = Sp—1,L—1 and, by iteration of the procedure, one
shows that all the matrix elements Sy s are equal to one another.

What we have just shown is nothing but the degeneracy theorem of the
eigenvalues of scalar operators restricted to an eigenspace of EQ; indeed, the
restriction of the operator S to Vp is Sp = P, SPr (P is the projector
onto Vy, ) and still is a scalar operator because P, commutes with L:

+L +L
LZPLZLZ( > |E’,L,M><E’,L,M|): > M|ZLM)Z' L M|
M=—L M=—L
+L
(X 1 LMY L M) L. =P L
M=—L

and for the L, and L, components the same argument applies: it is sufficient
to express Pr, by means of the eigenvectors of L, and L,, instead of those of
L,.

Let us now use this theorem to demonstrate the independence of |cf |2 of
the initial state |n=2,1=1,---):

3
|J|2=Z<2,17'“|Dj|1,0,~'->><<10“'|Dj|271,“'>
j=1
:<2’1’|S|2,1’>

where

3
S=>"D;PyD, (P0:|1,0,0><1,0,0|)
j=1

is a scalar operator: since [L;, Py] =0 (indeed, L; Py = Py L; = 0) and by
use of the properties (4.48) of commutators:
3
[L;,S]= E[Li, D;PoD;] =ik ijeijk(DkPODj +D;PyDy) =0

J=
(€ijk is antisymmetric in j and k whereas Dy Py D;+ D, Py Dy, is symmetric).
Alternatively, we could have noticed that S being the trace of the tensor
(operator) D; Py Dj , is invariant under rotations.
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The same argument can be used to show that, in general, the total tran-
sition probability from a state |E? L,---) of a level E? to the states
|ES L' ---) of a (degenerate) level E?2 is independent of the initial state.
Such transition probability is the ‘sum over the final states’, i.e. the sum of
the transition probabilities to an orthogonal basis of states of the level E? |
for example |ES L' M') (—L' < M’ < L'). The justification of such a
statement again makes use of the von Neumann postulate, but in the present
case it is more complicated inasmuch as it requires to explicitly consider the
‘atom-+photon’ system: the measurement process consists in detecting only
the final energy E2 of the atom, but — the energy level being degenerate
if I’ # 0 — the state of the ‘atom+photon’ system after the measurement
is not a factorized (‘separate variable’) state, namely the atom in a certain
state and the photon in a certain state, but rather is a superposition of states
| atom; photon ) :

L
S ew |EQ L M) (13.74)
M'=—L'

where 7,,, is the state of the photon when the atom makes a transition from
the initial state | E?, L,---) to the final state | EQ L', M") . The transition
probability we are after is the probability that the system makes a transition
to the state (13.74) and the latter, always thanks to (4.15), is the sum of
the probabilities to the orthogonal states | E2, L', M';~,, ) and each of the
latter is given by (13.68). Therefore:

Ll
o 4w3i . .
wit'= > gpis (Bds Lot | DI Eg, LM )W Ep, L', M" | D| Ep, L)
M'=-L'
dw; 0 0 Z
:37103 <En7L7"'|S|Em7L7"'>7 S = ijPL/Dj

where P, is the projector onto the states of angular momentum L’ (and
energy EQ ), and as a consequence commutes with the operators L;, whence
S is a scalar operator. In conclusion, we have shown that the probability
transition from any state of the level EO to the level EC is independent of
the initial state.



Chapter 14

Introduction to Atomic Physics

14.1 The Central-Field Approximation

The present and the following chapters aim at showing that the general theory
expounded so far allows one to understand the general features of atomic
energy levels. To this end, however, the attribution of an intrinsic angular
momentum or spin to the electron will play an essential role: we have already
mentioned that the theory, as it is at the present point of development, is not
able to explain the existence of the anomalous Zeeman effect and we have also
cited the discrepancies between theory and experiment that show up as a fine
structure in the spectra of alkali atoms: these facts, and others that we will
discuss, require the introduction of spin.

Let us begin the present chapter with a general introduction to the problem
of the structure of atomic energy levels: on this subject, that we will discuss
in an essentially qualitative way, we will come back several times in order to
incorporate the effects due to the spin and to the Pauli principle. Part of the
chapter will be dedicated to the study of the alkali atoms which, in many
respects, are the simplest to treat after the hydrogen-like atoms.

The Hamiltonian of whatever atom with Z electron is, in the nonrelativistic
approximation,

Z =2 2
H22<P_a_ze)+ze_ (14.1)

in which the variables with the index « refer to the a-th electron and rqog =
|Ga — ds | :

The meaning of the several terms in (14.1) should be clear: the first term
is the kinetic energy of the Z electrons, the second is the interaction of each
electron with the nucleus whose electric charge is Ze; the third is the energy
relative to the Coulombic repulsion of any pair of electrons (the sum is made
for a >  so that the pairs of electrons are not counted twice).

The Hamiltonian (14.1) is too complicated: in no case, not even for Z = 2,
it is possible to exactly solve the eigenvalue problem, so it is necessary to resort
to approximation methods. Let us rewrite (14.1) as
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A
H:ZHO%Zi (14.2)
a=1

a>f Tap

in which H? is the Hamiltonian of a hydrogen-like atom with charge Z.

If the term relative to the electronic repulsion were absent, the problem
would be exactly solvable: in each H? only the variables relative to the a-th
electron appear, so not only they commute with one another, but the problem
is a ‘separate variables’ one (see Sect. 11.2). In this situation a complete set
of eigenvectors of > HZ? is provided by the simultaneous eigenvectors of
the HQ?’s in which the state of each electron (as long as spin is ignored) is
characterized by the three quantum numbers (nlm):

| (n1lima), (n2lamz), -+, (nzlzmz)) . (14.3)

The eigenvalue of Y H? corresponding to the eigenvector (14.3) is

62

— _ 2
E=FEp +Ep+-+E,,, By=—2 s (14.4)

In this approximation, i.e. the one in which the interaction among the electrons
is neglected, each energy level is largely degenerate. First of all, since the
energy of each electron only depends on n, there is the degeneracy on [: we
will ignore this degeneracy, i.e. we will consider the energies of states with
the same n and different [ as being different from one another. The reason for
doing so is that such a high degeneracy would complicate the discussion in a
useless way, given that the most immediate effect of the electronic repulsion is
just that of removing the degeneracy on [: since the degeneracy on [ is peculiar
of the Coulomb potential, it suffices — from a formal point of view — to add
a central potential U(r,) to each H?, whose effect is that of removing the
degeneracy on [, and then add —3_ U(ra) to the term > 5 €?/rap: the
choice of U(r,) is not relevant for our purposes here, whereas it is indeed
relevant for anyone that intends to make accurate calculations on atomic
structure.

What we have just described is known as central-field approximation
or independent-electron approximation (we could also call it ‘0-th order
approximation’): each electron has its own quantum numbers (nim), that
constitute what is also called an atomic orbital (or simply orbital). Each
electron is then characterized by occupying a given orbital.

On the basis of what we have said, one should conclude that, in the
independent-electron approximation, the ground state of any atom is that
in which any electron is in the orbital n = 1, I = m = 0. But in nature things
go differently: it is well known, in effect, that in order to explain the periodic
table of the elements one must admit that:

in any atom no more than two electrons may have the same quantum numbers
(nlm);

or equivalently:
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in any atom no more than two electrons can occupy the same orbital.

The above statement is a particular case of a general principle in Nature,
known as Pauli principle, that we will enunciate in a more precise form and
discuss in the next chapter.

As a consequence, in the ground state of helium both electrons occupy
the orbital n = 1,1 = m = 0; in lithium (Z = 3) two electrons occupy the
orbital n = 1,1 = m = 0 and the third electron occupies the next orbital
n=2,1=m = 0. In the notation (14.3) the ground state of He is

1(100), (100)) . (14.5)

It should be evident that, particularly for atoms with many electrons, the no-
tation (14.3) is rather cumbersome: not only, it also is incorrect inasmuch as it
presupposes that the electrons can be numbered, i.e. that they can be distin-
guished from one another; for this reason one prefers to give the electronic
configuration, i.e. the distribution of the electrons in the various orbitals,

by representing the orbitals by the symbols 1s, 2s, 2p, 3s, -- -, in which the
number indicates the value of n and the letters s, p, d, f, - -+ the values of [
(0,1, 2,3, ---); one then writes as the exponent of such symbols the number

of electrons that occupy the corresponding orbitals.
So, for example, the ground-state configurations of the atoms from helium
to carbon (Z = 6) are

He: (1s)% Li: (1s)%2s; Be: (1s)%(2s)% 146

B: (1s)%(2s)%2p; C: (1s)%(2s)?2p? (14.6)
and more complicated ones will be met in the sequel. When all the 2! + 1
orbitals corresponding to given n, [ are occupied (2 electrons per orbital), one
says that the shell (n,l) is complete and it is put between parentheses: in
all the cases considered in (14.6) we see that the shell 1s is always complete
and the shell 2s is complete starting from beryllium on. In order to fill the
shell 2p, 3x2 = 6 electrons are needed and this occurs for the first time in
the case of neon that has Z =10, so Ne : (1s)?(2s)%(2p)°.

In order to write the ground-state configurations of the various atoms, it is
necessary to know in which order the orbitals must be filled, i.e. the sequence
in energy of the orbitals themselves as it results by taking into account the
Coulombic repulsion among the electrons. The filling order of the orbitals is
the following:

1s 2s 2p 3s 3p 4s 3d 4p 5s ---. (14.7)

Note that the sequence in energy is not the natural one corresponding to
increasing n. Already between 4s and 3d an inversion occurs: we will come
back later in this chapter on the origin of this fact.

The independent-electron approximation should be good if the term
> €?/ros were responsible of only small corrections to the energy levels
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(14.4). Things do not go this way, as we can realize by considering the
helium atom. Since in the independent-electron approximation the ground
state of He is that in which both electrons occupy the orbital 1s, the first-
ionization energy Ej (namely the energy necessary to extract one electron)
should be Z?x 13.6 ~ 54eV. Experimentally instead the first-ionization en-
ergy is 24.6 eV: the effect of the repulsion between the two electrons is that of
reducing the first-ionization energy by a sizeable 30eV.

In Sect. 14.3 we will explicitly calculate the first-order perturbative cor-
rection due to the term e?/r;o and we will find a value of 20.4eV for the
first-ionization energy, a value that starts being acceptable.

It is then clear, a fortiori in the case of atoms with many electrons, that
the term Y e?/r,p cannot be neglected: we will examine in due time its ef-
fect on the structure of atomic levels, but for the time being — at least in the
first approximation — one can imagine to take it into account for a pertur-
bative calculation in which Y, H? is the unperturbed Hamiltonian: in such
a case, as we have learned in perturbation theory (and explicitly seen in the
discussion of the Stark effect), the approximate eigenvectors of the Hamilto-
nian corresponding to the eigenvalues approximated to the first order still are
eigenvectors of the unperturbed Hamiltonian. In the present case, in general,
the approximate eigenvectors are not tout-court the vectors (14.3), because
the eigenvalues of the unperturbed Hamiltonian are degenerate: even ignoring
the degeneracy on I, to the 0-th order there still is (for each electron) the
degeneracy on m and the so called exchange degeneracy that, as the name
says, corresponds to the fact that, if the quantum numbers of two electrons are
exchanged, the energy is unchanged: in any event the approximate eigenvec-
tors are linear combinations of the vectors (14.3) corresponding to the same
configuration: actually, the electronic configuration pinpoints an unperturbed
energy level without either attributing a value of m to the single electrons, or
saying which electron is in which orbital.

Therefore the concept of electronic configuration ‘survives’, at least up to
the first order, the effect of the Coulombic repulsion among the electrons: this
observation partly reassesses the vectors (14.3), namely the classification of
the atomic states in the independent-electron scheme, inasmuch as it is from
it that the electronic configuration is determined.

We may examine the importance of the concept of electronic configura-
tion also in a different way: let us assume we know the energy levels of the
Hamiltonian (14.1) and let us also imagine to adiabatically ‘switch off’ the
Coulombic repulsion among the electrons: in other terms, let us multiply the
term > e?/r,s by a parameter A and ask ourselves what happens to the
energy levels when A is varied with continuity from 1 to 0. Since the effect of
the Coulombic repulsion is that of removing, at least partially, the degener-
acy present in the independent-electron approximation, some groups of levels,
separated for A # 0, will merge for A = 0 in a unique level corresponding to
a well determined electronic configuration: so, on top of the genealogical tree
of each energy level of (14.1), there is the electronic configuration from which
it arises.
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Viceversa, given the electronic con-
figuration, we will learn how to de-
termine the number of branches into
which the genealogical tree devel-

(1s)%(25)%2p% (15)?2s2p® (15)?(25)?2p 3s

3
ops, i.e. the number of energy lev- g p s 53
els that originate from it: Fig. 14.1,
that we now report without explain-  “Fo °P1 °P2 *Po *Py P,
ing its details, illustrates the idea in Fig. 14.1

the case of the first configurations
of carbon: the letters S, P, D (as said in Sect. 10.4) indicate the values
L = 0,1, 2 of the angular momentum of the levels (we indeed know that
the energy levels of the Hamiltonian (14.1) are classified by the total angular
momentum L); the second generation levels (the bottom ones) derive from
interactions relativistic in nature, that we have not yet taken into account.
So, in conclusion, to summarize the situation in a few words, one can say
that the independent-electron approximation is unsuited for the calculation
of energy levels, but it plays an essential role in the classification of the states
and, therefore, in the determination of the number (and the quantum num-
bers) of the levels that stem from any electronic configuration.

14.2 The Variational Method

The variational method allows one to find an upper limit for the energy of
the ground state for a (sometimes even complex) system: from the conceptual
point of view it is a very simple method and, what is more, it is very effective:
for these reasons it is widely used in atomic as well as in molecular, nuclear
physics and so on.

The starting point is the following: if H is a Hamiltonian and FEj its lowest
(unknown) eigenvalue, for any vector | A) one has

(A|H|A)> By, (A]A)=1 (14.8)

in which the equality sign holds only if | A) is an eigenvector corresponding
to the eigenvalue Ej. The inequality (14.8) is obvious: the mean value of
measurements of H in the state | A) certainly is greater or equal to the
minimum eigenvalue. Formally, if | E,, ) is a basis of eigenvectors of H,

14) =Y an|Bn) = (A|H|A) =Y Eylan? > Eolan® = Eo .
n=0 n=0 n—0

The variational method consists in choosing a set of vectors (if we are in
the Schroédinger representation, such vectors are called “trial functions”)
|A; M, Ao, -+, Ay ) indexed by the parameters A;, Az, ---, A, and cal-
culating the minimum of the function

(A; M, Aoy o A | H| Ay Ay gy -0 Ap)
(A5 My A, s A [ A5 A g, o An)

F()\17 )\27 An)
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(in the case the vectors | A; A1, Ao, -+, A, ) are normalized the denominator
is not needed); the result is an overestimate of Fy: of course, the smarter the
choice of the family | A; A1, A2, -+, Ay ), the better the estimate of Ey.

The estimate can be improved by increasing the ‘degrees of freedom’ of
the family of vectors: for example, let {| &)} be a (either finite or infinite) set
of independent vectors (not necessarily orthogonal to one another); the family

|A§/\17)\27"'7/\n>zz)\k|k>

is the n-dimensional manifold V,, C ‘H generated by the first n vectors of the
set and, being V,,+1 D V, , the estimate can only improve with increasing n.

The variational method can be also used to obtain an overestimate of
the first excited level, provided the family |A; A1, Ag, -+, A, ) is chosen
orthogonal to the (even unknown) ground state: this can be achieved if, for
example, it is a priori known that the ground state is even (under spatial
inversion) and the first excited state is odd (as it happens in one-dimensional
problems) or that they, in any event, belong to different eigenvalues of an
operator whose eigenvectors can be easily characterized (as those of the spatial
inversion).

We conclude the present section with the demonstration of the quantum
version of the virial theorem , that we will use in the next section to estimate,
by means of the variational method, the energy of the ground state of the
helium atom.

For a system with n degrees of freedom, let

2

n
=> 5
— 2m
=1
where V(¢1, -+, ¢n) is a homogeneous function of degree k :

le 8.%% Vizy, -+ ,xn) .

Thanks to the properties of commutators (4.48) and (4.54) one has

=1 i=1 i=1

—ih(2T —kV).

(Q1>"' 7qn)ET+V

If | E') is a generic (proper) eigenvector of H, one has

Y (Ellpia,H]|E)=0=2(E|T|E)-k(E|V|E)=2T-kV
i=1

ie. 2I'=EkV and, owing to T +V = E, finally:
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k 2
T=——F V=—""_F.
24k 2+ k

The Coulomb potential is homogeneous of degree —1, therefore V = 2F.

In the case of the harmonic oscillator £k =2, whence T =V = ;En for all
the energy levels, so (5.7), that refers to the ground state, only is a particular
case.

14.3 The Lowest Energy Level of Helium

We now will estimate the energy of the ground state of the helium atom: we
will start with a perturbative calculation to the first order, then we will make
a variational calculation and compare the two results. It is convenient, not
only for the sake of generality but also in view of the variational calculation,
to consider atoms with two electrons: the hydrogen ion H~ (hydrogen with
two electrons), helium, the lithium (Li™) ionized once, then Bet™ etc.
The Hamiltonian of an atom with two electrons in the central field of the
nucleus with charge Z e is
=2 2 =2 2 2
g=PL_Ze B Ze o (14.9)
2m 71 2m 79 712

in which we will consider the last term as the perturbation:

e2

H=Hy+H', H =" (14.10)
T12

The unperturbed ground state is given by (14.5) and, since it is nondegenerate,
the first-order perturbative correction is

$Ey = ((100).(100)| - | (100).(100))
12
2
:/ "/}100(772)*"/}100(7?1)*2_21/}100(7?1)1/)100(7?2)(31‘/1(31%
2
:/ |¢100(F2)|26—|¢100(F1)|2dV1dV2
T12

where, thanks to (11.8), the first of (10.42) and the first of (11.41)

[1 s Z\3/2
¢100(ra0a¢) = E (GB> QG_ZT/GB (1411)

and therefore

eZ%\? 1
§Ey = ( ) // e 2Aralan — =2/ 4V dV, (14.12)
12

7 ay

The integral in (14.12) is the electrostatic energy of the charge distribution
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3 3
—eZ® _ er> _ 2Z
e 2Zr/ag — __ e nr7 K

Tag 87 ap

p(r) = —e|P100(r,0,0)> =

in the field of a second distribution identical with the first one; so it can be
calculated by the methods of electrostatics: the field F(r) generated by the
distribution p(r) is calculated by means of Gauss theorem (the integrals of
the type [r™ exp(—kr)dr are evaluated as (—1)"d"/dx" [exp(—rr)dr)

1 [ e " —1 Kk .. KX ..
E(r)= 7"2/0 p(r)dV' = e( + e "4+ e )
and the potential is (use that [(1/r? —k/r) exp(—r7)dr = —exp(—£7)/1)
e —1 Kk _,..,
p(r)=e ( . + 5 © ) (14.13)

and finally (also in the last step only integrals of the type [ exp(—x7)dr
occur)

2,3 7 2
0Fy = /p(r)gp(r) dv = —€8K X 47 x (_85&2) _Ze (14.14)

U 8(1]3

and in conclusion the energy of the ground state of the atoms with two elec-
trons is:
2

_ _(22 _ 22) SB . (14.15)

ZeQ_|_5Ze2

E" = Ey+ 6By = —2x
ag 8 ag

The latter is the opposite of the energy necessary to completely ionize the
atom. The first ionization is therefore:

e2

_ (1) 9 e? (1 5 5
Bi=-B -2, = (2 2= Z) o (14.16)
where e?/ap = 2x13.6 =27.2¢V.

Equation (14.16) exhibits that the first-ionization energy of He to the first
order is as anticipated, i.e. 20.4eV. It also exhibits that the experimentally
established existence of the ion H™ (that possesses only one bound state) is not
predicted by the perturbative theory: indeed, for Z = 1 the first-ionization
energy turns out to be negative (—3.4eV), which means that, if one stops
at the first order of perturbation theory, the hydrogen atom cannot bind a
second electron.

We now make the variational calculation. First of all, we have to decide
which trial functions should be considered: in this choice we follow an idea
that is physical in character: each of the two electrons partially screens the
charge of the nucleus, so on the average the other electron is subject to the
(attractive) action of a charge Z' < Z, and this symmetrically holds for
both electrons. The simplest way to implement this idea consists in taking
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as trial function the wavefunction of two electrons in the orbital 1s of an
hydrogen-like atom endowed with a nuclear charge Z’e, and in considering
7' as the variational parameter with respect to which the mean value of the
Hamiltonian (14.9) is to be minimized:

!

|A; Z') = W(7, 7 Z') = i(Z )3 de=Z m/an o=2 2/ (14.17)
47 \ag

ie. W(i,72;Z") is the product of two functions of the type (14.11). In order

to calculate the mean value of (14.9) we proceed in the following way: first of

all, the mean value of the Coulombic repulsion term is given by (14.14) with

Z' replacing Z; then we write

B ﬁ_Z’e2 ﬁ_Z’@ B (Z—-27")e? (Z-2")ée?
Hy= + +
2m 1 2m T9 1 )

) . (14.18)

The trial function (14.17) is an eigenfunction of the first term of (14.18) corre-
sponding to the eigenvalue EOZ/ =2x(—2Z"?€%/2ap) that, as a consequence,
coincides with the mean value; in order to calculate the mean value of the
second term of (14.18) we exploit the virial theorem according to which the
mean value of the potential energy

Z/ 62 Zl e2
1 T2

is twice the value of the (total) energy EZ "+ s0 the mean value of the second
term of (14.18) is given by

2EZ 2¢2
72 -70N=-72'(7-2)".
S (2-2)=-2z-2)E
Collecting all the contributions:
2 2 5 2
(A; 2 |H|A; 2= -2 —2z/(z-2)¢ +°2°¢
as as 8 ap
2
— (27 -227'+ ° z)°
8 ag
that has its minimum for Z’ = Z — 5/16; therefore
512 e?
Bo<—(z- ) 14.19
0= 16 ag ( )
and for the first-ionization energy one has
1 5 25\ €2
Bz (,22- 7+ )" 14.20
=\ 87 7256/ an (14.20)

In the case of He, Ej increases from 20.4 to 23.1 eV, whereas the H™ ion carries
on not being bounded ( E; = —0.74 eV against the experimental result, about
+0.5eV).
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14.4 The Alkali Atoms

The alkali atoms are:
Li(Z=3), Na(Z=11), K(Z=18), Rb(Z=37), Cs(Z=255)

and the ground-state configurations have the form: (complete shells) ns. For
example:

Na: (15)%(25)%(2p)°®3s ; K: (15)%(25)%(2p)%(35)%(3p)®4s . (14.21)

Note that in the case of potassium (K), in agreement with the sequence (14.7),
once the 3p shell has been filled, the last electron goes in the 4p shell instead
of the 3d.

The alkali atoms have one electron more than the noble gases He, Ne, Ar,
Kr, Xe, and this fact explains many properties, like the fact that one only elec-
tron — the ‘extra’ one — determines both its physical and chemical properties.
From the chemical point of view the extra electron is the valence electron (the
alkali atoms have valence 1); it is also called the optical electron inasmuch as
it is responsible for optical transitions, whereas the remaining Z — 1 electrons,
that make up what is called the atomic core, do not take part in optical
transitions: indeed they occupy a particularly stable configuration, that of the
noble gas with Z — 1 electrons, but even more stable than the latter because
of the higher nuclear charge: for example, while the first-ionization energy of
He is 24.6eV, from (14.20) it appears that the one relative to Lit is > 74eV
(the experimental value is 75.6eV).

The first—ionization energies of the alkali atoms are the lowest among all
the elements: they decrease from the 5.4eV of Li to the 3.9eV of Cs.

We now intend to investigate, at least qualitatively, the structure of the
levels of alkali atoms and, therefore, how the emission and absorption spectra
of vapours of alkali atoms should appear: thanks to the stability of the atomic
core (namely an energy of the order of some ten electronvolt is necessary to
excite one of its electrons), in all the excited states of an alkali atom undergo-
ing an optical transition only the optical electron intervenes and it is exactly
such levels — in which only the optical electron is excited — that we now have
in mind to investigate.

We have already seen that, in general, the problem of determining — even
by a simple perturbative calculation — the energy levels of an atom is a problem
in which all the Z electrons must be considered along with the Coulombic
repulsion term: the simplicity of alkali atoms precisely consists in the fact
that for them the problem can be brought back, at least to some extent,
to that of one only electron — the optical one — in a central force field. The
approximation consists in considering the atomic core as a rigid distribution of
electric charge spherically symmetric around the nucleus: the electron moves
in the field generated by the nucleus and by such a distribution while the effect
that the electron can have on the distribution, i.e. any effect of deformation
(or polarization) of the atomic core, is neglected. In other words: the atomic
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core influences the motion of the optical electron, but is not influenced by the
latter.
For the optical electron we will have the Hamiltonian

H="-2" 41V (14.22)

where V(r) is the central potential generated by the atomic core. In the next
section we will show how and within which approximations (14.22) can be
derived from (14.1), giving a rigorous formal justification to the arguments
that have led us to (14.22).

In order to discuss the consequences of (14.22) it is necessary to know
V(r), i.e. the charge distribution p(r) of the atomic core; as we will see in
the next section, p(r) itself is known provided the wavefunction of the Z — 1
electrons of the atomic core is known: but obviously the latter is not known.
We will therefore limit ourselves to draw from (14.22) some conclusions that
only are qualitative in character, based on the information we have about
p(r) and, therefore, on V(r). We indeed know that:

) [ p(r)di = —(Z—1)e

ii) the density p(r) is mainly concentrated within a sphere of radius Ry,
of the order of one angstréom, that corresponds to the size of the ionized
alkali atom; for r > Ry we expect p(r) to be very small and to decrease
exponentially (as the radial probability densities of Fig. 11.3).

It then follows from Gauss theorem that

2
7 e2 _¢ for r > Ry

—— for r—0.
r

Given the form of U(r) (Fig. 14.2 refers
to the case Z = 3), let us see what can be
expected, on intuitive grounds, about the
levels of the optical electron.

