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Preface

This book is essentially devoted to students who wish to prepare for written
examinations in a Quantum Mechanics course. As a consequence, this collection
can also be very useful for teachers who need to propose problems to their students,
both in class and in examinations. Like many other books of Quantum Mechanics
Problems, one should not expect a particular novel effort. The aim is to present
problems that, in addition to exploring the student’s understanding of the subject
and their ability to apply it concretely, are solvable in a limited time. This purpose is
unlikely to be combined with a search for originality.

Problems will therefore be found that are also present in other books from the
Russian classics [1, 2], and, therefore, in the collection, extracted from them, cared
for by Ter Haar [3, 4]. Among other books of exercises that have been consulted are
the Italian Passatore [5] and that most recently published by Yung-Kuo Lim [6],
which collects the work of 19 Chinese physicists. The two volumes by Fliigge [7]
lie between a manual and a problem book, providing useful tips, though the pre-
sented problems are often too complex in relation to the purpose of this collection.

Many interesting problems are also found in Quantum Mechanics manuals. In
this case, the list could be very long. I will only mention those who have devoted
more space to problems: the classical manuals of Merzbacher [8] and Gasiorowicz
[9], the volume devoted to Quantum Mechanics in the Theoretical Physics course
by Landau and Lifchitz [10], the two volumes by Messiah [11] and the most recent
works by Shankar [12], Gottfried-Yan [13], and Sakurai-Napolitano [14]. One
particular quote is due to Nardulli’s Italian text [15], both because of the abundance
of problems it contains with or without solution, and the fact that many problems
presented here have been proposed over the years to students of his course.

The category of problems that can be resolved in a reasonable time is not the
only criterion for our choice. No problem has been included that requires knowl-
edge of mathematical methods that are sometimes absent from standard courses,
such as, for example, Fuchsian differential equations. When necessary, comple-
mentary mathematical formulas have been included in the appendix. The most
important characteristic of this book is that the solutions of many problems are
presented with some detail, eliminating only the simplest steps. This will certainly
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prove useful to the students. Like in any other book, problems have been grouped
into chapters. In many cases, the inclusion of a particular problem in a particular
chapter can be considered arbitrary: many exam problems pose cross-cutting issues
across the entire program. The obvious choice was to take into account the most
distinctive questions.

For a time, this collection was entrusted to the network and used by teachers and
students. It is thanks to some of them that many of the errors initially present have
been eliminated. I thank Prof. Stefano Forte for encouraging me to publish it in
print after completing certain parts and reviewing the structure. One last great
thanks goes to my wife; the commitment needed to draft this text also resulted in a
great deal of family burdens falling on her.

Finally, I apologize to the readers for the errors that surely escaped me; every
indication and suggestion is certainly welcome.

Bari, Italy Leonardo Angelini
December 2018
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Chapter 1 ®)
Operators and Wave Functions Gzt

1.1 Spectrum of Compatible Variables

Given three variables A, B, C, demonstrate thatif [A, B]=[A, C] = 0,but[B, C] #
0, the spectrum of A is degenerate.

Solution

Suppose that all of the eigenvalues of A are not degenerate, so that, for each eigenvalue
a of A, there is only one ket |1,) such that

AlYa) = alya).

If this were true, each ket |1/,) must also be eigenstate of B and C that are compatible
with A. As a consequence, we can also label the ket |y,) with the eigenvalues of B
eC:

AlYape) = alVap.e)
Bh”a,b,c) = blwu,b,c>
Chﬁa,b,c) - Chpa,b,c)

where, obviously, once a is fixed, b e ¢ must be unique. For each generic state |y),
it results that

[B,Cllyr) = (BC —CB) Y Wape) = Y _(bc = ch)[rapc) =0.

This contradicts our initial supposition that [B, C] # 0.

© Springer Nature Switzerland AG 2019 1
L. Angelini, Solved Problems in Quantum Mechanics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-030-18404-9_1
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2 1 Operators and Wave Functions

1.2 Constants of Motion

Show that, if F e G are two constants of motion for a quantum system, this is also
true for [F, G].

Solution

If F and G are two constants of motion, then, from the Heisemberg equation,

oF i G i
—~ = 7 Fa d . = = G9 )
ot h[ H e ot h[ H]

where H is the system Hamiltonian. It turns out that

d AF.G] i
2IF. G = — L[[F, G, H] =
dt[ ] o h[[ 1, H]
OF 3G 3G OF i

=26+ F 6T _LFG-GF H] =
at ot at ot h

- %[F?—(G —HFG + FGH — FHG — GHF +HGF — GFH + GHF —
—FGH + GFH +HFG —HGF] = 0.

Hence, [F, G] is a constant of motion.

1.3 Number Operator

Let an operator a be given that satisfies the following relationships:

aat+ata=1,

(a) Can operator a be hermitian?
(b) Prove that the only possible eigenvalues for operator N = a*a are 0 and 1.

Solution
(a) Suppose that @ is hermitian: a = a™. We obtain
aat +ata=2@")? =0,
which contradicts the initial statement.

(b) N2 =ataata=a*(1 —ata)a=ata— (aH)?a* =ata=N.
It is well known that, if an operator satisfies an algebraic equation, this is also
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satisfied by its eigenvalues. Indeed, calling |A) the generic eigenket of N corre-
sponding to the eigenvalue A, we can write

(N>=NMMN=Q>=M)A)=0=>1=0,1

1.4 Momentum Expectation Value

Given a particle of mass m in a potential V (r), system described by the Hamiltonian

»?
H=T+V=—+V(r),
2m

demonstrate the relationship
=~ [r, H]
p 5 10T

Use this relationship to show that, in a stationary state,

(p) = 0.

Solution

Calling r; and p; (i = 1,2, 3) the position and momentum components, we have

1
[ri, H1 = [r;, T1 = —(rip? — p?ri) =
2m

1
%(Vipiz — piri — piripi + piripi) =

1

2_(["1'7 pilpi + pilri, piD) =
m

ihp;

’

m

as conjectured. Calling |y ) the eigenstate of H corresponding to an eigenvalue E,
the expectation value of each momentum component is

(pi) = (Velpilve) = —i%(llel[ri,Wlllle) =

—i %[l Elve) — (el Enilve) | = 0.

provided (r;) is a well-defined quantity. Indeed, this result is invalid for improper
eigenvectors: this is the case of free particles, when you consider |{g) as a simul-
taneous eigenstate of H and p or, generally, an eigenstate of the continuous part of
the spectrum.
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1.5 Wave Function and the Hamiltonian

A particle is in a state described by the following wave function:
T
¥ (r) = Asin (pT) .

(a) Isita free particle?
(b) What can we say about the value of momentum and energy in this state?

Solution
(a) The wave function is representative of the dynamical state of a system. To decide

whether the particle is free, we need to know the Hamiltonian.
(b) We can write this wave function as

V() = % (e =),

Clearly, it represents the superposition of two momentum eigenstates with eigen-
values +p and —p. As the coefficients of the linear superposition have equal
magnitude, the momentum expectation value is zero. Without the knowledge of
the Hamiltonian, it is impossible to say anything about the energy.

1.6 What Does a Wave Function Tell Us?

A particle constrained to move in one dimension is described at a certain instant by
the wave function
Y(x) = A coskx.

Can we infer that:

(a) it describes a state with defined momentum?
(b) it describes a free particle state?

Solution

(a) The wave function can be written as

1//(x) — g (elkx + eflkx) .

It is the linear superposition of two momentum eigenstates with momentum

p = hk and p = —hk. As they have equal amplitudes, they are equiprobable.
2

So, the answer to the question is no. The kinetic energy E = £~ is defined

instead.
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(b) The question has no answer. The wave function could be the eigenfunction of a
potential free Hamiltonian. Nevertheless, it should be remembered that the wave
function specifies the state of a system, not its dynamic. Instead, the dynamics
is specified by the Hamiltonian, which, in this case, is unknown.

1.7 Spectrum of a Hamiltonian

Consider a physical system described by the Hamiltonian

2

p o .
H=2—+(pqg+aqp) +Bq*, lg,pl=ih.
2m 2

Find the « and B values for which % is bounded from below and, if this is the case,
find its eigenvalues and eigenvectors.
Solution

The Hamiltonian can be rewritten as:

1
H = %[f +am(pq + qp) + m*e’q*> — m*a’q* + Bg*] =

1 2 ma?\ ,
=s—(p+mag)"+\B———)q =
2m 2

2

_1 /2+ﬂ mo )
= 2m? AN

where
p' = p+magq.

Note now that:

e [q,.p'1=1q, p+maql =Iq, pl =ik;
e p’ is hermitian, being a linear combination of two hermitian operators, provided
«a is real.

(Note that these properties also apply in the case of p’ = p + f(g), with f(g) being
areal function of q.)
Impose that H is bounded from below:

1
m

2
(WIHIW) = 5 (Y1) + (B~ %xqwmw > —o0.

The first term being positive or zero, this condition is verified for every |), provided
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If this is true, we can replay the harmonic oscillator procedure for this Hamiltonian,
obtaining the same eigenvalues and eigenstates. In this case, the frequency is

wz,lﬁ—az.
m

1.8 Velocity Operator for a Charged Particle

Given a a charged particle in a magnetic field, find the commutation relations between
the operators corresponding to the velocity components.

Solution

Remember that the Hamiltonian of a particle having charge g in an electromagnetic
field is
1 q \2
H= — (P— —A) s
2m c

where A and ¢ are the magnetic and electric potential giving rise to the electromag-
netic field: B=V x A, E = —% % — V.

P is the canonical momentum, i.e., the momentum conjugate to the coordinate
r and corresponding, in Quantum Mechanics, to the operator —i2V (coordinate
representation). The velocity, instead, is obtained from

v:Vﬂ{:%(P—% )

Thus, in the coordinate representation, the velocity components operators are

1 1 d
v = — (Pl_gAl):— (-lh__zAl>s
m c m 0x; c

where the components of A are not operators. Thus, the desired commutators are

1 q q
o @ = — [P =LA P =24 | ww) =
= ﬁ ([P}, A — [P, Aj1} yr(r) =

_ ihg (Alalﬁ(l‘) Ay () +A.81ﬂ(r) B 3Ai1ﬂ(l‘)> _

- ﬁ ! 8Xj 8)6,' J ax,- axj
ihg (0A; 0A;
 mc? <3x,- 8xj)1/[(r)_

ihq
= 2 &ijk By (r),

where ¢;y is the Levi-Civita symbol.



1.9 Power-Law Potentials and Virial Theorem

1.9 Power-Law Potentials and Virial Theorem

A one-dimensional system is described by the Hamiltonian

2
=2 + Aq”".
2m

Given an eigenstate |Y) of this Hamiltonian, prove that

(T)=WTIY) = g (YIVIY) = 5 (V).

NS

where 7 = p?/2m e V is the potential energy V = Ag".
Solution

Note that
1 2 2
lg, Hl=1q,T1= %(qp —-pq) =
1 2 2
= %(qp —Pp°q—pqp + pgp) =
1
= %([q,p]ﬂp[q,p]) =

ihp
ot

Using the coordinate representation, it is easy to verify that

h hn
qlp, Hl=qlp, V] = lf)»nq” = T‘V.

So,

1
W|VIY) = ——(¥lqlp, HlIY) =
inh

1
= ——(VlgpH — qHplY¥) =
inh
1
= ——(VlgpH — lq. Hlp — Hqp|y) =
inh
1
= —(Vllg,. Hlply).
inh

Using the previous result, we obtain the desired relationship

1 ih 2
m n

WIviy) =— WIPPlY) = =(WIT1¥).
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1.10 Coulomb Potential and Virial Theorem

(a) Using the Schrodinger equation, prove that, for every physical quantity 2 of a
quantum system, the Ehrenfest theorem holds:

Q 1 QR
— = —([Q,H —).
e+ (52)
(b) Apply this result to the operator r - p and prove the Virial theorem for the

Coulomb potential, which relates the expectation values in a stationary state
of the kinetic energy 7 and of the potential energy V:

Solution

(a) Call |yr(z)) the state vector of the physical system in the instant 7. The expectation
value of Q2 is

(@) = (Y (OIQY (),

and, from the Schrodinger equation

Lalvo)
ih PP =H Y (1)),
we get
d(Q IQ
%= <I/I(mﬂllﬂ(t)) (W(I)IEIW(M (V)] W(m
I\ 1 IQ
=—h(W(t)I(QW—WQ)Ilﬂ(I)>+<¥>=lh([ s HI) + <az>’

where we have taken into account the fact that, in the Schrodinger picture, time
dependence of operators can only be explicit.
(c) As the system is in a stationary state and r - p does not depend on time,

d(r-p) 9(r-p)

= =0.
dt ot

Applying the Ehrenfest theorem, we obtain:

=(r-p,HD) =(r-p, T+ (r-p, V) =(r, 7] -p)+ (r-[p,V]),

To calculate these two expectation values, we note that, from [r;, p;] = th, we
get
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[ri, p21 = 2hip; = ([r,T]-p) = 2h(T),

whereas we easily find that
1 r 51
[V, ;] =-3 = (r-[p,V]) =1he (;) = 1h{V).

By replacing these two relations in the previous one, the desired result is obtained.

1.11 Virial Theorem for a Generic Potential

(a) Using the Schrodinger equation, prove that, for every quantity €2 of a given
physical system, the Ehrenfest theorem holds:

aQ) _ 1 iz
7-,h<[9’m>+<at>'

(b) Consider a system with N degrees of freedom and apply the previous result in
the case of the operator
N
Q=) rpi
i=1

with the purpose of demonstrating the Virial theorem relating the expectation
values, in a stationary state, of the kinetic energy 7 and of the potential energy
V (not dependent on time):

N
1 oV
7)== i— ).
=12 i)
(c) Apply the previous result to a one-dimensional harmonic oscillator.

Solution

(a) For the solution of this point, we refer to Problem 1.10.
(b) Denoting the set of position coordinates with ¢ and the set of conjugate momenta
with p, we have H(q, p) = 7 (p) + V(g), and

N

N N
[Q.HI =) lgipi.H1 =) g T1pi + »_aqilpi. V1. (11)
i=1 i=1

i=1

We calculate the commutators on the right side separately:
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1 1 1 . ihp;
lgi, T1= [ql pil= Eo (qip} — piai) = o (p7qi +2ihpi — pigi) = ——,
l 1

i

while, from the power expansion in the variables ¢; of the potential V =
>, cnql', we obtain

[pi, V1= calpir g1 =) calpial —q/'pil =) _ calg) pi — ihng! ™" — g} pil =
n n n

%
= —ih E c,,nqi”_1 = —ih—.

By replacing these two relations in Equation (1.1) we get

N
[0, H] =2ih¢—ihzqi?. (1.2)

Applying the Ehrenfest theorem to the observable Q, under the hypothesis that
the system is in a stationary state, we obtain

d{Q) 90
7—1 ([0, H) + <at>

Noting that neither Q, nor the probability distribution in a stationary state
depends on time, we get

N

([Q. H)=0 = 2T Z<q,8q>

(c) The potential energy of a harmonic oscillator is
[ 2
VYVix) == ma) X

Then, the kinetic energy expectation value is given by

1.12 Feynman-Hellmann Theorem

Given a physical system, denote its Hamiltonian with # having eigenvalues E and
normalized eigenstates | E) so that
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H|E) = E|E).
Assume that this Hamiltonian depends on a parameter A, H = H(X). As a conse-

quence, its eigenvalues also depend on A, E = E(}).
Demonstrate that the following relationship holds:

(1.3)

IHM)\  9E)
< GYS >_ Y

Solution

As E is the eigenvalue corresponding to | E), it results that
E() = (EIH)IE).

It follows that

DEG) 0 B
o (EIHMWIE) =
E BW)L
_ L7{(A)|E>+<E| ( )|E> <E|¢{@)L -

- (2 )

oA
(IO (2 ) -

_ < OH (%) >

oA

as we wanted to prove.



Chapter 2 ®)
One-Dimensional Systems oo

2.1 Free Particles and Parity

For a one-dimensional free particle does the set of observables composed of the
Hamiltonian and Parity constitute a complete set?

Solution

To every value of the energy of a free particle in a one-dimensional world, they
correspond two linearly independent eigenstates that, in the X-representation, are
given by the eigenfunctions:

1 1  px
(x) = —=¢€'" and Y_,(x) = e 'R,
Vo V2mh Ve N2mh

Any linear superposition of them is also an eigenstate of the Hamiltonian. As the
Hamiltonian is given by the kinetic energy operator, which is proportional to the
second x-derivative, it commutes with the Parity operator. The linear superposition
of ¥, (x) e ¥_,(x) with definite parity is, neglecting normalization, cos(px/h) with
parity eigenvalue P = +1 and sin(px/h) with parity P = —1. The eigenstates com-
mon to each pair of Hamiltonian and Parity eigenvalues are completely determined,
so these two operators are a complete set of commuting observables for this physical
system.

2.2 Potential Step

Consider a particle of mass m incident from the left on the potential (Fig.2.1)

0, forx <O0;
Vix)=
Vo, for x > 0.
© Springer Nature Switzerland AG 2019 13
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V(x)

Vo

Fig. 2.1 Potential step

Study its behavior for energy eigenvalues lesser and greater than Vjy, determining the
energy spectrum characteristics.

Solution

The energy eigenvalues E are positive, because, as it is well known, they must
be greater than the potential minimum. Let’s calculate the Schrodinger equation
solutions in each of the two regions where the potential stays constant.

RegionI: x < 0
In this region, the Schrodinger equation can be written as:

R d*y(x)
_ — E ,
2m  dx? V)
that is, ,
d-{r(x) 2
o TR,
where
2mE
Ve T

The most general solution is given by the linear superposition
Y(x) = e + ReM, 2.1

where we put the coefficient of the incident plane wave propagating to the right
as being equal to 1, while R is the coefficient of the reflected wave. The physical
meaning of this assumption is obtained calculating the probability density current
from (A.11):
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. E T, d
J@) = =3 0)—y ) | =
m dx
h
=5 [(e—lkx 4 R*elkx) (lkezkx _ lkRe—sz)] —
m
hk
= — % [(eflkx + R*eth) (elk.X _ Refth)] —
m
hik 2 * 2tk —2ik
= —%(1— R+ R*e + Re™") =
m
hk

_ _ 2:._. 2
_m(l IR?)=v-1-v-|R]%

The probability density current is made up of two terms constant in time: the first
one represents a current of 1 - v particles per second going through each point from
left to right with speed v and the second one a current of | R|? - v particles per second
propagating with opposite speed.

Region II: x > 0
In this region, we write the Schrédinger equation as:

R d*y(x)
_ﬁ e +Wvx) =Ey¢x),
that is, 5
dyx) _
- + k¢ (x) =0,
where

o — [2m(E — Vo) p _mv’
n h? Tk R

We distinguish two cases, depending on whether the energy E m is greater than or
less than V.

Case E > V,
In this case, k' is real. Once again, the general solution is of the type

Y (x) = Te'¥™ 4 Se 'k, (2.2)
where T and S are constants. Since the particle comes from the left, it mustbe § = 0.
We are not calculating, therefore, the general solution, but rather a particular solution
corresponding to particles sent from left to right. We therefore consider only the term

¥ (x) = Te'™, 2.3)

representing a probability density current of v/ - |T|? particles per second going
through each point from left to right with speed v. To determine the coefficients R
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and T, we use the continuity conditions for the wave function and its first derivative
at the border between the two regions, the point x = 0. Thus, we obtain the linear
system

1+4R=T
tk(1 — R) = 1K'T.
The solution is
k—k
R=—, 2.4)
k+k
. 2k 2.5)
kK '

Substituting R and T in the expression for the current, we obtain

) k— k>
V|R| =V m

’ 2 / 4k2
14 |T| =V m

It is easy to verify that
v(l =R = VTP,

namely, the probability density current is the same in the two regions. Note that:

e In the limit E >> 0, that is, for k —> k', we find |R|> — 0 and |T|> — 1,
confirming the intuition that, at high energy, the potential step can be neglected
leading to the free particle motion.

e Animportant novelty emerges with respect to the classical behavior of the particles:
the presence of a perturbation in the potential generates a finite probability of
reflecting back the particle.'

Case E < V,
We note that, being that £ — Vy < 0, it results that

2m(E — W [2m(Vy — E
K% = % = (l)()2, where x = % is real and positive.

We can therefore rewrite the Schrodinger equation as:

Py x)

— x> ¥ (x) =0. (2.6)

IWe see a similar behavior in optics when a change in the refractive index generates a reflected
wave. In fact, monochromatic electromagnetic waves, once the time dependence has been removed,
are ruled by the same equation, where the term 2m(V — E)/h? is replaced by k2 /c2, where ¢ is the
propagation speed, function of the refractive index.
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Its general solution is still of the type (2.2), but now the exponents are real:
Y(x) = Te X" + SeX*. 2.7)

The second term must be eliminated, because it diverges in the limit x = +o00; so,
we have
Y(x) =Te X, (2.8)

As in the previous case, we impose the continuity conditions and solve the resulting
linear system or, faster, we substitute 1k’ — —x in (2.4) and (2.5). So we get the
coefficients R and T':

k—1y

:k-‘rl)(
2k

- k4+1x

In this case, we note that

e R has modulus 1 and, because in region II the wave function is real, the transmitted
current is zero; consequently, the reflected current is equal and opposite to the
incident one and all of the particles, as in classical mechanics, go back.

e Contrary to what happens in classical mechanics, for which there can be no parti-
cles in region II because the kinetic energy would be negative, we have a non-zero
probability of finding particles in the x > 0 region.

Inbothcases, E > Vyand E < V), the energy eigenvalue can take any positive value,
so the energy spectrum is continuous. However, in the two cases, the degeneration
of the eigenvalues is different:

E > Vy. The spectrum is doubly degenerate. In fact, even if we found only one
solution to the case, this is the consequence of having placed the coefficient
S =0, in order to reproduce a physically reproducible situation. There is,
however, a solution that is linearly independent from this, corresponding to
the sending of particles in the opposite direction to the x axis.

E < Vy. Inthis case, we put S = 0, because otherwise we would have had a solution
divergent at infinity. One of the two linearly independent solutions to the
eigenvalue equation is not in the wave function space and, consequently,
eigenvalues between 0 and V;) are not degenerate.
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V(x)

Fig. 2.2 Particle confined on a segment (infinite potential well)

2.3 Particle Confined on a Segment (I)

A particle of mass m confined on a segment can be described by the potential (Fig. 2.2)

0, if0<x < L;
Vi) = {+oo, elsewhere.
also called the infinite potential well or one-dimensional box. Find the energy spec-
trum and the corresponding eigenfunctions.

Solution

The wave function is different from zero only for 0 < x < L. Indeed, let’s consider,
for example, the x > L region. Here, the potential is infinite; it is superior to any
eigenvalue E of the energy we can fix. So, we can solve the Schrodinger equation
by supposing that, in this region, the potential has a constant value V;; > E and then
take the limit V; — oo of the solution. We are in the same situation as in problem
(2.2), when we consider the case E < V; for region II. We therefore have a single
solution

Y(x) = Te ™.

in the limit V) — oo, we get

I lim 20— E) = lim y(x) =0
m = lim —_— = m = 0.
Vo— o0 X Vo— o0 hz o Vo—o0 o
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A similar reasoning can be repeated in the x < O region, and therefore the wave
function is zero for x > L and for x < 0.

Now we can solve the Schrodinger equation in the region 0 < x < L by requiring
that the wave function go to zero at the ends of the segment. The general solution is

2mE
B2

Y(x) = Asin(kx +38) where k=

The boundary condition in x = 0 leads to
§=0,
and, applying the same condition in x = L, we get

2mE
kL = FLGn where n=1,2,...

From this relation, we obtain the energy eigenvalues

R2w*n?

n = ﬁ where n = 1, 2, . (29)
m

To determine the constant A, we normalize the eigenfunctions:

L 2 L
A 2
1:/ dx |A? sin2@:u/ dx (1 =cos 1) =
) L 2 ) L

_|APL Ao [2
2 Vo

up to an arbitrary phase factor. Therefore, the normalized eigenfunctions are

2
I//n(x)z\/gsianx with n=1,2,.... (2.10)

in the region x € [0, L] and zero elsewhere. These eigenfunctions are symmetrical
with respectto x = % for n odd and antisymmetrical for n even, due to the symmetry
of the Hamiltonian. In conclusion, the energy spectrum is discrete and the eigenvalues
are all non-degenerate.

2.4 Particle Confined on a Segment (II)

A particle of mass m moves in one dimension in the presence of an infinite well of
width L:
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0 ifx € [0, L],

Vx) =
+00 elsewhere.

Calculate the position and momentum expectation values and uncertainties when the
particle is in an energy eigenstate. Comment on these results in light of the uncertainty
principle.

Solution

Remember that, for the potential well (see problem 2.3), the energy eigenvalues are

n?w?h?
E, = — =1,2,... 2.11
o ) @11

and the corresponding eigenfunctions in the region x € [0, L] are given by

Y (x) = \/%sin ”Zx =12 ) (2.12)

and zero elsewhere. They have symmetry (—1)"+! (with respect to x = %), thus the
probability distributions are always symmetrical, so

(r)=>

X)=—.

2

For a bound state, the momentum expectation value is always null (see problem 1.4).
This general property can easily be demonstrated in the present case. Indeed, as the
eigenfunctions are real (we can set the arbitrary phase factor equal to 1), we have

h1

h
12

L
2 —
P (X)O—O-

+00 . hd L d )
(p) = f dxy*(x)-— Y(x) = / dx — ¢ (x) =
_ 1 dx 0 dx

oo

Let us calculate the momentum spread. As (p) = 0,

n2m?h?
L2

(Ap)? = (p?) = 2m(E) =2mE, =

The x? expectation value is given by

2 nwx  2L* [T
2, _ “ 2.2 . 2.2
(x7) = L), dx x* sin - _n3n3/0 dyy“sin®y =
2L (L cosanm) — L1 — 6 sin(nm)
= ———= | — — —nimwCcos ) — — — JT7) SIn T =
B\ 6 4 g o "
(11
=23~ 33 ) 1

where we integrated repeatedly by parts.
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The position uncertainty is given by

1 1 a? 1 1
A 2: 2y _ 2:Lz e — __:L2 PR —
(A0)7= () = ) 3 minr) 4 12 2nin?

The two uncertainty product is

1 1
AxAp = hnmty| — — ———.
YOP =N T T a2

This product assumes its minimum value in the ground state (about 0.57 A, slightly
higher than //2) and grows as n increases.

2.5 Particle Confined on a Segment (III)

A particle of mass m, subject to the potential

0 if 0,L],
Vi) = ifx e 1
+00 elsewhere.

is, at time ¢ = 0, in the state corresponding to the wave function

2 ax . 3mx
Y(x) = — cos — sin —.

JL 2L 2L

(a) Write the wave function as a superposition of the Hamiltonian’s eigenfunctions;
(b) calculate the energy expectation value;

(c) calculate the momentum expectation value;

(d) calculate the position expectation value.

Solution
Remember that, for the potential well (see problem 2.3), the energy eigenvalues are
n’m?h?

E,=—— =1,2,... 2.14
o ) (2.14)

and the corresponding eigenfunctions in the region x € [0, L] are given by

—J?'Wx —1.2 2.15
Y (x) = zsm T n=1,2,..) (2.15)

and zero elsewhere.

(a) Taking into account the relationship
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cosw sin 8 = % [sin(a + B) — sin(x — B)],

we find

V(X)) = —=v1(x) + —=vx).

«/_ «/—

(b) The energy expectation value is

(E) <|H|>—1E+1E—5’Tzh2
v = (YIH|Y 1t 5 E=

(c) In order to calculate the momentum expectation value, we recall that (see

problem 2.4), for a particle in an energy eigenstate, it is zero. Therefore, we
have

1 1 1 1
(Ply = WP} = 5 (Phy, + 5Py, + 5 (nlpl¥2) + 5 (W2lpln) =

2
Tx 2w 271x>

12‘R((1/f| [Y2)) =N h2 de i
= — 4. = - sm-—-+-—-:-C0S —
2 P2 iL ), DL

=0,
L

because it is the real part of a purely imaginary number.
(d) Finally, we calculate the position expectation value:

1 1 1 1
Xy = WlxlY) = 5 Xy, + 5 Ky + 5 WnlxlV2) + 5 W2lxlvn) =

2
L+L+<w||w> +2/Ld . omx . 2mx
= — 4+ — = — sin — sin — =
p T T =@ o GRSy L
arL (" . 9
=a+ — do o sin® o cosa =
T Jo
4L .3 T /n .3
=a+ — |asina| — do sin’o | =
37'[2 0 0

4L 2\ 16
—a—— (—Z)| =(1-=>2)L~o082L.
3n? 3/, 9m?

2.6 Scattering by a Square-Well Potential

Consider the potential:
_ 0, if |x]| > a;
Vi) = { —V,, if |x| < a.
Consider a particle coming from the left with positive and study the behavior of
the energy eigenfunctions and the features of its energy spectrum.
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V(x)

- VO

Fig. 2.3 Square-well potential

Solution

Having introduced the wave numbers k e k’ for the regions in which the potential is

constant
[2mE , [2m(E + Vp)
k= 7 and k' = T .

we write the solution to the Schrodinger equation in the three constant potential
regions as
ek 4 Retkr  if x < —a:
V(x) = { Ae't™ + Be 'K if |x| < a; (2.16)
Te'kx, if x > a.

As requested, the solution represents the motion of a particle coming from the left
that, interacting with the square-well, can be reflected or transmitted. The probability
current in the three regions is

bk _ Bk g2, if x < —a;
. Bl (412 B (2
jx) = %IAI — = |BI%, if |x| < a;
%lle, if x > a.

The coefficients R, A, B and T, can be obtained by imposing the conditions of
continuity of the wave function and its derivative at the border points between the
regions of constant potential, a and —a. Thus, we obtain the following equations:

e~'ka 4 Relka — Ae~Ka 4 Beika
th(e™* — Re'™) = 1k'(Ae™* — Be'"'®),
Ae'¥ - Be ke = Te'ke
k' (Ae'¥® — Be7'K9) = 1kTe*.
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Solving the system, we find the following expressions for R and T':

(k"> — k?) sin 2k’a
2kk’ cos 2k'a — 1 (k"2 + k2) sin2k’a’
2kk’
2kk’ cos 2k'a — 1 (k"2 + k2) sin2k’a’

R = —2tka

—e (2.17)

T = e 2ha (2.18)

Using these expressions, it is easy to verify that the probability current is the same
in the three regions, i.e., it is conserved. We can conclude the study of this case with
the following remarks:

e We note that

2mV()>2

2 2
IT1? o« (kk')? = (h—m> (E+Vy) while |R>x (k% —k%?= (7

2

Accordingly, in the limit of high energies (E > V), we have

2mE 2m Vo

2 2
> 5 = ITIP > [RP,

kk'

and therefore reflection is negligible.

e Within the low energy limit, on the other hand, 7 — 0 and transmission is
negligible.

e R is also proportional to sin 2k’a, therefore, reflection is canceled (Resonance by
Transmission) every time

nmw _ 2m(E + Vp) _ n?m?

k/ - = k/2 — ,
2a h? 4a?
that is, for energy values
E,=-W+ ninthe
T e

Regarding the properties of the energy spectrum, we conclude that it is continuous
and twice degenerate.

2.7 Particle Confined in a Square-Well (I)

Consider the following potential well (vedi Fig. 2.3):

0, if|x|>a;
—Vo, if |x] < a.

Vx)= {
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Determine the negative eigenvalues of the energy and the corresponding eigenfunc-
tions.

Solution

In the two regions |x| > a, to the right and to left of the well, we are in the presence,
as in the case E < V), for the potential step (see problem 2.2), of an equation of the
kind in (2.6) which has the general solution

2mE
Y (x) = cre’* 4 cre™ 1, where  x%2=— ’;; > 0.

To avoid divergences at infinity of the wave function, in the left region, we will have
to consider only the first of the two terms and, in the right region, only the second
one. The wave function in the various regions has the form:

cie’”, if x < —a;
¥(x) ={ Acosk’x + Bsink'x, if |x| < a;
cre XY, ifx > a,

where, in the central region, we have chosen as a general solution a combination of
real functions (sines and cosines), instead of the complex exponentials of (2.16).

By imposing the continuity conditions of the wave function and its derivative, the
following equation system is obtained:

cie " = Acosk'a — Bsink'a,
cixe % = Ak'sink’a + Bk’ cosk'a,
cre X = Acosk’a + Bsink'a,
—cyxe X = —Ak'sink’a + Bk’ coska.

We derive ¢; and ¢, from the first and third equations and replace their values in the
second and fourth ones; we get two equations that allow us to calculate A and B:

_,,Asink’a — Bcosk'a
X =% Acosk'a + Bsink'a’
Y Asink’a + Bcosk'a

Acosk’a — Bsink'a

(2.19)

X = (2.20)

If we equate the right members, we find that, in order for the two equations to be
compatible, it must occur that
AB =0.

We can therefore distinguish two types of solution,’

2The classification in odd and even eigenfunctions can be imposed a priori, since, for a potential
invariant for parity, the eigenfunctions of the discrete spectrum have fixed parity.
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e Case B=0. From the system, we see that c; = ¢, and the solution in the central
regionis ¥ (x) = A cos k’x. Therefore, considering the whole real axis, the solution
is an even function of x.

e Case A=0. From the system, we see that c; = —c; and the solution in the central
region is ¥ (x) = B sin k’x. Therefore, in this case, the solution is an odd function
of x.

Even eigenfunctions. Imposing B = 0 in the Egs. (2.19), we obtain
x = k' tank'a,

which, taking into account the relationship between x and k’

—2mE 2mV,
2 . 0 n
can be rewritten as
)»2 _ ZZ
=tanz, (2.22)
Z
where
,  2mVoa® ,
AS = T and = k a

are both positive quantities. Energy E, in terms of the new variable z, is given by

h2z2

" 2ma?

— V. (2.23)

As (2.22) is a transcendental equation, we can only qualitatively study the solutions
using a graph in which we plot the first and second members as a function of the
variable z. The z values of the intersection points between the two curves allow us to
determine the eigenvalues of the energy through the relationship (2.21). In Fig. 2.4,
we show the two members of Eq. (2.22) versus z. Function —”2;7 has been drawn
for various values of the parameter A. This function intersects the z-axis at the point

Tmax = A= _2]717;/5)“2 . We note that
e as ) increases, the number of intersections between the two curves, and therefore
the number of the energy eigenvalues, increases, but, although A is small, there is

always at least one;
e in the limit A — o0, i.e., Vj — 00, the intersections move towards

1
Zn:(n+§)n=(2n+1)% with n=0,1,...

recovering the results obtained for the infinite potential well when  is odd (taking
into account the replacement 2a — L).



2.7 Particle Confined in a Square-Well (I) 27

£(z)

10 -

3r 5n
2 2

Ny
<
8|3

Fig. 2.4 Square well: graphical search for the even eigenfunctions’ energy levels

Odd eigenfunctions. Imposing, instead, A = 0 in Eq. (2.19), we obtain the equation
’ / / / T
x = —k'cotk’a = k' tan(k'a + E)’

which, using the variables already defined, becomes

Az — 72 T
= tan(z + E)'

Z

The solutions can be found, again, graphically, as we can see in Fig.2.5. We note
that

e for L < /2, we have no odd eigenfunction;

e as ) increases, the number of intersections, and therefore the number of the energy
eigenvalues, increases;

e in the limit A — o0, i.e., V; — 00, the intersections move towards

znznnz(Zn)% with n=12,...

recovering the results obtained for the infinite potential well when 7 is even.
e being antisymmetric, these solutions are zero in the origin, the same situation that
one would have if the potential was given by
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Fig. 2.5 Square well: graphical search for the odd eigenfunctions energy levels

oo, ifx <O,
Vix) = {—VO, if0 < x <a.
So, this potential has energy eigenfunctions coinciding with the odd ones of the
square well.

Looking at both figures, starting from A = 0 and increasing X, which is proportional
to Vpa?, we first get an energy eigenvalue corresponding to an even eigenfunction,
followed by the emergences of a second eigenvalue corresponding to an odd eigen-
function, and so on, alternating even solutions and odd solutions. This is a general
behavior originating from the symmetry property of the potential. If

e v
A€ |:(}‘l — 1)5, I’ZE],

we have n energy levels and the eigenfunction corresponding to the n-th eigenvalue
has parity (—1)"+D,

We also note that, in each of the two cases (B = 0 and A = 0), the coefficients
c1 and ¢; are proportional to the other surviving coefficient (A or B, respectively).
This residual coefficient can be fixed, up to the usual phase, by the normalization
condition. Regarding the spectrum, we can say that within this range of energies, it
is discrete, while the eigenfunctions go to zero exponentially at infinity; they are the
quantum corresponding to the classical orbits limited to a region of space, i.e., bound
states.
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As we said, there is always a bound state. This result applies to any potential well
V (x) of arbitrary form. In fact, it is always possible to bound V (x) above by a square
potential V (x); setting ¥ (x) as the energy eigenfunction of the ground state of V (x),
it results that

<¢0

and, in order to obtain an operator that has a negative expectation value, there must
be at least one negative eigenvalue, that is a bound state.

2

2
P> 5 P
= Z4v
o FV® S+ V@)

I/f0> < <l/f0 1/f0> <0,

2.8 Particle Confined in a Square-Well (II)

A particle of mass m moves in the one-dimensional potential (Fig.2.6)

0, if |x| > a;
Vix) = . .
Vo, if x| <a

(a) At fixed width a, how deep should the well be in order to allow a first excited
level of energy E; = —%Vo?

(b) If the particle is in the eigenstate of the Hamiltonian corresponding to the first
excited level, what is the probability of finding it in the classically forbidden
region?

(c) How many bound states of this system are there?

Solution

Remember that (see problem 2.7), once the following notations have been introduced,

) 2mE n  2m
X =- h2 ’ k Zﬁ(VO_FE)v

the energy levels of the even eigenfunctions are obtained from
x =k'tank’a (2.24)
and the energy levels for the odd ones from
x = —k'cotk'a. (2.25)

(a) Since E| = —%Vo, we have

2m 1 ,
P= SV = o = s o=k

=" ) w2
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Whereas the first excited level is odd, we have to find the smallest value of k'a

such that cot k'a = —% = —1, thatis, k'a = %n. Therefore, the result is
h? K2 7?2
Voo Bpn L O
m 16m a

(b) We seek the wave function of the first excited level having k' = x = 37 /4a. It
must have the form

CeX~, ifx < —a;
Y1(x) = §{ Bsink'x, if |x| < a;

—Ce™**, ifx > a.

