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Preface

This book is essentially devoted to students who wish to prepare for written
examinations in a Quantum Mechanics course. As a consequence, this collection
can also be very useful for teachers who need to propose problems to their students,
both in class and in examinations. Like many other books of Quantum Mechanics
Problems, one should not expect a particular novel effort. The aim is to present
problems that, in addition to exploring the student’s understanding of the subject
and their ability to apply it concretely, are solvable in a limited time. This purpose is
unlikely to be combined with a search for originality.

Problems will therefore be found that are also present in other books from the
Russian classics [1, 2], and, therefore, in the collection, extracted from them, cared
for by Ter Haar [3, 4]. Among other books of exercises that have been consulted are
the Italian Passatore [5] and that most recently published by Yung-Kuo Lim [6],
which collects the work of 19 Chinese physicists. The two volumes by Flügge [7]
lie between a manual and a problem book, providing useful tips, though the pre-
sented problems are often too complex in relation to the purpose of this collection.

Many interesting problems are also found in Quantum Mechanics manuals. In
this case, the list could be very long. I will only mention those who have devoted
more space to problems: the classical manuals of Merzbacher [8] and Gasiorowicz
[9], the volume devoted to Quantum Mechanics in the Theoretical Physics course
by Landau and Lifchitz [10], the two volumes by Messiah [11] and the most recent
works by Shankar [12], Gottfried-Yan [13], and Sakurai-Napolitano [14]. One
particular quote is due to Nardulli’s Italian text [15], both because of the abundance
of problems it contains with or without solution, and the fact that many problems
presented here have been proposed over the years to students of his course.

The category of problems that can be resolved in a reasonable time is not the
only criterion for our choice. No problem has been included that requires knowl-
edge of mathematical methods that are sometimes absent from standard courses,
such as, for example, Fuchsian differential equations. When necessary, comple-
mentary mathematical formulas have been included in the appendix. The most
important characteristic of this book is that the solutions of many problems are
presented with some detail, eliminating only the simplest steps. This will certainly
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prove useful to the students. Like in any other book, problems have been grouped
into chapters. In many cases, the inclusion of a particular problem in a particular
chapter can be considered arbitrary: many exam problems pose cross-cutting issues
across the entire program. The obvious choice was to take into account the most
distinctive questions.

For a time, this collection was entrusted to the network and used by teachers and
students. It is thanks to some of them that many of the errors initially present have
been eliminated. I thank Prof. Stefano Forte for encouraging me to publish it in
print after completing certain parts and reviewing the structure. One last great
thanks goes to my wife; the commitment needed to draft this text also resulted in a
great deal of family burdens falling on her.

Finally, I apologize to the readers for the errors that surely escaped me; every
indication and suggestion is certainly welcome.

Bari, Italy Leonardo Angelini
December 2018
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Chapter 1
Operators and Wave Functions

1.1 Spectrum of Compatible Variables

Given three variables A, B,C , demonstrate that if [A, B]=[A,C] = 0, but [B,C] �=
0, the spectrum of A is degenerate.

Solution

Suppose that all of the eigenvalues of A are not degenerate, so that, for each eigenvalue
a of A, there is only one ket |ψa〉 such that

A|ψa〉 = a|ψa〉.

If this were true, each ket |ψa〉must also be eigenstate of B andC that are compatible
with A. As a consequence, we can also label the ket |ψa〉 with the eigenvalues of B
e C :

A|ψa,b,c〉 = a|ψa,b,c〉
B|ψa,b,c〉 = b|ψa,b,c〉
C |ψa,b,c〉 = c|ψa,b,c〉

where, obviously, once a is fixed, b e c must be unique. For each generic state |ψ〉,
it results that

[B,C]|ψ〉 = (BC − CB)
∑

a

|ψa,b,c〉 =
∑

a

(bc − cb)|ψa,b,c〉 = 0.

This contradicts our initial supposition that [B,C] �= 0.
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1.2 Constants of Motion

Show that, if F e G are two constants of motion for a quantum system, this is also
true for [F,G].
Solution

If F and G are two constants of motion, then, from the Heisemberg equation,

∂F

∂t
= i

�
[F,H] and

∂G

∂t
= i

�
[G,H],

where H is the system Hamiltonian. It turns out that

d

dt
[F,G] = ∂[F,G]

∂t
− i

�
[[F,G],H] =

= ∂F

∂t
G + F

∂G

∂t
− ∂G

∂t
F − G

∂F

∂t
− i

�
[FG − GF,H] =

= i

�
[FHG − HFG + FGH − FHG − GHF + HGF − GFH + GHF −

−FGH + GFH + HFG − HGF] = 0.

Hence, [F,G] is a constant of motion.

1.3 Number Operator

Let an operator a be given that satisfies the following relationships:

aa+ + a+a = 1,

a2 = (a+)2 = 0.

(a) Can operator a be hermitian?
(b) Prove that the only possible eigenvalues for operator N = a+a are 0 and 1.

Solution

(a) Suppose that a is hermitian: a = a+. We obtain

aa+ + a+a = 2(a+)2 = 0,

which contradicts the initial statement.
(b) N 2 = a+aa+a = a+(1 − a+a)a = a+a − (a+)2a2 = a+a = N .

It is well known that, if an operator satisfies an algebraic equation, this is also
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satisfied by its eigenvalues. Indeed, calling |λ〉 the generic eigenket of N corre-
sponding to the eigenvalue λ, we can write

(N 2 − N )|λ〉 = (λ2 − λ)|λ〉 = 0 ⇒ λ = 0, 1

1.4 Momentum Expectation Value

Given a particle of massm in a potential V (r), system described by the Hamiltonian

H = T + V = p2

2m
+ V (r),

demonstrate the relationship

p = −i
m

�
[r,H].

Use this relationship to show that, in a stationary state,

〈p〉 = 0.

Solution

Calling ri and pi (i = 1, 2, 3) the position and momentum components, we have

[ri ,H] = [ri , T ] = 1

2m
(ri p

2
i − p2i ri ) =

= 1

2m
(ri p

2
i − p2i ri − piri pi + piri pi ) =

= 1

2m
([ri , pi ]pi + pi [ri , pi ]) =

= i�pi
m

,

as conjectured. Calling |ψE 〉 the eigenstate ofH corresponding to an eigenvalue E ,
the expectation value of each momentum component is

〈pi 〉 = 〈ψE |pi |ψE 〉 = −i
m

�
〈ψE |[ri ,H]|ψE 〉 =

= −i
m

�

[
〈ψE |ri E |ψE 〉 − 〈ψE |Eri |ψE 〉

]
= 0,

provided 〈ri 〉 is a well-defined quantity. Indeed, this result is invalid for improper
eigenvectors: this is the case of free particles, when you consider |ψE 〉 as a simul-
taneous eigenstate of H and p or, generally, an eigenstate of the continuous part of
the spectrum.
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1.5 Wave Function and the Hamiltonian

A particle is in a state described by the following wave function:

ψ(r) = A sin
(p · r

�

)
.

(a) Is it a free particle?
(b) What can we say about the value of momentum and energy in this state?

Solution

(a) The wave function is representative of the dynamical state of a system. To decide
whether the particle is free, we need to know the Hamiltonian.

(b) We can write this wave function as

ψ(r) = A

2i

(
ei

p·r
� − e−i p·r

�

)
.

Clearly, it represents the superposition of twomomentum eigenstates with eigen-
values +p and −p. As the coefficients of the linear superposition have equal
magnitude, the momentum expectation value is zero. Without the knowledge of
the Hamiltonian, it is impossible to say anything about the energy.

1.6 What Does a Wave Function Tell Us?

A particle constrained to move in one dimension is described at a certain instant by
the wave function

ψ(x) = A cos kx .

Can we infer that:

(a) it describes a state with defined momentum?
(b) it describes a free particle state?

Solution

(a) The wave function can be written as

ψ(x) = A

2

(
eıkx + e−ıkx

)
.

It is the linear superposition of two momentum eigenstates with momentum
p = �k and p = −�k. As they have equal amplitudes, they are equiprobable.
So, the answer to the question is no. The kinetic energy E = p2

2m is defined
instead.
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(b) The question has no answer. The wave function could be the eigenfunction of a
potential free Hamiltonian. Nevertheless, it should be remembered that the wave
function specifies the state of a system, not its dynamic. Instead, the dynamics
is specified by the Hamiltonian, which, in this case, is unknown.

1.7 Spectrum of a Hamiltonian

Consider a physical system described by the Hamiltonian

H = p2

2m
+ α

2
(pq + qp) + βq2, [q, p] = i�.

Find the α and β values for whichH is bounded from below and, if this is the case,
find its eigenvalues and eigenvectors.

Solution

The Hamiltonian can be rewritten as:

H = 1

2m
[p2 + αm(pq + qp) + m2α2q2 − m2α2q2 + βq2] =

= 1

2m
(p + mαq)2 +

(
β − mα2

2

)
q2 =

= 1

2m
p′2 +

(
β − mα2

2

)
q2,

where
p′ = p + mαq.

Note now that:

• [q, p′] = [q, p + mαq] = [q, p] = i�;
• p′ is hermitian, being a linear combination of two hermitian operators, provided

α is real.

(Note that these properties also apply in the case of p′ = p + f (q), with f (q) being
a real function of q.)

Impose that H is bounded from below:

〈ψ |H |ψ〉 = 1

2m
〈p′ψ |p′ψ〉 + (β − mα2

2
)〈qψ |qψ〉 > −∞.

The first term being positive or zero, this condition is verified for every |ψ〉, provided

β >
mα2

2
.
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If this is true, we can replay the harmonic oscillator procedure for this Hamiltonian,
obtaining the same eigenvalues and eigenstates. In this case, the frequency is

ω =
√
2β

m
− α2.

1.8 Velocity Operator for a Charged Particle

Given a a charged particle in amagnetic field, find the commutation relations between
the operators corresponding to the velocity components.

Solution

Remember that the Hamiltonian of a particle having charge q in an electromagnetic
field is

H = 1

2m

(
P − q

c
A

)2 + q φ,

where A and φ are the magnetic and electric potential giving rise to the electromag-
netic field: B = ∇ × A, E = − 1

c
∂A
∂t − ∇φ.

P is the canonical momentum, i.e., the momentum conjugate to the coordinate
r and corresponding, in Quantum Mechanics, to the operator −i�∇ (coordinate
representation). The velocity, instead, is obtained from

v = ∇PH = 1

m

(
P − q

c
A

)
.

Thus, in the coordinate representation, the velocity components operators are

vi = 1

m

(
Pi − q

c
Ai

)
= 1

m

(
−i�

∂

∂xi
− q

c
Ai

)
,

where the components of A are not operators. Thus, the desired commutators are

[vi , v j ]ψ(r) = 1

m2

[
Pi − q

c
Ai , Pj − q

c
A j

]
ψ(r) =

= q

mc2
{[Pj , Ai ] − [Pi , A j ]

}
ψ(r) =

= i�q

mc2

(
Ai

∂ψ(r)
∂x j

− ∂A jψ(r)
∂xi

+ A j
∂ψ(r)
∂xi

− ∂Aiψ(r)
∂x j

)
=

= i�q

mc2

(
∂A j

∂xi
− ∂Ai

∂x j

)
ψ(r) =

= i�q

mc2
εi jk Bkψ(r),

where εi jk is the Levi-Civita symbol.
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1.9 Power-Law Potentials and Virial Theorem

A one-dimensional system is described by the Hamiltonian

H = p2

2m
+ λqn .

Given an eigenstate |ψ〉 of this Hamiltonian, prove that

〈T 〉 = 〈ψ |T |ψ〉 = n

2
〈ψ |V|ψ〉 = n

2
〈V〉,

where T = p2/2m e V is the potential energy V = λqn .

Solution

Note that

[q,H] = [q,T ] = 1

2m
(qp2 − p2q) =

= 1

2m
(qp2 − p2q − pqp + pqp) =

= 1

2m
([q, p]p + p[q, p]) =

= i�p

m
.

Using the coordinate representation, it is easy to verify that

q[p,H] = q[p,V] = �

i
λnqn = �n

i
V.

So,

〈ψ |V|ψ〉 = − 1

in�
〈ψ |q[p,H]|ψ〉 =

= − 1

in�
〈ψ |qpH − qH p|ψ〉 =

= − 1

in�
〈ψ |qpH − [q,H]p − Hqp|ψ〉 =

= 1

in�
〈ψ |[q,H]p|ψ〉.

Using the previous result, we obtain the desired relationship

〈ψ |V|ψ〉 = 1

in�

i�

m
〈ψ |p2|ψ〉 = 2

n
〈ψ |T |ψ〉.
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1.10 Coulomb Potential and Virial Theorem

(a) Using the Schrödinger equation, prove that, for every physical quantity 
 of a
quantum system, the Ehrenfest theorem holds:

d〈
〉
dt

= 1

ı�
〈[
,H]〉 +

〈
∂


∂t

〉
.

(b) Apply this result to the operator r · p and prove the Virial theorem for the
Coulomb potential, which relates the expectation values in a stationary state
of the kinetic energy T and of the potential energy V:

〈T 〉 = −1

2
〈V〉.

Solution

(a) Call |ψ(t)〉 the state vector of the physical system in the instant t . The expectation
value of 
 is

〈
〉 = 〈ψ(t)|
|ψ(t)〉,

and, from the Schrödinger equation

i�
∂|ψ(t)〉

∂t
= H |ψ(t)〉,

we get

d〈
〉
dt

= ∂〈ψ(t)|
∂t


|ψ(t)〉 + 〈ψ(t)|∂


∂t
|ψ(t)〉 + 〈ψ(t)|
∂|ψ(t)〉

∂t
=

= 1

i�
〈ψ(t)|(
H − H
)|ψ(t)〉 +

〈
∂


∂t

〉
= 1

ı�
〈[
,H]〉 +

〈
∂


∂t

〉
,

where we have taken into account the fact that, in the Schrödinger picture, time
dependence of operators can only be explicit.

(c) As the system is in a stationary state and r · p does not depend on time,

d〈r · p〉
dt

= ∂〈r · p〉
∂t

= 0.

Applying the Ehrenfest theorem, we obtain:

0 = 〈[r · p,H]〉 = 〈[r · p,T ]〉 + 〈[r · p,V]〉 = 〈[r,T ] · p〉 + 〈r · [p,V]〉,

To calculate these two expectation values, we note that, from [ri , pi ] = ı�, we
get
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[ri , p2i ] = 2ı�pi ⇒ 〈[r,T ] · p〉 = 2ı�〈T 〉,

whereas we easily find that

[∇,
1

r
] = − r

r3
⇒ 〈r · [p,V]〉 = ı�e2〈1

r
〉 = ı�〈V〉.

By replacing these two relations in the previous one, the desired result is obtained.

1.11 Virial Theorem for a Generic Potential

(a) Using the Schrödinger equation, prove that, for every quantity 
 of a given
physical system, the Ehrenfest theorem holds:

d〈
〉
dt

= 1

ı�
〈[
,H]〉 +

〈
∂


∂t

〉
.

(b) Consider a system with N degrees of freedom and apply the previous result in
the case of the operator

Q =
N∑

i=1

ri pi ,

with the purpose of demonstrating the Virial theorem relating the expectation
values, in a stationary state, of the kinetic energy T and of the potential energy
V (not dependent on time):

〈T 〉 = 1

2

N∑

i=1

〈
qi

∂V
∂qi

〉
.

(c) Apply the previous result to a one-dimensional harmonic oscillator.

Solution

(a) For the solution of this point, we refer to Problem 1.10.
(b) Denoting the set of position coordinates with q and the set of conjugate momenta

with p, we have H(q, p) = T (p) + V(q), and

[Q,H] =
N∑

i=1

[qi pi ,H] =
N∑

i=1

[qi ,T ]pi +
N∑

i=1

qi [pi ,V]. (1.1)

We calculate the commutators on the right side separately:
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[qi ,T ] = 1

2mi
[qi , p2i ] = 1

2mi
(qi p

2
i − p2i qi ) = 1

2mi
(p2i qi + 2i�pi − p2i qi ) = i�pi

mi
,

while, from the power expansion in the variables qi of the potential V =∑
n cnq

n
i , we obtain

[pi ,V] =
∑

n

cn[pi , qni ] =
∑

n

cn[piqni − qni pi ] =
∑

n

cn[qni pi − i�nqn−1
i − qni pi ] =

= −i�
∑

n

cnnq
n−1
i = −i�

∂V
∂qi

.

By replacing these two relations in Equation (1.1) we get

[Q,H] = 2i�T − i�
N∑

i=1

qi
∂V
∂qi

. (1.2)

Applying the Ehrenfest theorem to the observable Q, under the hypothesis that
the system is in a stationary state, we obtain

d〈Q〉
dt

= 1

i�
〈[Q,H]〉 +

〈
∂Q

∂t

〉
.

Noting that neither Q, nor the probability distribution in a stationary state
depends on time, we get

〈[Q,H]〉 = 0 ⇒ 2〈T 〉 =
N∑

i=1

〈
qi

∂V
∂qi

〉
.

(c) The potential energy of a harmonic oscillator is

V(x) = 1

2
mω2x2.

Then, the kinetic energy expectation value is given by

〈T 〉 = x

2

〈
dV
dx

〉
= 〈1

2
mω2x2〉 = 〈V〉.

1.12 Feynman-Hellmann Theorem

Given a physical system, denote its Hamiltonian with H having eigenvalues E and
normalized eigenstates |E〉 so that
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H |E〉 = E |E〉.

Assume that this Hamiltonian depends on a parameter λ, H = H(λ). As a conse-
quence, its eigenvalues also depend on λ, E = E(λ).
Demonstrate that the following relationship holds:

〈
∂H(λ)

∂λ

〉
= ∂E(λ)

∂λ
. (1.3)

Solution

As E is the eigenvalue corresponding to |E〉, it results that

E(λ) = 〈E |H(λ)|E〉.

It follows that

∂E(λ)

∂λ
= ∂

∂λ
〈E |H(λ)|E〉 =

= ∂〈E |
∂λ

H(λ)|E〉 + 〈E |∂H(λ)

∂λ
|E〉 + 〈E |H(λ)

∂|E〉
∂λ

=

=
〈
∂H(λ)

∂λ

〉
+ E

(
∂〈E |
∂λ

|E〉 + 〈E |∂|E〉
∂λ

)
=

=
〈
∂H(λ)

∂λ

〉
+ E

(
∂

∂λ
〈E |E〉

)
=

=
〈
∂H(λ)

∂λ

〉
,

as we wanted to prove.



Chapter 2
One-Dimensional Systems

2.1 Free Particles and Parity

For a one-dimensional free particle does the set of observables composed of the
Hamiltonian and Parity constitute a complete set?

Solution

To every value of the energy of a free particle in a one-dimensional world, they
correspond two linearly independent eigenstates that, in the X-representation, are
given by the eigenfunctions:

ψp(x) = 1√
2π�

ei
px
� and ψ−p(x) = 1√

2π�
e−i px

� .

Any linear superposition of them is also an eigenstate of the Hamiltonian. As the
Hamiltonian is given by the kinetic energy operator, which is proportional to the
second x-derivative, it commutes with the Parity operator. The linear superposition
of ψp(x) e ψ−p(x) with definite parity is, neglecting normalization, cos(px/�) with
parity eigenvalue P = +1 and sin(px/�)with parity P = −1. The eigenstates com-
mon to each pair of Hamiltonian and Parity eigenvalues are completely determined,
so these two operators are a complete set of commuting observables for this physical
system.

2.2 Potential Step

Consider a particle of mass m incident from the left on the potential (Fig. 2.1)

V (x) =
{
0, for x < 0;
V0, for x > 0.

© Springer Nature Switzerland AG 2019
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Fig. 2.1 Potential step

Study its behavior for energy eigenvalues lesser and greater than V0, determining the
energy spectrum characteristics.

Solution

The energy eigenvalues E are positive, because, as it is well known, they must
be greater than the potential minimum. Let’s calculate the Schrödinger equation
solutions in each of the two regions where the potential stays constant.

Region I: x < 0
In this region, the Schrödinger equation can be written as:

− �
2

2m

d2ψ(x)

dx2
= E ψ(x),

that is,
d2ψ(x)

dx2
+ k2 ψ(x),

where

k =
√
2mE

�2
> 0.

The most general solution is given by the linear superposition

ψ(x) = eıkx + Re−ıkx , (2.1)

where we put the coefficient of the incident plane wave propagating to the right
as being equal to 1, while R is the coefficient of the reflected wave. The physical
meaning of this assumption is obtained calculating the probability density current
from (A.11):
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j (x) = �

m
�
[
ψ∗(x)

d

dx
ψ(x)

]
=

= �

m
� [(e−ıkx + R∗eıkx ) (ıkeıkx − ıkRe−ıkx )

] =

= �k

m
� [(e−ıkx + R∗eıkx ) (eıkx − Re−ıkx )

] =

= �k

m
� (1 − |R|2 + R∗e2ıkx + Re−2ıkx

) =

= �k

m

(
1 − |R|2) = v · 1 − v · |R|2.

The probability density current is made up of two terms constant in time: the first
one represents a current of 1 · v particles per second going through each point from
left to right with speed v and the second one a current of |R|2 · v particles per second
propagating with opposite speed.

Region II: x > 0
In this region, we write the Schrödinger equation as:

− �
2

2m

d2ψ(x)

dx2
+ V0 ψ(x) = E ψ(x),

that is,
d2ψ(x)

dx2
+ k ′ 2 ψ(x) = 0,

where

k ′ =
√
2m(E − V0)

�2
= p′

�
= mv′

�
.

We distinguish two cases, depending on whether the energy E m is greater than or
less than V0.

Case E > V0

In this case, k ′ is real. Once again, the general solution is of the type

ψ(x) = T eık
′x + Se−ık ′x , (2.2)

where T and S are constants. Since the particle comes from the left, it must be S = 0.
We are not calculating, therefore, the general solution, but rather a particular solution
corresponding to particles sent from left to right. We therefore consider only the term

ψ(x) = T eık
′x , (2.3)

representing a probability density current of v′ · |T |2 particles per second going
through each point from left to right with speed v. To determine the coefficients R
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and T , we use the continuity conditions for the wave function and its first derivative
at the border between the two regions, the point x = 0. Thus, we obtain the linear
system {

1 + R = T
ık(1 − R) = ık ′T .

The solution is

R = k − k ′

k + k ′ , (2.4)

T = 2k

k + k ′ . (2.5)

Substituting R and T in the expression for the current, we obtain

v|R|2 = v

(
k − k ′

k + k ′

)2

v′|T |2 = v′ 4k2

(k + k ′)2
.

It is easy to verify that
v(1 − |R|2) = v′|T |2,

namely, the probability density current is the same in the two regions. Note that:

• In the limit E � 0, that is, for k −→ k ′, we find |R|2 −→ 0 and |T |2 −→ 1,
confirming the intuition that, at high energy, the potential step can be neglected
leading to the free particle motion.

• An important novelty emergeswith respect to the classical behavior of the particles:
the presence of a perturbation in the potential generates a finite probability of
reflecting back the particle.1

Case E < V0
We note that, being that E − V0 < 0, it results that

k′2 = 2m(E − V0)

�2
= (ıχ)2, where χ =

√
2m(V0 − E)

�2
is real and positive.

We can therefore rewrite the Schrödinger equation as:

d2ψ(x)

dx2
− χ2 ψ(x) = 0. (2.6)

1We see a similar behavior in optics when a change in the refractive index generates a reflected
wave. In fact, monochromatic electromagnetic waves, once the time dependence has been removed,
are ruled by the same equation, where the term 2m(V − E)/�

2 is replaced by k2/c2, where c is the
propagation speed, function of the refractive index.
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Its general solution is still of the type (2.2), but now the exponents are real:

ψ(x) = T e−χx + Seχx . (2.7)

The second term must be eliminated, because it diverges in the limit x = +∞; so,
we have

ψ(x) = T e−χx . (2.8)

As in the previous case, we impose the continuity conditions and solve the resulting
linear system or, faster, we substitute ık ′ → −χ in (2.4) and (2.5). So we get the
coefficients R and T :

R = k − ıχ

k + ıχ

T = 2k

k + ıχ
.

In this case, we note that

• R has modulus 1 and, because in region II the wave function is real, the transmitted
current is zero; consequently, the reflected current is equal and opposite to the
incident one and all of the particles, as in classical mechanics, go back.

• Contrary to what happens in classical mechanics, for which there can be no parti-
cles in region II because the kinetic energy would be negative, we have a non-zero
probability of finding particles in the x > 0 region.

In both cases, E > V0 and E < V0, the energy eigenvalue can take any positive value,
so the energy spectrum is continuous. However, in the two cases, the degeneration
of the eigenvalues is different:

E > V0. The spectrum is doubly degenerate. In fact, even if we found only one
solution to the case, this is the consequence of having placed the coefficient
S = 0, in order to reproduce a physically reproducible situation. There is,
however, a solution that is linearly independent from this, corresponding to
the sending of particles in the opposite direction to the x axis.

E < V0. In this case, we put S = 0, because otherwise we would have had a solution
divergent at infinity. One of the two linearly independent solutions to the
eigenvalue equation is not in the wave function space and, consequently,
eigenvalues between 0 and V0 are not degenerate.
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Fig. 2.2 Particle confined on a segment (infinite potential well)

2.3 Particle Confined on a Segment (I)

Aparticle ofmassm confined on a segment can be described by the potential (Fig. 2.2)

V (x) =
{
0, if 0 < x < L;
+∞, elsewhere.

also called the infinite potential well or one-dimensional box. Find the energy spec-
trum and the corresponding eigenfunctions.

Solution

The wave function is different from zero only for 0 < x < L . Indeed, let’s consider,
for example, the x > L region. Here, the potential is infinite; it is superior to any
eigenvalue E of the energy we can fix. So, we can solve the Schrödinger equation
by supposing that, in this region, the potential has a constant value V0 > E and then
take the limit V0 → ∞ of the solution. We are in the same situation as in problem
(2.2), when we consider the case E < V0 for region II. We therefore have a single
solution

ψ(x) = T e−χx .

in the limit V0 → ∞, we get

lim
V0→∞ χ = lim

V0→∞

√
2m(V0 − E)

�2
= +∞ =⇒ lim

V0→∞ ψ(x) = 0.
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A similar reasoning can be repeated in the x < 0 region, and therefore the wave
function is zero for x > L and for x < 0.

Nowwe can solve the Schrödinger equation in the region 0 < x < L by requiring
that the wave function go to zero at the ends of the segment. The general solution is

ψ(x) = A sin(kx + δ) where k =
√
2mE

�2
.

The boundary condition in x = 0 leads to

δ = 0,

and, applying the same condition in x = L , we get

kL =
√
2mE

�2
L = nπ where n = 1, 2, . . .

From this relation, we obtain the energy eigenvalues

En = �
2π2n2

2mL2
where n = 1, 2, . . . (2.9)

To determine the constant A, we normalize the eigenfunctions:

1 =
∫ L

0
dx |A|2 sin2

nπx

L
= |A|2

2

∫ L

0
dx

(
1 − cos

2nπx

L

)
=

= |A|2L
2

=⇒ A =
√

2

L
,

up to an arbitrary phase factor. Therefore, the normalized eigenfunctions are

ψn(x) =
√

2

L
sin

nπx

L
with n = 1, 2, . . . . (2.10)

in the region x ∈ [0, L] and zero elsewhere. These eigenfunctions are symmetrical
with respect to x = L

2 for n odd and antisymmetrical for n even, due to the symmetry
of theHamiltonian. In conclusion, the energy spectrum is discrete and the eigenvalues
are all non-degenerate.

2.4 Particle Confined on a Segment (II)

A particle of mass m moves in one dimension in the presence of an infinite well of
width L:
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V (x) =
{
0 if x ∈ [0, L],
+∞ elsewhere.

Calculate the position and momentum expectation values and uncertainties when the
particle is in an energy eigenstate. Comment on these results in light of the uncertainty
principle.

Solution

Remember that, for the potential well (see problem 2.3), the energy eigenvalues are

En = n2π2
�
2

2mL2
(n = 1, 2, . . .) (2.11)

and the corresponding eigenfunctions in the region x ∈ [0, L] are given by

ψn(x) =
√

2

L
sin

nπx

L
(n = 1, 2, . . .) (2.12)

and zero elsewhere. They have symmetry (−1)n+1 (with respect to x = L
2 ), thus the

probability distributions are always symmetrical, so

〈x〉 = L

2
.

For a bound state, the momentum expectation value is always null (see problem 1.4).
This general property can easily be demonstrated in the present case. Indeed, as the
eigenfunctions are real (we can set the arbitrary phase factor equal to 1), we have

〈p〉 =
∫ +∞

−∞
dxψ∗(x)

�

ı

d

dx
ψ(x) = �

ı

1

2

∫ L

0
dx

d

dx
ψ2(x) = �

2ı
ψ2(x)

∣∣∣∣
L

0

= 0.

Let us calculate the momentum spread. As 〈p〉 = 0,

(�p)2 = 〈p2〉 = 2m〈E〉 = 2m En = n2π2
�
2

L2
.

The x2 expectation value is given by

〈x2〉 = 2

L

∫ L

0
dx x2 sin2

nπx

L
= 2L2

n3π3

∫ nπ

0
dy y2 sin2 y =

= 2L2

n3π3

(
n3π3

6
− 1

4
nπ cos(2nπ) − 1

8
(1 − 6n2π2) sin(2nπ)

)
=

= L2

(
1

3
− 1

2n2π2

)
, (2.13)

where we integrated repeatedly by parts.
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The position uncertainty is given by

(�x)2 = 〈x2〉 − 〈x〉2 = L2

(
1

3
− 1

2n2π2

)
− a2

4
= L2

(
1

12
− 1

2n2π2

)
.

The two uncertainty product is

�x�p = �nπ

√
1

12
− 1

2n2π2
.

This product assumes its minimum value in the ground state (about 0.57 �, slightly
higher than �/2) and grows as n increases.

2.5 Particle Confined on a Segment (III)

A particle of mass m, subject to the potential

V (x) =
{
0 if x ∈ [0, L],
+∞ elsewhere.

is, at time t = 0, in the state corresponding to the wave function

ψ(x) = 2√
L

cos
πx

2L
sin

3πx

2L
.

(a) Write the wave function as a superposition of the Hamiltonian’s eigenfunctions;
(b) calculate the energy expectation value;
(c) calculate the momentum expectation value;
(d) calculate the position expectation value.

Solution

Remember that, for the potential well (see problem 2.3), the energy eigenvalues are

En = n2π2
�
2

2mL2
(n = 1, 2, . . .) (2.14)

and the corresponding eigenfunctions in the region x ∈ [0, L] are given by

ψn(x) =
√

2

L
sin

nπx

L
(n = 1, 2, . . .) (2.15)

and zero elsewhere.

(a) Taking into account the relationship
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cosα sin β = 1

2
[sin(α + β) − sin(α − β)],

we find

ψ(x) = 1√
2

ψ1(x) + 1√
2

ψ2(x) .

(b) The energy expectation value is

〈E〉ψ = 〈ψ |H|ψ〉 = 1

2
E1 + 1

2
E2 = 5π2

�
2

4mL2
.

(c) In order to calculate the momentum expectation value, we recall that (see
problem 2.4), for a particle in an energy eigenstate, it is zero. Therefore, we
have

〈p〉ψ = 〈ψ |p|ψ〉 = 1

2
〈p〉ψ1 + 1

2
〈p〉ψ2 + 1

2
〈ψ1|p|ψ2〉 + 1

2
〈ψ2|p|ψ1〉 =

= 1

2
2�(〈ψ1|p|ψ2〉) = �

(
�

i

2

L

∫ L

0
dx sin

πx

L
· 2π
L

· cos 2πx

L

)
= 0,

because it is the real part of a purely imaginary number.
(d) Finally, we calculate the position expectation value:

〈x〉ψ = 〈ψ |x |ψ〉 = 1

2
〈x〉ψ1 + 1

2
〈x〉ψ2 + 1

2
〈ψ1|x |ψ2〉 + 1

2
〈ψ2|x |ψ1〉 =

= L

2
+ L

2
+ 〈ψ1|x |ψ2〉 = a + 2

L

∫ L

0
dx x sin

πx

L
sin

2πx

L
=

= a + 4L

π2

∫ π

0
dα α sin2 α cosα =

= a + 4L

3π2

[
α sin3 α

∣∣∣π
0

−
∫ π

0
dα sin3 α

]
=

= a − 4L

3π2

(
z − z3

3

)∣∣∣∣
+1

−1

=
(
1 − 16

9π2

)
L � 0.82 L .

2.6 Scattering by a Square-Well Potential

Consider the potential:

V (x) =
{
0, if |x | > a;
−V0, if |x | < a.

Consider a particle coming from the left with positive and study the behavior of
the energy eigenfunctions and the features of its energy spectrum.
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Fig. 2.3 Square-well potential

Solution

Having introduced the wave numbers k e k ′ for the regions in which the potential is
constant

k =
√
2mE

�2
and k ′ =

√
2m(E + V0)

�2
,

we write the solution to the Schrödinger equation in the three constant potential
regions as

ψ(x) =
⎧⎨
⎩
eıkx + Re−ıkx if x < −a;
Aeık

′x + Be−ık ′x if |x | < a;
T eıkx , if x > a.

(2.16)

As requested, the solution represents the motion of a particle coming from the left
that, interacting with the square-well, can be reflected or transmitted. The probability
current in the three regions is

j (x) =
⎧⎨
⎩

�k
m − �k

m |R|2, if x < −a;
�k ′
m |A|2 − �k ′

m |B|2, if |x | < a;
�k
m |T |2, if x > a.

The coefficients R, A, B and T , can be obtained by imposing the conditions of
continuity of the wave function and its derivative at the border points between the
regions of constant potential, a and −a. Thus, we obtain the following equations:

e−ıka + Reıka = Ae−ık ′a + Beık
′a,

ık(e−ıka − Reıka) = ık ′(Ae−ık ′a − Beık
′a),

Aeık
′a + Be−ık ′a = T eıka,

ık ′(Aeık
′a − Be−ık ′a) = ıkT eıka .
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Solving the system, we find the following expressions for R and T :

R = e−2ıka (k ′2 − k2) sin 2k ′a
2kk ′ cos 2k ′a − ı(k ′2 + k2) sin 2k ′a

, (2.17)

T = e−2ıka 2kk ′

2kk ′ cos 2k ′a − ı(k ′2 + k2) sin 2k ′a
. (2.18)

Using these expressions, it is easy to verify that the probability current is the same
in the three regions, i.e., it is conserved. We can conclude the study of this case with
the following remarks:

• We note that

|T |2 ∝ (kk′)2 =
(
2m

�2

)2
(E + V0) while |R|2 ∝ (k′2 − k2)2 =

(
2mV0

�2

)2
.

Accordingly, in the limit of high energies (E � V0), we have

kk ′ ∼ 2mE

�2
� 2mV0

�2
=⇒ |T |2 � |R|2,

and therefore reflection is negligible.
• Within the low energy limit, on the other hand, T −→ 0 and transmission is
negligible.

• R is also proportional to sin 2k ′a, therefore, reflection is canceled (Resonance by
Transmission) every time

k ′ = nπ

2a
⇒ k ′2 = 2m(E + V0)

�2
= n2π2

4a2
,

that is, for energy values

En = −V0 + n2π2
�
2

8ma2
.

Regarding the properties of the energy spectrum, we conclude that it is continuous
and twice degenerate.

2.7 Particle Confined in a Square-Well (I)

Consider the following potential well (vedi Fig. 2.3):

V (x) =
{
0, if |x | > a;
−V0, if |x | < a.
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Determine the negative eigenvalues of the energy and the corresponding eigenfunc-
tions.

Solution

In the two regions |x | > a, to the right and to left of the well, we are in the presence,
as in the case E < V0 for the potential step (see problem 2.2), of an equation of the
kind in (2.6) which has the general solution

ψ(x) = c1e
χx + c2e

−χx , where χ2 = −2mE

�2
> 0.

To avoid divergences at infinity of the wave function, in the left region, we will have
to consider only the first of the two terms and, in the right region, only the second
one. The wave function in the various regions has the form:

ψ(x) =
⎧⎨
⎩
c1eχx , if x < −a;
A cos k ′x + B sin k ′x, if |x | < a;
c2e−χx , if x > a,

where, in the central region, we have chosen as a general solution a combination of
real functions (sines and cosines), instead of the complex exponentials of (2.16).

By imposing the continuity conditions of the wave function and its derivative, the
following equation system is obtained:

c1e
−χa = A cos k ′a − B sin k ′a,

c1χe
−χa = Ak ′ sin k ′a + Bk ′ cos k ′a,

c2e
−χa = A cos k ′a + B sin k ′a,

−c2χe
−χa = −Ak ′ sin k ′a + Bk ′ cos k ′a.

We derive c1 and c2 from the first and third equations and replace their values in the
second and fourth ones; we get two equations that allow us to calculate A and B:

χ = k ′ A sin k ′a − B cos k ′a
A cos k ′a + B sin k ′a

, (2.19)

χ = k ′ A sin k ′a + B cos k ′a
A cos k ′a − B sin k ′a

. (2.20)

If we equate the right members, we find that, in order for the two equations to be
compatible, it must occur that

AB = 0.

We can therefore distinguish two types of solution,2

2The classification in odd and even eigenfunctions can be imposed a priori, since, for a potential
invariant for parity, the eigenfunctions of the discrete spectrum have fixed parity.
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• Case B=0. From the system, we see that c1 = c2 and the solution in the central
region isψ(x) = A cos k ′x . Therefore, considering thewhole real axis, the solution
is an even function of x .

• Case A=0. From the system, we see that c1 = −c2 and the solution in the central
region isψ(x) = B sin k ′x . Therefore, in this case, the solution is an odd function
of x .

Even eigenfunctions. Imposing B = 0 in the Eqs. (2.19), we obtain

χ = k ′ tan k ′a,

which, taking into account the relationship between χ and k ′

χ2 = −2mE

�2
= 2mV0

�2
− k ′2, (2.21)

can be rewritten as √
λ2 − z2

z
= tan z, (2.22)

where

λ2 = 2mV0a2

�2
and z = k ′a

are both positive quantities. Energy E , in terms of the new variable z, is given by

E = �
2z2

2ma2
− V0. (2.23)

As (2.22) is a transcendental equation, we can only qualitatively study the solutions
using a graph in which we plot the first and second members as a function of the
variable z. The z values of the intersection points between the two curves allow us to
determine the eigenvalues of the energy through the relationship (2.21). In Fig. 2.4,
we show the two members of Eq. (2.22) versus z. Function

√
λ2−z2
z has been drawn

for various values of the parameter λ. This function intersects the z-axis at the point

zmax = λ =
√

2mV0a2

�2 . We note that

• as λ increases, the number of intersections between the two curves, and therefore
the number of the energy eigenvalues, increases, but, although λ is small, there is
always at least one;

• in the limit λ → ∞, i.e., V0 → ∞, the intersections move towards

zn = (n + 1

2
)π = (2n + 1)

π

2
with n = 0, 1, . . .

recovering the results obtained for the infinite potential well when n is odd (taking
into account the replacement 2a → L).
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Fig. 2.4 Square well: graphical search for the even eigenfunctions’ energy levels

Odd eigenfunctions. Imposing, instead, A = 0 in Eq. (2.19), we obtain the equation

χ = −k ′ cot k ′a = k ′ tan(k ′a + π

2
),

which, using the variables already defined, becomes

√
λ2 − z2

z
= tan(z + π

2
).

The solutions can be found, again, graphically, as we can see in Fig. 2.5. We note
that

• for λ < π/2, we have no odd eigenfunction;
• as λ increases, the number of intersections, and therefore the number of the energy
eigenvalues, increases;

• in the limit λ → ∞, i.e., V0 → ∞, the intersections move towards

zn = nπ = (2n)
π

2
with n = 1, 2, . . .

recovering the results obtained for the infinite potential well when n is even.
• being antisymmetric, these solutions are zero in the origin, the same situation that
one would have if the potential was given by
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Fig. 2.5 Square well: graphical search for the odd eigenfunctions energy levels

V (x) =
{∞, if x < 0,

−V0, if 0 < x < a.

So, this potential has energy eigenfunctions coinciding with the odd ones of the
square well.

Looking at both figures, starting from λ = 0 and increasing λ, which is proportional
to V0a2, we first get an energy eigenvalue corresponding to an even eigenfunction,
followed by the emergences of a second eigenvalue corresponding to an odd eigen-
function, and so on, alternating even solutions and odd solutions. This is a general
behavior originating from the symmetry property of the potential. If

λ ∈
[
(n − 1)

π

2
, n

π

2

]
,

we have n energy levels and the eigenfunction corresponding to the n-th eigenvalue
has parity (−1)(n+1).

We also note that, in each of the two cases (B = 0 and A = 0), the coefficients
c1 and c2 are proportional to the other surviving coefficient (A or B, respectively).
This residual coefficient can be fixed, up to the usual phase, by the normalization
condition. Regarding the spectrum, we can say that within this range of energies, it
is discrete, while the eigenfunctions go to zero exponentially at infinity; they are the
quantum corresponding to the classical orbits limited to a region of space, i.e., bound
states.
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As we said, there is always a bound state. This result applies to any potential well
V̄ (x) of arbitrary form. In fact, it is always possible to bound V̄ (x) above by a square
potential V (x); settingψ0(x) as the energy eigenfunction of the ground state of V (x),
it results that

〈
ψ0

∣∣∣∣ p
2

2M
+ V̄ (x)

∣∣∣∣ψ0

〉
<

〈
ψ0

∣∣∣∣ p
2

2m
+ V (x)

∣∣∣∣ψ0

〉
< 0,

and, in order to obtain an operator that has a negative expectation value, there must
be at least one negative eigenvalue, that is a bound state.

2.8 Particle Confined in a Square-Well (II)

A particle of mass m moves in the one-dimensional potential (Fig. 2.6)

V (x) =
{
0, if |x | > a;
−V0, if |x | < a

.

(a) At fixed width a, how deep should the well be in order to allow a first excited
level of energy E1 = − 1

2V0?
(b) If the particle is in the eigenstate of the Hamiltonian corresponding to the first

excited level, what is the probability of finding it in the classically forbidden
region?

(c) How many bound states of this system are there?

Solution

Remember that (see problem2.7), once the following notations have been introduced,

χ2 = −2mE

�2
, k ′2 = 2m

�2
(V0 + E),

the energy levels of the even eigenfunctions are obtained from

χ = k ′ tan k ′a (2.24)

and the energy levels for the odd ones from

χ = −k ′ cot k ′a. (2.25)

(a) Since E1 = − 1
2V0, we have

χ2 = −2m

�2
(−1

2
V0) = mV0

�2
= 2m

�2

1

2
V0 = k ′2.
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Whereas the first excited level is odd, we have to find the smallest value of k ′a
such that cot k ′a = − χ

k ′ = −1, that is, k ′a = 3
4π . Therefore, the result is

V0 = �
2

m
k ′2 = 9�2

16m

π2

a2
.

(b) We seek the wave function of the first excited level having k ′ = χ = 3π/4a. It
must have the form

ψ1(x) =

⎧⎪⎨
⎪⎩
Ceχx , if x < −a;
B sin k ′x, if |x | < a;
−Ce−χx , if x > a.

From the continuity condition in x = a

{
B sin k ′a = −Ce−χa

Bk ′ cos k ′a = Cχe−χa

(the two equations are equivalent because they are relative to an already fixed
eigenvalue E1) we get

B

C
= χ

k ′
e−χa

cos k ′a
= 1 · e− 3π

4

cos 3π
4

= −√
2e− 3π

4 .

Imposing the wave function normalization

∫ +∞

−∞
|ψ1(x)|2dx = 2

∫ +∞

a
|C |2e−2χxdx +

∫ a

−a
|B|2 sin2 k ′xdx =

= |C |2
χ

e−2χa + |B|2
∫ a

−a

1 − cos 2k ′x
2

dx =

= |C |2
χ

e−2χa + |B|2
2

(
2a − 1

k ′ sin 2k
′a
)

=

= 2ae− 3π
2

(
4

3π
+ 1

)
|C |2 = 1,

we deduce that

|C |2 = 3π

4 + 3π

e
3π
2

2a
.

Now we are able to calculate the probability P of finding the particle in the
classically forbidden region as

P = 2
∫ +∞

a
|C |2e−2χxdx =
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= 3π

4 + 3π

e
3π
2

2a

e−2χa

χ
=

= 2

4 + 3π
.

(c) Remember that (see problem 2.7), if

λ2 = 2mV0a2

�2
∈
[
(n − 1)2

π2

4
, n2

π2

4

]
,

wehaven energy levels and the eigenfunction corresponding to then-th has parity
(−1)(n + 1). The second excited level, corresponding to n = 3, is therefore
obtained as the second solution of Eq. 2.24 for even eigenfunctions. In order for
it to exist, it is necessary that λ2 = 2mV0a2/�

2 ≥ π2. In the present case, this is
verified:

2m

�2
V0a

2 = 2m

�2

9�2

16m
π2 = 9

8
π2 > π2.

However, there is no second odd solution, as the relationship 2m
�2 V0a2 > 9

4π
2 is

not verified.
In conclusion, there are only three bound states.

2.9 Potential Barrier

Consider the potential

V (x) =
{
0, if |x | > a;
V0, if |x | < a.

and suppose that particles of fixed energy E < V0 strike it coming from x = −∞.
Determine the probability that a particle can cross the barrier (Fig. 2.6).

Solution

Notice that the energy eigenvalues, which must be greater than the potential mini-
mum, are certainly positive; therefore 0 < E < V0. The solution to the Schrödinger
equation for a particle coming from the left side is

ψ(x) =
⎧⎨
⎩
eıkx + Re−ıkx , for x < −a;
Aeχx + Be−χx , for |x | < a;
T eıkx , for x > a.

It is the same solution found for the squarewell (problem2.6), but for the substitutions

V0 → −V0 and ık ′ → χ (χ =
√

2m(V0−E)

�2 is real and positive). In fact, in the central
region, the wave function has real exponents. We can, therefore, make the above
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Fig. 2.6 Potential barrier

substitutions directly onto the results of problem 2.6. In particular, the transmission
coefficient T is given by

T = e−2ıka 2k(−ıχ)

2k(−ıχ) cos 2(−ıχ)a − ı((−ıχ)2 + k2) sin 2(−ıχ)a
,

and, taking into account the relationships

cos ı x = cosh x and sin ı x = ı sinh x,

we obtain

T = e−2ıka 2kχ

2kχ cosh 2χa − ı(k2 − χ2) sinh 2χa
.

