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Preface

I must have been 8 or 9 when my father, a man of letters but well-read in every dis-
cipline and with a curious mind, told me this story: “A great scientist named Albert
Einstein discovered that any object with a mass can’t travel faster than the speed of
light”. To my bewilderment I replied, boldly: “This can’t be true, if I run almost at
that speed and then accelerate a little, surely I will run faster than light, right?”. My
father was adamant: “No, it’s impossible to do what you say, it’s a known physics
fact”. After a while I added:“That bloke, Einstein, must’ve checked this thing many
times . . . how do you say, he did many experiments?”. The answer I got was utterly
unexpected: “No, not even one I think, he used maths!”.

What did numbers and geometrical figures have to do with the existence of a
limit speed? How could one stand behind such an apparently nonsensical statement
as the existence of a maximum speed, although certainly true (I trusted my father),
just based on maths? How could mathematics have such big a control on the real
world? And physics? What on earth was it, and what did it have to do with maths?
This was one of the most beguiling and irresistible things I had ever heard till that
moment . . . I had to find out more about it.

This is an extended and enhanced version of an existing textbook written in Italian
(and published by Springer-Verlag). That edition and this one are based on a common
part that originated, in preliminary form, when I was a Physics undergraduate at the
University of Genova. The third-year compulsory lecture course called Institutions
of Theoretical Physics was the second exam that had us pupils seriously climbing the
walls (the first being the famous Physics II, covering thermodynamics and classical
electrodynamics).

Quantum Mechanics, taught in that course, elicited a novel and involved way of
thinking, a true challenge for craving students: for months we hesitantly faltered on a
hazy and uncertain terrain, not understanding what was really key among the notions
we were trying – struggling, I should say – to learn, together with a completely new
formalism: linear operators on Hilbert spaces. At that time, actually, we did not real-
ise we were using this mathematical theory, and for many mates of mine the matter



VI Preface

would have been, rightly perhaps, completely futile; Dirac’s bra vectors were what
they were, and that’s it! They were certainly not elements in the topological dual of
the Hilbert space. The notions of Hilbert space and dual topological space had no
right of abode in the mathematical toolbox of the majority of my fellows, even if
they would soon come back in throught the back door, with the course Mathematical
Methods of Physics taught by prof. G. Cassinelli. Mathematics, and the mathematical
formalisation of physics, had always been my flagship to overcome the difficulties
that studying physics presented me with, to the point that eventually (after a Ph.D. in
theoretical physics) I officially became a mathematician. Armed with a maths back-
ground – learnt in an extracurricular course of study that I cultivated over the years,
in parallel to academic physics – and eager to broaden my knowledge, I tried to form-
alise every notion I met in that new and riveting lecture course. At the same time I
was carrying along a similar project for the mathematical formalisation of General
Relativity, unaware that the work put into Quantum Mechanics would have been in-
commensurably bigger.

The formulation of the spectral theorem as it is discussed in § 8, 9 is the same
I learnt when taking the Theoretical Physics exam, which for this reason was a dia-
logue of the deaf. Later my interest turned to quantum field theory, a topic I still work
on today, though in the slightly more general framework of quantum field theory in
curved spacetime. Notwithstanding, my fascination with the elementary formulation
of Quantum Mechanics never faded over the years, and time and again chunks were
added to the opus I begun writing as a student.

Teaching Master’s and doctoral students in mathematics and physics this ma-
terial, thereby inflicting on them the result of my efforts to simplify the matter, has
proved to be crucial for improving the text; it forced me to typeset in LATEX the pile
of loose notes and correct several sections, incorporating many people’s remarks.

Concerning this I would like to thank my colleagues, the friends from the news-
groups it.scienza.fisica, it.scienza.matematica and free.it.scienza.fisica, and the many
students – some of which are now fellows of mine – who contributed to improve the
preparatory material of the treatise, whether directly of not, in the course of time: S.
Albeverio, P. Armani, G. Bramanti, S. Bonaccorsi, A. Cassa, B. Cocciaro, G. Collini,
M. Dalla Brida, S. Doplicher, L. Di Persio, E. Fabri, C. Fontanari, A. Franceschetti,
R. Ghiloni, A. Giacomini, V. Marini, S. Mazzucchi, E. Pagani, E. Pelizzari, G. Tes-
saro, M. Toller, L. Tubaro, D. Pastorello, A. Pugliese, F. Serra Cassano, G. Ziglio,
S. Zerbini. I am indebted, for various reasons also unrelated to the book, to my late
colleague Alberto Tognoli. My greatest appreciation goes to R. Aramini, D. Cada-
muro and C. Dappiaggi, who read various versions of the manuscript and pointed out
a number of mistakes.

I am grateful to my friends and collaborators R. Brunetti, C. Dappiaggi and N.
Pinamonti for lasting technical discussions, suggestions on many topics covered and
for pointing out primary references.

Lastly I would like to thank E. Gregorio for the invaluable and on-the-spot tech-
nical help with the LATEX package.
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In the transition from the original Italian to the expanded English version a mas-
sive number of (uncountably many!) typos and errors of various kind have been
amended. I owe to E. Annigoni, M. Caffini, G. Collini, R. Ghiloni, A. Iacopetti,
M. Oppio and D. Pastorello in this respect. Fresh material was added, both math-
ematical and physical, including a chapter, at the end, on the so-called algebraic
formulation.

In particular, Chapter 4 contains the proof of Mercer’s theorem for positive
Hilbert–Schmidt operators. The now-deeper study of the first two axioms of Quantum
Mechanics, in Chapter 7, comprises the algebraic characterisation of quantum states
in terms of positive functionals with unit norm on the C∗-algebra of compact operat-
ors. General properties of C∗-algebras and ∗-morphisms are introduced in Chapter 8.
As a consequence, the statements of the spectral theorem and several results on func-
tional calculus underwent a minor but necessary reshaping in Chapters 8 and 9.
I incorporated in Chapter 10 (Chapter 9 in the first edition) a brief discussion on
abstract differential equations in Hilbert spaces. An important example concerning
Bargmann’s theorem was added in Chapter 12 (formerly Chapter 11). In the same
chapter, after introducing the Haar measure, the Peter–Weyl theorem on unitary rep-
resentations of compact groups is stated, and partially proved. This is then applied to
the theory of the angular momentum. I also thoroughly examined the superselection
rule for the angular momentum. The discussion on POVMs in Chapter 13 (formerly
Chapter 12) is enriched with further material, and I included a primer on the funda-
mental ideas of non-relativistic scattering theory. Bell’s inequalities (Wigner’s ver-
sion) are given considerably more space. At the end of the first chapter basic point-set
topology is recalled together with abstract measure theory. The overall effort has been
to create a text as self-contained as possible. I am aware that the material presented
has clear limitations and gaps. Ironically – my own research activity is devoted to
relativistic theories – the entire treatise unfolds at a non-relativistic level, and the
quantum approach to Poincaré’s symmetry is left behind.

I thank my colleagues F. Serra Cassano, R. Ghiloni, G. Greco, A. Perotti and
L. Vanzo for useful technical conversations on this second version. For the same
reason, and also for translating this elaborate opus to English, I would like to thank
my colleague S.G. Chiossi.

Trento, September 2012 Valter Moretti
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1

Introduction and mathematical backgrounds

“O frati”, dissi “che per cento milia
perigli siete giunti a l’occidente,
a questa tanto picciola vigilia
d’i nostri sensi ch’è del rimanente
non vogliate negar l’esperienza,
di retro al sol, del mondo sanza gente”.
Dante Alighieri, The Divine Comedy, Inferno XXVI1

1.1 On the book

1.1.1 Scope and structure

One of the aims of the present book is to explain the mathematical foundations of
Quantum Mechanics, and Quantum Theories in general, in a mathematically rigor-
ous way. That said, this is a treatise on Mathematics (or Mathematical Physics) rather
than a text on Quantum Mechanics. Except for a few cases, the physical phenomen-
ology is left in the background, to privilege the theory’s formal and logical aspects.
At any rate several examples of the physical formalism are presented, lest one lose
touch with the world of physics.

In alternative to, and irrespective of, the physical content, the book should be
considered as an introductory text, albeit touching upon rather advanced topics, on
functional analysis on Hilbert spaces, including a few elementary yet fundamental
results on C∗-algebras. Special attention is given to a series of results in spectral the-
ory, such as the various formulations of the spectral theorem for bounded normal
operators and not necessarily bounded, self-adjoint ones. This is, as a matter of fact,
one further scope of the text. The mathematical formulation of Quantum Theories
is “confined” to Chapters 6, 7, 11, 12, 13 and partly 14. The remaining chapters are
logically independent of those, although the motivations for certain mathematical
definitions are to be found in Chapters 7, 10, 11, 12, 13 and 14.

A third purpose is to collect in one place a number of rigorous and useful res-
ults on the mathematical structure of Quantum Mechanics and Quantum Theories.
These are more advanced than what is normally encountered in quantum physics’

1 “Brothers” I said, “who through a hundred thousand dangers have reached the channel to
the west, to the short evening watch which your own senses still must keep, do not choose
to deny the experience of what lies past the Sun and of the world yet uninhabited.” Dante
Alighieri, The Divine Comedy, translated by J. Finn Cotter, edited by C. Franco, Forum
Italicum Publishing, New York, 2006.

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
DOI 10.1007/978-88-470-2835-7_1, © Springer-Verlag Italia 2013
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manuals. Many of these aspects have been known for a long time but are scattered
in the specialistic literature. We should mention Gleason’s theorem, the theorem of
Kochen and Specker, the theorems of Stone–von Neumann and Mackey, Stone’s the-
orem and von Neumann’s theorem about one-parameter unitary groups, Kadison’s
theorem, besides the better known Wigner, Bargmann and GNS theorems; or, more
abstract operator theory such as Fuglede’s theorem, or the polar decomposition for
closed unbounded operators (which is relevant in the Tomita-Takesaki theory and
statistical Quantum Mechanics in relationship to the KMS condition); furthermore,
self-adjoint properties for symmetric operators, due to Nelson, that descend from the
existence of dense sets of analytical vectors, and finally, Kato’s work (but not only
his) on the essential self-adjointness of certain kinds of operators and their limits from
the bottom of the spectrum (mostly based on the Kato-Rellich theorem).

Some chapters suffice to cover a good part of the material suitable for advanced
courses on Mathematical Methods in Physics; this is common for Master’s degrees
in Physics or doctoral degrees, if we assume a certain familiarity with notions, results
and elementary techniques of measure theory. The text may also be used for a higher-
level course in Matematical Physics that includes foundational material on Quantum
Mechanics. In the attempt to reach out to Master or Ph.D. students, both in phys-
ics with an interest in mathematical methods or in mathematics with an inclination
towards physical applications, the author has tried to prepare a self-contained text,
as far as possible: hence a primer on general topology and abstract measure theory
was included, together with an appendice on differential geometry. Most chapters are
accompanied by exercises, many of which solved explicitly.

The book could, finally, be useful to scientists when organising and presenting
accurately the profusion of advanced material disseminated in the literature.

At the end of this introductory chapter some results from topology and measure
theory are recalled, much needed throughout the whole treatise. The rest of the book is
ideally divided into three parts. The first part, up to Chapter 5, regards the general the-
ory of operators on Hilbert spaces, and introduces several fairly general notions, like
Banach spaces. Core results are proved, such as the theorems of Baire, Hahn–Banach
and Banach–Steinhaus, as well as the fixed-point theorem of Banach-Caccioppoli,
the Arzelà–Ascoli theorem and Fredholm’s alternative, plus some elementary con-
sequences. In this part basic topological notions are summarised, in the belief that
this might benefit physics’ students. The latter’s training on general topology is at
times disparate and often presents gaps, because this subject is, alas, usually taught
sporadically in physics’ curricula, and not learnt in an organic way like students in
mathematics do.

Part two of the book ends in Chapter 10. Beside setting out the quantum formal-
ism, it develops spectral theory in terms of projector-valued measures, up to the spec-
tral decomposition theorems for unbounded self-adjoint operators on Hilbert spaces.
This includes the features of maps of operators (functional analysis) for measurable
maps that are not necessarily bounded, whose general spectral aspects and domain
properties are investigated. A great emphasis is placed on the structure of C∗-algebras
and the relative functional calculus, including an elementary study of Gelfand’s trans-
form and the commutative Gelfand–Najmark theorem. The technical results leading
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to the spectral theorem are stated and proven in a completely abstract manner in
Chapter 8, forgetting that the algebras in question are actually operator algebras, and
thus showing their broader validity. In Chapter 10 spectral theory is applied to several
practical and completely abstract contexts, both quantum and not.

Chapter 6 treats, from a physical perspective, the motivation underlying the
theory. The general mathematical formulation of Quantum Mechanics concerns
Chapter 7. The mathematical starting point is the idea, going back to von Neumann,
that the propositions of physical quantum systems are described by the lattice of or-
thogonal projectors on a complex Hilbert space. Maximal sets of physically compat-
ible propositions (in the quantum sense) are described by distributive and orthocom-
plemented, bounded andσ -complete lattices. From this standpoint the quantum defin-
ition of an observable in terms of a self-adjoint operator is extremely natural, as is,
on the other hand, the formulation of the spectral decomposition theorem. Quantum
states are defined as measures on the lattice of all orthogonal projectors, which is
no longer distributive (due to the presence, in the quantum world, of incompatible
propositions and observables). Using Gleason’s theorem states are characterised as
positive operators of trace class with unit trace. Pure states (rays in the Hilbert space
of the physical system) arise as extreme elements of the convex body of states.

The third part of the book is devoted to formulating axiomatically the mathemat-
ical foundations of Quantum Mechanics and investigating more advanced topics like
quantum symmetries and the algebraic formulation of quantum theories. A compre-
hensive study is reserved to the notions of quantum symmetry and symmetry group
(both Wigner’s and Kadison’s definitions are discussed). Dynamical symmetries and
the quantum version of Nöther’s theorem are covered as well. The Galilean group
is employed repeatedly, together with its subgroups and central extensions, as ref-
erence symmetry group, to explain the theory of projective unitary representations.
Bargmann’s theorem on the existence of unitary representations of simpy connected
Lie groups whose Lie algebra obeys a certain cohomology constraint is proved, and
Bargmann’s rule of superselection of the mass is discussed in detail. Then the useful
theorems of Gårding and Nelson for projective unit ary representations of Lie groups
of symmetries are considered. Important topics are examined that are often neglected
in manuals, like the formulation of the uniqueness of unitary representations of the
canonical commutation relations (theorems of Stone–von Neumann and Mackey),
or the theoretical difficulties in defining time as the conjugate operator to energy
(the Hamiltonian). The mathematical hurdles one must overcome in order to make
the statement of Ehrenfest’s theorem precise are briefly treated. Chapter 14 offers
an introduction to the ideas and methods of the abstract formulation of observables
and algebraic states via C∗-algebras. Here one finds the proof to the GNS theorem
and some consequences of purely mathematical flavour, like the general theorem of
Gelfand–Najmark. This closing chapter contains also material on quantum symmet-
ries in an algebraic setting. As example the notion of C∗-algebra of Weyl associated
to a symplectic space (usually infinite-dimensional) is discussed.

The appendices at the end of the book recap elementary notions about partially
ordered sets, group theory and differential geometry.
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The author has chosen not to include topics, albeit important, such as the theory
of rigged Hilbert spaces (the famous Gelfand triples); doing so would have meant
adding further preparatory material, in particular regarding the theory of distributions.

1.1.2 Prerequisites

Essential requisites to understand the book’s contents (apart from firm backgrounds
on linear algebra, plus some group- and representation theory) are the basics of calcu-
lus in one and several real variables, measure theory on σ -algebras [Coh80, Rud82]
(summarised at the end of the chapter), and a few notions about complex functions.
Imperative, on the physics’ side, is the acquaintance with undergraduate Physics.
More precisely, Analytical Mechanics (the groundwork of Hamilton’s formulation
of dynamics) and Electromagnetism (the key features of electromagnetic waves and
the crucial wavelike phenomena like interference, diffraction, scattering).

Lesser elementary, useful facts will be recalled where needed (examples included)
to allow for a solid understanding. One section of Chapter 12 will use the notion of
Lie group and elemental facts from the corresponding theory. For these we refer to
the book’s epilogue: the last appendix summarises some useful differential geometry
rather thoroughly. More details should be seeked in [War75, NaSt82].

1.1.3 General conventions

1. The symbol := means “equal, by definition, to”.
2. The inclusion symbols ⊂,⊃ allow for equality =.
3. The symbol

⊔
denotes the disjoint union.

4. N is the set of natural numbers including nought, and R+ := [0,+∞).
5. Unless otherwise stated, the field of scalars of a normed/Banach/Hilbert vector

space is the field of complex numbers C. Inner product always means Hermitian
inner product, unless specified differently.

6. The complex conjugate of a number c will be denoted by c. The same symbol
is used for the closure of a set of operators; should there be confusion, we will
comment on the meaning.

7. The inner/scalar product of two vectors ψ ,φ in a Hilbert space H will be indic-
ated by (ψ |φ) to distinguish it from the ordered pair (ψ ,φ). The product’s left
entry is antilinear: (αψ |φ) = α(ψ |φ).
If ψ ,φ ∈ H, the symbols ψ(φ | ) and (φ | )ψ denote the same linear operator
H � χ 	→ (φ |χ)ψ .

8. Complete orthonormal systems in Hilbert spaces will be called Hilbert bases, or
bases for short.

9. The word operator tacitly implies linear operator, even though this will be often
understated.

10. A linear operator U : H → H′ between Hilbert spaces H and H′ that is isometric
and onto will be called unitary, even if elsewhere in the literature the name is
reserved for the case H = H′.
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11. By vector subspace we will mean a subspace for the vector-space operations,
even in presence of additional structures on the ambient space (e.g. Hilbert,
Banach etc.).

12. For the Hermitian conjugation we will always use the symbol ∗. Hermitian oper-
ator, symmetric operator, and self-adjoint operator will not be considered syn-
onyms.

13. One-to-one, 1-1, and injective are synonyms, just like onto and surjective. Biject-
ive means simultaneously one-to-one and onto. Beware that a one-to-one corres-
pondence is a bijective mapping. An isomorphism, irrespective of the algebraic
structure at stake, is a 1-1 map onto its image, hence a bijective homomorphism.

14. Boldface typeset (within a definition or elsewhere) is typically used when defin-
ing a term for the first time.

15. Corollaries, definitions, examples, lemmas, notations, remarks, propositions, and
theorems are all labelled sequentially to simplify their retrieval.

16. At times we will use the shorthand “iff”, instead of ‘if and only if’, to say that
two statements imply one another, i.e. they are logically equivalent.

1.2 On Quantum Mechanics

1.2.1 Quantum Mechanics as a mathematical theory

From a mathematical point of view Quantum Mechanics (QM) represents a rare blend
of mathematical elegance and descriptive insight into the physical world. The theory
essentially makes use of techniques of functional analysis mixed with incursions and
overlaps with measure theory, probability and mathematical logic.

There are (at least) two possible ways to formulate precisely (i.e. mathematic-
ally) elementary QM. The eldest one, historically speaking, is due to von Neumann
(1932) in essence, and is formulated using the language of Hilbert spaces and the
spectral theory of unbounded operators. A more recent and mature formulation was
developed by several authors in the attempt to solve quantum-field-theory problems
in mathematical physics; it relies on the theory of abstract algebras (∗-algebras and
C∗-algebras) built mimicking operator algebras that were defined and studied, again,
by von Neumann (nowadays known as W ∗-algebras or von Neumann algebras), but
freed from the Hilbert-space structure (for instance, [BrRo02] is a classic on operator
algebras). The core result is the celebrated GNS theorem (from Gelfand, Najmark and
Segal) [Haa96, BrRo02] that we will prove in Chapter 14. The newer formulation can
be considered an extension of the former one, in a very precise sense that we shall
not go into here, also by virtue of the novel physical context it introduces and by the
possibility of treating physical systems with infinitely many degrees of freedom, i.e.
quantum fields. In particular, this second formulation makes precise sense of the de-
mand for locality and covariance of relativistic quantum field theories [Haa96], and
allows to extend quantum field theories to curved spacetime.

The algebraic formulation in elementary QM is not strictly necessary, even though
it can be achieved and is very elegant (see for example [Str05a] and parts of [DA10]).
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Given the relatively basic nature of our book we shall treat almost exclusively the first
formulation, which displays an impressive mathematical complexity together with a
manifest formal elegance. We will introduce the algebraic formulation in the last
chapter only, and stay within the general framework rather than consider QM as a
physical object.

A crucial mathematical tool to develop a Hilbert-space formulation for QM is the
so-called spectral theorem for self-adjoint operators (unbounded, usually) defined on
dense subspaces of a Hilbert space. This theorem, which can be extended to normal
operators, was first proved by von Neumann in [Neu32] apropos the mathematical
structure of QM: this fundamental work ought to be considered a XX century mile-
stone of mathematical physics and pure mathematics. The definition of abstract Hil-
bert spaces and much of the relative general theory, as we know it today, are also due
to von Neumann and his formalisation of QM. Von Neumann built the modern and ax-
iomatic notion of an abstract Hilbert space by considering, in [Neu32, Chapter 1], the
two approaches to QM known at that time: the one relying on Heisenberg matrices,
and the one using Schrödinger’s wavefunctions.

The relationship between QM and spectral theory depends upon the following
fact. The standard way of interpreting QM dictates that physical quantities that are
measurable over quantum systems can be associated to unbounded self-adjoint oper-
ators on a suitable Hilbert space. The spectrum of each operator coincides with the
collection of values the associated physical quantity can attain. The construction of
a physical quantity from easy properties and propositions of the type “the value of
the quantity falls in the interval (a,b]”, which correspond to orthogonal projectors in
the adopted mathematical scheme, is nothing else but an integration procedure with
respect to an appropriate projector-valued spectral measure. In practice the spectral
theorem is just a means to construct complicated operators starting from projectors,
or conversely, decompose operators in terms of projector-valued measures.

The contemporary formulation of spectral theory is certainly different from von
Neumann’s, although the latter already contained all basic constituents. Von Neu-
mann’s treatise (dating back 1932) discloses still today an impressive depth, espe-
cially in the most difficult sides of the physical interpretation of QM’s formalism:
by reading that book it becomes clear that von Neumann was well aware of these
issues, as opposed to many colleagues of his. It would be interesting to juxtapose his
opus to the much more renowned book by Dirac [Dir30] on QM’s fundamentals, a
comparison that we leave to the interested reader. At any rate, the great interpret-
ative profundity given to QM by von Neumann begins to be recognised by experi-
mental physicists as well, in particular those concerned with quantum measurements
[BrKh95].

The so-called Quantum Logics arise from the attempt to formalise QM from the
most radical position: endowing the same logic used to treat quantum systems with
properties different from those of ordinary logic, and modifying the semantic the-
ory. For example, more than two truth values are possible, and the Boolean lattice of
propositions is replaced by a more complicated non-distributive structure. In the first
formulation of quantum logic, known as Standard Quantum Logic and introduced by
Von Neumann and Birkhoff in 1936, the role of the Boolean algebra of propositions
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is taken by an orthomodular lattice: this is modelled, as a matter of fact, on the set of
orthogonal projectors on a Hilbert space, or the collection of closed projection spaces
[Bon97], plus some composition rules. Despite its sophistication, that model is known
to contain many flaws when one tries to translate it in concrete (operational) physical
terms. Beside the various formulations of Quantum Logic [Bon97, DCGi02, EGL09],
there are also other foundational fomulations based on alternative viewpoints (e.g.,
topos theory).

1.2.2 QM in the panorama of contemporary Physics

Quantum Mechanics, roughly speaking the physical theory of the atomic and sub-
atomic world, and General and Special Relativiy (GSR) – the physical theory of
gravity, the macroscopic world and cosmology, represent the two paradigms through
which the physics of the XX and XXI centuries developed. These two paradigms
coalesced, in several contexts, to give rise to relativistic quantum theories. Relativ-
istic Quantum Field Theory [StWi00, Wei99], in particular, has witnessed a striking
growth and a spectacular predictive and explanatory success in relationship to the
theory of elementary particles and fundamental interactions. One example for all: re-
garding the so-called standard model of elementary particles, that theory predicted
the unification of the weak and electromagnetic forces which was confimed experi-
mentally at the end of the ‘80s during a memorable experiment at the C.E.R.N., in
Geneva, where the particles Z0 and W±, expected by electro-weak unification, were
first observed.

The best-ever accuracy in the measurement of a physical quantity in the whole
history of Physics was predicted by quantum electrodynamics. The quantity is the
so-called gyro-magnetic ratio of the electron g, a dimensionless number. The value
expected by quantum electrodynamics for a := g/2−1 was

0.001159652359±0.000000000282 ,

and the experimental result turned out to be

0.001159652209±0.000000000031 .

Many physicists believe QM to be the fundamental theory of the universe (more
than relativistic theories), also owing to the impressive range of linear scales where
it holds: from 1m (Bose-Einstein condensates) to at least 10−16m (inside nucleons:
quarks). QM has had an enormous success, both theoretical and experimental, in
materials’ science, optics, electronics, with several key technological repercussions:
every technological object of common use that is complex enough to contain a semi-
conductor (childrens’ toys, mobiles, remote controls . . . ) exploits the quantum prop-
erties of matter.

Going back to the two major approaches of the past century – QM and GSR –
there remain a number of obscure points where the paradigms seem to clash; in par-
ticular the so-called “quantisation of gravity” and the structure of spacetime at Planck
scales (10−33cm, 10−43s, the length and time intervals obtained from the fundamental
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constants of the two theories: the speed of light, the universal constant of gravity and
Planck’s constant). The necessity of a discontinuous spacetime at ultra-microscopic
scales is also reinforced by certain mathematical (and conceptual) hurdles that the
so-called theory of quantum Renormalisation has yet to overcome, as consequence
of the infinite values arising in computing processes due to the interaction of ele-
mentary particles. From a purely mathematical perspective the existence of infinite
values is actually related to the problem, already intrinsically ambiguous, of defining
the product of two distributions: infinites are not the root of the problem, but a mere
manifestation of it.

These issues, whether unsolved or partially solved, have underpinned important
theoretical advancements of late, which in turn influenced the developments of pure
mathematics itself. Examples include (super-)string theory, and the various Noncom-
mutative Geometries, first of all A. Connes’ version and the so-called Loop Quantum
Gravity. The difficulty in deciding which of these theories makes any physical sense
and is apt to describe the universe at very small scales is also practical: today’s tech-
nology is not capable of preparing experiments that enable to distinguish among all
available theories. However, it is relevant to note that recent experimental observa-
tions of the so-called γ-bursts, conducted with the telescope “Fermi Gamma-ray”,
have lowered the threshold for detecting quantum-gravity phenomena (e.g. the viol-
ation of Lorentz’s symmetry) well below Planck’s length2. Other discrepancies be-
tween QM and GSR, about which the debate is more relaxed today than it was in the
past, have to do with QM vs the notions of locality of relativistic nature (Einstein-
Podolsky-Rosen paradox [Bon97]) in relationship to QM’s entanglement phenom-
ena. This is due in particular to Bell’s study of the late ‘60s, and to the famous ex-
periments of Aspect that first disproved Einstein’s expectations, secondly confirmed
the Copenhagen interpretation, and eventually proved that nonlocality is a character
istic of Nature, independent of whether one accepts the standard interpretation of QM
or not. The vast majority of physicists seems to agree that the existence of nonlocal
physical processes, as QM forecasts, does not imply any concrete violation of Re-
lativity’s core (quantum entanglement does not involve superluminal transmission of
information nor the violation of causality [Bon97]).

In the standard interpretation of QM that is called of Copenhagen there are parts
that remain physically and mathematically unintelligible, yet still very interesting
conceptually. In particular, and despite several appealing attempts, it it still not clear
how standard mechanics may be seen as a subcase, or limiting case, of QM, nor
how to demarcate (even roughly, or temporarily) the two worlds. Further, the ques-
tion remains of the physical and mathematical description of the so-called process
of quantum measurement, of which more later, that is strictly related to the classical
limit of QM. From this fact, as well, other interpretations of the QM formalisms
were born that differ deeply from Copenhagen’s interpretation. Among these more
recent interpretations, once considered heresies, Bohm’s interpretation relies on hid-
den variables [Bon97, Des99] and is particularly intriguing.

2 Abdo A.A. et al.: A limit on the variation of the speed of light arising from quantum gravity
effects. Nature 462, 331–334 (2009).
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Doubts are sometimes raised about the formulation of QM and on it being not
truly clear, but just a list of procedures that “actually work”, whereas its true nature
is something inaccessible, sort of “noetic”. In the author’s opinion a dangerous epi-
stemological mistake hides behind this point of view. The misconception is based
on the belief that “explaining” a phenomenon means reducing it to the categories
of daily life, as if everyday experience reached farther than reality itself. Quite the
contrary: those categories were built upon conventional wisdom, and hence without
any alleged metaphysical insight. Behind that simple “actually works” a deep philo-
sophical landscape could unfold and draw us closer to reality rather than pushing us
farther away. Quantum Mechanics taught us to think in a different fashion, and for
this reason it has been (is, actually) an incredible opportunity for the human enter-
prise. To turn our backs to QM and declare we do not understand it because it refuses
to befit our familiar mental categories means to lock the door that separates us from
something huge. This is the author’s stance, who does indeed consider Heisenberg’s
uncertainty principle (a theorem in today’s formulation, despite the name) one of the
highest achievements of the human being.

Mathematics is the most accurate of languages invented by man. It allows to cre-
ate formal structures corresponding the possible worlds that may or not exist. The
plausibility of these hypothetical realities is found solely in the logical or syntactical
coherence of the corresponding mathematical structure. In this way semantic “chi-
maeras” might arise, that turn out to be syntactically coherent though. These creatures
are sometimes consistent with worlds or states that do exist, albeit not yet discovered.
A feature that is attributable to an existing entity can only either be present or not,
according to the classical ontological view. Quantum Mechanics, in particular, leads
to say that any such property may not just obey the true/false pattern, but also be
“uncertain”, despite being inherent to the object itself. This tremendous philosoph-
ical leap can be entirely managed within the mathematical foundations of QM, and
represents the most profound philosophical legacy of Heisenberg’s principle.

There remain open at least two general issues, of gnoseological nature essentially,
common to the entire formulation of modern science. The first is the relationship
between theoretical entities and the objects we have experience of. The problem is
particularly delicate in QM, where the notion of measuring instrument has not of yet
been fully clarified. Generally speaking, the relationship of a theoretical entity with
an experimental object is not direct, and still based on often understated theoretical
assumptions. But this is the case in classical theories as well, when one for example
tackles problems such as the geometry of the physical space: there, it is necessary to
identify, inside the physical reality, objects that correspond to the idea of a point, a
segment, and so on, and to do that we use other assumptions, like the fact that the
geometry of the straightedge is the same obtained when inspecting space with light
beams. The second issue is the hopelessness of trying to prove the syntactic coherence
of a mathematical construction. We may attempt to reduce the latter to the coherence
of set theory, or category theory; that this reduction should prove the construction’s
solidity has more to do with psychology than of it being a real fact, due to the profu-
sion of well-known paradoxes disseminated along the history of the formalisation of
mathematics, and eventually to Gödel’s famous theorem.
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1.3 Backgrounds on general topology

For the reader’s sake we sum up here notions of point-set topology that will be used
by and large in the book. All statements are elementary and classical, and can be
easily found in any university treatise, so for brevity we will prove almost nothing.
The practiced reader may skip this section completely and return to it at subsequent
stages for reference.

1.3.1 Open/closed sets and basic point-set topology

The notions of open set and closed set are defined as follows [Ser94II], in the greatest
generality.

Definition 1.1. The pair (X,T ), where X is a set and T a collection of subsets of X,
is said a topological space if:

(i) ∅,X ∈T ;
(ii) the union of (arbitrarily many) elements of T is an element of T ;
(iii) the intersection of a finite number of elements of T belongs to T .

T is called a topology on X and the elements of T are the open sets of X.

Definition 1.2. On a topological space (X,T ):

(a) A basis for the topology of (X,T ) is a subset B ⊂ T such that each element in
T is the union of elements of B.
(b) An open neighbourhood of p ∈ X is an element A ∈T such that p ∈ A.
(c) x ∈ S ⊂ X is an interior point of S if there exists an open neighbourhood A of x
contained in S.
The interior of a set S ⊂ X is the set:

Int(S) := {x ∈ X | x is an interior point of S} .

The exterior of a set S ⊂ X is the set:

Ext(S) := {x ∈ X | x is an interior point of X\S} .

The frontier of a set S ⊂ X is the difference set:

∂S := X\ (Int(S)∪Ext(S)) .

(d) C ⊂ X is called closed if X\C is open.

A subset S ⊂ X in a topological space (X,T ) inherits the structure of a topolo-
gical space from (X,T ) by defining a topology on S as TS := {S∩A | A ∈T }. This
topology (the definition is easily satisfied) is called the induced topology on S by
(X,T ).

Most of the topological spaces we will see in this text are Hausdorff spaces, on
which open sets “separate” points.

Definition 1.3. A topological space (X,T ) and its topology are called Hausdorff if
they satisfy the Hausdorff property: for every x,x′ ∈ X there exist A,A′ ∈ T , with
x ∈ A, x′ ∈ A′, such that A∩A′ = ∅.
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Remark 1.4. (1) Both X and ∅ are open and closed sets.
(2) Closed sets satisfy properties that are “dual” to open sets, as follows straightfor-
wardly from their definition. Hence:

(i) ∅,X are closed;
(ii) the intersection of (infinitely many) closed sets is closed;
(iii) the finite union of closed sets is a closed set.

(3) The simplest example of Hausdorff topology is given by the collection of subsets
of R containing the empty set and arbitrary unions of open intervals. This is thus a
basis for the topology in the sense of Definition 1.1. It is called Euclidean topology
or standard topology of R or C.
(4) A slightly more complicated example of Hausforff topology is the Euclidean to-
pology, or standard topology, of Rn, Cn. It is the usual topology one refers to in
elementary calculus, and is built as follows. If K := R or C, the standard norm of
(c1, . . . ,cn) ∈ Kn is, by definition:

||(c1, . . . ,cn)|| :=

√
n

∑
k=1

|ck|2 , (c1, . . . ,cn) ∈ Kn . (1.1)

The set:
Bδ (x0) := {x ∈ Kn | ||x||< δ} (1.2)

is, hence, the usual open ball of Kn of radius δ > 0 and centre x0 ∈ Kn. The open
sets in the standard topology of Kn are, empty set aside, the unions of open balls of
any given radius and centre. These balls constitute a basis for the standard topology
of Rn and Cn. �

Here are notions that will come up often in the sequel.

Definition 1.5. If (X,T ) is a topological space, the closure of S ⊂ X is the set:

S := ∩{C ⊃ S ,C ⊂ X |C is closed} .

S is called dense in X if S = X.
(X,T ) is said to be separable if there exists a dense and countable subset S ⊂ X.

From the definition follow these properties.

Proposition 1.6. If (X,T ) is a topological space and S ⊂ X:

(a) S is closed;
(b) S = S;
(c) if T ⊂ X, then S ⊂ T implies S⊂ T ;
(d) S is closed if and only if S = S.

Definition 1.7. A topological space (X,T ) has a countable basis, or is second-
countable, if there is a countable subset T0 ⊂ T (the “countable basis”) such that
every open set is the union of elements of T0.
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If (X,T ) has a countable basis then Lindelöf’s lemma holds:

Theorem 1.8 (Lindelöf’s lemma). Let (X,T ) be a second-countable topological
space. Then any open covering of a given subset in X admits a countable sub-cover-
ing: if B⊂ X and {Ai}i∈I ⊂T with ∪i∈IAi ⊃ B, then ∪i∈JAi ⊃ B for some countable
J ⊂ I.

Remarks 1.9. Rn andCn, equipped with the standard topology, are second-countable:
for Rn, T0 can be taken to be the collection of open balls with rational radii and
centred at rational points. The generalisation to Cn is obvious. �

In conclusion, we recall the definition of product topology.

Definition 1.10. If {(Xi,Ti)}i∈F is a collection of topological spaces indexed by a
finite set F, the product topology on ×i∈FXi is the topology whose open sets are ∅
and the unions of Cartesian products ×i∈F Ai, with Ai ∈Ti for any i ∈ F.

If F has arbitrary cardinality, the previous definition cannot be generalised dir-
ectly. If we did so in the obvious way we would not maintain important properties,
such as Tychonoff’s theorem, that we will discuss later. Nevertheless, a natural to-
pology on ×i∈F Xi can be defined, still called product topology because is extends
Definition 1.10.

Definition 1.11. If {(Xi,Ti)}i∈F is a collection of topological spaces with F of arbit-
rary cardinality, the product topology on ×i∈FXi has as open sets ∅ and the unions
of Cartesian products ×i∈F Ai, with Ai ∈ Ti for any i ∈ F, such that on each ×i∈F Ai

we have Ai = Xi but for a finite number of indices i.

Remark 1.12. (1) The standard topology of Rn is the product topology obtained by
endowing the single factors R with the standard topology. The same happens for Cn.
(2) Either in case of finitely many, or infinitely many, factors, the canonical projec-
tions:

πi :× j∈F X j � {x j} 	→ xi ∈ Xi

are clearly continuous if we have the product topology on the domain. It can be proved
that the product topology is the coarsest among all topologies making the canonical
projections continuous (coarsest means it is included in any such topology). �

1.3.2 Convergence and continuity

Let us pass to convergence and continuity. First of all we need to recall the notions
of convergence of a sequence and limit point.

Definition 1.13. Let (X,T ) be a topological space.

(a) A sequence {xn}n∈N ⊂ X converges to a point x ∈ X, called the limit of the se-
quence:

x = lim
n→+∞

xn and also xn → x as n→+∞

if, for any open neighbourhood A of x there exists an NA ∈ R such that xn ∈ A when-
ever n > NA.



1.3 Backgrounds on general topology 13

(b) x ∈ X is a limit point of a subset S ⊂ X if any neighbourhood A of x contains a
point of S\{x}.

Remarks 1.14. It should be patent from the definitions that in a Hausdorff space the
limit of a sequence is unique, if it exists. �

The relationship between limit points and closure of a set is sanctioned by the
following classical and elementary result:

Proposition 1.15. Let (X,T ) be a topological space and S ⊂ X.
S coincides with the union of S and the set of its limit points.

The definition of continuous map and continuous map at one point is recalled
below.

Definition 1.16. Let f : X → X′ be a function between topological spaces (X,T ),
(X′,T ′).
(a) f is called continuous if f−1(A′)⊂T for any A′ ∈T ′.
(b) f is said continuous at p∈ X if, for any open neighbourhood A′f (p) of f (p), there

is an open neighbourhood Ap of p such that f (Ap)⊂ A′f (p).
(c) f is called a homeomorphism if:

(i) f is continuous;
(ii) f is bijective;
(iii) f−1 : X′ → X is continuous.

In this case X and X′ are said to be homeomorphic (under f ).

Remark 1.17. (1) It is easy to check that f : X→ X′ is continuous if and only if it is
continuous at every point p ∈ X.
(2) The notion of continuity at p as of (b) reduces to the more familiar “ε-δ” defini-
tion when the spaces X and X′ are Rn (or Cn) with the standard topology; to see this
bear in mind that: (a) open neighbourhood can always be chosen to be open balls
of radii δ and ε , centred at p and f (p) respectively; (b) every open neighbourhood
contains an open ball centred at that point. �

Let us mention a useful result concerning the standard real line R. One defines
the limit supremum (also superior limit, or simply limsup) and the limit infimum
(inferior limit or just liminf) of a sequence {sn}n∈N ⊂ R as follows:

limsup
n∈N

sn := inf
k∈N

sup
n≥k

sk

(
= lim

k→+∞
sup
n≥k

sk

)
, liminf

n∈N
sn := sup

k∈N
inf
n≥k

sk

(
= lim

k→+∞
inf
n≥k

sk

)
.

Note how these numbers exist for any given sequence {sn}n∈N ⊂ R, possibly being
infinite, as they arise as limits of monotone sequences, whereas the limit of {sn}n∈N
might not exist (neither finite nor infinite). However, it is not hard to prove the fol-
lowing elementary fact.
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Proposition 1.18. If {sn}n∈N ⊂ R, then limn→+∞ sn exists, possibly infinite, if and
only if

limsup
n∈N

sn = liminf
n∈N

sn .

In such a case:
lim

n→+∞
sn = limsup

n∈N
sn = liminf

n∈N
sn .

1.3.3 Compactness

Let us briefly recall some easy facts about compact sets.

Definition 1.19. Let (X,T ) be a topological space and K ⊂ X.

(a) K is called compact if any open covering of it admits a finite sub-covering: if
{Ai}i∈I ⊂T with ∪i∈IAi ⊃ K then ∪i∈JAi ⊃ K for some finite J ⊂ I.
(b) K is said relatively compact if K is compact.
(c) X is locally compact if any point in X has a relatively compact open neighbour-
hood.

Compact sets satisfy a host of properties [Ser94II] and we will not be concerned
with them much more (though returning to them in Chapter 4). Let us recall a few
results at any rate.

Let us begin with the relationship with calculus on Rn. If X is Rn (or Cn identified
with R2n), the celebrated Heine–Borel theorem holds [Ser94II].

Theorem 1.20 (Heine–Borel). If Rn is equipped with the standard topology, K ⊂Rn

is compact if and only if K is simultaneously closed and bounded (meaning K ⊂Bδ (x)
for some x ∈ Rn, δ > 0).

In calculus, the Weierstrass theorem, which deals with continuous maps defined
on compact subsets of Rn (or Cn), can be proved directly without the definition of
compactness. Actually one can prove a more general statement on Rn-valued (Cn-
valued) continuous maps defined on compact subsets.

Proposition 1.21. If K= C or R, let || || denote the standard norm of Kn as in (1.1),
and endow Kn with the standard topology.
If f : K → Kn is continuous on the compact subset K of a topological space, then it
is bounded, i.e. there is an M ∈ R such that || f (x)|| ≤M for any x ∈ K.

Proof. Since f is continuous at any point p∈K, we have || f (x)|| ≤Mp ∈R for all x∈
Ap open neighbourhood of p. As K is compact, we may extract a finite sub-covering
{Apk}k=1,...,N from {Ap}p∈K that covers K. The number M := maxk=1,...,N Mk satisfies
the request. �

Remark 1.22. (1) It is easily proved that if X is a Hausdorff space and K ⊂ X is com-
pact then K is closed.
(2) Similarly, if K is compact in X, then every closed subset K′ ⊂ K is compact.
(3) Continuous functions map compact sets to compact sets.
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(4) By definition of compatness and of induced topology it is clear that a set K ⊂ Y ,
with the induced topology on Y ⊂ X, is compact in Y if and only if K is compact
in X. �

The properties of being compact and Hausdorff bear an interesting relationship.
One such property is expressed by the following useful statement.

Proposition 1.23. Let f : M → N be a continuous map from the compact space M to
the compact Hausdorff space N. If f is bijective then it is a homeomorphism.

On locally compact Hausdorff spaces an important technical result, known as
Urysohn’s lemma, holds. To state it, we first need to define the support of a map
f : X→ C:

supp( f ) := {x ∈ X | f (x) = 0} ,

where the bar is the topological closure in the space X.

Theorem 1.24 (Urysohn’s lemma). If (X,T ) is a Hausdorff, locally compact space,
for any compact K ⊂ X and any open set U ⊃ K there exists a continuous map f :
X→ [0,1] such that:

(i) supp( f )⊂U;
(ii) supp( f ) is compact;
(iii) f (x) = 1 if x ∈ K.

Eventually, the following key theorem relates the product topology to compact-
ness.

Theorem 1.25 (Tychonoff). The Cartesian product of (arbitrarily many) compact
spaces is compact in the product topology.

1.3.4 Connectedness

Definition 1.26. A topological space X is said to be connected if it cannot be written
as the union of two disjoint open sets. A subset A⊂ X is connected if it is connected
in the induced topology.

By defining the equivalence relation:

x∼ x′ iff x,x′ ∈C, where C is a connected set in X,

the resulting equivalence classes are maximal connected subsets in X called the con-
nected components of X. Consequently, the connected components of X are disjoint
and cover X. Connected components are clearly closed.

Definition 1.27. A subset A in a topological space X is path-connected if for any
pair of points p,q ∈ A there is a continuous map (a path) γ : [0,1] → A such that
γ(0) = p, γ(1) = q.
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Definition 1.28. A subset A in a topological space X is called simply connected if,
for any p,q∈A and any (continuous) paths γi : [0,1]→A, i = 0,1, such that γi(0) = p,
γi(1) = q, there exists a continuous map γ : [0,1]× [0,1]→ A, called a homotopy,
satisfying γ(s,0) = p, γ(s,1) = q for all s ∈ [0,1] and γ(0, t) = γ0(t), γ(1, t) = γ1(t)
for all t ∈ [0;1].

Remark 1.29. (1) Directly from the definition we have that continuous functions map
connected spaces to connected spaces and path-connected spaces to path-connected
spaces.
(2) A path-connected space is connected, but not conversely in general. A non-empty,
open connected subset of Rn is always path-connected. This is a general property that
holds in locally path-connected spaces, in which each point has a path-connected
open neighbourhood.
(3) It can be proved that the product of two simply connected spaces, if equipped with
the product topology, is simply connected.
(4) There is an equivalent definition of simply connected space, based on the import-
ant notion of homotopy group [Ser94II]. We shall not make use of that notion in this
book. �

1.4 Round-up on measure theory

This section contains, for the reader’s sake, basic notions and elementary results on
abstract measure theory, plus fundamental facts from real analysis on Lebesgue’s
measure on the real line. To keep the treatise short we will not prove any statement,
for these can be found in the classics [Hal69, Coh80, Rud82]. Well-read users might
want to skip this part entirely, and refer to it for explanations on conventions or nota-
tions used throughout.

1.4.1 Measure spaces

The modern theory of integration is rooted in the notion of σ -algebra of sets: this is
a collection Σ(X) of subsets of a given ‘universe’ set X that can be “measured” by an
arbitrary “measuring” function μ that we will fix later. The definition of a σ -algebra
specifies which are the good properties that subsets should possess in relationship to
the operations of union and intersection. The “σ” in the name points to the closure
property (property 1.30(c)) of Σ(X) under countable unions. The integral of a func-
tion defined on X with respect to a measure μ on the σ -algebra is built step by step.

We begin by defining σ -algebras, and a weaker version (algebras of sets) where
unions are allowed only finite cardinality, which has an interest of its own.

Definition 1.30. A σ -algebra over the set X is a collection Σ(X) of subsets of X such
that:

(a) X ∈ Σ(X).
(b) E ∈ Σ(X) implies X\E ∈ Σ(X).
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(c) if {Ek}k∈N ⊂ Σ(X) then
⋃

k∈NEk ∈ Σ(X).

A measurable space is a pair (X,Σ(X)), where X is a set and Σ(X) a σ -algebra
on X.
A collection Σ0(X) of subsets X is called an algebra (of sets) on X in case (a), (b)
hold (replacing Σ(X) by Σ0(X)), and (c) is weakened to:

(c)’ if {Ek}k∈F ⊂ Σ0(X), with F finite, then
⋃

k∈F Ek ∈ Σ0(X).

Remark 1.31. (1) From (a) and (b) follows ∅ ∈ Σ(X). (c) includes finite unions in
Σ(X): a σ -algebra is an algebra of sets. This is a consequence of (c) if one takes
finitely many distinct Ek. (b) and (c) imply Σ(X) is also closed under countable in-
tersections (at most).
(2) By definition of σ -algebra it follows that the intersection of σ -algebras on X is a
σ -algebra on X. Moreover, the collection of all subsets of X is a σ -algebra on X. �

Remark (2) prompts us to introduce a relevant technical notion. If A is a collec-
tion of subsets in X, there always is at least one σ -algebra containing all elements of
A . Since the intersection of all σ -algebras on X containing A is still a σ -algebra,
the latter is well defined and called σ -algebra generated by A .

Now let us define a notion, crucial for our purposes, where topology and measure
theory merge.

Definition 1.32. If X is a topological space with topology T , the σ -algebra on X
generated by T , denoted B(X), is said Borel σ -algebra on X.

Remark 1.33. (1) The notation B(X) is slightly ambiguous since T does not appear.
We shall use that symbol anyway, unless confusion arises.
(2) If X coincides with R or C we shall assume in the sequel that Σ(X) is the Borel
σ -algebra B(X) determined by the standard topology on X (that of R2 if we are talk-
ing of C).
(3) By definition of σ -algebra it follows immediately that B(X) contains in particu-
lar open and closed subsets, intersections of (at most countably many) open sets and
unions of (at most countably many) closed sets. �

The mathematical concept we are about to present is that of a measurable func-
tion. We can say, in a manner of speaking, that this notion corresponds to that of a
continuous function in topology.

Definition 1.34. Let (X,Σ(X)), (Y,Σ(Y)) be measurable spaces. A function f : X→
Y is said to be measurable (with respect to the two σ -algebras) whenever f−1(E) ∈
Σ(X) for any E ∈Σ(Y). In particular, if we takeΣ(X) = B(X), andY =R orC, meas-
urable functions from X to Y are called (Borel) measurable functions, respectively
real or complex.

Remarks 1.35. Let X and Y be topological spaces with topologies T (X) and T (Y).
It is easily proved that an f : X→Y is measurable with respect to the Borel σ -algebras
B(X), B(Y) if and only if f−1(E) ∈B(X) for any E ∈ T (Y). Immediately, then,
every continuous map f : X→ C or f : X→ R is Borel measurable. �
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Let us summarise the main features of measurable maps from X to Y = R, C.

Proposition 1.36. Let (X,Σ(X)) be a measurable space and MR(X), M(X) the sets
of measurable maps from X to R, C respectively. The following results hold.

(a) MR(X) and M(X) are vector spaces, respectively real and complex, with respect
to pointwise linear combinations

(α f +βg)(x) := α f (x)+βg(x), x ∈ X,

for any measurable maps f ,g from X to R, C and any real or complex α ,β .
(b) If f ,g ∈MR(X), M(X) then f ·g ∈MR(X), M(X), with ( f ·g)(x) := f (x)g(x) for
all x ∈ X.
(c) The following facts are equivalent:

(i) f ∈M(X);
(ii) f ∈M(X);
(iii) Re f , Im f ∈MR(X),

where f (x) := f (x), (Re f )(x) := Re( f (x)), and (Im f )(x) := Im( f (x)), for all x ∈ X.
(d) If f ∈MR(X) or f ∈M(X) then | f | ∈MR(X), where | f |(x) := | f (x)|, x ∈ X.
(e) If fn ∈ M(X), or fn ∈ MR(X), for any n ∈ N and fn(x) → f (x) for all x ∈ X as
n→+∞, then f ∈M(X), or f ∈MR(X).
(f) If fn ∈ MR(X) and supn∈N f (x) is finite for any x ∈ X, then the function X � x 	→
supn∈N f (x) belongs to MR(X).
(g) If fn ∈ MR(X) and limsupn∈N f (x) is finite for all x ∈ X, the function X � x 	→
limsupn∈N f (x) is an element of MR(X).
(h) If f ,g ∈MR(X) the map X � x 	→ sup{ f (x),g(x)} is in MR(X).
(i) If f ∈MR(X) and f ≥ 0, then the map X � x 	→ √ f (x) is in MR(X).

From now on, as is customary in measure theory, we will work with the extended
real line:

[−∞,∞] := R := R∪{−∞,+∞}.
Here R is widened by adding the symbols ±∞; the ordering of the reals is extended
by declaring−∞< r < +∞ for any r ∈R and defining on R the topology whose basis
consists of real open interval and the sets (the notation should be obvious) [−∞,a),
(a,+∞] for any a ∈ R. Moreover one defines: |−∞| := |+∞|=: +∞.

Now a standard result.

Proposition 1.37. If (X,Σ(X)) is a measurable space, f : X→R is measurable if and
only if f−1((a,+∞]) ∈ Σ(X) for any a ∈ R. Furthermore, statements (d), (e), (f), (g),
(h) of Proposition 1.36 still hold when fn and f are R-valued, with the proviso that
one drops finiteness in (f) and (g).

Remark 1.38. (1) In (f), (g) and (h) of propostion 1.36 we may substitute inf to sup
and obtain valid statements.
(2) As far as the first statement of 1.37, the analogous statements with (a,+∞] re-
placed by [a,+∞], [−∞,a), or [−∞,a] hold. �
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1.4.2 Positive σ -additive measures

We pass to define σ -additive, positive measures.

Definition 1.39. If (X,Σ(X)) is a measurable space, a (σ -additive) positive meas-
ure on X (with respect to Σ(X)), is a function μ : Σ(X)→ [0,+∞] satisfying:

(a) μ(∅) = 0;
(b) μ (

⋃
n∈NEn) = ∑n∈N μ(En) if {En}n∈N ⊂ Σ(X), and En ∩Em = ∅ if n � m (σ -

additivity).
The triple (X,Σ(X),μ) is called a measure space.

Remark 1.40. (1) The series in (b), having non-negative terms, is well defined and
can be rearranged at will.
(2) Easy consequences of the definition are the following properties.

Monotonicity: if E ⊂ F with E,F ∈ Σ(X),

μ(E)≤ μ(F).

Sub-additivity: if {En}n∈N ⊂ Σ(X):

μ (∪n∈NEn)≤ ∑
n∈N

μ(En).

Inner continuity: if E1 ⊂ E2 ⊂ E3 ⊂ ·· · for En ∈ Σ(X), n = 1,2, . . ., then:

μ
(∪+∞

n=1En
)

= lim
n→+∞

μ(En).

Outer continuity: if E1 ⊃E2 ⊃E3 ⊃ ·· · for En ∈Σ(X), n = 1,2, . . ., and μ(Em) <
+∞ for some m, then:

μ
(∩+∞

n=1En
)

= lim
n→+∞

μ(En). �

Measures on σ -algebras can be constructed using extension techniques, by start-
ing with measures on algebras (hence not closed under countable unions). We will
employ such recipes later in the text. An important extension theorem for measures
[Hal69] goes like this.

Theorem 1.41. Let Σ0(X) be an algebra of sets on X and suppose μ0 : Σ0(X) →
[0,+∞] is a map such that:

(i) Definition 1.39(a) holds;
(ii) μ0 satisfies 1.39(b) whenever ∪n∈NEn ∈ Σ0(X) for Ek ∈ Σ0(X), k ∈ N.

If Σ(X) denotes the σ -algebra generated byΣ0(X), we have
(i)

Σ(X) � R 	→ μ(R) := inf

{

∑
n∈N

μ0(Sn)
∣
∣
∣
∣ {Sn}n∈N ⊂ Σ0(X) ,∪n∈NSn ⊃ R

}

(1.3)

is a σ -additive positive measure on X with respect to Σ(X) that restricts to μ0 on
Σ0(X).
(ii) If X = ∪n∈NXn, with Xn ∈ Σ0(X) and μ0(Xn) < +∞ for any n ∈ N, then μ is the
unique σ -additive positive measure on X, with respect to Σ(X), restricting to μ0 on
Σ0(X).
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As we shall use several kinds of positive measures and measure spaces hence-
forth, we need to gather some special instances in one place.

Definition 1.42. A measure space (X,Σ(X),μ) and its (positive, σ -additive) measure
μ are called:

(i) finite, if μ(X) < +∞ ;
(ii) σ -finite, if X = ∪n∈NEn, En ∈ Σ(X) and μ(En) < +∞ for any n ∈ N;
(iii) probability space and probability measure, if μ(X) = 1;
(iv) Borel space and Borel measure, if Σ(X) = B(X) with X locally compact Haus-

dorff space.
In case μ is a Borel measure, and more generally if Σ(X)⊃B(X), with X locally
compact and Hausdorff, μ is called:

(v) inner regular, if:

μ(E) = sup{μ(K) | K ⊂ E , K is compact}
for any E ∈ Σ(X);

(vi) outer regular, if:

μ(E) = inf{μ(V ) | V ⊃ E , V is open}
for any E ∈ Σ(X);

(vii) regular, when simultaneously inner and outer regular.
In the general case the measure μ is concentrated on E ∈ Σ(X) when:

μ(S) = μ(E ∩S) for any S ∈ Σ(X).

Remarks 1.43. Inner regularity requires that compact sets belong to the σ -algebra of
sets on which the measure acts. In case of measures on σ -algebras including
Borel’s, this fact is true on locally compact Hausdorff spaces because compact sets
are closed in Hausdorff spaces (Remark 1.22(1)) and hence they belong in the Borel
σ -algebra. �

A key notion, very often used in the sequel, is that of the support of a measure on
a Borel σ -algebra.

Definition 1.44. Let (X,T (X)) be a topological space and Σ(X)⊃B(X). The sup-
port of a (positive, σ -additive) measure μ on Σ(X) is the closed subset of X:

supp(μ) := X\
⋃

O∈T (X),μ(O)=0

O .

Note how the open set X\ supp(μ) does not necessarily have zero measure. Still,
the following is useful.

Proposition 1.45. If μ : Σ(X)→ [0,+∞] is a σ -additive positive measure on X and
Σ(X) ⊃ B(X), then μ is concentrated on supp(μ) if at least one of the following
conditions holds:

(i) X has a countable basis for its topology;
(ii) X is Hausdorff, locally compact and μ is inner regular.
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Proof. Let A := X \ supp(μ) be the union (usually not countable) of all open sets
in X with zero measure. Decompose S ∈ Σ(X) into the disjoint union S = (A∩ S)∪
(supp(μ)∩S); μ’s additivity implies μ(S) = μ(A∩S)+μ(supp(μ)∩S). By posit-
ivity and monotonicity 0≤ μ(A∩S)≤ μ(A), so the result holds provided μ(A) = 0.
Let us then prove μ(A) = 0. In case (i), Lindelöf’s lemma guarantees we can write
A as a countable union of open sets of zero measure A = ∪i∈NAi, and positivity plus
sub-additivity force 0≤ μ(A)≤ ∑i∈N μ(Ai) = 0. Therefore μ(A) = 0.

In case (ii), by inner regularity we have μ(A) = 0 if μ(K) = 0, for any com-
pact set K ⊂ A. Since A is a union of zero-measure sets by construction, K will be
covered by open sets of zero measure. By compactness then we may extract from
there a finite covering A1, . . . ,An. Again by positivity and sub-additivity, 0 = μ(K)≤
μ(A1)+ . . .+μ(An) = 0, whence μ(K) = 0, as requested. �

In conclusion we briefly survey zero-measure sets [Coh80, Rud82].

Definition 1.46. If (X,Σ(X),μ) is a measure space, a set E ∈Σ(X) has zero measure
if μ(E) = ∅. Then E is called a zero-measure set, (more rarely, a null or negligible
set). (X,Σ(X),μ) and μ are called complete if, given any E ∈ Σ(X) of zero meas-
ure, every subset in E belongs to Σ(X) (so it has zero measure, by monotonicity). A
property P is said to hold almost everywhere (with respect to μ), shortened to a.e.,
if P is true everywhere on X minus a set E of zero measure.

Remark 1.47. (1) Every measure space (X,Σ(X),μ) can be made complete in the
following manner.

Proposition 1.48. If (X,Σ(X),μ) is a (σ -additive, positive) measure space, there is
a measure space (X,Σ ′(X),μ ′), called the completion of (X,Σ(X),μ), such that:

(i) Σ ′(X)⊃ Σ(X);
(ii) μ ′�Σ(X)= μ;
(iii) (X,Σ ′(X),μ ′) is complete.

The completion can be constructed in the two ensuing ways (yielding the same meas-
ure space).

(a) Take the collection Σ ′(X) of E ⊂ X for which there exist AE ,BE ∈ Σ(X) with
BE ⊂ E ⊂ AE and μ(AE \BE) = 0. Then μ ′(E) := μ(AE).
(b) Let Σ ′(X) be defined as the collection of subsets of X of the form E ∪Z, where
E ∈ Σ(X) and Z ⊂NZ for some NZ ∈ Σ(X) with μ(NZ) = 0. Then μ ′(E∪Z) := μ(E).

It is quite evident from (b) that if (X,Σ1(X),μ1) is a complete measure space
such that, once again, Σ1(X) ⊃ Σ(X), μ1�Σ(X)= μ , then necessarily Σ1(X) ⊃ Σ ′(X)
and μ1�Σ ′(X)= μ ′. In this sense the completion of a measure space is the smallest com-
plete extension. When the initial measure space is already complete, the completion
is the space itself.

Notice that the completion depends heavily on μ : in general, distinct measures
on the same σ -algebra give rise to different completions.

Moreover, measurable functions for the completed σ -algebra are, generally
speaking, no longer measurable for the initial one, whereas the converse is true: by
completing the measurable space we enlarge the class of measurable functions.
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(2) If (X,Σ ,μ) is a measure space and E ∈ Σ , we may restrict Σ and μ to E like this:
first of all we define Σ�E := {S∩E | S ∈ Σ} and μ�E (S) := μ(S) for any S ∈ Σ�E .
It should be clear that (E,Σ�E ,μ�E) is a measure space corresponding to the natural
restriction of the initial measure on E.

If g : X → C (respectively R, [−∞,+∞], [0,+∞]) is a measurable function with
respect to Σ , then by construction the restriction g�E of g to E is measurable with
respect to Σ�E .

Conversely, if f : E → C (R, [−∞,+∞], [0,+∞]) is measurable with respect to
Σ�E , it is simple to show that its extension f̃ : X → C (R, [−∞,+∞], [0,+∞]), with
f̃ (x) = f (x) if x ∈ E and f̃ (x) = 0 otherwise, is measurable with respect to Σ .

(3) Keeping the above remark in mind one easily proves that if every fn : X→ R, or
C, is measurable for n ∈N, f (x) = limn→+∞ fn(x) a.e. with respect to μ on X and we
set f (x) = c for some constant c∈R, or C, on the set N where f (x) does not coincide
with the limit of the sequence fn(x) (as this might not exist), then f is measurable.

If μ is complete, f turns out to be measurable irrespective of how we define it
on N. �

1.4.3 Integration of measurable functions

We are now ready to define the integral of a measurable function with respect to a
σ -additive positive measure μ defined on a measurable space (X,Σ(X)). We proceed
in steps, defining the integral on a special class of functions first, and then extending
to the measurable case.

The starting point are functions with values in [0,+∞] := [0,+∞)∪{+∞}. For
technical reasons it is convenient to extend the notion of sum and product of non-
negative real numbers so that +∞ ·0 := 0, +∞ ·r := +∞ if r ∈ (0,+∞], and +∞±r :=
+∞ if r ∈ [0,+∞).

A (non-negative) map s : X → [0,+∞] is called simple if it is measurable and
its range is finite in [0,+∞]. Such a function can be written, for certain s1, . . . ,sn ∈
[0,+∞)∪{+∞}, as:

s = ∑
i=1,...,n

siχEi

where E1,E2, . . .En are pairwise-disjoint elements of Σ(X) and χEi the correspond-
ing characteristic functions. The decomposition is not unique. Every function that
can be written like this is simple. The integral of the simple map s with respect to μ
is defined as the number in [0,+∞]:

∫

X
s(x)dμ(x) := ∑

i=1,2,...,n

siμ(Ei) .

It is not difficult to show that the definition does not depend on the choice of decom-
position of s = ∑i=1,...,n siχEi .

This notion can then be generalised to non-negative measurable functions in the
obvious way: if f : X → [0,+∞] is measurable, let the integral of f with respect to
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μ be:

∫

X
f (x)dμ(x) := sup

{∫

X
sn(x)dμ(x)

∣
∣
∣
∣ s≥ 0 is simple and s≤ f

}

.

Note the integral may equal +∞.
To justify the definition, we must remark that simple functions approximate with

arbitrary accuracy non-negative measurable functions, as implied by the ensuing clas-
sical technical result [Rud82] (which we will state for complex functions and prove
in Proposition 7.49).

Proposition 1.49. If f : X→ [0,+∞] is measurable, there exists a sequence of simple
maps 0≤ s1 ≤ s2 ≤ ·· · ≤ sn ≤ f with sn → f pointwise. The convergence is uniform
if there is a C ∈ [0,+∞) such that f (x)≤C for all x ∈ X.

Note that the definition implies an elementary, yet important property of the in-
tegral.

Proposition 1.50. If f ,g : X → [0,+∞] are measurable and f (x) ≤ g(x) a.e. on X
with respect to μ , then the integrals (in [0,+∞]) satisfy:

∫

X
f (x)dμ(x)≤

∫

X
g(x)dμ(x) .

To finish the contruction we define the integral of a complex-valued measurable
function in the most natural way: by writing, that is, the function as sum of its real
and imaginary parts and then decomposing the latter two real functions into their
respective positive and negative parts. To overcome having to deal with awkward
differences of infinites we must restrict the class of definition, which we do now by
introducing μ-integrable functions.

Definition 1.51. If (X,Σ(X),μ) is a (σ -additive, positive) measure space, a measur-
able map f : X→ C is integrable with respect to μ or μ-integrable, if:

∫

X
| f (x)|dμ(x) < +∞ .

Then we define the integral of f on X with respect to μ as the complex number:
∫

X
f (x)dμ(x) =

∫

X
Re( f )+dμ(x)−

∫

X
Re( f )−dμ(x)

+ i

(∫

X
Im( f )+dμ(x)−

∫

X
Im( f )−dμ(x)

)

,

where, if g : X→ R, we defined non-negative maps:

g+(x) := sup{g(x),0} and g−(x) :=− inf{g(x),0} for any x ∈ R.

The set of μ-integrable functions on X will be indicated by L 1(X,μ).
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If f ∈L 1(X,μ) and E ⊂ X is in the σ -algebra of X, we set:
∫

E
f (x)dμ(x) :=

∫

X
f (x)χE(x)dμ(x) ,

where χE is the characteristic function of E.

It is no problem to check that the integral of f : X → C on X with respect to μ
generalises the integral of a measurable function from X to [0,+∞). Also not hard is
the following proposition, that clarifies the elementary features of the integral with
respect to the measure μ .

Proposition 1.52. If (X,Σ(X),μ) is a (σ -additive, positive) measure space, then the
measurable maps f ,g : X→ C satisfy:

(a) If | f (x)| ≤ |g(x)| a.e. on X, g ∈L 1(X,μ) implies f ∈L 1(X,μ).
(b) If f = g a.e. on X then f and g are either both μ-integrable or neither is. In the
former case ∫

X
f (x)dμ(x) =

∫

X
g(x)dμ(x) .

(c) If f ,g are μ-integrable, for any chosen a,b ∈ C, so is a f +bg; moreover,
∫

X
a f (x)+bg(x)dμ(x) = a

∫

X
f (x)dμ(x)+b

∫

X
g(x)dμ(x) .

(d) If f ≥ 0 a.e. is μ-integrable, then:
∫

X
f (x)dμ(x)≥ 0

and the integral is null only if f = 0 a.e.
(e) If f is μ-integrable, then:

∣
∣
∣
∣

∫

X
f (x)dμ(x)

∣
∣
∣
∣≤
∫

X
| f (x)|dμ(x) .

Remarks 1.53. Consider the restrition (E,Σ�E ,μ�E) of the measure space (X,Σ ,μ)
to the subset E ∈ Σ as explained in 1.47(2). The extension of f ∈L (E,μ�E) to X,
say f̃ , defined as the zero map outside E, satisfies f̃ ∈L 1(X,μ). Additionally,

∫

E
f (x)dμ�E (x) =

∫

X
f̃ (x)dμ(x) =

∫

E
f̃ (x)dμ(x) . �

The three central theorems of measure theory are listed below [Rud82].

Theorem 1.54 (Beppo-Levi’s monotone convergence). Let (X,Σ(X),μ) be a (pos-
itive and σ -additive) measure space and { fn}n∈N a sequence of measurable functions
X→ [0,+∞] such that, a.e. at x ∈ X, 0≤ fn(x)≤ fn+1(x) for all n ∈ N.
Then: ∫

X
lim

n→+∞
fn(x)dμ(x) = lim

n→+∞

∫

X
fn(x)dμ(x)≤+∞ ,

where the map limn→+∞ fn(x) is zero where the limit does not exist, and the integral
is the one defined for functions with values in [0,+∞].
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Theorem 1.55 (“Fatou’s lemma”). Let (X,Σ(X),μ) be a (σ -additive, positive)
measure space and { fn}n∈N a sequence of measurable maps fn : X→ [0,+∞].
Then: ∫

X
lim inf

n→+∞
fn(x)dμ(x)≤ lim inf

n→+∞

∫

X
fn(x)dμ(x)≤+∞ ,

the integral being the one defined for functions with values in [0,+∞].

Theorem 1.56 (Lebesgue’s dominated convergence). Let (X,Σ(X),μ) be a (posit-
ive, σ -additive) measure space, { fn}n∈N a sequence of measurable maps fn : X→C,
with fn(x)→ f (x) a.e. at x ∈ X as n → +∞. If there is a μ-integrable map g : X →
C such that | fn(x)| ≤ |g(x)| a.e. at x ∈ X for any n ∈ N, then f (set to zero where
fn(x) �→ f (x)) is μ-integrable, and furthermore:
∫

X
f (x)dμ(x) = lim

n→+∞

∫

X
fn(x)dμ(x) and lim

n→+∞

∫

X
| f (x)− fn(x)|dμ(x) = 0 .

The next proposition (cf. Remark 1.47(1)) shows that the completion does not
really affect integration, as we expect.

Proposition 1.57. Let (X,Σ ,μ) be a measure space and (X,Σ ′,μ ′) its completion.
If f : X → C is measurable with respect to Σ ′ there exists a measurable g : X → C
with respect to Σ with f = g a.e. with respect to μ . If, moreover, f ∈L 1(X,μ ′), then
g ∈L 1(X,μ) and ∫

X
f (x)dμ ′(x) =

∫

X
g(x)dμ(x) .

Proof. Splitting f into real and imaginary parts and these into their positive and neg-

ative parts with the aid of 1.49, we can construct a sequence s′n := ∑Mn
i=1 c(n)

i χ
E
′(n)
i

where E
′(n)
i ∈ Σ ′, E

′(n)
i ∩E

′(n)
j = ∅ if i � j, |s′n(x)| ≤ |s′n+1(x)| ≤ | f (x)| and s′n(x)→

f (x) everywhere on X as n → +∞. Because of Remark 1.47(1), we can write

E
′(n)
i = E(n)

i ∪Z(n)
i where E(n)

i ∈ Σ , while Z(n)
i ⊂ N(n)

i ∈ Σ with μ(N(n)
i ) = 0. Define

the maps, measurable with respect to Σ , sn := ∑Mn
i=1 c(n)

i χ
E(n)

i \N(n)
i

. By construction

N := ∪n,iN
(n)
i has zero μ-measure, being a countable union of zero-measure sets.

Then set g(x) = limn→+∞ sn(x), measurable with respect to Σ as limit of measurable
functions. The limit exists for any x, for it equals, by construction, 0 on N and f (x)
on X\N. Therefore we proved g is Σ -measurable and g(x) = f (x) a.e. with respect
to μ , as required. Now to the last statement. By construction |sn(x)| ≤ |sn+1(x)| ≤
|g(x)|, |s′n(x)| ≤ |s′n+1(x)| ≤ | f (x)|, |sn(x)| → |g(x)|, |s′n(x)| → | f (x)| and

∫ |sn|dμ =
∫ |sn|dμ ′ =

∫ |s′n|dμ ′. Therefore the monotone convergence theorem applied to the
sequence |sn|, with respect to both measures μ and μ ′, warrants that g ∈L 1(X,μ) if
f ∈L 1(X,μ ′). By dominated convergence we finally have

∫
X f dμ ′ =

∫
X gdμ . �

1.4.4 Riesz’s theorem for positive Borel measures

Moving on to Borel measures, we mention two important theorems. The first is the
well-known theorem of Riesz for positive Borel measures [Coh80], which we shall
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often use in the sequel; it tells that every linear and positive functional on the space of
continuous maps with compact support on a locally compact, Hausdorff space is actu-
ally an integral. From now on, given a topological space X, Cc(X) will be the complex
vector space of continuous maps f : X → C with compact support. The vector-space
structure of Cc(X) comes from pointwise linear combinations of f ,g ∈Cc(X), with
α ,β ∈ C:

(α f +βg)(x) := α f (x)+βg(x) for all x ∈ X.

Theorem 1.58 (Riesz’s theorem for positive Borel measures). Take a locally com-
pact Hausdorff space X and consider a linear functional Λ : Cc(X) → C such that
Λ f ≥ 0 whenever f ∈Cc(X) satisfies f ≥ 0. Then there exists a σ -additive, positive
measure μΛ on the Borel σ -algebra B(X) such that:

Λ f =
∫

X
f dμΛ if f ∈Cc(X) and μΛ (K) < +∞ when K ⊂ X is compact.

The measure μΛ can be chosen to be regular, in which case it is uniquely determined.

This result can be strengthened to produce a complete measure representing Λ ,
by extending (X,B(X),μΛ ) to its completion, and in particular enlarging the Borel
σ -algebra in a way that depends on μΛ (regular, we may assume). In this way it is
far from evident that the extended measure is still regular. But this is precisely what
happens, because of the following, useful, fact [Coh80].

Proposition 1.59. Let (X,Σ(X),μ) be a measure space, where X is locally compact
and Hausdorff and Σ(X)⊃B(X). If μ is regular, the measure obtained by complet-
ing (X,Σ(X),μ) is regular.

A second valuable comment is that under certain assumptions on X, μΛ becomes
automatically regular and hence uniquely determined byΛ . This is a consequence of
a technical fact [Rud82, Theorem 2.18], which we recall here.

Proposition 1.60. If ν is a positive Borel measure on a locally compact Hausdorff
space X, and each open set is a countable union of compact sets of finite measure,
then ν is regular.

The second pivotal result is Luzin’s theorem [Rud82], according to which on loc-
ally compact Hausdorff spaces, the functions ofCc(X) approximate, so to speak, meas-
urable functions when we work with measures on σ -algebras large enough to contain
B(X) and satisfy further conditions (this happens in spaces with Lebesgue measure,
that we shall see in short).

Theorem 1.61 (Luzin). Let X be a locally compact Hausdorff space, μ a measure
on a σ -algebra Σ(X) such that:

(i) Σ(X)⊃B(X);
(ii) μ(K) < +∞ if K ⊂ X is compact;
(iii) μ is regular;
(iv) μ is complete.
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Suppose f : X→ C is measurable such that f (x) = 0 if x ∈ X\A, for some A ∈ Σ(X)
with μ(A) < +∞. Then for any ε > 0 there is a g ∈Cc(X) such that:

μ ({x ∈ X | f (x) � g(x)}) < ε .

Moreover, g can be chosen so that

sup
x∈X

|g(x)| ≤ sup
x∈X

| f (x)|.

Corollary 1.62. Under the same assumptions of Theorem 1.61, if | f | ≤ 1 there exists
a sequence {gn}n∈N ⊂Cc(X) with |gn| ≤ 1 for any n ∈ N and such that:

f (x) = lim
n→+∞

gn(x) almost everywhere on X.

1.4.5 Differentiating measures

Definition 1.63. If μ , ν are positive σ -additive measures defined on the same σ -
algebra Σ :

(a) ν is called absolutely continuous with respect to μ (or dominated by μ), written
ν ≺ μ , whenever ν(E) = 0 if μ(E) = 0 with E ∈ Σ .
(b) ν is singular with respect to μ when there are A,B ∈ Σ , A∩B = ∅, such that μ
is concentrated on A and ν concentrated on B.

Note μ is singular with respect to ν if and only if ν is singular with respect to μ .
The paramount Radon–Nikodym theorem holds [Coh80, Rud82]. Recall that given a
subset A of B, χA : B→ R is the characteristic function of A if χA(x) = 1 for x ∈ A
and χA(x) = 0 otherwise.

Theorem 1.64 (Radon–Nikodým). Suppose μ and ν are positive, σ -additive and
σ -finite measures on the same σ -algebra Σ over X. If ν ≺ μ there exists a function
dν
dμ : X→ [0,+∞] measurable such that:

ν(E) =
∫

X
χE

dν
dμ

dμ for any E ∈ Σ .

dν
dμ is called the Radon–Nikodým derivative of ν in μ , and is determined by μ and

ν up to sets of zero μ-measure. Furthermore, f ∈L 1(X,ν) iff f · dν
dμ ∈L 1(X,μ), in

which case: ∫

X
f dν =

∫

X
f

dν
dμ

dμ .

1.4.6 Lebesgue’s measure on Rn

Lebesgue’s measure on Rn is the prototype of all abstract positive measures. We
define it, a posteriori, remembering what we proved in the previous sections. The
starting point is the following proposition, itself a corollary of [Rud82, Theorem 2.20].
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Proposition 1.65. Fix n = 1,2, . . .. There exists a unique σ -additive, positive Borel
measure μn on Rn satisfying:

(i) μn
(×n

k=1[ak,bk]
)

= (b1−a1)(b2−a2) · · ·(bn−an) if ak ≤ bk, ak,bk ∈ R ;
(ii) μn is invariant under translations: μn(E + t) = μn(E) for E ∈B(Rn), t ∈ Rn.

It is possible to extend (Rn,B(Rn),μn) to a measure space (Rn,M (Rn),mn), so that
the measure mn:

(i) maps compact sets to finite values;
(ii) is complete;
(iii) is regular;
(iv) is translation-invariant.

The extension is characterised as follows. If A ⊂ Rn then A ∈M (Rn) if and only if
F ⊂ A ⊂ G with μn(F \G) = 0, where F,G ∈B(Rn) are, respectively, an (at most)
countable union and intersection of open sets. In such a case mn(A) := μn(G).

Remarks 1.66. As a consequence, M (Rn) is included in the completion of B(Rn)
with respect to μn (cf. Remark 1.47(1)). Since M (Rn) is complete and the comple-
tion is the smallest complete extension, we conclude that (Rn,M (Rn),mn) is nothing
but the completion of (Rn,B(Rn),μn). �

Definition 1.67. The measure mn and the σ -algebra M (Rn) determined by Propos-
ition 1.65 are called Lebesgue measure on Rn and Lebsgue σ -algebra on Rn.
A function f : Rn → C (or R) that is measurable with respect to M (Rn) is said Le-
besgue measurable.

Notation 1.68. From now on we shall often denote Lebesgue’s measure by dx and
not only mn. For example,

mn(E) =
∫

Rn
χE(x)dx if E ∈M (Rn) .

Sometimes we shall speak of Lebesgue measure on a measurable subset, like in
Lebesgue measure on [a,b]. This will mean the restriction of Lebesgue’s measure
on R to [a,b] in the sense of Remark 1.47(2). In such cases we shall tacitly follow
Remark 1.53. In relation to the restricted Lebesgue we will drop the sign�E . Hence
L 1([a,b],dx) will denote L 1([a,b],dx�[a,b]), for example. �

Remark 1.69. (1) Lebesgue’s measure mn is invariant under the whole isometry
group of Rn, not just under translations: therefore it is also invariant under rotations,
reflections and any composition of these, translations included.
(2) Borel measurable maps f : Rn → C are thus Lebesgue measurable, but the con-
verse is generally false. Continuous maps f : Rn → C trivially belong to both cat-
egories.
(3) The restriction of mn to B(Rn) is just the μn of Proposition 1.65, hence a regular
Borel measure.
(4) Condition (i) in 1.65 implies on the one hand that already the Borel measure μn

assigns finite values to compact sets, these being bounded in Rn; on the other hand it
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immediately implies, by monotonicity, that both μn and mn give non-zero measure to
non-empty open sets. This fact has an important consequence, expressed by the next
useful, albeit simple, proposition.

Proposition 1.70. Let μ : B(X) → [0,+∞] be a σ -additive positive measure on X
such that μ(B) > 0 if B � ∅ is open. (In particular μ can be Lebesgue’s measure on
R

n restricted to an open set X ⊂ Rn.) If f : X → C is continuous and f (x) = 0 a.e.
with respect to μ , then f (x) = 0 for any x ∈ X.

Proof. B := f−1(C\{0}) is open because f is continuous and C\{0} is open. If we
had μ(B) > 0, then f would not be zero almost everywhere. Hence μ(B) = 0 and we
must have B = ∅, i.e. f (x) = 0 for all x ∈ X. �

(5) Invariance under translations in 1.65 is extremely strong a requirement: one can
prove [Rud82] that if ν : B(Rn)→ [0,+∞] maps compact sets to finite values and is
invariant under translations, there exists a constant c ≥ 0 such that ν(E) = cmn(E)
for every E ∈B(Rn). �

An established result, crucial in computations, is the following.

Proposition 1.71. If K = [a1,b1]×·· ·× [an,bn]⊂ Rn, with −∞ < ai < bi < +∞ for
i = 1, . . . ,n, consider f : Rn → R bounded on K with f (x) = 0 if x ∈ Rn \K.

(a) If n = 1, f is Riemann integrable on K if and only if it is continuous on K almost
everywhere with respect to Lebesgue’s measure on R.
(b) If n ≥ 1 and f is Riemann integrable on K, then it is Lebesgue measurable and
Lebesgue integrable with respect to Lebesgue’s measure on Rn. Moreover,

∫

Rn
f (x)dx =

∫

K
f (x)dxR(x) ,

where on the left is the Lebesgue integral, on the right the Riemann integral.

The two pivotal theorems of calculus, initially formulated for the Riemann integ-
ral, generalise to Lebesgue’s integral on the real line as follows. Before that, we need
some definitions.

Definition 1.72. If a,b ∈ R, a map f : [a,b] → C has bounded variation on [a,b]
if, however we choose a finite number of points a = x0 < x1 < · · · < xn = b in the
interval, we have:

n

∑
k=1

| f (xk)− f (xk−1)| ≤C

where C ∈ R does not depend on the choice of points xk, nor their number.

A subclass of functions of bounded variation is that of absolutely continuous
maps.

Definition 1.73. If a,b ∈ R, f : [a,b] → C is absolutely continuous on [a,b] if for
any ε > 0 there is a δ > 0 such that, for any finite family of pairwise-disjoint, open
subintervals (ak,bk), k = 1,2, . . . ,n,

n

∑
k=1

(bk−ak) < δ implies
n

∑
k=1

| f (bk)− f (ak)|< ε .
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Remark 1.74. (1) Absolutely continuous functions on [a,b] have bounded variation
and are uniformly continuous (not conversely).
(2) Maps with bounded variation on [a,b] and absolutely continuous ones on [a,b]
form vector spaces. The product of absolutely continuous maps on the compact in-
terval [a,b] is absolutely continuous.
(3) It is not hard to see that a differentiable map f : [a,b] → C (admitting, in par-
ticular, left and right derivatives at the endpoints) with bounded derivative is abso-
lutely continuous, hence also of bounded variation on [a,b]. A weaker version is this:
f : [a,b] → C is absolutely continuous if Lipschitz, i.e. if there is L > 0 such that
| f (x)− f (y)| ≤ L|x− y|, x,y ∈ [a,b]. �

Now we are in the position to state [KoFo99] two classical results in real analysis,
due to Lebesgue, that generalise the fundamental theorems of Riemann integration
to Lebesgue’s integral. Below, dx (and dt) are Lebesgue measures.

Theorem 1.75. Fix a,b ∈ R, a < b.
(a) If f : [a,b]→C is absolutely continuous then it admits derivative f ′(x) for almost
every x ∈ [a,b] with respect to Lebesgue’s measure. Defining, say, f ′(x) := 0 where
the derivative does not exist, f ′ becomes Lebesgue measurable, f ′ ∈L 1([a,b],dx)
and ∫ x

a
f ′(t)dt = f (x)− f (a) for all x ∈ [a,b].

(b) If f ∈L 1([a,b],dx) the map [a,b] � x 	→ ∫ x
a f (t)dt is absolutely continuous, and

d
dx

∫ x

a
f (t)dt = f (x) a.e. on [a,b] with respect to Lebesgue’s measure.

To end the section, we mention a famous decomposition theorem for Borel meas-
ures on R that plays a certain role in spectral theory.

Let μ be a regular Borel measure (σ -additive, positive) on R with μ(K) < +∞
for any compact K ⊂ R.

(i) The set Pμ := {x∈R |μ({x})� 0} is called set of atoms of μ (notice Pμ is either
finite or countable);

(ii) μ is said continuous if Pμ = ∅;
(iii) μ is a purely atomic measure if μ(S) = ∑p∈S μ({p}), S ∈B(R).

A (σ -additive, positive) regular Borel measure μ on R with μ(K) < +∞ for any
compact set K ⊂ R can be decomposed uniquely into:

μ = μpa +μc ,

where μpa is purely atomic and μc continuous, by setting:

μpa(S) := ∑
x∈P∩S

μ(Pμ ∩S) ∀S ⊂B(R) and so μc := μ−μpa.

More precisely, a key decomposition theorem due to Lebesgue holds.
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Theorem 1.76 (Lebesgue). Let μ be a (σ -additive, positive) regular Borel measure
on R with μ(K) < +∞ for any compact set K ⊂ R. Then μ decomposes in a unique
way as

μ = μac +μpa +μsing ,

where the regular Borel measures on R on the right are: (μac) an absolutely continu-
ous measure for Lebesgue’s measure on R, (μpa) a purely atomic measure (hence
singular for Lebesgue’s measure on R) and (μsing) a continuous and singular meas-
ure for Lebesgue’s measure on R.

1.4.7 The product measure

If (X,Σ(X),μ) and (Y,Σ(Y),ν) are measure spaces, we indicate with Σ(X)⊗Σ(Y)
the σ -algebra on X×Y generated by the family of rectangles E×F with E ∈ Σ(X)
and F ∈ σ(Y).

If μ , ν are σ -finite, one can define uniquely a σ -finite measure on Σ(X)⊗Σ(Y),
written μ⊗ν , by imposing

μ⊗ν(E×F) = μ(E)ν(F) if E ∈ Σ(X) and F ∈ Σ(Y).

μ⊗ν is called the product measure of μ , ν .

Remark 1.77. (1) We have the following fact [Rud82].

Proposition 1.78. If f is measurable with respect to Σ(X)⊗ Σ(Y), then Y � y 	→
f (x,y) and X � x 	→ f (x,y) are measurable for any x ∈ X and y ∈ Y, respectively.

(2) The completion of the product of Lebesgue measures on Rn and Rm coincides
with the Lebesgue measure on Rn+m [Rud82]. �

The theorems of Fubini and Tonelli, which we state as one, hold.

Theorem 1.79 (Fubini and Tonelli). Let (X,Σ(X),μ), (Y,Σ(Y),ν) be spaces with
σ -finite measures, and consider a map f : X×Y→ C.

(a) If f is μ⊗ν-integrable:

(i) Y � y 	→ f (x,y) is ν-integrable for almost every x ∈ X, and X � x 	→ f (x,y)
is μ-integrable for almost every y ∈ Y;

(ii) X � x 	→ ∫Y f (x,y)dν(y) and Y � y 	→ ∫X f (x,y)dμ(x) (set to zero where the
integrals do not exist) are integrable on X and on Y respectively. Moreover:

∫

X×Y
f (x,y)dμ⊗dν(x,y) =

∫

X

(∫

Y
f (x,y)dν(y)

)

dμ(x)

=
∫

Y

(∫

X
f (x,y)dμ(x)

)

dν(y) .

(b) Suppose f is measurable with respect to Σ(X)⊗Σ(Y). Then:

(i) if Y � y 	→ f (x,y) is ν-integrable for almost every x ∈ X, or X � x 	→ f (x,y)
is μ-integrable for almost every y∈Y, then the corresponding maps X� x 	→
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∫
Y | f (x,y)|dν(y) and Y� y 	→ ∫X | f (x,y)|dμ(x) (null where the integrals are

not defined) are measurable;
(ii) if, additionally:

∫

X

(∫

Y
| f (x,y)|dν(y)

)

dμ(x) < +∞

or
∫

Y

(∫

X
| f (x,y)|dμ(x)

)

dν(y) < +∞

respectively, then f is μ⊗ν-integrable.

1.4.8 Complex (and signed) measures

We recall a few definitions and elementary results from the theory of complex func-
tions [Rud82].

Definition 1.80. A complex measure on X [Rud82], μ : Σ →C, is a map associating
a complex number to every element in a σ -algebra Σ on X so that:

(i) μ(∅) = 0 and
(ii) μ(∪n∈NEn) =∑+∞

n=0 μ(En), independently of the summing order, for any collec-
tion {En}n∈N ⊂ Σ with En∩Em = ∅ if n � m.

Under (i)–(ii), if μ(Σ)⊂ R, then μ is called a signed measure or charge on X.

Remark 1.81. (1) Requirement (ii) is equivalent to asking absolute convergence of
the series ∑+∞

n=0 μ(En) to μ(∪n∈NEn), by virtue of a generalisation of a classical res-
ult of Riemann on re-ordering real series that do not converge absolutely ([Rud64,
Theorem 3.56]).

Theorem 1.82. If {zn}n∈N ⊂ C, the series ∑+∞
n=0 zn converges absolutely (∑+∞

n=0 |zn|<
+∞) if and only if there is S ∈C such that∑+∞

n=0 zP(n) = S for any bijection P :N→N.

(2) There is a way to generate a finite positive measure from any complex (or signed)
measure as follows. If E ∈ Σ , we shall say {Ei}i∈I ⊂ Σ is a partition of E if I is finite
or countable, ∪i∈IEi = E and Ei∩E j = ∅ for i � j. The σ -additive positive measure
|μ | on Σ , called total variation di μ , is by definition:

|μ |(E) := sup

{

∑
i∈I
|μ(Ei)|

∣
∣
∣
∣
∣
{Ei}i∈I partition of E

}

for any E ∈ Σ .

|μ | clearly satisfies |μ |(E) ≥ |μ(E)| if E ∈ Σ . Moreover, |μ |(X) < +∞ [Rud82].
|μ | is therefore a (σ -additive, positive) finite measure on Σ for any given complex
measure μ . �

In analogy to the real case, the support of a complex (or signed) measure defined
on a Borel σ -algebra is defined herebelow.
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Definition 1.83. If (X,T (X)) is a topological space and Σ(X)⊃B(X), the support
of a complex (or signed) measure μ on Σ(X) is the closed subset of X:

supp(μ) := X\
⋃

O∈T (X), |μ|(O)=0

O .

The definition of absolutely continuous measure with respect to a given measure
generalises straighforwardly to complex measures.

Definition 1.84. A complex (or signed) measure ν is absolutely continuous with re-
spect to a givenσ -additive, positive measure μ , or dominated by μ , ν ≺ μ , whenever
both are defined over one σ -algebra Σ on X and μ(E) = 0 implies ν(E) = 0 for
E ∈ Σ .

The theorem of Radon–Nikodým (Theorem 1.64) can be generalised to the case
of complex/signed measures [Rud82]:

Theorem 1.85 (Radon–Nikodym theorem for complex and signed measures). Let
ν be a complex (or signed) measure, μ a σ -additive, positive and σ -finite measure,
both defined on the σ -algebra Σ over X. If ν ≺ μ there exists a map dν

dμ ∈L 1(X,μ)
such that:

ν(E) =
∫

X
χE

dν
dμ

dμ for any E ∈ Σ

where χE is the characteristic function of E ⊂ X. Such map dν
dμ is unique up to sets

of zero μ-measure, and is called the Radon–Nikodým derivative of ν in μ .

The following important result is a corollary of the above [Coh80, Rud82].

Theorem 1.86 (Characterisation of complex measures). For any complex meas-
ure μ on aσ -algebra Σ on X there exists a measurable function h : X→Cwith |h|= 1
on X, unique up to redefinition on zero-measure sets, that belongs in L 1(X, |μ |) and
such that μ(E) =

∫
E h d|μ | for all E ∈ Σ .

The same result holds, with the obvious changes, for signed measures.
According to it, if f ∈ L 1(X, |μ |) we define the integral of f with respect to

the complex measure μ by:
∫

X
f dμ :=

∫

X
f h d|μ | .

In Chapter 2 (Example 2.45(1)) we shall state a general version of Riesz’s represent-
ation theorem for complex measures.

1.4.9 Exchanging derivatives and integrals

In this final section we state the pivotal theorem that allows to differentiate inside
an integral for a general positive measure. The proof is an easy consequence of the
dominated convergence theorem plus Lagrange’s mean value theorem.
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Theorem 1.87 (Differentiation inside an integral). In relation to the measure space
(X,Σ(X),μ) (σ -additive, positive), consider the family of maps {ht}t∈A ⊂L 1(X,μ)
where A⊂ Rm is open and t = (t1, . . . , tm). Assume that

(i) for some k ∈ {1,2, . . . ,m} the derivative

∂ht(x)
∂ tk

exists for any x ∈ X and t ∈ A;
(ii) there is a g ∈L 1(X,μ) such that:

∣
∣
∣
∣
∂ht(x)
∂ tk

∣
∣
∣
∣≤ |g(x)| for any t ∈ A, a.e. on X .

Then:

(a) X � x 	→ ∂ht
∂ tk

∈L 1(X,μ);
(b) for any t ∈ A, integral and derivative can be swapped:

∂
∂ tk

∫

X
ht(x)dμ(x) =

∫

X

∂ht(x)
∂ tk

dμ(x) . (1.4)

Eventually:

(iii) if, for a given g, condition (ii) holds simultaneously for all k = 1,2, . . . ,m, almost
everywhere at x ∈ X, and every function (for any fixed t ∈ A)

A � t 	→ ∂ht(x)
∂ tk

is continuous, then

(c) the function:
A � t 	→

∫

X
ht(x)dμ(x)

belongs to C1(A).

Remarks 1.88. Theorem 1.87 is true also when taking a complex (or signed) meas-
ure μ and replacing L 1(X,μ) with L 1(X, |μ |) in the statement. The proof is direct,
and relies on Theorem 1.86. �
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Normed and Banach spaces, examples
and applications

I’m convinced mathematics is the most important investigating
tool of the legacy of the human enterprise, it being the sorurce
of everything.

René Descartes

In the book’s first proper chapter, we will discuss the fundamental notions and theor-
ems about normed and Banach spaces. We will introduce certain algebraic structures
modelled on natural algebras of operators on Banach spaces. Banach operator algeb-
ras play a relevant role in modern formulations of Quantum Mechanics.

The chapter will, in essence, introduce the working language and the element-
ary topological instruments of the theory of linear operators. Even if mostly self-
cointained, the chapter is by no means exhaustive if compared to the immense liter-
ature on the basic properties of normed and Banach spaces. The texts [Rud82, Rud91]
should be consulted in this respect. In due course we shall specialise to operators on
complex Hilbert spaces, with a short detour in Chapter 4 into the more general fea-
tures of compact operators.

The most important notions of the present chapter are without any doubt bounded
operators and the various topologies (induced by norms or seminorms) on spaces of
operators. The relevance of these mathematical tools descends from the fact that the
language of linear operators on linear spaces is the language used to formulate QM.
Here the class of bounded operators plays a central technical part, even though in QM
one is forced, on physical grounds, to introduce and work with unbounded operators
too, as we shall see in the second part of the book.

The chapter’s first part is devoted to the elementary notions of normed space,
Banach space and their basic topological properties. We will discuss examples, like
the space of continuous maps C(K) over a compact space K, and prove the crucial
theorem of Arzelà–Ascoli in this setup. In the examples will also prove key results
such as the completeness of Lp spaces (Fischer–Riesz theorem).

In the second part we will define the norm of an operator and establish its main
features.

Part three will discuss the fundamental theorems of Banach spaces, in their simp-
lest versions. These are the theorems of Hahn–Banach, Banach–Steinhaus, plus the
open mapping theorem a corollary of Baire’s category theorem. We will prove a few
useful technical consequences (the inverse operator theorem and the closed graph the-
orem). Then we will introduce the various operator topologies that come into play,

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
DOI 10.1007/978-88-470-2835-7_2, © Springer-Verlag Italia 2013
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prove the theorem of Banach–Alaoglu and briefly recall the Krein–Milman theorem
and Fréchet spaces.

Part four will be devoted to projection operators in normed spaces. This we will
specialise in the next chapter to that – more useful for our purposes – of an orthogonal
projector.

In the final two sections we will treat two elementary but important topics: equi-
valent norms (including a proof that n-dimensional normed spaces are Banach and
homeomorphic to the standardCn) and the theory of contractions in complete normed
spaces (including, in the examples, a proof of the local existence and uniqueness of
solutions to first-order ODEs on Rn or Cn). The latter will be the only instance of
nonlinear functional analysis present in the book.

From now onwards we assume the reader is familiar with vector spaces and linear
mappings [Ser94I].

2.1 Normed and Banach spaces and algebras

After reducing to normed spaces the notions of the previous chapter we will introduce
Banach spaces. Then, by enriching the algebraic structure with an inner product, we
will study normed and Banach algebras.

2.1.1 Normed spaces and essential topological properties

The first definitions we present are those of norm, normed space and continuous map
between normed spaces.

Examples of normed spaces, very common in functional analysis and its physical
applications, will be presented later, especially in the next section.

Definition 2.1. Let X be a vector space over the field K= C or R. A map N : X→ R
is called norm on X, and (X,N) is a normed space, if:
N0. N(u)≥ 0 for any u ∈ X;
N1. N(λu) = |λ |N(u) for any λ ∈ K and u ∈ X;
N2. N(u+ v)≤ N(u)+N(v), for any u,v ∈ X;
N3. N(u) = 0⇒ u = 0, for any u ∈ X.
When N0, N1, N2 are valid but N3 does not necessarily hold, N is called a seminorm.

Remark 2.2. (1) Clearly, from N1 descends N(0) = 0, while N2 implies the inequal-
ity:

|N(u)−N(v)| ≤ N(u− v) se u,v ∈ X. (2.1)

(2) N1 is called homogeneity property, N2 is known as triangle inequality or sub-
additivity. Together, N0 and N3 are referred to as positive definiteness, whereas N0
alone is sometimes called semi-definiteness. �

Notation 2.3. Henceforth || || and p( ), with subscripts if necessary, will denote a
norm and a seminorm respectively. Other symbols might be used as well. �
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An elementary yet fundamental notion is that of open ball.

Definition 2.4. Let (X, || ||) be a normed space.
The open ball of centre x0 ∈ X and radius r > 0 is the set:

Br(x0) := {x ∈ X | ||x− x0||< r} .

A set A⊂ X is bounded if there exists an open ball Br(x0) (of finite radius!) such that
Br(x0)⊃ A.

We could define the same object using a seminorm p instead of a norm || ||: this
will be done later.

Two useful properties of open balls (valid with seminorms, too), that follow im-
mediately from N2 and the definition, are:

Bδ (y)⊂ Br(x) if y ∈ Br(x) and 0 < δ + ||y− x||< r, (2.2)

Br(x)∩Br′(x
′) = ∅ if 0 < r + r′ < ||x− x′||. (2.3)

Let us introduce the natural topology of a normed space.

Definition 2.5. Consider a normed space (X, || ||).
(a) A⊂ X is open if A = ∅ or A is the union of open balls.
(b) The norm topology of X is the family of open sets in X.

Remark 2.6. (1) By (2.2) we have:

A⊂ X is open iff ∀x ∈ A, ∃rx > 0 such that Brx(x)⊂ A. (2.4)

(2) By definition of open set and (2.2), (2.4), it follows that open sets as defined in 2.5
are also open according to 1.1. Hence the collection of open sets in a normed space
is indeed an honest topology. The normed space X equipped with the above family
of open sets is a true topological space. The collection of open balls with arbitrary
centres and radii is a basis for the norm topology of the normed space (X, || ||).
(3) Each normed space (X, || ||) satisfies Hausdorff’s property, cf. Definition 1.3 (and
as such is a Hausdorff space). The proofs follows from (2.3) by choosing A = Br(x),
A′ = Br′(x′) with r + r′ < ||x− x′||; the latter is non-zero if x � x′, by property N3.
Had we defined the topology using a seminorm (rather than a norm), the Hausdorff
property would not have been guaranteed. �

Consider these facts, valid in any normed space: (a) open neighbourhoods can
be chosen to be open balls (of radii ε and δ ) and (b) each open neighbourhood of a
point contains an open ball centred at that point (this follows from the definition of
open set in a normed space and (2.2)). A straighforward consequence of (a) and (b)
is that the continuity of a map, see (1.16), can be equivalently expressed as follows
in normed spaces.

Definition 2.7. A map f : X→ Y between normed spaces (X, || ||X) and (Y, || ||Y) is
continuous at x0 ∈ X if for any ε > 0 there exists a number δ > 0 such that || f (x)−
f (x0)||Y < ε whenever ||x− x0||X < δ .
A map f : X→ Y is continuous if it is continuous at each point of X.
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Analogously, in normed spaces, convergent sequences (Definition 1.13) become:

Definition 2.8. If (X, || ||) is a normed space, the sequence {xn}n∈N ⊂ X converges
to x ∈ X:

xn → x as n→+∞ or limn→+∞ xn = x

if and only if, for any ε > 0 there is Nε ∈ R such that ||xn−x||< ε whenever n > Nε ;
equivalently

lim
n→+∞

||xn− x||= 0 .

The point x is the limit of the sequence.

Remarks 2.9. If (X, || ||) is a normed space and A⊂ X, x ∈ X is a limit point of A if
and only if there is a sequence {xn}n∈N ⊂ A\{x} converging to x.

In fact if x is a limit point for A, every open ball B1/n(x), n = 1,2, . . ., contains
at least one xn ∈ A \ {x}, and by construction xn → x as n → +∞. Conversely, let
{xn}n∈N ⊂ A\{x} tend to x. Since every open neighbourhood B of x contains a ball
Bε(x) centred at x by (2.4), the definition of convergence implies Bε(x), and so B,
contains every xn with n > Nε for some Nε ∈ R. Thus x is a limit point. �

A nice class of continuous linear functions is that of isometries.

Definition 2.10. If (X, || ||X), (Y, || ||Y) are normed spaces over the same field C, or
R, a linear map L : X → Y is called isometric, or an isometry, if ||L(x)||Y = ||x||X
for all x ∈ X. If the isometry L : X → Y is onto, it is an isomorphism of normed
spaces. Given an isomorphism L of normed spaces, the domain and codomain are
said isomorphic (under L).

Remark 2.11. (1) It is obvious that an isometry L : X→ Y is injective, by N3, but it
may not be onto. If X = Y and L is not surjective, then X is infinite-dimensional.
(2) Since the pre-image of an open ball under an isometry is an open ball, each iso-
metry f : X→ Y between normed spaces X,Y is continuous in the two topologies.
(3) If an isometry f : X→ Y is onto (an isomorphism), its inverse f−1 : Y→ X is still
linear and isometric, hence an isomorphism from Y to X. An isomorphism of normed
spaces is clearly a (linear) homeomorphisms of the two spaces.
(4) Other textbooks may provide a different definition, not equivalent to ours, of
isomorphism of normed spaces. This usually requires an isomorphism be only a lin-
ear continuous map with continuous inverse (i.e. a linear homeomorphism). An iso-
morphism according to Definition 2.10 is also such in this second meaning, but not
conversely. Having f , f−1 both continuous is much weaker a condition than pre-
serving norms. For instance f : X � x 	→ ax ∈ X, with a � 0 fixed, is an isomorphism
from X to itself for the second definition, but not in our sense. �

A further technical result we mention about normed spaces is the direct analogue
of something that happens in R, normed with the absolute value.

Proposition 2.12. A function f : X → Y between normed spaces X,Y is continuous
at x ∈ X iff it is sequentially continuous at x, i.e. f (xn) → f (x), n → +∞, for any
sequence {xn}n∈N ⊂ X such that xn → x as n→+∞.
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Proof. If f is continuous at x, let {xn}n∈N ⊂ X tend to x. By continuity, for any
ε > 0 there is δ > 0 such that || f (xn)− f (x)||Y < ε when ||xn − x||X < δ . Since
||xn − x|| → 0, then for any ε > 0 there is Nε ∈ R such that || f (xn)− f (x)||Y < ε
whenever n > Nε . Thus f is sequentially continuous at x. Now assume f is not con-
tinuous at x0, and let us show it cannot be sequentially continuous at x. With these
assumptions there must be ε > 0 such that for any n = 1,2, . . ., there exists xn ∈ X
with ||xn− x||X < 1/n but || f (x)− f (xn)||Y > ε . The sequence {xn}n=1,2,... tends to
x, but the corresponding { f (xn)}n=1,2,... does not converge to f (x) in Y. Therefore f
is not sequentially continuous at x. �

At last we want to discuss continuity properties of the vector-space operations
with respect to the norm topologies on normed spaces.

If (X, || ||X), (Y, || ||Y) are normed spaces over the same field K= C or R, we can
form the Cartesian product Y×X and its product topology, induced by the topologies
of the factors X, Y (cf. 1.10). This topology has as open sets the empty set and the
unions of Cartesian products of open balls in X and Y. In case Y = X, we can study
the continuity of the sum of two vectors in X×X:

+ : X×X � (u,v) 	→ u+ v ∈ X ,

where X×X has the product topology. From N2

||u+ v|| ≤ ||u||+ ||v||,

making + jointly continuous in its two arguments in the norm topologies; said other-
wise, it is continuous in the product topology of the domain and the standard topology
of the range.

In fact, the triangle inequality implies that given (u0,v0) ∈ X×X and ε > 0, then
u+ v ∈ Bε(u0 + v0) provided (u,v) ∈ Bδ (u0)×Bδ (v0) with 0 < δ < ε/2.

If Y is the field K= R or C, thought of as normed by the absolute value norm, we
can consider the continuity of the product between a scalar and a vector in K×X:

K×X � (α ,u) 	→ αu ∈ X ,

where the left-hand side has the product topology. From N2 and N1,

||αu||= |α | ||u||

implies that the product scalar–vector is a jointly continuous operation in its ar-
guments in the norm topologies; that is to say, it is continuous with respect to the
product topology on the domain and the standard one on the range. Here, too, the
proof is easy: from the above identity and N2, given (α0,u0)∈K×X and ε > 0, then

αu∈ Bε(α0u0) if we take (α ,u)∈ B(K)
δ ′ (α)×Bδ (u0) with 0 < δ = ε/(2|α0|+1) and

0 < δ ′ < ε/(2(||u0||+δ )). (B(K)
δ ′ (α) is an open ball in K seen as normed space).
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2.1.2 Banach spaces

Some of the material presented above can be adapted to completely general topolo-
gical spaces. At the same time there are properties, like completeness (which we treat
below), that befit the theory of normed spaces (and more generally metrisable spaces,
which we will only mention elsewhere, in passing).

A well-known fact from the elementary theory onRn is that convergent sequences
{xn}n∈N in a normed space (X, || ||) satisfy the so-called Cauchy property:

for any ε > 0 there exists Nε ∈ R such that ||xn− xm||< ε whenever n,m > Nε .

In fact, if ||xn− x|| → 0 as n → +∞, then ||xk − x|| < ε for k > Nε , so ||xn− xm|| ≤
||xn− x||+ ||xm− x||< ε for n,m > Nε/2.

A sequence satisfying this property is called a Cauchy sequence.
The idea of the above proof is that if a sequence converges to some point, its

terms get closer to each other. It is interesting to see whether the converse holds as
well: does a sequence of vectors that become closer always admit a limit?

As is well known from elementary calculus, the answer is yes on X = R with the
absolute value norm. Therefore also onC and on any vector space built over Cartesian
products of standard copies of Rn, Cn. This is guaranteed by the fact that R satisfies
the so-called completeness axiom.

Normed spaces in which every Cauchy sequence is convergent are called com-
plete normed spaces. In general a normed space is not complete: complete normed
spaces are scarce, hence interesting by default. They present relevant and useful fea-
tures, especially for the physical applications that will be the object of the book.

Definition 2.13. A normed space is called a Banach space if it is complete, i.e. if
any Cauchy sequence inside the space converges to a point of the space.

Remarks 2.14. (1) The property of completeness is invariant under isomorphisms
of normed spaces, but not under homeomorphisms (continuous maps with continu-
ous inverses, not necessarily linear). A countrexample is given by R and (0,1), both
normed by the absolute value. Although the pair is homeomorphic, the line is com-
plete, the interval not.
(2) It is easy to prove that any closed subspace M in a Banach space B is itself a
Banach space for the restricted norm: each Cauchy sequence in M is Cauchy for B
too, so it must converge to a point in B. But this point must belong to M because M
is closed and contains its limit points. �

The spaces Cn and Rn with standard norm:

||(c1, . . . ,cn)||=
√

n

∑
k=1

|ck|2

are the simplest instances of finite-dimensional Banach spaces, respectively complex
and real. Actually it can be proved that every finite-dimensional complex Banach
space is homeomorphic to a standard Cn. We will prove this fact in Section 2.5, and
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show explicit examples of Banach spaces starting from the next section. At any rate,
any normed space satisfies a nice property: it can be completed to a Banach space
determined by it, in which it is dense.

Theorem 2.15 (Completion of Banach spaces). Let (X, || ||) be a normed vector
space over K= C or R.

(a) There exists a Banach space (Y,N) over K, called completion of X, such that X
is isometrically identified to a dense subspace of Y under a linear injective mapping
J : X→ Y.
Put otherwise, there is a linear 1-1 map J : X→ Y with

J(X) = Y and N(J(x)) = ||x|| for any x ∈ X.

(b) If the triple (J1,Y1,N1), with J1 : X→ Y1 a linear isometry and (Y1,N1) Banach
on K, is such that (X, || ||) is isometric to a dense subspace of Y1 under J1, then there
is a unique isomorphism of normed spaces φ : Y→ Y1 such that J1 = φ ◦ J.

Sketch of the proof. The idea is rather similar to the procedure for completing the set
of rational numbers to the reals.

(a) Let C denote the space of Cauchy sequences in X and define the equivalence re-
lation on C:

xn ∼ x′n ⇔ lim
n→∞ ||xn− x′n||= 0 .

Clearly X⊂C/∼ by identifying each x of X with the equivalence class of the constant
sequence xn = x. Let J be the identification map. Then C/∼ is easily aK-vector space
with norm induced by the structure of X. Now one must prove C/∼ is complete, J is
linear, isometric (hence 1-1) and J(X) is dense in Y := C/∼.
(b) J1◦J−1 : J(X)→Y1 is a linear and continuous isometry from a dense set J(X)⊂Y
to a Banach space Y1, so it extends uniquely to a linear and continuous isometry φ on
Y (see Proposition 2.44). As φ is isometric, it is injective. The same is true about the
extension φ ′ of J◦J−1

1 : J1(X)→Y, and by construction (J◦J−1
1 )◦(J1◦J−1) = idJ(X).

Extending to J(X) = Y by continuity, we see φ ′ ◦φ = idY, and similarly φ ◦φ ′ = idY1 .
In conclusion φ and φ ′ are onto, so in particular φ is an isomorphism of normed
spaces and by construction J1 = φ ◦J. The uniqueness of an isomorphism φ : Y→ Y′
satisfying J1 = φ ◦ J is easy, once one notices that each such map ψ : Y → Y1 ful-
fills J− J = (φ −ψ)◦ J by linearity, hence (φ −ψ) �J(X)= 0. The uniqueness of the

extension of (φ −ψ) �J(X), continuous and with dense domain J(X), to J(X) = Y,
eventually warrants that φ = ψ .ll �

The next proposition is a useful criterion to check if a normed space is Banach.

Proposition 2.16. Let (X, || ||) be a normed space, and assume every absolutely con-
vergent series ∑+∞

n=0 xn of elements of X (i.e. ∑+∞
n=0 ||xn||< +∞) converges in X. Then

(X, || ||) is a Banach space.

Proof. Take a Cauchy sequence {vn}n∈N ⊂ X and let us show that if the above prop-
erty holds, the sequence converges in X. Since the sequence is Cauchy, for any k =
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0,1,2, . . . there is Nk such that ||vn− vm|| < 2−k whenever n,m ≥ Nk. Choose Nk so
that Nk+1 > Nk and extract the subsequence {vNk}k∈N. Now define vectors z0 := vN1 ,
zk := vNk+1 −vNk and consider the series∑+∞

k=0 zk. Notice vNk =∑k
k′=0 zk′ . By construc-

tion ||zk|| < 2−k, so the series converges absolutely. Under the assumptions made,
there will be a v ∈ X such that:

lim
k→+∞

vNk = lim
k→+∞

k

∑
k′=0

zk′ = v .

Hence the subsequence {vNk}k∈N of the Cauchy sequence {vn}n∈N converges to v ∈
X. To finish it suffices to show that the whole {vn}n∈N converges to v. As

||vn− v|| ≤ ||vn− vNk ||+ ||vNk − v|| ,
for a given ε > 0 we can find Nε such that ||vn− vNk || < ε/2 whenever n,Nk > Nε ,
because {vn}n∈N is a Cauchy sequence. On the other hand we can find Mε such that
||vNk − v|| < ε/2 whenever k > Mε , since vNk → v. Therefore taking k > Mε large
enough, so that Nk > Nε , we have ||vn− v|| < ε for n > Nε . As ε > 0 was arbitrary,
we have vn → v for n→+∞. �

2.1.3 Example: the Banach space C(K;Kn), the theorems of Dini
and Arzelà–Ascoli

One of the simplest examples of a non-trivial (and generically, infinite-dimensional)
Banach space is C(K;Kn), the space of continuous maps from a compact space K to
K

n, withK=C orR. The chosen norm is the supremum norm || f ||∞ := supx∈K || f (x)||.
This is always finite for f ∈C(K;Kn) (Proposition 1.21).

Proposition 2.17. Let K = C (or R) and consider the normed space (Kn, || ||) with
norm 1.1. If K is compact the vector space C(K;Kn) of continuous functions from K
to Kn, equipped with the norm:

|| f ||∞ := sup
x∈X

|| f (x)||

is a complex (or real) Banach space.

Proof. Let { fn}n∈N ⊂ C(K;K) be a Cauchy sequence. We want to show there is
f ∈ C(K;K) such that || fn − f ||∞ → 0 for n → +∞. Since { fn}n∈N is Cauchy, for
any given x ∈ K, also n-tuples fn(x) ∈ Kn are a Cauchy sequence. Thus, since Kn is
complete, we have a pointwise-defined map:

f (x) := lim
n→+∞

fn(x) .

The claim is that f ∈ C(K;K) and || fn − f ||∞ → 0 as n → +∞. Since { fn}n∈N is
Cauchy, for any ε > 0 there is Nε such that, if n,m > Nε ,

|| fn(x)− fm(x)||< ε , for every x ∈ K.
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By definition of f , on the other hand, for a given x ∈ K and any ε ′x > 0, there is Nx,ε ′x
such that || fm(x)− f (x)||< ε ′x whenever m > Nx,ε ′x . Using these two facts we have

|| fn(x)− f (x)|| ≤ || fn(x)− fm(x)||+ || fm(x)− f (x)||< ε+ ε ′x

provided n > Nε and chosing m > max(Nε ,Nx,ε ′x). Overall, if n > Nε , then

|| fn(x)− f (x)||< ε+ ε ′x , for any ε ′x > 0.

Since ε ′x > 0 is arbitrary, the inequality holds when ε ′x = 0, possibly becoming an
equality. Thus the dependency on x disappears, and in conclusion, for any ε > 0 we
have found Nε ∈ N such that

|| fn(x)− f (x)|| ≤ ε , for all x ∈ K (2.5)

when n > Nε . Hence { fn} converges to f uniformly. Since (2.5) holds for any x∈K, it
holds for the supremum on K: for any ε > 0 there is Nε ∈N such that supx∈K || fn(x)−
f (x)||< ε , whenever n > Nε . Put differently,

|| fn− f ||∞→ 0 , as n→+∞.

To finish we must prove f is continuous. Given x∈K, for any ε > 0 we will find δ > 0
such that || f (x′)− f (x)|| < ε when ||x′ − x|| < δ . For that we exploit uniform con-
vergence, and choose n such that || f (z)− fn(z)||< ε/3 for the given ε and any z∈ K.
Furthermore, as fn is continuous, there is δ > 0 such that || fn(x′)− fn(x)|| < ε/3
whenever ||x′ −x||< δ . Putting everything together and using the triangle inequality
allows to conclude the following: if ||x′ − x||< δ ,

|| f (x′)− f (x)|| ≤ || f (x′)− fn(x′)||+ || fn(x′)− fn(x)||+ || fn(x)− f (x)||

< ε/3+ ε/3+ ε/3 = ε

as claimed, so f ∈C(K;K). �

Notation 2.18. From now on we will write C(K) := C(K;C). �

A useful analytical result about the uniform convergence of monotone sequences
of real functions on compact sets is a classical result of Dini.

Theorem 2.19 (Dini’s theorem on uniform convergence). Let K be a compact
space and { fn}n∈N ⊂C(K;R) such that:

(i) each fn is continuous;
(ii) fn(x)≤ fn+1(x) for n = 1,2, . . . and x ∈ K;
(iii) fn → f pointwise as n→+∞.

Then, if f is continuous, || f − fn||∞→ 0 as n→+∞. The same is true if (ii) is replaced
with: fn(x)≥ fn+1(x).



44 2 Normed and Banach spaces, examples and applications

Proof. Fix ε > 0 and define gn := f − fn for any n ∈ N. Denote by Bn the set of
x ∈ K for which gn(x) < ε . Bn is open because gn is continuous, and Bn+1 ⊃ Bn since
gn+1(x) ≤ gn(x), by construction. Since gn(x) → 0, then necessarily ∪n∈NBn = K.
But K is compact, so we can choose Bn1 ,Bn2 , . . .BnN ordered so that Bnk+1 ⊃ Bnk and
Bn1 ∪Bn2 ∪ ·· · ∪BnN ⊃ K. As K ⊃ Bnk+1 ⊃ Bnk , we have BnN = K. Hence we have
that for the given ε > 0, there is nN such that | f (x)− fn(x)| < ε for n > nN , x ∈ K.
Therefore || f − fn||∞ < ε , as claimed. The case fn(x) ≥ fn+1(x) is completely ana-
logous. �

In the special case K is a compact set containing a dense and countable subset,
the Banach space C(K) has an interesting property by the theorem of Arzelà–Ascoli.
We state below the simplest version of this result: even if it is not strictly related to
the contents of this book, its relevance (especially in its more general form) and the
typical argument of its proof make it worthy of attention.

Definition 2.20. A sequence { fn}n∈N of functions fn : X → C on a normed space1

(X, || ||) is equicontinuous if for any ε > 0 there is δ > 0 such that | fn(x)− fn(x′)|< ε
whenever ||x− x′||< δ for every n ∈ N and every x,x′ ∈ X.

Theorem 2.21 (Arzelà–Ascoli). Let K be a compact separable (cf. Definition 1.5)
space. Suppose the sequence of functions { fn}n∈N ⊂C(K) is:

(a) equicontinuous and
(b) bounded by some C ∈ R, i.e. || fn||∞ < C for any n ∈ N.

Then there exists a subsequence { fnk}k∈N converging to some map f ∈C(K) in the
topology induced by the norm || ||∞.

Proof. Consider the points q, labelled byN, of a dense and countable set Q⊂ K. If q1

denotes the first point, consider the values | fn(q1)|. They lie in a compact set [0,C],
so either there are finitely many, and fn(q1) = x1 ∈ C for a single x1 and infinitely
many n, or the fn(q1) accumulate at x1 ∈ C. In either case there is a subsequence
{ fnk}k∈N such that fnk(q1)→ x1 ∈ C for some x1 ∈ C. Call the elements of { fnk}k∈N
by f1n, where n∈N. Now repeat the procedure and consider | f1n(q2)|, where q2 is the
second point of Q, and extract a subsequence { f2n}n∈N from { f1n}n∈N. By construc-
tion, f2n(q1)→ x1 and f2n(q2)→ x2 ∈C, as n→+∞. Continuing in this way for every
k∈Nwe build a subsequence { fkn}n∈N of { fn}n∈N that converges to x1,x2, . . . ,xk ∈C
when evaluated at the points q1,q2, . . . ,qk ∈ Q. Take the subsequence of { fn}n∈N
formed by all diagonal terms in the various subsequences, { fnn}n∈N. We will show
that this is a Cauchy sequence for the norm || ||∞, and end the proof. So let us fix ε > 0
and find the δ > 0 corresponding to ε/3 from equicontinuity, then cover K with balls
of radius δ centred at every point of K. Using K’s compactness we extract a finite

covering of balls with radius δ , say B(1)
δ ,B(2)

δ , . . . ,B(N)
δ and choose q( j) ∈ B( j)

δ ∩Q, for

any j = 1, . . . ,N. For any x ∈ B( j)
δ we have:

| fnn(s)− fmm(s)|
≤ | fnn(s)− fnn(q( j))|+ | fnn(q( j))− fmm(q( j))|+ | fmm(q( j))− fmm(s)| .

1 The definition generalises trivially to metric spaces.
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The first and third terms are smaller than ε/3 by construction. Since fnn(q( j)) con-

verges in C as n → +∞, the second term is less than ε/3 provided n,m > M( j)
ε for

some M( j)
ε ≥ 0. Hence if Mε = max j=1,...,N M( j)

ε :

| fnn(s)− fmm(s)|< ε for n,m > Mε , and any s ∈ K.

In other words
|| fnn− fmm||∞ < ε if n,m > Mε

as claimed. �

Remark 2.22. (1) The theorem applies in particular when K is the closure of a non-
empty open and bounded set A ⊂ Rn, because points with rational coordinates form
a countable dense subset in K. Moreover, the theorem holds, with the same proof
(modulo trivial changes), in case we replace C(K) with C(K;Kn).
(2) We will prove in Chapter 4, Proposition 4.3, that in a normed space (X, || ||) a
subset A ⊂ X is relatively compact (its closure is compact) if we can extract a con-
vergent subsequence from any sequence of A. By virtue of this fact, the theorem of
Arzelà–Ascoli says the following.

If K is a compact separable space, every equicontinuous subset of C(K) that is bound-
ed for || ||∞ is also relatively compact in (C(K), || ||∞).

(3) An important result in functional analysis [Mrr01], which we will not prove, is
the Theorem of Banach–Mazur: any complex separable Banach space is isometrically
isomorphic to a closed subspace of (C([0,1]), || ||∞). �

Several examples of Banach spaces will be presented at the end of the next sec-
tion, after we have talked about normed and Banach algebras.

2.1.4 Normed algebras, Banach algebras and examples

As we shall see in a moment, in many applications there is a tight connection between
algebras and normed spaces, which goes through linear operators on a normed space.
The most important normed algebras in physics are, as a matter of fact, operator al-
gebras.

But the notions of algebra and normed algebra are completely independent of op-
erators. An algebra arises by enriching a vector space with an additional product that
is associative, distributive over the sum and behaves associatively for the vector-
scalar multiplication. A normed algebra is an algebra equipped with a norm that
renders the vector space normed and behaves “well” with respect to the product.
Here are the main definitions.

Definition 2.23. A algebra A over the field K= C or R is a K-vector space with an
operation ◦ : A×A→ A, called product, that is associative:

(a◦b)◦ c = a◦ (b◦ c) for each triple a,b,c ∈ A
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and distributes over the vector space operations:
A1. a◦ (b+ c) = a◦b+a◦ c ∀a,b,c ∈ A;
A2. (b+ c)◦a = b◦a+ c◦a ∀a,b,c ∈ A;
A3. α(a◦b) = (αa)◦b = a◦ (αb) α ∈ K and ∀a,b ∈ A.
The algebra (A,◦) is called:

commutative (or Abelian) if
A4. a◦b = b◦a for any pair a,b ∈ A;

with unit if it contains an element I, called unit of the algebra, such that:
A5. I◦u = u◦ I= u for any a ∈ A;

normed algebra or normed algebra with unit if it is a normed vector space
with norm || || satisfying
A6. ||a◦b|| ≤ ||a||||b|| for a,b ∈ A;
and in the second case also:
A7. ||I||= 1;

Banach algebra or Banach algebra with unit if A is a Banach space plus a
normed algebra, or normed algebra with unit, for the same norm.

A homomorphism φ : A1 → A2 between algebras whether with unit, normed or
Banach, is a linear map preserving products, and units if present. In the obvious
notations:

φ(a◦1 b) = φ(a)◦2 φ(b) if a,b ∈ A1, φ(I1) = I2 .

An algebra homomorphism is an algebra isomorphism (between normed or Banach
algebras, with or without unit) if bijective. If there is an isomorphism φ : A→ A′, the
algebras A, A′ (normed/Banach/with unit) are isomorphic.

Remark 2.24. (1) If a unit exists it must be unique: if both I and I′ satisfy A5, then
I
′ = I′ ◦ I= I.

(2) For normed algebras, the axioms easily imply that all operations are continuous
in the norm topologies involved. We showed in Section 2.1.1 that this is true for the
sum and the multiplication scalar-vector. The product ◦, too, is jointly continuous in
its arguments (i.e. in the product topology ofA×A), by A6. Let us see why. Dropping
the symbol ◦, we have

||ab−a0b0||= ||ab−a0b+a0b−a0b0|| ≤ ||a−a0|| ||b||+ ||a0|| ||b−b0|| .
Fixing ε > 0, since the norm is continuous in its own-induced topology, there is δ0 > 0
such that ||b−b0||< δ0 implies −1 < ||b||− ||b0||< 1. Therefore:

||ab−a0b0||= ||ab−a0b+a0b−a0b0|| ≤ ||b−b0||(1+ ||b0||+ ||a0||) .

Choosing now δ ≤min(δ0,ε/(1+ ||b0||+ ||a0||)) and considering elements (a,b) ∈
Bδ (a0)×Bδ (b0):

||ab−a0b0||< ε .

This proves the continuity of ◦ in the product topology of A×A (and hence also
continuity in each argument alone).
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Indicate by GA⊂ A the group of invertible elements and let us show that if A is
complete, i.e. a Banach algebra, then GA is open (so it makes sense to invert elements
in a neighbourhood of any a0 ∈ GA) and the map GA � a 	→ a−1 continuous. With
a ∈ A, the series

+∞

∑
n=0

(−1)nan

converges in the norm topology when ||a||< 1, because its partial sums are Cauchy
sequences and the space is complete by hypothesis. The proof now is the same as for
the convergence of the geometric series. Moreover, since the product is continuous:

(I+a)
+∞

∑
n=0

(−1)nan =
+∞

∑
n=0

(−1)n(I+a)an = I+ lim
n→+∞

(−1)n+1an = I .

Similarly:
( +∞

∑
n=0

(−1)nan
)

(I+a) = I .

Hence we have, if ||a||< 1, that I+a ∈ GA and:

(I+a)−1 =
+∞

∑
n=0

(−1)nan .

At this point, if b ∈ GA we can write c = b + c− b = b(I+ b−1(c− b)). Therefore
||b−1(c−b)||< 1 implies c has an inverse:

c−1 =
+∞

∑
n=0

(−1)n((c−b)b−1)nb−1 .

In particular, if b ∈ GA and we fix 0 < δ < 1/||b−1||, then c ∈ Bδ (b) gives c ∈ GA,
because: ||b−1(c−b)|| ≤ ||b−1|| ||(c−b)||< 1. Thus we have proved GA open.

Now to the continuity of GA� a 	→ a−1. Fix a0 ∈GA and δ with 0 < δ < ||a−1
0 ||−1,

and note ||a−a0||< δ forces

||a−1−a−1
0 || ≤ ||a−1(a0−a)a−1

0 || ≤ ||a−1|| ||a−a0|| ||a−1
0 ||

≤ (||a−1−a−1
0 ||+ ||a−1

0 ||)δ ||a−1
0 || .

Therefore (the first factor is positive by construction)

(1−δ ||a−1
0 ||) ||a−1−a−1

0 || ≤ δ ||a−1
0 ||2 .

We conclude that if ||a−a0||< δ ,

||a−1−a−1
0 || ≤ δ

1−δ ||a−1
0 || ||a

−1
0 ||2 .
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Defining ε := δ
1−δ ||a−1

0 || ||a
−1
0 ||2 we have δ = ε

ε||a−1
0 ||+||a−1

0 ||2 . The conclusion, as

claimed, is that for any ε > 0 (satisfying the starting constraint) ||a−1 − a−1
0 || < ε

with a ∈ Bδ (a0) and δ > 0 above, so a 	→ a−1 is continuous.
(3) Observe that the norm does not show up in the definition of homomorphism and
isomorphism between the various kinds of algebra.
(4) A (normed/Banach) subalgebra (with unit) is the obvious object: a subset A1 ⊂
A in a (normed/Banach) algebra A (with unit) that inherits the algebra structure by
restricting the algebra operations (if present: the same unit of A, the restricted norm
of A, and completeness if A is Banach). �

Notation 2.25. In the sequel we will conventionally denote the product of two ele-
ments of an algebra by juxtaposition, as in ab, rather than by a◦b; in other contexts
a dot could be used: f ·g, especially when working with functions. �

Examples 2.26. Let us see examples of Banach spaces and Banach algebras, a few
of which will require some abstract measure theory.

(1) The number fields C and R are commutative Banach algebras with unit. For both
the norm is the modulus/absolute value.

(2) Given any set X, and K=C or R, let L(X) be the set of bounded maps f : X→K,
i.e. supx∈X | f (x)| < ∞. L(X) is naturally a K-vector space for the usual linear com-
binations: if α ,β ∈ C and f ,g ∈ L(X),

(α f +βg)(x) := α f (x)+βg(x) for all x ∈ X.

We can define a product making L(X) an algebra: for f ,g ∈ L(X),

( f ·g)(x) := f (x)g(x) for any x ∈ X.

The algebra is commutative and has a unit (the constant map 1). A norm that renders
L(X) Banach is the sup norm: || f ||∞ := supx∈X | f (x)|. The proof is simple (it uses the
completeness of C, and goes pointwise on X) and can be found in the exercises at the
end of the chapter.

(3) Defining on the above X a σ -algebra Σ , the subalgebra of Σ -measurable functions
Mb(X) ⊂ L(X) is closed in L(X) in the topology of the sup norm. Thus Mb(X) is a
commutative Banach algebra. This is immdiate from the previous example, because
the pointwise limit of measurable maps is measurable.

(4) The vector space of continuous maps from a topological space X to C is written
C(X); the symbol already appeared for X compact in Section 2.1.3.
Cb(X)⊂C(X) is the subspace of bounded continuous maps.
Cc(X)⊂Cb(X) the space of continuous maps with compact support.
They all coincide if X compact, and are clearly commutative algebras with the op-
erations of example (2). C(X) and Cb(X) have a unit given by the constant map 1,
whereas Cc(X) has no unit when X is not compact. Here is list of general facts:

(a) Cb(X) is a Banach algebra for the sup norm || ||∞.
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(b) If X = K is compact, Cc(K) =C(K) is a Banach algebra with unit for the sup norm
|| ||∞, as we saw in Section 2.1.3. An important result in the theory of Banach algebras
[Rud91] states that any commutative Banach algebra with unit over C is isomorphic
to an algebra C(K) for some compact K.
(c) If the space X is

1. Hausdorff, and
2. locally compact,

then the completion of the normed space Cc(X) is a commutative Banach algebra
C0(X) (without unit), called algebra of continuous maps f : X → C that vanish at
infinity in X [Rud82]: this means that for any ε > 0 there is a compact set Kε ⊂ X
(depending on f in general) such that | f (x)|< ε for any x ∈ X\Kε .
(d) Irrepective of compactness, C(X), Cc(X), C0(X) are in general not dense in Mb(X)
for || ||∞ and using on X the Borel σ -algebra. If we take X = [0,1] for instance, the
bounded map f : [0,1]→C equal to 0 except for f (1/2) = 2 is Borel measurable (with
topologies: standard on C and induced one on [0,1]), hence f ∈Mb([0,1]). However,
there cannot exist any sequence of continuous maps fn : [0,1]→ C converging to f
uniformly. The same can be said if X⊂ Rn is a compact set with non-empty interior
and we take f : X→ C to be f (q) = 0 for q ∈ X\{p}, p ∈ Int(X), and f (p) = 1.

(5) If X is Hausdorff and compact, consider in C(X) a subalgebra A as follows. It must
contain the unit (the function 1) and be closed under complex conjugation: f ∈ A
implies f ∗ ∈ A, where f ∗(x) := f (x) for any x ∈ X and the bar denotes complex con-
jugation. Then A is said to separate points in X if given any x,y ∈ X with x � y, there
is a map f ∈ A with f (x) � f (y). The Stone–Weierstrass theorem [Rud91] states the
following.

Theorem 2.27 (Stone–Weierstrass). Let X be a compact Hausdorff space and con-
sider the Banach algebra with unit (C(X), || ||∞). Then any subalgebra A ⊂ C(X)
containing the unit, closed under complex conjugation and separating points, has
C(X) as closure with respect to || ||∞.

A typical example is X compact in Rn and A the algebra of complex polynomials
in n variables (the standard coordinates of Rn) restricted to X. The theorem says that
these polynomials approximate uniformly any complex, continuous function on X.
This is useful to construct bases in Hilbert spaces, as we will explain.

(6) Let (X,Σ ,μ) be a positive, σ -additive measure space. Recall this means a set X,
a σ -algebra Σ of subsets in X, a positive and σ -additive measure μ : Σ → [0,+∞].
Then we have Hölder’s inequality and Minkowski’s inequality, respectively:

∫

X
| f (x)g(x)|dμ(x) ≤

(∫

X
| f (x)|pdμ(x)

)1/p(∫

X
|g(x)|qdμ(x)

)1/q

(2.6)

(∫

X
| f (x)+g(x)|pdμ(x)

)1/p

≤
(∫

X
| f (x)|pdμ(x)

)1/p

+
(∫

X
|g(x)|pdμ(x)

)1/p

(2.7)

for f ,g : X → C measurable, p,q > 0 subject to 1/p + 1/q = 1 in the former, p ≥ 1
in the latter [Rud82]. These inequalities are proved in two exercises at the end of the
chapter.
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Let L p(X,Σ ,μ), or henceforth L p(X,μ) by omitting the σ -algebra, be the set
of Σ -measurable maps f : X→C such that

∫
X | f (x)|pdμ(x) <∞. Using Minkowski’s

inequality one proves easily L p(X,μ) is a vector space with the linear composition
of functions, and

Pp( f ) :=
(∫

X
| f (x)|pdμ(x)

)1/p

(2.8)

is a seminorm. Since Pp( f ) = 0 if and only if f = 0 a.e. for μ , to obtain a norm (to
have N3) we must identify the zero map and any function that differs from it by a
zero-measure set. To this end we define an equivalence relation on L p(X,μ): f ∼ g
iff f −g is zero a.e. for μ . The quotient space L p(X,μ)/∼, written Lp(X,μ), inherits
a vector-space structure over C from L p(X,μ) by setting:

[ f ]+ [g] := [ f +g] and α [ f ] := [α f ] for any α ∈ C, f ,g ∈L p(X,μ).

It is not hard to see the left-hand sides of these definitions are independent of the
representatives chosen in the equivalence classes on the right.
It can be proved that Lp(X,μ) is a Banach space for:

||[ f ]||p :=
(∫

X
| f (x)|pdμ(x)

)1/p

, (2.9)

where f is any representative of [ f ] ∈ Lp(X,μ). We shall slightly abuse the nota-
tion in the sequel, and write || f ||p, not Pp( f ), when dealing with functions and not
equivalence classes.

If (X,Σ ′,μ ′) is the completion of (X,Σ ,μ) (cf. Remark 1.47(1)), in general
L p(X,μ ′) is larger than L p(X,μ). But if we pass to the quotient then Lp(X,μ ′) =
Lp(X,μ) by way of Proposition 1.57.

Theorem 2.28 (Fischer–Riesz). If (X,Σ ,μ) is a positive, σ -additive measure space,
the associated normed space Lp(X,μ) is, for any 1≤ p < +∞, a Banach space.

Proof. Throughout this proof we will omit the square brackets in denoting coset ele-
ments of Lp(X,μ), and identify them with functions (up to null sets). To prove the
claim, thanks to Proposition 2.16 it is sufficient to verify that if the series ∑+∞

n=0 fn in
L p(X,μ) converges absolutely, ∑+∞

n=0 || fn||p ≤ K < +∞, then ∑+∞
n=0 fn = f a.e. for

some f ∈ L p(X,μ) in the topology of || ||p. We will need an auxiliary sequence:
gN(x) := ∑N

n=1 | fn(x)|, N = 1,2, . . .. By construction ||gN ||p ≤ ∑N
n=1 || fn||p ≤ K for

any N = 1,2, . . .. We show the limit limN→+∞gN(x) is finite for almost all x ∈ X.
The sequence of integrable functions gp

N is non-negative and non-decreasing by con-
struction, and

∫
X gN(x)pdμ(x) < K p for any N. By monotone convergence the limit

gp of gp
N exists, as a map in [0,+∞], because the sequence of the given gp

N ≥ 0 is
non-decreasing, and must have finite integral; thus gp ≥ 0 is finite up to possible zero-
measure sets. As p≥ 0, at points x∈X where g(x)p < +∞we have limN→+∞ gN(x) =
g(x) < +∞. By construction, where g(x) is finite the series ∑+∞

n=0 fn(x) converges ab-
solutely. Therefore it converges to certain values f (x) ∈ C. Defining f (x) = 0 where
the series of fn does not converge, we obtain a series ∑+∞

n=0 fn that converges a.e. to
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a map f : X → C (measurable since limit, a.e., of measurable functions, and, say,
null on the zero-measure set where the series does not converge). The map f be-
longs to L p(X,μ): if fN(x) := ∑N

n fn(x), the sequence of | fN |p is non-negative and
∫

X | fN(x)|pdμ(x) < K p for any N. By Fatou’s lemma f ∈L p(X,μ). Now we prove∫
X | fN(x)− f (x)|pdμ(x)→ 0 as n → +∞. Easily (see the footnote in Exercise 2.14)
| fN(x)− f (x)|p ≤ 2p(| fN(x)|p +| f (x)|p). Since, by construction, | fN |p +| f |p ≤ |g|p +
| f |p ∈L 1(X,μ), we can invoke the dominated convergence theorem for the sequence
of | fN − f |p, known to converge a.e. to 0, and obtain

∫
X | fN(x)− f (x)|pdμ(x) → 0

as n →+∞. We have thus proved that the initial series ∑+∞
n=0 fn, assumed absolutely

convergent in L p(X,μ), has ∑+∞
n=0 fn = f a.e. for the above f ∈L p(X,μ) in norm

|| ||p. This ends the proof. �

This argument implies a technical fact, extremely useful in the applications, that
deserves separate mentioning.

Proposition 2.29. Take 1≤ p < +∞ and let (X,Σ ,μ) be a σ -additive, positive meas-
ure space. If { fn}n∈N ⊂L p(X,μ) converges to f in || ||p as n→+∞, there exists a
subsequence { fnk}k∈N such that fnk → f a.e. for μ .

Proof. The sequence { fn}n∈N is convergent hence Cauchy, and we can extract a
subsequence { fnk}k∈N such that || fnk+1 − fnk || ≤ 2−k. Define a telescopic sequence
sk := fnk+1 − fnk . The series fn0 +∑+∞

k=1 sk is absolutely convergent, for ∑+∞
k=1 ||sk||p <

∑+∞
k=1 2−k < +∞. As in the proof of Theorem 2.28, we conclude (a) the sum s ∈

L p(X,μ) of the series exists, in the sense of || ||p convergence, and (b) the series
converges pointwise to s a.e.: fn0(x)+∑k∈N sk(x) = s(x). Since fn0(x)+∑

+∞
k=0 sk(x) =

fnk(x), what we have found is that fnk → s ∈ L p(X,μ) both pointwise μ-almost
everywhere, and with respect to || ||p. But by assumption fnk → f ∈L p(X,μ) with
respect to || ||p, so || f − s||p = 0 and hence f (x) = s(x) a.e. for μ . Eventually, then,
fnk(x)→ f (x) a.e. for μ . �

To conclude the example notice the Banach space Lp(X,μ) is, in general, not
an algebra (for the usual pointwise product of functions) as the pointwise product in
L p(X,μ) does not normally belong to the space.

(7) In reference to example (6), consider the special case where X is not countable,
Σ the power set of X and μ the counting measure: if S⊂ X,

μ(S) = number of elements of S, with μ(S) = ∞ if S is infinite.

In this case, given a measurable space Y, any map f : X → Y is measurable, and
Lp(X,μ) is simply denoted �p(X). Its elements are “sequences” {zx}x∈X of complex
numbers, labelled by X, such that:

∑
x∈X

|zx|p < ∞ ,

where the sum is given by:

sup

{

∑
x∈X0

|zx|p
∣
∣
∣
∣
∣

X0 ⊂ X, X0 finite

}

.
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If X is countable, X = N or Z in particular, the above definition of sum of positive
numbers indexed by X is the usual sum of a series. For example, �p(N) is the space
of sequences {cn}n∈N ⊂ C with:

+∞

∑
n=0

|cn|p < +∞ .

(8) With (X,Σ ,μ) a measure space, consider the class L ∞(X,μ) of complex meas-
urable maps f : X→C such that | f (x)|< Mf a.e. for μ , for some Mf ∈R (depending
on f ). L ∞(X,μ) has a natural structure of vector space and of commutative algebra
with unit (the function 1) if we use the ordinary product and linear combinations as
in example (2). We can give L ∞(X,μ) a seminorm:

P∞( f ) := ess sup| f |
where the essential supremum of f ∈L ∞(X,μ) is:

ess sup| f | := inf{r ∈ R | μ ({x ∈ X | | f (x)|> r}) = 0} . (2.10)

Naïvely speaking, the latter is the “smallest” upper bound of | f | when ignoring what
happens on zero-masure sets.

In particular (exercise):

P∞( f ·g)≤ P∞( f )P∞(g) if f ,g ∈L ∞(X,μ) .

As for L p, if we identify maps that differ by zero-measure sets, we can form the
complex quotient space L∞(X,μ), where the product:

[ f ] · [g] := [ f ·g] se f ,g ∈L ∞(X,μ)

is well defined. Exactly as for the Lp spaces, the seminorm P∞ is (clearly) a norm on
L∞(X,μ):

||[ f ]||∞ := ess sup| f | .
As for the Lp, L∞(X,μ) is again a Banach space. Being closed under products it is a
Banach algebra as well.

Theorem 2.30 (Fischer–Riesz, L∞ case). If (X,Σ ,μ) is a σ -additive, positive meas-
ure space, the associated normed space L∞(X,μ) is a Banach space.

Proof. As customary, we indicate with f (no brackets) the generic element of
L∞(X,μ), and identify it when necessary with a function (up to null sets). Let
{ fn}n∈N ⊂ L∞(X,μ) be a Cauchy sequence for || ||∞. Define, for k,m,n ∈ N, sets
Ak := {x∈ X | | fk(x)|> || fk||∞} and Bn,m := {x ∈ X | | fn(x)− fm(x)|> || fn− fm||∞}.
By construction E := ∪k∈N ∪n,m∈N Ak ∪Bn,m must have zero measure, and the se-
quence of fn converges uniformly in X \ E to some f , that is therefore bounded.
Extend f to the entire X by setting it to zero on X \ E. Thus f ∈ L∞(X,μ) and
|| fn− f ||∞→ 0 as n→+∞. �
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(9) Going back to example (8), in case Σ is the power set of X and μ the count-
ing measure, the space L∞(X,μ) is written simply �∞(X). Its points are “sequences”
{zx}x∈X of complex numbers indexed by X such that supx∈X |zx|< +∞. With the nota-
tion of example (2), �∞(X) = L(X). �

Notation 2.31. The literature prefers using the naked letter f to indicate the equi-
valence class [ f ] ∈ Lp(X,μ), 1 ≤ p ≤ ∞. We shall stick to this convention when no
confusion arises. �

2.2 Operators, spaces of operators, operator norms

With the next definition we introduce linear operators and linear functionals, whose
importance is paramount in the whole book. We shall assume from now on famili-
arity with the elementary theory of linear operators (matrices) on finite-dimensional
vector spaces, and freely use results without explicit mention.

Definition 2.32. Let X, Y be vector spaces on the same field K := R, C.

(a) T : X→ Y is a linear operator (simply, an operator) from X to Y if it is linear:

T (α f +βg) = αT ( f )+βT (g) for any α ,β ∈ K, f ,g ∈ X.

L(X,Y) denotes the set of linear operators from X to Y.
If X and Y are normed, B(X,Y) ⊂ L(X,Y) is the subset of continuous operators. In
particular L(X) := L(X,X) and B(X) :=B(X,X).
(b) T : X→ K is a linear functional (a functional) on X if it is linear.
(c) We call the space X∗ := L(X,K) the algebraic dual of X, whereas X′ :=B(X,K)
is the topological dual (the dual) of X, with K normed by the absolute value.

Notation 2.33. Linear algebra textbooks usually write Tu for T (u) when T : X→ Y
is a linear operator and u ∈ X, and we will adhere to this. �

If T,S ∈ L(X,Y) and α ,β ∈K, the linear combination αT +βS is the usual map:
(αT +βS)(u) := α(Tu)+β (Su) for any u ∈ X.

Thus αT +βS is still in L(X,Y). As linear combinations preserve continuity, we
have the following.

Proposition 2.34. Let X, Y be vector spaces on the same K := R, or C.
L(X,Y), L(X), X∗, B(X,Y), B(X) and X′ are K-vector spaces.

Another fundamental notion we introduce is that of bounded operator (or func-
tional). We begin with an elementary, yet important, fact.

Theorem 2.35. Let (X, || ||X),(Y, || ||Y) be normed spaces on the same K = C or R
and take T ∈ L(X,Y).
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(a) The following conditions are equivalent:

(i) there exists K ∈ R such that ||Tu||Y ≤ K||u||X for all u ∈ X;

(ii) supu∈X\{0}
||Tu||Y
||u||X < +∞.

(b) If either of (i), (ii) hold:

sup

{ ||Tu||Y
||u||X

∣
∣
∣
∣ u ∈ X\{0}

}

= inf{K ∈ R | ||Tu||Y ≤ K||u||X for any u ∈ X} .

Proof. (a) Under (i), supu∈X\{0}
||Tu||Y
||u||X ≤ K < +∞ by construction. If (ii) holds, set

A := supu∈X\{0}
||Tu||Y
||u||X , and then K := A satisfies (i).

(b) Calling I the greatest lower bound of the numbers K fulfilling (i), since

sup
u∈X\{0}

||Tu||Y
||u||X ≤ K ,

we have supu∈X\{0}
||Tu||Y
||u||X ≤ I. If the two sides are different then there is K0 with

supu∈X\{0}
||Tu||Y
||u||X < K0 < I, whence ||Tu||Y < K0||u||X for any u � 0, so ||Tu||Y ≤

K0||u||X for all u ∈ X. Therefore K0 satisfies (i), and I ≤ K0 by definition of I, in
contradiction to K0 < I. ��

Notation 2.36. We will start omitting indices in norms when the corresponding
spaces will be clear from the context. �

Definition 2.37. Let X,Y be normed spaces on the fieldC orR. T ∈L(X,Y) is bound-
ed if either condition in Theorem 2.35(a) holds. The number

||T || := sup
||u||�0

||Tu||
||u|| (2.11)

is called (operator) norm of T .

Remark 2.38. (1) From the definition of ||T ||, if T : X→ Y is bounded then:

||Tu|| ≤ ||T || ||u|| , for any u ∈ X . (2.12)

(2) The notion of bounded linear operator cannot clearly correspond to that of a bound-
ed function. That is because the image of a linear map, in a vector space, cannot be
bounded precisely because of linearity. Proposition 2.39 shows, though, that it still
makes sense to view “boundedness” in terms of the bounded image of an operator,
provided one restricts the domain to a bounded set. �
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The operator norm can be computed in alternative ways, at times useful for proofs.
In this respect,

Proposition 2.39. Let X,Y be normed spaces on C or R.
T ∈ L(X,Y) is bounded if and only if the right-hand side of any of the identities below
exists and is finite, in which case:

||T ||= sup
||u||=1

||Tu|| , (2.13)

||T ||= sup
||u||≤1

||Tu|| , (2.14)

||T ||= inf{K ∈ R | ||Tu|| ≤ K||u|| for any u ∈ X} . (2.15)

Proof. That T is bounded if and only if the right-hand side of (2.13) is finite, and
the validity of (2.13) too, follow from the linearity of T and N1. T is bounded iff
the right-hand side of (2.14) is finite, and (2.14) holds, by the following argument.
The set of u with ||u|| ≤ 1 includes ||u|| = 1, so sup||u||≤1 ||Tu|| ≥ sup||u||=1 ||Tu||.
On the other hand, ||u|| ≤ 1 implies ||Tu|| ≤ ||T v|| for some v with ||v|| = 1 (any
such if u = 0, and v = u/||u|| otherwise). Hence sup||u||≤1 ||Tu|| ≤ sup||u||=1 ||Tu||,
from which sup||u||≤1 ||Tu|| = sup||u||=1 ||Tu||, as claimed. That T is bounded if and
only if the right-hand side of (2.15) is finite, and property (2.15), are consequences
of Theorem 2.35(b). �

There is a relationship between continuity and boundedness of linear operators
and functionals, which makes boundedness very important. The following simple
theorem shows that linear operators are precisely the continuous ones.

Theorem 2.40. Consider T ∈ L(X,Y) with X,Y normed over the same field R or C.
The following are equivalent facts:

(i) T is continuous at 0;
(ii) T is continuous;
(iii) T is bounded.

Proof. (i) ⇔ (ii). Continuity trivially implies continuity at 0. We show the lat-
ter forces continuity. As (Tu)− (T v) = T (u− v) we have (limu→v Tu)− T v =
limu→v(Tu−T v) = lim(u−v)→0 T (u− v) = 0 by continuity at 0.
(i) ⇒ (iii). From continuity at 0 there is δ > 0 such that ||u||< δ implies ||Tu||< 1.
Fixing δ ′ > 0 with δ ′ < δ , if v∈X\{0}, then u = δ ′v/||v|| has norm smaller than δ , so
||Tu||< 1, i.e. ||T v||< (1/δ ′)||v||. Therefore Theorem 2.35(a) holds with K = 1/δ ′,
and by Definition 2.37 T is bounded.
(iii) ⇒ (i). This is obvious: if T is bounded then ||Tu|| ≤ ||T ||||u||, hence continuity
at 0. �

The name “norm” for ||T || is not accidental; namely, the operator norm renders
B(X,Y), hence also B(X) and X′, normed spaces, as we shall shortly see. More pre-
cisely,B(X,Y) is a Banach space if Y is Banach, so in particular X′ is always a Banach
space.
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The next result is about the algebra structure. Let us start by saying that the vector
spaces L(X) andB(X) are closed under composites (since composing preserves con-
tinuity). Furthermore, it is immediate that L(X),B(X) satisfy axioms A1, A2, A3 for
an algebra whenever the product of two operators is the composite. Thus L(X) and
B(X) possess a natural structure of algebra with unit, where the unit is the identity
map I : X→ X, and B(X) is a subalgebra in L(X).

The final part of the theorem is a stronger statement than this, for it says B(X)
is a normed algebra with unit for the operator norm, and a Banach algebra if X is
Banach.

Theorem 2.41. Let X,Y be normed spaces on C, or R.

(a) The map || || : T 	→ ||T ||, where ||T || is as in (2.11), is a norm on B(X,Y).
(b) On the algebra with unit B(X) the following properties hold, which turn it into a
normed algebra with unit:

(i) ||T S|| ≤ ||T ||||S||, T,S ∈B(X);
(ii) ||I||= 1.

(c) If Y is complete B(X,Y) is a Banach space.
In particular:

(i) if X is a Banach space, B(X) is a Banach algebra with unit (the identity
operator);

(ii) X′ is always a Banach space with the functionals’ norm, even if X is not
complete.

Proof. (a) is a direct consequence of the definition of operator norm: properties N0,
N1, N2, N3 can be checked for the operator norm by using them on the norm of Y,
together with formula (2.13) and the definition of supremum.
(b) Part (i) is immediate from (2.12) and (2.13). (ii) is straighforward if we use (2.13).
Let us see to (c). We claim Y complete implies B(X,Y) Banach. Take a Cauchy se-
quence {Tn} ⊂B(X,Y) for the operator norm. By (2.12) we have

||Tnu−Tmu|| ≤ ||Tn−Tm||||u|| .
As {Tn} is Cauchy, {Tnu} is too. Since Y is complete, for any given u ∈ X there is a
vector in Y:

Tu := lim
n→∞Tnu .

X� u 	→ Tu is a linear operator, because every Tn is. The remains to show T ∈B(X,Y)
and ||T −Tn|| → 0 as n→ ∞.

{Tn} is a Cauchy sequence, so if ε > 0, then ||Tn−Tm|| ≤ ε for n,m sufficiently
large, hence ||Tnu−Tmu|| ≤ ||Tn−Tm||||u|| ≤ ε ||u||. Therefore:

||Tu−Tmu||= || lim
n→+∞

Tnu−Tmu||= lim
n→+∞

||Tnu−Tmu|| ≤ ε ||u||

if m is big enough. From this estimate, since ||Tu|| ≤ ||Tu−Tmu||+ ||Tmu|| and by
(2.12), we have

||Tu|| ≤ (ε+ ||Tm||)||u|| .
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This proves T is bounded, so T ∈B(X,Y) by Theorem 2.40. Now, since ||Tu−Tmu||
≤ ε ||u|| we also have ||T −Tm|| ≤ ε where ε can be arbitrarily small so long as m is
large enough. That is to say, ||T −Tn|| → 0 as n→ ∞.

The proof of subcases (i), (ii) is quick: (i) follows from B(X) = B(X,X), while
(ii) because X′ :=B(X,K) and the scalar field K is a complete normed space. �

As final notion we define conjugate or adjoint operators in normed spaces. Be-
ware there is a different notion of conjugate operator specific to Hilbert spaces, which
we will see in the next chapter.

Take T ∈ B(X,Y), with X, Y normed. We can build an operator T ′ ∈ L(Y′,X′)
between the dual spaces (swapped), by imposing:

(T ′ f )(x) = f (T (x)) for any x ∈ X, f ∈ Y′.

This is well defined, and for every f ∈ Y′ it produces a function T ′ f : X → C that
is linear by construction, because it coincides with the composite of linear maps f
and T . Furthermore, T ′ : Y′ � f → T ′ f ∈ X′ is also linear:

(T ′(a f +b f ))(x) = (a f +bg)(T (x)) = a f (T (x))+bg(T (x))
= a(T ′ f )(x)+b(T ′g)(x) for any x ∈ X .

Eventually, T ′ is bounded, in the obvious sense:

|(T ′ f )(x)|= | f (T (x))| ≤ || f ||||T ||||x|| ,
and so:

||T ′ f ||= sup
||x||=1

|T ′ f (x)| ≤ || f ||||T || .

Taking, on the left, the supremum over the collection of f ∈ Y′ with || f ||= 1 gives:

||T ′|| ≤ ||T || . (2.16)

After proving the Hahn–Banach theorem, we will show that ||T ′||= ||T || if X, Y are
Banach spaces.

Definition 2.42. Let X,Y be normed spaces on the same field C, or R, and T ∈
B(X,Y). The conjugate, or adjoint operator to T , in the sense of normed spaces, is
the operator T ′ ∈B(Y′,X′) defined by:

(T ′ f )(x) = f (T (x)) for any x ∈ X, f Y′. (2.17)

Remarks 2.43. The map B(X,Y) � T 	→ T ′ ∈B(Y′,X′) is linear:

(aT +bS)′ = aT ′+bS′ for any a,b ∈ C, T,S ∈B(X,Y). �

Before passing to the examples, we state an elementary result, very important in
the applications, about the uniqueness of extensions of bounded operators and func-
tionals defined, to begin with, on dense subsets.
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Proposition 2.44 (Extension of bounded operators). Let X,Y be normed spaces on
C, or R, with Y Banach. If S⊂ X is a dense subspace of X and T : S→ Y is a bounded
linear operator on S,

(a) there is a unique bounded linear operator T̃ : X→ Y such that T̃�S= T .
(b) ||T̃ ||= ||T ||.
Proof. (a) Given x ∈ X, there is a sequence {xn} in S converging to x. By hypothesis
||T xn − T xm|| ≤ K||xn − xm|| for K < +∞. Since xn → x, the sequence of the xn is
Cauchy, and so is T xn. Y is complete so there is T̃ x := limn→∞T xn ∈ Y. The limit
depends only on x and not upon the sequence in S used to approximate: if S � zn → x
then by the norms’ continuity

|| lim
n→+∞

T xn− lim
n→+∞

T zn||= lim
n→+∞

||T xn−T zn|| ≤ lim
n→+∞

K||xn−zn||= K||x−x||= 0 .

Clearly T̃�S= T , i.e. T̃ extends T , by choosing for any x ∈ S the constant sequence
xn := x, that tends to x trivially. The linearity of T̃ is straighforward from the defini-
tion. Eventually, taking the limit for n→+∞ of ||T xn|| ≤K||xn|| gives ||T̃ x|| ≤K||x||,
so T̃ is bounded. Uniqueness: if U is a second bounded extension T on X, then for
any x ∈ X, T̃ x−Ux = limn→+∞(T̃ xn−Uxn) by continuity, where the xn belong to S
(dense in X). As T̃�S= T = U�S, the limit is trivial and gives T̃ x = Ux for all x ∈ X,
i.e. T̃ = U .
(b) Let x ∈ X and {xn} ⊂ S converge to x: then

||T̃ x||= lim
n→+∞

||T xn|| ≤ lim
n→+∞

||T ||||xn||= ||T ||||x|| ,

so ||T̃ || ≤ ||T ||. But since S ⊂ X and T̃ �S= T ,

||T̃ ||= sup

{ ||T̃ x||
||x||
∣
∣
∣
∣ 0 � x ∈ X

}

≥ sup

{ ||T̃ x||
||x||
∣
∣
∣
∣ 0 � x ∈ S

}

= sup

{ ||T x||
||x||
∣
∣
∣
∣ 0 � x ∈ S

}

.

The last limit in the chain is ||T ||, hence ||T̃ || ≥ ||T ||, and thus ||T̃ ||= ||T ||. �

Examples 2.45. (1) Complex measures (see Section 1.4.8) allow to construct every
bounded linear functional on C0(X), where X is locally compact and Hausdorff. Con-
sider a locally compact Hausdorff space X equipped with a complex measure μ
defined on the Borel σ -algebra of X. We know that the normed algebra (Cc(X), || ||∞)
completes to the Banach algebra (C0(X), || ||∞) of maps that vanish at infinity (Ex-
ample 2.26(4)). Under the assumptions made ||μ || := |μ |(X), where the positive, σ -
additive and finite measure |μ | is the total variation of μ (cf. Section 1.4.8). Easily
then, || || is a norm on the space of complex Borel measures on X. Moreover, if
f ∈C0(X),

|Λμ f | ≤ ||μ |||| f ||∞ where Λμ f :=
∫

X
f dμ ,

and, as usual, || f ||∞ = supx∈X | f (x)|.
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Consequently, every complex Borel measure μ defines an element Λμ in the (to-
pological) dual of C0(X). Riesz’s theorem for complex measures [Rud82] proves this
is a general fact, and even more.

To state it, we recall that a complex Borel measure μ is called regular if the finite
positive Borel measure given by the total variation |μ | is regular (Definition 1.65).

Theorem 2.46 (Riesz’s theorem for complex measures). Let X be a locally com-
pact Hausdorff space, andΛ : C0(X)→ C a continuous linear functional. Then there
exists a unique regular complex Borel measure μΛ such that, for every f ∈C0(X):

Λ( f ) =
∫

X
f dμΛ .

Moreover, ||Λ ||= ||μΛ ||.
Since every regular complex Borel measure determines a bounded functional on

C0(X) by integration, the theorem has a corollary.

Corollary 2.47. If X is locally compact and Hausdorff, the topological dual C0(X)′
of the Banach space (C0(X), || ||∞) is identified with the real vector space of regular
complex Borel measures μ on X, endowed with norm ||μ || := |μ |(X). The function
mapping μ to the functionalΛμ : C0(X)→R, withΛμ f :=

∫
X f dμ , is an isomorphism

of normed spaces.

Also note, Cc(X) being dense in C0(X), that a continuous functional on the former
space determines a unique functional on the latter, so the theorem characterises as
well continuous functionals on Cc(X) for the sup norm.

Further, if in X every open set is the countable union of compact sets (as in Rn,
where each open set is the union of countably many closed balls of finite radius), the
word regular can be dropped in statement 2.46, by way of Proposition 1.60, because
compact sets have finite measure in the finite |μ |. In particular we have:

Theorem 2.48 (Riesz’s theorem for complex measures on Rn). Let K ⊂ Rn, or
K ⊂ C, be a compact set and Λ : C0(K) → C a continuous linear functional. Then
there is a unique complex Borel measure μΛ on K such that

Λ( f ) =
∫

K
f dμΛ

for any f ∈C0(K). Additionally, μΛ is regular.

(2) Another nice class of duals to Banach spaces is that of Lp spaces, cf. Ex-
ample 2.26(6). In this respect [Rud82],

Proposition 2.49. Let (X ,Σ ,μ) be a positive measure space. If 1≤ p < +∞ the dual
to the Banach space Lp(X,μ) is Lq(X,μ), with 1/p + 1/q = 1, in the sense that the
linear map:

Lq(X,μ) � [g] 	→Λg where Λg( f ) :=
∫

X f g dμ , f ∈ Lp(X,μ)

is an isomorphism of the normed spaces Lq(X,μ), (Lp(X,μ))′.
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In the same way the dual to L1(X,μ) is identified with L∞(X,μ), because the
linear map

L∞(X,μ) � [g] 	→Λ ′
g where Λ ′

g( f ) :=
∫

X f g dμ , f ∈ L1(X,μ)

is an isomorphism of the normed spaces L∞(X,μ), (L1(X,μ))′. �

2.3 The fundamental theorems of Banach spaces

This section is devoted the foremost theorems on normed and Banach spaces in their
most elementary versions, and we will study their main consequences. These are the
theorems of Hahn–Banach, Banach–Steinhaus and the open mapping theorem.

The applications of the theorem of Banach–Steinhaus call forth several kinds of
topologies, which play a major role in QM when the domain space is the Hilbert
space of the theory, bounded operators are (certain) observables, and the basic fea-
tures of the quantum system associated to measurement processes are a subclass of
orthogonal projectors. In order to pass with continuity from the algebra of observ-
ables to that of projectors we need weaker topologies than the standard one. This sort
of issues, that we shall discuss later, lead to the notion of von Neumann algebra (of
operators).

2.3.1 The Hahn–Banach theorem and its immediate consequences

The first result we present is the celebrated Hahn–Banach theorem, that deals with
extending a continuous linear functional from a subspace to the ambient space in a
continuous and norm-preserving way. More elaborated and stronger versions can be
found in [Rud91]. We shall restrict to the simplest situation possible.

First of all, we remark that if X is normed and M ⊂ X is a subspace, the norm
of X restricted to M defines a normed space. In this sense we can talk of continuous
operators and functionals on M, meaning they are bounded for the induced normed.

Theorem 2.50 (Hahn–Banach theorem for normed spaces). Let M be a subspace
(not necessarily closed) in a normed space X over K= C or R.
If g : M→ K is a continuous linear functional, there exists a continuous linear func-
tional f : X→ K such that f �M= g and || f ||X = ||g||M.

Proof. We shall follow the proof of [Rud82]. Start with K = R. If g = 0, an exten-
sion as required is f = 0. So let us suppose g � 0 and without loss of generality set
||g||= 1. Let us build the extension f . Take x0 ∈ X\M and call

M1 := {x+λx0 | x ∈M ,λ ∈ R} .

If we set g1 : M1 → R to be

g1(x+λx0) = g(x)+λν



2.3 The fundamental theorems of Banach spaces 61

for any given ν ∈ R, we obtain an extension of g to M1. We claim ν can be taken so
that ||g1||= 1. For this it suffices to have ν such that:

|g(x)+λν | ≤ ||x+λx0|| , for any x ∈M and λ ∈ R\{0}. (2.18)

Substitute −λx to x and divide (2.18) by |λ |, obtaining the equivalent relation:

|g(x)−ν | ≤ ||x− x0|| , for any x ∈M. (2.19)

Set
ax := g(x)−||x− x0|| and bx := g(x)+ ||x− x0||. (2.20)

Inequality (2.19), hence ||g1|| = 1, holds if ν satisfies ax ≤ ν ≤ bx for all x ∈ M. So
it is enough to prove that the intervals [ax,bx], x ∈M, have a common point; in other
words, that for all x,y ∈M:

ax ≤ by . (2.21)

But:
g(x)−g(y) = g(x− y)≤ ||x− y|| ≤ ||x− x0||+ ||y− x0||

and (2.21) follows from (2.20). Hence, we managed to fix ν so that ||g1||= 1.
Now consider the family P of pairs (M′,g′) where M′ ⊃M is a subspace in X and

g′ : M′ → R is a linear extension of g with ||g′|| = 1. P is not empty since (M1,g1)
belongs in it. We can define a partial order on P (see Appendix A, also for the se-
quel) by setting (M′,g′)≤ (M′′,g′′) if M′′ ⊃M′, g′′ extends g′ and ||g′||= ||g′′||= 1.
It is easy to show that any totally ordered subset of P admits an upper bound in P .
Then Zorn’s lemma detects a maximal element in P , say (M1, f 1). Now we must
have M1 = X, for otherwise there would be x0 ∈ X \M1, and using the initial argu-
ment we could construct a non-trivial, norm-preserving extension f 1 to the subspace
generated by x0 and M1, but this would contradict maximality. Therefore f := f 1 is
the required extension.

Before passing to the case K= C we need a lemma.

Lemma 2.51. On a complex vector space Y:

(a) if u(x) = Reg(x) for all x ∈ Y for some complex linear functional g : Y→ C, the
map u : Y→ R is a real linear functional on Y, and:

g(x) := u(x)− iu(ix) for any x ∈ Y. (2.22)

(b) If u : Y → R is a real linear functional on Y and g is defined by (2.22), then g is
a complex linear functional on Y.
(c) If Y is normed and g, u are related by (2.22), then ||g||= ||u||.
Proof. (a) are (b) are proved simultaneously by direct computation. As for (c), un-
der the assumptions made: |u(x)| ≤ |g(x)|=

√
|u(x)|2 + |u(ix)|2, so ||u|| ≤ ||g||. On

the other hand taking x ∈ Y, there is α ∈ C with |α | = 1 such that αg(x) = |g(x)|.
Consequently |g(x)|= g(αx) = u(αx)≤ ||u|| ||αx||= ||u|| ||x|| and ||g|| ≤ ||u||. �
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Now back to the main proof. If u : M→ R is the real part of g, then g(x) = u(x)−
iu(ix) and ||g|| = ||u|| by the lemma. From the real case seen before we know there
exists a linear extension U : X→ R of u with ||U ||= ||u||= ||g||. Therefore if we put

f (x) := U(x)− iU(ix) , for any x ∈ X,

f : X→ C extends g to X, and || f ||= ||U ||= ||g||. �

Here is one of the most useful corollaries to Hahn-Banach. We remind that the
topological dual B(X,C) of a normed space is indicated by X′.

Corollary 2.52 (to the Hahn–Banach theorem). Let X be a normed space overK=
C, or R, and fix x0 ∈ X, x0 � 0. Then there is f ∈ X′, || f ||= 1, such that f (x0) = ||x0||.
Proof. Choose M := {λx0 | λ ∈ K} and g : λx0 → λ ||x0||. Let f ∈ X′ denote the
bounded functional extending g according to Hahn-Banach. By construction f (x0) =
g(x0) = ||x0|| and || f ||X = ||g||M = 1. �

An immediate consequence of this is a statement about the norm of the conjugate
operator T ′ ∈B(Y′,X′) to T ∈B(X,Y) (cf. Definition 2.42).

Proposition 2.53. If T ∈B(X,Y), with X, Y normed over C or R, then:

||T ′||= ||T || .
Proof. In general we have (cf. (2.16)) ||T || ≥ ||T ′||, so we need only prove ||T || ≤
||T ′||. Take x ∈ X and Tx � 0, define y0 := T x

||T x|| ∈ Y. Clearly ||y0|| = 1, and by Co-

rollary 2.52 there is g ∈ Y′ such that ||g||= 1, g(y0) = 1 hence g(T x) = ||Tx||. But:

||T x||= g(Tx) = |(T ′g)(x))| ≤ ||T ′g|| ||x|| ≤ ||T ′|| ||g|| ||x||= ||T ′|| ||x|| ,
so eventually ||T || ≤ ||T ′|| as required. �

Another fact, with important consequences for Banach algebras, is this.

Corollary 2.54 (to the Hahn-Banach theorem). Let X � {0} be a normed space
over C or R.
Then the elements of X′ separate X, i.e. for any x1 � x2 in X there is f ∈ X′ for which
f (x1) � f (x2).

Proof. It suffices to have x0 := x1− x2 in Corollary 2.52, for then f (x1)− f (x2) =
f (x1− x2) = ||x1− x2|| � 0. �

Take x ∈ X and f ∈ X′, || f ||= 1; then | f (x)| ≤ 1||x|| and

sup{| f (x)| | f ∈ X′ , || f ||= 1} ≤ ||x|| .
Corollary 2.52 allows to strengthen this fact by showing

sup{| f (x)| | f ∈ X′ , || f ||= 1}= max{| f (x)| | f ∈ X′ , || f ||= 1}= ||x||
directly. This seems not so striking, but has a certain weight when comparing infinite-
dimensional to finite-dimensional normed spaces.
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From the elementary theory of finite-dimensional vector spaces X, the algebraic
dual of the algebraic dual (X∗)∗ has the nice property of being naturally isomorphic
to X. The isomorphism is the linear function mapping x ∈ X to the linear functional
I(x) on X∗ defined by (I(x))( f ) := f (x) for all f ∈ X∗.

In infinite dimensions I identifies X to a subspace of (X∗)∗ only, not the whole
(X∗)∗ in general. Is there an alike general statement about topological duals to infinite-
dimensional normed spaces?

Note (X′)′ is the dual to a normed space (X′ with the operator norm). Consequently
(X′)′ is a normed space, still with operator norm.

Go back to the natural linear transformation I : X → (X′)∗ mapping x ∈ X to
I(x) ∈ (X′)∗, the linear function I(x) : X′ → K defined by

(I(x))( f ) := f (x) for any f ∈ X′ and x ∈ X .

This is well defined, for I(x) is a linear functional on X′ for which I(x)∈ (X′)∗. Now

sup{| f (x)| | f ∈ X′ , || f ||= 1}= ||x||
implies: (1)I(x) is a bounded functional, so it belongs to (X′)′, and (2) ||I(x)||= ||x||.
Therefore the linear mapping I : X→ (X′)′ is an isometry, in particular injective. This
gives an isometric inclusion X ⊂ (X′)′ under the linear map I : X → (X′)′. Overall
we have proved:

Corollary 2.55 (to the Hahn–Banach theorem). Let X be a normed space over C
or R. The linear map I : X→ (X′)′:

(I(x))( f ) := f (x) for any x ∈ X and f ∈ X′, (2.23)

is an isometry, and X is thus identified isometrically to a subspace of (X′)′.

There are infinite-dimensional examples where X does not fill (X′)′, and these
justify the next notion.

Definition 2.56. A normed space X on C or R is reflexive if the isometry (2.23) is
onto (an isomorphism of normed spaces).

Otherwise said, X is reflexive when X and (X′)′ are isometrically isomorphic un-
der the natual map I. In Chapter 3 we will show that Hilbert spaces are reflexive.

Example 2.57. The Banach spaces Lp(X,μ) of Examples 2.26 are reflexive for 1 <
p < ∞. The proof is straightforward: Lp(X,μ)′ = Lq(X,μ) for 1/p + 1/q = 1, and
swapping q with p gives Lq(X,μ)′ = Lp(X,μ). Hence: (Lp(X,μ)′)′ = Lp(X,μ). �

2.3.2 The Banach–Steinhaus theorem or uniform boundedness
principle

Let us go to the second core result, the theorem of Banach–Steinhaus, and present
the simplest formulation and consequences. It is also known as uniform boundedness
principle, because it essentially and remarkably states that pointwise equi-bounded-
ness implies uniform boundedness for families of operators on a Banach space.
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Theorem 2.58 (Banach–Steinhaus). Let X be a Banach space, Y a normed space
defined on the same field C or R. If {Tα}α∈A ⊂B(X,Y) is a family of operators such
that:

sup
α∈A

||Tαx||< +∞ for any x ∈ X ,

then there is K ≥ 0 that bounds uniformly the family:

||Tα || ≤ K for any α ∈ A .

Proof. The proof relies on finding an open ball Bρ(z)⊂ X for which there is M ≥ 0
with ||Tα(x)|| ≤M for all α ∈ A and any x ∈ Bρ(z). In fact, since x = (x+ z)− z, we
would have:

||Tα(x)|| ≤ ||Tα(x+ z)||+ ||Tα(z)|| ≤ 2M , for any α ∈ A, x ∈ Bρ(0) ,

so ||Tα || ≤ 2M/ρ for all α ∈ A, and the claim would follow.
We shall prove that Bρ(z) and M exist by contradiction. If such a ball did not exist,

for some arbitrary open Br0(x0), there would be x1 ∈Br0(x0) for which ||Tα1(x1)||> 1,
with α1 ∈ A. As Tα1 is continuous, we could find a second open ball Br1(x1) with
Br1(x1)⊂Br0(x0) and 0 < r1 < r0 such that ||Tα1(x)|| ≥ 1, provided x∈Bα1(x1). Now
this recipe could be iterated to give rise to a sequence of open balls in X, {Brk(xk)}k∈N,
satisfying:

(i) Brk(xk)⊃ Brk+1(xk+1);
(ii) rk → 0 as k →+∞;
(iii) for every k ∈ N there is αk ∈ A such that ||Tαk(x)|| ≥ k if x ∈ Brk(xk).

(i) and (ii) imply the sequence {xk}k∈N is Cauchy, so it converges to some y ∈ X by
completeness, and by construction y ∈ ∩k∈NBrk(xk). But (iii) tells ||Tαk(y)|| ≥ k for
all k ∈ N, contradicting the assumption that supn∈N ||Tαx||< +∞ for any x ∈ X. �

Here is a straightforward and useful corollary.

Corollary 2.59 (to the Banach–Steinhaus theorem). Under the assumptions of the
of Banach–Steinhaus theorem the family of operators {Tα}α∈A is equicontinuous:
given any ε > 0 there exists δ > 0 such that ||x−x′||< δ for x,x′ ∈ X implies ||Tαx−
Tαx′||< ε for any α ∈ A.

Proof. Set Cγ := {x∈ X | ||x|| ≤ γ} for all γ > 0. Fix ε > 0, so we must find the δ > 0
of the conclusion. By Banach–Steinhaus and Proposition 2.39, ||Tαx|| ≤K < +∞ for
any α ∈ A and x ∈C1. If K = 0 there is nothing to prove, so assume K > 0. Choose
δ > 0 for which Cδ ⊂Cε/K . Then if ||x−x′||< δ , we have K(x−x′)/ε ∈CKδ/ε ⊂C1

and so:

||Tαx−Tαx′||= ||Tα(x− x′)||= ε
K

∣
∣
∣
∣

∣
∣
∣
∣Tα

K(x− x′)
ε

∣
∣
∣
∣

∣
∣
∣
∣<

ε
K

K = ε for any α ∈ A. �
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And here is another consequence about topological duals.

Corollary 2.60 (to the Banach–Steinhaus theorem). Let X be a normed space over
C or R. If S ⊂ X is weakly bounded, i.e.

for any f ∈ X′ there exists c f ≥ 0 such that | f (x)| ≤ c f for all x ∈ S,

then S is bounded for the norm of X.

Proof. Consider the elements x ∈ S⊂ X as functionals on the dual (X′)′ to X′ (using
the isometry I : X→ (X′)′ of Corollary 2.55). The family S⊂ (X′)′ of functionals on
X′ is bounded on every f ∈ X′, since by assumption |x( f )| = | f (x)| ≤ c f (we have
written x for I(x)). Since X′ is complete the theorem of Banach–Steinhaus guarantees
sup{|x( f )| | || f ||= 1} ≤ K < +∞ for all x ∈ S, i.e. (I is an isometry) ||x|| ≤K < +∞
for all x ∈ S. �

2.3.3 Weak topologies. ∗-weak completeness of X ′

To state the last corollary to Banach–Steinhaus we need to introduce a new section on
general topology and apply it to the operator spaces encountered so far. This will al-
low to see notions, useful for the applications, on types of convergence for sequences
of operators, which in turn will help us prove a simple and useful result known as the
Banach–Alaoglu theorem.

We begin with basic facts about convexity.

Definition 2.61. A subset ∅ � K ⊂ X in a vector space is convex when:

λx+(1−λ )y ∈ K for any λ ∈ [0,1] and x,y ∈ K.

A point e ∈ K is extremal if it cannot be written as:

e = λx+(1−λ )y for some λ ∈ (0,1) and x,y ∈ K \{e}.

It should be clear that the intersection of convex sets is convex, because the seg-
ment joining two points in the intersection belongs to all. So we are lead to the notion
of convex hull.

Definition 2.62. The convex hull of a subset E in a vector space X is the convex set

co(E) :=
⋂
{K ⊃ E |K ⊂ X ,K convex} .

Let us go back to the definition of an open ball via a seminorm.

Notation 2.63. Take δ > 0 and a seminorm p on the vector space X overK=C or R,
and a point x ∈ X. We denote by Bp,δ (x) the open ball associated to the seminorm
p, centred at x and of radius δ :

Bp,δ (x) := {z ∈ X | p(z− x) < δ} .

If x = 0 we will just write Bp,δ , not Bp,δ (0).
If A⊂ X, B⊂ X, x ∈ X and α ,β ∈ K, we will also abbreviate:

x+βA := {x+βu | u ∈ A} and αA+βB := {αu+βv | u ∈ A ,v ∈ B} . �
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Immediately, then, the balls Bp,δ , δ > 0, are:

(i) convex, since x,y ∈ Bp,δ implies trivially (1−λ )x+λy ∈ Bp,δ with λ ∈ [0,1];
(ii) balanced, i.e. λx ∈ Bp,δ if x ∈ Bp,δ and 0≤ λ ≤ 1;
(iii) absorbing, i.e. x ∈ X implies λ−1x ∈ Bp,δ for some λ > 0.

All these properties are patently invariant under intersection; hence also intersections
of balls centred at the origin but defined with different seminorms enjoy the property.

Definition 2.64. Let P := {pi}i∈I be a family of seminorms on the vector space X
over K = C or R. The topology T (P) on X generated, or induced, by P , is the
unique one admitting as basis (Definition 1.1) the collection:

x+
(

Bpi1 ,δ1
∩·· ·∩Bpin ,δn

)
(2.24)

for any choice of: centres x ∈ X, numbers n = 1,2, . . ., indices i1, . . . , in ∈ I and radii
δ1 > 0, . . .δn > 0. The pair (X,P), where X is simultaneously a vector space with
topology induced by the seminorms P and a topological space, is called locally
convex space.

Let us put it differently: the topology on T (P) has as open sets ∅ and all pos-
sible unions of sets (2.24), with any centre x ∈ X, for any n = 1,2, . . ., any index
i1, . . . , in ∈ I and any δ1 > 0, . . .δn > 0.

Remarks 2.65. If P reduces to one single norm, the induced topology is the usual
one induced by a norm discussed at the beginning of the chapter. If this sole element
is a seminorm, we still have a topology, with the crucial difference that the Hausdorff
property might be no longer valid. �

Since adding vectors and multiplying a vector by a scalar are continuous opera-
tions in any seminorm (the proof is the same we gave for a norm), they are continuous
in the topology generated by a family P of seminorms as well. This means the vec-
tor space structure is compatible with the topology generated by P . A vector space
with a compatible topology as above is a topological vector space. A locally convex
space is thus a topological vector space.

Keeping Definition 1.13 in mind we can prove the next fact without effort.

Proposition 2.66. A sequence {xn}n∈N ⊂ X converges to x0 ∈ X in the topology
T (P) if and only if pi(xn− x0)→ 0, for all pi ∈P , as n→+∞.

Our first example of topology induced by seminorms arises from the dual X′ of a
normed space.

Definition 2.67. If X is a normed space, the weak topology on X is the topology
induced by the collection of seminorms p f on X:

p f (x) := | f (x)| with x ∈ X

for f ∈ X′.



2.3 The fundamental theorems of Banach spaces 67

Consider pairs of normed spaces and the corresponding sets of operators between
them; using the topology induced by seminorms we can define certain “standard” to-
pologies on the vector spaces L(X,Y), B(X,Y) and the dual X′, thus making them
locally convex topological vector spaces. One such topology (and the corresponding
dual one) is already known to us, namely the topology induced by the operator norm.

Definition 2.68. Let X,Y be normed spaces over K= C or R.

(a) Define on L(X,Y) (respectively B(X,Y)) the following operator topologies.

(i) The topology induced onL(X,Y) (B(X,Y)) by the family of seminorms px, f :

px, f (T ) := | f (T (x))| with T ∈ L(X,Y) (B(X,Y),

for given x ∈ X and f ∈ Y′, is called weak topology on L(X,Y) (B(X,Y));
(ii) The topology induced on L(X,Y) (B(X,Y)) by the seminorms px:

px(T ) := ||T (x)||Y with T ∈ L(X,Y) (B(X,Y)),

for given x ∈ X, is the strong topology on L(X,Y) (B(X,Y));
(iii) The topology induced on B(X,Y) by the operator norm (2.11) is the uni-

form topology on B(X,Y).

(b) In case Y = K (we are talking about X′) the uniform topology of (iii) goes under
the name of (dual) strong topology of X′, and the topologies of (i) and (ii), now coin-
ciding, are called ∗-weak topology of X′. The ∗-weak topology on X ′ is thus induced
by the seminorms p∗x:

p∗x( f ) := | f (x)| with f ∈ X′

for a given x ∈ X.

Remark 2.69. (1) It is not hard to see that the open sets, in a normed space, of the
weak topology are also open for the standard topology, not the opposite. Likewise,
in L(X,Y), open sets in the weak topology are open for the strong topology but not
conversely. We can rephrase this better by saying that the standard topology on X and
the strong topology on L(X,Y) are finer than the corresponding weak topologies.

In the same way, when talking of operator spaces it is not hard to show that the
uniform topology is finer than the strong topology.

For dual spaces an analogous property obviously holds: the strong topology is
finer than the ∗-weak topology.
(2) From Proposition 2.66 these consequences descend immediately.

Proposition 2.70. Take {xn}n∈N ⊂ X with X normed. Then xn → x ∈ X, n →+∞, in
the weak topology if and only if:

f (xn)→ f (x) , as n→+∞, for any f ∈ X′.

Proposition 2.71. If {Tn}n∈N⊂L(X,Y) (oB(X,Y)) and T ∈L(X,Y) (resp.B(X,Y)),
then Tn → T , n→+∞, in weak topology if and only if:

f (Tn(x))→ f (T (x)) , as n→+∞, for any x ∈ X, f ∈ Y′.
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Proposition 2.72. Tn → T , n→+∞, in the strong topology if and only if:

||Tn(x)−T (x)||Y → 0 , as n→+∞, for any x ∈ X.

Now it is clear that:

(a) Convergence of a sequence in a normed space X in the standard sense (for the
norm topology) implies weak convergence (convergence in the weak topology).

(b) Uniform convergence of a sequence of operators in B(X,Y) (in the uniform to-
pology) implies strong convergence (for the strong topology).

(c) Strong convergence of a sequence of operators in L(X, ,Y) or B(X,Y) implies
weak convergence.

(3) Proposition 2.66 also gives:

Proposition 2.73. Let { fn}n∈N ⊂ X′ be a sequence of functionals and take a func-
tional f ∈ X′. Then fn → f , n→+∞, in the ∗-weak topology if and only if:

fn(x)→ f (x) , as n→+∞ for any chosen x ∈ X.

Now we know that the strong convergence of a sequence of functionals of X′ (for
the dual strong topology) implies ∗-weak convergence.

(4) We can put on X′ yet a further weak topology, by viewing X′ as acted upon by
(X′)′. The seminorms inducing the topology are

ps( f ) := |s( f )|
for any s∈ (X′)′. If X is not reflexive, this weak topology does not coincide, in general,
with the ∗-weak topology seen above, because X is identified to a proper subspace in
(X′)′, and so the seminorms of the ∗-weak topology are fewer than the weak topology
ones. The weak topology is finer than the ∗-weak one: a weakly open set is ∗-weakly
open, but the converse may not hold. Analogously, weak convergence of sequences
in X ′ implies ∗-weak convergence, not the opposite. �

Notation 2.74. To distinguish strong limits from weak limits in operator spaces, it is
customary to use these symbols:

T = s- limTn

means T is the limit of the sequence of operators {Tn}n∈N in the strong topology; the
same notation goes if the operators are functionals and the topology is the dual strong
one. Similarly,

T = w- limTn

denotes the limit in the weak topology of the sequence of operators {Tn}n∈N, and one
writes

f = w∗- lim fn

if f is the limit of the sequence { fn}n∈N in the ∗-weak topology. �
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All the theory learnt so far eventually enables us to prove the last corollary to
Banach–Steinhaus. If X is normed we know X′ is complete in the strong topology,
see Theorem 2.41(c)(ii). We can also prove completeness, as explained below, for
the ∗-weak topology too, as long as X is a Banach space.

Corollary 2.75 (to the Banach–Steinhaus theorem). If X is a Banach space onK=
C, or R, then X′ is ∗-weak complete: if { fn}n∈N ⊂ X′ is such that { fn(x)}n∈N is a
Cauchy sequence for any x ∈ X, then there exists f = w∗-lim fn ∈ X′.

Proof. The field over which X is defined is complete by assumption, so for any x∈ X
there is f (x) ∈ K with fn(x)→ f (x). Immediately f : X � x 	→ f (x) defines a linear
functional. To end the proof we have to prove f is continuous. For any x ∈ X the
sequence fn(x) is bounded (as Cauchy), so Banach–Steinhaus implies | fn(x)| ≤ K <
+∞ for all x ∈ X with ||x|| ≤ 1. Taking the limit for n → +∞ gives | f (x)| ≤ K if
||x||= 1, hence || f || ≤ K < +∞. Therefore, by Theorem 2.40 f is continuous. �

As last topic of this section, related to the topological facts just seen, we state and
prove a useful technical tool, the Theorem of Banach–Alaoglu: according to it, the
unit ball in X ′, defined via the natural norm of X ′, is compact (Definition 1.19) in the
∗-weak topology of X ′.

Theorem 2.76 (Banach–Alaoglu). Let X be a normed space over C. The closed unit
ball B := { f ∈ X ′ | || f || ≤ 1} in the dual X ′ is compact in the ∗-weak topology.

Proof. For any x ∈ X define Bx := {c ∈ C | |c| ≤ ||x||} ⊂ C. As Bx is obviously com-
pact, Tychonoff’s Theorem 1.25 forces P := ×x∈X Bx to be compact in the product
topology. A point p in P is, for each x∈ X , just a real number p(x) with |p(x)| ≤ ||x||.
Elements in P are therefore functions (not necessarily linear!) p : X → C such that
|p(x)| ≤ ||x|| for any x ∈ X . By construction B ⊂ P, and the topology induced by P
on B is precisely the ∗-weak topology, as the definitions confirm. To end the proof
we need to prove B is closed, because closed subsets in a compact space are compact.
Suppose, then, B� pn → p∈ P as n→+∞, in the topology of P. Since |p(x)| ≤ ||x||,
to prove that p ∈ B it suffices to see that p is linear. This is evident by arguing point-
wise: if a,b ∈ C and x,y ∈ X , then

p(ax+by) = lim
n→+∞

pn(ax+by) = a lim
n→+∞

pn(x)+b lim
n→+∞

pn(y) = ap(x)+bp(y) ,

and the proof is over. �

We will see in Chapter 4 that B is never compact for the natural norm of X ′ if the
space X ′ is infinite-dimensional. The same holds for any infinite-dimensional normed
space.

2.3.4 Excursus: the theorem of Krein–Milman, locally convex
metrisable spaces and Fréchet spaces

With this part we take a short break to digress on important properties of locally
convex spaces in relationship to the issue of metrisability.
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Let X be a locally convex space. In general, the topology induced by a seminorm
or a family of seminorms P = {pi}i∈I on X will not be Hausdorff. It is easy to see
the Hausdorff property holds if and only if ∩i∈I p−1

i (0) is the null vector in X. This
happens in particular if at least one pi is a norm.

Locally convex Hausdorff spaces have this very relevant feature: not only ex-
tremal elements always exist in convex and compact subsets, but a convex subset
is characterised by its extremal points. All this is the content of the known Krein–
Milman theorem, which we only state [Rud91].

Theorem 2.77 (Krein–Milman). Let X be a locally convex Hausdorff space and
K ⊂ X a compact convex set. Then:

(a) the set EK of extremal elements of K is not empty.
(b) K = co(EK), where the bar denotes the closure in the ambient topology of X.

And now to metrisable spaces. Let us recall a notion that should be familiar from
basic courses.

Definition 2.78. A metric space is a set M equipped with a function d : M×M→ R,
called distance or metric, such that, for every x,y,z ∈M:
D1. d(x,y) = d(y,x);
D2. d(x,y)≥ 0, and d(x,y) = 0 iff x = y;
D3. d(x,z)≤ d(x,y)+d(y,x).

Remark 2.79. (1) Property D1 is known as symmetry of the metric, D2 is called pos-
itive definiteness and D3 is the triangle inequality.
(2) Any normed space (X, || ||) (hence also Rn and Cn) admits a natural metric struc-
ture (X,d) by setting d(x,x′) := ||x− x′||, x,x′ ∈ X. Then clearly

d(x+ z,y+ z) = d(x,y)for any x,y,z ∈ X;

in this sense the distance d is translation-invariant. �

Generally speaking the structure of a metric space is much simpler than that of a
normed space, because the former lacks the vector space operations. We have, nev-
ertheless, the following notion, in complete analogy to normed spaces.

Definition 2.80. Given a metric space (M,d), an open (metric) ball centred at x of
radius r > 0 is the set:

Bδ (x) := {y ∈M | d(x,y) < δ} . (2.25)

Like normed spaces, metric spaces have a natural topology whose open sets are
the empty set ∅ and the unions of open metric balls with any centre and radius.

Definition 2.81. Let (M,d) be a metric space.

(a) A⊂M is open if A = ∅ or A is the union of open balls.
(b) The metric topology of M is the norm topology of open sets as in (a).
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Remark 2.82. (1) Exactly as in normed spaces, by checking the axioms we see that
the metric topology is an honest topology, and open metric balls form a basis for it.
The metric topology is trivially Hausdorff, as for normed spaces.
(2) If the metric space (X,d) is separable, i.e. it has a dense countable subset S ⊂ X,
then it is second countable: it has a countable basis B for the topology. The latter is
the family of open balls centred on S with rational radii. One can prove the converse
holds too [KoFo99]:

Proposition 2.83. A metric space is second countable if and only if it is separable.

(3) In a normed space (X, || ||) the open balls defined by || || coincide with the open
balls of the norm distance d(x,x′) := ||x−x′||. Thus the two topologies of X, viewed
as a normed or metric space, coincide.
(4) The previous remark applies in particular to Rn and Cn, both metric spaces if we
use the Euclidean or standard distance:

d((x1, . . . ,xn),(y1, . . . ,yn)) :=

√
n

∑
k=1

|xk− yk|2 .

As observed above, the balls defined with the standard distance on Rn and Cn are pre-
cisely those associated to the standard norm (1.2) generating the standard topology.
Therefore the topology defined by the Euclidean distance on Rn and Cn is just the
standard topology.
(5) The metric spacesRn andCn are complete, for they are complete as normed spaces
and the metric is the norm distance. �

As for normed spaces, also metric spaces admit a characterisation of continuity
equivalent to 1.16.

Definition 2.84. Given metric spaces (M,dM), (N,dN), a map f : M→ N is continu-
ous at x0 ∈M if for any ε > 0 there is δ > 0 such that dN( f (x), f (x0)) < ε whenever
dM(x,x0) < δ . A function f : M→ N is continuous if continuous at every point in M.

Convergent sequences (Definition 1.13) specialise in metric spaces as they do in
normed spaces.

Definition 2.85. In a metric space (M,d) a sequence {xn}n∈N ⊂M converges to x ∈
M, the limit of the sequence:

xn → x as n→+∞ or lim
n→+∞

xn = x ,

if, for any ε > 0 there is Nε ∈ R such that d(xn,x) < ε for n > Nε , i.e.

lim
n→+∞

d(xn,x) = 0 .

It turns out, here too, that convergent sequences in the metric topology are Cauchy
sequences (see below), but not conversely.
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Definition 2.86. Let (M,d) be a metric space.

(a) A sequence {xn}n∈N ⊂M is a Cauchy sequence if for any ε > 0 there is Nε ∈ R
such that d(xn,xm) < ε when n,m > Nε .
(a) (M,d) is complete if every Cauchy sequence converges somewhere in the space.

A technically relevant problem is to tell whether a topological space, esp. a locally
convex space, admits a distance function whose metric topology coincides with the
pre-existing one (note that in general distances do not exist if the topology is induced
by seminorms). But when that happens the space is called metrisable.

Going back to topological vector spaces, one can prove that any locally convex
space (X,P) satisfying:

(a) P = {pn}n=1,2,..., i.e. P is countable;
(b) ∩n=1,2,... p−1

n (0) = 0

is not just Hausdorff but even metrisable: the seminorm topology coincides with the
metric topology of (X,d), provided we pick d : X×X → R+ suitably. In particular,
the distance can be chosen to be:

d(x,y) :=
+∞

∑
n=1

1
2n

pn(x− y)
1+ pn(x− y)

(thus becoming invariant under translations). This is not the only possible distance
that recovers the seminorm topology of X. Multiplying d by a given positive constant,
for instance, will give a distance yielding the same topology as d.

A Fréchet space is a locally convex space X whose topology is Hausdorff, in-
duced by a finite or countable number of seminorms, and complete when seen as
metric space (X,d). A sequence {xn}n∈N ⊂ X is Cauchy for a distance d in a locally
convex metrisable space X if and only if it is Cauchy for every seminorm p generating

the topology: for every ε > 0 there is N(p)
ε ∈ R such that p(xn− xm) < ε whenever

n,m > N(p)
ε . Consequently, completeness does not actually depend on the distance

used to generate the locally convex topology.
Fréchet spaces, which we will not treat in this book, are of highest interest in

theoretical and mathematical physics as far as quantum field theories are concerned.
Banach spaces are elementary instances of Fréchet spaces, of course.

Example 2.87. A good example of a Fréchet space is Schwartz’s space . To define
it we need some notation, which will come in handy at the end of Chapter 3 as
well. Points in Rn will be denoed by letters and components by added subscripts,
e.g. x = (x1, . . . ,xn). A multi-index is an n-tuple α = (α1, . . . ,αn), αi = 0,1,2, . . .,
and |α | is conventionally the sum |α | := ∑n

i=1αi. Moreover,

∂αx :=
∂ |α|

∂xα1
1 · · ·∂xαn

n
.

Let C∞(Rn) denote the complex vector space of smooth complex functions onRn (dif-
ferentiable with continuity infinitely many times). Schwartz’s space S (Rn), seen as
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complex vector space, is the subspace in C∞(Rn) of functions f that vanish at infin-

ity, together with every derivative, faster than any inverse power of |x| :=
√
∑n

i=1 x2
i .

Define

pN( f ) := sup
|α|≤N

sup
x∈Rn

(1+ |x|2)N |(∂αx f )(x)|< +∞ N = 0,1,2, . . .

The above pN : S (Rn)→R+ are seminorms, and cleary satisfy ∩N∈Np−1
N (0) = 0 be-

cause p0 = || ||∞ is a norm. Thus S (Rn), with the topology induced by the seminorms
{pN}N∈N, becomes a locally convex space. It is easy to show that S (Rn) is a
Fréchet space [Rud91]. The points in the dual S (R)′ of S (R), i.e. linear functionals
from S (Rn) to C that are continuous for the topology generated by the seminorms
{pN}N∈N, are the famous Schwartz distributions. �

2.3.5 Baire’s category theorem and its consequences: the open
mapping theorem and the inverse operator theorem

We wish to discuss a general theorem about Banach spaces, the open mapping the-
orem, which counts among its consequences the continuity of inverse operators.

To prove these facts we introduce the minimum possible on Baire spaces.

Definition 2.88. Let (X,T ) be a topological space and S ⊂ X.

(a) The interior Int(S) of S is the set:

Int(S) := {x ∈ X | ∃A⊂ X ,A open and x ∈ A⊂ S}.

(b) S is nowhere dense if Int(S) = ∅.
(c) S is a set of the first category, or meagre set, if it is the countable union of
nowhere dense sets.
(d) S is a set of the second category, or non-meagre, if not of the first category.

The following are immediate to prove.

(1) Countable unions of sets of the first category are of the first category.
(2) If h : X → X′ is a homeomorphism, S ⊂ X is of the first/second category if and
only if h(S) is of the first/second category respectively.
(3) If A⊂ B⊂ X and B is of the first category in X, then A is of the first category.
(4) If B⊂ X is closed and Int(B) = ∅, then B is of the first category in X.

We have the following important result.

Theorem 2.89 (Baire). Let (X,d) be a complete metric space.

(a) If {Un}n∈N is a countable family of open dense sets in X, then ∩n∈NUn is dense
in X.
(b) X is of the second category.
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Proof. (a) Let A⊂ X be open. If U0∩A = ∅, then z ∈ A would admit an open neigh-
bourhood disjoint from U0, and hence not dense in X. Therefore U0∩A is open (in-
tersection of open sets) and non-empty. Then there is an open metric ball Br0(x0) of
radius r0 > 0 and centre x0 ∈ X (2.25) such that Br0(x0)⊂U0∩A. We may repeat the
procedure with Br0(x0) replacing A, U1 replacing U0, to find an open ball Br1(x1) with
Br1(x1) ⊂U1 ∩Br0(x0). Iterating, we construct a countable collection of open balls
Brn(xn) with 0 < rn < 1/n, such that Brn(xn)⊂Un∩Brn+1(xn−1). Since xn ∈ Brm(xm)
for n ≥ m, the sequence {xn}n∈N is Cauchy. And since X is complete, xn → x ∈ X
as n → +∞. By construction x ∈ Brn−1(xn−1) ⊂ Brn(xn) ⊂ ·· · ⊂U0 ∩A ⊂ A for any
n ∈ N. Hence x ∈ A∩Un for every n ∈ N, and so (∩n∈NUn)∩A � ∅ for every open
subset A⊂ X. This implies ∩n∈NUn is dense in X, for it meets every open neighbour-
hood of any point in X.
(b) Assume {Ek}k∈N is a collection of nowhere dense sets Ek ⊂ X. If Vk is the com-
plement of Ek, it is open (its complement is closed) and dense in X (it is open and the
complement’s interior is empty). Part (a) then tells ∩k∈NVn � ∅, so X � ∪k∈NEk by
taking complements. A fortiori then X � ∪k∈NEk, so X is not of the first category and
the claim is proved. �

Remark 2.90. (1) Baire’s category theorem states, among other things, that any col-
lection, finite or countable, of dense open sets in a complete metric space always has
non-empty (dense) intersection. In the finite case it suffices to adapt the statement to
Un = Um for some N ≤ n,m.
(2) Baire’s theorem holds when X is a locally compact Hausdorff space. The first part
is proved in analogy to the previous situation [Rud91], the second is identical.
(3) Baire’s theorem applies, obviously, to Banach spaces, using the norm distance. �

We can pass to the open mapping theorem. Remember a map f : X→ Y between
normed spaces (or topological spaces) is open if f (A) is open in Y whenever A⊂ X

is open. As usual, B(Z)
r (z) denotes the open ball of radius r and centre z in the normed

space (Z, || ||Z).

Theorem 2.91 (Open mapping theorem of Banach–Schauder). Let X and Y be
Banach spaces over C or R. If the operator T ∈B(X,Y) is onto, then

T (B(X)
1 (0))⊃ B(Y)

δ (0) for δ > 0 small enough . (2.26)

As a consequence, T is an open map.

Proof. Define in X the open ball Bn := B(X)
2−n(0) at the origin, of radius 2−n. We will

show there is an open neighbourhood W0 of the origin 0 ∈ Y with:

W0 ⊂ T (B1)⊂ T (B0) , (2.27)

and that will imply (2.26). To prove (2.27), note B1 ⊃ B2−B2 (from now on we use
Notations 2.63), so

T (B1)⊃ T (B2)−T (B2)
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and T (B1)⊃ T (B2)−T (B2). On the other hand, since A+B⊃ A+B, A,B⊂ Y with
Y normed (prove it as exercise), we have:

T (B1)⊃ T (B2)−T (B2)⊃ T (B2)−T (B2) . (2.28)

The first inclusion of (2.27) is thus true if T (B2) has non-empty interior: if z ∈
Int(T (B2)) then z ∈ A ⊂ T (B2)) with A open, so that 0 ∈W0 := A−A ⊂ T (B2)−
T (B2)⊂ T (B1) with W0 open. To show Int(T (B2)) � ∅, notice that the assumptions
imply

Y = T (X) =
+∞⋃

k=1

kT (B2) , (2.29)

because B2 is an open neighbourhood of 0. But Y is of the second category, so at least
one kT (B2) is of the second category (otherwise Y would be of the first category,
which is impossible by the second statement in Baire’s category Theorem 2.89, for
Y is complete). Since y 	→ ky is a homeomorphism of Y, T (B2) is of the second cat-
egory in Y. Hence the closure of T (B2) has non-empty interior, proving one inclusion
of (2.27). For the other inclusion (the second from the left), we use a sequence of ele-
ments yn ∈ Y built inductively. Fix y1 ∈ T (B1) and suppose, for n ≥ 1, that yn is
in T (Bn) and let us define yn+1 as follows. What was proved for T (B1) holds for
T (Bn+1) too, so T (Bn+1) contains an open neighbourhood of the origin. Now:

(
yn−T (Bn+1)

)
∩T (Bn) � ∅ , (2.30)

implying there exists xn ∈ Bn such that:

T (xn) ∈ yn−T (Bn+1) . (2.31)

Define: yn+1 := yn−T xn and note it belongs to T (Bn+1). This is the inductive step.
Since ||xn|| < 2−n, n = 1,2, . . ., the sum x1 + · · ·+ xn gives a Cauchy sequence con-
verging to some x ∈ X by completeness of X, and ||x||< 1. Hence x ∈ B0. Since:

m

∑
n=1

T xn =
m

∑
n=1

(yn− yn+1) = y1− ym+1 , (2.32)

and because ym+1 → 0 as m → +∞ (by continuity of T ), we conclude y1 = T x ∈
T (B0). Now as y1 was generic in T (B1), that proves the second inclusion of (2.27)
and ends the first proof. As for the second statement, (2.26) and the linearity of T

imply that the image under T of any open ball B(X)
ε (x) = x + εB1(0), centred at any

x ∈ X, contains the open ball in Y centred at T x: B(Y)
δε (0) := T x + εB(Y)

δ (0) (δ > 0

sufficiently small). Therefore the image under T of an open set A = ∪x∈AB(X)
εx (x) is

open in Y: T (A) = ∪x∈AB(Y)
δεx

(T x). This means T is open. �

The most important elementary corollary of this theorem is without doubt
Banach’s inverse operator theorem for Banach spaces (there is a version for com-
plete metric vector spaces as well).
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Theorem 2.92 (Inverse operator theorem of Banach). Let X and Y be Banach
spaces over C or R, and suppose T ∈B(X,Y) is injective and surjective. Then

(a) T−1 : Y→ X is bounded, i.e. T−1 ∈B(Y,X).
(b) There exists c > 0 such that:

||T x|| ≥ c||x|| , for any x ∈ X. (2.33)

Proof. (a) That T−1 is linear is straightforward, for we need only prove it is continu-
ous. As T is open, the pre-image under T−1 of an open set in X is open, making T−1

continuous. (b) Since T−1 is bounded, there is K ≥ 0 with ||T−1y|| ≤ K||y||, for any
y ∈ Y. Notice that K > 0, for otherwise T−1 = 0 and T−1 could not be invertible. For
any x ∈ X we set y = Tx. Substituting in ||T−1y|| ≤ K||y|| gives back, for c = 1/K,
equation (2.33). �

2.3.6 The closed graph theorem

Now we discuss a very useful theorem in operator theory, known as the closed graph
theorem.

Notation 2.93. (1) If X is a vector space and ∅ � X1, . . . ,Xn ⊂ X, then:

< X1, · · · ,Xn >

will denote the linear span of the sets Xi, i.e. the vector subspace of X containing all
finite linear combinations of elements of any Xi.
(2) Take ∅ � X1, . . . ,Xn subspaces of a vector space X. Then

Y = X1⊕·· ·⊕Xn

denotes the direct sum Y⊂ X of the Xi, i.e.:

(i) Y =< X1, · · · ,Xn > (so Y is a subspace in X) and
(ii) Xi∩X j = {0} for any pair i, j = 1, . . . ,n, i � j.

As is well known, (i) and (ii) are equivalent to demanding

x ∈ Y⇒ x = x1 + · · ·+ xn with xk ∈ Yk determined uniquely by x, k = 1, . . . ,n.

(3) If X1, . . . ,Xn are vector spaces over the same field K = C or R, we may furnish
X1×·· ·×Xn with the structure of a K-vector space by:

α(x1, . . . ,xn) := (αx1, . . . ,αxn) and

(x1, . . . ,xn)+(y1, . . . ,yn) := (x1 + y1, . . . ,xn + yn)

for any α ∈ K, (x1, . . . ,xn),(y1, . . . ,yn) ∈ X1×·· ·×Xn. Calling

ΠXk : (x1, . . . ,xk−1,xk,xk+1, . . . ,xn) 	→ (0, . . . ,0,xk,0, . . . ,0)

the kth canonical projection, the vector space built on X1×·· ·×Xn coincides with
Ran(ΠX1)⊕·· ·⊕Ran(ΠXn). As each Xk is naturally identified with the corresponding
Ran(ΠXk), we will write X1⊕·· ·⊕Xn to denote the natural vector space X1×·· ·×Xn

above, even when the Xk are not all contained in one common space. �
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To prove the theorem we need some preliminaries. First, if (X,NX) and (Y,NY)
are normed spaces over K= C, or R, we can consider X⊕Y, in the Notation 2.93(3).
The space X⊕Y has the product topology of X and Y, seen in Definition 1.10. The
operations of the vector space X⊕Y are continuous in the product topology, as one
proves with ease (the proof is the same as the one used for the operations on a normed
space). And the canonical projections ΠX : X⊕Y→ X, ΠY : X⊕Y→ Y are continu-
ous in the product topology on the domain and the topologies of X and Y on the
codomains, another easy fact.

The product topology of X⊕Y admits compatible norms: there exist norms on
X⊕Y inducing the product topology. One possibility is:

||(x,y)|| := max{NX(x),NY(y)} for any (x,y) ∈ X⊕Y . (2.34)

That this norm generates the product topology, i.e. open sets are unions of products of
open balls in X and Y, is proved as follows. Take the open neighbourhood of (x0,y0)
product of two open balls B(X)

δ (x0)×B(Y)
μ (y0) in X and Y respectively. The open ball

in X⊕Y
{(x,y) ∈ X×Y | ||(x,y)− (x0,y0)||< min{δ ,μ}/2}

centred at (x0,y0) is contained in B(X)
δ (x0) × B(Y)

μ (y0). Vice versa, the product

B(X)
δ (x0)×B(Y)

δ (y0), to which (x0,y0) belongs, is contained in the open ball

{(x,y) ∈ X×Y | ||(x,y)− (x0,y0)||< ε}
centred in (x0,y0), if ε > δ . This implies that unions of products of metric balls in X
and Y is also union of metric balls in norm (2.34), and conversely too. Hence the two
topologies coincide and the proof ends.

Immediately we can prove (X⊕Y, || ||) is a Banach space if such are (X,NX) and
(Y,NY). (By Proposition 2.101, proved later, this fact will guarantee that any norm
generating the product topology makes X⊕Y a Banach space.) In fact let {(xn,yn)}
be a Cauchy sequence in X⊕Y. Then {xn} and {yn} are both Cauchy in X and Y re-
spectively, by the above definition of norm on X⊕Y. Call x ∈ X and y ∈ Y the limits
of those sequences, which exist for X and Y are Banach spaces. If ε > 0, there are
positive integers Nx and Ny satisfying

||(x,y)− (xn,yn)||< ε

if n > max{Nx,Ny}, Therefore (xn,yn)→ (x,y) as n → +∞ in the norm topology of
X⊕Y, and the latter is a Banach space.

Definition 2.94. Let X,Y be normed spaces on C or R. T ∈ L(X,Y) is said closed if
the graph of the operator T , i.e. the subspace

G(T ) := {(x,T x) ∈ X⊕Y | x ∈ X} ,

is closed in the product topology. Equivalently, T is closed iff for any converging
sequence {xn}n∈N ⊂ X such that {T xn}n∈N converges in Y, we have:

lim
n→∞T (xn) = T ( lim

n→∞xn) .
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The last equivalence relies on a general fact: a set (G(T ) in our case) is closed
if and only if it coincides with its closure, if and only if it contains its limit points;
making this explicit in the product topology gives our proof. We are ready for the
closed graph theorem.

Theorem 2.95 (Closed graph theorem). Let (X, || ||X) and (Y, || ||Y) be Banach
spaces over K= C.
Then T ∈ L(X,Y) is bounded if and only if it is closed.

Proof. Suppose T is bounded. Then it is banally closed by the definition of closed op-
erator. Assume T is closed. Consider the linear bijective map M : G(T ) � (x,T x) 	→
x ∈ X. By hypothesis G(T ) is a closed subspace in the Banach space X⊕Y, hence it
becomes Banach for the restricted norm || || of (2.34). The latter’s definition implies
||M(x,Tx)||X = ||x||X ≤ ||(x,T x)||, so M is bounded. Banach’s bounded inverse the-
orem tells M−1 : X → G(T ) ⊂ X⊕Y is bounded. As the canonical projection ΠY :
X⊕Y→ Y is continuous, we infer that the linear map ΠY ◦M−1 : x 	→ T x is continu-
ous, hence bounded. �

2.4 Projectors

Using the closed graph theorem we define a class of continuous operators, called pro-
jectors. This notion plays the leading role in formulating QM when the normed space
is a Hilbert space.

Definition 2.96. Let (X, || ||) be a normed space over C or R. The operator P∈B(X)
is a projector if it is idempotent, i.e.

PP = P . (2.35)

The target M := P(X) is called projection space of P, and we say P projects on M.

Projectors are naturally associated to a direct sum decomposition of X into a pair
of closed subspaces.

Proposition 2.97. Let P ∈B(X) be a projector on the normed space (X, || ||).
(a) If Q : X→ X is the linear map such that

Q+P = I , (2.36)

then Q is a projector and:
PQ = QP = 0 , (2.37)

where 0 is the null operator (transforming any vector into the null vector 0 ∈ X).
(b) The projection spaces M := P(X) and N := Q(X) are closed subspaces satisfying:

X = M⊕N . (2.38)
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Proof. (a) Q is continuous as sum of continuous operators, QQ = (I−P)(I−P) =
I − 2P + PP = I − 2P + P = I − P = Q. PQ = P(I − P) = P− PP = P− P = 0,
(I−P)P = P−PP = P−P = 0.
(b) If P(xn)→ y as n→+∞, by continuity of P we have PP(xn)→ P(y). Using equa-
tion (2.35) we rephrase this as P(xn)→ P(y), whence y = P(y) by uniqueness of the
limit (X is Hausdorff). So, y ∈ M implies y ∈ M(⊂ M), and M = M is closed. The
same argument proves N is closed. That M, N are subspaces is immediate from the
linearity of P and Q. If we take x ∈ X, then

x = P(x)+Q(x) ,

and X =< M,N >. To finish we need to have M∩N = {0}. Pick x ∈ M∩N. Then
x = P(x), so x = Q(x) by (2.35) (x ∈M implies x = Pz for some z ∈ X, but then Px =
PPz = Pz = x). Using Q on x = Px, and recalling x = Qx, gives x = Q(x) = QP(x) = 0
by (2.37), i.e. x = 0. �

The closed graph theorem explains that Proposition 2.97 can be reversed, provided
we further suppose the ambient space is Banach.

Proposition 2.98. Let (X, || ||) be a Banach space, M,N⊂ X closed subspaces such
that X = M⊕N. Consider the functions P : X→M and Q : X→ N that map x ∈ X to
the respective elements in M and N according to X = M⊕N. Then:

(a) P and Q are projectors on M and N respectively.
(b) Properties (2.36) and (2.37) hold.

Proof. By assumption x ∈ X decomposes as x = uM +uN for certain uM ∈M, uN ∈N,
and the sum is unique once the subspaces are fixed. Uniqueness, and the fact that M
and N are closed under linear combinations, imply that P : x 	→ uM and Q : x 	→ uN

are linear, PP = P and QQ = Q. Note that P(X) = M and Q(X) = N by construction;
moreover (2.36) holds since X =< M,N >, while (2.37) is true by M∩N = {0}. To
finish we need to see P and Q are continuous. Let us show P is closed, and the closed
graph theorem will force continuity. The strategy for Q is analogous. So let {xn} ⊂ X
be a sequence converging to x ∈ X, and such that also {Pxn} converges in X. We
claim that

Px = lim
n→+∞

Pxn .

As N is closed,

N � Qxn = xn−Pxn → x− lim
n→+∞

Pxn = z ∈ N .

So we have
x = lim

n→+∞
Pxn + z ,

with z ∈ N, but limn→+∞Pxn ∈M as well, because M is closed and Pxn ∈M for all n.
On the other hand we know that

x = Px+Qx.
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Since the decomposition is unique, necessarily

Px = lim
n→+∞

Pxn

and z = Qx. Therefore P is closed and so continuous. �

2.5 Equivalent norms

One interesting consequence of Banach’s inverse operator theorem is a criterion to
establish when two norms on a vector space, complete for both, induce the same topo-
logy. Before stating the criterion (Proposition 2.101), let us begin with preliminaries.

The section ends with the proof that all norms on a vector space of finite dimen-
sion are equivalent, and make the space Banach.

Definition 2.99. Two norms N1, N2 defined on one vector space X (over C or R) are
equivalent if there are constants c,c′ > 0 such that:

cN2(x)≤ N1(x)≤ c′N2(x) , for any x ∈ X. (2.39)

Remark 2.100. (1) Note how (2.39) is equivalent to the similar inequality obtained
by swapping N1, N2, and writing 1/c′,1/c in place of c,c′ respectively.
(2) By this observation, it is straightforward that if a given normed space is complete,
then it is complete for any equivalent norm.
(3) Two equivalent norms on a vector space generate the same topology, as is easy
to prove. The next proposition discusses the converse.
(4) Equivalent norms define an equivalence relation on the space of norms on a given
vector space. The proof is immediate from the definitions. �

Proposition 2.101. Let X be a vector space on C or R. The norms N1 and N2 on
X are equivalent if and only if the indentity map I : (X,N2) � x 	→ x ∈ (X,N1) is a
homeomorphism (which is to say, the metric topologies generated by the norms are
the same).

Proof. It suffices to prove the ‘if’ part, for the sufficient condition is trivial by defin-
ition of equivalent norms. If I is a homeomorphism it is continuous at the origin, and
in particular the unit open ball (for N1) centred at 0 must contain an entire open ball
(for N2) at 0 of small enough radius δ > 0. That is to say, N2(x)≤ δ ⇒ N1(x) < 1. In
particular, for x � 0, N2(δx/N2(x))≤ δ , so N1(δx/N2(x)) < 1, i.e. δN1(x)≤ N2(x).
For x = 0 the equality is trivial. So we proved there is c′ = 1/δ > 0 for which N1(x)≤
c′N2(x), for any x ∈ X. The other half of (2.39) is similar if we swap spaces. �

Proposition 2.102. Let X be a vector space on C or R and suppose N1, N2 both make
X Banach. If there is a constant c > 0 such that:

cN2(x)≤ N1(x)

for any x ∈ X, the norms are equivalent.
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Proof. Consider the identity I : x 	→ x, a linear and continuous map when thought of as
I : (X,N1)→ (X,N2), since N2(x)≤ (1/c)N1(x) for all x ∈ X. Banach’s inverse func-
tion theorem, part (b), guarantees the existence of c′ > 0 such that N1(x) ≤ c′N2(x)
for all x ∈ X. Then N1 and N2 satisfy (2.39). �

The important, and final, proposition in this section holds also on real vector
spaces (writing R instead of C in the proof).

Proposition 2.103. Let X be a C-vector space of finite dimension. Then all norms are
equivalent, and any one defines a Banach structure on X.

Proof. We can simply study Cn, given that any complex vector space of finite di-
mension n is isomorphic to Cn. Owing to remarks (2) and (4) above, it is sufficient
to prove that any norm on Cn is equivalent to the standard norm. Keep in mind the
fact, known from elementary analysis, that the standard Cn is complete, so any other
equivalent norm makes it a Banach space, by Remark 2.100(2).

Let N be a norm on Cn and e1, · · · ,en the canonical basis. If x = ∑i xiei and y =
∑i yiei are generic points inCn, from properties (N0), (N2) and (N1) (cf. the definition
of norm) we have

0≤ N(x− y)≤
n

∑
i=1
|xi− yi|N(ei)≤ Q

n

∑
i=1
|xi− yi| ,

where Q := ∑i N(ei). At the same time, trivially, if || · || is the standard norm then

|x j− y j| ≤Max{|xi− yi| | i = 1,2, · · · ,n} ≤
√

n

∑
i=1
|xi− yi|2 = ||x− y|| ,

whence
0≤ N(x− y)≤ nQ||x− y|| .

This shows N is continuous in the standard topology. If S := {x ∈ Cn | ||x||= 1}, and
N′ is a second norm on Cn continuous in the standard topology, the map

S � x 	→ f (x) :=
N(x)
N ′(x)

is continuous as ratio of continuous maps with non-zero denominator. But S is com-
pact in the standard topology, so f has a minimum m and a maximum M. In particular,
M ≥ m > 0 because N,N′ are strictly positive on S and m,M are attained at suitable
points xm,xM in S. By construction

mN ′(x)≤ N(x)≤MN′(x) , for any x ∈ S .

We claim that this inequality actually holds for any x∈Cn: write x = λx0 with x0 ∈ S
and λ ≥ 0. Multiplying by λ ≥ 0 the inequality, evaluating it at x0 and using property
N1 gives precisely:

mN ′(x)≤ N(x)≤MN′(x) for any x ∈ Cn.

Now choosing N ′ := || · ||we conclude that any norm on Cn is equivalent to the stand-
ard one. �
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2.6 The fixed-point theorem and applications

In this last section of the chapter, we present an elementary theorem with crucial
consequences in analysis, especially in the theory of differential equations: the fixed-
point theorem. We will state it for complete metric spaces and then examine it on
Banach spaces.

2.6.1 The fixed-point theorem of Banach-Caccioppoli

Start with a definition about metric spaces, cf. Definition 2.78.

Definition 2.104. Let (M,d) be a metric space. A map G : M → M is a contraction
(map) in case there is a real number λ ∈ [0,1) for which:

d(G(x),G(y))≤ λd(x,y) for any x,y ∈M . (2.40)

Remember normed spaces (X, || ||) are metric spaces once we specify the norm
distance d(x,y) := ||x− y|| (and the metric topology induced by d coincides with
the topology induced by || ||, as seen in Section 2.3.4). Hence we can specialise the
definition to normed spaces.

Definition 2.105. Let (Y, || ||) be a normed space and X ⊂ Y a subset (possibly the
whole Y). A function G : X→X is a contraction if there exists a real number λ ∈ [0,1)
for which:

||G(x)−G(y)|| ≤ λ ||x− y|| for all x,y ∈ X . (2.41)

Remark 2.106. (1) Note that the value λ = 1 is explicitly excluded.
(2) The demand of (2.40) implies immediately that any contraction is continuous in
the metric topology of (M,d).
Similarly, (2.41) tells that any contraction on the set X is continuous in the induced
norm topology of (Y, || ||).
(3) We stress that, in Definition 2.105, (a) the function G is not requested to be linear,
and (b) X is not necessarily a subspace of Y, but only a subset. Linear structures play
no interesting role. �

Let us state and prove the fixed-point theorem (of Banach and Caccioppoli) for
metric spaces.

Theorem 2.107 (Fixed-point theorem for metric spaces). Let G : M→M be a con-
traction on the complete metric space (M,d). Then there exists a unique element
z ∈M, called fixed point:

G(z) = z . (2.42)

A weaker version states that if G : M → M is not a contraction, but the n-fold com-
posite Gn = G ◦ · · · ◦G is for some given n = 1,2, . . ., then G admits a unique fixed
point.
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Proof. Let us begin by proving the existence of z. Consider, for x0 ∈ M arbitrary,
the sequence defined recursively by xn+1 = G(xn). The claim is this is a Cauchy se-
quence, and that its limit is a fixed point of G. Without loss of generality suppose
m ≥ n. If m = n, trivially d(xm,xn) = 0; if m > n we employ the triangle inequality
repeatedly to get:

d(xm,xn)≤ d(xm,xm−1)+d(xm−1,xm−2)+ · · ·+d(xn+1,xn) . (2.43)

The generic summand on the right equals

d(xp+1,xp) = d(G(xp),G(xp−1))≤ λd(xp,xp−1) = λd(G(xp−1),G(xp−2))

≤ λ 2d(xp−1,xp−2)

≤ ·· · ≤ λ pd(x1,x0) .

Hence, for p = 1,2, . . . we have d(xp+1,xp) ≤ λ pd(x1,x0). Inserting the latter in-
equality in the right-hand side of (2.43) produces the estimate:

d(xm,xn)≤ d(x1,x0)
m−1

∑
p=n

λ p = d(x1,x0)λ n
m−n−1

∑
p=0

λ p

≤ λ nd(x1,x0)
+∞

∑
p=0

λ p ≤ d(x1,x0)
λ n

1−λ
where we used the fact that ∑+∞

p=0λ
p = (1−λ )−1 if 0≤ λ < 1. In conclusion:

d(xm,xn)≤ d(x1,x0)
λ n

1−λ . (2.44)

For us |λ | < 1, so d(x1,x0)λ n/(1− λ ) → 0 as n → +∞. Hence d(xm,xn) can be
rendered as small as we like by picking the minimum between m and n to be ar-
bitrarily large. Therefore the sequence {xn}n∈N is Cauchy. But M is complete, so
limn→+∞ xn = x ∈M for a certain x. Moreover, G is a contraction, so continuous, and

G(x) = G

(

lim
n→+∞

xn

)

= lim
n→+∞

G(xn) = lim
n→+∞

xn+1 = x ,

as claimed.
Let us see to uniqueness. For that assume x and x′ satisfy G(x) = x and G(x′) =

x′. Then
d(x,x′) = d(G(x),G(x′))≤ λd(x,x′) .

If d(x,x′) � 0, dividing by d(x,x′) would give 1 ≤ λ , absurd by assumption. Hence
d(x,x′) = 0, so x = x′, because d is positive definite.

Now let us prove the theorem if B := Gn is a contraction. By the previous part B
has a unique fixed point z. Clearly, if G admits a fixed point, this must be z. There
remains to show that z is fixed under G as well. As B is a contraction, the sequence
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B(z0),B2(z0),B3(z0), . . . converges to z, irrespective of z0 ∈ M, as we saw earlier in
the proof. Therefore

G(z) = G(Bk(z)) = Bk(G(z)) = Bk(z0)→ z as k →+∞,

and G(z) = z. �

Moving to normed spaces, the theorem has as corollary the next fact, obtained
using the norm distance d(x,y) := ||x− y||.
Theorem 2.108 (Fixed-point theorem for normed spaces). Let G : X→X be a con-
traction on the closed set X⊂ B, with B a Banach space over R or C. There exists a
unique element z ∈ X, called fixed point:

G(z) = z . (2.45)

A weaker version states that if G : X→X is not a contraction, but the n-fold composite
Gn = G◦ · · · ◦G is for some n = 1,2, . . ., then G admits a unique fixed point.

Proof. Define M := X and d(x,y) := ||x−y||, x,y∈X. Thus X is a metric space. (X,d)
is complete as well. In fact, a Cauchy sequence {xn}n∈N ⊂ X for d is such for || ||
too, as is easy to verify. (B, || ||) is complete so the limit x∈ B of {xn}n∈N exists. And
since X is closed inside B, x ∈ X. Hence any Cauchy sequence of (X,d) converges
in X, making (X,d) complete. At this point we invoke the previous theorem for the
metric space (X,d) and conclude. �

The significance of the fixed-point theorem, by the way, depends on its role in
proving existence and uniqueness theorems for equations of all sorts, especially in-
tegral and differential ones; the gist is to show that the equation to which we seek
the solution z can be written as a fixed-point relation G(z) = z in a suitable Banach
space (or complete metric space). Example (1) below is a relatively simple case (G
is linear), while the ensuing (2) typically pertains nonlinear contractions.

Examples 2.109. Let us present two elementary instances of how the fixed-point the-
ory is used. A more important situation will be treated in the following section.