From the continuity condition in x = a

Bsink'a = —Ce™*¢

Bk'cosk’a = Cye *¢
(the two equations are equivalent because they are relative to an already fixed
eigenvalue E|) we get

3
B e x4 e+ 3
B_xe™ % e
C k' cosk’a cos Tﬂ

Imposing the wave function normalization

+o00 +00 a
/ |1 (x) 2 dx = 2/ |C|2e*2“dx+/ |B|? sin® k'xdx =

CP2 a1 cos 2k’
iyl x| e 4B [ =y =
CP L IBE [ 1
= —e xa =+ T (261 — P sin 2k’a> =
w [ 4
=2ae” 7 <— + 1) IC)? =1,
37
we deduce that ,
|C|2 . 37 ez
T 4437 2a°

Now we are able to calculate the probability P of finding the particle in the
classically forbidden region as

—+00
P = 2/ |ClPe " dx =



2.8 Particle Confined in a Square-Well (II) 31

35
3r e7 e x4

=4+3n 2a X
2

T 4437

(c) Remember that (see problem 2.7), if

dmVod? 2 2
52— mhzoa e|:(n—1)2%,n2n—],

we have n energy levels and the eigenfunction corresponding to the n-th has parity
(—=1)(n 4+ 1). The second excited level, corresponding to n = 3, is therefore
obtained as the second solution of Eq. 2.24 for even eigenfunctions. In order for
it to exist, it is necessary that A> = 2mVya?/h* > . In the present case, this is

verified: 5
2m , 2m 9% , 9 , 5
T w8 T

However, there is no second odd solution, as the relationship 2h—"§ Voa? > ?Tnz is
not verified.

In conclusion, there are only three bound states.

2.9 Potential Barrier

Consider the potential
0, if|x| > a;
Vo, if |x] < a.

Vx) = {

and suppose that particles of fixed energy E < Vj strike it coming from x = —oo.
Determine the probability that a particle can cross the barrier (Fig.2.6).

Solution

Notice that the energy eigenvalues, which must be greater than the potential mini-
mum, are certainly positive; therefore 0 < E < V;. The solution to the Schrédinger
equation for a particle coming from the left side is

e'** 4 Re7*** for x < —a;
Y(x) = § Ae** + Be X*, for |x| < a;
Tetkx for x > a.

Itis the same solution found for the square well (problem 2.6), but for the substitutions

Vo — —Voand ik’ — x (x =/ W is real and positive). In fact, in the central
region, the wave function has real exponents. We can, therefore, make the above
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V(x)

Vo

Fig. 2.6 Potential barrier

substitutions directly onto the results of problem 2.6. In particular, the transmission
coefficient T is given by

T — —2ika 2k(_lX)
- 2k(—1x)cos2(—ix)a —1((—1x)? +k?)sin2(—1x)a’

and, taking into account the relationships
cosix = coshx and sinzx =1 sinh x,

we obtain
2k

T — e—211<a .
2kx cosh2xa — 1(k? — x2)sinh2ya

The probability density current beyond the barrier is given by % the velocity, times
the square of the absolute value of 7', which is

T = (2kx)? _
4k2x2 cosh? 2xa + (k2 — x2)?sinh® 2xa
_ (2kx)* _
" 4k2x2(1 4 sinh®2xa) 4+ (k> — x2)?sinh®>2xa
(2kx)*

T 2+ ()2 sinh® 2a + Qky)?

This expression, which also represents the ratio between the transmitted current and
the incident one (which is equal to %), is certainly positive and tells us that, in
Quantum Mechanics, contrary to the classical solution, there is always a probability
of crossing (Tunnel effect) a potential barrier.



2.10 Particle Bound in a § Potential 33

2.10 Particle Bound in a § Potential

A particle of mass m moves in one dimension in the presence of the potential

h2
Vx) =——Q3(x),
m

where §(x) is the usual Dirac delta function. This system has a single bound state.

(a) Calculate the energy eigenvalue and the normalized eigenfunction of this state.
(b) Calculate the value x, such that the probability of finding the particle with x < xg
is exactly equal to 1/2.

Solution

Because we want bound states, we consider the eigenvalues E < 0 of the Schrodinger
equation

Y'(x) +2Q8() Y (x) — e’ (x) =0, where o = —2’;;2E > 0.

(a) For x # 0, the solution satisfying the continuity condition in x = 0 is
Y(x) = Ae M.

Due to the presence of the § potential, 1" must be discontinuous in x = 0; other-
wise its second derivative would assume a finite value and the § singularity could
not be compensated for in the Schrodinger equation. To find the discontinuity,
we integrate between —e and +e€:

+e +e

dxl//(x)S(x)+a2/ dx ¥ (x) = 0.

—€

Y0+ 29[

—€

in the limit € — 0, ¥ (x) being continuous in x = 0, we obtain
¥'(0%) = ¢'(07) = —2Qy(0). (2.26)
This condition is satisfied by one value of «,
a=Q. (2.27)
There is therefore only one bound state having energy

Q2
2m

E=-
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The normalization condition sets the constant A up to a non-essential phase
factor:

0 +00
|A|2 = [ 2% —|—/ e gy
—00 0

The eigenfunction is given by

—1 too—]
=oa=Q.

0

1
— [2(_20[)62(1)(

Y(x) = VQe U,

(b) The value xy, which reduces the cumulative probability by half, is evidently O,
being that the wave function, and therefore also the probability distribution, is
an even function.

2.11 Scattering by a § Potential

A monochromatic beam of particles of mass m moves along the x axis in the presence

of the potential
2

Vx) = " Qé(x),
m

where & (x) is the Dirac delta function and €2 (opacity) is a positive quantity.
If the beam is incident from the left, a stationary wave function with energy F is
given by
e* 4 Re™ R forx <0
v(x) = "
T e, for x > 0.
with k = /2mE /h.
Determine the probabilities of reflection and transmission beyond the barrier and
study the limits of small and large opacity.

Solution

In order to determine the coefficients R and T at fixed energy E, we impose that,
due to the presence of the § potential, ¥ (x) is continuous and ¥’ (x) is discontinuous
in x = 0 (see problem 2.10):

YO —¢0)=0 = 1+R=T
V(0 —y/(07) = —2Qy(0) = ikT —ik(1 — R) = —2QT.

From them, we get

k—iQ k—iQ
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The probability flow transmitted through the barrier is given by

L

m 1+ 2’
while the reflected flow is given by
hk L
——IR* = -
m 1+

Observe that the probability current is the same in the two regions

hk

hk hk
— I = —|R* =
m m

—ITP?
m

and the currents, which are observable physical results, do not depend on the sign
of Q. In the limit Q — 0, we have |T|*> — 1 and |R|*> — 0, and therefore all of
the particles are transmitted beyond the § barrier, while the reflection is zero. The
opposite occurs in the limit  — oo.

2.12 Particle Bound in a Double § Potential

A particle of mass m moves in the one-dimensional potential

2
V(x):—h— Qx —a)+8(x+a)], KQ>0.
m

Prove that the Hamiltonian has, at most, two bound states and graphically solve the
equation that determines them. Also, estimate the separation between levels for large
values of a.

Solution

The Schrodinger equation becomes:

2
d w( )+ZQ[8(x Q)+ 8+ )Y (x) —e2Y(x) =0 where €2 =—"— > 0.

Remember that, due to the presence of the § potential, 1" must be discontinuous in
x=aand x = —a:

—2Qy (a),

¥'(@") —y'@)
7)) = 2QY(—a).

V' (—at) —yY/'(—a
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As the potential is symmetrical, we can choose the solution with defined parity.
Let us first consider the even eigenfunctions.
In the three regions delimited by x = a and x = —a, the Schrddinger equation
has independent solutions given by

Yi(x) =€ and Yr(x) =e .

The solutions describing bond states have to go to zero at infinity and must be even;
we can therefore write, disregarding an overall constant,

e, forx < —a;
Yp(x) = § Acoshex, for x| <a;
e r, for x > a.

Because of symmetry, it is sufficient to impose the continuity/discontinuity conditions
at the point x = a only:

e ““ = Acoshea
—Aesinhea — ee % = —2Qe ¢4,

A solution for A is possible only if these two equations are compatible, i.e., only if

2Q 2Qa
tanhea = — — 1 = — — 1. (2.28)
€ €a

The graphical solution is presented in Fig. 2.7, in which the two sides of Eq. (2.28)
are plotted as a function of ea for various values of Q a.
Let us now consider the odd eigenfunctions:

—ecr, forx < —a;
Y¥p(x) = { Asinhex, for x| <a;
e x, forx > a.

Imposing the continuity/discontinuity conditions in x = a,

e ¢4 = Asinhea
—Aecoshea — ee € = —2Qe €.

By imposing that the two equations for A are compatible, we get

1 1

tanh ea = = = M (2.29)

€ €a

The solution to this equation can be found graphically, as one can see in Fig. 2.8.
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f(x)
20+
r 20a
F — -1
F X
15F
3 tanh(x)
10+
0.5+
-“““““““‘““““““x:ea
0.0 0.5 1.0 1.5 2.0 25 3.0

Fig. 2.7 Double § potential: graphical solution of Eq. (2.28) for the even eigenfunctions. The right
side has been drawn for Qa = 0.8, 1.0, 1.2

f(x)

20+
L 1

151
r tanh(x)

1.0+

05F
»‘““““““““““““““‘X=Ea
L 0.5 1.0 1.5 2.0 25 3.0

Fig. 2.8 Double § potential: graphical solution of Eq. (2.29) for the odd eigenfunctions. The right
side has been drawn for Qa = 0.8, 1.0, 1.2
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A solution may exist, provided the slope in the origin of the function on the right in
Eq. 2.29 is less than the slope of the function on the left, tanh ea, which is 1:

d X
_— =—<1.
dx2Qa —x|,_, 2%a
Itis easy to see that, in this case, we have an excited state. In fact, the intersection, as
tanh ea < 1, is obtained for values of ea < Qa, while, for the even eigenfunctions, it
was obtained for ea > Qa. So, for odd states, the corresponding energy E = — %62
is larger.

The separation between the two levels tends to zero in the limit of large distance
between the two §’s. Indeed, the functions on the right side of Egs. (2.28) and (2.29)
are worth 1 in ea = Qa and the function tanh ea also goes to 1 for large a.

2.13 Scattering by a Double § Potential

Solve the Schrodinger equation for the potential

2
V(x) = E—Q(S(x —a)+38(x+a), >0,
m

determining the Hamiltonian eigenvalues and eigenfunctions corresponding to a scat-
tering problem. Discuss the energy dependence of the transmission coefficient.

Solution

As V(x) is positive for every x, H eigenvalues are positive. Fixing E=h>k?/2m>0,
the E-eigenfunctions describing a particle sent in the positive direction of the x axis
are

k¥ 4 Retkx  ge x < —a;
Ye(x) = { Ae'™ + Be ™ se |x| < a;
Te'*x, sex >a,

where we set the probability current density equal to |1 % . The continuity conditions
for ¢ and discontinuity conditions for its derivative " (see problem 2.10),

Y(Fat) =y (£a) =0
Y'(£a®) — ¥ (£a") = 29y (Fa),

completely determine the coefficients R, A, B, T':
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e—iku + Reiku _ Ae—ika _ Beika =0

Aeika + Be—ika _ Teika =0

Q2 + ik)e *e 4 2Q — ik)Re™* — ikAe %@ 4 jkBe'** = 0
ikAe* — ikBe ™ + 2Q — ik)Te** = 0.

It follows that every positive value of E is an eigenvalue of the Hamiltonian.

Now defining
ik—2Q

1+ 2Q ﬁ ika
o= = i— = '™
ik
the II and IV equations become
BA+ B*B =BT
BA — B*B = BaT.
So, we obtain
A l(l—i- )T, B 'Bl(l )T
= - )T, =—-(1-a)T.
2 B*2

Going back to the system, from the I and III equations, we obtain

prd+a)+ Bl -a)R=p"(1+a)T
Bl —an)+ Bl +aR=5E01-oT,
from which, with simple steps, an expression for T is achieved:

1
T = —
(1+iy)2+y2e4zka

where y = Q/k.
The transmission coefficient is |T'|?, which, with a few steps, becomes

1
2 _
7= (1 +¥2)2 4+ 4 +29y2[(1 — y2) cos 4ka + 2y sindka]’

We note that:

e lim_o|T|* =lim,_ |T|> =0, i.e., in the low energy limit the transmission
coefficient goes to zero;

o limy_, o |T|> = lim, o IT|> = 1,ie.,in the high energy limit the transmission is
complete;

e |T|? shows oscillations corresponding to the behaviour of (1 — y?) cos4ka +
2y sindka.
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V(x)

© fo o o i ———

Fig. 2.9 § potential in front of a wall

2.14 Collision Against a Wall in the Presence
of a § Potential

Consider a particle of mass m coming from x = +o00 with energy E > 0 that bumps
up against the potential (Fig.2.9)

00, if x < —a;
Vix) = .
Qs(x), if x > —a.

(a) What happens in classical physics?

(b) Shape the wave function for x < 0 and for x > 0.

(c) Find the reflection probability.

(d) Find the reflected wave phase shift (with respect to the case of 2 = 0) in the
limit x = 4-o00.

2mE

k2
phase shift and for the wave function amplitude in section —a < x < 0.

(e) Discuss the dependence from % k = ) of the expressions found for the

Solution

(a) Classically, the particle, whatever its energy, would be reflected at positionx = 0.
This can be understood by thinking of the § function as the limit of a rectangular
function whose thickness tends to zero while its height tends to +oo. The particle
should have infinite energy in order to pass

(b) In the presence of this potential, the required E energy eigenfunction will take
the form
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Asin(kx + ¢), if —a <x <0; . 2mE
i ) ) , with k=, —,
e 4 Retk* - if x > 0.

V(x) = i

where we put the coefficient that represents the motion towards the barrier as

being equal to one. The wave function must be zero in x = —a, so ¢ = ka.
Let us set
2mS2
=5 (2.30)

which has dimension [Length]‘l, which is the same as k, because the Dirac
8 also has dimension [Length]™' and Q has dimension [Energyl[Length].
The conditions for the wave function to be continuous and its derivative to be
discontinuous in x = 0 lead to the system

YO =y(0) = Asinka=1+R,
Y(OY) —y'(07) =ay(0) = —kAcoska —ik(l — R) = aAsinka,

which has the solution

B 2ik
" kcoska + asinka —iksinka’
kcoska + asinka + ik sinka

R=-— - — . (2.31)
kcoska + asinka — ik sinka

The wave function is thus completely determined.
(c) As R is the ratio between two complex conjugate quantities, the reflection coef-
ficient is given by
IR|? = 1.

As in the classical case, there is complete reflection, but the wave function is not
zero between the § barrier and the impenetrable wall.

(d) Calling p and 6, respectively, the module and the phase of the numerator of R,
we have

i6
_in pe _ i+ tan ka

3 where 6 = arctan ——/———.
pe 1+ 7 tanka

Now pose that Q2 =0, i.e., « = 0, in these formulas (absent the § potential),
obtaining |
0 —>60y=ka and R — Ry= e+,

The phase shift resulting from the barrier is therefore:

tan ka

— —2ka.
1+%tanka a

Agp = 260 — 26y = 2 arctan
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(e) Let us consider before the trend of Ag as a function of «/k = 2mQ/h*k. We
note that:

e The phase shift A tends to O as «/ k decreases.

e Apart from the trivial case of @ = 0, the phase shift Ag is zero if tan ka = 0,
thatis, if ka = nm, withn =0, 1, 2, ....Inthese cases, the barrier becomes
transparent.

e Inthelimita/k — 400, Ap goes asymptotically to —2ka, corresponding to
R = —1, that is a situation in which the § barrier becomes impenetrable. For
this reason, the parameter 2 is often called opacity.

We now study the behavior for x < 0 of the wave function’s A amplitude, or,
better yet, of its square modulus:

"~ (kcoska + asinka)? +k2sinka
4

- (coska + % sinka)? + sin* ka

|AJ?

e At fixed k, |A|? takes the value 4 for a/k = 0.

e Always considering k as fixed, |A|? is a descending function of «/k, thus
confirming the role of 2. It also has a maximum point at value o/ k = — cot ka.

e The maximum is a resonance phenomenon, a phenomenon that can be better
studied at fixed «. In Fig. 2.10, we note the presence of a peaks structure that
is reduced when energy is increased.

2.15 Particle in the Potential V (x) oc —cosh x ~2

Consider a particle of mass m that moves in the one-dimensional potential

V) R 1
X)) = —— .
m cosh® x

(a) Prove that
Y (x) = (tanhx 4+ C) exp(ikx)

is the solution to the Schrodinger equation for a particular value of the constant C.

Determine such value and the energy corresponding to such a solution. From the

asymptotical trend of ¥ (x), derive the reflection and transmission coefficients.
(b) In addition, show that
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Fig. 2.10 Collision against an infinite barrier in the presence of a § potential: the square amplitude
|A|2 of the transmitted wave as a function of ka for « = 1 (blue curve) and o = 3 (brown curve)

satisfies the Schrodinger equation. Show that it is a bound state and calculate its
energy. Give an argument in favor of the fact that it is the ground state.

Solution

Having introduced

2mE
€=
the Schrodinger equation becomes:
0+ — 2@ + ey =0
- X X £ X) = U.
dx? cosh? x

(a) By imposing that ¥ (x) is one of its solutions, we find:

(¢ — k?*)(tanh x + C) + (ik+C)=0.

cosh? x

This relation is verified for every x, provided that
e=k> and C = —ik.

In the limit x — +o0,
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¥ (x) —— (1 —ik)e'™,
X—>+00

while, for x — —o0, ‘
V(x) —— —(1 + ik)e**.
x——400

There is therefore no reflected component (oc e~):
R=0 and T =1.

(b) Regarding ¢ (x), by imposing that it is the solution to the Schrodinger equation,

we obtain
1 n 2 . & 0
coshx coshx coshx

and, therefore,
e=—1.

Note that, for |[x| - 0o ¢ (x) — 0, and therefore ¢ (x) represents a bound state.
Moreover, it is a function without nodes, and therefore it is the ground state.

2.16 Harmonic Oscillator: Position and Momentum

Calculate the matrix elements of position and momentum operators in the energy
base of the harmonic oscillator. Evaluate the expectation values of both quantities in
an energy eigenstate.

Solution

Using the expressions for operators x and p in terms of operators a and a’ (see A.14)
and remembering that (see A.15)

aln) =/nln—1,a"n)=vn+1|n+1),

we have

[\®]
Q
IS

h
xjp = GIR) =5 il aDlk) =\ 5 — [VR8 1+ VE+ To01]

. l [hmo . hmo
P = 1pIR) = =222 (1 = k) = =1y 52 [VE S = VEF 18051

Regarding the expectation values, they are both null:

3

(e = (klxlk) =0, (ph = (klplk) =0.
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2.17 Harmonic Oscillator: Kinetic and Potential Energy

Calculate the matrix elements of operators x> and p? in the Harmonic oscillator
energy basis. Show that, in an energy eigenstate, the expectation values of the kinetic
energy and the potential energy are equal.

Solution

Using (A.14), we have

@)k = (jIX°1k) = 5 (jla® + (@) + aa” + aalk), (2.32)
(PHjx = (1P lk) = =152 (jla® + (@) — (ad” +a’a)lk).  (2.33)

From (A.15), we obtain

(jla?1k) = vk (jlalk = 1) = VEk = 1) & j42,
(j1@)?k) = Ve +1(jla" |k + 1) = Vk + Dk +2) 8, j2,

and, from [a, a’] = 1,
; i T ; + 2 .
(jl(aa' +a'a)lk) = (j|1 +2a'alk) = %(HHVC) = 2k + Déjx-

Substituting these results in (2.32) and (2.33), we obtain the required matrix elements

h
(= 3= [\/k<k =D b2+ VEF DEF2) 02+ Ck+ D],

(2.34)
(P = =5 [VEK = D812 + &+ DEF2) b2 — 2k + D8]
(2.35)

Calling E} the energy eigenvalue of the state |k), the required expectation values are
given by

2 » h E;
() = (kIE2JK) = —— 2k + 1) = —=, (2.36)
2mw mw
(P2 = (kIpPIk) = anw Qk + 1) = mEy, 2.37)

showing that the kinetic and potential energy, on average, are both equal to one half
of the level energy. We have therefore recovered the result obtained by applying the
Virial theorem (see problem 1.11).

A simpler method of calculation is to use the Feynman-Hellmann theorem (prob-
lem 1.12), which states that, in a steady state corresponding to the eigenvalue E, the
following relation applies:
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’

IHM)\  IEQ)
ar [ oA
where A is a parameter upon which the Hamiltonian and, therefore, also the eigen-
values and the eigenkets depend.

Applying this relation to a harmonic oscillator in the Ej state and using the
frequency w as the parameter, with respect to which to derive, we obtain:

h (k + %) = (ma)xz)k )

(W), = 2 (k+ %) _ B

which implies
mw maw?

Lastly, remembering that the eigenvalue E} is the expectation value of the Hamilto-
nian in the k" state and that this is the sum of the expectation values of the kinetic

energy and of the potential energy, the result for ( p2>k is also obtained.

2.18 Harmonic Oscillator: Expectation Value of x*

Calculate the expectation value of operator x* in an energy eigenstate of the harmonic
oscillator.

Solution

Using the completeness relation and the results of problem 2.17, we have

00 e hZ

[o¢]
(= Gl = UKL = 3 B[ = 3 oo ¢

k=0 k=0 k=0
[‘/k(k D) i+ Uk + Dk +2) 8 o2 + Qk + 1)S;, k] .

Developing the square, the products of é’s with different indices do not contribute.
So we get

h2
(x*); = T [[G-D+G+DG+2+@Qj+ D] =
2

=73 [2/°+2j+1].
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2.19 Harmonic Oscillator Ground State

A particle of mass m, subject to a harmonic oscillator of elastic constant k, is in its
ground state. Calculate the probability of finding it outside the classically permitted
region.

Solution

The classically permitted region is the segment between the classical turning points
+x, where

is obtained solving the equation

The ground state energy E is hw/2 (with = \/k/m), so that x =,/ m—z The state
is described by the wave function (see A.3)

go(x) = (%) e 2N,

Taking into account the symmetry of the resulting probability distribution, the
required probability is

+00 ) 2 +00 e
P=2 d = — dee 5 =
/x x o (x)] ﬁfl e

2 ﬁ ] —&2 | _ — —
ﬁ[T_/o dée }_1—2Erf(1)_1—0.84_0.16, (2.38)

where
Erf(y) = | "o rd
V)= — e x
v Jo

is the Error function, which can be found in tables [1] or can be numerically evaluated.

2.20 Finding the State of a Harmonic Oscillator (I)

A harmonic oscillator of frequency w is in a state superposition of the Hamiltonian
eigenstates corresponding to the two lowest levels of energy:

V) = al|0) + bi1).
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(a) At what condition is the position expectation value different from zero?
(b) For which values of the coefficients a and b does this expectation value assume
the maximum value and the minimum value?

Solution

Coefficients a and b must satisfy the normalization condition
la)* + 16> = 1.
We can fix an arbitrary phase and take a to be real:
¥) =al0) ++v/1—a2e? 1)
(a) The position expectation value is, by (2.16),

(x) = |al*(0|X]|0) +|b| 1|X|1 ) 4+ a*b(0|X|1) + ab*(1|X|0) =

= 2R (a*b) ,/ =2 av/'1 — a? cos$,

where we have taken into account that the position expectation value in an energy
eigenstate is zero.

For (x) to be different from zero, assuming that a and b are non-zero, it must be
that

1
coss A0 < 8;&<n+§)n withn € N.

(b) To determine the maximum and minimum of {x), we cancel the derivatives with
respect to the two parameters a and §:

3 (x) (1 —2a%
—_— =2 ——cosS:O,
da m

a\/l—a2 sind = 0.

W _ L,

From the second condition, we get sin§ = 0, implying that b = ++/1 — a2.
The first condition cannot be satisfied by cos§ = 0, but only from a = i%.

Ultimately, less than an arbitrary phase, we obtain

1 1
— 0y £ —11
ﬁ|o> ﬁ|>

From the expression for (x), it is evident that it attains its maximum when the
sign is positive and its minimum when the sign is negative.

V) =
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2.21 Finding the State of a Harmonic Oscillator (IT)

It is known with certainty that the state of a harmonic oscillator of frequency w
contains no more excited states than the second level:

|¥) = al0) + b|1) + c|2).

It is also known that the expectation value of the x position is zero and that the
expectation value of the energy is (3/4)hw.

What can be said of the values of a, b, ¢ in the hypothesis that they are real? Is
the state completely determined in these conditions?

Solution

Remembering that (A.14)

xln) =,/ 2’260((1 +at)n) = ,/%(\/Em D4+ VaFln+1), (239

we obtain
h
(x) =/ =—(ab + 2+/2bc) =0, (2.40)
2mw

which has two solutions:

(@) b#0anda = —/2c,
(b) b=0.

We have two other equations available:

a2+b2+02:
a® +3b* +5¢% =

(normalization),

1
3
3 (energy expectation value).

In the first case, we obtain:
3 5 3
c:ii, b::i:ii, a:q:\/i,
2 2 2

which is not compatible with the hypothesis that coefficients are real.
In the second case, we obtain:

1 7
b=0, c=+——, a=:l:\/j.
22 8

There are, finally, two possible determinations of the state, depending on whether a
and ¢ have a concordant or discordant sign.
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Warning: The hypothesis of the reality of the coefficients, although useful for
making the problem solvable, makes little physical sense, since the phase of each of

them is not measurable. As a matter of fact, the results of this problem may depend
on the definition used for the operators a and a'.

2.22 General Properties of Periodic Potentials

A periodic potential of step a is a potential V (x) that enjoys the property
Vix4+na)=V(x) for n=0,+£1,£2,.... 2.41)
In this case, the Schrodinger equation is invariant for transformations
X —>Xx+na,

i.e., for translations of integer multiples of a.

Given u(x) and u,(x), two linearly independent solutions to the Schrodinger
equation, due to the invariance property,

ui(x+a) e u(x+a

are also solutions. It must therefore result that

ui(x +a) =cpui(x) +craur(x) (2.42)
ur(x +a) = co1ui(x) + 2 ur(x). (2.43)

Prove:

(a) the Floquet theorem: among all of the solutions to the Schrodinger equation,
there are two, Y| and ,, that satisfy the property

Y(x +a) =AP(x), (2.44)

where A is a constant;
(b) the Bloch theorem: such solutions can be written in the form

¥ (x) = e ur (),
where uy (x) is a periodic function of x of step a:

up(x +a) = ur(x).
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Solution

(a)

(b)

Solutions of kind (2.44) must also satisfy
Y(x+na)=AYx) for n=0,=%1,+2,... (2.45)
If ¢ is a solution, it is possible to write it in the form
Y(x) =Aui(x) + Buy(x).
From (2.42), we have

Y(x4+a)=Aui(x+a)+ Bu(x+a) =
= (Ac1,1 + Bea, ) ui(x) + (Acr o + Beap) us(x).

Y verifies property (2.44) if

AC1,1 + Bey = MA,
AC1,2 + BC2,2 = AB.

This is a homogeneous linear system of two equations in the variables A and B
and has non-trivial solutions if and only if

ci—A ca | _ 0
Ccl2 Cp— A ’

This is a second degree equation in A, whose roots 1| and A, allow us to actually

determine two solutions 1 and v, having the required property.

We demonstrate first that A; and XA, are complex conjugates numbers of

modulus 1.

We note that the Wronskian of v, and v,

W) =y, — ¥y

satisfies the relation
Wx +a) =i W(x).

As the Wronskian of two eigenfunctions corresponding to the same eigenvalue
is constant (e.g., Messiah [11]. Vol.I, Chapter II1.8), we have

MAr = 1.

The functions y; and yr, will be acceptable if and only if |A;| = |A,| = 1. Indeed,
if |Ax| > 1 happens, the amplitude 1, would grow beyond every limit for x —
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400, while, if it were |A;| < 1, the same would happen for x — —o0. Therefore,
we can put
A =€ and A, = e ke,

where k is a real number. As A and A, are periodical functions, we can restrict
ourselves to considering the values of k such that

<k <

’

|
S|
IS

sufficient to determine all of the possible eigenfunctions. For any limited function
you will therefore have (2.45):

V(x +na)=e™y(x) for n=0,+1,+2,....

This expression shows that the properties of invariance of the potential for trans-
lations of a length equal to step a are reflected on the wave function in such a
way that, moving on an integer number of steps, it is modified only by a sim-
ple phase factor. It follows that the physical observables are not influenced by
the translation, that is, the measure of any of them does not allow us to decide
whether we are in x or x + na.

From this property, we deduce that, if we write ¥ (x) in the form

V() = e (),
ur(x) has to be a periodical function of x with step a:

uy(x +a) = up(x). (2.46)
This result is known as the Bloch theorem. It presents the eigenfunctions as a

plane wave, the solution for a free particle system, with a modified amplitude
reflecting the periodicity property of the potential.

2.23 The Dirac Comb

The simplest periodic potential that can be considered is the so-called Dirac comb:

hz +00
74 =—Q 1) ,
(x) p n;w (x + na)

an infinite lattice of Dirac delta functions placed in positions x = na with n integer.
Determine the Bloch energy eigenfunctions (2.46) and show that the spectrum is
composed of continuous bands of eigenvalues.
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Solution

In each interval Jna, (n + 1)al, the particle is free, so, having fixed the energy eigen-
value E, the plane waves are independent solutions of the Schrodinger equation:

ui(x) =e'* and wur(x) =e ‘%, where ¢°> = 21’;1_2E
Now we look for the limited Floquet solutions (see problem 2.22), i.e., such that, if
Y(x) = Ae'?" + Be™?* intheinterval 0 < x < a,
then it results that
U(x) = ek (x — a) = eFI[Ae! D 4 BTt XD i the interval a < x < 2a.

We impose the continuity of the solution and, because there is a Dirac § on the
common endpoint (see (2.26)), the discontinuity of its first derivative:

Y@ =y),
Y@t =y'@)+2Qv).

From these conditions, we obtain the linear system

e*(A+ B) = Ae"" + Be ',
1ge* (A — B) = 1g(Ae'? — Be™'9%) + 2 Q (Ae'9? 4+ Be™'14),

that is,
(etka _ etqa)A + (etka _ eflqa)B — 0’

Q Q
[Wﬁwma—b—qA—Fm—eWﬂ+b—43=&
q q

This is a homogeneous system, so, to get non-trivial solutions, we have to impose
the condition

etka _ gqa etka _ g—iqa
elka — eta4(1 — 21%) etka —e=1a0(] 4 21%) =0,
from which, with short steps, we get
coska = cosqa + % singa. (2.47)

The first member must take values between —1 and 1, so we must have
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Qa=5

Qa
f(qa)=cos(ga)+ —sin(qa)
[ E}

2L

Fig. 2.11 Dirac comb: graphical solution to the inequality (2.48) for Qa =5
f(ka)

100 - Qa=5

=T L L L 1 L L L 1 L L L 1 L L L 1 ka

Fig. 2.12 Dirac comb: energy as a function of ga compared with the free particle case (Q2a = 5)
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Q .
cosqa + — singa| < 1. (2.48)
q

This inequality is verified for continuous energy intervals, bringing bands of eigen-
values into existence. Once we find the g values that satisfy inequality (2.48), in
correspondence to each of them, we can determine, from Eq. (2.47), the k value
characterizing the Bloch functions. Each energy level is

E i
© 2m €
From Fig. 2.11, it can be noted that the forbidden bands, also called energy band
gaps, are larger for small values of ¢ and tend to cancel each other out in the limit
g — oo. In Fig. 2.12, ¢?, in practice the energy, is plotted as a function of k and
compared with the parabola k? that one would have if the eigenfunctions were the
plane waves, that is, if the motion were free and if ¢ coincided with k. The two curves
coincide at the points k = “*, which are the upper limit of each band.

It is interesting to study the influence of the parameter €2, called opacity, on the
energy spectrum. If © goes to zero, from Eq. (2.47), we see that k — ¢, that is, the
lattice becomes transparent and the forbidden bands more and more small until they
vanish. If, conversely, &2 — oo, the function on the right side of Eq. (2.47) takes on
ever larger values and satisfies the condition (2.48) for ever more limited intervals
of g. The allowed bands degenerate in the discrete spectrum that corresponds to the
situation in which, in each segment of step a, there is a well with impenetrable walls.

2.24 The Kronig-Penney Model

The Kronig-Penney model consists of an infinite sequence of rectangular barriers
with height of potential Vj, width b and separated by a distance a — b, so that a
constitutes the lattice step (Fig.2.13).

Determine the Hamiltonian’s Bloch eigenfunctions and show that, for energies
E <V, the spectrum is composed of continuous bands of eigenvalues.

Solution

To solve the model, we will use a slightly different method from the one used in the
case of the Dirac comb (see problem 2.23).
During the demonstration of Floquet’s Theorem (problem 2.22), we saw that

tka

A =¢ and X, = e 'k (2.49)

are the eigenvalues of the matrix
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V(%)

Vo

Fig. 2.13 Kronig-Penney model

C1,1 €21
cl202)’
i.e., the matrix of the coefficients of the linear combination that expresses Floquet’s

wave functions in terms of any two solutions to the Schrédinger equation. Solving
the eigenvalues equation, we find

2
c1t e c1t+ 22
)\1,2= — =+ e e— +cip61 —C11622-

2
This result, together with the expression (2.49) for A; and A,, entails that
cl1te2=A+A = 2 coska. (2.50)

We now construct two linearly independent solutions # (x) and u, (x), corresponding
to an eigenvalue E < V;. Having introduced the quantities

2m(Vy — E) 2mE

O‘ZT and 8= T

one solution is given by

u (x) =e** for —b<x <0,

uy(x) =cos,3x+% sinBx for0<x<a-—b>b,

where we have set the coefficient of #| as equal to 1 and have imposed the continuity
of the wave function and its derivative in x = 0.

In a completely similar way, we can determine an independent solution u, given
by

ax

u(x) =e” for —b <x <0,

uz(x):cosﬂx—% sinfx forO<x<a—b.
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In the region occupied by the next barrier, between a — b and a, we must have

u(x) = clﬁle“(x’“) + clﬁze""(x"’) fora—b <x <a,

Ur(x) = €% 4 cz,ze*"‘(x*“) fora—b <x <a.

In x = a — b, the common endpoint for the two intervals, we can impose the conti-
nuity of u;(x), u,(x) and their derivatives leading to the system

cos Ba — b) + % sinfla—b) =ciie +epe®,

o —ab ab
cos,B(a—b)—E sinff(a —b) =cy1e* + 2",

—BsinB(a —b) +a cosfla —b) = alcr e —crae*),
—pBsinB(a —b) —a cos B(a —b) = a(ca e — €22 e??y,

from which it is possible to get the coefficients c; . We obtain c; ; from the first and
third equations, and c; » from the second and fourth equations:

o? — B2
crp=e" [cos,B(a—b)+ sinﬂ(a—b)],
o — B2
crr=e | cosB(a—b) — sinB(a—»b)|.
’ 2a8
Finally, using relationship (2.50), we get
cr1t+ e at — g2 . .
coska = T = coshab cos f(a — b) + 20p sinhab sin f(a — b).
(04

(2.51)
As in the Dirac comb model, this relationship allows us to determine k& only when
the second member is between —1 and 1, thus giving rise to the band spectrum.
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Two and Three-Dimensional Systems oo

3.1 Plane Harmonic Oscillator

The Plane Harmonic oscillator has the Hamiltonian
H=L (P> +p>) + lmwz(q2 +4¢2).
2m Y 2 * Y

(a) Find the energy levels and their degeneracy;
(b) express the Hamiltonian in terms of the operators

1 1
= — (ax +ia,) _=—=(ay —ia,),
N+ \/E X y n \/§ y

where

mw n [ 1 maw L [ 1
ay = ~z Yx I\ —— Dx ay = | = {4y W ——= s
V 2h 9 2mwh P Y7V 2h Kb 2mwh Py

and their Hermitian adjoint;
(c) write the angular momentum operator for this system; what can we say about
the angular momentum at a fixed energy eigenvalue?

Solution

(a)
H=H,+H, = ﬁw(a;ax + aj;ay +1).

H eigenvalues are given by
E=0m+1Dho withn=0,1,...
© Springer Nature Switzerland AG 2019 59
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(b)

©)
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The corresponding eigenstates are |n,, ny) withn, +n, =n, n, >0, n, > 0,
and we can also write them as

lk,n —k) conk=0,1,...,n.

E, is therefore degenerate n + 1 times.
In terms of n operators, we obtain

1 1
a = ﬁ(’” +n-) ay= %(m —n-)

H = hw(nlm +nin_ +1).

In this system, the angular momentum only has a component along the z axis.

From
h ¥ 1 [hmw ¥
qx = (ay +ax) Px =~ (ax — ax)’
2mw i 2

we get

h . .
L=q:py —qyps = 3 [(a: +a))(ay, —a)) — (ay + a))(a, —a))] =

hp. +
=7 [a;ay - axa;] .

In principle, it should be possible to find a set of simultaneous eigenkets for H
and L, because one can easily show that these two operators commute. However,
asrequired, we limit ourselves to studying the L matrix elements in the subspaces
related to each energy eigenvalue, i.e., at n fixed. We obtain

Wn— KLk, n—k) = lﬁ (\/(k F D0 — k) 8 1 — Ve —k + 1) sk,,k_l) :
where k =0, 1, ..., n. We see immediately that the diagonal elements, which
are the expectation values of L in the energy eigenstates we found before, are
null. In these eigenstates, therefore, having called €A, with £ relative integer or
null, the eigenvalue of L, it occurs that £ = 0, or there are combinations of £ and
—{ that compensate. In each subspace relative to an E, value, the matrix of L
has this form:



3.1 Plane Harmonic Oscillator 61

0 Jn 0 0 0 0

—Jn 0 V2 =1 o - 0 0

0 —V2i—1D 0 SBa=2-- 0 0

Lo = o 0 ~f3n=2) 0 - 0 0
0 0 0 0 - 0 n

0 0 0 0 - =yn 0

L™ is tridiagonal, antisymmetric with respect to the main diagonal, symmetric
with respect to the antidiagonal. In general, it can be shown that the quantum
number £ is subject to the condition

b=—-n,—n+2,...,n—2,n.
You can easily calculate the eigenvalues for the first values of n:

forn =0,£=0,
forn=1, £ = %1,
forn =2, £ =0, £2,
forn =3, £ = &1, £3.

3.2 Spherical Harmonic Oscillator

Consider a tridimensional harmonic oscillator with angular frequency w. The Hamil-
tonian eigenkets depend upon three positive or null integers n,, ny, n:

3 3
E(ny,ny,n;) =ho (nx +ny+n, + 5) = hw <n+ E) ,

In) = |nx, ny, n).

(a) Express the angular momentum operators L, L, L, as functions of the raising
and lowering operators relevant to the various degrees of freedom, a,, ai, ay,a y,
a;, aj , and calculate the commutator of L, with the Number operator for the z
axis: N, = ala..

(b) Consider the three eigenstatesrelativeton, + n, + n, = 1, determine their com-
binations that are eigenstates of L, and calculate the L, corresponding eigenval-
ues.

Solution

For each of the degrees of freedom k = x, y, z, we can define the operators
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[ h (@ +ah) d 1 [/mwh ( y
= a; +a)) an = - ai—a
9k o k & Pk ; > k i)

maw 4 [1 d 4 mw 1
ay = —_— _ an a, = _ — i —
k V 2R L 2mwh Pr 7V 2n % 2mwh Pr

satisfying the relationships

la.a;] = laj,al]=0 . [a.a}l=5,.
(a) Let us calculate the angolar momentum components
L. = — h T T T ] —
x =4qyP; —4:Py = Z [(ay +ay)(az - az) — (a, +az)(ay - ay)] =
h

= n [a;az — aya:] .