The probability density current beyond the barrier is given by �k
m , the velocity, times

the square of the absolute value of T , which is

|T |2 = (2kχ)2

4k2χ2 cosh2 2χa + (k2 − χ2)2 sinh2 2χa
=

= (2kχ)2

4k2χ2(1 + sinh2 2χa) + (k2 − χ2)2 sinh2 2χa
=

= (2kχ)2

(k2 + χ2)2 sinh2 2χa + (2kχ)2
.

This expression, which also represents the ratio between the transmitted current and
the incident one (which is equal to �k

m ), is certainly positive and tells us that, in
Quantum Mechanics, contrary to the classical solution, there is always a probability
of crossing (Tunnel effect) a potential barrier.
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2.10 Particle Bound in a δ Potential

A particle of mass m moves in one dimension in the presence of the potential

V (x) = −�
2

m
	δ(x),

where δ(x) is the usual Dirac delta function. This system has a single bound state.

(a) Calculate the energy eigenvalue and the normalized eigenfunction of this state.
(b) Calculate the value x0 such that the probability of finding the particlewith x < x0

is exactly equal to 1/2.

Solution

Becausewewant bound states, we consider the eigenvalues E < 0 of the Schrödinger
equation

ψ"(x) + 2	δ(x)ψ(x) − α2ψ(x) = 0, where α2 = −2mE

�2
> 0.

(a) For x �= 0, the solution satisfying the continuity condition in x = 0 is

ψ(x) = A e−α|x |.

Due to the presence of the δ potential,ψ ′ must be discontinuous in x = 0; other-
wise its second derivative would assume a finite value and the δ singularity could
not be compensated for in the Schrödinger equation. To find the discontinuity,
we integrate between −ε and +ε:

ψ ′(x)
∣∣+ε

−ε
+ 2	

∫ +ε

−ε

dx ψ(x)δ(x) + α2
∫ +ε

−ε

dx ψ(x) = 0.

in the limit ε → 0, ψ(x) being continuous in x = 0, we obtain

ψ ′(0+) − ψ ′(0−) = −2	ψ(0). (2.26)

This condition is satisfied by one value of α,

α = 	. (2.27)

There is therefore only one bound state having energy

E = −�
2	2

2m
.



34 2 One-Dimensional Systems

The normalization condition sets the constant A up to a non-essential phase
factor:

|A|2 =
[∫ 0

−∞
e2αxdx +

∫ +∞
0

e−2αxdx

]−1

=
[
2(− 1

2α
)e−2αx

∣∣∣∣
+∞

0

]−1

= α = 	.

The eigenfunction is given by

ψ(x) = √
	 e−	|x |.

(b) The value x0, which reduces the cumulative probability by half, is evidently 0,
being that the wave function, and therefore also the probability distribution, is
an even function.

2.11 Scattering by a δ Potential

Amonochromatic beam of particles ofmassmmoves along the x axis in the presence
of the potential

V (x) = −�
2

m
	δ(x),

where δ(x) is the Dirac delta function and 	 (opacity) is a positive quantity.
If the beam is incident from the left, a stationary wave function with energy E is

given by

ψ(x) =
{
eikx + Re−ikx , for x ≤ 0

T eikx , for x > 0.

with k = √
2mE/�.

Determine the probabilities of reflection and transmission beyond the barrier and
study the limits of small and large opacity.

Solution

In order to determine the coefficients R and T at fixed energy E , we impose that,
due to the presence of the δ potential, ψ(x) is continuous and ψ ′(x) is discontinuous
in x = 0 (see problem 2.10):

ψ(0+) − ψ(0−) = 0 ⇒ 1 + R = T
ψ ′(0+) − ψ ′(0−) = −2	ψ(0) ⇒ ikT − ik(1 − R) = −2	T .

From them, we get

R = i	

k − i	
and T = k

k − i	
.
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The probability flow transmitted through the barrier is given by

�k

m
|T |2 = �k

m

1

1 + 	2

k2

,

while the reflected flow is given by

−�k

m
|R|2 = −�k

m

	2

k2

1 + 	2

k2

.

Observe that the probability current is the same in the two regions

�k

m
|1|2 − �k

m
|R|2 = �k

m
|T |2

and the currents, which are observable physical results, do not depend on the sign
of 	. In the limit 	 → 0, we have |T |2 → 1 and |R|2 → 0, and therefore all of
the particles are transmitted beyond the δ barrier, while the reflection is zero. The
opposite occurs in the limit 	 → ∞.

2.12 Particle Bound in a Double δ Potential

A particle of mass m moves in the one-dimensional potential

V (x) = −�
2

m
	[δ(x − a) + δ(x + a)], 	 > 0.

Prove that the Hamiltonian has, at most, two bound states and graphically solve the
equation that determines them. Also, estimate the separation between levels for large
values of a.

Solution

The Schrödinger equation becomes:

d2ψ(x)

dx2
+ 2	[δ(x − a) + δ(x + a)]ψ(x) − ε2ψ(x) = 0 where ε2 = −2mE

�2
> 0.

Remember that, due to the presence of the δ potential, ψ ′ must be discontinuous in
x = a and x = −a:

ψ ′(a+) − ψ ′(a−) = −2	ψ(a),

ψ ′(−a+) − ψ ′(−a−) = −2	ψ(−a).
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As the potential is symmetrical, we can choose the solution with defined parity.
Let us first consider the even eigenfunctions.
In the three regions delimited by x = a and x = −a, the Schrödinger equation

has independent solutions given by

ψ1(x) = eεx and ψ2(x) = e−εx .

The solutions describing bond states have to go to zero at infinity and must be even;
we can therefore write, disregarding an overall constant,

ψp(x) =

⎧⎪⎨
⎪⎩
eεx , for x < −a;
A cosh εx, for |x | < a;
e−εx , for x > a.

Becauseof symmetry, it is sufficient to impose the continuity/discontinuity conditions
at the point x = a only:

{
e−εa = A cosh εa
−Aε sinh εa − εe−εa = −2	e−εa .

A solution for A is possible only if these two equations are compatible, i.e., only if

tanh εa = 2	

ε
− 1 = 2	a

εa
− 1. (2.28)

The graphical solution is presented in Fig. 2.7, in which the two sides of Eq. (2.28)
are plotted as a function of εa for various values of 	 a.

Let us now consider the odd eigenfunctions:

ψp(x) =

⎧⎪⎨
⎪⎩

−eεx , for x < −a;
A sinh εx, for |x | < a;
e−εx , for x > a.

Imposing the continuity/discontinuity conditions in x = a,

{
e−εa = A sinh εa
−Aε cosh εa − εe−εa = −2	e−εa .

By imposing that the two equations for A are compatible, we get

tanh εa = 1
2	
ε

− 1
= 1

2	a
εa − 1

. (2.29)

The solution to this equation can be found graphically, as one can see in Fig. 2.8.
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Fig. 2.7 Double δ potential: graphical solution of Eq. (2.28) for the even eigenfunctions. The right
side has been drawn for 	a = 0.8, 1.0, 1.2

Fig. 2.8 Double δ potential: graphical solution of Eq. (2.29) for the odd eigenfunctions. The right
side has been drawn for 	a = 0.8, 1.0, 1.2
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A solution may exist, provided the slope in the origin of the function on the right in
Eq. 2.29 is less than the slope of the function on the left, tanh εa, which is 1:

d

dx

x

2	a − x

∣∣∣∣
x=0

= 1

2	a
< 1.

It is easy to see that, in this case, we have an excited state. In fact, the intersection, as
tanh εa < 1, is obtained for values of εa < 	a, while, for the even eigenfunctions, it
was obtained for εa > 	a. So, for odd states, the corresponding energy E = − �

2

2m ε2

is larger.
The separation between the two levels tends to zero in the limit of large distance

between the two δ’s. Indeed, the functions on the right side of Eqs. (2.28) and (2.29)
are worth 1 in εa = 	a and the function tanh εa also goes to 1 for large a.

2.13 Scattering by a Double δ Potential

Solve the Schrödinger equation for the potential

V (x) = �
2

m
	(δ(x − a) + δ(x + a)), 	 > 0,

determining theHamiltonian eigenvalues and eigenfunctions corresponding to a scat-
tering problem. Discuss the energy dependence of the transmission coefficient.

Solution

As V (x) is positive for every x ,H eigenvalues are positive. Fixing E=�
2k2/2m>0,

the E-eigenfunctions describing a particle sent in the positive direction of the x axis
are

ψE (x) =

⎧⎪⎨
⎪⎩
eikx + Re−ikx , se x < −a;
Aeikx + Be−ikx , se |x | < a;
T eikx , se x > a,

wherewe set the probability current density equal to |1|2 �k
m . The continuity conditions

for ψ and discontinuity conditions for its derivative ψ ′ (see problem 2.10),

ψ(±a+) − ψ(±a−) = 0
ψ ′(±a+) − ψ ′(±a−) = 2	ψ(±a),

completely determine the coefficients R, A, B, T :
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⎧⎪⎪⎨
⎪⎪⎩

e−ika + Reika − Ae−ika − Beika = 0
Aeika + Be−ika − T eika = 0
(2	 + ik)e−ika + (2	 − ik)Reika − ik Ae−ika + ikBeika = 0
ik Aeika − ikBe−ika + (2	 − ik)T eika = 0.

It follows that every positive value of E is an eigenvalue of the Hamiltonian.
Now defining

α = ik − 2	

ik
= 1 + i

2	

k
, β = eika,

the II and IV equations become

{
βA + β∗B = βT
βA − β∗B = βαT .

So, we obtain

A = 1

2
(1 + α)T , B = β

β∗
1

2
(1 − α)T .

Going back to the system, from the I and III equations, we obtain

{
β∗(1 + α∗) + β(1 − α)R = β∗(1 + α)T

β∗(1 − α∗) + β(1 + α)R = β2

β∗ (1 − α)T,

from which, with simple steps, an expression for T is achieved:

T = 1

(1 + iγ )2 + γ 2e4ika
,

where γ = 	/k.
The transmission coefficient is |T |2, which, with a few steps, becomes

|T |2 = 1

(1 + γ 2)2 + γ 4 + 2γ 2[(1 − γ 2) cos 4ka + 2γ sin 4ka] .

We note that:

• limk→0 |T |2 = limγ→∞ |T |2 = 0, i.e., in the low energy limit the transmission
coefficient goes to zero;

• limk→∞ |T |2 = limγ→0 |T |2 = 1, i.e., in the high energy limit the transmission is
complete;

• |T |2 shows oscillations corresponding to the behaviour of (1 − γ 2) cos 4ka +
2γ sin 4ka.
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Fig. 2.9 δ potential in front of a wall

2.14 Collision Against a Wall in the Presence
of a δ Potential

Consider a particle of massm coming from x = +∞ with energy E > 0 that bumps
up against the potential (Fig. 2.9)

V (x) =
{

∞, if x ≤ −a;
	δ(x), if x > −a.

(a) What happens in classical physics?
(b) Shape the wave function for x < 0 and for x > 0.
(c) Find the reflection probability.
(d) Find the reflected wave phase shift (with respect to the case of 	 = 0) in the

limit x = +∞.

(e) Discuss the dependence from 	
k (k =

√
2mE
�2 ) of the expressions found for the

phase shift and for the wave function amplitude in section −a < x < 0.

Solution

(a) Classically, the particle,whatever its energy,would be reflected at position x = 0.
This can be understood by thinking of the δ function as the limit of a rectangular
functionwhose thickness tends to zerowhile its height tends to+∞. The particle
should have infinite energy in order to pass

(b) In the presence of this potential, the required E energy eigenfunction will take
the form
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ψ(x) =
{
A sin(kx + φ), if − a ≤ x ≤ 0;
e−ikx + Reikx , if x > 0.

, with k =
√
2mE

�2
,

where we put the coefficient that represents the motion towards the barrier as
being equal to one. The wave function must be zero in x = −a, so φ = ka.

Let us set

α = 2m	

�2
, (2.30)

which has dimension [Length]−1, which is the same as k, because the Dirac
δ also has dimension [Length]−1 and 	 has dimension [Energy][Length].
The conditions for the wave function to be continuous and its derivative to be
discontinuous in x = 0 lead to the system

ψ(0+) = ψ(0−) ⇒ A sin ka = 1 + R,

ψ ′(0+) − ψ ′(0−) = αψ(0) ⇒ −k A cos ka − ik(1 − R) = αA sin ka,

which has the solution

A = − 2ik

k cos ka + α sin ka − ik sin ka
,

R = −k cos ka + α sin ka + ik sin ka

k cos ka + α sin ka − ik sin ka
. (2.31)

The wave function is thus completely determined.
(c) As R is the ratio between two complex conjugate quantities, the reflection coef-

ficient is given by
|R|2 = 1.

As in the classical case, there is complete reflection, but the wave function is not
zero between the δ barrier and the impenetrable wall.

(d) Calling ρ and θ , respectively, the module and the phase of the numerator of R,
we have

R = eiπ
ρeiθ

ρe−iθ
= ei(2θ+π) where θ = arctan

tan ka

1 + α
k tan ka

.

Now pose that 	 = 0, i.e., α = 0, in these formulas (absent the δ potential),
obtaining

θ → θ0 = ka and R → R0 = ei(2ka+π).

The phase shift resulting from the barrier is therefore:

�ϕ = 2θ − 2θ0 = 2 arctan
tan ka

1 + α
k tan ka

− 2ka.
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(e) Let us consider before the trend of �ϕ as a function of α/k = 2m	/�
2k. We

note that:

• The phase shift �ϕ tends to 0 as α/k decreases.
• Apart from the trivial case of α = 0, the phase shift �ϕ is zero if tan ka = 0,
that is, if ka = nπ , with n = 0, 1, 2, . . .. In these cases, the barrier becomes
transparent.

• In the limit α/k → +∞ ,�ϕ goes asymptotically to −2ka, corresponding to
R = −1, that is a situation in which the δ barrier becomes impenetrable. For
this reason, the parameter 	 is often called opacity.

We now study the behavior for x < 0 of the wave function’s A amplitude, or,
better yet, of its square modulus:

|A|2 = 4k2

(k cos ka + α sin ka)2 + k2 sin2 ka
=

= 4

(cos ka + α
k sin ka)2 + sin2 ka

.

• At fixed k, |A|2 takes the value 4 for α/k = 0.
• Always considering k as fixed, |A|2 is a descending function of α/k, thus
confirming the role of	. It also has amaximumpoint at valueα/k = − cot ka.

• The maximum is a resonance phenomenon, a phenomenon that can be better
studied at fixed α. In Fig. 2.10, we note the presence of a peaks structure that
is reduced when energy is increased.

2.15 Particle in the Potential V (x) ∝ −cosh x−2

Consider a particle of mass m that moves in the one-dimensional potential

V (x) = −�
2

m

1

cosh2 x
.

(a) Prove that
ψ(x) = (tanh x + C) exp(ikx)

is the solution to the Schrödinger equation for a particular value of the constantC .
Determine such value and the energy corresponding to such a solution. From the
asymptotical trend of ψ(x), derive the reflection and transmission coefficients.

(b) In addition, show that

φ(x) = 1

cosh x
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Fig. 2.10 Collision against an infinite barrier in the presence of a δ potential: the square amplitude
|A|2 of the transmitted wave as a function of ka for α = 1 (blue curve) and α = 3 (brown curve)

satisfies the Schrödinger equation. Show that it is a bound state and calculate its
energy. Give an argument in favor of the fact that it is the ground state.

Solution

Having introduced

ε = 2mE

�2
,

the Schrödinger equation becomes:

d2

dx2
ψ(x) + 2

cosh2 x
ψ(x) + εψ(x) = 0.

(a) By imposing that ψ(x) is one of its solutions, we find:

(ε − k2)(tanh x + C) + 2

cosh2 x
(ik + C) = 0.

This relation is verified for every x , provided that

ε = k2 and C = −ik.

In the limit x → +∞,
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ψ(x) −−−−→
x→+∞ (1 − ik)eikx ,

while, for x → −∞,
ψ(x) −−−−→

x→+∞ −(1 + ik)eikx .

There is therefore no reflected component (∝ e−ikx ):

R = 0 and T = 1.

(b) Regarding φ(x), by imposing that it is the solution to the Schrödinger equation,
we obtain

− 1

cosh x
+ 2

cosh x
+ ε

cosh x
= 0,

and, therefore,
ε = −1.

Note that, for |x | → ∞ φ(x) → 0, and therefore φ(x) represents a bound state.
Moreover, it is a function without nodes, and therefore it is the ground state.

2.16 Harmonic Oscillator: Position and Momentum

Calculate the matrix elements of position and momentum operators in the energy
base of the harmonic oscillator. Evaluate the expectation values of both quantities in
an energy eigenstate.

Solution

Using the expressions for operators x and p in terms of operators a and a† (see A.14)
and remembering that (see A.15)

a|n〉 = √
n |n − 1〉, a+|n〉 = √

n + 1 |n + 1〉,

we have

x jk = 〈 j |x |k〉 =
√

�

2mω
〈 j |(a + a†)|k〉 =

√
�

2mω

[√
k δk, j+1 + √

k + 1 δk, j−1

]
,

p jk = 〈 j |p|k〉 = 1

ı

√
�mω

2
〈 j |(a − a†)|k〉 = −ı

√
�mω

2

[√
k δk, j+1 − √

k + 1 δk, j−1

]
.

Regarding the expectation values, they are both null:

〈x〉k = 〈k|x |k〉 = 0 , 〈p〉k = 〈k|p |k〉 = 0.
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2.17 Harmonic Oscillator: Kinetic and Potential Energy

Calculate the matrix elements of operators x2 and p2 in the Harmonic oscillator
energy basis. Show that, in an energy eigenstate, the expectation values of the kinetic
energy and the potential energy are equal.

Solution

Using (A.14), we have

(x2) jk = 〈 j |x2|k〉 = �

2mω
〈 j |a2 + (a†)2 + aa† + a†a|k〉, (2.32)

(p2) jk = 〈 j |p2|k〉 = −�mω
2 〈 j |a2 + (a†)2 − (aa† + a†a)|k〉. (2.33)

From (A.15), we obtain

〈 j |a2|k〉 = √
k 〈 j |a|k − 1〉 = √

k(k − 1) δk, j+2,

〈 j |(a†)2|k〉 = √
k + 1 〈 j |a†|k + 1〉 = √

(k + 1)(k + 2) δk, j−2,

and, from [a, a†] = 1,

〈 j |(aa† + a†a)|k〉 = 〈 j |1 + 2a†a|k〉 = 2

�ω
〈 j |H|k〉 = (2k + 1)δ j,k .

Substituting these results in (2.32) and (2.33), we obtain the requiredmatrix elements

(x2) jk = �

2mω

[√
k(k − 1) δk, j+2 +√(k + 1)(k + 2) δk, j−2 + (2k + 1)δ j,k

]
,

(2.34)

(p2) jk = −�mω

2

[√
k(k − 1) δk, j+2 +√(k + 1)(k + 2) δk, j−2 − (2k + 1)δ j,k

]
.

(2.35)
Calling Ek the energy eigenvalue of the state |k〉, the required expectation values are
given by

〈x2〉k = 〈k|x2|k〉 = �

2mω
(2k + 1) = Ek

mω2
, (2.36)

〈p2〉k = 〈k|p2|k〉 = �mω

2
(2k + 1) = mEk, (2.37)

showing that the kinetic and potential energy, on average, are both equal to one half
of the level energy. We have therefore recovered the result obtained by applying the
Virial theorem (see problem 1.11).

A simpler method of calculation is to use the Feynman-Hellmann theorem (prob-
lem 1.12), which states that, in a steady state corresponding to the eigenvalue E , the
following relation applies:
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〈
∂H(λ)

∂λ

〉
= ∂E(λ)

∂λ
,

where λ is a parameter upon which the Hamiltonian and, therefore, also the eigen-
values and the eigenkets depend.

Applying this relation to a harmonic oscillator in the Ek state and using the
frequency ω as the parameter, with respect to which to derive, we obtain:

�

(
k + 1

2

)
= 〈mωx2

〉
k ,

which implies 〈
x2
〉
k = �

mω

(
k + 1

2

)
= Ek

mω2
.

Lastly, remembering that the eigenvalue Ek is the expectation value of the Hamilto-
nian in the kth state and that this is the sum of the expectation values of the kinetic
energy and of the potential energy, the result for

〈
p2
〉
k is also obtained.

2.18 Harmonic Oscillator: Expectation Value of x4

Calculate the expectation value of operator x4 in an energy eigenstate of the harmonic
oscillator.

Solution

Using the completeness relation and the results of problem 2.17, we have

〈x4〉 j = 〈 j |x4| j〉 =
∞∑
k=0

〈 j |x2|k〉〈k|x2| j〉 =
∞∑
k=0

∣∣〈 j |x2|k〉∣∣2 =
∞∑
k=0

�
2

4m2ω2
×

×
[√

k(k − 1) δk, j+2 +√(k + 1)(k + 2) δk, j−2 + (2k + 1)δ j,k

]2
.

Developing the square, the products of δ’s with different indices do not contribute.
So we get

〈x4〉 j = �
2

4m2ω2

[
j ( j − 1) + ( j + 1)( j + 2) + (2 j + 1)2

] =

= 3�2

4m2ω2

[
2 j2 + 2 j + 1

]
.
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2.19 Harmonic Oscillator Ground State

A particle of mass m, subject to a harmonic oscillator of elastic constant k, is in its
ground state. Calculate the probability of finding it outside the classically permitted
region.

Solution

The classically permitted region is the segment between the classical turning points
±x̄ , where

x̄ =
√
2E

k

is obtained solving the equation

V (x̄) = 1

2
kx̄2 = E .

The ground state energy E is �ω/2 (with ω = √
k/m), so that x̄ =

√
�

mω
. The state

is described by the wave function (see A.3)

φ0(x) =
(mω

π�

) 1
4
e−mωx2/2�.

Taking into account the symmetry of the resulting probability distribution, the
required probability is

P = 2
∫ +∞

x̄
dx |φ0(x)|2 = 2√

π

∫ +∞

1
dξ e−ξ 2 =

= 2√
π

[√
π

2
−
∫ 1

0
dξ e−ξ 2

]
= 1 − 2Erf(1) = 1 − 0.84 = 0.16, (2.38)

where

Erf(y) = 1√
π

∫ y

0
e−x2dx

is the Error function,which can be found in tables [1] or can be numerically evaluated.

2.20 Finding the State of a Harmonic Oscillator (I)

A harmonic oscillator of frequency ω is in a state superposition of the Hamiltonian
eigenstates corresponding to the two lowest levels of energy:

|ψ〉 = a|0〉 + b|1〉.
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(a) At what condition is the position expectation value different from zero?
(b) For which values of the coefficients a and b does this expectation value assume

the maximum value and the minimum value?

Solution

Coefficients a and b must satisfy the normalization condition

|a|2 + |b|2 = 1.

We can fix an arbitrary phase and take a to be real:

|ψ〉 = a|0〉 +
√
1 − a2 eiδ |1〉.

(a) The position expectation value is, by (2.16),

〈x〉 = |a|2〈0|X |0〉 + |b|2〈1|X |1〉 + a∗b〈0|X |1〉 + ab∗〈1|X |0〉 =
= 2�(a∗b)

√
�

2mω
= 2

√
�

2mω
a
√
1 − a2 cos δ,

wherewe have taken into account that the position expectation value in an energy
eigenstate is zero.
For 〈x〉 to be different from zero, assuming that a and b are non-zero, it must be
that

cos δ �= 0 ⇔ δ �=
(
n + 1

2

)
π with n ∈ N.

(b) To determine the maximum and minimum of 〈x〉, we cancel the derivatives with
respect to the two parameters a and δ:

∂〈x〉
∂a

= 2

√
�

2mω

(1 − 2a2)√
1 − a2

cos δ = 0,

∂〈x〉
∂δ

= −2

√
�

2mω
a
√
1 − a2 sin δ = 0.

From the second condition, we get sin δ = 0, implying that b = ±√
1 − a2.

The first condition cannot be satisfied by cos δ = 0, but only from a = ± 1√
2
.

Ultimately, less than an arbitrary phase, we obtain

|ψ〉 = 1√
2

|0〉 ± 1√
2

|1〉.

From the expression for 〈x〉, it is evident that it attains its maximum when the
sign is positive and its minimum when the sign is negative.
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2.21 Finding the State of a Harmonic Oscillator (II)

It is known with certainty that the state of a harmonic oscillator of frequency ω

contains no more excited states than the second level:

|ψ〉 = a|0〉 + b|1〉 + c|2〉.

It is also known that the expectation value of the x position is zero and that the
expectation value of the energy is (3/4)�ω.

What can be said of the values of a, b, c in the hypothesis that they are real? Is
the state completely determined in these conditions?

Solution

Remembering that (A.14)

x |n〉 =
√

�

2mω
(a + a+)|n〉 =

√
�

2mω
(
√
n|n − 1〉 + √

n + 1|n + 1〉), (2.39)

we obtain

〈x〉 =
√

�

2mω
(2ab + 2

√
2bc) = 0, (2.40)

which has two solutions:

(a) b �= 0 and a = −√
2c,

(b) b = 0 .

We have two other equations available:

a2 + b2 + c2 = 1 (normalization),

a2 + 3b2 + 5c2 = 3

2
(energy expectation value).

In the first case, we obtain:

c = ±
√
3

2
, b = ±i

√
5

2
, a = ∓

√
3

2
,

which is not compatible with the hypothesis that coefficients are real.
In the second case, we obtain:

b = 0, c = ± 1

2
√
2
, a = ±

√
7

8
.

There are, finally, two possible determinations of the state, depending on whether a
and c have a concordant or discordant sign.
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Warning: The hypothesis of the reality of the coefficients, although useful for
making the problem solvable, makes little physical sense, since the phase of each of
them is not measurable. As a matter of fact, the results of this problem may depend
on the definition used for the operators a and a†.

2.22 General Properties of Periodic Potentials

A periodic potential of step a is a potential V (x) that enjoys the property

V (x + n a) = V (x) for n = 0,±1,±2, . . . . (2.41)

In this case, the Schrödinger equation is invariant for transformations

x → x + n a,

i.e., for translations of integer multiples of a.
Given u1(x) and u2(x), two linearly independent solutions to the Schrödinger

equation, due to the invariance property,

u1(x + a) e u2(x + a)

are also solutions. It must therefore result that

u1(x + a) = c1,1 u1(x) + c1,2 u2(x) (2.42)

u2(x + a) = c2,1 u1(x) + c2,2 u2(x). (2.43)

Prove:

(a) the Floquet theorem: among all of the solutions to the Schrödinger equation,
there are two, ψ1 and ψ2, that satisfy the property

ψ(x + a) = λψ(x), (2.44)

where λ is a constant;
(b) the Bloch theorem: such solutions can be written in the form

ψ(x) = eıkxuk(x),

where uk(x) is a periodic function of x of step a:

uk(x + a) = uk(x).
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Solution

(a) Solutions of kind (2.44) must also satisfy

ψ(x + n a) = λnψ(x) for n = 0,±1,±2, . . . (2.45)

If ψ is a solution, it is possible to write it in the form

ψ(x) = A u1(x) + B u2(x).

From (2.42), we have

ψ(x + a) = A u1(x + a) + B u2(x + a) =
= (Ac1,1 + Bc2,1) u1(x) + (Ac1,2 + Bc2,2) u2(x).

ψ verifies property (2.44) if

Ac1,1 + Bc2,1 = λA,

Ac1,2 + Bc2,2 = λB.

This is a homogeneous linear system of two equations in the variables A and B
and has non-trivial solutions if and only if

∣∣∣∣ c1,1 − λ c2,1
c1,2 c2,2 − λ

∣∣∣∣ = 0.

This is a second degree equation in λ, whose roots λ1 and λ2 allow us to actually
determine two solutions ψ1 and ψ2 having the required property.

(b) We demonstrate first that λ1 and λ2 are complex conjugates numbers of
modulus 1.
We note that the Wronskian of ψ1 and ψ2

W (x) = ψ1ψ
′
2 − ψ ′

1ψ2

satisfies the relation
W (x + a) = λ1λ2 W (x).

As the Wronskian of two eigenfunctions corresponding to the same eigenvalue
is constant (e.g., Messiah [11]. Vol.I, Chapter III.8), we have

λ1λ2 = 1.

The functionsψ1 andψ2 will be acceptable if and only if |λ1| = |λ2| = 1. Indeed,
if |λk | > 1 happens, the amplitude ψk would grow beyond every limit for x →
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+∞, while, if it were |λk | < 1, the samewould happen for x → −∞. Therefore,
we can put

λ1 = eıka and λ2 = e−ıka,

where k is a real number. As λ1 and λ2 are periodical functions, we can restrict
ourselves to considering the values of k such that

−π

a
≤ k ≤ π

a
,

sufficient to determine all of the possible eigenfunctions. For any limited function
you will therefore have (2.45):

ψ(x + n a) = eınkaψ(x) for n = 0,±1,±2, . . . .

This expression shows that the properties of invariance of the potential for trans-
lations of a length equal to step a are reflected on the wave function in such a
way that, moving on an integer number of steps, it is modified only by a sim-
ple phase factor. It follows that the physical observables are not influenced by
the translation, that is, the measure of any of them does not allow us to decide
whether we are in x or x + na.
From this property, we deduce that, if we write ψ(x) in the form

ψ(x) = eıkxuk(x),

uk(x) has to be a periodical function of x with step a:

uk(x + a) = uk(x). (2.46)

This result is known as the Bloch theorem. It presents the eigenfunctions as a
plane wave, the solution for a free particle system, with a modified amplitude
reflecting the periodicity property of the potential.

2.23 The Dirac Comb

The simplest periodic potential that can be considered is the so-called Dirac comb:

V (x) = �
2

m
	

+∞∑
n=−∞

δ(x + na),

an infinite lattice of Dirac delta functions placed in positions x = na with n integer.
Determine the Bloch energy eigenfunctions (2.46) and show that the spectrum is
composed of continuous bands of eigenvalues.
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Solution

In each interval ]na, (n + 1)a[, the particle is free, so, having fixed the energy eigen-
value E , the plane waves are independent solutions of the Schrödinger equation:

u1(x) = eıqx and u2(x) = e−ıqx , where q2 = 2mE

�2
.

Now we look for the limited Floquet solutions (see problem 2.22), i.e., such that, if

ψ(x) = Aeıqx + Be−ıqx in the interval 0 < x < a,

then it results that

ψ(x) = eıkaψ(x − a) = eıka[Aeıq(x−a) + Be−ıq(x−a)] in the interval a < x < 2a.

We impose the continuity of the solution and, because there is a Dirac δ on the
common endpoint (see (2.26)), the discontinuity of its first derivative:

ψ(a+) = ψ(a−),

ψ ′(a+) = ψ ′(a−) + 2	ψ(a).

From these conditions, we obtain the linear system

eıka(A + B) = Aeıqa + Be−ıqa,

ıqeıka(A − B) = ıq(Aeıqa − Be−ıqa) + 2	(Aeıqa + Be−ıqa),

that is,

(eıka − eıqa)A + (eıka − e−ıqa)B = 0,[
eıka − eıqa(1 − 2ı

	

q
)

]
A −

[
eıka − e−ıqa(1 + 2ı

	

q
)

]
B = 0.

This is a homogeneous system, so, to get non-trivial solutions, we have to impose
the condition

∣∣∣∣ eıka − eıqa eıka − e−ıqa

eıka − eıqa(1 − 2ı 	
q ) eıka − e−ıqa(1 + 2ı 	

q )

∣∣∣∣ = 0,

from which, with short steps, we get

cos ka = cos qa + 	

q
sin qa. (2.47)

The first member must take values between −1 and 1, so we must have
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Fig. 2.11 Dirac comb: graphical solution to the inequality (2.48) for 	a = 5

Fig. 2.12 Dirac comb: energy as a function of qa compared with the free particle case (	a = 5)
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∣∣∣∣ cos qa + 	

q
sin qa

∣∣∣∣ ≤ 1. (2.48)

This inequality is verified for continuous energy intervals, bringing bands of eigen-
values into existence. Once we find the q values that satisfy inequality (2.48), in
correspondence to each of them, we can determine, from Eq. (2.47), the k value
characterizing the Bloch functions. Each energy level is

E = �
2

2m
q2.

From Fig. 2.11, it can be noted that the forbidden bands, also called energy band
gaps, are larger for small values of q and tend to cancel each other out in the limit
q → ∞. In Fig. 2.12, q2, in practice the energy, is plotted as a function of k and
compared with the parabola k2 that one would have if the eigenfunctions were the
plane waves, that is, if the motion were free and if q coincided with k. The two curves
coincide at the points k = nπ

a , which are the upper limit of each band.
It is interesting to study the influence of the parameter 	, called opacity, on the

energy spectrum. If 	 goes to zero, from Eq. (2.47), we see that k → q, that is, the
lattice becomes transparent and the forbidden bands more and more small until they
vanish. If, conversely, 	 → ∞, the function on the right side of Eq. (2.47) takes on
ever larger values and satisfies the condition (2.48) for ever more limited intervals
of q. The allowed bands degenerate in the discrete spectrum that corresponds to the
situation in which, in each segment of step a, there is a well with impenetrable walls.

2.24 The Kronig-Penney Model

The Kronig-Penney model consists of an infinite sequence of rectangular barriers
with height of potential V0, width b and separated by a distance a − b, so that a
constitutes the lattice step (Fig. 2.13).

Determine the Hamiltonian’s Bloch eigenfunctions and show that, for energies
E < V0, the spectrum is composed of continuous bands of eigenvalues.

Solution

To solve the model, we will use a slightly different method from the one used in the
case of the Dirac comb (see problem 2.23).

During the demonstration of Floquet’s Theorem (problem 2.22), we saw that

λ1 = eıka and λ2 = e−ıka (2.49)

are the eigenvalues of the matrix
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Fig. 2.13 Kronig-Penney model

(
c1,1 c2,1
c1,2 c2,2

)
,

i.e., the matrix of the coefficients of the linear combination that expresses Floquet’s
wave functions in terms of any two solutions to the Schrödinger equation. Solving
the eigenvalues equation, we find

λ1,2 = c1,1 + c2,2
2

±
√(

c1,1 + c2,2
2

)2

+ c1,2 c2,1 − c1,1 c2,2.

This result, together with the expression (2.49) for λ1 and λ2, entails that

c1,1 + c2,2 = λ1 + λ2 = 2 cos ka. (2.50)

We now construct two linearly independent solutions u1(x) and u2(x), corresponding
to an eigenvalue E < V0. Having introduced the quantities

α =
√
2m(V0 − E)

�
and β =

√
2mE

�
,

one solution is given by

u1(x) = eαx for − b < x < 0,

u1(x) = cosβx + α

β
sin βx for 0 < x < a − b,

where we have set the coefficient of u1 as equal to 1 and have imposed the continuity
of the wave function and its derivative in x = 0.

In a completely similar way, we can determine an independent solution u2 given
by

u2(x) = e−αx for − b < x < 0,

u2(x) = cosβx − α

β
sin βx for 0 < x < a − b.
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In the region occupied by the next barrier, between a − b and a, we must have

u1(x) = c1,1e
α(x−a) + c1,2e

−α(x−a) for a − b < x < a,

u2(x) = c2,1e
α(x−a) + c2,2e

−α(x−a) for a − b < x < a.

In x = a − b, the common endpoint for the two intervals, we can impose the conti-
nuity of u1(x), u2(x) and their derivatives leading to the system

cosβ(a − b) + α

β
sin β(a − b) = c1,1 e

−αb + c1,2 e
αb,

cosβ(a − b) − α

β
sin β(a − b) = c2,1 e

−αb + c2,2 e
αb,

−β sin β(a − b) + α cosβ(a − b) = α(c1,1 e
−αb − c1,2 e

αb),

−β sin β(a − b) − α cosβ(a − b) = α(c2,1 e
−αb − c2,2 e

αb),

from which it is possible to get the coefficients ci,k . We obtain c1,1 from the first and
third equations, and c2,2 from the second and fourth equations:

c1,1 = eαb

[
cosβ(a − b) + α2 − β2

2αβ
sin β(a − b)

]
,

c2,2 = e−αb

[
cosβ(a − b) − α2 − β2

2αβ
sin β(a − b)

]
.

Finally, using relationship (2.50), we get

cos ka = c1,1 + c2,2
2

= cosh αb cosβ(a − b) + α2 − β2

2αβ
sinh αb sin β(a − b).

(2.51)
As in the Dirac comb model, this relationship allows us to determine k only when
the second member is between −1 and 1, thus giving rise to the band spectrum.



Chapter 3
Two and Three-Dimensional Systems

3.1 Plane Harmonic Oscillator

The Plane Harmonic oscillator has the Hamiltonian

H = 1

2m
(p2x + p2y) + 1

2
mω2(q2

x + q2
y ).

(a) Find the energy levels and their degeneracy;
(b) express the Hamiltonian in terms of the operators

η+ = 1√
2

(ax + iay) η− = 1√
2

(ax − iay),

where

ax =
√
mω

2�
qx + i

√
1

2mω�
px ay =

√
mω

2�
qy + i

√
1

2mω�
py,

and their Hermitian adjoint;
(c) write the angular momentum operator for this system; what can we say about

the angular momentum at a fixed energy eigenvalue?

Solution

(a)
H = Hx + Hy = �ω(a†xax + a†yay + 1).

H eigenvalues are given by

E = (n + 1)�ω with n = 0, 1, . . .
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The corresponding eigenstates are |nx , ny〉 with nx + ny = n, nx ≥ 0, ny ≥ 0,
and we can also write them as

|k, n − k〉 con k = 0, 1, . . . , n.

En is therefore degenerate n + 1 times.
(b) In terms of η operators, we obtain

ax = 1√
2
(η+ + η−) ay = 1

i
√
2
(η+ − η−)

H = �ω(η
†
+η+ + η

†
−η− + 1).

(c) In this system, the angular momentum only has a component along the z axis.
From

qx =
√

�

2mω
(ax + a†x ) px = 1

i

√
�mω

2
(ax − a†x ),

we get

L = qx py − qy px = �

2i

[
(ax + a†x )(ay − a†y) − (ay + a†y)(ax − a†x )

] =
= �

i

[
a†xay − axa

†
y

]
.

In principle, it should be possible to find a set of simultaneous eigenkets for H
and L , because one can easily show that these two operators commute. However,
as required,we limit ourselves to studying the L matrix elements in the subspaces
related to each energy eigenvalue, i.e., at n fixed. We obtain

〈k′, n − k′|L|k, n − k〉 = �

i

(√
(k + 1)(n − k) δk′,k+1 − √

k(n − k + 1) δk′,k−1

)
,

where k = 0, 1, . . . , n. We see immediately that the diagonal elements, which
are the expectation values of L in the energy eigenstates we found before, are
null. In these eigenstates, therefore, having called ��, with � relative integer or
null, the eigenvalue of L , it occurs that � = 0, or there are combinations of � and
−� that compensate. In each subspace relative to an En value, the matrix of L
has this form:
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L(n)
k ′,k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√
n 0 0 · · · 0 0

−√
n 0

√
2(n − 1) 0 · · · 0 0

0 −√
2(n − 1) 0

√
3(n − 2) · · · 0 0

0 0 −√
3(n − 2) 0 · · · 0 0

...
...

...
...

...
...

...

0 0 0 0 · · · 0
√
n

0 0 0 0 · · · −√
n 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

L(n) is tridiagonal, antisymmetric with respect to the main diagonal, symmetric
with respect to the antidiagonal. In general, it can be shown that the quantum
number � is subject to the condition

� = −n,−n + 2, . . . , n − 2, n.

You can easily calculate the eigenvalues for the first values of n:

for n = 0, � = 0,
for n = 1, � = ±1,
for n = 2, � = 0,±2,
for n = 3, � = ±1,±3.

3.2 Spherical Harmonic Oscillator

Consider a tridimensional harmonic oscillator with angular frequencyω. The Hamil-
tonian eigenkets depend upon three positive or null integers nx , ny, nz :

E(nx , ny, nz) = �ω

(
nx + ny + nz + 3

2

)
= �ω

(
n + 3

2

)
,

|n〉 = |nx , ny, nz〉.

(a) Express the angular momentum operators Lx , Ly, Lz as functions of the raising
and lowering operators relevant to the various degrees of freedom, ax , a†x , ay, a

†
y,

az, a†z , and calculate the commutator of Lz with the Number operator for the z
axis: Nz = a†z az .

(b) Consider the three eigenstates relative tonx + ny + nz = 1, determine their com-
binations that are eigenstates of Lz and calculate the Lz corresponding eigenval-
ues.

Solution

For each of the degrees of freedom k = x, y, z, we can define the operators



62 3 Two and Three-Dimensional Systems

qk =
√

�

2mω
(ak + a†k ) and pk = 1

i

√
mω�

2
(ak − a†k ),

ak =
√
mω

2�
qk + i

√
1

2mω�
pk and a†k =

√
mω

2�
qk − i

√
1

2mω�
pk

satisfying the relationships

[ak, a j ] = [a†k , a†j ] = 0 , [ak, a†j ] = δk, j .

(a) Let us calculate the angolar momentum components

Lx = qy pz − qz py = �

2i

[
(ay + a†y)(az − a†z ) − (az + a†z )(ay − a†y)

] =

= �

i

[
a†yaz − aya

†
z

]
.

Similarly, it is found that

Ly = �

i

[
a†z ax − aza

†
x

]
,

Lz = �

i

[
a†xay − axa

†
y

]
.

The commutator between Lz and Nz is

[Lz, Nz] = �

i

[
a†xay − axa

†
y, Nz

] = 0.

(b) The generic state corresponding to n = nx + ny + nz = 1 is

|1〉 = a|1, 0, 0〉 + b|0, 1, 0〉 + c|0, 0, 1〉.

Since we have seen that [Lz, Nz] = 0, we look for the eigenkets common to both
operators. We immediately see that

• if a = b = 0 and c = 1, we have Nz|1〉 = Nz|0, 0, 1〉 = 1 · |0, 0, 1〉.
|0, 0, 1〉 is also an eigenket of Lz corresponding to the eigenket 0. Indeed,

Lz|0, 0, 1〉 = �

i

[
a†xay − axa

†
y

] |0, 0, 1〉 = 0.

• if c = 0 it results that Nz|1〉 = Nz[a|1, 0, 0〉 + b|0, 1, 0〉] = 0. That is, for any
value of a and b, we have an eigenket of Nz corresponding to the eigenvalue
0. Let us search for which values of a and b this eigenket is also eigenket of
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Lz , imposing that it satisfies the eigenvalues equation

Lz[a|1, 0, 0〉 + b|0, 1, 0〉] = �

i
[−a|0, 1, 0〉 + b|1, 0, 0〉] =

= m�[a|1, 0, 0〉 + b|0, 1, 0〉].

We immediately obtain

⎧⎨
⎩

− 1
i a = m b

1
i b = m a

⇒ m2 = �
2 ⇒ m = ±1,

Form = 1, imposing the normalization condition |a|2 + |b|2 = 1, we find the
eigenket

|n = 1, Lz = +�〉 = 1√
2

[|1, 0, 0〉 + i |0, 1, 0〉],

while, for m = −1, we find the eigenket

|n = 1, Lz = −�〉 = 1√
2

[|1, 0, 0〉 − i |0, 1, 0〉].

3.3 Reflection and Refraction in 3 Dimensions

Consider the three-dimensional step potential

V (x, y, z) =
{
0, if x < 0,

V0, if x > 0.

Derive the laws of reflection and refraction for a plane wave that impacts obliquely
on the potential discontinuity and determine the conditions for total reflection.

Solution

The Schrödinger equation is separable in cartesian coordinates, because the Hamil-
tonian is given by:

H =
{

p2x
2m + p2y

2m + p2z
2m , if x < 0,

p2x
2m + V0 + p2y

2m + p2z
2m , if x > 0.

The system is invariant for rotations around the x axis; we can thus fix the incidence
direction in the xy plane, putting pz = Ez = 0. In this way, the problem involves
only coordinates x and y. Because of separability, each eigenvalue has the form
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E = Ex + Ey,

and the corresponding eigenfunctions are

�(x, y) = ψ(x)φ(y).

In the y coordinate, the motion is free, while, in the x coordinate, there is a step
potential. Posing that

kx =
√
2mEx

�2
, ky =

√
2mEz

�2
,

we have, setting the coefficient of the incoming wave equal to 1,

φ(y) = eiky y,

ψ(x) =
{
eikx x + Re−ikx x , if x < 0

T eiqx x , if x > 0

where

qx =
√
2m(Ex − V0)

�2
.

Thus, 3 wave vectors are identified:

• The incident wave vector k = (kx , ky) given by the boundary conditions;
• The reflected wave vector k′ = (k ′

x , k
′
y) = (−kx , ky);

• The transmitted wave vector q = (qx , ky).

We denote with α, α′ and β, respectively, the angles between these vectors and the
x axis. We immediately find that the incidence angle and the reflection angle are the
same, α = α′.

By imposing continuity conditions on the border of the two regions with different
potential (x = 0), we obtain

R = kx − k ′
x

kx + k ′
x

and T = 2kx
kx + k ′

x

.

The situation presents similarities and differences with respect to the case of
electromagnetic waves, for which Snell’s law is valid. In the present case, V0, which
is the variation of the potential, assumes the role of a change in the refractive index.
However, while for photons the simple relation is worth (n = refractive index)

k = ω

c
n = E

�c
n,
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for particles the relation is

k =
√
2m(E − V0)

�2
.

In terms of wave vectors, angles are given by

sin α = ky√
k2y + k2x

sin β = ky√
k2y + q2

x

,

sin α

sin β
=

√
k2y + q2

x√
k2y + k2x

=
√

Ey + Ex − V0

Ey + Ex
.

We can distinguish two cases:

V0 > 0. If E < V0, qx is imaginary and in the region x > 0 the wave function is
exponentially damped. We find |R| = 1 and the transmitted probability
current is zero: we have total reflection. If, instead, E > V0, qx is real and
there is a transmitted probability current, we get sin β > sin α and, then,
β > α. This case corresponds, therefore, to the passage of light from a
more refractive medium to a less refractive one.

V0 < 0. Whatever the value of E > 0 we have α > β. It’s what happens when the
light passes from a less refractive medium to a more refractive one.