Let us reason a la Bohr: if the electron went
around orbits external to the atomic core,
by Gauss theorem it always would be in the
Coulombic field of a point-like charge e and
its levels would exactly be those of the hy-
drogen atom, with the relative degeneracy Fig. 14.2

on [ coming about. Deviations from such a

situation must be expected for small values of the quantum numbers n ad I:
indeed, for a given n, the orbits with a lesser [ are more eccentric ellipses that,
therefore, penetrate the atomic core to a larger extent (‘penetrating orbits’);
as n is decreased, the major axis in the ellipses decreases, the orbits become
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smaller and smaller and, as a consequence, the electron ‘spends more time’
within the atomic core. But, on the other side, it is clear that the more the
electron penetrates the atomic core, the higher is the charge it sees: no longer
the charge e it sees when it is outside the core, but the charge Z e of the nu-
cleus decreased by the charge relative to the part of the atomic core that is at
a distance from the nucleus smaller than the distance of the optical electron
itself (again Gauss theorem). The effect of this is that, always in comparison
with the case of an electron in presence of a point-like charge e, the optical
electron experiences a higher attractive force, i.e. it is more bound, i.e. its
energy is smaller. And the more the orbit penetrates and the longer the time
the electron spends within the atomic core, the higher the effect. So it must
happen that, for a given n, the states with different  (from [ =0 to I =n—1)
are no longer degenerate in energy, but those with smaller I (more penetrat-
ing orbits) have lesser energy: therefore all the levels of an alkali atom with a
given value of n have an energy smaller than the level of hydrogen with the
same n. Such differences in energy among levels with the same n and different
l, as well as the differences with the corresponding levels in hydrogen, become
smaller and smaller as n increases.

For now we will content ourselves with this picture a la Bohr, postponing
to the next section a truly quantum treatment of the problem, that will lead
to the same results.

By comparing with the experimental results on the energies of alkali atoms
we can calculate how much the energy levels are lowered as a consequence of
the penetration of the atomic core. Let us consider, for example, the lithium
atom: the ionization energy is 5.4V, so the energy of the lowest energy level
is —5.4 eV : if the effect of penetration is neglected , the energy of the lowest
energy level of Li should be that of the n = 2 level of H (we recall that
Pauli principle demands that the optical electron of Li has n = 2), namely
—13.6/4 = —3.4eV. So, due to penetration, the lowest energy level of Li is
lowered by about 2eV.

The effect is even more considerable in Na, due to the higher nuclear
charge: indeed, the ionization energy of Na is 5.14eV, to be compared with
the 13.6/9 = 1.5eV one would have by neglecting penetration; therefore in
this case the lowering is about 3.6eV.

Let us now examine how much is the effect on the excited levels with [ #£ 0.
In Li, above the 2s there is the 2p level: the transitions between these two
levels occur involving radiation with wavelength A\ = 6707 A | therefore the
difference in energy between the 2p and the 2s levels is 12400/6707 ~ 1.85eV,
which means that the 2p level is lowered only by about 0.15eV. But in Na the
difference between the 3p (the first excited level) and the 3s (lowest energy
level) is about 2.1eV, so the lowering of the 3p level is about 1.5€eV, about
ten times the result found for the 2p in Li! The main reason for this fact is
that 2p is a circular orbit, since it has the maximum value for [ compatible
with n = 2, whereas 3p is an elliptical, i.e. more penetrating, orbit. Indeed,
if we consider the 3d level in Na, corresponding to a circular orbit, one finds
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that the effect of penetration is smaller than one tenth of electronvolt. In this
respect it is interesting to note that already in Na the 4s level is lower than
the 3d: since it is a level with [ = 0, the effect of penetration is sufficient, in

spite of the higher value of n, to make it overstep the 3d level. It is exactly

this effect due to penetration that determines the energy sequence of orbitals
reported in (14.7) and, in particular, the inversion between 4s and 3d.
Hydrogen
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Fig. 14.3

In Fig. 14.3 the diagrams of the energy levels of Li and Na are reported, side

to side with those of H, for the sake of comparison.
The transversal dashed lines represent the possible and observed transitions:

the transitions from the p level to the s lowest energy level (2s for Li, 3s for
Na) form the principal series (p-series), those from the s levels to the lowest
p level (2p for Li, 3p for Na) form the sharp series (s-series), the transitions
s — d give rise to the diffuse series (d-series), finally those f — d form
the fundamental series (f-series): this is the terminology of spectroscopists
that gave rise to the use of representing by the letters s, p, d, f, - - - the states

with angular momentum [ =0,1,2, 3, ---.
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Note that all the transitions reported in Fig. 14.3 occur only between levels
belonging to adjacent columns: even if only some of the observed transitions
are reported, it is experimentally established that in the vapours of the alkali
metals the transitions take place only between s and p, p and d-and-s, d and
p-and- f, i.e. only between states that differ in the value of [ by one unit. This
fact is in agreement with the selection rule (13.51) Al = +1 that holds for
systems with only one electron.

Another important aspect of the spectra of vapours of the alkali metals
is the fact that, if they are analyzed by a spectroscope of a sufficiently high
resolution power, the observation shows that a fine structure is displayed by
the lines of such spectra: namely one sees that the above lines are not simple
lines, but the consist of two or three lines very close to each other. This effect
is not very evident in Li, but it is so in the other alkali metals.

So, for example, in Na the transition from 3p to 3s that, according to Fig.
14.3, should give rise to a single line with A ~ 5890 A (the well known yellow
light of sodium lamps), actually gives rise to two lines with A; ~ 5890 A and
X2 ~ 5896 A : the resolution power necessary to distinguish this doublet must
be Av/v = A\/X ~ 6/6000 = 10~3. Things go in such a way as if the level
3p were not a single level (as it comes out from the theory so far developed),
but a doublet of levels distant about 2x10~2eV (AE/E = AX/)\) from each
other. Experiment shows that all the lines of the p and s series are doublets
whereas the other ones (d and f series) are triple lines; however in the latter
case the fine structure is somewhat harder to detect.

In concluding this section we may state that the theory enables us to
understand at least the ‘gross’ features of the spectra of the vapours of alkali
metals; experiment then shows the existence of a fine structure, that the theory
so far developed does not even qualitatively account for: in order to explain
the fine structure one should admit that the alkali atoms possess more energy
levels, i.e. in turn more states, than those predicted by the theory. As already
announced, this is one of the problems that will be solved by attributing
further degrees of freedom to the electron: the spin.

14.5 Quantum Treatment of the Alkali Atoms

The aim of this section is to translate in a formal way the treatment we have
given in the previous section, on intuitive grounds, of the alkali atoms.

It is certainly true that we will find by a more complicated way some results
that can be considered as already achieved, basing on the essential physical
aspects of the problem; but translating the problem in formal terms opens the
possibility of a quantitative, albeit approximate, treatment. Furthermore this
subject allows us to understand the meaning and the limits of the concept
of atomic core that, at least in the first approximation, is applied not only
to the noble-gas-like configurations, but also to complete-shell configurations
(as, for instance, the electrons of the shells (1s)?(2s)? in carbon).

Let us start from the Hamiltonian (14.2). A perturbative calculation in
which the term Y e?/r,s is considered as the perturbation cannot be very
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meaningful, at least for atoms with a somewhat large value of Z (Na, K, ...):
indeed, the number of terms in the summation is Z(Z —1)/2, i.e. it grows
fast with Z and each term carries a contribution that can be estimated as
e?/ag, i.e. about 20eV. Therefore the first-order corrections are too large to
consider the perturbative method as reliable.

Therefore we will proceed in a different way, trying to implement the
atomic-core approximation of the previous section. Le us rewrite (14.2) in
the following way:

o2
/

H=H)+H + ; . (14.24)
where the variables with index 1 refer to the optical electron and H' is the
Hamiltonian of the Z —1 electrons (those belonging to the atomic core). The
term Y e?/r;, represents the interaction between the optical electron and
the electrons of the atomic core and, since it contains the variables of all the
electrons in a non separable way, it generates correlations between the optical
electron and the other ones: so it is only possible to talk about states of the
entire system and not about states of the optical electron alone. In other
words, the exact eigenfunctions of H cannot be factorized into the product of
a wavefunction relative to the optical electron times a wavefunction relative
to the electrons of the atomic core.

Let now ®(&s, -+ ,Zz) be the eigenfunction of H' corresponding to the
lowest energy E’:
Hé=FEo. (14.25)

The wavefunction @ is therefore the wavefunction of the ground state of the
ionized alkali atom, i.e. of the atomic core (as we will see in the next chapter,
the ground state of the ionized alkali atom is a state with angular momentum
L =0, therefore the eigenvalue E’ is nondegenerate).

Let us introduce the quantity

(T, -
V(T (@2, T2 42z, (14.26)
|331 - $a|
and examine its physical meaning: |@(%a,---,Zz)|? integrated over all the

variables but the a-th is the position probability density p(®)(Z,) for the a-th
electron: as a consequence, —e p(®)(Z) has the meaning of charge density in
the point Z due to the a-th electron and

—ep(Z z—eZpo‘)

is the charge distribution in the point Z due to all the electrons of the atomic
core. Equation (14.26) can be written as

(@) (7 :
V(#) = 262/ |’l (x3)| i, 262/%@ (14.27)

xr1 —
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and is the potential energy of the optical electron in the field produced by the
charge distribution of the atomic core assumed as rigid, i.e. not deformed by
the addition of the optical electron.

Since the ground state of the ionized alkali atom has angular momentum

L = 0, the wavefunction (&, -+ ,Tz) is invariant under rotations: this
means that if #5, -+, £}, are obtained by operating the same rotation on all
the coordinates Ts, --- , £z, one has

D(Ty, - By) =DP(Ta, -+ ,Tz) . (14.28)

This entails that any p(o‘)(f) is rotationally invariant, i.e it only depends
on r. Let us indeed consider p(®(#). Owing to (14.28) and dZs --- dZy =

dzs --- dzy (recall that the Jacobian of the transformation from #3, --- , Tz
to x4, ---, £y is 1), one has

. - = o B
P(2)(9U) :/|@($7 3, )| d@s --- dZz /|Q5 LBy ’Z)| dZs - -+ Ay

- /|¢<f’,f§,--- ERPAE - day = p () |

So also p(Z) is spherically symmetric and as a consequence V(Z) = V(r). It
is now convenient to rewrite (14.24) in the following way:

H=H'+HY+V(n)+ (- V(n)+ Z . ) (14.29)

Equation (14.29) just is (14.2) written in a different way: so far we have made
no approximation. Now we intend to consider the term

2

zZ
V() Z Ty, Tz) (14.30)

as the perturbation. As a consequence, the unperturbed Hamiltonian is
H°=H'+H+V(r) (14.31)

that is one displaying separate variables: HY + V(r1) only depends on the
variables of the optical electron, H' on the variables of the other electrons.
Therefore a complete set of eigenfunctions of H? consists in the products of
eigenfunctions of HY 4V (ry) times the eigenfunctions of H’. In this approxi-
mation, in which the V'’ given by (14.30) is neglected, one is allowed to speak
about the state of the optical electron and the state of the atomic core as of
two uncorrelated things. Furthermore, if we are interested in the states of the
atom in which the atomic core is not excited — and is therefore described by
the eigenfunction @(Zs, s, - ,Zz) — we must only find the eigenfunctions of
HY +V(r1), which exactly is the Hamiltonian (14.22) of the previous section.
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What we have gained is that we now know what we have neglected in
writing (14.22), so we are also able to calculate its effect. Assuming that we
know both @(&y, &3, -+ ,Zz) and the eigenfunctions (&) of HY + V(ry),
let us calculate the effect of V/(#1,---,Zz) by means of perturbation theory.

Let us first consider the matrix elements of V'’ between eigenstates of H°
of the type

Uy (&h, -, Tz) = 1(dh) (T, Tz)

Us(Z, -+, Zz) = o(dh) P(Z1,- - ,Z7)

where 17 and v are two eigenfunctions of H + V(r1), possibly equal to
each other. One has

(14.32)

/Wf V({fl)WQ dfl dfz = /wr({fl)‘/(’rl)wg(fl)dfl

z 2 * (2 |¢(f2>"'>fz)|2 - - >
=) e /wl(xl)—¢z(3¢1)dx1-~- di’z
a=2

|fl_fa|
3 /w;<f1,-~- 72) W7, 77) ATy - ATy
a=2

|fl _fa|

whence

Z 2
/Wf(z © —V(Tl))!pzdfl"'deE/WfV/WQdfl”'de:O

r
a—2 la

for any Wy, W with the form (14.32). As a consequence, only the matrix
elements of V' between eigenfunctions of H° that differ in the eigenfunction
of H' —i.e. in the eigenfunction of the atomic core — can be nonvanishing. So
not only the first-order perturbative contribution of V' is vanishing, but the
matrix elements of V'’ that may contribute to higher orders are divided by
large energy differences (see (12.26)), inasmuch as excitation energies of the
atomic core.

Once the validity of (14.22) is established, let us see how quantum mechan-
ics allows us to find again the results of the previous section about the energy
levels of the alkali atoms. To this end we rewrite the Hamiltonian (14.22):
H=p2/2m—Ze/r+V(r), as
2 e? Z —1)e?

H=——-"+U'(r), U’(T)EV(?”)—(

14.33
2m T r ( )

U’(r) is the difference between the potential energy of the optical electron
in the field of the atomic core (charge +(Z — 1) e¢) and that in the field of a
point-like charge (—(Z —1)e) in the center of the distribution: so U’(r) ~ 0
for r > Ry and is nonvanishing for r < Ry only because the charge of the
atomic core has a finite extension; it therefore accounts for the penetration
of the optical electron inside the atomic core. The qualitative behaviour of



264 14 Introduction to Atomic Physics

U’(r) can be deduced from Fig. 14.2 as the difference between the solid curve
and the dashed one and is reported in Fig. 14.4.

bU’ (r) Let us now treat U’(r) as a perturbation: we
- - must calculate the effect of U’(r) on the levels
of a hydrogen atom. To the first order, since the
matrix elements of U’(r) between states with dif-
ferent values of [ and/or m are vanishing, we must
calculate the mean values

~_(Z-1)e
~ T

Fig. 14.4

that immediately provide us with the first-order corrections to the energy
levels. Note that such corrections AFE,; may depend on n and I, but not on
m because U’(r), being spherically symmetric, cannot remove the degeneracy
on m.

In the Schrédinger representation the expression for the mean values
(14.34) is

AE, 1 =(n, l,m|U'(r)|n,l,m) (14.34)

AEnl:/0007"2|Rnl(r)|2U’(r)dr:/ooo w1 ()P U (r)dr (14.35)

where the uy(r) are the reduced radial functions defined by (11.10). Since
U’(r) practically is nonvanishing only for r < Ry, the integral in (14.35) is
determined by the behaviour of |u,(r)|?> in this interval and, in addition,
given that U’(r) diverges for r — 0, , the behaviour of |u,;(r)|> near the
origin gains in relevance.

We know from Sect. 11.3 that |u,(r)|? ~ 7(?**2) for r — 0 and therefore
the higher the value of [, the faster its decrease: this entails that AFE,,;, that is
negative definite, decreases in absolute value as [ increases. It is likewise clear
that |AE, ;| decreases as n increases because, as n increases, the probability
distribution |u,;(r)|> is more and more concentrated around higher values
of r, as it appears in Fig. 14.5 (in the next page) in which we have reported
the radial probability densities |uy,;(r)|?> for n =2 and n = 3: all the curves
are drawn at the same scale, in order to facilitate the comparison. It helps to
have in mind that in Li the size Ry of the atomic core is about 0.5 A whereas
in Na Ry ~ 0.8A: the comparison should be done among curves |u,(r)|?
with different values of | and fixed n, as well as among those with n = 2
and n = 3 for a given [, paying attention only to the region r < Ry. Note
in particular that where |ugo|? has its first maximum (the only one relevant
for (14.34)), |uz1|? still is practically vanishing; observe, in addition, that the
maximum of |uzg|? is lower then that of |uzg|?.

The translation of Bohr language into that of quantum mechanics should
by now be clear: for fixed major axis, i.e. for given n, the more penetrating
orbits correspond to the states for which the probability of finding the optical
electron close to the nucleus is higher (behaviour 72 of |¢|?, occurrence of
the maximum close to the origin); for fixed value of the angular momentum !
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the orbits with higher n correspond to the states for which the probability of
finding the electron far from the nucleus is higher, i.e. to the wavefunctions
that, even having the same behaviour at the origin, give rise to lower maxima
of |[¢|? close to the origin.
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k|u20|2
2 4 6 8 T[A}
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L|u32|2
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Fig. 14.5



Chapter 15

Composite Systems. Pauli Principle

15.1 The Hilbert Space for a System with Many Particles:
Tensor Product of Hilbert Spaces

What we are going to discuss now only is a problem of language and notation.

Let 1 and 2 be two particles. The dynamical variables of particle 1 are ¢,
p1 and their functions f(g1,p1), those of particle 2 are ¢o, p2 and f(g2,p2).
If we only have one of the particles, we know how to characterize its states:
there are several ways for doing it, for example a state is characterized by
being an eigenstate of one or more observables, or by its representatives in
some representation, or also by the set of the mean values of all the observables
(see Sect. 4.8). Things are unchanged if the system consists of both particles,
only the set of observables changes, now being the set of all functions of ¢;, p1
and g2, p2: indeed we have found no particular problems in going from one-
dimensional to three-dimensional systems, and here we are facing the same
situation. It is however convenient, when dealing with a system consisting of
two (or more) particles, to use terminology and notation that emphasize the
fact that the system is made out of two (or more) subsystems. One reason
for doing so is that, under certain circumstances, one is not interested in one
of the two systems and can bring the study back to that of just one particle:
this is what we have several times expressed by saying that the system is a
‘separate variable’ one (see Sects. 11.2, 13.4 and 14.5); one more reason is that
there exist states of the composite system in which each of the two particles is
in a well determined state and therefore, in such cases, one is allowed to talk
about the state of a subsystem, while in general only talking about states of
the entire system is meaningful.

The problem is the following: let H; be the state space of particle 1, Ho
that of particle 2 and H the state space of the composite system. Which is
the relationship among Hi, Hs and H? We will face this problem in the
Schrédinger representation, instead of doing it in the abstract, because it is
simpler, but all the conclusions apply to all ‘composite’ systems for which the
observables can be expressed as functions of two sets of observables such that
those of a set commute with all those belonging to the other set, much as
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either ¢, p1 and ¢o, p2 for the system of two particles, to which we will now
refer, or ¢, p and the spin variables, as we will see in the next section.

In the Schrédinger representation H; and Hsy are the space of square
summable functions ¢(x1) and x(x2), H is the space of the square summable
functions ¥(x1,z2) . If ¢ (z1) is an orthonormal basis in 1 and x,,(z2) is
an orthonormal basis in Hsg, then ¢, (1) xn(22) is an orthonormal basis in
H, i.e. for any U(x1,20) € H

Lp(xlva) = Zmncmn Cbm(xl)Xn(xQ) . (151)

Equation (15.1) expresses the fact that H is the tensor product of the factor
spaces Hi and Hs:
H=H1® Ha .

In general the tensor product of two spaces H; and Ho is defined in the
following way: if |m ); is a basis in H; and |n)s is a basis in Ha, H is that
space in which a basis is provided by the pairs {|m )1, |n)2} and the scalar
product is that induced in a ‘natural’ way by the scalar products in H; and
Ho, as a consequence of the following notation: the vectors {|m )i, |n )2} are
denoted by |mmn) or also |[m)|n) (the indices 1 and 2 are omitted, but the
order is important: |mn) # |[nm)) and the corresponding ‘bras’ by (nm |
or also (n|({m|; then the scalar product is defined by

(Ik|mn)=(k|m)x{l|n)=0km O -

The definition of H turns out to be independent (up to isomorphisms) of the
choice of the bases in H; and Hs: if the bases one starts with are changed,
the result is equivalent to a change of the basis in H .

In H there are both vectors of the type

1X) =" amba|mn) = (Zmam|m>)x<znbn|n>>

—|A)|B)=|AB) (15.2)

that correspond to states in which the subsystem 1 is in the state | A) and the
subsystem 2 is in the state | B) (such states are called factorized states),
and vectors

|X>:Z cmn|7nn>7 Cmn F Qm X by (15.3)

ie. | X)=|AB)+|CD)+---, in which case one can only talk of the state
of the whole system and not of states of the single subsystems: the latter are
called entangled states.

If €1 is a dynamical variable relative to subsystem 1 (e.g. qi, or p1)
it also is a dynamical variable of the composite system: the operator on H
associated with it acts only on the component m of the basis |[mmn) and,
in the case of the factorized states | X) = |A)|B), only on | A); formally,
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the operator on H = Hi; ® Hs associated with 5(1) should be written as
W ® 1@ | where ¢ acts on H; and 1) is the identity operator on s ;
likewise for the variables relative to subsystem 2. However, in order to keep
the notation as ‘light’ as possible, we will simply write £1) and 5 (or even
&1, m2 ). The notation | A)| B), instead of | AB), will be used especially in
connection with operators that act only on one subsystem (‘single particle’
dynamical variables or ‘one body’ operators).

15.2 The Spin of the Electron

Many experimental facts, apart from those already cited, lead in a more or
less direct way to the necessity of attributing to the electron an intrinsic
magnetic moment [is, in addition to the orbital magnetic moment (13.58).
This means that the electron is not fully described by the variables ¢ and
P, but other variables must be introduced in addition to these. Which are
these new variables? To answer this question we assume that, in analogy with
(13.58), the intrinsic magnetic moment f[is is connected with an intrinsic
angular momentum or spin by means of the relation

(&

- N .
fis=—g5 — 5, §T=35§ (15.4)
where g is a numerical factor to be determined experimentally. Again in anal-
ogy with (13.58) we should be tempted to put g = 1. We will instead see
that, in order to explain the anomalous Zeeman effect, we will have to assume
g # 1. Furthermore, the formulation of quantum mechanics that embodies
the relativity principle (Dirac equation) predicts that electron is endowed
with the spin and, correspondingly, with a magnetic moment related to the
spin by (15.4) with g = 2, in excellent agreement with the experimental facts
(g = 2.0023193043737(82) : the so called “g — 2” is explained by quantum
electrodynamics) .

Let us take § as the new dynamical variables for the electron. Since they
represent an angular momentum, the following commutation relations must
be satisfied:

[8i7 Sj] =ih€ijk Sk - (15.5)

We assume, in addition, that the s; commute with ¢ and p":
[si,q;]=0, [si.pj]=0. (15.6)

So the s; are dynamical variables independent of the ‘orbital’ variables ¢ and
p: it is for this reason that they are said to represent an intrinsic or spin
angular momentum of the electron.

In order to explain the experimental facts we must admit that the com-
ponents of § only have two different eigenvalues: such an assumption, we will
shortly see, is directly connected with other “two” we have already met: the
doublets of the alkali atoms and the two that appears in the Pauli principle

formulation we have given in Sect. 14.1.
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If the components of §, which are components of an angular momentum,
have only two elgenvalueb these must necessarlly be + h and —1 5 h: this
entails that each s? only has the eigenvalue 1 h? and is, ab a conbequence a
multiple of the 1dent1ty Therefore also the operator

3
52:si+s§+s§:4h2:s(s+l)h2

is a c-number and s = % . For this reason the electron is said to be a particle
endowed with spin 1/2. It is not the only one: also the proton, the neutron,
the y-mesons etc. are particles with spin 1/2. The difference between the
orbital angular momentum L? and the spin angular momentum is in the fact
that L2 has infinitely many eigenvalues, §2 has just one eigenvalue. Another
important difference is that the eigenvalues of the s; are half-integers whereas
those of the L; are integers. The total angular momentum of the electron is
therefore
J=L+5

namely the sum of the orbital and the spin angular momenta and the rotation
operators of both the orbital and the spin variables are given by (See (10.29))

U, ¢) = e—ifﬁ¢/h _ e—i(i+§).ﬁ¢/h _ e—iE.ﬁ¢/h o1FA /R

(the last step is legitimate only because the addenda L-7 and -7 in the
exponent commute with each other). The eigenvalues of the components of J
are half-integers and, if we denote by j( j+ 1) h? the eigenvalues of .J 2, the
same holds also for the values of j: j = 2 o 2 AR

We will now look for a representation of the operators s;. The s; are
operators on the space H of the state vectors and, as a consequence, they
should be represented by infinite dimensional matrices; however, since the
spin variables commute with the orbital variables, H = Horb ® Hepin, and
the representation we are looking for is a representation on Hspin whose
dimension is 2: the s; are therefore represented by 2 x 2 matrices.

We choose a representation in which s, is diagonal and we will denote by
|+) and | —) the two vector of the basis corresponding to the eigenvalues
—l—; h and —; h of s,:

1 1
&|+>:+2hpw, %|—>=—2hpﬁ. (15.7)

We know that (15.7) do not univocally determine the basis, i.e. the phases of
the vectors |+) and | —) (see the discussion in Sect. 6.1). We will shortly
realize this fact and we will also see how this arbitrariness can be eliminated.
The representation of s, obviously is

1 1 0
sz—>2h<0 _1) . (15.8)
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The = component s, will be represented by a matrix like

Sz — (Z i) . (15.9)

In order to determine a, b and ¢ we proceed in the following way: since 35 is

a multiple of the identity, one has

0=1[s;,s:]=sylsy,s:]+[sy,s:]5y=ih(syss+525y)

and the analogous relations that are obtained by permuting z, y and z, i.e.

{Sz, Sy} =838y+8y8, =0
{sy,s:}=8y5.+5.5,=0 (15.10)
{82, 8.} =58:8:+5:8.=0

(the expression {&, n} is called the anticommutator of £ and 7).
If we demand that the last of (15.10) be satisfied by the representatives
(15.8) and (15.9) of s, and s, one obtains a = ¢ =0, therefore

_)Ob
S YR

Furthermore s2 = 411 K2 must hold, which means that b = ; he'? ., © being a
real arbitrary phase. It should be now clear that, basing only on the relations
that define s, , it is not possible to specify any further its representation, i.e.
it is not possible to determine the phase of b: indeed b = (4 | s, | — ) exactly
reflects the arbitrariness that (15.7) leave on the phases of the vectors |+ )
and | —). Viceversa, it is clear that fixing the relative phase of the vectors
|+) and | —) is equivalent to fixing the phase of b; so if we chose ¢ =0, i.e.
b= é h, the representation is completely determined. In conclusion:

1 0 1
Sg — 5 h (1 O) . (15.11)
The representation of s, can be obtained, for example, by [s., s;] =ihs,.

One has
1 0—i
Sy = h <—|—i 0) . (15.12)

We have thus determined a representation of the operators s;: the one in
which s, is diagonal and the phases are determined by the representation of
sz . Usually (15.8), (15.11) and (15.12) are written as

S; — %hdi

0 1 0 —i 10 (15.13)
Ox = , Oy = . y Oz = .
1 0 +i 0 0—-1
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The matrices o; are known as Pauli matrices and the representation we
have found is called Pauli representation .

Let us now take the orbital degrees of freedom of the electron into ac-
count: if, ignoring the spin, a representation is determined by a complete set
of compatible observables relative only to the orbital degrees of freedom, in
order to obtain a representation that takes into account also the existence of
the spin, it will suffice to add, to the above set of observables, one compo-
nent of the spin, e.g. s,. So, for example, if one starts with the Schrodinger
representation in which the ¢; are diagonal, and if to the ¢; we add s,, we
obtain a representation in which the vectors of the basis are the simultaneous
eigenvectors of the ¢; and of s, , namely

|Z,+) and |&,-), FeR?.
The representatives of the state | A) then are
Yar(T) = (T, +]A), Ya-(7) = (7, - [ A4) (15.14)

i.e. a pair of wavefunction that we can represent as a two-component vector:

14) = (;‘:*g;) . (15.15)

In the representation (15.15) the operators s; operate as 2x 2 matrices, for
example those given by (15.13). This happens for all the representations pin-
pointed by {orbital observables + one of the s;}.