(1) The homogeneous Volterra equation on C([a,b]) in the unknown f ∈C([a,b])
reads:

f (x) =
∫ x

a
K(x,y) f (y)dy , (2.46)

where K is a continuous function bounded by M ≥ 0. We equip the Banach space
C([a,b]) with sup norm || ||∞. The equation may be written in the form f = A f , where
A : C([a,b])→C([a,b]) is the integral operator determined by the integral kernel K:

(A f )(x) :=
∫ x

a
K(x,y) f (y)dy , f ∈C([a,b]). (2.47)

If a solution exists, then clearly it is the fixed point of A. Not only this: the solution
is also fixed under every operator An whichever power n = 1,2, . . . we take. Let us
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show that we can fix n so to make An a contraction. By virtue of Theorem 2.108 this
would guarantee the homogeneous Volterra equation admits one, and one only, solu-
tion, and the latter cannot be zero (the zero map always solves, because A is linear).
A direct computation shows:

|(A f )(x)|=
∣
∣
∣
∣

∫ x

a
K(x,y) f (y)dy

∣
∣
∣
∣≤M(x−a)|| f ||∞ .

The first iteration gives

|(A2 f )(x)| ≤M2 (x−a)2

2
|| f ||∞ ,

and, after n−1 steps,

|(An f )(x)| ≤Mn (x−a)n

n!
|| f ||∞ .

Hence:

||An f ||∞ ≤Mn (b−a)n

n!
|| f ||∞ ,

and so:

||An|| ≤Mn (b−a)n

n!
.

For n large enough then, whatever a,b,M, are, we have:

Mn (b−a)n

n!
< 1 .

Thus for some positive λ < 1:

||An f −An f ′||∞ ≤ λ || f − f ′||∞ ,

and, by the fixed-point theorem, the homogeneous Volterra equation on C([a,b]) only
admits the trivial solution.

Consequently the operator A of (2.47) cannot admit eigenvalues different from
zero. In fact the eigenvalue equation for A,

Aψ = λψ for some λ ∈ C and some ψ � 0, (2.48)

is equivalent to:
1
λ

Aψ = ψ λ ∈ C\{0}, ψ � 0

if λ � 0. And λ−1A is a Volterra operator associated to the integral kernel λ−1K(x,y).
Therefore the theorem may be used on A to give ψ = 0. Since the eigenvalue was not
allowed to vanish, (2.48) has no solution.

This result will be generalised in Chapter 4 to Hilbert spaces. It will bear an im-
portant consequence in the study of Volterra’s inhomogeneous equation, once we
have proved Fredholm’s theorem on integral equations.
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(2) Consider the existence and uniqueness problem for a continuous map y = f (x)
when we only know an implicit relation of the type F(x,y(x)) = 0, for some given
and sufficiently regular function F . We discuss a simplified version of a result that is
conventionally known as either Dini’s theorem, implicit function theorem or inverse
funtion theorem [CoFr98II, Ser94II]. The point is to see the Banach-Caccioppoli the-
orem in action. Suppose we are given a function F : [a,b]×R→R, a < b, that is con-
tinuous and admits partial y-derivative such that 0 < m ≤ | ∂F

∂y | ≤ M < +∞, (x,y) ∈
[a,b]×R.

We want to show that there exists, unique, a continuous map f : [a,b]→ R such
that:

F(x, f (x)) = 0 for any x ∈ [a,b].

The idea is to define a contraction map G : C([a,b]) → C([a,b]) having f as fixed
point. To this end set:

(G(ψ))(x) := ψ(x)− 1
M

F(x,ψ(x)) for any ψ ∈C([a,b]), x ∈ [a,b].

This is well defined on C([a,b]), and if it contracts then its unique fixed point f sat-
isfies:

f (x) = f (x)− 1
M

F(x, f (x)) for any x ∈ [a,b].

In other words:

F(x, f (x)) = 0 for any x ∈ [a,b],

so G is what we are after. But G is easily a contraction by the mean value theorem:

(G(ψ))(x)− (G(ψ ′))(x) = ψ(x)−ψ ′(x)− 1
M

(
F(x,ψ(x))−F(x,ψ ′(x))

)
,

so for some number z between ψ(x) and ψ ′(x):

(G(ψ))(x)− (G(ψ ′))(x) = ψ(x)−ψ ′(x)− 1
M

(ψ(x)−ψ ′(x))∂F
∂y
|(x,z) ,

and therefore:

|(G(ψ))(x)− (G(ψ ′))(x)| ≤ |ψ(x)−ψ ′(x)|
∣
∣
∣
∣1−

1
M
∂F
∂y
|(x,z)
∣
∣
∣
∣ .

Because the derivative’s range is inside the positive interval [m,M], we have:

||G(ψ)−G(ψ ′)||∞ ≤ ||ψ−ψ ′||∞(1− m
M

) .

Now, by assumption (1− m
M ) < 1, so G is indeed a contraction. �
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2.6.2 Application of the fixed-point theorem: local existence and
uniqueness for systems of differential equations

The most important application, by far, of the fixed-point theorem is certainly the the-
orem of local existence and uniqueness for first-order systems of differential equa-
tions in normal form (where the highest derivative, here the first, is written alone
on one side of the equation, as in (2.50) below). This result extends easily to global
solutions and higher-order systems [CoFr98I, CoFr98II].

For this we need a preliminary notion. From now on K will be the complete field
R, or possibly C, and || ||Kp the standard norm on Kp.

Definition 2.110. Let r ≥ 0 and n,m > 0 be given natural numbers, Ω ⊂ Kr×Kn a
non-empty open set. A function F : Ω → Km is locally Lipschitz (in the variable
x ∈ Kn for r > 0), if for any p ∈Ω there is a constant Lp ≥ 0 such that:

||F(z,x)−F(z,x′)||Km ≤ Lp||x− x′||Kn , for any pair (z,x),(z,x′) ∈ Op, (2.49)

Op � p being an open set.

Any C1 map F :Ω →Km is locally Lipschitz in the variable x, as we shall shortly
see, but first the theorem.

Theorem 2.111 (Local existence and uniqueness for systems of ODEs of order
one). Let f : Ω → Kn be a continuous and locally Lipschitz map in x ∈ Kn on the
open set Ω ⊂ R×Kn. Given the first-order initial value problem (in normal form):

{ dx
dt

= f (t,x(t)) ,

x(t0) = x0

(2.50)

with (t0,x0) ∈Ω , there is an open interval I � t0 on which (2.50) has a unique solu-
tion, necesarily belonging in C1(I).

Proof. Notice, to being with, that any solution x = x(t) to (2.50) is necessarily C1.
Namely, it is continuous as the derivative exists, but directly from dx

dt = f (t,x(t))
we infer dx

dt must be continuous, because the equation’s right-hand side is a compos-
ite function of continuous maps in t. Now, suppose x : I → Kn is differentiable and
that (2.50) holds. By the fundamental theorem of calculus, by integrating (2.50) (the
derivative of x(t) is continuous) x : I → Kn must satisfy

x(t) = x0 +
∫ t

t0
f (τ ,x(τ))dτ , for any t ∈ I. (2.51)

Conversely, if x : I → Kn is continuous and satisfies (2.51), again the fundamental
theorem of calculus ( f is continuous) tells x = x(t) is differentiable and guarantees
(2.50).

Therefore the continuous maps x = x(t) defined on an open interval I � t0 that
solve the integral equation (2.51) are precisely the solutions to (2.50) defined over I.
So instead of solving (2.50) we can solve the equivalent integral problem (2.51).



88 2 Normed and Banach spaces, examples and applications

To prove existence, fix once and for all a relatively compact open set Q � (t0,x0)
with Q ⊂ Ω . Take Q small enough to have f locally Lipschitz in x. The standard
norm on Kn will be written || ||, and we shall use:

(i) 0≤M := max{|| f (t,x)|| | (t,x) ∈ Q};
(ii) L≥ 0 the constant such that || f (t,x)− f (t,x′)|| ≤ L||x− x′||, (t,x),(t,x′) ∈ Q;
(iii) Bε(x0) := {x ∈ Kn | ||x− x0|| ≤ ε} for ε > 0.

Consider the closed interval Jδ = [t0−δ , t0 +δ ], δ > 0 and the Banach space (Propos-
ition 2.17) (C(Jδ ;Kn), || ||∞) of continuous maps X : Jδ → Kn. On this space define
G, that maps to any function X a function G(X):

G(X)(t) := x0 +
∫ t

t0
f (τ ,X(τ))dτ , for any t ∈ Jδ .

Note G(X) ∈C(Jδ ;Kn) for X ∈C(Jδ ;Kn) by the continuity of the integral with re-
spect to the upper limit, when the integrand is continuous. We claim G is a contraction
map on a closed subset of C(Jδ ;Kn): 2

M(δ )
ε := {X ∈C(Jδ ;Kn) | ||X(t)− x0|| ≤ ε ,∀t ∈ Jδ}

if 0 < δ < min{ε/M,1/L}, and δ ,ε > 0 are so small that Jδ ×Bε(x0)⊂ Q. (Hence-

forth ε > 0 and δ > 0 will be assumed to satisfy Jδ ×Bε(x0) ⊂ Q.) With X ∈ M(δ )
ε

we have:

||G(X)(t)− x0|| ≤
∣
∣
∣
∣

∣
∣
∣
∣

∫ t

t0
f (τ ,X(τ))dτ

∣
∣
∣
∣

∣
∣
∣
∣≤
∫ t

t0
|| f (τ ,X(τ))||dτ ≤

∫ t

t0
Mdτ ≤ δM .

Therefore G(M(δ )
ε )⊂M(δ )

ε for 0 < δ < ε/M. If X ,X ′ ∈M(δ )
ε then for all t ∈ Jδ :

G(X)(t)−G(X ′)(t) =
∫ t

t0

[
f (τ ,X(τ))− f

(
τ ,X ′(τ)

)]
dτ ,

∣
∣
∣
∣G(X)(t)−G(X ′)(t)

∣
∣
∣
∣≤
∣
∣
∣
∣

∣
∣
∣
∣

∫ t

t0

[
f (τ ,X(τ))− f

(
τ ,X ′(τ)

)]
dτ
∣
∣
∣
∣

∣
∣
∣
∣

≤
∫ t

t0

∣
∣
∣
∣ f (τ ,X(τ))− f

(
τ ,X ′(τ)

)∣
∣
∣
∣dτ .

But we have the Lipschitz bound

|| f (t,x)− f (t,x′)||< L||x− x′|| ,
so:

∣
∣
∣
∣G(X)(t)−G(X ′)(t)

∣
∣
∣
∣≤ L
∫ t

t0

∣
∣
∣
∣X(τ)−X ′(τ)

∣
∣
∣
∣dτ ≤ δL||X −X ′||∞ .

2 M(δ )
ε = {X ∈C(Jδ ;Kn) | ||X −X0||∞ ≤ ε}, where X0 is here the constant map equal to x0

on Jδ . Thus M(δ )
ε is the closure of the open ball of radius ε centred at X0 inside C(Jδ ;Kn).
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Taking the supremum on the left:

∣
∣
∣
∣G(X)−G(X ′)

∣
∣
∣
∣
∞ ≤ δL||X −X ′||∞ .

If, additionally, δ < 1/L, it follows that G : M(δ )
ε → M(δ )

ε is a contraction on the

closed set M(δ )
ε . By Theorem 2.108 G has a fixed point, which is a continuous map

x = x(t) ∈ Kn, t ∈ Jδ , that solves (2.51) by definition of G. Restricting x to the open
I := (t0−δ , t0 +δ ) gives a solution to the initial value problem (2.50).

As for uniqueness, take another solution x′ = x′(t) to (2.51) on I := (t0−δ , t0 +δ ),
a priori distinct from x = x(t). For any closed Jδ ′ := [t0 − δ ′, t0 + δ ′], 0 < δ ′ < δ ,

G : M
(Jδ ′ )
ε → M

(Jδ ′ )
ε is by construction still a contracting map, and x′ = x′(t) a fixed

point of it; therefore x′ coincides with x = x(t) restricted to Jδ ′ , by uniqueness. (In

particular, the restriction of x′ to Jδ ′ belongs to the complete metric space M
(Jδ ′ )
ε be-

cause we saw ||G(x′)−x0||∞ ≤ δ ′M < ε , since G(x′) = x′.) But since δ ′ is arbitrary
in (0,δ ), the two solutions coincide on I = (t0−δ , t0 +δ ). �

Just for completeness’ sake we remark that the previous theorem holds when f is
C1, because of the following elementary fact.

We adopt the usual notation x = (x1, . . . ,xn), z = (z1, . . . ,zl) and F(z,x) =
(F1(z,x), . . . ,Fm(z,x)) for an arbitrary F : Ω → Rm with Ω = A× B, A ⊂ Rl and
B⊂ Rn non-empty open sets.

Proposition 2.112. Consider Ω = A×B, A ⊂ Rl and B ⊂ Rn non-empty open sets.
The map F : Ω → Rm is locally Lipschitz in x if, for every z ∈ A, the functions
B � x 	→ Fk(z,x) admit first derivative, and if the partial derivatives, as (z,x) var-
ies, are continuous on Ω .

Proof. Take q = (z0,x0) ∈Ω and let B′ ⊂ Rl , B⊂ Rn be open balls centred at z0, x0,
with B′ ×B⊂Ω . Then x(t) = p+ t(r− p) ∈ B, for t ∈ [0,1] and p,r ∈ B. Fix z ∈ B′
and invoke the mean value theorem for [0,1] � t 	→ Fk(z,x(t)), to the effect that

Fk(z,r)−Fk(z, p) = Fk(z,x(1))−Fk(z,x(0)) =
n

∑
j=1

(r j− p j)
∂Fk

∂x j

∣
∣
∣
∣
(z,x(ξ ))

,

where (z,x(ξ )) ∈ B′ ×B. Schwarz’s inequality then gives:

|Fk(z,r)−Fk(z, p)| ≤
√

n

∑
j=1
|r j− p j|2

√
√
√
√

n

∑
i=1

∣
∣
∣
∣
∣

∂Fk

∂xi

∣
∣
∣
∣
(z,x(ξ ))

∣
∣
∣
∣
∣

2

≤ ||r− p||

√
√
√
√

n

∑
i=1

∣
∣
∣
∣
∣

∂Fk

∂xi

∣
∣
∣
∣
(z,x(ξ ))

∣
∣
∣
∣
∣

2

≤Mk||r− p|| for (z,r),(z, p) ∈ B′ ×B ,
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and such Mk < +∞ exists since the radicand is continuous on the compact set B′ ×B.
Because B′ ×B is an open neighbourhood of the generic point (z0,x0) ∈Ω , the map
F is locally Lipschitz in x:

||F(z,x1)−F(z,x2)|| ≤
√

m

∑
k=1

M2
k ||x1− x2|| for (z,x1),(z,x2) ∈ B′ ×B . �

Remarks 2.113. This particular proof of the theorem requires the local Lipschitz con-
dition for f in (2.50) in order to use the fixed-point theorem. As a matter of fact, this is
not necessary to grant existence. A more general existence result, due to Peano, can be
proved (using Theorem 2.21 of Arzelà–Ascoli) if one only assumes the continuity of
f [KoFo99]. In general, though, the absence of the Lipschitz condition undermines
the solution’s uniqueness, as the following classical counterexamples makes clear:
consider

dx
dt

= f (x(t)) , x(0) = 0

where f :R→R, defined as f (x) = 0 on x≤ 0 and f (x) =
√

x for x > 0, is continuous
but not locally Lipschitz at x = 0. The Cauchy problem admits two solutions (both
maximal):

(1) x1(t) = 0, for any t ∈ R;
(2) x2(t) = 0 for t ≤ 0 and x2(t) = t2/4 on t > 0. �

Exercises

2.1. Prove that any seminorm p satisfies p(x) = p(−x).

2.2. Let f : K → X be a continuous map from the compact set K to the normed space
X. Show f is bounded, i.e. there exists M ≥ 0 such that || f (k)|| ≤M for any k ∈ K.

Hint. Adapt the proof of Proposition 1.21.

2.3. Prove that if S denotes a vector space of bounded maps from X to C (or to R),
then

S � f 	→ || f ||∞ := sup
x∈X

| f (x)|

defines a norm on S.

2.4. Prove that the spaces L(X), of bounded complex functions, and Mb(X), of meas-
urable and bounded complex functions (cf. Examples 2.26), over a topological space
X are Banach spaces for the norm || ||∞.

Solution. We prove the claim for Mb(X), the other one being exactly the same. We
will show that an arbitrary Cauchy sequence { fn}n∈N ⊂Mb(X) converges uniformly
to some f ∈ Mb(X). By assumption the numerical sequence { fn(x)}n∈N is Cauchy,
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for any x ∈ X. Then there exists f : X → C such that fn(x)→ f (x), as n → +∞, for
any x ∈ X. This function will be measurable because it arises as limit of measurable
maps. We are left to prove f is bounded and fn → f uniformly. Start from the latter.
Since

| f (x)− fm(x)|= lim
n→+∞

| fn(x)− fm(x)| ≤ lim
n→+∞

|| fn− fm||∞ ,

and using the fact that the initial sequence is Cauchy for || ||∞, we have that for any
ε > 0 there is Nε such that:

lim
n→+∞

|| fn− fm||∞ < ε for m > Nε .

Hence:
| f (x)− fm(x)|< ε for m > Nε and any x ∈ X.

I.e. || f − fm||∞→ 0 as m→+∞, as required. Now boundedness is obvious:

sup
x∈X

| f (x)| ≤ sup
x∈X

| f (x)− fm(x)|+ sup
x∈X

| fm(x)|< ε+ || fm||∞ < +∞ .

2.5. Show that the Banach spaces (L(X), || ||∞) and (Mb(X), || ||∞) (cf. Examples 2.26)
are Banach algebras with unit.

Sketch. The unit is clearly the constant map 1. The property || f ·g||∞ ≤ || f ||∞||g||∞
follows from the definition of || ||∞, and the remaining conditions are easy.

2.6. Prove the space C0(X) of continuous complex functions on X that vanish at infin-
ity (cf. Examples 2.26) is a Banach algebra for || ||∞. Explain in which circumstances
the algebra has a unit.

Solution. We take a Cauchy sequence { fn}n∈N ⊂C0(X) and prove it converges uni-
forly to f ∈C0(X). By hypothesis the numerical sequence { fn(x)}n∈N is Cauchy for
any x ∈ X. Therefore there exists a function f : X → C such that fn(x) → f (x) for
any x ∈ X, as n → +∞. Th proof that || f − fn||∞ → 0, n → +∞, goes exactly as in
Exercise 2.4. Since continuity is preserved by uniform limits, there remains to show
f ∈C0(X). Given ε > 0, pick n such that || f − fn||< ε/2, and choose a compact set
Kε ⊂ X so that | fn(x)|< ε/2 for x ∈ X\Kε . By construction

| f (x)| ≤ | f (x)− fn(x)|+ | fn(x)|< ε , x ∈ X\Kε .

The Banach space thus found is a Banach algebra for the familiar operations, as one
proves without difficulty.

If the unit is present, it must be the constant map 1. If X is compact, the function 1
belongs to the space. But if X is not compact, then 1 cannot be in X, because the ele-
ments of C0(X) can be shrunk arbitrarily outside compact subsets, and no constant
map does that.

2.7. Prove the space Cb(X) of continuous and bounded complex functions (see Ex-
amples 2.26) on X is a Banach space for || ||∞ and a Banach algebra with unit.
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2.8. Prove that in Proposition 2.16 the converse implication holds as well. In other
words the proposition may be rephrased like this:

Let (X, || ||) be a normed space. Every absolutely converging series ∑+∞
n=0 xn in X

(i.e. ∑+∞
n=0 ||xn||< +∞) converges in X iff (X, || ||) is a Banach space.

Solution. Take an absolutely convergent series ∑+∞
n=0 xn in X. The partial sums of the

norms have to be a Cauchy sequence, i.e. for any ε > 0 we have Mε > 0 with
∣
∣
∣
∣
∣

n

∑
j=0
||x j||−

m

∑
j=0
||x j||
∣
∣
∣
∣
∣
< ε , for n,m > Mε .

Supposing n≥ m: ∣
∣
∣
∣
∣

n

∑
j=m+1

||x j||
∣
∣
∣
∣
∣
< ε , n,m > Mε .

Therefore:
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n

∑
j=0

x j−
m

∑
j=0

x j

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n

∑
j=m+1

x j

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤

n

∑
j=m+1

||x j||< ε , n,m > Mε .

We proved the sequence of partial sums∑n
j=0 xn is Cauchy. But the space is complete,

so the series converges to a point in X.

2.9. Prove the space Cc(X) of complex functions with compact support (cf. Ex-
amples 2.26) on X is not, in general, a Banach space for || ||∞, and neither is it dense
in Cb(X) if X is not compact.

Outline of proof. For the first statement we need to exhibit a counterexample for X =
R. Consider for instance the sequence fn : R→ C of continuous maps, n = 1,2, . . . ,:
fn(x) := sinx

x for 0 < |x| < 2nπ , fn(0) = 1 and fn(x) = 0 at other points of R. The
sequence evidently converges pointwise to the continuous map defined as sinx

x on
R\{0} and set to 1 at the origin. It is easy to convince ourselves the convergence is
uniform too. But the limit function has no compact support. As for the second part,
note that any constant map c � 0 belongs in Cc(X). But if X is not compact, then
|| f −c||∞ ≥ |c|> 0 for any function f ∈Cc(X) because of the values attained outside
the support of f .

2.10. Given a compact space K and a Banach space B, let C(K;B) be the space of
continuous maps f : K → B in the norm topologies of domain and codomain. Define

|| f ||∞ := sup
x∈K

|| f (x)|| f ∈C(K;B) ,

where on the norm on the right is the one on B. Show this norm is well defined, and
that it turns C(K;B) into a Banach space.

Hint. Keep in mind Exercise 2.2 and adjust the proof of Proposition 2.17.
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2.11. Let (A,◦) be a Banach algebra without unit. Consider the direct sum A⊕C and
define the product:

(x,c) · (y,c′) := (x◦ y+ cy+ c′x,cc′), (x′,c′),(x,c) ∈ A⊕C
and the norm:

||(x,c)|| := ||x||+ |c|, (x,c) ∈ A⊕C.

Show that the vector space A⊕C with these product and norm becomes a Banach
algebra with unit.

2.12. Take a Banach algebra A with unit I and an element a ∈ A with ||a||< 1. Prove
that the series ∑+∞

n=0(−1)na2n, a0 := I, converges in the topology of A. What is the
sum?

Hint. Show the series of partial sums is a Cauchy series. The sum is (I+a2)−1.

2.13. (Hard) Prove Hölder’s inequality:

∫

X
| f (x)g(x)|dμ(x)≤

(∫

X
| f (x)|pdμ(x)

)1/p(∫

X
|g(x)|qdμ(x)

)1/q

where p,q > 0 satisfy 1 = 1
p + 1

q , f and g are measurable and μ is a positive measure
on X.

Solution. Define I :=
∫

X | f (x)| |g(x)|dμ(x), A := (
∫

X | f (x)|pdμ(x))1/p and B :=
(
∫

X |g(x)|qdμ(x))1/q. If either A or B is zero or infinite (conventionally, ∞ · 0 =
0 ·∞ = 0), the inequality is trivial. So let us assume 0 < A,B < +∞ and define
F(x) := | f (x)|/A, G(x) := |g(x)|/B. Thus

ln(F(x)G(x)) =
1
p

ln(F(x)p)+
1
q

ln(G(x)q)≤ ln

(
1
p

F(x)p +
1
q

G(x)q
)

,

because the logarithm is a convex function. Exponentiating gives

F(x)G(x)≤ 1
p

F(x)p +
1
q

G(x)q .

Integrating the above, and noting that the right-hand-side integral is 1/p + 1/q = 1
we recover Hölder’s inequality in the form:

∫
X | f (x)g(x)|dμ(x)

(
∫

X | f (x)|pdμ(x))1/p (
∫

X |g(x)|qdμ(x))1/q
≤ 1 .

2.14. (Hard) Making use of Hölder’s inequality, prove Minkowski’s inequality:

(∫

X
| f (x)+g(x)|pdμ(x)

)1/p

≤
(∫

X
| f (x)|pdμ(x)

)1/p

+
(∫

X
|g(x)|pdμ(x)

)1/p

where p≥ 1, f and g are measurable and μ a positive measure on X.
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Solution. Define I :=
∫

X | f (x) + g(x)|pdμ(x), A := (
∫

X | f (x)|pdμ(x))1/p and B :=
(
∫

X |g(x)|pdμ(x))1/p. The inequality is trivial if p = 1 or if either of A, B are infinite.
So we assume p > 1, A,B < +∞. Then I must be finite too, because (a + b)p ≤
2p(ap + bp) for any a,b ≥ 0 and p ≥ 13. Minkowski’s inequality is trivial also
when I = 0, so we consider only p > 1, A,B < +∞, 0 < I < +∞. Note | f + g|p =
| f | | f + g|p−1 + |g| | f + g|p−1. Using Hölder’s inequality on each summand on the
right we have:

∫

X
| f (x)+g(x)|pdμ(x)≤

((
| f (x)+g(x)|(p−1)qdμ(x)

)1/q
)

×
((∫

X
| f (x)|pdμ(x)

)1/p

+
(∫

X
|g(x)|pdμ(x)

)1/p
)

,

where 1 = 1
p + 1

q . This last inequality can be written I ≤ I1/q(A+B), dividing which

by I1/q produces I1/p ≤ A+B, i.e. Minkowski’s inequality.

2.15. Take two finite-dimensional normed spaces X,Y and consider T ∈ L(X,Y) =
B(X,Y). Fix bases in X and Y, so to represent T by the matrix M(T ). Show that one
can choose bases for the dual spaces X′, Y′ so that the operator T ′ is determined by
the transpose matrix M(T )t .

2.16. Prove Proposition 2.66.

2.17. Consider the space B(X) for X normed, and prove the strong topology is finer
than the weak topology (put loosely: weakly open sets are strongly open), and the
uniform topology is finer than the strong one.

2.18. Prove Propositions 2.70, 2.71, 2.72 and 2.73.

2.19. In a normed space X prove that if {xn}n∈N ⊂ X tends to x ∈ X weakly (cf. Pro-
position 2.70), the set {xn}n∈N is bounded.

Hint. Use Corollary 2.60.

2.20. If B is a Banach space and T,S ∈B(B) show:
(i) (T S)′ = S′T ′;
(ii) (T ′)−1 = (T−1)′ if T is bijective.

2.21. Prove that if X and Y are reflexive Banach spaces, and T ∈ B(X,Y), then
(T ′)′ = T .

2.22. If X is normed, the function that maps (T,S) ∈ B(X)×B(X) to T S ∈ B(X) is
continuous in the uniform topology. What can be said regarding the strong and weak
topologies?

3 This inequality descends from (a + b) ≤ 2max{a,b}, whose pth power reads (a + b)p ≤
2p max{ap,bp} ≤ 2p(ap +bp).
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Solution. For both topologies the map is separately continuous in either argument,
but not continuous as a function of two variables, in general.

2.23. If we define an isomorphism of normed spaces as a continuous linear map with
continuous inverse, does an isomorphism preserve completeness?

Hint. Extend Proposition 2.101 to the case of a continuous linear map with continu-
ous inverse, between normed spaces.

2.24. Using weak equi-boundedness, prove this variant of the Banach–Steinhaus
Theorem 2.58.

Let X be a Banach space, Y a normed space on the same field C, or R. Suppose
the family of operators {Tα}α∈A ⊂B(X,Y) satisfies:

sup
α∈A

| f (Tαx)|< +∞ for any x ∈ X, f ∈ Y′ .

Then there exists a uniform bound K ≥ 0:

||Tα || ≤ K for any α ∈ A .

Solution. Referring to Corollary 2.55, for any given x ∈ X define Fα,x := I(Tαx) ∈
(Y′)′. Then

sup
α∈A

|Fα,x( f )|< +∞ for any f ∈ Y′ .

As Y′ is complete, we can use Theorem 2.58 to infer the existence, for any x ∈ X, of
a Kx ≥ 0 that bounds uniformly the familiy Fα,x : Y′ → C:

||Fα,x|| ≤ Kx for any α ∈ A .

But I is isometric, so:
||Tα(x)|| ≤ Kx for any α ∈ A

and hence
sup
α∈A

||Tαx||< +∞ for any x ∈ X .

The Banach–Steinhaus Theorem 2.58 ends the proof.

2.25. Let K be compact, X a Banach space, and equipB(X) with the strong topology.
Prove that any continuous map f : K → B(X) belongs to C(K;B(X)). (The latter is
a Banach space, defined in Exercise 2.10, if we view B(X) as a Banach space.)

Solution. We must prove
sup
k∈K

|| f (k)||< +∞

where on the left we used the operator norm ofB(X). As f is continuous in the strong
topology, for any given x ∈ X the map K � k 	→ f (k)x ∈ X is continuous. If we fix
x ∈ X, by Exercise 2.2 there is Mx ≥ 0 such that:

sup
k∈K

|| f (k)x||X < Mx .

The Banach–Steinhaus Theorem 2.58 ends the proof.
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3

Hilbert spaces and bounded operators

There’s no such thing as a deep theorem, but only theorems
we haven’t understood very well.

Nicholas P. Goodman

With this section we introduce the first mathematical notions relative to Hilbert spaces
that we will use to build the matematical foundations of Quantum Mechanics.

A good part of the chapter is devoted to Hilbert bases (also known as complete
orthonormal system), which we treat in full generality and not assuming the Hilbert
space be separable. Before that, we discuss the paramount result in the theory of Hil-
bert spaces: Riesz’s representation theorem, according to which there is a natural
anti-isomorphism between a Hilbert space and its dual.

The third part studies the notion of adjoint operator (to a bounded operator), in-
troduced by means of Riesz’s theorem, and all its fundamental consequences in the
theory of bounded operators. In particular, we introduce C∗-algebras (and operator
C∗-algebras) and the examples will serve to present von Neumann algebras and the
famous double commutant theorem. Here we define self-adjoint, unitary and normal
operators, and examine the basic properties.

Section four is entirely dedicated to orthogonal projectors and their main prop-
erties. We also introduce the useful notion of partial isometry.

The fifth section is concerned with the important polar decomposition theorem
for bounded operators defined on the whole Hilbert space. The notion of positive
square root of a bounded operator is used as technical tool.

The elementary theory of the Fourier and Fourier-Plancherel transforms, ob-
ject of the last section, is introduced very rapidly and with, alas, no reference to
Schwartz’s distributions (for this see [Rud91, ReSi80, Vla81]).

3.1 Elementary notions, Riesz’s theorem and reflexivity

The present section deals with the basics of Hilbert spaces, starting from the element-
ary definitions of Hermitian inner product and Hermitian inner product space.

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
DOI 10.1007/978-88-470-2835-7_3, © Springer-Verlag Italia 2013
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3.1.1 Inner product spaces and Hilbert spaces

Definition 3.1. If X is a complex vector space, a map S : X×X→ C si called a Her-
mitian inner product, or Hermitian scalar product, and (X,S) an inner product
space, when:

H0. S(u,u)≥ 0 for any u ∈ X;
H1. S(u,αv+βw) = αS(u,v)+βS(u,w) for any α ,β ∈ C and u,v,w ∈ X;
H2. S(u,v) = S(v,u) for any u,v ∈ X;
H3. S(u,u) = 0 ⇒ u = 0, for any u ∈ X.

If H0, H1, H2 hold and H3 does not, S is a Hermitian semi-inner product.
Two vectors u,v ∈ X are orthogonal, written u ⊥ v, if S(u,v) = 0. In this case u is
said orthogonal (or normal) to v and v is orthogonal (or normal) to u.
If ∅ � K ⊂ X, the orthogonal space to K is:

K⊥ := {u ∈ X | u⊥ v for any v ∈ K} .

Remark 3.2. (1) H1 and H2 imply that S is antilinear in the first argument:

S(αv+βw,u) = αS(v,u)+βS(w,u) for any α ,β ∈ C, u,v,w ∈ X.

(2) From H2 u is orthogonal to v if and only if v is orthogonal to u.
(3) It is immediate that K⊥ is a vector subspace in X by H1, so the name orthogonal
space was not casual.
(4) In a Hermitian inner product space (X,S), by definition of orthogonality follows
a useful property we will use often:

K ⊂ K1 ⇒ K⊥
1 ⊂ K⊥ for K,K1 ⊂ X.

(5) From now, lest we misunderstand, “(semi-)inner product” will always stand for
“Hermitian (semi-)inner product”. �

Proposition 3.3. Let X be a C-vector space with semi-inner product S.

(a) The Cauchy-Schwarz inequality holds:

|S(x,y)|2 ≤ S(x,x)S(y,y), x,y ∈ X ; (3.1)

(i) there is equality in (3.1) if x and y are linearly dependent;
(ii) if S is an inner product, there is equality in (3.1) if and only if x, y are

linearly dependent.

(b) As x ∈ X varies,
p(x) :=

√
S(x,x) (3.2)

defines the seminorm (a norm if S is an inner product) induced by S.
(c) p satisfies the parallelogram rule:

p(x+ y)2 + p(x− y)2 = 2(p(x)2 + p(y)2), x,y ∈ X . (3.3)
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(d) the polarisation formula holds:

S(x,y) =
1
4

(
p(x+ y)2− p(x− y)2− ip(x+ iy)2 + ip(x− iy)2) , x,y ∈ X. (3.4)

Proof. (a) If α ∈ C, using the properties of the semi-inner product,

0≤ S(x−αy,x−αy) = S(x,x)−αS(x,y)−αS(y,x)+ |α |2S(y,y) . (3.5)

Suppose S(y,y) � 0. Then setting α := S(x,y)/S(y,y), (3.5) implies:

0≤ S(x,x)−|S(x,y)|2/S(y,y) ,

as claimed. If S(y,y) = 0, from (3.5) we find, for any α ∈ C:

0≤ S(x,x)−αS(x,y)−αS(y,x) . (3.6)

Choosing α ∈ R large enough in absolute value we see inequality (3.6) is not satis-
fied unless S(x,y)+ S(y,x) = 0. Choosing now α = iλ with λ ∈ R large enough in
absolute value, we find that (3.5) can hold only if S(x,y)−S(y,x) = 0; with the pre-
vious S(x,y) = −S(y,x) it gives S(x,y) = 0. Summing up, S(y,y) = 0 implies (3.1)
because S(x,y) = 0. If x, y are linearly dependent then x = αy or y = αx for some
α ∈ C. If so, the two sides of (3.1) are equal. Now assume S is an inner product
and |S(x,y)|2 = S(x,x)S(y,y), and let us prove there are α ,β ∈ C, not both zero,
so that αx + βy = 0. If one at least of x,y is null, the claim is true. So suppose
neither vanishes, so S(x,x) > 0 < S(y,y) by H3. Then redefining u = x/

√
S(x,x),

v = y/
√

S(y,y), we have |S(u,v)|= 1 and so S(u,v) = eiη for some η ∈ R. By H3,
α ′u+β ′v = 0 is equivalent to S(α ′u+β ′v,α ′u+β ′v) = 0, i.e.

|α ′|2 + |β ′|2 +α ′β ′eiη +β ′α ′e−iη = 0 ,

as S(u,v) = eiη . Choose α ′ = eiμ , β ′ = eiν , so that −μ+ν+η = π . Then the above
identity holds, and setting α := eiμ

√
S(y,y), β := eiν

√
S(x,x) we have α ,β � 0 and

αx+βy = 0.
(b) The properties of seminorms are easy from the definition of p and the properties
of the inner product, except the triangle inequality N2 which we prove now. By the
properties of the inner product

p(x+ y)2 = p(x)2 +2ReS(x,y)+ p(y)2 ,

with Re denoting the real part of a complex number. As ReS(x,y)≤ |S(x,y)|, by (3.1),
we also have ReS(x,y)≤ p(x)p(y). Substituting above gives:

p(x+ y)2 ≤ p(x)2 +2p(x)p(x)+ p(y)2 ,

i.e.
p(x,y)2 ≤ (p(x)+ p(y))2 ,

which in turn implies N2. Property N3 is immediate from H3, in case S is a scalar
product.

Statements (c) and (d) are straighforward from the definition of p and the prop-
erties of inner product. �
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Remark 3.4. (1) The Cauchy–Schwarz inequality immediately implies that an inner
product S : X×X → C is a continuous map on X×X in the product topology, when
X has the topology of the norm given by the inner product, i.e. (3.2). In particular the
inner product is continuous in its arguments separately.
(2) If the field of X is R instead of C, we have analogous definitions to 3.1, by setting
a real inner product S : X×X→ R to fulfill H0, H1, H3 and replacing H2 with the
symmetry property:

H2’. S(u,v) = S(v,u) for any u,v ∈ X.

A real semi-inner product is a real inner product without H3, so to speak.
(3) Proposition 3.3 is still true for real (semi-)inner products, with the proviso that
the new polarisation formula reads:

S(x,y) =
1
4

(
p(x+ y)2− p(x− y)2) , (3.7)

over the field R. �

A known result – rarely proved explicitly – is the following, due to Fréchet, von
Neumann and Jordan. The proof is carried out in Exercises 3.1-3.3.

Theorem 3.5. Let X be a complex vector space and p : X→R a norm (or seminorm).
Then p satisfies the parallelogram rule (3.3) if and only if there exists – in such case
unique – an inner product (or semi-inner product) S inducing p through (3.2).

Proof. If the norm (seminorm) is induced by a Hermitian inner product, the par-
allelogram rule (3.3) is valid by Proposition 3.3(c). The proof that (3.3) implies the
existence of an inner product (semi-inner product) S inducing p via (3.2) can be found
in Exercises 3.1–3.3. �

Let us pass to isomorphisms of inner product spaces.

Definition 3.6. Let (X,SX), (Y,SY) be inner product spaces. A linear map L : X→ Y
is called isometry if:

SY(L(x),L(y)) = SX(x,y) for any x,y ∈ X.

If the isometry L : X→ Y is onto we call it isomorphism of inner product spaces.
Given an isomorphism (L) of inner product spaces from X to Y the spaces are said
isomorphic (under L).

Remarks 3.7. Every isometry L : X → Y is clearly 1-1 by H3, but can be not onto,
even when X = Y, if the dimension of X is not finite. Every isometry is moreover con-
tinuous in the norm topologies induced by inner products; if surjective (isomorphism)
its inverse is an isometry (isomorphism). �

Since an inner product space is also normed, we have two notions of isometry
for a linear transformation L : X → Y. The first refers to the preservation of inner
products (defined before), the second was given in Definition 2.10, and corresponsds
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to the requirement: ||Lx||Y = ||x||X for any x∈ X, with reference to the norms induced
by the inner products. The former type also satisfies the second definition. Using the
polarisation formula (3.4) it can actually be proved that the two notions are equival-
ent.

Proposition 3.8. A linear operator L : X → Y between inner product spaces is an
isometry in the sense of Definition 3.6 if and only if:

||Lx||Y = ||x||X for any x ∈ X,

where the norms are associated to the corresponding Hilbert spaces’ inner products.

Notation 3.9. Unless we say otherwise, from now on ( | ) will be an inner product
and || || the induced norm, as in 3.3. �

Now to the truly central notion of the entire book, that of a Hilbert space.

Definition 3.10. A complex vector space equipped with a Hermitian inner product is
called a Hilbert space if the norm induced by the inner product makes it a Banach
space. An isomorphism of inner product spaces between Hilbert spaces is said:

(i) isomorphism of Hilbert spaces, or
(ii) unitary transformation, or
(iii) unitary operator.

It must be clear that under an isomorphism of inner product spaces U : H→ H1,
H1 is a Hilbert space if and only if H is. Then U is a unitary transformation.

There is a result about completions similar to the one seen for Banach spaces.

Theorem 3.11 (Completion of Hilbert spaces). Let X be a C-vector space with in-
ner product S.

(a) There exists a Hilbert space (H,( | )), called completion of X, such that X is
identified to a dense subspace (for the norm associated to the inner product ( | ))
of H under a 1-1 linear map J : X → H that extends the inner product S to ( | ).
Equivalently, there is a 1-1 linear J : X→ H with

J(X) = H and (J(x)|J(y)) = S(x,y) for any x,y ∈ X.

(b) If the triple (J1,H1,( |)1), with J1 : X→H1 linear isometry and (H1,( |)1) Hilbert
space, is such that J1 identifies X with a dense subspace in H1 by extending S to ( | )1,
then there is a unique unitary transformation φ : H→ H1 such that J1 = φ ◦ J.

Sketch of proof. (a) It is convenient to use the completion theorem for Banach
spaces and then construct the Banach completion of the normed space (X,N), where
N(x) :=

√
S(x,x). Since S is continuous and X dense in the completion under the lin-

ear map J, S induces a semi-inner product ( |) on the Banach completion H. Actually,
( | ) is an inner product on H because, still by continuity, it induces the same norm of
the Banach space. Thus H is a Hilbert space and the map J identifying X to a dense
subspace in H satisfies all the requirements. (b) The proof is essentially the same as
in the Banach case. �
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Examples 3.12. (1) Cn with inner product (u|v) :=∑n
i=1 uivi, where u = (u1, . . . ,un),

v = (v1, . . . ,vn), is a Hilbert space.

(2) A crucial Hilbert space in physics arises from Example 2.26(6): we are talking
about the space L2(X,μ), where X is a measure space with positive, σ -additive meas-
ure μ on a σ -algebra Σ of subsets in X. We know L2(X,μ) is a Banach space with
norm || ||2:

||[ f ]||22 :=
∫

X
f (x) f (x)dμ(x)

f being any representative in the equivalence class [ f ] ∈ L2(X,μ) (as usual, we shall
write f instead of [ f ]).

If f ,g ∈ L2(X,μ) then f (x)g(x) ∈ L1(X,μ), for (| f (x)| − |g(x)|)2 ≥ 0 implies
2| f (x)||g(x)| ≤ | f (x)|2 + |g(x)|2. Hence:

( f |g) :=
∫

X
f (x)g(x)dμ(x), f ,g ∈ L2(X,μ) (3.8)

is well defined (which follows also from Hölder’s inequality, cf. Example 2.26(6)).
Elementary features of integrals guarantee the right-hand side of (3.8) is a Hermitian
inner product on L2(X,μ), which clearly induces || ||2. Therefore L2(X,μ) is a Hilbert
space with inner product (3.8).

(3) If one takes X =N and the counting measure μ (Example 2.26(7)), as subcase of
the previous situation we obtain the Hilbert space �2(N) of square-integrable complex
sequences, where

({xn}n∈N|{yn}n∈N) :=
+∞

∑
n=0

xnyn . �

3.1.2 Riesz’s theorem and its consequences

The aim is to prove that Hilbert spaces are reflexive. In order to do so we need to de-
velop a few tools related to the notion of orthogonal spaces, and prove the celebrated
Riesz’s theorem.

Let us recall the definition of convex set (Definition 2.61).

Definition. A set ∅ � K in a vector space X is convex if:

λu+(1−λ )v ∈ K, for any λ ∈ [0,1] and u,v ∈ K.

Clearly any subspace of X is convex, but not all convex subsets of X are sub-
spaces in X: open balls (with finite radius) in normed spaces are convex as sets but
not subspaces. For the next theorem we remind that < K > denotes the subspace in
X generated by K ⊂ X, and K is the closure of K.

Theorem 3.13. Let (H,( | )) be a Hilbert space and K ⊂H a non-empty subset. Then

(a) K⊥ is a closed subspace of H.
(b) K⊥ =< K >⊥= < K >⊥ = < K >

⊥
.
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(c) If K is closed and convex, for any x ∈ H there is a unique PK(x) ∈ K such that
||x−PK(x)||= min{||x− y|| | y ∈ K}, where || || is the norm induced by ( | ).
(d) If K is a closed subspace, any x ∈ H decomposes in a unique fashion as zx + yx

with zx ∈ K and yx ∈ K⊥, so that:

H = K⊕K⊥ . (3.9)

Moreover, zx := PK(x) as from (c).
(e) (K⊥)⊥ = < K >.

Remarks 3.14. Actually, (a) and (b) hold also on more general spaces than Hilbert
spaces; it is enough to have an inner product space with inner product topology. �

Proof of Theorem 3.13. (a) K⊥ is a subspace by the (anti)linearity of the inner product.
By its continuity it follows that if {xn} ⊂ K⊥ converges to x ∈ H then (x|y) = 0 for
any y ∈ K, hence x ∈ K⊥. So K⊥, containing all its limit points, is closed.
(b) The first identity is trivial by definition of orthogonality and the linearity (anti-
linearity) of the inner product. The second relation follows immediately from (a). As

for the third one, since < K >⊂< K > we have < K >⊥⊃< K >
⊥

. But < K >⊥⊂
< K >

⊥
by continuity, so < K >⊥= < K >

⊥
, ending the chain of equalities, because

we know < K >⊥= < K >⊥.
(c) Let 0≤ d = infy∈K ||x−y|| (this exists since the set of ||x−y|| with y ∈K is lower
bounded and non-empty). Define a sequence {yn} ⊂ K such that ||x− yn|| → d. We
will show it is a Cauchy sequence. From the parallelogram rule (3.3), where x, y are
replaced by x− yn and x− ym, we have

||yn− ym||2 = 2||x− yn||2 +2||x− ym||2−||2x− yn− yn||2 .

Now ||2x− yn − yn||2 = 4||x− (yn + ym)/2||2 ≥ 4d2, since yn/2 + ym/2 ∈ K under
the convexity assumption on K and because d is the infimum of the numbers ||x−y||
when y ∈ K. Given ε > 0, and taking n, m big enough, we have: ||x−yn||2 ≤ d2 +ε ,
||x− ym||2 ≤ d2 + ε , whence

||yn− ym||2 ≤ 4(d2 + ε)−4d2 = 4ε .

So the sequence is Cauchy. As H is complete, yn converges to some y ∈ K because
K is closed. The norm is continuous, so d = ||x− y||. We claim y ∈ K is the unique
point satisfying d = ||x− y||. For any other y′ ∈ K with the same property:

||y− y′||2 = 2||x− y||2 +2||x− y′||2−||2x− y− y′||2 ≤ 2d2 +2d2−4d2 = 0 ,

by the parallelogram rule; we have used, above, the fact that ||2x− y− y′||2 =
4||x− (y + y′)/2||2 ≥ 4d2 (K is convex, d is the inf of the ||x− z|| when z ∈ K, so
y/2+y′/2 ∈ K). As ||y−y′||= 0 we have y = y′. Thus PK(x) := y fulfills all require-
ments.
(d) Take x ∈ H and x1 ∈ K with minimum distance from x. Set x2 := x− x1, and we
will show x2 ∈ K⊥. Pick y ∈ K, so the map R � t 	→ f (t) := ||x− x1 + ty||2 has a
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minimum at t = 0. Notice this is true if K is a subspace, so that −x1 + ty ∈ K for any
t ∈ R if x1,y ∈ K. Hence its derivative vanishes at t = 0:

f ′(0) = lim
t→0

||x2 + ty||2−||x2||2
t

= (x2|y)+(y|x2) = 2Re(x2|y) .

Therefore Re(x2|y) = 0. Replacing y by iy tells that the imaginary part of (x2|y) is
zero too, so (x2|y) = 0 and x2 ∈ K⊥. We have proved < K,K⊥ >= H. There remains
K∩K⊥ = {0}. But this is obvious because if x ∈ K∩K⊥, x must be orthogonal to x,
so ||x||2 = (x|x) = 0 and x = 0.
(e) If y ∈ K, y is orthogonal to every element of K⊥; by linearity and continuity of
the inner product this is true also when y ∈< K >. In other words,

< K >⊂ (K⊥)⊥ . (3.10)

Using (d) and replacing K with the closed subspace < K > we obtain H = < K >⊕
< K >

⊥
. By (b) that is equivalent to

H = < K >⊕K⊥ . (3.11)

If u ∈ (K⊥)⊥, by (3.11) there is a decompostion into orthogonal ((u0|v) = 0) vec-
tors u = u0 + v, with u0 ∈ < K > and v ∈ K⊥; thus (u|v) = (v|v). But (u|v) = 0
(u ∈ (K⊥)⊥ and v ∈ K⊥) so (v|v) = 0 and therefore (K⊥)⊥ � u = u0 ∈ < K >. We
conclude < K >⊃ (K⊥)⊥, and hence the claim, by (3.10). �

From (b) and (d) descends an immediate corollary.

Corollary 3.15 (to Theorem 3.13). If S is a subset in a Hilbert space H, < S > is
dense in H if and only if S⊥ = {0}.

We are ready to state and prove a theorem due to F. Riesz, by far the most im-
portant theorem in the theory of Hilbert spaces.

Theorem 3.16 (Riesz). Let (H,( | )) be a Hilbert space. For any continuous linear
functional f : H→ C there exists a unique y f ∈ H such that:

f (x) = (y f |x) for any x ∈ H .

The map H′ � f 	→ y f ∈ H is a bijection.

Proof. We will prove that for any f ∈ H′ there is such y f ∈ H. The null space of f ,
Ker f := {x∈H | f (x) = 0}, is a closed subspace since f is continuous. As H is a Hil-
bert space, H = Ker f ⊕(Ker f )⊥ by Theorem 3.13. If Ker f = H define y f = 0 and the
proof ends. If Ker f �H we can show (Ker f )⊥ has dimension 1. Let 0� y∈ (Ker f )⊥.

Then f (y) � 0 (y � Ker f !). For any z ∈ (Ker f )⊥, the vector z− f (z)
f (y)y belongs to

(Ker f )⊥, as linear combination of elements in (Ker f )⊥, but z− f (z)
f (y)y∈Ker f as well,

by the linearity of f . Thus z− f (z)
f (y)y∈Ker f ∩(Ker f )⊥, and z− f (z)

f (y)y = 0. This means
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y is a basis for (Ker f )⊥, any other vector z ∈ (Ker f )⊥ being a linear combination of

y: z = f (z)
f (y)y. If y is as above, define:

y f :=
f (y)
(y|y)y

and we will show y f represents f in the sense we want. If x ∈ H, we decompose x
along Ker f ⊕ (Ker f )⊥, to get x = n+ x⊥, where

x⊥ =
f (x⊥)
f (y)

y =
f (x)
f (y)

y,

because f (x⊥) = f (x) (by linearity, since f (n) = 0). So

(y f |x) =

(
f (y)
(y|y)y

∣
∣
∣
∣
∣
n+

f (x)
f (y)

y

)

= 0+
f (y)
f (y)

(y|y)
(y|y) f (x) = f (x) .

The function H′ � f 	→ y f ∈ H is well defined, i.e. f determines y f uniquely: if
(y|x) = (y′|x) for any x ∈ K then (y− y′|x) = 0 for any x ∈ K; choosing x = y− y′
gives ||y− y′||2 = (y− y′|y− y′) = 0, so y = y′. Injectivity is an easy consequence
of having f (x) = (y f |x). The map H′ � f 	→ y f ∈ H is onto because, for any y ∈ H,
H � x 	→ (y|x) is a point in H′ by linearity and continuity of the inner product. �

Corollary 3.17 (to Riesz’s theorem). Every Hilbert space is reflexive.

Proof. First of all we can endow H′ with an inner product ( f |g)′ := (yg|y f ), where
f ,g ∈ H′ with f (x) = (y f |x) and g(x) = (yg|x), x ∈ H. The norm induced by ( | )′ on
H′ coincides with the norm of H′

|| f || := sup
||x||=1

| f (x)| ,

for which H′ is complete (Theorem 2.41). By Theorem 3.16 we may write, in fact,

|| f ||= sup
||x||=1

|(y f |x)| ;

and the Cauchy-Schwarz inequality implies || f || ≤ ||y f ||, and we also have |(y f |x)|=
||y f || for x = y f /||y f ||. Hence || f || = ||y f ||, which is precisely the norm induced by
( | )′. Therefore (H′,( | )′) is a Hilbert space and (H′)′ its dual. Theorem 3.16 guaran-
tees that for any element in (H′)′, say F , there is gF ∈H′ such that F( f ) = (gF | f )′ for
any f ∈H′. But (gF | f )′ = (y f |ygF ) = f (ygF ). We have obtained, for any F ∈ (H′)′, the
existence (and uniqueness, by Corollary 2.55 to Hahn–Banach) of a vector ygF ∈ H
such that:

F( f ) = f (ygF )

for any f ∈ H′. This is the reflexivity of H. �

Remarks 3.18. From this proof we see that the topological dual H′, equipped with
inner product ( | )′, ( f |g)′ := (yg|y f ), is a Hilbert space. The map H′ � f 	→ y f ∈ H is
antilinear, 1-1, onto and preserves the inner product by construction. In this sense H
and H′ are anti-isomorphic. �
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3.2 Hilbert bases

Now we can introduce the mathematical arsenal relative to the notion of a Hilbert
basis. This is a well-known generalisation, in infinite dimensions, of an orthonor-
mal basis. We shall work in the most general setting, where Hilbert spaces are not
necessarily separable and a basis can have any cardinality, also uncountable.

First we have to explain the meaning of infinite sums of non-negative numbers,
often over uncountable sets. An indexed set {αi}i∈I will be a function I � i 	→ αi.
The set I is the set of indices and the pair (i,αi), improperly written αi, is the ith
element of the indexed set. Note that it may happen αi = α j for i � j.

Definition 3.19. If A = {αi}i∈I is a non-empty set of non-negative reals indexed
by I, of arbitrary cardinality, the sum of the indexed set A is the number, in
[0,+∞)∪{+∞}, defined by :

∑
i∈I
αi := sup

{

∑
j∈F
α j

∣
∣
∣
∣
∣

F ⊂ I , F finite

}

. (3.12)

Remarks 3.20. From now a set will be called countable when it can be mapped
bijectively to the natural numbers N. Thus, here, a finite set is not countable. �

Proposition 3.21. In relation to Definition 3.19 we have:

(a) If I is finite or countable, the sum of the indexed set A coincides with the sum
∑i∈I αi, or the sum of the series ∑+∞

n=0αin respectively (which always converges, per-
haps to +∞, because its terms are non-negative), irrespective of the ordering, i.e.
independently of the bijection N � n 	→ in ∈ I.
(b) If the sum of the set A is finite, the subset of I for which αi � 0 is finite or count-
able. In this case, by restricting to I the sum of A coincides with the sum over finitely
many indices, or the sum of a series as in (a), respectively.
(c) If μ is the counting measure on I, defined by the σ -algebra of the power set of I
(J ⊂ I implies that μ(J)≤+∞ is the cardinality of J by definition):

∑
i∈I
αi =
∫

A
αi dμ(i) . (3.13)

Proof. (a) The case when I is finite is obvious, so we look at I countable and suppose
to have chosen a particular ordering on I, so that we can write A as A = {αin}n∈N. We
will show that the sum ∑+∞

n=0αin of {αin}n∈N coincides with the sum of (3.12) which
does not depend on the chosen ordering by definition. Because of (3.12) we have:

N

∑
n=0

αin ≤∑
i∈I
αi .

The limit for N → +∞ exists and equals the supremum of the set of partial sums,
since the latter are non-decreasing. Therefore:

+∞

∑
n=0

αin ≤∑
i∈I

αi . (3.14)
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On the other hand, if F ⊂ I is finite, we may fix NF big enough so that {αi}i∈F ⊂
{αi0 ,αi1 ,αi2 , . . . ,αiNF

}. Thus

∑
i∈F
αi ≤

NF

∑
n=0

αin .

Taking now the supremum over finite sets F ⊂ I, and remembering the supremum of
partial sums is the sum of the series, gives

∑
i∈I
αi ≤

+∞

∑
n=0
αin . (3.15)

Then (3.14) and (3.15) produce the claim.
(b) Suppose S < +∞, S≥ 0, is the sum of the set A. If S = 0 all elements of A are zero
and the proof ends. So suppose S > 0. Anyαi is contained in [0,S] – otherwise the sum
would be larger than S – and in particular αi � 0 implies αi ∈ (0,S]. Define Sn := S/n,
n = 1,2, . . .. If Nk denotes the number of i ∈ I for which αi belongs in (Sk+1,Sk], then
surely S ≥ Sk+1Nk, hence Nk is finite for any k. But ∪+∞

k=1(Sk+1,Sk] = (0,S], so every
αi � 0 are accounted for as k = 1,2, . . .. These values can be at most countable, since:
(i) there are countably many intervals (Sk+1,Sk] and (ii) each one contains a finite
number of αi � 0.
(c) Since any function is measurable with respect to the given measure (the σ -algebra
is the power set), identity (3.13) is an immediate consequence of the definition of in-
tegral of a positive function (cf. Chapter 1.4.3). �

Now we can define, step by step, complete orthonormal systems, also known as
Hilbert bases.

Definition 3.22. Let (X,( | )) be an inner product space and ∅ � N ⊂ X.

(a) N is an orthogonal system (of vectors) if (i) N � 0 and (ii) x⊥ y for any x,y ∈ N,
x � y.
(b) N is an orthonormal system if all its vectors are orthogonal and unit, (x|x) = 1
for any x ∈ N.
If (H,( | )) is a Hilbert space, N ⊂H is a complete orthonormal system, or a Hilbert
basis, if orthonormal and:

N⊥ = {0} . (3.16)

When no confusion arises, a Hilbert basis will be simply referred to as a basis.

Remarks 3.23. Any orthogonal system N is made of linearly independent vec-
tors: if F ⊂ N is finite and 0 = ∑x∈F αxx, then 0 = (∑x∈F αxx|∑y∈F αyy) =
∑x∈F ∑y∈F αxαy(x|y) =∑x∈F |αx|2||x||2. As ||x||> 0 and |αx|2 ≥ 0, necessarily |αx|=
0, so αx = 0, for any x ∈ F . �
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Theorem 3.24 (Bessel’s inequality). For any orthonormal system N ⊂X in an inner
product space (X,( | )),

∑
z∈N

|(x|z)|2 ≤ ||x||2 for any x ∈ X . (3.17)

In particular: only a countable number of products (x|z), at most, are non-zero.

Proof. By Definition 3.19 and Proposition 3.21(b) the claim holds if inequality (3.17)
is true for all finite F ⊂ N. So let F = {z1, . . . ,zn}, x ∈ X and take α1, . . . ,αn ∈ C.
Expanding ||x−∑n

k=1αkzk||2 in terms of the inner product of X and because of the
orthonormality of zp and zq, plus the inner product’s (anti)linearity, we obtain:

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
x−

n

∑
k=1

αkzk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

= ||x||2 +
n

∑
k=1

|αk|2−
n

∑
k=1

αk(x|zk)−
n

∑
k=1

αk(x|zk) .

The right-hand side is:

||x||2−
n

∑
k=1

|(x|zk)|2 +
n

∑
k=1

(
|(x|zk)|2−αk(x|zk)−αk(x|zk)+ |αk|2

)
.

So, ∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
x−

n

∑
k=1

αkzk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

= ||x||2−
n

∑
k=1

|(x|zk)|2 +
n

∑
k=1

| (zk|x)−αk |2 .

On the right there is only one absolute minimum point αk = (zk|x), k = 1, . . . ,n.
Therefore

0≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
x−

n

∑
k=1

(zk|x)zk

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

= ||x||2−
n

∑
k=1

|(x|zk)|2 ,

and finally:
n

∑
k=1

|(x|zk)|2 ≤ ||x||2. �

Lemma 3.25. Let {xn}n∈N be a countable orthogonal system indexed by N in the
Hilbert space (H,( | )), and let || || be the norm induced by ( | ). If

+∞

∑
n=0

||xn||2 < +∞ , (3.18)

then:

(a) there exists, unique, x ∈ H such that

+∞

∑
n=0

xn = x , (3.19)
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where convergence is understood as convergence of partial sums in the topology in-
duced by || ||;
(b) the series (3.19) can be re-ordered, i.e.

+∞

∑
n=0

x f (n) = x (3.20)

for any bijection f : N→ N.

Proof. (a) Take An := ∑n
k=0 xk; by the orthonormality of the xk and the definition of

norm via the scalar product we have, for n > m:

||An−Am||2 =
n

∑
k=m+1

||xk||2 .

Since the series converges,

||An−Am||2 =
n

∑
k=m+1

||xk||2 ≤
+∞

∑
k=m+1

||xk||2 → 0 as m→+∞,

which in turn implies that partial sums {An} are a Cauchy sequence. Since H is com-
plete, there is a limit point x ∈ H of the sequence, so of the series. But H is normed,
and the Hausdorff property tells that limits, x included, are unique.
(b) Fix a bijective f :N→N. Set, as above, An :=∑n

k=0 xk and σn :=∑n
k=0 x f (k). The

positive-term series∑+∞
k=0 ||x f (k)||2 converges because its partial sums are smaller than

the converging series ∑+∞
k=0 ||xk||2. From part (a) the limit in H of σn exists, and the

re-ordered series will converge too in H. We claim this limit is exactly x.
Define rn := max{ f (0), f (1), . . . , f (n)}, so

||Arn −σn||2 ≤ ∑
k∈Jn

||xk||2

where Jn arises from

{0,1,2, . . . ,max{ f (0), f (1), . . . , f (n)}}
by erasing f (0), f (1), . . . , f (n). By bijectivity the remaining elements correspond to
certain points of the infinite set

{ f (n+1), f (n+2), . . .} .

Therefore

||Arn −σn||2 ≤ ∑
k∈Jn

||xk||2 ≤
+∞

∑
k=n+1

||x f (k)||2 . (3.21)

As ∑+∞
k=0 ||x f (k)||2 < +∞, relation (3.21) implies:

lim
n→+∞

(Arn −σn) = 0 .
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On the other hand rn ≥ n ( f is injective, and if we had

max{ f (0), f (1), . . . , f (n)}< n ,

the various f (n) should be n + 1 non-negative integers smaller than n, a contradic-
tion). Then limn→+∞ rn = +∞, so:

x = lim
n→+∞

An = lim
n→+∞

Arn = lim
n→+∞

σn . �

We can now state, and prove, the fundamental theorem about Hilbert bases, ac-
cording to which Hilbert bases generalise orthonormal bases in inner product spaces
of finite dimension. The novelty is that, at present, also infinite linear combinations
are allowed, using the topology of H: any element of a Hilbert space can be written
in a unique fashion as infinite linear combination of a basis.

Irrespective of the existence of bases, by Zorn’s lemma (or equivalently, the ax-
iom of choice) there are also ‘algebraic’ bases that require no topology. The differ-
ence between a Hilbert basis and an algebraic one lies in that the latter concerns finite
combinations only: despite the basis has infinite cardinality, any vector in the (Hil-
bert) space can be decomposed, uniquely, as a finite linear combination of the basis’
elements.

Theorem 3.26. Let (H,( | )) be a Hilbert space and N ⊂ H an orthonormal system.
The following facts are equivalent:

(a) N is a basis (N is an orthonormal system and N⊥ = {0}).
(b) Given x ∈H, a countable (at most) number of (z|x) is non-zero for all z ∈ N, and:

x = ∑
z∈N

(z|x)z , (3.22)

where the series converges in the sense that partial sums converge in the inner
product topology.
(c) Given x,y ∈ H, a countable (at most) number of (z|x), (y|z) is non-zero for all
z ∈ N, and

(x|y) = ∑
z∈N

(x|z)(z|y) . (3.23)

(d) If x ∈ H:
||x||2 = ∑

z∈N
|(z|x)|2 . (3.24)

in the sense of Definition 3.19.
(e) < N > = H, i.e. the span of N is dense in H.
Under any of the above properties, in (3.22) and (3.23) the indexing order of non-null
coefficients of (x|z), (z|x) = (x|z) and (z|y) is irrelevant.

Proof. (a) ⇒ (b). By Theorem 3.24 only countably many coefficients (z|x) are non-
null, at most. Indicate by (zn|x), n∈N, these numbers and fix SN :=∑N

n=0(zn|x)zn. The
system {(zn|x)zn}n∈N is by construction orthogonal, and because ||zn|| = 1 Bessel’s
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inequality implies ∑+∞
n=0 ||(zn|x)zn||2 < +∞. By Lemma 3.25(a) the series (3.22) con-

verges to a unique x′ ∈H, x′ =∑+∞
n=0(zn|x)zn. Moreover, the series can be rearranged,

with the same limit x′ by Lemma 3.25(b). We claim x′ = x. The linearity and con-
tinuity of the inner product force, for z′ ∈ N:

(x− x′|z′) = (x|z′)−∑
z∈N

(x|z)(z|z′) = (x|z′)− (x|z′) = 0

where we have used the fact that the set of coefficients z is an orthonormal system.
Since z′ ∈ N is arbitrary, x− x′ ∈ N⊥ and so x− x′ = 0, as N⊥ = {0} by assumption.
This proves that (3.22) holds independently from the thay we index the coefficients
(z|x) � 0.
(b)⇒ (c). If (b) holds, (c) is an obvious consequence, due to continuity and (anti)line-
arity of the inner product, plus the fact N is orthonormal.
(c) ⇒ (d). (d) is a special case of (c) when y = x.
(d) ⇒ (a). If (d) is true and x ∈ H is such that (x|z) = 0 for any z ∈ N, then ||x||= 0,
i.e. x = 0. In other words N⊥ = {0}, that is to say (a).

So, we proved (a), (b), (c) and (d) are equivalent. To finish notice (b) im-
plies immediately (e), while (e) implies (a): if x ∈ N⊥, the inner product’s linearity
gives x ∈< N >⊥ ⊂< N >⊥. But Theorem 3.13(b) says < N >⊥ = < N >

⊥
. Since

< N > = H by hypothesis, x ∈ H⊥ = {0}. Put otherwise we have (a), as N⊥ = {0}.
The fact that the complex series in (3.23) can be rearranged with the same sum

relies on the following argument. Consider the set

A := {z | (x|z) � 0 or (y|z) � 0} ,

which is countable. The Cauchy-Schwarz inequality in �2(A) produces:

∑
z∈A

|(x|z)||(z|y)| ≤ (∑
z∈A

|(x|z)|2)1/2(∑
z∈A

|(y|z)|2)1/2 < +∞

by (d). Hence the series ∑z∈N(x|z)(z|y) = ∑z∈A(x|z)(z|y) can be rearranged as one
likes because it converges absolutely. �

Zorn’s lemma now guarantees each Hilbert space admits a complete orthonormal
system.

Theorem 3.27. Every Hilbert space admits a basis.

Proof. Let H be a Hilbert space and consider the collection A of orthonormal sys-
tems in H. Define on A the partial order relation given by the inclusion of sets. By
construction any ordered subset E in A is upper bounded by the union of all elements
of E . Zorn’s lemma tells us there is in A a maximal element N. Therefore there are
in H no vectors that are normal to every element in N, non-zero and not belonging to
N itself. This means N is a complete orthonormal system. �

Before moving on to separable Hilbert spaces, let us give another important result
from the general theory.
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Theorem 3.28. Let H be a Hilbert space with basis N. Then:

(a) H is isomorphic, as Hilbert space, to L2(N,μ), where μ is the positive counting
measure of N (see Examples 2.26(6, 7) and 3.12(2)); the unitary transformation that
identifies the two spaces is

H � x 	→ {(z|x)}z∈N ∈ L2(N,μ) ; (3.25)

(b) all bases of H have the same cardinality (that of N), called the dimension of the
Hilbert space.
(c) If H1 is a Hilbert space with the same dimension of H, the two spaces are iso-
morphic as Hilbert spaces.

Proof. (a) The map U : H � x 	→ {(z|x)}z∈N ∈ L2(N,μ) is well defined because if
x ∈ H and N is a basis, then property (d) of Theorem 3.26 holds, according to which
{(z|x)}z∈N ∈ L2(N,μ). This function is definitely 1-1: if x,x′ ∈ H give equal coef-
ficients (z|x) = (z|x′) for any z ∈ N, then x = x′ by Theorem 3.26(b). The map is
onto as well: if {αz}z∈N ∈ L2(N,μ), so ∑z∈N |αz|2 < +∞, by Lemma 3.25 there is
x := ∑z∈N αzz and (z|x) = αz by inner product continuity and orthonormality of N.
Now Theorem 3.26(c) implies U is isometric. Therefore U : H→ L2(N,μ) is a unit-
ary operator, making H and L2(N,μ) isomorphic Hilbert spaces.
(b) If one Hilbert basis has finite cardinality c, it must be an algebraic basis for H.
Elementary geometric techniques allow to prove that if a basis of finite cardinality c
exists, then any other set of linearly independent vectors M has cardinality ≤ c, and
the maximum is reached if and only if M spans the whole space. Since a basis, being
an orthogonal system, is made of linearly independent vectors, we conclude that any
basis of H has cardinality ≤ c, hence = c because it spans H finitely. This prevents
the situation where one basis has finite cardinality and another one infinite. So let N
and M be bases di H of infinite cardinality. If x ∈M, define Nx := {z ∈N | (x|z) � 0}.
As 1 = (z|z) =∑x∈M |(z|x)|2, we must have, for any z ∈ N, an x ∈M such that z ∈ Nx.
Therefore N ⊂∪x∈MNx and then the cardinality of N will be less than or equal to that
of ∪x∈MNx; but the latter is the cardinality of M because any Nx is countable at most
by Theorem 3.26(b). So the cardinality of N does not exceed the cardinality of M.
Swapping the roles of N and M we obtain that the cardinality of M is not larger than
the one of N and the theorem of Schröder-Bernstein ensures the two cardinalities co-
incide.
(c) Let N and N1 be bases of H and H1 respectively, and suppose they have the same
cardinality. Then there is a bijective map taking points in N to points in N1 that in-
duces a natural isomorphism V of inner product spaces between the L2 space on N
and the L2 space on N1 with respect to the counting measure. Therefore V is an iso-
morphism of Hilbert spaces. If U1 : H1 → L2(N1,μ) is the isomorphism analogous to
the aforementioned U : H→ L2(N,μ), then UVU−1

1 : H1 →H is a unitary transform-
ation, by construction, making H and H1 isomorphic spaces. �

So-called separable Hilbert spaces are particularly interesting in physics.
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Definition 3.29. A Hilbert space is separable if it admits a countable dense subset.

There is a well-known characterisation of separability.

Theorem 3.30. Let H be a Hilbert space.

(a) H is separable if and only if either it has finite dimension or it has a countable
basis.
(b) If H is separable, every basis is either finite, with cardinality equal to the space’s
dimension, or countable.
(c) If H is separable then it is isomorphic either to �2(N), or to Cn equipped with
standard Hermitian inner product, and the finite number n equals the dimension of H.

Proof. (a) If the Hilbert space has a finite or countable basis, Theorem 3.26(b) en-
sures that a countable dense set exists, because rational numbers are dense in the
reals. This set consists clearly of finite linear combinations of basis elements with
complex coefficients having rational real and imaginary parts. The easy proof is left
to the reader. Conversely, suppose a Hilbert space is separable. By Theorem 3.27, we
know bases exist, and we want to show that any basis must be countable at most.

Suppose, by contradiction, that N is an uncountable basis for the separable
Hilbert space H. For any chosen z,z′ ∈ N, z � z′, any point x ∈ H is such that:
||z− z′|| ≤ ||x− z′||+ ||z−x|| by the triangle inequality induced by the inner product.
At the same time {z,z′} is an orthonormal system, so ||z− z′||2 = (z− z′|z− z′) =
||z||2 + ||z′||2 + 0 = 1 + 1 = 2. Hence ||x− z||+ ||x− z′|| ≥ √

2. This implies that a
pair of open balls of radius ε <

√
2/2 centred at z and z′ are disjoint, irrespective of

how we pick z,z′ ∈ N with z � z′. Call {B(z)}z∈N a family of such balls parametrised
by their centres z ∈ N. If D⊂H is a countable dense set (the space is separable), then
for any z ∈ N there exists x ∈ D with x ∈ B(z). The balls are pairwise disjoint, so
there will be one x for each ball, all different from one another. But the cardinality of
{B(z)}z∈N is not countable, hence neither D can be countable, a contradiction.

Although (b) and (c) are straighforward consequences of Theorem 3.28, for the
sake of the argument let us outline their proof.
(b) From the basic theory, if a (Hilbert or algebraic) basis is finite, the cardinality of
any other basis equals the dimension of the space; moreover, any linearly independent
set (viewed as basis) cannot contain a number of vectors exceeding the dimension.
From this, if a Hilbert space is separable and one of its bases is finite, then all bases
are finite with the space’s dimension as cardinality. Under the same hypotheses, if a
basis is countable then any other is countable by (a).
(c) Fix a basis N. Using Theorem 3.26 one verifies quickly that the map sending
H � x = ∑u∈N αuu to the (infinite or finite, depending on the situation) {αu}u∈N is
an isomorphism of inner product spaces from H to either Cn or �2(N), according to
whether the dimension of H is finite or not. �

Here is another useful propostion about separable Hilbert spaces.

Proposition 3.31. Let (H,( | )) be a Hilbert space with H � {0}.

(a) If Y := {yn}n∈N is a set of linearly independent vectors and Y⊥ = {0}, or equival-
ently < Y > = H, then H is separable and there exists a basis X := {xn}n∈N in H such
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that, for any p ∈N, the span of y0,y1, . . . ,yp coincides with the span of x0,x1, . . . ,xp.
(b) If H is separable and S⊂H is a (non-closed) dense subspace of H, then S contains
a basis of H.

Proof. (a) We shall only sketch the proof as the argument essentially duplicates
the Gram-Schmidt orthonormalisation process known from basic geometry courses
[Ser94I]. Since y0 � 0, we set x0 := y0/||y0||. Consider the non-null (y0, y1 are lin-
early independent) vector z1 := y1 − (x0|y1)x0. Clearly x0,z1 are not null, they are
orthogonal (so linearly independent) and span the same subspace as y0, y1. Setting
x1 := z1/||z1|| produces an orthonormal set {x0,x1} spanning the same space as y0,y1.
The procedure can be iterated inductively, by defining:

zn := yn−
n−1

∑
k=0

(xk|yn)xk ,

and considering the set of xn := zn/||zn||. By induction it is easy to see z0, . . . ,zk are
non-null, orthogonal (hence linearly independent) and span the same space generated
by the linearly independent y0, . . . ,yk. If u ⊥ yn for any n ∈ N, then u ⊥ xn for any
n∈N (it is enough to express xn as a linear combination of y0, . . . ,yn), and conversely
(writing yn as combination of x0, . . . ,xn). Therefore X⊥ = Y⊥ = {0} and X is a basis
for H.
(b) S must contain a subset S0 that is countable and dense in H. In fact, let {yn}n∈N
be countable and dense in H. For any yn there is a sequence {xnm}m∈N ⊂ S such
that xnm → yn as m → +∞. It is straighforward that the countable subset S0 :=
{xnm}(n,m)∈N×N of S is dense in H. Relabelling the elements of S0 over the natur-
als so that x1 � 0 we have S0 = {xq}q∈N. Now we can decompose S0 in two subsets
S1, containing x1, and S2 as follows. If x2 is linearly independent from x1 we put x2

in S1, otherwise in S2. If x3 is linearly independent from x1,x2 in S1 we put it in S1,
otherwise in S2, and we continue like this until we exhaust S0. Then by construction
S1 contains a set of linearly independent generators of S0. Thus < S1 > ⊃ S0 = H.
Furthermore this process builds a complete orthonormal system by finite linear com-
biantions of Y := S1, as explained in (a), and so it gives a basis made of elements of
S since S⊃ S1 is a subspace. �

Examples 3.32. (1) Consider the Hilbert space L2([−L/2,L/2],dx) (cf. Ex-
amples 3.12(2)) where dx is the usual Lebesgue measure on R and L > 0. Take meas-
urable functions (they are continuous)

fn(x) :=
ei 2πn

L x
√

L
(3.26)

for n ∈ Z and x ∈ [−L/2,L/2]. It is immediate to see the maps fn belong to the space
and form an orthonormal system for the inner product of L2([−L/2,L/2],dx) (see
Examples 3.12(2)):

( f |g) :=
∫ L/2

−L/2
f (x)g(x)dx . (3.27)
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Consider the Banach algebra of continuous maps C([−L/2,L/2]) (a vector sub-
space of L2([−L/2,L/2],dx)) with supremum norm (Examples 2.26(4, 5)). The
vector subspace S in C([−L/2,L/2]) spanned by all fn, n ∈ Z, is a subalgebra of
C([−L/2,L/2]). S contains 1, it is closed under complex conjugation and it is not hard
to see that it separates points in [−L/2,L/2] (the set of fn alone separates points),
so the Stone–Weierstrass Theorem 2.27 gurantees S is dense in C([−L/2,L/2]).
On the other hand it is well known that continous maps on [−L/2,L/2] form a
dense space in L2([−L/2,L/2],dx) in the latter’s topology [Rud82, p. 85]; even-
tually, the topology of C([−L/2,L/2]) is finer than that of L2([−L/2,L/2],dx),
because ( f | f ) ≤ Lsup | f |2 = L(sup | f |)2 if f ∈ C([−L/2,L/2]). Therefore S is
dense in L2([−L/2,L/2],dx). By Theorem 3.26(e), the vectors fn form a basis in
L2([−L/2,L/2],dx), making the latter separable.

(2) Consider the Hilbert space L2([−1,1],dx), dx being the Lebegue measure. As in
the previous example the Banach algebra C([−1,1]) is dense in L2([−1,1],dx) in the
latter’s topology. In contrast to what we had previously, let

gn(x) := xn , (3.28)

for n = 0,1,2, . . ., x∈ [−1,1]. It can be proved that these vectors are linearly independ-
ent, and their span S in C([−1,1]) is a subalgebra in C([−1,1]). S contains the unit 1,
it is closed under complex conjugation and separates points, so the Stone–Weierstrass
Theorem 2.27 implies it is dense in C([−1,1]); by arguing as in the above example
it is also dense in L2([−1,1],dx). The news is that now the functions gn do not con-
stitute an orthonormal system. However, using Proposition 3.31 we can immediately
build a complete orthonormal system on L2([−1,1],dx). These basis elements, up to
a normalisation, are called Legendre polynomials:

Pn(x) =
1

2nn!
dn

dxn (x2−1)n, n = 0,1,2, . . . .

From this definition follow the orthogonality relations:

∫

[−1,1]
Pn(x)Pm(x)dx =

2δnm

2n+1
.

(3) In the previous examples we exhibited two L2 separable spaces. It can be proved
that Lp(X,μ) (1 ≤ p < +∞) is separable if and only if the measure μ is separable
in the following sense. Take the metric space (cf. Definition 2.78) quotient of the
subset of the σ -algebra Σ of μ made of all finite-measure sets built by modding out
zero-measure sets. Define the distance:

d(A,B) := μ((A\B)∪ (B\A)) .

The measure μ is said to be separable if this metric space admits a dense and count-
able subset. Concerning separable measures we have the following result [Hal69].
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Proposition 3.33 (On separable Lp measures and spaces). A σ -additive positive
measure μ , and hence also Lp(X,μ), is separable if the following conditions hold:
(i) μ is σ -finite (X is the union of at most countably many sets of finite measure) and
(ii) the σ -algebra of the measure space of μ is generated by a countable, at most,
collection of measurable sets.

As consequence we have:

Proposition 3.34 (On separable Borel measures and Lp spaces). Every σ -finite
Borel measure on a second-countable topological space produces a separable Lp

space.

Remarks 3.35. This is the case, in particular, of the Lp space relative to the Lebesgue
measure on Rn restricted to Borel sets in Rn. Note, though, that the Lp space obtained
is the same we find by using the entire Lebesgue σ -algebra, since the latter is the com-
pletion of the Borel σ -algebra for the Lebesgue measure restricted to Borel subsets
(see the remark following Proposition 1.65) by Proposition 1.57. �

Positive and σ -additive Borel measures on locally compact Hausdorff spaces are
called Radon measures if they are regular and if compact sets have finite measure.
A Radon measure is σ -finite if the space on which it is defined is σ -compact, i.e.
countable union (at most) of compact sets.

(4) Consider the space L2((a,b),dx), with−∞≤ a < b≤+∞ and dx being the usual
Lebesgue measure on R. From the definitions of the Fourier and Fourier-Plancherel
transforms (Proposition 3.90) we have an extremely useful result:

Let f : (a,b)→C be measurable and such that: (1) the set {x∈ (a,b) | f (x) = 0} has
zero measure, and (2) there exist C,δ > 0 so that | f (x)|< Ce−δ |x| for any x ∈ (a,b).
Then the finite span of the maps x 	→ xn f (x), n = 0,1,2, . . ., is dense in L2((a,b),dx).

The importance of this fact relies in that it allows to construct with ease bases in
L2((a,b),dx) even when a or b are infinite (a case in which we cannot apply the
Stone–Weierstrass Theorem 2.27). In fact, the Gram-Schmidt process applied to
fn(x) := xn f (x) yields a basis as explained in Proposition 3.31.

For instance, if f (x) := e−x2/2 Gram-Schmidt gives, normalisation apart, the basis
of L2(R,dx) of so-called (normalised) Hermite functions:

ψ0(x) = π−1/4e−x2/2

and, recursively,

ψn+1 = (2(n+1))−1/2(x− d
dx

)ψn n = 0,1,2, . . .

A computation, essentially relying on Gram-Schmidt, shows that ψn can be obtained
alternatively as:

ψn(x) := (2nn!
√
π)−1/2Hn(x)e−x2/2 n = 0,1,2, . . .
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where Hn is a polynomial of degree n = 0,1,2, . . . called nth Hermite polynomial:

Hn(x) = (−1)nex2 dn

dxn e−x2
n = 0,1,2, . . .

There are orthogonalty relations:
∫

R

e−x2
Hn(x)Hm(x)dx = δnm2nn!

√
π .

In QM this particular basis is important when one studies the physical system known
as the one-dimensional harmonic oscillator.

With the same procedure on f (x) := e−x/2 we find a basis of L2((0,+∞),dx)
given, up to renormalisation, by Laguerre’s functions e−xLn(x), n = 0,1, . . .. The
polynomial Ln has degree n and goes under the name of nth Laguerre polynomial.
Laguerre polynomials are obtained from the formula:

Ln(x) = ex dn

dxn (xne−x) n = 0,1,2, . . .

Again, we have the normalising relations:
∫

[0,+∞)
e−xLn(x)Lm(x)dx = δnm(n!)2 .

In QM the basis of Laguerre functions is important when working with physical sys-
tems having a spherical symmerty, like the hydrogen atom, for instance.

(5) Consider the separable Hilbert space L2(Rn,dx) (dx being the usual Lebesgue
measure on Rn). It is a renowned fact [Vla81] that the spaces of real-valued (or
complex-valued) smooth functions on Rn with compact support (respectively, that
decrease at infinity faster than any negative power of |x|) are dense subspaces of
Lp(Rn,dx), (1≤ p < ∞). It falls out of Proposition 3.31(b) that such subspaces con-
tain bases of L2(Rn,dx).

(6) We will now construct the so-called Bargmann-Hilbert space, also known as
Bargmann-Fock space. This is a Hilbert space with a host of applications in QM and
quantum field theory. Consider the following positive σ -additive measure defined on
Borel sets E ⊂ C, where χE is the characteristic function of E (χE(z) = 1 if z ∈ E,
χE(z) = 0 if z � E):

μ(E) :=
1
π

∫

C

χE(z)e−|z|
2
dzdz .

Here, as is customary in this formalism, we denoted by dzdz the Lebesgue measure
of R2 identified with C. A function f : C→ C is entire if it is holomorphic every-
where on C. Let H(C) be the space of entire functions. Now take the vector subspace
of L2(C,μ) given by the intersection L2(C,μ)∩H(C) – where the elements of H(C)
represent equivalence classes of maps, as is the case when defining Lp spaces. It
is far from obvious that L2(C,μ)∩H(C) is a closed subspace of L2(C,μ), because
non-evident is that a sequence of entire functions converges in L2(C,μ) sense to an
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entire function (i.e. the limit is entire up to zero-measure sets). Bargmann, however,
managed to prove [Bar61] that

if f ∈ H(C), then
∫

C

| f (z)|2dμ(z) =
+∞

∑
n=0

| fn|2 ≤+∞ (3.29)

where:

fn =
√

n!an with f (z) =
+∞

∑
n=0

anzn . (3.30)

The power series in (3.30) is just the Taylor expansion of f : it converges absolutely
for any z ∈ C and uniformly on any compact set in C, and it exists by the mere fact
that f is entire. Notice that (3.29) establishes in particular that the positive-term series
on the right converges iff the integral of the left-hand-side function converges. Hence
f ,g∈ L2(C,μ)∩H(C) if and only if { fn}n∈N,{gn}n=1,2... ∈ �2(N) (Example 2.26(7)),
and if so the polarisation formula (3.4) and (3.29) give:

∫

C

f (z)g(z)dμ(z) =
+∞

∑
n=0

fngn . (3.31)

In the notation of (3.30), let us consider the map:

J : L2(C,μ)∩H(C) � f 	→ { fn}n∈N ∈ �2(N) .

This linear isometric (hence injective) transformation is actually onto as well. In fact,

since the the series ∑n∈N
|z|2n

(n!)2 converges for any z ∈C, the Cauchy-Schwarz inequal-

ity implies that the series:

∑
n∈N

cn√
n!

zn
√

n!
=: f (z)

converges absolutely for any z ∈ C, provided {cn}n∈N ∈ �2(N) and if we define an
entire map f and J( f ) = {cn}n∈N. Since �2(N) is complete we conclude that:

(a) the complex vector space B1 := L2(C,μ)∩H(C) is a Hilbert space, i.e. a closed
subspace of L2(C,μ);

(b) this Hilbert space is isomorphic to �2(N) under J (hence in particular separable);
(c) the system of entire maps {un}n∈N:

un(z) =
zn
√

n!
for any z ∈ C, n ∈ N (3.32)

is a basis for B1. B1 is called Bargmann-Hilbert or Bargmann-Fock space.

To conclude we observe that all constructions have a straightforward generalisa-
tion to n copies of C, giving the n-dimensional Bargmann space Bn := L2(Cn,dμn)∩
H(Cn) where, for any Borel set E ∈ Cn:

μn(E) :=
1
πn

∫

Cn
χE(z)e−∑

n
k=1 |zk |2dz1dz1⊗·· ·⊗dzndzn ,

H(Cn) is the space of holomorphic maps in n variables on Cn and the integral is com-
puted in the product of measures μ on each copy of C. �
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3.3 Hermitian adjoints and applications

We examine here one of the most important notions of the theory of operators on
a Hilbert space descending from Riesz’s Theorem 3.16: (Hermitian) adjoint operat-
ors. We have to stress that this notion can be extended to unbounded operators. In this
section we consider only the bounded case. The general situation will be dealt with
extensively in a subsequent chapter. It is also worth recalling that a (related) notion
of adjoint operator (or conjugate operator) was given in Definition 2.42, without the
need of Hilbert structures. In the sequel we will not use the latter non-Hilbert notion,
exception made for a few remarks.

3.3.1 Hermitian conjugation, or adjunction

Let (H1,( | )1), (H2,( | )2) be Hilbert spaces and T ∈B(H1,H2). For a given u ∈ H2,
consider:

H1 � v 	→ (u|T v)2 ∈ C . (3.33)

This map is certainly linear and bounded:

|(u|Tv)2| ≤ ||u||2 ||T v||2 ≤ ||u||2 ||T || ||v||1 .

Hence it belongs to H′
1. By Riesz’s Theorem 3.16 there is wT,u ∈ H1 such that

(u|T v)2 = (wT,u|v)1 , for any v ∈ H1 . (3.34)

Moreover, the map H2 � u 	→ wT,u ∈ H1 is linear. In fact:

(wT,αu+βu′ |v)1 = (αu+βu′|Tv)2 = α(u|T v)2 +β (u′|T v)2 = (αwT,u +βwT,u′ |v)1 ,

so, for any v ∈ H1,

0 = (wT,αu+βu′ −αwT,u−βwT,u′ |v)1 .

Choosing v := wT,αu+βu′ −αwT,u−βwT,u′ , we have wT,αu+βu′ −αwT,u−βwT,u′ = 0
hence

wT,αu+βu′ = αwT,u +βwT,u′

for any α ,β ∈ C, u,u′ ∈ H2. Therefore there exists a linear operator:

T ∗ : H2 � u 	→ wT,u ∈ H1 .

By construction the latter satisfies (u|T v)2 = (T ∗u|v)1 for any pair u∈H2, v∈H1 and
T ∗ is the unique linear operator with such property. If there were another such B ∈
L(H2,H1), then (T ∗u|v)1 = (Bu|v)1 for any v∈H1. Consequently ((T ∗−B)u|v)1 = 0
for any v∈H1. Choosing v := (T ∗−B)u it follows ||(T ∗−B)u||21 = 0, so T ∗u−Bu =
0. Since u ∈ H2 is arbitrary, T ∗ = B. Overall, we proved the following fact.

Proposition 3.36. Let (H1,( | )1), (H2,( | )2) be Hilbert spaces, and T ∈B(H1,H2).
There exists a unique linear operator T ∗ : H2 → H1 such that:

(u|T v)2 = (T ∗u|v)1 , for any pair u ∈ H2, v ∈ H1. (3.35)
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We are ready to define adjoint Hermitian operators. From now on we will drop
the adjective “Hermitian”, given that this textbook will never use non-Hermitian ad-
joint operators as we said at the beginning.

Definition 3.37. Let (H1,( | )1), (H2,( | )2) be Hilbert spaces and T ∈B(H1,H2).
The unique linear operator T ∗ ∈ L(H2,H1) fulfilling (3.35) is called the (Hermitian)
adjoint, or Hermitian conjugate to the operator T .

Recall that given a linear operator T : X→ Y between vector spaces, Ran(T ) :=
{T (x) | x ∈ X} and Ker(T ) := {x ∈ X | T (x) = 0} denote the subspaces of Y and X
called range (or image) and kernel (or null space) of T .

The operation of Hermitian conjugation enjoys the following elementary proper-
ties.

Proposition 3.38. Let (H1,( | )1), (H2,( | )2) be Hilbert spaces and T ∈B(H1,H2).
Then:

(a) T ∗ ∈B(H2,H1), and more precisely:

||T ∗|| = ||T || , (3.36)

||T ∗T || = ||T ||2 = ||T T ∗|| . (3.37)

(b) Hermitian conjugation is involutive:

(T ∗)∗ = T .

(c) If S ∈B(H1,H2) and α ,β ∈ C:

(αT +βS)∗ = αT ∗+βS∗ , (3.38)

and if S ∈B(H,H1), with H Hilbert space:

(T S)∗ = S∗T ∗ . (3.39)

(d) We have:

Ker(T ) = [Ran(T ∗)]⊥ , Ker(T ∗) = [Ran(T )]⊥ . (3.40)

(e) T is bijective if and only if T ∗ is bijective, in which case (T ∗)−1 = (T−1)∗.

Proof. From now on we will write || || to denote both || ||1 and || ||2, and similarly
for inner products. Which norm or inner product will be clear from the context.
(a) For any pair u ∈ H2, x ∈ H1 we have |(T ∗u|x)| = |(u|Tx)| ≤ ||u|| ||T || ||x||. By
choosing x := T ∗u we have in particular ||T ∗u||2 ≤ ||T || ||u|| ||T ∗u||, so ||T ∗u|| ≤
||T || ||u||. Hence T ∗ is bounded and ||T ∗|| ≤ ||T ||. Therefore it makes sense to define
(T ∗)∗, so ||(T ∗)∗|| ≤ ||T ∗||. This inequality becomes ||T || ≤ ||T ∗|| by (b) (whose
proof only uses the boundedness of T ∗). As ||T ∗|| ≤ ||T || and ||T || ≤ ||T ∗||, equation
(3.36) follows. Let us pass to (3.37). It suffices to prove the first identity, since the
second descends from the first one and (3.36), by (b) (which does not depend on (a)).
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By Theorem 2.41(b), case (i), whose conclusion holds for S ∈B(Y,X), T ∈B(Z,Y)
with X,Y,Z normed, we have ||T ∗T || ≤ ||T ∗|| ||T ||= ||T ||2. At the same time:

||T ||2 = ( sup
||x||≤1

||T x||)2 = sup
||x||≤1

||T x||2 = sup
||x||≤1

(T x|T x) .

By definition of adjoint and by Cauchy-Schwarz (on the last term) we obtain:

||T ||2 = sup
||x||≤1

(Tx|T x) = sup
||x||≤1

|(T ∗T x|x)| ≤ sup
||x||≤1

||T ∗Tx||= ||T ∗T || .

Therefore ||T ∗T || ≤ ||T ||2 and ||T ||2 ≤ ||T ∗T ||, so ||T ∗T ||= ||T ||2.
(b) This follows immediately from the uniqueness of the adjoint operator. By known
properties of the inner product and the definition of adjoint to T , in fact, we have:

(v|T ∗u) = (T ∗u|v) = (u|T v) = (T v|u) .

(c) If u ∈ H2, v ∈ H1 then

(u|(αT +βS)v) = α(u|Tv)+β (u|Sv) = α(T ∗u|v)+β (S∗u|v) = ((αT ∗+βS∗)u|v) .

The adjoint’s uniqueness gives (3.38). If v ∈ H, u ∈ H2,

(u|(TS)v) = (T ∗u|Sv) = ((S∗T ∗)u|v) .

By uniqueness (3.39) holds.
(d) It is enough to prove the first identity, as the second one is a consequence of it and
of part (b). Since (T ∗u|v) = (u|T v), if v ∈ Ker(T ) then (T ∗u|v) = 0 for any u ∈ H2,
so v ∈ [Ran(T ∗)]⊥. Conversely, still for (T ∗u|v) = (u|T v), if v ∈ [Ran(T ∗)]⊥ then
(u|T v) = 0 for any u ∈ H2. If we choose u := T v then Tv = 0 and so v ∈ Ker(T ).
(e) If T is bijective T−1 is bounded by Banach’s inverse operator theorem. Therefore
(T−1)∗ exists. We have: T−1T = T T−1 = I. Let us compute the adjoint of both sides,
using the second property of (c) and remembering I∗ = I: T ∗(T−1)∗ = (T−1)∗T ∗ = I.
These are equivalent to saying T ∗ is bijective and (T ∗)−1 = (T−1)∗. Eventually, if T ∗
is bijective, then also (T ∗)∗ = T is bijective, for what we have just proved, by (b). �

Remarks 3.39. The relationship between Hermitian adjoints and conjugate operat-
ors seen in Definition 2.42 arises as follows. Start with T ∈B(H1,H2) and compute
the conjugate T ′ ∈B(H′

2,H
′
1) and the adjoint T ∗ ∈B(H2,H1). Then:

(T ∗y f |x)1 = (y f |Tx)2 = (T ′ f )(x) for any f ∈ H′
2, x ∈ H1,

where f ∈ H′
2, and y f ∈ H2 is the element in H2 representing f under Riesz’s The-

orem 3.16. Because x ∈ H1 is arbitrary, we may write:

T ′ f = (T ∗y f | )1 for any f ∈ H′
2. (3.41)

Given that the Riesz map H′
2 � f 	→ y f ∈ H2 is bijective, the above equation determ-

ines T ′ completely whenever T ∗ is given, and conversely. �
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3.3.2 ∗-algebras and C∗-algebras

The operation of Hermitian conjugation is an excuse for introducing one of the most
useful mathematical concepts in advanced formulations of QM: we are talking about
C∗-algebras (also known as B∗-algebras). We shall return to this notion in Chapter 8
when discussing the spectral decomposition theorem.

Definition 3.40. Let A be a (commutative, Banach) algebra (with unit, normed by
|| ||) over the field C. A map ∗ : A→ A such that:

I1. (antilinearity) (αx+βy)∗ = αx∗+βy∗ for any x,y ∈ A, α ,β ∈ C;
I2. (involutivity) (x∗)∗ = x for any x ∈ A;
I3. (xy)∗ = y∗x∗ for any x,y ∈ A,

is called involution and the structure (A,∗ ) is a ∗-algebra (respectively commutat-
ive, Banach, with unit, normed). A Banach ∗-algebra (with unit) is a C∗-algebra (with
unit) if, further:

||x∗x||= ||x||2 . (3.42)

A homomorphism of ∗-algebras f : A1 → A2 is a ∗-homomorphism if it preserves
the involution: f (x∗1) = f (x)∗2 for any x ∈ A1 (∗1 is the involution of A1 and ∗2 the
involution in A2), and a ∗-homomorphism is a ∗-isomorphism if it is additionally
bijective. An element x in a ∗-algebra A (with unit I in cases (iii), (iv) below) is said:

(i) normal if xx∗ = x∗x;
(ii) Hermitian or self-adjoint if x∗ = x;
(iii) isometric if x∗x = I;
(iv) unitary if x∗x = xx∗ = I.

A ∗-subalgebra (C∗-subalgebra) of a ∗-algebra (C∗-algebra) A is the natural ob-
ject: a subalgebra that is a ∗-algebra (C∗-algebra) for the restricted involution (and
for the restricted Banach structure in case of a C∗-subalgebra). If the ∗-algebra (C∗-
algebra) has a unit, any ∗-subalgebra (C∗-subalgebra) with unit is required to have
the same unit of the ∗-algebra.

Remark 3.41. (1) If A is a ∗-algebra (with unit), and {Ai}i∈I is a collection of ∗-
subalgebras (with unit), it is easy to see

⋂
i∈iAi is a ∗-subalgebra (with unit) of A.

If we add the topological structure and {Ai}i∈I are C∗-subalgebras (with unit) of the
C∗-algebra (with unit) A, then

⋂
i∈iAi is a C∗-subalgebra (with unit) of A. The only

not completely obvious fact is the completeness of
⋂

i∈iAi, but this follows directly
from the fact it is closed, hence complete, being intersection of closed (complete)
sets Ai.
(2) If S⊂ A is a subset in A ∗-algebra (with unit), the ∗-algebra (with unit) generated
by S is the intersection of all ∗-subalgebras (with unit) in A that contain S. The same
holds for C∗-algebras (with unit), mutatis mutandis. �

Before we return to B(H) (and show it is a C∗-algebra), let us see a few general
features of ∗-algebras that descend from the definition.
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Proposition 3.42. Let A be a ∗-algebra with involution ∗.
(a) If (A, || ||) is a C∗-algebra and x ∈ A is normal, then for any m = 1,2, . . .:

||xm||= ||x||m .

(b) If (A, || ||) is a C∗-algebra and x ∈ A,

||x∗||= ||x|| .

(c) If A has unit I, then I∗ = I. Moreover, x ∈ A has an inverse if and only if x∗ has
an inverse, in which case (x−1)∗ = (x∗)−1.

Proof. (a) If ||x||= 0 the claim is trivial, so assume x � 0. A repeated use of (3.42),
I2, I3 and the fact that xx∗ = x∗x gives:

||x2||2 = ||(x2)∗x2||= ||(x∗)2x2||= ||(x∗x)∗(x∗x)||= ||x∗x||2 = (||x||2)2

whence ||x2|| = ||x||2 by norm positivity. Iterating we obtain ||x2k || = ||x||2k
for any

natural number k. If m = 3,4, . . . there exist two natural numbers n,k with m+n = 2k,
thus:

||x||m||x||n = ||x||n+m = ||xn+m|| ≤ ||xm|| ||xn|| ≤ ||xm|| ||x||n ≤ ||x||m||x||n .

But then all inequalities are equalities, so in particular:

||xm|| ||x||n = ||x||m||x||n,

dividing which by ||x||n (non-zero since x � 0 and || · || is a norm) proves the claim.
(b) Equation (3.42) implies ||x||2 = ||xx∗|| ≤ ||x|| ||x∗|| so ||x|| ≤ ||x∗||. Similarly
||x∗|| ≤ ||(x∗)∗||, and then (x∗)∗ = x finishes this part.
(c) II∗ = I∗ by definition of unit; on the other hand II∗ = (I∗)∗I∗ = (I∗I)∗. From these
two descends I∗ = (I∗I)∗ = (I∗)∗ = I. The other statement follows from this, I2 and
uniqueness of the inverse. �

Remarks 3.43. The structure of a C∗-algebra is remarkable in that its topological
and algebraic properties are deeply intertwined. We will prove later (Corollary 8.18)
that if φ : A→ B is a ∗-homomorphism between C∗-algebras with unit, then it is
continuous because ||φ(a)||B ≤ ||a||A for any a ∈ A. Moreover, φ is isometric, i.e.
||φ(a)||B = ||a||A for any a ∈ A, if and only if it is injective (Theorem 8.22). �

Examples 3.44. (1) The Banach algebras of complex-valued functions seen in Ex-
amples 2.26(2), (3), (4), (8) and (9) are all instances of commutative C∗-algebras
whose involution is the complex conjugation of functions.

(2) By virtue of (a), (b), (c) in Proposition 3.38 we have this result.

Theorem 3.45. If H is Hilbert space,B(H) is a C∗-algebra with unit if the involution
is defined as the Hermitian conjugation.



124 3 Hilbert spaces and bounded operators

(3) An example of C∗-algebra, absolutely fundamental for the applications in
quantum field theory (but not only) is the von Neumann algebra. Before we intro-
duce it, let us define first the commutant of an operator algebra and state an important
preliminary theorem. IfM⊂B(H) is a subset in the algebra of bounded operators on
the complex Hilbert space B(H), the commutant ofM is:

M′ := {T ∈B(H) | TA−AT = 0 for any A ∈M} .

If M is closed under Hermitian conjugation (i.e. A∗ ∈M if A ∈M) the commutant
M′ is surely a ∗-algebra with unit. In general:M′

1 ⊂M′
2 ifM2 ⊂M1 andM⊂ (M′)′,

which imply M′ = ((M′)′)′. Hence we cannot reach beyond the second commutant
by iteration.

The continuity of the product of operators says that the commutantM′ is closed in
the uniform topology, so ifM is closed under Hermitian conjugation, its commutant
M′ is a C∗-algebra (C∗-subalgebra) in B(H).
M′ has other pivotal topological properties in this general setup. It is easy to prove

M′ is both strongly and weakly closed. This holds, despite the product of operators
is not continuous, because separate continuity in each variable is sufficient.

In the sequel we shall adopt the standard convention used for von Neumann al-
gebras and write M′′ in the stead of (M′)′ et c. The next crucial result is due to von
Neumann [BrRo02]. In the following we will make use of some notions presented in
the Section 3.4.

Theorem 3.46 (Double commutant theorem). If H is a complex Hilbert space and
A a ∗-subalgebra in B(H) (in particular A contains the identity operator), the fol-
lowing statements are equivalent.

(a) A= A′′.
(b) A is weakly closed and I ∈ A.
(c) A is strongly closed and I ∈ A.

Proof. (a) implies (b) because the commutant S′ of a set S ⊂ B(H) is closed in the
weak topology, as we can see directly: if An ∈ S′ for any n ∈ N and An → A ∈B(H)
weakly, then A∗n → A∗ weakly (this is immediate), so for B ∈ S:

0 = (ψ |(AnB−BAn)φ) = (Bφ |A∗nψ)− (B∗ψ |Anφ)→ (Aψ |Bφ)− (B∗ψ |Aφ)

= (ψ |(AB−BA)φ) ,

hence (ψ |(AB−BA)φ) = 0. Beingψ , φ arbitrary in H, A commutes with B, and A∈ S′
because B ∈ S is generic.
(b) implies (c) because strong convergence implies weak convergence, and therefore
a limit point in the strong topology remains so in the weak one.
To finish we have to show (c) implies (a). Since S⊂ S′′ for any set and the commutant
is strongly closed, we only need to prove that (c) forces A′′ to be in the strong closure
of A. This proof relies on facts that will be introduced in Section 3.4 which are inde-
pendent of the present theorem. Now we prove that, under (c), X ∈A′′ implies X ∈A.
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For this, for ψ ∈H define the closed subspace: Hψ := {Aψ |A ∈ A}, and by P denote
the orthogonal projector onto Hψ . By construction, if φ ∈Hψ then PBφ = Bφ for any
B∈A. That is to say PBP = BP for B∈A. Taking the adjoint gives PB∗ = B∗P, since
P = P∗ by definition of orthogonal projector. Since B∗ = A for some A∈A, and since
B varies in the whole A as A ∈ A, we conclude P ∈ A′. Therefore for any X ∈ A′′ we
have PX = XP. But I ∈ A, so ψ ∈ Hψ and Xψ ∈ Hψ (since PXψ = XPψ = Xψ).
By definition of Hψ , Xψ ∈ Hψ implies that for any ε > 0 there exists A ∈ A with
||Aψ−Xψ || < ε . Consider then a finite collection of vectors ψ1,ψ2, . . . ,ψn and the
n-fold orthogonal sum Hn := H⊕ ·· · ⊕H. On this Hilbert space take the algebra
An ⊂ B(Hn) of operators of the form A⊕ ·· · ⊕ A : (v1, . . . ,vn) 	→ (Av1, . . . ,Avn),
with νk ∈ H for k = 1, . . . ,n, A ∈ A. It is immediate that An is a ∗-subalgebra
(with unit) in B(Hn), and strongly closed (A is, by assumption). If X ∈ A′′, then
X⊕·· ·⊕X ∈A′′n . With the same argument as before, for any ε > 0 there exists A∈A,
||Aψk−Xψk||< ε , for k = 1, . . . ,n. By definition of strong topology, this implies that
if X ∈A′′ then X belongs to the strong closure ofA. By (c), the same implies X ∈A. �

At this juncture we are ready to define von Neumann algebras.

Definition 3.47. A von Neumann algebra in B(H) is a ∗-subalgebra of B(H), with
unit, that satisfies either equivalent property appearing in von Neumann’s The-
orem 3.46.

In particular M′ is a von Neumann algebra provided M is a ∗-closed subset of
B(H), because (M′)′′ =M′ as we saw above. Note how, by construction, a von Neu-
mann algebra in B(H) is a C∗-algebra with unit, or better, a C∗-subalgebra with unit
of B(H).

It is not hard to see that the intersection of two von Neumann algebras is a von
Neumann algebra. IfM⊂B(H) is closed under Hermitian conjugation,M′′ turns out
to be the smallest (set-theoretically) von Neumann algebra containingM as a subset
[BrRo02]. ThusM′′ is called the von Neumann algebra generated byM.

A von Neumann algebra R is a factor when its centre, the subset R∩R′ of ele-
ments commuting with the whole algebra, is trivial: R∩R′ = {cI}c∈C. The classi-
fication of factors, started by von Neumann and Murray, is one of the key chapters
in the theory of operator algebras, and has enourmous consequences in the algebraic
theory of quantum fields.

(4) The algebra H of quaternions is a 4-dimensional real vector space with a priv-
ileged basis {1, i, j,k}. H is equipped with a product that makes it an R-algebra, and
has a unit, given by the basis element 1. The product is determined, keeping in mind
Definition 2.23, by the relations ii = j j = kk = −1, i j = − ji = k, jk = −k j = i,
ki =−ik = j.

As the field R identifies naturally with the Abelian subalgebra of H of qua-
ternions of the form a1, a ∈ R, H can be viewed as a real normed algebra with
unit: it is enough to think real numbers as quaternions, and define the product of
a real scalar by a quaternion using the product in H. The norm is the usual Euclidean
norm for the standard basis of H: ||a1 + bi + c j + dk|| :=

√
a2 +b2 + c2 +d2. It is

easy to check that H becomes thus a real Banach algebra with unit. Although the
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field is R, it is possible to define an involution on H via quaternionic conjugation:
(a1 + bi + c j + dk)∗ = a1−bi− c j−dk, a,b,c,d ∈ R. Then the usual properties of
involutions hold (the field is real, so the involution is R-linear) also concerning the
norm, and also the property typical of C∗-algebras: ||a∗a|| = ||a||2. The relationship
between product and norm is precisely ||ab|| = ||a|| ||b||, a,b ∈ H, reminiscent of C
with modulus and R with absolute value. A further property, valid for R and C as
well, is that the quaternion algebra is a division algebra, i.e. an algebra with unit
where any non-zero element is invertible.

A concrete representation of H is given by the real subalgebra of M(2,C) (2×2
complex matrices) spanned over R by the identity I and the three Pauli matrices
−iσ1,−iσ2,−iσ3: these correspond to the quaternionic units 1 and i, j,k (see Remark
7.26(3)). �

To conclude the section let us see a very relevant definition in advanced formal-
isations of, for example, quantum field theories.

Definition 3.48. Given a ∗-algebra A (not necessarily with unit nor C∗) and a Hilbert
space H, a ∗-homomorphism π : A→ B(H) (preserving the unit if present) is called
a representation of A on H.

(a) π is faithful if one-to-one.
(b) A subspace M⊂ H is invariant under π if π(a)(M)⊂M for any a ∈ A.
(c) π is irreducible if there are no π-invariant closed subspaces other than {0} and
H itself.
(d) If π ′ :A→B(H′) is another representation ofA on H′, π and π ′ are said unitarily
equivalent:

π � π ′

if there exists a surjective isometry U : H→ H′ such that:

Uπ(a)U−1 = π ′(a) for any a ∈ A.

(e) A vector ψ ∈ H is cyclic for π if {π(a)ψ |a ∈ A}= H.

Remark 3.49. (1) One can consider representations of ∗-algebras in terms of unboun-
ded operators and operators defined on a common invariant domain of the Hilbert
space.
(2) In case A is a C∗-algebra with unit, every representation is automatically continu-
ous with respect to the norm of A on the domain and the operator norm on the codo-
main, as ||π(a)|| ≤ ||a|| for any a∈ A. Then π is faithful iff isometric: ||π(a)||= ||a||
for any a ∈ A. All this will be proved in Theorem 8.22. �

Here is an elementary yet important fact.

Proposition 3.50. If π : A→B(H) is an irreducible representation of the ∗-algebra
A on H, then every non-zero vector in H is cyclic for π , or π is the zero representation
(that maps all of A to the null operator) on H = C.
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Proof. Suppose π is not the trivial representation. Since π is irreducible, if ψ ∈
H \ {0} the subspace π(A)ψ must coincide with {0}; but then the closed subspace
generated by ψ would be invariant, contradicting the assumption; thus π(A)ψ is
dense in H, i.e. ψ is cyclic. �

3.3.3 Normal, self-adjoint, isometric, unitary and positive operators

Returning to the C∗-algebra B(H) (or more generally to B(H,H1)), we can recall the
most important types of operators we will encounter in subsequent chapters.

Definition 3.51. Let (H,( |)), (H1,( |)1) be Hilbert spaces and IH, IH1 their respective
identity operators.

(a) T ∈B(H) is said normal if T T ∗ = T ∗T .
(b) T ∈B(H) is self-adjoint if T = T ∗.
(c) T ∈ L(H,H1) is isometric if bounded and T ∗T = IH; equivalently, T ∈ L(H,H1)
is isometric if (T x|Ty)1 = (x|y) for any pair x,y ∈ H.
(d) T ∈ L(H,H1) is unitary if bounded and T ∗T = IH, T T ∗ = IH1; equivalently,
T ∈ L(H,H1) is unitary if isometric and onto, i.e. an isomorphism of Hilbert spaces.
(e) T ∈ L(H) is positive, written T ≥ 0, if (u|Tu)≥ 0 for any u ∈ H.
(f) If U ∈ L(H), we write T ≥U in case T −U ≥ 0.

Remark 3.52. (1) Let us comment on the equivalence in (c): if T ∈ B(H,H1) and
T ∗T = IH, then (T x|Ty)1 = (x|y) for any pair x,y ∈ H, since (x|y) = (x|T ∗Ty) =
(T x|Ty)1. On the other hand, if T ∈ L(H,H1) and (T x|Ty)1 = (x|y) for any x,y ∈ H,
then T is bounded (set y = x), so T ∗ is well defined; eventually, T ∗T = IH because
(x|T ∗Ty) = (T x|Ty)1 = (x|y) for any pair x,y∈H, so in particular (x|(T ∗T − I)y) = 0
with x = (T ∗T − I)y.

As for the equivalence in (d), notice that any isometric operator T is obviously
injective, for Tu = 0 implies ||u||= 0 and hence u = 0. Thus surjectivity is equival-
ent to the existence of a right inverse that coincides with the left inverse (the latter
exists by injectivity, and equals T ∗). From this it follows immediately that T ∗T = IH

and T T ∗ = IH1 are together equivalent to saying T ∈ L(H,H1) is isometric (hence
bounded) and surjective. Our definition of a unitary operator agrees with Defini-
tion 3.10.
(2) There are isometric operators in B(H) that are not unitary (this cannot happen if
H has finite dimension). For instance, the operator on �2(N):

A : (z0,z1,z2, . . .) 	→ (0,z0,z1, , . . .) ,

for any (z0,z1,z2, . . .) ∈ �2(N).
(3) Unitary and self-adjoint operators inB(H) are normal, but not conversely in gen-
eral. �

To close the section we consider one Hilbert space and discuss properties of nor-
mal, self-adjoint, unitary and positive operators. First, though, a definition that should
be known from elementary courses.
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Definition 3.53. Let X be a vector space over K= C, or R, and take T ∈ L(X); λ ∈
K is an eigenvalue of T if:

Tu = λu (3.43)

for some u ∈ X \ {0} called an eigenvector of T relative (or associated) to λ . The
subspace of X made of the null vector and all eigenvectors relative to a given eigen-
value λ is called the eigenspace of T with eigenvalue λ (of, associated to, relative
to λ ).

Now here is the proposition summarising the aforementioned properties.

Proposition 3.54. Let (H,( | )) be a Hilbert space.
(a) If T ∈B(H) is self-adjoint:

||T ||= sup{|(x|T x)| | x ∈ H , ||x||= 1} . (3.44)

More generally, if T ∈L(H) satifies (x|T x) = (T x|x) for any x∈H and the right-hand
side of (3.44) is finite, then T is bounded.
(b) If T ∈B(H) is normal (in particular self-adjoint or unitary):

(i) λ ∈ C is an eigenvalue of T with eigenvector u iff λ is an eigenvalue for T ∗
with the same eigenvector u;

(ii) eigenspaces of T relative to distinct eigenvalues are orthogonal;
(iii) the identity:

||T x||= ||T ∗x|| for any x ∈ H (3.45)

holds, so Ker(T ) = Ker(T ∗) and Ran(T ) = Ran(T ∗).

(c) Let T ∈ L(H):

(i) if T is positive, its possible eigenvalues are real and non-negative;
(ii) if T is bounded and self-adjoint, its possible eigenvalues are real;
(iii) if T is isometric (in particular unitary), its possible eigenvalues are complex

numbers of norm one.

(d) If T ∈ L(H) satisfies (y|T x) = (Ty|x) for any pair x,y ∈ H, T is bounded and
self-adjoint.
(e) If T ∈B(H) satisfies (x|T x) = (Tx|x) for any x ∈ H, T is self-adjoint.
(f) If T ∈B(H) is positive, it is self-adjoint.
(g) The relation ≥ is a partial order on L(H) (hence on B(H)).

Proof. (a) Set Q := sup{|(x|T x)| | x ∈ H , ||x||= 1}. Since we take ||x||= 1

|(x|T x)| ≤ ||T x||||x|| ≤ ||T x|| ≤ ||T || ,

hence Q≤ ||T ||. To conclude it suffices to show ||T || ≤ Q. The immediate identity

4(x|Ty) = (x+ y|T (x+ y))− (x− y|T (x− y))− i(x+ iy|T (x+ iy))
+ i(x− iy|T (x− iy)) ,
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together with the fact that (z|T z) = (T z|z) = (z|T z), allow to rephrase 4Re(x|Ty) =
2(x|Ty)+2(x|Ty) as:

4Re(x|Ty) = (x+ y|T (x+ y))− (x− y|T (x− y))≤ Q||x+ y||2 +Q||x− y||2
= 2Q||x||2 +2Q||y||2 .

We proved:
4Re(x|Ty)≤ 2Q||x||2 +2Q||y||2 .

Let y ∈ H, ||y|| = 1. If Ty = 0, it is clear that ||Ty|| ≤ Q; otherwise, define x :=
Ty/||Ty|| and we obtain the above inequality:

4||Ty||= 4Re(x|Ty)≤ 2Q(||x||2 + ||y||2) = 2Q(1+1) = 4Q,

from which ||Ty|| ≤ Q once again. Overall, ||Ty|| ≤ Q if ||y||= 1, so

||T ||= sup{||Ty|| | y ∈ H , ||y||= 1} ≤ Q .

The more general statement follows from the second part of the above proof
(||T || ≤ Q).
(b) (iii) The claim follows from the observation that TT ∗ = T ∗T implies ||T x||2 =
(T x|T x) = (x|T ∗T x) = (x|T T ∗x) = ||T ∗x||2. The remaining identities are now obvi-
ous, in the light of Proposition 3.38(d). Let us prove (i). T −λ I is normal with adjoint
T ∗ −λ I, so (iii) gives

||Tu−λu||= ||T ∗u−λu||
and the claim is proved. (ii) Let u be an eigenvector of T with eigenvalue λ , v an
eigenvector of T with eigenvalue μ . By (i), λ (v|u) = (v|Tu) = (T ∗v|u) = (μv|u) =
μ(v|u), so (λ −μ)(v|u) = 0. But λ � μ , so (v|u) = 0.
(c) If T ≥ 0 and Tu = λu with u� 0, then 0≤ (u|Tu) = λ (u|u); since (u|u) > 0, λ ≥ 0.
Let now T = T ∗ and Tu = λu with u � 0: then λ (u|u) = (u|Tu) = (Tu|u) = λ (u|u).
From (u|u) � 0 we have λ = λ , i.e. λ ∈ R. If, instead, T is isometric: (u|u) =
(Tu|Tu) = |λ |2(u|u), so |λ |= 1 as u � 0.
(d) It is enough to prove T is bounded. The adjoint’s uniqueness implies that T = T ∗
because (y|T x) = (Ty|x) for any pair x,y ∈ H. By the closed graph Theorem 2.95, to
prove T bounded we can just show it is closed. Let then {xn}n∈N ⊂ H be a sequence
converging to x and suppose the vectors T xn form a converging sequence: the claim
is Txn → T x. Given y ∈ H, with our assumptions we have

(y|T xn) = (Ty|xn)→ (Ty|x) = (y|T x) .

The inner product is continuous, and by hypothesis limn→+∞T xn exists, so
(

y

∣
∣
∣
∣ lim
n→+∞

(T x−T xn)
)

= 0 .

Given that y is arbitrary, and choosing precisely y := limn→+∞ (T x−T xn) we obtain
limn→+∞ (T x−T xn) = 0.
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(e)–(f) We have ((T ∗ −T )x|x) = 0 for any x ∈ H. By Exercise 3.18 T ∗ −T = 0 i.e.
T = T ∗. If T ∈ B(H) is positive, then (x|T x) is real and coincides with its complex
conjugate (T x|x) (by the properties of the inner product), so we fall back into the
previous case.
(g) We have to prove three things. (i) T ≥ T : this is obvious because it means ((T −
T )x|x) ≥ 0 for any x ∈ H. (ii) if T ≥U and U ≥ S then T ≥ S: this is immediate by
noting T −S = (T−U)+(U−S), so ((T−S)x|x) = ((T−U)x|x)+((U−S)x|x)≥ 0
for any x ∈H, since T ≥U and U ≥ S. (iii) if T ≥U and U ≥ T then T = U . For this
last one notice (x|(T −U)x) = 0 for any x ∈ H. Exercise 3.18 forces T −U = 0, so
T = U . �

Remarks 3.55. Observe that on real Hilbert spaces the relation ≥ is not a partial or-
der, because A ≥ 0 and 0 ≥ A do not imply A = 0. For example consider a skew-
symmetric matrix A acting on Rn (seen as real vector space with ordinary inner
product). Then A ≥ 0 and also 0 ≥ A, since (x|Ax) = 0 for any x ∈ Rn, but A can
be very different from the null matrix. �

3.4 Orthogonal projectors and partial isometries

The last elementary notion we would like to introduce are orthogonal projectors and,
related to this, partial isometries. Th former will play a role to construct the formalism
of QM.

Referring to Definition 2.96 and the subsequent Propositions 4.5, 5.17, we provide
this definition.

Definition 3.56. If (H,( | )) is a Hilbert space, a projector P ∈B(H) is called ortho-
gonal projector if P∗ = P.

Remarks 3.57. With that in place, orthogonal projectors are precisely those bounded
operators from H to H that are defined by P = PP (P is idempotent) and P = P∗ (P
is self-adjoint). An immediate consequence is the positivity of orthogonal projectors:
for any x ∈ H

(u|Pu) = (u|PPu) = (P∗u|Pu) = (Pu|Pu) = ||Pu||2 ≥ 0 . �

The next couple of propositions characterise orthogonal projectors.

Proposition 3.58. If P ∈B(H) is an orthogonal projector (H Hilbert) onto the space
M the following hold.

(a) Q := I−P is an orthogonal projector.
(b) Q(H) = M⊥, so the direct sum decomposition associated to P and Q as of Pro-
position 2.97(b) is given by M and its orthogonal M⊥:

H = M⊕M⊥ .
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(c) For any x ∈ H, ||x−P(x)||= min{||x− y|| | y ∈M}.
(d) If N is a basis on M, then:

P = s-∑
u∈N

u (u| ) ,

where the “s-” denotes a series computed in the strong topology in case the sum is
infinite.
(e) I ≥ P; moreover, ||P||= 1 if P is not the null operator (the projector onto {0}).

Proof. (a) We know already that Q := I−P is a projector (Proposition 2.4). By part
(c) in Proposition 3.38, since I∗ = I, we have Q∗ = Q, so Q is an orthogonal projector.
(b) By Proposition 2.97(b) it is enough to show Q(H) = M⊥. For that notice that if
x ∈ Q(H) and y ∈ M, then (x|y) = (Qx|y) = (x|Qy) = (x|y−Py) = (x|y− y) = 0, so
Q(H) ⊂ M⊥. We claim M⊥ ⊂ Q(H), hence M⊥ = Q(H). By Proposition 2.97, we
have a direct sum decomposition:

H = M⊕Q(H) .

At the same time Theorem 3.13(d) gives the (orthogonal) decomposition:

H = M⊕M⊥ .

If y ∈M⊥, the first decomposition induces y = yM + z with yM ∈M and z ∈Q(H). As
we saw, Q(H)⊂M⊥, so the uniqueness of the above splitting implies y = yM +z must
also be the decomposition of y induced by H = M⊕M⊥. Thus yM ∈M and z ∈M⊥.
Then by assumption yM = 0, and y = z ∈ Q(H). Since y ∈ M⊥ is arbitrary, we have
proved M⊥ ⊂ Q(H).
(c) The statement is a straighforward consequence of Theorem 3.13(d) when K := M,
because the decomposition is unique.
(d) We may extend N to a basis of H by adding a basis N ′ of M⊥ (in fact N∪N ′ is an
orthonormal system by construction; moreover, part (b) gives H = M⊕M⊥, so any
x ∈ H orthogonal to both N and N ′ must be null. Then, by definition, N ∪N ′ is basis
for H.) We can immediately verfy that:

R = ∑
u∈N

u (u| )

and
R′ = ∑

u∈N′
u (u| )

(if the sums are infinite, we use the strong topology) are bounded operators, and they
satisfy RR = R, R(H) = M, R′R′ = R′, R′(H) = M⊥ and also R′R = RR′ = 0 and
R+R′ = I. By Proposition 2.97 R and R′ are projectors associated to the decomposi-
tion M⊕M⊥. By uniqueness of the decomposition of any vector we must have R = P
(and R′ = Q).
(e) Q = I−P is an orthogonal projector such that:

0≤ (Qx|Qx) = (x|QQx) = (x|Qx) = (x|Ix)− (x|Px) ,
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for any x ∈ H. This means I ≥ P. What we have just seen also implies

||Px||2 = (Px|Px) = (x|PPx) = (x|Px)≤ (x|x) = ||x||2 .

Therefore taking the supremum over all x with ||x|| = 1 yields ||P|| ≤ 1. If P � 0,
there will be a unit x ∈ H so that Px = x, hence ||Px||= 1. If so, ||P||= 1. �

Proposition 3.59. Let H be a Hilbert space and M⊂ H a closed subspace. The pro-
jectors P and Q that yield the orthogonal decomposition H = M⊕M⊥, as in Propos-
ition 2.98 (with N := M⊥), and project onto M and M⊥ respectively, are orthogonal.

Proof. It is enough to prove P = P∗. That Q = Q∗ follows from Q = I−P.
If x∈H we have a unique decomposition x = y+z, y = P(x)∈M and z = Q(x)∈M⊥.
Let x′ = y′+z′ be the analogous splitting of x′ ∈H. Then (x′|Px) = (y′+z′|y) = (y′|y).
We also have (Px′|x) = (y′|y + z) = (y′|y), hence (x′|Px) = (Px′|x) i.e. ((P∗ −
P)x′|x) = 0 for any x,x′ ∈ H. By choosing x = (P∗ −P)x′ we obtain Px′ = P∗x′ for
any x′, so P = P∗. �

Our last result characterises commuting orthogonal projetions.

Proposition 3.60. Two orthogonal projectors P and P′ on a Hilbert space H com-
mute,

PP′ = P′P,

if and only if there is a basis N of H such that:

P = s- ∑
u∈NP

u (u| ) and, simultaneously, P′ = s- ∑
u∈NP′

u (u| ) ,

for some pair of subsets NP,NP′ ⊂ N.

Proof. If P = s-∑u∈NP
u(u| ) and P′ = s-∑u∈NP′ u(u| ) for subsets NP,NP′ ⊂N, where

N is a basis in H, then trivially PP′ = P′P, as a direct computation, involving the or-
thogonality relations of u ∈ N, shows. Conversely, assume PP′ = P′P; if M := P(H),
it is not hard to see P′(M)⊂M and P′(M⊥)⊂M⊥. In addition P′�M and P′�M⊥ are or-
thogonal projectors in Hilbert spaces M and M⊥ respectively, plus P′ = P′�M ⊕P′�M⊥
corresponding to the orthogonal splitting H = M⊕M⊥. By Proposition 3.58(d) (as
any orthonormal system can be completed to a basis) we can fix a basis NM of M and
a basis NM⊥ of M⊥ such that, for suitable subsets N ′

M ⊂ NM , N ′
M⊥ ⊂ NM⊥ :

P′�M= s- ∑
u∈N′M

u(u| ) , P′�M⊥= s- ∑
v∈N′

M⊥

v(v| ) .

Therefore
P′ = P′�M ⊕P′�M⊥= s- ∑

w∈N′M∪N′
M⊥

w(w| ) .
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By construction, from the orthogonal decomposition H = M ⊕M⊥ we have that
NM ∪NM⊥ is a basis of H, and

P = s- ∑
w∈NM

w(w| ),

again from Proposition 3.58(d). The basis N := NM ∪NM⊥ of H satisfies the require-
ments once we set NP := NM and NP′ := N ′

M ∪N ′
M⊥ . �

We can pass to the useful notion of a partial isometry, a weaker version of iso-
metry seen earlier.

Definition 3.61. A bounded operator U : H→H, with H a Hilbert space, is a partial
isometry when:

||Ux||= ||x|| , for x ∈ [Ker(U)]⊥.

Then [Ker(U)]⊥ is called the initial space of U and Ran(U) the final space.

Any unitary operator U : H → H is a special partial isometry whose initial
and final spaces coincide with the entire Hilbert space H. Observe also that if
U : H → H is a partially isometric operator then H decomposes orthogonally into
Ker(U)⊕ [Ker(U)]⊥, and U restricts to an honest isometry on the second sum-
mand (with values in Ran(U)), while it is null on the first summand. This self-
evident fact can be made stronger by proving that Ran(U) is closed, hence show-
ing U�[Ker(U)]⊥ : [Ker(U)]⊥ → Ran(U) is indeed a unitary operator between Hilbert
spaces (closed subspaces in H). The second statement in the ensuing proposition
shows U∗ is a partial isometry if U is, and its initial and final spaces are those of
U , but swapped.

Proposition 3.62. Let U : H→H be a partial isometry on the Hilbert space H. Then:

(a) Ran(U) is closed.
(b) U∗ : H → H is a partial isometry with initial space Ran(U) and final space
[Ker(U)]⊥.

Proof. (a) Let y∈ Ran(U)\{0}. There is a sequence of vectors xn ∈ [Ker(U)]⊥ such
that Uxn → y as n → +∞. Since ||U(xn− xm)|| = ||xn− xm|| by definition of partial
isometry, the sequence xn is Cauchy and converges to some x ∈ H. By continuity
y = Ux, so y ∈ Ran(U). But y = 0 clearly belongs to Ran(U), so we have proved
Ran(U) contains all its limits points, and as such it is closed.
(b) Begin by observing Ker(U∗) = Ran(U) and Ran(U∗) = [Ker(U)]⊥ by Proposi-
tion 3.38, so if we use part (a) there remains only to prove U∗ is an isometry when
restricted to Ran(U). Notice preliminarly that if z,z′ ∈ [Ker(U)]⊥, U being a partial
isometry implies:

(Uz|Uz′) =
1
4

[||U(z+ z′)||2−||U(z− z′)||2− i||U(z+ iz′)||2 + i||U(z− iz′)||2)]

=
1
4

[||z+ z′||2−||z− z′||2− i||z+ iz′||2 + i||z− iz′||2)]= (z|z′) .
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From what we have seen, suppose y = Ux with x ∈ [Ker(U)]⊥. Then

||U∗y||2 = (U∗Ux|U∗Ux) = (Ux|U(U∗Ux)) = (x|U∗Ux) = (Ux|Ux) = ||y||2 .

In other terms U∗ is isometric on Ran(U), and it is so also on the closure, by continu-
ity. This proves (b). �

At last, we present a relationship between partial isometries and orthogonal pro-
jectors.

Proposition 3.63. Let U : H → H be a bounded linear operator on the Hilbert
space H.

(a) U is a partial isometry if and only if U∗U is an orthogonal projector. In such a
case UU∗ is an orthogonal projector as well.
(b) If U is a partial isometry, U∗U projects onto the initial space of U, and UU∗
projects onto the final space of U.

Proof. Suppose U is partially isometric, and let us show U∗U is an orthogonal pro-
jector. Since the latter is patently self-adjoint, it suffices to show it is idempotent.
Decompose H � x = x1 + x2 by x1 ∈ Ker(U) and x2 ∈ [Ker(U)]⊥. Then

(x|(U∗U)2x) = (Ux|U∗UUx) = (Ux2|U(U∗Ux2)) = (x2|U∗Ux2) = (Ux2|Ux2)

= (Ux|Ux) .

I.e., (x|((U∗U)2−U∗U)x) = 0 whichever x∈H. Choose x = y± iz and x = x±y, and
then (y|((U∗U)2−U∗U)z) = 0 for any y,z∈H; thereforeU∗U is idempotent, so an or-
thogonal projector. Conversely if U∗U is an orthogonal projector, let N be the closed
subspace onto which it projects. If U∗Ux = 0 then Ux ∈ Ker(U∗) = [Ran(U)]⊥. But
Ux ∈ Ran(U), hence Ux = 0. Therefore U∗Ux = 0 if and only if x ∈ Ker(U), so
N⊥ = Ker(U∗U) = Ker(U) and N = [Ker(U)]⊥. If additionally x ∈ [Ker(U)]⊥ = N,
then U∗Ux = x and ||Ux||2 = (U∗Ux|x) = ||x||2, proving U is a partial isometry.
Throughout we also proved U∗U projects on the initial space N = [Ker(U)]⊥. The
remaining part follows easily from Proposition 3.62(b): if U is a partial isometry, U∗
is partially isometric and so UU∗ = (U∗)∗U∗ is an orthogonal projector; from the
previous part it projects onto the closed subspace [Ker(U∗)]⊥ = Ran(U). �

3.5 Square roots of positive operators and polar decomposition
of bounded operators

This section is rather technical and contains notions useful in the theory of bounded
operators on a Hilbert space. The central result is the so-called polar decomposition
theorem for bounded operators that generalises the polar form of a complex num-
ber, whereby z = |z|ei arg z splits as product of the modulus times an exponential with
imaginary logarithm. In the analogy z corresponds to a bounded operator, |z| plays
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the role of a certain positive operator called the modulus of the operator, and ei arg z

is represented by a unitary operator when restricted to a subspace. The modulus of
an operator is useful to introduce a generalisation of “absolute convergence” for nu-
merical series, built using operators and bases. We shall use these series to define
Hilbert–Schmidt operators and operators of trace class, some of which represent
states in QM. Part of the ensuing proofs are taken from [Mar82] and [KaAk80].

Definition 3.64. Given A ∈B(H) with H a Hilbert space, B ∈B(H) is a square root
of A if B2 = A. If additionally B≥ 0, we call B a positive square root.

We will show in a moment that any bounded positive operator has one, and one
only, positive square root. For this we need the preliminary result below, about se-
quences and series of orthogonal projectors in the strong topology, which is on its
own a useful fact in spectral theory.

Proposition 3.65. Let H be a Hilbert space and {An}n∈N ⊂ B(H) a non-decreasing
(resp. non-increasing) sequence of self-adjoint operators. If {An} is bounded from
above (below) by K ∈B(H), there exists A ∈B(H) self-adjoint with A ≤ K (A≥ K)
and such that:

A = s- lim
n→+∞

An . (3.46)

Proof. We prove it in the non-decreasing case, for the other case falls back to this
situation if one considers the sequence K−An. Set Bn := An + ||A0||I. Then we have
these facts.

(i) The Bn form a non-decreasing sequence of positive operators. If ||x|| = 1 in
fact, (x|Anx) + ||A0|| ≥ (x|A0x) + ||A0||, but −||A0|| ≤ (x|A0x) ≤ ||A0|| by Propos-
ition 3.54(a). Therefore (x|Anx)+ ||A0|| ≥ 0 for any unit x. That is to say (y|Any)+
||A0||(y|y)≥ 0 for any y ∈ H, i.e. Bn = An + ||A0||I ≥ 0.
(ii) Bn ≤ K + ||A0||I =: K1, and K1 is positive (K cannot be).
(iii) (x|K1x) ≥ (x|Bnx)− (x|Bmx) ≥ 0 for any x ∈ H if n ≥ m. In fact, (x|K1x) ≥
(x|Bnx), and also −(x|Bmx)≤ 0 and (x|Bnx)− (x|Bmx)≥ 0.
Since any positive operator T defines a semi-inner product that satisfies Schwarz’s
inequality:

|(x|Ty)|2 ≤ (x|T x)(y|Ty) , (3.47)

we have, if n≥ m:

|(x|(Bn−Bm)y)|2 ≤ (x|(Bn−Bm)x)(y|(Bn−Bm)y)≤ (x|K1x)(y|K1y)

≤ ||K1||2||x||2||y||2 .

Hence
|(x|(Bn−Bm)y)|2 ≤ ||K1||2||x||2||y||2 .

If we set x = (Bn−Bm)y and take the supremum over unit y ∈ H, we find:

||Bn−Bm|| ≤ ||K1|| . (3.48)
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From (3.47), putting y = (Bn−Bm)x and T = Bn−Bm, we obtain

||(Bn−Bm)x||4 = ((Bn−Bm)x|(Bn−Bm)x)2

≤ (x|(Bn−Bm)x)((Bn−Bm)x|(Bn−Bm)2x)

for x ∈ H, n≥ m. By (3.48), the last term is bounded by

(x|(Bn−Bm)x)||Bn−Bm||3||x||2 ≤ ||K1||3||x||2[(x|Bnx)− (x|Bmx)] ,

and so
||(Bn−Bm)x||4 ≤ ||K1||3||x||2[(x|Bnx)− (x|Bmx)] .

The non-decreasing, bounded sequence of positive numbers (x|Bkx) has to converge,
so it is Cauchy. Therefore also Bkx must be a Cauchy sequence, and the limit exists
as k →+∞. Define

B : H � x 	→ lim
n→+∞

Bnx .

By construction B is linear, and it satisfies

0≤ (Bx|x) = (x|Bx)≤ (x|K1x)

since 0≤ (Bkx|x) = (x|Bkx)≤ (x|K1x) for any k ∈ N.
Now, K1 is bounded and self-adjoint (it is positive), so Proposition 3.54(a) forces

B to be bounded, since:

sup{|(x|Bx)| | x ∈ H , ||x||= 1} ≤ sup{|(x|K1x)| | x ∈ H , ||x||= 1}= ||K1|| .

B is also self-adjoint because of Proposition 3.54(e). Therefore A := B−||A0||I is a
bounded, self-adjoint operator and

Ax = lim
n→+∞

(Bn−||A0||I)x = lim
n→+∞

Anx .

Eventually, A ≤ K because for any x ∈ H we have (x|Anx)≤ (x|Kx) by assumption,
and this is still true when taking the limit as n→+∞. �

The above result allows us to prove that bounded positive operators admit square
roots.

Theorem 3.66. Let H be a Hilbert space and A ∈ B(H) a positive operator. Then
there exists a unique positive square root, indicated by

√
A. Furthermore:

(a)
√

A commutes with any B ∈B(H) that commutes with A:

if AB = BA with B ∈B(H), then
√

AB = B
√

A.

(b) if A is bijective,
√

A is bijective.
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Proof. We may as well suppose ||A|| ≤ 1 without any loss of generality, so let us
set A0 := I − A. First of all let us show A0 ≥ 0 and ||A0|| ≤ 1. A0 ≥ 0 because
(x|A0x) = (x|x)− (x|Ax) ≥ ||x||2−||A||||x||2, where we have used A = A∗, so (Pro-
position 3.54(a)) ||A|| = sup{|(z|Az)| | ||z|| = 1} and recalling |(z|Az)| = (z|Az) by
positivity. Since (x,y) 	→ (x|A0y) is a semi-inner product, as A0 ≥ 0, the Cauchy-
Schwarz inequality:

|(x|A0y)|2 ≤ (x|A0x)(y|A0y)≤ ||x||2||y||2

holds, having used the positivity of A = I−A0 and A0 in the final step. Since A = A∗,
using y = A0x in the inequality gives

|(A0x|A0x)|2 ≤ ||x||2||A0x||2 ,

hence ||A0x|| ≤ ||x||, and so:
||A0|| ≤ 1 . (3.49)

Let us now define a sequence of bounded operators Bn : H→ H, n = 1,2, . . .:

B1 := 0 , Bn+1 :=
1
2
(A0 +B2

n) . (3.50)

From (3.49), using the norm’s properties,

||Bn|| ≤ 1 for any n ∈ N . (3.51)

By induction the operators Bn are polynomials in A0 with non-negative coefficients.
Recall, here and in the sequel, that all operators Bk commute with one another and
with A0 by construction. Equation (3.50) implies

Bn+1−Bn =
1
2
(A0 +B2

n)−
1
2
(A0 +B2

n−1) =
1
2
(B2

n−B2
n−1)

i.e.

Bn+1−Bn =
1
2
(Bn +Bn−1)(Bn−Bn−1) .

This identity implies, by induction, that Bn+1−Bn are polynomials in A0 with non-
negative coefficients: every Bn + Bn−1 is the sum of polynomials with non-negative
coefficients, and is itself a polynomial with non-negative coefficients; moreover, the
product of two such is of the same kind.

Since A0 ≥ 0, any polynomial in A0 with non-negative coefficients is a positive
operator: the polynomial is the sum of terms a2nA2n

0 (all positive, as a2n ≥ 0 and
A2n

0 = An
0An

0 with An
0 self-adjoint, so a2n(x|A2n

0 x) = a2n(An
0x|An

0x)≥ 0), and of positive
terms a2n+1A2n+1

0 (a2n+1 ≥ 0 and (x|A2n+1
0 x) = (x|An

0AAn
0x) = (An

0x|A An
0x)≥ 0).

We conclude the bounded operators Bn and Bn+1 −Bn are positive. So the se-
quence of positive, bounded (and self-adjoint) operators Bn is non-decreasing. The
sequence is also bounded from above by I. In fact, B∗n = Bn ≥ 0 implies, due to Pro-
position 3.54(a), that (x|Bnx) = |(x|Bnx)| ≤ ||Bn||||x||2. From (3.51) follows Bn ≤ I.
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So, we may apply Proposition 3.65 to detect a positive bounded operator B0 ≤ I such
that

B0 = s− lim
n→+∞

Bn .

By definition of strong topology, and because the continuous Bk commute:

B0Bmx = ( lim
n→+∞

Bn)Bmx = lim
n→+∞

BnBmx = lim
n→+∞

BmBnx = Bm lim
n→+∞

Bnx = BmB0x .

Thus B0 commutes with every Bm,

B2
0−B2

n = (B0 +Bn)(B0−Bn)

and so, as n→+∞:

||B2
0x−B2

nx|| ≤ ||B0 +Bn||||B0x−Bnx|| ≤ (||B0||+ ||Bn||)||B0x−Bnx||
≤ 2||B0x−Bnx|| → 0 .

Rephrasing,
B2

0x = lim
n→+∞

B2
nx .

Taking the limit in

Bn+1x =
1
2
(A0x+B2

nx) ,

obtained from (3.50), we find

B0x =
1
2
(A0x+B2

0x) ,

for any x ∈ H, i.e.
2B0 = A0 +B2

0 .

To conclude, let us write the above identity in terms of B := I−B0:

B2 = I−A0 ,

i.e.
B2 = A .

Thus B is a square root of A. Note that B≥ 0 because B0 ≤ I and B = I−B0, so B is
a positive root di A. Moreover, if C is bounded and commutes with A, it commutes
with A0 and hence with any Bn. Therefore C commutes also with B0 and B = I−B0.
Let us see to uniqueness of a positive square root V of A. The above positive root B
commutes with all operators that commute with A. Since

AV = V 3 = VA ,

V and A commute, forcing B to commute with V . Fix an arbitrary x ∈ H and set y :=
Bx−V x. Then:

||Bx−V x||2 = ([B−V ]x|[B−V ]x) = ([B−V ]x|y) = (x|[B∗ −V ∗]y) = (x|[B−V ]y).
(3.52)
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We will show that By = 0 and V y = 0 independently. This will end the proof, because
then ||Bx−V x||= 0 will imply B = V .

Now,

(y|By)+(y|V y) = (y|[B+V ][B−V ]x) = (y|[B2−V 2]x) = (y|[A−A]x) = 0 .

Since (y|V y)≥ 0 and (y|By)≥ 0,

(y|V y) = (y|By) = 0 .

This means V y = By = 0, for if W is a positive root of V , from

||Wy||2 = (Wy|Wy) = (y|W 2y) = (y|V y) = 0

it follows Wy = 0 and a fortiori V y = W (Wy) = 0. In the same way By = 0.
There remains to prove

√
A is bijective if A is. If A is bijective, it commutes with

A−1, so
√

A as well commutes with A−1. Then, immediately, A−1
√

A =
√

AA−1 is
the left and right inverse of

√
A, which becomes bijective. �

Corollary 3.67. Let H be a Hilbert space. If A,B ∈B(H) are positive and commute,
their product is a positive bounded operator.

Proof.
√

B commutes with A, hence

(x|ABx) = (x|A
√

B2x) = (x|
√

BA
√

Bx) = (
√

Bx|A
√

Bx)≥ 0 . �

Remarks 3.68. That the square root of 0≤ A ∈B(H) commutes with every operator
ofB(H) that commutes with A can be expressed, equivalently, by saying

√
A belongs

to the von Neumann algebra spanned by I and A in B(H). �

To conclude the section we will show that any bounded operator A in a Hilbert
space admits a decomposition A = UP as product of a uniquely-determined positive
operator P with an isometric operator U , defined and unique on the image of P. The
splitting is called polar decomposition and has a host of applications in mathematical
physics. A preparatory definition is needed first.

Definition 3.69. Let H be a Hilbert space and A ∈B(H). The bounded, positive and
hence self-adjoint operator

|A| :=
√

A∗A (3.53)

is called modulus of A.

Remarks 3.70. For any x ∈ H: || |A| x||2 = (x| |A|2x) = (x|A∗Ax) = ||Ax||2, so:

|| |A| x||= ||Ax|| , (3.54)

whence:
Ker(|A|) = Ker(A) (3.55)

and so |A| is injective if and only if A is. Another useful property is

Ran(|A|) = (Ker(A))⊥ , (3.56)

consequence of Ran(|A|) = ((Ran(|A|))⊥)⊥ = (Ker(|A|∗))⊥ = (Ker(|A|))⊥ =
(Ker(A))⊥. �
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Now to the polar decomposition theorem. We present the version for bounded
operators. A more general statement will be discussed in Theorem 10.38 concerning
a special class of unbounded operators.

Theorem 3.71 (Polar decomposition of bounded operators). Let H be a Hilbert
space and A ∈B(H).

(a) There exists a unique pair of operators P,U ∈B(H) such that:

(i) the decomposition
A = UP (3.57)

holds;
(ii) P is positive;
(iii)U is isometric on Ran(P);
(iv) U is null on Ker(P).

(b) P = |A|, so Ker(U) = Ker(A) = Ker(P) = [Ran(P)]⊥.
(c) If A is bijective, U coincides with the unitary operator A|A|−1.

Proof. (a) Start with uniqueness. If we have (3.57), A = UP with P ≥ 0 (beside
bounded) and U bounded, then A∗ = PU∗, since P is self-adjoint as positive (The-
orem 3.66(c)); hence

A∗A = PU∗UP . (3.58)

That U is isometric on Ran(P) is written (UPx|UPy) = (Px|Py) for any x,y ∈ H,
or (x|[PU∗UP−P2]y) = 0 for any x,y ∈ H. Therefore PU∗UP = P2. Substituting in
(3.58) we have P2 = A∗A; as P is positive and extracting the only positive root (The-
orem 3.66) on both sides we get P = |A|. So if a decomposition as claimed exists, ne-
cessarily P = |A|. Let us prove U is unique, as well. From H = Ker(P)⊕ (Ker(P))⊥,
Proposition 3.38(d) and Theorem 3.13(e) imply (Ker(P))⊥ = Ran(P∗) = Ran(P) be-
cause P is self-adjoint. Hence H = Ker(P)⊕Ran(P). To define an operator on H
it suffices to have it on both summands above: U = 0 on Ker(P), while UPx = Ax
for any x ∈ H fixes U on Ran(P) uniquely. By assumption, on the other hand, U is
bounded, and it remains bounded if restricted to Ran(P). A bounded operator over a
dense domain can be extended to a unique bounded operator on the closed domain
(cf. Proposition 2.44). Therefore U is completely determined on all Ran(P), hence
all H. This concludes the proof of uniqueness, so let us deal with existence.
We have seen it is necessary to show that UP = A, P = |A|, or better U : |A|x 	→ Ax for
any x∈H, actually defines an operator, say U0, on Ran(|A|). To make it well defined,
it is necessary and sufficient that |A|x = |A|y ⇒ Ax = Ay, or else it would not be
a function. By (3.54), if |A|x = |A|y, then Ax = Ay, so U0 : Ran(|A|) � |A|x 	→ Ax
is well defined (not multi-valued). That U0 is linear is obvious by construction,
and the same that it is an isometry, for U0 preserves norms by (3.54) (cf. Exer-
cise 3.5). Being an isometry on Ran(|A|) implies, by continuity, that we can extend
it uniquely to an isometry on the closure of Ran(|A|), still denoted U0. Now define
U : H → H by setting U �Ker(|A|):= 0 and U �Ran(|A|):= U0, with respect to the split-

ting H = Ker(|A|)⊕ Ran(|A|). It is immediate to see U ∈ B(H) and that U satis-
fies (3.57). Furthermore, by construction Ker(U) ⊃ Ker(|A|). We claim there latter
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two are equal. Any u with Uu = 0 splits into u0 + x, with u0 ∈ Ker(|A|) annihil-
ated by U , and x ∈ Ran(|A|) for which U0x = 0. Since on Ran(|A|) U0 is isomet-
ric, then x = 0 and so u = u0 ∈ Ker(|A|). Therefore Ker(U) ⊂ Ker(|A|), so overall
Ker(U) = Ker(|A|) = Ker(A) by (3.55).
(b) is already proved within (a).
(c) If A is injective, using (b) we see Ker(A) = Ker(U) is trivial and so U is in-
jective. Directly from A = UP, though, we have Ran(U) ⊃ Ran(A), so if A is onto
also U is. Hence, if A is bijective U must be as well. If so, U is an onto isometry
on Ran(P) = (Ker(P))⊥ = {0}⊥ = H by (b), hence unitary. At last, from A = U |A|
follows that |A| is bijective because A and U are, whence we can write U = A|A|−1. �

Remarks 3.72. (1) Observe that the operator U showing up in (3.58) is a partial iso-
metry (Definition 3.61) with initial space

[Ker(U)]⊥ = Ran(|A|) = [Ker(A)]⊥ = Ran(A∗) .

Bearing in mind Proposition 3.62(a) we see easily that the final space of U is

Ran(U) = Ran(A) .

(2) With Theorem 10.38 we will prove the polar decomposition theorem under much
weaker assumptions on A. We will also prove that the partial isometry U has the
same initial and final spaces above, and is unitary precisely when A is injective and,
simultaneously, Ran(A) is dense in H. �

Definition 3.73. Let H be a Hilbert space and A ∈B(H). The splitting

A = UP ,

with P∈B(H) positive, U ∈B(H) isometric on Ran(P) and null on Ker(P), is called
polar decomposition of the operator A.

A corollary of the polar decomposition, useful in several applications, is this.

Corollary 3.74 (to Theorem 3.71). Under the assumptions of Theorem 3.71, if
U |A|= A is the polar decomposition of A, then:

|A∗|= U |A|U∗ . (3.59)

Proof. From A = U |A| follows A∗ = |A|U∗ = U∗U |A|U∗, where we used U∗U |A|=
|A|, since U is isometric on Ran(|A|). Thus the self-adjoint operator AA∗ satisfies

AA∗ = U |A|U∗U |A|U∗ .

As U |A|U∗ is clearly positive, by uniqueness of the root we have

|A∗|=
√

(A∗)∗A∗ =
√

AA∗ = U |A|U∗ ,

proving the claim. �
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We cite, in the form of the next theorem, yet another consequence of the polar
decomposition theorem valid when A ∈B(H) is normal, i.e. commuting with A∗.

Theorem 3.75 (Polar decomposition of normal operators). Let A∈B(H) be a nor-
mal operator on the Hilbert space H, and W0 : Ker(A) → Ker(A) a given unitary
operator. There exists a unique pair W,P ∈B(H) such that P≥ 0, W is unitary and:

A = WP with W�Ker(A)= W0 .

Moreover, P = |A|, W�Ker(A)⊥ does not depend on W0, and W commutes with A, A∗

and |A|.

Proof. Under the assumptions made, A = WP implies A∗A = PW ∗WP = P2, so
P = |P|. Then consider the polar decomposition A = U |A|. As we know (Remark
3.72(1)) U is partially isometric, with initial space Ker(A)⊥ and final space Ran(A).
We have H = Ker(A)⊕Ker(A)⊥ = Ker(A)⊕Ran(A∗), and since A is normal, by
(iii) in Proposition 3.54(b) we can write H = Ker(A)⊕Ran(A). So U is unitary from
Ran(A) to Ran(A), and is null from Ker(A) to itself. Notice Ker(|A|) = Ker(A), as
seen earlier, so Ran(|A|) = Ran(A). Now if there exists W unitary with A = W |A|,
it must be isometric on Ker(A)⊥ = Ran(A), so it must coincide with U there by the
polar decomposition theorem; thus the restriction of W to Ran(A) gives a unitary
operator from Ran(A) to Ran(A). The condition W�Ker(A)= W0 fixes W completely
on the whole Hilbert space as unitary operator, ending the proof of uniqueness. As
far as existence is concerned, it is enough to verify that W := W0 ⊕U , defined ac-
cording to H = Ker(A)⊕Ran(A), is an operator that commutes with A, A∗, and that
|A| fulfills A = W |A|. The latter request is true by the polar decomposition theorem,
for Ker(|A|) = Ker(A). Since A∗(Ker(A∗)) ⊂ Ker(A∗), we have A(Ker(A∗)⊥) ⊂
Ker(A∗)⊥, i.e. A(Ran(A)) ⊂ Ran(A). With respect to the usual orthogonal split-
ting of the Hilbert space, A = 0⊕A�Ran(A). Since we have W = W0⊕U�Ran(U) and
A = 0⊕A�Ran(A), the condition AW =WA holds if AU =UA. So let us prove the latter.
By the polar decomposition theorem A = U |A|. Normality (AA∗ = A∗A) can be reph-
rased as U |A|2U∗ = |A|U∗U |A| = |A|2, since U is isometric on Ran(|A|). Therefore
U∗U |A|2U∗ = U∗|A|2 i.e. |A|2U∗ = U∗|A|2. Taking adjoints gives U |A|2 = |A|2U .
Theorem 3.66(a) says the root of an operator commutes with everything that com-
mutes with the given operator, so U |A|= |A|U . Still by polar decomposition we infer
UA = AU , so WA = AW , as required. Taking adjoints: A∗W ∗ = W ∗A∗, and using W
on both sides produces WA∗ = A∗W . Consequently W commutes with A∗A = |A|2,
and hence also with its square root |A|. �

3.6 The Fourier-Plancherel transform

In the last section of the chapter we introduce, rather concisely, the basics in the theory
of the Fourier and Fourier-Plancherel transforms, without any mention to Schwartz
distributions [Rud91, ReSi80, Vla81].
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Notation 3.76. From now on we will use the notations of Example 2.87 introduced
for differential operators: in particular xk ∈Rwill denote the kth component of x∈Rn,
dx the ordinary Lebesgue measure on Rn, and

Mα(x) := xα1
1 · · ·xαn

n for any multi-index α = (α1, . . . ,αn) .

By D(Rn) we shall denote the space of smooth complex-valued functions with com-
pact support (in the literature this is also called C∞c (Rn) or C∞0 (Rn)). S (Rn) will
indicate the Schwartz space on Rn (cf. Example 2.87). In these notations S (Rn) is
the C-vector space of complex maps C∞(Rn) with this property: for any f ∈S (Rn)
and for any pair of multi-indices α , β , there exists K < +∞ (depending on f , α , β )
such that

|Mα(x)∂βx f (x)| ≤ K, for any x ∈ Rn . (3.60)

The norms || ||1, || ||2 and || ||∞ will denote, throughout the section, the norms
of L1(Rn,dx), L2(Rn,dx) and L∞(Rn,dx) and the corresponding seminorms of
L 1(Rn,dx), L 2(Rn,dx) and L ∞(Rn,dx) (see Examples 2.26(6) and (8)). �

Below we recall a number of known properties.

(1) The spaces D(Rn) and S (Rn) are invariant under Mα(x) (seen as multiplicative
operator) and ∂αx . Put otherwise, functions stay in their respective spaces when acted
upon by Mα(x) and ∂αx .
(2) Clearly D(Rn)⊂L p(R,dx) as subspace, for any 1≤ p≤ ∞, since compact sets
inRn have finite Lebesgue measure and any f ∈D(Rn) is continuous, hence bounded
on compact sets.
(3) For any 1≤ p≤ ∞ we have S (Rn)⊂L p(R,dx) as subspace. In fact, if C ⊂ Rn

is a compact set containing the origin, f ∈S (Rn) is bounded on C because continu-
ous, while outside C we have | f (x)| ≤Cm|x|−m for any n = 0,1,2,3, . . . as long as we
choose Cn ≥ 0 big enough. In summary, | f | is bounded on Rn, so it belongs to L ∞.
But it is also bounded by a map in L p, for any p ∈ [1,+∞): this bounding function
is constant on C, and equals Cm/|x|m, m > n/p, outside C.
(4) Beside the obvious D(Rn)⊂S (Rn), recall a notorious fact (independent of this
section) that we will use shortly [KiGv82]:

Proposition 3.77. The spaces D(Rn), S (Rn) are dense subspaces in L p(R,dx) for
any 1≤ p < ∞.

(5) The next important lemma, whose proof can be found in [Bre10, Corollary IV.24],
is independent of the section’s results.

Lemma 3.78. Suppose f ∈L 1(Rn,dx) satisfies

∫

Rn
f (x)g(x)dx = 0 for any g ∈D(Rn) .

Then f (x) = 0 almost everywhere for the Lebesgue measure dx on Rn.
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Let us introduce the first elementary definitions concerning the Fourier transform.

Definition 3.79. The linear maps

(F f )(k) :=
∫

Rn

e−ik·x

(2π)n/2
f (x)dx , f ∈L 1(Rn,dx), k ∈ Rn , (3.61)

(F−g)(x) :=
∫

Rn

eik·x

(2π)n/2
g(k)dk , g ∈L 1(Rn,dk), x ∈ Rn (3.62)

from L 1(Rn,dx) to L ∞(Rn,dx) are respectively called Fourier transform and in-
verse Fourier transform.

Remark 3.80. (1) Above dk always denotes the Lebesgue measure on Rn. We have
used a different name for the variable in Rn (k not x), in the inverse Fourier formula,
only to respect the traditional notation and to simplify subsequent calculations.
(2) By the integral’s properties it is obvious that

|(F f )(k)| ≤
∣
∣
∣
∣

∫

Rn
e−ik·x f (x)

dx

(2π)n/2

∣
∣
∣
∣≤
∫

Rn
|e−ik·x| | f (x)| dxn

(2π)n/2

=
∫

Rn
| f (x)| dx

(2π)n/2
=

|| f ||1
(2π)n/2

,

and similarly |(F−g)(x)| ≤ ||g||1/(2πn/2) for any x,k ∈ Rn; thus it makes sense to
define the Fourier transform and inverse Fourier transform as operators with values
in L ∞(Rn,dx). �

In the sequel we will discuss straighforward features of the Fourier transform that
are most related to the Fourier-Plancherel transform. We will overlook many results,
like the continuity in the seminorm topology in the Schwartz space, for which we
refer to any text on functional analysis or distributions [Rud91, ReSi80, Vla81] (see
also Chapter 2.3.4).

Proposition 3.81. The Fourier and inverse Fourier transforms enjoy the following
properties.

(a) They are continuous in the natural norms of domain and codomain:

||F f ||∞ ≤ || f ||1
(2π)n/2

and ||F−g||∞ ≤ ||g||1
(2π)n/2

.

(b) The Schwartz space is invariant under F and F−: F (S (Rn)) ⊂ S (Rn) and
F−(S (Rn))⊂S (Rn).
(c) When restricted to the invariant space S (Rn) they are one the inverse of the
other: if f ∈S (Rn), then

g(k) =
∫

Rn

e−ik·x

(2π)n/2
f (x)dx
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if and only if

f (x) =
∫

Rn

eik·x

(2π)n/2
g(k)dk.

(d) When restricted to the invariant space S (Rn) they are isometric for the semi-
inner product of L 2(Rn,dxn): if f1, f2,g1,g2 ∈S (Rn), then

∫

Rn
(F f1)(k)(F f2)(k)dk =

∫

Rn
f1(x) f2(x)dx

and ∫

Rn
(F−g1)(x)(F−g2)(x)dx =

∫

Rn
g1(k)g2(k)dk .

(e) They determine bounded maps from L1(Rn,dx) to C0(Rn) (continuous maps that
vanish at infinity, cf. Example 2.26(4)), and so the Riemann-Lebesgue lemma holds:
for any f ∈ L1(Rn,dx)

(F f )(k)→ 0 as |k| →+∞

and analogously for F−.
(f) They are injective if defined on L1(Rn,dx).

Remarks 3.82. Concering statement (f), more can be proved [Rud91], namely: if
f ∈ L1(Rn,dx) is such that F f ∈ L1(Rn,dk), then F−(F f ) = f . The same holds if
we swap F and F−. �

Proof of Proposition 3.81. (a) was proved in Remark 3.80(2). (b) Let us prove the
claim about F , the one about F− being similar. Set

g(k) :=
∫

Rn

e−ik·x

(2π)n/2
f (x)dx.

The right-hand side can be differentiated in k by passing the operator ∂αk inside the
integral. In fact,

∣
∣
∣∂αk e−ik·x f (x)

∣
∣
∣=
∣
∣
∣i|α|Mα(x)e−ik·x f (x)

∣
∣
∣≤ |Mα(x) f (x)| .

The function x 	→ |Mα(x) f (x)| is in L 1 as f ∈S (Rn). Since the absolute value of
the derivative of the integrand is uniformly bounded by an integrable positive map,
known theorems on exchanging derivatives and integrals allow to say:

∂αk g(k) = (−i)|α|
∫

Rn

e−ik·x

(2π)n/2
Mα(x) f (x)dx . (3.63)

Since f vanishes faster than any inverse power of |x|, as |x| →+∞, we have:

Mβ (k)g(k) =
∫

Rn
i|β |∂βx

(
e−ik·x

(2π)n/2

)

f (x)dx
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and, integrating by parts,

Mβ (k)g(k) = (−i)|β |
∫

Rn

e−ik·x

(2π)n/2
∂βx f (x)dx . (3.64)

Writing ∂αk g instead of g in (3.64), and by (a), we have:

|Mβ (k)∂αk g(k)| ≤
∣
∣
∣
∣
∣
∣∂β (Mα f )

∣
∣
∣
∣
∣
∣
1

,

for any k ∈ Rn. The right-hand term is finite, since f ∈S (Rn); and because α and β
are arbitrary, we conclude g ∈S (Rn).
(c) Identities (3.63) and (3.64) read:

∂α F = (−i)|α|FMα , (3.65)

Mβ F = (−i)|β |F∂β , (3.66)

where F is the restriction of the Fourier transform to S (Rn). Observing that

Fh = F−h

for any h ∈S (Rn), it is easy to obtain

∂α F− = i|α|F−Mα , (3.67)

Mβ F− = i|β |F−∂β . (3.68)

Then (3.65), (3.66), (3.67) and (3.68) imply in particular that:

FF− Mα = MαFF− , (3.69)

F−F Mα = MαF−F , (3.70)

where Mα is thought of as multiplicative operator (Mα f )(x) := Mα(x) f (x), and

FF− ∂α = ∂αFF− , (3.71)

F−F ∂α = ∂αF−F . (3.72)

By virtue of those commuting relations, we claim J := FF− and J− := F−F are
the identity of S (Rn). To begin with, we show, given x0 ∈ Rn and f ∈S (Rn), that
the value (J f )(x0) depends only on f (x0). If f ∈S (Rn) we can write:

f (x) = f (x0)+
∫ 1

0

d f (x0 + t(x− x0))
dt

dt = f (x0)+
n

∑
i=1

(xi− x0i)gi(x) ,

where the gi (in C∞(Rn), as is easy to see) are:

gi(x) :=
∂
∂xi

∫ 1

0
f (x0 + t(x− x0))dt.
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Hence if f1, f2 ∈S (Rn) and f1(x0) = f2(x0):

f1(x) = f2(x)+
n

∑
i=1

(xi− x0i)hi(x) , (3.73)

where, subtracting, the map x 	→∑n
i=1(xi−x0i)hi(x) and also the hi belong to S (Rn).

Using J on both sides of (3.73) and recalling J commutes with polynomials in x by
(3.69), we have:

(J f1)(x) = (J f2)(x)+
n

∑
i=1

(xi− x0i)(Jhi)(x) .

Taking x = x0 shows (J f1)(x0) = (J f2)(x0) under the initial assumption f1(x0) =
f2(x0). Hence, as claimed, (J f )(x0) is a map of f (x0) only. This map must be lin-
ear, as J is linear by construction. Consequently (J f )(x0) = j(x0) f (x0), where j is a
function on Rn with values in C. Given that x0 was arbitrary, J acts as multiplication
by a function j. The latter must be C∞. To justify this, choose f ∈S (Rn) equal to 1
on a neighbourhood I(x0) of x0. If x ∈ I(x0), then (J f )(x) = j(x). The left-hand side
is C∞(I(x0)), so also the right term. That being valid around any point in Rn, we have
j ∈C∞(Rn). Equation (3.71) implies

j(x)
∂
∂xi f (x) =

∂
∂xi j(x) f (x)

for any f ∈S (Rn), x ∈ Rn. Choose as before f equal 1 on an open set, so the above
identity forces all derivatives of j to vanish there. This holds around any point, andRn

is connected, so the continuous map j is constant on Rn. The constant value clearly
does not depend on the argument of J, and may be computed by evaluating J on an
arbitrary function S (Rn). Computing J on x 	→ e−x2

is a useful exercise, and reveals
the constant value is exactly 1. The argument for J− is similar.
(d) Using (c) the claim is immediate. Let us carry out the proof for F ; the one for
F− is the same, essentially. Let f1, f2 ∈S (Rn) and set, i = 1,2:

gi(k) :=
∫

Rn

e−ik·x

(2π)n/2
fi(x)dx .

With the assumptions made the theorem of Fubini–Tonelli gives:

∫

Rn
g1(k)g2(k)dk =

∫

Rn
g1(k)
∫

Rn

e−ik·x

(2π)n/2
f2(x)dxdk

=
∫

Rn×Rn

e−ik·x

(2π)n/2
g1(k) f2(x)dx⊗dk .

Now we rephrase the last integral and apply Fubini–Tonelli again:
∫

Rn
g1(k)g2(k)dk
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=
∫

Rn×Rn

eik·x

(2π)n/2
g1(k) f2(x)dx⊗dk =

∫

Rn
f2(x)
∫

Rn

eik·x

(2π)n/2
g1(k)dkdx

=
∫

Rn
f1(x) f2(x)dx ,

where part (c) was used. This was what we wanted.
(e) We prove for F , and leave the similar assertion on F− for the reader. Notice that
both transformations are well defined on L1(Rn,dx) since the integral is invariant by
altering the maps by sets of zero Lebesgue measure. The estimate ||F f ||∞ ≤ || f ||1

(2π)n/2

guarantees the linear map F : S (Rn)→ S (Rn) ⊂C0(Rn) is continuous when the
domain has the L1 norm and the codomain || · ||∞. S (Rn) is dense in L1 in the given
norm, and the codomain is complete in the second norm; therefore the Fourier trans-
form, initially defined on S (Rn), can be extended by continuity and in a unique way
to a bounded linear map from L1(Rn,dx) to C0(Rn) that preserves the same norm
by Proposition 2.44 (and coincides with the aforementioned linear transformation
on L1(Rn,dx)). If f ∈ L1, F f ∈ C0(Rn), then for any ε > 0 there is a compact set
Kε ⊂ Rn such that |(F f )(k)|< ε if k � Kε . Choose, for any ε > 0, a ball of radius rε
at the origin big enough to contain Kε : then there exists, for any ε > 0, a real number
rε > 0 such that |(F f )(k)|< ε if |k|> rε .
(f) We prove the claim for F , as the one for F− is analogous. Since F is a linear
operator, it suffices to show that if F f is the zero map, f is null almost everywhere.
Thus assume: ∫

Rn

e−ik·x

(2π)n/2
f (x)dx = 0 , for any k ∈ Rn.

If g ∈S (Rn), Fubini–Tonelli gives

0 =
∫

Rn
g(k)
∫

Rn

e−ik·x

(2π)n/2
f (x)dx dk =

∫

Rn

(∫

Rn

e−ik·x

(2π)n/2
g(k)dk

)

f (x)dx .

Since F is bijective on S (Rn), what we have proved is equivalent (note ψ f ∈
L 1(Rn,dx) for any ψ ∈S (Rn), as ψ is bounded) to:

∫

Rn
ψ(x) f (x)dx = 0 for any ψ ∈S (Rn).

As D(Rn)⊂S (Rn), Lemma 3.78 forces f to vanish almost everywhere. �

We move on to the Fourier-Plancherel transform. As S (Rn) is dense in L 2(Rn),
considering equivalence classes we can say S (Rn) determines a dense subset, still
indicated by S (Rn), in the Hilbert space L2(Rn). The operators F and F− can be
seen as defined on that dense subspace of L2(R,dx). Proposition 3.81(d) says in par-
ticular that these operators are bounded with norm 1, since they are isometric. As
Proposition 2.44 tells us, F and F− determine unique bounded linear operators on
L2(Rn,dx). For instance, the operator extending F to L2(Rn,dx) is defined as

F̂ f := lim
n→+∞

F fn ,
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for f ∈ L2(Rn,dx). Above, { fn}n∈N ⊂ S (Rn) is an arbitrary sequence converging
to f in the topology of L2(Rn,dx). By inner product continuity, the extended oper-
ator F̂ will preserve the inner product of L2(R2,dx), and as such F̂ will be 1-1 on
L2(Rn,dx). The following elementary argument explains why F̂ is surjective too.
Beside F̂ , we can construct the operator that extends to L2(Rn,dx) the inverse Four-
ier transform F̂−. On S (Rn,dx)

FF− = IS (Rn).

Now pass to the L2 extensions, by linearity and continuity, and recall that the unique
linear extension of the identity from S (Rn,dx) to L2(Rn,dx) is the latter’s identity
operator I (constructed in the general way explained above). Then

F̂ F̂− = I .

The equation implies F̂ is onto.

Definition 3.83. The unique operator F̂ : L2(Rn,dx)→ L2(Rn,dx) that extends lin-
early and continuously the Fourier transform restricted to S (Rn) is called Fourier-
Plancherel transform.

Theorem 3.84 (Plancherel). The Fourier-Plancherel transform:

F̂ : L2(Rn,dx)→ L2(Rn,dx)

is a bijective and isometric linear operator.

Proof. The proof was given immediately before Definition 3.83. �

There is still one issue we have to deal with. If f ∈ L1(Rn,dx)∩L2(Rn,dx) (but
f � S (Rn)), a priori F f and F̂ f are different, because to define F̂ we did not
extend F from L1(Rn,dx), but rather from the subspace S (Rn). This was the only
possible choice because L1(Rn,dx) � L2(Rn,dx).

The next proposition sheds light on the matter, and provides a practical method to
compute the Fourier-Plancherel transform by means of limits of Fourier transforms.

Remarks 3.85. Recall that if K ⊂ Rn is a finite-measure set, in particular compact,
(compact sets have finite Lebesgue measure):

(1) L2(K,dx)⊂ L1(K,dx).
(2) If { fn}n∈N ⊂ L2(K,dx) converges in norm || ||2 to f ∈ L2(K,dx), it converges in
norm || ||1 to f .
(3) L∞(K,dx)⊂ Lp(K,dx), 1≤ p < ∞.
(4) If { fn}n∈N ⊂ L∞(K,dx) converges in norm || ||∞ to f ∈ L∞(K,dx), it converges to
f in norm || ||p as well.
These four statements are proved as follows: concerning the first two, recall the con-
stant map 1 on a compact (of finite measure) set is integrable. Since

2| f (x)| ≤ | f (x)|2 +1 ,



150 3 Hilbert spaces and bounded operators

the integral of the left is bounded by the integral of the right, so we have statement
one. As for the second claim, the Cauchy-Schwarz inequality

(∫

K
|g(x)|1 dx

)2

≤
(∫

K
|g(x)|2dx

)(∫

K
1dx

)

with f (x)− fn(x) replacing g(x) proves it. To get the last two, note that by definition
of Lebesgue integral:

∫

K
|g|pdx≤ esssup

K
|g|p
∫

K
dx = (||g||∞)p

∫

K
dx

for any measurable map g on K. �

Proposition 3.86. The Fourier-Plancherel and Fourier transforms satisfy the follow-
ing properties.

(a) If f ∈ L2(Rn,dx)∩L1(Rn,dx), the Fourier-Plancherel transform reduces to the
Fourier transform F f computed by the integral formula (3.61).
(b) If f ∈ L2(Rn,dx), the Fourier-Plancherel transform can be computed as the limit
(understood in L2(Rn,dk))

F̂ f = lim
n→+∞

gn

of

gn(k) :=
∫

Kn

e−ik·x

(2π)n/2
f (x)dx , (3.74)

where Kn ⊂ Rn are compact, Km+1 ⊃ Km, m = 1,2, . . ., and ∪∞m=1Km = Rn.

Proof. (a) Begin with proving the claim for f ∈ L2(Rn,dx) different from 0 on
a zero-measure set outside a compact K0. Such f belongs to L1(Rn,dx). Let then
{sn}n∈N ⊂ S (Rn) be a sequence converging to f in L2(Rn,dx). If B, B′ are open
balls of finite radius with B ⊃ B′ ⊃ B′ ⊃ K0, we can construct a function h ∈D(Rn)
equal to 1 on B′ and null outside B. Obviously, if fn := h · sn, the sequence { fn} is
in D(Rn), and hence S (Rn), with support inside the compact set K := B. Therefore
every fn belongs to L1(Rn,dx) and the sequence { fn} tends to f in L2(Rn,dx) and
L1(Rn,dx).
By definition, as fn → f in norm || ||2,

||F fn− F̂ f ||2 → 0 (3.75)

as n→+∞. At the same time, since fn → f in norm || ||1, by Proposition 3.81(a) we
have ||F fn −F f ||∞ → 0 as n → +∞. But on finite-measure sets convergence for
|| ||∞ implies convergence for || ||2, so

||F fn−F f ||2 → 0 (3.76)

and hence F̂ f = F f by (3.75) and by uniqueness of the limit.
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Suppose now f ∈ L2(Rn,dx)∩L1(Rn,dx), and nothing more. Consider a collec-
tion of compact sets {Kn} as in part (b). Define maps fn := χKn · f , where χE is the
characteristic function of E (χE(x) = 0 if x � E and χE(x) = 1 if x ∈ E). It is clear
that pointwise fn → f as n→+∞. Moreover | f (x)− fn(x)|p ≤ | f (x)|p, p = 1,2, . . ..
By Lebesgue’s dominated convergence theorem, fn → f , as n → +∞, for || ||1 and
|| ||2. On the other hand what we have proved just above tells:

F fn = F̂ fn .

Proposition 3.81(a) gives ||F f −F fn||∞→ 0 and at the same time ||F̂ f −F fn||2 →
0. These facts hold also when restricting F̂ f , F f , F fn to any compact set K. For
maps that are zero outside a compact set uniform convergence implies L2 conver-
gence, so if x belongs to a compact set, (F f )(x) = (F̂ f )(x) almost everywhere.
But every point x ∈ Rn belongs to some compact set, so F f = F̂ f as elements in
L2(Rn,dx).
(b) This was proved in the final part of (a). �

Examples 3.87. (1) There is an important property distinguishing D(Rn) from
S (Rn): only the former is not invariant under Fourier transform (and inverse
Fourier transform). Since D(Rn) ⊂ S (Rn), in fact, it is clear that F (D(Rn)) ⊂
F (S (Rn))⊂S (Rn). This cannot be sharpened, by this reason:

Proposition 3.88. Let f ∈ D(Rn). If F f ∈ D(Rn) then f = 0. The same holds for
the inverse Fourier transform.

Proof. The proof is easy, and we show it only for F , because the case F− is similar.
If

g(k) =
∫

Rn

e−ik·x

(2π)n/2
f (x)dx ,

where f has compact support, the integral converges also for k ∈ Cn. Using Le-
besgue’s dominated convergence, moreover, we can differentiate the components ki

of k inside the integral, and their real and imaginary parts. Since k 	→ e−ik·x is analytic
(in each variable ki separately), it solves the Cauchy-Riemann equations in each ki.
Consequently also g will solve those equations in each ki, becoming analytic on Cn.
The restriction of g to Rn defines, via its real and imaginary parts, real analytic maps
on Rn. If g has compact support, there will be an open, non-empty set in Rn where
Re g and Im g vanish. A known property of real-analytic maps (of one real variable)
on open connected sets (here Rn) is that they vanish everywhere if they vanish on an
open non-empty set of the domain. Therefore if g has compact support it is the zero
map. Then also f is zero, since F is invertibile on S (Rn). �

(2) Related to (1) is the known Paley–Wiener theorem (see for instance [KiGv82]):

Theorem 3.89 (Paley–Wiener). Take a > 0 and consider L2([−a,a],dx) as sub-
space of L2(R,dx). The space F̂ (L2([−a,a],dx)) consists of maps g = g(k) that can
be extended uniquely to an analytic map on the complex plane (k ∈ C) such that

|g(k)| ≤Ce2πa|Imk| , k ∈ C
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for some constant C ≥ 0 depending on g.

Since F̂ (L2([−a,a],dx)) ⊂ L2(R,dk) by Plancherel’s theorem, the result of Paley–
Wiener implies that analytic maps g bounded as above determine elements of
L2(R,dk) when k restricts to R. �

To conclude, consider the space L2((a,b),dx), where −∞≤ a < b≤+∞ and dx
is the usual Lebesgue measure on R. The following extremely practical fact, used in
Example 3.32(4) to build bases, descends from the Fourier-Plancherel theory.

Proposition 3.90. Let f : (a,b)→ C be a measurable map such that:

(i) the set {x ∈ (a,b) | f (x) = 0} has zero measure;
(ii) there exist C,δ > 0 for which | f (x)|< Ce−δ |x| for any x ∈ (a,b).

Then the space finitely generated by x 	→ xn f (x) =: fn(x), n = 0,1,2, . . ., is dense in
L2((a,b),dx).

Proof. Let S := { fn}n∈N. It is enough to prove S⊥ = {0}, because S⊥ ⊕< S > =
L2((a,b),dx) by Theorem 3.13. So take h ∈ L2((a,b),dx) such that

∫ b

a
xn f (x)h(x)dx = 0

for any n = 0,1,2, . . .. Extend h to the whole real line by setting it to zero outside
(a,b). The above condition reads:

∫

R

xn f (x)h(x)dx = 0 , (3.77)

for any n = 0,1,2, . . .. Moreover, the following three facts hold.

(i) f ·h∈ L1(R,dx): in fact both maps are in L2(R,dx), so their product is in L1(R,dx);
(ii) f · h ∈ L2(R,dx), because | f (x)|2 < C2e−2δ |x| < C2 < +∞ and |h|2 is integrable
by assumption;
(iii) The map sending x ∈ R to eδ

′|x| f (x)h(x) is in L1(R,dx) for any δ ′ < δ . In fact,
since x 	→ |eδ ′|x| f (x)| ≤Ce−(δ−δ ′)|x|, the function x 	→ eδ

′|x| f (x) is in L2(R,dx), and
h ∈ L2(R,dx) by hypothesis, so the product belongs in L1(R,dx).
Using (i) we compute the Fourier transform:

g(k) =
∫

R

e−ik·x
√

2π
f (x)h(x)dx .

This concides with the Fourier-Plancherel transform of f ·h by (i), (ii) and Proposi-
tion 3.86(a). Using (iii), if k is complex and |Imk|< δ , then g = g(k) is well defined
and analytic on the open strip B ⊂ C given by Rek ∈ R, |Imk| < δ ; this is proved
similarly to what we did in example (1). Lebesgue’s dominated convergence and ex-
changing derivatives and integrals allow to see that

dng
dkn |k=0 =

(−i)n
√

2π

∫

R

xn f (x)h(x)dx
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for any n = 0,1, . . .. All derivatives vanish by (3.77), and so the Taylor expansion
of g at the origin is zero. This annihilates g on an open disc contained in B, so ana-
lyticity guarantees g is zero on the open connected set B, and in particular on the
real axis k. Therefore the Fourier-Plancherel transform of f · h is the null vector of
L2(R,dk). Since the transform is unitary we conclude f ·h = 0 almost everywhere on
R: in particular on (a,b), where by assumption f � 0 almost everywhere. But then
h = 0 almost everywhere on (a,b), which is to say each h ∈ S⊥ coincides with the
null element in L2((a,b),dx), ending the proof. �

Exercises

3.1. The definition of a (semi-)inner product makes sense on real vector spaces as
well, simply by replacing H2 in Definition 3.1 with S(u,v) = S(v,u), and using real
linear combinations in H1.

Show that with this definition Proposition 3.3 still holds, provided the polarisation
formula is written as in (3.7).

3.2. (Hard) Consider a real vector space and prove that if a (semi)norm p satisfies
the parallelogram identity (3.3):

p(x+ y)2 + p(x− y)2 = 2(p(x)2 + p(y)2) ,

then there exists a unique (semi-)inner product S, defined in 3.1, inducing p via (3.2).

Solution. If S is a (semi-)inner product on the real vector space X, we have the po-
larisation identity (3.7):

S(x,y) =
1
4

(S(x+ y,x+ y)−S(x− y,x− y)) .

This implies uniqueness of S, as S(z,z) = p(z)2. For the existence from a given norm
p set:

S(x,y) :=
1
4

(
p(x+ y)2− p(x− y)2) .

We prove S is a semi-inner product or an inner product according to whether p is a
norm or a seminorm. If this is true and if p is a norm, substituting S to p on the right
above gives S(x,x) = 0 and x = 0, making S an inner product.

To finish we need to prove, for any x,y,z ∈ X:
(a) S(αx,y) = αS(x,y) if α ∈ R;
(b) S(x+ y,z) = S(x,z)+S(y,z);
(c) S(x,y) = S(y,x);
(d) S(x,x) = p(x)2.
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Properties (c) and (d) are straightforward from the definition of S. Let us prove (a)
and (b). By (3.3) and the definition of S:

S(x,z)+S(y,z) = 4−1 (p(x+ z)2− p(x− z)2 + p(y+ z)2− p(y− z)2)

= 2−1

(

p

(
x+ y

2
+ z

)2

− p

(
x+ y

2
− z

)2
)

= 2S

(
x+ y

2
,z

)

.

Hence

S(x,z)+S(y,z) = 2S

(
x+ y

2
,z

)

. (3.78)

Then (a) clearly implies (b), and we have to prove (a) only. Setting y = 0 in (3.78)
and recalling S(0,z) = 0 by definition of S,

S(x,z) = 2S(x/2,z) .

Iterating the formula gives (a) for α = m/2n, m,n = 0,1,2, . . .. These numbers
are dense in [0,+∞). At the same time R � α 	→ p(αx + z) and R � α 	→
p(αx − z) are both continuous (in the topology induced by p), so S(x,y) :=
1
4 (p(x+ y,x+ y)− p(x− y,x− y)) allows to conclude R � α 	→ S(αx,y) is continu-
ous in α . That is to say, (a) holds for any α ∈ [0,+∞). Again by definition of S we
have S(−x,y) =−S(x,y), so the previous result is valid for any α ∈ R and the proof
is over.

3.3. (Hard) Suppose a (semi)norm p satisfies the parallelogram rule (3.3):

p(x+ y)2 + p(x− y)2 = 2(p(x)2 + p(y)2) ,

on a C-vector space. Show that there is a unique (semi-)inner product S inducing p
via (3.2).

Solution. If S is a (semi-)inner product on the complex vector space X we have the
polarisation formula (3.4):

4S(x,y) = S(x+ y,x+ y)−S(x− y,x− y)− iS(x+ iy,x+ iy)+ iS(x− iy,x− iy).

Since S(z,z) = p(z)2, as in the real case, that implies uniqueness of S for a given norm
p on X. Existence: define, for given (semi)norm p and x,y ∈ X:

S1(x,y) := 4−1(p(x+ y)2− p(x− y)2) , S(x,y) := S1(x,y)− iS1(x, iy) .

Notice S(x,x) = p(x)2, and if p is a norm, by construction S(x,x) = 0 implies x = 0.
There remains to show S as above is a Hermitian (semi-)inner product. By Defini-
tion 3.1 we have to show:

(a) S(αx,y) = αS(x,y) if α ∈ C;
(b) S(x+ y,z) = S(x,z)+S(y,z);
(c) S(x,y) = S(y,x);
(d) S(x,x) = p(x)2.

The last one is true by construction. Proceeding as in the previous exercise, using S1

instead of S, we can prove (b) for S1, (a) for S1 withα ∈R, and also S1(x,y) = S1(y,x).
These, using the definition of S in terms of S1, imply (a), (b) and (c).
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3.4. Prove the claim in Remark 3.4(1) on a (semi-)inner product space (X,S): the
(semi-)inner product S : X×X → C is continuous in the product topology of X×X,
having on X the topology induced by the (semi-)inner product itself. Consequently it
is continuous in either argument separately.

Hint. Suppose X×X� (xn,yn)→ (x,y)∈X×X as n→+∞. Use the Cauchy-Schwarz
inequality to show that if S is the (semi-)inner product associated to p, then:

|S(x,y)−S(xn,yn)| ≤ p(xn)p(yn− y)+ p(xn− x)p(y) .

Recall p(xn) → p(x) and canonical projections are continuous in the product topo-
logy.

3.5. Prove Proposition 3.8: a linear operator L : X→ Y between inner product spaces
is an isometry, in the sense of Definition 3.6, if and only if

||Lx||Y = ||x||X for any x ∈ X,

where norms are associated to the respective inner product spaces.

Hint. Polarise.

3.6. Consider the Banach space �p(N), for p ≥ 1. Show that for p � 2 one cannot
define any Hermitian inner product so to induce the usual norm || ||p. Conclude that
�p(N) cannot be rendered a Hilbert space for p � 2.

Hint. Show there are pairs of vectors f ,g violating the parallelogram rule. E.g. f =
(1,1,0,0, . . .) and g = (1,−1,0,0, . . .).

3.7. Prove that the Banach space (C([0,π/2]), || ||∞) does not admit a Hermitian inner
product inducing || ||∞, i.e.: (C([0,π/2]), || ||∞) cannot be made into a Hilbert space.

Hint. Show there are pairs of vectors f ,g violating the parallelogram rule. Consider
for example f (x) = cosx and g(x) = sinx.

3.8. In the Hilbert space H consider a sequence {xn}n∈N ⊂ H weakly converging to
x ∈ H. I.e., f (xn)→ f (x), n→+∞, for any f ∈ H′. Show that, in general, xn �→ x in
the topology of H. However, if we assume additionally ||xn|| → ||x||, n → +∞, then
xn → x, n→+∞, in the topology of H.

Hint. Riesz’s theorem implies that {xn}n∈N ⊂ H weakly converges to x ∈ H iff
(z|xn) → (z|x), n → +∞, for any z ∈ H. Let {xn}n∈N be a basis of H, thought of
as separable. Then xn → 0 weakly but not in the topology of H. For the second claim,
note ||x− xn||2 = ||x||2 + ||xn||2−2Re(x|xn).

3.9. Consider the basis of L2([−L/2,L/2],dx) formed by the functions (up to zero-
measure sets):

en(x) :=
ei2πnx/L
√

L
n ∈ Z .



156 3 Hilbert spaces and bounded operators

Suppose, for f ∈ L2([−L/2,L/2],dx), that the series

∑
n∈Z

(en| f )en(x)

converges to some g in norm || ||∞. Prove f (x) = g(x) a.e.

Hint. Compute the components (en|g) using the fact that the integral of an abso-
lutely convergent series on [a,b] is the series of the integrated summands. Check that
(en|g) = (en| f ) for any n ∈ Z.

3.10. Consider the basis of L2([−L/2,L/2],dx) made by the functions en of Ex-
ercise 3.9. Suppose f : [−L/2,L/2] → C is continuous, f (−L/2) = f (L/2), and
f is piecewise C1 on [−L/2,L/2] (i.e. [−L/2,L/2] = [a1,a2] ∪ [a2,a3] ∪ ·· · ∪
[an−2,an−1]∪ [an−1,an] and f�[ai,ai+1]∈C1([ai,ai+1]) for any i, understanding bound-
ary derivatives as left and right derivatives). Show:

f (x) = ∑
n∈Z

(en| f )en(x) for any x ∈ [−L/2,L/2]

where

en(x) :=
ei2πnx/L
√

L
n ∈ Z .

Prove the series converges uniformly.

Hint. Compute the components (en|d f/dx) by integration by parts: |n(en| f )| =
2c|(en|d f/dx)|, where c = L/(4π). Then

|(en| f )|= c2|(en|d f/dx)||1/n| ≤ c(|(en|d f/dx)|2 +1/n2), n � 0 .

Now, d f/dx gives an L2 map, the series of generic term 1/n2 converges, and |en(x)|=
1 for any x. Therefore the series

∑
n∈Z

(en| f )en(x)

converges uniformly, i.e. in norm || ||∞. Apply Exercise 3.9.

3.11. Rephrase and prove Exercise 3.10, replacing the requirement that f be continu-
ous and piecewiseC1 with the demand that f be absolutely continuous on [−L/2,L/2]
either with essentially bounded derivative, or with derivative in L 2([−L/2,L/2],dx).

Hint. Remember Theorem 1.75(a).

3.12. Consider the basis {en} of L2([−L/2,L/2],dx) of Exercise 3.9. Let f :
[−L/2,L/2] → C be of class CN , suppose dk f/dxk|−L/2 = dk f/dxk|L/2, k =
0,1, . . . ,N and that f is piecewise CN+1 on [−L/2,L/2]. Prove

dk f (x)
dxk = ∑

n∈Z
(en| f ) dk

dxk en(x) for any x ∈ [−L/2,L/2]



Exercises 157

where

en(x) :=
ei2πnx/L
√

L
n ∈ Z ,

and the series’ convergence is uniform, k = 0,1,2, . . . ,N .

Hint. Iterate the procedure of Exercise 3.10, bearing in mind that we can swap deriv-
atives and sum in a convergent series of C1 maps whose derivative series converges
uniformly.

3.13. Prove that the functions [0,L]� x 	→ sn(x) :=
√

2
L sin
(πnx

L

)
, n = 1,2,3, . . ., form

an orthonormal system in L2([0,L],dx).

Sketch. A direct computation tells ||sn|| = 1. Then observe that if Δ := − d2

dx2 then

Δsn =
(πnx

L

)2
sn. Thus if ( | ) is the inner product in L2([0,L],dx):

(sn|sm) =
1
n
(Δsn|sm) =

1
n
(sn|Δsm) =

m
n

(sn|sm)

where, in the middle, we integrated twice by parts to shift Δ from the left to the right,
and we used sk(0) = sk(L) = 0 to annihilate the boundary terms.
Therefore (

1− m
n

)
(sn|sm) = 0,

implying (sn|sm) = 0 if n � m.

3.14. Prove that the maps [0,L] � x 	→ cn(x) :=
√

2
L cos
(πnx

L

)
, n = 0,1,2, . . ., form

an orthonormal system in L2([0,L],dx).

Hint. Proceed exactly as in Exercise 3.13. IfΔ :=− d2

dx2 we still haveΔcn =
(πnx

L

)2
cn,

but the difference is that now it is the derivatives of cn that vanish on the boundary
of [0,L].

3.15. Recall that the space D((0,L)) of smooth maps with compact support in (0,L)
is dense in L2([0,L],dx) in the latter’s topology. Using Exercise 3.10 prove that

the functions [0,L] � x 	→ sn(x) :=
√

2
L sin
(πnx

L

)
, n = 1,2,3, . . ., are a basis of

L2([0,L],dx).

Outline. It suffices to prove that the space < sn >n=1,2,... of finite linear combina-
tions of the sn is dense in D((0,L)) in norm || ||∞, because this would imply, by
elementary integral properties, that they are dense in the topology of L2([0,L],dx).
Since D((0,L)) is dense in L2([0,L],dx), we would have < sn >n=1,2,... dense in
L2([0,L],dx). Because {sn}n=1,2,... is an orthonormal system (Exercise 3.13), this
would in turn imply the claim, by Theorem 3.26. To show < sn >n=1,2,... is dense
in D((0,L)) with respect to || ||∞, fix f ∈ D((0,L)) and extend it to F on [−L,L]
by imposing F be an odd map. By construction F is in D((−L,L)) and satisfies
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F(−L) = F(L), because it and its derivatives vanish around x = 0 and x = ±L. A
fortiori F is continuous and piecewise C1 on [−L,L]. Applying Exercise 3.10 we
conclude:

F(x) = ∑
n∈N

(F |en)
eiπnx/L
√

2L

where now

en(x) :=
eiπnx/L
√

2L
,

and the series’ convergence is in norm || ||∞. Since F is odd:

F(x) =−F(−x) =−∑
n∈N

(F |en)
e−iπnx/L
√

2L

adding which to the previous expression of F(x) gives:

2F(x) = ∑
n∈N

2i(F |en)√
2L

sin
(πnx

L

)
.

Restricting to x ∈ [0,L]:

f (x) = ∑
n∈N

i(F |en)√
2L

sin
(πnx

L

)
.

Since the convergence is in norm || ||∞, we have the claim.

3.16. Recall that the space D((0,L)) of smooth maps with compact support in (0,L)
is dense in L2([0,L],dx) in the latter’s topology. Using Exercise 3.10 prove that the

functions [0,L] � x 	→ cn(x) :=
√

2
L cos
(πnx

L

)
are a basis of L2([0,L],dx).

Hint. Proceed as in Exercise 3.15, extending f to an even function on [−L,L].

3.17. Let C⊂H be a closed subspace in the Hilbert space H. ProveC is weakly closed.
Put otherwise, show that if {xn}n∈N⊂C converges weakly (cf. Exercise 3.8) to x∈H,
then x ∈C.

Hint. If PC : H→C is the orthogonal projector onto C, show PCxn → PCx weakly.

3.18. Let H be a Hilbert space and T : D(T )→ H a linear operator, where D(T )⊂ H
is a dense subspace in H (D(T ) = H, possibly). Prove that if (u|Tu) = 0 for any u ∈
D(T ) then T = 0, i.e. T is the null operator (sending everything to 0).

Solution. We have

0 = (u+ v|T (u+ v)) = (u|Tu)+(v|Tv)+(u|T v)+(v|Tu) = (u|Tv)+(v|Tu)

and similarly

0 = i(u+ iv|T (u+ iv)) = i(u|Tu)+ i(v|T v)− (u|T v)+(v|Tu) =−(u|T v)+(v|Tu) .
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Adding these two gives (v|Tu) = 0 for any u,v ∈ D(T ). Choose {vn}n∈N ⊂ D(T )
such that vn → Tu, n→+∞; then ||Tu||2 = (Tu|Tu) = limn→+∞(vn|Tu) = 0 for any
u ∈ D(T ), i.e. Tu = 0 for any u ∈ D(T ), hence T = 0.

3.19. Consider L2([0,1],m) where m is the Lebesgue measure, and take f ∈
L 2([0,1],m). Let Tf : L2([0,1],m) � g 	→ f · g, with · being the standard pointwise
product of functions. Prove Tf is well defined, bounded with norm ||Tf || ≤ || f || and
normal. Moreover, show Tf is self-adjoint iff f is real-valued up to a zero-measure
set in [0,1].

3.20. Let T ∈B(H) be self-adjoint. For λ ∈ R consider the series of operators

U(λ ) :=
∞

∑
n=0

(iλ )n T n

n!
,

where T 0 := I, T 1 := T , T 2 := TT and so on, and the convergence is uniform. Prove
the series converges to a unitary operator.

Hint. Proceed as when proving the properties of the exponential map from its defin-
ition as series.

3.21. Referring to the previous exercise, show that λ ,μ ∈ R imply U(λ )U(μ) =
U(λ +μ).

3.22. Show that the series of Exercise 3.20 converges for any λ ∈ C to a bounded
operator, and that U(λ ) is always normal.

3.23. Show that the operator U(λ ) in Exercise 3.20 is positive if λ ∈ iR. Are there
values λ ∈ C for which U(λ ) is a projector (not necessarily orthogonal)?

3.24. Compute explicitly U(λ ) in Exercise 3.20 if T is defined by Tf of Exercise 3.19
with f = f .

3.25. In �2(N) consider the operator T : {xn} 	→ {xn+1/n}. Prove T is bounded and
compute T ∗.

3.26. Consider the Volterra operator T : L2([0,1],dx)→ L2([0,1],dx):

(T f )(x) =
∫ x

0
f (t)dt .

Prove it is well defined, bounded and its adjoint satisfies:

(T ∗ f )(x) =
∫ 1

x
f (t)dt for any f ∈ L2([0,1],dx).

Hint. Since [0,1] has finite Lebesgue measure, L2([0,1],dx) ⊂ L1([0,1],dx). Then
use Theorem 1.75.
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3.27. Let A be a C∗-algebra without unit. Consider the direct sum A⊕C and define
the product:

(x,c) · (y,c′) := (x◦ y+ cy+ c′x,cc′), (x′,c′),(x,c) ∈ A⊕C

on it, where ◦ is the product on A. Define the norm:

||(x,c)|| := sup{||cy+ xy|| | y ∈ A, ||y||= 1}

and the involution: (x,c)∗ = (x∗,c), where c is the complex conjugate of c and the
involution on the right is the one of A. Prove that the vector space A⊕C with the
above extra structure is a C∗-algebra with unit (0,1).

Hint. The triangle inequality is easy. The proof that ||(x,c)|| = 0 implies c = 0
and x = 0 goes as follows. If c = 0, ||(x,0)|| = 0 means ||x|| = 0, so x = 0. If
c � 0, we can simply look at c = 1. In that case ||y + xy|| ≤ ||y|| ||(x,1)||, so
||(x,1)|| = 0 implies y = xy for any y ∈ A. Using the involution we have y =
yx∗ for any y ∈ B. In particular x∗ = xx∗ = x, and then y = xy = yx for any
y ∈ A. Therefore x is the identity of A, which has no unit. The contradiction says
c = 0 is the only possibility, and we fall back to the previous case. Let us see
to the C∗ properties of the norm. By definition of norm: ||(c,x)||2 = sup{||cy +
xy||2 |y ∈ A, ||y||= 1}= sup{||y∗(ccy+cxy+cx∗y+x∗xy)|| |y ∈ A, ||y||= 1}. Hence
||(c,x)||2 ≤ ||(c,x)∗(c,x)|| ≤ ||(c,x)∗|| ||(c,x)||. In particular ||(c,x)|| ≤ ||(c,x)∗||, and
replacing (c,x) with (c,x)∗ gives ||(c,x)∗|| = ||(c,x)||. The inequality ||(c,x)||2 ≤
||(c,x)∗(c,x)|| ≤ ||(c,x)∗|| ||(c,x)|| implies ||(c,x)||2 ≤ ||(c,x)∗(c,x)|| ≤ ||(c,x)||2,
and so ||(c,x)||2 = ||(c,x)∗(c,x)||.
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Families of compact operators on Hilbert spaces and
fundamental properties

Measure what can be measured, and make measurable what
can’t be.

Galileo Galilei

The aim of this chapter, from the point of view of QM applications, is to introduce
certain types of operators used to define quantum states. These operators, known in
the literature as operators of trace class, or nuclear operators, are bounded operators
on a Hilbert space that admit a trace. In order to introduce them it is necessary to
define first compact operators, also known as completely continuous operators, that
play an important role in several branches of mathematics and physical applications
independent of quantum theories.

The first section will introduce the general notion of compact operator on a
normed space, then briefly discuss general properties in normed and Banach spaces.
We will prove the classical result on the non-compactness of the infinite-dimensional
unit ball.

In section two we specialise to Hilbert spaces, with an eye to L2 spaces on which
compact operators (such as Hilbert–Schmidt operators) admit an integral represent-
ation. We will show that the set of compact operators determines a closed ∗-ideal
in the C∗-algebra of bounded operators on a Hilbert space, hence, a fortiori, a C∗-
subalgebra. We will prove the celebrated theorem due to Hilbert on the spectral ex-
pansion of compact operators, to be considered as a precursor of all spectral decom-
position results of subsequent chapters.

The ∗-ideal of Hilbert–Schmidt operators and their elementary properties are the
subject of section four. We will show, in particular, that Hilbert–Schmidt operators
form a Hilbert space.

The penultimate section will be concerned with the ∗-ideal of operators of trace
class, and the proofs of the basic (and most useful in physics) properties. In particular,
the ciclicity property of trace will be proved.

The final section is devoted to a short introduction to Fredholm’s alternative the-
orem for Fredholm’s integral equations of the second kind.

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
DOI 10.1007/978-88-470-2835-7_4, © Springer-Verlag Italia 2013
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4.1 Compact operators in normed and Banach spaces

This section deals with compact operators in normed spaces. It starts with recall-
ing general results about compact subsets in normed spaces, especially infinite-
dimensional ones. The next section will discuss the theory in Hilbert spaces.

4.1.1 Compact sets in (infinite-dimensional) normed spaces

In a completely general topological space X a compact set is defined by 1.19, which
we recall below.

Definition. Let (X,T ) be a topological space and K ⊂ X.
(a) K is compact if any open covering of it admits a finite subcovering: if {Ai}i∈I ⊂
T , ∪i∈IAi ⊃ K, then ∪i∈JAi ⊃ K for some finite J ⊂ I.
(b) K is relatively compact if K is compact.
(c) X is locally compact if every point admits a relatively compact open neighbour-
hood.

Related to this is the notion of sequential compactness.

Definition 4.1. A subset K in a topological space is sequentially compact if any
sequence {xn}n∈N ⊂ K has a subsequence {xnp}p∈N that converges in K.

Remark 4.2. Let us list below a few general features of compact sets that should be
known from basic topology courses [Ser94II]. We shall make use of them later.

(1) Compactness is hereditary, in the sense that it is passed on to induced topologies.
(2) Closed subsets in compact sets are compact, and in Hausdorff spaces (like normed
vector spaces, Hilbert spaces), compact sets are closed.
(3) In metrisable spaces (in particular normed vector spaces, Hilbert spaces), com-
pactness is equivalent to sequential compactness. �

We prove the next useful property, valid in metric spaces as well.

Proposition 4.3. Let (X, || ||) be a normed space and A⊂ X. If any sequence in A ad-
mits a converging subsequence (not in A necessarily), then A is relatively compact.

Proof. The only thing to prove is, if {yk}k∈N ⊂ A, that there is a subsequence of
{yk}k∈N that converges (in A, being closed). Given {yk}k∈N ⊂ A, there will be se-

quences {x(k)
n }n∈N ⊂ A, one for each k, with x(k)

n → yk as n→+∞. Fix k and take the
corresponding nk big enough. Then we can construct, term by term, a new sequence

{zk := x(k)
nk }k∈N ⊂ A such that ||yk − zk|| < 1/k. Under the assumptions made on A

there will be a subsequence {zkp}p∈N of {zk}k∈N converging to some y ∈ A. Then

||ykp − y|| ≤ ||ykp − zkp ||+ ||zkp − y|| .
Since 1/kp → 0 for p→+∞, given ε > 0 there will be P such that, if p > P, ||zkp −
y||< ε/2 and 1/kp < ε/2, so ||ykp − y||< ε . In other words ykp → y as p→+∞. �
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Remarks 4.4. This proposition holds on metric spaces too, and the proof is the same
with minor modifications. �

Examples of compact sets in an infinite-dimensional normed space (X, || ||) are
easily obtained from finite-dimensional subspaces. As we know from Chapter 2.5,
any finite-dimensional space S is homeomorphic to Cn (or Rn for real vector spaces);
so, any closed and bounded set K ⊂ S (e.g., the closure of an open ball of finite ra-
dius) is compact in S by the Heine-Borel theorem. Since compactness is a hereditary
property K is compact also in the topology of (X, || ||).

The following is an important result, that discriminates between finite- and
infinite-dimensional normed spaces. We leave to the reader the proof of the fact that
the closure of an open ball in a normed space is nothing but the corresponding closed
ball with the same centre and radius:

{x ∈ X | ||x− x0||< r}= {x ∈ X | ||x− x0|| ≤ r} .

Proposition 4.5. Let (X, || ||) be a normed space of infinite dimension. The closure
of the open unit ball {x ∈ X | ||x||< 1} (that is the closed unit ball {x ∈ X | ||x|| ≤ 1})
cannot be compact.
The same is true for any open ball, with arbitrary finite radius and centre.

Proof. Let us indicate by B the open unit ball centred at the origin, and suppose B
is compact. Then we can cover B, hence B, with N > 0 open balls Bk of radius 1/2
centred at xk, k = 1, . . . ,N. Consider a subspace Xn in X, of finite dimension n, con-
taining the vectors xk. Since dimX is infinite, we may choose n > N as large as we
want. Define further “balls” P := B∩Xn of radius 1 and Pk := Bk ∩Xn, k = 1, . . . ,N,
all of radius 1/2. Let us identify Xn with R2n (or Rn if the field is R) by choosing
a basis of Xn, say {zk}k=1,...,n. Notice that a “ball” Pk does not necessarily have the
shape of a Euclidean ball. If we normalise the Lebesgue measure m on R2n by divid-
ing by the volume of P (non-zero since P is open, non-empty by Proposition 2.103),
then m(P) = 1. Let us show m(Pk) = (1/2)n. Lebesgue’s measure in translation-
invariant, so we may limit ourselves to balls B(r) centred at the origin of radius r.
Since every norm is a homogeneous function, B(λ r) = {λu |u ∈ B(r)}=: λB(r) for
any λ > 0. The Lebesgue measure onR2n satisfies m(λE) = λ 2nm(E), hence m(Pk) =
m((1/2)P) = (1/2)nm(P) = (1/2)n. Eventually, as B⊂∪N

k=1Bk and P⊂∪N
k=1Pk, we

have m(P)≤ ∑N
k=1 m(Pk) by sub-additivity, i.e. 1≤ N(1/2)2n. But this is impossible

if n is big enough (N is fixed). We prove it similarly for any open ball of finite radius
and centred at any point in the normed space. �

The next result explains, once more, how compact sets acquire ‘counter-intuitive’
properties in passing from finitely to infinitely many dimensions. In the standardCn or
R

n there are compact sets with non-empty interior: it is enough to close any bounded
open set. The Heine-Borel theorem warrants that the closure (still bounded) is com-
pact and clearly has points in its interior.

The complete space C can be obtained alike, from the union of a countable col-
lection of compact subsets: we can take open discs with rational centres and radii. In
the infinite-dimensional case the picture changes dramatically.
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Corollary 4.6. Let X be an infinite-dimensional normed space.
(a) If K ⊂ X is compact, the interior of K is empty.
(b) If X is also complete (i.e. a Banach space), X cannot be obtained as a countable
union of compact subsets.

Proof. (a) Suppose the interior of K is not empty; then it contains an open ball B,
since open balls form a basis for the topology. Compact subsets are closed because
normed spaces are Hausdorff, so B⊂K = K. Closed subsets in compact sets are com-
pact, hence B should be compact, contradicting the previous proposition.
(b) The claim follows from (a) and the last statement in Baire’s Theorem 2.89, where
X is our complete normed space. �

4.1.2 Compact operators in normed spaces

We are ready to introduce compact operators. Recall that a subset M in a normed
space (X, || ||) is bounded (in norm || ||) if there is an open ball Bδ (x0), of finite ra-
dius δ > 0 and centred at some x0 ∈ X, such that M ⊂ Bδ (x0).

Clearly, M is bounded if and only if there is a metric ball of finite radius δ > 0
and centred at the origin of X, containing M (just choose as radius δ + ||x0||).

Definition 4.7. Let X,Y be normed spaces over R, or C. T ∈ L(X,Y) is a compact
operator (or completely continuous operator) when either of the following equival-
ent conditions holds:

(a) For any bounded subset M ⊂ X, T (M) is relatively compact in Y.
(b) If {xn}n∈N ⊂ X is bounded, there is a subsequence {xnk}k∈N such that {T xnk}k∈N
converges in Y.

B∞(X,Y) denotes the subset of compact operators from X to Y, andB∞(X) the subset
of compact operators on X.

Remark 4.8. (1) Clearly (a) ⇒ (b). The opposite implication (b) ⇒ (a) is an imme-
diate consequence of Proposition 4.3.
(2) Any compact operator is certainly bounded. In fact, the unit closed ball centred at
the origin is mapped to a set (containing the origin) with compact closure K. The lat-
ter can be covered by N open balls of radius r > 0, say Br(yi). Then K ⊂∪N

i=1Br(yi)⊂
BR+r(0), where R is the maximum distance between the centres yi and the origin. In
particular ||T (x)|| ≤ (R+ r) for ||x||= 1, so ||T || ≤ r +R < +∞. �

The sets B∞(X,Y) and B∞(X) are actually vector spaces with the usual linear
combinations of operators, hence subspaces of B(X,Y) and B(X) respectively. Not
only that, but they enjoy the next properties as well.

Proposition 4.9. If X, Y are normed spaces, B∞(X,Y) satisfies these two properties.

(a) B∞(X,Y) is a vector subspace of B(X,Y).
(b) If Z is a normed space and A ∈B∞(X,Y):
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(i) B ∈B(Z,X) implies AB ∈B∞(Z,Y);
(ii) B ∈B(Y,Z) implies BA ∈B∞(X,Z).

(c) If Y is a Banach space and {An}n∈N ⊂ B∞(X,Y) converges uniformly to A ∈
B(X,Y), then A ∈B∞(X,Y). I.e. B∞(X,Y) is a closed subspace in the Banach space
(B∞(X,Y), || ||), where || || is the operator norm.

Proof. (a) Consider the operator αA+βB, α ,β ∈ C, A,B ∈B∞(X,Y). Let us prove
it is compact by showing that any bounded sequence {xn}n∈N ⊂ X has a subsequence
{xnr}r∈N ⊂ X whose image {(αA+βB)(xnr)}r∈N ⊂ Y converges.

Let {xn}n∈N ⊂ X be a bounded sequence. There is a subsequence {xnk}k∈N for
which Axnk ⊂ Y converges, as A is compact. The subsequence {xnk}k∈N is also
bounded by assumption, so there is a sub-subsequence {xnkm

}m∈N such that Bxnkm
∈Y

converges. Now, by construction, {xnkm
}m∈N is a subsequence of {xnk}k∈N for which

αAxnkm
+βBxnkm

⊂ Y converges.
(b) In case (i), if {zk}k∈N ⊂ Z is bounded by M > 0, the values Bzk form a bounded
set by ||B||M, as B is bounded. But A is compact, so there is a subsequence {znk}k∈N
for which ABznk converges. Thus AB is compact. In case (ii), as A is compact, if
{xk}k∈N ⊂ X is bounded there is a subsequence {xnk}k∈N such that the Axnk con-
verge. Since B is continuous, also BAxnk converge, and thus BA is compact.
(c) Let B(X,Y) � A = limi→+∞Ai with Ai ∈ B∞(X,Y). Take {xn}n∈N a bounded se-
quence in X: ||xn|| ≤ C for any n. We want to prove the existence of a converging
subsequence of {Axn}. Using a hopefully-clear notation, we build recursively a fam-
ily of subsequences:

{xn} ⊃ {x(1)
n } ⊃ {x(2)

n } ⊃ · · · (4.1)

such that, for any i = 1,2, . . ., {x(i+1)
n } is a subsequence of {x(i)

n } with {Ai+1x(i+1)
n }

converging. This is always possible, because any {x(i)
n } is bounded by C as sub-

sequence of {xn}, and Ai+1 is compact by assumption. The subsequence of {Axn}
that will converge is {Ax(i)

i }. From the triangle inequality

||Ax(i)
i −Ax(k)

k || ≤ ||Ax(i)
i −Anx(i)

i ||+ ||Anx(i)
i −Anx(k)

k ||+ ||Anx(k)
k −Ax(k)

k || .

With this estimate,

||Ax(i)
i −Ax(k)

k || ≤ ||A−An||(||x(i)
i ||+ ||x(k)

k ||)+ ||Anx(i)
i −Anx(k)

k ||

≤ 2C||A−An||+ ||Anx(i)
i −Anx(k)

k || .
Given ε > 0, if n is large enough 2C||A−An|| ≤ ε/2, since An → A. Fix n and r ≥ n.

Then {An(x
(r)
p )}p is a subsequence of the converging {An(x

(n)
p )}p. Consider the se-

quence {An(x
(p)
p )}p, for p ≥ n, that picks up the “diagonal” terms of all those sub-

sequences, each of which is a subsequence of the preceding one by (4.1); it is still a

subsequence of the converging {An(x
(n)
p )}p, so it, too, converges (to the same limit).

We conclude that if i,k ≥ n are large enough, ||Anx(i)
i −Anx(k)

k || ≤ ε/2. Hence if i,k
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are big enough then ||Ax(i)
i −Ax(k)

k || ≤ ε/2+ε/2 = ε . This finishes the proof, for we
have obtained a Cauchy subsequence in the Banach space Y, which must converge
in the space. �

Keeping in mind Proposition 2.70, a remarkable property of compact operators
is spelt out by the next fact.

Proposition 4.10. Let X, Y be normed spaces. If X � xn → x ∈ X weakly and T ∈
B∞(X,Y), then ||T (xn)−T (x)||Y → 0, n → +∞. In other terms compact operators
map weakly convergent sequences to sequences that converge in norm.

Proof. See Exercise 4.5. �

The last general property of compact operators in normed spaces concerns eigen-
values. We will give a proof before passing to compact operators in Hilbert spaces.

Theorem 4.11 (On the eigenvalues of compact operators in normed spaces). Let
T ∈B∞(X), X a normed space.
(a) For any δ > 0 there exist a finite number of eigenspaces of T with eigenvalues λ
such that |λ |> δ .
(b) If λ � 0 is an eigenvalue of T , the corresponding eigenspace has finite dimension.
(c) The eigenvalues of T , in general complex numbers, form a bounded, at most count-
able, set; they can be ordered by decreasing modulus:

|λ1| ≥ |λ2| ≥ · · ·0,

(possibly) with 0 as unique limit point.

Proof. Let us give, first, a lemma to be used in cases (a), (b).

Lemma 4.12 (Banach). Let x1,x2, . . . be a sequence (finite or infinite) of linearly in-
dependent vectors in the normed space X, and Xn :=< {x1,x2, . . . ,xn}>. Then there
exists a corresponding sequence y1,y2, . . .⊂ X such that:

(i) ||yn||= 1;
(ii) yn ∈ Xn;
(iii) d(yn,Xn−1) > 1/2,

for any n = 1,2, . . ., where d(yn,Xn−1) is the distance of yn from Xn−1:

d(yn,Xn−1) = inf
x∈Xn−1

||x− yn|| .

Proof of Lemma 4.12. Observe d(yn,Xn−1) exists and is finite, since it is the infimum
of a non-empty real set that is bounded from below by 0. Choose y1 := x1/||x1|| and
build the sequence {yn} inductively as follows. The vectors x1,x2, . . . are linearly
independent, so xn � Xn−1 and d(xn,Xn−1) = α > 0. So let x′ ∈ Xn−1 be such that
α < ||xn− x′||< 2α . As α = d(xn,Xn−1) = d(xn− x′,Xn−1), the vector

yn :=
xn− x′

||xn− x′||
satisfies (i), (ii), (iii). �
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Let us resume the proof of (a)–(b). If X is finite-dimensional the claims hold be-
cause eigenvectors with distinct eigenvalues are linearly independent. So consider
X infinite-dimensional, where there can be infinitely many eigenvalues and eigen-
vectors. The proof of both (a) and (b) follows simultaneously from the existence, for
any δ > 0, of a finite number of linearly independent eigenvectors corresponding
to eigenvalues λ with |λ | > δ . Let us prove this, then. Let λ1,λ2, . . . be a sequence
of eigenvalues of T , possibly repeated, such that |λn| > δ . Assume, by contradic-
tion, there is an infinite sequence x1,x2, . . ., of corresponding linearly independent
eigenvectors. We are claiming, by refuting the theorem, that there are infinitely many
linearly independent eigenvectors with eigenvalues λ such that |λ | > δ . Using the
preliminary lemma, construct the sequence y1,y2, . . . fulfilling (i), (ii) and (iii), where
Xn is spanned by x1,x2, . . . ,xn. Since |λn|> δ , the sequence { yn

λn
}n=1,2,... is bounded.

Now we show that we cannot extract a converging subsequence from the images
{T yn

λn
}n=1,2,.... By construction, namely,

yn :=
n

∑
k=1

βkxk ,

so

T
yn

λn
=

n−1

∑
k=1

βkλk

λn
xk +βnxn = yn + zn ,

where

zn :=
n−1

∑
k=1

βk

(
λk

λn
−1

)

xk ∈ Xn−1 .

For any i > j, then:
∣
∣
∣
∣

∣
∣
∣
∣T

(
yi

λi

)

−T

(
y j

λ j

)∣
∣
∣
∣

∣
∣
∣
∣= ||yi + zi− (y j + z j)||

= ||yi− (y j + z j− zi)||> 1/2

as y j +z j−zi ∈ Xi−1. This is clearly incompatible with the compactness of T . There-
fore we have to conclude that an infinite sequence of linearly independent eigen-
vectors x1,x2, . . . cannot exist. This ends the proof of (a) and (b).
(c) This part follows from (a) by picking a sequence of numbers δ > 0 of the form
δn = 1/n, n = 1,2,3, . . .. �

Remark 4.13. (1) One final property, that we shall not prove, establishes that in the
Banach setting the conjugate (cf. Definition 2.42) to a compact operator is compact.
We will prove it for the Hermitian adjoint to a compact operator in a Hilbert space.
(2) From Lemma 4.12 descends an alternative proof that the closed unit ball in an
infinite-dimensional normed space is not compact (see Exercise 4.2). �

4.2 Compact operators in Hilbert spaces

From now on we will consider compact operators in Hilbert spaces, even if certain
properties are valid in less-structured spaces, like normed or Banach spaces.
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4.2.1 General properties and examples

In the first theorem we prove about compact operators in Hilbert spaces, the com-
pleteness assumption is necessary only for the last statement.

Before, though, we need a preparatory proposition.

Proposition 4.14. Let H be a Hilbert space. Then A∈B(H) is compact iff |A| is com-
pact (see Definition 3.69).

Proof. Assume A compact. Let {xk}k∈N be a bounded sequence in H and {Axkn}n∈N
a subsequence of {Axk}k∈N that converges, by virtue of compactness. Since the lat-
ter is a Cauchy subsequence by (3.54), the subsequence {|A|xkn}n∈N of {|A|xk}k∈N
is a Cauchy sequence and converges. Thus |A| is compact. Swapping A and |A| and
repeating the proof proves the reverse implication. �

Theorem 4.15. Let H be a Hilbert space.
(a) B∞(H) is a subspace in B(H).
(b) B∞(H) is a two-sided ∗-ideal of B(H); i.e., beside being a subspace, B∞(H) is
such that TK,KT ∈B∞(H) for any T ∈B∞(H), K ∈B(H), and T ∗ ∈B∞(H).
(c) B∞(H) is closed in the uniform topology, hence a C∗-algebra (without unit if
dimH = ∞), actually a C∗-subalgebra of B(H).

Proof. (a) We proved this, in the more general setting of normed spaces, in Propos-
ition 4.9(a).
(b) Proposition 4.9(b) shows that, in normed spaces, multiplying a compact operator
on the left or right by a bounded operator produces a compact operator. To show
closure under Hermitian conjugation, let us observe |T | is compact if and only if T
is, by Proposition 4.14. From the polar decomposition T = U |T | of Theorem 3.71,
we have T ∗ = |T |U∗, where we used |T | ≥ 0, so |T | is self-adjoint. The boundedness
of U∗ together with the compactness of |T | force T ∗ = |T |U∗ to be compact by what
we saw at the beginning.
(c) This part follows directly from Proposition 4.9(c) and the definition of C∗-algebra
(recall H has infinite dimension, so the identity operator I is not compact, for other-
wise the closed ball would be compact, and we know this cannot be). �

Examples 4.16. (1) If X,Y are normed spaces and T ∈B(X,Y) has dimRan(T ) finite,
T must be compact. Let us prove it. If V ⊂ X is bounded, i.e. V ⊂ Br(0) for a finite
r > 0, then ||T (V )|| ≤ r||T || < +∞, whence T (V ) is bounded. T (V ) is closed and
bounded in a normed space of finite dimension that is homeomorphic to Cn (Propos-
ition 2.103). By Heine-Borel T (V ) is compact in the topology induced on the range
of T . Thus T is compact, because compactness in the induced topology is the same as
ambient compactness. As further subcase, if H is a Hilbert space consider an operator
Tx ∈ L(H) of the form

Tx : u 	→ (x|u)y ,

where x,y ∈H are given vectors (possibly equal). This operator is compact, for it has
finite-dimensional range.
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(2) If {xn}n∈N and {yn}n∈N are orthogonal subsets in H, and if T =∑n∈N(xn| )yn is a
bounded operator (interpreting the series in the uniform topology), then T is compact
by (a) and (c) in Theorem 4.15.

(3) In �2(N) consider the operator A : {xn} 	→ {xn+1/n}. It is compact because uni-
form limit of:

Am : {xn} 	→ {x2/1,x3/2, . . . ,xm+1/m,0,0, . . .}

for n = 1,2 . . . It is easy to prove (exercise)

||A−An|| ≤ 1/(n+1) .

(4) Let X have measure μ on the σ -algebra Σ of X and let μ be σ -finite, so to define
the product measure μ⊗μ ; we will use the simpler notation L2(μ) := L2(X,μ) and
L2(μ⊗μ) := L2(X×X,μ⊗μ). We consider K ∈ L2(X×X,μ⊗μ) and prove that

TK : L2(μ) � f 	→
∫

X
K(x,y) f (y)dμ(y)

defines a compact operator TK ∈ B(L2(X,μ)) in case μ is separable (cf. Ex-
amples 3.32(3)). Firts of all, irrespective of separability, if f ∈ L2(μ):

∫

X
K(·,y) f (y)dμ(y) ∈ L2(μ)

and ∣
∣
∣
∣

∣
∣
∣
∣

∫

X
K(·,y) f (y)dμ(y)

∣
∣
∣
∣

∣
∣
∣
∣
L2(X,μ)

≤ ||K||L2(X×X,μ⊗μ)|| f ||L2(X,μ) ,

which is to say:
||TK || ≤ ||K||L2(X×X,μ⊗μ) . (4.2)

The proof of this is entirely based on the theorem of Fubini–Tonelli: if K ∈ L2(μ⊗μ),
by Fubini–Tonelli we have:

(1) |K(x, ·)|2 ∈ L1(μ), μ-almost everywhere;
(2)
∫

X |K(·,y)|2dμ(y) ∈ L1(μ) .

From (1) K(x, ·) ∈ L2(μ) a.e., so K(x, ·) f ∈ L1(μ) a.e. By the Cauchy-Schwarz in-
equality:

(3)
∫

X |K(x,y)|| f (y)|dμ(y)≤ ||K(x, ·)||L2 || f ||L2 .

Setting F(x) :=
∫

X K(x,y) f (y)dμ(y), F is measurable, and by (3):

(4) |F(x)|2 ≤ || f ||2
L2

∫
X |K(x,y)|2dμ(y).

From (2) we have |F |2 ∈ L2(μ), so it is true that
∫

X
K(·,y) f (y)dμ(y) ∈ L2(μ) .
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By (4) and Fubini–Tonelli, finally, we obtain
∣
∣
∣
∣

∣
∣
∣
∣

∫

X
K(·,y) f (y)dμ(y)

∣
∣
∣
∣

∣
∣
∣
∣
L2(μ)

≤ ||K||L2(μ⊗μ)|| f ||L2(μ) ,

hence (4.2).
In order to show TK is compact, let us assume further μ is separable, so to make

L2(X,μ) separable (see Proposition 3.33). For instance, X could be an interval (or a
Borel set) in R and μ the Lebesgue measure on R. If {un}n∈N is a basis of L2(X,μ),
{un ·um}n,m∈N is a basis of L2(X×X,μ ⊗ μ) (· is the ordinary pointwise product of
functions). Then, in the topology of L2(X×X,μ⊗μ), we have

K =∑
n,m

knmun ·um ,

where the numbers knm ∈ C depend on K. So, setting

Kp := ∑
n,m≤p

knmun ·um

we have Kp → K as p→+∞ in L2(X×X,μ⊗μ). Applying (4.2) to TKp−K = TKp −
TK , where TKp is induced by the integral kernel Kp, we have

||TK −TKp ||=
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣ ∑n,m>p

knmun ·um

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
L2(X×X,μ⊗μ)

→ 0 ,

as p→+∞. Thus TK is compact, because the operators TKp are compact being finite
sums of operators with finite-dimensional ranges, like those of example (1) above.
Even without assuming μ separable, and demanding instead K ∈ L2(X×X,μ ⊗ μ)
and μ σ -finite, it is easy to see that

TK = T ∗
K , (4.3)

where K(x,y) := K(x,y) for any x,y ∈ X, and the bar is complex conjugation. The
proof follows from Proposition 3.36 and Fubini–Tonelli. �

4.2.2 Spectral decomposition of compact operators
on Hilbert spaces

Compact operators on Hilbert spaces enjoy ramarkable properties: concerning ei-
genvectors, eigenvalues and eigenspaces, in particular, the features of compact and
self-adjoint operators generalise to infinite dimensions the properties of Hermitian
matrices. The first two results clarify the matter.

Theorem 4.17 (Hilbert). Let H be a Hilbert space, T ∈B∞(H) with T = T ∗.
(a) Every eigenspace of T with eigenvalue λ � 0 has finite dimension.
(b) The set σp(T ) of eigenvalues of T is:
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(1) non-empty;
(2) real;
(3) at most countable;
(4) it has one limit point at most, and this is 0;
(5) it satisfies:

sup{|λ | | λ ∈ σp(T )}= ||T || .
More precisely, the least upper bound is the maximum Λ ∈ σp(T ), where

Λ = ||T || if sup||x||=1(x|T x) = ||T || , (4.4)

or
Λ =−||T || if inf||x||=1(x|T x) =−||T || . (4.5)

(6) T coincides with the null operator iff 0 is the only eigenvalue.