Similarly, it is found that

h
Ly,= n [aiax — azai] ,
h .
L,=- [aiay — axay'] .

l

The commutator between L, and N, is

h ¥ T
[L,, N,]= n [axay — axay, NZ] =0.

(b) The generic state corresponding ton = ny +ny, +n; =1is
[1) = all,0,0) + b0, 1,0) 4 |0, 0, 1).

Since we have seen that [L,, N,] = 0, we look for the eigenkets common to both
operators. We immediately see that

e ifa=b=0andc =1, we have N;|1) = N]0,0,1) =1-10,0,1).
|0, 0, 1) is also an eigenket of L, corresponding to the eigenket 0. Indeed,

R .
L:|0,0,1) = — [alay, — a.al] 10,0, 1) = 0.
l

e if c = Oitresults that N,|1) = N.[a]|l, 0, 0) + b|0, 1, 0)] = 0. Thatis, for any
value of a and b, we have an eigenket of N, corresponding to the eigenvalue
0. Let us search for which values of a and b this eigenket is also eigenket of
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L., imposing that it satisfies the eigenvalues equation

h
L.[al1,0,0) + b10,1,0)] = —[-al0,1,0) + b[1,0,0)] =
1
= mhlal|l,0,0) + 50, 1, 0)].

We immediately obtain
=m’=hr = m==*Il,

For m = 1, imposing the normalization condition |a|> + |b|> = 1, we find the

eigenket
1
ln=1,L, =+h) = —[|1,0,0) +i|0, 1, 0)],
V2
while, for m = —1, we find the eigenket
1 .
|n = 17 LZ = _h’> = _2 [|17 Os 0) - l|01 170>]‘

3.3 Reflection and Refraction in 3 Dimensions

Consider the three-dimensional step potential

0, ifx <O,

Vix,y,2) =
@YD=y s 0.

Derive the laws of reflection and refraction for a plane wave that impacts obliquely
on the potential discontinuity and determine the conditions for total reflection.

Solution

The Schrodinger equation is separable in cartesian coordinates, because the Hamil-
tonian is given by:

2 2 2
Py ry D :
g ) om T o ifx <0,
= 2 2 2
Px Py Pz 3
2m+v0+2m +2m’ ifx > 0.

The system is invariant for rotations around the x axis; we can thus fix the incidence
direction in the xy plane, putting p, = E, = 0. In this way, the problem involves
only coordinates x and y. Because of separability, each eigenvalue has the form
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E=E.+E,,
and the corresponding eigenfunctions are

V(x,y) =¥ @)o(1y).

In the y coordinate, the motion is free, while, in the x coordinate, there is a step

potential. Posing that
2mE, 2mE,
CEVTRE o RSV TR

we have, setting the coefficient of the incoming wave equal to 1,

P (y) = ™,
box) = kX 4 Re7 kX ifx <0
- Tel:x ifx >0

where

2m(E, — V)
G T

Thus, 3 wave vectors are identified:

e The incident wave vector k = (ky, k,) given by the boundary conditions;
e The reflected wave vector k' = (k’,, k;) = (—ky, ky);
o The transmitted wave vector q = (g, k).
We denote with «, @’ and B, respectively, the angles between these vectors and the
x axis. We immediately find that the incidence angle and the reflection angle are the
same, o = o’.

By imposing continuity conditions on the border of the two regions with different
potential (x = 0), we obtain

ky —k, 2k,
= and T = .
ky + k., ky + K,

The situation presents similarities and differences with respect to the case of
electromagnetic waves, for which Snell’s law is valid. In the present case, Vj, which
is the variation of the potential, assumes the role of a change in the refractive index.
However, while for photons the simple relation is worth (n = refractive index)

k:— = —n,
cn hcn
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[2m(E — Vp)

In terms of wave vectors, angles are given by

for particles the relation is

sino = sin 8 =

y ky

/K2 + k2 /K% +q?
. 2 + 2
sina y T4 _ JEy+E,—Vy
SiH,B /kf —‘rk)% Ey + E)C .

We can distinguish two cases:

k
k

Vo> 0. If E <V, q,isimaginary and in the region x > 0 the wave function is
exponentially damped. We find |R| = 1 and the transmitted probability
current is zero: we have total reflection. If, instead, E > Vj, g, is real and
there is a transmitted probability current, we get sin 8 > sin « and, then,
B > «. This case corresponds, therefore, to the passage of light from a
more refractive medium to a less refractive one.

Vo < 0. Whatever the value of E > 0 we have @ > . It’s what happens when the
light passes from a less refractive medium to a more refractive one.

3.4 Properties of the Eigenstates of J2 and J,

J+ = J; & iJ, operators play the role of raising/lowering the z component of the
angular momentum:

Jiljsm) =cqlj,m+1), 3.1
J_|j,m)y=c_|j,m—1). (3.2)

(a) Estimate the coefficients ¢, and c_ imposing the normalization of the eigenkets
of J% and J..

(b) Calculate the matrix elements of operators J,, J, and J; in the J 2,J. basis.

(c) Prove that, in an eigenstate of J2 and J, corresponding to the quantum numbers
J and m, the maximum accuracy of the simultaneous measurement of J, and J,
is obtained when |m| = j.

(d) Calculate the expectation value, still in a J? and J, eigenket, of the angular
momentum component along a 7 direction that forms angle 6 with the z axis.

Solution

(a) In the dual space, relation (3.1) becomes
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(jymlJ_ = (j,m+1],
and, therefore,
(om|J_Jiljom) =l P(om+1]j,m+1) = |eq
from which we get

ler > = (jomlJ_Jylj,m) = (j,m|J* — J? — hJ.|j, m) =
= [R2j(j + 1) — W2m* — B*m1{j, m|j, m).

Setting the ¢, phase equal to 0,

ey =h/j(G+ 1) —m@m+ 1). (3.3)

In a similar way, we obtain

e =hJjG+ 1) —mm—1). (34)

The relations (3.1) and (3.2) can, therefore, be written in a compact form:

Jiljom)=h/jG + 1) —m@m £ 1) |j,m = 1). (3.5)

(b) Let us now calculate the matrix elements of J components in the basis | j, m),

. . . Jo+J_ .
(G L jom) = (| 2 m) =

h -
= E I:\/J(‘] +1)—mm+1) Sj,j/am,m’—l +

+iGFD = mm =108, |, (36

. . oo de—
Glom Lyl m) = (G m | === j,m) =
AW
= > [ViG+D =mn+1) 8801 —
— VIGHD = mn = D8 8mms | (3.7)
(j',m'|J|j,m) = hm&; jiSmp. (3.8)

(c) Letus now look for the minimum in the | jm) state of the uncertainties of J, and
Jy, which are the same for symmetry reasons (as, moreover, we can verify):
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(AT = (J2) — (Jo)? = (AJy) = (J2) — (J,)%

X

Again for reasons of symmetry: (J,) = (J,). These expectation values vanish;
in fact, using the previous results, we obtain:

(Jo) = (j,mlJelj,m) =
R
= SVIiG+D =mn+ 1) (jomlj.m+1) +
ho— o
+§JNJ+U—mW%4HLmLm—U=U
Therefore,
2 2 1 2 2 1 P 2 232
(AL = (I3 = S0P = J2) = 51 G+ DIE = m?I?] =

hZ
7UU+D—m@

which attains its minimum for |m| = j, which is the maximal value |m| can
assume.
(d) The versor 7 in spherical coordinates has the form
n = (sin 6 cos ¢, sin O sin ¢, cos 0).
The J component along 7 is
J-n=J,sinfcos¢ + J, sinfsin¢g + J;, cosb.

The required expectation value is therefore

(j,m|Y-7i|j,m) = sin0 cos ¢(j, m|J|j, m) + sin@ sinp(j, m|Jy|j, m) +
+cosO(j, m|J,|j,m) = hmcos@,

since, as we have seen, the expectation values for J, and J, are null.

3.5 Measurements of Angular Momentum in a State
with{ =1

Consider a system in a £ = 1 angular momentum state. After measuring the angular
momentum component along a 7 direction that forms angle 6 with the z axis and
determining the result 47, the angular momentum component along the z axis is
measured. What is the probability of finding the value +A?
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Solution

The angular momentum components are compatible with its square modulus; there-
fore, their measures do not modify the property to be in the state with £ = 1.

We will therefore develop the calculations in the basis |£, m), selecting the sub-
space relative to £ = 1. As m can assume the values +1, 0, —1, a column array with
3 components corresponds to each ket and a 3 x 3 matrix to each operator.

Let us calculate the matrix elements of L,, L, and L_ using (3.6), (3.7), (3.8) for
j=t=1,

(Lx)m’,m = (]sm/|Lx|17 m) =

h
2 V2= men D S+ V2= mn = 1) S ]

2
(Ly)m’,m - (la m/|Ly|l’ m) =

h
— — m,m’'—1 — - - m,m’ ’
> [‘/2 m(m + 1) Syt — /2 —m(m — 1) 8. +1]

(Lz)m’,m = (1, m/|Lz|17 m) =mh Sm,m"

We can explicitly write these matrices if we associate the row or column index i with
the value of m as follows:

m=+1,0, —1,
i= 1, 2, 3.
Thus, we get
010 A 00— 0 100
“tvln) PTvor ) T

Itis easy to verify that L, and L, have the same eigenvalues as L, as expected, since
all of the space directions are equivalent.
The L, eigenvectors are

1
va=1{0], vo=1|1], yo1=10
0 0
The unit vector 71 is
n = (sinf cos ¢, sin O sin ¢, cos H)
and the L. component along 7 is

L-a=L,sin6cos¢+ Ly, sinfsin¢g + L cosb,

i.e.,
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cos 6 \/LE sinfe™'? 0
L-A=Fh % sin Be'?® 0 \% sinfe'?
0 \/% sinfe'®  —cosf

The eigenvalues of L - 7 are, as for any component of L, +, 0, —h. We know that,
after the measurement of LL - 71, the system is in the eigenvector corresponding to the
eigenvalue +7, which we denote as

a

vin=|b ]| =av+byo+cy .
c

Hence, the square modulus of a is the probability of finding 4/ in a subsequent
measure of L.. To determine |a|*> we impose that 'M;h is the eigenvector for the
eigenvalue +4 di L - 7i: . A

L-n ‘Mﬁzhwihv

attaining the system

acos9+%sin9e"4’—a=0

a_ o 1p € qi -1 _ ) —

ﬁsmée +f251n9@ b=0
%sin@e"”—ccos@—c:O

Only two of these equations are independent, because this is an homogeneous system
with zero coefficients determinant, but there is another equation as a result of the
normalization condition:

la|* + |b]* + |c|* = 1.

By developing short calculations, the required probability is found:

_ (1 4 cos9)?

P(L,=h) = |al 1

3.6 Angular Momentum of a Plane Wave

A particle has determinate momentum p. Which result is obtained by measuring the
angular momentum component along the p direction?

Solution

The particle wave function is a plane wave that propagates in the p direction:
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_ 1 % ikr
Wp(ﬂ-(ﬁ) e,

where k = %.

By choosing the reference system so that p is directed along the z axis, one can

write: , ,
w (I‘) _ 1 2 tkz __ 1 2 1kr cosf
0=\ o) ¢ T \amn) ¢

The L component along p is L_, that is,

As Y, does not depend on ¢,
Lyp =0.

We can therefore state that the particle is in a L - p eigenstate corresponding to
eigenvalue 0.

3.7 Measurements of Angular Momentum (I)

The state of a particle of mass m is described by the wave function
¥ (r) 1 (¢'? sin ¥ + cos ¥)g(r)
= ——(e'’sin cos r),
Vam 8

where

/ lg(r)Pridr = 1

and ¢, ¥ are the azimuth and polar angles, respectively.

(a) What are the possible results of a measurement of the L, component of the
particle angular momentum in this state?

(b) What is the probability of each of these possible results?

(c) What is the expectation value of L,?

Solution

(c) Using the formula (A.39), the wave function can be rewritten in the form
1

\/§(Y1,O_\/§Y1,l)g(”)§

y(r) =
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s0, the possible values of L, are 4+ and 0.

Assuming its radial part is normalized, the wave function is overall normalized.
Indeed,

00 1 +1 27
/|w|2dr=/0 drr2|g(r)|2§/ dcosz?/o de|Yio—V2Y 1> =

1

1 +1 2
25/ dcosﬁ/ do (|Y1,o|2+2|Y1,1|2|):1-
-1 0

So, the required probabilities are P(L, = h) =2/3e P(L, =0) = 1/3.
(©) (L;)=2/3-h+1/3-0=2/3h.

3.8 Measurements of Angular Momentum (II)

A particle is in a state described by the wave function
Y(x.y.2) = Cxy + yz + zx)e ™"

(a) What is the probability that a measure of the square of angular momentum gives
the result 0?

(b) What is the probability that a measure of the square of angular momentum gives
the result 6727

(c) If you find that the value of the orbital quantum number is 2, what are the
probabilities related to the possible values of L,?

Solution
By entering the spherical coordinates using the (A.21), we can write

v(r0,¢) =

= Crleor (sin® 6 sin¢g cos ¢ + sin@ cosB sing + sinf cosb cos P) =

C 1 ) . . )
=5 p2e—ar’ {5 sin? 0 (¢%? — ¢7%%) 4+ sin6 cos O [e’¢(1 +i)—e 01 - i)” =
i

C _.2 |87 . .
= Erze oy s [Y2, 20— Yoo —(I+ D21+ (1 —DY2 1],

where Spherical Harmonics were introduced using (A.40).

(a) The particle is in a state with £ =2,s0 P(£ =0) =0.

(b) P(L?=61)=P(t=2)=1.

(c) The probability of finding a certain value of L is given by the square modulus
of the coefficient of the related Spherical Harmonic, after having integrated over
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r and normalized the wave function. The result of the r-integral is the same for
all of the components, so it is simpler to calculate the square modulus of the
coefficients and then renormalize them to sum 1. The sum of the coefficients
magnitudes is

T+ 14+ 14+iP+1—if=14+1+2+2=6,

and the required probabilities are given by

1
P(L.=—2h) = —,
(L, ) G
1

P(L: = +2h) = .
1

P(L, = —1h) = -,
(L, ) 3
1
P(L:=+1h) = 3.
P(L. =0h) = 0.

3.9 Measurements of Angular Momentum (III)

A particle is in a state described by the wave function
Y)y=Axe ™,

where « is a real constant and A is a normalization constant. If a measurement of L2
is performed, what will be the wave function immediately after the measurement?

Solution

Remember that, from (A.39),

/3
Yio=,/-—cos6, (3.9
4
3 : +i¢p
Y41 = F/ =—sinfe™?. (3.10)
8

Xx =r siné cos ¢, (3.11)
y =r sinf sin ¢, (3.12)
z=r cosf (3.13)

The cartesian coordinates,



3.9 Measurements of Angular Momentum (III) 73

can be written in terms of spherical harmonics. It follows that the wave function can,
in turn, be rewritten in the form:

87\ 2
Y@ =A |:—% (%) (Y141 — Yl,—l):| e .

It is therefore an eigenstate of L? corresponding to the eigenvalue
1(1 + DHR? = 21%.

For this reason, the measurement of L2 does not perturb the wave function.

3.10 Dipole Moment and Selection Rules

Consider the matrix elements of the position z component between the eigenstates
|¢,m) of L? and L.:

(&, m|rcosO ¢, m).
Using the Spherical Harmonics recurrence relation (A.35),

€080 Yy, (0,0) =apm Yer1.m(©O,9) +ar—1,m Ye—1,m(0, @),

where

, (3.14)

o et reme+i—m
L 20+ 1)(2¢ +3)

show that such matrix elements are zero unless the differences ¢/ — £ and m’ — m
assume particular values.

Solution

We calculate the required matrix elements in the spherical coordinates basis. Taking
into account the suggested relationship, we have

(€, m|rcosf |l ,m') =r /dQ Y/, (0, 9) cosO Yy (0, $) =

=r /dQ Y0, 9) [aem Yesrm + ao—1mw Yo1m] =

=71 (Qe—1,m Se',0—1 + Qe.;m S0 041) O s

where we also used the orthogonal properties of the spherical harmonics (A.34). It
follows that these matrix elements are null, unless
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Am=m'—m=0 e AL={—C==l. (3.15)

These relationships are called selection rules, and they are relevant in calculating the
probabilities of electric dipole transitions.

3.11 Quadrupole Moment

The quadrupole moment is the tensor
2
Qix = 3xixx — rdik.

Its expectation values indicate the deviations of the probability distribution compared
to a spherically symmetrical one.

Determine its expectation values for one particle subject to a central potential in
an eigenstate of M, L?> and L..

Solution

Because of the separability in spherical coordinates for a central potential, an eigen-
function of H, L? and L . assume the form (A.42), so that we have to calculate the
following expressions:

00 T 2
<Qik>=/0 dr |x@<r>|2/0 s sinefo i [¥em®@ &) .

The matrix elements Q;; depend on the spherical coordinates through A.21. Consider
non-diagonal elements: their integration function depends on ¢ via cos ¢, sin ¢ and
sin ¢ cos ¢. Therefore, all of these elements vanish because the integral over ¢ is
null.

It remains to calculate the diagonal elements

011 = Qux =3x% —r* = r*(3sin’ 0 cos’ ¢ — 1),
O0n = 0y, =3y* —r* =r*(3sin’ 0 sin’ ¢ — 1),
033 = Q.. =322 —r> =r’(3cos’ 0 — 1).

For Q. and Q,,, the integral over ¢, taking into account

1 2 1— 2
+C2—OS¢S and Sin2 ¢ — %‘b’

2 2 2 1
/ d¢ cos® ¢ =f d¢ sin® ¢ :/ —do.
0 0 o 2

cos? ¢ =

gives us
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Therefore, defining
[o.¢]
o= [ aor,
0

we get

2 T
<Qm>=<ny)=<r2>/0 d¢f0 do sin6 (%Sin29—l) |Y;"(9,¢)|2.

As 3 ’
Zsin?0 —1=—=(3cos’6 — 1),
2 2

we also get

1
(Qxx) = <ny) = _E <sz>‘

We have only therefore to calculate (Q,,). Taking into account the Spherical Har-
monics recurrence relation (A.35), we obtain

2 T
(0..) = (r?) f d¢/ do sin6 (3cos®6 — 1) |Y@,m(9,¢)|2 =
0 0

20(£ 4+ 1) — 6m?
2 2 2 2
= 3 —1|= —_—
() Bt +aig ) = 1] =) 20— 1)(20 +3)
Let’s now look at some special cases.
swave:l =0, m =0 = (Q:;) = (Q.) = (Qy,) = 0,i.e., thereis complete
spherical symmetry.
p wave, £ = 1: here are three possibilities:

m = 0: = (Q.;)= ‘5—‘ (r*) > 0 , which indicates an elongated distribution
in the z direction;
m = +1: = (Q;) = —% (r?) < 0 , which indicates a flattened distribution

in the z direction.

We notice that spherical symmetry is restored if we consider the sum of the (Q.,)
relative to the three states of m. This result is generally valid for every value of £.
Indeed,

+¢ 2

+¢
Q) = (") ———— [ +1)—3m*]1 =0,
Z 2¢—-1)2L+3) m;e

m=—{
as

+¢ 1
dmi= U+ HEe+.

m=—{
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An atom that has electrons that complete the m states corresponding to the occupied
£ states has spherical symmetry, and is therefore more stable with respect to electrical
interactions (obviously, we are neglecting interaction between electrons).

3.12 Partial Wave Expansion of a Plane Wave

The Schrodinger equation in spherical coordinates for a free particle has the solutions

I//Z,m (I", 0’ (b) = aym j[ (kV)Ye,m (9’ ¢) (316)

These are called spherical waves and constitute an orthonormal basis of eigenvectors
common to the compatible observables H, L? and L,. Instead, the Schrodinger
equation in Cartesian coordinates has the solutions

3
1 ? k-r p
r)=|—— ! where k = —,
V(™) <2nh) ¢ n
which are called plane waves and make up an orthonormal basis of eigenvectors
common to the compatible observables H and p.

It must therefore be possible to express a plane wave as a superposition of spherical

waves corresponding to the same energy £ = %:
oo +L
KT =2 D aum jekn)Yen(®. ¢). (3.17)
=0 m=—¢

By choosing the z axis along the wave vector k direction, determine the coeffi-
cients of the development (3.17) by imposing that the two expressions have the same
asymptotic behavior in r.

Solution

By choosing the z axis along the direction of the wave vector k, the plane wave
becomes e'*" ¢ which does not depend on ¢. Also, the second member should not
depend on ¢ and, since it is a superposition of linearly independent functions, this
can only happen if only the terms with m = 0, which do not depend on ¢, contribute
to it. The spherical harmonics for m = 0 are given by

20+1

Yi0(0,9) = -

Py(cos9),

and therefore (3.17) reduces to
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00
threos® _ Zae Je(kr) Py(cos9),
£=0

where all of the constants are incorporated into ay.

To determine the coefficients a;, we multiply both members for Py(cos 6) and we
integrate over cos 6. Using the orthonormal relationship for Legendre Polynomials
(A.30), we get

+1 . 2
dz P, e — 3.18
[1 2Py (2)e 2€+1M( r). (3.18)

We now compare the » asymptotic behaviors of both sides. The series expansion of
the first side of (3.18) can be obtained by iterating integration by parts:

+1 1 411 gt
/ dzPy(z)e* s = — [e’k’ZPe(z)] - — / dzP)(z) e'* =
-1 tkr -1 kr J_4

[ lklZP (Z):I L L [ezkrzP/(Z)]+1 _ L /‘+1 dZP//(Z) ezkrz —
1 lkr 1kr ¢ -1 tkr J_4 ¢

7
L [ lerPZ(Z):I +0( ) — L [ezkr _ emi efzkr:l +0(£)2 —
1kr 1kr r
2 1l 144 2
—EC 2 (kr—7>+0(;) ’

where we used the property (A.31) of Legendre polynomials.
To calculate the » asymptotic behavior of the second side of (3.18), we use (A.54),
and then, from (3.18), we obtain

2 14 2 1 41
S N LA . kr — + p
kr 2 20+ 1 kr 2

from which, simplifying, we reduce to the following expression for a;:

ap =12+ 1). (3.19)

Thus, we obtain the spherical wave expansion of a plane wave:

0
tkreosd _ Zlf 2€ 4 1) jo(kr)Pe(cos6). (3.20)
£=0

3.13 Particle Inside of a Sphere

Determine the eigenvalues of the discrete energy spectrum for a particle surrounded
by a sphere of impenetrable potential, within which the potential is null.
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Solution

We denote the radius of the sphere with R. Its impenetrability implies that the wave
function vanishes on the surface, so that the outgoing probability current is zero.
Inside the sphere, instead, the particle is free and, normalization apart, the radial
wave function is given by

Ry o (r) = je(kr),

where k = +/2mE /h and j;(z) is the £th Bessel spherical function (see A.7). As
already noted, the radial wave function must vanish on the boundary and therefore

Je(kR) = 0.

The Bessel spherical functions depend on trigonometric functions and have infinite
zeros that are numbered in ascending order. Having called z,,, ¢ the n,-simo zero of
Je, in order for j,(kR) to be zero, it must result that k = ZT* We conclude that the
possible energy eigenvalues are given by

2 =2
h* 2, 4

Ep o=~ 2t
" om R

(3.21)

n, is called the radial quantum number, to distinguish it from the orbital quantum
number £. Zeros of the spherical Bessel functions are tabulated (see, for example,

[1D.

3.14 Bound States of a Particle Inside of a Spherical
Potential Well

Determine the energy eigenvalues of the bound states of a particle subject to the
potential:

0, perr > a;

—VWo, perr < a.

Vir)= {

Solution

Taking into account centrifugal potential, the particle is in the presence of the effective
potential:
2+ 1)

Vers(r) =V () +——5—.

(3.22)
which has been drawn in black in Fig. 3.1. The condition necessary for the bound
states to exist is that the minimum of potential be lower than its asymptotic value,
which is null. Since the minimum is always placed in r = a, this is equivalent to the
condition
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V(r)

| r

Fig. 3.1 Spherical well: the spherical potential well (blue), which added to the centrifugal potential
(red), gives rise to the effective potential (black)

- VO

R+ 1)

0>
2ma?

(3.23)
We can already say that there are situations for which there have been no bound
states and others for which they are present, but only for the lower states of angular
momentum. We will see, however, that condition (3.23) is not a sufficient condition.
At fixed values of ¢ and energy E < 0, we can distinguish two regions, depending
on whether 7 is less or greater than a.

RegionI: r < a
Inside the sphere, there is a potential constantly equal to —Vjy. The radial equation is
that of a free particle:

d? L +1
— Upe(r) + [kz - %] Upo(r) =0, (3.24)
dr r
with wave number k
2 2m(E + Vp)
=g

Since the origin is included in this region, the only acceptable solution (satisfying
the condition lim,_,o Uy ¢(r) = 0) is



80 3 Two and Three-Dimensional Systems
Ure(r) = Ar je(kr), (3.25)

where A is a normalization constant.

Regione II: > a
Outside of the sphere, the potential is also constant, but now its value is zero. The
radial equation is that of a free particle with eigenvalues that are, however, negative:

d? Le+1)
57 Uk + [—xz — —2] Us.e(r) =0, (3.26)
r r
where x is
) 2mE
=T 20

The solutions to this equation are still spherical Bessel functions, with the replace-
ment k — 1. The condition to be imposed on these solutions is not the regular
behavior in the origin, which is not part of this region, but rather that they do not
diverge for r — +4-00. As explained in the Appendix, we see that the solutions with
correct asymptotic pattern are the spherical Hankel functions of first kind (A.62).
The solution in this region is, therefore, given by

Uee(r) = BrhPayr). (3.27)

Connecting the solutions

The solutions found in the two regions must be equal in » = a, the border point,
together with their derivatives, or, equivalently, together with their logarithmic deriva-
tives. The continuity condition on the wave function determines the ratio B/A (the
normalization condition then allows us to determine the module of each of them).
The continuity condition on the logarithmic derivative, on the other hand, determines
the spectrum of the energy eigenvalues. In fact, it entails that

_ 1 [ih“)(l r)] 1 [i'(kr)i| (3.28)
WV axa Lart 7T Gikay [ar "] :

Note that k and x are not independent variables, because

B 2mE sz()
X = _F = hZ —

K (3.29)

therefore, in general, the connection of the logarithmic derivatives, i.e., the existence
of a solution valid in both regions, will be possible only for certain energy values.
Since, as we have noted, for large values of £ we do not have eigenvalues, the equation
(3.28) must be resolved starting from £ = 0, 1, 2, ... until (3.23) is satisfied.
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Fig. 3.2 Spherical well: graphic solution to Eq. (3.31). The functions at the two sides of (3.31) are
quoted. The left side must be considered only with regard to the continuous black lines. The linear
function on the right side is plotted for 3 different values of the angular coefficient: 0.3 /7 (red),
2/m (green), 5/m (blue)

Eigenvalues for ¢ = 0

The lowest eigenvalue, the ground state energy, will be obtained for £ = 0: in fact,
increasing the orbital quantum number, the well bottom is raised due to the centrifugal
potential, and the eigenvalues will consequently be higher. From (A.46) and (A.58),
we see that

. sin z et
jo@)=—= and e (2) = — ;

Substituting them in (3.28), we find that

x = —kcotka. (3.30)

This is exactly the same equation already found in the case of the one dimensional
square well (problem 2.7) for the odd solutions. This is an expected result, because,
for £ = 0, the centrifugal potential is absent. The only difference is linked to the
solutions’ domain that is restricted to the positive semi-axis with the condition that
the radial wave function vanishes in the origin: in the case of the one-dimensional
square well, this happens precisely for the odd solutions. However, we are going to
solve (3.30), always in a graphic way, but using a different strategy (Fig.3.2).

Using (3.29) and (3.30), we get
1 h2k2
e T 2wy
1+ -2 0

1 1
sinka =%,/ ———— == -
1 + cot? ka 1+ 2
k2

k2
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which we can also rewrite in the form

B2
ka (3.31)

+sinka = .
2mVya?

Energy eigenvalues will be obtained substituting the values of ka for which the first
and second side curves intersect in (3.29). We must consider that the second side is
always positive, and also that ka is positive. Moreover, we remember that equation
(3.30) tells us that the cotangent must be negative. It is therefore necessary to consider
only the intersections with the continuous part of the sine curves in Fig. (3.2). It is
evident that there are no solutions if the angular coefficient of the straight line has
values too high: it must not be higher than 2/, that is,

P2, T
— a .
2mVoa? — m % = gm

We conclude by noting that, unlike the one-dimensional case, in which there is always
at least one positive parity state, in three dimensions, to tie a particle, the well must
be deep enough and wide enough, or, better yet, the product Vya? must be large
enough. This can be understood by remembering that the wave function must go to
zero in the origin and for large r. The connection between these two trends cannot
occur if the curvature (the second derivative), which, as seen from (3.24), increases
linearly with Vj, is not large enough or if the well is not wide enough.

3.15 Particle in a Nucleus

A nucleus 5 107" cm wide is schematized as a potential well 10 MeV deep.
Find the minimum mass for a particle to be inside of the nucleus.

Solution

Remember that (see problem 3.14) the bound states with angular momentum ¢ = 0
of a spherical well having radius a and depth Vj, are obtained solving Eq. (3.31):

B2
sinka =+, /| ———ka (cotka < 0),
2mVya?

where k = /2m(E + Vy)/h2.

This equation has solutions only if

h2 2
S — < —
2mVoa? w
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2h3c?

- 8V()612 '
In the present case, posing that Vo = 10 MeV, a = 5 103 cm, one obtains
mc* > 192.3 MeV.

One could ask what happens for higher angular momentum states. We know that,
to get states with £ > 0, at fixed mass m, we need higher values of Vj;, because the
effect of the centrifugal potential is to lift the bottom of the well. Since physical
results depend on the product mVjy, we can deduce that, if you leave Vj fixed, the
existence of such states requires higher mass values than found for £ = 0. Thus, the
mass value found above is indeed a minimum value.

3.16 Particle in a Central Potential

A particle in a potential V (r) is in a state described by the wave function
VE(r, 9, 9) = Ae % (ag constant),

which is an eigenfunction of the Hamiltonian.

(a) What is the angular momentum content of this state?
(b) Assuming that the potential vanishes in the limit 7 — oo, find the energy eigen-
value E, considering, in this limit the radial Schrodinger equation

{ 2 [l 92 e+

e g
2m | r Or? r2

} + V(r)} Ve(r, 9, ¢) = EYe(r, 0, ¢).

(c) From the value of E derive V (r), again using the radial equation.
Solution
(a) The wave function does not depend on ¥ and ¢, thus the system is in a state with

L=m=0.
(b) Since

1 82 _r 1 0 1 r _r 1 1 1 + r _r
_——re W = — — —_ — e 0 = — —_ = — —_ e v =
r or? r or ap r ap ap a%

Il
|
S
| —
_l’_
ml'_‘
| I |
[
3k

substituting the wave function in the radial equation, we obtain
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B 21 n? 1~|—V() E
Lo 222 r) = E.
2m agr Zmag

In the limit r — oo, we find the energy eigenvalue:

52

E=— .
2ma}

(c) By replacing this value of E in the previous equation, we have

w1
V()= ——-

magr-

If ay is the Bohr radius (ap = %:2), we get the potential of the Hydrogen atom
V@) =—¢.

3.17 Charged Particle in a Magnetic Field

The Hamiltonian for a charged spin-free particle in a magnetic field B =V x A is
1 e 2
2m c
where e is the particle’s charge and p = (py, py, p;) is the momentum conjugated to
the position r. Given that A = (—Byy, 0, 0), corresponding to a constant magnetic
field B = (0, 0, By):

(a) Prove that p, and p, are constants of motion.
(b) Find the energy levels for this system.

Solution

(a) The system’s Hamiltonian can be written in terms of momentum components

as: 5
1 eB()
H=- [(prr—y) +p§+p§]
m Cc

Therefore, it commutes with all of the p components except p,. Remembering
Heisemberg’s equation, we infer that p, and p, are conserved, because they do
not depend explicitly on time.

(b) So, we can choose, as a complete set of commuting variables, {H, p,, p.}. If
we call p, and p, the eigenvalues of the last two operators, the eigenfunctions
have the form

XPx

S B (y),

Yx,y,z)=¢
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where ¢ (y) must satisfy the eigenvalue equation

1 By \? d?
5 [(p +22 y) — R+ pi} P = E¢(y).
m c dy

that is,

R d> 1 [eBy\> e\’ B P2
e 3 () (45 Joor= (2255 e

Setting

le| Bo / CPx , p?
w = s = —+ _ — - =
mc y=7 eBy 2m

we find the equation

K2 d2¢(y) 1 2.1 _ 5
2 dy? +§ma)y o(y) =E'¢p(y),

which is the energy eigenvalue equation for a particle in a one-dimensional
harmonic potential with angular frequency w. The eigenvalues are

, P2 1 .
E:E_Z_: n—i—z ho with n=0,1,2,...
m

The system’s energy eigenvalues are, therefore, given by

p? 1
E,=—*+(n+=-)how with n=0,1,2,...
2m 2

3.18 Bound States of the Hydrogenlike Atom

A Hydrogenlike atom is an atom in which there is a positive charge nucleus +Ze and
a negative charge electron —e. In the case of the Hydrogen atom, we have Z = 1,
while, for Z different, we have ionized atoms with a single electron.

The Coulomb potential energy is, in Gauss units,

Ze?

The atomic states are the bound states (E < 0) for this potential.
We introduce the quantities y related to the eigenvalue E
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2mE
X = - (3.33)
and
N Ze*m mc? (334)
= — =7ZU -, .
N\ 20E]
where
o] (3.35)
T he T 137 ‘
is the fine-structure constant.
In terms of these parameters, the radial equation (A.43) becomes
d? 2xh L +1
LU+ |2+ 22 - Dy, =0, (3.36)
dr? r r2

Calculate, solving this equation by the power expansion method, the energy eigen-
values corresponding to bound states.

Solution

We note that the Coulomb potential is less divergent than »~2 in the origin. We know
that, in these cases, the only regular solution in » = O must have the behavior

Up(r) ~ rtt (3.37)

while, as we have seen in discussing the spherical well spectrum (problem 3.14),
since, in the limit 7 — oo, the potential goes to zero, it must have the same behavior
as the spherical functions of Hankel of the first kind, that is,

Uge(r)y ~ e *. (3.38)

— 00

These behaviors suggest the factorization
Upo(r) =r*te ™ u(r), (3.39)

where u(r) is an interpolating function to be determined. Substituting (3.39) and
introducing the dimensionless variable

t=2xr, (3.40)
the radial equation 3.36 becomes an equation for the interpolating function u(¢):

d? d
tﬁu(t)+(2ﬁ+2—t)au(t)—(K—i—l—A)u(t):O. (3.41)
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This equation is the Kummer confluent hypergeometric equation. We search for
solutions satisfying the behaviors in (3.37) and (3.38) through the power expansion
method. Substituting the expansion

o0
u(t) = Zaktk (3.42)
k=0
in (3.41), we find
o0 o0 o0
Zk(k —Dat '+ 2e+2—-1) Zkakt"‘l —(+1-2 Zaktk =0.

k=2 k=1 k=0

We redefine the sum index k — 1 — k in the first two summations and separate the
second summation into two terms:

o0 o0 o0 o0
Dk + Dkagyy* + @0 +2) >k + Dagy it = kaprt — @ +1-2) Y art* = 0.
k=1 k=0 k=1 k=0

Noting that, in the first and third terms, the sum index can start from 0, we are able
to aggregate the terms that have the same coefficients a;:

oo
Z[(k+ Dk +204+2) a1 — €+ 1= 1+ k) a]t* =0.
k=0

Imposing term-by-term vanishing we find the following recursion relation:

C+1—Atk
D1 _ LA tre (3.43)
a Gkt Dk+20+2)

This ratio behaves, in the limit £ — oo, as

Afe41

—_~

ay k—oo

=1

It follows that the power series (3.42) has the same behavior for large r of ¢/ =
Yo %k, If this occurs, the asymptotic trend of the radial function would be

o0
Ugo(r) =rtTlexr Zak(Zxr)k ~ et
k_o r—00

which is not acceptable. However, this would not happen if the series were truncated
starting from a certain &, i.e., if there exists a n, value of k such that
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A=n+¢+1 with n,=0,12,...

n,, called the radial quantum number, is the degree of the polynomial to which the
series is reduced. Note that X, being the sum of integers, is also an integer, and we
can pose A = n, so that

n=n+¢+1 with n=12... (3.44)

n is called the principal quantum number. The Eq. (3.34) allows us to determine the
energy spectrum:

1 Za)?
E, = ——mczﬂ.

3.45
> " (3.45)

Equation (3.44) shows that these eigenvalues are degenerate.

3.19 Expectation Values of rl,, forn =1, 2,3 in the
Hydrogenlike Atom Stationary States

Using the Feynman-Hellmann theorem (see problem 1.12)

, (3.46)

IHM)\  E)
< A >_ A

calculate the expectation values of ,Ln for n = 1, 2, 3 in the stationary states of the
Hydrogenlike atom.

Solution

(a) Calculation of (1)
We use, as a parameter, the fine-structure constant ¢, which, in the Hydrogenlike
atom Hamiltonian, is only present in the Coulomb potential energy:

&2 hea

Vcoul(r) = _7 = _T~

Applying the Feynman-Hellmann theorem, we have

’

<8‘7‘((0t)> _<_E> _IE,(a) mc? o
n,t nt

o r do o2

from which we obtain

hn? hca e?

<1> mca E, 2E,
nt

r
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(b)

©

and, finally, the result (which will be used to calculate fine-structure corrections
in problem 6.25)

2
<e—> — _2F,. (3.47)
nt

Calculation of (%)ﬂ .
This time, for our parameter, we use the orbital quantum number £, which, in
the Hydrogenlike atom Hamiltonian, is only present in the centrifugal potential

term:
2+ 1)

V, =
e 2mr?

From the Feynman-Hellmann theorem, we obtain
IHWO\ B 2041\
o [, C 2m rr [ -

IE,0) o [ 1 ., , 1 1,52
=—\|\-—zmca" ——— | ==
Ry e\ 2 (n, + €+ 1)2

from which we get the result (also used to calculate fine-structure corrections)

64 n
—) =8(E,? ) 3.48
()., =35 a4

Calculation of (%)

This calculation derives from the previous result, thanks to the fact that, in a
stationary state, the average force must be zero. To realize this, just write the
impulse expectation value in this state; one immediately understands that it is
not modified by the temporal evolution and, therefore, its derivative with respect
to time, which is precisely the average force, must be zero. In the present case,
the force is

F@r)=—

dv(r) d [ & Ree+1) & R+ 1)
= —_— ) ==+ —
dr dr 2

r 2mr? r mr3

Imposing that (F (7)), ¢ = 0 and using the expectation value of rlz (3.48), we
obtain

1 e? m 1 1
=) ={3) = =5 i (3:49)
P lae PP PEE+T)  ag n3e+35)(C+1)

(result to be used to calculate corrections due to spin-orbit interaction in problem
6.26).
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3.20 One-Dimensional Hydrogen Atom? A Misleading
Similarity

The state of a particle of mass m in one dimension is described by the wave function

Yx) = A <i> e
X0

where A, n e xy are constants.