We will see that also representations in which observables involving both
orbital and spin variables are diagonal are possible and useful: one example
will be provided by J2 = (L+5)2 and/or .J.. In this and in similar cases the
vectors of the basis are entangled vectors of the space H = Horb ® Hspin -

15.3 Composition of Angular Momenta

The law for the composition of vectors in classical physics is well known: if M,
and ]\ng are two (independent) angular momenta whose moduli M; and My
are known, we know that the modulus M of the resulting angular momentum
M= Ml + M, may have any value between |M; — Ma| and My + M, .

The same problem, whose relevance is clarified by the following examples,
shows up in quantum mechanics.

Let us consider an atom with two electrons: we know that, in the inde-
pendent-electron approximation, each electron is characterized by a well de-
termined value of the angular momentum: let [; and [5 be the orbital angular
momenta of the two electrons. Which are the possible values L of the total
angular momentum?

Also: the optical electron of an alkali metal is, for example, inap (I =1)
state; the electron also possesses the spin (s = 1/2): which are the possible
values of the total angular momentum j of the electron?
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More to it: let us consider the total spin operators S =5 + & for two
electrons and let us denote by S(S + 1) k2 the eigenvalues of S2. Which are
the possible values of S, i.e. of the total spin of the two electrons?

Let us try to formulate the problem in a more precise way and, just to
be concrete, let us consider the first example cited above, two electrons of
orbital angular momenta [y and Is . Let us introduce the total orbital angular
momentum L = Ly + Ly and denote, as usual, by L(L+1) k2 the eigenvalues
of L2. For given values of [; and ls, the number of independent states of the
system consisting of two electrons is (2{; + 1) x (2l + 1) (we think we have
fixed also the principal quantum numbers n; and ns): indeed this is the
number of states of the type

[limy, lamg), i <my <+, —lb<mg<+l. (15.16)

We should not expect that any state of the type (15.16) also is an eigenstate
of L2:indeed it is true that L2 commutes with both Ef and E22 , inasmuch
as any component of L commutes with L2 and L2 because the latter are
scalar operators:

[L,L})=0=[L,L}] = [L* L}]=0=[L?, L}]

but

= -

[L127L2]7é07 [L227L2]7é0

because
L2 =1+ L) =L2+L}+2(L1oLaw+LiyLoy+ Ly Ly.)

(Li. commutes with L2, with L2 but does not commute with the terms
containing L1, and L1, ) so that, if any state of the type (15.16) were an
eigenstate of EQ, it would follow that in any subspace consisting of vectors
with given I; and ls — and in turn in the whole H — the (non-commuting)
operators L 2. L1, and Lo, would have a complete set of simultaneous eigen-
vectors. However, since both L2 and L. commute with Ef and EQQ, we can
search, in the subspace of dimension (201 +1)x(2l2+ 1) of all the states with
given l; and Iy, for those states that are also eigenstates of L2 and L,:
such states, that we will denote by

|yl LM), (15.17)

necessarily will be linear combinations of the states (15.16).
To summarize: we have the possibility of classifying the states by means
of either the eigenvalues of

L2 L. L2 L. (15.18)

or the eigenvalues of
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L2 L2 L%L,. (15.19)
In the first case the states (15.16) are obtained, whereas in the second the
states (15.17) are found.

The problem is that of finding which values can L assume in (15.17) for
given values of [; and [ . The solution of this problem is based on the obvious
consideration that, no matter how the states are classified, the number of
independent states with given [; and I3 must be always the same, namely
(2L +1)x (212 +1).

Another consideration that plays a crucial role in the solution of the prob-
lem is that if there exists, for given [y and Iy, a state with some value of L
and of M, then necessarily there exist 2L + 1 independent states with that
value of L: according to the classification (15.17) these are the states with all
the values of M between —L and +L. This happens because the operators
L2, L2 and L? commute with all the components of L and therefore their
eigenvalues are degenerate with respect to M; or, equivalently, if a state with
given L and M is found, all the 2L+1 states |l1lo LM ) with —L < M < +L
can be found by means of the raising and lowering operators L, and L_ .

The solution of the problem of finding the possible values for L goes in the
following way.

1. The states (15.16) are also eigenstates of L, corresponding to the eigenval-
ues M = mi+mso ; the maximum value for M is obtained for m; = [; and
mgo = lo: as a consequence, there exists one only state with M =11 + I
that, owing to the lemma of p. 87 (Sect. 4.10), must be en eigenstate also
of L2:indeed the triple Iy, Iy, M = l1 415 of eigenvalues of Ef ) EQQ and
L. is nondegenerate and L% commutes with these operators; furthermore
in this case L must necessarily have the value [ + l5: certainly not less,
for L > M ; certainly not more because otherwise, due to the observation
made above, there should exist states with M > 1y + 5.

2. Among the states (15.16) there exist two independent states with the
value M =11 + 15 — 1: they are

|llm1:ll,lgm2:lg—1>, |llm1:ll—1,12m2:lg>. (1520)

A suitable linear combination of the states (15.20) must be the state with
L=10+1y and M =13 + 1y — 1 (that must exists); setting this state
aside, there remains one only state with M =1y + s — 1, i.e. the linear
combination of the states (15.20) orthogonal to the linear combination
which gives the state |l1lo, L =13 + 13, M =11 + 13 — 1) : by the same
reasoning of point 1 above, such a state must be an eigenstate of L? and
the value of L must be ;1 +1s — 1.

3. Among the states (15.16) there exist three independent states with M =
l1+12—2; two suitable linear combinations of them provide the two states
with L=+, M=1l1+1l, —2and L=01+lb—1, M=11+1s —2;
the third combination orthogonal to the two above has, therefore, L =
l1 +15 —2---. Where shall we stop? Let [y < ly. It is very easy to
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realize that the number of independent states with a given value of M is
constant — and equal to 2l; + 1 — when M takes a value between Iy — [y
and —(la — 1), i.e. it no longer increases as M decreases: let indeed
M = mq +mg such that —(lo—1;) < M < ly—1;; this value of M can be
obtained in 2l; +1 different ways, by taking m, = —l1, —l1+1, -+, +1
and correspondingly mo = M —my , which covers all the values permitted
for mao: mo < M +11 <lyg and mo > M — 11 > —I5.

It is clear that the procedure stops when the number of states with a given
value of M stops increasing as M itself decreases, i.e. it stops with L = lo—17 .
Indeed it is straightforward to check that

la+11
> QRL+1)=(2h+1)x(2+1)
L=l>—1;

as it must be, because the number of independent vectors does not change.
The following table, relative to the particular case I =1, I3 = 2 may be
useful to summarize the procedure discussed above.

M 3 2 1 0 -1 -2 -3

mi+mg | 14+2 | 1+1 140 1-1 1-2 0-2 |-1-2
0+2 0+1 0+0 0-1 -1-1
—1+2 -1+1 -1+0
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We have thus solved the problem of adding two angular momenta: the value
L can assume, once [; and [o are given, are

I+, L+l-1, - |l —1

so that, according to the classification by means of the eigenvalues of (15.19)
one has:

|l112LM>, —L<M<+L |11—ZQ|SLSZ1+ZQ. (1521)

Of course all the above applies to any two independent angular momenta.

The previous discussion enabled us only to determine which are the values
of L in the classification (15.17), but not to determine how the vectors (15.17)
are expressed as linear combinations of the vectors (15.16):

iy LM)=">"

ClL1 %1 1o ma [limi, lamg) . (15.22)

mima
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The coefficients CLM " are called Clebsch-Gordan coefficients; the
— very important — problem of their determination will not be faced here; we
will limit ourselves to discuss it in a particular case that will have a remarkable
interest for us in the sequel: it is the case, already cited in the introduction of
the present section, of the composition of the spins of two electrons.

The spin states of two electrons can be classified by means of the eigenval-

ues of s;, and so, (these are the operators (15.18), where one should note

that §2 and §2 — the analogues of L2 and L2 — are omitted inasmuch as

multiples of the identity) and in this case four states are obtained
1 1
|S,128/22>7 8/12::|:2h7 SIQZ::I:2H

(i.e. states of the type (15.16)) that we will write with obvious notation (see
(15.7))

|+ +), |+=), |=4+), |--). (15.23)

We can alternatively classify the spin states of the two electrons by using the
eigenvalues of S? = (51 4 5)? and of S. (the operators in (15.19)) and one
obtains the states

namely
[1+1), [1 0), [1—-1), [0 0). (15.24)

The spin 1 states (S = 1) are called the triplet states, whereas the spin 0
state (S = 0) is called the singlet state. We want now to determine how
the states (15.24) are expressed as linear combinations of the states (15.23).
First of all, it is evident that

[1+1)=]|++), [1-1)=]—-—).

The third triplet state, that with S, = 0, will be a linear combination of
| + —) and | — +); it could be obtained by applying the lowering operator
S_ =S5,—185y to thestate | 1 +1); actually the calculation is unnecessary, as
it is sufficient to observe that the vector |1 +1) = |+ +) is symmetric under
the permutation of the quantum numbers sf,, s5. of the two electrons,
the operator S_ = s7_ + so_ is symmetric under the exchange of the two
electrons (1 + 2), whence also the vector S_| + +) will be symmetric
under the permutation of the quantum numbers of the two electrons: there
is only one symmetric linear combination of | — +) and | + —), that is
| — +)+]| + —), therefore

1
|1 0>=%(|—+>+|+—>). (15.25)

Now the singlet state is the only state orthogonal to the state (15.25), i.e.
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1
V2

that turns out to be antisymmetric. Summarizing the results:

0 0)=—(I-+)=1+-))

|1 +1) =]+ +)
symmetric

110 triplet states

1
= pU-H+l+-)
[1-1)=|--)

(15.26)

1 antisymmetric
[0 0)= V2 (I=+) =1+ >)} singlet state.

15.4 Pauli Exclusion Principle

The Pauli principle plays a fundamental role in the understanding of the
structure of matter and, in particular, of atoms: it applies to all the cases in
which one has to deal with two or more electrons and its roots are in the fact
that electrons are particles indistinguishable from one another. Let us try to
understand what does it mean that electrons are indistinguishable from one
another and what does this fact entail.

Let us consider a system consisting of two electrons: the variables suitable
for the description of this system are

q1, 1, S1; d2, P2, S2 . (15.27)

It is clear that, if we maintained that, for example, the §; were observables,
we should give a meaning to the expression “the electron 1”7, i.e. we should be
able to distinguish one electron from the other: so, for example, if ¢;, were
an observable, the instrument associated with it should provide a result only
when it ‘sees’ the electron 1, while it should not interact at all with the electron
2. This is absurd because this statement would be equivalent to admit that
the two electrons had different interaction and properties therefore they would
not be identical particles. As a consequence, it should be clear that not all the
Hermitian functions of (15.27) can be considered as observables for the system
consisting of the two electrons, but only those functions f (g1, p1, 51; §o, P2, 52)
that are symmetric under the permutation of the indices 1 and 2 (for example
Qe+ Gz, |G1e — g2z etc.).

This does not imply that two electrons occupying different (orthogonal)
states cannot be distinguished: in other words phrases like either “an electron
is in the state | A) and the other in the state | B)” or “the electron that
is in the state | A)”... are meaningful. What is meaningless is to state that
“electron 1 is in the state | A) and electron 2 is in the state | B)”. One
could be tempted to call “electron 1” the one which is in the state | A) and
electron 2 the one in the state | B ): in such a way the electrons are considered
distinguishable on the basis of the fact that they are in different states; such
distinguishability is meaningful until the electrons remain in orthogonal states,
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which can fail due both to time evolution and to measurements made on the
system.

It is legitimate to ask oneself if all the above considerations, and the con-
clusions we will draw from them, apply as well to macroscopic objects like
either billiard balls or brand-new coins: it is however clear that the identity
in such cases exclusively refers to macroscopic properties (shape, size, mass,
density, ...) whereas it certainly fails on the level of microscopic properties
(number of atoms the objects are made out of, states of the single atoms,
...). This means that two macroscopic, so-called identical, objects certainly
are not identical with each other or that, at least in principle, they are distin-
guishable. One can also state that two macroscopic ‘identical’ objects are and
always will be distinguishable for the fact that they are (and will always be)
in different states (not only as far as microscopic states are concerned, but
also in different states of position). We will come back later on the subject.

Let us now introduce, for a system of two electrons, the exchange oper-
ator II defined by

NGt =g, Uppdt=p, OuHI =35
(15.28)
NGl =g, Upll™'=7p5, LK =38.

Therefore the indistinguishability of the two electrons is translated into the
statement that all the observables of the system commute with II:

memt=¢. (15.29)

The operator II exists and is unitary, thanks to the von Neumann theorem
cited in Sect. 6.3 (the transformation (gi1,p1,51) < (g2, P2, 52) leaves the
canonical commutation relations unchanged and maps self-adjoint operators
in self-adjoint operators). However (15.28) define II only up to a phase factor:
from (15.28) it follows that, if | A B) is a ‘factorized’ vector in H = H; ® Haz
(see (15.2))

II|AB)=¢¥|BA)

with the phase ¢ independent of the (factorized) vector [indeed:
(A|CYB|D)=(BA|CD)=(BA|II'II|CD)
= o' (PoP=aB)(AB | DC) = e (Per=9aB)( A | C)(B| D)

hence ¢cp = pap |. Therefore II can be (re)defined (II — e '#1II) in such
a way that
II|AB)=|BA). (15.30)

As a consequence of the definition (15.30) one has
=1, o t=1=1

whence II, much as the space-inversion operator I, only has the eigenvalues
+1. The vectors corresponding to the eigenvalue +1 are said symmetric
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(|S)) whereas those corresponding to the eigenvalue —1 are said antisym-
metric (| A)) under the exchange of the two electrons:

I[S) =+|S) II[A) =—|A)

and any vector can be expressed as the superposition of a vector of type | S)
and a vector of type | A). In other word, the Hilbert space H is the direct
sum of the subspaces Hs and H 4 consisting respectively of the symmetric
and the antisymmetric vectors:

H=Hs ® Ha=H1 ® Ho)s ® (H1 ® Ha2)a -

If at a given time the state of the system consisting of the two electrons is
represented by a vector in Hg, since all the observables commute with II,
the state of the system will always remain in Hgs, as a consequence of either
time evolution or of the perturbation due to any measurement processes. For
the same reason, if initially the state is represented by a vector in H 4 , it will
always remain in H 4, no matter what will happen to the system. Moreover,
if the system were in a superposition |S) 4 |.A), any observation (i.e. any
measurement of a nondegenerate observable) would force the system to end
up either in Hgs or in H 4 and there would remain forever.

Given that things go in this way, it could happen that for any system con-
sisting of two electrons the only possible states are only either the symmetric
states or the antisymmetric ones: this is possible but, a priori, one cannot say
this is true: we are then left with nothing else to do but “questioning Nature”.

Let us consider an atom of helium: the configuration with minimum energy
is (1s)?, i.e. the electrons possess the same orbital quantum numbers. The
two electrons may, in addition, have total spin either S =0 or S =1. We
thus have the two possibilities

|(18)2,S=0>, |(1S)27S:1>'

Under the action of the operator II, that exchanges both the spin and the
orbital quantum numbers of the two electrons, the first is an antisymmetric
vector: it is symmetric with respect to the permutation of the orbital quantum
numbers only, antisymmetric under the permutation of the spin quantum
numbers (see (15.26)); the second vector is symmetric. The spectroscopic
analysis of He says that in Nature only the singlet (S = 0) (1s)? state exists,
and that there exists no (1s)? states with S = 1. This not only confirms that
not all the vectors in ‘H correspond to physical states, but also that the only
possible states are those represented by antisymmetric vectors. We can now
enunciate the

Pauli Principle: The only possible states for a system of two electrons
are those represented by vectors antisymmetric under the exchange of the two
electrons. For a system consisting of more than two electrons, the only possible
states are those represented by vectors antisymmetric under the exchange of
any pair of electrons.
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As perhaps already happened, we will often say “antisymmetric states”
instead of “states represented by antisymmetric vectors”, consistently with
the warning given at the end of Sect. 4.1; note however that, even if the
vectors are antisymmetric, the states they represent are symmetric under the
exchange of the electrons inasmuch as | A) and —|.A) represent the same
state.

The Pauli principle, in the form we have enunciated it, applies to all the
systems consisting of identical particles endowed with half-integer spin (pro-
tons, neutrons etc.) whereas for the particles with integer spins (0,1, ---) —
as e.g. the m-mesons etc. — only the symmetric states are possible. The parti-
cles of the first type are called fermions, those of the second type bosons.

It should be clear that, in comparison with a system consisting of two
distinguishable particles, for a system of two identical fermions one has, as
a consequence of the Pauli principle, a lesser number of states: for distin-
guishable particles, as e.g. a positron and an electron, if one of them is in the
state | A) and the other one in the state | B) , the possible independent states
are two, precisely | AB) and | B A), while if both particles are electrons (or
positrons) only the state

|AB)—|BA)

is permitted: in this case one cannot say which electron is in the state | A)
and which in | B), but only that one is in the state | A) and one in |B).

Furthermore, two electrons cannot be in the same state | A ), because such
a state would be represented by the symmetric vector | A A): for this reason
the Pauli principle is an exclusion principle.

We wish now to show that the statement made in Sect. 14.1, according
to which no more than two electrons in an atom can have the same orbital
quantum numbers nlm, indeed is a consequence of the Pauli principle.

First of all, it should be clear that, as in the case of the configuration (1s)?
of He, two electrons can occupy the same orbital only if their total spin is S =
0: only in this way the state, that is symmetric with respect to the permutation
of only the orbital quantum numbers, turns out to be antisymmetric under
the permutation of all the (both orbital and spin) quantum numbers of the
two electrons. But one cannot have more than two electrons in the same
orbital since, existing only two independent spin states for each electron, it
is impossible to construct a spin state for three or more electrons that is
antisymmetric under the permutation of the spin quantum numbers of any
pair of electrons. For example | + ++) and | — ——) are symmetric under
any permutation; | + +—), | + —+), | — ++) etc. are symmetric with
respect to some permutation, so none of their linear combinations may be
completely antisymmetric: the eight states of spin of three electrons split up
into four states with total spin S = 3/2, symmetric, and two pairs of states
with total spin S =1/2, that are neither symmetric nor antisymmetric.

Let us now go back to the problem of the distinguishability of indistin-
guishable particles: Pauli principle substantially says that never a system con-
sisting of two electrons is one with ‘separate variables’ and never the states
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are factorized (see Sect. 15.1): states of the type | A B) are not permitted,
only states of the type | AB) — | BA) are possible; more to it: it is not one
with separate variables the system that consists of all the electrons in the
Universe!

But then, what does it mean to study a system, for example, with one only
electron, like the hydrogen atom? Should we antisymmetrize the state of ‘our’
electron with that of all the other electrons, albeit far apart? Luckily: no. Let
us consider a system consisting of two electrons or, more in general, of either
two identical fermions or bosons, in two states | A) and | B) orthogonal to
each other (for example, very far from each other and sufficiently localized)
and let us examine under which circumstances the behaviour of such a state
is different from that of the state | A B) of two distinguishable particles. We
have seen in Sect. 4.8 that all the information about the properties of a state
is written in the collection of the mean values of the observables. So let us
examine which are the differences between the mean values of the observables
in the state

| X)=1]41 By) (15.31)

of the distinguishable particles and in the (normalized) states

1
Ye) = —= (141 Ba) £ By Az)) (15.32)
V2
of two identical particles (the + or —, according to whether one is dealing

with either bosons or fermions; the indices 1 and 2, albeit superfluous, are
written for the sake of clarity).
Let € be an observable. One has

(X & X )= (B2 A1 || A1 Bz) (15.33)

1
2

= ($B2 AvI€1 41 Bo) + (4 By €| By )

(Vi |€1¥e) =, ((Bo Avl£ (A2 By|)§ (|4 Ba) | By Ag))

£ (By A | €] By As) £ (As By | €] A, B2>).

Thanks to (15.29), IIf =TI7! and II|A B) =|B A),

(A3 By | €| BiAy) = (A By |ITTEIL | By Ay) = (By Ay | €] Ay By)
(15.34)
(A2 By | €| A1 Bo) = (A By |[IITEIL | Ay Be) = (Bo A1 | €| B1 Aa)

whence
(Yo |&|Ye)=(Ba A1 |§| A1 Ba) & (Ba Ay | & | By Az) . (15.35)

The difference between the cases of bosons and fermions is given by the sign
of the second term in the right hand side of (15.35) (“interference term”),
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which is absent in (15.33), i.e. in the case of distinguishable particles. So, in
all cases in which the interference term are vanishing, a system consisting of
two electrons is not different from a system consisting of either two bosons or
of two distinguishable particles.

For example, if (as we said in the beginning) the states | A) and | B) are
far apart from each other and sufficiently localized (i.e. the wavefunctions 14
and ¥p have disjoint supports), for any observable that only depends on the
position variables f(q1,q2) (e.g. €?/r12), the interference term (in this case
called exchange integral) is vanishing:

(Ba Ay | €] By Ay)= / Wy (@) (@) F(#r, B2) b (@) YA (@) Vi dVa= 0

because, in the case we are considering, ¢ (Z1)Y5(#1) = 0 = 5 (Z2)Y 4 (Z2)
Clearly also the matrix elements of observables that are polynomials in p;
and ps are vanishing, because the supports of the derivatives coincide with
the supports of the functions.
Another important case in which the interference terms vanish is that of
the ‘one particle’ observables, i.e. of observables of the type

E=&4 + & = f(G1,P1,51) + f(G2, D2, 52) -
Indeed:

(B2 A1 | (&1+ &) | B1Az) =
= (A1 [& | Br)x(Ba | Ag) + (A1 | B1)x (B2 [ & | A2) =0

since (B|A)=(A|B)=0.

In conclusion, in all the cases when one expects that the two identical par-
ticles could be considered as distinguishable, the theory helps us and confirms
our expectations.



Chapter 16

Many-Electron Atoms

16.1 The Energy Levels of the Helium Atom

The helium atom has two electrons, therefore it is very suitable to illustrate
the consequences that Pauli principle has in atomic physics.

The Hamiltonian of the He atom, in the nonrelativistic approximation and
assuming — for the sake of simplicity — the nucleus fixed at the origin, is

H = £2 (16.1)

In the independent-electron approximation the ground-state configuration is
(15)?; the generic excited configuration is (n1)(n’l’) . However we will consider
the energy levels of the atom corresponding to configurations in which only
one electron is excited, i.e. configurations of the type (1s)(nl): the reason
for doing so is in the fact — to be discussed in Sect. 16.5 — that, to a good
approximation, such configurations are the only ones that can be radiatively
excited starting from the ground state.

Similarly to Sect. 15.4, in which we have introduced the operator II that
exchanges the index 1 with the index 2 of all the (orbital and spin) variables of
the two electrons, we now introduce the operators II, and Ilg that respectively
exchange with each other the indices 1 and 2 relative either to the only orbital
and the only spin variables:

o Giollgt = Gog, Hopiollgt= oy, oSl = &,
(16.2)
U511 = 501, g2l = Gio, Ipioll'= pia.

Exactly as II, also I1, and Il are defined by (16.2) up to a phase factor: clearly
it is possible to choose the arbitrary phase factors in such a way that

I, I = T I, = 1T, M =112 =1
so that both II, and Il only have the eigenvalues +1. Il has the value +1
on the triplet states and —1 on the singlet states (See (15.26)); the states
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on which II, has the value +1 are the states that are symmetric under the
exchange of the only orbital variables, those on which it has the value —1 are
the antisymmetric ones: let us denote the former by | (orb. symm.),---), the
latter by | (orb. antisymm.),---). Particular antisymmetric states |.A) (i.e.
those with II = —1) are the states:

| (orb. symm.), S =0), | (orb. antisymm.), S = 1) (16.3)

but obviously also their linear combinations are possible.

In order to study the levels of He, let us temporarily forget about the fact
that electrons possess spin (this is legitimate since in the Hamiltonian (16.1)
the spin variables are not present) and, as a consequence, let us also forget
about the Pauli principle. The exchange operator II, commutes with the
Hamiltonian (16.1), so we can classify the levels of the He atom by means of
the eigenvalue of II, : for example, the ground state (1s)? corresponds to the
eigenvalue +1 of II,. Let us now consider the excited configuration 1s2s:
two states correspond to this configuration, precisely

[1s2s) [2s1s) (16.4)
that are not eigenstates of I, : indeed
I, | 1s2s) =|2s1s), I, |2s1s) =|1s2s) .

In the independent-electron approximation the two states (16.4) have the same
energy: such a degeneracy is called exchange degeneracy. If we now consider
the term e?/r15 as a perturbation, the exchange degeneracy is removed: we
must indeed diagonalize the 2x 2 matrix of the perturbation H' = e?/r12
among the states (16.4):

(2s1s|H'|1s2s) (2s1s|H'|2s1s)
(16.5)
(1s2s|H'|1s2s) (1s2s| H'|2s1s)

(following the notation we have established in Sect. 15.1, we denote by (B A |
the “bra” corresponding to the “ket” | A B) ). The diagonal elements of (16.5)
(much like the off-diagonal elements) are equal to each other, thanks to

I, H'II; ' =H', Il =1t .

The demonstration is the same as that reported in (15.34). As a consequence,
the matrix (16.5) has the form:
a b
(o) o)

(independently of the fact that the wavefunctions of the states 1s and 2s
are real, b is a real number, as we shall see shortly). The eigenvalues and the
corresponding eigenvectors of (16.5) are
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Ei=a+b, |EL) = (|1s2s) + |2s1s))

1

V2
1

E_=a-b, E_)=—(|1s2s) —|2s1s)) .

B = (11525) — | 251s)
Both | Ey ) and | E_) are eigenvectors of II, corresponding respectively to
the eigenvalues +1 and —1: this particular aspect of the result has a more
general validity than that attributable to the perturbative calculation, because
we know that the eigenstates of the Hamiltonian (16.1), if nondegenerate, must
have a well-defined orbital symmetry. Another aspect of the result (16.7) is the
following: which of the two levels £, and E_ has a higher energy depends
on the sign of b; in the Schrédinger representation b is given by the following

exchange integral:

(16.7)

62
b= / () 030 (72) - s (72) thon (1) ViV
T2

2
— [#) S, 6 = ) v
The exchange integral is formally identical with twice the electrostatic energy
of the (complex) charge distribution p(7") = e (), therefore it is (real and)
positive: b > 0.