3.4 Properties of the Eigenstates of J2 and Jz

J± = Jx ± i Jy operators play the role of raising/lowering the z component of the
angular momentum:

J+| j,m〉 = c+| j,m + 1〉, (3.1)

J−| j,m〉 = c−| j,m − 1〉. (3.2)

(a) Estimate the coefficients c+ and c− imposing the normalization of the eigenkets
of J 2 and Jz .

(b) Calculate the matrix elements of operators Jx , Jy and Jz in the J 2,Jz basis.
(c) Prove that, in an eigenstate of J 2 and Jz corresponding to the quantum numbers

j and m, the maximum accuracy of the simultaneous measurement of Jx and Jy
is obtained when |m| = j .

(d) Calculate the expectation value, still in a J 2 and Jz eigenket, of the angular
momentum component along a n̂ direction that forms angle θ with the z axis.

Solution

(a) In the dual space, relation (3.1) becomes
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〈 j,m|J− = c∗
+〈 j,m + 1|,

and, therefore,

〈 j,m|J− J+| j,m〉 = |c+|2〈 j,m + 1| j,m + 1〉 = |c+|2,

from which we get

|c+|2 = 〈 j,m|J− J+| j,m〉 = 〈 j,m|J 2 − J 2
z − �Jz| j,m〉 =

= [�2 j ( j + 1) − �
2m2 − �

2m]〈 j,m| j,m〉.

Setting the c+ phase equal to 0,

c+ = �

√
j ( j + 1) − m(m + 1). (3.3)

In a similar way, we obtain

c− = �

√
j ( j + 1) − m(m − 1). (3.4)

The relations (3.1) and (3.2) can, therefore, be written in a compact form:

J±| j,m〉 = �

√
j ( j + 1) − m(m ± 1) | j,m ± 1〉. (3.5)

(b) Let us now calculate the matrix elements of J components in the basis | j,m〉,

〈 j ′,m ′|Jx | j,m〉 = 〈 j ′,m ′| J+ + J−
2

| j,m〉 =

= �

2

[√
j ( j + 1) − m(m + 1) δ j, j ′δm,m ′−1 +

+ √
j ( j + 1) − m(m − 1) δ j, j ′δm,m ′+1

]
, (3.6)

〈 j ′,m ′|Jy| j,m〉 = 〈 j ′,m ′| J+ − J−
2ı

| j,m〉 =

= �

2ı

[√
j ( j + 1) − m(m + 1) δ j, j ′δm,m ′−1 −

− √
j ( j + 1) − m(m − 1)δ j, j ′δm,m ′+1

]
, (3.7)

〈 j ′,m ′|Jz| j,m〉 = �m δ j, j ′δm,m ′ , (3.8)

(c) Let us now look for the minimum in the | jm〉 state of the uncertainties of Jx and
Jy , which are the same for symmetry reasons (as, moreover, we can verify):
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〈	Jx 〉2 = 〈J 2
x 〉 − 〈Jx 〉2 = 〈	Jy〉2 = 〈J 2

y 〉 − 〈Jy〉2.

Again for reasons of symmetry: 〈Jx 〉 = 〈Jy〉. These expectation values vanish;
in fact, using the previous results, we obtain:

〈Jx 〉 = 〈 j,m|Jx | j,m〉 =
= �

2

√
j ( j + 1) − m(m + 1) 〈 j,m| j,m + 1〉 +

+�

2

√
j ( j + 1) − m(m − 1) 〈 j,m| j,m − 1〉 = 0.

Therefore,

〈	Jx 〉2 = 〈J 2
x 〉 = 1

2
〈J 2 − J 2

z 〉 = 1

2
[ j ( j + 1)�2 − m2

�
2] =

= �
2

2
[ j ( j + 1) − m2],

which attains its minimum for |m| = j , which is the maximal value |m| can
assume.

(d) The versor n̂ in spherical coordinates has the form

n̂ = (sin θ cosφ, sin θ sin φ, cos θ).

The J component along n̂ is

J · n̂ = Jx sin θ cosφ + Jy sin θ sin φ + Jz cos θ.

The required expectation value is therefore

〈 j,m|J · n̂| j,m〉 = sin θ cosφ〈 j,m|Jx | j,m〉 + sin θ sin φ〈 j,m|Jy | j,m〉 +
+ cos θ〈 j,m|Jz| j,m〉 = �m cos θ,

since, as we have seen, the expectation values for Jx and Jy are null.

3.5 Measurements of Angular Momentum in a State
with � = 1

Consider a system in a � = 1 angular momentum state. After measuring the angular
momentum component along a n̂ direction that forms angle θ with the z axis and
determining the result +�, the angular momentum component along the z axis is
measured. What is the probability of finding the value +�?
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Solution

The angular momentum components are compatible with its square modulus; there-
fore, their measures do not modify the property to be in the state with � = 1.

We will therefore develop the calculations in the basis |�,m〉, selecting the sub-
space relative to � = 1. As m can assume the values +1, 0,−1, a column array with
3 components corresponds to each ket and a 3 × 3 matrix to each operator.

Let us calculate the matrix elements of Lx , Ly and Lz using (3.6), (3.7), (3.8) for
j = � = 1,

(Lx )m ′,m = 〈1,m ′|Lx |1,m〉 =
= �

2

[√
2 − m(m + 1) δm,m ′−1 + √

2 − m(m − 1) δm,m ′+1

]
,

(Ly)m ′,m = 〈1,m ′|Ly|1,m〉 =
= �

2ı

[√
2 − m(m + 1) δm,m ′−1 − √

2 − m(m − 1) δm,m ′+1

]
,

(Lz)m ′,m = 〈1,m ′|Lz|1,m〉 = m� δm,m ′ .

We can explicitly write these matrices if we associate the row or column index i with
the value of m as follows:

m = +1, 0, −1,
i = 1, 2, 3.

Thus, we get

Lx = �√
2

⎛
⎝0 1 0
1 0 1
0 1 0

⎞
⎠ , Ly = �√

2

⎛
⎝ 0 −ı 0

ı 0 −ı
0 ı 0

⎞
⎠ , Lz = �

⎛
⎝ 1 0 0
0 0 0
0 0 −1

⎞
⎠ .

It is easy to verify that Lx and Ly have the same eigenvalues as Lz , as expected, since
all of the space directions are equivalent.

The Lz eigenvectors are

ψ+1 =
⎛
⎝ 1
0
0

⎞
⎠ , ψ0 =

⎛
⎝0
1
0

⎞
⎠ , ψ−1 =

⎛
⎝ 0
0
1

⎞
⎠ .

The unit vector n̂ is
n̂ = (sin θ cosφ, sin θ sin φ, cos θ)

and the L component along n̂ is

L · n̂ = Lx sin θ cosφ + Ly sin θ sin φ + Lz cos θ,

i.e.,
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L · n̂ = �

⎛
⎜⎝

cos θ 1√
2
sin θe−ıφ 0

1√
2
sin θeıφ 0 1√

2
sin θe−ıφ

0 1√
2
sin θeıφ − cos θ

⎞
⎟⎠ .

The eigenvalues of L · n̂ are, as for any component of L, +�, 0,−�. We know that,
after the measurement of L · n̂, the system is in the eigenvector corresponding to the
eigenvalue +�, which we denote as

ψ n̂
+�

=
⎛
⎝a
b
c

⎞
⎠ = a ψ+1 + bψ0 + cψ−1.

Hence, the square modulus of a is the probability of finding +� in a subsequent
measure of Lz . To determine |a|2 we impose that ψ n̂

+�
is the eigenvector for the

eigenvalue +� di L · n̂:
L · n̂ ψ n̂

+�
= � ψ n̂

+�
,

attaining the system

⎧⎪⎨
⎪⎩

a cos θ + b√
2
sin θe−ıφ − a = 0

a√
2
sin θeıφ + c√

2
sin θe−ıφ − b = 0

b√
2
sin θeıφ − c cos θ − c = 0

Only two of these equations are independent, because this is an homogeneous system
with zero coefficients determinant, but there is another equation as a result of the
normalization condition:

|a|2 + |b|2 + |c|2 = 1.

By developing short calculations, the required probability is found:

P(Lz = �) = |a|2 = (1 + cos θ)2

4
.

3.6 Angular Momentum of a Plane Wave

A particle has determinate momentum p. Which result is obtained by measuring the
angular momentum component along the p direction?

Solution

The particle wave function is a plane wave that propagates in the p direction:
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ψp(r) =
(

1

2π�

) 3
2

eık·r,

where k = p
�
.

By choosing the reference system so that p is directed along the z axis, one can
write:

ψp(r) =
(

1

2π�

) 3
2

eıkz =
(

1

2π�

) 3
2

eıkr cos θ .

The L component along p is Lz , that is,

Lp = Lz = −ı�
∂

∂φ
.

As ψp does not depend on φ,
Lzψp = 0.

We can therefore state that the particle is in a L · p eigenstate corresponding to
eigenvalue 0.

3.7 Measurements of Angular Momentum (I)

The state of a particle of mass m is described by the wave function

ψ(r) = 1√
4π

(eiϕ sin ϑ + cosϑ)g(r),

where ∫
|g(r)|2r2dr = 1

and ϕ, ϑ are the azimuth and polar angles, respectively.

(a) What are the possible results of a measurement of the Lz component of the
particle angular momentum in this state?

(b) What is the probability of each of these possible results?
(c) What is the expectation value of Lz?

Solution

(c) Using the formula (A.39), the wave function can be rewritten in the form

ψ(r) = 1√
3
(Y1,0 − √

2Y1,1)g(r) ;
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so, the possible values of Lz are +� and 0.

Assuming its radial part is normalized, the wave function is overall normalized.
Indeed,

∫
|ψ |2 dr =

∫ ∞

0
dr r2|g(r)|2 1

3

∫ +1

−1
d cosϑ

∫ 2π

0
dϕ |Y1,0 − √

2Y1,1|2 =

= 1

3

∫ +1

−1
d cosϑ

∫ 2π

0
dϕ

(|Y1,0|2 + 2|Y1,1|2|
) = 1.

So, the required probabilities are P(Lz = �) = 2/3 e P(Lz = 0) = 1/3.
(c) 〈Lz〉 = 2/3 · � + 1/3 · 0 = 2/3 �.

3.8 Measurements of Angular Momentum (II)

A particle is in a state described by the wave function

ψ(x, y, z) = C(xy + yz + zx)e−αr2 .

(a) What is the probability that a measure of the square of angular momentum gives
the result 0?

(b) What is the probability that a measure of the square of angular momentum gives
the result 6�2?

(c) If you find that the value of the orbital quantum number is 2, what are the
probabilities related to the possible values of Lz?

Solution

By entering the spherical coordinates using the (A.21), we can write

ψ(r, θ, φ) =
= C r2e−αr2(sin2 θ sin φ cosφ + sin θ cos θ sin φ + sin θ cos θ cosφ) =
= C

2i
r2e−αr2

{
1

2
sin2 θ (e2iφ − e−2iφ) + sin θ cos θ

[
eiφ(1 + i) − e−iφ(1 − i)

]}
=

= C

2i
r2e−αr2

√
8π

15

[
Y2,−2 − Y2,2 − (1 + i)Y2,1 + (1 − i)Y2,−1

]
,

where Spherical Harmonics were introduced using (A.40).

(a) The particle is in a state with � = 2, so P(� = 0) = 0 .
(b) P(L2 = 6�2) = P(� = 2) = 1 .
(c) The probability of finding a certain value of Lz is given by the square modulus

of the coefficient of the related Spherical Harmonic, after having integrated over
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r and normalized the wave function. The result of the r -integral is the same for
all of the components, so it is simpler to calculate the square modulus of the
coefficients and then renormalize them to sum 1. The sum of the coefficients
magnitudes is

1 + 1 + |1 + i |2 + |1 − i |2 = 1 + 1 + 2 + 2 = 6,

and the required probabilities are given by

P(Lz = −2�) = 1

6
,

P(Lz = +2�) = 1

6
,

P(Lz = −1�) = 1

3
,

P(Lz = +1�) = 1

3
,

P(Lz = 0�) = 0.

3.9 Measurements of Angular Momentum (III)

A particle is in a state described by the wave function

ψ(r) = A x e−αr ,

where α is a real constant and A is a normalization constant. If a measurement of L2

is performed, what will be the wave function immediately after the measurement?

Solution

Remember that, from (A.39),

Y1,0 =
√

3

4π
cos θ, (3.9)

Y1,±1 = ∓
√

3

8π
sin θe±ıφ. (3.10)

The cartesian coordinates,

x = r sin θ cosφ, (3.11)

y = r sin θ sin φ, (3.12)

z = r cos θ (3.13)
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can be written in terms of spherical harmonics. It follows that the wave function can,
in turn, be rewritten in the form:

ψ(r) = A

[
− r

2

(
8π

3

) 1
2 (

Y1,+1 − Y1,−1
)]

e−αr .

It is therefore an eigenstate of L2 corresponding to the eigenvalue

1(1 + 1)�2 = 2�
2.

For this reason, the measurement of L2 does not perturb the wave function.

3.10 Dipole Moment and Selection Rules

Consider the matrix elements of the position z component between the eigenstates
|�,m〉 of L2 and Lz :

〈�,m| r cos θ |�′,m ′〉.

Using the Spherical Harmonics recurrence relation (A.35),

cos θ Y�,m(θ, φ) = a�,m Y�+1,m(θ, φ) + a�−1,m Y�−1,m(θ, φ),

where

a�,m =
√

(� + 1 + m)(� + 1 − m)

(2� + 1)(2� + 3)
, (3.14)

show that such matrix elements are zero unless the differences �′ − � and m ′ − m
assume particular values.

Solution

We calculate the required matrix elements in the spherical coordinates basis. Taking
into account the suggested relationship, we have

〈�,m| r cos θ |�′,m ′〉 = r
∫

d� Y ∗
�,m(θ, φ) cos θ Y�′,m ′(θ, φ) =

= r
∫

d� Y ∗
�,m(θ, φ)

[
a�′,m ′ Y�′+1,m ′ + a�′−1,m ′ Y�′−1,m ′

] =
= r (a�−1,m δ�′,�−1 + a�,m δ�′,�+1) δm,m ′ ,

where we also used the orthogonal properties of the spherical harmonics (A.34). It
follows that these matrix elements are null, unless
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�m = m ′ − m = 0 e �� = �′ − � = ±1. (3.15)

These relationships are called selection rules, and they are relevant in calculating the
probabilities of electric dipole transitions.

3.11 Quadrupole Moment

The quadrupole moment is the tensor

Qik = 3xi xk − r2δik .

Its expectation values indicate the deviations of the probability distribution compared
to a spherically symmetrical one.

Determine its expectation values for one particle subject to a central potential in
an eigenstate of H , L2 and Lz .

Solution

Because of the separability in spherical coordinates for a central potential, an eigen-
function of H , L2 and Lz assume the form (A.42), so that we have to calculate the
following expressions:

〈Qik〉 =
∫ ∞

0
dr |χ�(r)|2

∫ π

0
dθ sin θ

∫ 2π

0
dφ

∣∣Y�,m(θ, φ)
∣∣2 Qik .

Thematrix elements Qik depend on the spherical coordinates throughA.21. Consider
non-diagonal elements: their integration function depends on φ via cosφ, sin φ and
sin φ cosφ. Therefore, all of these elements vanish because the integral over φ is
null.

It remains to calculate the diagonal elements

Q11 = Qxx = 3x2 − r2 = r2(3 sin2 θ cos2 φ − 1),

Q22 = Qyy = 3y2 − r2 = r2(3 sin2 θ sin2 φ − 1),

Q33 = Qzz = 3z2 − r2 = r2(3 cos2 θ − 1).

For Qxx and Qyy , the integral over φ, taking into account

cos2 φ = 1 + cos 2φ

2
and sin2 φ = 1 − cos 2φ

2
,

gives us ∫ 2π

0
dφ cos2 φ =

∫ 2π

0
dφ sin2 φ =

∫ 2π

0

1

2
dφ.
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Therefore, defining

〈r2〉 =
∫ ∞

0
dr r2 |χ�(r)|2 ,

we get

〈Qxx 〉 = 〈Qyy〉 = 〈r2〉
∫ 2π

0
dφ

∫ π

0
dθ sin θ

(
3

2
sin2 θ − 1

) ∣∣Ym
� (θ, φ)

∣∣2 .

As
3

2
sin2 θ − 1 = −1

2
(3 cos2 θ − 1),

we also get

〈Qxx 〉 = 〈Qyy〉 = −1

2
〈Qzz〉.

We have only therefore to calculate 〈Qzz〉. Taking into account the Spherical Har-
monics recurrence relation (A.35), we obtain

〈Qzz〉 = 〈r2〉
∫ 2π

0
dφ

∫ π

0
dθ sin θ

(
3 cos2 θ − 1

) ∣∣Y�,m(θ, φ)
∣∣2 =

= 〈r2〉 [
3(a2�,m + a2�−1,m) − 1

] = 〈r2〉 2�(� + 1) − 6m2

(2� − 1)(2� + 3)
.

Let’s now look at some special cases.
swave: � = 0, m = 0 ⇒ 〈Qzz〉 = 〈Qxx 〉 = 〈Qyy〉 = 0, i.e., there is complete

spherical symmetry.
p wave, � = 1: here are three possibilities:

m = 0: ⇒ 〈Qzz〉 = 4
5 〈r2〉 > 0 , which indicates an elongated distribution

in the z direction;
m = ±1: ⇒ 〈Qzz〉 = − 2

5 〈r2〉 < 0 , which indicates a flattened distribution
in the z direction.

We notice that spherical symmetry is restored if we consider the sum of the 〈Qzz〉
relative to the three states of m. This result is generally valid for every value of �.
Indeed,

+�∑
m=−�

〈Qzz〉 = 〈r2〉 2

(2� − 1)(2� + 3)

+�∑
m=−�

[�(� + 1) − 3m2] = 0,

as
+�∑

m=−�

m2 = 1

3
�(� + 1)(2� + 1).
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An atom that has electrons that complete the m states corresponding to the occupied
� states has spherical symmetry, and is thereforemore stable with respect to electrical
interactions (obviously, we are neglecting interaction between electrons).

3.12 Partial Wave Expansion of a Plane Wave

The Schrödinger equation in spherical coordinates for a free particle has the solutions

ψ�,m(r, θ, φ) = a�,m j�(kr)Y�,m(θ, φ). (3.16)

These are called spherical waves and constitute an orthonormal basis of eigenvectors
common to the compatible observables H, L2 and Lz . Instead, the Schrödinger
equation in Cartesian coordinates has the solutions

ψp(r) =
(

1

2π�

) 3
2

eık·r where k = p

�
,

which are called plane waves and make up an orthonormal basis of eigenvectors
common to the compatible observables H and p.

Itmust therefore be possible to express a planewave as a superposition of spherical
waves corresponding to the same energy E = �

2k2

2m :

eık·r =
∞∑

�=0

+�∑
m=−�

a�,m j�(kr)Y�,m(θ, φ). (3.17)

By choosing the z axis along the wave vector k direction, determine the coeffi-
cients of the development (3.17) by imposing that the two expressions have the same
asymptotic behavior in r .

Solution

By choosing the z axis along the direction of the wave vector k, the plane wave
becomes eıkr cos θ , which does not depend on φ. Also, the second member should not
depend on φ and, since it is a superposition of linearly independent functions, this
can only happen if only the terms withm = 0, which do not depend on φ, contribute
to it. The spherical harmonics for m = 0 are given by

Y�,0(θ, φ) =
√
2� + 1

4π
P�(cos θ),

and therefore (3.17) reduces to
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eıkr cos θ =
∞∑

�=0

a� j�(kr)P�(cos θ),

where all of the constants are incorporated into a�.
To determine the coefficients a�, we multiply both members for P�(cos θ) and we

integrate over cos θ . Using the orthonormal relationship for Legendre Polynomials
(A.30), we get ∫ +1

−1
dzP�(z)e

ıkr z = 2a�

2� + 1
j�(kr). (3.18)

We now compare the r asymptotic behaviors of both sides. The series expansion of
the first side of (3.18) can be obtained by iterating integration by parts:

∫ +1

−1
dzP�(z) e

ıkr z = 1

ıkr

[
eıkr z P�(z)

]+1

−1
− 1

ıkr

∫ +1

−1
dzP ′

�(z) e
ıkr z =

= 1

ıkr

[
eıkr z P�(z)

]+1

−1
− 1

ıkr

{
1

ıkr

[
eıkr z P ′

�(z)
]+1

−1
− 1

ıkr

∫ +1

−1
dzP ′′

� (z) eıkr z
}

=

= 1

ıkr

[
eıkr z P�(z)

]+1

−1
+ O(

1

r
)2 = 1

ıkr

[
eıkr − eıπ� e−ıkr

]
+ O(

1

r
)2 =

= 2

kr
e
ıπ�
2 sin

(
kr − π�

2

)
+ O(

1

r
)2,

where we used the property (A.31) of Legendre polynomials.
To calculate the r asymptotic behavior of the second side of (3.18), we use (A.54),

and then, from (3.18), we obtain

2

kr
ı� sin

(
kr − π�

2

)
= 2a�

2� + 1

1

kr
cos

(
kr − � + 1

2
π

)
,

from which, simplifying, we reduce to the following expression for a�:

a� = ı� (2� + 1). (3.19)

Thus, we obtain the spherical wave expansion of a plane wave:

eıkr cos θ =
∞∑

�=0

ı� (2� + 1) j�(kr)P�(cos θ). (3.20)

3.13 Particle Inside of a Sphere

Determine the eigenvalues of the discrete energy spectrum for a particle surrounded
by a sphere of impenetrable potential, within which the potential is null.
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Solution

We denote the radius of the sphere with R. Its impenetrability implies that the wave
function vanishes on the surface, so that the outgoing probability current is zero.
Inside the sphere, instead, the particle is free and, normalization apart, the radial
wave function is given by

Rk,�(r) = j�(kr),

where k = √
2mE/� and j�(z) is the �th Bessel spherical function (see A.7). As

already noted, the radial wave function must vanish on the boundary and therefore

j�(kR) = 0.

The Bessel spherical functions depend on trigonometric functions and have infinite
zeros that are numbered in ascending order. Having called z̄nr ,� the nr -simo zero of
j�, in order for j�(kR) to be zero, it must result that k = z̄nr ,�

R . We conclude that the
possible energy eigenvalues are given by

Enr ,� = �
2

2m

z̄2nr ,�
R2

. (3.21)

nr is called the radial quantum number, to distinguish it from the orbital quantum
number �. Zeros of the spherical Bessel functions are tabulated (see, for example,
[1]).

3.14 Bound States of a Particle Inside of a Spherical
Potential Well

Determine the energy eigenvalues of the bound states of a particle subject to the
potential:

V (r) =
{
0, per r > a;
−V0, per r < a.

Solution

Taking into account centrifugal potential, the particle is in the presence of the effective
potential:

Vef f (r) = V (r) + �
2�(� + 1)

2mr2
, (3.22)

which has been drawn in black in Fig. 3.1. The condition necessary for the bound
states to exist is that the minimum of potential be lower than its asymptotic value,
which is null. Since the minimum is always placed in r = a, this is equivalent to the
condition
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Fig. 3.1 Spherical well: the spherical potential well (blue), which added to the centrifugal potential
(red), gives rise to the effective potential (black)

V0 >
�
2�(� + 1)

2ma2
. (3.23)

We can already say that there are situations for which there have been no bound
states and others for which they are present, but only for the lower states of angular
momentum. We will see, however, that condition (3.23) is not a sufficient condition.
At fixed values of � and energy E < 0, we can distinguish two regions, depending
on whether r is less or greater than a.

Region I: r < a
Inside the sphere, there is a potential constantly equal to −V0. The radial equation is
that of a free particle:

d2

dr2
Uk,�(r) +

[
k2 − �(� + 1)

r2

]
Uk,�(r) = 0, (3.24)

with wave number k

k2 = 2m(E + V0)

�2
.

Since the origin is included in this region, the only acceptable solution (satisfying
the condition limr→0Uk,�(r) = 0) is
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Uk,�(r) = A r j�(kr), (3.25)

where A is a normalization constant.

Regione II: r > a
Outside of the sphere, the potential is also constant, but now its value is zero. The
radial equation is that of a free particle with eigenvalues that are, however, negative:

d2

dr2
Uk,�(r) +

[
−χ2 − �(� + 1)

r2

]
Uk,�(r) = 0, (3.26)

where χ is

χ2 = −2mE

�2
> 0.

The solutions to this equation are still spherical Bessel functions, with the replace-
ment k → ıχ . The condition to be imposed on these solutions is not the regular
behavior in the origin, which is not part of this region, but rather that they do not
diverge for r → +∞. As explained in the Appendix, we see that the solutions with
correct asymptotic pattern are the spherical Hankel functions of first kind (A.62).
The solution in this region is, therefore, given by

Uk,�(r) = B r h(1)
� (ıχr). (3.27)

Connecting the solutions
The solutions found in the two regions must be equal in r = a, the border point,
togetherwith their derivatives, or, equivalently, togetherwith their logarithmic deriva-
tives. The continuity condition on the wave function determines the ratio B/A (the
normalization condition then allows us to determine the module of each of them).
The continuity condition on the logarithmic derivative, on the other hand, determines
the spectrum of the energy eigenvalues. In fact, it entails that

1

h(1)
� (ıχa)

[
d

dr
h(1)

� (ıχr)

]
r=a

= 1

j�(ka)

[
d

dr
j�(kr)

]
r=a

. (3.28)

Note that k and χ are not independent variables, because

χ2 = −2mE

�2
= 2mV0

�2
− k2 ; (3.29)

therefore, in general, the connection of the logarithmic derivatives, i.e., the existence
of a solution valid in both regions, will be possible only for certain energy values.
Since, aswe have noted, for large values of �we do not have eigenvalues, the equation
(3.28) must be resolved starting from � = 0, 1, 2, . . . until (3.23) is satisfied.
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Fig. 3.2 Spherical well: graphic solution to Eq. (3.31). The functions at the two sides of (3.31) are
quoted. The left side must be considered only with regard to the continuous black lines. The linear
function on the right side is plotted for 3 different values of the angular coefficient: 0.3/π (red),
2/π (green), 5/π (blue)

Eigenvalues for � = 0
The lowest eigenvalue, the ground state energy, will be obtained for � = 0: in fact,
increasing the orbital quantumnumber, thewell bottom is raised due to the centrifugal
potential, and the eigenvalues will consequently be higher. From (A.46) and (A.58),
we see that

j0(z) = sin z

z
and h(1)

0 (z) = −ı
eız

z
.

Substituting them in (3.28), we find that

χ = −k cot ka. (3.30)

This is exactly the same equation already found in the case of the one dimensional
square well (problem 2.7) for the odd solutions. This is an expected result, because,
for � = 0, the centrifugal potential is absent. The only difference is linked to the
solutions’ domain that is restricted to the positive semi-axis with the condition that
the radial wave function vanishes in the origin: in the case of the one-dimensional
square well, this happens precisely for the odd solutions. However, we are going to
solve (3.30), always in a graphic way, but using a different strategy (Fig. 3.2).

Using (3.29) and (3.30), we get

sin ka = ±
√

1

1 + cot2 ka
= ±

√
1

1 + χ2

k2

= ±
√√√√ 1

1 +
2mV0
�2 −k2

k2

= ±
√

�2k2

2mV0
,
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which we can also rewrite in the form

± sin ka =
√

�2

2mV0a2
ka. (3.31)

Energy eigenvalues will be obtained substituting the values of ka for which the first
and second side curves intersect in (3.29). We must consider that the second side is
always positive, and also that ka is positive. Moreover, we remember that equation
(3.30) tells us that the cotangentmust be negative. It is therefore necessary to consider
only the intersections with the continuous part of the sine curves in Fig. (3.2). It is
evident that there are no solutions if the angular coefficient of the straight line has
values too high: it must not be higher than 2/π , that is,√

�2

2mV0a2
≤ 2

π
⇔ V0a

2 ≥ π2
�
2

8m
.

Weconclude by noting that, unlike the one-dimensional case, inwhich there is always
at least one positive parity state, in three dimensions, to tie a particle, the well must
be deep enough and wide enough, or, better yet, the product V0a2 must be large
enough. This can be understood by remembering that the wave function must go to
zero in the origin and for large r . The connection between these two trends cannot
occur if the curvature (the second derivative), which, as seen from (3.24), increases
linearly with V0, is not large enough or if the well is not wide enough.

3.15 Particle in a Nucleus

A nucleus 5 10−13 cm wide is schematized as a potential well 10 MeV deep.
Find the minimum mass for a particle to be inside of the nucleus.

Solution

Remember that (see problem 3.14) the bound states with angular momentum � = 0
of a spherical well having radius a and depth V0 are obtained solving Eq. (3.31):

sin ka = ±
√

�2

2mV0a2
ka (cot ka < 0),

where k = √
2m(E + V0)/�2.

This equation has solutions only if

√
�2

2mV0a2
<

2

π
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mc2 >
π2

�
2c2

8V0a2
.

In the present case, posing that V0 = 10 MeV, a = 5 10−13 cm, one obtains

mc2 > 192.3 MeV.

One could ask what happens for higher angular momentum states. We know that,
to get states with � > 0, at fixed mass m, we need higher values of V0, because the
effect of the centrifugal potential is to lift the bottom of the well. Since physical
results depend on the product mV0, we can deduce that, if you leave V0 fixed, the
existence of such states requires higher mass values than found for � = 0. Thus, the
mass value found above is indeed a minimum value.

3.16 Particle in a Central Potential

A particle in a potential V (r) is in a state described by the wave function

ψE (r, ϑ, ϕ) = Ae− r
a0 (a0 constant),

which is an eigenfunction of the Hamiltonian.

(a) What is the angular momentum content of this state?
(b) Assuming that the potential vanishes in the limit r → ∞, find the energy eigen-

value E , considering, in this limit the radial Schrödinger equation

{
− �

2

2m

[
1

r

∂2

∂r2
r − �(� + 1)

r2

]
+ V (r)

}
ψE (r, ϑ, ϕ) = EψE (r, ϑ, ϕ).

(c) From the value of E derive V (r), again using the radial equation.

Solution

(a) The wave function does not depend on ϑ and ϕ, thus the system is in a state with
� = m = 0.

(b) Since

1

r

∂2

∂r2
re− r

a0 = 1

r

∂

∂r

(
1 − r

a0

)
e− r

a0 = 1

r

(
− 1

a0
− 1

a0
+ r

a20

)
e− r

a0 =

=
[
− 2

a0

1

r
+ 1

a20

]
e− r

a0 ,

substituting the wave function in the radial equation, we obtain
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�
2

2m

2

a0

1

r
− �

2

2m

1

a20
+ V (r) = E .

In the limit r → ∞, we find the energy eigenvalue:

E = − �
2

2ma20
.

(c) By replacing this value of E in the previous equation, we have

V (r) = − �
2

ma0

1

r
.

If a0 is the Bohr radius (a0 = �
2

me2 ), we get the potential of the Hydrogen atom

V (r) = − e2

r .

3.17 Charged Particle in a Magnetic Field

The Hamiltonian for a charged spin-free particle in a magnetic field B = ∇ × A is

H = 1

2m

(
p − e

c
A(r)

)2
,

where e is the particle’s charge and p = (px , py, pz) is the momentum conjugated to
the position r. Given that A = (−B0y, 0, 0), corresponding to a constant magnetic
field B = (0, 0, B0):

(a) Prove that px and pz are constants of motion.
(b) Find the energy levels for this system.

Solution

(a) The system’s Hamiltonian can be written in terms of momentum components
as:

H = 1

2m

[(
px + eB0

c
y

)2

+ p2y + p2z

]
.

Therefore, it commutes with all of the p components except py . Remembering
Heisemberg’s equation, we infer that px and pz are conserved, because they do
not depend explicitly on time.

(b) So, we can choose, as a complete set of commuting variables, {H, px , pz}. If
we call px and pz the eigenvalues of the last two operators, the eigenfunctions
have the form

ψ(x, y, z) = ei
xpx+zpz

� φ(y),
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where φ(y) must satisfy the eigenvalue equation

1

2m

[(
px + eB0

c
y

)2

− �
2 d2

dy2
+ p2z

]
φ(y) = Eφ(y),

that is,

[
− �

2

2m

d2

dy2
+ 1

2
m

(
eB0

mc

)2 (
y + cpx

eB0

)2
]

φ(y) =
(
E − p2z

2m

)
φ(y).

Setting

ω = |e|B0

mc
, y′ = y + cpx

eB0
, E ′ = E − p2z

2m
,

we find the equation

− �
2

2m

d2φ(y)

dy2
+ 1

2
mω2y′2φ(y) = E ′φ(y),

which is the energy eigenvalue equation for a particle in a one-dimensional
harmonic potential with angular frequency ω. The eigenvalues are

E ′ = E − p2z
2m

=
(
n + 1

2

)
�ω with n = 0, 1, 2, . . .

The system’s energy eigenvalues are, therefore, given by

En = p2z
2m

+
(
n + 1

2

)
�ω with n = 0, 1, 2, . . .

3.18 Bound States of the Hydrogenlike Atom

AHydrogenlike atom is an atom in which there is a positive charge nucleus+Ze and
a negative charge electron −e. In the case of the Hydrogen atom, we have Z = 1,
while, for Z different, we have ionized atoms with a single electron.

The Coulomb potential energy is, in Gauss units,

V (r) = − Ze2

r
. (3.32)

The atomic states are the bound states (E < 0) for this potential.
We introduce the quantities χ related to the eigenvalue E
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χ =
√

−2mE

�2
(3.33)

and

λ = Ze2m

χ�2
= zα

√
mc2

2|E | , (3.34)

where

α = e2

�c
� 1

137
(3.35)

is the fine-structure constant.
In terms of these parameters, the radial equation (A.43) becomes

d2

dr2
UE,�(r) +

[
−χ2 + 2χλ

r
− �(� + 1)

r2

]
UE,�(r) = 0. (3.36)

Calculate, solving this equation by the power expansion method, the energy eigen-
values corresponding to bound states.

Solution

We note that the Coulomb potential is less divergent than r−2 in the origin. We know
that, in these cases, the only regular solution in r = 0 must have the behavior

UE,�(r) ∼
r→0

r �+1, (3.37)

while, as we have seen in discussing the spherical well spectrum (problem 3.14),
since, in the limit r → ∞, the potential goes to zero, it must have the same behavior
as the spherical functions of Hankel of the first kind, that is,

UE,�(r) ∼
r→∞ e−χr . (3.38)

These behaviors suggest the factorization

UE,�(r) = r �+1 e−χr u(r), (3.39)

where u(r) is an interpolating function to be determined. Substituting (3.39) and
introducing the dimensionless variable

t = 2χr, (3.40)

the radial equation 3.36 becomes an equation for the interpolating function u(t):

t
d2

dt2
u(t) + (2� + 2 − t)

d

dt
u(t) − (� + 1 − λ)u(t) = 0. (3.41)
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This equation is the Kummer confluent hypergeometric equation. We search for
solutions satisfying the behaviors in (3.37) and (3.38) through the power expansion
method. Substituting the expansion

u(t) =
∞∑
k=0

akt
k (3.42)

in (3.41), we find

∞∑
k=2

k(k − 1)akt
k−1 + (2� + 2 − t)

∞∑
k=1

kakt
k−1 − (� + 1 − λ)

∞∑
k=0

akt
k = 0.

We redefine the sum index k − 1 → k in the first two summations and separate the
second summation into two terms:

∞∑
k=1

(k + 1)kak+1t
k + (2� + 2)

∞∑
k=0

(k + 1)ak+1t
k −

∞∑
k=1

kak t
k − (� + 1 − λ)

∞∑
k=0

akt
k = 0.

Noting that, in the first and third terms, the sum index can start from 0, we are able
to aggregate the terms that have the same coefficients ak :

∞∑
k=0

[
(k + 1)(k + 2� + 2) ak+1 − (� + 1 − λ + k) ak

]
t k = 0.

Imposing term-by-term vanishing we find the following recursion relation:

ak+1

ak
= � + 1 − λ + k

(k + 1)(k + 2� + 2)
. (3.43)

This ratio behaves, in the limit k → ∞, as

ak+1

ak
∼

k→∞
1

k
.

It follows that the power series (3.42) has the same behavior for large r of et =∑∞
k=0

t k

k! . If this occurs, the asymptotic trend of the radial function would be

UE,�(r) = r �+1 e−χr
∞∑
k=0

ak(2χr)
k ∼
r→∞ eχr ,

which is not acceptable. However, this would not happen if the series were truncated
starting from a certain k, i.e., if there exists a nr value of k such that
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λ = nr + � + 1 with nr = 0, 1, 2, . . .

nr , called the radial quantum number, is the degree of the polynomial to which the
series is reduced. Note that λ, being the sum of integers, is also an integer, and we
can pose λ = n, so that

n = nr + � + 1 with n = 1, 2, . . . (3.44)

n is called the principal quantum number. The Eq. (3.34) allows us to determine the
energy spectrum:

En = −1

2
mc2

(Zα)2

n2
. (3.45)

Equation (3.44) shows that these eigenvalues are degenerate.

3.19 Expectation Values of 1
rn for n = 1, 2, 3 in the

Hydrogenlike Atom Stationary States

Using the Feynman-Hellmann theorem (see problem 1.12)

〈
∂H(λ)

∂λ

〉
= ∂E(λ)

∂λ
, (3.46)

calculate the expectation values of 1
rn for n = 1, 2, 3 in the stationary states of the

Hydrogenlike atom.

Solution

(a) Calculation of
〈
1
r

〉
n,�

We use, as a parameter, the fine-structure constant α, which, in the Hydrogenlike
atom Hamiltonian, is only present in the Coulomb potential energy:

Vcoul(r) = −e2

r
= −�cα

r
.

Applying the Feynman-Hellmann theorem, we have

〈
∂H(α)

∂α

〉
n,�

=
〈
−�c

r

〉
n,�

= ∂En(α)

∂α
= −mc2 α

n2
,

from which we obtain
〈
1

r

〉
n,�

= mcα

�n2
= −2

En

�cα
= −2En

e2
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and, finally, the result (which will be used to calculate fine-structure corrections
in problem 6.25) 〈

e2

r

〉
n,�

= −2En. (3.47)

(b) Calculation of
〈
1
r2

〉
n,�

This time, for our parameter, we use the orbital quantum number �, which, in
the Hydrogenlike atom Hamiltonian, is only present in the centrifugal potential
term:

V�(r) = �
2�(� + 1)

2mr2
.

From the Feynman-Hellmann theorem, we obtain

〈
∂H(�)

∂�

〉
n,�

= �
2

2m

〈
2� + 1

r2

〉
n,�

=

= ∂En(�)

∂�
= ∂

∂�

(
−1

2
mc2α2 1

(nr + � + 1)2

)
= 1

2
mc2α2 2

n3
,

from which we get the result (also used to calculate fine-structure corrections)

〈
e4

r2

〉
n,�

= 8(En)
2 n

2� + 1
. (3.48)

(c) Calculation of
〈
1
r3

〉
n,�

This calculation derives from the previous result, thanks to the fact that, in a
stationary state, the average force must be zero. To realize this, just write the
impulse expectation value in this state; one immediately understands that it is
not modified by the temporal evolution and, therefore, its derivative with respect
to time, which is precisely the average force, must be zero. In the present case,
the force is

F(r) = −dV (r)

dr
= − d

dr

(
−e2

r
+ �

2�(� + 1)

2mr2

)
= −e2

r2
+ �

2�(� + 1)

mr3
.

Imposing that 〈F(r)〉n,� = 0 and using the expectation value of 1
r2 (3.48), we

obtain

〈
1

r3

〉
n,�

=
〈
e2

r2

〉
n,�

m

�2�(� + 1)
= 1

a30

1

n3�(� + 1
2 )(� + 1)

(3.49)

(result to be used to calculate corrections due to spin-orbit interaction in problem
6.26).
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3.20 One-Dimensional Hydrogen Atom? A Misleading
Similarity

The state of a particle of mass m in one dimension is described by the wave function

ψ(x) = A

(
x

x0

)n

e− x
x0 ,

where A, n e x0 are constants.

(a) Using the Schrödinger equation, find the potential V (x) and the energy eigen-
value E for which this wave function is an energy eigenfunction (assume that
V (x) → 0 when x → ∞).

(b) What connection can be noted between this potential and the effective (coulom-
bian + centrifugal) radial potential for a Hydrogen atom in the orbital angular
momentum �?

Solution

(a) Replacing ψ(x) in the Schrödinger equation, we obtain

[E − V (x)]ψ(x) = − �
2

2m

[
n(n − 1)

x2
− 2

n

xx0
+ 1

x20

]
ψ(x).

Assuming that V (x) −−−→
x→∞ 0, we get

E = − �
2

2m

1

x20
, and therefore V (x) = �

2

2m

[
n(n − 1)

x2
− 2

n

xx0

]
.

(b) The term �
2

2m
n(n−1)

x2 is similar to the centrifugal potential �
2

2m
�(�+1)

r2 in the radial
equation, but the term that depends on 1

x contains n, which obviously does not

happen for the Coulomb potential e2

r .

3.21 Determining the State of a Hydrogen Atom

Of a Hydrogen atom, it is known that:

(a) it is in a p state with n=2,
(b) it contains eigenstates of Lz corresponding to eigenvalues +1 and −1,
(c) the expectation value of Lz is zero,
(d) the probability of finding the electron in the first quadrant (0 < φ < π

2 ) is 25%.

Write down the possible wave functions.
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Solution

We denote by |n�m〉 the generic eigenstate common to H, L2, Lz of a Hydrogen
atom. Conditions (a) and (b) allow us to write the desired state as:

|ψ〉 = α|2, 1, 1〉 + β|2, 1,−1〉.

From condition (c)

〈ψ |Lz|ψ〉 = |α|2� − |β|2� = 0 ⇒ |α|2 = |β|2.

By imposing normalization and taking into account that, since the overall phase is
undetermined, we can fix α to be real and positive, we get

α = |β| = 1√
2

and, having called δ the phase of β,

β = 1√
2
eiδ.

To apply condition (d), we need to transition to wave functions in the coordinate
basis. The probability of finding the electron between φ and φ + dφ is obtained by
integrating the square modulus of ψ(r, θ, φ) = 〈r|ψ〉 over the other variables:

P(φ) dφ =
∣∣∣∣ 1√

2π

(
1√
2
eiφ + 1√

2
e−iφ+iδ

)∣∣∣∣
2

dφ.

P
(
0 < φ <

π

2

)
=

∫ π
2

0
P(φ)dφ =

= 1

2π

∫ π
2

0
[1 + cos(2φ − δ)] dφ =

= 1

4
+ 1

2π
sin δ = 1

4
. (3.50)

Then,
sin δ = 0 ⇒ δ = nπ.

So, we have two possible status determinations corresponding to the choice of n even
or odd:

|ψ〉 =

⎧⎪⎨
⎪⎩

1√
2
|2, 1, 1〉 + 1√

2
|2, 1,−1〉

1√
2
|2, 1, 1〉 − 1√

2
|2, 1,−1〉.
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3.22 Hydrogen Atom in the Ground State

The wave function of the ground state of the Hydrogen atom is

ψ1,0,0 =
√

1

πa30
e− r

a0 ,

where a0 = �
2/me2 is the Bohr radius.

(a) Determine the distance from the nucleus at which the probability density of
finding the electron is maximum.

(b) Also determine the expectation value of the electron’s position.

Solution

We need the probability of finding the electron at a fixed distance from the nucleus
(or, rather, to find the reduced mass at a fixed distance from the center of mass)
independently of its direction, so the probability distribution must be integrated over
the whole solid angle:

P(r) dr =
∫

d� |ψ1,0,0(r, θ, φ)|2 r2 dr = 4π |R1,0(r)|2r2dr = 4r2

a30
e− 2r

a0 dr,

where R1,0(r) is the radial function (A.42) of the Hydrogen ground state.

(a) This probability density is maximum when r is the solution to the equation

dP(r)

dr
= 4

a30

[
2r − 2

r2

a0

]
e− 2r

a0 = 0 with
d2P(r)

dr2
< 0.

Therefore, the required maximum is at r = a0 (r = 0 corresponds to a mini-
mum).

(b) We get the expectation value of the electron’s position using the formula (A.6):

< r >=
∫ ∞

0
dr r P(r) = 4

a30

∫ ∞

0
dr r3 e− 2r

a0 = a0
4

∫ ∞

0
dα α3 e−α = 3

2
a0.

3.23 Hydrogen Atom in an External Magnetic Field

Consider a Hydrogen atom in the state 2p (neglecting the electron spin) and use the
basis common to operators H, L2, Lz .

(a) Denote by |ψ+〉, |ψ0〉, |ψ−〉 the normalized state vectors corresponding to m =
+1, 0,−1, respectively. Immerse the Hydrogen atom in an external magnetic
field B parallel to the z axis and let the interaction energy be given by
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W = −β B · L.

Determine the new system energy levels of the states 2p.
(b) Consider the state

|ψ〉 = 1

2
(|ψ+〉 + √

2|ψ0〉 + |ψ−〉).

Calculate < E > and �E2 =< (E − < E >)2 > in this state.
(c) Limiting ourselves to the subspace 2p, Lz is represented by a diagonal matrix

in the basis |ψ+〉, |ψ0〉, |ψ−〉, while

Lx = �√
2

⎛
⎝ 0 1 0
1 0 1
0 1 0

⎞
⎠ ,

Ly = �

i
√
2

⎛
⎝ 0 1 0

−1 0 1
0 −1 0

⎞
⎠ .

Calculate the Lx and Ly expectation values in the state |ψ〉.
Solution

(a) The energy of the 2p levels in the absence of the magnetic field is

E2 = −μc2α2

8
,

where μ is the electron’s reduced mass and α is the fine structure constant. The
energy contribution due to the magnetic field corresponds to the operator

W = −βBLz,

which commutes with the remaining part of the Hamiltonian. Moreover, the 2p
states are eigenstates of Lz , so the new energy levels are

E+1
2 = −μc2α2

8
− β�B, E0

2 = −μc2α2

8
, E−1

2 = −μc2α2

8
+ β�B,

where the levels were indexed with the value of the quantum number m. The
presence of the external magnetic field, therefore, generated a breakdown of the
degeneration.

(b) The state vector |ψ〉 is normalized. So, we have

〈E〉 =
(
1

2

)2 [
12E+1

2 + (
√
2 )2E0

2 + 12E−1
2

] = −μc2α2

8
,
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〈E2〉 = 1

4

[
(E+1

2 )2 + 2(E0
2)

2 + (E−1
2 )2

] =
(

μc2α2

8

)2

+ 1

2
(β�B)2,

�E2 = 〈(E − 〈E〉)2〉 = 〈E2〉 − 〈E〉2 = 1

2
β2

�
2B2.