Partial proof. (a) Let Hλ be the eigenspace of T with eigenvalue λ � 0. If B⊂ Hλ is
the unit open ball at the origin, we can write B = T (λ−1B), and λ−1B is bounded by
construction. Since T is compact, B is compact too. Hence in the Hilbert space Hλ
the closure of the unit open ball is compact, and so dimHλ < +∞ by Proposition 4.5.
(b) We will prove but items (3) and (4), which will be part of the next theorem.
If σp(T ) is not empty it must consist of real numbers by Proposition 3.54(c) part
(ii), T being self-adjoint. By Proposition 3.54(a) −||T || ≤ (x|T x) ≤ ||T || for any
unit x, so only one of two possibilities can occur: either sup||x||=1(x|T x) = ||T || or
inf||x||=1(x|T x) =−||T ||. Suppose the former is true, the other case being analogous
by flipping the sign of T to −T . Assume ||T || > 0, otherwise the theorem is trivial.
For any eigenvalue λ choose an eigenvector x with ||x|| = 1, so ||T || ≥ |(x|T x)| =
|λ |(x|x) = |λ |, and then sup |σp(T )| ≤ ||T ||. To prove (5) it suffices to exhibit an
eigenvector with eigenvalue Λ = ||T ||. This also proves σp(T ) � ∅ by the way. By
assumption there is a sequence of unit points xn such that (xn|T xn)→ ||T ||=:Λ > 0.
Using ||Txn|| ≤ ||T ||||xn||= ||T ||, we have

||T xn−Λxn||2 = ||T xn||2−2Λ(xn|T xn)+Λ 2 ≤ ||T ||2 +Λ 2−2Λ(xn|T xn) .

As ||T ||=Λ , taking the limit for n→+∞ in the inequality gives

T xn−Λxn → 0 . (4.6)

To conclude it would be enough to show either {xn}n∈N converges, or a subsequence
does. As ||xn|| = 1, the sequence {xn}n∈N is bounded; but T is compact, so we may
extract from {T xn}n∈N a converging subsequence {T xnk}k∈N.
Formula (4.6) implies

xnk =
1
Λ

[Txnk − (T xnk −Λxnk)]

converges to some x ∈ H, k →+∞, as linear combination of converging sequences.
Since T is continuous and xnk → x, (4.6) forces

T x =Λx .
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Observe that x � 0 because ||x|| = limk→+∞ ||xnk || = 1. So we have shown x is an
eigenvector with eigenvalue Λ .
(6) is an immediate consequence of (5). �

Let us move on to the celebrated theorem of Hilbert on the expansion of self-
adjoint compact operators in terms of a basis made of eigenvectors.

Theorem 4.18 (Hilbert). Let (H,( | )) be a Hilbert space and T ∈ B∞(T ) with
T = T ∗.
(a) If Pλ is the orthogonal projector on the eigenspace with λ ∈ σp(T ) (eigenvalue
set of T ),

T = ∑
λ∈σp(T )

λPλ . (4.7)

If σp(T ) is infinite, the series (4.7) is understood in uniform topology, and the eigen-
values: λ0,λ1, . . . (λi � λ j, i � j) are ordered so that |λ0| ≥ |λ1| ≥ |λ2| ≥ . . ..
(b) If Bλ is a basis for the eigenspace of T associated to λ ∈ σp(T ), then ∪λ∈σp(T )Bλ
is a basis for H; put equivalently, H admits a basis of eigenvectors of T .

Remarks 4.19. Notice that there can only be at most two distinct non-trivial eigen-
values with equal absolute value (the eigenvalues are real). As

|λ0| ≥ |λ1| ≥ |λ2| ≥ . . . ,

the ambiguity in ordering the terms of the series regards pairs λ ,λ ′ with |λ | = |λ ′|.
As we shall see after the proof, the sum of the series does not depend on this choice.

�

Proof (including parts (3), (4) of Theorem 4.17). (a) Let λ be an eigenvalue with ei-
genspace Hλ . Call Pλ the orthogonal projector on Hλ and Qλ := I−Pλ the orthogonal
projector on H⊥

λ . Then
T Pλ = PλT = λPλ . (4.8)

In fact, if x ∈ H, Pλ x ∈ Hλ then T Pλ x = λPλ x, so T Pλ = λPλ . Taking adjoints and
recalling λ ∈R, T = T ∗, Pλ = P∗λ , we find PλT = λPλ = T Pλ . A further consequence
is, directly by definition of Qλ and the above, that

QλT = T Qλ . (4.9)

Observe that from I = Pλ +Qλ we infer T = PλT +QλT , i.e.

T = λPλ +QλT . (4.10)

The operator QλT :

(i) is self-adjoint, for (QλT )∗ = T ∗Q∗
λ = T Qλ = QλT ;

(ii) is compact by Theorem 4.15(b);
(iii) satisfies, by construction, Pλ (QλT ) = (QλT )Pλ = 0 since PλQλ = QλPλ = 0.
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In the rest of the proof these identities will be used without further mention, and we
shall write Pn, Qn, Hn instead of Pλn , Qλn , Hλn .

Let us begin by choosing an eigenvalue λ = λ0 with highest absolute value: there
are, at most, two such eigenvalues differing by a sign, in which case we choose one.
If T1 := Q0T then

T = λ0P0 +T1

where T1 satisfies the above (i), (ii) and (iii). If T1 = 0 the proof ends; if not, we know
T1 is self-adjoint and compact, so we can iterate the procedure using T1 in place of T
and finding, for T2 := Q1T1,

T = λ0P0 +λ1P1 +T2 .

λ1 is an eigenvalue of T1, non-null and of highest absolute value (if a maximal eigen-
value were zero, then T1 = 0 by Theorem 4.17(b, part 6)), and P1 is the orthogonal
projector on the eigenspace of T1 relative to λ1.

Observe that any eigenvalue λ1 of T1 is also an eigenvalue of T , because, if
T1u1 = λ1u1,

Tu1 = (λ0P0 +T1)u1 = λ0P0T1
1
λ1

u1 +T1u1 = λ0P0Q0T
1
λ1

u1 +T1u1

= λ0 ·0 ·T 1
λ1

u1 +λ1u1 = λ1u1 .

What is more, λ1 � λ0 since u1 ∈ RanT1 = Ran(Q0T ) ⊂ H⊥
0 . At last, every eigen-

vector u of T with eigenvalue λ1 is an eigenvector for T1 relative to λ1. In fact, using
T1 = Q0T = (I−P0)T we have, with Tu = λ1u,

T1u = λ1u−λ1P0u = λ1u+0 = λ1u ,

also using P0u = 0 (because eigenspaces with distinct eigenvalues are orthogonal for

self-adjoint operators, like T ). Overall, the eigenspace H(T1)
1 relative to λ1 coincides

with the eigenspace H1 of T with eigenvalue λ1. Thus P1 is the orthogonal projector
in H on such eigenspace for T and T1.
Since |λ0| is the maximum,

|λ1| ≤ |λ0|.
There is an important consequence to this. Since ||T || = |λ0| and ||T1|| = λ1 by the
previous theorem,

||T1|| ≤ ||T || .
If T2 = 0 the proof ends, otherwise we proceed alike, finding

T −
n

∑
k=0

λkPk = Tn , (4.11)

where
|λ0| ≥ |λ1| ≥ · · · ≥ |λk| ≥ . . .
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and
||Tk||= |λk| . (4.12)

If none Tk is null, the process never stops. In such a case we claim that the decreasing
sequence of positive numbers |λk|must tend to 0 (there cannot be a larger limit point).
Suppose |λ0| ≥ |λ1| ≥ · · · ≥ |λk| ≥ . . .≥ ε > 0 and pick a unit vector xn ∈ Hn for any
n. The sequence of the xn is bounded, so the sequence of Txn, or a subsequence of it,
must converge as T is compact. But this is impossible: expanding the squared norm of
||λnxn−λmxm||, and because xn and xm are perpendicular (eigenvectors with distinct
eigenvalues for a self-adjoint operator, cf. Proposition 3.54(b, part ii)), we have

||T xn−T xm||2 = ||λnxn−λmxm||2 = |λn|2 + |λm|2 ≥ 2ε ,

for any n, m. Thus neither the Txn, nor a subsequence, can converge, for they cannot
be Cauchy. This is a contradiction, and therefore the sequence of λn (if there really are
infinitely many thereof) converges to 0. By (4.11) and (4.12), what we have proved
implies

T =
+∞

∑
k=0

λkPk (4.13)

in uniform topology. By construction the result does not depend on how we decide to
order pairs of eigenvalues with equal absolute value. Now we prove that (4.13) co-
incides with (4.7), because the sequence of eigenvalues {λk} found exhausts the set
of eigenvalues of T except, possibly, for 0 (which at any rate interferes with neither
of (4.13), (4.7)). Let λ � λn for any n be an eigenvalue of T , and Pλ its orthogonal
projector. Given that PnPλ = 0 for any n (again, by Proposition 3.54(b, part ii)), (4.13)
implies

T Pλ =
+∞

∑
k=0

λkPkPλ = 0 ,

whence, if u ∈ Hλ ,
Tu = T Pλu = 0 .

This means λ = 0.
The proof of part (a) ends here, and in due course we have also justified the

remaining part of Theorem 4.17.
(b) The bases Bλ always exist by Theorem 3.27, eigenspaces of T being closed
(exercise) in H and hence Hilbert spaces themselves. Call B := ∪λ∈σp(T )Bλ . We

assert that if u ∈ B⊥ then u = 0; since B is orthonormal, Definition 3.22 holds and
the proof would be over. So let u ∈ B⊥, so u ⊥ Bλ for any λ ∈ σp(T ), and hence
Pλu = 0 for any λ ∈ σp(T ). Using decomposition (4.7) for T we find Tu = 0; hence
u belongs to the eigenspace with zero eigenvalue H0. But being u orthogonal to
every eigenspace of T by construction, we must have u ∈ H0 and u ∈ H⊥

0 , i.e. u = 0
as claimed. �

Hilbert’s theorem, together with the polar decomposition Theorem 3.71, allows
to generalise formula (4.7) for the expansion of self-adjoint compact operators to
operators that are not self-adjoint. First, let us see a definition useful for the sequel.
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Definition 4.20. Let H be a Hilbert space and A ∈ B∞(H). Non-zero eigenvalues λ
of |A| are called singular values of A, and their set is denoted sing(A). The (finite)
dimension mλ of the eigenspace of λ ∈ sing(A) is called multiplicity of λ .

Theorem 4.21. Let (H,( | )) be a Hilbert space and A ∈ B∞(H), A � 0. If sing(A) is
ordered decreasingly, λ0 > λ1 > λ2 > .. . > 0,

A = ∑
λ∈sing(A)

mλ

∑
i=1

λ (uλ ,i| ) vλ ,i , (4.14)

A∗ = ∑
λ∈sing(A)

mλ

∑
i=1

λ (vλ ,i| )uλ ,i , (4.15)

where the sums, if infinite, are meant in uniform topology, and for any λ ∈ sing(A) the
set of uλ ,1, . . . ,uλ ,mλ is an orthonormal basis for the λ -eigenspace of |A|. Moreover,
for any λ ∈ sing(A), i = 1,2, . . . ,mλ , the vectors

vλ ,i :=
1
λ

Auλ ,i , (4.16)

form an orthonormal system and

vλ ,i = Uuλ ,i , (4.17)

where U is defined by the polar decomposition A = U |A|.
Proof. |A| is self-adjoint, positive and compact. Its eigenvalues are real, positive and
satisfy conditions (a) and (b) in Theorem 4.17. We examine the case where the eigen-
value set is infinite (countable), leaving the finite case to the reader. Theorem 4.18
allows to expand |A|:

|A|= ∑
λ∈σp(|A|)

λPλ ,

where the convergence is uniform. It is clear we can reduce to non-zero eigenvalues
since 0 does not give contributions to the the series

|A|= ∑
λ∈sing(A)

λPλ .

If U is bounded and B(H) � Tn → T ∈ B(H) uniformly, UTn →UT in the uniform
topology. Since U (from A = U |A|) is bounded, in the uniform topology we have:

A = U |A|= ∑
λ∈sing(A)

λUPλ . (4.18)

Theorem 4.17(a) says the closed projection space of each Pλ (λ > 0) has finite dimen-
sion mλ . We can find an orthonormal basis for it: {uλ ,i}i=1,...,mλ . Note (uλ ,i|uλ ′, j) =
δλλ ′δi j by construction, as eigenvectors with distinct eigenvalues are orthogonal
(|A| is normal because positive) by virtue of Proposition 3.54(b, ii). From uλ ,i =
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|A|(uλ ,i/λ ) we have uλ ,i ∈ Ran(|A|). Thus U acts on uλ ,i isometrically, and the vec-
tors on the right in (4.17) are still orthonormal. Equation (4.17) is equivalent to (4.16)
by polar decomposition:

Auλ ,i = U |A|uλ ,i = Uλuλ ,i = λvλ ,i .

It is an easy exercise to show that the orthogonal projector Pλ (λ > 0) can be written

Pλ =
mλ

∑
i=1

(uλ ,i| )uλ ,i .

Consequently,

UPλ =
mλ

∑
i=1

(uλ ,i| )Uuλ ,i =
mλ

∑
i=1

(uλ ,i| ) vλ ,i .

Substituting in (4.18) gives (4.14). Equation (4.15) arises from (4.14) if we consider
the following two facts: (i) Hermitian conjugation A 	→ A∗ is antilinear, it transforms
linear combinations of operators into linear combinations of the adjoints, and the
coefficients get conjugated; (ii) Hermitian conjugation is continuous in the uniform
topology of B(H) because Proposition 3.38(a) implies ||A∗||= ||A||.
From these two facts, (4.14) gives (recall λ ∈ R):

A∗ = ∑
λ∈sing(A)

mλ

∑
i=1

λ [(uλ ,i| ) vλ ,i]
∗ ,

where the series converges in uniform topology. An easy exercise shows that

[(uλ ,i| ) vλ ,i]
∗ = (vλ ,i| )uλ ,i ,

from which (4.15) is immediate. �

The theorem just proved allows us to introduce Hilbert–Schmidt operators and
operators of trace class, which we will describe in the ensuing sections.

4.3 Hilbert–Schmidt operators

A particular class of compact operators is that of Hilbert–Schmidt operators. They
have several applications in wide branches of mathematical physics, beside QM.
This section is devoted to their study and their main properties.

4.3.1 Main properties and examples

Warning. In this section, and sometimes also elsewhere, the operator norm || ||2 will
denote the Hilbert–Schmidt norm (see later) and not the usual L2 norm. This should
not cause ambiguity, for the correct meaning should be clear from the context. �
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Definition 4.22. Let (H,( | )) be a Hilbert space and || || the inner product norm.
A ∈ B(H) is a Hilbert–Schmidt operator (HS) if there is a basis U such that
∑u∈U ||Au||2 < +∞ in the sense of Definition 3.19. The class of Hilbert–Schmidt op-
erators on H will be indicated with B2(H). If A ∈B2(H),

||A||2 :=
√

∑
u∈U

||Au||2 , (4.19)

where U is the above basis.

As first thing let us prove that the particular basis chosen in the definition is not
important, and that also ||A||2 does not depend on it.

Proposition 4.23. Let (H,( |)) be a Hilbert space with norm || || induced by the inner
product, U and V bases (possibly coinciding) and A ∈B(H).

(a) {||Au||2}u∈U has finite sum iff {||Av||2}v∈V has finite sum. In that case:

∑
u∈U

||Au||2 = ∑
v∈V

||Av||2 . (4.20)

(b) {||Au||2}u∈U has finite sum iff {||A∗v||2}v∈V has finite sum. If so:

∑
u∈U

||Au||2 = ∑
v∈V

||A∗v||2 . (4.21)

Proof. In the light of Theorem 3.26(d),

||Au||2 = ∑
v∈V

|(v|Au)|2 < +∞ ,

so, given u, only a countable number of coefficients |(v|Au)|, at most, is non-zero by
Proposition 3.21(b). This gives at most a countable set V (u)⊂V such that

∑
u∈U

||Au||2 = ∑
u∈U

∑
v∈V (u)

|(v|Au)|2 < +∞ . (4.22)

In particular, using Proposition 3.21(b) again, it means that a countable (at most) set
of u ∈U gives non-zero sum ∑v∈V (u) |(v|Au)|2. Therefore the coefficients (v|Au) do
not vanish only for a countable (at most) set Z of pairs (u,v) ∈U×V . Define sets (at
most countable):

U0 := {u ∈U | there exists v ∈V with (v|Au) � 0} ,

V0 := {v ∈V | there exists u ∈U with (v|Au) � 0} .

Thus Z ⊂U0×V0. Endow U0 and V0 with counting measures μ and ν , and write the
above series using integrals and these measures (Proposition 3.21(c)). In particular
(4.22) becomes:

∑
u∈U

||Au||2 = ∑
u∈U

∑
v∈V (u)

|(v|Au)|2 =
∫

U0

dμ(u)
∫

V0

dν(v)|(v|Au)|2 < +∞ . (4.23)
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μ and ν are σ -finite because U0 and V0 are at most countable, so we can define the
product μ ⊗ ν and use Fubini–Tonelli. Concerning the last part of (4.23), this the-
orem ensures that (v,u) 	→ |(v|Au)|2 is integrable in the product measure and we can
swap integrals:

∑
u∈U

||Au||2 =
∫

U0×V0

|(v|Au)|2dμ(u)⊗dν(v) =
∫

V0

dν(v)
∫

U0

dμ(u)|(v|Au)|2 < +∞ .

Note (v|Au) = (A∗v|u), so just countably many, at most, products (A∗v|u) (with
(u,v) ∈U ×V ) will be different from zero, and in particular:

∑
v∈V
∑

u∈U

|(A∗v|u)|2 =
∫

V0

dν(v)
∫

U0

dμ(u)|(A∗v|u)|2 = ∑
u∈U

||Au||2 < +∞ .

But the left-hand side is precisely ∑v∈V ||A∗v||2. Thus we have proved this part of
assertion (b): if {||Au||2}u∈U has finite sum, so does {||A∗v||2}v∈V , and the sums co-
incide. Now we use the same proof, just exchanging bases and starting from A∗: re-
calling that (A∗)∗ = A for bounded operators, we can prove the remaining part of (b):
if {||A∗v||2}v∈V has finite sum, then also {||Au||2}u∈U does, and then (4.21) holds.

The proof of (a) is straighforward from (b) because the bases used are arbitrary. �

With that settled we can discuss some of the many and interesting mathematical
properties of HS operators. The most fascinating from a mathematical viewpoint is
(b) in the next theorem: HS operators A form a Hilbert space whose inner product
induces precisely the norm we called ||A||2. Another important fact is that HS oper-
ators are compact and their space is an ideal inside bounded operators, closed under
Hermitian conjugation.

Theorem 4.24. Hilbert–Schmidt operators on a Hilbert space H enjoy the following
properties.

(a) B2(H) is a subspace in B(H) and, actually, a two-sided ∗-ideal in B(H);
moreover:

(i) ||A||2 = ||A∗||2 for any A ∈B2(H);
(ii) ||AB||2 ≤ ||B|| ||A||2 and ||BA||2 ≤ ||B|| ||A||2 for any A∈B2(H), B∈B(H);
(iii) ||A|| ≤ ||A||2 for any A ∈B2(H).

(b) If A,B ∈B2(H) and if N is a basis in H, define:

(A|B)2 := ∑
x∈N

(Ax|Bx) . (4.24)

The map
( | )2 :B2(H)×B2(H)→ C

is well defined (the sum always reduces to an absolutely convergent series and does
not depend on the basis) and determines an inner product on B2(H) such that

(A|A)2 = ||A||22 (4.25)

for any A ∈B2(H).
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(c) (B2(H),( | )2) is a Hilbert space.
(d) B2(H)⊂B∞(H). More precisely, A ∈B2(H) iff A is compact and the set of pos-
itive numbers {mλλ 2}λ∈sing(A) (mλ is the multiplicity of λ ) has finite sum. In this
case:

||A||2 =
√

∑
λ∈sing(A)

mλλ 2 . (4.26)

Proof. (a) Obviously B2(H) is closed under multiplication by a scalar. Let us show
it is closed under sums. If A,B ∈B2(H) and N is any basis:

∑
u∈N

||(A+B)u||2 ≤ ∑
u∈N

(||Au||+ ||Bu||)2 ≤ 2

[

∑
u∈N

||Au||2 + ∑
u∈N

||Bu||2
]

.

ThusB2(H) is a subspace inB(H). A consequence of Proposition 4.23(b) is the clos-
ure under Hermitian conjugation, which proves (i). We prove (ii) and at the same
time that B2(H) is closed under left and right composites with bounded operators. If
A ∈B2(H) and B ∈B(H):

∑
u∈N

||BAu||2 ≤ ∑
u∈N

||B||2||Au||2 = ||B||2 ∑
u∈N

||Au||2 .

This shows B2(H) is closed under left composites and the second inequality in (ii).
Closure under right composition follows from closure under Hermitian conjugation
and left composites: B∗A∗ ∈B2(H) if A∈B2(H) and B∈B(H), so (B∗A∗)∗ ∈B2(H),
i.e. AB ∈ B2(H). From (i) we find that if A ∈ B2(H) and B ∈ B(H), then ||AB||2 =
||(AB)∗||2 = ||B∗A∗||2 ≤ ||B∗|| ||A∗||2 = ||B|| ||A||2, finishing part (ii). As for (iii) ob-
serve:

||A||= sup
||x||=1

||Ax||= sup
||x||=1

(||Ax||2)1/2 = sup
||x||=1

(

∑
u∈N

|(u|Ax)|2
)1/2

= sup
||x||=1

(

∑
u∈N

|(A∗u|x)|2
)1/2

,

where Theorem 3.26(d) was used for the basis N. Using Cauchy-Schwarz on the last
term above gives:

||A|| ≤ sup
||x||=1

(

∑
u∈N

||A∗u||2||x||2
)1/2

=

(

∑
u∈N

||A∗u||2
)1/2

= ||A∗||2 = ||A||2 .

(b) If A,B ∈B2(H) and N is a basis, the number of non-zero Au and Bu, for u ∈ N, is
at most countable by Definition 4.22 and Proposition 3.21(b). Since

|(Au|Bu)| ≤ ||Au|| ||Bu|| ≤ 1
2
(||Au||2 + ||Bu||2) ,
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the number of non-vanishing (Au|Bu), u∈N, is also countable at most, and the series
of non-null (Au|Bu) is absolutely convergent, so the order in (4.24) is irrelevant. In a
moment we will show that the choice of basis is not important. First, though, notice
that (4.25) holds trivially and ( | )2 satisfies the axioms of a semi-inner product, as
is easy to check. Positive definiteness (axiom H3) follows directly from (iii), so ( | )2

is an inner product inducing || ||2. Therefore we have polarisation, for this formula
holds for any scalar product:

4(A|B)2 = ||A+B||22 + ||A−B||22− i||A+ iB||22 + i||A− iB||22 .

Since, by Proposition 4.23, the number on the right does not depend on any basis,
neither will the left-hand side.
(c) We need only prove the space is complete. Take N a basis of H and {An}n∈N a
Cauchy sequence of HS operators with respect to || ||2. From part (iii) in (a) it is a
Cauchy sequence also in the uniform topology, and since B(H) is complete by The-
orem 2.41, there will be A ∈B(H) with ||A−An|| → 0, n→+∞. Cauchy’s property
asserts that however we take ε > 0 there is Nε such that ||An−Am||22 ≤ ε2 if n,m > Nε .
By definition of || ||2, for the same ε we will also have that for any finite subset I ⊂N:

∑
u∈I
||(An−Am)u||2 ≤ ||An−Am||22 ≤ ε2

whenever n,m > Nε . Passing to the limit as m→+∞, we find

∑
u∈I
||(An−A)u||2 ≤ ε2 ,

for any finite I ⊂ N if n > Nε . Overall, given that I is arbitrary,

||A−An||2 ≤ ε se n > Nε . (4.27)

In particular, then, A−An ∈B2(H), and so:

A = An +(A−An) ∈B2(H) .

Furthermore, ε > 0 was also arbitrary in (4.27), so An tends to A with respect to || ||2.
Therefore every Cauchy sequence for || ||2 converges insideB2(H), making the latter
complete.
(d) Let A ∈B2(H): we claim it is compact and it fulfills (4.26). Take a basis N. Then
∑u∈N ||Au||2 < +∞, where at most countably many summands do not vanish, and the
sum can be written as series or finite sum by taking only the un for which ||Aun||2 > 0.
Therefore, for any ε > 0 there exists Nε such that

+∞

∑
n=Nε

||Aun||2 ≤ ε2 .

The same property can be expressed in terms of N: for any ε > 0 there is a finite
subset Iε ⊂ N such that

∑
u∈N\Iε

||Au||2 ≤ ε2 .
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Let then AIε be the operator defined by: AIεu := Au if u∈ Iε and AIεu := 0 if u∈N \ Iε .
The range of AIε is spanned by Au with u∈ Iε , because these are finite in number, and
AIε is bounded and compact (Example 4.16(1)). By construction ||A−AIε ||2 exists
and equals:

||A−AIε ||22 = ∑
u∈N

||(A−AIε )u||2 = ∑
u∈N\Iε

||Au||2 ;

by (a)(iii) therefore,

||A−AIε || ≤ ||A−AIε ||2 =

(

∑
u∈N\Iε

||Au||2
)1/2

≤ ε .

Thus A is a limit point in the space of compact operators in the uniform topology.
As the ideal of compact operators is uniformly closed (Theorem 4.15(c)), the proven
result shows A is compact. Now let us prove (4.26): consider the positive compact
operator |A|= √

A∗A and let {uλ ,i}λ∈sing(A),i={1,2,...,mλ } be a basis of Ker(|A|)⊥, built
as in Theorem 4.21. We may complete it to a basis of the Hilbert space by adding a
basis for Ker(|A|); the latter is Ker(A) by Remark 3.70. (Using the orthogonal split-
ting H = Ker(|A|)⊕Ker(|A|)⊥, if {ui} is a basis for the closed subspace Ker(|A|)
and {v j} a basis for the closed Ker(|A|)⊥, the orthonormal system N := {ui}∪{v j}
is a basis of H, since x ∈ H orthogonal to N implies x = 0.) Using that basis to write
||A||2:

||A||22 = ∑
λ∈sing(A)

mλ

∑
i=1

(Auλ ,i|Auλ ,i) = ∑
λ∈sing(A)

mλ

∑
i=1

(A∗Auλ ,i|uλ ,i) = ∑
λ∈sing(A)

mλλ 2 ,

(4.28)
where the basis of Ker(A), by construction, does not contribute, |A|uλ ,i =√

A∗Auλ ,i = λuλ ,i and (uλ ,i|uλ ′, j) = δλλ ′δi j.
If, conversely, A is compact and {mλλ 2}λ∈sing(A) has finite sum, then (4.28) im-

plies ||A||2 < +∞, so A ∈B2(H). �

Examples 4.25. (1) Let us go back to example (4) in 4.16. Consider the operators:

TK : L2(X,μ)→ L2(X,μ)

induced by integral kernels K ∈ L2(X×X,μ⊗μ) (μ a σ -finite separable measure),

(TK f )(x) :=
∫

X
K(x,y) f (y)dμ(y) for any f ∈ L2(X,μ) .

We did prove these operators are compact. Now we show they are Hilbert–Schmidt
operators.
Using the same definition of the mentioned example, if f ∈ L2(X,μ) we saw (cf. part
(3) in example (4)) that for any x ∈ X

F(x) =
∫

X
|K(x,y)| | f (y)|dμ(y) < +∞ .
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Since F ∈ L2(X,μ), for any g ∈ L2(X,μ) the map x 	→ g(x)F(x) is integrable (so we
can define the inner product of g and F). The Fubini–Tonelli theorem guarantees the
map (x,y) 	→ g(x)K(x,y) f (y) is in L2(X×X,μ⊗μ) and that
∫

X×X
g(x)K(x,y) f (y)dμ(x)⊗dμ(y)=

∫

X
dμ(x)g(x)

∫

X
K(x,y) f (y)dμ(y)= (g|Tk f ) .

(4.29)
So let us consider a basis of L2(X×X,μ⊗μ) of type {ui ·u j}i, j, where {uk}k is a basis
for L2(X,μ) (and so for {uk}k as well, as is easy to prove). As K ∈ L2(X×X,μ⊗μ),
we have an expansion:

K =∑
i, j
αi jui ·u j , (4.30)

and then
||K||2L2 =∑

i, j

|αi j|2 < +∞ . (4.31)

On the other hand, (4.29) and (4.30) imply

(ui|TKu j) =
∫

X×X
ui(x)u j(y)K(x,y)dμ(x)⊗dμ(y) = (ui ·u j|K) = αi j ,

hence (4.31) rephrases as:

||K||2L2 =∑
i, j

|(ui|TKu j)|2 < +∞ .

By definition TK is thus a HS operator, and

||TK ||2 = ||K||L2 . (4.32)

(2) It is not so hard to prove that if H = L2(X,μ) with μ σ -finite and separable,
B2(H) consists precisely of the operators TK with K ∈ L2(X×X,μ⊗μ), so that the
map identifying K with TK is a Hilbert space isomorphism between L2(X×X,μ⊗μ)
andB2(H). To see that we take T ∈B2(H) and will exhibit K ∈ L2(X×X,μ⊗μ) for
which T = TK . Givan any basis {un}n∈N of L2(X,μ) we have ∑n∈N ||Tun||2 < +∞.
Consequently, by expanding Tun in {un}n∈N we obtain:

+∞> ∑
n∈N

||Tun||2 = ∑
m∈N
∑

n∈N
|(um|Tun)|2 .

Interpreting the series as integrals on {un}n∈N, and applying Fubini–Tonelli, we con-
clude∑(n,m)∈N2 |(um|Tun)|2 < +∞, so the integral HS operator TK with integral kernel

K ∈ L2(X×X,μ⊗μ):
K := ∑

(n,m)∈N2

(um|Tun)um ·un

is well defined. At the same time, the results of the previous example tell that, by
construction:

(um|TKun) =
∫

X
dμ(x)um(x)

∫

X
dμ(y)K(x,y)un(y) = (um|Tun)

and so TKun = Tun for any n ∈ N. By continuity TK = T follows immediately.
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(3) Consider the Volterra equation in the unknown function f ∈ L2([0,1],dx):

f (x) = ρ
∫ x

0
f (y)dy+g(x) , with given g ∈ L2([0,1],dx) and ρ ∈ C\{0}. (4.33)

Above, dx is Lebesgue’s measure, and the integral exists because, for any given
x ∈ [0,1], we can view it as inner product of f and the map [0,1] � y 	→ θ(x− y).
As such we write it as follows:

∫ x

0
f (y)dy =

∫ 1

0
θ(x− y) f (y)dy ,

where θ(u) = 1 if u ≥ 0 and θ(u) = 0 if u < 0. Clearly (x,y) 	→ θ(x− y) is also in
L2([0,1]2,dx⊗dy), so the equation can be rephrased using a Hilbert–Schmidt oper-
ator T :

f = ρT f +g , with given g ∈ L2([0,1],dx) and ρ ∈ C\{0} (4.34)

where we defined the Volterra operator:

(T g)(x) :=
∫ x

0
g(y)dy g ∈ L2([0,1],dx) . (4.35)

Volterra operators, and the associated equations, are more generally defined as:

(TV f )(x) :=
∫ x

0
V (x,y)g(y)dy ,

for some suitably regular V : [0,1]2 → R. We will study the simplest situation, given
by (4.35). If the operator (I−ρT ) is invertible, the solution to (4.34) reads:

f = (I−ρT )−1g . (4.36)

Formally, using the geometric series we see that the (left and right) inverse to I−ρT
is the sum of:

(I−ρT )−1 = I +
+∞

∑
n=0
ρn+1T n+1 , (4.37)

where the convergence is in the uniform topology. A sufficient condition for con-
vergence is ||ρT || < 1, proved in analogy to the geometric series. Yet we will look
for a finer estimate. Use the norm of B2(L2([0,1],dx)) and recall part (iii) in The-
orem 4.24(a). Moreover, if ||An|| ≤ an ≥ 0 for any An ∈ B(L2([0,1],dx)) where
∑+∞

n=0 an converges, then also ∑+∞
n=0 An converges in B(L2([0,1],dx)). The proof of

the latter fact is similar to that of the Weierstrass M-test in elementary calculus. A
direct computation with (4.35) shows that if n≥ 1:

(T n+1g)(x) =
∫ x

0

(x− y)n

n!
g(y)dy ,
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so T n ∈B2(L2([0,1],dx)) and:

||T n|| ≤ ||T n||2 =

√
∫

[0,1]2
|θ(x− y)|2

∣
∣
∣
∣
(x− y)n−1

(n−1)!

∣
∣
∣
∣

2

dx⊗dy≤ 2n−1

(n−1)!
.

Since the series of terms ρ
n2n

n! converges, for any ρ � 0 the operator (I−ρT )−1 exists
inB(L2([0,1],dx)) and is given by the sum in the right-hand side of (4.37). Therefore
(4.36) solves the initial Volterra equation. It is possible to make (I−ρT )−1 explicit

(
(I−ρT )−1g

)
(x) = g(x)+

+∞

∑
n=0

ρn+1 (T n+1g
)
(x)

= g(x)+ρ
+∞

∑
n=0

∫ x

0

(ρ(x− y))n

n!
g(y)dy .

The theorem of dominated convergence warrants we may swap sum and integral, so
that Volterra’s solution reads:

f (x) =
(
(I−ρT )−1g

)
(x) = g(x)+ρ

∫ x

0
eρ(x−y)g(y)dy .

For these operations we used a notion of pointwise convergence other than the uni-
form operator convergence. That the above expression is indeed the explicit inverse
to I−ρT can be checked by a direct computation, using (4.35) and integrating by
parts with g ∈C([0,1]). The result extends to L2([0,1],dx) because the operator with
integral kernel θ(x−y)eρ(x−y) is bounded (HS) and C([0,1]) is dense in L2([0,1],dx).
The inverse’s uniqueness ends the proof.

(4) Take L2(X,μ) with μ separable. An integral operator TK : L2(X,μ)→ L2(X,μ)
given by the kernel:

K(x,y) =
N

∑
k=1

pk(x)qk(y) ,

where pk,qk ∈ L2(X,μ), k = 1,2,3, . . . ,N are arbitrary maps and N ∈ N is chosen
at random, is called degenerate operator. Degenerate operators forms a two-
sided ∗-ideal BD(L2(X,μ)) in B(L2(X,μ)) that is a subspace of B∞(L2(X,μ))
and B2(L2(X,μ)). It can be proved rather easily that BD(L2(X,μ)) is dense in
B2(L2(X,μ)) in the latter’s norm topology. �

4.3.2 Integral kernels and Mercer’s theorem

The content of Examples 4.25(1) and (2) can be subsumed in a theorem. The final
assertion is easy and left as exercise.

Theorem 4.26. If μ is a positive σ -additive and separable measure on X, the space
B2(L2(X,μ)) consists of the operators TK:

(TK f )(x) :=
∫

X
K(x,y) f (y)dy , for any f ∈ L2(X,μ), (4.38)



4.3 Hilbert–Schmidt operators 185

where K ∈ L2(X×X,μ⊗μ). Moreover:

||TK ||2 = ||K||L2(X×X,μ⊗μ) .

In particular, if T ∈B2(L2(X,μ)) and U is a basis of L2(X,μ), then T = TK for the
kernel

K = ∑
u,v∈U×U

(u|T v)u · v (4.39)

and the convergence is in L2(X×X,μ⊗μ).
The map L2(X×X,μ⊗μ) � K 	→ TK ∈ B2(L2(X,μ)) is an isomorphism of Hil-

bert spaces.

Mercer’s theorem [RiNa53] is sometimes useful when dealing with X⊂Rn com-
pact and Lebesgue’s measure μ . In such a case, if K is continuous and TK is positive
the convergence of (4.39) is in || ||∞, provided one uses a basis of eigenvectors for
TK . We state and prove the theorem in a slightly more general situation, so to include
Lebesgue’s measures on compact sets in Rn.

Theorem 4.27 (Mercer). Let μ be a positive, separable Borel measure on a com-
pact Haudorff space X such that μ(X) < +∞ and μ(A) > 0 for any open set A � ∅.
Assume K : X×X→ C is continuous. If TK in (4.38) is positive, i.e. ( f |TK f )≥ 0 for
f ∈ L2(X,μ), then

K(x,y) = ∑
λ∈σ(TK)

mλ

∑
i=1
λuλ ,i(x)uλ ,i(y) , (4.40)

where the series converges on X×X in norm || ||∞. The number mλ indicates the
dimension (finite if λ � 0) of the λ -eigenspace of TK, and {uλ ,i}λ∈σp(Tk),i=1,...,mλ is a
basis of (continuous if λ � 0) eigenvectors of TK.

Proof. For simplicity let us relabel eigenvectors as u j with j ∈N, and call λ j the cor-
responding eigenvalues (it may happen that λ j = λk if j � k). To begin with, notice
the eigenvectors with λ � 0 are continuous, by the Cauchy-Schwarz inequality:

|u j(x)−u j(x′)|2 ≤
∫

X
|K(x,y)−K(x′,y)|2dμ(y)

∫

X
|u j(y)|2dμ(y)→ 0 as x→ x′.

We used dominated convergence for the first integral on the right, since K is integ-
rable on X, as μ(X) is finite, and also continuous on the compact set X×X and thus
|K(x, ·)−K(x′, ·)|2 is bounded, uniformly in x,x′, by some constant map C ≥ 0. So
take the continuous maps

Kn(x,y) := K(x,y)−
n

∑
j=0
λ ju j(x)u j(y) =

+∞

∑
j=n+1

λ ju j(x)u j(y) ,

where the last series converges in L2(X×X,μ(x)⊗ μ(y)) by Theorem 4.26. Note
λ j ≥ 0, because 0 ≤ (u j|TKu j) = λ j. In the topology of L2(X×X,μ(x)⊗ μ(y)) we
have:

Kn(x,y) =
+∞

∑
j=n+1

λ ju j(x)u j(y) ,
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so if f ∈ L2(X,μ)
∫

X

∫

X
Kn(x,y) f (y) f (x)μ(x)μ(y) =

+∞

∑
j=n+1

λ j(u j| f )( f |u j)≥ 0 .

We claim this fact implies Kn(x,x) ≥ 0. If there were x0 ∈ X with Kn(x0,x0) < 0,
as Kn is continuous we would be able to find an open neighbourhood (x0,x0) where
Kn(x,y)≤Kn(x0,x0)+ε < 0. Since X×X has the product topology, we could choose
the neighbourhood to be Bx0 ×Bx0 where Bx0 is an open neighbourhood of x0. By
Urysohn’s lemma (Theorem 1.24) we could find a continuous map f with support in
Bx0 such that 0≤ f ≤ 1 and f (x0) = 1 (note {x0} is compact because closed inside a
compact space). Then a contradiction would ensue, since μ(Bx0) > 0 by assumption:

( f |TK f ) =
∫

X

∫

X
Kn(x,y) f (y) f (x)dμ(x)dμ(y)

=
∫

Bx0

∫

Bx0

Kn(x,y) f (y) f (x)dμ(x)dμ(y)

≤
(
∫

Bx0

f (x)dμ(x)

)2

(Kn(x0,x0)+ ε)≤
(
∫

Bx0

1dμ(x)

)2

(Kn(x0,x0)+ ε)

= μ(Bx0)(Kn(x0,x0)+ ε) < 0 .

Thus if n = 0,1,2, . . .

0≤ Kn(x,x) = K(x,y)−
n

∑
j=0
λ ju j(x)u j(x) ,

and the positive-term series ∑+∞
j=0λ ju j(x)u j(x) converges, with sum bounded by

K(x,x). Hence the series ∑+∞
j=0λ ju j(x)u j(y) converges for any x, uniformly in y. In

fact if M = maxx∈X K(x,x), from Cauchy-Schwarz:
∣
∣
∣
∣
∣

n

∑
j=m

λ ju j(x)u j(y)

∣
∣
∣
∣
∣

2

≤
n

∑
j=m

λ j|u j(x)|2
n

∑
j=m

λ j|u j(y)|2 ≤M
n

∑
j=m

λ j|u j(x)|2 .

Therefore B(x,y) := ∑+∞
j=0λ ju j(x)u j(y) is continuous in y for any given x. By dom-

inated convergence, for any continuous f : X→ C and any given x
∫

X
B(x,y) f (y)dμ(y) =

+∞

∑
j=0
λ ju j(x)

∫

X
u j(y) f (y)dμ(y) (4.41)

by virtue of the above series’ uniform convergence on X (of finite measure). But
we also know the series on the right converges to TK f in L2(X,dμ(x)): we claim
it converges to (TK f )(x) also pointwise at x. Since K is continuous on the com-
pact X of finite measure, an obvious consequence of dominated convergence shows
X � x 	→ ∫X |K(x,y)|2dμ(y) is continuous, so there is a constant C such that:

∫

X
|K(x,y)|2dμ(y) < C2 for any x ∈ X .
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Hence if fn → f in L2(X,μ), then TK fn → TK f in norm || ||∞:

|(T f )(x)− (T fn)(x)|2 =
∣
∣
∣
∣

∫

X
K(x,y)( f (y)− fn(y))dμ(y)

∣
∣
∣
∣

2

≤
∫

X
|K(x,y)|2dμ(y)

∫

X
| f (y)− fn(y)|2dμ(y)≤C2μ(X)|| f − fn||2∞ .

Now if we decompose f in (4.41) using the eigenvector basis of TK ,

f (x) =
+∞

∑
j=0

u j(x)
∫

X
u j(y) f (y)dμ(y),

we obtain a converging expansion in L2(X,dμ(x)), so applying TK must give a uni-
formly converging series at x∈ X. Therefore the last series in (4.41) converges point-
wise (and uniformly) to (TK f )(x) for any x ∈ X. Comparing with the left-hand side
of (4.41) and recalling that (TK f )(x) =

∫
K(x,y) f (y)dμ(y) we finally get

∫

X
(B(x,y)−K(x,y)) f (y)dμ(y) = 0 .

Choosing f (y) := B(x,y)−K(x,y), for any given x∈ X, allows to conclude B(x,y) =
K(x,y) by using Proposition 1.70 suitably. So

K(x,x) = B(x,x) =
+∞

∑
j=0
λ j|u j(x)|2 .

The terms are continuous, non-negative and the sum is a continuous map, so Dini’s
Theorem 2.19 forces uniform convergence. From Cauchy-Schwarz we deduce that
∑+∞

j=0λ ju j(x)u j(y) converges uniformly, jointly in x, y, to some K′(x,y). X×X has

finite measure, so the convergence is in L2(X×X,μ⊗μ). But we know the series con-
verges to K(x,y) in that topology. Hence the series converges uniformly to K(x,y)
and the proof ends. �

Remarks 4.28. The theorem is still valid if TK has a finite number of negative eigen-
values, as is easy to prove. �

4.4 Trace-class (or nuclear) operators

In this part we introduce operators of trace class, also known as nuclear operators.
We shall follow the approach of [Mar82] essentially (a different one would be that
of [Pru81]).

4.4.1 General properties

Proposition 4.29. Let H be a Hilbert space and A ∈B(H). The following three facts
are equivalent.



188 4 Families of compact operators

(a) There exists a basis N of H such that {(u||A|u)}u∈N has finite sum:

∑
u∈N

(u||A|u) < +∞ .

(a)’
√|A| is a Hilbert–Schmidt operator.

(b) A is compact and the indexed set {mλλ}λ∈sing(A), where mλ is the multiplicity of
λ , has finite sum.

Proof. Statement (a)’ is a mere translation of (a), for
√|A|√|A| = |A|, so (a) and

(a)’ are equivalent. We show (a) implies (b). Any HS operator, in particular
√|A|, is

compact (Theorem 4.24(d)), the product of compact operators, e.g. |A| = (
√|A|)2,

is compact (Theorem 4.15(b)), and |A|= (
√|A|)2 is compact if and only if A is (Pro-

position 4.14); as a consequence of all this, A is compact. Let us take a basis of H
made of eigenvectors of |A|: uλ ,i, i = 1, . . . ,mλ (mλ = +∞ possibly, for λ = 0 only)
and |A|uλ ,i = λuλ ,i. In such basis:

∣
∣
∣
∣
∣
∣
√
|A|
∣
∣
∣
∣
∣
∣
2

2
=∑

λ ,i

( √
|A|uλ ,i

∣
∣
∣
√
|A|uλ ,i

)
=∑

λ ,i

(
uλ ,i

∣
∣
∣(
√
|A|)2uλ ,i

)

=∑
λ ,i

(uλ ,i||A|uλ ,i) =∑
λ

mλλ .

So {mλλ}λ∈sing(A) has finite sum because
∣
∣
∣
∣
∣
∣
√|A|
∣
∣
∣
∣
∣
∣
2

2
< +∞ by assumption. Con-

versely, it is obvious that (b) implies (a)’ by proceeding backwards in the argument

and computing
∣
∣
∣
∣
∣
∣
√|A|
∣
∣
∣
∣
∣
∣
2

2
in a basis of eigenvectors of |A|. �

Definition 4.30. Let H be a Hilbert space. A∈B(H) is called operator of trace class,
or equivalently nuclear operator, if it satisfies either of (a), (a)’ or (b) in Propos-
ition 4.29. The set of trace-class operators on H will be denoted by B1(H). In the
notation of Proposition 4.29, if A ∈B1(H),

||A||1 :=
∣
∣
∣
∣
∣
∣
√
|A|
∣
∣
∣
∣
∣
∣
2

2
= ∑
λ∈sing(A)

mλλ . (4.42)

Remark 4.31. (1) The name “trace class” evidently has its origin in the following
observation. For an operator A of trace class, the real number ||A||1 generalises to
infinite dimensions the notion of trace of the matrix corresponding to |A| (not A). As
a matter of fact, the analogies do not end here, as we shall briefly see.
(2) The following inclusions hold:

B1(H)⊂B2(H)⊂B∞(H)⊂B(H) .

The only relation we have not yet proved is the first one. To this end, if A∈B1(H), by
definition

√|A| ∈ B2(H), so |A|= √|A|√|A| is HS by Theorem 4.24(a); from the
polar decomposition A = U |A|, U ∈B(H), we have A ∈B2(H) by Theorem 4.24(a).
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(3) Each of the above sets is a subspace in the vector space of bounded operators, and
also a two-sided ∗-ideal (for trace-class operators we will prove it in a moment); at
last, each subspace is a Hilbert or Banach space with respect to a natural structure:
compact operators are closed in B(H) in uniform topology, so they form a Banach
space for the operator norm, HS operators form a Hilbert space with Hilbert–Schmidt
inner product, and trace-class operators form a Banach space with norm || ||1, as we
will explain later. �

Before we extend the notion of trace to the infinite-dimensional case, let us
review the key features of nuclear, or trace-class, operators.

Theorem 4.32. Let H be a Hilbert space. Nuclear operators in H enjoy the following
properties.

(a) If A ∈ B1(H) there exist two operators B,C ∈ B2(H) such that A = BC. Con-
versely, if B,C ∈B2(H) then BC ∈B1(H) and:

||BC||1 ≤ ||B||2 ||C||2 . (4.43)

(b) B1(H) is a subspace of B(H), and actually a two-sided ∗-ideal. Moreover:
(i) ||AB||1 ≤ ||B|| ||A||1 and ||BA||1 ≤ ||B|| ||A||1 for any A∈B1(H) and B∈B(H);
(ii) ||A||1 = ||A∗||1 for any A ∈B1(H);

(c) || ||1 is a norm on B1(H).

Remarks 4.33. It can be proved B1(H) is a Banach space with norm || ||1 [Sch60,
BiSo87]. �

Proof of Theorem 4.32 (part (b)(ii) is deferred to Proposition 4.36. (a) If A is of trace
class, the polar decomposition A =U |A| tells B and C can be taken to be B :=U

√|A|
and C :=

√|A|. By definition of trace-class operator
√|A| is a HS operator, so C is

HS. Such is also B, for U ∈ B(H) and Hilbert–Schmidt operators form a two-sided
ideal in B(H), by Theorem 4.24. Let now B, C be HS operators, and let us show
A := BC is of trace class. A is compact by Theorems 4.24(d) and 4.15(b); thus we need
only show ∑λ∈sing(A) mλλ < +∞. If BC = 0, the claim is obvious. Assume BC � 0
and expand the compact operator BC as in Theorem 4.21:

A = BC = ∑
λ∈sing(A)

mλ

∑
i=1

λ (uλ ,i| )vλ ,i .

Lest the notation become too heavy, set

Γ := {(λ , i)|λ ∈ sing(A), i = 1,2, . . . ,mλ}
and suppose λ j is the first element in the pair j = (λ , i). Then, clearly,

∑
j∈Γ
λ j = ∑

λ∈singA

mλλ .
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From the polar decomposition theorem A = U |A|, with U∗U = I on the range of |A|;
since v j = Uu j implies U∗v j = u j, we have:

(v j|BCu j) = (v j|Au j) = (v j|U |A|u j) = λ j(v j|Uu j) = λ j(U∗v j|u j) = λ j(u j|u j) = λ j .

If S ⊂ Γ is finite:

∑
j∈S

λ j = ∑
j∈S

(v j|BCu j) = ∑
j∈S

(B∗v j|Cu j)

≤ ∑
j∈S

||B∗v j|| ||Cu j|| ≤
√

∑
j∈S

||B∗v j||2
√

∑
j∈S

||Cu j||2 .

As the orthonormal systems u j = uλ ,i and v j = vλ ,i can be both completed to give
bases of H, the final term in the chain of inequalities above is smaller than

||B∗||2 ||C||2 = ||B||2 ||C||2 .

Taking the supremum over all finite S we conclude

||BC||1 = ∑
λ∈sing(A)

mλλ ≤ ||B||2 ||C||2

and in particular A = BC ∈B1(H).
(b)–(c) The closure of B1(H) under inner product is immediate from the definition
itself. Let us show B1(H) is closed under sums. Take A,B ∈ B1(H). If A + B = 0,
A + B is clearly nuclear. So assume A + B � 0 (compact anyway). Decompose po-
larly: A = U |A|, B = V |B|, A + B = W |A + B|. Using the usual decomposition on
singular values like in part (a), we find:

A+B = ∑
β∈sing(A+B)

mβ

∑
i=1
β (uβ ,i| )vβ ,i .

If Γ := {(β , i)|β ∈ sing(A + B), i = 1,2, . . . ,mβ}, S ⊂ Γ is finite and β j is the first
element in the pair j ∈ Γ , we have:

∑
j∈S

β j = ∑
j∈S

(v j|(A+B)u j) = ∑
j∈S

(v j|Au j)+∑
j∈S

(v j|Bu j) .

We can rewrite this as follows:

∑
j∈S

β j = ∑
j∈S

(
√
|A|U∗v j|

√
|A|u j)+∑

j∈S

(
√
|B|V ∗v j|

√
|B|u j) .

Proceeding as in (a) gives:

∑
j∈S

β j ≤ ||
√
|A|U∗||2 ||

√
|A|||2 + ||

√
|B|V ∗||2 ||

√
|B|||2 ≤ ||

√
|A|||22 + ||

√
|B|||22

(in the final passage we use the inequality ||√|A|U∗||2 ≤ ||√|A|||2 ||U∗|| (The-
orem 4.24, part (a) (ii)), since

√|A| is Hilbert–Schmidt; furthermore, it is easy to
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see ||U∗|| ≤ 1, because it is isometric on Ker(|A|)⊥ and vanishes on Ker(|A|)).
Eventually note:

||
√
|A|||22 + ||

√
|B|||22 = ||A||1 + ||B||1 .

What we have proved is A+B ∈B1(H) and that the triangle inequality

||A+B||1 ≤ ||A||1 + ||B||1
holds on B1(H). This turns || ||1 into a seminorm. It is indeed a norm, for ||A||1 = 0
implies the eigenvalues of |A| are all zero; by compactness |A|= 0, from (b) in The-
orem 4.17(6). The polar decomposition of A = U |A| forces A = 0. At this stage
we have proved B1(H) is a subspace of B(H) and || ||1 is a norm. Let us ex-
plain that B1(H) is closed under composition, on the left and on the right, with
bounded operators. Take A ∈ B1(H), B ∈ B(H) and write A = U |A|. Then BA =
(BU
√|A|) √|A|, where the factors are HS operators, so by part (a) BA ∈ B1(H).

Using Theorem 4.24(a)(ii), equation (4.42) and part (a):

||BA||1 ≤ ||BU
√
|A|||2 ||

√
|A|||2 ≤ ||BU || ||

√
A||2 ||

√
A||2 ≤ ||B|| ||

√
A||22

= ||B|| ||A||1 .

Moreover AB = (U
√|A|) √|A|B∈B1(H) because both factors are HS and (a) holds.

In a manner similar to part (a) we prove ||AB||1 ≤ ||B|| ||A||1. Statement (ii) in part
(b) will be justified in the proof of Proposition 4.36. �

4.4.2 The notion of trace

To conclude we introduce the notion of trace of a nuclear operator and we show how
the trace has the same formal properties of the trace of a matrix.

Proposition 4.34. If (H,( | )) is a Hilbert space, A ∈ B1(H) and N is a basis of H,
then

trA := ∑
u∈N

(u|Au) (4.44)

is well defined, since the series on the right is finite or absolutely convergent.
Moreover:

(a) trA does not depend on the chosen basis.
(b) For any pair (B,C) of Hilbert–Schmidt operators such that A = BC:

trA = (B∗|C)2 . (4.45)

(c) |A| ∈B1(H) and:
||A||1 = tr|A| . (4.46)

Proof. (a) and (b) Any trace-class operator can be decomposed in the product of two
HS operators as we saw in Theorem 4.32(a). We begin by noticing that if A = BC,
B,C Hilbert–Schmidt, then

(B∗|C)2 = ∑
u∈N

(B∗u|Cu) = ∑
u∈N

(u|BCu) = ∑
u∈N

(u|Au) = trA .
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This explains, apart from (4.45), that trA is well defined, being a Hilbert–Schmidt
inner product, that in the infinite sum of (4.44) only countably many summands, at
most, are non-zero, and that the sum reduces to a finite sum or to an absolutely con-
vergent series, since ∑u∈N |(B∗u|Cu)| < +∞ by definition of Hilbert–Schmidt inner
product. (This also shows (B∗|C)2 = (B′∗|C′)2 if BC = B′C′, for B,B′,C,C′ are HS
operators.) The result eventually proves the invariance of trA under changes of basis,
because ( | )2 does not depend on the basis chosen.
(c) Firstly, by uniqueness of the square root, | (|A|) |= |A|. In fact | (|A|) | is the only
positive bounded operator whose square is |A|∗|A|= |A|2, and |A| is bounded, positive
and squaring to |A|2. Therefore, A being of trace class:

+∞> ∑
u∈N

(u||A|u) = ∑
u∈N

(u|| (|A|) |u) ,

so Definition 4.30 implies |A| itself is of trace class. Choosing a basis {uλ ,i} of ei-
genvectors for |A| we have:

tr|A|= ∑
λ∈sing(A)

mλ

∑
i=1

(uλ ,i| |A|uλ ,i) = ∑
λ∈sing(A)

mλ

∑
i=1
λ = ∑

λ∈sing(A)
mλλ = ||A||1 .

The proof is thus finished. �

Definition 4.35. Let H be a Hilbert space and A ∈B1(H). The number trA∈ C is the
trace of the operator A.

The next proposition states other useful properties of nuclear operators in Hilbert
spaces: in particular – and precisely as in the finite-dimensional case – the trace is
invariant under cyclic permutations. We remark that the operators of the statements
below need not necessarily be all of trace class (an important fact in physical applic-
ations).

Proposition 4.36. Let H be a Hilbert space. The trace enjoys the following proper-
ties.

(a) If A,B ∈B1(H) and α ,β ∈ C, then:

trA∗ = trA , (4.47)

tr(αA+βB) = α trA + β trB . (4.48)

(b) If A is of trace class and B ∈B(H), or A and B are both Hilbert–Schmidt operat-
ors, then

trAB = trBA . (4.49)

(c) Let A1,A2, . . .An be in B(H). If one is of trace class, or two of them are Hilbert–
Schmidt operators, then the trace is invariant under cyclic permutations:

tr (A1A2 · · ·An) = tr (Aσ(1)Aσ(2) · · ·Aσ(n)) , (4.50)

where (σ(1),σ(2), . . . ,σ(n)) is a cyclic permutation of (1,2, . . . ,n).
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Proof of Proposition 4.36 and of part (ii) in Theorem 4.32(b). (a) Immediate by defin-
ition of trace.
(b) Let us begin by showing the statement holds if A and B are both HS operators. By
Theorem 4.24(b), equation (4.49) is equivalent to

(A∗|B)2 = (B∗|A)2 . (4.51)

The proof of (4.51) is straightforward using the polarisation formula (valid for any
inner product and the induced norm)

4(X |Y ) = ||X +Y ||2 + ||X −Y ||2− i||X + iY ||2 + i||X − iY ||2 ,

and recalling that, for HS norms, ||Z||2 = ||Z∗||2 ((i) in Theorem 4.24(a)).
Now suppose A is of trace class and B ∈ B(H). Then A = CD, with C and D

HS operators by Theorem 4.32(a). In addition, DB and BC are Hilbert–Schmidt, for
B2(H) is a two-sided ideal in B(H). By swapping two HS operators at a time:

trAB = tr((CD)B) = tr(C(DB)) = tr((DB)C) = tr(D(BC)) = tr((BC)D)

= tr(B(CD)) = trBA .

(c) Since B1(H) is a two-sided ideal in B(H), one operator of trace class among
A1, . . . ,An is enough to render their product of trace class. In particular, using The-
orem 4.32(a) and the fact that B2(H) is a two-sided ideal of B(H) we see clearly that
if two among A1, . . . ,An are HS, their product is of trace class. Then (4.50) is clearly
equivalent to:

tr (A1A2 · · ·An) = tr (A2A3 · · ·AnA1) ; (4.52)

in fact, one permutation at a time, we obtain any cyclic permutation. Let us prove
(4.52). Consider first the case of two HS operators Ai, A j, i < j. If i = 1, the claim
follows from (b) with A = A1 and B = A2 · · ·An. If i > 1, the four operators (i) A1 · · ·Ai,
(ii) Ai+1 · · ·An, (iii) Ai+1 · · ·AnA1, (iv) A2 · · ·Ai are necessarily HS, for they involve
either Ai or A j as factor (never both). Hence:

tr(A1 · · ·An) = tr(A1 · · ·Ai Ai+1 · · ·An) = tr(Ai+1 · · ·An A1A2 · · ·Ai)

= tr(A2 · · ·Ai Ai+1 · · ·AnA1) ,

which is what we wanted.
Let us prove invariance under permutations assuming Ai is of trace class. If i = 1

it follows from part (b) by taking A = A1 and B = A2 · · ·An. So suppose i > 1. Then
A1 · · ·Ai and A2 · · ·Ai are of trace class because both contain Ai, and then:

tr(A1 · · ·An) = tr(A1 · · ·Ai Ai+1 · · ·An) = tr(Ai+1 · · ·An A1A2 · · ·Ai)

= tr(A2 · · ·AiAi+1 · · ·AnA1) ,

recalling part (b). Invariance under permutations allows to prove part (ii) in The-
orem 4.32(b). Using (4.46) we have to prove tr|A| = tr|A∗|. By the corollary to
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the polar decomposition theorem (Theorem 3.71) we deduce |A∗| = U |A|U∗, where
U |A|= A is the polar decomposition of A. Hence

||A∗||1 = tr|A∗|= tr(U |A|U∗) = tr(U∗U |A|) = tr|A|= ||A||1 ,

where we used U∗U |A|= |A|, for U is isometric on Ran(|A|) (Theorem 3.71). �

Remark 4.37. (1) A useful property of trace-class operators is the following. We will
be able to justify it only after proving the spectral theorem for self-adjoint operators:

Proposition 4.38. If H is a Hilbert space, T ∈ B(H) is of trace class if and only if
∑u∈N |(u|Tu)|< +∞ for any basis N ⊂ H.

Proof. See Exercise 9.3. �

(2) If A∈B1(H) and A = A∗, computing the trace of A with an eigenvector basis of A
itself (this exists by Theorem 4.18), we conclude tr(A) =∑λ∈σp(A) mλλ , whereσp(A)
is, as always, the set of eigenvalues of A and mλ the dimension of the λ -eigenspace.
As for finite dimensions, for self-adjoint operators of trace class the trace coincides
with the sum of the eigenvalues. This is still true even if A is not self-adjoint.

Theorem 4.39 (Lidiskii). If T ∈B1(H) with H a complex Hilbert space, then tr(T ) =
∑λ∈σp(T ) mλλ , where σp(T ) is the eigenvalue set of T , mλ the dimension of the λ -
eigenspace, and the series converges absolutely.

The result is far from obvious, and a proof can be found in [BiSo87]. �

Example 4.40. For the following example familiarity with Riemannian geometry is
required. An example of a trace-class operator important in physics arises [Mor99]
when studying the Laplace-Beltrami operator (or Laplacian) on Riemannian mani-
folds (M,g). In local coordinates x1, . . . ,xn on the n-manifold M, the Laplacian is the
differential operator:

Δ =
n

∑
i=1

1√
g
∂
∂xi

gi j(x)
√

g
∂
∂x j

,

where g denotes the determinant of the matrix of coefficients gi j, i, j = 1, . . . ,n, that
describes the metric tensor in the given coordinates, and gi j are the coefficients of
the inverse matrix. If V : M → (K,+∞), for a certain K > 0, is an arbitrary smooth
map, we consider the operator A = −Δ +V defined on the space D(M) of smooth
complex-valued maps on M. We may view D(M) as a (dense) subspace in L2(M,μg),
where μg, the natural Borel measure associated to the metric, reads

√
gdx1 · · ·dxn

in local coordinates. The operator A is positive, not bounded, and admits a unique
inverse (also positive): A−1 : L2(M,μg) → D(M). Thinking A−1 as an L2(M,μg)-
valued operator, it turns out that A−1 ∈ B(L2(M,μg)). The interesting point is that
A−1 ∈B∞(L2(M,μg)). But there is more to the story. A theorem due to Weyl proves
the eigenvalues λ j ∈ σp(A) of A (where j tags the eigenvector φ j and not the cor-
responding eigenvalue λ j, so that φi � φk if k � i but 0 < K ≤ λ0 ≤ λ1,≤ λ2,≤ ·· · )
satisfy an estimate:

lim
j→+∞

j−1λ n/2
j =

kn

vol(M)
, (4.53)
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where vol(M) is the manifold’s volume (finite by compactness) and kn a univer-
sal constant that depends only upon the manifold’s dimension. Furthermore, the
eigenvectors {φ j} j∈N form a basis of L2(M,μg), which implies the eigenvalue set
σp(A−k) of A−k satisfies σp(A−k) = {λ−k

j } j∈N. Computing the norms || ||1 and || ||2
of A−k = |A|−k, and using the basis of eigenvectors {φ j} j∈N of A, we have:

||A−k||1 =
+∞

∑
j=0

λ−k
j and ||A−k||22 =

+∞

∑
j=0

λ−2k
j .

The estimate (4.53) implies A−k ∈ B1(L2(M,μg)) if k > n/2, and A−k ∈
B2(L2(M,μg)) if k > n/4. �

4.5 Introduction to the Fredholm theory of integral equations

Integral equations are a central branch of functional analysis, especially for applic-
ations in physics (for instance in the theory of quantum scattering [Pru81] and the
study of inverse problems) and other sciences. In the sequel we shall deal with gen-
eral results due to Fredholm in most part, and we will regularly assume an abstract
viewpoint, where integral operators are seen as particular compact operators on Hil-
bert spaces (even though several results can be extended to general Banach spaces).
We shall essentially follow the treatment of [KoFo99].

To fix ideas, let us consider a measure space (X,Σ ,μ), where μ : Σ → [0,+∞]
is a positive (σ -additive) measure that is σ -finite and separable, and take a map
K ∈ L2(X×X,μ ⊗ μ) with no further properties. TK ∈ B2(H) is the usual integral
operator (cf. Examples 4.16(3), (4) and 4.25(1), (2)) on H = L2(X,μ) defined by:

(TKψ)(x) :=
∫

X
K(x,y)ψ(y)dμ(y) . (4.54)

We wish to study, in broad terms, the integral equation:

TKϕ−λϕ = f , (4.55)

where f ∈ H is given, ϕ ∈ H the unknown, λ ∈ C a constant.
To begin wth, consider the case λ = 0. This gives the so-called Fredholm equa-

tion of the first kind on the Hilbert space H.
From the abstract point of view we have to solve for ϕ ∈ H the equation:

Aϕ = f ,

where A : H→ H is a compact operator (in the concrete case A is TK , a HS operator)
and f ∈ H a given element.

An important general result, valid also with an infinite-dimensional Banach space
B replacing H, which assumes A compact, is that the equation has no solution for cer-
tain f ∈ H, irrespective of A ∈B∞(H). This follows from the next proposition.
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Proposition 4.41. If A ∈ B∞(B) with B Banach space of infinite dimension, then
Ran(A) � B.

Proof. We can write B = ∪n∈NBn, where Bn is the open ball of radius n at the origin,
so:

Ran(A) = ∪n∈NA(Bn) .

If Ran(A) were equal to B we could write:

B = ∪n∈NA(Bn)⊂ ∪n∈NA(Bn)⊂ B,

hence
B = ∪n∈NA(Bn) ,

where any A(Bn) is compact because A is compact and Bn bounded. Therefore B
would become a countable union of compact sets, which is impossible by Corol-
lary 4.6. �

A second issue with Fredholm equations of the first kind arises from the next
proposition.

Proposition 4.42. Every left inverse to a compact injective operator A ∈ B∞(X),
where X is a normed space, cannot be bounded if X is infinite-dimensional.

Proof. The proof is in Exercise 4.1. �

Because of this result if two equations Aϕ = f1 and Aϕ = f2 both admit solu-
tions, the latter may be very different, even if f1 and f2 are close in norm. In other
terms Fredholm equations of the first kind are ill posed problems à la Goursat. This
does not entail, obviously, that Fredholm equations of the first kind are mathematic-
ally uninteresting or not useful in applied sciences. What it means is that their study is
hard and requires advanced and specialised topics, that reach well beyond the present
elementary treatise.

We can consider the case λ � 0 in (4.55). The equation in this case is called Fred-
holm equation of the second kind. For a short moment we assume the operator TK

admits a Hermitian kernel. In other terms we consider:

TKϕ−λϕ = f , (4.56)

where Tk has the form (4.54) with λ � 0 fixed in C and K(x,y) = K(y,x), so that, by
(4.3), TK = T ∗

K . In such a case we can state a more general theorem.

Theorem 4.43 (Fredholm equations of the second kind with Hermitian kernels).
Let H = L2(X,μ) be a Hilbert space with σ -finite and separable positive σ -additive
measure μ . Given f ∈ H and λ ∈ C\{0}, consider equation (4.56) in ϕ ∈ H with

(TKϕ)(x) =
∫

X
K(x,y)ϕ(y)dμ(y) ,

where K ∈ L2(X×X,μ⊗μ) and K(x,y) = K(y,x). The following facts hold.
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(a) If the number λ is not an eigenvalue of TK, equation (4.56) has always a unique
solution, whichever f ∈ H.
(b) If λ is an eigenvalue of TK, equation (4.56) has solutions iff f is orthogonal to
the λ -eigenspace. In such a case equation (4.56) admits infinitely many solutions.

Proof. Multiplying equation (4.56) by λ−1 allows to study only λ = 1 (redefining
λ−1K as K and λ−1 f as f ). Hence we prove it in this case only. We know TK is com-
pact by Example 4.16(4) and self-adjoint up to a possible and inessential factor (1/λ ).
So we shall refer to Theorems 4.17 and 4.18. Let {ψn}n∈N be a basis of eigenvectors
of TK . We can decompose, uniquely, any ϕ ∈ H as

ϕ =
+∞

∑
n=1

anψn +ϕ ′ , (4.57)

where ϕ ′ ∈ Ker(TK) and the an ∈ C are uniquely determined by ϕ . In particular

f =
+∞

∑
n=1

bnψn + f ′ .

Let us seek a solution to (4.56):

ϕ = TKϕ− f

in the form (4.57). We must find numbers an and the element ϕ ′ once TK and f are
given. Substituting (4.57) and the analogous for f in (4.56), we easily find

∑
n

anψn +ϕ ′ =∑
n

anλnψn−∑
n

bnψn− f ′ ,

where λn are the non-null eigenvalues of TK corresponding to eigenvectors ψn (in
general it may happen λn = λn′ , for we have numbered eigenvectors and not eigen-
values). That is to say:

∑
n

an(1−λn +bn)ψn =− f ′ −ϕ ′n .

Notice the two sides are orthogonal by construction, and so are the vectors ψn, pair-
wise. Therefore the identity is equivalent to:

ϕ ′ =− f ′,
an(1−λn) =−bn, n = 1,2, . . ..

In any caseϕ ′ is always determined, for it concides with f ′. The existence of solutions
to (4.56) tantamounts to:

ϕ ′ =− f ′,
an = bn

λn−1 for λn � 1
b0 = 0 for λm = 1.

If λn � 1 for every n, the coefficients an are uniquely determined by the bn. If λm = 1
for some m and bm � 0, the last condition is false, and equation (4.56) has no solution.
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Instead, if bm = 0 for any m such that λm = 1 (i.e. if f is normal to the eigenspace
of TK with eigenvalue 1), the coefficients am can be chosen at will, whereas the re-
maining an are determined. In this case there are infinitely many solutions to (4.56).

�

To conclude we move to the general case and drop the assumption on Hermitian
kernels. To stay general we shall study the abstract Fredholm equation of the second
kind in the Hilbert space H:

Aϕ−λϕ = f , (4.58)

where f ∈ H, λ ∈ C \ {0} and A ∈ B∞(H) are given on a certain Hilbert space H
and ϕ ∈ H is the problem’s unknown. Nothing more is assumed about A, apart com-
pactness. In particular, we will not assume A is a Hilbert–Schmidt operator. Let us
prove the following general theorem, due to Fredholm, which can be stated also for
A ∈B∞(B), B a Banach space.

Theorem 4.44 (Fredhol). On the Hilbert space H consider the abstract Fredholm
equation of the second kind

Aϕ−λϕ = f (4.59)

in the unknown ϕ ∈ H, with f ∈ H, λ ∈ C \ {0} and A ∈ B∞(H) given. Consider
as well the corresponding homogeneous equation, the adjoint equation and the
homogeneous adjoint equation:

Aϕ0 −λϕ0 = 0 , (4.60)

A∗ψ −λψ = g , (4.61)

A∗ψ0 −λψ0 = 0 , (4.62)

respectively, with g ∈ H given and ϕ0,ψ ,ψ0 ∈ H unknown.

(a) The equation Aϕ−λϕ = f admits solutions iff f is orthogonal to each solution
ψ0 to the homogeneous adjoint equation A∗ψ0−λψ0 = 0.
(b) Either the equation Aϕ−λϕ = f admits exactly one solution for any f ∈ H, or
the homogeneous equation Aϕ0−λϕ0 = 0 has a non-zero solution.
(c) The homogeneous equations Aϕ0−λϕ0 = 0 and A∗ψ0−λψ0 = 0 admit the same –
finite – number of linearly independent solutions.

Remark 4.45. (1) Statement (b) is the celebrated Fredholm alternative.
(2) The above theorem holds in particular if A is self-adjoint, and becomes The-
orem 4.43. �

Proof of Theorem 4.44. Here, too, dividing the initial equation by λ � 0 permits to

study the case λ = 1 only (after redefining λ−1A as A, λ−1 f as f and λ−1
g as g).

Henceforth, then, λ = 1. Set T := A− I, and observe it is bounded but not com-
pact, for I is not compact. The theorem relies on three lemmas. Let us first notice that
Ker(T ) is always a closed subspace in H if T is continuous, as in the present situation,
whereas the subspace Ran(T ) is not. The first lemma shows that Ran(T ) is closed as
well, provided T := A− I, A ∈B∞(H).
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Lemma 4.46. Under the assumptions made on T , Ran(T ) is closed.

Proof. Let yn ∈ Ran(T ), n ∈ N, and suppose yn → y as n → +∞. We need to prove
y ∈ Ran(T ). By assumption:

yn = T xn = Axn− xn (4.63)

for some sequence {xn}n∈N ∈ H. With no loss of generality we may assume xn ∈
Ker(T )⊥, possibly eliminating from the sequence what projects onto Ker(T ). If we
can prove the sequence of xn is bounded the proof ends. In fact, A being compact,
there will exist a subsequence xnk such that Axnk → y′ ∈ H for k → ∞. Substitut-
ing in (4.63) we conclude xnk → x for some x ∈ H as k → +∞. By continuity of A,
T x = Ax− x = y, so y ∈ Ran(T ).

We will proceed by contradiction, and assume {xn}n∈N ⊂Ker(T )⊥ is bounded. If
not, there would be a subsequence xnm with 0 < ||xnm || →+∞ as m→+∞. Since the
yn form a convergent, hence bounded, sequence, dividing by ||xnm || in (4.63) would
give :

T
xnm

||xnm ||
= A

xnm

||xnm ||
− xnm

||xnm ||
=

ynm

||xnm ||
→ 0 . (4.64)

But A is compact and the xnm
||xnm || bounded, so we could extract a further subsequence

xnmk
/||xnmk

|| such that:

xnmk

||xnmk
|| → x′ ∈ H and T

xnmk

||xnmk
|| → T x′ as k →+∞.

By (4.64) we would infer T x′ = 0 i.e. x′ ∈Ker(T ). By assumption
xnmk
||xnmk

|| ∈Ker(T )⊥,

and Ker(T )⊥ is closed, so x′ ∈ Ker(T )⊥. Consequently x′ ∈ Ker(T )∩Ker(T )⊥ =
{0}, in contradiction to

||x′||= lim
k→+∞

||xnmk
||

||xnmk
|| = 1 .

This ends the proof. �

The second lemma claims the following.

Lemma 4.47. Under the same assumptions on T we have orthogonal decomposi-
tions:

H = Ker(T )⊕Ran(T ∗) = Ker(T ∗)⊕Ran(T ) . (4.65)

Proof. Since T,T ∗ ∈ B(H), Theorem 3.13(e-d) and Proposition 3.38(d) imply
Ker(T ) = (Ran(T ∗)⊥)⊥ = Ran(T ∗), Ker(T ∗) = (Ran(T )⊥)⊥ = Ran(T ), and:

H = Ker(T )⊕Ran(T ∗) = Ker(T ∗)⊕Ran(T ) .

The previous lemma holds also if we replace T with T ∗, for (A− I)∗ = A∗ − I where
A∗ is compact if A is. �
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By Lemma 4.47 the statement in Theorem 4.44(a) follows (we wanted to prove
the case λ = 1). In fact, from it we have f ⊥ Ker(T ∗) iff f ∈ Ran(T ), i.e. iff there is
ϕ ∈ H such that Tϕ = f .

To continue with the proof of part (b) in the main theorem we define the subspaces
(closed by Lemma 4.46) Hk := Ran(T k), k = 1,2, . . ., so that:

H⊃ H1 ⊃ H2 ⊃ H3 ⊃ ·· · .
By construction T (Hk) = Hk+1. And now we have the third lemma.

Lemma 4.48. With the given definition of Hk, k = 1,2, . . ., there exists j ∈ N such
that:

Hk+1 = Hk if k ≥ j.

Proof. Assume, by contradiction, that j does not exist. Then Hk � Hh if k � h, and
we can manifacture a sequence of orthonormal vectors xk sucht hat xk ∈ Hk and
xk ⊥ Hk+1, k = 1,2, . . .. If l > k

Axl −Axk =−xk +(xl +T xl −T xk)

so ||Axl −Axk||2 ≥ 1 because xl +T xl −T xk ∈ Hk+1. But then we cannot extract any
converging subsequence from Axk, contradicting the fact A is compact. �

Next we prove two lemmas that, combined, yield the proof of Theorem 4.44(b)
(for λ = 1).

Lemma 4.49. Under the previous assumptions on T , Ker(T ) = {0} implies
Ran(T ) = H.

Proof. Assume Ker(T ) = {0}, making T one-to-one, but by contradiction suppose
Ran(T ) �H. Then the Hk, k = 1,2,3, . . . would be all distinct, violating Lemma 4.48.

�

Lemma 4.50. Under the assumptions made on T , Ran(T )= H implies Ker(T )= {0}.

Proof. If Ran(T ) = H, by Lemma 4.47 we have Ker(T ∗) = {0}. Then the previ-
ous lemma (with T ∗ instead of T ) guarantees Ran(T ∗) = H. Now Lemma 4.47 again
forces Ker(T ) = {0}. �

It is patent that Lemmas 4.49 and 4.50 together prove statement (b) in The-
orem 4.44.

We finish by proving part (c) (for λ = 1).
Suppose dimKer(T ) = +∞, in rebuttal to (c). Then there is an infinite orthonor-

mal system {xn}n∈N ⊂ Ker(T ). By construction Axn = xn and so ||Axk−Axh||2 = 2.
But this cannot be, for it would infringe the existence of a subsequence in the bounded
{xn}n∈N such that {Axnk}k∈N converges, which we know is true by compactness.
Hence dimKer(T ) = m < +∞. Similarly dimKer(T ∗) = n < +∞. Assume, con-
traditing the statement, that m � n. In particular we may suppose m < n. Let then
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{ϕ j} j=1,...,n and {ψ j} j=1,...,m be orthonormal bases for Ker(T ) and Ker(T ∗) respect-
ively. Define S ∈B(H) by:

Sx := T x+
m

∑
j=1

(ϕ j|x)ψ j .

As S = A′ − I, with A′ compact (obtained from the compact operator A by adding
a compact operator, since with finite-dimensional range), the result found above for
T = A− I hold for S too.

We claim Sx = 0 implies x = 0. Explicitly

T x+
m

∑
j=1

(ϕ j|x)ψ j = 0 . (4.66)

By virtue of Lemma 4.47, all vectors ψ j are orthogonal to any one of the form T x, so
(4.66) implies T x = 0. Moreover, (ϕ j|x) = 0 if 1≤ g≤m, because x is a linear com-
bination of the ϕ j and simultaneously it must be orthogonal to them, and therefore
x = 0. Hence we have that Sx = 0 implies x = 0. From part (b), then, there is y ∈ H
such that

Ty+
m

∑
j=1

(ϕ j|y)ψ j = ψm+1 .

Taking the inner product with ψm+1 gives a contradiction: 1 on the left equals 0 on
the right, because Ty ∈ Ran(T ) and Ran(T ) ⊥ Ker(T ∗). This shows we cannot as-
sume m < n, so it must be m ≥ n. Swapping the roles of T and T ∗ gives n ≥ m, so
altogether m = n, ending the proof of (c). �

Examples 4.51. An interesting instance of Fredholm equation of the second kind is
provided by Volterra’s equation of the second kind:

ϕ(x) =
∫ x

a
K(x, t)ϕ(t)dt + f (x) , (4.67)

where ϕ ∈ L2([a,b],dx) is the unknown function, f ∈ L2([a,b],dx) is given and the
integral kernel satisfies |K(x, t)| < M < +∞ for any x, t ∈ [a,b], t ≤ x. (Any multi-
plicative factor ρ ∈ C\{0} is absorbed in K.)

This equation befits the theory of Fredholm’s theorem if we rewrite the integral
as an intergal over all [a,b] and assuming K(x, t) = 0 if t ≥ x. For this type of equa-
tion, though, there is a better result based on contraction maps (cf. Section 2.6). It
turns out, namely, that a certain high power of TK : L2([a,b],dx)→ L2([a,b],dx) is a
contraction, where TK is the integral operator in (4.67)

(TKϕ)(x) =
∫ x

a
K(x, t)ϕ(t)dt .

Consequently the homogeneous equation TKϕ = 0 has one, and one only, solution by
Theorem 2.108, and the solution must be ϕ = 0. The proof that T n

K is a contraction
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if n is big enough is similar to what we saw in Example 2.109(1), where the Banach
space (C([a,b]), || ||∞) is replaced by (L2([a,b],dx), || ||2) (cf. Exercise 4.19). That
said, parts (a) and (b) in Fredholm’s theorem imply that equation (4.67) has exactly
one solution, for any choice of the source term f ∈ L2([a,b],dx). �

Exercises

4.1. Prove that if X is a normed space and T : X → X is compact and injective, then
any linear operator S : Ran(T ) → X that inverts T on the left cannot be bounded if
dimX = ∞.

Solution. If S were bounded, Proposition 2.44 would allow to extend it to a bounded
operator S̃ : Y → X, where Y := Ran(T ), so that S̃T = I. Precisely as in the proof
of Proposition 4.9(b), we could prove S̃T is compact if T ∈ B(X,Y) is compact and
S̃ ∈ B(Y,X). Then I : X → X would be compact, and thus the unit ball in X would
have compact closure, breaching Proposition 4.5.

4.2. Using Banach’s Lemma 4.12 prove that in an infinite-dimensional normed space
the closed unit ball is not comapct.

Outline. Let x1,x2, . . . be an infinite sequence of linearly independent vectors with
||xn|| = 1 (so, all belonging to the closure of the unit ball). Banach’s lemma con-
structs a sequence of vectors y1,y2, . . . such that ||yn|| = 1 and ||yn−1 − yn|| > 1/2.
This sequence cannot contain converging subsequences.

4.3. Prove that if A∗ = A ∈B∞(H), H a Hilbert space, then

σp(|A|) = {|λ | |λ ∈ σp(A)} .

Conclude that if A∗ = A ∈B∞(H)

sing(A) = {|λ | |λ ∈ σp(A)\{0}} .

Solution. Expanding the compact self-adjoint operators A and |A| according to The-
orem 4.18, we have

A = ∑
λ∈σp(A)

λPλ and |A|= ∑
μ∈σp(|A|)

μP′μ ,

with the obvious notation. Squaring A and |A| and using their continuity (this allows
to consider all series as finite sums), idempotency and orthogonality of projectors
relative to distinct eigenvectors, and also recalling |A|2 = A∗A = A2, we have

∑
λ∈σp(A)

λ 2Pλ = ∑
μ∈σp(|A|)

μ2P′μ . (4.68)
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Now keep in mind PλPλ0
= 0 if λ � λ0 and PλPλ0

= Pλ0
otherwise, and the same

holds for the projectors in the decomposition of |A|. Composing with Pλ0
on the right

in (4.68), taking adjoints and eventually right-composing with P′μ0
, we find, for any

λ0 ∈ σ(A) and μ0 ∈ σp(|A|), that λ 2
0 Pλ0

P′μ0
= μ2

0 Pλ0
P′μ0

, i.e.

(λ 2
0 −μ2

0 )Pλ0
P′μ0

= 0 . (4.69)

The fact that A admits a basis of eigenvectors (Theorem 4.18) is known to be equi-
valent to

I = s- ∑
λ0∈σ(A)

Pλ0
.

Fix μ0 ∈ σp(|A|). If Pλ0
P′μ0

= 0 for any λ0 ∈ σ(A), from the above identity we would
have P′μ0

= 0, absurd by definition of eigenspace. Therefore, (4.69) withstanding,
there must exist λ0 ∈ σ(A) such that λ 2

0 = μ2
0 , i.e. μ0 = |λ0|. If λ0 ∈ σp(A), swap-

ping A and |A| and using a similar argument would produce μ0 ∈ σp(|A|) such that
λ 2

0 = μ2
0 , i.e. μ0 = |λ0|. The first assertion is thus proved. The second one is evident

by the definition of singular value.

4.4. Consider the separable Hilbert space H, the basis { fn}n∈N ⊂H and the sequence
{sn}n∈N ⊂ C with |sn+1| ≥ |sn| and |sn| → 0, n → +∞. Using the uniform topology
prove

T :=
+∞

∑
n=0

sn fn( fn| )

is well defined and T ∈ B∞(H). Show that if every sn is real, T is also self-adjoint
and every sn is an eigenvalue of T .

Hint. With the assumptions made, if TN := ∑N
n=0 sn fn( fn| ) and N ≥M:

||TNx−TMx||2 ≤ |sM|2
N−1

∑
n=M

|( fn|x)|2 ≤ |sM|2||x||2 .

Taking the least upper bound over the unit x ∈ H gives:

||TN −TM|| ≤ |sM|2 → 0 as N,M →+∞,

whence the first part. The rest follows by direct inspection.

4.5. Prove that if T ∈B∞(H) and if H � xn → x ∈ H weakly, i.e.

(g|xn)→ (g|x) as n→+∞, for any given g ∈ H,

then ||T (xn)−T (x)|| → 0 as n→+∞. Put otherwise, compact operators map weakly
converging sequences to sequences converging in norm. Extend the result to the case
T ∈B∞(X,Y), X and Y normed spaces.
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Solution. Let xn → x weakly. If we bear in mind Riesz’s theorem, the set {xn}n∈N
is immediately weakly bounded in the sense of Corollary 2.60 to Banach–Steinhaus.
According to the latter, ||xn|| ≤ K for any n ∈ N and some K > 0. So let us define
yn := T xn, y := T x and note that for any h ∈ H,

(h|yn)− (h|y) = (T ∗h|xn)− (T ∗h|x)→ 0 as n→+∞,

hence also the yn converge weakly to y. Suppose, by contradiction, ||yn− y|| �→ 0 as
n → +∞. Then there exist ε > 0 and a subsequence {ynk}k∈N with ||y− ynk || ≥ ε
for any k ∈ N. Since {xnk}k∈N is bounded by K, and T is compact, there must be
a subsequence {ynkr

}r∈N converging to a y′ � y. This subsequence {ynkr
}r∈N has to

converge to y′ also weakly. But this cannot be, for {yn}n∈N converges weakly to
y � y′. Therefore yn → y in the norm of H. The argument works in the more general
case where T ∈B∞(X,Y), X and Y normed spaces, by interpreting X � xn → x ∈ X in
weak sense:

g(xn)→ g(x) as n→+∞, for any given g ∈ X′,
because Corollary 2.60 to Banach–Steinhaus still holds. In the proof note that h ∈ Y′
implies h◦T ∈ X′, by composition of continuous linear mappings.

4.6. Referring to Examples 4.25, take TK ,TK′ ∈B2(L2(X,μ)) (μ assumed separable)
with integral kernels K, K′. Prove that the HS operator aTK +bTK′ , a,b∈C, has kernel
aK +bK′.

4.7. Given TK ∈B2(L2(X,μ)) by the integral kernel K, prove the HS operator T ∗
K has

integral kernel K∗, K∗(x,y) = K(y,x).

4.8. With the same hypotheses of Exercise 4.6 show the integral kernel of TKTK′ is

K′′(x,z) :=
∫

X
K(x,y)K′(y,z)dμ(y) .

4.9. If L2(X,μ) is separable, consider the mapping L2(X×X,μ ⊗ μ) � K 	→ TK ∈
B2(L2(X,μ)). Prove it is an isomorphism of Hilbert spaces. Discuss whether one can
view the map as an isometry of normed spaces, assuming B(L2(X,μ)) as codomain.
Discuss whether the map is continuous if viewed as a homeomorphisms only.

4.10. In relationship to Exercise 4.25(3), prove that if g ∈C0([0,1]),
(
(I−ρT )−1g

)
(x) = g(x)+ρ

∫ x

0
eρ(x−y)g(y)dy .

Hint. Use the operator I− ρT , recalling the integral expression of T and noticing
ρeρ(x−y) = ∂

∂x eρ(x−y).

4.11. Let BD(L2(X,μ)) be the set of degenerate operators on L2(X,μ) (cf. 4.25(4)),
with μ separable. Prove the following are equivalent statements.

(a) T ∈BD(L2(X,μ)).
(b) Ran(T ) has finite dimension.
(c) T ∈B2(L2(X,μ)) (integral) with integral kernel K(x,y) =∑N

k=1 pk(x)qk(y), where
p1, . . . , pN ∈ L2(X,μ), q1, . . . ,qN ∈ L2(X,μ) are linearly independent.
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4.12. Take the set BD(L2(X,μ)) of degenerate operators (cf. 4.25(4)) on L2(X,μ),
with μ separable. Show BD(L2(X,μ)) is a two-sided ∗-ideal in B(L2(X,μ)) and a
subspace in B2(L2(X,μ)). In other words, show BD(L2(X,μ) ⊂ B2(L2(X,μ)), that
it is a closed subspace under Hermitian conjugation, and AD,DA ∈ BD(L2(X,μ) if
A ∈B(L2(X,μ)) and D ∈BD(L2(X,μ)).

4.13. Consider BD(L2(X,μ)) (cf. 4.25(4)) with μ separable. Does the closure of
BD(L2(X,μ)) in B2(L2(X,μ)) in the norm topology of B(L2(X,μ)) coincide with
B2(L2(X,μ))?

Hint. Consider the operator

T :=
+∞

∑
n=0

1√
n

TKn ,

where Kn(x,y) = φn(x)φn(y), {φn}n∈N a basis of L2(X,μ) and the convergence is in
uniform norm. Prove T ∈ B(L2(X,μ)) is well defined, but T � B2(L2(X,μ)) since
||Tφn||2 = 1/n.

4.14. Under the assumptions of Mercer’s Theorem 4.27, prove that if TK ∈
B1(L2(X,dμ)) then tr(TK) =

∫
X K(x,x)dμ(x).

Hint. Expand the trace in the basis of eigenvectors given by the continuous maps in
the theorem’s statement. Since the series that defines K converges uniformly on the
compact set X of finite measure, a smart use of dominated convergence allows to see
∫

X
K(x,x)dμ(x) =

∫

X
∑
λ ,i

λuλ ,i(x)uλ ,i(x)dμ(x) =∑
λ ,i

λ
∫

X
uλ ,i(x)uλ ,i(x)dμ(x)

=∑
λ ,i

λ = tr(TK) .

4.15. Consider an integral operator TK on L2([0,2π],dx) with integral kernel:

K(x,y) =
1

2π ∑
n∈Z\{0}

1
n2 ein(x−y) .

Prove TK is a compact, HS operator of trace class.

4.16. Consider the TK of Exercise 4.15 and the differential operator

A :=− d2

dx2 ,

defined on smooth maps over [0,2π] that satisfy periodicity conditions (including all
derivatives). What is TKA?

Hint. Let 1 be the constant map 1 on [0,2π], and P0 : f 	→ ( 1
2π
∫ 2π

0 f (x)dx)1 the ortho-
gonal projector onto the space of constant maps in L2([0,2π],dx). Then TKA = I−P0.
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4.17. Consider an integral operator Ts on L2([0,2π],dx) with kernel:

Ks(x,y) =
1

2π ∑
n∈N\{0}

1
n2s ein(x−y) .

Prove that for Res sufficiently large (how large?) the following indentity makes sense:

tr(Ts) = ζR(2s) ,

where ζR = ζR(s) is Riemann’s zeta function.

4.18. If B∈B(H), H Hilbert space, and there is a basis N such that∑u∈N ||Bu||< +∞,
prove B ∈B1(H).

Hint. Observe |||B|ψ ||= ||Bψ || and |(ψ ||B|ψ)| ≤ ||ψ || |||B|ψ ||.
4.19. Consider the integral operator TK : L2([a,b],dx)→ L2([a,b],dx)

(TKϕ)(x) =
∫ x

a
K(x, t)ϕ(t)dt .

where K is a measurable map such that there exists M ∈ R with |K(x, t)| ≤ M if
x, t ∈ [a,b], t ≤ x. Prove

||T n
K || ≤

Mn(b−a)n
√

(n+1)!

and hence that there exists a positive integer n rendering T n
K a contraction.

Solution. In the ensuing computations ϕ ∈ L2([a,b],dx) implies ϕ ∈ L1([a,b],dx) by
the Cauchy-Schwarz inequality, because the constant map 1 is in L2([a,b],dx). By
construction, if θ(z) = 1 for z≥ 0 and θ(z) = 0 otherwise, we have

|(T n
Kϕ)(x)|=

∫ b

a
dx1

∫ b

a
dx2 · · ·

∫ b

a
dxnθ(x− x1)θ(x1− x2) · · ·θ(xn−1− xn)

×K(x,x1)K(x1− x2) · · ·K(xn−1,xn)ϕ(xn) .

Hence

|(T n
Kϕ)(x)| ≤Mn

∫

[a,b]n
dx1 · · ·dxn|θ(x− x1) · · ·θ(xn−1− xn)| |ϕ(xn)| .

Using Cauchy-Schwarz on L2([a,b]n,dx1 · · ·dxn), and from θ(z)2 = θ(z) = |θ(z)|,
we have :

|(T n
Kϕ)(x)| ≤Mn

√∫

[a,b]n
dx1 · · ·dxnθ(x− x1) · · ·θ(xn−1− xn) [b−a](n−1)/2||ϕ ||2 ,

i.e.

|(T n
Kϕ)(x)| ≤Mn (x−a)n/2

√
n!

[b−a](n−1)/2||ϕ ||2 .
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Consequently

||T n
Kϕ ||2 ≤

Mn(b−a)n
√

(n+1)!
||ϕ ||2 ,

and so

||T n
K || ≤

Mn(b−a)n
√

(n+1)!
.

But since:

lim
n→+∞

Mn(b−a)n
√

(n+1)!
→ 0 as n→+∞,

for n large enough there will be a positive λ < 1 such that

||T n
Kϕ−T n

Kϕ ′||2 ≤ λ ||ϕ−ϕ ′||2 ,

making T n
K a contraction operator.
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5

Densely-defined unbounded operators
on Hilbert spaces

Von Neumann had just about ended his lecture when a student
stood up and in a vaguely abashed tone said he hadn’t
understood the final argument. Von Neumann answered:
“Young man, in mathematics you don’t understand things. You
just get used to them.”

David Wells

This chapter will extend the theory seen so far to unbounded operators that are not
necessarily defined on the entire space.

In section one we will define, in particular, the standard domain of an operator
built by composing operators with non-maximal domains. We will introduce closed
and closable operators. Then we shall present the general notion of adjoint operator
for unbounded and densely-defined operators, thus generalising the similar notion for
bounded operators defined on the whole Hilbert space.

The second section will deal with generalisations of the notion of self-adjoint
operator to the unbounded case. For this we will introduce Hermitian, symmetric, es-
sentially self-adjoint and self-adjoint operators, and discuss their main properties. In
particular we will define the core of an operator and the deficiency index.

Section three is entirely devoted to two examples of self-adjoint operators of the
foremost importance in Quantum Mechanics, namely the operators position and mo-
mentum on the Hilbert space L2(Rn,dx). We will study their mathematical properties
and present several equivalent definitions.

In the final section we will discuss more advanced criteria to establish whether a
symmetric operator admits self-adjoint extensions. In particular we will present von
Neumann’s criterion and Nelson’s criterion. Technical instruments for this study are
the Cayley transform and the notion of analytic vector: the latter, defined by Nelson,
turned out to be crucial in the applications of operator theory to QM.

5.1 Unbounded operators with non-maximal domains

Let us introduce the theory of unbounded operators with non-maximal domains. The
domains of the operators under exam will always be vector subspaces of some am-
bient space, and we will often consider the case of a dense subspace. Despite the
operators of concern will not be bounded, all general definitions will reduce to the
ones seen in earlier chapters if restricted to bounded operators.

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
DOI 10.1007/978-88-470-2835-7_5, © Springer-Verlag Italia 2013
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5.1.1 Unbounded operators with non-maximal domains
in normed spaces

The first definitions are completely general and do not require any Hilbert structure.
A notion of graph was already given in Definition 2.94 for operators with maximal
domain. The following definition extends 2.94 slightly. The notation X⊕X, often
used from now on, was introduced in 2.93(3).

Definition 5.1. Let X be a vector space. We shall call a linear mapping

T : D(T )→ X ,

with D(T ) ⊂ X subspace in X, an operator on X, and D(T ) is called the domain
of T . The graph G(T ) of the operator T is the subspace of X⊕X

G(T ) := {(x,T x) ∈ X⊕X | x ∈ D(T )} .

If α ∈ C, and A, B are operators on X with domains D(A), D(B), we define the fol-
lowing operators on H:

(a) AB, such that AB f := A(B f ) on the standard domain:

D(AB) := { f ∈ D(B) |B f ∈ D(A)} .

(b) A+B, such that (A+B) f := A f +B f on the standard domain:

D(A+B) := D(A)∩D(B) .

(c) αA, such that αA f := α(A f ) on the standard domain: D(αA) = D(A) if α � 0,
and D(0A) := X.

Remarks 5.2. With these standard domains the usual associative properties of sum
and product of operators hold: is A,B,C are operators on X:

A+(B+C) = (A+B)+C , (AB)C = A(BC) .

Distributive properties are weaker than expected (referring to Definition 5.3 below):

(A+B)C = AC +BC , A(B+C)⊃ AB+AC ,

for it may happen that (B+C)x ∈ D(A) even if Bx or Cx do not belong in D(A). �

The above notion of graph evidently coincides with the familiar graph of T ∈
L(X), where the latter is nothing else than an operator on X with D(T ) = X.

Extensions of closed operators play a central role in the sequel. The first notion
is straightforward.

Definition 5.3. If A is an operator on the vector space X, an operator B on X is called
an extension of A, written A⊂ B or, equivalently, B⊃ A, if G(A)⊂ G(B).
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5.1.2 Closed and closable operators

Let us pass to closed operators, by enlarging the reach of Definition 2.94 to com-
prehend domains smaller than the whole space, and thereby introducing new con-
cepts. We remind that if X is normed, the product topology on the Cartesian product
X×X is the one whose open sets are ∅ and the unions of products of open balls
Bδ (x)×Bδ1

(x1) centred at x,x1 ∈ X and with any radii δ ,δ1 > 0 (cf. Definition 1.10
and the case of normed spaces in Chapter 2.3.6).

Definition 5.4. Let A be an operator on the normed space X.

(a) A is called closed if its graph is closed in the product topology of X×X.
So A is closed if and only if for any sequence {xn}n∈N ⊂ D(A) such that:

(i) xn → x ∈ X as n→+∞ and
(ii) T xn → y ∈ X as n→+∞,

it follows x ∈ D(A) and y = T x.
(b) A is closable if the closure G(A) of its graph is the graph of a (necessarily closed)
operator. The latter is denoted A and is called the closure of A.

The next proposition characterises closable operators.

Proposition 5.5. Let A be an operator on the normed space X. The following facts
are equivalent:

(i) A is closable;
(ii) G(A) does not contain elements of type (0,z), z � 0;
(iii) A admits closed extensions.

Proof. (i)⇔ (ii). A is not closable iff there exist sequences in D(A), say {xn}n∈N and
{x′n}n∈N, such that xn → x← x′n, but Axn → y � y′ ← Ax′n. By linearity this is the same
as saying there is a sequence x′′n = xn−x′n → 0 such that Ax′′n → y−y′ = z � 0. In turn,
this amounts to G(A) containing (0,z) � (0,0).
(i)⇔ (iii). If A is closable, A is a closed extension of A. Conversely, if there is a closed
extension B of A, there cannot be in G(A) elements of the kind (0,z) � (0,0), for oth-
erwise G(B) = G(B)⊃ G(A) � (0,z), since A⊂ B and B closed, and so B would not
be linear as B(0) � 0. �

A useful general property of closable operators on Banach (hence Hilbert) spaces
goes as follows.

Proposition 5.6. Let X, Y be Banach spaces, T ∈B(X,Y) and A : D(A)→ Y an op-
erator on Y (in general unbounded and with D(A) properly contained in Y). If

(i) A is closable;
(ii) Ran(T )⊂ D(A);

then AT ∈B(X,Y).

Proof. As the closure of A extends A, AT = AT is well defined. Now it suffices to
show AT : X → Y is closed and invoke the closed graph theorem (Theorem 2.95) to
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conclude. To prove AT closed, assume X � xn → x ∈ X and (AT )(xn) → y ∈ Y as
n → +∞. Then T xn → z ∈ Y, for T is continuous. As A is closed and A(T xn) → y,
then z ∈ D(A) and Az = y. That is to say, (AT )(x) = y. Therefore AT is closed by
definition. �

5.1.3 The case of Hilbert spaces: the structure of H⊕H and
the τ operator

Let us look at the situation in which X = H is a Hilbert space with inner product ( | ).
There is a convenient way to define a Hilbert space structure on the direct sum H⊕H,
thus obtaining the Hilbert sum of H with itself. Topologically speaking, H⊕H can
be endowed with the product topology of H×H, used to define the closure of an oper-
ator. Let us show there is a natural Hilbert space structure on H⊕H inducing exactly
the product topology by means of the inner product norm. Define the inner product
on H⊕H by:

((x,x′)|(y,y′))H⊕H := (x|y)+(x′|y′) if (x,x′),(y,y′) ∈ H⊕H. (5.1)

In this way the two summands H of H⊕H are mutually orthogonal, so the sum is
not just direct, but orthogonal. We claim H⊕H with the above product is indeed a
Hilbert space. Since the induced norm || ||H⊕H satisfies:

||(z,z′)||2H⊕H = ||z||2 + ||z′||2 for any (z,z′) ∈ H⊕H, (5.2)

any Cauchy sequence {(xn,x′n)}n∈N⊂H⊕H for the norm || ||H⊕H determines Cauchy
sequences in H: {xn}n∈N and {x′n}n∈N. The latter converge to x and x′ in H respect-
ively. It is thus immediate to see (xn,x′n) → (x,x′) as n → +∞ in norm || ||H⊕H, by
(5.2). Therefore (H⊕H, || ||H⊕H) is complete. At last, the inner product on H⊕H
induces the product topology on H⊕H as predicted. To this end, in analogy to the
discussion of Section 2.3.6, it suffices to recall the inclusions

Bδ/2(x)×Bδ/2(y)⊂ B(H⊕H)
δ ((x,y))⊂ Bδ (x)×Bδ (y)

where (x,y) ∈ H⊕H, B(H⊕H)
δ ((x,y)) is the open ball in H⊕H with centre (x,y) and

radius δ > 0, Bε(z) the similar ball in H with centre z and radius ε > 0.

Remarks 5.7. Owing to this result, the notions of closed operator and closure in a
Hilbert space (Definition 5.4) may refer equivalently to the topology induced by the
inner product on H⊕H. �

A useful tool to prove results quickly is the bounded operator

τ : H⊕H � (x,y) 	→ (−y,x) ∈ H⊕H . (5.3)

If ∗ refers to the Hilbert space H⊕H, we have:

τ∗ = τ−1 =−τ , (5.4)

so, in particular, τ is unitary on H⊕H. If ⊥ refers to H⊕H, a direct computation
shows τ and ⊥ commute: for any F ⊂ H⊕H:

τ(F⊥) = (τ(F))⊥ . (5.5)
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5.1.4 General properties of the Hermitian adjoint operator

We now pass to define the adjoint of an operator T on the Hilbert space H whose
domain D(T ) is dense in H, in case T is, in general, not bounded.

We cannot use Riesz’s theorem and must proceed differently. First of all let us
define the domain D(T ∗) of the adjoint, bearing in mind we are aiming at obtaining
(T ∗x|y) = (x|Ty) with x ∈ D(T ∗) and y ∈ D(T ). To this end

D(T ∗) := {x ∈ H | there exists zT,x ∈ H with (x|Ty) = (zT,x|y) for any y ∈ D(T )} ,
(5.6)

and later we will assume, when x ∈ D(T ∗), T ∗x := zT,x.
At any rate let us show definition (5.6) is well posed, first, and that it determines:

(a) a subspace D(T ∗)⊂ H, and (b) an operator T ∗ : D(T ∗) � x 	→ zT,x.
(a) D(T ∗) � ∅ for 0 ∈ D(T ∗) if zT,0 := 0. Moreover, by (anti)linearity of the inner
product and of T , if x,x′ ∈ D(T ∗) and α ,β ∈ C then αx +βx′ ∈ D(T ∗); that is be-
cause (αx+βx′|Ty) = (zT,αx+βx′ |y) if zT,αx+βx′ := αzT,x +β zT,x′ . Hence D(T ∗) is a
subspace.
(b) The assignment D(T ∗) � x 	→ zT,x =: T ∗x defines a function, linear by construc-
tion as we saw above, only if any x ∈ D(T ∗) determines a unique zT,x. We claim
this is the case when D(T ∗) is dense, as we assumed. If (z′T,x|y) = (x|Ty) = (zT,x|y)
for any y ∈ D(T ), then 0 = (x|Ty)− (x|Ty) = (zT,x − z′T,x|y). Since D(T ) = H,
there is {yn}n∈N ⊂ D(T ) with yn → zT,x− z′T,x. The inner product is continuous, so
(zT,x− z′T,x|y) = 0 implies ||zT,x− z′T,x||2 = 0 and then zT,x = z′T,x.

Definition 5.8. If T is an operator on the Hilbert space H with D(T ) = H, the adjoint
operator to T , denoted T ∗, is the operator on H with domain

D(T ∗) := {x ∈ H | there exists zT,x ∈ H with (x|Ty) = (zT,x|y) for any y ∈ D(T )}
and such that T ∗ : x 	→ zT,x.

Remark 5.9. (1) It is clear that by construction

(T ∗x|y) = (x|Ty) , for any pair (x,y) ∈ D(T ∗)×D(T )

as we wanted.
(2) If T ∈ B(H), Definition 5.8 for T ∗ implies immediately D(T ∗) = H by Riesz’s
Theorem 3.16. Hence:
Definitions 5.8 and 3.37 coincide for adjoints to operators in B(H).
(3) If T is a densely-defined operator on the Hilbert space H, D(T ∗) is not automat-
ically dense in H, so in general (T ∗)∗ will not exist.
(4) If A, B are densely-defined operators on the Hilbert space H:

A⊂ B ⇒ A∗ ⊃ B∗. (5.7)

The proof is straightforward from Definition 5.8.
(5) If A, B are operators on the Hilbert space H with dense domains, and D(AB) is
dense, then

B∗A∗ ⊂ (AB)∗ .
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Furthermore, B∗A∗ = (AB)∗ if A ∈B(H). �

Theorem 5.10. Let A be an operator on the Hilbert space H, and D(A) = H.

(a) A∗ is closed and
G(A∗) = τ(G(A))⊥ . (5.8)

(b) A is closable ⇔ D(A∗) is dense, in which case

A⊂ A = (A∗)∗ .

(c) Ker(A∗) = [Ran(A)]⊥ and Ker(A)⊂ [Ran(A∗)]⊥, with equality if D(A∗) is dense
in H and A is closed.
(d) If A is closed then H⊕H decomposes orthogonally:

H⊕H = τ(G(A))⊕G(A∗) . (5.9)

Proof. (a) Writing τ(G(A))⊥ explicitly we find:

τ(G(A))⊥ = {(x,y) ∈ H⊕H | − (x|Az)+(y|z) = 0 for any z ∈ D(A)} .

That is to say, τ(G(A))⊥ is the graph of A∗ (so long as the operator is defined!) and
(5.8) holds. τ(G(A))⊥ is closed by construction, being the orthogonal complement to
a set (Theorem 3.13(a)), so A∗ is closed.
(b) Consider the closure of the graph of A. Then we have G(A) = (G(A)⊥)⊥ by The-
orem 3.13. Since ττ =−I, S⊥ =−S⊥ for any set S, and because (5.5), (5.8) hold, we
have:

G(A) =−τ( τ(G(A))⊥ )⊥ =−τ(G(A∗))⊥ = τ(G(A∗))⊥ . (5.10)

By Proposition 5.5, G(A) is the graph of an operator (the closure of A) iff G(A) does
not contain elements (0,z), z � 0. I.e., G(A) is not the graph of an operator iff there
exists z � 0 such that (0,z) ∈ τ(G(A∗))⊥. More explicitly

there exists z � 0 such that 0 = ((0,z)|(−A∗x,x)) , for any x ∈ D(A∗) .

Put equivalently, G(A) is not the graph of an operator iff D(A∗)⊥ � {0}, iff D(A∗) is
not dense in H. To sum up: G(A) is a graph if and only if D(A∗) is dense in H.
If D(A∗) is dense in H, then (A∗)∗ is defined, and by (5.10), (5.8) we have

G(A) = τ(G(A∗))⊥ = G((A∗)∗) .

Eventually, by definition of closure, G(A) = G(A). Substituting above:

G(A) = G((A∗)∗) ,

so A = (A∗)∗.
(c) The claims descend directly from

(A∗x|y) = (x|Ay) , for any pair (x,y) ∈ D(A∗)×D(A)

from the density of D(A), and from (b) when A is closed.
(d) A being closed, G(A) is closed and so τ(G(A)) is closed because τ : H⊕H→H⊕H
is unitary. From (5.8) and Theorem 3.13(b–d) we have immediately (5.9). This ends
the proof. �
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Remarks 5.11. D(A) dense and λ ∈ C imply (A−λ I)∗ = A∗ −λ I, so the first equa-
tion in (c) has an immediate consequence:

Ker(A∗ −λ I) = [Ran(A−λ I)]⊥ ,

while the second equation yields:

Ker(A−λ I)⊂ [Ran(A∗ −λ I)]⊥ .

In the rest of the book these relations will be used repeatedly. �

5.2 Hermitian, symmetric, self-adjoint and essentially
self-adjoint operators

We are now in a position to define in full generality self-adjoint operators and related
objects.

Definition 5.12. Let (H,( | )) be a Hilbert space and A : D(A)→H an operator on H.

(a) A is called Hermitian if (Ax|y) = (x|Ay) for any x,y ∈ D(A).
(b) A is symmetric if:

(i) A is Hermitian;
(ii) D(A) is dense.

Therefore A is symmetric if and only if:

(i)’ D(A) = H;
(ii)’ A⊂ A∗.

(c) A is self-adjoint if:

(i) D(A) is dense;
(ii) A = A∗.

(d) A is essentially self-adjoint if:

(i) D(A) is dense;
(ii) D(A∗) is dense;
(iii) A∗ = (A∗)∗ (the adjoint is self-adjoint).

Equivalently (by Theorem 5.10(b)), A is essentially self-adjoint if:

(i)’ D(A) is dense;
(ii)’ A is closable;
(iii)’ A∗ = A.

(e) A is normal if A∗A = AA∗, where either side is defined on its standard domain.

Remark 5.13. (1) A comment on (c) in Definition 5.12: by Theorem 5.10(a), every
self-adjoint operator is automatically closed.
(2) It is worth noting that:
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(i) the definitions of Hermitian, symmetric, self-adjoint and essentially self-
adjoint operator coincide when the operator’s domain is the whole Hilbert
space;

(ii) the following important result holds.

Theorem 5.14 (Hellinger–Toeplitz). A Hermitian operator with the entire Hilbert
space as domain is necessarily bounded (and self-adjoint in the sense of Defini-
tion 3.51).

Proof. Boundedness follows from Proposition 3.54(d). The operator is thus self-
adjoint for Definition 3.9. �

(iii) Bounded self-adjoint operators for Definition 3.51 are precisely the self-
adjoint operators of Definition 5.12 with domain the whole space.

(3) Essential self-adjointness is by far the most important property of the four for
the applications to QM, on the following grounds. As we will explain soon, an es-
sentially self-adjoint operator admits a unique self-adjoint extension, so it retains the
information of a self-adjoint operator, essentially. For reasons we shall see later in the
book, paramount operators in QM are self-adjoint; at the same time it is a fact that
differential operators are the easiest to handle in QM. It often turns out that QM’s
differential operators become essentially self-adjoint if defined on suitable domains.
Thus self-adjoint differential operators are on one hand easy to employ, on the other
they carry, in essence, the information of self-adjoint operators useful in QM. Be-
cause of this we will indulge on certain features related to essential self-adjointness.
(4) Given an operator A : D(A) → H on the Hilbert space H, B ∈ B(H) commutes
with A when:

BA⊂ AB .

If the domain of A is dense and so A∗ exists, it is easy to check that if B ∈B(H) com-
mutes with A then B∗ commutes with A∗ (prove it as an exercise). Denote by {A}′
the commutant of A : D(A)→ H:

{A}′ := {B ∈B(H) | BA⊂ AB} .

If A = A∗ then {A}′ is a closed ∗-subalgebra of B(H) in the strong topology. Thus
it is a von Neumann algebra (cf. Example 3.44(3)). The second commutant {A}′′ :=
{{A}′}′ is still a von Neumann algebra, called the von Neumann algebra generated
by A. �

The following important, yet elementary, proposition will be frequently used
without explicit mention. Its easy proof is left to the reader.

Proposition 5.15. Let H1, H2 be Hilbert spaces and U : H1 →H2 a unitary operator.
If A : D(A)→ H1 is an operator on H1, consider the operator on H2

A2 : D(A2)→ H2 with A2 := UA1U−1 and D(A2) := UD(A1).

Then A2 is closable, or closed, Hermitian, symmetric, essentially self-adjoint, self-
adjoint, or normal iff A1 is alike.
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Notation 5.16. From now on we shall also write A∗∗···∗ instead of (((A∗)∗) · · ·)∗. �
Proposition 5.17. Let (H,( | )) be a Hilbert space and A an operator on H.

(a) If D(A), D(A∗), D(A∗∗) are dense,

A∗ = A
∗ = A∗ = A∗∗∗ . (5.11)

(b) A is essentially self-adjoint ⇔ A is self-adjoint.
(c) If A is self-adjoint, it is maximal symmetric, i.e. it has no proper symmetric exten-
sions.
(d) If A is essentially self-adjoint, A admits only one self-adjoint extension: A (coin-
ciding with A∗).

Proof. (a) If D(A), D(A∗), D(A∗∗) are dense, the operators A∗, A∗∗ and A∗∗∗ exist.
Moreover

A
∗ = (A∗∗)∗ = A∗∗∗ = (A∗)∗∗ = A∗

by Theorem 5.10(b). Since A∗ is closed (by Theorem 5.10(a)) we have A∗ = A∗.
(b) If A is essentially self-adjoint, A = A∗, and in particular D(A) = D(A∗) is dense.
Compute the adjoint of A and recall Theorem 5.10(b): A

∗ = (A∗)∗ = A, i.e. A is self-
adjoint.
Vice versa, if A is self-adjoint, i.e. there exists A

∗ = A, then D(A), D(A∗), D(A∗∗) are
dense and by part (a): A∗ = A∗ = A

∗
; hence A∗ = A, and A is essentially self-adjoint.

(c) Let A be self-adjoint and A⊂ B, B symmetric. Taking adjoints gives A∗ ⊃ B∗. But
B∗ ⊃ B by symmetry, so

A⊂ B⊂ B∗ ⊂ A∗ = A ,

and then A = B = B∗.
(d) Let A∗ = A∗∗, A ⊂ B with B = B∗. Taking the adjoint of A ⊂ B we see that
B = B∗ ⊂ A∗. Taking the adjoint twice yields A∗∗ ⊂ B, but then

B = B∗ ⊂ A∗ = A∗∗ ⊂ B ,

hence B = A∗∗. The latter coincides with A by Theorem 5.10(b). �

Now we discuss two crucial features that characterise self-adjoint and essentially
self-adjoint operators.

Theorem 5.18. Let A be a symmetric operator on the Hilbert space H. The following
are equivalent:
(a) A is self-adjoint.
(b) A is closed and Ker(A∗ ± iI) = {0}.
(c) Ran(A± iI) = H.

Proof. (a) ⇒ (b). If A = A∗, A is closed because A∗ is. If x ∈ Ker(A∗ + iI), then
Ax =−ix, so

i(x|x) = (Ax|x) = (x|Ax) = (x|− ix) =−i(x|x) ,

whence (x|x) = 0 and x = 0.
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The proof that Ker(A∗ − iI) = {0} is analogous.
(b) ⇒ (c). By definition of adjoint we have (see Remark 5.11) [Ran(A− iI)]⊥ =
Ker(A∗ + iI). Hence part (b) implies Ran(A− iI) is dense in H. Now recall A is
closed to show that, actually, Ran(A− iI) = H. Fix y ∈ H arbitrarily and choose
{xn}n∈N ⊂ D(A) so that (A− iI)xn → y ∈ H. For z ∈ D(A),

||(A− iI)z||2 = ||Az||2 + ||z||2 ≥ ||z||2 ,

whence {xn}n∈N is a Cauchy sequence and x = limn→+∞ xn exists. The closure of A
forces A− iI to be closed, so (A− iI)x = y and then Ran(A− iI) = Ran(A− iI) = H.
The proof of Ker(A∗ − iI) = {0} is similar.
(c) ⇒ (a). Since A ⊂ A∗ by symmetry, it is enough to show D(A∗) ⊂ D(A). Take
y ∈ D(A∗). Given that Ran(A− iI) = H, there is a vector x− ∈ D(A) such that

(A− iI)x− = (A∗ − iI)y .

On D(A) the operator A∗ coincides with A and therefore, by the previous identity,

(A∗ − iI)(y− x−) = 0 .

But Ker(A∗ − iI) = Ran(A + iI)⊥ = {0}, so y = x− and y ∈ D(A). The proof of
Ran(A+ iI) is analogous. �

Theorem 5.19. Let A be a symmetric operator on the Hilbert space H. The following
are equivalent:
(a) A is essentially self-adjoint.
(b) Ker(A∗ ± iI) = {0}.
(c) Ran(A± iI) = H.

Proof. (a) ⇒ (b). If A is essentially self-adjoint, then A∗ = A∗∗ and A∗ is self-adjoint
(and closed). Applying Theorem 5.18 gives Ker(A∗∗± iI) = {0} and so (b) holds, for
A∗∗ = A∗.
(b) ⇒ (a). A ⊂ A∗ by assumption, and because D(A) is dense so is D(A∗). Con-
sequently, Theorem 5.10(b) implies A is closable and A ⊂ A = A∗∗ (in particular
D(A∗∗) = D(A) ⊃ D(A) is dense). Therefore A ⊂ A∗ implies A ⊂ A∗, and Proposi-
tion 5.17(a) tells A∗ = A

∗
. Overall, A ⊂ A

∗
, i.e. A is symmetric. Then we may apply

Theorem 5.18 to A, for this operator satisfies (b) in the theorem. We conclude A is
self-adjoint. From Proposition 5.17(b) it follows A is essentially self-adjoint.
(b) ⇔ (c). Since Ran(A± iI)⊥ = Ker(A∗ ∓ iI) and Ran(A± iI)⊕Ran(A± iI)⊥ = H,
(b) and (c) are equivalent. �

To finish we present a useful notion for the applications: the core of an operator.

Definition 5.20. Let A be a closable, densely-defined operator on the Hilbert space
H. A dense subspace S⊂ D(A) is a core of A if

A �S = A .
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The next proposition is obvious, yet important.

Proposition 5.21. If A is a self-adjoint operator on the Hilbert space H, a subspace
S⊂ D(A) is a core for A iff A �S is essentially self-adjoint.

Proof. If A �S is essentially self-adjoint, it admits a unique self-adjoint extension,
which coincides with its closure by Proposition 5.17(d); in our case the extension
necessarily coincides with A, which is self-adjoint. Hence A �S is a core.

Conversely, if A �S is a core, the closure of A �S is self-adjoint because it coin-
cides with the self-adjoint A. By Proposition 5.17(b) A �S is essentially self-adjoint.

�

5.3 Two major applications: the position operator and
the momentum operator

To exemplify the formalism so far described we introduce and study the features of
two self-adjoint operators of foremost relevance in QM, called position operator and
momentum operator. Their physical meaning will be clarified in the second part of
the book.

In the sequel we adopt the conventions and notations of Chapter 3.6, and x =
(x1, . . . ,xn) will be a generic point in Rn.

5.3.1 The position operator

Definition 5.22. Consider H := L2(Rn,dx), where dx is Lebesgue’s measure on Rn.
If i ∈ {1,2, . . . ,n} is given, the operator on H:

(Xi f )(x) = xi f (x) , (5.12)

with domain:

D(Xi) :=
{

f ∈ L2(Rn,dx)
∣
∣
∣
∣

∫

Rn
|xi f (x)|2 dx < +∞

}

, (5.13)

is called ith position operator.

Proposition 5.23. The operator Xi of Definition 5.22 satisfies these properties.

(a) Xi is self-adjoint.
(b) D(Rn) and S (Rn) are cores for Xi: Xi = Xi �D(Rn) = Xi �S (Rn).

Proof. (a) The domain of Xi is certainly dense in H for it contains the space D(Rn) of
smooth maps with compact support, and also the space of Schwartz functions S (Rn)
(see Notation 3.76), both of which are dense in L2(Rn,dx). Thus Xi admits an adjoint.
By definition of Xi and its domain we have (g|Xi f ) = (Xig| f ) if f ,g ∈ D(Xi). Con-
sequently Xi is Hermitian and symmetric. We claim it is self-adjoint too. By symmetry
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Xi ⊂ X∗
i , so it suffices to show D(X∗

i )⊂D(Xi). Let us define the adjoint to Xi directly:
f ∈ D(X∗

i ) if and only if there is h ∈ L2(Rn,dx) (coinciding with X∗
i f by definition)

such that ∫

Rn
f (x)xig(x)dx =

∫

Rn
h(x)g(x)dx for any g ∈ D(Xi).

Since D(Xi) is dense and
∫

Rn
[xi f (x)−h(x)]g(x)dx = 0 for any g ∈ D(Xi),

we can also say f ∈ L2(Rn,dx) belongs to D(X∗
i ) if and only if xi f (x) = h(x) almost

everywhere, with h ∈ L2(Rn,dx).
Hence D(X∗

i ) consists precisely of maps f ∈ L2(Rn,dx) for which
∫

Rn
|xi f (x)|2 dx < +∞ ,

and so D(X∗
i ) = D(Xi) and Xi is self-adjoint.

(b) If we define Xi as above, apart from restricting the domain to D(Rn) or S (Rn),
the operator thus obtained is no longer self-adjoint, but stays symmetric. The ad-
joints to Xi �D(Rn) and Xi �S (Rn) both coincide with the X∗

i found above, for in the
construction of X∗

i we only used that Xi is the operator that multiplies by xi on a dense
domain: whether this is D(Xi) of (5.13), or a dense subspace, does not alter the result.
If we set Xi as in (5.12) and (5.13) the adjoint X∗

i must satisfy Ker(X∗
i ± iI) = {0}

by Theorem 5.18(b). But as X∗
i is the same as we get by restricting the domain of Xi

to D(Rn) or S (Rn) by Theorem 5.19(b), the restricted Xi is essentially self-adjoint.
Part (b) is now an immediate consequence of Proposition 5.21. �

5.3.2 The momentum operator

Let us introduce the momentum operator. Henceforth we make use of the definitions
and conventions taken from Example 2.87, and retain Notation 3.76. First, though,
we need a few definitions.

We say f : Rn → C is a locally integrable function on Rn if f ·g ∈ L1(Rn,dx) for
any map g ∈D(Rn).

Definition 5.24. Let f be locally integrable. If α is a multi-index, h : Rn → C is the
αth weak derivative of f , written w-∂α f = h, if h : Rn → C is locally integrable
and: ∫

Rn
h(x)g(x)dx = (−1)|α|

∫

Rn
f (x)∂αx g(x)dx (5.14)

for any map g ∈D(Rn).

Remarks 5.25. (1) If it exists, a weak derivative is uniquely determined up to sets of
zero measure: if h and h′ are locally integrable (not necessarily L2(Rn,dx), in which
case the following is trivial) and satisfy (5.14), then:

∫

Rn
(h(x)−h′(x))g(x)dx = 0 for any g ∈D(Rn). (5.15)
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This implies h(x)− h′(x) = 0 almost everywhere by the Du Bois-Reymond lemma
[Vla81]:

Lemma 5.26 (Du Bois-Reymond). If φ is locally integrable on Rn then φ is zero
almost everywhere if and only if

∫
Rn φ(x) f (x)dx = 0 for any f ∈D(Rn).

(2) In case f ∈C|α|(Rn), the α th weak derivative of f exists and coincides with the
usual derivative (up to a zero-measure set). However, there are situations in which
the ordinary derivative does not exist but the weak one is defined.
(3) L2(Rn,dx) maps are locally integrable, for D(Rn) ⊂ L2(Rn,dx) and f ·g ∈ L1 if
f ,g ∈ L2. �

In order to define the momentum operator let us construct the operator A j on
H := L2(Rn,dx)

(A j f )(x) =−ih̄
∂
∂x j

f (x) with D(A j) := D(Rn),

where h̄ is a positive constant (Planck’s constant), whose precise value is irrelev-
ant at present. By definition we have (g|A j f ) = (A jg| f ) if f ,g ∈ D(A j). Thus A j

is symmetric because D(A j) = H. Let us find the adjoint to A j, denoted Pj := A∗j ,
directly from the definition. With f ∈ D(A∗j) = D(Pj) there must be φ ∈ L2(Rn,dx)
(coinciding with Pj f by definition) such that:

∫

Rn
φ(x)g(x)dx =−ih̄

∫

Rn
f (x)

∂
∂x j

g(x)dx , for any g ∈D(Rn) . (5.16)

Conjugating the equation we rephrase (5.16) as follows: f ∈ L2(Rn,dx) belongs in
D(Pj) iff it admits weak derivative φ ∈ L2(Rn,dx).

Definition 5.27. Let H := L2(Rn,dx), dx being Lebesgue’s measure on Rn. Given
j ∈ {1,2, . . . ,n}, the operator on H:

(Pj f )(x) =−ih̄w-
∂
∂x j

f (x) , (5.17)

with domain:

D(Pj) :=
{

f ∈ L2(Rn,dx)
∣
∣
∣ there exists w- ∂

∂x j
f ∈ L2(Rn,dx)

}
, (5.18)

is called jth momentum operator.

Remarks 5.28. If n = 1, D(Pj) is identified with the Sobolev space H1(R,dx). �

Proposition 5.29. Let Pj be the operator of Definition 5.27.

(a) Pj is self-adjoint.
(b) D(Rn) and S (Rn) are cores of Pj. Therefore:

(A j f )(x) = −ih̄
∂
∂x j

f (x) with f ∈ D(A j) := D(Rn) , (5.19)

(A′ j f )(x) = −ih̄
∂
∂x j

f (x) with f ∈ D(A′j) := S (Rn) , (5.20)

are essentially self-adjoint and A j = A′j = Pj.
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Proof. To simplify notations, in the sequel we will set h̄ = 1 (absorbing the constant
h̄−1 in the unit of measure of the coordinate x j), and denote by ∂ j the jth derivat-
ive and by w-∂ j the weak derivative. We want to prove Ker(A∗j ± iI) = {0}. This
would imply, owing to Theorem 5.19, that A j is essentially self-adjoint, i.e. Pj = A∗j
is self-adjoint. The space Ker(A∗j ± iI) consists of maps f ∈ L2(Rn,dx) admitting
weak derivative and such that i(w-∂ j f ± f ) = 0. Let us consider the equation, with
f ∈ L2(Rn,dx):

w-∂ j f ± f = 0 . (5.21)

Multiplying by an exponential the above gives:

w-∂ j
(
e±x j f
)

= 0 . (5.22)

So we can reduce to proving the following.

Lemma 5.30. If h : Rn → C is locally integrable and

w-∂ jh = 0 , (5.23)

h coincides almost everywhere with a constant function in x j.

Proof of Lemma 5.30. Without loss of generality we can suppose j = 1. We indicate
by (x,y) the coordinates of Rn, where x is x1 and y the remaining n−1 components.
Take h locally integrable satisfying (5.23). Explicitly:

∫

Rn
h(x,y)

∂
∂x

g(x,y)dx⊗dy = 0 , for any g ∈D(Rn) . (5.24)

Pick f ∈D(Rn), and choose a > 0 large, so to have supp( f )⊂ [−a,a]× [−a,a]n−1.
Define χ ∈ D(R) with supp(χ) = [−a,a] and

∫
R
χ(x)dx = 1. Then there is a map

g ∈D(Rn) such that

∂
∂x

g(x,y) = f (x,y)−χ(x)
∫

R

f (u,y)du .

In fact, it is enough to consider

g(x,y) :=
∫ x

−∞
f (u,y)du−

∫ x

−∞
χ(v)dv

∫

R

f (u,y)du . (5.25)

This map is smooth by construction, and its x-derivative coincides with:

f (x,y)−χ(x)
∫

R

f (u,y)du .

Moreover the support of g is bounded: if some coordinate satisfies |yk| > a, then
f (u,y) = 0 whichever u we have, so g(x,y) = 0 for any x. If x <−a the first integral
in (5.25) vanishes, and also the second one, for χ is supported in [−a,a]. Conversely,
if x > a

g(x,y) :=
∫ +∞

−∞
f (u,y)du−1

∫

R

f (u,y)du = 0 ,
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where we used suppχ = [−a,a] and
∫
R
χ(x)dx = 1. Altogether g vanishes outside

[−a,a]× [−a,a]n−1. Inserting g in (5.24) and using the theorem of Fubini–Tonelli
gives

∫

Rn
h(x,y) f (x,y)dx⊗dy−

∫

Rn

(∫

R

h(x,y)χ(x)dx

)

f (u,y)du⊗dy = 0 .

Relabelling variables:

∫

Rn

{

h(x,y)−
(∫

R

h(u,y)χ(u)du

)}

f (x,y)dx⊗dy = 0 , (5.26)

f being arbitrary in D(Rn). Notice that

(x,y) 	→ k(y) :=
∫

R

h(u,y)χ(u)du

is locally integrable on Rn, because

(x,y,u) 	→ f (x,y)h(u,y)χ(u)

is integrabile on Rn+1 for any f ∈D(Rn) (it is enough to see | f (x,y)| ≤ | f1(x)|| f2(y)|
for suitable f1, f2 in D(R) and D(Rn−1)). Equation (5.26), valid for any f ∈D(Rn),
implies immediately

h(x,y)−
∫

R

h(u,y)χ(u)du = 0

almost everywhere on Rn by the Du Bois-Reymond Lemma 5.26. That is to say

h(x,y) = k(y)

almost everywhere on Rn. �

In the case under scrutiny the result implies that every solution to (5.21) must have
the form f (x) = e±x j h(x), where h does not depend on x j. The theorem of Fubini–
Tonelli then tells

∫
Rn | f (x)|2dx = ||h||2

L2(Rn−1)

∫
R

e±2x j dx j. Thus h must be null al-

most everywhere if, as required, f ∈ L2(Rn,dx). Therefore Ker(A∗j ± iI) = {0} and
so Pj = A∗j is self-adjoint (A j is essentially self-adjoint).

Because S (Rn) ⊃ D(Rn) it is easy to see that A′j is symmetric, that f admits
generalised derivative if f ∈ D(A′∗j), and that

A′∗j f =−iw-
∂
∂x j

f .

Using the same procedure, if f ∈ Ker(A′∗j ± I) then f = 0, so A′j is essentially self-

adjoint too. Since A j ⊂ A′j and A j is essentially self-adjoint, then A′j
∗∗ = A′j = A j

∗∗ =
A j = Pj by Proposition 5.17(d). �
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There is another way to introduce the operator Pj. Consider the Fourier-Plancherel
transform F̂ : L2(Rn,dx)→ L2(Rn,dk) seen in Chapter 3.6.

We define on L2(Rn,dk) the analogue to Xj, which we call Kj (conventionally,
the target space Rn of the Fourier-Plancherel transform has coordinates (k1, . . . ,kn)).
Since F̂ is unitary, the operator F̂−1KjF̂ is self-adjoint if defined on the domain
F̂−1D(Kj).

Proposition 5.31. Let Kj be the jth position operator on the target space of the
Fourier-Plancherel transform F̂ : L2(Rn,dx)→ L2(Rn,dk). Then

Pj = h̄ F̂−1KjF̂ .

Proof. It suffices to show the operators coincide on a domain where they are both
essentially self-adjoint. So consider S (Rn). From Chapter 3.6 we know the Fourier-
Plancherel transform is the Fourier transform on this space, and F̂ (S (Rn)) =
S (Rn). Moreover, the properties of the Fourier transform imply

−ih̄
∂
∂x j

f (x) =
1

(2π)n/2

∫

Rn
eik·x h̄k jg(k)dk

provided g ∈S (Rn) and

f (x) =
1

(2π)n/2

∫

Rn
eik·x g(k)dk.

Therefore
Pj �S (Rn)= h̄ F̂−1Kj �S (Rn) F̂ .

Notice Kj is essentially self-adjoint on S (Rn) by Proposition 5.23, so also
h̄ F̂−1Kj �S (Rn) F̂ is, on S (Rn), because F̂ is unitary. Since Pj �S (Rn)= A′j is
essentially self-adjoint as well (Proposition 5.29), and since self-adjoint extensions
of essentially self-adjoint operators are unique and coincide with the closure (Pro-
position 5.17(d)), we conclude

Pj = h̄ F̂−1Kj �S (Rn) F̂ = h̄ F̂−1Kj �S (Rn)F̂ = h̄ F̂−1KjF̂ . �

5.4 Existence and uniqueness criteria for self-adjoint extensions

In this remaining part of the chapter we discuss a few useful criteria to determine
whether an operator admits self-adjoint extensions, and how many.

5.4.1 The Cayley transform and deficiency indices

One crucial technical tool to present the criteria is the so-called Cayley transform,
introduced below. Before that, we generalise the notion of isometry (Definition 3.6)
to operators with non-maximal domain.
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Definition 5.32. An operator U : D(U)→ H, on the Hilbert space H, is an isometry
if

(Ux|Uy) = (x|y) for any x,y ∈ D(U).

Remark 5.33. (1) Clearly, if D(U) = H the above definition pins down isometric op-
erators in the sense of Definition 3.51.
(2) By Proposition 3.8, the above definition of isometry is the same as demanding U
satisfies ||Ux||= ||x||, for any x ∈ D(U). �

The transformationR� t 	→ (t− i)(t + i)−1 ∈C is well known to define a bijection
between the real line R and the unit circle in C minus the point 1. There is a similar
correspondence that maps isometric operators to symmetric operators, called Cayley
transform, of which we will study some properties.

Theorem 5.34. Let H be a Hilbert space.

(a) If A is a symmetric operator on H:

(i) A+ iI is injective;
(ii) the Cayley transform of A:

V := (A− iI)(A+ iI)−1 : Ran(A+ iI)→ H , (5.27)

is well defined;
(iii) V is an isometry with Ran(V ) = Ran(A− iI).

(b) If (5.27) holds for some operator A : D(A)→H on H with (A+ iI) injective, then:

(i) I−V is injective;
(ii) Ran(I−V ) = D(A) and

A := i(I +V )(I−V )−1 . (5.28)

(c) If A is symmetric on H, A is self-adjoint⇔ its Cayley transform V is unitary on H.
(d) If V : H→H is unitary and I−V injective, then V is the Cayley transform of some
self-adjoint operator on H.

Proof. (a) A direct computation using the symmetry of A and the (anti)linearity of
inner products proves that

||(A± iI) f ||2 = ||A f ||2 + || f ||2 (5.29)

if f ∈D(A). Therefore if (A+ iI) f = 0 or (A− iI) f = 0, f = 0. The operators A± iI
are thus injective on D(A), making V well defined from D(V ) := Ran(A + iI) to H.
From (5.29)

||(A− iI)g||= ||(A+ iI)g||
for any g ∈ D(A), Set g = (A+ iI)−1h, with h ∈ Ran(A+ iI); then

||V h||= ||(A− iI)(A+ iI)−1h||= ||h|| ,



226 5 Densely-defined unbounded operators on Hilbert spaces

so V is an isometry with domain D(V ) = Ran(A+ iI) and Ran(V ) = Ran(A− iI).
(b) D(V ) consists of vectors g = (A + iI) f with f ∈ D(A). Applying V to g gives
V g = (A− iI) f . Adding and subtracting g = (A+ iI) f produces

(I +V )g = 2A f , (5.30)

(I−V )g = 2i f . (5.31)

(5.31) tells (I−V ) is injective, for if (I−V )g = 0 then f = 0 and so g = (A+ iI) f = 0.
Therefore if f ∈ D(A) we can write

g = 2i(I−V )−1 f . (5.32)

Furthermore, Ran(I−V ) = D(A) follows immediately from (5.31). Applying (I +V )
to equation (5.32) and using (5.30):

A f = i(I +V )(I−V )−1 f for any f ∈ D(A).

(c) Suppose A = A∗. By Theorem 5.18 Ran(A+ iI) = Ran(A− iI) = H. Then part (a)
implies V is an isometry from Ran(A + iI) = H onto H = Ran(A− iI). Hence V is a
surjective isometry, i.e. a unitary operator.

Suppose now V : H → H is the unitary Cayley transform of A symmetric on H.
By part (a) Ran(A+ iI) = Ran(A− iI) = H. This means A = A∗ by Theorem 5.18.
(d) It is enough to prove V is the Cayley transform of a symmetric operator. By part
(c) this symmetric operator is self-adjoint. By assumptiuon there is a bijective map
z 	→ x, from D(V ) = H to Ran(I−V ), given by x := z−V z. Define A : Ran(I−V )→H
as

Ax := i(z+V z) , if x = z−V z. (5.33)

If x,y ∈ D(A) = Ran(I−V ), x = z−V z and y = u−Vu for some z,u ∈ D(V ). But V
is an isometry, so

(Ax|y) = i(z+V z|u−Vu) = i(V z|u)− i(z|Vu) = (z−V z|iu− iVu) = (x|Ay) ,

and A is Hermitian. To show it is symmetric, note D(A) = Ran(I−V ) is dense. In
fact [Ran(I−V )]⊥ = Ker(I−V ∗). If Ker(I−V ∗) were not {0}, a non-zero u ∈ H
would exists such that V ∗u = u, and then applying V would give u = Vu. But that is
not possible, for I−V is injective by assumption.

To finish, we prove V is the Cayley transform of A. Equation (5.33) reads:

2iV z = Ax− ix , 2iz = Ax+ ix , if z ∈ H.

Hence V (Ax + ix) = Ax− ix for x ∈ D(A) and H = D(V ) = Ran(A + iI). But then V
is the Cayley transform of A because V (A+ iI) = A− iI, and so

V = (A− iI)(A+ iI)−1 .

This ends the proof. �
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Remarks 5.35. From the statement and proof we infer that Ker(A± iI) = {0} if A is
symmetric. In general, though, this is not true! That Ker(A∗ ± iI) = {0} is a very re-
strictive condition, equivalent to the essential self-adjointness of A (if A is symmetric)
by Theorem 5.19. �

Let us pass to the consequences of Theorem 5.34 concerning the existence of self-
adjoint extensions of a symmetric operator. The first result introduces the so-called
deficiency indices.

Theorem 5.36. If A is a symmetric operator on the Hilbert space H, we call

d±(A) := dim Ker(A∗ ± iI) .

Deficiency indices of A. Then:

(a) A admits self-adjoint extensions if and only if d+(A) = d−(A).
(b) If d+(A) = d−(A), there is a bijection between self-adjoint extensions of A and
surjective isometries from Ker(A∗ − iI) to Ker(A∗+ iI).

A admits as many self-adjoint extensions as the number of above surjective iso-
metries. In particular, A admits more than one self-adjoint extensions whenever
d+(A) = d−(A) > 0.

Remarks 5.37. Deficiency indices can be defined equivalently as:

d±(A) := dim [Ran(A∓ iI)]⊥ ,

because Ker(A∗ ± iI) = [Ran(A∓ iI)]⊥. �

Proof of Theorem 5.36. Consider the Cayley transform V of A. Suppose A has a self-
adjoint extension B and let U : H→ H be the Cayley transform of B. It is straighfor-
ward to seeU is an extension ofV using (5.27), recalling (B+ iI)−1 extends (A+ iI)−1

and B− iI extends A− iI. Hence U maps Ran(A+ iI) into Ran(A− iI). U is unitary,
so y ⊥ Ran(A + iI) iff Uy ⊥ U(Ran(A + iI)), that is to say U([Ran(A + iI)]⊥) =
[Ran(A− iI)]⊥. By Theorem 5.10(c) this means U(Ker(A∗ + iI)) = Ker(A∗ − iI).
Since U is an isometry, dim Ker(A∗+ iI) = dim Ker(A∗ − iI), i.e. d+(A) = d−(A).
Let us show, conversely, that if d+ = d− then A has a self-adjoint extension,
not unique in case d+(A) = d−(A) > 0. Call V the Cayley transform of A. V is
bounded, so Proposition 2.44 says we can extend V , uniquely, to an isometric op-
erator U : Ran(A+ iI) → Ran(A− iI). The same we can do for V−1, extending it
to a unique isometry from Ran(A− iI) to Ran(A+ iI). By continuity this operator

is U−1 : Ran(A− iI) → Ran(A+ iI). Now recall Ran(A± iI)
⊥

= [Ran(A± iI)]⊥ =
Ker(A∗ ∓ iI).

Having assumed d+(A) = d−(A), we can define a unitary operator U0 : Ker(A+
iI)→ Ker(A− iI). Since

H = Ran(A+ iI)⊕Ker(A∗ − iI) = Ran(A− iI)⊕Ker(A∗+ iI)
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is an orthogonal decomposition into closed spaces,

W : (x,y) := U ⊕U0 :	→ (Ux,U0y) , with x ∈ Ran(A+ iI) and y ∈ Ker(A∗ − iI) ,

is a unitary operator on H. Moreover I −W is injective. In fact, Ker(I −W ) con-
sists of pairs (x,y) � (0,0) with Ux = x and U0y = y: the first condition has only the
solution x = 0 because U is an isometry, and the second one implies y ∈ Ker(A∗+
iI)∩Ker(A∗− iI), giving y = 0. Therefore Theorem 5.34(d) applies: W is the Cayley
transform of a self-adjoint operator B. As W extends U , B is a self-adjoint extension
of A. There are many choices for U0 if d+(A) = d−(A) > 0, and each one produces a
different self-adjoint extension of A.

We claim that the correspondence between self-adjoint extensions of A and sur-
jective isometries U0 is bijective. Parts (a) and (b) of Theorem 5.34 tell that two
symmetric operators are distinct iff their Cayley transforms differ. So let us consider
self-adjoint extensions of A. Each self-adjoint extension B has a unitary Cayley trans-
form W extending U (as above) to a unitary operator on H. Since

U : Ran(A+ iI)→ Ran(A− iI)

is surjective and isometric, and

H = Ran(A+ iI)⊕Ker(A∗ − iI) = Ran(A− iI)⊕Ker(A∗+ iI) ,

and finally W extends U , the only possibility is that W determines a surjective
isometry U0 : Ker(A∗ − iI) → Ker(A∗ + iI). Two distinct self-adjoint extensions
B,B′ give distinct operators U0,U ′

0, otherwise the Cayley transforms W,W ′ would
coincide. Altogether, then, the map sending the self-adjoint extension B of A to the
relative surjective isometry U0 is 1-1. The map is also onto by what we said above,
because the choice of U0 determines a self-adjoint extension of A, i.e. the one with
Cayley transform W := U ⊕U0. �

Next comes the first important corollary to Theorem 5.36.

Theorem 5.38. A symmetric operator A on the Hilbert space H is essentially self-
adjoint if and only if it admits a unique self-adjoint extension.

Proof. If A is essentially self-adjoint it has a unique self-adjoint extension by Pro-
position 5.17(d). Theorem 5.36 implies a symmetric operator A has self-adjoint ex-
tensions only if d+ = d−. In particular, if the extension is unique d+ = d− = 0. But
then Theorem 5.19(b) forces A to be essentially self-adjoint. �

5.4.2 Von Neumann’s criterion

Another consequence to Theorem 5.34, proved by von Neumann, establishes suffi-
cient conditions for a symmetric operator to admit self-adjoint extensions. First we
need two definitions.
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Definition 5.39. Let X and X′ beC-vector spaces with Hermitian inner products ( | )X

and ( | )X′ respectively. A surjective map V : X→ X′ is an antiunitary operator if:

(a) V is antilinear: V (αx+βy) = αV x+βV y for any x,y ∈ X, α ,β ∈ C.
(b) V is anti-isometric: (V x|V y)X′ = (x|y)X for any x,y ∈ X.

Remarks 5.40. Despite the complex conjugation in (b), note that ||V z||X′ = ||z||X for
any z ∈ X. Moreover, V is bijective. �

Definition 5.41. If (H,( | )) is a Hilbert space, an antiunitary operator C : H→ H is
a conjugation operator, or conjugation, if it is involutive, i.e. CC = I.

Remarks 5.42. A conjugation is defined on a complex vector space with Hermitian
inner product. In general it is different from an involution in the sense of Defini-
tion 3.40, which – on the contrary – is a map defined on an algebra. �

Theorem 5.43 (von Neumann). Let A be a symmetric operator on the Hilbert space
H. If there is a conjugation C : H→ H such that C(D(A))⊂ D(A) and

AC = CA ,

then A admits self-adjoint extensions.

Proof. To begin with, let us show C(D(A∗)) ⊂ D(A∗) and A∗C = CA∗. By defini-
tion of adjoint (A∗ f |Cg) = ( f |ACg) for any f ∈ D(A∗) and g ∈ D(A). As C is an-
tiunitary, (CCg|CA∗ f ) = (CACg|C f ). As C commutes with A and CC = I, we have
(g|CA∗ f ) = (Ag|C f )), i.e. (CA∗ f |g) = (C f |Ag) for any f ∈D(A∗) and g∈D(A). By
definition of adjoint, this means C f ∈ D(A∗) if f ∈ D(A∗) and CA∗ f = A∗C f .

Let us pass to existence, using Theorem 5.36. According to what we have just
proved, if A∗ f = i f , applying C and using that C is antilinear and commutes with
A∗, we obtain A∗C f =−iC f . Thus C is a map (injective because it preserves norms)
from Ker(A∗ − iI) to Ker(A∗ + iI). It is also onto, for if A∗g = −ig, with f := Cg
we have A∗ f = +i f . Applying C to f again (recall CC = I) gives C f = g. There-
fore C is a bijection from Ker(A∗ − iI) to Ker(A∗+ iI). That it is also anti-isometric,
i.e. it preserves orthonormal vectors, implies it must map bases to bases. In partic-
ular it preserves their cardinality, so d+(A) = d−(A). The claim now follows from
Theorem 5.36. �

5.4.3 Nelson’s criterion

We present, in conclusion, Nelson’s criterion, that provides sufficient conditions for
a symmetric operator to be essentially self-adjoint. Although one part of the final
proof will be fully understandable only after going into spectral theory (Chapter 8
and 9), we believe it is better to present the result at this point. The reader might want
to postpone the proof until he becomes familiar with the material of those chapters.
First, though, a few preliminaries are in order.
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Definition 5.44. Let A be an operator on the Hilbert space H.

(a) A vector ψ ∈ D(A) such that Anψ ∈ D(A) for any n ∈ N (A0 := I) is called a C∞

vector for A, and the vector subspace in H of C∞ vectors for A is denoted C∞(A).
(b) ψ ∈C∞(A) is an analytic vector for A, if:

+∞

∑
n=0

||Anψ ||
n!

tn < +∞ for some t > 0.

(c) A vector ψ ∈C∞(A) is a vector of uniqueness for A, if A �Dψ is essentially self-
adjoint as operator on the Hilbert space Hψ := Dψ , where Dψ is the (finite) span of
Anψ , n = 0,1,2 . . . in H.

If ψ is an analytic vector for A, the series:

+∞

∑
n=0

||Anψ ||
n!

tn

converges for some t > 0. Known results on convergence of power series guarantee
the complex series

+∞

∑
n=0

||Anψ ||
n!

zn

converges absolutely and uniformly for any z ∈ C, |z| < t. Furthermore, for |z| < t,
also the series of derivatives of any order

+∞

∑
n=0

||An+pψ ||
n!

zn

will converge, for any given p = 1,2,3, . . .. The last fact has an important con-
sequence, easily proved, that comes from using the triangle inequality and the norm’s
homogeneity repeatedly.

Proposition 5.45. If ψ is an analytic vector for A, operator on the Hilbert space H,
every vector in Dψ is analytic for A. More precisely, if the series

+∞

∑
n=0

||Anψ ||
n!

tn ,

converges for t > 0 and φ ∈ Dψ , then the series

+∞

∑
n=0

||Anφ ||
n!

sn ,

converges for any s ∈ C with |s|< t.

We have a proposition, called Nussbaum lemma.
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Proposition 5.46 (“Nussbaum lemma”). Let A be a symmetric operator on the Hil-
bert space H. If D(A) contains a set of vectors of uniqueness whose linear span is
dense in H, A is essentially self-adjoint.

Proof. By Theorem 5.19 it is enough to prove the spaces Ran(A± iI) are dense. With
our assumptions, given φ ∈H and ε > 0, there is a finite linear combination of vectors
of uniqueness ψi with ||φ −∑N

i=1αiψi|| < ε/2. Since ψi ∈ Hψ and A �Dψ is essen-
tially self-adjoint on this Hilbert space, Theorem 5.19(c) implies there exist vectors

ηi ∈ Hψ with ||(A �Dψ +iI)ηi −ψi|| ≤ ε/2
(
∑N

j=1 |α j|
)−1

. Setting η := ∑N
i=1αiηi

and ψ := ∑N
i=1αiψi, we have η ∈ D(A) and

||(A+ iI)η−φ || ≤ ||(A �Dψ +iI)η−ψ ||+ ||φ −ψ ||< ε .

But ε > 0 is arbitrary, so Ran(A+ iI) is dense. The claim about Ran(A− iI) is similar.
So, A is essentially self-adjoint by Theorem 5.19(c). �

The above result prepares the ground for the proof of Nelson’s theorem, which –
as mentioned – needs the spectral theory of unbounded self-adjoint operators (this is
logically independent from Nelson’ criterion albeit presented in Chapter 8, 9).

Theorem 5.47 (Nelson’s criterion). Let A be a symmetric operator on the Hilbert
space H. If D(A) contains a set of analytic vectors for A whose finite span is dense
in H, A is essentially self-adjoint.

Proof. By Proposition 5.46 it suffices to show any analytic vectorψ0 for A is a vector
of uniqueness for A. Note A �Dψ0

is surely a symmetric operator on Hψ0 := Dψ0 , be-
cause it is Hermitian and its domain is dense in Hψ0 . Suppose A �Dψ0

has a self-adjoint
extension B in Hψ0 . (NB: we are talking about self-adjoint extensions of A �Dψ0

on
the Hilbert space Hψ0 , and not on H!) Let μψ be the spectral measure of ψ ∈ Dψ0

for the PVM of the spectral expansion of B (cf. Theorems 8.50(c) and 9.10), defined

by μψ(E) := (ψ |P(B)
E ψ) for any Borel set E ⊂ σ(B) ⊂ R, where P(B)

E is the PVM
associated to the self-adjoint operator B. As ψ0 is analytic

+∞

∑
n=0

||Anψ0||
n!

tn
0 < +∞ for some t0 > 0.

By Remark 5.42 then,

+∞

∑
n=0

||Anψ ||
n!

tn < +∞ for any t < t0, t ≥ 0.



232 5 Densely-defined unbounded operators on Hilbert spaces

If z ∈ C and 0 < |z|< t0,

+∞

∑
n=0

∫

σ(B)

∣
∣
∣
∣
zn

n!
xn

∣
∣
∣
∣dμψ(x) =

+∞

∑
n=0

∣
∣
∣
∣
zn

n!

∣
∣
∣
∣

∫

σ(B)
1 · |xn|dμψ(x)

≤
+∞

∑
n=0

tn
0

n!

(∫

σ(B)
dμψ(x)

)1/2(∫

σ(B)
x2ndμψ(x)

)1/2

=
+∞

∑
n=0

tn
0

n!
||ψ || ||Bnψ ||= ||ψ ||

+∞

∑
n=0

tn
0

n!
||Anψ ||< +∞ ,

where we used Theorem 9.4(c) for the spectral measure P(B) of the spectral expansion
of B (spectral Theorem 9.10). The theorem of Fubini–Tonelli implies, for 0 < |z|< t0,
that we can swap series and integral

+∞

∑
n=0

∫

σ(B)

zn

n!
xn =
∫

σ(B)

+∞

∑
n=0

zn

n!
xndμψ(x) .

Hence if 0≤ |z|< t0 and if ψ belongs to the domain of ezB (cf. Definition 9.11),

(ψ |ezBψ) =
∫

σ(B)
ezxdμψ(x) =

∫

σ(B)

+∞

∑
n=0

zn

n!
xndμψ(x) =

+∞

∑
n=0

zn

n!

∫

σ(B)
xndμψ(x)

=
+∞

∑
n=0

zn

n!
(ψ |Anψ) .

In particular this happens if z = it (with |t| < t0) because the domain of eitB is the
entire Hilbert space, by Corollary 9.5:

(ψ |eitBψ) =
+∞

∑
n=0

(it)n

n!
(ψ |Anψ) . (5.34)

(Note the power series on the right converges on an open disc of radius t0, i.e. it
defines an analytic extension of the left-hand-side function when it is replaced by z
in the disc, even if ψ does not belong to the domain of ezB.) Now consider another
self-adjoint extension of ADψ0

, say B′. Arguing as before, for |t|< t0 we have

(ψ |eitB′ψ) =
+∞

∑
n=0

(it)n

n!
(ψ |Anψ) . (5.35)

Then (5.34) and (5.35) imply, for any |t|< t0 and any ψ ∈ Dψ0 ,

(ψ |(eitB− eitB′)ψ) = 0 .

But Dψ0 is dense in Hψ0 , so (cf. Exercise 3.18) for any |t|< t0:

eitB = eitB′ .
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Compute the strong derivatives at t = 0 and invoke Stone’s theorem (Theorem 9.29),
to the effect that

B = B′

(recall t0 > 0 by assumption). Therefore all possible self-adjoint extensions of A �Dψ
are the same. We claim there exists at least one. Define C : Dψ0 → Hψ0 by

C :
N

∑
n=0

anAnψ0 	→
N

∑
n=0

anAnψ0 .

Easily C extends to a unique conjugation operator on Hψ0 , which we still call C (see
Exercise 5.15). What is more, by construction CA �Dψ0

= A �Dψ0
C, so A �Dψ0

admits
self-adjoint extensions by Theorem 5.43.

Altogether, for any analytic vector ψ0, A �Dψ0
must be essentially self-adjoint on

Hψ0 by Theorem 5.38, because it is symmetric and it admits precisely one self-adjoint
extension. We have thus proved that any analytic vector ψ0 is a vector of uniqueness,
ending the proof. �

Examples 5.48. (1) A typical example where von Neumann’s criterion applies is an
operator of chief importance in QM, namely H :=−Δ +V . Δ is the usual Laplacian
on Rn

Δ :=
n

∑
i=1

∂ 2

∂x2
i

,

and V is a locally integrable real-valued function.
By setting the domain of H to be D(Rn), H becomes immediately a symmetric

operator on L2(Rn,dx). Define C as the antiunitary operator mapping f ∈ L2(Rn,dx)
to its pointwise-conjugate function. Clearly CH = HC, so H admits self-adjoint ex-
tensions. By choosing a specific V it is possible to prove H is essentially self-adjoint,
as we will see at the end of Chapter 10.

(2) We know the operator Ai :=−i ∂∂xi
on D(Rn) (see Proposition 5.29) is essentially

self-adjoint, and as such it admits self-adjoint extensions. Is there a conjugation C
that commutes with Ai? (Note that it might not exist). The conjugation operator of
(1) does not commute with Ai despite its invariant subspace is the domain. Another
possible conjugation is C : L2(Rn,dx) → L2(Rn,dx) defined by (C f )(x) := f (−x)
(almost everywhere) for any f ∈ L2(Rn,dx). It is not hard to see C(D(Rn))⊂D(Rn)
and CAi = AiC.

(3) Consider the Hilbert space H := L2([0,1],dx) with Lebesgue measure dx, and let
A := i d

dx with domain given by maps in C1([0,1]) (i.e. maps in C1((0,1)) with finite
first derivatives at 0 and 1) that also vanish at 0 and 1. The operator is Hermitian,
as can be seen integrating by parts and because the maps annihilate boundary terms
so they vanish at the endpoints of the integral. One can also verify the domain of
A is dense, making A symmetric. Let us show A is not essentially self-adjoint. The
condition that g ∈ D(A∗) satisfies A∗g = ig (resp. A∗g =−ig) reads:

∫ 1

0
g(x)
[

f ′(x)+ f (x)
]

dx = 0
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(resp.
∫ 1

0 g(x) [ f ′(x)− f (x)]dx = 0) for any f ∈D(A). Integrating by parts shows the
map g(x) = ex (g(x) := e−x) in L2([0,1],dx) solves the above equation for any f in
C1([0,1]) that vanishes at 0, 1. This latter condition is crucial when integrating by
parts, because the exponential does not vanish at 0 and 1. By virtue of Theorem 5.19
A cannot be essentially self-adjoint.

Theorem 5.43 warrants, nonetheless, the existence of self-adjoint extensions. The
antilinear transformation C : L2([0,1],dx)→ L2([0,1],dx), (C f )(x) := f (1− x) maps
the space of C1 functions on [0,1] vanishing at the endpoints to itself. In addition

(

Ci
d
dx

f

)

(x) =−i
d

d(1− x)
f (1− x) = i

d
dx

f (1− x) = i
d
dx

(C f )(x) ,

whence CA = AC. There must be more than one such extension, otherwise A would
be essentially self-adjoint by Theorem 5.36, a contradiction.

The argument does not change if one takes domains akin to the above, in partic-
ular the space of C∞ maps on [0,1] that vanish at 0 and 1, or smooth maps on [0,1]
with compact support in (0,1).

(4) Take H := L2([0,1],dx) with the usual Lebesgue measure dx, and consider
A := −i d

dx defined on smooth periodic maps on [0,1] with periodic derivatives of
any order (of period 1). Integration by parts reveals A is Hermitian. The exponential
maps en(x) := ei2πnx, x∈ [0,1], n∈Z, form a basis of H, as shown in Exercise 3.32(1).
They are all defined on D(A), and their span is dense in H, so D(A) is dense in H and
A is symmetric.

Every f ∈ H corresponds bijectively to the sequence of Fourier coefficients
{ fn}n∈Z ⊂ �2(Z) of the expansion

f = ∑
n∈Z

fnen .

This defines a unitary operator U : H → �2(Z) such that U : f 	→ { fn}n∈Z (see The-
orem 3.28). The elementary theory of Fourier series tells that UD(A)U−1 =: D(A′) is
the space of sequences { fn} in �2(Z) such that nN | fn| → 0, n→+∞, for any N ∈ N.
Moreover, if A′ := UAU−1 and { fn}n∈Z ∈ D(A′), then

A′ : { fn}n∈Z 	→ {2πn fn}n∈Z .

Replicating the argument used for Xi in the proof of Proposition 5.23 allows to arrive
at

D(A′∗) =

{

{gn}n∈Z ⊂ �2(Z)

∣
∣
∣
∣
∣ ∑n∈Z

|2πngn|2 < +∞

}

.

On this domain
A′∗ : { fn} 	→ {2πn fn} .

As in Proposition 5.23 we can verify without problems that the adjoint to this oper-
ator is the operator itself. Hence A′∗ is self-adjoint and A′ essentially self-adjoint. As
U is unitary, also A is essentially self-adjoint and the unique self-adjoint extension A
satisfies A = UA′U−1. (Fill in all details as exercise.)
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(5) Example (4) can be settled in a much quicker way using Nelson’s criterion. The
domain of A contains the functions en whose span is dense in H := L2([0,1],dx).
Moreover Aen = 2πnen. Then

+∞

∑
k=0

||Aken||
k!

tk =
+∞

∑
k=0

(2π|n|)k

k!
(t)k = e2π|n|t < +∞ ,

for any t > 0. As a consequence, A is essentially self-adjoint. �

Exercises

5.1. Let A be an operator on the Hilbert space H with dense domain D(A). Take
α ,β ∈ C and consider the standard domain D(αA+β I) := D(A). Prove that

(i) αA+β I : D(αA+β I)→ H admits an adjoint and

(αA+β I)∗ = αA∗+β I .

(ii) Assuming α ,β ∈ R, αA+βB is Hermitian, symmetric, self-adjoint, essentially
self-adjoint ⇔ A is respectively Hermitian, symmetric, self-adjoint, essentially
self-adjoint.

(iii) αA+β I is closable ⇔ A is closable; in that case

αA+β I = αA+β I .

Hint. Apply directly the definitions.

5.2. Let A and B be densely-defined operators on the Hilbert space H. If A + B :
D(A)∩D(B)→ H is densely defined, prove

A∗+B∗ ⊂ (A+B)∗ .

5.3. Let A and B be densely-defined operators on the Hilbert space H. If the standard
domain D(AB) is densely defined, show AB : D(AB)→ H admits an adjoint and

B∗A∗ ⊂ (AB)∗ .

5.4. Let A be a densely-defined operator on the Hilbert space H and L : H → H a
bounded operator. Using the definition of adjoint prove that

(LA)∗ = A∗L∗ .

Then show
(L+A)∗ = L∗+A∗ .
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5.5. Let A : D(A) → H be a symmetric operator on the Hilbert space H. Prove that
A bijective implies self-adjoint. (Bear in mind that the inverse to a self-adjoint oper-
ator, if it exists, is self-adjoint. This falls out of the spectral theorem for unbounded
self-adjoint operators, that we shall see later.)

Solution. If A is symmetric so is A−1 : H→ D(A). The latter is defined on the whole
Hilbert space, so it is self-adjoint. Its inverse will, in turn, be self-adjoint.

5.6. In the sequel the commutant {A}′ of an operator A on H indicates the set of op-
erators B inB(H) such that BA⊂ AB. Let A : D(A)→H be an operator on the Hilbert
space H. If D(A) is dense and A closed, prove that {A}′ ∩{A∗}′ is a strongly closed
∗-subalgebra in B(H) with unit.

5.7. Prove Proposition 5.15.

5.8. Discuss whether and where the operator −d2/dx2 is Hermitian, symmetric, and
essentially self-adjoint on the Hilbert space H = L2([0,1],dx). Take as domain: (i)
periodic maps in C∞([0,1]), or (ii) maps in C∞([0,1]) that vanish at the endpoints.

5.9. Prove that the family of self-adjoint extensions of the operator of Ex-
ample 5.48(3) can be parametrised by one real number.

Hint. Consider the dimensions of Ker(A∗ ± iI) = Ran(A∓ iI).

5.10. Prove that

H :=− d2

dx2 + x2

is essentially self-adjoint on L2(R,dx) if D(H) := S (R).

Hint. Seek a basis of L2(R,dx) of eigenvectors of H.

5.11. Consider the Laplace operator on Rn seen in Example 5.48(1):

Δ :=
n

∑
i=1

∂ 2

∂x2
i

.

Prove explicitly Δ is essentially self-adjoint on the Schwartz space S (Rn) inside
L2(Rn,dx), and as such it admits one self-adjoint extension Δ .

Then show that if F̂ : L2(Rn,dx) → L2(Rn,dk) is the Fourier-Plancherel trans-
form (Chapter 3.6), (

F̂ΔF̂−1 f
)

(k) :=−k2 f (k) ,

where k2 = k2
1 + k2

2 + . . .+ k2
n, on the standard domain:

{

f ∈ L2(Rn,dk)
∣
∣
∣
∣

∫

Rn
k4| f (k)|2dk < +∞

}

.
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Hint. The operator Δ is symmetric on S (R3), so we can use Theorem 5.19, verifying
condition (b). Since the Schwartz space is invariant under the action of the unitary
operator F̂ given by the Fourier-Plancherel transform, as seen in Chapter 3.6, we
may consider Theorem 5.19(b) for Δ̂ := F̂ΔF̂−1. This operator is essentially self-
adjoint on S (R3) iff Δ is defined on S (R3). Δ̂ acts on S (Rn) by multiplication
by−k2 =−(k2

1 +k2
2 + . . .+k2

n), giving a self-adjoint operator on the aforementioned
standard domain. Condition (b) can then be verified easily for Δ̂ ∗, by using the defin-
ition of adjoint plus the fact that S (Rn) ⊃ D(Rn). The uniqueness of self-adjoint
extensions for essentially self-adjoint operators proves the last part, because F̂ is
unitary.

5.12. Recall D(Rn) denotes the space of smooth complex functions with compact
support in Rn. Referring to the previous esercise let Δ be the unique self-adjoint ex-
tension of Δ : S (Rn) → L2(Rn,dx). Prove D(Rn) is a core for Δ . In other words
show Δ�D(Rn) is essentially self-adjoint and Δ�D(Rn) = Δ .

Hint. It suffices to show (Δ�D(Rn))∗ = Δ (because that implies, by taking adjoints,

Δ�D(Rn) = ((Δ�D(Rn))∗)∗ = Δ ∗ = Δ ). For this identity note that ifψ ∈D((Δ�D(Rn))∗)
then (Δϕ |ψ) = (ϕ |ψ ′), with ψ ′ = (Δ�D(Rn))∗ψ ∈ L2(Rn,dx), for any ϕ ∈ D(Rn).
Passing to the Fourier-Plancherel transform it is immediate to see that F̂ψ ′ =
−k2F̂ψ , since F̂ (D(Rn)) is dense in L2(Rn,dk). Therefore we obtained ψ ∈ D(Δ)
and ψ ′ = Δψ , and so (Δ�D(Rn))∗ ⊂ Δ . Now suppose, conversely, ψ ∈ D(Δ). Using

the Fourier-Plancherel transform gives−k2F̂ψ ∈ L2(Rn,dk), and for anyϕ ∈D(Rn)

we may write (Δϕ |ψ) = −∫ dkk2(F̂ϕ)F̂ψ = −∫ dk(F̂ϕ)k2F̂ψ = (ϕ |Δψ). By
definition of adjoint we found ψ ∈D((Δ�D(Rn))∗) and (Δ�D(Rn))∗ψ = Δψ . Thus we
have the other inclusion, (Δ�D(Rn))∗ ⊃ Δ .

5.13. Recall that if A is an operator on H, the commutant {A}′ is the set of operators
B of B(H) such that BA⊂ AB.

Let A : D(A)→ H be self-adjoint and T its Cayley transform. Prove that the von
Neumann algebra ({A}′)′ generated by A coincides with the von Neumann algebra
({T}′)′ generated by {T} (cf. Example 3.44(3)).

5.14. Prove Proposition 5.45.

5.15. Take a symmetric operator A : D(A)→ H on the Hilbert space H and suppose
ψ ∈ C∞(A) is such that finite linear combinations of Anψ , n ∈ N, are dense in H.
Prove that for any chosen N = 0,1,2, . . . and an ∈ C,

C :
N

∑
n=0

anAnψ 	→
N

∑
n=0

anAnψ

determines a conjugation operator C : H→ H (Definition 5.39).
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Outline. The first thing to prove is C is well defined as a map, i.e. if ∑N
n=0 anAnψ =

∑N1
n=0 a′nAnψ then ∑N

n=0 anAnψ = ∑N1
n=0 a′nAnψ . For that it is enough to observe that if

Ψ = ∑M
m=0 bmAmψ , then

(

ψ

∣
∣
∣
∣
∣

N

∑
n=0

anAnΨ

)

=

(

ψ

∣
∣
∣
∣
∣

N1

∑
n=0

a′nAnΨ

)

so that

(
N

∑
n=0

anAnψ

∣
∣
∣
∣
∣
Ψ

)

=

(
N1

∑
n=0

a′nAnψ

∣
∣
∣
∣
∣
Ψ

)

.

Since the vectorsΨ are dense, ∑N
n=0 anAnψ =∑N1

n=0 a′nAnψ , as required. By construc-
tion one verifies that ifΨ andΨ ′ are as above then (CΨ |CΨ ′) = (Ψ |Ψ ′). Since theΨ
are dense in H and ||CΨ ||= ||Ψ ||, it is straightforward to see C extends to H by con-
tinuity and antilinearity. This latter antilinear operator satisfies (CΨ |CΨ ′) = (Ψ |Ψ ′)
on H and is onto, as one obtains by extending by continuity the equation CCΨ = IΨ .
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Phenomenology of quantum systems and
Wave Mechanics: an overview

Two are the possible outcomes: if the result confirms the
hypotheses, you only took a measurement. But if the result
contradicts the assumptions, then you made a discovery.

Enrico Fermi

In this chapter we try to arouse in the user a naïve feel about what the terms quantum
system and quantum phenomenology underlie. The more mathematically-oriented
reader, perhaps not so interested in the genesis of QM’s notions in physics, may skip
the sections following the first. From sections two, in fact, we will mention a number
of experimental facts, and briefly review the theoretical “proto-quantum” methods
that led to the formulation of wave mechanics first, and then to proper QM. Many
of the physics details can be found in [Mes99, CCP82]. We shall eschew discussing
important steps in this historical development, e.g. atomic spectroscopy, models of
the atom (Rutherford’s, Bohr’s, Bohr-Sommerfeld’s), the Franck-Hertz experiment,
for which we recommend physics textbooks (e.g. [Mes99, CCP82]). This overview is
meant to shed light on the basic theoretical model behind QM, developed in ensuing
chapters.

Notation 6.1. As customary in physics texts, in this and sometimes other chapters
too, we will denote vectors in three-space (identified with R3 once Cartesian coordin-
ate have been fixed on a frame system), by boldface letters, e.g. x. In the same way,
Lebesgue’s measure on R3 will be written d3x. �

6.1 General principles of quantum systems

We use the term physical system loosely, as a manner of speaking. It is quite hard
to define, from a physical point of view, what a quantum system actually is. We can
start by saying that rather than talking of a physical quantum state it may be more
suitable to discuss a physical system with quantum behaviour, thus distinguishing
these systems more by their phenomenological/experimental aspects than by theor-
etical ones. Within the theoretical formulation of QM there is no clear border line
separating classical systems from quantum systems. The divide is forced artificially;
demarcation issues are very debated, today more than in the past, and the object of
intense theoretical and experimental research work.

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
DOI 10.1007/978-88-470-2835-7_6, © Springer-Verlag Italia 2013
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Generically speaking we can talk of quantum nature for microphysical systems,
i.e. molecules, atoms, nuclei and subatomic particles when taken singularly or in
small numbers. Physical systems made of several copies of those subsystems (like
crystals) can show quantum behaviour. Certain macroscopic systems behave in a
typical quantum way only under specific circumstances that are hard to achieve (e.g.
Bose-Einstein condensates, or L.A.S.E.R.). There is a way to refine slightly the rough
distinction between the above micro- and macrosystems. We may say that when any
physical system behaves in a quantum manner, the system’s characteristic action,
i.e. the number of physical dimensions of Energy × Time (equivalently Momentum
× Length or Angular Momentum), obtained by combining suitably the characteristic
physical dimensions (mass, speed, length, . . . ) in the processes examined, is of order
smaller than Planck’s constant:

h = 6.6262 ·10−34Js.

Planck’s constant, and the word quantum labelling Quantum Mechanics, were first
introduced by Planck in a 1900 work on the black-body theory, to deal with the is-
sue of the theoretically-infinite total energy of a physical system consisting in the
electromagnetic radiation in thermodynamic equilibrium with the walls of an enclos-
ure at fixed temperature. Planck’s theoretical prediction, later proved to be correct,
was that the radiation could exchange with the walls quantities of energy propor-
tional to the frequencies of atomic oscillators in the walls, whose universal factor
is the aforementioned Planck constant. These packets of energy were called by the
Latin name quanta. If we return to the criterion for distinguishing quantum from
classical systems using h, let us for instance look at an electron orbiting around a
hydrogen nucleus. A characteristic action of the electron is, for example, the product
of its mass (∼ 9 ·10−31Kg), the estimated orbiting speed (∼ 106m/s) and the value of
Bohr’s radius for the hydrogen atom (∼ 5 ·10−11m). This gives 4.5 ·10−35Js, smal-
ler than Planck’s constant. Thus one would expect the hydrogen electron behave in
a quantum manner, and this is indeed the case. A similar computation can be car-
ried out for macroscopic systems like a pendulum, of mass a few grams and length
one centimetre, swinging under gravity’s pull. A characteristic action for this can be
the maximum kinetic energy times the period of oscillation, and the value is several
orders of magnitude bigger than h.

Remarks 6.2. The set of values taken by physical quantities, like energy, that chara-
terise a quantum systems’s state is called spectrum in the jargon; one of the pecu-
liarities of quantum systems is that their spectrum is usually not like the spectrum
measured on comparable macroscopic systems. Sometimes the difference is aston-
ishing, for one passes from a continuous spectrum of possible values in the classical
case, to a discrete spectrum in quantum situations. It is important to point out that a
discrete spectrum of values for a given physical quantity is not essential in QM: there
are quantum quantities in QM with a continuous spectrum. This misunderstanding is
the cause – or the consequence, at times – of a recurrent oversimplified interpretation,
of the word quantum in QM. �
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6.2 Particle aspects of electromagnetic waves

Under special experimental circumstances electromagnetic waves (hence light as
well) reveal a conduct that is typical of collections of particles. The mathematical de-
scription of these irregular, from a classical viewpoint, behaviours involves Planck’s
constant. In this respect we can cite two examples of classically deviant behaviour:
the photoelectric effect and Compton’s effect. In the infant stages of QM’s devel-
opment these played a fundamental role in the construction of the proto-quantum
models meant to explain them.

6.2.1 The photoelectric effect

The photoelectric effect describes the emission of electrons (a current) by a metal
irradiated with an electromagnetic wave, a phenomenon known since the first half
of the XIX century. Some of its features remained with no explanation within the
classical theory of interactions between matter and electromagnetic waves for a long
time [Mes99, CCP82]. One conundrum, in particular, was to establish the minimum
frequency of light below which no emission is measured when beaming a metal, a
threshold that depends on the metal. At the time it did not seem possible to explain
why the emission started instantaneously once that particular value was exceeded.
According to the classical theory electronic emission should be detected independ-
ently of the frequency used, as long as enough time lapses to allow the metal’s elec-
trons to absorb sufficient energy to bond with atoms.

In 1905 A. Einstein proposed a very daring model to account for the strange prop-
erties of the photoelettric effect,1 with an outstanding precision if compared to ex-
perimental data. Following Planck, Einstein’s point was that a monochromatic elec-
tromagnetic wave, i.e. one with fixed frequency ν , was in reality made of particles
of matter, called light quanta, each having energy prescribed by Planck’s radiation
formula:

E = hν . (6.1)

The total energy of the electromagnetic wave in this model would then be the sum of
the energies of the single quanta of light “associated” to the wave.

All this was, and still is, in contrast with classical electromagnetism, according to
which an electromagnetic wave is a continuous system whose energy is proportional
to the wave’s amplitude rather than its frequency. What happened in the photoelectric
effect, Einstein said, was that by irradiating the metal with a monochromatic wave
each energy packet associated to the wave was absorbed by an electron in the metal,
and transformed into kinetic energy. To justify the experimental evidence Einstein
postulated, more precisely, that the packet could be either absorbed completely or not
at all, without intermediate possibilities. If, and only if, the energy of the quantum
was equal to, or bigger than, the electron’s bonding energy E0 to the metal (which
depends on the metal, and can be measured irrespective of the photoelectric effect),

1 Einstein was awarded the Nobel Prize in Physics for this work.
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would the electron be instantaneously emitted, transforming the energetic excess of
the absorbed quantum into kinetic energy. The frequency ν0 := E0/h would thus de-
tect the threshold observed experimentally. This conjecture turned out to match the
experimental data perfectly.

6.2.2 The Compton effect

The first observation and study of the Compton effect dates back 1923. It concerns the
scattering of monochromatic electromagnetic waves of extremely high frequency –
X rays (> 1017Hz) and γ rays (> 1018Hz) caused by matter (gases, fluids and solids).
It is useful to remind that monochromatic electromagnetic waves have both a fixed
frequency ν and a fixed wavelength λ , whose product is constant to the speed of light,
νλ = c, irrespective of the kind of wave. Hence in the sequel we will talk about the
wavelength of monochromatic waves. Simplifying as much as possible, the Compton
effect consists in the following. Suppose we irradiate a substance (the obstacle) with
a plane monochromatic electromagnetic wave that moves along the direction z with
given wavelength λ . Then we observe a wave scattered by the obstacle and decom-
posed into several components (i.e. several wavelengths or frequencies). One com-
ponent is scattered in every direction and has the same wavelength of the incoming
wave. Every other component has a wavelength λ (θ), depending on the angle θ of
observation, that is slightly bigger than λ . If we define θ to be the angle between the
the wave’s incoming direction z and the outgoing direction (after hitting the obstacle,
wavelength λ (θ)), we have the equation

λ (θ) = λ + f (1− cosθ) , (6.2)

where the constant f has the dimension of a length and comes from the experimental
data. Its value 2 is f = 0.024(±0.001) Å. The region around the z-axis is isotropic.
Classical electromagnetic theory was, and still is, inadaguate to explain this phe-
nomenon. However, as Compton proved, the effect could be clarified by making three
assumptions, all incompatible with the classical theory but in agreement with Planck
and Einstein’s speculations about light quanta.

(a) The electromagnetic wave is made of particles that carry energy according to
Planck’s equation (6.1), exactly as Einstein predicted.
(b) Each quantum of light possesses a momentum

p := h̄k , (6.3)

where k is the wavevector of the wave associated to the quantum (see below).
(c) Quanta interact, via collisions (in relativistic regime, in general), with the outer-
most atoms and electrons of the obstacle, satisfying the conservation laws of mo-
mentum and energy.

2 Recall 1 Å= 10−10m.
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Remarks 6.3. Concerning assumption (c), let us stress that the wavevector k associ-
ated to a plane monochromatic wave has, by definition, the same direction and ori-
entation of the travelling wave, and its modulus is 2π/λ , where λ is the wavelength.
Equivalently, if ν denotes the frequency,

|k|= 2π/λ = 2πν/c , (6.4)

where we have used the well-known relationship

νλ = c (6.5)

for monochromatic electromagnetic waves and c = 2.99792 ·108m/s is the speed of
light in vacuum. �

The interested reader will find below a few more details. Under the assumptions made above,
the energy and momentum conservation laws to be used in a relativistic regime, i.e. when
(certain) speeds approach c, read as follow:

mec2 +hν =
mec2
√

1− v2/c2
+hν(θ) , (6.6)

h̄k =
mev

√
1− v2/c2

+ h̄k(θ) . (6.7)

On the left we have the quantities before the collision, on the right after the interaction.
me = 9.1096 · 10−31Kg is the electronic mass. The electron is thought of as at rest prior to
colliding with the quatum of light. After the collision the quantum is scattered in the direction
θ , while the electron travels at velocity v. The wavevector before the collision, k, is parallel to
z (this direction is arbitrary, but fixed), while the wavevector of the quantum after the collision,
k(θ), forms an angle θ with z.

By (6.7) and by definition of wavevector,

m2
ec2

1− v2/c2 =
h2ν2

c2 +
h2ν(θ)2

c2 −2
hν
c

hν(θ)
c

cosθ .

Eliminating ν from this and (6.6) gives

ν(θ) = ν− hνν(θ)
mec2 (1− cosθ) . (6.8)

Because of (6.1) and ν = c/λ , we easily find equation (6.2) written like

λ (θ) = λ +
h

mec
(1− cosθ), (6.9)

so that f = h/(mec). The actual numerical value coincides with the experimental one when
one substitutes the values for h, me, c. Observe also that in the formal limit as me →+∞, equa-
tion (6.9) gives λ (θ)→ λ . This explains the isotropic component of the scattered wave with
identical wavelength (to the incoming one), as if this component were due to quanta of light
interacting with particles of much bigger mass than the electron’s (an atom of the substance,
or the entire obstacle).
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Remarks 6.4. The models of Einstein and Compton explain the photoelectric effect
and formula (6.2) perfectly, both in quantitative and qualitative terms. Yet they must
be considered ad hoc models, unrelated and actually conflicting with the physics
knowlegde of their times: the idea that electromagnetic waves, hence also light, have
a particle structure cannot account for wavelike phenomena – such as interference
and diffraction – known since Newton and Huygens. In some way the wave and cor-
puscular nature of light (electromagnetic waves) must co-exist in the real world: this
is forbidden in the paradigm of classical physics, but possible in the totally-relativistic
formulation of QM by introducing the notion of photon, a massless particle which we
shall not examine thoroughly. �

6.3 An overview of Wave Mechanics

In this text we will not discuss quantum properties of light, which would require a
deeper study of QM’s formalism. In a reversal of viewpoint, the ideas mentioned pre-
viously about the early attempts to describe light from a quantum perspective proved
very practical to formulate wave mechanics, which has rights to be considered the
first step towards a QM formulation.

Wave mechanics is among the first rudimentary versions3 of QM for particles
with mass. We will spend only a little time on spelling out the foundational ideas of
wave mechanics that shed light on the cornerstones of QM’s proper formalism. In
particular, we will forego result that are historically related to Schrödinger’s station-
ary equation and the ensuing description of the energy spectrum of the hydrogn atom.
We will return to these issues after the formalism has been set up.

6.3.1 De Broglie waves

A quantum of light, according to Einstein and Compton, is associated to a monochro-
matic plane electromagnetic wave with wavenumber k = p/h̄ and angular frequency
ω = E/h̄, which is just the 2π-multiple of the frequency ν . Each component of the
plane wave (one along each of the three orthonormal vectors of the electric or mag-
netic field vibrating perpendicularly to k) has the form of a scalar wave:

ψ(t,x) = Aei(k·x−tω) . (6.10)

Actually only the real part of the above has any physical meaning, but it is much more
convenient to use complex-valued waves for a number of reasons. For instance, they
appear in Fourier’s decomposition (see Section 3.6) of a general solution to the elec-
tromagnetic field equations (Maxwell’s equations) or, more generally, d’Alembert’s
equation. In terms of momentum and energy of the quantum of light, the same wave
may be written as

ψ(t,x) = Ae
i
h̄ (p·x−tE) . (6.11)

3 Another version, developed in parallel by Heisenberg, consisted in the so-called matrix
mechanics, which we will not treat.
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Note how only the momentum and the energy of the quantum of light appear. In 1924
de Broglie put forward a truly revolutionary conjecture: just like particles (photons)
are associated to electromagnetic waves in certain experimental contexts, so one
should be able to relate some sort of waves to matter particles. According to de
Broglie, these ‘waves of matter’ should be of the form (6.11), where now p and E are
meant as momentum and (kinetic) energy of particles. The wavelength associated to
a particle of momentum p,

λ = h/|p| , (6.12)

is called de Broglie wavelength of the particle.
It was not at all clear what could be the nature of these alleged waves until 1927,

when experimental evidence was gained of waves associated to electronic behaviour
through two experiments carried out by Davisson and Germer, and independently
G.P. Thompson. Without going into details, let us just say the following. It is a
known fact that when a (sound, electromagnetic, . . . ) wave hits an obstacle with an in-
ner structure of dimensions comparable or larger than the wavelength, the scattered
wave undergoes so-called diffraction. The various internal parts of the obstacle in-
teract with the wave creating constructive and destructive interference, so that the
resulting wave projects, onto a screen placed behind the obstacle, a pattern made of
areas of smaller and bigger intensity (darker and brighter in the case of light beams).
These figures are called diffraction patterns. If the obstacle is a crystal, the diffraction
pattern allows to recover the structure of the crystal itself. Davisson, Germer and G.P.
Thompson produced patterns by beaming electrons through crytals. More precisely,
they obtained diffraction patterns from the traces, clustered together, left by elec-
trons emitted by a crystalline structure of mesh 1 Å. The incredible fact, endorsing
de Broglie’s thesis, was that in the aforementioned experiments diffraction patterns
would appear only if de Broglie’s wavelength was comparable or smaller than the
mesh, exactly as in electromagnetic diffraction.

Remarks 6.5. It is important to underline that diffraction is a phenomenon strictly
due to the wavelike nature of waves (i.e. due to something that oscillates and the su-
perposition principle). Diffraction patterns cannot be generated by particles that obey
the usual laws of classical mechanics, whatever the obstacle. �

6.3.2 Schrödinger’s wavefunction and Born’s
probabilistic interpretation

In 1926 Schrödinger took de Broglie’s ideas seriously and in two famous and ex-
traordinary papers made a more detailed hypothesis: he associated to a particle not
a single plane wave like (6.11), but rather a wave packet made by the superposition
of de Broglie plane waves (in the sense of the Fourier transform). For free particles,
whose energy is purely kinetic, Schrödinger’s wave reads:

ψ(t,x) =
∫

R3

e
i
h̄ (p·x−tE(p))

(2π h̄2)3/2
ψ̂(p)d3p , (6.13)
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where E(p) := p2/(2m), and m is the particle’s mass. Schrödinger observed that
ray optics relies on a relation, called eikonal equation [GPS01, CCP82], that bears
a strong formal resemblance to the Hamilton-Jacobi equation [FaMa06, GPS01,
CCP82] of classical mechanics. He was looking for a fundamental equation for
matter in a wave mechanics of sorts, hoping it would stand to Hamilton-Jacobi’s
equation in a similar way d’Alembert’s equation approximates the eikonal equation
[GPS01, CCP82]. In a nushell, wave mechanics should stand to classical mechan-
ics as wave optics stands to ray optics. The celebrated Schrödinger equation was
born. We will recover the equation only after having contructed the formalism. For
a particle subject to a force with potential U , say f(t,x) = −∇U(t,x), the equation
reads:

ih̄
∂ψ(t,x)
∂ t

=
[

− h̄2

2m
Δ +U(t,x)

]

ψ(t,x) (6.14)

where Δ = ∑3
j=1

∂2

∂x2
j

is the Laplacian on R3.

The de Broglie-Schrödinger wave ψ is a complex-valued function and was called
wavefunction of the particle to which it is attached. The physical interpretation
of the wavefunction ψ – at least in the standard interpretation (“Copenhagen’s
interpretation”) of the QM formalism – came from Born in 1926:

ρ(t,x) :=
|ψ(t,x)|2

∫
R3 |ψ(t,y)|2d3y

is the probability density of detecting the particle at the point x and at time t
measured during an experiment for determining the particle’s position.

Born’s interpretation turned out to agree with later experience, but essentially
was already in line with the experimental evidence found by Davisson, Germer and
G.P. Thompson, by which the traces left by particles on the screen accumulated in
regions where ρ(t,x) > 0 and were absent where ρ(t,x) = 0, thus giving rise to the
diffraction patterns.

Remark 6.6. (1) From the mathematical point of view Born’s hypothesis only re-
quires square-integrable wavefunctions that are not almost everywhere zero. Put
equivalently, non-zero elements in L2(R3,d3x) make physical sense: a Hilbert space
makes its appearance for the very first time in the construction of QM. (It is physic-
ally irrelevant that de Broglie’s plane waves have no straighforward meaning in the
light of Born’s interpretation, for they do not belong in L2(R3,d3x). Plane monochro-
matic waves, used to understand experimental results à la de Broglie, can be approx-
imated arbitrarily well by elements of L2(R3,d3x) by using distributions ψ̂(p) close
to a value p0, which in turn determines with the desired accuracy the wavelength
λ0 = |p0|/h of de Broglie.)
(2) Assuming Born’s interpretation, and in absence of experiments to determine its
position, the particle with wavefunction ψ cannot evolve in time by the laws of clas-
sical mechanics: if it followed a regular trajectory, as classically prescribed, the func-
tion |ψ |2 would have to vanish almost everywhere away from the trajectory. But any
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regular curve in R3 has zero measure, so |ψ |2 would be null almost everywhere in
R

3, a contradiction. In other terms when no experiment is made to detect a particle’s
position, the particle cannot be thought of as a classical object, for its time evolution
is governed by the evolution of the wave ψ (solution to Schrödinger’s equation).
(3) If we accept, as in the Copenhagen interpretation, that the wavefunction ψ de-
scribes in full the physical state of the particle, then the particle’s position must be
physically indefinite before an experiment is conducted to pin it down, and also at-
tached indissolubly to the experiment in a probabilistic way. It is wrong to think that
the probabilistic description is meant to cover for ignorance about the system’s state,
as in “the position is well determined, but we do not know it”. In the Copenhagen
interpretation the position does not exist until we make an experiment to determine
it and until the particle’s state (the maximum amount of information about its phys-
ical properties in time) is described by ψ . In wave mechanics a quantum has, thus,
a dual wave-particle essence, but the two never clash because they never manifest
themselves simultaneously. �

6.4 Heisenberg’s uncertainty principle

When one tries to evaluate experimentally an arbitrary quantity in a physical system,
the state of the system may be altered by interacting with it. In principle, the classical
description would allow to make this perturbation negligible. In 1927 Heisenberg
realised that the combined hypotheses of Planck, Einstein, Compton, and de Broglie
had a momentous (and epistemologically relevant) consequence. In quantitative
terms Heisenberg’s principle asserts that if we consider quantum systems and
particular quantities to be measured, it is not always possible to disregard (as
infinitesimal) the variation in the state of the system generated by a measurement:
Planck’s constant bounds from below the product of certain quantities. Precisely,
after having considered thought experiments involving some of the hypotheses in
Planck’s, Einstein’s, Compton’s and de Broglie’s models, Heisenberg concluded
that:

In trying to determine the position or the momentum of a particle moving along a
given axis x, we alter the momentum or the position, respectively, along the same
axis, in such a way that the product of the two minimum variations Δx, Δ p (of the
final values of position and momentum) obeys

ΔxΔ p � h . (6.15)

If position and momentum are measured along orthogonal axes the above product
can be made arbitrarily small, instead.

Equation (6.15) is Heisenberg’s uncertainty principle for position and momentum.
An analogous relationship holds for the uncertainty ΔE of a particle’s energy E and
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the uncertainty Δ t of the instant t of measurement of the energy4:

ΔEΔ t � h . (6.16)

To illustrate the matter let us consider the thought experiment whereby one seeks to determine
the position X of an electron, with known initial momentum P, by hitting it with a monochro-
matic lightbeam of wavelength λ that propagates in the direction x. Let us imagine we can
read the position off a screen parallel to the axis x using a lens placed between the axis and the
screen. A quantum of light that has interacted with the electron will go through the lens and hit
the screen, thus producing an image X ′. Since the lens’ aperture is finite, the outgoing direction
of the quantum of light generating X ′ cannot be pinned down with absolute precision. Wave
optics predicts in X ′ a diffraction pattern by which we may measure the coordinate X with a
precision not smaller than

ΔX �
λ

sinα
,

where α is half the angle under which we see the lens from X . To the quantum of light corres-
ponds a momentum h/λ , so the uncertainty in the component Px of the outgoing quantum will
approximatively be h(sinα)/λ . The total momentum of the system particle-quantum of light-
microscope will remain constant, hence the uncertainty in the x-component of the particle’s
exit momentum must equal the corresponding uncertainty in the light quantum itself:

ΔPx �
h
λ

sinα .

The product of the variations along the axis x is then at least

ΔXΔPx � h .

Remarks 6.7. Heisenberg’s principle, at this level, bears the same logical (in)consi-
stency of the proto-quantum models of Planck, Einstein, Compton et al. It should be
viewed more like a working assumption towards a novel notion of particle, for which
the classical terms position and momentum make sense only within the boundaries
fixed by the principle itself: a quantum particle is allowed only physical states in
which momentum and position are neither defined, nor definable, simultaneously.
It is worth stressing, as we will see, that Heisenberg’s principle is a theorem in the
final formulation of QM. �

6.5 Compatible and incompatible quantities

Quantum phenomenology, irrespective of the uncertainty principle, shows that there
are pairs of quantities A and B that are incompatible. This means that, in principle,
arbitrarily accurate and simultaneous measurements of A,B can be carried out. More
explicitly: suppose we first measure A on the system, obtaining a as result, and imme-
diately after we measure B obtaining b. Then a further reading of A, infinitesimally

4 This second uncertainty relationship has a controversial status and its interpretion is a much
thornier issue than the former’s. We will not enter this territory, and refer to classical text-
books as [Mes99] in this respect.
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close to B (so not to blame the time lapse), will be a value a1 that is typically different
from a, even by far. The same happens swapping the roles of A and B.

For instance, position and momentum along a fixed direction are incompatible
pairs, and comply with Heisenberg’s principle. Allegiance to Heisenberg and incom-
patibility have to do with each other, but the precise relationship can be explained
properly only after completing the formalism. In general, incompatible quantities do
not satisfy the uncertainty principle.

It turns out that incompatible quantum quantities never depend on one another,
nor there exist devices capable of measuring them simultaneously.

There is a point to the call the attention to: quantum phenomenology shows that
compatible quantities A′ and B′ do exist. This entails that if we measure first A′ on
the system and read a′, and immediately afterwards measure B′ reading b′, the next
measurement of A′ – as close to B′ as we want (so that time evolution does not inter-
fere with measurements) – gives the same result a′. The same happens swapping A′
and B′. In particular, any physical quantity A is compatible with itself and with any
function depending on A (like the position of a particle along a line and the squared
position).

An example of pairs of incompatible quantities on which Heisenberg’s principle
does not speak is provided by two distinct components of a particle’s spin. The spin of
the electron (and of all nuclear and subnuclear particles) was introduced by Goudsmit
and Uhlembeck in 1925 [Mes99, CCP82] in order to make sense of some “bizarre”
properties, the so-called anomalous Zeeman effect for atomic energy spectra (spec-
tral lines) in alkali metals. In semi-classical sense the spin represents the intrinsic
angular momentum of the electron, which may be considered, from a certain point of
view, a consequence of the nonstop rotation of the electron around its centre of mass.
This explanation, however, is misleading and cannot be taken verbatim. The deeper
meaning of spin emerges in Wigner’s framework, whereby an elementary quantum
particle is defined as an elementary system invariant under the action of the Poincaré
group.

Associated to the spin is an intrinsic magnetic momentum that is responsible for
the observed anomalous Zeeman effect. At any rate, spin is a vector-valued quant-
ity with characteristic quantum features that distinguish it from a classical angular
momentum, thus making it a quantum angular momentum. The first difference is
in the range of the modulus of spin. In the unit h̄ these values are always of the type√

s(s+1), where s is an integer fixed by the kind of particle, e.g. s = 1/2 for the elec-
tron. Each of the three components of the spin, with respect to a positive orthonormal
frame system, can take any of the 2s+1 discrete values −s,−s+1, . . . ,s−1,s. The
spin’s three components are pairwise incompatible quantities: measuring in rapid se-
quence two of them gives distinct readings, as explained above. It is important to say
that the components of a particle’s orbital momentum and total angular momentum
are incompatible exactly in the same way.

Compatible quantities for a quantum particle are, for instance, the x-component
of the momentum and the y-component of the position vector.
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7

The first 4 axioms of QM: propositions, quantum
states and observables

Some historians claim that it is very difficult, nowadays, to
find the line separating – and at the same time joining – the
experimental level from the so-called theoretical one. But their
view already includes several arbitrary elements, the so-called
approximations.

Paul K. Feyerabend

In this chapter we will discuss the general mathematical structure of Quantum Mech-
anics. The procedure to achieve this is due to von Neumann, essentially, and will be
presented here in its modern account via Gleason’s theorem: that is, an extension of
classical (Hamiltonian) mechanics that keeps in account the experimental evidence
about the nature of quantum systems, seen in the previous chapter.

The first section recaps the results of Chapter 6, emphasising aspects that will be
fundamental later.

In the following section we re-examine facets of Hamilton’s formulation of mech-
anics from a set-theoretical and formal/logical perspective: we present the interpret-
ation of the theory’s foundations in which elementary propositions on the physical
system are described by a σ -algebra, while states can be described by Borel probab-
ility measures (possibly, Dirac measures) on the σ -algebra.

Section three will show how the classical structure may be modified to comprise
the description of the quantum phenomenology. Now the σ -algebra is replaced by the
lattice of projectors onto a suitable Hilbert space, and a generalised σ -additive meas-
ure on the projectors’ lattice takes the place of states. Similar approaches have been
explored in depth by [Mac63], [Jau73], [Pir76], [Var07]. A general critical discussion
appears in [BeCa81], while more recent results can be found in [EGL09].

We enter the heart of the matter in section four. With Gleason’s theorem we
explain that the aforementioned generalised measures are nothing but positive trace-
class operators with trace one. In this way we introduce the convex space of quantum
states, where pure states (or rays) are identified with extreme points. We also provide
the formal description of the notion of compatible propositions, measurement process
and the existence of superselection rules, together with the decomposition of the Hil-
bert space into coherent sectors.

The fifth, and last, section is devoted to the heuristic construction of the notion of
observable as collection of elementary propositions giving a projector-valued meas-
ure (PVM) on the Hilbert space of the system. The construction will also yield a
physical motivation for the spectral theorem, proved subsequently.

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
DOI 10.1007/978-88-470-2835-7_7, © Springer-Verlag Italia 2013
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7.1 The pillars of the standard interpretation of quantum
phenomenology

We summarise below a few cardinal properties of the behaviour of quantum systems
that were briefly described in the previous chapter.

QM1. (i) On a quantum system whose state has been fixed, measurements have a
probabilistic outcome. It not possible to foresee the measurement’s outcome, but only
its probability.
(ii) However, if a quantity has been measured and gives a certain reading, repeating
the measurement immediately after (so that the system does not evolve in the mean
time) will give the same result.

QM2. (i) There exist incompatible physical quantities, in the following sense. Call
A, B two such quantities. If we first measure A on the system (in a given state) and
read a as outcome, and immediately after we measure B obtaining b, a subsequent
measuring of A – as close as we want to the measurement of B to avoid ascribing the
result to the evolution of the state – produces a reading a1 � a, in general. The same
happens swapping A and B.
It turns out that (a) incompatible quantum quantities are never dependent on one an-
other, and (b) there are no instruments capable of simultaneous measurements.
(ii) There exist compatible physical quantities in the following sense. Call A′, B′ two
such quantities. If we first measure A′ on the system (in a given state) and obtain a as
result, and immediately after we measure B obtaining b, a subsequent measuring of
A – as close as we want to the measurement of B to avoid attributing the result to the
evolution of the state – produces the same reading a. The same happens swapping A
and B.
It turns out that (a) every physical quantity is compatible with itself, and (b) if two
quantities are function one of the other (e.g. the energy and its square), then they are
compatible.

Remark 7.1. (1) QM1 and QM2 refer to physical quantities that do not characterise
a physical system. By this we intend quantities whose range does not depend on the
state and thus allow to distinguish a system from another. On the contrary, the re-
maining quantities mentioned by QM1 and QM2 take values that depend on the state
of the system.

The physical quantities that QM1 and QM2 refer to, in relation to whether the
outcome of successive experiments can or not be reproduced, are of course quantities
that attain discrete values. As far as continuous quantities are concerned the matter is
much more delicate, and we will not examine it [BGL95]. Irrespective of the type of
quantities (continuous vs. discrete) what we can say, in general, is: two quantities are
compatible if and only if there exists a device capable of simultaneous measurements.

Furthermore, QM1 and QM2 refer to extremely idealised measuring processes,
in particular to those in which the microscopic physical system is not destroyed by
the measurement. The measuring procedures employed in the experimental practice
are rather diversified.
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(2) It is clear we cannot be absolutely certain that quantum systems satisfy (i) in QM1.
We could be tempted to think that the stochastic outcome of measurements is really
due to the lack of full knowledge scientists have of the system’s state, and that by
knowing it in toto they would be able to predict measuring outcomes. In this sense
quantum probability would merely have an epistemic nature. In the standard inter-
pretation of QM, the so-called Copenhagen interpretation, the stochastic outcome
of a measurement is assumed as a primary feature of quantum systems. There are non-
etheless interesting attempts to interpret quantum phenomenology based on alternat-
ive formalisms (the so-called formulations by hidden variables) [Bon97]. There, the
stochastic feature is explained as it were due to partial human knowledge about the
system’s true state, which is described by more variables (and in different fashion)
than those needed in the standard formulation. None of these attempts (despite some
are indeed deep, like Bohm’s theory) is considered nowadays completely satisfact-
ory, and does not threaten the standard interpretation and formulation of QM when
one considers also relativistic quantum theories, and relativistic QFT in particular.

But we must stress that one cannot build a completely classical physical theory
(that counts non-quantum relativistic theories among classical ones) that is capable
of explaining the experimental phenomenology of a quantum system in its entirety.
Hidden variables, in order to agree with known evidence, must at any rate satisfy a
rather unusual contextuality property for classical theories. Furthermore, any theory
that wishes to explain the quantum phenomenology, QM included, must be nonlocal
[Bon97]. Actually, as we shall see in Chapter 13.4.2, after the theoretical investiga-
tions of Einstein, Podolsky and Rosen first, and then Bell, experiments have proved
the existence of correlations among measurements made in different regions of space
and at lapses so short that transmission of information between events is out of the
question, whichever physical mean moves at a speed below the speed of light in va-
cuum.
(3) Implicit in QM1 and QM2 is that physical systems of interest, both in quantum
theory and quantum phenomenology, divide in two large categories: measuring in-
struments and quantum systems. The Copenhagen formulation assumes that meas-
uring devices are systems obeying the laws of classical physics. These hypotheses
match the data coming from experiments, and although quite crude, theoretically-
speaking, they lie at the heart of the interpretation’s formalism. Therefore not much
can be said about them within the standard formulation. At the moment, for instance,
it is not clear where to draw the line between classical and quantum systems, nor how
this boundary may be described inside the formalism, and neither whether the com-
pound system ‘instrument-quantum system’ can be itself considered a larger quantum
system, and as such treated by the formalism. In closing, the physical interaction pro-
cess between instrument and quantum system, that produces the actual measurement,
is not described from within the standard quantum formalism as a dynamical pro-
cess. For a deeper discussion on these stimulating and involved issues we refer to
[Bon97, Des99], and also to the superb section dedicated to foundational aspects of
quantum theories in the Stanford Encyclopedia of Philosophy1. �

1 http://plato.stanford.edu/.
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7.2 Classical systems: elementary propositions and states

Let us see now how (Borel) probability measures can be employed to represent the
physical states of classical systems. A generalisation will be used later to describe the
states of a quantum system mathematically.

7.2.1 States as probability measures

The modern formal treatment of probability theory, due to Kolmogorov, translates
into the study of probability measures. We recap below a few definitions taken from
Chapter 1.4.

Definition. A positive σ -additive measure μ on the measure space (X,Σ) is called
probability measure if μ(X) = 1.

The simplest case of a probability measure on (X,Σ) is certainly the Dirac meas-
ure δx concentrated at x ∈ X, defined as:

δx(E) = 0 if x � E , δx(E) = 1 if x ∈ E, for any E ∈ Σ .

In the sequel we shall work with Borel measures, so we recall the following notions
from Chapter 1.4, which we have already used. They will be useful in the rest of the
text.

Definition. Let X be a topological space.

(a) The Borel σ -algebra of X, B(X), is the smallest (under intersections) σ -algebra
containing the open sets of X.
(b) The elements of B(X) are the Borel sets of X.
(c) f : X → C is (Borel) measurable if it is measurable with respect to B(X) and
B(C), i.e. f−1(E) ∈B(X) for any E ∈B(C).

Obviously, in (c), B(C) refers to the standard topology of C, and the definition
can be stated similarly to comprise R-valued maps and B(R).

Definition. If X is a locally compact Hausdorff space, a Borel measure on X is a
positive, σ -additive measure on B(X).

Consider a classical physical system with n spatial freedom degrees, so 2n de-
grees overall, including kinetical degrees (“velocities”). The Hamiltonian formula-
tion [GPS01, FaMa06] of the system’s dynamics, very briefly, goes as follows.

(i) The ambient space is the phase spacetime Hn+1. This is a smooth manifold of
real dimension 2n+1 formed by the disjoint union2 of 2n-dimensional submanifolds

2 Hn+1 is the total space of a fibre bundle with base R (the time axis) and fibres Ft given by
2n-dimensional symplectic manifolds. There is an atlas on Hn+1 whose local charts have
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Ft , all diffeomorphic and smoothly depending on t ∈ R:

Hn+1 =
⊔

t∈R
Ft .

(ii) The coordinate t ∈ R is time, every Ft is the phase space at time t and any point
in Ft represents a state of the system at time t.
(iii) Hn+1 admits an atlas with local coordinates: t,q1, . . . ,qn, p1, . . . , pn (where
q1, . . . ,qn, p1, . . . , pn are symplectic coordinates on Ft ) in which the system’s evol-
ution equations take Hamilton’s form:

dqk

dt
=
∂H(t,q(t), p(t))

∂ pk
k = 1,2, . . . ,n , (7.1)

d pk

dt
= −∂H(t,q(t), p(t))

∂qk k = 1,2, . . . ,n , (7.2)

where H, the Hamiltonian (function) of the system in local coordinates, is known
once the system is known.

With this representation the system’s evolution in time is described by the in-
tegral curves of Hamilton’s differential equations. Each integral curve determines, at
any given time t ∈ R, a point (t,s(t)) ∈Hn+1, s(t) ∈Ft , where the curve meets Ft .
s(t) is the state of the system at time t.

We remark that (in absence of constraints) the choice of a frame system I al-
lows to decompose locally Hn+1 as a the Cartesian product R×F , where R is the
time axis (once the origin has been fixed) and F is identified with phase space at
time t = 0. Other choices of the framing give different identifications. Similarly, the
Hamiltonian H, identified with the total mechanical energy of the physical system in
certain circumstances, depends on the reference systems; however, Hamilton’s equa-
tions of motion are independent of any frame: solutions do not depend on choices,
but are the same on Hn+1 irrespective of the framing.

In certain, fundamental, situations, like statistical mechanics or thermodynamical
statistics, the system’s state is not known with abolute precision, so neither is the evol-
ution of the system. In these cases one uses statistical ensembles [Hua87, FaMa06]:
rather than considering one copy of the system, one takes a statistical ensemble
of identical and independent copies of the system, with states distributed on every
Ft with a certain probability density that is locally representable by a C1 map
ρ = ρ(t,q, p). The density evolves in time in accordance to Liouville’s equation:

∂ρ
∂ t

+
n

∑
i=1

(
∂ρ
∂qi

∂H
∂ pi

− ∂H
∂qi

∂ρ
∂ pi

)

= 0 . (7.3)

coordinates t,q1, . . . ,qn, p1, . . . , pn, where t is the natural parameter on the base Rwhile the
remaining 2n coordinates define a local symplectic frame on each Ft .
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The function ρ(t,s), with s ∈Ft , represents the probability density that the system is
in the state s at time t. The interpretation of ρ requires, for any t:

ρ(t,s)≥ 0 and
∫

Ft

ρ dμt = 1 . (7.4)

The measure μt on B(Ft) is the Lebesgue measure dq1 · · ·dqnd p1 · · ·d pn (extended
to Ft using a partition of unity) on every local symplectic chart of Ft . The known
Liouville theorem states that with this choice μt on every phase space, the integral
in (7.4) does not depend on t ∈ R provided ρ solves (7.3) [Hua87, FaMa06, CCP82].

In case one works with statistical ensembles, the density ρt is still thought of
as the system’s state at time t, even if this notion of state generalises the previous
one. We shall abide by this convention, and distinguish sharp states given by points
r(t) ∈Ft , from probabilistic states determined by a Liouville density ρt on Ft . In
either case the state at time t can be viewed as a Borel probability measure {νt}t∈R
defined on the phase space Ft . More precisely:

(i) for a probabilistic state3 νt(E) :=
∫

E ρ(t,s)dμt if E ∈B(Ft);
(ii) for a sharp state νt := δr(t).

Remarks 7.2. In order to represent the system’s states at time t in a completely gen-
eral way, thereby foregoing the evolution problem and forgetting a standard Hamilto-
nian formulation, one could use topological manifolds Ft rather than smooth ones.
States (at time t) could be represented in terms of probability measures for the Borel
σ -algebra. The existence of a topology on Ft is intrinsically related to the existence
of “neighbourhoods” of its points coming from experimental errors, as infinitesimal
as we want but not negligible. Better said, the possibility of distinguishing points in
Ft , despite measuring errors, is expressed mathematically by requesting a Hausdorff
topology on Ft (as happens when defining a smooth manifold). �

7.2.2 Propositions as sets, states as measures on them

If we assume that the Hamiltonian description of our system retains all physical prop-
erties, then it must be possible to describe, in phase space Ft at time t, all statements
about the system that at time t are true, false, or true with a certain probability, in
some way or another. Moreover it should be possible to recover the truth value of
those propositions, i.e. the probabilty they are true, from the state νt of the system.
Here is a natural way to do this.

Observe first that every proposition P determines a subset in Ft that contains the
points (thought of as sharp states) that render P true (at time t). We indicate this set
by the same symbol P ⊂ Ft . Next, suppose we work with a sharp state, so that νt

3 Ft is a smooth manifold hence a locally compact Hausdorff space (since locally homeo-
morphic to Rn). As μt is defined on B(Ft) and ρt is continuous, νt is well defined on
B(Ft).
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is a Dirac measure. Then proposition P is true at time t if and only if the point r(t)
describing the system at time t belongs to the set P. Now assign the conventional
value 0 to a false proposition at time t, and 1 to a true one at t, in relation to state
νt = δr(t). The crucial observation is that the truth value of P is νt(P), when the state
is νt , though of as measure of P⊂Ft with respect to the (Dirac) measure νt .

This fact clarifies the concrete meaning of the Dirac measure νt viewed as sys-
tem’s state at time t. Furthermore, the same interpretation can be employed when the
state is probabilistic: νt(P) represents the probability that proposition P⊂Ft is true
at time t when the state νt is probabilistic.

Remark 7.3. (1) Everything we said makes sense if the set P belongs to theσ -algebra
on which the measures νt are defined. This is the Borel σ -algebra, and hence it is reas-
onably large.
(2) One proposition may be formulated in different yet equivalent ways. When we
identify propositions with sets in Ft we are explicitly assuming that if two proposi-
tions determine the same subset in Ft , they must be considered identical. �

7.2.3 Set-theoretical interpretation of the logical connectives

Given two propositions P, Q, we can compose them using logical connectives to ob-
tain other propositions. In particular, we can form the propositions POQ and PE Q
using the binary connectives called disjountion (inclusive or), and conjunction (and).
Negifying one proposition produces its negation �P.

We can interpret these propositions in terms of sets in the Borel σ -algebra on Ft :

(i) PO Q corresponds to P∪Q;
(ii) PE Q corresponds to P∩Q;
(iii) �P corresponds to Ft \P.

There is a partial order relation on subsets of Ft given by the inclusion: P ≤ Q if
and only if P⊂ Q.

At the level of propositions, the most natural interpretation of P⊂Q is to say that
P implies Q, i.e. P⇒Q. Equivalently: each time the system is in a sharp state satisfy-
ing P, the state satisfies Q as well. For non-sharp states: for any state, the probability
that Q is true is not smaller than the probability that P is true.

Remark 7.4. (1) The truth probability of composite propositions can be computed
from the starting propositions using the measure νt , because a σ -algebra is closed
under the set-theoretical operations corresponding to O , E , �.
(2) It is easy to see that if νt is a Dirac measure, the truth probability (in this case
either 0 or 1) assigned to each expression (i), (ii), (iii), coincides with the value found
on the truth tables of the connective used. For instance, POQ is true (νt(P∪Q) = 1) if
and only if at least one of its constituent propositions is true (νt(P) = 1 or νt(Q) = 1);
in fact the point x at which the Dirac measure δx = νt concentrates lies in P∪Q iff x
lies in either set P, Q. �
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7.2.4 “Infinite” propositions and physical quantities

Propositional calculus normally disregards propositions made by infinitely many pro-
positions and connectives like P1O P2 O . . .. Interpreting propositions and connect-
ives in terms of points and operations on a σ -algebra, though, allows to “handle”
infinitely-long propositions.

We can relate some (at least) of these propositions to measurable physical quant-
ities on the system. Generally speaking, we may consider the physical quantities
defined on our Hamiltonian system as a collection of functions, somehow regular,
defined on phase spacetime and real-valued: f : Hn+1 → R. A fairly broad choice
of regularity is to take the class of maps that restrict to Borel measurable maps on
each fibre Ft . Less radical options are continuous maps, C1 maps, or even C∞ maps.
From the point of view of physics it may seem natural to require physical quantities
be described by functions that are at least continuous, because measurements are
always affected by experimental errors when finding the point in Ft representing
the state at time t: if maps were not continuous, small errors would cause enormous
variations in a quantity’s values. Nevertheless we must also remember there might
be quantities with discrete range, for which the above issue is meaningless (discrete
values can be distinguished using instruments with sufficient, finite, precision). As
we are interested in the passage to the quantum case rather than in analysing the
classical case, we shall not go deep into this kind of problem. We limit ourselves
to working at a given instant t for which the physical quantities of concern will be
measurable functions f : Ft → R. If f : Ft → R is a physical quantity that can be
measured on the system (at time t), using it we can construct statements of this kind:

P( f )
E =

The value that f assumes on the system’s state belongs to the Borel subset E ⊂ R.
By considering Borel sets E, and not just open intervals or singlets for example,

allows to treat quantities with both continuous and discrete ranges in the same way,
and also keep track of the fact that the measurement made by an instrument is a set,
not just a point, owing to the finite precision of the instrument itself. As a matter of
fact B(R) contains closed sets, finite sets, countable sets and so on. In set-theoretical
terms the proposition will be associated to a Borel set in Ft that we continue denoting
by the same symbol

P( f )
E = “ f−1(E)⊂Ft” .

(As explained above, by this convention the probability that P( f )
E is true for the system

at time t is νt(P
( f )
E ), once the state νt is known.)

Consider an interval [a,b), b ≤+∞. Decompose it in the disjoint union of infin-
itely many subintervals: [a,b) = ∪∞i=1[ai,ai+1), where a1 := a, ai < ai+1 and ai → b
as i→ ∞. Then the proposition

P( f )
[a,b) =

The value of f on the state of the system falls in the Borel set [a,b)
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can be clearly written as an infinite disjunction

P( f )
[a,b) = O+∞

i=1P( f )
[ai,ai+1)

of statements of the form:
P( f )
[ai,ai+1) =

The value of f on the state of the system falls in the Borel set [ai,ai+1) .

This corresponds to writing the set P( f )
[a,b) as the disjoint union:

P( f )
[a,b) = ∪+∞

i=1P( f )
[ai,ai+1) .

Therefore it makes physical sense to assume the existence of (certain) statements built
by infinitely many connectives and propositions.

Since negifying O dually gives E , if we assume the set of admissible propositions
is closed under �, then we must also accept propositions involving infinitely many
E s as physically meaningful.

The possibility of representing propositions as sets in a σ -algebra, and thus com-
pute the probability they are true on a state using the corresponding measure, suggests
to allow for propositions with countably many connectives O or E , because the cor-
responding sets still belong in the σ -algebra, which is closed under countable unions
and intersections.

To obtain a structure “isomorphic” to the σ -algebra built from atomic formulas
and O , E , �, we need to add two more propositions, playing the role of the sets ∅ and
Ft . These are the contradiction (whose truth probability is 0, whichever the state),
denoted 0, and the tautology (truth probability equal 1 whichever the state), written 1.

Once propositions and sets are identified, the σ -algebra structure enables us to
declare that the set of elementary propositions P relative to the physical system of
concern, equipped with the logical connectives O , E , �, is “isomorphic” to a σ -
algebra.

The truth value of a proposition P, for sharp states, or its truth probability, for
probabilistic states, on a given state at time t equals νt(P), where now P⊂Ft is the
set corresponding to the proposition.

Remark 7.5. (1) We may ask whether the σ -algebra of all propositions on the sys-
tem corresponds to the full Borel σ -algebra of Ft , or if it is smaller. If we assume
every bounded measurable real map on Ft is a physical quantity, then the answer is
clearly yes, because among those maps are the characteristic functions of measurable
subsets of Ft .
(2) As earlier remarked, once we fix a frame system I (in absence of contraints, as
in the cases at hand) the phase spacetime Hn+1 of the physical system is mapped
diffeomorphically to the Cartesian product R×F , where F is the phase space at
time 0 and R the time line (with given origin). Thus we may regard propositions at
any given instant t as Borel subsets of F , and any state at time t as a probability
measure on F . Henceforth, especially when generalising to the quantum case, we
will harness this simplification of the formalism that results from a choice of frame.

�
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7.2.5 Intermezzo: basics on the theory of lattices

In physical systems we can identify propositions and sets, and think states as meas-
ures on sets. In order to pass to quantum systems, where there is no notion of phase
space, it is important to raise the following question. Do there exist mathematical
structures that are not σ -algebras of sets but sort of isomorphic to one? The answer
is yes and comes from the theory of lattices.

In the sequel we will use some basic notions from the theory of posets. We assume
they are known to the reader; if not they can be found in the appendix.

Definition 7.6. A partially ordered set (X,≥) is a lattice when, for any a,b ∈ X,

(a) sup{a,b} exists, denoted a∨b (sometimes called ‘join’).
(b) inf{a,b} exists, written a∧b (sometimes ‘meet’).

(The poset is not required to be totally ordered.)

Remark 7.7. (1) If (X,≥) is partially ordered, as usual a ≤ b means b ≥ a, for any
a,b ∈ X. The following three facts are easily equivalent: a∧b = a , a∨b = b , a≤ b.
(2) On any lattice X, by definition of inf, sup we have the following properties, for
any a,b,c ∈ X:

Associativity: (a∧b)∧ c = a∧ (b∧ c) and (a∨b)∨ c = a∨ (b∨ c).
Commutativity: a∨b = b∨a and a∧b = b∧a.
Absorption: a∨ (a∧b) = a and a∧ (a∨b) = a.
Idempotency: a∨a = a and a∧a = a.

By the associative property we can write a∨b∨ c∨d and a∧b∧ c∧d without am-
biguity.
(3) The above properties characterise lattices: a set X equipped with binary operations
∧ : X×X→ X, ∨ : X×X→ X that satisfy the properties of (2) is partially ordered by
the relation a≥ b⇔ b = b∧a. In that case sup{a,b}= a∨b and inf{a,b}= a∧b. �

Various types of lattices exist, and the next definition describes some of them.

Definition 7.8. A lattice (X,≥) is said:

(a) Distributive if ∨ and ∧ distribute over one another: for any a,b,c ∈ X,

a∨ (b∧ c) = (a∨b)∧ (a∨b) , a∧ (b∨ c) = (a∧b)∨ (a∧b) .

(b) Bounded if it admits a minimum 0 and a maximum 1 (sometimes called ‘bottom’
and ‘top’).
(c) Orthocomplemented if bounded and equipped with a mapping X � a 	→ ¬a,
where ¬a is the orthogonal complement of a, such that:

(i) a∨¬a = 1 for any a ∈ X;
(ii) a∧¬a = 0 for any a ∈ X;
(iii) ¬(¬a) = a for any a ∈ X;
(iv) a≥ b implies ¬b≥ ¬a for any a,b ∈ X.
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(d) Modular, if q≥ p implies (q∨ p)∧ r = q∨ (p∧ r), ∀p,q,r ∈ X.
(e) Orthomodular, if orthocomplemented and q ≥ p implies q = p∨ ((¬p)∧ q),
∀p,q ∈ X.
(f)σ -complete, if every countable set {an}n∈N⊂X admits least upper bound∨n∈Nan.
In an orthocomplemented lattice two elements a, b are:

orthogonal, written a⊥ b, if ¬a≥ b (or equivalently ¬b≥ a).
commuting, if a = c1∨ c3 and b = c2∨ c3 with ci ⊥ c j if i � j.

A lattice with properties (a), (b) and (c) (hence (d) and (e)) is called a Boolean al-
gebra. A Boolean algebra satisfying (f) is a Boolean σ -algebra.

A (distributive, bounded, orthocomplemented, σ -complete) sublattice is a
subset in X admitting a lattice structure (distributive, bounded, orthocomplemented,
σ -complete) for the restrictions of ≥ and ¬.

Remark 7.9. (1) It is immediate to prove that arbitrary intersections of orthocom-
plemented sublattices are orthocomplemented sublattices (with the same minimum,
maximum and orthogonal complement of X).
(2) If X is an orthocomplemented lattice and p,q ∈ X belong to a Boolean subalgebra
of X, then p and q commute, as noticed before. Strengthening the assumptions on X
the converse holds too, [BeCa81].

Proposition 7.10. Let X be an orthocomplemented lattice. Then p,q ∈ X commute if
and only if the orthocomplemented sublattice spanned by {p,q} (the intersection of
all bounded orthocomplemented sublattices containing {p,q}) is a Boolean subal-
gebra of X.

(3) It is easy to see that on any orthocomplemented lattice De Morgan’s laws hold:
for any a,b ∈ X,

¬(a∨b) = ¬a∧¬b , ¬(a∧b) = ¬a∨¬b . (7.5)

(4) In a general orthocomplemented lattice:

if a⊥ b then a∧b = 0.

A Boolean algebra X is modular, orthomodular and every pair a,b∈X commutes: us-
ing the distributive law, in particular, a = (a∧¬b)∨(a∧b) and b = (b∧¬a)∨(a∧b).
(5) By the definition of inf, sup and De Morgan’s laws, a bounded orthocom-
plemented lattice is σ -complete iff every countable subset {an}n∈N ⊂ X admits a
greatest lower bound ∧n∈Nan. In this case ∧n∈Nan = ¬(∨n∈N¬an), so also ∨n∈Nan =
¬(∧n∈N¬an). �

Definition 7.11. If X, Y are lattices, a map h : X→ Y is a (lattice) homomorphism
when

h(a∨X b) = h(a)∨Y h(b) , h(a∧X b) = h(a)∧Y h(b) , a,b ∈ X

(with the obvious notations.) If X and Y are bounded, a homomorphism h is further
required to satisfy

h(0X) = 0Y , h(1X) = 1Y .
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If X and Y are orthocomplemented, a homomorphism h also satisfies

h(¬Xa) = ¬Yh(x) .

If X, Y are σ -complete, h further fulfills

h(∨n∈Nan) = ∨n∈Nh(an) , if {an}n∈N ⊂ X .

In all cases (bounded, orthocomplemented, σ -complete lattices, Boolean (σ -) algeb-
ras) if h si bijective it is called isomorphism of the relative structures.

Remark 7.12. (1) Since b≥ a iff b∧a = a, the following facts hold. If h : X→ Y is a
homomorphism then for any a,b ∈ X, a≥X b implies h(a)≥Y h(b) with the obvious
notation.
(2) It is immediate to see that the inverse h−1 : Y→ X of an isomorphism h : X→ Y
(of lattices or Boolean (σ -)algebras) is an isomorphism.
(3) Given an abstract Boolean σ -algebra X, does there exist a concrete σ -algebra of
sets that is isomorphic to the previous one? In this respect the following general result
holds, known as Loomis–Sikorski theorem. 4 This guarantees that every Boolean σ -
algebra is isomorphic to a quotient Boolean σ -algebra Σ/N , where Σ is a concrete
σ -algebra of sets over a measureable space and N ⊂ Σ is closed under countable
unions; moreover, ∅ ∈ N and for any A ∈ Σ with A ⊂ N ∈ N , then A ∈ N . The
equivalence relation is A∼ B iff A∪B\ (A∩B) ∈N , for any A,B ∈ Σ . It is easy to
see the coset space Σ/N inherits the structure of Boolean σ -algebra from Σ with
respect to the (well-defined) partial order relation [A]≥ [B] if A⊃ B, A,B ∈ Σ .

This is the sharpest result in the general case. Consider, for instance, theσ -algebra
B([0,1]) of Borel sets in [0,1]. Take the quotient B∗([0,1]) := B([0,1])/N , where
N consists of subsets in [0,1] of zero (Lebesgue) measure. It can be proved that
B∗([0,1]) is isomorphic to no σ -algebra of subsets on any measurable space.

But if one restricts to Boolean algebras only, the known Stone representation
theorem5 asserts that an abstract Boolean algebra is always isomorphic to some con-
crete algebra of sets, without the need of quotienting. �

7.2.6 The distributive lattice of elementary propositions
for classical systems

We can revert to σ -algebras of sets, and with the definitions given above the follow-
ing assertions are trivial, so their proof is left as exercise.

Proposition 7.13. Every σ -algebra on X is a Boolean σ -algebra where:

(i) the partial order is the inclusion (hence ∨ corresponds to ∪ and ∧ to ∩);
(ii) the maximum and minimum in the Boolean algebra are X and ∅;
(iii) orthocomplements correspond to set-complements with respect to X.

4 Sikorski S.: On the representation of Boolean algebras as field of sets. Fund. Math. 35,
247–256 (1948).

5 Stone M.H.: The Theory of Representations of Boolean Algebras. Trans. AMS 40, 37–111
(1936).



7.3 Quantum propositions as orthogonal projectors 263

Proposition 7.14. Let Σ ,Σ ′ be σ -algebras on X and X′ respectively, and f : X→ X′
a measurable function.

(a) The sets P( f )
E := f−1(E), E ∈ Σ ′, define a Boolean σ -subalgebra of the Boolean

σ -algebra of Proposition 7.13.
(b) The mapping Σ ′ � E 	→ P( f )

E is a homomorphism of Boolean σ -algebras.

The same assertions hold for the set of propositions relative to a physical system.

Proposition 7.15. Propositions relative to a classical physical system form a dis-
tributive, bounded, orthocomplemented and σ -complete lattice, i.e. a Boolean σ -
algebra, where:

(i) the order relation is the logical implication, the conjunction is the intersection
and the disjunction is the union;

(ii) the maximum and minimum are the tautology 1 and the contradiction 0;
(iii) orthocomplementation corresponds to negation.

If a measurable function f : F → R represents a physical quantity, then:

(a) As E varies in the Borel σ -algebra of R, the propositions

P( f )
E =

The value f takes on the state of the system belongs in the Borel set E ⊂ R ,

define a Boolean σ -algebra.
(b) The map that sends a Borel set E ⊂ R to the proposition P( f )

E is a homomorphism
of Boolean σ -algebras.