In conclusion, the perturbative calculation says that the degeneracy is
removed (b # 0) and that F, > E_ . This result has a very simple physical
interpretation, that provides a strong argument that leads us to think that
it stays true also for the exact eigenvalues: since the difference in energy
between the symmetric (under II, ) state | E; ) and the antisymmetric state
| E_) is due to the term €2 /ry 2, it is reasonable to expect that the state with
lower energy is the one in which the two electrons have a lesser probability
to be close to each other, inasmuch as the Coulombic repulsion — whose effect
is to increase the energy — is less relevant. The antisymmetric state has an
antisymmetric wavefunction:

U(r, ) =(mry | E_) = (72 |1, | E-) = —(rar | E_) = —W(ih,71)

— —

and if we put 7, =75 =7, one has
U(r,r)=—-U(r7r)=0

so, the probability-density of finding the two electrons in the same point being
zero, in the state | E_ ) the probability of finding the two electrons close to
each other is relatively small. This leads to conclude that F_ < E, | in
agreement with what has been found by perturbation theory: this result is
known as the first Hund rule.

If we now consider the excited configurations, for example 1s2p, the rea-
soning goes on in the same way: in absence of the Coulombic repulsion there
occurs the exchange degeneracy between the states (the quantum number m,
that takes the values 0, £1 is omitted for the sake of brevity)
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[1s2p) [2p1s) .
The repulsion removes this degeneracy and the approximate eigenstates are

1

V2
1

7 (|1s2p) +[2p1s)) symmetric .

The same argument presented for the states originated from the configuration
1s2s allows us to conclude that the former, the antisymmetric ones, have an
energy lower than the latter’s. And so on for the other configurations.

(|1s2p) —|2p1s)) antisymmetric

Let us now take the electron spins into considerations. The two electrons
may have total spin either S = 0 or S = 1; if the Pauli principle were not
there, to any orbital state of the atom we should associate both the values
of S: any energy level would be degenerate on S since, the spin variables not
appearing in the Hamiltonian (16.1), the energy only depends on the orbital
variables and not on the value of S. But the Pauli principle demands that if
a state has a defined orbital (i.e. with respect to II, ) symmetry, then it must
have the opposite spin (i.e. with respect to Ilg) symmetry — see (16.3) — so
all the levels corresponding to symmetric orbital states must have S =0 and
the orbital antisymmetric must have S = 1. In particular the lowest energy
level must have, as we already know, S =0:

|1s1s,5=0) .

It is then clear that the He levels do not display any degeneracy with respect
to S: on the one hand, because the Pauli principle admits only one value of S
for any state with a well defined orbital symmetry; on the other hand, because
the states with opposite symmetry originated by the same electronic configu-
ration exhibit the exchange degeneracy only in the independent-electron ap-
proximation: but the latter degeneracy is removed by the Coulombic repulsion
between the two electrons.

To summarize: the He atom exhibits two series of energy levels, the sin-
glet (S = 0) levels and the triplet (S = 1) levels or, equivalently those
corresponding to orbitally symmetric and orbitally antisymmetric states. Any
electronic configuration of the type (1s)(nl) — with the exception of the fun-
damental one (1s)? — gives rise to both a singlet and a triplet level: the singlet
state has an energy slightly higher than the corresponding triplet state, owing
to the different effect the inter-electronic Coulombic repulsion has on states
with opposite orbital symmetry. The difference in energy between the sin-
glet and triplet states originated by the configuration 1s2s is about 0.8 eV,
whereas that between the states originated by the configuration 1s2p is about
0.25 eV. We report in Fig. 16.1 the diagram of the lowest levels of He, as an
illustration of what we have said so far.
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S = 0: Parahelium S = 1: Orthohelium
S P D S P D

1s3p 1s3d

153 E
1s3s s3p 1s3d s
2 |1s3s

1s2p

1s2p
4 J1s2s 4

1s2s

-24.6 4(15)2

Fig. 16.1

The terminology parahelium for the set of levels with S = 0 and ortho-
helium for the set of levels with S = 1 originates from the fact that the
electromagnetic transitions between the two types of levels are extremely rare
(very weak spectral lines), so that for a long time it was held that the two
series belonged not to a unique substance, but that, as a mater of fact, He
consisted of a mixture of two different chemical species, called exactly parahe-
lium and orthohelium. The dilemma was that one did not succeed in isolating
the two chemical species from each other.

To conclude, let us show that there exists a selection rule that prohibits
the transitions between the levels with S = 0 and those with S = 1: indeed,
the electromagnetic transition probability (13.24) is determined by the ma-
trix element of an operator that only depends on the orbital variables, and
therefore commutes with all the components of S and in particular with 52
as a consequence, the selection rule AS = 0 has to be satisfied in electro-
magnetic transitions, which exactly excludes transitions between states with
total spin S=0and S=1.

Another way to realize that the above transitions are forbidden and that,
thanks to the Pauli principle, is equivalent to that we have just presented, is
based on the observation that the operator Y_. Fa - A(Ga,t) commutes with
II, and therefore cannot induce transitions between states with different or-
bital symmetries.
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Both the arguments we have presented are somewhat incomplete, since we
now know that the electron possesses an intrinsic magnetic moment and the
latter interacts with the magnetic field B(Z,t) = V A A(Z,t), so in (13.24)
alsoaterm ) fisa -B (qa,t) should appear; but such a term contributes only
to the magnetic multipole transitions and, in particular, only starting from
the magnetic quadrupole can it contribute to transitions between orthohelium
and parahelium. |

In Sect. 16.5 we will see that there are other more important reasons
that justify the existence of very weak transitions between orthohelium and
parahelium states (“intercombination lines”).

16.2 Classification of the Energy Levels of Atoms

We have seen in Sect. 14.1 that the Hamiltonian of an atom with Z electrons

is
4 ) 2 2
D Ze e
Hy = (—"‘——) —_—. 16.
0= (55T +aZ>ﬁ (16.8)

However (16.8) is correct only if the intrinsic magnetic moment of the electrons
is ignored. Indeed, the intrinsic magnetic moment of each electron interacts
with the magnetic field created by the motion of all the charges the atom is
made of, as well as with the magnetic moments of all the other electrons. All
this implies the existence of further terms to be added to (16.8). Nevertheless
these further terms, inasmuch as relativistic corrections to (16.8), only bring —
at least in the case of light atoms (if Z is small, the velocities of the electrons
are much smaller than ¢) — small corrections to the levels of (16.8), so it will
be justified to treat them as a perturbation.

In order to make a perturbative calculation it is necessary to know in
advance how to classify the eigenstates of the unperturbed Hamiltonian Hy
and which are the degeneracies of its eigenvalues. This problem has already
been faced in Sect. 13.6 (see (13.42)): however the classification of the levels
of Hy discussed under those circumstances only had a provisional character,
since it did not take into account either the electron spin or the Pauli principle.
It is for this reason that, in the present section, we reconsider the problem of
classifying the energy levels of Hy .

We must find the higher possible number of constants of motion (i.e. of
observables that commute with Hy ): this will allow us both to extract — from
among the latter observables — a (possibly overabundant) set of compatible
observables, by means of which we will classify the eigenstates of Hy and to
obtain precise information — by exploiting the degeneracy theorem of Sect.
7.2 — about the degree of degeneracy of the eigenvalues of Hy .

All the components of the total orbital angular momentum are constants
of motion:

A
[L,Hy]=0, L= L, (16.9)

a=1
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whereas, on the contrary, the single L, are not constant of motion: indeed,
the Hamiltonian (16.8) is a scalar if the coordinates ¢, and p, of all the
electrons are simultaneously rotated; instead Hy does not stay unchanged if
the coordinates of a single electron are rotated (it is the term Y e?/r,5 that is
not invariant, the single L, are constants of motion only in the independent-
electron approximation).

Since in Hy the spin variables do not appear, each s, commutes with
Hy and as a consequence, in particular,

zZ
(S, Hy]=0, S=> 5. (16.10)
a=1

Furthermore, also the space-inversion operator I commutes with Hg . There-
fore a set of compatible observables consists of

Hy I L* L, §* &, (16.11)

and the eigenstates of Hy can be classified by means of the eigenvalues of
such observables:
|E® w L M S S.). (16.12)

Since all the components of L and S commute with Hy (and with I), each
energy level is degenerate with respect to both M (—L < M < +L) and to
S! (=8 < S, <+58) and has a degree of degeneracy equal to

90 =(2L+1)x(25+1) . (16.13)

The last statement deserves a particular comment. In arriving at the conclu-
sion that degeneracy of each level exactly is that given by (16.13) we have
excluded that the levels may be degenerate on L and/or S: indeed we know
that the degeneracy theorem is not able to establish that the degree of degen-
eracy is so much, but only that it is at least so much — i.e. it is able only to
give a lower bound. So we cannot show that the eigenvalues of Hy are not
degenerate on L and/or S: we can only produce plausibility arguments.

As far as L is concerned, we have no good reason to suspect such a degen-
eracy: as we will see in the next section — when discussing the carbon atom as
an example — a degeneracy on L may occur only in the independent-electron
approximation, but such a degeneracy is removed by the Coulombic repulsion
among the electrons (one could say that in Physics the ‘compulsory govern-
ment’ principle holds: all what is not mandatory is forbidden; in the present
case the degeneracy on L is not demanded by symmetry reasons, as that on
M is, so it is forbidden: the physical basis for such a ‘principle’ is that Na-
ture is sufficiently complicated that there always exists some interaction that
removes the degeneracies that can be removed).

As far as S is concerned, the argument is more complex. Indeed, as already
observed, not only the components of S are constants of motion, but also all
the single §,: this would entail a spin degeneracy equal to 2 for each single
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electron, i.e. 2% for each energy level, instead of 2S5 + 1. We have already
examined in the case of the helium atom the mechanism by which the Pauli
principle prevents, in Nature, such a degeneracy: the number of permitted spin
states is less than 27 and, in addition, the different values of S correspond to
different orbital states having different energies.

In conclusion the energies of the states (16.12) depend both on L and S:

E°=E.q

and their degree of degeneracy is given by (16.13). As either L and/or S are
varied, different energy levels are obtained, the differences in energy being of
the order of the eV.

The classification in terms of (16.11) is the analogue of the classification in
terms of (15.18) of Sect. 15.3. It is then clear that, (16.9) and (16.10) implying
that

[J, Hy] =0, J=L+S§ (16.14)

it is also possible to classify the eigenstates of Hy by means of the eigenvalues
of

Hy I L?> §% J? J, (16.15)
analogous to (15.19):
|E® w L S J J.). (16.16)

According to the latter classification, the degeneracy of the energy levels,
whose degree always is (2L + 1)x (25 + 1), is looked upon as the degeneracy
on J, that takes the values between |L — S| and L+ S and, for each value
of J, on J., that ranges from —J to +J.

In the sequel we will often adopt the spectroscopic notation to indicate the
quantum numbers of an energy level: a capital letter S, P, D, --- to indicate
the value of L (=0, 1,2, ---) with an upper left character to indicate the
spin multiplicity 2S5 + 1 (sometimes also a small o is exposed as an upper
right character if the level has the space-inversion parity —1: o stands for
‘odd’); such a symbol is named spectroscopic term (not to be confused with
the spectroscopic terms introduced in Sect. 2.4). For example, for the levels
of helium, discussed in the previous section, we have the following terms:

(1s)? 15, 1s2s 19 1s2s 38 1s2p P°, 1s2p 3P° .
In the above case we have indicated the configuration that generates each

spectroscopic term, so the use of the ° to indicate that the level has odd parity
is superfluous because the parity can be read directly in the configuration:

w = (—1)ht -tz (#£(=DF1). (16.17)
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16.3 Relationship between Electronic Configuration
and Spectroscopic Terms: the Carbon Atom

In the previous section we have examined how the energy levels of an atom
can be classified: the classifications we have discussed — albeit rigorous in the
approximation in which the interactions involving the spin magnetic moments
of the electrons are neglected — are too general and provide little information:
in particular they do not provide any information about the sequence of the
energy level of an atom and the corresponding quantum numbers. On the other
hand, in Sect. 14.1 we have introduced the independent-electron classification:
the latter gives all the information one may wish about the energy levels of an
atom, not only the information concerning energies and quantum numbers,
but it even allows one to write the wavefunction of any atomic state in terms
of the hydrogen-like wavefunctions. Unfortunately, however, the independent-
electron approximation is too gross so that it is not a priori evident how much
such large quantity of information is reliable.

Our aim is now to show that it is possible to extract, from the independent-
electron approximation, both some qualitative information about the position
of the energy levels of an atom, and rigorous information about the quantum
numbers relative to such levels.

Instead of discussing the problem in general, we rather prefer to illustrate
the concepts and the methodology in a particular case: the carbon atom.

The problem we want to face is the following: which are the lowest en-
ergy levels of carbon? The carbon atom has six electrons; the ground-state
configuration is therefore

(1s)2 (25)% 2p? .

First of all, let us try to estimate the first-ionization energy of carbon: for this
problem we can consider the four electrons of the complete shells 1s and 2s
as the atomic core. However, in the present case, the concept of atomic core
is much less meaningful than it is in the case of the alkali atoms: this is due
to the fact that the two 2p ‘external’ electrons have the same n as two of the
electrons of the atomic core. So saying the two 2p electrons are external just
is a way of saying: differently from the alkali atoms, here it happens that the
first excited configuration is (1s)?2s2p? (see Fig. 14.1), i.e. it is exactly one
electron of the atomic core that changes its state.

If we neglected the repulsion between the 2p electrons, the ionization en-
ergy should be 4x13.6/4 = 13.6 eV (the nuclear-plus-atomic-core net charge
is 2), but this probably is un upper bound. If instead we considered one of the
two 2p electrons as part of the atomic core (and in this way we would overes-
timate the repulsion between the external electrons), the energy necessary to
extract the other 2p electron should be 1x13.6/4 = 3.4eV, which certainly is
a lower bound. It seems legitimate to expect a value closer to 13.6 €V than to
3.4eV, also in view of a possible penetration in the atomic core (1s)?(2s)?:
indeed, the experimental value for the first-ionization energy is 11.3eV.

Which are the quantum numbers L and S of the ‘atomic core’? Since we
are dealing with four electrons, all with [ = 0, obviously also L = 0. As far
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as S is concerned, we know that, due to the Pauli principle, two electrons in
the same orbital always have S = 0. So, adding the spin of the two (1s)2
electrons — which is zero — with that of the two (2s)? electrons — which is
zero as well — we obtain S = 0. So the atomic core (1s)?(2s)? has L =0
and S =0, i.e. it does not contribute to values of L and S of the atom.

It is true in general — always as a consequence of the Pauli principle — that
any complete shell (as e.g. the (2p)® shell of Na) has L = 0 and S = 0:
this is obvious for what regards S, because any pair of electrons in the same
orbital is in a spin singlet state. As far as L is concerned, let us consider
as an example just a p°® shell: it is clear that M = 0, because there are
two electrons with m = +1, two with m = 0 and two with m = —1; but
this statement stays true even if we decide to classify the states of the single
electrons by means of the eigenvalues of either the x or the y components of
the La: so, for a complete shell, the eigenvalues of all the components of L
are vanishing, therefore L =0.

If one needed to explicitly write the state of the six electrons in the
independent-electron approximation — that must be antisymmetric under the
permutation of the quantum numbers of any pair of electrons — the Slater

determinant could be used: calling (for the sake of brevity) a, b, ¢, --- , f
the six independent states |n; | = 1; m = 0,+1; s’ = :I:; ), one has (the
indices 1, ---, 6 refer to the six electrons):
aq bl C1 ... f1
a9 b2 Co ... f2
[p°) = det oL
Qg bﬁ Ccg ... fﬁ

Use of the properties of the determinant allows one to explicitly check that the
result, that is an antisymmetric linear combination of 6!=720 vectors of the
type (14.3), is independent of the chosen basis (e.g. the states could exactly
be classified by either the x or the y component of the angular momentum).

The fact that a complete shell has L = 0 justifies the statement, made
in Sect. 14.5, that the wavefunction ®(Za, ---,Zz) of the atomic core of an
alkali atom has spherical symmetry.

For what regards the states originated by the ground-state configuration
of the carbon atom, the quantum numbers L and S are determined only by
the two 2p electrons: they have [ =1 and l; = 1, so the possible values for
Lare L=0 (5), L=1 (P)and L=2 (D).

If we provisionally ignore the electron spins, we have nine independent
states:

|n1=2, l1:1, mai; n2=2, 12:1, m2>, ml,m2:0, +1 (1618)
or also:

|n1:n2:2,11212:1;LM>, LZO,].,Q;—LSMS-FL (1619)
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that, in the independent-electron approximation, all have the same energy.
Note that in the present case in which n; = no and I = Iy — called the case
of equivalent electrons — the exchange degeneracy (m <> mg ) is contained
in the degeneracy on m; and mes, so it gives nothing new.

Let us now imagine to take into account the Coulombic repulsion between
the two external electrons and to treat it as a perturbation to the first order:
we have to diagonalize the 9 x 9 matrix consisting of the matrix elements of
H' = e?/r;5 among either the states (16.18) or (16.19). Since H’ commutes
with L2 and L, , it is convenient to use the basis (16.19): in this basis, indeed,
the only nonvanishing matrix elements of H' are the diagonal ones, i.e. those
with the same L and the same M; furthermore such matrix elements — that
are the first-order corrections to the energy level — depend only on L but
not on M, owing to the fact that H' is a scalar with respect to L and, as a
consequence, the energy levels are degenerate with respect to M.

The states (16.19), but not the states (16.18), are therefore the approx-
imate eigenstates of the Hamiltonian: the Coulombic repulsion has removed
the degeneracy on L, so the configuration 2p? gives rise to three levels re-
spectively with L = 0, 1, 2; each of these levels is degenerate on M with
degeneracy degrees respectively equal to 1,3, 5.

Note that, to this level of approxzimation, the stationary states of the atom
— 1.e. the states (16.19) — still are classified by the quantum numbers n, and
lo (but not by the m, ) relative to the single electrons: therefore these are
approrimately good quantum numbers (i.e. good up to the first order in
H'): also in this sense, assigning the electronic configuration (namely the n,
and the [, of all the electrons) is something better than the independent-
electron approximation.

Before we take spin into consideration, we want to understand which of
the results, obtained by means of a perturbative treatment of the Coulombic
repulsion, have a general validity and which ones do not.

For instance, one of the results we have found is that, starting from the
(15)% (25)? 2p? configuration and ’turning on’ the interaction between the two
2p electrons, three levels with quantum numbers L = 0, 1, 2 are obtained,
and all of them with parity w = 41 (see (16.17)): the problem is whether
these are the exact quantum numbers or if they are correct only to the first
order in H’'. The same problem arises for the quantum numbers (L, parity
w and orbital symmetry) we found in Sect. 16.1 for the levels of the helium
atom. It is clear, therefore, that this is a problem of general nature.

In order to discuss this problem, we imagine to multiply the term repre-
senting the Coulombic repulsion among the electrons by a parameter A\ that
varies from 0 to 1: in such a way we obtain the (fictitious) Hamiltonian

2
H) =Ho+ A Y :7
a>f @

that for A = 0 reduces to Hy — the independent-electron approximation —
and for A =1 is the ‘true’ Hamiltonian of the atom.
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We expect that, as A is continuously varied from 0 to 1, both the eigenstates
of H(A) and the quantum numbers that classify them continuously depend on
A: it is then clear that, if such quantum numbers only take discrete values — as
L and w — the only way in which they can be continuous functions of \ is to be
independent of A, i.e. to be constants. Therefore the quantum numbers ( L, w
etc.) that are deduced from a given electronic configuration (i.e. for A = 0)
exactly are the quantum numbers of those eigenstates of H(A = 1) that are
originated by the given electronic configuration (adiabatic theorem). This
argument shows how it is indeed possible (as anticipated in the discussion at
the end of Sect. 14.1) to extract rigorous information on the quantum numbers
of the energy levels from the independent-electron approximation.

Note however that the adiabatic theorem discussed above only applies to
the discrete eigenvalues of those observables that commute with any H(X\) —
as E2, I, II, — and not, for example, to the n, and I, by means of which it
is not possible to classify the exact eigenstates of H.

Let us now take the electron spin into consideration. The two 2p electrons
may have total spin either S =0 or S = 1: in order to know which value of
S is compatible with each of the three levels S, P, D, the orbital symmetry
(the eigenvalue of II,) of such levels must be known. It is clear that the
state with m; = mo = 1 has L = 2 and is symmetric (n1 = ng, 1 = lo,
my = mg); furthermore, since II, commutes with all the components of E,
and in particular with the lowering operator L_, all the states with L = 2,
M =2, .., —2 are symmetric. With the two independent states with M =1
(we omit, for the sake of brevity, nqy =no=2,l1 =y =1)

[mi =1mge=0) [m1 =0mg=1)
the symmetric linear combination
[mi=1ma=0)4+|m =0mga=1)
and the antisymmetric linear combination
[mi=1ma=0)—|m; =0mg=1)

can be formed. The first, being symmetric, must have L = 2; therefore the
second must have L = 1. As a consequence all the states with L = 1 are
antisymmetric (degeneracy on M of the eigenvectors of II,). With the three
states with M =0

|m1:1m2:—1> |m1:—1m2=1> |m1:Om2:O>

only one combination can be antisymmetric: this is so because the third state
|m1 =0mg =0) is symmetric, therefore the three states give rise to two inde-
pendent symmetric combinations. The antisymmetric one must have L = 1,
a particular symmetric combination has L = 2 and, in conclusion, the or-
thogonal one — the last one we are left with — has L =0.
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Summarizing:
(2p)? S, I, = +1 (symmetric)
(2p)? P, I, =-1 (antisymmetric)
(2p)* D, I, =+1 (symmetric) .

Recalling that, because of the Pauli principle, if a state has II, = 1 it must
have (total) spin S = 0, whereas if it has II, = —1 it must have S =1, we
have for the three levels of the carbon atom the following terms:

g 3p D .

In order to decide which of these three levels should be the lowest in energy,
we can repeat what we said about the levels of helium originating by the same
configuration: the level 3P, that is antisymmetric under the exchange of the
orbital quantum numbers, must have an energy lower than the other two, in
accordance with observation: this is an instance of application of the already
mentioned first Hund rule according to which the term with the highest spin
has the lowest energy. Above the 3P level, the second Hund rule requires that,
among the 'D and the 'S that have the same multiplicity (i.e. the same spin),
the one with the higher orbital angular momentum has the lowest energy. Also
the rationale of the second Hund rule is based on the effect of the Coulombic
repulsion: according to a classical picture, in the states with higher orbital
angular momentum the electrons are orbiting in the same direction, therefore
they mostly stay apart from each other and the Coulombic repulsion has lesser
effect than when orbiting in opposite direction.

Summing-up, above the 3P level, at a distance of 1.2eV, there is the 'D,
finally there is the 1S level that is 2.75eV above the lowest energy level: in
this way one sees that, much as in the case of helium, the levels originated
by the same configurations, but differing in either L and/or .S, have energies
whose differences are of the order of the electronvolt.

16.4 Spin-orbit Interaction. Fine Structure of the Energy Levels

Let us now take into consideration the relativistic corrections to the Hamilto-
nian (16.8). Among the several relativistic corrections to be added to (16.8),
the most relevant is the so called spin-orbit interaction.

To understand the physical origin of such interaction let us consider, for
the sake of simplicity, an hydrogen-like atom with nuclear charge Ze. If we
are in a frame in which the electron is at rest, it is the nucleus that rotates
around the electron: as a consequence, the electron ‘feels’ the magnetic field
generated by the motion of the nucleus. Such a field is given by

U v 7 de(r) 1 1de(r) - e

N U o
B=-"nE="A - L -
c c r dr me r dr ’ =

and gives rise to the interaction (15.4) with the intrinsic magnetic moment of
the electron:
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—e ].d_QOEE, 1 Z€2E§

H =(g—1)x — -__zc
(g ) 2m2¢c2 r dr 2m2c2 3

(16.20)
The term g — 1 instead of g in (16.20) is not justifiable within the proposed
calculation (H' = —[i - E) the discrepancy originates from the fact that the
motion of the electron is not rectilinear and uniform and, in passing to the
frames in which the electron is instantaneously at rest (“tangent frames”) the
electron spin undergoes a rotation, called Thomas precession. A correct
treatment, based on the relativistic Dirac equation, provides, besides the cor-
rect value of g (= 2), also the term —1 appearing in (16.20). The last term
in (16.20) follows therefore from having put g —1=2—-1=1.

The interaction (16.20) is called “spin-orbit interaction” because it couples
the orbital and the spin angular momenta: however it should be clear that the
origin of such interaction is the interaction between the spin magnetic moment
and the magnetic field ‘felt’ by the electron.

Let us estimate the order of magnitude of the effects AFE;, we must expect:
if in (16.20) we replace r by n*ap/Z (see (2.10)) and L-§ by h?, we have

h? Z4e? z4 e?
AEso = 553 TFa = oo o? o (16.21)
In (16.21) we note the factor Z*/nS: indeed, since 1/r® depends on I, the
dependence on n varies from n™3 to n~% according to the value of I; o ~
1/137 is the fine-structure constant defined in (13.40) and e?/ag = 27.2eV is
the atomic energy unit. Later on we shall see what are the typical values for
AE,,.

For an atom having Z electrons, the spin-orbit interaction we must add to

(16.8) is

Z
> &(ra) La - 5a (16.22)
a=1

where £(r,) is related to the nuclear potential as in (16.20).
In addition to the interaction (16.22) there will be also other terms that
we symbolically indicate as

Zaﬁ...ﬁa.gﬂ, Zaﬁ...ga.*ﬂ7

the first of which, called spin-other-orbit interaction, has an origin analogous

to (16.22); the second is due to the interaction among the magnetic moments

of the electrons; the last --- stand for other corrections relativistic in nature.
In conclusion, the complete atomic Hamiltonian will be

Z
Hy=Ho+ Y &(ra) Lo+ 8o+ =Ho+ H’ (16.23)
a=1

with Hy given by (16.8).



16.4 Spin-orbit Interaction. Fine Structure of the Energy Levels 297

The idea is to consider H’ as a perturbation and to see which effects
does it produce on the atomic levels. Of course, since H’ is very complicated,
nor is it completely known, we cannot expect to calculate quantitatively the
effect of H' on the levels of an atom — the latter not being exactly known as
well — but we can only obtain qualitative information about the structure of
the levels and general information about their degree of degeneracy, ‘good’ or
‘approximately good’ quantum numbers etc.

For a first-order treatment of the effect of H’ we must only take into
account the matrix elements of H’' among states with the same energy Fjg
and neglect all the other ones (Russell-Saunders approximation): this is
justified by the fact that, as we already know, in any atom the differences
in energy due to the only electrostatic interactions — the distances among
the FErg levels — are, at least for the lowest lying levels, of the order of the
electronvolt whereas, in view of the estimate (16.21), we know that the effects
of (16.21) are, at least for the lighter atoms, of the order of 10=% + 10=2eV
(the more excited levels are closer to each other, but on them — on the other
hand — the effect of H' is smaller).