(a) Using the Schrodinger equation, find the potential V (x) and the energy eigen-
value E for which this wave function is an energy eigenfunction (assume that
V(x) — 0 when x — 00).

(b) What connection can be noted between this potential and the effective (coulom-
bian + centrifugal) radial potential for a Hydrogen atom in the orbital angular
momentum £?

Solution
(a) Replacing ¥ (x) in the Schroédinger equation, we obtain

’1(”—;])_2_4_ :|1//(x)
0

XX x

LB = V@) =—-— [

X

Assuming that V(x) —— 0, we get
X—> 00

1 -1
E = ————, and therefore V(x) = [M - 2ii| .
2m x§ om x?2 XX0

(b) The term ;Lm"(';—jl) is similar to the centrifugal potential 5. 7 WH) in the radial

equation, but the term that depends on % contains n, Wthh obv1ous1y does not
happen for the Coulomb potential 67—2

3.21 Determining the State of a Hydrogen Atom

Of a Hydrogen atom, it is known that:

(a) itisina p state withn=2,

(b) it contains eigenstates of L, corresponding to eigenvalues +1 and —1,

(c) the expectation value of L, is zero,

(d) the probability of finding the electron in the first quadrant (0 < ¢ < 7) is 25%.

Write down the possible wave functions.
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Solution

We denote by |n¢m) the generic eigenstate common to H, L?, L, of a Hydrogen
atom. Conditions (a) and (b) allow us to write the desired state as:

V) =«al2,1,1) + B2, 1, —1).
From condition (c)
(WIL.|y) =la*h—|BPh=0 = |a*=]|B]"

By imposing normalization and taking into account that, since the overall phase is
undetermined, we can fix « to be real and positive, we get

a=|pl=

-

and, having called § the phase of 8,

To apply condition (d), we need to transition to wave functions in the coordinate
basis. The probability of finding the electron between ¢ and ¢ + d¢ is obtained by
integrating the square modulus of ¥ (r, 8, ¢) = (r|¥) over the other variables:

P(p)d¢ = ’L (Lei"’ + Le_i¢+i6> 2d¢
V2r \V2 /2 :
(<¢’<5)—/0 (@) =
- L[ [1 4 cosQp — 8)]d¢p =
%71' 01 1
=3 T simé=17 (3.50)

Then,
siné =0 = §=nm.

So, we have two possible status determinations corresponding to the choice of n even
or odd:
512,11+ 5512, 1, 1)
V) =

1 !
7§|2, I, 1) - ﬁ|2, I, —1).



92 3 Two and Three-Dimensional Systems

3.22 Hydrogen Atom in the Ground State

The wave function of the ground state of the Hydrogen atom is

1 _=
Vioo= |—5e ,
]TCIO

where ag = h?/me? is the Bohr radius.

(a) Determine the distance from the nucleus at which the probability density of
finding the electron is maximum.
(b) Also determine the expectation value of the electron’s position.

Solution

We need the probability of finding the electron at a fixed distance from the nucleus
(or, rather, to find the reduced mass at a fixed distance from the center of mass)
independently of its direction, so the probability distribution must be integrated over
the whole solid angle:

4
P(r)dr = /dQ V000, 0, $)2 12 dr = 4| Ry o(r) 2r2dr = — ¢ dr,
ag

where R o(r) is the radial function (A.42) of the Hydrogen ground state.

(a) This probability density is maximum when r is the solution to the equation

dp 4 2 =z d*P
w_Z [2r —2r—:|e 5=0 wih 220 o,
dr a; dr?

Therefore, the required maximum is at r = ag (r = 0 corresponds to a mini-
mum).
(b) We get the expectation value of the electron’s position using the formula (A.6):

0 4 [ o o0 3
<r>:/ drrP(r)=—3/ drr’e w=2 doao’e™ = = ap.
0 ay Jo 4 Jo 2

3.23 Hydrogen Atom in an External Magnetic Field

Consider a Hydrogen atom in the state 2 p (neglecting the electron spin) and use the
basis common to operators H, L2, L,.

(a) Denote by |4}, |¥o), |¥—) the normalized state vectors corresponding to m =
+1, 0, —1, respectively. Immerse the Hydrogen atom in an external magnetic
field B parallel to the z axis and let the interaction energy be given by
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W=-8B-L.
Determine the new system energy levels of the states 2p.

(b) Consider the state
1
V) =Sy + V21%0) 4 1¥)).

Calculate < E > and AE> =< (E — < E >)? > in this state.
(c) Limiting ourselves to the subspace 2p, L, is represented by a diagonal matrix
in the basis |V4), [Yo), [¥—), while

i 010

L,=—|101],
v2\o10

0 10
i -1 01

L, =
T iv2\ o 10
Calculate the L, and L, expectation values in the state |v/).

Solution

(a) The energy of the 2p levels in the absence of the magnetic field is

ucta?

8 k]

E, =

where u is the electron’s reduced mass and « is the fine structure constant. The
energy contribution due to the magnetic field corresponds to the operator

W = —BBL.,

which commutes with the remaining part of the Hamiltonian. Moreover, the 2p
states are eigenstates of L, so the new energy levels are

2.2

uc-o ucta? ucta?

8 )

Ef'=— —BhB,  EJ= Ey'=— + BhB,
where the levels were indexed with the value of the quantum number m. The
presence of the external magnetic field, therefore, generated a breakdown of the
degeneration.

(b) The state vector |y) is normalized. So, we have

2.2

1\? B ue-o
<E>=<§) [PES" + (V2B + 1PEy = ———,
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ucta?

8

2
(E%) = }1 [+ 2(EQ + By )] = ( ) + % (BhB),

AE? = ((E — (E)?) = (E%) — (E)* = %,3271232.

(c) Inthe suggested basis, the state vector |1/) corresponds to the one column matrix

e
|w>=5 V2
1
Therefore, we get
q p (010 1
<L, >==-(121)—(101])=|~2] =4,
3 )ﬁ 010/ 2\ 1
! B 0 10 1
<L,>==(1/21)— | -101]=+v2]=0
=3l )iﬁ 0 —10 |

3.24 A Molecular Model

For some molecules, the potential energy can be modeled with the expression

a a

2
V(r)=-2D (; - ﬁ) .

Determine the energy levels for this potential energy and discuss these results in the
hypothesis, often valid, D > %

Solution
Introducing the variable
-
and the parameters
K? = —22126le and y2 = zrg—zazD,

the radial Schrodinger equation (A.43) becomes
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2y2 A )
Ur(p) + [—xz += - VT] Us(p) = 0.

This equation is similar to that for the Hydrogen atom (problem 3.18)

2¢x U +1
Up(r) + |:—K2 + o %} Uy(r) =0,

except for the substitutions

_Y 2 _plep! ’r_ 2 1 2 1
A= and I HUEHD =0+ D S U=,y + L+ ) o
€

In the case of the Hydrogen atom, the requirement that the wave function be regular
at infinity leads to the quantization condition

C4+1—nr=—n,.

In the present case, we get

/ 1 1 y?
2 ¢ )2 — - =_n.
)/+(+2)+2 p ny

Therefore the energy levels of the bound states are given by

hZ hZ 4
En = - K2 = — 14 =
" 2ma? 2ma? 5 o, 2
[Jr+ @+ b+ ten]
1
=-D

-,
[,/1 F e+ n,)x]

where
1
xX=—.
14
The D > % regime corresponds to y > 1,i.e.,x < 1. We can expand the expres-

sion for energy levels in power series of x up to the 2nd order. Taking into account
the following series expansions,

2

\/1+x2%1+%

1 2
[1 +ax + bx 2} ~[1—ax+ @ )] ~ 1= 2ax + (Ga> —20)x’,
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we get

2 r‘i‘l Z.{_lz r+12
En,,z%—D|:1_ (n 2)_( ) +3(n 3) .

Y y? y?

It is clear that this approximation makes sense only for small values of quantum
numbers, otherwise the terms ignored become important because they depend on
powers of n, and £. The three terms can be interpreted:

(a) the first term is a constant related to the value of the potential minimum. Indeed,
V at the point of minimum » = a gets the value —D;
(b) the second term is a vibrational term with frequency

due to the fact that, around the minimum, the potential is approximable with a
harmonic oscillator potential;
(c) the third and fourth terms represent rotational energy proportional to

D h? 2 . —
1 o = 31 where [ is the system moment of inertia.
y ma



Chapter 4 )
Spin e

4.1 Total Spin of Two Electrons

Consider a system of two electrons that are in a state with opposite spin z-components.
Calculate the S? (where 8 is the total spin operator) expectation value in this state.

Solution

Suppose the system state is
1812, S2.2) = [+, =).

This state contributes to two different eigenstates of the total spin operator:

ls =0,m=0) = %(H, =)= Il=+)
and {
ls=1,m=0)= 7 I+, =)+ 1=, +),
where s and m are the quantum numbers of S 2 and S,. It turns out, therefore, that
) = (s = 0m = 0) + [s = 1,m = 0)).
V2

The S? expectation value is obtained averaging the eigenvalues of the two eigenstates
weighed with the square modulus of their coefficients:

2

1? 1
($%) = ‘— 000 + DA* + ‘— 1(1+ DA = %
V2 V2
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4.2 Eigenstates of a Spin Component (I)

The spin function of a spin % particle has the following expression in the S, basis:

Y1) _ [ €*cosd

vo )]~ \ePsing )
Does an n space-direction exist such that the result of the measurement of the spin
component along 7 can be predicted with certainty?

Solution

The state is already normalized. Having named as ©% and ¢ the spherical angular coor-
dinates of the direction 7, this state must be an eigenstate of the matrix representative
of S - #i in the basis common to S? and S.:

. h. 01 . . 0—i 10
S~n_5[smﬂ coscp(lo)—i-smz? sm(p<i 0)+cosﬁ<0_1>]_

h( cos ¥ sinﬂe‘i‘/’)

T 2 \sinv®e? —cos?

The eigenvalues of S - 71, because of the isotropy of space, are the same as those of
S,,i.e., :I:%, whereas their eigenvectors are:

h COSQ h SiIl2
S~A= —) = . 2 S«A:—— = 2 )
| n +2) <sm%e"”) | n 2) (—COS%EWJ

For there to be certainty in the result of a measure, the spin function must be able to
identify, less than an arbitrary phase factor, with one of these eigenstates. There are,
therefore, two possibilities:

or

4.3 Eigenstates of a Spin Component (II)

If a particle of spin % is in a state with S, = %, what are the probabilities that,
measuring the component of the spin along the direction 7 identified by the angular

spherical coordinates ¥ and ¢, one will find j:%?
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Solution

As we have seen in the problem 4.2, the eigenstates of S - i1 are

h cos 2 9 (1 % . (0
N = —) = 2 = - in — e'?
IS-n +2) (sin%e”") cos2(0)+sm2e <1>,
h
2

L
sin % 9 9 .
)= 192 . =sin—<1>—cos—e””(0>.
—cos 5 e'? 2\0 2 1

In terms of these eigenstates, the particle state before the measure is given by

IS-7=—

[SAip~

4 h 4

As a result, the required probabilities are

4.4 Determining a Spin State (I)

An electron is equally likely to have its spin oriented parallel or antiparallel to the z
axis. Determine its status when the expectation value of S, is maximum.

Solution

In the S, representation, the electron state is

-()

By imposing the condition given by the problem, we know that the coefficients a
and b have the same modulus. Then, from normalization, and taking into account
the arbitrariness of the overall phase, we get

and
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The S, expectation value is

=503 (1) 5 ()=S0 ()-
h

which has % as its maximum value when o = 0 and

a=b=—.
V2

‘We note that the maximum value of (S, ) found is equal to its maximum eigenvalue;
in fact, the state we found is the eigenstate of S, corresponding to this eigenvalue.

4.5 Determining a Spin State (II)

An electron is in a S, eigenstates superposition:
V) =al+)+b|-).

Determine the constants a and b so that the expectation values of S; and S, are 0 and
g, respectively.

Solution

In the representation in which S, is diagonal the state of the electron is given by

-()

In this state the expectation values of S; and S, are

h h
(Se) =5 (a* %) ((1) _01) (Z) = 5 (al” = 1bP),
)

(Sy>=§(a b (l. 0‘>(Z>=—§z(ab—ab)=—528(ab ).

From the condition (S,) = 0 and from the normalization relation, we obtain that
coefficients a and b have the same modulus and, placing the phase of a as being
equal to 0, we get
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The phase « can be determined from the condition (S,) = %:

—23(ab*) =1 = sina =1 = o=

(SR

In conclusion,
1

W/):ﬁ

() +il=).

4.6 Determining a Spin State (III)

A spin % particle is in a state in which the expectation value of S, is % « and that of
Sy is % B with o and B between —1 and 1.

Show that the condition o> + 82 < 1 must hold and that, for o? + 8% < 1, the
problem admits two solutions, while, for a? + ,32 = 1, the solution is unique. In the
latter case, calculate the probability of finding the particle spin oriented parallel or
antiparallel compared to the z axis.

Solution

Having called |¢) the state under examination and |£) the eigenstates of S, with
eigenvalues +//2, we have

|w>=a|+>+b|—>=(z>,

where a and b are two constants to be determined. The expectation values of S, and
S, in this state are

o=t (1) (5
(%):%(a*ﬁ)(??j)<Z>::—%Kﬁb—aﬁ)

We can choose the phases of @ and b so that

% (a*b + ab*),

a>0 b=|ble".
Imposing normalization, we get

aP+bP>P=1 = bPP=1—-da> = b=+1-ae".
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The expectation values become

2

ﬁ(Sx) =a2R(b) =2av1 —a? cos?,
2
ﬁ(Sy) = —ia2iJ(bh) =2ay/1 —a? sin?,
and, by imposing the conditions given, we obtain

4
o+ B = 7 ((Sx)2 + (Sy)z) =44*(1 — a%) with a®> < 1.

The right side of this equation is, in the variable a?, a parabola with its concavity
facing downwards, symmetrical with respect to the axis a> = 1/2, which assumes
its maximum value in a®> = 1/2, so that

o+ B < 4’1 —a’)|,_, =1
-2

Any other value of a® + 2 < 1 corresponds to two values of a®> symmetrical with
respect to a® = 1/2.
In the case o + B2 = 1, we have a = 1/+/2 = |b|, and therefore

W) = —= 1+ + —z ¢ |-).

L
V2

So, the required probabilities are both equal to 1/2.

4.7 Measurements in a Stern-Gerlach Apparatus

A beam of spin % atoms moving in the direction of the y axis is subjected to a series
of measurements by Stern-Gerlach-type devices as follows:

(a) The first measurement accepts atoms with s, = % and rejects atoms with s, =
B

-

(b) The second measurement accepts atoms with s, = % and rejects atoms with
Sy = —%, where s, is eigenvalue of the operator S - fi and fi the unit vector in
the xz-plane at an angle ¥ with respect to the z-axis.

(c) The third measurement accepts atoms with s, = —g and rejects atoms with
s, = % What is the intensity of the final beam with respect to that of the beam
that survives the first measure? How do we orient the f direction of the second
device if the maximum final intensity is to be achieved?
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Solution

After the transit in the first apparatus, the atoms are described by an eigenstate of S,
corresponding to the eigenvalue +7/2. Using the results of exercise 4.2, this state
can be written as a superimposition of eigenstates of S-fi in the form

h
$i=—5).

2 2

h
S-ﬁ:+—>+c

s h
=+=)=c
z 2 +

where

After the second measurement, the intensity of the beam will then be reduced by a
factor of cos? %, while each transmitted atom will be in the state

5. +h cos% D g +h . s s h
N=44+—-)= = COS — = +—= s — 7= —=)-
2 sin% 2 ¢ 2 2 ) 2
P

The third measurement further reduces the intensity of the beam by a factor of sin’ 5
The third measure further reduces the intensity of the beam by a factor, so that the
ratio between the intensity of the final beam and that of the beam that survives the

first measure is given by
20,0 1,
€cos” —sin” — = —sin” .
2 2 4

This ratio is maximum for ¢ equal to 7 /2 or 37 /2.

4.8 Energy Eigenstates of a System of Interacting Fermions

A system of three different particles of spin % has the Hamiltonian
H=K(,-0,+0,-03+03-01),

where K is a constant.
Determine the eigenvalues of H, their degeneracy and the related eigenstates.
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Solution

Having named J the system total spin and j its quantum number, we have

2K
H=K=—=[61+8+8:)" -8 -8 -83| = [12 hz} :

hZ

N =
DT‘l_;;

Recall that, in the case of two spin 1/2 particles, if we indicate the total spin eigenstate
with | j, j,) and the single particle spin eigenstates with |+, £), we have the following
possible resulting states:

=0 10.0)= (=) ==+,
1. +1) = |+, +)

ju=1 {I1L0)=F(+ =) +]-+) .
L =1) == =)

A third spin 1/2 particle can be combined with the other pair, being either in the
Jji12 = 0 state or in the jj; = 1 state. Combining a jj; = 0 pair with the third spin
1/2 particle, we have two j = 1/2 states:

|27 _> f(|+ >_|_’+,+>)

I L R e

N =

Using the Clebsh-Gordan coefficients (see, for example, http://pdg.1bl.gov/2002/
clebrpp.pdf), we now combine the third spin 1/2 particle with a pair in the state
ji2 = 1. This results in four j = 3/2 states:

13, 43) = Imi2 = +1,m3 = +1/2) = |+, +, +)
34D =Time=+tms =172+ 2 imip = 0.m3 = +1/2) =
3 =\@<|+,+,—+|+,—,+>+|—,+,+>)
ST RERY =i = —Lmy =412+ [Zima =0my = —1/2)=
—fu 1)+ = =) )
13,-3) |m12——1 m3 = —1/2>=|—,—,—>

and two j = 1/2 states:

= 3imn=+1,m = =1/2) = \[Timia = 0.m3 = +1/2) =

l
f|++ R T N[

13— = \ﬂ|m12—0m3 ~1/2) = [T imia = ~L.my = +1/2) =

f|+ R L S T LTS

J123 = =


http://pdg.lbl.gov/2002/clebrpp.pdf
http://pdg.lbl.gov/2002/clebrpp.pdf
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We note that we have determined four j = 1/2 states, instead of two. This may seem
wrong, since the degeneration of j = 1/2 should be 2. However, it is easy to verify
that the states obtained by the tensor product jj, ® 3 =0Q % are perpendicular to
those obtained by ji, ® 3 =1Q % For example,

1 2 1 1
ﬁ(<+’ ) +| - <_v +, +|)(\/;|+7 =+, _> - \/;"i', ) +> - \/;l_a +, +>) =
1

=——(1-1)=0.
24/3
After all, the independent states must be 8, since we started from a vector space of
dimension 8 (j; ® j» ® jz = % ® % ® %).
Ultimately, the Hamiltonian eigenvalues are:

1

Jiz = 3 Ey = 3% [3n* — 3 1?] = —3K with degeneracy 4,
3

Ji2z = 3 E, = 2h_12< [%hz - %hz] = 43K with degeneracy 4.

4.9 Spin Measurements on a Fermion

Consider a spin particle % and suppose you are measuring the sum of x and z spin
components S, + S;. What are the possible results of the measurement? If you sub-
sequently measure Sy, what is the probability of finding the value +§?

Solution

We notice that
Sy +S.=+2S"n,

where n is the unit vector in the direction of the bisector of the xz-plan (¢ = 7 /4,
¢ =0).

Because of space isotropy, it is obvious that the eigenvalues of S - n are //2 for
any n. Therefore, the possible results of the measurement are 47,/~/2.

After the measurement, the particle spin will be in the xz plane, so the probability
of finding either of the two possible eigenvalues of S, will be 1/2. In fact, as we
have seen in the general case in Problem 3.4, in an eigenstate of a component of
the angular momentum, the components perpendicular to it have a null expectation
value. Since the eigenvalues of S, as of any spin component, are opposite, it follows
that the probabilities relative to the two measures are equal.
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Time Evolution Becit

5.1 Two-Level System (I)

The Hamiltonian of a two-level quantum system can be written as
1
H = —7ho(10)(01 — 11)(11),

where |0) and |1) are its orthonormal eigenkets corresponding to the eigenvalues
—hw/2 and +hw/2, respectively. Consider the linear operator a = |0)(1| and its
hermitian conjugate a'.

(a) Prove that the following relationships are valid:
{a,aV=aa' +afa=1, a*=da? =0,
[H,al = —hwa, [H,a']=+hwad',

that the operator N = aa’ has eigenvalues 0 and 1 and that its eigenkets are the
basis kets. Express the Hamiltonian in terms of N and the identity /.

(b) Assume that, at instant ¢ = 0, the system is in the eigenstate of the hermitian
operator A = a + a' corresponding to the eigenvalue 1 and determine the expec-
tation values of A and A” and the uncertainty ((AA)?) as a function of time ¢.

(c) Consider the other hermitian operator B = —i(a — a'); also, determine (B),
(B?) and ((A B)?) as a function of time. Verify the uncertainty principle between
A and B.

Solution

(a) From the eigenvalue equation for H, we have

h R
H|0) = —7“’|0>, HI1) = +7‘”|1>,
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108 5 Time Evolution
As states |0) and |1) are an orthonormal set,

a=10)(1], a" =[1)(0],
{a,a"} = aa" +a'a = 0)(1]1)(0] + [1){0[0) (1] = [0)(0] + [1){1| = 1,
a®> = |0)(110)(1] =0,
a™ = [1)(0]1)(0] =0,

1
[H,a] = —Eﬁw(IOHOIO)(lI — [D{LI0) (1] — [0){1]0){0] + |0)(11){1]) =
= —hw|0)(1]| = —hwa,
1
[H,a'] = —Ehw(lo)(oll)(ol — [1){LT1){0] — [1){0]0){0] + [1) (O] 1)(1]) =

= ho|1)(0] = hod',
N = aa’ = [0)(1]1)(0] = 0){0]
N|0) =]0)(0]0) =0) = |0) eigenket with eigenvalue 1
N|1) =10){0|1) =0=0|1) = |1) eigenket with eigenvalue 0,

1 1
H = =2 ho(10)(0] = 1) {11+ 10)(0] = 10)(0]) = —Shw@N — 1) =
1

(b) Consider the state vector

1
= — 1)).
V) ﬁ(IOH-I )

|[1) is the eigenket of A corresponding to eigenvalue 1. In effect,

1 1
Aly) = (10)(1] + |1>(0|)—2 (10) + 1) = —=O+10) +[1) +0) =1 [y).

V2 V2

At time 7 the state vector |¢) will be given by

[y (1) = L ('2'10) +e7'31 1))
- .

‘We note that

[(H,Al=[H,al+[H,a' 1= —hw(@—a’) = —ihwB # 0,
[H, Bl = —i ([H,a]l — [H,a"]) = ilw(a +a’) = ihwA # 0,

(B = —i(a — a") is defined in the third question). A and B do not commute with
H, thus their expectation values depend on time. Indeed, we find that
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(Ayy = = ((0le™3" + (1]e'2") (a +a") (£'27]0) + e 751 |1)) =

((Ole™"2" + (1]e"2") (e'2'[1) + e7"2"|0)) =

= = =

(ei‘“’ + e”"‘”) = cos wt,

(A%, =(@+a"Ya+ad"))y = (aa" +a'a)y, =
=({a,a")y =)y =1,
((AAY%)y = (A%)y — (A)}, = 1 — cos’ wt = sin® wt.

(c) Similarly, the following relationships are obtained for B:

(B)y

—i% ({0le™5" + (1]¢'3") (@ —a™) (€310} + e~*5'|1)) =

= —i% ({0175 + (1]e"3") (e7'5110) — €31 11)) =
1 —iwi i :
Z_ZE(e " _ ¢ ’):—sma)t,

(BY, = (i*(@a—a")a—a"))yy, = —(—aa’ —a'a), =

=({a,a'lyy = (I)y =1,
(AB)Y)y = (BYy — (B)}, = 1 —sin* wt = cos wr.

As for the uncertainty relationship between A and B, we have:
AA-AB = |sinwt]| - | cos wt].

Recall that, whatever the state, the following relationship must hold:
1
AA-AB > zl([A, B])|.

Let us check its validity in this case as well:

[A,Bl=—ila+a',a—ad'l=

—i ([a, al+1[a’,al —la,a"1 - [a", aT]) =

=—i (aTa —aa" —aa’ + aTa) =

= 2i (aa" — a'a) = 2i (J0)(11)(0] — [1)(0[0)(1]) =

4
= 2i (|0){0] — [1){1]) = —iﬂ,
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4. 1 ) | e j @ =
([A, Bl)y = —iz (C0le™=" + (1le"=") H (e"2110) + e"2"|1)) =
= —i ((0le™"3" + (1]e'3") (—e'51|0) + e 7%'|1)) =
=—i(-1+1)=0.

The uncertainty principle is verified, in that

| sinwt| - | cos wt| > 0.

5.2 Two-Level System (II)

Consider a two-state system whose Hamiltonian is
H = Eol1){1] + V2 Eo|1) (2] + v2Eo|2)(1],

where {|1), |2)} is an orthonormal basis in the system’s Hilbert space.
If the system is initially in state |1), how likely is it that it will be in state |2) at time
t? Determine the period of oscillations between states |1) and |2).

Solution

In the {|1), |2)} representation, the Hamiltonian becomes a matrix:

_ Ey \/EEO _ / ’ l\/z
W_(ﬁEo 0 >_E0'H where 7—(_<ﬁ 0).

From the secular equation, we obtain the eigenvalues of H’:
det(H' =2 =2>-1—-2=0 = ir=-1,2,

and the corresponding H’s eigenvalues E; = —E and E; = 2E,. Eigenket | E}) is

obtained by:
(29)(E)-1(5):

from which we get, normalizing,

|En) = —= | _ =—I1) =312
7 () =355
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Similarly, we obtain the eigenket | E,):

|Ey) = ( ) fll 2).
By reversing these relationships, we have
1) = L |E|> +\/§|Ez>,
\/7|El |E2)

Initially, the system state is

1 2
W =0)=][1)= NE |E1) +\/;|E2);

at instant ¢, it will be evolved in

SN ﬂ/?e—"“?f"wz) =
‘TO[<1+26_’ )|1> f(l— 3E°)|2>]

The probabilities of finding the system in one of the basis vectors at the time ¢ are

3E,
5+4cos— |,
9(+ o h)
2—41 cos3E0t
) o)

These probabilities oscillate with frequency @ = 3Ey/h. Therefore, the desired
period is

V(@) =

&|~

UJl»—A

1 FEL
P\1>(t)=§‘1+2e o

T_271_271h_ h
- w _3E0_3E0'

5.3 Two-Level System (III)

Consider a two-state system and the basis composed by |¥) and |y,), which are
eigenkets of the Hamiltonian H,, corresponding to eigenvalues E| and E,, respec-
tively,
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Holvr) = Ei|yn),
Holvra) = Ez|n),
Wily;) =8 i,j=1,2.

Consider a new system with Hamiltonian Hy + W, where the coupling term W, in
the basis {|v1), [¥»)}, is given by the 2 x 2 matrix W;; with Wj; = Wy = 0 and
Wi, = Ws1 = w, where w is a positive real constant.

(a) Determine how the Hamiltonian’s eigenstates and eigenvalues change as a result
of this coupling.

(b) If, atinstant r = 0, the second system is known with certainty to be in state |y ),
at which instants (if they exist) will the system be in the same condition again?
Calculate the probability of finding the system in state |v,) at time ¢.

Solution

(a) Inthe {|v1), |¥2)} basis representation, we have

_ E|O _ Ow _ _ E]W
7-{0_<0 E2>’ W_<w0>’ 7{_7{0—’_W_<w E2>’

where, in order not to weigh down the notation, we have used the same symbols
of operators and kets for the matrices corresponding to them. H’s eigenvalues
are obtained by (E; — A)(Ey — X) — w2 =0:

_ Ei+ Ey £ /(E| — Ey)* +4w?

At >

Eigenvectors |AL) are obtained from equations
Hire) = Aelhs).

Itis easily found, appropriately choosing the phases and imposing normalization,

that
T\ (Wl s —Etw? \hi—Ei )
T\ (W2ao) O —E2+w2 \A—E1)°

(b) The system will certainly be in state |¢;) when the probability of finding it in
state |yr,) will be null. The state at time # > 0 is
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W) =% y) = ~
= ¢ T ) () + e T D) (Aly) =

— i w w +
Bl Ay —ED?+w2 \ Ay — E

—Hz_i%r 7 v
Ao —ED2+w2\A-—E1 )"

Introducing the quantities

E,— FE E E
2"t 2):L and o =+ A2+ w2,

A b
2 2

we obtain
)\i—EIZAﬂ:Ol and )\iZE:,:(X.

The probability of finding the system in state |, ) at time ¢ is given by the square
modulus of (i, |¥), which, in terms of the new variables, is equal to

izt i i _jZt at . .oat
(alyy=we W (cie”'® +cre'h)=we ' (cl—l—cz)cos%—z(cl—cz)smg,

where
A+ o A—«

‘g=—, = ——.
! (A +a)24+w? 2 (A —a)?+w?
After short calculations, we find that

1
c1+¢c =0 and cl—C = —,
o

and, consequently,
ot

LW _E
(Voly) = —i —e™" 7 sin—.
o h

Ultimately, the answer to the problem’s question is

PV @) = [¥2) = 12l = S sin’ 5.

This probability is null and | (¢)) = |¢;) when

nh
t=—— con n=0,1,2,...
o
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5.4 Two-Level System (1V)

The Hamiltonian of a two-level quantum system is described by the following oper-
ator (in the appropriate units of measurement):

1+i 1—i
2 2) = — 1) + 2
ﬁ”’ H|2) ﬁ|>+|>’

where |1) and |2) are the normalized eigenkets of another hermitian operator ‘A:

H|1) = 1) +

Al =2[1),  AR) = —22).
At the instant ¢ = 0, a measure of the observable associated with the operator A is
performed and the value —+/2 is found.

(a) Immediately afterwards, an energy measurement is performed; what is the prob-
ability of finding the system in its ground state?

(b) How does this probability change by performing the measurement after a finite
interval T?

(c) If noenergy measurement is taken, at which time will the system be in state |2)?

Solution

In the A’s eigenkets representation, to H there corresponds a matrix, which we call
by the same name, having elements H; ; = (j|C|k),

1 =
V2

Its eigenvalues are E = 2, 0. The corresponding eigenvectors are, respectively,

1

S

2
and
1+ e
2 2
Therefore, we can write
1 141
|E_) = — 1) — 12),
V2 2
1 1+
|EL) = — |1) + [2).
+ NG >

By reversing these expressions, we find that
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1
1) =—(Ey) + |E_)),
1) 7 (IE+) +|E-))
1—i
12) = 5 (IE+) — [E-)).
(a) Attime r = 0, the system’s state is
1—1i
[y (0) =12) = 5 (IE+) —[E-)),
and therefore
1—il?

P(E=E_=0,t=0)

(b) Attime t = T, the state has become

_jHT 1—i _j2r ;o
(D) = e Iy ) = —— (7 F|E) — e FIE) =
L (e i - 1)
= - e - — [}
2 +
implying that

1—i> 1
P(E:E,ZO,IZT): — —
2 2

independent of 7.
(c) In order for the system to be certainly in state |2) at time ¢, the following must

occur: )
1—1i

. 1—i
(e7H1ED — 1E2)) = —= (1E4) = [E-)),

from which we get

2t
E=2nn = t=nnh withn =1,2, ...

Note that ¢ has the same dimension of £ due to the fact that # is dimensionless.

5.5 Time-Evolution of a Free Particle

Consider a free particle in one dimension.

(a) Calculate the expression of the evolution operator (propagator) in the coordinate
representation.
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(b) Suppose that, at instant #' = 0, the particle is described by a Gaussian wave

packet
1

J2A2r

corresponding to a position uncertainty Ax = A and a momentum uncertainty
Ap = %. Calculate the wave function at a later time # and show that the position
uncertainty grows over time (wave packet enlargement).

ko =iz (5.1

Y(x, i’ =0)=

Solution

(a) Remember that the propagator, when the Hamiltonian does not depend on time,

is given by /
H(t—1")

U(t,t)=¢e"' =

In the position representation, for a free particle in one dimension, it assumes
the expression

N —zw no__ +ood _l‘H(tﬁ—t’) no_
Ulx,t,x, 1) = (xle™ # |x) = plxle™ | p)plx) =
—00
+oo ' ,
_ Zlh dp elp(x;X)_lpzZ(rIn;Lt).
T —00

Using the well-known result for the Gaussian integral (A.4), we easily obtain

/o m Lm“_"/)z
Ux,t,x',t')= | ———e 2re1)
2 hi(t —t')

(b) We apply the previous result to the Gaussian wave packet (5.1).
At time ¢, the wave function will be

+00
Yx,t) = / dx" U(x,t,x', 00y (', 0) =

(o]

+00 ) mGi—x')2
-7 V Z f dx’ eor =izt
4
2A27 2w hit —00

This integral can be calculated using formula (A.4) again, placing

1 m

T 4n? T 2w

nmx

and ﬂ:z(ko—ﬁ)
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Vet 1 m T 2;’ ﬁj
x, = — —_— — € i 4o —
aazg NV 2rhit Vo
1

and obtaining

2

e4a+'§'£, .
2877 (1 +12%)
We explicate the exponent:
B2 imx? - (% - 0)2 1mx?
R TR ST
m
44 <1+’2mA2> 2ht A2

_(%_ko)z uhrA? +zmx 4A2 (1+12,,722)
2 ht
4A (1+12 Az)
2 uhuA? 2
_—x—ltk(k—;y)
4A2(1+ h’)

xR R py (x - B
402 (141505

_ o2 (B 2B (B 4 (e )
402 (14+1505) 4n? (141505

_ (= pot/m)? l@( _Lm)
- 2 hit h 2m )’
4A <1 +1 2mA2>
The final expression for the Gaussian packet at time ¢ is
G—pot/m)? ro rot
— PO -4 B0 (x40
1 e 4A2(1+lﬂz>

\/V2A2n (1 —H%)

Vx, 1) =

This expression shows that the wave packet moves like a plane wave of energy
E = p?%/2m, modulated by a Gaussian packet whose peak value, which is also
the position expectation value, moves according to x = pot/m. The momentum
expectation value remains (p) = po = hk. Finally, the position probability dis-
tribution, which is obtained from the wave function’s square modulus, shows that
the position uncertainty changes over time with the law

h2¢2
Ax(t) = A4/ 1
x(1) \V +4 AT

giving rise to the phenomenon known as wave packet enlargement.
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5.6 Particle Confined on a Segment (I)

At the instant ¢+ = 0, a particle, constrained to move along a segment of length L, is
in a state in which an energy measure can supply, with equal probability, only two
values: the lower E; and the next higher E, = 4E].

(a) Write the expression of the normalized wave function (containing an arbitrary
parameter).

(b) Determine this parameter, knowing that, at the instant # = 0, the particle momen-

tum expectation value is (p) = % %

(c) Determine the next time instant at which the momentum expectation value van-
ishes.

Solution

For this system, energy eigenvalues and corresponding eigenfunctions are given by:

h2r2n? 2 . nmx
Enzm, Iﬂn(x)z lenT, }’l=l,2,3,....

(a) Atr = 0, the particle state is a superposition of 1 (x) and ¥, (x):
¥ (x) = 1y (x) + 29 (x).
Since the probabilities of finding £ and E, are the same, we have
le1)? = leal”.

Neglecting an arbitrary overall phase, we can write
1
V2

(b) Let us calculate the momentum expectation value. As we have seen in Problems
(1.4) and (2.4), this is null for a particle in an eigenstate of the discrete spectrum.
Therefore, we have

Y (x) = — (V1(x) + €Y (x)) .

(Phizo = 5 [(W11pI¥1) + (Wl pl¥a) + € (W1 plYa) + e (alplyn)] =

N =N =

[eiot I] + e—ia 12] ,

where I = I;. The latter is given by
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2 h x 2 2nx  4h [T .
]1:—— sm— — CcOS —— = — dtsint cos2t =
L i L L iL
8h
= dz Q72— 1) = ——
/ z(2z )= 3iL’
Finally,
1 8h i —ia 8 :
(Pli=0 = 231L[ e +e ]=—3—Lsma.
By imposing the required condition, two different determinations of « are
obtained:
1 N n T
sine = —— =0 =—— Of A=0p =7 + —.
2 ! : 6

(c) At alater time ¢, we will have

1 . Eqt . . Ept
V0= — (@ e )
and the momentum expectation value will be given by
1 io —i 2 £l —ia l -7
(P = 5 [ T i) +e Y Walplin) | =
1 8h . : 8h
_ E&_L [_el(afwt) + e*t(afwt)] — _3_L sin(o + wt),
where we defined
_E,—E,
w= P

Depending on the determination of «, the momentum expectation value will take
zero for the first time when wt = o] + 7 or wt = ap — 7, that is, at time given
by, respectively for the two cases,

5.7 Particle Confined on a Segment (II)

A particle of mass m is confined on the segment 0 < x < a. At time ¢ = 0, its
normalized wave function is

/8 b4 TX
Y(x,t =0)= [l—i-cos—] sin —.
5a a a
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(a) What results can be obtained from an energy measure?

(b) Write the wave function at a later time ¢.

(c) Calculate the system energy expectation value at t = 0 and 7.

(d) Calculate the probability of finding the particle in the left half of the segment at
time ¢.

Solution

For this system, energy eigenvalues and corresponding eigenfunctions are given by:

H22n2
Enzﬁ, Y, (x) = sm@, n=123,...
2ma? a a

(a) Note that the wave function at t = 0 can be rewritten as a linear combination of
eigenfunctions of the Hamiltonian:

1 2
Y(x,t =0)= ,/8[51nn—+—' nx:| Vs Iﬂl(x)+,/ V2 (x).
Sa a 2

Since the sum of the square modules of the coefficients is equal to 1, the wave
function is normalized. It is a superposition of ¥ (x) and v, (x), thus the values
obtained from an energy measure may be only E; and E,.

(b) The wave function at time ¢ is obtained by applying the evolution operator

Y =e T Y =0 = fwmx)e +\f¢2(x)e i,

(c) The energy expectation value at t = 0 is given by

4 Wm?
5 ma?’

4 1
(Ely =5 E1(x) + 5 Ea(x) =

It remains constant in the course of evolution, since the Hamiltonian does not
depend on time.
(d) Taking into account the symmetry properties of the wave functions with respect

tox = 2,Wehave

a /% 5
P(x < —,1) = dx |y (x, )" =
2 0

a 4 1 2 s Ej—E
= [ [5wn(x)|2+§|w2(x)|2+2gﬂ?(I/fﬂx)‘ﬁz(x)f_’ " ’)]:

1 42 E —-E /% _omx | 27x
= - t dx sin — sin — =
0 a

a

dsinz sin?z = — + — cos t.

2 157 2ma?

2

1 16 Ei—E; /1 1 16 3n2h
— COS t

2 0
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5.8 Particle Confined on a Segment (III)

A particle is in a well of infinitely deep potential

0o, ifx <Oandx > a,
Vix) = .
0, if0<x<a.