7.3 Propositions on quantum systems as orthogonal projectors

Eventually we can move on to quantum system. In trying to follow an appoach that is
as close as possible to the classical case, we first aim at finding a mathematical model
for the class of elementary propositions relative to a quantum system. Then we will
evaluate at time t by conducting experiments with the aid of suitable instruments,
whose results is merely 0 (= the proposition is false) or 1 (= the proposition is true).
We still do not know how to describe the system, but we know QM1 and QM2 have
to hold in relationship to the quantum quantities that are measurable on the system.
For the moment we concentrate on QM2. We know there exist incompatible quant-
ities. Then it is immediate to conclude that there must be incompatible propositions:
if A and B are incompatible, then

P(A)
J =

The value of A on the state of the system belongs to the Borel set J ⊂ R ,

P(B)
K =

The value of B on the state of the system belongs to the Borel set K ⊂ R ,
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are, in general, incompatible propositions: their truth values interfere with each other
when we measure them within lapses as short as we like (so that the system’s state
is not responsible for the time evolution). We know no instrument exists that is cap-
able of evaluating simultaneously two incompatible quantities. Hence it is physically
meaningless, in this context, to say that the above propositions, associated to incom-
patible physical quantities, can assume on the system a certain truth value simultan-

eously. The propositions P(A)
J and P(B)

K , in this sense, are called incompatible.

Important remark. It has to be clear that the propositions we are considering must
be understood as statements about physical systems to which we assign a truth value,
0 or 1, as a consequence of a corresponding experimental measuring process. In this
light the incompatibility of two propositions does not imply they cannot be both true,
so that, for example, their conjuction is always false. The meaning is much deeper:
incompatible refers to the fact that it makes no (physical) sense to give them, sim-
ultaneously, any truth value. Nor is it possible to make sense of propositions like

P(A)
J O P(B)

K or P(A)
J E P(B)

K , because there is no experiment that can evaluate the truth
of such propositions. �

By this remark we cannot assume, as model for the set of elementary proposi-
tions to be tested on our quantum system, a σ -algebra of sets where ∩ and ∪ are
interpreted as E and O respectively. If we were to do so, we would then have to
impose constraints on the model, e.g. veto certain symbolic combinations built con-
necting incompatible propositions. An alternative idea of von Neumann turned out
to be successful: model elementary propositions via the orthogonal projectors of a
complex Hilbert space. As we will see, the set of projectors is a lattice; although the
structure is not a Boolean σ -algebra, it will allow us to distinguish among compat-
ible and incompatible propositions, and to interpret E and O as the standard ∧ and ∨
provided the former are used with compatible propositions.

7.3.1 The non-distributive lattice of orthogonal projectors
on a Hilbert space

The set of orthogonal projectors on a Hilbert space enjoys certain properties, close to
those of Boolean lattices, but with important differences that let us model incompat-
ible propositions of a quantum system. First of all we deal with a number of technical
features of commuting projectors.

Proposition 7.16. Let (H,( | )) be a Hilbert space and P(H) the set of orthogonal
projectors on H.
The following properties hold for any P,Q ∈P(H).

(a) The following facts are equivalent:

(i) P≤ Q;
(ii) P(H) is a subspace of Q(H);
(iii) PQ = P;
(iv) QP = P.
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(b) The following facts are equivalent:

(i) PQ = 0;
(ii) QP = 0;
(iii) P(H) and Q(H) are orthogonal;
(iv) Q≤ I−P;
(v) P≤ I−Q.

If (i)-(v) hold, P+Q is an orthogonal projector onto P(H)⊕Q(H).
(c) If PQ = QP then PQ is an orthogonal projector onto P(H)∩Q(H).
(d) If PQ = QP then P + Q−PQ is an orthogonal projector onto the closed space
< P(H),Q(H) >.
(e) PQ = QP iff there exist R1,R2,R3 ∈P(H) such that:

P = R1 +R3 , Q = R1 +R2 with Ri(H)⊥ R j(H) if i � j .

Proof. (a) First, notice that if P is a projector onto M, then Pu = 0 if and only if
u ∈ M⊥, by the orthogonal decomposition H = M⊕M⊥ (Theorem 3.13(d)) and be-
cause the component of u on M is precisely Pu.
(i) ⇒ (ii). If P ≤ Q then (u|Qu)≥ (u|Pu). Since projectors are idempotent and self-
adjoint, the latter is equivalent to (Qu|Qu)≥ (Pu|Pu), i.e. ||Qu|| ≥ ||Pu||. In particular
Qu = 0 implies Pu = 0, so Q(H)⊥ ⊂ P(H)⊥. Using Theorem 3.13(e) and noting Q(H)
and P(H) are closed, we find P(H)⊂ Q(H).
(ii)⇒ (iii). If S is a basis for P(H), complete it to a basis of Q(H) by adding the ortho-
gonal set S′ to S. By Proposition 3.58(d), P = s-∑u∈S u(u| ) and Q = s-∑u∈S∪S′ u(u| ).
Since S and S′ are orthogonal, orthonormal systems, and because the inner product is
continuous, the claim follows.
(iii) ⇔ (iv). The statements follow from each other by taking adjoints.
(iii) + (iv) ⇒ (i). If u ∈ H, (u|Qu) = ((P + P⊥)u|Q(P + P⊥)u) where P⊥ = I−P.
Notice P and P⊥ commute with Q by (iii) and (iv), and moreover PP⊥ = P⊥P = 0.
Expanding the right side of (u|Qu) = (u|(P+P⊥)Q(P+P⊥)u), and neglecting terms
that are null by the above considerations, gives

(u|Qu) = (u|PQPu)+(u|P⊥QP⊥u) .

On the other hand by (iii) and (iv): (u|PQPu) = (u|PPu) = (u|Pu). Therefore

(u|Qu) = (u|Pu)+(u|P⊥QP⊥u) ,

so (u|Qu)≥ (u|Pu).
(b) Assuming PQ = 0 and taking adjoints gives QP = 0, hence P(H) and Q(H) are
orthogonal, for PQ = QP = 0. If P(H) and Q(H) are ortogonal, fix on each a basis,
N and N ′ respectively, by writing P and Q as prescribed by Proposition 3.58(d):
P = ∑u∈N(u| )u, Q = ∑u∈N′(u| )u. Immediately, PQ = QP = 0. At last, Q ≤ I−P
(P ≤ I−Q) iff Q (resp. P) projects onto a subspace in the orthogonal to P(H) (resp.
Q(H)) by part (a), i.e. P(H)⊥Q(H). Using the above expressions for P, Q, recalling
N∪N′ is a basis of P(H)⊕Q(H) and using again Proposition 3.58(d), implies P+Q
is the orthogonal projector onto P(H)⊕Q(H).
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(c) That PQ is an orthogonal projector (self-adjoint and idempotent) if PQ = QP,
with P, Q orthogonal projectors, is straighforward. If u∈H, then PQu∈P(H) but also
PQu = QPu∈Q(H), so PQu∈P(H)∩Q(H). We have shown PQ(H)⊂P(H)∩Q(H),
so to conclude it suffices to see P(H)∩Q(H)⊂ PQ(H). If u∈ P(H)∩Q(H) then Pu =
u, Qu = u, so also Pu = PQu = u, i.e. u∈ PQ(H). This means P(H)∩Q(H)⊂ PQ(H).
(d) That R := P+Q−PQ is an orthogonal projector is straighforward. Consider the
space < P(H),Q(H) >. We can build a basis as follows. Begin with a basis N for
the closed subspace P(H)∩Q(H). Then add a basis for the space that “remains in
P(H) once P(H)∩Q(H) has been taken out”, i.e. a basis N ′ for the closed orthogonal
complement to P(H)∩Q(H) in P(H): this is P(H)∩ (P(H)∩Q(H))⊥. At last build
with the same criterion a third basis N ′′ for Q(H)∩ (P(H)∩Q(H))⊥. The three bases
thus obtained are pairwise orthogonal and together give a basis of < P(H),Q(H) >.
All this shows that

< P(H),Q(H) > =

(P(H)∩Q(H))⊕ (P(H)∩ (P(H)∩Q(H))⊥)⊕ (Q(H)∩ (P(H)∩Q(H))⊥)

is an othogonal sum. With our assumptions the projector on the first summand is PQ
by (c). Thus the projector on (P(H)∩Q(H))⊥ is I−PQ. Again by (c) the orthogonal
projector on the second summand is P(I −PQ) = P−PQ, and similarly the third
projector is

Q(I−PQ) = Q−PQ .

By part (b) the projector onto the whole sum < P(H),Q(H) > is

PQ+(P−PQ)+(Q−PQ) = P+Q−PQ .

Statement (e) is another way to phrase Proposition 3.60. �

Based on what we have proved, consider two orthogonal projectors P,Q ∈P(H)
that commute, and suppose they are associated to statements about the physical sys-
tem (i.e. propositions, denoted by the same letters). Under the correspondence

PE Q ←→ PQ ,

PO Q ←→ P+Q−PQ ,

�P ←→ I−P ,

the right-hand sides are orthogonal projectors. The latter, moreover, satisfy prop-
erties that are formally identical to those of propositional calculus. For example,
� (PE Q) =�PO �Q. In fact,

�PO �Q←→ (I−P)+(I−Q)− (I−P)(I−Q) = 2I−P−Q− I +PQ+P+Q

= I−PQ←→� (PE Q)

and in the same way one may check every relation written previously, provided the
projectors commute. Note, further, that if P, Q commute and P≤Q then PQ = QP =
P and P+Q−PQ = Q. If we interpret the latter by their truth value we have a similar
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situation, by the above correspondence, to PE Q and PO Q when P logically implies
Q. Thus we may say that P≤ Q corresponds to Q being logical consequence of P.

The real difference between orthogonal projectors and the propositions of a
classical system is the following. If the projectors P, Q do not commute, PQ and
P+Q−PQ are not even projectors in general, so the above correspondence breaks
down.

All this seems very interesting in order to find a model for the propositions of
quantum system, under axiom QM2. The idea is that:

the propositions of quantum systems are in 1–1 correspondence with the orthogonal
projectors of a Hilbert space. This is such that:

(i) the logical implication between propositions P and Q (P ⇒ Q) corresponds to
the relation P≤ Q of the corresponding projectors;

(ii) two propositions are compatible if and only if the respective projectors com-
mute.

Remarks 7.17. Before going any further let us shed some light on the nature of com-
muting orthogonal projectors. One would be led to suspect that the only cases where P
and Q commute are if: (a) projection spaces are one contained in the other, or (b) pro-
jection spaces are orthogonal. With the following explicit example we show that there
are other possibilities. Consider the space L2(R2,dx⊗ dy), dx, dy being Lebesgue
measures on the real line, and the sets in the plane A = {(x,y) ∈ R2 | a ≤ x ≤ b},
a < b given, and B = {(x,y) ∈ R2 | c ≤ y ≤ d}, c < d. If G ⊂ R2 is measurable,
define the linear operator

PG : L2(R2,dx⊗dy)→ L2(R2,dx⊗dy)

by PG f = χG · f for any f ∈ L2(R2,dx⊗dy), where χG is, as always, the character-
istic function of G and · is the pointwise product of two maps. The operator PG is an
orthogonal projector, and moreover

PG(L2(R2,dx⊗dy)) = { f ∈ L2(R2,dx⊗dy) | ess supp f ⊂ G} .

Then it is immediate to prove PAPB = PBPA = PA∩B, whilst:

(a) none of the projection spaces PA(L2(R2,dx⊗dy)), PB(L2(R2,dx⊗dy)) is included
in the other, and
(b) the two projection spaces are not orthogonal. �

If the speculative correspondence between propositions about quantum systems
and orthogonal projectors on a suitable Hilbert space is to be meaningful, the struc-
tural analogies of orthogonal projectors and the σ -complete Boolean algebra of pro-
positions must reach farther than the case of two propositions. We expect, in partic-
ular, to determine the structure of a Boolean (σ -)algebra on some set of projectors
representing pairwise-compatible properties. The following fact asserts that the space
of all orthogonal projectors is a non-distributive lattice, and establishes some of its
peculiarities. Referring to part (c) let us remark that if A ⊂ P(H) is a set of com-
muting orthogonal projectors, by Zorn’s lemma there exists a maximal commutative
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P0(H) ⊂ P(H) with A ⊂ P0(H): every projector in P(H) commuting with any ele-
ment in P0(H) belongs to P0(H).

Theorem 7.18. Let H be a (complex) Hilbert space.

(a) The collection P(H) of orthogonal projectors on H is a bounded, orthocomple-
mented, σ -complete lattice, typically non-distributive. More precisely:

(i) ≥ is the order relation between projectors;
(ii) the maximum and minimum elements inP(H) are: I (identity operator) and

0 (null operator) respectively;
(iii) the orthocomplement to the projector P corresponds to

¬P = I−P ; (7.6)

(iv) the projection spaces of P,Q ∈P(H) are orthogonal iff they are orthogonal
as elements in the orthocomplemented lattice P(H);

(v) two projectors P,Q ∈ P(H) commute iff they commute as elements in the
orthocomplemented lattice P(H);

(vi) P(H) is not distributive if dim H≥ 2.

(b) On P(H) the following hold:

(i) if P,Q ∈P(H) commute:

P∧Q = PQ , (7.7)

P∨Q = P+Q−PQ ; (7.8)

(ii) if {Qn}n∈N ⊂P(H) consists of commuting elements:

∨n∈NQn = s- lim
n→+∞

Q0∨·· ·∨Qn , (7.9)

∧n∈NQn = s- lim
n→+∞

Q0∧·· ·∧Qn , (7.10)

independently of the labelling of the Qn.

(c) If P0(H) ⊂ P(H) is a maximal commutative set of orthogonal projectors, then
P0(H) is a Boolean σ -subalgebra. In particularP0(H)� 0, I,P0(H) is closed under
orthocomplementation, the inf and sup of a countable subset inP0(H) exist inP0(H)
and coincide with the inf and sup on P(H).

Proof. (a) Recall ≥ is a partial order on P0(H) by Proposition 3.54(f). By Proposi-
tion 7.16(a):

P≤ Q iff P(H)⊂ Q(H) . (7.11)

This partial order of orthogonal projectors corresponds one-to-one to the partial or-
der of projection spaces. The class of closed subspaces in H is a lattice: we claim
that if M,N are closed, their least upper bound and greatest lower bound are M∨N =
< M,N > and M∧N = M∩N respectively. Now, < M,N > is closed and contains M,
N; moreover, any closed space L containing M, N must contain < M,N > as well, so
M∨N = < M,N >. M∩N closed in M and N by construction, and if L is another such
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space, it must be contained in M∩N, whence M∧N = M∩N. Passing to projectors
and using (7.11), we have that for P,Q∈P(H), P∨Q is the orthogonal projector onto
< P(H),Q(H) >, while P∧Q the projector onto P(H)∩Q(H). The same argument ap-
plies to a family of orthogonal projectors {Pi}i∈I of arbitrary cardinality. In that case
∨i∈IPi is the projector onto < {Pi(H)}i∈I > and ∧i∈IPi the projector on ∩i∈IPi(H),
so the lattices of orthogonal projectors and closed subspaces are both σ -complete.
In the lattice of closed subspaces the min and max are clearly {0} and H. Passing
to orthogonal projectors via (7.11), the minimum and maximum are the orthogonal
projectors onto {0} and H, i.e. the null operator and the identity. Orthocomplementa-
tion of projectors, ¬P := I−P, corresponds to complementation of closed subspaces
¬P(M) := P(M)⊥, by Proposition 3.58(b). Checking the properties of orthocomple-
mentation for subspaces (hence projectors) is then immediate by (b), (d), (e) in The-
orem 3.13. Part (iv) in (a) follows directly from Proposition 7.16(b), whilst (v) in (a)
descends from Proposition 7.16(e). To prove (vi), we exhibit a counterexample to
distributivity.

Consider a two-dimensional subspace S in a (complex) Hilbert space H of dimen-
sion ≥ 2. Idenitify S with C2 by fixing an orthonormal basis {e1,e2}. Now consider
the subspaces: H1 :=< e1 >, H2 :=< e2 > and H3 :=< e1 + e2 >.

From H1∧(H2∨H3) = H1∧S = H1 and (H1∧H2)∨(H1∧H3) = {0}∨{0}= {0}
follows

H1∧ (H2∨H3) � (H1∧H2)∨ (H1∧H3) .

Let us prove (b) and (c) together. If the projectors P and Q commute, or if {Qn}n∈N
pairwise commute, by Zorn’s lemma there is a maximal commuting P0(H) contain-
ing P, Q, or {Qn}n∈N respectively. Now choose such a maximal elementP0(H) as in
the proof of part (b).

Clearly 0 and I belong to P0(H) because they commute with everything in
P0(H). The same happens for ¬P = I−P if P ∈ P0(H). We have to prove, for any
P,Q∈P0(H), the existence of the sup and the inf of {P,Q} insideP0(H), that they are
computed as prescribed in part (b), and that these projectors actually coincide with
the sup and inf of {P,Q} inside P(H). The distributive laws of ∨ and ∧ follow easily
from (7.8) and (7.7), from the projectors’ commutation and from the idempotency of
any projector, PP = P.

By Proposition 7.16(c), the projector onto M∩N, corresponding to P∧Q inP(H),
is exactly PQ, and this belongs to P0(H) because by construction it commutes with
any element of the maximal P0(H). Therefore

P∧Q := inf
P0(H)

{P,Q}= inf
P(H)

{P,Q}= PQ .

As P, Q commute, the projector onto < M,N >, corresponding to P∨Q in P(H), is
P + Q−PQ by Proposition 7.14(d); the latter lives in P0(H) for it commutes with
P0(H). As before,

P∨Q := sup
P0(H)

{P,Q}= sup
P(H)

{P,Q}= P+Q−PQ .

This makes P0(H) a Boolean algebra.
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To conclude we show P0(H) is σ -complete. Consider a countable family of
projectors {Qn}n∈N and associate to each the projector Pn defined recursively by:
P0 := Q0, and for n = 1,2, . . .:

Pn := Qn(I−P1− . . .−Pn−1) .

By induction we can prove with ease:

(i) PnPm = 0 if n � m;
(ii) Q1∨·· ·∨Qn = P1∨·· ·∨Pn = P1 + · · ·+Pn, n = 0,1, . . ..

If we introduce bounded operators

An := P1 + · · ·+Pn,

then:

(iii) An = A∗n and AnAn = An for any n = 0,1, . . ., i.e. the An are orthogonal projectors,
so An ≤ I, for any n = 0,1, . . . by Proposition 3.58(e);

(iv) An ≤ An+1 for any n = 0,1, . . .

By virtue of Proposition 3.65 there exists a bounded self-adjoint operator A defined
by the strong limit:

A = s- lim
n→+∞

Pn = s- lim
n→+∞

Q0∨·· ·∨Qn .

Immediately, then, AA = A, making A an orthogonal projector in P0(H) because
(strong) limit of operators commuting with P0(H). Still by Proposition 3.65, An ≤ A
and in particular Qn ≤Q1∨·· ·∨Qn ≤ A for any n ∈N. We claim A is the least upper
bound of the Qn, in P(H) and in P0(H). Suppose the orthogonal projector K ∈P(H)
satisfies K ≥Qn for any n∈N. Then KQn = Qn by Proposition 7.16(a). By definition
of the Pn, KPn = Pn and hence KAn = An, so also K ≥ An for any natural number n, by
Proposition 7.16(a). Now Proposition 3.65 warrants K ≥A. In other words A∈P0(H)
bounds the Qn from above, and any other upper bound K ∈P(H) is larger than A. By
definition of sup, A = supP(H){Qn}n∈N =: ∨n∈NQn. As A ∈P0(H), A is also the sup
in P0(H). In the above identity

∨n∈NQn = s- lim
n→+∞

Q0∨·· ·∨Qn

the indexing order of the Qn is not relevant, given that the left-hand side, i.e. the su-
premum of {Qn}n∈N, does not depend on any ordering. Formula (7.10) is easy using
¬ and (7.9). �

This result explains that it makes sense to describe propositions about quantum
system in terms of the (non-Boolean) lattice of orthogonal projectors on a Hil-
bert space, and incompatible propositions in terms of non-commuting projectors.
Moreover, it makes sense to assign the usual meaning to ∧, ∨ in terms of the connect-
ives E , O , provided the former are employed with projectors describing compatible
propositions.
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Foundational studies on the role of the lattice of projectors, in relationship
to the logical formulation of QM, are found in [Mac63, Jau73, Pir76, BeCa81,
DCGi02, Var07, EGL09] besides [Bon97]. The reader can find a different approach
in [Emc72]: based on Jordan algebras, it prepares for the algebraic formulation fol-
lowing ideas of Segal.

7.3.2 Recovering the Hilbert space from the lattice

A reasonable question to ask is whether there are better reasons for choosing to de-
scribe quantum systems via a lattice of orthogonal projectors, other than the kill-off
argument “it works”. To tackle the problem we start by listing special properties of
the projectors’s lattice, whose proof is elementary.

Theorem 7.19. The bounded, orthocomplemented, σ -complete lattice P(H) of The-
orem 7.18 satisfies these additional properties:

(i) separability (for H separable): if {Pa}a∈A ⊂ P(H) satisfies Pi ⊥ Pj, i � j, then
A is at most countable;

(ii) atomicity: there exist elements in A ∈ P(H) \ {0}, called atoms, for which
0 ≤ P ≤ A implies P = 0 or P = A; for any P ∈ P(H) \ {0} there exists an
atom A with A≤ P (P(H) is then called atomic);

(iii) orthomodularity: P≤ Q implies Q = P∨ ((¬P)∧Q);
(iv) covering property: if A,P ∈ P(H), A atom, satisfy A ∧ P = 0, then (1)
P≤ A∨P with P � A∨P, and (2) P≤ Q≤ A∨P implies Q = P or Q = A∨P;

(v) irreducibility: only 0 and I commute with every element of P(H).

The only orthogonal projectors onto one-dimensional spaces are the atoms of P(H).

Based on the experimental evidence of quantum systems we could try to prove,
in absence of any Hilbert space, that elementary propositions with experimental out-
come in {0,1} form a poset. More precisely, we could attempt to find a bounded, or-
thocomplemented σ -complete lattice that verifies conditions (i)–(v) above, and then
prove this lattice is described by the orthogonal projectors of a Hilbert space.

The partial order relation of elementary propositions can be variously defined.
But it will always correspond to the logical implication, in some way or another.
Starting from [Mac63] a number of approaches (either of essentially physical nature,
or of formal character) have been developed to this end: in particular, those mak-
ing use of the notion of quantum state, which we will see in a short while for the
concrete case of propositions represented by orthogonal projectors. We refer to the
aforementioned literature for more information. More difficult is to justify that the
poset thus obtained is a lattice, i.e. that it admits greatest lower bound P∨Q and least
upper bound P∧Q for any P,Q. There are several proposals, very differing in nature,
to introduce this lattice structure [Jau73, Mac63] (see [BeCa81] and [EGL09] for a
general treatise) and make the physical meaning explicit in terms of measurement
outcome. Althought we will not discuss them, let us just mention a suggestive idea
(albeit ridden with issues) of Jauch, based on a result of von Neumann (Theorem 13.7
in [Neu50]).
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Theorem 7.20 (von Neumann’s theorem on iterated projectors). Let H be a com-
plex Hilbert space and P,Q : H→H orthogonal projectors, in general not commuting.
Calling, as usual, P∧Q the orthogonal projector onto P(H)∩Q(H), we have:

(P∧Q)x = lim
n→+∞

(PQ)nx for any x ∈ H. (7.12)

Proof. See Exercise 7.5. �

There is an extremely interesting physical point of view that interprets the right-
hand side of (7.12) as the consecutive and alternated measurement of an infinite se-
quence of propositions P, Q. Proposition P∧Q is true for a state of a quantum system
only if all propositions in the sequence are true.

If we accept the lattice structure on elementary propositions of a quantum sys-
tem, then we may define the operation of orthocomplementation by the familiar lo-
gical/physical negation. Compatible propositions can then be defined in terms of com-
muting propositions as of Definition 7.8 (by (v) in Theorem 7.18(a) this notion of
compatibility is the usual one when propositions are interpreted via projectors). Now
fully-fledged with an orthocomplemented lattice and the notion of compatible propos-
itions, we can attach a physical meaning (an interpretation backed by experimental
evidence) to the requests that the lattice be bounded, complete, atomic, irreducible
and that it have the covering property [BeCa81]. Under these hypotheses and assum-
ing there exist at least 4 pairwise-orthogonal atoms, Piron ([Pir64, JaPi69], [BeCa81,
Chapter 21], Aerts in [EGL09]) used projective geometry techniques to show that
the lattice of quantum propositions can be canonically identified with the closed (in
a generalised sense) subsets of a generalised Hilbert space of sorts. In the latter: (a)
the field is replaced by a division ring (usually not commutative) equipped with an
involution, and (b) there exists a certain definite Hermitian form associated with the
involution. It has been conjectured by many people (see [BeCa81]) that if the lattice is
also orthomodular and separable, the division ring can only be picked among R,C or
H (quaternion algebra). More recently Solèr6, Holland7 and Aerts–van Steirteghem8

have found sufficient hypotheses, in terms of the existence of orthogonal systems, for
this to happen. If the ring is R or C and we further assume the involution is continu-
ous in the topology induced by the Hermitian inner product, we obtain precisely the
lattice of orthogonal projectors of the separable Hilbert space [BeCa81]. In case of
H one gets a similar structure. In all these arguments the assumption of irreducibility
is not really crucial: if property (v) fails, the lattice can be split into irreducible sub-
lattices [Jau73, BeCa81]. Physically-speaking this situation is natural in presence of
superselection rules, of which more soon.

Our study takes place in complex Hilbert spaces, and R := P∧Q denotes simply
the projector onto the intersection of the targets of P, Q. R may or not have a meaning

6 Solèr M.P.: Characterization of Hilbert spaces by orthomodular spaces. Communications
in Algebra 23, 219–243 (1995).

7 Holland S.S.: Orthomodularity in infinite dimensions; a theorem of M. Solèr. Bulletin of
the American Mathematical Society 32, 205–234 (1995).

8 Aerts D., van Steirteghem B.: Quantum Axiomatics and a theorem of M.P. Solèr. Interna-
tional Journal of Theoretical Physics 39, 497–502 (2000).
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as statement about the system, but as we have noted earlier it does not correspond to
the proposition PE Q when P, Q relate to incompatible propositions. Conversely, the
approach of Birkhoff and von Neumann, that befits the so-called standard quantum
logic, uses∨ and∧ as proper connectives (yielding an algebra different from the usual
one), even if they operate between projectors of incompatible propositions (i.e. for
which no instrument can evaluate the truth of P, Q simultaneously. This is the reason
why the viewpoint of Quantum Logic has been criticised by physicists (cf. [Bon97,
Chapter 5] for a thorough discussion). In the past years, alongside the modern de-
velopment of Birkhoff’s and von Neumann’s approach [EGL09], many authors have
introduced new formal strategies that differ from Quantum Logic à la Birkhoff–von
Neumann, in particular by means of topos theory [DI08, HLS09].

7.3.3 Von Neumann algebras and the classification of factors

An important point for developing von Neumann’s theory is that the lattice of ele-
mentary propositions on a quantum system should satisfy the modularity condition
(Definition 7.8(d)). We will not go into explaining the manifold reasons for this (see
Rédei in [EGL09]). It will be enough to remark, as von Neumann himself proved,
that P(H) is not modular if H does not have finite dimension, due to the existence of
unbounded self-adjoint operators whose domains intersect trivially (in the null vec-
tor). The way out proposed by von Neumann and Murray is to reduce the number
of elementary observables on the quantum system, so to guarantee modularity. The
point is to start from a von Neumann algebra R (Definition 3.47) on a separable Hil-
bert space H, as opposed to the lattice of projectors P(H). As the double commutant
theorem (Theorem 3.46) shows, R = PR(H)′′, where PR(H) indicates the subset in
P(H) of orthogonal projectors belonging to R. It can be proved PR(H) inherits the
structure of bounded, orthomodular, σ -complete lattice from P(H). Hence PR(H)
represents elementary propositions associated to the physical system; since the spec-
tral theorem (see Chapter 9) uses the strong topology, for which R = PR(H)′′ is
closed, self-adjoint elements of R determine the bounded observables on the system.
Ultimately it is possible to choose R so thatPR(H) is modular. This happens for spe-
cial von Neumann algebras, belonging to the class of so-called factors: von Neumann
algebrasRwith trivial centre,R′ ∩R= {cI}c∈C. The classification of factors of Mur-
ray and von Neumann proves, among other things, that the lattice PR(H) inside the
so-called factors of type II1 is modular. Although modularity is nowadays no longer
deemed fundamental, and some of von Neumann motivations have proved indefens-
ible (see Rédei in [EGL09]), von Neumann algebras, factors, and the classification
and study of factors have been decisive for the development of the mathematical for-
mulation of quantum theories, especially quantum field theories [Haa96].

7.4 Propositions and states on quantum systems

In this section we discuss the first two axioms of the general formulation of QM, and
explain the mathematical description of propositions and states of quantum systems
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by using a suitable Hilbert space. We characterise those states in an important the-
orem due to Gleason. We also show that quantum states form a convex set, and can be
obtained as linear combinations of extreme states. The latter, called pure states, are
in one-to-one correspondence with elements (rays) of the projective space associated
to the physical system’s Hilbert space.

7.4.1 Axioms A1 and A2: propositions, states of a quantum system
and Gleason’s theorem

Given what we saw in the previous section, we shall assume the following QM
axiom. Propositions and projectors are denoted by the same symbol, as we have
already done.

A1. Let S be a quantum system described in a frame system I . Then testable
propositions on S at any given time correspond bijectively to (a subset of) the lattice
P(HS) (for the inclusion) of orthogonal projectors on a separable (complex) Hilbert
space HS, called Hilbert space associated to S. Moreover:

(1) compatible propositions correspond to commuting orthogonal projectors.
(2) the logical implication of compatible propositions P ⇒ Q corresponds to the
relation P≤ Q of the associated projectors.
(3) I (identity operator) and 0 (null operator) correspond to the tautology and the
contradiction.
(4) the negation ¬P of a proposition P corresponds to the projector ¬P = I−P.
(5) only when the propositions P, Q are compatible, the propositions P O Q, P E Q
make physical sense and correspond to the projectors P∨Q, P∧Q.
(6) if {Qn}n∈N is a countable set of pairwise-compatible propositions, the proposi-
tions corresponding to ∨n∈NQn, ∧n∈NQn make sense.

Remark 7.21. (1) Proper motivation for why HS should be separable will be seen
later, when we consider concrete quantum system and give an explicit representation
of HS. The assumption is also necessary to many theoretical results in this book.
(2) From now on we shall assume that the subset of P(HS) describing the system’s
propositions is the entireP(HS), leaving out for the moment superselection rules. As
we saw in Chapter 7.3.3 the matter is quite subtle. A weaker assumption would be to
have elementary propositions described by the sublattice of orthogonal projectors of
a von Neumann algebra RS ⊂ B(HS), actually a factor if we neglect superselection
rules. Self-adjoint elements RS identify with bounded observables on S, as we will
have time to explain.
(3) The set of elementary propositions about a quantum system contains the subset
of so-called atomic propositions, corresponding to atoms in the lattice of projectors
(Theorem 7.19), i.e. orthogonal projectors onto one-dimensional subspaces. Atomic
propositions are characterised as follows. P is atomic if there is no P′ ∈P(HS) such
that P′ ⇒ P apart from P′ = 0, P′ = P. Morevoer, if P, Q are distinct atomic pro-
positions, they are compatible (PQ = QP) if and only if mutually exclusive: PQ = 0.
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Supposing HS separable, any Q ∈P(HS) can be written as disjuntion, at most count-
able, of atomic propositions, because of Proposition 3.58(d).

The existence of a propositional subset with the properties of atoms is physically
remarkable and far from obvious.

That they exist in classical systems, by the way, is also not obvious at all (see
[Jau73]). It implies that two propositions P, Q are compatible if and only if they can
be written, separately, as disjuntion (at most countable) of sets NP, NQ of atomic
propositions, so that the atomic propositions of the union NP∪NQ are pairwise com-
patible. The proof, by the above argument, follows immediately Proposition 3.60.
(4) Apart from S, the Hilbert space HS depends on the frame system of choice. Picking
a different (inertial) system boils down to having a new Hilbert space, but isomorphic
to the former as we will see in Chapter 12, 13.

Another formulation, alternative to ours, to build the quantum formalism is the
following. Given a quantum physical system S, one assigns to any instant t ∈R a Hil-
bert space HS(t) that does not depend on any frame system. This reminds of absolute
space at time t in classical physics, a notion that is independent of frames. The way
the various HS(t) are related depends on the frame sistem and the time evolution, the
latter described by isomorphisms between two HS(t) with different t; it does not de-
pend upon the chosen frame, in contrast to what we will obtain in Chapter 13 (albeit
the formalism will be equivalent).

If we chose to use frame-independent (but time-depending) Hilbert spaces
{HS(t)}t∈R, we would not be able to describe the evolution by a one-parameter
group of unitary operators on the same Hilbert space. That is precisely what hap-
pens after having fixed a frame and the Hilbert space once and for all, as we will see
in Chapter 13. 9 �

Let us pass to the second axiom about quantum states. The point, relying on QM1
and QM2 (and ensuing remarks) is that a quantum state at time t gives the “probab-
ility” that every proposition of the system is true. So the idea is to generalise the
notion of σ -additive probability measure. Instead of defining it on a σ -algebra, we
must think of it as living on the set of associated projectors. We know every maximal
set of compatible propositions defines a σ -finite Boolean algebra, itself an extension
of a σ -algebra where measures are defined. So this is the natural principle.

A2 (preliminary form). A state ρ at time t on a quantum system S is a mapping ρ :
P(HS)→ [0,1] such that:

(1) ρ(I) = 1;
(2) if {Pi}i∈N ⊂P(HS) satisfy PiPj = 0, i � j, then

ρ

(

s-
+∞

∑
i=0

Pi

)

=
+∞

∑
i=0
ρ(Pi) .

9 Although we will not do so, one could also use two-parameter groupoids of unitary trans-
formations between different Hilbert spaces.
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Remark 7.22. (1) Demand (1) just says the tautology is true on every state.
(2) Demand (2) clearly holds for finitely many propositions: it is enough that Pi = 0
definitely.
(3) (2) can be rephrased as:

ρ (∨i∈NPi) =
+∞

∑
i=1
ρ(Pi) ,

for any collection {Pi}i∈N ⊂P(HS) of compatible, mutually-exclusive propositions,
so that ∑+∞

i=0 Pi = ∨i∈NPi exists by Theorem 7.18.
The proof of the existence of ∑+∞

i=0 Pi is spelt out next, at any rate. Under the
assumptions, partial sums give self-adjoint idempotent operators, hence orthogonal
projectors. Therefore∑N

i=0 Pi ≤ I by Proposition 3.58(e). Moreover∑N+1
i=0 Pi ≥∑N

i=0 Pi,
as is easy to see. So by Proposition 3.65 the sequence admits strong limit. Immedi-
ately, this limit is idempotent and self-adjoint, hence a projector.
(4) Every state ρ clearly determines the equivalent of a positive σ -additive probab-
ility measure on any maximal commutative set of projectors P0(Hs), which, as seen
before, generalises a σ -algebra. Thus we have extended the notion of probability
measure.
(5) The reader should beware identifying the “probability measure” ρ with an honest
probability measure on a σ -algebra: the fact we now consider quantum incompatible
propositions alters drastically the rules of conditional probability. The probability
that “P is true when Q holds” abides by a different set of rules from the classical
theory in case P and Q are incompatible in quantum sense.
(6) If HS is separable a “probability measure” ρ on P(HS) in the sense of A2 is com-
pletely determined by its range over atomic propositions (see Remark 7.21(3)), i.e.
over orthogonal projectors onto subspaces of dimension 1 in H. The proof follows
directly property (2) in A2, to which ρ is subjected. �

Important remark. When we assign a state there will be propositions with probab-
ility 1 of being true if the system undergoes a measurement, and propositions with
probability less than 1 if the system is tested on them. We may view the first class as
properties the system really possesses in the state considered.

Under the standard interpretation of QM, where probability has no epistemic
meaning, we are forced to conclude that the properties relative to the second class
of propositions are not defined for the state examined.

An important example for physics is this. Take propositions PE , corresponding
to properties of a system formed by a quantum particle on the real line, of the form:
“the particle’s position is in the Borel set E ∈B(R)”. If the state ρ assigns to each
PE , E bounded, probability less than 1 (it is not hard to come up with such a state, as
we shall see when dealing with Heisenberg’s uncertainty principle/theorem) then we
must conclude that the particle’s position, in state ρ , is not defined.

From this point of view, the spatial description of particles as points in a mani-
fold – here R, representing the “physical space at rest” of a frame system – does not
play a central role anymore, unlike for classical physics. In some sense all the prop-
erties of a system (which may vary with the state) are on a par, and the “space” in
which system and states are described is a Hilbert space. �
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From the mathematical perspective the first question to raise is whether maps ρ
as in A2 exist at all.

Given a Hilbert space H we show they do exist. The proof clearly works, trivially,
also when H is finite dimensional. Recall B1(H) denoted trace-class operators on H
(Chapter 4).

Proposition 7.23. Let H be a separable Hilbert space and T ∈ B1(H) a positive
(hence self-adjoint) operator with trace 1. Define ρT :P(H)→R by ρT (P) := tr(T P)
for any P ∈P(H). Then:

(a) ρT (P) ∈ [0,1] for any P ∈P(H).
(b) ρT (I) = 1.
(c) if {Pi}i∈N ⊂P(H) satisfies PiPj = 0, i � j, then

ρT

(

s-
+∞

∑
i=0

Pi

)

=
+∞

∑
i=1
ρT (Pi) .

Proof. T P is of trace class for any P ∈P(H) by Theorem 4.32(b), for P is bounded,
hence we can compute tr(TP). T ’s positivity ensures the eigenvalues of T are non-
negative ((c) in Proposition 3.54). We claim they all belong to [0,1]. T is compact and
self-adjoint (as positive). Using the decomposition of Theorem 4.21, since |A| = A
(A≥ 0) and so in A = U |A| we have U = I,

T = ∑
λ∈σp(A)

mλ

∑
i=1

λ (uλ ,i| )uλ ,i .

The set σp(A) consists of the eigenvalues of A, and if λ > 0, {uλ ,i}i=1,...,mλ is a basis
for the eigenspace relative to λ ∈ σp(A). The convergence is in the uniform topology.
Let us write the above expansion as

T =∑
j

λ j(u j| )u j . (7.13)

Above we labelled over N (or a finite subset thereof, if dim(H) < +∞) the set of ei-
genvectors u j = uλ ,i, λ > 0, where λ j is the eigenvalue of u j; moreover, the set of
eigenvectors was completed to a basis of H by adding a basis for the kernel of T (the
overall basis is at most countable because H is separable).

Computing the trace of T with respcet to the u j gives

1 = tr(T ) =∑
j

λ j ,

so λ j ∈ [0,1]. Note that the above equation proves part (b) as well, for T I = I. Take
now P ∈P(H) and compute the trace of T P in said basis:

tr(TP) =∑
j
λ j(u j|Pu j) .
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As (u j|Pu j) = (Pu j|Pu j), we have 0 ≤ (u j|Pu j) ≤ ||P||2||u j||2 ≤ 1, where we used
||u j||= 1 and ||P|| ≤ 1 (Proposition 3.58(e)). Therefore

0≤∑
j
λ j(u j|Pu j)≤∑

j
λ j = 1

and (a) holds.
Let us prove (c). Choose a basis {ui, j} j∈Ii in each Pi(H). We leave the reader to

prove that B := {ui, j} j∈Ii,i∈N is a basis for the closed projection space of P = s-∑+∞
i=0 Pi.

Now we complete B to a basis of H by adding B′ basis of P(H)⊥. Since T is continu-
ous, by Proposition 3.58(d):

ρT (P) = tr

[

T

(

s-∑
u∈B

(u| )u
)]

= tr

(

s-∑
u∈B

(u| )Tu

)

.

Now we compute the trace using B∪B′:

ρT (P) = ∑
v∈B∪B′

(

v

∣
∣
∣
∣
∣∑u∈B

(u|v)Tu

)

= ∑
u∈B

(u |Tu ) , (7.14)

where we used that (v|u) = δuv for u,v ∈ B∪B′, and B is orthogonal to B′. Analog-
ously we can prove

+∞

∑
i=1
ρT (Pi) =

+∞

∑
i=1

Ii

∑
j=1

(ui, j|Tui, j) .

We can always enlarge any set Ii to N by setting ui, j := 0 if j > sup Ii. Remembering
Proposition 3.21(c), noting (ui, j|Tui, j)≥ 0 for any i, j, hence also

∫

N

(ui, j|Tui, j)dμ( j)≥ 0 for any i ∈ N,

where μ is the counting measure on N, we eventually get

+∞

∑
i=1
ρT (Pi) =

+∞

∑
i=1

∞

∑
j=1

(ui, j|Tui, j) =
∫

N

dμ(i)
∫

N

(ui, j|Tui, j)dμ( j) .

With the same interpretation the last sum in (7.14) reads

ρT (P) = ∑
u∈B

(u |Tu ) =
∫

N×N
(
ui, j
∣
∣Tui, j
)

dμ(i)⊗dμ( j) .

As (ui, j|Tui, j) are non-negative numbers and the integral converges, the theorem of
Fubini–Tonelli guarantees

+∞

∑
i=1
ρT (Pi)=

∫

N

dμ(i)
∫

N

(ui, j|Tui, j)dμ( j)=
∫

N×N
(
ui, j
∣
∣Tui, j
)

dμ(i)⊗dμ( j)=ρT (P) ,

i.e. statement (c). �
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The next result, due to Gleason [Gle57], is paramount, in that it provides a com-
plete characterisation of the functions that satisfy axiom A2.

Theorem 7.24 (Gleason). Let H be a Hilbert space of finite dimension ≥ 3, or
infinite-dimensional and separable. For any map μ : P(H) → [0,+∞) with μ(I) <
+∞ satisfying statement (2) in A2, there exists a positive operator T ∈ B1(H) such
that

μ(P) = tr(TP) for any P ∈P(H).

Sketch of proof. Take a Hilbert space H, either separable and infinite-dimensional, or
just finite-dimensional. Define a non-negative frame function on H to be a function
f : SH → [0,+∞), SH := {x ∈ H | ||x||= 1}, for which there exists W ∈ [0,+∞) such
that

∑
i∈K

f (xi) = W

for any basis {xi}i∈K ⊂ H. A lengthy argument relying on results of von Neumann
(cf. Gleason, op. cit.) proves the following lemma.

Lemma 7.25. On any Hilbert space, either separable or of finite dimension ≥ 3, for
any non-negative frame function f there exists a bounded, self-adjoint operator T
such that f (x) = (x|T x), for every x ∈ SH.

Consider the projectors Px := (x| ) x, x ∈ SH. With the assumption made on μ it
is straightforward that f (x) := μ(Px) is a non-negative frame function, since μ ≥ 0
and

∑
i∈K

f (xi) = ∑
i∈K
μ(Pxi) = μ

(

∑
i∈K

Pxi

)

= μ (I) < +∞ .

By the lemma there is a self-adjoint operator T such that μ(Px) = (x|T x) for any
x ∈ SH. Since (x|T x) ≥ 0 for any x, T is positive, so T = |T | (in fact: |T |2 = T ∗T
by polar decomposition, but now T ∗T = T 2 because positive roots are unique (The-
orem 3.66)). If {xi}i∈K ⊂ H is a basis,

+∞> μ(I) = ∑
i∈K

f (xi) = ∑
i∈K

(xi|T xi) = ∑
i∈K

(xi| |T |xi) .

By Definition 4.30 T = |T | is then of trace class. Take now P ∈ P(H) and pick a
basis {xi}i∈J of P(H), complete it to H by adding a basis {xi}i∈J′ of P(H)⊥. Then J
is countable (or finite) by Theorem 3.30, plus:

P = s-∑
i∈J

Pxi

by Proposition 3.58(d). Eventually,

Pxi Px j = 0

if i � j are in J. Since Pxi = xi if i ∈ J, and Pxi = 0 if i ∈ J′, we have

μ(P) =∑
i∈J
μ(Pxi) =∑

i∈J
(xi|T xi) = ∑

i∈J∪J′
(xi|T Pxi) = tr(TP) .

The proof’s sketch ends here. �
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Remark 7.26. (1) Gleason’s proof works for real Hilbert spaces too.
(2) The operator T has trace 1 if μ(I) = 1, as in the case of A2.
(3) If the Hilbert space is complex, as in A2 and always in this text, the operator T
associated to μ is unique: any other T ′ of trace class such that μ(P) = tr(T ′P) for any
P∈P(H) must also satisfy (x|(T−T ′)x) = 0 for any x∈H. If x = 0 this is clear, while
if x � 0 we may complete the vector x/||x|| to a basis, in which tr((T −T ′)Px) = 0
reads ||x||−2(x|(T−T ′)x) = 0, where Px is the projector onto < x >. By Exercise 3.18
we obtain T −T ′ = 0.
(4) Imposing dimH > 2 is mandatory, as the next example shows. On C2 the ortho-
gonal projectors are 0, I and any matrix of the form

Pn :=
1
2

(

I +
3

∑
i=2

niσi

)

, with n = (n1,n2,n3) ∈ R3 such that |n|= 1,

where σ1,σ2,σ3 are the Pauli matrices:

σ1 =
[

0 1
1 0

]

, σ2 =
[

0 −i
i 0

]

, σ3 =
[

1 0
0 −1

]

. (7.15)

There is a one-to-one correspondence between projectors Pn and points n ∈ S2 on
the unit two-sphere. The functions μ of Gleason’s theorem can be thought of as
maps on S2 ∪{0, I}. Gleason’s assumptions boil down to μ(0) = 0, μ(I) = 1 and
μ(n) = 1−μ(−n). Positive trace-class operators with unit trace are precisely those
of the form:

ρu =
1
2

(

I +
3

∑
i=2

uiσi

)

with u ∈ R3 such that |u| ≤ 1 . (7.16)

If · is the standard dot product on R3, a direct computation using Pauli’s matrices
gives

tr(ρuPn) =
1
2

(1+u ·n) .

The function μ defined by μ(0) = 0, μ(I) = 1 and

μ(Pn) =
1
2

(
1+(v ·n)3) ,

for any n ∈ S2 and a fixed v ∈ S2, satisfies Gleason’s theorem. It is easy to prove,
however, there are no operators ρu like (7.16) such that μ(Pn) := tr(ρuPn) for any
projector Pu; that is to say, there are no u ∈ R3, |u| ≤ 1, such that

(1+u ·n) =
(
1+(v ·n)3) for any n ∈ S2. �

Gleason’s theorem and the previous considerations, plus the fact that every
quantum system known has a Hilbert space satisfying Gleason’s assumptions10, lead
to a reformulation of axiom A2.
10 Particles with spin 1/2 admit a Hilbert space – in which the observable spin is defined –

of dimension 2. The same occurs to the Hilbert space in which the polarisation of light is
described (cf. helicity of photons). When these systems are described in full, however, for
instance including freedom degrees relative to position or momentum, they are represent-
able on a separable Hilbert space of infinite dimension.
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A2. A state ρ at time t, on a quantum system S with associated Hilbert space HS, is a
positive trace-class operator with unit trace on HS. The probability that the propos-
ition P ∈P(HS) is true on state ρ equals tr(ρP).

In conclusion, and more generally, we can say the following.

Definition 7.27. Let H be a Hilbert space (not necessarily separable nor finite-
dimensional). A positive trace-class operator with trace 1 is called a state on H.
The set of states on H is denoted by S(H).

7.4.2 The Kochen–Specker theorem

Gleason’s theorem has a momentous consequence in physics, which distinguishes the
states of classical systems from quantum ones. Classical systems admit completely
deterministic states, described by what we have called sharp states: Dirac measures
with support at a point in phase space at the time considered. Each such measure maps
sets either to 0 or to 1. These are states on which every statement is either true or false,
and there is no intermediate option. States of this kind do not occur in quantum system
because of the following important fact11.

Theorem 7.28 (Kochen–Specker). If H is a Hilbert space, separable or of finite di-
mension ≥ 3, there is no function ρ :P(H)→ [0,1] fulfilling (1) and (2) in axiom A2
(preliminary form) and taking values in {0,1}.

Proof. If x belongs to SH (unit length) and Px is the orthogonal projector (x|·)x, any
such ρ gives by Gleason’s theorem (the dimension is ≥ 3) a map SH � x 	→ ρ(Px) =
(x|T x), where T ∈B1(H) with T ≥ 0, trT = 1 is determined uniquely by ρ . This map
is patently continuous for the topology of SH induced by the ambient H. We claim
SH is path-connected, i.e., for any x,y ∈ SH there is a continuous path γ : [a,b]→ SH

starting at γ(a) = x and ending at γ(b) = y. If so, since SH � x 	→ ρ(Px) = (x|T x) is
continuous, its image is clearly path-connected (as composite of paths in SH with ρ
itself). As this image belongs in {0,1}, the possibilities are that it is {0,1}, or {0}, or
{1}. But there is no path joining 0 and 1 contained in {0,1}, so necessarily ρ(Px) = 0
for any x ∈ SH, or ρ(Px) = 1 for any x ∈ SH. In the former case (x|T x) = 0 for any
x, hence tr(T ) = 0, violating tr(T ) = 1. In the latter case (x|T x) = 1 for any x, again
contradi cting tr(T ) = 1 by dimensional reasons.

To conclude we must show SH is indeed path connected. Taking x,y ∈ SH we
have two options. The first is that x = eiα0 y for some α0 > 0, so x is joined to y
by the curve [0,α0] � α 	→ eiαx. Note the curve is continuous for the Hilbert to-
pology and totally contained in S. The second option is that x is a linear combina-
tion of y and some y′ ∈ SH orthogonal to y, obtained from completing y to an or-
thonormal basis for the span of y,x. Since ||x|| = ||y|| = ||y′|| = 1 and y ⊥ y′, then
x = eiα(cosβ )y+ eiδ (sinβ )y′ for three reals α ,β ,δ . But then x is joined to y by the

11 Kochen S., Specker E.P.: The problem of Hidden Variables in Quantum Mechanics. J. Math.
Mech. 17(1), 59–87 (1967).
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continuous curve, all contained in SH, defined by varying each of the three parameters
on suitable adjacent intervals. �

This no-go result is relevant when one tries to construct classical models of QM by
introducing “hidden variables” of classical type, essentially, because these severely
restrict the models. For a general discussion on the use of hidden variables and the
obstruction due to the lack of dispersion-free states, i.e. sharp states (also in more gen-
eral contexts than the formulation of QM in Hilbert spaces), we recommend [Jau73,
ch. 7] and [BeCa81, Chapter 25].

7.4.3 Pure states, mixed states, transition amplitudes

Let us now study the set S(HS) of states if HS is the Hilbert space associated to the
quantum system S. A few reminders are useful.

Given a vector space X, a finite linear combination ∑i∈F αixi is called convex if
αi ∈ [0,1], i ∈ F , and ∑i∈F αi = 1.

Moreover (Definition 2.61) C ⊂ X is called convex if for any pair x,y ∈C, λx+
(1−λ )y ∈C for all λ ∈ [0,1] (and thus every convex combination of elements in C
belongs to C).

If C is convex, e∈C is called extreme if it cannot be written as e = λx+(1−λ )y,
with λ ∈ (0,1), x,y ∈C \{e}.

Definition 7.29. Let X be a vector space over K= C or R and consider the equival-
ence relation:

u∼ v ⇔ v = αu for some α ∈ K\{0}.

The quotient space X/∼ is the projective space over X. We call elements of X/∼ other
than [0] (equivalence class of the null vector) rays of X.

Proposition 7.30. Let (H,( | )) be a separable Hilbert space.

(a) S(H) is a convex subset in B1(H).
(b) Extreme points in S(H) are those of the form:

ρψ := (ψ | )ψ , for every vector ψ ∈ H with ||ψ ||= 1.

This sets up a bijection between extreme states and rays of H, which maps the extreme
state (ψ | )ψ to the ray [ψ ].
(c) Any state ρ ∈S(H) satisfes

ρ ≥ ρρ,

and is extreme if and only if
ρρ = ρ .

(d) Any state ρ ∈ S(H) is a linear combination of extreme states, including infinite
combinations in the uniform topology. In particular there is always a decomposition

ρ = ∑
φ∈N

pφ (φ | )φ ,
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where N is an eigenvector basis for ρ , pφ ∈ [0,1] for any φ ∈ N, and

∑
φ∈N

pφ = 1 .

Proof. (a) Take two states ρ,ρ ′. It is clear λρ+(1−λ )ρ ′is of trace class because
trace-class operators form a subspace inB(H) (Theorem 4.32). By the trace’s linear-
ity (Proposition 4.34):

tr[λρ+(1−λ )ρ ′] = λ trρ+(1−λ )trρ ′ = λ1+(1−λ )1 = 1 .

At last, if f ∈ H and λ ∈ [0,1], since ρ and ρ ′ are positive:

( f |(λρ+(1−λ )ρ ′) f ) = λ ( f |ρ f )+(1−λ )( f |ρ ′ f )≥ 0 .

Hence λρ+(1−λ )ρ ′ is a state if ρ,ρ ′ are states and λ ∈ [0,1].
(b) and (d) Consider ρ ∈S(H). ρ is a compact and self-adjoint operator (as positive).
Using the decomposition of Theorem 4.21, and since |ρ| = ρ (ρ ≥ 0), so U = I in
the polar decomposition of ρ = U |ρ|, we find:

ρ = ∑
λ∈σp(ρ)

mλ

∑
i=1
λ (uλ ,i| )uλ ,i . (7.17)

Above, σp(ρ) is the set of eigenvectors of ρ , and if λ > 0, {uλ ,i}i=1,...,mλ is a basis of
the eigenspace of λ ∈ σp(ρ). At last, convergence is understood in uniform topology.
This expansion alone proves (d).

Completing ∪λ>0{uλ ,i}i=1,...,mλ by adding a basis for Kerρ , by Proposition 4.34
we obtain:

1 = tr(ρ) = ∑
λ∈σp(ρ)

mλλ . (7.18)

Suppose now ρψ := (ψ | )ψ , ||ψ ||= 1. Immediately, ρψ ∈S(H). We want to prove
ρψ is extreme in S(H). So assume there are ρ,ρ ′ ∈S(H) and λ ∈ (0,1) such that

ρψ = λρ+(1−λ )ρ ′ .

We will show ρ = ρ ′ = ρψ .
Consider the orthogonal projector Pψ = (ψ | )ψ . It is clear (completing ψ to a

basis) that tr(ρψPψ) = 1, so

1 = λ tr(ρPψ)+(1−λ )tr(ρ ′Pψ) .

As λ ∈ (0,1) and 0 ≤ tr(ρPψ) ≤ 1, we have 0 ≤ tr(ρ ′Pψ) ≤ 1, possible only if
tr(ρPψ) = tr(ρ ′Pψ) = 1. So let us prove that tr(ρPψ) = 1 and tr(ρ ′Pψ) = 1 imply
ρ = ρ ′ = ρψ .

Decomposing ρ as in (7.17), tr(ρPψ) = 1 becomes

∑
j
λ j|(u j|ψ)|2 = 1 , (7.19)
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where we labelled with N (or a finite subset in case dim(H) < +∞) the eigenvectors
u j = uλ ,i, λ > 0, we called λ j the eigenvalue of u j and we completed to a basis of H
the previous eigenvectors by adding a basis for the null space of ρ (the total basis is
at most countable because H is separable). By assumption

∑
j

λ j = 1 , (7.20)

∑
j
|(u j|ψ)|2 = 1 . (7.21)

Since λ j ∈ [0,1] and |(u j|ψ)|2 ∈ [0,1] for any j ∈ N, we obtain

∑
j
λ 2

j ≤ 1 , (7.22)

∑
j
|(u j|ψ)|4 ≤ 1 . (7.23)

Thus the sequences of the λ j and the |(u j|ψ)|2 belong to �2(N). Identity (7.19), plus
(7.22), (7.23) and the Cauchy-Schwarz inequality in �2(N), give

∑
j
λ 2

j = 1 , (7.24)

∑
j
|(u j|ψ)|4 = 1 . (7.25)

Since λ j ∈ [0,1] for any j ∈ N, (7.20) and (7.24) are consistent only if all λi vanish
except one, say λp, which equals 1. Likewise, since |(u j|ψ)|2 ∈ [0,1] for any j ∈ N,
(7.21) and (7.25) are consistent only if all |(u j|ψ)| are zero except for |(uk|ψ)|= 1.
As the ui are a basis and ||ψ ||= 1, necessarily ψ = αuk, with |α |= 1. Clearly, then,
k = p, for otherwise tr(ρPψ) = 0. But

ρ =∑
j
λ j(u j| )u j ,

so eventually

ρ = λk(uk| )uk = 1 · (uk| )uk = α−1α−1(ψ | )ψ = |α |−1(ψ | )ψ = (ψ | )ψ = ρψ .

In the same way we can prove ρ ′ = ρψ .
If a state ρ is not of the type (ψ | )ψ , we can still decompose it as

ρ =∑
j
λ j(u j| )u j ,

where at least two p� q (with λp � λq) do not vanish. Hence in particular λp,1−λp ∈
(0,1). Then we can write ρ as

ρ = λp(up| )up +(1−λp)∑
j�p

λ j

(1−λp)
(u j| )u j .
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(up| )up is a state as already said, and easily, we also have

ρ ′ := ∑
j�p

λ j

(1−λp)
(u j| )u j

is a state of S(H) (obviously ρ ′ � (up| )up by construction, as uq � up). So we have
proved ρ is not extreme.

The function f mapping the extreme state (ψ | )ψ to the ray [ψ ] is well defined.
In fact, let us first notice that ||ψ || = 1 by definition of extreme state, so ψ � 0 and
[ψ ] is a ray. One extreme state may be expressed differently: namely (as is immediate
to see from ||φ || = 1) (ψ | )ψ = (φ | )φ iff ψ = eiαφ for some α ∈ R. But then by
definition of ray [ψ ] = [φ ]. We claim the function f is one-to-one: if φ , ψ are unit
and [ψ ] = [φ ], then ψ = eiαφ for some α ∈ R, so (ψ | )ψ = (φ | )φ . The function is
also onto, because if [φ ] is a ray, ||φ || � 0 so there is a ψ ∈ [φ ] with ||ψ ||= 1. Then
f ((ψ | )ψ) = [φ ] since ψ = αφ for some non-zero α ∈ C.
(c) Begin with the second claim. If ρ is extreme, ρρ = ρ using the form in part (b)
for extreme points. Decomposing a state ρ as (see the meaning above):

ρ =∑
j

λ j(u j| )u j ,

gives

ρρ =∑
j
λ 2

j (u j| )u j .

If ρρ = ρ , passing to traces gives

∑
j
λ 2

j =∑
j
λ j = 1

with λ j ∈ [0,1]. This is possible only if all λ j are zero but one, λk = 1. Then

ρ =∑
j

λ j(u j| )u j = 1 · (uk| )uk ,

which is an extreme state by (b).
Now to the first claim. Let x =∑ jα ju j be arbitrary in H (the u j are a basis of H).

Since λ j ∈ [0,1],

(x|ρρx) =∑
j

λ 2
j (x|u j)(u j|x) =∑

j

λ 2
j |α j|2 ≤∑

j

λ j|α j|2

=∑
j
λ j(u j|x)(u j|x) = (x|ρx) .

Therefore ρρ ≤ ρ . �
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Now we have a definition.

Definition 7.31. Let (H,( | )) be a separable Hilbert space.

(a) Extreme elements inS(H) are called pure states, and their set is denotedSp(H);
non-extreme states are mixed states, mixtures or nonpure states.
(b) If:

ψ =∑
i∈I
αiφi ,

with I finite or countable (and the series converges in the topology of H in the second
case), where the vectors φi ∈ H are all non-null and 0 � αi ∈ C, one says the state
(ψ | )ψ is a coherent superposition of the states (φi| )φi/||φi||2.
(c) If ρ ∈S(H) satisfies:

ρ =∑
i∈I

piρi

with I finite, ρi ∈S(H), 0 � pi ∈ [0,1] for any i ∈ I, and ∑i pi = 1, the state ρ is said
incoherent superposition of states ρi (possibly pure).
(d) If ψ ,φ ∈ H satisfy ||ψ ||= ||φ ||= 1:

(i) the complex number (ψ |φ) is the transition amplitude or probability
amplitude of the state (φ | )φ on the state (ψ | )ψ;

(ii) the non-negative real number |(ψ |φ)|2 is the transition probability of the
state (φ | )φ on the state (ψ | )ψ .

Remark 7.32. (1) The vectors of the Hilbert space of a quantum system associated
to pure states are often said, in physics’ literature, wavefunctions. The reason for
such a name is due to the first formulation of Quantum Mechanics in terms of Wave
Mechanics (see Chapter 6).
(2) The possibility of creating pure states by non-trivial combinations of vectors as-
sociated to other pure states is called, in the jargon of QM, superposition principle
of (pure) states.
(3) In (c), in case ρi = ψi(ψi| ), we do not require (ψi|ψ j) = 0 if i � j. However it is
immediate to see that if I is finite, if ρi is a mixed or pure state and if pi ∈ [0,1] for
any i ∈ I, ∑i pi = 1, then:

ρ =∑
i∈I

piρi

is of trace class (obvious: trace-class operators are a vector space and every ρi is of
trace class), positive (as positive linear combination of positive operators), and it has
unit trace: this because by the trace’s linearity (Proposition 4.34), we have

trρ = tr

(

∑
i∈I

piρi

)

=∑
i∈I

pitrρi =∑
i∈I

pi ·1 = 1 .

The decomposition of ρ over an eigenvector basis can be considered a limiting case
of the above: when I is countable, in fact, ρi = ψi(ψi| ) and (ψi|ψ j) = δi j.

It is important to remark that in general, a given mixed state admits several inco-
herent decompositions by pure and nonpure states.
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(4) Consider the pure state ρψ ∈ Sp(H), written ρψ = (ψ | )ψ for some ψ ∈ H with
||ψ || = 1. What we want to emphasise is that this pure state is also an orthogonal
projector Pψ := (ψ | )ψ , so it must correspond to a proposition about the system.

The naïve and natural interpretation12 of the statement is this: “the system’s state
is the pure state given by the vector ψ”.

This interpretation is due, if ρ ∈ S(H), to the fact that tr(ρPψ) = 1 if and only
if ρ = (ψ | )ψ . In fact, if ρ = (ψ | )ψ , by completing ψ to a basis and taking the
trace, we have tr(ρPψ) = 1. Conversely, suppose tr(ρPψ) = 1 for the state ρ . Then
ρ = (ψ | )ψ from the proof of Proposition 7.30.
(5) Part (4) allows to interpret the square modulus of the transition amplitude (φ |ψ).
If ||φ || = ||ψ || = 1, as the definition of transition amplitude imposes, tr(ρψPφ ) =
|(φ |ψ)|2, where ρψ := (ψ | )ψ and Pφ = (φ | )φ . Using (4) we conclude:
|(φ |ψ)|2 is the probability that the state, given (at time t) by the vector ψ , following
a measurement (at time t) on the system becomes determined by φ .

Notice |(φ |ψ)|2 = |(ψ |φ)|2, so the probability transition of the state determined
by ψ on the state determined by φ concides with the analogous probability where the
vectors are swapped. This fact is, a priori, highly non-evident in physics. �

7.4.4 Axiom A3: post-measurement states and preparation of states

The standard formulation of QM assumes the following axiom (introduced by von
Neumann and generalised by Lüders) about what occurs to the physical system S,
in state ρ ∈ S(HS) at time t, when subjected to the measurement of proposition
P∈P(HS), if the latter is true (so in particular tr(ρP) > 0, prior to the measurement).

A3. If the quantum system S is in state ρ ∈S(HS) at time t and proposition P∈P(HS)
is true after a measurement at time t, the system’s state immediately afterwards is:

ρP :=
PρP

tr(ρP)
.

In particular, if ρ is pure and determined by the unit vector ψ , the state immediately
after measurement is still pure, and determined by:

ψP =
Pψ
||Pψ || .

Obviously, in either case ρP and ψP define states. In the former, in fact, ρP is positive
of trace class, with unit trace, while in the latter ||ψP||= 1.

Remark 7.33. (1) As already highlighted, measuring a property of a physical quant-
ity goes through the interaction between the system and an instrument (supposed
macroscopic and obeying the laws of classical physics). Quantum Mechanics, in its

12 We cannot but notice how this interpretation muddles the semantic and syntactic levels.
Although this could be problematic in a formulation within formal logic, the use physicists
make of the interpretation eschews the issue.
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standard formulation, does not establish what a measuring instrument is, it only says
they exist; nor is it capable of describing the interaction of instrument and quantum
system beyond the framework set in A3. Several viewpoints and conjectures exist on
how to complete the physical description of the measuring process; these are called,
in the slang of QM, collapse, or reduction, of the state or of the wavefunction.
For various reasons, though, none of the current proposals is entirely satisfactory
[Des99, Bon97, Ghi97, Alb94]. A very interesting proposal was put forward in 1985
by G.C.Girardi, T. Rimini and A. Weber (Physical Review D34, 1985 p. 470), who
described in a dynamically nonlinear way the measuring process and assumed it is
due to a self-localisation process, rather than to an instrument. This idea, alas, still
has several weak points, in particular it does not allow – at least in an obvious man-
ner – for a relativistic description.
(2) Axiom A3 refers to non-destructive testing, also known as indirect measurement
or first-kind measurement [BrKh95], where the physical system examined (typically
a particle) is not absorbed/annihilated by the instrument. They are idealised versions
of the actual processes used in labs, and only in part they can be modelled in such a
way.
(3) Measuring instruments are commonly employed to prepare a system in a cer-
tain state. Theoretically-speaking the preparation of a pure state is carried out like
this. A finite collection of compatible propositions P1, . . . ,Pn is chosen so that the
projection subspace of P1 ∧ ·· · ∧Pn = P1 · · ·Pn is one-dimensional. In other words
P1 · · ·Pn = (ψ | )ψ for some vector with ||ψ ||= 1. The existence of such propositions
is seen in practically all quantum systems used in experiments. (From a theoretical
point of view these are atomic propositions in the sense of Remark 7.21(3), and must
exist because of the Hilbert space.) Then propositions Pi are simultaneously meas-
ured on several identical copies of the physical system of concern (e.g., electrons),
whose initial states, though, are unknown. If for one system the measurements of all
propositions are successful, the post-measurement state is determined by the vector
ψ , and the system was prepared in that particular state.

Normally each projector Pi is associated to a measurable quantity Ai on the sys-
tem, and Pi defines the proposition “the quantity Ai belongs to the set Ei”. In practice,
thus, to prepare a sysytem (available in arbitrarily many identical copies) in the pure
state ψ one measures simultaneously a number of compatible quantities Ai and se-
lects the systems for which the readings of the Ai belong to the given sets Ei.
(4) Let us explain how to obtain nonpure states from pure ones. Consider q1 identical
copies of system S prepared in the pure state associated to ψ1, q2 copies of S prepared
in the pure state associated to ψ2 and so on, up to ψn. If we mix these states each one
will be in the nonpure state:

ρ =
n

∑
i=1

pi(ψi| )ψi ,

where pi := qi/∑n
i=1 qi. In general, (ψi|ψ j) is not zero if i � j, so the above expres-

sion for ρ is not the decomposition with respect to an eigenvector basis for ρ . This
procedure hints at the existence of two different types of probability, one intrinsic and
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due to the quantum nature of state ψi, the other epistemic, and encoded in the prob-
ability pi. But this is not true: once a nonpure state has been created, as above, there
is no way, within QM, to distinguish the states forming the mixture. For example, the
same ρ could have been obtained mixing other pure states than those determined by
the ψi. In particular, one could have used those in the decomposition of ρ into a basis
of its eigenvectors. For physics, no kind of measurement (under the axioms of QM
stated so far) would distinguish the two mixtures. �

7.4.5 Superselection rules and coherent sectors

We need a general definition of purely mathematical flavour.

Definition 7.34. If H is a Hilbert space and {Hα}α∈A a collection of arbitrary car-
dinality of closed subspaces, we shall write H = ⊕α∈AHα , and say H is the Hilbert
(direct) sum of the Hα , if the latter are mutually orthogonal and H = < {Hα}α∈A >.

Remarks 7.35. Relatively to the orthogonal decomposition H = ⊕α∈AHα in the
sense of Definition 7.34, we leave the reader to prove the following identities, which
descend from the observation that the union of bases chosen in each Hα is a basis
of H.

For each vector ψ ∈ H
||ψ ||2 = ∑

α∈A

||Pαψ ||2 (7.26)

(in the sense of Definition 3.19), where Pα is the projector on Hα for any α ∈ A.
Moreover (remembering Lemma 3.25)

ψ = ∑
α∈A

Pαψ (7.27)

where the series may be rearranged arbitrarily. The sum is a series or a finite sum since
only a countable, at most, number of Pαψ does not vanish (Proposition 3.21(b)). �

For the known quantum systems not all normalised ψ determine states that are
physically admissible. There are various theoretical reasons (which we shall return to
in the sequel) that force the existence of so-called superselection rules. According
to these rules the system’s Hilbert space H is a Hilbert sum – at most countable if the
Hilbert space is assumed separable – of closed subspaces called coherent sectors:

H = H1⊕H2⊕·· · .
The only physically admissible states, given by single vectors, are represented by vec-
tors in H1, or H2, or H3,, . . . States given by linear combinations over distinct coherent
sectors are not admissible.

Physics views coherent sectors as subspaces of H associated to a collection of
mutually-exclusive propositions – i.e. orthogonal projectors P1, P2, . . . onto the or-
thogonal coherent sectors, with∑i Pi = I (the sum, if infinite, is meant in strong sense).
The proposition associated to Pi corresponds to the assertion that the quantity determ-
ining the superselection rule has a certain value. More generally, the quantity is not
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required to take a specific value on each subspace, but only to range over a certain
set specified by the proposition. Let us see this with two examples.

(1) As first example we recall the superselection rule of the electric charge for
charged quantum system. This demands that each vector ψ , determining a system’s
state, satisfies a proposition PQ of the type: “the system’s charge equals Q” for some
value Q. Mathematically, then, tr(PQ(ψ | )ψ) = 1 for some value Q, which amounts
to say PQψ = ψ for some Q. In other words: states, determined by single vectors,
whose charge is not a definite value are not admissible. This demand is obvious in
classical physics, not in QM, where an electrically charged system, a priori, could
admit states with indefinite charge. Imposing the Hilbert space is separable requires
that the number of values Q of the charge, i.e. the coherent sectors with given charge,
is at most countable, so that the electric charge cannot vary with continuity.13

(2) Another superselection rule concerns the angular momentum of any physical
system. From QM we know the squared modulus J2 of the angular momentum,
when in a definite state, can only take values j( j +1) with j integer or semi-integer
(in h̄ = h

2π units, where h is the usual Planck constant). Then there is a Hilbert
space decomposition of the physical system in two orthogonal closed subspaces,
one with integer-valued j, the other with semi-integer j. The superselection rule
of the angular momentum dictates that vectors representing states are not linear
combinations over both subspaces. It is important to remark that a pure state can
have an undefined angular momentum, since the state/associated vector is a linear
combination of pure states/vectors with distinct angular momentum; by superselec-
tion, however, these values must be either all integer or all semi-integer. We w ill
return to this point in Chapter 12.3.2.

In presence of superselection rules associated to the coherent decomposition of
H into:

H =
⊕

k∈K

Hk , (7.28)

we can define spaces of states S(Hk) and pure states Sp(Hk) of each sector. These
can be identified with subsets in S(H) and Sp(H) respectively, by the following
obvious argument: if M is a closed subspace in the Hilbert space H, A ∈ B(M) is
identified with an operator of B(H) simply by extending it as the null operator on
M⊥. If A is positive and of trace class, the extension is positive, trace class, and the
trace preserved. If A is of the form (ψ | )ψ , ψ ∈ M, ||ψ ||= 1, the extension is alike.
In the case considered we identify every S(Hk) and Sp(Hk) with a subset in S(H)
andSp(H) respectively, extending each state ρ , nonpure or pure, to the zero operator
on H⊥

k . Thereby S(Hk)∩S(H j) = ∅ and Sp(Hk)∩Sp(H j) = ∅ if k � j. Physically-

13 If the charge is taken to be continuous and Hq is the subspace where it equals q ∈ R, i.e.
the eigenspace relative to eigenvalue q for a self-adjoint operator Q, the Hilbert space (non-
separable) is still a direct sum⊕q∈RHq.R coincides then with the point spectrum of Q. Some
authors, instead, prefer to think the Hilbert space as a direct integral, thereby preserving its
separability, and in this case bR = σc(Q).
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admissible pure states for the physical system described on H are precisely those in:

Sp(H)adm :=
⊔

k∈K

Sp(Hk) . (7.29)

It is reasonable to assume that physically-admissible nonpure states for the physical
system described on H are then those that can be built as mixtures of admissible pure
states. Hence physically-admissible mixed states will be finite convex combinations
of elements of ⊔

k∈K

S(Hk) . (7.30)

One could allow for infinite convex combinations, for some operator topology, but
we will not do this now.

Remark 7.36. (1) Asking for admissible pure states to be elements of (7.29), and
mixed states to belong in the convex hull of (7.30), implies immediately that each
admissible state ρ (pure or nonpure) satisfies the constraints:

ρPk = Pkρ for any k ∈ K (7.31)

where Pk is the orthogonal projector on the coherent sector Hk. Actually, the converse
is true too, provided Ran(ρ) ⊂ ⊕k∈FHk, for some F ⊂ K finite, or ρ ∈ Sp(H). For
mixed ρ , in fact, since ∑k∈K Pk = I (in the strong topology), and PkPh = 0 if h � k,
asking (7.31) forces:

ρ = s-∑
k∈K

Pkρ

(

s-∑
h∈K

Ph

)

= s-∑
k∈K

PkρPk = ∑
k∈F

PkρPk = ∑
k∈F∗

pk
PkρPk

tr(PkρPk)
= ∑

k∈F∗
pkρk ,

where F∗ ⊂ F is the subset of k ∈ F for which pk := tr(PkρPk) � 0, so pk > 0. Note
that by construction ρk := PkρPk

tr(PkρPk)
∈S(Hk) if k ∈ F∗. Beside pk ≥ 0,

1 = trρ = tr

(

∑
k∈F

pkρk

)

= ∑
k∈F

pk trρk = ∑
k∈F

pk

as F is finite (this hypothesis is used only here). Hence if ρ ∈S(H) satisfies Ran(ρ)⊂
⊕k∈F Hk for some finite F , and (7.31) hold, then ρ =∑k∈F∗ pkρk is a convex combin-
ation of elements ρk ∈ S(Hk), as we wanted. Let now ρ = (ψ | )ψ be pure. By the
orthogonal decomposition of H in coherent spaces Hk we have:

1 = ||ψ ||2 = ∑
k∈K

||Pkψ ||2 . (7.32)

Equations (7.31) imply Pkψ = (ψ |Pkψ)ψ , and substituting above gives, using PkPk =
Pk and Pk = P∗k :

1 = ||ψ ||2 = ∑
k∈K

||Pkψ ||2 = ∑
k∈K

|(ψ |Pkψ)|21 = ∑
k∈K

|(Pkψ |Pkψ)|2 = ∑
k∈K

||Pkψ ||4 .

(7.33)
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But 0 ≤ ||Pkψ ||4 < ||Pkψ ||2 if ||Pkψ || < 1, so (7.32) and (7.33) are simultaneously
valid only if ||Pkψ ||= 0, k ∈ F \{k0} and ||Pk0ψ ||= 1. This means ρ ∈Sp(Hk0).
(2) The existence of coherent sectors Hk also implies that only certain orthogonal
projectors have physical meaning as elementary propositions on the physical sys-
tem; these are projectors Q satisfying PkQ = QPk for every k labelling a coherent
sector Hk.

Let us prove this assertion. If ψ ∈ Hk \ {0} is a pure state and we measure the
pair of mutually exclusive, compatible elementary observables Q,Q′ := I−Q, one
of them must be true. The post-measurement state, up to renormalisation, is given by
vectors Qψ or Q′ψ . The corresponding states must abide by the superselection rule,
so Qψ ∈Hr and Q′ψ ∈Hs for some r,s. If Qψ = 0, we automatically think Qψ in Hk.
But Hk �ψ = Qψ+Q′ψ ∈Hr⊕Hs. As Hk,Hr,Hs are pairwise orthogonal if k,r,s are
distinct, k = r cannot be if Qψ � 0. In conclusion Qψ ∈ Hk if ψ ∈ Hk (for ψ = 0 this
is trivial). If φ ∈ H, we can say QPkφ ∈ Hk, and so PhQPkφ = δhkQPkφ = PkQPhφ .
Using I = s-∑h Ph and the uniform continuity of Q, then PhQPkφ = PkQPhφ implies
QPk = PkQ. The results generalises straighforward to self-adjoint operators repres-
enting observables, as we will see. Abstractly, relating to Remark 7.21(2), the pres-
ence of a superselection rule compels to assume that the von Neumann algebra RS

of (bounded) observables on the system cannot be a factor, because its centre must
contain the projectors Pk. We could envisage that the quantities defining a physical
system, those “always true” (e.g., the mass), are actually associated the propositions
in the centre of RS. They are true simply because we work in a specific sector.
(3) Actually, if one accepts as principle that elementary propositions Q that are ad-
missible under a superselection rule are those that commute with orthogonal pro-
jectors Pk on coherent sectors, then the demand that vectors representing states are
only those belonging to coherent sectors Hk can be dropped. A linear combination
Ψ = ∑kψk with ψk ∈ Hk \ {0} and ||Ψ || = 1, theoretically-speaking forbidden, be-
haves, in relationship to the axioms A1, A2, as the nonpure state ρ = ∑kψk(ψk| · ),
as long as we consider only elementary propositions Q compatible with the superse-
lection rule. We leave the proof and the mathematical details to the reader. �

7.4.6 Algebraic characterisation of a state as a noncommutative
Riesz theorem

In this last part of the section we describe a characterisation of the space of states
S(H) on the complex Hilbert space H, in the simple case where superselection sec-
tors are absent. The characterisation has a certain interest for the algebraic formula-
tion of QM [Str05a] and quantum theories in general, which we will briefly see in
Chapter 14.1. The mathematical relevance resides in that it implies a noncommutat-
ive version of Riesz’s Theorem 1.58 on (finite) positive Borel measures, where the
word noncommutative refers to the measures on the lattice of projectors P(H) in the
sense of axiom A2 (preliminary form), rather than on a σ -algebra.

First observe that a positive trace-class operator T determines a linear func-
tional of the C∗-algebra of compact operators B∞(H), given by ωT : B∞(H) → C,
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ωT (A) = tr(TA). This is positive:

ωT (A∗A)≥ 0 for any A ∈B∞(H). (7.34)

In fact, tr(A∗TA) = tr(A∗T 1/2T 1/2A) = tr((T 1/2A)∗T 1/2A) ≥ 0. The last inequality
comes from expanding the trace with respect to any basis of H. Viewing ωT as linear
operator on the Banach space B∞(H) (with the norm of B(H)), we have

||ωT ||= trT . (7.35)

In fact, if A∈B∞(H) and ||A|| ≤ 1, taking the trace in a basis {ψ j} j∈J of eigenvectors
of T = T ∗ gives

|ωT (A)| ≤∑
j∈J
|p j(ψ j|Aψ j)| ≤∑

j∈J
p j||Aψ j|| ≤∑

j∈J
p j = trT .

EventuallyωT (AN)→ trT , as N →+∞, if AN :=∑0≤p j<Nψ j(ψ j| ), where ||AN || ≤ 1.
We also have AN ∈ B∞(H) because the latter’s range is finite-dimensional (see Ex-
ample 4.16(1)).

Positive, unit linear functionals ω : B∞(H) → C are called algebraic states on
the C∗-algebra B∞(H). Their set will be denoted C(B∞(H)).

Therefore every state T ∈ S(H) determines an algebraic state ωT of C(B∞(H)).
This can be accompanied by the following characterisation.

Theorem 7.37. If H is a complex Hilbert space, let C(B∞(H)) be the set of bounded,
positive and unit linear functionals ω :B∞(H)→ C (ω(A∗A)≥ 0 if A ∈B∞(H)).
Then the mapping S(H) � T 	→ ωT ∈ C(B∞(H)), with ωT (A) = tr(TA), A ∈B∞(H),
is well defined and bijective. Equivalently: states of S(H) are in one-to-one corres-
pondence with algebraic states of C(B∞(H)).

Proof. The map T 	→ωT is well defined by the above arguments, but also one-to-one.
If ωT =ωT ′ in fact, tr((T −T ′)A) = 0 for any compact operator A. Decomposing the
self-adjoint, trace-class operator T −T ′ over an eigenvector basis {φi}i∈I and choos-
ing A = φi(φi| ) for any i ∈ I, we conclude the eigenvalues of T −T ′ must all vanish,
so T −T ′ = 0 by (6) in Theorem 4.17(b).

Let us prove the surjectivity of T 	→ ωT . Considering ω ∈ C(B∞(H)) we try to
find T ∈ S(H) such that ω = ωT . If ψ ,φ ∈ H, define Aψ,φ := ψ(φ | ) ∈ B∞(H). By
definition of norm ||Aψ,φ ||= ||ψ || ||φ ||. The coefficients ω(φ ,ψ) := ω(Aψ,φ ) define
a function from H×H to C, linear in the right argument and antilinear in the left one.
Further, |ω(φ ,ψ)| = |ω(Aψ,φ )| ≤ 1||Aψ,φ || = ||ψ || ||φ ||. Then Riesz’s representa-
tion Theorem 3.16 for Hilbert spaces implies there is a linear T ′ : H → H such that
ω(Aψ,φ ) = (T ′ψ |φ), for any ψ ,φ ∈ H. As ||T ′ψ ||2 = |(T ′ψ |T ′ψ)|= |ω(Aψ,T ′ψ)| ≤
||ψ || ||T ′ψ ||, we conclude ||T ′|| ≤ 1. Setting T := T ′∗ we have a T ∈ B(H) with
||T || ≤ 1 and ω(Aψ,φ ) = (ψ |Tφ) for any ψ ,φ ∈ H. As ω is positive, taking ψ = φ
implies T ≥ 0, so in particular T = T ∗ and |T | = T . Now take a basis N of H. If
F ⊂ N is finite define LF := ∑z∈F z(z| ). By construction LF ∈B∞(H) and ||LF || ≤ 1
(orthogonal projector). Therefore

0≤ ∑
z∈F

(z||T |z) = ∑
z∈F

(z|T z) = ∑
z∈F
ω(Az,z) = ω (LF) = |ω (LF) | ≤ ||ω || .
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But F is arbitrary, so ∑z∈N(z||T |z) ≤ 1 < +∞, and by definition of trace class
T ∈B1(H). Splitting T over an eigenvector basis, T = ∑i∈I piψi(ψi| ) (by construc-
tion pi ≥ 0, trT = ∑i pi ≤ ||ω ||), and taking the trace, by linearity we have

|ω(A)|= |tr(TA)| ≤∑
i∈I

pi|(ψi|Aψi)| ≤ (trT )||A||

if A ∈B∞(H) is a finite combination of Aψ,φ . Since the above A are dense in B∞(H)
in the uniform topology (Theorem 4.21), by continuity and linearity ω(A) = tr(TA)
and |ω(A)| ≤ trT ||A|| for any A ∈B∞(H). The latter tells ||ω || ≤ tr(T ); but since we
know trT ≤ ||ω ||, then trT = ||ω ||. In particular trT = 1, for ||ω ||= 1 by assumption.
Hence we have ω = ωT for some T ∈S(H), rendering the map onto. �

Remarks 7.38. One fact becomes evident from the proof: among the theorem’s as-
sumptions we may drop the hypothesis that ω has unit norm, and demand, more
weakly, that the norm be finite. Then the positive operator Tω ∈ B1(H) correspond-
ing to ω will satisfy tr(Tω) = ||ω ||. �

We wish to interpret the result in the light of the theory of the probability meas-
ure ρ on the lattice of projectors P(H), in the sense of axiom A2 (preliminary form).
To this end recall Riesz’s theorem on positive Borel measures 1.58 on the locally
compact Hausdorff space X. Consider, slightly modifying the theorem’s hypotheses,
positive linear functionals Λ : C0(X) → C, where C0(X) is the space of continuous
complex functions on X that vanish at infinity with norm || ||∞ (Example 2.26(4)).

Proposition 7.39. If X is locally compact, Hausdorff andΛ : C0(X)→C is a bounded
positive linear functional (with norm || ||∞ on the domain), there exists a unique pos-
itive and σ -additive regular measure μΛ on B(X), such that Λ( f ) =

∫
X f dμΛ for

any f ∈C0(X). Moreover μΛ is finite and ||Λ ||= μΛ (X).

Proof. The restrictionΛ�Cc(X) gives a positive functional as in Riesz’s Theorem 1.58.
Applying the theorem produces a measure μΛ : B(X)→ [0,+∞] mapping compact
sets to a finite measure, uniquely determined by Λ( f ) =

∫
X f dμΛ , f ∈Cc(X), if we

impose μΛ is regular. So we assume regularity from now on. If Λ is bounded, easily
μΛ (X) = ||Λ ||, so μΛ (X) is finite. (For any f ∈C0(X) we have |Λ( f )| ≤ ∫X | f |dμλ ≤
|| f ||∞μΛ (X), hence ||Λ || ≤ ||μΛ (X)||. For any compact set K ⊂ X, by local compact-
ness and Hausdorff’s property, Urysohn’s lemma (Theorem 1.24) gives fK ∈Cc(X)
such that f : X → [0,1] with fK(K) = {1}, so μΛ (K) ≤ ∫X fKdμΛ ≤ ||Λ |||| fK ||∞ =
||Λ || and then μΛ (X) ≤ ||Λ ||, because μΛ (X) = sup{μΛ (K) |K ⊂ X ,compact} by
inner regularity of μΛ .) μΛ finite implies any map of C0(X) can be integrated. Then
the above constraint on the integral in dμΛ , fixing the regular measure μΛ on B(X),
becomes Λ( f ) =

∫
X f dμΛ for any f ∈C0(X). �

Knowing that any positive operator T ∈ B1(H) gives a generalised measure
on P(H) (a probability measure if trT = 1) in the sense of Proposition 7.23, The-
orem 7.37 implies a noncommutative version of Riesz’s representation theorem for
finite measures, stated in Proposition 7.39. This comes about as follows: think the
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lattice of orthogonal projectors P(H) on the Hilbert space H as the noncommut-
ative variant of the Borel σ -algebra B(X), and the C∗-algebra of compact op-
erators C(B∞(H)) as the noncommutative correspondent to the commutative C∗-
algebra C0(X). (Both algebras are without unit if H is infinite-dimensional and X
non-compact, respectively.) In that case the bounded positive functional Λ on C0(X)
becomes the bounded positive functionalω on C(B∞(H)). In either case the existence
of positive functionals ω , Λ implies the existence of corresponding finite measures
on P(H), B(X) respectively. The latter is what we denoted μΛ above, whilst the
former is simply defined as ρω(P) := tr(TωP) for any P ∈P(H), where Tω ∈B1(H),
ω correspond as in Theorem 7.37 (where Tω is called T and ω is ωT ). The requests
fixing μΛ (assumed regular) and ρω are

Λ( f ) =
∫

X
f (x)dμ(x) ∀ f ∈C0(X) and ω(A) = tr(TωA) ∀A ∈B∞(H)

respectively. The identity ||Λ ||= μΛ (X) now is ||ω ||= trTω .

Remarks 7.40. This discussion serves to explain that the generalisation of the integ-
ral of maps in C0(X) with respect to μΛ should be viewed, in the noncommutative
setting, as the trace tr(Tω ·) acting on C(B∞(H)). Hence if Tρ ∈B1(H) is the operator
associated (by Remark 7.26(3) only) to a probability measure ρ :P(H)→ [0,1] (ful-
filling (1) and (2) of axiom A2 (preliminary form)) by Gleason’s theorem, we will
use the writing ∫

P(H)
Adρ := tr(TρA) . (7.36)

�

Now we can prove the noncommutative version of Proposition 7.39.

Theorem 7.41. If H is a complex Hilbert space, separable or of finite dimension≥ 3,
and ω : C(B∞(H))→ C is a bounded positive linear functional with unit norm, there
exists a unique probability measure ρω : P(H)→ [0,1] (satisfying (1), (2) in axiom
A2 (preliminary form)), such that:

ω(A) =
∫

P(H)
Adρω ∀A ∈B∞(H) .

Suppose further ||ω ||< +∞, but not necessarily one. Then ρ :P(H)→ [0, ||ω ||] and
ρω(I) = ||ω || instead of ρ(I) = 1.

Proof. Define ρω(P) := tr(TωP) for any P ∈ P(H), where ω and Tω ∈ B1(H) cor-
respond bijectively as in Theorem 7.37. Thenω(A) = tr(TωA) =:

∫
P(H) Adρω for any

A ∈ B∞(H), because of (7.36) and Tω is by construction associated to the measure
ρω by Gleason’s theorem. (Proposition 7.23 ensures ρω fulfills (1), (2) in axiom A2
(preliminary form)). Let us prove uniqueness. By Gleason’s Theorem 7.24 and Re-
mark 7.26(3), every probability measure ρ onP(H) satisfies ρ(P) = tr(TρP) for any
P ∈P(H) and a unique positive operator Tρ of trace class with unit trace. If ω(A) =
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∫
P(H) Adρ := tr(TρA) for any compact operator A, since we saw ω(A) = tr(TωA),

choosing A = ψ(ψ | ) will give (ψ |(Tω −Tρ)ψ) = 0 for any ψ ∈ H. Hence Tρ = Tω ,
and consequently ρ(P) = tr(TρP) = tr(TωP) = ρω(P) for any P ∈ P(H). All this
extends to the case 0 < ||ω || � 1, by using the functional ω ′ := ||ω ||−1ω . If ||ω ||= 0
then ω = 0. Therefore a possible measure ρ compatible with 0 = ω(A) = Tr(TρA)
for any A ∈B∞(H) is the null measure. It is unique by the same argument. �

7.5 Observables as projector-valued measures on R

Now we want to define observables by projector-valued measures (PVM). This no-
tion lies at the heart of the mathematical formulation of standard QM. In ensuing
chapters the notion will be generalised, and made more precise mathematically; the
culmination will be the proof of the spectral decomposition theorem for unbounded
self-adjoint operators, whose statement brings PVMs to the fore.

7.5.1 Axiom A4: the notion of observable

In Quantum Mechanics, physical quantities testable on physical systems and whose
behaviour is described by QM1 and QM2, are called observables. Now we shall
discuss them.

As seen in Chapter 7.2.4, it is reasonable to label physical quantities’ measure-
ment readings by Borel sets of R. From the physical point of view it is natural to

assume that if the orthogonal projectors P(A)
E associated to the observable A com-

mute with each other then E ∈ B(R) (the Borel σ -algebra of R), since we expect
propositions like

P(A)
E :=

The value of A on the state of the system belongs to the Borel set E ⊂ R ,

to be all compatible for E ∈B(R). If it were not so we would not have an observable,
but distinct incompatible quantities. Since the outcome belongs to both E and E ′ if

and only if it belongs to E ∩E ′, we take P(A)
E ∧P(A)

E ′ = P(A)
E∩E ′ . Assume also P(A)

R
= I,

because the result certainly belongs to R, so P(A)
R

is a tautology, independent of the
state on which the measurement is done. Eventually, for physically self-evident reas-
ons and because of the logical meaning of ∨, it is reasonable to suppose

∨n∈NP(A)
En

= P(A)
∪n∈NEn

for any finite or countable collection {En}n∈N of Borel sets of R. Although one could
also take sets of arbitrary cardinality, we will stop at countable, as we did in the clas-
sical case.

Definition 7.42. If H is a Hilbert space, a function A mapping E ∈ B(R) to an or-

thogonal projector P(A)
E ∈P(H) is called an observable if:
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(a) P(A)
E P(A)

E ′ = P(A)
E ′ P(A)

E for any E,E ′ ∈B(R).

(b) P(A)
E ∧P(A)

E ′ = P(A)
E∩E ′ for any E,E ′ ⊂B(R).

(c) P(A)
R

= I.
(d) For any family {En}n∈N ⊂B(R):

∨n∈NP(A)
En

= P(A)
∪n∈NEn

.

Remark 7.43. (1) It is straightforward to see that {P(A)
E }E∈B(R) is a Boolean σ -

algebra for the usual partial order relation ≤ of projectors. In general {P(A)
E }E∈B(R)

is not maximal commutative.
(2) Bearing in mind Definition 7.11 it is easy to prove any observable is nothing but
a homomorphism of Boolean σ -algebras, mapping the Borel σ -algebra B(R) to the

Boolean σ -algebra of projectors {P(A)
E }E⊂B(R). It can be proved ([Jau73, Chapter 6-

5]) that if H is a separable Hilbert space, any subset of projectors in P(H) forming

a Boolean σ -algebra is automatically an observable, i.e. of the form {P(A)
E }E∈B(R),

and satisfies Definition 7.42. �

Observables may be redefined, in an equivalent way but mathematically simpler,
as the next proposition shows.

Proposition 7.44. Let H be a Hilbert space. A map P : B(R)→ B(H) is an observ-
able if and only if the following hold.

(a) P(B)≥ 0 for any B ∈B(R).
(b) P(B)P(B′) = P(B∩B′) for any B,B′ ∈B(R).
(c) P(R) = I.
(d) for any family {Bn}n∈N ⊂B(R) with Bn∩Bm = ∅ if n � m:

s-
+∞

∑
n=0

P(Bn) = P(∪n∈NBn) .

Proof. If P : B(R) → B(H) is an observable properties (a), (b), (c), (d) in Propos-
ition 7.44 are trivially true. So we have to prove any P : B(R) → B(H) satisfying
them is an observable.

Let us put all operators P(B) with B ∈B(R) in a maximal set of commuting pro-
jectors P0(H) (which exists by Zorn’s lemma), and from now on we shall work in it
without loss of generality.
(a) Implies every P(B) is self-adjoint by Proposition 3.54(f), so (b) implies
P(B)P(B) = P(B ∩ B) = P(B), whence every P(B) is an orthogonal projector.
Moreover (b) implies, if P(B)P(B′) = P(B ∩ B′) = P(B′ ∩ B) = P(B′)P(B), that
all projectors commute with one another. Using the first identity in (i) of The-
orem 7.18(b), condition (b) above reads P(B)∧P(B′) = P(B∩B′). To finish we need
to show property (d) of Definition 7.42. Consider countably many sets {En}n∈N ⊂
B(R), not disjoint in general. We want to find ∨n∈NP(En) and prove that

∨n∈NP(En) = P(∪n∈NEn) .
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To do so define a collection {Bn}n∈N of pairwise disjoint Borel sets: B0 := E0 and

Bn = En \ (E1∪·· ·∪En−1)

for n > 0. Then

∪p
n=0En = ∪p

n=0Bn for any p ∈ N∪{+∞}.

From this, using I−P(B) = P(R \B) and recursively the second identity in (i) of
Theorem 7.18(b), we find

∨p
n=0P(En) = ∨p

n=0P(Bn) for any n ∈ N.

By the fact that part (d) of the present proposition implies

∨p
n=0P(Bn) =

p

∑
n=0

P(Bn)

for finitely many disjoint Bn (this collection may be made countable by adding infin-
itely many empty sets), we have

∨p
n=0P(En) =

p

∑
n=0

P(Bn) . (7.37)

To conclude we take the strong limit as p → +∞ in (7.37). This exists by The-
orem 7.18(b), and we also have

∨n∈NP(En) = s- lim
p→+∞

p

∑
n=0

P(Bn) = P(∪n∈NBn) = P(∪n∈NEn) . �

Remark 7.45. (1) Notice that (c) and (d) alone imply I = P(I∪∅) = I +P(∅), so

P(∅) = 0 .

(2) If B ∈ B(R) then R \B ∈ B(R) and R = B∪ (R \B). By (d), taking B0 = B,
B1 = R\B and all remaining Bk = ∅, we obtain I = P(B)+P(R\B). Therefore

¬P(B) = P(R\B) . �

The above proposition allows to identify observables bijectively with well-known
objects in mathematics, namely projector-valued measures on R. The latter will be
generalised in the next chapter.

Definition 7.46. A map P : B(R) → B(H), H Hilbert space, satisfying (a), (b), (c)
and (d) in Proposition 7.44 is called projector-valued measure (PVM) on R or
spectral measure on R.



7.5 Observables as projector-valued measures on R 299

We are in the position to disclose the fourth axiom of the general mathematical
formulation of Quantum Mechanics.

A4. Every observable A on the quantum system S is described by a projector-valued
measure P(A) on R in the Hilbert space HS of the system, in such a way that if E is a
Borel set in R, the projector P(A)(E) corresponds to the proposition “the reading of
a measurement of A falls in the Borel set E”.

Remark 7.47. (1) Let us suppose that, owing to a superselection rule, the Hilbert
space splits into coherent sectors HS = ⊕k∈KHSk. Call Pk the orthogonal projector

on HSk. Recalling Remark 7.36(2), every projector P(A)
E of an observable A satisfies

PkP(A)
E = P(A)

E Pk for any k ∈ K and any Borel set E ⊂ R.
(2) The observable B is a function of the observable A, B = f (A), when there is
a measurable map f : R→ R such that P(B)(E) = P(A)( f−1(E)) for any Borel set
E ⊂R. This is totally natural: if “B = f (A)” then to measure B we can measure A and
use f on the reading. In this sense the outcome of measuring B belongs to E iff the out-
come of A belongs in f−1(E). In particular, the elementary propositions (orthogonal

projectors) P(B)
E and P(A)

F are always compatible, and {P(B)
E }E∈B(R) ⊂ {P(A)

F }F∈B(R).
It is possible to prove [Jau73] that for given observables A,B in a separable Hilbert
space, the previous inclusion is equivalent to the existence of a measurable map f
such that B = f (A). More important is a result of von Neumann and Varadarajan
[Jau73, Chapter 6-7] (valid for any orthocomplemented, σ -complete, separable lat-
tice, not necessarily the lattice of projectors on a Hilbert space):

Theorem 7.48. If {A j} j∈J is a family of pairwise-compatible observables (that is,
P( j)(E)P(i)(F) = P(i)(F)P( j)(E) if P( j)(E) ∈ A j, P(i)(F) ∈ Ai) on a separable Hil-
bert space, there exists an observable A and a corresponding family of measurable
maps f j : R→ R, j ∈ J such that A j = f j(A) for any j ∈ J. �

7.5.2 Self-adjoint operators associated to observables:
physical motivation and basic examples

This section contains the idea underlying the correspondence between self-adjoint
operators and observables. We will, in other words, provide the physical motivation
for the spectral theorems of Chapter 8, 9.

For classical systems, at time t on phase space F , we know that observables cor-
respond to what have been called physical quantities, i.e. measurable maps f : F →
R. To any physical quantity f we can associate the collection of all propositions/Borel
sets of the form:

P( f )
E :=

The value of f on the system’s state belongs to the Borel set E ⊂ R ,

or, set-theoretically,

P( f )
E = “ f−1(E)⊂Ft”
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Propositions 7.14 and 7.15 explained that {P( f )
E }E∈B(R) is a (Boolean) σ -algebra

and the map B(R) � E 	→ P( f )
E ∈B(F ) a Boolean σ -algebra homomorphism. The

picture is the same in the quantum case when we look at the class {P(A)
E }E∈B(R) of

propositions/projectors associated to an observable A: they form a Boolean σ -algebra

and B(R) � E 	→ P(A)
E ∈ P(H) a homomorphism of Boolean σ -algebras. If we re-

strict to comparing {P( f )
E }E∈B(R) and {P(A)

E }E∈B(R) the situation is analogous. In the
classical case, though, there exists a function f consenting to build the collection

{P( f )
E }E∈B(R): this map retains, alone, all possible information about the proposi-

tions P( f )
E . This is no surprise since we defined propositions/sets starting from f ! In

the quantum case, when an observable {P(A)
E }E∈B(R) is given, there is nothing, at least

at present, that may correspond to a function f “generating” the PVM {P(A)
E }E∈B(R).

Is there a quantum analogue to f ?
In trying to aswer let us dig deeper into the relationship between f and the associ-

ated family {P( f )
E }E∈B(R). We know how to get the latter out of the former, but now

we are interested in recovering the map from the family, because in the quantum

formulation one starts from the analogue of {P( f )
E }E∈B(R). As a matter of fact the σ -

algebra {P( f )
E }E∈B(R) allows to reconstruct f by means of a certain limiting process

reminiscent of integration.
To explain this point we need a technical result. Recall that if (X,Σ) is a measure

space, a Σ -measurable map s : X→ C is simple if its range is finite.

Proposition 7.49. Let (X,Σ) be a measure space, S(X) the space of complex-valued
simple functions with respect to Σ , M(X) the space of C-valued, Σ -measurable maps,
and Mb(X)⊂M(X) the subspace of bounded maps. Then:

(a) S(X) is dense in M(X) pointwise.
(b) S(X) is dense in Mb(X) in norm || ||∞.
(c) If f ∈ M(X) ranges on non-negative reals, there is a sequence {sn}n∈N ⊂ S(X)
with:

0≤ s0 ≤ s1 ≤ ·· · ≤ sn(x)→ f (x) as n→+∞, for any x ∈ X,

and provided f ∈Mb(X), convergence is in norm || ||∞ as well.

Proof. It is enough to prove the claim for real-valued maps, for the complex case
is a consequence of decomposing complex functions into real and imaginary parts.
Define f+(x) := sup{0, f (x)} and f−(x) := inf{0, f (x)}, x ∈ X; then f = f+ + f−,
where f+ ≥ 0, f− ≤ 0 are known to be measurable since f is. Now we construct a
sequence of simple maps converging to f+ (whence part (c) is proven, as f = f+ if
f ≥ 0). For given 0 < n ∈N let us partition the real semi-axis [0,+∞) into Borel sets
En,i, En where:

En,i :=
[

i−1
2n ,

i
2n

)

, En := [n,+∞) ,
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1≤ i≤ n2n. For each n let

P( f )
n,i := f−1 (En,i) , P( f )

n := f−1(En)

be subsets in Σ . Then define s0(x) := 0 if x ∈ X, and

sn :=
n2n

∑
i=1

i−1
2n χ

P( f )
n,i

+nχ
P( f )

n
(7.38)

for any n∈N\{0}. By construction 0≤ sn ≤ sn+1 ≤ f , n = 1,2, . . .. Furthermore, for
any given x we have | f+(x)−sn(x)| ≤ 1/2n definitely. Evidently, then, sn → f+ point-
wise if n→+∞. The estimate | f+(x)−sn(x)| ≤ 1/2n is uniform in x if f+ is bounded
(take n > sup f+), and then sn → f+ also uniformly. Similarly, by decomposing the

negative semi-axis we can construct another simple sequence {s(−)
n ≤ 0} pointwise

tending to f−. Overall the simple sequence s(−)
n + sn converges to f pointwise, and

uniformly if f is additionally bounded. �

Remarks 7.50. If f is non-negative, part (a) still holds even when f : X → [0,+∞],
by taking simple maps that can equal +∞. �

It is thus clear that a given classical quantity f : F → R (measurable) can
be recovered using a sequence of maps that are constant non-zero only on sets in

{P( f )
E }E∈B(R). Without loss of generality we focus on the situation f : F → R+ and

further suppose f bounded; this entitles us to forget, in (7.38) and for n large enough:
(i) all intervals En and (ii) the En,i with left endpoint ((i− 1)2−n) bigger, say, than
(sup f )+1/2n, for the pre-image of these sets under f is empty. If we do so the sum
in (7.38) can be truncated:

f = lim
n→+∞

2+2n sup f

∑
i=1

i−1
2n χ

P( f )
n,i

. (7.39)

This limit may be understood as an integration of sorts with respect to a “measure
valued on characteristic functions”:

ν( f ) : B(R) � E 	→ χ f−1(E) ∈ S(X),

associating to a Borel subset E ⊂ R (in the range space of the map) a characteristic
function χ f−1(E) : X → C. Observe, in fact, that i−1

2n is approximately the value f

assumes at P( f )
n,i – and the estimate becomes more accurate as n increases – and the

right-hand side in (7.39) is just a “Cauchy sum”. Equation (7.39) might be formally
written as:

f =
∫

R

λdν( f )(λ ) . (7.40)

But as we are concerned with the quantum setting, we will not push the analogy fur-
ther, though doing so would give a rigorous meaning to the above integral. In such
case the similar formula to (7.40) is:

A =
∫

R

λdP(A)(λ )
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where the characteristic functions χ f−1(E) are replaced by the orthogonal projectors

P(A)
E of the observable A. This relation defines a self-adjoint operator A associated

to an observable, that was called A and that corresponds to the classical quantity f .

From such an operator the observable {P(A)
E }E∈B(R) can be recovered, a posteriori,

in a similar manner to what we do to get {P( f )
E }E∈B(R) out of f . We will see all this in

full generality, and rigorously, in the sequel. At this juncture we describe an element-
ary example of observable and show how to associate to it a self-adjoint operator.

Examples 7.51. (1) Consider a quantum system, described on a Hilbert space H, and
take a physical quantity ranging, from the point of view of physics, over a discrete
and finite set of distinct values {an}n=1,··· ,N ⊂ R. We first show how to find an ob-

servable A given by a family of orthogonal projectors P(A)
E , E ∈B(R). We posit there

are non-null orthogonal projectors labelled by an, {Pan}n=1,··· ,N , such that Pan Pam = 0
if n � m (i.e., taking adjoints, PamPan = 0 if n � m), and moreover:

N

∑
n=1

Pan = I . (7.41)

The meaning of Pan , clearly, is:

The value of A, read by a measurement on the system, is precisely an.

Obviously the equations Pan Pam = PamPan = 0, i.e. Pan ∧Pam = 0 for n �m correspond
to two physical requirements: (a) propositions Pan , Pam are physically compatible, but
(b) the observable’s measurement cannot produce distinct values an and am simultan-
eously (the proposition associated to the null projector is contradictory). Demanding
∑N

n=1 Pan = I, i.e. Pa1 ∨ ·· · ∨Pan = I, amounts to asking that at least one proposition
Pan is true when measuring A. The observable A : B(R)→P(H) is built as follows:
for any Borel set E ⊂ R

P(A)
E := ∑

an∈E
Pan , with P(A)

∅ := 0 . (7.42)

Properties (a), (b), (c) and (d) in Proposition 7.44 are immediate.

(2) Referring to example (1), to the observable A we can associate an operator still
called A. Here is how:

A :=
N

∑
n=0

anPan . (7.43)

A is bounded and self-adjoint by construction, being a real linear combination of self-
adjoint operators. It has another interesting property: the eigenvalue set σp(A) of A
coincides with the values the observable A can assume.

The proof is direct: if 0 � u ∈ Pan(H) then Pamu = PamPan u = u if n = m or 0 if
n � m. Inserting this in (7.43) gives Au = anu, so an ∈ σp(A). Conversely, if u � 0 is
an eigenvector of A with eigenvalue λ (real since A = A∗), then (7.43) implies

λu =
N

∑
n=0

anPan u .
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On the other hand, since ∑an Pan = I and modifying the left-hand side of the above
identity, we obtain

N

∑
n=0

λPan u =
N

∑
n=0

anPan u ,

hence
N

∑
n=0

(λ −an)Pan u = 0 . (7.44)

Now apply Pm and recall PmPn = δm,nPn, resulting in N identities:

(λ −am)Pam u = 0 .

If all of them were solved by Pmu = 0 for any m, we would obtain a contradiction,
because

0 � u = Iu =
N

∑
n=0

Pan u .

Therefore there must be some n in (7.44) for which λ = an. This can happen for one
value n only, since by assumption the an are distinct. Overall the eigenvalue λ of A
must be one an. So we proved that the eigenvalue set of A coincides with the values A
can assume. The self-adjoint operator A here plays a role similar to that of f relatively

to the classical quantity {P( f )
E }E∈T (R).

(3) To conclude suppose A is the operator of an observable in the sense of (7.43),
and g : R→ R is a function. We can define a new observable, thought as if it were
function of the previous one, determined entirely by the self-adjoint operator

C := g(A) :=
N

∑
n=0

g(an)Pan . (7.45)

By construction the possible values of the new observable are the images g(an), that
in turn determine the eigenvalues of C. �

In the next chapters we will develop a procedure for associating, uniquely, to
each observable A (i.e. a projector-valued measure on R) a self-adjoint operator (typ-
ically unbounded) denoted by the same letter A, thereby generalising the previous
examples. The values the observable can take will be elements in the spectrum σ(A),
which we will explain is normally larger than the set σp(A) of eigenvalues. The major
tool will be integration with respect to a projector-valued measure, corresponding to
a generalisation of

∑
λ∈σp(A)

h(λ )Pλ =:
∫

σ(A)
h(λ )dP(A)(λ )

to the case when the values of λ can be infinite (cf. (7.41) for h : λ → 1 and (7.43)
for h : λ → 1). In particular

A =
∫

σ(A)
λ dP(A)(λ ) , I =

∫

σ(A)
1 dP(A)(λ ),

whose interpretation befits the theory of spectral measures.
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7.5.3 Probability measures associated to state/observable couples

Here is yet another remarkable property about PVMs on R, with important con-
sequences in physics.

Proposition 7.52. Let H be a Hilbert space and A = {PE}E∈B(R) a projector-valued

measure on R. If ρ ∈S(H) is a state, the map μ(A)
ρ : E 	→ tr(ρPE) is a Borel probab-

ility measure on R.

Proof. The proof is elementary. It suffices to show μ(A)
ρ is positive, σ -additive and

μ(A)
ρ (R) = 1. R is Hausdorff and locally compact, so every positive σ -additive meas-

ure on the Borel algebra is a Borel measure. Decompose ρ in the usual way with an
eigenvector basis:

ρ = ∑
j∈N

p j(ψ j| )ψ j ,

where the p j are non-negative and their sum is 1. Then μ(A)
ρ (E) = tr(ρPE) ≥ 0 be-

cause orthogonal projectors are positive, Pj ≥ 0 and tr(ρPE) = ∑ j∈N p j(ψ j|PEψ j).

Moreover μ(A)
ρ (R) = 1, since PR = I implies

∑
j∈N

p j(ψ j|Iψ j) = trρ = 1 .

Let us show σ -additivity. If {En}n∈N are pairwise disjoint Borel sets and E :=
∪n∈NEn, by Proposition 7.44(d):

+∞> tr(ρPE) =
+∞

∑
j=0

p j

(

ψ j

∣
∣
∣
∣
∣

+∞

∑
i=0

PEiψ j

)

=
+∞

∑
j=0

+∞

∑
i=0

p j(ψ j|PEiψ j) .

Since p j ≥ 0 and (ψ j|PEiψ j)≥ 0, Fubini’s theorem allows to swap the series:

tr(ρPE) =
+∞

∑
i=0

+∞

∑
j=0

p j(ψ j|PEiψ j) =
+∞

∑
i=0

tr(ρPEi) .

That is to say, if {En}n∈N are pairwise disjoint Borel sets then

μ(A)
ρ (∪n∈NEn) =

+∞

∑
n=0

μ(A)
ρ (En) ,

ending the proof. �

Examples 7.53. (1) The observable A of examples (1) and (2) in 7.51 assumes a fi-
nite number N of discrete values an. Let A (7.43) be the self-adjoint operator of the
observable. Fix a state ρ ∈S(H) and consider its probability measure relative to the

observable {P(A)
E }E∈B(R). By construction, if E ∈B(R):

μ(A)
ρ (E) := tr(ρP(A)

E ) = ∑
an∈E

tr(ρPan) =∑
an

pnδan(E)
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with
pn := tr(ρPan) .

Hence
μ(A)
ρ =∑

an

pnδan , (7.46)

where δan are Dirac measures centred at an: δa(E) = 1 if a ∈ E, δa(E) = 0 if a � E.
Note 0≤ pn ≤ 1 and ∑n pn = 1 by construction. Thus the probability measure asso-
ciated to the state ρ and relative to A is a convex combination of Dirac measures.
(2) The mean value of A on state ρ , 〈A〉ρ , and its standard deviation ΔA2

ρ on ρ , can
be written succinctly using the associated operator A of (7.43). By definition of mean
value

〈A〉ρ =
∫

R

a dμ(A)
ρ (a) .

On the other hand, by (7.46) we have
∫

R

a dμ(A)
ρ (a) =∑

n
pnan =∑

n
antr(ρPan) .

Using (7.43) and the linearity of the trace, we conclude

〈A〉ρ = tr(Aρ) . (7.47)

In case ρ is pure, i.e. ρ = ψ(ψ |·), ||ψ ||= 1, (7.47) implies

〈A〉ψ = (ψ |Aψ) (7.48)

if 〈A〉ψ indicates the mean value of A on the state of the vector ψ . By definition the
deviation equals

ΔA2
ρ =
∫

R

a2 dμ(A)
ρ (a)−〈A〉2ρ .

Proceeding as before,
∫

R

a2 dμ(A)
ρ (a) =∑

n
pna2

n =∑
n

a2
ntr(ρPan) = tr

(

ρ∑
n

a2
nPan

)

.

Now observe

A2 =∑
n

anPan∑
m

amPam =∑
n,m

anamPan Pam =∑
n

a2
nPan ,

where we used Pan Pam = δn,mPn. Therefore

ΔA2
ρ = tr
(
ρA2)− (tr (ρA))2 . (7.49)

If ρ is a pure state, i.e. ρ = ψ(ψ |·), ||ψ ||= 1, we have, from (7.49),

ΔA2
ψ =
(
ψ |A2ψ
)− (ψ |Aψ)2 =

(
ψ |(A2−〈A〉2ψ

)
ψ
)

(7.50)

if ΔA2
ψ is the standard deviation of A on the state determined by the vector ψ . �

The formulas in the above examples about mean values and standard deviations
of observables in given states, are actually valid more generally (with suitable tech-
nical assumptions). This will be proved in Proposition 11.8, after showing in full
generality the procedure for associating self-adjoint operators to observables.
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Exercises

7.1. Prove that in a Boolean algebra X, for any a ∈ X there exists a unique element,
written ¬a, that satisfies properties (i), (ii) in Definition 7.8(c).

7.2. Keeping in mind, in particular, condition (iv) in the definition of orthocomple-
mentation, prove that every orthocomplemented lattice X satisfies De Morgan’s laws
(7.5).

7.3. Show that an orthocomplemented lattice is σ -complete iff every countable set
{an}n∈N ⊂ X admits greatest lower bound.

7.4. Prove Propositions 7.13 and 7.14.

7.5. Prove Theorem 7.20.

Solution. Q(PQ)n = (QPQ)n = (QP)nQ. The sequence An = (QPQ)n ∈ B(H) sat-
isfies An ≥ An+1 ≥ 0: ||√QPQ||2 = ||QPQ|| ≤ ||Q||2||P|| ≤ 1 and 0 ≤ (x|An+1x) =
||√QPQ(QPQ)n/2x||2 ≤ ||√QPQ||2||(QPQ)n/2x||2 = ||√QPQ||2(x|Anx). By Propos-
ition 3.65, s- limn→+∞(QPQ)n = R ∈ B(H). Immediately, RR = R and (Rx|y) =
limn(x|(Q(PQ)n)∗y) = limn(x|(QP)nQy) = (x|Ry), so R = R∗. By construction PR =
s- limn PQ(PQ)n = R. Therefore (PQ)n → R ∈P(H) in the strong topology. Analog-
ously (QP)n → R′ ∈ P(H) in the same topology. However, (x|(PQ)ny)→ (x|Ry) is
equivalent to ((QP)nx|y) → (x|Ry), i.e. (R′x|y) = (x|Ry). Since R′ = R′∗ we have
R′ = R. Clearly RP = R = RQ, so R(H) ⊃ P(H) ∩Q(H). The orthogonal to the
latter space is generated (by De Morgan’s laws) by (¬P)(H) and (¬Q)(H). As
R(¬P) = R(¬Q) = 0, we conclude R(H) = P(H)∩Q(H).

7.6. Consider two self-adjoint operators

A =
N

∑
n=1

anPan and B =
M

∑
m=1

bmQbm

that represent, as in Examples 7.51, observables in the d-dimensional Hilbert space
H (d finite). Show A, B commute iff the orthogonal projectors Pan , Qbm commute,
irrespective of how we choose the eigenvalues an, bm.

Hint. Identify H with Cd and diagonalise simultaneously the matrices representing A
and B.

7.7. Consider to self-adjoint operators A, B representing, as in the previous exercise,
observables in a Hilbert space H of finite dimension d. Prove that if A and B com-
mute, there exists a third observable (self-adjoint operator) C such that: A = f (C) and
B = g(C) in the sense of (7.45), for some real-valued maps on R. Show that C, f and
g can be chosen in infinitely many ways.

Hint. If {ψn}n=1,...,d is an orthonormal basis of H of eigenvectors for both A and B,
define C := ∑d

k=1 kψk(ψk|·). We must find f , g such that A = ∑d
k=1 f (k)ψk(ψk|·) and

B = ∑d
k=1 g(k)ψk(ψk|·). At this point the choice for f , g should be patent.
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7.8. Prove that two mixed states ρ1, ρ2 on the Hilbert space H satisfy Ran(ρ1) ⊥
Ran(ρ2) iff there exists an orthogonal projector P ∈ P(H) with tr(ρ1P) = 1,
tr(ρ2P) = 0.

Solution. If Ran(ρ1) ⊥ Ran(ρ2), the orthogonal projector onto Ran(ρ1) solves the
problem. Conversely, if tr(ρ1P) = 1 and tr(ρ2P) = 0 for some P ∈ P(H), let
P′ := I−P. Then 1 = tr(ρ1) = tr(Pρ1P)+ tr(P′ρ1P′)+ tr(P′ρ1P)+ tr(Pρ1P′). But
tr(Pρ1P) = tr(ρ1P) = 1, tr(P′ρ1P) = tr(ρ1PP′) = 0, tr(Pρ1P′) = tr(ρ1P′P) = 0,
and therefore tr(P′ρ1P′) = 0. Since P′ρ1P′ is positive, self-adjoint and of trace class,
and the trace equals the sum of the eigenvalues, the latter all vanish. By the spectral
decomposition Theorem 4.18 we have P′ρ1P′ = 0, so ρ1 = Pρ1P + P′ρ1P + Pρ1P′.
From this identity we easily see that Pρ1P′ � 0 implies (x + ay|ρ1(x + ay)) < 0 for
some x ∈ P(H), y ∈ P′(H), with a ∈ R or a ∈ iR of large enough modulus. Hence
Pρ1P′ = P′ρ1P = 0 and ρ1 = Pρ1(P+P′) = Pρ1, and then Ran(ρ1)⊂ P(H). A sim-
ilar reasoning gives P′ρ2P = Pρ2P′ = 0, whence ρ2 = P′ρ2(P + P′) = P′ρ2. This
implies Ran(ρ2)⊂ P′(H), and therefore Ran(ρ1)⊥ Ran(ρ2).
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Spectral Theory I: generalities, abstract C∗-algebras
and operators in B(H)

A mathematician plays a game and invents the rules. A
physicist plays a game whose rules are dictated by Nature.
As time goes by it is more and more evident that the rules the
mathematician finds appealing are precisely those Nature has
chosen.

P.A.M. Dirac

In this purely mathematically-flavoured chapter we introduce the basic spectral the-
ory for operators on normed spaces, up to the notion of spectral measure and the
spectral decomposition theorem for normal operators inB(H), with H a Hilbert space.
(The spectral theorem for unbounded self-adjoint operators will be discussed in the
next chapter.) Here we present a number of general result in the abstract theory of
C∗-algebras and ∗-homomorphisms.

The first part is devoted to the resolvent set and spectrum of an operator, and
more generally of an element in a Banach algebra with unit, of which we will study
general properties. Given a normal element in a C∗-algebra with unit, possibly a nor-
mal operator when the C∗-algebra is a concrete algebra of bounded operators over a
Hilbert space, we shall prove there exists a ∗-homomorphism mapping algebra ele-
ments, i.e. operators, to continuous maps defined on a compact set of C (the spec-
trum of the element). In case we are dealing with operators we will show that such
∗-homomorphism extends to the C∗-algebra of bounded measurable functions defined
on the compact set.

The spectrum of an operator is a collection of complex numbers that generalise
eigenvalues. The spectral theorem, proved afterwards, warrants any operator – in this
chapter always bounded and normal – a decomposition by integrating the spectrum
with respect to a suitable “projector-valued” measure. Altogether the theorem may
be viewed as a generalisation to Hilbert spaces of the diagonalisation of complex-
valued normal matrices. The necessary mathematical tools to establish the spectral
theorem are useful also for other reasons. Through them, namely, we will be able
to define “operators depending on operators”, a notion with several applications in
mathematical physics.

The relationship between spectral theory and Quantum Mechanics lies in the fact
that projector-valued measures are nothing but the observables defined in the previ-
ous chapter. Via the spectral theorem observables are in one-to-one correspondence
to self-adjoint operators (typically unbounded), and the latter’s spectra are the sets of
possible measurements of observables. The correspondence observables/self-adjoint

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
DOI 10.1007/978-88-470-2835-7_8, © Springer-Verlag Italia 2013
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operators will allow us to develop the quantum-theory formulation in tight connection
to classical mechanics, for which observables are the physical quantities represented
by real functions.

Let us present the contents in better detail.
In section one we define the notions of spectrum, resolvent set and resolvent op-

erator, establish their main properties and in particular discuss the spectral radius
formula. All this will be generalised to abstract Banach or C∗-algebras, thus including
the proof of the Gelfand-Mazur theorem, and a brief overview of the major features of
C∗-algebra representations. We state the important Gelfand–Najmark theorem, that
establishes any C∗-algebra with unit is a concrete C∗-algebra of operators on a Hil-
bert space. The proof will be given in Chapter 14 after the GNS theorem has been
discussed.

In section two we construct continuous ∗-homomorphisms ofC∗-algebras of func-
tions induced either by normal elements in an abstract C∗-algebra, or by bounded
self-adjoint operators on Hilbert spaces. Such homomorphisms represent the primary
tool towards the spectral theorem. We discuss also the general properties of ∗-
homomorphisms of C∗-algebras with unit and positive elements of C∗-algebras. Then
we introduce the Gelfand transform to study commutative C∗-algebras with unit,
proving the commutative Gelfand–Najmark theorem.

In the fourth section we introduce spectral measures, also known as projector-
valued measures (PVMs), and define the integral of a bounded function with respect
to a projector-valued measure.

The statement and proof of the spectral theorem for normal bounded operators
(in particular self-adjoint or unitary) and some related technical facts are dealt with
in section five.

The final section is devoted to Fuglede’s theorem and some consequences.

8.1 Spectrum, resolvent set and resolvent operator

In this section we study the structural notions and results of spectral theory in normed,
Banach and Hilbert spaces, but also in the more general context of Banach and C∗-
algebras.

We shall make use of analytic functions defined on open subsets of Cwith values
in a complex Banach space [Rud82], rather than in C.

Definition 8.1. Let (X, || ||) be a Banach space over C andΩ ⊂ C a non-empty open
set. A function f :Ω → X is called analytic if for any z0 ∈Ω there exists δ > 0 such
that

f (z) =
+∞

∑
n=0

(z− z0)nan for any z ∈ Bδ (z0),

where Bδ (z0)⊂Ω , an ∈ X for any n ∈ N and the series converges in norm || ||.
The theory of analytic functions in Banach spaces is essentially the same as that

of complex-valued analytic functions, which we take for granted; the only difference
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is that on the range the Banach norm replaces the modulus of complex numbers. With
this proviso, definitions, theorems and proofs are the same as in the holomorphic case.

8.1.1 Basic notions in normed spaces

We begin with operators on normed spaces, and recall that if X is a vector space, “A
is a operator on X” (Definition 5.1) means A : D(A)→ X, where the domain D(A)⊂
X is a subspace, usually not closed, in X.

Definition 8.2. Let A be an operator on the normed space X.

(a) One calls resolvent set of A the set ρ(A) of λ ∈ C such that:
(i) Ran(A−λ I) = X;
(ii) (A−λ I) : D(A)→ X is injective;
(iii) (A−λ I)−1 : Ran(A−λ I)→ X is bounded.

(b) If λ ∈ ρ(A), the resolvent of A is the operator

Rλ (A) := (A−λ I)−1 : Ran(A−λ I)→ D(A) .

(c) The spectrum of A is the set σ(A) := C\ρ(A).

The spectrum of A is the disjoint union of the following three subsets:

(i) the point spectrum of A, σp(A), made by complex numbers λ for which
A−λ I is not injective;

(ii) the continuous spectrum of A, σc(A), made by complex numbers λ such
that A−λ I is injective and Ran(A−λ I) = X, but (A−λ I)−1 is not bounded;

(iii) the residual spectrum of A, σr(A), made by complex numbers λ for which
A−λ I is injective, but Ran(A−λ I) � X.

Remark 8.3. (1) It is clear that σp(A) consists precisely of the eigenvalues of A (see
Definition 3.53). In case X = H is a Hilbert space and the eigenvectors of A form
a basis in H one says A has a purely point spectrum. This does not mean, gener-
ally speaking, that σp(T ) = σ(T ); for example compact self-adjoint operators have
purely point spectrum, but 0 can still belong to the continuous spectrum.
(2) There exist other decompositions of the spectrum [ReSi80, AbCi97] in the case
that X = H is a Hilbert space and A is normal in B(H), or self-adjoint in H. We shall
consider some alternative splittings in the following chapter, after proving the spectral
theorem for unbounded self-adjoint operators. An in-depth analysis of these classi-
fications, relative to important operators in QM, can be found in [ReSi80, AbCi97].

�

We start making a few precise assumptions, like taking X a Banach space and
working with closed operators. In particular the next result holds if T ∈ B(X) or, in
a Hilbert space X = H, if T : D(H) → H is self-adjoint or an adjoint operator in H,
bearing in mind Theorem 5.10.

Theorem 8.4. Let T be a closed operator in the Banach space X � {0}. Then:

(a) λ ∈ ρ(T ) ⇔ T −λ I is a bijection from D(T ) to X.
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(b) (i) ρ(T ) is open;
(ii) σ(T ) is closed;
(iii) if ρ(T ) � ∅, the map ρ(T ) � λ 	→ Rλ (T ) ∈B(X) is analytic.

(c) If D(T ) = X (hence T ∈B(X)):

(i) ρ(T ) � ∅;
(ii) σ(T ) � ∅ and is compact;
(iii) |λ | ≤ ||T || for any λ ∈ σ(T ).

(d) For any λ ,μ ∈ ρ(T ) the resolvent identity holds:

Rλ (T )−Rμ(T ) = (λ −μ)Rλ (T )Rμ(T ) .

Remark 8.5. (1) A comment on (c): if X is a Banach space and D(T ) = X, then
T : D(T )→ X is closed iff T ∈B(X), by the closed graph Theorem 2.95.
(2) Part (a) is technically rather useful for deciding whether λ ∈ ρ(T ): it is not neces-
sary to consider the topology, i.e. the density of Ran(T −λ I) and the boundedness
of (T −λ I)−1; for that it is enough to check T −λ I : D(T )→ X is bijective, a set-
theoretical property. �

Proof of Theorem 8.4. (a) If λ ∈ ρ(T ), it suffices to show Ran(T −λ I) = X. Since
(T −λ I)−1 is continuous, there exists K ≥ 0 such that ||(T −λ I)−1x|| ≤ K||x|| for
any x = (T −λ I)y ∈ Ran(T −λ I). Consequently, for any y ∈ D(T ):

||y|| ≤ K||(T −λ I)y|| . (8.1)

Because Ran(T −λ I) = X, if x ∈ X there is a sequence {yn}n∈N ⊂ D(T ) for which
(T −λ I)yn → x, as n→+∞. From (8.1) we conclude {yn}n∈N is a Cauchy sequence
and so it admits a limit y∈ X. T being a closed operator, y∈D(T ) and (T −λ I)y = x,
hence x ∈ Ran(T −λ I). Thus Ran(T −λ I) = X, as claimed.

Suppose now T −λ I is a bijection from D(T ) to X; to prove the claim we need
to show (T −λ I)−1 is continuous. Since T is closed, then also T −λ I is closed, i.e.
its graph is closed. But T −λ I is a bijection, so (T −λ I)−1 has a closed graph and
is then closed. Being (T −λ I)−1 defined on X by assumption, Theorem 2.95 implies
(T −λ I)−1 is bounded.
(b) If μ ∈ ρ(T ), the series

S(λ ) :=
+∞

∑
n=0

(λ −μ)nRμ(T )n+1

converges absolutely in operator norm (hence in the uniform topology) provided

|λ −μ |< 1/||Rμ(T )|| . (8.2)

In fact,

+∞

∑
n=0

|λ −μ |n||Rμ(T )n+1|| ≤
+∞

∑
n=0

|λ −μ |n||Rμ(T )||n+1

= ||Rμ(T )||
+∞

∑
n=0

| (λ −μ) ||Rμ(T )|| |n .
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The last series is geometric of reason | (λ − μ) ||Rμ(T )|| |, and converges because
| (λ −μ) ||Rμ(T )|| |< 1 by (8.2).

If λ satisfies the above condition, applying T −λ I = (T −μI)+(μ−λ )I to the
left and right of the series of S(λ ) gives (again using the definition Rμ(T )0 := I):

(T −λ I)S(λ ) = IX

while:
S(λ )(T −λ I) = ID(T ) .

Hence if μ ∈ ρ(T ) there is an open neighbourhood of μ such that, for any λ in that
neighbourhood, the left and right inverses of T −λ I, from X to D(T ), exist and are
finite. By (a) then, the neighbourhood is contained in ρ(T ), and so ρ(T ) is open and
σ(T ) = C \ρ(T ) closed. Moreover Rλ (T ) has a Taylor series around any point of
ρ(T ) in uniform topology, so by definition ρ(T ) � λ 	→ Rλ (T ) is analytic and maps
ρ(T ) to the Banach space B(X).
(c) In case D(T ) = X, since T is closed and X Banach, the closed graph theorem
makes T bounded. If λ ∈ C satisfies |λ |> ||T ||, the series

S(λ ) =
+∞

∑
n=0

(−λ )−(n+1)T n

(T 0 := I), converges absolutely in operator norm. A direct computation, as before,
gives the identities

(T −λ I)S(λ ) = I

and
S(λ )(T −λ I) = I ,

hence S(λ ) = Rλ (T ) by (a). Hence by (a) every λ ∈ C with |λ | > ||T || belongs to
ρ(T ), which is thus non-empty. Furthermore, if λ ∈ σ(T ), |λ | ≤ ||T ||, and σ(T ) is
compact if non-empty as closed and bounded. Let us show σ(T ) � ∅. By contradic-
tion assume σ(T ) = ∅. Then λ 	→ Rλ (T ) is defined on C. Fix f ∈ X′ (dual to X) and
x∈ X, and consider the complex-valued function ρ(T )� λ 	→ g(λ ) := f (Rλ (T )x). It
is certainly analytic on C, because if μ ∈ ρ(T ), on a neighbourhood of μ contained
in ρ(T ) we have a Taylor expansion

f (Rλ (T )x) :=
+∞

∑
n=0

(λ −μ)n f (Rμ(T )n+1x) .

We have used the continuity of the linear functional f , and the fact the series con-
verges uniformly (and so weakly). Hence assuming σ(T ) = ∅, g is analytic on C.
We notice that for |λ |> ||T || we have

g(λ ) := f (Rλ (T )x) =
+∞

∑
n=0

(−λ )−(n+1) f (T nx) .
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This series converges absolutely (Abel’s theorem on power series), so we can wirte,
for |λ | ≥ 1+ ||T ||:

|g(λ )| ≤ 1
|λ |

+∞

∑
n=0

| f (T nx)|
|λ |n ≤ || f ||||x||

|λ |
+∞

∑
n=0

( ||T ||
|λ |
)n

=
|| f ||||x||
|λ |

|λ |
|λ |− ||T || ≤

K
|λ |

with K > 0. Thus |g|, everywhere continuous and bounded from above by K|λ−1|,
when |λ | ≥Λ for some constantΛ , must be bounded on the entire complex plane. Be-
ing analytic on C, g is constant by Liouville’s theorem. As |g(λ )| vanishes at infinity,
g is the null map. Then f (Rλ (T )x) = 0. But the result holds for any f ∈ X′, so Corol-
lary 2.52 to Hahn–Banach (where X � {0}), implies ||Rλ (T )x||= 0. As x ∈ X � {0}
was arbitrary, we have to conclude Rλ (T ) = 0 for any λ ∈ ρ(T ). Therefore Rλ (T )
cannot invert T −λ I, and the contradiction disproves the assumption σ(T ) = ∅.
(d) The resolvent identity is proved as follows. First, we have

(T −λ I)Rλ (T ) = I and (T −μI)Rμ(T ) = I .

Consider the products TRλ (T )−λRλ (T ) = IX and T Rμ(T )−μRμ(T ) = IX, multiply
the first by Rμ(T ) on the left and the second by Rλ (T ) on the right, and then substract
them. Recalling Rμ(T )Rλ (T ) = Rλ (T )Rμ(T ) and Rμ(T )T Rλ (T ) = Rλ (T )TRμ(T ),
we obtain the resolvent equation. The first commutation relation used above follows
from the evident

(T −μI)(T −λ I) = (T −λ I)(T −μI),

which also gives a similar equation for inverses. The other relationship is explained
as follows:

Rμ(T )T Rλ (T ) = Rμ(T )(T −λ I)Rλ (T )+Rμ(T )λ IRλ (T )
= Rμ(T )I +λRμ(T )Rλ (T ) = Rμ(T )+λRλ (T )Rμ(T )
= (I +λRλ (T ))Rμ(T ) = (Rλ (T )(T −λ I)+λRλ (T ))Rμ(T )
= Rλ (T )T Rμ(T ) .

This ends the proof. �

A useful corollary is worth citing that descends immediately from the resolvent
identity and (a), (b) of Proposition 4.9.

Corollary 8.6. Let T : D(T ) → X be a closed operator on the Banach space X. If
for one μ ∈ ρ(T ) the resolvent Rμ(T ) is compact, then Rλ (T ) is compact for any
λ ∈ ρ(T ).

8.1.2 The spectrum of special classes of normal operators
in Hilbert spaces

Let us focus on unitary operators and self-adjoint operators in Hilbert spaces, and dis-
cuss the structure of their spectrum. Using Definition 8.2 we work in full generality
and consider unbounded operators with non-maximal domains.
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Proposition 8.7. Let H be a Hilbert space.

(a) If A is self-adjoint in H (not necessarily bounded, nor defined on the whole H in
general):

(i) σ(A)⊂ R;
(ii) σr(A) = ∅;
(iii) the eigenspaces of A with distinct eigenvalues (points in σp(A)) are ortho-

gonal1.

(b) If U ∈B(H) is unitary:

(i) σ(U) is a non-empty compact subset of {λ ∈ C | |λ |= 1};
(ii) σr(U) = ∅.

(c) If T ∈B(H) is normal:

(i) σr(T ) = σr(T ∗) = ∅;
(ii) σp(T ∗) = σp(T );
(iii) σc(T ∗) = σc(T ), where the bar denotes complex conjugation.

Proof. (a) Let us begin with (i). Suppose λ = μ+ iν , ν � 0 and let us prove λ ∈ ρ(A).
If x ∈ D(A),

((A−λ I)x|(A−λ I)x) = ((A−μI)x|(A−μI)x)+ν2(x|x)+ iν [(Ax|x)− (x|Ax)] .

The last summand vanishes for A is self-adjoint. Hence

||(A−λ I)x|| ≥ |ν | ||x|| .
With a similar arguement we obtain

||(A−λ I)x|| ≥ |ν | ||x|| .
The operators A− λ I and A− λ I are then one-to-one, and ||(A− λ I)−1|| ≤ |ν |−1,
where (A−λ I)−1 : Ran(A−λ I)→ D(A). Notice

Ran(A−λ I)
⊥

= [Ran(A−λ I)]⊥ = Ker(A∗ −λ I) = Ker(A−λ I) = {0} ,

where the last equality makes use of the injectivity of A−λ I. Summarising: A−λ I

in injective, (A−λ I)−1 bounded and Ran(A−λ I)
⊥

= {0}, i.e. Ran(A−λ I) is dense
in H; therefore λ ∈ ρ(A), by definition of resolvent set.

Now to (ii) Suppose λ ∈ σ(A), but λ � σp(A). Then A−λ I must be one-to-one
and Ker(A−λ I) = {0}. Since A = A∗ and λ ∈R by (i), we have Ker(A∗−λ I) = {0},
so [Ran(A− λ I)]⊥ = Ker(A∗ − λ I) = {0} and Ran(A−λ I) = H. Consequently
λ ∈ σc(A).

Proving (iii) is easy: if λ � μ and Au = λu, Av = μv, then

(λ −μ)(u|v) = (Au|v)− (u|Av) = (u|Av)− (u|Av) = 0 ;

from λ ,μ ∈ R and A = A∗. But λ −μ � 0, so (u|v) = 0.

1 The analogous property for normal operators (hence unitary or self-adjoint too) in B(H) is
contained in Proposition 3.54(b).
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(b) (i) The closure of σ(U) is a consequence of Theorem 8.4(b), because any unitary
operator is defined on H, bounded and so closed. As ||U ||= 1, part (c) of that theorem
implies σ(U) is a compact non-empty subset in {λ ∈C | |λ | ≤ 1}. To finish, consider
the series

S(λ ) =
+∞

∑
n=0

λ n(U∗)n+1

with |λ | < 1. Since ||U || = ||U∗|| = 1, the series converges absolutely in operator
norm, so it defines an operator in B(H). Because U∗U = UU∗ = I,

(U −λ I)S(λ ) = S(λ )(U −λ I) = I .

By Theorem 8.4(a) λ ∈ ρ(U). To sum up: σ(U) is compact and non-empty inside
{λ ∈ C | |λ |= 1}.
(ii) This follows from part (i) of (c), for every unitary operator is normal.
(c) Recall that T ∈B(H) normal implies λ ∈C is an eigenvalue iff λ is an eigenvalue
of T ∗ ((i) in Proposition 3.54(b)). This is enough to give (ii). The three parts of the
spectrum are disjoint, and σ(T ) = σ(T ∗) (by Proposition 8.14(b)), so to prove (iii)
it is enough to show (i). Assume λ ∈ σ(T ), but λ � σp(T ). Since σ(T ) = σ(T ∗) and
σp(T ) = σp(T ∗), the hypothesis is equivalent to λ ∈ σ(T ∗), but λ � σp(T ∗). Then
T ∗ −λ I must be one-to-one and Ker(T ∗ −λ I) = {0}. Now Proposition 3.38(d) tells
[Ran(T − λ I)]⊥ = Ker(T ∗ − λ I) = {0}, hence Ran(T −λ I) = H (here the bar de-
notes the closure). Therefore λ ∈ σc(T ), i.e. σr(T ) = ∅. The proof for T ∗ is the
same, because (T ∗)∗ = T (Proposition 3.38(b)). �

8.1.3 Abstract C∗-algebras: Gelfand-Mazur theorem, spectral
radius, Gelfand’s formula, Gelfand–Najmark theorem

Now we consider, more abstractly, Banach algebras with unit and C∗-algebras with
unit (Definitions 2.23 and 3.40). Recall that B(X) is a Banach algebra with unit if X
is normed, by (i) in Theorem 2.41(c). If H is a Hilbert space, B(H) is a C∗-algebra
with unit, whose involution is the Hermitian conjugation by Theorem 3.45.

First of all we generalise the notions of resolvent set and spectrum to an abstract
setting, usingB(X) as model, with X Banach, so we have Theorem 8.4 in action. Re-
call that in an algebra A with unit I the inverse a−1 to a ∈ A is defined as the unique
element, if present, such that a−1a = aa−1 = I.

Definition 8.8. Let A be a Banach algebra with unit I and take a ∈ A.

(a) The resolvent set of a is the set:

ρ(a) := {λ ∈ C | ∃(a−λ I)−1 ∈ A} .

(b) The spectrum of a is the set σ(a) := C\ρ(a).

The following fact generalises the assertion in Theorem 8.4 about operators
of B(X).
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Theorem 8.9. Let A � {0} be a Banach algebra with unit I, a ∈ A an arbitrary ele-
ment.

(a) ρ(a) � ∅ is open, σ(a) � ∅ is compact and:

|λ | ≤ ||a|| , for any λ ∈ σ(a).

(b) The map ρ(a) � λ 	→ Rλ (a) := (a−λ I)−1 ∈ A is analytic.
(c) If λ ,μ ∈ ρ(a) the resolvent identity holds:

Rλ (a)−Rμ(a) = (λ −μ)Rλ (a)Rμ(a) .

Proof. The argument is the same of properties (b), (c), (d) of Theorem 8.4, because
of Remark 8.5(1) and replacing, in the proof of (c), f (Rλ (T )x) by f (Rλ (a)), where
f ∈ A′ (Banach dual to A). �

A straightforward, yet important corollary is known as Gelfand-Mazur theorem,
and tells that every normed division algebra overC is isomorphic toC, so in particular
is commutative.

Theorem 8.10 (Gelfand-Mazur). A complex Banach algebra B � {0} with unit, in
which every non-zero element is invertible, is naturally isomorphic to C. (In partic-
ular B is commutative.)

Proof. Take x ∈ B, so σ(x) � ∅ by part (a) in the previous theorem. Then x− cI is
not invertible for some c ∈ C by definition of spectrum. In our case x− cI = 0, so
x = cI. c is completely determined by x, for cI � c′I if c � c′. The map B � x 	→ c ∈ C
is a Banach algebra isomorphism, as is easy to see. �

According to Theorem 8.9(a), the spectrum of a ∈ A is contained in the disc of
radius ||a|| centred at the origin of C. Yet there might be a disc of smaller radius at
the origin enclosing σ(a). In this respect see the next definition.

Remarks 8.11. The assumption that the field is C is crucial. There exist Banach divi-
sion algebras that are not commutative, like the algebra H of quaternions introduced
in Example 3.44(4). The latter, though, is a real algebra. The only algebras with an
associative product on R that are normed and without zero-divisors are R, C and H
up to isomorphisms, as Hurwitz established in 1898. Dropping associativity there
remains only one other instance, the Cayley numbers, also knowns as octonions. �

Definition 8.12. Let A be a Banach algebra with unit. The spectral radius of a ∈ A
is the non-negative real number

r(a) := sup{|λ | | λ ∈ σ(a)} .

This applies in particular when A=B(X), X Banach space.

Remarks 8.13. Any element a in a Banach algebra with unit A satisfies the element-
ary (yet fundamental) property:

0≤ r(a)≤ ||a|| , (8.3)

immediately ensuing Theorem 8.9(a). �



318 8 Spectral Theory I: generalities, C∗-algebras and bounded operators

There is a known formula for the spectral radius, due to the mathematician
I.Gelfand. We shall recover Gelfand’s formula using a property of the spectrum of
polynomials over A.

Proposition 8.14. Let A be an Banach algebra with unit I, a ∈ A and p = p(z) a
complex-valued polynomial in z ∈ C.

(a) Let p(a) be the element in A obtained by formally substituting the element a to z
in p(z) and interpreting powers an in the obvious way (a0 := I); then

σ(p(a)) = p(σ(a)) := {p(λ ) | λ ∈ σ(a)} . (8.4)

(This holds in particular for A=B(X), X a Banach space.)
(b) If A is additionally a ∗-algebra, the spectrum of a∗ satisfies

σ(a∗) = σ(a) := {λ | λ ∈ σ(a)} . (8.5)

(This holds in particular for A=B(H) with H a Hilbert space.)

Proof. (a) If α1, . . . ,αn denote the roots of a polynomial q (not necessarily distinct),
q(z) = c∏n

i=1(z−αi) for some complex number c. Hence q(a) = c∏n
i=1(a−αiI). Let

λ ∈ σ(a), so (a−λ I) is not invertible by definition; set μ := p(λ ). Consider now
the polynomial q := p− μ . As q(λ ) = 0, one factor in the above decomposition of
q will be (z−λ ), and so choosing the root order appropriately, and recalling that the
a−αiI commute, we have:

p(a)−μI= c

[
n−1

∏
i=1

(a−αiI)

]

(a−λ I) = c(a−λ I)
n−1

∏
i=1

(a−αiI) .

Thus p(a)−μI cannot be invertible, for a−λ I is not. (Were p(a)−μI invertible, we
whould have

I= (a−λ I)
[(

n−1

∏
i=1

c(a−αiI)

)

(p(a)−μI)−1

]

,

I=

(

(p(a)−μI)−1
n−1

∏
i=1

c(a−αiI)

)

(a−λ I) ,

implying (a−λ I) invertible. Applying the first factor on the right in the second line
to the first equation would say the right and left inverses of (a−λ I) coincide:

(p(a)−μI)−1
n−1

∏
i=1

c(a−αiI) =

(
n−1

∏
i=1

c(a−αiI)

)

(p(a)−μI)−1 ,

as it should be.) By definition we must have μ ∈σ(p(a)), hence we proved p(σ(a))⊂
σ(p(a)). Now we go for the other inclusion. Let μ ∈ σ(p(a)), set q = p−μ and de-
compose q as q(z) = c∏n

i=1(z−αi). Therefore

p(a)−μI= c
n

∏
i=1

(a−αiI)
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as before. If all roots αi belonged to ρ(a) every (a− αiI) : X → X would be in-
vertible, so p(a)− μI would become invertible, which is excluded by assumption.
Therefore there is a root αk such that (a−αkI) is not invertible, so αk ∈ σ(a). But
then p(αk)−μ = 0, so μ ∈ p(σ(a)), and hence p(σ(a))⊃ σ(p(a)).
(b) (a−λ I) is invertible if and only if (a−λ I)∗ = a∗ −λ I by Proposition 3.42(c),
hence the claim. �

Theorem 8.15. Let A be a Banach algebra with unit and a ∈ A.

(a) The spectral radius of a can be computed with Gelfand’s formula:

r(a) = lim
n→+∞

||an||1/n ,

where the limit always exists. (This holds in particular whenA=B(X) with X Banach
space.)
(b) If A is a C∗-algebra with unit and a is normal (a∗a = aa∗), then

r(a) = ||a|| , (8.6)

and consequently:
||a||= r(a∗a)1/2 for any a ∈ A. (8.7)

(Valid in particular for A=B(H), H Hilbert space.)

Proof. (a) By Proposition 8.14(a) (σ(a))n = σ(an), so r(a)n = r(an) ≤ ||an||, and
then

r(a)≤ liminf
n
||an||1/n . (8.8)

(In contrast to the limit infimum, which always exists, the limit might not.) If |λ | >
r(a),

Rλ (a) =
+∞

∑
n=0

(−λ )−(n+1)an , (8.9)

because a theorem of Hadamard guarantees that the convergence disc of the Laurent
series of an analytic function touches the closest singularity to the point at infinity.
In our case all singularities belong to the spectrum σ(a), so the boundary consists of
points λ ∈ C with |λ | > r(a). Therefore the above series converges for any λ ∈ C
such that |λ | > r(a), hence it converges absolutely on any disc, centred at infinity,
passing through such λ . In particular

|λ |−(n+1)||an|| → 0 ,

as n→+∞, for any λ ∈ C with |λ |> r(a). Hence for any ε > 0

||an||1/n < ε1/n|λ |(n+1)/n = (ε |λ |)1/n|λ |
definitely. Since (ε |λ |)1/n → 1 for n → +∞, we have limsupn ||an||1/n ≤ |λ | for
every λ ∈ C with |λ | > r(a). We can get as close as we want to r(a) with |λ |, so
limsupn ||an||1/n ≤ r(a). Finally, by (8.8),

r(a)≤ liminf
n
||an||1/n ≤ limsup

n
||an||1/n ≤ r(a) .



320 8 Spectral Theory I: generalities, C∗-algebras and bounded operators

This shows the limit of ||an||1/n exists as n→+∞, and it concides with r(a).
(b) By Proposition 3.42(a) we have ||an|| = ||a||n if a is normal. Gelfand’s formula
gives

r(a) = lim
n→+∞

||an||1/n = lim
n→+∞

(||a||n)1/n = ||a|| .

Equation (8.7) follows from a property of C∗-algebras, i.e. ||a∗a||= ||a||2 for any a,
because a∗a is self-adjoint hence normal. �

Identity (8.7) explains that the norm of a given C∗-algebra is uniquely determined
by algebraic properties, because the spectral radius is obtainable from the spectrum,
and this is built by algebraic means entirely.

Corollary 8.16. A ∗-algebra with unit A admits one norm at most that makes it a
C∗-algebra with unit.

Notation 8.17. Let A and A1 be C∗-algebras with unit and take a ∈ A1∩A. A priori,
the element a could have two different spectra if thought of as element of A1 or of
A. That is why here, and in other similar situations where confusion might arise, we
will label spectra: σA(a) or σA1(a). �

There is another important consequence of (8.7) concerning algebra homomorph-
isms, to which we will return later with a general theorem. Remarkably enough, ∗-
homomorphisms of C∗-algebras with unit are continuous. Subsequently we will see
something stronger: if injective, namely, they are automatically isometric.

Corollary 8.18. Let φ :A→B be a ∗-homomorphism between C∗-algebras with unit.

(a) φ is continuous, for ||φ(a)||B ≤ ||a||A for any a ∈ A.
(b) For every a ∈ A, σB(φ(a))⊂ σA(a).
(c) If φ is additionally a ∗-isomorphism, it is also isometric: ||φ(a)||B = ||a||A for
any a ∈ A, and σB(φ(a)) = σA(a) for any a ∈ A.

Proof. (a) If λ ∈ ρ(a), λ ∈ ρ(φ(a)) because φ is a ∗-homomorphism. Thus
σ(φ(a)) ⊂ σ(a), and r(φ(a)) ≤ r(a). Equation (8.7) implies ||φ(a)||2B =
rB(φ(a)∗φ(a)) = rB(φ(a∗a))≤ rA(a∗a) = ||a||2A.
(b) If a′ exists such that (a − λ IA)a′ = a′(a − λ IA) = IA, appying the ∗-
homomorphism φ we conclude (φ(a)− λ IB)φ(a′) = φ(a′)(φ(a)− λ IB) = IB, so
ρ(φ(a))⊂ ρ(a) and the claim follows.
(c) is obvious from (a) and (b), replicating the argument for φ−1. �

To end the abstract considerations we are making, let us present the next result
on C∗-algebras in relationship to the classification of Definition 3.40.

Proposition 8.19. Let A be a C∗-algebra with unit (in particular A can be B(H), H
Hilbert space).

(a) If a ∈ A admits a left inverse, σ(a) = σ(a)−1 := {λ−1 |λ ∈ σ(A)}.
(b) If a ∈ A is isometric, i.e. a∗a = I, then r(a) = 1.
(c) If a ∈ A is unitary, i.e. a∗a = aa∗ = I, then σ(a)⊂ S1 ⊂ C.
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(d) If a ∈ A is self-adjoint, i.e. a = a∗, then σ(a) ⊂ R. More precisely, σ(a) ⊂
[−||a||, ||a||], and σ(a2)⊂ [0, ||a||2].
(e) If a,b ∈ A then σ(ab)\{0}= σ(ba)\{0}.

Proof. (a) If a is left-invertible, 0 � σ(a)∪σ(a−1). If λ � 0 then

λ I−a = λa(a−1−λ−1
I) and λ−1

I−a−1 = λ−1a−1(a−λ I) .

Thus a−λ I is invertible iff a−1−λ−1
I is.

(b) If a∗a = I then ||an||2 = ||(an)∗an|| = ||(a∗)nan|| = ||I|| = 1. Gelfand’s formula
implies r(a) = 1.
(c) By (b) and the definition of spectral radius we infer σ(a)⊂ {λ ∈ C | |λ | ≤ 1}. On
the other hand we know from Proposition 8.14 that σ(a) = σ(a∗). As a∗ = a−1 and

using part (a) we have σ(a) = σ(a)
−1

. Hence any element λ ∈ σ(a) satsfies |λ | ≤ 1
and can be written as λ = μ−1, |μ | ≤ 1. This implies |λ |= 1.
(d) First of all we prove σ(a) ⊂ R. Fix λ ∈ R, λ−1 > ||a||, so that | − iλ−1| =
λ−1 > r(a) and consequently I+ iλa = iλ (−iλ−1

I+ a) is invertible. Define b :=
(I− iλa)(I+ iλa)−1. Then b∗ = (I− iλa)−1(I+ iλa), and since the terms in brackets
trivially commute,

b∗b = (I− iλa)−1(I+ iλa)(I− iλa)(I+ iλa)−1 = I .

A similar computation gives bb∗ = I, making b unitary. We may then invoke part (c),
so that σ(b)⊂ S1. Directly, |(1− iλμ)(1+ iλμ)−1|= 1 iff μ ∈ R. Therefore

z := (1− iλμ)(1+ iλμ)−1
I−b

is invertible when μ ∈ C\R. Solving the expression of b for a gives

z = 2iλ (I+ iλμ)−1(a−μI)(I+ iλa)−1,

hence a−μI is invertible for any μ ∈ C\R. It follows σ(a)⊂ R. But r(a) = ||a||, so
σ(a)⊂ [−||a||, ||a||] is immediate by definition of spectral radius.
(d) follows from Proposition 8.14(a, b).
(e) If c is the inverse of I−ab, then (I+bca)(I−ba) = I−ba+bc(I−ab)a = I and
(I− ba)(I+ bca) = I− ba + b(I− ab)ca = I. Hence I+ bca inverts I− ba, imply-
ing (e). �

We could ask ourselves whether there exist C∗-algebras that cannot be realised as
algebras of operators on Hilbert spaces. The answer is no, even if the identification
between the C∗-algebra and a C∗-algebra of operators is not fixed uniquely. In fact,
the following truly paramount result holds, which we shall prove as Theorem 14.23
after the GNS theorem (Chapter 14).

Theorem (Gelfand–Najmark). If A is a C∗-algebra with unit, there exist a Hil-
bert space H and an isometric ∗-isomorphism φ : A → B, where B ⊂ B(H) is a
C∗-subalgebra of B(H).
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8.2 Functional calculus: representations of commutative
C∗-algebras of bounded maps

This section aims to show how to represent an algebra of bounded measurable func-
tions f by an algebra of functions f (T,T ∗) of a bounded normal operator T . We shall
construct a continuous map

Φ̂T : Mb(K) � f 	→ f (T,T ∗) ∈B(H) ,

perserving the structure of commutative C∗-algebra with unit, from bounded measur-
able functions defined on a compact set K, to bounded operators on a Hilbert space H
(see Examples 2.26(4) and 3.44(1)). This will be a representation (Definition 3.48)
of the commutative C∗-algebra with unit Mb(K) on H. It will be “generated” by a
normal operator T ∈ B(H) and K = σ(T ). Viewing Φ̂T ( f ) as f (T ), when T = T ∗,
arises also from the physical interpretation related to the notion of observable, as we
shall see. The theory we are talking about goes under the name of functional calculus.
In a subsequent section we will show how the operator f (T,T ∗) can be understood
as an integral of f with respect to an operator-valued measure. For the time being we
shall construct f (T,T ∗) with no mention to spectral measures.

The first part of the construction involves only continuous maps f , and one speaks
about continuous functional calculus. Continuous functional calculus overlooks the
concrete C∗-algebra of bounded operators, and is valid more abstractly if we replace
T by a normal element a in a given C∗-algebra. Therefore we shall work first in an
abstract setting, and build first a continuous functional calculus for self-adjoint ele-
ments, and only after for normal elements in a general C∗-algebra with unit, owing
to the Gelfand transform. Eventually, when dealing with measurable functions, we
will return to operator algebras. By the way, continuous functional calculus touches
upon ∗-homomorphisms of C∗-algebras, and allows to characterise positive elements
of a C∗-algebra, as explained in a moment.

8.2.1 Abstract C∗-algebras: functional calculus for continuous
maps and self-adjoint elements

Let us put ourselves in a general case where A is a C∗-algebra with unit I. We may
think rather concretely that A=B(H) for some Hilbert space H, although the follow-
ing considerations transcend this case.

The first step to build the aforementioned ∗-homomorphisms is to study polyno-
mial functions of a self-adjoint element: a∗ = a ∈ A.

Define the function φa that maps a polynomial with complex coefficients p =
p(x), x ∈ R, to the normal element p(a) of A, in the obvious way: i.e., evaluating at
a and interpreting the product in the algebra. Set also a0 := I.
φa has interesting features, of immediate proof:

(a) it is linear: φa(α p+β p′) = αφa(p)+βφa(p′) for any α ,β ∈ C;
(b) it transforms products of polynomials into composite elements in the algebra:
φa(p · p′) = φa(p)φa(p′);
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(c) it maps the constant polynomial 1 to the neutral element: φa(1) = I.

By Definition 2.23 these properties make φa a homomorphism of algebras with unit,
from the commutative ∗-algebra with unit of complex polynomials to the C∗-algebra
with unit A.

Here are other properties:

(d) φa maps the polynomialR� x 	→ x (denoted x, inappropriately) to a, i.e. φa(x) = a;
(e) if p is the conjugate polynomial to p (p(x) = p(x), x ∈ R), then φa(p)∗ = φa(p);
(f) if ba = ab for some b ∈ A, bφa(p) = φa(p)b for any polynomial p.

Property (e) establishes φa is a ∗-homomorphism (Definition 3.40) from the ∗-algebra
with unit of polynomials to the C∗-algebra with unit A.

There is a further property if we restrict polynomials to the compact set σ(a)⊂R.
Since φa(p) = p(a) is self-adjoint and hence normal, by virtue of Theorem 8.15(b)

||p(a)||= r(p(a)) = sup{|μ | | μ ∈ σ(p(a))} .

The fact that σ(p(a)) = p(σ(a)) (Proposition 8.14(a)) implies

||φa(p)||= sup{|p(x)| | x ∈ σ(a)} . (8.10)

That is to say if the algebra of polynomials on σ(a) is endowed with norm || ||∞, φa

is an isometry. As we shall see, this fact can be generalised beyond polynomials.

Remarks 8.20. Assuming σ(a) is not a finite set, with a minor reinterpretation of the
symbols we denote, henceforth, by φa the map sending a function p to p(a)∈A, given
by the restriction to σ(a) of a polynomial p. Thus ||p||∞ will for instance indicate the
least upper bound of the absolute value of p over the compact set σ(a). Properties
(a)-(f) still hold, because a polynomial’s restriction to an infinite set determines the
polynomial: the difference of two polynomials (in R or C, with complex coefficients)
with infinite zero set is a polynomial (in R or C, with complex coefficients) with
infinitely many zeroes. Therefore it is the null polynomial.

In the case σ(a) is finite, the matter is more delicate, because the restriction q�σ(a)
of a polynomial q does not determine the polynomial completely. However,

||q(a)||= sup{|q(x)| | x ∈ σ(a)}
implies immediately that if q�σ(a)= q′�σ(a) for two q,q′, then q(a) = q′(a). Therefore
everything we say will work for σ(a) finite as well, even though we will not separate
the cases σ(a) finite vs infinite. �

Recall that the space C(X) of complex-valued continuous maps on a compact
space X (cf. Examples 2.26(4), 3.44(1) in Chapter 2, 3), is a commutative C∗-algebra
with unit: the norm is || ||∞, sum and product are the standard pointwise operations,
the involution is the complex conjugation and the unit is the constant map 1.

Theorem 8.21 (Functional calculus for continuous maps and self-adjoint ele-
ments). Let A be a C∗-algebra with unit I and a ∈ A a self-adjoint element.
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(a) There exists a unique ∗-homomorphism defined on the commutative C∗-algebra
with unit C(σ(a)):

Φa : C(σ(a)) � f 	→ f (a) ∈ A ,

such that
Φa(x) = a, (8.11)

x being the map σ(a) � x 	→ x.
(b) The following properties hold:

(i) Φa is isometric: for any f ∈C(σ(a)), ||Φa( f )||= || f ||∞;
(ii) if ba = ab with b ∈ A, then b f (a) = f (a)b for any f ∈C(σ(a));
(iii) Φa preserves involutions: Φa( f ) =Φa( f )∗ for any f ∈C(σ(a)).

(c) σ( f (a)) = f (σ(a)) for any f ∈C(σ(a)).
(d) If B is a C∗-algebra with unit and π : A→B a ∗-homomorphism:

π( f (a)) = f (π(a)) for any f ∈C(σA(a)).

Proof. (a) In the sequel we assume the spectrum of a is infinite; the finite case must
be treated separately by keeping in account the previous remark.

Let us show existence. The spectrumσ(a)⊂C is compact by Theorem 8.4(c), and
C(σ(a)) Hausdorff because C is, so we can use Stone–Weierstrass (Theorem 2.27).
The space P(σ(a)) of polynomials p = p(x), x ∈ σ(a), with complex coefficients is
a subalgebra in C(σ(a)) that contains the unit (the function 1), separates points in
σ(a) and is closed under complex conjugation. Hence Theorem 2.27 guarantees it is
dense in C(σ(a)). Consider the map

φa : P(σ(a)) � p 	→ p(a) ∈ A ,

and refer to properties (a)–(f). We know φa is linear and ||φa(p)||= ||p||∞ by (8.10),
which implies continuity. By Proposition 2.44 there is a unique bounded linear op-
erator Φa : C(σ(a))→ A extending φa to C(σ(a)) maintaining the norm. This must
be a homomorphism of algebras with unit because: (a) it is linear, (b) Φa( f · g) =
Φa( f )Φa(g) by continuity (it is true on the subalgebra of polynomials, by definition
of φa), (c) it maps the constant function 1∈P(σ(a)) to the identity I∈A, by definition
of φa. Equation (8.11) holds trivially by property (d). That Φa is a ∗-homomorphism
is due to this argument: if {pn} are polynomials uniformly converging on σ(a) to
the continuous f , {pn} tends uniformly on σ(a) to the continuous f ; as seen above,
though (cf. property (e)),Φa(pn) = φa(pn) = φa(pn)∗ =Φa(pn)∗ and Hermitian con-
jugation is continuous in the uniform topology. By continuity ofΦa,Φa( f ) =Φa( f )∗.
Now to uniqueness. Any ∗-homomorphism χa of C∗-algebras with unit, fulfilling
(8.11), must agree withΦa on integer powers of x, hence on any polynomials by defin-
ition of ∗-homomorphism. Moreover χa must be continuous by Corollary 8.18(a).
Since χa and Φa are linear, by Proposition 2.44 χa coincides with Φa.
(b) Property (iii) was proved above. (i) and (ii) are immedate for polynomials, so they
extend by continuity to C(σ(a)).
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(c) Observe first that the set of non-invertible elements in A is closed under the norm
because its complement is open (Remark 2.24(2)). Consider a polynomial sequence
pn → f converging to some f ∈C(σ(a)) uniformly on σ(a). Then pn(λ )∈ σ(pn(a))
by Proposition 8.14(a), i.e. pn(a)− pn(λ )I is not invertible. The set of non-invertible
elements is closed in A, so we can take the limit and obtain f (a)− f (λ )I is not
invertible. Hence f (λ ) ∈ σ( f (a)) and then f (σ(a)) ⊂ σ( f (a)). Conversely, if
μ � f (σ(a)), then g : σ(a) � λ 	→ ( f (λ )− μ)−1 is in C(σ(a)). That is because f
is continuous and f (σ(a)) closed (continuous image in C of a compact set). By con-
struction g(a)( f (a)− μI) = ( f (a)− μI)g(a) = I, so f (a)− μI is invertible, hence
μ � σ( f (a)).
(d) The statement is true if f is a polynomial. By continuity of π (Corollary 8.18(a))
it stays true when passing to continuous maps. �

What we would like to do now is generalise the above theorem to normal ele-
ments, not necessarily self-adjoint, in a C∗-algebra with unit A. We want to define
an element f (a,a∗) ∈ A for f an arbitrary continuous map defined on the spectrum
σ(a)⊂ C of a, so that its norm is || f ||∞.

One possibility is to do as follows:

(1) start from polynomials p(z,z) (dense in C(σ(a)) by the Stone–Weierstrass the-
orem) defined on the spectrum of a;

(2) associate to each p(z,z) the operator polynomial p(a,a∗) ∈ A;
(3) show the above correspondence is a continuous ∗-homomorphism of ∗-algebras

with unit.

Yet a problem arises when passing from polynomials to continuous maps by
a limiting procedure. We should prove ||p(a,a∗)|| ≤ ||p||∞. In case a is self-
adjoint the equality was proved using ‘spectral invariance’ (Proposition 8.14(a), i.e.
σ(p(a)) = p(σ(a))) and Theorem 8.15(b), for which ||p(a)||= r(p(a)) = sup{|μ | ∈
C | μ ∈ σ(p(a))}. In the case at stake there is nothing guaranteeing σ(p(a,a∗)) =
p(σ(a,a∗)). The failure of the fundamental theorem of algebra for complex polyno-
mials in the variables z and z is the main cause of the lack of a direct proof of the above
fact, and the reason why we have to look for an alternative, albeit very interesting,
way.

8.2.2 Key properties of ∗-homomorphisms of C∗-algebras, spectra
and positive elements

This section is devoted to a series of technical corollaries to Theorem 8.21, essen-
tial to extend continuous functional calculus to normal, not self-adjoint, elements. A
number of results are nonetheless interesting on their own.

Corollary 8.18(c) tells a ∗-homomorphism φ : A→ B between C∗-algebras with
unit is isometric if one-to-one and onto. But surjectivity is not necessary, for a con-
sequence of the previous theorem is that injectivity is equivalent to norm preservation.
We encapsulate in the next statement also Corollary 8.18(a), proved earlier.
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Theorem 8.22 (On ∗-homomorphisms of C∗-algebras with unit). A ∗-homomor-
phism π : A→B of C∗-algebras with unit is continuous, for

||π(a)||B ≤ ||a||A for any a ∈ A.

Furthermore

(a) π is one-to-one iff isometric, i.e. ||π(a)||= ||a|| for any a ∈ A.
(b) π(A) is a C∗-subalgebra with unit inside B.

Proof. As mentioned, the first statement is Corollary 8.18(a).
(a) If π is isometric it is obviously injective, so we prove the converse. We have
||π(a)|| ≤ ||a|| by Corollary 8.18, so it suffices to prove that injectivity forces
||π(a)|| ≥ ||a||. If that is true for self-adjoint elements in a C∗-algebra with unit, it
holds for any element:

||π(a)||2 = ||π(a)∗π(a)||2 = ||π(a∗a)|| ≥ ||a∗a||= ||a||2 .

So assume there is a self-adjoint a ∈ A with ||π(a)|| < ||a||. Then Proposition 8.19
says σA(a) ⊂ [−||a||, ||a||] and r(a) = ||a||, so ||a|| ∈ σA(a) or −||a|| ∈ σA(a).
Similarly σB(π(a)) ⊂ [−||π(a)||, ||π(a)||]. Then choose a continuous map f :
[−||a||, ||a||] → R that vanishes on [−||π(a)||, ||π(a)||] and such that f (−||a||) =
f (||a||) = 1. Theorem 8.21(d) implies π( f (a)) = f (π(a)) = 0, for f�σB(π(a))= 0
and || f (a)||= || f ||∞,C(σA(a)) ≥ 1. Then f (a) � 0, contradicting the injectivity of π .
(b) The claim is immediate because π is isometric and by definition of C∗-subalgebra
with unit. In particular π isometric warrants π(A) is closed in B, hence complete as
normed space. �

A second result shows that the spectrum of C∗-subalgebras or ∗-(iso)morphic im-
ages does not change.

Theorem 8.23 (Invariance of spectrum). Let A and B be C∗-algebras with unit.

(a) If A is C∗-subalgebra with unit in B,

σA(a) = σB(a) for any a ∈ A.

(b) If π : A→B is a ∗-homomorphism,

σB(π(a)) = σπ(A)(π(a))⊂ σA(a) for any a ∈ A.

The last inclusion is an equality if π is one-to-one.

Proof. (a) Let us observe, preliminarly, that the unit I is the same in A andB. If a∈A
moreover, a∗ is the same in A and B. It is clear that ρA(a)⊂ ρB(a), or equivalently
σB(a) ⊂ σA(a). Thus it is enough to prove, for any a ∈ A, that (a−λ I) has inverse
(a−λ I)−1 ∈ B belonging to A. This is the same as demanding that the possible in-
verse a−1 ∈B to a ∈ A is in A. Let us consider tha subcase where a = a∗ is inveritble
in B. Then σB(a)⊂ R, and since ρB(a) is open and 0 ∈ ρB(a) there is a disc D⊂ C
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of radius r > 0 at the origin that does not intersect σB(a). Hence f : x 	→ 1/x is con-
tinuous and bounded on σB(a), and we can define f (a) =Φa( f ) using Theorem 8.21
on a = a∗ ∈B. By construction a f (a) = f (a)a = I, i.e. f (a) = a−1 in B. If f (a) ∈ A
the proof ends here. By construction of the one-to-one ∗-homomorphismΦa, we have
f (a) = limn→+∞ pn(a), where the pn are polynomials and the limit is understood in
B. But pn(a) ∈ A by definition, for A is closed under algebraic operations. Since A
has the induced topology of B and A is closed, f (a) ∈ A as required, hence a−1 ∈ A.

Now consider tha case a ∈ A not self-adjoint, such that a−1 ∈ B. Then also
(a∗)−1 = (a−1)∗ ∈ B and we can write a−1 = (a∗a)−1a∗. Notice a∗a ∈ A is self-
adjoint, so (a∗a)−1 ∈ A by the previous argument. Trivially a∗ ∈ A, so a−1 =
(a∗a)−1a∗ ∈ A, thus ending part (a).
(b) The inclusion σπ(A)(π(a))⊂ σA(a) was proved in Corollary 8.18(b). The equality
σB(π(a)) = σπ(A)(π(a)) follows from part (a) and the fact π(A) is a C∗-subalgebra
with unit in B by Theorem 8.22(b). If π is one-to-one, σπ(A)(π(a)) = σA(a) follows
from (a) and the fact that π : A→ π(A) is a ∗-isomorphism of C∗-algebras with unit
by Theorem 8.22(a). �

Theorem 8.21 also permits to give a reasonable meaning to positive elements in
a C∗-algebra with unit. The definition and characterisation play an important role in
advanced formulations of quantum fields.

Definition 8.24. An element a in a C∗-algebra with unit A is positive if a = a∗ and
σ(a)⊂ [0,+∞). The set of positive elements of A is denoted by A+.

We have arrived at the characterisation of positive elements, together with other
properties, given in the next result.

Theorem 8.25 (On positive elements in a C∗-algebra with unit). Let A be a C∗-
algebra with unit.

(a) If α1, . . .αn ∈ [0,+∞) and a1, . . . ,an ∈ A are positive, then ∑n
j=1α ja j is positive,

so A+ is a closed convex cone in A.
(b) The following assertions, for any a ∈ A, are equivalent.

(i) a is positive;
(ii) a = a∗ and a = c∗c for some c ∈ A;
(iii) a = a∗ and a = b2 for some self-adjoint b ∈ A.

(c) If A0 ⊂ A is a C∗-subalgebra with unit, then A+
0 = A0∩A+, and A0 =< A+

0 >.
(d) If π :A→B is a ∗-homomorphism of C∗-algebras with unit, and a∈A is positive,
π(a) is positive.

Proof. (a) The claim is clearly true if n = 1, for σ(α1a1) = α1σ(a1), and α1a is self-
adjoint iff a1 is and α1 ≥ 0. So we will just prove the claim for n = 2 with α1 and α2

both non-zero. We will make use of the fact d is positive iff self-adjoint, plus

∣
∣
∣
∣I−||d||−1d

∣
∣
∣
∣≤ 1 .
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The above condition implies σ
(
I−||d||−1d

)⊂ [−1,1] i.e. 1−||d||−1σ(d)⊂ [−1,1],
by the properties of the spectral radius. This implies σ(d)⊂ [0,2||d||], so d is posit-
ive. Conversely, if d is positive then σ(d)⊂ [0, ||d||], so as before ||I−||d||−1d|| ≤ 1.
If d = d∗ and

||I−d|| ≤ 1

then d is positive with ||d|| ≤ 2. The proof is the same as the previous one. All these
facts in turn imply, if a1 and a2 are self-adjoint positive with ||a1|| = ||a2|| = 1 and
α1,α2 ∈ (0,1), α1 +α2 = 1, that the self-adjoint element α1a1 +α2a2 is positive. In
fact,

||I−α1a1 +α2a2|| ≤ α1||I−a1||+α2||I−a2|| ≤ α1 +α2 = 1

so α1a1 + α2a2 is positive. Multiply by λ > 0, so (renaming constants) λμa1 +
λ (1− μ)a2 is positive whichever μ ∈ (0,1) and λ ∈ (0,+∞) are chosen. If now
we take α1,α2 > 0 without further conditions, λ = α1 + α2 ∈ (0,+∞) and μ =
α1/(α1 +α2) ∈ (0,1) immediately, and

λμa1 +λ (1−μ)a2 = α1a1 +α2a2 .

But now α1a1 +α2a2 is positive for arbitrary α1,α2 > 0, so the claim is proved (note
that the constraint ||a1|| = ||a2|| = 1 has disappeared). Let us show A+ is closed.
If A+ � an → a ∈ A then ||an− a|| → 0, so ||an||− ||a|| → 0. That an ∈ A+, by the
properties of spectrum and spectral radius, implies || ||an||I−an|| ≤ ||an||. In the limit
n→+∞ we find || ||an||I−a|| ≤ ||a||, hence a ∈ A+.
(b) If (iii) holds, Proposition 8.19(d) gives σ(a) = σ(b2) = {λ 2 | λ ∈ σ(a)} ⊂
[0,+∞), so (iii) implies (i). Now the converse. Using continuous functional calculus,
and recalling a = a∗, the real continuous map

√· : σ(a) � x 	→ √
x allows to define√

a :=Φa(
√·). Set b :=

√
a, so b = b∗ and b2 = a, becauseΦa is a ∗-homomorphism.

Hence (i) and (iii) are equivalent. That (iii) implies (ii) is obvious. So there remains
to show (ii) gives (i). Let a = a∗, a = c∗c, and we claim σ(a)⊂ [0,+∞). By contra-
diction assume σ(−a) ⊂ (0,+∞). Then Proposition 8.19(e) tells σ(−cc∗) \ {0} =
σ(−c∗c)\{0} ⊂ (0,+∞). Decomposing c := c1 + ic2, c1,c2 self-adjoint, we have

c∗c+ cc∗ = 2c2
1 +2c2

2 .

But c2
1 and c2

2 are positive by (iii), and −cc∗ is positive by assumption. Hence the
linear combination with positive coefficients 2c2

1 + 2c2
2 − cc∗ = c∗c is a positive

operator by (a). Therefore σ(c∗c) ⊂ [0,+∞), but since σ(−c∗c) \ {0} ⊂ (0,+∞)
as well, we have σ(c∗c) = {0} i.e. σ(a) = σ(−a) = {0}, a contradiction. Hence
σ(−a)⊂ (−∞,0], i.e. σ(a)⊂ [0,+∞), so (ii) implies (i).
(c) If a∈A0 is positive inA, it is positive inA0 and conversely, for σA(a) =σA0(a) by
Theorem 8.23(a), and also a = a∗ is invariant. Hence A+

0 = A0∩A+. If a ∈ A0, write
a = a1 + ia2, with a1 := (a+a∗)/2 and a2 := (a−a∗)/(2i) self-adjoint. If b is self-
adjoint, we can define b+ := (|b|+b)/2 and b− := (|b|−b)/2, where |b|=Φb(| · |)
and | · | : C→ [0,+∞) is the modulus. Since Φb is a ∗-homomorphism and | · | is real-
valued, b+ and b− are self-adjoint because b is (in particular σ(b)⊂ R). Property (c)
in Theorem 8.21 says b+ and b− are positive, as |x|±x≥ 0 for any x ∈ σ(b)⊂ R. In



8.2 Functional calculus 329

conclusion, every a ∈ A0 is the complex linear combination of 4 positive elements in
A0, so A0 =< A+

0 >.
(d) This follows immediately from (b), using (iii) and bearing in mind π is a ∗-
homomorphism. �

8.2.3 Commutative Banach algebras and the Gelfand transform

In order to generalise the isometric ∗-homomorphism Φa : C(σ(a)) → A (defined
for a∗ = a ∈ A in Chapter 8.2.1) for a normal, not self-adjoint, we introduce some
technical results in the theory of commutative Banach (C∗-)algebras, due to Gelfand
and interesting by their own means. We will prove a characterisation, the commutat-
ive Gelfand–Najmark theorem, according to which any commutative C∗-algebra with
unit is canonically a C∗-algebra C(X) of functions with norm || ||∞ over the compact
Hausdorff space X given by the algebra itself.

We need a technical result that explains the relationship between maximal ideals
in Banach algebras and multiplicative linear functionals, after the mandatory defini-
tions. In the sequel every Banach algebra will be complex.

Definition 8.26. If A is a Banach algebra with unit, a subset I ⊂ A is a maximal
ideal if

(i) I is a subspace in A;
(ii) ba,ab ∈ I for any a ∈ I, b ∈ A;
(iii) I � A;
(iv) if I ⊂ J, with J as in (i), (ii), then either J = I or J = A.

Remarks 8.27. Conditions (i) and (ii) say I is an ideal, whereas (iii) prescribes the
ideal must be proper. Maximality is expressed by (iv). �

Definition 8.28. If A is a Banach algebra with unit, a multiplicative linear functional
φ : A→ C is called a character of A; i.e. φ(ab) = φ(a)φ(b). If A is also commutat-
ive, the set of non-trivial characters is denoted by σ(A) and called the spectrum of
the algebra.

Now we can state and prove the advertised proposition.

Proposition 8.29. Let A be a Banach algebra with unit I.

(a) A character χ of A is non-zero iff χ(I) = 1.
(b) A maximal ideal I ⊂ A is closed.
(c) If A is commutative, the map I : σ(A) � χ 	→ Ker(χ) ⊂ A is a bijection on the
set of maximal ideals.
(d) If A is commutative then σ(A)⊂ A′, i.e. characters are continuous.

Proof. Observe preliminarly that the existsence of the unit I in A, with ||I||= 1, im-
plies A � {0}.
(a) If χ is a character χ(a) = χ(Ia) = χ(I)χ(a). If χ � 0 then χ(a) � 0 for some
a ∈ A. Then χ(I) = 1. If χ(I) � 0, clearly χ � 0.
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(b) By assumption I � A, so I � I (otherwise a = aI ∈ I for any a ∈ A). Hence I � I. In
fact, if I ∈ I, since the the set of invertible elements is open (Remark 2.24(2)), there
would be an open neighbourhood B of I of invertible elements intersecting I. For any
a ∈ B∩ I, then, I = a−1a ∈ I, which cannot be. Therefore I � A, I being excluded.
Since I ⊃ I and I satisfies (i), (ii), (iii) in Definition 8.26, we have I = I by Defini-
tion 8.26(iv).
(c) If χ ∈ σ(A), Ker(χ) is a maximal ideal: (i),(ii) in Definition 8.26 are true as χ
is linear and multiplicative, and (iii) holds for χ � 0. Notice A= Ker(χ)⊕V , where
dim(V ) = 1, for this must be the dimension of the target space C of χ . Hence any sub-
space J⊂A including Ker(χ) properly must beA itself, so Ker(χ) is a maximal ideal.
Therefore the map I sends characters to maximal ideals. Let us show it is one-to-
one. If χ,χ ′ ∈σ(A) and Ker(χ) = Ker(χ ′) = N, byA= N⊕V we have χ(a) = χ(va)
and χ ′(a) = χ ′(va), where na ∈ N and va ∈V are the projections of a on N and V . If
e is a basis of V (1-dimensional), va = cae for some complex number ca determined
by a. Hence Ker(χ) = Ker(χ ′) implies χ(a) = avχ(e) and χ ′(a) = avχ ′(e). By (a)
χ(I) = χ ′(I) = 1, so χ(e) = χ ′(e) and χ = χ ′, proving injectivity. Now surjectiv-
ity. If I is a maximal ideal, it is closed by (b). It is easy to show the quotient space
A/I of equivalence classes [a] (a∼ a′ ⇔ a−a′ ∈ I) inherits a natural Banach space
structure and a commutative Banach algebra structure with unit [I] from A. By con-
struction A/I does not contain ideals other than A/I itself. So any non-null [a] ∈ A/I
is invertible, otherwise [a]A/I would be a proper ideal in A/I. The Gelfand-Mazur
theorem (8.10) guarantees the existence of a Banach space isomorphismψ :A/I→C.
If π : A � a → [a] ∈ A/I denotes the canonical projection (continuous by construc-
tion), χ := ψ ◦π : A→ C is an element of σ(A) with trivial null space Ker(χ) = I.
(d) The last argument above, being χ 	→ Ker(χ) a bijection, also tells that any char-
acter χ must look like ψ ◦π , for Ker(χ) = I. Thus χ is continuous, because ψ and π
are. �

Now it is time for the first theorem of Gelfand on commutative Banach algebras
with unit. We refer to the ∗-weak topology on the dual A′ of A (seen as Banach space)
introduced by Definition 2.68. More precisely, viewing σ(A) as subset of A′ with the
induced topology, we consider the algebra with unit C(σ(A)) of continuous maps
from σ(A) to C with norm || ||∞. One result of the theorem establishes that σ(A) is a
compact Hausdorff space; as we saw in Chapter 2 and 3 (Examples 2.26(4), 3.44(1)),
in fact, C(σ(A)) is a Banach algebra with unit (and also a C∗-algebra).

Theorem 8.30. Let A be a commutative Banach algebra with unit I and let

G : A � x 	→ x̂ : σ(A)→ C , (8.12)

denote the Gelfand transform, where

x̂(χ) := χ(x) , x ∈ A, χ ∈ σ(A). (8.13)

Then

(a) σ(A) is a ∗-weakly compact Hausdorff space, and ||χ|| ≤ 1 if χ ∈ σ(A) (||.|| is
the strong norm on A′).



8.2 Functional calculus 331

(b) If x ∈ A:
σ(x) = {x̂(χ) |χ ∈ σ(A)} .

(c) Â ⊂ C(σ(A)), and G : A→ C(σ(A)) is a homomorphism of Banach algebras
with unit.
(d) G : A→C(σ(A)) is continuous, ||x̂||∞ ≤ ||x|| for any x ∈ A.

Proof. (a) Consider χ ∈ σ(A) and the associated maximal ideal I = Ker(χ) under
Proposition 8.29(c). If x ∈ A, χ(x−χ(x)I) = 0, so x−χ(x)I ∈ I cannot be invertible
(cf. propostion 8.29(b)). Then χ(x) ∈ σ(x), so |χ(x)| ≤ ||x|| by elementary proper-
ties of the spectral radius. Consequently ||χ|| ≤ 1, where the norm defines the strong
topology. Therefore σ(A) is contained in the unit ball of the dual A′. We know this
set is ∗-weakly compact by Theorem 2.76 (Banach–Alaoglu). Since the ∗-weak to-
pology is Hausdorff, to finish it suffices to show σ(A) is ∗-weakly closed. Saying
σ(A) � χn → χ ∈ A′ in that topology means χn(x)→ χ for any x ∈ A. By continuity
χ is a character if all χn are. Thus σ(A) is closed in the ∗-weak topology.
(b) Above we proved χ(x)∈σ(x), so {x̂(χ) |χ ∈σ(A)}⊂σ(x). Let us prove the con-
verse inclusion. If λ ∈σ(x) then x−λ I is not invertible, so xA := {(x−λ I)y |y∈A} is
a proper ideal. Zorn’s lemma gives us a maximal ideal I containing xA. Let χI ∈ σ(A)
be the associated character by Proposition 8.29(c). Then x̂(χI) = χI(x) = λ and so
{x̂(χ) |χ ∈ σ(A)} ⊃ σ(x), as required.
(c) and (d) That G is a homomorphism of algebras with unit is straightforward,
because x̂ acts on characters χ (linear and multiplicative, plus Î(χ) := χ(I) = 1).
Moreover, from (b) and the definition of spectral radius we have ||x̂||∞ = r(x); on the
other hand r(x)≤ ||x|| by elementary properties of the spectral radius. �

Example 8.31. Let �1(Z) be the Banach space of maps f : Z→ C such that

|| f ||1 := ∑
n∈nZ

| f (n)|< +∞ .

Equip �1(Z) with the structure of a Banach algebra with unit by defining the product
using the convolution:

( f ∗g)(m) := ∑
n∈Z

f (m−n)g(n), f ,g ∈ �1(Z).

This product is well defined and satisfies || f ∗g||1 ≤ || f ||1||g||1, because:

∑
n∈Z

|( f ∗g)(n)|= ∑
n∈Z

∣
∣
∣
∣
∣∑m∈Z

f (n−m)g(m)

∣
∣
∣
∣
∣
≤ ∑

n∈Z
∑

m∈Z
| f (n−m)| |g(m)|

= ∑
m∈Z
∑
n∈Z

| f (n−m)| |g(m)| ≤ ∑
m∈Z

(

|g(m)|∑
n∈Z

| f (n−m)|
)

= ∑
m∈Z

|g(m)| || f ||1

= || f ||1 ||g||1 .

There is a unit I, the map I(n) = 1 if n = 0 and I(n) = 0 if n � 0. Since f ∗g = g∗ f , as
is easy to see, �1(Z) becomes a commutative Banach algebra with unit, and we can
apply Gelfand’s theory.
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Let S1 := {z ∈ C | |z|= 1} and define characters χz associated to z ∈ S1:

χz( f ) := ∑
n∈nZ

f (n)zn .

Trivially they are well-defined characters. Hence we have a function Γ : S1 � z 	→
χz ∈ σ(�1(Z)) easily seen to be invertible. Actually, it is a homeomorphism, for we
shall prove it is a continuous bijection between compact Hausdorff spaces (Proposi-
tion 1.23). Continuity, using the ∗-weak topology on σ(�1(Z)), amounts to continuity
of S1 � z 	→ χz( f )∈Cwith f ∈ �1(Z) fixed, because z 	→ χz( f ) is the uniform limit of
the continuous gm(z) :=∑|n|<m f (n)zn, for ∑n∈Z | f (n)zn|= || f ||1 < +∞ with |z|= 1.
Therefore we may identify the spectrum σ(�1(Z)) with S1 under the homeomorph-
ism Γ . The Gelfand transform f̂ of f ∈ �1(Z) is thus continuous on S1, and defined
by

f̂ (z) := ∑
n∈Z

f (n)zn .

The elementary theory of Fourier series forces f (n) to be the Fourier coefficient

f (n) =
1

2π

∫ 2π

0
f̂ (eiθ )e−inθdθ .

Therefore G (�1(Z)) is the subset, in the Banach algebra with unit (C(S1), || ||∞), of
maps with absolutely convergent Fourier series. Gelfand observed there is an inter-
esting consequence to that, corresponding to a classical statement due to Wiener (but
proved by different means):

Proposition 8.32. If h ∈C(S1) has absolutely convergent Fourier series and no zer-
oes, the map S1 � z 	→ 1/h(z) (belonging in C(S1)) has absolutely convergent Fourier
series.

Proof. First, h = f̂ for some f ∈ �1(Z). Since f̂ (z) � 0, then 0 � σ( f ) by The-
orem 8.30(b). Hence f has inverse g ∈ �1(Z) and ĝ = 1/h. We conclude that the
Fourier series of 1/h must converge absolutely. �

To conclude we consider the more rigid case in which A is a commutative C∗-
algebra with unit. Then the Gelfand transform defines an honest ∗-isomorphism of
C∗-algebras with unit, and must be isometric by Theorem 8.22(a). In fact we have
the following commutative version of the Gelfand–Najmark theorem.

Theorem 8.33 (Commutative Gelfand–Najmark theorem). Let A be a commutat-
ive C∗-algebra with unit. If we think C(σ(A)) as a commutative C∗-algebra with unit
(for the norm || ||∞), the Gelfand transform

G : A � x 	→ x̂ ∈C(σ(A)) where x̂(χ) := χ(x) , x ∈ A, χ ∈ σ(A),

is an isometric ∗-isomorphism.
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Proof. The only thing to prove is that the Gelfand transform defines a ∗-isomorphism,
because the rest follows from Theorem 8.22(a). Knowing the Gelfand transform is
an algebra homomorphism, though, requires we prove surjectivity and the involution
property only. The first lemma is that x̂ is real if x∗ = x ∈ A. If so, with t ∈ R we
define

ut := eitx :=
+∞

∑
n=0

(it)n

n!
xn

with respect to the norm of A. Since A is commutative, and working as we were in
C, we have u∗t = ut and u∗t ut = u0 = I. Taking norms gives ||ut ||= ||u−t ||= 1. If now
χ is a character (continuous, linear and multiplicative), we see χ(ut) = eitχ(x) and
χ(u−t) = e−itχ(x). So by Theorem 8.30(d):

|χ(u±t)|= |û±t(χ)| ≤ ||û±t ||∞ ≤ ||u±t || ≤ 1 .

That is to say |e±itχ(x)| ≤ 1, implying χ(x) ∈ R. Now if x ∈ A we can decompose
x = a+ ib, a = a∗, b = b∗. Hence

x̂∗(χ) = χ(x∗) = χ(a− ib) = χ(a)− iχ(b) = χ(a)+ iχ(b) = χ(x) = x̂(χ) .

Therefore the Gelfand transform preserves the involution.
To conclude we settle surjectivity, showing {x̂ | x ∈ A} = C(σ(A)). The set on

the left is closed as compact (continuous image of a compact set, Theorem 8.30)
in a Hausdorff space. By construction, this set is a closed ∗-subalgebra of C(σ(A))
containing the identity (̂I = 1, identity map). The elements of that algebra separate
points of σ(A): if χ1 � χ1 then χ1(x) � χ2(x) for some x ∈ A, so x̂(χ1) � x̂(χ2). The
Stone–Weiestrass theorem implies {x̂ | x ∈ A}= C(σ(A)). �

Remark 8.34. (1) The commutative Gelfand–Najmark theorem proves that every
commutative C∗-algebra A with unit is canonically a C∗-algebra C(X) of functions
with norm || ||∞ on a compact set X = σ(A). The “points” of X are the characters of
the C∗-algebra. Put equivalently, commutative C∗-algebras with unit are C∗-algebras
of functions built in a canonical manner via the algebra’s spectrum σ(A).
(2) If we start from a concrete C∗-algebra C(X) of functions on a compact Hausdorff
space X, Gelfand’s procedure recovers exactly this algebraic construction, because
characters, in the present case, are nothing but points in X. In fact, any x ∈ X can
be mapped one-to-one to the corresponding character χx : C(X)→ C, χx( f ) := f (x)
for any f ∈C(X). It can be proved that every character has this form by showing it
is positive (by multiplicativity), and that it must be a positive Borel measure by the
theorem of Riesz. Since the only multiplicative Borel measures are Dirac measures
δx, we have χ( f ) =

∫
X f dδx = f (x) for some x ∈ X determined by χ . Observe that

the topology on X coincides with the ∗-weak topology if we interpret points x ∈ X as
characters χx, as is immediate to verify.

Naïvely speaking, a compact Hausdorff space can be fully described by the com-
mutative C∗-algebra of its continuous complex functions. This remark can be taken,
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and indeed was by A. Connes, as a starting point to develop noncommutative geo-
metry: instead of using a commutative C∗-algebra with unit one takes a noncom-
mutative algebra, and the associated “space” is defined in terms of continuous linear
functionals on the algebra. �

8.2.4 Abstract C∗-algebras: functional calculus for continuous
maps and normal elements

We wish to extend Chapter 8.2.1 to normal elements a∈A: a∗a = aa∗ in a C∗-algebra
A with unit I. We want to make sense of the function f (a,a∗) ∈ A of a,a∗ when f is
a continuous complex-valued map defined on the spectrum of a.

A few preliminary remarks and notational issues must be seen to before defining
the functions f (a,a∗).

We can always decompose a and a∗ into linear combinations of two commuting
self-adjoint elements x,y:

a = xa + iya , a∗ = xa− iya , (8.14)

where by definition

xa :=
a+a∗

2
, ya :=

a−a∗

2i
. (8.15)

xa and ya are clearly self-adjoint. That they commute is also obvious, for a and a∗
commute.

Decomposition (8.19) reminds of the analogue splitting of a complex number into
real and imaginary parts

z = x+ iy , z = x− iy , (8.16)

where

x :=
z+ z

2
, y :=

z− z
2i

. (8.17)

Remarks 8.35. The maps f : σ(a) → C we shall deal with are to be thought of as
functions in x and y, imagining σ(a) as subset of R2 rather than C. Equivalently, the
variables may be taken to be z and z, considered independent. They are bijectively
determined by x,y, so maps in x, y are in one-to-one correspondence to maps in z, z:
to f = f (z,z) we may associate g = g(x,y):

g(x,y) := f (x+ iy,x− iy)

and conversely, to g = g(x,y) is associated f1 = f1(z,z), where

f1(z,z) := g((z+ z)/2,(z− z)/2i) .

Clearly, f1 = f . This fact will be used often without further notice. �

Now we are ready for the continuous functional calculus for normal elements.
The proof will be substantially different from Theorem 8.21, in that it will involve
the Gelfand transform of the previous section. We shall still use the name Φa for the
∗-isomorphism, because this generalises the one of Theorem 8.21.
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Theorem 8.36 (Functional calculus for continuous maps and normal elements).
Let A be a C∗-algebra with unit I and a ∈ A a normal element. View f as a function
of the independent variables z and z.

(a) There exists a unique ∗-homomorphism on the commutative C∗-algebra with unit
C(σ(a)):

Φa : C(σ(a)) � f 	→ f (a,a∗) ∈ A ,

such that
Φa(z) = a (8.18)

with z being the polynomial σ(a) � (z,z) 	→ z.
(b) The following properties hold:

(i) Φa is isometric: for any f ∈C(σ(a)), ||Φa( f )||= || f ||∞;
(ii) if ba = ab and ba∗ = a∗b for some b ∈A, then b f (a,a∗) = f (a,a∗)b for any

f ∈C(σ(a));
(iii) Φa preserves the involution: Φa( f ) =Φa( f )∗ for any f ∈C(σ(a)).

(c) σ( f (a,a∗)) = f (σ(a),σ(a)) for any f ∈C(σ(a)).
(d) If B is a C∗-algebra with unit and π : A→B a ∗-homomorphism,

π( f (a,a∗)) = f (π(a),π(a∗)) for any f ∈C(σA(a)).

(e) If a = a∗ the ∗-homomorphism Φa coincides with its analogue of Theorem 8.21.

Proof. (a), (b) and (e) Uniqueness is evident because if two ∗-homomorphisms
Φa : C(σ(a))→ A and Φ ′

a : C(σ(a))→ A satisfy Φa(z) = Φ ′
a(z) = a, by definition

they concide on the polynomial algebra in z and z, which is dense in C(σ(a)) in norm
|| ||∞ by Stone–Weierstrass (σ(a) is compact and Hausdorff). As ∗-homomorphisms
are continuous (Theorem 8.22), Φa( f ) = Φ ′

a( f ) for any f ∈C(σ(a)). The same ar-
gument proves, in the case a = a∗, that the ∗-homomorphism Φa coincides with its
cousin in Theorem 8.21. Likewise, if Φa is defined, then (ii) in (b) holds, because
if b commutes with a and a∗ it commutes with every polynomial in a, a∗, and by
continuity with any Φa( f ).

Let us showΦa exists and satisfies the remaining requests in (a) and (b). Consider
the commutative C∗-(sub)algebra with unit Aa ⊂ A spanned by I, a and a∗. It is the
closure, for the norm of A, of the set of polynomials p(a,a∗) with complex coeffi-
cients. The idea is to defineΦa(a) by G −1( f ), because the inverse Gelfand transform
G−1 : C(σ(A ))→Aa is an isometric ∗-isomorphism by Theorem 8.33. The problem
is that now f is defined on σ(Aa), not on σ(a). So let us prove σ(Aa) and σ(a)
are homeomorphic under F : σ(Aa) � χ 	→ χ(a) ∈ σ(a). That χ(a) ∈ σ(a) follows
from (b) in Theorem 8.30. The function is continuous because characters are continu-
ous, by Proposition 8.29(d), and it acts between compact Hausdorff spaces. Hence it
is enough to show it is bijective to have a homeomorphism (Proposition 1.23). If
F(χ) = F(χ ′) then χ(a) = χ ′(a), χ(a) = χ ′(a) (see the proof of Theorem 8.33) and
χ(a∗) = χ ′(a∗). On the other hand χ(I) = χ ′(I) = 1 by Proposition 8.29(a). Since χ
preserves sums and products, by continuity χ(b) = χ ′(b) if b∈Aa, and F is injective.
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F is onto by Theorem 8.30(b). Define

Φa( f ) := G−1( f ◦F)

for f ∈ C(σ(a)). By construction Φa is an isometric ∗-isomorphism from C(σ(a))
to Aa such that Φ−1

a (a) = z, where z is σ(a) � (z,z) 	→ z. In fact, Φ−1
a (a) = z means

G (a) = z◦F i.e. χ(a) = z(χ) for any character χ ∈ σ(Aa). But the latter is true by
definition of F . Hence (a), (b) are valid by redefining Φa as valued in the larger al-
gebra A.
(c) By Theorem 8.23, first of all, σA( f (a,a∗)) =σAa( f (a,a∗)), so we look at the spec-
trum of f (a,a∗) in Aa. ThenΦa : C(σ(a))→Aa defines an isometric ∗-isomorphism.
The abstract function f (a,a∗)− λ I corresponds to the concrete σ(s) � (z,z) 	→
f (z,z)−λ . Therefore f (a,a∗)−λ I is invertible iff σ(s) � (z,z) 	→ ( f (z,z)−λ )−1 is
in C(σ(a)). Since the range of f is compact (continuous image of a compact set), the
assertion is equivalent to λ � f (σ(a),σ(a)). Now (c) is immediate.
(d). We prove the equivalent π(Φa( f )) = Φπ(a)( f ). By construction C(σ(a)) �
f → π(Φa( f )) ∈ π(A) and C(σ(a)) � f → Φπ(a)( f ) ∈ π(A) are continuous ∗-
homomorphisms. Trivially, π(Φa(z)) = π(a) = Φπ(a)(z), π(Φa(z)) = π(a)∗ =
Φπ(a)(z) and π(Φa(1)) = I = Φπ(a)(1). Therefore π(Φa(p)) = Φπ(a)(p) on poly-
nomials p = p(z,z), and by continuity they coincide on any f ∈ σ(a). �

8.2.5 C∗-algebras of operators in B(H): functional calculus for
bounded measurable functions

Let us return to functional calculus for operators and specialise Chapter 8.2.4 to
A = B(H), H Hilbert space, and instead of the normal a ∈ A consider a normal op-
erator T ∈ B(H). Then the ∗-homomorphism ΦT is a representation of C(σ(T )) on
H (Definition 3.48). Here as well it is conveninet to decompose T into self-adjoint
operators X ,Y ∈B(H):

T = X + iY , T ∗ = X − iY , (8.19)

where

X :=
T +T ∗

2
, Y :=

T −T ∗

2i
. (8.20)

The operators X and Y are patently self-adjoint by construction, and commute since
T is normal and commutes with T ∗.

Decomposition (8.19) is akin to the real/imaginary decomposition of a complex
number

z = x+ iy , z = x− iy , (8.21)

where

x :=
z+ z

2
, y :=

z− z
2i

. (8.22)

As before, we may view f (z,z) as a complex function in x and y. Theorem 8.36 spe-
cialises, with identical proof, as follows. We refer to Definition 3.48 for the notion of
representation of a C∗-algebra.
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Proposition 8.37. Let H be a Hilbert space and T ∈B(H) a normal operator.

(a) There exists a unique representation of the commutative C∗-algebra with unit
C(σ(T )) on H:

ΦT : C(σ(T )) � f 	→ f (T,T ∗) ∈B(H) ,

such that, if z is the polynomial σ(T ) � (z,z) 	→ z:

ΦT (z) = T (8.23)

(b) We have:

(i) ΦT is faithful, as isometric: for any f ∈C(σ(T )), ||ΦT ( f )||= || f ||∞;
(ii) if, for A∈B(H), AT = TA and AT ∗ = T ∗A, then AΦT ( f ) =ΦT ( f )A for any

f ∈C(σ(T ));
(iii) ΦT preserves the involution: ΦT ( f ) =ΦT ( f )∗ for any f ∈C(σ(T )).

(c) σ(ΦT ( f )) = f (σ(T ),σ(T )), for any f ∈C(σ(T )).

One consequence is worth making explicit.

Corollary 8.38. Let H be a Hilbert space and T ∈B(H) a normal operator. Consider
the isometric ∗-homomorphism ΦT : C(σ(T ))→ B(H) defined in Proposition 8.37.
Then ΦT (C(σ(T ))), set of continuous functions in the variables T , T ∗ (defined on
σ(T )) is the smallest C∗-subalgebra with unit in B(H) containing I and T .

Proof. Every C∗-subalgebra with unit A of B(H) containing I and T must contain
polynomials in T , T ∗ (restricted to σ(T )). The construction that led to ΦT shows A
contains all continuous maps in T and T ∗, i.e.ΦT (C(σ(T ))). The latter, being the im-
age of a C∗-algebra with unit under an injective ∗-homomorphism, is a C∗-subalgebra
with unit of B(H) ((b) in Theorem 8.22). �

The fact that we are now working with a concrete C∗-algebra of operators allows
to make a further step forward in functional calculus. We can generalise the above
theorem by defining f (T,T ∗) when f is a bounded measurable, not necessarily con-
tinuous, map. In order to do so, in the lack of a Stone–Weierstrass-type theorem for
bounded measurable functions (C(X) is not dense in Mb(X) if X is compact with non-
empty interior in Rn, cf. Remark 2.26(4)), we shall use heavily Riesz’s representation
results (for Hilbert spaces and Borel measures).

Recall that on a topological space X, B(X) is the Borel σ -algebra on X. The
C∗-algebra of bounded measurable maps f : X → C is indicated with Mb(X) (Ex-
amples 2.26(3) and 3.44(1)).

Proposition 8.37 can be generalised to prove the existence and uniqueness of a ∗-
homomorphism of C∗-algebras with unit between Mb(σ(T )) andB(H) (the topology
on σ(T ) is induced by C ⊃ σ(T )). The next theorem has a host of consequences.
It will, in particular, be a crucial ingredient to prove the existence of the spectral
measure, in Theorem 8.54. Statement (iii) in (b) will be completed by Theorem 9.9.

Theorem 8.39 (Functional calculus for bounded measurable functions of normal
operators). Let H be a Hilbert space and T ∈B(H) a normal operator.
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(a) There is a unique representation of the commutative C∗-algebra with unit
Mb(σ(T )) (with respect to the norm || ||∞) on H:

Φ̂T : Mb(σ(T )) � f 	→ f (T,T ∗) ∈B(H) ,

such that:

(i) if z is the polynomial σ(a) � (z,z) 	→ z,

Φ̂T (z) = T ; (8.24)

(ii) if { fn}n∈N ⊂Mb(σ(T )) is bounded and converges pointwise to f : σ(T )→
C, then

Φ̂T ( f ) = w- lim
n→+∞

Φ̂T ( fn) .

(b) Φ̂T enjoys these properties:

(i) the restriction of Φ̂T to C(σ(T )) is the ∗-homomorphism ΦT of Proposi-
tion 8.37;

(ii) for any f ∈Mb(σ(T )), ||Φ̂T ( f )|| ≤ || f ||∞;
(iii) with A ∈ B(H), if AT = TA and AT ∗ = T ∗A then AΦ̂T ( f ) = Φ̂T ( f )A for

any f ∈Mb(σ(T ));
(iv) Φ̂T preserves the involution: Φ̂T ( f ) = Φ̂T ( f )∗ for any f ∈Mb(σ(T ));
(v) if { fn}n∈N ⊂Mb(σ(T )) is bounded and converges pointwise to f : σ(T )→

C, then
Φ̂T ( f ) = s- lim

n→+∞
Φ̂T ( fn) ;

(vi) if f ∈Mb(σ(T )) takes only real values and f ≥ 0, then Φ̂T ( f )≥ 0.

Proof. (a) Fix x,y ∈ H. The map

Lx,y : C(σ(T )) � f 	→ (x|ΦT ( f )y) ∈ C
is linear and ||Lx,y|| is given by:

sup{|Lx,y( f )| | f ∈C(σ(T )) , || f ||∞ = 1}
≤ ||x|| ||y|| sup{||ΦT ( f )|| | f ∈C(σ(T )) , || f ||∞ = 1}

(Cauchy-Schwarz was used). Since ΦT is isometric we find

||Lx,y|| ≤ ||x|| ||y|| ,
so Lx,y is bounded.

By Theorem 2.48 (Riesz’s representation theorem for complex measures) there
exists a unique complex measure μx,y (Definition 1.80) on the compact set σ(T )⊂C,
such that for any f ∈C(σ(T )):

Lx,y( f ) = (x|ΦT ( f )y) =
∫

σ(T )
f (λ )dμx,y(λ ) . (8.25)
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Moreover, |μx,y|(σ(T )) = ||Lx,y|| ≤ ||x|| ||y||. Aside, note that x = y forces μx,x to be a
real, positive, finite measure: in fact, if f ∈C(σ(T )) is real-valued ΦT ( f ) =ΦT ( f )∗
by part (iii) of Proposition 8.37(b), so
∫

σ(T )
f (λ )h(λ )d|μx,x(λ )|=

∫

σ(T )
f (λ )h(λ )d|μx,x(λ )|= (x|ΦT ( f )x)

= (ΦT ( f )x|x) = (x|ΦT ( f )x) =
∫

σ(T )
f (λ )h(λ )d|μx,x(λ )| ,

where we have decomposed dμx,x into hd|μx,x|, h being a measurable map of unit
norm determined, almost everywhere, by μx,x (Theorem 1.86), and |μx,x| being the
positive finite measure associated to μx,x called the total variation (Remark 1.81(2)).
By linearity

∫

σ(T )
f (λ )h(λ )d|μx,x(λ )|=

∫

σ(T )
f (λ )h(λ )d|μx,x(λ )|

must hold when f ∈ C(σ(T )) is complex-valued. Riesz’s Theorem 2.48 on com-
plex measures guarantees hd|μx,x| = hd|μx,x|, so h(λ ) = h(λ ) almost everywhere;
but |h(λ )|= 1, so h(λ ) = 1 almost everywhere, and hence μx,x is a real, positive and
finite measure (so is |μx,x|).

Use (8.25) to generalise Lx,y( f ) to the case f ∈ Mb(σ(T )), since the right-hand
side is well defined anyway: if g ∈Mb(σ(T )),

Lx,y(g) :=
∫

σ(T )
g(λ )dμx,y(λ ) . (8.26)

By general properties of complex measures (cf. Example 2.45(1)):

|Lx,y(g)| ≤ ||g||∞|μx,y|(σ(T ))≤ ||g||∞||x|| ||y|| . (8.27)

By construction, given g∈C(σ(T )), (x,y) 	→ Lx,y(g) is antilinear in x and linear in y.
One can prove this is still valid for g ∈Mb(σ(T )). Let us for instance show linearity
in y, the other case being similar. Given x,y,z ∈ H and g ∈ Mb(σ(T )), if α ,β ∈ C
then

α
∫

σ(T )
g(λ )dμx,y(λ )+β

∫

σ(T )
g(λ )dμx,z(λ ) =

∫

σ(T )
g(λ )dν(λ ) , (8.28)

where ν is the complex measure ν(E) := αμx,y(E) + βμx,z(E) for any Borel set
E ⊂ σ(T ). Remembering how we defined the μx,y (cf. (8.25)) and using the inner
product’s linearity on the right, we immediately see that for any f ∈C(σ(T )) repla-
cing g in (8.28) gives:

∫

σ(T )
f (λ )dμx,αy+β z(λ ) =

∫

σ(T )
f (λ )dν(λ ) .

Riesz’s theorem now tells μx,αy+β z = ν . Thus (8.28) reads, for any g ∈Mb(σ(T )):

α
∫

σ(T )
g(λ )dμx,y(λ )+β

∫

σ(T )
g(λ )dμx,z(λ ) =

∫

σ(T )
g(λ )μx,αy+β z(λ ) .

We proved Lx,y(g) is linear in y for any given x ∈ H and any g ∈Mb(σ(T )).
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Equation (8.27) implies the linear operator y 	→ Lx,y(g) is bounded, so by The-
orem 3.16 (Riesz’s once again), given g∈Mb(σ(T )) and x∈H, there exists a unique
vx ∈ H such that Lx,y(g) = (vx|y) for any y ∈ H. Since vx is linear in x (Lx,y(g)
is antilinear in x and the inner product (vx|y) is antilinear in vx), there is also a
unique operator g(T,T ∗)′ ∈ L(H) such that vx = g(T,T ∗)′x for any x ∈ H. Hence
Lx,y(g) = (g(T,T ∗)′x|y). Condition (8.27) implies g(T,T ∗)′ is bounded, for:

||g(T,T ∗)′x||2 = |(g(T,T ∗)′x|g(T,T ∗)′x)|
= |Lx,g(T,T∗)′x(g)| ≤ ||g||∞ ||x|| ||g(T,T ∗)′x|| ,

hence
||g(T,T ∗)′x||

||x|| ≤ ||g||∞

and then ||g(T,T ∗)′|| ≤ ||g||∞.
Setting g(T,T ∗) := g(T,T ∗)′∗, we proved that for g∈Mb(σ(T )) there is a unique

operator g(T,T ∗) ∈B(H) such that

Lx,y(g) = (x|g(T,T ∗)y)

for any x,y ∈ H. The linear mapping

Φ̂T : Mb(σ(T )) � f 	→ f (T,T ∗) ∈B(H) ,

where, for any x,y ∈ H,

Lx,y( f ) = (x| f (T,T ∗)y) :=
∫

σ(T )
f (λ )dμx,y(λ ) ,

is, by construction, an extension of ΦT : in particular (8.24) holds. The extension is
continuous because ||Φ̂T ( f )|| ≤ || f ||∞ for any f ∈Mb(σ(T )), in fact:

||Φ̂T ( f )||= || f (T,T ∗)||= || f (T,T ∗)′∗||= || f (T,T ∗)′|| ≤ || f ||∞ .

As Φ̂T extends the algebra homomorphism ΦT , to prove Φ̂T is an algebra homo-
morphism it suffices to show Φ̂T ( f ·g) = Φ̂T ( f )Φ̂T (g) when f ,g∈Mb(σ(T )). If the
two maps belong in C(σ(T )), the claim is true by Proposition 8.37 above. Suppose
f ,g ∈C(σ(T )). Then
∫

σ(T )
f ·g dμx,y = (x|Φ̂T ( f ·g)y) = (x|Φ̂T ( f )Φ̂T (g)y) =

∫

σ(T )
f dμx,Φ̂T (g)y .

The mentioned theorem of Riesz on complex measures implies that dμx,Φ̂T (g)y coin-

cides with g dμx,y. Thus, if f ∈Mb(σ(T )),
∫

σ(T )
f ·g dμx,y =

∫

σ(T )
f dμx,Φ̂T (g)y.
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From this follows, for any x,y ∈ H, f ∈Mb(σ(T )) and g ∈C(σ(T )):
∫

σ(T )
f ·g dμx,y =

∫

σ(T )
f dμx,Φ̂T (g)y = (x|Φ̂T ( f )Φ̂T (g)y) = (Φ̂T ( f )∗x|Φ̂T (g)y)

=
∫

σ(T )
g dμΦ̂T ( f )∗x,y .

Arguing as before and with Riesz’s theorem, the equality
∫

σ(T )
f ·g dμx,y =

∫

σ(T )
g dμΦ̂T ( f )∗x,y , (8.29)

valid for any g ∈C(σ(T )), forces f dμx,y = dμΦ̂T ( f )∗x,y, so (8.29) must hold for any

x,y ∈ H, and any f ,g ∈Mb(σ(T )). Therefore

(x|Φ̂T ( f ·g)y) =
∫

σ(T )
f ·g dμx,y =

∫

σ(T )
g dμΦ̂T ( f )∗x,y

= (Φ̂T ( f )∗x|Φ̂T (g)y) = (x|Φ̂T ( f )Φ̂T (g)y) ,

and consequently (
x
∣
∣
∣(Φ̂T ( f ·g)− Φ̂T ( f )Φ̂T (g))y

)
= 0 .

Choosing x as the second argument in the inner product gives

Φ̂T ( f ·g)y = Φ̂T ( f )Φ̂T (g)y

for any y ∈ H, f ,g ∈Mb(σ(T )), whence

Φ̂T ( f ·g) = Φ̂T ( f )Φ̂T (g) .

To show we have indeed a ∗-homomorphism we need to prove property (iv). Let x∈H
and g∈Mb(σ(T )). Since μx,x is real, we have (beware that complex conjugation does
not act on σ(T ), here thought of as subset in R2):

(x|Φ̂T (g)x) =
∫

σ(T )
g dμx,x =

∫

σ(T )
g dμx,x = (Φ̂T (g)x|x) = (x|Φ̂T (g)∗x) .

Hence (x|(Φ̂T (g)− Φ̂T (g)∗)x) = 0 for any x ∈ H. From Exercise 3.18 we have
Φ̂T (g) = Φ̂T (g)∗.

Property (ii) of (a) follows from (v) in (b), which we will prove below independ-
ently.

To finish (a), we show Φ̂T is unique under (a). LetΨ : Mb(σ(T ))→B(H) satisfy
(a). It must coincide with Φ̂T on polynomials, so by continuity (it is continuous being
a ∗-homomorphism of C∗-algebras with unit, and Theorem 8.22 holds) it coincides
with Φ̂T on C(σ(T )). Given x,y ∈ H, the map

νx,y : E 	→ (x|Ψ(χE)y) ,
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where E is an arbitrary Borel set in σ(T ) and χE its characteristic function, is a com-
plex measure on σ(T ). In fact νx,y(∅) = (x|Ψ (0)y) = 0; moreover, if {Sk}k∈N is a
family of pairwise disjoint Borel sets,

νx,y(∪kSk) = (x|Ψ (χ∪kSk)y) =

(

x

∣
∣
∣
∣
∣

lim
n→+∞

Ψ

(
n

∑
k=0

χSk

)

y

)

= lim
n→+∞

n

∑
k=0

(x|Ψ(χSk)y)

=
+∞

∑
k=0

νx,y(Sk) ,

where the left-hand side is always finite, we used (ii) in (a) and that, pointwise:

χ∪kSk =
+∞

∑
k=0

χSk . (8.30)

Observe that (8.30) does not depend on the labelling order of the Sk, for the series
has positive terms. Consequently

νx,y(∪kSk) =
+∞

∑
k=0

νx,y(Sk)

holds irrespective of the series’ ordering, and the series converges absolutely (The-
orem 1.82). This means νx,y is a complex measure.

Bearing in mindΨ ’s and the inner product’s linearity, plus the definition of in-
tegral of a simple map, we easily see

∫

σ(T )
s dνx,y = (x|Ψ(s)y)

for any simple map s ∈ S(σ(T )). If f ∈ Mb(σ(T )) and {sn} ⊂ S(σ(T )) converges
uniformly to f (the sequence exists by Proposition 7.49(b)), then byΨ ’s continuity
in norm || ||∞ and by dominated convergence relative to |νx,yS|, we have

(x|Ψ ( f )y) =
∫

σ(T )
f dνx,y (8.31)

for any f ∈ Mb(σ(T )). In particular, this must hold for f ∈ C(σ(T )), on whichΨ
coincides with Φ̂T . Therefore, Riesz’s Theorem 2.48 on complex measures implies
that νx,y coincides with the complex measure μx,y of the beginning, using which we
defined Φ̂T by

(x|Φ̂T ( f )y) =
∫

σ(T )
f dμx,y ,

for x,y ∈ H and f ∈ Mb(σ(T )). But then (8.31) implies Ψ( f ) = Φ̂T ( f ) for any
f ∈Mb(σ(T )), for νx,y = μx,y.
(b) We only need to prove (iii), (v) and (vi), because the rest were shown in part (a).
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Property (iii) holds when f ∈C(σ(T )), as we know from Proposition 8.37(b). If
AT = TA and AT ∗ = T ∗A,
∫

σ(T )
f dμx,Ay = (x|Φ̂T ( f )Ay) = (x|AΦ̂T ( f )y) = (A∗x|Φ̂T ( f )y) =

∫

σ(T )
f dμA∗x,y ,

for any vectors x,y ∈ H and any f ∈C(σ(T )). Riesz’s Theorem 2.48 on the repres-
entation of complex measures on Borel sets ensures μA∗x,y = μx,Ay, hence

(x|Φ̂T ( f )Ay) =
∫

σ(T )
f dμx,Ay =

∫

σ(T )
f dμA∗x,y = (A∗x|Φ̂T ( f )y) = (x|AΦ̂T ( f )y)

for any x,y ∈ H, f ∈Mb(σ(T )). As the vectors x,y are arbitrary, Φ̂T ( f )A = AΦ̂T ( f )
if f ∈Mb(σ(T )).

Let us prove (v), so take a sequence { fn}n∈N ⊂Mb(σ(T )), bounded (in absolute
value) by K > 0, that converges to f : σ(T )→ C. So || f ||∞ ≤ K and f is measurable,
forcing f ∈Mb(σ(T )). Given x,y ∈ H and using (iv) in (b),

||(Φ̂T ( fn)− Φ̂T ( f ))x||2 = ((Φ̂T ( fn)− Φ̂T ( f ))x|(Φ̂T ( fn)− Φ̂T ( f ))x)

= (x|(Φ̂T ( fn− f )∗Φ̂T ( fn− f )x) = (x|Φ̂T (| f − fn|2)x) .

The last terms can be written as
∫

σ(T )
| f − fn|2 dμx,x =

∫

σ(T )
| f − fn|2 hd|μx,x| ,

where |μx,x| is the positive measure (the total variation of Remark 1.81(2)) associated
the real (signed) measure μx,x, and h is a measurable function of constant modulus 1
(Theorem 1.86). (Actually, we saw in part (a) that μx,x is a positive real measure, so
|μx,x|= μx,x and h = 1.) Because

|μx,x|(σ(T )) < +∞ ,

the dominated convergence theorem implies |h|| f − fn|2 converges to 0 in
L1(σ(T ), |μx,x|). Hence as n→+∞, ||(Φ̂T ( fn)− Φ̂T ( f ))x||2 → 0 for any x ∈ H.

Eventually, let us prove (vi). The proof is easy and follows from The-
orem 8.25(iii), but here is an alternative argument. If Mb(σ(T ))� f ≥ 0, then f = g2

where 0 ≤ g ∈ Mb(σ(T )). By (a), Φ̂T ( f ) = Φ̂T (g · g) = Φ̂T (g)Φ̂T (g). Moreover,
Φ̂T (g)∗ = Φ̂T (g) = Φ̂T (g) (by (iv)), so Φ̂T (g · g) = Φ̂T (g)∗Φ̂T (g). The right-hand
side is patently positive. �

Remarks 8.40. The spectral decomposition theorem, proved later, is in some sense
a way to interpret the operator f (T,T ∗) in terms of an integral of f with respect
to an operator-valued measure: integrating bounded measurable functions produces,
instead of numbers, operators. The version of the spectral decomposition theorem
presented in this chapter states that there is always such a measure, for any bounded
normal operator. �
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8.3 Projector-valued measures (PVMs)

In this section we introduce projector-valued measures (PVM), also called spectral
measures. They are the central tool to state spectral theorems, and represent a gener-
alisation of the notion of measure on the Borel σ -algebra of a topological space X,
where now the measure’s range is not in R, but rather a subset of orthogonal project-
ors P(H) in a Hilbert space H:

B(X) � E 	→ P(E) ∈P(H) .

Thereby we will be able to integrate functions to obtain operators. We will see, in
particular, that the homomorphism Φ̂T , studied in the previous section and associ-
ated to a bounded normal operator T , is nothing else than an integral with respect to
a PVM generated by T :

Φ̂T ( f ) =
∫

σ(T )
f (x)dP(T )(x) .

Projector-valued measures made their appearance already in Chapter 7 (Defini-
tion 7.46), in the special case where the σ -algebra of the PVM was B(R). A quantum
observable, in the sense of the previous chapter, is a special spectral measure, by vir-
tue of Proposition 7.44. In that case the operator to which such a PVM is attached is
not just normal, but self-adjoint as well.

8.3.1 Spectral measures, or PVMs

We remind that for T,U ∈B(H), H Hilbert space, T ≥U means (x|T x)≥ (x|Ux) for
any x ∈ H (see Definition 3.51(f) and the ensuing comments).

Definition 8.41. If H is a Hilbert space, (X,T ) a second-countable space and B(X)
the Borel σ -algebra on X, P : B(X) → B(H) is called spectral measure on X, or
equivalently projector-valued measure on X (PVM), if the following requisites are
satisfied.

(a) P(B)≥ 0 for any B ∈B(X).
(b) P(B)P(B′) = P(B∩B′) for any B,B′ ∈B(X).
(c) P(X) = I.
(d) if {Bn}n∈N ⊂B(X), with Bn∩Bm = ∅, n � m:

s-
+∞

∑
n=0

P(Bn) = P(∪n∈NBn) .

The support of P is the closed set

supp(P) := X\
⋃

A∈T ,P(A)=0

A .

When X = Rn or Cn, P is called bounded if supp(P) is bounded.
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Dropping (b), what remains in Definition 8.41 gives a POVM, a positive
operator-valued measure, that we will discuss in Chapter 13. Another related and
useful definition is the following.

Definition 8.42. If P : B(X)→B(H) is a PVM, a measurable function f : X→ C is
said essentially bounded for P when

P({x ∈ X | | f (x)| ≥M}) = 0 for some M < +∞. (8.32)

If f is essentially bounded, the greatest lower bound || f ||(P)
∞ on the set of M ≥ 0

satisfying (8.32) is called essential (semi)norm of f in P.

The next proposition treats the basic properties of PVMs. In particular, as the
name PVM itself suggests, P(E) ∈ P(H), where as usual P(H) are the orthogonal
projectors on the Hilbert space H.

Proposition 8.43. Retaining Definition 8.41, the following facts hold.

(a) P(B) ∈ P(H) for any B ∈ B(X). Conditions (a) and (b) in Definition 8.41 may
be replaced by the equivalent requirement that P(B) is an orthogonal projector if
B ∈B(X).
(b) P is monotone: P(C)≤ P(B) for B,C ∈B(X), C ⊂ B.
(c) P is sub-additive: if Bn ∈B(X), n ∈ N, then

(x |P(∪n∈NBn) x)≤ ∑
n∈N

(x|P(Bn)x) for any x ∈ H.

(d) P(supp(P)) = I, so P is concentrated on supp(P), i.e.

(i) P(B) = P(B∩ supp(P)) for B ∈B(X);
(ii) P(C) = 0 if either C = ∅ or C ⊂ X\ supp(P) and C ∈B(X).

Proof. (a) The operators P(B) are idempotent, P(B)P(B) = P(B ∩ B) = P(B),
by Definition 8.41(b), and self-adjoint because bounded and positive (by Defini-
tion 8.41(a)), so they are orthogonal projectors. We claim that if (c) and (d) in Defini-
tion 8.41 hold, and every P(B) is an orthogonal projector, then also (a) and (b) hold in
Definition 8.41. Part (a) is trivial, for any P(E) is an orthogonal projector, hence pos-
itive. By part (d), if E1,E2 ∈ B(X) and E1 ∩ E2 = ∅ then P(E1 ∪ E2) = P(E1) +
P(E2). Multiplying by P(E1 ∪ E2) = P(E1) + P(E2), and recalling we are using
(idempotent) projectors, gives P(E1)P(E2)+P(E2)P(E1) = 0 and so P(E1)P(E2) =
−P(E2)P(E1); applying now P(E1) and recalling that P(E1)P(E2) =−P(E2)P(E1),
we find P(E1)P(E2) = P(E2)P(E1). Therefore P(E1)P(E2) = 1

2 (P(E1)P(E2) +
P(E2)P(E1)) = 0 if E1 ∩E2 = ∅. Now set C = B∩B′, E1 = B \C, E2 = B′ \C for
B,B′ ∈B(X). Remember E1∩E2 = E1∩C = E2∩C = ∅. Then

P(B)P(B′) = (P(E1)+P(C))(P(E2)+P(C)) = P(C)P(C) = P(C) = P(B∩B′)

i.e. property (b) in 8.41.
(b) B = C∪ (B \C) and C∩ (B \C) = ∅ so by Definition 8.41(d) follows P(B) =
P(C)+P(B\C). But P(B\C)≥ 0, so P(C)≤ P(B).
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(c) Define B := ∪n∈NBn and the sequence {Cn}n∈N, with C0 := B0, C1 := B1 \B0,
C2 := B2 \ (B0 ∪B1) and so on. Clearly Ck ∩Ch = ∅ if h � k and B = ∪n∈NCn. By
Definition 8.41(d), then, P(B) = s-∑+∞

n=0 P(Ck) and thus (x|P(B)x) =∑+∞
n=0(x|P(Ck)x).