We must then consider the matrix relative to the perturbation H’ among
the (2L +1)x (25 + 1) states (16.12) or (16.16), with given values of L and
S: to decide which of the two bases is more convenient to be used, let us
note the following: no matter how complicated H,; given by (16.23) may be,
inasmuch as the Hamiltonian of an isolated atom (i.e. no external fields are
present) certainly it commutes with all the components of the total angular
momentum J (all the interactions — spin-orbit, spin-spin, ..., — as well as
Hy , are scalars under the simultaneous rotations of all the orbital and spin
variables of all the electrons), so thanks to (16.14) also H' commutes with J
and, therefore, in particular with J, and J? , whereas H' does not commute
with either L, or S, — indeed with any component of either Lor S (the
spin-orbit terms do not separately commute with LorS ). This entails that
the matrix that represents H’ is diagonal in the basis (16.16) (fixed values
of L and S), whereas it is not such in the basis (16.12). There is no doubt
that the choice of the basis (16.16) is more convenient for the perturbative
calculation. Furthermore — and note that this argument is analogous to that
concerning the levels of the carbon atom in the previous section — the (only
nonvanishing) matrix elements of H’

(ELs LS JJ,|H |E,s LS JJ.)

only depend on J, that ranges from |L— S| to L+.S (as well as, of course, on
the level Eps under consideration), but do not depend on J., that takes the
values between —J and +J, because H’ commutes with all the components
of J and cannot, as a consequence, remove the degeneracy on J. .

So we have

(Ers LS JJ.|H |ELs LSJJ,)=AELs, (16.24)
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and the AFpg; are the first-order corrections produced by the perturbation
H’ to the levels Erg.
To summarize: the approximated eigenvalues of the Hamiltonian (16.23)
are of the form:
Ers;j=FErs+ AFELsy (16.25)

and the corresponding approximated eigenvectors are the vectors (16.16)
|ELs LS JJ.). (16.26)

Equation (16.25) expresses the fact that, owing to the relativistic corrections
H' that couple the orbital with the spin degrees of freedom, the energy levels
no longer only depend on L and S, but also on J; this means that H’ has
partially removed the degeneracy (2L + 1)x (25 + 1) of the levels of Hy: it
has completely removed the degeneracy on J (that it was not forced to keep
by any invariance argument), leaving however the degeneracy on J. (that is
protected by the invariance of H,; under rotations).

If in (16.25) J is varied while L and S are kept fixed, it is only the cor-
rection AFEp gy that changes; since — at least in not too heavy atoms — these
corrections are small (AELg; ~ 1074 =102 eV), this means that the levels
of an atom must be structured in the form of multiplets (i.e. groups) of lev-
els very close to one another (those with L and S fixed and J varying from
|L — S| to L+ S). These multiplets are separated from each other by about
1€V, since in going from a multiplet to the nearest one either L and/or S
must change.

Such multiplets are called fine-structure multiplets or fine-structure
levels; they are still represented by means of the spectroscopic terms by
adding the value of J as a lower right index: for example 3Py, 3P, 3P,
(see Fig. 14.1). The reason for indicating — in the spectroscopic terms — the
spin multiplicity 2S 4 1 instead of the value S of the spin lies in the fact
that often (precisely when L > S), 25 + 1 is just the number of levels the
fine-structure multiplet consists of.

Let us now consider some examples of fine-structure levels.

Alkali atoms

The lowest energy level of all the alkali atoms isa 29 level: L=0,s = %
and therefore the only value for Jis J = 1: 29 1 . Therefore there is no fine
structure, i.e. there is only a single twice degenerate level. The same applies
to all the exmted levels w1th L=0.If L >0, two values of J are possible:
J=1L —|— and J = L — .. One therefore has fine-structure doublets, for
example 2P1 and 2P3 , 2D3 and 2D5 ete.

The bepératlon in energy between these doublets decreases with the in-
crease of the principal quantum number n and is more sizeable for atoms
with higher Z: in Li the separation between QQP; and 22Pg (the first 2 is
the value of n) is only 0.4 x 10~*eV, whereas in Na the separation between
3°P1 and 3°P; is about 2 x 107V (see the discussion at the end of Sect.
14.4).
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Helium

For the singlet levels (parahelium) S = 0, whence J = L and there is no fine
structure. For the triplet levels (orthohelium) S = 1 so in all cases except
that of levels with L = 0 one has fine-structure triplets: J=L—-1,J =1,
J =L+1.Thelevels with L =0 have J =1 and no fine structure. Anyway
the separations within a triplet are very small (~ 10~%eV) due to the low
value of Z (Z = 2) and to the fact that only the excited levels (1s)(nl)
(n>2, 1>1) may give rise to fine-structure triplets.

Carbon

From among the three levels considered in the previous section and originated
by the configuration of minimum energy (1s)%(2s)?2p?, only the 3P gives rise
to a fine-structure multiplet, the triplet Py, ?P; , 3P, : the higher J, the higher
the energy and the separations are about 2x 1072 eV between the 3P; and
the 3Py, and about 5.4x1072eV between 3P, and the 3P .

We show in Fig. 16.2 the diagram of the levels of the carbon atom correspond-
ing to the configuration (1s)?(2s)?2p?.

From left to right: in the independent- s

- 1
electron approximation, in presence of I So
the only Coulombic repulsion and, fi- /
nally, in presence of the relativistic cor- I 1p .
rections. Fig. 16.2, that re-proposes Fig. /7 o b2
14.1, is not in scale because of the great 1! s
difference, of about three orders of mag- /// ,L ;: ;Pz
nitude, between the separation of the 2p° 47 > sgé

levels inside the multiplet 3P and the
distance from the 'D, 1S levels.

As we said in the beginning of the present section, from among all the rel-
ativistic corrections that are included in H’ the spin-orbit interaction (16.22)
usually is the most relevant. If we take into consideration only the spin-orbit
and the spin-other-orbit interactions and neglect in H’ the spin-spin inter-
action, we can obtain a more detailed information about the structure of the
multiplets, thanks to the following identity (the notation is the same as in
Sect. 10.2):

Fig. 16.2

M 17'
<E//jm//|‘/i|Eljm/>:<2//jm//

Ny (16.27)

where M is a generic angular momentum (either orbital or spin or total ...)
and V is a vector operator, i.e. an operator for which the commutation ruleb
(10.9) hold: we will say V is a vector under M j and m refer to the angular

momentum M .
The demonstration of (16.27) is based on the identity (13.48) we rewrite
here:

(M2, M2, Vi]] =2k (M2V; + V; M?) — an? (M - V) M; .
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If we take the matrix elements of both sides between states with the same j,
the left hand side gives a vanishing contribution:

(5---] [M27 []\2127‘/;]] |j--) =
WG+ |2 V] )= [ (M2, Vi) o)+ 1) =0

<

whence
GGHDR(Zim” |V | 2 jm/ )y = (X" jm" | (M -V)M; | &' jm’)

from which (16.27) follows.

Equation (16.27) is known as Wigner-Eckart theorem, even if the way
in which the theorem is usually formulated is slightly different and has a
greater generality inasmuch as it applies not only to vector operators, but to
tensor operators of any rank.

Let us apply (16.27) to the calculation of the first-order effect of spin-
orbit like terms. In order to keep the notation as light as possible, we will
refer only to the spin-orbit interaction given by (16.22). For the perturbative
calculation we will use the basis (16.12) instead of (16.16): we then have the
matrix elements

> (ELsLM”SS"|&(ro)La 5o | ELs LM'SS") . (16.28)

-

In (16.28) &(rq) Lo is a vector operator under the total orbital angular mo-
mentum L (&(rq) commutes with L). Let us take its matrix elements among
the states | ELg LM"” SS") and §,|FErs LM’'SS") that are eigenstates of
L? with the same eigenvalue L (5, commutes with L): by (16.27) we can

make in (16.28) the replacement

£(ra) Lo — (W) L = €(ra)Lo-50— (W) L3, .

Now the same argument can be applied to the operator §, , that is a vector
operator under the total spin S, of which the matrix elements with the same
S are taken, so that in (16.28)

> ttra)lada > ALS, A=Y (W)(ggfa) (16.29)

So in the space spanned by the (2L +1)x (25 + 1) vectors | Eps LM'S S"),
(16.22) can be replaced by AL-S.
At this point we go back to the basis (16.16) in which the matrix that
represents /A L-Sis diagonal and, since
o - 1

J=L+8 = L-§=

2(j2_E2_§2>
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one has

(BLsLSJJ,|AL-S|EpsLSJJ.) =
2
- ’; (EsLSJJ|A|BrsLSJ ) (70 +1)~ L(L+1)~ 5(S+1)).

The operator A commutes with all the components of Land S , 50 in the sub-
space we are considering (whose dimension is (2L+1)x(25+1)) it is a multiple
of the identity matrix (just as Hy ; see also the theorem shown in Sect. 13.9
p. 244), therefore

h? h?
9 <EL5LSJJ; | A | ELsLSJJ;> = 9 ALS
with Aps depending only on L and S (as well as on Epgs ), but not on J.
In conclusion, if we take into consideration only spin-orbit like interactions
up to the first order, one has

h2
ABLss =, As (J(J+1)—L(L+1)—S(s+1)) : (16.30)

Equation (16.30) does not allow one to calculate the separations in energy
among the fine-structure levels because Aps is not known. However one
knows that the contribution to Aps due to the spin-orbit interaction alone
(i.e. omitting the spin-other-orbit terms) is positive in the case all the shells
are complete except the last one filled by less than a half, as e.g. in car-
bon: this is already sufficient to guarantee that in such cases the energy
of the fine-structure levels increases as J increases (normal multiplets, as
e.g in carbon), while if Aps < 0 one says that the multiplets are in-
verted: the levels with higher J have a lower energy, as e.g. in the case
of the triplet 3Py 1 o of oxygen generated by the lowest-energy configuration
(15)%(25)22p*: E(*P) < E(*°P1) < E(*P) .
From (16.30) the Landé interval rule follows:

Ers;—ErLss =W Aps J (16.31)

and from (16.31), since the only unknown parameter is Arg, when in a mul-
tiplet the number of levels is higher than two, it is possible to derive some
relations involving the distances of the levels belonging to the multiplet: for
example, in the case of the triplet P 1,2 of carbon and oxygen (16.31) entails
that

E(R,) - E(*Ry) = 3(E(’P) — E(CRy)) .

In the case of carbon, by using the experimental values we have given for
the distances among the fine-structure levels, the left hand side of (16.31) is
about 5.4 x 1072 eV whereas the right hand side is about 6.3 x 1072 eV: the
difference is approximately 15%.
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Another result that can be derived from (16.30) is the following sum rule:

L+S
> (2J+1)AELs; =0 (16.32)
J=|L-5|

expressing the fact that the ‘center-of-energy’ of the fine-structure levels
(weighted by the degeneracy 2J + 1 of each of them) is not shifted.

In order to show (16.32) one can proceed by the direct calculation using
the AFEgy given by (16.30), but — more easily — it suffices to observe that
the left hand side of (16.32) is the sum of the eigenvalues, i.e. the trace, of
the matrix

(Eps LS J"J'|AL-S|Eps LS J'J.)

and that the trace is independent of the representation, so we can calculate
it in the basis (16.12):

ZMS/ (ELs LM S S.|AL-S|E,s LM S S.) . (16.33)

Since both for L, and L, the selection rules AM = 1 apply (the same as
(13.46) for D, and D, ), (16.33) boils down to

52
/ I\ I
ZM%(... MSL|ALS, |- MS)y=") Ais ZMS;MXSZ—O.
Equation (16.32) is useful to find the position Eps of the unperturbed level
from the experimental data about a fine-structure multiplet.

16.5 Hierarchy of Quantum Numbers. Selection Rules II

The discussion we have made about the structure of the atomic levels has
required several steps: firstly we have considered the independent-electron ap-
proximation, then we have added the electrostatic repulsion among the elec-
trons, finally we have taken into account the interactions that are relativistic
in nature. Each of these steps is characterized by the existence of quantum
numbers that are “good” within the considered approximation; in the next
step some of such numbers stay “good”, some are only “approximately good”
(i.e. only up to the first order in the added interaction the eigenstates of the
Hamiltonian are classified by means of these quantum numbers), finally other
quantum numbers totally loose their value: this is a situation that shows up in
many branches of physics, from nuclear physics to elementary particle physics.

This means that in the final classification of the atomic energy levels —
i.e. the ones whose Hamiltonian is the complete Hamiltonian — there exists a
hierarchy of quantum numbers: from the “good” ones to the “less good” ones
and so on. It should be said that (16.23), that we have called the “complete
Hamiltonian”, still is an approximate Hamiltonian in which, for example, the
interaction among the electrons and the nuclear magnetic moment — that is
about 1073 times the Bohr magneton (13.54) — is neglected: it gives rise to
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the hyperfine structure of the levels, ignoring which is legitimate only in
the framework of low resolution power spectroscopy.

Once the limits of our discussion have been clarified, let us examine the
hierarchy of the quantum numbers of an isolated atom: at the top we have
J,J. and the space-inversion parity w; under such numbers, i.e. as a little
bit “less good” numbers, there are L and S: indeed, L2? and S2 no longer
are constants of motion in presence of spin-orbit interactions (except for one-
electron atoms like hydrogen-like and alkali atoms), inasmuch as they do not
commute with the single Lo and 5, in (16.23); however, up to the first order
in the spin-orbit interaction, the eigenstates of the Hamiltonian still can be
classified by means of L and S. This means that the “exact” eigenstates of
the Hamiltonian will be linear combinations of states with the same J and
J. (and parity) but with different values of L and/or S:

a|LSTTY+BILS T+~ |L"S" JJ )+ - (16.34)

in which, if the first-order treatment of the spin-orbit interaction is reliable,
one must have
lal? > B2+ P+ - . (16.35)

Note that M and S., that in absence of the spin-orbit interaction are good
quantum numbers, loose their meaning in the very moment the spin-orbit is
“switched on”: this is due to the fact that, in presence of the only electro-
static interactions, there is degeneracy on these quantum numbers and the
introduction of the — no matter how small — spin-orbit interaction entails that
the new eigenstates of the Hamiltonian, inasmuch as eigenstates of .J?, are
linear combinations of states with different values of M and S.: such linear
combinations, contrary to those of the type (16.34), are independent of the
magnitude of the spin-orbit interaction and are univocally determined by the
“geometric” rule of addition of angular momenta.

Making a step down in the hierarchy, we finally have the n, and the [, of
the single electrons, i.e. the electronic configuration: also for these quantum
numbers we could repeat what we have said for L and S, except the fact
that the n, and the [, are only “approximately good” because of the inter-
electronic repulsion, which is a rather strong interaction.

Which is the utility of this hierarchy of quantum numbers? In other words:
which is the utility of the “approximately good” quantum numbers?

We have already seen the utility of giving the electronic configuration: from
the one hand, the electronic configuration gives us a qualitative idea about
the position of the energy levels, as e.g. the fact that — at least in the simplest
cases — a more excited configuration gives rise to energy levels that, on the
average, are higher than those originated by a less excited configuration; on
the other hand, we have seen in Sect. 16.3 how a rigorous information about
the quantum numbers of the levels can be obtained from the configuration.
Moreover, the knowledge of the approximate quantum numbers L and S al-
lows for the determination of the number of fine-structure sublevels within a
multiplet and of the value of J for each of such sublevels.
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But there is one more reason by which the quantum numbers — both the
good and the less good ones — are important: the fact that, for each of them,
we have a selection rule for the electromagnetic transitions: once the meaning
of “approximate quantum numbers” has been clarified, as expressed by (16.34)
and (16.35), it is evident that the more a given quantum number is “good”,
the better the selection rule relative to it will be verified, and viceversa.

We now complete this section with a list of the selection rules on the
several quantum numbers we have already encountered, including for the sake
of completeness also the already discussed selection rules and discussing for
each of the validity and framework of applicability. Unless the contrary is
stated, we will always understand selection rules for electric-dipole transitions.

1. Selection Rule on w, J, J:

w -w = -1 (16.36)
AJ==+1,0 J=0+4J=0 (rigorously prohibited) (16.37)
AJ,=+41,-1,0 (respectively for Dy, D_, D,) (16.38)
J=0AJ.=0 i J=J". (16.39)

Equation (16.36) has been discussed in Sect. 13.6. Equations (16.37) and
(16.38) are formally identical with (13.47) and (13.44): indeed both are con-
sequences of the fact that the electric dipole operator D has, both with L and
J, the commutation rules (10.9) of a vector. The selection rules (16.38) also
are an immediate consequence of (13.44) and of the selection rule on S, we
will give in a while. The selection rule (16.39) has been written for the sake
of completeness, but it will be neither shown nor utilized.

Thanks to the goodness of the quantum numbers they refer to, all the
above selection rules are well verified: violations are to be attributed to either
magnetic dipole or higher electric and magnetic multipole transitions.

2. Selection Rule on L and S':

AL =+1,0 L=0+4 L=0 (rigorously prohibited) (16.40)
AS=0. (16.41)

The selection rule (16.40) has been discussed in Sect. 13.6 while (16.41) has
been introduced in Sect. 16.1 to explain the impossibility of transitions be-
tween orthohelium and parahelium.

The validity of the above selection rules is limited not so much by the
electric dipole approximation but, rather, by the fact that L and S are ap-
proximate quantum numbers. The case of the alkaline earth atoms (as e.g.
Mg, Ca, Hg, Ba, ...) is typical, in particular that of mercury Hg that has
Z = 80; the ground-state configuration is

(complete shells) (6s)*

and therefore, much as in He, the ground state is a state 'S. The first excited
configuration is
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(complete shells) 6s 6p

and gives rise, as in He, to states P and 3P. Due to the high value of Z, the
spin-orbit interaction has non-negligible matrix elements between states with
different energies (but with the same .J), in particular between the states P
and 3P; . The consequence of this fact is that, besides removing the degeneracy
on J, the spin-orbit interaction appreciably mixes the states 'P; and 3P
with each other: therefore the two levels of Hg originated by the configuration
6s6p no longer have either a well defined spin or, as a consequence, a well
defined orbital symmetry, but are linear combinations of states with S = 0
and S =1 of the type (16.34):

|IL=1S~0J=1J,)=a |['P)+8 |3P)
|L=1S~1J=1J,)=a" |3P)-p*|'P).

It is therefore clear that transitions to the ground state 'Sy are possible from
both levels, the probability transitions being proportional to |a|? and |3]?
respectively with, as in (16.35), |a|? > |B]2.

The lowest of the levels P; (that we have denoted as | S ~ 1)) was —
improperly — classified by spectroscopists as a triplet level P, (in accordance
with Hund’s rule), so that one says that in this case the selection rule (16.41)
is violated. The corresponding transition line (A = 2357 A) is called an in-
tercombination line (transition between states with ‘different’ spin). The
same mechanism explains the very weak transitions between orthohelium and
parahelium.

3. Selection Rule on L, and S, :

AM =+1,-1,0 (respectively for Dy, D_, D,) (16.42)
AS. =0 . (16.43)

Equation (16.42) is already known from Sect. 13.6; the selection rule expressed
by (16.43), as already stated in Sect. 16.1, originates from the fact that the
electric dipole operator D commutes with the components of S and with S,
in particular.

Such commutation rules are significant only when the stationary states of
the atom can be classified by means of the eigenvalues of L, and S, and
in presence of external fields that remove the degeneracy on these quantum
numbers: we will see in the next section that both such conditions are met for
an atom in a magnetic field so intense as to make the spin-orbit interaction
negligible.

4. Selection Rule on the Electronic Configuration:

the only possible electromagnetic transitions are those occurring between
states originating from configurations that differ in the quantum numbers
n, | of one only electron.

This selection rule does not presuppose the electric dipole approximation.
If the latter holds, the further limitation (13.51) (Al = £1) on the variation
of the [ relative to the electron that changes its state applies.



306 16 Many-Electron Atoms

The limits of validity of such selection rule are the same as for the clas-
sification by means of the electronic configuration, i.e. the first order in the
Coulombic repulsion. However the selection rule on the configuration appears
to be verified better than one would expect basing on the fact that the in-
teraction among the electrons is a rather strong interaction: indeed the mix-
ing (analogue to (16.34)) among different configurations due to the repul-
sion among the electrons is not very sizable (despite the term >_ 4 €?/rap
may have nonvanishing matrix elements among states generated by different
configurations) inasmuch as the differences among the unperturbed energies
relative to different configurations usually are — at least for not too excited
configurations — very large.

The proof of the selection rule 4 is based on the fact that the electromag-
netic transition probability (13.24) is determined by the matrix element of
an operator that is the sum of the operators £, = P - A(Za) , each of which
is a single-particle operator, i.e. it only contains the variables that refer to a
single electron. It is therefore clear that, if the states |EY) and |E?) dif-
fer in the quantum numbers of two or more electrons, every matrix element
(EQ | & | E?) is vanishing and, as a consequence, the transition probability
between the states | E2) and | E) is vanishing as well.

This selection rule is the reason, anticipated in Sect. 16.1, why we restricted
our discussion on the energy levels of He to configurations where only one
electron is excited.

16.6 Atoms in a Magnetic Field: the Anomalous Zeeman Effect

The introduction of the electron spin has allowed for the formulation of the
Pauli principle as well as — due to the fact that the spin is associated with
a magnetic moment — for the explanation of the fine structure of the energy
levels. It is then clear that the spin must play a fundamental role also in
the case of an atom in an external magnetic field, thanks to the interaction
between the magnetic moment associated with it and the field. In this section
we will examine which differences occur both in the treatment and in the
results with respect to the treatment of Sect. 13.7, in which the existence of
the spin was ignored.

The discussion of Sect. 13.7 had the Hamiltonian (13.56) as starting point;
the changes, due to the spin of the electron, we must now make in (13.56) are
two. First we must add the interaction among the magnetic moments of all
the electrons and the magnetic field B; this interaction is given by

Z
N i B=g.° 5.8
a=1

Secondly, while in (13.56) Hy was the Hamiltonian of the isolated atom only
inclusive of the electrostatic interactions, we must now consider the Hamilto-
nian (16.23) that includes also the spin-orbit interaction, as well as the other
relativistic interactions.
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The atomic Hamiltonian in a magnetic field then is (always neglecting the
terms proportional to B?):

e
2mec

H=H, + (L+g¢S)-B

or, choosing the z-axis parallel to the direction of B:

eB
H=H,+— (L, S, 16.44
g (L4 gS2) (16.44)
where Hyy is the complete Hamiltonian of the isolated atom, given by (16.23).
Let us first show that necessarily g # 1. If in (16.44) we put g =1,

eB
H=Hy+-— J, (in the case g = 1)
2mc
and, since J, commutes with Hg, just as in the situation of Sect. 13.7, one
has that the exact eigenvalues are

E°+usBJ. (in the case g = 1)

E° being the eigenvalues of H,; . Also in this case, as in Sect. 13.7, due to
the selection rules (16.38) AJ. = +1, 0 one has that, thanks to the effect of
the magnetic field, each line splits up into three lines: one finds once more the
normal Zeeman effect and the anomalous Zeeman effects remains unexplained.

So let us once for all take g = 2, whence (16.44) may be written in the
equivalent forms

eB
H=H,+— (L,+28, 16.4
t+2mc( +285,) (16.45)
and
H=Ho+ 5 (1. +5) (16.46)
— at 2mc z z) - .

In Sect. 13.7, as well as in the just discussed case g =1, it has been possible
to exactly calculate the effect of the magnetic field on the energy levels of the
atom. Now, with either the Hamiltonian (16.45) or (16.46), this is no longer
possible because the term that represents the interaction with the magnetic

field
eB

2mec

does not commute with H,; : indeed it is S, that does not commute with the
spin-orbit interaction contained in Hat .

It is then clear that, if we could neglect the relativistic corrections, it
would still be possible to exactly calculate the effect on the energy levels of
the atom: from the physical point of view this is possible provided a very
strong magnetic field is at one’s disposal, such that the separations between
the Zeeman sublevels turn out much larger than the separations among the
fine-structure levels, to the point that the latter can be altogether neglected.

H =

(J. +8.) . (16.47)
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Since the Zeeman separations are of the order of ugB, the condition that
enables one to neglect the relativistic corrections in Hy is

ILLBB > AELSJ . (1648)

For example in the case of Li, where the splitting between the 22P§ and
2 2Pg levels is about 0.4x107%eV, (16.48) is satisfied by a magnetic field B

with intensity much higher than 10* gauss.

The situation is still less favourable in atoms with higher Z. In any event
let us start the discussion with the case of the lithium atom that, inasmuch
as exactly soluble, is the simplest:

Strong Field

As just said, strong field means that (16.48) is satisfied. It is convenient
to take the Hamiltonian in the form (16.45) and — provisionally — neglect all
the relativistic corrections in H,; . Then L. and S, commute with H,; and
the eigenvectors (16.12) of Hy also are eigenvectors of H:

B
(Hat 5 (L.+25.) Bus LS SL)=(Eps+usB (M+25))| Brs LS SL).
The eigenvalues of H then are

Eps+mB(M+25), L<M<+L, -S<S <+5. (1649)

In the present approximation the distance between two adjacent Zeeman sub-
levels still is pupB for all the levels with L # 0. It is instead 2upB for the
levels with L = 0 and S # 0. The number of components into which, ow-
ing to the field, any spectral line splits up still is three, due to the selection
rules AM =0+1,0 and AS, =0 listed in point 3 of the previous section.
Therefore, again, there is a central 7 line and two side o lines: the case we
have discussed presents all the features of the normal Zeeman effect.

Since, by neglecting the relativistic corrections, we have exactly solved the
problem, it is possible to consider the relativistic corrections as a perturbation
and determine the corrections to the levels (16.49) and, as a consequence, the
effect on the Zeeman lines (Paschen—Back effect). We will not discuss
now this problem because we will find the result as a particular case in the
framework of the discussion of the intermediate field.

The case we are now going to discuss is — from the physical point of view
— more interesting, inasmuch as more easily realizable: it is the case of the

Weak Field

A magnetic field is considered a weak field when it produces, on the levels
of an atom, effects small with respect to the distances among the fine-structure
levels. In other words, when the matrix elements of H' given by (16.47) among
the states belonging to a given fine-structure multiplet are small with respect
to the energy differences among the levels belonging to the multiplet. For
example, in the case of the doublet 32P57 32Pg of Na, with a separation of
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2x1073eV, a field B of 10*gauss can still be considered small, because it
produces effects of the order of

psB ~ 107 %eV .

In this case it is therefore legitimate to consider H’ as a perturbation and
only consider the matrix elements of H’ among the eigenstates of H,4 with
the same energy, i.e. among the states

\E; JJ.), —J<JL<+J (16.50)

where E; are the eigenvalues of H,; ; the states (16.50) are — for the time
being — the ezact eigenstates of Hyy .