(c) In the suggested basis, the state vector |ψ〉 corresponds to the one columnmatrix

|ψ〉 = 1

2

⎛
⎝ 1√

2
1

⎞
⎠ .

Therefore, we get

< Lx >= 1

2

(
1

√
2 1

) �√
2

⎛
⎝0 1 0
1 0 1
0 1 0

⎞
⎠ 1

2

⎛
⎝ 1√

2
1

⎞
⎠ = �,

< Ly >= 1

2

(
1

√
2 1

) �

i
√
2

⎛
⎝ 0 1 0

−1 0 1
0 −1 0

⎞
⎠ 1

2

⎛
⎝ 1√

2
1

⎞
⎠ = 0.

3.24 A Molecular Model

For some molecules, the potential energy can be modeled with the expression

V (r) = −2D

(
a

r
− a2

2r2

)
.

Determine the energy levels for this potential energy and discuss these results in the
hypothesis, often valid, D � �

2

2ma2 .

Solution

Introducing the variable

ρ = r

a

and the parameters

κ2 = −2ma2

�2
E and γ 2 = 2ma2

�2
D,

the radial Schrödinger equation (A.43) becomes
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U�"(ρ) +
[
−κ2 + 2γ 2

ρ
− γ 2 + �(� + 1)

ρ2

]
U�(ρ) = 0.

This equation is similar to that for the Hydrogen atom (problem 3.18)

U�"(r) +
[
−κ2 + 2ελ

r
− �′(�′ + 1)

r2

]
U�(r) = 0,

except for the substitutions

λ = γ 2

ε
and γ 2 + �(� + 1) = �′(�′ + 1) ⇔ �′ =

√
γ 2 +

(
� + 1

2

)2

− 1

2
.

In the case of the Hydrogen atom, the requirement that the wave function be regular
at infinity leads to the quantization condition

�′ + 1 − λ = −nr .

In the present case, we get

√
γ 2 + (� + 1

2
)2 + 1

2
− γ 2

ε
= −nr .

Therefore the energy levels of the bound states are given by

Enr ,� = − �
2

2ma2
κ2 = − �

2

2ma2
γ 4

[√
γ 2 + (� + 1

2 )
2 + 1

2 + nr
]2 =

= −D
1[√

1 + (� + 1
2 )

2x2 + ( 12 + nr )x
]2 ,

where

x = 1

γ
.

The D � �
2

2ma2 regime corresponds to γ � 1, i.e., x � 1.We can expand the expres-
sion for energy levels in power series of x up to the 2nd order. Taking into account
the following series expansions,

√
1 + x2 ≈ 1 + x2

2[
1

1 + ax + bx2

]2

≈ [
1 − ax + (a2 − b)x2

]2 ≈ 1 − 2ax + (3a2 − 2b)x2,
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we get

Enr ,� ≈ −D

[
1 − 2(nr + 1

2 )

γ
− (� + 1

2 )
2

γ 2
+ 3

(nr + 1
2 )

2

γ 2

]
.

It is clear that this approximation makes sense only for small values of quantum
numbers, otherwise the terms ignored become important because they depend on
powers of nr and �. The three terms can be interpreted:

(a) the first term is a constant related to the value of the potential minimum. Indeed,
V at the point of minimum r = a gets the value −D;

(b) the second term is a vibrational term with frequency

ω =
√

2D

ma2
,

due to the fact that, around the minimum, the potential is approximable with a
harmonic oscillator potential;

(c) the third and fourth terms represent rotational energy proportional to

D

γ 2
= �

2

2ma2
= �

2

2I
, where I is the system moment of inertia.



Chapter 4
Spin

4.1 Total Spin of Two Electrons

Consider a systemof two electrons that are in a statewith opposite spin z-components.
Calculate the S2 (where S is the total spin operator) expectation value in this state.

Solution

Suppose the system state is

|S1,z, S2,z〉 = |+,−〉.

This state contributes to two different eigenstates of the total spin operator:

|s = 0,m = 0〉 = 1√
2

(|+,−〉 − |−,+〉)

and

|s = 1,m = 0〉 = 1√
2

(|+,−〉 + |−,+〉),

where s and m are the quantum numbers of S2 and Sz . It turns out, therefore, that

|+,−〉 = 1√
2

(|s = 0,m = 0〉 + |s = 1,m = 0〉).

The S2 expectation value is obtained averaging the eigenvalues of the two eigenstates
weighed with the square modulus of their coefficients:

〈S2〉 =
∣
∣
∣
∣

1√
2

∣
∣
∣
∣

2

0(0 + 1)�2 +
∣
∣
∣
∣

1√
2

∣
∣
∣
∣

2

1(1 + 1)�2 = �
2.
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4.2 Eigenstates of a Spin Component (I)

The spin function of a spin 1
2 particle has the following expression in the Sz basis:

(

ψ1

ψ2

)

=
(

eiα cos δ

eiβ sin δ

)

.

Does an n̂ space-direction exist such that the result of the measurement of the spin
component along n̂ can be predicted with certainty?

Solution

The state is already normalized. Having named asϑ and ϕ the spherical angular coor-
dinates of the direction n̂, this state must be an eigenstate of the matrix representative
of S · n̂ in the basis common to S2 and Sz :

S · n̂ = �

2

[

sin ϑ cosϕ

(

0 1
1 0

)

+ sin ϑ sin ϕ

(

0 −i
i 0

)

+ cosϑ

(

1 0
0 −1

)]

=

= �

2

(

cosϑ sin ϑ e−iϕ

sin ϑ eiϕ − cosϑ

)

.

The eigenvalues of S · n̂, because of the isotropy of space, are the same as those of
Sz , i.e., ±�

2 , whereas their eigenvectors are:

|S · n̂ = +�

2
〉 =

(

cos ϑ
2

sin ϑ
2 e

iϕ

)

|S · n̂ = −�

2
〉 =

(

sin ϑ
2

− cos ϑ
2 e

iϕ

)

For there to be certainty in the result of a measure, the spin function must be able to
identify, less than an arbitrary phase factor, with one of these eigenstates. There are,
therefore, two possibilities:

ϕ = β − α, δ = ϑ

2

or

ϕ = β − α, δ = ϑ + π

2
.

4.3 Eigenstates of a Spin Component (II)

If a particle of spin 1
2 is in a state with Sz = �

2 , what are the probabilities that,
measuring the component of the spin along the direction n̂ identified by the angular
spherical coordinates ϑ and ϕ, one will find ±�

2 ?
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Solution

As we have seen in the problem 4.2, the eigenstates of S · n̂ are

|S · n̂ = +�

2
〉 =

(

cos ϑ
2

sin ϑ
2 e

iϕ

)

= cos
ϑ

2

(

1
0

)

+ sin
ϑ

2
eiϕ

(

0
1

)

,

|S · n̂ = −�

2
〉 =

(

sin ϑ
2

− cos ϑ
2 e

iϕ

)

= sin
ϑ

2

(

1
0

)

− cos
ϑ

2
eiϕ

(

0
1

)

.

In terms of these eigenstates, the particle state before the measure is given by

(

1
0

)

= cos
ϑ

2
|S · n̂ = +�

2
〉 − sin

ϑ

2
|S · n̂ = −�

2
〉.

As a result, the required probabilities are

P

(

S · n̂ = +�

2

)

= cos2
ϑ

2
and P

(

S · n̂ = −�

2

)

= sin2
ϑ

2
.

4.4 Determining a Spin State (I)

An electron is equally likely to have its spin oriented parallel or antiparallel to the z
axis. Determine its status when the expectation value of Sx is maximum.

Solution

In the Sz representation, the electron state is

ψ =
(

a
b

)

.

By imposing the condition given by the problem, we know that the coefficients a
and b have the same modulus. Then, from normalization, and taking into account
the arbitrariness of the overall phase, we get

a = 1√
2

and b = 1√
2
eiα

and

ψ = 1√
2

(

1
eiα

)

.
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The Sx expectation value is

〈Sx 〉 = 1√
2

(

1 e−iα
) �

2

(

0 1
1 0

)
1√
2

(

1
eiα

)

= �

4

(

1 e−iα
)
(

eiα

1

)

=

= �

4

(

eiα + e−iα
) = �

2
cosα,

which has �

2 as its maximum value when α = 0 and

a = b = 1√
2
.

We note that the maximum value of 〈Sx 〉 found is equal to its maximum eigenvalue;
in fact, the state we found is the eigenstate of Sx corresponding to this eigenvalue.

4.5 Determining a Spin State (II)

An electron is in a Sz eigenstates superposition:

|ψ〉 = a |+〉 + b |−〉.

Determine the constants a and b so that the expectation values of Sz and Sy are 0 and
�

2 , respectively.

Solution

In the representation in which Sz is diagonal the state of the electron is given by

ψ =
(

a
b

)

.

In this state the expectation values of Sz and Sy are

〈Sz〉 = �

2

(

a∗ b∗ )
(

1 0
0 −1

)(

a
b

)

= �

2
(|a|2 − |b|2),

〈Sy〉 = �

2

(

a∗ b∗ )
(

0 −i
i 0

) (

a
b

)

= −�

2
i(a∗b − ab∗) = −�

2
2�(ab∗).

From the condition 〈Sz〉 = 0 and from the normalization relation, we obtain that
coefficients a and b have the same modulus and, placing the phase of a as being
equal to 0, we get

a = 1√
2

and b = 1√
2
eiα.
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The phase α can be determined from the condition 〈Sy〉 = �

2 :

−2�(ab∗) = 1 ⇒ sin α = 1 ⇒ α = π

2

In conclusion,

|ψ〉 = 1√
2
(|+〉 + i |−〉).

4.6 Determining a Spin State (III)

A spin 1
2 particle is in a state in which the expectation value of Sx is �

2 α and that of
Sy is �

2 β with α and β between −1 and 1.
Show that the condition α2 + β2 ≤ 1 must hold and that, for α2 + β2 < 1, the

problem admits two solutions, while, for α2 + β2 = 1, the solution is unique. In the
latter case, calculate the probability of finding the particle spin oriented parallel or
antiparallel compared to the z axis.

Solution

Having called |ψ〉 the state under examination and |±〉 the eigenstates of Sz with
eigenvalues ±�/2, we have

|ψ〉 = a |+〉 + b |−〉 =
(

a
b

)

,

where a and b are two constants to be determined. The expectation values of Sx and
Sy in this state are

〈Sx 〉 = �

2

(

a∗ b∗ )
(

0 1
1 0

)(

a
b

)

= �

2 (a∗b + ab∗),

〈Sy〉 = �

2

(

a∗ b∗ )
(

0 −i
i 0

)(

a
b

)

= −�

2 i(a
∗b − ab∗).

We can choose the phases of a and b so that

a > 0 b = |b| eiϑ .

Imposing normalization, we get

|a|2 + |b|2 = 1 ⇒ |b|2 = 1 − a2 ⇒ b =
√

1 − a2 eiϑ .
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The expectation values become

2

�
〈Sx 〉 = a 2�(b) = 2a

√

1 − a2 cosϑ,

2

�
〈Sy〉 = −ia 2i�(b) = 2a

√

1 − a2 sin ϑ,

and, by imposing the conditions given, we obtain

α2 + β2 = 4

�2

(〈Sx 〉2 + 〈Sy〉2
) = 4a2(1 − a2) with a2 ≤ 1.

The right side of this equation is, in the variable a2, a parabola with its concavity
facing downwards, symmetrical with respect to the axis a2 = 1/2, which assumes
its maximum value in a2 = 1/2, so that

α2 + β2 ≤ 4a2(1 − a2)
∣
∣
a2= 1

2
= 1.

Any other value of α2 + β2 < 1 corresponds to two values of a2 symmetrical with
respect to a2 = 1/2.

In the case α2 + β2 = 1, we have a = 1/
√
2 = |b|, and therefore

|ψ〉 = 1√
2

|+〉 + 1√
2
eiϑ |−〉.

So, the required probabilities are both equal to 1/2.

4.7 Measurements in a Stern-Gerlach Apparatus

A beam of spin 1
2 atoms moving in the direction of the y axis is subjected to a series

of measurements by Stern-Gerlach-type devices as follows:

(a) The first measurement accepts atoms with sz = �

2 and rejects atoms with sz =
−�

2 .
(b) The second measurement accepts atoms with sn = �

2 and rejects atoms with
sn = −�

2 , where sn is eigenvalue of the operator S · n̂ and n̂ the unit vector in
the xz-plane at an angle ϑ with respect to the z-axis.

(c) The third measurement accepts atoms with sz = −�

2 and rejects atoms with
sz = �

2 . What is the intensity of the final beam with respect to that of the beam
that survives the first measure? How do we orient the n̂ direction of the second
device if the maximum final intensity is to be achieved?
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Solution

After the transit in the first apparatus, the atoms are described by an eigenstate of Sz
corresponding to the eigenvalue +�/2. Using the results of exercise 4.2, this state
can be written as a superimposition of eigenstates of S·n̂ in the form

∣
∣
∣
∣
Sz = +�

2

〉

= c+
∣
∣
∣
∣
S · n̂ = +�

2

〉

+ c−
∣
∣
∣
∣
S · n̂ = −�

2

〉

,

where

c+ =
〈

S · n̂ = +�

2

∣
∣
∣
∣
Sz = +�

2

〉

= (

cos ϑ
2 sin ϑ

2

)
(

1
0

)

= cos
ϑ

2
,

c− =
〈

S · n̂ = −�

2

∣
∣
∣
∣
Sz = +�

2

〉

= (

sin ϑ
2 − cos ϑ

2

)
(

1
0

)

= sin
ϑ

2
.

After the second measurement, the intensity of the beam will then be reduced by a
factor of cos2 ϑ

2 , while each transmitted atom will be in the state

∣
∣
∣
∣
S · n̂ = +�

2

〉

=
(

cos ϑ
2

sin ϑ
2

)

= cos
ϑ

2

∣
∣
∣
∣
Sz = +�

2

〉

+ sin
ϑ

2

∣
∣
∣
∣
Sz = −�

2

〉

.

The third measurement further reduces the intensity of the beam by a factor of sin2 ϑ
2 ,

The third measure further reduces the intensity of the beam by a factor, so that the
ratio between the intensity of the final beam and that of the beam that survives the
first measure is given by

cos2
ϑ

2
sin2

ϑ

2
= 1

4
sin2 ϑ.

This ratio is maximum for ϑ equal to π/2 or 3π/2.

4.8 Energy Eigenstates of a System of Interacting Fermions

A system of three different particles of spin 1
2 has the Hamiltonian

H = K (σ 1 · σ 2 + σ 2 · σ 3 + σ 3 · σ 1),

where K is a constant.
Determine the eigenvalues ofH , their degeneracy and the related eigenstates.
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Solution

Having named J the system total spin and j its quantum number, we have

H = K
1

2

4

�2

[

(S1 + S2 + S3)2 − S21 − S22 − S23
] = 2K

�2

[

J 2 − 9

4
�
2

]

.

Recall that, in the case of two spin 1/2 particles, if we indicate the total spin eigenstate
with | j, jz〉 and the single particle spin eigenstateswith |±,±〉, we have the following
possible resulting states:

j12 = 0 |0, 0〉 = 1√
2
(|+,−〉 − |−,+〉),

j12 = 1

⎧

⎨

⎩

|1,+1〉 = |+,+〉)
|1, 0〉 = 1√

2
(|+,−〉 + |−,+〉)

|1,−1〉 = |−,−〉)
.

A third spin 1/2 particle can be combined with the other pair, being either in the
j12 = 0 state or in the j12 = 1 state. Combining a j12 = 0 pair with the third spin
1/2 particle, we have two j = 1/2 states:

j123 = 1

2

{ | 12 ,+ 1
2 〉 = 1√

2
(|+,−,+〉 − |−,+,+〉)

| 12 ,− 1
2 〉 = 1√

2
(|+,−,−〉 − |−,+,−〉) .

Using the Clebsh-Gordan coefficients (see, for example, http://pdg.lbl.gov/2002/
clebrpp.pdf), we now combine the third spin 1/2 particle with a pair in the state
j12 = 1. This results in four j = 3/2 states:

j123 = 3

2

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

| 32 ,+ 3
2 〉 = |m12 = +1,m3 = +1/2〉 = |+,+,+〉

| 32 ,+ 1
2 〉 =

√

1
3 |m12 = +1,m3 = −1/2〉 +

√

2
3 |m12 = 0,m3 = +1/2〉 =

=
√

1
3 (|+,+,−〉 + |+,−,+〉 + |−,+,+〉)

| 32 ,− 1
2 〉 =

√

1
3 |m12 = −1,m3 = +1/2〉 +

√

2
3 |m12 = 0,m3 = −1/2〉 =

=
√

1
3 (|−,−,+〉 + |+,−,−〉 + |−,+,−〉)

| 32 ,− 3
2 〉 = |m12 = −1,m3 = −1/2〉 = |−,−,−〉

,

and two j = 1/2 states:

j123 = 1

2

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

| 12 ,+ 1
2 〉 =

√

2
3 |m12 = +1,m3 = −1/2〉 −

√

1
3 |m12 = 0,m3 = +1/2〉 =

=
√

2
3 |+,+,−〉 −

√

1
6 |+,−,+〉 −

√

1
6 |−,+,+〉

| 12 ,− 1
2 〉 =

√

1
3 |m12 = 0,m3 = −1/2〉 −

√

2
3 |m12 = −1,m3 = +1/2〉 =

=
√

1
6 |+,−,−〉 +

√

1
6 |−,+,−〉 −

√

2
3 |−,−,+〉

.

http://pdg.lbl.gov/2002/clebrpp.pdf
http://pdg.lbl.gov/2002/clebrpp.pdf
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We note that we have determined four j = 1/2 states, instead of two. This may seem
wrong, since the degeneration of j = 1/2 should be 2. However, it is easy to verify
that the states obtained by the tensor product j12 ⊗ j3 = 0 ⊗ 1

2 are perpendicular to
those obtained by j12 ⊗ j3 = 1 ⊗ 1

2 . For example,

1√
2
(〈+,−,+| − 〈−,+,+|)(

√

2

3
|+,+,−〉 −

√

1

6
|+,−,+〉 −

√

1

6
|−,+,+〉) =

= 1

2
√
3
(1 − 1) = 0.

After all, the independent states must be 8, since we started from a vector space of
dimension 8 ( j1 ⊗ j2 ⊗ j3 = 1

2 ⊗ 1
2 ⊗ 1

2 ).
Ultimately, the Hamiltonian eigenvalues are:

j123 = 1

2
E0 = 2K

�2

[
3
4�

2 − 9
4 �

2
] = −3K with degeneracy 4,

j123 = 3

2
E1 = 2K

�2

[
15
4 �

2 − 9
4 �

2
] = +3K with degeneracy 4.

4.9 Spin Measurements on a Fermion

Consider a spin particle 1
2 and suppose you are measuring the sum of x and z spin

components Sx + Sz . What are the possible results of the measurement? If you sub-
sequently measure Sy , what is the probability of finding the value +�

2 ?

Solution

We notice that
Sx + Sz = √

2 S · n,

where n is the unit vector in the direction of the bisector of the xz-plan (ϑ = π/4,
ϕ = 0).

Because of space isotropy, it is obvious that the eigenvalues of S · n are ±�/2 for
any n. Therefore, the possible results of the measurement are ±�/

√
2.

After the measurement, the particle spin will be in the xz plane, so the probability
of finding either of the two possible eigenvalues of Sy will be 1/2. In fact, as we
have seen in the general case in Problem 3.4, in an eigenstate of a component of
the angular momentum, the components perpendicular to it have a null expectation
value. Since the eigenvalues of Sy , as of any spin component, are opposite, it follows
that the probabilities relative to the two measures are equal.



Chapter 5
Time Evolution

5.1 Two-Level System (I)

The Hamiltonian of a two-level quantum system can be written as

H = −1

2
�ω(|0〉〈0| − |1〉〈1|),

where |0〉 and |1〉 are its orthonormal eigenkets corresponding to the eigenvalues
−�ω/2 and +�ω/2, respectively. Consider the linear operator a = |0〉〈1| and its
hermitian conjugate a†.

(a) Prove that the following relationships are valid:

{a, a†} = aa† + a†a = 1, a2 = a†2 = 0,

[H, a] = −�ωa, [H, a†] = +�ωa†,

that the operator N = aa† has eigenvalues 0 and 1 and that its eigenkets are the
basis kets. Express the Hamiltonian in terms of N and the identity I .

(b) Assume that, at instant t = 0, the system is in the eigenstate of the hermitian
operator A = a + a† corresponding to the eigenvalue 1 and determine the expec-
tation values of A and A2 and the uncertainty 〈(�A)2〉 as a function of time t .

(c) Consider the other hermitian operator B = −i(a − a†); also, determine 〈B〉,
〈B2〉 and 〈(�B)2〉 as a function of time. Verify the uncertainty principle between
A and B.

Solution

(a) From the eigenvalue equation forH , we have

H |0〉 = −�ω

2
|0〉, H |1〉 = +�ω

2
|1〉,
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As states |0〉 and |1〉 are an orthonormal set,

a = |0〉〈1|, a† = |1〉〈0|,
{a, a†} = aa† + a†a = |0〉〈1|1〉〈0| + |1〉〈0|0〉〈1| = |0〉〈0| + |1〉〈1| = 1,

a2 = |0〉〈1|0〉〈1| = 0,

a†2 = |1〉〈0|1〉〈0| = 0,

[H, a] = −1

2
�ω (|0〉〈0|0〉〈1| − |1〉〈1|0〉〈1| − |0〉〈1|0〉〈0| + |0〉〈1|1〉〈1|) =

= −�ω|0〉〈1| = −�ωa,

[H, a†] = −1

2
�ω (|0〉〈0|1〉〈0| − |1〉〈1|1〉〈0| − |1〉〈0|0〉〈0| + |1〉〈0|1〉〈1|) =

= �ω|1〉〈0| = �ωa†,

N = aa† = |0〉〈1|1〉〈0| = |0〉〈0|
N |0〉 = |0〉〈0|0〉 = |0〉 ⇒ |0〉 eigenket with eigenvalue 1
N |1〉 = |0〉〈0|1〉 = 0 = 0|1〉 ⇒ |1〉 eigenket with eigenvalue 0,
H = −1

2
�ω(|0〉〈0| − |1〉〈1| + |0〉〈0| − |0〉〈0|) = −1

2
�ω(2N − I ) =

= �ω(
I

2
− N ).

(b) Consider the state vector

|ψ〉 = 1√
2

(|0〉 + |1〉) .

|ψ〉 is the eigenket of A corresponding to eigenvalue 1. In effect,

A|ψ〉 = (|0〉〈1| + |1〉〈0|) 1√
2

(|0〉 + |1〉) = 1√
2

(0 + |0〉 + |1〉 + 0) = 1 · |ψ〉.

At time t the state vector |ψ〉 will be given by

|ψ(t)〉 = 1√
2

(
ei

ω
2 t |0〉 + e−i ω

2 t |1〉) .

We note that

[H, A] = [H, a] + [H, a†] = −�ω(a − a†) = −i�ωB �= 0,

[H, B] = −i
([H, a] − [H, a†]) = i�ω(a + a†) = i�ωA �= 0,

(B = −i(a − a†) is defined in the third question). A and B do not commute with
H , thus their expectation values depend on time. Indeed, we find that
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〈A〉ψ = 1

2

(〈0|e−i ω
2 t + 〈1|ei ω

2 t
)
(a + a†)

(
ei

ω
2 t |0〉 + e−i ω

2 t |1〉) =

= 1

2

(〈0|e−i ω
2 t + 〈1|ei ω

2 t
) (
ei

ω
2 t |1〉 + e−i ω

2 t |0〉) =

= 1

2

(
eiωt + e−iωt

) = cosωt,

〈A2〉ψ = 〈(a + a†)(a + a†)〉ψ = 〈aa† + a†a〉ψ =
= 〈{a, a†}〉ψ = 〈I 〉ψ = 1,

〈(�A)2〉ψ = 〈A2〉ψ − 〈A〉2ψ = 1 − cos2 ωt = sin2 ωt.

(c) Similarly, the following relationships are obtained for B:

〈B〉ψ = −i
1

2

(〈0|e−i ω
2 t + 〈1|ei ω

2 t
)
(a − a†)

(
ei

ω
2 t |0〉 + e−i ω

2 t |1〉) =

= −i
1

2

(〈0|e−i ω
2 t + 〈1|ei ω

2 t
) (
e−i ω

2 t |0〉 − e+i ω
2 t |1〉) =

= −i
1

2

(
e−iωt − eiωt

) = − sinωt,

〈B2〉ψ = 〈i2(a − a†)(a − a†)〉ψ = −〈−aa† − a†a〉ψ =
= 〈{a, a†}〉ψ = 〈I 〉ψ = 1,

〈(�B)2〉ψ = 〈B2〉ψ − 〈B〉2ψ = 1 − sin2 ωt = cos2 ωt.

As for the uncertainty relationship between A and B, we have:

�A · �B = | sinωt | · | cosωt |.

Recall that, whatever the state, the following relationship must hold:

�A · �B ≥ 1

2
|〈[A, B]〉|.

Let us check its validity in this case as well:

[A, B] = −i[a + a†, a − a†] =
= −i

([a, a] + [a†, a] − [a, a†] − [a†, a†]) =
= −i

(
a†a − aa† − aa† + a†a

) =
= 2i

(
aa† − a†a

) = 2i (|0〉〈1|1〉〈0| − |1〉〈0|0〉〈1|) =
= 2i (|0〉〈0| − |1〉〈1|) = − 4i

�ω
H,
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〈[A, B]〉ψ = − 4i

�ω

1

2

(〈0|e−i ω
2 t + 〈1|ei ω

2 t
)H (

ei
ω
2 t |0〉 + e−i ω

2 t |1〉) =

= −i
(〈0|e−i ω

2 t + 〈1|ei ω
2 t

) (−ei
ω
2 t |0〉 + e−i ω

2 t |1〉) =
= −i(−1 + 1) = 0.

The uncertainty principle is verified, in that

| sinωt | · | cosωt | ≥ 0.

5.2 Two-Level System (II)

Consider a two-state system whose Hamiltonian is

H = E0|1〉〈1| + √
2E0|1〉〈2| + √

2E0|2〉〈1|,

where {|1〉, |2〉} is an orthonormal basis in the system’s Hilbert space.
If the system is initially in state |1〉, how likely is it that it will be in state |2〉 at time
t? Determine the period of oscillations between states |1〉 and |2〉.
Solution

In the {|1〉, |2〉} representation, the Hamiltonian becomes a matrix:

H =
(

E0

√
2E0√

2E0 0

)
= E0H ′ where H ′ =

(
1

√
2√

2 0

)
.

From the secular equation, we obtain the eigenvalues of H ′:

det(H ′ − λI ) = λ2 − λ − 2 = 0 ⇒ λ = −1, 2,

and the corresponding H’s eigenvalues E1 = −E0 and E2 = 2E0. Eigenket |E1〉 is
obtained by: (

1
√
2√

2 0

) (
a
b

)
= −1

(
a
b

)
,

from which we get, normalizing,

|E1〉 = 1√
3

(
1

−√
2

)
= 1√

3
|1〉 −

√
2

3
|2〉.
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Similarly, we obtain the eigenket |E2〉:

|E2〉 = 1√
3

(√
2
1

)
=

√
2

3
|1〉 + 1√

3
|2〉.

By reversing these relationships, we have

|1〉 = 1√
3

|E1〉 +
√
2

3
|E2〉,

|2〉 = −
√
2

3
|E1〉 + 1√

3
|E2〉.

Initially, the system state is

|ψ(t = 0)〉 = |1〉 = 1√
3

|E1〉 +
√
2

3
|E2〉;

at instant t , it will be evolved in

|ψ(t)〉 = 1√
3
ei

E0 t
� |E1〉 +

√
2

3
e−i 2E0 t

� |E2〉 =

= 1

3
ei

E0 t
�

[(
1 + 2e−i 3E0 t

�
]
)

|1〉 − √
2

(
1 − e−i 3E0 t

�

)
|2〉

]
.

The probabilities of finding the system in one of the basis vectors at the time t are

P|1〉(t) = 1

9

∣∣∣1 + 2e−i 3E0 t
�

∣∣∣
2 = 1

9

(
5 + 4 cos

3E0t

�

)
,

P|2〉(t) = 2

9

∣
∣∣1 − e−i 3E0 t

�

∣
∣∣
2 = 4

9

(
1 − cos

3E0t

�

)
.

These probabilities oscillate with frequency ω = 3E0/�. Therefore, the desired
period is

T = 2π

ω
= 2π�

3E0
= h

3E0
.

5.3 Two-Level System (III)

Consider a two-state system and the basis composed by |ψ1〉 and |ψ2〉, which are
eigenkets of the Hamiltonian H0, corresponding to eigenvalues E1 and E2, respec-
tively,
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H0|ψ1〉 = E1|ψ1〉,
H0|ψ2〉 = E2|ψ2〉,

〈ψi |ψ j 〉 = δi, j i, j = 1, 2.

Consider a new system with Hamiltonian H0 + W , where the coupling term W , in
the basis {|ψ1〉, |ψ2〉}, is given by the 2 × 2 matrix Wi j with W11 = W22 = 0 and
W12 = W21 = w, where w is a positive real constant.

(a) Determine how the Hamiltonian’s eigenstates and eigenvalues change as a result
of this coupling.

(b) If, at instant t = 0, the second system is known with certainty to be in state |ψ1〉,
at which instants (if they exist) will the system be in the same condition again?
Calculate the probability of finding the system in state |ψ2〉 at time t .

Solution

(a) In the {|ψ1〉, |ψ2〉} basis representation, we have

H0 =
(
E1 0
0 E2

)
, W =

(
0 w
w 0

)
, H = H0 + W =

(
E1 w
w E2

)
,

where, in order not to weigh down the notation, we have used the same symbols
of operators and kets for the matrices corresponding to them. H’s eigenvalues
are obtained by (E1 − λ)(E2 − λ) − W 2 = 0:

λ± = E1 + E2 ± √
(E1 − E2)2 + 4w2

2
.

Eigenvectors |λ±〉 are obtained from equations

H |λ±〉 = λ±|λ±〉.

It is easily found, appropriately choosing the phases and imposing normalization,
that

|λ+〉 ≡
( 〈ψ1|λ+〉

〈ψ2|λ+〉
)

= 1
√

(λ+ − E1)2 + w2

(
w

λ+ − E1

)
,

|λ−〉 ≡
( 〈ψ1|λ−〉

〈ψ2|λ−〉
)

= 1
√

(λ− − E1)2 + w2

(
w

λ− − E1

)
.

(b) The system will certainly be in state |ψ1〉 when the probability of finding it in
state |ψ2〉 will be null. The state at time t > 0 is
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|ψ(t)〉 = e−i H t
� |ψ1〉 =

= e−i λ+ t
� |λ+〉〈λ+|ψ1〉 + e−i λ− t

� |λ−〉〈λ−|ψ1〉 =
= e−i λ+ t

�

w

(λ+ − E1)2 + w2

(
w

λ+ − E1

)
+

+e−i λ− t
�

w

(λ− − E1)2 + w2

(
w

λ− − E1

)
.

Introducing the quantities

� = E2 − E1

2
, � = E2 + E1

2
and α =

√
�2 + w2,

we obtain
λ± − E1 = � ± α and λ± = � ± α.

The probability of finding the system in state |ψ2〉 at time t is given by the square
modulus of 〈ψ2|ψ〉, which, in terms of the new variables, is equal to

〈ψ2|ψ〉 = w e−i �t
�

(
c1 e

−i αt
� + c2 e

i αt
�

) = w e−i �t
�

[
(c1 + c2) cos

αt

�
− i(c1 − c2) sin

αt

�

]
,

where

c1 = � + α

(� + α)2 + w2
, c2 = � − α

(� − α)2 + w2
.

After short calculations, we find that

c1 + c2 = 0 and c1 − c2 = 1

α
,

and, consequently,

〈ψ2|ψ〉 = −i
w

α
e−i �t

� sin
αt

�
.

Ultimately, the answer to the problem’s question is

P
(|ψ(t)〉 = |ψ2〉

) = |〈ψ2|ψ〉|2 = w2

�2 + w2
sin2

α

�
t.

This probability is null and |ψ(t)〉 = |ψ1〉 when

t = nπ�

α
con n = 0, 1, 2, . . .
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5.4 Two-Level System (IV)

The Hamiltonian of a two-level quantum system is described by the following oper-
ator (in the appropriate units of measurement):

H |1〉 = |1〉 + 1 + i√
2

|2〉 , H |2〉 = 1 − i√
2

|1〉 + |2〉,

where |1〉 and |2〉 are the normalized eigenkets of another hermitian operator A:

A|1〉 = √
2|1〉, A|2〉 = −√

2|2〉.

At the instant t = 0, a measure of the observable associated with the operator A is
performed and the value −√

2 is found.

(a) Immediately afterwards, an energy measurement is performed; what is the prob-
ability of finding the system in its ground state?

(b) How does this probability change by performing the measurement after a finite
interval T?

(c) If no energy measurement is taken, at which time will the system be in state |2〉?
Solution

In theA’s eigenkets representation, toH there corresponds a matrix, which we call
by the same name, having elements H j,k = 〈 j |C |k〉,

H =
(

1 1−i√
2

1+i√
2

1

)

.

Its eigenvalues are E± = 2, 0. The corresponding eigenvectors are, respectively,

⎛

⎝

1√
2

1+i
2

⎞

⎠ and

⎛

⎝

1√
2

− 1+i
2

⎞

⎠ .

Therefore, we can write

|E−〉 = 1√
2

|1〉 − 1 + i

2
|2〉,

|E+〉 = 1√
2

|1〉 + 1 + i

2
|2〉.

By reversing these expressions, we find that
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|1〉 = 1√
2

(|E+〉 + |E−〉),

|2〉 = 1 − i

2
(|E+〉 − |E−〉).

(a) At time t = 0, the system’s state is

|ψ(0)〉 = |2〉 = 1 − i

2
(|E+〉 − |E−〉),

and therefore

P(E = E− = 0, t = 0) =
∣∣
∣∣−

1 − i

2

∣∣
∣∣

2

= 1

2
.

(b) At time t = T , the state has become

|ψ(T )〉 = e−i HT
� |ψ(0)〉 = 1 − i

2

(
e−i 2T

� |E+〉 − e−i 0T
� |E−〉

)
=

= 1 − i

2

(
e−i 2T

� |E+〉 − |E−〉
)

,

implying that

P(E = E− = 0, t = T ) =
∣∣
∣∣
1 − i

2

∣∣
∣∣

2

= 1

2

independent of T .
(c) In order for the system to be certainly in state |2〉 at time t , the following must

occur:
1 − i

2

(
e−i 2t

� |E+〉 − |E−〉
)

= 1 − i

2
(|E+〉 − |E−〉),

from which we get

2t

�
= 2nπ ⇒ t = nπ� with n = 1, 2, . . .

Note that t has the same dimension of � due to the fact thatH is dimensionless.

5.5 Time-Evolution of a Free Particle

Consider a free particle in one dimension.

(a) Calculate the expression of the evolution operator (propagator) in the coordinate
representation.
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(b) Suppose that, at instant t ′ = 0, the particle is described by a Gaussian wave
packet

ψ(x, t ′ = 0) = 1
4
√
2�2π

eık0x−
x2

4�2 (5.1)

corresponding to a position uncertainty �x = � and a momentum uncertainty
�p = �

2� . Calculate the wave function at a later time t and show that the position
uncertainty grows over time (wave packet enlargement).

Solution

(a) Remember that the propagator, when the Hamiltonian does not depend on time,
is given by

U (t, t ′) = e−ı H(t−t ′)
� .

In the position representation, for a free particle in one dimension, it assumes
the expression

U (x, t, x ′, t ′) = 〈x | e−ı H(t−t ′)
� | x ′〉 =

∫ +∞

−∞
dp 〈x | e−ı H(t−t ′)

� | p〉〈p | x ′〉 =

= 1

2π�

∫ +∞

−∞
dp eı

p(x−x ′)
�

−ı p2(t−t ′)
2m� .

Using the well-known result for the Gaussian integral (A.4), we easily obtain

U (x, t, x ′, t ′) =
√

m

2π�ı(t − t ′)
eı

m(x−x ′)2
2�(t−t ′) .

(b) We apply the previous result to the Gaussian wave packet (5.1).
At time t , the wave function will be

ψ(x, t) =
∫ +∞

−∞
dx ′ U (x, t, x ′, 0)ψ(x ′, 0) =

= 1
4
√
2�2π

√
m

2π�ı t

∫ +∞

−∞
dx ′ eık0x

′− x ′2
4�2 +ı m(x−x ′)2

2�t .

This integral can be calculated using formula (A.4) again, placing

α = 1

4�2
− ım

2�t
and β = ı

(
k0 − mx

�t

)



5.5 Time-Evolution of a Free Particle 117

and obtaining

ψ(x, t) = 1
4
√
2�2π

√
m

2π�ı t

√
π

α
e

ımx2

2�t e
β2

4α =

= 1
√√

2�2π
(
1 + ı �t

2m�2

) e
β2

4α + ımx2

2�t .

We explicate the exponent:

β2

4α
+ ımx2

2�t
= − (mx

�t − k0
)2

4�2
(
1 + ı �t

2m�2

)
m

2ı�t�2

+ ımx2

2�t
=

=
− (mx

�t − k0
)2 2ı�t�2

m + ımx2
2�t 4�2

(
1 + ı �t

2m�2

)

4�2
(
1 + ı �t

2m�2

) =

= −x2 − 2ı�t�2

m k0
(
k0 − 2mx

�t

)

4�2
(
1 + ı �t

2m�2

) =

= −x2 + 4ı�2

�
p0

(
x − p0t

2m

)

4�2
(
1 + ı �t

2m�2

) =

= −x2 + 2 p0t
m x − ( p0t

m

)2

4�2
(
1 + ı �t

2m�2

) + −2 p0t
m x + ( p0t

m

)2 + 4ı�2

�
p0

(
x − p0t

2m

)

4�2
(
1 + ı �t

2m�2

) =

= (x − p0t/m)2

4�2
(
1 + ı �t

2m�2

) + ı
p0
�

(
x − p0t

2m

)
.

The final expression for the Gaussian packet at time t is

ψ(x, t) = 1
√√

2�2π
(
1 + ı �t

2m�2

) e
− (x−p0 t/m)2

4�2
(
1+ı �t

2m�2

) +ı p 0
� (x− p 0 t

2m )
.

This expression shows that the wave packet moves like a plane wave of energy
E = p20/2m, modulated by a Gaussian packet whose peak value, which is also
the position expectation value, moves according to x = p 0t/m. The momentum
expectation value remains 〈p〉 = p 0 = �k0. Finally, the position probability dis-
tribution, which is obtained from thewave function’s squaremodulus, shows that
the position uncertainty changes over time with the law

�x(t) = �

√

1 + �2t2

4m�4
,

giving rise to the phenomenon known as wave packet enlargement.
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5.6 Particle Confined on a Segment (I)

At the instant t = 0, a particle, constrained to move along a segment of length L , is
in a state in which an energy measure can supply, with equal probability, only two
values: the lower E1 and the next higher E2 = 4E1.

(a) Write the expression of the normalized wave function (containing an arbitrary
parameter).

(b) Determine this parameter, knowing that, at the instant t = 0, the particlemomen-
tum expectation value is 〈p〉 = 4

3
�

L .
(c) Determine the next time instant at which the momentum expectation value van-

ishes.

Solution

For this system, energy eigenvalues and corresponding eigenfunctions are given by:

En = �
2π2n2

2mL2
, ψn(x) =

√
2

L
sin

nπx

L
, n = 1, 2, 3, . . . .

(a) At t = 0, the particle state is a superposition of ψ1(x) and ψ2(x):

ψ(x) = c1ψ1(x) + c2ψ2(x).

Since the probabilities of finding E1 and E2 are the same, we have

|c1|2 = |c2|2.

Neglecting an arbitrary overall phase, we can write

ψ(x) = 1√
2

(
ψ1(x) + eiαψ2(x)

)
.

(b) Let us calculate the momentum expectation value. As we have seen in Problems
(1.4) and (2.4), this is null for a particle in an eigenstate of the discrete spectrum.
Therefore, we have

〈p〉t=0 = 1

2

[〈ψ1|p|ψ1〉 + 〈ψ2|p|ψ2〉 + eiα〈ψ1|p|ψ2〉 + e−iα〈ψ2|p|ψ1〉
] =

= 1

2

[
eiα I1 + e−iα I2

]
,

where I ∗
2 = I1. The latter is given by
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I1 = 2

L

�

i

∫ L

0
dx

(
sin

πx

L

) 2π

L
cos

2πx

L
= 4�

i L

∫ π

0
dt sin t cos 2t =

= 2�

i L

∫ 1

−1
dz (2z2 − 1) = − 8�

3i L
.

Finally,

〈p〉t=0 = 1

2

8�

3i L

[−eiα + e−iα
] = − 8�

3L
sin α.

By imposing the required condition, two different determinations of α are
obtained:

sin α = −1

2
⇒ α = α1 = −π

6
or α = α2 = π + π

6
.

(c) At a later time t , we will have

ψ(x, t) = 1√
2

(
e−i E1 t

� ψ1(x) + eiαe−i E2 t
� ψ2(x)

)

and the momentum expectation value will be given by

〈p〉t = 1

2

[
eiαe−i E2−E1

�
t 〈ψ1|p|ψ2〉 + e−iαei

E2−E1
�

t 〈ψ2|p|ψ1〉
]

=

= 1

2

8�

3i L

[−ei(α−ωt) + e−i(α−ωt)
] = − 8�

3L
sin(α + ωt),

where we defined

ω = E2 − E1

�
.

Depending on the determination of α, the momentum expectation value will take
zero for the first time when ωt = α1 + π or ωt = α2 − π , that is, at time given
by, respectively for the two cases,

t = 5π

6ω
or t = π

6ω
.

5.7 Particle Confined on a Segment (II)

A particle of mass m is confined on the segment 0 ≤ x ≤ a. At time t = 0, its
normalized wave function is

ψ(x, t = 0) =
√

8

5a

[
1 + cos

πx

a

]
sin

πx

a
.
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(a) What results can be obtained from an energy measure?
(b) Write the wave function at a later time t .
(c) Calculate the system energy expectation value at t = 0 and t .
(d) Calculate the probability of finding the particle in the left half of the segment at

time t .

Solution

For this system, energy eigenvalues and corresponding eigenfunctions are given by:

En = �
2π2n2

2ma2
, ψn(x) =

√
2

a
sin

nπx

a
, n = 1, 2, 3, . . .

(a) Note that the wave function at t = 0 can be rewritten as a linear combination of
eigenfunctions of the Hamiltonian:

ψ(x, t = 0) =
√

8

5a

[
sin

πx

a
+ 1

2
sin

2πx

a

]
=

√
4

5
ψ1(x) +

√
1

5
ψ2(x).

Since the sum of the square modules of the coefficients is equal to 1, the wave
function is normalized. It is a superposition of ψ1(x) and ψ2(x), thus the values
obtained from an energy measure may be only E1 and E2.

(b) The wave function at time t is obtained by applying the evolution operator

ψ(x, t) = e−i H t
� ψ(x, t = 0) =

√
4

5
ψ1(x) e

−i �π2

2ma2
t +

√
1

5
ψ2(x) e

−i 2�π2

ma2
t
.

(c) The energy expectation value at t = 0 is given by

〈E〉ψ = 4

5
E1(x) + 1

5
E2(x) = 4

5

�
2π2

ma2
.

It remains constant in the course of evolution, since the Hamiltonian does not
depend on time.

(d) Taking into account the symmetry properties of the wave functions with respect
to x = a

2 , we have

P(x <
a

2
, t) =

∫ a
2

0
dx |ψ(x, t)|2 =

=
∫ a

2

0
dx

[
4

5
|ψ1(x)|2 + 1

5
|ψ2(x)|2 + 2

2

5



(
ψ1(x) ψ2(x) e

−i
E1−E2

�
t
)]

=

= 1

2
+ 4

5

2

a
cos

E1 − E2

�
t

∫ a
2

0
dx sin

πx

a
sin

2πx

a
=

= 1

2
+ 16

5π
cos

E1 − E2

�
t

∫ 1

0
d sin z sin2 z = 1

2
+ 16

15π
cos

3π2
�

2ma2
t.
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5.8 Particle Confined on a Segment (III)

A particle is in a well of infinitely deep potential

V (x) =
{

∞, if x < 0 and x > a,

0, if 0 < x < a.

Assuming that, at time t = 0, the particle is in the state described by thewave function

ψ(x, 0) =
{
0, see x < 0 ex > a,

Ax(a − x), see 0 < x < a,

determine:

(a) the energy probability distribution;
(b) the energy expectation value and uncertainty;
(c) the wave function at the generic instant t .

Solution

For this system, energy eigenvalues and corresponding eigenfunctions are given by

En = �
2π2n2

2ma2
, ψn(x) =

√
2

a
sin

nπx

a
, n = 1, 2, 3, . . .

The questions require that the wave function be correctly normalized, so we deter-
mine A:

1

|A|2 =
∫ a

0
x2(a − x)2dx = a5

∫ 1

0
t2(1 − t)2dt = a5

30
⇒ A =

√
30

a5
,

apart from an arbitrary phase factor.

(a) The probability of finding the particle in the nth state is given by the square
modulus of

cn = 〈n|ψ〉 =
∫ a

0

√
2

a
sin

nπx

a

√
30

a5
x(a − x) dx = 4

√
15

n3π3
(1 − cos nπ) =

= 4
√
15

n3π3
(1 − (−1)n).

Since the wave function is symmetric with respect to x = a/2, it only has com-
ponents that have the same property, the eigenfunctions with odd n.



122 5 Time Evolution

(b) The energy expectation value is given by

〈E〉 = 〈ψ |H |ψ〉 =
∫ a

0
ψ∗(x)

(
− �

2

2m

d2

dx2

)
ψ(x)dx =

= − �
2

2m

30

a5

∫ a

0
x(a − x)(−2) dx =

= �
2

2m

60

a2

∫ 1

0
t (1 − t)dt = �

2

2m

10

a2
.