Since Ck ⊂ Bk for any k ∈ N, by monotonicity (x|P(Ck)x) ≤ (x|P(Bk)x), i.e.
(x|P(B)x)≤ ∑+∞

n=0(x|P(Bk)x).
(d) P(supp(P)) = I is obviously equivalent to (Definition 8.41(d) in the finite case)
to P(A) = 0, where A := X \ supp(P). To prove the latter, notice that by definition
A is the union of open sets with null spectral measure. As X is second-countable,
Lindelöf’s lemma (Theorem 1.8) says we can extract a countable subcovering. Put
differently, A = ∪n∈NAn with P(An) = 0 for any n ∈N. Using sub-additivity, for any
x ∈ H,

0≤ ||P(A)x||2 = (P(A)x|P(A)x) = (x|P(A)x)≤ ∑
n∈N

(x|P(An)x) = 0 ,

hence P(A) = 0. Property (ii) is immediate by monotonicity (note ∅ ⊂ X\ supp(P)
and ∅ ∈ B(X)). With A defined as above, property (i) is a consequence of writ-
ing B = (B ∩ supp(P)) ∪ (B ∩ A): Definition 8.41(d) in fact gives P(B) = P(B ∩
supp(P))+P(B∩A), and we can use (ii). �

Remark 8.44. (1) If f : X → C is measurable, property (ii) in Proposition 8.43(d)
implies immediately the first inequality below:

|| f ||(P)
∞ ≤ || f�supp(P) ||∞ ≤ || f ||∞ (8.33)

(the second one is obvious). Equation (8.33) holds trivially when one among

|| f ||(P)
∞ , || f�supp(P) ||∞, || f ||∞ is +∞.

(2) The set of measurable functions that are essentially bounded for P is a vector

space, and || ||(P)
∞ is a seminorm on it.

(3) In this text we will only work with PVMs defined on Borel σ -algebras B(X) com-
ing from second-countable spaces X. This is not strictly necessary, and almost the
entire story could be developed using general σ -algebras (see for instance [Rud91]).
Our choice is only motivated by simplicity. First of all, the support of the PVM satis-
fies, thus, the properties established by Proposition 8.43(d) (which justify the notion
of support), showing the spectral measure is concentrated on it (in analogy to Pro-
position 1.45 forσ -additive positive measures). Secondly, the spectral decomposition
theorem is stated over C (or R), whose topology is second-countable. �

8.3.2 Integrating bounded measurable functions in a PVM

We pass now to define a procedure to integrate bounded measurable functions f :
X→ C with respect to a projector-valued measure P : B(X)→B(H).

Recall that given a space X with a σ -algebra Σ , a (complex-valued) map s : X→
C, measurable for Σ , is called simple when its range is finite.

Notation 8.45. If X is a topological space, S(X) denotes the vector space of complex-
valued simple functions on X, relative to the Borel σ -algebras B(X). �
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Let a PVM be given, on a second-countable space X, with values in B(H) for
some Hilbert space H. Consider a map s ∈ S(X). We can always write it, for suitable
ci ∈ C and I finite, as follows:

s =∑
i∈I

ciχEi . (8.34)

As, by definition, the range of a simple function consists of finitely many distinct
values, the expression above is uniquely determined by s once we require the sets Ei

to be measurable and pairwise disjoint, and that the complex numbers ci are distinct.
We define the integral of s with respect to P as the operator in B(H):

∫

X
s(x)dP(x) :=∑

i∈I
ciP(Ei) . (8.35)

Remarks 8.46. If we do not insist the above ci be distinct, there are several ways to
write s as a linear combination of characteristic functions of disjoint measurable sets.
Using the same argument as for an ordinary measure it is easy to prove, however,
that the integral of s does not depend on the particular representation of s chosen. �

The mapping

I : S(X) � s 	→
∫

X
s(x)dP(x) ∈B(X) , (8.36)

is linear, i.e. I ∈ L(S(X),B(H)), as the previous remark easily implies. Since S(X)
and B(H) are normed spaces, L(S(X),B(H)) is equipped with the operator norm. I
turns out to be a bounded operator for this norm. Let us prove this fact, and con-
sider s ∈ S(X) of the form (8.34). As the Ek are pairwise disjoint, P(E j)P(Ei) =
P(E j ∩Ei) = 0 if i � j or P(E j)P(Ei) = P(Ei) if i = j. If x ∈ H

||I(s)x||2 = (I(s)x|I(s)x) =

(

∑
i∈I

ciP(Ei)x

∣
∣
∣
∣
∣∑j∈I

c jP(E j)x

)

= ∑
i, j∈I

(
ciP(E j)∗P(Ei)x

∣
∣c jx
)

= ∑
i, j∈I

(
ciP(E j)P(Ei)x

∣
∣c jx
)

=∑
i∈I
|ci|2(x|P(Ei)x)≤ sup

i∈I′
|ci|2∑

i∈I′
(x|P(Ei)x) ,

where I′ ⊂ I is made by indices for which P(Ei) � 0. By additivity and monotonicity

∑
i∈I′

(x|P(Ei)x)≤ (x|P(∪i∈I′Ei)x)≤ (x|P(X)x) = (x|x) = ||x||2 .

But I′ is finite, so trivially ||s||P∞ = supi∈I′ |ci|, and hence ||I(s)x||2 ≤ ||x||2(||s||P∞)2.
Taking the least upper bound over unit vectors x ∈ H:

||I(s)|| ≤ ||s||(P)
∞ .

But ||s||(P)
∞ coincides with one of the values of |s|, say |ck| if we choose x ∈ P(Ek)(H)

(� {0} by construction). Thus by x = P(Ek)x we have

I(s)x =∑
i∈I′

ciP(Ei)x =∑
i∈I′

ciP(Ei)P(Ek)x = ckP(Ek)x = ckx .
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So choosing x with ||x|| = 1 we obtain ||I(s)x|| = ||s||(P)
∞ . Therefore I is certainly

continuous on S(X) ⊂ Mb(X) in norm || ||∞, by what we have just proved and by
(8.33):

||I(s)||= ||s||(P)
∞ ≤ ||s �supp(P) ||∞ ≤ ||s||∞ . (8.37)

This settled, we can define integrals of bounded measurable functions, by prolonging
I by linearity and continuity to the whole Banach space Mb(X) of bounded measur-
able maps f : X→ C. Mb(X) contains S(X) as dense subspace in norm || ||∞, by Pro-
position 7.49(b). The operator I : S(X)→ B(H) is continuous. By Proposition 2.44
there exists one and only one bounded operator from Mb(X) to B(H) extending I.

Definition 8.47. Let X be a second-countable space, H a Hilbert space and P :
B(X)→B(H) a projector-valued measure defined on the Borel σ -algebra of X.

(a) The unique bounded extension Î : Mb(X) → B(H) of the operator I : S(X) →
B(H) (cf. (8.35)–(8.36)) is called integral operator in P.
(b) For any f ∈Mb(X): ∫

X
f (x)dP(x) := Î( f )

is the integral of f with respect to the projector-valued measure P.
(c) Let f : X→ C be measurable, not necessarily bounded. If f�E∈Mb(E) with E ⊂
B(X), we define: ∫

E
f (x)dP(x) :=

∫

X
χE(x) f (x)dP(x) .

If g ∈Mb(E), with E ⊂B(X), we set:
∫

E
g(x)dP(x) :=

∫

X
g0(x)dP(x) ,

where g0(x) := g(x) if x ∈ E, or g0(x) := 0 if x � E.

Remarks 8.48. If P is a spectral measure on X and supp(P) � X, we can restrict
P to a spectral measure P�supp(P) on supp(P) (with induced topology), by defining
P�supp(P) (E) := P(E) for any Borel set E ⊂B(supp(P)). The fact that P�supp(P) is
a PVM is immediate using Proposition 8.43, especially part (d). From (i) in (d) we
have, for any s ∈ S(X),

∫

X
sdP =

∫

supp(P)
sdP =

∫

supp(P)
s�supp(P) dP�supp(P) ,

where the second integral is understood in the sense of Definition 8.47(c). If S(X) �
sn → f in norm || ||∞, then S(X)� sn�supp(P)→ f�supp(P) in the same norm. Therefore
the definition of integral of some f ∈Mb(X) with respect to P tells that
∫

X
f dP =

∫

supp(P)
f dP =

∫

supp(P)
f�supp(P) dP�supp(P) for any f ∈Mb(X). (8.38)

�
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Examples 8.49. (1) Let us see a concrete example lest the procedure seem too ab-
stract. The (generalisation of this) example actually covers all possibilities, as we
shall explain.

Consider the Hilbert space H = L2(X,μ), where X is second countable and μ a
positive σ -additive measure on the Borel σ -algebra of X. A spectral measure on H
arises by defining, for any ψ ∈ L2(X,μ) and E ∈B(X),

(P(E)ψ)(x) := χE(x)ψ(x) , for almost every x ∈ X . (8.39)

The map B(X) � E 	→ P(E) easily defines a spectral measure on L2(X,μ). We want
to understand what the operators

∫
X f (x)dP(x) look like, for any map of Mb(X).

If ψ ∈ L2(X,μ) and f ∈ Mb(X), then f ·ψ ∈ L2(X,μ), where · is the pointwise
product of maps, for:

∫

X
| f (x)ψ(x)|2 dμ(x)≤ || f ||2∞

∫

X
|ψ(x)|2 dμ(x) < +∞ .

In particular, we proved
|| f ·ψ || ≤ || f ||∞||ψ ||

if f ∈Mb(X) and ψ ∈ L2(X,μ). Consequently:
if { fn}n∈N ⊂ Mb(X) and fn → f ∈ Mb(X) in norm || ||∞, as n → +∞, then also
fn ·ψ → f ·ψ in L2(X,μ).

Moreover, if s∈ S(X), the operator
∫

X s(x)dP(x) can be made explicit using (8.39)
and (8.35): for any ψ ∈ L2(X), in fact,

(∫

X
s(y)dP(y)ψ

)

(x) = s(x)ψ(x) .

Hence if {sn}⊂ S(X) converges uniformly to f ∈Mb(X) (by Proposition 7.49(b) such
a sequence exists for any f ∈Mb(X)), we have

sn ·ψ =
∫

X
sn(x)dP(x)ψ →

∫

X
f (x)dP(x)ψ

as n →+∞, by the definition of integral via the continuous prolongation Î of I. On
the other hand we saw at the beginning that under our assumptions (with fn := sn)
we have sn ·ψ → f ·ψ in L2(X), as n→+∞, so

(∫

X
f (y)dP(y)ψ

)

(x) = f (x)ψ(x) for almost every x ∈ X, (8.40)

for any f ∈ Mb(X), ψ ∈ L2(X,μ). Equation (8.40) gives the explicit form of the in-
tegral operator of f with respect to the PVM of (8.39).
(2) For the second example consider a basis N of a separable Hilbert space H. Endow
N with the discrete topology of the power set of N, for which singlets are open and
the associated Borel σ -algebra is the topology itself, and hence is the power set. Note
N is second countable as a topological space. If E ⊂ N is a Borel subset, consider the
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closed subspace HE := < {z}z∈E >. The orthogonal projector onto such subspace is
(cf. Proposition 3.58(d))

P(E) := s-∑
z∈E

(z| )z ,

E being a basis of HE . It is easy to check P : B(N)� E 	→ P(E) is indeed a projector-
valued measure. One can also prove, for any f : N → C bounded,

∫

N
f (z)dP(z) = s-∑

z∈N

f (z) (z| ) z . (8.41)

The proof can be obtained using example (1), because (Theorem 3.28) H and L2(N,μ)
are isomorphic Hilbert spaces under the surjective isometry U : H→ L2(N,μ) send-
ing x ∈ H to the map z 	→ ψx(z) := (z|x), where μ is N’s counting measure. Q(E) :=
UP(E)U−1 is indeed the operator in L2(N,μ) that multiplies by the characteristic
function of E: we obtain thus a spectral measure Q : B(N) � E 	→ Q(E) of the kind
of example (1). Using the integral of a map f ∈ Mb(X) defined by simple integrals,
for which

∫

N
s(z)dQ(z) =∑

i

ciQ(Ei) = U∑
i

ciP(Ei)U−1 = U
∫

N
s(z)dP(z)U−1 ,

we obtain ∫

N
f (z)dQ(z) = U

∫

N
f (z)dP(z)U−1 , (8.42)

by continuity of the composite in B(H). Equation (8.40) implies
∫

N
f (z)dQ(z)ψ = f ·ψ . (8.43)

From (8.42) and (8.43), then
∫

N
f (z)dP(z)φ = U−1 f ·Uφ = ∑

z∈N

f (z) (z|φ) z ,

where we used the definition of U (cf. Theorem 3.28):

U : H � φ 	→ {(z|φ)}z∈N ∈ L2(N,μ)

and the inverse:
U−1 : L2(N,μ) � {αz}z∈N 	→ ∑

z∈N
αzz ∈ H .

Altogether, we proved that
∫

N
f (z)dP(z) = s-∑

z∈N
f (z) (z| ) z

as required.
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(3) The third example generalises the previous one. Consider a set X equipped with
a second-countable topology in which every singlet {x}, x ∈ X, belongs to the asso-
ciated Borel σ -algebra B(X). For instance, take X countable with the discrete topo-
logy, or, more trivially, X = R with standard topology, or X := {0}∪{±1/n | n =
1,2, . . .} ⊂ R with topology induced by R. Let us define a family of orthogonal pro-
jectors Pλ : H→H on the Hilbert space H, for any λ ∈ X. In order to have a PVM we
impose three conditions:

(a) PλPμ = 0, for λ ,μ ∈ X, λ � μ ;
(b) ∑λ∈X ||Pλψ ||2 < +∞ , for any ψ ∈ H;
(c) ∑λ∈X Pλψ = ψ , for any ψ ∈ H.

Condition (b) implies that only countably many (at most, see Proposition 3.21) ele-
ments Pλψ are non-zero, even if X is not countable; by (a), the vectors Pλψ and Pμψ
are orthogonal if λ � μ , so Lemma 3.25 guarantees that the sum of (c) is well defined
and may be rearranged at will.

That (a), (b), (c) hold is proved by exhibiting a family that satisfies them. The
simplest case is given by the projectors P({z}), z ∈ N, of example (2) when X is a
basis. An instance where X is not a basis will be described in Example 8.58(1). Take
a self-adjoint compact operator T , set X = σp(T ) and define Pλ , λ ∈ σp(T ), to be
the orthogonal projector onto the λ -eigenspace. X has the topology induced by R. By
Theorems 4.17 and 4.18 conditions (a), (b) and (c) follow.
We shall rephrase the latter two combined as:

s- ∑
λ∈X

Pλ = I . (8.44)

With these assumptions, P : B(X)→B(H), defined so that

P(E) = s- ∑
λ∈E

Pλ , (8.45)

for any E ⊂B(X), is a projector-valued measure on H. The sum ∑λ∈E Pλψ always
exists in H, for any ψ ∈ H, and does not depend on the ordering: this fact is a con-
sequence of condition (b), because of Lemma 3.25. Now we wish to prove

∫

X
f (x)dP(x) = s-∑

x∈X

f (x)Px (8.46)

for any f ∈ Mb(X). The right-hand side is well defined and can be re-ordered by
Lemma 3.25, because for any ψ ∈ H:

∑
x∈X

|| f (x)Pxψ ||2 ≤ || f ||2∞ ∑
x∈X

||Pxψ ||2 = || f ||2∞ ∑
x∈X

(Pxψ |Pxψ) = || f ||2∞ ∑
x∈X

(ψ |P2
x ψ)

= || f ||2∞ ∑
x∈X

(ψ |Pxψ) = || f ||2∞
(

ψ

∣
∣
∣
∣
∣∑x∈X

Pxψ

)

= || f ||2∞(ψ |ψ) = || f ||2∞||ψ ||2 ,
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the last equality coming from (8.44). If s∈ S(X) is simple, using (8.45) and the defin-
ition of integral, we have

∫

X
s(x)dP(x)ψ =∑

i
ciP(Ei)ψ =∑

i
∑

x∈Ei

s(x)Pxψ = ∑
x∈X

s(x)Pxψ , (8.47)

for any ψ ∈ H. Note that in the second equality we used that s(x) = ∑i ciχEi implies
ci = s(x) for all x ∈ Ei.

If {sn} ⊂ S(X) and sn → f ∈Mb(X) uniformly, then for any ψ ∈ H:
∫

X
f (x)dP(x)ψ−

∫

X
sn(x)dP(x)ψ → 0 , (8.48)

as n→+∞, by definition of integral of bounded measurable maps. At the same time,
(8.47) and condition (a) give

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣∑x∈X

f (x)Pxψ−
∫

X
sn(x)dP(x)ψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

= ∑
x∈X

| f (x)−sn(x)|2||Pxψ ||2 ≤ || f −sn||2∞||ψ ||2 .

The last term goes to zero as n→+∞. By (8.48) and uniqueness of limits in H,

∑
x∈X

f (x)Pxψ =
∫

X
f (x)dP(x)ψ ,

for any ψ ∈ H, so (8.46) holds. �

8.3.3 Properties of operators obtained integrating bounded maps
with respect to PVMs

In this section we examine the properties of the integral operator, separating them in
two groups.

The first theorem establishes basic features of the integral operator. Concerning
item (v) in (c), we remind that if B(X) denotes the Borel σ -algebra of a topological
space X, the support of a measure μ on B(X), either positive, σ -additive or complex
(Definitions 1.44 and 1.83), is the closed set supp(μ)⊂ X given by the complement
of the union of all open sets A⊂ X with μ(A) = 0.

Theorem 8.50. Let X be a second-countable space, (H,( | )) a Hilbert space and
P : B(X)→B(H) a projector-valued measure.

(a) For any f ∈Mb(X),
∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f (x)dP(x)

∣
∣
∣
∣

∣
∣
∣
∣= || f ||(P)

∞ ≤ || f �supp(P) ||∞ . (8.49)

(b) The integral operator with respect to P is positive:
∫

X
f (x)dP(x)≥ 0 if 0≤ f ∈Mb(X) .
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(c) For any ψ ,φ ∈ H, the map

μψ,φ : B(X) � E 	→
(

ψ
∣
∣
∣
∣

∫

X
χE dP(x)φ

)

satisfies the following properties:

(i) μψ,φ is a complex measure on X, called complex spectral measure asso-
ciated to ψ and φ ;

(ii) ifψ = φ , then μψ := μψ,ψ is a finite positive measure on X, called (positive)
spectral measure associated to ψ;

(iii) μψ,φ (X) = (ψ |φ), and in particular μψ(X) = ||ψ ||2;
(iv) for any f ∈Mb(X):

(

ψ
∣
∣
∣
∣

∫

X
f (x)dP(x)φ

)

=
∫

X
f (x)dμψ,φ (x) ; (8.50)

(v) supp(μψ,φ )⊂ supp(|μψ,φ |)⊂ supp(P) and supp(μψ)⊂ supp(P).

(d) If f ∈ Mb(X),
∫

X f (x)dP(x) commutes with every operator B ∈ B(H) such that
P(E)B = BP(E) for any E ∈B(X).

Proof. (a) Consider a sequence of simple functions sn → f in norm || ||∞. Then

||sn− f ||(P)
∞ ≤ ||sn− f ||∞→ 0, so | ||sn||(P)

∞ −|| f ||(P)
∞ | ≤ ||sn− f ||(P)

∞ implies ||sn||(P)
∞ →

|| f ||(P)
∞ . We also know ||∫X sndP||= ||sn||(P)

∞ by (8.37). From the definition of integ-

ral of bounded maps ||∫X sndP|| → ||∫X f dP||, hence ||sn||(P)
∞ → || f ||(P)

∞ = ||∫X f dP||,
proving the first equality in (8.49). The inequality follows from the property of
supp(P) discussed in Remark 8.44.
(b) Using Proposition 7.49(c) if 0 ≤ f ∈ Mb(X) there is a sequence of simple func-
tions {sn}n∈N, 0 ≤ sn ≤ sn+1 ≤ f for any n, that converges uniformly to f . Keeping
in mind the definition of integral with respect to P, and that uniform convergence
implies weak convergence, we have (ψ |∫X sndPψ)→ (ψ |∫X f dPψ), as n→+∞, for
any ψ ∈H. For the positivity of

∫
X f dP it suffices to show (ψ |∫X sndPψ)≥ 0 for any

n. Directly from (8.35) we find
(

ψ
∣
∣
∣
∣

∫

X
sndP ψ

)

= ∑
i∈In

c(n)
i

(
ψ
∣
∣
∣P(E(n)

i ) ψ
)
≥ 0 ,

because every orthogonal projector is positive and the numbers c(n)
i are non-negative

for sn ≥ 0.
(c) By (8.35),

μψ,φ (E) =
(

ψ
∣
∣
∣
∣

∫

X
χE(x)dP(x)φ

)

= (ψ |1 ·P(E)φ) = (ψ |P(E)φ) , (8.51)

and (ψ |P(E)ψ)≥ 0. Then Definition 8.41(d) and the inner product’s continuity im-
ply μψ,φ is a complex measure on the Borel σ -algebra B(X); moreover, parts (d) and
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(a) in Definition 8.41 say that if ψ = φ , μψ is a positive, σ -additive, finite measure
on the Borel σ -algebra B(X). At last Definition 8.41(c) forces μψ,φ (X) = (ψ |φ),
in particular μψ(X) = (ψ |ψ) = ||ψ ||2. As μψ and |μψ,φ | are finite measures, their
integral is continuous in norm || ||∞ on Mb(X). (In fact, for any f ∈Mb(X),

∣
∣
∣
∣

∫

X
f (x)dμψ,φ (x)

∣
∣
∣
∣≤
∫

X
| f (x)|d|μψ,φ (x)| ≤ || f ||∞|μψ,φ |(X) ,

whence the integral’s continuity in sup norm.)
If sn ∈ S(X), using (8.51) and (8.35) we immediately see

(

ψ
∣
∣
∣
∣

∫

X
sn(x)dP(x)φ

)

=
∫

X
sn(x)dμψ,φ (x) .

If now f ∈Mb(X) and {sn}n∈N ⊂ S(X) converges to f , as n→+∞, in uniform sense
(cf. Proposition 7.49(b)), we can use the continuity of the inner product and of the
integral associated to μψ,φ with respect to the uniform convergence to obtain

(

ψ
∣
∣
∣
∣

∫

X
f (x)dP(x)φ

)

=
(

ψ
∣
∣
∣
∣ lim
n→+∞

∫

X
sn(x)dP(x)φ

)

= lim
n→+∞

(

ψ
∣
∣
∣
∣

∫

X
sn(x)dP(x)φ

)

= lim
n→+∞

∫

X
sn(x)dμψ,φ (x) =

∫

X
f (x)dμψ,φ (x) .

Let us prove (v), or equivalently, X \ supp(|μψ,φ |) ⊃ X \ supp(P). Take x ∈ X \
supp(P): then there is an open set A ⊂ X with x ∈ A and P(A) = 0. By monoton-
icity P(B) = 0 if B(X) � B⊂ A, and therefore

μψ,φ (B) =
∫

X
χB(x)dμψ,φ (x) =

(

ψ
∣
∣
∣
∣

∫

X
χB(x)dP(x)φ

)

= (ψ |P(B)φ) = 0 .

By the definition of total variation (Remark 1.81(2)) |μψ,φ |(A) = 0, so x ∈ X \
supp(|μψ,φ |). But |μψ,φ |(A)≥ |μψ,φ (A)| for any A∈B(X), in particular with A open,
hence we have: supp(μψ,φ )⊂ supp(|μψ,φ |). The case μψ is analogous.
(d) The claim is obvious when f is simple, and extends by continuity to any f . �

Remark 8.51. (1) It must be said that if we want the positive measures μψ , defined
on the Borel σ -algebra of X, to be proper Borel measures, then we should also de-
mand X be Hausdorff and locally compact. In concrete situations, like when using
PVMs that define the spectral expansion of an operator, X is always (a subset of) R
or R2, so the extra assumptions hold. In such case the measures are also regular, see
the remark preceding Theorem 2.48.
(2) A useful remark is that the complex measure μψ,φ decomposes as complex lin-
ear combination of 4 positive finite measures μχ . Since μψ,φ (E) = (ψ |P(E)φ) =
(P(E)ψ |P(E)φ), by the polarisation formula (3.4) we obtain:

μψ,φ (E) = μψ+φ (E)−μψ−φ (E)− iμψ+iφ (E)+ iμψ−iφ (E) for any E ∈B(X). �
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The next theorem establishes the primary feature of projector-valued measures:
they give rise to ∗-homomorphisms of C∗-algebras on B(H), i.e. representations of
C∗-algebras on H.

This will be a crucial point in proving the spectral theorem, proven immediately
after.

Theorem 8.52. Let H be a Hilbert space, X a second-countable space and P :
B(X)→B(H) a projector-valued measure.

(a) The integral operator:

Î : Mb(X) � f 	→
∫

X
f (x)dP(x) ∈B(H)

is a (continuous) representation on H of the C∗-algebra with unit Mb(X). Equival-
ently: beside (8.49) the following hold:

(i) if 1 is the constant map on X,
∫

X
1 dP(x) = I ;

(ii) for any f ,g ∈Mb(X), α ,β ∈ C,
∫

X
(α f (x)+βg(x))dP(x) = α

∫

X
f (x)dP(x)+β

∫

X
g(x)dP(x) ;

(iii) for any f ,g ∈Mb(X),
∫

X
f (x)dP(x)

∫

X
g(x)dP(x) =

∫

X
f (x)g(x)dP(x) ;

(iv) for any f ∈Mb(X),

∫

X
f (x)dP(x) =

(∫

X
f (x)dP(x)

)∗
.

(b) If ψ ∈ H and f ∈Mb(X) then

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f (x)dP(x)ψ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

X
| f (x)|2 dμψ(x) .

(c) If { fn}n∈N⊂Mb(X) is bounded and converges to f : X→C pointwise, the integral
of f with respect to the spectral measure P exists and equals:

∫

X
f (x)dP(x) = s- lim

n→+∞

∫

X
fn(x)dP(x) .

(d) If X = R2 with Euclidean topology, and supp(P) is bounded, then

supp(P) = σ(T ) ,
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where σ(T ) is viewed as subset in R2, and we defined the normal operator:

T :=
∫

supp(P)
z dP(x,y) ,

with z denoting the map R2 � (x,y) 	→ z := x+ iy.
In this case let us identify Mb(σ(T )) with the closed subspace of Mb(R2) of maps
vanishing outside the compact set σ(T ). Then the restriction

Î�Mb(σ(T )): Mb(σ(T ))→B(H)

coincides with representation Φ̂T of Theorem 8.39 for the normal operator T , and
we can write

f (T,T ∗) =
∫

σ(T )
f (x,y)dP(x,y) , f ∈Mb(σ(T )),

where f (T,T ∗) := Φ̂T ( f ).

Remark 8.53. (1) Part (iii) of (a) implies, in particular, the following commutation
relation:

∫

X
f (x)dP(x)

∫

X
g(x)dP(x) =

∫

X
g(x)dP(x)

∫

X
f (x)dP(x) ,

for any f ,g ∈Mb(X).
(2) From (iv) and (iii) of (a) the operator

∫
X f (x)dP(x) is normal, for any f ∈Mb(X).

�

Proof of Theorem 8.52. (a) The only facts not entirely trivial are (iii) and (iv), so let
us begin with the former. Choose two sequences of simple functions {sn} and {tm}
that converge uniformly to f and g respectively. A direct computations shows

∫

X
sn(x)dP(x)

∫

X
tm(x)dP(x) =

∫

X
sn(x)tm(x)dP(x) .

Given m, sn · tm tends to f · tm uniformly, as n→+∞, because tm is bounded. By con-
tinuity (in the sense of Theorem 8.50(a)) and linearity of the integral and taking the
limit n→+∞ above, we obtain

∫

X
f (x)dP(x)

∫

X
tm(x)dP(x) =

∫

X
f (x)tm(x)dP(x) ,

where we used the fact that the composite of bounded operators is continuous in its
arguments. Similarly, since f · tm tends to f ·g uniformly as m→+∞, we obtain (iii).
Property (iv) is proven by choosing a sequence of simple functions {sn} uniformly
converging to f . Takeψ ,φ ∈H. Directly by definition of integral of a simple function
(NB: orthogonal projectors are self-adjoint), we have

(∫

X
sn(x)dP(x)ψ

∣
∣
∣
∣φ
)

=
(

ψ
∣
∣
∣
∣

∫

X
sn(x)dP(x)φ

)

.
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Notice sn → f uniformly, as n→+∞. Hence by continuity and linearity of the integ-
ral (in the sense of Theorem 8.50(a)), plus the continuity of the inner product, when
we take the limit as n→+∞, the above identity gives

(∫

X
f (x)dP(x)ψ

∣
∣
∣
∣φ
)

=
(

ψ
∣
∣
∣
∣

∫

X
f (x)dP(x)φ

)

,

so: ([∫

X
f (x)dP(x)−

(∫

X
f (x)dP(x)

)∗]
ψ
∣
∣
∣
∣φ
)

= 0 .

As ψ ,φ ∈ H are arbitrary, (iv) holds.
(b) If ψ ∈ H, using (iii) and (iv) of (a), we find

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f (x)dP(x)ψ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
(

ψ
∣
∣
∣
∣

∫

X
| f (x)|2 dP(x)ψ

)

=
∫

X
| f (x)|2dμψ(x) ,

where the last equality used Theorem 8.50(c).
(c) As first thing let us observe f ∈Mb(X), because f is measurable, as limit of meas-
urable functions, and bounded by the constant that bounds the sequence fn. If ψ ∈ H
the integral’s linearity and (b) imply
∣
∣
∣
∣

∣
∣
∣
∣

(∫

X
f (x)dP(x)−

∫

X
fn(x)dP(x)

)

ψ
∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

X
| f (x)− fn(x)|2 dμψ(x) .

The measure μψ is finite, so constant maps are integrable. By assumption | fn| <
K < +∞ for any n ∈ N, so | f | ≤ K and then | fn− f |2 ≤ (| fn|+ | f |)2 < 4K2. Since
| fn− f |2 → 0 pointwise, we can invoke the dominated convergence theorem to ob-
tain, as n→+∞,
∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f (x)dP(x)ψ−

∫

X
fn(x)dP(x)ψ

∣
∣
∣
∣

∣
∣
∣
∣=
√∫

X
| f (x)− fn(x)|2 dμψ(x)→ 0 .

Given the freedom in ψ ∈ H, (c) is proved.
(d) If supp(P) is bounded, it is compact (as closed by definition) and every continuous
map on it is bounded. The mapping R2 � (x,y) 	→ zχsupp(P)(x,y)∈C is thus bounded,
so T :=

∫
supp(P) z dP(x,y) :=

∫
R2 zχsupp(P)(x,y)dP(x,y) is well defined and a normal

operator ((ii) and (iv) in (a)) in B(H). Its residual spectrum is in particular empty, by
Proposition 8.7(c).

By definition of resolvent set, the claim is the same as asking:

C � λ � supp(P) iff λ ∈ ρ(T ) .

Let us prove λ � supp(P) implies λ ∈ ρ(T ). SinceR2 � (x,y) 	→ z = x+ iy is bounded
on supp(P), suppose λ � supp(P). If so, there is an open subset in R2, A � (x0,y0)
with x0 + iy0 = λ , such that P(A) = 0. It follows that (x,y) 	→ (z−λ )−1 is bounded
on the closed set supp(P). Then we have the operator

∫

supp(P)

1
z−λ dP(x,y)
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of B(H). By virtue of (iii) and (i) in (a),

∫

supp(P)

1
z−λ dP(x,y)

∫

supp(P)
(z−λ )dP(x,y)

=
∫

supp(P)
(z−λ )dP(x,y)

∫

supp(P)

1
z−λ dP(x,y)

=
∫

supp(P)
1 dP(x,y) =

∫

R2
1 dP(x,y) = I ,

which we may write, by (i) and (ii) of (a),

∫

supp(P)

1
z−λ dP(x,y)(T −λ I) = (T −λ I)

∫

supp(P)

1
z−λ dP(x,y) = I .

Put differently, T −λ I is a bijection of H so that λ ∈ ρ(T ). By Theorem 8.4(a) λ ∈
ρ(T ).

Now we show λ ∈ ρ(T ) implies λ � supp(P), and actually we prove the equi-
valent statement: λ ∈ supp(P) implies λ ∈ σ(T ) = σp(T )∪σc(T ).

If λ ∈ supp(P), is may happen that T −λ I : H → H is not one-to-one, in which
case λ ∈ σp(T ) and the proof ends. If, on the contrary, T − λ I : H → H is inject-
ive we can prove the inverse (T −λ I)−1 : Ran(T −λ I)→ H cannot be bounded, so
λ ∈ σc(T ). For that it is enough to show, for λ ∈ supp(P), n = 1,2, . . ., that there
exists ψn ∈ H, ψn � 0, such that

||(T −λ I)ψn||/||ψn|| ≤ 1/n .

(Under our assumptions ψn = (T −λ I)−1φn, for any n = 1,2, . . ., with φn � 0 so that
ψn � 0. Then

1/n≥ ||(T −λ I)ψn||/||ψn||= ||(T −λ I)(T −λ I)−1φn||/||(T −λ I)−1φn|| .

In other terms, for n = 1,2, . . ., there is φn ∈ H, φn � 0, such that

||(T −λ I)−1φn||
||φn|| ≥ n .

Then (T −λ I)−1 cannot be bounded, and hence λ ∈ σc(T ).)
If λ ∈ supp(P), any open set A � λ must satisfy P(A) � 0. Set x0 + iy0 := λ

and consider the family of open discs Dn ⊂ R2, centred at (x0,y0) and of radii 1/n,
n = 1,2, . . .. As P(Dn) � 0, there exists ψn � 0 with ψn ∈ P(Dn)(H). In such a case

(T −λ I)ψn =
∫

supp(P)
(z−λ )dP(x,y)ψn

=
∫

supp(P)
(z−λ )dP(x,y)

∫

supp(P)
χDn(z)dP(x,y)ψn ,
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where we used P(Dn) =
∫
R2 χDn(z) dP(x,y) and P(Dn)ψn = ψn. By part (iii) in (a)

we find

(T −λ I)ψn =
∫

R2
χDn(z)(z−λ )dP(x,y) .

Hence property (b) yields

||(T −λ I)ψn||2 =
∫

R2
|χDn(z)|2|z−λ |2dμψn(x,y)≤

∫

R2
1 ·n−2 dμψn(x,y)

= n−2
∫

R2
1 dμψn(x,y) = n−2||ψn||2 ,

where the last equality made use of μψn(R
2) = ||ψn||2, by (iii) in Theorem 8.50(c).

Taking the square root of both sides produces

||(T −λ I)ψn||
||ψn|| ≤ 1/n ,

and concludes the proof.
The final statement is an easy consequence of Φ̂T ’s uniqueness, because Î re-

stricted to Mb(σ(T )) = Mb(supp(P)) trivially satisfies all the conditions (see The-
orem 8.39). �

8.4 Spectral theorem for normal operators in B(H)

At this juncture enough material has been gathered to allow to state the first important
spectral decomposition theorem for normal operators in B(H). Later in this section
we will prove another version of the theorem that concerns a useful spectral rep-
resentation for bounded normal operators T , in terms of multiplicative operators on
certain L2 spaces built on the spectrum of T .

8.4.1 Spectral decomposition of normal operators in B(H)

The spectral decomposition theorem establishes how any normal operator of B(H)
can be constructed integrating a certain PVM, whose support is the operator’s spec-
trum and which is completely determined by the operator. In view of the applications
it is important to point out that the theorem holds in particular for self-adjoint oper-
ators in B(H) and unitary operators, both subcases of normal operators.

Theorem 8.54 (Spectral decomposition of normal operators in B(H)). Let H be a
Hilbert space and T ∈B(H) a normal operator.

(a) There exists a unique, and bounded, projector-valued measure P(T ) on R2 (stand-
ard) such that:

T =
∫

supp(P(T ))
z dP(T )(x,y) , (8.52)



360 8 Spectral Theory I: generalities, C∗-algebras and bounded operators

where z is the map R2 � (x,y) 	→ z := x+ iy ∈ C.
(a)’ If T is self-adjoint, or unitary, statement (a) can be refined replacing R2 with:

R or S
1 := {(x,y) ∈ R2 | x2 + y2 = 1},respectively.

(b) We have
supp(P(T )) = σ(T ) .

In particular, for λ = x+ iy ∈ C (λ = x ∈ R, or λ = x+ iy ∈ S1 respectively):

(i) λ ∈ σp(T ) ⇔ P(T )({λ}) � 0;
(ii) λ ∈ σc(T ) ⇔ P(T )({λ}) = 0, and P(T )(Aλ ) � 0 for any open set Aλ ⊂ R2

(R or S1 respectively), Aλ � λ ;
(iii) if λ ∈ σ(T ) is isolated, λ ∈ σp(T );
(iv) if λ ∈ σc(T ), then for any ε > 0 there exists φε ∈ H with ||φε ||= 1 and

0 < ||Tφε −λφε || ≤ ε .

(c) If f ∈ Mb(σ(T )), the operator
∫
σ(T ) f (x,y) dP(T )(x,y) commutes with every op-

erator in B(H) that commutes with T and T ∗.

Remark 8.55. (1) In practice, property (iv) of (b) says that when λ ∈ σc(T ), despite
there are no eigenvectors of T with eigenvalue λ (the continuous and discrete spectra
are disjoint), we can still construct vectors that solve the characteristic equation with
arbitrary approximation.
(2) Bearing in mind Theorem 8.52(d) we may rephrase part (c), that restates (iii)
of Theorem 8.39(b), as follows. By definition of von Neumann algebra (see Defin-
ition 3.47 and ensuing remarks): the ∗-subalgebra of B(H) of operators f (T,T ∗),
for f ∈ Mb(σ(T )), is contained in the von Neumann algebra generated by T , T ∗ in
B(H).

In Theorem 9.9 we will prove this inclusion is actually an equality, provided H is
separable. �

Proof of Theorem 8.54. (a), (a)’ and (c) Uniqueness. We begin with the spectral meas-
ure’s uniqueness. First, note that if a spectral measure P satisfies (8.52) it must have
bounded support, since the map z is not bounded on unbounded sets and the right-
hand side in (8.52) is understood as in Definition 8.47(c). So let P, P′ be projector-
valued measures with bounded support (so compact, for supp(P) is closed in R2 by
definition) and such that:

T =
∫

supp(P)
z dP(x,y) =

∫

supp(P′)
z dP′(x,y) . (8.53)

Using (i)–(iv) in Theorem 8.52(a), this gives, for any polynomial p = p(z,z),

p(T,T ∗) =
∫

supp(P)
p(x+ iy,x− iy)dP(x,y) =

∫

supp(P′)
p(x+ iy,x− iy)dP′(x,y) ,
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where the polynomial p(T,T ∗) is defined in the most obvious manner, i.e. reading
multiplication as composition of operators and setting T 0 := I, (T ∗)0 := I. If u,v∈H
are arbitrary, for any complex polynomial p = p(z,z) on R2,

∫

supp(μu,v)
p(z,z)dμu,v(x,y) =

(

u

∣
∣
∣
∣

∫

supp(P)
p(z,z)dP(x,y)v

)

=
(

u

∣
∣
∣
∣

∫

supp(P′)
p(z,z)dP′(x,y)v

)

=
∫

supp(μ ′u,v)
p(z,z)dμ ′u,v(x,y) .

The two complex measures μu,v and μ ′u,v are those of Theorem 8.50(c) (where u, v
wereψ , φ ). Moreover supp(μu,v), supp(μ ′u,v) are compact subsets of R2 (by (v) The-
orem 8.50(c)), so there exists a compact set K ⊂ R2 containing both. Let us extend
in the obvious way the measures to K, maintaing the supports intact, by defining the
measure of a Borel set E in K by μu,v(E ∩ supp(μu,v)), and similarly for μ ′u,v.

Since polynomials in z,z with complex coefficients are bijectively identified with
complex polynomials q(x,y) in the real x,y (under the usual identification z := x+ iy
and z := x− iy, so p(x + iy,x− iy) = q(x,y)), we can rewrite the above identities in
terms of polynomials with complex coefficients in (x,y) ∈ K:

∫

K
p(x+ iy,x− iy)dμu,v(x,y) =

∫

K
p(x+ iy,x− iy)dμ ′u,v(x,y) .

By the Stone–Weierstrass theorem (2.27), the algebra of complex polynomials q(x,y)
is dense inside C(K) for the sup norm. Therefore the algebra of complex polynomials
p(x + iy,x− iy) restricted to K is dense in C(K) for the sup norm. Since integrals of
complex measures are continuous functionals in sup norm,

∫

K
f (x,y)dμu,v(x,y) =

∫

K
f (x,y)dμ ′u,v(x,y) for any f ∈C(K) .

Riesz’s Theorem 2.48 for complex measures ensures the two extended measures must
concide. Consequently the yet-to-be-extended measures must have the same support
and coincide. Now by (iv) in Theorem 8.50(c), for any pair of vectors u,v ∈ H and
any bounded measurable g on R2 we have

(

u

∣
∣
∣
∣

∫

supp(P)
g(x,y)dP(x,y)v

)

=
(

u

∣
∣
∣
∣

∫

supp(P′)
g(x,y)dP′(x,y)v

)

,

i.e. (

u

∣
∣
∣
∣

∫

R2
g(x,y)dP(x,y)v

)

=
(

u

∣
∣
∣
∣

∫

R2
g(x,y)dP′(x,y)v

)

.

Thus ∫

R2
g(x,y)dP(x,y) =

∫

R2
g(x,y)dP′(x,y)

because u and v are arbitrary. If E is an arbitrary Borel set of R2 and we pick g = χE ,
the above equation implies

P(E) =
∫

R2
χE(x,y)dP(x,y) =

∫

R2
χE(x,y)dP′(x,y) = P′(E) ,

proving P = P′.
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Observe, furthermore, that (8.53) and Theorem 8.52(d) give supp(P(T )) = σ(T ).
Uniqueness for the cases of (a)’ follows by what we have just proved, by

supp(P(T )) = σ(T ) and by (a)-(b) (i) in Proposition 8.7.

Existence. Let us see to the existence of the spectral measure P(T ). Consider the ∗-
homomorphism Φ̂T associated to the normal operator T ∈B(H), as of Theorem 8.39.
If E is a Borel set inR2, define E ′ := E∩σ(T ) whence P(T )(E) := Φ̂T (χE ′). The oper-
ator P(T )(E) is patently idempotent, for Φ̂T is a homomorphism and χE ′ ·χE ′ = χE ′ .
By property (vi) of Theorem 8.39(b) and the positivity of characteristic functions,
P(T )(E) ≥ 0, so P(T )(E) is self-adjoint. Therefore every P(T )(E) is an orthogonal
projector. It is easy to check B(R) � E 	→ P(T )(E) is a PVM: P(T )(E) ≥ 0 we saw
above. Concerning Definition 8.41: (b) follows from χE ′ · χF ′ = χE ′∩F ′ and because
Φ̂T is a homomorphism; (c) descends from Φ̂T (χσ(T )) = I, which holds by defini-
tion of algebra homomorphism; eventually, (d) follows from (v) in Theorem 8.41(b),
because, pointwise, limN→+∞∑N

n=0 χE ′n = χ∪n∈NE ′n when the E ′
n are pairwise disjoint.

By construction, supp(P(T )) is bounded because supp(P(T ))⊂ σ(T ), the latter being
compact by Theorem 8.4(c).

To continue with the proof, let us remark the following fact. By the above argu-
ment, and because both the integral operator associated to P(T ) and Φ̂T are linear,

Φ̂T (s �σ(T )) =
∫

supp(P(T ))
s(x,y)dP(T )(x,y) ,

for any simple function s : R2 → C. Either functional is continuous for the sup topo-
logy ((ii) in Theorem 8.39(b) and (a)), so Proposition 7.49 gives

Φ̂T ( f �σ(T )) =
∫

supp(P(T ))
f (x,y)dP(T )(x,y) , (8.54)

for any f : R2 → C measurable and bounded. In particular, by (i) Theorem 8.39(a)

T =
∫

supp(P(T ))
z dP(T )(x,y) .

As far as the proof of (c) is concerned, notice that (8.54) implies A∈B(H) commutes
with
∫

supp(P(T )) f (x,y) dP(T )(x,y), when A commutes with T , T ∗; that is because A

commutes with Φ̂T ( f �σ(T )) in consequence of (iii) in Theorem 8.39(b).
(b) Let us prove the claim for the general case where T is not necessarily self-adjoint
nor unitary; these special cases are easily proved with this argument. The fact that
supp(P(T )) = σ(T ) is a straightforward consequence of Theorem 8.52(d). Let us
prove (i). We shall write P instead of P(T ) to simplify the notation. Let λ := x0 + iy0

be a complex number. By (iii) of Theorem 8.52(a),

T P({(x0,y0)}) =
∫

σ(T )
(x+ iy)χ{(x0,y0)}(x,y)dP(x,y)

=
∫

σ(T )
(x0 + iy0)χ{(x0,y0)}(x,y)dP(x,y) = λ

∫

σ(T )
χ{(x0,y0)}(x,y)dP(x,y) .
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Hence T P({(x0,y0)}) = λP({(x0,y0)}). We conclude that P({(x0,y0)}) � 0 implies
λ := x0 + iy0 is an eigenvalue of T , because any vector u � 0 in the target subspace
of P({(x0,y0)}) is an eigenvector relative to λ .

Suppose conversely Tu = λu, u � 0 and λ := x0 + iy0. Then (cf. (b) of (i) in
Proposition 3.54) T ∗u = λu, T n(T ∗)mu = λ nλm

u, and by linearity

p(T,T ∗)u =
∫

supp(P)
p(x+ iy,x− iy)dP(x,y)u = p(λ ,λ )u (8.55)

for any polynomial p = p(x + iy,x− iy), because the integral defines a ∗-homo-
morphism. Every polynomial p = p(x + iy,x− iy) is also a complex polynomial
q = q(x,y) in the real variables x, y by setting q(x,y) := p(x+ iy,x− iy) pointwise; the
correspondence is bijective. Since the q(x,y) approximate continuous maps f (x,y) in
sup norm, the second equality of (8.55) holds when p(x + iy,x− iy) = q(x,y) is re-
placed by the continuous f = f (x,y). If λ = x0 + iy0, it is not hard to see χ{(x0,y0)}
is the pointwise limit of a bounded sequence of continuous maps fn. Using The-
orem 8.50(c) and dominated convergence (μu is finite), we have:

(u|P{(x0,y0)}u) =
(

u

∣
∣
∣
∣

∫

supp(P)
χ{(x0,y0)}(x,y)dP(x,y) u

)

=
∫

supp(P)
χ{(x0,y0)}(x,y)dμu(x,y) = lim

n→+∞

∫

supp(P)
fn(x,y)dμu(x,y)

= lim
n→+∞

(

u

∣
∣
∣
∣

∫

supp(P)
fn(x,y)dP(x,y) u

)

= lim
n→+∞

(u| fn(x0,y0)u)

= χ{(x0,y0)}(x0,y0)(u|u) .

Since orthogonal projectors are idempotent and self-adjoint, and since
χ{(x0,y0)}(x0,y0) = 1 by definition,

(P{(x0,y0)}u|P{(x0,y0)}u) = (u|u) � 0 .

Hence P{(x0,y0)} � 0.
Let us pass to (ii). As σc(T )∪ σp(T ) = σ(T ) (by (i) Proposition 8.7(c)) and

σc(T )∩σp(T ) = ∅ by definition, we must have λ ∈ σc(T ) if and only if λ ∈ σ(T )
and λ � σp(T ). But supp(P(T )) = σ(T ), so λ ∈ σ(T ) is the same as saying, for any
open set A in R2 containing (x0,y0), x0 + iy0 = λ , that P(A) � 0. On the other hand,
by (i), λ � σp(T ) means P(T )({(x0,y0)}) = 0.

Now (iii). If λ = x0 + iy0 ∈ C is an isolated point in σ(T ), by definition there is
an open set A � {(x0,y0)} disjoint from the remaining part of σ(T ). If P({(x0,y0)})
were 0, then λ would belong to supp(P(T )), for in that case P(A) = 0. Necessarily,
then, P(T )({(x0,y0)}) � 0. By (i) we have λ ∈ σp(T ).

The proof of (iv) is contained in Theorem 8.52(d), where we proved, among
other facts, that if λ ∈ σc(T ), for any natural number n > 0 there exists ψn ∈ H
with ||ψn|| � 0 and 0 < ||Tψn−λψn||/||ψn|| ≤ 1/n. To have (iv) it suffices to define
φn := ψn/||ψn|| with n such that 1≤ εn for the given ε . �
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8.4.2 Spectral representation of normal operators in B(H)

The next important result provides a spectral representation for any normal operator
T ∈B(H); it is shown that every bounded normal operator can be viewed as a multi-
plicative operator, on a suitable space L2, basically built on the spectrum of T . In the
sequel we shall refer to Definition 7.34 and the ensuing remark.

Theorem 8.56 (Spectral representation of normal operators in B(H)). Let H be
a Hilbert space, T ∈B(H) a normal operator, P(T ) the spectral measure associated
to T as of Theorem 8.54(a) (or (a)’).

(a) H splits as a Hilbert sum H = ⊕α∈AHα (A at most countable if H is separable),
where the subspaces Hα are closed and mutually orthogonal, such that:

(i) for any α ∈ A, THα ⊂ Hα and T ∗Hα ⊂ Hα ;
(ii) for any α ∈ A there exist a positive, finite Borel measure μα on the spectrum

σ(T )⊂ R2, and a surjective isometry Uα : Hα → L2(σ(T ),μα), such that

Uα

(∫

σ(T )
f (x,y)dP(T )(x,y)

)

�Hα U−1
α = f · ,

for f ∈Mb(σ(T )). In particular:

UαT �Hα U−1
α = (x+ iy)· , UαT ∗ �Hα U−1

α = (x− iy) ·

where f · is the multiplication by f in L2(σ(T ),μα):

( f ·g)(x,y) = f (x,y)g(x,y)

almost everywhere on σ(T ) if g ∈ L2(σ(T ),μα);
(ii)’ if T is self-adjoint or unitary, there exist, for any α ∈ A, a positive finite

Borel measure, on Borel sets of σ(T )⊂R or σ(T )⊂ S1 (respectively), and
a surjective isometry Uα : Hα → L2(σ(T ),μα), such that

Uα

(∫

σ(T )
f (x)dP(T )(x)

)

�Hα U−1
α = f · ,

for f ∈Mb(σ(T )). In particular,

UαT �Hα U−1
α = x· ,

where f · is the multiplication by f on L2(σ(T ),μα):

( f ·g)(x) = f (x)g(x) almost everywhere on σ(T )

for any g ∈ L2(σ(T ),μα).

(b)
σ(T ) = supp{μα}α∈A ,
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where supp{μα}α∈A is the complement to the set of λ ∈ C (respectively R, or S1)
for which there is an open set Aλ ⊂ C (respectively R, or S1) such that Aλ � λ and
μα(Aλ ) = 0 for any α ∈ A.
(c) If H is separable, there exist a measure space (MT ,ΣT ,μT ), with μT (MT ) < +∞,
a bounded map FT : MT → C (respectively R, or S1 if T is self-adjoint, or unitary),
and a unitary operator UT : H→ L2(MT ,μT ), satisfying
(
UT TU−1

T f
)
(m) = FT (m) f (m) ,

(
UT T ∗U−1

T f
)
(m) = FT (m) f (m) for any f ∈ H.

(8.56)

Proof. (a) We prove (i), (ii) and (iii). The proof of (ii)’ is similar to (ii). To begin
with, assume there is a vector ψ ∈ H whose subspace Hψ , containing vectors of type
∫
σ(T ) g(x,y)dP(T )(x,y)ψ , g ∈Mb(σ(T )), is dense in H. If μψ is the spectral measure

associated to ψ (finite since
∫

supp(P(T ))
1 dμψ = ||ψ ||2 )

we have supp(μψ) ⊂ supp(P(T )) by (iv) in Theorem 8.50(c). Consider the Hilbert
space L2(σ(T ),μψ) and the linear surjective operator

Vψ : Mb(σ(T )) � g 	→
∫

σ(T )
g(x,y)dP(T )(x,y)ψ ∈ Hψ .

As μψ is finite, Mb(σ(T )) ⊂ L2(σ(T ),μψ) as subspace. Hence for any g1,g2 ∈
Mb(σ(T )), ∫

σ(T )
g1(x,y)g2(x,y)dμψ (x,y)

=
(∫

σ(T )
g1(x,y)dP(T )(x,y)ψ

∣
∣
∣
∣

∫

σ(T )
g2(x,y)dP(T )(x,y)ψ

)

, (8.57)

or equivalently,
∫

σ(T )
g1(x,y)g2(x,y)dμψ(x,y) =

(
Vψg1|Vψg2

)
. (8.58)

The proof of (8.57) descends by the following observation. If E,E ′ ⊂ σ(T ) are
Borel sets, using (iv) in Theorem 8.50(c), (iii) in Theorem 8.52(a) and (iv) in The-
orem 8.52(a),

∫

σ(T )
χEχE ′ dμψ =

∫

σ(T )
χE∩E ′ dμψ =

(

ψ
∣
∣
∣
∣

∫

σ(T )
χE∩E ′ dP(T ) ψ

)

=

(

ψ
∣
∣
∣
∣

∫

σ(T )
χEχE ′ dP(T ) ψ

)

=
(

ψ
∣
∣
∣
∣

∫

σ(T )
χE dP(T )

∫

σ(T )
χE ′ dP(T ) ψ

)

=
(∫

σ(T )
χE dP(T )ψ

∣
∣
∣
∣

∫

σ(T )
χE ′ dP(T ) ψ

)

;
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by linearity of the inner product, if s and t are simple,
∫

σ(T )
st dμψ =

(∫

σ(T )
s dP(T )ψ

∣
∣
∣
∣

∫

σ(T )
t dP(T ) ψ

)

.

By Proposition 7.49, using the definition of integral of a measurable bounded map for
a spectral measure, by dominated convergence with respect to the finite measure μψ
and by the inner product’s continuity, the above identity implies (8.57). Thus we have
proved Vψ is a surjective isometry mapping Mb(σ(T )) to Hψ . Notice that Mb(σ(T ))
is dense in L2(σ(T ),μψ), because if g ∈ L2(σ(T ),μψ), the maps gn := χEn ·g,

En := {(x,y) ∈ σ(T ) | |g(x,y)|< n} ,

belong in Mb(σ(T )), and gn → g in L2(σ(T ),μψ) by dominated convergence (point-
wise |gn− g|2 → 0, as n → +∞, and |gn− g|2 ≤ 2|g|2 ∈ L1(σ(T ),μψ)). So we can
extend Vψ to a unique surjective isometry V̂ψ : L2(σ(T ),μψ)→ Hψ , whose inverse
will be denoted Uψ . Then Hψ = H.

If f ∈Mb(σ(T )), from (8.57) and using (iii) in Theorem 8.52(a) we see that
∫

σ(T )
g1(x,y) f (x,y)g2(x,y)dμψ(x,y)

=
(∫

σ(T )
g1(x,y)dP(T )(x,y)ψ

∣
∣
∣
∣

∫

σ(T )
f (x,y)g2(x,y)dP(T )(x,y)ψ

)

=
(∫

σ(T )
g1(x,y)dP(T )(x,y)ψ

∣
∣
∣
∣

∫

σ(T )
f (x,y)dP(T )(x,y)

∫

σ(T )
g2(x,y)dP(T )(x,y)ψ

)

=
(

Vψg1

∣
∣
∣
∣

∫

σ(T )
f (x,y)dP(T )(x,y)Vψg2

)

.

We have proved that for any triple g1,g2, f ∈Mb(σ(T ))
∫

σ(T )
g1(x,y) f (x,y)g2(x,y)dμψ(x,y) =

(

Vψg1

∣
∣
∣
∣

∫

σ(T )
f (x,y)dP(T )(x,y)Vψg2

)

.

The operator f · : L2(σ(T ),μψ) → L2(σ(T ),μψ), i.e. the multiplication by f ∈
Mb(σ(T )), is easily bounded; since Mb(σ(T )) is dense in L2(σ(T ),μψ), by defini-
tion of Uψ , because ∫

σ(T )
f (x,y)dP(T )(x,y)

is bounded and, eventually, by continuity of the inner product, we have
∫

σ(T )
g1(x,y) f (x,y)g2(x,y)dμψ(x,y) =

(

U−1
ψ g1

∣
∣
∣
∣

∫

σ(T )
f (x,y)dP(T )(x,y)U−1

ψ g2

)

,

for any g1,g2 ∈ L2(σ(T ),μψ). That is to say

Uψ

∫

σ(T )
f (x,y)dP(T )(x,y)U−1

ψ = f · . (8.59)

Now we pass to the case in which there is no ψ with Hψ = H.
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If so, let ψ be an arbitrary vector in H, and indicate by Hψ the space of vectors
∫
σ(T ) f (x,y)dP(T )(x,y)ψ , f ∈Mb(σ(T )). We have T (Hψ)⊂Hψ and T ∗(Hψ)⊂Hψ ,

because for any f ∈Mb(σ(T ))

T
∫

σ(T )
f (x,y)dP(T )ψ =

∫

σ(T )
(x+ iy)dP(T )

∫

σ(T )
f (x,y)dP(T )ψ

=
∫

σ(T )
(x+ iy) f (x,y)dP(T )ψ

(Theorem 8.54(a) and (iii) in Theorem 8.52(a)). Hence T
∫
σ(T ) f (x,y)dP(T )ψ ∈ Hψ ,

for (x,y) 	→ (x+ iy) f (x,y) is an element of Mb(σ(T ))). The proof for T ∗ is analogous,
using

T ∗ =
∫

σ(T )
(x− iy)dP(T ) .

By continuity T (Hψ)⊂Hψ and T ∗(Hψ)⊂Hψ . Defining Uψ as before we have (8.59).
Now let us show how to build another closed subspace Hψ ′ , orthogonal to Hψ ,

invariant under T , T ∗ and satisfying (8.59) for a corresponding surjective isometry
Uψ ′ : Hψ ′ → L2(σ(T ),μψ ′). If 0 � ψ ′ ⊥ Hψ then

(

ψ ′
∣
∣
∣
∣

∫

σ(T )
f (x,y)dP(T )(x,y)ψ

)

= 0 ,

for any f ∈Mb(σ(T )). But then the properties of the integral with respect to spectral
measures ((iii)-(iv) in Theorem 8.52(a)) imply, for any g, f ∈Mb(σ(T )):
(∫

σ(T )
g dP(T )ψ ′

∣
∣
∣
∣

∫

σ(T )
f dP(T )ψ

)

=
(

ψ ′
∣
∣
∣
∣

∫

σ(T )
g dP(T )

∫

σ(T )
f dP(T )ψ

)

=
(
ψ ′
∣
∣
∣g(x,y) f (x,y)dP(T )(x,y)ψ

)
= 0 ,

where we used g · f ∈Mb(σ(T )). Overall, if ψ ′ ⊥ Hψ then Hψ ′ is orthogonal to Hψ ,
so the same holds for the closures by continuity of the scalar product. The space Hψ ′
is invariant under T and T ∗ (the proof is the same as for Hψ ), and (8.59) holds for
the surjective isometry Uψ ′ : Hψ ′ → L2(σ(T ),μψ ′) (the proof was given at the begin-
ning). Thus, choosing {ψα} suitably, we can construct closed subspaces Hα = Hψα ,
each with a surjective isometry Uα : Hα → L2(σ(T ),μψ ′), so that: (a) the spaces are
pairwise orthogonal; (b) each one is T -invariant and T ∗-invariant; (c) they satisfy

Uα

∫

σ(T )
f (x,y)dP(T )(x,y) �Hα U−1

α = f · (8.60)

for any f ∈Mb(σ(T )). Call C the collection of these subspaces. We can partially or-
der Cwith the inclusion. Then every ordered subset in C is upper bounded, and Zorn’s
lemma gives us a maximal element {Hα}α∈A in C. We claim H =⊕α∈AHα . It suffices
to show that if ψ belongs to the orthogonal complement of every Ha, then ψ = 0. The
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trivial subspace H0 := {0} (where μ0 is the null measure – for which L2(σ(T ),μ0)
is trivial – and U0 maps the null vector of {0} to the null vector of L2(σ(T ),μ0)) is
contained in {Hα}α∈A: if not, {Hα}α∈A∪{H0} would bound {Hα}α∈A from above,
a contradiction. If there existed ψ ∈ H with ψ ⊥ Hα for any α ∈ A and ψ � 0, we
would be able to construct Hψ , distinct from every Hα but satisfying (a), (b), (c). Con-
sequently {Hα}α∈A∪{Hψ} would bound {Hα}α∈A from above, a contradiction. We
conclude that if ψ is orthogonal to every Hα , it must vanish ψ = 0. Put equivalently,
< {Hα}α∈A > = H, so H =⊕α∈AHα for the spaces are mutually orthogonal.

Now we prove (b) when T is normal (T self-adjoint or unitary is obtained special-
ising the same proof). We shall prove the logical equivalence: λ � supp{μα}α∈A ⇔
λ ∈ ρ(T ), equivalent to the claim.
⇒. If λ � supp{μα}α∈A, take DR an open disc of radius R > 0 centred at λ ,
with μα(DR) = 0 for any α ∈ A; such a disc exists by the assumptions. On every
space L2(σ(T ),μα) the multiplication by (x,y) 	→ (x + iy−λ )−1 is bounded, with
norm not exceeding 1/R (independent from α), and inverts (on the left and the
right) the multiplication by (x + iy− λ ). Let Rλ (α) : Hα → Hα be the operator
U−1
α (x + iy− λ )−1 ·Uα . Rλ (α) has the same norm of the operator (x + iy−λ )−1·,

since Ua is a surjective isometry, so ||Rλ (α)|| ≤ 1/R. Define Rλ : H→ H so that

Rλ : ∑
α∈A

Pαψ 	→ ∑
α∈A

Rλ (α)Pαψ ,

for any ψ ∈ H. Remembering the Hα are invariant under T and Rλ (i.e. Rλ (α) on
each one), we easily see that ||Rλ || ≤ 1/R and Rλ (T −λ I) = (T −λ I)Rλ = I. In fact,
RanRλ (α) = Hα implies

||Rλψ ||2 = || ∑
α∈A

Rλ (α)Pαψ ||2 = || ∑
α∈A

PaRλ (α)Pαψ ||2 = ∑
α∈A

||PaRλ (α)Pαψ ||2

= ∑
α∈A

||Rλ (α)Pαψ ||2 ≤ R−2 ∑
α∈A

||Pαψ ||2 = R−2||ψ ||2 .

Moreover
(T −λ I)Rλψ = (T −λ I)Rλ ∑

α∈A

Pαψ

∑
α∈A

(T −λ I)RλPαψ = ∑
α∈A

(T −λ I) �Hα Rλ (a)Pαψ = ∑
α∈A

IPαψ = ψ ,

hence (T −λ I)Rλ = I. Similarly

Rλ (T −λ I)ψ = Rλ (T −λ I) ∑
α∈A

Pαψ

∑
α∈A

Rλ (T −λ I)Pαψ = ∑
α∈A

Rλ (a)(T −λ I) �Hα Pαψ = ∑
α∈A

IPαψ = ψ ,

so Rλ (T −λ I) = I. By Theorem 8.4(a) λ ∈ ρ(T ).
⇐. Suppose now λ ∈ ρ(T ), so (T −λ I)−1 : H→ H is the closed inverse to T −λ I.
Pick ε > 0 so that ||(T −λ I)−1|| =: 1/ε . We claim μα(Dε) = 0 for any α ∈ A, Dε
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being the open disc of radius ε centred at λ . We proceed by contradiction. Suppose
the last assertion is false, so there exists β ∈ A such that μβ (Dε) > 0. Let D′

δ ⊂Dε be
another open disc, at a point of Dε with radius δ , such that 0 < δ < ε and μβ (Dδ ) > 0;
if such a disc Dδ did not exist we would have μβ (Dε) = 0 2. Consider a ψ ∈ H\{0}
defined by Pαψ = 0 if α � β and Uβψ = f , such that supp f ⊂ Dδ . We can always
redefine ψ so that ||ψ ||= 1 by multiplying it by the suitable factor. If |x+ iy−λ |< ε
(x+ iy ∈ Dδ ) then,

||(T −λ I)ψ ||2 =
∫

Dδ
|(x+ iy)−λ |2| f (x,y)|2 dμβ (x,y) < ε2

∫

Dδ
| f (x,y)|2 dμβ (x,y) = ε2 .

Therefore
||(T −λ I)ψ ||< ε .

On the other hand, by definition of norm,

||(T −λ I)−1|| ≥ ||(T −λ I)−1φ ||
||φ ||

for any φ ∈ H\{0}. Setting (T −λ I)−1φ = ψ , we have

||(T −λ I)−1|| ≥ ||ψ ||
||(T −λ I)ψ || ,

so

1/ε ≥ 1
||(T −λ I)ψ || > 1/ε ,

because ψ is unit. But that is a contradiction.
We finish the proof by showing (c). If H is separable, consider the collection

of orthogonal vectors {ψn}n∈N built as the {ψα}α∈A above, where now the in-
dex α is called n ∈ N. We are free to choose them so that ||ψn||2 = 2−n. Define
MT :=

⊔+∞
n=1σ(T ) to be the disjoint union of infinitely many copies of σ(T ). Now

call μT the measure that restricts to μn on the nth factor σ(T ). It is clear that, in this
way, μT (MT ) =∑+∞

n=0 ||ψn||2 < +∞. The map FT clearly restricts to (x+ iy)· on each
component σ(T ). Hence FT is bounded, because every copy of σ(T ) is bounded. The
operator UT is built in the obvious manner using the Un. �

One can rearrange canonically the decomposition of H into spaces isomorphic to
L2. In particular ([DS88] vol.II) the following fact holds. In the statement we use the
symbol AΔB := (A∪B)\ (A∩B) for the symmetric difference of two sets.

2 For any z ∈ Dε we can choose an open disc, centred at z of positive radius δ < ε , so
that Dδ ⊂ Dε . This gives an open covering of Dε . Lindelöf’s lemma (Theorem 1.8) guar-

antees we can extract a countable subcovering {D(i)
δi
}i∈N. Since Dε = ∪i∈ND(i)

δi
then,

μβ (Eε )≤ ∑i∈N μβ (D(i)
δi

). If we had μβ (D(i)
δi

) = 0 for any i, we would obtain μβ (Dε ) = 0.
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Theorem 8.57. Let T ∈B(H) be a normal operator on the separable Hilbert space H.

(a) There exists a pair (μT ,{ET n}n∈N), where μT is a positive, finite Borel measure
on σ(T ) and {ET n}n∈N ⊂B(σ(T )) satisfies σ(T ) = ET 1 ⊃ ET 2 ⊃ ·· · , so that The-
orem 8.56(a) holds with A =N, μα(F) := μT (F∩ETα) for anyα ∈N, F ∈B(σ(T )).
(b) If (μ ′T ,{E ′

T n}n∈N) satisfies part (a) and μT ≺ μ ′T ≺ μT , then μT (ETnΔE ′
Tn) =

μ ′(ET nΔE ′
Tn) = 0 for any n ∈ N.

(c) Let S ∈ B(H) be a normal operator and suppose ({ESn}n∈N,μS) satisfies (a) to-
gether with S. Then there exists a unitary operator U : H → H with USU−1 = T iff
μT ≺ μS ≺ μT and μT (ETnΔESn) = μS(ETnΔESn) = 0 for any n ∈ N.

In case μ(ETn−1) � 0 but μ(ET n) = 0, one says T has spectral multiplicity n
(including n = +∞ if μ(ET n−1) � 0 for any n). The definition is clearly independ-
ent of the pair (μT ,{ET n}n∈N) of (a). If μT (ETk) = 0 for some k then μ ′T (ET k) = 0,
for μT ≺ μ ′T ≺ μT . Since μ ′T (ET kΔE ′

Tk) = 0 we have μ ′T (E ′
T k) = 0. By symmetry

μ ′T (E ′
T k) = 0 implies μT (ETk) = 0. The unabridged theory of spectral multiplicity

can be found in [Hal51].

Examples 8.58. (1) Consider a compact self-adjoint operator T ∈ B(H) on the Hil-
bert space H. By Theorem 4.17, σp(T ) is discrete in R, with possible unique limit
point 0. Consequently σ(T ) = σp(T ), except in case σp(T ) accumulates in 0, but
0 � σp(T ). In that case (σ(T ) is closed by Theorem 8.4) σ(T ) = σp(T )∪{0} and
0 is the only point in σc(T ) (for σr(T ) = ∅ by Proposition 8.7). Following Ex-
ample 8.49(3), we can define a PVM on R that vanishes outside σ(T ):

PE := s- ∑
λ∈E

Pλ

where E ⊂ σ(T ), while Pλ is either the null projector Pλ = 0, or an orthogonal pro-
jector on the eigenspace relative to λ . The former case can occur only when λ = 0 is
no eigenvalue. Mimicking Example 8.49(3), we see

∫

σ(T )
λP(λ )ψ = ∑

λ∈σ(T )
λPλψ ,

for any ψ ∈ H. On the other hand Theorem 4.18 gives

∑
λ∈σ(T )

λPλ = T ,

where P0 = 0 if 0 ∈ σc(T ).
The statement of Theorem 4.18 explains that the decomposition is valid in the

uniform topology provided we label eigenvalues properly. Using such an ordering,
for any ψ ∈ H

∑
λ∈σ(T )

λPλψ = Tψ .

We may interpret the sum as an integral in the projector-valued measure on σ(T )
defined above.This also proves that the series on the left can be rearranged (when
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projectors are applied to some ψ ∈H). By construction, supp(P) = σ(T ). In conclu-
sion: the above measure on σ(T ) is the spectral measure of T , uniquely associated
to T by the spectral theorem. Moreover, the spectral decomposition of T is precisely
the eigenspace decomposition with respect to the strong topology:

T = s- ∑
λ∈σp(T )

λPλ .

The point 0 ∈ σc(T ), if present, brings no contribution to the integral.

(2) Consider the operator T on H := L2([0,1]× [0,1],dx⊗dy) defined by

(T f )(x,y) = x f (x,y)

almost everywhere on X := [0,1]× [0,1], for any f ∈ H. It is not hard to show T is
bounded, self-adjoint and its spectrum is σ(T ) = σc(T ) = [0,1].

A spectral measure on R, with bounded support, that reproduces T as integral

operator is given by orthogonal projectors P(T )
E that multiply by characteristic func-

tions χE ′ , E ′ := (E ∩ [0,1])× [0,1], for any Borel set E ⊂ R. Proceeding as in Ex-
ample 8.49(1), and choosing appropriate domains, allows to see that

(∫

[0,1]
g(λ )P(λ ) f

)

(x,y) = g(x) f (x,y) , almost everywhere on X

for any g ∈Mb(X). In particular
(∫

[0,1]
λ P(λ ) f

)

(x,y) = x f (x,y) , almost everywhere on X ,

so
T =
∫

[0,1]
λ dP(λ ) ,

as required. This spectral measure is therefore the unique measure on R satisfying
condition (a) in the spectral representation theorem.

We concern ourselves with part (c) in the spectral representation theorem. A de-
composition of H of the kind prescribed in (c) can be obtained as follows. Let {un}n∈N
be a basis of L2([0,1],dy). Consider subspaces of H := L2([0,1]× [0,1],dx⊗ dy)
given, for any n ∈ N, by

Hn := { f ·un | f ∈ L2([0,1],dx)} .

It is easy to see that these subspaces, with respect to T , fulfill every request of the
theorem’s item (c). In particular, Hn is by construction isomorphic to L2([0,1],dx)
under the surjective isometry f ·un 	→ f , so μn = dx. �

8.5 Fuglede’s theorem and consequences

In the final section we state and prove a well-known result, called Fuglede’s the-
orem: it establishes that an operator B ∈ B(H) commutes with A∗, for A ∈ B(H)
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normal, provided it commutes with A. The result is far from obvious, and given the
aforementioned theorems, it has immediate consequences. Due to the spectral de-
composition 8.54(c), for example, one corollary is that if B commutes with A then it
commutes with every operator

∫
σ(T ) f (x,y)dP(A)(x,y), for any measurable bounded

map f : σ(T )→ C.

8.5.1 Fuglede’s theorem

Theorem 8.59 (Fuglede). Let H be a Hilbert space. If A ∈ B(H) is normal and B ∈
B(H) commutes with A, then B commutes with A∗ as well.

Proof. For s ∈ C consider the function Z(s) = e−sA∗BesA∗ , where the exponen-
tials are spectrally defined by integrals of C � x + iy 	→ e∓s(x−iy) with respect to
the spectral measure P(A) of A. As usual z = x + iy and z = x− iy. Now observe
e∓s(x−iy) = ∑+∞

n=0
(∓s(x−iy))n

n! , and for given s, the convergence is uniform in (x,y) on
every compact set, like σ(A). In particular this means the sequence of partial sums
is bounded in norm || ||∞. Using again the PVM spectrally associated to A, by The-
orem 8.52(c) we have

e∓sA∗ = s-
+∞

∑
n=0

(∓sA∗)n

n!
. (8.61)

Expanding Z(s)Aψ and AZ(s)ψ as above, and recalling A∗ and B commute with A,
we see AnZ(s)ψ = Z(s)Anψ for any ψ ∈ H. Hence the exponential expansion gives

e∓sAZ(s)ψ = Z(s)e∓sAψ for any ψ ∈ H.

Therefore

Z(s) = Z(s)e+sAe−sA = e+sAZ(s)e−sA = e−sA∗e+sABesA∗e−sA = e−sA∗+sABesA∗−sA .

To obtain this we need the identities e−sA∗e+sA = e−sA∗+sA and e+sAe−sA = I, which
are proved exactly as in C, i.e. using the expansion (8.61) and the commutation of A,
A∗. With the same technique one proves Us := e−sA∗+sA =

(
esA∗−sA

)∗
and U∗

s = U−1
s .

Therefore Us is unitary and ||Z(s)||= ||UsBU∗
s || ≤ ||Us|| ||B|| ||U∗

s ||= 1||B||1 = ||B||.
The map C � s 	→ (ψ |Z(s)φ) is then bounded on the entire complex plane. If this
function were entire (i.e. analytic on C), Liouville’s theorem would force it to be
constant. So let us assume the map is entire, hence constant. Consequently, since
ψ ,φ are arbitrary, Z(s) = Z(0) for any s ∈ C. This identity reads e−sA∗BesA∗ = B, i.e.
BesA∗ = esA∗B. Therefore (ψ |BesA∗φ) = (ψ |esA∗Bφ) for any ψ ,φ ∈ H. This equation
can be written (B∗ψ |esA∗φ) = (ψ |esA∗Bφ), and by the properties of PVMs and the
spectral theorem: ∫

K
eszdμB∗ψ,φ =

∫

K
eszdμψ,Bφ ,

where K ⊂R2 ≡C is a compact set large enough to contain the supports of the meas-
ures of the integrals. Let us differentiate in s, and evaluate at s = 0, by swapping
derivative and integral (the derivatives of the integrands are continuous in (s,(x,y)),
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hence bounded on the compact set C×K, with C a compact subset containing s = 0;
thus Theorem 1.87 applies). The outcome is

∫

K
zdμB∗ψ,φ =

∫

K
zdμψ,Bφ ,

which we can write (ψ |BA∗φ) = (ψ |A∗Bφ). Varyingψ and φ , we obtain B commutes
with A∗: BA∗ = A∗B.

There remains to proveC� s 	→ (ψ |Z(s)φ) is an analytic function. The expansion
(8.61) and the inner product’s continuity imply

(ψ |Z(s)φ) =
+∞

∑
n=0

+∞

∑
m=0

(−s)n+m

n!m!
(ψ |(A∗)nB(A∗)mφ) . (8.62)

We may interpret the double series as an iterated integral for N’s counting meas-
ure; we shall denote the latter by dμ(n). By Schwarz’s inequality and known norm
properties:
∣
∣
∣
∣
(−s)n+m

n!m!
(ψ |(A∗)nB(A∗)mφ)

∣
∣
∣
∣≤

(|s| ||A||)n

n!
(|s| ||A||)m

m!
||B|| ||ψ || ||φ || .

The positive function on N×N of the right-hand side is integrable in the product
measure (the integral is clearly e|s| ||A||e|s| ||A||||B|| ||ψ || ||φ ||), by Fubini–Tonelli, so

(n,m) 	→ (−s)n+m

n!m! (ψ |(A∗)nB(A∗)mφ) =: fs(n,m) is L1 for the product masure, and
(8.62) reads:

(ψ |Z(s)φ) =
∫

N×N
fs(n,m)dμ(n)⊗dμ(m) . (8.63)

By dominated convergence we have
∫

N×N
fs(n,m)dμ(n)⊗dμ(m) =

lim
N→+∞

∫

N×N
χ{(n,m)∈N×N |n+m≤N} fs(n,m)dμ(n)⊗dμ(m) .

Writing the right side using sums:

(ψ |Z(s)φ) = lim
N→+∞

N

∑
M=0

∑
n+m=M

(−s)n+m

n!m!
(ψ |(A∗)nB(A∗)mφ) ,

i.e.

(ψ |Z(s)φ) =
+∞

∑
N=0

CNsN ∀s ∈ C , (8.64)

where

CN = (−1)N ∑
n+m=N

(ψ |(A∗)nB(A∗)mφ)
n!m!

.

The series (8.64) says we may express (ψ |Z(s)φ) as a power series in s, with s roam-
ing the whole complex plane. Hence C � s 	→ (ψ |Z(s)φ) is an entire function, as
claimed. �
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The theorem generalises by dropping the boundedness of A (but keeping B’s).
This was Fuglede’s original statement [Fug50], whose proof requires the spectral
theory of unbounded normal operators that we will not develop.

8.5.2 Consequences to Fuglede’s theorem

Corollary 8.60. If M,N ∈B(H), H Hilbert space, are normal and satisfy NM = MN,
then NM is normal.

Proof. MN(MN)∗ = MNM∗N∗. By Fuglede’s theorem the right-hand side is
MM∗NN∗ = M∗MN∗N = M∗N∗MN = (NM)∗MN. But N,M commute, so
(NM)∗MN = (MN)∗MN. Hence we have proved MN(MN)∗ = (MN)∗MN, i.e. the
claim. �

Corollary 8.61 (Fuglede–Putnam–Rosenblum). Let T,M,N ∈ B(H), H Hilbert
space. If M,N are normal and MT = T N then M∗T = T N∗.

Proof. Consider the Hilbert space H ⊕ H with standard inner product
((u,v)|(u′,v′)) := (u|u′)(v|v′), and hence the operators of B(H⊕H):

T ′ : (u,v) 	→ (0,Tu) , N′ : (u,v) 	→ (Nu,Mv) .

By direct computation N′N ′∗ = N ′N ′∗, i.e. N ′ is normal, and N ′T ′ = T ′N ′ by the fact
that MT = T N. We can apply Fuglede’s theorem to get N ′∗T ′ = T ′N ′∗. Since N ′∗ :
(u,v) 	→ (N∗u,M∗v), taking the components of the identity N′∗T ′(u,v) = T ′N ′∗(u,v)
gives M∗Tu = T N∗u for any u ∈ H, i.e. M∗T = TN∗. �

Corollary 8.62. Let M,N ∈ B(H) be normal operators on the Hilbert space H. If
there is a bijection S ∈B(H) such that

MS = SN ,

then there is also a operator unitary U ∈S(H) such that

UMU−1 = N .

Proof. Observe preliminarly S−1 ∈B(H) by Theorem 2.92. By polar decomposition
S = U |S|, with U unitary; therefore MU |S| = U |S|N. In our case |S|−1 exists and
equals |S−1|, as is easy to see. The proof finishes if we can show that |S|N = N|S|,
for then we can left-apply |S|−1 on MU |S| = UN|S|. Let us prove that. By Put-
nam’s theorem MS = SN implies M∗S = SN∗; taking adjoints, S∗M = NS∗. Us-
ing MS = SN again, we get S∗MS = S∗SN = NS∗S, i.e. |S|2N = N|S|2. By The-
orem 3.66(b), |S|N = N|S|. �
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Exercises

8.1. Let H = �2(N) and consider the operator

T : (x0,x1,x2, . . .) 	→ (0,x0,x1, . . .) .

Determine the spectrum of T .

8.2. Let H be a Hilbert space and T = T ∗ ∈B(H) be compact. Show that if dim(RanT )
is not finite, then σc(T ) � ∅ and consists of one point.

Hint. Decompose T as in Theorem 4.18, use Theorem 4.17 and the fact that σ(T ) is
closed by Theorem 8.4.

8.3. If T is self-adjoint on the Hilbert space H and λ ∈ ρ(T ), show Rλ (T ) is a normal
operator of B(H) such that

Rλ (T )∗ = Rλ (T ) .

8.4. Prove that the residual spectrum of a unitary operator is empty, without using
the fact that unitary implies normal.

Solution. If λ ∈ σr(U), Ran(U−λ I) is not dense, so there exists f � 0 orthogonal to
Ran(U −λ I). For any g ∈ H, ( f |λg) = ( f |Ug), so (λ f |g) = (U∗ f |g) for any g ∈ H.
Hence U∗ f = λ f . Letting U act on either side gives f = λU f , and then U f = λ f ,
because 1/λ = λ by |λ |= 1. Consequently λ ∈ σp(U); but this is absurd, for point
spectrum and residual spectrum are disjoint; hence σr(U) = ∅.

8.5. If U : H → H is an isometry on a Hilbert space H that is not surjective, then
σr(U) � ∅.

Solution. 0 ∈ σr(U). U − 0I is one-to-one, but Ran(U − 0I) = RanU is not dense.
Let us prove that by contradiction. If it were dense, for any f ∈ H there would be
{ fn}n∈N ⊂H with U fn → f . Since || fn− fm||=U fn−U fm, { fn}would be a Cauchy
sequence, fn → g ∈ H. Hence Ug = f for any f ∈ H, which cannot be, for U is not
surjective.

8.6. Build a self-adjoint operator with point spectrum dense in, but not coinciding
with, [0,1].

Hint. Take the Hilbert space H = �2(N), and label rationals in [0,1] arbitrarily:
r0,r1, . . . Define

T : (x0,x1,x2, . . .) 	→ (r0x0,r1x1,r2x2, . . .)

with domain D(T ) given by sequences (x0,x1,x2, . . .) ∈ �2(N) such that

+∞

∑
n=0

|rnxn|2 < +∞ .
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8.7. Define a bounded normal operator T : H → H, for some Hilbert space H, such
that σ(T ) = σp(T ) = {λ ∈ C | |λ | ≤ 1}. Can H be separable?

Hint. Define H := L2(D,μ), where μ is the counting measure and D := {λ ∈C | |λ | ≤
1}. Then set (T f )(z) := z f (z), f ∈ H.

8.8. If P : X→B(H) is a PVM, prove: (1) the set of P-essentially bounded, measur-

able maps f : X→ C is a vector space, and (2) || ||(P)
∞ is a seminorm on that space.

8.9. Let A be an operator on the Hilbert space H with domain D(A), and let U : H′ →H
be a Hilbert space isometry onto H. If A′ :=U−1AU : D(A′)→H′, D(A′) =U−1D(A),
prove σc(A) = σc(A′), σp(A) = σp(A′), σr(A) = σr(A′).

8.10. Conside the position operator Xi introduced in Definition 5.22. Show σ(Xi) =
σc(Xi) = R.

8.11. Consider the momentum operator Pi introduced in Definition 5.27. Show
σ(Pi) = σc(Pi) = R.

Hint. Use Proposition 5.31.

8.12. Find two operators A and B on a Hilbert space such that σ(A) = σ(B), but
σp(A) � σp(B).

Hint. Consider the operator of Exercise 8.6 and the operator that multiplies by the
coordinate x in L2([0,1],dx), where dx is Lebesgue’s measure on R.

8.13. Take Volterra’s operator A : L2([0,1],dx)→ L2([0,1],dx):

(A f )(x) =
∫ x

0
f (t)dt .

Study its spectrum and prove σ(A) = σc(A) = {0}. Conclude, without computations,
that A cannot be normal.

Outline of solution. Since [0,1] has finite Lebesgue measure, then L2([0,1],dx) ⊂
L1([0,1],dx), and we can view Lebesgue’s integral as a function of the upper limit
of integration (in particular, Theorem 1.75 holds). Notice the spectrum of A can-
not be empty by Theorem 8.4, since A is bounded and hence closed. If λ � 0, then
(λ−1A)n is a contraction operator for n large enough, as we saw in Exercise 4.19.
By the fixed point theorem λ � 0 cannot be an eigenvalue, since the unique solu-
tion ψ to the characteristic equation λ−1Aψ = ψ is ψ = 0, not an eigenvector.
As A is compact, Lemma 4.49 guarantees that if 0 � λ (hence λ � σp(A)), then
Ran(A− λ I) = H (i.e. the Hilbert space L2([0,1],dx)); moreover, since A− λ I is
bijective, (A−λ I)−1 : H→H is bounded by the inverse-operator theorem. Therefore
λ � σ(A) if λ � 0. So the unique point in the spectrum is λ = 0. By Theorem 1.75(b)
there are no non-zero solutions to Aψ = 0, and we conclude 0 ∈ σr(A)∪σc(A). If 0
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were in σr(A), Ran(A) would not be dense in L2([0,1],dx), i.e. Ker(A∗) � {0} be-
cause H = Ran(A)⊕Ker(A∗). This is not possible, because (A∗ f )(x) =

∫ 1
x f (t)dt (see

Exercise 3.26), so applying Theorem 1.75(b) would give a contradiction.
If A were normal, as bounded we would get ||A|| = r(A). But r(A) = 0, for

σ(A) = {0}. Therefore A would be forced to be null.

8.14. Consider the bounded, self-adjoint operator T on H := L2([0,1],dx) that mul-
tiplies functions by x2:

(T f )(x) := x2 f (x) .

Find its spectral measure.

Hint. Find a unitary transformation from H to L2([0,1],dy) that maps the multiplic-
ation by x2 to the multiplication by y.

8.15. Consider the bounded, self-adjoint operator T on H := L2([−1,1],dx) that mul-
tiplies by x2:

(T f )(x) := x2 f (x) .

Determine its spectral measure.

Hint. Argue as in Exercise 8.14, after having decomposed

L2([−1,1],dx) = L2([−1,0],dx)⊕L2([0,1],dx) .

8.16. Let T ∈ B(H), H a Hilbert space, be a normal operator. Prove, for any α ∈ C,
that

eαT =
∫

σ(T )
eα(x+iy) dP(T )(x,y) ,

where the term on the left is defined, in uniform topology, as

eαT :=
+∞

∑
n=0

αnT n

n!
.

Hint. The series ∑+∞
n=0

αnzn

n! converges absolutely and uniformly on any closed disc
of finite radius and centred at the origin of C. Moreover, for any polynomial p(z)
(z = x+ iy),

p(T ) =
∫

σ(T )
p(x+ iy)dP(T )(x,y) .

Now use the first part of Theorem 8.50.

8.17. For any given Hilbert space H, build a compact self-adjoint operator T : H→H
such that T �B1(H), T �B2(H).

Hint. It suffices to show ∑λ∈σp(T ) |λ | = +∞ and ∑λ∈σp(T ) |λ |2 = +∞, see Exer-
cise 4.4.
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8.18. Take T ∈B(H) with T ≥ 0 and H Hilbert space. Prove that if T is compact then

Tα :=
∫

σ(T )
λαdP(T )(λ )

is compact for any real α > 0.

Outline of solution. If σ(T ) is finite the claim is obvious by the spectral the-
orem and because operators with finite-dimensional range are compact. Consider the
other case. Expand T spectrally: T = ∑ j λ j(ψ j| )ψ j, where ||T || ≥ λ j ≥ λ j+1 →
0+ by T ’s compactness, and for any given j, λ j+k = λ j only for a finite num-
ber of k (if the eigenvalue is non-null). Recall that for compact operators the ex-
pansion converges in uniform topology too. If α ≥ 1 and m,n are large enough,
then ∑m

j=nλαj (ψ j| )ψ j ≤∑m
j=nλ j(ψ j| )ψ j; hence (positive operators are self-adjoint)

||∑m
j=nλαj (ψ j| )ψ j|| ≤ ||∑m

j=nλ j(ψ j| )ψ j||. Bearing in mind the spectral decomposi-
tion theorem for the self-adjoint Tα , conclude that Tα , α > 1, is compact as uniform
limit of compact operators (their range is finite-dimensional). When α < 1, observe
||T 1/2x−T 1/2y||2 = ((x− y)|T (x− y)) ≤ ||x− y||||T x−Ty||; conclude that T 1/2 is
compact if T is by using the definition of compact operator. When α ∈ [1/2,1),
Tα = (T 1/2)β for some β ∈ [1,2). Relying on the previous proof recover that Tα

is compact if T is when α ∈ [1/2,1). Iterating the procedure obtain that T 1/4 and Tα ,
α ∈ [1/4,1/2), are compact if T is, and so on; hence reach any Tα , with α ∈ (0,1),
because in that case α ∈ [1/2k+1,1/2k) for some k = 0,1,2, . . ..
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Spectral theory II: unbounded operators
on Hilbert spaces

The language of mathematics turns out to be unreasonably
effective in natural sciences, a wounderful gift that we don’t
understand nor deserve.

Eugene Paul Wigner

With this chapter we shall examine a number of mathematical issues concerning the
spectral theory of self-adjoint operators, in general unbounded.

The first section is devoted to extending the spectral decomposition theorem of
the previous chapter to unbounded self-adjoint operators. To do so we will generalise
the integration procedure for spectral measures to unbounded functions. Using this
and the Cayley transform we will prove the spectral decomposition theorem for un-
bounded self-adjoint operators. The resulting technique will also enable us to prove,
in passing, and important characterisation of the von Neumann algebra generated by
a bounded normal operator and its adjoint. Then we will describe two physically-
relevant examples of unbounded self-adjoint operators and their spectral decompos-
ition: the Hamiltonian of the harmonic oscillator, and the position and momentum
operators. Finally we will state a spectral representation theorem for unbounded self-
adjoint operators and introduce the notion of joint spectral measure.

The second, very short, section is dedicated to exponentiating unbounded oper-
ators, in relationship to earlier-defined analytic vectors.

In section three we will focus on the theory of strongly continuous one-parameter
groups of unitary operators. First we will establish that the various notions of con-
tinuity are equivalent. Next we will show von Neumann’s theorem on the continuity
of measurable one-parameter groups of unitary operators, and then go on to prove
Stone’s theorem and a few important corollaries. In particular, we will discuss a useful
criterion, based on one-parameter unitary groups generated by self-adjoint operators,
to establish when the spectral measures of two self-adjoint operators commute.

9.1 Spectral theorem for unbounded self-adjoint operators

We now generalise some of the material of Chapter 8. In particular we want to prove
the spectral decomposition theorem in the case of unbounded self-adjoint operators.
The physical relevance lies in that most self-adjoint operators representing interest-
ing observables in Quantum Mechanics are unbounded. The paradigmatic case is the
position operator of Chapter 5.

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
DOI 10.1007/978-88-470-2835-7_9, © Springer-Verlag Italia 2013
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9.1.1 Integrating unbounded functions with respect to spectral
measures

We will often use the following natural definition.

Definition 9.1. Let X be a complex vector space, T an operator on X with domain
D(T ) and p(x) = ∑m

k=0 akxk a polynomial of degree m with complex coefficients.

(a) The operator p(T ) on X is defined by writing T in place of the variable x, with
T 0 := I, T 1 := T , T 2 := T T , and so on.
(b) The domain of p(T ) is

D(p(T )) :=
m⋂

k=0

D(akT k) , (9.1)

with D(akT · · ·T ) given in Definition 5.1.

Extending the previous chapter’s results to unbounded operators requires first a
definition for the integral of unbounded functions with respect to a PVM. If P is a
spectral measure on the second-countable space X, in the sense of Definition 8.41,
and if f : X → C is a measurable function (for the Borel algebra of X), but not
necessarily bounded, then

∫
X f (x)dP(x) is as-of-yet meaningless. The whole point is

to make sense of this integral.

Consider a vector ψ , in a Hilbert space H, of the PVM P such that
∫

X
| f (x)|2 dμψ(x) < +∞ , (9.2)

where the spectral measure forψ , μψ , was defined in Theorem 8.50(c). We can find a
sequence of bounded measurable maps fn such that fn → f as n→+∞ in L2(X,μψ).
For example, using Lebesgue’s dominated convergence it suffices to consider fn :=
χFn · f , where χFn is the characteristic function of Fn := {x ∈ X | | f (x)| < n}. Using
(iii) in (a) and (b) of Theorem 8.52 we immediately find
∣
∣
∣
∣

∣
∣
∣
∣

∫

X
fn(x)dP(x)ψ−

∫

X
fm(x)dP(x)ψ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

X
| fn(x)− fm(x)|2dμψ(x) . (9.3)

Thus the sequence of vectors
∫

X fn(x)dP(x)ψ converges to some
∫

X f (x)dP(x)ψ :
∫

X
f (x)dP(x)ψ := lim

n→+∞

∫

X
fn(x)dP(x)ψ . (9.4)

We may use (9.4) as definition of the integral in P of the unbounded measurable func-
tion f . This is well defined since

∫
X f (x)dP(x)ψ does not depend of the sequence

{ fn}n∈N. In fact if {gn}n∈N is another sequence of bounded measurable maps con-
verging to f in L2(X,μψ), proceeding as before we obtain

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
fn(x)dP(x)ψ−

∫

X
gn(x)dP(x)ψ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

X
| fn(x)−gn(x)|2dμψ(x) ,
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so
lim

n→+∞

∫

X
fn(x)dP(x)ψ = lim

n→+∞

∫

X
gn(x)dP(x)ψ .

If we use (9.4) to define the integral of an unbounded function we have to recall this
operator is not defined on the whole Hilbert space, but only on vectors satisfying
(9.2). Consequently we have to check these vectors form a subspace in H. To show
this, and much more, we need to a lemma that relates the spectral measure μψ to μφ ,ψ
via (9.2), for ψ ∈ H.

Lemma 9.2. Let X be a second-countable space, P : B(X)→B(H) a PVM, H a Hil-
bert space, and f : X→ C a measurable function.
Given φ ,ψ ∈ H, if the measures μψ and μφ ,ψ are defined as in Theorem 8.50 and

∫

X
| f (x)|2dμψ(x) < +∞ ,

then f ∈ L1(X, |μφ ,ψ |) and

∫

X
| f (x)|d|μφ ,ψ |(x)≤ ||φ ||

√∫

X
| f (x)|2dμψ(x) . (9.5)

Proof. If f is bounded, by (iv) in Theorem 8.50(c):
(

φ
∣
∣
∣
∣

∫

X
| f (x)|dP(x)ψ

)

=
∫

X
| f (x)|dμφ ,ψ(x) .

From Theorem 1.86 there exists a map h : X → C, |h(x)| = 1, such that dμφ ,ψ =
hd|μφ ,ψ |, and so

∫

X
| f (x)|d|μφ ,ψ |(x) =

∫

X
| f (x)|h−1(x)dμφ ,ψ(x) =

(

φ
∣
∣
∣
∣

∫

X
| f (x)|h−1(x)dP(x)ψ

)

.

Using Theorem 8.52(b) and noting || f (x)|h−1(x)|2 = | f (x)|2, we have

∫

X
| f (x)|d|μφ ,ψ |(x)≤ ||φ ||

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
| f (x)|h−1(x)dP(x)ψ

∣
∣
∣
∣

∣
∣
∣
∣= ||φ ||

√∫

X
| f (x)|2dμψ(x) .

Let now f be unbounded. Define bounded maps fn := χFn · f as above, so that
0 ≤ | fn(x)| ≤ | fn+1(x)| → | f (x)| as n → +∞. By monotone convergence, since
f ∈ L2(X,dμψ), we obtain

∫

X
| f (x)|d|μφ ,ψ |(x) = lim

n→+∞

∫

X
| fn(x)|d|μφ ,ψ |(x)≤ ||φ || lim

n→+∞

√∫

X
| fn(x)|2dμψ(x)

= ||φ ||
√∫

X
| f (x)|2dμψ(x) < +∞ .

This proves the general case. �
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The next theorem gathers several technical facts seen above, and establishes the
first general properties of integrals of unbounded maps with respect to a spectral
measure.

Theorem 9.3. Let X be second-countable with Borel σ -algebra B(X), H a Hilbert
space and P : B(X)→B(H) a PVM.
For any measurable f : X→ C define

Δ f :=
{

ψ ∈ H

∣
∣
∣
∣

∫

X
| f (x)|2 dμψ(x) < +∞

}

. (9.6)

(a) Δ f is a dense subspace in H.
(b) Given a sequence of bounded measurable maps { fn}n∈N converging to f in
L2(X,μψ), the mapping

∫

X
f (x)dP(x) : Δ f � ψ 	→

∫

X
f (x)dP(x)ψ , (9.7)

with right-hand-side term as in (9.4), is a linear operator.
(c) If f�supp(P) is bounded:

Δ f = H and
∫

X
f (x)dP(x) =

∫

supp(P)
f (x)dP(x) ∈B(H) ,

where the right side is the operator of Definition 8.47(c).

Proof. (a) and (b) As first thing we have to prove, for any given measurable f : X→
C, that φ+ψ ∈ Δ f and cφ ∈ Δ f for any c∈ C if φ ,ψ ∈ Δ f . Note Δ f contains the null
vector of H, so it is non-empty.
If φ ,ψ ∈ Δ f , E ∈B(X):

||PE(φ +ψ)||2 ≤ (||PEφ ||+ ||PEψ ||)2 ≤ 2||PEφ ||2 +2||PEψ ||2 ;

since μχ(E) = (χ|PEχ) = (χ|PEPEχ) = (PEχ|PEχ) = ||PEχ||2:

μφ+ψ(E)2 ≤ 2(μφ (E)+μψ(E)) .

This implies, for L2(X,μφ ) � f and L2(X,μψ) � f , that L2(X,μφ+ψ) � f . I.e. φ ,ψ ∈
Δ f forces φ +ψ ∈ Δ f . On the other hand μcφ (E) = |c|2(PEφ |φ) = |c|2μφ (E), so
f ∈ L2(X,μcφ ) for f ∈ L2(X,μφ ) and c ∈ C. That is to say φ ∈ Δ f implies cφ ∈ Δ f ,
and Δ f is a subspace. That

∫
X f (x)dP(x) : Δ f � ψ 	→ ∫X f (x)dP(x)ψ is linear is a

consequence of the definition of
∫

X f (x)dP(x)ψ and of the linearity of the integral of
a bounded map in a PVM.

Now we show Δ f is dense in H. Given f as in the statement, let:

En := {x ∈ X | n−1≤ | f (x)|< n} , for any n ∈ N, n≥ 1.

Note En ∩Em = ∅ if n � m and ∪nEn = X. By Definition 8.41 the closed subspaces
Hn := P(En)H are mutually orthogonal, and by propriety (d) of the same definition
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finite combinations over the Hn form a dense space inside H. We claim Δ f contains
this subspace. By monotone convergence, if ψ ∈ H:

∫

X
| f (x)|2dμψ(x) = lim

k→+∞

k

∑
n=1

∫

X
|χEn(x) f (x)|2dμψ(x)≤+∞ . (9.8)

The integral inside the sum can be written as follows, using Theorem 8.52(b):
(∫

X
χEn(x) f (x)dP(x)ψ

∣
∣
∣
∣

∫

X
χEn(x) f (x)dP(x)ψ

)

.

But since x 	→ χEn(x) f (x) is bounded and χEn = χEn · χEn , using (iii) in The-
orem 8.52(a) gives

∫

X
χEn(x) f (x)dP(x)ψ =

∫

X
χEn(x) f (x)dP(x)

∫

X
χEn(x)dP(x)ψ

=
∫

X
χEn(x) f (x)dP(x)◦P(En)ψ .

If ψ ∈ Hn, then, as projectors P(Em) are orthogonal,
∫

X
χEk(x) f (x)dP(x)ψ = 0, for k � n .

Under the assumptions on ψ , therefore, the series of (9.8) becomes
∫

X
| f (x)|2dμψ(x) =

∫

X
|χEn(x) f (x)|2dμψ(x)≤

∫

X
n2dμψ(x) = n2||ψ ||2 < +∞ .

We conclude Hn ⊂ Δ f , for any n = 1,2, . . .. But Δ f is a subspace so it contains also
the dense space of finite combinations of the Hn. Hence Δ f is dense.
(c) With f : X→ C let

Fk := {x ∈ X | | f (x)|< k} . (9.9)

Suppose f�supp(P) is bounded. Define bounded measurable maps fn := χsupp(P) · f +
gn where gn = χFn · χX\supp(P) · f . Since supp(μψ) ⊂ supp(P) by Theorem 8.50(v),
for any ψ ∈ H we have f ∈ L2(X,μψ), hence Δ f = H because μ f is finite, and:

∫

X
| fn(x)− f (x)|2dμψ(x) =

∫

supp(P)
| f (x)− f (x)|2dμψ(x) = 0 .

Consequently fn → f in L2(X,μψ) for any ψ ∈ H, so:
∫

X
f (x)dP(x)ψ := lim

n→+∞

∫

X
fn(x)dP(x)ψ = lim

n→+∞

∫

X
χsupp(P) fn(x)dP(x)ψ

= lim
n→+∞

∫

X
χsupp(P) f (x)dP(x)ψ =

∫

X
χsupp(P) f (x)dP(x)ψ =:

∫

supp(P)
f (x)dP(x)ψ ,

where the last integral is meant as in Definition 8.47(c), so the operator
∫

supp(P) f (x)dP(x) belongs in B(H). �
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Now a result that deals, in particular, with composites of integrals of spectral
measures, and characterises in a very precise way the corresponding domains.

Given a pair of operators A, B, we remind that A ⊂ B means that B extends A
(Definition 5.3).

Theorem 9.4. Let X be a second-countable space, B(X) the Borel σ -algebra of X,
H a Hilbert space and P : B(X)→B(H) a PVM. For any measurable f : X→ C, in
the same notation of Theorem 9.3:

(a)
∫

X f (x)dP(x) : Δ f → H is a closed operator.
(b)
∫

X f (x)dP(x) is self-adjoint if f is real, and more generally:

(∫

X
f (x)dP(x)

)∗
=
∫

X
f (x)dP(x) and Δ f = Δ f . (9.10)

(c) If f : X→ C, g : X→ C are measurable, D the standard domain (Definition 5.1)
and f ·g the pointwise product,

∫

X
f (x)dP(x)+

∫

X
g(x)dP(x)⊂

∫

X
( f +g)(x)dP(x) (9.11)

D

(∫

X
f (x)dP(x)+

∫

X
g(x)dP(x)

)

= Δ f ∩Δg (9.12)

with equality in (9.11) ⇔ Δ f+g = Δ f ∩Δg.

∫

X
f (x)dP(x)

∫

X
g(x)dP(x)⊂

∫

X
( f ·g)(x)dP(x) (9.13)

D

(∫

X
f (x)dP(x)

∫

X
g(x)dP(x)

)

= Δ f ·g∩Δg (9.14)

with = in (9.13) ⇔ Δ f ·g ⊂ Δg. In particular:

∫

X
f (x)dP(x)

∫

X
f (x)dP(x) =

∫

X
| f (x)|2dP(x) (9.15)

D

(∫

X
f (x)dP(x)

∫

X
f (x)dP(x)

)

= Δ| f |2 . (9.16)

Moreover
(∫

X
f (x)dP(x)

∫

X
g(x)dP(x)

)

�Δ f∩Δg∩Δ f ·g=
(∫

X
g(x)dP(x)

∫

X
f (x)dP(x)

)

�Δ f∩Δg∩Δ f ·g .

(9.17)
Eventually, if f is bounded on the Borel set E ⊂ X, then ΔχE · f = H and

∫

X
χE(x)dP(x)

∫

X
f (x)dP(x)⊂

∫

X
f (x)dP(x)

∫

X
χE(x)dP(x) =

∫

X
(χE · f )(x)dP(x) ∈B(H).

(9.18)
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(d) If X = R, p : R→ C is a polynomial of degree m ∈ N, and T :=
∫

X xdP(x), then

p(T ) =
∫

R

p(x)dP(x) and D(p(T )) = D(T m) = Δp . (9.19)

(e) Defining μφ ,ψ as in Theorem 8.50(c),
∫

X f (x)dP(x) is the unique operator in H
with domain Δ f such that, for any ψ ∈ Δ f , φ ∈ H:

(

φ
∣
∣
∣
∣

∫

X
f (x)dP(x)ψ

)

=
∫

X
f (x)dμφ ,ψ(x) . (9.20)

(f) For any ψ ∈ Δ f :

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f (x)dP(x)ψ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

X
| f (x)|2dμψ(x) . (9.21)

(g) Every operator
∫

X f (x)dP(x) is positive when f is positive, i.e.:

(

ψ
∣
∣
∣
∣

∫

X
f (x)dP(x)ψ

)

≥ 0 for any ψ ∈ Δ f , if f (x)≥ 0, x ∈ X. (9.22)

(h) If X′ is second countable and φ : X→ X′ is measurable (i.e. φ−1(E ′) ∈B(X) for
E ′ ∈B(X′)), then

B(X′) � E ′ 	→ P′(E ′) := P(φ−1(E ′))

is a PVM on X′, and for any measurable f : X′ → C:
∫

X′
f (x′)dP′(x′) =

∫

X
( f ◦φ)(x)dP(x) and Δ ′f = Δ f◦φ , (9.23)

where Δ ′f is the domain of the operator on the left.

Proof. First of all notice that part (f) follows, by continuity, from the similar property
of bounded maps, seen in Theorem 8.52(b), when we use our definition of integral of
unbounded maps. Likewise, Theorem 8.50(b) implies (g). In fact if f ≥ 0, ψ ∈ Δ f ,
the sequence of χFn · fn ≥ 0 tends to f in L2(X,μψ), so

0≤
(

ψ
∣
∣
∣
∣

∫

X
(χFn · f (x))dP(x)ψ

)

→
(

ψ
∣
∣
∣
∣

∫

X
f (x)dP(x)ψ

)

, as n→+∞,

and (ψ |∫X f (x)dP(x)ψ )≥ 0. Let us see to the rest.
(a) We claim T :=

∫
X f (x)dP(x), defined on Δ f , is closed. Notice, first, that the

bounded operators (Fk as in (9.9))

Tk :=
∫

X
χFk(x) f (x)dP(x) , (9.24)

are such, for ψ ∈ Δ f , that: (1) T PFkψ = PFk Tψ = Tkψ and (2) Tkψ → Tψ , k →+∞.
The proof of (1) is similar to Theorem 9.3(c), whilst (2) follows from the argument
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preceding Lemma 9.2. So let {ψn}n∈N ⊂ Δ f be such that ψn →ψ ∈H and Tψn → φ ,
n →+∞. We claim ψ ∈ Δ f and Tψ = φ , implying T ’s closure. By (1) and because
PFk → I strongly as k →+∞:

Tkψ = lim
n→+∞

Tkψn = lim
n→+∞

PFk Tψn = PFkφ → φ in H as k →+∞.

Define φk := Tkψ ; then
∫

X
χFk(x) f (x)dP(x)ψ = φk → φ in H as k →+∞. (9.25)

By Theorem 8.52(b):
∫

X
χFk(x)| f (x)|2dμψ(x) = ||φk||2 → ||φ ||2 < +∞ as n→+∞.

Monotone convergence ensures f ∈ L2(X,μψ), i.e. ψ ∈ Δ f . Rewriting (9.25) as
Tkψ = φk, and taking the limit for k →+∞ using (2), gives Tψ = φ , as required.
(b) Δ f = Δ f is an obvious consequence of the definition of Δ f and | f |= | f |. We will

show
∫

X f (x)dP(x) ⊂ (
∫

X f (x)dP(x))∗. If ψ ∈ Δ f , φ ∈ Δ f and fn → f in L2(X,μφ )
so fn → f in L2(X,μψ), where fn are bounded, we have:
(

ψ
∣
∣
∣
∣

∫

X
f (x)dP(x)φ

)

= lim
n→+∞

(

ψ
∣
∣
∣
∣

∫

X
fn(x)dP(x)φ

)

= lim
n→+∞

(∫

X
fn(x)dP(x)ψ

∣
∣
∣
∣φ
)

=
(∫

X
f (x)dP(x)ψ

∣
∣
∣
∣φ
)

where we used the definition of integral of f and f in P, plus property (iv)
in Theorem 8.52(a). This means

∫
X f (x)dP(x) ⊂ (

∫
X f (x)dP(x))∗. We will prove

∫
X f (x)dP(x) ⊃ (

∫
X f (x)dP(x))∗ by showing D

(
(
∫

X f (x)dP(x))∗
) ⊂ Δ f . Let T :=

∫
X f (x)dP(x) and take the bounded operators Tk of (9.24). Fix ψ ∈ D(T ∗). Then

there is h ∈ H such that, for any φ ∈ Δ f , (ψ |Tφ) = (h|φ). Choosing φ = T ∗
k ψ we

obtain (ψ |TkT ∗
k ψ) = (h|T ∗

k ψ), where we used T T ∗
k = TkT ∗

k because T ∗
k = PFk T ∗

k
from T PFk = Tk. Therefore ||T ∗

k ψ ||2 = (h|T ∗
k ψ), so ||T ∗

k ψ ||2 ≤ ||T ∗
k ψ || ||h||, i.e.

||T ∗
k ψ || ≤ ||h||. Consequently, by Theorem 8.52(b):

∫

X
χFk(x)| f (x)|2dμψ(x)≤ ||h||2 for any k ∈ N,

which implies ψ ∈ Δ f by monotone convergence. So we have D(T ∗)⊂ Δ f .
(c) Formulas (9.11), (9.12) and the ensuing remark are trivial consequences of the
given definitions and of standard domains. Let us prove (9.13), (9.14). Assume f
is bounded so that Δ f ·g ⊂ Δg, and ψ ∈ Δg. Take {gn}n∈N a sequence of bounded
measurable maps converging to g in L2(X,dμg). Then f · gn → f · g in L2(X,dμg),
and because the integrals of f , gn, f · gn are as in Definition 8.47 plus (iii) in The-
orem 8.52(a), we immediately have, for n→+∞:
∫

X
f (x)dP(x)

∫

X
gn(x)dP(x)ψ =

∫

X
( f ·gn)(x)dP(x)ψ →

∫

X
( f ·g)(x)dP(x)ψ .
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As
∫

X f dP is continuous, we will prove that f bounded and ψ ∈ Δg imply
∫

X
f (x)dP(x)

∫

X
g(x)dP(x)ψ =

∫

X
( f ·g)(x)dP(x)ψ . (9.26)

Let now φ :=
∫

X gdPψ , by (f) the identity shows
∫

X
| f (x)|2dμφ (x) =

∫

X
|( f ·g)(x)|2dμψ(x) if f is bounded and ψ ∈ Δg . (9.27)

Take now f just measurable, possibly unbounded. As (9.27) holds for bounded maps,
it holds for unbounded ones too. Since

D

(∫

X
f (x)dP(x)

∫

X
g(x)dP(x)

)

contains all ψ ∈ Δg such that φ ∈ Δ f , which happens by (9.27) precisely when ψ ∈
Δ f ·g, we conclude:

D

(∫

X
f (x)dP(x)

∫

X
gdP(x)
)

= Δg∩Δ f ·g .

If now φ ∈ Δg∩Δ f ·g, if ψ =
∫

X g(x)dP(x)φ and fn := χFn · f (Fn as previously), then
fn → f in L2(X,μψ), fn ·g→ f ·g in L2(X,μφ ) and (9.26), (f) ( fn replacing f ) imply:

∫

X
f (x)dP(x)

∫

X
g(x)dP(x)φ =

∫

X
f (x)dP(x)ψ = lim

n→+∞

∫

X
fn(x)dP(x)ψ =

= lim
n→+∞

∫

X
( fn ·g)(x)dP(x)φ =

∫

X
( f ·g)(x)dP(x)φ .

This ends the proof of (9.13) and (9.14).
Inclusion (9.13) plus the equality in case Δg ⊃Δ f ·g easily imply (9.17) and (9.18).

Concerning (9.17), we have Δ f ⊃ Δ f · f = Δ| f |2 for the following reason: as μψ is fi-
nite, if ψ ∈ Δ| f (x)|2
∫

X
| f (x)|2dμψ(x)=

∫

X
| f (x)|2 ·1dμψ(x)≤

√∫

X
| f (x)|4dμψ(x)

√∫

X
12dμψ(x) <+∞ .

(d) By (9.13) and (9.11) we have

p(T )⊂
∫

X
p(x)dP(x) .

Hence the claim is true when D(p(T )) = Δp. Let us prove this, starting from showing
by induction

D(T n) = Δxn for n ∈ N. (9.28)

When n = 0,1, the identity is true: D(T 0) = Δ1 = H, D(T ) = Δx. Assume it true
for a given n and let us prove it for n + 1: D(T n+1) = Δxn+1 . We have to show
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D(T T n) = Δx◦xn . Using the special property stated after (9.14), we know that is
equivalent to Δx◦xn ⊂ Δxn . The latter holds because μψ is positive and finite, and
|xn+1|> |xn| outside a compact set J ⊂ R, so ψ ∈ Δxn+1 implies

∫

R

|x|2ndμψ(x) =
∫

R\J
|x|2ndμψ(x)+

∫

J
|x|2ndμψ(x)

≤
∫

R\J
|x|2n+2dμψ(x)+ sup

J
|x|2n
∫

J
1dμψ(x)

≤
∫

R

|x|2n+2dμψ(x)+ sup
J
|x|2n
∫

R

1dμψ(x) < +∞ .

We remark for later that we have also obtained

D(T n+1) = Δxn+1 ⊂ Δxn = D(T n) .

To finish the proof of D(p(T )) = Δp we compute separately the two sides. Take the
leading coefficient am � 0 in p. As D(T n+1) ⊂ D(T n), and in general D(A + B) =
D(A)∩D(B), we have

D(p(T )) = D(T m) . (9.29)

Let us compute Δp. Since Δxn+1 ⊂ Δxn , we find Δxm ⊂ Δp. Let us prove the opposite
inclusion. From |p(x)|/|x|m → |am|, |x| → +∞, follows |p(x)|/|x|m ≤ |am|+ ε > 0
for any ε > 0, provided x does not belong to a too big compact set Jε ⊂ R. Hence if
ψ ∈ Δp: ∫

R

|x|2mdμψ

≤
∫

R\Jε
|x|2mdμψ +

∫

Jε
|x|2mdμψ ≤

∫

R\Jε

|p(x)|2
(|am|+ ε)2 dμψ + sup

Jε
|x|2m
∫

R

dμψ

≤ 1
(|am|+ ε)2

∫

R

|p(x)|2dμψ + sup
Jε
|x|2m
∫

R

dμψ < +∞ ,

and so ψ ∈ Δxm . Thus Δp ⊂ Δxm and Δp = Δxm . From (9.28) and (9.29) we have
Δp = Δxm = D(T m) = D(p(T )), ending this part.
(e) Define the usual bounded maps fn := χFn · f tending to f in L2(X,μψ). By defin-
ition of integral, and by (iv) in Theorem 8.50(c):
(

φ
∣
∣
∣
∣

∫

X
f (x)dP(x) ψ

)

= lim
n→+∞

(

φ
∣
∣
∣
∣

∫

X
fn(x)dP(x) ψ

)

= lim
n→+∞

∫

X
fn(x)dμφ ,ψ(x) .

Now we show
lim

n→+∞

∫

X
( fn(x)− f (x))dμφ ,ψ (x) = 0 .

By Lemma 9.2 (same notations):
∣
∣
∣
∣

∫

X
( fn(x)− f (x))dμφ ,ψ(x)

∣
∣
∣
∣=
∣
∣
∣
∣

∫

X
( fn(x)− f (x))h(x)d|μφ ,ψ (x)|

∣
∣
∣
∣

≤
∫

X
| fn(x)− f (x)|d|μφ ,ψ(x)| ≤ ||φ ||

√∫

X
| fn(x)− f (x)|2dμψ(x)→ 0
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as n→+∞, by definition of
∫

X f (x)dP(x)ψ . Uniqueness now follows. If T : Δ f → H
satisfies the same property of

∫
X f (x)dP(x), then T ′ := T − ∫X f (x)dP(x) solves

(φ |T ′ψ) = 0 for any φ ∈ H, irrespective of ψ ∈ Δ f . Choosing φ = T ′ψ gives
||T ′ψ ||= 0 and so T =

∫
X f (x)dP(x).

Parts (f) and (g) were seen to at the beginning of this proof.
(h) We outline only the proof as it is elementary if tedious. P′ is a PVM by direct
inspection. If f is simple, assertion (9.23) is trivial. Using Definition 8.47 one gener-
alises (9.23) to bounded measurable maps, so (9.23) extends by virtue of the definition
of integral for unbounded f . �

Corollary 9.5. Under the assumptions of Theorem 9.3, if f : X → C is measurable
the following are equivalent.

(a) Δ f = H (i.e. D(
∫

X f (x)dP(x)) = H).
(b) f is essentially bounded with respect to the PVM P (Definition 8.42).
(c)
∫

X f (x)dP(x) ∈B(H).
Under either of (a), (b), (c), the estimate

|| f ||(P)
∞ ≤
∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f dP

∣
∣
∣
∣

∣
∣
∣
∣ (9.30)

holds. Then we can redefine f on a zero-measure set for P obtaining || f ||∞ < +∞,
and without altering

∫
Xf dP: that latter can be computed with Definition 8.47 and

yields the same result.

Proof. Let us prove the equivalence of (a), (b), (c), and that any one implies (9.30).
Properties (a) and (c) are equivalent by the closed graph theorem (2.95), for

∫
X f dP is

closed by Theorem 9.4(a). Let us prove (b) implies (c). Define Fn := {x∈ X | | f (x)|<
n}. If fn := χFn · f , then fn → f pointwise as n → +∞. If f is essentially bounded,
for n large enough f − fn is not 0 on a set Gn ∈B(X) with P(Gn) = 0. Hence

∫

X
f +(− fn)dP =

∫

X
χGn( f − fn)dP =

∫

X
f − fndP

∫

X
χGn dP

=
(∫

X
f − fndP

)

P(Gn) = 0 .

By Theorem 9.4(c),
∫

X f (x)dP(x) =−∫X(− fn(x))dP(x) belongs toB(H) (− fn being
bounded by Theorem 9.3(c)). Now we prove (c) implies (b). To show (9.30) consider
f : X → C measurable, with no boundedness assumption, and assume (c) (i.e. (a)).
Take the usual sequence fn ∈Mb(X). By (8.49):

|| fn||(P)
∞ =
∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f χndP

∣
∣
∣
∣

∣
∣
∣
∣=
∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f dP
∫

X
χFn dP

∣
∣
∣
∣

∣
∣
∣
∣≤
∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f dP

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

∣
∣
∣
∣

∫

X
χFn dP

∣
∣
∣
∣

∣
∣
∣
∣

≤
∣
∣
∣
∣

∣
∣
∣
∣

∫

X
f dP

∣
∣
∣
∣

∣
∣
∣
∣=: M < +∞ .
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By construction {x∈X | | f (x)| ≥M}⊂∪n∈N{x∈X | | fn(x)| ≥M}. Monotonicity and
sub-additivity imply

(ψ |P({x ∈ X | | f (x)| ≥M}ψ)≤ ∑
n∈N

(ψ |P({x ∈ X | | fn(x)| ≥M})ψ) = 0 ,

which means || f ||(P)
∞ ≤M < +∞, as required. The above assertion is valid even if we

redefine f null on the zero-measure set | f (x)|> N| for some finite N > || f ||(P)
∞ . Then

the last statement of the thesis immediately arises. �

The next definition is based on (9.7), and extends the integral in a PVM. We can
also make use of Theorem 9.4(e) to obtain a more elegant, equivalent definition.

Definition 9.6. Let X be a second-countable space, H a Hilbert space and P :
B(X)→B(H) a PVM.

(a) If f : X→ C is measurable with Δ f as in (9.6), the operator
∫

X
f (x)dP(x) : Δ f → H

of (9.7) is called integral of f with respect to the projector-valued measure P.
Equivalently,

∫
X f (x)dP(x) is the unique operator S : Δ f → H such that

(φ |Sψ ) =
∫

X
f (x)dμφ ,ψ(x) , for any φ ∈ H, ψ ∈ Δ f ,

where the complex spectral measure μφ ,ψ is defined in Theorem 8.50(c).
(b) For every E ⊂B(X), f : X→ C and g : E → C measurable, the integrals
∫

E
f (x)dP(x) :=

∫

X
χE(x) f (x)dP(x) and

∫

E
g(x)dP(x) :=

∫

X
g0(x)dP(x) ,

with g0(x) := g(x) if x ∈ E or g0(x) := 0 if x � E, are respectively called integral of
f on E and integral of g on E (in the PVM P).

Remark 9.7. (1) By Theorem 9.3(c), the above extends Definition 8.47 for bounded
maps.
(2) For any f : X→ C measurable,
∫

X
f (x)dP(x) =

∫

supp(P)
f (x)dP(x) and so

∫

X\supp(P)
f (x)dP(x) = 0 . (9.31)

The proof is straighforward: χsupp(P) is bounded, by definition its integral is (χsupp(P)
is simple): ∫

supp(P)
1dP :=

∫

X
χsupp(P)dP = P(supp(P)) = I ,

where Proposition 8.43(c) was used in the last equality. Now the second identity in
(9.18) gives
∫

X
f (x)dP(x)=

∫

X
f (x)dP(x)

∫

X
χsupp(P)(x)dP(x)=

∫

supp(P)
χsupp(P)(x) f (x)dP(x)

=:
∫

supp(P)
f (x)dP(x) .

The rest of (9.31) follows, similarly, by using P(X\ supp(P)) = 0. �
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Examples 9.8. (1) Consider the spectral measure:

P : B(N) � E 	→ PE = ∑
z∈E

z(z| )

of Example 8.49(2) on a basis N of a separable Hilbert space H, and equip N with
the second-countable topology of power sets. We are interested in writing an explicit
formula for the integral of unbounded maps f : N → C relying on definition (9.4). In
the case under exam

∫
N | f (z)|2dμψ(z) < +∞ becomes ∑z∈N | f (z)|2|(z|ψ)|2 < +∞.

We aim to show ∫

N
f (z)dP(z) = s-∑

z∈N

f (z)z(z| )

for f unbounded. This formula was proved in Example 8.49(2) for f bounded. Sup-
pose {Nn}n∈N are finite subsets in N, Nn+1 ⊃ Nn and ∪n∈NNn = N. The sequence
of bounded maps fn := χNn · f converges in L2(N,μψ), for any ψ ∈ H such that
∑z | f (z)|2|(z|ψ)|2 < +∞, simply by Lebesgue’s dominated convergence. By defin-
ition (9.4) we have, if ∑z∈N | f (z)|2|(z|ψ)|2 < +∞:

∫

N
f (z)dP(z)ψ := lim

n→+∞

∫

N
fn(z)dP(z)ψ . (9.32)

But fn is bounded, so Example 8.49(2) guarantees
∫

N
fn(z)dP(z)ψ = s-∑

z∈N

fn(z)(z|ψ) = ∑
z∈Nn

f (z)z(z|ψ) ,

where the sum is finite for Nn contains a finite number of points. Definition (9.32)
reduces to ∫

N
f (z)dP(z)ψ = lim

n→+∞ ∑
z∈Nn

f (z)z(z|ψ) ,

i.e. ∫

N
f (z)dP(z) = s-∑

z∈N

f (z)z(z| ) . (9.33)

Later we will see a concrete example of an unbounded self-adjoint operator built with
this type of spectral measure.

(2) Consider the spectral measure of Example 8.49(1). Take a Hilbert space H =
L2(X,μ), X second countable and μ positive, σ -additive on the Borel σ -algebra of X.
The spectral measure on H we wish to consider is the following. For anyψ ∈ L2(X,μ),
E ∈B(X), let

(P(E)ψ)(x) := χE(x)ψ(x) , for almost every x ∈ X . (9.34)

With ψ ∈ H, the measure μψ is

μψ(E) = (ψ |P(E)ψ) =
∫

E
|ψ(x)|2dμ(x) , for any E ∈B(X) .



392 9 Spectral theory II: unbounded operators on Hilbert spaces

Consequently if g : X→ C is measurable:
∫

X
g(x)dμψ(x) =

∫

X
g(x)|ψ(x)|2dμ(x) .

In Example 8.49(1) we saw that if f : X→ C is measurable and bounded:
(∫

X
f (y)dP(y)ψ

)

(x) = f (x)ψ(x) for every ψ ∈ L2(X,μ) and almost every x ∈ X.

(9.35)
This is valid for unbounded measurable maps, too, as long as ψ ∈ Δ f . If f : X→ C is
unbounded and measurable take a sequence of bounded measurable maps fn such that
fn → f , n→+∞, in L2(X,μψ), with ψ ∈ Δ f . In other words, by the above expression
for μψ we take

∫

X
| fn(x)− f (x)|2|ψ(x)|2dμ(x)→ 0 as n→+∞.

By (9.35):

|| f ·ψ− fn ·ψ ||2H =
∫

X
| f (x)− fn(x)|2|ψ(x)|2dμ(x)→ 0 as n→+∞.

Therefore the definition of integral in P implies that for any ψ ∈ Δ f , with f : X→ C
measurable and possibly unbounded:

(∫

X
f (x)dP(x)ψ

)

(y) = f (y)ψ(y) for almost every y ∈ X. (9.36)
�

9.1.2 Von Neumann algebra of a bounded normal operator

Corollary 9.5 has an important consequence for the von Neumann algebra (see Defin-
ition 3.47 and the ensuing argument) generated by a bounded normal operator and the
adjoint. (The result may be somehow generalised by looking at unbounded PVMs, as
proven in Exercises 9.6–9.7.)

Theorem 9.9 (Von Neumann algebra generated by a bounded normal operator
and its adjoint). Take a normal operator T ∈B(H) with H separable. The subspace
in B(H) that commutes with every operator commuting with T and T ∗ (the von Neu-
mann algebra generated by T , T ∗) consists precisely of the operators f (T,T ∗) of
Theorem 8.39, for f ∈Mb(σ(T )).

Proof. Indicate by M the von Neumann algebra generated by T , T ∗. We know that
any f (T,T ∗), with f : σ(T )→ C measurable and bounded, belongs to M by (iii) in
Theorem 8.39(b) (in the sequel we will need Theorem 8.52, the spectral Theorem 8.54
and Theorem 8.56). Let us show the converse. Clearly M coincides with the von
Neumann algebra generated by the ∗-algebra with unit of complex polynomials in
T , T ∗ (restricted to σ(T ), from now on always assumed). By the double commut-
ant theorem (3.46) M is the strong closure of complex polynomials in T , T ∗. That
is to say, if B ∈M there is a sequence of bounded measurable fn (better: restrictions
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of polynomials to σ(T )) such that fn(T,T ∗)x → Bx, n → +∞, for any x ∈ H. We
claim B = f (T,T ∗) for some bounded measurable f defined on σ(T ). As g(T,T ∗) =∫
σ(T ) gdP(T ) by Theorem 8.52(d) for g bounded and measurable, let {ψα}α∈N⊂H be

an orthonormal system (countable since H is separable – the finite case is alike) as the
one of Theorem 8.56. As in the mentioned theorem, build orthogonal spaces Hψα ⊂H
corresponding to those vectors whose orthogonal sum is H. Each Hψα is invariant un-
der any g(T,T ∗), and isomorphic to L2(σ(T ),μα), where μα(E) := (ψα |P(T )(E)ψα)
are the usual positive probability measures, P(T ) is the PVM of T and E ⊂ σ(T ) a
Borel set. The vector ψα is described in L2(σ(T ),μα) by the constant map 1. The
operator fn(T,T ∗) is described in L2(σ(T ),μα) by the multiplication by fn. Now
look at x := ∑α∈N 2−α/2ψα . The sequence fn(T,T ∗)x is a Cauchy sequence by as-
sumption. Expanding H =⊕α∈NHψα , the inequality || fn(T,T ∗)x− fm(T,T ∗)x||2 < ε ,
n,m > Nε , is equivalent to ∑α∈N

∫
σ(T ) | fn − fm|22−αdμα < ε , n,m > Nε , by The-

orem 8.56(a). Let μ(E) := ∑α∈N 2−αμα(E) be a bounded positive Borel measure.
Then the previous condition says { fn}n∈N is Cauchy in L2(σ(T ),μ), so there is a
subsequence (called alike for simplicity) converging μ-almost everywhere to a meas-
urable map f ∈ L2(σ(T ),μ), possibly unbounded. Since zero-measure sets for μ are
so also for each μα , convergence holds almost everywhere for P(T ) as well, by The-
orem 8.56. (In fact for any x ∈ H and corresponding maps gx,α ∈ L2(σα(T ),μα)
we have (x|P(T )(E)x) = ∑α∈N

∫
σ(T ) χEgx,αdμα = 0 if μα(E) = 0 for any α ∈ N.)

So we may define a closed operator A :=
∫
σ(T ) f dP(T ), with dense domain Δ f . Call

D ⊂ Δ f the linear space dense in H of finite combinations of φα ∈ Hψα associated to
bounded measurable maps in the respective L2(σ(T ),μα). By linearity A�D= B�D as
||Aφα −Bφα || ≤ ||(A− fn(T,T ∗))φα ||+ || fn(T,T ∗)φα −Bφα ||, where the last term
is infinitesimal as n → +∞ by construction, whereas the penultimate term squared
is smaller than C∑α∈F

∫ | f − fn|2dμα , C ≥ 0 finite, F finite,
∫ | f − fn|2dμα → 0

as n → +∞, as we know. Since B is bounded and D dense, closing A�D= B�D
gives A�D = B. But A = A ⊃ A�D , and B is defined on H, whence A = B. Recall-

ing A =
∫
σ(T ) f dP(T ), by Corollary 9.5 || f ||(P)

∞ < +∞. We may redefine f on a zero-

measure set for P(T ) without changing A =
∫
σ(T ) f dP(T ). Since f is now bounded,

we can define f (T,T ∗) as in Theorem 8.39. Thus f (T,T ∗) =
∫
σ(T ) f dP(T ) = B. �

9.1.3 Spectral decomposition of unbounded self-adjoint operators

The time is right to prove the spectral decomposition theorem for unbounded self-
adjoint operators. We shall state it and prove it for unbounded self-adjoint operators,
although it holds also for unbounded normal operators [Rud91].

Theorem 9.10 (Spectral decomposition of unbounded self-adjoint operators).
Let T be self-adjoint (possibly unbounded) on the Hilbert space H.

(a) There exists a unique PVM P(T ) : B(R)→B(H), such that

T =
∫

R

λ dP(T )(λ ) . (9.37)
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(b) The following identity holds

supp(P(T )) = σ(T ) , (9.38)

and in particular:

(i) λ ∈ σp(T ) ⇔ P(T )({x}) � 0;
(ii) λ ∈ σc(T ) ⇔ P(T )({x}) = 0, and for any open set Ax ⊂ R containing x

P(T )(Ax) � 0;
(iii) if λ ∈ σ(T ) is isolated, then λ ∈ σp(T );
(iv) if λ ∈ σc(T ), then for any ε > 0 there exists φε ∈ D(T ), ||φε ||= 1 with

0 < ||Tφε −λφε || ≤ ε .

Proof. (a) Let V be the Cayley transform of T , a unitary operator by Theorem 5.34
because T is self-adjoint. If S1 := {(x,y)∈R2 | x2 +y2 = 1}, define X := S1 \{(1,0)}
and denote z = x+ iy. Put on X the topology induced by R2 (or S1, which is the same)

and consider its Borel σ -algebra B(X)⊂B(S1). Let also P(V )
0 be the spectral meas-

ure of V in S1, stemming from the spectral decomposition Theorem 8.54(a)’. Then

V =
∫

S1
zdP(V )

0 (x,y) . (9.39)

The operator I−V is one-to-one by (i) in Theorem 5.34(b), so 1 = 1 + i0 � σp(V ).
This in turn implies P(V )

0 ({(1,0)}) = 0 by (i) in Theorem 8.54(b). Consider ortho-
gonal projectors

P(V ) : B(X) � E 	→ P(V )
0 (E) ∈P(H) ,

where B(X)⊂B(S1). P(V ) is a PVM on X by construction (cf. Definition 8.41); note

that P(V )(X) = I because P(V )
0 ({(1,0)}) = 0:

P(V )(X) := P(V )
0 (X) = P(V )

0 (S1 \{(1,0)}) = P(V )
0 (S1)−P(V )

0 ({(1,0)}) = I−0 = I .

For the same reason the integral of a simple map s on S1 in P(V )
0 coincides trivially

with the integral of s�X in P(V ). From the construction of the integral of bounded maps,

taking f ∈ Mb(S1), hence f�X∈ Mb(X), it follows that
∫

X f�X dP(V ) =
∫

X f dP(V )
0 .

However we choose φ ,ψ ∈ H, E ⊂B(S1):

μ(P(V ))
φ ,ψ (E \{(1,0)}) = (φ |P(V )(E \{(1,0)})ψ) = (φ |P(V )

0 (E \{(1,0)})ψ)

= (φ |P(V )
0 (E)ψ) = μ(P(V )

0 )
φ ,ψ (E) ,

(in the obvious notation), using the definition of integral of measurable maps we find
∫

X f�X dP(V ) =
∫

X f dP(V )
0 for any f : S1 → C measurable. In particular, from (9.39)

and dropping�X, we obtain:

V =
∫

X
zdP(V )(x,y) . (9.40)
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Now define the real-valued, measurable unbounded map on X:

f (z) := i
1+ z
1− z

z ∈ X , (9.41)

and integrate it in the spectral measure P(V ) on X, to get the operator (unbounded, in
general):

T ′ :=
∫

X
f (z)dP(V )(x,y) . (9.42)

As f ranges in the reals ((x,y) ∈ X), T ′ must be self-adjoint by Theorem 9.4(b). The
equation f (z)(1− z) = i(1+ z), by virtue of Theorem 9.4(c), implies:

T ′(I−V ) = i(I +V ) (9.43)

(it is easy to see that there is = in (9.13)). In particular (9.43) implies Ran(I−V )⊂
Δ f =: D(T ′). From Theorem 5.34 we know

T (I−V ) = i(I +V ) and D(T ) = Ran(I−V )⊂ Δ f .

Comparing with (9.43) allows to conclude T ′ is a self-adjoint extension of T . As
T = T ∗ has no proper self-adjoint extension (Proposition 5.17(c)), then T = T ′. Hence

T =
∫

X
f (z)dP(V )(x,y) . (9.44)

The function f : X→R is actually bijective and so its range isR. From Theorem 9.4(h)
B(R) � E 	→ P(T )(E) := P(V )( f−1(E)) is a PVM on R and (9.44) may be written as
in (9.37):

T =
∫

R

λdP(T )(λ ) .

But this is exactly the spectral expansion we wanted. So let us pass to uniqueness of
the measure solving (9.37). Let P′ be a PVM on R with

T =
∫

R

λdP′(λ ) .

The Cayley transform, by Theorem 9.4(c), reads

V = (T − iI)(T + iI)−1 =
∫

R

λ − i
λ + i

dP′(λ ) .

Using statement (h) in the same theorem, with the same measurable f : X→ R with
measurable inverse of (9.41), we find

V =
∫

X
zdP′( f (x,y)) ,

where B(X) � F 	→ Q(F) := P′( f (F)) is a PVM on X which we can extend to a
PVM on S1 by Q0(F) := Q(F \{(1,0)}), F ∈B(S1). Thus

V =
∫

S1
zdQ0(x,y) .
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By (9.39), then, as the spectral measure associated to a bounded normal operator

is unique by Theorem 8.54, necessarily Q0(F) = P(V )
0 (F) for any Borel set in S1.

Hence Q(F) = P(V )(F) for any Borel set of X. Therefore, for any E ∈ B(R),
Q( f−1(E)) = P(V )( f−1(E)), i.e. P′(E) = P(T )(E), as required.
(b) Now let us show σ(T ) = supp(P(T )), or equivalently, λ0 ∈ ρ(T ) ⇔ λ0 �
supp(P(T )). So first of all we prove λ0 � supp(P(T )) implies λ0 ∈ ρ(T ). In fact, there
exists an open interval (a,b)⊂ R\ supp(P(T )), λ0 ∈ (a,b). Hence I =

∫
R
χR\(a,b)dP,

and from the last result in Theorem 9.4(c)
∫

R

1
λ −λ0

dP(T )(λ ) =
∫

R

1
λ −λ0

dP(T )(λ )
∫

R

χR\(a,b)dP =

∫

R

χR\(a,b)(λ )
1

λ −λ0
dP(T )(λ ) .

By Theorem 9.4(c), as the last integrand is bounded,

Rλ0
(T ) :=

∫

R

1
λ −λ0

dP(T )(λ ) ∈B(H) .

Always by Theorem 9.4(c) (and keeping an eye on the domains of the products):

Rλ0
(T )(T −λ0I) = I�D(T ) , (T −λ0I)Rλ0

(T ) = I .

The second is true everywhere on H, so Ran(T −λ0I) = H. The operator Rλ0
(T ) is

therefore the resolvent of T associated to λ0 by Theorem 8.4(a), as the name sug-
gests. By definition, then, λ0 ∈ ρ(T ). Conversely let us prove λ0 ∈ ρ(T ) implies
λ0 � supp(P(T )). Under the assumptions on λ0, P(T )({λ0}) = 0, otherwise there-

would be ψ ∈ P(T )
{λ0}(H)\{0} such that (by Theorem 9.4(c)):

Tψ =
∫

R

λdP(T )(λ )P(T )
{λ0}ψ =

∫

R

λdP(T )(λ )
∫

R

χ{λ0}(λ )dP(T )(λ )ψ

=
∫

R

λχ{λ0}(λ )dP(T )(λ )ψ =
∫

R

λ0χ{λ0}(λ )dP(T )(λ )ψ = λ0P(T )
{λ0}ψ = λ0ψ

and thenψ ∈ σp(T ), contradicting λ0 ∈ ρ(T ). Furthermore, the resolvent exists (as T
is closed and by Theorem 8.4(a, b)). This is the operator Rλ0

(T )∈B(H) that satisfies

(T −λ0I)Rλ0
(T ) = I and Rλ0

(T )(T −λ0I) = I�D(T ) .

On the other hand Theorem 9.4(c) and P(T )({λ0}) = 0 imply
(∫

R

1
λ −λ0

dP(T )(λ )
)

(T −λ0I) = I�D(T ) , (T −λ0I)
∫

R

1
λ −λ0

dP(T )(λ ) = I

(again, beware of domains). From the first we also see that the domain of∫
R

1
λ−λ0

dP(T )(λ ) is D(T − λ0I), i.e. H. It does not really matter how one defines

λ 	→ 1
λ−λ0

at λ = λ0, because P(T )({λ0}) = 0. By uniqueness of the inverse, then,
∫

R

1
λ −λ0

dP(T )(λ ) = Rλ0
(T ) ,
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and the operator on the left is bounded. Now suppose by contradiction that λ0 ∈
supp(P(T )). Then any open set containing λ0, in particular any interval In := (λ0−
1/n,λ0 +1/n), must satisfy P(T )(In)� 0. Takeψn ∈P(T )

In (H)\{0} for any n = 1,2, . . ..
Without loss of generality assume ||ψn||= 1. Using Theorem 9.4(f) we obtain

||Rλ0
(T )ψn||2 =

∣
∣
∣
∣

∣
∣
∣
∣

∫

R

1
λ −λ0

dP(T )(λ )ψn

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

In

1
|λ −λ0|2 dμψn(λ )

≥ inf
In

1
|λ −λ0|2

∫

In
dμψn(λ )≥ inf

In

1
|λ −λ0|2 = n2 →+∞ as n→+∞.

We have reached the absurd that Rλ0
(T ) cannot be bounded. Therefore λ0 �

supp(P(T )).
Let us prove (i). As above, if P(T )({x}) � 0 then x ∈ σp(T ). Suppose x ∈ σp(T ).

By definition of Cayley transform, ((x− i)/(x + i)) ∈ σp(V ). We may apply (i) in
Theorem 8.54(b) to the normal V (unitary) replacing T . Then P(V )({ x−i

x+i})� 0. Look-
ing at the way the PVM associated to T was obtained from the PVM of V , we see
P(T )(x) = P(V )({ x−i

x+i}) � 0.
Now to (ii). By Proposition 8.7(a), x ∈ σc(T ) means: (1) x ∈ σ(T ) but (2)

x � σp(T ). Assertion (1) implies x ∈ supp(P(T )), so any open set Ax containing x
must satisfy P(T )(Ax) � 0. Number (2) is equivalent to P(T )({x}) = 0 (otherwise (i)
would give a contradiction).

The proof of (iii) is immediate: if x ∈ supp(P(T )) is an isolated point, then
P(T )({x}) � 0, otherwise x could not belong to supp(P(T )), and using (i) the claim
follows.

At last, let us prove (iv). If x∈ σc(T ), using (ii) on the intervals In := (x−1/n,x+
1/n), n = 1,2, . . ., we have P(T )(In) � 0. So choose ψn ∈ P(T )

In
(H) with ||ψn||= 1 for

any n. Then

||Tψn− xψn||2 =
(∫

R

(λ − x)dP(T )(λ )ψn

∣
∣
∣
∣

∫

R

(λ − x)dP(T )(λ )ψn

)

=

(∫

R

(λ − x)dP(T )(λ )P(T )
In ψn

∣
∣
∣
∣

∫

R

(λ − x)dP(T )(λ )ψn

)

.

Using Theorem 9.4(c) the last inner product is
∫

R

χIn(x)(λ − x)2dμψn(λ )≤
∫

In
sup

In
(λ − x)2dμψn(λ ) =

= n−2
∫

In
dμψn(λ ) = n−2

∫

R

dμψn(λ ) = n−2||ψn||2 .

So for any n = 1,2, . . . there is ψn � 0, ||ψn|| = 1, with ||Tψn − xψn|| ≤ 1/n. The
claim follows, since x � σp(T ) by assumption, and 0 < ||Tψn− xψn||. �

After the spectral theorem we pass to a definition useful for the applications
to QM.
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Definition 9.11. Consider a self-adjoint operator T on the Hilbert space H, and
f : σ(T )→ C a measurable map. The operator:

f (T ) :=
∫

σ(T )
f (x)dP(T )(x) , (9.45)

with domain

D( f (T )) = Δ f :=
{

ψ ∈ H

∣
∣
∣
∣

∫

σ(T )
| f (x)|2dμ(T )

ψ (x) < +∞
}

,

where μ(T )
ψ (E) := (ψ |P(T )(E)ψ) for any E ∈ B(σ(T )), is called function of the

operator T .

Since supp(P(T )) = σ(T ), the PVM P(T ) associated to T can be thought as
defined either on σ(T ) or on R. Even when defined on σ(T ) only (precisely, on
the Borel σ -algebra B(σ(T ))) we still have supp(P(T )) = σ(T ) by the definition
of support in the subspace σ(T ) of R with induced topology. The easy proof is left
to the reader (one uses that λ ∈ supp(P) iff P(A) � 0 for any open set A containg
λ , for a generic PVM). Therefore we can view the right integral in (9.45) as living
on R, by extending f trivially (as zero) outside σ(T ) or directly taking a measurable
f : R→ C:

f (T ) :=
∫

R

f (x)dP(T )(x) ,

with

D( f (T )) = Δ f :=
{

ψ ∈ H

∣
∣
∣
∣

∫

R

| f (x)|2dμ(T )
ψ (x) < +∞

}

.

In the sequel we shall use the best viewpoint without further explanations. To the
reader is also left the obvious check that the definition of f (T ) coincides with the
known one (relying on the functional calculus for bounded measurable functions, cf.
Chapter 8) when T ∈B(H), f ∈Mb(σ(T )).

Remark 9.12. (1) The spectral theorem allows for a second decompostion of the
spectrum of a self-adjoint operator T : D(T )→ H, consisiting in the discrete spec-
trum

σd(T ) :=
{
λ ∈ σ(T )

∣
∣
∣dim
(

P(T )
(λ−ε,λ+ε)(H)

)
is finite for some ε > 0

}
,

plus the essential spectrum σess(T ) := σ(T )\σd(T ).
It is not hard to see that λ ∈ σd(T ) ⇔ λ is an isolated point in σ(T ), and as

such, λ is an eigenvalue for T with finite-dimensional eigenspace. By Theorem 9.10
σd(T )⊂ σp(T ). In general, though, the opposite inclusion fails, for instance because
there may be non-isolated points in σp(T ).
(2) A third spectral decomposition for T : D(T )→ H self-adjoint arises by splitting
the Hilbert space into the closed span Hp of the eigenvectors and its orthogonal com-
plement: H = Hp⊕H⊥

p . Both Hp∩D(T ) and H⊥
p ∩D(T ) are easily T -invariant. With

the obvious symbols:
T = T�Hp ⊕T�H⊥p .
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One calls purely continous spectrum the set σpc(T ) := σ(T�H⊥p ), where for simpli-

city T�H⊥p stands for T�D(T )∩H⊥p here and in the sequel. Then σ(T ) = σp(T )∪σpc(T ).
Note that the latter is not necessarily a disjoint union, and in general σpc(T ) � σc(T ).
(3) The fourth spectral decomposition of T : D(T )→ H on the Hilbert space H (and
even on a normed space), is that into approximate point spectrum

σap(T )

:=
{
λ ∈ σ(T ) | (T −λ I)−1 : Ran(T −λ I)→D(T ) does not exist or is not bounded

}

and purely residual spectrum σpr(T ) := σ(T ) \ σap(T ). The unboundedness of
(T−λ I)−1 is equivalent to the existence of δ > 0 with ||(T−λ I)ψ || ≥ δ ||ψ || for any
ψ ∈D(T ), so we immediately see how the next result comes about, thereby justifying
the names: λ ∈ σap(T ) ⇔ there is a unit ψε ∈ D(T ) such that

||Tψ−λψ || ≤ ε

for any ε > 0. For self-adjoint operators the above holds for any λ ∈ σc(T ) due to
Theorem 8.54(b), but clearly also for λ ∈ σp(T ); since σ(T ) = σp(T )∪σc(T ) in this
case, we conclude σap(T ) = σ(T ) and σpr(T ) = ∅ for every self-adjoint operator.
(4) The last partial spectral classification for self-adjoint operators (cf. [ReSi80, vol.
I] and[Gra04]) descends from Lebesgue’s Theorem 1.76 on the decomposition of
regular Borel measures on R. If T is self-adjoint on the Hilbert space H and μψ is
the spectral measure of the vector ψ (Theorem 8.50(c)), we define the sets (all closed
spaces):

Hac := {ψ ∈ H |μψ is absolutely continuous for Lebesgue’s measure};
Hsing := {ψ ∈ H |μψ is singular and continuous for Lebesgue’s measure};
Hpa := {ψ ∈ H |μψ is purely atomic}.

Then we define σac(T ) := σ(T�Hac), σsing(T ) := σ(T�Hsing) respectively called ab-
solutely continuous spectrum of T and singular spectrum of T . It turns out that
σac(T )∪σsing(T ) = σpc(T ) and σp(T ) = σ(T�Hpa).
(5) As supp(P(T )) = σ(T ), definition (9.45) reads:

f (T ) :=
∫

σ(T )
f (x)dP(T )(x) . (9.46)

Likewise, the domain of f (T ) is

D( f (T )) =
{

ψ ∈ H

∣
∣
∣
∣

∫

σ(T )
| f (x)|2dμ(T )

ψ (x) < +∞
}

,

as supp(μφ ,ψ) ⊂ supp(P(T )). Eventually, if f : R→ R is measurable, decomposing
f (T ) (self-adjoint by Theorem 9.4(b)) under the spectral Theorem 9.10 produces
∫

σ( f (T ))
λdP( f (T ))(λ ) =

∫

σ(T )
f (λ )dP(T )(λ ) =

∫

σ( f (T ))
λdP(T )( f−1(λ )) . (9.47)
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The last identity follows from Theorem 9.4(h). By uniqueness of the PVM associated
to f (T ) we have

P f (T )(E) = P(T )( f−1(E)) for any E ∈B(σ( f (T ))). (9.48)

(6) Theorem 5.10(d) implies that for any self-adjoint T , the standard domain of a
polynomial p(T ) and the domain of p(T ) thought of as function of T according to
Definition 9.11 coincide. By definition of standard domain we also have, for any self-
adjoint T :

D(T m)⊂ D(T n) , for any 0≤ n≤ m in N. (9.49)
�

Functions of an operator enjoy properties that descend directly from 9.3 and 9.4.
The next proposition specifies more features of the spectrum of f (T ). In order to stay
general, we shall state the result for spectral measures that do not necessarily come
from self-adjoint operators. But first a definition.

Definition 9.13. If P : B(X) → B(H) is a PVM on the second-countable X and
f : X→C is measurable, the essential rank of f with respect to P, ess ranP( f )⊂C,
is the closed complement of the union of all open sets A⊂C such that P( f−1(A)) = 0.
I.e., z ∈ ess ranP( f ) ⇔ P( f−1(A)) � 0, with z ∈ A and A⊂ C open.

If V is the union of said sets A then P( f−1(V )) = 0, because V is the union of
countably many sets A by Lindelöf’s lemma, and PVMs are sub-additive.

Proposition 9.14. Let P : B(X)→ B(H) be a PVM on the second-countable X and
f : X→ C a measurable map. If Ez := f−1({z}), z ∈ C then:

(a)

σ
(∫

X
f dP

)

= ess ranP( f ) ,

and in particular, for z ∈ ess ranP( f ):

(i) P(Ez) � 0 ⇒ z ∈ σp (
∫

X f dP);
(ii) P(Ez) = 0 ⇒ z ∈ σc (

∫
X f dP),

(hence σr (
∫

X f dP) = ∅ even if f is not essentially bounded).
(b) If f : σ(T )→ C is continuous and T self-adjoint, σ( f (T )) = f (σ(T )), with bar
denoting closure.
(c) If f : σ(T )→ C is continuous and T ∈B(H) normal, σ( f (T )) = f (σ(T )).
(d) If f : σ(T )→ C is measurable and T as in (b) or (c), then σp( f (T ))⊃ f (σp(T ))
(not an equality, in general).

Proof. (a) In the sequelΨ( f ) :=
∫

X f dP and we assume z = 0 without loss of gen-
erality. Let us prove (i). If P(E0) � 0, there is x ∈ P(E0)(H) with ||x|| = 1. Call
χ := χE0 , so f χ = 0 and Ψ( f )Ψ(χ) = 0 by Theorem 9.4(c). As Ψ(χ) = P(E0),
Ψ( f )x =Ψ( f )P(E0)x =Ψ( f )Ψ(χ)x = 0, proving (i).

Now to (ii). By assumption P(E0) = 0, but P(Fn) � 0 if Fn := {s ∈ X | | f (s)| <
1/n}, n = 1,2, . . ., because z ∈ ess ranP( f ). Choose xn ∈ P(Fn)(H), ||xn|| = 1 and
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let χn := χFn . As before ||Ψ( f )xn|| = ||Ψ( f χn)xn|| ≤ ||Ψ( f χn)|| = || f χn||∞ ≤ 1/n.
Therefore Ψ( f )xn → 0, notwithstanding ||xn|| = 1. This shows that Ψ( f )−1 (and,
similarly, (Ψ( f )− zI)−1) cannot be bounded if it exists. To show 0 (z in general) is
in the continuous spectrum we need prove Ker(Ψ( f )) = {0} and Ran(Ψ( f )) = H.
SupposeΨ( f )x = 0 for some x ∈ Δ f . Then

∫

X
| f |dμx = ||Ψ( f )x||2 = 0 .

Since | f | > 0 almost everywhere for μx, it follows 0 = μx(X) = ||x||2. That is,
Ker(Ψ( f )) = {0}. To finish part (ii) we prove Ran(Ψ( f )) = H. Since Ψ( f )∗ =
Ψ( f ), the same argument used above tells Ker(Ψ( f )∗) = {0} and Ran(Ψ( f )) =
(Ker(Ψ( f )∗)⊥)⊥ = {0}⊥ = H.

The remains the first assertion in (a). By (i)–(ii) we have ess ranP( f )⊂ σ(Ψ( f )).
For the opposite inclusion assume z = 0 � ess ranP( f ) (z� 0 is analogous). Then f ′ :=
1/ f is bounded and f f ′ = 1, so ψ( f )Ψ( f ′) = I and Ran(Ψ( f )) = H. Since | f |> 0,
Ψ( f ) is one-to-one as in case (ii). Therefore Ψ( f )−1 ∈ B(H) by the closed graph
theorem. This ends the proof because it implies 0 � σ(Ψ( f )) by Theorem 8.4(a).
(b) Recall supp(P(T )) = σ(T ) (viewing P(T ) defined on C, or only on σ(T ) if we use
the induced topology). Certainly f (supp(P(T )))⊂ ran essP( f ) (if z∈ f (supp(P(T ))),
for any open set A ⊂ C, A � z, the open set f−1(A) is in supp(P(T )) and so

P(T )( f−1(A)) � 0). Because ran essP(T ) ( f ) is closed, we have f (supp(P(T ))) ⊂
ran essP(T ) ( f ). If z ∈ ran essP(T ) ( f ) but z � f (supp(P(T ))), there would be an open
set A � z not intersecting f (supp(P(T ))). Thus P(T )( f−1(A)) = P(T )(∅) = 0, which
cannot be by definition of ran essP(T ) ( f ).
(c) The statement is straighforward from (b). Note, if T ∈ B(H), that the spectrum
σ(T ) is compact and its image in C under the continuous f is compact, so closed.
(d). If λ ∈ σp(T ) then P(T )({λ}) � {0}. If x ∈ P(T )({λ})(H) \ {0}, using The-
orem 9.4(c) we get f (T )x = f (T )χ{λ}(T )x = f (λ )x, hence f (λ ) ∈ σp( f (T )).
Here is an example where σp( f (T )) � f (σp(T )) for T = T ∗. Take (a,b)⊂ σc(T ) so
that P(T )((a,b)) � 0. If f is measurable, it equals a constant c on (a,b) and f (λ ) < c
outside the interval, so c ∈ σp( f (T )) by (i) in (a). But c � f (σp(T )) < c and hence
σp( f (T )) � f (σp(T )). �

9.1.4 Example with pure point spectrum: the Hamiltonian of the
harmonic oscillator

On the complex Hilbert space L2(R,dx) (dx is the Lebesgue measure on R) consider
the operator

H0 :=− 1
2m

(
P�S (R)

)2 +
mω2

2

(
X�S (R)

)2
,

where X , P are the position and momentum operators for a particle moving on the
real line, seen in Chapter 5. In other terms

H0 :=− h̄2

2m
d2

dx2 +
mω2

2
x2 ,



402 9 Spectral theory II: unbounded operators on Hilbert spaces

where x2 stands for the multiplication by R � x 	→ x2 and h̄, ω , m are positive con-
stants. Define D(H0) := S (R), where S (R) is the Schwartz space of R, i.e. the
space of smooth complex functions that vanish at infinity, together with any derivat-
ive, faster than any negative power of x (see Example 2.87).

The numbers h̄,ω , m have no mathematical relevance (and could be set to 1 in the
sequel), yet it is their physical meaning that is important. The operator H0 is called
the Hamiltonian of the one-dimensional harmonic oscillator with charactersitic
frequency ω/(2π), for a particle of mass m; h := 2π h̄ is Planck’s constant. Physic-
ally, H0 is the energy observable of the system under exam; in this section, though,
we shall not be concerned with the physical background; we will just study the op-
erator from a mathematical perspective, leaving any comment about the physics to
Chapter 12, 13.

H0 is evidently symmetric as Hermitian and because S (R) is dense in L2(R,dx).
H0 admits self-adjoint extensions by von Neumann’s criterion (Theorem 5.43), for it
commutes with the (antiunitary) complex conjugation of L2(R,dx). We will show H0

is essentially self-adjoint, provide an explicit expression for it in terms of the spectral
expansion of its unique self-adjoint extension H0, and also describe the spectrum.

Let us introduce three operators, called creation operator, annihilation oper-
ator and number operator:

A� :=
√

mω
2h̄

(

x+
h̄

mω
d
dx

)

, A :=
√

mω
2h̄

(

x− h̄
mω

d
dx

)

, N := A�A .

In this case, as well, we assume the operators are densely defined on D(A) = D(A�) =
D(N ) := S (R). It should be clear that A� ⊂ A∗, justifying the notation, and N is
further symmetric. Notice S (R) is dense and invariant under H0, A, A�. Using A, A�

we will build eigenvectors for N and H0 that form a basis in L2(R,dx). As eigen-
vectors are obviously analytic vectors, by Nelson’s criterion (Theorem 5.47) H0, N
are essentially self-adjoint on their domain S (R).

We start by observing that, by definition, the commutation relation

[A,A�] = I , (9.50)

hold, where either side acts on the dense invariant space S (R). The proof is imme-
diate. What is more, still by definition,

H0 = h̄ω
(

A�A+
1
2

I

)

= h̄ω
(

N +
1
2

I

)

. (9.51)

Consider the equation in S (R):
Aψ0 = 0 . (9.52)

A solution is, easily,

ψ0(x) =
1

π1/4
√

s
e
− x2

(2s)2 , s :=

√
h̄

mω
,



9.1 Spectral theorem for unbounded self-adjoint operators 403

where the factor was chosen so to normalise ||ψ0|| = 1. The function ψ0 is the
first Hermite function introduced in Example 3.32(4), provided we use the variable
x′ = x/s and consider the factor 1/

√
s not to destroy the normalisation. Now define

vectors:

ψn :=
(A�)n
√

n!
ψ0 (9.53)

for n = 1,2, . . .. Only using (9.52), (9.50) it is easy to prove by induction that

Aψn =
√

nψn−1 , A�ψn =
√

n+1ψn+1 , (ψn|ψm) = δnm , (9.54)

n,m ∈ N. The second identity actually follows from the definition of the ψn, whilst
the first is proved like this:

Aψn =
1√
n!

A(A�)nψ0 =
1√
n!

[A,(A�)n]ψ0 +
1√
n!

(A�)nAψ0 =
1√
n!

[A,(A�)n]ψ0 +0;

but (9.50) implies [A,(A�)n] = n(A�)n−1, substituting which above gives what needed.
Here is the proof of the third identity (for n≥ m, the other case is similar):

(ψm|ψn) =
1√
n!m

(ψm−1|A(A�)nψ0) =
1√
n!m

(ψm−1|[A,(A�)n]ψ0)

=
n√
n!m

(ψm−1|(A�)n−1ψ0) =
√

n
m

(ψm−1|ψn−1) = · · ·=
√

n!
m!(n−m)!

(ψ0|ψn−m) .

If n = m the result is 1, otherwise 0, for

(ψ0|ψn−m) = (n−m)−1/2(ψ0|A�ψn−m−1) = (n−m)−1/2(Aψ0|ψn−m−1) = 0 .

The second equation in (9.54) (the normalisation is preserved when using x′ = x/s
because of 1/

√
s) is the recurrence relationship of Hermite functions mentioned in

Example 3.32(4). Hence the ψn are (up to a multiplicative constant and a change of
variable) Hermite functions, and so they are a basis of L2(R,dx). The last equation in
(9.54) implies {ψn}n∈N is, as it should, an orthonormal system in L2(R,dx); the first
two tell

N ψn = nψn , (9.55)

so by (9.51) the ψn are a basis of eigenvectors of H0, as:

H0ψn = h̄ω
(

n+
1
2

)

ψn . (9.56)

By the way this proves H0 (but also N ) is unbounded, since the set {||H0ψ || | ψ ∈
D(H0) , ||ψ || = 1} contains all numbers h̄ω(n + 1/2), n ∈ N. By Nelson’s criterion
(Theorem 5.47) the symmetric operators N , H0 are both essentially self-adjoint,
since their domains contain a set {ψn}n∈N of analytic vectors spanning a dense subset
in L2(R,dx).
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To obtain the spectral decomposition of H0 consider N = {ψn}n∈N as topological
space with power-set topology, and consider the spectral measure

P : B(N) � E 	→ PE = ∑
ψn∈E

ψn(ψn| )

as in Example 9.8(1). Construct an analogous spectral measure on R with support on
the eigenvalues of the ψn for H0:

P′F := s- ∑
h̄ω(n+1/2)∈F

ψn(ψn| ) for F ∈B(R).

Take the measurable function φ : N � ψn 	→ h̄ω
(
n+ 1

2

)
. Using Theorem 9.4(c), for

any measurable f : R→ C:

∫

R

f (x)dP′(x) =
∫

N
f (φ(z))dP(z) = s-∑

n∈N
f

(

h̄ω
(

n+
1
2

))

ψn(ψn| )

where the last equality is (9.33). Taking f to be R � x 	→ x, we obtain the explicit
expression

H ′
0 :=
∫

R

xdP′(x) = s-∑
n∈N

h̄ω
(

n+
1
2

)

ψn(ψn| ) . (9.57)

We claim H ′
0 = H0. Let < N > be the dense space spanned by finite combina-

tions of the ψn. H0�<N> is still essentially self-adjoint by Nelson’s criterion. Thus
H0 = H0�<N>, i.e. H0 and H0�<N> have the same (unique) self-adjoint extension
(their closure). On the other hand H ′

0 is certainly a self-adjoint extension of H0�<N>,
because (9.57) implies

H ′
0ψn = ω

(

n+
1
2

)

ψn = H0ψn

for any n, and so H ′
0�<N>= H0�<N>. Therefore H ′

0 must be the unique self-adjoint
extension of H0�<N>, hence of H0. Then the spectral measure associated to H0 by the
spectral decomposition Theorem 9.10 is

P′F := s- ∑
h̄ω(n+1/2)∈F

ψn(ψn| ) , F ∈B(R);

we also have the spectral decomposition of H0 into

H0 = s-∑
n∈N

h̄ω
(

n+
1
2

)

ψn(ψn| ) .

Eventually, using Theorem 9.10(b), from the latter we obtain

σ(H0) = σp(H0) =
{

h̄ω
(

n+
1
2

)∣
∣
∣
∣ n ∈ N

}

.
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We must remark that the spectrum of H0 is a pure point spectrum and eigenspaces
are all finite-dimensional, even though the operator itself is not compact (it is un-
bounded). Yet the first and second inverse powers of H0 are compact, for they are a
Hilbert–Schmidt operator and a trace-class operator respectively (exercise).

The numbers in σp(H0) are, physically, the levels of total mechanical energy that
a quantum oscillator may assume for given ω , m, in contrast to the classical case
where the energy varies with continuity.

9.1.5 Examples with pure continuous spectrum: the operators
position and momentum

We return to the operators position Xi (5.12)-(5.13) and momentum Pi (5.17)-(5.18),
i = 1,2,3, on the Hilbert space H = L2(R3,dx) with Lebesgue measure. In the sequel
x = (x1,x2,x3). We saw they are self-adjoint, and at present we will determine their
spectra and spectral expansion.

Start by the position operator X1. The findings will work for X2 and X3 by swap-
ping names. A PVM on R with values in B(H) =B(L2(R3,dx)) is

(P(E)ψ)(x1,x2,x3) = χE(x1)ψ(x1,x2,x3) for any E ∈B(R), ψ ∈ L2(R3,dx).
(9.58)

If ψ ∈ L2(R3,dx), it is easy to see the measure μψ on B(R) is defined by:

μψ(E) =
∫

E×R2
|ψ(x1,x2,x3)|2dx , E ∈B(R),

so ∫

R

g(y)dμψ(y) =
∫

E×R2
f (x1)ψ(x1,x2,x3)dx (9.59)

for g : R → C measurable. In analogy to Example 9.8(2) it is easy to check, for
f : R→ C measurable and ψ ∈ Δ f (i.e.

∫
R
| f (x1)ψ(x1,x2,x3)|2dx < +∞), that

(∫

R

f (y)dP(y)ψ
)

(x1,x2,x3) = f (x1)ψ(x1,x2,x3) a.e. for (x1,x2,x3) ∈ R3.

(9.60)
We can then introduce the operator X ′

1 associated, in (9.60), to the map f := f1 : R �
y 	→ y. It is self-adjoint by Theorem 9.4(b), as the map is real. By comparison with
(5.13) we infer Δ f1 = D(X1), and from (9.60) we get

X ′
1ψ = X1ψ for any ψ ∈ D(X1).

The spectral decomposition 9.10 warrants uniqueness of the spectral measure,
whence (9.58) is the spectral measure associated to the position operator X1. The
spectral expansion of Xi, i = 1,2,3, must thus be

(∫

R

ydP(Xi)(y)ψ
)

(x1,x2,x3) = (Xiψ)(x1,x2,x3) a.e. for (x1,x2,x3) ∈ R3, (9.61)
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where

(P(Xi)(E)ψ)(x1,x2,x3) = χE(xi)ψ(x1,x2,x3) ∀E ∈B(R),ψ ∈ L2(R3,dx).
(9.62)

This spectral measure allows to find the spectrum of Xi, i = 1,2,3. Applying (ii) in
Theorem 9.10(b) immediately gives

σ(Xi) = σc(Xi) = R . (9.63)

Now to momenta. The argument is rather straighforward because of Proposition 5.31,
since the Fourier-Plancherel transform is unitary. As such, it preserves spectra (Ex-
ercise 8.9), so if Ki are the position operators (as in Proposition 5.31):

σ(Pi) = σ(h̄F̂−1KiF̂ ) = h̄R= R ,

i.e.
σ(Pi) = σc(Pi) = R . (9.64)

The spectral measure of Pi must be supported on the whole R. The reader may prove
easily, using Proposition 5.31 and Exercises 9.1–9.5, that the PVM associated to the
momentum Pi is just

P(Pi)(E) = F̂−1P(Ki)F̂ , E ∈B(R) (9.65)

where P(Ki) is the spectral measure of the position operator Ki.

9.1.6 Spectral representation of unbounded self-adjoint operators

The next spectral representation theorem generalises Theorem 8.56 to self-adjoint
unbounded operators. The details are left as exercise, as they essentially replicate the
proof of Theorem 8.56.

Theorem 9.15 (Spectral representation of unbounded self-adjoint operators).
Let H be a Hilbert space, T : D(T )→ H a self-adjoint operator in H, P(T ) the PVM
of T according to Theorem 9.10.

(a) H may be decomposed as a Hilbert sum (Definition 7.34) H =⊕α∈AHα (A count-
able, at most, if H is separable), whose summands Hα are closed and orthogonal.
Moreover:

(i) for any α ∈ A, T (Hα)⊂ Hα ;
(ii) for any α ∈ A there exist a unique finite positive Borel measure μα on

σ(T ) ⊂ R, and a surjective isometric operator Uα : Hα → L2(σ(T ),μα),
such that:

Uα

(∫

σ(T )
f (x)dP(T )(x)

)

�Hα U−1
α = f ·

for any measurable f : σ(T )→ C. In particular

UαT �Hα U−1
α = x· ,
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where f · is the multiplication by f on L2(σ(T ),μα):

( f ·g)(x) = f (x)g(x) a.e. on σ(T ) if g , f ·g ∈ L2(σ(T ),μα) .

(b) if supp{μα}α∈A is the complementary set to the numbers λ ∈ R for which there
exists an open set Aλ ⊂ R with Aλ � λ , μα(Aλ ) = 0 for any α ∈ A, then

σ(T ) = supp{μα}α∈A .

(c) If H is separable, there exist a measure space (MT ,ΣT ,μT ), μT (MT ) < +∞, a
map FT : MT → R and a unitary operator UT : H→ L2(MT ,μT ) such that:
(
UT TU−1

T f
)
(m) = FT (m) f (m) , f ∈ L2(MT ,μT ), U−1

T f ∈ D(T ). (9.66)

Proof. The proof mimicks Theorem 8.56 for T self-adjoint and any Hψ . Apart from
the obvious adaptations, it suffices to replace bounded measurable maps Mb(σ(T ))
with the space L2(σ(T ),μψ), paying attention to domains. �

9.1.7 Joint spectral measures

The final notion of this section is the joint spectral measure of a set of self-adjoint
operators with commuting spectral measures.

Theorem 9.16. Let A := {A1,A2, . . . ,An} be a set of self-adjoint operators (even un-
bounded) on the separable Hilbert space H, and suppose the associated spectral
measures P(Ak) commute:

P(Ak)(E)P(Ah)(E ′) = P(Ah)(E ′)P(Ak)(E) , E,E ′ ∈B(R), h,k ∈ {1,2, . . . ,n}.

Then there exists a unique PVM P(A) : B(Rn)→B(H) such that

P(A)(E(1)×·· ·×E(n)) = P(A1)(E(1)) · · ·P(An)(E(n)) , E(k) ∈B(R), k = 1, . . . ,n.
(9.67)

P(A) is the joint spectral measure of A1,A2, . . . ,An and supp(P(A)) is the joint spec-
trum of A.
For any measurable f : R→ C:
∫

Rn
f (xk(x))dP(A)(x) =

∫

R

f (xk)dP(Ak)(xk) = f (Ak) , k = 1,2, . . . ,n, (9.68)

where xk(x) is the kth component of x = (x1,x2, . . . ,xk . . . ,xn) ∈ Rn.

Proof. We need a couple of technical lemmas.

Lemma 9.17. Let H be a separable Hilbert space, {Pα}α∈A ⊂P(H) an infinite family
of orthogonal projectors such that PαPα ′ = Pα ′Pα = Pβ for any α ,α ′ ∈ A and some
β ∈A depending on α ,α ′. Let Ma := Pα(H), M :=∩α∈AMα and PM be the orthogonal
projector onto M.

(a) There is a countable subfamily {Mαm}m∈N such that ∩m∈NMαm = M.
(b) (ψ |PMψ) = infα∈A(ψ |Pαψ) for any ψ ∈ H.
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Proof. (a) We have H \M = ∪α∈A(H \Mα), where the H \Mα are an open cover-
ing of H \M. As H is separable, it is second countable (see Remark 2.82(2), noting
the topology of H is induced by the norm distance). By Theorem 1.8 we can take a
countable subcovering H\M =∪m∈N(H\Mαm). Now we take complements in H, and
obtain (a).
(b) As M⊂Mα , by Proposition 7.16(a) PM ≤ PMα , so (ψ |PMψ)≤ infα∈A{(ψ |Pαψ)}
for any ψ ∈ H. By part (a) and the second equation in (ii) of Theorem 7.18(b)
we have (ψ |PMψ) = limN→+∞(ψ |Pα1 · · ·PaNψ) = limN→+∞(ψ |PβN

ψ), where I ≥
PβN

≥ PβN+1
≥ ·· · ≥ 0 by construction, because of Proposition 7.16(a). Therefore

(ψ |PMψ) = infN∈N(ψ |PβN
ψ)≥ infα∈A{(ψ |Pαψ)}. But the opposite inequality holds

too, so (b) is proved. �

Lemma 9.18. Let A be an algebra (Definition 1.30) or a σ -algebra of subsets in X
. If P : A →P(H), H Hilbert space, satisfies (c) and (d) in Definition 8.41 (the latter
if ∪nEn ∈A algebra), then it also satisfies (a) and (b) of that definition.

Proof. The proof is the same as for Proposition 8.43(a). �

It is easy to see that finite unions of products E(1)×·· ·×E(n), with E(k) ∈B(R),
form an algebra of sets, denoted B0(Rn); the same can be obtained by taking disjoint
finite unions of products (just decompose further in case of non-empty intersections).
The σ -algebra generated by B0(Rn) contains countable unions of products of open
balls in R: as Rn is second countable, the σ -algebra includes all open sets in Rn, so a
fortiori the Borel σ -algebra B(Rn), and then it must concide with the latter.

If S = ∪N
j=1E(1)

j × ·· · ×E(n)
j ∈ B0(Rn) with (E(1)

j × ·· · ×E(n)
i )∩ (E(1)

i × ·· · ×
E(n)

j ) = ∅, i � j, define:

Q(S) :=
N

∑
j=1

P(A1)(E(1)
j ) · · ·P(An)(E(n)

j ) .

Since P(Ak)(E(k)
j ) are commuting orthogonal projectors, every Q(S) is an orthogonal

projector that commutes with every other Q(S′). It is not hard to prove B0(Rn) �
S 	→ Q(S) satisfies Q(∅) = 0, Q(Rn) = I, and s-∑n∈SQ(Sn) ∈ P(H) exists when
Sk∩Sh = ∅, h � k; moreover the result is Q(∪k∈NSk) if ∪k∈NSk ∈B0(Rn). Applying
Lemma 9.18 gives Q(S1)Q(S2) = Q(S1∩S2) if S1,S2 ∈B0(Rn).

If R ∈B(Rn) let P(A)(R) be the projector onto the intersection of all projection
spaces of ∑k Q(Sk), for any family {Sk}k∈N ⊂ B0(Rn) such that Sk ∩ Sh = ∅ for
h � k, ∪n∈NSk ⊃ R. By construction P(A)(Rn) = I: if ∪k∈NSk = Rn, for R ∈B0(Rn),
σ -additivity implies ∑k Q(Sk) = Q(Rn) = I. The latter projects onto H, so P(Rn) = I.
Using Lemma 9.17, with ψ ∈ H:

(ψ |P(A)(R)ψ)

= inf

{(

ψ

∣
∣
∣
∣
∣∑k∈N

Q(Sk)ψ

)∣
∣
∣
∣
∣

⋃

k∈N
Sk ⊃ R ,{Sk}k∈N ⊂B0(Rn) ,Sk ∩Sh = ∅ for k � h

}

.
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As consequence of Theorem 1.41, for ψ ∈ H, B(Rn) � E 	→ (ψ |P(A)(R)ψ) defines
a positive σ -additive finite measure on B(Rn), unique extension of B0(Rn) � S 	→
(ψ |Q(S)ψ). In other words, it is the only positive σ -additive measure νψ on B(Rn)
such that νψ(E(1)

j × ·· · × E(n)
j ) = (φ |P(A1)(E(1)

j ) · · ·P(An)(E(n)
j )ψ), for any E(k) ∈

B(R). Using the polarisation formula, B(Rn) � E 	→ (ψ |P(R)φ) is, for ψ ,φ ∈ H,
a complex measure on B(Rn). Therefore B(Rn)� E 	→ P(R) satisfies (a),(b),(c), (d)
in Definition 8.41: (a) holds because P(A)(R) is a projector, (c) by construction and
(d) by σ -additivity of B(Rn) � E 	→ (ψ |P(A)(R)φ). Eventually, (b) follows from
Lemma 9.18. The identity P(A)(E(1)× ·· · ×E(n)) = P(A1)(E(1)) · · ·P(An)(E(n)) im-
plies P(A)(Π−1

k (E(k))) = P(Ak)(E(k)) for any E(k) ∈B(R), where Πk : Rn → R is the
kth canonical projection of Rn = R× ·· ·×R. Using Theorem 9.4(h) with φ := Πk

and the spectral Theorem 9.10 for Ak gives
∫

Rn
f (Πk(x))dP(A)(x) =

∫

R

f (xk)dP(Ak)(xk) = f (Ak) , k = 1,2, . . . ,n.

Now, every PVM P′ : B(R) → P(H) satisfying P′(E(1) × ·· · × E(n)) =
P(A1)(E(1)) · · ·P(An)(E(n)) for any E(k) ∈ B(R) must also solve (ψ |P′(E(1)× ·· · ×
E(n))ψ) = (ψ |P(A1)(E(1)) · · ·P(An)(E(n))ψ); as positive measures doing just that
are unique, we have (ψ |P′(R)ψ) = (ψ |P(A)(R)ψ) for any R ∈ B(Rn) and any
ψ ∈ H. Therefore P(A) = P′, since the previous relation, by polarisation, implies
(ψ |P′(R)φ) = (ψ |P(A)(R)φ) for ψ ,φ ∈ H. �

An exhaustive discussion on joint spectral measures, their integrals, and the
meaning in QM can be found in [Pru81] and [BeCa81]. In analogy to Theorem 9.9
we could prove what follows ([BeCa81], and Exercise 9.7 for n = 1).

Proposition 9.19. Let A = {A1, . . . ,An} be a collection of self-adjoint operators on
the separable Hilbert space H whose spectral measures commute. The von Neu-
mann algebra A′′ (the set of operators in B(H) commuting with operators in B(H)
that commute with all spectral measures) coincides with the collection of operators
f (A1, . . . ,An) :=

∫
supp(P(A)) f (x1, . . . ,xn)dP(A) with f : supp(P(A))→ C measurable

and bounded.

If f is real-valued, f (A1, . . . ,An) is self-adjoint, and hence interpreted as observ-
able, function of the observables A1, . . . ,An of the quantum system. This corresponds
to the notion of Remark 7.47(2).

9.2 Exponential of unbounded operators: analytic vectors

This section is short and technical. We go back to analytic vectors, introduced at the
end of Chapter 5, and uncover other properties in the light of the theory developed
since. The results will be used at various places in the rest of the book.

An interesting general problem is this. If A is a self-adjoint operator on the Hilbert
space H, the exponential ezA can be defined as function of A (Definition 9.11). We
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expect, in some cases, to be able to employ the Taylor expansion:

ezA =
+∞

∑
n=0

zn

n!
An ,

defining the left-hand side with Definition 9.11. If A ∈B(H) the above identity does
hold, provided we understand the expansion in the uniform topology, as is easy to
see (Exercise 8.16). If A is not bounded, the issue is subtler and the above equation
makes no sense in the uniform topology. As Nelson clarified, it has a meaning in the
strong topology and over a dense subspace in the Hilbert space, which is a core for
A: this is the space of analytic vectors for A as we shall prove in Proposition 9.21.

Let A be an operator with domain D(A) on the Hilbert space H. Recall (Defin-
ition 5.44) that a vector ψ ∈ D(A) such that Anψ ∈ D(A) for any n ∈ N (A0 := I)
is called a C∞ vector for A. The subspace of C∞ vectors for A is written C∞(A).
ψ ∈C∞(A) is an analytic vector for A if

+∞

∑
n=0

||Anψ ||
n!

tn < +∞ , for some t > 0. (9.69)

Recall also Nelson’s Theorem 5.47, for which a symmetric operator on a Hilbert
space is essentially self-adjoint if its domain contains analytic vectors whose finite
combinations are dense.

Notation 9.20. If A is an operator on H with domain D(A), we shall indicate with
A (A) the subset in C∞(A) of elements satisfying (9.69). �

The next proposition discusses useful properties of analytic vectors, in particular
the exponential of (self-adjoint) unbounded operators.

Proposition 9.21. Let A be an operator on the Hilbert space H.

(a) A (A) is a vector space.
(b) If A is closable:

A (A)⊂A (A) .

(c) (i) For any c ∈ C, defining A+ cI on its standard domain:

A (A+ cI) = A (A) ;

(ii) for any c ∈ C\{0}, defining cA on its standard domain:

A (cA) = A (A) ;

(iii) if A is Hermitian, defining A2 on its standard domain:

A (A2)⊂A (A) .

(d) If A is self-adjoint and ψ ∈A (A)∩D(ezA), viewing ezA as in Definition 9.11:

ezAψ =
+∞

∑
n=0

zn

n!
Anψ for any z ∈ C, |z| ≤ t, satisfying (9.69) for ψ . (9.70)
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If Rez = 0, equation (9.70) holds for any ψ ∈ A (A), provided |z| ≤ t solves (9.69)
for given ψ .
(e) If A is self-adjoint, viewing ezA as in Definition 9.11:

eisA(A (A))⊂A (A) , s ∈ R.
(f) If A is self-adjoint, D(A) contains a dense subset of A (p(A)) for any t > 0 in
(9.69) and any complex polynomial p(A) of A.

Proof. (a) The claim follows from the estimate

||An(aψ+bφ)|| ≤ |a| ||Anψ ||+ |b| ||Anφ || ,
ψ ,φ ∈A (A), by choosing t > 0 small enough to satisfy (9.69) for ψ and φ .
(b) This is a direct consequence of definitions, for A is an extension of A and so A

n

extends An.
(c) To prove (i), note that if t > 0 satisfies (9.69) for ψ :

+∞> M ≥ e|tc|
+∞

∑
k=0

tk
∣
∣
∣
∣Akψ
∣
∣
∣
∣

k!
=

+∞

∑
p=0

+∞

∑
k=0

|tc|p
p!

∣
∣
∣
∣tkAkψ
∣
∣
∣
∣

k!
.

By Fubini–Tonelli on the counting product measure of N we may compute the
product of the series (integral in the product measure) as the double integral on the
right of M in the chain:

M ≥
+∞

∑
n=0

n

∑
k=0

|tc|n−k

(n− k)!

∣
∣
∣
∣tkAkψ
∣
∣
∣
∣

k!
≥

+∞

∑
n=0

tn

n!

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n

∑
k=0

n!cn−kAkψ
k!(n− k)!

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
=

+∞

∑
n=0

tn

n!
||(A+ cI)nψ || .

Therefore A (A+cI)⊃A (A). Now define A′ := A+cI, so A = A′+c′I and c′ =−c.
It follows that A (A′+ c′I)⊃A (A′), which is equivalent to A (A)⊃A (A+ cI), so
A (A) = A (A + cI). Property (ii) is obvious by definition, so let us see to (iii). By
construction C∞(A) = C∞(A2). Since A is Hermitian and

√
x ≤ 1 + x for x ≥ 0, in

C∞(A) we have:

||Anψ ||=
√

(ψ |A2nψ)≤
√
||ψ ||
√
||A2nψ || ≤

√
||ψ ||(1+ ||(A2)nψ ||) .

The claim is thus true, since for t > 0:

+∞

∑
n=0

tn

n!
||Anψ || ≤

√
||ψ ||

+∞

∑
n=0

tn

n!
||(A2)nψ ||+

√
||ψ ||

+∞

∑
n=0

tn

n!

=
√
||ψ ||
(

+∞

∑
n=0

tn

n!
||(A2)nψ ||+ et

)

.

(d) For some φ ∈H, μφ ,ψ is the complex measure μφ ,ψ(E) :=
(
φ |P(A)(E)ψ

)
, and for

any χ ∈H, μχ(E) :=
(
χ|P(A)(E)χ

)
is the usual positive finite spectral measure. Us-

ing decomposition dμφ ,ψ = hd|μφ ,ψ |with |h|= 1 (Examples 2.45), for ψ ∈D( f (A))
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we have
∣
∣
∣
∣

∫

R

f d|μφ ,ψ |
∣
∣
∣
∣=
∣
∣
∣
∣

∫

R

f h dμφ ,ψ

∣
∣
∣
∣=
∣
∣
∣
∣

(

φ
∣
∣
∣
∣

∫

R

f h dP(A)ψ
)∣
∣
∣
∣≤ ||φ ||

∣
∣
∣
∣

∣
∣
∣
∣

∫

R

f h dP(A)ψ
∣
∣
∣
∣

∣
∣
∣
∣

= ||φ ||
√∫

R

| f |2dμψ .

If z ∈ C and |z| ≤ t then, using Lemma 9.2 and Theorem 9.4(e):

+∞

∑
n=0

∫

σ(A)

∣
∣
∣
∣
zn

n!
xn

∣
∣
∣
∣d|μφ ,ψ(x)|=

+∞

∑
n=0

∣
∣
∣
∣
zn

n!

∣
∣
∣
∣

∫

σ(A)
|xn|d|μφ ,ψ(x)|

≤
+∞

∑
n=0

tn

n!
||φ ||
(∫

σ(A)
x2ndμψ(x)

)1/2

=
+∞

∑
n=0

||φ || t
n

n!
||Anψ ||< +∞ ,

where (9.69) is needed in the last passage. Then Fubini–Tonelli implies, for |z| ≤ t,
we may swap sum and integral:

∫

σ(A)

+∞

∑
n=0

zn

n!
xndμφ ,ψ(x) .

Thus for |z| ≤ t, if ψ belongs to the domain of ezA (cf. Definition 9.11) and by virtue
of Theorem 9.4(e):

(φ |ezAψ) =
∫

σ(A)
ezxdμφ ,ψ =

∫

σ(A)

+∞

∑
n=0

zn

n!
xndμφ ,ψ =

+∞

∑
n=0

zn

n!

∫

σ(A)
xndμφ ,ψ =

+∞

∑
n=0

zn

n!
(φ |Anψ) .

By (9.69) the series
+∞

∑
n=0

zn

n!
Anψ

converges in H, and the scalar product is continuous, so the above identity reads

(φ |ezAψ) =

(

φ

∣
∣
∣
∣
∣

+∞

∑
n=0

zn

n!
Anψ

)

.

As φ is arbitrary, we have (9.70). In case Rez = 0, i.e. z = is, s ∈ R, the map
R � x 	→ eisx is clearly bounded, so eisA ∈B(H) (the domain is H) by Corollary 9.5.
(e) If A is self-adjoint, by Theorem 9.4(c) eisA(eisA)∗ = (eisA)∗eisA = I, so eisA is unit-
ary. Using Theorem 9.4(c) taking ψ ∈A (A)⊂C∞(A) we obtain AneisAψ = eisAAnψ ,
but eisA is unitary and ||eisAAnψ ||= ||Anψ ||, whence the claim follows.
(f) Consider the spectral decomposition A =

∫
R

xdP(A)(x), partition the real line R=
∪n∈Z(n,n+1] and take its closed, pairwise-orthogonal subspaces Hn = Pn(H), where

we define projectors Pn :=
∫
(n,n+1] 1dP(A)(x). Choosing a basis {ψ(n)

k }k∈Kn ⊂ Hn for
any n, the union of all bases is a basis of H. Notice supp(μ

ψ(n)
k

)⊂ (n,n+1] by defin-

ition of μφ (Theorem 8.50). From Theorem 9.4(e) every ψ(n)
k belongs in D(A), since
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∫
R
|x|2dμ

ψ(n)
k

(x) =
∫
(n,n+1] |x|2dμ

ψ(n)
k

(x) ≤ |n + 1|2, Moreover (9.69) holds for any

t > 0, as ||Amψ(n)
k ||2 =

∫
(n,n+1] |x|2mdμ

ψ(n)
k

(x)≤ |n+1|2m||ψ(n)
k ||2. Finite linear com-

binations are, by construction, a dense subspace in H, and analytic for A (for any
t > 0) by (a).

Now take a complex polynomial pN(x) =∑N
k=0 xn of degree N, and define pN(A)

on the domain D(pN(A)) = D(AN) (Theorem 9.4(d)). We will check every ψ(n)
k is

analytic for the closed (self-adjoint if pN is real) pN(A) by Theorem 9.4. Choose one
of unit norm, sayψ , and suppose its spectral measure μψ has support in some (−L,L].
Then ||Akψ || ≤ Lk||ψ ||= Lk. Therefore

||pN(A)ψ ||=
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

N

∑
k=0

akAkψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤

N

∑
k=0

|ak|||Akψ ||=
N

∑
k=0

|ak|Lk .

In a similar manner:

||pN(A)nψ ||=
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

N

∑
k1,...,kn=0

ak1 · · ·akn Ak1+···+knψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤
N

∑
k1,...,kn=0

|ak1 | · · · |akn |||Ak1+···+knψ || ≤
N

∑
k1,...,kn=0

|ak1 | · · · |akn |Lk1+···+kn .

We conclude that if ML := ∑N
k=0 |ak|Lk, then

||pN(A)nψ || ≤Mn
L and

+∞

∑
n=0

tn

n!
||pN(A)nψ || ≤ etML

and so ψ (by (a), any combination of such vectors) is analytic for pN(A), for any
t > 0. �

9.3 Strongly continuous one-parameter unitary groups

The goal of this section is to prove Stone’s theorem, one of the most important results
in view of the applications to QM (and not only that). To state it we will present some
preliminary results about one-parameter groups of unitary operators, and in particular
an importan theorem due to von Neumann.

9.3.1 Strongly continuous one-parameter unitary groups, von
Neumann’s theorem

Definition 9.22. Let H be a Hilbert space. A collection {Ut}t∈R ⊂ B(H) is called a
one-parameter group (of operators) on H if

U0 = I and UtUs = Ut+s for any t,s ∈ R . (9.71)

A one-parameter group {Ut}t∈R ⊂B(H) is said:
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(a) One-parameter unitary group if Ut is unitary for any t ∈ R .
(b) Weakly continuous at t0 ∈ R, or strongly continuous at t0 ∈ R, if the mapping
t 	→Ut is continuous at t0 in the weak, resp. strong, topology, where R is standard.
(c) Weakly continuous or strongly continuous if it is weakly, or strongly, continu-
ous at each point of R.

By (9.71), if the Ut are unitary:

(Ut)∗ = U−1
t = U−t , for any t ∈ R . (9.72)

Proposition 9.23. Let {Ut}t∈R be a one-parameter unitary group on the Hilbert
space (H,(·|·)). The following assertions are equivalent.

(a) (ψ |Utψ)→ (ψ |ψ) as t → 0 for any ψ ∈ H.
(b) {Ut}t∈R is weakly continuous at t = 0.
(c) {Ut}t∈R is weakly continuous.
(d) {Ut}t∈R is strongly continuous at t = 0.
(e) {Ut}t∈R is strongly continuous.

Proof. First, let us number the properties.
(1) {Ut}t∈R is weakly continuous at t = 0.
(2) (ψ |Utψ)→ (ψ |ψ) as t → 0 for any ψ ∈ H.
(3) {Ut}t∈R is strongly continuous at t = 0.
(4) {Ut}t∈R is strongly continuous.
(5) {Ut}t∈R is weakly continuous.

We will show (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (1).
(1) ⇒ (2). Weak continuity at t = 0 implies, when t → 0, that (ψ |Utψ) →

(ψ |U0ψ) = (ψ |ψ) and (Utψ |ψ)→ (U0ψ |ψ) = (ψ |ψ) by conjugation.
(2)⇒ (3). Strong continuity at t = 0 amounts to saying, for any ψ ∈ H,

||Utψ−U0ψ || → 0

as t → 0. Since U0 = I, squaring and writing norms via inner products transforms the
above into

(Utψ |Utψ)− (ψ |Utψ)− (Utψ |ψ)+(ψ |ψ)→ 0 .

Ut unitary implies (Utψ |Utψ) = (ψ ,ψ), so the identity reads

(ψ |ψ)− (ψ |Utψ)− (Utψ |ψ)+(ψ ,ψ)→ 0 , as t → 0 .

But as we said at the beginning, the latter holds if (2) does.
(3)⇒ (4). If ψ ∈ H:

Utψ−Ut0ψ = Ut(ψ−U−1
t Ut0ψ) = Ut(ψ−Ut0−tψ) ,

where (9.72) was used. As Ut is unitary, for any ψ ∈ H:

||Usψ−Ut0ψ ||= ||Us(ψ−Ut0−sψ)||= ||ψ−Ut0−sψ || .
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Under strong continuity at t = 0, since t0−s→ 0 for s→ t0, we find ||Usψ−Ut0ψ ||→
0. Hence strong continuity at t = 0 forces strong continuity at any t0 ∈ R.

(4)⇒ (5). Obvious because strong convergence implies weak convergence.
(5)⇒ (1). True by definition. �

Here is another property of unitary groups.

Proposition 9.24. Let {Ut}t∈R be a one-parameter unitary group on the Hilbert
space (H,(·|·)), and H ⊂ H a subset such that:

(a) The finitely-generated span < H > is dense in H.
(b) {Ut}t∈R satisfies (ψ |Utψ)→ (ψ |ψ), as t → 0, for any ψ ∈H .
Then {Ut}t∈R is a strongly continuous one-parameter unitary group.

Proof. The same argument used in Proposition 9.23 gives that (φ0|Utφ0)→ (φ0|φ0),
as t → 0, for φ0 ∈H implies ||Utφ0−φ0||→ 0, t → 0. If, more generally, φ ∈< H >
then φ = ∑i∈I ciφ0i where I is finite and φ0i ∈H . Hence as t → 0

||Utφ −φ ||=
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Ut

(

∑
i

ciφ0i

)

−∑
i

ciφ0i

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣∑i

ci(Utφ0i−φ0i)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤∑
i

|ci|||Utφ0i−φ0i|| → 0 .

By Proposition 9.23 it now suffices to extend this to H. That is to say, ||Utφ−φ ||→ 0,
as t → 0, for any φ ∈< H > implies ||Utψ −ψ || → 0, t → 0, for any ψ ∈ H. As
< H > is dense, for any given ψ ∈ H there is a sequence {ψn}n∈N ⊂ 〈H 〉 with
ψn → φ , n → +∞. If {tm}m∈N is a real infinitesimal sequence, by the triangle in-
equality

||Utmψ−ψ || ≤ ||Utmψ−Utmφn||+ ||Utmφn−φn||+ ||φn−ψ ||

for any given n ∈N. Since the Utm are unitary and the norm non-negative, that means

0≤ ||Utmψ−ψ || ≤ ||Utmφn−φn||+2||φn−ψ || . (9.73)

For fixed n, ||Utmφn−φn|| → 0, m→+∞, by assumption, so:

limsup
m

||Utmφn−φn||= liminf
m

||Utmφn−φn||= lim
m→+∞

||Utmφn−φn||= 0 .

By (9.73), for any n ∈ N:

0≤ limsup
m

||Utmψ−ψ || ≤ 2||φn−ψ || , 0≤ liminf
m

||Utmψ−ψ || ≤ 2||φn−ψ || .

On the other hand for n big enough we can make ||φn−ψ || infinitesimal, so:

limsup
m

||Utmψ−ψ ||= liminf
m

||Utmψ−ψ ||= 0 .
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Therefore
lim

m→+∞
||Utmψ−ψ ||= 0 .

As ψ ∈ H and the {tm}m∈N are arbitrary, for any ψ ∈ H we have:

lim
t→0

||Utψ−ψ ||= 0 ,

ending the proof. �

The theory developed thus far puts us in the position to prove an importan result
due to von Neumann, which shows how strong continuity of one-parameter unitary
groups is, actually, not such restrictive a fact in separable Hilbert spaces.

Theorem 9.25 (Von Neumann). Let {Ut}t∈R be a one-parameter unitary group on
the Hilbert space (H,(·|·)). If H is separable, {Ut}t∈R is strongly continuous iff the
map R � t 	→ (Utψ |φ) is measurable for any ψ ,φ ∈ H.

Proof. Obviously if the group is strongly continuous then any R � t 	→ (Utψ |φ) is
measurable, being continuous. We show the converse. Suppose every such map is
Borel measurable, hence Lebesgue measurable. By Schwarz’s inequality and ||Ut ||=
1 follows that these maps are bounded. Given a ∈ R, ψ ∈ H,

H � φ 	→
∫ a

0
(Utψ |φ)dt

is a bounded linear functional with norm not exceeding |a| ||ψ || by Schwarz and
||Ut ||= 1. Riesz’s Theorem 3.16 provides ψa ∈ H such that

(ψa|φ) =
∫ a

0
(Utψ |φ)dt , for any φ ∈ H.

So

(Ubψa|φ) = (ψa|U−bφ) =
∫ a

0
(Utψ |U−bφ)dt =

∫ a

0
(Ut+bψ |φ)dt =

∫ a+b

b
(Utψ |φ)dt .

Splitting the integral in the obvious manner:

|(Ubψa|φ)− (ψa|φ)|=
∣
∣
∣
∣

∫ a+b

b
(Utψ |φ)dt−

∫ a

0
(Utψ |φ)dt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ 0

b
(Utψ |φ)dt

∣
∣
∣
∣+
∣
∣
∣
∣

∫ a+b

a
(Utψ |φ)dt

∣
∣
∣
∣≤ 2b||φ || ||ψ ||.

Then (Ubψa|φ)→ (ψa|φ), as b→ 0, and so by conjugation:

lim
t→0

(φ |Ubψa)→ (φ |ψa) .

We are done if we can prove that the set {ψa |ψ ∈H, a∈R} finitely generates a dense
space in H, by the previous proposition and choosing φ =ψa. Let φ ∈{ψa |ψ ∈H, a∈
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R}⊥ and {ψ(n)}n∈N be a countable basis for H, which we have by separability (the
finite-dimensional case is the same). For any n ∈ N:

0 = (ψ(n)
a |φ) =

∫ a

0
(Utψ(n)|φ)dt , a ∈ R ,

implying (Theorem 1.75(b)) R � t 	→ (Utψ(n)|φ) is null almost everywhere. Call
Sn ⊂ R the set where the map does not vanish, and fix t0 ∈ R \⋃n∈N Sn. The lat-
ter exists for

⋃
n∈N Sn cannot coincide R: the former, in fact, has zero measure as

countable union of zero-measure sets. (This is the point where we need the basis to
be countable, i.e. separability.) Then (Ut0ψ

(n)|φ) = 0 for any n, forcing φ = 0 be-
cause Ut0 is unitary and {Ut0ψ(n)}n∈N is a basis. Since {ψa |ψ ∈ H, a ∈ R}⊥ = {0},
the span of {ψa |ψ ∈ H, a ∈ R} is dense, as required, and the theorem is proved. �

Remarks 9.26. In the statement we may substitute Borel measurability with meas-
urability for the Lebesgue σ -algebra. If Lebesgue measurability holds, in fact, the
proof does not change and so the group is strongly continuous. Under strong con-
tinuity Borel measurability is granted, so also Lebesgue measurability. �

9.3.2 One-parameter unitary groups generated by self-adjoint
operators and Stone’s theorem

This section contains the celebrated Stone’s theorem, that describes strongly continu-
ous one-parameter unitary groups obtained by exponentiating self-adjoint operators.
Later we will use these groups to provide a necessary and sufficient condition for the
spectral measures of self-adjoint operators to commute.

Before all this we need a technical result, which we state separately given its
usefulness in many contexts. As usual, dx is Lebesgue’s measure on Rn and χ[a,b]
the characteristic function of [a,b].

Proposition 9.27. Let H be a complex Hilbert space and {Vt}t∈Rn ⊂ B(H) a family
of operators satisfying either one of the following conditions:

(i) s-limt→t0 Vt = Vt0 , for any t0 ∈ Rn;
(ii) there exists C ≥ 0 such that ||Vt || ≤C for any t ∈ Rn.

Then for any f ∈ L1(Rn,dx) there is a unique operator on B(H), denoted∫
Rn f (t)Vt dt, such that:

(

φ
∣
∣
∣
∣

∫

Rn
f (t)Vt dt ψ

)

=
∫

Rn
f (t)(φ |Vtψ) dt , φ ,ψ ∈ H. (9.74)

If f ∈ L1(Rn,dx) has compact (essential) support, condition (i) is enough to guaran-
tee the existence of

∫
Rn f (t)Vtdt.
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The latter satisfies:

(a) for any ψ ∈ H:
∣
∣
∣
∣

∣
∣
∣
∣

∫

Rn
f (t)Vt dtψ

∣
∣
∣
∣

∣
∣
∣
∣≤
∫

Rn
| f (t)| ||Vtψ ||dt . (9.75)

(b) If A ∈B(H):

A
∫

Rn
f (t)Vtdt =

∫

Rn
f (t)AVtdt and

∫

Rn
f (t)VtdtA =

∫

Rn
f (t)VtAdt . (9.76)

(c) Let, for n = 1,
∫ t

s f (τ)Vτdτ :=
∫
R

g(τ) f (τ)Vτdτ where g = χ[s,t] if s ≥ t and g =
−χ[t,s] if t ≤ s. Then

(i) R
2 � (s, t) 	→

∫ t

s
f (τ)Vτdτ is continuous in the uniform topology;

(ii) f continuous implies s-
d
dt

∫ t

s
f (τ)Vτdτ = f (t)Vt ∀s, t ∈ R . (9.77)

Proof. Let ψ ,φ ∈ H and f : Rn → C be a map in L1(Rn,dx). Consider the integral

I(φ ,ψ) :=
∫

Rn
f (t)(φ |Vtψ) dt .

It is well defined as Rn � t 	→ (φ |Vtψ) is continuous, since {Vt}t∈Rn is weakly con-
tinuous, and bounded by (ii) from Schwarz’s inequality. Hence

|I(φ ,ψ)| ≤ || f ||1C||ψ ||||φ || .

Since H � ψ 	→ I(φ ,ψ) is linear and we have the above inequality, Riesz’s theorem
gives, for any φ ∈ H, a unique Φφ ∈ H such that

I(φ ,ψ) = (Φφ |ψ) , for any ψ ∈ H.

The map H � φ 	→ Tφ :=Φφ is linear, and by construction

|(ψ |Tφ)|= |(Tφ |ψ)|= |(Φφ |ψ)|= |I(φ ,ψ)| ≤ || f ||1C||ψ ||||φ || , with φ ,ψ ∈ H.

Choosing ψ = Tφ shows T , and hence its adjoint
∫
Rn f (t)Vt dt, are bounded. By con-

struction (9.74) holds, and the argument ensures uniqueness. From (9.74) follows
∣
∣
∣
∣

(

φ
∣
∣
∣
∣

∫

Rn
f (t)Vt dt ψ

)∣
∣
∣
∣≤
∫

Rn
| f (t)| |(φ |Vtψ)|dt ≤

∫

Rn
| f (t)| ||Vtψ ||dt ||φ ||,

and taking φ =
∫
Rn f (t)Vt dtψ leads to (9.75). Identity (9.76) follows from (9.74).

In case the essential support of f is in a compact set K we can equivalently define
I(ψ ,φ) integrating on it and then proceeding as before. In such a case the constant C
of (ii) (t ∈ K) automatically exists. By continuity, in fact, whichever ψ ∈ H we take



9.3 Strongly continuous one-parameter unitary groups 419

there is Cψ ≥ 0 such that ||Vtψ || ≤ Cψ if t ∈ K. By Banach–Steinhaus this implies
C ≥ 0 exists with ||Vt || ≤C if t ∈ K. So let us prove (c). Let [a,b] be big enough so
that [a,b]× [a,b] contains an open neigihbourhood of (t,s), to which (t ′,s′) belongs.
From (a) we have

∣
∣
∣
∣

∣
∣
∣
∣

∫ s

t
f (τ)V (τ)dτψ−

∫ s′

t ′
f (τ)V (τ)dτψ

∣
∣
∣
∣

∣
∣
∣
∣

≤ (|t− t ′|+ |s− s′|) sup
τ∈[a,b]

| f (τ)| sup
τ∈[a,b]

||Vτψ || .

Since ||Vτ || ≤C < +∞ for τ ∈ [a,b], and as
∫ s

t −
∫ s′

t ′ =
∫ t ′

t +
∫ s

t ′ −
∫ s′

t ′ =
∫ t ′

t +
∫ s′

s , taking
the least upper bound over ||ψ || ≤ 1 produces
∣
∣
∣
∣

∣
∣
∣
∣

∫ s

t
f (τ)V (τ)dτ−

∫ s′

t ′
f (τ)V (τ)dτ

∣
∣
∣
∣

∣
∣
∣
∣≤ (|t− t ′|+ |s− s′|) sup

τ∈[a,b]
| f (τ)|C ,

whence continuity in uniform topology. As for the second property, by strong con-
tinuity of t 	→ f (t)Vt , as h→ 0, we have
∣
∣
∣
∣

∣
∣
∣
∣
1
h

∫ τ+h

τ
f (t)Vtdt ψ− f (τ)Vτψ

∣
∣
∣
∣

∣
∣
∣
∣=
∣
∣
∣
∣

∣
∣
∣
∣
1
h

[∫ τ+h

τ
( f (t)Vt − f (τ)Vτ)dt

]

ψ
∣
∣
∣
∣

∣
∣
∣
∣

≤

∣
∣
∣
∫ τ+h
τ dt
∣
∣
∣

|h| sup
|t ′−τ|≤h

|| f (t ′)Vt ′ψ− f (τ)Vτψ ||= sup
|t ′−τ|≤h

|| f (t ′)Vt ′ψ− f (τ)Vτψ || → 0 .

�

Remarks 9.28. As exercise the reader might prove Stone’s formula, valid for a self-
adjoint operator T : D(T )→ H with spectral measure P(T ):

1
2
(P(T )({a})+P(T )({b}))+P(T )((a,b))

= s- lim
ε→0+

1
2πi

∫ b

a

1
T −λ − iε

− 1
T −λ + iε

dλ .

The integral is understood in the sense of Proposition 9.27. �

It is time to pass to Stone’s theorem. This name actually refers to assertion (b),
the only non-elementary statement.

Theorem 9.29 (Stone). Let H be a Hilbert space.

(a) If A : D(A)→ H, D(A) dense in H, is a self-adjoint operator and P(A) its spectral
measure, then the operators

Ut = eitA :=
∫

σ(A)
eiλ t dP(A)(λ ) , t ∈ R ,

form a strongly continuous one-parameter unitary group. Moreover:
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(i) the limit

s-
dUt

dt

∣
∣
∣
∣
t=0
ψ := lim

t→0

Utψ−ψ
t

(9.78)

exists in H ⇔ ψ ∈ D(A);

(ii) if ψ ∈ D(A):

s-
dUt

dt

∣
∣
∣
∣
t=0
ψ = iAψ . (9.79)

(b) If {Ut}t∈R is a strongly continuous one-parameter unitary group on H, there exists
a unique self-adjoint operator A : D(A)→ H (with D(A) dense in H) such that

eitA = Ut , for any t ∈ R. (9.80)

Proof. (a) If t ∈R,R� λ 	→ eitλ is trivially bounded, so eitA ∈B(H) by Corollary 9.5.
Theorem 9.4(c) implies (t ∈ R) eitA(eitA)∗ = (eitA)∗eitA = I, making eitA unitary. To
prove strong continuity it is enough to check (ψ |Utψ) → (ψ |ψ) for any ψ ∈ H as
t → 0, by Proposition 9.23. This is true, by Theorem 9.4(f) and since the domain of
eitA is all of H, because:

(ψ |Utψ) =
∫

σ(A)
eitλdμψ(λ )→

∫

σ(A)
1dμψ(λ ) = (ψ |ψ) as t → 0 .

We used that eitλ → 1 and so Lebesgue’s dominated convergence applies, as |eitλ |= 1
for any t and the constant 1 is integrable as μψ is finite.

Let us prove (i)–(ii). If ψ ∈ D(A), from Theorem 9.4(c) we compute

∣
∣
∣
∣

∣
∣
∣
∣
Ut − I

t
ψ− iAψ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

σ(A)

∣
∣
∣
∣
∣

eiλ t −1
t

− iλ

∣
∣
∣
∣
∣

2

dμψ(λ ) . (9.81)

On the other hand |eiλ t −1|= 2|sin(λ t/2)| ≤ |λ t|, so

∣
∣
∣
∣
∣

eiλ t −1
t

− iλ

∣
∣
∣
∣
∣

2

≤ 4|λ |2 .

The map R � λ 	→ |λ |2 is integrable in μψ by definition of D(A) � ψ . At last,

∣
∣
∣
∣
∣

eiλ t −1
t

− iλ

∣
∣
∣
∣
∣

2

→ 0 as t → 0, for any λ ∈ R.

The dominated convergence theorem on the right side of (9.81) gives
∣
∣
∣
∣

∣
∣
∣
∣
Ut − I

t
ψ− iAψ

∣
∣
∣
∣

∣
∣
∣
∣→ 0 as t → 0, for any ψ ∈ D(A).



9.3 Strongly continuous one-parameter unitary groups 421

To finish we show that Utψ−ψ
t → φψ ∈H, t → 0, implies ψ ∈D(A). The set of ψ ∈H

for which the limit exists is a subspace D(B) in H containing D(A), and as such is
dense. The mapping ψ 	→ iBψ := φψ defines an operator with dense domain D(B).
If ψ ,ψ ′ ∈ D(B), using U∗

t = U−t :

(
ψ |Bψ ′)=

(

ψ
∣
∣
∣
∣−i lim

t→0

Utψ ′ −ψ ′
t

)

=−i lim
t→0

(

ψ
∣
∣
∣
∣
Utψ ′ −ψ ′

t

)

=−i lim
t→0

(
U−tψ−ψ

t

∣
∣
∣
∣ψ

′
)

=
(

−i lim
t→0

U−tψ−ψ
−t

∣
∣
∣
∣ψ

′
)

=
(
Bψ |ψ ′) .

Hence B is a symmetric extension of A. But A is self-adjoint, so B = A by Proposi-
tion 5.17(d); thus any vector ψ for which the limit of Utψ−ψ

t exists as t → 0 lives in
D(A). This concludes part (a).
(b) A’s uniqueness is immediate. If there were two self-adjoint operators A, A′ with
eitA = Ut = eitA′ for any t ∈ R, (i)–(ii) in (a) would force A = A′. Let us mani-
facture a self-adjoint operator A satisfying Ut = eitA for a given strongly continu-
ous one-parameter unitary group. Specialise Proposition 9.27 to a strongly continu-
ous one-parameter unitary group Vt = Ut . Call D the space of vectors of the form∫
R

f (t)Ut dtφ , φ ∈ H, with arbitrary f ∈D(R) (smooth complex functions on R with
compact support). This vector space D is called Gårding space. Equation (9.74)
easily implies the invariance UsD ⊂D for any s ∈ R, i.e.

Us

∫

R

f (t)Ut dtψ =
∫

R

f (t)Ut+s dtψ =
∫

R

f (t− s)Utdtψ for any ψ ∈ H. (9.82)

Let us show, if ψ ∈D , that Utψ−ψ
t → ψ0 ∈ H as t → 0. Suppose ψ =

∫
R

f (t)Ut dtφ .
A few computations involving (9.82) and the definition of

∫
R

f (t)Ut dtφ , yield

∣
∣
∣
∣

∣
∣
∣
∣
Utψ−ψ

t
−
∫

R

f ′(s)Us dsφ
∣
∣
∣
∣

∣
∣
∣
∣

2

=
(∫

R

(
f (s− t)− f (s)

t
− f ′(s)

)

Us dsφ
∣
∣
∣
∣

∫

R

(
f (r− t)− f (r)

t
− f ′(r)

)

Ur drφ
)

=
∫

R

ds
∫

R

drht(s)ht(r)(φ |Ur−sφ) ,

where

ht(s) :=
f (s− t)− f (s)

t
− f ′(s) .

For any t ∈ R, the function s 	→ ht(s) has support contained in a compact set and is
C∞ (hence bounded). As (r,s) 	→ (φ |Ur−sφ) is also bounded, we may interpret the
integral using the product Lebesgue measure:

∣
∣
∣
∣

∣
∣
∣
∣
Utψ−ψ

t
−
∫

R

f ′(t)Ut dtφ
∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

R×R
dsdrht(s)ht(r)(φ |Ur−sφ) . (9.83)
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Now: the integrand is pointwise infinitesimal as t → 0, the maps

(s,r) 	→ ht(s)ht(r)(φ |Ur−sφ)

all have support in one large-enough compact set if t varies in a bounded interval
around 0, and they are, there, uniformly bounded by some constant not depending
on t ( (t,s,r) 	→ ht(s)ht(r)(φ |Ur−sφ) is jointly continuous in its variables). By all
this we apply dominated convergence obtaining that both sides in (9.83) vanish as
t → 0. Therefore, for ψ ∈ D we have proven Utψ−ψ

t → ψ0 ∈ H as t → 0. The map
ψ 	→ iSψ :=ψ0 is clearly linear. Continuing as in part (a) one can see S is Hermitian.
As a matter of fact S is symmetric since D is dense, which is what we prove next.
Given φ ∈H consider the sequence of

∫
R

fn(t)Ut dtφ , where fn ∈D(R) satisfy fn ≥ 0,
supp fn ⊂ [−1/n,1/n] and

∫
R

fn(s)ds = 1. Then
∣
∣
∣
∣

∣
∣
∣
∣

∫

R

fnUtdtψ−ψ
∣
∣
∣
∣

∣
∣
∣
∣=
∣
∣
∣
∣

∣
∣
∣
∣

∫

R

fnUtdtψ−
∫

R

fndtψ
∣
∣
∣
∣

∣
∣
∣
∣=
∣
∣
∣
∣

∣
∣
∣
∣

∫

R

fn(Ut − I)dtψ
∣
∣
∣
∣

∣
∣
∣
∣

≤
∫

R

| fn(t)| ||(Ut − I)ψ ||dt

where we used (9.75) on Vt = Ut − I. Since
∫

R

| fn(t)| ||(Ut − I)ψ ||dt ≤
∫ 1/n

−1/n
| fn(t)| dt sup

t∈[−1/n,1/n]
||(Ut − I)ψ ||

= sup
t∈[−1/n,1/n]

||(Ut − I)ψ ||

and supt∈[−1/n,1/n] ||(Ut − I)ψ || → 0 as n→ ∞, the Ut being strongly continuous, we
conclude

D �
∫

R

fn(t)Ut dtφ → φ ∈ H , n→ ∞.

Hence D is dense in H and S is symmetric. Now we prove it is essentially self-adjoint
on D . If ψ± ∈ Ran(S± iI)⊥, then for any χ ∈D (recall UtD ⊂D):

d
dt

(ψ±|Utχ) = lim
h→0

(

ψ±
∣
∣
∣
∣
UhUtχ−Utχ

h

)

= (ψ±|iSUtχ)

= i(ψ±|(S± iI)Utχ)± (ψ±|Utχ) =±(ψ±|Utχ)

and F±(t) := (ψ±|Utχ) is of the form F±(0)e±t . If we want it bounded (||Ut || = 1
for any t ∈ R), necessarily F±(0) = 0 and ψ± = 0, in turn implying Ran(S± iI) = H.
By Theorem 5.19 that means S : D → H is essentially self-adjoint. Now let S be the
self-adjoint extension of S. To finish observe that if Vt := eitS, for any ψ ,φ ∈D :

d
dt

(ψ |(Vt)∗Ut φ) =
d
dt

(Vtψ |Utφ) = (iSVtψ |Utφ)+(Vtψ |iSUtφ)

=−(Vtψ |iSUtφ)+(Vtψ |iSUtφ) = 0 .

Thus (ψ |(Vt)∗Utφ) = (ψ |Iφ). As D is dense, (Vt)∗Ut = I, i.e. Ut = eitS for any t ∈ R.
�



9.3 Strongly continuous one-parameter unitary groups 423

Corollary 9.30. If A is self-adjoint on the Hilbert space H and D0 ⊂ D(A) is dense
such that eitAD0 ⊂D0 for any t ∈ R, then A�D0 is essentially self-adjoint, i.e. D0 is a
core of A.

Proof. Take ψ ∈D0 ⊂D(A). Then Utψ = eitAψ is differentiable and its derivative is
iAUtψ . Going through the final part of Stone’s proof and replacing Gårding’s space
D with D0 proves the claim. �

Now comes a related technical, and useful, elementary result.

Proposition 9.31. Let A be self-adjoint on the Hilbert space H, and define Ut := eitA,
t ∈ R. For any measurable f : σ(A)→ C:

Ut f (A)ψ = f (A)Utψ , ∀t ∈ R ∀ψ ∈ D( f (A)) . (9.84)

Proof. ψ ∈ D( f (A)) if and only if
∫
σ(A) | f (λ )|2dμψ(λ ) < +∞. On the other hand

the measures μψ and μUtψ are the same, since

(Utψ |P(A)(E)Utψ) = (ψ |U∗
t P(A)(E)Utψ) ,

but U∗
t P(A)(E)Ut = P(A)(E) from (9.13)–(9.14) in Theorem 9.4(c) (recall all integ-

rals refer to bounded maps so the operators are defined on the entire space). In con-
clusion ψ ∈ D( f (A)) ⇔ Utψ ∈ D( f (A)). Conversely f (A)ψ ∈ D(Ut) = H holds
trivially, since Ut is unitary. With this, using (9.13)–(9.14) in Theorem 9.4(c), we get
Ut f (A)ψ = f (A)Utψ for any ψ ∈ D( f (A)), i.e. (9.84). �

The next definition will be fundamental for physical applications, as we will see
in Chapter 12 and 13.

Definition 9.32. Let H be a Hilbert space, {Ut}t∈R ⊂ B(H) a strongly continuous
one-parameter unitary group. The unique self-adjoint operator A on H fulfilling
(9.80) is called (self-adjoint) generator of {Ut}t∈R ⊂B(H).

In general the self-adjoint generator A is unbounded. It is bounded – and so
defined on all H – precisely when {Ut}t∈R is continuous at t = 0 (and almost every-
where) in the uniform topology. See Exercise 9.8.

Stone’s theorem has a host of useful corollaries, and here is one.

Corollary 9.33. If A : D(A)→H, D(A) dense in H, is self-adjoint (in general unboun-
ded) on the Hilbert space H, and U : H→H1 is an isomorphism (surjective isometry),
then

UeisAU−1 = eisUAU−1
, s ∈ R .

The same holds, in particular, when H = H1 and U is unitary.

Proof. The operator UAU−1 is clearly self-adjoint on UD(A) by definition. Hence
the strongly continuous one-parameter unitary group {eisUAU−1}s∈R is well defined.



424 9 Spectral theory II: unbounded operators on Hilbert spaces

As U is an isomorphism, {UeisAU−1}s∈R too is a strongly continuous one-parameter
unitary group on H1. Furthermore, if ψ = U−1φ ∈U−1D(A) then

lim
s→0

UeisAU−1ψ−ψ
s

= lim
s→0

UeisAφ −Uφ
s

= U lim
s→0

eisAφ −φ
s

= iUAφ = UAU−1ψ .

By Stone’s theorem the generator of {UeisAU−1}s∈R is a self-adjoint extension of
UAU−1; but the latter is already self-adjoint, so the generator of {UeisAU−1}s∈R is
UAU−1 itself, and

UeisAU−1 = eisUAU−1
, s ∈ R . �

Remarks 9.34. In a sense Stone’s theorem can be viewed as a special case in a larger
picture arising from the Hille–Yosida theorem [Rud91], which has had momentous
consequences in mathematical physics, esp. concerning the applications of the theory
of semigroups. Let us remind that, in a Banach space (X, || ||), a strongly continuous
semigroup of operators {Qt}t∈[0,+∞) is a collection of operators Qt ∈ B(X) such
that: (a) Q(0) = I, (b) Qt+s = QtQs for s, t ∈ [0,+∞), and (c) ||Qtψ −ψ || → 0 as
t → 0 for any ψ ∈ X. In this context one proves [Rud91] that every strongly continu-
ous semigroup admits one generator, i.e. an operator A on X completely determined
by the demand

d
dt

Qtψ =−AQtψ =−QtAψ , ψ ∈ D(A).

(The derivative is computed in the norm of X.) It turns out D(A)⊂ X is dense.
If we look at the subcase of normal (bounded) operators {Qt}t∈[0,+∞) on a Hil-

bert space X = H, then [Rud91]: (1) the semigroup has a generator A, (2) A is normal
(unbounded, in general), and (3)

Qt = e−tA ,

where the right-hand side is defined by the integral of

σ(A) � λ 	→ e−tλ

in the PVM of the spectral decomposition of A (extending Theorem 9.10 to unboun-
ded normal operators [Rud91]). Eventually, (4) the real part of the spectrum of A is
lower bounded, i.e. there is γ ∈ R such that γ < Re(λ ) for any λ ∈ σ(A). �

9.3.3 Commuting operators and spectral measures

As a concluding result we prove a theorem on commuting spectral measures of self-
adjoint operators, which relies on the generated one-parameter groups. For bounded
self-adjoint operators the spectral measures commute if and only if the operators
themselves commute, an easy consequence of the spectral theorem (see also Corol-
lary 9.36). For unbounded operators, instead, there are domain-related issues and the
criterion cannot be used. Using unitary groups is a simple way to overcome this prob-
lem. The next result is widely applied in QM.
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Theorem 9.35. Let A, B be (in general unbounded) operators on the Hilbert space
H with A self-adjoint.

(i) If B is self-adjoint and calling P(A), P(B) the respective spectral measures, the
following statements are equivalent.
(a) For any Borel sets E,E ′ ⊂ R:

P(A)(E)P(B)(E ′) = P(B)(E ′)P(A)(E) .

(b) For any Borel set E ⊂ R and any s ∈ R:

P(A)(E)e−isB = e−isBP(A)(E) .

(c) For any t,s ∈ R:
e−itAe−isB = e−isBe−itA .

(d) For any real t ∈ R:

e−itAD(B)⊂ D(B) and e−itABψ = Be−itAψ , if ψ ∈ D(B).

(ii) Under either of the above four conditions:

ABψ = BAψ if ψ ∈ D(AB)∩D(BA)
(Aϕ | Bψ)− (Bϕ |Aψ) = 0 if ψ ,ϕ ∈ D(A)∩D(B).

(iii) If B∈B(H) (not necessarily self-adjoint) and P(A) is the PVM of A, the following
are equivalent.
(e) BAϕ = ABϕ for any ϕ ∈ D(A).
(f) B f (A)ψ = f (A)Bψ for any ψ ∈D( f (A)) and any f : σ(A)→ R measurable.
(g) BP(A)(E) = P(A)(E)B for any Borel set E ⊂ R.

Proof. (i) Using Definition 9.11 the identity in (b) reads
∫

R

e−itλdP(A)
λ

∫

R

e−isμdP(B)
μ =
∫

R

e−isμdP(B)
μ

∫

R

e−itλdP(A)
λ , t,s ∈ R, (9.85)

where the standard definition of integral of a bounded measurable map in a spec-
tral measure was employed, by Theorem 9.4(a). That (a) implies (c) is immediate by
definition of integral of a bounded map in a spectral measure (Chapter 8) working in
the strong topology. Let us prove (c) ⇒ (b) ⇒ (a). For the former implication, from

(9.85), if Us := e−isB, ψ ,φ ∈ H, s ∈ R are fixed, we have
(
ψ
∣
∣
∣
∫
R

e−itλdP(A)
λ Usφ

)
=

(
U∗

s ψ
∣
∣
∣
∫
R

e−itλdP(A)
λ φ
)

for any t ∈ R, i.e.

∫

R

e−itλdμ(A)
ψ,Usφ (λ ) =

∫

R

e−itλdμ(A)
U∗

s ψ,φ (λ ) , (9.86)

where we introduced complex measures as in Theorem 8.50(c). The above can be
transformed in integrals for finite positive measures by Theorem 1.86. Next, using
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Fubini–Tonelli in (9.86) we can say that if f is the Fourier transform of a map in the
Schwartz space S (R) (see Chapter 3):

∫

R

(∫

R

f (t) e−itλdt

)

dμ(A)
ψ,Usφ (λ ) =

∫

R

(∫

R

f (t) e−itλdt

)

dμ(A)
U∗

s ψ,φ (λ ) .

As the Fourier transform maps S (R) to itself bijectively, the identity becomes
∫

R

g(λ )dμ(A)
ψ,Usφ (λ ) =

∫

R

g(λ )dμ(A)
U∗

s ψ,φ (λ ) , g ∈S (R). (9.87)

If h ∈Cc(R) (continuous with compact support), the sequence

gn(x) :=
√

n
4π

∫

R

e−n(x−y)2/4h(y)dy

satisfies gn ∈D(R) and converges uniformly to h as n→+∞. As gn ∈D(R)⊂S (R)
and gn → h ∈Cc(R) in sup norm, and measures are finite, (9.87) implies

∫

R

h(λ )dμ(A)
ψ,Usφ (λ ) =

∫

R

h(λ )dμ(A)
U∗

s ψ,φ (λ ) , h ∈Cc(R). (9.88)

Riesz’s Theorem 2.48 for complex measures ensures the measures involved in the
integrals above coincide. By their explicit expression (Theorem 8.50(c)):
(
ψ
∣
∣
∣P(A)(E)Utφ

)
=
(

U∗
s ψ
∣
∣
∣P(A)(E)φ

)
for any Borel set E ⊂ R and any s ∈ R.

(9.89)
As ψ , φ are arbitrary, obvious manipulations give (b):

P(A)(E)e−isB = e−isBP(A)(E) for any Borel set E ⊂ R, any s ∈ R. (9.90)

Now we can prove (b) implies (a). Iterating the procedure that leads to (b) knowing
(c), where now e−isB replaces e−itA and the unitary Us is replaced by the projector

P(A)(E), we obtain that (9.90) implies (a): P(A)
E P(B)

E ′ = P(B)
E ′ P(A)

E for any pair of Borel
sets E,E ′ ⊂ R.

To finish (i) there remains to show (d) is equivalent to one of the preceding
statements. If (c) holds, by Stone’s theorem and the continuity of e−itA (d) fol-
lows immediately. On the other hand (d) implies (c), let us see why. First of all (d)
amounts to e−itABeitA = B, so exponentiating gives e−is(e−itABeitA) = e−isB. For any
given s ∈ R the strongly continuous one-parameter unitary groups t 	→ e−is(e−itABeitA)

and t 	→ e−itAe−isBeitA have the same generator, so they coincide by Stone’s theorem.
Hence e−itAe−isBeitA = e−isB, i.e. (c).

Let us prove (ii). For the first assertion, take ψ ∈ D(AB)∩D(BA) and look at (c)
in (i): e−itAe−isBψ = e−isBe−itAψ . Differentiating in t at the origin, Stone’s theorem
gives Ae−isBψ = e−isBAψ . Now we differentiate in s at the origin. The right side
gives −iBAψ by Stone. On the left we can move the derivative past A, as A = A∗ is
closed and because the limit exists. Hence −iABψ = −iBAψ , as we wanted. Now
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we prove the second assertion, assuming again (c). If ψ ∈ D(A) and ϕ ∈ D(B),
(eitAψ |e−isBϕ) = (eisBψ |e−itAϕ). Differentiating in t and s at t = s = 0 proves the
claim by Stone’s theorem.