Since H’ commutes with J,, the off-diagonal matrix elements of H’
among the 2J+1 states (16.50) are vanishing; therefore the diagonal elements
directly give the first-order corrections to the energy levels. Since the states
(16.50) are eigenstates of J, , we are left with calculating the mean values

(E; JJ,|S.|Ey JJ.) . (16.51)

Thanks to (16.27) (Wigner-Eckart theorem) the matrix elements between
states with the same J, exactly as the mean values (16.51), equal the matrix
elements of

ST (16.52)
J2
It follows that
<EJJJ;|Sz|EJJJ;>:’YJJ; (16.53)
where 1
- - ' J. 7 '
’YJ—hQJ(J(+1)<EJJJZ|S J|E;JJ,). (16.54)

only depends on J and the considered level, but not on .J, inasmuch as S.J
is a scalar operator, i.e. it commutes with all the components of .J .
If we define the Landé factor g; as

9, =1+7, (16.55)

one has that the energy levels of the atom to the first order in the magnetic
field are
Ey+usBg,;J. . (16.56)

The magnetic field removes the degeneracy on J.: each level corresponding
to a given value of J splits up into 2J 4+ 1 equally spaced Zeeman sublevels
(AE = ugB g, ) but, contrary to the case discussed in Sect. 13.7, the distances
among adjacent Zeeman sublevels depend on the level by which they are
originated.

In the case discussed in Sect. 13.7 each line of the spectrum was split by
the magnetic field into three components, due to the selection rules AM =
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41, 0 and to the fact that the Zeeman separation between adjacent levels was
independent of the originating level (Fig. 13.1). Now, instead, with the levels
given by (16.56), although the selection rules AJ., = +1, 0 still apply, thanks
to the fact that the separations among the Zeeman sublevels do depend on the
originating level, each of the spectral lines will split up, due to the magnetic
field, into a number of components that will depend on the considered case
and, in general, will not be not equidistant from each other: this corresponds
to what is observed in most cases (anomalous Zeeman effect).

In order to determine the number of components into which a given line of
the spectrum splits up and the distances among these lines, the value of the
Landé factor in (16.56) is needed for the levels involved in the transition: this
can be achieved if we replace the exact eigenstates (16.50) of H,, with the
approximate eigenstates (16.26): this is legitimate if the first-order treatment
of the relativistic corrections (spin-orbit interaction etc.) is reliable. Indeed,
by exploiting the identity

and since the states (16.26) | Eps; L S J J.) are eigenstates of J2, L2, 52,
(16.54) yields the Landé factor (16.54) (that in the present approximation we
denote by g, ¢, ):

J(J+1)+S(S+1) - L(L +1)

=1 16.57
rss =1+ 2J(J +1) (16:57)

and, correspondingly, the energies of the Zeeman levels are
ELSJ+NBBQLSJ J; . (16.58)

In the present case the dependence of the Landé factor on the quantum num-
bers LS J of the considered level is explicitly known: we are therefore able
to determine the number of components into which each line of the spectrum
splits up and the distances among such lines.

Let us consider, for example, the transitions among the levels of the doublet
32P1 and 32P3 and those the lowest term 325 1 of Na. The values of the

Landé factor (16 57) respectively are:

2
= N 2P3: g1 = ) 251 9

Priogi 5 3 P1= g ! =2. (16.59)

11
2 2

=

Due to the fact that the Landé factors of the levels QP; and ng are differ-
ent from that of the ground level 25 1, all the transitions permitted by the
selection rules AJ, = 41, 0 give rise to lines with different frequencies: from
the 2P1 to the 2S 1 there occur four transitions, two of them being = lines
(AJ,=0), the other two being instead o lines ( AJ, = £1) (Fig. 16.3a).



16.6 Atoms in a Magnetic Field: the Anomalous Zeeman Effect 311

From the QPs to the 281 the B
permitted transitions are six, 2p, :ﬁ%
four of them being o and two 2 a%f
being 7 (Fig. 16.3b). In Figs. %l_;ﬁ

16.3a and 16.3b we also re-
port, in scale, the distances of 2p (T
the several lines from the line 2
in absence of the field (dashed
line). So, in the case of weak
field, between the 3p and the
3s levels of Na there occur, in 26,
total, ten lines: if we increase 2
the intensity of the magnetic | |
field up to the point that the
fine-structure separation be- rar ‘ P Fea ﬂ‘ﬂ s
tween the QP; and ng be-
comes negligible with respect
to the Zeeman separation (the case of very strong field), these ten lines merge
together in such a way as to reproduce the normal Zeeman effect (three
equidistant lines).

But the latter is not the only case in which the normal Zeeman effect
occurs: from (16.57) it turns out that for all the levels with S = 0, and
therefore J = L, one has

Fig. 16.3a Fig. 16.3b

9rog =1

so that there occurs the normal Zeeman effect in all the transitions between
levels with S =0, as e.g. the singlet levels of He (parahelium).
We finally discuss the case of:

Intermediate Field

In this case the Zeeman separations are comparable with the fine-structure
ones. The problem is solved by means of perturbation theory for quasi-
degenerate levels we have discussed in Sect. 12.4: both the relativistic terms
(the spin-orbit interaction and the others) and the interaction (16.47) with
the external magnetic field are taken together as the perturbation. The un-
perturbed Hamiltonian is (16.8) inclusive of only the Coulombic interactions
and the unperturbed eigenvectors are given by (16.12), with E° = Erg.
We must therefore diagonalize matrices of dimensions (2L 4 1) x (25 + 1):
however, since the perturbation commutes with J,, all the matrix elements
between states with different values of J, are vanishing, so any matrix is
block-diagonalizable, one block for each of the 2J™* +1 = 2(L + 5) + 1
possible values of J, in the states (16.12), and the dimension of each of them
equals the number of states with the same J.. The dimensions of these ma-
trices are, as a consequence: 1 in correspondence with J, = +(L+.5), 2 with
J,=+(L+S-1), - - and the maximum dimension equals the number of
terms the fine-structure multiplet consists of.
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If we only consider the spin-orbit interaction from among the relativistic
corrections, then — thanks to (16.29) — the matrices one has to diagonalize
are:

. . eB
(Eps L M’ 55;|AL.S+ﬁ(LZ+2SZ)|ELS LM"SS")
M', M"=—L, -, +L: S 8" =—8, -, +S. (16.60)

The problem is easily solvable in the case of the 2p levels of Li (which is
one of the few cases in which the fine-structure separation is comparable with
the Zeeman separations for reasonable values of the magnetic field) inasmuch
as one has to diagonalize a 6 x 6 matrix that splits up into two blocks of
dimension 1 (j, = £3/2) and two blocks (j, = £1/2) of dimension 2. In the
basis (16.12) the magnetic term is diagonal, the states with j, = £3/2 are
eigenstates of J? and therefore also the spin-orbit term AL-§ is such: due
to (16.30), the value of the latter in such states is Apg h%/2; as a consequence
the energies of the states with j, = £3/2 are

o 1
BU=%3) — B0 4 o ALsh® £ 2usB = By + 2B (16.61)

where E3 =FE0+ A s B? is the energy of the level P3 in absence of the
magnetic *feld: in thls case the result coincides with that of weak field.

The matrix representing the spin-orbit term relative to the states with
j. =1/2 (the notation is |m s, )) is

(1 = | ApsL-5|1 1) (1 —1|AsL-5]0 +1)
(16.62)
(0 +2[AsL-511 1) (041 ]AsL-5]0 +1)

In order to calculate the elements of the matrix (16.62) in general one should
know the Clebsch-Gordan coefficients (see (15.22)), in such a way as to ex-
press the vectors |m s, ) in terms of the eigenvectors of J? (and therefore
of L-§ ). In this particular case this is not needed: the diagonal terms are
immediately calculated because, thanks to the selection rules AM = +1 for
L, and L, and As, =+1 for s, and s, , only the term L. s, from L5
contributes, so (16.62) has the form

—%ALshz «
a* 0/

Furthermore, since the eigenvectors of (16.62) are the eigenvectors of J 2 with
j = 5 and j = 3, thanks again to (16.30) we know that the eigenvalues
of (16.62) are —Apgh?® (j = 3) and Apgh?/2 (j = 3), therefore |af?> =
A2 g R*/2. In conclusion, the complete matrix of the perturbation relative to

the states with j, =1/2 is
1 2
( 21‘;1*,571 u§B> (16.63)
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whose eigenvalues are

1

i1 1 9
sEY 2) _ 2(MBB— 2ALSh2:t\/4A2LSh4+AL552 MBB+MQBBQ) :

Since the energies of the levels P; and Pg respectively are E° — Apg h?
and B9+ %ALS h? and calling 6F = g’ALs h? their separation (that in Li is
about 0.42x107*eV), one has

g 1 2
EY=2) - By +, (uBB + \/(ciE)2 + 0B B + piB? — 5E) (16.64)

g 1 2
pY:=2) Ey+, (uBB - \/(5E)2 + J0E i B + B + 6E) . (16.65)

Equations (16.64) and (16.65) have been written in such a way as to empha-
size the originating level: indeed, for B — 0, the terms in parentheses are
vanishing.

As for the states with j, = —1/2 it is sufficient to make the replacement
pupB — —upB in (16.63), whence

i 1 2
BY=72) o By + ( — upB + \/(5E)2 — 40E B + p} B - 6E) (16.66)

B9 — (B \[0E) - 20BmB 1 3B 4 0E) . (16,67
= 1y, UB 3 KB 2] : .

The weak field result — expressed by (16.58) with the Landé factors given
by (16.59) — is recovered by expanding (16.64) =+ (16.67) to the first order in
upB/JE . The case of strong field — corresponding to taking into account the
first-order effect of the spin-orbit interaction on the energy levels (16.49) — is
obtained by expanding to the first order in JE/ugB: in the latter case one
has

E(J./z:+:23) — E(17+;) = Es —|—2ILLBB

2
EBU=+1) _ pO+3) §(2E3+Eé)+MBB
EU:==32) & ECLE) = 1(Ey 4 2E))

3 2 2

(16.68)

E(j;:+é) — E'(lv_é) = 1(E3 —|—2E1)

3 2 2

1 -1 1

E(Jz 2) — E'(Ov 2) = 3(2E§+Eé)_MBB
EW=-3 o ECL-2) = E; —2u3B.

2

In Fig. 16.4 (in the next page) the energy levels given by (16.61) and by
(16.64) + (16.67) are reported as functions of the ratio pupB/JE: for high
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Fig. 16.4

values of the field (ugB = 2F they are in the same order (top-down) as the
levels given by (16.68).

In Fig. 16.4 it is also interesting to note that the two lines with m = +1/2
do not cross each other, and the same is true for those with m = —1/2. This
is in compliance with the no-crossing theorem by E.P. Wigner and J. von
Neumann according to which levels with the same symmetry do not cross each
other: in this case the symmetry is the rotation around the direction of the
magnetic field, and ‘the same symmetry’ means ‘the same m’.

We look for necessary conditions in order that, given the Hamiltonian
H()\) = Hy + AV, two eigenvalues F1(\) and E2()\) collapse for some (real)
value X of the parameter \: F;(\) = Ey()\) = E. If this is the case, then for
Ao = A— 9\ the eigenvalues of H()g) are ‘quasi-degenerate’ and we can apply
the perturbation theory for quasi-degenerate levels we have discussed in Sect.
12.4: therefore the matrix

Hij(N) = (Ei(ho) | HA) | Ej(N)), 4,5 =1,2

must be a multiple of the identity, i.e.:

Hyi1(\) = He (M) = E, Hyiz(\) =0. (16.69)
Equations (16.69) are three real equations for the unknown X ; the condition
Hi2(A\) = 0 is satisfied if the states corresponding to the eigenvalues Ej(\)
and Fy(\) possess different symmetry properties, that is if they are eigenvec-
tors with different eigenvalues of an operator which for any A commutes with
the Hamiltonian H()): different values of m, in the case we are considering.
In this case the occurrence of level crossing depends on whether the first of
(16.69) has a real solution; otherwise, except for special cases, level crossing
cannot occur. This explains the statement that level crossing can occur only
for states with different symmetry, while states of equal symmetry repel each
other, as illustrated in Fig. 16.4 where we can also see that the m = —3/2
line crosses both a m =+1/2 and a m = —1/2 line.



Chapter 17

Elementary Theory of Scattering

17.1 Introduction

In a scattering experiment a beam of particles is fired against a target and the
angular distribution of the scattered particles is observed. In physics almost
every measurement process involves a scattering experiment, even if the beam
does not consist of particles, but is rather a wave, e.g. sound or electromag-
netic waves (the two terms “diffusion” and “scattering” are interchangeable,
they reflect the wave-particle dualism of quantum mechanics: the former em-
phasizes the wave-like aspect of the phenomenon, the latter the particle-like
one). Even disregarding the high-energy experiments with particle accelera-
tors, for instance all the experiments performed in order to investigate the
structure of the atoms (energy levels, degeneracy etc.), as those discussed in
Chapt. 13, are scattering experiments: electromagnetic radiation is sent to the
atom and from the observation of the scattered radiation the properties of the
“scatterer” are deduced. The same occurs if the target consists of molecules
rather then atoms.

This fundamental subject involves a multitude of situations: from the sim-
plest one of the scattering of a particle by a fixed and structureless target, to
the more complicated ones in which new particles are produced, or where the
target has an internal structure that is changed by the particle undergoing
the scattering process; not to mention multiple scattering with interference
between the scattered waves, as in the Bragg and Davisson—Germer experi-
ments.

Most of the image-based diagnostic techniques in medical physics (RX,
Computerized Tomography, NMR, Ecography, etc.), are examples of scatter-
ing processes and the list could go on endlessly.

From the historical point of view, the first compendium of scattering the-
ory is that by J.W.S. Rayleigh “The Theory of Sound” (1880) where all the
relevant aspects of diffusion are discussed. Among the first scattering experi-
ments with particles, the most known and important for their impact on the
knowledge of the atomic structure, are the already mentioned Geiger—-Marsden
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ones in 1909, performed under the direction of Ernest Rutherford (see Sect.
1.1).

The present chapter is meant as an introduction to the theory of scatter-
ing, therefore we will concentrate only on the simplest case of the scattering
between two structureless particles, with the aim at giving the basic building
blocks of the subject.

17.2 The Cross Section

Suppose that the target consists of n independent scattering centers and the
beam of a flux of A/ incident particles per unit area and unit time. A is called
the luminosity of the beam. We assume that the luminosity is small enough
so that there is no interference between the particles of the beam and that
the scattering centers are sufficiently far apart so that any collision process
involves only one of them.

The number An(6,¢) of particles that, as the result of the interaction
between the incident particles and the scatterers, emerge per unit time in a
small solid angle A around the direction identified by the polar angles 6
and ¢ with respect to the direction of the incident particles, is proportional
ton, N and AQ:

An(0,¢) = o (0, p) N n AQ (17.1)

the proportionality constant o (6, ¢) is the differential cross section. The
total cross section is

Otot = /0(9,¢) dQ . (172)

The differential cross section o (6, ¢) has the dimension of an area: o (6, ¢) A2
equals the portion of area of the incident beam (orthogonal to the direction of
the beam) that is crossed by the same number of particles that are scattered
within the solid angle AQ by a single scatterer.

The cross sections are measured in barn (b): 1b = 10~*4cm? or, more
frequently, in multiples of the mb = 10~ barn.

Since the concept of cross section is a classical one, we can illustrate it in
classical terms: suppose that the target consists of n rigid objects of cross-
sectional area A. For instance, if the scatterers are rigid spheres of radius
a, their cross-sectional area is ma®. In the unit time N x (nx A) projectiles
hit the scatterers and each of them is scattered, therefore oy is just A.
Thus, in particular, if the scatterers are rigid spheres, the classical total cross
section is ma?, independent on the energy of the projectiles. It is therefore
surprising that the quantum mechanical cross section varies from 4 times the
classical one at low energies to 2wa? at high energies. But the surprise is not
justified, because in the classical case one has to do with projectiles that are
particles while in the quantum case one has to do with waves and, as in optics,
diffraction plays an essential role: notice that low energies means A > a and
that 4ma? just equals the surface of the entire sphere; even at high energies
(A < a) the shadow of a sphere, because of diffraction, is not the geometrical
one.
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If the particles of the target are not fixed, as for instance in an experiment
with colliding beams, and have mass my, while the particles of the beam (those
that will be revealed by the detectors) have mass my, then, as discussed in Sect.
11.2, the problem reduces to that of a particle of mass m = mymy/(mp +my)
subject to the interaction potential V (|7}, —7t|) between the two particles that,
for simplicity, we have assumed spinless. Of course, one must then translate
the results from the center of mass frame to the laboratory frame where, for
instance, the target particle is initially at rest.

Before discussing how the cross section can be calculated, we consider a
one-dimensional scattering problem since it involves many issues that we will
encounter in the three-dimensional case.

17.3 One-Dimensional Case

In Sect. 8.3 we discussed the one-dimensional problem of a particle sent against
a potential barrier: this is the prototype of a scattering process and we carried
on the discussion in terms of the stationary states of the system. We noticed
that this was a choice of convenience because the physical problem of send-
ing particles against a “barrier” and then looking for the reflected and the
transmitted ones is not stationary.

The physical problem should be discussed in terms of an initial state repre-
sented by a wave packet very distant from the “barrier” and moving towards it
and then studying its time evolution that, as we foresee, will give rise to both
a reflected packet and a transmitted one. Therefore this is a time-evolution
problem and, as such, it is rather complicated and its discussion requires sev-
eral approximations.

Suppose, as in Sect. 8.3, that the potential V(x), now not necessarily a
“barrier”, vanishes for both x < 0 and x > a. The initial state is given in
the Schrodinger representation by a wavefunction ¥ (z, ¢ = 0) whose support
is confined in a finite region x < 0 very far from the potential (“scatterer”),
and whose mean velocity vy = po/m is positive. Then

+oo
W,t:()):/ (k) el e dk’ (17.3)

with a(k’) concentrated around k' = kg = po/h.

In order to determine the time evolution of the state we must express
Y(x, t = 0) in terms of the eigenfunctions of the Hamiltonian: let us suppose,
for simplicity, that there are no bound states. In this case we know from Sect.
8.3 that in the regions = < 0 and = > a, where the potential vanishes,
the eigenfunctions of the Hamiltonian (that were indeed called “scattering
states”) are given, with slightly modified notations with respect to those of
Sect. 8.3, by

elh® 4 B(k) etk <0
= . - k>0 174
or() {C(k) eike T>a ~ ( )

for particles coming from the left, and
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C(k) eikm x S 0
= ) ) k<0 17.5
Pr(2) {e”‘“ + B(k) eike 5>a (17.5)

for particles coming from the right. The expression of ¢ (z) for 0 <z < a
depends on the potential V(z). Hence

oo ’ iE't/h 1./ ’ h2k'?
w(m):/ (k') g (z) e PR B = 5 (17.6)

—00

In (17.6) we have written «(k’) as in (17.3), instead of a different function
a(k’): we show that actually a@(k’) = a(k’). To this end we must make the
following approximation: in (17.3) (and consequently also in (17.6)) we limit
the integration only to the positive values of k', i.e.

+oo ,
W;,t:o):/o (k') eite qk (17.7)

The legitimacy of this approximation is due to the fact that a(k’) is concen-
trated around k' = kg = po/h and since ko is positive, a(k’) is negligible
(although not zero) for negative values of k. We then must show that for
t =0 (z,0) given by (17.6) (approximately) coincides with ¥ (x,0) given
by (17.7), that is

/ a(k)B(K) e F*dk =0, z <0

° (17.8)
/ a(K)C(K) et ¥ = dr’ =0, r>a.

0

A further approximation is necessary, still justified by the fact that a(k’) is
significantly different from 0 only near ko: we replace B(k') with B(kg)
and C(k') with C(ko). In this case the first integral in (17.8) equals
B(ko) ¥(—2,0) which vanishes since ¥(—x,0) # 0 only for z > 0. A similar
argument holds for the second integral in (17.8).

We now come back to (17.6) to determine the time evolution of the wave
packet. In addition to the already mentioned approximations we expand E’
around k' = kg and keep only the linear terms:

,_ RPR'? RPkG ko Rk

E' = K -k cee=— hook' + -+ (17.
2m 2m+ m( 0)+ 2m+ Vo R+ (79)

where the omitted term is h? (k' —kg)?/2m and is responsible for the spreading
of the packet.
Because of (17.4), (17.6) gives rise to three terms: the first one is

e+iE0t/h/ a(k) el F@=vt) qp 2 <0 (17.10)
0
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that, apart from the lower limit of integration and the irrelevant phase factor
etiBot/h i 4h(x — vgt,0), i.e. the initial packet moving toward the scatter-
ing center with velocity wvg. Since it has a finite extension, i.e. (z,0) =
0 for,say < —L, for t > L/vg vanishes: z —vot < —L for any = < 0
(remember that (17.10) concerns the region = < 0).

Always in the region x < 0 we have a second term

e HPot/R B (k) / a(k)e I Et qr 2 <0 (17.11)
0

that equals B(ko)y(—x — vot,0) and is zero for t =0 (—z > 0). For suf-
ficiently large values of ¢ the argument —x — vgt becomes negative and cor-
respondingly B(ko)y(—z — vot,0) becomes different from zero. The physical
meaning is clear: it is a wave packet specular to the initial one, reduced in
intensity by the factor |B(ko)|? (|B(ko)|> =1 —|C(ko)|?, see (8.26)) travel-
ling away from the scatterer along the negative z-axis: as expected it is the
reflected wave packet.

Finally, in the region z > 0 we have (omitting the phase factor etibot/ o)

Clka) [ all) e A = Clka) (o — 0t,0) 17.12)

that, for sufficiently large ¢, corresponds to the transmitted wave packet trav-
elling with velocity v past the scatterer.

We now briefly discuss the conditions of validity of the above results, both
to illustrate their physical meaning and to ascertain their mutual compati-
bility.

The momentum-space wavefunction «(k) of the initial state has been sup-
posed to be concentrated in a neighborhood of k& = kg, with Ak < ko . This
condition is equivalent to Az > \g, where Az (approximately) gives the
extension of the wavefunction in coordinate space. Therefore the initial state
practically consists of a plane wave of finite extension, i.e. — in the spirit of
the discussion of Sect. 6.9 — we can refer to it as “an approximate eigenvector
of p”. For example, with reference to the neutron interferometry experiment
discussed in Sect. 3.3, the neutrons — in that case of very low energy — had a
wavelength Ao ~ 1 A, while the longitudinal dimension Az was estimated to
be of the order of 1072 cm, therefore Ak/kg =~ A\o/Ax ~ 107°.

Since we neglected the spreading of the wave packet during the time evo-
lution, we must ascertain that in the whole scattering process, from the initial
state to the detection of the scattered particle, the wave packet does not
spread appreciably. Just to give an idea of the approximation involved, we
take the expression of the spreading of a free wave packet, as given by (9.34).
If T is the duration of the process, we must require that Az(T) ~ Az(0),
ie. T <mAx/Ap = Ax/Av, namely the distance covered by the packet is
D < Axx(ko/AK).

Moreover, when the wave packet reaches the detector it must have com-
pletely gone beyond the region where the potential is nonvanishing: this re-
quires that T > L/vg. Therefore T must satisfy the following inequalities
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L A k
<T < i or, equivalently L < D < Azxx 0
v Av Ak

which is possible as long as Axz/L > Ak/kg .

17.4 Three-Dimensional Case

Except for the case of a wave impinging onto a large slab of optical material,
in all real situations scattering occurs in three dimensions. The discussion of
the previous section was aimed at showing how a scattering problem should be
faced as a non-stationary problem. It also underlines the essential role of the
stationary states, whose determination in the one-dimensional case is a pre-
requisite for the determination of the reflection and transmission coefficients
and, in the three-dimensional case, as we will see, of the scattering amplitude
i.e. of how the incident particles are ‘scattered’ by a given target.

Thinking in terms of wave packets, a scattering process consists of an ini-
tial (three-dimensional) wave packet travelling towards the region where the
potential is different from zero, whence it gets diffused in all directions. Actu-
ally, it is not necessary to assume that the potential vanishes outside a finite
region, it is sufficient that it decreases at infinity faster than 1/r (therefore the
Coulomb potential is excluded and requires a special treatment). With this
picture in mind we look for stationary (improper) solutions of the Schrédinger
equation consisting of a plain wave with given momentum, representing the
incoming particle, plus a wave ‘exiting’ in all directions from the scattering
center, i.e. the diffused wave:

Ve() = e® 7 4 xp(r,0,0) (17.13)

(0 and ¢ being the polar angles with respect to k ).

We are interested in the asymptotic form of this eigenfunction of the
Hamiltonian since the detection process occurs very far from the scattering
center. Since asymptotically the particle is free, ¥ g (7) must (asymptotically)
satisfy the Schrodinger equation for a free particle: the first term in (17.13) is
already a solution, hence (see (10.38) and (11.6))

m 192 L2
-—— — 0,9) =FE 0 17.14
( om r 8T2r+2mT2>XE(T’ a¢) XE(T7 7¢) ( )
with L2 given by (10.38).
In the asymptotic region the term L2 /2m 2, the only one containing
the angles, must be omitted because of the r? in the denominator, therefore
(17.14) reduces to

2

_’I" ﬁTXE(Ta0a¢):EQXE(T797¢)7 E2:2mE/h’2 (1715)

whose solution is of the form
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XE(rv 0, ¢) = fE(97 QS) g(’l“)

where fz(60,¢) is undetermined, while the reduced radial function r g(r) sat-
isfies the second order equation:

Hence

g(r) =« +8 . (17.16)
Once multiplied by a(E) e~ EBt/M and integrated over k to form a wave packet,
only the first term in (17.16) gives rise to a wave moving away from the
scatterer. Thus the asymptotic solution we are after is of the form

ikr

Y(r,0,6) =3 e F 7 4 f.(0,¢) %

(17.17)

r

where fz(0,), the scattering amplitude, is the unknown quantity of the
problem and, obviously, depends on the potential V(7).

In order to determine f;(6, ¢) let us go back to the (complete) Schrédinger
equation:

h? . ., ~,
(=38 + V@) vel) = Bus(r) (17.18)
with g () given by (17.13). Then (17.18) can be rewritten as

2m S

(F?+8)x =S5 V(F) (T4 x) = UF) (e 7+ x). (17.19)

Equation (17.19) is a form of the Lippmann—-Schwinger equation and can
be solved iteratively by considering the potential V as a perturbation. At the
first order, i.e. neglecting x in the right-hand side of (17.19), we have:

(F2+A) x = U(F) eiFT. (17.20)

Equation (17.20) can be solved the following way: consider the function

. 1 eikr
Gil(r) = —1—— (17.21)
which is a solution of the equation:
(k% +A) Gy(7) = 8(7) (17.22)

with §(7) the Dirac’s delta function in three dimensions (see (6.41)).

[To prove (17.22) it is sufficient to note that for r > 0 Gg(7) is a solution of
(17.22) (see (17.16)); moreover, if we integrate both members of (17.22) over
a sphere of radius ¢, for the right-hand side we get 1 whereas for the left-hand
side, making use of Green’s theorem, we get
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1 - € eikr 1 o eikr
—— k2 [da 2qr - — [ £
dr / /0 r Y T o o

The first term goes to 0 for € — 0, the second is

1 ikr ikr
- (_e —l—ik:e ) edQ — 1 for €—0
47 r2 rJlr=c
(alternatively one could use of A(1/r) = —4n (), which is nothing but

Gauss’ theorem of electrostatic).]
The solution of (17.20) is then:

X() = [ Gulr =7 U e
=—— | ——=-UF")e'*" a7’ (17.23)

since

(k2 +A) /Gk(F—F’)U(F’)ei’“'T dr’ =
/(EQ—i—A)Gk(F—F’)U(F’)eiE'T i’ =
/5(?- FHUE) e R A = U () e FT

The function Gy (¥ — ') is the Green function of (17.20) such that x(7)
is an outgoing wave.