Assuming that, attime ¢t = 0, the particle is in the state described by the wave function

0, seex < Qex > a,

¥ (x,0) ={

Ax(a —x), see0 < x < a,

determine:

(a) the energy probability distribution;
(b) the energy expectation value and uncertainty;
(c) the wave function at the generic instant 7.

Solution
For this system, energy eigenvalues and corresponding eigenfunctions are given by

127202 )
En:ﬂ Y (x) = —sinnnx, n=1,2,3,...
a a

2ma? ’

The questions require that the wave function be correctly normalized, so we deter-
mine A:

1 ¢ 2 5 /1 2 2 a’ 30

= —x)%dx = r(l-—nidt=— = A=,/—,
AP /(; x“(a—x)dx=a ; ( ) 30 e
apart from an arbitrary phase factor.

(a) The probability of finding the particle in the nth state is given by the square
modulus of

a 12 130 4415
cn:(n|1p):/ —sin@ —5x(a—x)dx: 33 (1 —cosnm) =
o Ya a a n3w

4+4/15
L
n-im

Since the wave function is symmetric with respect to x = a/2, it only has com-
ponents that have the same property, the eigenfunctions with odd n.
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(b) The energy expectation value is given by

2 2
(E)

4 I
(WIHI) =/0 ¥(x) (—

2m dx?

) Y(x)dx =

R* 30 (¢
= ——— x(a —x)(—2)dx =
2m a’ J,
h? 60 ! R* 10
=—— | t(l-tdt = ——.
2m a? [ ( ) 2m a?

To get the energy uncertainty, we first calculate the expectation value of E2:

2

2
_h_ d_w(x) dx =

2m dx?

(E?) = (W[ HH|Y) = /0
B 30 h_430

Then, we obtain

[ 4 2
m<a ma

(c) To know the wave function at instant ¢, we apply the evolution operator:

Ut =e Ry, t =0) =
= ch Iljll(x) e_i% =

30 8 . @n+ Dax Chr?2n 4+ 1)?
= Z — sin exp{—i ————t}
- a 2n+1)3x3 a 2ma?

5.9 Harmonic Oscillator (I)

A particle of mass m subjected to a harmonic potential

1
Vix) = Emcuzx2

is, at time ¢ = 0, in a state determined by the following conditions:

(a) every energy measure gives certain values that satisfy the relationship

ho < E < 3hw;
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(b) the energy expectation value is

(c) the position expectation value is:

8h

Identify this status. Finally, determine the instants at which the position expectation
value is positive and maximum.

Solution

The eigenvalue equation for the harmonic oscillator Hamiltonian has the solutions
1
E,=@n+ z)hw ;. Hin) = E,|n).

Let us now impose the assigned conditions:

(a) The possible measured energy values are
3 5
E1 = —hw and E2 = —ho.
2 2
The system state vector can therefore be written as
) =cill) +2l2) with e +eaf* = 1,
(b) The energy expectation value is given by:
2 2 1 2 2 11
(E)y =l|c1lI"E + |2 Ey = Ehw(?’|cl| + 5lea|) = zﬁw-
This condition, together with the previous one, implies that
2 1
e =3 and el = 2.

The phase of one of the coefficients can be arbitrarily set, and therefore

[2 q 1
= — an = — .
Cl 3 (6] \/36
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(c) Using the known properties of the creation and destruction operators (A.15)
given in the appendix, we have

h
(x)y = (i (1] + 52D/ me(a +ah) (1) + 2]2) =
=,/ h 1+ 2D (V2el1) + V261 12) =
2mw

/h(* L) 8h
=,/ —(cfca+c5c1) = — ——,
ma)12 21 Imw

from which we derive

242

* *
cic2+ e = —T.

By replacing the expressions for ¢; and ¢;, we get:

] = 2
cosd=—-1 = =7 = 3]
Cy = —75
Finally, we get the harmonic oscillator state at r = 0:
V) = \/EIU 1 12)
=3 Nl
At time ¢, by applying the propagator to |¢/),
v (®) = e F 1Y) \/3 o)) - o
=e ' =, ze — —e .
3 V3

Finally, we determine the expectation value of x at time #:

[h
x(@®))y = %(ci‘(t)q(t) + (e () =
4 [ n

=—=,/ cos wt.
3V 2mw

Therefore,

4n+ ) (4n+ 371
20 2w

2+ 1
(x(0)y = max(x())y if p= G DT i =012,
w

(x(0)y >0 if te( ) with n=0,1,2,...,
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5.10 Harmonic Oscillator (II)

A particle of mass m moves into a harmonic potential with frequency w. Its state at
time ¢ = 0 is described by the wave function

| h mox
¥(x,0) = A(x + 2./ —x)e” 2h2_
maw

Determine the expression of the wave function at a later time ¢ > 0 and the energy
expectation value.

Solution

‘We notice that the wave function is the product of the Gaussian term common to all
of the eigenfunctions of the harmonic oscillator for a second-degree polynomial. So,
it must be a linear combination of the first three eigenfunctions:

Y(x,0) = cogo(x) + c1¢1(x) + c202(x).
They are (A.16)

Z m(utz

dox) = (27)" e
o100 = (=) \/7 i
o0 = (2) ( % -

mw,tz
e 2,
It must therefore result that

h mo\ i maw 1 2mw
2 _ 2 _
Alx +2,/—mwx)_(—nh) [co+clﬁ /—h x—l—cz—ﬁ( X 1)]

In order for the two sides to coincide, the coefficients of the same powers must be
equal, so

[NES
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We determine A so that i is normalized. Since ¢, are already normalized, it must
result that
2
D lel =1,
n=0

from which we easily obtain, setting the arbitrary phase of A equal to zero,

4 /mo\i mo

- ()

11 \mh h
_ 1 _ /8 _ /2
Co—m, = T C = e

Therefore, at time ¢, the wave function will be

1 | 8 3 2 s
Vix, 1) = i do(x)e™" 2" + \/;fﬁl(x)e”w’ + \/;¢2(x)612w'~

The energy expectation value, since the Hamiltonian does not depend on time, is
constant and equal to

and, consequently,

11 8 3 25 35
E) = |co|*E ’E 2By = — ~ho+ — =~ ho + — = ho = — ho.
(E) = |col"Eo + |c1I"Ey + |e2|"En et qyletqylie=he

5.11 Harmonic Oscillator (III)

A harmonic oscillator of mass m and frequency w is in such a state that the energy
expectation value is

3
(H) = zhw,
the squared uncertainty is given by
1
(H — (H))*) = E(ﬁw)z,

and, moreover, an energy measurement cannot give a result greater than 3/w.

(a) What results can be obtained by measuring energy, and with what probability?
(b) Write the most general state vector compatible with the aforementioned infor-
mation.
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(c) Knowing that, at the instant = 0, the expectation value of the position operator
is the maximum possible, determine its value at a subsequent instant 7.

Solution

(a) As E < 3hw, the results of an energy measurement can be

1 3 5
Ey=-hw, E=-hvw, E;,=-=ho,
2 2 2

eigenvalues relative to the first three energy eigenstates. The oscillator’s status
vector is therefore

1Y) = al0) +bl1) +c[2), with a4+ [b] +|c]” = 1.
Coefficients a, b and c are also subject to the conditions imposed
1 3 5 3
(H) = [§|a|2 + E|b|2 + §|c|2} ho = Ehw
and
(H = (H))*) = (H?) = (H)* =

I T o S Il B S T S S
—|:4|a| +4|b| +4|c|]hw 4ha) =
1

|

>t
o

S
N

These three conditions make it possible to determine the square modules of the
three coefficients and, therefore, the desired probabilities:

1 , 1 3 , 1 5 , 1
P(E=-hw)=la> ==, P(E=Zho)=|b>==, P(E==ho)=]c]>=-.
( 5 heo) =lal” = 7. P( 5 ho) =1bI" = 7, P( 5 ho) =lcl” = 7

(b) If we set the a phase for 0, we can write

W) = 210) + —=e?11) + 2712
—2 ﬁe 26 .

(c) Using formulas (A.14, A.15), we deduce that
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Xy = [b|0)+(a+«/—c)|l +fb|2>+fc)|3]
2me
(X) = ([Xy) =

= 2 [+ b+ Vae) + «/Ec*b] =
2mw L

I L P +2«/§§H(b*c)] =
2mw L

_ [ —

=V W cos B +cos(y —B) | .

As B and y are independent, (X) takes the maximum value

2442

<X)max =

for
cosp=cos(y —B) =1, thatis,for =y =0.

The desired state is therefore:

1Y) = %IO) + %IU + %|2)~
At time ¢ > 0, it will become
W (0) = 57 59010) + —=e 390 1) 4 Ze~rEor)),
2 V2 2
Repeating the calculation already done for (X) at t = 0, we obtain

(X)) = 2+\/_,/ coswt

5.12 Plane Rotator

A plane rotator is arigid two-particle system that can rotate freely in a plane. Denoting
its moment of inertia with /, determine:

(a) the system’s energy eigenvalues and eigenfunctions;
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(b) the possible values of the angular momentum, their probabilities and the angular
momentum expectation value in the state described by the wave function

V(@) = N cos® ¢;
(c) the time evolution of state .
Solution
(a) The system’s Hamiltonian is
L> L? R 9?
2 21 20 9¢?

where we assumed that the rotation plane is the xy plane. The eigenvalues and
eigenfunctions of H are

h2m?

1 .
En=——, Yulp)=——¢"" with m=0,%1,42,...
27 VYim (@) N

All of the eigenvalues are doubly degenerate for every m, except for m = 0.
(b) We fix the constant N by normalization:

2 2w
3 1
1=|N|2/ dgocos4(p=|N|2f d(p|:§ 5cos2q)+—cos4¢>]
0

4 2
= |N|? [ 2n+0+o] = [INP=— = N=—,
3T J3r
apart from an arbitrary phase factor. The wave function is a superposition of two
Hamiltonian’s eigenfunctions. Indeed,
2 ) 1
cos ¢ = ——
37 243w

1 1 2
= 7 Yo (@) + 7 Y_a(p) + \/;wo(tp)-

Taking into account that the H eigenfunctions are also L, eigenfunctions, the
required probabilities are given by

Y(p) =

(e2izp+€72izp+2) —

2 1
P(L: =0 =z, PlL:=2)=¢ Pll:=-2=¢

So, the angular momentum expectation value is
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(c) The rotator state at time ¢ > 0 is described by the wave function

1 . Ept 1 By 2 ke
Vo= @ @) T+ \/;‘#o((l’) i =

! ( 20 el H +1)
= —— (cos2p e ' .
3w

5.13 Rotator in Magnetic Field (I)

The Hamiltonian of an isotropic rotator in the presence of a uniform magnetic field

is given by
2

L
H = Z—F(XLZ,

where « is a constant. Its state is described at time ¢ = 0 by the wave function

9, ¢) =,/ D n26 sin2
v, P) = Esm sin 2¢.

Determine the expression of the wave function at a later time ¢.
Solution

The Hamiltonian’s eigenfunctions are the Spherical Harmonics and the eigenvalues

are 2
L +1
CEX D m

, £=0,1,2,..., m=0,%£I1,...
21

The wave function that represents the initial state can be written, using (A.40), as:

_ _i 1_5~2 2ip —2i¢_i 2 _y—2
Y@ b1 =0) = oy o sin’ (@) (40 — e77) = - (V(0.0) — V320 9)).

At a later time 7, we will have

Y, . 1) = e TP (9, ¢), 1 =0) =

_ 2l (Y22(19, ¢)efi[g—'7’+2alt _ Yz_z(ﬂ, ¢)efi[g—7'72a]t) .
i
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5.14 Rotator in Magnetic Field (IT)

The Hamiltonian of an isotropic rotator in the presence of a uniform magnetic field

is given by
L2
H=—+uaL..
21 ‘
At instant ¢ = 0, its wave function is

V0.6.0) = - [¥/ 0.6+ ¥, (0. 9)]
9, N 1 (U.9)].

(a) What is its wave function at time ¢?
(b) Determine the instant ¢ at which the wave function is proportional to

(Y1, ¢) - Y7 ', 9)).

Sl -

Solution
The system is the same as in problem 5.13.

(a) Atany instant r > 0, we will have

Y@, ¢, 1) = e WY (9, ¢, 1 =0) =
= = [ 0.y o, gt

V2

(b) To answer the second question, it is sufficient to impose that the ratio between
the two Spherical Harmonics coefficients is equal to —1:

[y —_—
€ ' _ dier _ _ _ @n+Dr
ilhrar ¢ T I = 2er=nt+hr = 1=—"0——.

5.15 Fermion in a Magnetic Field (I)

At time = 0, a particle of spin % magnetic moment g = ¢ S and infinite mass is
in a state in which the probability of finding the value /2/2 making a measure of S,
is 2/3, and the expectation values of S, and S, are equal and both are positive. The
particle is immersed in a constant magnetic field B parallel to the y axis.

(a) Write the state vector at time ¢ = 0 and determine the common expectation value
of Sy and S,.

(b) Calculate the maximum and minimum values of the probability of finding the
value /2 in a measure of S, during the time evolution of the system.
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Solution

(a) Due to the infinite mass, such a particle has no kinetic energy, so the system

(b)

Hamiltonian is
H=—gS-B=—gBS,.

Apart from an arbitrary overall phase factor, the state of the system at the initial
instant can be written in terms of S, eigenstates in the following form:

_ 2 io l__ l \/5
I¢(0)>—\/;I+)+e \/;I )—\/;<em>-

The expectation values of S, and S, are given by

2 1 (01 2\ V2 i i 2V2

ps0=3vze) (Vo) (2) =5 s e) = 257 o
2 1 N 2\ V2 e iy 2V2
E(S},)zg(ﬁe‘“")(i Ol)<;{‘:>=lT (—e +e )=Tsma.

Imposing that they are equal, we get

(S¢)=(Sy) = sina=cosa =a=

’

~ 9

because (S,) and (S,) must be positive. Ultimately, the state at t = 0 is

2 I+
IW(O))=\/;(I+)+ > |—)>

and the common expectation value of S, and S, is

Attimet > 0,

it iwot 12 1
1Y (1) = ™' 7 |y (0)) = el \g (i) ’
2

where we introduced the quantity w = g B /2. Applying the well-known property
of Pauli matrices (A.74), we obtain
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. 2 1
[y (1)) = (I cos wt + ioy sinwt) | 3 (1+i) =
2

coswt sin wt 1 _
— sin wt cos wt % -
(cos wt + % sina)t)

lzi cos wt — sin wt

W o

2
3

The probability of finding the value /2 in a measure of S, is given by the square
modulus of the pertinent component:

P s—+h _2
T 2) T3

2( , 1, .
=§ Ccos wt—i—zsm wt + sin wt cos wt | .

+i o

sin wt

cos wt +

The maximum is obtained by imposing the condition

dP 2
— = —-w| cos2wt —
dt 3 (

sin 2wt

) =0 = tan2wt =2.
This equation has two solutions. The first one,

1
t = — [arctan2 + 2n + 1)« ],
2w

corresponds to the desired maximum. There is also another solution,
1
t = — (arctan 2 + 2nm),
2w

but it corresponds to a minimum point, because the second derivative is negative
there.

5.16 Fermion in a Magnetic Field (II)

A particle of infinite mass and spin % is, at time # = 0, in a state in which the
probability of finding the spin component along the positive direction of the z axis is
i and, along the negative direction, %. This information determines the status apart
from a parameter.

The particle is subjected to a constant and uniform magnetic field B along the x
axis.
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(a) Write the expression of the initial state (including the indeterminate parameter).

(b) Write the system’s Hamiltonian (the particle’s magnetic moment operator is
r=gS).

(c) Write the expression of the state (always containing an indeterminate parameter)
as a function of time.

(d) Determine the parameter values for which the wave function at a certain time is
reduced to a o, eigenstate and find the times at which this happens.

Solution

(a) Apart from an arbitrary overall phase factor, the state of the system at the initial
instant can be written in terms of the S, eigenstates in the form

1 V3 o1 1
Y O) =214+ e |—>—§(ﬁeia>-

(b) Due to the infinite mass, such a particle has no kinetic energy, so the system
Hamiltonian is

H=—gS-B=—gBS, = —hwo, GX:((I)(1)>’

where

The eigenvalues and the corresponding eigenvectors of H are

1 1
E| = —-how |1>=E <}) =ﬁ (+) +1-)N,

1
B=ho 12)=— (_11)= () = =)

(c) Attimest > 0,

-

Y () = e % [y (0) = |1 )(1|1/f(0)) +e72) 21y (0) =

iwt

- ;f (1 +«/_e’°‘> &5 (H+10+
ezj_ (1= v3e) 5 ()= 1) =

1 ) 1 )
=5 [cos wt + iv/3¢' sin a)t] [+) + 3 [i sin ot 4 +/3¢'® cos a)t] |=).
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(d) Suppose that, at the time ¢ = T, it happens that [ (T)) = |+). It must result
that

i sinwT + /3¢ coswT = 0,
sinwT — /3¢ cos T = 0,
tan T = +/3e! @7/

Imposing that wT is real, we obtain
a+n/2=0, 71 = aoa=-1w/2,7/2.

In the two cases, we have
1 b4 1
o=—-n/2 = T = —arctan/3 = — n+-1), n=0,1,...,
w w
1 b4
a=7r/2 = T:—arctan(—\/g)z— n——|, n=12,...,
w w

where it has been taken into account that 7 > 0.

5.17 Fermion in a Magnetic Field (III)

The Hamiltonian of a spin % particle is

H=—gS-B,
where S is the spin and B is a magnetic field directed along the z axis.
Determine:

(a) The explicit form as a function of S and B of the operator S.

(b) The eigenstates of (S) y and the relative eigenvalues.

(c) The time evolution of a state that coincides at time ¢t = 0 with one of the afore-
mentioned eigenstates, and the energy expectation value.

Solution
(a) Heisenberg’s equation for operator S is

. dS i igB
S= i ﬁ['ﬂ, S| = —7[5}, S]

(as S does not depend explicitly on time, % = 0). Component by component,
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. ighB
Sy = _7[5'19 S:] = gBSy,

. ighB
Sy = _7[S19 Sy] = _gBSXs

. ighB
S, = ——[58,,5,] =0,
h
where we used S = %0 and the Pauli matrices commutation relations (A.71).
(b) The eigenvalues of ) , are the eigenvalues of —%Llox, that is,

gB
M = —hw, i =hw, where w= -

The eigenstates are the same as those of o,, that is, in ¢, representation,

w5 () w50

(c) Let us suppose that, at time r = 0, the system is in the state

=35 (1)-516)- (0]

At time t > 0, it will be in the state

[ (1) = e % [y (0)) = 1 [eiwt <l) 4 o (0>j| _ <e'iwt).
\/E 0 1 ﬁ ey

The energy expectation value, since the Hamiltonian does not depend on time,
is constant and can be calculated at ¢ = O:

(E)y = —gB{Y(0)|S:|¥(0)) =

--F300(2)(0)-
0.

5.18 Fermion in a Magnetic Field (IV)

A particle of infinite mass, spin % and magnetic moment u = g S, where S is the spin,
is placed in a constant magnetic field directed along the x axis. At time ¢ = 0, the
B

spin component S; = 3 is measured. Find the probability that the particle is found

to have S, = :I:% at any subsequent moment.
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Solution

The Hamiltonian of the system, neglecting the kinetic term, is

gBh

B
H=—gS-B=—-—>"—0, = —hwo,, where w= il

R
We choose to solve the problem using the Schrédinger equation that controls the
evolution of quantum states. In the S, representation, this equation is

. d aj 01 aj _
lhE (az) +ha)<1 0) (az) =0.

Splitting the spin components, we get

~da1 —
it t+way =0 42,

= d[2 + wzal,z = O’

- day _
i towar = 0
the solutions to which are
ai(t) = Al,ze‘iwt + B1,2€7iwt.

At t = 0, after the measurement, the particle state is the S, eigenvector relative to
the eigenvalue +7,/2, and therefore

a(0)=1and a,(0)=0 < A+ By =1 and A, + B, =0.

By imposing these conditions in the Schrédinger equation, we have

.day

i— |i=0 = —wA| +wB| = —w az|,—y =0,
dt

Jday

i li=0 = —wAs +wB) = —w ai|,—g = —w.

‘We have a total of 4 equations:

A+ B =1,
A — B =0,
Ay + B, =0,
Ay — By =1,

the solution to which is
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Substituting these values in the a; , equations, one finds that

_fai(®)\ _ [ coswt
v = (az(t)> = (isina)t)’

which is normalized. S, eigenstates are easily calculated to be

= () et (1)

so the required probabilities are

ps, =40y =[is, =+ 2wan| = L a - (e[ -
RO ) ) isinot J|
1 1
= 2 (coswt + s.inwt)2 = 3 (1 +sin2wt),
h h S . coswt \|*
PGy ==5)= |15 = o) =5 |00 (Fnen )| =
1
= 7 (coswt — sina)t)2 = 3 (1 —sin2wt).

As a control, it can be easily verified that their sum is 1.

5.19 Fermion in a Magnetic Field (V)

Attime ¢ = 0, a particle of spin 1, magnetic moment ;& = g S and infinite mass is in
a state with a z spin component equal to +/A/2. It is subject to a magnetic interaction
of the type

H = %(Gx +Gy)v

where A is a constant and o, and o, are Pauli matrices. Calculate how long it takes
for the spin component along the z axis to become —7/2.

Solution

Having denoted by 7 the unit vector

. (1
n=\—,

At
0=Eﬁ

)

[\o]
Sl -
[\)

and with ¢ the vector
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the evolution operator of this system can be written as

i He
e h

- = ¢ " =T cos —i(n-o)sinv,

where formula (A.74) has been used. Therefore, the particle status at time ¢ will be
given by

W) =e W = <]I cos A _Hoxt o) g ﬂ) (é) =

h V2 h
_ At (1 i . At 0
—cosh O_ﬁsmh 14
In order that, at time ¢, only the component with S, = —% will survive, it must be

cos % = 0. This happens for the first time at

t_nh
T 247

5.20 Fermion in a Magnetic Field (VI)

A particle of spin %, magnetic moment © = g S and infinite mass is placed in a
uniform and constant magnetic field By directed along the z axis. During the interval
0 <t < T, auniform and constant magnetic field B; along the x axis is also applied,
so that the system will still be in a uniform and constant magnetic field B = By + By.
For ¢t < 0, the system is in the S, eigenstate corresponding to the eigenvalue —}-%.

(a) Atz = 0™, what will be the probability amplitudes of finding the spin component
along the B direction equal to :i:%?

(b) How do the energy eigenstates evolve over time in the interval 0 < ¢ < T'?

(c) What is the probability of observing the system at the time t = T in the S,
eigenstate corresponding to the eigenvalue —%?

Solution

For t < 0, the system Hamiltonian is

gBoh gBo

H=—gS-By=— o, = —hwyo,, where wy= 5

In the interval between 0 and 7', the Hamiltonian becomes

= __sh _ _8h(By By \_ costd sin®
H=—-gS-B= 2(3001+Blo'x)— ) (Bl —By)~ hw sind —cosd |-
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B B
where o = g?, B =,/B{+ B} and ¥ = arctan Fl
0

This Hamiltonian is proportional to the spin component in the 7 direction, set by the
¥ angle, which is given by

S A__7_i cos?® sin®
n= 2 \sin® —cos® /°

S - 71 has eigenvalues :i:% and eigenstates (see Problem 4.2)

h 2 h _gin 2
|X+>=|s-ﬁ=+—>=<cosé>, |x>=|S~ﬁ=—§)=< Smﬂz).

2 sin cos 3

(a) The state of the system at the time ¢ = 0 can be expressed in terms of the
eigenstates of S - 7i:

901 = () =eea el

¢+ e c_ are the amplitudes that we are looking for:

¢y = (X+1¥(0)) = (cos 5 sin %) (é) = cos —,

c- = (x-1¥(0) = (—sin% cos?) (é) = —sin%.

(b) As we said,
H=—gS-B=—gBS i,

therefore, its eigenkets are | x) and | x_) and its eigenvalues are
h
E.=—¢gB :i:z = Fhow.
In the time interval between t = 0 and t = T, the eigenstates’ evolution is given
by
—i £ iw
() = €77 [x4(0)) = e [x4(0)).

(c) Attime T, the system state is
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W (1)) = cr el |xs) +ce yo) =

U cos 2 A —sin 2
=cos— T | "3 ) —sin= e 92 | =
2 sin 5 2 cos 5

B COS2 L4 ein + SiIl2 % e*ia)T
- cos i 3 ioT s ¥ —iwT .

Esm5e —SIHECOSEE

The required probability is

2

P(S, = —h/2) = (S, = —h/2 |y (T))|* = cosg sin% (eT —e7T)| =

= |isin® sinwT|* = sin® ¥ sin® 7.

5.21 Measurements of a Hydrogen Atom

At time ¢ = 0, the state of a Hydrogen atom is described by the wave function

1
Y, t=0)= \/—1—0 (21/f1,0,0 + Y210 + \/El/fz,l,l +\/§l/f2,1$—1>,

where ¥, ¢, are the Hamiltonian eigenfunctions relative to the quantum numbers
n, £, m relative to energy, angular momentum square modulus and its z-component.
Neglecting spin, determine:

(a) the energy expectation value;
(b) the expression of the wave function at a later time ¢;
(c) the probability of finding, at time ¢, the atom in the state with £ = 1, m = 1.

Solution

(a) Having called as ¢, ¢, the coefficients of the wave function expansion in the
Hamiltonian’s eigenfunctions,

Y, t=0)= Z Cn,t,m wn,é,ma
n,t,m
since it occurs that

1
D lenenl =15 414243 =1,

n,t,m
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the wave function is normalized. Therefore, the energy expectation value is given
by

(E) = (W|HIY) =Y |cneml” En = 0[4E1+(1+2+3)E2]=

n,t,m
11 1o, 11051
= — = —— —m = ———F=C¢CV = — /. eV,
20 1T T02MC 40 - 1372

being that E; = £t and m, = 0.51F.
(b) At a later instant 7, the wave function will be
Y= Hyrr=0) =

1 CEqt . Ept
\/—1—0 (2 Yio0e T+ [l/fz,lA,o + V29000 + \/gwll,—l]eﬂ%) .

(c) Denoting the required probability with P, 1 ;, we have

Puia(0) = lin, 1, 1gr)2 = [(n, 1, 1e™ & [y (0)) 2
_ B —i ke —i 5 )2_
= | 1115 (21,0007 +[|2,1,0>+ﬁ\2,1,1>+f3|2,1,—1>]e )| =
N




Chapter 6
Time-Independent Perturbation Theory ez

6.1 Particle on a Segment: Square Perturbation

A particle of mass m is constrained to move along an L length segment in the presence
of a small potential well, so that the total potential is

00, ifx <Oandx > L,

Vx)=1-V, if0<x <%,

0 if%<x<L.

Consider the small potential well (see Fig. 6.1) between 0 and % as a perturbation
compared to the infinite confining well and calculate the energy eigenvalues at the
first perturbative order.

Solution

In the absence of perturbation, the energy eigenvalues and eigenfunctions are given

by:
thTz 2 2 T
ES:TLY;’ V() = Zsinu, n=12,...

The first-order correction in the energy levels is given by

L
E, = /0 dx Y (x) Hy (x) Y (x) =

2 %
—/ dx sin? X () =
L) L

L
v L
=20 2d)c |:1—cos
L Jy

2nmwx Vo
=7

. _
This correction is the same for all levels. We will therefore have

© Springer Nature Switzerland AG 2019 143
L. Angelini, Solved Problems in Quantum Mechanics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-030-18404-9_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18404-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-18404-9_6

144 6 Time-Independent Perturbation Theory

V(x)

0 L/2 L

_VD

Fig. 6.1 Confining potential with a small well

h2 2.2 Vi
10T N =12,
2mL? 2

E'+E

6.2 Particle on a Segment: Linear Perturbation

Using first-order Perturbation Theory, calculate the energy levels for a one-
dimensional infinite square well of width L, whose bottom was made oblique, as
shown in the Fig. 6.2.

Solution

The perturbative potential is given by
1%
H, =fox forO<x <L.

Unperturbed Hamiltonian eigenvalues and eigenfunctions are

R m2n? 0 2 . nmx
Eg: 2mL2, Iﬂn(x)z ZSIHT, n=1,2,...

The first-order shift in energy is given by

Vo2 [* 2Vo [T Vi
Ei=—0— dx x sinznnxz—()/ dzzsin’z = —.
L L 0 L n’m? 0 2
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V(x)

Fig. 6.2 Linear perturbation to a potential well

The change is the same for all eigenvalues. We will therefore have

Rrin? v,
2ma? 2’

E'+E! = va=1,2,...

6.3 Particle on a Segment: Sinusoidal Perturbation

A particle of mass m is confined on a segment by an infinite potential well. Its bottom
is modified from
Vix)=0 for 0 <x <L

to ) ax
Vix) =W sm(T) for 0 <x < L.

Calculate the first-order changes in the energy levels.
Solution

In the absence of the sinusoidal perturbation, the energy eigenvalues and eigenfunc-

tions are
E h*m2n? ) [2 . nmx Lo 3
n= K3 75 nX) = — Sin ——, n=1,2,3,....

2mL? L L

The first-order energy shifts are given by
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L
£ = / dx () V() P () =
0

2Vy [ ., ATX . TX
= — dx sin® —— sin — =
L Jy L L
2Vo [1 [T . 1 (" .
= — | = do sine — — do cos2na sina | =
T 2 0 2 0
2Vy 1 [7 1. .
=—31—= doa = [sin(1 + 2n)a + sin(l —2n)a]} =
T 2 0 2
2V 1 2 2
= —0 1 —_ = + =
T 4 \1+4+2n 1—2n
. 8V0n2
T ox@n? -1

6.4 Particle on a Segment in the Presence
of a Dirac-§ Potential

A particle of mass m is in an infinite well potential of width @ in one dimension:

0, se0<x<L,

oo, elsewhere.

Vx)= {
It is subject to a perturbation due to the potential

W(x) = Lwyd L
i b).

where wy is a real constant.

(a) Calculate, up to the first order in wy, the changes in the energy levels produced
by W(x).

(b) Solve the problem exactly, showing that the energy values are obtained by one
of the following two equations:

sin(kL/2) =0

or
h*k

tan(kL/2) = — Lo

Discuss these results with regard to the sign and the size of wy.
(c) Show that, in the limit wy — 0, the results of point a) are recovered.
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Solution

(a) In the absence of perturbation, the energy eigenvalues and eigenfunctions are:

R2m2n? 2 . nmx
En:W’ Ya(x) = ZSIHT, n=123,....

The first-order change in energy is given by

L
EY = / dxyrf (W ()Y, (x) =
0

2 L nmx L
= — Lwy dxsin® —§(x — =) =
L 0 L 2

= 2wp sin” — =

., NI {O for even n,
2

2wy for odd n.

(b) To find the exact solution, we impose that the wave function, excluding the point
x = L/2,has the form of a null-potential solution vanishinginx = Qandx = L.

Setting k = z'g—f we have
A sinkx per0O <x < L/2,
Y(x) = )
Bsink(L —x) perL/2 <x <L.

Wave function continuity implies that

1//(%_)=1/f(3 ) = Asin% :Bsin%,
ie.
A=B or A#Bandsin’%:O.

Instead, the first derivative must be discontinuous, due to the presence of the §
in the potential (see (2.26)):

(LT (L~ _ZmL L
1”(5)“”(5)—? ‘““”(5)'

We distinguish two cases:

1. A # B and sin ’% = 0. The latter relationship implies that

kL N 2nmw L2
iip— =—— conn=1, 2, ...
2 L

Thus, even in the exact calculation, we find the spectrum part of the infinite
potential well corresponding to eigenfunctions that are odd with respect to
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x = L/2. These eigenfunctions are not modified by the perturbation. Indeed,
from the condition on v’, we obtain

kL kL
—AkcosT—Bkc057=0 = A=-B.

The wave function in the range L/2 < x < L is given by

Y(x) = —Asink(L — x) = Asink(x — L) =
Asinkx coskL — AcoskxsinklL = Asinkx,

because cos kL = 1 and sin kL = 0. We can say that, since these wave func-
tions vanish in x = L/2, they do not feel the presence of the new potential
term that, solely at this point, is not null.

. A = B.Inthis case, the corresponding eigenfunctions are even with respect

to x = L /2. From the condition on v/, we obtain

kL kL 2m . kL
—Akcos — — Akcos — = — LwyA sin —,
2 2 h2 2
that is,
kL kL
fan — = £ 2 6.1)
2 w( 2
where
. 212
T mlL?

To find this part of the spectrum, we solve this equation graphically, looking
for the intersections between the two curves

; kL d oa kL
=tan — an =———.
Y 2 YT T 2

In Fig. 6.3, solutions for two opposite values of wy are reported. For wyg — 0,
these solutions tend to values (marked with a circle in the figure)

kL 2ji+1
72(2]'—}-1)% = kzy,conjzo,l,...,
that is,
m2r2n?
ZW,H=1,3,5,....
m

This returns the eigenvalues with the odd n of the unperturbed case. We
note that the solution that, in the limit wy — 07, corresponds to k = /L
appears only if
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2

o
—>1 = | < —.
ol el mL?

(c) Asalready seen, the solutions with n even are not modified by the presence of the
8 potential. We now want to show that, in the case of an odd n, the perturbative
solution corresponds to the exact solution’s series expansion truncated to the
first order in wy.

Consider, for example, the ground state with n = 1 and suppose that w, is small
and negative. The intersection of the two curves will be at %, a little lower than

%. Let us set, therefore,

kL T
— = 6.2
2 2 ‘ 6.2)

with z small positive. Equation (6.1) becomes

We expand the second member as a series in wg and stop at the 1st order, obtaining

T b4 40)0

§_Z=E+2a(n—2z)’

i.e.,
a(m —27)z+ 2wy =0,

and, disregarding terms in z>, we get the intersection point for wq small:

2(1)()

am

Substituting this value in (6.2), we find that

k 1 i 46()()

= — g —_— s
L o

corresponding to an energy

R2k? 2 ( 4a)0>2 272
= x~ + 2wy,

Ei=—=— ~

"T om T 2mlL? an 2mL?
where we neglected the terms in a)(z) and replaced the value of «. This result is
precisely the one obtained first-order Perturbation Theory for the ground state

energy.
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y(kL/2)
4+ -
“ we<0
—
—
2L
-
n 1 n n 1 n kL/2
10 12
2t
L wp>0
4

Fig. 6.3 § perturbed potential well: graphic solution of the equation for the energy levels relative
to even wave functions. The dashed lines correspond to two opposite values of wg

6.5 Particle in a Square: Coupling the Degrees of Freedom

Calculate the energy eigenfunctions and eigenvalues for a particle of mass m confined
in a square of side L:

Then, introduce the perturbation /| = C xy and find the corrections up to the
first order in the ground level and the first excited level.

Solution

The wave functions space is the tensor product of the spaces relative to two potential
wells in normal directions. Unperturbed eigenvalues and eigenfunctions are given
by:

(3l ) = Y () = V) Y (0) = [ 3 sin B2 /2 sin 222,

0 _ g0 0 _ mh(k*+n?)
Ek,n =E +E = T 2mL*r

withn,k=1,2,...

To calculate the effects of the perturbation, we need the following matrix elements:
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2 [t ,mx L (T L
(wl(x),xwl(x))=zf0 dx x sin T =; A dxx(l—cost):E,
(W2 (%), x Ya(x)) = 2 /L dx x sinzzr[—)C :2L2/2ﬂ dx x sin2x=£,
L 0 L L 7T2 0 2
2 (L 2 2 L* [T
W1(x), x Ya(x)) = —f dx x sinH sinﬂ =— = dx x sinx sin2x =
L 0 L L L 0
4L T J .9 4L T d 1 2
= A X X sin xcosx_gﬁ A cosx (1 —cos“x) =
16 L
9 g

For the ground state, which is non-degenerate, we have

CL?

El = (LIHIL 1) = (Y106 y), Cay ¥ (. 3)) = € (1), x i) = =

Now consider the second level. We are in the presence of degeneracy between the
Y12 and Y, | states. Therefore, we need to calculate the eigenvalues of the matrix

(1,2|H,11,2) (1,2|H,|2,1)\ (A B
(2, 1|H |1, 2) (2, 1|H|12,1))] — \BA)’
where

2

CL
A= (Y120, ), Cxyya(x, y) = C (Y1 (x), x Y1 (x)) (Y2 (), y¢2(y))=T,

256 CL?
B = (Y12(x.7). Cxyyni(x.y) = C (1), x¥2(0)” = oo~

The eigenvalues are A + B and give the corrections to the first excited state:

1 , (1 | 256
El,=CL ;o).

breaking up the degeneracy.

6.6 Particle on a Circumference in the Presence

of Perturbation

Anm mass particle is free to move around a circumference of radius R. The potential

V(@) = Vysinb cos b,
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is applied, where 6 is the angular coordinate on the circumference. Calculate the
energy first-order corrections due to the presence of V. Identify the wave functions
of the unperturbed system that diagonalize the matrix corresponding to V in each
eigenspace and calculate the energy levels at the second perturbative order.

Solution

In the absence of perturbation, the system Hamiltonian contains only the kinetic term
of rotation around the circumference center. By imposing the periodicity condition
on the wave function, we find that

n?h? 1
inf
:W, w,,(é)zme , con n=0,=%£1,...

The ground level is not degenerate, while all the others are doubly degenerate. To
calculate the required corrections, we first evaluate the perturbation matrix elements:

n

Vo
2
Vo

2 )
= — / do &m0 gin 20 =
47 0

VO 2w ) 2w )
_ 9 |:/ do el(m7n+2)9 _/ do el(mn2)91| —
i 0 0

Vo
= - [Sm,n—Z - 8m,n+2]~ (6.3)
41

2
(n|Vim) = / d6 '™ % sinf cosO =
0

First, we compute the first and second corrections in the energy of the ground state:

E} = (0|V]0) =0,

E§=Z|<H|V|O>|2 =V_02 [ 1 n 1 }Z_V(%mljz
= Ey—E, 16 |Ey—E, Ey—E_ 167
Now let us move on to calculate the I order corrections in the degenerate eigenvalues.
We need to diagonalize the matrix that represents V in the 2-dimensional subspace
subtended by each eigenvalue. From the expression for (n|V|m), it is immediately
understood that only in the case of n = 1 will we have a non-null matrix:

(+UVI+ 1) (+1V[=1)\ _ (0 3
v+ (—vi-1) - \-h o J-

This matrix has eigenvalues
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Vi 1%
Br=%, go=-B
4 4
and corresponding eigenkets
W)= == (4 Do = 1) [Po) === (+ 1) —1] = 1)
= — 1| —1)), )= — —1]—=1)).
B} V2

These eigenvalues are the I order corrections in the n = 1 energy level. For all of the
other levels, as stated above, the matrices and, therefore, the corrections are void.