Assertion (iii) goes like this. It is obvious that (f) implies (e) and (g) (choose
f = χE ). So we show (e) ⇒ (f). First we prove (e) forces B to commute with e−itA

for any t ∈ R. For this we shall use (d), (f) in Proposition 9.21. Let ψ be analytic
for A and for every power in the dense set that exists by Proposition 9.21(f). As B is
bounded, using Proposition 9.21(d):

Be−itAψ =
+∞

∑
n=0

(−it)n

n!
BAnψ =

+∞

∑
n=0

(−it)n

n!
AnBψ = e−itABψ .

In the last two equalities we used BAψ = ABψ repeatedly, plus ||AnBψ || =
||BAnψ || ≤ ||B||||Anψ ||, so Bψ is analytic for A. But ψ moves in a dense set and
the operators B, e−itA are continuous, so Be−itA = e−itAB.

If B is bounded and commutes with every e−itA, B commutes with the spectral
measure of A. The proof is similar to the proof that, in (i), (c) implies (b): we just
have to replace Us by B. Hence by definition of g(A), if g is bounded (and so is g(A))
then Bg(A) = g(A)B. At this point notice

μ(A)
Bψ (E) = (Bψ |P(A)(E)Bψ) = (P(A)Bψ |P(A)(E)Bψ)

= (BP(A)ψ |BP(A)(E)ψ)≤ ||B||2μ(A)
ψ (E) (9.91)

so ψ ∈D( f (A)) implies Bψ ∈D( f (A)). Applying the definition of f (A) for f meas-
urable unbounded, and taking a sequence of bounded measurable maps fn conver-
ging to f in L2(σ(A),μψ), we have the claim by taking the limit as n → +∞ of
B fn(A)ψ = fn(A)Bψ , for any n ∈ N, since B is continuous (the equality holds for fn

is bounded). At last, (g) implies (9.91), and (e) follows from the previous argument
with f (x) = x. �

Corollary 9.36. Consider two self-adjoint operators A : D(A)→H, B∈B(H) on the
Hilbert space H. They commute, i.e. ABψ = BAψ for any ψ ∈ D(A), if and only if
their spectral measures commute.

Proof. If the operators commute, (g) holds in (iii) above. Apply (iii) giving B the role
of A and P(A)(E) the role of B; then P(B)(F)P(A)(E) = P(A)(E)P(B)(F) for any Borel
sets E,F ⊂R. Conversely if the spectral measures commute, by definition of integral
of a bounded PVM follows BP(A)(E) = P(A)(E)B for any Borel set E ⊂ R. Now (iii)
implies ABψ = BAψ for any ψ ∈ D(A). �

Here is another useful technical consequence.

Corollary 9.37. Let A be self-adjoint on the Hilbert space H and B0 : D(B0) → H
essentially self-adjoint. If

e−itAD(B0)⊂ D(B0) , e−itAB0φ = B0e−itAφ , ∀t ∈ R ,∀φ ∈ D(B0) ,

then A and B := B0 satisfy (a), (b), (c), (d) in Theorem 9.35(i).
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Proof. It suffices to note that by definition of closure, using the continuity of e−itA,
the self-adjoint operator B : D(B)→ H satisfies

eitAD(B)⊂ D(B) , e−itABφ = Be−itAφ , ∀t ∈ R ,∀φ ∈ D(B) .

Then part (i) in Theorem 9.35 produces the claim. �

Exercises

9.1. Consider a PVM P : B(X)�E 	→P(E)∈B(H) and a unitary operator (isometric
and onto) V : H→ H′, where H is a complex Hilbert space. Prove

P′ : B(X) � E 	→ P′(E) := V P(E)V−1 ∈B(H′)

is a PVM.

9.2. In relationship to Exercise 9.1, prove the following facts.

(i) If f : X → C is measurable then ψ ∈ Δ f ⇔ Vψ ∈ Δ ′f , where Δ ′f is the
domain of the integral of f in P′.

(ii) V
∫

X f (x)dP(x)V−1 =
∫

X f (x)dP′(x).

9.3. If H is a Hilbert space, prove T ∈ B(H) is of trace class (T ∈ B1(H)) ⇔
∑u∈N |(u|Tu)|< +∞ for any basis N ⊂ H.

Solution. Suppose ∑u∈N |(u|Tu)| < +∞ for any basis N. Assume, first, T = T ∗.
By the spectral theorem T =

∫
R
λdP(T )(λ ). Define T− :=

∫
(−∞,0)λdP(T )(λ ) and

T+ :=
∫
[0,+∞)λdP(T )(λ ). Clearly T± ∈ B(H) (|λχ(−∞,0)| ≤ |λ |, |λχ[0,+∞)| ≤ |λ |,

Corollary 9.5 holds, and λ is bounded on the support of P(T ) by the spectral the-
orem for self-adjoint bounded operators). Moreover ±T± ≥ 0 by Theorem 10.37.
Further, H = H− ⊕H+ is a closed orthogonal sum where H− := P(T )((−∞,0))H,
H+ := P(T )([0,+∞))H. Let N− ⊂ H−, N+ ⊂H+ be bases. N := N−∪N+ is a basis of
H. As −T−,T+ ≥ 0 and T±u = 0 if u ∈ H∓, we have

+∞> ∑
u∈N

|(u|Tu)|= ∑
u∈N−

|(u|T−u)|+ ∑
u∈N+

|(u|T+u)|= ∑
u∈N−

−(u|T−u)+ ∑
u∈N−

(u|T+u)

= ∑
u∈N−

(u||T−|u)+ ∑
u∈N−

(u||T+|u) = ∑
u∈N

(u||T−|u)+ ∑
u∈N

(u||T+|u) .

Therefore T± ∈ B1(H) by Definition 4.30, so T = T+ + T− ∈ B1(H) by The-
orem 4.32(b). In case T is not self-adjoint, we can decompose T = A + iB, with
A := 1

2 (T + T ∗), B := 1
2i (T − T ∗), A, B self-adjoint. For any given basis N ⊂ H,

|(u|Tu)| = |(u|Au) + i(u|Bu)| =
√
|(u|Au)|2 + |(u|Bu)|2 ≥ |(u|Au)| , |(u|Bu)|, with

u∈N. Applying the result proved above for self-adjoint operators gives A,B∈B1(H),
so T ∈B1(H). If, instead, T ∈B1(H), for any basis ∑u∈N |(u|Tu)|< +∞ by Propos-
ition 4.34.
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9.4. Prove that (iv) in Theorem 9.10(b) can be strengthened to: Let T : D(T ) → H
be self-adjoint on the Hilbert space H. Then λ ∈ σc(T ) is equivalent to asking:
0 < ||Tφ −λφ ||, ∀φ ∈ D(T ) with ||φ || = 1, and for any ε > 0 there is φε ∈ D(T ),
||φε ||= 1, such that

||Tφε −λφε || ≤ ε .

Hint. The second condition amounts to saying λ does not belong to σp(T ), so
(T − λ I)−1 : Ran(T − λ I) → D(T ) exists. Then λ ∈ σ(T ) = σp(T )∪σc(T ). Can
(T −λ I)−1 be bounded?

9.5. Consider a space L2(X,μ) with μ positive and finite on the Borel σ -algebra of
a space X. Let f : X → R be an arbitrary real, measurable, and locally L2 map (i.e.
f ·g ∈ L2(X,μ) for any g ∈Cc(X)). Consider the operator on L2(X,μ):

Tf : h 	→ f ·h

where D(Tf ) := {h∈ L2(X,μ) | f ·h∈ L2(X,μ)}. Prove Tf is self-adjoint. Then show

σ(Tf ) = ess ran( f ) .

For f : X→ R, ess ran( f ) is the essential rank of the measurable map f , defined by
R � v ∈ ran ess( f ) ⇔ μ

(
f−1(v− ε ,v+ ε)

)
> 0 for any ε > 0.

Hint. The domain of Tf is dense because f is locally L2, and the self-adjointness
comes from computing T ∗

f = Tf . The second part goes along these lines. λ ∈ ρ(Tf )
⇔ the resolvent Rλ (Tf ) exists on L2(X,μ) and is bounded, i.e. there is M > 0 such
that ||Rλ (Tf )h|| ≤M for any unit h ∈ L2(X,μ). That is to say, λ ∈ ρ(Tf ) if and only
if: ∫

X

|h(x)|2
| f (x)−λ |2 dμ(x) < M for any unit h ∈ L2(X,μ) .

If λ � ess ran( f ), by definition of essential rank and μ(X) < +∞ we see that the con-
dition holds, so λ � ess ran( f ) implies λ � σ(Tf ). If λ ∈ ess ran( f ), still by definition

of essential rank we build a sequence of unit hn such that
∫

X
|h(x)|2

| f (x)−λ |2 dμ(x) > 1/n2

for any n = 1,2, . . .. Hence λ ∈ ess ran( f ) implies λ ∈ σ(Tf ).

9.6. Consider a PVM P : B(C)→ H with H separable. Prove A ∈B(H) has the form
A =
∫
C

f dP for some f ∈ Mb(C) ⇔ it commutes with every B ∈ B(H) satisfying
BP(E) = P(E)B for any E ∈B(C).

Solution. The converse statement is known, so we just prove the necessary part of
the ‘⇔’. Divide supp(P) in a disjoint collection, at most countable, of bounded sets
En, and H in the corresponding orthogonal sum H =⊕nHn, Hn := P(En)(H). A makes
every Hn invariant, since AP(En) = P(En)A by assumption. If An := A�Hn : Hn → Hn,
then Aψ =∑n Anψ for any ψ ∈ H. Moreover (see Corollary 9.36) An commutes with
any operator in B(Hn) that commutes with the bounded normal Tn :=

∫
En

zdP(z)
and its adjoint. By Theorem 9.9, An =

∫
En

fndP for some fn ∈ Mb(En). Define
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f (z) := fn(z) on z ∈ En, for any z ∈ C. Then fn → f (the fn are null outside En)
in L2(C,μψ) by dominated convergence if ψ ∈ Δ f . Therefore Aψ =

∫
C

f dPψ for
ψ ∈ Δ f , by definition of

∫
C

f dP. As A is bounded, Corollary 9.5 implies f must be
bounded, Δ f = H and A =

∫
C

f dP.

9.7. Let H be separable and T : D(T ) → H self-adjoint on H (not necessarily
bounded). Prove that A ∈B(H) has the form A = f (T ), for some f : R→ C measur-
able and bounded, ⇔ A commutes with every B ∈B(H) such that BTψ = T Bψ for
any ψ ∈D(T ).

Solution. If P(T ) is the PVM of T , BP(T )(E) = P(T )(E)B ⇔ BTψ = T Bψ for any
ψ ∈ D(T ). The claim boils down to proving A =

∫
f dP(T ), f bounded, iff A com-

mutes with any B ∈B(H) commuting with P(T ). Exercise 9.6 does exactly that.

9.8. If A is the self-adjoint generator of a strongly continuous one-parameter unitary
group Ut = eitA, prove A is bounded, and hence it is defined on the whole Hilbert
space if and only if ||Ut − I|| → 0, as t → 0.

Hint. Passing to the spectral representation of A, we have ||Ut − I|| = || ft ||∞ where
ft(λ ) = |eitλ −1|. As (a,b)� λ 	→ ft(λ ) tends λ -uniformly to 0, as t → 0 if and only
if a,b are finite, the claim follows.

9.9. Show formula (9.72) for any one-parameter unitary group R � t 	→Ut .

Solution. Applying U−t on the right to U−1
t Ut = I, and using the second relation in

(9.71), we have U−1
t Ut−t = U−t . Using the first identity in (9.71), U−1

t = U−t . Even-
tually U−1

t = (Ut)∗, as Ut is unitary.

9.10. Consider the operators A, A� of Section 9.1.4. Prove they are closable, and that

A�A = A∗A = A
∗
A .

9.11. Study the polar decomposition A =UP for the operator A of section 9.1.4. Prove
that U satisfies

Uψn = ψn−1

if n≥ 1 and {ψn}n∈N is the basis of L2(R,dx) defined in Section 9.1.4.

9.12. Consider the operators A and A� of Section 9.1.4 and the basis {ψn}n∈N of
L2(R,dx). Compute eαA+αA�ψn with α ∈ C given.
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Spectral Theory III: applications

Particles are solutions to a differential equation.
Werner Karl Heisenberg

In this chapter we examine applications of the theory of unbounded operators in Hil-
bert spaces, where spectral theory, as developed in Chapters 8 and 9, plays a para-
mount technical role during the proofs. The final part of the chapter presents a series
of classical results about certain operators of interest in Quantum Mechanics, in par-
ticular regarding self-adjointness and spectral lower bounds.

Section one is devoted to the study of abstract differential equations in Hilbert
spaces.

The second section pertains the notion of Hilbert tensor product of Hilbert spaces
and of operators (typically unbounded), plus their spectral properties. We apply this
to one example, the orbital angular momentum of a quantum particle.

We extend the polar decomposition theorem to closed, densely-defined unboun-
ded operators in the third section. The properties of operators of the form A∗A, with A
densely defined and closed, are examined, together with square roots of unbounded
positive self-adjoint operators.

Section four contains the statement, the proof and a few direct applications of the
Kato-Rellich theorem, which gives criteria for a self-adjoint operator, perturbed by
a symmetric operator, to be still self-adjoint operator, and establishes lower bounds
for the perturbed spectrum.

10.1 Abstract differential equations in Hilbert spaces

Looking at spectral theory from the right angle allows to tackle the issue of existence
and uniqueness of solutions to certain PDEs that are important in physics. Recall
[Sal08] that a second-order linear differential equation in u ∈C2(Ω ;R), with given
open set Ω ⊂ Rn and continuous real maps ai j, bi, c, has the form:

n

∑
i, j=1

ai j(x)
∂ 2u
∂xi∂x j

+
n

∑
i=1

bi(x)
∂u
∂xi

+ c(x)u = 0 .

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
DOI 10.1007/978-88-470-2835-7_10, © Springer-Verlag Italia 2013
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Equations of this kin are classified, pointwise at each x∈Ω , into (a) elliptic, (b) para-
bolic or (c) hyperbolic according to the spectrum of the symmetric matrix ai j(x). Re-
spectively, type (a) occurs when the eigenvalues have the same sign±, (b) when there
is some null eigenvalue, (c) when no eigenvalue vanishes and there are eigenvalues
opposite in sign. An equation is said elliptic, parabolic or hyperbolic if such at each
point x ∈Ω .

By a smart coordinate choice around each point inΩ , the equation can be written
as:

a(t,y)
∂ 2

∂ t2 u(t,y)+
n−1

∑
i, j=1

a′i j(t,y)
∂ 2u
∂yi∂y j

+b(t,y)
∂u
∂ t

+
n−1

∑
i=1

b′i(t,y)
∂u
∂yi

+ c(t,y)u(t,y) = 0 .

For elliptic equations (e.g. Poisson’s equation) a(t,y) is never zero and has the
same sign of the eigenvalues (all non-zero) of the symmetric matrix a′i j(t,y). Para-
bolic equations (e.g. the heat equation) have a(t,y) = 0. Hyperbolic equations (e.g.
d’Alembert’s equation) are such that a(t,y) has opposite sign to some eigenvalues
(none zero) of the symmetric matrix a′i j(t,y).

Supposing all functions we consider are complex-valued we shall study the theory
of these PDEs under a different point of view. The above will be considered “abstract
differential equations” in Hilbert spaces and with respect to suitable topologies. The
variable t will be regarded as a parameter upon which the solutions depends: this
will give a curve in the Hilbert space. The differential operators determined by the
matrix a′i j and the vector b′i will become operators acting on a subspace in a Hilbert
space L2(Ω ,dy) containing the support of the solution curve. We could, as a matter
of fact, use a completely abstract Hilbert space H, without a mention of coordinates.
Solutions will therefore be functions t 	→ ut ∈H in the Hilbert space. This generalisa-
tion will allow us to treat equations that do not befit the classical trichotomy (like the
Schrödinger equation), equations of degree higher than the second, and equations that
cannot be classified within the above scheme, like equations where the differential
operator given by the matrix a′i j is formally replaced by a square root. For instance

a
∂u
∂ t

+b

√

− ∂ 2

∂x2 u = 0 .

Notation 10.1. If J ⊂ R is an interval, H a Hilbert space, S ⊂ H a subspace (closed
or not) and k = 0,1,2, . . . is fixed, we let

Ck(J;S)

:=
{

J � t 	→ u(t) ∈ S

∣
∣
∣
∣ J � t 	→ d ju

dt j exists and is continuous for j = 0,1 . . . ,k

}

,

where derivative and continuity refer to the topology of H.
We shall also write C(J;S) := C0(J;S). �
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Remark 10.2. (1) Of course C(J;S) is a complex vector space.
(2) It is easy to prove, by inner product/norm continuity and Schwarz’s inequality
that:

d
dt

(u(t)|v(t)) =
(

du
dt

∣
∣
∣
∣v(t)
)

+
(

u(t)
∣
∣
∣
∣
dv
dt

)

(10.1)

for every t ∈ J, when u,v : J → H are differentiable everywhere on J (in particular
continuous on J).
(3) If H = L2(Ω ,dx), Ω ⊂ Rn open, and we take a family of maps ut ∈L 2(Ω ,dx),
(t,x) ∈ J×Ω for a given oper interval J ⊂ R, the existence of the derivative at t
forces the existence in L2(Ω ,dx), under rather weak hypotheses. For example

Proposition 10.3. Let Ω ⊂ Rn be bounded and open, J ⊂ R an open interval and
{ut}t∈J ⊂L 2(Ω ,dx) a family defined on Ω .
If the maps u = ut(x) are differentiable in t for every x ∈Ω and | ∂ut

∂ t | ≤M for some
M ∈ R and any t ∈ J, then (viewing {ut}t∈J ⊂ L2(Ω ,dx) for the derivative):

∃ dut

dt
for every t ∈ J and

dut

dt
=
∂ut

∂ t
a.e. at x for any t ∈ J,

where the derivative is computed as usual.

(This generalises to higher derivatives in the obvious way.)

Proof. NoteΩ � x 	→ ∂ut
∂ t is measurable for any t ∈ J as pointwise limit of measurable

functions. For any given t ∈ J, the mean value theorem says that for every x ∈Ω and
some x′(x, t,h) ∈ [t−h, t +h]:

∫

Ω

∣
∣
∣
∣
ut+h(x)−ut(x)

h
− ∂ut

∂ t
(x)
∣
∣
∣
∣

2

dx =
∫

Ω

∣
∣
∣
∣
∂ut

∂ t
(x′(x, t,h))− ∂ut

∂ t
(x)
∣
∣
∣
∣

2

dx .

The right integrand is smaller, uniformly with respect to h, than the constant M in
L2(Ω ,dx), since Ω has finite Lebesgue measure. Since the integrand is pointwise
infinitesimal as h→ 0, dominated convergence proves the claim. �

Having Ω bounded can be dropped in favour of a uniform estimate in t, of the
sort | ∂ut

∂ t (x)| ≤ |gt0(x)| with gt0 ∈L 2(Ω ,dx), holding around every given t0 ∈ J. �

10.1.1 The abstract Schrödinger equation (with source)

The first equation we study is Schrödinger’s equation, for which we allow a source
term to be present. The equation will be considered abstractly, in a Hilbert space,
and without referring to physics. We shal return to it in Chapter 13, when the phys-
ical meaning of the sourceless case will be discussed. For the standard theory of
PDEs, Schrödinger’s equation has the following structure (numerical coefficients
apart, whose great relevance is neglected for the time being):

−i
∂
∂ t

ut(x)+(A0ut)(x) = S(t,x) (10.2)
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where J ⊂ R a fixed open interval, Ω ⊂ Rn a given open set,

A0 :=−Δx +V (x) : D(A0)→ L2(Ω ,dx) (10.3)

is defined on some domain D(A0)⊂C2(Ω), V :Ω → R and S : J×Ω → C are given
maps, say continuous, and finally Δx is the usual Laplacian on Rn.

A function u = u(t,x) is called classical solution to (10.2) if it is defined for
(t,x) ∈ J×Ω , of class C1 in t and C2 in x1, . . . ,xn, and of course if it solves (10.2) on
its domain.

If the functions in D(A0) decay quickly outside compact sets in Ω and first de-
rivatives are bounded, the operator A0 is certainly Hermitian, as is clear integrating
by parts. At least forΩ := Rn, we expect that choosing D(A0) properly will make A0

essentially self-adjoint in L2(Ω ,dx). We already know that for Ω := Rn and V := 0,
the operator A0 of (10.3) is essentially self-adjoint on the domain D(A0) := S (Rn)
(Exercises 5.11 and 5.12); as we shall see, the same holds on D(A0) := D(Rn). We
will discuss more general cases, with V � 0, in Section 10.4.

Assuming A := A0 is self-adjoint leads to a different interpretation of equation
(10.2), where A0 is replaced by any self-adjoint operator and t-differentiation is
defined in the Hilbert topology.

Let us fix an open interval J ⊂ R, J � 0. If A : D(A)→ H is a self-adjoint oper-
ator on the Hilbert space H and J � t 	→ St ∈ H a given map in C(J;H), the abstract
Schrödinger equation with source term is:

−i
d
dt

ut +Aut = St (10.4)

where u ∈C1(J;D(A)) is the unknown. As mentioned, the derivative is computed in
the topology of H. The source is the function S = St . If St = 0 for any t ∈ J, equation
(10.4) is as usual called homogeneous.

The Cauchy problem for the Schrödinger equation, resp. with source or ho-
mogeneous, is the problem of finding a function u ∈C1(J;H) solving (10.4) with or
without source plus the initial condition:

u0 = v ∈ D(A) . (10.5)

Remarks 10.4. If A0 is of the form (10.3) and essentially self-adjoint, we can con-
sider a classical solution u = u(t,x) to (10.2), for which u(t, ·) ∈D(A0) for any t ∈ J.
Under assumptions of the kind of Proposition 10.3, u also solves the abstract equation
(10.4), as D(A) = D(A0) ⊃ D(A0). Therefore classical solutions are abstract solu-
tions, under mild assumptions. �

The first result establishes the uniqueness of the solution to the abstract
Schrödinger equation with any initial condition.

Proposition 10.5. If u = ut solves the homogeneous equation (10.4):

||ut ||= ||u0|| for any t ∈ J. (10.6)

Hence if a solution to the Cauchy problem (10.4)-(10.5) exists, with St � 0 in general,
it is unique.
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Proof. From (10.1) and (10.4), for St = 0:

d
dt
||ut ||2 =

d
dt

(ut |ut) = i(Aut |ut)− i(ut |Aut) = 0

because A is self-adjoint. So ||ut ||= ||u0||. Uniqueness follows immediately because
if u, u′ both solve the Cauchy problem (same St ), then J � t 	→ ut −u′t solves (10.4)
with St = 0 and initial condition u0 = 0, so ut −u′t = 0 for every t ∈ J. �

We are interested in existence now. Actually, we already have everything we
need, because Stone’s theorem (Theorem 9.29) implies existence in the homogen-
eous case:

Proposition 10.6. A solution to the homogeneous Cauchy problem (10.4)-(10.5) has
the form:

ut = e−itAv , t ∈ J ,

where the exponential is understood in spectral sense.

Proof. Immediate consequence of Theorem 9.29. �

Remarks 10.7. If v � D(A) we can still define ut := e−itAv, because the domain of
the unitary operator e−itA is H. The map J � t 	→ ut does not solve the homogeneous
Schrödinger equation. But trivially

d
dt

(z|ut)+ i(Az|ut) = 0 for any z ∈ D(A), t ∈ J, (10.7)

by Stone’s theorem, because the inner product is continous and e−itA is unitary, im-
plying (z|e−itAv) = (eitAz|v). From (10.7) this J � t 	→ ut is called a weak solution to
the homogeneous Schrödinger equation. �

It should be clear that the solution set to the Schrödinger equation with source
(10.4) – if non-empty – consists of functions

J � t 	→ u(0)
t + st ,

where: s is an arbitrary, but fixed, solution to the non-homogeneous equation (10.4),
and u(0) is free in the vector space of homogeneous solutions. A solution to the equa-
tion with source satisfying the zero initial condition can be written as:

st = e−tiA
∫ t

0
eτiASτdτ ,

assuming something on S ∈C(J;H). We can prove the next theorem.

Theorem 10.8. Let A : D(A)→ H be a self-adjoint operator on the Hilbert space H,
J ⊂ R an open interval with 0 ∈ J. If:

(i) v ∈ D(A);
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(ii) J � t 	→ St is continuous in the topology of H;
(iii) St ∈ D(A) for any t ∈ J;
(iv) J � t 	→ ASt is continuous in the topology of H;

there exists a unique solution J � t 	→ ut ∈C1(J;D(A)) to the Cauchy problem

{ dut

dt
+Aut = St ,

u0 = v .
(10.8)

The solution has the form:

ut = e−itAv+ e−tiA
∫ t

0
eτiASτdτ , t ∈ J . (10.9)

If J � t 	→ Lt ∈B(H) is continuous in the strong topology and J � t 	→ψt ∈H is con-
tinuous, the vector

∫ b
a Lτψτdτ ∈D(A), a,b ∈ J, is by definition the unique element in

H satisfying: (

u

∣
∣
∣
∣

∫ b

a
Lτψτdτ

)

=
∫ b

a
(u |Lτψτ )dτ . (10.10)

Proof. By continuity of t 	→ ψt , of the scalar product and Schwarz’s inequality on
the right-hand side of (10.10):

∣
∣
∣
∣

∣
∣
∣
∣

(

u

∣
∣
∣
∣

∫ b

a
Lτψτdτ

)∣
∣
∣
∣

∣
∣
∣
∣≤ Ka,b||u|| for any u ∈ H

for some constant Ka,b ≥ 0. By Riesz’s representation Theorem 3.16 the vector
∫ b

a Lτψτdτ ∈ H is well defined. Schwarz’s inequality implies
∣
∣
∣
∣

∣
∣
∣
∣

∫ b

a
Lτψτdτ

∣
∣
∣
∣

∣
∣
∣
∣≤
∫ b

a
||Lτψτ ||dτ , (10.11)

namely:

∣
∣
∣
∣

∣
∣
∣
∣

∫ b

a
Lτψτdτ

∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫ b

a

∫ b

a
(Lτψτ |Lsψs )dsdτ =

∣
∣
∣
∣

∫ b

a

∫ b

a
(Lτψτ |Lsψs )dsdτ

∣
∣
∣
∣

≤
∫ b

a

∫ b

a
|(Lτψτ |Lsψs )|dsdτ ≤

∫ b

a

∫ b

a
||Lτψτ || ||Lsψs||dsdτ =

(∫ b

a
||Lτψτ ||dτ

)2

.

Proposition 10.5 grants us uniqueness, so we just need existence. We will show the
right side of (10.8) solves the Cauchy problem (10.9). By definition

∫ t
0 eτiASτdτ

is the null vector if t = 0, so the right-hand side of (10.9) satisfies u0 = v. We
claim ut ∈ D(A). We know eitAv ∈ D(A) by Proposition 10.6. In reality ut belongs
D(A) = D(A∗), since
(

Ax

∣
∣
∣
∣

∫ t

0
eτiASτdτ

)

=
∫ t

0

(
Ax
∣
∣eτiASτ

)
=
∫ t

0

(
x
∣
∣eτiAASτ

)
=
(

x

∣
∣
∣
∣

∫ t

0
eτiAASτdτ

)

,
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by definition of adjoint, A = A∗, St ∈ D(A) and with x ∈ D(A). We have proved that
if Sτ ∈ D(A):

A
∫ t

0
eτiASτdτ =

∫ t

0
eτiAASτdτ . (10.12)

Summing up we have ut ∈ D(A) since eitAv ∈ D(A),
∫ t

0 eτiASτdτ ∈ D(A) and so
e−itA ∫ t

0 eτiASτdτ ∈D(A) since e−itA(D(A))⊂D(A) for one-parameter unitary groups
generated by self-adjoint operators.

Now we show ut is a solution. The first term on the right in (10.9) admits deriv-
ative −iAe−itAv by Stone’s theorem. We want to prove the derivative of the second
term equals −iAe−tiA ∫ t

0 eτiASτdτ+St . If so, ut solves the problem. Define t ′ := t +h
and:

Φt :=
∫ t

0
eτiASτdτ .

The derivative of the second term on the right in (10.9) is the limit for h→ 0 of:

h−1
(

eit ′AΦt ′ − eitAΦt

)
= h−1eit ′A (Φt ′ −Φt)+h−1

(
eitA− eit ′A

)
Φt .

The last term converges to −iAe−tiAΦt by Stone’s theorem, since Φt ∈ D(A). As for
the first term:

h−1eit ′A (Φt ′ −Φt) = h−1eitA (Φt ′ −Φt)+h−1
(

eit ′A− eitA
)

(Φt ′ −Φt) .

By continuity of eitA the first terms converges to

eitA
(

lim
h→0

1
h

∫ t ′

t
e−iτASτdτ

)

= eitAe−itASt = St ,

where, by (10.11), we used:

h−1

∣
∣
∣
∣

∣
∣
∣
∣

∫ t ′

t
e−iτASτdτ− e−itASt

∣
∣
∣
∣

∣
∣
∣
∣= h−1

∣
∣
∣
∣

∣
∣
∣
∣

∫ t ′

t

(
e−iτASτ − e−itASt

)
dτ
∣
∣
∣
∣

∣
∣
∣
∣

≤ h−1
∫ t ′

t

∣
∣
∣
∣e−iτASτ − e−itASt

∣
∣
∣
∣dτ ≤ sup

τ∈[t,t ′]

∣
∣
∣
∣e−iτASτ − e−itASt

∣
∣
∣
∣→ 0

as h→ 0, since τ 	→ e−iτASτ is continuous from
∣
∣
∣
∣e−iτASτ − e−itASt

∣
∣
∣
∣2 = ||Sτ ||2 + ||St ||2−2Re

(
Sτ
∣
∣eiτAe−itA St

)
.

The last thing to prove is

Rh := h−1
(

eit ′A− eitA
)

(Φt ′ −Φt)→ 0 , h→ 0 .

SetΨt ′ :=Φt ′ −Φt :

||Rh||=
∣
∣
∣
∣

∣
∣
∣
∣
e−ihA− I

h
Ψt ′

∣
∣
∣
∣

∣
∣
∣
∣≤
∣
∣
∣
∣

∣
∣
∣
∣
e−ihA− I

h
Ψt ′ + iAΨt ′

∣
∣
∣
∣

∣
∣
∣
∣+ ||iAΨt ′ || . (10.13)
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The last term tends to zero as h→ 0 (t ′ → t), since τ 	→ ||ASτ || is continuous:

||AΨt ′ ||=
∣
∣
∣
∣

∣
∣
∣
∣A
∫ t ′

t
eτiASτdτ

∣
∣
∣
∣

∣
∣
∣
∣≤
∫ t ′

t
||eτiAASτ ||dτ =

∫ t ′

t
||ASτ ||dτ → 0 as t ′ → t.

The first term on the right in (10.13), using the spectral measure ofΨt , reads:
√
∫

R

λ 2

∣
∣
∣
∣
e−ihλ −1

hλ
+ i

∣
∣
∣
∣

2

dμΨt′ (λ ).

Since: ∣
∣
∣
∣
∣

e−ihλ −1
hλ

+ i

∣
∣
∣
∣
∣

2

=
(

1+2
1− coshλ

hλ
−2

sinhλ
hλ

)

< 5 ,

we have
∣
∣
∣
∣

∣
∣
∣
∣
e−ihA− I

h
Ψt ′ + iAΨt ′

∣
∣
∣
∣

∣
∣
∣
∣≤

√
5

√∫

R

λ 2dμΨt′ (λ ) =
√

5||AΨt ′ || → 0 , t ′ → t

as seen above.
So we proved ut is a solution. Eventually we need to show it belongs to

C1(J;D(A)). By the equation and the assumptions on St , that means t 	→ Aut is con-
tinuous. By definition of ut , known properties of integrals in a PVM and (10.12) it
follows:

Aut = e−itAAv+ e−itA
∫ t

0
eiτAASτdτ .

The map t 	→ e−itA(Av) is clearly continuous, while
∣
∣
∣
∣

∣
∣
∣
∣e
−it ′A
∫ t ′

0
eiτAASτdτ− e−itA

∫ t

0
eiτAASτdτ

∣
∣
∣
∣

∣
∣
∣
∣

≤
∣
∣
∣
∣

∣
∣
∣
∣

∫ t ′

t
eiτAASτdτ

∣
∣
∣
∣

∣
∣
∣
∣+
∣
∣
∣
∣

∣
∣
∣
∣

(
e−it ′A− e−itA

)∫ t

0
eiτAASτdτ

∣
∣
∣
∣

∣
∣
∣
∣

≤
∫ t ′

t
||ASτ ||dτ+

∣
∣
∣
∣

∣
∣
∣
∣

(
e−it ′A− e−itA

)∫ t

0
eiτAASτdτ

∣
∣
∣
∣

∣
∣
∣
∣→ 0

as t ′ → t, since t 	→ ||ASt || is continuous by assumption and s 	→ eisA is strongly con-
tinuous. �

Example 10.9. Under the hypotheses of the previous theorem, suppose St := eαtψ ,
with ψ ∈ D(A) and α ∈ R \ {0} a given constant. The Cauchy problem (10.8) is
solved by:

ut = e−itAv+ i(A− iαI)−1(e−itA− eαt I)ψ .

The resolvent (A− iαI)−1 is a well-defined operator in B(H) because σ(A)⊂ R. To
arrive at ∫ t

0
eiτAeατψdτ = i(iA− iαI)−1(I− eitA+αI)ψ ,
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implying the formula, notice that by definition
(

φ
∣
∣
∣
∣

∫ t

0
eiτAeατψdτ

)

=
∫ t

0

(
φ
∣
∣eiτAeατψ

)
dτ =
∫ t

0

∫

R

eiτ(λ+α)eατdμφ ,ψdτ .

As the complex measure μφ ,ψ is finite, [0, t] has finite measure and [0, t]× R �
(τ ,λ ) 	→ eiτ(λ+α) is bounded, we can swap the two integrals by the theorem of
Fubini–Tonelli (after decomposing μφ ,ψ = h|μφ ,ψ |, |h|= 1). Thus by Theorem 9.4:
(

φ
∣
∣
∣
∣

∫ t

0
eiτAeατψdτ

)

=
∫ t

0

(
φ
∣
∣eiτAeατψ

)
dτ =
∫

R

∫ t

0
eiτ(λ−iα)dτdμφ ,ψ

=
∫

R

i(λ − iα)−1(1− eiτ(λ−iα))dμφ ,ψ =
(
φ
∣
∣i(A− iαI)−1(I− eitA+αI) ψ

)
,

whence the claim, as φ is arbitrary. �

10.1.2 The abstract Klein–Gordon/d’Alembert equation (with
source and dissipative term)

The second equation we study is the Klein–Gordon equation, where again we will
assume to have a source, plus a dissipative term proportional to the time derivative
by a positive coefficient. We shall not return to it at a later stage, so the study begins
and ends here. Yet it has to be remembered that the equation has great importance
in quantum field theory. Assuming a certain parameter (the mass, in physics) van-
ishes and in absence of dissipation, the equation goes under the name of D’Alembert
equation and describes small deformations of (any kind of) waves in linear media.
Under the lens of standard PDE theory, the Klein–Gordon equation (with dissipative
term and source, as well) is hyperbolic in nature. Its structure (ignoring the important
physical meaning of the coefficients) is the following: given J ⊂ R an open interval
and Ω ⊂ Rn an open set the equation reads

∂ 2

∂ t2 ut(x)+2γ
∂
∂ t

ut(x)+(A0ut)(x) = S(t,x) (10.14)

where, on some domain D(A0)⊂C2(Ω),

A0 =−Δx +m2 : D(A0)→ L2(Ω ,dx) (10.15)

m > 0, γ ≥ 0 constants, V : Ω → R and S : J×Ω → C given functions, for instance
continuous, and Δx the Laplace operator on Rn. D’Alembert’s equation arises from
setting m = 0, γ = 0 in (10.14)–(10.15). One can consider equations where m and γ
are functions, too.

A map u = u(t,x) is a classical solution to (10.14) if it is defined on (t,x)∈ J×Ω ,
twice differentiable with continuity in every variable and it solves the equation on its
domain

We can make the same comments of the previous section about A0. Supposing
A := A0 is self-adjoint, we can reinterpret equation (10.14), where now A0 is replaced
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by any self-adjoint operator, here positive definite, and the t-derivative is in the to-
pology of the Hilbert space.

Fix an open interval J ⊂ R with J � 0. Let A : D(A)→ H be self-adjoint on the
Hilbert space H, J � t 	→ St ∈H a given map in C(J;H), γ > 0 a constant. The abstract
Klein–Gordon equation with source and dissipative term reads:

d2

dt2 ut +2γ
d
dt

ut +Aut = St (10.16)

where u ∈C2(J;D(A)) is the unknown function. Derivatives are defined with respect
to H. The source is the function S = St and the dissipative term is the one multiplied
by γ ≥ 0. If St = 0 for any t ∈ J, equation (10.16) is homogeneous.

The Cauchy problem for the Klein–Gordon equation with dissipative term,
resp. with source or homogeneous, is the problem that seeks a solution u ∈
C2(J;D(A)) to (10.16) with source or homogeneous, subject to initial conditions:

u0 = v ∈ D(A) ,
dut

dt
|t=0 = v′ ∈ H . (10.17)

Remark 10.10. (1) If A0 is of type (10.15) and essentially self-adjoint, we may take a
classical solution u = u(t,x) to (10.14), for which u(t, ·)∈D(A0) for any t ∈ J. Under
assumptions of the kind of Proposition 10.3 for the first and second time derivatives,
the solution also satisfies the abstract equation (10.16), as D(A) = D(A0) ⊃ D(A0).
Therefore, under not-so-strong assumptions, classical solutions are solutions in the
abstract sense.
(2) The abstract approach presented allows for operators A different from self-adjoint
extensions of Laplacians. The abstract equation befits important situations in phys-
ics, like waves created by small deformations of elastic media with inner tensions at
rest (a violin’s sound board): A is a self-adjoint extension of the squared Laplacian
Δ 2, which is a fourth-order differential operator. Allowing for dissipative term and
source, the classical equation governing the deformation u = u(t,x) is:

a
∂ 2u
∂ t2 +bΔ 2

x u+ c
∂u
∂ t

= S(t,x)

for a,b > 0, c≥ 0. �

Our first result establishes uniqueness for the abstract Klein–Gordon with any
given initial condition, provided A, beside being positive, does not have zero as an
eigenvalue. These assumptions are automatic for operators like (10.15), and working
on reasonable domains such as D(Rn). Note that closing the operator might trigger a
new null eigenvalue.

Proposition 10.11. If u = ut solves the homogeneous equation (10.16), with γ ≥ 0,
A≥ 0, Ker(A) = {0}, then the energy estimate

dE[ut ]
dt

≤−4γ
∣
∣
∣
∣

∣
∣
∣
∣
dut

dt

∣
∣
∣
∣

∣
∣
∣
∣

2

(10.18)
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holds, where the “energy of the solution at time t” is:

E[ut ] :=
∣
∣
∣
∣

∣
∣
∣
∣
dut

dt

∣
∣
∣
∣

∣
∣
∣
∣

2

+(ut |Aut) . (10.19)

Hence, if a solution J � t 	→ ut to (10.16) exists (St � 0 in general), it is uniquely
determined, for t ∈ [0,+∞)∩ J, by u0 and dut/dt|t=0. If γ = 0 the solution is unique
everywhere on J.

Proof. By continuity of the inner product:

d
dt

Et [ut ] =
(

d2ut

dt2

∣
∣
∣
∣
dut

dt

)

+
(

dut

dt

∣
∣
∣
∣
d2ut

dt2

)

+
d
dt

(ut |Aut ) .

The last derivative is the limit as h→ 0 of

1
h

((ut+h |Aut+h )− (ut |Aut ))

=
1
h

((ut+h |Aut+h )− (ut+h |Aut ))− 1
h

((ut+h |Aut )− (ut |Aut )) .

The last term, by inner product continuity, tends to
(

dut

dt

∣
∣
∣
∣Aut

)

.

Further, by (10.16):

1
h

((ut+h |Aut+h )− (ut+h |Aut )) =
1
h

((Aut+h |ut+h )− (Aut+h |ut ))

=
(

Aut+h

∣
∣
∣
∣
ut+h−ut

h

)

=−
((

d2

dt2 +2γ
d
dt

)

ut+h

∣
∣
∣
∣
ut+h−ut

h

)

.

As t 	→ ut is in C2(J;D(A)) and the inner product is continuous,

1
h

((ut+h |Aut+h )− (ut+h |Aut ))→−
((

d2

dt2 +2γ
d
dt

)

ut

∣
∣
∣
∣
dut

dt

)

as h→ 0. Therefore we obtain (10.18):

d
dt

E[ut ] =
(

d2ut

dt2

∣
∣
∣
∣
dut

dt

)

+
(

dut

dt

∣
∣
∣
∣
d2ut

dt2

)

−
((

d2

dt2 +2γ
d
dt

)

ut

∣
∣
∣
∣
dut

dt

)

−
(

dut

dt

∣
∣
∣
∣

(
d2

dt2 +2γ
d
dt

)

ut

)

=−4γ
(

dut

dt

∣
∣
∣
∣
dut

dt

)

≤ 0 .

Consider now two solutions to equation (10.16) with source, and suppose they have
the same initial data. The difference of the solutions, u = ut , solves the homogen-
eous equation, hence also (10.18). By construction u0 = 0, dut/dt|t=0 = 0, and the
function on the right in (10.18) is continuous. Therefore, for any t ≥ 0:

E[ut ]≤ E[u0] = 0 ,
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where we used u0 = 0 and dut/dt|t=0 = 0. As E[ut ] ≥ 0 by definition (10.19), we
conclude that

E[ut ] = 0 if t ≥ 0 .

Definition (10.19) implies (ut |Aut) = 0, so by theorem (9.4) (
√

Aut |
√

Aut) = 0, i.e.
ut ∈Ker(

√
A), if t ≥ 0 (recall D(A)⊂D(

√
A) for any self-adjoint operator A≥ 0, by

definition of D( f (A))). If we had
√

Aut = 0, then
√

A
√

Aut = 0 i.e. Aut = 0, which
is impossible unless ut = 0. So ut = 0 when t ≥ 0, and the two solutions coincide for
t ≥ 0. If γ = 0 the argument works for t < 0 as well, by flipping the sign of t to−t. �

We are interested in having global existence on J. We will establish a result in the
homogeneous case with “small” dissipative term, when σ(A) is bounded from below
by a positive constant and restricting the initial condition v′.
Proposition 10.12. Let γ ≥ 0 be given, and assume A− γ2I ≥ εI for some ε > 0.
Given initial conditions (10.17) with v∈D(A), v′ ∈D(

√
A), the homogeneous Cauchy

problem (10.16)-(10.17) admits a solution, for t ∈ J:

ut =
e−γt

2

(
eit
√

A−γ2I + e−it
√

A−γ2I
)

v

−i
e−γt

2

(
eit
√

A−γ2I − e−it
√

A−γ2I
)

(A− γ2I)−
1
2 (v′+ γv) (10.20)

where the exponential and the root are spectrally meant.

Proof. A direct computation shows the right-hand side of (10.20) solves (10.16): for
this we need Theorem 9.29, the fact that (A− γ2I)−

1
2 is bounded and defined on the

whole Hilbert space, and D(A) = D(A− γ2I) ⊂ D(
√

A− γ2I) = D(
√

A) by the as-
sumptions made. By Proposition 10.11 the solution found is unique, because A ≥ 0
and Ker(A) = {0} from the lower bound γ2 + ε > 0 of σ(A).

That ut is C1 (as it should) descends from a computation of the derivative, which
needs Stone’s theorem, and the boundedness of (A− γ2I)−1/2 (it has bounded spec-
trum). Thus

dut

dt
=−γut + i

e−γt

2

(
eit
√

A−γ2I − e−it
√

A−γ2I
) √

A− γ2Iv

i
e−γt

2

(
eit
√

A−γ2I + e−it
√

A−γ2I
)

(v′+ γv) ,

is continuous since: ut is continuous as differentiable, and the rest of dut/dt is the
action of strongly continuous one-parameter groups on given vectors (plus an extra
continuous factor e−γt ).

That ut is inC2(J;H) goes as follows: write d2ut/dt2 as combination of ut , dut/dt,
Aut and St using the differential equation, and recall ut , dut/dt and St are continuous
together with:

Aut =
e−γt

2

(
eit
√

A−γ2I + e−it
√

A−γ2I
)

Av

− i
e−γt

2

(
eit
√

A−γ2I − e−it
√

A−γ2I
)

A(A− γ2I)−
1
2 (v′+ γv) .
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As before, in fact, the above is the action of strongly continuous one-parameter groups
on fixed vectors. Eventually, from the expression of ut and dut/dt we see the initial
conditions are satisfied. �

Remarks 10.13. A more suggestive way to write (10.20), legitimate by recalling the
meaning of function of an operator A, is:

ut = e−γt cos
(

t
√

A− γ2I
)

v+ e−γt sin
(

t
√

A− γ2I
)

(A− γ2I)−1/2(v′+ γv) .

(10.21)
�

Example 10.14. A frequent situation in classical applications is that in which the
self-adjoint operator A satisfies A ≥ εI for some ε > 0 and has compact resolvent
(by Corollary 8.6 it suffices for this to happen at one point of the resolvent set).
The resolvent’s spectrum computed at ε/2 (so that to have a self-adjoint operator) is
made by eigenvalues only, possibly with 0 as point of the continuous spectrum, and
every eigenspace is finite-dimensional by Theorem 4.17. Proposition 9.14 implies
σ(A) = σp(A), since σ(A) = {μ−1 + ε/2 |μ ∈ σ(Rε/2(A))} and every eigenvector
of the resolvent Rε/2(A) is an eigenvector for A.

For example, this is the case when −A is the closure of the Laplacian on the re-
latively compact open set Ω ⊂ Rn, with D(Δ) containing maps ψ ∈ C2(Ω) whose
derivatives up to order two are finite on ∂Ω , and that ψ vanish at the boundary.
Then the Laplacian is essentially self-adjoint and the closure’s resolvent is compact.
If c > 0 is constant (the travelling speed of waves in the medium), the equation

d2ut

dt2 − c2Δut = 0

presides over the evolution of the vertical deformation ut(x) of a flat horizontal elastic
membrane represented by the region Ω ⊂ R2, assumed with fixed rim.

Let A :=−c2Δ , and call {φλ}λ∈σp(A) an eigenvector basis for A. Decompose the
initial conditions v, v′:

v = ∑
λ∈σp(A)

cλ φλ , v′ = ∑
λ∈σp(A)

c′λ φ .

Using (10.21), with γ = 0, produces the explicit solution:

ut = ∑
λ∈σp(A)

⎛

⎝cλ cos
(√

λ t
)

+ c′λ
sin
(√

λ t
)

√
λ

⎞

⎠φλ . (10.22)

The solution clearly oscillates by the system’s natural frequecies (or eigenfrequen-
cies: the numbers

√
λ , for λ ∈ σp(A). �

It should be clear that the solution set to the Klein–Gordon equation with source
and dissipative term (10.16) – if not empty – consists of maps

J � t 	→ u(0)
t + st ,
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where: s is an arbitrary, fixed, solution to (10.4), while u(0) varies in the vector space
of solutions to the homogeneous equation (possibly with dissipative term). This solu-
tion exists if the source is regular enough. In fact the following analogue to The-
orem 10.8 holds.

Theorem 10.15. Let A : D(A) → H be a self-adjoint operator on H, γ ≥ 0 a fixed
number, J ⊂ R an open interval with 0 ∈ J. If

(i) A− γ2I ≥ εI for some ε > 0;
(ii) v ∈ D(A),v′ ∈ D(

√
A);

(iii) J � t 	→ St is continuous in H;
(iv) St ∈ D(A) for any t ∈ J;
(v) J � t 	→ ASt is continuous in H,

then there exists a solution J � t 	→ ut ∈C2(J;D(A)) to the Cauchy problem

⎧
⎪⎨

⎪⎩

d2ut

dt2 +2γ
dut

dt
+Aut = St ,

u0 = v ,
dut

dt
|t=0 = v′ ,

(10.23)

of the form:

ut = e−γt cos
(

t
√

A− γ2I
)

v+ e−γt sin
(

t
√

A− γ2I
)

(A− γ2I)−1/2(v′+ γv)

+e−γt−it
√

A−γ2I
∫ t

0
dτe2iτ

√
A−γ2I
∫ τ

0
dxeγx−ix

√
A−γ2ISx . (10.24)

The latter is unique on [0,+∞)∩ J, and also on J if γ = 0.
Integrals in (10.24) are defined using (10.10) repeatedly.

Sketch of proof. Uniqueness was proven earlier, so we have to show

u′t := e−γt−it
√

A−γ2I
∫ t

0
dτe2iτ

√
A−γ2I
∫ τ

0
dxeγx−ix

√
A−γ2ISx

is in C2(J;D(A)) and solves the differential equation with zero initial data. The ini-
tial conditions are satisfied by direct computation. The rest is proved applying The-
orem 10.8 twice and bearing in mind the following. Since D(A) = D(A− γ2I) ⊂
D(
√

A− γ2I) = D(
√

A), by Theorem 9.4

d2ut

dt2 +2γ
dut

dt
+Aut =

[
d
dt
−
(
−γI + i

√
A− γ2I

)][ d
dt
−
(
−γI− i

√
A− γ2I

)]

ut

if u ∈C2(J;D(A)). Then the PDE reads :

[
d
dt
−
(
−γI + i

√
A− γ2I

)][ d
dt
−
(
−γI− i

√
A− γ2I

)]

ut = St .
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Theorem 10.8 generalises easily to an operator A+ iaI with a∈R, A self-adjoint. The
equation thus becomes
[

d
dt
−
(
−γI− i

√
A− γ2I

)]

ut = e−tγI+it
√

A−γ2I
∫ t

0
eτγI−iτ

√
A−γ2ISτdτ+u(0)

t ,

(10.25)
where u(0) denotes the generic homogeneous solution to:

[
d
dt
−
(
−γI + i

√
A− γ2I

)]

u(0)
t = 0 .

Fixing u(0) = 0 and iterating for the remaining term on the left in (10.25)
[

d
dt
−
(
−γI− i

√
A− γ2I

)]

,

produces the solution in the needed form. What is still missing is to check the as-
sumptions granting we can invoke Theorem 10.8: this is left as exercise. �

Examples 10.16. (1) In the hypotheses of Theorem 10.15 let us consider a physical
system described by the Klein–Gordon equation with dissipative term, and periodic
source

St = eiωtψ

where ω ∈ R is a given constant and ψ ∈ D(A). Under Theorem 10.15, but expli-
citly with γ > 0, we want to study the solution u = ut of the Cauchy problem with
initial conditions v, v′ “for large times“, meaning t >> 1. A direct computation (see
Exercise 10.1) following from (10.24), if γ > 0, yields:

ut = e−γt
[
cos
(

t
√

A− γ2I
)

v+ sin
(

t
√

A− γ2I
)

(A− γ2I)−1/2(v′+ γv)
]

+e−γtCω,tψ+ eiωt(A−ω2I +2iγωI)−1ψ

for Cω,t ∈B(H), ||Cω,t || ≤Kω , some constant Kω ≥ 0 and any t ≥ 0. Assuming γ > 0
the resolvent of A at ω2−2iγ , i.e. (A−ω2I +2iγIω)−1, is well defined and inB(H),
as σ(A)⊂ (0,+∞) by assumption. For large t > 0 only the last summand in ut above
survives. The term e−γtCω,tψ tends to zero in the norm of H and the part of solution
depending on the initial conditions also goes to zero, because:
∣
∣
∣
∣
∣
∣cos
(

t
√

A− γ2I
)∣
∣
∣
∣
∣
∣≤ 1 and

∣
∣
∣
∣
∣
∣sin
(

t
√

A− γ2I
)

(A− γ2I)−1/2
∣
∣
∣
∣
∣
∣≤ K ,

for some constant K ≥ 0. Thus at large times the solution oscillates at the same fre-
quency of the source, and the information provided by the initial data gets lost:

||ut −u(∞,ψ,ω)
t || → 0 as t →+∞,

where we call
u(∞,ψ,ω)

t := eiωt(A−ω2I +2iγωI)−1ψ

the long-time solution.
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(2) Referring to example (1), we explain the phenomenon called resonance: if the
source oscillates at a frequency ω that is (up to sign) in the spectrum of A, then

the smaller the damping term γ is, the larger the long-time solution u(∞,ψ,ω)
t can

be rendered by choosing a suitable ψ . In fact let P(A) be the PVM of A and Iδω :=
[ω2−δ ,ω2 +δ ], for δ > 0 finite. If the source is given by the unit vectorψ ∈P(A)

Iδω
(H),

with δ > 0 small enough we have:

∣
∣
∣
∣eiω(A−ω2I +2iγIω)−1ψ

∣
∣
∣
∣2 =
∫

Iδω

dμψ(λ )
|λ −ω2|2 +4γ2ω2 ≥ inf

λ∈Iδω

1
|λ −ω2|2 +4γ2ω2

and so: ∣
∣
∣
∣
∣
∣u

(∞,ψ,ω)
t

∣
∣
∣
∣
∣
∣≥ 1
√
δ 2 +4γ2ω2

.

This is all the more evident if the resolvent of A is compact (see Example 10.14),
in which case σ(A) = σp(A). If so, picking ω ∈ σp(A) and ψ a corresponding unit
eigenvector, the previous estimate strengthens to:

∣
∣
∣
∣
∣
∣u

(∞,ψ,ω)
t

∣
∣
∣
∣
∣
∣≥ 1

2γ|ω | .

Continuing with a compact resolvent for A (self-adjoint with strictly positive spec-
trum), so σ(A) = σp(A), let us take:

St =∑
j∈J

eiω jtψ j ,

ω j ∈ R and ψ j � 0, J finite. By linearity the long-time solution will be the superpos-
ition:

u(∞)
t =∑

j∈J
eiω jt(A−ω2I +2iγIω)−1ψ j .

We can decompose every ψ j using an eigenvector basis {φλ}λ∈σp(A) for A:

ψ j = ∑
λ∈σp(A)

cλ , jφλ .

As (A−ω2I +2iγIω)−1 is continuous and J finite:

u(∞)
t =∑

j∈J
∑

λ∈σp(A)

cλ , je
iω jt

λ −ω2
j +2iγω j

φλ . (10.26)

In contrast to solution (10.22), which arises in absence of source and dissipation, the
long-time solution, besides having lost the initial conditions, no longer oscillates by
the natural frequecies

√
λ of the system described by A as in (10.22); rather, the

oscillations are forced by the frequencies of the source ω j. However, the system’s
eigenfrequencies leave traces in the denominator on the right of (10.26), thus gen-
erating resonance. That is why the sound of a violin also depends on the harmonic
frequencies of the strings despite being produced by the sound board, whose reson-
ance frequencies are all distinct. �
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10.1.3 The abstract heat equation

In the standard theory of PDEs the heat equation is parabolic. Coefficients apart,
whose meaning – albeit relevant – we ignore as usual, the heat equation over a given
open set Ω ⊂ Rn reads:

∂
∂ t

ut(x)+(A0ut)(x) = S(t,x) . (10.27)

Above
A0 :=−Δx : D(A0)→ L2(Ω ,dx) (10.28)

for some domain D(A0)⊂C2(Ω), with Δx being the Laplace operator on Rn.
A map u = u(t,x) is a classical solution to (10.27) if defined for (t,x)∈ [0,b)×Ω ,

with b ∈ (0,+∞] given, continuous on [0,b)×Ω , differentiable with continuity in t
and twice in x1, . . . ,xn on (0,b)×Ω , and clearly if it solves (10.27) on (0,b)×Ω .

Assuming, as before, A := A0 is self-adjoint leads to a generalised interpretation
of (10.27), where A0 is replaced by any self-adjoint operator and t-differentiation is
meant in the Hilbert space.

Fix b ∈ (0,+∞]. If A : D(A) → H is self-adjoint on the Hilbert space H and
[0,b)� t 	→ St ∈H is continuous and fixed in C((0,b);H), the abstract heat equation
with source is

d
dt

ut +Aut = St (10.29)

with u : [0,b)→D(A) continuous and u∈C1((0,b);D(A)) unknown. Continuity and
derivative are meant in H. The source is the map S = St . As usual, if St = 0 for any
t ∈ [0,b) the equation (10.29) is homogeneous.

The Cauchy problem for the heat equation, resp. with source or homogeneous,
seeks a C1 map u : [0,b)→ D(A) solving (10.29), with source or homogeneous, to-
gether with the initial condition:

u0 = v ∈ D(A). (10.30)

Remarks 10.17. If A0 is of the form (10.28) and essentially self-adjoint, we may
consider a classical solution u = u(t,x) to (10.27), for which u(t, ·) ∈D0(A0) for any
t ∈ [0,b). Under assumptions of the kind of Proposition 10.3, this solution will solve
the abstract equation (10.29) too, since D(A) = D(A0)⊃D(A0). Therefore with not-
so-restrictive hypotheses, classical solutions are abstract solutions. �

The next result guarantees the abstract heat equation has a unique solution for any
initial condition, provided the operator A is positive.

Proposition 10.18. If A ≥ 0, and u = ut solves the homogeneous equation (10.29),
then

||ut || ≤ ||u0|| for any t ∈ [0,b). (10.31)

Hence, for A≥ 0, the Cauchy problem (10.29)-(10.30), with St � 0 in general, has at
most one solution.
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Proof. By (10.1) and (10.29), for St = 0:

d
dt
||ut ||2 =

d
dt

(ut |ut) =−(Aut |ut)− (ut |Aut)≤ 0

as A is self-adjoint. Hence ||ut || ≤ ||ut0 || if t ≥ t0 ∈ (0,b). By continuity the estimate
holds at t0 = 0. Uniqueness is proved as follows. If u, u′ solve the Cauchy problem
(with same St ), then J � t 	→ ut −u′t solves the Cauchy problem (10.29) with St = 0
and initial condition u0 = 0. Then 0 ≤ ||ut −u′t || ≤ ||0||= 0 for any t ∈ J and hence
ut −u′t for any t ≥ 0. �

Now we go for an existence result.

Proposition 10.19. If A ≥ 0, a (the) solution to Cauchy problem (10.29)-(10.30)
reads:

ut = e−tAv , t ∈ [0,b) ,

where the exponential is meant in spectral sense.

Proof. Take ψ ∈ H and t, t ′ ∈ [0,b) and observe, as σ(A) ⊂ [0,+∞), Theorem 9.4
implies e−tA ∈B(H) if t ≥ 0, e−0A = I and also:

||e−tAψ−e−t ′Aψ ||2 =
∫

σ(A)
|e−λ t −e−λ t ′ |2dμψ(λ ) =

∫

[0,+∞)
|e−λ t −e−λ t ′ |2dμψ(λ ) .

Since μψ is finite, and bounding the integrand with a constant, uniformly in t, t ′ in
a given neighbourhood, dominated convergence forces ||e−tAψ − e−t ′Aψ ||2 → 0 as
t → t ′. Consequently ut := e−tAv is continuous on [0,+∞), and in particular u0 = v.
Suppose v ∈ D(A), so ∫

[0,+∞)
|λ |2dμv(λ ) < +∞.

Assume as well ∫

[0,+∞)
λ 2e−2λ tdμv(λ ) < +∞ ,

justified by λ ≥ 0 and t ≥ 0, so 0≤ e−λ t ≤ 1. Then for t ∈ (0,b):

∫

[0,+∞)

∣
∣
∣
∣
∣

e−λ (t+h)− e−λ t

h
−λ
∣
∣
∣
∣
∣

2

dμv(λ )→ 0 as h→ 0,

because the integrand tends pointwise to 0 as h→ 0 and is bounded, uniformly around
h = 0, by the map [0,+∞)λ 	→Cλ 2e−2λ t (integrable if ν ∈ D(A)). Thus we proved

∣
∣
∣
∣

∣
∣
∣
∣
1
h
(e−(t+h)A− e−tA)ν−Aν

∣
∣
∣
∣

∣
∣
∣
∣

2

→ 0 as h→ 0,

if t ∈ (0,+∞). That means ut := e−tAv solves (10.29) for t ∈ (0,b). Recalling The-
orem 9.4(f):

∣
∣
∣
∣

∣
∣
∣
∣
dut

dt
(t)− dut

dt
(t ′)
∣
∣
∣
∣

∣
∣
∣
∣

2

=
∫

[0,+∞)
|λ |2|e−tλ − e−t ′λ |2dμv(λ ) ;
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so with a similar argument involving Lebesgue’s dominated convergence and us-
ing λe−tλ ≤ 1/t, we immediately find dut

dt (t) is continuous in (0,+∞). Consequently
u ∈C1((0,b);D(A)), as needed. �

Remark 10.20. (1) If v � D(A), we may still define ut := e−tAv, since the domain of
the unitary operator e−tA is H. The map [0,b) � t 	→ ut does not solve the homogen-
eous heat equation. Since (e−tA)∗ = e−tA, though:

d
dt

(z|ut)+(Az|ut) = 0 for any z ∈ D(A), t ∈ (0,b). (10.32)

The map [0,b) � t 	→ ut is called a weak solution to the homogeneous heat equation.
(2) In case A≥ 0 is self-adjoint, the set of operators Tt := e−tA, t ≥ 0, is a strongly con-
tinuous semigroup of operators (see Remark 9.34) generated by the self-adjoint A.
Put otherwise the functions [0,+∞) � t 	→ Tt , beside strongly continuous (cf. above),
satisfy T0 = I and TtTs = Tt+s, t,s ∈ [0,+∞).

From λ ne−λ t ≤ Cnt−n, with Cn := nne−n, n ≥ 0, t,λ > 0, we obtain, for a self-
adjoint A≥ 0 on H:

||AnTtψ ||2 =
∫

[0,+∞)
|λ ne−λ t |2dμψ(λ )≤C2

nt−2n

for any unit ψ ∈ H (bearing in mind Theorem 9.4(c)). Therefore:

||AnTt || ≤Cnt−n .

In particular:

Ran(Ttψ)⊂ D(An) for any n = 0,1,2, . . ., ψ ∈ H and t > 0.

When A is the closure of −Δ on S (Rn), say, then

ψt := e−tΔψ ∈ D(Δn) for any n = 0,1,2, . . ., ψ ∈ L2(Rn,dx) and t > 0.

Using the Fourier-Placherel transform (see Section 3.6), we obtain easily that ψt

admits weak derivatives (Definition 5.24) of any order, and the latter belong to
L2(Rn,dx). Well-known results of Sobolev (cf. [Rud91], always with t > 0) imply
ψt is in C∞(Rn) up to a zero-measure set; on the other hand ψt → ψ as t → 0+ in
L2(Rn,dx). In this sense semigroups generated by elliptic operators like −Δ are em-
ployed to regularise functions.
(3) It should be clear, once again, that the solutions to the heat equation with source
(10.29) – if any at all – have the form

J � t 	→ u(0)
t + st

where: s is any fixed solution to (10.29) and u(0) roams the vector space of homogen-
eous solutions. �
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10.2 Hilbert tensor products

We shall see in Chapter 13 that composite quantum systems are described on tensor
products of the Hilbert spaces of the component subsystems. We will explain in the
sequel what exactly a tensor product in the category of Hilbert spaces is, and assume
the reader has a familiarity with (standard) tensor products of finite-dimensional vec-
tor spaces [Lan10] concerning the general motivations and the notations used. For
the infinite-dimensional case we follow the approach of [ReSi80].

10.2.1 Tensor product of Hilbert spaces and spectral properties

Consider n (complex) Hilbert spaces (Hi,(·|·)i), i = 1,2, · · · ,n, and choose a vector
vi in each Hi. Mimicking the finite-dimensional situation one can define the tensor
product of the vi, v1⊗·· ·⊗ vn, as the multilinear functional:

v1⊗·· ·⊗ vn : H′
1×·· ·×H′

n � ( f1, · · · , fn) 	→ f1(v1) · · · fn(vn) ∈ C ,

where H′
i is the topological dual to Hi and the dot ·, on the right, is the product of

two complex numbers. Equivalently, by Riesz’s theorem, we may define the action
of v1⊗·· ·⊗ vn on n-tuples in H1×·· ·×Hn rather than in H′

1×·· ·×H′
n. This keeps

track of the anti-isomorphism (built from the inner product) that identifies dual Hil-
bert spaces. In this manner v1⊗·· ·⊗vn acts on n-tuples (u1, · · · ,un) ∈ H1×·· ·×Hn

via the scalar products, and induces an antilinear functional in each variable. This
latter, more viable, definition will be our choice.

Definition 10.21. Consider n (complex) Hilbert spaces (Hi,(·|·)i), i = 1,2, · · · ,n, and
pick one vi in each Hi. The tensor product v1⊗·· ·⊗vn of v1, . . . ,vn, is the mapping:

v1⊗·· ·⊗ vn : H1×·· ·×Hn � (u1, · · · ,un) 	→ (u1|v1)1 · · ·(un|vn)n ∈ C . (10.33)

With T n
i=1Hi we denote the collecion of maps {v1⊗·· ·⊗ vn | vi ∈ Hi , i = 1,2, · · · ,n}

while
⊗̃n

i=1Hi is the C-vector space spanned by finitely many tensor products v1 ⊗
·· ·⊗ vn ∈ T n

i=1Hi.

Remarks 10.22. From this definition it is evident that the mapping v1 ⊗ ·· · ⊗ vn :
H1×·· ·×Hn → C is conjugate-multilinear, that is antilinear in each variable ui ∈ Hi

separately, as we see from (10.33), since the inner product is conjugate-linear on the
left. This notwithstanding, (v1, . . .vn) 	→ v1 ⊗ ·· ·⊗ vn is multi-linear, as one proves
immediately. �

Let us show how we may define an inner product (·|·) on
⊗̃n

i=1Hi. Consider the
map S : T n

i=1Hi×T n
i=1Hi → C,

S(v1⊗·· ·⊗ vn,v
′
1⊗·· ·⊗ v′n) := (v1|v′1) · · ·(vn|v′n) .

The following result holds.
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Proposition 10.23. The mapping S : T n
i=1Hi×T n

i=1Hi → C extends by linearity in the
right slot and antilinearity in the left, to a unique Hermitian inner product on the
complex space

⊗̃n
i=1Hi:

(Ψ |Φ) :=∑
i
∑

j
αiβ jS(v1i⊗·· ·⊗ vni,u1 j⊗·· ·⊗un j)

forΨ = ∑iαiv1i⊗·· ·⊗ vni and Φ = ∑ j β ju1 j⊗·· ·⊗un j (both sums being finite).

Proof. Just to preserve readability let us reduce to the case n = 2. If n > 2 the proof
is conceptually identical, only more tedious to write. TakeΨ ,Φ ∈ H1⊗̃H2. First we
have to show that given distinct decompositions of the same vectors

Ψ =∑
j
α jv j⊗ v′j =∑

h

βhuh⊗u′h , Φ =∑
k

γkwk⊗w′k =∑
s
δszs⊗ z′s ,

forces

∑
j
∑
k

α jγkS(v j⊗ v′j,wk⊗w′k) =∑
j
∑
s
α jδsS(v j⊗ v′j,zs⊗ z′s) (10.34)

and:

∑
h
∑
k

βhγkS(uh⊗u′h,wk⊗w′k) =∑
h
∑
s
βhδsS(uh⊗u′h,zs⊗ z′s) . (10.35)

This would prove that the (anti)linear extension of S to H1⊗̃H2 is well defined, for it
does not depend on the particular representatives S acts on. So let us prove this fact
just for the right variable (10.34), because for (10.35) the argument is similar. The
left-hand side in (10.34) may be written:

∑
j
∑
k

α jγkS(v j⊗ v′j,wk⊗w′k) =∑
j

(

∑
k

γkwk⊗w′k

)

(α jv j,v
′
j) =∑

j
Φ(α jv j,v

′
j)

and, analogously, the right side of (10.34) reads

∑
j
∑

s
α jδsS(v j⊗ v′j,zs⊗ z′s) =∑

j

(

∑
s
δszs⊗ z′s

)

(α jv j,v
′
j) =∑

j

Φ(α jv j,v
′
j) ,

where we used Φ = ∑k γkwk ⊗w′k = ∑s δszs⊗ z′s. Therefore S extends uniquely to a
map, linear in the second argument and antilinear in the first, (·|·) : H1⊗̃H2 → C. By
definition of S:

(Ψ |Φ) = (Φ |Ψ) .

To prove (·|·) is indeed a Hermiitian scalar product we just have to show positive
definiteness. That is easy. IfΨ =∑n

j=1α jv j⊗v′j, where n < +∞ by assumption, con-
sider the (finite!) basis u1, · · · ,um (m≤ n) on the span of v1, · · · ,vn, and a similar basis
u′1, · · · ,u′l , (l ≤ n) on the span of v′1, · · · ,v′n. Using the bilinearity of ⊗, we can write
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Ψ = ∑m
j=1∑

l
k=1 b jku j ⊗u′k, for suitable coefficients b jk. By definition di S and since

the bases are orthonormal, we obtain

(Ψ |Ψ) =

(
m

∑
j=1

l

∑
k=1

b jku j⊗u′k

∣
∣
∣
∣
∣

m

∑
i=1

l

∑
s=1

bisui⊗u′s

)

=
n

∑
j=1

l

∑
k=1

|b jk|2 .

Now it is patent that (·|·) is positive definite. �

Definition 10.24. Consider n (complex) Hilbert spaces (Hi,(·|·)i), i = 1,2, · · · ,n. The
(Hilbert) tensor product of the Hi,

⊗n
i=1 Hi, also written H1⊗·· ·⊗Hn, is the com-

pletion of
⊗̃n

i=1Hi with respect to the inner product (·|·) of Proposition 10.23.

It is immediate to verify that the definition reduces to the elementary (algebraic)
one if the spaces Hi are finite-dimensional. Moreover, the next results hold.

Proposition 10.25. Take n (complex) Hilbert spaces (Hi,(·|·)i) with bases Ni ⊂ Hi,
i = 1,2, · · · ,n. Then

N := {z1⊗·· ·⊗ zn | zi ∈ Ni , i = 1,2, · · · ,n}

is a basis for H1⊗·· ·⊗Hn. In particular, H1⊗·· ·⊗Hn is separable if every Hi is.

Proof. By construction N is an orthonormal system (by definition of tensor inner
product). We have to prove < N > is dense in H1⊗·· ·⊗Hn. As linear combinations
of v1⊗·· ·⊗vn are dense in H1⊗·· ·⊗Hn, it is enough to show any v1⊗·· ·⊗vn can be
approximated arbitrarily well by combinations of z1⊗·· ·⊗ zn in N. To simplify the
notation we will reduce again to n = 2, since the general case n > 2 goes in the same
way. For suitable coefficients γz and βz′ , we have v1 =∑z∈N1

γzz and v2 =∑z′∈N2
βz′z

′,
so (Theorem 3.26 and Definition 3.19):

||v1||2 = sup

{

∑
z∈F1

|γz|2
∣
∣
∣
∣
∣

F1 finite subset of N1

}

(10.36)

and

||v2||2 = sup

{

∑
z′∈F2

|βz′ |2
∣
∣
∣
∣
∣

F2 finite subset of N2

}

. (10.37)

If F ⊂ N1×N2 is finite, a direct computation using the orthonormality of z⊗ z′ and
the definition of inner product on H1⊗H2 gives

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
v1⊗ v2− ∑

(z,z′)∈F

γzβz′z⊗ z′
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

= ||v1||2||v2||2− ∑
(z,z′)∈F

|γz|2|βz′ |2 .

Having (10.36) and (10.37) we can make the right-hand side as small as we like by
increasing F . This ends the proof. �
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Proposition 10.26. Let (Hi,(·|·)i) be (complex) Hilbert spaces, Di ⊂ Hi dense sub-
spaces, i = 1,2, · · · ,n. The subspace D1⊗·· ·⊗Dn ⊂H1⊗·· ·⊗Hn, spanned by tensor
products v1⊗·· ·⊗ vn, vi ∈ Di, i = 1, . . . ,n, is dense in H1⊗·· ·⊗Hn.

Proof. As is by now customary, we prove the claim for n = 2. Finite combinations
of tensor products u⊗ v are dense in H1 ⊗H2, so it is enough to prove the follow-
ing: if ψ := u⊗ v ∈ H1 ⊗H2, there exists a sequence in D1 ⊗D2 converging to ψ .
By construction there exist sequences {un}n∈N ⊂D1 and {vn}n∈N ⊂D2 respectively
tending to u and v. Then

||un⊗ vn−u⊗ v|| ≤ ||un⊗ vn−un⊗ v||+ ||un⊗ v−u⊗ v|| .
But ||un ⊗ vn − un ⊗ v||2 = ||un ⊗ (vn − v)||2 = ||un||21||vn − v||22 → 0 as n → +∞,
for un convergent implies {||un||1}n∈N bounded. Similarly ||un ⊗ v− u⊗ v||2 =
||(un−u)⊗ v||2 = ||un−u||21||v||22 → 0 as n→+∞. �

Examples 10.27. (1) We will exemplify Hilbert tensor products by showing that for
separable L2 spaces (the spaces of wavefunctions in QM), the Hilbert tensor product
may be understood alternatively using product measures.

Consider a pair of separable Hilbert spaces L2(Xi,μi), i = 1,2, and assume both
measures are σ -finite, so that the product μ1⊗μ2 is well defined on X1×X2.

Proposition 10.28. Let L2(Xi,μi) be separable Hilbert spaces, i = 1,2, with σ -finite
measures. Then

L2(X1×X2,μ1⊗μ2) and L2(X1,μ1)⊗L2(X2,μ2)

are canonically isomorphic Hilbert spaces.
The unitary identification is the unique linear bounded extension of:

U0 : L2(X1,μ1)⊗L2(X2,μ2) � ψ⊗φ 	→ ψ ·φ ∈ L2(X1×X2,μ1⊗μ2)

where (ψ ·φ)(x,y) := ψ(x)φ(y), x ∈ X1, y ∈ X2.

Proof. First, if N1 := {ψn}n∈N and N2 := {φn}n∈N are bases of L2(X1,μ1) and
L2(X2,μ2) respectively, then N := {ψn ·φm}(n,m)∈N×N is a basis in L2(X1×X2,μ1⊗
μ2): N is clearly an orthonormal system by elementary properties of the product meas-
ure, and if f ∈ L2(X1×X2,μ1⊗μ2) is such, for any ψn ·φm, that

∫

X×X2

f (x,y)ψn(x)φm(y)dμ1(x)⊗dμ2(y) = 0 ,

by Fubini–Tonelli we have:
∫

X2

(∫

X1

f (x,y)ψn(x)dμ1(x)
)

φm(y)dμ2(y) = 0 .

As the φm form a basis ∫

X1

f (x,y)ψn(x)dμ1(x) = 0 ,
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except for a set Sm ⊂ X2 of zero measure in μ2. Then for y � S := Um∈NSm (of zero
measure as countable union of zero-measure sets):

∫

X1

f (x,y)ψn(x)dμ1(x) = 0

for any ψn ∈ N1, which implies f (x,y) = 0 except for x ∈ B, B having zero meas-
ure for μ1. Overall f (x,y) = 0, with the exception of the points in S×B, of zero
measure for μ1⊗ μ2 by elementary properties of product measure. Viewing f as in
L2(X1×X2,μ1⊗ μ2), we then have f = 0. Consequently N is a basis, being an or-
thonormal system with trivial orthogonal complement.

Consider the unique bounded linear function U mapping the basis element ψn⊗
φm of L2(X1,μ1)⊗L2(X2,μ2) to the basis element ψn ·φm of L2(X1×X2,μ1⊗ μ2).
By construction U is unitary. Moreover, U sends ψ⊗φ ∈ L2(X1,μ1)⊗L2(X2,μ2) to
the corresponding ψ ·φ ∈ L2(X1×X2,μ1⊗ μ2) (just note ψ ⊗φ and ψ ·φ have the
same components in the respective bases), so U is a linear unitary extension of U0.
Any other linear bounded extension U ′ of U0 must reduce to U on bases ψn ⊗ φm,
ψn ·φm, and as such it concides with U by linearity and continuity. �

The result clearly generalises to n-fold products of L2 spaces with separable σ -
finite measures.

(2) If (Hk,(·|·)k), k = 1,2, . . . ,n ≤ +∞, are Hilbert spaces, in general distinct, their
Hilbert sum

⊕n
k=1 Hk is the following Hilbert space. Start from the vector space of

n-tuples (sequences if n = +∞) (ψ1,ψ2, . . .) ∈ ×n
k=1Hk such that ψk = 0 for k ≥ k0,

k0 arbitrarily large but finite and depending on the n-tuple (if n < +∞ this is mean-
ingless, because we can take k0 > n). The linear operations are the usual ones, and
the inner product is

((ψ1,ψ2 . . .)|(φ1,φ2 . . .)) :=
n

∑
k=1

(ψk|φk)k

(the sum is finite even in case n = +∞). Then
⊕n

k=1 Hk is defined as the Hilbert com-
pletion of the above. This agrees with Definition 7.34 when Hk are taken as subspaces
of
⊕n

k=1 Hk, as is easy to see.
Here is another important result about Hilbert tensor products, that deals with the

case where all summands Hk of a Hilbert sum, n < +∞, coincide.

Proposition 10.29. If H is a Hilbert space and 0 < n ∈ N is fixed, the Hilbert space
H⊗Cn is naturally isomorphic to

⊕n
k=1 H.

The unitary identification is the unique linear bounded extension of

V0 : H⊗Cn � ψ⊗ (v1, . . . ,vn) 	→ (v1ψ , . . . ,vnψ) ∈
n⊕

k=1

H .

Proof. The proof is similar to the one in example (1). Fix a basis N ⊂ H, so by con-
struction the vectors

(ψ ,0, . . . ,0),(0,ψ ,0, . . . ,0), · · · ,(0, . . . ,0,ψ)
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form a basis of
⊕n

k=1 H as ψ varies in N. Take the unique linear bounded transform-
ation mapping ψ⊗ei to (0, . . . ,ψ , . . . ,0), where: ψ ∈N, ei is the ith canonical vector
in Cn, and the only non-zero entry in the n-tuple, ψ , is in the ith place. This is easily
unitary, and restricts to V0 on ψ ⊗ (v1, . . . ,vn). Uniqueness is proved in analogy to
example (1). �

(3) The Fock space F (H) generated by H is the infinite Hilbert sum (cf. example
(2))

F (H) :=
+∞⊕

n=0

Hn⊗

where H0⊗ := C, Hn⊗ := H⊗·· ·⊗H
︸����������︷︷����������︸

n times

. Notice F (H) is separable if H is. �

Remarks 10.30. This discussion begs the question whether it makes sense to define
a tensor product of infinitely many Hilbert spaces. The answer is yes (see [BrRo02,
vol.1]). The definition, however, depends on free choices. Consider a collection
{Hα}α∈Λ of Hilbert spaces (over C) of any cardinality. Fix vectors U := {ψα}α∈Λ ,

ψα ∈ Hα and ||ψα ||α = 1. We can construct the Hilbert tensor product
⊗(U)
α∈Λ Hα of

as many Hilbert spaces as we like in this way.
(1) Take the subspace in×α∈ΛHα of elements (xα)α∈Λ for which only finitely many
xα are distinct from the corresponding ψα . Define conjugate-linear maps in each ar-
gument ⊗αφα : ×α∈ΛHα → C by ⊗β φβ ((xα)α) := Πα∈Λ (xα |φα)α , where, again,
only finitely many φα (depending on ⊗αφα ) do not belong in U . Consider the finite

span ⊗̃(U)α∈ΛHα of the functionals ⊗α∈Λφα .

(2) Define ⊗(U)
α∈ΛHα to be the completion of ⊗̃(U)α∈ΛHα in the norm generated by

the only inner product such that (⊗αφα |⊗α φ ′α) :=Πα(φα |φ ′α)α .
IfΛ is finite it is not hard to see the definition reduces to the previous one and does

not depend on the choice of U . The latter ceases to hold, in general, ifΛ is infinite. �

10.2.2 Tensor product of operators (typically unbounded) and
spectral properties

As final mathematical topic we discuss the Hilbert tensor product of operators. If A
and B are operators with domains D(A) and D(B) in the respective Hilbert spaces H1

and H2, we will denote by D(A)⊗D(B) ⊂ H1⊗H2 the subspace of finite combina-
tions of ψ⊗φ , with ψ ∈ D(A), φ ∈ D(B). Let us try to define an operator:

A⊗B : D(A)⊗D(B)→ H1⊗H2

by extending linearly ψ ⊗ φ 	→ (Aψ)⊗ (Bφ). The question is whether it is well
defined. So suppose, forΨ ∈ D(A)⊗D(B), to have two (finite!) decompositions

Ψ =∑
k

ckψk⊗φk =∑
j

c′kψ
′
j⊗φ ′j .
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We have to check that

∑
k

ck(Aψk)⊗ (Bφk) =∑
j

c′j(Aψ ′j)⊗ (Bφ ′j) .

Take a basis (finite!) of vectors fr for the joint span of theψk and theψ ′j, and a similar
basis gs for the span of φk and φ ′j. In particular,

ψi⊗φi =∑
r,s
α(i)

rs fr⊗gs , ψ ′j⊗φ ′j =∑
r,s
β ( j)

rs fr⊗gs .

Having started with a singleΨ decomposed in different ways, necessarily

∑
i

ciα
(i)
rs =∑

j

c′jβ
( j)
rs .

From these identities we obtain

A⊗B

(

∑
i

ciψi⊗φi

)

=∑
rs

(∑
i

ciα
(i)
rs )((A fr)⊗ (Bgs))

=∑
rs

(∑
j

c′jβ
( j)
rs )((A fr)⊗ (Bgs)) = A⊗B

(

∑
j

c′jψ ′j⊗φ ′j
)

,

making A⊗B well defined indeed. The procedure extends trivially to N operators
Ak : D(Ak)→ Hk, with domains D(Ak) contained in the Hk.

Definition 10.31. If Ak : D(Ak) → Hk, k = 1,2, . . . ,N, are operators with domain
D(Ak)⊂ Hk Hilbert space, the (Hilbert) tensor product of the Ak is the unique op-
erator

A1⊗·· ·⊗AN : D(Ak)⊗·· ·⊗D(AN)→ H1⊗·· ·⊗HN

extending

A1⊗·· ·⊗AN(v1⊗·· ·⊗vN) = (A1v1)⊗·· ·⊗ (ANvN) for vk ∈ D(Ak), k = 1, . . . ,N.

In view of the applications the next elementary result is useful.

Proposition 10.32. Let Ak : D(Ak)→Hk, k = 1, . . . ,N, be operators on Hilbert spaces
Hk. Then for any k:

(a) If D(Ak) = Hk and Ak is closable, the operators

I , A1⊗ I⊗·· ·⊗ I , . . . , I⊗·· ·⊗Ak⊗·· ·⊗Ah⊗·· ·⊗ I , . . . , A1⊗·· ·⊗An

and their finite combinations, defined on D(Ak)⊗·· ·⊗D(AN), are all closable.
(b) If D(Ak) = Hk and Ak ∈B(Hk):

(i) A1⊗·· ·⊗AN ∈B(H1⊗·· ·⊗HN);
(ii) ||A1⊗·· ·⊗AN ||= ||A1|| · · · ||AN ||.
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Proof. (a) Let us study n = 2, the rest being completely analogous. Note D(A1)⊗
D(A2) is dense by construction (use Proposition 10.26), so the operators in (a) have
adjoints. The genericΨ ∈ D(A∗1)⊗D(A∗2), by definition, satisfies (Ψ |A1⊗A2Φ) =
(A∗1⊗A∗2Ψ |Φ) for any Φ ∈ D(A1)⊗D(A2). By definition of adjoint

D(A∗1)⊗D(A∗2)⊂ D((A1⊗A2)∗) .

Apply Theorem 5.5(b), for A1, A2 densely defined and closable, to the effect that the
adjoints are densely defined and so D((A1⊗A2)∗) is, too. Thus A1⊗A2 is closable.
For linear combinations the argument is the same. Claim (b) is proved in the exercise
section. �

At this point we wish to consider polynomials of operators A1⊗·· ·⊗AN , when
Ak are self-adjoint [ReSi80]. In the ensuing statement, the arguments Ak of the poly-
nomial Q should more precisely understood as I⊗·· ·⊗ I⊗Ak ⊗ I⊗·· ·⊗ I, but we
will simplify the otherwise cumbersome notation.

Theorem 10.33. Let Ak : D(Ak) → Hk, D(Ak) ⊂ Hk, k = 1,2, . . . ,N, be self-adjoint
operators and Q(a1, . . . ,an) a real polynomial of degree nk in the kth variable. Let
Dk ⊂ D(Ak) be a domain where Ank

k is essentially self-adjoint.

(a) Q(A1, . . . ,A1) is essentially self-adjoint on
⊗N

k=1 D(Ank
k ) and on

⊗N
k=1 Dk.

(b) If every Hk is separable, the spectrum of Q(A1, . . . ,AN) is the closure of the range
of Q in the product of the spectra of the Ak:

σ
(

Q(A1, . . .AN)
)

= Q(σ(A1), . . . ,σ(AN)) .

Proof. (a) The operator Q(A1, . . . ,An) is well defined on D := ⊗N
k=1D(Ank

k ) (in par-
ticular by Theorem 9.4(d)) and symmetric, by a direct computation involving the
definition of tensor product and the fact that Q has real coefficients and every Am

k ,
m ≤ nk is symmetric on D(Ank

k ). More can be said: Q(A1, . . . ,An) is essentially self-
adjoint on D, by Nelson’s Theorem 5.47, for we can exhibit a set of analytic vec-
tors for Q(A1, . . . ,An) whose span is dense in the overall Hilbert space. Keeping
in mind Example 10.27(1), a set of analytic vectors is given by tensor products

ψ(L,1)
αL ⊗ ·· · ⊗ψ(L,N)

αL , L = 1,2, . . ., where {ψ(L,k)
αL }αL∈GL ⊂ D(Ak) is a basis for the

closed subspace P(Ak)([−L,L) ∩ σ(Ak)), and P(Ak) is the spectral measure of Ak.
Above, when passing from [−L,L] to [−L− 1,L)∪ [−L,L)∪ [L,L + 1), we must
care to keep the same basis for the subsapce associated to [−L,L). That those
vectors are analytic for Q(A1, . . . ,An) is easy, just replicating Proposition 9.21(f).
To prove Q(A1, . . . ,An) is essentially self-adjoint on D(e) := ⊗N

k=1Dk it suffices
to prove the inclusion Q(A1, . . . ,An)�D(e) ⊃ Q(A1, . . . ,An)�D (by construction, in
fact, Q(A1, . . . ,An)�D(e)⊂ Q(A1, . . . ,An)�D so Q(A1, . . . ,An)�D(e) ⊂ Q(A1, . . . ,An)�D;
if, further, Q(A1, . . . ,An)�D(e) ⊃ Q(A1, . . . ,An) �D, then Q(A1, . . . ,An)�D(e) =
Q(A1, . . . ,An)�D and the right side is self-adjoint, whence Q(A1, . . . ,An)�D(e) is es-
sentially self-adjoint being symmetric with self-adjoint closure).
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To prove Q(A1, . . . ,An)�D(e) ⊃ Q(A1, . . . ,An)�D assume ⊗N
k=1φk ∈ D; then φk ∈

D(Ank
k ), and being Dk the domain of essential self-adjointness of Ank

k , there exists
a sequence {φ l

k}l∈N with φ l
k → φk and Ank

k φ
l → Ank

k φk, as l → +∞. A simple es-
timate involving the spectral decomposition of Ak tells Am

k φ
l → Am

k φk, l → +∞,
when 1 ≤ m ≤ nk. Therefore ⊗N

k=1φ
l
k → ⊗N

k=1φk and Q(A1, . . . ,AN)(⊗N
k=1φ

l
k) →

Q(A1, . . . ,AN)(⊗N
k=1φk) as l → +∞. The results generalises to finite combinations

of ⊗N
k=1φk, which implies Q(A1, . . . ,An)�D(e) ⊃ Q(A1, . . . ,An)�D.

Let us prove (b). Using Theorem 9.15(c) and remembering the separability of
each H, we represent every Ak via a multiplication operator by Fk on the Hil-
bert space L2(Mk,μk) identified with Hk. We recall ⊗N

k L2(Mk,μk) is isomorphic to
L2(×N

k=1Mk,μ), μ = ⊗N
k=1μk, as we saw in Example 10.27(1). In that correspond-

ence Q(A1, . . . ,AN) on D is mapped to the multiplication by Q(F1, . . . ,FN), and D
corresponds to the span, inside L2(×N

k=1Mk,μ), of finite products φ1(m1) · · ·φN(mN)
such that Fnk

k ·φk ∈ L2(Mk,μk).
Suppose λ ∈ Q(σ(A1), . . . ,σ(AN)). If I � λ is an open interval, Q−1(I) ⊃

×N
k=1Ik for some open interval Ik ⊂ R, so that Ik ∩ σ(Ak) � ∅ for any k =

1,2, . . . ,N. Notice σ(Ak) = ess ran(Fk), by Exercise 9.5. Therefore μk(F−1
k (Ik)) �

0, and so μ [Q(F1, . . . ,FN)−1(I)] � 0. This means λ ∈ ess ranQ(F1, . . . ,FN) =
σ(Q(A1, . . . ,PN)) by Exercise 9.5. Conversely, if λ �Q(σ(A1), . . . ,σ(AN)) the func-
tion (λ−Q(F1, . . . ,FN)) :×N

k=1Mk →R is bounded, hence λ ∈ ρ(Q(A1, . . . ,AN)), i.e.
λ � σ(Q(A1, . . . ,AN)). �

10.2.3 An example: the orbital angular momentum

The observables corresponding to the three Cartesian components of the orbital an-
gular momentum of a particle, in QM, are the unique self-adjoint extensions of the
operators:

L1 := X2�S (R3) P3�S (R3) −X3�S (R3) P2�S (R3) ,

L2 := X3�S (R3) P1�S (R3) −X1�S (R3) P3�S (R3)

L3 := X1�S (R3) P2�S (R3) −X2�S (R3) P1�S (R3) , (10.38)

on the Hilbert space L2(R3,dx) (dx being the Lebesgue measure on R3). Notation-
wise, recall Xi and Pi are the operators position and momentum of Section 5.3, while
S (R3) is the Schwartz space of smooth complex functions that vanish at infinity

faster than any inverse power of r :=
√

x2
1 + x2

2 + x2
3 together with all their derivatives

(cf. Section 3.6). In the sequel we will take D(L1) = D(L2) = D(L3) = S (R3) as
domain, since S (R3) is invariant under the Xi, Pi (hence under Li). We will show the
orbital angular momentum operators Li are essentially self-adjoint on the afore-
mentioned domain, and we will find spectrum and a spectral expression for them. In
this part we will only see to the mathematical features, reserving any physical con-
sideration for Chapters 11, 12.
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We will focus on the operator L3, because what we will find applies to the other
two by rotating coordinates. Explicitly:

L3 =−ih̄

(

x1
∂
∂x2

− x2
∂
∂x1

)

,

where x1, x2 are viewed as multiplicative operators by the corresponding functions.
A fourth operator used in the sequel is the total angular momentum (squared):

L 2 := L 2
1 +L 2

2 +L 2
3 ,

defined on S (R3). This, too, is essentially self-adjoint on S (R3). We will compute
its spectrum and make the spectral expansion of L2 := L 2 explicit.

In order to find said spectral expansions and spectra, it is better to write the op-
erators in spherical coordinates r,θ ,φ , where x1 = r sinθ cosφ , x2 = r sinθ sinφ ,
x3 = r cosθ , so r ∈ (0 +∞), θ ∈ (0,π), φ ∈ (−π,π). In this manner a simple com-
putation produces

L3 =−ih̄
∂
∂φ

, L 2 =−h̄2
[

1

sin2 θ
∂ 2

∂φ 2 +
1

sinθ
∂
∂θ

(

sinθ
∂
∂θ

)]

, (10.39)

where operators acts on functions in S (R3) whose argument has undergone coordin-
ate change. From (10.39) it is evident that the operators do not depend on the ra-
dial coordinate r, a fact of the utmost importance. Keeping that in mind, note that
R

3 = S2× [0,+∞), where (up to zero-measure sets) the unit sphere S2 is the domain
of θ ,φ , whilst [0,+∞) is where r varies; furthermore, Lebesgue’s measure on R3 can
be seen as the product

dx = dω(θ ,φ)⊗ r2dr ,

where
dω(θ ,φ) = sinθdθdφ

is the standard measure on S2 identified with the rectangle (0,π)× (−π,π) by the
spherical angles (θ ,φ) (the complement to (0,π)× (−π,π) in S2 has null dω-
measure, so it does not interfere). Thus we obtain the decomposition:

L2(R3,dx) = L2(S2× [0,+∞),dω(θ ,φ)⊗ r2dr) .

By Example 10.27(1):

L2(R,dx) = L2(S2,dω)⊗L2((0,+∞),r2dr) . (10.40)

At this point we introduce operators on the Hilbert space L2(S2,dω):

S2L3 =−ih̄
∂
∂φ

,
S2L 2 =−h̄2

[
1

sin2 θ
∂ 2

∂φ 2 +
1

sinθ
∂
∂θ

(

sinθ
∂
∂θ

)]

, (10.41)
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with domain C∞(S2). As the sphere is a C∞ manifold,1 the space C∞(S2) of smooth
maps on S2 is dense in L2(S2,dω) (exercise). These operators are Hermitian, hence
symmetric, as a simple direct computation reveals. Way before QM’s formulation, it
was known from the study of the Laplace equation (and classical electrodynamics)
that there is a distinguished basis of L2(S2,dω) whose elements are called spherical
harmonics [NiOu82]:

Y m
l (θ ,φ) :=

(−1)l

2l l!

√
(2l +1)

4π
(l +m)!
(l−m)!

eimφ 1
sinm φ

dl−m

d(cosθ)l−m (1− cos2 θ)l ,

(10.42)
where:

l = 0,1,2, . . . m ∈ N , |m| ≤ 2l +1 . (10.43)

The maps Y l
m ∈ C∞(S2) are notoriously eigenfunctions of the differential operators

S2L3 and
S2L 2 given in (10.41):

S2L3Y l
m = h̄ mY l

m ,
S2L 2Y l

m = h̄2 l(l +1)Y l
m . (10.44)

Note how the first is obvious by definition of Y l
m. In particular the vectors Y l

m are
analytic for the symmetric operators

S2L 2,
S2L3 defined on C∞(S2). As Y l

m form a
basis of L2(S2,dω), by Nelson’s criterion (Theorem 5.47) they warrant essential self-
adjointness to the operators

S2L 2,
S2L3 on C∞(S2). Following the recipe of Section

9.1.4 concerning the Hamiltonian operator of the one-dimensional harmonic oscil-
lator, we obtain analogue spectral decompositions:

S2L 2 = s-∑
l∈N,m∈Z ,|m|≤2l+1

h̄2 l(l +1)Y l
m(Y l

m| ) and
S2 L3 = s-∑

l∈N,m∈Z ,|m|≤2l+1

h̄ mY l
m(Y l

m| ) . (10.45)

In this context the spectra read

σ(
S2L 2) = σp(S2L 2) =

{
h̄2 l(l +1)

∣
∣ l = 0,1,2 . . .

}
, (10.46)

and

σ(
S2L3) = σp(S2L3) = { h̄ m | |m| ≤ 2l +1 ,m ∈ Z, l = 0,1,2 . . . } . (10.47)

Now let us go back to L2(R3,dx). As the space D(0,+∞) of smooth maps with com-
pact support in (0,+∞) is dense in the separable Hilbert space L2((0+∞),r2dr), by
Proposition 3.31(b), there will be a basis {ψn}n∈N of maps in D(0,+∞). Passing to
Cartesian coordinates it is easy to see that

fl,m,n(x) = Y l
m(θ ,φ)ψn(r) (10.48)

1 See Appendix B: the idea is to cover S2 with local charts in θ ,φ , by rotating the Cartesian
axes. Three local frame systems suffice to cover S2. The functions of C∞(S2), by definition,
go from S2 to C and are C∞ when restricted to any local chart of the sphere.
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are C∞(R3) (the only singularity could be at x = 0, but around that point the maps
vanish by construction). By definition fl,m,n have compact support, so they live in
S (R3). By the definitions and domains given,

S2L3⊗ I�D(0,+∞)⊂L3 and
S2L 2⊗ I�D(0,+∞)⊂L 2 ,

so {Y l
m ⊗ψn | n, l ∈ N, |m| ≤ 2l + 1 ,m ∈ Z} ⊂ S (R3) is a basis of L2(R3,dx) =

L2(S2,dω)⊗L2((0,+∞),r2dr) by Example 10.27(2). Thinking L3 and L 2 as act-
ing on S (R3),

L3Y l
m⊗ψn = h̄ mY l

m⊗ψn , L 2Y l
m⊗ψn = h̄2 l(l +1)Y l

m⊗ψn . (10.49)

Again, L 2, L3 are essentially self-adjoint on that domain, and their unique self-
adjoint extensions L2 := L 2, Lz := Lz decompose spectrally as

L2 = s-∑
l,n∈N,m∈Z ,|m|≤2l+1

h̄2 l(l +1)Y l
m⊗ψn(Y l

m⊗ψn| ) and Lz = s-∑
l,n∈N,m∈Z ,|m|≤2l+1

h̄mY l
m⊗ψn(Y l

m⊗ψn| ) .

(10.50)
The spectra of L2, L3 remain those of (10.46), (10.47). Note the spectral measures of
L2, L3 commute.

The same conclusions can be reached using Theorem 10.33 appropriately.

Remarks 10.34. To finish consider two von Neumann algebras R1, R2 on Hilbert
spaces H1, H2. There is a corresponding tensor product of von Neumann algebras
R1 ⊗R2. This is the von Neumann algebra on H1 ⊗H2 given by the strong com-
pletion in B(H1 ⊗H2) of the ∗-algebra of finite combinations of products A1 ⊗A2,
with A1 ∈R1, A2 ∈R2. The generalisation to finite products is straightforward, while
the tensor product of infinitely many von Neumann algebras is more complicated to
define [BrRo02].

The important commutator theorem of tensor products [BrRo02] asserts that
(R1⊗R2)′ = R′1⊗R′2.

In reference to the largest von Neumann algebras in H1, H2 we then have
(B(H1)⊗B(H2))′ = {c1I1 ⊗ c2I2}c1,c2∈C = {cI}c∈C; since (B(H1)⊗B(H2))′′ =
B(H1) ⊗ B(H2) by the double-commutant theorem, we recover the known fact
B(H1)⊗B(H2) =B(H1⊗H2). �

10.3 Polar decomposition theorem for unbounded operators

Consider a densely-defined closed operator A : D(A) → H on the Hilbert space H.
Using the fact that A∗A is self-adjoint and positive (as we will see) and by the spec-
tral theorem for unbounded operators it is possible to define the positive self-adjoint
operator |A| :=

√
A∗A. Letting U = A|A|−1 at least on Ran(|A|), and then extending

trivially (as zero) to the complement of Ran(|A|), we immediately find the decom-
position

A = U |A| .
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Formally, and without caring too much about domains, U�Ran(|A|) is an isometry.
Heuristically, this is a generalisation of Theorem 3.71, that we proved for bounded
operators defined on the entire Hilbert space. The hands-on approach is flawed in
that is does not say where the polar decomposition should be valid (the domains of A
and |A| could be different, a priori) and any attempt to formalise the argument soon
becomes punishing. That is why we will follow an indirect route based on a more
general theorem.

The generalised polar decomposition we will eventually prove plays a crucial part
in rigorous quantum fields theory, especially in relationship to the Tomita-Takesaki
modular theory and in defining KMS thermal states [BrRo02].

10.3.1 Properties of operators A∗A, square roots of unbounded
positive self-adjoint operators

We proceed in steps, proving first that if A is closed and densely defined, A∗A is self-
adjoint and D(A∗A) is a core for A. Then we will show a result that in some sense
generalises the polar decomposition theorem, thus specifiying properly the domains
involved. At last we will prove the existence and uniqueness of positive self-adjoint
square roots of unbounded self-adjoint operators.

Theorem 10.35. Consider a closed, densely-defined operator A : D(A) → H on the
Hilbert space H. Then:

(a) A∗A, defined on the natural domain D(A∗A) (Definition 5.1), is self-adjoint.
(b) The dense subspace D(A∗A) is a core for A:

A�D(A∗A) = A . (10.51)

Proof. For (a), call I : H→H the identity and introduce I +A∗A on its natural domain
(coinciding with D(A∗A), by Definition 5.1). We claim there is a positive operator
P ∈B(H) with Ran(P) = D(I +A∗A) and

(I +A∗A)P = I , P(I +A∗A) = I�D(I+A∗A) . (10.52)

By Proposition 3.54(f) P ∈ B(H) is self-adjoint as positive. By uniqueness of the
inverse the operator I + A∗A coincides with the inverse of P, obtained by spectral
decomposition:

P−1 =
∫

σ(P)
λ−1dP(P)(λ ) .

This is self-adjoint by Theorem 9.4. Thus A∗A = (I + A∗A)− I is self-adjoint on
D(I +A∗A) = D(A∗A), consequently dense.

Now we have to exhibit P ∈B(H) positive, with Ran(P) = D(I +A∗A) and satis-
fying (10.52). If f ∈D(I +A∗A) = D(A∗A) then A f ∈D(A∗) by definition of D(A∗A).
Hence

( f | f )+(A f |A f ) = ( f | f )+( f |A∗A f ) = ( f |(I +A∗A) f ) .

We proved (I +A∗A)≥ 0, and by Cauchy-Schwarz also || f ||2 ≤ || f || ||(I +A∗A) f ||,
so I + A∗A : D(A∗A) → H is injective. Consider the operator A, closed and densely



10.3 Polar decomposition theorem for unbounded operators 463

defined. The identity of Theorem 5.10(d) says that for any h ∈ H there are unique
Ph ∈ D(A) and Qh ∈ D(A∗) such that

(0,h) = (−APh,Ph)+(Qh,A∗Qh) (10.53)

in H⊕H. By construction P,Q are defined on all of H, and the two vectors on the
right, seen in H⊕H, are orthogonal. By definition of norm on H⊕H, the identity also
tells:

||h||2 ≥ ||Ph||2 + ||Qh||2 ,

for any h ∈ H, so P,Q ∈ B(H) because ||P||, ||Q|| ≤ 1. Considering the single com-
ponents in (10.53), we have

Q = AP and h = Ph+A∗Qh = Ph+A∗APh = (I +A∗A)Ph ,

for all h ∈H. Hence (I +A∗A)P = I and P : H→D(I +A∗A) must be one-to-one, but
also onto since we saw (I +A∗A) is injective. The inverse of a bijection is unique, so

P(I +A∗A) = I�D(I+A∗A) .

Up to now we have proved P∈B(H) has range covering D(I +A∗A), and that (10.52)
holds. Let us see that P≥ 0. If h ∈ H, then h = (I +A∗A) f for some f ∈D(A∗A), so:

(Ph|h) = (P(I +A∗A) f |(I +A∗A) f ) = ( f |(I +A∗A) f )≥ 0 .

To finish we prove (b). As A is closed, its graph is closed in H⊕H, so a Hilbert
space itself. Suppose ( f ,A f ) ∈ G(A) is orthogonal to G(A�D(A∗A)). Then for any
x ∈ D(A∗A):

0 = (( f ,A f )|(x,Ax)) = ( f |x)+(A f |Ax) = ( f |x)+( f |A∗Ax) = ( f |(I +A∗A)x)) .

But Ran(I + A∗A) = H, so f = 0 and the orthogonal complement to G(A�D(A∗A)) in

the Hilbert space G(A) is trivial. Therefore G(A�D(A∗A)) = G(A). �

Together with the uniqueness for positive roots of (unbounded) positive self-
adjoint operators, the next theorem contains, as subcase, the polar decomposition
theorem for closed and densely-defined operators. Recall that for a pair P,Q with the
same domain D, P≤ Q means ( f |P f )≤ ( f |Q f ) for any f ∈ D.

Theorem 10.36. Let A : D(A)→ H, B : D(B)→ H be closed and densely defined on
the Hilbert space H.

(a) If
D(A∗A)⊃ D(B∗B) and A∗A�D(B∗B)≤ B∗B , (10.54)

then D(A)⊃ D(B) and there exists a bounded operator C : H→ H uniquely determ-
ined by:

A�D(B)= CB , Ker(C)⊃ Ker(B∗) . (10.55)
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Furthermore, ||C|| ≤ 1 and C�(Ran(B))⊥= 0.
(b) If

D(A∗A)⊃ D(B∗B) and A∗A�D(B∗B)= B∗B , (10.56)

then C�Ran(B) is an isometry and Ker(C) = Ker(B∗).
(c) If

D(A∗A) = D(B∗B) and A∗A = B∗B , (10.57)

then D(A) = D(B).

Proof. (a) Begin by the uniqueness of C. If C and C′ are bounded and A = CB, A =
C′B, then C−C′ is the null operator on Ran(B). By continuity C�Ran(B)= C′�Ran(B).

From the splitting H = Ran(B)⊕ (Ran(B))⊥, where (Ran(B))⊥ = Ker(B∗), having
KerC⊃Ker(B∗), KerC′ ⊃Ker(B∗) implies C�(Ran(B))⊥=C′�(Ran(B))⊥ . Hence C =C′.
Let us prove there is a C ∈ B(H) such that A = CB on D(B) (hence D(B) ⊂ D(A)),
Ker(C)⊃ Ker(B∗), ||C|| ≤ 1 and C�(Ran(B))⊥= 0.

Call A′, B′ the restrictions of A, B to D(A∗A), D(B∗B) respectively. By the previ-
ous theorem these are cores for A, B, so Ran(A′) = Ran(A) and Ran(B′) = Ran(B).
Note Ker(A) = Ker(A′), Ker(B) = Ker(B′), as D(A∗A)⊂D(A) and D(B∗B)⊂D(B).

Let us define an operator such that A′ = CB′, to begin with. This determines a
linear operator C on Ran(B′):

A′ f = CB′ f , for any f ∈ D(B∗B)⊂ D(A∗A) .

For it to be well defined, we need B′ f = B′g to imply A′ f = A′g, i.e. that B′h = 0
implies A′h = 0 for any h ∈D(B∗B)⊂D(A∗A). But the latter is true, in fact: B′h = 0
implies (B′h|B′h) = 0, so 0 = (B′h|B′h) = (h|B∗Bh) ≥ (h|A∗Ah) = (A′h|A′h) =
||A′h||2 ≥ 0, because h ∈ D(B∗B) ⊂ D(A∗A). Hence A′h = 0. The claim is C is
bounded on Ran(B′) with ||C|| ≤ 1. Since A∗A ≤ B∗B, using D(A∗A) ⊂ D(A) and
D(B∗B)⊂ D(B), we have

||C(B′ f )||2 = (CB′ f |CB′ f ) = (A′ f |A′ f ) = ( f |A∗A f )≤ ( f |B∗B f )

= (B′ f |B′ f ) = ||B′ f ||2 , (10.58)

if f ∈ D(B∗B) ⊂ D(A∗A). Therefore C extends uniquely to Ran(B′) = Ran(B), pre-
serving ||C|| ≤ 1. To fully define C : H→ H it suffices to know it on the complement
(Ran(B))⊥ = Ker(B∗). Let C be null there. Thus C : H→H is bounded, ||C|| ≤ 1 and
Ker(C)⊃ Ker(B∗). By construction, for any f ∈ D(B∗B)⊂ D(A∗A):

A f = CB f .

Since D(B∗B) is a core for B, if g ∈ D(B) there is a sequence { fn}n∈N ⊂ D(B∗B) ⊂
D(A∗A) such that fn → g and B fn → Bg. By continuity

lim
n→+∞

A fn = lim
n→+∞

CB fn = C lim
n→+∞

B fn = CBg .



10.3 Polar decomposition theorem for unbounded operators 465

But A is closed, so g∈D(A) and limn→+∞A fn = Ag. Hence A′ =CB′ actually extends
to A = CB on D(B)⊂ D(A).
(b) Assuming A∗A = B∗B on D(B∗B)⊂ D(A∗A), equation (10.58) is replaced by:

||C(B′ f )||2 = (CB′ f |CB′ f ) = (A′ f |A′ f ) = ( f |A∗A f ) = ( f |B∗B f ) = (B′ f |B′ f )

= ||B′ f ||2

if f ∈ D(B∗B) ⊂ D(A∗A). Therefore C is an isometry on Ran(B) and by continu-
ity on Ran(B) as well. There remains to prove Ker(C) ⊂ Ker(B∗), for the other in-
clusion is valid in the general case (a). If s ∈ Ker(C), from H = Ran(B)⊕Ker(B∗)
we have s = r + n, r ∈ Ran(B), n ∈ Ker(B∗). Since Ker(B∗) ⊂ Ker(C), we obtain
0 = Cs = C(r + n) = Cr +Cn = Cr + 0 = Cr. On the other hand C is isometric on
Ran(B), so 0 = ||Cr||= ||r|| and r = 0. Therefore s∈Ker(C) implies s = n∈Ker(B∗),
ending the proof of Ker(C)⊂ Ker(B∗).
(c) We show that D(A) = D(B) if D(A∗A) = D(B∗B), A∗A = B∗B. From the proof of
the more general (a), D(B)⊂ D(A). In the present case A and B can be swapped, so
D(A) = D(B). �

And now the last ingredient, generalising part of Theorem 3.66.

Theorem 10.37. Let A : D(A)→ H be self-adjoint on the Hilbert space H.

(a) A≥ 0 iff σ(A)⊂ [0+∞).
(b) If A ≥ 0, there is a unique self-adjoint operator B ≥ 0 such that B2 = A, where
the left-hand side is defined on its natural domain D(B2), coinciding with D(A).
Using the integral in the spectral measure of A it turns out that B =

√
A.

Proof. (a) If σ(A) ⊂ [0 +∞), Theorem 9.4(g), referred to the PVM P(A) of A, im-
plies A ≥ 0. Vice versa, suppose A ≥ 0 and, by contradiction, that there is λ with
0 > λ ∈ σ(A). If λ were in σp(A) there would be an eigenvector ψ ∈ H\{0} for λ ,
and 0≤ (ψ |Aψ) = ||ψ ||2λ < 0, impossible. Instead, if λ ∈ σc(A), by Theorem 9.10

P(A)
(a,b) � 0 for any open interval (a,b) � λ . So we could choose (a,b) = (2λ ,λ/2),

getting, for 0 � ψ ∈ P(A)
(a,b)(H),

0≤ (ψ |Aψ) =
∫

R

xdμψ(x) =
∫

(2λ ,λ/2)
xdμψ(x)≤

∫

(2λ ,λ/2)

λ
2

dμψ(x) =
λ
2
||ψ ||2 < 0 ,

using Theorem 9.4 and that μψ vanishes outside (a,b). This is absurd.
(b) A positive self-adjoint root of A is just

B =
√

A :=
∫

σ(A)

√
xdP(A)(x) .

The operator is well defined, since σ(A) ⊂ [0,+∞), it is self-adjoint by The-
orem 9.4(b) and B2 = A, where B2 is defined on its natural domain D(B2) = D(A)
by Theorem 9.4(c–d). At last B ≥ 0 by Theorem 9.4(g). Let us pass to uniqueness.
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Assume B ≥ 0 is self-adjoint and B =
∫
[0,+∞) xdP(B)(x). If B2 = A with A ≥ 0, by

(9.47) we obtain
∫

[0,+∞)
xdP(A)(x) =

∫

[0,+∞)
x2dP(B)(x) =

∫

[0,+∞)
xdP(B)( f−1(x)) ,

where f (x) = x2, x≥ 0, so f−1 : [0,+∞)→ [0+∞) is a well-defined map. The spec-
tral measure of A is unique, so in particular P(B)( f−1(E ′)) = P(A)(E ′) for any Borel
set E ′ ⊂ [0,+∞). If E ⊂ [0,+∞) is a Borel set, f (E) ⊂ [0,+∞). Setting E ′ = f (E)
gives P(B)(E) = P(A)( f (E)) for any Borel set E ⊂ [0,+∞) (and P(B)(E) = 0 if
E ⊂ (−∞,0)). Therefore A determines B completely, for it determines its unique
PVM. �

10.3.2 Polar decomposition theorem for closed and densely-defined
operators

We can finally prove the polar decomposition for closed, densely-defined operators.
The idea of the proof is to start, rather than from A, from A∗A. If the polar decom-
position is to hold, one expects A∗A = |A| |A|, with |A| :=

√
A∗A defined spectrally,

remembering A∗A is self-adjoint. Now Theorem 10.36(c) yields the required polar
decomposition of A. The powerfulness of this approach becomes apparent when con-
sidering the properties of the domains involved: usually hard to study by a more direct
method, they are now automatic, by Theorem 10.36.

Theorem 10.38. Let A : D(A) → H be closed and defined densely on the Hilbert
space H.

(a) There exists a pair P,U in H such that:

(1) the polar decomposition
A = UP (10.59)

holds;
(2) P is positive, self-adjoint and D(P) = D(A);
(3) U ∈B(H) is isometric on Ran(P);
(4) Ker(U)⊃ Ker(P).

(b) Moreover:

(i) P = |A| :=
√

A∗A;
(ii) Ker(U) = Ker(P) = Ker(A) = (Ran(P))⊥ and Ran(P) = Ran(A∗);
(iii) Ran(U) = Ran(A).

Remarks 10.39. Note the U of (10.59) is a partial isometry (Definition 3.61) with
initial space

[Ker(U)]⊥ = Ran(P) = [Ker(A)]⊥ = Ran(A∗)

and final space
Ran(U) = Ran(A) . �
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Proof of Theorem 10.38. (a)–(b) We prove uniqueness by finding P explicitly, as-
suming (10.59) plus (2), (3), (4). First we show D(A∗A) = D(PP). By definition of
adjoint, as U ∈B(H), (10.59) implies A∗ = P∗U∗ = PU∗. Hence f ∈ D(A∗A) if and
only if f ∈D(PU∗UP). Splitting H into Ran(P)⊕Ker(P∗) = Ran(P)⊕Ker(P), and
since U is isometric on Ran(P) and zero on Ker(P), we get (U∗U)�Ran(P)= I�Ran(P).
Hence the claim f ∈ D(A∗A) iff f ∈ D(PU∗UP) is equivalent to f ∈ D(A∗A) iff
f ∈ D(PP). So we have proved D(A∗A) = D(PP). Let us use it towards uniqueness.
If g ∈ D(A∗A)⊂ D(A) (i.e g ∈ D(PP)⊂ D(P)), recalling U is isometric on Ran(P),
then

( f |A∗Ag) = (A f |Ag) = (UP f |UPg) = (P f |Pg) = ( f |PPg) for f ∈ D(A) = D(P).

Being D(A) = D(P) dense, we conclude A∗A = PP. Therefore P is a positive self-
adjoint root of A∗A, hence unique by Theorem 10.37, and P =

√
A∗A =: |A|. Now

we can apply Theorem 10.36(c) with B = P (closed and densely defined, being
self-adjoint), to find that U coincides with C. That Ker(U) = Ker(P) = (Ran(P))⊥
follows from part (b) of that theorem, because B = P = P∗ = B∗ in our case and
(Ran(P∗))⊥ = Ker(P). The claim Ker(A) = Ker(P) goes as follows:

0 = ||A f ||2 = (A f |A f ) = ( f |A∗A f ) = ( f |PP f ) = (P f |P f ) = ||P f ||2 ,

where we used the fact that A f = 0 implies f ∈D(A∗A) by definition of the latter. Now
Ran(P) = Ran(A∗) follows immediately from the previous properties: Ran(P) =
Ker(P)⊥ = Ker(A)⊥ = Ran(A∗). In the final equality we used Theorem 5.10(c), as
A is closed and the domain of A∗ dense by the aforementioned part (b). Let us prove
Ran(U) = Ran(A). By the decomposition UP = A we have Ran(U) = U(Ran(P)) =
Ran(A), so Ran(U) = U(Ran(P)) = Ran(A). Then it sufficies to show Ran(U) is
closed. Let y ∈ Ran(U) \ {0}. There exists {xn}n∈N ⊂ (KerU)⊥ with Uxn → y,
n → +∞. Since ||U(xn− xm)|| = ||xn− xm||, {xn}n∈N is a Cauchy sequence. Define
x = limn→+∞ xn, so Ux = y, y ∈ Ran(U) and then Ran(U) contains its limit points,
i.e. it is closed. �

Corollary 10.40. In the hypotheses of Theorem 10.38 the operator U : H→H is unit-
ary precisely when A is one-to-one and Ran(A) is dense in H.
In particular U is unitary and U = A|A|−1 in case A is bijective.

Proof. If U is unitary, in particular it is one-to-one and onto, so (ii) and (iii) in
(b) imply A is injective and Ran(A) dense in H. Conversely, if A is injective, by
(a)–(b) in the theorem above and by continuity of U , we have U isometric on
Ran(|A|) = Ker(|A|)⊥ = Ker(A)⊥ = H. As Ran(U) = Ran(A) in case Ran(A) is
dense, we conclude U : H → H is isometric and onto, hence unitary as claimed. If
A is further bijective, it is injective and Ran(A) is trivially dense, so U is unitary as
seen before. From A = U |A|, then, A and U being bijective, we obtain |A| is bijective,
so U = A|A|−1, ending the proof. �
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10.4 The theorems of Kato-Rellich and Kato

The last results we will state and prove are those of Kato-Rellich and Kato. They are
extremely useful to study self-adjointness and lower boundedness for operators of
Quantum Mechanics (especially the so-called Hamiltonian operators), in the frame-
work of perturbation theory. The former theorem provides sufficient conditions for
an operator of the form T +V , a perturbation of T , to be self-adjoint, and have lower-
bounded spectrum when T has. The latter considers specific situations, where T is
the Laplacian on R3 or Rn. A general treatise, with applications to quantum physics,
is [ReSi80], from which several proofs of this section are taken.

10.4.1 The Kato-Rellich theorem

A preliminary definition is in order.

Definition 10.41. Let T : D(T )→H and V : D(V )→H be densely-defined operators
on the Hilbert space H, with D(T )⊂ D(V ). If there are a,b ∈ [0,+∞) such that

||Vϕ || ≤ a||Tϕ ||+b||ϕ || for any ϕ ∈ D(T ) , (10.60)

V is called T -bounded. The greatest lower bound of the numbers a satisfying (10.60)
for some b is called the relative bound of V with respect to T . If the relative bound
is zero, V is said infinitesimally small with respect to T .

Remark 10.42. (1) If T and V are closable, by Definition 5.20) it suffices to verify
(10.60) on a core of T .
(2) Equation (10.60) is equivalent to:

||Vϕ ||2 ≤ a2
1||Tϕ ||2 +b2

1||ϕ ||2 for any ϕ ∈ D(T ) , (10.61)

In fact, (10.61) implies (10.60) by putting a = a1, b = b1. For the converse, take
a2

1 = (1+δ )a2, b2
1 = (1−δ−1)b2, any δ > 0: then (10.60) implies (10.61). �

Let us pass to the Kato-Rellich Theorem. For a self-adjoint operator A : D(A)→H,
we know σ(A) ⊂ [M,+∞) if and only if (ψ |Aψ) ≥ M(ψ |ψ) for any ψ ∈ D(A), by
Theorem 10.37(a). Therefore statement (c) below may be equivalently expressed in
terms of lower-bounded quadratic forms.

Theorem 10.43 (Kato-Relich). Let T : D(T ) → H and V : D(V ) → H be densely-
defined operators on the Hilbert space H such that:

(i) T is self-adjoint;
(ii) V is symmetric;
(iii) V is T -bounded with relative bound a < 1.

Then:

(a) T +V is self-adjoint on D(T ).
(b) T +V is essentially self-adjoint on every core of T .
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(c) If σ(T )⊂ [M,+∞) then σ(T +V )⊂ [M′,+∞) where:

M′ = M−max

{
b

(1−a)
, a|M|+b

}

, with a, b satisfying (10.60).

Proof. For (a) we try to apply Theorem 5.18, showing that if we choose D(T ) as
domain for the symmetric T +V , we obtain Ran(T +V ± iI) = H. Actually we will
prove there exists ν > 0 such that

Ran(T +V ± iνI) = H ,

giving the previous by linearity. Ifϕ ∈D(T ), T self-adjoint implies Ran(T +iμI)= H
and

||(T + iμI)ϕ ||2 = ||Tϕ ||2 +μ2||ϕ ||2 .

Setting ϕ = (T + iμI)−1ψ , gives

||T (T + iμI)−1|| ≤ 1 and ||(T + iμI)−1|| ≤ μ−1 .

Applying (10.60) with ϕ = (T + iμI)−1ψ produces

||V (T + iμI)−1ψ || ≤ a||T (T + iμI)−1ψ ||+b||(T + iμI)−1ψ || ≤
(

a+
b
μ

)

||ψ || .

If μ = ν is large enough, the bounded operator

U := V (T + iνI)−1 ,

defined on H, satisfies ||U || < 1, as a < 1. This implies −1 � σ(U) by (iii) in The-
orem 8.4(c). By Theorem 8.4(a) (U is closed as bounded), we have Ran(I +U) = H.
At the same time, since T is self-adjoint, Ran(T + iνI) = H by Theorem 5.18. Hence

(I +U)(T + iνI)ϕ = (T +V + iνI)ϕ , ϕ ∈ D(T )

implies, as claimed, Ran(T +V + iνI) = H. The proof of Ran(T +V − iνI) = H is
completely similar, so (a) is over.

Let us pass to (b). Equation (10.60) implies, if D ⊂ D(T ) is a core for T :

D(T ) = D
(
T�D
)⊂ D
(
(T +V )�D

)
.

On the other hand, by construction and because T +V is self-adjoint on D(T ) hence
closed:

D
(
(T +V )�D

)
⊂ D
(
(T +V )

)
= D(T +V ) = D(T ) .

Putting all inclusions together produces D
(
(T +V )�D

)
= D(T +V ) so

(T +V )�D = T +V , as T +V is closed. (T +V )�D is then essentially self-adjoint by
Proposition 5.21.
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Now (c). By assumption, the spectral theorem implies σ(T ) ≥ M (with obvious
notation). Choosing s >−M (with s ∈ R) gives σ(T + sI) > 0, so 0 � σ(T + sI). But
T + sI is self-adjoint, so it is closed, and by Theorem 8.4(a) Ran(T + sI) = H. The
same estimates used before prove ||V (T + sI)−1||< 1 if

−s < M′ := M−max

{
b

(1−a)
,a|M|+b

}

.

Consequently, for these s:

Ran(T +V + sI) = H and (T +V + sI)−1 = (T + sI)−1(I +U)−1 ,

implying −s ∈ ρ(T +V ), and then −s � σ(T +V ). T +V self-adjoint has real spec-
trum, whence σ(T +V )≥M′. �

10.4.2 An example: the operator −Δ +V and Kato’s theorem

Condition (10.60) arises naturally in certain contexts, and is of great use, in phys-
ical applications, to study the Schrödinger equation, where the Laplace operator Δ
is perturbed by a potential V . To discuss this application of the Kato-Relich theorem
we begin with a proposition and a lemma.

Proposition 10.44. Let

Δ :=
n

∑
i=1

∂ 2

∂x2
i

(10.62)

be the Laplace operator on Rn thought as operator on L2(Rn,dx).

(a) If F̂ : L2(Rn,dx) → L2(Rn,dk) is the Fourier-Plancherel unitary operator (cf.
Section 3.6), Δ is essentially self-adjoint on S (Rn), on D(Rn) and on F̂ (D(Rn))
with the same (unique) self-adjoint extension Δ .
(b) If k2 = k2

1 + k2
2 + . . .+ k2

n then
(
F̂ΔF̂−1 f

)
(k) =−k2 f (k) (10.63)

on the natural domain

D(F̂ΔF̂−1) =
{

f ∈ L2(Rn,dk)
∣
∣
∣
∣

∫

Rn
k4| f (k)|2dk < +∞

}

.

(c) The operator −Δ =−Δ is bounded from below:

σ(−Δ)⊂ [0,+∞) , or equivalently (ψ |−Δψ)≥ 0 for any ψ ∈ D(−Δ). (10.64)

Proof. Most of (a) and (b) was proven in Exercises 5.11, 5.12. What we still do not
have is that Δ is essentially self-adjoint on F̂ (D(Rn)) and has a common self-adjoint
extension on D(Rn) and S (Rn) alike. To this end notice F̂ (D(Rn)),D(Rn) ⊂
S (Rn), so the three extensions coincide because there is one self-adjoint extension to
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any essentially self-adjoint operator. That Δ is essentially self-adjoint on F̂ (D(Rn)),
given F̂ is unitary and (10.63), is equivalent to the essential self-adjointness of the
symmetric multiplication by −k2 on D(Rn). In turn the latter, in view of Nelson’s
Theorem 5.47, follows from the observation that every ϕ = ϕ(k) in D(Rn) is analytic
for the multiplication by−k2, since ||−(k2)nϕ || ≤ ||ϕ ||(supk∈suppϕ |k|2)n. Statement
(c) descends from (b) and from Theorem 10.37(a). �

Now a fundamental, classical result.

Lemma 10.45. Fix n = 1,2,3 and consider f ∈D(Δ). Then f coincides almost every-
where with a continuous bounded map, and for any a > 0 there exists b > 0 independ-
ent from f such that:

|| f ||∞ ≤ a||Δ f ||+b|| f || . (10.65)

Proof. Let us prove (10.66) for n = 3, the other cases being similar. Call f̂ := F̂ f .
By Proposition 3.81(a) and Plancherel’s theorem (Theorem 3.84), the claim is true if
we manage to prove f̂ ∈ L1(R3,dk), and for any given a > 0 there is b ∈ R such that:

|| f̂ ||1 ≤ a||k2 f̂ ||2 +b|| f̂ ||2 . (10.66)

If f ∈D(Δ), by Proposition 10.44, f̂ ∈D(F̂ΔF̂−1), so also (1+k2) f̂ ∈ L2(R3,dk).
Since (k1,k2,k3) 	→ 1/(1 + k2) belongs to that same space, f̂ ∈ L1(R3,dk) by the
Hölder inequality. Moreover:

|| f̂ ||1 ≤ c||(1+ k2) f̂ ||2 ≤ c(||k2 f̂ ||2 + || f̂ ||2) (10.67)

where c :=
√∫

(1+ k2)−1dk. If r > 0 define f̂r(k) := r3 f̂ (rk). Then || f̂r||1 = || f̂ ||1,
|| f̂r||2 = r3/2|| f̂ ||2 and ||k2 f̂r||2 = r−1/2||k2 f̂ ||2. Using (10.67) for f̂r the three previ-
ous identities give

|| f̂ ||1 ≤ cr−1/2||k2 f̂ ||2 + cr3/2|| f̂ ||2 for any r > 0.

(10.66) holds for a = cr−1/2. �

Remarks 10.46. The lemma can be generalised (see [ReSi80, vol. II]) by this state-
ment based on Young’s inequality: Consider f ∈ L2(Rn,dx) with f ∈D(Δ). If n≥ 4
and 2≤ q < 2n/(n−4) then f ∈ Lq(Rn,dk), and for any a > 0 there exists b ∈ R not
depending on f (but on q, n, a) such that || f ||q ≤ a||Δ f ||+b|| f ||. �

We can eventually apply the Kato-Rellich theorem to a very interesting case
for Quantum Mechanics, and prove a result due to Kato. Later we will see a more
general statement, known in the litarature as Kato’s theorem.

Theorem 10.47 (Essential self-adjointness of −Δ + V ). Fix n = 1,2,3 and take
V = V2 +V∞, with V2 ∈ L2(Rn,dx), V∞ ∈ L∞(Rn,dx) real functions.

(a) −Δ +V is essentially self-adjoint on D(Rn) and on S (Rn).
(b) The only self-adjoint extension −Δ +V of the operators of (a) coincides with the
(self-adjoint) operator −Δ +V defined on D(Δ).
(c) σ(−Δ +V ) is bounded from below.
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Proof. As V is real it gives a multiplicative operator on the domain

D(V ) := {ϕ ∈ L2(Rn,dx) | Vϕ ∈ L2(Rn,dx)} .

Using the definition it is easy to see the operator is self-adjoint. By construction,
moreover,

||Vϕ ||2 ≤ ||V2||2||ϕ ||∞+ ||V∞||∞||ϕ ||2 < +∞ (10.68)

for ϕ ∈D(Rn) or ϕ ∈S (Rn). Hence D(Rn)⊂S (Rn)⊂D(V ). What is more, since
S (Rn) ⊂ D(Δ) (by Proposition 10.44), using (10.65) in Lemma 10.45 (n ≤ 3) we
find, for any a > 0, a number b > 0 such that:

||Vϕ ||2 ≤ a||V2||2 ||−Δϕ ||2 +(b+ ||V∞||∞)||ϕ ||2 for any ϕ ∈S (Rn) .

That is say, given a′ > 0 there is b′ > 0 with

||Vϕ ||2 ≤ a′||−Δϕ ||2 +b′||ϕ ||2 for any ϕ ∈S (Rn) (10.69)

so in particular for any ϕ ∈D(Rn). Consequently

||Vϕ−Vϕ ′||2 ≤ a′ ||(−Δϕ)− (−Δϕ ′)||2 +b′||ϕ−ϕ ′||2
with ϕ , ϕ ′ in S (Rn). V is closed, as self-adjoint, and S (Rn) is a core for the
self-adjoint (hence closed) −Δ (by Proposition 10.44), so the inequality proves
D(V ) ⊃ D(−Δ). Exploiting the closure of operators we conclude that (10.69) holds
on the entire domain of −Δ :

||Vϕ ||2 ≤ a′||−Δϕ ||2 +b′||ϕ ||2 for any ϕ ∈ D(−Δ).

If we choose a′ < 1, T :=−Δ satisfies the assumptions of Theorem 10.43, with V as
we have it now. By Kato-Rellich, using that S (Rn) and D(Rn) are cores for −Δ by
Proposition 10.44, we conclude. �

Remarks 10.48. Remembering Remark 10.46, this theorem generalises to n > 3 with
these modifications: V =Vp +V∞ with Vp ∈ Lp(Rn,dx), V∞ ∈ L∞(Rn,dx), where p > 2
for n = 4, p = n/2 for n≥ 5. The proof is analogous. �

For the classical result known as Kato’s theorem, we shall interpret f ∈
Lp(Rn,dx) + Lq(Rn,dx) to mean f is the sum of a function in Lp(Rn,dx) and one
in Lq(Rn,dx).

Theorem 10.49 (Kato). Fix n = 1,2,3 and denote by (y1, . . . ,yN) the elements in
R

nN, where yk ∈ Rn for any k = 1, . . . ,N. If Δ is the Laplacian (10.62) on RnN, con-
sider the differential operator −Δ +V , V being the multiplicative operator given
by:

V (y1, . . . ,yN) :=
N

∑
k=1

Vk(yk)+
N

∑
i, j=1 i< j

Vi j(yi−y j) , (10.70)
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where

{Vk}k=1,...,N ⊂ L2(Rn,dx)+L∞(Rn,dx) , {Vi j}i< j i, j=1,...,N ⊂ L2(Rn,dx)+L∞(Rn,dx)

are real functions. Then:

(a) −Δ +V is essentially self-adjoint on D(RnN) and S (RnN).
(b) The only self-adjoint extension −Δ +V of the operators in (a) coincides with the
(self-adjoint) operator −Δ +V defined on D(−Δ).
(c) σ(−Δ +V ) is lower bounded.

Proof. We prove for n = 3, for the other cases are identical. Consider the poten-
tial V12(y1 − y2) and call Δ1 the Laplacian corresponding to the coordinates of
y1. Take ϕ ∈ S (R3N). Fix y2, . . .yN ∈ R3(N−1) and define R3 � y1 	→ ϕ ′(y1) :=
ϕ(y1,y2, . . . ,yN). ϕ ′ belongs in D(R3N) or S (R3N), according to whether ϕ ∈
D(R3N) or ϕ ∈S (R3N) respectively. Similarly, let R3 � y1 	→V ′

12(y1) := V12(y1−
y2). As in the previous proof, by decomposing V12 = (V12)2 +(V12)∞ we arrive at the
estimate, for any a > 0 and any y2, . . . ,yN :

||V ′
12ϕ ′||L2(R3) ≤ a||(V12)2||L2(R3) ||−Δ1ϕ ′||L2(R3) +(b+ ||(V12)∞||L∞(R3))||ϕ ′||2

where b > 0 depends on a, not on y2, . . .yN ∈ R3(N−1). Norms are in the spaces
over the first copy of R3 in R3N . It is important to note, due to the invariance of
(y1,y2) 	→ V12(y1−y2) under translations, that the norms ||(V12)k||Lk(R3) do not de-
pend on the variable y2. From Remarks 10.42 this inequality is the same as

||V ′
12ϕ ′||2L2(R3) ≤ a′ ||−Δ1ϕ ′||2L2(R3) +b′||ϕ ′||2L2(R3)

for certain a′,b′ > 0 with a′ arbitrarily small because of a||V12||2. Integrating the in-
equality in the variables y2, . . .yN ∈R3(N−1) produces, for any a′ > 0, a corresponding
b′ > 0 such that

||V12ϕ ||2L2(R3N) ≤ a′ ||−Δ1ϕ ||2L2(R3N) +b′||ϕ ||2L2(R3N) . (10.71)

Transforming with Fourier-Plancherel on R3N , we now have

||−Δ1ϕ ||2L2(R3N) =
∫

R3N

∣
∣
∣
∣
∣

3

∑
r=1

k2
r

∣
∣
∣
∣
∣

2

|(F̂ϕ)(k1, . . . ,k3N)|2dk1 · · ·dk3N

≤
∫

R3N

∣
∣
∣
∣
∣

3N

∑
r=1

k2
r

∣
∣
∣
∣
∣

2

|(F̂ϕ)(k1, . . . ,k3N)|2dk1 · · ·dk3N = ||−Δϕ ||2L2(R3N) .

Substituting in (10.71) we conclude that if ϕ ∈ D(R3N) or S (R3N), then for any
a > 0 there is a b12 > 0 satisfying

||V12ϕ ||2L2(R3N) ≤ a ||−Δϕ ||2L2(R3N) +b12||ϕ ||2L2(R3N) .
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The same result holds for the other potentials Vi j, Vk: the proof goes along the same
lines, and is even simpler. If ϕ ∈D(R3N) or S (R3N), for any a > 0 there are corres-
ponding bi > 0 and bi j > 0 (i, j = 1, . . . ,N, j > i) such that:

||Viϕ ||2L2(R3N) ≤ a ||−Δϕ ||2L2(R3N) +bi||ϕ ||2L2(R3N) , (10.72)

||Vi jϕ ||2L2(R3N) ≤ a ||−Δϕ ||2L2(R3N) +bi j||ϕ ||2L2(R3N) . (10.73)

On any Hermitian inner product space the Cauchy-Schwartz inequality implies
∣
∣
∣
∣∑M

r=1ψr
∣
∣
∣
∣2 ≤ (∑M

r=1 ||ψr||
)2

. There are N + N(N− 1)/2 = N(N + 1)/2 potentials
Vk and Vi j, so Cauchy-Schwartz and (10.72)–(10.73) force

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(
N

∑
k=1

Vk +
N

∑
i, j=1 i< j

Vi j

)

ϕ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

L2(R3N)

≤
(

N(N +1)
2

)2

a ||−Δϕ ||2L2(R3N) +
(

N(N +1)
2

)2

b||ϕ ||2L2(R3N)

where b is the maximum of the bk, bi j. From Remarks 10.42 the result has an equi-
valent formulation. For every a′ > 0 there exists a b′ > 0 such that

||Vϕ || ≤ a′||−Δϕ ||+b′||ϕ || for any ϕ ∈S (R3N).

From this point onwards the proof picks up from equation (10.69) in the proof of
Theorem 10.47, replacing Rn with R3N . �

In conclusion we mention, without full proof, another important result of Kato.
The demands on V to have −Δ +V essentially self-adjoint on D(Rn) are different
(and weaker than Theorem 10.47 if n = 3). Recall that f : Rn → C is called locally
square-integrable if f ·g is in L2(Rn,dx) for every g ∈D(Rn).

Theorem 10.50. The operator−Δ+VΔ +VC defined on L2(Rn,dx) is essentially self-
adjoint on D(Rn), and its unique self-adjoint extension −Δ +VΔ +VC is bounded
from below, provided the following conditions hold.

(i) VΔ : Rn → R is measurable and induces a (−Δ)-bounded multiplicative oper-
ator with relative bound a < 1 (cf. Definition 10.41);

(ii) VC : Rn → R is locally square-integrable with VC ≥ C almost everywhere, for
some C ∈ R.

Part (i) on VΔ holds if

VΔ ∈ Lp(Rn,dx)+L∞(Rn,dx) ,

with p = 2 when n≤ 3, p > 2 when n = 4 and p = n/2 when n≥ 5.

Sketch of proof. The final statement was proved with Theorem 10.47 if n ≤ 3. The
argument is the same for n > 4 by the remark ensuing Lemma 10.45. If (i) holds
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−Δ + VΔ is essentially self-adjoint on D(Rn) and −Δ +VΔ is lower bounded by
the Kato-Rellich theorem. If (ii) holds as well, −Δ +VΔ + (VC −C) is essentially
self-adjoint on D(Rn) by [ReSi80, vol.II, theorem X.29], for Vc −C ≥ 0. There-
fore −Δ + VΔ + VC = (−Δ + VΔ + (VC −C)) + CI is essentially self-adjoint on
D(Rn). Since −Δ +VΔ and VC are both bounded from below on that domain, so
are −Δ +VΔ +VC and −Δ +VΔ +VC. �

Examples 10.51. (1) A case inR3 that is interesting to physics is one where the Lapla-
cian perturbation V is the attractive Coulomb potential:

V (x) =
eQ
|x| ,

with e < 0, Q > 0 constants, |x| :=
√

x2
1 + x2

2 + x2
3. The hypotheses of Kato’s The-

orem 10.49 (or 10.47) are valid for the operator:

H0 :=− h̄2

2m
Δ +V (x)

(the constants m, h̄ > 0 are irrelevant to the previous theorem, since we may multiply
the operator by 2m/h̄2 and then apply it, without losing in generality). So H0 is es-
sentially self-adjoint if defined on D(R3) or S (R3). The self-adjoint extension H0,
if Q =−e, corresponds to the Hamiltonian operator of an electron in the electric field
of a proton (neglecting spin effects and viewing the proton as a classical object). This
gives the simplest quantum description of the Hamiltonian operator of the hydrogen
atom. Here −e is the common absolute value of the charge of electron and proton,
m is the electronic mass, h̄ > 0 is Planck’s constant divided by 2π . The spectrum
of the unique self-adjoint extension of this operator determines, in physics, the ad-
missible values of the energy of the system. Despite V is not bounded from below,
it is important that the spectrum of the operator considered is always bounded, and
therefore also the energy values that are physically admissible have a lower bound.
In Chapters 11, 12 and 13 we will examine better the meaning of the operators here
briefly described.

(2) A second case of physical interest, always inR3, is given by the Yukawa potential:

V (x) =
−e−μ|x|

|x| ,

where μ > 0 is another positive number. Here, too, the operator H0 =− h̄2

2mΔ +V (x)
is essentially self-adjoint if defined on D(R3) or on S (R3), as we know from Kato’s
Theorem 10.49 (or 10.47). The Yukawa potential describes, roughly, interactions
between a pion and a source of strong force, the latter thought of, in this manner of
speaking, as caused by a macroscopic source.

(3) The third physically-relevant case is the Hamiltonian of a system of N particles
that interact under an external Coulomb potential and the Coulomb potentials of all
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pairs (not necessarily attractive). Call xi ∈R3 the position vectors, mi > 0 the masses
and ei ∈ R\{0} the charges (i = 1, . . . ,N). The full operator is

H0 :=
N

∑
i=1
− h̄2

2mi
Δi +

N

∑
i=1

Qiei

|xi| +
N

∑
i< j

eie j

|xi−x j| ,

where Δi is the Laplacian in the three coordinates of xi. In order to apply Kato’s
theorem we must eliminate all factors h̄2

2mi
multiplying the Δi. For this we can just

change coordinates to yi :=
√

2mi
h̄ xi. Thus the first sum above gives the Laplacian on

R
3N in the collective 3N components of the yi. It is not hard to see that the perturb-

ation V (y1, . . . ,yN) satisfies Kato’s Theorem 10.49, so H0 is essentially self-adjoint
on D(R3N) and its unique self-adjoint extension is bounded from below.

(4) Theorem 10.50 allows to say the following. Adding any real function V ′, loc-
ally integrable and bounded from below, to the Hamiltonian operators H0 seen in the
previous examples gives an essentially self-adjoint operator on the corresponding
D(Rn). An important instance is the harmonic potential (non-isotropic, in general)
V ′(x) = kx2

1 + k2x2 + k3x2
3 with k1,k2,k3 ≥ 0. �

Exercises

10.1. Referring to Example 10.16(1), assume γ > 0. Prove the solution to the Klein–
Gordon equation with source eiωψ and dissipative term has the form:

ut = e−γt
[
cos
(

t
√

A− γI
)

v+ sin
(

t
√

A− γI
)

(A− γI)−1/2(v′+ γv)
]

+e−γtCtψ+ eiωt(A2−ω2I +2iγωI)−1ψ ,

where ||Ct || ≤ 1.

Hint. Apply the definition of
∫ b

a Lτψτdτ given in (10.10). Then pass to the spectral
measures of A and use the Fubini–Tonelli theorem, carefully verifying the assump-
tions.

10.2. Suppose V : R3 → R makes the symmetric operator H1, given by the differen-
tial operator−Δx +V (x), essentially self-adjoint on S (R3), where Δx :=∑3

k=1
∂2

∂x2
i

is

the Laplacian. Prove that the symmetric operator H on L2(R3×R3,dx⊗dy) defined
by the differential operator −Δx +V (x)−Δy +V (y) is essentially self-adjoint on the
span of finite products of a map in x in S (R3) and a map in y in S (R3). Then show

σ(H) = σ(H1)+σ(H1) .

10.3. If Ak ∈B(Hk), k = 1, . . . ,N, prove

A1⊗·· ·⊗Ak ∈B(H1⊗·· ·⊗HN) .
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Solution. Consider N = 2, the general case being similar. If ψ = { fi}i∈I and {g j} j∈J

are bases of H1 and H2, take the finite sum ψ :=∑i j ci j fi⊗g j. Then ||(A1⊗ I)ψ ||2 =
∑ j ||∑i ci jA1 fi||2 ≤ ∑ j ||A1||2∑i |ci j|2 = ||A1||2||ψ ||2. A density argument allows to
conclude ||A1⊗ I|| ≤ A, and therefore ||A1⊗A2|| ≤ ||A1⊗ I|| ||I⊗A2|| ≤ ||A1|| ||A2||.
10.4. Under the assumptions in (2), prove that

||A1⊗·· ·⊗Ak||= ||A1|| · · · ||AN || .

Solution. Take n = 2, the generalisation being similar. If A1 = 0 or A2 = 0 the claim
is obvious, so assume ||A1||, ||A2|| > 0. When solving (2) we found ||A1 ⊗A2|| ≤
||A1|| ||A2||, so it is enough to obtain the opposite inequality. By definition of ||A1||
and ||A2||, for any ε > 0 there areψ(ε)

1 ∈H1 and ψ(ε)
2 ∈H2, ||ψ(ε)

1 ||, ||ψ(ε)
2 ||= 1, such

that | ||Aiψ
(ε)
i ||− ||Ai|| |< ε . In particular, ||ψ(ε)

i || ≥ ||Ai||− ε . With these choices

||(A1⊗A2)(ψ
(ε)
1 ⊗ψ(ε)

2 )||
= ||A1ψ

(ε)
1 || ||A2ψ

(ε)
2 || ≥ ||A1|| ||A2||− ε(||A1||+ ||A2||)+ ε2 .

Since ||ψ(ε)
1 ⊗ψ(ε)

2 ||= 1, and from

||A1⊗A2||= sup
||ψ||=1

||A1⊗A2ψ || ≥ ||(A1⊗A2)(ψ
(ε)
1 ⊗ψ(ε)

2 )|| ,

for any ε > 0 we have ||A1 ⊗ A2|| ≥ ||A1|| ||A2|| − ε(||A1||+ ||A2||) + ε2, where
−ε(||A1||+ ||A2||) + ε2 < 0. That value tends to 0 as ε → 0+. Eventually, ||A1 ⊗
A2|| ≥ ||A1|| ||A2|| as required.

10.5. If Ak ∈B(Hk), k = 1, . . . ,N prove

(A1⊗·· ·⊗Ak)∗ = A∗1⊗·· ·⊗A∗N .

Hint. Check A∗1⊗·· ·⊗A∗N satisfies the properties of the adjoint to a bounded operator
(Proposition 3.36).

10.6. If Pk ∈B(Hk), k = 1, . . . ,N are orthogonal projections, show P1⊗·· ·⊗Pk is an
orthogonal projection.
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11

Mathematical formulation of non-relativistic
Quantum Mechanics

Every science would be redundant if the essence of things and
their phenomenic appearance coincided.

Karl Marx

In this chapter we will enucleate the axioms of QM for the elementary system made
by a non-relativistic particle, without spin, and discuss a series of important results
related to the canonical commutation relations.

In section one we will recall the first four axioms given in Chapter 7, comment
further on superselection rules and present a few new technical results. Then we
will add an axiom relative to the formalisation of the quantum theory of the spin-
zero particle. We will introduce, in particular, the canonical commutation relations
(CCRs) and prove these cannot be satisfied by bounded operators. We will show how
Heisenberg’s uncertainty principle is actually a theorem in the formulation.

The last section is dedicated to the famous theorem of Stone–von Neumann, re-
fined by Mackey, that characterises continuous unitary representations of CCRs. To
prove the theorem we will introduce Weyl ∗-algebras and discuss their main prop-
erties. After proving the theorems of Stone–von Neumann and Mackey, we will use
the formalism to extend Heisenberg’s relations under rather weak hypotheses on the
states involved, and then generalise them to mixtures. We will reformulate the res-
ults of Stone–von Neumann and Mackey in terms of the Heisenberg group. A short
description of the so-called Dirac correspondence principle will close the section.

11.1 Round-up and remarks on axioms A1, A2, A3, A4 and
superselection rules

In Chapter 7 we saw the general axioms of QM. Let us summarise part of that
chapter in the light of the spectral theory developed subsequently.

A1. Given a quantum system S described in an (inertial) frame system I , experiment-
ally testable propositions on S at any given time correspond bijectively to (a subset,
in presence of superselection rules, of) the lattice P(HS) of orthogonal projectors of
a (complex) separable Hilbert space HS, called the Hilbert space associated to S.
Moreover (using the same letter for propositions and corresponding projectors):

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
DOI 10.1007/978-88-470-2835-7_11, © Springer-Verlag Italia 2013
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(1) The compatibility of two propositions (from measuring processes attributing
simultaneous truth values to both) corresponds to the commutation of the orthogonal
projectors.
(2) The logical implication of two compatible propositions P ⇒ Q corresponds to
the projectors’ relation P≤ Q.
(3) I (identity operator) and 0 (null operator) correspond to the tautology and the
contradiction.
(4) The negation of P, �P, corresponds to the orthogonal projector ¬P = I−P.
(5) Only when P, Q are compatible the propositions PO Q and PE Q have a physical
meaning and correspond to orthogonal projectors P∨Q and P∧Q (respectively
projecting on the closure of the union and the intersection of the projection spaces
of P, Q).
(6) If {Qn}n∈N is a countable collection of pairwise-compatible propositions, the
propositions corresponding to ∨n∈NQn and ∧n∈NQn have a physical meaning.

In the sequel we shall assume, loosely speaking, that all the elements inP(HS) de-
scribe elementary propositions on S. We shall also explain what happens in presence
of superselection rules.

Remark 11.1. (1) The Hilbert space HS actually depends on the frame system I as
well, as explained in Remark 7.21(4); another system will give an isomorphic Hilbert
space. We will return to this in Chapter 13.
(2) In Chapter 7.3.3 we saw that assuming elementary propositions on S are described
by all ofP(HS) is a highly non-trivial matter. One could ask less, like having element-
ary propositions described by the sublattice of orthogonal projectors of a von Neu-
mann algebra RS ⊂ B(HS). Self-adjoint elements in RS identify with bounded ob-
servables on S, sinceRS must contain the orthogonal projectors of every observable’s
spectral measure, and as any von Neumann algebra is closed in the strong topology;
the latter is the reference topology to state the spectral theorem and define bounded
measurable functions of self-adjoint operators. Hence the sublattice PRS(HS) of or-
thogonal projectors inRS contains all spectral measures of all observables, and by the
double-commutant Theorem 3.46 we have RS = PRS(HS)′′. If superselection rules
are present (see Remark 7.36(2)) it becomes necessary to assume R′S ∩RS be non-
trivial, for that intersection contains projectors onto coherent sectors that, by nature,
commute with every elementary proposition. In this case RS is not a factor. �

A2. A state ρ at time t on a quantum system S, with associated Hilbert space HS,
is a positive, trace-class operator on HS with trace one. The probability that the
proposition P ∈P(HS) on ρ is true equals tr(ρP).

If we suppose elementary propositions are described by the whole space P(HS),
states ρ are convex combinations (also infinite, if we consider spectral decomposi-
tions of states) of extreme states in the convex set S(HS) of states. Extreme states
are called pure and have the form ρ = ψ(ψ | ), with ψ ∈ HS such that ||ψ || = 1.
The space of pure states is denoted by Sp(HS) and is in one-to-one correspondence
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with the (projective) space of rays of HS, i.e. the quotient of HS minus 0 by the equi-
valence relation φ ∼ φ ′ ⇔ φ = aφ ′ for some a ∈ C \ {0}. States that are not pure
are called mixed states or mixtures, and the corresponding trace-class operators are
often called statistical operators or density matrices in the literature. The convex
decomposition of a mixed state in terms of pure states, arising for instance from the
spectral theorem, is called incoherent superposition of pure states. There are typic-
ally more than one convex decompositions of a mixed state into pure ones.

An important notion in physics, also historically speaking, is the transition (or
probability) amplitude (ψ |φ) of the pure state determined by the unit vector φ
on the pure state determined by the unit ψ . The square modulus of the transition
amplitude represents the probability that the system in state φ passes to state ψ after
a measurement. Note that we may swap states, by symmetry of Hermitian inner
products, without changing the transition probability.

A3. If the quantum system S is in state ρ ∈S(HS) at time t and proposition P∈P(HS)
is validated by a measurement taken at the same t, the system’s immediate post-
measurement state is

ρP :=
PρP

tr(ρP)
.

In particular if ρ is pure and given by ψ ∈ HS, ||ψ ||= 1, the post-measurement state
is still pure, and given by the vector

ψP =
Pψ
||Pψ || .

We emphasise that this axiom refers to ideal first-kind measurements, or non-
destructive or indirect, as they are known; a lab’s practice adopts several types of
testing, that in general do not obey the axiom.

Remark 11.2. (1) In presence of superselection rules, when the Hilbert space HS

splits in countably many, at most, coherent sectors HS = ⊕kHSk, one assumes states
are statistical operators of the form (in the strong topology) ρ =∑k pkψk(ψk|·), with
ψk ∈ HSk, pk ∈ [0,1], ∑k pk = 1. Hence pure states, i.e. extreme points of the con-
vex set of states, are still given by unit vectors ψk; now, however, these vectors must
belong to a coherent sector HSk (depending on the state), and can no longer be con-
sidered coherent superpositions. For example ψ = aψk + bψk′ does not determine a
state if ψk ∈ HSk, ψk′ ∈ HSk′ and k � k′. We shall denote the space of pure states un-
der superselection rules bySp(H)adm. The elementary propositions of the theory are,
as we said, described by projectors in PRS(HS), which commute with every ortho-
gonal projector Pk associated to the coherent decomposition (HSk = Pk(HSk)) since
Pk ∈ RS∩R′S.

There is an alternative way to operate in presence of superselection rules. One
can impose no restriction on the choice of vectors representing states by the follow-
ing observation: an apparently pure state described by the coherent superposition
ψ = ∑kψk, ψk ∈ Hk is a mixed state ρ = ∑kψk(ψk|·) in every respect (concerning
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measurements of elementary propositions and observables, post-measurement states,
or time evolution, of which more in the next chapter). In this case we should take care
that it is no longer true that vectors represent necessarily pure states; moreover ∑kψk

and ∑k eiαkψk represent the same (mixed) state even if the αk ∈ R are non-zero. In
contrast to the general case (see remark (4) after axiom A3, Chapter 7), the summands
of the incoherent splitting ∑kψk(ψk|·) of ψ now are uniquely fixed. This allows to
distinguish between “classical probabilities”, the numbers pk = ||ψk||2, and “quantum
probabilities”, related to the probability amplitudes in each HSk (cf. [Giu00]).
(2) A more difficult question is to decide, if R′S ∩RS is not trivial, whether superse-
lection rules are present. The point is to understand if it is possible to determine a set,
at most countable, of orthogonal projectors Pk ∈ R′S ∩RS such that PkPh = 0 when
h � k, ∑k Pk = I (in strong topology if over an infinite set) and such, for any k, that
there is no orthogonal projector Q∈R′S∩RS satisfying Q≤ Pk with Q� 0 and Q� Pk.
If these conditions hold, coherent sectors in the Hilbert space can be identified with
the projection spaces of the Pk, at least mathematically. (If the last condition failed
for Ph, for instance, Hh = Ph(H) would not automatically be coherent, because we
could still decompose it under Q, thus preventing superpositions in Hk itself.) If the
centre ofRS contained a bounded observable A with continuous spectrum (see axiom
A4), then the desired decomposition ∑k Pk = I would not be achievable. This is be-
cause of the spectral measure of A, whose elements belong to the centre of RS (and
because the spectral measure of any open non-empty set intersecting the continuous
spectrum is non-zero). Still, the Hilbert space could be decomposed as direct integ-
ral, and one could talk about continuous superselection rules [Giu00], which have
a different nature and will not be of our concern in this book. We will only say the
structure of the space of states is much more intricate in that case, and the algebriaic
formulation of Chapter 14 is required to explain it thoroughly.

Instead, in case the decomposition ∑k Pk = I exists with all requirements, one
can try to interpret {Pk}k∈K as a collection generating the joint spectral measure of
a family of observables with discrete spectrum, representing “charges” that have to
be defined simultaneously in every pure state: the Hk are common eigenspaces for all
charges. It has been conjectured more than once that quantities with classical beha-
viour are actually quantum observables of this kind [BGJKS00], i.e. superselection
charges. If so the superselection rule is dynamical and arises from the interaction
between the physical system and the ambient producing the phenomenon of deco-
herence [BGJKS00]. �

A4. Every observable A of the quantum system S is described by a projector-valued
measure P(A) over R, on the system’s Hilbert space HS, so that the projector P(A)(E)
corresponds to the proposition “The outcome of measuring A falls in E”, for any
Borel set E in R

The spectral theorem for unbounded self-adjoint operators, proved in its max-
imal generality in Chapter 9 (Theorem 9.10), allows to associate to any observable
a unique self-adjoint operator on the Hilbert space of the physical system. With this,
if HS is the Hilbert space of some system, the spectrum σ(A) ⊂ R of an observable



11.1 Round-up on axioms A1, A2, A3, A4 and superselection rules 483

A, i.e. of a self-adjoint operator A : D(A)→ HS, contains all possible outcomes of a
measurement of the observable A. Mathematically, σ(A) coincides with the support
of the PVM P(A) associated to the observable.

Remarks 11.3. With superselection rules, Remark 7.47(1) easily implies that every
self-adjoint operator A representing an observable satisfies APk = PkA for any k, where
Pk is the orthogonal projector on the kth coherent sector. (See also Remark 11.1(2).)

�

Important in physics is the notion of compatible observables:

Definition 11.4. Let S be a quantum system described on the Hilbert space HS. Two
observables A, B of S are compatible if the spectral measures P(A), P(B) of the cor-
responding self-adjoint operators commute, i.e.

P(A)(E)P(B)(E) = P(B)(E)P(A)(E) , for any Borel set E ⊂ R.

Two observables that are not compatible are called incompatible.

In physics, compatibility means the observables can be measured at the same time
(in agreement with axiom A1 and with the meaning of the associated spectral meas-
ures). If we have a finite set of compatible observables A = {A1,A2, . . . ,An}, a joint
spectral measure can be constructed using the spectral measures of the self-adjoint
operators representing the observables, by Theorem 9.16. Retaining those notations,
if f : Rn → C is measurable, the self-adjoint operator

f (A1, . . . ,An) :=
∫

Rn
f (x1, . . . ,xn)dP(A)(x1, . . . ,xn) (11.1)

– with domain given by vectors ψ ∈ H for which f ∈ L2(Rn;μψ), where μψ(E) =
(ψ |P(A)(E)ψ), E ∈B(Rn), as usual – has the customary meaning of observable that
is function of the observables A1, . . . ,An.

Remark 11.5. (1) A necessary condition to have compatible observables is that the
corresponding operators commute, paying attention to domains as prescribed by The-
orem 9.35. For unbounded self-adjoint operators this condition is not sufficient, des-
pite what certain physics books might say: Nelson [Nel59] proved that there are pairs
of operators that commute on a dense subspace, invariant for both and on which both
are essentially self-adjoint, yet the spectral measures of the self-adjoint extensions do
not commute. A useful necessary and sufficient condition for A and B to be compat-
ible is Theorem 9.35(c):

eitAeisB = eisBeitA for any s, t ∈ R .

An second necessary and sufficient condition is (d) in the same theorem.
(2) Take a quantum system S described on the Hilbert space HS and a family A =
{A1, . . . ,An} of observables with pairwise-commuting spectral measures. Suppose
A′ = A′′, i.e. every operator in B(HS) that commutes with the spectral measures of
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the Ak has the form f (A1, . . . ,An) for f : supp(P(A)) → C bounded measurable. In
that case A = {A1, . . . ,An} is called a maximal observable. This can be proved to be
the same as asking the Hilbert space be isomorphic to an L2 space on the joint spec-
trum of the Ak [BeCa81], or to the existence of a cyclic vector for the joint spectral
measure. Dirac speculated that the set of observables of a quantum system always
admits a maximal observable. Jauch gave the general version of Dirac’s postulate in
terms of von Neumann algebras, positing the existence of a finite set of pairwise-
commuting observables A such that A′ = A′′. Dirac’s original conjecture referred
only to observables with point spectrum.

It can also be proved that the existence of a maximal observable amounts to the
demand that the commutant R′S be Abelian [Giu00], where RS is the usual von Neu-
mann algebra of bounded observables in the system. �

Proposition 7.52 enables to associate to any pair “observable–state”, A,ρ , a prob-

ability measure on R, μ(A)
ρ : E 	→ tr(ρP(A)(E)) with E ∈ B(R) (coinciding with

μ(A)
ψ = (ψ |P(A)(E)ψ), cf. Theorem 8.50(c), if ρ is pure and determined by the unit

ψ ∈ H). By construction supp(μ(A)
ρ )⊂ σ(A). Since by definition μ(A)

ρ (E) coincides
with the probability that the measurement of A belongs to E, in the state ρ , it makes
sense to define the mean value and the standard deviation of A in the state ρ .

Definition 11.6. Let A be an observable of the physical system S described on the
Hilbert space HS, let ρ ∈ S(HS) be a state of S and μ(A)

ρ the probability measure
associated to ρ and A as above. The mean value of An, n = 1,2, . . ., equals

〈An〉ρ :=
∫

R

λ n dμ(A)
ρ (λ ) , when R � λ 	→ λ n is in L1(R,μ(A)

ρ ). (11.2)

The standard deviation in state ρ of A equals

ΔAρ :=
√∫

R

(
λ −〈A〉ρ

)2
dμ(A)

ρ (λ ) , when R � λ 	→ λ 2 is in L1(R,μ(A)
ρ ) .

(11.3)
If the requirement in (11.2) (or (11.3)) does not hold, the mean value of An (resp.
standard deviation) does not exists for ρ .

Remarks 11.7. If the map λ n belongs to L1(R,μ(A)
ρ ) then also λ k does, for any

k = 1,2, . . . ,n− 1, because μ(A)
ρ is finite. Therefore if 〈An〉ρ exists, so does 〈Ak〉ρ

(and ΔAρ if n≥ 2) for any k = 1,2, . . . ,n−1. �

The properties of Examples 7.53 generalise as follows.

Proposition 11.8. Let A be an observable for a system described on the separable
Hilbert space HS, and take ρψ ∈ Sp(HS) associated to ψ ∈ HS with ||ψ || = 1 and
ρ ∈S(HS).
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(a) (i) 〈A〉ρψ exists ⇔ ψ ∈ D(|A|1/2), and ΔAρψ exists ⇔ ψ ∈ D(A);
(ii) if ψ ∈ D(A) then 〈A〉ρψ exists, and:

〈A〉ρψ = (ψ |Aψ) ; (11.4)

(iii) if ψ ∈ D(A2) then 〈A〉ρψ and ΔAρψ exist, equation (11.4) holds, and:

ΔA2
ρψ =
(
ψ
∣
∣(A−〈A〉ψ I)2 ψ

)
= (ψ |A2ψ)− (ψ |Aψ)2 . (11.5)

(b) (i) 〈A〉ρ exists ⇔ Ran(ρ1/2)⊂ D(|A|1/2) and |A|1/2ρ1/2 ∈B2(H);
(ii) ΔAρ exists (equivalently 〈A2〉ρ exists) iff Ran(ρ1/2) ⊂ D(A) and Aρ1/2 ∈

B2(H);
(iii) if 〈A2〉ρ exists, then Aρ ∈B1(HS) and:

〈A〉ρ = tr(Aρ) ; (11.6)

(iv) if 〈A4〉ρ exists, then Aρ ∈ B1(HS), equation (11.6) holds, (A−〈A〉ρ I)2ρ ∈
B1(HS) and:

ΔA2
ρ = tr
(
(A−〈A〉ρ I)2ρ

)
= tr(A2ρ)− tr(Aρ)2 . (11.7)

Proof. (a) We have tr(ρψP(A)(E)) = (ψ |P(A)(E)ψ) = μ(A)
ψ (E). Therefore asking

R� λ 	→ λ andR� λ 	→ λ 2 in L1(R,μ(A)
ρψ ) is respectively equivalent toψ ∈D(|A|1/2)

and ψ ∈D(A), by Definition 9.11 and Theorem 9.4(f). By definition, and using The-
orem 9.4(e-f) for the standard deviation:

〈A〉ρψ =
∫

R

λdμ(A)
ψ (λ ), (11.8)

ΔA2
ρψ =
(

Aψ−
(∫

R

λdμ(A)
ψ (λ )
)

ψ
∣
∣
∣
∣Aψ−
(∫

R

λdμ(A)
ψ (λ )
)

ψ
)

. (11.9)

Using Theorem 9.4(g) these imply (11.4) and (11.5) if ψ ∈ D(A)(⊂ D(|A|1/2)) and
ψ ∈ D(A2)(⊂ D(A)), respectively.

(b) Let {ψn}n∈N be a basis of HS (separable). Then μ(A)
ρ (E) = tr(ρP(A)(E)) =

tr(ρ1/2P(A)(E)ρ1/2) = ∑+∞
n=0(ρ

1/2ψn|P(A)(E)ρ1/2ψn) = ∑+∞
n=0 μ

(A)
ρ1/2ψ

(E), for any

Borel set E ∈ B(R), where we used ρ1/2 ∈ B2(HS) (as B1(H) � ρ ≥ 0) and Pro-
position 4.36(c). If f : R→ C is measurable, then,

∫

R

| f (λ )|dμ(A)
ρ (λ ) =

+∞

∑
n=0

∫

R

| f (λ )|dμ(A)
ρ1/2ψn

(λ )≤+∞ . (11.10)

Moreover, if the right-hand side in (11.10) (so also the left side) is finite, then:

∫

R

f (λ )dμ(A)
ρ (λ ) =

+∞

∑
n=0

∫

R

f (λ )dμ(A)
ρ1/2ψn

(λ ) ∈ C . (11.11)
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In fact, μ(A)
ρ (E) = ∑+∞

n=0 μ
(A)
ρ1/2ψ

(E) implies (11.10) is trivially true if | f | = s is a

simple non-negative map. For any Borel-measurable g≥ 0 there is a simple sequence
0 ≤ s0 ≤ s1 ≤ ·· · ≤ sn → g (Proposition 7.49). By monotone convergence on the
single integrals and on the counting measure of N we have (11.10), with | f | replaced
by an arbitrary g ≥ 0. If f is real-valued, and in (11.10) we have < +∞, decompos-
ing f in its positive and negative parts f = f+− f−, 0 ≤ f+, f− ≤ | f |, gives (11.11)
by linearity. If f is complex-valued the argument is similar, we just work with real
and imaginary parts separately. 〈 f (A)〉ρ exists precisely when the left-hand side in
(11.10) is finite. In turn, this is the same as saying every summand on the right is finite
and the sum is finite. The generic term is finite if and only if ρ1/2ψn ∈ D(| f (A)|1/2)
by definition of D(g(A)) (Definition 9.11). Since ψn is an arbitrary unit vector in
H, Ran(ρ1/2) ⊂ D(| f (A)|1/2). Every integral on the right in (11.10) can be writ-
ten (see Theorem 9.4(f)) ||| f (A)|1/2ρ1/2ψn||2, where | f (A)|1/2ρ1/2 ∈B(HS) by Pro-
position 5.6. By Definition 4.22 we conclude that the left-hand side (11.10) is fi-
nite iff | f (A)|1/2ρ1/2 ∈ B2(HS). Choose f (λ ) = λ , so (i) in (b) holds, then choose

f (λ ) = λ 2 to obtain (ii) in (b), because λ 2 integrable in μ(A)
ρ implies λ integ-

rable, plus D(A) = D(|A|). To prove (iii) assume 〈A2〉ρ exists (so also 〈A〉ρ exists)
and notice Ran(ρ) ⊂ D(A) from Ran(ρ1/2) ⊂ D(A), since ρ = ρ1/2ρ1/2 implies
Ran(ρ1/2) ⊃ ran(ρ). Applying (11.11) to f (λ ) = λ and recalling Theorem 9.4(g)
we find:

〈A〉ρ = ∑
n∈N

(ρ1/2ψn|Aρ1/2ψn) = ∑
n∈N

(ψn|ρ1/2Aρ1/2ψn) = tr(ρ1/2Aρ1/2) ,

where we used ρ1/2, Aρ1/2 ∈B2(H2), so their product (in any order) is of trace class.
Since the trace is invariant under cyclic permutations (Proposition 4.36(c)) we have
〈A〉ρ = tr(Aρ1/2ρ1/2) = tr(Aρ), concluding (iii). The proof of (iv) is similar: replace
A with A2 and observe that if 〈A4〉ρ exists, so does 〈A2〉ρ , and (iii) holds. The second
identity in (11.7) now follows from the first with obvious algebraic manipulations. �

Remarks 11.9. The right-hand sides of (11.6) and (11.7) ((11.4) and (11.5) for pure
states) are not the definitions of mean value and standard deviation; these are given,
in general, by (11.2) and (11.3), independently from Proposition 11.8. �

11.2 Axiom A5: non-relativistic elementary systems

To go further into the mathematical formulation of QM we must establish axioms
about special elementary systems. These correspond to the particles of the non-
relativistic theory. In other terms, the group of transformations under which the theory
is invariant is the Galilean group, not the Poincaré group. We will return to this point
later. For physics this description is adequate until speeds do not reach the order of
the speed of light (about 300.000 km/s). However certain mathematical concepts, like
the Weyl ∗-algebra introduced in the forthcoming non-relativistic description, have
broader validity: they are employed in a relativistic regime as well, in formulations
of quantum field theory that we will not discuss.
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Complex systems are built by composing elementary ones via the Hilbert tensor
product, as we will see subsequently when studying compound systems.

The simplest elementary system in non-relativistic QM consists in a quantum
particle of mass m > 0 and spin 0. The next axiom holds in this system.

A5. Consider an inertial frame system I equipped with orthonormal Cartesian co-
ordinates x1,x2,x3 on the rest space of the frame. A non-relativistic particle of mass
m > 0 and spin 0 is described as follows.

(a) The system’s Hilbert space is H = L2(R3,dx), where R3 is identified with the rest
space of I via the x1,x2,x3, and dx is the ordinary Lebesgue measure on R3.
(b) The three observables associated to x1, x2, x3 are self-adjoint operators, called
position operators:

(Xiψ)(x1,x2,x3) = xiψ(x1,x2,x3) , (11.12)

i = 1,2,3, of domains:

D(Xi) :=
{

ψ ∈ L2(R3,dx)
∣
∣
∣
∣

∫

R3
|xiψ(x1,x2,x3)|2 dx < +∞

}

.

(c) The three observables associated to the momentum components in I , p1, p2, p3,
are self-adjoint operators, called momentum operators:

Pk =−ih̄
∂
∂xk

, (11.13)

k = 1,2,3, where the operator on the right is the closure of the essentially self-adjoint
differential operator:

−ih̄
∂
∂xk

: S (R3)→ L2(R3,dx)

and S (R3) the Schwartz space on R3 (see Chapter 3.6).

In the physics’ literature vectors (normalised to 1) of L2(R3,dx) associated to a
particle are called its wavefunctions. Wavefunctions determine (not uniquely, owing
to arbitrary numerical factors) the particle’s pure states.

Remark 11.10. (1) The discussion of Chapter 5.3 explains that the same notions can
be given if we define the operators Xi substituting ψ ∈ L2(R3,dx) with ψ ∈ D(R3),
or taking ψ ∈S (R3) in the domains. In either case one has to take the unique self-
adjoint extension of the operator on D(R3) or S (R3).
(2) Pi may be defined equivalently by (see Definition 5.27, Proposition 5.29 and the
ensuing discussion):

(Pi f )(x) =−ih̄w-
∂
∂xi

f (x) ,

D(Pi) :=
{

f ∈ L2(R3,dx)
∣
∣
∣ w- ∂

∂xi
f ∈ L2(R3,dx) exists

}
.
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As usual w- ∂
∂xi

denoted the weak derivative. The study of Chapter 5.3 also shows
that Pi (see Proposition 5.29) can be defined, equivalently, substituting the Schwartz
space with D(R3) and taking the unique self-adjoint extension of the operator ob-
tained, which is still essentially self-adjoint.
(3) Let Ki denote the ith position operator on the codomain of the Fourier-Plancherel
transform F̂ : L2(R3,dx)→ L2(R3,dk), see Chapter 3.6. Then Proposition 5.31 gives

Pi = h̄ F̂−1KiF̂ ,

an alternative definition of momentum.
(4) From Chapter 9.1.5 we know

σ(Xi) = σc(Xi) = R , σ(Pi) = σc(Pi) = R i = 1,2,3. (11.14)
�

11.2.1 The canonical commutation relations (CCRs)

The definition of position and momentum is such that there exist invariant spaces
H0 ⊂ L2(R3,dx) for all six observables, despite the latter’s domains are different:
Xi(H0) ⊂ H0 and Pi(H0) ⊂ H0, i = 1,2,3. For instance take the Schwartz space
H0 = S (R3). Checking this is immediate by definition of Schwartz space. On S (R3)
a direct computation that uses (11.12) and (11.13) yields Heisenberg’s canonical
commutation relations (CCRs):

[Xi,Pj] = ih̄δi jI ,

where δi j = 0 for i � j and δi j = 1 for i = j . More precisely:

Lemma 11.11. The operators position Xi and momentum Pj, i, j = 1,2,3, defined in
A5, fulfill Heisenberg’s commutation relations:

[Xi,Pj]ψ = ih̄δi jψ for every ψ ∈ D(XiPj)∩D(PjXi), i, j = 1,2,3 . (11.15)

Equations (11.15) are valid when replacing Xi with X ′
i := Xi +aiI and Pj with P′j :=

Pj +b jI, for any constants ai,b j ∈ R.

Proof. A straighforward computation shows D(X ′
i P′j) ∩ D(P′jX ′

i ) = D(XiPj) ∩
D(PjXi). On ϕ ∈ D(R3), the operator P′j acts as −ih̄∂/∂x j + b jI by construction;
since X ′

i multiplies by the shifted coordinate xi + ai, we obtain P′jX ′
iϕ = −ih̄δi jϕ +

X ′
i P′jϕ . Therefore

(
P′jX

′
iϕ−X ′

i P′jϕ+ ih̄δi jϕ
∣
∣ψ
)

= 0 , ϕ ∈D(R3), ψ ∈ L2(R3,dx).

In turn, if ψ ∈ D(X ′
i P′j)∩D(P′jX ′

i ) = D(XiPj)∩D(PjXi), since Pj and Xi are self-
adjoint, the identity reads

(
ϕ
∣
∣X ′

i P′jψ−P′jX
′
iψ− ih̄δi jψ

)
= 0 .

As D(R3) is dense in L2(R3,dx), (11.15) holds with X ′
i , P′j replacing Xi, Pj. Con-

sequently (11.15) holds by taking a j = b j = 0, j = 1,2,3. �
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Pairs of observables solving Heisenberg’s relations (11.15), on some invariant
domain such as S (R3), are often called conjugate observables. The relations are
the simplest manifestation of general CCRs for Bosonic quantum fields, where pos-
ition and momentum are defined to befit the theory. From the physical viewpoint it
has been noticed over and over during the history of QM, and its evolutions, that the
canonical commutation relations are much more important than the operators Xi and
Pi themselves.

As the definitions make obvious, position and momentum are unbounded oper-
ators, and are not defined on the entire Hilbert space. Technically this is a thorn in
the side, for it forces to bring into the picture spectral theory of unbounded operat-
ors, which is more involved than the bounded theory. This begs the question whether
a substitute definition of Xi, Pi might exists, preserving Heisenberg’s relations and
making the operators bounded. The answer is no, and the reason is dictated by Heis-
enberg’s CCRs.

Proposition 11.12. There are no self-adjoint operators X and P such that, on a com-
mon invariant subspace, [X ,P] = ih̄I and at the same time X, P are bounded.

Proof. Suppose [X ,P] = ih̄I on a common invariant space D where they are bounded.
Restrict to D (or its closure D, by extending X ,P to self-adjoint operators defined on
D), and consider it as the Hilbert space. The restrictions will now be self-adjoint and
bounded. From [X ,P] = ih̄I:

PXn−XnP =−inXn−1 .

If n is odd, using Proposition 3.38(a) repeatedly (as X p = (X p)∗ for any natural p)
and the norm’s properties:

n||X ||n−1 = n||Xn−1|| ≤ 2||P||||Xn|| ≤ 2||P||||X ||||Xn−1||= 2||P||||X ||||X ||n−1 .

As ||X || � 0 (because of (11.15)), we obtain the absurd: n≤ 2||P||||X ||< +∞ for any
n = 1,3,5, . . .. �

11.2.2 Heisenberg’s uncertainty principle as a theorem

A comforting immediate consequence of the CCRs and the formalism is to turn
Heisenberg’s Uncertainty Principle for the variables position and momentum (cf.
Chapter 6.4) into a theorem. We shall prove the principle in its classical form on
pure states, only to reformulate it later under weaker assumptions on vectors and
then extend it to mixed states.

Theorem 11.13 (“Heisenberg’s Uncertainty Principle”). Let ψ be a unit vector,
describing a pure state of a classical particle of spin 0, such that:

ψ ∈ D(XiPi)∩D(PiXi)∩D(X2
i )∩D(P2

i )

(in particular ψ ∈S (R3)). Then

(ΔXi)ψ(ΔPi)ψ ≥ h̄
2

i=1,2,3 (11.16)

(where we wrote ψ instead of ρψ for simplicity.
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Proof. The hypotheses imply, in particular, ψ ∈ D(X2
i )∩D(P2

i ), so standard devi-
ations are defined and can be found using formula (11.5). By definition (11.3) we see
(ΔXi)ψ = (ΔX ′

i )ψ and (ΔPi)ψ = (ΔP′i )ψ for X ′
i := Xi +aiI, P′i := Pi +biI with ai,bi

are real constants. Hence replacing Xi, Pi by X ′
i , P′i produces an equivalent formula to

(11.16). Let us choose ai =−〈Xi〉ψ , bi =−〈Pi〉ψ and prove (11.16) for the operators
X ′

i . P′i . From (11.5) the choices force (ΔX ′
i )ψ = ||X ′

iψ || and (ΔP′i )ψ = ||P′iψ ||. So we
need to prove

||X ′
iψ ||||P′iψ || ≥ h̄/2 . (11.17)

As X ′
i , P′i satisfy (11.15), Schwarz’s inequality, the operators’ self-adjointness and

the properties of the inner product give

||X ′
iψ ||||P′iψ || ≥ |(X ′

iψ |P′iψ)| ≥ |Im(X ′
iψ |P′iψ)|= 1

2

∣
∣
∣(ψ |X ′

i P′iψ)− (ψ |X ′
i P′iψ)
∣
∣
∣

=
1
2

∣
∣(ψ |(X ′

i P′i −P′i X ′
i )ψ)
∣
∣=

h̄
2
(ψ |ψ) =

h̄
2

.

Lemma 11.11 was used in the penultimate equality. So we have found (11.17). �

Remarks 11.14. This proof shows more generally that ΔAψΔBψ ≥ 1
2 |(ψ |[A,B]ψ)|

for every vector ψ ∈ D(AB)∩D(BA)∩D(A2)∩D(B2) and Hermitian operators A,B
on H. �

11.3 Weyl’s relations, the theorems of Stone–von Neumann
and Mackey

The CCRs satisfy a remarkable property: in the statement of axiom A5 it is some-
how superfluous to ask the Hilbert space be L2(R3,dx) and that the position and
momentum operators have the given form. This information is by some means con-
tained in Heisenberg’s relations so long as, loosely put, the representation of position
and momentum is irreducible. This fact is the heart of the famous theorem of Stone–
von Neumann, that we will prove in this section. By dropping irreducibility Mackey
proved (as a consequence of more general facts in the theory of imprimitivity systems)
that the Hilbert space is an orthogonal sum of irreducible representations (countably
many if the space is separable). We will prove Mackey’s theorem after Stone–von
Neumann’s.

11.3.1 Families of operators acting irreducibly and Schur’s lemma

Before we get going, a few generalities on families of operators acting irreducibly
are necessary. Tightly linked to this notion is Schur’s lemma, a very useful result of
abstract representation theory of unitary groups we will encounter in the next chapter.

Definition 11.15. Let H be a Hilbert space and A := {Ai}i∈J a family of operators
Ai : H → H. The space H is irreducible under A if there is no closed non-trivial
subspace in H that is simultaneously invariant for all elements in A .
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In other terms there cannot be any closed subspace H0 ⊂ H, different from {0}
and H, for which Ai(H0)⊂ H0 for every i ∈ J.

Here is Schur’s lemma.

Proposition 11.16 (Schur’s lemma). Let A := {Ai}i∈J ⊂B(H) be a family of oper-
ators on a Hilbert space, closed under Hermitian conjugation (A∗i ∈A if Ai ∈A ).

(a) A is irreducible ⇔ every operator V ∈B(H) satisfying

VAi = AiV for every i ∈ J,

has the form V = χI for some complex number χ ∈ C.
(b) Let A ′ := {A′i}i∈J ⊂ B(H′) be another family on the Hilbert space H′, indexed
by the same set J and closed under conjugation. Suppose

A∗i = A ji implies A′∗i = A′ji for every i ∈ J and some ji ∈ J. (11.18)

If H and H′ are irreducible, then every bounded linear operator S : H→ H′ such that

SAi = A′iS for every i ∈ J,

has the form S = rU where U : H → H′ is unitary and r ∈ R (in particular S is null
when r = 0).

Proof. Let us begin with the more involved (b), which we will employ for (a).
(b) Taking adjoints of SAi = A′iS gives A∗i S∗ = S∗A′∗i for any i ∈ J. That is to say
A ji S

∗ = S∗A′ji , i ∈ J. Note how ji covers J as i varies in J, since for every Ai ∈ A ,
(A∗i )∗ = Ai, so we may rephrase the identity as AiS∗ = S∗A′i for every i∈ J. Comparing
with SAi = A′iS gives AiS∗S = S∗SAi and A′iSS∗ = SS∗A′i. From the former the bounded
self-adjoint operator V := S∗S commutes with every Ai, so by Theorem 8.54(c) the

spectral measure P(V ) on R commutes with each Ai. But then every closed P(V )
E (H) is

invariant under each Ai. As the space is irreducible, either P(V )
E = I, or P(V )

E (H) = {0}
i.e. P(V )

E = 0, for any Borel set E ⊂ R. Suppose the spectrum of V contains at least
two α � α ′ and let us use Theorem 9.10(b). Consider two open disjoint real intervals

E � α , E ′ � α ′. Then P(V )
E � 0, P(V )

E ′ � 0 since the intervals intersect the spectrum,

and therefore P(V )
E = P(V )

E ′ = I. On the other hand P(V )
E P(V )

E ′ = 0 since E∩E ′ =∅. This
is absurd, so the spectrum of V (never empty) contains a single isolated point, which
is in the point spectrum. Thus S∗S = V = λ I for some λ ∈ [0,+∞), V being clearly
positive. In a similar manner we obtain SS∗ = λ ′I for some λ ′ ∈ [0,+∞). But then

λS∗ = S∗SS∗ = λ ′S∗ .

Consequently either λ = λ ′ or S∗ = 0 and S = (S∗)∗ = 0. In the second case the proof
ends. In the first instance, let U := λ−1/2S, so that UU∗ = I′ and U∗U = I where I, I′
are the identity operators of H, H′. Therefore (see Definition 3.51) U is unitary. The
claim is proved by taking r = λ 1/2.
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Let us pass to (a) and assume H is A -irreducible. If VAi = AiV , then A∗i V ∗ =
V ∗A∗i , meaning AiV ∗ = V ∗Ai for any i ∈ J, as A is conjugate-closed. Then the
bounded self-adjoint V+ := 1

2 (V +V ∗) and V− := 1
2i (V −V ∗) commute with A , im-

plying that their spectral measures commute with A . Arguing as in part (b) we con-
clude V± = λ±I for some reals λ±. Then V = V+ + iV− = (λ+ + iλ−)I = χI, χ ∈ C.
Suppose, conversely, that the only operators commuting with A are χI. If H0 is in-
variant under A and P is the orthogonal projector on H0, then PAiP = AiP for any
i ∈ J. Take adjoints: PA∗i P = PA∗i . As A is conjugate-closed and i ∈ J arbitrary, the
identity reads PAiP = PAi. Comparing with the initial relation gives PAi = AiP, i ∈ J.
Therefore P = χI for a χ ∈ C. P∗ = P implies χ ∈ R, and PP = P tells χ2 = χ . So
there are two possibilities: P = 0, and then H0 = {0}, or P = I so H0 = H. This means
H is A -irreducible. �

Remarks 11.17. Schur’s lemma, in cases (a) and (b), is particularly useful in these
situations:

(i) A , A ′ are images of two representations π : A→B(H), π ′ : A→B(H′) of the
same ∗-algebra (or C∗-algebra) A ;

(ii) A , A ′ are images of two unitary representations G � g 	→Ug, G � g 	→U ′
g of

one group G.

In either case, closure under conjugation in case (a), and (11.18) in case (b) are auto-
matic if one takes respectively G and A as the indexing set I. �

11.3.2 Weyl’s relations from the CCRs

In order to illustrate the Stone–von Neumann theorem we proceed step by step. A rel-
evant technical point is that Heisenberg’s commutation relations are too hard to use
rigorously, for they involve subtleties about domains. To by-pass these issues we can
pass from Xi and Pi to considering the one-parameter unitary groups they generate.
Even better, we may take, for n = 3, the operators ∑n

i=k tkXk +ukPk, tk,uk ∈ R. These
are essentially self-adjoint on S (R3), so we can look at the exponentials of their
self-adjoint extensions ∑n

i=k tkXk +ukPk. A brute-force, direct, computation based on
Heisenberg’s (11.15) and the formal Taylor expansion of the exponential (not yet
justified) yields the following identity1:

exp

{

i
n

∑
k=1

tkXk +ukPk

}

exp

{

i
n

∑
k=1

t ′kXk +u′kPk

}

= exp

{

− ih̄
2

(
n

∑
k=1

tku′k− t ′kuk

)}

exp

{

i
n

∑
k=1

(tk + t ′k)Xk +(uk +u′k)Pk

}

.

The above are called Weyl relations, and follow formally from Heisenberg’s com-
mutation relations.

1 If the exponentiated operators were n× n complex matrices the result would follow from
the celebrated Baker–Campbell–Hausdorff formula: eAeB = e[A,B]/2eA+B, valid when the
matrix [A,B] commutes with both A and B.
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The following proposition proves, completely independently from previous re-
sults that involve different techniques, that the operators Xi, Pi are essentially self-
adjoint if restricted to S (R3), even in dimension higher than 3 and that the previ-
ously mentioned Weyl’s relations hold rigorously. For conveniency, we will assume
h̄ = 1 in the sequel.

Proposition 11.18. Consider L2(Rn,dx), with given n = 1,2, · · · and Lebesgue meas-
ure dx on Rn. For k = 1,2, · · · ,n define symmetric operators:

Xk : S (Rn)→ L2(Rn,dx) and Pk : S (Rn)→ L2(Rn,dx)

(Xkψ)(x) = xkψ(x) , (11.19)

(Pkψ)(x) = −i
∂ψ
∂xk

(x) . (11.20)

Then:

(a) the symmetric operators, defined on S (Rn), ∑n
k=1 tkXk + ukPk map S (Rn) to

itself and are essentially self-adjoint for any (t,u) ∈ R2n.
(b) L2(Rn,dx) is irreducible under the family of bounded operators:

W ((t,u)) := exp

{

i
n

∑
k=1

tkXk +ukPk

}

, (t,u) ∈ R2n . (11.21)

(c) The operators W satisfy Weyl’s relations:

W ((t,u))W ((t′,u′)) = e−
i
2 (t·u′−t′·u)W ((t+ t′,u+u′)) , W ((t,u))∗ = W (−(t,u)) .

(11.22)
(d) For given (t,u) ∈ R2n, every mapping R � s 	→W (s(t,u)) satisfies:

s- lim
s→0

W (s(t,u)) = W (0) . (11.23)

Proof. Let us begin with n = 1, for the generalisation to finite n > 1 is obvious.
We will use tools from Chapter 9.1.4. At present we just have the operators X and
P . Both are well defined when restricted to the Schwartz space S (R), and admit
each a self-adjoint extension that coincides with X , P, as previously discussed. We
want to construct a dense subspace of analytic vectors for the symmetric operators
aX +bP : S (R)→ L2(R,dx), for any a,b∈R. Define, on the dense domain S (R),
the annihilation operator, creation operator and number operator:

A :=
1√
2

(

X +
d
dx

)

, A� :=
1√

2

(

X − d
dx

)

, N := A�A . (11.24)

By construction A∗ ⊃ A�, (A�)∗ ⊃ A and N is symmetric. By direct computation the
CCRs (or the above definition) imply commutation relations on S (R), namely:

[A,A�] = I . (11.25)
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It is a well-known fact in the theory of orthogonal polynomials that the complete
orthonormal system in L2(Rn,dx) of Hermite functions {ψn}n=0,1,... ⊂ S (R) (cf.

Example 3.32(4)) satisfies ψ0 = π−1/4e−x2/2 and the recursive formula:

ψn+1 = (2(n+1))−1/2(x− d
dx

)ψn .

By definition of A�, that is the same as saying Hermite functions arise, once ψ0 is
given, from

ψn =

√
1
n!

(A�)nψ0 . (11.26)

At the same time a straighforward computation produces

Aψ0 = 0. (11.27)

Equations (11.26), (11.27) and (11.25) justify, by induction, the middle relation in
the triple:

A�ψn =
√

n+1ψn+1 , Aψn =
√

nψn−1 , N ψn = nψn . (11.28)

The right side in the second one is assumed null if n = 0, and as one sees easily the
first identity is just the recusive relation introduced a few lines above; the third one
follows from the other two.

As the ψn are normalised to 1, the first two in (11.28) give the inequality:

||A1A2 · · ·Akψn|| ≤
√

n+1
√

n+2 · · · √n+ k ≤
√

(n+ k)! , (11.29)

where every Ai is either A or A�. Consider a symmetric operator on S (R) given by an
arbitrary real linear combination T := aX +bP , a,b ∈ R. By (11.24), if z := a+ ib
we have

T =
zA+ zA�

√
2

. (11.30)

This and (11.29) imply, for any Hermite function ψn:

||T kψn||= 2−k/2||(zA+ zA�)kψn|| ≤ 2−k/22k|z|k
√

(n+ k)! = |z|k
√

2k(n+ k)! .

Hence, for t ≥ 0:

+∞

∑
k=0

tk

k!
||T kψn|| ≤

+∞

∑
k=0

(
√

2|z|t)k
√

(n+ k)!
k!

≤
+∞

∑
k=0

(
√

2|z|t)k
√

(n+ k)n
√

k!
< +∞ .

The last series has finite sum by computing the convergence radius r via

1/r = lim
k→+∞

(√
(n+ k)n

k!

)1/k

= lim
k→+∞

e
n ln(k+n)

2k − lnk!
2k = lim

k→+∞
e−

lnk!
2k = 0
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(in the end we used Stirling’s formula). Therefore any finite combination of Hermite
functions is analytic for every T := aX +bP on S (R). As the latter are symmetric,
they must be essentially self-adjoint on S (R) by Nelson’s theorem (Theorem 5.47).
This ends the proof of case (a) for n = 1; if n > 1 the argument is similar, keeping in
mind that Hermite functions in n variables:

ψm1,...,mn(x1, . . . ,xn) := ψm1(x1) · · ·ψmn(xm)

are a complete orthonormal system in L2(Rn,dx) (see Example 10.27(1)). What we
have seen proves (a), but also (d) and the second identity in (c): in fact

W (s(t,u)) = exp

{

is
n

∑
k=1

tkXk +ukPk

}

= exp

{

is

(
n

∑
k=1

tkXk +ukPk

)}

by construction, because by definition of closable operator A we have sA = sA for
every s ∈ C. Now, as ∑n

i=1 tkXk +ukPk is self-adjoint, Theorem 9.29(a) ensures
strong continuity of the one-parameter unitary group R � s 	→ W (s(t,u)), since
W (0) = exp

{
i0∑n

i=1 tkXk +ukPk
}

= I. The second identity in (c) is obvious since
R � s 	→W (s(t,u)) is a one-parameter unitary group.

To prove (b) we shall invoke Lemma 11.19, which we will prove after the present
theorem but relies only on part (a). Suppose there is a non-null closed H0 ⊆ L2(Rn)
invariant under W ((t,u)), and letψ � 0 be an element. Calling φ ∈H⊥

0 , we will prove
φ = 0 and so H0 = L2(Rn). By assumption, H0 and the orthogonal complement are
invariant:

(φ |W ((t,0)W ((0,u))ψ) = 0 , for any (t,u) ∈ R2n .

I.e. (
φ
∣
∣
∣ei∑k tkXk ei∑k ukPk ψ

)
= 0 , for any (t,u) ∈ R2n .

The left side can be computed with (11.37), (11.38) in Lemma 11.19:
∫

Rn
eit·xφ(x)ψ(x+u)dx = 0 , for any t,u ∈ Rn.

Since the map x 	→ hu(x) := φ(x)ψ(x+u) is in L1(Rn,dx), as product of L2(Rn,dx)
maps, and given t∈Rn is arbitrary, the identity simply tells that the Fourier transform
of hu ∈ L1(Rn,dx) is zero. By Proposition 3.81(f) hu is null almost everywhere. In
other terms:

φ(x)ψ(x+u) = 0 almost everywhere for any given u ∈ Rn . (11.31)

Call E ⊂ Rn the set on which ψ is not null, and F the set where φ never vanishes.
(Both are measurable as pre-images of the open set C\{0} under measurable maps.)
Denote by m the Lebesgue measure of Rn, so m(E) > 0 by assumption. To satisfy
(11.31) we must have:

m(F∩(E−u))= 0 for any u ∈ Rn, i.e.
∫

R

χF(x)χE(x+u)dx = 0 for any u ∈ Rn .
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Integrating in u gives
∫

R

dy
∫

R

χF(x)χE(x+u)dx = 0 .

As integrands are non-negative and the double integral is finite, Fubini–Tonelli al-
lows to swap integrals and we use Lebesgue’s invariance under translations to obtain:

0 =
∫

R

dxχF (x)
∫

R

χE(x+u)du =
∫

R

dxχF (x)
∫

E−x
1du

=
∫

R

dxχF (x)
∫

R

χE(u)dy = m(F)m(E) .

As m(E) > 0, we have m(F) = 0. Thus φ is null almost everywhere, hence the null
vector of L2(Rn,dx). So H0 = L2(Rn,dx), proving irredubility in (b).

There remains to show

W ((t,u))W ((t′,u′)) = e−
i
2 (t·u′−t′·u)W ((t+ t′,u+u′)) . (11.32)

For this we need two steps. Introduce

U((t,u)) := e−
i
2 (t·u)W ((t,0))W ((0,u)) .

Step one will prove that

U((t,u))U((t′,u′)) = e−
i
2 (t·u′−t′·u)U((t+ t′,u+u′)) . (11.33)

Step two consists in showing

U((t,u)) = W ((t,u)) , (11.34)

which will conclude the overall proof.
Exactly as in part (b), Lemma 11.19 implies:

(U((t,u))ψ)(x) = e
i
2 t·ueit·xψ(x+u) . (11.35)

Hence, for given ψ ∈ L2(Rn,dx),

U((t,u))U((t′,u′))ψ = e−
i
2 (t·u′−t′·u)U((t+ t′,u+u′))ψ .

This is the same as (11.33), which is eventually justified. Let us pass to (11.34). Con-
sider, for t,u fixed, the unitary family Us := U(s(t,u)), s ∈ R. Directly from (11.35)
we compute Us+s′ = UsUs′ and U0 = I. Therefore {Us}s∈R is a one-parameter unit-
ary group. The strategy is now to prove that the group is strongly continuous, find
its generator and show it concides with the generator of {W (s(t,u))}s∈R. By Stone’s
theorem (Theorem 9.29) the two groups will be the same, hence (11.34). As for strong
continuity, note that for any ψ ,φ ∈ L2(R2,dx):

(φ |Usψ) = e
is2
2 t·u
(
φ
∣
∣
∣eis∑k tkXk eis∑k ukPkψ

)

= e
is2
2 t·u
(

eis∑k tkXkφ
∣
∣
∣eis∑k ukPkψ

)
→ (φ |ψ) as s→ 0 ,
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because the scalar product is continuous, and one-parameter groups generated by the
self-adjoint operators∑k ukPk and∑k tkXk are strongly continuous. Proposition 9.23
guarantees {Us}s∈R is strongly continuous. Consider ψ ∈S (Rn), and let us check

lim
s→0

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Usψ−ψ
s

− i

(

∑
k

tkXk +ukPk

)

ψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

= 0 . (11.36)

A few passages give

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Usψ−ψ
s

− i

(

∑
k

tkXk +ukPk

)

ψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

=
∫

Rn

∣
∣
∣
∣
∣

eis2t·u/2eistxψ(x+ su)−ψ(x)
s

− it ·xψ(x)−u ·∇xψ

∣
∣
∣
∣
∣

2

dx .

Hence

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Usψ−ψ
s

− i

(

∑
k

tkXk +ukPk

)

ψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

≤
∫

Rn

∣
∣
∣
∣e

is2t·u/2eistxψ(x+ su)−ψ(x)
s

−u ·∇xψ
∣
∣
∣
∣

2

dx

+2
∫

Rn

∣
∣
∣
∣e

is2t·u/2eistxψ(x+ su)−ψ(x)
s

−u ·∇xψ
∣
∣
∣
∣

∣
∣
∣
∣
∣

eis2t·u/2eistx−1
st ·x − i

∣
∣
∣
∣
∣
|t ·xψ(x)|dx

+
∫

Rn

∣
∣
∣
∣
∣

eis2t·u/2eist·x−1
st ·x − i

∣
∣
∣
∣
∣

2

|t ·xψ(x)|2dx .

Consider the integrals on the right. The middle one, by Schwarz’s inequality, tends
to zero when the other two do, because its square is less than the product of the other
two. By dominated convergence the last integral is infinitesimal as s→ 0, because the
integrand tends to 0 pointwise and is unifomrly bounded by the L1 map C|t ·xψ(x)|2,
for some constant C > 0. The first integrand also tends to 0 pointwise, as s→ 0. We
want to use Lebesgue’s theorem, so we need an L1 upper bound, uniform in s around
0 (hence independent of s). Decomposing the integral and recalling ψ ∈ S (Rn), it
suffices to find an L1 uniform bound in s ∈ [−ε ,ε ] for the expressions

∣
∣
∣
∣
ψ(x+ su)−ψ(x)

s

∣
∣
∣
∣ and

∣
∣
∣
∣
ψ(x+ su)−ψ(x)

s

∣
∣
∣
∣

2

in order to obtain a bound of the whole integrand. Assume ψ real (if not, decompose
ψ in real and imaginary parts) and invoke the mean value theorem:

∣
∣
∣
∣
ψ(x+ su)−ψ(x)

s

∣
∣
∣
∣=
∣
∣u ·∇ψ |x+s0u

∣
∣ ,
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where s0 ∈ [−ε ,ε ]. Since ψ ∈S (Rn), for any p = 1,2, . . . there is Kp ≥ 0 with

|u ·∇ψ |x| ≤ Kp

1+ ||x||p .

If we fix ε > 0, u ∈ Rn and p = 2,3, . . ., there is Cp,ε > 0 such that

1
1+ ||x+ s0u||p ≤

Cp,ε

1+ ||x||p−1 for any x ∈ Rn, s0 ∈ [−ε ,ε ].

Therefore, for a certain constant C ≥ 0:
∣
∣
∣
∣
ψ(x+ su)−ψ(x)

s

∣
∣
∣
∣≤

C
1+ ||x||n+1 , x ∈ Rn, s ∈ [−ε ,ε ].

The map on the right and its square are in L1(Rn,dx), and this is what we wanted in
order to apply Lebesgue’s theorem. Hence (11.36) is proved.

Summing up, the self-adjoint generator of the strongly continuous group
{U(s(t,u))}s∈R coincides with the generator of {W (s(t,u))}s∈R on S (Rn). Since
the second generator is essentially self-adjoint on that space, and as such it admits a
unique self-adjoint extension, the generators coincide everywhere. Consequently the
groups concide, for both arise by exponentiating the same self-adjoint generator. �

The proof of parts (b), (c) rely on the following lemma, itself a consequence of
(a). We state it aside given its technical usefulness.

Lemma 11.19. Retaining the assumptions of Proposition 11.18, if ψ ∈ L2(Rn,dx)
and t,u ∈ Rn: (

ei∑k tkXkψ
)

(x) = eit·xψ(x) , (11.37)

and (
ei∑k ukPkψ

)
(x) = ψ(x+u) . (11.38)

Proof. By direct calculation the group {Us}s∈R,

(Usψ)(x) := eist·xψ(x) , ∀ψ ∈ L2(Rn,dx)

is strongly continuous and satisfies

−i lim
s→0

1
s

(Usψ−ψ) =

(

∑
k

tkXk

)

ψ

on S (Rn). In fact:

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1
s

(Usψ−ψ)− i

(

∑
k

tkXk

)

ψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

=
∫

R3

∣
∣
∣
∣
eist·x−1

s
− it ·x
∣
∣
∣
∣

2

|ψ(x)|2dx
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=
∫

R3

∣
∣
∣
∣
eist·x−1

st ·x − i

∣
∣
∣
∣

2

|t ·x|2|ψ(x)|2dx→ 0 as s→ 0 ,

where we used three ingredients: x 	→ |t ·x|2|ψ(x)|2 is L1 as ψ ∈S (Rn); the map

R×R3 � (s,x) 	→
∣
∣
∣
∣
eist·x−1

st ·x − i

∣
∣
∣
∣

2

is bounded and pointwise (in x) tends to 0, s→ 0; Lebesgue dominated convergence.
By Stone’s theorem the generator of Us is a self-adjoint extension of ∑k tkXk. At
the same time, ∑k tkXk is essentially self-adjoint by (a) in the theorem above, so
the unique extension is its closure. Thus {Us}s∈R is generated by ∑k tkXk, proving
(11.37).

Now the second identity. By (3.65)–(3.68), because the Fourier-Plancherel trans-
form F̂ is a Fourier transform F on the F -invariant S (Rn):

∑
k

ukPk = F̂−1∑
k

ukKk F̂ ,

where Kk is Xk (the new name reflects the fact the variable of the transformed map
is k not x). The Fourier transform is an isomorphism, so

∑
k

ukPk = F̂−1∑
k

ukKk F̂ .

By Corollary 9.33

ei∑k ukPk = F̂−1 ei∑k ukKk F̂ . (11.39)

Reducing to ψ ∈S (Rn), where F̂ and its inverse are computed by the Fourier in-
tegral and reduce to F and inverse (cf. Definition 3.79), equation (11.39) implies
(

ei∑k ukPkψ
)

(x) =
(
F−1ei∑k ukKk ψ̂

)
(x) = ψ(x+u) , for any ψ ∈S (Rn).

(11.40)
Recall S (Rn) is dense in L2(Rn,dx), and S (Rn)�ψn →ψ in L2. Thenψn( ·+u)→
ψ( · +u) is in L2, because Lebesgue’s measure is translation-invariant and the con-
tinuity of ei∑k ukPk implies (11.38) by (11.40). �

11.3.3 The theorems of Stone–von Neumann and Mackey

In this part we show how Weyl’s relations, valid for bounded operators W ((t,u)),
with (t,u) ∈ R2n, that form an irreducible set on a complex Hilbert space H and such
that s 	→W (s(t,u)) are strongly continuous at s = 0, imply that H is isomorphic to
L2(Rn,dx) under the identification sending W ((t,u)) to ei∑k tkXk+ukPk . In particular,
the Hilbert space H turns out to be separable.

The theorem will be stated in a slightly more general form, for which we need
symplectic geometry.



500 11 The mathematical formulation of QM

Let us recall some facts about symplectic vector spaces.

Definition 11.20. A pair (X,σ) is called a (real) symplectic vector space if X is
a real vector space and the symplectic form σ : X×X → R is a bilinear, skew-
symmetric and weakly non-degenerate map: σ(u,v) = 0 ∀u ∈ X ⇒ v = 0.
If (X′,σ ′) is another symplectic vector space, we call a linear map f : X→ X′ a sym-
plectic linear map if it preserves the symplectic forms: σ ′( f (x), f (y)) = σ(x,y),
x,y ∈ X.
A symplectomorphism is an invertible symplectic linear map.

Note that any symplectic linear map f : X→ X′ is one-to-one (see Exercise 11.4),
so the image ( f (X),σ ′) is a symplectic subspace of (X′,σ ′) isomorphic to (X,σ). If
X is a normed space (infinite-dimensional), there exists a stronger concept of non-
degeneracy: it requires (a) σ(·,v) ∈ X′ for any v ∈ X, and (b) X � v 	→ σ(·,v) ∈ X′
is bijective. In finite dimension weak non-degeneracy is the same as this strong non-
degeneracy.

The next result is due to Darboux (and is related to a more famous theorem on
symplectic manifolds, which we shall not be concerned about [FaMa06]).

Theorem 11.21 (Darboux). If (X,σ) is a (real) symplectic vector space with dimX =
2n finite, there exists a basis (infinitely many, actually), called standard symplectic
basis, {e1, · · · ,en, f1, · · · , fn}⊂X, in which σ assumes the following canonical form:

σ(z,z′) :=

(
n

∑
i=1

tiu
′
i− t ′i ui

)

for any z,z′ ∈ X , (11.41)

where z = ∑n
i=1 tiei +∑n

i=1 uifi, z′ = ∑n
i=1 t ′i ei +∑n

i=1 u′ifi.

It is not hard to prove that an automorphism of a symplectic vector space is a
symplectomorphism if and only if it preserves Darboux bases.

Now we can state the Stone–von Neumann theorem, whose proof is postponed to
after we have introduced Weyl ∗-algebras. In a dedicated section ensuing the proof
we will make mathematically- and physically-related comments on the theorem.

Theorem 11.22 (Stone–von Neumann). Let H be a Hilbert space and (X,σ) a (real)
2n-dimensional symplectic vector space. Suppose H admits a family of operators
{W (z)}z∈X ⊂B(H) with the following properties:

(a) H is irreducible under {W (z)}z∈X.
(b) The Weyl relations

W (z)W (z′) = e−
i
2σ(z,z′)W ((z+ z′)) , W (z)∗ = W (−z) , z,z′ ∈ X (11.42)

hold.
(c) For given z ∈ X, every mapping R � s 	→W (sz) satisfies

s- lim
s→0

W (sz) = W (0) . (11.43)
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Then, in a given standard symplectic basis of X for which z ∈ X is determined by
(t(z),u(z)) ∈ Rn×Rn, there exists a Hilbert space isomorphism S : H → L2(Rn,dx)
such that:

SW (z)S−1 := exp

{

i
n

∑
k=1

t(z)k Xk +u(z)
k Pk

}

, for any z ∈ X. (11.44)

where the symmetric operators Xi, Pi are as of Proposition 11.18.

Consequently H must be necessarily separable, as L2(Rn,dx) is.
To complement the Stone–von Neumann theorem we state another result, proved

by Mackey, that treats reducible representations of the Weyl ∗-algebra. The notion of
Hilbert sum used below is the one found in Definition 7.34.

Theorem 11.23 (Mackey). Assume the hypotheses of Theorem 11.22, with (a) re-
placed by one of the following equivalent facts.

(a1) Every generator W (z), z ∈ X, has trivial kernel.
(a2) Every generator W (z) is unitary.
(a3) W (0) is the identity operator on H.

Then the Hilbert space H is the Hilbert sum of a family (at most countable if H is
separable) of closed, irreducible and W (z)-invariant subspaces. On each such com-
ponent the Stone–von Neumann theorem holds with respect to the restricted operators
W (z).

Important remark. With the Darboux theorem in mind, an alternative way to for-
mulate the Stone–von Neumann theorem, more often encountered in the literature,
goes as follows. Mackey’s theorem has a similar reformulation as well, which we
omit but the reader can easily reconstruct. �

Theorem 11.24 (Alternative version of the Stone–von Neumann theorem). Let H
be a complex Hilbert space and suppose {U(t)}t∈Rn ,{V (u)}u∈Rn ⊂B(H) satisfy the
following properties.

(a) H is irreducible under {U(t)}t∈Rn ∪{V (u)}u∈Rn .
(b) The relations (also called Weyl relations):

U(t)V (u) = V (u)U(t)eit·u , t,u ∈ Rn,

U(t)U(t′) = U(t+ t′) V (u)V (u) = V (u+u′) , t,u, t′u′ ∈ Rn

hold.
(c) For any pair t ∈ Rn, u ∈ Rn:

s- lim
s→0

U(st) = U(0) and s- lim
s→0

V (su) = V (0) .

Then there there exists an isomorphism S1 : H→ L2(Rn,dx) such that:

S1 U(t)S−1
1 := exp

{

i
n

∑
k=1

tkXk

}

and S1 V (u)S−1
1 := exp

{

i
n

∑
k=1

ukPk

}

where the symmetric operators Xi, Pi are defined as in Proposition 11.18.
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Let us explain how the two versions are equivalent. Assume the Hilbert spaces
H of the statements are the same. We begin by proving that Theorem 11.22 implies
11.24. From the hypotheses of 11.24 and its Weyl relations it is immediate to see the
W ((t,u)) := eit·u/2U(t)V (u) fulfill Theorem 11.22 over the symplectic vector space
(Rn×Rn,σc), where σc is the symplectic form already in canonical form:

σc((t,u),(t′,u′)) =

(
n

∑
i=1

tiu
′
i− t ′i ui

)

in the standard basis of Rn×Rn. If we choose the symplectic basis to be the standard
one on Rn×Rn, then Theorem 11.22 implies Theorem 11.24 by taking S1 = S.

So let us prove 11.24 implies 11.22. Choose a standard symplectic basis on X
and identify elements in X with pairs (t,u) in Rn×Rn. If the W ((t,u)) satisfy The-
orem 11.22, then the new operators V (t) := W ((t,0)) and U(u) := W ((0,u)) fulfill
Theorem 11.24. A direct computation shows 11.24 implies Theorem 11.22 for S = S1.

11.3.4 The Weyl ∗-algebra

The statement of the Stone–von Neumann theorem contains an extremely important
notion, both for the proof but also in view of further developments of QM towards
quantum field theory. We are talking about Weyl ∗-algebras. Let us spend some time
on this.

Definition 11.25. Let X be a (non-trivial) real vector space of arbitrary dimension
(possibily infinite) and σ : X×X → R a symplectic form on it. A ∗-algebra (Defin-
ition 3.40) W (X,σ) is called Weyl ∗-algebra of (X,σ) if there exists a family
{W (u)}u∈X of non-zero elements, called the generators , such that:

(i) Weyl’s (commutation) relations:

W (u)W (v) = e−
i
2σ(u,v)W (u+ v) , W (u)∗ = W (−u) , u,v ∈ X (11.45)

hold;

(ii) W (X,σ) is generated by {W (u)}u∈X, i.e. W (X,σ) coincides with the linear
span of finite combinations of finite products of {W (u)}u∈X.

What we show now, amongst other things, is that a symplectic vector space (X,σ)
determines a unique Weyl ∗-algebra up to ∗-isomorphisms (Definition 3.40).

Theorem 11.26. Let X be a (non-trivial) real vector space of arbitrary dimension
(possibily infinite) and σ : X×X→ R a symplectic form.

(a) There exists, always, a Weyl ∗-algebra W (X,σ) associated to (X,σ).
(b) Any Weyl ∗-algebra W (X,σ) has a unit I, and:

W (0) = I , W (u)∗ = W (−u) = W (u)−1 , u ∈ X . (11.46)

The generators {W (u)}u∈X are linearly independent, so in particular W (u) �W (v)
if u � v.
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(c) If W (X,σ), generated by {W (u)}u∈X, and W ′(X,σ), generated by {W ′(u)}u∈X,
are Weyl ∗-algebras of (X,σ), there is a unique ∗-isomorphism α : W (X,σ) →
W ′(X,σ), which is determined by imposing:

α(W (u)) = W ′(u) , for any u ∈ X.

(d) Every representation (Definition 3.48) of W (X,σ) on a Hilbert space H

π : W (X,σ)→B(H)

is either faithful of null.
(e) Let W (X′,σ ′) be a Weyl ∗-algebra of the symplectic vector space (X′,σ ′). If
f : X→X′ is a symplectic linear map, there exists a ∗-homomorphism (∗-isomorphism
if f is a symplectomorphism) α f : W (X,σ)→W (X′,σ ′) that is completely determ-
ined by:

α f (W (u)) = W ′( f (u)) , u ∈ X (11.47)

(with obvious notation). Furthermore, α f is injective.

Proof. (a) Consider theC-Hilbert space H := L2(X,μ) where μ is the counting meas-
ure of the set X. With u∈ X consider W (u)∈B(L2(X,μ)) defined by (W (u)ψ)(v) :=
eiσ(u,v)ψ(u+ v) for any ψ ∈ L2(X,μ), v ∈ X. It is immediate that such operators are
non-null and satisfy Weyl’s commutation relations (11.46), by using Hermitian con-
jugation as involution. Finite combinations of finite products form a Weyl ∗-algebra
of (X,σ).
(b) From the first equation in (11.45) we have W (u)W (0) = W (0) = W (0)W (u) and
W (u)W (−u) = W (0) = W (−u)W (u), because the W (u) do not vanish and generate
the whole ∗-algebra. Hence W (0) = I and W (−u) = W (u)−1. The latter, bearing in
mind the second equation in (11.45), implies W (u)∗ = W (u)−1. Now let us prove the
generators’ linear independence. Consider a subset of n generators {W (u j)} j=1,...,n,
with u1, . . . ,un all distinct, and let us show the W (u j) are independent. Over arbitrary
subsets (and finite combinations) the claim is proved. Consider the null combination
∑n

j=1 a jW (u j) = 0 and let us prove, by induction, a j = 0 for j = 1, . . . ,n. If n = 1
this is true as every W (u) is non-null by definition. Suppose the claim holds for n−1
generators, however chosen, and let us prove the assertion for n. Without loss of
generality (relabelling if necessary) we may assume, by contradiction, an � 0. Then
∑n

j=1 a jW (u j) = 0 implies

W (un) =
n−1

∑
j=1

−a j

an
W (u j) .

Consequently

I= W (un)∗W (un) =
n−1

∑
j=1

−a j

an
W (un)∗W (u j) =

n−1

∑
j=1

−a j

an
e−iσ(−un,u j)/2W (u j−un)

=
n−1

∑
j=1

b jW (u j−un) ,
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where b j := −a j
an

e−iσ(−un,u j)/2. To prove the claim it suffices to show b j = 0 for every
j = 1,2, . . . ,n−1. To do so, let us fix a u ∈ X, so by the above identity

I= W (u)IW (−u) =
n−1

∑
j=1

b jW (u)W (u j−un)W (−u)

=
n−1

∑
j=1

b je
−iσ(u,u j−un)/2W (u j−un) .

Comparing the expressions obtained for I we have

n−1

∑
j=1

b jW (u j−un) =
n−1

∑
j=1

b je
−iσ(u,u j−un)/2W (u j−un) .

Multiply by W (un) and simplify:

n−1

∑
j=1

b jW (u j) =
n−1

∑
j=1

b je
−iσ(u,u j−un)/2W (u j) .

As the generators W (u j), j = 1,2, . . . ,n−1, are linearly independent, we have b j(1−
e−iσ(u,u j−un)/2) = 0. If b j � 0 for some j then we would have 1 = e−iσ(u,u j−un)/2,

and so
σ(u,u j−un)

2π = k(u) ∈ Z. But the left-hand side is linear in u ∈ X, so the map-
ping X � u 	→ k(u) must be linear. Being Z-valued it is the zero map. Therefore
σ(u,u j−un) = 0 for any u∈X. Non-degeneracy of σ implies u j−un = 0, an absurd.
(c) The Weyl generators are linearly independent, and the product of two is a complex
multiple of a generator (by the first Weyl identity), whence generators form a basis
for the Weyl ∗-algebra. Consider the unique linear map α : W (X,σ) → W ′(X,σ)
defined by α(W (u)) = W ′(u) for any u ∈ X. As {W (u)}u∈X and {W ′(u)}u∈X are
bases of the corresponding ∗-algebras, α is a vector-space isomorphism. But products
of elements of the two ∗-algebras are combinations of the generators, by the first
set of Weyl relations (the same for both ∗-algebras), so α must preserve products.
α(W (0)) = W ′(0) implies α preserves multiplicative neutral elements. Eventually
α(W (−u)) = W ′(−u) and the second Weyl set imply α commutes with involu-
tions as well. The procedure also shows that α is uniquely determined by fixing
α(W (u)) = W ′(u) for every u ∈ X.
(d) Consider a representation π : W (X,σ) → B(H). By construction the operators
{π(W (u))}u∈X satisfy Weyl’s relations. If every π(W (u)) is non-null, they define
a Weyl ∗-algebra of (X,σ). By part (c) the representation π , when the codomain
restricts to π(W (X,σ)), is a ∗-isomorphism, making π injective. If, on the con-
trary, π(W (u)) = 0 for some u ∈ X , then π is the zero representation. That is be-

cause if z ∈ X, setting z− u =: v implies π(W (z)) = e
i
2σ(u,v)π(W (u))π(W (v)) =

e
i
2σ(u,v)0π(W (v)) = 0 by Weyl’s relations. Hence π is null as the W (v) form a basis

for W (X,σ).
(e) As the generators of the Weyl ∗-algebra form a basis, as we said in (c), there is
one and only one linear map α f : W (X,σ)→W (X′,σ ′), completely determined by
(11.47). Using the Weyl relations, recalling f preserves symplectic forms, we ob-
tain α f is a ∗-homomorphism. Its uniqueness is clear, since any ∗-homomorphism
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is linear, and (11.47) determine α f for they fix its values on given bases. Injectiv-
ity goes like this: if α(∑i aiW (ui)) = 0 (summing over an arbitrary, finite, set) then
∑i aiα(W (ui)) = 0, i.e. ∑i aiW ′( f (ui)) = 0, where f (ui) � f (u j) for i � j as f is
one-to-one (σ ′ is weakly non-degenerate). Since the W ′(u′) are linearly independent,
ai = 0 for every i and α(∑i aiW (ui)) = 0 implies ∑i aiW (ui), as we wanted. �

Remark 11.27. (1) In the sense of (a), (c) above, the pair (X,σ) and equations (11.45)
determine the Weyl ∗-algebra of (X,σ) universally (up to isomorphisms). Any con-
crete Weyl ∗-algebra of (X,σ) is sometimes called a realisation of the Weyl ∗-algebra
of (X,σ). A realisation on a Hilbert space H is a faithful representation of the ab-
stract Weyl ∗-algebra on H.
(2) If W (X,σ) is a realisation of the Weyl ∗-algebra of (X,σ) by means of operators
on the Hilbert space H, it is in general false that the identity operator I : H→ H co-
incides with the neutral element I= W (0) of the algebra. The matter is relevant also
because Weyl’s relations imply I= I if and only if every generator W (u) is a unitary
operator.

Let us show a simple counterexample. Suppose W (X,σ) is a representation on
the Hilbert space (H,(·|·)) of the Weyl ∗-algebra of (X,σ), where W (0) = I= I. Con-
sider the Hilbert space H′ := H⊕C with product 〈(ψ ,z)|(ψ ′,z′)〉 = (ψ |ψ ′)+ zz. A
representation on H′ of the Weyl ∗-algebra of (X,σ) is generated by the operators
W (u)′ : (ψ ,z) 	→ (W (u)ψ ,0), where the W (u) generate the Weyl ∗-algebra on H. In
this case I = W (0)′ : (ψ ,z) 	→ (ψ ,0), so W (0)′ is not the identity on H′, but just the
orthogonal projector on H. Nevertheless, there exist also representations for which
generators are unitary; for instance, the so-called GNS representations, that we will
encounter later,2 are fundamental in formulations of quantum field theories.
(3) If W (V,σ) is a realisation on the Hilbert space H of the Weyl ∗-algebra of (V,σ)
and H is irreducible for the generating set {W (u)}u∈V, then I = I and the W (u) are
unitary.

Note W (u) � 0, for any u ∈ V, for otherwise the representation would be null,
hence reducible. If I � I, the operator W (0) = I would be a projector, different from
the zero and the identity of H, that commutes with every W (u) because W (u)W (0) =
W (0) = W (0)W (u). Then the closed projection space of W (0) (by assumption other
than {0} and H) would be invariant under every W (u), hence W (V,σ)-invariant,
contradicting the assumption.
(4) If W (V,σ) is a realisation on the Hilbert space H of the Weyl ∗-algebra of (V,σ),
then I = I (the W (u) are unitary) precisely when each generator {W (u)}u∈V has
trivial kernel {0}.

The proof is straightforward. If every W (u) has trivial null space, the orthogonal
projector W (0) = I has trivial kernel and must coincide with the projector I. Con-
versely if W (0) = I then the W (u) are unitary, hence their null spaces are trivial.
(5) The Weyl ∗-algebra W (V,σ) of a symplectic vector space (V,σ) admits a norm
rendering the algebra’s Banach completion a C∗-algebra: the Weyl C∗-algebra of
(V,σ). Take, for example, the closure of the realisation of (V,σ) in B(L2(X,μ)) de-

2 In such a case the concrete construction of the representation and the existence of a cyclic
vector force W (u) to be unitary.
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scribed in the proof of Theorem 11.26(a). The important fact, proved in Chapter 14,
is that this C∗-algebra is determined by (V,σ), for one can prove there is a unique
norm on a Weyl ∗-algebra satisfying the C∗ identity ||a∗a|| = ||a||2. Moreover, the
∗-isomorphism of Theorem 11.26(c) extends to an (isometric) ∗-isomorphism of the
C∗-algebras. Weyl C∗-algebras are but one starting point to build the quantum theory
of Bosonic fields [BrRo02]. See [Str05a] for an example of C∗-algebras used in QM.

�

11.3.5 Proof of the theorems of Stone–von Neumann and Mackey

In this section we prove the Stone–von Neumann theorem as given by 11.22, and
then Mackey’s Theorem 11.23. Part of the arguments are mere reworkings of the
analogous in [Str05a]. We will make a few remarks at the end, of mathematical
nature and physical alike, on the relevance of these results and their broader reach.

Proof of Theorem 11.22 (Stone–von Neumann). Begin by observing every operator
W (z) ∈ B(H) is non-zero: for if W (z0) = 0, for every z ∈ X with z− z0 =: v, we

would have W (z) = e
i
2σ(z0,v)W (z0)W (v) = e

i
2σ(z0,v)0W (v) = 0. Then H would not

be irreducible for the entire family W (z) ∈ B(H). By Definition 11.25, the set of
W (z) ∈ B(H) is a generating system for a realisation of a Weyl ∗-algebra A of the
symplectic vector space (X,σ). This is given by finite combinations of finite products
of the W (z) and realised as the image of a faithful representation π : A → B(H)
of A. Fix a basis in X, so to associate bijectively every z ∈ X to its components
(t(z),u(z)) ∈ Rn × Rn. Consider the Hilbert space L2(Rn,dx). The family of non-

null (unitary) operators

{

exp

{

i∑n
k=1 t(z)k Xk +u(z)

k Pk

}}

z∈X
defines, by Proposi-

tion 11.18, another realisation of the same ∗-algebra A and a corresponding faithful
representation π1 : A→B(L2(Rn,dx)). We denote by az ∈ A the generators of A, so

that π(az) = W (z) and also π1(az) = exp

{

i∑n
k=1 t(z)k Xk +u(z)

k Pk

}

for any z ∈ X.

Suppose now there are two non-zero vectors Φ0 ∈ H,Ψ0 ∈ L2(Rn,dx) such that: (i)
D := π(A)Φ0 is dense in H, (ii) D1 := π1(A)Ψ0 is dense in L2(Rn,dx), and (iii):

(Φ0 |π(a)Φ0 ) = (Ψ0 |π1(a)Ψ0 ) , a ∈ A. (11.48)

Let us show that, consequently, there is a linear map S̃ : D →D1

S̃π(a)Φ0 = π1(a)Ψ0 , a ∈ A, (11.49)

extending by continuity to a Hilbert isomorphism from H to L2(Rn,dx) satisfying
(11.44), and thus proving the theorem.

The mapping is well defined: suppose π(a)Φ0 = π(b)Φ0. For (11.49) to be well
defined we must have π1(a)Ψ0 = π1(b)Ψ0. From π(a)Φ0 = π(b)Φ0 follows, for any
c ∈ A:

(π(c)Φ0|π(a)Φ0) = (π(c)Φ0|π(b)Φ0) .
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Since π is a representation of ∗-algebras, so π(c∗) = π(c)∗ and π( f )π(d) = π( f d),
the displayed equation is equivalent to

(Φ0|π(c∗a)Φ0) = (Φ0|π(c∗b)Φ0)

so by (11.48) we have (Ψ0|π1(c∗a)Ψ0) = (Ψ0|π1(c∗b)Ψ0). Proceeding backwards, for
any c ∈ A:

(π1(c)Ψ0|π1(a)Ψ0) = (π1(c)Ψ0|π1(b)Ψ0) .

As π1(c)Ψ0 roams the dense space D1, necessarily π1(a)Ψ0 = π1(b)Ψ0, as required.
Therefore S̃ in (11.49) is well defined. It is immediate to see that S̃ is linear, for π , π1

are representations. By construction S̃ preserves the inner product, and so is isometric:

(
S̃π(a)Φ0|S̃π(b)Φ0

)
= (π1(a)Ψ0|π1(b)Ψ0) = (Ψ0|π1(a)∗π1(b)Ψ0)

= (Ψ0|π1(a∗)π1(b)Ψ0) = (Ψ0|π1(a∗b)Ψ0) = (Φ0|π(a∗b)Φ0)

= (Φ0|π(a∗)π(b)Φ0) = (Φ0|π(a)∗π(b)Φ0) = (π(a)Φ0|π(b)Φ0) .

By Proposition 2.44 we can extend, by linearity and continuity, the transformation
S̃ from the dense domain D to the Hilbert space, obtaining a linear map S : H →
L2(Rn,dx). The extension S stays isometric by inner product’s continuity. Simil-
arly, we can construct on the dense D1 first, then on L2(Rn,dx), a linear isometry
S′ : L2(Rn,dx)→ H by extending

S̃′π1(a)Ψ0 = π(a)Φ0 for any a ∈ A. (11.50)

Since S̃S̃′ = ID1 , S̃′S̃ = ID on the dense spaces D1, D , these are valid by continuity
on the extended domains: SS′ = IL2(Rn,dx), S′S = IH. Overall, S : H→ L2(Rn,dx) is a
Hilbert isomorphism satisfying

Sπ(a)Φ0 = π1(a)Ψ0 for any a ∈ A. (11.51)

Invert the identity for b ∈ A to obtain π(b)Φ0 = S−1π1(b)Ψ0. Substituting in
(11.51), and replacing π(a) by π(ab) = π(a)π(b) on the left and π1(a) by π1(ab) =
π1(a)π1(b) on the right, finally produces:

Sπ(a)S−1 π1(b)Ψ0 = π1(a)π1(b)Ψ0 .