Equation (17.23) is the first-order solution of the Lippmann—Schwinger
equation which is sufficient for our purposes. Anyway, if the second order is
needed, it is sufficient to insert x(7) given by (17.23) into the right-hand side
of (17.19) and proceed as above (the expression of the second-order term will
be given in the last section).

To get the scattering amplitude we need the asymptotic behaviour of x (7).
This is obtained by inserting the expansion (|7 > |7'|)

-
— —/ r-r
r

|7 =7 =r—

I+O(1/7‘)

into the Green function Gy . Keeping only the lowest order term we find
(F=7/r)

1 ekl

CAm P -

which yields for x(7) (Efzkjf, Eizl;:)

-,
oo 1 elk(r 77’
H S —

4w T

oo 1 elkr elkr

/efiEf'F/U(,,?/)eiEi'F/ dr' = f-(6, ¢) (17.24)
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1 2 ! = h2
—o g [ eRTVE e BT A, V= U (17.25)

I7(0,0) =
that depends on the angles § and ¢ only through k.

The above expression for f;:(6, ¢) is called the Born approzimation and
is the first term of the Born series for the scattering amplitude.

Since fz(6, ) is the first term of the perturbative expansion in which V'
is considered as a perturbation, it is necessary to investigate the condition
of its validity. This is done by considering that in (17.19) we have neglected
the term Vx with respect to (h2E2/2m)X, therefore we can presume that
the Born approximation is more reliable at high energies. This hand-waving
argument is confirmed by the study of the convergence of the Born series.

Notice that within the Born approximation the cross section o(6, ¢) does
not depend on the sign of the potential: V() and —V () give rise to the
same cross section. This result is clearly a drawback of the Born approxima-
tion.

Having determined the asymptotic form of the stationary scattering states,
it is now possible to carry on the discussion in terms of wave packets. Except
for the obvious different notations due to the dimensionality of the space and
the fact that in the present case the space is not separated in two disjoint
regions by the potential, the discussion is similar to that of Sect. 17.3 above:
initially we have the wave packet

ol £ = 0) = / (R e F 7 df (17.26)

with (k") concentrated around k¥’ = (ko, 0, 0) with ko > 0; it has finite
extension not only in the a-direction (say —|z1| < & < —|x2|), but also in the
transverse directions, since it must probe all the region where the potential
is significantly different from zero. For large ¢, i.e. after the interaction with
the potential, two wave packets are present in the asymptotic region: the first
is the incoming one that, with the same approximation expressed by (17.9),
goes on with the same intensity as before the interaction:

Yo(75t) ~ o(x — vot, y, z; t = 0) (17.27)

(this point deserves a particular discussion and we shall came back to it in
the next section), the second is the scattered wave:

Ve (.0, 65 1) ~ / a(F) £ (6,9) i eik (r=u0t) g (17.28)

and, as we did after (17.8), we assume that f7, (6, ¢) is almost constant where

a(I;’ ) is significantly different from zero and replace it with on (0, ). There-
fore (17.28) takes the form

Yuclr, 0,05 ) = f7,(0,6) | / a(Fy e ¥ (o) qf (17.20)
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By comparison with (17.27) in which the argument x —vot must be negative
and less then —|xs|, it is clear that . is zero until vot > |x2| and reaches
the asymptotic region for vot > |z1].

We can now go on calculating the cross section. The probability current
density associated with the initial packet is

- . h N N ko

Jo=—ig (¥6 Vo — Yo V55 = [ol?x " = ([vo[*u0, 0,0)  (17.30)
m m

(the ~ sign is due to having taken k' outside the integrals). The current

density associated with the scattered packet in the asymptotic region, keeping

only the leading terms in 1/r, has only the radial component:

g | £z, (0, 0)* 2o [vo

T

2 (17.31)

since the angular components are proportional to 1/73. If we have a beam of N
particles all prepared in the same way, then the luminosity N is given by N.Jj
and the number of particles scattered per unit time and per scatterer within a
given solid angle AQ (not in the forward direction, where also the incoming
packet is present) is N.J,.7?AQ. Therefore the differential cross section is

o(0,¢) = NJ, 1’ AQ/NJoAQ = J, 7% [ Jo = | fz (0, 0)> (0 #0) (17.32)

and the total cross section

7n = [ 167, (6.:0) 2.

Another way of writing on (0,¢) given by (17.25) is the following: if by V
we denote the Fourier transform of the potential V(7) and by ¢t the mo-
mentum transfer, i.e. ¢y = h (ke — ki), then:

[7,(0,0) = —4m*mh (pr | V | pi) = —@ V(Gri/h) (17.33)

with |¢f;| ranging from 0 to 2hkg. Therefore, by means of scattering ex-
periments, information on the Fourier transform of the potential is obtained
and therefore indirectly on V' (#) itself. In particular, from the properties of
the Fourier transform, to probe the structure of V' (7*) at small distances high
momentum transfers are needed: it is precisely for this reason that the exper-
iments by Geiger and Marsden (see Sect. 1.1) allowed Rutherford to reject
Thomson’s model of the atom in favour of the one in which the positive charge
is concentrated in a nucleus; today, to investigate the structure of the “ele-
mentary” particles, higher and higher energies are required.
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17.5 The Optical Theorem

We have remarked that, contrary to the one-dimensional case where the trans-
mitted wave has an intensity lower than that of the incoming one (in all cases
in which a reflected wave is present), in the three-dimensional case the incom-
ing wave packet goes on, after interacting with the potential, with the same
intensity as before the interaction.

This fact seems to violate the conservation of probability, i.e. the unitarity
of the time-evolution operator: indeed, initially there is the normalized in-
coming wave packet; then, for large ¢, besides the translated incoming wave
packet, there also is the scattered wave with, obviously, a nonvanishing norm.
Differently, but equivalently, consider the states given by (17.13): since these
states, albeit improper, are stationary, the flux of the probability current den-
sity (8.28) through a large sphere should be zero: this is true for the plane
wave, but there also is a nonvanishing contribution from the scattered wave.

This is only an apparent contradiction since the norm of ¥ + x is not the
sum of the norms of ¥y and of y, but there is also the interference term; the
same is true for the flux.

The optical theorem that we are going to prove is nothing else but the
consequence of imposing the vanishing of the flux of the current density asso-
ciated with the stationary states given by (17.13) through a sphere of radius
7 in the limit r — oo. The plane wave gives rise to a constant current den-
sity (equal to Aik/m in the z-direction), therefore its contribution vanishes;
the current density associated with the scattered wave (17.24) is radial and is
given by
_hk 1

J, = —
m r?

|70, 0)I?

therefore the flux through the sphere equals (7k/m) oot . Finally, there are
the interference terms:
ihk , .
~om (5 Vx + x* Vipg — c.c.)
and since we are interested in the flux through a sphere, only the radial com-
ponent is relevant. Thus the following integrals should be calculated:

. eikr efikr .
ik r2/ (e*‘kTCOSGfE(H,qS) + f7(6,9) cos@e""cose> sinf#dfd¢ — c.c.
r r
where in the expression
o ) eikr eikr
EX(T) :1ka(9,¢) r _fE(97¢) r2

the second term has been ignored since negligible with respect to the first.

We only give a hint for the calculations that are lengthy although not
difficult: after some partial integrations with respect to the #-variable, the
r-dependence disappears and eventually we end up with
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4i f(0) — 4ni f]-;f(O) = =81 Imf;(0)

(when 6 = 0 the azimuthal variable ¢ is irrelevant) and, after restoring all
the omitted coefficients, we conclude that the flux through the sphere is zero
if katot — 47 %me(O) = 0, i.e.

Otot = 4% %me(O) . (1734)
This is the optical theorem which assures the probability conservation: the
interference between the plane wave and the wave scattered in the forward
direction results in a decrease of the intensity of the “transmitted” wave that
compensates the probability of scattering in all directions different from the
forward one. It is a general theorem of wave propagation whose importance
was already emphasized in the work of Rayleigh on the theory of sound.

In order to get a better insight in the meaning of the above result, let
us go back to the one-dimensional case discussed in Sect. 17.3. To mimic the
three-dimensional case we rewrite (17.4) in the following way:

pe x

. : ikx >
dp(x) =+ x(2);  x(z) = {17'(3“” ng (17.35)

W
1

(7 and p are respectively for “transmitted” and “reflected” amplitude, the
just for convenience). The conservation of probability is expressed (See (8.26))
by [p|> + |1 +i7|? =1, that is

lp? + 7> =2SmT (17.36)

which is the analogous of (17.34), with |p|? + |7| in place of the total cross
section. From (17.35) and (17.36) we learn that it is all the forward scattered
wave i7e'*? that interferes with the plane wave e!¥® to guarantee the prob-
ability conservation, but only its imaginary part is related to the reduction
of the intensity of the wave in the forward direction (z > a in this case),
exactly as in optics the imaginary part of the refraction index is related to
the absorbtion.

Before ending this section we notice that in the Born approximation
(17.33) the optical theorem is not satisfied since the forward amplitude f;(0)
is real.

17.6 Central Potential

If scattering occurs between two particles without internal structure (spin,
electric-dipole moment, etc.), then the potential is spherically symmetric, i.e.
it depends only on the distance between the two particles: V' =V (r). In this
case the scattering amplitude f,;(@,_'gf)) does not depend on the azimuthal angle
¢, the polar axis being parallel to k. Indeed, the solutions of the Schrédinger
equation asymptotically of the form (17.17) are uniquely determined by (the
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potential and) the momentum k of the incoming particle, therefore are in-
variant under rotations around the polar axis: k and V(r) are unchanged. As
a consequence fi(0,¢) = fr(0,¢ + ). In this case the Born approximation
gives:

m
2mh?

=, 2
12(0) = ey () 4t = -2 / sin(kr’) V(') r'dr’ (17.37)

with k= kg; = |kgi) = 2k sin(6/2) (the integration over the angles has been
performed by provisionally taking k ¢; as polar axis) and, as expected, does
not even depend on the direction of ki.

Moreover, when the potential is spherically symmetric, all the components
of the angular momentum L commute with the Hamiltonian. In this case
it is convenient to express the plane wave in (17.13) as a superposition of
functions of given angular momentum. The polar axis being parallel to E,
only the spherical harmonics with m = 0 contribute to the expansion and
consequently, in accordance with (11.8) and (10.41), we have

kT = iil\/47r(2l + 1) 5i(kr) Y1, 0(0). (17.38)

=0

The factor i'y/4m (20 + 1) is there for convenience, the radial functions j;(kr)
are the Bessel functions: ji(kr)Y; o(6) are the simultaneous eigenfunctions
of Hy, EQ, L., where Hj is the free Hamiltonian. Equation (17.38) is known
as the partial wave expansion of the plane wave.

The potential V(r) will then give rise to the scattered wave x(7) but,
because of the angular momentum conservation, all the components of the
sum in (17.38) are scattered independently of one another and consequently
the scattering amplitude is given by a sum analogous to (17.38):

Fe(0) =D V/Am(20+ 1) (k)Y o(0) (17.39)
=0

where ~; accounts for the contribution of the partial wave in (17.38) with the
same angular momentum /.

From (17.39) and (10.41) the total cross section is then the sum of the
cross sections o; relative to the single partial waves:

oror(k) =Y ou(k) = dm (20 + 1)|n(k)* . (17.40)
=0 =0

By the optical theorem (17.34) the coefficients v;(k) can be written as

(k) = ;ei&(’“) sin (k) . (17.41)
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Indeed, since Y} o(0) = /(20 +1)/47, |vi|* = Smy/k. If we put 5, = kv
and 4, = a + ib, we get a2 + b2 = b > 0 and, letting a?/b = cos?d;,
b = sin?§;, we have a = +sind; cosd;. Then (k) = £e*1%®) sin 5 (k).
The two solutions are equivalent since they are obtained one from the other
by §; — —0; then, taking the one with the + sign, (17.41) is obtained. Hence
(17.39) and (17.40) can be written as

fe(0) = ;i\/mzu 1) ¢ ®) sin 6, (k) Y7, 0(6) (17.42)
=0

oo oo

4 .

oot (k) = D o = Zﬁ(zzﬂ)snﬂ oi(k) . (17.43)
1=0 1=0

The §;’s are called phase shifts and from (17.43) we get the unitarity

bound

o1 (k) < 2—7;(21 +1) (17.44)

(“unitarity” since it is a consequence of the optical theorem, i.e. of the flux
conservation). When the unitarity bound is saturated: o;(k) = (47/k?)(20+1),
the scattering is said to be resonant.

The importance of the partial wave expansion can be appreciated by con-
sidering the behaviour of the functions j;(kr) near the origin: after (11.34) we
noticed that the behaviour near the origin is the same for all radial functions
solutions of (11.9), provided the potential does not diverge at the origin faster
than the centrifugal one, hence j;(kr) ~ (kr)!. Therefore, at low energies, i.e.
low k, only the first few angular momenta contribute to the scattering ampli-
tude: the higher the angular momentum the lesser is the Bessel function near
the origin, where usually the potential is greater. This is the same argument
we used in Sect. 14.5 when discussing the alkali atoms. For this reason the
partial wave expansion is particularly useful at low energies, while at high
energies the Born approximation is more suited.

In order to illustrate explicitly how (17.39) follows from (17.38), we con-
sider the case of the s-wave (i.e. [ = 0) scattering by a potential V' (r) whose
supportis 0 <r <a.

As we know (Sect. 11.1), the problem for the reduced radial function
uo(r) = w=o(r) = r Ro(r) reduces to the one-dimensional problem of a par-
ticle constrained in the region r > 0: since the centrifugal potential is absent
(I =0), the equation for ug(r) is

B d2ug(r)
dr?

+ U(r)uo(r) = k*uo(r), up(0) =0, U(r)=—
The solution is unique up to a factor and is given by

Ap(r) forr <a, (0)=0
uo(r) = { SiI;p(k"l“ + 0(k)) fgr r>a ’ (17.45)
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where A and 0(k) are to be determined by imposing the continuity conditions

at r = a:
Ag(a) =sin (ka+ 0(k))
A¢'(a) =k cos (ka + (k) .
Then ko(a)
o(a
tan (ka + d(k)) = . 17.46
(ka-+a(0) = 7% (17.46)
and for the radial function Rg(r) for r > a we can write
B C (k) eikr s (k) efikr
Ry(r) = 9 (e P er ) r>a (17.47)

with C' a constant to be determined in such a way that the difference between
Ro(r) and the free solution (i.e. the one without the potential)

sinkr 1 [elkr  eTikr
Jolkr) kr 2i ( kr kr )

is, for » > a, an outgoing wave (the scattered wave), as in (17.13). In this
way we get

. 1 . eikr
_ io(k) . _ ( 2i6(k) _ 1)
C=e", Ro(r) — jo(kr) 51 \© ,

and for x;—o (see (17.13), (17.24) and (17.39))

eikr

1 i
Xi=o(r) = o, (e2 - 1) r

hence 1 )
fl:0 = m (e2i5(k) - 1) = k eid(k) sin (5(/{) .

As a consequence 0(k) in (17.45), the phase difference between the asymptotic
wavefunction with the potential and the free wavefunction, is just the phase
shift dp(k) of (17.41), which is determined by (17.46).

Since the s-wave scattering is particularly relevant at low energies, we take
into consideration the k& — 0 limit of the phase shift do(k), still considering
a potential different from zero in the region 0 <r < a.

From (17.46) tan (ka + &9 (k)) is of order O(k) so the same is for &o(k),
therefore the limit of dg(k)/k exists and

as = — lim %(k)
k—0 k

(17.48)

is known as the scattering length (the reason of the minus sign will be
clarified in the next section). In terms of a:

. T 4 ) o 2
]11_% oo(k) = %13%) 12 Sin do(k) = 4mas . (17.49)
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The scattering length as has a simple geometrical meaning: consider the tan-
gent to the curve y = sin (kx + do(k)) at = = a; its equation is

y =sin (ka + 6o(k)) + k(z — a) cos (ka + 0o (k)) .

This straight line cuts the z-axis at zo(k) = (ka — tan (ka + do(k)) /k and

. . do(k)
i o) = =, T

= dg .

17.7 Applications

The first application concerns the scattering from a hard sphere:

V) = 00 forr<a
0 forr>a.

This example is important since, as already mentioned in Sect. 17.2, it exhibits
a striking disagreement with the classical result.

We will consider only the low energy case: ka < 1 so that, in accordance
with the discussion of the previous section, we take into consideration only s-
wave scattering. In this case ug(r) is zero for r < a and is given by sin k(r—a)

for r > a, then 69 = —ka, as = a and
4
oo(k) = k—g sin? ka ~ 4 a? (17.50)

since ka < 1.

In the light of (17.50) the meaning of (17.49) is that at low energies, that
is at large wavelength, any potential is equivalent to a hard sphere of radius
equal to the scattering length ag (this is the reason of the minus sign in the
definition (17.48)).

The high energy limit is not so easy to calculate, neither can we make use
of the Born approximation since it diverges.

In the above discussion there was no approximation, apart from the re-
striction to the s-wave scattering. In the next example, instead, we will make
use of the Born approximation: we apply (17.37) to the case of the (three-
dimensional) square-well potential

Vo r<a
Vir) = 17.51
(r) {0 r>a ( )

(we do not specify the sign of Vj since the cross section in the Born approxi-
mation is independent of it). From (17.37) we get

2mVy [, 2mV,
fu(0) = —hTKO/Osm(m") r'dr’ = _hTI;

(sinka — kacoska)  (17.52)

where k =2k sin(6/2) .
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From the graph in Fig. 17.1 of the func- n(ka)

3

tion n(ka) = (sinka — kKa coska)/(ka)
it is clear that the scattering occurs almost
completely within the region ka < 4, i.e.
ka sin(#/2) < 2, which means that at
high energies (ka > 1) the scattering is
concentrated within the diffraction peak 1 4 ] KRG
0 < dxAa. Fig. 17.1

In Fig. 17.2a we report the differential cross section:

s (2mVpa®\? |sin(2kasin(8/2)) —2kasin(6/2) cos(2kasin(0/ 2)]
| fx(0)] —< 72 ) (2kasin(9/2))6

for three values of ka: ka = 0.5, 1,2. The common value of the three curves
at 0 =0 is (1/9)(2mVpa®/h?)2. In accordance with the discussion in Sect.
17.6 we notice that the lower the value of ka, the more the differential cross
section is independent of 6: for ka — 0 f(6), and consequently o(6), become
constant, i.e. only the s-wave is scattered.

y

In Fig. 17.2b we report the total cross section:

Gro (k) = / (02 40

(the integral can easily be calculated taking = = 2kasin(6/2) as variable of
integration). At high energies, i.e. ka>> 1,

Utot(k = O)

16(ka)2 ka>1.

Otot (lﬁ) ~
Let us now calculate the [ = 0 total cross section oy to first order in the
potential and in the limit ka — 0 using the method of the partial waves.

If Vo > 0, the function ¢(r) in (17.45) is proportional to sinh xr and from
(17.46) we get
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2
tan (ka + do(k)) = i tanh ka, K =1 %VO — k2. (17.53)

By expanding both members of (17.53) to first order in k and V; we find

k 1 k 2mVya® 16 7m2V;2ab
k 0o ~ ( — 3) So o~ — —— =0~
a+ &g I G (ka)®) = do 3 72 = 00 Y
in accordance with the value of oyt at k =0 reported in Fig. 17.2b.
If V5 <0 the (exact) equation determining Jq is

2
tan (ka + 6o(k)) = i tanka, =1/ ";L|2V0| + k2

different, as it must be, from (17.53) relative to the case Vj > 0, but within the
same approximations only the sign of §p changes, not og. Notice, however,
the connection between the sign of the phase shift and that of the potential.

In the last application we determine the scattering length for the potential

V(r) =wod(r —a) (17.54)

and compare the result with that obtained by means of the Born approxima-
tion. The effect of the Dirac §-potential is to give rise to a discontinuity in
the first derivative of the reduced radial function wuo(r) at the point r = a,
given by

2muw 2mu
Aug(a) = 70 uo(a) = gouo(a), 9o = 70
[this can be proved by integrating the equation
ug (r) + E*uo(r) = go 6(r — a) uo(r) (17.55)

between a — e and a + € and then taking the limit € — 0 ]
At k =~ 0 the solution of (17.55) for r < a is ug(r) = Asinkr ~ Akr,
while for r > a it is sin(kr + dp) = kr + 0o . The conditions at r = a are

Aka=ka+
Ak =k—g0><(k:a—|—60)

then

go @? .0 goa®
— k, as=—lim =~ =
1+ goa k—0 k 1+ goa

and from (17.42) we get

8o = (17.56)

fe= ; et %) gin 6y (k)

therefore also

as = — lim f3 .
s kﬁof

In the Born approximation, from (17.37) we have
2muvpa sinKa k—o orn
f7(0.0) = === —— "2’ —goa® = —a?

which coincides with as given in (17.56) only to the first order in go, i.e. vp.
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17.8 Collision of Identical Particles

When the collision occurs between two identical particles it is no longer possi-
ble to distinguish the beam-particle from the target-particle. Indeed, the state
(not the state-vector) does not change if the two particles are interchanged.

It is easier to discuss the problem in the center-of-mass frame: this choice
corresponds to many real situations where head-on collisions occur between
two beams of identical particles with the same energy, as the proton-proton
collisions within the Intersecting Storage Rings (ISR) that operated at CERN
some decades ago, or within the Large Hadron Collider (LHC) still operat-
ing these days. In these cases the center-of-mass and the laboratory frames
coincide.

To begin with we discuss the effect of the symmetry or antisymmetry of
the space part of the wavefunction on the scattering amplitude. The energy
eigenfunctions ¥(7, ) can be written as the product of the wavefunction
&(71 + 7) of the center-of-mass, and of (F), ¥ =7 — 7, the wavefunction
in the center-of-mass frame, i.e. of the relative motion: since @(7; + 75) is
symmetric with respect to the exchange of ™ with 7%, it is only 1 (7) that
must be symmetrized or antisymmetrized. Therefore instead of (17.17) we
must write

= o ik r
Ui(r,0,0) =5 (e £ e ) 4 [£1(0,6) & fi(m — 0,0+ m)] —— (17.57)
since 7 — —7 is equivalent to r —7r, 0 > 7 —60, ¢ > o+ 7.
The differential cross section is then given by
o(0,0) = |£3(6,9) + fi(r — 0,6 + )|’
= |£:0.0)" + |zl — 0,6 + )|’
+ 2Re[fz(0,9) f2(m — 0,6+ )] . (17.58)

Only the last term in (17.58) is the consequence of the symmetrization de-
manded by the indistinguishability of the two particles: if the two particles
where distinguishable in principle, but not by the detectors, as for instance
two protons (spin 1/2) in two orthogonal spin states, or as in classical physics
where identical particles are always distinguishable, then the interference term
in (17.58) would be absent and the detector at the angles 6, ¢ would respond
both when particle 1 is scattered in the direction 6, ¢, and also when particle
1 is scattered in the opposite direction m — 0, ¢ + 7, since in that case it is
particle 2 that hits the detector. In this case:

Udist(97¢) _ |f}‘5(97¢)|2 i |f]§(7r —9,¢+7T)|2' (17.59)

If the interaction between the two particles is spin-independent, then V =
V(r) and the scattering amplitude does not depend on ¢, moreover o(f) is
symmetrical about # = 7/2 in the center-of-mass frame.
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Since the above discussion does not take the spin into account, it is correct
as it stands only for spinless particles (and in this case the + sign must be
taken in (17.57) and (17.58) whenever the =+ sign appears).

Suppose now that the spin of the two colliding particles is 1/2. If, for
instance, they are in the same spin-state (triplet state), then the space part
of the wavefunction must be antisymmetrical and the interference term in
(17.58) must be taken with the — sign. If instead the spin state of any pair
of colliding particles is the singlet state, then the interference term must be
taken with the + sign.

Usually the two beams are unpolarized, i.e. they are a uniform statistical
mixture of spin states. Therefore, on the average, every four collisions 3 are
in the triplet state and 1 in the singlet state and the interference term in
(17.58) must be taken 3 times with the — sign and only once with the + sign.
This means that every four collisions the interference term contributes only
3 —1 = 2 times, with the — sign. Then, for unpolarized beams of spin 1/2
particles, (17.58) reads:

o™, 6) = | f2(0,8)|" + | fz(m — 0,0 + )|
- ;x 2Re[f(0,0) f2(r — 0,6 + )] . (17.60)

For spin 1 particles (or atoms) there are 3x3 = 9 spin states, 6 symmetric
(S =2,0) and 3 antisymmetric (S = 1) and in this case the space part of the
wavefunction has the same symmetry as the spin part, so every 9 collisions
the interference term contributes 6 —3 = 3 times, with the 4 sign. Hence the
factor in front of the interference term in this case is +3/9 = 1/3. In general,
for particles of spin s the above factor is (—1)2/(2s+1).

17.9 The Reciprocity Theorem and the Detailed Balance

Let us now introduce a different notation for the scattering amplitude: instead
of fr(0,¢) we write f(k¢, ki). The two notations, with k& = k;, clearly are
equivalent.

Reciprocity theorem:
f(kf>Ei):f(_Ei7_kf)- (17.61)

This theorem is a consequence of _the unitarity of the time evolution and
of the fact that if the tranmtlon k — kf is possible, then also the time
reversed transition —k;f — k;l is possible: this is true if the potential in
the Schrodinger representation is real, therefore it fails in the presence of a
magnetic interaction as L B since the angular momentum in the Schrédinger
representation is imaginary (actually, also in classical physics the motion of a
charged particle in a magnetic field cannot be inverted).

The reciprocity theorem is the generalization to three dimensions of the
result reported in Sect. 8.3 that the transmission and reflection coefficients of
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the scattering from a barrier are independent of the direction of the incoming
particle.

We do not give the proof of (17.61) that explicitly makes use of the in-
variance under time reversal, but we show that (17.61) is satisfied by the
terms of the Born series. The first term (17.25) clearly is invariant under
Ef , l;i — —Ei , —Ef . The second term is (G;C is the Green’s function (17.21))

2
1 2 ST S ST =
T (%) [[em v e - pv e
™

and satisfies (17.61) thanks to G(|F"” —7'|) = G(|¥' — #"|) . Similarly for
the higher orders that symbolically write as (k¢ | VGRVGLV -V | k),
apart from factors.

If the potential is invariant under space inversion then f(Ef,Ei) =
f(=k¢, —ki).