To get the energy uncertainty, we first calculate the expectation value of E2:

〈E2〉 = 〈ψ |HH |ψ〉 =
∫ a

0

∣∣∣∣−
�
2

2m

d2

dx2
ψ(x)

∣∣∣∣

2

dx =

= �
4

4m2

30

a5
4a = �

4

m2

30

a4
.

Then, we obtain

�E =
√

〈E2〉 − 〈E〉2 =
√

�4

m2a4
(30 − 25) = √

5
�
2

ma2
.

(c) To know the wave function at instant t , we apply the evolution operator:

ψ(x, t) = e−i H t
� ψ(x, t = 0) =

=
∑

n

cn ψn(x) e
−i En t

� =

=
∑

n

√
30

a

8

(2n + 1)3π3
sin

(2n + 1)πx

a
exp{−i

�π2(2n + 1)2

2ma2
t}.

5.9 Harmonic Oscillator (I)

A particle of mass m subjected to a harmonic potential

V (x) = 1

2
mω2x2

is, at time t = 0, in a state determined by the following conditions:

(a) every energy measure gives certain values that satisfy the relationship

�ω < E < 3�ω;
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(b) the energy expectation value is

〈E〉 = 11

6
�ω;

(c) the position expectation value is:

〈x〉 = −
√

8�

9mω
.

Identify this status. Finally, determine the instants at which the position expectation
value is positive and maximum.

Solution

The eigenvalue equation for the harmonic oscillator Hamiltonian has the solutions

En = (n + 1

2
)�ω ; H |n〉 = En|n〉.

Let us now impose the assigned conditions:

(a) The possible measured energy values are

E1 = 3

2
�ω and E2 = 5

2
�ω.

The system state vector can therefore be written as

|ψ〉 = c1|1〉 + c2|2〉 with |c1|2 + |c2|2 = 1.

(b) The energy expectation value is given by:

〈E〉ψ = |c1|2E1 + |c2|2E2 = 1

2
�ω(3|c1|2 + 5|c2|2) = 11

6
�ω.

This condition, together with the previous one, implies that

|c1|2 = 2

3
and |c2|2 = 1

3
.

The phase of one of the coefficients can be arbitrarily set, and therefore

c1 =
√
2

3
and c2 = 1√

3
eiδ.
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(c) Using the known properties of the creation and destruction operators (A.15)
given in the appendix, we have

〈x〉ψ = (c∗
1〈1| + c∗

2〈2|)
√

�

2mω
(a + a+)(c1|1〉 + c2|2〉) =

=
√

�

2mω
(c∗

1〈1| + c∗
2〈2|)(

√
2c2|1〉 + √

2c1|2〉) =

=
√

�

mω
(c∗

1c2 + c∗
2c1) = −

√
8�

9mω
,

from which we derive

c∗
1c2 + c∗

2c1 = −2
√
2

3
.

By replacing the expressions for c1 and c2, we get:

cos δ = −1 ⇒ δ = π ⇒
{
c1 =

√
2
3

c2 = − 1√
3

Finally, we get the harmonic oscillator state at t = 0:

|ψ〉 =
√
2

3
|1〉 − 1√

3
|2〉.

At time t , by applying the propagator to |ψ〉,

|ψ(t)〉 = e−i H t
� |ψ(t)〉 =

√
2

3
e−i 32 ωt |1〉 − 1√

3
e−i 52 ωt |2〉.

Finally, we determine the expectation value of x at time t :

〈x(t)〉ψ =
√

�

mω
(c∗

1(t)c2(t) + c∗
2(t)c1(t)) =

= −4

3

√
�

2mω
cosωt.

Therefore,

〈x(t)〉ψ > 0 if t ∈
(

(4n + 1)π

2ω
,
(4n + 3)π

2ω

)
with n = 0, 1, 2, . . . ,

〈x(t)〉ψ = max
t

〈x(t)〉ψ if t = (2n + 1)π

ω
with n = 0, 1, 2, . . . .
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5.10 Harmonic Oscillator (II)

A particle of mass m moves into a harmonic potential with frequency ω. Its state at
time t = 0 is described by the wave function

ψ(x, 0) = A(x2 + 2

√
�

mω
x)e− mωx2

2� .

Determine the expression of the wave function at a later time t > 0 and the energy
expectation value.

Solution

We notice that the wave function is the product of the Gaussian term common to all
of the eigenfunctions of the harmonic oscillator for a second-degree polynomial. So,
it must be a linear combination of the first three eigenfunctions:

ψ(x, 0) = c0φ0(x) + c1φ1(x) + c2φ2(x).

They are (A.16)

φ0(x) =
(mω

π�

) 1
4
e− mωx2

2� ,

φ1(x) =
(mω

π�

) 1
4 √

2

√
mω

�
xe− mωx2

2� ,

φ2(x) =
(mω

π�

) 1
4 1√

2

(
2mω

�
x2 − 1

)
e− mωx2

2� .

It must therefore result that

A(x2 + 2

√
�

mω
x) =

(mω

π�

) 1
4

[
c0 + c1

√
2

√
mω

�
x + c2

1√
2

(
2mω

�
x2 − 1

)]
.

In order for the two sides to coincide, the coefficients of the same powers must be
equal, so

c0 = A
(mω

π�

)− 1
4 �

2mω
,

c1 = A
(mω

π�

)− 1
4 �

√
2

mω
,

c2 = A
(mω

π�

)− 1
4 �√

2mω
.
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We determine A so that ψ is normalized. Since φn are already normalized, it must
result that

2∑

n=0

|cn|2 = 1,

from which we easily obtain, setting the arbitrary phase of A equal to zero,

A =
√

4

11

(mω

π�

) 1
4 mω

�

and, consequently,

c0 = 1√
11

, c1 =
√

8

11
, c2 =

√
2

11
.

Therefore, at time t , the wave function will be

ψ(x, t) = 1√
11

φ0(x)e
−ı 12 ωt +

√
8

11
φ1(x)e

−ı 32 ωt +
√

2

11
φ2(x)e

−ı 52 ωt .

The energy expectation value, since the Hamiltonian does not depend on time, is
constant and equal to

〈E〉 = |c0|2E0 + |c1|2E1 + |c2|2E2 = 1

11

1

2
�ω + 8

11

3

2
�ω + 2

11

5

2
�ω = 35

22
�ω.

5.11 Harmonic Oscillator (III)

A harmonic oscillator of mass m and frequency ω is in such a state that the energy
expectation value is

〈H〉 = 3

2
�ω,

the squared uncertainty is given by

〈(H − 〈H〉)2〉 = 1

2
(�ω)2,

and, moreover, an energy measurement cannot give a result greater than 3�ω.

(a) What results can be obtained by measuring energy, and with what probability?
(b) Write the most general state vector compatible with the aforementioned infor-

mation.



5.11 Harmonic Oscillator (III) 127

(c) Knowing that, at the instant t = 0, the expectation value of the position operator
is the maximum possible, determine its value at a subsequent instant t .

Solution

(a) As E ≤ 3�ω, the results of an energy measurement can be

E0 = 1

2
�ω, E1 = 3

2
�ω, E2 = 5

2
�ω,

eigenvalues relative to the first three energy eigenstates. The oscillator’s status
vector is therefore

|ψ〉 = a|0〉 + b|1〉 + c|2〉, with |a|2 + |b|2 + |c|2 = 1.

Coefficients a, b and c are also subject to the conditions imposed

〈H〉 =
[
1

2
|a|2 + 3

2
|b|2 + 5

2
|c|2

]
�ω = 3

2
�ω

and

〈(H − 〈H〉)2〉 = 〈H2〉 − 〈H〉2 =
=

[
1

4
|a|2 + 9

4
|b|2 + 25

4
|c|2

]
�
2ω2 − 9

4
�
2ω2 =

= 1

2
�
2ω2.

These three conditions make it possible to determine the square modules of the
three coefficients and, therefore, the desired probabilities:

P(E = 1

2
�ω) = |a|2 = 1

4
, P(E = 3

2
�ω) = |b|2 = 1

2
, P(E = 5

2
�ω) = |c|2 = 1

4
.

(b) If we set the a phase for 0, we can write

|ψ〉 = 1

2
|0〉 + 1√

2
eiβ |1〉 + 1

2
eiγ |2〉.

(c) Using formulas (A.14, A.15), we deduce that
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X |ψ〉 =
√

�

2mω

[
b|0〉 + (a + √

2c)|1〉 + √
2b|2〉 + √

3c)|3〉
]
,

〈X〉 = 〈ψ |X |ψ〉 =
=

√
�

2mω

[
a∗b + b∗(a + √

2c) + √
2c∗b

]
=

=
√

�

2mω

[
2
(a∗b) + 2

√
2
(b∗c)

]
=

=
√

�

2mω

[
1√
2
cosβ + cos(γ − β)

]
.

As β and γ are independent, 〈X〉 takes the maximum value

〈X〉max = 2 + √
2

2

√
�

2mω

for
cosβ = cos(γ − β) = 1, that is, for β = γ = 0.

The desired state is therefore:

|ψ〉 = 1

2
|0〉 + 1√

2
|1〉 + 1

2
|2〉.

At time t > 0, it will become

|ψ(t)〉 = 1

2
e−i 12 ωt |0〉 + 1√

2
e−i 32 ωt |1〉 + 1

2
e−i 52 ωt |2〉.

Repeating the calculation already done for 〈X〉 at t = 0, we obtain

〈X (t)〉 = 2 + √
2

2

√
�

2mω
cosωt.

5.12 Plane Rotator

Aplane rotator is a rigid two-particle system that can rotate freely in a plane.Denoting
its moment of inertia with I , determine:

(a) the system’s energy eigenvalues and eigenfunctions;
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(b) the possible values of the angular momentum, their probabilities and the angular
momentum expectation value in the state described by the wave function

ψ(ϕ) = N cos2 ϕ;

(c) the time evolution of state ψ .

Solution

(a) The system’s Hamiltonian is

H = L2

2I
= L2

z

2I
= − �

2

2I

∂2

∂ϕ2
,

where we assumed that the rotation plane is the xy plane. The eigenvalues and
eigenfunctions of H are

Em = �
2m2

2I
, ψm(ϕ) = 1√

2π
eimϕ with m = 0,±1,±2, . . .

All of the eigenvalues are doubly degenerate for every m, except for m = 0.
(b) We fix the constant N by normalization:

1 = |N |2
∫ 2π

0
dϕ cos4 ϕ = |N |2

∫ 2π

0
dϕ

[
3

8
+ 1

2
cos 2ϕ + 1

8
cos 4ϕ

]
=

= |N |2
[
3

8
2π + 0 + 0

]
⇒ |N |2 = 4

3π
⇒ N = 2√

3π
,

apart from an arbitrary phase factor. The wave function is a superposition of two
Hamiltonian’s eigenfunctions. Indeed,

ψ(ϕ) = 2√
3π

cos2 ϕ = 1

2
√
3π

(
e2iϕ + e−2iϕ + 2

) =

= 1√
6

ψ2(ϕ) + 1√
6

ψ−2(ϕ) +
√
2

3
ψ0(ϕ).

Taking into account that the H eigenfunctions are also Lz eigenfunctions, the
required probabilities are given by

P(Lz = 0) = 2

3
, P(Lz = 2) = 1

6
, P(Lz = −2) = 1

6
.

So, the angular momentum expectation value is

〈Lz〉 = 2

3
· 0 + 1

6
· 2 + 1

6
· (−2) = 0.
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(c) The rotator state at time t > 0 is described by the wave function

ψ(ϕ, t) = 1√
6

ψ2(ϕ) e−i E2 t
� + 1√

6
ψ−2(ϕ) e−i E2 t

� +
√
2

3
ψ0(ϕ) e−i E0 t

� =

= 1√
3π

(
cos 2ϕ e−i E2 t

� + 1
)

.

5.13 Rotator in Magnetic Field (I)

The Hamiltonian of an isotropic rotator in the presence of a uniform magnetic field
is given by

H = L2

2I
+ αLz,

where α is a constant. Its state is described at time t = 0 by the wave function

ψ(ϑ, φ) =
√

15

32π
sin2 θ sin 2φ.

Determine the expression of the wave function at a later time t .

Solution

The Hamiltonian’s eigenfunctions are the Spherical Harmonics and the eigenvalues
are

�(� + 1)�2

2I
+ α�m, � = 0, 1, 2, . . . , m = 0,±1, . . .

The wave function that represents the initial state can be written, using (A.40), as:

ψ(ϑ, φ, t = 0) = 1

2i

√
15

32π
sin2(θ)

(
e2iφ − e−2iφ

) = 1

2i

(
Y 2
2 (ϑ, φ) − Y−2

2 (ϑ, φ)
)
.

At a later time t , we will have

ψ(ϑ, φ, t) = e−i H t
� ψ((ϑ, φ), t = 0) =

= 1

2i

(
Y 2
2 (ϑ, φ)e−i[ 6�

2I +2α]t − Y−2
2 (ϑ, φ)e−i[ 6�

2I −2α]t
)

.
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5.14 Rotator in Magnetic Field (II)

The Hamiltonian of an isotropic rotator in the presence of a uniform magnetic field
is given by

H = L2

2I
+ αLz .

At instant t = 0, its wave function is

ψ(ϑ, φ, 0) = 1√
2

[
Y+1
1 (ϑ, φ) + Y−1

1 (ϑ, φ)
]
.

(a) What is its wave function at time t?
(b) Determine the instant t at which the wave function is proportional to

1√
2

(
Y+1
1 (ϑ, φ) − Y−1

1 (ϑ, φ)
)
.

Solution

The system is the same as in problem 5.13.

(a) At any instant t > 0, we will have

ψ(ϑ, φ, t) = e−i H t
� ψ(ϑ, φ, t = 0) =

= 1√
2

[
Y+1
1 (ϑ, φ)e−i[ �

I +α]t + Y−1
1 (ϑ, φ)e−i[ �

I −α]t
]
.

(b) To answer the second question, it is sufficient to impose that the ratio between
the two Spherical Harmonics coefficients is equal to −1:

e−i[ �

I −α]t

e−i[ �

I +α]t = e−2iαt = −1 ⇒ 2αt = (2n + 1)π ⇒ t = (2n + 1)π

2α
.

5.15 Fermion in a Magnetic Field (I)

At time t = 0, a particle of spin 1
2 , magnetic moment μ = g S and infinite mass is

in a state in which the probability of finding the value �/2 making a measure of Sz
is 2/3, and the expectation values of Sx and Sy are equal and both are positive. The
particle is immersed in a constant magnetic field B parallel to the y axis.

(a) Write the state vector at time t = 0 and determine the common expectation value
of Sx and Sy .

(b) Calculate the maximum and minimum values of the probability of finding the
value �/2 in a measure of Sz during the time evolution of the system.
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Solution

(a) Due to the infinite mass, such a particle has no kinetic energy, so the system
Hamiltonian is

H = −gS · B = −gBSy .

Apart from an arbitrary overall phase factor, the state of the system at the initial
instant can be written in terms of Sz eigenstates in the following form:

|ψ(0)〉 =
√
2

3
|+〉 + eiα

√
1

3
|−〉 =

√
1

3

( √
2

eiα

)
.

The expectation values of Sx and Sy are given by

2

�
〈Sx 〉 = 1

3

(√
2 e−iα

) (
0 1
1 0

) (√
2

eiα

)
=

√
2

3

(
eiα + e−iα

) = 2
√
2

3
cosα,

2

�
〈Sy〉 = 1

3

(√
2 e−iα

) (
0 −i
i 0

) (√
2

eiα

)
= i

√
2

3

(−eiα + e−iα
) = 2

√
2

3
sin α.

Imposing that they are equal, we get

〈Sx 〉 = 〈Sy〉 ⇒ sin α = cosα ⇒ α = π

4
,

because 〈Sx 〉 and 〈Sy〉 must be positive. Ultimately, the state at t = 0 is

|ψ(0)〉 =
√
2

3

(
|+〉 + 1 + i

2
|−〉

)

and the common expectation value of Sx and Sy is

〈Sx 〉 = 〈Sy〉 = �

2

2
√
2

3
cos

π

4
= �

3
.

(b) At time t > 0,

|ψ(t)〉 = e−i H t
� |ψ(0)〉 = eiωσy t

√
2

3

(
1
1+i
2

)
,

wherewe introduced the quantityω = gB/2. Applying thewell-known property
of Pauli matrices (A.74), we obtain
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|ψ(t)〉 = (
I cosωt + iσy sinωt

)
√
2

3

(
1
1+i
2

)
=

=
√
2

3

(
cosωt sinωt

− sinωt cosωt

) (
1
1+i
2

)
=

=
√
2

3

(
cosωt + 1+i

2 sinωt
1+i
2 cosωt − sinωt

)

The probability of finding the value �/2 in a measure of Sz is given by the square
modulus of the pertinent component:

P

(
Sz = +�

2

)
= 2

3

∣∣∣∣cosωt + 1 + i

2
sinωt

∣∣∣∣

2

=

= 2

3

(
cos2 ωt + 1

2
sin2 ωt + sinωt cosωt

)
.

The maximum is obtained by imposing the condition

dP

dt
= 2

3
ω

(
cos 2ωt − sin 2ωt

2

)
= 0 ⇒ tan 2ωt = 2.

This equation has two solutions. The first one,

t = 1

2ω
[arctan 2 + (2n + 1)π ] ,

corresponds to the desired maximum. There is also another solution,

t = 1

2ω
(arctan 2 + 2nπ) ,

but it corresponds to a minimum point, because the second derivative is negative
there.

5.16 Fermion in a Magnetic Field (II)

A particle of infinite mass and spin 1
2 is, at time t = 0, in a state in which the

probability of finding the spin component along the positive direction of the z axis is
1
4 and, along the negative direction, 3

4 . This information determines the status apart
from a parameter.

The particle is subjected to a constant and uniform magnetic field B along the x
axis.
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(a) Write the expression of the initial state (including the indeterminate parameter).
(b) Write the system’s Hamiltonian (the particle’s magnetic moment operator is

μ = gS).
(c) Write the expression of the state (always containing an indeterminate parameter)

as a function of time.
(d) Determine the parameter values for which the wave function at a certain time is

reduced to a σz eigenstate and find the times at which this happens.

Solution

(a) Apart from an arbitrary overall phase factor, the state of the system at the initial
instant can be written in terms of the Sz eigenstates in the form

|ψ(0)〉 = 1

2
|+〉 +

√
3

2
eiα|−〉 = 1

2

(
1√
3 eiα

)
.

(b) Due to the infinite mass, such a particle has no kinetic energy, so the system
Hamiltonian is

H = −gS · B = −gBSx = −�ωσx σx =
(
0 1
1 0

)
,

where

ω = gB

2
.

The eigenvalues and the corresponding eigenvectors of H are

E1 = −�ω |1〉 = 1√
2

(
1
1

)
= 1√

2
(|+〉 + |−〉) ,

E2 = �ω |2〉 = 1√
2

(
1

−1

)
= 1√

2
(|+〉 − |−〉) .

(c) At times t > 0,

|ψ(t)〉 = e−i H t
� |ψ(0)〉 = eiωt |1〉〈1|ψ(0)〉 + e−iωt |2〉〈2|ψ(0)〉 =

= eiωt

2
√
2

(
1 + √

3eiα
) 1√

2
(|+〉 + |−〉) +

+e−iωt

2
√
2

(
1 − √

3eiα
) 1√

2
(|+〉 − |−〉) =

= 1

2

[
cosωt + i

√
3eiα sinωt

]
|+〉 + 1

2

[
i sinωt + √

3eiα cosωt
]
|−〉.



5.16 Fermion in a Magnetic Field (II) 135

(d) Suppose that, at the time t = T , it happens that |ψ(T )〉 = |+〉. It must result
that

i sinωT + √
3eiα cosωT = 0,

sinωT − √
3ei(α+π/2) cosωT = 0,

tanωT = √
3ei(α+π/2).

Imposing that ωT is real, we obtain

α + π/2 = 0, π ⇒ α = −π/2, π/2.

In the two cases, we have

α = −π/2 ⇒ T = 1

ω
arctan

√
3 = π

ω

(
n + 1

3

)
, n = 0, 1, . . . ,

α = π/2 ⇒ T = 1

ω
arctan(−√

3) = π

ω

(
n − 1

3

)
, n = 1, 2, . . . ,

where it has been taken into account that T > 0.

5.17 Fermion in a Magnetic Field (III)

The Hamiltonian of a spin 1
2 particle is

H = −gS · B,

where S is the spin and B is a magnetic field directed along the z axis.
Determine:

(a) The explicit form as a function of S and B of the operator Ṡ.
(b) The eigenstates of (Ṡ)y and the relative eigenvalues.
(c) The time evolution of a state that coincides at time t = 0 with one of the afore-

mentioned eigenstates, and the energy expectation value.

Solution

(a) Heisenberg’s equation for operator S is

Ṡ = dS
dt

= i

�
[H,S] = − igB

�
[Sz,S]

(as S does not depend explicitly on time, ∂S
∂t = 0). Component by component,



136 5 Time Evolution

Ṡx = − igB

�
[Sz, Sx ] = gBSy,

Ṡy = − igB

�
[Sz, Sy] = −gBSx ,

Ṡz = − igB

�
[Sz, Sz] = 0,

where we used S = �

2 σ and the Pauli matrices commutation relations (A.71).

(b) The eigenvalues of (Ṡ)y are the eigenvalues of − gB�

2 σx , that is,

λ1 = −�ω, λ2 = �ω, where ω = gB

2
.

The eigenstates are the same as those of σx , that is, in σz representation,

|λ1〉 = 1√
2

(
1
1

)
, |λ2〉 = 1√

2

(
1

−1

)
.

(c) Let us suppose that, at time t = 0, the system is in the state

|ψ(0)〉 = 1√
2

(
1
1

)
= 1√

2

[(
1
0

)
+

(
0
1

)]
.

At time t > 0, it will be in the state

|ψ(t)〉 = e−i H t
� |ψ(0)〉 = 1√

2

[
e−iωt

(
1
0

)
+ eiωt

(
0
1

)]
= 1√

2

(
e−iωt

eiωt

)
.

The energy expectation value, since the Hamiltonian does not depend on time,
is constant and can be calculated at t = 0:

〈E〉ψ = −gB〈ψ(0)|Sz|ψ(0)〉 =
= −gB

2

�

2

(
1 1

) (
1 0
0 −1

)(
1
1

)
=

= −gB�

4

(
1 1

) (
1

−1

)
= 0.

5.18 Fermion in a Magnetic Field (IV)

Aparticle of infinite mass, spin 1
2 andmagnetic momentμ = g S, where S is the spin,

is placed in a constant magnetic field directed along the x axis. At time t = 0, the
spin component Sz = �

2 is measured. Find the probability that the particle is found
to have Sy = ±�

2 at any subsequent moment.
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Solution

The Hamiltonian of the system, neglecting the kinetic term, is

H = −gS · B = −gB�

2
σx = −�ωσx , where ω = gB

2
.

We choose to solve the problem using the Schrödinger equation that controls the
evolution of quantum states. In the Sz representation, this equation is

i�
d

dt

(
a1
a2

)
+ �ω

(
0 1
1 0

)(
a1
a2

)
= 0.

Splitting the spin components, we get

⎧
⎨

⎩

i da1dt + ωa2 = 0

i da2dt + ωa1 = 0
⇒ d2a1,2

dt2
+ ω2a1,2 = 0,

the solutions to which are

a1,2(t) = A1,2e
iωt + B1,2e

−iωt .

At t = 0, after the measurement, the particle state is the Sz eigenvector relative to
the eigenvalue +�/2, and therefore

a1(0) = 1 and a2(0) = 0 ⇔ A1 + B1 = 1 and A2 + B2 = 0.

By imposing these conditions in the Schrödinger equation, we have

i
da1
dt

|t=0 = −ωA1 + ωB1 = −ω a2|t=0 = 0,

i
da2
dt

|t=0 = −ωA2 + ωB2 = −ω a1|t=0 = −ω.

We have a total of 4 equations:

⎧
⎪⎪⎨

⎪⎪⎩

A1 + B1 = 1,
A1 − B1 = 0,
A2 + B2 = 0,
A2 − B2 = 1,

the solution to which is

A1 = B1 = A2 = −B2 = 1

2
.
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Substituting these values in the a1,2 equations, one finds that

ψ(t) =
(
a1(t)
a2(t)

)
=

(
cosωt
i sinωt

)
,

which is normalized. Sy eigenstates are easily calculated to be

∣∣
∣∣Sy = +�

2

〉
= 1√

2

(
1
i

)
,

∣∣
∣∣Sy = −�

2

〉
= 1√

2

(
1
−i

)
;

so the required probabilities are

P(Sy = +�

2
) =

∣∣∣∣〈Sy = +�

2
|ψ(t)〉

∣∣∣∣

2

= 1

2

∣∣∣∣
(
1 −i

) (
cosωt
i sinωt

)∣∣∣∣

2

=

= 1

2
(cosωt + sinωt)2 = 1

2
(1 + sin 2ωt),

P(Sy = −�

2
) =

∣∣∣∣〈Sy = −�

2
|ψ(t)〉

∣∣∣∣

2

= 1

2

∣∣∣∣
(
1 i

) (
cosωt
i sinωt

)∣∣∣∣

2

=

= 1

2
(cosωt − sinωt)2 = 1

2
(1 − sin 2ωt).

As a control, it can be easily verified that their sum is 1.

5.19 Fermion in a Magnetic Field (V)

At time t = 0, a particle of spin 1
2 , magnetic moment μ = g S and infinite mass is in

a state with a z spin component equal to +�/2. It is subject to a magnetic interaction
of the type

H = A√
2
(σx + σy),

where A is a constant and σx and σy are Pauli matrices. Calculate how long it takes
for the spin component along the z axis to become −�/2.

Solution

Having denoted by n̂ the unit vector

n̂ =
(

1√
2

,
1√
2

, 0

)

and with ϑ the vector

ϑ = At

�
n̂,
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the evolution operator of this system can be written as

e−i H t
� = e−iϑ ·σ = I cosϑ − i(n · σ ) sin ϑ,

where formula (A.74) has been used. Therefore, the particle status at time t will be
given by

|ψ(t)〉 = e−i H t
� =

(
I cos

At

�
− i(σx + σy)√

2
sin

At

�

) (
1
0

)
=

= cos
At

�

(
1
0

)
− i√

2
sin

At

�

(
0

1 + i

)
.

In order that, at time t , only the component with Sz = −�

2 will survive, it must be
cos At

�
= 0. This happens for the first time at

t = π�

2A
.

5.20 Fermion in a Magnetic Field (VI)

A particle of spin 1
2 , magnetic moment μ = g S and infinite mass is placed in a

uniform and constant magnetic field B0 directed along the z axis. During the interval
0 < t < T , a uniform and constant magnetic fieldB1 along the x axis is also applied,
so that the systemwill still be in a uniform and constant magnetic fieldB = B0 + B1.
For t < 0, the system is in the Sz eigenstate corresponding to the eigenvalue +�

2 .

(a) At t = 0+, what will be the probability amplitudes of finding the spin component
along the B direction equal to ±�

2 ?
(b) How do the energy eigenstates evolve over time in the interval 0 < t < T ?
(c) What is the probability of observing the system at the time t = T in the Sz

eigenstate corresponding to the eigenvalue −�

2 ?

Solution

For t < 0, the system Hamiltonian is

H = −gS · B0 = −gB0�

2
σz = −�ω0σz, where ω0 = gB0

2
,

In the interval between 0 and T , the Hamiltonian becomes

H = −gS · B = − g�

2
(B0σz + B1σx ) = − g�

2

(
B0 B1
B1 −B0

)
= −�ω

(
cosϑ sin ϑ

sin ϑ − cosϑ

)
.
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where ω = gB

2
, B =

√
B2
0 + B2

1 and ϑ = arctan
B1

B0
.

This Hamiltonian is proportional to the spin component in the n̂ direction, set by the
ϑ angle, which is given by

S · n̂ = −�

2

(
cosϑ sin ϑ

sin ϑ − cosϑ

)
.

S · n̂ has eigenvalues ±�

2 and eigenstates (see Problem 4.2)

|χ+〉 = |S · n̂ = +�

2
〉 =

(
cos ϑ

2
sin ϑ

2

)
, |χ−〉 = |S · n̂ = −�

2
〉 =

(− sin ϑ
2

cos ϑ
2

)
.

(a) The state of the system at the time t = 0 can be expressed in terms of the
eigenstates of S · n̂:

|ψ(0)〉 =
(
1
0

)
= c+|χ+〉 + c−|χ−〉.

c+ e c− are the amplitudes that we are looking for:

c+ = 〈χ+|ψ(0)〉 = (
cos ϑ

2 sin ϑ
2

) (
1
0

)
= cos

ϑ

2
,

c− = 〈χ−|ψ(0)〉 = (− sin ϑ
2 cos ϑ

2

) (
1
0

)
= − sin

ϑ

2
.

(b) As we said,
H = −gS · B = −gBS · n̂,

therefore, its eigenkets are |χ+〉 and |χ−〉 and its eigenvalues are

E± = −gB

(
±�

2

)
= ∓�ω.

In the time interval between t = 0 and t = T , the eigenstates’ evolution is given
by

|χ±(t)〉 = e−i E±t
� |χ±(0)〉 = e±iωt |χ±(0)〉.

(c) At time T , the system state is
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|ψ(T )〉 = c+ eiωT |χ+〉 + c− e−iωT |χ−〉 =
= cos

ϑ

2
eiωT

(
cos ϑ

2
sin ϑ

2

)
− sin

ϑ

2
e−iωT

(− sin ϑ
2

cos ϑ
2

)
=

=
(

cos2 ϑ
2 e

iωT + sin2 ϑ
2 e

−iωT

cos ϑ
2 sin ϑ

2 e
iωT − sin ϑ

2 cos ϑ
2 e

−iωT

)
.

The required probability is

P(Sz = −�/2) = |〈Sz = −�/2 |ψ(T )〉|2 =
∣∣∣∣cos

ϑ

2
sin

ϑ

2

(
eiωT − e−iωT

)
∣∣∣∣

2

=
= |i sin ϑ sinωT |2 = sin2 ϑ sin2 ωT .

5.21 Measurements of a Hydrogen Atom

At time t = 0, the state of a Hydrogen atom is described by the wave function

ψ(r, t = 0) = 1√
10

(
2ψ1,0,0 + ψ2,1,0 + √

2ψ2,1,1 + √
3ψ2,1,−1

)
,

where ψn,�,m are the Hamiltonian eigenfunctions relative to the quantum numbers
n, �,m relative to energy, angular momentum square modulus and its z-component.
Neglecting spin, determine:

(a) the energy expectation value;
(b) the expression of the wave function at a later time t ;
(c) the probability of finding, at time t , the atom in the state with � = 1,m = 1.

Solution

(a) Having called as cn,�,m the coefficients of the wave function expansion in the
Hamiltonian’s eigenfunctions,

ψ(r, t = 0) =
∑

n,�,m

cn,�,m ψn,�,m,

since it occurs that

∑

n,�,m

|cn,�,m |2 = 1

10
(4 + 1 + 2 + 3) = 1,
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thewave function is normalized. Therefore, the energy expectation value is given
by

〈E〉 = 〈ψ |H |ψ〉 =
∑

n,�,m

|cn,�,m |2 En = 1

10
[4E1 + (1 + 2 + 3)E2] =

= 11

20
E1 = −11

20

1

2
mec

2α2 = − 11 · 0.51
40 · 1372 eV = −7.47 eV,

being that E2 = E1
4 and me = 0.51 eV

c2 .
(b) At a later instant t , the wave function will be

ψ(r, t) = e−i H t
� ψ(r, t = 0) =

= 1√
10

(
2ψ1,0,0e

−i E1 t
� +

[
ψ2,1,0 + √

2ψ2,1,1 + √
3ψ2,1,−1

]
e−i E2 t

�

)
.

(c) Denoting the required probability with Pn,1,1, we have

Pn,1,1(t) = |〈n, 1, 1|ψ(t)〉|2 = |〈n, 1, 1|e−i H t
� |ψ(0)〉|2 =

=
∣
∣∣〈n, 1, 1| 1√

10

(
2 |1, 0, 0〉e−i

E1 t
� +

[
|2, 1, 0〉 + √

2 |2, 1, 1〉 + √
3 |2, 1,−1〉

]
e−i

E2 t
�

)∣
∣∣
2 =

=
∣∣
∣δn,2

√
2√
10

e−i
E2 t
�

∣∣
∣
2 = 1

5 δn,2.



Chapter 6
Time-Independent Perturbation Theory

6.1 Particle on a Segment: Square Perturbation

Aparticle ofmassm is constrained tomove along an L length segment in the presence
of a small potential well, so that the total potential is

V (x) =

⎧
⎪⎨

⎪⎩

∞, if x < 0 and x > L ,

−V0, if 0 < x < L
2 ,

0 if L
2 < x < L .

Consider the small potential well (see Fig. 6.1) between 0 and L
2 as a perturbation

compared to the infinite confining well and calculate the energy eigenvalues at the
first perturbative order.

Solution

In the absence of perturbation, the energy eigenvalues and eigenfunctions are given
by:

E0
n = �

2π2n2

2mL2
, ψ0

n (x) =
√

2

L
sin

nπx

L
, n = 1, 2, . . .

The first-order correction in the energy levels is given by

E1
n =

∫ L

0
dx ψ∗

n (x) H1(x) ψn(x) =

= 2

L

∫ L
2

0
dx sin2

nπx

L
(−V0) =

= −V0

L

∫ L
2

0
dx

[

1 − cos
2nπx

L

]

= −V0

2
.

This correction is the same for all levels. We will therefore have
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Fig. 6.1 Confining potential with a small well

E0
n + E1

n = �
2π2n2

2mL2
− V0

2
, ∀n = 1, 2, . . .

6.2 Particle on a Segment: Linear Perturbation

Using first-order Perturbation Theory, calculate the energy levels for a one-
dimensional infinite square well of width L , whose bottom was made oblique, as
shown in the Fig. 6.2.

Solution

The perturbative potential is given by

H1 = V0

L
x for 0 ≤ x ≤ L .

Unperturbed Hamiltonian eigenvalues and eigenfunctions are

E0
n = �

2π2n2

2mL2
, ψ0

n (x) =
√

2

L
sin

nπx

L
, n = 1, 2, . . .

The first-order shift in energy is given by

E1
n = V0

L

2

L

∫ L

0
dx x sin2

nπx

L
= 2V0

n2π2

∫ nπ

0
dz z sin2 z = V0

2
.
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Fig. 6.2 Linear perturbation to a potential well

The change is the same for all eigenvalues. We will therefore have

E0
n + E1

n = �
2π2n2

2ma2
+ V0

2
, ∀n = 1, 2, . . .

6.3 Particle on a Segment: Sinusoidal Perturbation

A particle of massm is confined on a segment by an infinite potential well. Its bottom
is modified from

V (x) = 0 for 0 < x < L

to
V ′(x) = V0 sin(

πx

L
) for 0 < x < L .

Calculate the first-order changes in the energy levels.

Solution

In the absence of the sinusoidal perturbation, the energy eigenvalues and eigenfunc-
tions are

En = �
2π2n2

2mL2
, ψn(x) =

√
2

L
sin

nπx

L
, n = 1, 2, 3, . . . .

The first-order energy shifts are given by
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E1
n =

∫ L

0
dx ψ∗

n (x) V ′(x) ψn(x) =

= 2V0

L

∫ L

0
dx sin2

nπx

L
sin

πx

L
=

= 2V0

π

[
1

2

∫ π

0
dα sin α − 1

2

∫ π

0
dα cos 2nα sin α

]

=

= 2V0

π

{

1 − 1

2

∫ π

0
dα

1

2
[sin(1 + 2n)α + sin(1 − 2n)α]

}

=

= 2V0

π

[

1 − 1

4

(
2

1 + 2n
+ 2

1 − 2n

)]

=

= 8V0n2

π(4n2 − 1)
.

6.4 Particle on a Segment in the Presence
of a Dirac-δ Potential

A particle of mass m is in an infinite well potential of width a in one dimension:

V (x) =
{
0, se 0 ≤ x ≤ L ,

∞, elsewhere.

It is subject to a perturbation due to the potential

W (x) = Lω0 δ

(

x − L

2

)

,

where ω0 is a real constant.

(a) Calculate, up to the first order in ω0, the changes in the energy levels produced
by W (x).

(b) Solve the problem exactly, showing that the energy values are obtained by one
of the following two equations:

sin(kL/2) = 0

or

tan(kL/2) = − �
2k

mLω0
.

Discuss these results with regard to the sign and the size of ω0.
(c) Show that, in the limit ω0 → 0, the results of point a) are recovered.
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Solution

(a) In the absence of perturbation, the energy eigenvalues and eigenfunctions are:

En = �
2π2n2

2mL2
, ψn(x) =

√
2

L
sin

nπx

L
, n = 1, 2, 3, . . . .

The first-order change in energy is given by

E (1)
n =

∫ L

0
dxψ∗

n (x)W (x)ψn(x) =

= 2

L
Lω0

∫ L

0
dx sin2

nπx

L
δ(x − L

2
) =

= 2ω0 sin
2 nπ

2
=
{
0 for even n,

2ω0 for odd n.

(b) To find the exact solution, we impose that the wave function, excluding the point
x = L/2, has the form of a null-potential solution vanishing in x = 0 and x = L .

Setting k =
√

2mE
�2 , we have

ψ(x) =
{
A sin kx per 0 ≤ x ≤ L/2,

B sin k(L − x) per L/2 ≤ x ≤ L .

Wave function continuity implies that

ψ( L
2

−
) = ψ( L

2
+
) ⇒ A sin kL

2 = B sin kL
2 ,

i.e.

A = B or A 	= B and sin kL
2 = 0.

Instead, the first derivative must be discontinuous, due to the presence of the δ

in the potential (see (2.26)):

ψ ′
(
L

2

+)
− ψ ′

(
L

2

−)
= 2m

�2
Lω0 ψ

(
L

2

)

.

We distinguish two cases:

1. A 	= B and sin kL
2 = 0. The latter relationship implies that

kL

2
= nπ ⇒ k = 2nπ

L
con n = 1, 2, . . .

Thus, even in the exact calculation, we find the spectrum part of the infinite
potential well corresponding to eigenfunctions that are odd with respect to
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x = L/2. These eigenfunctions are notmodified by the perturbation. Indeed,
from the condition on ψ ′, we obtain

−Ak cos
kL

2
− Bk cos

kL

2
= 0 ⇒ A = −B.

The wave function in the range L/2 ≤ x ≤ L is given by

ψ(x) = −A sin k(L − x) = A sin k(x − L) =
= A sin kx cos kL − A cos kx sin kL = A sin kx,

because cos kL = 1 and sin kL = 0.We can say that, since these wave func-
tions vanish in x = L/2, they do not feel the presence of the new potential
term that, solely at this point, is not null.

2. A = B. In this case, the corresponding eigenfunctions are even with respect
to x = L/2. From the condition on ψ ′, we obtain

−Ak cos
kL

2
− Ak cos

kL

2
= 2m

�2
Lω0A sin

kL

2
,

that is,

tan
kL

2
= − α

ω0

kL

2
, (6.1)

where

α = 2�
2

mL2
.

To find this part of the spectrum, we solve this equation graphically, looking
for the intersections between the two curves

y = tan
kL

2
and y = − α

ω0

kL

2
.

In Fig. 6.3, solutions for two opposite values ofω0 are reported. Forω0 → 0,
these solutions tend to values (marked with a circle in the figure)

kL

2
= (2 j + 1)

π

2
⇒ k = (2 j + 1)π

L
, con j = 0, 1, . . . ,

that is,

E = �
2π2n2

2mL2
, n = 1, 3, 5, . . . .

This returns the eigenvalues with the odd n of the unperturbed case. We
note that the solution that, in the limit ω0 → 0−, corresponds to k = π/L
appears only if
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α

|ω0| > 1 ⇒ |ω0| <
2�

2

mL2
.

(c) As already seen, the solutions with n even are not modified by the presence of the
δ potential. We now want to show that, in the case of an odd n, the perturbative
solution corresponds to the exact solution’s series expansion truncated to the
first order in ω0.
Consider, for example, the ground state with n = 1 and suppose that ω0 is small
and negative. The intersection of the two curves will be at kL

2 , a little lower than
π
2 . Let us set, therefore,

kL

2
= π

2
− z, (6.2)

with z small positive. Equation (6.1) becomes

π

2
− z = arctan

[

− α

ω0

(π

2
− z

)]

.

Weexpand the secondmember as a series inω0 and stop at the 1st order, obtaining

π

2
− z = π

2
+ 4ω0

2α(π − 2z)
,

i.e.,
α(π − 2z)z + 2ω0 = 0,

and, disregarding terms in z2, we get the intersection point for ω0 small:

z = −2ω0

απ
.

Substituting this value in (6.2), we find that

k = 1

L

(

π + 4ω0

απ

)

,

corresponding to an energy

E1 = �
2k2

2m
= �

2

2mL2

(

π + 4ω0

απ

)2


 �
2π2

2mL2
+ 2ω0,

where we neglected the terms in ω2
0 and replaced the value of α. This result is

precisely the one obtained first-order Perturbation Theory for the ground state
energy.
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Fig. 6.3 δ perturbed potential well: graphic solution of the equation for the energy levels relative
to even wave functions. The dashed lines correspond to two opposite values of ω0

6.5 Particle in a Square: Coupling the Degrees of Freedom

Calculate the energy eigenfunctions and eigenvalues for a particle ofmassm confined
in a square of side L:

0 ≤ x ≤ L , 0 ≤ y ≤ L .

Then, introduce the perturbation H1 = C xy and find the corrections up to the
first order in the ground level and the first excited level.

Solution

The wave functions space is the tensor product of the spaces relative to two potential
wells in normal directions. Unperturbed eigenvalues and eigenfunctions are given
by:

〈x, y|k, n〉 = ψk,n(x, y) = ψk(x) ψn(y) =
√

2
L sin kπx

L

√
2
L sin nπy

L ,

E0
k,n = E0

k + E0
n = π2

�
2(k2+n2)
2mL2 ,

with n, k = 1, 2, . . .

To calculate the effects of the perturbation, we need the following matrix elements:
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(ψ1(x), x ψ1(x)) = 2

L

∫ L

0
dx x sin2

πx

L
= L

π2

∫ π

0
dx x (1 − cos 2x) = L

2
,

(ψ2(x), x ψ2(x)) = 2

L

∫ L

0
dx x sin2

2πx

L
= 2

L

L2

π2

∫ 2π

0
dx x sin2 x = L

2
,

(ψ1(x), x ψ2(x)) = 2

L

∫ L

0
dx x sin

πx

L
sin

2πx

L
= 2

L

L2

π2

∫ π

0
dx x sin x sin 2x =

= 4L

π2

∫ π

0
dx x sin2 x cos x = 1

3

4L

π2

∫ π

0
d cos x (1 − cos2 x) =

= −16

9

L

π2 .

For the ground state, which is non-degenerate, we have

E1
1,1 = 〈1, 1|H1|1, 1〉 = (

ψ1,1(x, y),C xy ψ1,1(x, y)
) = C

(
ψ1(x), x ψ1(x)

)2 = CL2

4
.

Now consider the second level. We are in the presence of degeneracy between the
ψ1,2 and ψ2,1 states. Therefore, we need to calculate the eigenvalues of the matrix

(〈1, 2|H1|1, 2〉 〈1, 2|H1|2, 1〉
〈2, 1|H1|1, 2〉 〈2, 1|H1|2, 1〉

)

=
(
A B
B A

)

,

where

A = (
ψ1,2(x, y),C xy ψ1,2(x, y)

) = C
(
ψ1(x), x ψ1(x)

) (
ψ2(y), y ψ2(y)

)= CL2

4
,

B = (
ψ1,2(x, y),C xy ψ2,1(x, y)

) = C
(
ψ1(x), x ψ2(x)

)2 = 256CL2

81π4
.

The eigenvalues are A ± B and give the corrections to the first excited state:

E1
1,2 = CL2

(
1

4
± 256

81π4

)

,

breaking up the degeneracy.

6.6 Particle on a Circumference in the Presence
of Perturbation

Anm mass particle is free to move around a circumference of radius R. The potential

V (θ) = V0 sin θ cos θ,
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is applied, where θ is the angular coordinate on the circumference. Calculate the
energy first-order corrections due to the presence of V . Identify the wave functions
of the unperturbed system that diagonalize the matrix corresponding to V in each
eigenspace and calculate the energy levels at the second perturbative order.

Solution

In the absence of perturbation, the systemHamiltonian contains only the kinetic term
of rotation around the circumference center. By imposing the periodicity condition
on the wave function, we find that

En = n2�2

2mR2
, ψn(θ) = 1√

2π
einθ , con n = 0,±1, . . .

The ground level is not degenerate, while all the others are doubly degenerate. To
calculate the required corrections, we first evaluate the perturbationmatrix elements:

〈n|V |m〉 = V0

2π

∫ 2π

0
dθ ei(m−n)θ sin θ cos θ =

= V0

4π

∫ 2π

0
dθ ei(m−n)θ sin 2θ =

= V0

8ıπ

[∫ 2π

0
dθ ei(m−n+2)θ −

∫ 2π

0
dθ ei(m−n−2)θ

]

=

= V0

4ı
[δm,n−2 − δm,n+2]. (6.3)

First, we compute the first and second corrections in the energy of the ground state:

E1
0 = 〈0|V |0〉 = 0,

E2
0 =

∑

n 	=0

|〈n|V |0〉|2
E0 − En

= V 2
0

16

[
1

E0 − E2
+ 1

E0 − E−2

]

= −V 2
0 mR2

16�2
.

Now let us move on to calculate the I order corrections in the degenerate eigenvalues.
We need to diagonalize the matrix that represents V in the 2-dimensional subspace
subtended by each eigenvalue. From the expression for 〈n|V |m〉, it is immediately
understood that only in the case of n = 1 will we have a non-null matrix:

(〈+1|V | + 1〉 〈+1|V | − 1〉
〈−1|V | + 1〉 〈−1|V | − 1〉

)

=
(

0 V0
4ı− V0

4ı 0

)

.

This matrix has eigenvalues
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E1,+
1 = V0

4
, E1,−

1 = −V0

4
,

and corresponding eigenkets

|ψ+〉 = 1√
2

(| + 1〉 + ı | − 1〉), |ψ−〉 = 1√
2

(| + 1〉 − ı | − 1〉).

These eigenvalues are the I order corrections in the n = 1 energy level. For all of the
other levels, as stated above, the matrices and, therefore, the corrections are void.