The vectors π1(b)Ψ0 define a dense space in L2(Rn,dx), so

Sπ(a)S−1 = π1(a) for any a ∈ A .

Picking as a ∈ A a generic Weyl generator transforms the identity into (11.44).
To end the proof we have to exhibit vectors Φ0,Ψ0 satisfying (11.48) and gen-

erating, under the respective representations, dense subspaces. Let Φ0 be any non-
zero vector. The closed π(A)Φ0 is invariant by any π(a), and in particular by any
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π(W (z)), by construction. Since H is irreducible for these vectors, then π(A)Φ0 = H,
i.e. D := π(A)Φ0 is dense in H. A similar argument says D1 := π1(A)Ψ0 is dense in
L2(Rn,dx) for every non-zeroΨ0 ∈ L2(Rn,dx). There remains to determine Φ0,Ψ0

fulfilling (11.48). Consider in L2(Rn,dx) the vector

Ψ0(x) = ψ0(x1) · · ·ψ0(xn) = π−n/4e−|x|
2/2

where ψ0 is the first Hermite function. A straightforward calculation based on
Lemma 11.11 gives

(

Ψ0

∣
∣
∣
∣
∣
exp

{

i
n

∑
k=1

tkXk +ukPk

}

Ψ0

)

= π−n/2
∫

Rn
eit·xe−|x+u|2/2dx = e−|t|

2/4−|u|2/4

and so

(

Ψ0

∣
∣
∣
∣
∣
exp

{

i
n

∑
k=1

tkXk +ukPk

}

Ψ0

)

= e−(|t|2+|u|2)/4 , for any (t,u) ∈ Rn×Rn.

(11.52)
If we manage to find a Φ0 ∈ H such that

(Φ0 |W (z) Φ0) = e−(|t(z)|2+|u(z)|2)/4 , for any z ∈ X, (11.53)

then (11.48) holds by linearity, as any π1(a) is a combination of elements π1(az) and
the corresponding π(a) is a combination (same coefficients) of elements π(az). At
this point the existence of such a Φ0 is warranted by the next proposition.

Proposition 11.28. Under the assumptions of Theorem 11.22, if a basis on X has
been fixed so to map every z ∈ X to its components (t(z),u(z)) ∈ Rn×Rn, there exists
Φ0 ∈ H satisfying (11.53).

Proof. First, the operators W (z) are unitary with W (0) = I, by Remark 11.27(3)
and because H is W (z)-irreducible. We claim X � z 	→ W (z) is continuous in the
strong topology (the regularity assumption s-lims→0W (sz) = W (0) = I is only ap-
parently weaker than strong continuity at z = 0, since the limit might not be uni-
form along directions tending to the origin). Let us set W ((t(z),u(z))) := W (z) in
the sequel. Let us begin by proving Rn � t 	→W ((t,0)) and Rn � u 	→W ((0, t)) are
strongly continuous. We will prove it for Rn � t 	→W ((t,0)) only, as the other case
is identical. Weyl’s relations imply additivity: W ((t,0))W ((t′,0)) = W ((t + t′,0)).
If e1, . . . ,en are the basis vectors expressing t = ∑n

k=1 tkek we can write W ((t,0)) =
W ((t1e1,0)) · · ·W ((tnen,0)). Each map R � tk 	→W ((tkek,0)) is strongly continuous
by regularity, i.e. s-lims→0W (sz) = W (0) = I in Theorem 11.22. Take ψ ∈ H and let
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us show ||W ((t,0))ψ−ψ || → 0 as t→ 0. We have

||W ((t,0))ψ−ψ ||=
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n

∏
k=1

W ((tkek,0))ψ−ψ
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n

∏
k=1

W ((tkek,0))ψ−
n−1

∏
k=1

W ((tkek,0))ψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n−1

∏
k=1

W ((tkek,0))ψ−
n−2

∏
k=1

W ((tkek,0))ψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
+ · · ·+ ||W ((t1e1,0))ψ−ψ ||

= ||W ((tnen,0))ψ−ψ ||+||W ((tn−1en−1,0))ψ−ψ ||+· · ·+||W ((t1e1,0))ψ−ψ || .
In the last passage we used that W ((tkek,0)) is unitary, so it preserves the norm; in
particular
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n

∏
k=1

W ((tkek,0))ψ−
n−1

∏
k=1

W ((tkek,0))ψ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n−1

∏
k=1

W ((tkek,0))(W ((tnen,0))ψ−ψ)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

= ||W ((tnen,0))ψ−ψ || .
The inequality

||W ((t,0))ψ−ψ || ≤
n

∑
k=1

||W ((tkek,0))ψ−ψ ||

and the continuity of W ((tkek,0))ψ for tk → 0 imply

W ((t,0))ψ → ψ as t→ 0,

working on products of intervals along the Cartesian axes as neighbourhoods of z = 0.

Therefore the function X � z 	→ (φ1 |W (z) φ2) =
(

W ((t(z),0))∗φ1

∣
∣
∣W ((0,u(z))) φ2

)

is continuous at z = 0 for any φ1,φ2. Hence X � z 	→W (z) is strongly continuous
everywhere, in fact

||W (z)φ −W (z0)φ ||2 = ||eiσ(z0,z)/2W (z− z0)φ −φ ||2

= 2||φ ||2− e−iσ(z0,z)/2(φ |W (z− z0)φ)− eiσ(z0,z)/2(φ |W (z− z0)φ)→ 0 as z→ z0,

for any φ ∈ H, by the Weyl relations and the unitarity of W (z). We can then apply
Proposition 9.27 and define

P := (2π)−n
∫

R2n
dze−|z|

2/4W (z) . (11.54)

By construction P ∈B(H), and Proposition 9.27 implies P∗ = P:

(φ1 |P∗φ2 ) = (φ2|Pφ1) = (2π)−n
∫

R2n
e−|z|

2/4(φ2 |W (z) φ1)dz

= (2π)−n
∫

R2n
e−|z|

2/4 (φ1 |W (z) φ2) dz = (φ1|Pφ2) ,
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where we used

(φ2 |W (z) φ1) = (W (z)φ1 | φ2) = (φ1 |W (z)∗φ2) = (φ1 |W (−z)φ2) ,

and that the measure dz and exp−|z2/4| are unchanged by the reflection z → −z.
Notice P � 0, for otherwise

0 =
(
φ1|W (z′)PW (z′)φ2

)
= (2π)−n

∫

R2n
e−|z|

2/4 (φ1
∣
∣W (z′)W (z)W (z′) φ2

)
dz

i.e., by Weyl’s relations:

0 = (2π)−n
∫

R2n
e−|z|

2/4eit(z
′)·t(z)−iu(z′)·u(z)

(φ1 |W (z) φ2) dz .

In other terms the Fourier transform of the L1 function

z 	→ e−|z|
2/4 (φ1 |W (z) φ2)

is null. Then by Proposition 3.81(f) z 	→ (φ1 |W (z) φ2) = 0 almost everywhere. Since
the map is continuous it must vanish everywhere, so W (z) = 0. As earlier mentioned
this cannot be. To finish the proof we need to justify:

PW (z)P = e−|z|
2/4P . (11.55)

Choosing z = 0 in (11.55) gives PP = P, making P a non-null orthogonal projector.
If Φ0 ∈ P(H)\{0} with ||Φ0|| = 1, as PΦ0 = Φ0, equation (11.55) implies, for any
z ∈ X

(Φ0|W (z)Φ0) = e−|z|
2/4 = e−(|t(z)|2+|u(z)|2)/4 .

Hence our Φ0 satisfies (11.53). Now let us prove (11.55). By definition of P Propos-
ition 9.27(b) and Weyl’s relations give

(2π)nPW (z)P =
∫

Rn
dz′e−z′2/4PW (z)W (z′) =

∫

R2n
dz′e−z′2/4e−iσ(z,z′)/2PW (z+ z′) .

Recalling (11.54) we can solve for P the integrand. By Proposition 9.27(b):

(φ1|PW (z)Pφ2)

=
1

(2π)2n

∫

dz′dz”e−(z′2+z”2)/4e−iσ(z,z′)/2e−iσ(z′′,z+z′)/2 (φ1|W (z+ z′+ z”)φ2
)

(11.56)
for any φ1,φ2 ∈ H. We have passed from an iterated integral to an integral in the
product measure using Fubini–Tonelli: this is because the integrand vanishes abso-
lutely and exponentially as the product measure’s variables go to infinity, due to the
exponentials and the estimate |(φ1|W (z+ z′+ z”)φ2) | ≤ ||φ1|| ||φ2||. Set z = (α ,β ),
z′ = (γ ′,δ ′) and z′′ = (γ,δ ). The right side of (11.56) reads:

∫

R4n

dγdδdγ ′dδ ′

(2π)2n e−(|γ|2−|δ |2−|γ ′|2−|δ ′|2)/4e−
i
2 (α·δ ′−β ·γ ′+γ·β+γ·δ ′−δ ·α−δ ·γ ′)

×(φ1
∣
∣W ((α+ γ+ γ ′,β +δ +δ ′)) φ2

)
.
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Changing variables to κ,ν ,μ ,λ ∈Rn, where γ = (κ+μ−α)/2, γ ′ = (κ−μ−α)/2,
δ = (ν+λ −β )/2, δ ′ = (ν−λ −β )/2, the integral can be computed explicitly, be-
cause the integrals in μ , λ decouple to produce Gaussian integrals. The right-hand
side of (11.56) equals, eventually:

e−(|α|2+|β |2)/4

(2π)n

∫

R2n
dκdνe−(|κ|2+|ν |2)/4 (φ1 |W ((κ,ν)) φ2) = e−|z|

2/4(φ1|Pφ2)

which produces (11.55) since φ1,φ2 ∈ H are free. �

This concludes the proof of Theorem 11.22 (Stone–von Neumann). �

Proof of Theorem 11.23 (Mackey). The hypotheses (a1), (a2), (a3) are equivalent
because of Remark 11.27(4). With those assumptions the W (z) are unitary, with
W (0) = I. By this we can go through the proof of 11.26, which only used that the
W (z) were unitary with W (0) = I, and did not rely on the representation’s irreducib-
ility, and build the orthogonal projector P � 0:

P = (2π)−n
∫

R2n
dze−|z|

2/4W (z) , for any z ∈ R2n ,

so that every Φ0 ∈ P(H) satisfies

(Φ0|W (z)Φ0) = e−|z|
2/4 = e−(|t(z)|2+|u(z)|2)/4 ,

as we have seen. First we show the closed H0 := < {W (z)P(H)}z∈X > coincides
with H. H0 is, by construction, invariant under W (z). Then H⊥

0 is also invariant. If
H⊥

0 � {0}, working in H⊥
0 as ambient Hilbert space, using the restrictions W (z)�H⊥0

(note W (0)�H⊥0
= I�H⊥0

� 0 if H⊥
0 � {0}), we construct the unique orthogonal projector

P′ � 0 such that

(φ ′1|P′φ ′2) = (2π)−n
∫

R2n
e−|z|

2/4 (φ ′1 |W (z) φ ′2
)

dz , for any z ∈ R2n, φ1,φ2 ∈ H⊥
0 .

We know the integral on the right equals (φ ′1|Pφ ′2), i.e. zero, because φ ′2 ∈ H⊥
0 =

(P(H))⊥. Hence P′ = 0, but this contradicts P′ � 0. We conclude H⊥
0 = {0}, and

so H0 = H. Take a basis {Φk}k∈I of P(H) and consider the closed spaces Hk :=
< {W (z)Φk}z∈X > invariant under W (z). Notice Φk ∈ Hk, since W (0) = I, so Hk �
{0} for any k ∈ I. By (11.55):

(Φ j|W (z)Φk) = (Φ j|PW (z)PΦk) = e−|z|
2/4(Φ j|PΦk) = 0 if j � k .

We have found closed subspaces H j � {0} that are mutually orthogonal (in
particular j varies in a countable set if H is separable). By construction, as
< {W (z)P(H)}z∈X > = H and {Φk}k∈I is a basis in P(H), the space of finite com-
binations of vectors in the mutually orthogonal Hk is dense in H: H is thus a Hilbert
sum ⊕k∈IHk of the closed Hk, k ∈ I (Definition 7.34). To finish, on every Hk we can
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replicate the proof of Stone–von Neumann with H replaced by Hk and π : A→B(H)
replaced by πk : A→B(Hk), restriction of the image of each operator in π(A) to Hk.
The only difference is that now πk(A)Φk is dense in Hk by assumption, whereas in
the theorem it descends from the irreducibility of πk(A). Thus the restriction πk(A)
of π(A) to Hk is isomorphic to the standard representation of the Weyl algebra on
L2(Rn,dx). As the latter is irreducible, so must be every πk. This ends the proof. �

11.3.6 More on “Heisenberg’s principle”: weakening the
assumptions and extension to mixed states

The formalism developed to prove the Stone–von Neumann theorem allows to gen-
eralise Theorem 11.13, i.e. Heisenberg’s principle, by taking weaker assumptions on
the set to which ψ belongs (the existence of (ΔXi)ψ , (ΔPj)ψ suffices). It also enables
to extend it to include mixed states. Let us begin with a technical lemma.

Lemma 11.29. Let Xi, Pj be the position and momentum operators of axiom A5, and
define X ′

i := Xi +aiI, P′j := Pj +b jI, with ai,b j ∈ R. If ψ ,φ ∈ D(Xi)∩D(Pj) the ca-
nonical commutation relations hold, here written using quadratic forms:

(X ′
iψ |P′jϕ)− (P′jψ |X ′

iϕ) = ih̄δi j(ψ |ϕ) . (11.57)

Proof. Notice D(Xi) = D(X ′
i ), D(Pj) = D(P′j). In case ai,b j = 0, consider (11.22),

so
(W ((−t,0))ψ |W ((0,u))ϕ )− (W ((0,−u))ψ |W ((t,0))ϕ )

= (1− e−i(t·u)/2)(W ((−t,0))ψ |W ((0,u))ϕ ) .

Using Stone’s theorem (X ′
iψ |P′jϕ)−(P′jψ |X ′

iϕ) = ih̄δi j(ψ |ϕ). Add aiI and b jI to the
operators inside the scalar products on the left. Since Xi, Pj are Hermitian, the terms
on the right cancel out, yielding (11.57) in the general case. �

Theorem 11.30. Let Xi and Pj be the position and momentum operators of axiom A5.
If the unit vector ψ ∈ HS is such that (ΔXi)ψ and (ΔPi)ψ exist, then Heisenberg’s
principle holds:

(ΔXi)ψ(ΔPi)ψ ≥ h̄/2 .

Proof. By part (i) in Proposition 11.8(a) if (ΔXi)ψ and (ΔPi)ψ are defined then
ψ ∈ D(Xi) ∩D(Pi). Referring to Lemma 11.29 we choose ai = −(ψ |Xiψ), b j =
−(ψ |Piψ). By definition of standard deviation (11.3) and Theorem 9.4(f) we have

(ΔXi)2
ψ =
∫
(λ−ai)2dμ(A)

ψ (λ ) = ||X ′
iψ ||2. Similarly, ||P′iψ ||2 = (ΔPi)2

ψ . On the other
hand (for any ai, bi) from (11.57) we infer:

||X ′
iψ ||||P′iψ || ≥ |(X ′

iψ |P′iψ)| ≥ |Im(X ′
iψ |P′iψ)|= h̄

2
. (11.58)

Since (ΔXi)ψ(ΔPi)ψ = ||X ′
iψ ||||P′iψ ||, the claim is proved. �

So now we can extend “Heisenberg’s principle” to mixed states as well.
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Theorem 11.31. Let Xi and Pj be the position and momentum operators of axiom
A5. If ρ is a mixed state for the spin-zero particle such that (ΔXi)ρ and (ΔPi)ρ exist,
then:

(ΔXi)ρ(ΔPi)ρ ≥ h̄
2

.

Proof. Let us notice, preliminarly, that if (ΔXi)ρ and (ΔPi)ρ can be defined, then also
〈(Xi)k〉ρ and 〈(Pi)k〉ρ , k = 0,1,2, are defined, as is easy to see using Definition 11.6,
because measures are finite. Furthermore, Ran(ρ)⊂D(Xi)∩D(Pi) by (ii) in Propos-
ition 11.8(b), as Ran(ρ1/2) ⊃ Ran(ρ). Set X ′

i := Xi + aiI, P′i := Pi + biI, and choose
ai :=−〈Xi〉ρ , bi :=−〈Pi〉ρ . A direct computation relying on Definition 11.6 tells that
(ΔXi)2

ρ = 〈(X ′
i )

2〉ρ and (ΔPi)2
ρ = 〈(P′i )2〉ρ . Write ρ =∑n pnψn(ψn| ) in a basis of unit

eigenvectors. We argue as in Proposition 11.8 when we proved (11.11). As A = X ′
i ,P

′
i

and f (λ ) = λ , and since μ(A)
ρ (E) = tr(P(A)(E)ρ) = ∑n pnμψn(E), using that pn ≥ 0

we can prove:

∫

| f (λ )|2dμ(A)
ρ (λ ) =

+∞

∑
n=0

pn

∫

| f (λ )|2dμ(A)
ψn (λ ) =

+∞

∑
n=0

pn( f (A)ψn| f (A)ψn)≤+∞ ,

where ψn ∈ D(X ′
i )∩D(P′i ) = D(Xi)∩D(Pi), because ψn ∈ Ran(ρ)⊂ D(Xi)∩D(Pi).

Therefore:
(ΔXi)2

ρ = 〈(X ′
i )

2〉ρ =∑
n

pn(X ′
iψn|X ′

iψn)

and
(ΔPi)2

ρ = 〈(P′i )2〉ρ =∑
m

pm(P′iψm|P′iψm) .

Schwarz’s inequality plus (11.58) imply the claim, because

〈(X ′
i )

2〉1/2
ρ 〈(P′i )2〉1/2

ρ ≥∑
n

p1/2
n p1/2

n (X ′
iψn|X ′

iψn)1/2(P′iψn|P′iψn)1/2 ≥∑
n

pn
h̄
2

=
h̄
2

(note pn ≥ 0 and ∑n pn = 1). �

11.3.7 The Stone–von Neumann theorem revisited, via the
Heisenberg group

Our approach to the proof of Stone–von Neumann relies on the structure of (Weyl)
∗-algebra. There is, however, another point of view, due to Weyl, in which the
(Weyl-)Heisenberg group plays the algebra’s role. The Heisenberg group in R2n+1,
which we indicate by H (n), is the simply connected Lie group diffeomorphic to
R

2n+1 with product law

(η , t,u)◦ (η ′, t′,u′) =

(

η+η ′+
1
2

n

∑
i=1

uit
′
i −u′iti , t+ t′ , u+u′

)
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(as usual t∈ Rn, u ∈Rn whilst η ∈R). A direct computation of its Lie algebra shows
there is a basis of 2n+1 generators xi, pi, e, i = 1,2, . . . ,n that satisfy:

[xi,p j] = δi je , [xi,e] = [pi,e] = 0 , i, j = 1,2, . . . ,n .

The linear mapping determined by e 	→ −iI, xk 	→ −iXk, pk 	→ −iPk is an isomorph-
ism from the Heisenberg Lie algebra to the Lie algebra of finite real combinations of
the conjugate self-adjoint operators −iI,−iXk,−iPk, restricted to the common, dense
and invariant domain S (Rn), with commutator [·, ·] as Lie bracket. This map induces
a Lie group isomorphism. By direct inspection, in fact, if the operators W ((t,u)) are
defined by Proposition 11.18, the map

R
2n+1 � (η , t,u) 	→ eiηW ((t,u)) =: H((η , t,u)) (11.59)

is a faithful (one-to-one) and irreducible unitary representation of the 2n+1-dimen-
sional Heisenberg group on L2(Rn,dx). Moreover,

s- lim
s→0

H(s(η , t,u)) = I for any given (η , t,u) ∈ R2n+1 . (11.60)

Conversely,

Proposition 11.32. An irreducible unitary representation of the Heisenberg group
H (n) � (η , t,u) 	→H((η , t,u)) on the Hilbert space H, such that (11.60) holds, has
the form (11.59):

H((η , t,u)) = eiηW ((t,u)) ,

where the W ((t,u)) satisfy the Stone–von Neumann Theorem 11.22.

Proof. Equation (11.59) holds because the centre R of the Heisenberg group is rep-
resented by a unitary Abelian subgroup. As the elements ofR commute with the Weyl
group every element H((η ,0,0)) commutes with the whole representation. But the
latter is irreducible, so Schur’s lemma forces H((η ,0,0)) = χ(η)I, with χ(η) ∈ C,
and |χ(η)| = 1 as H((η ,0,0)) is unitary. Eventually, since η → H((η ,0,0)) is
strongly continuous, Stone’s theorem implies χ(η) = eicη for every η ∈ R and some
constant c. The group’s commutation rules require c = 1, but also make the W ((t,u))
obey Weyl’s relations. �

In this framework we have an alternative statement of Stone–von Neumann, first
proved by Weyl.

Theorem 11.33. Every irreducible unitary representation of the Heisenberg group
H (n) satisfying (11.60) is unitarily equivalent to the representation on L2(Rn,dx):

R
2n+1 � (η , t,u) 	→ eiηW ((t,u)) ,

where the W ((t,u)) are operators of Proposition 11.18.

Proof. Immediate consequence of Proposition 11.32, in this setup. �
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Remark 11.34. (1) The Stone–von Neumann theorem proves that the non-relativistic
elementary particle with spin 0 is described by an irreducible representation of a cer-
tain Lie group. The same happens for particles with spin, charge, . . . , provided one
picks the right group. Elementary systems are thus described by irreducible repres-
entations of a group, typically related to the symmetries of the physical system. This
point of view has proved – thanks to Wigner in particular – incredibly rewarding for
the development of relativistic quantum theories, where irreducible representations
of the Poincaré group are employed to define elementary particles, and irreducibility
is a characteristic feature of elementary systems.
(2) There exist more or less rigorous formulations of the Stone–von Neumann the-
orem that rely only on Heisenberg’s relations (11.15) and do not need exponentials.
To set up these formulations, though, the technical assumptions on domains (spaces
of analytic vectors) and on the existence of self-adjoint extensions are not al all obvi-
ous, nor they have a straightforward physical meaning. Beside the foundational work
of E. Nelson [Nel59], an important and thorough result is that of J. Dixmier [Dix56],
which we shall return to in the next chapter. In a nutshell the theorem, generalised to
arbitrary finite dimension, states that if P, Q are symmetric on a dense invariant space
on which Heisenberg’s relations hold, and there P2 + Q2 is essentially self-adjoint,
then P, Q give a strongly continuous representation of the Weyl algebra on the Hilbert
space; hence, up to isomorphisms, P, Q have the usual form on L2(R,dx). �

11.3.8 Dirac’s correspondence principle and Weyl’s calculus

The formulation of QM we have presented leaves open the question of how to pick out
operators on H that correspond to observables of physical interest, other than position
and momentum. Several important authors have written much about procedures al-
lowing to pass from relevant classical observables to major quantum observables. But
that is somewhat like fighting a losing battle: from a physical perspective Quantum
Mechanics is ‘more central’ than Classical Mechanics, whence the latter should be
seen as a limiting case of the former. Even this fact is by no means easy to prove, apart
in a few general cases: one such is Eherenfest’s theorem, whose precise formulation
was found only recently [FK09]. Thus one expects there should be quantum entities,
observables in particular, without classical counterparts (for instance the “parity” of
elementary particles, and in many respects also spin).

That said, certain quantum observables for the spin-zero particle will, in prin-
ciple, be “functions” of the observables Xi, Pi. The common belief is that the quantum
quantity corresponding to the classical F(x, p) should look something like F(X ,P).
But going down this road is a real challenge, more than what mathematics prospects.
In fact: (1) is it not at all obvious what meaning one should assign to a function of
X and P when these operators have non-commuting spectral measures (in the com-
muting case there are ways out that use joint measures, like (11.1); (2) naïve recipes
in this direction do not produce self-adjoint, not even symmetric, operators when the
operators do not commute.

For the sake of clarity consider the classical quantity x · p. Which observable –
i.e. self-adjoint operator – should it correspond to? Passing to the spectral measures
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is ill-advised, because they do not commute. So let us try to use the operators them-
selves, restricted to an invariant and dense subspace where they are both defined.
The hope is to produce an essentially self-adjoint operator, or at least symmetric,
and then in some way or another choose among its self-adjoint extensions (if any at
all, in case the operator is symmetric). The tentative answer:

x · p corresponds to X ·P(= ∑n
i=1 XiPi)

is totally inadequate, even if we view the operators on the invariant dense space
S (R3). That is because X ·P is not symmetric on S (R3), for Xi and Pi do not com-
mute (exercise). Neither would it make sense to seek self-adjoint extensions of X ·P.
Another possibility is to associate to x · p the symmetric operator (X ·P + P ·X)/2
defined on S (R3), and study its self-adjoint extensions. When examining more com-
plicated situations, like x2

k pk, this recipe reveals itself very ambiguous, because a
priori there are several possibilities: (X2

k Pk + PkX2
k )/2 is symmetric on the domain

S (R3), but also Xk(XkPk + PkXk)/4 + (XkPk + PkXk)Xk/4 is, and there are others.
These choices correspond to “symmetrised” products, of sorts, of (non-commuting)
operators, that should produce an operator that is at least symmetric.

A criterion, helpful but not decisive to solve the issues raised, was found by Dirac,
and goes under the accepted name of “Dirac’s correspondence principle”. To present
it, let us recall that a Lie algebra (V, [·, ·]) is a vector space (here, over R) equipped
with a skew-symmetric bilinear map [·, ·] : V×V → V, called Lie bracket, that sat-
isfies the Jacobi identity:

[u, [v,w]]+ [v, [w,u]]+ [w, [u,v]] = 0 , for any u,v,w ∈ V.

In studying the phase space F of the classical particle (although the setup is fully
general), Dirac considered the real vector space G (F ) of sufficiently regular maps
from F to R with Poisson bracket:

{ f ,g} :=∑
i

∂ f
∂xi

∂g
∂ pi

− ∂g
∂xi

∂ f
∂ pi

, f ,g ∈ G (F ) .

He noticed (G (F ),{·, ·}) is a Lie algebra. In particular the CCRs hold:

{xi, p j}= δi j .

These equations are Heisenberg’s relations when we substitute xi → Xi, pi → Pi

and {·, ·} → −ih̄−1[·, ·]. The idea behind “Dirac’s correspondence principle” is the
following.

Let f̂ denote the quantum analogue (an operator at least symmetric, and defined on
a dense invariant domain, independently of the specific quantity) of the generic clas-
sical quantity f ∈ G (F ). Under Dirac’s correspondence if

h = { f ,g}
for classical f ,g,h ∈ G (F ), in the quantum realm the corresponding f̂ , ĝ, ĥ satisfy

ĥ =−ih̄−1[ f̂ , ĝ] .
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Just as example, consider the usual classical particle. The components of the clas-
sical angular momentum

li =
3

∑
j,k=1

εi jkx j pk

correspond to

Li =
3

∑
j,k=1

εi jkXjPk ,

which are essentially self-adjoint operators on S (R3). The classical commutation
relations

{li, l j}=
3

∑
k=1

εi jklk

have analogue quantum counterparts on S (R3):

[Li,L j] = ih̄
3

∑
k=1

εi jkLk .

Dirac’s principle could be explained for observables corresponding to the generators
of unitary transformations in a symmetry group of the system; these, though, do not
exhaust all possible observables. (All this might be more enlightening after reading
the book’s final three chapters.) In that case it is only natural to request that (a) the
Lie algebra of the symmetry group, (b) the Lie algebra of the unitary representation
of transformations on the quantum system, and (c) the Lie algebra of generators of
the group of classical canonical transfomations that correspond to symmetries of the
classical system, are all isomorphic.

Although we will not push the study any further, we cannot not mention that ser-
ious technical hurdles crop up in trying to interpret Dirac’s idea literally. Suppose,
in particular, of working with polynomial functions of arbitrarily large degree in the
canonical variables xi, p j. Then [Stre07] it is not possible to define a “symmetrised
product” of self-adjoint operators corresponding to canonical variables (so to pro-
duce operators that are at least symmetric) that does not depend on the degree and
that yields the isomorphism f 	→ f̂ .

At the same time we have to emphasise that some ideas underlying Dirac’s cor-
respondence principle have found a rigorous treatment within certain quantisation
procedures called Weyl Quantisation or Weyl calculus (in particular see [Jef04],
[ZFC05], [Gra04] and [DA10]). The following formula, proved by Weyl and based on
the Fourier transform, tells how to associate to a function f = f (x1, . . . ,xn, p1, . . . , pn)
the operator

f (X1, . . . ,Xn,P1, . . . ,Pn)

:=
1

(2π)2n

∫

R2n
exp

{

−i
n

∑
k=1

tkXk +ukPk

}

f̃ (t1, . . . , tn,u1, . . . ,un)dtdu
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that is function of the operators X1, . . . ,Xn,P1, . . . ,Pn. Above, f̃ is the Fourier trans-
form of f , and the integral is meant in the sense of Proposition 9.27, assuming f
is suitable, e.g. a Schwartz function on R2n. Using duality theorems the definition
extends to Schwartz distributions f , for which also polynomial functions can be con-
sidered (see Chapter 2 of [Jef04] for a brief and precise technical account of Weyl
calculus, and Chapter 1 for other, related procedures). Weyl’s procedure does provide
operators that can be viewed as functions of the non-commuting Xk, Pk, but has prob-
lems. First of all, it maps real functions to self-adjoint operators, but it does not pre-
serve positivity (positive functions are not sent, in general, to positive operators).
Weyl’s procedure, furthermore, maps the Poisson bracket of two polynomials to the
commutator of the corresponding functions of operators only if the polynomials are
at most quadratic.

In conclusion, despite interesting and remarkable technical attempts the broad
validity of Dirac’s correspondence principle remains dubious; its many snags are
critical and apparently inescapable, and are borne by the endeavour to provide a ser-
ious framework to Dirac’s original idea, even in its most rigorous versions such as
Weyl’s calculus.

Exercises

11.1. Let R be the von Neumann algebra (of bounded observables on a physical sys-
tem) on the Hilbert space H and PR := R∩P(H). Prove R=P′′R.

Hint. If T ∈ R, T = A + iB with A,B self-adjoint and bounded. Show the spectral
measures of A and B belong to R, and consequently T ∈P′′R.

11.2. Let R be the von Neumann algebra (of bounded observables on a physical sys-
tem) with non-trivial centre Z := R∩R′. Prove Z contains non-trivial orthogonal
projectors (that can describe superselection rules).

Hint. If A∈Z, i
2 (A+A∗) and i

2 (A−A∗) belong to Z. Consider the spectral measures
of these self-adjoint operators.

11.3. Consider a particle moving on the real line, and suppose the pure state rep-
resented by the differentiable function ψ ∈ D(X2)∩D(P2)∩D(XP)∩D(PX), with
||ψ ||= 1, satisfies (ΔX)ψ(ΔP)ψ = h̄/2. Prove

ψ(x) = (π h̄γ)−1/4ei
〈P〉ψ x

h̄ e−
(x−〈X〉ψ )2

2h̄γ

for some γ > 0.

Hint. Referring to the proof of Theorem 11.13, note that we can have (ΔX)ψ(ΔP)ψ =
h̄/2 only if ||X ′ψ || ||P′ψ ||= |(X ′ψ |P′ψ)|, plus Re(X ′ψ |P′ψ) = 0. The first condition
implies, by Proposition 3.3(i), that X ′ψ = cP′ψ for some c ∈ C. Since σp(X) = ∅
and ψ � 0, the second condition implies Re(c) = 0. Solving the differential equation
X ′ψ = iIm(c)P′ψ , and using ||ψ ||= 1, leads to the required expression for ψ .
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11.4. Prove that a symplectic linear map f : (X,σ)→ (X′,σ ′) is one-to-one.

Hint. Remember that symplectic forms are weakly non-degenerate, and if f (x) = 0
then σ(y,x) = σ ′( f (y),0) = 0 for any y ∈ X.

11.5. Consider the Hilbert space H := L2([a,b],dx) and the self-adjoint operator X
on H defined by (Xψ)(x) := xψ(x), for any ψ ∈ H such that Xψ ∈ H. Prove there
is no self-adjoint extension P of the symmetric operator −i d

dx , defined on the sub-
space of C1 maps either vanishing, or periodic, at the boundary of [a,b], so that the
one-parameter unitary groups U(u) := eiuX , V (v) := eivP satisfy Weyl’s relations:
U(u)V (v) = V (v)U(u)eiuv for any u,v ∈ R.

Hint. First note that, trivially, V (sv),U(su) → I in strong sense, as s → 0, because
one-parameter unitary groups generated by self-adjoint operators are strongly con-
tinuous. There are various ways to solve the exercise. For example we can prove
σ(X) = [a,b]. This is impossible if P as above exists, because by Theorem 11.24
there should be a unitary operator S mapping X and P into the operators on L2(R,dx)
of axiom A5 (passing fromR3 toR1 in the obvious way); another possibility is to split
L2([a,b],dx) in a Hilbert sum of closed X- and P-invariant spaces, on each of which
there is the aforementiond unitary S. In either case we can prove σ(X) =σ(SXS−1) =
R � [a,b].

11.6. Refer to the proof of Proposition 11.18 and adapt the definitions of A, A� by
considering L2(R,dx) with Hermite functions {ψn}n∈N as basis, and the Bargmann-
Hilbert space B1 (see Example 3.32(6)) with entire functions {un}n∈N as basis:

un(z) :=
zn
√

n!
for any z ∈ C.

Call Segal–Bargmann transformation the unitary operator

U : L2(R,dx)→ B1

determined by Uψn := un, n = 0,1,2, . . .. Prove

UA�U∗ = z and UAU∗ =
d
dz

(11.61)

over the dense spans of finite combinations of elements of the two bases.

11.7. On the Bargmann-Hilbert space B1 (see Example 3.32(6)), consider

K0 := z
d
dz

,

defined on D(H0) = { f ∈ B1 | zd f/dz ∈ B1}. Prove that it is essentially self-adjoint
and find its spectrum. Does 2K0 + I have any physical meaning?

Hint. Prove it is symmetric, and show {un}n∈N is an eigenvector basis of H0 (hence
of analytic vectors). Up to a factor, 2K0 + I is the Hamiltonian of the harmonic oscil-
lator.
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Introduction to Quantum Symmetries

Mathematical sciences, in particular, display order, symmetry
and clear limits: and these are the uppermost instances of
beauty.

Aristotle

This chapter continues in the description of the mathematical structure of Quantum
Mechanics, by introducing fundamental notions and tools of great relevance.

Section one is devoted to defining and characterising quantum symmetries. We
will present examples, and discuss what happens in presence of superselection rules,
define Kadison symmetries and Wigner symmetries. We shall then prove the theor-
ems of Wigner and Kadison, which show that the previous notions actually coincide,
and manifest themselves via unitary or antiunitary operators.

In section two we pass to the problem of representing symmetry groups, by intro-
ducing projective representations, projective unitary representations and U(1) cent-
ral extensions of a (symmetry) group.

A part will be dedicated to topological groups and the study of strongly con-
tinuous projective unitary representations. We will examine the special case of the
Abelian group R, that has important applications in QM. Next, after recalling the ba-
sics on Lie groups and algebras, we will discuss key results due to Bargmann, Gårding
and Nelson (and a few generalisations thereof) about projective unitary and unitary
representations of Lie groups. We will consider the Peter–Weyl theorem on strongly
continuous unitary representations of compact Lie groups (or better, compact Haus-
dorff topological groups).

As an example of primary importance in physics, we will see in the third section
unitary representations of the symmery group SO(3) in relationship to the spin.

Eventually we will apply the machinery to the Galilean group, and prove
Bargmann’s superselection rule of the mass.

12.1 Definition and characterisation of quantum symmetries

A truly crucial notion on QM, also in view of the subsequent development in quantum
field theories, is that of symmetry of a quantum system. There are two notions of
symmetry: one is dynamic, while the other, more elementary one does not involve
temporal evolution, i.e. the dynamics of the physical system. In this first section we
will deal with the first kind, and tackle the static type in the following chapter.

Moretti V.: Spectral Theory and Quantum Mechanics
Unitext – La Matematica per il 3+2
DOI 10.1007/978-88-470-2835-7_12, © Springer-Verlag Italia 2013
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Consider a physical system S described on the Hilbert space HS, with S(HS) de-
noting the space of states andSp(HS) that of pure states. When we act by a transform-
ation g on S we alter its quantum state. To the physical transformation g corresponds
a map γg : S(HS) → S(HS) of the space of states, or γg : Sp(HS) → Sp(HS) if we
restrict to pure states. The relationship between g and γg is not relevant at present,
and we will take it for granted; at any rate, it will depend upon the description of
S. If γg obeys certain conditions, γg is called a symmetry of the system. Abusing the
terminology we will often say g is a symmetry of S. Two are the requisites for γg to
be a symmetry:

(a) γg must be bijective.
(b) γg should preserve some mathematical structure of the space of states S(HS) or
of pure states Sp(HS); for the moment we will not specify which structure, although
this will have a precise physical interpretation.

In physics, requisite (a) can actually be forced upon the transformation g acting on the
system, and corresponds to asking g be reversible, in other words (i) there must exist
an inverse transformation g−1, associated to γ−1

g : S(HS) → S(HS), taking back to
the original state, and (ii) any quantum state should be reachable via γg, by choosing
the initial state suitably.

The differences between the several symmetry notions known depend on the in-
terpretation of condition (b), i.e. on the γg-invariant structure. There are at least three
possibile choices (see [Sim76]). The simplest structure the map can preserve is the
convexity of the space of states, physically corresponding to the fact that a state arises
from mixing states with certain statistical weights. Symmetry operations modify the
constituent states, but do not change the weights. This sort of quantum symmetries
were studied by Kadison [Kad51], and are nowadays called “Kadison symmetries”.
Another type, due to Wigner [Wig59], refers to functions on Sp(HS). For these one
requires that the metric structure of the projective space of rays be preserved. We
will call such “Wigner symmetries”. In the language of physics Wigner symmetries
modify pure states but do not change the transition probabilities of pure pairs. A
third type, which we shall not discuss, was discovered by Segal, and concerns the
Jordan algebra structure of observables (see [Sim76]). In the sequel we will study
the first two classes; we will prove that mathematically they reduce to the same, and
that they are described by unitary or antiunitary operators (hence Wigner symmetries
may be extended to Kadison symmetries defined on the entire space of states). This
characterisation in terms of (anti)unitary operators is hugely important in physics,
and is formulated in two results known as Kadison’s theorem and Wigner’s theorem.
The latter is much more renowned in the physical community, despite the former is
equally important.

Remarks 12.1. The notion of quantum symmetry could also be defined referring to
the observables of a quantum system S rather than to the states. Although we will
not follow this path, we should mention that a quantum symmetry (associated to the
transformation g) may also be defined by an isomorphism of bounded, orthocomple-
mented σ -complete lattices αg : P(HS) → P(HS), see Definition 7.11. It is easy to
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prove that this implies:

αg

(

s-
+∞

∑
i=1

Pi

)

= s-
+∞

∑
i=1
αg(Pi) for {Pi}i∈N ⊂P(HS) with PiPj = 0 if i � j ,

whereαg(Pi)αg(Pj) = 0 if i� j. By the above identities, on quantum systems obeying
Gleason’s Theorem 7.24 (systems associated to separable complex Hilbert spaces of
dimension ≥ 3) each symmetry, viewed as acting on observables, induces a corres-
ponding symmetry acting on states by a duality process. In fact, if μ :P(H)→ [0,1] is
a quantum state in the sense of axiom A2 (preliminary form) andαg :P(HS)→P(HS)
satisfies the previous identity, μ ◦α :P(H)→ [0,1] is still a state for axiom A2 (pre-
liminary). If the Hilbert space has dimension ≥ 3, for every mixed state ρ ∈ S(HS)
there exists a unique mixed state α∗g (ρ) determined by tr

(
α∗g (ρ)P

)
= tr(ραg(P))

for any P ∈ P(HS). Then α∗g : S(HS)→ S(HS) is immediately bijective (αg is) and
maps convex combinations of states to convex combinations, preserving statistical
weights. And, the mapping αg 	→ α∗g is injective. Put differently, every symmetry αg

of observables corresponds one-to-one to a symmetry α∗g of states, typically mixed.
A consequence of Kadison’s theorem, proved in the sequel, is that αg 	→ α∗g , viewed
from the set of symmetries of observables to the set of “Kadison symmetries”, is
surjective as well.

From now on we will think of symmetries as transformations of states, and we
will discuss the action on observables only after the theorems of Wigner and Kadison.

�

12.1.1 Examples

Before going into mathematical subtleties, let us describe a few examples of physical
operations that are (both Wigner and Kadison) symmetries for quantum systems.

Suppose we take an isolated physical system S in a certain inertial frame sys-
tem I . A transformation that is known to generate a symmetry of S is any rigid
translation of S along a given vector, or the rotation about a fixed real axis. In other
terms any continuous isometry of the rest space of inertial frames produces a quantum
symmetry. Another instance is the change of inertial reference system (in relativistic
theories as well), in the following sense: the isolated system S in the inertial frame I
is transformed so that the final system appears, in a different inertial system I ′ �I ,
as it appeared at the beginning in I . A third transformation giving symmetries, for
isolated systems in inertial frames, is time translation (not to be confused with time
evolution) which we will see later.

All these transformations are active, meaning that they change the system S, or
better, its quantum state.

It must be absolutely clear that the transformations we are talking about do not
occur because the system’s state evolves in time: they are idealised transformations,
pure mathematical notions. By the way, some of them could never occur in real-
ity in a system that evolves under its own dynamics, and some could hardly exist.
A classical example is the inversion of parity. This physical transformation, loosely
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speaking, substitutes a system S with its mirror image. Sometimes the only way to
realise parity inversion, ideally, is to destroy the system and rebuild its symmetrical
image from scratch. And sometimes this abstract operation, too, is physically hollow
owing to the nature itself of physical laws. Particles that interact under the weak force,
surprisingly, constitute systems whose states do not admit parity transformation as a
symmetry, in a rather radical sense: the space of states has no transformation γ rep-
resenting the ideal physical transformation of parity inversion. This simply means
that the alleged symmetry is not a true symmetry of the system.

Another type of transformation that shares some features with parity inversion,
and that is at times associated to symmetries, is time reversal. The examples seen so
far have to do with spacetime isometries. Albeit active on states, they are related to
passive transformations of frame systems (or just of coordinates) by means of passive
isometries of spacetime. In this case one expects (not always true, as we saw) active
transformations on states to be symmetries, precisely because the various frame or
coordinate systems – relative to passive (Galilean or Poincaré) transformations used
to describe reality (at least macroscopically) – are equivalent. In other words: if we
act on the physical system S by an active transformation, we can always revoke the
outcome by changing reference system (or just coordinates), knowing the new fram-
ing is physically equivalent to the original one.

In contrast to all this, there exist transformations related to symmetries which are
neither associated to spacetime isometries, nor reversed by changing frames. A stand-
ard example is charge conjugation, which flips the sign of all charges (of the type con-
sidered) present in S, and thus changes the superselection sector of the charge. There
are, eventually, even more abstract transformations relative to internal symmetries
and gauge symmetries, on which we will not spend any time.

In conclusion we wish to underline an important physical fact. The lesson weak
interactions teach us is this: deciding whether a transformation acting ideally on a
system is indeed a quantum symmetry, is ultimately to be decided – after (b) has
been specified – experimentally.

After proving the theorems of Kadison and Wigner we will describe symmet-
ries in terms of (anti)unitary operators, in the case physical transformations form an
abstract, topological or Lie group [War75, NaSt82].

In the next chapter we shall treat dynamical symmetries, which emerge when one
defines the time evolution of the quantum state of a system S. In that context we will
recover the tight link between dynamical symmetries and associated conservation
laws. It is well known, in the classical setup, that this relationship is encoded into the
various formulations of the celebrated Nöther’s theorem.

12.1.2 Symmetries in presence of superselection rules

As was observed already in Chapter 7, if M is a closed subspace in the Hilbert space
H we can identifyS(M) (orSp(M)) with a subset ofS(H) (resp.Sp(H)) in a natural
manner, i.e. by viewing S(M) (Sp(M)) as the collection of states ρ ∈S(H) (Sp(H))
such that Ran(ρ)⊂M. This is the same as extending each ρ ∈S(M) to an operator on
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H by declaring it zero on M⊥. In the remaining part of the chapter we will implicitly
make this identification, which is useful in the next situation.

In certain circumstances the possible state of a physical system is not any element
in S(HS) (Sp(HS) if pure), because some convex combinations are forbidden. This
is the case when we have superselection rules (see Chapter 7.4.5 and 11.1). Without
repeating what we explained earlier, let us only say that in presence of superselection
rules HS splits into a direct sum of closed orthogonal subspaces, at most countably
many, called coherent sectors:

HS =
⊕

k∈K

HSk .

Then we can define the spaces of states and pure states of each sector, S(HSk) and
Sp(HSk). Note S(HSk)∩S(HS j) = ∅ and Sp(HSk)∩Sp(HS j) = ∅ if k � j. Con-
cerning physically-admissible pure states for the superselection rule, these will be
precisely the constituents of the disjoint union

⊔

k∈K

Sp(HSk) .

Admissible mixtures by the superselection rule for the system S on H, instead, will
be all possible convex combinations (also infinite, in some operator topology) of the
set ⊔

k∈K

S(HSk) .

The previous is equivalent to imposing that admissible states are the ρ in S(HS) (or
Sp(HS)) under which every HSk is invariant.

In this case the symmetries must respect the coherent decomposition of H, and one
allows symmetries that swap sectors, i.e. functions γkk′ :S(HSk)→S(HSk′), k,k′ ∈K,
possibly with k′ � k. Every mapping γkk′ :S(HSk)→S(HSk′) must be invertible and
satisfy Wigner’s or Kadison’s invariance.

12.1.3 Kadison symmetries

Consider a quantum system S described on the Hilbert space HS, with space of states
γ(HS). A (weak, physically) demand to have a symmetry refers to the mixing pro-
cedure of quantum states. An operation on S defines a symmetry if the procedure is
invariant under it. More precisely:

If a state is obtainable as mixture of certain states with given statistical weights, then
by transforming the system under an operation that generates a symmetry, the same
state must be obtainable as mixture of the transformed constituent states with the
same statistical weights.

Put equivalently a bijection γ :S(HS)→S(HS) is a symmetry when it preserves
the convex structure of S(HS): if ρi ∈S(HS), 0≤ pi ≤ 1 and ∑i∈J pi = 1, then

γ

(

∑
i∈J

piρi

)

=∑
i∈J

piγ(ρi) .
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Henceforth J will be finite. Then it is obvious, without loss of generality, that we may
take J made of two points. Now we can present the formal definition in the general
case, when coherent superselection sectors are present.

Definition 12.2 (Kadison symmetry). Consider a quantum physical system S de-
scribed on the Hilbert space HS. Suppose HS splits in coherent sectors HS =⊕k∈KHSk.
A symmetry of S (according to Kadison) from the sector HSk to the sector HSk′ ,
k,k′ ∈ K, is a map γ :S(HSk)→S(HSk′) such that:

(a) γ is bijective.
(b) γ preserves the convex structure of S(HSk) and S(HSk′). Equivalently:

γ (p1ρ1 + p2ρ2) = p1γ(ρ1)+ p2γ(ρ2)
for ρ1,ρ2 ∈S(HS) , p1 + p2 = 1, p1, p2 ∈ [0,1] . (12.1)

If the Hilbert space H does not have coherent sectors, every bijection γ : S(H) →
S(H) preserving convexity is called a Kadison automorphism on H.

A symmetry according to Definition 12.2 is induced by an operatorU : HSk →HSk′
that is either unitary or antiunitary (Definition 5.39):

γ(U)(ρ) := UρU−1 , ρ ∈S(HSk). (12.2)

To prove this we need an elementary lemma.

Lemma 12.3. Let U : H → H′ be an antiunitary operator from H to H′, and N ⊂ H
a basis. Then U = VC, where V : H → H′ is unitary and C : H → H is the natural
conjugation (Definition 5.41) associated to N:

Cψ := ∑
z∈N

(z|ψ)z .

Proof. Define Vψ := ∑z∈N(z|ψ)Uz; the proof is immediate, because an antiunitary
operator is anti-isometric and continuous and by elementary properties of bases. Note
that {Uz}z∈N is basis of H′. �

Proposition 12.4. Let U : HSk →HSk′ be unitary (isometric and onto), or antiunitary,
where HSk and HSk′ are coherent sectors of the Hilbert space HS associated to the
quantum system S with space of states S(H). Then γ(U) :S(HSk)→B(H) as defined
in (12.2) is a symmetry according to Kadison for S, between HSk and HSk′ .

Proof. Property (12.1) is trivial under either assumption on U (not so, though, if we
allowed complex coefficients pi). Let us prove γ(U)(ρ) ∈ S(HSk′) for ρ ∈ S(HSk).
Begin by assuming U unitary. If ρ is of trace class on HS so must be UρU−1 as
well, since trace-class operators form an ideal in B(HS) by Theorem 4.32(b) if we
view UρU−1 as composite in B(HS). For this it suffices to think ρ in S(HS) vanish-
ing on the complement to HSk, and ρ(HSk) ⊂ HSk, then extend U and U−1 trivially
on the orthogonal to HSk and HSk′ respectively, hence viewing them as in B(HS).
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If ρ ≥ 0 then (ψ |UρU−1ψ) = (U∗ψ |ρU∗ψ) ≥ 0, so γ(U)(ρ) ≥ 0. Using the basis

formed by a basis on HSk and one on (HSk)⊥ we obtain tr
(
γ(U)(ρ)

)
= tr
(
UρU−1

)
=

tr(U−1Uρ) = tr(ρ) = 1. In the last passage we used U−1U�HSk= I�HSk in computing
the trace, and that ρ = 0 on (HSk)⊥. Therefore γ(U)(ρ) ∈ S(HSk′) for ρ ∈ S(HSk).
Now assume U antiunitary. Decompose U as in Lemma 12.3: U = VC with respect
to a basis N ⊂ HS specified later. We claim UρU−1 is positive, trace class with trace
one. As V is unitary (in which case the claim holds by what we have just seen) and
UρU−1 = V (CρC−1)V−1, it is enough to prove the claim for U = C. Choose N to be
made of eigenvectors ψ for ρ (Theorem 4.18 ensures its existence). Hence

ρφ = ∑
ψ∈N

pψ(ψ |φ)ψ ,

φ ∈H. Now recall C is continuous and antilinear, CC = I, ( f |g) = (C f |Cg) by defin-
ition of conjugation, every eigenvector pψ of ρ is real (positive), and Cψ = ψ . Con-
sequently

CρC−1φ = ∑
ψ∈N

pψ(ψ |Cφ)Cψ = ∑
ψ∈N

pψ(CCψ |Cφ)Cψ =

= ∑
ψ∈N

pψ(Cψ |φ)Cψ = ∑
ψ∈N

pψ(ψ |Cφ)ψ = ρφ .

We proved CρC−1 = ρ , so CρC−1 is of trace class, positive and has trace 1 for ρ ∈
S(HSk). �

Example 12.5. If the superselection rule regards the electrical charge of a system
there will be (infinitely many, in general) sectors Hq, one for each value q of the
charge. Charge conjugation can be constructed as a collection of symmetries of type
γ(Uq), and Uq : Hq → H−q for any q. �

12.1.4 Wigner symmetries

Now let us pass to quantum symmetries according to Wigner. Consider the usual
quantum system S, described on the Hilbert space HS and with space of statesS(HS).
We focus on pure states Sp(HS) (the rays of HS). Let us restrict to transformations

δ :Sp(HS)→Sp(HS) .

From the experimental viewpoint we can control the transition probability
|(ψ |ψ ′)|2 = tr(ρρ ′) of two pure states ρ = ψ(ψ | ), ρ ′ = ψ ′(ψ ′| ). Wigner’s con-
dition for a bijection δ : Sp(HS) → Sp(HS) to be a symmetry is that it preserves
transition probabilities.

If two pure states have a certain transition probability, when transforming the sys-
tem by a physical operation that determines a symmetry the transformed states must
maintain the same transition probability.
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The next definition takes into account coherent sectors.

Definition 12.6 (Wigner symmetry). Consider a quantum system S described on
the Hilbert space HS with space of states S(HS). Assume HS splits coherently as
HS =⊕k∈KHSk.
A symmetry of S (according to Wigner) from HSk to HSk′ , k,k′ ∈ K, is a mapping
δ :Sp(HSk)→Sp(HSk′) with the following properties:

(a) δ is bijective.
(b) δ preserves transition probabilities. That is to say:

tr (ρ1ρ2) = tr (δ (ρ1)δ (ρ2)) , ρ1,ρ2 ∈Sp(HSk) . (12.3)

If H has no coherent sectors every bijection δ :Sp(H)→Sp(H) that preserves trans-
ition probabilities is a Wigner automorphism on H.

An example according to Definition 11.6, as with Kadison symmetries, is the
symmetry induced by the (anti)unitary U : HSk → HSk′ (Definition 5.32), where:

δ (U)(ρ) := UρU−1 , ρ ∈Sp(HSk). (12.4)

In contrast to Kadison’s symmetries, here the proof is really straighforward.

Remark 12.7. (1) Since pure states have the form ψ(ψ | ), ||ψ || = 1, the action of
δ (U) on pure states can be described, equivalently though sloppily, by saying δ (U)

sends the pure state ψ to the pure state Uψ . This is the way in which QM books often
describe symmetries induced by (anti)unitary operators.
(2) Every Kadison symmetry transforms pure states to pure states, so it defines a
bijective map on the space of pure states. However, we do not know a priori that
this will define a Wigner symmetry, because it is far from evident that it wil pre-
serve transition probabilities. On the other hand, a Wigner symmetry does not extend
naturally from pure to mixed states. Therefore it is not obvious that the two notions
coincide. Yet every unitary or antiunitary operator determines at the same time a
Wigner symmetry and a Kadison symmetry by means of ρ 	→UρU−1. �

To finish, here is a general notion of Wigner symmetry.

Definition 12.8 (General Wigner symmetry). Suppose the Hilbert space HS of sys-
tem S decomposes in coherent sectors, so that admissible pure states are the ele-
ments of

Sp(HS)adm :=
⊔

k∈K

Sp(HSk) .

A symmetry according to Wigner (no mention of sectors) is a bijective map δ from
Sp(HS)adm to itself that preserves transition probabilities.

We can recover the above definition using Wigner symmetries between pairs of
sectors, as follows.

Proposition 12.9. Let δ be a Wigner symmetry of S, and suppose the Hilbert space
HS of S splits coherently in such a way that admissible pure states are only those in:

Sp(HS)adm =
⊔

k∈K

Sp(HSk) .
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There exists a bijection f : K → K and a family of Wigner symmetries

δ f , f (k) :Sp(HSk)→Sp(HS f (k)) , k ∈ K,

with fixed sectors, such that δ�Sp(HSk)= δ f , f (k) for every k. In this sense δ is just a
collection of Wigner symmetries exchanging sectors and not overlapping.

Proof. Define on Sp(HS) the distance

d(ρ,ρ ′) := ||ρ−ρ ′||1 := tr(|ρ−ρ ′|) ,

where || ||1 is the canonical norm of trace-class operators. Then the sets Sp(HSk) are
the connected components ofSp(HS)adm (Exercise 12.4). The map δ :Sp(HS)adm →
Sp(HS)adm is a surjective isometry for d as follows from Proposition 12.32 (the latter
is independent of the present result). In particular δ is a homeomorphism. As such,
it preserves maximal connected subsets, and so it must split in isometric bijections
between distinct sectors, i.e. Wigner symmetries between distinct sectors. �

12.1.5 The theorems of Wigner and Kadison

We begin by Wigner’s theorem. Using that, we will prove Kadison’s result along
the lines of [Sim76]. The proof of Wigner’s theorem is quite direct. Although there
are more elegant, but indirect arguments, our approach has the advantage of showing
explicitly how to manifacture U with a basis. Let us remark, in passing, that sev-
eral authors (inclusing Emch, Piron and Bargmann) proved that a slightly modified
version of Wigner’s theorem holds within QM formulations based on real and qua-
ternionic Hilbert spaces.

Theorem 12.10 (Wigner). Consider a quantum system S described on the (separ-
able, complex) Hilbert space HS. Suppose HS coherently splits as HS =⊕k∈KHSk (if
K = {1} one should replace HSk, HSk′ by H in the statement). Assume

δ :Sp(HSk)→Sp(HSk′)

is a (Wigner) symmetry of S from HSk to HSk′ , k,k′ ∈ K. Then:

(a) there exists an operator U : HSk → HSk′ , unitary or antiunitary (depending on δ ),
such that:

δ (ρ) = UρU−1 for any pure state ρ ∈Sp(HSk). (12.5)

(b) U is determined up to a phase factor, i.e. U1, U2 (both unitary or antiunitary) sat-
isfy (12.5) (replacing each with U) if and only if U2 = χU1 for some χ ∈ C, |χ|= 1.
(c) If {ψn}n∈N is a basis on HSk and ψ ′n ∈ HSk′ are chosen so that ψ ′n(ψ ′n| ) =
δ (ψn(ψn| )), then {ψ ′n}n∈N is a basis on HSk′ . Furthermore, an operator U satis-
fying (12.5) is

U : ψ = ∑
n∈N

anψn 	→ ∑
n∈N

anψ ′n in the unitary case,

or
U : ψ = ∑

n∈N
anψn 	→ ∑

n∈N
anψ ′n in the antiunitary case.
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Proof. (b) Begin by showing that U , if it exists, is unique up to a choice of a phase
factor. Clearly if U1 satisfies the thesis for δ , then U2 := χU1 will do the same for
any χ ∈ C, |χ| = 1. We claim this is the only possibility. Suppose there are U1,
U2 (both unitary or antiunitary) for δ . If ρ = ψ(ψ | ) then, setting L := U−1

1 U2 we
have Lψ(ψ |L−1φ) = ψ(ψ |φ) for any unit ψ ,φ . Hence Lψ(Lψ |φ) = ψ(ψ |φ), as
L is unitary. Since Lψ(Lψ | ) = ψ(ψ | ), Lψ and ψ determine the same pure state,
so Lψ = χψψ i.e. U1ψ = χψU2ψ , or U1ψ = χψU2ψ (antiunitary case), for every
ψ ∈ HSk and for some unit χψ ∈ C. The result remains valid even if ||ψ || � 1, by lin-
earity. Let us prove χψ does not depend on ψ . Notice that χψ = χcψ if c∈C. Choose
ψ ,ψ ′ linearly independent and a,b ∈ C\{0}. The linearity of L implies

χaψ+bψ ′(aψ+bψ ′) = L(aψ+bψ ′) = aLψ+bLψ ′ = aχψψ+bχψ ′ψ ′ .

Therefore
a(χaψ+bψ ′ −χψ)ψ = b(χψ ′ −χaψ+bψ ′)ψ ′ .

As ψ ,ψ ′ are linearly independent and a,b � 0, we have (χaψ+bψ ′ − χψ) = 0 and
(χψ ′ −χaψ+bψ ′) = 0, so χψ = χψ ′ . Hence we have, for some unit χ ∈ C,

U2ψ = χU1ψ for any ψ ∈ HSk.

(a)–(c) Let us build an operator U representing δ . Take a basis {ψn}n∈N in HSk. To
each ψn associate the pure state ρn := ψn(ψn| ). Let δ act on these states, obtaining
pure states δ (ρn) = ψ ′n(ψ ′n| ) ∈ Sp(HSk′), where the unit ψ ′n ∈ HSk′ are determined
up to a phase factor. Fix once for all this phase, arbitrarily. Note {ψ ′n}n∈N is a basis
of HSk′ : the vectors are in fact orthonormal, because |(ψ ′n|ψ ′m)|2 = tr(δ (ρn)δ (ρm)) =
tr(ρnρm) = |(ψn|ψm)|2 = δnm. We show that ψ ′ ⊥ ψ ′n implies ψ ′ = 0. Let ψ ′ ⊥ ψ ′n
for every n ∈N. If ψ ′ � 0, without loss of generality we assume ||ψ ′||= 1 and define
ρ ′ :=ψ ′(ψ ′| )∈Sp(HSk′). Since δ is onto, then ρ ′ = δ (ρ) with ρ =ψ(ψ | ) for some
ψ ∈ HSk, ||ψ ||= 1. Therefore:

|(ψ ′|ψ ′n)|2 = tr(δ (ρ)δ (ρn)) = tr(ρρn) = |(ψ |ψn)|2 = 0

and then ψ = 0, for {ψn}n∈N is a basis. But this is impossible as ||ψ || = 1. Con-
sequently ψ ′ = 0, and {ψ ′n}n∈N is a basis.

Using the bases {ψn}n∈N and {ψ ′n}n∈N we will define the operator U in stages.
First define unit vectors

Ψk := 2−1/2 (ψ0 +ψk) , k ∈ N\{0}
and corresponding pure states: (Ψk| )Ψk, k∈N\{0}. The transformed δ (Ψk(Ψk| )) =
Ψ ′

k (Ψ ′
k | ) satisfies, in particular:

|(Ψ ′
k |ψ ′n)|2 = tr

(
Ψ ′

k (Ψ ′
k | )δ (ρn)

)
= tr (δ (Ψk(Ψk| ))δ (ρn))= |(Ψk|ψn)|2 =

δ0n +δkn

2
,

plus ||Ψ ′
k ||= 1. DecomposingΨ ′

k = ∑n anψ ′n, the only possibility is

Ψ ′
k = χ ′k2−1/2(ψ ′0 +χkψ ′k)
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with |χ ′k|= |χk|= 1. The χk are given by δ , while the χ ′k can be chosen as we want.
The χk carry the information of δ , and we shall employ them soon.

Let us define U on ψn and (ψ0 +ψk)/
√

2 by declaring:

Uψ0 := ψ ′0 , Uψk := χkψ ′k , U(2−1/2(ψ0 +ψk)) := 2−1/2(ψ ′0 +χkψ ′k) , (12.6)

k ∈ N \ {0}. With this we are sure that if φ is one of the above arguments of U and
ρφ its pure state, then δ (ρφ ) is associated to Uφ .

Now we extend U to any ψ =∑n∈N anψn ∈ HSk , so that U continues to represent
δ . Assume as before ||ψ ||= 1 and a0 ∈R\{0}. Let ψ ′ ∈HSk′ with ||ψ ′||= 1 be such
that ψ ′(ψ ′| ) = δ (ρψ). Then

ψ ′ = ∑
n∈N

a′nψ ′n . (12.7)

The coefficients a′k are given, up to a global phase factor, by the coefficients an and
by δ . With our assmptions on δ we have

|(ψ ′|ψ ′n)|2 = tr(δ (ρψ)δ (ρn)) = tr(ρψρn) = |(ψ |ψn)|2 .

In other words, |a′n| = |an|. Using this, together with the first two of (12.6) in the
right-hand side of (12.7), leads to

ψ ′ = χ

(

a0Uψ0 + ∑
n∈N\{0}

χ−1
n a′nUψn

)

,

where χ , |χ|= 1, is arbitrary. Now define

Uψ := a0Uψ0 + ∑
n∈N\{0}

χ−1
n a′nUψn . (12.8)

This ensures, by construction, Uψ(Uψ | ) = δ (ρψ), and one verifies the defini-
tion extends (12.6). However, Uψ is not completely fixed, because we still do not
know the coefficients a′n in terms of the components an of ψ . At this point we
can define it in full, though. By construction of U and in the hypotheses on δ ,
|(Ψk|ψ)|= |(UΨk|Uψ)|. By (12.8) this means

|a0 +ak|2 = |a0 +χ−1
k a′k|2 .

Since |ak|= |a′k|, the latter implies

Re(a0ak) = Re(a0χ−1
k a′k) .

Now recalling a0 ∈ R\{0}, the previous equations occur only in one of these cases:

a′k = χkak or a′k = χkak .

Hence, for any ψ = ∑n anψn with a0 ∈ R\{0} we have

ψ ′ = Uψ = ∑
n∈Aψ

anψ ′n + ∑
n∈Bψ

anψ ′n .
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For the given ψ we can always choose one of Aψ , Bψ empty1. Suppose the contrary.
The components of ψ and ψ ′ satisfy a′p = χpap and a′q = χqaq, for some pair p � q,

where Imap, Imaq � 0. If φ = 3−1/2(ψ0 +ψp +ψq) then by construction:

|(φ ′|ψ ′)|2 = |(φ |ψ)|2 ,

where φ ′ := Uφ = 3−1/2(ψ ′0 +ψ ′p +ψ ′q). The displayed equation reads

∣
∣a0 +ap +aq

∣
∣2 =
∣
∣a0 +ap +aq

∣
∣2 ,

i.e.
Re(apaq) = Re(apaq).

This would imply Imaq =−Imaq, an absurd.
If ψ = ∑n anψn ∈ HSk, ||ψ ||= 1 and a0 ∈ R\{0}, there are two possible defini-

tions for Uψ :
Uψ = ∑

n∈N
anψ ′n or Uψ = ∑

n∈N
anψ ′n . (12.9)

We claim the choice does not depend on ψ , and so it must depend on the nature of δ .
Consider a generic unit ψ =∑n anψn ∈HSk and a0 ∈R\{0}. Define ψ(nc) associated
to c ∈ C, Imc � 0, for every n = 1,2, . . .:

ψ(nc) :=
1

√
1+ |c|2 (ψ0 + cψn) .

Since |(ψ |ψ(nc))| = |(Uψ |Uψ(nc))| has to hold, necessarily ψ(nc) and ψ are of the
same type with respect to the option of (12.9). Therefore all ψ = ∑n anψn ∈ HSk,
||ψ ||= 1, and a0 ∈ R\{0} are of the same type.

Define the operator U : HSk → HSk′ by:

U : ψ = ∑
n∈N

anψn 	→ ∑
n∈N

anψ ′n in the linear case,

U : ψ = ∑
n∈N

anψn 	→ ∑
n∈N

anψ ′n in the antilinear case.

By construction, the former is isometric and onto (unitary), the latter anti-isometric
and onto (antiunitary). At this juncture it should be clear that the unitary and an-
tiunitary cases are distinguished by δ , and we cannot represent the same δ by a
unitary operator or by an antiunitary one alike. That is because it is impossible that
ψ ′ := ∑n∈N anψn 	→∑n∈N anψ ′n and ψ̃ ′ =∑n∈N anψn 	→∑n∈N anψ ′n differ by a phase
factor, for any choice of the an, i.e. of ψ , as should happen, on the contrary, if ψ ′, ψ̃ ′
determined the same pure state δ (ψ(ψ | )).

By construction, the operator satisfiesUρU−1 = δ (ρ) as long as ρ ∈Sp(HSk) can
be written asψ(ψ | ), where a0 � 0 inψ =∑n∈N anψn. If so, in fact, we can redefineψ

1 There is a certain ambiguity in defining Aψ and Bψ , because the subscripts n of the possible
real coefficients an can be chosen either in An or in Bn indifferently.
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by changing one global phase, ψ̃ = χψ , and without altering ρ = ψ(ψ | ) = ψ̃(ψ̃| ),
so that ã0 ∈ R\{0} in the expansion of ψ̃ . Now the construction for U implies

UρU−1 = Uψ(ψ | )U−1 = Uψ̃(ψ̃| )U−1 = Uψ̃(Uψ̃| ) = δ (ρ) .

There remains to prove this fact for pure states associated to ψ = ∑n∈N anψn with
a0 = 0. To this end notice that the entire procedure works if we replace ψ0 with
any other basis vector ψk. In that case UρU−1 = δ (ρ) for pure states associated to
ψ = ∑n∈N anψn with ak � 0. (Using ψk as reference vector instead of ψ0, the new
U cannot be of different character (linear vs. antilinear) from the one of ψ0. That is
because the two operators must behave in the same way on ψ =∑n∈N anψn, if ak � 0
and a0 � 0, and this fact fixes their character, as we saw above.) This observation
essentially ends the proof: take ρ ∈ Sp(HSk) and ρ = ψ(ψ | ), with ψ = ∑n∈N anψn

and a0 = 0. There must be one ak � 0 at least, for ||ψ || = 1. Therefore we may go
through the previous argument with this ψk in place of ψ0. �

Let us move on to Kadison’s theorem, which we will reduce to Wigner’s the-
orem following an idea of Roberts and Roepstorff [RR69], see [Sim76]. We start by
proving the theorem in dimension two.

Proposition 12.11. Let H be a two-dimensional Hilbert space. If γ :S(H)→S(H) is
a Kadison automorphism, there exists U : H→ H unitary, or antiunitary, such that:

γ(ρ) = UρU−1 , ρ ∈S(H).

Proof. Let us characterise states and pure states on H by means of the Poincaré
sphere. A state ρ ∈ S(H) is, in the present situation, a positive-definite Hermitian
matrix with unit trace. The real space of Hermitian matrices has a basis made by I
and the Pauli matrices:

σ1 =
[

0 1
1 0

]

, σ2 =
[

0 −i
i 0

]

, σ3 =
[

1 0
0 −1

]

. (12.10)

So for some a,bn ∈ R
ρ = aI +

3

∑
n=1

bnσn .

The condition tr(ρ) = 1 fixes a = 1/2, since the σn are traceless. Positive def-
initeness, i.e. the demand the two eigenvalues of ρ are positive, is equivalent to√

b1
1 +b2

2 +b2
3 ≤ 1/2, by direct computation. Overall, the elements ρ of S(H) are

in one-to-one correspondence to vectors n ∈ R3, |n| ≤ 1:

ρ =
1
2

(I +n ·σ) . (12.11)

Having ρ pure, i.e. having a unique eigenvalue 1, is equivalent to |n|= 1, as a direct
check shows. Altogether S(H) is in one-to-one correspondence with the closed unit
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ball B in R3 centred at the origin; and the subset of pure states Sp(H) corresponds
one-to-one with the surface ∂B. We call B, seen in this way, the Poincaré sphere.
The correspondence just defined:

B � n 	→ ρn ∈S(H)

is a true isomorphism: by (12.11), in fact,

ρpn+qm = pρn +qρm for any n,m ∈ B if p,q≥ 0, p+q = 1

so the convex geometry of the spaces is preserved. An important property, for later,
is the formula

tr (ρmρn) =
1
2

(1+m ·n) (12.12)

that descends directly from tr(σ j) = 0, tr(σiσ j) = 2δi j (easy to prove). We are
ready to characterise Kadison automorphisms. Assigning a Kadison automorphism
γ :S(H)→S(H) is patently the same as defining a bijection γ ′ : B→ B such that

γ ′(pn+qm) = pγ ′(n)+qγ ′(m) for any n,m ∈ B if p,q≥ 0, p+q = 1 .

If the Kadison automorphism γ : S(H)→ S(H) fixes γ ′ : B → B, the map Γ : R3 →
R

3:

Γ (0) := 0 , Γ (v) := |v|γ ′
(

v
|v|
)

, v ∈ R3 \{0}

extends γ ′, is linear and invertible. The proof is straighforward. Kadison automorph-
isms, being isomorphisms, map extreme elements to extreme elements, so Γ (n) =
γ ′(n) = 1 if |n|= 1, and by linearity:

|Γ (v)|= |v| , v ∈ R3 .

In conclusion the linear map Γ : R3 → R3 associated to the Kadison automorphism γ
is an isometry ofR3 with the origin as fixed point. This can be if and only ifΓ ∈O(3),
the three-dimensional orthogonal group. Γ ∈O(3) implies γ�Sp(H) is an automorph-
ism according to Wigner. In fact if ρn and ρm are pure, their transition probability
equals tr (ρnρm), which we can express via (12.12). Since Γ is orthogonal:

tr (γ(ρn)γ(ρm)) =
1
2

(1+Γ (n) ·Γ (m)) =
1
2

(1+n ·m) = tr (ρnρm) .

Recalling γ ′�∂B= Γ�∂B: ∂B → ∂B is trivially a bijection (this is true for every or-
thogonal matrix), then γ�Sp(H): Sp(H)→ Sp(H) is bijective. We conclude γ�Sp(H):
Sp(H) → Sp(H) is a Wigner automorphism. Wigner’s theorem implies the exist-
ence of a unitary or antiunitary operator U : H→H such that γ(ρ) = UρU−1 for any
ρ ∈ Sp(H). If ρ ∈ S(H) we can decompose it as convex combinations of two pure
states associated to the eigenvectors of ρ . If ρ1,ρ2 ∈Sp(H) are the states in question
for some p ∈ [0,1], then ρ = pρ1 +(1− p)ρ2, and so

γ(ρ) = pγ(ρ1)+(1− p)γ(ρ2) = pUρ1U−1 +(1− p)Uρ2U−1

= U (pρ1 +(1− p)ρ2)U−1 = UρU−1 .

Therefore the unitary (or antiunitary) operator U satisfies the theorem’s claim. �
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Let us state and prove Kadison’s theorem in general. (Kadison originally proved
the non-trivial statements (a) and (b)).

Theorem 12.12 (Kadison). Consider a quantum system S described on the (sep-
arable, complex) Hilbert space HS. Let HS decompose in coherent sectors HS =
⊕k∈KHSk (possibly K = {1}, in which case HS should replace every HSk). Suppose
the map

γ :S(HSk)→S(HSk′)

is a symmetry of S (according to Kadison) from HSk to HSk′ , k,k′ ∈ K. Then

(a) there exists an operator U : HSk → HSk′ , unitary or antiunitary, such that:

γ(ρ) = UρU−1 for every pure state ρ ∈S(HSk). (12.13)

(b) U is determined up to phase, i.e. U1 and U2 (both unitary or antiunitary) satisfy
(12.13) (replacing U) if and only if U2 = χU1 with χ ∈ C, |χ|= 1.
(c) The restriction of γ to pure states is a Wigner symmetry (and the unitary vs. anti-
unitary character of U in (a) is determined by γ�Sp(HSk)).
(d) Every Wigner symmetry δ :Sp(HSk)→Sp(HSk′) extends, uniquely, to a Kadison
symmetry γ(δ ) :S(HSk)→S(HSk′).

Proof. (b) Supposing U exists and is either unitary or antiunitary, let us prove unique-
ness up to phase in the class of operators. If U1 saisfies the theorem for γ , then
U2 := χU1 will satisfy it if χ ∈ C, |χ| = 1. We claim there are no other possibil-
ities. Suppose U1, U2 (of the same type) satisfy the theorem for γ . In particular, if
ρ ∈ S(HSk) then U1ρU−1

1 = U2ρU−1
2 , so LρL−1 = ρ where L := U−1

1 U2 is linear
and unitary. Choosing a pure state ρ = ψ(ψ | ), the identity reads

Lψ(Lψ | ) = ψ(ψ | )
so Lψ belongs to the ray of ψ , and Lψ = χψψ for some unit χψ ∈ C. Exactly as in
part (b) of Wigner’s theorem, χψ does not depend on ψ , ending the proof of (b).

Let us pass to (a) and divide the proof in steps. First, we notice γ is bijective and
preserves convexity. Therefore it maps extreme elements to extreme elements and the
same for non-extreme ones, i.e. pure states to pure states and mixed ones to mixed
ones. We claim that if M⊂ HSk is a two-dimensional subspace there is an analogous
two-dimensional M′ ⊂ HSk′ such that γ (S(M)) = S(M′). If ψ1,ψ2 is a basis of M,
the generic element in S(M) is ρ = pψ1(ψ1| )+qψ2(ψ2| ), p+q = 1 and p,q ≥ 0.
Hence:

γ(ρ) = pγ(ψ1(ψ1| ))+qγ(ψ2(ψ2| )) = pψ ′1(ψ ′1| )+qψ ′2(ψ ′2| ) ,

where the unit ψ ′1, ψ ′2 arise (up to phase) from the corresponding pure states
γ(ψ1(ψ1| )), γ(ψ1(ψ1| )). The latter must be distinct, otherwise the bijection γ−1 :
S(HSk′)→ S(HSk), that preserves convexity, would map pure to mixed. So ψ ′1 and
ψ ′2, both unit, satisfy ψ ′1 � aψ ′2 for any a ∈ C, and thus are linearly independent. The
space M′ is then generated by ψ ′1, ψ ′2.
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Now we need two lemmas.

Lemma 12.13. Under our assumptions on γ , there is a Wigner symmetry δ :
Sp(HSk)→Sp(HSk′) such that γ(ρ) = δ (ρ) for every ρ ∈Sp(HSk).

Proof of Lemma 12.13. Since γ and γ−1 preserve extreme and non-extreme sets,
γ�Sp(HSk): Sp(HSk) → Sp(HSk′) is invertible, because the left and right inverse is

just γ−1�Sp(HSk′ ):Sp(HSk′)→Sp(HSk). The proof ends once we show γ�Sp(HSk) pre-
serves transition probabilities. Given φ ,ψ ∈HSk unit and distinct, let M be their span
and M′ ⊂ HSk′ the two-dimensional space such that γ (S(M)) ⊂ S(M′), mentioned
above. Call U : M′ →M an arbitrary unitary operator. Define

γ ′(ρ) := Uγ(ρ)U−1 , ρ ∈S(M).

Immediately, γ ′ is a Kadison symmetry if we restrict to the 2-dimensional Hilbert
space H = M. As shown in Proposition 12.11, Kadison’s theorem holds and there is a
unitary, or antiunitary, V : M→M such that γ ′(ρ) =Uγ(ρ)U−1 =VρV−1. Otherwise
said:

γ(ρ) = UVρ(UV )−1 , ρ ∈S(M).

In particular, choosing ρ = ψ(ψ | ) and then ρ = φ(φ | ) gives

tr (γ(ψ(ψ | ))γ(φ(φ | ))) = tr
(
UVψ(ψ | )(UV )−1UVφ(φ | )(UV )−1)=

= tr
(
UVψ(ψ | )φ(φ | )(UV )−1)= tr (ψ(ψ | )φ(φ | )) .

If ψ(ψ | ) = φ(φ | ) the result is the same, as one sees easily. So we proved that
γ�Sp(HSk) preserves transition probabilities, and so is a Wigner symmetry. �

By the previous lemma, and invoking Wigner’s Theorem 12.10, there exists a
unitary, or antiunitary, operator U : HSk → HSk′ such that

γ(ρ) = UρU−1 , ρ ∈Sp(HSk). (12.14)

The proof now ends if we prove that the above identity holds also for ρ ∈ S(HSk),
and not only for Sp(HSk). For that, note (12.14) is equivalent to:

U−1γ(ρ)U = ρ , ρ ∈Sp(HSk).

Therefore Γ := U−1γ( · )U : S(HSk) → S(HSk) is a Kadison symmetry (a Kadison
automorphism, actually) that reduces to the identity on pure states. Kadison’s the-
orem is eventually proved after we establish the following lemma.

Lemma 12.14. Let H be a Hilbert space. If a Kadison automorphism Γ : S(H) →
S(H) restricts to the identity on pure states, it is the identity.

Proof of Lemma 12.14. Let ρ =∑N
k=0 pkψk(ψk| ) be a finite (convex) combination of

pure states. Then

Γ (ρ) = Γ

(
N

∑
k=0

pkψk(ψk| )
)

=
N

∑
k=0

pkΓ (ψk(ψk| )) =

(
N

∑
k=0

pk

)

I = I .
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Therefore the claim holds for every ρ ∈S(H) provided finite (convex) combination
of pure states are dense in S(H) in some topology for which Γ is continuous. Let us
show this works if we take the topology of trace-class operators induced by the norm
||T ||1 := tr(|T |) (see Chapter 4).

If ρ ∈S(H) we can decompose the operator spectrally:

ρ = ∑
k∈N

pkψk(ψk| ) ,

where pk > 0, ∑k∈N pk = 1. Convergence is understood in the strong topology, and
also in uniform topology, as we know from Chapter 4. Let us prove, further, we may
approximate ρ by finite (convex) combinations ρN ∈ S(H) of pure states, so that
||ρN −ρ||1 → 0 per N →+∞. To this end set:

ρN :=
N

∑
k=0

q(N)
k ψk(ψk| ) , q(N)

k :=
pk

∑N
j=0 p j

, N=0,1,2,. . . .

Evidently ρN ∈S(H) for any N ∈N. Since q(N)
k > pk and the unit vectors ψk (adding

a basis of ker(ρ)⊃ ker(ρN)) give a basis of H of eigenvectors of ρ , ρN and hence of
ρ−ρN . The trace of |ρ−ρN | in that basis

||ρ−ρN ||1 = tr (|ρ−ρN |) =
N

∑
k=0

|pk−q(N)
k |+

+∞

∑
k=N+1

|pk|

=
1−∑N

j=0 p j

∑N
j=0 p j

N

∑
k=0

pk +
+∞

∑
k=N+1

pk → 0 as N →+∞ .

The limit exists and vanishes because pn > 0 and ∑+∞
n=1 pn = 1.

We will show Γ is continuous for || ||1, and conclude. First of all extend Γ from
S(H) to positive trace-class operators on H, by defining:

Γ1(A) := tr(A)Γ
(

1
trA

A

)

, Γ1(0) := 0

where A ∈ B1(H), A ≥ 0 (so tr(A) > 0 if A � 0). It follows that Γ1(A) ∈ B1(H),
Γ1(A)≥ 0, and:

Γ1(αA) = αΓ1(A) if α ≥ 0, and tr (Γ1 (A)) = tr(A) .

Since Γ preserves convexity, it is not hard to see

Γ1 (A+B) = Γ1(A)+Γ1(B) .

To conclude extend Γ1 to self-adjoint trace-class operators:

Γ2(A) := Γ1(A+)−Γ1(A−) ,
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where A− :=−∫(−∞,0) xdP(A)(x) and A+ :=
∫
[0,+∞) xdP(A)(x). Observe A+−A− = A

and |A|= A+ +A− by definition, since P(A) is the PVM of A.
If A ∈ B1(H) is self-adjoint, then Γ2(A) belongs to B1(H) and is self-adjoint.

Moreover:

||Γ2(A)||1 ≤ ||Γ1(A+)||1 + ||Γ1(A−)||1 = tr (A+)+ tr (A−) = ||A||1 .

Therefore Γ2 is continuous for || ||1, and so also its restriction Γ : S(H) → S(H)
is. �

Altogether we have proved the existence of U unitary, or antiunitary, satisfying
γ(ρ) = UρU−1 for any ρ ∈S(HSk). This finishes part (a).
(c) Since γ�Sp(HSk) (ρ) = UρU−1, we conclude γ�Sp(HSk) is a Wigner symmetry. In
particular, the operator U satisfying (a) (in this theorem) satisfies (a) in Wigner’s the-
orem for γ�Sp(HSk). By Wigner’s theorem the character (unitary or antiunitary) of U
from part (a) is fixed by γ�Sp(HSk).
(d) If δ is a Wigner symmetry, by Wigner’s theorem U exists, unitary or antiunit-
ary, such that δ (ρ) = UρU−1 for any pure state. U defines the Kadison symmetry
γ(δ )(ρ) = UρU−1 extending δ to the whole space of states. Let us prove uniqueness.
If two Kadison symmetries γ,γ ′, associated to the unitary or antiunitary U , U ′, coin-
cide on Sp(HSk), then the Wigner symmetries δ (U) = U ·U−1, δ (U ′) = U ′ ·U ′−1 are
the same. By Wigner’s theorem U and U ′ are both either unitary or antiunitary, and
U = χU ′ with |χ|= 1. Therefore

γ(ρ) = UρU−1 = χU ′ρU ′−1χ−1 = χχ−1U ′ρU ′−1 = U ′ρU ′−1 = γ ′(ρ)

for every ρ ∈S(HSk), so γ = γ ′. The proof of Kadison’s theorem is finished. �

Form the last part of the proof of part (a) we can extract yet another fact, inter-
esting by its own means.

Proposition 12.15. Let γ be a Wigner (or Kadison) automorphism of the complex
Hilbert space H, and denote by B1(H)R ⊂ B1(H) the real space of trace-class self-
adjoint operators.
There exist a unique linear operator γ2 :B1(H)R→B1(H)R, continuous for the norm
|| ||1 ofB1(H), that restricts to γ onSp(H) (or onS(H), respectively). More precisely

||γ2(A)||1 ≤ ||A||1 for every A ∈B1(H)R.

Proof. The existence of a Kadison automorphisms is contained in Lemma 12.14,
where we proved the existence of Γ2 (above called γ2) given Γ (γ above). Unique-
ness follows from the construction, in Lemma 12.14, that led from Γ to Γ2. For
Wigner automorphisms the proof follows from the Kadison case, by statement (d)
in Kadison’s theorem. �
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12.1.6 The dual action of symmetries on observables

The theorems of Wigner and Kadison enable us to define in a very elementary manner
a (dual) action of a symmetry on the observables of the physical system.

Consider a physical system S described on the (separable, complex) Hilbert space
HS. For simplicity we shall consider the case of one sector only, as the generalisa-
tion to several coherent sectors is immediate. We know the set P(HS) of elementary
observables on S is described by orthogonal projectors on H. Observables on S are
PVMs built with these projectors, i.e. self-adjoint (in general unbounded) operators
associated to the PVMs.

Suppose γ :S(HS)→S(HS) is a symmetry associated with the (anti)unitary op-
erator U , up to phase. We define its dual action γ∗ : P(HS)→ P(HS) on the lattice
of projectors by:

γ∗(P) := U−1PU , P ∈P(HS) (12.15)

(the arbitrary phase affecting U being irrelevant). A duality identity holds:

tr (ργ∗(P)) = tr (γ(ρ)P) . (12.16)

This follows γ(ρ) = UρU−1 by Kadison’s theorem and the fact that (when comput-
ing traces if U is antiunitary) antiunitary operators preserve bases.

The mapping γ∗ :P(HS)→P(HS) not only transforms orthogonal projectors into
orthogonal projectors, but also preserves orthocomplemented, σ -complete bounded
lattices. For example, the orthogonal projectors P, Q of P(HS) commute if and only
if γ∗(P) commutes with γ∗(Q). In that case γ∗ (P∨Q) = γ∗(P)∨ γ∗(Q), and so on.
If A : D(A) → H is self-adjoint on H with spectral measure P(A) ⊂ P(HS), then

U−1AU : U−1D(A) → HS is self-adjoint with spectral measure γ∗
(

P(A)
)

(see Ex-

ercises 9.1 if unitary, 12.6 if antiunitary). This fact allows to extend the action of γ∗
to every observable in agreement with the spectral decomposition: just define, for a
self-adjoint A : D(A)→ HS representing an observable of S:

γ∗(A) := U−1AU . (12.17)

The physical meaning of γ∗(A) is the following. When we define a Kadison sym-
metry γ , we are prescribing an experimental procedure under which the system S
should be transformed. Mathematically speaking the action on states is described
precisely by γ : S(HS) → S(HS). The action γ∗ on observables, instead, represents
operative procedures on measuring instruments which, intuitively, correspond and
generalise passive transformations of the coordinates. Better said, the procedure is
such that if we act by γ act on the system, or by γ∗ on the instrument, we obtain the
same result (expectation values, variances, outcome frequencies) as when we take
the measurements.

For instance, 〈γ∗(A)〉ρ and 〈A〉γ(ρ) are equal expectation values:

〈γ∗(A)〉ρ = tr (γ∗(A)ρ) = tr
(
U−1AUρ

)
= tr
(
AUρU−1)= tr(Aγ(ρ)) = 〈A〉γ(ρ) .
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This is, in practice, the content of the duality equation (12.16). The result is equi-
valent to saying that the action of γ on the system can be neutralised, concerning
measurement readings on the system, by the simultaneous action of (γ∗)−1 on the
instruments.

Remarks 12.16. From the experimental point of view it is not obvious that a trans-
formation acting on the system can be cancelled by a simultaneous action on the
measuring instrument. Symmetries, à la Kadison or Wigner, have this property. �

Examples 12.17. (1) Consider a spin-zero quantum particle described onR3, thought
of as rest space of an inertial frame system with given positively-oriented orthonor-
mal coordinates. From Chapter 11 we know the particle’s Hilbert space is L2(R3,dx).
Pure states are thus determined, up to arbitrary phases, by wavefunctions, i.e. by vec-
tors ψ ∈ L2(R3,dx) such that

∫
R3 |ψ(x)|2dx = 1.

We want to explain how the isometries of R3 determine Wigner symmetries
(hence Kadison symmetries), because under them Lebesgue’s measure is invariant.

The notions of group theory used in the sequel will be summarised at a later
stage (elementary facts are present in the book’s appendix). Denote by IO(3) the iso-
metry group of R3, which is the semidirect product (see the appendix) of O(3) with
the Abelian group of translations R3. In practice, every element Γ ∈ IO(3) is a pair
Γ = (R, t) acting on R3 as follows: Γ (x) := t+Rx. The composition law of IO(3) is:

(t′,R′)◦ (t,R) = (t′+R′t, R′R) hence (t,R)−1 = (−R−1t, R−1) .

Let Γ : R3 → R3 belong to IO(3), so Γ could in particular be: a translation along an
axis t, Γ :R3 � x 	→ x+ t, a rotation of O(3) about the origin R3 � x 	→ Rx (including
rotations with negative determinant in O(3)), or a combinations of the two. So we
can define a transformation of square-integrable maps:

(UΓ ψ)(x) := ψ
(
Γ−1x
)

, ψ ∈ L2(R3,dx). (12.18)

The operator U is clearly linear, surjective (every isometry Γ of R3 is bijective) and
isometric, as the Jacobian matrix J of an isometry has determinant ±1:

||UΓψ ||2 =
∫

R3

∣
∣ψ
(
Γ−1x
)∣
∣2 dx =

∫

R3

∣
∣ψ
(
x′
)∣
∣2 |detJ|dx′ =

∫

R3

∣
∣ψ
(
x′
)∣
∣2 dx′ = ||ψ ||2 .

The transformation γΓ induced by the unitary operator UΓ on states (pure or mixed) is
a symmetry (Wigner or Kadison, respectively), which naturally represents the action
of the isometry Γ on S given by the particle examined.

The map IO(3) � Γ 	→UΓ satisfies

Uid = I , UΓUΓ ′ = UΓ ◦Γ ′ , Γ ,Γ ′ ∈ IO(3)

where id is the identity of IO(3), because of (12.18). Thus IO(3)�Γ 	→UΓ preserves
the group structure (in particular UΓ−1 = (UΓ )−1); as such it is a representation of
the group IO(3) by unitary operators. We will discuss these representations in the
next section.
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Take now a PVM onR3, denoted P(X), that coincides with the joint spectral meas-
ure (see Theorem 9.16) of the three position operators:

(P(X)
E ψ)(x) = χE(x)ψ(x) , ψ ∈ L2(R3,dx).

It is easy to prove the position operators arise by integrating the corresponding func-
tions in this PVM:

Xi =
∫

R3
xidP(X)(x) i = 1,2,3.

Directly from definition (12.18) the imprimitivity condition holds:

UΓP(X)
E U−1

Γ = P(X)
Γ (E) . (12.19)

In fact for a generic map ψ ∈ L2(R3,dx):
(

UΓP(X)
E U−1

Γ ψ
)

(x) = χE
(
Γ−1(x)

)
ψ
((
Γ
(
Γ−1(x)

)))
= χΓ (E)(x)ψ(x)

=
(

P(X)
Γ (E)ψ
)

(x) .

Equation (12.19) follows since ψ is arbitrary. Note that the imprimitivity equation
can be written equivalently in terms of the dual action of the Kadison symmetry:

γ∗Γ
(

P(X)
E

)
= P(X)

Γ−1(E) .

In general a system of imprimitivity on X according to Mackey is given by: (i) a
PVM P on the separable complex Hilbert space H for the Borel σ -algebra of the
metrisable space X (that admits a metric making it complete and separable), (ii) a
second-countable, locally compact group G acting on X so that the action2 G×X �
(g,x) 	→ gx ∈ X is measurable, (iii) a unitary representation G � g 	→Vg ∈B(H) that
is strongly continuous and satisfies the imprimitivity condition:

VgPEV−1
g = Pg(E) for any E ∈B(X), g ∈G .

The imprimitivity system is said transitive when the action of G on X is transitive,
i.e. such that any pair x1,x2 ∈ X can be transformed into one another x2 = gx1 by
some g ∈G. Unitary representations of G for any imprimitivity system, up to unitary
equivalence, are all determined by the famous Imprimitivity theorem of Mackey,
which we shall not be concerned with (see for instance [Jau73]).

We have verified that P(X), IO(3), U form a transitive imprimitivity system on
R

3 (we did not check the topological requests, which hold if we endow IO(3) with
the natural structure of a matrix subgroup of the Lie group GL(4)). Transitivity is
obvious from elementary geometry.

2 The map (g,x) 	→ gx is customarily taken so that g′(gx) = (g′g)x and ex = x for every
g,g′ ∈G, x ∈ X , where e ∈ G is the neutral element.
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The action of γ∗Γ on position operators can be obtained by direct computation,
in analogy to the imprimitivity condition, or using the latter to integrate the spec-
tral measure. Let X = (X1,X2,X3) be the column vector of the X1,X2,X3 restricted to
the common invariant Schwartz domain S (R3), where the operators are essentially
self-adjoint. Then

γ∗Γ (X) = U−1
Γ XUΓ = RX+ tI , (12.20)

and in particular, considering pure translations:

γ∗(t,I) (X) = U−1
(t,I)XU(t,I) = X+ tI , (12.21)

and pure rotations:
γ∗(0,R) (X) = U−1

(0,R)XU(0,R) = RX . (12.22)

The element (0,−I) ∈ IO(3) defines the reflection about the origin. The unitary rep-
resentation P := U(0,−I), and the associated Wigner (Kadison) symmetry γP , are
called parity inversion. Not so precisely one often calls (0,−I) parity inversion.
Easily, P∗ = P (so PP = I as P−1 = P∗). Therefore the inversion of parity
admits an associated observable, called parity, with two possible eigenvalues ±1.
We must emphasise that the unitary operator representing (0,−I) is actually defined,
as usual, up to phase, so the observable P associated to the parity symmetry corres-
ponds to a specific choice of phase. There are two possibilities for the phase, since
also −P is an observable representing the inversion of parity.

(2) Consider the system of the previous example, and let us study it via the momentum
representation. Using the Fourier-Plancherel transform, in other terms, we identify
H and L2(R3,dk), so that the three momentum observables (the components of mo-
mentum in the orthonormal Cartesian coordinates of the inertial frame) are represen-
ted by the multiplication operators:

(Piψ̃)(k) = h̄kiψ̃(k) ,

as we saw in Chapter 11. We indicate by ψ̃ = F̂ (ψ) the Fourier-Plancherel trans-
form of ψ ∈ L2(R3,dx). An extremely interesting symmetry in physics is the time
reversal γT , described by antiunitary operators (later we will see why). This sym-
metry corresponds to flipping the sign of time, but also changing sign to particles’
velocities and thus to their momentum. The antiunitary operator T̃ describing time
reversal can be chosen (uniquely, up to phase) thus:

(
T̃ ψ̃
)

(k) := ψ̃(−k) , ψ̃ ∈ L2(R3,dk). (12.23)

In contrast to P in the previous example, any chosen phase for T̃ maintains T̃ T̃ = I
because T̃ is antiunitary. Nonetheless, T̃ is not an observable since the operator is
not linear. Reverting to the position representation with the chosen phase it can be
proved that the symmetry γT is associated to an antiunitary operator

T := F̂−1T̃ F̂
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(F̂ is the Fourier-Plancherel transform as in Chapter 11), such that

(T ψ)(x) := ψ(x) , ψ ∈ L2(R3,dx). (12.24)

(3) Consider a particle having electric charge represented by the observable Q with
discrete spectrum made by eigenvalues ±1. Fix an inertial system of reference I ,
with orthonormal Cartesian coordinates for which the rest space is R3. Then the sys-
tem’s Hilbert space is

H = C2⊗L2(R3,dx)≡ L2(R3,dx)⊕ (R3,dx) ,

where ⊕ denotes orthogonal sum. The canonical isomorphism between the above
spaces (cf. Example 10.27(2) as well) descends from the fact that any Ψ ∈ C2 ⊗
L2(R3,dx) can be written:

Ψ = |+〉⊗ψ+ + |−〉⊗ψ− ,

where {|+〉, |−〉} is the canonical basis of C2 made by eigenvectors of the Pauli mat-
rix σ3 (cf. (12.10)) with eigenvalues +1 and−1 respectively. Hence the isomorphism
reads:

L2(R3,dx)⊕ (R3,dx) � (ψ+,ψ−) 	→ |+〉⊗ψ+ + |−〉⊗ψ− ∈ C2⊗L2(R3,dx) .

It preserves the Hilbert structure (the inner product) if we view L2(R3,dx)⊕ (R3,dx)
as an orthogonal sum. The charge observable can be thought of as the Pauli matrix
σ3 in C2, so on the complete space

Q = σ3⊗ I ,

where I is the identity on L2(R3,dx). The superselection rule of the charge, in this
simple situation, requires the space split in two coherent sectors H = H+⊕H−, where
H± are the ±1-eigenspaces of Q. By construction, the coherent decomposition coin-
cides exactly with the natural:

H = L2(R3,dx)⊕L2(R3,dx) .

Referring to the latter, admissible pure states are only those determined by vectors
(ψ ,0) or (0,ψ), with ψ ∈ L2(R3,dx). Therefore the symmetry γC+ , called conjuga-
tion of the charge from the sector H+ to the sector H− is represented by the unitary
operator C : H+ → H−:

C+ : (ψ ,0) 	→ (0,ψ) , ψ ∈ L2(R3,dx). (12.25)

The symmetry γC− , called conjugation of the charge from the sector H− to the
sector H+ is similar:

C− : (0,φ) 	→ (φ ,0) , φ ∈ L2(R3,dx). (12.26)
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Notice that C− is the inverse of C+. Eventually, we define the Wigner symmetry
called conjugation of the charge, that acts on the entire Hilbert space (respecting
sectors) and restricts to the two above on the relative coherent spaces:

C := C+⊕C− .

By construction C C = I, so C = C ∗ and I is self-adjoint. Moreover

C ∗QC =−Q . (12.27)
�

12.2 Introduction to symmetry groups

This section is devoted to elementary topics from the theory of projective represent-
ations, applied to quantum symmetry groups. Given the vastitude and relevance of
the material, the reader is encouraged to refer to the exhaustive treatise [BaRa86] for
details.

12.2.1 Projective and projective unitary representations

Suppose we look at a group G (with product · and neutral element e) as a group of
transformations acting on a physical system S, described on the Hilbert space HS. For
simplicity we assume HS is the only coherent sector. Suppose, further, each trans-
formation g ∈G is associated to a symmetry γg, which we can then see as a Kadison
(or Wigner) automorphism. We have already met this setup in Example 12.5(1),
where G was the isometry group of the three-dimensional rest space of an inertial
frame and S was the particle with no charge nor spin. Kadison automorphisms from
S(HS) to itself clearly form a group under the composition of maps. Hence the idea
takes shape that there is a representation of G in terms of Kadison automorphisms:
these should describe the group action of G on the quantum states of S. In other words
we can suppose the map G � g 	→ γg is a group homomorphism from G to the group
of invertible maps on S(HS):

γg·g′ = γg ◦ γg′ , γe = id , γg−1 = γ−1
g , g,g′ ∈G,

where id is the identity automorphism. Actually, the last condition is unnecessary
because it follows from the former two by uniqueness of inverses. We also expect,
as happens in the majority of concrete physical cases, the representation G � g 	→ γg
to be faithful, which means the homomorphism G � g 	→ γg is injective. This is very
often the case in physics.

Definition 12.18. Consider a quantum system S described on the Hilbert space HS.
Let G be a group with an injective homomorphism (a faithful representation) G �
g 	→ γg defined by Wigner automorphisms γg :Sp(HS)→Sp(HS). Then G is called a
symmetry group of S, and G � g 	→ γg is its projective representation on Sp(HS).
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Remark 12.19. (1) Referring only to Wigner symmetries is not restrictive since
Kadison’s theorem (in our formulation) warrants every Wigner automorphism γg ex-
tends, uniquely, to a Kadison automorphism γ ′g : S(HS) → S(HS). It is straightfor-
ward that G� g 	→ γ ′g is an injective homomorphism, i.e. a faithful representation of G
by Kadison automorphisms. Conversely, every faithful G-representation by Kadison
automorphisms determines a unique faithful G-representation by Wigner automorph-
isms, by restriction toSp(HS). In the sequel, despite mentioning Wigner symmetries
most of the times, we will think the representation G � g 	→ γg as given by Wigner
or Kadison automorphisms, according to what will suit us best.
(2) The name projective representation is appropriate becauseSp(Hs) is a projective
space, as we saw in Chapter 7, and the map γg :Sp(HS)→Sp(HS) is well defined.
(3) Since the homomorphism G � g 	→ γg is explicitly wanted injective, we can equi-
valently take, as group of symmetries, the set of automorphisms γg, with g ∈ G,
equipped with the natural group structure coming from map composition. Indeed,
this group is isomorphic to G by construction. �

Now here is an interesting issue. Suppose we have a symmetry group and a pro-
jective representation G � g 	→ γg. The map G 	→ γg is certainly a representation, but
not a linear representation, because the γg :Sp(HS)→Sp(HS) are not linear maps.
Yet since to every automorphism γg corresponds a (linear) unitary or antiunitary op-
erator Ug : HS → HS that satisfies γg(ρ) = UgρU−1

g for any ρ ∈ Sp(HS), a natural
question arises: can G � g 	→ Ug be an (anti)linear representation of G? Can it be
given, in other terms, by (anti)linear (unitary and/or antiunitary) operators in B(H)?
We are equivalently asking whether G � g 	→Ug is a group homomorphism, i.e. if it
preserves the group structure:

Ug·g′ = UgUg′ , Ue = I , Ug−1 = U−1
g for any g,g′ ∈G, (12.28)

where I : HS → HS is the identity operator. The matter is relevant from a tech-
nical point to view, too: the profusion of results available on linear representations
over (Hilbert) spaces can be used to study symmetry groups of quantum systems.
The answer to the preceding questions is typically negative, because the condition
Ug·g′ = UgUg′ in general fails. Namely, as γg ◦ γg′ = γgg′ , we have

UgUg′ρ(UgUg′)
−1 = Ug·g′ρU−1

g·g′ for any ρ ∈S(HS).

Consequently:

(Ug·g′)−1UgUg′ρ(UgUg′)
−1Ug·g′ = ρ , ρ ∈Sp(HS).

This means that if ρ = ψ(ψ | ) then (Ug·g′)−1UgUg′ψ and ψ can differ by a phase
factor, at most. The phase cannot depend uponψ (the proof is the same as the unique-
ness part in Wigner’s theorem), but it may still depend on g and g′. This result is
sharp – the best possible – because the Ug themselves are defined up to phase. Over-
all, if the (unitary or antiunitary) Ug are associated to a projective representation of a
certain symmetry group, the condition Ug·g′ = UgUg′ weakens, in the general case, to

UgUg′ = ω(g,g′)Ug·g′ , g,g′ ∈G,
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where ω(g,g′) ∈ C, |ω(g,g′)| = 1, are complex numbers depending on how the Ug

are associated to the automorphisms γg, but in any case respecting the theorems
of Wigner and Kadison. Therefore if U(1) is the group of unit complex numbers,
ω(g,g′) ∈ U(1). In particular, setting g = g′ = e, the above implicit definition of
ω(g,g′) tells

Ue = ω(e,e)I ,

hence UeρU−1
e = ρ as it should be.

It is not at all obvious that one can redefine phases so to obtain ω(g,g′) = 1 for
every g,g′ ∈G.

Remarks 12.20. Henceforth we will work with unitary operators, and drop the anti-
unitary case. The explanation is put off until the end of the section. �

The functions G×G� (g,g′) 	→ω(g,g′)∈U(1) are not totally arbitrary, because
associativity holds:

(UgUg′)Ug′′ = Ug(Ug′Ug′′) .

A computation shows that the above is equivalent to:

ω(g,g′)ω(g ·g′,g′′) = ω(g,g′ ·g′′)ω(g′,g′′) . (12.29)

In turn, the latter implies:

ω(g,e) = ω(e,g) , ω(g,e) = ω(g1,e) , ω(g,g−1) = ω(g−1,g) , g,g1 ∈G ,
(12.30)

(e being the neutral element of G, so Ue = ω(e,e)I). The next definition transcends
the physical meaning of the objects involved.

Definition 12.21. Let G be a group and H a (complex) Hilbert space.

(a) A projective unitary representation of G on H is a map

G � g 	→Ug ∈B(H) (12.31)

such that: Ug are unitary operators, and the multiplier (operators) of the represent-
ation

ω(g,g′) := U−1
g·g′UgUg′ , g,g′ ∈G, (12.32)

belong to U(1) for any g,g′ ∈G (hence (12.29) holds).
The projective representation on Sp(H) given by (with obvious notation)

G � g 	→Ug ·U∗
g

is induced by the projective unitary representation (12.31).
The projective unitary representation (12.31) is called irreducible if there is no

proper closed subspace H0 ⊂ H such that Ug(H0)⊂ H0 for every g ∈G.
Given H, H′ Hilbert spaces (possibly equal), two projective unitary representa-

tions
G � g 	→Ug ∈B(H) and G � g 	→U ′

g ∈B(H′)
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are said (unitarily) equivalent if there exist a unitary operator S : H → H′ and a
map χ : G � g 	→ χ(g) ∈U(1) satisfying:

χ(g)SUgS−1 = U ′
g , g ∈G. (12.33)

(b) A group homomorphism

G � g 	→Ug ∈B(H) (12.34)

mapping elements of G to unitary operators on H is a (proper) unitary represent-
ation of G on H. (That is to say, a unitary representation is a projective unitary
representation whose multipliers equal 1.)

The unitary representation (12.34) is irreducible if no proper closed subspace
H0 ⊂ H exists such that Ug(H0)⊂ H0 for every g ∈G.

Given H, H′ Hilbert spaces (possibly equal), two unitary representations

G � g 	→Ug ∈B(H) and G � g 	→U ′
g ∈B(H′)

are (unitarily) equivalent if there is a unitary operator S : H→ H′ such that

SUgS−1 = U ′
g for every g ∈G. (12.35)

Important remark. The reader should now be able to see the difference between
projective representations, projective unitary representations and unitary representa-
tions. The first type act on Sp(HS) or S(HS) representing symmetry groups, and do
not involve choices without physical meaning. The other two kinds act on HS, induce
projective representations, but are affected by arbitrary choices on the phases of the
unitary operators by which they act. �

Remark 12.22. (1) The notion of equivalence of two projective unitary representa-
tions is transitive, symmetric and reflexive, so it is an honest equivalence relation on
the space of projective unitary representations of a given group on a given Hilbert
space. If G is a symmetry group for the physical system S, described on the Hilbert
space HS, projective representations of G on Sp(HS) are patently in one-to-one cor-
respondence with equivalence classes of projective unitary representations of G.
(2) The property that a projective unitary representation G � g 	→Ug be equivalent
to a unitary representation is actually a property of the coset of the projective unitary
representation: it means that the equivalence class contains a unitary representative.
When talking about symmetry groups of a quantum system, that is a feature of the
projective representation on S(HS) corresponding to the class.
(3) The property that a projective unitary representation G� g 	→Ug be irreducible is
a property of the coset of the projective unitary representation: if one representative
in the equivalence class is irreducible, all other elements are irreducible, as is clear
from the definitions. Irreducible representations are important in that every represent-
ation can be constructed as direct sum or direct integral of irreducible representations
[BaRa86].
(4) Given a symmetry group G with projective representation G � g 	→ γg, a func-
tion is automatically defined, namely G � g 	→ γ∗g , that represents the group action on



548 12 Introduction to Quantum Symmetries

observables, in the sense of Chapter 12.1.6. The definition holds beyond the partic-
ular choice of projective unitary representation of the theory on the system’s Hilbert
space: the phases we have to fix to pass from γg to the Ug cancel out when we transfer
the action to observables: γ∗g (A) = U−1

g AUg. Note that G � g 	→ γ∗g does not define a
left G-representation; it is easy to see, from the definition of γ∗g , that:

γ∗g γ∗g′ = γ∗g′·g

by construction, and not γ∗g γ∗g′ = γ∗g·g′ . Furthermore, γ∗e = id and γ∗g−1 = (γ∗g )−1. The
function G � g 	→ γ∗g is a right representation of G, provided we endow observables
with the structure of a vector space.

Definition 12.23. Let G have neutral element e. A (linear) right representation of
G on a vector space V is a map G � g 	→ αg ∈ GL(V ) such that

αaαb = αb·a , αe = id , (αc)−1 = αc−1

for any a,b,c ∈ G. �

Here is a more concrete way of asking whether a projective representation G �
g 	→ γg of a symmetry group G can be described, on HS, by a unitary representation
of G. Inside the equivalence class of projective unitary representations associated to
G� g 	→ γg we fix an arbitrary representative (the ensuing discussion does not depend
on this element, by remark (2) above) and consider its multipliers.

Thus we reduce to decide whether there might be a map χ : G � g 	→ χ(g) ∈ C
such that |χ(g)|= 1 and:

ω(g,g′) =
χ(g ·g′)
χ(g)χ(g′)

for any g,g′ ∈G . (12.36)

Proof: if said map χ exists, inserting it on the left in (12.33) renders the multipliers
of G � g 	→U ′

g trivial by (12.36). Conversely, if the multipliers of G � g 	→U ′
g are

trivial, the χ in (12.33) solves (12.36).
There are many strategies to tackle and solve the existence problem of χ

[BaRa86], and one can see there exist groups, e.g. the Lorentz group and the Poin-
caré group, whose projective representations are described by unitary representations
on the Hilbert space of the system. At the same time there are groups, like the Ga-
lilean group, whose (non-trivial) projective representations cannot be given by unit-
ary representations, but only by projective unitary representations, and for which the
multipliers cannot be suppressed by smart choices of the phases.

There is a colossal literature on the topic, and irreducible projective unitary rep-
resentations of the groups of interest in physics (especially Lie groups) have been
studied and classified [BaRa86].
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12.2.2 Projective unitary representations are unitary or antiunitary

Let us return to the unitary vs. antiunitary issue of the operators Ug. Suppose to have
a symmetry group with projective representation G � g 	→ γg. To an automorphism
γg corresponds either a unitary operator or an antiunitary one Ug : HS →HS satisfying
γg(ρ) = UgρU−1

g for every ρ ∈ Sp(HS), by Wigner’s theorem. Are there criteria to
decide whether the Ug are all unitary, all antiunitary, or maybe both depending on
g ∈ G? If Ug and Ug′ were antiunitary, the constraint UgUg′ = χ(g,g′)Ug·g′ would
force Ug·g′ to be unitary. Therefore representations of groups with more than two
elements, all made by antiunitary operators (identity apart, which is always unitary)
cannot exist. The hybrid case when a certain number of antiunitary operators (more
than one) are present is anyway non-trivial, due to constraints such as the aforemen-
tioned one. In this respect the next proposition shows that the group G might impose
the operators be all unitary.

Proposition 12.24. Let H be a complex Hilbert space and G a group. Suppose each
g ∈ G is the product of certain g1,g2, . . . ,gn ∈ G (dependent on g, with n depend-
ent on g) that admit a square root (there exist rk ∈ G such that gk = rk · rk for every
k = 1, . . . ,n). Then for every projective representation G � g 	→ γg, the elements γg
can only be associated to unitary operators by Wigner’s theorem (or Kadison’s).

Proof. The proof is obvious, for UrkUrk is linear even when Urk is antilinear, and from
Ugk = χ(rk,rk)UrkUrk follows Ugk is linear, so also Ug must be linear. �

The following result is important in the applications, especially the case n = 1.

Proposition 12.25. In relationship to Proposition 12.24, the projective representa-
tions of the additive group G = Rn are associated to unitary operators only.

Proof. If t ∈ Rn then t = t/2+ t/2, and the rest is a corollary of propostion 12.24. �

We shall see later that Proposition 12.24 is automatic when we assume G is a
connected Lie group, so antiunitary operators appear only with discrete groups or
when changing connected components. So in the sequel we will deal with the case in
which the Ug are all unitary.

12.2.3 Central extensions and quantum group associated to a
symmetry group

The approach in [BaRa86] allows to study all possible projective unitary representa-
tions of a certain group, by looking at them as restrictions of unitary representations
of a larger group, a central extension of the starting one. The recipe, apparently over-
complicated, is technically useful (also to detect possible unitary representations of
G) in that it lets us use the specific toolbox of the much developed theory of unitary
representations (of the extension). Let us briefly explain the basic idea of the proced-
ure, postponing the fundamental example where G is the Galilean group; the reader
might skip this section at first and return to it when needed.
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Take any group G and one projective unitary representation G � g 	→ Ug on a
Hilbert space H with multipliers ω . Define another group Ĝω consisting of pairs
(χ,g) ∈U(1)×G with product:

(χ,g)◦ (χ ′,g′) =
(
χχ ′ω(g,g′) , g ·g′) , (χ,g),(χ ′,g′) ∈U(1)×G.

The reader can check the definition is well posed, just owing to the fact
ω satisfies (12.29), and that it produces a group with neutral element
(ω(e,e)−1,e), e being the neutral element of G (remember (12.30)) and
(χ,g)−1 = (χ−1ω(e,e)−1ω(g,g−1)−1,g−1) the inverse. The following defini-
tion disregards the origin of the function ω , and only requires equation (12.29) to be
valid.

Definition 12.26. Let G be a group and ω : G×G →U(1) any function satisfying
(12.29). The group Ĝω = U(1)×G with product

(χ,g)◦ (χ ′,g) =
(
χχ ′ω(g,g′) , g ·g′) , (χ,g),(χ ′,g′) ∈U(1)×G,

is a central extension of G by U(1) with multiplier function ω . The injective homo-
morphism U(1)� χ 	→ (χ,e)∈ Ĝω and the surjective homomorphism Ĝω � (χ,g) 	→
g ∈ G are respectively called canonical injection and canonical projection of the
central extension.

The names (see the appendix at the end of the book for a minimal dictionary of
group theory) come about as follows: the canonical projection Ĝω � (χ,g) 	→ g ∈G
is a surjective homomorphism, whose null space is the normal subgroup N (range
of the canonical injection and isomorphic to U(1)) of pairs (χ,e) with χ ∈U(1). N

is contained in the centre of Ĝω , as its elements commute with the whole Ĝω (in
fact ω(e,g) = ω(g,e)). In practice the group G has been extended, to Ĝω , by adding
the kernel of the surjection Ĝω � (χ,g) 	→ g ∈G), which is central. Notice that G is
naturally identified with the quotient group Ĝω/N .

The procedure for obtaining all projective unitary representations G � g 	→Ug of
G relies on three important points.
(1) If G � g 	→Ug has multiplier function ω , the map

Ĝω � (χ,g) 	→V(χ,g) := χUg ,

is a unitary Ĝω -representation on H. In fact the operators V(χ,g) : H→ H are unitary,
so V(ω(e,e)−1,e) = I and

V(χ,g)V(χ ′,g′) = χUgχ ′Ug′ = χχ ′ω(g,g′)Ug·g′ = V(χ,g)◦(χ ′,g′) .

(2) The initial representation arises from the unitary representation Ĝω � (χ,g) 	→
V(χ,g) by restriction: i.e., restricting the domain of V to elements (1,g), g ∈ G. We
will say that the unitary representation V restricts to G in this case.
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(3) Given any unitary representation

Ĝω � (χ,g) 	→V(χ,g)

of a central extension, the restriction to {1}×G, say Ug := V(1,g), is a projective
unitary representation if and only if:

V(χ,e) = χω(e,e)I for every χ ∈U(1). (12.37)

In fact, V(χ,g) = χUg implies V(χ,e) = χUe = χω(e,e)I (for any projective unitary
representation ω(e,e) := U−1

ee UeUe = Ue). From (χ,g) = (χω(e,e)−1,e)(1,g), con-
versely, if (12.37) holds we can write

V (χ,g) = V (χω(e,e)−1,e)V (1,g) = χV (1,g) =: χUg .

So we have this proposition.

Proposition 12.27. Every projective unitary representation of a group G is the re-
striction of a unitary representation of a suitable central extension Ĝω whose multi-
plier function satisfies (12.37).

The extension procedure, especially when G is a Lie group, is extremely powerful.
Using cohomology techniques it enables to catalogue all projective unitary repres-
entations that are continuous in some topology (and all unitary representations of a
simply connected Lie group) starting from the Lie algebra of G [BaRa86]. We will
return here at a later stage.

As a matter of fact we need not know all central extensions of G to classify pro-
jective unitary representations. It suffices to know central extensions whose mul-
tipliers are non-equivalent. Two multiplier functions on the same group, G×G �
(g,g′) 	→ ω(g,g′) ∈U(1) and G×G � (g,g′) 	→ ω ′(g,g′) ∈U(1), are called equi-
valent if there is a map χ : G→U(1) such that

ω(g,g′) =
χ(g ·g′)
χ(g)χ(g′)

ω ′(g,g′) , g,g′ ∈ G.

If two projective unitary representations U , U ′ of G are equivalent, they are restric-
tions of unitary representations of central extensions Ĝω , Ĝω ′ with equivalent multi-
plier functions ω , ω ′. Hence, by knowing central extensions of G whose multipliers
are not equivalent and their unitary representations, we actually know the equival-
ence classes of projective unitary representations of G, and so all projective unitary
representations of G.

Further, if ω(e,e) � 1 for a certain ω , using an equivalence transformation by
a constant function χ we can reduce to the case ω(e,e) = 1. Multipliers such that
ω(e,e) = 1 (whence ω(e,g) = ω(g,e) = ω(e,e) = 1) are normalised. The central
extension has neutral element (1,e), and (12.37) reads

V(χ,e) = χI , χ ∈U(1) . (12.38)

Projective unitary representations arising thus satisfy Ue = I.
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To finish, we make a few physical considerations on the meaning of Ĝω , when
there are no unitary representations of G, only projective unitary representations.
Suppose having a symmetry group G � g 	→ γg for the physical system S, hence a
projective representation on S(HS), that is not describable by means of a unitary
representation. We can anyway choose phases arbitrarily and extend G to Ĝω using
the multipliers found, and then take Ĝω as the true symmetry group of S. The latter
admits in this way two representations. One from G itself:

Ĝω � (χ,g) 	→ g ∈G ,

that captures the classical action of the group. But there is also a quantum and unitary
one:

Ĝω � (χ,g) 	→ χUg ,

representing the group action on the states of the system (actually on the system’s
Hilbert space, and so on states, too.

In this light the group Ĝω is sometimes called the quantum group associated to G.
Note, however, that a specific central extension Ĝω cannot be selected using the con-
struction seen above, for which only projective representations given by automorph-
isms of Wigner or Kadison have a physical meaning. In order to choose among the
various central extensions it is necessary to give a physical meaning to the single pro-
jective unitary representations of G, or to the unitary representations of the possible
extensions Ĝω . This can be done, by enriching G and turning it into a Lie group, as
we will see. For the projective unitary representations of the Galilean group, multi-
pliers have a straightforward meaning, for they are related to the mass of the physical
system. This will be all the more clear after discussing Lie groups of symmetries.

12.2.4 Topological symmetry groups

We turn to topological symmetry groups and Lie groups of symmetries. Lie groups
are a subclass of topological groups. The majority of quantum symmetry groups, with
the notable exclusion of discrete symmetries (parity inversion and time reversal) in
particular, are Lie groups. We will study in depth the additive Lie group R, whose
importance should not go amiss, both physically and technically.

Definition 12.28. A topological group is a group G and a topological space at the
same time, whose operations of product G×G � ( f ,g) 	→ f · g ∈ G, and inversion
G � g 	→ g−1, are continuous in the product topology of G×G and the topology of
G, respectively.

The theory of topological groups and their representations occupies a huge
chapter of mathematics [NaSt82], and we shall be just concerned with a few very
elementary results that befit our physical models. We present below some examples
and properties of topological groups, with an eye to the Haar measure.

Examples 12.29. (1) The real general linear group GL(n,R) and the complex gen-
eral linear group GL(n,C) of nonsingular n×n real and complex matrices, are (evid-
ent) topological groups, if we equip them with the topology induced by Rn2

and Cn2
.
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(2) Using the standard topology any subgroup of the above two is a topological group.
For instance (η := diag(−1,1,1,1)):

the unitary group U(n) = {U ∈ GL(n,C) | UU∗ = I};
the special unitary group SU(n) := {U ∈U(n) | detU = 1};3

the orthogonal group O(n) := {R ∈ GL(n,R) | RRt = I};
the special orthogonal group SO(n) := {R ∈ O(n) | detR = 1};
the special linear group SL(n,R) := {A ∈ GL(n) | detA = 1};
the Lorentz group O(1,3) := {Λ ∈ GL(4) | ΛηΛ t = η};
the orthochronous Lorentz group O(1,3)↑:= {Λ ∈ O(1,3) | Λ11 > 0};
the special orthochronous Lorentz group SO(1,3)↑:= {Λ ∈ O(1,3)↑ |detΛ > 0}.

The list (including GL(n,R) and GL(n,C)) is made of closed subsets in Rn2
, or Cn2

if
matrices are complex. This from the definitions: just notice that by continuity every
sequence in one of those groups converges in Rn2

, or Cn2
, to an element of the group.

The groups O(n),SO(n),U(n),SU(n) (not the others) are bounded, and therefore
compact groups. Boundedness follows from the definition and the Cauchy-Schwarz
inequality. For example, for U ∈ U(n) we have ∑n

k=1 UikUjk = δi j by definition of
U(n). Hence∑n

i,k=1 UikUik = n, so∑n
i,k=1 |Uik|2 = n and U(n) is contained in the closed

ball of radius
√

n in Cn2
.

(3) Some groups do not look like matrix groups, like the additive group R. But it,
too, just like the isometry group of Rn, IO(n), built as in Example 12.17(1) repla-
cing O(3) with O(n), can be realised by matrices. For IO(n), one representation is by
real (n+1)× (n+1) matrices

M((R, t)) :=
[

1 0t

t R

]

, t ∈ Rn, R ∈ O(n) (12.39)

(a subgroup of the topological group GL(n + 1,R) with induced topology). IO(n) �
(R, t) 	→M((R, t)) is an isomorphism. The additive group Rn arises by restriction, via
the homeomorphism Rn � t 	→M((I, t)) (Rn with standard structure).

The Galilean group (Chapter 12.3.3) and the Poincaré group are topological
groups, built analogously via matrices.

(4) Yet there exist topological groups (even Lie groups) that cannot be viewed as mat-
rix groups, an example being the universal covering (Definition 12.44) of SL(2,R).

(5) Locally compact Hausdorff groups, like Rn (an Abelian group for the sum of
R

n), GL(n,R), GL(n,C) and subgroups thereof, admit a special regular Borel meas-
ure, called the Haar measure. The Haar measure is defined up to a factor and is
translation-invariant under the group.

Its definition is contaned in the following classical theorem, proved by Weil in
full generality [Hal69, BaRa86], of which we provide no proof. Recall that if G has
product ◦, the left and right orbits of B⊂ G under g ∈G are:

gB := {g◦b |b ∈ B} and Bg := {b◦g |b ∈ B}
3 The word special, for matrix groups, indicates determinant equal 1, and is often denoted by

putting an S before the group’s name.
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respectively. A positive σ -additive measure μ on the Borel σ -algebra B(G) of the
locally compact Hausdorff group G is called left-invariant if

μ(gB) = μ(B) for any B ∈B(G), g ∈G,

and right-invariant if

μ(Bg) = μ(B) for any B ∈B(G), g ∈G.

Note that μ(gB), μ(Bg) are well defined. Since the multiplication by h ∈ G on the
left, G � b 	→ fh(b) := h ◦ b, is continuous, and since gB = ( fg−1)−1(B), we have
gB ∈B(G) if B ∈ G. Similarly Bg ∈B(G) if B ∈ G.

Theorem 12.30. Let G be a locally compact Hausdorff group. Up to a positive factor,
there exists a unique positiveσ -additive measure μG – the left-invariant Haar meas-
ure of G – on the Borel σ -algebra B(G), that is regular (μG(B) = inf{μG(U) |B⊂
U,U open} and μG(B) = sup{μG(K) |K ⊂ B,K compact}) and such that:

(i) μG is left-invariant;
(ii) μG(B) > 0 if B ∈B(G)\{∅} is open, μ(K) < +∞ if K ∈B(G) is compact4.

Furthermore, if G is compact, μG is also right-invariant because μG(E) = μG(E−1),
where E−1 := {g−1 |g ∈ E} for any E ∈B(G).

A similar result for right-invariant measures defines, up to the usual positive
factor, the right-invariant Haar measure νG. This in general is different (factor
apart) from the (left-invariant) Haar measure μG: they coincide in case G is com-
pact, by the theorem, because ν(E) := μ(E−1) is right-invariant on B(G) if μ is
left-invariant on B(G). If so, one speaks of the bi-invariant Haar measure.

The Abelian group (R,+) has the Lebesgue measure as Haar measure: the left-
and right-invariant Haar measures coincide. The group GL(n,R) (and its subgroups
of (2)) has Haar measure:

μGL(n,R)(B) :=
∫

B
|detg(x11, . . . ,xnn)|−ndx;

where g∈GL(n,R) has entries xi j seen as coordinates of Rn2
, and dx is the Lebesgue

measure on Rn2
. �

At this point we want to specialise the notion of symmetry group to topological
groups, which entails imposing topological constraints on the associated projective
representation.

Suppose we have a symmetry group G � g 	→ γg for the quantum system S de-
scribed on the Hilbert space HS. If G is a topological group, we expect the homo-
morphism g 	→ γg to be continuous in some sense. This means choosing a topology
on the space of maps γg, which we may think of as either Kadison automorphisms
or Wigner automorphisms. In the sequel we adopt Wigner’s point of view. We give
first the definition and then explain it mathematically and physically.

4 NB: some authors require the last condition in the definition of regular Borel measure.
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Definition 12.31. Consider a quantum system S described on the Hilbert space HS.
Let G be a topological group with a projective representation G � g 	→ γg on H, such
that

lim
g→g0

tr (ρ1γg(ρ2)) = tr
(
ρ1γg0(ρ2)

)
, g0 ∈G, ρ1,ρ2 ∈Sp(HS).

Then G is a topological group of symmetries for S, and G � g 	→ γg is a continuous
projective representation on Sp(HS).

Physically this is reasonable, for it says the transition probability between two
pure states, one of which is the image of the action of the symmetry group, is a con-
tinuous map for the action. In Wigner’s quantum-symmetry setup, this is more than
sound.

But the definition is also natural in mathematical terms, as we explain now. Let
B1(HS)R be the real vector space of self-adjoint, trace-class operators with norm || ||1.
By Proposition 12.15 every Wigner automorphism γg is the restriction to Sp(HS) of
a linear operator (γ2)g :B1(HS)R→B1(HS)R, determined by γg and continuous for
|| ||1. Consider then the mapping Γ : G � g 	→ (γ2)g. Putting the strong topology on
B1(HS)R and the standard one on the domain, we will say Γ is continuous if for any
ρ ∈B1(HS), g0 ∈G:

lim
g→g0

||(γ2)g(ρ)− (γ2)g0(ρ)||1 = 0 .

Now restrict to Sp(HS) with the induced topology, thus reverting to the representa-
tion G � g 	→ γg in terms of Wigner automorphisms. Then G � g 	→ γg is continuous
if, for any ρ ∈Sp(HS), g0 ∈G:

lim
g→g0

||γg(ρ)− γg0(ρ)||1 = 0 .

This notion of continuity is, apparently, different from that of Definition 12.31. The
next proposition tells they are indeed the same.

Proposition 12.32. Let H be a complex Hilbert space and ||ρ||1 = tr(|ρ|) the norm
on trace-class operators S(HS). Then restricting to pure states:

||ρ−ρ ′||1 = 2
√

1− (tr(ρρ ′))2 , ρ,ρ ′ ∈Sp(H). (12.40)

Equivalently:

||ψ(ψ | )−ψ ′(ψ ′| )||1 = 2
√

1−|(ψ |ψ ′)|2 , ψ ,ψ ′ ∈ H, ||ψ ||= ||ψ ′||= 1.
(12.41)

Therefore Sp(H) is a metric space with distance function:

d(ρ,ρ ′) := 2
√

1− (tr(ρρ ′))2 , ρ,ρ ′ ∈Sp(H).

Proof. The first assertion is a trivial transcription of the second one, and the third is
obvious once the first two are proven, by general properties of norms. To prove the
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second statement it suffices to construct an orthonormal basis ψ1,ψ2 of the span of
ψ , ψ ′, assuming ψ1 = ψ and decomposing ψ ′ in that basis. Then with b := (ψ ′|ψ2):

ψ(ψ | )−ψ ′(ψ ′| ) =−|b|ψ1(ψ1| )+ |b|ψ2(ψ2| ) .

This is the spectral decomposition of ρ−ρ ′, so

|ρ ′ −ρ|= |b|ψ1(ψ1| )+ |b|ψ2(ψ2| ) = |b|I ,

and

||ψ(ψ | )−ψ ′(ψ ′| )||1 = tr(|b|I) = 2|b|= 2
√

1−|(ψ ′|ψ1)|2 = 2
√

1−|(ψ ′|ψ)|2

because 1 = ||ψ ′||2 = |(ψ ′|ψ1)|2 + |(ψ ′|ψ2)|2. �

Remarks 12.33. The last claim of the proposition is quite interesting, for Sp(H) is
not a normed space, not even being a vector space. Nonetheless, it is a metric space
(Definition 2.78) and the distance has a meaning: it is related to the probability amp-
litude. �

Mathematics and physics eventually meet in the next result.

Proposition 12.34. Consider a quantum system S described on the Hilbert space HS.
Let G be a topological group. A projective representation G � g 	→ γg on H is con-
tinuous (Definition 12.31), so G is a topological symmetry group for S, if and only if
it is continuous with respect to:

(i) the topology of G on the domain;
(ii) the strong topology on the codomain, restricted to Sp(HS).

That is:
lim

g→g0
||γg(ρ)− γg0(ρ)||1 = 0 , ρ ∈Sp(HS), g0 ∈G. (12.42)

Proof. Equation (12.40) implies

||γg(ρ)− γg0(ρ)||1 = 2
√

1− tr
(
γg(ρ)γg0(ρ)

)
.

If G � g 	→ γg is continuous for Definition 12.31 then limg→g0 tr
(
γg(ρ)γg0(ρ)

)
=

tr
(
γg0(ρ)γg0(ρ)

)
= 1. Substituting above yields (12.42). Conversely, from (12.40),

the trace’s invariance under cyclic permutations gives

tr
(
γg0(ρ)γg(ρ)

)
= 1− 1

4
||γg(ρ)− γg0(ρ)||21 .

Set ρ1 := γg0(ρ) (without loss of generality, as γg0 is onto) and ρ2 := ρ . Then:

lim
g→g0

tr (ρ1γg(ρ2)) = 1− 1
4

lim
g→g0

||γg0(ρ)− γg(ρ)||21 = 1− 1
4
||γg0(ρ)− γg0(ρ)||21

= tr
(
ρ1γg0(ρ2)

)
.

Hence (12.42) implies continuity for Definition 12.31. �
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12.2.5 Strongly continuous projective unitary representations

Consider a physical system S described on the Hilbert space HS, a topological sym-
metry group G and a projective representation G � g 	→ γg. Let us associate to G a
projective unitary representation G� g 	→Ug, in the sense γg(ρ) =UgρU−1

g , for every
pure state ρ ∈Sp(HS) of the system and every element g ∈G. Clearly if G � g 	→Ug

is strongly continuous, then G � g 	→ γg is a continuous projective representation:
Definition 12.31 holds, in fact, since if ρi = ψi(ψi| ), i = 1,2:

tr
(
ρ1Ugρ2U∗

g

)
= |(ψ1|Ugψ2)| → |(ψ1|Ug0ψ2)|= tr

(
ρ1Ug0ρ2U∗

g0

)
as g→ g0 .

Here is an interesting problem: knowing G � g 	→ γg is continuous, establish if the
phases of the unitary operators Ug can be fixed so to obtain a projective unitary rep-
resentation that is strongly continuous. I.e. we would like

Ugψ →Ug0ψ as g→ g0 for any ψ ∈ H.

In its general form the question is very hard, although Wigner gave a local answer.
We will show that given a topological symmetry group G and a continuous pro-
jective representation G � g 	→ γg, it is possible to fix the multipliers ω so to make
the projective unitary representation G � g 	→Ug become strongly continuous on a
neighbourhood of the neutral element of G. Moreover, also the multipliers will be
continuous on that neighbourhood. This local result is not usually global. We will
prove that for G = R the result holds everywhere on the group and multipliers can be
fixed to 1, so that the representation is simultaneously unitary and strongly continu-
ous. The consequences in physics reach far: we will be able to justify the postulate of
time evolution, and explain the relationship between the existence of symmetries and
the presence of preserved quantities as the system S evolves in time: a quantum for-
mulation, in other words, of Nöther’s theorem. All this later, because now we focus
on mathematical aspects.

Proposition 12.35. Consider a quantum system S described on the Hilbert space
HS, and let G be a topological group with continuous projective representation
γ : G � g 	→ γg. There exist an open neighbourhood A⊂G of e ∈G and a projective
unitary representation associated to γ , G � g 	→Ug, that is strongly continuous on A.
The multipliers

ω(g,g′) =
(
Ug·g′
)−1

UgUg′ , g,g′ ∈G

define a continuous map on an open neighbourhood A′ of e with A′ ·A′ ⊂ A.

Proof. Fix φ ∈ H, ||φ || = 1. As G � g 	→ tr(φ(φ | )γg(φ(φ | ))) is continuous and
equals 1 for g = e, there is an open neighbourhood A0 of e where

tr(φ(φ | )γg(φ(φ | ))) � 0 .

Represent γ by a projective unitary representation V , arbitrarily chosen, which we
have by Wigner’s theorem. Around A0, then:

0 � tr(φ(φ | )γg(φ(φ | ))) = (φ |Vgφ) .
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Define ((φ |Vgφ) � 0 guarantees it is possible):

χg :=
(φ |Vgφ)
|(φ |Vgφ)|

and pass to a new projective unitary representation U :

Ug := χgVg , if g ∈ A0 and Ug := Vg , if g � A0 .

Then on A0:

0 <
|(φ |Vgφ)|2
|(φ |Vgφ)| = (φ |Ugφ)

so

0 < (φ |Ugφ) = |(φ |Ugφ)|= tr(φ(φ | )γg(φ(φ | ))) for any g ∈ A0 . (12.43)

Equation (12.43) has two consequences on some open neighbourhood A of e, A⊂ A0:

Ue = 1 , and Ug−1 = U−1
g , g ∈ A. (12.44)

In fact, Ue = χI for some χ ∈U(1), so (φ |Ueφ) = χ(φ |φ) = χ . As (φ |Ueφ) > 0, we
can only have χ = 1. As for the second property, Ug−1 = χ ′gU−1

g for some χ ′g ∈U(1).
Since g 	→ g−1 is continuous and from e−1 = e there is an open neighbourhood of e,
A⊂ A0, for which g−1 ∈ A0 if g ∈ A. Working on A,

0 < (φ |Ug−1φ) = χ ′g(φ |U−1
g φ) = χ ′g(φ |U∗

g φ) = χ ′g(Ugφ |φ) = χ ′g(φ |Ugφ)

because (φ |Ugφ) is real so (φ |Ugφ) = (Ugφ |φ). Since (φ |Ugφ) > 0, necessarily
χ ′g = 1. This proves (12.44).

Fix a unit vector ψ ∈ H, possibly distinct from the above φ . By continuity of γ ,
as in Definition 12.31 with ρ1 = Usψ(Usψ | ) and ρ2 = ψ(ψ | ), we find

lim
r→s

|(Urψ |Usψ)|= |(Usψ |Usψ)|= 1 . (12.45)

Choosing ρ1 = φ(φ | ), ρ2 = ψ(ψ | ) gives

lim
r→s

|(φ |Urψ)|= |(φ |Usψ)| . (12.46)

Substituting in the general identities produces

||Usψ− (Urψ |Usψ)Urψ ||2 = 1−|(Urψ |Usψ)|2 , (12.47)

so
lim
r→s

(Urψ |Usψ)Urψ = Usψ (12.48)

and in particular, for ψ = φ :

lim
r→s

(Urφ |Usφ)(φ |Urφ) = (φ |Usφ) . (12.49)
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On the other hand, our choice of φ and of the phase in U implies

lim
r→s

(φ |Urφ) = lim
r→s

|(φ |Urφ)|= |(φ |Usφ)|= (φ |Usφ) , (12.50)

and so using (12.50) in (12.49) tells

lim
r→s

(Urφ |Usφ) = 1 . (12.51)

Now, Ut is unitary, and for any ψ ∈ H (any ψ = φ ) we have

||Urψ−Usψ ||2 = 2−2Re(Urψ |Usψ) , (12.52)

so (12.51) implies, for r ∈ A, that the map r 	→Urφ is continuous, with the chosen φ .
Therefore r 	→ (Ur)−1φ is continuous, since (12.49) holds when r is replaced by r−1

and s by s−1 (g 	→ g−1 is continuous, and (Ur)−1 = Ur−1 by (12.44)). From (12.48)
follows

lim
r→s

(Urψ |Usψ)(φ |Urψ) = (φ |Usψ) i.e. lim
r→s

(Urψ |Usψ)((Ur)−1φ |ψ) = (φ |Usψ) .

As ((Ur)−1φ |ψ)→ ((Us)−1φ |ψ) = (φ |Usψ) by the continuity of (Us)−1φ , necessar-
ily (Urψ |Usψ)→ 1 as r → s. Use this result in (12.52):

lim
r→s

||Urψ−Usψ ||= 0 . (12.53)

But ψ is arbitrary, so A � g 	→Ug is strongly continuous.
Now the second claim. From U(e) = 1 and Ug−1 = U−1

g , on A we have

ω(g,e) = ω(e,g) = 1 . (12.54)

From
(U−1

r φ |Usφ) = ω(r,s)−1(φ |Ur·sφ) (12.55)

and (φ |Ur·sφ) > 0 if r ·s∈ A, we infer (r,s) 	→ω(r,s)−1 is continuous for r,s,r ·s∈ A.
Since the product of G is continuous if e · e = e, there is a neighbourhood A′ ⊂ A of
e where r,s ∈ A′ implies r · s ∈ A. Taking A′ small enough renders A′ ×A′ � (r,s) 	→
ω(r,s) = ω(r,s)−1 continuous. �

12.2.6 A special case: the topological group R

We prove in this section a very important theorem about continuous representations
of the additive group R equipped with the standard topology. The result is crucial in
physics, as we will have time to explain.

Theorem 12.36. Let R � r 	→ γr be a continuous projective representation of R on
the Hilbert space H.

(a) There exists a strongly continuous one-parameter unitary group (Definition 9.22)
R � r 	→Wr such that

γr(ρ) = WrρW−1
r for any r ∈ R, ρ ∈Sp(H). (12.56)
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(b) A second strongly continuous one-parameter unitary group R � r 	→Ur satisfies
(12.56) (with Ur replacing Wr) if and only if there exists c ∈ R such that

Ur = e−icrWr for any r ∈ R.
(c) There exists a self-adjoint operator A : D(A) → H on H, unique up to additive
constants, such that:

γr(ρ) = e−irAρeirA for any r ∈ R, ρ ∈Sp(H).

Proof. (a) Let [−b,b]⊂ A, b > 0, be an interval in the open neighbourhood of 0, say
A⊂ R, satisfying Proposition 12.35 for G = R. Decompose R into the disjoint union
of intervals (na,(n + 1)a], n ∈ Z, with a = b/2. Any r ∈ R belongs to one interval
only, so r = nra+ tr for unique tr ∈ (0,a] and nr ∈ Z. Since γxγy = γx+y:

γr = γnra+tr = (γa)nrγtr .

Hence if R � r 	→Ur is the projective unitary representation of Proposition 12.35:

γr(ρ) = ((Ua)nrUtr)ρ ((Ua)nrUtr)
−1 ,

for every ρ ∈Sp(HS). For every t ∈ (−a−ε ,a+ε) and some ε > 0 the map t 	→Ut

is strongly continuous, so
R � r 	→Vr

with Vr := (Ua)nrUtr , nr ∈ Z and tr ∈ (0,a] as above, is strongly continuous too. The
only discontinuities can occur at the endpoints. Consider then r ∈ (na,(n+1)a] and
let us verify Vr is continuous at na. With r− < na, r+ > na we have

Vr−ψ = (Ua)(n−1)Utr−ψ and Vr+ψ = (Ua)nUtr+ψ .

As (−a,a) � t 	→Utψ is continuous, by definition of V :

lim
r−→na−

Vr−ψ = Vnaψ .

Now we need to see the right and left limits coincide, i.e. that the limit of
(Ua)(n−1)Utr−ψ , as tr− → a−, coincides with the limit of (Ua)nUtr+ψ as tr+ → 0−.
We have

lim
t→a−

(Ua)n−1Utψ = lim
t−a→0−

(Ua)n−1ω(a, t−a)−1UaUt−aψ

= lim
t−a→0−

ω(a, t−a)−1(Ua)nUt−aψ = lim
τ→0−

ω(a,τ)−1(Ua)nUτψ .

By the previous proof (0,a] � τ 	→ ω(a,τ)−1 is continuous, since a,τ ,a + τ ∈ A by
construction. Moreover, χ(a,0) = 1 from (12.54). We also know (0,a] � t 	→Utψ is
continuous, so:

lim
t→a−

(Ua)n−1Utψ = lim
τ→0−

ω(a,τ)−1(Ua)nUτψ = lim
τ→0+

ω(a,τ)−1(Ua)nUτψ

= lim
t→0+

(Ua)nUtψ .
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We have proved

Vnaψ = lim
r−→na−

Vr−ψ = lim
tr−→a−

(Ua)(n−1)Utr−ψ = lim
tr+→0+

(Ua)nUtr+ψ = lim
r+→na+

Vr+ψ ,

as required. Note (Vr)−1 = (Utr)
−1(Ua)−nr = U−tr(Ua)−nr , where the second identity

in (12.44) was used. In analogy to the proof for Vr, also R� r 	→ (Vr)−1 is continuous
in the strong topology.

We claim the multipliers of V can be set to 1: for this, first we will show they
give a continuous map R2 � (r,s) 	→ ω(r,s) ∈ U(1), using that R � t 	→ Vtψ and
R � t 	→ (Vt)−1ψ are continuous. Then we will prove the latter function is equivalent
to the constant map 1. By definition

ω(r,s)Vr+s = VrVs .

Fix r0,s0 ∈ R. There must exist ψ ,φ ∈ H \ {0} so that (ψ |Vr0+s0φ) � 0, other-
wise Vr0+s0φ = 0 for every φ , which is impossible by hypothesis as Vt is unitary.
By continuity there is a neighbourhood B of (r0,s0) such that (r,s) ∈ B implies
(ψ |Vr+sφ) � 0. Then

ω(r,s) =
((Vr)−1ψ |Vsφ)

(ψ |Vr+sφ)
.

Hence R2 � (r,s) 	→ ω(r,s) ∈U(1) is continuous around (r0,s0), and so continuous
onR2. We may writeω(r,s) = e−i f (r,s) for some function f :R2 →R. The continuous
map ω can be thought of as valued in the unit circle S1, homeomorphic to U(1). The
map f can be chosen continuous (the fundamental group of R2 is trivial, so the lift-
ing property of covering spaces holds, cf. [Ser94II, theorem 18.2]). Equation (12.29)
now reads

f (s, t)− f (r + s, t)+ f (r,s+ t)− f (r,s) = 2πkr,s,t for kr,s,t ∈ Z .

Continuous functions map connected sets (R3) to connected sets (a subset of 2πZ
with induced standard topology), so the right-hand side is constant. But the left-hand
side is zero for r = s = t = 0, so:

f (s, t)− f (r + s, t)+ f (r,s+ t)− f (r,s) = 0 for every r,s, t ∈ R . (12.57)

Fix a C1 map g : R→ R with compact support such that:
∫

R

g(x)dx = 1 and
∫

R

dg
dx

dx = 0 . (12.58)

Define the continuous function:

χ(r) := e−ih(r) where h(r) :=−
∫ r

0
du
∫

R

f (u, t)
dg
dt

dt−
∫

R

f (r, t)g(t)dt .

The new representation Wr := χ(r)Vr has multiplier ω ′(r,s) = ω(r,s) χ(r)χ(s)
χ(r+s) , so

ω(r,s)′ = e−i f ′(r,s) where f ′(r,s) = f (r,s)−h(r + s)+h(r)+h(s) .
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A moderately-involved computation on the right side, using h, (12.57), (12.58), and
the easily proved

∫ r+s

0
du F(u)−

∫ r

0
du F(u)−

∫ s

0
du F(u) =

∫ s

0
du (F(u+ r)−F(u))

eventually gives f ′(r,s) = 0 , i.e. χ ′(r,s) = 1 for any (r,s) ∈ R2. This makes the
projective unitary representation R � r 	→Wr actually unitary. Since R � x 	→ χ(x) is
continuous by construction and R � r 	→ Vr is strongly continuous, also W = χV
is strongly continuous. That is to say, R � r 	→ Wr is a strongly continuous one-
parameter unitary group satisfying (12.56), thus ending (a).
(b) If there is another strongly continuous one-parameter unitary group U represent-
ing γ:

U−rWrψ = χ(r)ψ , ψ ∈ H. (12.59)

(We have already proved χ(r) and ψ are independent in similar situations.) Con-
sequently Wr = χ(r)Ur. Multiply by Ws = χ(s)Us, and use the additivity of W and U
in the parameter:

Wr+s = χ(r)χ(s)Ur+s so U−(r+s)Wr+s = χ(r)χ(s)I.

Comparing with U−(r+s)Wr+s = χ(r + s)I, produces

χ(r + s) = χ(r)χ(s) . (12.60)

Equation (12.59) has another corollary:

(Urφ |Wrψ) = χ(r)(φ |ψ) .

By Stone’s theorem (Theorem 9.29) we can write Ut = e−itB, Wt = e−itA for self-
adjoint operators defined on dense domains D(A), D(B). Choose φ ∈D(B),ψ ∈D(A)
so that (φ |ψ) � 0 (always possible by density). By Stone the first derivative of
R � t 	→ χ(r) has to satisfy

d
dt

(Urφ |Wrψ) =
(

d
dt

Urφ
∣
∣
∣
∣Wrψ
)

+
(

Urφ
∣
∣
∣
∣

d
dt

Wrψ
)

,

hence it exists and equals

(−iBUrφ |Wrψ)+(Urφ |− iAWrψ) .

Since the derivative of χ exists, and (12.60) holds:

d
dx
χ(x) = lim

h→0

1
h

(χ(x+h)−χ(x)) = χ(x) lim
h→0

1
h

(χ(h)−χ(0)) = χ(x)c .

Hence χ(x) = eicx for some c ∈ R and then

Wx = eicxUx .

Conversely let W be as in (a) and fix c∈R. A direct computation shows Ux := e−icxWx

is a strongly continuous one-parameter unitary group that represents γ .
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(c) The strongly continuous one-parameter unitary group R � r 	→ Wr, built in
(a), represents γ and has a self-adjoint generator A, by Stone’s theorem. Therefore
Wr = e−irA. If B : D(B)→ H is another self-adjoint operator representing γ , its one-
parameter groupUt = e−itB fulfills (b). Then there is c∈R such that e−itA = e−itce−itB.
By Stone’s theorem the left-hand side admits strong derivative at t = 0 on D(A),
and the derivative is −iA. Similarly, the right-hand side admits strong derivative at
t = 0, at least on D(B), which equals −icI − iB. Consequently D(A) ⊂ D(B) and
A = (cI +B)�D(A). Note cI +B is self-adjoint on D(B). Since A is self-adjoint it does
not have proper self-adjoint extensions, and then D(A) = D(B) and A = B+ cI. �

Examples 12.37. (1) Consider Example 12.17(1). The physical system is a quantum
particle with no spin, described on the Hilbert space L2(R3,dx) if we fix an iner-
tial reference system and identify R3 with the rest space via orthonormal Cartesian
coordinates.

The subgroup ISO(3) of isometries of R3 consists of functions:

(t,R) : R3 � x 	→ t+Rx , (12.61)

with t ∈ R3, R ∈ SO(3). Taking R ∈ SO(3), as opposed to R ∈ O(3) explains the ‘S’
in ISO(3). As mentioned in Example 12.29(3) (about IO(n) there, but the argument
is the same), ISO(3) is a matrix group. Consider 4×4 real matrices:

g(t,R) :=
[

1 0t

t R

]

, t ∈ Rn, R ∈ SO(3). (12.62)

The topology is inherited from GL(4,R) i.e. R16. The matrices g(t,R) correspond one-
to-one to elements of ISO(3), and ISO(3)� (t,R) 	→ g(t,R) is an isomorphism, beside
a linear representation of ISO(3). In order to make the action of ISO(3) explicit on
points inR3, let us write points as column vectors (1,x1,x2,x3)t ofR4, where x1,x2,x3

are the Cartesian coordinates of x ∈ R3. In this way we recover the action of g(t,R)

on R3 described by (12.61). We can indifferently see ISO(3) as the group of maps
(12.61) or the matrix group (12.62). In either case it will be a topological group from
now on. Similarly we may imagine IO(3) as a matrix group, simply allowing R to
vary in the whole O(3). With the given topologies, the construction makes ISO(3) a
topological subgroup of IO(3) and its connected component at the identity (0, I).

The linear unitary ISO(3)-representation on L2(R3,dx) seen in Example 12.17(1):

(UΓψ)(x) := ψ(Γ−1x) , Γ ∈ ISO(3), ψ ∈ L2(R3,dx)

is strongly continuous, since

||UΓψ−UΓ0ψ ||= ||UΓ−1
0 ◦Γ ψ−ψ || → 0 as Γ → Γ0. (12.63)

Now look at UΓ acting on pure states of H = L2(R3,dx):

γΓ (ψ(ψ | )) := UΓψ (ψ | )U−1
Γ .

The strongly continuous unitary representation ISO(3) � Γ 	→UΓ renders ISO(3) a
topological group of symmetries for the spin-zero quantum particle.
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(2) Let Pi be the self-adjoint operator of the momentum observable along the axis
xi, and P the column vector (P1,P2,P3)t . With an eye on the previous example, let
us focus on the subgroup of translations along an axis t ∈ R3. Such subgroup is the

strongly continuous one-parameter unitary group R � r 	→U (t)
r , with

(
U (t)

r ψ
)

(x) := ψ(x− rt) , t ∈ R, ψ ∈ L2(R3,dx) .

It is easy to prove the symmetric operator t ·P�S (R3) is essentially self-adjoint, so (cf.
Lemma 11.11)

(
e
−i r

h̄ t·P�
S (R3)ψ
)

(x) = ψ(x− rt) , ψ ∈ L2(R3,dx). (12.64)

Therefore:

The self-adjoint operator, which exists by Theorem 12.36(c), generating the strongly
continuous one-parameter unitary group of translations along t is the momentum op-
erator along t, i.e. the only self-adjoint extension of 1

h̄ t ·P�S (R3) (up to the constant

h̄−1).

Observe that the generator can be modified by adding constants. �

12.2.7 Round-up on Lie groups and algebras

In this last section we assume the reader is familiar with differentiable manifolds,
including real-analytic ones (the basic notions are summarised in the appendix with
some detail). We recall fundamental results [NaSt82, War75, Kir74] in the theory of
Lie groups and provide a few examples, all without proofs.

Definition 12.38. A real Lie group of dimension n is a real-analytic n-manifold G
equipped with two analytic maps:

G � g 	→ g−1 ∈G and G×G � (g,h) 	→ g ·h ∈G

(where G×G has the analytic product structure), that make G a group with neutral
element e.
The dimension of the Lie group G is the dimension n the manifold G.

Remarks 12.39. Analiticity in Definition 12.38 can be watered down to having G
just a topological manifold with continuous operations in the manifold topology (i.e.
a topological group that is Hausdorff, paracompact, and locally homeomorphic to
R

n). In fact, a famous 1952 theorem of Gleason, Montgomery and Zippin – solving
Hilbert’s fifth problem – proves the following.

Theorem 12.40 (Gleason, Montgomery, Zippin). Every topological group with the
structure of C0 manifold also admits an analytic substructure for which the group
operations are analytic. This is completely determined by the C0 structure and the
operations.
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Therefore any Lie group can be thought of, in a unique fashion, as an analytic
Lie group, even when defined topologically and the operations are only assumed
continuous. �

Definition 12.41. Consider Lie groups G, G′, with neutral elements e, e′ and opera-
tions ·, ◦.
A Lie group homomorphism is an analytic map f : G → G′ that is also a group
homomorphism.
If the homomorphism f : G→G′ is invertible and f−1 is a homomorphism, f is called
Lie group isomorphism and G, G′ are isomorphic (under f ).
A local homomorphism of Lie groups is an analytic map h : Oe →G′, where Oe ⊂G
is an open neighbourhood of e and h(g1 · g2) = h(g1)◦h(g2) provided g1 · g2 ∈ Oe.
(This forces h(e) = e′5 and h(g−1) = h(g)−1 for g,g−1 ∈Oe.)
If the local homomorphism h is an analytic diffeomorphism on its range (given by an
open neighbourhood Oe′ of e′), and the inverse f−1 : Oe′ →G is a local homomorph-
ism, then h is a local isomorphism of Lie groups. The Lie groups G, G′ are locally
isomorphic (under h).

In the same spirit of the previous remark we may weaken the assumptions of
differentiability when defining local homomorphisms [NaSt82].

Proposition 12.42. Let G, G′ be Lie groups, Oe ⊂ G an open neighbourhood of the
identity e ∈G.
If h : Oe →G′ is continuous and h(g1 ·g2) = h(g1)◦h(g2) provided g1 ·g2 ∈Oe, then
h is analytic and thus a local homomorphism of Lie groups.

Two important concepts for our purposes are one-parameter subgroups and Lie
algebras, which we now recall.

Let G be a Lie group with neutral element e and product ·. The tangent space at a
point g∈G is denoted TgG. Every g∈G defines an (analytic) map Lg : G� h 	→ g ·h,
and let us write dLg : ThG→ Tg·hG for its differential. Given A ∈ TeG, we consider
the first-order Cauchy problem on G: find a differentiable f : (−α ,β )→G, α ,β > 0
such that

d f
dt

= dL f (t)A with f (0) = e.

The maximal solution is always complete, i.e. with largest-possible domain
(−α ,β ) = R. We will indicate the maximal solution with

R � t 	→ exp(tA)

and we will call it the one-parameter subgroup generated by A. If T ∈ TeG it can
be proved that

exp(tT )exp(t ′T ) = exp((t + t ′)T ) , (exp(tT ))−1 = exp(−tT ) , ∀ t, t ′ ∈ R.

5 In fact h(e) = h(e · e) = h(e)◦h(e), so applying h(e)−1 we get e′ = h(e).
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Consider now a given T ∈ TeG and the collection of maps parametrised by t ∈ R:

Ft,T : G � g 	→ exp(tT )g exp(−tT ) .

As Ft,T (e) = e, the differential dFt,T |e maps TeG to itself, and is the adjoint of Ft,T

Ad Ft,T : TeG→ TeG .

The commutator [War75] is the map from TeG×TeG to TeG:

[T,Z] :=
d
dt
|t=0(Ad Ft,T )Z , T,Z ∈ TeG .

The commutator has three properties:

linearity: [aA+bB,C] = a[A,C]+b[B,C] ,
skew-symmetry: [A,B] =−[B,A] ,
Jacobi identity: [A, [B,C]]+ [B, [C,A]]+ [C, [A,B]] = 0

holding for any a,b ∈ R and A,B,C ∈ TeG. The first two actually imply bilinearity.
The third property is a consequence of the associativity of the group law.

Let us fix a local coordinate system x1, . . . ,xn compatible with the (analytic) struc-
ture of G over an open neighbourhood U of e, so that the neutral element becomes the
origin. In these coordinates we can expand the group law on U ×U in Taylor series
up to the second order

ψ(X ,X ′) = X +X ′+B(X ,X ′)+O
((|X |2 + |X ′2|)3/2

)
, (12.65)

where X ,X ′ ∈ Rn are the column vectors of the coordinates of elements g,g′ ∈ U
whose product g ·g′ belongs to U . The mapping B : Rn×Rn → Rn is bilinear, and it
is easy to see that the commutator, in the coordinate basis of TeG, becomes:

[T,T ′] = B(T,T ′)−B(T ′,T ) , (12.66)

where T , T ′ are (column) vectors in TeG.

Definition 12.43. A vector space V endowed with a bilinear, skew-symmetric map
[ , ] : V×V → V, called Lie bracket, that satisfies the Jacobi identity is said a Lie
algebra.
Given Lie algebras (V, [ , ]), (V′, [ , ]′), a linear mapping φ : V→ V′ is a Lie algebra
homomorphism if [φ(A),φ(B)]′ = φ [A,B] for any A,B ∈ V. If φ is also bijective one
calls it Lie algebra isomorphism.
Given a Lie group G, the tangent space TeG with the Lie bracket [ , ] given by the
commutator is the Lie algebra of the Lie group G.
A Lie subalgebra V′ in a Lie algebra (V, [ , ]) is a closed subspace under the Lie
bracket, [A,B] ∈ V′ for A,B ∈ V′. An ideal J in a Lie algebra (V, [ , ]) is a Lie subal-
gebra such that

[A,B] ∈ J for any A ∈ J, B ∈ V.

A (non-Abelian) Lie algebra V is said simple if it contains no proper ideals, and
semisimple if direct sum of simple Lie algebras.
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A crucial feature of Lie groups for physics is that the Lie algebra of a Lie group
determines the group almost entirely, as the classical, and famous, next results show
[NaSt82]. First, though, a topological reminder.

Definition 12.44. Let X, R be topological spaces. R is a covering space of X if there
is a continuous onto map π : R→ X, called covering map, as follows:

(i) for any x ∈ X there exists an open set U � x such that π−1(U) = ∪ j∈JA j, with
A j ⊂ R open, A j ∩Ai = ∅ if i � j, i, j ∈ J;

(ii) π�A j : A j →U is a homeomorphism for every j ∈ J.

A covering R of X is a universal covering if it is simply connected (Definition 1.28).

Two universal coverings R, R′ of X are homeomorphic under the map f : R→R′
such that Π = f ◦Π ′, if Π : R → X, Π ′ : R′ → X are the covering maps. Similarly,
if X has universal covering R and a covering R′, with covering maps Π : R → X,
π : R′ → X, then there is a covering map p : R→ R′ with π ◦ p =Π [Ser94II].

The first result, called third Lie theorem in the literature, says the following.

Theorem 12.45. Let V be a finite-dimensional (real) Lie algebra.

(a) There exists a connected and simply connected (real) Lie group GV with Lie al-
gebra V.
(b) GV is, up to isomorphisms, the universal covering of any Lie group having V as
Lie algebra, and the covering map is a Lie group homomorphism.
(c) If a Lie group G has V as Lie algebra, it is isomorphic to a quotient GV/HG, where
HG ⊂GV is a discrete normal subgroup (hence contained in the centre of GV).

Theorem 12.46 (Lie). Let G, G′ be (real) Lie groups with Lie algebras V, V′.
(a) f : V→ V′ is a Lie algebra homomorphism if and only if there is a local Lie group
homomorphism h : G→ G′ such that dh|e = f . Moreover:

(i) h is determined completely by f ;
(ii) f is an isomorphism ⇔ h is a local isomorphism.

(b) If G, G′ are connected and G also simply connected, then f : V → V′ is a ho-
momorphism if and only if there is a homomorphism h : G→ G′ such that dh|e = f .
Moreover:

(i) h is determined completely by f ;
(ii) f isomorphism ⇒ h onto;
(iii) f isomorphism and G′ simply connected ⇒ h isomorphism.

Definition 12.47. An (embedded) submanifold G′ ⊂ G in a Lie group that is also a
subgroup inherits a Lie group structure from G. In such case G′ is a Lie subgroup
in G. (G′ and G have the same identity element {e} as the inclusion is a homomorph-
ism.) The subgroup G′ is discrete when the set {e} is open in the induced topology.

Notice that G′ is discrete iff every singlet {g} ⊂ G′ is open. This is because the
translation G′ → G′ : h 	→ gh is a homeomorphism. Equivalently the subgroup G′ is
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discrete iff it is made of isolated points. That is, for every g ∈ G′ there is an open
subset Ag of G such that g ∈ Ag but h � Ag if G′ � h � g.

The Lie algebra of a subgroup G′ is a Lie subalgebra of the Lie algebra of G,
meaning TeG′ is a subspace of TeG and the bracket on TeG′ is the restriction of the
one on TeG [NaSt82].

Theorem 12.48 (Cartan). If G′ ⊂G is a closed subgroup of the Lie group G, then it
is a Lie subgroup of G.

Remark 12.49. (1) In principle an abstract Lie algebra can have infinite dimension
as vector space. The dimension of the Lie algebra of a Lie group G, instead, is always
finite for it coincides with the dimension of the manifold G.
(2) Theorem 12.48 clearly subsumes discrete subgroups as special cases. Then the
manifold underlying the Lie subgroup has dimension zero.
(3) Let G be a Lie group of dimension n and {T1, . . .Tn} a basis of the Lie algebra
TeG. As the Lie bracket is bilinear it can be written in components

[Ti,Tj] =
dimTeG

∑
k=1

Ci jkTk .

The coefficients Ci jk are the structure constants of the Lie group6. The Jacobi iden-
tity is equivalent to the following equation (of obvious proof):

n

∑
s=1

(
Ci jsCskr +CjksCsir +CkisCs jr

)
= 0 , r = 1, . . . ,n. (12.67)

If two Lie groups have the same structure constants with respect to some bases of their
Lie algebras, they are locally isomorphic in the sense of Theorems 12.45–12.46. (If
the structure constants are equal, the linear map identifying bases is an isomorphism.)
Conversely, the structure constants of locally isomorphic Lie groups are the same in
bases related by the pullback of the local isomorphism. �

Given a Lie group G, the exponential mapping is the analytic function

exp : TeG � T 	→ exp(tT )|t=1 .

The exponential mapping has an important property, sanctioned by the next result
[NaSt82].

Theorem 12.50. Let G be a Lie group with neutral element e and exponential
map exp.

(a) There exist open neighbourhoods U of 0 ∈ TeG and V of e ∈G such that

exp�U : U → V

is an analytic diffeomorphism (bijective, analytic, with analytic inverse).
6 The structure constants are the components of a tensor, called the structure tensor of the

Lie group.
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(b) If G is compact then exp(TeG) = G.
(c) If G′ is a Lie group with exponential map exp′ and h : G→G′ a homomorphism:

h◦ exp = exp′ ◦dh|e .

Property (a) has a useful corollary. Fix a basis T1, . . . ,Tn on the Lie algebra of G,
Then the inverse to

F : (x1, . . . ,xn) 	→ exp

(
n

∑
k=1

xnTn

)

defines a local chart, compatible with the analytic structure, around the neutral ele-
ment. This is called normal coordinate system. Normal coordinates, in general, do
not cover G. In normal coordinates a vector T ∈ TeG ≡ Rn fixes a point of G only
around e. Hence group multiplication in G becomes a map ψ : Rn×Rn → Rn. Ex-
panding the latter with Taylor around the origin of Rn×Rn gives

ψ(T,T ′) = T +T ′+
1
2
[T,T ′]+O

((|T |2 + |T ′2|)3/2
)

, (12.68)

where [T,T ′] : Rn×Rn → Rn is the commutator in the basis of TeG×TeG associated
to normal coordinates. The proof is left to the reader. Property (a) has also another
consequence, whose proof is an exercise.

Proposition 12.51. Let G be a Lie group with neutral element e and product ·.
(a) There exists an open set A � e in TeG such that, for any g ∈ A, g = exp(tT ) for
some t ∈ R and some T ∈ TeG.
(b) If G is connected and g � A, there are finitely many elements g1,g2, . . . ,gn ∈ A
such that g = g1 · · · · ·gn.

The fundamental Baker–Campbell–Hausdorff formula [NaSt82]:

exp(X)exp(Y ) = exp(Z(X ,Y )) (12.69)

holds on any connected and simply connected Lie group G, with X , Y in the open
neighbourhood U of the origin where exp is a local diffeomorphism onto the open
neighbourhood exp(U) ⊂ G of the neutral element. In (12.69) the term Z(X ,Y ) is
defined by the series:

Z(X ,Y ) = ∑
N�n>0

(−1)n−1

n ∑
ri+si>0 ,1≤i≤n

(∑n
i=1(ri + si))

−1

r1!s1! · · ·rn!sn!
[Xr1Y s1 Xr2Y s2 . . .XrnY sn ]

(12.70)
[Xr1Y s1 . . .XrnY sn ] := [X , [X , · · · [X

︸�����������︷︷�����������︸
r1 times

, [Y, [Y, · · · [Y
︸����������︷︷����������︸

s1 times

, . . . [X , [X , · · · [X
︸�����������︷︷�����������︸

rn times

, [Y, [Y, · · ·Y
︸���������︷︷���������︸
sn times

]] · · · ]]

(12.71)
and the right-hand side is taken to be zero if sn > 1 or sn = 0 and rn > 1.
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Examples 12.52. (1) M(n,R) will denote from now on the set of real n×n matrices,
and M(n,C) the same over the complex numbers.

The group GL(n,R) of invertible real n× n matrices is a n2-dimensional Lie
group with analytic structure induced by Rn2

. Its Lie algebra is the set of real n× n
matrices M(n,R) and the Lie bracket is the usual commutator [A,B] := AB− BA,
A,B ∈M(n,R).

An important feature of GL(n,R) is that its one-parameter subgroups have this
form:

R � t 	→ etA :=
+∞

∑
k=0

tk

k!
Ak ,

for any A ∈ M(n,R), and the convergence is in any equivalent Banach norm of Rn2

(or Cn2
) (Chapter 2.5).

(2) Any closed subgroup of GL(n,R) we have met as topological group, like O(n),
SO(n), IO(n), ISO(n), SL(n,R), the Galilean, Lorentz and Poincaré groups, are there-
fore Lie groups. As GL(n,C) can be seen as a subgroup in GL(2n,R) (decomposing
every matrix element in real and imaginary part), complex matrix groups like U(n)
and SU(n), too, are real Lie groups. We must emphasise that working with matrix Lie
groups is not great a restriction, for [War75] every compact Lie group is isomorphic
to a matrix group. For non-compact Lie groups the story is completely different, a
counterexample being the universal covering of SL(2,R).

(3) The exponential of matrices A,B ∈ M(n,C) has interesting characteristics. First,
eA+B = eAeB = eBeA if AB = BA. The proof is similar to the number case that uses
Taylor’s expansion. There is, though, another useful fact: A ∈ M(n,C) satisfies, for
any t ∈ C,

det etA = ettrA , in particular det eA = etrA .

Let us prove this identity. We want to differentiate C � t 	→ det etA , i.e. find

lim
h→0

det e(t+h)A−det etA

h
= lim

h→0

det (etAehA)−det etA

h
= det etA lim

h→0

det ehA−1
h

as long as the last limit exists. Since ehA = I + hA + ho(h) , with o(h)→ 0 as h → 0
in the standard topology of Cn2

, it follows

lim
h→0

det e(t+h)A−det etA

h
= det etA lim

h→0

det (I +hA+ho(h))−1
h

.

There are many ways to see that det(I + hA + ho(h)) = 1 + h∑n
i=1 Aii + h0(h), and

substituting above we find

d detetA

dt
= det etAtrA .

That also proves the function is smooth. Hence fA : C � t 	→ det etA solves the differ-
ential equation:

d fA(t)
dt

= (tr A) fA(t) .
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Also gA : C � t 	→ ettrA solves the equation. And both functions satisfy the initial
condition fA(0) = gA(0) = 1, so by uniqueness of maximal solutions of first-order
equations we obtain det etA = ettrA, any t ∈ R.

(4) The group of rotations O(n) := {R ∈ M(n,R) | RRt = I} of Rn is an import-
ant Lie group in physics. That it is a subgroup of GL(n,R) is evident because
{R ∈ M(n,R) | RRt = I} is closed in the Euclidean topology. (Clearly O(n) con-
tains its limit points: Ak ∈ O(n) and Ak → A ∈ Rn2

as k → ∞ imply At
k → At and

I = AkAt
k → AAt .) The Lie algebra of O(n), denoted o(n), is the vector space of real,

skew-symmetric n×n matrices, and has dimension n(n−1)/2 = dimO(n). The proof
is that Lie algebra vectors are tangent vectors Ṙ(0) at the identity of the group (the
identity matrix) to curves R = R(u) such that R(u)R(u)t = I, R(0) = I. By definition,
then, they satisfy Ṙ(0)R(0)t +R(0)Ṙ(0)t = 0, i.e. Ṙ(0)+ Ṙ(0)t = 0. But this defines
real skew-symmetric n×n matrices, a space of dimension n(n−1)/2. On the other
hand, if A is a real skew-symmetric n×n matrix, R(t) = etA ∈ O(n) as follows form
the elementary properties of the exponential function, and Ṙ(0) = A. We conclude
that the Lie algebra of O(n) consists of the whole class of real skew-symmetric n×n
matrices.

Eventually note that O(n) is compact, since closed and bounded as we saw earlier.
Boundedness is explained in analogy to U(n):

||R||2 =
n

∑
i=1

(
n

∑
j=1

Ri jRi j

)

=
n

∑
i=1
δii = n , for any R ∈ O(n) .

The three-dimensional Lie group O(3) has two connected components: the compact
(connected) group SO(3) := {R ∈ O(3) | det R = 1} and the compact set (not a sub-
group) PSO(3) := {PR ∈ O(3) |R ∈ SO(3)}, where P := −I is the parity trans-
formation.

(5) We will explain how the whole group SO(3) is covered by its exponential map.
Define a special basis of so(3) given by matrices (Ti) jk = −εi jk where εi jk = 1 if
i, j,k is a cyclic permutation of 1,2,3, εi jk =−1 if i, j,k is a non-cyclic permutation,
εi jk = 0 otherwise. More explicitly

T1 :=

⎡

⎣
0 0 0
0 0 −1
0 1 0

⎤

⎦ , T2 :=

⎡

⎣
0 0 1
0 0 0
−1 0 0

⎤

⎦ , T3 :=

⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ . (12.72)

All are skew-symmetric so they belong in so(3), and they are clearly linearly inde-
pendent, hence a basis of so(3). Structure constants are simple in this basis:

[Ti,Tj] =
3

∑
k=1

εi jkTk . (12.73)

The exponential representation of SO(3) is as follows: R ∈ SO(3) if and only if there
exist a unit vector n ∈ R3 and a number θ ∈ R such that

R = eθn·T , where n ·T :=
3

∑
i=1

niTi .
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(6) The compact group SU(2), seen as real Lie group, has Lie algebra the real vector
space of skew-Hermitian matrices with zero trace (traceless because the determinant
in the group equals 1). Consequenly the Lie algebra of SU(2) has a basis formed by
− i

2σ j, j = 1,2,3, where σk are the Pauli matrices σi of (12.10)-(12.10). The factor
1/2 is present so to satisfy the commutation relations:

[

− iσi

2
, − iσ j

2

]

=
3

∑
k=1

εi jk

(

− iσk

2

)

. (12.74)

By the remark ensuing Theorem 12.48 the Lie algebras of SU(2) and SO(3) are iso-
morphic. Hence by Theorems 12.45–12.46 the Lie groups are locally isomorphic. As
SU(2) is connected and simply connected (it is homeomorphic to the boundary S3

of the unit ball in R4), whereas SO(3) is not simply connected, SU(2) must be the
universal covering of SO(3). The Lie algebra isomorphism should arise from dif-
ferentiating a surjective homomorphism from SU(2) to SO(3). The latter is actually
well known (Exercise 12.16), so let us recall it briefly. The exponential map of SU(2)
covers the entire group by compactness. In practice every matrix U ∈ SU(2) can be
written

U = e−iθn· σ2

where θ ∈ R and n is a unit vector in R3. The aforementioned sujective morphism is
the onto map

R : SU(2) � e−iθn· σ2 	→ eθn·T ∈ SO(3) .

Clearly this is not invertible, because the right-hand side is invariant under transla-
tions θ→ θ+2π , while the left-hand side changes sign (take the unit n = e3 along the
axis x3). In fact it is easy to see that the kernel of h consists of two points±I ∈ SU(2).

�

12.2.8 Symmetry Lie groups, theorems of Bargmann, Gårding,
Nelson, FS3

To conclude our treatise on symmetry groups we deal with connected Lie groups
G. Any projective G-representation must be representable by unitary operators and
never by antiunitary ones. We have in fact the following result.

Proposition 12.53. Let G be a connected Lie group. For any projective representa-
tion G� g 	→ γg the images γg can be associated to unitary operators only, according
to Wigner’s theorem (or Kadison’s).

Proof. By Proposition 12.51, every g ∈ G is the product of a finite number of ele-
ments h = exp(tT ). Then h = r · r with r = exp(tT/2). Using Proposition 12.24 the
claim follows. �

At this point we deal with a number of general results on strongly continuous
unitary representations of Lie groups.

It will be useful in the sequel to observe, first of all, that any projective representa-
tion of a topological group G may be seen as projective representation of its universal
covering group G̃.
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In fact if π : G̃ → G is the covering map (a continuous homomorphism of
topological groups [NaSt82]), and γ : G � g 	→ γg is a continuous projective G-
representation on the Hilbert space H, then γ ◦ π : G̃ � h 	→ γπ(h) is a continuous

projective G̃-representation; note that it does not distinguish elements h,h′ ∈ G̃ if
π(h) = π(h′). Put equivalently, if h · h′−1 ∈ Ker(π) then γ ◦ π(h) = γ ◦ π(h′) i.e.
(γ ◦π)(Ker(π)) = id, or Ker(π)⊂ Ker(γ ◦π). This proves the following.

Proposition 12.54. Let G be a topological group and π : G̃→G its universal cover-
ing. Every continuous projective representation γ : G � g 	→ γg of G on the Hilbert

space H arises from the continuous projective representation γ ′ : G̃ � g 	→ γ ′g on H

such that Ker(π)⊂ Ker(γ ′), induced by G≡ G̃/Ker(π).

Remarks 12.55. When needed, henceforth, we will use projective unitary represent-
ations of G̃ instead of G, because the latter are determined by the former. �

We will prepare the ground for an important theorem due to Bargmann [Bar54],
that provides sufficient conditions for a continuous projective representation to be
given by a unitary representation. The preliminary idea, presented in Chapter 12.2.4,
is that a projective unitary representation

G � g 	→Ug

of a group G is the restriction of a unitary representation

Ĝω � g 	→Vg

of a suitable central extension Ĝω of G. This is always possible by virtue of Pro-
position 12.27. Assume G is a Lie group, and the projective unitary representation
G� g 	→Ug induces a continuous projective representation. We can choose the phases
of the Ug so that the representation G� g 	→Ug is continuous around the identity of G
by Proposition 12.35. This cannot be extended to the entire G, in general. But using
a representation of Ĝω and the Lie structure of G allows to do so: the next technical
result, cited without proof [Kir74], explains how.

Theorem 12.56. Let G be a connected Lie group and G � g 	→ γg a continuous pro-

jective representation on the Hilbert space H. There exist a central extension Ĝω and
a strongly continuous unitary representation

Ĝω � (χ,g) 	→V(χ,g)

with ω(e,e) = 1, V(χ,e) = χI for any χ ∈U(1). Moreover:

(a) Ĝω is a connected Lie group (whose global differentiable structure is not the
product structure of U(1) and G, in general); the canonical inclusion U(1) → Ĝω
and canonical projection Ĝω → G are Lie group homomorphisms.
(b) As differentiable manifold Ĝω is, around the identity, the local product of the
standard U(1) and G, and the map ω : G×G→U(1) arises from Proposition 12.35
by an equivalence, making it C∞ around (e,e).
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(c) the map (1,g) 	→V(1,g) is a strongly continuous projective unitary representation
that induces G � g 	→ γg:

γg(ρ) = V(1,g)ρV−1
(1,g) for any g ∈G, ρ ∈Sp(H).

So let us assume, by the above theorem, any strongly continuous projective rep-
resentation of a Lie group G is obtainable as strongly continuous projective unitary
representation of a central extension of G, itself a Lie group.

This allows to prove the aforementioned Bargmann theorem.
Let us go through the proof’s idea, heuristically. Take a Lie group G (connected

and simply connected in the theorem) and its central U(1)-extensions Ĝω . Projective
unitary representations of G are honest unitary representations of U(1)-extensions of
G. The question is when are continuous unitary representations of Ĝω reducible to
continuous unitary representations of G. The Lie algebra of Ĝω is the vector space
R⊕TeG with bracket

[
r⊕T,r′ ⊕T ′]= α(T,T ′)⊕ [T,T ′] ,

where r⊕T is the generic element in R⊕TeG and α : TeG×TeG→ TeG a bilinear
skew-symmetric map. An common alternative way to write this is to fix a basis of
GeT and set

[Ti,Tj] = αi jI +
n

∑
k=1

Ci jkTk , (12.75)

where r = r′ = 0, αi j :=α(Ti,Tj) are by construction skew-symmetric, αi j =α ji, and
in consequence of Jacobi’s identity (and corresponding to (12.79) under Bargmanns’
theorem):

αi j = α ji , (12.76)

0 =
n

∑
s=1

(
Ci jsαsk +Cjksαsi +Ckisαs j

)
. (12.77)

The numbers αi j are often called central charges. The key idea behind Bargmann’s
theorem is to redefine the generators

Tk → T ′
k := βkI +Tk

so that the βk absorb central charges, allowing to write the bracket relations of the
Lie algebra of G as:

[T ′
i ,T

′
j ] =

n

∑
k=1

Ci jkT ′
k .

If this is possible, we expect to view a unitary Ĝω -representation as a G-
representation. Referring to (12.75), we understand that that is true when the βk solve

αi j =
n

∑
k=1

Ci jkβk (12.78)
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(note Ci jk and αi j are given, once Ĝω is known). The hypothesis of Bargmann’s the-
orem, formulated by (12.80), is just condition (12.78), as the proof will explain. The
linear function β of the statement, in fact, is completely determined by the coeffi-
cients βk if we set β (Tk) := βk.

Theorem 12.57 (Bargmann). Let G be a connected, simply connected Lie group.
Every continuous projective G-representation on the Hilbert space H is induced by
a strongly continuous unitary representation on H provided the following condition
holds. For any skew-symmetric bilinear map α : TeG×TeG→ R satisfying

α
(
[T,T ′],T ′′)+α

(
[T ′,T ′′],T

)
+α
(
[T ′′,T ],T ′)= 0 , T,T ′,T ′′ ∈ TeG, (12.79)

there exists a linear map β : TeG→ R with

α(T,T ′) = β
(
[T,T ′]
)

, T,T ′ ∈ TeG. (12.80)

Proof. Consider a continuous projective representation γ : G � g 	→ γg on the Hil-
bert space H. By Theorem 12.56, suitably choosing the multiplier function allows
to define a central U(1)-extension Ĝω of G, and a projective unitary representation
V : G � g 	→Vg su H that is strongly continuous and induces γ . The canonical inclu-
sion and projection homomorphisms are Lie morphisms. Moreover, around the origin
Ĝω is the product U(1)×G and the mapω is differentiable for the structure of G×G,
locally. The multiplier function is normalised so thatω(e,e) =ω(e,g) =ω(g,e) = 1,
hence the neutral element of Ĝω is (1,e). (As we know, we can always reduce to this
case via an equivalence transformation by a constant map.) The real vector space
underlying the Lie algebra of Ĝω is R⊕TeG, where ⊕ is the direct sum (not ortho-
gonal, as there is no inner product around). We will denote r⊕T the elements, where
r ∈ R and T ∈ TeG. By the definition of Lie bracket [ , ] of TeG, a few computations
involving (12.66) say that the bracket [ , ]ω of T1⊕eĜω has the form:

[
r⊕T,r′ ⊕T ′]

ω = α(T,T ′)⊕ [T,T ′] (12.81)

where α : TeG×TeG→ R is a bilinear skew-symmetric map satisfying (12.79), ow-
ing to the Jacobi identity of [ , ]ω . Now we show the universal covering of Ĝω is
the Lie group R⊗G, where ⊗ is the direct product of the two (R is an additive Lie
group). The direct product of two Lie groups is a Lie group with the analytic product
structure. The topological space underlying R⊗G is the product R×G, simply con-
nected as the factors are. By Theorem 12.45 R⊗G is the unique simply connected
Lie group, up to isomorphisms, having that Lie algebra, and hence is the universal
covering of all Lie groups with the Lie algebra of R⊗G. We will show Ĝω is one of
those. The Lie algebra of R⊗G is R⊕TeG with bracket:

[
r⊕T,r′ ⊕T ′]

⊗ = 0⊕ [T,T ′] . (12.82)

To prove the claim it suffices to exhibit an isomorphism mapping the Lie algebra of
R⊗G to the Lie algebra of Ĝω , when there is β : TeG → R satisfying (12.80). Let
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us construct the isomorphism. Fix a basis T1, . . . ,Tn in the Lie algebra of G, and a
corresponding basis

1⊕0, 0⊕T1, . . . , 0⊕Tn ∈ T(0,e)R⊗G

in the Lie algebra of R⊗G. Consider the new basis in the Lie algebra of Ĝω :

1⊕0, β (T1)⊕T1, . . . , β (Tn)⊕Tn ∈ T(1,e)Ĝω .

This is clearly a basis because the vectors are linearly independent if T1, . . . ,Tn form
a basis. Consider the unique linear bijection f : T(0,e)R⊗G→ T(1,e)Ĝω such that:

f (1⊕0) := 1⊕0 , f (0⊕Tk) := β (Tk)⊕Tk for k = 1,2, . . . ,n.

We claim it preserves brackets:

[ f (r⊕T ) , f (r′ ⊕T ′)]ω = f ([r⊕T , r′ ⊕T ]⊗) ,

and hence is an isomorphism. As f is linear and brackets are bilinear and skew, it
is enough to prove the claim on pairs of distinct basis elements. Evidently [ f (1⊕
0) , f (0⊕ Tk)]ω = 0 = f ([1⊕0 , 0⊕Tk]⊗). As for the remaining non-trivial com-
mutators,

[ f (0⊕Th) , f (0⊕Tk)]ω = [β (Th)⊕Th , β (Tk)⊕Tk]ω = α(Th,Tk)[Th,Tk]

= β ([Th,Tk])⊕ [Th,Tk] = β

(
n

∑
s=1

ChksTs

)

⊕
n

∑
s=1

ChksTs =
n

∑
s=1

Chks (β (Ts)⊕Ts)

=
n

∑
s=1

Chks f (0⊕Ts) = f

(
n

∑
s=1

Chks0⊕Ts

)

= f ([0,⊕Th , 0⊕Ts]⊗) .

where Chks are the structure constants of G in the basis T1, . . . ,Tn. Therefore the uni-
versal covering of Ĝω is R⊗G, and there is a surjective Lie homomorphism

Π : R⊗G � (r,g) 	→ (χ(r,g),h(r,g)) ∈ Ĝω ,

such that
dΠ |(0,g) = f (12.83)

(the latter determines the map uniquely, by Theorem 12.46). Now let us study the ho-
momorphismΠ , keeping exploiting that Ĝω is a central U(1)-extension of G. Easily
h(r,e) = e for any r ∈ R. Consider in fact the one-parameter group of R⊗G

R � r 	→ (r,e) = exp{r(1⊕0)} ;

Π maps it, by Theorem 12.45(c), to the one-parameter subgroup of Ĝω :

R � r 	→ exp{r f (1⊕0)}= (χ(r,e),h(r,e)) = exp{r(1⊕0)}= exp{(r⊕0)} .
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The Baker–Campbell–Hausdorff formula (12.69) and the relations (12.81) give, for
any r ∈ R around 0:

(χ(r,e),h(r,e)) = exp{(r⊕0)}= (χ(r,e),e) .

As h(r,e)h(s,e) = h(r+ s,e) by the properties of one-parameter subgroups, the iden-
tity found extends to any r ∈ R, so h(r,e) = e for every r ∈ R. Define χ(r) := χ(r,e).
Then

Π : (r,e) 	→ (χ(r),e) and χ(r)χ(r′) = χ(r + r′) for any r,r′ ∈ R.

The second equation follows because r 	→ exp{r f (1⊕0)}= (χ(r,e),h(r,e)) is a one-
parameter subgroup. Setting h(g) := h(0,g) and φ(g) := χ(0,g), we can write

Π : R⊗G � (r,g) 	→ (χ(r)φ(g),h(g)) ∈ Ĝω . (12.84)

Let us study the map h : (0,g) 	→ g and prove it is an isomorphism. As Π is a group
homomorphism it maps the product (r,g) · (r′,g′) to the images’ product, so

(χ(r),h(g)) · (χ(r),h(g′)) = (χ(r + r′)φ(g)φ(g′)ω(h(g),h(g′)) , h(gg′)) .

This implies h : G � g ≡ (0,g) 	→ h(g) ∈ G – the domain G being a Lie sub-
group in R⊗G – is a group homomorphism. But Π is onto, so h is too. The map
Ĝω(χ,s) 	→ s ∈ G is an onto Lie homomorphism by definition of central extension,
so we conclude h : G � g 	→ h(g) ∈G is a surjective Lie homomorphism. By (12.83),
it is easy to see dh : 0⊕Tk → Tk. Consequently, by (iii) of Theorem 12.46(b) dh is the
differential at the identity of a unique Lie isomorphism from G (subgroup of R⊕G)
to G. By construction it must coincide with h.

To finish take the multiplier function ω and φ : G →U(1). Then φ(e) = 1, be-
causeΠ : (0,e) 	→ (1,e). SinceΦ : (0,g) 	→ (φ(g),h(g)) is a Lie homomorphism and
the analytic structure of Ĝω is the product around the identity, there φ is differenti-
able. The projection Π maps (0,g) · (0,g′) to the product of the images. Therefore

(φ(g)φ(g′)ω(h(g),h(g′)) , h(gg′)) = (φ(gg′),h(gg′)) ,

so
φ(g)φ(g′)ω(h(g),h(g′)) = φ(gg′) , g,g′ ∈G. (12.85)

There remains to find a continuous unitary representation

U : G � g 	→Ug

inducing the projective representation γ . Since h : G→ G is an isomorphism, define

Ug := φ(h−1(g))Vg , g ∈G.

By construction this projective unitary representation induces γ , since φ(h−1(g)) ∈
U(1). At the same time, by (12.85):

UgU ′
g = φ(h−1(g))φ(h−1(g′))VgVg′

= ω(g,g′)φ(h−1(g))φ(h−1(g′))Vgg′ = φ(gg′)Vgg′ = Ugg′ .
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Hence U is a proper unitary representation. To finish we show U is continuous.
As V is continuous, h−1 is continuous, h−1(e) = e and φ is continuous around e,
g 	→Ug = φ(h−1(g))Vg is certainly continuous on a neighbourhood A of the neutral
element e of G. That U is a representation of unitary operators implies its continuity
(in the strong topology) at every point. In fact, if ψ ∈ H:

||Ugψ−Ug0ψ ||= ||Ug−1
0

(Ugψ−Ug0ψ)||= ||Ug−1
0 gψ−ψ || → 0 as g→ g0.

We used the fact that g−1
0 g ∈ A if g is sufficiently close to g0, as G is a topological

group. �

Remark 12.58. (1) By a previous remark, Bargmann’s theorem provides informa-
tions also in case the connected Lie group is not simply connected, by looking at
its projective representations as representations of the (simply connected) universal
covering.
(2) An alternative, and more sophisticated, way to state Bargmann’s theorem relies on
the cohomology theory of Lie groups. The existence of a linear map β for any bilinear
skew α satisfying (12.79) is equivalent to imposing that the second real cohomology
group H2(TeG,R) of the Lie algebra is trivial [BaRa86, Kir74]. An important res-
ult relying on group cohomology techniques is that Bargmann’s theorem holds for
simply connected Lie groups G whose Lie algebra is simple or semisimple. Physic-
ally important cases are SL(2,C) (the universal covering of the Lorentz group) and
the universal covering of the Poincaré group, since the Lie algebras of those groups
are semisimple. Therefore, dealing with relativistic quantum theories one can always
take advantage of Bargmann’s theorem dealing with spacetime symmetries. Con-
versely, the treatment of spacetime symmetries in Galilean quantum mechanics is
much more complicated as we shall see soon.
(3) Remember that Bargmann’s theorem gives sufficient, not necessary, conditions.

�

Examples 12.59. (1) The simples instance, yet far from trivial, for which
Bargmann’s theorem applies it the Abelian Lie group R. The assumptions are auto-
matic, for the Lie algebra is R with zero bracket, and the only skew functional
α : R×R→ R is the null map. However, the result is not obvious, as confirmed by
the fact we proved it not effortlessly using Theorem 12.36 (using only the topological
group structure, actually
(2) Consider the simply connected Lie group SU(2), and indirectly SO(3), which
has SU(2) as universal covering (Examples 12.52(5) and (6)). We want to prove
all continuous projective unitary SU(2)-representations (hence of SO(3) by Pro-
position 12.54) are induced by corresponding strongly continuous unitary SU(2)-
representations, because the latter’s Lie algebra befits Bargmann’s theorem.

The Lie algebra su(2) of SU(2) (Example 12.52(6)) has a basis made of −iσk/2,
where σ1,σ2,σ3 are the Pauli matrices seen several times. Identify su(2) with R3

by the vector space isomorphism that sends the basis of su(2) to the canonical basis
e1,e2,e3 of R3. Every linear skew functional α : su(2)× su(2) → R is a real skew-
symmetric matrix A, in the sense there is a unique real skew-symmetric 3×3 matrix
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A such that α(u,v) = ∑3
i, j=1 uiAi jvk, u,v ∈ R3 (the proof is left to the reader). By

(12.74), condition (12.80) reads, in terms of the A associated to the functional α ,

3

∑
i, j=1

uiAi jvk = β

(
3

∑
r,s,k=1

εrskurvsek

)

,

for any u,v ∈ R3 (i.e. su(2)) and a given linear functional β : R3 → R (to be determ-
ined). By the latter’s linearity, we can rephrase:

3

∑
i, j=1

uiAi jvk =
3

∑
r,s,k=1

εrskurvsbk ,

for any u,v ∈ R3 and some b ∈ R3 whose components bk = β (ek) determine the
functional β . Observe that the vector b, i.e. the functional β satisfying (12.80), ex-
ists, since every real skew matrix A acting on R3 corresponds one-to-one to some
b ∈ R3: Ai j = ∑3

k=1 εi jkbk (inverting bk = 1
2 ∑

3
i, j=1 εi jkAi j), as is well known and as

one proves with ease.
Therefore condition (12.80) holds for any linear skew functional, and so

Bargmann’s theorem applies. Note that we did not have to assume (12.79) for
the skew functional α : su(2)× su(2) → R, for that is granted: using α(u,v) =
∑3

i, j,k=1 εi jkuiv jbk, where b ∈ R3 determines α , a direct computation shows (12.79)
is valid, because of the known formula

3

∑
k=1

εi jkεpqk = δipδ jq−δiqδ jp . �

Now we will discuss the converse problem: construct continuous projective rep-
resentations that give a Lie group of symmetries. We already know it suffices to
build continous unitary representations of the group’s central extensions, so we con-
centrate on the problem of manifacturing strongly continuous unitary representations
of a given Lie group. The idea is to start from a Lie algebra representation in terms
of self-adjoint operators, reminiscent of the exponentiation of the generators of a
Lie group. Physically, the procedure is appealing because generators have a precise
meaning. In the next chapter we will see that the generators (self-adjoint operators)
represent preseved quantities during motion, if the time evolution is a subgroup of
the symmetry group.

As first thing we deal with constructing an operator representation for the Lie al-
gebra, in presence of a strongly continuous unitary representation of the Lie group.
Consider a strongly continuous unitary representation of the Lie group G

G � g 	→Ug

on the Hilbert space H. Fix a one-parameter subgroup R � t 	→ exp(tT ) ∈ G associ-
ated to the element T ∈ TeG. Stone’s Theorem 9.29 ensures

Uexp(tT ) = e−itAU (T ) , for any t ∈ R, (12.86)
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where AU (T ) is a self-adjoint operator on H, in general unbounded (the sign − is
conventional) with domain D(AU(T )), and completely determined by T ∈ TeG. We
will call the self-adjoint operators AU(T ), T ∈ TeG, the generators of the represent-
ation U . From Stone’s theorem thay are defined as

AU(T )ψ := i
d
dt
|t=0Uexp(tT )ψ iff ψ ∈ D(AU(T )). (12.87)

Regarding the fact the −iAU (T ) define a representation of the Lie algebra of G, we
can only hope they satisfy:

(AU(T )AU(T ′)−AU (T ′)AU(T ))ψ = iAU ([T,T ′])ψ , (12.88)

ψ ∈D , where D ⊂D(AU(T )) is an invariant subspace for all the AU(T ). As a matter
of fact it is well known [BaRa86] that such a D exists and is dense in H. A first can-
didate is the Gårding space DG, defined as the subspace in H containing all vectors
ψ such that G � g 	→Ugψ is a smooth map (differentiating in the Hilbert topology
and with respect to any local coordinate system on G). If ψ belongs to the Gårding
space, DG is dense and invariant for every AU (T ), plus TeG � T 	→ −iAU (T )�DG

is a representation of the Lie algebra TeG, meaning it is linear and satisfies (12.88)
[BaRa86].

A technical useful result, due to Gårding [BaRa86], says that DG is a core for the
generators:

Theorem 12.60 (Gårding). Let G be a Lie group and G � g 	→Ug a strongly con-
tinuous unitary representation on the Hilbert space H. Let DG be the Gårding space
and TeG � T 	→ −iAU (T ) the representation of the Lie algebra on DG as explained
above. Then every operator AU(T ) and every real polynomial p(AU(T )), T ∈ TeG,
are essentially self-adjoint on DG.

There is another space DN with similar features to DG. Found by Nelson
[BaRa86], it turns out to be more useful than the Gårding space to recover the rep-
resentation U by exponentiating the Lie algebra representation.

By definition DN consists of vectors ψ ∈ H such that G � g 	→ Ugψ is ana-
lytic in g, i.e. developable in power series in analytic coordinates around every
point of G. The elemens of DN are called analytic vectors of the representation
U and DN is the space of analytic vectors of the representation U . Thus [BaRa86]
DN ⊂ DG, and DN is invariant for the operators AU(T ) and for every Ug, g ∈ G. At
last, TeG � T 	→ −iAU (T )�DN is a representation of TeG, because it is linear and
satisfies (12.88) [BaRa86].

An important relationship exists between analytic vectors in DN and analytic vec-
tors according to Chapter 9. Nelson proved the following important result [BaRa86],
which implies that DN is dense in H, as we said, because analytic vectors for a self-
adjoint operator are dense by Proposition 9.21(f). (An operator is introduced, called
Nelson operator, that sometimes has to do with the Casimir operators [BaRa86] of
the represented group.)
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Proposition 12.61. Let G be a Lie group and G� g 	→Ug a strongly continuous unit-
ary representation on the Hilbert space H. Take T1, . . . ,Tn ∈ TeG a basis and define
Nelson’s operator on DG by

Δ :=
n

∑
k=1

AU(Tk)2 ,

where the AU(Tk) are restricted to the domain DG. Then

(a) Δ is essentially self-adjoint.
(b) Every analytic vector of the self-adjoint Δ is analytic for the representation U (an
element of DN).
(c) Every analytic vector of the self-adjoint Δ is analytic for every operator AU (Tk)
(essentially self-adjoint on DN by Nelson’s criterion)7.

We can finally state the famous theorem of Nelson that enables to associate rep-
resentations of the only simply connected Lie group with a given Lie algebra to rep-
resentations of that Lie algebra.

Theorem 12.62 (Nelson). Consider a real n-dimensional Lie algebra V of operators
−iS (with each S symmetric on the Hilbert space H, defined on a common subspace D
dense in H and V -invariant) with the usual commutator of operators as Lie bracket.
Let−iS1, · · · ,−iSn ∈ V be a basis of V and define Nelson’s operator with domain D:

Δ :=
n

∑
k=1

S2
k .

If Δ is essentially self-adjoint, there exists a strongly continuous unitary representa-
tion

GV � g 	→Ug

on H, of the unique simply connected Lie group GV with Lie algebra V, that is com-
pletely determined by

S = AU (−iS) for every −iS ∈ V.

In particular, the symmetric operators S are essentially self-adjoint on D , their clos-
ure being self-adjoint.

The above assumptions were weakened by Flato, Simon, Snellman and Stern-
heimer [BaRa86]:

Theorem 12.63 (FS3, Flato, Simon, Snellman, Sternheimer). Consider a real n-
dimensional Lie algebra V of operators −iS (with each S symmetric on the Hilbert
space H, defined on a common subspace D dense in H and V -invariant) with the
usual commutator of operators as Lie bracket.
Let−iS1, · · · ,−iSn ∈ V be a basis. If the elements of D are analytic vectors for every
Sk, k = 1, . . . ,n, then there is a strongly continuous unitary representation

GV � g 	→Ug

7 Statements (a), (b) form theorem 2 in [BaRa86, Chapter 11.3]. Statement (c) follows from
lemma 7 [BaRa86, Chapter 11.2] and from Proposition 9.21(c) of this book.
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on H, of the unique simply connected Lie group GV with Lie algebra V, that is com-
pletely determined by:

S = AU(−iS) for every −iS ∈ V .

In particular, the symmetric operators S are essentially self-adjoint on D , their clos-
ure being self-adjoint.

Examples 12.64. (1) Consider two families of operators Pk, Xk, k = 1,2, . . . ,n, on
a dense D ⊂H in a Hilbert space, and suppose they are symmetric. Assume they sat-
isfy, on the domain, Heisenberg’s commutation relations, seen in Chapter 11 (where
we set h̄ = 1):

[−iXh,−iPk] =−iδhkI k,h = 1, . . . ,n. (12.89)

We may add −iI to the generators. Then −iI,−iX1, . . . ,−iXn,−iP1, . . . ,−iPn

form a basis for the Lie algebra of the Heisenberg group H (n) on R2n+1 (see the
end of Chapter 11). The Heisenberg group is simply connected. Nelson’s theorem
guarantees that if, on D , the operator:

Δ − I :=
n

∑
k=1

X 2
k +

n

∑
k=1

P2
k

is essentially self-adjoint (we should consider Δ , but it is clear that Δ is essentially
self-adjoint if and only if Δ − I is), then there is a unique unitary and strongly con-
tinuous representation H (n) � (η , t,u) 	→ H((η , t,u)) on H with I, Xh =: Xh and
Ph =: Ph, h = 1, . . . ,n as (self-adjoint) generators. Therefore if this representation
of the Heisenberg group is irreducible, by the Stone–von Neumann theorem (The-
orem 11.33) there is a unitary transformation from H to L2(Rn,dx) mapping Xh and Ph

to the usual position and momentum operators of axiom A.5, Chapter 11 (for n = 3
and with the obvious generalisation for n > 3). An elementary example is to take
n = 1, H = L2(R,dx), the operator X seen as multiplication by the coordinate x,
P :=−i ∂∂x , and defining D to be the Schwartz space S (R). In this case Δ − I coin-
cides with the Hamiltonian of the harmonic oscillator of Chapter 9. The operatorΔ−I
has an eigenvector basis made by Hermite functions (belonging in S (R)), which are
a basis of L2(R,dx) as well. Hence Δ − I (and so Δ , by Proposition 9.21) admits a
set of analytic vectors (Hermite functions) whose finite combinations are dense in
the Hilbert space. By Nelson’s criterion Δ − I is essentially self-adjoint, and we may
apply the above result.

(2) We have a result about commuting spectral measures.

Theorem 12.65. Let A : D(A)→ H, B : D(B)→ H be symmetric operators. If there
is a dense space D⊂D(A2 +B2)∩D(AB)∩D(BA) on which A and B commute, and
where A2 +B2 is essentially self-adjoint, then A and B are essentially self-adjoint on
D and the spectral measures of A and B commute.

The proof is an easy consequence of Nelson’s Theorem 12.62. �
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12.2.9 The Peter–Weyl theorem

This section contains part of a general theorem about strongly continuous unitary
representations of compact Hausdorff groups: the celebrated Peter–Weyl theorem.
Compact Lie groups are included, of course, due to their structure of differentiable
manifolds. The Peter–Weyl theorem, in its general form [BaRa86], states two remark-
able facts that we will prove: strongly continuous unitary representations of com-
pact Hausdorff groups can be split in orthogonal sums (even with uncountably many
summands) of irreducible representations, and strongly continuous irreducible unit-
ary representations are necessarily finite-dimensional. Both are far from obvious. In
general, namely, a strongly continuous unitary representation of a topological group
might be a direct integral of strongly continuous irreducible unitary representations
(e.g., unitary representations of the Abelian Lie group R); moreover, there could be
infinite-dimensional irreducible representations (like for the Lorentz group).
Let us start with a lemma taking care of the finite-dimensional case.

Lemma 12.66. Let π : G � g 	→Ug be a unitary representation (not necessarily con-
tinuous) of the group G (even if not topological) on the finite-dimensional Hilbert
space H. Then H decomposes in an orthogonal sum H =

⊕n
k=1 Hk where for each

k = 1,2, . . . ,n:

(i) Ug(Hk)⊂ Hk for every g ∈G;
(ii) πk : G � g 	→Ug�Hk is an irreducible unitary G-representation on Hk .

If G � g 	→Ug is strongly continuous, so are all maps πk.

Proof. If π is not irreducible it will have a non-trivial invariant subspace Ĥ1 ⊂ H,
with 0 < dim(Ĥ1)≤ dim(H)−1. Consider the new unitary representation of π̂1 : G�
g 	→Ug�Ĥ1

. If this is not irreducible, as above we can find a non-trivial π-invariant

Ĥ2 ⊂ Ĥ1 with 0 < dim(Ĥ2) ≤ dim(H)− 2. The iteration stops after a finite num-
ber of steps, since dim(H) < +∞, and produces an invariant subspace H1 � {0}
for which π1 : G � g 	→ Ug�H1 is irreducible. Consider H′

2 := H⊥
1 . By construction

Ug(H⊥
1 ) ⊂ H⊥

1 , since z ∈ H⊥
1 and x ∈ H1 imply (Ugz|x) = (z|U∗

g x) = (z|Ug−1x) = 0
(Ug−1x∈H1 by assumption). Hence H = H1⊕H′

2 and π ′2 : G� g 	→Ug�H′2 is a unitary
G-representation on H′

2. If π ′2 is irreducible we finish, otherwise we iterate to obtain
H′

2 = H2 ⊕H′
3, where π2 : G � g 	→ Ug�H2 is irreducible, H2,H′

3 are orthogonal to
H1, π(H′

3) = π2(H′
3) ⊂ H′

3 and π ′3 : G � g 	→Ug�H′3 is a unitary G-representation on
H′

3. By induction the algorithm is finite, and yields H′
k = {0} if k = n+1 for n large

enough, because every Hk has dimension at least 1, so∑n
k=1 dim(Hk)≥ n, but we also

have ∑n
k=1 dim(Hk)≤ dim(H) < +∞.

The last claim is immediate, because everything is finite-dimensional. �

Now let us generalise the lemma to infinitely many dimensions for compact Haus-
dorff groups. The result, part of a more general statement due to Peter and Weyl,
makes use of the Haar measure of Example 12.29(5) in Theorem 12.30.
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Theorem 12.67 (Peter–Weyl theorem, part I). Let G be a compact Hausdorff group
and π : G � g 	→Ug ∈B(H) a strongly continuous unitary representation.

(a) If π is irreducible then H is finite-dimensional: dim(H) < +∞.
(b) If π is reducible, it can be decomposed in a sum of strongly continuous, irredu-
cible unitary representations of G. That is, H is the Hilbert sum of closed (mutually
orthogonal) spaces H =

⊕
k∈K Hk, where for each k ∈ K:

(i) Hk ⊂ H is finite-dimensional;
(ii) Ug(Hk)⊂ Hk for every g ∈G;
(iii) πk : G � g 	→ Ug�Hk is a strongly continuous and irreducible unitary G-

representation on Hk.

Proof. From now on μG will be the Haar measure of G, which by Theorem 12.30 is
bi-invariant and may be chosen so that μG(G) = 1 (since G is compact). The final
statement in Theorem 12.30 implies that if f ∈ L1(G,μG) and G is compact, then

∫

G
f (g)dμG(g) =

∫

G
f (g−1)dμG(g) , (12.90)

to be used later.
(a) For x ∈ H define the operator Kx : H→ H by asking, for any z,y ∈ H:

(z |Kxy ) =
∫

G

(
z
∣
∣Ugx
)
(Ugx|y)dμG(g) . (12.91)

As in the proof of Proposition 9.27, using Riesz’s representation and the definition of
adjoint to bounded operators, Kx is well defined and Kx ∈ B(H). In particular, since
Ug is isometric:

||Kxy||2 ≤
∫

G
|(Kxy|Ugx)| |(Ugx|y)|dμG(g)≤

∫

G
||Kxy|| ||Ugx|||(Ugx|y)|dμG(g)

so

||Kxy|| ≤
∫

G
||Ugx|||(Ugx|y)|dμG(g)≤

∫

G
||Ugx||||Ugx||||y||dμG(g)

= ||x||2||y||
∫

G
dμG(g) = ||x||2||y|| ,

and then ||Kx|| ≤ ||x||2. Moreover

UgKx = KxUg for any x ∈ H, g ∈G . (12.92)

In fact, Ug is unitary and UgUg′ = Ugg′ , so

(z|UgKxy) =
(
U∗

g z|Kxy
)

=
∫

G

(
U∗

g z|Ug′x
)
(Ug′x|y)dμG(g′)

=
∫

G

(
z|Ugg′x
)
(Ug′x|y)dμG(g′) =

∫

G

(
z|Ugg′x
)
(UgUg′x|Ugy)dμG(g′) .
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Now as μG(gA) = μG(A) (it is the Haar measure), the last integral becomes
∫

G

(
z|Ugg′x
)
(Ugg′x|Ugy)dμG(g′) =

∫

G

(
z|Ugg′x
)
(Ugg′x|Ugy)dμG(gg′)

=
∫

G
(z|Usx)(Usx|Ugy)dμG(s) = (z|KxUgy) .

But z ∈ H is arbitrary, so (12.92) holds. With this settled, let us begin to prove (a). If
the representation G � g 	→Ug ∈B(H) is irreducible, by Proposition 11.16 (Schur’s
lemma) equation (12.92), valid for every g ∈G, is valid only if Kx = χ(x)I for some
χ(x) ∈ C. Hence

∫

G
(y|Ugx)(Ugx|y)dμG(g) = (y|Kxy) = χ(x)||y||2 ,

x,y ∈ H, and so ∫

G
|(y|Ugx) |2 dμG(g) = χ(x)||y||2 . (12.93)

As U∗
g = Ug−1 , the latter reads

∫

G

∣
∣
∣
(

Ug−1 y
∣
∣
∣x
)∣
∣
∣
2

dμG(g) = χ(x)||y||2

or ∫

G

∣
∣
∣
(

x
∣
∣
∣Ug−1 y
)∣
∣
∣
2

dμG(g) = χ(x)||y||2

and even, by (12.90),
∫

G

∣
∣
(
x|Ug′y
)∣
∣2 dμG(g′) = χ(x)||y||2 .

Using (12.93) with x, y swapped allows to conclude the left-hand side equals
χ(y)||x||2, so that χ(x)||y||2 = χ(y)||x||2 irrespective of x,y ∈ H. This means χ(x) =
c||x||2 for any x ∈ H and some constant c≥ 0. Set x = y, ||x||= 1, so (12.93) gives:

∫

G
|(x|Ugx) |2 dμG(g) = χ(x)||x||2 = c||x||4 = c ;

hence c > 0 because the continuous, non-negative G� g 	→ |(x|Ugx)| reaches ||x||= 1
at g = e, and non-empty open sets have non-zero Haar measure (Theorem 12.30(ii)).
To finish with (a), consider n orthonormal vectors {zk}k=1,...,n ⊂ H. Setting x = ek

and y = e1 in (12.93) gives:
∫

G
|(e1|Ugek) |2 dμG(g) = χ(ek)||e1||2 = c > 0 , k = 1,2, . . .

By the orthonormality of the Ugek and Bessel’s inequality (3.17):

nc =
n

∑
k=1

∫

G
|(e1|Ugek)|2dμG(g) =

∫

G

n

∑
k=1

|(e1|Ugek)|2dμG(g)

≤
∫

G
||e1||2dμG(g) = 1 .
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Whichever c > 0, the number n cannot be arbitrarily large: it must be finite. Therefore
the dimension of H is finite and not bigger than 1/c. This concludes (a).
(b) The proof of (b) needs a lemma.

Lemma 12.68. Consider a closed subspace {0} �H1 ⊆H such that Ug(H1)⊂H1 for
g∈G. Then there exists a finite-dimensional {0} �H0 ⊂H1 such that, for any g∈G,
Ug(H0)⊂ H0 and G � g 	→ π�H0 is an irreducible G-representation on H0.

Proof of Lemma 12.68. Consider the family Z of sets {H j} j∈J where J has arbitrary
cardinality, each H j ⊂ H is finite-dimensional, non-null and such that π(H j) ⊂ H j,
H j ⊥ H j′ for j � j′, and π j : G � g 	→ Ug�H j is an irreducible G-representation on
H j. The π j are certainly strongly continuous since π is. Endow Z with the order
relation given by inclusion. Clearly any ordered subset E ⊂Z is upper bounded by
the union of elements in E . Zorn’s lemma tells we have a maximal element in Z .
By construction this is {H′

m}m∈M ∈Z not properly cointained in any {H j} j∈J ∈Z .
Now consider the closed Hilbert sum H′ :=

⊕
m∈M H′

m. By construction Ug(H′)⊂H′,
because every Ug is continuous. The orthogonal complement H′⊥ is π-invariant,
because x ∈ H′⊥ and y ∈ H′ imply (Ugx|y) = (x|Ug−1 y) = 0 since Ug−1 y ∈ H′, y ∈ H′.
Suppose H′⊥ � {0}. Then H′⊥ contains a finite-dimensional subspace H0 � {0}.
By construction {H′

m}m∈M ∪ {H0} is in Z and contains the maximal {H′
m}m∈M , a

contradiction. Therefore H′⊥ = {0}, i.e. H =
⊕

m∈M H′
m, proving (b). �

To finish the proof of part (b) it suffices to prove the next result.

Lemma 12.69. Let {0} � H1 ⊆ H be a closed subspace such that Ug(H1) ⊂ H1,
g ∈ G. There exists a finite-dimensional {0} � H0 ⊂ H1 such that, for any g ∈ G,
Ug(H0)⊂ H0 and G � g 	→ π�H0 is an irreducible G-representation on H0.

Proof of Lemma 12.69. From (12.91) and the inner product’s elementary properties
(Kxz|y) = (z|Kxy) for any x,y,z ∈ H. Since Kx ∈ B(H), we have K∗

x = Kx, i.e. Kx is
self-adjoint. By (12.91):

(x |Kxx ) =
∫

G
|(Ugx|x)|2 dμG(g)≥ 0 .

At the same time |(Ugx|x)|2 = 1 if g = e, and by continuity (x |Kxx ) > 0 since non-
empty open sets have finite measure. Hence Kx � 0 for any x ∈ H. Now we claim
Kx ∈ B2(H) (Kx is a Hilbert–Schmidt operator). For this it suffices to show Defini-
tion 4.22 applies. If {ek}k∈S indicates a basis in H, a few manipulations give

∑
k∈F

||Kxek||2 = ∑
k∈F

∫

G

(∫

G
(ek|Uhx)(Uhx|Ugx)(Ugx|ek)dμG(h)

)

dμG(g)

for every finite F ⊂ S. For a given k, the iterated integral coincides with the integral
in the product measure, by Fubini–Tonelli: in fact we are integrating a continuous
map on a compact set (G×G), so a bounded map, and the integration domain has
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finite measure (1). Swapping the integral and the (finite) sum:

∑
k∈F

||Kxek||2 =
∫

G×G
(Uhx|Ugx)∑

k∈F

(Ugx|ek)(ek|Uhx)dμG(h)⊗dμG(g) .

Using the obvious upper bounds, from |(Uhx|Ugx)| ≤ ||x||2 and Schwarz’s inequality:

∑
k∈F

||Kxek||2 ≤
∫

G×G
|(Uhx|Ugx)|∑

k∈F

|(Ugx|ek)| |(ek|Uhx)|dμG(h)⊗dμG(g)

≤ ||x||2
∫

G×G

√

∑
k∈F

|(ek|Uhx)|2
√

∑
k∈F

|(Ugx|ek)|2 dμG(h)⊗dμG(g)

≤ ||x||2
∫

G×G

√

∑
k∈S

|(ek|Uhx)|2
√

∑
k∈S

|(Ugx|ek)|2 dμG(h)⊗dμG(g)

≤ ||x||2
∫

G×G
||Ugx|| ||Uhx||dμG(h)⊗dμG(g)≤ ||x||4

∫

G×G
1 dμG(h)⊗dμG(g)

= ||x||4 < +∞ .

But F ⊂ S was finite but arbitary, so

∑
k∈S

||Kxek||2 ≤ ||x||4 < +∞

and Kx ∈ B2(H). Since any Hilbert–Schmidt operator, like Kx, is compact, and at
present Kx = K∗

x , we invoke Hilbert’s Theorems 4.17 and 4.18 to decompose H in a

Hilbert sum of eigenspaces H(x)
λ of Kx:

H =
⊕

λ∈σp(Kx)

H(x)
λ .

Each summand, with the possible exclusion of H(x)
0 , has finite dimension. Since

Kx � 0, by theorem (4.18(a)) there is an eigenvalue λ1 � 0. By (12.92) every eigen-

space H(x)
λ is π-invariant. Therefore H0 := H(x)

λ1
satisfies the requests. �

Remark 12.70. (1) Theorem 12.67, actually, applies to a wider class of strongly con-
tinuous representations of compact Hausdorff groups. Let π : G � g 	→ Ag ∈ B(H)
be a strongly continuous representation of the compact Hausdorff group G, given
by bounded (perhaps non-unitary) operators on the Hilbert space H. Using the Haar
measure of G, we define the inner product

〈u|v〉G :=
∫

G
(Agu|Agv)dμG(g) , u,v ∈ H

on H. This (1) is well defined, (2) renders (H,〈 | 〉G) a Hilbert space, (3) makes the
norm || ||G associated to 〈 | 〉G equivalent (Definition 2.99) to the norm || || of ( | ). In
addition, π : G � g 	→ Ag ∈ B(H) is a strongly continuous unitary representation on
the Hilbert space (H,〈 | 〉G).
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(2) We will state, and not prove, the remaining part of the Peter–Weyl theorem
[BaRa86]. In the sequel, given a compact Hausdorff group G we will denote by
{T s}s∈S the family of irreducible representations that are not unitarily equivalent.
Said better, in every equivalence class [T s] of irreducible unitary representations
we select a representative T s acting on the finite-dimensional Hilbert space Hs of
dimension ds common to the entire class [T s]. We will also need to use the right
regular representation of G, i.e. the strongly continuous unitary representation
R : G � g 	→ Rg acting on L2(G,μG) by

(Rg f )(h) := f (hg) , g,h ∈G, f ∈ L2(G,μG).

That Rg is unitary is a consequence of the fact that the Haar measure is bi-invariant,
if G is compact.

Theorem 12.71 (Peter–Weyl theorem, part II). Under the assumptions of The-
orem 12.67 the following hold.

(c) Let {T s}s∈S be the non-unitarily equivalent irreducible representations of G. Con-
sider an orthonormal basis {φ s

k}k=1,...dim(Hs) of Hs for every s, and the corresponding
matrix elements Ds(g)i j = (φi|T sφ j). Then the functions

G � g 	→
√

dsD
s(g)i j ∈ C , s ∈ S, i, j ∈ {1,2, . . . ,dim(Hs)}

form a basis of L2(G,μG) and finitely span a dense space in C(G) for || ||∞ (so in
each Lp(G,μG)).
(d) L2(G,μG) decomposes in a Hilbert sum of finite-dimensional subspaces that are
invariant and irreducible under the right regular representation R of G. Further-
more:

(i) on each summand, the unitary matrices of every subrepresentation are the
Ds(g) of (c);

(ii) up to unitary equivalence, every irreducible unitary G-representation shows
up in the R-decomposition into irreducible subrepresentations;

(iii) every irreducible unitary representation T s has multiplicity ds in the decom-
position. �

12.3 Examples

In this section we discuss a few important examples of the theory we have developed.

12.3.1 The symmetry group SO(3) and the spin

We now concentrate on unitary representations of the compact Lie group SU(2), seen
as the universal covering of SO(3) (Example 12.29(2)). With the aid of Bargmann’s
theorem and Proposition 12.54 (see Example 12.59(2) as well), unitary SU(2)-
representations will be used to define an action of the Lie group SO(3) – by a continu-
ous projective representation – on the physical system made by a particle of spin s.
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From Theorem 12.67 unitary SU(2)-representations are direct sums of irreducible
and finite-dimensional unitary representations. In the sequel we describe them.

Until now we discussed the quantum system of a particle on the Hilbert space
L2(R3,dx) (fixing an inertial frame I that identifies R3 with the rest space, with a
right-handed triple of Cartesian axes). Experience shows this description is not phys-
ically adequate: L2(R3,dx) is not always good enough to account for the physical
structure of real particles. The latter possess a feature, called spin, determined by an
associated constant s, just like the mass is attached to the particle; this constant may
only be integer or semi-integer s = 0,1/2,1,3/2, . . ..

Having a spin means, physically, the particle possesses an intrinsic angular mo-
mentum [Mes99, CCP82], and there are observables, not representable by the funda-
mental position and momentum, that describe the intrinsic angular momentum. Let
us summarise the mathematics involved, referring to [Mes99, CCP82] for a sweeping
physics debate on this crucial topic.

If a particle has spin s = 0, the description is the usual for spin-zero particles.
If s = 1/2, the particle’s Hilbert space is larger and in fact is the tensor product
L2(R3,dx)⊗C2, where C2 (seen as Hilbert space) is the spin space. The three spin
operators are the Hermitian matrices (for the moment we use the constant value h̄,
only to set it to one subsequently for simplicity) Sk := h̄

2σk, k = 1,2,3 and the σk are
the Pauli matrices seen earlier. Thus the commutation relations:

[−iSi,−iS j] = h̄
3

∑
k=1

εi jk(−iSk) (12.94)

hold. The associated observables are the components of the particle’s intrinsic angu-
lar momentum in the given inertial reference system. For s = 1/2 the possible values
of each component are−h̄/2 and h̄/2, since the eigenvalues of a Pauli matrix are±1.

For generic spin s the description is similar, but the spin space is nowC2s+1. There
the matrices Sk of the spin operators, replacing h̄

2σk, are Hermitian, satisfy (12.94)
and have 2s + 1 eigenvalues −h̄s,−h̄(s− 1), . . . , h̄(s− 1), h̄s of multiplicity 1. For
m,m′ = s,s−1, . . . ,−s+1,−s, here is what they look like, explicitly:

(S1)m′m =
h̄
2

(√
(s−m)(s+m+1)δm′,m+1 +

√
(s+m)(s−m+1)δm′,m−1

)
,

(S2)m′m =
h̄
2i

(√
(s−m)(s+m+1)δm′,m+1−

√
(s+m)(s−m+1)δm′,m−1

)
,

(S3)m′m = mh̄δm′,m .

For the recipe to construct the Sk and a deeper analysis of the spin we suggest con-
sulting [Mes99, CCP82]. Here we just make three comments.

(a) The operator S2 := ∑3
k=1 S2

k satisfies

S2 = h̄2s(s+1)I

where I : C2s+1 → C2s+1 is the identity matrix.
(b) The space C2s+1 is irreducible under the SU(2)-representation given by exponen-
tiating −iSk:

V s : SU(2) � e−iθ h̄
2 n·σ 	→ e−iθn·S . (12.95)
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For s = 0,1/2,1,3/2, . . . and up to unitary equivalence, the V s produce every
irreducible finite-dimensional unitary SU(2)-representation.
(c) The matrix S3 is chosen so to coincide with

h̄ diag(s,s−1, . . . ,−s+1,−s).

Typically the eigenvector basis of S3, i.e. the canonical basis of C2s+1, is denoted
{|s,s3〉}|s3|≤s. Pure statesΨ(Ψ | ) are thus determined by a collection of 2s+1 wave-
functions ψs3 in L2(R3,dx) with unit norm, and therefore a pure state is given by a
unit vector

Ψ = ∑
|s3|≤s

ψs3 ⊗|s,s3〉 .

By this L2(R3,dx)⊗C2s+1 becomes naturally isomorphic to the orthogonal sum of
2s+1 copies of L2(R3,dx), soΨ is identified with a column vector

Ψ ≡ (ψs,ψs−1, · · · ,ψ−s+1,ψ−s)t

of wavefunctions. In QM’s jargon these are called spinors of dimension s.

If s is an integer, the representation SU(2) � e−iθ 1
2 n·σ 	→ e−i θn·S

h̄ on C2s+1, asso-
ciated to the spin matrices, is a faithful SO(3)-representation, since the kernel of the
covering map SU(2)→ SO(3) consists of the identity I and−I. If s is half an integer,
instead, the above is a faithful SU(2)-representation.

One last important remark on the construction of the observables Sk and the rel-
ative irreducible SU(2)-representations, found in all QM manuals and based on the
commutation relations of the Sk only, is the following. The purely algebraic construc-
tion works because we assume the observables Sk are defined on the whole Hilbert
space, and have discrete spectrum. This is theoretically not obvious, and is merely
due to the finite-dimensional ambient one works in, so the operators Sk are Hermitian
matrices. This is guaranteed by the Peter–Weyl theorem, provided one uses irredu-
cible unitary representations of a compact group like SU(2). The same procedure
would not work as well with non-compact groups such as the Lorentz group.

This is the point where we start setting h̄ = 1 to simplify notations. We discuss
the relationship between total angular momentum and SU(2), or the rotation group
SO(3). For a particle of spin s let

Jk = Lk⊗ I + I⊗Sk (12.96)

be the (total) angular momentum operators on H = L2(R3,dx)⊗C2s+1. The orbital
angular momentum operators Lk, defined in (10.38) and discussed in Chapter 10,
have as closure the observables associated to the components of the orbital angu-
lar momentum. Above, the first I denotes the identity operator on C2s+1 and the
second the identity on L2(R3,dx). The domain is the linear invariant space D :=
S (R3)⊗C2s+1. By construction these operators satisfy the bracket relations defin-
ing the Lie algebra so(3):

[−iJi,−iJ j] =
3

∑
k=1

εi jk(−iJk) . (12.97)
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We wish to apply Nelson’s Theorem 12.62 to the Lie algebra spanned by the operat-
ors Jk. Consider the symmetric operator

J 2 =
3

∑
k=1

(Lk⊗ I + I⊗Sk)
2

defined on D . It admits an eigenvector basis obtained from the basis of H of products

|l,m,sz,n〉 := Y l
mψn⊗|s,sz〉 ∈D ⊂ L2(R3,dx)⊗C2s+1

with l = 0,1,2 . . . ,, m =−l,−l +1, . . . , l−1, l, n = 0,1,2, . . ., sz =−s,−s+1, . . . ,s−
1,s, and the |s,sz〉 ∈C2s+1 are unit eigenvectors of S3 relative to sz. As S3 is Hermitian,
the 2s+1 vectors |s,sz〉 are an orthonormal basis inC2s+1. L2(R3,dx) has a basis made
by the Y l

mψn of (10.48), Chapter 10. Proposition 10.25 ensures the Y l
mψn⊗|s,sz〉 form

a basis for the product space. The |l,m,sz,n〉 are not eigenvectors of J 2. The purely
algebraic Clebsch-Gordan procedure8 [Mes99, CCP82] shows how to build, out of
finite combinations of vectors |l,m,sz,n〉, an eigenvector basis

| j, j3, l,n〉
for J 2, Jz, L 2, where |l + s| ≥ j ≥ |l− s|, l = 0,1,2, . . . j3 =− j,− j +1, . . . , j +
1, j, n = 0,1,2, . . . (the j implicitly differ by integers). Then

J 2| j, j3, l,n〉= j( j +1)| j, j3,n〉 , J3| j, j3,n〉= jz| j, j3,n〉 ,
L 2| j, j3,n〉= l(l +1)| j, j3,n〉 .