Regarding the second-order corrections, we first consider those related to the first
excited level, using, for n = =£1, the basis consisting of |4} ) and |y _). Taking into
account the fact that, forn # 1,

1 1 VW
7 {(+1VIn) = (=1|VIn)) = o (8n,—1 = 8n,3 —18n,—3 + 15,1,

and that, obviously, in the new basis, it results that (. |V |y_) = 0, we obtain

prt_ Y lVine v [ Lo }z

(g |Vin) =

52 Ei—Ea T 32 |E,—E; E —E_
_2mVGR* 1 mViR?
16K2 1-9  64h?

The same result is obtained for E 12’_, because the coefficients of the expansion of
[v_) and |y, ) in the old basis have the same modulus.

For n # +1, we do not need to diagonalize the matrices in the degenerate eigen-
values subspaces, because the off-diagonal elements, due to (6.3), vanish. Finally,
we find that

(3 oy LA N N UL .
" men En - Em 16 En - En+2 En - En—2
_ mVGR? 1
16k n2—1'

6.7 Two Weakly Interacting Particles on a Circumference

Two particles of mass m are bound to stay on a circumference of radius R. Calculate
the energy levels and eigenfunctions.
Then, suppose turning on an interaction between the particles by the potential

V = Vycos(¢1 — ¢2),
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where ¢; and ¢, are the angular coordinates that identify the position of the two
particles on the circumference.

(a) Introduce the variableso = % and 8 = ¢; — ¢,. Write the Schrédinger equa-
tion, show that it is separable in the new variables and determine the periodicity
properties of the wave function in terms of these variables.

(b) Finally, perturbatively calculate the first-order changes in the energy eigenvalues.

Solution

(a) Since the Hamiltonian can be written in the form

R 92
H=H, +H, where Hi=——= —,
P "7 T 2mR? 392
the Schrédinger equation separates in two equations each one depending on a
single variable. The eigenfunctions must satisfy the periodicity condition in these
variables:

V(i +27) = Y (o).

The Eigenfunctions and eigenvalues of H are therefore given by

Y i(d1, $2) = V(@) Vi(d2),  Erxg = Ev+ Ey,

where

= ln¢ :—hznz =
V(@) e Ey=g s =0l
m

1
V21
In the presence of the potential V = Vj cos(¢; — ¢»), the Schrodinger equation

does not separate into the variables ¢ and ¢,.
Introducing, instead, the suggested variables

o1+ ¢
g=AT

5 and B =¢; — ¢,

the Hamiltonian separates into two terms dependent on a single variable:
H=Hcy +H,,

where

92 R 92

Hepy = "
oM 2uR? 92

Hey corresponds to the free circular motion of the Center of mass with mass
M = 2m and angular position @ € [0, 27], while H, corresponds to the motion
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(b)
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of the reduced mass u = m/2 in the presence of the potential V(8) with 8 €
[0, 27r]. In the absence of V (B), we have the eigenfunctions

h2k? n21?
Wi (o, B) = Wi ()P (B) relative to the eigenvalues Ey; = MEE + 2117
with
v, (¢) = : e ®,(B) = : e"f n=0,+l,...
2w 2w
The perturbation concerns only the Hamiltonian .. We note that, since
VO 2w
(D VD) = — / e Pcospe ™™ =0 V&,
2 0

both the correction to the ground state (not degenerate) and the corrections to the
excited states (doubly degenerate) are null; in this last case, in fact, the matrices
to be diagonalized all have zero elements. We conclude that there is no energy
change at first order.

6.8 Charged Rotator in an Electric Field

A plane rotator is a system consisting of two rigidly connected particles that rotates
in a plane around an axis perpendicular to it and passing through the center of mass.

(a)
(b)

Let m be the reduced mass of the two particles and a their distance. Determine
the energy eigenvalues and eigenfunctions.

Suppose that the particles are charged, so that the system has an electric dipole
moment d and that it is immersed in a weak uniform electric field E directed
in the rotation plane. Considering the interaction with the electric field as a
perturbation, evaluate the first non-zero correction to the energy levels.

Solution

(a)

Having called I = ma? the moment of inertia, the Hamiltonian is given by a
pure Kinetic term:
L? L? R 92

20 21 20 ag¥

where we assumed that the plane of motion is the plane xy and ¢ is the angular
coordinate in that plane. The eigenvalues and eigenfunctions of # are

h2m?2
21

eim(ﬁ

1
V2 '

Ey,

wm ((P) =

m=0,+1,£2,...
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(b)

6 Time-Independent Perturbation Theory

The eigenvalues are doubly degenerate for every m, except for m = 0.
The perturbation is given, assuming the electric field E to be directed along the
X axis, by

H' = —d E cosgp.

First of all, we calculate the generic matrix element of cos ¢ in the H basis:

1 2w ) ip —igp
(n| cos p|m) = — / dgeimmee T T _
2 0 2

1 2w ) 2 )
- [/ d(p et(mfnJrl)(p +/ d(p et(mnl)tp:| —
4 0 0

1
= = [6mn— Smn .
2[ =1+ 8m il

Both in case n? = 0 (the absence of degeneracy) and in case n* # 0, the first-
order corrections to energy are null, because all of the matrix elements are so;
for example,

E)_,=—dE (n|cosg| —n) = —dE[8_yp-1 +8_nps11=0 Vn=0,%£1,...

The second-order correction must therefore be calculated:

|(n] cos p|m)|*
Bi= @B’ ) g g
m#n n m

_ (dE)? 1 N 1 _
- 4 En - Enfl En - En+1 N
_ (dE)* 21 [ 1 1 ] _

1 Rl a—mt1y
_,(4EY 1
N h ) 4n2—-1
We note that the second-order correction has been calculated without considering
the degeneracy, since the perturbation is diagonal in the subspaces subtended by
each eigenvalue (in the sum terms in which the denominator is canceled, which

are those with m = —n, numerators are also null).
Finally, we note that, since E? still depends on n?, degeneracy is not eliminated.
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6.9 Plane Rotator: Corrections Due to Weight Force

A point-like particle of mass m is constrained, in a vertical plane, to rotate around a
horizontal axis by means of a negligible mass rod of length /. By treating the weight
force in a perturbative manner, calculate the 2nd order corrections for the energy
levels.

Solution
The solution is similar to that for problem (6.8). The unperturbed Hamiltonian con-
tains only kinetic energy
2
L? R 9?

7’{ :T:—:———’
0 21 21 392

where I = ml? is the moment of inertia and ¢ is the angle of rotation around the
z axis that we identify with the rotation axis. Placing ¢ = 0 as the angle relative
to the lowest position and setting the potential energy to be zero at ¢ = 7 /2, the
perturbation can be written as

Hi(¢p) = —mglcos¢.

H, eigenfunctions are those of L.:

1
Vn(p) = \/z_e’""’, n=0,+1,42,...,
b4
and corresponds to the eigenvalues
n2h2
E) = ,
" 21

which are doubly degenerate for n # 0.
‘We calculate before the matrix elements

i 2
(n|H k) = — 28 dd e cos ¢ 'Kt =
27 0
_ _msl (7 dp &' k0 et
2 0 2
mgl

= ———— (Bk.n+1 + Okn-1)-
2(k,+1 kn—1)

The first-order correction is null
E! =0,
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because the correction for the ground state, the only non-degenerate, is null, while,
for the other states, the matrices to be diagonalized all have zero elements.

The 2nd order corrections can be calculated from the non-degenerate theory,
because, due to the presence of the §’s in the matrix elements, the only contributions
are from terms with non-zero denominators:

1 2
» o lmH P
E, = Z 0_ g0

m#n n m

_<mgl>2|: 1 N 1 i|_
2 E)-E),, E)-E,,

m3g2l* 1
R 4n2-1

6.10 Harmonic Oscillator: Anharmonic Correction

The following interaction is added to the elastic potential:
H' = ax?.

Calculate the first-order perturbative shift in the energy levels.
Solution

For this calculation, we need the expectation value of x* in a stationary state of
the harmonic oscillator. This calculation is the object of problem 2.18, but, for the
reader’s convenience, we repeat it here. Using the completeness relation and results
from problem 2.17, we obtain

0o 0 < h2
(xh; = Glxtl)) Z (12 1K) (k|x2|f) Z| (jlx? |k Z—4m2w2 X
k=0 k=0

k=0
2
x [\/k(k — D8 jia+ vk + Dk +2) 82+ 2k + 1)8,-,k] :

Developing the square, products of §’s with different indices do not contribute. So,
we get
4 h‘z 2
0= s [JU=D+G+ DG+ +Qj+ D] =
2

3n
=5 (207 +2i +1]

Now we can easily obtain the desired correction:
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3R
E! = n"|H |n°) = 1(n°|x*|n°) =

=1 [2n® +2n +1].

We note that the I order approximation is justified only for the lower levels, since,

although X is small, the correction grows as n’.

6.11 Harmonic Oscillator: Cubic Correction

Calculate, by Perturbation Theory, the energy eigenvalues up to order A2 for an m
mass particle that moves along the x-axis under the action of the potential

1
V(x) = 5kx2 + Ax3.

Solution
Since the solution for the harmonic potential is known, we can write
2

1
H = Hy+ H,, where Hy= ;; + Ekxz, and H, = Ax>
m

and consider H, as a perturbation.
Using formulas (A.13, A.15), it is easily found that

3 ho\" )3
(mlx’|n) = ( 5— | (ml(a+a')’|n) =

2mw
B\ 32
= (%> [Vt =D =2) 803+ 3307 801+

#3011 8 + 0+ DO+ 200+ 3) 8]
The first-order shift in the unperturbed nth energy level
0 1
E, =0+ E)ha)

is given by (A.75):
E! = A(n|x*In) = 0.

The second-order change is given by (A.76):
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5 m|x |n N S {n(n—l)(n—Z)
=4 Z =4 <2ma)) how 3

m#n Vl ﬂ‘l
1 2 3 1)?
L D@D et D)
-3 -1
n?A?

= 4(30n +30n + 11).

6.12 Harmonic Oscillator: Relativistic Correction

A particle of mass m moves in a harmonic potential

1
Vx)= —mwzx2

. . 2 . . . . .
Its kinetic energy T = 2”—m can be considered as an approximation for small velocities

with respect to the speed of light ¢ of the relativistic expression:

T =/ p2c? + m3c*.

Determine, by Perturbation Theory, the correction in the energy levels at the order }2
Solution

The series expansion of the relativistic kinetic energy is

2 2 4

2 p p A
1 ~mc*+ — — ,
+ m2c? + om 8m3c?

T =mc

where we neglected terms of order above (%)4. The first term is the rest-energy
and only redefines the arbitrary additive constant energy. In this approximation, the
harmonic oscillator Hamiltonian is modified by a perturbative term

4
p
H = ——.
8m3c?
To calculate the changes in the energy levels at order Ciz we use first-order Pertur-
bation Theory in ;. We must therefore calculate the diagonal elements of the p*
matrix in the basis of the harmonic oscillator energy. This could be done by using
the expression for p in terms of creation and destruction operators or using the wave
functions in the position representation. We will follow another path that brings
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us back to the calculation already made of the matrix elements of x> and x* (see
problems 2.17 and 2.18). We can rewrite H, in the form

1 (p*\ 1 1 2
H, = — — ) =—— (Ho— zma®x?) .
! 2mc? <2m> ez 0T M )

The required matrix elements are given by

() =~ [<n|fH§|n> — sme? (WniHox?I) — (nlHoim) + %m2w4<n|x4|n>] -

2mc

1 1
= (E,% — ma)zEn (n\len) + Zmza)4(n|x4|n)> =

2mc?

1 2 2p En 15 4 302 2
= e |:En —mow°E, o + Zm w Imia? (Zn +2n + 1) =
32 w?

_ 2
=== (2n +2n+1).

6.13 Anisotropic Harmonic Oscillator

A three-dimensional harmonic oscillator has an elastic constant k¥’ along the z axis
slightly different from the k constants along the x and y axes, i.e., its potential energy
is

1 2 2 1 1.2
V(x,y,z)zzk(x +y)+§kz.

(a) Identify the ground state wavefunction. Note that it does not represent a definite
angular momentum state. Why?

(b) At the first order in (k — k'), what are the angular momentum states other than
0 present in the ground state?

Solution

(a) The wave function space is the tensor product of the spaces relative to the oscil-
lators arranged along the three axes. Placing

[ k , k'
w=,— and o =, —
m m

and, using (A.16)’s expressions for the harmonic oscillator eigenfunctions, we
get
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1
mow' \* @), ml 2
wh

1

1 '\ 7
_ (ma))z maw ¢ );x;{)(x +y2+zz) e_m(az/h—w) 2 _
wh wh

1
. 1
. (ma))z mow' \* T ) 2 o2 o
wh wh

The exponential dependence on cos” 6 indicates the presence of contributions
from all of the eigenfunctions of L?. ¥ does not depend on ¢ instead, so it is a
L, eigenfunction corresponding to the null eigenvalue.

(b) For the perturbative calculation, let’s pose that

2=

m

Vo.0.0(x,y,2) = (—)

T

S

Vx,y,2) = V(x,y,2) + Vi(2),
where
1 2 1 / 2
Volx,y,2) =V (r) = Ekr and Vi(z) = 3 (k" —k)z~.

At first order, we have, taking into account the factorization properties of the
wave functions and problem 2.17, the following results:

1 1 hk —k
4 = (000]111000) = > (K — k)/dzzzwo(znz =5 & —bR0=7 "=
Since 5
(jlz*10) = %[xfz 82+ 8;0l,
we get
N mvalo) oL, V2 K=k
'0>_,§)—E0—Em"">_ 5 & )[Zm o2 | = —4ﬁk|2>
and, finally,
Yo (x, ¥, 2) =Yo(x)o(y) [%(z) f wz(z)]

ZWO(X’)’,Z)[I——(E - )

V2 4«/_k}
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where it was taken into account that, using (A.16, A.20),

1
V2(2) = ¥o(2) [z—ﬁ(‘lfz - 2):| ,  where &= m_hwz.

Since z2 = r? cos? 6, the wave function at I order takes contributions from the
£ = 0, 2 angular momentum states, as can be seen from (A.40).

6.14 Charged Harmonic Oscillator in an Electric Field

A particle of mass m and charge g subject to an elastic force is placed in a constant
electric field, giving rise to a potential energy:

2

1
Vix) = Ema) x> —g&x.

(a) Calculate, in Perturbation Theory, the changes at the first and second orders
produced in the energy levels by the presence of the electric field and the changes
at first order to the corresponding eigenket.

(b) Compare these perturbative results with the exact solution.

Solution
(a) Having introduced the following notation for the Hamiltonian,

2
1
H = Hy + H,, where Hy = L + = mw?x?

. > and H; = —q&x,

we can immediately calculate the first-order corrections to energy levels using
the result for (x), found in problem 2.16:

E!=0, VnelN.

We now calculate the first-order correction for eigenkets, always using the results
from problem 2.16:

(m|x[n)
) = 1n’) = q8 ) 5 Im°) =
m#n 1 m

e [l =00 VT ]
- TN oo | hoi—n+1)  hoi—n—1 |

1
= ") + &)/ 5—— [«/n+ T+ 1% — V/a|(n — 1)‘))].
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The effect of the perturbation at first order is therefore that of mixing each
stationary state with the adjacent ones.
The second-order change in the energy levels is given by:

E, =

BB 1% %m0 | The " he | 2ma?

2:|(mo|'7’{1|’10>|2 — 282 h |:”+1 n :|= q*&
m#n

(b) This problem can be solved exactly, enabling us to check Perturbation Theory
results. Indeed,

2 2 202
p 1 2 2 p 1 2 q9& , 14q°€
H="—+— —qEx = — + - - )" == .
2m —}_mejC K 2m +2ma) (x mwz) 2 mw?

This Hamiltonian describes a harmonic oscillator whose rest position is trans-

202
lated into x = Wf{fz and whose energy is shifted by a constant value —% Zufz . The
translation of the center of oscillation does not affect the spectrum that derives

only from the unchanged commutator’s algebra:

g .
v = =5 pl =[x, p] = ih.

Due to the potential energy shift, the energy spectrum is given by:

q282
2mw?’

E,=E°

n

Therefore, the second-order perturbative contribution agrees with the exact
result.

6.15 Harmonic Oscillator: Second Harmonic Potential I

The interaction

1
Vix) = > ma’x?

is added to the harmonic potential.

(a) Calculate the energy levels changes at first and second perturbative order.
(b) Compare the result with the exact value.

Solution
(a) Preliminarily, we calculate the matrix elements of the perturbation V (x) in the

base given by the unperturbed energy eigenstates. Using formulas (A.14, A.13),
we easily obtain
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12m) = 5 [V = D s g2 + 0 D0 D b2+ 4 Donm]

The first-order correction in the n-th level is given by

E! = (n|Vin) a2 Q2n+1) : +] —haz
= = —muo n =—=\|\n+ < .
n = VI = e e 2 2) w

The second-order correction is, instead,

g2 oy LnVImE

— (n —m)hw
B Fo 2|:n(n_1)+(n+l)(n+2)]_
N <E) 2he —2hw N

ot +1
8? \"T2)"

(b) The exact result is obtained by considering an oscillator with frequency
o =+Vw?+a?
whose energy levels are

1 1 2
E,,:(n—i—z)h\/wz—i—oez:(n—i—z)hw 1+_a2=
®

RS PP i
=n 5 w 2a)2 3 a)z

The terms of the perturbative series calculated earlier coincide with power expan-
sion in the parameter o?/w? up to the second order.

6.16 Harmonic Oscillator: Second Harmonic Potential 11

Solve the problem 6.15 in the wave function space.
Solution

The eigenfunctions of the unperturbed Hamiltonian are given by (A.16)

$n () = cr e T Hy (&) with c—(@f L oand 6= /M2
o " \an) Jm VT
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where H,, is the n-th Hermite polynomial normalized by (A.18)

+00
/ dg H2(§) = /7 2" n!. (6.4)

o0

To obtain the Perturbation Theory corrections, it is necessary to calculate the matrix
elements of the potential, and, therefore, the matrix elements of x2, in the unper-
turbed basis. They can be calculated using the recurrence relation of the Hermite
polynomials (A.19):

+00

(n|x2|m> = CnCm / dx e—éz H, (&) Hp (8) xr=

—0o0

_ “+00
L (@) mf dg e & Hy (&) Hy () 482 =

4 h .
1 -3/2 +00
—qeon (50 [ e [ ® o) +

+4nmHy—1(§) Hp—1(8) + 2mHy41(8) Hu—1(8) +

+ 20 Hy 1 €) o1 6)] =

1 mo /moy—3/2 et
L [me moe ‘
" 4y2nnm\ wh ( h ) [ﬁ2 (n+ D)8y m +

+4n> /12" N — D18 + 2m /T2 (4 1D)80g0m +

+ 2072 = Dby 2] =

1 -1
-1y [(2n 4 D + /1 11+ 2)Ssm + mgn_z,m].

2\ h

The result found for the matrix elements is, obviously, the same one found through the
technique of creation and destruction operators in problem 6.15; as a consequence,
the perturbative corrections are the same.

6.17 Plane Harmonic Oscillator: Linear and Quadratic
Correction

A plane harmonic oscillator has Hamiltonian

1 1
Ho = — (pi + pD) + = mo’ (x* + y°).
2m > 2

(a) Calculate the energy levels and their degeneration.
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(b) Adding a perturbation V| = ex to Hy, perturbatively compute corrections to the
levels at the first and second orders.

(c) Adding a perturbation V, = ex? to Hy, perturbatively compute corrections to
the levels at the first and second orders.

(d) Compare the results obtained in b) and c) with the respective exact results.

Solution

(a) The Hilbert space of the system is the tensor product of the spaces related to two
equal frequency oscillators arranged along the x and y axes.
So, the energy spectrum is given by

E,=hon+1),

where n is the sum of two integers n, and n,. The level degeneracy is n + 1.
(b) A perturbation exists only in the x direction:

1
E, = e(nlx|ny) =0,
2 €

ne

2mw?’

where we used the results from problem 6.14. Ultimately, the second-order
change is the same for all levels:

E,=h 1) — :
p = ot +1) 2mw?

(c) Using the results from problem 6.15, we find that

Q——w+>
he? 1
2 _
n iy et )

Therefore, the second-order series expansion of the energy levels is

he 1 he?
En,t,n‘.:hw(nx +ny+1)+_(nx+—) g(x+ )—
’ mw 2 2m?
P L. C Nt by 4 howm, +
T2 T e T 2met) T2 Ty

There is no degeneracy, except for special values of €.

(d) In the case of the perturbation V|, we know (see problem 6.14) that the second-
order perturbative correction coincides with the exact result. In the case of the
perturbation V,, we can write
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1 1
H=——(pi+p})+ 5 mo*(x* +y») +ex’> =
2m 2

1 1 1 1
= g P g g g meny

where 5
€
? =+ =,

m

Therefore, we have
/ 1 1
Enxany = how (nx + 5) + h(,()(ny =+ E) =

2¢ 1 1
= hw 1+_mw2(nx+§)+ha)(ny+§)=

€ 1 /e \2 2 1 1
—hw|:1+m 5 (m) + O(e )i|(nx+5)+hw(ny+§)~

The second-order series expansion coincides with the second-order € expansion
of the exact result.

6.18 Coupled Harmonic Oscillators

Consider two identical unidimensional harmonic oscillators of mass m and elastic
constant k. They interact via a potential energy

Hi = axix,

where x; and x, are the positions of the two oscillators.

(a) Determine the energy eigenvalues and eigenstates. (Hint: separate the motion of
the center of mass from that of the reduced mass.)

(b) In the hypothesis in which o < k, calculate the energy levels at the lowest
perturbative order.

(c) Compare the two results.

Solution
(a) The system Hamiltoniano is

2 2
P p 1 1
W:ﬁ +ﬁ +§kx12+§kx§+ax1x2.
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(b)

Introducing, as suggested, the variables

X:m and x =x; — x2,
2
the Hamiltonian becomes:
(}_( = 7_{CM + Wr
where
P2 21
How = 527 +(k+@)X>  and  H, = S—M 5 k=,

Here, P and p are the conjugate momenta of the new variables, M = 2m is the
total mass and pu = m/2 is the reduced mass.

The system then presents a Hamiltonian sum of two terms related to two oscil-
lating motions, one of elastic constant 2(k + «) for the center of mass and one of
constant constant (k — «)/2 for the relative motion. The Schrodinger equation
is therefore separable into the new variables. We note that the condition o < k
should be verified, otherwise the relative motion would have potential energy
not bounded from below.

The energy spectrum is therefore given by

1 1
Enra, = Eny + En, = hooy (”r + E) + ho, <n + 5) :

where, said w being the two oscillators’ frequency in the absence of interaction,
we set

\/2(k+a) \/k—i—a [k /1+a /1+ o
wr = e e —_ — = e
r M m m k mw?
k—o k—o k\/ o \/ o
w, = =/ == J1-S =0 [1- —.
21 m m k maw?

Perturbative corrections can be calculated using both the old x; and x, coordi-
nates and the new X and x coordinates. Here, we use the latter.

In the absence of interaction, the two oscillators concerning the center of mass
and the relative coordinate, have the same frequency w. Therefore, the energy
levels are

E, =hon+1), where n=nr+n,=0,1,...

Each n level has a degeneracy of n + 1.
Using the new coordinates, the interaction potential, which constitutes the
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(©)
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perturbation, becomes

2X +x 2X —x
2 2

H =axixo =«

To calculate the first-order shift in the n'" energy level, we need the eigenvalues

of the perturbation matrix in the subspace of the ket [n) = |j,n — j) = |j)x ®
|[n — j)x, where the j index ranges from O to n. Using the results from problem
2.17, we get

(H)jx = afj,n— jlxixalk,n —k)

2
X
alj,n— jlI(X* = 5 en—k) =

- | |
(GIX? k)84 — 1 (n— jlx*n — k)‘sj,k]

i 1
(k| X21k)8; 4 — - klx?|n — k)5j,k]

1 h
= —— 2k+1)— - — 2 —k DIs;, =
a_ZMa)( +1) 42/La)((n )+ ):| ik
ah
= —— 2k —n)s;y.
Zma)( L

The matrix is then diagonal and the n + 1 eigenvalues are the product of %

times
—n,2—n,4—n,....n—4,n—2,n.

Expanding the expressions for w7 and , in the power series of a/k = a/mw?

and neglecting orders above the second one, we obtain

o

- 1_|_1 o 1( )2
or =@ 2 mw? 8 \mw? ’

We can therefore approximate the total energy spectrum with the following
expression:

1 ah hw /1 a \2
Enyn, = ho(nr +n, + 1)+ = — (ny —n,) — — (—) (nr +n, + 1),
2 mw 8 \mw?
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and, setting ny + n, = n,
1 ah 2 .
Evn, =hom+1)+ - — 2ny —n)+ O(a¢”), withny =0,1,...n.
2 mw

The first-order term coincides with the first-order perturbative result, because
the difference 2ny — n assumes the proper values —n,2 —n,4 —n,...,n —
4, n—2,n.

6.19 Plane Harmonic Oscillator: Coupling the Degrees
of Freedom

A particle of mass m moves in the plane xy subject to a harmonic potential with
frequency w:

1 1
Ho = =— (pi + p}) + 5 mo’ (x* + 7).
2m 2

Introduce the perturbation
Hi(x,y) =2rxy.

(a) Find eigenvalues and eigenstates of Hp.

(b) Calculate first and second-order corrections in the energy of the ground state due
to H.

(c) Calculate first-order correction in the energy of the first and second excited level
due to H;.

Solution
The problem is solved exactly in 6.18.

(a) With an obvious assignment of symbols, we can write
Ho = Hi +H;.
The unperturbed Hamiltonian eigenvalues are
E’=ho(m+1), where n=n,+n, and n,,=0,1,2,...

and their eigenstates, once those of the one-dimensional harmonic oscillator for
each direction have been denoted by |n,) and |n,), are

1n%) = |ny)ny).
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(b) The ground state is
10%) = 0,)0,).

The first-order correction is

2
E} = (0°12axy]0%) = 24(0|x|0)> = 2A (,/i«)u)) =0,
2mw

where we used (A.14, A.15).
At the second order we have, taking into account (A.76),

2 2 |O°|xy|m |
Ey =4 Z (0 — m)hw

_pr Y MOmOmoP

g T T e

422 [ h O\ A2h
 hw \2mw) -2 2mle¥
(c) The first and second excited levels are degenerate; therefore, the corrections
are given by the eigenvalues of the matrix representing the perturbation in the
subspace relative to the level. For simplicity’s sake, we again indicate this matrix

with the H| symbol.
The first excited level is doubly degenerate. We have

_ (((01F110) (10101 _ . (0 5
7{1—(<()1|7{1|10> <01|711|01>)_2'\(% 0 )

eigenvalues of which (the corrections) are :I:%.
The second excited level is three times degenerate, and its eigenstates are

[20), [11) ]02);
then, the matrix to diagonalize is

(20| H1|20) (20|H;|11) (20|H;]02) B
Hy = | (11]H;1]20) (11|H,|11) (11|H,|02) | = —
(02|H;|20) (02H;|11) (02|H;]02) me

oslo
Sk
oﬁlo

:l:Z)»ﬁ

mw

Its eigenvalues are 0 and
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6.20 Pendulum: Anharmonic Correction to Small
Oscillations

Consider a pendulum of mass m and length [ that oscillates in a vertical plane.

(a) Find the energy levels in the approximation of small oscillations.
(b) Consider the next approximation to that of the small oscillations and find the
first-order perturbative corrections to the energy levels.

Solution

Having established that 6 is the deviation angle with respect to the vertical, the
pendulum Hamiltonian is given by

1 .
H = 3 mi*6% + mgl(1 — cos 6).

By developing the potential energy in power series around 6 = 0, we have

6> 6 ]
V(Q)_mgl<?—ﬁ+0(9 )).

(a) Within the limit of small oscillations, the Hamiltonian is approximated by that
of a harmonic oscillator:
2

1 . 1 )4
Ho = = ml*0> + ~ mglo* = ~— + ~ mw’q’,
0=gmEetame om T2

where we introduced the displacement ¢ = [6 with respect to the rest position

and the frequency w = \/% . The energy spectrum is therefore given by

1

(b) Considering also the second order in #2, the potential energy is

0% 64 1 2 2 1 mg ,
V:mgl(———):ima)q —ﬁl—3q.

In order to find the first-order perturbative corrections to the energy levels,
remember that (2.18)

2
4
4m2w? (

<q >;= 2j2+2j+1).
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Therefore, the required corrections are given by

1 gh?
E! = (n|Hin) = ——
n = (nlFln) 32 mBw?

(2n2 +2n + 1).

6.21 Degeneracy Breakdown in a Two-State System

The Hamiltonian for a two-state system has the form

H = Hy + 2H, = <;’A Aﬁ), (. > 0).

(a) Solve the energy eigenvalues problem by exactly determining eigenvectors and
eigenvalues.
(b) Assuming A|A| < |a — b|, solve the same problem in Perturbation Theory up to
the first order in the eigenvectors and up to the second order in the eigenvalues.
(c) Assuming that, in the absence of perturbation, energy levels are almost degen-
erate,
la — b] K AlA]

show that the results obtained by applying the first-order Degenerate Perturbation
Theory (a = b) are compatible with those derived from the exact calculation.

Solution

We immediately see that the eigenvectors and eigenvalues of
a0
()
are given by
0 1 . 0
[17) = 0 relative to E] = a,
0 0 : 0
[2%) = ) relative to E5 = b.

(a) The eigenvalues of H are solutions to the characteristic equation

(@ —w)(b—w) —A2A%> =0,

wp = b g @D | 002
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The relative eigenvectors are obtained solving the homogeneous systems
a AA o o
(m b ) (ﬂ) :‘”*(ﬂ)'
Thus, we obtain the equations

ax + AAB = wia,

B =5t

AA

1

W) = —— _ ( ) :
AN AN+ (wr—a) w+ —a

where normalization has been imposed.

(b) Now we apply Perturbation Theory. Let us calculate the first-order corrections
to energy eigenvalues:

E} = M1°1H [1°) = AA (10) (?é) ((1)) =0,
El =2 @H12%) =3A(01) (? é) (?) —

The first-order corrections to energy eigenstates are
1) = 110) 4+ 2. S 20) = 110) 4 2. 25 12%),
2') = 129) +A%|l°> = 12%) = 255110
Ultimately, we calculate the second-order energy shifts:

[(1°AH 12%)> 52 A?

E? = = ,

: E?— EY a—b
20|AH, 192 A2

E§:|< I0 1|0>| _ 52 ‘
E) — Ej a—>b

These results coincide, of course, with the second-order term of the series expan-
sion in X of the exact eigenvalues. Indeed,

a+b a-—b 4)2A2 a+b a-—b 2A02A2
w4+ = + 14 = + 1 =
2 2 @—b2 2 2 @ —b)?
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(c) In order to apply Degenerate Perturbation Theory in the case (a = b), we need
to diagonalize the perturbation matrix:

_Frl
det(ki _AEA<1>>=0 = E'=+rA.

The energy eigenvalues up to first order are
E=a+t A
To compare this result with the exact one, we note that, if
la — b] K AlA],

the following series expansion makes sense:

—b)2 AV
wr =S AN 148D = )AL L =

=a%18+0 (8.

This result coincides with the previous result, unless second-order corrections
in A.

6.22 Fermion in a Magnetic Field

Consider the Hamiltonian of a spin 1/2 particle immersed in a uniform and constant
magnetic field B, which is obtained by ignoring the kinetic term:

H=—uhB-o.
Consider the case in which B lies on the xz plane with

B
€= << 1.
z

(a) Determine, by Perturbation Theory, the eigenvalues of 9 up to the order €?
included, and the eigenstates up to the order €.

(b) Determine the exact eigenvalues and eigenstates, comparing them with the prece-
dent results.
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Solution

(a) We can write
B = (eB,,0, B,)

and
H =Hy+ H,, where Hy=—uhB,o, and H; = —euhB,oy.

The unperturbed Hamiltonian HH, is proportional to o, and therefore its eigen-
values are

E° = —uhB, relative to the eigenstate |—) = |0, = +1) = <(1)) ,

E? = +uhB, relative to the eigenstate |+) = |o, = —1) = <(1)) '

In the H, representation, H, is given by the matrix

. — (<—|741|—> <—|ﬂ1|+>) :( 0 —euth)
T\ () —euhB, 0 '

We immediately see that the first-order corrections in the eigenvalues are void.
The first-order corrections in the eigenstates are given by

{mP|H, |n°)
n')y =Y “HO_ g0 m®),
m#n n m

i.e.,

. (0
|EL) = — 55 (—1hB.e) | Ey) = +5 <1> :

1
|EL) = + i (~uhBee)| E-) = —§ (0) .
The second-order corrections in the eigenstates are given by

3 | (m°|Hi n°)

E? =
E) - E),

n )

m#n

i.e.,
_ whB.g? B =4 whB._&?

E? = ,
- 2 + 2
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(c) We now solve the exact eigenvalue problem for

H = —uhB, A, where A= (i _81>

A eigenvalues are A1, = ++/1 + €2, so those of H are

Eiy = FpuhB 1+ &2,

which, if expanded in the power series of ¢, coincide, up to the second order
with the results found in Perturbation Theory.
The H eigenvectors are the same as those of A, i.e.,

1 14+ A2
Ep)=——"—r 2.
B2 = 0t e ( e

6.23 B Decay in a Hydrogenlike Atom

Find, in first-order Perturbation Theory, the changes in the energy levels of a Hydro-
genlike atom produced by the increase of a unit in the charge of the nucleus, resulting
from, for example, 8 decay.

By comparing the result with the exact one, discuss the validity of the approxi-
mation used.

Solution

Remember that the energy spectrum of a Hydrogenlike atom having atomic number
Z is given (see problem 3.18) by

1 1
ES = ) mc222a2n—2,

wheren = 1,2, ...and o = €2 /hc is the fine-structure constant. Due to the increase
in charge, the potential energy is modified:

VA 1 2 Z2 2
_u _ e _67 — Vo + V.

r r

V=

Therefore, the first-order change in the energy levels is given by

1
E) = (n"|V|n°) = —e2<-> .
no

r
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The } expectation value can be calculated in many ways (see, e.g., problem 3.19).
Here, we use the Virial Theorem for Coulomb potential, relating the expectation
values of kinetic and potential energies (7) = —(V)/2 (see problem 1.10). We get

EO_(T+ry> _l(q/> — lzezl
n 0/n0 0/n0 =
2 2 [,

and, therefore,
n Z °

This result is to be compared with the exact one,

1 1 1 1 1 1
Enz—fmcz(Z + 1)20{2— = —~mc2a?— (Z2 +2Z+1) = Eg + E,ll — 7m(:2a2—,
2 n2 2 n? 2 n?

which can be written in the form

E,=E° 1+3—i.
" z Z?

This expression shows that Perturbation Theory provides a good approximation if
Z> 1.

6.24 Stark Effect

When a Hydrogen atom is placed in an electric field, its emission or absorption
electromagnetic spectrum lines split into neighboring components. This phenomenon
is called the Stark Effect and is attributed to the degeneracy breakdown due to the
interaction between the electric field and the electric dipole moment of the atom.

Consider a Hydrogen atom in the presence of a constant electric field & directed
along the z axis, giving rise to the interaction energy

H, =e&E -r=eEr cosh.

Determine the first-order perturbative corrections in the two lower energy levels.
Solution

We recall that the eigenvalues and eigenfunctions of the Hydrogen atom Hamiltonian
in the absence of external fields (see problem 3.18) are given by

an,l,m(r) = Rn,[(r) YZ,m(Qa ¢)’ (65)
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where
e? d K2
a=— and qy=——
he m e?

are the fine-structure constant and the Bohr radius. In terms of the Laguerre polyno-
mials and Legendre functions, the eigenfunctions are given by

_r 2
1/fn,e,m(l‘) = Nn,( rl e "w Lﬁz_tl_l < . ) Pén(COS 0) elm¢’ (66)
nap

where N, ; is a normalization constant.
Ground State

The first-order change in the ground state energy is given by
El =¢(1,0,0|r[1,0,0) - &,

which expresses the correction as the scalar product of the electric field times the
average of the coordinate in the unperturbed state. In terms of eigenfunctions, we
have

Ell =e&- /dl'|}[f1’()’0(l')|2 r.

This quantity is zero; more precisely, this is true for every diagonal matrix element:

(n. €. m¥|n, €, m) = /dr W em@ > r =0,

In fact, ¥, ¢n, which is the product of a function of » times a Spherical Harmonic,
has the same parity as the latter, i.e., (—1)°. Its square modulus has even parity and
the integral is zero, because you have to integrate an odd function over the whole
space. So, there is no first-order correction in the ground state energy.

First Excited State

The Stark Effect the result of the fact that the degeneracy of n > 1 levels does not
survive in the presence of an external electric field.

Consider states with n = 2 in the absence of an electric field. There are four
eigenfunctions (A.64) relative to the same eigenvalue E, = %, to which we associate
four kets as follows:

1 _3 r r
1) - r6,9)=——a,’ [2——)e 0, 6.7
1) = V2000,6.6) = ——aq ( ao) 6.7)
1 _3 _r
2) = Yo10(r0.¢) = a;? — e % cos, 6.8)

42 aop
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1 3 r ’
3) — r0, ) = ay ? —e ™ sinfe'?, 6.9
13) Y2.1,1( ®) s/ w (6.9)
1 3 r ’
4) — 1(r0,9) = ———a, 2 —e M sinfe'?. 6.10
|4) Yo1,-1(r, 0, ¢) s W (6.10)

The first-order corrections are given by the eigenvalues of the matrix representative
of H in the eigenspace of E;. We can use the numbering used for the states to
identify the elements of this matrix:

(Hik,j = (k|H|j) withk, j =1,2,3,4.

As we have seen, the matrix diagonal elements are zero for parity reasons. Also,
since it is worth (3.15), as found in problem 3.10,

Am=m'—m=0 and AlL=/{ —{ =41, (6.11)

all of the matrix elements relative to couples of eigenkets having different L, eigen-
values are null. Therefore, the matrix becomes

0 (1|H2)00
QHI 0 00
0 0 00
0 0 00

(H)m,j =

Two eigenvalues are zero and the other two (the correction in the energy level) are
obtained as eigenvalues of the 2 x 2 block in the m = 0 sector

0 (1|H2)
<<2|%|1> 0 ) (6.12)

As the matrix is hermitian, the non-zero matrix elements are complex conjugates,
indeed, equal, being real. Let us calculate them:

(1|H1|2) = 68/ r2dr d cos® de Y2,0,0(r,0,¢) rcosd Yo 1.0(r,0,¢) =

S 21 1 0 o
. aasf d¢/ dcos@coszef ar3l (2 L) eaw =
16 - 27 0 1 0 ag ag

o0
g aO/ dx x*2 —x)e ™ =
24 0

= —368a0.

In the last step, integral (A.6) was used.
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So, matrix (6.12), is given by

0 —3e&Eaqy
—3e&Eay 0 ’

Its eigenvalues are easily calculated:

. . 1
3e&ap relative to the eigenvector Wi ( 1)

1

. . 1
—3e&ap relative to the eigenvector 7 < 1

Summing up our results, level E,, 4-times degenerate with eigenkets |2, 0, 0),
12,1,0), |12,1,1) e |2, 1, —1), separates into 3 levels at the first perturbative order:

Ey+3e&ap not degenerate relative to the eigenket % (12,0,0) —|2,1,0)),

E; 2 times degenerate relative to the eigenkets |2, 1, 1) and |2, 1, —1),
E, —3e&ap not degenerate relative to the eigenket % (12,0,0) +12,1,0)).