Regarding the second-order corrections, we first consider those related to the first
excited level, using, for n = ±1, the basis consisting of |ψ+〉 and |ψ−〉. Taking into
account the fact that, for n 	= 1,

〈ψ+|V |n〉 = 1√
2

(〈+1|V |n〉 − ı〈−1|V |n〉) = 1√
2

V0
4ı

(δn,−1 − δn,3 − ıδn,−3 + ıδn,1),

and that, obviously, in the new basis, it results that 〈ψ+|V |ψ−〉 = 0, we obtain

E2,+
1 =

∑

n 	=±1

|〈ψ+|V |n〉|2
E1 − En

= V 2
0

32

[
1

E1 − E3
+ 1

E1 − E−3

]

=

= 2mV 2
0 R

2

16�2

1

1 − 9
= −mV 2

0 R
2

64�2
.

The same result is obtained for E2,−
1 , because the coefficients of the expansion of

|ψ−〉 and |ψ+〉 in the old basis have the same modulus.
For n 	= ±1, we do not need to diagonalize the matrices in the degenerate eigen-

values subspaces, because the off-diagonal elements, due to (6.3), vanish. Finally,
we find that

E2
n =

∑

m 	=n

|〈m|V |n〉|2
En − Em

= V 2
0

16

[
1

En − En+2
+ 1

En − En−2

]

=

= mV 2
0 R

2

16�2

1

n2 − 1
.

6.7 Two Weakly Interacting Particles on a Circumference

Two particles of massm are bound to stay on a circumference of radius R. Calculate
the energy levels and eigenfunctions.

Then, suppose turning on an interaction between the particles by the potential

V = V0 cos(φ1 − φ2),
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where φ1 and φ2 are the angular coordinates that identify the position of the two
particles on the circumference.

(a) Introduce the variablesα = φ1+φ2

2 andβ = φ1 − φ2.Write the Schrödinger equa-
tion, show that it is separable in the new variables and determine the periodicity
properties of the wave function in terms of these variables.

(b) Finally, perturbatively calculate the first-order changes in the energy eigenvalues.

Solution

(a) Since the Hamiltonian can be written in the form

H = H1 + H2 where Hi = − �
2

2mR2

∂2

∂φ2
i

,

the Schrödinger equation separates in two equations each one depending on a
single variable. The eigenfunctionsmust satisfy the periodicity condition in these
variables:

ψ(φi + 2π) = ψ(φi ).

The Eigenfunctions and eigenvalues of H are therefore given by

ψk,l(φ1, φ2) = ψk(φ1)ψl(φ2), Ek,l = Ek + El,

where

ψn(φ) = 1√
2π

eınφ, En = �
2n2

2mR2
, n = 0,±1, . . .

In the presence of the potential V = V0 cos(φ1 − φ2), the Schrödinger equation
does not separate into the variables φ1 and φ2.
Introducing, instead, the suggested variables

α = φ1 + φ2

2
and β = φ1 − φ2,

the Hamiltonian separates into two terms dependent on a single variable:

H = HCM + Hr ,

where

HCM = − �
2

2MR2

∂2

∂α2
and Hr = − �

2

2μR2

∂2

∂β2
+ V (β).

HCM corresponds to the free circular motion of the Center of mass with mass
M = 2m and angular position α ∈ [0, 2π ], whileHr corresponds to the motion



6.7 Two Weakly Interacting Particles on a Circumference 155

of the reduced mass μ = m/2 in the presence of the potential V (β) with β ∈
[0, 2π ]. In the absence of V (β), we have the eigenfunctions

�k,l(α, β) = �k(α)�l(β) relative to the eigenvalues Ek,l = �
2k2

2MR2 + �
2l2

2μR2

with

�n(φ) = 1√
2π

eınα, �n(β) = 1√
2π

eınβ, n = 0,±1, . . .

(b) The perturbation concerns only the Hamiltonian Hr . We note that, since

〈�k |V |�−k〉 = V0

2π

∫ 2π

0
e−ıkβ cosβ e−ıkβ = 0 ∀ k,

both the correction to the ground state (not degenerate) and the corrections to the
excited states (doubly degenerate) are null; in this last case, in fact, the matrices
to be diagonalized all have zero elements. We conclude that there is no energy
change at first order.

6.8 Charged Rotator in an Electric Field

A plane rotator is a system consisting of two rigidly connected particles that rotates
in a plane around an axis perpendicular to it and passing through the center of mass.

(a) Let m be the reduced mass of the two particles and a their distance. Determine
the energy eigenvalues and eigenfunctions.

(b) Suppose that the particles are charged, so that the system has an electric dipole
moment d and that it is immersed in a weak uniform electric field E directed
in the rotation plane. Considering the interaction with the electric field as a
perturbation, evaluate the first non-zero correction to the energy levels.

Solution

(a) Having called I = ma2 the moment of inertia, the Hamiltonian is given by a
pure kinetic term:

H = L2

2I
= L2

z

2I
= − �

2

2I

∂2

∂ϕ2
,

where we assumed that the plane of motion is the plane xy and ϕ is the angular
coordinate in that plane. The eigenvalues and eigenfunctions of H are

Em = �
2m2

2I
, ψm(ϕ) = 1√

2π
eimϕ, m = 0,±1,±2, . . .
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The eigenvalues are doubly degenerate for every m, except for m = 0.
(b) The perturbation is given, assuming the electric field E to be directed along the

x axis, by
H ′ = −d E cosϕ.

First of all, we calculate the generic matrix element of cosϕ in theH basis:

〈n| cosϕ|m〉 = 1

2π

∫ 2π

0
dϕ ei(m−n)ϕ e

iϕ + e−iϕ

2
=

= 1

4π

[∫ 2π

0
dϕ ei(m−n+1)ϕ +

∫ 2π

0
dϕ ei(m−n−1)ϕ

]

=

= 1

2
[δm,n−1 + δm,n+1].

Both in case n2 = 0 (the absence of degeneracy) and in case n2 	= 0, the first-
order corrections to energy are null, because all of the matrix elements are so;
for example,

E1
n,−n = −dE 〈n| cosϕ| − n〉 = −dE [δ−n,n−1 + δ−n,n+1] = 0 ∀n = 0,±1, . . .

The second-order correction must therefore be calculated:

E2
n = (dE)2

∑

m 	=n

|〈n| cosϕ|m〉|2
En − Em

=

= (dE)2

4

[
1

En − En−1
+ 1

En − En+1

]

=

= (dE)2

4

2I

�2

[
1

n2 − (n − 1)2
+ 1

n2 − (n + 1)2

]

=

= I

(
dE

�

)2 1

4n2 − 1
.

Wenote that the second-order correction has been calculatedwithout considering
the degeneracy, since the perturbation is diagonal in the subspaces subtended by
each eigenvalue (in the sum terms in which the denominator is canceled, which
are those with m = −n, numerators are also null).
Finally, we note that, since E2

n still depends on n
2, degeneracy is not eliminated.
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6.9 Plane Rotator: Corrections Due to Weight Force

A point-like particle of mass m is constrained, in a vertical plane, to rotate around a
horizontal axis by means of a negligible mass rod of length l. By treating the weight
force in a perturbative manner, calculate the 2nd order corrections for the energy
levels.

Solution

The solution is similar to that for problem (6.8). The unperturbed Hamiltonian con-
tains only kinetic energy

H0 = T = L2
z

2I
= − �

2

2I

∂2

∂φ2
,

where I = ml2 is the moment of inertia and φ is the angle of rotation around the
z axis that we identify with the rotation axis. Placing φ = 0 as the angle relative
to the lowest position and setting the potential energy to be zero at φ = π/2, the
perturbation can be written as

H1(φ) = −mgl cosφ.

H0 eigenfunctions are those of Lz :

ψn(φ) = 1√
2π

eınφ, n = 0,±1,±2, . . . ,

and corresponds to the eigenvalues

E0
n = n2�2

2I
,

which are doubly degenerate for n 	= 0.
We calculate before the matrix elements

〈n|H1|k〉 = −mgl

2π

∫ 2π

0
dφ e−ınφ cosφ eıkφ =

= −mgl

2π

∫ 2π

0
dφ eı(k−n)φ eıφ + e−ıφ

2
=

= −mgl

2
(δk,n+1 + δk,n−1).

The first-order correction is null
E1
n = 0,
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because the correction for the ground state, the only non-degenerate, is null, while,
for the other states, the matrices to be diagonalized all have zero elements.

The 2nd order corrections can be calculated from the non-degenerate theory,
because, due to the presence of the δ’s in the matrix elements, the only contributions
are from terms with non-zero denominators:

E2
n =

∑

m 	=n

|〈m|H1|n〉|2
E0
n − E0

m

=

=
(
mgl

2

)2 [ 1

E0
n − E0

n+1

+ 1

E0
n − E0

n−1

]

=

= m3g2l4

�2

1

4n2 − 1
.

6.10 Harmonic Oscillator: Anharmonic Correction

The following interaction is added to the elastic potential:

H1 = λx4.

Calculate the first-order perturbative shift in the energy levels.

Solution

For this calculation, we need the expectation value of x4 in a stationary state of
the harmonic oscillator. This calculation is the object of problem 2.18, but, for the
reader’s convenience, we repeat it here. Using the completeness relation and results
from problem 2.17, we obtain

〈x4〉 j = 〈 j |x4| j〉 =
∞∑

k=0

〈 j |x2|k〉〈k|x2| j〉 =
∞∑

k=0

∣
∣〈 j |x2|k〉∣∣2 =

∞∑

k=0

�
2

4m2ω2
×

×
[√

k(k − 1) δk, j+2 +√
(k + 1)(k + 2) δk, j−2 + (2k + 1)δ j,k

]2
.

Developing the square, products of δ’s with different indices do not contribute. So,
we get

〈x4〉 j = �
2

4m2ω2

[
j ( j − 1) + ( j + 1)( j + 2) + (2 j + 1)2

] =

= 3�2

4m2ω2

[
2 j2 + 2 j + 1

]
.

Now we can easily obtain the desired correction:
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E1
n = 〈n0|H1|n0〉 = λ〈n0|x4|n0〉 = 3�2λ

4m2ω2

[
2n2 + 2n + 1

]
.

We note that the I order approximation is justified only for the lower levels, since,
although λ is small, the correction grows as n2.

6.11 Harmonic Oscillator: Cubic Correction

Calculate, by Perturbation Theory, the energy eigenvalues up to order A2 for an m
mass particle that moves along the x-axis under the action of the potential

V (x) = 1

2
kx2 + Ax3.

Solution

Since the solution for the harmonic potential is known, we can write

H = H0 + H1, where H0 = p2

2m
+ 1

2
kx2, and H1 = Ax3

and consider H1 as a perturbation.
Using formulas (A.13, A.15), it is easily found that

〈m|x3|n〉 =
(

�

2mω

)3/2

〈m|(a + a†)3|n〉 =

=
(

�

2mω

)3/2 {√
n(n − 1)(n − 2) δm,n−3 + 3

√
n3 δm,n−1+

+3
√

(n + 1)3 δm,n+1 +√
(n + 1)(n + 2)(n + 3) δm,n+3

}
.

The first-order shift in the unperturbed nth energy level

E0
n = (n + 1

2
)�ω

is given by (A.75):
E1
n = A〈n|x3|n〉 = 0.

The second-order change is given by (A.76):
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E2
n = A2

∑

m 	=n

|〈m|x3|n〉|2
E0
n − E0

m

= A2

(
�

2mω

)3 1

�ω

{
n(n − 1)(n − 2)

3
+

+ (n + 1)(n + 2)(n + 3)

−3
+ 9

(n + 1)3

−1
+ 9n3

}

=

= − �
2A2

8m3ω4
(30n2 + 30n + 11).

6.12 Harmonic Oscillator: Relativistic Correction

A particle of mass m moves in a harmonic potential

V (x) = 1

2
mω2x2.

Its kinetic energy T = p2

2m can be considered as an approximation for small velocities
with respect to the speed of light c of the relativistic expression:

T =
√
p2c2 + m2c4.

Determine, by Perturbation Theory, the correction in the energy levels at the order 1
c2 .

Solution

The series expansion of the relativistic kinetic energy is

T = mc2
√

1 + p2

m2c2

 mc2 + p2

2m
− p4

8m3c2
,

where we neglected terms of order above (
p
c )4. The first term is the rest-energy

and only redefines the arbitrary additive constant energy. In this approximation, the
harmonic oscillator Hamiltonian is modified by a perturbative term

H1 = − p4

8m3c2
.

To calculate the changes in the energy levels at order 1
c2 , we use first-order Pertur-

bation Theory in H1. We must therefore calculate the diagonal elements of the p4

matrix in the basis of the harmonic oscillator energy. This could be done by using
the expression for p in terms of creation and destruction operators or using the wave
functions in the position representation. We will follow another path that brings
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us back to the calculation already made of the matrix elements of x2 and x4 (see
problems 2.17 and 2.18). We can rewriteH1 in the form

H1 = − 1

2mc2

(
p2

2m

)2

= − 1

2mc2

(

H0 − 1

2
mω2x2

)2

.

The required matrix elements are given by

〈n|H1|n〉 = − 1

2mc2

[

〈n|H2
0 |n〉 − 1

2
mω2

(
〈n|H0x

2|n〉 − 〈n|x2H0|n〉
)

+ 1

4
m2ω4〈n|x4|n〉

]

=

= − 1

2mc2

(

E2
n − mω2En〈n|x2|n〉 + 1

4
m2ω4〈n|x4|n〉

)

=

= − 1

2mc2

[

E2
n − mω2En

En

mω2 + 1

4
m2ω4 3�2

4m2ω2

(
2n2 + 2n + 1

)]

=

= − 3�2ω2

32mc2

(
2n2 + 2n + 1

)
.

6.13 Anisotropic Harmonic Oscillator

A three-dimensional harmonic oscillator has an elastic constant k ′ along the z axis
slightly different from the k constants along the x and y axes, i.e., its potential energy
is

V (x, y, z) = 1

2
k(x2 + y2) + 1

2
k ′z2.

(a) Identify the ground state wavefunction. Note that it does not represent a definite
angular momentum state. Why?

(b) At the first order in (k − k ′), what are the angular momentum states other than
0 present in the ground state?

Solution

(a) The wave function space is the tensor product of the spaces relative to the oscil-
lators arranged along the three axes. Placing

ω =
√

k

m
and ω′ =

√
k ′

m

and, using (A.16)’s expressions for the harmonic oscillator eigenfunctions, we
get
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ψ0,0,0(x, y, z) =
(mω

π�

) 1
2

(
mω′

π�

) 1
4

e− mω
2�

(x2+y2) e− mω′
2�

z2 =

=
(mω

π�

) 1
2

(
mω′

π�

) 1
4

e− mω
2�

(x2+y2+z2) e− m(ω′−ω)

2�
z2 =

=
(mω

π�

) 1
2

(
mω′

π�

) 1
4

e− mω
2�

(r2) e− m(ω′−ω)

2�
r2 cos2 θ .

The exponential dependence on cos2 θ indicates the presence of contributions
from all of the eigenfunctions of L2. ψ does not depend on φ instead, so it is a
Lz eigenfunction corresponding to the null eigenvalue.

(b) For the perturbative calculation, let’s pose that

V (x, y, z) = V0(x, y, z) + V1(z),

where

V0(x, y, z) = V (r) = 1

2
kr2 and V1(z) = 1

2
(k ′ − k)z2.

At first order, we have, taking into account the factorization properties of the
wave functions and problem 2.17, the following results:

E1
0 = 〈000|V1|000〉 = 1

2
(k′ − k)

∫

dz z2|ψ0(z)|2 = 1

2
(k′ − k)〈z2〉0 = �

4

k′ − k√
km

.

Since

〈 j |z2|0〉 = �

2mω
[√2 δ j,2 + δ j,0],

we get

|01〉 =
∑

m 	=0

〈m|V1|0〉
E0 − Em

|m〉 = −1

2
(k ′ − k)

[√
2�

2mω

1

2�ω
|2〉
]

= − k ′ − k

4
√
2 k

|2〉

and, finally,

ψ ′
0(x, y, z) =ψ0(x)ψ0(y)

[

ψ0(z) − k ′ − k

4
√
2 k

ψ2(z)

]

=

=ψ0(x, y, z)

[

1 − 1

2
√
2

(4ξ 2 − 2)
k ′ − k

4
√
2 k

]

,
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where it was taken into account that, using (A.16, A.20),

ψ2(z) = ψ0(z)

[
1

2
√
2
(4ξ 2 − 2)

]

, where ξ =
√
mω

�
z.

Since z2 = r2 cos2 θ , the wave function at I order takes contributions from the
� = 0, 2 angular momentum states, as can be seen from (A.40).

6.14 Charged Harmonic Oscillator in an Electric Field

A particle of mass m and charge q subject to an elastic force is placed in a constant
electric field, giving rise to a potential energy:

V (x) = 1

2
mω2x2 − qEx .

(a) Calculate, in Perturbation Theory, the changes at the first and second orders
produced in the energy levels by the presence of the electric field and the changes
at first order to the corresponding eigenket.

(b) Compare these perturbative results with the exact solution.

Solution

(a) Having introduced the following notation for the Hamiltonian,

H = H0 + H1, where H0 = p2

2m
+ 1

2
mω2x2 and H1 = −qEx,

we can immediately calculate the first-order corrections to energy levels using
the result for 〈x〉n found in problem 2.16:

E1
n = 0, ∀n ∈ N .

Wenow calculate the first-order correction for eigenkets, always using the results
from problem 2.16:

|n〉 = |n0〉 − qE
∑

m 	=n

〈m0|x |n0〉
E0
n − E0

m

|m0〉 =

= |n0〉 − qE
√

�

2mω

[ √
n |(n − 1)0〉

�ω(n − n + 1)
+

√
n + 1 |(n + 1)0〉
�ω(n − n − 1)

]

=

= |n0〉 + qE
√

1

2m�ω3

[√
n + 1 |(n + 1)0〉 − √

n |(n − 1)0〉
]
.
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The effect of the perturbation at first order is therefore that of mixing each
stationary state with the adjacent ones.
The second-order change in the energy levels is given by:

E2
n =

∑

m 	=n

|〈m0|H1|n0〉|2
E0
n − E0

m

= q2E2 �

2mω

[
n + 1

−�ω
+ n

�ω

]

= − q2E2

2mω2
.

(b) This problem can be solved exactly, enabling us to check Perturbation Theory
results. Indeed,

H = p2

2m
+ 1

2
mω2x2 − qEx = p2

2m
+ 1

2
mω2(x − qE

mω2
)2 − 1

2

q2E2

mω2
.

This Hamiltonian describes a harmonic oscillator whose rest position is trans-
lated into x = qE

mω2 and whose energy is shifted by a constant value− 1
2

q2E2

mω2 . The
translation of the center of oscillation does not affect the spectrum that derives
only from the unchanged commutator’s algebra:

[x − qE
mω2

, p] = [x, p] = i�.

Due to the potential energy shift, the energy spectrum is given by:

En = E0
n − q2E2

2mω2
.

Therefore, the second-order perturbative contribution agrees with the exact
result.

6.15 Harmonic Oscillator: Second Harmonic Potential I

The interaction

V (x) = 1

2
mα2x2

is added to the harmonic potential.

(a) Calculate the energy levels changes at first and second perturbative order.
(b) Compare the result with the exact value.

Solution

(a) Preliminarily, we calculate the matrix elements of the perturbation V (x) in the
base given by the unperturbed energy eigenstates. Using formulas (A.14, A.13),
we easily obtain
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〈n|x2|m〉 = �

2mω

[√
n(n − 1) δn,m+2 +√

(n + 1)(n + 2) δn,m−2 + (2n + 1) δn,m

]
.

The first-order correction in the n-th level is given by

E1
n = 〈n|V |n〉 = 1

2
mα2 �

2mω
(2n + 1) = 1

2

(

n + 1

2

)
�α2

ω
.

The second-order correction is, instead,

E2
n =

∑

m 	=n

|〈n|V |m〉|2
(n − m)�ω

=

=
(

�α2

4ω

)2 [
n(n − 1)

2�ω
+ (n + 1)(n + 2)

−2�ω

]

=

= −�α4

8ω3

(

n + 1

2

)

.

(b) The exact result is obtained by considering an oscillator with frequency

ω′ =
√

ω2 + α2

whose energy levels are

En = (n + 1

2
)�
√

ω2 + α2 = (n + 1

2
)�ω

√

1 + α2

ω2
=

= (n + 1

2
)�ω

[

1 + 1

2

α2

ω2
− 1

8

(
α2

ω2

)2

+ . . .

]

.

The terms of the perturbative series calculated earlier coincidewith power expan-
sion in the parameter α2/ω2 up to the second order.

6.16 Harmonic Oscillator: Second Harmonic Potential II

Solve the problem 6.15 in the wave function space.

Solution

The eigenfunctions of the unperturbed Hamiltonian are given by (A.16)

φn(x) = cn e
− ξ2

2 Hn(ξ) with cn =
(mω

π�

) 1
4 1√

2nn! and ξ =
√
mω

�
x,
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where Hn is the n-th Hermite polynomial normalized by (A.18)

∫ +∞

−∞
dξ H 2

n (ξ) = √
π 2n n!. (6.4)

To obtain the Perturbation Theory corrections, it is necessary to calculate the matrix
elements of the potential, and, therefore, the matrix elements of x2, in the unper-
turbed basis. They can be calculated using the recurrence relation of the Hermite
polynomials (A.19):

〈n|x2|m〉 = cncm

∫ +∞

−∞
dx e−ξ2 Hn(ξ) Hm(ξ) x2 =

= 1

4
cncm

(mω

�

)−3/2
∫ +∞

−∞
dξ e−ξ2 Hn(ξ) Hm(ξ) 4ξ2 =

= 1

4
cncm

(mω

�

)−3/2
∫ +∞

−∞
dξ e−ξ2

[
Hn+1(ξ) Hm+1(ξ) +

+ 4nmHn−1(ξ) Hm−1(ξ) + 2mHn+1(ξ) Hm−1(ξ) +
+ 2nHn−1(ξ) Hm+1(ξ)

]
=

= 1

4
√
2nn!2mm!

√
mω

π�

(mω

�

)−3/2 [√
π2n+1(n + 1)!δn,m +

+ 4n2
√

π2n−1(n − 1)!δn,m + 2m
√

π2n+1(n + 1)!δn+2,m +
+ 2n

√
π2n−1(n − 1)!δn−2,m

]
=

= 1

2

(mω

�

)−1 [
(2n + 1)δn,m +√

n + 1(n + 2)δn+2,m +√
n(n − 1)δn−2,m

]
.

The result found for thematrix elements is, obviously, the same one found through the
technique of creation and destruction operators in problem 6.15; as a consequence,
the perturbative corrections are the same.

6.17 Plane Harmonic Oscillator: Linear and Quadratic
Correction

A plane harmonic oscillator has Hamiltonian

H0 = 1

2m
(p2x + p2y) + 1

2
mω2 (x2 + y2).

(a) Calculate the energy levels and their degeneration.
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(b) Adding a perturbation V1 = εx to H0, perturbatively compute corrections to the
levels at the first and second orders.

(c) Adding a perturbation V2 = εx2 to H0, perturbatively compute corrections to
the levels at the first and second orders.

(d) Compare the results obtained in b) and c) with the respective exact results.

Solution

(a) The Hilbert space of the system is the tensor product of the spaces related to two
equal frequency oscillators arranged along the x and y axes.
So, the energy spectrum is given by

En = �ω(n + 1),

where n is the sum of two integers nx and ny . The level degeneracy is n + 1.
(b) A perturbation exists only in the x direction:

E1
nx = ε〈nx |x |nx 〉 = 0,

E2
nx = − ε2

2mω2
,

where we used the results from problem 6.14. Ultimately, the second-order
change is the same for all levels:

E2
n = �ω(n + 1) − ε2

2mω2
.

(c) Using the results from problem 6.15, we find that

E1
nx = �ε

mω
(nx + 1

2
),

E2
nx = − �ε2

2m2ω3
(nx + 1

2
).

Therefore, the second-order series expansion of the energy levels is

Enx ,ny = �ω(nx + ny + 1) + �ε

mω
(nx + 1

2
) − �ε2

2m2ω3
(nx + 1

2
) =

= �ω

(
1

2
+ ε

mω2
− ε2

2m2ω4

)

(nx + 1

2
) + �ω(ny + 1

2
).

There is no degeneracy, except for special values of ε.
(d) In the case of the perturbation V1, we know (see problem 6.14) that the second-

order perturbative correction coincides with the exact result. In the case of the
perturbation V2, we can write
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H = 1

2m
(p2x + p2y) + 1

2
mω2(x2 + y2) + εx2 =

= 1

2m
p2x + 1

2
mω′2x2 + 1

2m
p2y + 1

2
mω2y2,

where

ω′2 = ω2 + 2ε

m
.

Therefore, we have

Enx ,ny = �ω′(nx + 1

2
) + �ω(ny + 1

2
) =

= �ω

√

1 + 2ε

mω2
(nx + 1

2
) + �ω(ny + 1

2
) =

= �ω

[

1 + ε

mω2
− 1

2

( ε

mω2

)2 + O(ε2)

]

(nx + 1

2
) + �ω(ny + 1

2
).

The second-order series expansion coincides with the second-order ε expansion
of the exact result.

6.18 Coupled Harmonic Oscillators

Consider two identical unidimensional harmonic oscillators of mass m and elastic
constant k. They interact via a potential energy

H1 = αx1x2,

where x1 and x2 are the positions of the two oscillators.

(a) Determine the energy eigenvalues and eigenstates. (Hint: separate the motion of
the center of mass from that of the reduced mass.)

(b) In the hypothesis in which α � k, calculate the energy levels at the lowest
perturbative order.

(c) Compare the two results.

Solution

(a) The system Hamiltoniano is

H = p21
2m

+ p22
2m

+ 1

2
k x21 + 1

2
k x22 + αx1x2.
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Introducing, as suggested, the variables

X = x1 + x2
2

and x = x1 − x2,

the Hamiltonian becomes:
H = HCM + Hr

where

HCM = P2

2M
+ (k + α)X2 and Hr = p2

2μ
+ 1

4
(k − α)x2.

Here, P and p are the conjugate momenta of the new variables, M = 2m is the
total mass and μ = m/2 is the reduced mass.
The system then presents a Hamiltonian sum of two terms related to two oscil-
lating motions, one of elastic constant 2(k + α) for the center of mass and one of
constant constant (k − α)/2 for the relative motion. The Schrödinger equation
is therefore separable into the new variables. We note that the condition α � k
should be verified, otherwise the relative motion would have potential energy
not bounded from below.
The energy spectrum is therefore given by

EnT ,nr = EnT + Enr = �ωT

(

nT + 1

2

)

+ �ωr

(

nr + 1

2

)

,

where, said ω being the two oscillators’ frequency in the absence of interaction,
we set

ωT =
√
2(k + α)

M
=
√
k + α

m
=
√

k

m

√

1 + α

k
= ω

√

1 + α

mω2
,

ωr =
√
k − α

2μ
=
√
k − α

m
=
√

k

m

√

1 − α

k
= ω

√

1 − α

mω2
.

(b) Perturbative corrections can be calculated using both the old x1 and x2 coordi-
nates and the new X and x coordinates. Here, we use the latter.
In the absence of interaction, the two oscillators concerning the center of mass
and the relative coordinate, have the same frequency ω. Therefore, the energy
levels are

En = �ω(n + 1), where n = nT + nr = 0, 1, . . .

Each n level has a degeneracy of n + 1.
Using the new coordinates, the interaction potential, which constitutes the
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perturbation, becomes

H1 = α x1x2 = α
2X + x

2

2X − x

2
= α

(

X2 − x2

4

)

.

To calculate the first-order shift in the nth energy level, we need the eigenvalues
of the perturbation matrix in the subspace of the ket |n〉 = | j, n − j〉 = | j〉X ⊗
|n − j〉x , where the j index ranges from 0 to n. Using the results from problem
2.17, we get

(H1) j,k = α〈 j, n − j |x1x2|k, n − k〉 =
= α〈 j, n − j |(X2 − x2

4
)|k, n − k〉 =

= α

[

〈 j |X2|k〉δ j,k − 1

4
〈n − j |x2|n − k〉δ j,k

]

=

= α

[

〈k|X2|k〉δ j,k − 1

4
〈n − k|x2|n − k〉δ j,k

]

=

= α

[
�

2Mω
(2k + 1) − 1

4

�

2μω
(2(n − k) + 1)

]

δ j,k =

= α�

2mω
(2k − n)δ j,k .

The matrix is then diagonal and the n + 1 eigenvalues are the product of α�

2mω

times
−n, 2 − n, 4 − n, . . . , n − 4, n − 2, n.

(c) Expanding the expressions for ωT and ωr in the power series of α/k = α/mω2

and neglecting orders above the second one, we obtain

ωT 
 ω

[

1 + 1

2

α

mω2
− 1

8

( α

mω2

)2
]

,

ωr 
 ω

[

1 − 1

2

α

mω2
− 1

8

( α

mω2

)2
]

.

We can therefore approximate the total energy spectrum with the following
expression:

ENT ,nr 
 �ω(nT + nr + 1) + 1

2

α�

mω
(nT − nr ) − �ω

8

( α

mω2

)2
(nT + nr + 1),
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and, setting nT + nr = n,

En,nT = �ω(n + 1) + 1

2

α�

mω
(2nT − n) + O(α2), with nT = 0, 1, . . . n.

The first-order term coincides with the first-order perturbative result, because
the difference 2nT − n assumes the proper values −n, 2 − n, 4 − n, . . . , n −
4, n − 2, n.

6.19 Plane Harmonic Oscillator: Coupling the Degrees
of Freedom

A particle of mass m moves in the plane xy subject to a harmonic potential with
frequency ω:

H0 = 1

2m
(p2x + p2y) + 1

2
mω2(x2 + y2).

Introduce the perturbation
H1(x, y) = 2λxy.

(a) Find eigenvalues and eigenstates of H0.
(b) Calculate first and second-order corrections in the energy of the ground state due

toH1.
(c) Calculate first-order correction in the energy of the first and second excited level

due toH1.

Solution

The problem is solved exactly in 6.18.

(a) With an obvious assignment of symbols, we can write

H0 = H x
0 + H y

0 .

The unperturbed Hamiltonian eigenvalues are

E0
n = �ω(n + 1), where n = nx + ny and nx,y = 0, 1, 2, . . .

and their eigenstates, once those of the one-dimensional harmonic oscillator for
each direction have been denoted by |nx 〉 and |ny〉, are

|n0〉 = |nx 〉|ny〉.
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(b) The ground state is
|00〉 = |0x 〉|0y〉.

The first-order correction is

E1
0 = 〈00|2λxy|00〉 = 2λ〈0|x |0〉2 = 2λ

(√
�

2mω
〈0|1〉

)2

= 0,

where we used (A.14, A.15).
At the second order we have, taking into account (A.76),

E2
0 = 4λ2

∑

m 	=0

∣
∣〈00|xy|m0〉∣∣2
(0 − m)�ω

=

= 4λ2
∑

(nx ,ny)	=(0,0)

|〈0|x |nx 〉〈0|y|nx 〉|2
(−nx − ny)�ω

=

= 4λ2

�ω

(
�

2mω

)2 1

−2
= − λ2

�

2m2ω3
.

(c) The first and second excited levels are degenerate; therefore, the corrections
are given by the eigenvalues of the matrix representing the perturbation in the
subspace relative to the level. For simplicity’s sake, we again indicate this matrix
with theH1 symbol.
The first excited level is doubly degenerate. We have

H1 =
( 〈10|H1|10〉 〈10|H1|01〉

〈01|H1|10〉 〈01|H1|01〉
)

= 2λ

(
0 �

2mω
�

2mω
0

)

,

eigenvalues of which (the corrections) are ± λ�

mω
.

The second excited level is three times degenerate, and its eigenstates are

|20〉, |11〉 |02〉 ;

then, the matrix to diagonalize is

H1 =
⎛

⎝
〈20|H1|20〉 〈20|H1|11〉 〈20|H1|02〉
〈11|H1|20〉 〈11|H1|11〉 〈11|H1|02〉
〈02|H1|20〉 〈02|H1|11〉 〈02|H1|02〉

⎞

⎠ = λ�

mω

⎛

⎝
0

√
2 0√

2 0
√
2

0
√
2 0

⎞

⎠ .

Its eigenvalues are 0 and ± 2λ�

mω
.
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6.20 Pendulum: Anharmonic Correction to Small
Oscillations

Consider a pendulum of mass m and length l that oscillates in a vertical plane.

(a) Find the energy levels in the approximation of small oscillations.
(b) Consider the next approximation to that of the small oscillations and find the

first-order perturbative corrections to the energy levels.

Solution

Having established that θ is the deviation angle with respect to the vertical, the
pendulum Hamiltonian is given by

H = 1

2
ml2θ̇2 + mgl(1 − cos θ).

By developing the potential energy in power series around θ = 0, we have

V (θ) = mgl

(
θ2

2
− θ4

24
+ O

(
θ6
)
)

.

(a) Within the limit of small oscillations, the Hamiltonian is approximated by that
of a harmonic oscillator:

H0 = 1

2
ml2θ̇2 + 1

2
mglθ2 = p2

2m
+ 1

2
mω2q2,

where we introduced the displacement q = lθ with respect to the rest position

and the frequency ω =
√

g
l . The energy spectrum is therefore given by

En = (n + 1

2
)�ω.

(b) Considering also the second order in θ2, the potential energy is

V = mgl

(
θ2

2
− θ4

24

)

= 1

2
mω2q2 − 1

24

mg

l3
q4.

In order to find the first-order perturbative corrections to the energy levels,
remember that (2.18)

< q4 > j= 3�2

4m2ω2

(
2 j2 + 2 j + 1

)
.
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Therefore, the required corrections are given by

E1
n = 〈n|H1|n〉 = − 1

32

g�
2

ml3ω2

(
2n2 + 2n + 1

)
.

6.21 Degeneracy Breakdown in a Two-State System

The Hamiltonian for a two-state system has the form

H = H0 + λH1 =
(

a λ�

λ� b

)

, (λ > 0).

(a) Solve the energy eigenvalues problem by exactly determining eigenvectors and
eigenvalues.

(b) Assuming λ|�| � |a − b|, solve the same problem in Perturbation Theory up to
the first order in the eigenvectors and up to the second order in the eigenvalues.

(c) Assuming that, in the absence of perturbation, energy levels are almost degen-
erate,

|a − b| � λ|�|

show that the results obtained by applying the first-orderDegenerate Perturbation
Theory (a = b) are compatible with those derived from the exact calculation.

Solution

We immediately see that the eigenvectors and eigenvalues of

H0 =
(
a 0
0 b

)

are given by

|10〉 =
(
1
0

)

relative to E0
1 = a,

|20〉 =
(
0
1

)

relative to E0
2 = b.

(a) The eigenvalues of H are solutions to the characteristic equation

(a − ω)(b − ω) − λ2�2 = 0,

ω± = a+b
2 ±

√
(a−b)2

4 + λ2�2.
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The relative eigenvectors are obtained solving the homogeneous systems

(
a λ�

λ� b

)(
α

β

)

= ω±
(

α

β

)

.

Thus, we obtain the equations

aα + λ�β = ω±α,

β = ω±−a
λ�

α,

|ψ±〉 = 1√
λ2�2+(ω±−a)2

(
λ�

ω± − a

)

,

where normalization has been imposed.
(b) Now we apply Perturbation Theory. Let us calculate the first-order corrections

to energy eigenvalues:

E1
1 = λ〈10|H1|10〉 = λ�

(
1 0

)
(
0 1
1 0

)(
1
0

)

= 0,

E1
2 = λ〈20|H1|20〉 = λ�

(
0 1

)
(
0 1
1 0

)(
0
1

)

= 0.

The first-order corrections to energy eigenstates are

|11〉 = |10〉 + λ
〈20|H1|10〉
E0
1−E0

2
|20〉 = |10〉 + λ �

a−b |20〉,
|21〉 = |20〉 + λ

〈10|H1|20〉
E0
2−E0

1
|10〉 = |20〉 − λ �

a−b |10〉.

Ultimately, we calculate the second-order energy shifts:

E2
1 = |〈10|λH1|20〉|2

E0
1 − E0

2

= λ2 �2

a − b
,

E2
2 = |〈20|λH1|10〉|2

E0
2 − E0

1

= −λ2 �2

a − b
.

These results coincide, of course, with the second-order term of the series expan-
sion in λ of the exact eigenvalues. Indeed,

ω± = a + b

2
± a − b

2

√

1 + 4λ2�2

(a − b)2
= a + b

2
± a − b

2

(

1 + 2λ2�2

(a − b)2

)

=

=
{
a + λ2�2

a−b ,

b − λ2�2

a−b .
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(c) In order to apply Degenerate Perturbation Theory in the case (a = b), we need
to diagonalize the perturbation matrix:

det

(−E1 λ�

λ� −E (1)

)

= 0 ⇒ E1 = ±λ�.

The energy eigenvalues up to first order are

E = a ± λ�.

To compare this result with the exact one, we note that, if

|a − b| � λ|�|,

the following series expansion makes sense:

ω± = a+b
2 ± λ�

√

1 + (a−b)2

4λ2�2 = a+b
2 ± λ� ± 1

8
(a−b)2

λ2�2 + . . . =
= a ± λ� + O

(
(a−b)2

λ2�2

)
.

This result coincides with the previous result, unless second-order corrections
in λ.

6.22 Fermion in a Magnetic Field

Consider the Hamiltonian of a spin 1/2 particle immersed in a uniform and constant
magnetic field B, which is obtained by ignoring the kinetic term:

H = −μ�B · σ .

Consider the case in which B lies on the xz plane with

ε = Bx

Bz
<< 1.

(a) Determine, by Perturbation Theory, the eigenvalues of H up to the order ε2

included, and the eigenstates up to the order ε.
(b) Determine the exact eigenvalues and eigenstates, comparing themwith the prece-

dent results.
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Solution

(a) We can write
B = (εBz, 0, Bz)

and

H = H0 + H1, where H0 = −μ�Bzσz and H1 = −εμ�Bzσx .

The unperturbed Hamiltonian H0 is proportional to σz and therefore its eigen-
values are

E0− = −μ�Bz relative to the eigenstate |−〉 = |σz = +1〉 =
(
1
0

)

,

E0+ = +μ�Bz relative to the eigenstate |+〉 = |σz = −1〉 =
(
0
1

)

.

In the H0 representation, H1 is given by the matrix

H1 =
( 〈−|H1|−〉 〈−|H1|+〉

〈+|H1|−〉 〈+|H1|+〉
)

=
(

0 −εμ�Bz

−εμ�Bz 0

)

.

We immediately see that the first-order corrections in the eigenvalues are void.
The first-order corrections in the eigenstates are given by

|n1〉 =
∑

m 	=n

〈m0|H1|n0〉
E0
n − E0

m

|m0〉,

i.e.,

|E1−〉 = − 1
2μ�Bz

(−μ�Bzε)|E+〉 = + ε
2

(
0
1

)

,

|E1+〉 = + 1
2μ�Bz

(−μ�Bzε)|E−〉 = − ε
2

(
1
0

)

.

The second-order corrections in the eigenstates are given by

E2
n =

∑

m 	=n

|〈m0|H1|n0〉|2
E0
n − E0

m

,

i.e.,

E2
− = −μ�Bzε

2

2
, E2

+ = +μ�Bzε
2

2
.
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(c) We now solve the exact eigenvalue problem for

H = −μ�Bz �, where � =
(
1 ε

ε −1

)

.

� eigenvalues are λ1,2 = ±√
1 + ε2, so those of H are

E1,2 = ∓μ�Bz

√
1 + ε2,

which, if expanded in the power series of ε, coincide, up to the second order
with the results found in Perturbation Theory.
The H eigenvectors are the same as those of �, i.e.,

|E1,2〉 = 1

(1 + λ1,2)2 + ε2

(
1 + λ1,2

ε

)

.

6.23 β Decay in a Hydrogenlike Atom

Find, in first-order Perturbation Theory, the changes in the energy levels of a Hydro-
genlike atom produced by the increase of a unit in the charge of the nucleus, resulting
from, for example, β decay.

By comparing the result with the exact one, discuss the validity of the approxi-
mation used.

Solution

Remember that the energy spectrum of a Hydrogenlike atom having atomic number
Z is given (see problem 3.18) by

E0
n = −1

2
mc2Z2α2 1

n2
,

where n = 1, 2, . . . and α = e2/�c is the fine-structure constant. Due to the increase
in charge, the potential energy is modified:

V = − (Z + 1)e2

r
= − Ze2

r
− e2

r
= V0 + V1.

Therefore, the first-order change in the energy levels is given by

E1
n = 〈n0|V1|n0〉 = −e2

〈
1

r

〉

n0
.
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The 1
r expectation value can be calculated in many ways (see, e.g., problem 3.19).

Here, we use the Virial Theorem for Coulomb potential, relating the expectation
values of kinetic and potential energies 〈T 〉 = −〈V〉/2 (see problem 1.10). We get

E0
n = 〈T + V0〉n0 = 1

2
〈V0〉n0 = −1

2
Ze2

〈
1

r

〉

n0

and, therefore,

E1
n = 2E0

n

Z
.

This result is to be compared with the exact one,

En =−1

2
mc2(Z + 1)2α2 1

n2
= −1

2
mc2α2 1

n2
(Z2 + 2Z + 1) = E0

n + E1
n − 1

2
mc2α2 1

n2
,

which can be written in the form

En = E0
n

(

1 + 2

Z
− 1

Z2

)

.

This expression shows that Perturbation Theory provides a good approximation if
Z � 1.

6.24 Stark Effect

When a Hydrogen atom is placed in an electric field, its emission or absorption
electromagnetic spectrum lines split into neighboring components. This phenomenon
is called the Stark Effect and is attributed to the degeneracy breakdown due to the
interaction between the electric field and the electric dipole moment of the atom.

Consider a Hydrogen atom in the presence of a constant electric field E directed
along the z axis, giving rise to the interaction energy

H1 = eE · r = eE r cos θ.

Determine the first-order perturbative corrections in the two lower energy levels.

Solution

We recall that the eigenvalues and eigenfunctions of the Hydrogen atomHamiltonian
in the absence of external fields (see problem 3.18) are given by

En = −1

2
m c2

α2

n2
, ψn,l,m(r) = Rn,�(r) Y�,m(θ, φ), (6.5)



180 6 Time-Independent Perturbation Theory

where

α = e2

� c
and a0 = �

2

m e2

are the fine-structure constant and the Bohr radius. In terms of the Laguerre polyno-
mials and Legendre functions, the eigenfunctions are given by

ψn,�,m(r) = Nn,� r
� e− r

n a0 L2�+1
n−�−1

(
2r

n a0

)

Pm
� (cos θ) eımφ, (6.6)

where Nn,� is a normalization constant.

Ground State

The first-order change in the ground state energy is given by

E1
1 = e 〈1, 0, 0| r |1, 0, 0〉 · E,

which expresses the correction as the scalar product of the electric field times the
average of the coordinate in the unperturbed state. In terms of eigenfunctions, we
have

E1
1 = eE ·

∫

dr
∣
∣ψ1,0,0(r)

∣
∣2 r.

This quantity is zero; more precisely, this is true for every diagonal matrix element:

〈n, �,m| r |n, �,m〉 =
∫

dr
∣
∣ψn,�,m(r)

∣
∣2 r = 0.

In fact, ψn,�,m , which is the product of a function of r times a Spherical Harmonic,
has the same parity as the latter, i.e., (−1)�. Its square modulus has even parity and
the integral is zero, because you have to integrate an odd function over the whole
space. So, there is no first-order correction in the ground state energy.

First Excited State

The Stark Effect the result of the fact that the degeneracy of n > 1 levels does not
survive in the presence of an external electric field.

Consider states with n = 2 in the absence of an electric field. There are four
eigenfunctions (A.64) relative to the same eigenvalue E2 = E1

4 , towhichwe associate
four kets as follows:

|1〉 → ψ2,0,0(r, θ, φ) = 1

4
√
2π

a
− 3

2
0

(

2 − r

a0

)

e− r
2a0 , (6.7)

|2〉 → ψ2,1,0(r, θ, φ) = 1

4
√
2π

a
− 3

2
0

r

a0
e− r

2a0 cos θ, (6.8)
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|3〉 → ψ2,1,1(r, θ, φ) = 1

8
√
2π

a
− 3

2
0

r

a0
e− r

2a0 sin θeıφ, (6.9)

|4〉 → ψ2,1,−1(r, θ, φ) = 1

8
√
2π

a
− 3

2
0

r

a0
e− r

2a0 sin θe−ıφ. (6.10)

The first-order corrections are given by the eigenvalues of the matrix representative
of H1 in the eigenspace of E1. We can use the numbering used for the states to
identify the elements of this matrix:

(H1)k, j = 〈k|H1| j〉 with k, j = 1, 2, 3, 4.

As we have seen, the matrix diagonal elements are zero for parity reasons. Also,
since it is worth (3.15), as found in problem 3.10,

�m = m ′ − m = 0 and �� = �′ − � = ±1, (6.11)

all of the matrix elements relative to couples of eigenkets having different Lz eigen-
values are null. Therefore, the matrix becomes

(H1)m, j =

⎛

⎜
⎜
⎝

0 〈1|H1|2〉 0 0
〈2|H1|1〉 0 0 0

0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ .

Two eigenvalues are zero and the other two (the correction in the energy level) are
obtained as eigenvalues of the 2 × 2 block in the m = 0 sector

(
0 〈1|H1|2〉

〈2|H1|1〉 0

)

. (6.12)

As the matrix is hermitian, the non-zero matrix elements are complex conjugates,
indeed, equal, being real. Let us calculate them:

〈1|H1|2〉 = eE
∫

r2dr d cos θ dφ ψ2,0,0(r, θ, φ) r cos θ ψ2,1,0(r, θ, φ) =

= eE
16 · 2π a−3

0

∫ 2π

0
dφ

∫ 1

−1
d cos θ cos2 θ

∫ ∞
0

dr r3
r

a0

(

2 − r

a0

)

e
− r

a0 =

= eE
24

a0

∫ ∞
0

dx x4(2 − x) e−x =
= −3 eE a0.

In the last step, integral (A.6) was used.
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So, matrix (6.12), is given by

(
0 −3 e E a0

−3 e E a0 0

)

.

Its eigenvalues are easily calculated:

3 e E a0 relative to the eigenvector 1√
2

(
1

−1

)

,

−3 e E a0 relative to the eigenvector 1√
2

(
1
1

)

.