Combining the above result with the reciprocity theorem we get the

detailed balance: L oo

flke, ki) = f(ki, kg) . (17.62)
Both the reciprocity theorem and the detailed balance find important applica-
tions in statistical physics: kinetic theory of gases, chemical kinetics, ... and
are tied to names such as J. C. Maxwell and L. Boltzmann.



Chapter 18

The Paradoxes of Quantum Mechanics

18.1 Introduction

We have already mentioned on many occasions that the probabilistic interpre-
tation of quantum mechanics, the so called Gottingen (Born) — Copenhagen
(Bohr) interpretation, was not accepted by the entire community of physi-
cists and scientists as outstanding as Einstein, Schrédinger and de Broglie
were among its opponents.

Let us immediately say that nobody ever challenged the results of quantum
mechanics: those we have discussed in the last chapters only are a small part
of the several applications that were developed in the thirties of the twentieth
century and that range from molecular physics to solid state physics, nuclear
physics, .. .; it is needless to cite all the fields in which important results have
been obtained: it appears that the obtaining of new results in any field of
physics seems to be limited only by the development of calculative techniques,
both analytic and computational.

The subject we want to address is another one: is quantum mechanics —
or, better, the paradigms it proposes — the (ultimate) theory of all natural
phenomena, or rather — this was Einstein’s firm conviction — is it only a
provisional and incomplete version of what will be the true theory?

The crucial problem that divided, and still divides, the community of
physicists is the probabilistic nature of quantum mechanics that, in general,
denies the possibility of predicting with certainty the behaviour of the single
system: indeed Einstein compared quantum mechanics to thermodynamics,
that is an incomplete theory inasmuch as it exclusively determines the be-
haviour of the ensemble, giving up the description of the single atom.

The problem remained for many years (until the works by J. Bell in the
sixties) a problem exclusively philosophical in nature, and it is known that
on such kind of problems it is not possible to find a solution on which all
agree. The problem whether the theory should be causal, or not, links with the
philosophical concept of the existence, or not, of an objective reality that does
not depend on the observations (for instance: does the electron, at any given
time, possess well determined position and velocity, independently of what we
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can measure?) and it is clear that realism and positivism are philosophical
positions that not only influence the political belief, but also are influenced
by it.

Much has been said and written on such problems and we have no pre-
tension to give in a few pages a precise idea about the set of problems and
the reasons of the ones and of the others: we will limit ourselves to present
some of the so called “paradoxes of quantum mechanics”, i.e. the tip of the
iceberg of the discussions among the great physicists from the thirties of the
past century on.

In order to clear the discussion of any possible misunderstanding, we recall
that “paradox” does not mean “contradiction” (if it were so, the inconsistency
of quantum mechanics should already have been shown: indeed this point
seems to be beyond question), but rather “contrary to common sense”.

18.2 The de Broglie Box

An electron is in a stationary state within a (ideal) box endowed with perfectly
reflecting walls. By taking all the precautions the case requires, the box is split
into two equal boxes by means of a sliding diaphragm, then the two boxes —
let us say the right and the left one — are taken far apart from each other: one
is taken to Rome, the other to Paris.

According to quantum mechanics the electron is in a state | A) that is a
superposition of the state | ), in which it is in the right box, and of the state
[1), in which it is in the left box:

[A)=|r)+]1). (18.1)

Then the probability of finding the electron in each box is 1/2.

Suppose now that the right box (that in Rome) is opened and the elec-
tron found. Problem: was the electron there before the opening of the box
(and then was the left box already empty), or the presence of the electron in
Rome and its absence in Paris only is a consequence of the measuring pro-
cess, that consists in opening the box and establishing (e.g. by means of a
Heisenberg microscope) whether the electron is inside it? The ones maintain
that the above is a non-scientific problem, the others — i.e. the supporters of
a realistic theory — stick to the first hypothesis and then conclude that quan-
tum mechanics is not a complete theory, inasmuch as the description given
by (18.1) does not represent reality: it does not say in which box the electron
is. In addition they reply to the supporters of the non-scientific character of
the problem that exactly this kind of statements precludes the search for a
“complete” theory.

The paradoxical, i.e. “contrary to common sense”, aspects of the above
example are essentially two: the superposition principle applied to ‘too or-
thogonal’ states (the electron in Rome, the electron in Paris), and the effect
of the measuring process that produces the instantaneous collapse of the wave-
function (or “reduction of the wave packet”), initially nonvanishing both in
Rome and in Paris, and then nonvanishing either in Rome or in Paris. Many



18.2 The de Broglie Box 339

classical paradoxes are variations on such themes and they differentiate from
one another according to how much they put the accent on either one of the
two aspects of the problem. In conclusion, it is worth analyzing a little more
deeply the paradox of the de Broglie box.

First of all, we ask ourselves if necessarily, in accordance with the principles
of quantum mechanics, should one claim that the electron is in the state (18.1),
i.e. in a coherent superposition of the states |r) and |l): if we want to talk
about superposition, we must be able to distinguish by means of experiments
—i.e measurements — if the state of the electron is either |r)+|1),or |r)—|1),
|r)4+1|l), -, and this is possible only if we measure observables that have
nonvanishing matrix elements between |r) and |1).

But: do such observables exist? Certainly it is possible to write many
f(g,p) suitable for the case at hand, and therefore, perhaps, in principle,
such observables exist. We have said ‘perhaps’ because, if such observables
existed, it should be possible, by means of a couple of measurements, to let
the electron pass from the box in Rome into that in Paris: indeed such an
observable could have |r) &+ |l) as eigenstates so that, with a nonvanishing
probability, with two measurements (the first, such observable; the second,
the opening of a box) the following transitions |r) — |r) £ |l) — |I) would
be possible; and this seems to be in contradiction with the statement that the
two boxes are impenetrable, i.e. with the very assumptions of the paradox.
But, apart from this difficulty (it suffices to invent a more flexible paradox),
there always is the problem that the two boxes are macroscopically separated;
may we be satisfied with the statement that, in principle the observables we
need do exist? Would it be too much of a scandal (from the philosophical
point of view) to state that, among the paradigms of quantum mechanics,
there also is that according to which the observables only are those we can
either realize in at least one of the laboratories existing in the world, or that
in any way we are able to construct? Let us provisionally accept this idea and
explore its consequences.

If observables allowing for the observation of a possible phase factor in
the superposition of the states |r) and |l) are not available, in any event,
after the boxes have been separated, the electron is not in a pure state, but
in the statistical mixture {|r), é ), ;} . At this point another step must
be taken: we must state that in a statistical mixture any single system the
ensemble is made of is in a well determined state, much like a coin that has
been tossed and not yet observed: it is in a well determined state, but we only
know which is the probability it is heads or tails. So, before opening the de
Broglie boxes, the electron is either in Rome or in Paris: the conclusion is that
maintained by the realists, but it is reached without denying the fundamental
concepts of quantum mechanics, i.e. — if the proposed paradigms are accepted
— from within quantum mechanics.

It should be evident that this is the standpoint of the present author,
therefore it is only one among the many points of view and, as such, can be
refused by the reader, also because if analyzed a little more, it exhibits aspects
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that are all but painless. The first objection that can be raised is that, even if
observables with non vanishing elements between the states with the electron
in Rome and the electron in Paris are not available today, the possibility that
somebody will succeed in constructing them tomorrow cannot be excluded: so
what we today call a statistical mixture tomorrow we will call a pure state.

The objection is legitimate, indeed mandatory, and the reply consistent
with the above discussion is that what defines a physical system is the set
of the observables, and the properties of the states do depend on which ob-
servables are at one’s disposal: in other words, the primary entity is the set
of observables (this also is the point of view of the formulation of quantum
mechanics due to Haag and Kastler we have hinted at in the end of Sect.
4.8), and the attributes (“pure” or “not pure”) of a state are not intrinsic,
but depend on the observables that define the system, so they may change
along with the technological progress that provides us with new instruments,
i.e. that allows us to enrich the algebra of observables: clearly, according to
this point of view the concept of state looses quite a lot of its ontological
meaning (in the sense of an entity endowed with properties independent of
the contingent situation), and maybe today not many are willing to accept
this fact.

Another big problem of quantum mechanics is that of the measurement
process: we will talk about it in Sect. 18.4 and we will analyze it in the light of
the ideas exposed above: we now prefer to illustrate another classical paradox.

18.3 Schrédinger’s Cat

The problems raised by the paradox of de Broglie box are even more drama-
tized by the paradox proposed by Schrédinger, inasmuch as involving a poor
cat unaware of what may happen to him.

In a big box there are a cat, an ampoule of cyanide, and a device that,
in some instant, emits a photon; the photon impinges on a semi-transparent
mirror and, if it crosses it nothing happens while, if is reflected by it, it triggers
an amplification process whose final step is the breaking of the ampoule of
cyanide.

Which is the destiny of the cat after the emission of the photon?

According to quantum mechanics the state of the (maximally schematized)
system is a superposition of the two states | alive cat, unbroken ampoule ) and
| dead cat, broken ampoule ) so the cat is neither dead nor alive. But, when we
open the box, the cat is found either dead or alive: it is therefore the obser-
vation, i.e. the measurement, that produces the collapse of the wavefunction
that, in the present case, may have dramatic consequences for the unlucky
cat. Obviously for the realists the cat in the box is either dead or alive, inde-
pendently of the fact that its destiny be ascertained by opening the box: so
quantum mechanics is not a complete theory because it is not able to predict
the fate of the cat.
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It is clear that the present paradox proposes again the same problems as
de Broglie’s: superposition of states, here macroscopic, there macroscopically
separated, and the crucial, but casual, role of the measurement process.

An aspect of Schrédinger’s paradox that usually is not emphasized is that
indeed quantum mechanics does not allow one to talk about the state of the
cat after the emission of the photon: the system is a composite one (we have
schematized the system as cat + ampoule) and the state is an “entangled”
one (see Sect. 15.1):

|A) =9,1)+19,]) (18.2)

(T and | respectively stand for ‘unbroken ampoule’ and ‘broken ampoule’),
and in this case the cat is not in a pure state: it is not correct to state that
the cat (or another living being, as in a less bloody paradox, that of Wigner’s
friend) is in a state that is superposition of dead cat and alive cat: even if
the state of the system were given by (18.2), i.e. if the system were in a pure
state (but we put forward the warnings we have expressed about (18.1))7 the
single subsystem is described by a statistical mixture.

Let us consider the entire system, not only the cat: to the present day
there exist no observables with matrix elements between |, 1) and |, | )
therefore, if (just for the sake of discussion) the point of view expressed in the
previous section is accepted, one must conclude (much as for the de Broglie
electron) that after the emission of the photon the cat is either dead or alive,
and therefore, in the absence of observables able to emphasize the quantum
nature of the system expressed by the superposition principle, the system is
classical (as the tossed coin). Tomorrow, when the observables that today do
not exist will become available, we will be able, by means of two measurements,
to resurrect dead cats and fix broken ampoules of cyanide: therefore tomorrow
the system cat+ampoule will be a quantum system with pure states of the
type (18.2).

18.4 What Is a Measurement?

The section title is a too embarrassing one: also in this case blue streaks,
thousand of written pages ... .

Essentially the problem is the following: a measurement is the interaction
between the system (an electron, a photon, ... : let us call it the “microsys-
tem”) and an instrument that is a macroscopical object. An instrument that
measures the observable £ on the microsystem should (according to quantum
mechanics) work more or less in the following way: in the beginning, before
the measurement, the microsystem and the instrument are separated and the
‘grand-system’ consisting of microsystem + measuring instrument is the fac-
torized state

|A, Z9)=|A)| Zo), |A) =) ail&) (18.3)

where | 5 ) is the initial state of the instrument, | A) that of the microsystem
and |&;) the eigenstates of the observable £ measured by the instrument; in
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the end the grand-system should be in the statistical mixture

{l&, =), lai*} (18.4)

where | ;) are the possible states of the instrument after the interaction (the
pointer of the instrument either on &, or & etc. At this point the measure-
ment has taken place both in the case we realize the result by observing it
and in the contrary case.

We have said the grand-system ‘should be’ ... instead of ‘is’ ... because,
if it is true that quantum mechanics applies to all systems, either microscop-
ical or not (if it were not so, it would be possible to show that quantum
mechanics is not a consistent theory), then it applies also to the grand-system
consisting of microsystem + measuring instrument. The grand-system has a
Hamiltonian and, therefore, a unitary time evolution operator; therefore the
state after the interaction is well determined, in blatant contradiction with
the postulate according to which the result of the measurement is only statis-
tically determined: in other words, a unitary operator cannot map pure states
into statistical mixtures.

Now, if it is true that the supporters of the Copenhagen interpretation can
ignore the de Broglie and Schrédinger paradoxes and maintain that if they go
against the common sense, too bad! (i.e. all the worse for the common sense),
they can hardly ignore the problem of measurement, because it appears that
in this case we are facing a contradiction that is internal to the theory.

Let us imagine to analyze a measurement in its different phases: for ex-
ample, a photon arrives at a photo-multiplier, interacts with an atom and an
electron is emitted — and this process certainly is described by quantum me-
chanics — then the electron ionizes some atoms and some electrons are emitted
... the amplification process carries on until the display showing the final re-
sult is activated; it is clear that, in order to save the postulate of quantum
mechanics concerning the measurement process, at a certain point the above
chain of events must stop being determined by a unitary operator and must
become probabilistic, i.e. the state of the grand-system, a pure state until that
moment, must become a statistical mixture. But in which point of the chain
does this happen? Until we are dealing with interactions among electrons and
atoms or even solid state physics phenomena (in the electronics of the dis-
play), it cannot be maintained that the time evolution is not governed by a
Hamiltonian — no matter how complicated, but in any event a Hamiltonian.
So it has even been proposed (Wigner) that the act of taking conscience of
the result is the point of the chain in which the causal time evolution breaks
down: the human brain does not obey the law of unitary time evolution!

Another possible way out consists in saying that the grand-system interacts
with the external environment, then we are dealing with a super-grand-system
and the state of this super-system is an entangled (pure) state of the grand-
system and of the external environment: in this case the grand-system is not
in a pure state (as the cat in the case of the cat+ampoule system), but in a
statistical mixture.
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If the solutions consisting in attributing the collapse of the wavefunction
either to the human intervention or to the interaction with the external envi-
ronment (or similar ones) are not considered satisfying, then the problem is
still open, at least in the framework of the “orthodox” (i.e. the Copenhagen)
interpretation of quantum mechanics.

If we accept the paradigms proposed in Sect. 18.2, we must say the time
evolution of the state of the grand-system is formally determined by a unitary
time evolution operator, but since the state evolves towards an entangled state
of microsystem and instrument, when one arrives at a point in which there
no longer exist observables with nonvanishing matrix elements between the
states involved in the superposition, then such a state is a statistical mixture:
it is not important to know exactly in which point this happens or, more
realistically, if this happens gradually: the important thing is that in the end
we will formally have the state

Zi ai|&, Zi) =U@)[A, Zo)
but actually it is the statistical mixture (18.4).

18.5 The Einstein—Podolsky—Rosen Paradox

Several versions of the Einstein-Podolsky—Rosen (EPR) paradox exist: we will
start with the original formulation published in 1935, even if it is not very
elegant, inasmuch using improper states.

In the work of the above Authors there is no room for folklore (boxes,
cats, nice friends, ...); more than a paradox, it is a theorem: if you accept
some premises (that we will enunciate in the sequel) then we show that quan-
tum mechanics is not a complete theory; if you are convinced that quantum
mechanics is a complete theory, then necessarily you must give up the above
premises.

The premises made by the authors are the following.

Principle of reality: there exists something as “the real state” of a physical
system, that exists objectively and independently of whatever observation or
measurement and that can be, in principle, be described by the means of
physics.

As a matter of fact, the above principle is not explicitly enunciated by the
Authors in the 1935 paper, however it is at the basis of Einstein thinking, as
he expressed it on several occasions.

The next two points are instead the literal quotation of what has been
written by the authors.

Whatever the meaning assigned to the term complete, the following require-
ment for a complete theory seems to be a necessary one: every element of the
physical reality must have a counterpart in the physical theory. We shall call
this the condition of completeness.
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A comprehensive definition of reality is/, however,] unnecessary for our pur-
pose. We shall be satisfied with the following criterion, which we regard as
reasonable. If, without in any way disturbing a system, we can predict with
certainty (i.e., with probability equal to unity) the value of a physical quantity,
then there exists an element of physical reality corresponding lo this physical
quantity. (Criterion for the physical reality)

At this point the line of reasoning of EPR is the following: we show you
that even if we cannot simultaneously (and precisely) measure ¢ and p, they
are elements of the physical reality, therefore, within a complete theory, both
their values must be part of the description of the system. Given that this is
not so in quantum mechanics, the latter is not a complete theory.

Demonstration (by contradiction): let us consider the system consisting
of the two particles 1 and 2 on a straight line. Let us assume that the value
of g1 — qo is known (for example 1 — zo = 10km). If we accept quantum
mechanics (i.e. if quantum mechanics is a complete theory), then neither p;
nor ps can be known, instead P = p;+p2 can be known (g1 — g2 and p1+po
are compatible observables) and let (for example) P’ =0 (P’ is the value of
P).

If p; is measured (let p{ be the result), then it is possible to predict the
value of py (= —p{) without interacting with particle 2. Then, by the reality
criterion, we conclude that po is an element of the physical reality of particle
2 and therefore (definition of complete theory) it must have a counterpart in
the theory.

If instead ¢; is measured, then it is possible to predict the value of ¢o,
still without interacting with particle 2. So we conclude that also the value
x9 of g2 is an element of the physical reality of particle 2 and must have a
counterpart in the theory.

So x5 and p4, even if cannot be simultaneously known, both are elements
of the physical reality of particle 2, hence both must simultaneously be con-
tained in the description of the system, i.e. in its wavefunction — which is false,
therefore the quantum-mechanical description of the physical reality given by
the wavefunction is not complete.

The Authors conclude by saying that one could object that their criterion
of reality is not enough restrictive:

Indeed, one would not arrive at our conclusion if one insisted that two or
more physical quantities can be regarded as simultaneous elements of reality
only when they can be simultaneously measured or predicted. On this point of
view, since either one or the other, but not both simultaneously, of the quanti-
ties po and qo can be predicted, they are not simultaneously real. This makes
the reality of pa and g2 depend upon the process of measurement carried out
on the first system, which does not disturb the second system in any way. No
reasonable definition of reality could be expected to permit this.

In the above passage the Authors implicitly make use of the following
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Einstein locality principle: if at the moment of the measurement [on the
first system] the two systems do not interact any longer, no real change can
take place in the second system.

As we have said in the beginning of the section, there exist several versions
of the EPR paradox: we conclude by presenting the Bohm—Aharonov version
(1957).

At a certain instant tg a particle decays into two spin 1/2 particles not
interacting with each other. Let us assume that the system consisting of the
two particles is in a singlet spin state: such an assumption is fully compatible
with quantum mechanics; indeed, for example, the decaying particle has zero
angular momentum and, owing to nature of the interaction responsible for the
decay, the two particles are produced in a state with vanishing orbital angular
momentum: therefore, due to the conservation of total angular momentum,
also their spin must be vanishing.

At time t; > ty the observable s;, is measured and suppose the value
+1/2 (in units of h) is found. Since S, =0 and s, commutes with S, it
follows that s,, = —1/2.

Then, by the reality criterion and the locality principle, s5, = —1/2 even
at time tg, i.e. before the measurement on particle 1 was performed. Moreover,
since S, =0 also for particle 1 the conclusion that, at time ¢y, s}, = +1/2
applies. Therefore, before the measurement took place, the state on which we
have made the measurement was

|A) =[s1, =+1/2, 55, = —1/2)

and the measurement made at time ¢; is, as in classical physics, a mere
‘verification’. If instead the measurement of si, at time ¢; provides the result
—1/2, then (always thanks to the reality criterion and the locality principle)
we conclude that this particular system was, already at time tg, in the state

|B>:|Sllz:_1/2?s/2z:+1/2>

So we arrive at a contradiction: the system (before the measurement) is not
in a singlet spin state, but in a statistical mixture of the states | A) and | B) .
Furthermore: angular momentum is not conserved: both the state | A) and
the state | B) are superpositions of triplet and singlet spin states, therefore
a measurement of the total spin of the two particles may also yield S =1 as
a result.

In conclusion: reality criterion, locality principle and (completeness of)
quantum mechanics cannot coexist.

18.6 Bell’s Theorem

The last statement of the previous section strongly suggests the following way
out: hopefully it might be possible to complete quantum mechanics in such
a way that all of its predictions (which are of statistical nature) are correct
and, at the same time, locality is preserved.
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By “completing quantum mechanics” we mean what was the firm belief
of Einstein: the state of a system is not fully described by the wavefunction,
but additional variables (the so called ‘hidden variables’ already mentioned in
Sect. 3.6) are necessary to make the theory deterministic. Thus, for instance,
when photons all in a given polarization state ey, are sent on a birefringent
crystal, some of them will emerge in the extraordinary ray and the other in
the ordinary ray, depending on the value of the hidden variable € that can
be different for the various photons. Therefore there must exist a function
A(e) which gives the result of every single measurement: for instance A = +1
in correspondence of those values of £ which determine that the photon will
emerge in the extraordinary ray, A = 0 in the other cases.

The value of the variable ¢ pertaining to any single photon is presently un-
known but, in the ‘final’ theory of the type envisaged by Einstein, the hidden
variable would have a dynamical significance and laws of motion. Presently,
in the “not yet complete quantum mechanics”, in the birefringent crystal ex-
periments with a large number of photons, there will be a distribution of the
values € with (unknown) density p(e): if p(e) is normalized to 1, the mean
value of the results will be

/ () A(2) de

and p(e) should be such that the (statistical) result given by quantum me-
chanics (cos?®, i.e. Malus’ law) is reproduced. In the present case, as well
as in other ‘simple’ cases, it is possible to find a density-function p with the
required property (J.Bell 1964) (and this would account for the achievements
of quantum mechanics). The same statement is not necessarily true in situa-
tions, as the one of the Bohm—Aharonov version of the EPR paradox, where
there are correlations between distant particles, and where the problem of
locality shows up.

In the hidden variables framework, locality means that the results of mea-
surements on system (particle) 1 are given by a function A;(e1) and those on
the (distant) system 2 by As(e2), with the function 4; depending only on the
state of system 1 and on the measured observable, but not on those (state
and observable) relative to system 2, and viceversa. So, for instance,

/p(El, 82)141 (El)Ag(Ez) d€1d€2

for a suitable density function p(e1,e2) should reproduce the mean value of
the product of the results of the two observables measured on the two systems,
as given by quantum mechanics.

It is at this point that Bell’s theorem intervenes:

No physical theory of local hidden variables can ever reproduce all of the pre-
dictions of quantum mechanics.

The proof, although quite simple, will not be given here. With reference to
the above discussion, the relevant point in Bell’s theorem is that not always it
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is possible to find a density function p that reproduces the result of quantum
mechanics, if locality is required.

At this point it is clear that the hope of completing quantum mechanics
by means of local additional variables in such a way that all its predictions
are reproduced, is ruled out.

Bell’s theorem provides some inequalities involving correlation functions,
called Bell inequalities, to be satisfied by any local theory and that are
violated by quantum mechanics: therefore the great merit of Bell’s theorem
is that now the question whether quantum mechanics or a deterministic local
theory is the correct one, has been brought back to the experimental domain.

However, as we have already mentioned, the conflict between quantum
mechanics and the local hidden-variables approach shows up in situations, of
the kind of the Bohm—Aharonov version of the EPR paradox, that are very
delicate from the experimental point of view. For this reason many experi-
ments have been performed, at first with contradictory results, until those by
A. Aspect et al. in the years 1980-82. In such experiments pairs of photons
in an entangled polarization state, rather than spin 1/2 particles (as in the
Bohm-Aharonov version of EPR paradox), are measured in order to test the
so called Clauser-Horn—Shimony—-Holt inequalities, a generalization of the Bell
inequalities. These experiments, held to date as the more reliable ones by the
scientific community, show — with ‘almost absolute’ certainty — the validity of
quantum mechanics as opposed to any theory of local (hidden) variables.

Clearly, it is still open the possibility of completing quantum mechanics in a
deterministic way by means of non-local (hidden) variables; in any event, both
with quantum mechanics in its present form and in its potential completion,
locality has to be given up: we report here, verbatim, the conclusions of Bell’s
paper
In a theory in which parameters are added to quantum mechanics to determine
the results of individual measurements, without changing the statistical predic-
tions, there must be a mechanism whereby the setting of one measuring device
can influence the reading of another instrument, however remote. Moreover,
the signal involved must propagate instantaneously, so that a theory could not
be Lorentz invariant.

Needless to say, this situation has attracted the interest of the philoso-
phers: we do not delve into this discussion, however, just for its provocative
content, we quote the J. Bell proposal (reported by P. Davies): the universe is
superdeterministic. This means that (also) our thoughts, actions, decisions are
predetermined, and this applies also to which experiments will be performed,
and to their results. Hence:

“there is no need for a faster-than-light signal to tell particle A what mea-
surement has been carried out on particle B, because the universe, including
particle A, already knows what that measurement, and its outcome, will be.”
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irreducible 108
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momentum 117

PauLr 272

SCHRODINGER 114

ROBERTSON uncertainty relations 89
RYDBERG constant 22

Scattering

amplitude 321

length 329

states 157
SCHRODINGER

equation 117

time dependent 163

paradox

representation 114

wavefunction 112, 114
Selection rules 208, 209, 233, 234, 287,
304305
Series

BALMER 24

diffuse 259

fundamental 259

Lyman 23

PASCHEN 24

principal 259

sharp 259
Shell 249
SLATER determinant 292
Space-inversion operator 136
Spectral lines 7
Spectrum 7

absorption 18

alkali atoms 258 + 260
bremsstrahlung 17

continuous 122

emission 19

Helium 287-288

Hydrogen 23-24

visible 15
Spherical harmonics 185

with [=0,1 185

in Cartesian coordinates 185
STARK (see Effect)
State(s)
antisymmetric
entangled 268
factorized 268
minimum uncertainty 93
singlet 276

277, 279

Index

triplet 276
symmetric 276, 279
Stationary states 164
Statistical mixture 81
Sum rule 302

Temperature

characteristic 30
DEBYE 33

Theorem

adiabatic 294
BARGMANN 182

BELL 346
degeneracy 135
equipartition of energy 9
optical 326
oscillation 144
no-crossing 314
nondegeneracy 144
reciprocity 334
STONE 162

virial 252

VON NEUMANN 107
WIGNER-ECKART 300
THOMSON model 2
Transition

m, o 236

probability 66, 220
rate (or for unit time)
Transmission through a barrier
Coefficient)

225, 228
(see

Uncertainty (see ROBERTSON)
minimum — state 93

Unitarity bound 328

Unitary operator 106

VON NEUMANN
No-crossing theorem 314
Postulate 65, 71
Theorem 107

Wave packet 171
WIGNER
—ECKART theorem 300
no-crossing theorem 314
Work function 13

ZEEMAN (see Effect)
sublevels 239
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