6.25 Hydrogen: Relativistic Corrections

. . . 2 .
The expression currently used for kinetic energy 7 = #-- can be considered as an
approximation for velocities that are small with respect to the speed of light ¢ of the

relativistic expression:
T =/ p%c? + m2c*.
. . L . p
Expanding this expression in the power series of £, we get

2 2 4
~ 2 p p

2, —nc 320
m?c 2m  8m3c

T =mc* 1+

where the terms of order above (f)4 were ignored. The first term is the rest energy
and only contributes to redefining the arbitrary constant relative to energy.
Using results obtained in problem 3.19,

2
e
r n,t,m

e n
e — 4(E")?
<r2>n,ﬁ,m ( n) E +

’

1
2
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calculate the first-order Perturbation Theory effects on the energy spectrum derived

from the term
»*

8m3c2’

H, = (6.13)

Solution

We note that, since

e2\’
pt=an (1045
,

commutates with L? and L, the matrices of H; in each eigenvalue eigenspace are
diagonal, and we can use non-degenerate Perturbation Theory. Therefore, the first-
order shifts in the energy levels are given by

El——Lm 2, m|ptin, £, m) =
"= T b pln, &, m) =

1 e? 2
=ﬁ<n,3,m|<7‘{o+—) ln, £, m) =
me r

4

1 2
S (EO? +2E° (n, €, m||n, €, m) + (n, &, m| = |n, &, m) ) .
2mc? r r2

By using the above expressions for the expectation values, the final result is obtained:

1 3 1
E'l=——mco*| -4+ —— |, 6.14
A [ 4n4+n3(6+%>} o

showing that there is no more degeneracy in the quantum number £.

6.26 Spin-Orbit Interaction

In the Hydrogen atom, the interaction of the magnetic moment of the electron and
the magnetic field generated from its orbital motion around the nucleus leads to an
extra term in the Hamiltonian:

e2

(HS0=—I/«e'B=m

S-L,

known as the spin-orbit interaction.
Using the result (obtained in problem 3.19)

< 1 > 1 1 . <mca)3 1
P lae @ ndee+He+n N\ h S pdee+He+1’
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calculate the first-order perturbative corrections in the energy spectrum due to this

interaction.

Solution

Notice that, having denoted the total angular momentum by J, it results that

S-L=

R =

US+LV—L?—§]=%Lﬂ—zﬁ—Sﬁ

Hso commutates, therefore, with the set of compatible variables J 2 L2 §% and
there is a basis common to these operators and the Hamiltonian, |, j, m;; £;s). In
this basis, Hyo is represented by a diagonal matrix giving the required corrections:

(', j',m’; €5 s" [ Hsoln, j,mj; € 5) =

4m2c?

e2 1 o] .. 3
= 8w 8, j S S0 —5= { =) A |jG+D—LE+1)— 1l
¥

3
™I

The total angular momentum, the sum of the orbital angular momentum and the spin,
has a quantum number j ranging from |j — s|to j +s,j =£ £ % Thus, we have

El_hzez <1> X{ Cif j=0+1
n,t

" 4Am2c? \r3

—+ 1 if j=t—3"

Using the suggested expression for the expectation value of r~3, we get the final

result

E,ll = - mc*a* ; X
4 e+ HE+ 1)

1 { Cif j=0+

6.27 Ground State of Helium

1
3
—(C+1)if j=0—

. (6.15)
3

The Helium atom has atomic number Z = 2 and mass number A = 4; thus, there are
two electrons moving around a nucleus of mass equal to 4 times that of Hydrogen
and about 8 x 103 that of an electron. Assuming this mass to be infinite, we refer to
the coordinates of the two electrons with respect to the nucleus with ry and r, and
to their relative positions with with rj» = ry — r,. The Hamiltonian of the Helium

atom is, therefore,

K2 Ze? Zé? &2
He=—r (V- — =5 =
m r rn rp2
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If there were no repulsive interaction between the two electrons, in the Schrédinger
equation, there would be the separation between the variables of the two electrons
and, E being the energy of the ground state, we would have

3 _ Z(ri+rp)

Z
Yo r2) =Yg, (0) Y, () = —5 ¢ o . (6.16)
T ay

Here, we denoted by E; and g, (r) = (Z/M)(Z/ao)% ~e_“ZT;, respectively, the
ground state energy of a Hydrogenlike atom with Z = 2 and the corresponding
eigenfunction. In this very rough approximation, neglecting the positive term of
attraction between the electrons, the ground state energy would be

m(Ze*)?

0 _ _
E _2E1_2|:— e

] = —8.13.6eV =—108.8¢eV.

Experimentally, it is found that the ground state of the Helium has energy E =
—78.98eV, a much higher value.

Consider the interaction between the two electrons as a perturbation and calculate
the first-order change to E°.

Solution

The Helium atom Hamiltonian can be written as
H = Ho + H,,

where 5 5 5
h Ze Ze
Ho=—— (Vi + V) - ———,

2m r )

and the perturbation is given by

&2

Hy =

r2

The first-order correction due to the interaction between the two electrons is given
by

E' = (YpIHilyp) =
Z3 2 _ 22 +1p) ez
—) /drldrze “10 : — =
T ayg r2
2
K.

(2,
(%)
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Having introduced g = %, K is the following integral:

1
K= /dndrz D L ) ——— /dl'lefﬂr'f(rl),

Iry — 12|

where
1

Iry — ra|

Fr) = / dry e

is a function of ry only, because, by integrating over the whole r; solid angle, the
dependence on the angles disappears. To calculate f(r;), we are free, therefore, to
orient ry in the direction of the z axis.

We get

+1 1
fr) = Zﬂ/drzrfe*ﬂ”/ d cos 6 =
-1 \/r]2+r22—2r1r20059

+1
= —Zn/drz ryefn |: r} +r? —2riry cos 9] =
rir -1
2 —pr
= - dryrye "2 (ri4+r —|rp —n|) =
1
2r [ e
= — |:/ dryr; e P (2rp) +f dryr; e P (21’1):| =
r 0 r
— 4_7T [2 — e BN 2+ /3,.1)]
rp? ’

where we used the expressions, derived from (A.7),
— i _ 2 2y ,—pri
B0.1) = 5512 = @ +2np +rifhe "]

and
1

B

Returning to the calculation of K, we obtain, using the usual integrals (A.8),

L(r1, 00) = — (14 Bry)e P,

4m)* 5
B4

&0 4
K =4x / dririe " —=[2—e " 2+ pr)] =
0 rnp

By inserting these results into the expression for E!, we obtain

3\ 2 2 2
E! = (2) > (4m) = é Z_e = §Z <%mcza2> =34eV,

na) 4 B’ 8 a 4
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mca’ he

13, 6eV is the energy, changed in sign, of the ground state of the Hydrogen atom.
In this approximation, the energy of the ground state of the Helium atom is

- . 2
where it has been taken into account that ap = -, o« = £ and that imc?a® =

E=E°+ E'=-108.8¢eV +34eV = —74,8¢V.

This value is very close to the previously mentioned experimental value —78.98eV.
An even better approximation is obtained using the variational method (see problem
11.4).



Chapter 7 ®)
Time-Dependent Perturbation Theory ez

7.1 Harmonic Oscillator: Instantaneous Perturbation

Two particles of mass m move along the x axis, interacting by means of a force
having characteristic elastic constant k.

Assuming that, while they are in the ground state of energy Ey, the constant k is
suddenly halved, what is the probability that a new energy measure will result in the
energy of the ground state?

Solution

Having denoted the two particles’ coordinates by x; and x,, we introduce the center
of mass and relative coordinates

_ X1+ x2

X )
2

X =X — X2,

the total mass M = 2m and the reduced mass u = 5. Placing
V(X,x) = P(X)¥(x),
the Schrodinger equation

[ R 92 n? 92

Y Yy —x) = W W, 1) =0
2 9x?  2m 8x§+ (x1 — x2) } (x1, x2)

separates into two equations

R d?
————— — Ecy | ®(X) =0,
|~ s — Ecu | @00
n? d?
[ 2 dx? + V(x) }WX) (7.1)
© Springer Nature Switzerland AG 2019 189
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satisfying the condition
W=FEcu+E.

The center of mass moves freely, while the reduced mass is subject to a harmonic
potential. For the purpose of the problem, we are only interested in the relative
coordinate motion.

Initially, the system is described by the wave function (A.16)

3 . T
Yo(x) = (%) ¢ 2 where o = /m_ha) - 4/";_2,

We want to know the probability that, after the halving of the elastic constant, the
oscillator will be in the ground state of the new system, that is, in the state described

by
0 a \:? “la , mo' [ mk’ o
N=—=] e , where o' =,/ — =, — = —=.
0 JT h [N}

Since it is an instantaneous perturbation, the state of the particle does not change,
but its Hamiltonian does change. Therefore, the required probability is given by the
square modulus of

+00 /
(Wolvy) = f dx | 2L b
oo T
_ /ocot’\/ 2 _\/ 2000’
- T az +a/2 - a2+a/2’

where we used (A.1). So, the required probability is given by

2aa’ 22

- = =212 = 1) =0.9852.
a2+a/2 \4/5(1_’_\/5) ( )

Py

7.2 Harmonic Oscillator in an Electric Field:
Instantaneous Perturbation

A particle of mass m and charge ¢ is subject to harmonic oscillations of frequency
o along the x axis. It is suddenly placed in a uniform electric field that generates a
potential

7‘{1 = —an .

Determine the transition probabilities in the case in which the system is initially in the
ground state. Use first-order perturbation theory to approximate these probabilities
in the case of a weak electric field.
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Solution

After the electric field is switched on, the Hamiltonian becomes

2 2 202
p 15, p r ., , 148
H=Hy+H = — —gEX = 24+ = _ _Z ’
o+ 7 2m+2ma) * 4 2m+2mw (x = xo) 2 mw?

which still represents the Hamiltonian of a harmonic oscillator with the same fre-
quency, but with energy levels translated by the quantity

1 ¢*&*
2 mw?
and center of oscillation placed in
q&
X0 = W
H, eigenfunctions are given by (A.16)
1
ww = (") e, e= [
n s h ! n 5 h

whereas, having denoted the eigenkets of the new Hamiltonian H by |k), its eigen-
functions are

1
_ 0 _ (Mo 1  6—g)? _
(I = 90 = 9 —x0) = (T5) " —me e~
with
mw
Eo=,/7xo-

Remembering that (A.17)

dre=t

— (1)
H,(§) = (—=D"e g

the transition amplitudes are given by
(k10%) = / dx ¢ (x) g (x) = / dx ¢ (x —x%) py(x) =

1 00 B k ,—(E—&)
_ (m_c};))z 1 (_1)k/ dx er 50)2 e de 0 e*§ _
b4 _

V2! . d&F
kg [ dk o= +2%60
I VA f dget0 & (712)
(w2kk!)2 —0 d§
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Using integration by parts, we get

k ,—&242
/ T gt R
- det

-1 o—E+288 |

o d
e - f d& (=) e *%

k=1 ,~£>+286

— ,—&&
=e dék_l

(7.3)

The first term is null, and, after iterating k times the integration by parts, (7.2)
becomes

-1 k 2 e8]
kiof) = =2 - / dg e 1 =
—00

(m2kk)2
_ (—1)" ,ﬁ %o (— 1)" ,i
- (ﬂzkk!)z = e + g (7.4)

The transition probabilities are obtained by squaring the amplitudes

52
P &) e
0.k = —.
2 k!
2
As a function of k, this is a Poisson distribution with expectation value %" Since

: [mw mw qS q&
= —_x =
‘T ‘T me?  mhw

if the perturbation is small, & is also small, and the only major probability of transition
to a state with k £ O is for k = 1:

52
b _Get & _ 4E
0= =5 =573
2 1! 2 2mhw

This result is confirmed by the application of Perturbation Theory (A.80)

KOIHRO [ 28 | o o2
Py = — KO H =
0.k ‘ E0— £V (o)’ |(k°1H, %)
2
282 h q282 h q282
k° f = 81 = R
= W) |V 2me K 1e T a In°) (kho)? 2ma '~ 2mhw? 6!
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7.3 Particle Confined on a Segment: Square Perturbation

Consider a particle of mass m bound to move along a segment of length a.

(a) Write the first 4 eigenfunctions and the corresponding eigenvalues.

(b) Suppose that the particle is in the ground state (n = 1). At time ¢t = 0, it is
instantaneously switched on a potential square of depth —Vj (V) > 0) and width
b « a centered around x = % If this potential is removed after a time Az, what
will be the probability of finding the system in each of the states with n = 2,
n=3andn =4?

Solution

(a) The required eigenvalues and eigenfunctions are given by

h2r? 2 . mx
Ey=—, ¥i(x)=,/—sin—,
2ma? a a

4272 2 2
Er=2" yo(x) =,/ sin T,
a a

2ma?’

9K2m? 2 . 3ux
Ey=——, Y3(x)=,/— sin—,

2ma? a a

16k27? 2 . dmx
Ey= ——, Yu(x)=,/— sin—.
2ma? a a

(b) The transition probabilities (A.82) are:

2

1 2
=ﬁ|<n|%|1>|2

ezw,,,lAt -1

At
Py (A1) = ‘—% / dt (| H [1)e' "
0

Ly

where the matrix elements are given by:

atb

2V 2 . NmX . WX
(n|H 1) = - =2 dx sin —— sin ——
a a=b a a
2
_ 2 .
and w, | = 258 = I (n? — 1) withn # 1.

This integral is zero for n = 2 and n = 4, because the integrand is the product
of an odd function (the n"" eigenfunction) times an even function (the ground
state eigenfunction).
It remains to calculate the probability of a transition to the third level. Since
ath - 7h . 2mb
2 . nmXx . WX a (2sin 22 + sin &2
dx sin —— sin — = — ( 4 “)

ast a a 4

El




194 7 Time-Dependent Perturbation Theory

the result is

Vi 2 At 2sm +sm@
P1_3(Ar) =< 0 ) sin? 221 ( .

hw3,1 2 T

Wanting to shorten the calculations, the integral can be approximated by the
product of the integrand value at the center of the integration interval (5) times
the width of the interval ( %):

2V0b>2 4 w31 At

Pi_3(At) ~ < hza)%] sin 2

a

7.4 Harmonic Oscillator: Gaussian Perturbation

Consider a one-dimensional harmonic oscillator in the ground state at time t = —o0
in the presence of the perturbation

2
H ()= —qEXe .
What is the probability of finding, at time ¢+ = 400, the oscillator in state |n) in
first-order Perturbation Theory?

Solution

The probability amplitudes at time ¢ = 400 are the coefficients of the expansion of
the state ket in the energy basis (A.81, A.82):

+o0 2
dn<oo>=—%/ dt (—qE){n|X|0)e™ 7 ",

oo

Since

h
(@ +ah),

and we know that a*|0) = |1) and a|0) = 0, the only non-zero coefficient is d;:

d _ lqE oo 2 ot __
1(00) = o dte e =
_ lqE / \/7 w272
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The desired probability of a transition is

quznrz w2
Poo1 = 2mwh ¢

7.5 Harmonic Oscillator: Damped Perturbation

Starting from the instant ¢+ = 0, the perturbation
H(x, 1) = Ax>e™"",

acts on a harmonic oscillator of mass m and frequency w. Using first-order Pertur-
bation Theory, determine the probabilities of transition from the ground state to the
nth state after a long period of time.

Solution
The desired probability, for n # 0, is given by

2
Py, =

o0
/ dt (n|AX?e~b|0)e! om0t
0

[}
/ dt e(tw,,,gfb)t
0

h
2mw

n?
AZ 2
=77 |(n]X?10)|
A? 1

h? in—i-bz

2

2
)

(\/z 311,2 + 5n,0)

where we used the result of problem (2.17). Therefore, the only possible transition
is the one to state n = 2, having probability

. 2A2 1 B2 A 1
=27 1 402 482 \2mw ) 2m2a? 4a? + B2

7.6 Hydrogen Atom in a Pulsed Electric Field

Attime t = —o0, a Hydrogen atom is in the ground state; an electric field is applied

along the z axis:
2

k.

o~
)

E(t) = Ege”

Determine, by first-order Perturbative Theory, the probability that, at time t = +o0,
the atom is in one of the n = 2 states.
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Solution

Having denoted by r; and r,, respectively, the position of the electron and that of the
proton and by V (r) the potential generated by the electric field on a charge placed

in r, we have
2

V(r):—/ E-dr=—Ejze 2.

)

The potential energy resulting from the interaction of the external field with the atom
dipole is therefore

Hi(r, 1) = —eV(r) +eV(ry) = ezEge =,
where z is the component of r = r; — r; in the field direction.

The states with n = 2 are 4: they are the state £ = 0 and the 3 states £ = 1,
m = 0, 1. The desired probability is given (A.82) by

Piso = Z Z |d2,e,m(+00)’2,

£=0,1 m=—¢t,¢
where
1 ~+00
doem(+00) =~ ¢ / dt e 2, 0, mIFH 1,0, 0). (75)
—00

Having denoted by u the Hydrogen atom reduced mass and by « the fine-structure
constant, the transition frequency is the same for all n = 2 states:

5, ,(1 1 3 5,
wzylz—%uca (i—ﬁ>=%uca

To calculate the perturbation matrix elements, we note that H; commutes with L,
the operator whose quantum numbers label the unperturbed states. This means that
only the matrix elements between states with the same value of m (selection rule
Am = 0 for the electric dipole transitions') can be different from zero. Indeed,

[Hi, L1 =0= (n, &, m|[Hy, L]In', ¢ m') = him’ —m) (n, &, m|Hy|n', ¢, m’) = 0.

We, therefore, are down to calculating only the two terms relative to m = 0. The
other selection rule for dipole transition is A¢ = +1. Apart from the general rule, it
is easy to convince oneself that the matrix element in (7.5) will be zero if £ does not
change: we should integrate, over the whole space, an odd function, z, coming from
H,, times the product of two eigenfunctions with the same parity. Only one non-zero
matrix element remains to be calculated. Taking into account the expressions for the
Hydrogen atom wave functions (A.64), we obtain:

IElectric dipole selection rules are calculated in Problem 3.10.
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dxx*e™ =

do,

where formula (A.6) has been used. By replacing this expression in the probability
amplitude, we have:

d2,£,n1(+oo) = —= dte E() aoe 2 =
h J_ s 35
1 27\/5 (@03,17)% +o0 1, 0172
=——-¢ekEpap e ¢ / dte =77 =
3’ —c0
;
l (@10 lr)
=~z eEyay —— 1: Ve~
The requested probability is therefore given by
T 215 (@102
Plﬁz h2 (6 E() ap ‘L') We 2



Chapter 8 ®)
Identical Particles Geda

8.1 Two Fermions in a Potential Well

Two non-identical particles, both of spin % and mass m, are forced to move along a
segment of length L interacting through a potential

V=kS-8S,.

(a) Calculate the Hamiltonian’s eigenvalues and eigenfunctions.
(b) What would change if the particles were identical?

Solution

(a) Inasmuch as the potential depends only on the spin states and the particles are
not identical, we look for eigenfunctions factorized in the form

V(1. 2) = Yy n, (X1, %2) X (S1, S2),

where

wn],nz (x1,x2) = %1 (x1) llfnz (x2).

Yu(x),conn =1,2,..., are energy eigenfunctions for a particle in a potential
well and x (S;, S,) represents spin eigenstates. The potential depends only on
the scalar product among the spins and can be rewritten in terms of the total spin
S=S8,+8S

k k 3
V:kSySzzz[(S1+Sz)2—Slz—S§]:§ [sz—zfﬁ]

So, factoring occurs if we use the eigenstates of the total spin (S? and S.), that

is, the singlet states (S = 0) and triplet states (S = 1).

We conclude that the eigenfunctions common to the Hamiltonian, S? and S., are
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\Ijnl,nz;s,mA (xl P x2) = I/Inl,nz (X] s Xz) Xs,mys

with

1
oo =5 [x+(1) x=(2) — x=(1) x+(2)],
x1,—1 = x-(1) x-(2),
1
X0 = 7 D (D) x- ) + x- () x+ )],
X141 = X+ x+(2),
and they correspond to the energy eigenvalues
2h2

e

k 3
ZM"ZJFE |:s(s+1)—5i|h2, with n? = n? +n3andny,ny = 1,2, ...

n,s

The degeneracy is the product of (2s + 1) for the degeneracy that occurs if there
is more than one pair (n1, n,) leading to the same value of n.

(b) If the two particles are identical, the eigenvalues do not change, but their degen-
eracy is reduced. In fact, it is necessary to construct the symmetric and antisym-
metric combinations of the eigenfunctions relative to the spatial coordinates (the
spin eigenstates already have determinate symmetry properties) and to impose
the antisymmetry of the overall self-functions.

In the case S = 0, the eigenvalues are E, o = % n? — 3 kI? and the eigen-
function’s spatial part must be symmetric. So, we have

1 .
Wy, n2:0,0(X1, X2) = 7 [V, (X1) Winy (62) + Yy (X1) Y, (62) ] x0.0 if 1y # 12

and
Wiy n2:0.0(X15 X2) = Y, (X1) Yy (x2) X0.0 i 11 = na.
. 232 ..
States S = 1 correspond to eigenvalues E, | = ;’m’ZZ n? 4+ %khz, and their eigen-
function’s spatial part must be antisymmetric: as a consequence, it must be
ny # ny. Their eigenfunctions are

1
W s, (X1, X2) = 7 [V, (1) Wiy (62) — Wiy (1) W, (62) ] X1,

with m, = 0, £1.
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8.2 Two Fermions in a Potential Well in the Presence of §
Potential

Two identical fermions of mass m, constrained to move along a segment of length
L, have a spin component along the z axis equal to —i—%.

(a) What are the minimum system energy and the corresponding eigenfunction?
(b) If there is an interaction potential k §(x; — x,), how does the value of the energy
change to first-order Perturbation Theory?

Solution

(a) Thesystemis composed of two identical non-interacting fermions. Its spin eigen-
function is

( ) + h + h

Slzy82.2) = —+=.

X812, 82,2 X SRR

Each of the two particles, if isolated, has energy eigenfunctions and eigenvalues
given by

() 2 . nmx E n2m2h? 12
w(X) =/ — sin — ,=———, conn=1,2,...
L 2mlL?

The two particles are non-interacting and, therefore, the spatial part of the generic
eigenfunction can be written as a product of two eigenfunctions relative to the
single-particle Hamiltonian and the eigenvalue is the sum of the two correspond-
ing energy eigenvalues. However, since the overall wave function of the system
must be antisymmetric in the exchange of the two particles and the spin function
is symmetric, the spatial part must be antisymmetric. For this reason, the state
of minimum energy cannot be that in which the two particles are in the ground
state, but rather

L
V2

corresponding to the energy level

\Ilslvz,.ﬁ‘z«- (.X] ’ XZ) =

h h
[¥1 ()Y (x2) — Yo (x) Y1 (x2) ] X (+§, +§) ,

S h?

Ei,=——.
Y27 L2

(b) Having introduced the § interaction potential, the energy level is not modified
by first-order Perturbation Theory. In fact, it results that
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L L
El,=k / dx, / dxy W5 o (01, x0) 80y — x2) Wy, s, (X1, %2) =
0 0
L 2
=k fo dx |Wy, . (x, )| =0,

due to the antisymmetry of the integrand function.

8.3 Two Interacting Fermions

Two particles of equal mass and spin % are constrained to move along a line and
interact via a potential

1
V = Ekx2+aS1 -S,,

where k and a are constants (k > 0), x is the relative distance between the particles
and S; and S, are their spin operators.

Determine the energy eigenvalues in the case in which the particles are different
and that in which they are identical.

Solution

Once we have separated the motion of the center of mass from that of the relative
coordinate x, we limit ourselves to considering the latter. We note that (S is the toral
spin)

1 1 3
Sl-sz=§(s2—sf—sg)=z(sz—zhz).

It follows that the Hamiltonian commutes with S2 and S, and, therefore, that we
can consider the eigenstates common to 7, S? e S.. They are given by the tensor
product of the eigenkets of the harmonic oscillator Hamiltonian with the eigenkets
commonto S%e S,.

The eigenvalues, if the particles are distinguishable, are therefore given by:

1 1
ES' = (n+ 3 Y ho + i ah?  for triplet states,

Effo =n+ % ) Aiw — % ah? for singlet state,
withn =0,1,....

Letus now consider the case of identical particles. Notice that changing the relative
coordinate x in —x is equivalent to the exchange of the two particles and that the
nth eigenfunction of the harmonic oscillator Hamiltonian has parity of (—1)". As a
consequence, the eigenvalues do not change, but the triplet states (symmetric) may
exist only if n is odd and the singlet states (antisymmetric) only if » is even.
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8.4 Two Identical Fermionic Oscillators

A system composed of two identical particles of spin % constrained to move along a
line is described by the Hamiltonian

1 1
H= ﬁ (p% + p%) + 5 ma)z(x% + X%)

Determine the complete wave function (spatial part and spin part) of the states
corresponding to the ground level and the first excited level, as well as the related
eigenvalues of H, S? = (S; +S5)% and S..

Solution

For the i th particle, we denote denote the energy eigenfunctions for a one-dimensional
harmonic oscillator by v, (x;) and the spin eigenstates by x4 (i). Being identical
fermions, the eigenfunctions common to 7, S?, S, must be antisymmetric under
the exchange of the two particles. As for the spatial coordinates, we can construct
the following complete energy eigenfunctions having definite symmetry properties
(indicated with + and —):

Vo (X1, x2) = Yo(x1) Yo(x2)  withenergy E = ho
and

Ui (x1, x2) = \/% [Vo(x1) Y1 (x2) 4+ Y1 (x 1) Yo (x2) ]
with energy E = 2hw.
Yy (X1, x2) = \/% [Yo(x1) ¥1(x2) — Y1 (x1) Yo(x2) ]

The possible total spin states are singlet and triplet. Denoting by ¥, ;. the total spin
S eigenstates with eigenvalues S? = s(s + 1)h? and S. = 5.4, we have an antisym-
metric state and three symmetric states:

1
Xoo = 7 [+ (D) x-2) = x- () x4+ )],
x1.-1 = x-(1) x-(),
1
X0 = 7 D (D) x-@) + x- (D) x+ ()],
Xi+1 = x+(1) x+(2).
The fully antisymmetric overall wave functions are

Vi (x1,x2) x00  for the ground state

and
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Vi (x1, X2) X0,0
Yy (X1, X2) X1,-1
Yy (x1, X2) X1,0
Y (X1, X2) X141

for the first excited state.

8.5 Double Oscillator for Identical Particles

Two particles, each of mass m, are confined in the potential of a one-dimensional
harmonic oscillator

1
V = - kx?
2x

and interact with each other through another attractive elastic force having an elastic
constant k << k.

(a) What are the states corresponding to the three lowest levels of the system Hamil-
tonian?

(b) If the particles are identical and have O spin, which of these three states are
allowed?

(c) If the particles are identical and have spin % what is the total spin of each of
these three states?

(Hint: use an appropriate change of variables.)
Solution

Having denoted the coordinates of the two particles by x| e x;, the system’s Hamil-
tonian is

i 82+82 SRR Y )?
— | —+— —k(x{ +x —k(x; —x2)°.
om \ox2 " ax2) 27 T T T

We introduce the relative and center of mass coordinates

X1+ x2
2

X = and x =x; — x2.

In these variables, the Hamiltonian itself appears as a sum of terms relative to har-
monic oscillators, each one dependent on a single variable:

H=Hcm +H,,
B”oa? 1
Heyw = —— —— + = Mo?X?,
M= "oyax: T2 Me
2?1
Hy = ——— + = po*x?,
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where we introduced the total mass of the system and the reduced mass

and the frequencies

[k . k+2k
w=,/— and o = .
m 21

The separation of variables allows us to solve the eigenvalue equations for the two
Hamiltonians separately: the eigenfunctions are the product of the eigenfunctions of
the individual oscillators and the eigenvalues are the sum of the eigenvalues.

(a) To determine the lowest energy levels, the hypothesis k < k must be taken into
account, from which we derive 2fiw > hiw’ > hw. So, the three lowest levels of
energy are, in ascending order,

1
Ey = zh(a)—i—a)’),
E| = Ey + ho,
E2 = E()—i-ha)/.

Having denoted by ¢ (x) the nth eigenfunction of a harmonic oscillator with
frequency w, the three corresponding eigenfunctions are given by

Yolxi, x2) = ¢ (X) ¢ (x),
¥ (x1, x2) = 6\ (X) ¢ (x),
Yo (x1, x2) = ¢\ (X) 6\ (x).

(b) If the particles are identical bosons, the wave function must be symmetric for
the exchange of coordinates x; <> x, corresponding to the exchange x < —x.
Therefore, taking into account the fact that the nth eigenfunction of the harmonic
oscillator energy has parity (—1)", the third level is not allowed.

(c) If the particles are fermions, the spatial wave functions must be multiplied by the
total spin eigenfunction, which is antisymmetric in the case of spin O (singlet)
and symmetric in the case of spin 1 (triplet). If the fermions are identical, the
wave function must be overall antisymmetric by exchange. We will therefore
have the following total spin states for each of the 3 levels:

Eo—)S:O,
E]-)SZO,
E2—>S=1
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8.6 Identical Particles in a Box

Two non-interacting identical particles of mass m are closed in the box [x| < a, |y| <
b,|z] <c,witha >b > c > 0.

(a) Determine the energy eigenvalues and eigenfunctions, specifying the degree of
degeneracy for the ground level and the first excited level, in the case of spin-free
particles and in the case of fermions.

(b) Assuming the particles are fermions in one of the eigenstates common to the
total spin operators (S> and S.) and the Hamiltonian in the first excited state,
determine the probability of finding both particles in the x > 0 region.

(c) Suppose, still in the case of fermions, that we add to the Hamiltonian the term

T2h?

AV =A Iy I A << 1).

8ma*

Determine the first-order perturbative corrections in the first two levels.
Solution

The Hamiltonian is separable into the three coordinates, each of which is bound on
a segment of different length. Each of the particles, if present individually, would
have energy eigenfunctions

Vi tm (0) = Y (x) Y1(y) ¥ (2),

where
Lcos k2 odd k
a 2a

V) ="
\/;smﬂ, even k

2a

within the (—a, a) segment and zero outside. Similar expressions are valid for ¥ (y)
and v, (z). The corresponding eigenvalues would be

p_mR (P
m="gm \az "2 2 )

(a) In the absence of spin, and therefore of symmetry by exchange, the ground state
is non-degenerate, has energy equal to 2 E ; ; and wave function

Yi,1,1(r) Y1 (r2),

which is symmetric for exchange of the two particles.

The first excited level is obtained by increasing the quantum number relative to
the coordinate x to k = 2 (remember that a > b > ¢). It is doubly degenerate,
has energy E 1,1 + E» 1,1 and eigenfunctions
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Yi,1,1(ry) ¥2,1,1(r2)

and

Y2.1,1(r1) ¥1,1,1(r2),

which can be combined symmetrically or antisymmetrically.

In the case of fermions, it is necessary to impose the antisymmetry of the com-
plete wave function (position and spin) for particle exchange. The energy levels
do not change, while, as regards the self-functions, the situation is similar to that
of problem Sect. 8.4. Using the same notation for spin states, the ground state is
non-degenerate and has wave function

Y111 () ¥i,1,1(r2) Xo,0,

while the first excited level is four times degenerate, has energy equal to E; ;1 +
E5 1.1 and wave functions

Ui (r1, r2) Xo.0s

Y (X, r2) xi,-1,

Y, (ry, r2) Xxi,0s

Yy (X, r2) xi41,

where
1
Wm, ry) = 7 [V, ¥2,1,1002) + ¥2,1,1(00) ¥1,1,1(x2)] =
1
= Wi [Y1(x1) ¥2(x2) + Yo (x1) ¥1(x2)] v1 (1) ¥i(z1) ¥i1(y2) ¥1(z2),
_ 1
Yy (ry.ry) = 7 [V ¥2,1,1002) — ¥2,1,1(r) ¥i,1,1(02)] =
1
= 7 [Y1(x1) ¥2(x2) — Yo (xp) Y1 (x2)] Y1) ¥1(z) ¥1(v2) ¥1(z2).

(b) After integrating over coordinates y and z, we calculate the desired probability:

1 a a
Pi(x1,x > 0) = 5/0 dxl/O dxy [Yr1 (x1) Yo (x2) & Y2 (x1) Y1 (x2) ] =

= e [ dm e vA ) + 3 vic) +
=2/ A X0 [y (1) ¥y (x2) + Y5 (x1) ¥y (x2
£ 291 (x1) Yo (x2) Y2 (1) Y (x2)] =

—1 ! +2 ud ’ =

=313 |:/(; x Y (x) 1/f2(x)i| =
1{1 2 |:/“ TXx . nxir}

=—-1-+— dx cos — sin — =
212 a2 lJ 2a a
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11 47
=—-{-x2|— .
212 3r
(c) For each state |y), we have to calculate
2h2
8ma*

(VIAVIY) =4 1,

where [ is
I = (Ylx1x2 + y1y2 + 2122|%).

For the ground state we have

I = (x1) (x2) +{y1) {(y2) + (21) (z2) =0,

because, for reasons of symmetry, each expectation value is zero.

For the first excited level, we have to diagonalize the matrix relative to the
two different wave functions (the potential does not depend on the spin). Let
us first consider the diagonal elements, for which we immediately see that the
coordinates y and z do not contribute. For the first diagonal term, we have

W sy
1 a
: / dxr dxy x16 [ (60) Ya(62) + P ) (e ]

—a

I+

Once the square has been expanded, we note that the two quadratic terms give
zero result, because they are proportional to the expectation value of x in an
eigenstate of the well. We obtain, therefore, integrating by parts,

) 2 324\
L= |:/ dx x ¥ (x) WZ(x)i| =2 <W) ‘

In a similar way, we obtain

32a

2
I_ = (Y laxalyy) = -2 (W) .

It is easy to see, with analogous calculations, that the non-diagonal terms are
null. So, the corrections in the first excited level are

128 n?

EAViyH =+ — A ——.
WERVIVE) = 2 hi s
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8.7 Three Interacting Fermions on a Segment

Three identical particles of mass m and spin 1/2 are constrained to move along the
x-axis in the segment (0, a). They are subject to potential

V=a(S1-82+Sl~Sz+Sz-S3>,

with & < 0 and S; spin of the ith particle. A measure of the total spin z-component
provides the value S, = +%h. Write the possible energy eigenfunctions and the
related eigenvalues. What is the eigenfunction of the ground state of the system in
this spin state? What is the energy eigenvalue in this state?

Solution

The potential can be rewritten in the form

V=— (2-57-57-573),

R

therefore, the energy eigenfunctions are the product of eigenfunctions related to the
spatial coordinates for total spin eigenfunctions. The three fermions are in a state
with S, = —i—%h and spin quantum number s = %, which is the maximum value that
s can assume. The spins of the three particles have the same component z, so the
total spin eigenfunction is symmetric and, as a consequence, the part dependent on

the spatial coordinates must be antisymmetric:

1;ﬁnl (X]) wnl (Xz) vfn, (X3)
\Ijnl,nz,ny%, %('x17x2’x3) = — det an(xl) an(xz) Iﬁnz(x3) X
. V3 (1) Yy (32) Y (x3)

33.
202

The eigenvalues corresponding to these eigenfunctions are

w2 h?

2ma?

3 .
E = (n%+n%+n§)+zah2 withny,ny,n3 =1,2,...
Given the spin state, the spatial part of the eigenfunction must also be antisymmetric
in the ground state, so the three quantum numbers must be different and such that
the energy is minimal, thus n; = 1, n, = 2, n3 = 3. So, we get

\IJ],2,3; +3 (x1, X2, X3).

(SIS

The corresponding eigenvalue is
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8.8 Two Interacting Fermions in a Sphere

Two identical particles of spin % are in an impenetrable sphere of radius R..

(a) Write the energy eigenfunctions concerning the ground state and the first excited
state.
(b) Calculate the way in which the degeneracy is modified if the following interaction
occurs:
V=u«a S1 . Sz,
where S and S; are the two particles’ spins.
Solution
In the case of a single spin % particle in an impenetrable sphere, having in mind the
results of Problem 3.13, the eigenfunctions common to energy and spin are given by

wn,é,m,ms (r, 0, <.0) = 1,[/n,l,m (r,0, 90) Xmy»
where y,,, are the S, eigenstates corresponding to eigenvalues m h = :t% and
I/In,ﬁ,m(rs 97 §0) = Rn,Z(r) Yén(e’ ‘P),

where

Ry e(r) =N jelkner) —and  ky, =

Here, j, is the £th spherical Bessel function, while z,, ; is the nth zero of j,. k, ¢ is
related to the energy eigenvalue E, , through the relation

h2
En’[ = % ki[.

The ground state is not degenerate and is obtained for £ = 0 andn = 1,

r Ly E _h2n2
0= oo 0= SR

The first excited state is obtained for £ = 1 and n = 1 and is three times degenerate
(m =0, £1).
Now we come to the case of two spin % particles.

(a) The two fermions’ wave function must be completely antisymmetric for par-
ticle exchange. In the case of the ground state, there is only one possibility,
corresponding to the singlet state for the total spin, xs2 s, = Xo,0- SO, we have

Y1,5=0(r1, r2) = Y100, ¥1,0,0(r2) xo,0-
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(b)
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The first excited level of the system must have one particle in the ground state
and the other in the first excited state. This allows both the singlet state

1
VY2.ms=0(r1, I2) = 7 [V1.0.0000), ¥i,1m(F2) + Vi m (1), ¥1.0002) ] X0.0,

which has 3 possible determinations in correspondence of the 3 values of m =
0, 1, and the triplet state

1
VY2.m,s=1(T1, T2) = 7 [V1.0000), Yi0m(X2) = Y11m (@), ¥1,00002)] Xtmg

which has 9 possible determinations at the 3 values of m = 0, £1 and the 3
values of my; = 0, £1.
The interaction V = S - S, can be rewritten in the form

a o, 2 2 a . , 3.,
% > (S ST —5%) > (S > )
In the singlet states, V = —% ah?, while, in the triplet states, V = iahz. So,

there is a different contribution to the energy eigenvalue, depending on the total
spin state.

With regard to degeneracy, it is still absent in the case of the ground state with
a change in the energy value. Degeneracy is only present in the case of the first
excited state, which now gives rise to two distinct levels:

2

=0T D uR?
2

=L o R?

3

(Z%,l +7?%) — 1 ahi’ 3 times degenerate,
1

(Z%,l +7%) + I afi’ 9 times degenerate,

where 71| = 4.49341 (see [1]).

8.9 Two Fermions on the Surface of a Sphere

Two identical particles of spin 1 ot interacting with each other, are constrained
to move along a spherical surface, so that the only degrees of freedom are angular
position and spin. Among all of the states accessible to the two-particle system,
determine how many states meet the following properties:

(a)

are eigenstates of both L, and S, the components along the 7 axis of total angular
momentum L. = L; + L, and of the total spin S = S| + S, where indices 1 and
2 refer to the two particles;
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(b) the quantum numbers ¢; and ¢, relative to the angular momenta of the two
particles are either O or 1;
(c) the total spin state is a triplet one (eigenstate of S with s = 1).