Summing up our results, level E2, 4-times degenerate with eigenkets |2, 0, 0〉,
|2, 1, 0〉, |2, 1, 1〉 e |2, 1,−1〉, separates into 3 levels at the first perturbative order:

E2 + 3 eE a0 not degenerate relative to the eigenket 1√
2

(|2, 0, 0〉 − |2, 1, 0〉) ,

E2 2 times degenerate relative to the eigenkets |2, 1, 1〉 and |2, 1,−1〉,
E2 − 3 eE a0 not degenerate relative to the eigenket 1√

2
(|2, 0, 0〉 + |2, 1, 0〉) .

6.25 Hydrogen: Relativistic Corrections

The expression currently used for kinetic energy T = p2

2m can be considered as an
approximation for velocities that are small with respect to the speed of light c of the
relativistic expression:

T =
√
p2c2 + m2c4.

Expanding this expression in the power series of p
c , we get

T = mc2
√

1 + p2

m2c2

 mc2 + p2

2m
− p4

8m3c2
,

where the terms of order above (
p
c )4 were ignored. The first term is the rest energy

and only contributes to redefining the arbitrary constant relative to energy.
Using results obtained in problem 3.19,

〈
e2

r

〉

n,�,m

= −2E0
n ,

〈
e4

r2

〉

n,�,m

= 4(E0
n)

2 n

� + 1
2

,



6.25 Hydrogen: Relativistic Corrections 183

calculate the first-order Perturbation Theory effects on the energy spectrum derived
from the term

H1 = − p4

8m3c2
. (6.13)

Solution

We note that, since

p4 = 4m2

(

H0 + e2

r

)2

commutates with L2 and Lz , the matrices of H1 in each eigenvalue eigenspace are
diagonal, and we can use non-degenerate Perturbation Theory. Therefore, the first-
order shifts in the energy levels are given by

E1
n = − 1

8m3c2
〈n, �,m|p4|n, �,m〉 =

= 1

2mc2
〈n, �,m|

(

H0 + e2

r

)2

|n, �,m〉 =

= − 1

2mc2

(

(E0
n)

2 + 2E0
n 〈n, �,m|e

2

r
|n, �,m〉 + 〈n, �,m|e

4

r2
|n, �,m〉

)

.

By using the above expressions for the expectation values, the final result is obtained:

E1
n = −1

2
m c2 α4

[

− 3

4n4
+ 1

n3(� + 1
2 )

]

, (6.14)

showing that there is no more degeneracy in the quantum number �.

6.26 Spin-Orbit Interaction

In the Hydrogen atom, the interaction of the magnetic moment of the electron and
the magnetic field generated from its orbital motion around the nucleus leads to an
extra term in the Hamiltonian:

HSO = −μe · B = e2

2m2c2r3
S · L,

known as the spin-orbit interaction.
Using the result (obtained in problem 3.19)

〈
1

r3

〉

n,�

= 1

a30

1

n3�(� + 1
2 )(� + 1)

=
(mcα

�

)3 1

n3�(� + 1
2 )(� + 1)

,
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calculate the first-order perturbative corrections in the energy spectrum due to this
interaction.

Solution

Notice that, having denoted the total angular momentum by J, it results that

S · L = 1

2

[
(S + L)2 − L2 − S2

] = 1

2
[J 2 − L2 − S2].

HSO commutates, therefore, with the set of compatible variables J 2, L2, S2, and
there is a basis common to these operators and the Hamiltonian, |n, j,m j ; �; s〉. In
this basis,HSO is represented by a diagonal matrix giving the required corrections:

〈n′, j ′,m ′
j ; �′; s ′|HSO |n, j,m j ; �; s〉 =

= δn,n′ δ j, j ′ δm,m ′ δ�,�′
e2

4m2c2

〈
1

r3

〉

n,�

�
2

[

j ( j + 1) − �(� + 1) − 3

4

]

.

The total angular momentum, the sum of the orbital angular momentum and the spin,
has a quantum number j ranging from | j − s| to j + s, j = � ± 1

2 . Thus, we have

E1
n = �

2e2

4m2c2

〈
1

r3

〉

n,�

×
{

� if j = � + 1
2−(� + 1) if j = � − 1

2
.

Using the suggested expression for the expectation value of r−3, we get the final
result

E1
n = 1

4
mc2α4 1

n3�(� + 1
2 )(� + 1)

×
{

� if j = � + 1
2−(� + 1) if j = � − 1

2
(6.15)

6.27 Ground State of Helium

The Helium atom has atomic number Z = 2 and mass number A = 4; thus, there are
two electrons moving around a nucleus of mass equal to 4 times that of Hydrogen
and about 8 × 103 that of an electron. Assuming this mass to be infinite, we refer to
the coordinates of the two electrons with respect to the nucleus with r1 and r2 and
to their relative positions with with r12 = r1 − r2. The Hamiltonian of the Helium
atom is, therefore,

H = − �
2

2m
(∇2

1 + ∇2
2 ) − Ze2

r1
− Ze2

r2
+ e2

r12
.
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If there were no repulsive interaction between the two electrons, in the Schrödinger
equation, there would be the separation between the variables of the two electrons
and, E being the energy of the ground state, we would have

ψ0
E (r1, r2) = ψE1(r1) ψE1(r2) = Z3

πa30
e− Z(r1+r2)

a0 . (6.16)

Here, we denoted by E1 and ψE1(r) = (2/
√
4π)(Z/a0)

3
2 · e− Zr

a0 , respectively, the
ground state energy of a Hydrogenlike atom with Z = 2 and the corresponding
eigenfunction. In this very rough approximation, neglecting the positive term of
attraction between the electrons, the ground state energy would be

E0 = 2 E1 = 2

[

−m(Ze2)2

2�2

]

= −8 · 13.6 eV = −108.8 eV.

Experimentally, it is found that the ground state of the Helium has energy E =
−78.98eV, a much higher value.

Consider the interaction between the two electrons as a perturbation and calculate
the first-order change to E0.

Solution

The Helium atom Hamiltonian can be written as

H = H0 + H1,

where

H0 = − �
2

2m
(∇2

1 + ∇2
2 ) − Ze2

r1
− Ze2

r2
,

and the perturbation is given by

H1 = e2

r12
.

The first-order correction due to the interaction between the two electrons is given
by

E1 = 〈ψ0
E |H1|ψ0

E 〉 =

=
(

Z3

πa30

)2 ∫

dr1dr2e
− 2Z(r1+r2)

a0
e2

r12
=

=
(
Z3e

πa30

)2

K .
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Having introduced β = 2Z
a0
, K is the following integral:

K =
∫

dr1dr2 e−β(r1+r2)
1

|r1 − r2| =
∫

dr1e−βr1 f (r1),

where

f (r1) =
∫

dr2 e−βr2
1

|r1 − r2|
is a function of r1 only, because, by integrating over the whole r2 solid angle, the
dependence on the angles disappears. To calculate f (r1), we are free, therefore, to
orient r1 in the direction of the z axis.
We get

f (r1) = 2π
∫

dr2 r
2
2 e

−βr2

∫ +1

−1
d cos θ

1
√

r21 + r22 − 2r1r2 cos θ

=

= −2π
∫

dr2 r
2
2 e

−βr2
1

r1r2

[√

r21 + r22 − 2r1r2 cos θ

]+1

−1

=

= 2π

r1

∫

dr2 r2 e
−βr2 (r1 + r2 − |r1 − r2|) =

= 2π

r1

[∫ r1

0
dr2 r2 e

−βr2 (2r2) +
∫ ∞

r1

dr2 r2 e
−βr2 (2r1)

]

=

= 4π

r1β3

[
2 − e−βr1 (2 + βr1)

]
,

where we used the expressions, derived from (A.7),

I2(0, r1) = 1

β3
[2 − (2 + 2r1β + r21β

2)e−βr1 ]

and

I1(r1,∞) = 1

β2
(1 + βr1)e

−βr1 .

Returning to the calculation of K , we obtain, using the usual integrals (A.8),

K = 4π
∫ ∞

0
dr1 r

2
1 e

−βr1
4π

r1β3

[
2 − e−βr1 (2 + βr1)

] = (4π)2

β5

5

4
.

By inserting these results into the expression for E1, we obtain

E1 =
(
Z3e

πa30

)2 5

4

(4π)2

β5
= 5

8

Ze2

a0
= 5

4
Z

(
1

2
mc2α2

)

= 34 eV,
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where it has been taken into account that a0 = �

mcα , α = e2

�c and that 1
2mc2α2 =

13, 6eV is the energy, changed in sign, of the ground state of the Hydrogen atom.
In this approximation, the energy of the ground state of the Helium atom is

E = E0 + E1 = −108.8 eV + 34 eV = −74, 8 eV.

This value is very close to the previously mentioned experimental value −78.98eV.
An even better approximation is obtained using the variational method (see problem
11.4).



Chapter 7
Time-Dependent Perturbation Theory

7.1 Harmonic Oscillator: Instantaneous Perturbation

Two particles of mass m move along the x axis, interacting by means of a force
having characteristic elastic constant k.

Assuming that, while they are in the ground state of energy E0, the constant k is
suddenly halved, what is the probability that a new energy measure will result in the
energy of the ground state?

Solution

Having denoted the two particles’ coordinates by x1 and x2, we introduce the center
of mass and relative coordinates

X = x1 + x2
2

, x = x1 − x2,

the total mass M = 2m and the reduced mass μ = m
2 . Placing

�(X, x) = �(X)ψ(x),

the Schrödinger equation

[
− �

2

2m

∂2

∂x21
− �

2

2m

∂2

∂x22
+ V (x1 − x2) − W

]
�(x1, x2) = 0

separates into two equations

[
− �

2

2M

d2

dX2
− ECM

]
�(X) = 0,[

− �
2

2μ

d2

dx2
+ V (x) − E

]
ψ(x) = 0, (7.1)
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satisfying the condition
W = ECM + E .

The center of mass moves freely, while the reduced mass is subject to a harmonic
potential. For the purpose of the problem, we are only interested in the relative
coordinate motion.

Initially, the system is described by the wave function (A.16)

ψ0(x) =
(

α√
π

) 1
2

e− 1
2 α2x2 . where α =

√
mω

�
= 4

√
mk

�2
.

We want to know the probability that, after the halving of the elastic constant, the
oscillator will be in the ground state of the new system, that is, in the state described
by

ψ ′
0(x) =

(
α′

√
π

) 1
2

e− 1
2 α′2x2 , where α′ =

√
mω′

�
= 4

√
mk ′

�2
= α

4
√
2
.

Since it is an instantaneous perturbation, the state of the particle does not change,
but its Hamiltonian does change. Therefore, the required probability is given by the
square modulus of

〈ψ0|ψ ′
0〉 =

∫ +∞

−∞
dx

√
αα′

π
e− 1

2 (α2+α′2)x2 =

=
√

αα′

π

√
2π

α2 + α′2 =
√

2αα′

α2 + α′2 ,

where we used (A.1). So, the required probability is given by

P0 = 2αα′

α2 + α′2 = 2
√
2

4
√
2(1 + √

2)
= 2

5
4 (

√
2 − 1) = 0.9852.

7.2 Harmonic Oscillator in an Electric Field:
Instantaneous Perturbation

A particle of mass m and charge q is subject to harmonic oscillations of frequency
ω along the x axis. It is suddenly placed in a uniform electric field that generates a
potential

H1 = −qEX.

Determine the transition probabilities in the case inwhich the system is initially in the
ground state. Use first-order perturbation theory to approximate these probabilities
in the case of a weak electric field.
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Solution

After the electric field is switched on, the Hamiltonian becomes

H = H0 + H1 = p2

2m
+ 1

2
mω2 x2 − qEX = p2

2m
+ 1

2
mω2 (x − x0)

2 − 1

2

q2E2

mω2
,

which still represents the Hamiltonian of a harmonic oscillator with the same fre-
quency, but with energy levels translated by the quantity

−1

2

q2E2

mω2

and center of oscillation placed in

x0 = qE
mω2

.

H0 eigenfunctions are given by (A.16)

φ0
n(x) =

(mω

π�

) 1
4 1√

2nn! e
− ξ2

2 Hn(ξ), ξ =
√
mω

�
x

whereas, having denoted the eigenkets of the new Hamiltonian H by |k〉, its eigen-
functions are

〈x |k〉 = φk(x) = φ0
k (x − x0) =

(mω

π�

) 1
4 1√

2kk! e
− (ξ−ξ0)2

2 Hk(ξ − ξ0)

with

ξ0 =
√
mω

�
x0.

Remembering that (A.17)

Hn(ξ) = (−1)neξ 2 dne−ξ 2

dξ n
,

the transition amplitudes are given by

〈k|00〉 =
∫

dx φ∗
k (x) φ0

0(x) =
∫

dx φ0
k (x − x0) φ0

0(x) =

=
(mω

π�

) 1
2 1√

2kk! (−1)k
∫ ∞

−∞
dx e− (ξ−ξ0)2

2 e(ξ−ξ0)
2 dk e−(ξ−ξ0)

dξ k
e− ξ2

2 =

= (−1)k

(π2kk!) 1
2

e− ξ20
2

∫ ∞

−∞
dξe−ξξ0

dk e−ξ 2+2ξξ0

dξ k
. (7.2)
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Using integration by parts, we get

∫ ∞

−∞
dξe−ξξ0

dk e−ξ 2+2ξξ0

dξ k
=

= e−ξξ0
dk−1 e−ξ 2+2ξξ0

dξ k−1

∣∣∣∣∣
∞

−∞
−

∫ ∞

−∞
dξ (−ξ0) e

−ξξ0
dk−1 e−ξ 2+2ξξ0

dξ k−1
. (7.3)

The first term is null, and, after iterating k times the integration by parts, (7.2)
becomes

〈k|00〉 = (−1)k

(π2kk!) 1
2

e− ξ20
2 ξ k

0

∫ ∞

−∞
dξ e−ξ 2+ξξ0 =

= (−1)k

(π2kk!) 1
2

e− ξ20
2 ξ k

0 e
ξ20
4

√
π = (−1)k

(2kk!) 1
2

e− ξ20
4 ξ k

0 . (7.4)

The transition probabilities are obtained by squaring the amplitudes

P0,k =
(

ξ 2
0

2

)k
e− ξ20

2

k! .

As a function of k, this is a Poisson distribution with expectation value ξ 2
0
2 . Since

ξ0 =
√
mω

�
x0 =

√
mω

�

qE
mω2

= qE√
m�ω3

,

if the perturbation is small, ξ0 is also small, and the onlymajor probability of transition
to a state with k �= 0 is for k = 1:

P0,1 = ξ 2
0

2

e− ξ20
2

1! 	 ξ 2
0

2
= q2E2

2m�ω3
.

This result is confirmed by the application of Perturbation Theory (A.80)

P0,k =
∣∣∣∣ 〈k

0|H1|n0〉
E0
k − E0

n

∣∣∣∣
2

= q2E2

(k�ω)2

∣∣〈k0|H1|n0〉
∣∣2 =

= q2E2

(k�ω)2

∣∣∣∣∣
√

�

2mω
〈k0|a + a†|n0〉

∣∣∣∣∣
2

= q2E2

(k�ω)2

�

2mω
δk,1 = q2E2

2m�ω3
δk,1.
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7.3 Particle Confined on a Segment: Square Perturbation

Consider a particle of mass m bound to move along a segment of length a.

(a) Write the first 4 eigenfunctions and the corresponding eigenvalues.
(b) Suppose that the particle is in the ground state (n = 1). At time t = 0, it is

instantaneously switched on a potential square of depth−V0 (V0 > 0) and width
b 
 a centered around x = a

2 . If this potential is removed after a time �t , what
will be the probability of finding the system in each of the states with n = 2,
n = 3 and n = 4?

Solution

(a) The required eigenvalues and eigenfunctions are given by

E1 = �
2π2

2ma2
, ψ1(x) =

√
2

a
sin

πx

a
,

E2 = 4�
2π2

2ma2
, ψ2(x) =

√
2

a
sin

2πx

a
,

E3 = 9�2π2

2ma2
, ψ3(x) =

√
2

a
sin

3πx

a
,

E4 = 16�2π2

2ma2
, ψ4(x) =

√
2

a
sin

4πx

a
.

(b) The transition probabilities (A.82) are:

P1→n(�t) =
∣∣∣∣− ı

�

∫ �t

0
dt〈n|H1|1〉eıωn,1t

∣∣∣∣
2

= 1

�2
|〈n|H1|1〉|2

∣∣∣∣e
ıωn,1�t − 1

ıωn,1

∣∣∣∣
2

,

where the matrix elements are given by:

〈n|H1|1〉 = −2V0

a

∫ a+b
2

a−b
2

dx sin
nπx

a
sin

πx

a

and ωn,1 = En−E1
�

= �π2

2ma2 (n2 − 1) with n �= 1.
This integral is zero for n = 2 and n = 4, because the integrand is the product
of an odd function (the nth eigenfunction) times an even function (the ground
state eigenfunction).
It remains to calculate the probability of a transition to the third level. Since

∫ a+b
2

a−b
2

dx sin
nπx

a
sin

πx

a
= −a

(
2 sin πb

a + sin 2πb
a

)
4π

,
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the result is

P1→3(�t) =
(

V0

�ω3,1

)2

sin2
ω3,1 �t

2

(
2 sin πb

a + sin 2πb
a

π

)2

.

Wanting to shorten the calculations, the integral can be approximated by the
product of the integrand value at the center of the integration interval ( a2 ) times
the width of the interval ( b2 ):

P1→3(�t) 	
(
2V0b

a

)2 4

�2ω2
3,1

sin2
ω3,1 �t

2
.

7.4 Harmonic Oscillator: Gaussian Perturbation

Consider a one-dimensional harmonic oscillator in the ground state at time t = −∞
in the presence of the perturbation

H1(t) = −qEX e− t2

τ2 .

What is the probability of finding, at time t = +∞, the oscillator in state |n〉 in
first-order Perturbation Theory?

Solution

The probability amplitudes at time t = +∞ are the coefficients of the expansion of
the state ket in the energy basis (A.81, A.82):

dn(∞) = − ı

�

∫ +∞

−∞
dt (−qE)〈n|X |0〉e− t2

τ2 eınωt .

Since

X =
√

�

2mω
(a + a†),

and we know that a†|0〉 = |1〉 and a|0〉 = 0, the only non-zero coefficient is d1:

d1(∞) = ıqE

�

√
�

2mω

∫ +∞

−∞
dt e− t2

τ2 eıωt =

= ıqE

�

√
�

2mω

√
πτ 2 e− ω2τ2

4 .
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The desired probability of a transition is

P0→1 = q2E2πτ 2

2mω�
e− ω2τ2

2 .

7.5 Harmonic Oscillator: Damped Perturbation

Starting from the instant t = 0, the perturbation

H1(x, t) = Ax2e−bt ,

acts on a harmonic oscillator of mass m and frequency ω. Using first-order Pertur-
bation Theory, determine the probabilities of transition from the ground state to the
nth state after a long period of time.

Solution

The desired probability, for n �= 0, is given by

P0→n = 1

�2

∣∣∣∣
∫ ∞

0
dt 〈n|AX2e−bt |0〉eıωn,0t

∣∣∣∣
2

=

= A2

�2

∣∣〈n|X2|0〉∣∣2
∣∣∣∣
∫ ∞

0
dt e(ıωn,0−b)t

∣∣∣∣
2

=

= A2

�2

1

ω2
n,0 + b2

∣∣∣∣ �

2mω
(
√
2 δn,2 + δn,0)

∣∣∣∣
2

,

where we used the result of problem (2.17). Therefore, the only possible transition
is the one to state n = 2, having probability

P0→2 = 2A2

�2

1

4ω2 + b2

(
�

2mω

)2

= A2

2m2ω2

1

4ω2 + b2
.

7.6 Hydrogen Atom in a Pulsed Electric Field

At time t = −∞, a Hydrogen atom is in the ground state; an electric field is applied
along the z axis:

E(t) = E0 e
− t2

τ2 k̂.

Determine, by first-order Perturbative Theory, the probability that, at time t = +∞,
the atom is in one of the n = 2 states.
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Solution

Having denoted by r1 and r2, respectively, the position of the electron and that of the
proton and by V (r) the potential generated by the electric field on a charge placed
in r, we have

V (r) = −
∫

E · dr = −E0 z e
− t2

τ2 .

The potential energy resulting from the interaction of the external field with the atom
dipole is therefore

H1(r, t) = −eV (r1) + eV (r2) = ezE0 e
− t2

τ2 ,

where z is the component of r = r1 − r2 in the field direction.
The states with n = 2 are 4: they are the state � = 0 and the 3 states � = 1,

m = 0,±1. The desired probability is given (A.82) by

P1→2 =
∑
�=0,1

∑
m=−�,�

∣∣d2,�,m(+∞)
∣∣2 ,

where

d2,�,m(+∞) = − ı

�

∫ +∞

−∞
dt eıω2,1t 〈2, �,m|H1|1, 0, 0〉. (7.5)

Having denoted by μ the Hydrogen atom reduced mass and by α the fine-structure
constant, the transition frequency is the same for all n = 2 states:

ω2,1 = − 1

2�
μc2α2

(
1

22
− 1

12

)
= 3

8�
μc2α2.

To calculate the perturbation matrix elements, we note that H1 commutes with Lz ,
the operator whose quantum numbers label the unperturbed states. This means that
only the matrix elements between states with the same value of m (selection rule
�m = 0 for the electric dipole transitions1) can be different from zero. Indeed,

[H1, Lz] = 0 ⇒ 〈n, �,m|[H1, Lz]|n′, �′,m′〉 = �(m′ − m) 〈n, �,m|H1|n′, �′,m′〉 = 0.

We, therefore, are down to calculating only the two terms relative to m = 0. The
other selection rule for dipole transition is �� = ±1. Apart from the general rule, it
is easy to convince oneself that the matrix element in (7.5) will be zero if � does not
change: we should integrate, over the whole space, an odd function, z, coming from
H1, times the product of two eigenfunctions with the same parity. Only one non-zero
matrix element remains to be calculated. Taking into account the expressions for the
Hydrogen atom wave functions (A.64), we obtain:

1Electric dipole selection rules are calculated in Problem 3.10.
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〈2, 1, 0|Z |1, 0, 0〉 =
= 1

4
√
2π

1√
π
a−3
0

∫ ∞

0
r2dr

∫ +1

−1
d cos θ

∫ 2π

0
dϕ

r

a0
e− r

2a0 cos θ r cos θ e− r
a0 =

= 1

2
√
2
a−4
0

∫ ∞

0
dr r4 e− 3r

2a0

∫ +1

−1
d cos θ cos2 θ =

= 1

3
√
2
a0

25

35

∫ ∞

0
dx x4 e−x =

= 27
√
2

35
a0,

where formula (A.6) has been used. By replacing this expression in the probability
amplitude, we have:

d2,�,m(+∞) = − ı

�

∫ +∞

−∞
dt eıω2,1t e E0

27
√
2

35
a0 e

− t2

τ2 =

= − ı

�
e E0 a0

27
√
2

35
e− (ω2,1τ)2

4

∫ +∞

−∞
dt e− 1

τ2
(t−ı

ω2,1τ2

4 )2 =

= − ı

�
e E0 a0

27
√
2

35
τ

√
π e− (ω2,1τ)2

4 .

The requested probability is therefore given by

P1→2 = π

�2
(e E0 a0 τ)2

215

310
e− (ω2,1τ)2

2 .



Chapter 8
Identical Particles

8.1 Two Fermions in a Potential Well

Two non-identical particles, both of spin 1
2 and mass m, are forced to move along a

segment of length L interacting through a potential

V = k S1 · S2.

(a) Calculate the Hamiltonian’s eigenvalues and eigenfunctions.
(b) What would change if the particles were identical?

Solution

(a) Inasmuch as the potential depends only on the spin states and the particles are
not identical, we look for eigenfunctions factorized in the form

�(1, 2) = ψn1,n2(x1, x2) χ(S1,S2),

where
ψn1,n2(x1, x2) = ψn1(x1) ψn2(x2).

ψn(x), con n = 1, 2, . . ., are energy eigenfunctions for a particle in a potential
well and χ(S1,S2) represents spin eigenstates. The potential depends only on
the scalar product among the spins and can be rewritten in terms of the total spin
S = S1 + S2:

V = k S1 · S2 = k

2

[
(S1 + S2)2 − S21 − S22

] = k

2

[
S2 − 3

2
�
2

]
.

So, factoring occurs if we use the eigenstates of the total spin (S2 and Sz), that
is, the singlet states (S = 0) and triplet states (S = 1).
We conclude that the eigenfunctions common to the Hamiltonian, S2 and Sz , are
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�n1,n2;s,ms (x1, x2) = ψn1,n2(x1, x2) χs,ms ,

with

χ0,0 = 1√
2

[
χ+(1) χ−(2) − χ−(1) χ+(2)

]
,

χ1,−1 = χ−(1) χ−(2),

χ1,0 = 1√
2

[
χ+(1) χ−(2) + χ−(1) χ+(2)

]
,

χ1,+1 = χ+(1) χ+(2),

and they correspond to the energy eigenvalues

En,s = π2
�
2

2mL2
n2 + k

2

[
s(s + 1) − 3

2

]
�
2, with n2 = n21 + n22 and n1, n2 = 1, 2, . . .

The degeneracy is the product of (2s + 1) for the degeneracy that occurs if there
is more than one pair (n1, n2) leading to the same value of n.

(b) If the two particles are identical, the eigenvalues do not change, but their degen-
eracy is reduced. In fact, it is necessary to construct the symmetric and antisym-
metric combinations of the eigenfunctions relative to the spatial coordinates (the
spin eigenstates already have determinate symmetry properties) and to impose
the antisymmetry of the overall self-functions.
In the case S = 0, the eigenvalues are En,0 = π2

�
2

2mL2 n2 − 3
4 k�

2 and the eigen-
function’s spatial part must be symmetric. So, we have

�n1,n2;0,0(x1, x2) = 1√
2

[
ψn1(x1) ψn2(x2) + ψn2(x1) ψn1(x2)

]
χ0,0 if n1 �= n2

and
�n1,n2;0,0(x1, x2) = ψn1(x1) ψn2(x2) χ0,0 if n1 = n2.

States S = 1 correspond to eigenvalues En,1 = π2
�
2

2mL2 n2 + 1
4 k�

2, and their eigen-
function’s spatial part must be antisymmetric: as a consequence, it must be
n1 �= n2. Their eigenfunctions are

�n1,n2;1,ms (x1, x2) = 1√
2

[
ψn1(x1) ψn2(x2) − ψn2(x1) ψn1(x2)

]
χ1,ms ,

with ms = 0,±1.
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8.2 Two Fermions in a Potential Well in the Presence of δ

Potential

Two identical fermions of mass m, constrained to move along a segment of length
L , have a spin component along the z axis equal to +�

2 .

(a) What are the minimum system energy and the corresponding eigenfunction?
(b) If there is an interaction potential k δ(x1 − x2), how does the value of the energy

change to first-order Perturbation Theory?

Solution

(a) The system is composed of two identical non-interacting fermions. Its spin eigen-
function is

χ(s1,z, s2,z) = χ

(
+�

2
,+�

2

)
.

Each of the two particles, if isolated, has energy eigenfunctions and eigenvalues
given by

ψn(x) =
√

2

L
sin

nπx

L
En = n2π2

�
2

2mL2
, con n = 1, 2, . . .

The two particles are non-interacting and, therefore, the spatial part of the generic
eigenfunction can be written as a product of two eigenfunctions relative to the
single-particle Hamiltonian and the eigenvalue is the sum of the two correspond-
ing energy eigenvalues. However, since the overall wave function of the system
must be antisymmetric in the exchange of the two particles and the spin function
is symmetric, the spatial part must be antisymmetric. For this reason, the state
of minimum energy cannot be that in which the two particles are in the ground
state, but rather

�s1,z ,s2,z (x1, x2) = 1√
2

[
ψ1(x1)ψ2(x2) − ψ2(x1)ψ1(x2)

]
χ

(
+�

2
,+�

2

)
,

corresponding to the energy level

E1,2 = 5π2
�
2

2mL2
.

(b) Having introduced the δ interaction potential, the energy level is not modified
by first-order Perturbation Theory. In fact, it results that
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E ′
1,2 = k

∫ L

0
dx1

∫ L

0
dx2 �∗

s1,z ,s2,z (x1, x2) δ(x1 − x2)�s1,z ,s2,z (x1, x2) =

= k
∫ L

0
dx

∣∣�s1,z ,s2,z (x, x)
∣∣2 = 0,

due to the antisymmetry of the integrand function.

8.3 Two Interacting Fermions

Two particles of equal mass and spin 1
2 are constrained to move along a line and

interact via a potential

V = 1

2
kx2 + a S1 · S2,

where k and a are constants (k > 0), x is the relative distance between the particles
and S1 and S2 are their spin operators.

Determine the energy eigenvalues in the case in which the particles are different
and that in which they are identical.

Solution

Once we have separated the motion of the center of mass from that of the relative
coordinate x , we limit ourselves to considering the latter. We note that (S is the toral
spin)

S1 · S2 = 1

2
(S2 − S21 − S22 ) = 1

2
(S2 − 3

2
�
2).

It follows that the Hamiltonian commutes with S2 and Sz and, therefore, that we
can consider the eigenstates common to H, S2 e Sz . They are given by the tensor
product of the eigenkets of the harmonic oscillator Hamiltonian with the eigenkets
common to S2 e Sz .

The eigenvalues, if the particles are distinguishable, are therefore given by:

Es=1
n = (n + 1

2
) �ω + 1

4
a�

2 for triplet states,

Es=0
n = (n + 1

2
) �ω − 3

4
a�

2 for singlet state,

with n = 0, 1, . . ..
Let us nowconsider the case of identical particles.Notice that changing the relative

coordinate x in −x is equivalent to the exchange of the two particles and that the
nth eigenfunction of the harmonic oscillator Hamiltonian has parity of (−1)n . As a
consequence, the eigenvalues do not change, but the triplet states (symmetric) may
exist only if n is odd and the singlet states (antisymmetric) only if n is even.
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8.4 Two Identical Fermionic Oscillators

A system composed of two identical particles of spin 1
2 constrained to move along a

line is described by the Hamiltonian

H = 1

2m
(p21 + p22) + 1

2
mω2(x21 + x22 ).

Determine the complete wave function (spatial part and spin part) of the states
corresponding to the ground level and the first excited level, as well as the related
eigenvalues ofH, S2 = (S1 + S2)2 and Sz .

Solution

For the i th particle,wedenote denote the energy eigenfunctions for a one-dimensional
harmonic oscillator by ψn(xi ) and the spin eigenstates by χ±(i). Being identical
fermions, the eigenfunctions common to H, S2, Sz must be antisymmetric under
the exchange of the two particles. As for the spatial coordinates, we can construct
the following complete energy eigenfunctions having definite symmetry properties
(indicated with + and −):

ψ+
0 (x1, x2) = ψ0(x1) ψ0(x2) with energy E = �ω

and

ψ+
1 (x1, x2) = 1√

2

[
ψ0(x1) ψ1(x2) + ψ1(x1) ψ0(x2)

]

ψ−
1 (x1, x2) = 1√

2

[
ψ0(x1) ψ1(x2) − ψ1(x1) ψ0(x2)

]

⎫
⎪⎬

⎪⎭
with energy E = 2�ω.

The possible total spin states are singlet and triplet. Denoting by χs,sz the total spin
S eigenstates with eigenvalues S2 = s(s + 1)�2 and Sz = sz�, we have an antisym-
metric state and three symmetric states:

χ0,0 = 1√
2

[
χ+(1) χ−(2) − χ−(1) χ+(2)

]
,

χ1,−1 = χ−(1) χ−(2),

χ1,0 = 1√
2

[
χ+(1) χ−(2) + χ−(1) χ+(2)

]
,

χ1,+1 = χ+(1) χ+(2).

The fully antisymmetric overall wave functions are

ψ+
0 (x1, x2) χ0,0 for the ground state

and



204 8 Identical Particles

ψ+
1 (x1, x2) χ0,0

ψ−
1 (x1, x2) χ1,−1

ψ−
1 (x1, x2) χ1,0

ψ−
1 (x1, x2) χ1,+1

⎫
⎪⎪⎬

⎪⎪⎭
for the first excited state.

8.5 Double Oscillator for Identical Particles

Two particles, each of mass m, are confined in the potential of a one-dimensional
harmonic oscillator

V = 1

2
kx2

and interact with each other through another attractive elastic force having an elastic
constant k̄ << k.

(a) What are the states corresponding to the three lowest levels of the systemHamil-
tonian?

(b) If the particles are identical and have 0 spin, which of these three states are
allowed?

(c) If the particles are identical and have spin 1
2 , what is the total spin of each of

these three states?

(Hint: use an appropriate change of variables.)

Solution

Having denoted the coordinates of the two particles by x1 e x2, the system’s Hamil-
tonian is

H = − �
2

2m

(
∂2

∂x21
+ ∂2

∂x22

)
+ 1

2
k(x21 + x22 ) + 1

2
k̄(x1 − x2)

2.

We introduce the relative and center of mass coordinates

X = x1 + x2
2

and x = x1 − x2.

In these variables, the Hamiltonian itself appears as a sum of terms relative to har-
monic oscillators, each one dependent on a single variable:

H = HCM + Hr ,

HCM = − �
2

2M

∂2

∂X2
+ 1

2
Mω2X2,

Hr = − �
2

2μ

∂2

∂x2
+ 1

2
μω′2x2,
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where we introduced the total mass of the system and the reduced mass

M = 2m and μ = m

2

and the frequencies

ω =
√

k

m
and ω′ =

√
k + 2k̄

2μ
.

The separation of variables allows us to solve the eigenvalue equations for the two
Hamiltonians separately: the eigenfunctions are the product of the eigenfunctions of
the individual oscillators and the eigenvalues are the sum of the eigenvalues.

(a) To determine the lowest energy levels, the hypothesis k̄ � k must be taken into
account, from which we derive 2�ω > �ω′ > �ω. So, the three lowest levels of
energy are, in ascending order,

E0 = 1

2
�(ω + ω′),

E1 = E0 + �ω,

E2 = E0 + �ω′.

Having denoted by φ(ω)
n (x) the nth eigenfunction of a harmonic oscillator with

frequency ω, the three corresponding eigenfunctions are given by

ψ0(x1, x2) = φ
(ω)
0 (X) φ

(ω′)
0 (x),

ψ1(x1, x2) = φ
(ω)
1 (X) φ

(ω′)
0 (x),

ψ2(x1, x2) = φ
(ω)
0 (X) φ

(ω′)
1 (x).

(b) If the particles are identical bosons, the wave function must be symmetric for
the exchange of coordinates x1 ↔ x2, corresponding to the exchange x ↔ −x .
Therefore, taking into account the fact that the nth eigenfunction of the harmonic
oscillator energy has parity (−1)n , the third level is not allowed.

(c) If the particles are fermions, the spatial wave functions must be multiplied by the
total spin eigenfunction, which is antisymmetric in the case of spin 0 (singlet)
and symmetric in the case of spin 1 (triplet). If the fermions are identical, the
wave function must be overall antisymmetric by exchange. We will therefore
have the following total spin states for each of the 3 levels:

E0 → S = 0,

E1 → S = 0,

E2 → S = 1.
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8.6 Identical Particles in a Box

Two non-interacting identical particles ofmassm are closed in the box |x | < a, |y| <

b, |z| < c, with a > b > c > 0.

(a) Determine the energy eigenvalues and eigenfunctions, specifying the degree of
degeneracy for the ground level and the first excited level, in the case of spin-free
particles and in the case of fermions.

(b) Assuming the particles are fermions in one of the eigenstates common to the
total spin operators (S2 and Sz) and the Hamiltonian in the first excited state,
determine the probability of finding both particles in the x > 0 region.

(c) Suppose, still in the case of fermions, that we add to the Hamiltonian the term

λV = λ
π2

�
2

8ma4
r1 · r2 (λ << 1).

Determine the first-order perturbative corrections in the first two levels.

Solution

The Hamiltonian is separable into the three coordinates, each of which is bound on
a segment of different length. Each of the particles, if present individually, would
have energy eigenfunctions

ψk,l,m(r) = ψk(x) ψl(y) ψm(z),

where

ψk(x) =
⎧
⎨

⎩

√
1
a cos kπx

2a , odd k
√

1
a sin kπx

2a , even k

within the (−a, a) segment and zero outside. Similar expressions are valid for ψl(y)
and ψm(z). The corresponding eigenvalues would be

Ek,l,m = π2
�
2

8m

(
k2

a2
+ l2

b2
+ m2

c2

)
.

(a) In the absence of spin, and therefore of symmetry by exchange, the ground state
is non-degenerate, has energy equal to 2 E1,1,1 and wave function

ψ1,1,1(r1) ψ1,1,1(r2),

which is symmetric for exchange of the two particles.
The first excited level is obtained by increasing the quantum number relative to
the coordinate x to k = 2 (remember that a > b > c). It is doubly degenerate,
has energy E1,1,1 + E2,1,1 and eigenfunctions
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ψ1,1,1(r1) ψ2,1,1(r2)

and
ψ2,1,1(r1) ψ1,1,1(r2),

which can be combined symmetrically or antisymmetrically.
In the case of fermions, it is necessary to impose the antisymmetry of the com-
plete wave function (position and spin) for particle exchange. The energy levels
do not change, while, as regards the self-functions, the situation is similar to that
of problem Sect. 8.4. Using the same notation for spin states, the ground state is
non-degenerate and has wave function

ψ1,1,1(r1) ψ1,1,1(r2) χ0,0,

while the first excited level is four times degenerate, has energy equal to E1,1,1 +
E2,1,1 and wave functions

ψ+
1 (r1, r2) χ0,0,

ψ−
1 (r1, r2) χ1,−1,

ψ−
1 (r1, r2) χ1,0,

ψ−
1 (r1, r2) χ1,+1,

where

ψ+
1 (r1, r2) = 1√

2

[
ψ1,1,1(r1) ψ2,1,1(r2) + ψ2,1,1(r1) ψ1,1,1(r2)

] =

= 1√
2
[ψ1(x1) ψ2(x2) + ψ2(x1) ψ1(x2)] ψ1(y1) ψ1(z1) ψ1(y2) ψ1(z2),

ψ−
1 (r1, r2) = 1√

2

[
ψ1,1,1(r1) ψ2,1,1(r2) − ψ2,1,1(r1) ψ1,1,1(r2)

] =

= 1√
2
[ψ1(x1) ψ2(x2) − ψ2(x1) ψ1(x2)] ψ1(y1) ψ1(z1) ψ1(y2) ψ1(z2).

(b) After integrating over coordinates y and z, we calculate the desired probability:

P±(x1, x2 > 0) = 1

2

∫ a

0
dx1

∫ a

0
dx2 [ψ1(x1) ψ2(x2) ± ψ2(x1) ψ1(x2)]2 =

= 1

2

∫ a

0
dx1

∫ a

0
dx2 [ψ2

1 (x1) ψ2
2 (x2) + ψ2

2 (x1) ψ2
1 (x2) ±

± 2ψ1(x1) ψ2(x2)ψ2(x1) ψ1(x2)] =

= 1

2

{
1

2
± 2

[∫ a

0
dx ψ1(x) ψ2(x)

]2
}

=

= 1

2

{
1

2
± 2

a2

[∫ a

0
dx cos

πx

2a
sin

πx

a

]2
}

=
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= 1

2

{
1

2
± 2

[
4

3π

]2
}

.

(c) For each state |ψ〉, we have to calculate

〈ψ |λV |ψ〉 = λ
π2

�
2

8ma4
I,

where I is
I = 〈ψ |x1x2 + y1y2 + z1z2|ψ〉.

For the ground state we have

I = 〈x1〉 〈x2〉 + 〈y1〉 〈y2〉 + 〈z1〉 〈z2〉 = 0,

because, for reasons of symmetry, each expectation value is zero.
For the first excited level, we have to diagonalize the matrix relative to the
two different wave functions (the potential does not depend on the spin). Let
us first consider the diagonal elements, for which we immediately see that the
coordinates y and z do not contribute. For the first diagonal term, we have

I+,+ = 〈ψ+
1 |x1x2|ψ+

1 〉
= 1

2

∫ a

−a
dx1 dx2 x1x2

[
ψ1(x1) ψ2(x2) + ψ2(x1) ψ1(x2)

]2
.

Once the square has been expanded, we note that the two quadratic terms give
zero result, because they are proportional to the expectation value of x in an
eigenstate of the well. We obtain, therefore, integrating by parts,

I+,+ =
[∫ a

−a
dx x ψ1(x) ψ2(x)

]2

= 2

(
32a

9π2

)2

.

In a similar way, we obtain

I−,− = 〈ψ−
1 |x1x2|ψ−

1 〉 = −2

(
32a

9π2

)2

.

It is easy to see, with analogous calculations, that the non-diagonal terms are
null. So, the corrections in the first excited level are

〈ψ±
1 |λV |ψ±

1 〉 = ±128

81
λ

�
2

ma2π2
.
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8.7 Three Interacting Fermions on a Segment

Three identical particles of mass m and spin 1/2 are constrained to move along the
x-axis in the segment (0, a). They are subject to potential

V = α
(
S1 · S2 + S1 · S2 + S2 · S3

)
,

with α < 0 and Si spin of the i th particle. A measure of the total spin z-component
provides the value Sz = + 3

2�. Write the possible energy eigenfunctions and the
related eigenvalues. What is the eigenfunction of the ground state of the system in
this spin state? What is the energy eigenvalue in this state?

Solution

The potential can be rewritten in the form

V = α

2

(
S2 − S21 − S22 − S23

)
,

therefore, the energy eigenfunctions are the product of eigenfunctions related to the
spatial coordinates for total spin eigenfunctions. The three fermions are in a state
with Sz = + 3

2� and spin quantum number s = 3
2 , which is the maximum value that

s can assume. The spins of the three particles have the same component z, so the
total spin eigenfunction is symmetric and, as a consequence, the part dependent on
the spatial coordinates must be antisymmetric:

�n1,n2,n3; 3
2 ,+ 3

2
(x1, x2, x3) = 1√

3! det

∣
∣∣∣∣∣

ψn1(x1) ψn1(x2) ψn1(x3)
ψn2(x1) ψn2(x2) ψn2(x3)
ψn3(x1) ψn3(x2) ψn3(x3)

∣
∣∣∣∣∣
χ 3

2 , 32
.

The eigenvalues corresponding to these eigenfunctions are

E = π2
�
2

2ma2
(n21 + n22 + n23) + 3

4
α�

2 with n1, n2, n3 = 1, 2, . . .

Given the spin state, the spatial part of the eigenfunction must also be antisymmetric
in the ground state, so the three quantum numbers must be different and such that
the energy is minimal, thus n1 = 1, n2 = 2, n3 = 3. So, we get

�1,2,3; 3
2 ,+ 3

2
(x1, x2, x3).

The corresponding eigenvalue is

E =
(
7π2

ma2
+ 3

4
α

)
�
2.
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8.8 Two Interacting Fermions in a Sphere

Two identical particles of spin 1
2 are in an impenetrable sphere of radius R..

(a) Write the energy eigenfunctions concerning the ground state and the first excited
state.

(b) Calculate theway inwhich the degeneracy ismodified if the following interaction
occurs:

V = αS1 · S2,

where S1 and S2 are the two particles’ spins.

Solution

In the case of a single spin 1
2 particle in an impenetrable sphere, having in mind the

results of Problem 3.13, the eigenfunctions common to energy and spin are given by

ψn,�,m,ms (r, θ, ϕ) = ψn,�,m(r, θ, ϕ) χms ,

where χms are the Sz eigenstates corresponding to eigenvalues ms� = ±�

2 and

ψn,�,m(r, θ, ϕ) = Rn,�(r) Y
m
� (θ, ϕ),

where
Rn,�(r) = N j�(kn,� r) and kn,� = zn,�

R
.

Here, j� is the �th spherical Bessel function, while zn,� is the nth zero of j�. kn,� is
related to the energy eigenvalue En,� through the relation

En,� = �
2

2m
k2n,�.

The ground state is not degenerate and is obtained for � = 0 and n = 1,

k1,0 = π

R
, E1,0 = �

2π2

2mR2
.

The first excited state is obtained for � = 1 and n = 1 and is three times degenerate
(m = 0,±1).

Now we come to the case of two spin 1
2 particles.

(a) The two fermions’ wave function must be completely antisymmetric for par-
ticle exchange. In the case of the ground state, there is only one possibility,
corresponding to the singlet state for the total spin, χS2,Sz = χ0,0. So, we have

ψ1,s=0(r1, r2) = ψ1,0,0(r1), ψ1,0,0(r2) χ0,0.
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The first excited level of the system must have one particle in the ground state
and the other in the first excited state. This allows both the singlet state

ψ2,m,s=0(r1, r2) = 1√
2

[
ψ1,0,0(r1), ψ1,1,m(r2) + ψ1,1,m(r1), ψ1,0,0(r2)

]
χ0,0,

which has 3 possible determinations in correspondence of the 3 values of m =
0,±1, and the triplet state

ψ2,m,s=1(r1, r2) = 1√
2

[
ψ1,0,0(r1), ψ1,1,m(r2) − ψ1,1,m(r1), ψ1,0,0(r2)

]
χ1,mS ,

which has 9 possible determinations at the 3 values of m = 0,±1 and the 3
values of ms = 0,±1.

(b) The interaction V = αS1 · S2 can be rewritten in the form

V = α

2
(S2 − S21 − S22 ) = α

2
(S2 − 3

2
�
2).

In the singlet states, V = − 3
4 α�

2, while, in the triplet states, V = 1
4 α�

2. So,
there is a different contribution to the energy eigenvalue, depending on the total
spin state.
With regard to degeneracy, it is still absent in the case of the ground state with
a change in the energy value. Degeneracy is only present in the case of the first
excited state, which now gives rise to two distinct levels:

E1,s=0 = �
2

2mR2
(z21,1 + π2) − 3

4
α�

2 3 times degenerate,

E1,s=1 = �
2

2mR2
(z21,1 + π2) + 1

4
α�

2 9 times degenerate,

where z1,1 = 4.49341 (see [1]).