Solution

The desired states are the product of the eigenstates of the total angular momentum
times the total spin eigenstates.

The third condition indicates that the eigenstate of the total angular momentum
must be antisymmetric for the exchange of the two particles. Since, for the second
condition, £; = 0, 1 and £, = 0, 1, we have the following possibilities:

1. £ = 0and ¢, = O: thereisonly one state, |m 1, m,) = |0, 0), which is symmetric,
and therefore to be excluded;

2. £; = 0 and £, = 1: there are three states, |0, 0), |0, +1), |0, —1),

3. £1 = 1 and £, = O: there are three states, |0, 0), | + 1, 0), | — 1, 0); both in this
case and in the previous one, the states have no definite symmetry, but, starting
from these six states, we can consider the three symmetric linear combinations
and the three antisymmetric ones;

4. £y =1land¥?, = 1:£ = 0, 1, 2 total angular momentum states are possible. Since
Clebsch-Gordan coefficients meet the following relationship:

(J1, jo, my1, ma|j1, jo, J, M) =
(=)= (o, jiyma, myl o, i, J, M),

it turns out that states with £ = 0, 2 are symmetric and should not be considered.
Instead, the states corresponding to £ = 1 are antisymmetric:

1
|3=1,m=0>=—2 (Imy=+1,my=—1) —|m = —1,my = +1)),
1
|E=1,m=+1)=—2 (Imy = +1,my = 0) — |m; =0, my = +1)),
1
|5=1,m=—1)=ﬁ (Imy=—1,my=0) — |m; =0,my = —1)).

The answer, therefore, is that there are a total of 6 states with respect to the angular
momentum multiplied by 3, the possible total spin states, giving the total number of
18 states.

8.10 Three Electrons in a Central Potential

Three electrons are bound by a central potential, and the interactions between the
electrons are to be ignored. One of them is in the energy eigenstate E; with spatial
wave function |, while the other two are in the energy eigenstate E, with spatial
wave function ;.
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(a)

Write the possible states that are compatible with the Fermi-Dirac statistic and
the value of their spin in these states.

(b) What is the total degeneracy of the level E = E| + 2E, if i, and i, both
correspond to states with £ = 0?7

Solution

(a) Denote, by ¥ F, the eigenfunction of an electron that is located in the energy level

(b)

n and in the state of spin with m; = £1/2. The two particles in the state with
n = 2 must be in different spin states, while the other particle can be indifferently
in one of the two spin states. Altogether, we have two possibilities that we can
write, antisymetrizing through the determinant of Slater,

1 Yy (D) Y () Yy (x3)
W00 j=d mymrd (X1, X2, X3) = —= det Vs (x1) ¥ (x2) ¥y (x3)
V3L ) v () vy ()

and

Y (x1) ¥y (x2) ¥y (x3)
W00 =t m=m 1 (X1, X2, X3) = = det [ ¥y (x1) ¥ (x2) Y5 (x3) | -

VU s ) 05 () ¥y ()

In the previous expressions, j and m; are the quantum numbers related to the
total spin. In fact, it is easy to see, expanding the determinants according to the
first line, that the two electrons in the level with n = 2 are in a singlet state;
therefore, their total spin is 0 and the total spin of the three electrons must be
1/2. The value of its z component is then given by the spin status of the electron
in the level with n = 1.

Since there is no degeneracy due to angular momentum (¢ = 0), the degeneracy
ofthe E = E| + 2E; level is 2.



Chapter 9 ®)
Scattering (Born Approximation) st

9.1 Yukawa and Coulomb Potential

Determine the Born approximation of the differential cross-section for the elastic
scattering from the:

(a) Yukawa potential:

(b) Coulomb potential:

Solution
The scattering amplitude in the Born approximation is given by (A.84).

(a) For the Yukawa potential, we get

—ar

2mV0 o .
fa@) = — / dr sin(gr)
0

-
h2q ar

2mV, o°
I mVo 3 / dr efar+1qr —
hqa 0

2mV() ~ 1
= — ~ =
h2qa a—1q

2mV0 1
Ra a4 q%

e

The differential cross-section is

2 2
dop . 2mVj 1
dQ — \ Ra o +4k?sin* § |
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where 6 is the angle between the incident and the scattering direction.

(b) We can obtain the differential cross-section for the Coulomb potential from the
previous formulas through the limit

Vo
a — 0, Vo — 0, — = q192-
o
The result is 5
dop _ 919>
dQ  16E*sin*§’
where E = h?k?/2m is the energy of the particle incident on the center of force.

This result coincides with the classic Rutherford one and with the exact quantum
result (notice that the cross-section does not depend on h).

9.2 Gaussian Potential

Calculate, in the Born approximation, the differential and total cross-sections for
elastic scattering from the potential

Vx) = Voe @,

Solution

Using the notation of Appendix A.13, we apply formula (A.84)

2m [ .
f8(q) = ——— dr sin(qr)V(r)r =

h*q Jo
2mVy [ 2

= — }V;qo /0 dr sin(gr)re™™ e _
ﬁmV() _

= — e 42,
2h%a3

In the last step, we used formula (A.5). Considering g = 2k sin %, the differential
cross-section in this approximation is

2772
T VO e—Zi% sin?
4hta®

S5

do . )
d_Q = ()" =

Finally, we calculate the total cross-section:
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2 +1
o= fde—U — o VO / dcos@eié(lfmse) =
—1

dQ ARta®
N n2m2V02 1— 672% -
2h*ad
2,172
:lﬁﬁ_@_fmﬁﬂ,
4h2aSE
where E = h2— is the energy of the scattered particles.

9.3 Scattering From an Opaque Sphere

Determine the Born approximation of the differential and total cross-sections for
elastic scattering from the potential

-V, if 0,al,
Vi) = o ifr €[0,a]
0 elsewhere.

Solution

Using the notation of Appendix A.13, we apply formula (A.84)

2 o0 omV. a
f3(@) =~ dmwmww=m°/mmwn=
h*q mq Jy
2mVy [9° .
= -hz 30 /(; dx sinx x = h2 3 [sm(qa) — gacos(ga)] =
2mV,
= mhoa ¢(qa),
where )
sinx —xcosx 1 |
) = ————— =~ jix).
X X

and j, are the spherical Bessel functions (see (A.47)). The differential cross-section
is therefore s
dog 2mVoa® ) .
E = (T () (2ka sSin 5),
where 6 is the angle of deflection.
Let us study the behavior of the differential cross-section. Since
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G(y)
0.08 -
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0.04 |-
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<

Fig. 9.1 Scattering from an opaque sphere: behavior in the variable y = 2ka of the Born total
cross-section (apart from an overall constant)

, 1
ilg%w(x) =3
lim ¢(x) =0,
X—>00

the differential cross-section shows a maximum in § = 0, k2 - damped oscillations
and zeros placed where x = tan x, with x = 2ka sin %. For ka « 1, the scattering is
isotropic; for ka > 1, as the cross-section goes quickly to zero, the diffusion takes
place in an essentially forward manner.

We now calculate the total cross-section in Born approximation.

2mVoa3\® ™ .0 0 , .0
=2 2 A d9251n§ coszgo(ZkasmE):
2mVoa®\® 1 Zha 5
8 d =
i ( 2 ) (2ka)? /o e

2mVpa?
T -

Il
o0

2
) G (2ka),
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where

1 [Y  (sinx —xcosx)? cos2y+2ysin2y +2y* —2y? — 1
Gy == dx e = .

5 8y6

This function tends to a constant value of 1/18 for y — 0 and is monotone decreasing.
Its behavior is shown in Fig. 9.1



Chapter 10 ®)
WKB Approximation e

10.1 Energy Spectrum of the Harmonic Oscillator

Calculate the energy spectrum of the harmonic oscillator in WKB approximation.
Solution

The WKB method calculates an approximation to energy eigenvalue E, energy
imposing that relation (A.86) is satisfied, i.e., that the integral of the impulse along
the classical closed trajectory (one period) for that energy isequal ton + % times 2 h,
where 7 is an integer. This integral is equal to the area included within the classical
trajectory in the p — g phase space. For each energy level E,, such a trajectory is
defined by the relationship

2
p 1 2 2
E,=— + -—mwq”,
n= oy T
ie.,
- p’ q°
2mkE, 2E,

In the p — g phase space, the closed path corresponding to a period of classical
motion is, therefore, an ellipsis of semi-axes

2En
a = 5 and b=.2mE,,
mw
whose area is
2E,
wab=m .
w

Applying the WKB quantization condition (A.86), we obtain
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v (z)

V(z)=mgz
Ekmgz /

1
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Fig. 10.1 Potential well for a body falling to the Earth’s surface

2FE, 1 .
T =2nh|n+ = withn =0,1,2...,
w 2

i.e.,

1
En=<n+§)hw withn =0,1,2....

In this case, the WKB method gives the exact result.

10.2 Free Fall of a Body

Determine the energy spectrum for a body falling to the Earth’s surface in WKB
approximation. Show that, for macroscopic objects, it is not possible to reveal quan-
tum effects.

Solution

The free fall of a body to the Earth’s surface is the motion of a mass m in a potential

| mgz, ifx >0
Vi) = {oo, ifx <0’
shown in Fig. 10.1. Classically, supposing elastic bumps against the floor at z = 0,
there is a periodic motion between the turning points z =0 and z =7 = mig. The

period T can be obtained through the relationship
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and the corresponding frequency is

m

The discrete energy spectrum can be evaluated in WKB approximation through the
Bohr-Sommerfeld relation:

z 1
I:/ dz\/Zm(En—mgz)znh<n+§>.
0

We notice, however, that this rule was derived under the hypothesis that the potential
is weakly variable, and this certainly does not happen in z = 0, where V (z) diverges
abruptly. However, we can resort to the trick of considering the potential extension
to z < 0 in the form

V(2) = klz|, (10.1)

restricting ourselves, however, to odd solutions (odd n) that are zero in the origin.
We must therefore impose

z 1
/ dz\/Zm(En—mg|z|)=7rh(n+§> withn =1,3,5,...

z
Z

or, equivalently, given the potential symmetry,

: 1
sz dz\/Zm(En—mgz)ani(n—Z) withn =1,2,3,....
0

This integral can be easily evaluated:

z 2 z
I= \/Zng/ dz 7 —z7=—/2m?g |:§ (Z—z);:| = 2m2gZ%.
0 0

We therefore obtain the spectrum

Wi

3 —1
E —Mf/mgzh2 withn =1,2,3,....

n — 2

At a macroscopic level, quantum effects are not perceptible. Indeed, in the case of a
mass m = 1 K g that falls from one meter in height, the energy is

E, =mgz=9.8J,
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while the ground state energy is

Ey ~ Jmg?h? ~ (1-10%-107%)3s = 1072 J.
Let us estimate n. Since, for large n, it results that

2
En ""7’13E1,

3 3
E,\> 9.8 \?
~(=2) ~ ~ 10%,
" (El) (1022>

This is a huge number, but it may be that, around the E,, level, the density of levels is
low, allowing quantum effects to be detected. To this end, we estimate the distance
between the levels around E,, from

we have

dE, .
AE, = An  with An =1.
dn
We obtain 5
AE, = 3 E i~ 107101072 = 1073,

which is extremely small compared to E, = 9.8 J.

10.3 Infinite Potential Well
Determine the energy spectrum in WKB approximation for the potential
) TX
V(x) = Vycot® —,
a

where a is a positive constant. Discuss the limits for small and large quantum num-
bers.

Solution

This potential is shown in Fig. 10.2.
The energy eigenvalues E,, can be determined by the relationship

1
I:nh(n—i—i) withn =0,1,2..., (10.2)

where, taking into account the potential symmetry,
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V(%) =VoCot* —
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Fig. 10.2 Potential well V (x) = Vp cot? Z*

< T e

2 E 2 7
I :2/ dx \/2mV, /V —cor T = —a\/ZmVO/ dy /o — cot? y,
X1 0 a T ”aﬂ

and, from the turning point condition, we get
) TX) . E
V(x)) = Vycot™ — = E,, ie., o= — =cot
a

We make the following substitution:

o — cot?
7= —2y =, atan’y — 1.
cot®y

From
1422
Z=atan’y—1 = tany= ’
o
1 — cos? o
Zz=a—y—1 = coszyz—,
cos?y Z+1+a
we obtain
a tan 7 cos? Z o o
dz=2 L4y o =2 X2 | dz
Z Cos“y o tany az2+14+aV 14z

and
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Vo —cot?y = Y
tan y 1422

The new integration limits are given by

X o —cot? L 0
yi = = 71 = _——
a cot? T4 ’
a
a —cot? §
= o=, =+
cot 5

The substitution in the integral to be calculated gives us

2 +o00 '2
=2 ,/2mV0/ d s
T 0

‘Crito@+

2 oo 1 1
=—a,/2mV0/ dZ [ to — }:
T 0

Z24+1+a 241
2
=—a,/2mvo(\/1+a—1)%,
4

Y2 =

(SR}

where we used the result

400 1 N
dz —— = [arctan ] =
/o 22+1 [ lo

SR

We can now impose the WKB quantization condition (10.2) and, remembering that
o = £ we obtain the energy spectrum

x
2 h? 1\ [ Vo 1
E, = — = 2nhy| — - .
2ma? (n + 2) +em 2ma? <n + 2)
This energy spectrum for V) small recovers the spectrum of the square potential well

and, for V; large, that of the harmonic oscillator (notice that V) is the value assumed
by the potential in £, as shown in Fig. 10.2).

10.4 Triangular Barrier

Evaluate the WKB approximation to the probability of a particle being transmitted
through the triangular barrier
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Fig. 10.3 Triangular potential barrier

0, if [x]| > a;

Vi = {Vo(l — Il iflx <a

for energy lower than V.
Solution

With reference to Fig. 10.3 the classical turning points are given by X, where

E

Vx)=E = i:a(l—vo>.

Exploiting the potential symmetry, we obtain

4 [ x E 4 < x
lnTz—ﬁ/ dx \/2mV, (1—;)—7():—%‘/2;7%/0 dx = =,

0

Q| =

After the substitution y = L X we get
a a

<;)3 _ 8avom

3
— Vo — E)2.
3 hv Vo )

4 i 4 2
lnT:—%\/2mV0/ dyf:—ga\/ZmVog
0

Ultimately, the probability of transmission beyond the barrier is

3
7= o} -0
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V(x)

l
L |

-a

Fig. 10.4 Parabolic potential barrier

10.5 Parabolic Barrier

Use the WKB approximation method to evaluate the probability of a particle being
transmitted through the parabolic barrier

0, if [x| > a;
Vix) = 32 . .
Vo(l—u—z), if |x| <a

for energy lower than Vj.
Solution

With reference to Fig. 10.4 the classical turning points are given by +Xx, where

- _ E
Vx)=E = x=a/l——.
\ Vo

Exploiting the potential symmetry, we obtain

4 x x? E 4 X xr x?
2 omve | ax (1 =S 222 vy [ ax R =
h mo/o * < a2> Vo h mo/(; x a® a?

4 S, i/id 1 ¥
=—=2mVy = x4/1==.
h Oa 0 x2

After the substitution x = X sin 6, we get

InT
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) Vizfzde 29 ar__ 2
nT =——2mVy — Cos" 0 = ————— p7,
A 7 J hv2mvy UE

where pp = +/2m(Vy — E) is the classical momentum corresponding to a constant
potential equal to V.
Ultimately, the probability of transmission beyond the barrier is

___am

>
T =e¢ ™ /2m Vg PE




Chapter 11 ®)
Variational Method Geda

11.1 Ground State of an Anharmonic Oscillator

Use the Variational method to evaluate an approximation to the energy of the ground
state of a quartic oscillator, i.e., a particle of mass m subject to the potential:

Vx) =pxt (> 0).

Notice that this potential, like the harmonic one, diverges to infinity, has a minimum
at x = 0 and is parity-invariant. As a consequence, the energy spectrum is discrete
and the ground state has even parity and no nodes. We suggest, as trial functions that
meet these requirements:

2
ot
¥(x; @) = constant - e~ %7,

the same set as the harmonic oscillator ground state (in this case, @ = Z2).
Solution
The energy expectation value in the state ¥ is
+oo o R d* 2
ey < WHIV) Jooo dx e [ Zmdxzﬂm] e
o) = = —
(Y1) f dx e—ox’
+oo )

Z,/ / |:——( o + o?x?) + ux? i| et —

. o I ha? b+l h o . 3

- V om ° T om 2T T 4 402’
where results (A.3) have been used:
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232 11 Variational Method

i eNE e

Now we look for the minimum of E («):

dE(x) h? 3u 5/ 6um
do = 4m 203 = “ h?

Notice that the second derivative is always positive, so « is effectively a minimum
point. For this value of o, we obtain the following approximate value for the ground
state energy:

(1 20wt (1) 3% fom ) G
4m h2a3 4m 2 8m h2 8Y m2

11.2 Ground State of a Potential Well

Use the variational method to evaluate the energy of the ground state for a particle
bound on the segment [—a, a]. Use, as a trial function,

v(x;a) = [x|* —a”,
where « is the variational parameter. Compare this approximation with the exact
value and determine the relative error.
Solution

The energy expectation value in the state ¥ is

Wiry) 20" e @ e [~ [ o —at)
wiy) 2 [ dx (xo — a%)? a
B 1430+ 2a?
4ma? 1 -2«

E(a) =

By requiring that the derivative of E(«) vanishes, there are two solutions
1
=5 (1£v6).
2
The solution relative to the + sign gives us the minimum point sought (the other solu-

tion corresponds to a maximum point). For this value of o, we obtain the following
approximate value for the ground state energy:
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var  1.23737H2
EfN =— 17—,
ma
to be compared with the exact value
w2 h?
Ei=——.
' 8ma?
The relative error is equal to
Evar _ F
L~ —0.002976,
E,

less, therefore, than 0.3%.

11.3 First Energy Levels of a Linear Potential

A particle of mass m moves into a linear central potential
V() =Kr.

For this potential, the radial Schrodinger equation presents a natural scale of lengths

7o =+ %; in terms of the scaled position p = r’—o it can be rewritten as
> e+
—_—— _— = & s
[ dp? pe p|¥(p) =¢ey(p)
where

E . 5 h2k?
£ = — with  Eg =,/ —.
E() 2m

By numerically solving this equation, which, in the case £ = 0, is the Airy equa-
tion, you find that the lowest eigenvalues for £ =0, 1,2 are, respectively, ¢ =
2.3381,3.3612, 4.2482. Exploiting a trial function that has the correct trend for
o — 0, use the variational method to evaluate these eigenvalues.

Solution

Due to the centrifugal potential, the wave function behaves in the origin as p**!.
Because the potential diverges asymptotically, we can use the trial function

V(p)=ple™

The energy expectation value in this state is
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Wirly) Jodo o™t e [~ 4 B o] pt1 e

E(a) = = =

(Vly) Jo dp p>ED =20
_Q0+3)!1Qa) 220 +20+3) 20742043
N (2¢ + 3)! Qo) ~@+3) N 20 ’

where, to calculate the integrals, (A.6) has been used. As a function of «, E(«) has
a minimum that can be calculated by imposing the zeroing of its derivative:

do® —20 -3 34+2¢
a—:() s a(g)=3+_'
202 4

Substituting, in E(«), the values £ = 0, 1, 2, the following results are obtained:
E(x(0)) = 2.4764, E(x(1)) = 3.4812, E(x(2)) = 4.3566,

which reproduce the numerical results with a variable precision between 3 and 6%.
For the test wave function, an asymptotic Gaussian pattern could also be used. The
integrals are equally calculable, using this time (A.2), and results are obtained with
a slightly higher precision.

11.4 Ground State of Helium

The Helium atom has atomic number Z = 2 and mass number A = 4; thus, there
are two electrons moving around a nucleus of mass equal to 4 times the mass of
Hydrogen and about 8 x 103 the mass of an electron. Assuming this mass to be
infinite, we refer to the coordinates of the two electrons with respect to the nucleus
with ry and r; and to their relative position with ry = ry — r;. The Helium atom
Hamiltonian is, therefore,

2 Zer  Ze? &2

1)
H=——(Vi+V)) - — - "—+—.
2m T r 12
If there were no repulsive interaction between the two electrons, in the Schrédinger
equation, there would be a separation between the variables of the two electrons and,
E being the energy of the ground state, we would have

3 zey4ry

VA
YRy 1) =Yg, (0) Y, (1) = — ¢ @ . (11.1)
Tay

Here, we denoted by E; and g, (r) = 2/v/4n)(Z /ao)% -e_%, respectively, the
ground state energy of a Hydrogenlike atom with Z = 2 and the corresponding
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eigenfunction. In this very rough approximation, neglecting the positive term of
attraction between the electrons, the ground state energy would be

m(Ze?)?

0 _ _
E _2E1_2[— e

:| =—8:13.6eV = —-108.8¢V.

Experimentally, it is found that the Helium ground state has energy E = —78.98¢V,
a much higher value.

Use the Variational method to improve this approximation.
Hint: the trial functions will again be given by (11.1), however, considering Z as a
parameter to be determined by minimizing the functional

Z3 2 GRS _Z(y4m)
E(Z)=|— /drldrz e w0 He «w
mag
Solution
The Hamiltonian can be rewritten in the form
K2 ) Ze: (2—-2)* Ze* (22— 2)é? 4 e?
r r r r ra

Taking into account that i, is the solution of the Schrédinger equation in corre-
spondence with the eigenvalue £, i.e.,

n? 5 Ze2\ _m Z%*
Vi )e w0 =~ PERT
2m r 2ay

k]

it is possible to eliminate the differential operators and so we find

73 2 L2z, 72 Q2-2) 2-2) 1
E(Z) = — 3 dridr, e a el —— — _ +— | =
Tay

0 ao r r r2

Z3e\' [ 72
=|—= —— K —-2Q-2)K, + K;3|.
mag a

Here, K, K, and K3 are the following integrals:

-K,
2201+ 0 5 2 2 2
K| = /drldrz e w = (471/ drr e_ﬁ’> = <4JTF> ,
0 3

where 8 = % and (A.8) have been used.
-K,
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1 o) oo
Kz = /dl'ldl'z e_ﬁ(rl-HZ)— = 47'[)2/ dr2 r22 e_ﬂ” / d}’] rle_ﬁ" =
0 0

r

2 1 2(4n)?
S BT

- K3 (this calculation is also present in Problem 6.27)

1
K3 = fdl‘]dl‘z eiﬂ(rl+r2)m = ‘/\drleiﬂrlf(r]),

where

ro = [ drze

[ri — 12|

is afunction of ry only, because, by integrating over the whole r; solid angle, the
dependence on the angles disappears. To calculate f(r), we are free, therefore,
to position ry in the direction of the z axis.

We get

+1 1
f(r) = 2n/dr2 r22 e‘ﬂ’?/ dcosf =
-1 \/rlz+r22—2r1r20059

+1

1
= 2 / dryry e P — [ ri + 713 — 2rir; cos 9] =
ryr -1

2 —Br
= drorye ™ (ri+r—|rn —nl) =
1

27 n o
== |:/ dryrye P (2ry) +/ dryrye (2"1):| =
0

rl ri

4

e 22— 2+ pr)],

where we used the expressions, derived from (A.7),

1 202y —Br
12(0,r1)=§[2—(2+2r1ﬂ+r1ﬂ)6 ']

and |
hi(r1, 00) = 25 (1 + Briye .
Returning to the calculation of K3, we obtain, using the usual integrals (A.8),
* 4 (4m)% 5
_ 2 —Ppr —Br _
K3_4nf0 dririe ‘W[Z—e ‘(2+,8r1)]— 55 7
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By inserting these results into the expression for £(Z), we obtain

e? (27 2
E(Z):—a—0 gZ—Z ,

which takes its minimum value for

27

Z="2egr=1¢

given by

e* (27 2
E(ngf) = —% <§ Zeff — Zeff) =-T775¢€V.
This value is very close to the already mentioned experimental value —78.98 eV and
provides a better approximation compared to the calculation in Perturbation Theory
(see Problem 6.27). Both approximations calculate the energy of the ground state as
the expectation value of the Hamiltonian in the unperturbed state, but the variational
method modifies the value of Z in such a way as to minimize the difference from the
exact value.
Notice, moreover, that
Ze ff < 2.

Taking into account that wave functions are factored, we can consider the approxi-
mation as resulting from a model in which each of the electrons moves in the mean
field of a nucleus with an effective charge Z, sy - e, lower than the real one due to the
screen effect produced by the other electron.
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A.1 Frequently Used Integrals

A.1.1 Gaussian Integrals

Having defined
+oo 2 b
IO(ot)=/ dxe ™ = _[—, (A.1)
o o
we have
+00 5
12n+1(a):/ dx x*" ™ =0,
—0Q
400 - —ax on " " T
Lu(@)= [ dxx = ) (@) = () o = (A2)
—00 8a o
forn=1,2,....

The results for the first values of n are

T
Iy = 013 , = = (A3)

Another Gaussian integral of frequent use is

+00 2
(@, p) = / dx e @ HBx — \/E e, (A4)
oo o

which also allows you to calculate
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2

+00 )
I(a, B) = / dx x sin(Bx)e " =
0
1 /Jroo elﬁx _ efzﬂx e
= = dxx ——— e =
2 J s 21
1 9 /+oo ezﬁx + e—zﬁx e
= == dx —— ¢ =
498 J_s 1
+
= _% 16_4%/ Oodx [ef(axﬂ%)z +e*(ax71%)z] —
B —
2
= —% % 6‘_% Zﬁ =
o
VB 2
e 1

A.1.2 Integrals of Exponential Functions and Powers

+00 ar +00
1,(0, 00) = / dxx"e™ = |:(—1)" / dx e“”] =
0 0 a=1

da"

ar 1
= [(=]D)" — =n!
|:( ) da” a:|a=l "

Similarly, we find the most general result is

b dn
Li(a,b)= | dxx"e P =(=1)"— Iy(a,b).
(a.b) / xxte P = (1) otasb)
Fora = 0 and b = oo, we get
160, 50) 1 1,0, 00) d 1 1 150, 00) d* 1
,00) = —; ,0)=—— — = — , 0) = —5 —
’ g ap g~ g p? p

A.2  Continuity Equation

The continuity equation in Quantum Mechanics is

OP(r,t) .
=-V. , 1),
o1 J(r, 1)

ﬂ3

(A5)

(A.6)

(A7)

(A.8)

(A9)
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where the probability density P is given by
P(r,t) = Y@ 0 =y 1) ¢(r.0) (A.10)

and the probability current density is defined as

h h
i) = m [V @, VY@, 1) =y @, VY, 0] = — I @, HVY(r,1).

- mm h
(A.11)
A.3 Harmonic Oscillator
A.3.1 Operator Treatment
The eigenvalues of the harmonic oscillator Hamiltonian are
1 N
Ey= o+ Dho,  Hin) = Eyln). (A.12)

In terms of raising and lowering (creation and destruction) operators,

v mo . 1 _ mo 4 1 (A.13)
TN T T N 2men TN 2 T T 2men :

the position and momentum operators are given by

h ¥ 1 [hmw ¥
X = (a+a'), p=—y— (@—a). (A.14)
2mw i 2

a and a™ act on the energy eigenkets as follows

any =Jnln—1)  atln)y=vVn+1|n+1). (A.15)

A.3.2 Position Basis Treatment

The eigenfunctions in the position basis are given by

e‘§Hn(§), where & =_|—ux, (A.16)

b0 = (22)’

1
wh/ /2nn!
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where H, is the Hermite polynomial defined by

dre=¢

— (_1\HE?
&) = (1"

Hermite polynomials are orthogonal polynomials,

+00
/ dé H,(§)H,,(§) = ﬁzn nlan,m

[e.¢]

and they satisfy the following recurrence relation:

25 H,(§) = Hyy1(§) + 2n H, 1 (8).

First Hermite polynomials

Ho(x) =1, Hj(x) =2x, Hp(x) =4x>—2, Hi(x)=8x>—12x,

(A.17)

(A.18)

(A.19)

Hi(x) = 16x* —48x% + 12, Hs(x) = 32x° — 160x> + 120x. (A.20)

A.4 Spherical Coordinates

The transition from Cartesian coordinates to spherical coordinates occurs through

the transformation:
X =r sinf cos ¢,
y =r sinf sin ¢,
z=r cosf.

A.5 Angular Momentum

A.5.1 Operator Treatment

The operators J 2 T, Jy, J; satisfy the following commutation relations:

4 J1=0J%J1=[J%J]1=0,

[, J,] =ihJ., [J,, J.] = ik, [J.. J] = ihl,.

(A21)
(A.22)
(A.23)
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The J? and J. common basis is denoted by |j, m):
J21j.om) = j(j + DR j, m), J:\j.m) = mh|j, m).

The operators
Je=J,xilJ, (A.24)

satisfy the following commutation relations with the operators J2 and J,:
[J2, J:] =0, [z Jol = £z (A.25)

J+ act on an eigenket common to J2 and J,, raising or lowering the azimuthal
quantum number:

Jeljom)y=h/jG+ D) —mmE 1) |j,m=*1). (A.26)

A.5.2 Spherical Harmonics

Definition

20 +1 (L= |m])!

P["(cos 0) e™?, A27
G (€ e osOe (A2D)

Yem(0,¢) = (—l)m\/

where P} are the Legendre associate functions defined for |z] < 1,

Im] d|
P (Z)—(l—Z)2

o7 Pe(@), (A.28)

which, for m = 0, give us the Legendre polynomials Py (z),

4

1 d
Pi(z) = — — (1 — 22 A.29
0 (2) T dzz( 7°) (A.29)

They are orthogonal polynomials:

+1 2
dz P, Py(z) = — 60 p. A.30
/—1 2P(2) Py (2) 21 % ( )

Particular values of Legendre polynomials and associate functions:

Py(£1) = ()¢, P(£1) =0form # 0. (A.31)
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First Legendre polynomials:

Py(z) =1, Pi(z) =2z, P(z) = % (322 - 1),

1 1
P3(z) = 3 (52 —32), Pu(2) = 3 (35z% — 30z° + 3).

Orthonormalization relationship

/ dQYy . (0,0)Yen (0, ¢) = 8ee Smm-
Recurrence relationship

cos0 Yo (0, 9) = agm Yor1,m (0, @) + ao—1m Ye—1,m(0, @),

where

e remes—m
tm = Q¢+ 120 +3)

Sum theorem

(A32)

(A.33)

(A.34)

(A.35)

(A.36)

If (©, ®) and (¢', ¢') are two space directions and 6 is the angle between them, a

Legendre polynomial can be expressed in terms of spherical harmonics:

4
Py(cos6) = Z Yen(©, ®)* Y (6, ¢).
First Spherical Harmonics

1
Yo,0(0,9) = ﬁ,

— i — 3 il¢
Y1,000,¢) = o cos®, Y +1(0,¢) =F 3 s—sinfle

(A.37)

(A.38)

(A.39)

Y20(6, ¢) = ,/ (3cos 0—1), Yr.1,00,¢)= ‘/ smecoseei"f’

15,
Y2000, ¢) = Esmzeeﬁ‘z’.

(A.40)
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Ys00.0) = | ——(5cos3 0 — 3c0s8) . V3410.0) = F] 2 sind 29— 1)eTt®
3,00,9) = 167T(SCOS9 3cos0) , ¥314100,¢)=F o1y Sin (Scos™ 6 — D)e™7,

105 35
Y3420,¢) =,/ o sin® 0 cos fet29 | Y3430, ¢) = Fy/ P sin® e3¢, (A.41)

A.6 Schrodinger Equation in Spherical Coordinates

A.6.1 Radial Equation

If the potential energy V (r) is central, the Schrodinger equation is separable into
spherical coordinates. The eigenfunction common to the operators H, L? and L.,
with eigenvalues E, £(£ + 1A% and m#A, respectively, can be written in the form

Ug.(r)
VEn(0.9) = Reo() Yon(6. ) = =272 Y00, ). (A42)
where Ug ((r) is the solution to the radial equation:
B d?Ug, HRHE+1)
- — . U V(Ug, = EUg,, A.43
P Pyl Ee+ V(Ug, E.¢ (A.43)
with m reduced mass of the system.
Ug ¢(r) must satisfy the condition
1in% Ug.(r)=0. (A.44)

A.7 Spherical Bessel Functions

The Spherical Bessel functions are solutions to the Spherical Bessel equation

» & 2.9 2o +1 =0 A.45
z d—Z2¢(Z)+ Zd_z¢(Z)+[Z — £+ D]¢) =0. (A.45)

A.7.1 Spherical Bessel Functions of the First and Second
Kinds

Two linearly independent integrals of (A.45) are given by the spherical Bessel func-
tions of the first and second kinds j; and y, = (—1)“*!j_,_. For the first integer
values of £, they are
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. sin z
Jo(z) = —,
z

. sinz  cosz
QW@ =— - —,
Z Z

. 3 sinz 3cosz
Jz(z)=(;—1>—— -

< <

. 15 6\ sinz 15 Ccos Z
po=(5--)—-(5-1)—.
z z z z z

and

3 cosz 3sing
n@ = (-5 +1) =
b4 Z z

15 6\ cosz 15 sin z
naO=(-5+- “\=-1)—
z z Z z z

Their asymptotic behavior is given by
) 1 t+1
Je(@) ~ —cos\z———m
—>00 Z 2

and

. L+1
ye(z) ~ —sin|lz———m ],
7—>00 7

—

while the behavior in the origin is given by

12

JHD T e+ i
and
20— D!

—> 00

ye(2) o T

(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

(A51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)
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A.7.2 Spherical Hankel Functions

Other linearly independent solutions to the Spherical Bessel equation are the spherical
Hankel functions of the first and second kinds defined by

h(2) = jo(@) + 1ye(2), (A.58)

hP () = ji(z) — 1ye(2). (A.59)

Their asymptotic behavior is given by

1 +
W@ ~ -, (A.60)
I—>00 7
@ D i—ttn)
@) ~ =5, (A.61)
Z‘)OOZ

When the argument is an imaginary number, the Hankel functions have an exponential
asymptotic behavior:

1
hPaz) ~ —eliHm), (A.62)

z—00 17

and {
hPaz) ~ —eltsm), (A.63)

=00 17

A.8 Hydrogen Atom First Energy Eigenfunctions

L 2 . . .
Having introduced ay = % , the Bohr radius, the first two energy eigenfunctions are

wmao=::%§a53e‘%, (A.64)
Y200 = ﬁ ao_% (2 - ar_0> e %, (A.65)
V21,0 = 4\/15 ao_% alotfﬁ cos, (A.66)
Vo141 = L3 L o755 sing e, (A.67)

—da
827 0 ao



248 Appendix: Useful Formulas

A9 Spin

A.9.1 Pauli Matrices

m=<(1)(1)) ,02:<?:)’> ,03=<é_01>. (A.68)

0i0; = 8ij + €ijk0k, (A.69)
{0i,0j} = 0;0; + 0,0; = 28;;, (A.70)
loi0j] = 0i0; — 0;0; = 2i€; 0. (A.71)

A.9.2 Useful Relationships

A-0)( B-o)=(A-B)I+i(AxB)-o0, (A.72)
where 1 is the identity matrix. In particular, if A = B,

(A-0)? = A7, (A.73)

) 0
9 =T cosh + i(n-o0)sind, wheren = 7" (A.74)

A.10 Time-Independent Perturbation Theory

Let us consider the Hamiltonian
H = Hy + H,,
where the solution to the H, eigenvalue problem is supposed to be known:
Holn®) = E°|n°).
If Efl) is not a degenerate eigenvalue and the matrix elements (m°|H,|n®) are small

compared to E°, given the following expansions for the H eigenvalues E, and
eigenkets |n):
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E,=E)+E +E +--,

In) = [n°) + |n") + [n*) + -,

we get
E, = (n°|H,|n"), (A75)
2 [mH 00

Ev=) g0 (A.76)

m#n n m

(m°|H n®%)
') = = m°). (A.77)
m;én El’l - Em

If EV is degenerate, the first-order corrections to the eigenvalues are given from the
eigenvalues of the matrix representative of  in the E° eigenspace, obtained from

det [(H)m,j — E, 8m.;] = 0. (A.78)

n

A.11 Sudden Perturbation

A sudden perturbation is an abrupt change of the Hamiltonian
Hy — H=Hy+H,

where H, and H, do not depend on time. A sudden perturbation does not modify
the state vector. Assuming that the system is initially in a state |n°), an eigenket of
Hy, the probability of measuring an energy Ey, eigenvalue of the new Hamiltonian,
that is, the probability of the transition [n°) — |k), is given by

Posi = [(kIn®) 2. (A.79)

If it make sense to apply Perturbation Theory for non-degenerate eigenvalues, the
probability of a transition to states k # n is

0 0y |2
(k”|H;|n")

_ A.80
B (A.80)

Pnek:‘
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A.12 Time-Dependent Perturbation Theory

Let us consider a Hamiltonian
H = Ho + Hi (1)

for which the solution to the Hj eigenvalue problem is known:
Holn®y = EX|n°).

Suppose that H; depends on time and the matrix elements (m°|H,|n®) are small
compared to EY. We can write the system state vector in the form

W) =3 () e ), (ASD)

Having called the probability of finding the system in the state vector | f°) as P;_, £
provided that, at time ¢ = 0, it is in state [i ), at first perturbative order, it results

that
2

Pi—>f(f)=|df(f)|2=‘_% / dt (fO|Hi (D)%) et |, (A.82)
0

0
EY—E

—and f #1i.

where ws; =

A.13 Born Approximation

Having called the wave vectors of the incident and deflected particle as k and K/,
respectively, the Born approximation to the scattering amplitude for the potential
V(r) is given by

fek, k) = _2:h2 / dr e X Ty (r) T, (A.83)
where m is the system reduced mass.
If the potential is central, the expression simplifies:

o0

2m .
fe(q) = — dr sin(qr) V(r)r, (A.84)

h2q Jo

where, since we consider elastic scattering, ¢ = |k — K'| = 2k sin% and 0 is the
angle of deflection.
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A.14 WKB Approximation

We consider a one-dimensional system of a particle with mass m and energy E
subject to a potential V (x) and define p(x) as the classical momentum:

px)=vE—-V(X).

If the energy E is less than the potential V (x) for each point outside of a certain range
[a, b], the eigenvalue E belongs to the discrete spectrum. In the WKB approximation,
the eigenvalues are given by the relationship

1 [ 1
5 / dx p(x) =(n+ 5)7[ withn =0,1,2,.... (A.85)
b

Equivalently, if we consider an entire classical oscillation between the two classical
turning points a and b and back to a, this relation can be rewritten in the form of the
Bohr-Sommerfeld quantization rule:

1
‘(f dx p(x) =/ dxdp:ZJTh(n—i—E), withn =0,1,2,... (A.86)
D

where, in the first expression, the integral is extended to the complete classical tra-
jectory and, in the second one, to the D domain delimited by it.

If the energy E is greater than the potential V (x) for each point outside of the
interval [a, b], the eigenvalue E belongs to the continuous spectrum and we are in
the presence of a potential barrier. The probability of crossing the barrier in WKB
approximation is given by

2 rb
T = o7 Ju PO (A.87)
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