8.9 Two Fermions on the Surface of a Sphere

Two identical particles of spin 1
2 , not interacting with each other, are constrained

to move along a spherical surface, so that the only degrees of freedom are angular
position and spin. Among all of the states accessible to the two-particle system,
determine how many states meet the following properties:

(a) are eigenstates of both Lz and Sz , the components along the z axis of total angular
momentum L = L1 + L2 and of the total spin S = S1 + S2, where indices 1 and
2 refer to the two particles;
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(b) the quantum numbers �1 and �2 relative to the angular momenta of the two
particles are either 0 or 1;

(c) the total spin state is a triplet one (eigenstate of S2 with s = 1).

Solution

The desired states are the product of the eigenstates of the total angular momentum
times the total spin eigenstates.

The third condition indicates that the eigenstate of the total angular momentum
must be antisymmetric for the exchange of the two particles. Since, for the second
condition, �1 = 0, 1 and �2 = 0, 1, we have the following possibilities:

1. �1 = 0 and �2 = 0: there is only one state, |m1,m2〉 = |0, 0〉, which is symmetric,
and therefore to be excluded;

2. �1 = 0 and �2 = 1: there are three states, |0, 0〉, |0,+1〉, |0,−1〉,
3. �1 = 1 and �2 = 0: there are three states, |0, 0〉, | + 1, 0〉, | − 1, 0〉; both in this

case and in the previous one, the states have no definite symmetry, but, starting
from these six states, we can consider the three symmetric linear combinations
and the three antisymmetric ones;

4. �1 = 1 and �2 = 1: � = 0, 1, 2 total angularmomentum states are possible. Since
Clebsch-Gordan coefficients meet the following relationship:

〈 j1, j2,m1,m2| j1, j2, J, M〉 =
(−1)J− j1− j2 〈 j2, j1,m2,m1| j2, j1, J, M〉,

it turns out that states with � = 0, 2 are symmetric and should not be considered.
Instead, the states corresponding to � = 1 are antisymmetric:

|� = 1,m = 0〉 = 1√
2

(|m1 = +1,m2 = −1〉 − |m1 = −1,m2 = +1〉) ,

|� = 1,m = +1〉 = 1√
2

(|m1 = +1,m2 = 0〉 − |m1 = 0,m2 = +1〉) ,

|� = 1,m = −1〉 = 1√
2

(|m1 = −1,m2 = 0〉 − |m1 = 0,m2 = −1〉) .

The answer, therefore, is that there are a total of 6 states with respect to the angular
momentum multiplied by 3, the possible total spin states, giving the total number of
18 states.

8.10 Three Electrons in a Central Potential

Three electrons are bound by a central potential, and the interactions between the
electrons are to be ignored. One of them is in the energy eigenstate E1 with spatial
wave function ψ1, while the other two are in the energy eigenstate E2 with spatial
wave function ψ2.
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(a) Write the possible states that are compatible with the Fermi-Dirac statistic and
the value of their spin in these states.

(b) What is the total degeneracy of the level E = E1 + 2E2 if ψ1 and ψ2 both
correspond to states with � = 0?

Solution

(a) Denote, byψ±
n , the eigenfunction of an electron that is located in the energy level

n and in the state of spin with ms = ±1/2. The two particles in the state with
n = 2must be in different spin states, while the other particle can be indifferently
in one of the two spin states. Altogether, we have two possibilities that we can
write, antisymetrizing through the determinant of Slater,

�1,2,2; j= 1
2 ,m j=+ 1

2
(x1, x2, x3) = 1√

3! det

∣∣∣∣∣∣

ψ+
1 (x1) ψ+

1 (x2) ψ+
1 (x3)

ψ+
2 (x1) ψ+

2 (x2) ψ+
2 (x3)

ψ−
2 (x1) ψ−

2 (x2) ψ−
2 (x3)

∣∣∣∣∣∣

and

�1,2,2; j= 1
2 ,m j=− 1

2
(x1, x2, x3) = 1√

3! det

∣
∣∣∣∣∣

ψ−
1 (x1) ψ−

1 (x2) ψ−
1 (x3)

ψ+
2 (x1) ψ+

2 (x2) ψ+
2 (x3)

ψ−
2 (x1) ψ−

2 (x2) ψ−
2 (x3)

∣
∣∣∣∣∣
.

In the previous expressions, j and m j are the quantum numbers related to the
total spin. In fact, it is easy to see, expanding the determinants according to the
first line, that the two electrons in the level with n = 2 are in a singlet state;
therefore, their total spin is 0 and the total spin of the three electrons must be
1/2. The value of its z component is then given by the spin status of the electron
in the level with n = 1.

(b) Since there is no degeneracy due to angular momentum (� = 0), the degeneracy
of the E = E1 + 2E2 level is 2.



Chapter 9
Scattering (Born Approximation)

9.1 Yukawa and Coulomb Potential

Determine the Born approximation of the differential cross-section for the elastic
scattering from the:

(a) Yukawa potential:

V (r) = V0
e−αr

αr
;

(b) Coulomb potential:

V (r) = q1q2
r

.

Solution

The scattering amplitude in the Born approximation is given by (A.84).

(a) For the Yukawa potential, we get

fB(q) = −2mV0

�2q

∫ ∞

0
dr sin(qr)

e−αr

αr
r =

= −2mV0

�2qα
�

(∫ ∞

0
dr e−αr+ıqr

)
=

= −2mV0

�2qα
�

(
1

α − ıq

)
=

= −2mV0

�2α

1

α2 + q2
.

The differential cross-section is

dσB

d�
=

(
2mV0

�2α

)2
(

1

α2 + 4k2 sin2 θ
2

)2

,
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where θ is the angle between the incident and the scattering direction.
(b) We can obtain the differential cross-section for the Coulomb potential from the

previous formulas through the limit

α → 0, V0 → 0,
V0

α
→ q1q2.

The result is
dσB

d�
= q2

1q
2
2

16E2 sin4 θ
2

,

where E = �
2k2/2m is the energy of the particle incident on the center of force.

This result coincides with the classic Rutherford one and with the exact quantum
result (notice that the cross-section does not depend on �).

9.2 Gaussian Potential

Calculate, in the Born approximation, the differential and total cross-sections for
elastic scattering from the potential

V (x) = V0e
−α2r2 .

Solution

Using the notation of Appendix A.13, we apply formula (A.84)

fB(q) = − 2m

�2q

∫ ∞

0
dr sin(qr) V (r) r =

= −2mV0

�2q

∫ ∞

0
dr sin(qr) r e−α2r2 =

= −
√

πmV0

2�2α3
e− q2

4α2 .

In the last step, we used formula (A.5). Considering q = 2k sin θ
2 , the differential

cross-section in this approximation is

dσ

d�
= | fB(q)|2 = πμ2V 2

0

4�4α6
e−2 k2

α2
sin2 θ

2 .

Finally, we calculate the total cross-section:
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σ =
∫

d�
dσ

d�
= 2π

πm2V 2
0

4�4α6

∫ +1

−1
d cos θe− k2

α2
(1−cos θ) =

= π2m2V 2
0

2�4α6

(
1 − e−2 k2

α2

)
=

= π2mV 2
0

4�2α6E

(
1 − e−4m E

�2α2

)
,

where E = �
2k2

2m is the energy of the scattered particles.

9.3 Scattering From an Opaque Sphere

Determine the Born approximation of the differential and total cross-sections for
elastic scattering from the potential

V (r) =
{

−V0 if r ∈ [0, a],
0 elsewhere.

Solution

Using the notation of Appendix A.13, we apply formula (A.84)

fB(q) = − 2m

�2q

∫ ∞

0
dr sin(qr) V (r) r = 2mV0

�2q

∫ a

0
dr sin(qr) r =

= 2mV0

�2q3

∫ qa

0
dx sin x x = 2mV0

�2q3
[sin(qa) − qa cos(qa)] =

= 2mV0a3

�2
ϕ(qa),

where

ϕ(x) = sin x − x cos x

x3
= 1

x
j1(x).

and jp are the spherical Bessel functions (see (A.47)). The differential cross-section
is therefore

dσB

d�
=

(
2mV0a3

�2

)2

ϕ2(2ka sin
θ

2
),

where θ is the angle of deflection.
Let us study the behavior of the differential cross-section. Since
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Fig. 9.1 Scattering from an opaque sphere: behavior in the variable y = 2ka of the Born total
cross-section (apart from an overall constant)

lim
x→0

ϕ(x) = 1

3
,

lim
x→∞ ϕ(x) = 0,

the differential cross-section shows a maximum in θ = 0, k−2 - damped oscillations
and zeros placed where x = tan x , with x = 2ka sin θ

2 . For ka � 1, the scattering is
isotropic; for ka � 1, as the cross-section goes quickly to zero, the diffusion takes
place in an essentially forward manner.

We now calculate the total cross-section in Born approximation.

σB =
∫

d�
dσB

d�
=

= 2π

(
2mV0a3

�2

)2 ∫ π

0
dθ 2 sin

θ

2
cos

θ

2
ϕ2(2ka sin

θ

2
) =

= 8π

(
2mV0a3

�2

)2 1

(2ka)2

∫ 2ka

0
dx x ϕ2(x) =

= 8π

(
2mV0a3

�2

)2

G(2ka),
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where

G(y) = 1

y2

∫ y

0
dx

(sin x − x cos x)2

x5
= cos 2y + 2y sin 2y + 2y4 − 2y2 − 1

8y6
.

This function tends to a constant value of 1/18 for y → 0 and ismonotone decreasing.
Its behavior is shown in Fig. 9.1



Chapter 10
WKB Approximation

10.1 Energy Spectrum of the Harmonic Oscillator

Calculate the energy spectrum of the harmonic oscillator in WKB approximation.

Solution

The WKB method calculates an approximation to energy eigenvalue En energy
imposing that relation (A.86) is satisfied, i.e., that the integral of the impulse along
the classical closed trajectory (one period) for that energy is equal ton + 1

2 times 2π�,

where n is an integer. This integral is equal to the area included within the classical
trajectory in the p − q phase space. For each energy level En , such a trajectory is
defined by the relationship

En = p2

2m
+ 1

2
mω2q2,

i.e.,

1 = p2

2mEn
+ q2

2En
mω2

.

In the p − q phase space, the closed path corresponding to a period of classical
motion is, therefore, an ellipsis of semi-axes

a =
√

2En

mω2
and b = √

2mEn,

whose area is

πab = π
2En

ω
.

Applying the WKB quantization condition (A.86), we obtain
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Fig. 10.1 Potential well for a body falling to the Earth’s surface

π
2En

ω
= 2π�

(
n + 1

2

)
with n = 0, 1, 2 . . . ,

i.e.,

En =
(
n + 1

2

)
�ω with n = 0, 1, 2 . . . .

In this case, the WKB method gives the exact result.

10.2 Free Fall of a Body

Determine the energy spectrum for a body falling to the Earth’s surface in WKB
approximation. Show that, for macroscopic objects, it is not possible to reveal quan-
tum effects.

Solution

The free fall of a body to the Earth’s surface is the motion of a mass m in a potential

V (z) =
{
mgz, if x > 0
∞, if x < 0

,

shown in Fig. 10.1. Classically, supposing elastic bumps against the floor at z = 0,
there is a periodic motion between the turning points z = 0 and z = z̄ = E

mg . The
period T can be obtained through the relationship
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1

2
g

(
T

2

)2

= E

mg
,

and the corresponding frequency is

ω = πg

√
m

2E
.

The discrete energy spectrum can be evaluated in WKB approximation through the
Bohr-Sommerfeld relation:

I =
∫ z̄

0
dz

√
2m(En − mgz) = π�

(
n + 1

2

)
.

We notice, however, that this rule was derived under the hypothesis that the potential
is weakly variable, and this certainly does not happen in z = 0, where V (z) diverges
abruptly. However, we can resort to the trick of considering the potential extension
to z < 0 in the form

V̄ (z) = k|z|, (10.1)

restricting ourselves, however, to odd solutions (odd n) that are zero in the origin.
We must therefore impose

∫ z̄

−z̄
dz

√
2m(En − mg|z|) = π�

(
n + 1

2

)
with n = 1, 3, 5, . . .

or, equivalently, given the potential symmetry,

I =
∫ z̄

0
dz

√
2m(En − mgz) = π�

(
n − 1

4

)
with n = 1, 2, 3, . . . .

This integral can be easily evaluated:

I =
√
2m2g

∫ z̄

0
dz

√
z̄ − z = −

√
2m2g

[
2

3
(z̄ − z)

3
2

]z̄

0

= 2

3

√
2m2g z̄

3
2 .

We therefore obtain the spectrum

En =
[
3π

(
n − 1

4

)] 2
3

2
3
√
mg2�2 with n = 1, 2, 3, . . . .

At a macroscopic level, quantum effects are not perceptible. Indeed, in the case of a
mass m = 1 Kg that falls from one meter in height, the energy is

En = mgz̄ = 9.8J,
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while the ground state energy is

E1 � 3
√
mg2�2 � (1 · 102 · 10−68)

1
3 = 10−22 J.

Let us estimate n. Since, for large n, it results that

En ∼ n
2
3 E1,

we have

n ∼
(
En

E1

) 3
2

�
(

9.8

10−22

) 3
2

� 1034.

This is a huge number, but it may be that, around the En level, the density of levels is
low, allowing quantum effects to be detected. To this end, we estimate the distance
between the levels around En from

�En = dEn

dn
�n with �n = 1.

We obtain

�En � 2

3
E1 n

− 1
3 � 10−11 · 10−22 = 10−33 J,

which is extremely small compared to En = 9.8 J .

10.3 Infinite Potential Well

Determine the energy spectrum in WKB approximation for the potential

V (x) = V0 cot
2 πx

a
,

where a is a positive constant. Discuss the limits for small and large quantum num-
bers.

Solution

This potential is shown in Fig. 10.2.
The energy eigenvalues En can be determined by the relationship

I = π�

(
n + 1

2

)
with n = 0, 1, 2 . . . , (10.2)

where, taking into account the potential symmetry,
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Fig. 10.2 Potential well V (x) = V0 cot2 πx
a

I = 2
∫ a

2

x1

dx
√
2mV0

√
E

V0
− cot2

πx

a
= 2a

π

√
2mV0

∫ π
2

πx1
a

dy
√

α − cot2 y,

and, from the turning point condition, we get

V (x1) = V0 cot
2 πx1

a
= En, i.e., α = En

V0
= cot2

πx1
a

.

We make the following substitution:

z =
√

α − cot2 y

cot2 y
=

√
α tan2 y − 1.

From

z2 = α tan2 y − 1 ⇒ tan y =
√
1 + z2

α
,

z2 = α
1 − cos2 y

cos2 y
− 1 ⇒ cos2 y = α

z2 + 1 + α
,

we obtain

dz = α

z

tan y

cos2 y
dy ⇒ dy = z

α

cos2 y

tan y
dz = z

α

α

z2 + 1 + α

√
α

1 + z2
dz

and
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√
α − cot2 y = z

tan y
= z

√
α

1 + z2
.

The new integration limits are given by

y1 = πx1
a

⇒ z1 =
√

α − cot2 πx1
a

cot2 πx1
a

= 0,

y2 = π

2
⇒ z2 =

√
α − cot2 π

2

cot2 π
2

= +∞.

The substitution in the integral to be calculated gives us

I = 2a

π

√
2mV0

∫ +∞

0
dz

αz2

(z2 + 1 + α)(z2 + 1)
=

= 2a

π

√
2mV0

∫ +∞

0
dz

[
1 + α

z2 + 1 + α
− 1

z2 + 1

]
=

= 2a

π

√
2mV0 (

√
1 + α − 1)

π

2
,

where we used the result

∫ +∞

0
dz

1

z2 + 1
= [arctan z]+∞

0 = π

2
.

We can now impose the WKB quantization condition (10.2) and, remembering that
α = En

V0
, we obtain the energy spectrum

En = π2
�
2

2ma2

(
n + 1

2

)2

+ 2π�

√
V0

2ma2

(
n + 1

2

)
.

This energy spectrum for V0 small recovers the spectrum of the square potential well
and, for V0 large, that of the harmonic oscillator (notice that V0 is the value assumed
by the potential in a

4 , as shown in Fig. 10.2).

10.4 Triangular Barrier

Evaluate the WKB approximation to the probability of a particle being transmitted
through the triangular barrier
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Fig. 10.3 Triangular potential barrier

V (x) =
{
0, if |x | > a;

V0(1 − |x |
a ), if |x | < a

.

for energy lower than V0.

Solution

With reference to Fig. 10.3 the classical turning points are given by ±x̄ , where

V (x̄) = E ⇒ x̄ = a

(
1 − E

V0

)
.

Exploiting the potential symmetry, we obtain

ln T = −4

�

∫ x̄

0
dx

√
2mV0

√(
1 − x

a

)
− E

V0
= −4

�

√
2mV0

∫ x̄

0
dx

√
x̄

a
− x

a
.

After the substitution y = x̄
a − x

a , we get

ln T = −4a

�

√
2mV0

∫ x̄
a

0
dy

√
y = −4a

�

√
2mV0

2

3

(
x̄

a

) 3
2 = −8

3

a
√
2m

�V0
(V0 − E)

3
2 .

Ultimately, the probability of transmission beyond the barrier is

T = e− 8
3

a
√
2m

�V0
(V0−E)

3
2
.
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Fig. 10.4 Parabolic potential barrier

10.5 Parabolic Barrier

Use the WKB approximation method to evaluate the probability of a particle being
transmitted through the parabolic barrier

V (x) =
{
0, if |x | > a;

V0(1 − x2

a2 ), if |x | < a
.

for energy lower than V0.

Solution

With reference to Fig. 10.4 the classical turning points are given by ±x̄ , where

V (x̄) = E ⇒ x̄ = a

√
1 − E

V0
.

Exploiting the potential symmetry, we obtain

ln T = −4

�

√
2mV0

∫ x̄

0
dx

√(
1 − x2

a2

)
− E

V0
= −4

�

√
2mV0

∫ x̄

0
dx

√
x̄2

a2
− x2

a2
=

= −4

�

√
2mV0

x̄

a

∫ x̄

0
dx

√
1 − x2

x̄2
.

After the substitution x = x̄ sin θ , we get
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ln T = −4

�

√
2mV0

x̄2

a

∫ π
2

0
dθ cos2 θ = − aπ

�
√
2mV0

p2E ,

where pE = √
2m(V0 − E) is the classical momentum corresponding to a constant

potential equal to V0.
Ultimately, the probability of transmission beyond the barrier is

T = e
− aπ

�

√
2mV0

p2E
.



Chapter 11
Variational Method

11.1 Ground State of an Anharmonic Oscillator

Use the Variational method to evaluate an approximation to the energy of the ground
state of a quartic oscillator, i.e., a particle of mass m subject to the potential:

V (x) = μx4 (μ > 0).

Notice that this potential, like the harmonic one, diverges to infinity, has a minimum
at x = 0 and is parity-invariant. As a consequence, the energy spectrum is discrete
and the ground state has even parity and no nodes. We suggest, as trial functions that
meet these requirements:

ψ(x;α) = constant · e−α x2

2 ,

the same set as the harmonic oscillator ground state (in this case, α = mω
�
).

Solution

The energy expectation value in the state ψ is

E(α) = 〈ψ |H|ψ〉
〈ψ |ψ〉 =

∫ +∞
−∞ dx e−α x2

2

[
− �

2

2m
d2

dx2 + μx4
]
e−α x2

2

∫ +∞
−∞ dx e−αx2

=

=
√

α

π

∫ +∞

−∞
dx

[

− �
2

2m
(−α + α2x2) + μx4

]

e−αx2 =

=
√

α

π

[
�
2α

2m
I0 − �

2α2

2m
I2 + μI4

]

= �
2α

4m
+ 3μ

4α2
,

where results (A.3) have been used:
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I0 =
√

π

α
, I2 = 1

2

√
π

α3
, I4 = 3

4

√
π

α5
.

Now we look for the minimum of E(α):

dE(α)

dα
= 0 ⇒ �

2

4m
− 3μ

2α3
= 0 ⇒ α = 3

√
6μm

�2
.

Notice that the second derivative is always positive, so α is effectively a minimum
point. For this value of α, we obtain the following approximate value for the ground
state energy:

E = �
2α

4m

(

1 + 3mμ

�2α3

)

= �
2α

4m

(

1 + 1

2

)

= 3�2

8m
3

√
6mμ

�2
= 3

8
3

√
6μ�4

m2
.

11.2 Ground State of a Potential Well

Use the variational method to evaluate the energy of the ground state for a particle
bound on the segment [−a, a]. Use, as a trial function,

ψ(x;α) = |x |α − aα,

where α is the variational parameter. Compare this approximation with the exact
value and determine the relative error.

Solution

The energy expectation value in the state ψ is

E(α) = 〈ψ |H|ψ〉
〈ψ |ψ〉 =

2
∫ +a
0 dx (xα − aα)

[
− �

2

2m
d2

dx2

]
(xα − aα)

2
∫ +a
0 dx (xα − aα)2

=

= − �
2

4ma2
1 + 3α + 2α2

1 − 2α
.

By requiring that the derivative of E(α) vanishes, there are two solutions

α± = 1

2

(
1 ± √

6
)

.

The solution relative to the+ sign gives us theminimum point sought (the other solu-
tion corresponds to a maximum point). For this value of α, we obtain the following
approximate value for the ground state energy:
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Evar
1 = 1.23737 �

2

ma2
,

to be compared with the exact value

E1 = π2
�
2

8ma2
.

The relative error is equal to

Evar
1 − E1

E1
= 0.002976,

less, therefore, than 0.3%.

11.3 First Energy Levels of a Linear Potential

A particle of mass m moves into a linear central potential

V (r) = Kr.

For this potential, the radial Schrödinger equation presents a natural scale of lengths

r0 = 3

√
�2

2mk ; in terms of the scaled position ρ = r
r0
, it can be rewritten as

[

− d2

dρ2
+ �(� + 1)

ρ2
− ρ

]

ψ(ρ) = εψ(ρ),

where

ε = E

E0
with E0 = 3

√
�2k2

2m
.

By numerically solving this equation, which, in the case � = 0, is the Airy equa-
tion, you find that the lowest eigenvalues for � = 0, 1, 2 are, respectively, ε =
2.3381, 3.3612, 4.2482. Exploiting a trial function that has the correct trend for
ρ → 0, use the variational method to evaluate these eigenvalues.

Solution

Due to the centrifugal potential, the wave function behaves in the origin as ρ�+1.
Because the potential diverges asymptotically, we can use the trial function

ψ(ρ) = ρ�+1 e−αρ.

The energy expectation value in this state is
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E(α) = 〈ψ |H|ψ〉
〈ψ |ψ〉 =

∫ ∞
0 dρ ρ�+1 e−αρ

[
− d2

dρ2 + �(�+1)
ρ2 − ρ

]
ρ�+1 e−αρ

∫ ∞
0 dρ ρ2(�+1) e−2αρ

=

= (2� + 3)! (2α)−2(�+2)(2α3 + 2� + 3)

(2� + 3)! (2α)−(2�+3)
= 2α3 + 2� + 3

2α
,

where, to calculate the integrals, (A.6) has been used. As a function of α, E(α) has
a minimum that can be calculated by imposing the zeroing of its derivative:

4α3 − 2� − 3

2α2
= 0 → α(�) = 3

√
3 + 2�

4
.

Substituting, in E(α), the values � = 0, 1, 2, the following results are obtained:

E(α(0)) = 2.4764, E(α(1)) = 3.4812, E(α(2)) = 4.3566,

which reproduce the numerical results with a variable precision between 3 and 6%.
For the test wave function, an asymptotic Gaussian pattern could also be used. The
integrals are equally calculable, using this time (A.2), and results are obtained with
a slightly higher precision.

11.4 Ground State of Helium

The Helium atom has atomic number Z = 2 and mass number A = 4; thus, there
are two electrons moving around a nucleus of mass equal to 4 times the mass of
Hydrogen and about 8 × 103 the mass of an electron. Assuming this mass to be
infinite, we refer to the coordinates of the two electrons with respect to the nucleus
with r1 and r2 and to their relative position with r12 = r1 − r2. The Helium atom
Hamiltonian is, therefore,

H = − �
2

2m
(∇2

1 + ∇2
2 ) − Ze2

r1
− Ze2

r2
+ e2

r12
.

If there were no repulsive interaction between the two electrons, in the Schrödinger
equation, there would be a separation between the variables of the two electrons and,
E being the energy of the ground state, we would have

ψ0
E (r1, r2) = ψE1(r1) ψE1(r2) = Z3

πa30
e− Z(r1+r2)

a0 . (11.1)

Here, we denoted by E1 and ψE1(r) = (2/
√
4π)(Z/a0)

3
2 · e− Zr

a0 , respectively, the
ground state energy of a Hydrogenlike atom with Z = 2 and the corresponding
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eigenfunction. In this very rough approximation, neglecting the positive term of
attraction between the electrons, the ground state energy would be

E0 = 2 E1 = 2

[

−m(Ze2)2

2�2

]

= −8 · 13.6 eV = −108.8 eV .

Experimentally, it is found that the Helium ground state has energy E = −78.98eV,
a much higher value.

Use the Variational method to improve this approximation.
Hint: the trial functions will again be given by (11.1), however, considering Z as a
parameter to be determined by minimizing the functional

E(Z) =
(

Z3

πa30

)2 ∫
dr1dr2 e

− Z(r1+r2)

a0 He− Z(r1+r2)

a0 .

Solution

The Hamiltonian can be rewritten in the form

H = − �
2

2m
(∇2

1 + ∇2
2 ) − Ze2

r1
− (2 − Z)e2

r1
− Ze2

r2
− (2 − Z)e2

r2
+ e2

r12
.

Taking into account that ψE1 is the solution of the Schrödinger equation in corre-
spondence with the eigenvalue E1, i.e.,

(

− �
2

2m
∇2

1 − Ze2

r1

)

e− Zr1
a0 = − Z2e2

2a0
e− Zr1

a0 ,

it is possible to eliminate the differential operators and so we find

E(Z) =
(

Z3

πa30

)2 ∫
dr1dr2 e

− 2Z(r1+r2)

a0 e2
[

− Z2

a0
− (2 − Z)

r1
− (2 − Z)

r2
+ 1

r12

]

=

=
(
Z3e

πa30

)2 [

− Z2

a0
K1 − 2(2 − Z)K2 + K3

]

.

Here, K1, K2 and K3 are the following integrals:

- K1

K1 =
∫

dr1dr2 e
− 2Z(r1+r2)

a0 =
(

4π
∫ ∞

0
dr r2e−βr

)2

=
(

4π
2

β3

)2

,

where β = 2Z
a0

and (A.8) have been used.
- K2
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K2 =
∫

dr1dr2 e−β(r1+r2)
1

r1
= (4π)2

∫ ∞

0
dr2 r

2
2 e

−βr2

∫ ∞

0
dr1 r1e

−βr1 =

= (4π)2
2

β3

1

β2
= 2(4π)2

β5
.

- K3 (this calculation is also present in Problem 6.27)

K3 =
∫

dr1dr2 e−β(r1+r2)
1

|r1 − r2| =
∫

dr1e−βr1 f (r1),

where

f (r1) =
∫

dr2 e−βr2
1

|r1 − r2|
is a function of r1 only, because, by integrating over thewhole r2 solid angle, the
dependence on the angles disappears. To calculate f (r1), we are free, therefore,
to position r1 in the direction of the z axis.
We get

f (r1) = 2π
∫

dr2 r
2
2 e

−βr2

∫ +1

−1
d cos θ

1
√
r21 + r22 − 2r1r2 cos θ

=

= −2π
∫

dr2 r
2
2 e

−βr2
1

r1r2

[√
r21 + r22 − 2r1r2 cos θ

]+1

−1

=

= 2π

r1

∫
dr2 r2 e

−βr2 (r1 + r2 − |r1 − r2|) =

= 2π

r1

[∫ r1

0
dr2 r2 e

−βr2 (2r2) +
∫ ∞

r1

dr2 r2 e
−βr2 (2r1)

]

=

= 4π

r1β3

[
2 − e−βr1 (2 + βr1)

]
,

where we used the expressions, derived from (A.7),

I2(0, r1) = 1

β3
[2 − (2 + 2r1β + r21β

2)e−βr1 ]

and

I1(r1,∞) = 1

β2
(1 + βr1)e

−βr1 .

Returning to the calculation of K3, we obtain, using the usual integrals (A.8),

K3 = 4π
∫ ∞

0
dr1 r

2
1 e

−βr1
4π

r1β3

[
2 − e−βr1 (2 + βr1)

] = (4π)2

β5

5

4
.
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By inserting these results into the expression for E(Z), we obtain

E(Z) = − e2

a0

(
27

8
Z − Z2

)

,

which takes its minimum value for

Z = Zef f = 27

16

given by

E(Zef f ) = − e2

a0

(
27

8
Zef f − Z2

e f f

)

= −77.5 eV .

This value is very close to the already mentioned experimental value −78.98eV and
provides a better approximation compared to the calculation in Perturbation Theory
(see Problem 6.27). Both approximations calculate the energy of the ground state as
the expectation value of the Hamiltonian in the unperturbed state, but the variational
method modifies the value of Z in such a way as to minimize the difference from the
exact value.

Notice, moreover, that
Zef f < 2.

Taking into account that wave functions are factored, we can consider the approxi-
mation as resulting from a model in which each of the electrons moves in the mean
field of a nucleus with an effective charge Zef f · e, lower than the real one due to the
screen effect produced by the other electron.
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A.1 Frequently Used Integrals

A.1.1 Gaussian Integrals

Having defined

I0(α) =
∫ +∞

−∞
dx e−αx2 =

√
π

α
, (A.1)

we have

I2n+1(α) =
∫ +∞

−∞
dx x2n+1 e−αx2 = 0,

I2n(α) =
∫ +∞

−∞
dx x2n e−αx2 = (−1)n

∂n

∂αn
I0(α) = (−1)n

∂n

∂αn

√
π

α
, (A.2)

for n = 1, 2, . . ..
The results for the first values of n are

I0 =
√

π

α
, I2 = 1

2

√
π

α3
, I4 = 3

4

√
π

α5
. (A.3)

Another Gaussian integral of frequent use is

I (α, β) =
∫ +∞

−∞
dx e−αx2+βx =

√
π

α
e

β2

4α , (A.4)

which also allows you to calculate
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I (α, β) =
∫ +∞

0
dx x sin(βx) e−α2x2 =

= 1

2

∫ +∞

−∞
dx x

eıβx − e−ıβx

2ı
e−α2x2 =

= −1

4

∂

∂β

∫ +∞

−∞
dx

eıβx + e−ıβx

ı
e−α2x2 =

= −1

4

∂

∂β
e− β2

4α2

∫ +∞

−∞
dx

[
e−(αx+ı β

2α )2 + e−(αx−ı β

2α )2
]

=

= −1

4

∂

∂β
e− β2

4α2 2

√
π

α
=

=
√

πβ

4α3
e− β2

4α2 . (A.5)

A.1.2 Integrals of Exponential Functions and Powers

In(0,∞) =
∫ +∞

0
dx xne−x =

[
(−1)n

dn

dαn

∫ +∞

0
dx e−αx

]
α=1

=

=
[
(−1)n

dn

dαn

1

α

]
α=1

= n! (A.6)

Similarly, we find the most general result is

In(a, b) =
∫ b

a
dx xn e−βx = (−1)n

dn

dβn
I0(a, b). (A.7)

For a = 0 and b = ∞, we get

I0(0,∞) = 1

β
; I1(0,∞) = − d

dβ

1

β
= 1

β2
; I2(0,∞) = d2

dβ2

1

β
= 2

β3
. (A.8)

A.2 Continuity Equation

The continuity equation in Quantum Mechanics is

∂P(r, t)
∂t

= −∇ · j(r, t), (A.9)
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where the probability density P is given by

P(r, t) = |ψ(r, t)|2 = ψ∗(r, t) ψ(r, t) (A.10)

and the probability current density is defined as

j(r, t) = �

2ım

[
ψ∗(r, t)∇ψ(r, t) − ψ(r, t)∇ψ∗(r, t)

] = �

ım
�(ψ∗(r, t)∇ψ(r, t)).

(A.11)

A.3 Harmonic Oscillator

A.3.1 Operator Treatment

The eigenvalues of the harmonic oscillator Hamiltonian are

En = (n + 1

2
)�ω , Ĥ |n〉 = En|n〉. (A.12)

In terms of raising and lowering (creation and destruction) operators,

a† =
√
mω

2�
x − i

√
1

2mω�
p, a =

√
mω

2�
x + i

√
1

2mω�
p, (A.13)

the position and momentum operators are given by

x =
√

�

2mω
(a + a†), p = 1

i

√
�mω

2
(a − a†). (A.14)

a and a+ act on the energy eigenkets as follows

a|n〉 = √
n |n − 1〉 a+|n〉 = √

n + 1 |n + 1〉. (A.15)

A.3.2 Position Basis Treatment

The eigenfunctions in the position basis are given by

φn(x) =
(mω

π�

) 1
4 1√

2nn! e
− ξ2

2 Hn(ξ), where ξ =
√
mω

�
x, (A.16)
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where Hn is the Hermite polynomial defined by

Hn(ξ) = (−1)neξ 2 dne−ξ 2

dξ n
. (A.17)

Hermite polynomials are orthogonal polynomials,

∫ +∞

−∞
dξ Hn(ξ)Hm(ξ) = √

π 2n n! δn,m (A.18)

and they satisfy the following recurrence relation:

2ξ Hn(ξ) = Hn+1(ξ) + 2n Hn−1(ξ). (A.19)

First Hermite polynomials

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12, H5(x) = 32x5 − 160x3 + 120x . (A.20)

A.4 Spherical Coordinates

The transition from Cartesian coordinates to spherical coordinates occurs through
the transformation:

x = r sin θ cosφ, (A.21)

y = r sin θ sin φ, (A.22)

z = r cos θ. (A.23)

A.5 Angular Momentum

A.5.1 Operator Treatment

The operators J 2, Jx , Jy, Jz satisfy the following commutation relations:

[J 2, Jx ] = [J 2, Jy] = [J 2, Jz] = 0,

[Jx , Jy] = i�Jz, [Jy, Jz] = i�Jx , [Jz, Jx ] = i�Jy .
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The J 2 and Jz common basis is denoted by | j,m〉:

J 2| j,m〉 = j ( j + 1)�2| j,m〉, Jz| j,m〉 = m�| j,m〉.

The operators
J± = Jx ± i Jy (A.24)

satisfy the following commutation relations with the operators J 2 and Jz :

[J 2, J±] = 0, [Jz, J±] = ±J±. (A.25)

J± act on an eigenket common to J 2 and Jz , raising or lowering the azimuthal
quantum number:

J±| j,m〉 = �

√
j ( j + 1) − m(m ± 1) | j,m ± 1〉. (A.26)

A.5.2 Spherical Harmonics

Definition

Y�,m(θ, φ) = (−1)m
√
2� + 1

4π

(� − |m|)!
(� + |m|)! P

m
� (cos θ) eımφ, (A.27)

where Pm
� are the Legendre associate functions defined for |z| ≤ 1,

Pm
� (z) = (1 − z2)

|m|
2

d |m|

dz|m| P�(z), (A.28)

which, for m = 0, give us the Legendre polynomials P�(z),

P�(z) = 1

2��!
d�

dz�
(1 − z2)�. (A.29)

They are orthogonal polynomials:

∫ +1

−1
dzP�(z)P�′(z) = 2

2� + 1
δ�,�′ . (A.30)

Particular values of Legendre polynomials and associate functions:

P�(±1) = (±1)�, Pm
� (±1) = 0 for m 	= 0. (A.31)
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First Legendre polynomials:

P0(z) = 1, P1(z) = z, P2(z) = 1

2
(3z2 − 1), (A.32)

P3(z) = 1

2
(5z3 − 3z), P4(z) = 1

8
(35z4 − 30z2 + 3). (A.33)

Orthonormalization relationship

∫
d
 Y ∗

�′,m ′(θ, φ) Y�,m(θ, φ) = δ�,�′ δm,m ′ . (A.34)

Recurrence relationship

cos θ Y�,m(θ, φ) = a�,m Y�+1,m(θ, φ) + a�−1,m Y�−1,m(θ, φ), (A.35)

where

a�,m =
√

(� + 1 + m)(� + 1 − m)

(2� + 1)(2� + 3)
. (A.36)

Sum theorem

If (�,�) and (θ ′, φ′) are two space directions and θ is the angle between them, a
Legendre polynomial can be expressed in terms of spherical harmonics:

P�(cos θ) = 4π

2� + 1

+�∑
m=−�

Y�,m(�,�)∗ Y�,m(θ ′, φ′). (A.37)

First Spherical Harmonics

Y0,0(θ, φ) = 1√
4π

, (A.38)

Y1,0(θ, φ) =
√

3

4π
cos θ, Y1,±1(θ, φ) = ∓

√
3

8π
sin θe±ıφ, (A.39)

Y2,0(θ, φ) =
√

5

16π
(3 cos2 θ − 1), Y2,±1(θ, φ) = ∓

√
15

8π
sin θ cos θe±ıφ,

Y2,±2(θ, φ) =
√

15

32π
sin2 θe±2ıφ. (A.40)
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Y3,0(θ, φ) =
√

7

16π
(5 cos3 θ − 3 cos θ) , Y3,±1(θ, φ) = ∓

√
21

64π
sin θ(5 cos2 θ − 1)e±ıφ,

Y3,±2(θ, φ) =
√

105

32π
sin2 θ cos θe±2ıφ , Y3,±3(θ, φ) = ∓

√
35

64π
sin3 θe±3ıφ. (A.41)

A.6 Schrödinger Equation in Spherical Coordinates

A.6.1 Radial Equation

If the potential energy V (r) is central, the Schrödinger equation is separable into
spherical coordinates. The eigenfunction common to the operators H , L2 and Lz ,
with eigenvalues E , �(� + 1)�2 and m�, respectively, can be written in the form

ψE,�,m(r, θ, φ) = RE,�(r) Y�,m(θ, φ) = UE,�(r)

r
Y�,m(θ, φ), (A.42)

where UE,�(r) is the solution to the radial equation:

− �
2

2m

d2UE,�

dr2
+ �

2�(� + 1)

2mr2
UE,� + V (r)UE,� = E UE,�, (A.43)

with m reduced mass of the system.
UE,�(r) must satisfy the condition

lim
r→0

UE,�(r) = 0. (A.44)

A.7 Spherical Bessel Functions

The Spherical Bessel functions are solutions to the Spherical Bessel equation

z2
d2

dz2
φ(z) + 2z

d

dz
φ(z) + [

z2 − �(� + 1)
]
φ(z) = 0. (A.45)

A.7.1 Spherical Bessel Functions of the First and Second
Kinds

Two linearly independent integrals of (A.45) are given by the spherical Bessel func-
tions of the first and second kinds j� and y� = (−1)�+1 j−�−1. For the first integer
values of �, they are
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j0(z) = sin z

z
, (A.46)

j1(z) = sin z

z2
− cos z

z
, (A.47)

j2(z) =
(
3

z2
− 1

)
sin z

z
− 3 cos z

z2
, (A.48)

j3(z) =
(
15

z3
− 6

z

)
sin z

z
−

(
15

z2
− 1

)
cos z

z
, (A.49)

and
y0(z) = −cos z

z
, (A.50)

y1(z) = −cos z

z2
− sin z

z
, (A.51)

y2(z) =
(

− 3

z2
+ 1

)
cos z

z
− 3 sin z

z2
, (A.52)

y3(z) =
(

−15

z3
+ 6

z

)
cos z

z
−

(
15

z2
− 1

)
sin z

z
. (A.53)

Their asymptotic behavior is given by

j�(z) ∼
z→∞

1

z
cos

(
z − � + 1

2
π

)
(A.54)

and

y�(z) ∼
z→∞

1

z
sin

(
z − � + 1

2
π

)
, (A.55)

while the behavior in the origin is given by

j�(z) ∼
z→0

z�

(2� + 1)!! (A.56)

and

y�(z) ∼
z→∞ − (2� − 1)!!

z�+1
. (A.57)
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A.7.2 Spherical Hankel Functions

Other linearly independent solutions to theSphericalBessel equation are the spherical
Hankel functions of the first and second kinds defined by

h(1)
� (z) = j�(z) + ı y�(z), (A.58)

h(2)
� (z) = j�(z) − ı y�(z). (A.59)

Their asymptotic behavior is given by

h(1)
� (z) ∼

z→∞
1

z
eı(z−

�+1
2 π), (A.60)

h(2)
� (z) ∼

z→∞
1

z
e−ı(z− �+1

2 π). (A.61)

When the argument is an imaginary number, theHankel functions have an exponential
asymptotic behavior:

h(1)
� (ı z) ∼

z→∞
1

ı z
e(−z−ı �+1

2 π), (A.62)

and

h(2)
� (ı z) ∼

z→∞
1

ı z
e(z+ı �+1

2 π). (A.63)

A.8 Hydrogen Atom First Energy Eigenfunctions

Having introduced a0 = �
2

μe2 , the Bohr radius, the first two energy eigenfunctions are

ψ1,0,0 = 1√
π
a

− 3
2

0 e− r
a0 , (A.64)

ψ2,0,0 = 1

4
√
2π

a
− 3

2
0

(
2 − r

a0

)
e− r

2a0 , (A.65)

ψ2,1,0 = 1

4
√
2π

a
− 3

2
0

r

a0
e− r

2a0 cos θ, (A.66)

ψ2,1,±1 = 1

8
√
2π

a
− 3

2
0

r

a0
e− r

2a0 sin θ e±ıϕ. (A.67)



248 Appendix: Useful Formulas

A.9 Spin

A.9.1 Pauli Matrices

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.68)

σiσ j = δi j + εi jkσk, (A.69)

{σi , σ j } = σiσ j + σ jσi = 2δi j , (A.70)

[σiσ j ] = σiσ j − σ jσi = 2iεi jkσk . (A.71)

A.9.2 Useful Relationships

(A · σ ) (B · σ ) = (A · B) I + i (A × B) · σ , (A.72)

where I is the identity matrix. In particular, if A = B,

(A · σ )2 = A2
I, (A.73)

eiθ ·σ = I cos θ + i(n · σ ) sin θ, where n = θ

θ
. (A.74)

A.10 Time-Independent Perturbation Theory

Let us consider the Hamiltonian

H = H0 + H1,

where the solution to the H0 eigenvalue problem is supposed to be known:

H0|n0〉 = E0
n |n0〉.

If E0
n is not a degenerate eigenvalue and the matrix elements 〈m0|H1|n0〉 are small

compared to E0
n , given the following expansions for the H eigenvalues En and

eigenkets |n〉:
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En = E0
n + E1

n + E2
n + · · · ,

|n〉 = |n0〉 + |n1〉 + |n2〉 + · · · ,

we get
E1
n = 〈n0|H1|n0〉, (A.75)

E2
n =

∑
m 	=n

|〈m0|H1|n0〉|2
E0
n − E0

m

, (A.76)

|n1〉 =
∑
m 	=n

〈m0|H1|n0〉
E0
n − E0

m

|m0〉. (A.77)

If E0
n is degenerate, the first-order corrections to the eigenvalues are given from the

eigenvalues of the matrix representative of H1 in the E0
n eigenspace, obtained from

det
[
(H1)m, j − E1

n δm, j
] = 0. (A.78)

A.11 Sudden Perturbation

A sudden perturbation is an abrupt change of the Hamiltonian

H0 → H = H0 + H1,

where H0 and H1 do not depend on time. A sudden perturbation does not modify
the state vector. Assuming that the system is initially in a state |n0〉, an eigenket of
H0, the probability of measuring an energy Ek , eigenvalue of the new Hamiltonian,
that is, the probability of the transition |n0〉 → |k〉, is given by

Pn→k = |〈k|n0〉|2. (A.79)

If it make sense to apply Perturbation Theory for non-degenerate eigenvalues, the
probability of a transition to states k 	= n is

Pn→k =
∣∣∣∣ 〈k

0|H1|n0〉
E0
k − E0

n

∣∣∣∣
2

. (A.80)
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A.12 Time-Dependent Perturbation Theory

Let us consider a Hamiltonian

H = H0 + H1(t)

for which the solution to the H0 eigenvalue problem is known:

H0|n0〉 = E0
n |n0〉.

Suppose that H1 depends on time and the matrix elements 〈m0|H1|n0〉 are small
compared to E0

n . We can write the system state vector in the form

|ψ(t)〉 =
∑
n

dn(t) e
−i E0n

�
t |n0〉. (A.81)

Having called the probability of finding the system in the state vector | f 0〉 as Pi→ f ,
provided that, at time t = 0, it is in state |i (0)〉, at first perturbative order, it results
that

Pi→ f (t) = |d f (t)|2 =
∣∣∣∣− ı

�

∫ t

0
dτ 〈 f 0|H1(τ )|i0〉 eıω f i τ

∣∣∣∣
2

, (A.82)

where ω f i = E0
f −E0

i

�
and f 	= i .

A.13 Born Approximation

Having called the wave vectors of the incident and deflected particle as k and k′,
respectively, the Born approximation to the scattering amplitude for the potential
V (r) is given by

fB(k,k′) = − m

2π�2

∫
dr e−ik′ ·r V (r) eik·r, (A.83)

where m is the system reduced mass.
If the potential is central, the expression simplifies:

fB(q) = − 2m

�2q

∫ ∞

0
dr sin(qr) V (r) r, (A.84)

where, since we consider elastic scattering, q = |k − k′| = 2k sin θ
2 and θ is the

angle of deflection.
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A.14 WKB Approximation

We consider a one-dimensional system of a particle with mass m and energy E
subject to a potential V (x) and define p(x) as the classical momentum:

p(x) = √
E − V (x).

If the energy E is less than the potential V (x) for each point outside of a certain range
[a, b], the eigenvalue E belongs to the discrete spectrum. In theWKBapproximation,
the eigenvalues are given by the relationship

1

�

∫ a

b
dx p(x) = (n + 1

2
)π with n = 0, 1, 2, . . .. (A.85)

Equivalently, if we consider an entire classical oscillation between the two classical
turning points a and b and back to a, this relation can be rewritten in the form of the
Bohr-Sommerfeld quantization rule:

∮
dx p(x) =

∫
D
dx dp = 2π�(n + 1

2
), with n = 0, 1, 2, . . . (A.86)

where, in the first expression, the integral is extended to the complete classical tra-
jectory and, in the second one, to the D domain delimited by it.

If the energy E is greater than the potential V (x) for each point outside of the
interval [a, b], the eigenvalue E belongs to the continuous spectrum and we are in
the presence of a potential barrier. The probability of crossing the barrier in WKB
approximation is given by

T = e− 2
�

∫ b
a dy |p(y)|. (A.87)
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