The | j, j3, l,n〉 belong in D being finite combinations of |l,m,s,sz,n〉. As eigen-
vectors, they are analytic vectors for J 2. Nelson’s criterion tells J 2 is essen-
tially self-adjoint on D . Then there exists a strongly continuous unitary SU(2)-
representation on H, by Nelson’s theorem, the generators of which are the self-adjoint
operators Jk := Jk = Lk⊗ I + I⊗Sk. (Notice Lk⊗ I = Lk⊗ I since I is in that case
defined on a finite-dimensional space.)

In the exercises we will show the strongly continuous unitary representation ob-
tained when exponentiating the Jk, if s = 0, is an SO(3)-representation, and coincides
with the known one from Example 12.17(1), whereΓ ∈ IO(3) specialises to Γ = R∈
SO(3). (The representation is strongly continuous owing to Example 12.37(1).) This
fact easily implies (see exercises), when s � 0, that the SU(2)-representation arising
by exponentiating the generators Jk as in Nelson’s theorem has the form:

SU(2) � e−iθ 1
2 n·σ 	→ e−iθn·J = e−iθn·L⊗V s

(
e−i θ2 n·σ

)
(12.98)

where Lk := Lk is the self-adjoint operator associated to the kth component of the
orbital angular momentum, as in Chapter 9. Furthermore

(
e−iθn·Lψ

)
(x) = ψ

(
eθn·Tx
)

, (12.99)

8 Back when the author was an undergraduate, the procedure was impertinently known among
students by the cheeky name of computation of “Flash Gordon coefficients”.
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where
SU(2) � e−iθ 1

2 n·σ 	→ e−θn·T ∈ SO(3)

is the covering map SU(2)→ SO(3) mentioned in Example 12.52(6).

Remarks 12.72. Because of Proposition 12.54, the physical assumption is that
the projective SO(3)-representation induced by the unitary SU(2)-representation
(12.98) corresponds to the SO(3) action on the spin-s particle, when viewing SO(3)
as symmetry group of the system. �

12.3.2 The superselection rule of the angular momentum

We consider a generic quantum system admitting a continuous projective representa-
tion of the rotation group SO(3) illustrating the physical effect of rotating states. We
may view the representation as a strongly continuous unitary SU(2)-representation
by Bargmann’s theorem and Proposition 12.54. Using Peter–Weyl we conclude the
system’s Hilbert space decomposes in a sum H =

⊕
s∈A Hs of closed orthogonal

spaces Hs, on which irreducible, hence finite-dimensional, unitary representations of
SU(2) act. Each such is unitarily equivalent to one V s of the previous section, where
now s(s + 1) will not correspond to the spin squared of a particle, but rather to the
squared eigenvalue of the total angular momentum J2 on V s, including orbital and
spin components. From the previous section the parameter s can only be integer or
semi-integer, s = 0,1/2,1,3/2,2, . . ., so the index set A cannot be larger than the set
of those values. Suppose the A of our physical system contains either type of values.
Let J3 be the self-adjoint generator of rotations about the z-axis, however fixed, cor-
responding to the component of the total angular momentum along z by definition.
Consider a pure state, given byΨ = ψs +ψs′ ∈ Hs +Hs′ , with s integer and s′ semi-
integer. Irrespective of the axis x3, remembering the expression for S3 of the previous
section:

e−i2πJ3Ψ = e−i2πS(s)
3 ψs + e−i2πS(s′)

3 ψs′ = ψs−ψs′ �Ψ .

This is physically nonsense, for it says that a 2π revolution about an axis alters the
pure stateΨ(Ψ | ). Therefore, when A contains both integers and semi-integers, we
need to assume a superselection rule for the angular momentum that forbids co-
herent superpositions of pure states with total angular momentum (the s giving the ir-
reducible SU(2)-representations) partly integer and partly semi-integer. As remarked
in Chapter 7.4.5, a pure state can have undefined angular momentum, when the state’s
vector is a combination of vectors corresponding to pure states with different angular
momenta. The superselection rule, however, forces the values to be all either integer
or semi-integer.

12.3.3 The Galilean group and its projective unitary representations

In classical physics the transformations of orthonormal Cartesian coordinates of two
inertial frames I , I ′ are elements of the Galilean group G . In this sense Galilean
transformations are passive transformations. With the obvious notation we can write
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them as:
⎧
⎪⎨

⎪⎩

t ′ = t + c ,

x′i = ci + tvi +
3

∑
j=1

Ri jx j , i=1,2,3 (12.100)

where c∈R (not the speed of light!), ci ∈R and vi ∈R are any constants, and the num-
bers Ri j define a matrix R∈O(3). Every element of G is then given by four quantities
(c,c,v,R) ∈ R×R3×R3×O(3). Composing Galilean transformations rephrases as

(c2,c2,v2,R2) · (c1,c1,v1,R1) = (c1 + c2, R2c1 + c1v2 + c2, R2v1 +v2, R2R1) .
(12.101)

This composition law turns R×R3×R3×O(3) into a group, the Galilean group. In
particular, the neutral element is (0,0,0, I) and the inverse :

(c,c,v,R)−1 = (−c,R−1(cv− c),−R−1v,R−1) . (12.102)

We may interpret Galilean transformations as active transformations, that actively
move spacetime events seen as column vectors (x, t)t of Cartesian coordinates (or-
thonormal, right-handed) in an inertial frame of reference fixed once and for all.

G acts by matrix multiplication if we identify the generic (c,c,v,R) ∈ G with the
real 5×5 matrix:

⎡

⎣
R v c
0 1 c
0 0 1

⎤

⎦ (12.103)

and the columns (x, t)t ∈ R4 with (x, t,1)t ∈ R5. In this way G becomes a Lie
subgroup of GL(5,R) (the analytic structure coincides with the one inherited from
R×R3×R3×O(3)).

In the sequel we shall reduce to the so-called restricted Galilean group SG , the
connected Lie subgroup where R has positive determinant, i.e. R ∈ SO(3). We will
not consider the inversion of parity, which is known not to be always a symmetry and
must be treated separately, at least at a quantum level.

The universal covering S̃G , arises by replacing SO(3) with SU(2) (real Lie
group of dimension 3 inside GL(4,R)). As a matter of fact S̃G is diffeomorphic to
R×R3×R3×SU(2) with product

(c2,c2,v2,U2) · (c1,c1,v1,U1)
= (c1 + c2, R(U2)c1 + c1v2 + c2, R(U2)v1 +v2, U2U1) , (12.104)

where SU(2) � U 	→ R(U) ∈ SO(3) is the covering homomorphism of Ex-
ample 12.52(6) (see also the exercises). This Lie group is the universal covering of
SG , being simply connected (as product of simply connected spaces) and having the
Lie algebra of SG .
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An interesting basis, in physics, of the Lie algebra of S̃G is given by the 10 vectors

−h ,pi , ji ,ki i=1,2,3, (12.105)

(note the conventional − sign in the first one), where:

(i) −h generates the one-parameter subgroup R � c 	→ (c,0,0, I) of time transla-
tions;

(ii) the three pi span the Abelian subgroup R3 � c 	→ (0,c,0, I) of space transla-
tions;

(iii) the three ji span the subgroup SO(3) � R 	→ (0,0,0,R) of space rotations;
(iv) the three ki generate the Abelian subgroupR3 � v 	→ (0,0,v, I) of pure Galilean

transformations.

The generators obey commutation relations that detect the structure constants:

[pi,p j] = 0 , [pi,−h] = 0 , [ji,−h] = 0 , [ki,k j] = 0 ,

[ji,p j] =
3

∑
k=1

εi jkpk , [ji, j j] =
3

∑
k=1

εi jkjk , [ji,k j] =
3

∑
k=1

εi jkkk ,

[ki,−h] = pi , [ki,p j] = 0 . (12.106)

The Galilean group is in all likelihood the most important group of all classical phys-
ics, given that classical laws are invariant under the active action of this group. Ga-
lilean invariance is a way to express the equivalence of all inertial frame systems,
interpreting passively the group transformations. We expect the restricted Galilean
group, seen as group of active transformations from now on, to be a symmetry group
for any quantum system, at least in low-speed regimes (compared to the speed of
light, when relativistic effects are petty).

Projective unitary SG -representations describing the action of the symmetry
group SG on a physical system are well understood (see [Mes99, CCP82], for ex-
ample). To start discussing them, take a physical system given by a particle of spin s
(cf. previous section) and mass m > 0, not subject to any forces. Fix an inertial frame
system I with right-handed orthonormal Cartesian coordinates that identify the rest
space with R3. The system’s Hilbert space H is L2(R3,dx)⊗C2s+1. Pure states are
wavefunctions with spin:

∑
|s3|≤s

ψs3 ⊗|s,s3〉 .

The wavefunctions ψ̃ ∈ L2(R3,dk) are given in momentum representation, and are
images under the unitary Fourier-Plancherel transform (cf. Chapter 3)

F̂ : L2(R3,dx)→ L2(R3,dk)

of wavefunctions ψ in position representation: ψ̃ = F̂ψ . In particular (Propos-
ition 5.31), the observable momentum Pj is given on L2(R3,dk) by the operator

P̃j = F̂PjF̂
−1, i.e. by the multiplication by h̄k j on L2(R3,dk). From now on we
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set h̄ = 1 for simplicity. Assume s = 0 for a moment. In this representation of H, the

action of each element of SG is induced by a unitary operator Z̃(m)
(c,c,v,U) that, up to

a phase, possibly depending on (c,c,v,U), is defined as:
(

Z̃(m)
(c,c,v,U)ψ̃

)
(k) := ei(cv−c)·(k−mv)ei c

2m (k−mv)2
ψ̃
(
R(U)−1(k−mv)

)
. (12.107)

When s � 0, the unitary transformations Z̃(m)
(c,c,v,U) are replaced by

Z̃(m)
(c,c,v,U)⊗V s(U) , (12.108)

where V s was introduced in (12.95).
Back in position representation, i.e. viewing pure states of a spin-zero particle as

unit vectors in L2(R3,dx), the unitary operators Z̃(m)
g correspond to unitary operat-

ors Z(m)
g := F̂−1Z̃(m)

gF̂ under the Fourier-Plancherel transform. In the sequel we
will use the two representations without distinction, even though the explicit action

of Z(m)
g in position representation will have to wait until the next chapter.

Remark 12.73. (1) Let us evaluate the action on (c,c,v,U)−1 rather than (c,c,v,U),
for this is more illuminating
(

Z̃(m)
(c,c,v,U)−1ψ̃

)
(k) := eic·(R(U)k+mv)e−i c

2m (R(U)k+mv)2
ψ̃ (R(U)k+mv) .

(12.109)
To give a meaning to this, decompose (c,c,v,U)−1 into

(c,c,v,U)−1 = (0,0,0,U)−1 · (0,0,v, I)−1 · (0,c,0, I)−1 · (c,0,0, I)−1 ,

and let us examine the single actions one by one. From the right
(

Z̃(m)
(c,0,0,I)−1ψ̃

)
(k) = e−i c

2m k2
ψ̃ (k) .

In the next chapter we will see that multiplying by the phase e−i c
2m k2

corresponds to
rewinding by a time lapse c. Taking in also the second one,

(
Z̃(m)

(0,c,0,I)−1·(c,0,0,I)−1ψ̃
)

(k) = eic·ke−i c
2m k2

ψ̃ (k) .

The multiplication by eic·k corresponds (under Fourier-Plancherel) to an active trans-
lation by −c of the wavefunction. Subsuming the third one, we obtain
(

Z̃(m)
(0,0,v,I)−1·(0,c,0,I)−1·(c,0,0,I)−1ψ̃

)
(k) = eic·(k+mv)e−i c

2m (k+mv)2
ψ̃ (k+mv) .

If k is understood as momentum vector, k → k + mv is precisely the transforma-
tion of momentum under a Galilean transformation that changes the velocity of the
frame of reference, but does not contain space or time translations, nor rotations. The
transformation corresponds to an active transformation of the wavefunction under a
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pure Galilean transformation associated to−v. Eventually, incorporating the rotation
R(U), i.e. actively transforming the wavefunction by R(U)−1, gives:

(
Z̃(m)

(0,0,0,U)−1·(0,0,v,I)−1·(0,c,0,I)−1·(c,0,0,I)−1ψ̃
)
(k) =

eic·(R(U)k+mv)e−i c
2m (R(U)k+mv)2

ψ̃ (R(U)k+mv) .

Overall the right-hand side of (12.109) corresponds to the combined action (in agree-
ment with the Galilean product) of the subgroups of transformations. Bearing in mind
(12.102) our discussion now justifies (12.107).

(2) The operators Z̃(m)
g (i.e. the Z(m)

g, in the position representation) are associated

to the universal covering S̃G rather than the group SG itself. We made this choice to
apply the theory of previous sections. We know, in fact, projective representations
of a group are obtained from the universal covering’s projective representations, and
this is particularly convenient because the Galilean group contains a subgroup iso-
morphic to SO(3). We saw in the previous section that if the spin s is a semi-integer,
the projective unitary SO(3)-representations of physical interest are unitary SU(2)-
representations. �

Using definition (12.107), the representation S̃G � g 	→ Z(m)
g (equivalently, S̃G �

g 	→ Z̃(m)
g working in the momentum representation) is projective unitary, due to the

presence of a multiplier function

ω(m)(g′,g) = eim(− 1
2 c′v2−c′(R(U ′)v)·v′+(R(U ′)v)·c′) , g = (c,c,v,U), g′ = (c′,c′,v′,U ′)

(12.110)
after a boring computation. The result (clearly) remains valid in case the spin s is

non-zero, and the unitary operators
˜
Z(m)

g generalise to the unitary (12.108), because
the representation U 	→V s(U) on the spin space C2s+1 is unitary and does not affect
the multiplier function.

It is easy to prove the projective unitary representation S̃G � g 	→ Z̃(m)
g (equi-

valently S̃G � g 	→ Z(m)
g in the position representation) is strongly continuous. To

that end, as operators are unitary, ω(m) is continuous and ω(m)(e,e) = 1, it suffices

to prove Z̃(m)
gψ̃ → ψ̃ as g → e, for any ψ ∈ H. This is an easy consequence of the

explicit form of Z̃(m)
g.

We do not know whether the projective unitary representation S̃G � g 	→ Z(m)
g is

equivalent to a unitary representation, by multiplying Z(m)
g by suitable phases χ(g).

The Galilean Lie algebra shows that Bargmann’s Theorem 12.57 does not hold. But
the aforementioned theorem gives sufficient conditions, not necessary ones, so we
are not in a position to answer the question. What we will see now is that the repres-
entations found are intrinsically projective: they cannot be made unitary by a clever
choice of phase.

In order to keep general, we consider every possible projective unitary repres-

entation S̃G � g 	→ Z(m)
g , on any Hilbert space, with multipliers as in (12.110), but

irrespective of the fact the Z(m)
g are as in (12.107) or (12.108) on L2(R3,dk)⊗C2s+1.
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Proposition 12.74. Let S̃G � g 	→ Z(m)
g be projective unitary representations with

multipliers (12.110).

(a) Given m, it is not possible to define the phases of Z(m)
g to obtain a unitary S̃G -

representation (neither strongly continuous).
(b) Representations with distinct numbers m cannot belong to the same unitary equi-
valence class.

Proof. We prove (a) and (b) simultaneously. If two representations with m1 > m2

belonged to the same equivalence class, there would exist a map χ = χ(g) such that

ω(m1)(g′,g)
(
ω(m2)(g′,g)

)−1
=

χ(g′ ·g)
χ(g′)χ(g)

, g,g′ ∈ S̃G . (12.111)

Writing m := m1−m2 > 0, this is the same as

ω(m)(g′,g) =
χ(g′ ·g)
χ(g′)χ(g)

, g,g′ ∈ S̃G . (12.112)

We claim that for any given m > 0 there is no function χ satisfying (12.112), proving
the theorem.

By contradiction if such a χ existed, letting Vg := χ(g)Z(m)
g would force the mul-

tipliers of S̃G � g 	→Vg to be 1, hence the representation would be unitary. Consider

the elements in S̃G of the form f := (0,c,0, I) and g := (0,0,v, I). By (12.101) they
commute, so f−1 · g−1 · f · g = e. The corresponding computation for Z(m), keeping

(12.107) in account, gives Z(m)
f−1Z(m)

g−1Z(m)
f Z(m)

g = e−i2mc·vZ(m)
e . This becomes, with our

assumptions:

(
χ( f−1)χ(g−1)χ( f )χ(g)

)−1
Vf−1Vg−1Vf Vg = e−i2mc·vχ(e)−1I ;

as the multipliers of V are trivial because V is unitary by assumption, we have
f ·g = g · f , and permuting the order of the coefficients χh:

(
χ( f−1)χ( f )χ(g−1)χ(g)

)−1
Vf−1· f ·g−1·g

=
(
χ( f−1)χ( f )χ(g−1)χ(g)

)−1
Ve = e−i2mc·vχ(e)−1I .

Therefore
χ( f−1 · f )
χ( f−1)χ( f )

χ(g−1 ·g)
χ(g−1)χ(g)

= χ(e)e−i2mc·v .

Using (12.112) this identity becomes ω( f , f−1)ω(g,g−1) = χ(e)e−i2mc·v. Comput-
ing the left-hand side explicitly, with the help of (12.110), yields

1 = χ(e)e−i2mc·v.

This has to be true for any c,v ∈ R3, hence m = 0 and χ(e) = 1. But m = 0 was ex-
cluded right from the start. The contradiction invalidates the initial assumption, so χ
does not exist. �
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By virtue of this proposition, and since the quantity m labelling equivalence
classes of projective unitary representations has a very explicit physical meaning, we
might think that the symmetry group of a non-relativistic quantum system of mass m,

instead of being the Galilean group, is the central extension
̂̃
SG m given by the multi-

plier function of the value m of the mass. From the general theory the representation

S̃G � g 	→ Z(m)
g arises thus: (a) build the central U(1)-extension

̂̃
SG m, with multiplier

function (12.110) (
̂̃
SG m is a product manifold since ω(m) is analytic on S̃G × S̃G );

(b) restrict to S̃G the strongly continuous unitary representation

̂̃
SG m � (χ,g) 	→ χZ(m)

g .

On that account (intrinsically) projective unitary S̃G -representations are substituted

by unitary
̂̃
SG m-representations. There is a price to pay: the symmetry group changes

when the mass varies. Consider the strongly continuous unitary representation

̂̃
SG m � (χ,g) 	→ χZ(m)

g .

Restrict to D ⊂ L2(R3,dk), space of smooth complex functions ψ̃ = ψ̃(k) with com-
pact support. By (12.107) every map

̂̃
SG m � (χ,g) 	→ χZ̃(m)

gψ̃

is smooth whenever ψ̃ ∈D . Hence D is contained in the Gårding space of
̂̃
SG m. With

a minor notational misuse we indicate by D the inverse Fourier-Plancherel image of

D inside L2(R3,dx). Consider the 11 one-parameter Lie subgroups of
̂̃
SG m generated

by the Lie algebra basis:

1⊕0, 0⊕h, 0⊕pi, 0⊕ ji, 0⊕ki , i = 1,2,3 .

Composing each one with
̂̃
SG m � (χ,g) 	→ χZ(m)

g produces eleven strongly continu-
ous one-parameter unitary groups. Let us find their self-adjoint generators. If we re-
strict to D when differentiating in the strong topology, the generators are (note the
− sign of H):

I, −H�D , Pi�D , Li�D , Ki�D , i = 1,2,3.

Pk and Lk are the self-adjoint operators representing momentum and orbital angu-
lar momentum about the kth axis, which we met already. The self-adjoint operators
H := F̂−1H̃F̂ , called Hamiltonian operator, and Ki, called boost along the ith
axis, are defined as:

(H̃ψ̃)(k) :=
k2

2m
ψ̃(k)

where D(H̃) :=
{

ψ̃ ∈ L2(R3,dk)
∣
∣
∣
∣

∫

R3
|k|4|ψ̃(k)|2dk < +∞

}

(12.113)
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and
Kj :=−mXj . (12.114)

Since D is a core for all the above, the self-adjoint generators of one-parameter group

representations of
̂̃
SG m associated to:

1⊕0, 0⊕h, 0⊕pi, 0⊕ ji, 0⊕ki , i = 1,2,3 (12.115)

must concide with the corresponding:

I, −H, Pi, Li, Ki , i = 1,2,3.

Each one, as an observable, has a physical meaning. We will talk about the observ-
able H in the next chapter. By considering Lie algebra relations, for instance on D ,
we realise we are actually working with a central extension of the Galilean group,
because one bracket (the last one below) is new: the fault is of a central charge that
coincides with the mass:

[−iPi,−iPj] = 0 , [−iPi, iH] = 0 , [−iLi, iH] = 0 , [−iKi,−iKj] = 0 ,

[−iLi,−iPj] =
3

∑
k=1

εi jk(−iPk) , [−iLi,−iL j] =
3

∑
k=1

εi jk(−iLk) ,

[−iLi,−iKj] =
3

∑
k=1

εi jk(−iKk) , [−iKi, iH] =−iPi , [−iKi,−iPj] =−imδi jI .

Remark 12.75. (1) Since Kj = −mXj, the unitary representation (χ,g) 	→ χZ̃(m)
g

incorporates operators that obey Weyl’s relations on L2(R3,dk). By Proposi-
tion 11.18(b) L2(R3,dk) is irreducible for these operators, hence for the represent-

ation
̂̃
SG m � (χ,g) 	→ χZ̃(m)

g. In this sense the non-relativistic spin-zero quantum
particle is an elementary object for the Galilean group.
(2) If we take into account the portion of Hilbert space due to the spin, the difference

from above is that to have
̂̃
SG m act on states we must replace Lk by Jk = Lk + Sk in

every formula. That is to say, the unitary representation reads

̂̃
SG m � (χ,g) 	→ χZ̃(m)

g⊗V s(U) ,

where g = (c,c,v,U). The irreducibility seen for the case s = 0 extends, so for the
particle with spin s the above representation is irreducible on L2(R3,dk)⊗C2s+1. �

12.3.4 Bargmann’s rule of superselection of the mass

We now consider more complicated systems than a free particle. We refer to the next
chapter for the general matter, and recall here that when we study an isolated system
of N interacting particles of masses m1, . . . ,mN , the theory’s Hilbert space splits:

L2(R3,dx)⊗Hint ⊗C2s1+1⊗·· ·⊗C2sN+1 .
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The Hilbert space Hint is relative to the system’s internal orbital degrees of free-
dom (the particles mutual positions, for example in terms of Jacobi coordinates, e.g.
see [AnMo12] for a more explicit construction). L2(R3,dx) is the Hilbert space of
the centre of mass. The centre of mass of the system is the unique particle of mass
M := ∑N

n=1 mn determined by the observables Xk (the position of the centre of mass)
and Pk (total momenta of the system), k = 1,2,3, of the usual form on L2(R3,dx).
Each factor C2sn+1 is the spin space of one particle. Via Fourier transform L2(R3,dx)
can be L2(R2,dk), which we will assume from now on.

In this context – exactly as in classical mechanics – the symmetry group SG acts
by

S̃G � (c,c,v,U) 	→ Z(M)
(c,c,v,U)⊗V (int)

R(U)W
(int)
c ⊗V S1(U)⊗·· ·⊗V SN (U) .

Above,
SO(3) � R 	→V (int)

R and R � c 	→W (int)
c

are representations – both unitary and strongly continuous – of the rotation sub-
group of SG (of elements (0,0,0,R)), and of time translations (of type (c,0,0, I)) re-

spectively. In addition, V (int)
R W (int)

c = W (int)
c V (int)

R for every R ∈ SO(3), c ∈ R. These
two representations depend on how we define orbital coordinates and on the kind

of inner interactions among the particles. The transformation Z(M)
(c,c,v,U) acts only on

the freedom degrees of the centre of mass. Since every representation involved is
unitary except Z(M), the multiplier function ω(M) of the overall representation on
L2(R3,dk)⊗Hint ⊗C2s1+1⊗·· ·⊗C2sN+1 is the same we had before, using the total
mass M as parameter m. Therefore the previous proposition reaches to this much
more general instance of quantum system.

Let us look at a physical system S obtained by putting together a finite number,
though not fixed, of the previous systems. Or even more generally, we may assume
that the value of the mass of S, for some reason, is not fixed. The mass of S may
thus range over several values mi, with i ∈ I at most countable, we assume. It is only
natural to associate to the mass a quantum observable, i.e. a self-adjoint operator M
whose spectrum is the values of mass (even if all that follows is completely general,
explicit models have been constructed in [Giu96, AnMo12]). Likewise, we define a
Hilbert space for the system:

HS =
⊕

m∈σ(M)

H(m)
S ,

where the H(m)
S are the eigenspaces of the mass operator with distinct eigenvalues

m > 0. What happens if the Galilean group acts on S? On each H(m)
S a different pro-

jective unitary representation Z(m), depending on m, will act. The representation of
the restricted Galilean group will thus look like:

SG � g 	→ Zg :=
⊕

m∈σ(M)

χ(m)(g)Z(m)
g . (12.116)
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We claim this structure leads to a superselection rule. Since the representation is pro-
jective unitary, the multiplier

Ω(g,g′) := Z(gg′)−1Z(g)Z(g′) ,

computed with (12.116), produces

Ω(g,g′)I =
⊕

m∈σ(M)

ω(m)(g,g′)Im ,

where the ω(m) account for possible new phases χ(m) and the Im on the right are

identities on each H(m)
S . Since

I =
⊕

m∈σ(M)

Im ,

so
Ω(g,g′)I =

⊕

m∈σ(M)

Ω(g,g′)Im ,

necessarily:

ω(m1)(g,g′) = ω(m2)(g,g′) =Ω(g,g′) for every m1,m2 ∈ σ(M) .

But this is not possible, because it implies, solving for χ(m), the false equation
(12.111).

The net result is this: if the Galilean group is to be a symmetry group for our phys-
ical system, we are compelled to ban pure states arising from combinations in differ-

ent subspaces H(m)
S . So we have found a superselection rule related to the mass, known

as Bargmann’s superselection rule for the mass. Coherent sectors of this rule are
the H(m)

S with given mass. The result is deeply rooted in the fact that physically-
interesting projective representations of the Galilean group do not come from unitary
representations, and the mass appears in the multiplier function.

A physically more appropriate situation is that in which one replaces the restric-
ted Galilean group with the (proper orthochronous) Poincaré group: then the superse-
lection rule ceases to be valid, because irreducible projective representations of the
Poincaré group always arise from irreducible unitary representations [BaRa86], and
states with undefinite (relativistic) mass are allowed.

Remarks 12.76. Since m multiplies the exponent in (12.110), we may introduce a
central extension G1 of the Galilean group (of the universal covering to be precise)
that does not depend on m. It is enough to redefine the multiplier setting m = 1 in
the right-hand side of (12.110). The value of mass is subsequently fixed by a partic-
ular unitary representation (raising to the mth power the multiplier and the variables
χ ∈U(1)) when a physical system is chosen with that mass and that is invariant by the
Galilean group. This G1 should be considered as the quantum version of the Galilean
group. This approach, adopted in [Giu96], lets the superselection rule of the mass
arise dynamically by enlarging the system with more degrees of freedom, already
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at the classical level. The mass becomes, a priori, a (classical) variabile and defines
a self-adjoint operator (the mass operator of the physical system) after quantisation.
The approach was improved in [AnMo12], in particular presenting a physical proced-
ure giving rise to the superselection rule once assumed the discreteness of the mass
spectrum. �

Exercises

12.1. Referring to Example 12.17(1), with IO(3) � Γ = (t,R), prove

γ∗Γ (P) = U−1
Γ PUΓ = RP , (12.117)

where P is the triple of operators corresponding to the components of momentum,
and the displayed identity holds on the Schwartz space S (R) taken as domain of the
momenta.

12.2. Referring to Examples 12.17(1) and (2) and retaining the convention of Exer-
cise 12.1, prove:

γ∗P (X) = P−1XP =−X , γ∗P (P) = P−1PP =−P (12.118)

while

γ∗T (X) = T −1XT = X , γ∗T (P) = T −1PT =−P . (12.119)

P is the triple corresponding to the momentum’s components, and the displayed iden-
tities hold on the Schwartz space S (R) taken as domain of position operators and
momenta.

12.3. Consider the self-adjoint operators L1,L2,L3 representing the components of
the orbital angular momentum (Chapter 10). If L indicates the relative column vec-
tor, then

L�S (R3)= X�S (R3) ∧P�S (R3) .

Restrict domains to S (R3) and prove the following facts. Referring to Ex-
ample 12.17(1), with SO(3) � Γ = (0,R):

γ∗Γ (L) = U−1
Γ LUΓ = RL , (12.120)

γ∗P (L) = P−1LP = L , (12.121)

γ∗T (L) = T −1LT =−L . (12.122)

SO(3) is the subgroup in O(3) with positive determinant (+1), and the wedge product
is defined by the above formal determinant in a right-handed basis.
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12.4. Decompose the Hilbert space HS of system S in coherent sectors, so that the
space of admissible pure states reads:

Sp(HS)adm =
⊔

k∈K

Sp(HSk) .

Equip Sp(HS) with distance d(ρ,ρ ′) := ||ρ−ρ ′||1 := tr(|ρ−ρ ′|), where || ||1 is the
natural trace-class norm. Prove the sets Sp(HSk) are the connected components of
Sp(HS)adm. (It might be useful to recall ρ =ψ(ψ | ), ρ ′ =ψ ′(ψ ′| ) inSp(HSk) imply
||ρ−ρ ′||1 = 2

√
1−|(ψ |ψ ′)|2, as was proved in the chapter).

Sketch of the solution. Consider pure states ρ,ρ ′ ∈ Sp(HSk) with ρ = ψ(ψ | ) and
ρ ′ = ψ ′(ψ ′| ), and ψ not parallel to ψ ′ (otherwise they give the same state). Define
ψt = tψ +(1− t)ψ ′ and the curve [0,1] � t 	→ ψt

||ψt ||2 (ψt | ). Prove the curve is con-

tinuous and entirely contained in Sp(HSk), making Sp(HSk) path-connected, hence
connected. To prove the Sp(HSk) are disjoint, it is sufficient to find ||ρ − ρ ′||1 for
ρ ∈ Sp(HSk), ρ ′ ∈ Sp(HSk′) with k � k′. In that case the vectors of ρ , ρ ′ are or-
thogonal, so ρ − ρ ′ is actually the decomposition into positive and negative parts
of ρ −ρ ′ itself. Hence |ρ −ρ ′| = ρ +ρ ′, i.e. ||ρ −ρ ′||1 = 2. Consider an open set
Ak ⊃ Sp(HSk) union of open balls of radius 1/2 centred in Sp(HSk), and an open
set Ak′ ⊃Sp(HSk′) union of similar balls centred in Sp(HSk′). These two sets cannot
intersect by the triangle inequality, so Sp(HSk) and Sp(HSk′) are disjoint.

12.5. Prove the distance d(ρ,ρ ′) of pure states (Exercise 12.4) satisfies:

d
(
ψ(ψ | ),ψ ′(ψ | ))= ∣∣∣∣ψ(ψ | )−ψ ′(ψ ′| )∣∣∣∣

B(H)

for any unit ψ ,ψ ′ ∈ H, where || ||B(H) is the standard norm of operators.

12.6. Let U : H→H be an antiunitary operator on the Hilbert space H and A : D(A)→
H a self-adjoint operator on H. Prove:

(a) U−1AU : U−1(D(A))→ H is self-adjoint;
(b) σ(U−1AU) = σ(A);
(c) B(R) � E 	→ U−1P(A)

E U is the spectral measure associated to U−1AU by the
spectral theorem:

U−1
∫

R

λdP(A)(λ )U =
∫

R

λd(U−1P(A)U)(λ ) ;

(d) U−1eitAU = e−itU−1AU .

Hint. (a) and (b) descend from the definitions of self-adjointness and spec-
trum. (c) follows from proving that for bounded maps f : R → C, we have
U−1 ∫

R
f (x)dP(A)(x)U =

∫
R

f (x)d(U−1P(A)U)(x). This comes directly from the
definition of integral of a bounded map in a PVM (Chapter 8). Observing that any
self-adjoint operator satisfies T = s-limn→+∞

∫
R
χ[−n,n](x)dP(T )(x), Stone’s theorem

and (a) imply (d).
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12.7. Prove formula (12.63).

Outline of the solution. The first in (12.63) descends from UΓ unitary, U−1
Γ0

= UΓ−1
0

and UΓ ′UΓ = UΓ ′◦Γ . Hence it is enough to show, for any ψ ∈ L2(R3,dx):

||UΓψ−ψ || → 0 as Γ → (0, I).

Let us prove this for compactly-supported continuous maps φ . If φ is one such,
ISO(3)×R3 � (Γ ,x) 	→ φ(Γ−1x) is continuous. Then if Γ restricts to a relatively
compact neighbourhood J of the identity, there is K ≥ 0 such that |φ(Γ−1x)| ≤ K
if (Γ ,x) ∈ J×R3. Because of Γ there is a compact S ⊂ R3 containing every sup-
port of φ(Γ−1·). So there is φ0 ∈ L2(R3,dx) such that |(UΓ φ)(x)−φ(x)| ≤ |φ0(x)| if
(Γ ,x) ∈ J×R3: it suffices to choose a continuous φ0 with absolute value, pointwise
on S, larger than 2K, and vanishing fast outside S. Since (UΓ φ)(x)→ φ(x) pointwise,
by dominated convergence ||UΓψ−ψ || → 0 asΓ → (0, I), in L2 norm. Let us pass to
ψ generic in L2(R3,dx). If ε > 0, take φ continuous with compact support and such
that ||ψ−φ ||< ε/3. Then

||UΓψ−ψ || ≤ ||UΓψ−UΓ φ ||+ ||UΓ φ −φ ||+ ||φ −ψ ||= ||UΓ φ−φ ||+2||φ −ψ || ,

since UΓ is isometric so ||UΓ ψ −UΓ φ || = ||ψ − φ ||. Choose Γ close enough to
(0, I). By the above argument, ||UΓ φ −φ || ≤ ε/3. Hence for any ε > 0, if Γ is close
enough to (0, I) we have ||UΓψ−ψ || ≤ ε .

12.8. Using Exercise 12.1, prove t ·P�S (R3) is essentially self-adjoint.

Hint. If t = 0 the claim is trivial. Otherwise we know P1�S (R3) is essentially
self-adjoint. Consider the unitary operator UR representing an active rotation moving
the axis t/|t| onto e3. Show URt ·P�S (R3) U−1

R = |t|P3�S (R3) and conclude.

12.9. Using Exercise 12.1, prove formula (12.64).

Hint. Prove the statement for P3, passing from wavefunctions in x to wavefunctions
in k via the Fourier trnasform. Extend to the general case as in the previous exercise.
Note that U unitary and A : D(A)→ H closable imply UAU−1 is closable and

UAU−1 = UAU−1 ,

defining UAU−1 on U(D(A)).

12.10. Start from (12.29) and prove identity (12.30).

Hint. First, substitute g,g′,g′′ with one or more neutral elements e. Then write g−1

in place of g′ and/or g′′.
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12.11. Let G be a connected topological group and G � g 	→ γg a strongly continuous
projective representation (Proposition 12.34) on the Hilbert space HS, associated to a
physical system. Suppose HS decomposes in coherent sectors HSk. Can some γg map
a certain sector to a different sector?

Hint. Decompose Sp(H) in a disjoint union of pure states of each sector, and equip
each with norm || ||1. Remember that continuous maps preserve connected sets.

12.12. Prove the Lie algebra of the real Lie group SU(2) is the real vector space of
skew-Hermitian matrices. Then show SU(2) is simply connected.

Hint. SU(2) is closed in GL(4,R), hence a Lie group. Therefore one-parameter
groups are of type R � t 	→ etA, with A in the Lie algebra su(2). Impose etA(etA)∗ = I
and tr(etA) = 1 for every t, and infer how A has to look like. Vice versa if A is skew-
Hermitian, verify the above two conditions hold. As for simply connectedness, para-
metrise the group by 4 real parameters so that SU(2) is in one-to-one correspondence
with the unit sphere in R4. Show the parametrisation is a homeomorphism.

12.13. Prove that U ∈ SU(2) iff there exist a unit vector n ∈ R3 and a real number θ
such that:

U = e−iθn· σ2 .

Hint. Use the spectral theorem for the unitary operator U ∈ SU(2), keeping in ac-
count that the Pauli matrices and I form a real basis of 2× 2 Hermitian matrices.
Conversely, if U = e−iθn· σ2 , what are U∗U and detU?

12.14. Prove the matrices T in (12.72) satisfy:

RTkRt =
3

∑
i=1

(Rt)kiTi for any R ∈ SO(3).

Hint. Use (Ti) jk = −εi jk and write the above equations componentwise. Recall εi jk

are the coefficients of a pseudotensor invariant under proper rotations.

12.15. Show R ∈ SO(3) iff there exist a unit n ∈ R3 and a real θ such that:

R = eθn·T .

Hint. Prove the claim for n = e3 by taking, for R ∈ SO(3), a rotation about e3. Show
every R ∈ SO(3) always admits an eigenvector n. Rotate the axes so to move n onto
e3, and recall the previous exercise. If, conversely, R = e−iθn·T, what are RtR and
detR?

12.16. Demostrate that for every U ∈ SU(2) there exists a unique RU ∈ SO(3) such
that:

Ut ·σU∗ = (RU t) ·σ for any t ∈ R3.

Then verify
SU(2) �U 	→ RU ∈ SO(3)
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is a surjective homomorphism that coincides with:

R : SU(2) � e−iθn· σ2 	→ eθn·T ∈ SO(3) .

Eventually prove the kernel is {±I} ⊂ SU(2).

Sketch of the solution. Note |t|2 = det(t ·σ), and conclude every U ∈ SU(2) de-
termines a unique transformation of R3 mapping t to some t′, with |t|= |t′|, defined
by Ut · σU∗ = Ut′ · σU∗. The transformation t → t′ is then an orthogonal matrix
R(U) ∈O(3). That R : SU(2) �U 	→ R(U) ∈O(3) is a homomorphism is immediate

by construction. In the case Uθ = e−iθ σ3
2 one checks in various ways (e.g. directly,

expanding the exponentials) that R(Uθ ) = eθT3 . The general case relies on exercise
(12.14), rotating e3 onto an arbitrary unit vector n. R(Uθ ) = eθn·T clearly implies
R(U) ∈ SO(3). Surjectivity is a consequence of the fact every SO(3) matrix can be
written as eθn·T. The kernel is computed reducing to the one-parameter subgroup
generated by σ3, by rotation of n. The result becomes thus obvious by direct compu-
tation.

12.17. Referring to Chapter 12.3.1, prove the strongly continuous unitary SU(2)-
representation obtained from exponentiating the L k is the representation SO(3) �
R 	→UR of Example 12.17 (where Γ ∈ IO(3) is now restricted to Γ = R ∈ SO(3)),
that is strongly continuous (cf. Example 12.37(1)).

Hint. By Nelson’s Theorem 12.62 it suffices to check the one-parameter groups
θ 	→ Ueθn·Tx, with n = e1, e2, e3, are generated by the self-adjoint L1, L2, L3. It is
convenient to work with polar coordinates, using the core of L1, L2, L3 given by
spherical harmonics multiplied by a basis of L2(R+,r2dr).

12.18. Show that the SU(2)-representation obtained by exponentiating the generators
Jk, by Nelson’s theorem, has the form:

SU(2) � e−iθ 1
2 n·σ 	→ e−iθn·J = e−iθn·L⊗V s

(
e−i θ2 n·σ

)
.

Hint. Employ the properties of the tensor product of operators to prove

e−iθn·J = e−iθn·L⊗V s
(

e−i θ2 n·σ
)

.

So we have to prove the representation SO(3)� R 	→UR of the previous exercise can
be written as Ueθn·T = e−iθn·L. This is certainly true, for instance with n = e3. As for
the general case: on one hand we have

U∗
Re−iθn·LUR = e−iθn·U∗RLUR ,

and Exercise 12.3; on the other the result of Exercise 12.14 holds.
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Selected advanced topics in Quantum Mechanics

Give up telling God what to do with his dice.
Niels Bohr, to Einstein

With this chapter we complete the list of axioms for non-relativistic Quantum
Mechanics, introducing time evolution and compound systems. Certain notions, here
defined formally, have already been introduced in the final part of the previous chapter
when talking about symmetry groups. More advanced reference texts, which we have
followed here and there, are [Pru81] and [DA10].

In the first section we will state the axiom of time evolution, described by a
strongly continuous one-parameter unitary group that is generated by the Hamilto-
nian operator of the system. Within this framework we will define dynamical sym-
metries as a special kind of the symmetries seen earlier. Then we shall discuss the
nature of Schrödinger’s equation and introduce the important concept of stationary
state. As classical example of this formalism we will make explicit the action of the
Galilean group in the position representation (we saw it in the momentum repres-
entation in the previous chapter). There, we will also explain how wavefunctions
transform under changes of inertial frame systems. Then we will pass to the basic
theory of non-relativistic scattering. We will make a few remarks on the existence of
the unitary time-evolution operator in absence of time homogeneity (we will exam-
ine the convergence in B(H) of the Dyson series for a Hamiltonian), and discuss the
antiunitarity of the time-reversal symmetry.

In the following section we will present a version of the so-called Pauli theorem,
whose concern is the possibility of defining the “operator time” as self-adjoint con-
jugate to the Hamiltonian. In this respect we will briefly discuss the notion of POVM,
that may be employed to give a weaker meaning to the time observable.

Heisenberg’s picture of observables is introduced in section three, where we will
discuss the relationship between constants of motion and dynamical symmetries,
present the quantum version of Nöther’s theorem and study the case of constants of
motion associated to generators of a Lie group, including the one-parameter subgroup
of time evolution. A digression will give us the chance to present the mathematical
problems raised by the so-called Ehrenfest theorem. The section will close with the
study of the constants of motion associated to the Galilean group.

Section four will be devoted to the theory of compound quantum systems: systems
with an inner structure and multi-particle systems. We will consider, in particular, en-
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tangled states and discuss ome problems related to the so-called EPR paradox and
the notion of decoherence. Eventually, we will pass to the general theory of systems
of identical particles, and conclude with the spin-statistic correlation.

13.1 Quantum dynamics and its symmetries

As we quickly recalled in Chapter 7.2.1, physical systems evolve in time acording
to their dynamics. In the classical Hamiltonian formulation of mechanics the evol-
ution in time of a system’s state is described in phase spacetime by the solutions to
Hamilton’s equations. Let us consider the situation in which the Hamiltonian func-
tion H does not depend explicitly on time in the coordinates of a given inertial frame
I . We will talk in this case of time being homogeneous with respect to the con-
sidered physical system. Hamilton’s equations are autonomous PDEs, i.e. the time
variable does not show up explicitly if the equations are written in those canonical
coordinates and the phase spacetime splits naturally in a product R×F , where F is
the phase space. Solutions to Hamilton’s equations determine a one-parameter group
of diffeomorphisms φτ : F →F mapping the initial state (taken to be sharp for sim-
plicity) r ∈F at time 0 into the state φτ(r) ∈F at time τ . The basic mathematical
tool to construct the time-evolution operator – the one-parameter group {φτ}τ∈R – is
the Hamiltonian H of the system, which identifies with the total mechanical energy
of the frame system I [GPS01, FaMa06]. In the sequel we will present the quantum
analogues of the Hamiltonian function and the evolution operator.

13.1.1 Axiom A6: time evolution

The quantum case is not dissimilar to the classical setting. The following axiom
comprises time evolution in a quantum system S, described on the Hilbert space
HS for given inertial frame I , with homogeneous time. The axiom defines the
Hamiltonian (operator) of the quantum system as the generator of the one-parameter
unitary group capturing the evolution, hence the dynamics, of the quantum state.
(We will return to this in Chapter 13.1.6 when looking at a more general situation.)
Using the notion of time evolution makes possible to treat dynamical symmetries
and, as we will see later, state the quantum Nöther theorem.

A6. Let S be a quantum system described on the Hilbert space HS associated to the
inertial frame I . There exists a self-adjoint operator H, called Hamiltonian of the
system S in the frame I , corresponding to the observable of total mechanical energy
of S in the frame I , such that

(i) σ(H) is lower bounded;

(ii) setting Uτ := e−
iτ
h̄ H , if the system’s state at time t is ρt ∈S(HS), the state at time

t + τ is:

ρt+τ = γ(H)
τ (ρt) := UτρtU

−1
τ . (13.1)
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The strongly continuous one-parameter unitary group R � τ 	→ Uτ is called time-
evolution operator of S in the frame I , and the continuous projective representation
of R induced by U, R � τ 	→ γ(H)

τ , is said dynamical flow of S in the frame I .

Remark 13.1. (1) From now on, unless strictly necessary for better physical clarity,
we will omit to write h̄ explicitly in formulas, and set h̄ = 1.

(2) The evolution of states is thus given by a continuous projective representation of
the Abelian group R. This fact enables us to phrase differently axiom A6, using the
results of the preceding chapter.

With the intent to weaken the axiom’s assumptions as much as possible, and think
the evolution as a function ρ 	→ γτ(ρ) mapping states to states for any τ ∈R, we may
require γτ to satisfy the following conditions, rather reasonable from the physical
viewpoint:

(i) γτ preserves the convexity of the space of states (Kadison symmetry), or
equivalently, it preserves transition probabilities (Wigner symmetry);

(ii) γτ is additive: γτ ◦ γτ ′ = γτ+τ ′ , for τ ,τ ′ ∈ R;
(iii) (viewing symmetries γτ à la Wigner) γτ is continuous as in Definition 12.31

or equivalently, continuous in the topology of Sp(HS) induced by || ||1, as
in (12.42).

Then Theorem 12.36 proves the projective representation R � τ 	→ γτ has the form
predicted by axiom A6 above. One of the possible self-adjoint generators – which
exist and differ by an additive constant, by Theorem 12.36 – is the system’s Hamilto-
nian, by definition. But we still need to impose the spectrum be bounded from below.
In defining the Hamiltonian, the ambiguity coming from the additive constant is ac-
tually present in physics, because the energy of a classical system (non-relativistic) is
given up to constant. (However, the picture is not so obvious dealing with advanced
topics as the mass superselection rule, when noticing that classical physics arises as
an approximation from relativistic physics [AnMo12].)

(3) That the Hamiltonian spectrum of a real physical systems is bounded stems from
thermodynamical stability. Unless we consider an ideal system, perfectly isolated
from the environment, and that in reality does not exist (also by deep theoretical mo-
tivations that demand quantum field theory to be explained properly), the lower limit
constraining the spectrum of H (the mechanical energy) is unavoidable. In absence
of a threshold there could be transitions in S to states with decreasingly lower energy.
This (infinite!) energy loss towards the outside, in some form or other (particles, elec-
tromagnetic waves), would in practice make the system collapse. The lower limit of
σ(H) has other important theoretical repercussions we will see later.

(4) The inverse symmetry to time evolution is called time displacement. We met this
symmetry when studying the Galilean group. Physically it is an active transformation

of S. In other words, for given τ , it is a Kadison symmetry γ(−H)
τ : S(HS)→ S(HS)

that transforms the state ρ at a generic given time t0 into the state ττ(ρ) at the same

time t0, so that γ(H)
τ

(
γ(−H)
τ (ρ)

)
coincides with ρ . By construction γ(−H)

τ =
(
γ(H)
τ

)−1
.
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Evidently the unitary generator of γ(−H)
τ is −H, as the name already suggests. This

explains the “−” sign used for the self-adjoint generators of the Galilean group. �

Now let us suppose HS is decomposed in coherent sectors HSk, k ∈ K. Then the
space of admissible pure statesSp(HS)adm splits in the disjoint union of setsSp(HSk),
and mixed states are convex combinations of elements in the various S(HSk). The
next result shows that the dynamical flow preserves this splitting, as expected.

Proposition 13.2. Let S be a quantum system described on the Hilbert space HS as-
sociated to the inertial frame I , with dynamical flow γ(H). Suppose HS splits in co-
herent sectors HSk, k ∈ K. Then the dynamical flow preserves both pure and mixed
states. More precisely:

(a) if ρ ∈S(HSk) for some k ∈ K, then γ(H)
t (ρ) ∈S(HSk) for every t ∈ R.

(b) If ρ ∈Sp(HSk) for some k ∈ K, then γ(H)
t (ρ) ∈Sp(HSk) for every t ∈ R.

Proof. Since
γ(H)

t (ψ(ψ | )) = e−itHψ
(

e−itHψ
∣
∣
)

,

clearly the representation γ(H) maps pure states to pure states, so mixed to mixed ones.

Restrict γ(H) to pure states. Fix ρ ∈Sp(HSk) and consider the path R � t 	→ γ(H)
t (ρ).

By Proposition 12.34 it is continuous for || · ||1. We know the Sp(HSk) are the con-
nected components of Sp(HS)adm for the topology induced by the aforementioned
norm (Exercise 12.4), so the curve is confined to live in one component only. The
latter is Sp(HSk), since the path passes through there at t = 0. If Ut = e−itH , then,
for any unit ψ ∈ HSk we have Utψ ∈ HSk for all t. Consider now ρ ∈S(HSk) and its
spectral decomposition ρ = ∑ j∈J p jψ j(ψ j| ). The series converges strongly and by
construction ψ j ∈ HSk, j ∈ J, is a unit vector. Therefore for any t ∈ R:

γ(H)
t (ρ) = Ut∑

j∈J

p jψ j(ψ j| )U−1
t =∑

j∈J

p jUtψ j(ψ j|U∗
t )

=∑
j∈J

p jUtψ j(Utψ j| ) ∈S(HSk) ,

ending the proof. �

Remarks 13.3. From now the system’s Hilbert space HS will not contain coherent
sectors, apart from a few cases we will comment upon. We leave it to the reader to
generalise the ensuing definitions and results to the multi-sector case. �

13.1.2 Dynamical symmetries

Time evolution allows to refine the notion of symmetry seen in the previous chapter
and define dynamical symmetries.

Consider a quantum system S with dynamical flow γ(H). Let us assume, as we
said, the Hilbert space consists of a single coherent sector. Take a symmetry σ
(Kadison or Wigner) acting on states, paying attention that now states evolve in time
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following the dynamics of the flow γ(H). If we apply σ to the evolved state γ(H)
t (ρ)

and obtain ρ ′t := σ(γ(H)
t (ρ)), nothing guarantees the function R � t 	→ ρ ′t describes

the possible evolution under γ(H) of a certain state (necessarily ρ ′0 = σ(γ(H)
0 (ρ)) =

σ(ρ)). Conversely, if this happens (for any choice of initial state ρ), σ is called a
dynamical symmetry, because its action is compatible with the system’s dynamics.

A variant to having R � t 	→ σ(γ(H)
t (ρ)) describing the evolution of a state in S,

is to take a whole family of symmetries σ (t) parametrised by time t ∈ R. To have

a time-dependent dynamical symmetry we require R � t 	→ σ (t)(γ(H)
t (ρ)) still be an

evolution under γ(H) for some state of S.
More formally:

Definition 13.4. Let S be a quantum system described on the Hilbert space HS made
of one sector and associated to the frame system I , with Hamiltonian H and dynam-
ical flow γ(H). A symmetry σ :S(HS)→S(HS) is called a dynamical symmetry for
S if

γ(H)
t ◦σ = σ ◦ γ(H)

t for every t ∈ R. (13.2)

A family of symmetries parametrised by time {σ (t)}t∈R is a time-dependent dynam-
ical symmetry when:

γ(H)
t ◦σ (0) = σ (t) ◦ γ(H)

t for every t ∈ R. (13.3)

The first result we prove characterises dynamical symmetries. Part (c) is a con-
sequence of the spectral lower bound of H and characterises dynamical symmetries
when σ(H) is unbounded, as for the majority of concrete physical systems.

Theorem 13.5. Let S be a quantum system described on the Hilbert space HS as-
sociated to the inertial reference frame I with Hamiltonian H (hence, with lower-
bounded spectrum) and dynamical flow γ(H).

(a) Consider a family of symmetries labelled by time {σ (t)}t∈R and induced by unit-

ary (or antiunitary) operators V (σ (t)) : HS → HS. Then {σ (t)}t∈R is a time-dependent
dynamical symmetry for S if and only if

χtV
(σ (t))e−itH = e−itHV (σ (0)) for every t ∈ R and some unit χt ∈ C .

(b) Consider a symmetry σ induced by a unitary (or antiunitary) V (σ) : HS → HS.
Then σ is a dynamical symmetry for S if and only if

e−iatV (σ)e−itH = e−itHV (σ) for every t ∈ R and some a ∈ R .

(c) Consider a symmetry σ induced by a unitary (or antiunitary) V (σ) : HS →HS and
suppose σ(H) is not bounded above. Then σ is a dynamical symmetry for S if and
only if

V (σ)e−itH = e−itHV (σ) for every t ∈ R ,

or equivalently, if and only if the following hold:

(i) V (σ) is unitary and
(ii) V (σ)H = HV (σ).



612 13 Selected advanced topics in Quantum Mechanics

Proof. (a) and (b) Remember that for S : HS → HS unitary (or antiunitary),

Sψ(ψ |S−1·) = Sψ(ψ |S∗·) = Sψ(Sψ |·). Set Ut := e−itH , V (t) := V (σ (t)) and use the
identity with the unitary S := (V (t)Ut)−1UtV (0). Then (13.3) implies, for any pure
ρ = ψ(ψ | ):

(V (t)Ut)−1UtV
(0)ψ
(

(V (t)Ut)−1UtV
(0)ψ
∣
∣
∣
)

= ψ(ψ | ) ,

hence for some unit χt ∈ C:

(V (t)Ut)−1UtV
(0)ψ = χtψ for all ψ ∈ H.

The same proof used for the corresponding fact in Theorem 12.10 tells χt does not
depend on ψ . Therefore if σ (t) is a time-dependent dynamical symmetry:

χtV
(σ (t))Ut = UtV

(σ (0)) for all t ∈ R and some χt ∈ C, |χt |= 1 .

Conversely, if the condition holds, trivially σ (t) is a time-dependent dynamical sym-
metry. Statement (b) is a subcase, except for the proof that χt = eict for some c ∈ R,
which we will see at the end.
(c) We claim that if σ is a dynamical symmetry then (i), (ii) hold. By (a), if σ is a
dynamical symmetry:

χtV
(σ)Ut = UtV

(σ) for some unit χt ∈ C . (13.4)

Hence χt I = (V (σ)Ut)−1UtV (σ) and χt(ψ |φ) =
(

V (σ)Utφ
∣
∣
∣UtV (σ)ψ

)
. Choose φ ∈

D(H) not orthogonal to ψ ∈ V (σ)−1(D(H)) (since D(H) is dense), apply Stone’s
theorem and conclude t 	→ χt is smooth everywhere. We rewrite (13.4) as:

χtUt = e±itV (σ)−1HVσ , (13.5)

with− if V (σ) is unitary, + if antiunitary. Using Stone’s theorem in (13.5) we obtain
D(V (σ)−1HV (σ))⊂ D(H) = D(cI +H) and

∓V (σ)−1HV (σ)�D(H)= cI +H where c := i dχt
dt |t=0 . (13.6)

Note c must be real since∓V (σ)−1HV (σ)−H is symmetric on D(H). Actually (13.6)
holds on the entire domain of V (σ)−1HV (σ) because the latter is self-adjoint and does
not have self-adjoint extensions (cI +H) other than ∓V (σ)−1HV (σ) itself. Therefore

V (σ)−1HV (σ) =∓cI∓H . (13.7)

In particular (cf. Exercise 12.6 in the antiunitary case):

σ(H) = σ(V (σ)−1HV (σ)) = σ (∓cI∓H) =∓c∓σ(H) .

If σ(H) is bounded below but not above, the identity cannot be valid if on the right
side we have the minus sign, irrespective of the constant c. Hence V (σ) must be unit-
ary. Therefore infσ(H) = inf(c +σ(H)) = c + infσ(H) and c = 0, for infσ(H) is
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finite by hypothesis (σ(H)�∅ is bounded). We obtained that a dynamical symmetry
σ fulfills (i) and (ii): V (σ) is unitary and V (σ)H = HV (σ). If so, H = V (σ)−1HV (σ).
Exponentiating,

V (σ)e−itH = e−itHV (σ) for every t ∈ R .

Eventually, σ is a dynamical symmetry, ending part (c).
We still have to finish part (b). If σ is a simmetry, but σ(H) is upper bounded,

using the proof of (c) we arrive at (13.7) but cannot say c = 0. Exponentiating (13.7)
gives:

e−ictUt = V (σ)−1UtV
(σ) ,

whence
e−iatV (σ)e−itH = e−itHV (σ)

(a = ±c according to whether V (σ) is unitary or antiunitary). This ends part (b) and
the theorem. �

13.1.3 Schrödinger’s equation and stationary states

Consider a pure initial state ρ ∈Sp(HS). As already noticed, the evolution is such that
any evolved state ρt is pure. Theoretical physicists refer to this property1 by saying
the evolution of quantum states is unitary. If t 	→ ρt ∈Sp(HS) denotes the evolution
of a pure state, we can determine any ρt , up to phase, by a vector ψt normalised to
1. Choosing the simplest phases for the pure states involved, the equation governing
the evolution of pure states becomes (reintroducing the constant h̄):

ψt ′ = e−
i(t′−t)

h̄ Hψt .

We can manipulate this relation to obtain an equation of great historical relevance.
For this we impose that ψt ∈ D(H) equal ψt ′ ∈ D(H) for any other time t ′ ∈ R.

In fact, ψt ∈ D(H) means
∫
R
λ 2dμ(H)

ψt < +∞, where μ(H)
ψt (E) = (ψt |P(H)(E)ψt) =

(ψt ′ |e+ iτ
h̄ HP(H)(E)e−

iτ
h̄ Hψt ′), for t− t ′ = τ . On the other hand, trivially,

e+ iτ
h̄ HP(H)(E)e−

iτ
h̄ H = P(H)(E) ,

since P(H)(E) is a projector of the PVM of H. Hence
∫
R
λ 2dμ(H)

ψt < +∞ is equivalent

to
∫
R
λ 2dμ(H)

ψt′ < +∞, i.e. ψt ′ ∈ D(H). Let us suppose ψt ∈ D(H) for some t, from
which ψt ′ ∈ D(H) for every t ′. Applying Stone’s theorem to

ψt ′ = e−
i(t′−t)

h̄ Hψt ,

and interpreting the outcoming derivative in strong sense, we obtain

ih̄
d
dt
ψt = Hψt . (13.8)

1 Especially in relationship to the evolution of states of quantum fields in spacetimes com-
prising dynamical black holes, where the unitary evolution is rather problementic.
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This is the fundamental time-dependent Schrödinger equation. We have to notice
(13.8) only holds if ψt ∈ D(H), whereas the evolution equation (13.1) has a general
reach.

Let us make a few comments on the Schrödinger equation and then pass to more
general matters.

Consider a system formed by one particle of mass m (without spin for simplicity)
subjected to a force with sufficiently regular potential energy V = V (x), in the iner-
tial frame I with right-handed orthonormal coordinates. Following the discussion
about Dirac’s correspondence principle, at the end of Chapter 11, one expects the
Hamiltonian of this system to correspond, in quantum sense, to a certain self-adjoint
extension H of the symmetric operator

H0 :=
1

2m

3

∑
i=1

P2
i +V (X) ,

initially defined on some invariant dense subspace where Pi and Xi are well defined.
This choice formally fulfills Dirac’s correspondence, at least with respect to the com-
mutation relations of the operator above and Xk, Pk, when working on domains where
everything is well defined. This expectation turns out to be correct and the Hamilto-
nian observables do have the mentioned form in the physical world, like for systems
formed by atoms and molecules [Mes99, CCP82].

We shall identify the particle’s Hilbert space with L2(R3,dx) so that position
operators are multiplicative. If we work with functions that are regular enough, the
starting expression for H is

H0 =− h̄2

2m
Δ +V (x) , (13.9)

where Δ is the known Laplacian on R3 and V (X) is the multiplication by the original
function V = V (x). Schrödinger’s equation then reads:

[

− h̄2

2m
Δ +V (X)

]

ψt(x) = ih̄
∂
∂ t
ψt(x) ,

which is precisely how Schrödinger wrote it in his astounding 1926 papers. Beware,
however, the equation should not be taken literally as a usual PDE, because: (1) the
t-derivative is not meant pointwise, but in Hilbert sense2; (2) the equation is valid up
to zero-measure sets for x, since wavefunctions belong to L2(R3,dx). If we were to
find “naïve” solutions (functions f (t,x) in t and x), we would then have to prove they
solve (13.8) in the unknown ψt = f (t, ·) ∈ L2(R3,dx).

Let us return to how to define the Hamiltonian operator from the symmetric dif-
ferential operator (13.9) defined on a dense domain. We have to verify, case by case,
if the operator admits self-adjoint extensions or if it is essentially self-adjoint. In

2 Observe, nevertheless, that if the derivative exists both in the ordinary and in L2 sense, the
two concide by Proposition 2.29 for p = 2.
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this respect the symmetric operator H0 commutes with the operator C : L2(R3,dx)→
L2(R3,dx) representing the complex conjugation of L2 functions. By von Neumann’s
Theorem 5.43, then, there are self-adjoint extensions. The general theory of self-
adjoint extensions of operators like H0 was developed and harvested by T. Kato
[Kat66]. For several potentials of interest, like the attractive Coulomb potential and
the harmonic oscillator, one can prove H0 is essentially self-adjoint. We saw these
results in Examples 10.51, Chapter 10.4, as consequences of general theorems. There
is a whole branch of functional analysis in Hilbert spaces devoted to this sort of prob-
lems. We mention just one easy corollary of Theorem 10.49.

Theorem 13.6 (Kato). Consider the differential operator on R3:

H0 :=− h̄2

2m
Δ +V (x) , (13.10)

defined on some dense domain D(H0)⊃S (R3). Suppose

V (x) =
N

∑
j=1

g j

|x−x j| +U(x) , (13.11)

where g j are constants, x j ∈ R3 are given points and U : R3 → R is measurable and
(essentially) bounded. Then:

(a) H0 is essentially self-adjoint on D(H0), D(R3) and S (R3).
(b) The common self-adjoint extension H0 of the operators in (a) coincides the self-
adjoint −Δ +V defined on D(−Δ).
(c) σ(H0) is bounded from below.

In general, if the Hamiltonian H of a certain system has point spectrum σp(H),
every eigenvector ψE of H, for E ∈ σp(H), has a trivial evolution:

UtψE = e−i tE
h̄ ψE .

This says the pure state ρE :=ψE(ψE | ) associated to ψE (||ψE ||= 1) does not evolve
in time. These very special states are said stationary states of the system. When one
studies the macroscopic system of an atom or a molecule, to begin with the heavier
parts – nuclei – are described as classical systems, that act by electric Coulomb forces
on peripheral electrons viewed as quantum particles. The electrons’ quantum states
are stationary for their Hamiltonian. More on this in Example 13.8(3).

Remark 13.7. (1) Referring to Theorem 13.6 it can be proved [CCP82] that if some
g j vanish and the remaining are strictly negative then σp(H0) � ∅.
(2) By virtue of Theorem 10.50, H0 continues to be essentially self-adjoint on D(R3)
and the only self-adjoint extension is bounded from below providedU is non-negative
and lower bounded. In that case [CCP82] if g j = 0 for every j and U is regular enough
and tends to infinity as |x| →+∞, then σ(H0) = σp(H0) � ∅.
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(3) One of the highest mountain tops the inexperienced student has to conquer when
taking on QM is to understand the motivations behind the regularity constraints im-
posed on the eigenvalues of the theory’s Hamiltonian. The characteristic equation

H0ψE = EψE , with E ∈ R , ψE ∈ L2(R3,dx) ,

should give, roughly speaking, the stationary states of the system whose Hamiltonian
is determined by H0. Consider, as often in physics, an operator of the form (13.10)
where the U : R3 → R of (13.11) has finite discontinuities on some regular surfaces
σk, k = 1,2, . . . ,N (disjoint from one another and from other isolated singularities of
V ) and is continuous everywhere else. We also want U to be bounded (by remark (2)
we could just require lower boundedness). QM manuals typically require the func-
tions ψE further satisfy the following conditions:

(1) away from the singularities of V the ψE are C2 (actually C∞);
(2) the ψE solve H0ψE = EψE for some E ∈ R, i.e. interpreting the operator as

differential, away from the singularities of V ;
(3) on singular surfaces σk the maps ψE and the normal derivatives are continu-

ous;
(4) at isolated singularities ψE admits finite limits.

The constraints are sometimes justified in a sort-of-whimsical way in textbooks (this
happens in particular for the analogous statements for R1).

What we can say is, first, that H0 is not the operator representing the Hamiltonian
observable, because H0 is not self-adjoint! The operator in question is a self-adjoint
extension of H0. Theorem 13.6 warrants, under the assumptions made, H0 is essen-
tially self-adjoint on D(R3), so there is one self-adjoint extension that coincides with
the closure of H0 and with its adjoint as well: H0 = H∗

0 . Stationary states are given
by the spectrum of H∗

0 , i.e. by solutions to

H∗
0ψE = EψE , E ∈ R , ψE ∈ D(H∗

0 ) .

This equation, since D(R3) is dense in L2(R3,dx), may be written:

(ϕ |H∗
0ψE) = E(ϕ |ψE) , E ∈ R , for every ϕ ∈D(R3) and a given ψE ∈ D(H∗

0 ).

Using the definition of adjoint, the equation reads

(H0ϕ |ψE) = E(ϕ |ψE) , E ∈ R , for any ϕ ∈D(R3) and a given ψE ∈ D(H∗
0 ).

Put differently, we seek functions ψE ∈ L2(R3,dx) such that, for any ϕ ∈D(R3):
∫

R3

(

− h̄2

2m
Δϕ(x)+V (x)ϕ(x)−Eϕ(x)

)

ψE(x)dx = 0 . (13.12)

Hence the ψE do not necessarily solve H∗
0ψE = EψE , for it is enough they solve it

weakly: they must satisfy (13.12) for any ϕ ∈ D(R3). Issues of this kind [ReSi80]
are dealt with by the general theory of elliptic regularity, which proves [CCP82]
ψE ∈ L2(R3,dx) satisfies (13.12), with the aforementioned assumptions on the po-
tential V , if and only if ψE satisfies conditions (1)–(4). �
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Examples 13.8. (1) The simplest example is the free spin-zero particle of mass m > 0,
described on the Hilbert space L2(R3,dx) associated to the axes of an inertial system
I . Pure states are represented by wavefunctions, i.e. unit elements ψ ∈ L2(R3,dx).
The Hamiltonian is simply:

H :=
1

2m

3

∑
k=1

Pk�2
S (R3) =− h̄2

2m
Δ�S (R3) . (13.13)

Let us briefly discuss its self-adjointness. Although everything should be clear from
Proposition 10.44, we think it might be interesting to go over a few facts. The left-
hand side of (13.13) is self-adjoint since

H0 :=
1

2m

3

∑
k=1

Pk�
2
S (R3)=− h̄2

2m
Δ�S (R3)

is essentially self-adjoint. The proof is direct via the unitary Fourier-Plancherel op-
erator F̂ , noting that in the space L2(R3,dk) of transformed maps ψ̃ := F̂ (ψ), the
above operator multiplies by:

k 	→ h̄2

2m
k2 ,

and has dense domain D(F̂−1H0F̂ ) := S (R3). By construction F̂−1H0F̂ is
symmetric, and it is easy to prove its essential self-adjointness by showing
Ker((F̂−1H0F̂ )∗± I) = {0}, or proving each vector of D(R3)⊂S (R3) is analytic
for F̂−1H0F̂ . The same holds for H0, since F̂ is unitary.

By construction if H := H0, then H̃ := F̂−1HF̂ acts as multiplicative operator:

(
H̃ψ̃
)

(k) =
h̄2

2m
k2ψ̃(k) ,

where

D(H̃) =
{

ψ̃ ∈ L2(R3,dk)
∣
∣
∣
∣

∫

R3
|k|4|ψ̃(k)|2dk < +∞

}

.

An alternative definition for H comes from taking the unique self-adjoint extension
of H0 defined on D(R3) instead of S (R3):

H0 :=
1

2m

3

∑
k=1

Pk�
2
D(R3)=− h̄2

2m
Δ�D(R3) .

However, H0 is still essentially self-adjoint and its self-adjoint extension is the pre-
vious H. Or, we could define H0 on F̂ (D(R3)), and find the same result. All this
descends from Proposition 10.44.

(2) An interesting case in R3 is where the free Hamiltonian is modified by the poten-
tial energy of the attractive Coulomb potential:

V (x) =
eQ
|x| ,
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where e < 0, Q > 0 are constants expressing the electric charges of the particle and
the centre of attraction respectively. The assumptions of Kato’s Theorem 10.49 (or
10.47) hold (m, h̄ > 0 are constants that play no role, since we can multiply the oper-
ator by 2m/h̄2 without loss of generality). Therefore:

H0 :=− h̄2

2m
Δ +V (x)

is essentially self-adjoint, whether defined on D(R3) or S (R3). If −Q = e is the
charge of the electron (−1.60 ·10−19 C), and m = me its mass (9.11 ·10−31 Kg), the
only self-adjoint extension H0 corresponds to the Hamiltonian of an electron inside
the electric field of a proton (neglecting spin effects and envisaging the proton as a
classical object of infinite mass). This gives the simplest quantum description of the
Hamiltonian operator of the hydrogen atom. Although V is not bounded from below,
it is important to note the spectrum of the operator is always bounded, so also the
admissible values of energy are constrained. This implies the hydrogen atom is an
energetically stable system: it cannot collapse to decreasingly lower energy levels
by emitting a quantity of energy, eventually infinite, when interacting with the elec-
tromagnetic field (i.e. in the energy of photons emitted by the atom: this way will
not be treated in this physically-very-elementary book). Observe that the analogous
classical model, for which the electron and the attractive centre are dimensionless
points, would not have total energy bounded from below3. Studying the spectrum of
H0 [Mes99, CCP82] shows σc(H0) = [0,+∞), while σp(H0) = {En}n=1,2,..., where

En =−2πRh̄c
n2 n = 1,2,3, . . . (13.14)

R = me4/(4πch̄3) is the Rydberg constant and c the speed of light. Eigenvectors have
a complicated expression [Mes99, CCP82]. For each of the values En, n = 1,2,3, the
corresponding eigenspace has a finite basis in spherical coordinates:

ψnlm(r,θ ,φ) =−
√(

2
na0

)2 (n− l−1)!
2n[(n+ l)!]3

e
− r

na0

(
2r

na0

)l

L2l+1
n+l

(
2r

na0

)

Y m
l (θ ,φ) ,

(13.15)
where l = 0,1, . . . ,n−1 and m =−l,−l +1, . . . , l−1, l. The maps Y m

l are the spher-
ical harmonics (10.42), a0 = h̄2/e2me = 0,529 Å is the radius of Bohr’s first orbit
and Lαn (x), for x≥ 0, is the Laguerre polynomial:

Lαn (x) :=
dα

dxα

[

ex dn

dxn (xne−x)
]

, n ∈ N, α = 0,1, . . . ,n.

By examining the interaction between photons and the hydrogen atom [Mes99,
CCP82] we know the electron, initially in a stationary state determined by an eigen-
vector of H0 with eigenvalue En, can change state and pass to a new stationary state of

3 Such a classical model would not, anyway, be consistent because of the Bremsstrahlung of
the accelerated electron; as is well known, this fact produces mathematical inconsistencies
when the electronic radius tends to zero.
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energy Em < En transferring the energy excess to a photon. The reverse process may
occur, whereby the electron acquires energy from a photon and passes from states of
energy Em to En. Due to the interactions with photons, it can be proved that only the
state of minimum energy E1 = 2πRh̄c, the so-called ground state, is stable, while the
others are all unstable, so the electron decays to the ground state after a certain mean
lifetime to be determined. (Therefore the name stationary state is not completely ap-
propriate for the system formed by an atom and the electromagnetic field described
by photons, and one should rather just speak of eigenvalues of the Hamiltonian for the
hydrogen atom.) The collection of energy differences En−Em determine all possible
photonic, i.e. light, frequencies that a gas of hydrogen atoms can emit or absorb, by
Einstein’s formula En−Em = hνn,m. The latter relates the frequency νn,m of photons
emitted by the atom to the energy needed by photons that switch from energy En to
Em (see Chapter 6). XIX century spectroscopists, though puzzled by them, knew the
frequency values νn,m, long before QM was formulated [Mes99, CCP82]. Finding
the same values and being able to explain them in a completey theoretical manner is
certainly one of the pinnacles of the past century’s physics.

(3) A second interesting situation, in R3, is that in which to the Hamiltonian of the
free particle of example (1) we add the Yukawa potential:

V (x) =
−e−μ|x|

|x| ,

where μ > 0 is a positive constant. Here, too, H0 =− h̄2

2mΔ +V (x) is essentially self-
adjoint if either defined on D(R3) or on S (R3), because of Kato’s Theorem 10.49 (or
10.47). The Yukawa potential describes, roughly speaking, the interaction processes
between a pion and a strong force originating from a macroscopic source.

(4) Referring to example (1), the action of the evolution operator is evident using
Fourier’s representation:

(Ũtψ̃)(k) =
(

e−
it
h̄ H̃ ψ̃
)

(k) = e−
ith̄
2m k2

ψ̃(k) . (13.16)

The proof is immediate from the spectral decompositions of H̃ and the commutation
of the spectral measures of P1, P2, P3:

e−
it
h̄ H̃ = e−

it
2h̄m P̃2

1 e−
it

2h̄m P̃2
2 e−

it
2h̄m P̃2

3 ,

where each P̃j = F̂−1PjF̂ multiplies by
(

P̃jψ̃
)

(k) = h̄k jψ̃(k) .

Back in position representation we look at the evolution of a wavefunction determ-
ining the state UtρU∗

t when ρ = ψ(ψ | ). This is

ψ(t,x) :=
(

e−i t
h̄ Hψ
)

(x) =
∫

R3

eik·x

(2π)3/2
ψ̃(k)e−i h̄t

2m k2
dk (13.17)
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where

ψ(x) = ψ(0,x) :=
∫

R3

eik·x

(2π)3/2
ψ̃(k)dk , (13.18)

for ψ ∈ S (R3). In general the integrals should be understood in the sense of the
Fourier-Plancherel transform.

(5) In the previous example equation (13.17) can be written without Fourier trans-
forming the initial datum ψ , as this proposition establishes.

Proposition 13.9. Take ψ ∈ S (R3) and H = − h̄
2mΔ , h̄,m > 0 (the Laplacian Δ is

initially defined on S (R3) or equivalently D(R3)).

(a) For any given t ∈R, the mapψ(t,x) :=
(

e−i t
h̄ Hψ
)

(x), x∈R3, belongs to S (R3).

(b) If t � 0 and x ∈ R3:

ψ(t,x) =
(

mh̄
2πit

)3/2 ∫

R3
eimh̄|x−y|2/(2t)ψ(y)dy (13.19)

where the multi-valued square root is computed by branching the complex plane
along the negative real axis.
(c) Let Cψ :=

(
mh̄
2π
)3/2 ∫

R3 |ψ(x)|dx. Then

||ψ(t, ·)||∞ ≤Cψ |t|−3/2 for every t � 0 . (13.20)

Proof. (a) The Fourier transform ψ̃ of ψ ∈S (R3) is in S (R3). Multipliying by the
exponential e−ih̄k2/(2m) produces a map of S (R3). Since S (R3) is Fourier-invariant,
equation (13.17) implies ψ(t, ·) ∈S (R3).
(b) Equation (13.17) can be rewritten using the Fourier transform and Lebesgue’s
dominated convergence:

ψ(t,x) =
∫

R3

eik·x

(2π)3/2
e−i h̄t

2m k2
(∫

R3

e−ik·y

(2π)3ψ(y)dy

)

dk

= lim
ε→0+

∫

R3

eik·x

(2π)3/2
e−i h̄(t−iε)

2m k2
(∫

R3

e−ik·y

(2π)3ψ(y)dy

)

dk .

If ε > 0, Fubini–Tonelli allows to write

ψ(t,x) = lim
ε→0+

∫

R3

(∫

R3
ei(k·(x−y)−h̄(t−iε)k2/(2m))dk

)

ψ(y)dy .

The inner Gaussian integral can be computed explicitly (e.g., with residue tech-
niques):

ψ(t,x) = lim
ε→0+

(
mh̄

2πi(t− iε)

)3/2 ∫

R3
eimh̄|x−y|2/(2(t−iε))ψ(y)dy .

For t � 0 and x ∈ R3 fixed, we can take the limit inside the integral due to dominated
convergence: the integrand, in fact, is in absolute value smaller than |ψ | ∈ L1(R3,dx),
uniformly in ε > 0. This gives (13.19).
(c) Follows from (b) directly. �
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Equation (13.19) holds on Rd if we replace the exponent 3/2 with d/2. (The
wavefunctions ψ(t,x), x ∈ Rd , evolve under the evolution operator generated by the
self-adjoint closure of − 1

2mΔ , where Δ : S (Rd)→ L2(Rd ,dx) is the Laplacian in d
dimensions.)

Since the integral of |ψ(t,x)|2 over R3 is constant in time, and |ψ(t,x)|2 at any
point x ∈ R3 is infinitesimal by (13.20), a wavefunction that is initially non-zero on
a small region in space must increase its support as time goes by, and “spread out” to
increasingly larger regions. �

13.1.4 The action of the Galilean group in position representation

Example 13.8(4) allows to make explicit, in position representation, the Galilean
group’s action, which we saw at the end of Chapter 12 in momentum representa-
tion for the free particle of spin s. If (τ ,c,v,U) is the generic element of the universal
covering S̃G of the restricted Galilean group, the mentioned representation is induced

by the unitary operators Z(m)
(τ,c,v,U) that act, in momentum representation, as (12.107):

(
Z̃(m)

(τ,c,v,U)ψ̃
)

(k) := ei(τv−c)·(k−mv)ei τ2m (k−mv)2
ψ̃
(
R(U)−1(k−mv)

)
.

In position representation, anti-transforming with Fourier-Plancherel ψ = F̂−1ψ̃ ,
easily gives
(

UtZ
(m)
(τ,c,v,U)ψ

)
(x) = eim(v·x−v2t/2)ψ

(
t− τ ,R(U)−1(x− c)− (t− τ)R(U)−1v)

)

for ψ ∈ L2(R2,dx). Put otherwise, if ψ ′(t,x) :=
(

UtZ
(m)
(τ,c,v,U)ψ

)
(x) is the wavefunc-

tion acted upon by the element (τ ,c,v,U) of the (universal covering of the) Galilean
group at t = 0, which evolves to time t, we have:

ψ ′(t,x) = eim(v·x−v2t/2)ψ
(
(τ ,c,v,U)−1(t,x)

)
(13.21)

by (12.102). For particels with spin s, as we saw in the previous chapter, for fixed
inertial frame the Hilbert space is L2(R3,dx)⊗C2s+1 and wavefunctions are unit
vectors

Ψ =
s

∑
sz=−s

ψsz ⊗|s,sz〉 ,

where |s,sz〉 form the canonical basis of C2s+1 in which the spin operator Sz is diag-
onal with eigenvalues sz.

By this decomposition L2(R3,dx)⊗C2s+1 becomes naturally isomorphic to the
orthogonal sum of 2s+1 copies of L2(R3,dx); consequently, the vectorsΨ identify
spinors of order s, that is, column vectors of wavefunctions for particles without spin:

Ψ ≡ (ψs,ψs−1, · · · ,ψ−s+1,ψ−s)t .

Similarly, letΨ ′
t :=
(

UtZ
(m)
(τ,c,v,U)⊗V (s)(U)Ψ

)
, where V (s)(U) is the action of U ∈

SU(2) on spinors for particles of spin s (cf. Chapter 12.3.1). Then the active Galilean
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action, in terms of spinors, reads:

ψ ′s′z(t,x) = eim(v·x−v2t/2)
s

∑
sz=−s

V (s)(U)s′zszψsz

(
(τ ,c,v,U)−1(t,x)

)
, (13.22)

where V (s)(U)i j is the matrix entry of V (s)(U) in the canonical basis of C2s+1.

Now think Galilean transformations passively, hence view the Z(m)
(τ,c,v,U) as unit-

ary operators between distinct Hilbert spaces associated to different frame systems
that describe the same physical system. We can thus describe the transformations
of quantum states between different frame systems. The basic idea is that when act-
ing on a state by an active Galilean transformation, and then changing to the trans-
formed reference system by the same active map, in the new frame the transformed
state must look like the original, pre-transformation, one. Therefore the law of pass-
ive transformations of states (coordinate change) corresponds to the inverse active
transformation seen above, meaning that we replace (τ ,c,v,U) with (τ ,c,v,U)−1 in
(13.22). Let us see this recipe implemented. Take two inertial frames I , I ′ with
right-handed Cartesian coordinates x1,x2,x3 and x′1,x

′
2,x

′
3 and time coordinate t, t ′

respectively. Suppose the coordinate change is the Galilean transformation:
⎧
⎪⎨

⎪⎩

t ′ = t + τ ,

x′i = ci + tvi +
3

∑
j=1

Ri jx j , i=1,2,3 (13.23)

where τ ∈ R, ci ∈ R, vi ∈ R, R ∈ SO(3). Consider a particle of spin s, so the theory’s
Hilbert space is H := L2(R3,dx)⊗C2s+1 for I , and H′ := L2(R′3,dx′)⊗C2s+1′ for
I ′. The spaces R3 and R′3 are identified with the rest spaces of their frame systems
by the coordinates. The canonical bases of C2s+1, C2s+1′ are the eigenvector bases of
the spin operators along the third axes, S3 and S3′ . Choose a matrix U ∈ SU(2) whose
image under the covering of SO(3) is R. (Note the parameters v,U also show up in
the phase factor, and are given up to sign, as seen in the previous chapter: this sign
may change the vectors representing a pure state, but does not alter the state itself.)
Consider a pure state described in I by the unit vectorΨ and its evolution in I . The
stateΨ corresponds to a stateΨ ′ in I ′, together with its evolution. The relationship
between the spinorsΨ andΨ ′ evolves according to

ψ ′s′z(t
′,x′) = e−im(v·R(U)x+v2t/2)

s

∑
sz=−s

V (s)(U)s′zszψsz (t + τ ,R(U)x+ τv+ c) ,

(13.24)
obtained replacing (τ ,c,v,U) with (τ ,c,v,U)−1 in (13.22) (the parameters v,U also
appear in the phase, and the ones of the inverse Galilean transformation must be used).
For spin s = 0, in particular:

ψ ′(t ′,x′) = e−im(v·R(U)x+v2t ′/2)ψ (t + τ ,R(U)x+ τv+ c) , (13.25)

where the coordinates (t,x) and (t ′,x′) are related by (13.23).
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Remarks 13.10. Notice how the term e−im(v·R(U)x+v2t/2) cannot be removed by tak-
ing another representative for the projective ray, since the phase depends on the vari-
able x). The found equation, therefore, is not the transformation we would expect,
intuitively, if imagining that the zero-spin wavefunction and each component of the
wavefunction with spin s � 0 are scalar fields on the spacetime of classical phys-
ics. The scalar field interpretation of wavefunctions in position representation is a
priori not automatic, and totally false (not just for one choice of phase) in relativ-
istic theories, where wavefunctions in position representation (within the so-called
Newton-Wigner formalism [BaRa86]) are highly nonlocal objects4. �

13.1.5 Basic notions of scattering processes

Consider a quantum system, for instance a single quantum particle, described on
the Hilbert space H (after an inertial system has been fixed) and whose evolution
is given by a Hamiltonian operator H = H0 +V ; H0 is the Hamiltonian of the “non-
iteracting theory” that we may think, to fix ideas, as described by the purely kinetic
Hamiltonian of the particle, even if we could consider more involved multi-particle
quantum systems. V represents therefore the interaction with an external field or the
self-interaction, often unknown or partially known. In certain circumstances, in the
distant past or future a state described by ψ behaves “as if it evolved” under the
non-interacting Hamiltonian H0. This happens typically in scattering processes.

Consider for example one particle: initially free, it interacts briefly with a scat-
tering centre – a system we can treat as semi-classical – and then returns free. Ex-
perimentally speaking, we can say the system is prepared at t →−∞ in an approx-
imatively free state, and after the interaction, as t →+∞, it manifests itself in a state
that can still be seen as free. Examining the difference between prepared state and
observed one gives informations on the structure of the scattering centre, and more
generally on the type of interaction described by V . In more complicated situations
there is no scattering centre, and one has to deal with two or more particles, even
a system with an unknown number of particles, that (self-)interact very briefly and
return swiftly to a non-interacting setup.

We will introduce the basic mathematical ideas to formalise all that, referring the
reader to advanced texts for details and generalisations to several particles (or relativ-
istic processes with unknown number of particles) [ReSi80, Pru81, Mes99, CCP82].
The fact that for certain state vectors in the system, generically indicated by φ , the
evolution in time is approximated by the non-interacting evolution in the far future,
is expressed by

lim
t→+∞

||e−itHφ − e−itH0ψ ||= 0 (13.26)

for some state ψ distinct from, but dertemined by, φ . Equivalently, since eitH is unit-
ary:

lim
t→+∞

||φ − eitHe−itH0ψ ||= 0 . (13.27)

4 One should not confuse a wavefunction in position representation with the field of second
quantisation, which is a local object instead.
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The argument can be clearly replicated for t →−∞, i.e. describing what happens long
before the interaction takes place, when the evolution is taken to be free. For sev-
eral reasons, both theoretical and experimental, it is convenient to describe scattering
using vectors like ψ , that evolve by the Hamiltonian of the non-interacting theory,
rather than φ , which evolves under the interacting Hamiltonian. This motivates the
introduction of wave operators Ω±, also known as Møller operators:

Ω±ψ := lim
t→±∞eitHe−itH0ψ , ψ ∈ H, (13.28)

assuming the limit exists.
If the operators Ω± : H→ H exist they must be isometries, since strong limits of

unitary operators. More precisely Ω± are partial isometries (Definition 3.61) with
initial space the whole H. Consequently the final spaces

H± := Ran(Ω±) (13.29)

are closed in H by Proposition 3.62. By construction if φ± ∈ H±, so φ± = Ω±ψ for
some ψ ∈ H, it follows 5

||e−itHφ±− e−itH0ψ || → 0 as t →±∞. (13.30)

Hence H± determine the class of states whose long-time future or past evolution can
be approximated by the free evolution of the states obtained by swapping the Ω±.
Equation (13.30), exactly as we wanted, tells that the state of the interacting system
φ±, evolving under the full Hamiltonian H = H0 +V , has the asymptotic behaviour
(for t →±∞ respectively) of the state ψ in the non-interacting system, which evolves
under the free Hamiltonian H0.

In details:

Proposition 13.11. If the surjective isometryΩ± : H→H± of (13.28) is defined, then

e−itHΩ± =Ω±e−itH0 . (13.31)

Consequently

e−itHH± ⊂ H± , e−itH�H±=Ω±e−itH0Ω−1
± , H�H±∩D(H)=Ω±H0Ω−1

± , (13.32)

and in particular:
σ(H�H±∩D(H)) = σ(H0) . (13.33)

Proof. As for the first statement

e−itHΩ±ψ = lim
s→±∞ei(s−t)He−isH0ψ = lim

z→±∞eizHe−izH0 e−itH0ψ =Ω±e−itH0ψ ,

whence e−itHH± ⊂ H± and e−itH�H±= Ω±e−itH0Ω−1
± . Stone’s theorem easily im-

plies the other relation. Eventually, Ω± : H → H± isometric proves (13.33) by the
last identity in (13.32) (Exercise 8.9). �

5 In fact ||e−itHΩ±ψ − e−itH0ψ || = ||Ω±ψ − eitHe−itH0ψ || → ||Ω±ψ −Ω±ψ || = 0 as t →
±∞.
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For the usual non-relativistic particle the non-interacting Hamiltonian H0, that
accounts for the kinetic energy only, has spectrum σ(H0) = σc(H0) = [0,+∞). Un-
der the above proposition’s assumptions, then, σ(H�H±∩D(H)) = σc(H�H±∩D(H)) =
[0+∞).

So let us assume the wave operators Ω± : H → H± exist on some physical sys-
tem, and suppose the system has been prepared in a state that, as t →−∞, tends to
be described by the non-interacting evolution of e−itH0ψin. Hence the system’s real
state will be described, at t = 0, by the state φ− := Ω−ψin. After the interaction,
as t → +∞, the state will be described approximatively by a non-interacting vector
e−itH0ψout . The real state, at t = 0, is described by φ+ :=Ω+ψout . The probability of
the process is thus:

|(φ+|φ−)|2 = |(Ω+ψout |Ω−ψin)|2 = |(ψout |Ω ∗
+Ω−ψin)|2 .

Define the scattering operator, also called S matrix :

S :=Ω ∗
+Ω− : H→ H . (13.34)

The transition amplitude from a state that behaves as a non-interacting state e−itH0ψin,
as t →−∞, to the state that behaves like a non-interacting state e−itH0ψout as t →+∞,
equals:

(ψout |Sψin) . (13.35)

In this picture, the interaction V is completely “withheld” by S, while we can con-
sider the statesψin/out as being indeed free. Overall we have, as we were saying at the
beginning, a recipe to describe the scattering in terms of states in a non-interacting
system. To conclude, we have a proposition.

Proposition 13.12. If the surjective isometries Ω± : H → H± of (13.28) exist, and
H+ = H− – in particular under asymptotic completeness (see Remark 13.13(1)) –
the scattering operator (13.34) is unitary.

Proof. It is enough to prove S∗S = SS∗ = I. SinceΩ± is a partial isometry with initial
space H and final space H±, by Proposition 3.63

Ω ∗
±Ω± = I , Ω±Ω ∗

± = PH±

where PH± : H→ H is the orthogonal projector on H±. Therefore

S∗S =Ω ∗
−Ω+Ω ∗

+Ω− =Ω ∗
−PH+Ω− =Ω ∗

−PH−Ω− =Ω ∗
−Ω− = I .

Similarly

SS∗ =Ω ∗
+Ω−Ω ∗

−Ω+ =Ω ∗
+PH−Ω+ =Ω ∗

+PH+Ω+ =Ω ∗
+Ω+ = I ,

ending the proof. �
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Remark 13.13. (1) Next to H± it is useful to introduce the space of stationary states
Hp given by the closure of the span of eigenvectors of H, which describe stationary
states (see Remark 9.12(2)). Physically, one expects elements φ ∈ Hp to represent
precisely states whose evolution cannot be approximated, at large times, by non-
interacting states. That is because, in particular, the evolution of such a state φ(φ | )
(with ||φ || = 1) is trivial, for φ is an eigenvector of H. What we expect, said more
accurately, is the orthogonal sum

H = H±⊕Hp . (13.36)

In this case one speaks about asymptotic completeness. Note that (13.36) implies:

H+ = H− = H⊥
p (13.37)

and by (13.33), also
σpc(H) = σ(H0) (13.38)

(Remark 9.12(2)). At last, asymptotic completeness and (13.37) make the operator S
unitary by Proposition 13.12.
(2) The next easy result relates the orthogonality of H± and Hp with the properties of
the evolution operator generated by H0.

Proposition 13.14. If the surjective isometry Ω± : H → H± of (13.28) exists, and
(ψ |e−itH0ψ ′)→ 0 as t →±∞ for any ψ ,ψ ′ ∈ H, then H± ⊥ Hp.

Proof. Define φ± :=Ω±ψ and suppose HφE = EφE . Then

(φ±|φE) = lim
t→±∞(e

itHe−itH0ψ |φE) = lim
t→±∞(e

−itH0ψ |eitHφE)

= limt→±∞ e−iEt(e−itH0ψ |φE) = 0. �

(3) The short and compressed description of scattering theory we have presented does
not work in quantum field theory, because of the impossibility of defining the unitary
operators Ω± under simple, physically plausible hypotheses on the theory’s invari-
ance under the group of space translations (spatial homogeneity). The obstruction
is exquisitely theoretical and goes under the name of Haag theorem [Haa96]. In or-
der to overcome the problem we can turn to the LSZ formalism [Haa96], in which
scattering descriptions employ the weak topology. However, these issues assume an
ivory-tower flavour, so to speak, when compared to the much more serious problem
of renormalisation. �

Example 13.15. Take a free spin-zero particle (in the sequel h̄ = 1) of mass m > 0,
subject to a square-integrable potential V on R3 in a given inertial system. Then

H = L2(R3,dx), H0 =− 1
2mΔ (the Laplacian Δ is as usual initially defined on D(R3)

or S (R3)), andV ∈ L2(R3). By Theorem 10.47 (redefining the coordinates ofR3 so to
comprise the factor (2m)−1) H = H0 +V is self-adjoint on D(H0), so D(H) = D(H0).
We wish to show the wave operators Ω± are well defined and that H± ⊥ Hp.
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First, a technical lemma.

Lemma 13.16. If H = L2(R3,dx), H0 =− 1
2mΔ and V ∈ L2(R3), let H = H0 +V and

U0(t) := e−itH0 , U(t) := e−itH . Then

d
dt

U(−t)U0(t)ψ = U(−t)iVU0(t)ψ , ψ ∈ D(H0) = D(H). (13.39)

Hence, for T > t:

||(U(−T )U0(T )−U(−t)U0(t))ψ)|| ≤
∫ T

t
||VU0(s)ψ ||ds . (13.40)

Proof. Set Ωt := U(−t)U0(t). Then

d
dt
Ωtψ = lim

h→0

U(−(t +h))U0(t +h)−U(−t)U0(t)
h

ψ .

Decompose the limit

d
dt
Ωtψ = lim

h→0

U(−(t +h))(U0(t +h)−U0(t))
h

ψ

+ lim
h→0

(U(−(t +h))−U(−t))U0(t)
h

ψ .

Since U0(t)D(H0)⊂D(H0) = D(H), Stone’s theorem shows the second limit equals

U(−t)iHU0(t)ψ .

As for the first limit, we compute the norm squared of the difference between
−iU(−t)H0U0(t)ψ and U(−(t+h))(U0(t+h)−U0(t))

h ψ , by Stone’s theorem and the unitar-
ity of U(−(t +h)):

lim
h→0

U(−(t +h))(U0(t +h)−U0(t))
h

ψ =−iU(−t)H0U0(t)ψ .

As H−H0 = V , we have:

d
dt
Ωtψ = U(−t)iVU0(t)ψ ,

for ψ ∈ D(H0), so for any φ ∈ H

d
dt

(φ |Ωtψ) = (φ |U(−t)iVU0(t)ψ) .

The right-hand side is continuous, so the fundamental theorem of calculus gives

(φ |ΩTψ)− (φ |Ωtψ) =
∫ T

t
(φ |U(−s)iVU0(s)ψ)ds .

But U(s) is unitary,

|(φ |(ΩT −Ωt)ψ)| ≤
∫ T

t
||φ ||||VU0(s)ψ ||ds ,
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and choosing φ = (ΩT −Ωt)ψ we recover (13.40):

||(ΩT −Ωt)ψ)|| ≤
∫ T

t
||VU0(s)ψ ||ds ,

ending the proof. �

This lemma allows to prove the existence of wave operators on the system con-
sidered.

Proposition 13.17. Take H = L2(R3,dx), H0 =− 1
2mΔ , V ∈ L2(R3), and consider the

self-adjoint operator H = H0 +V .

(a) The wave operators Ω± : H→ H± in (13.28) are well defined.
(b) H± ⊥ Hp.

Remarks 13.18. The theorem applies to the special case where V is a Yukawa po-
tential (Example 13.8(3)). A stronger conclusion one can reach is asymptotic com-
pleteness, hence unitarity, of the scattering operator by assuming V ∈ L1(R3,dx)∩
L2(R3,dx), as for the Yukawa potential [ReSi80]. �

Proof. (a) Let us begin with the existence of Ω+, for Ω− is similar. If ψ ∈S (R3)⊂
D(H0) = D(H), estimate (13.40) implies immediately:

||(U(−T )U0(T )−U(−t)U0(t))ψ)|| ≤
∫ T

t
||V ||2||U0(s)ψ ||∞ds

because if ψ ∈S (R3) then U0(t)ψ ∈S (R3) (cf. Example 13.8(5)). Using (13.20)
we find:

||(U(−T )U0(T )ψ−U(−t)U0(t)ψ)|| ≤ 2CV,ψ

(
1
√|t| −

1
√|T |

)

. (13.41)

This shows every sequence of vectors ψn := U(−tn)U0(tn)ψ is a Cauchy sequence
when tn → +∞ for n → +∞, so it converges to φ ∈ H. On the other hand equa-
tion (13.41) proves such limit does not depend on the sequence chosen. Hence if
ψ ∈S (R3) there exist a (unique) φ ∈ H so that

lim
t→+∞

U(−t)U0(t)ψ = φ . (13.42)

This extends easily to ψ ∈ H, because S (R3) is dense in H. Let us prove the latter
assertion. SetΩt := U(−t)U0(t). By the above considerations Ω ′ψ := limt→+∞Ωtψ
is well defined provided ψ ∈ S (R3). Since this space is dense in H and every Ωt

is isometric, the operator Ω ′ extends to a linear isometry on H. To conclude it suf-
fices to prove Ωtψ → Ω ′ψ , t → +∞, for any ψ ∈ H. If ψ ∈ H consider a sequence
{ψn}n∈N ⊂S (R3) with ψn → ψ , n→+∞ in H. Then

||Ωtψ−Ω ′ψ || ≤ ||Ωtψ−Ωtψn||+ ||Ωtψn−Ω ′ψn||+ ||Ω ′ψn−Ω ′ψ || .
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Since Ωt and Ω ′ are isometric, we can rewrite it as

||Ωtψ−Ω ′ψ || ≤ ||ψ−ψn||+ ||Ωtψn−Ω ′ψn||+ ||ψn−ψ || .
Given ε > 0, choose n ∈ N large enough so that ||ψ −ψn|| < 2ε/3. For that n,
by the first part of the proof, we can pick T ∈ R so that ||Ωtψn −Ω ′ψn|| < ε/3
for t > T . Hence we can determine, for every ε > 0, T ∈ R such that t > T gives
||Ωtψ−Ω ′ψ || ≤ ε . And this holds for any ψ ∈ H, ending (a).
(b) It is enough to prove, in our hypotheses, that Proposition 13.14 holds. We show
that this descends from (13.20). Fix ψ ,φ ∈ H and consider corresponding sequences
ψn,φn ∈ S (R3) with ψn → ψ , φn → φ in H as n → +∞. If δn := ψ − ψn and
δ ′n := ψ ′ −ψ ′n, we have

|(ψ |U0(t)ψ ′)| ≤ |(δn|U0(t)δ ′n)|+ |(δn|U0(t)ψ ′n)|+ |(ψn|U0(t)δ ′n)|+ |(ψn|U0(t)ψ ′n)| .

Using Schwarz’s inequality and the fact U0(t) is isometric we find

|(ψ |U0(t)ψ ′)| ≤ ||δn||||δ ′n||+ ||δn||||ψ ′n||+ ||ψn||||δ ′n||+ |(ψn|U0(t)ψ ′n)| .

But the norm is obviously continuous in H, and δn → 0 and δ ′n → 0 as n →
+∞. Hence for any given ε > 0, there is a large enough n ∈ N for which
||δn||||δ ′n|| , ||δn||||ψ ′n|| , ||ψn||||δ ′n||< ε/4. Therefore

|(ψ |U0(t)ψ ′)| ≤ 3ε/4+ |(ψn|U0(t)ψ ′n)| .
Computing the inner product on L2(R3,dx) explicitly, and since ψn,ψ ′n,U0(t)ψ ′n ∈
S (R3), we obtain

|(ψn|U0(t)ψ ′n)| ≤ ||U0(t)ψ ′n||∞
∫

R3
|ψn(x)|dx .

By (13.20) there exists T > 0 for which the right-hand side above is bounded by ε/4
when t > T . Altogether, for any pair ψ ,ψ ′ ∈ H, if ε > 0 there is T > 0 such that
|(ψ |U0(t)ψ ′)| ≤ ε whenever t > T . �

�

13.1.6 The evolution operator in absence of time homogeneity and
Dyson’s series

We return to the notion of evolution operator to discuss a generalisation that has to
do with Schrödinger’s equation. An important remark, made in axiom A6, is that the
evolution operator Uτ is actually independent of the initial instant. If we fix the state
ρ at the initial time t, UτρU∗

τ will be the state at time t + τ . Had we fixed the same
state ρ at initial time t ′ � t, the state at time t ′+τ would have been UτρU∗

τ again. So
the system’s laws of dynamics are unaffected in the time interval [t, t ′]. In other terms
axiom A6 presumes, for the system S in the frame I , homogeneity of time. Classic-
ally, this situation corresponds to having the Hamiltonian not explicitly dependent
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on time in the coordinates of a certain frame. This is not the case in more general
dynamical situations, like when S interacts with an evolving external world. If, on
the contrary, S is isolated (though this is not the only possibility) and we describe it
in an inertial system, then time is homogeneous, as in classical mechanics.

But if time is not homogeneous, time evolution is axiomatised as follows.

A6’. Let the quantum system S be described in an inertial frame I , with space of
states HS. There exists a familiy {U(t2, t1)}t2,t1∈R of unitary operators on HS, called
evolution operators from t1 to t2, satisfying, for t, t ′, t ′′ ∈ R:

(i) U(t, t) = I;
(ii) U(t ′′, t ′)U(t ′, t) = U(t ′′, t);
(iii) U(t ′, t) = U(t, t ′)∗ = U(t ′, t)−1

and such that the function R2 � (t, t ′) 	→U(t, t ′) is strongly continuous.
Furthermore, if ρ is the state at time t0, the evolved state at time t1 (which may
precede t0) is U(t1, t0)ρU(t1, t0)∗.

The main difference with axiom A6 is that now we cannot associate a self-adjoint
generator to the family {U(t2, t1)}t2,t1∈R, and speaking of Hamiltonian of the system
makes no longer sense, in general. We may still retain such a notion nonetheless (in
the sense of a time-dependent Hamiltonian) by generalising Schrödinger’s equation
and defining the U(t ′, t) as its solutions. Formally, the operator Uτ of A6 satisfies
Schrödinger’s equation (with h̄ = 1):

s-
d

dτ
Uτ =−iHUτ .

For the generalised evolution operator U(t ′, t), we can assume an analogous equation

s-
d

dτ
U(τ , t) =−iH(τ)U(τ , t) , (13.43)

whenever to each instant τ is assigned an observable, called Hamiltonian at time
τ , expressing the system’s energy (in the given frame) at time τ . This energy is, in
general, not a preserved quantity. In order to treat equation (13.43) rigorously a few
delicate technical problems must be addressed concerning the distinct domains of the
various H(τ); however, the equation remains extremely useful in a number of prac-
tical applications. The so-called Dyson series, pivotal in quantum electrodynamics
and quantum field theory, is a formal solution to (13.43). To this end let us prove a
result that illustrates the simplified situation where each Hamiltonian H(τ) is bounded
and defined on the entire Hilbert space. In that case the collection of the H(τ) does
determine via (13.43) a continuous family of evolution operators U(t ′, t) given by
Dyson’s series.

Proposition 13.19. Let H be a Hilbert space and R � t 	→ H(t) = H(t)∗ ∈ B(H)
strongly continuous. Consider the Dyson series of the operators U(t,s):

U(t,s) := I +
∞

∑
n=1

(−i)n
∫ t

s
dt1H(t1)

∫ t1

s
dt2H(t2) · · ·

∫ tn−1

s
dtn−1H(tn) (13.44)
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where iterated integrals are defined as in Proposition 9.27. Then the series converges
uniformly. Moreover:

(a) The U(t,s) are unitary and satisfy (i), (ii), (iii) in A6’.
(b) The map R � (t,s) 	→U(t,s) is continuous in the uniform topology.
(c) The generalised Schrödinger equation holds:

s-
d
dt

U(t,s) =−iH(t)U(t,s) for every t,s ∈ R. (13.45)

(d) Expression (13.44) may be written:

U(t,s) =
+∞

∑
n=0

(−i)n

n!

∫ t

s

∫ t

s
· · ·
∫ t

s
T [H(t1)H(t2) · · ·H(tn)]dt1dt2 · · ·dtn . (13.46)

Above,

T [H(t1)H(t2) · · ·H(tn)] := H(τn)H(τn−1) · · ·H(τ1)

is the chronological reordering operator of the product: τn is the largest among
t1, . . . , tn, then comes τn−1 ≤ τn as second-largest and so on for every t1, . . . , tn, up to
the smallest value τ1.

Proof. First of all every term in Dyson’s expansion

Un(t,s) = (−i)n
∫ t

s
dt1H(t1)

∫ t1

s
dt2H(t2) · · ·

∫ tn−1

s
dtn−1H(tn)

makes sense, since by Proposition 9.27(c) each integral on the right, starting from the
right-most (tn−1,s) 	→

∫ tn−1
s dtn−1H(tn), is an operator-valued map ranging in B(H)

and jointly strongly continuous in the integration limits (hence in the upper limit
alone, too). The product (as pointwise operation) of two such maps is still strongly
continuous and valued inB(H), so it can be integrated. Using Proposition 9.27, where
now the L1 map is the characteristic function of the interval [s, tk], the nth term Un(t,s)
in Dyson’s series, t,s ∈ [T,S], satisfies

||Un(t,s)|| ≤ Aa,b :=
|b−a|n

n!

(

sup
τ∈[a,b]

||H(τ)||
)n

, (t,s) ∈ [a,b]2 . (13.47)

As we observed in the proof of Proposition 9.27, since τ 	→H(τ) is strongly continu-
ous, supτ∈[a,b] ||H(τ)||< +∞ by Banach–Steinhaus. Hence 0≤ Aa,b < +∞. Since the
series of positive terms Aa,b converges, the Dyson series converges in the uniform
topology, uniformly in (s, t) on every compact set. Therefore if every Dyson term is
uniformly continuous (proved next) then (t,s) 	→U(t,s) is uniformly continuous. To
show that the Dyson terms are uniformly continuous, we must resort to their recur-
rence relationship:

Un(t,s) =−i
∫ t

s
H(τ)Un−1(τ ,s)dτ . (13.48)
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It implies, working on the compact set [a,b]× [a,b],

||Un(t,s)−Un(t ′,s′)|| ≤
∣
∣
∣
∣

∣
∣
∣
∣

∫ t

t ′
H(τ)Un−1(τ ,s)dτ

∣
∣
∣
∣

∣
∣
∣
∣

+
∣
∣
∣
∣

∣
∣
∣
∣

∫ t ′

s
H(τ)(Un−1(τ ,s)−Un−1(τ ,s′))dτ

∣
∣
∣
∣

∣
∣
∣
∣+
∣
∣
∣
∣

∣
∣
∣
∣

∫ s′

s
H(τ)Un−1(τ ,s′)dτ

∣
∣
∣
∣

∣
∣
∣
∣ ,

so by Proposition 9.27(a):

||Un(t,s)−Un(t ′,s′)|| ≤ |t− t ′| sup
(τ,σ)∈[a,b]2

||H(τ)||||Un−1(τ ,σ)||

+(b−a) sup
τ∈[a,b]

||H(τ)||||Un−1(τ ,s)−Un−1(τ ,s′)||

+|s− s′| sup
(τ,σ)∈[a,b]2

||H(τ)||||Un−1(τ ,σ)|| .

Thus if (t,s) 	→Un−1(t,s) is uniformly continuous, so is (t,s) 	→Un(t,s); in particular

sup
τ∈[a,b]

||H(τ)||||Un−1(τ ,s)−Un−1(τ ,s′)|| → 0 as s→ s′

because the continuity of (t,s) 	→ Un−1(t,s) on [a,b]2 implies uniform continuity
(besides, supτ∈[a,b] ||H(τ)|| < +∞ exists). The induction principle tells we can just

prove that U1(t,s) = −i
∫ t

s dt1H(t1) is continuous. But this is true by (i) in Propos-
ition 9.27(c). With this we proved (b) and part of (a). To finish (a) we will use (c),
so let us prove that first. Applying Proposition 9.27(b, c) to the terms of the Dyson
series computed on ψ , differentiating term by term and using (13.48), we arrive at

d
dt

U(t,s)ψ =−iH(t)U(t,s)ψ , i.e. s-
d
dt

U(t,s) =−iH(t)U(t,s) , (13.49)

provided we can exchange sum and derivative. Using (13.47) together with
supt∈[a,b] ||H(t)||< +∞ tells the derivatives’ series converges uniformly on compact
sets in uniform topology, hence uniformly in the strong one. Hence the Dyson series
can be differentiatied in t (strongly) term by term, which proves (13.49) and thus
(c). Now we can finish claim (a). With a similar procedure, in particular employ-
ing Proposition 9.27(ii), we obtain d

ds (φ |U(t,s)ψ) = i(φ |U(t,s)H(s)ψ). From this
and (13.49) follows d

ds (φ |U(t,s)U(s, t)ψ) = i(φ |U(t,s)(H(s)−H(s))U(s, t)ψ) =
0, so in particular (φ |U(t,s)U(s, t)ψ) = (φ |U(t, t)U(t, t)ψ). But U(t, t) = I, so
U(s, t) = U(t,s)−1. From (13.49) we have d

dt ||U(t,s)ψ ||2 = d
dt (U(t,s)ψ |U(t,s)ψ).

The right-hand side is easy, and equals (−iH(t)U(t,s)ψ |U(t,s)ψ) + (U(t,s)ψ | −
iH(t)U(t,s)ψ) = 0 by linearity on the right entry, antilinearity on the left, and
because H(t) = H(t)∗. In other words ||U(t,s)ψ || = ||U(s,s)ψ || = ||ψ ||. Con-
sequently every U(t,s) is unitary, being isometric and onto. So we proved U(t,s)∗ =
U(s, t) = U(t,s)−1. There remains to see (iii) of A6’. The operator V (t,s) :=
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U(t,s)−U(t,u)U(u,s) clearly satisfies d
dt V (t,s)ψ =−iH(t)V (t,s)ψ . Exactly as be-

fore d
dt ||V (t,s)ψ ||2 = d

dt (V (t,s)ψ |V (t,s)ψ) = 0, by the inner product’s linearity and
by H(t) = H(t)∗. Hence ||V (t,s)ψ ||= ||V (s,s)ψ ||. But this is null, for U(s,s) = I and
U(s,u)U(u,s) = I. Eventually, then, U(t,s)ψ = U(t,u)U(u,s)ψ for every ψ ∈ H.

To show (13.46) it suffices, starting from the last relation, to express the iterated
integrals of each series using suitable maps θ , and change names to variables, to get
(13.44). For instance T [H(t1)H(t2)] = θ(t1− t2)H(t1)H(t2)+θ(t2− t1)H(t2)H(t1),
where θ(t) = 1 for t ≥ 0 and θ(t) = 0 otherwise. Integrating the sum in dt1dt2 over
[t,s]2, and swapping t1, t2 in the term with θ(t2− t1), produces the second summand
on the right in (13.44), apart from the constant (−i)2/2!. �

Remark 13.20. (1) Dyson’s series, written as in (13.46), resembles the series expan-
sion of the time-ordered exponential. For that reason the series is often encountered,
with h̄ back in, in the integral form:

U(t,s) = T
[
e−

i
h̄

∫ t
s H(τ)dτ
]

. (13.50)

If H does not depend on time, the right-hand side reduces precisely to e−i (t−s)
h̄ H as

expected.
(2) We have already noted that the Dyson series is central in quantum field theory, and
certainly in perturbation theory where the Hamiltonian decomposes as H = H0 +V
and V is a correcting term to H0 and the dynamics it generates. In such cases one
proceeds by the so-called Dirac’s interaction picture [Mes99, CCP82], in which the
Dyson series plays a key part. In general concrete applications the Dyson series is
used also when H is not bounded. For that reason the above theorem does not apply
and the series should be understood in a weak sense of sorts [ReSi80]. �

13.1.7 Antiunitary time reversal

Let us return to general matters in relation to the time-evolution axiom A6, i.e. un-
der time homogeneity, and show two more important corollaries to the existence of a
lower bound for the spectrum of the Hamiltonian H.

In the previous chapter we saw that if a system admits a symmetry (whether
Kadison or Wigner is irrelevant to Theorem 12.12), the latter is a unitary or anti-
unitary transformation. If a system S with Hamiltonian H possesses the time reversal
symmetry γT (cf. Example 12.17(2)), the unitary or antiunitary T : HS → HS it de-
termines (suppose the Hilbert space has one coherent sector) must satisfy

γT
(
γ(H)

t (ρ)
)

= γ(H)
−t (γT (ρ))

(we set h̄ = 1 henceforth). Equivalently,

e−itHT ρT −1e+itH = T e+itHρe−itHT −1 for every ρ ∈S(HS). (13.51)

Therefore time reversal, when present, is not a dynamical symmetry in the sense of
Definition 13.4, owing to the sign flip of time in the dynamical flow. The following
important result rephrases, partially, Proposition 13.2.
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Theorem 13.21. Consider a system S with Hamiltonian H (of lower-bounded spec-
trum) on the Hilbert space HS. If the spectrum of H is unbounded above, every oper-
ator T : HS → HS satisfying (13.51) is antiunitary and such that

T −1HT = H .

This applies in particular to the time-reversal symmetry, if existent.

Proof. If V : HS →HS is unitary (or antiunitary), then Vψ(ψ |V−1·) = Vψ(ψ |V ∗·) =
Vψ(Vψ |·). Setting Ut := e−itH and taking the unitary V := (T U−t)−1UtT , for any
pure state ρ = ψ(ψ | ) we have

(T U−t)−1UtT ψ
(
(T U−t)−1UtT ψ

∣
∣
)

= ψ(ψ | ) .

Hence for some χt ∈ C with |χt |= 1:

(T U−t)−1UtT ψ = χtψ , ψ ∈ H.

Replicating the argument of Theorem 12.10 shows χt does not depend on ψ . What
is more, the map R � t 	→ χt is differentiable: take φ ∈ D(H), ψ ∈ T −1D(H) with
(φ |ψ) � 0 (D(H) is dense) and differentiate the identity (T U−tφ |T −1UtT ψ) =
χt(φ |ψ), if T is unitary, or (T U−tφ |T −1UtT ψ) = χt(φ |ψ) if T is antiunitary.
Stone’s theorem guarantees derivatives exist. Hence there is a differentiable map
R � t 	→ χt such that e−itHT = T χt eitH , so T −1e−itHT = χt eitH . Therefore

e∓itT −1HT = χt e
itH

with − if T is unitary and + if antiunitary (cf. Exercise 12.6 for the latter). Note
T −1HT is self-adjoint, so the left-hand side is a strongly continuous unitary group
parametrised by t ∈ R. Applying Stone’s theorem tells D(T −1HT ) ⊂ D(H) =
D(cI +H) and

∓T −1HT �D(H)= cI +H where c :=−i dχt
dt |t=0 . (13.52)

The constant c is real, for∓T −1HT −H is symmetric on D(H). As a matter of fact
(13.52) is valid everywhere on the domain of the self-adjoint ∓T −1HT , which has
no self-adjoint extensions (cI +H) other than itself. Therefore

T −1HT =∓cI∓H .

In particular (cf. Exercise 12.6 for the antiunitary case):

σ(H) = σ(T −1HT ) = σ (∓cI∓H) =∓c∓σ(H) .

Suppose σ(H) is bounded below but not above: the last identity cannot hold if on
the right there is a − sign, whichever the constant c. Then T must be antiunitary,
and infσ(H) = inf(c +σ(H)) = c + infσ(H). Hence c = 0, as infσ(H) is finite by
assumption (σ(H) � ∅ is bounded below). �
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13.2 The time observable and Pauli’s theorem. POVMs in brief

There is yet another consequence of the spectral lower bound of H, that addresses
the problem of the existence of a quanum observable corresponding to the classical
quantity of time, which satisfies canonical commutation relations with the Hamilto-
nian. The existence of such an operator could be suggested by Heisenberg’s ‘time-
energy’ uncertainty relationship mentioned in Chapter 6. In Chapter 11 we deduced
Heisenberg’s uncertainty principle for position and momentum as a theorem, follow-
ing the CCR

[X ,P] = ih̄I .

We could expect a self-adjoint operator T corresponding to the observable time (when
a phenomenon occurs, or its duration in a given quantum system); it should satisfy a
similar commutation relation with the Hamiltonian, on some domain:

[T,H] = ih̄I ,

and therefore there should be an analogue time-energy uncertainty

(ΔH)ψ(ΔT )ψ ≥ h̄/2

exactly as for position-momentum. We saw in Chapter 11 that by interpreting in
strong sense the position-momentum CCR, i.e. passing from operators to the expo-
nential algebra, the exponential commutation relation determined the operators up to
unitary transformations, by virtue of the Stone–von Neumann theorem. These alleged

relations would read e−i h
h̄ T e−i t

h̄ H = ei ht
h̄ e−i t

h̄ He−i h
h̄ T . But in the case at stake that is

not possible. There no way to define properly the operator time, and thus make sense
to the time-energy relations: a no-go result that bears the name of Pauli’s theorem. It
is however possible to try to define the observable time, case by case, invoking the
notion of generalised observable, which is useful in other contexts like the theory of
quantum information.

13.2.1 Pauli’s theorem

Putting together a series of results collected from previous chapters, we will prove
our version of a result known as Pauli’s theorem.

Theorem 13.22. Consider a system S with Hamiltonian H (with lower-bounded spec-
trum) on the Hilbert space HS. Suppose there exist a self-adjoint operator T : D(T )→
HS and a subspace D ⊂ D(H)∩D(T ) in HS on which T H and HT are well defined
and the CCR (h̄ = 1)

[T,H] = iI

holds. Then none of the following facts can occur.

(a) D is dense and invariant under T , H, and the symmetric operator T 2 + H2 is
essentially self-adjoint on D .
(b) D is dense, invariant under T , H and made of analytic vectors for both T and H.
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(c) The exponential operators satisfy CCRs:

eihT eitH = eiht eitHeihT , t,h ∈ R.

Proof. If (a) were true, by Nelson’s Theorem 12.62 H�D and T�D would be es-
sentially self-sdjoint (making D a core for both self-adjoint H, T ) and there would
be a strongly continuous unitary representation of the unique simply connected Lie
group whose Lie algebra is generated by I, H, T under the CCRs and the trivial
[T, I] = [H, I] = 0. But that defines the Heisenberg group H (2), as seen in the pre-
vious chapter, and we would have proven (c). The same conclusion follows from
assuming (b) because of Theorem 12.63. So let us suppose (c) holds. Going through
the argument after Theorem 11.24, we could prove that the W (t,h) := eiht/2eitHeihT

satisfy Weyl’s relations and the hypotheses of Mackey’s Theorem 11.23. Then the
Hilbert space HS would split in an orthogonal sum HS = ⊕kHk of closed invari-
ant spaces under eitH and eihT for any t, h; and for any k there would be a unitary
map Sk : Hk → L2(R,dx), so SkeitH�Hk S−1

k = eitX in particular, with X denoting
the standard position operator on R. Applying Stone’s theorem to eitHHs ⊂ Hs we
would obtain these consequences: first H(Hk ∩D(H)) ⊂ Hk, second H�Hk∩D(H) is

self-adjoint on Hk, and then eitH�Hk= eitH�Hk∩D(H) . At this point the condition satis-

fied by Sk would read eitH�Hk∩D(H) = S−1
k eitX Sk. Reapplying Stone’s theorem would

produce H�Hk∩D(H)= S−1
k XSk, hence

σ(H)⊃ σ(H�Hk∩D(H)) = σ(S−1
k XSk) = σ(X) = R .

(For the first inclusion it suffices to use the definition of spectrum.) But that is im-
possible because σ(H) is bounded from below. �

13.2.2 Generalised observables as POVMs

The problem raised by Pauli’s theorem about the definition of time is hard, and not yet
completely construed. One attempt, that weakens the notions of observable and PVM,
has found several other uses in QM, especially in Quantum Information [NiCh07].

Let us look into the proof of Proposition 7.52, which associates probability meas-
ures to observables seen as PVMs on R: given a state ρ ∈S(H), we did not employ
the characterisation of observables of Proposition 7.44 (property (a)); and concern-
ing propriety (d), we only made use of weak convergence (implied by strong conver-
gence). So we may rephrase Proposition 7.52 like this.

Proposition 13.23. Let H be a Hilbert space and {P(E)}E∈B(R) a collection of op-
erators in B(H) satisfying:

(a)’ P(E)≥ 0 for every E ∈B(R) .
(b)’ P(R) = I .
(c)’ For any countable set {En}n∈N of pairwise-disjoint Borel sets in R,

w-
+∞

∑
n=0

P(En) = P(∪n∈NEn) .

If ρ ∈S(H), the mapping μρ : E 	→ tr(P(E)ρ) is a probability measure on R.
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The numbers μρ(E) are the probabilities the experimental readings of the ob-
servable {P(E)}E∈B(R) fall in the Borel set E. Sometimes it is convenient to adopt
generalised observables, assuming they are given by maps E 	→ P(E) satisfying con-
ditions (a)’, (b)’, (c)’: these are weaker than the ones for PVMs, but still guarantee
μρ is a probability measure. In particular, the P(E) are no longer orthogonal project-
ors, but mere bounded positive operators. All this leads to the following definition.
We refer to [Ber66] for a broad mathematical treatise and [BGL95] for an extensive
discussion on the applications to QM.

Definition 13.24. Let H be a Hilbert space and X a topological space. A mapping
A : B(X)→B(H) is called positive operator-valued measure (POVM) on X if:

(a)’ A(E)≥ 0 for any E ∈B(X) .
(b)’ A(X) = I .
(c)’ For any countable set {En}n∈N of disjoint Borel subsets in X:

w-
+∞

∑
n=0

A(En) = A(∪n∈NEn) .

A generalised observable on H is a collection of operators {A(E)}E∈B(R) such that
B(R) � E 	→ A(E) is a positive operator-valued measure.

If A is a POVM on H, since B(H) � A(E) ≥ 0 for every E ∈ B(X), we have
A(E) = A(E)∗ by Proposition 3.54(f). Moreover, by Definition 13.24(c, d) 0 ≤
A(E)≤ I, so ||A(E)|| ≤ 1 from Proposition 3.54(a).

On a Hilbert space H the set E(H) of A ∈ B(H) with 0 ≤ A ≤ I is called space
of effects, and the effects are the operators A. The effects on H are the operators
used to build every POVM on H, and their space is the analogue of P(H) in defining
observables via PVMs. E(H) contains P(H) and is partially ordered by the usual re-
lation ≥: in contrast to P(H), though, it is not a lattice. This prevents a generalised
interpretation of orthogonal projectors as propositions on the system.

Extending axiom A3 from post-measurement states to generalised observables
is problematic. It is not possible to establish, in practice, in which state the system
is after a measurement whose reading is E ′ ∈B(R) if the observable is represented
by a POVM {A(E)}E∈B(R), and without further information. The extra data is as-
signed by decomposing each A(E) = B(E)∗B(E) in the POVM, where the operators
B(E) ∈ B(H) are called measuring operators. If so, the post-measurement state is
assumed to look like (tr(A(E ′)ρ))−1B(E ′)ρB(E ′)∗. For PVMs, clearly, A(E) = B(E)
are orthogonal projectors. See [BGL95] for details.

Here is an interesting application of generalised observables to the definition of
time. Suppose time is defined as the observable associated to the lapse it takes a
particle to hit a detector. By Pauli’s Theorem 13.22 such observable is unlikely going
to be defined via projectors if we impose that the observable is somehow “conjug-
ated” to the Hamiltonian.

The attempts to define the time observable in terms of POVMs are very prom-
ising. Candidates for a generalised time observable T , e.g. the arrival time of a free
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particle, arise from a suitable POVM T := {A(E)}E∈B(R) dependent on the system

[Gia97, BF02]. Introducing measures μ(T )
ψ,φ (E) := (ψ |A(E)φ), E ⊂B(R), and setting

μ(T )
ψ := μ(T )

ψ,ψ , we can define 〈T 〉ψ and (ΔT )ψ using the same definitions for PVMs.
If T is built appropriately, on suitable domains, then (ΔT )ψ(ΔH)ψ ≥ h̄/2 and the
analogues hold [Gia97, BF02], where H is the system’s Hamiltonian. In analogy to
PVMs, we may associate to the POVM T an operator, denoted by T , characterised
by being the unique operator such that:

(ψ |Tφ) :=
∫

R

λdμ(T )
ψ,φ (λ ) ,

where ψ ∈ H, φ ∈ D(T ) dense and suitable. T turns out to be symmetric, but non
self-adjoint. For a particle of mass m > 0 free to move along the real axis, the oper-
ator T of [Gia97] has the obvious form T = m

2 (XP−1 + P−1X), on a suitable dense
subspace of L2(R,dx).

Remark 13.25. (1) Gleason’s Theorem 7.24 has an important extension to general-
ised observables due to Busch [Bus03].

Theorem 13.26 (Busch). Let H be a complex Hilbert space of finite dimension≥ 2 or
separable. For any map μ : E(H)→ [0,1] such that μ(I) = 1 and μ

(
w-∑+∞

n=0 An
)

=
∑+∞

n=0 μ(An) for every sequence {An}n∈N ⊂ E(H) satisfying w-∑+∞
n=0 An ≤ I, there ex-

ists ρ ∈S(H) such that μ(A) = tr(Aρ), A ∈ E(H).

(2) An important theorem shows the tight relationship between PVMs and POVMs.

Theorem 13.27 (Neumark). Let X be a topological space and H a Hilbert space. If
A : B(X)→B(H) is a POVM, there exist a Hilbert space H′, an operator U : H→H′
and a PVM P : B(X)→P(H′) such that A(E) = U∗P(E)U for every E ∈B(X).

Condition (b)’ in Definition 13.24 and the analogue for PVMs imply U∗U = IH,
so U is an isometry (not surjective, otherwise A would be a PVM). Thus H is iso-
morphic to a (proper) closed subspace of H′. Yet P(E) does not, in general, have a
direct physical meaning, because H′ is not the system’s Hilbert space. �

13.3 Dynamical symmetries and constants of motion

This section is devoted to extending to QM the outcome of the various versions of
Nöther’s theorem: in classical theories that theorem relates dynamical symmetries to
constants of motion. In QM this relationship is as straightforward as it can get. To
state the relative theorem we need to introduce the so-called Heisenberg picture of
observables.

13.3.1 Heisenberg’s picture and constants of motion

Take a quantum system S described in the inertial frame I with evolution operator
R � τ 	→ e−iτH . Fix once for all the instant t = 0 for the initial conditions. Then
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consider the associated continuous projective representation of R, R � t 	→ γ(H)
t :=

e−itH ·eitH , and the dual action (cf. Chapter 12.1.6) on observables. If A is an observ-
able (possibly an orthogonal projector representing an elementary property of S) we
call

AH(t) := γ(H)∗
t (A) = eitHAe−itH

the Heisenberg picture of A at time τ . By construction σ(AH(τ)) =σ(A) and the ob-

servables’s spectral measures satisfy P(AH (t))(E) = γ(H)∗
t (P(A)(E)) for any E ∈B(R).

In Heisenberg’s picture, coherently with the symmetries’ dual action of
Chapter 12, quantum states do not evolve in time and the dynamics acts on observ-
ables. In particular, the expectation value of A on the state ρt , evolution till time t
of the initial state ρ , can be computed either as 〈A〉ρt or equivalently as 〈AH(t)〉ρ ,
because

〈A〉ρt = tr
(
AUtρU−1

t

)
= tr
(
U−1
τ AUtρ

)
= 〈AH(τ)〉ρ

if we put ourselves in the hypotheses of Proposition 11.8 (using the measure μ(A)
ρ dir-

ecly shows that the result holds generally). And the same happens for the probability
that the reading of A at time τ falls within the Borel set E, if ρ was the state at time 0:

tr(P(A)
E ρt) = tr(P(AH (t))

E ρ) .

Remark 13.28. (1) To distinguish Heisenberg’s picture from the ordinary picture in
which states – not observables – evolve, the latter is often called Schrödinger pic-
ture, a convention we will adopt.
(2) It must be noted that an observable may depend on time in Schrödinger’s picture
as well. Better said, it is convenient to use a self-adjoint family {At}t∈R parametrised
by time t, and view it as a single observable denoted At . In such a case we say the ob-
servable depends on time explicitly. In Heisenberg’s picture time dependency takes
care of both (implicit and explicit) dependencies:

AHt(t) := γ(H)∗
t (At) = eitHAte

−itH . (13.53)

Now that we have seen the evolution of observables in Heisenberg’s picture, we can
introduce constants of motion by mimicking the classical definition. �

Definition 13.29. Let S be a quantum system described on the Hilbert space HS as-
sociated to the inertial frame I with Hamiltonian H. An observable A is a constant
of motion or a first integral if its Heisenberg picture is does not depend on time:

AH(t) = AH(0) for any t ∈ R. (13.54)

An explicitly time-dependent observable At is called in the same way provided

AHt(t) = AH0(0) for any t ∈ R. (13.55)

Remark 13.30. (1) An observable that does not depend on time explicitly is a con-
stant of motion if and only if its Heisenberg and Schrödinger pictures coincide.
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(2) The notions of Heisenberg’s picture and constants of motion extend to situations
where time is not homogeneous and with evolution operators different from U(t2, t1).
We will not worry about this.
(3) Identity (13.55) is oftentimes found in books written as

∂AHt

∂ t
+ i[H,AHt(t)] = 0 , (13.56)

where the partial derivative refers to the explicit time variable only, i.e. the subscript
Ht . In practice if we do not care about domain issues, that equation is a trivial con-
sequence of (13.55), and implies (13.55) if we also assume (13.53). The equivalence,
in general false, is however troublesome to prove. At any rate, the concept of constant
of motion is perfectly formalised, physically, by (13.55), with no need to differentiate
in time and incur in spurious technical problems. �

Notation 13.31. Lest we overburden notations for (explicitly) time-dependent ob-
servables, we will simply write AH(t) instead of AHt(t) from now on, if no confusion
arises. �

We are ready to exhibit the relationship between constants of motion and dynam-
ical symmetries. In classical physics one-parameter symmetry groups are known to
correspond, in the various formulations of Nöther’s theorem, to constants of motion.
We wish to extend that to QM. Let us start with an easy case.

Proposition 13.32. Let σ(·) := V (σ) ·V (σ)−1 be a dynamical symmetry with V (σ)

simultaneously unitary and self-adjoint. Then the observable V (σ) is a constant of
motion.

Proof. If Ut is the evolution operator, by Theorem 13.5(c) UtV (σ)U−1
t = V (σ). �

It is not that infrequent that an interesting operator is together unitary and self-
adjoint (and thus represents a symmetry and an observable). An example is the parity
inversion, which we discussed in Examples 12.17. The situation is completely differ-
ent from that of classical mechanics, where a system invariant under parity inversion
(or any discrete symmetry) does not gain an associated constant of motion.

Let us deal with one-parameter groups of continuous symmetries, for which the
link dynamical symmetries–constants of motion is forthright.

To begin with we consider a time-dependent observable {At}t∈R, in a certain
system S with Hamiltonian H. If At is a constant of motion, then, by the previous
definitions

eitHAte
−itH = A0 .

If we exponentiate the self-adjoint operators in the equation gives

e−iaeitH At e−itH
= e−iaA0 ,

an equation that known exponential properties transform into

eitHe−iaAt e−itH = e−iaA0 ,
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i.e.
e−iaAt e−itH = e−itHe−iaA0 , a ∈ R, t ∈ R.

This equation’s interpretation in terms of dynamical symmetries is quite relevant. It

says that for any given a∈R the symmetries {σ (At )
a }t∈R, with σ (At )

a (·) := e−iaAt ·eiaAt ,
form by Theorem 13.5 a time-dependent dynamical symmetry for S. If we restrict to

At = A time-independent, the same argument proves σ (A)
a (·) := e−iaA · eiaA is a dy-

namical symmetry for every a ∈ R.
All this shows constants of motion determine dynamical symmetries but also con-

tinuous projective representations R � a 	→ σ (At )
a (·) of R, since R � a 	→ e−iaAt is

strongly continuous by Definition 12.31 (cf. Chapter 12.2.5).
Now we ask about the converse: given a family of time-dependent dynamical

simmetries {σ (t)
a }t∈R where R � a 	→ σ (t)

a is a continuous projective representa-
tion of the group R for every t ∈ R, is it possible to write each one of them as

σ (At )
a (·) := e−iaAt · eiaAt , so that the self-adjoint operators At give an (explicitly time-

dependent) observable that is a constant of motion? According to Theorem 12.36 we

can always find self-adjoint operators At such that σ (At )
a (·) := e−iaAt · eiaAt for every

a ∈ R. But these are determined up to a real constant At → A′t := At − c(t)I, so the
point is whether one can fix the maps c(t) so that

eitHA′t e
−itH = A′0 .

The answer of the next theorem, quantum version of Nöther’s theorem, is yes.

Theorem 13.33 (“Quantum Nöther theorem”). Let S be a quantum system, de-
scribed on the Hilbert space HS associated to the inertial frame I , with Hamiltonian
H and dynamical flow γ(H). If constants of motion and dynamical symmetries refer
to γ(H), the following facts holds.

(a) If A is a constant of motion:

σ (A)
a (·) := e−iaA · eiaA

is a dynamical symmetry for every a ∈ R, and R � a 	→ σ (A)
a (·) is continuous.

(b) Let {At}t∈R be a time-dependent observable and a constant of motion. As t ∈ R
varies,

σ (At )
a (·) := e−iaAt · eiaAt

is a time-dependent dynamical symmetry for every a ∈ R, and R � a 	→ σ (At )
a (·) is

continuous ∀t ∈ R.
(c) Let σa be a dynamical symmetry and R � a 	→ σa a continuous projective repres-
entation, ∀a ∈ R. Then there exists a constant of motion A such that

σa(·) := e−iaA · eiaA , a ∈ R.

(d) Let {σ (t)
a }t∈R be a time-dependent dynamical symmetry ∀a∈R, andR� a 	→ σ (t)

a

a continuous projective representation ∀t ∈ R. Then there exists a time-dependent
observable {At}t∈R that is a constant of motion plus

σ (t)
a (·) := e−iaAt · eiaAt , a ∈ R, t ∈ R.
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Proof. Claims (a), (b) were proved above, while (c) is evidently a subcase of (d) if

we set σ (t)
a = σa and At = A for any t ∈ R. So there remains to prove (d). By The-

orem 13.5, for any t ∈ R we can write σ (t)
a (·) := e−iaA′t · eiaA′t , a ∈ R, where the self-

adjoint A′t are given by the group R �	→ σ (t)
a and can be redefined to A′t + c(t)I = At

by adding constants c(t). Let us imagine we have made a choice for those operators.
By Theorem 13.5(a) for suitable unit complex numbers χ(t,a) we have

χ(t,a) = e−iaA′t e−itHeiaA′0 eitH , (13.57)

whence χ(t,0) = 1 for every t ∈ R. Furthermore

χ(t,a)(ψ |φ) =
(

eitHeiaA′tψ
∣
∣
∣eiaA′0 eitHφ

)
.

Choosing, for given t ∈ R, ψ ∈ (D(A′t)) and φ ∈ eitH(D(A′0)) not orthogonal (the
domains are dense because At is self-adjoint and eitH unitary), and applying Stone’s
theorem on the right for the variable a, we obtain the derivative in a of the left-hand
side, for every a ∈ R. At the same time (13.57) imples, for given t ∈ R:

χ(t,a+a′) = e−i(a+a′)A′t e−itHei(a+a′)A′0 eitH

= e−iaA′t
(

e−ia′A′t e−itHeia′A′0 eitH
)

e−itHeiaA′0 eitH

= e−iaA′t χ(t,a′)e−itHeiaA′0 eitH = χ(t,a′)χ(t,a) .

For t ∈ R given, the map R � a 	→ χ(t,a) is differentiable and satisfies χ(t,a +
a′) = χ(t,a)χ(t,a′), so ∂χ(t,a)

∂a = ∂χ(t,a)
∂a |a=0χ(t,a). Since |χ(t,a)| = 1, χ(t,0) = 1

for all t ∈ R, the differential equation is solved by χ(t,a) = eic(t)a with c(t) =
−i ∂χ(t,a)

∂a |a=0 ∈ R. So we have

eic(t)a = e−iaA′t e−itHeiaA′0 eitH ,

and hence

e−ia(A′t+c(t)I)e−itH = e−itHe−iaA′0 .

By (13.57) eic(0)a = 1 for any a ∈ R, so necessarily c(0) = 0. Then the above identity
reads

e−ia(A′t+c(t)I)e−itH = e−itHe−ia(A′0+c(0)I) .

As we said earlier we are free to modify the A′t by adding constants, so with At :=
A′t + c(t)I we obtain

e−iaAt e−itH = e−itHe−iaA0 .

This ends the proof. �
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Remarks 13.34. Suppose the system’s Hilbert space splits in coherent sectors under
a superselection rule, and assume this rule corresponds to a certain observable Q be-
ing defined and taking a precise value in every sector, on every pure state. This is
the case of the electric charge, for example. The self-adjoint operator representing
Q is a constant of motion, since the evolution prevents the (pure) state to escape the
sector where it initially lives. This observation unveils a deep relationship, between
superselection rules and constants of motion, that proved extremely relevant in the
algebraic formulation of quantum theories [Haa96] we will talk about in Chapter 14.

�

13.3.2 A short detour on Ehrenfest’s theorem and related
mathematical issues

Before we go on to examine the constants of motion of the Galilean group, we would
like to spend some time on a topic related to the evolution of observables. In QM
manuals there is a statement of acclaimed heuristic importance, especially in relating
QM to its classical limit, known as Ehrenfest theorem. The heart of Ehrenfest’s the-
orem is, formally, quite straightforward. Take a quantum system S described on the
Hilbert space HS and an observable or self-adjoint operator A (for simplicity time-
independent). Fix a pure state/unit vector ψ and consider its evolution under the op-
erator e−itH . In formal terms, overlooking domains,

d
dt
〈A〉ψt =

d
dt

(
e−itHψ
∣
∣Ae−itHψ

)
= i(Hψt |Aψt)− i(ψt |AHψt)

for ψt := e−itHψ . This implies the general Ehrenfest relation:

d
dt
〈A〉ψt = 〈i[H,A]〉ψt . (13.58)

Although to obtain (13.58) we ignored important mathematical details, it is easy
to prove (exercise) that the relation is implied by the following three conditions:
(i) A ∈ B(H); (ii) ψτ ∈ D(H) around t – equivalently ψ ∈ D(H), since D(H) is
evolution-invariant; (iii) ψτ ∈ D(HA) around t. It is far from easy to make assump-
tions of some help in physical applications that only concern H,A and ψ and valid
on a neighbourhood of some t. We can nevertheless weaken (i), (ii), (iii): beside
A∈B(H), assume only ψ ∈D(H), and interpret 〈i[H,A]〉ψt in (13.58) as a quadratic
form:

〈i[H,A]〉ψt := i(Hψt |Aψt)− i(Aψt |Hψt) .

This yields a weaker version of Ehrenfest’s theorem:

d
dt
〈A〉ψt = i(Hψt |Aψt)− i(Aψt |Hψt) . (13.59)

Even in this reading Ehrenfest’s statement is still too abstract, because practically
every observable A of interest in QM is not a bounded operator. In fact, the import-
ance of Ehrenfest’s theorem becomes evident precisely when applied to the unboun-
ded operators position and momentum.
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Consider, to that end, a system made by a spin-zero particle of mass m, subject to
a potential V , in an inertial frame. The Hamiltonian is a self-adjoint extension of the
differential operator H0 :=− h̄2

2mΔ+V . Suppose we work with τ 	→ψτ , which around
t belongs to some subdomain of D(XiH0)∩D(H0Xi) on which the Hamiltonian H0 is
differentiable. Then (reintroducing h̄ everywhere):

[H0,Xi]ψ =− h̄
2m

3

∑
j=1

[
∂ 2

∂x2
j

,xi

]

ψ =− h̄
m
∂ψ
∂xi

,

whence (13.58) gives

m
d
dt
〈Xi〉ψt = 〈Pi〉ψt . (13.60)

Similarly, working around t with τ 	→ ψτ in some domain inside D(PiH0)∩D(H0Pi)
where H0 is differentiable, we obtain

[H0,Pi]ψ =−i

[

−V,
∂
∂xi

]

ψ =−i
∂V
∂xi

ψ ,

so from (13.58):
d
dt
〈Pi〉ψt =−

〈
∂V
∂xi

〉

ψt

. (13.61)

The classical statement of Ehrenfest’s theorem consists of the pair (13.60)–(13.61),
from which the mean values of position and momentum have a classical-like beha-
viour. Precisely, assume the gradient of V does not vary much on the spatial reach of
the wavefunction ψt(x). Then we can estimate the right-hand side of (13.61) by
〈
∂V
∂xi

〉

ψt �
∫

R3
ψt(x)

∂V
∂xi

∣
∣
∣
∣〈X〉ψt

ψt(x)dx =
(∫

R3
ψt(x)ψt(x)dx

)
∂V
∂xi

∣
∣
∣
∣〈X〉ψt

=
∂V
∂xi

∣
∣
∣
∣〈X〉ψt

.

Substituting in (13.61) we get the classical equation:

d
dt
〈Pi〉ψt �− ∂V

∂xi

∣
∣
∣
∣〈X〉ψt

. (13.62)

The punchline is that under Ehrenfest’s equations (13.60)–(13.61), the more wave
packets cluster around their mean value – under a potential whose force varies slowly
on the packet’s range – the better the momentum and position mean values obey the
evolution laws of classical mechanics.

Alas, the entire discussion is rather academic, because establishing physically-
sound mathematical conditions on H0, for the argument leading to (13.60)–(13.61)
to be fully justified, is a largely unsolved problem.

Remark 13.35. (1) Recently, conditions on H and A have been found that realise
(13.59) when A is neither bounded nor self-adjoint, including the case where A is the
position or the momentum. The result we are talking about is the following [FK09].
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Theorem 13.36. On the Hilbert space H let H : D(H)→H, A : D(A)→H be densely
defined and such that:

(H1) H is self-adjoint and A Hermitian (hence symmetric);
(H2) D(A)∩D(H) is invariant under R � t 	→ e−itH , for every t ∈ R;
(H3) ifψ ∈D(A)∩D(H) then supI ||Ae−itHψ ||< +∞ for any bounded interval I⊂R.

Let ψt := e−itHψ . Then for any ψ ∈ D(A)∩D(H) the map t 	→ 〈A〉ψt is C1 and

d
dt
〈A〉ψt = i(Hψt |Aψt)− i(Aψt |Hψt) .

As earlier claimed, the above hypotheses subsume the case where A is the posi-
tion or the momentum on H = L2(Rn,dx), even though proving it is highly non-trivial
(cit., Corollary 1.2). For it to happen it is enough that H is the only self-adjoint exten-
sion of H0 =−Δ +V on D(Rn) with V real and (−Δ)-bounded with relative bound
a < 1, in the sense of Definition 10.41.
(2) From the point of view of physics it is impossible to build an experimental device
capable of measuring all possible values of an observable described by an unbounded
self-adjoint operator. For the position observable, for instance, it would mean filling
the universe with detectors! So we expect any observable represented by the unboun-
ded self-adjoint operator A to be – physically speaking – indistinguishable from the
observable of the self-adjoint operator AN :=

∫
σ(A)∩[−N,N]λdP(A)(λ ) ∈ B(H), with

N > 0 large but finite. The general form of Ehrenfest’s theorem (13.58) applies to such
class of observables, if we assume (ii) and (iii), or only ψ ∈ D(H) to have (13.59).
In this case, though, it is not easy to use the formal commutation of position and mo-
mentum with a Hamiltonian like − h̄2

2mΔ +V , which would bring to (13.60), (13.61).
�

13.3.3 Constants of motion associated to symmetry Lie groups and
the case of the Galilean group

Consider a quantum system S with Hilbert space HS, Hamiltonian H and inertial
frame I . Suppose there is a Lie group G with a strongly continous unitary rep-
resentation G � g 	→ Ug on HS, and assume the evolution operator R � t 	→ e−itH

coincides with the representation of a one-parameter subgroup of G (clearly G is a
symmetry group for S, since the representation U induces a projective representation
of the same group). What we want to prove is that every T ∈ TeG determines a dy-
namical symmetry and a constant of motion (explicitly time-dependent, in general).
In fact,

Theorem 13.37. Let S be a quantum system on the Hilbert space HS, with Hamilto-
nian H (in some inertial frame). Let G � g 	→Ug be a strongly continuous unitary
representation on HS of the n-dimensional Lie group G, and suppose the evolution
operator R � t 	→ e−itH coincides with the representation of a one-parameter sub-
group generated by some −h ∈ TeG:

e−itH = Uexp(th) , t ∈ R.
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(a) To each T ∈ TeG there correspond a constant of motion {T̂t}t∈R, in general time-
dependent, and a relative dynamical symmetry.
(b) If [h,T ] = 0 the constant of motion {T̂t}t∈R is time-independent.

Proof. (a) Consider the map from R to G:

R � a 	→ exp(th)exp(aT )exp(−th) .

It is certainly a one-parameter subgroup for any given T ∈ TeG and every t ∈ R. So
if T1, . . .Tn is a basis of TeG, for suitable real functions c j = c j(t) we can write

exp(th)exp(aT )exp(−th) = exp(a
n

∑
j=1

c j(t)Tj) .

Apply U and pass to the Lie algebra representation TeG � T 	→ AU [T ] := AU (T )�DG ,
where the Gårding space DG is invariant and a core for the self-adjoint operators
AU (T ) (Chapter 12, in particular Theorem 12.60). Then

e−itHe−iaAU [T ]eitH = e−ia∑n
j=1 c j(t)AU [Tj ] . (13.63)

Define self-adjoint operators parametrised by time

T̂t :=
n

∑
j=1

c j(t)AU [Tj] .

Then (13.63) shows T̂t is a constant of motion that depends explicitly on time, for in
fact (13.63) implies:

eitH T̂te
−itH = AU [T ] = T̂0 , t ∈ R .

Again (13.63) shows that the family of symmetries σ (t)
a := e−iaT̂t ·e−iaT̂t , for any a ∈

R, is a time-dependent dynamical symmetry. In fact (13.63) forces

e−iaT̂t e−itH = e−itHe−iaT̂0 , t ∈ R,

and then Theorem 13.5 proves the claim.
(b) Assuming [T,h] = 0, and using the Baker–Campbell–Hausdorff formula (12.69),
(12.70), (12.71), we obtain

exp(τh)exp(aT ) = exp(aT )exp(τh) (13.64)

so long as |a|, |τ |< ε with ε > 0 small enough. Those formulas actually hold for any
value of a,τ ∈ R. To see that it suffices to observe, irrespective of a and τ , that we
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can write a = ∑N
r=1 ar and τ = ∑N

r=1 τr so that |ar|, |τr|< ε for any r. For example,

exp(τh)exp(aT )
= exp(τNh) · · ·exp(τ2h)exp(τ1h)exp(a1T )exp(a2T ) · · ·exp(aNT )
= exp(τNh) · · ·exp(τ2h)exp(a1T )exp(τ1h)exp(a2T ) · · ·exp(aNT )

· · ·
= exp(a1T )exp(τNh) · · ·exp(τ2h)exp(a2T ) · · ·exp(aNT )exp(τ1h)

· · ·
= exp(a1T )exp(a2T ) · · ·exp(aNT )exp(τNh) · · ·exp(τ2h)exp(τ1)

= exp(aT )exp(τh) .

Consequently, using U we get

e−itHe−iaAU [T ]eitH = e−iaAU [T ] ,

whence the claim. �

To exemplify the general result found above, we revert to the Galilean group and
its projective unitary representations seen at the end of the previous chapter. We will
show there are 10 first integrals for a system having the restricted Galilean group SG
as symmetry group (described by a unitary representation of a central extension of
the universal covering S̃G ). We consider in particular the spin-zero particle of mass

m, and refer to the unitary representation of the central extension
̂̃
SG m of Chapter 12.

The Lie algebra is the extension of the Lie algebra of S̃G , that has 10 generators
−h ,pi , ji ,ki i=1,2,3, such that:

(i) −h generates the subgroup R � c 	→ (c,0,0, I) of time displacements;
(ii) the three pi generate the Abelian subgroup R3 � c 	→ (0,c,0, I) of space trans-

lations;
(iii) the three ji generate the subgroup SO(3) � R 	→ (0,0,0,R) of space rotations;
(iv) the three ki generate the Abelian subgroupR3 � v 	→ (0,0,v, I) of pure Galilean

transformations.

These elements obey the commutation relations (12.106). To pass from the Lie al-

gebra of S̃G to that of
̂̃
SG m we add a generator commuting with the above ones, plus

central charges for the commutation relations between ki and p j equal to the mass m
(cf. (12.115) and ensuing discussion). The strongly continuous unitary representation

of our concern is the one of
̂̃
SG m:

̂̃
SG m � (χ,g) 	→ χZ̃(m)

g ,

induced by unitary operators Z̃(m)
(c,c,v,U) (12.107):

(
Z̃(m)

(c,c,v,U)ψ̃
)

(k) := ei(cv−c)·(k−mv)ei c
2m (k−mv)2

ψ̃
(
R(U)−1(k−mv)

)
.
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Notice the Lie group
̂̃
SG m contains the subgroup spanned by h, corresponding to

the evolution operator on the system’s Hilbert space HS. Among the commutation
relations (12.106) defining the Lie algebra of S̃G (and valid on the central extension
̂̃
SG m), we are interested in the ones directly involving h:

[pi,h] = 0 , [ji,h] = 0 , [ki,h] =−pi i = 1,2,3. (13.65)

Adapting the proof of Theorem 13.37 to the representation
̂̃
SG m � (χ,g) 	→ χZ(m)

g ,
the first two brackets give

e−iτHe−iaPi = e−iaPi e−iτH (13.66)

and
e−iτHe−iaLi = e−iaLi e−iτH . (13.67)

Using Theorem 13.5 and Definition 13.29, these tell, in agreement with The-
orem 13.37:

(a) The three momentum components and the three orbital angular momentum com-
ponents are constants of motion (time-independent).

(b) The symmetries generated by these integrals of motion, i.e. the translations
along the axes and the rotations about the axes are (time-independent) dynam-
ical symmetries (see Examples 12.37 and (12.99), respectively, for the explicit
action on wavefunctions).

Let us tackle the third bracket in (13.65). A direct use of the Baker–Campbell–
Hausdorff formula is not trivial, even if technically possible with a bit of work, also
in the general case. To understand what this third identity corresponds to concerning
the associated one-parameter subgroups, let us study the matter in the Galilean group.
The subgroup generated by −h is the time displacement:

exp(τh) = (−τ ,0,0, I) τ ∈ R .

The subgroup generated by k j is a pure Galilean transformation along the jth axis
with unit vector e j:

exp(ak j) = (0,0,ae j, I) a ∈ R .

Immediately, then, the group law (12.101) gives

exp(τh)exp(ak j)exp(−τh) = exp(a(τp j +k j)) .

Applying the unitary representation these become

e−iτHe−aKj eiτH = e
−ia
(
τPj�DG

+Kj�DG

)

.

Therefore, if we define self-adjoint operators

Kjt := tPj �DG +Kj �DG j = 1,2,3,
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each observable is a constant of motion explicitly dependent on time, and each defines
a dynamical symmetry for every a ∈ R:

e−iaKjt e−itH = e−itHe−iaKj0 .

The dynamical symmetry e−iaKjt thus defines pure Galilean transformation along e j

at time t.

Remark 13.38. (1) It can be interesting to question about the meaning of the conser-
vation law of Kjt , which is not at all obvious. We remind that the boost is defined (see
(12.114)) as Kj =−mXj. Choosing ψ ∈DG and letting it evolve under the evolution
operator, ψt := e−itHψ , the conservation law for Kjt implies:

t(ψt |Pjψt)−m(ψt |Xjψt) = cost,

i.e.

〈Pj〉ψt = m
d
dt
〈Xj〉ψt . (13.68)

Hence the mean momentum of the particle is, in some sense, the product of the mass
times the velocity, the latter indicating the mean position of the particle. The result
is a priori not evident, since in QM the momentum is not the product of mass and
velocity.
(2) Suppose we work with a multi-particle system admitting the Galilean group as
symmetry group described by a unitary representation of a central extension associ-
ated to the total mass M (see Chapter 12). Identity (13.68) is at present proved in the
same way, and hence holds true. But now Pj is the component along e j of the total
momentum, and Xj the e j-component of the position vector of the centre of mass.
A similar relationship holds for systems invariant under the Poincaré group, and fol-
lows from invariance by pure Lorentz transformations. The term corresponding to the
total mass accounts for the energy contributions of the single components (like the
kinetic energies of the isolated points making the system), in conformity to equation
M = E/c2. �

This accounts for 9 first integrals, but we said there are 10 in total.
The attentive reader will have noticed there is still a dynamical symmetry around,

and a corresponding conservation law: energy! Namely, the obvious commutation
relation [h,h] = 0 holds on the Lie algebra, or [H,H] = 0 at the level of self-adjoint
generators, or [e−iτH ,e−iτ ′H ] = 0 for the exponentials. The last identity says, in agree-
ment with Theorem 13.37, that applying Theorem 13.5 and Definition 13.6:

• the Hamiltonian is a constant of motion;
• the symmetry generated by−H (the time displacement) is a dynamical symmetry.

The result is completely general and does not depend on having the Galilean group
as symmetry group; it suffices that the Hamiltonian exists.
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13.4 Compound systems and their properties

We met in Chapter 12 systems composed by subsystems and saw that the overall
Hilbert space is a tensor product of Hilbert spaces relative to the subsystems. But
this is actually an axiom of the theory. Compound systems bear a host of fascinating
non-classical features, which we will review in this section.

13.4.1 Axiom A7: compound systems

We are ready to state the seventh axiom of QM, the one about compound quantum
systems. For the mathematical contents we refer to the definitions and results of
Chapter 10.2.1.

A7. When a quantum system consists of a finite number N of subsystems, each de-
scribed on a Hilbert space Hi, i = 1,2, . . . ,N, the comprehensive system is described
on the Hilbert space

⊗N
i=1 Hi. Any observable Ai : D(Ai)→ Hi on the ith subsystem

(including elementary observables defined by orthogonal projectors) is identified in
the larger system with the observable I⊗·· ·⊗ I⊗Ai⊗ I⊗·· ·⊗ I.

Two are the types of compound systems we have already met: those made of ele-
mentary particles with internal structure, and multi-particle systems (elementary
particles with or without internal structure). In the first case the Hilbert space is
L2(R3,dx)⊗H0, where H0 is finite-dimensional and describes the particle’s internal
degrees of freedom: spin and charges of various sort (cf. Chapter 11). By elementary
particle with internal structure we mean that the internal space is finite-dimensional.
The literature, referring to systems of elementary particles with space H0, calls
L2(R3,dx) the orbital space or space of orbital degrees of freedom, and H0 the in-
ternal space or space of internal degrees of freedom. In case the space of internal
freedom degrees describes a (certain type of) charge, we should also keep possible
superselection rules into account.

We would like to make a few remarks on the Hamiltonian operator of multi-
particle systems, when the single Hilbert spaces are L2(R3,dx) with a fixed inertial
frame, and identifying R3 with the rest space via orthonormal Cartesian coordin-
ates. The Hilbert space of a system on N particles with masses m1, . . ., mN is the
N-fold tensor product of L2(R3,dx). From Example 10.27(1) this product is natur-
ally isomorphic to L2(R3N ,dx). Indicate by (x1, . . . ,xN) the generic point in R3N ,
where xk = ((xk)1,(xk)2,(xk)3) is the triple of orthonormal Cartesian coordinates of
the kth factor of R3N = R3 × ·· · ×R3. The natural isomorphism turns (prove it as
exercise) the position operator of the kth particle into the multiplication by the cor-
responding xk = ((xk)1,(xk)2,(xk)3), and the momentum into the unique self-adjoint
extension of the xk-derivatives (times −ih̄), for instance on D(R3N). The Hamilto-
nians of each particle, assumed free, coincide with the self-adjoint extension, say on
D(R3N), of the corresponding Laplacian −Δk =∑3

i=1
∂2

∂ (xk)2
i

times −h̄2/(2mk). Rely-

ing on Chapter 11.3.8, if the particles undergo interactions described classically by
a potential V = V (x1, . . . ,xN), the Hamiltonian is expected to be some self-adjoint
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extension of

H0 :=
N

∑
k=1

− h̄2

2mk
Δk +V (x1, . . . ,xN) .

For instance, particles with charges ek interacting with one another under Coulomb
forces and with external charges Qk are expected to have a self-adjoint extension of

H0 :=
N

∑
k=1

− h̄2

2mk
Δk +

N

∑
k=1

Qkek

|xk| +
N

∑
i< j

eie j

|xi−x j|

as Hamiltonian. As we explained in Chapter 10.4 and Examples 10.51, important
results mainly due to Kato imply, under natural assumptions on V , that not only H0

is essentially self-adjoint on standard domains like D(R3N) or S (R3N), but the only
self-adjoint extension is bounded below, thus making the system energetically stable.
This happens in particular for the operator with the Coulomb interaction presented
above (cf. Examples 10.51).

If the N particles have an internal structure, with internal Hilbert space H0k, the
overall system’s Hilbert space will be isomorphic to L2(R3N)⊗N

k=1 H0k, and the pos-
sible Hamiltonians are more complicated, usually. We encourage the reader to consult
the specialised texts [Mes99, CCP82, Pru81, ReSi80] for examples of this kin.

13.4.2 Entangled states and the so-called “EPR paradox”

A measuring device is not necessarily located at a point in space. On the contrary,
if we want to measure quantities defined in space, first and foremost the position
of a quantum particle, we must fill space with instruments: particle detectors that
measure the position. The process of reduction of the state described by axiom A3
is “instantaneous”. This means that once a device has detected the particle at the
point p and at time t, from that instant onwards no other device, as remote in space
as we want from the first detector, will be able to detect the particle. The reduction
of state therefore seems to be a nonlocal process: apparently it implies a “simul-
taneous” transmission of information between faraway places. This appears to viol-
ate the principles of the theory of relativity. In 1935 Einstein, Podolsky and Rosen
[Des99, Bon97, Ghi97, Alb94], considering systems of two particles, showed the
question can be phrased in physically-operative terms by which the violation seems
to materialise effectively [EPR35].

Axiom A7 describes the possible states of a compound quantum system. Let S
be a system made of two subsystems A, B. The Hilbert space of S is HS = HA⊗HB,
in the obvious notations. The vectors of HA⊗HB are not just of the factorised sort
ψA⊗ψB, with one simple tensor product, for there are linear combinations of these
products, too, like

Ψ =
ψA⊗ψB−ψ ′A⊗ψ ′B√

2
. (13.69)
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Pure states corresponding to unit vectors of the above form are said entangled pure
states6.

Consider the entangled state associated to theΨ of (13.69), and let us supposeψA

andψ ′A are eigenstates normalised to 1 of some observable GA with discrete spectrum
on system A, respectively corresponding to distinct eigenvalues a and a′. Assume the
same forψB,ψ ′B: they are unit eigenstates of an observable GB with discrete spectrum
on system B, with eigenvalues b � b′.

The discrete-spectrum observables GA, GB are, for instance, relative to internal
freedom degrees of the systems A and B. They can typically be components of the spin
or the polarisation of the particles. In that case the spaces HA, HB are also factorised
into orbital space and internal space.

Until we measure it, the quantity GA is not defined on the system, if the latter is
in the state given byΨ ; there are two possible values a, a′ with probability 1/2 each.
The same pattern is valid for GB. The minute we measure GA, reading – say – a (a
priori unpredictable, in principle), the state of the total system changes, in allegiance
to axiom A3, becoming the pure state of the unit vector

ψA⊗ψB .

The crucial point is the following: if the initial state is the entangled state Ψ , the
measurement of GA determines a measurement of GB as well: in the pure state asso-
ciated to ψA⊗ψB the value of GB is well defined, and equals b in our conventions.
Any measurement of GB can only give b.

Following the famous study of Einstein, Podolsky and Rosen, consider now com-
pound systems of two particles A, B, prepared in the entangled pure state of the vector
Ψ of (13.69), that move away from each other at great speed (i.e., the state’s orbital
part is the product of two very concentrated packets that separate rapidly from each
other). In principle we can measure GA and GB on the respective particles in distant
places and at so short lapses that no physical signal, travelling below the speed of
light, can be transmitted from one experiment to the other in good time.

If axiom A3 is to be valid, there should be a correlation between the outcomes:
every time the reading of GA is a (or a′), GB will give b (respectively, b′).
How can system A communicate to system B the outcome of the measurement of GA in
time to produce said correlations, without breaching the cornerstones of relativity?

This is a common situation in classical systems too, and in that case the explan-
ation is very easy: there is no superluminal communication between the systems, for
the correlations preexist the measurements. For example, let the observed quantities
GA, GB be some particle “charge” or the like, and suppose the overall system S has
charge 0 in the state in which it has been prepared, while the particles could have
charge ±1 corresponding to the aforementioned values a,a′ and b′,b. Then, if we
reason with classical particles, we have to conclude one particle has charge 1, the
other one −1. If the values of charge are preexistent, i.e. they exist before and in-
dependently of the fact we take a measurement to observe the charge, we can rest

6 Analogously, for mixed states: ρ ∈S(HA⊗HB) is entangled if it is not of the form ρA⊗ρB,
ρA ∈S(HA), ρB ∈S(HB).
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assured that if a particle has charge 1 when measured, the second one will give −1
when observed, irrespective of where and when charges are measured, because the
values are fixed beforehand.

The picture described by QM is, however, different: even if the state associated
toΨ has total charge G = GA +GB equal 0, the subsystems’s charges are not defined
on the state ofΨ , and become fixed at the time of the measurement (of either state).
Therefore the situation preexisting the measurement cannot be held responsible for
the correlations predicted by QM, if we accept the standard interpretation of QM.

The idea of Einstein, Podolsky, Rosen was that if said correlations were really
observed (as required by QM itself), and since defying the assumption of relativistic
locality was out of the question, the reason for the correlations was due to a preexist-
ing state to measurements. This being indescribable in the framework of the standard
formulation of QM would have proved that the standard formulation of QM was, by
nature, incomplete. (The probabilities used in QM, moreover, would reduce to mere
epistemic probabilities).

J. Bell, in a brilliant paper of 1964 [Bel64][Bon97, Ghi97], measuring at least
three types of “charges” producing correlations (in reality one measures three spin
components for massive particles or polarisation states of photons), proved it is pos-
sible to distinguish experimentally between two situations, where charges are:

(i) fixed before the measurements;

or

(ii) fixed at the same time of the measurements.

Bell proved that case (i) occurs only if a series of inequalities on the outcomes hold:
these are the celebrated Bell inequalities.

It is important to remark that a potential experimental infringement of Bell’s in-
equalities does not automatically validate the standard formulation of QM. Nonlocal
correlations, if observed experimentally, could in principle be justified without QM.
What is true is that Quantum Mechanics, in contrast to Classical Mechanics, fore-
casts the presence of said correlations and at the same time the violation of Bell’s
inequalities, as we will see in short.

13.4.3 Bell’s inequalities and their experimental violation

We will discuss briefly a simplified version of Bell’s inequalities as proposed by
Wigner. Take two particles A, B of spin 1/2 produced together, in a region O, in the
“singlet state”, i.e. in the unique pure state of zero total spin. Fix an inertial system
where the phenomenon is described. The entangled pure spin state is representable
byΨsing in the spin space HAspin⊗HBspin:

Ψsing =
ψ(n)

+ ⊗ψ(n)
− −ψ(n)

− ⊗ψ(n)
+√

2
, (13.70)

where each HAspin, HBspin is isomorphic to C2, since each particle has spin s = 1/2.
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Moreover,ψ(n)
+ andψ(n)

− are unit eigenvectors with respective eigenvalues 1/2,−1/2
for the spin operator Sn := n ·S along n (unit three-dimensional vector), for the single
particle (as usual, h̄ = 1). The decomposition (13.70) holds for the singlet stateΨsing,
irrespective of where the axis n is.

We suppose the particles part from each other. In other words the state’s orbital
part will, for example, be a product of wavefunctions, one in the orbital variables of
A and one in the orbital variables of B, given by packets concentrated around their
centres. The packets move away quickly from O in the chosen frame, so that the
packets never overlap when the spin measurements are taken on A and B (we will not
discuss the case of identical particles, which is practically the same). To study the
correlation of spin measurements that violate locality, actually, it is not even neces-
sary to assume the orbital part has the form we said. It suffices to place the devices
measuring spin in faraway regions OA, OB (and far from O), and make sure the axis
of the spin analyser of A in OA can be re-oriented during consecutive measurements
(see below) fast enough to prevent signals to propagate subluminally from OA and
reach OB during measurements on the spin of B. This setup was concretely put into
practice by Aspect’s experiments.

To fix ideas imagine OB is on the right of O and OA on the left. The spin meas-
urements in A and B (even two or more consecutive readings along distinct axes for
each particle) can be taken, independent of one another, along given independent
directions u,v,w, not necessarily orthogonal. Assume at last that N pairs AB in spin
singlet state are generated in O, and then each pair is analysed by spin measurements
on A, B in OA, OB along three given independent unit vectors u,v,w. Suppose that on
the N pairs the values of the spin components are fixed before measuring in OA and
OB, the contrary of what the standard formulation of QM predicts. In order to have
zero total spin, for each pair AB the spin triples (Su,Sv,Sw)A for A and (Su,Sv,Sw)B

for B must have opposite corresponding components. For instance, (+,−,+)A and
(−,+,−)B are admissible, whereas (+,+,+)A and (−,+,−)B are not (from now on
we abbreviate +1/2 with + and −1/2 with −). There are 8 possible combinations
altogether, tabled below.

Among the N pairs there will be N1 pairs (+,+,+) for A and (−,−,−) for B
irrespective of whether measured or not, N2 pairs (+,+,−) for A and (−,−,+)
for B irrespective of whether measured or not, and so on. At any rate we will have
N = ∑8

n=1 Nk.

part. A part. B
N1 (+,+,+) (−,−,−)
N2 (+,+,−) (−,−,+)
N3 (+,−,+) (−,+,−)
N4 (+,−,−) (−,+,+)
N5 (−,+,+) (+,−,−)
N6 (−,+,−) (+,−,+)
N7 (−,−,+) (+,+,−)
N8 (−,−,−) (+,+,+)
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With our “classical” hypotheses, every pair among the N examined must belong,
after it has been created, in one of the sets, independently of what sort of spin meas-
urements is taken. So let us suppose, for a certain pair, we measure Su on A finding
+, and Sv on B finding +. Then the pair can only belong to class 3 or 4, and there are
N3 +N4 possibilities out of N that this happens. If we call p(u+,v+) the probability
of finding + measuring Su on A and + measuring Sv on B, we have

p(u+,v+) =
N3 +N4

N
. (13.71)

Similarly

p(u+,v+) =
N2 +N4

N
, p(w+,v+) =

N3 +N7

N
. (13.72)

Since N2,N7 ≥ 0:

p(u+,v+) =
N3 +N4

N
≤ N2 +N4

N
+

N3 +N7

N
= p(u+,w+)+ p(w+,v+) ,

i.e. Bell’s inequalities hold:

p(u+,v+)≤ p(u+,w+)+ p(w+,v+) . (13.73)

These inequalities hold whatever is the basis of unit vectors (not necessarily ortho-
gonal) u,v,w, if the values of the spin components along them are defined before we
take the spin measurements and if the total spin of each pair is null. QM’s prediction
leads to a violation of the inequalities if we choose the axes suitably. Compute first
p(u+,v+) with the quantum recipe. Suppose the measure on A of Su is +. Measur-
ing Su on B will give (or has already given) −, by (13.70). Anyway, particle B will

have spin state represented by ψ(u)
− in the eigenvector basis of Su. So we can evaluate

p(u+,v+) as:

p(u+,v+) =
1
2

∣
∣
∣
(
ψ(u)
−
∣
∣
∣ψ(v)

+

)∣
∣
∣
2

, (13.74)

where 1/2 is the initial probability of having + on A when measuring Su in stateΨsing.
It is an easy exercise to compute the right-hand side of (13.74) in terms of the angle
θuv between u and v:

p(u+,v+) =
1
2

sin2
(
θuv

2

)

. (13.75)

The other terms in (13.73) are similar, so Bell’s inequality (13.73) is equivalent to:

sin2
(
θuv

2

)

≤ sin2
(
θuw

2

)

+ sin2
(
θwv

2

)

. (13.76)

It is not hard to see that a smart choice of angles invalidates the inequality. For ex-

ample θuv = π/2 implies sin2
(
θuv
2

)
= 1/2. Setting θuw = θwv = 2φ , the inequality

becomes
1
4
≤ sin2 φ ,

clearly contradicted by independent axes u,v,w with θuv = π/2 and θuw = θwv =
2φ ∈ (π/4,π/3).
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Remarks 13.39. Despite the whole theory has unfolded within the non-relativistic
formalism, one could already at this juncture raise an important question, unabated
when passing to the relativistic formalism. In the quantum commutation of p(u+,v+)
we assumed we had measured first the spin of A, and then the spin of B. If measure-
ments are taken in causally disjoint spacetime events – events that cannot be connec-
ted by future-directed timelike or spacelike paths – then the chronological order of
the events is conventional, and depends on the choice of (inertial) frame, as is well
known in special relativity. Thus we can find a frame where B is measured before
A. So the question is whether computing p(u+,v+) in this situation – that by the
principle of relativity is physically equivalent to the previous one – gives the same
result found earlier. Leaving behind the issue of a relativistic formalisation, the prob-
ability p(u+,v+) is easily seen not to change, since the particles’ spin observables
commute. We will return to this kind of problem later. �

Beginning from 1972 several experiments have been conducted to test the exist-
ence of the aforementioned correlations and the truth or falsity of Bell’s inequalities
(in particular, the decisive experiment was made in 1982 by A. Aspect, J. Dalibard
and G. Roger [Bon97, Ghi97]). Experiments have proved, within the acceptability
range of experimental errors, that (a) the nonlocal correlations predicted by QM do
exist, (b) Bell’s inequalities are violated.

Unless we deny the validity of the above experiments, therefore, and independ-
ent of whether we accept or not the standard formulation of Quantum Mechanics,
we must agree that the correlations anticipated by Quantum Mechanics exist, and the
outcomes are fixed at the moment of the measurements.

13.4.4 EPR correlations cannot transfer information

Although we developed QM in its non-relativistic version, the problems posed by the
EPR analysis do not substantially change in the relativistic framework. But one ques-
tion remains unanswered (we retain the conventions and notations of Chapter 13.4.2):

How does system A communicate to system B the outcome of the measurement of GA,
in time to produce the correlations we know of, and without destroying the corner-
stones of relativity?

The answer is quite intricate, and by no means conclusive. First we have to say
the question is ill posed, because it understates that the outcome of measuring GA

causes the outcome of GB. In spacetime regions where the two measurements are
taken (or can be taken) the latter are, in relativistic language, causally disjoint: there
is no future-directed “spacelike” or “timelike” path in spacetime joining them. Well
known from relativity is that there exists an inertial system in which A is measured
before B, and another one where the situation is opposite: B’s measurement precedes
in time A’s. So it makes no sense to say that the outcome of the experiment on B
is the consequence, or the cause, of the outcome on B. One could, notwithstanding,
resort to the partial conventionality of Einstein’s synchronisation procedure in order
to dismiss that problem. But despite the conventional choices underpinning special
relativity it is known that the correlations between causally disjoint events are “dan-
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gerous” in relativistic theories, for they can spawn causal paradoxes: with a chain of
causally disjoint events we can put two events in the history of a given system in any
chronological order whatsoever. If it were possible to use the correlations of causally
disjoint events to transfer information either way, we would be able to communicate
with the past (inside the light cone) and thereby obtain causal paradoxes.

It can be proved (see [Bon97] and references for a detailed study) that by accept-
ing the standard formulation of QM for systems made by entangled states like (13.69)
(but also general entangled mixed states), no piece of information can be transmit-
ted from (event) X , where part of the system is measured, to (event) Y , where the
other part is measured, by measuring arbitrary pairs of quantities and exploiting the
quantum correlations between the readings. Not only that, but observing the outcomes
on one part of the system we cannot establish whether on the other part measurements
have been taken, if they are being taken as we speak, nor if they will be taken in the
future.

Let us examine two ways of transferring information from X to Y via EPR cor-
relations.

• Consider the single pairs of measurements on A, B of the observables GA, GB,
which we know have correlated outcome. We cannot pass information from X to
Y using the correlation, because the outcome, albeit correlated, is completely acci-
dental. It is like having two coins A, B with the remarkable property that each time
one shows “heads”, the other one gives “tails”, independent of the fact they are
tossed far away, rapidly, and that A is tossed before or after B in some frame. The
coins, though, have a quantum character and it is physically impossible to force
one to give a certain result: the outcome of the toss is determined in a probabil-
istic way and whatever our wish is. Thus the two coins, i.e. our quantum system
made by parts A and B, cannot be used as a Morse telegraph of sorts to transmit
information between X and Y .

• The second possibility is to consider not the single measurements of GA and GB,
but a large number thereof, and study the statistical features of the outcome distri-
butions. The statistics of the measurements of GA migh be different according to
whether we measure GB as well, or whether we measure a new quantity G′

B. In this
way, by measuring or not measuring GB (and measuring G′

B or measuring noth-
ing at all) in Y , we can send an elementary signal to X , of the type “yes” or “no”,
that we recover by checking experimentally the statistics of A. We claim that this
procedure, neither, allows to transfer information, since the statistics relative to
GA is exactly the same in case we also measure GB (or any other G′

B) or we do not
measure GB. Consider the state ρ ∈ S(HA⊗HB) of the system composed by A,
B. Suppose GA = G(A)⊗ IB, with G(A) self-adjoint on HA, has discrete and finite

spectrum {g(A)
1 ,g(A)

2 , . . . ,g(A)
n }, with eigenspaces H

g(A)
k
⊂HA⊗HB as ranges of the

orthogonal projectors P(GA)
k := PG(A)

k ⊗ IB. Similarly, G(B) is self-adjoint on HB,

GB = IA⊗G(B) has spectrum {g(B)
1 ,g(B)

2 , . . . ,g(B)
m } discrete and finite, the eigen-

spaces H
g(B)

k
⊂ HA⊗HB are targets of orthogonal projectors P(GB)

k := IA⊗PG(B)

k .
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If we measure GB on state ρ reading g(B)
k , the post-measurement state is

1

tr
(

P(GB)
k ρP(GB)

k

)P(GB)
k ρP(GB)

k .

Considering all possible readings of B, if we measure first B and then A (in some
frame), the system we want to test on A is the mixture

ρ ′ =
m

∑
k=1

pk

tr
(

P(GB)
k ρP(GB)

k

)P(GB)
k ρP(GB)

k

where pk = tr(P(GB)
k ρP(GB)

k ) is the probability of reading g(B)
k for B. Altogether

ρ ′ =
m

∑
k=1

P(GB)
k ρP(GB)

k .

Hence the probability of getting g(A)
h for A, when B has been measured (irrespect-

ive of the latter’s outcome), is:

P(g(A)
h |B) = tr(ρ ′P(GA)

h ) = tr

(
m

∑
k=1

P(GB)
k ρP(GB)

k P(GA)
h

)

.

The trace is linear and invariant under cyclic permutations, so

P(g(A)
h |B) =

m

∑
k=1

tr(P(GB)
k ρP(GB)

k P(GA)
h ) =

m

∑
k=1

tr(ρP(GB)
k P(GA)

h P(GB)
k )

=
m

∑
k=1

tr(ρP(GB)
k P(GB)

k P(GA)
h ) .

In the last passage we used P(GB)
k P(GA)

h = P(GA)
h P(GB)

k from the structure of the pro-

jectors. On the other hand P(GB)
k P(GB)

k = P(GB)
k and ∑k P(GB)

k = I by the spectral
theorem. Therefore

P(g(A)
h |B) =

m

∑
k=1

tr
(
ρP(GB)

k P(GA)
h

)
= tr

(

ρ
m

∑
k=1

P(GB)
k P(GA)

h

)

= tr
(
ρP(GA)

h

)

= P(g(A)
h ) .

The final result is: the probability of obtaining g(A)
h from A when the quantity B

has been measured (with any possibile outcome) coincides with the probability
of obtaining g(A)

h from A without measuring B.

So even by considering the statistics of outcomes of A, there is no way to transmit
information by EPR correlations: when measuring part B of the system, the presence
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or the absence of the correlations is completely irrelevant if we observe only part A.
Therefore, Quantum Mechanics and Special Relativity seem to coexist peacefully. In
reality the above discussion turns a blind eye on whether spacetime is classical or re-
lativistic. Apparently, the lesson learned is that the processes of compound quantum
systems are not describable in spacetime. Only the outcomes of measurements, inter-
preted as states of macroscopic systems (detectors, meters, etc. . . ) can be described
in spacetime using events. Spacetime allegedly resembles an a posteriori structure
in which macroscopic phenomena are recorded, sometimes in relationship to micro-
scopic phenomena. But this is not the only possible way to look at things. The ap-
parent violation of locality due to the “collapse of the state” might in fact be a purely
speculative construction, related to an all-too-simplistic model of the measuring pro-
cedures. Furthermore, a careful analysis might reveal that spacetime categories carry
on being fundamental at the quantum level as well. In this respect see the recent study
[Dop09].

13.4.5 The phenomenon of decoherence as a manifestation of the
macroscopic world

It must be clear that the point of view outlined in the previous section must be con-
sidered as a starting point and not the end of the journey, at least until we understand,
experimentally, what a macroscopic/classical system is, what a microscopic/quantum
system is, and which are the reasons for switching from one regime to the other.

An interesting perspective for recovering the classical world from the quantum
one is based on the notion of decoherence [BGJKS00]. We present the main idea
quite rapidly (see in particular [Kup00], [Zeh00]). Consider a quantum system S in-
teracting with a quantum system E, the latter seen as the ambient where the evolution
takes place and that includes measuring instruments and any other object that interacts
with S. The evolution is described on the Hilbert space H = HS⊗HE by an operator
(unitary and strongly continuous) R � t 	→Ut . If ρ(0) is a state (mixed in general) of
the total system at time t = 0, measurements of observables on S at time t are taken
using an effective statistical operator ρS(t) of the form:

ρS(t) = trE
(
Utρ(0)U−1

t

)
, (13.77)

where trE(W ) denotes the partial trace with respect to E of the self-adjoint W ∈
B1(HS⊗HE) (we used it tacitly in the previous section as well). trE(W ) is the unique
self-adjoint operator in B1(HS) for which

∑
n∈N

(φ ⊗ψn|Wφ ⊗ψn) = (φ |trE(W )φ) , φ ∈ HS

in any basis {ψn}n∈N ⊂ HE . The role of the partial trace (for the subsystem E) is to
assign, in a natural way, a state (trE(W )) to the subsystem (S) with respect to which
the trace is not taken, whenever we have a state (W ) for the total system (S + E). If
an observable A⊗ IHE is bounded on S, as expected tr(AtrE(W )) = tr(A⊗ IHE W ).

The evolution given by (13.77), in general, cannot be expressed canonically by a
unitary evolution operator acting directly on ρS(0). This approach seems to account
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well for the experimental behaviour of many a system that interact intensely with
the ambient (like macromolecules). In certain cases the interaction with the ambi-
ent determines a collection {Pk}k∈K ⊂B(HS) of pairwise-orthogonal projectors, not
dependent on the overall state, for which almost instantaneously the state ρt satisfies:

ρS(t) = ∑
k∈K

PkρS(t)Pk .

Any mechanism due to the interaction of S and E that produces this situation is called
a decoherence process. In practice decoherence corresponds to a dynamical pro-
cedure that generates a superselection rule for S, whose coherent sectors are the
projection spaces of the Pk which give propositions about quantities that are typic-
ally considered completely classical. A mechanism of this sort (see [Kup00] and the
models therein) could shed light on the reasons why large molecules, for example,
have geometric features that vary with continuity and can be described in classical
terms. What is more, it could elucidate why certain macroscopic objects behave clas-
sically; perhaps it could explain, alternatively, what in the common interpretation of
the formalism goes under the name of collapse of the state (which in reality would
never occur) even though it is not clear how to justify the apparent violation of local-
ity [BGJKS00]. An elementary physical process leading to the superselection of the
mass, once assumed that the spectrum mass is a discrete set or positive reals, was
presented in [AnMo12].

13.4.6 Axiom A8: compounds of identical systems

The elementary particles of QM are identical particles. That they cannot be distin-
guished is formalised in QM in a precise way by keeping axiom A7 in account, as we
will see in a moment.

First we need a few technical results.

Definition 13.40. The permutation group on n elements Pn is the set of bijective
maps σ : {1,2, . . . ,n} → {1,2, . . . ,n} (called permutations of n objects) equipped
with composition product.
In particular, a permutation of two objects is a σ ∈Pn that restricts to the identity
on a subset of n−2 elements of {1,2, . . . ,n}.

To any σ ∈ Pn we associate a number (−1)σ ∈ {−1,+1} called its parity. If
σ is the product of an even number of permutations of two objects then (−1)σ := 1,
while if the number of permutaions is odd, (−1)σ :=−1. Despite the number of per-
mutations of two objects appearing in σ is not uniquely determined, the parity is, as
one can show.

Consider a Hilbert space H and its n-fold tensor product H⊗n :=
⊗n

i=1 H. Any
σ ∈Pn induces a unitary operator Uσ : H⊗n →H⊗n defined as follows. Pick a basis
N for H. By Proposition 10.25 the vectors ψ1⊗·· ·⊗ψn, with ψk ∈ N, k = 1,2, . . . ,n,
form a basis of H⊗n. If σ is an arbitrary permutation also ψσ−1(1)⊗·· ·⊗ψσ−1(n) will
give a basis for H⊗n. This basis, actually, is precisely the same one we had before
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acting by σ , up to rearrangements. Define Uσ : H⊗n → H⊗n as the unique bounded
operator satisfying

Uσ (ψ1⊗·· ·⊗ψn) := ψσ−1(1)⊗·· ·⊗ψσ−1(n) , ψk ∈ N, k = 1,2, . . . ,n.

Uσ is unitary for it preserves bases; moreover if φ1, . . .φn ∈ H are arbitrary (also not
in N), decomposing over the ψi and exploiting linearity and continuity gives

Uσ (φ1⊗·· ·⊗φn) := φσ(1)⊗·· ·⊗φσ(n) .

This proves half of the following proposition.

Proposition 13.41. Consider H⊗n :=
⊗n

i=1 H, where H is a Hilbert space, and the
permutation group Pn on n elements.

(a) If σ ∈Pn there exists a unique unitary operator Uσ : H⊗n → H⊗n such that:

Uσ (φ1⊗·· ·⊗φn) := φσ−1(1)⊗·· ·⊗φσ−1(n) , (13.78)

for any φ1, . . . ,φn ∈ H.
(b) U : Pn � σ 	→Uσ is a faithful unitary representation of Pn.

Proof. (a) The claim descends from the arguments preceding the proposition: just
define Uσ via a basis and check (13.78) holds for any φ1, . . . ,φn ∈ H. Two bounded
operators satisfying (13.78) coincide on a basis, hence everywhere (being bounded).
(b) By direct inspection (using the fact that σ−1 appears in the right-hand side of
(13.78)) (UσUσ ′)(φ1⊗·· ·⊗φn) = Uσ◦σ ′(φ1⊗·· ·⊗φn). Linearity and continuity im-
ply UσUσ ′ =Uσ◦σ ′ , making σ 	→Uσ a (unitary) representation of Pn. Faithfulness is
granted by U’s injectivity, since Uσ = I implies φσ−1(1)⊗·· ·⊗φσ−1(n) = φ1⊗·· ·⊗φn

for any orthonormal φ1, . . . ,φn ∈ H, hence σ−1 = id = σ . �

Physically, ifΨ ∈H⊗n is a pure state of a system made of n identical subsystems,
each described on its own Hilbert space H, the pure state of UσΨ is naturally inter-
preted as the state in which the n subsystems have been permuted under σ . The action
of Uσ extends to all states ρ ∈S(H⊗n) by the transformation that maps ρ to UσρU−1

σ .
As Uσ is unitary, the transformation preserves ρ’s positivity and trace (UσρU−1

σ is of
trace class if ρ is, because trace-class operators form an ideal), so UσρU−1

σ ∈S(H⊗n)
if ρ ∈S(H⊗n).

The permutation group’s action on states dualises to an action on propositions
P ∈P(H⊗n) on the system. The dual action, as usual, is given by the transformation
mapping P to U−1

σ PUσ . Since Uσ is unitary, U−1
σ PUσ is an orthogonal projector if P

is.
By the properties of the trace (Proposition 4.36(c))

tr
(
U−1
σ PUσ ρ

)
= tr
(
P UσρU−1

σ
)

.

As always, then, letting the permutation group act on states or on propositions is
physically the same for computing the truth probability of measured propositions.
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The natural interpretation of the transformation associating P to U−1
σ PUσ is to

take P and permute the subsystems with σ . The action of Uσ on propositions induces
an action on each PVM {P(A)(E)}E∈T (R) (associated to the observable A) that maps

it to a PVM {U−1
σ P(A)(E)Uσ}E∈T (R). From the spectral theorem we know the latter

action corresponds to transforming the observable A into U−1
σ AUσ . The physical

meaning is obvious in the light of previous considerations. Now we are ready to
state the axiom for compounds of identical systems.

A8. If a physical system S consists of n < +∞ identical subsystems, each described
on one copy of the Hilbert space H, physically-admissible propositions correspond
to the subset in P(H⊗n) of orthogonal projectors invariant under the permutation
group (cf. Proposition 13.41). Equivalently: P ∈P(H⊗n) makes physical sense on S
only if

U−1
σ PUσ = P , for every σ ∈Pn.

Therefore physically-admissible observables A on S are those whose spectral meas-
ures satisfy the above condition, i.e.

U−1
σ AUσ = A , for every σ ∈Pn.

Just for example, if we work with a compound of two identical particles of mass

m, with coordinates x(1)
i and x(2)

i , an admissible observable is the ith component of the

mean position (X (1)
i + X (1)

i )/2. Without going into details, using the spectral meas-

ures of X (1)
i and X (2)

i we can construct an admissible proposition (an orthogonal pro-
jector commuting with everyUσ ) corresponding to the statement: “one of the particles
has ith coordinate falling within the Borel set E”. Conversely, propositions like “
particle 1 has ith coordinate falling in the Borel set E” are not admissible.

13.4.7 Bosons and Fermions

At last, we would like to show one consequence of axiom A8 worthy of mention.
Consider the usual system S made of n identical subsystems. Take σ ∈Pn and the
λ -eigenspace of Uσ inside H⊗n:

(H⊗n)(σ)
λ := {Ψ ∈ H⊗n | UσΨ = λΨ} .

Note Uσ is unitary, so |λ |= 1.
Every meaningful proposition must commute with Uσ , so if the system’s state

Ψ ∈ (H⊗n)(σ)
λ is initially pure, following a measument by the admissible (true)

proposition P the state will be described by PΨ/||PΨ ||; this is in (H⊗n)(σ)
λ since

Uσ PΨ
||PΨ || = UσPΨ

||PΨ || = PUσΨ
||PΨ || = λ PΨ

||PΨ || . By taking measurements, therefore, we cannot

“make the system leave” the space (H⊗n)(σ)
λ if it was in a pure state described by a

vector in (H⊗n)(σ)
λ immediately prior to the measurement. Not even time evolution,
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at least under time homogeneity, “allows the system to leave” the space (H⊗n)(σ)
λ if it

was, at the initial time, in a pure state in (H⊗n)(σ)
λ . In fact, the Hamiltonian observable

H (being admissible) will have commuting spectral measure with Uσ . Consequently

e−itHUσ =
∫

σ(H)
e−ih dP(H)(h)Uσ = Uσ

∫

σ(H)
e−ih dP(H)(h) = Uσe−itH .

If UσΨ = λΨ , then UσΨt = Uσe−itHΨ = e−itHUσΨ = e−itHλΨ = λΨt , so Ψt ∈
(H⊗n)(σ)

λ , for any time t ∈ R. In case the evolution operator is not the exponential of
the Hamiltonian (lack of time homogeneity), under suitable assumptions one can still
prove the same result. This happens if, for instance, the evolution operator is given
by the Dyson series (see Proposition 13.19) for a special class of time-dependent
Hamiltonian observables. We have the following result.

Proposition 13.42. Suppose a compound system S is made of n < +∞ identical sub-
systems, each described on the same Hilbert space H, and at some time t0 the system
is in a pure state represented by a vector in (H⊗n)(σ)

λ for some σ ∈ Pn. Then the
evolution (in regime of time homogeneity), or a measurement, leaves the system in a
pure state represented by a vector in (H⊗n)(σ)

λ .

The experimental evidence not only confirms this fact, but shows that pure states
of a compound of identical particles in 4 dimensions (three for space plus time)

are determined by vectors in two subspaces only, built intersecting the (H⊗n)(σ)
λ .

(Moreover, mixtures are incoherent superpositions of pure states in those two sub-
spaces). To explain that fact we need a few comments.

Consider a permutation δ ∈ Pn of two elements, so δ ◦ δ = id and UδUδ = I.
As Uδ is unitary, Uδ is self-adjoint. Hence Uδ is an observable, actually a constant
of motion (exercise). Not just that: σ(Uδ ) ⊂ {−1,1} because σ(Uδ ) is contained
in R (Uδ is self-adjoint) and also in the unit circle in C (Uδ is unitary). Therefore
σ(Uδ ) = σp(Uδ ) because the spectrum consists of one or two isolated points. It is
easy to prove σp(Uδ ) = {−1,1}. In fact, if δ swaps the kth and jth elements, every
vector of H⊗n of the form

(ψ1⊗·· ·⊗ψk⊗·· ·⊗ψ j⊗·· ·⊗ψn)± (ψ1⊗·· ·⊗ψ j⊗·· ·⊗ψk⊗·· ·⊗ψn)

is an eigenvector of Uδ with eigenvaule ±1. From this follows, for any σ ∈Pn, that
Uσ admits the eigenvalues (possibly coinciding) 1 and (−1)σ . It is enough to write
Uσ = Uδ1

· · ·Uδm , where the σi are permutations of two elements. The intersections

(H⊗n)(σ)
+ := ∩m

i=1(H
⊗n)(δi)

+1 and (H⊗n)(σ)
− := ∩m

i=1(H
⊗n)(δi)

−1

are eigenspaces for Uσ with respective eigenvalues +1 and (−1)σ , since Uσ =
Uδ1

· · ·Uδm .
H⊗n has two physically-interesting closed subspaces, obtained from the intersec-

tions of all spaces of type (H⊗n)(σ)
+ and (H⊗n)(σ)

− , respectively, as σ ∈ Pn varies.
These are the totally symmetric product

(H⊗n)+ := {Ψ ∈ H⊗n | UσΨ =Ψ ,∀σ ∈Pn}
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and the totally skew-symmetric product

(H⊗n)− := {Ψ ∈ H⊗n | UσΨ = (−1)σΨ ,∀σ ∈Pn} .

Their physical relevance lies in that every known compound of identical particles has
pure states described by vectors either in (H⊗n)+ or in (H⊗n)−. Precisely, particles of
the first type, called Bosons (whose mixtures are incoherent superpositions of pure
states in (H⊗n)+), have integer spin; particles of the second type (whose mixtures
are incoherent superpositions of pure states in (H⊗n)−), called Fermions, have semi-
integer spin. This phenomenon is often referred to as the spin statistical correlation.
Within the non-relativistic formulation of QM there is no proof for this physical con-
straint on the structure of states, nor for the relationship to the value of spin. In it we
can only show, using Proposition 13.42, that if a system of particles has a Fermionic
behaviour, or a Bosonic behaviour, at time t0, it will maintain the behaviour so long
it is described by pure states. In the non-relativistic formulation there are states, com-
patible with Proposition 13.42, that are neither symmetric not skew-symmetric. One
says, in jargon, such systems obey a parastatistics. Particles of this sort have never
been observed.

Many authors (mainly W. Pauli) obtained within the relativistic formulation
of QM – more precisely the Relativistic Quantum Field Theory on 4-dimensional
Minkowski spacetime – a famous theorem, aptly called spin statistical correlation
theorem [StWi00]. It proves that the restriction on pure states and the spin statistical
correlation observed experimentally are consequences of the theory’s invariance un-
der the Poincaré group rather than the Galilean group. In three-dimensional spacetime
models there are compounds of identical particles that do not abide by Fermi’s statist-
ics, not Bose’s one. These are the so-called anions, useful in explaining phenomena
like the fractional quantum Hall effect [Ste08].

In conclusion we mention that when we deal with compounds of infinitely many
identical subsystems described on H, the natural Hilbert spaces to develop the theory
are the subspaces of the Fock space (Example 10.27(3)):

F+(H) :=
+∞⊕

n=0

(Hn⊗)+ and F−(H) :=
+∞⊕

n=0

(Hn⊗)− ,

called Bosonic Fock space and Fermionic Fock space generated by H. As usual
we assumed (H0⊗)± := C, and that the unique pure state determined by (H0⊗)± is
the vacuum state of the system. Within this framework lives quantum field theory,
for which fields are “replaced” by systems of infinitely many identical Bosonic or
Fermionic particles.

Exercises

13.1. Consider a mixed state ρ ∈S(H) and an orthogonal sum H =⊕k∈KHk, with K
finite or countable, associated to orthogonal projectors {Pk}k∈K .
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Using the strong topology define

ρ ′ := s-∑
k

PkρPk .

Prove ρ ′ is well defined and ρ ′ ∈S(H).

Hint. PkPh = 0 if k � h, s-∑k Pk = I, and ||ρ2|| ≤ 1. This allows to prove the series
converges strongly, using known properties of series of orthogonal vectors.
That ρ ′ is positive and ||ρ ′|| ≤ 1 follows by the construction and the similar properties
of ρ . Using a basis N of H, union of bases for each summand Hk, with Proposition 4.29
one proves ρ ′ is of trace class, plus trρ ′ = trρ = 1.

13.2. In relationship to Chapter 13.4.4, where the probability of measuring g(A)
k for

GA on part A of a quantum system is proven to be independent of the fact that GB is
measured on part B � A, prove that the result is valid for arbitrary observables (even
with continuous and unbounded spectrum). Assume the device measuring GB gives

as possible readings a countable disjoint family of Borel sets E(GB)
k whose union is

σ(GB).

13.3. Referring to (13.78) prove that UσUσ ′ = Uσ◦σ ′ .

Solution. By linearity and exploiting the fact that the operators are bounded and
everywhere defined, it is sufficient proving that

Uσ (Uσ ′(φ1⊗ . . .⊗φn)) = Uσ◦σ ′(φ1⊗ . . .⊗φn) .

Let us establish that identity. If σ ,σ ′ ∈Pn then:

Uσ (Uσ ′(φ1⊗ . . .⊗φn)) = Uσ (φσ ′−1(1)⊗ . . .⊗φσ ′−1(n)) .

Re-defining ui := φσ ′−1(i) so that uσ−1( j) := φσ ′−1(σ−1( j)), one finds

Uσ (Uσ ′(φ1⊗ . . .⊗φn)) = uσ−1(1)⊗ . . .⊗uσ−1(n)

= φσ ′−1◦σ−1(1)⊗ . . .⊗φσ ′−1◦σ−1(n) = φ(σ◦σ ′)−1(1)⊗ . . .⊗φ(σ◦σ ′)−1(n)

= Uσ◦σ ′(φ1⊗ . . .⊗φn) as wanted.

13.4. Consider a compound of n identical particles in H⊗n. Prove that under axiom
A8, if δ ∈Pn is a permutation on two elements, then Uδ is a constant of motion.

13.5. Prove that (H⊗n)+ and (H⊗n)− are orthogonal, that H⊗2 = (H⊗2)+⊕ (H⊗2)−
if n = 2, and that the previous fact is false already for n = 3.
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14

Introduction to the Algebraic Formulation
of Quantum Theories

I would like to make a confession which may seem immoral:
I do not believe absolutely in Hilbert spaces any more.

von Neumann, letter to Birkhoff
about the mathematical formulation of QM (1935)

In the last chapter of the book we offer a short presentation of the algebraic for-
mulation of quantum theories, and we will state and prove a central theorem about
the so-called GNS construction. We will discuss how to treat the notion of quantum
symmetry in this framework, by showing that an algebraic quantum symmetry can
be implemented (anti)unitarily in GNS representations of states invariant under the
symmetry.

As general references, mostly concerned with the algebraic formulation of
quantum field theories, we recall [Emc72], [Haa96], [Ara09], [Rob04], and the more
recent [Str05a, Str11] on the algebraic formulation of QM. On the mathematical side,
detailed and critical studies on the present material are [BrRo02] and [KaRi97].

We will routinely resort to the definitions and notions of Definition 3.48 through-
out the chapter.

14.1 Introduction to the algebraic formulation of quantum
theories

The fundamental Theorem 11.22 of Stone–von Neumann is stated in the jargon of
theoretical physics as follows:

All irreducible representations of the Weyl algebra with a finite, and fixed, number
of freedom degrees are unitarily equivalent,

or

All irreducible representations of the CCRs with a finite, and fixed, number of free-
dom degrees are unitarily equivalent.

The expression unitarily equivalent refers to the existence of a Hilbert-space iso-
morphism S, and the finite number of degrees of freedom is the dimension of the
symplectic space X on which the Weyl algebra is built.
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What happens then in infinite dimensions? Let us keep irreducibility, and suppose
we pass from X finite-dimensional – parametrising, e.g., the coordinates of a point-
particle in phase space – to X infinite-dimensional – describing a suitable solution
space to free Bosonic field equations, say. Then the Stone–von Neumann theorem no
longer holds. Theoretical physicists would say that

There exist non-equivalent CCR representations with an infinite number of freedom
degrees.

What happens in this stuation, in practice, is that one can find strongly continuous
irreducible representations π1, π2, on respective (separable) Hilbert spaces H1, H2, of
the Weyl ∗-algebra A := W (X,σ) (here thought of as C∗-algebra, with no change in
the results) associated to the physical system under exam (a quantised Bosonic field,
typically), that admit no isomorphism S : H1 → H2 satisfying:

Sπ1(a)S−1 = π2(a) , for any a ∈ A.

Pairs of this kind are called (unitarily) non-equivalent. Jumping from X being finite-
dimensional to infinite-dimensional corresponds to passing from Quantum Mechan-
ics to quantum field theory (possibly relativistic, and on curved spacetime). In these
situations (but not only), the existence of non-equivalent representations has often
to do with spontaneous symmetry breaking. The presence of non-equivalent repres-
entations of one single physical system (the pair (X,σ)) shows that a formulation in
a fixed Hilbert space is fully inadequate, and we must free ourselves of the struc-
ture of Hilbert space in order to lay the foundations of quantum theories in broader
generality.

This programme has been developed by and large, starting from the pioneer-
ing work of von Neumann himself, and is nowadays called algebraic formulation
of quantum (field) theories. Within this framework it was possible to formalise, for
example, field theories in curves spacetime in relationship to the quantum phenomen-
ology of black-hole thermodynamics.

14.1.1 Algebraic formulation and the GNS theorem

The algebraic formulation prescinds, anyway, from the nature of the quantum system
and may be stated for systems with finitely many freedom degress as well [Str05a].
The viewpoint falls back on two assumptions [Haa96, Ara09, Str05a, Str11] (which
somehow generalise the results of Chapter 7.4.6).

AA1. A physical system S is described by its observables, viewed now as self-adjoint
elements in a certain C∗-algebra AS with unit I associated to S.

AA2. An algebraic state on AS is a linear functional ω : AS → C such that:

ω(a∗a)≥ 0 ∀a ∈ AS, ω(I) = 1 ,

that is, positive and normalised to 1.
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Remarks 14.1. We can assign AS to S irrespective of any reference frame, provided
we assume that (active) transformations of the various frames are given by auto-
morphisms of AS. If the algebra depends on the frame, the time evolution with re-
spect to the given frame is described by a one-parameter group of ∗-automorphisms
{αt}t∈R, where αt : AS → AS is a ∗-homomorphism for any t ∈ R, α0 is the identity
and αt ◦αt ′ = αt+t ′ for t, t ′ ∈R. It is natural to demand weak continuity in t: for every
state ω on As, the map R � t 	→ ω(αt(a)) is continuous for every a ∈ AS.

In case the algebra of observables is independent of the reference frame, AS is
actually thought of as a net of algebras, i.e. described by a function O 	→ AS(O)
mapping to an algebra AS(O) any regular bounded region O in spacetime (stretch-
ing both in the space and time directions). From this point of view time evolution
is replaced by causal relations between algebras localised at spacetime regions that
are causally related, in particular when one belongs to the other’s future. The above
approach, thoroughly discussed for the first time in the crucial paper of Haag and
Kastler [HaKa64], is the modern stepping stone to develop algebraic field theory in
the local and covariant formulation. �

We have to remark that AS is not seen as a concrete C∗-algebra of operators on
a given Hilbert space, but remains an abstract C∗-algebra. Physically, ω(a) is the
expectation value of the observable a ∈ A in state ω .

There have been a host of attempts to account for assumptions AA1 and AA2 in
full generality (see the study of [Emc72], [Ara09] and [Str05a, Str11]), and especially
the work of I. E. Segal based on so-called Jordan algebras). Yet none seems to be
definitive [Stre07]. The most evident justification of an algebraic approach lies in its
powerfulness [Haa96].

The set of algebraic states on AS is a convex subset in the dual A′S of AS: if ω1 and
ω2 are positive and normalised linear functionals, ω = λω1 +(1−λ )ω2 is clearly
still the same for any λ ∈ [0,1].

Hence, just as we saw for the standard formulation, we can define pure algebraic
states as extreme elements of the convex body.

Definition 14.2. An algebraic stateω :A→C on the C∗-algebra with unitA is called
a pure algebraic state if it is extreme in the set of algebraic states. An algebraic state
that is not pure is called mixed.

Later we will show that the space of states is not empty and compact in the ∗-weak
topology. Consequently, pure states exist.

Surprisingly, most of the entire abstract apparatus introduced, given by a C∗-
algebra and a set of states, admits elementary Hilbert space representations when a
reference algebraic state is fixed. This is by virtue of a famous procedure that Gel-
fand, Najmark and Segal came up with, and that we prepare to present [Haa96, Ara09,
Str05a].

Theorem 14.3 (GNS theorem). Let A be a C∗-algebra with unit I and ω : A→ C a
positive linear functional with ω(I) = 1. Then
(a) there exist a triple (Hω ,πω ,Ψω), where Hω is a Hilbert space, πω : A→ B(Hω)
a A-representation over Hω andΨω ∈ Hω , such that:
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(i) Ψω is cyclic for πω : πω(A)Ψω is dense in Hω ;
(ii) (Ψω |πω(a)Ψω) = ω(a) for every a ∈ A.

(b) If (H,π,Ψ) satisfies (i) and (ii), there exists a unitary operator U : Hω → H such
thatΨ = UΨω and π(a) = Uπω(a)U−1 for any a ∈ A.

Proof. (a) For a start we will build the Hilbert space. We will refer to the ele-
mentary theory of Hilbert spaces of Chapter 3. Let us define the quadratic form
〈x,y〉ω := ω(x∗y), x,y ∈ A. This is a Hermitian semi-inner product by the requests
made on ω , so for the seminorm pω(x) :=

√〈x,x〉ω the Schwarz inequality

ω(x∗y)≤
√
ω(x∗x)

√
ω(y∗y) (14.1)

holds for ω . Call Gelfand ideal the set Iω := {x ∈ A | pω(x) = 0}. Since pω is a
seminorm and by (14.1) Iω is a subspace of A. Actually Iω is a left ideal in A, i.e.
yx ∈Iω for any x ∈Iω , y ∈ A. In fact by (14.1):

0≤ pω(yx)4 = ω(x∗y∗yx)2 ≤ ω(y∗yxx∗y∗y)ω(x∗x) = 0 .

Hence we may define the vector space Dω := A/Iω , quotient of the vector space A
by the ideal Iω . The elements of Dω are thus cosets [x] for the equivalence relation
A: x ∼ y ⇔ x− y ∈Iω . The vector space structure is naturally inherited by A, and
makes α [x]+β [y] := [αx +βy] meaningful, for any α ,β ∈ C, x,y ∈ A. That Iω is
a subspace guarantees the structure is well defined. Since Iω is also the left ideal of
zeroes of the seminorm associated to the semi-product 〈 , 〉ω , as we just showed,

([x] |[y] )ω := 〈x,y〉ω ∀x,y ∈ A , (14.2)

is a well-defined Hermitian inner product on Dω . Introduce the Hilbert space Hω ,
completion of Dω for said inner product, which we continue to indicate with (14.2)
on the entire Hω . The representation πω is defined in the natural way on the dense
subspace Dω = A/Iω ⊂ Hω as:

(πω(a))([b]) := [ab] .

Dω is by construction invariant under every πω(a). At last, letΨω := [I], so that as
a ∈ A vary, the set of vectors πω(a)Ψω = [a] fills the space Dω , dense in Hω by
construction. Therefore Ψω is cyclic, as needed. It is easy to see that, by construc-
tion, A � a 	→ πω(a) is linear on the dense domain Dω (hence it has an adjoint) and
satisfies, for any a,b,c ∈ A, μ ∈ C:

(i) πω(a)πω(b) = πω(ab);
(ii) πω(a)+πω(b) = πω(a+b);
(iii) μπω(a) = πω(μa);
(iv) (πω(b)Ψω |πω(a)πω(c)Ψω )ω = (πω(a∗)πω(b)Ψω |πω(c)Ψω )ω .

The last fact, equivalent to

πω(a)∗�Dω= πω(a∗) ,



14.1 Introduction to the algebraic formulation of quantum theories 671

follows by

(πω(b)Ψω |πω(a)πω(c)Ψω )ω = ([b] |[ac] )ω = ω(b∗ac) = ω ((a∗b)∗c)

= ([a∗b] |[c] )ω = (πω(a∗)πω(b)Ψω |πω(c)Ψω)ω .

By construction, for a ∈ A:

ω(a) = ω(I∗aI) = ([I]|[a][I])ω = (Ψω |πω(a)Ψω )ω . (14.3)

To finish (a) it is enough to prove that every operator πω(a) : Dω → Hω is bounded,
so it extends uniquely to a bounded operator on Hω , because Dω ⊂ Hω is dense. We
will call the extended operators with the same names πω(a). Thus properties (i)–(iv)
are still valid, by continuity. In particular, the operators being bounded, (iv) implies
πω(a)∗ = πω(a∗), so the map πω : A→B(Hω) is a ∗-representation.

To prove the boundedness of the πω(a), we begin by showing ω is continuous.
We will only assume that the linear functional ω is positive, without using ω(I) = 1.
If h ∈ A is normal, since |σ(h)| ≤ ||h|| by the features of the spectral radius, The-
orem 8.36(c) gives σ(h±||h||I)≥ 0. By Theorem 8.25, h±||h||I= c∗c, so the positiv-
ity and linearity of ω allows to say ω(h)±||h||ω(I)≥ 0, meaning |ω(h)| ≤ω(I)||h||.
In turn this implies ω is a bounded linear functional. In fact, if y ∈ A is any ele-
ment, y∗y is self-adjoint and so normal. Using the above result gives immediately
|ω(y∗y)| ≤ ω(I)||y∗y||. Finally, (14.1) with x = I says

|ω(y)|4 ≤ ω(I)2 ||y∗y||2 = (ω(I)||y||)2 ,

hence ||ω || ≤ ω(I). On the other hand, from |ω(I)|= ω(I) and ||I||= 1 we have

||ω ||= ω(I) .

In our case, as ω(I) = 1, we obtain ||ω ||= 1.
If ω(x∗x) > 0 we can repeat the argument for the linear functional

A � z 	→ ρ(z) :=
ω(x∗zx)
ω(x∗x)

,

by construction linear, positive and such that ρ(I) = 1; therefore ||ρ|| = ρ(I) = 1.
We conclude that the state ω satisfies

ω(x∗y∗yx)≤ ||y∗y||ω(x∗x) ,

holding also for ω(x∗x) = 0 because the Cauchy-Schwarz inequality forces 0 ≤
ω(x∗y∗yx) = ω((x∗y∗y)x)≤ √ω((x∗y∗y)∗(x∗y∗y))

√
ω(x∗x). Consequently

||(πω(y))([x])||ω = ||[yx]||ω =
√
ω(x∗y∗yx)≤

√
||y∗y||
√
ω(x∗x)≤ ||y|| ||[x]||ω ,

and so ||πω(y)|| ≤ ||y||. This ends part (a).
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(b) Just asking Uπω(a)Ψω := π(a)Ψ for any a∈A determines a densely-defined iso-
metric operator, which we called U . This is well defined because, for πω(a)Ψω =
πω(a′)Ψω , π(a)Ψ = π(a′)Ψ , for in fact

||π(a−a′)Ψ ||2 = ω((a−a′)∗(a−a′)) = ||πω(a−a′)Ψω ||2ω .

U is isometric for the same reason:

||Uπω(a)Ψω ||2 = ||π(a)Ψ ||2 = ω(a∗a) = ||πω(a)Ψω ||2ω .

Hence we can extend U to H to a continuous isometric operator with the same name.
Similarly, let us construct an isometric operator V : H→Hω as the unique continuous
extension of Vπ(a)Ψ = πω(a)Ψω . By continuity, and using the density of π(A)Ψ ,
follows UVΦ =Φ for everyΦ ∈H. Therefore U is onto, beside isometric, so unitary.
Ψ = UΨω and π(a) = Uπω(a)U−1, a ∈ A, are obvious by construction. �

The GNS theorem shows that given a algebraic state, the observables ofA are still
represented by (bounded) self-adjoint operators on a Hilbert space Hω , where the ex-
pectation value of ω takes the usual form (Ψω |π(a)Ψω) with respect to a reference
vectorΨω . The latter vector allows to recover the whole Hilbert space by means of
the representation πω itself, as we said in the GNS theorem (a), part (i). The reader
should notice that, however, not all algebraic states on A are represented by positive
trace class operators in Hω as we shall discuss shortly.

The representation πω need not be injective, i.e. faithful. From the proof we see
immediately

Proposition 14.4. The GNS representation πω : A→ B(Hω) of the algebraic state
ω on the C∗-algebra with unit A is faithful if and only if the Gelfand ideal of ω is
trivial: Iω = {0}. Equivalently, ω(a∗a) > 0 for any a ∈ A\{0}.

Algebraic states with trivial Gelfand ideal are called faithful.
A technical result that was proved in passing, during the proof, and that is useul

in itself, is the following.

Theorem 14.5 (Continuity of positive functionals). If ω is a positive functional on
the C∗-algebra A with unit I, ω is continuous and ||ω ||= ω(I).

There is a useful technical corollary to the GNS theorem that deserves being stated
and proved.

Corollary 14.6. Let ω be an algebraic state on the C∗-algebra A with unit, and
(Hω ,πω ,Ψω) an associated GNS triple.

(a) If ψ : A→ C is positive and ψ ≤ ω (ω −ψ is positive), there exists a unique
T ∈B(Hω) such that

ψ(b∗a) = (πω(b)Ψω |Tπω(a)Ψω)ω ∀a,b ∈ A .

Moreover 0≤ T ≤ I and T ∈ πω(A)′ (T commutes with each πω(a), a ∈ A).
(b) Conversely, if 0 ≤ T ≤ I and T ∈ πω(A)′, then ψ(a) := (Ψω |Tπω(a)Ψω)ω , for
every a ∈ A, is a positive functional with ψ ≤ ω .
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Proof. (a) Take ψ as in the assumptions. Since

|ψ(b∗a)|2 ≤ ψ(b∗b)ψ(a∗a)≤ ω(b∗b)ω(a∗a) = ||[b]||ω ||[a]||ω ,

setting ψ ′([b], [a]) := ψ(b∗a), Riesz’s theorem warrants the existence of T ∈B(Hω)
with ψ ′([b], [a]) = ([b]|T [a])ω . In other terms ψ(b∗a) = (πω [b]Ψω |Tπω(a)Ψω). Fur-
thermore, by construction:

([b] |(Tπω(a)−πω(a)T )[c] )ω = ψ(b∗ac)−ψ((a∗b)∗c) = ψ(b∗ac)−ψ(b∗ac) = 0 .

(b) is immediate. �

Remark 14.7. (1) The cyclic vectorΨω is a unit vector, by (a) (ii) in the GNS the-
orem, since a = I and ω(I) = 1.
(2) Irrespective of the way one proves the GNS theorem, the ∗-representation of C∗-
algebras with unit πω must be continuous, because of Theorem 8.22, and must also
satisfy ||πω(a)|| ≤ ||a|| for any a ∈ A. In addition, the same theorem implies πω is
isometric (||πω(a)||= ||a|| for any a ∈ A) precisely when it is faithful (one-to-one).
(3) We saw in Chapter 7.4.6 that if we restrict to the C∗-algebra B∞(H) of compact
operators on a Hilbert space H, algebraic states on it are exactly the positive operat-
ors of trace class with unit trace. Now the C∗-algebra has no unit, because in infinite
dimensions the identity operator is never compact. Algebraic states wanted ||ω ||= 1
replacing ω(I) = 1. But these two, for C∗-algebras with unit, are equivalent, by The-
orem 14.5. �

If ω is an algebraic state on A, every statistical operator on the Hilbert space of
a GNS representation of ω – i.e. every positive, trace-class operator with unit trace
T ∈B1(Hω) – determines an algebraic state

A � a 	→ tr (Tπω(a)) ,

evidently. This is true, in particular, for Φ ∈ Hω with ||Φ ||ω = 1, in which case the
above definition reduces to

A � a 	→ (Φ |πω(a)Φ)ω .

To this end we have

Definition 14.8. If ω is an algebraic state on the C∗-algebra with unit A, every al-
gebraic state on A obtained either from a density operator or a unit vector, in a GNS
representation of ω , is said normal state of ω . Their set Fol(ω) is the folium of the
algebraic state ω .

Note that in order to determine Fol(ω) one can use a fixed GNS representation
of ω . In fact, as the GNS representation of ω varies, normal states do not change, as
implied by part (b) of the GNS theorem.

The folium of a state ω of the algebra of observables A can be naïvely thought
of as the set of algebraic states arising from the action of observables of A on ω ,
possibly through a limiting process.
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By the GNS theorem, namely, every unit vectorΦ ∈Hω is the limit of πω(bn)Ψω
as n → +∞, provided we choose bn ∈ A suitably. Hence, the GNS theorem implies
that the algebraic state associated to Φ , an element of Fol(ω), can be always com-
puted as

ωΦ(a) = (Φ |πω(a)Φ)ω = lim
n→+∞

ω(b∗nabn) .

The other algebraic states in the folium of ω are determined by positive, trace-class
operators T ∈ B(Hω) with unit trace. Decomposing T spectrally as infinite convex
combination T = s-∑i pi(Φi| )Φi, we can eventually write ωT (a) =∑i piωΦi(a), and
fall back into the previous case.

In caseA is a von Neumann algebra of operators on H, normal states are as follows
(recall that there is already a natural representation of A, the one over A itself).

Definition 14.9. Looking at a von Neumann algebra R⊂B(H) on the Hilbert space
H as a C∗-algebra, a normal state of R is an algebraic state ω that can be writ-
ten as ω(A) = tr(ρωA) for some positive ρω ∈B1(H) with unit trace, and for every
A ∈B(H).

It can be proved that any given C∗-algebra with unit always admits states (hence
a convex set of states). We will prove this fact within Lemma 14.22. We can ask
whether pure states exist, i.e. if the set of states of a C∗-algebra with unit contains
extreme elements. The answer is yes, and one proves that every algebraic state can
be obtained as a limit of a sequence of a convex combination of pure states, in the
∗-weak topology.

Theorem 14.10. The set S(A) of algebraic states of a C∗-algebra with unit A is
bounded, and a convex, compact subset of A′ in the ∗-weak topology. Moreover S(A)
coincides with the ∗-weak closure of the convex hull of pure states (which is therefore
non-empty).

Proof. By Theorem 14.5 the convex set S(A) is contained in the closed unit ball
inside the dual of A. The latter is ∗-weakly compact, by Theorem 2.76 of Banach–
Alaoglu. As the set of states is closed in that topology (the proof is straightforward), it
is also compact in the dual of A and convex. The Krein–Milman Theorem 2.77 guar-
antees the set of extreme algebraic states is not empty, and the closure of its convex
hull is S(A). �

14.1.2 Pure states and irreducible representations

We devote this section to an important relationship between pure algebraic states and
irreducible representations of the algebra of observables: ω is pure if and only if the
representation πω is irreducible. To prove it we need the following lemma.

Lemma 14.11. An algebraic state φ on a C∗-algebra with unit A is pure if and only
if φ =ψ1 +ψ2 for positive functionals ψi :A→C, i = 1,2, implies ψi = λiφ for some
λ1,λ2 ∈ C.
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Proof. If φ is not pure, it is not extreme in the set of of algebraic states, so φ =
1
2φ1 + 1

2φ2 for φ1 � φ � φ2. Defining ψi := 1
2φi, we see that φ = ψ1 +ψ2, where

ψ1 � λ1φ irrespective of λ1. Let us assume φ is pure, conversely. First, if λ ∈ (0,1)
and φ = λφ1 +(1− λ )φ2 for some states φi, then φ = φ1 = φ2. So assume such φ
satisfies φ = ψ1 +ψ2, for ψ1, ψ2 positive functionals. We claim ψi = λiφ for some
numbers λi.

If ψi(I) = 0 for i = 1 or i = 2, then ψi = 0 by Theorem 14.5, and the conclu-
sion would follow trivially. Then we suppose ψ(I) � 0, i = 1,2. Define φi(a) :=
ψi(I)−1ψi(a). Then φi is a state and φ = λφ1 +(1−λ )φ2, with λ =ψ1(I) and 1−λ =
φ(I)−ψ1(I)=ψ2(I). By what we said above φ1 = φ2 = φ , henceψi =ψi(I)φ , i = 1,2.

�

Now the announced result can be stated.

Theorem 14.12 (Characterisation of pure algebraic states). Letω be an algebraic
state on the C∗-algebra with unit A and (Hω ,πω ,Ψω) a corresponding GNS triple.
Then ω is pure if and only if πω is irreducible.

Proof. By Schur’s lemma (see esp. Remark 11.17), πω is irreducible iff πω(A)′ =
{cI}c∈C. By Corollary 14.6, πω(A)′ = {cI}c∈C iff 0 ≤ ψ ≤ ω implies ψ = cω for
some c ∈ C. But 0 ≤ ψ ≤ ω iff ω = ψ+(ω −ψ), ψ ≥ 0 and ω−ψ ≥ 0. Thus we
conclude πω is irreducible iff ω = ψ1 +ψ2, ψi ≥ 0, hence ψi = λiω for some choice
of λi. The previous lemma tells πω is irreducible iff ω is pure. �

Now we have two important consequences that relate pure states to irreducible
representations of a C∗-algebra with unit.

Corollary 14.13. Let ω be a pure state on the C∗-algebra with unit A and Φ ∈ Hω a
unit vector. Then

(a) the functional
A � a 	→ (Φ |πω(a)Φ)ω ,

defines a pure algebraic state and (Hω ,πω ,Φ) is a GNS triple for it. In that case, GNS
representations of algebraic states given by non-zero vectors in Hω are all unitarily
equivalent.
(b) Unit vectors Φ ,Φ ′ ∈ Hω give the same (pure) algebraic state if and only if
Φ = cΦ ′ for some c ∈ C, |c| = 1, i.e. if and only if Φ and Φ ′ belong to the same
ray.

Proof. (a) Consider the closed space MΦ := πω(A)Φ ; we will show it coincides with
Hω . By construction π(a)MΦ ⊂MΦ for a ∈ A, so MΦ is closed and πω -invariant. As
the representation is irreducible, necessarily MΦ = Hω or MΦ = {0}. The latter case
is impossible because πω(I)Φ = Φ � 0. Now the claim is clear by construction, be-
cause (Hω ,πω ,Φ) satisfies the GNS assumptions for a triple of an algebraic state
given by Φ as above, which is pure because the GNS representation is irreducible.
The last statement is obvious since all GNS representations can be constructed as
above. The unitary transformation between two such is always the identity operator.
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(b) If Φ = cΦ ′ the two vectors give the same pure algebraic state. If, conversely,
two unit vectors determine the same pure algebraic state, i.e. (Φ |πω(a)Φ)ω =
(Φ ′|πω(a)Φ ′)ω for every a ∈ A, then we decompose Φ = cΦ ′ +Ψ with Ψ ortho-
gonal to Φ ′. In this way

(Φ |πω(a)Φ)ω = |c|2(Φ ′|πω(a)Φ ′)ω + c(Ψ |πω(a)Φ ′)ω + c(Φ ′|πω(a)Ψ)ω ,

whence

(1−|c|2)(Φ ′|πω(a)Φ ′)ω = c(Ψ |πω(a)Φ ′)ω + c(Φ ′|πω(a)Ψ)ω .

Choose a = I, so that |c| = 1. Back to Φ = cΦ ′ +Ψ , we obtain Ψ = 0 because
1 = ||Φ ′||2 = |c|2 + ||Ψ ||2. �

Corollary 14.14. If A is a C∗-algebra with unit, every irreducible representation
π : A→ H is a GNS representation of a state pure.

Proof. Let Ψ ∈ H be a unit vector. As the representation is irreducible, π(A)Ψ is
dense in H. It is easy to see that (H,π,Ψ) is a GNS triple for ω(·) = (Ψ |π(·)Ψ). The
latter state is pure by irreducibility. �

Examples 14.15. (1) For commutative C∗-algebras with unit the following charac-
terisation of pure states holds.

Proposition 14.16. If A is a commutative C∗-algebra with unit, a state ω : A→ C is
pure if and only if it is multiplicative: ω(ab) = ω(a)ω(b) for any a,b ∈ A.

Proof. ω pure implies πω irreducible, but πω(a) commutes with every other πω(b)
since A is commutative. By Schur’s lemma πω(A) = {cI | c ∈ C}. Using the GNS
theorem gives ω(ab) = ω(a)ω(b). Conversely if ω is multiplicative, by the GNS
theorem we can write (πω(a∗)Ψω |πω(b)Ψω)ω = (πω(a∗)Ψω |Ψω)ω(Ψω |πω(b)Ψω)ω ,
soΨω , alone, is a basis of Hω , because πω(A)Ψω is dense in Hω . Therefore Hω has
dimension 1, and all its operators are numbers; in particular, πω(A)′ = {cI | c ∈ C},
which means πω is irreducible by Schur’s lemma. �

(2) The next example does not originate in QM. Take a compact Hausdorff space X
and the commutative C∗-algebra with unit C(X) of C-valued continuous maps on X,
equipped with the usual pointwise algebraic operations, involution given by complex
conjugation and norm || ||∞. If μ denotes a Borel probability measure on X, then

ωμ : C(X) � f 	→
∫

X
f dμ

defines an algebraic state on C(X). The GNS theorem then gives a triple (Hμ ,πμ ,Ψμ)
where: Hμ = L2(X,dμ), (πω( f )ψ)(x) := f (x)ψ(x) for every x ∈ X, ψ ∈ Hμ and
f ∈C(X). The cyclic vectorΨω coincides with the constant map 1 on X.

It can be checked that pure states are the Dirac measures δx concentrated at points
x ∈ X. In this sense probability measures can be understood as “thick” points. �
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Remarks 14.17. Consider, in the standard (not algebraic) formulation, a physical
system S described on the Hilbert space HS and a mixed state ρ ∈ S(H). The map
ωρ :B(H) � A 	→ tr(ρA) defines an algebraic state on the C∗-algebra B(HS). By the
GNS theorem, there exist another Hilbert space Hρ , a representation πρ : B(HS)→
B(Hρ) an a unit vectorΨρ ∈ Hρ such that

tr(ρA) = (Ψρ |πρ(A)Ψρ)

for A ∈B(HS). Thus it seems that the initial mixed state has been transformed into a
pure state! How is this fact explained?

The answer follows from Theorem 14.12:Ψρ does not correspond to any vector
U−1Ψρ in HS under a unitary transformation U : HS → Hρ with UAU−1 = πρ(A). In
fact the representationB(HS)� A 	→ A∈B(HS) is irreducible, whereas πρ cannot be
irreducible because the state of ρ is not an extreme point in the space of non-algebraic
states, and so it cannot be extreme in the larger space of algebraic states.

This example should clarify that the correspondence pure (algebraic) states vs.
state vectors, automatic in the standard formulation, holds in Hilbert spaces of GNS
representations of pure algebraic states, but in general not for mixed algebraic states.

�

14.1.3 Hilbert space formulation vs algebraic formulation

Withholding the point of view adopted up to Chapter 13 included, in which one starts
from a given Hilbert space HS, the C∗-algebra AS of observables associated to a sys-
tem S can be, in the limit situation, the whole space of bounded operators B(HS). A
choice that makes more physical sense is to define the algebra of observables as a
C∗-subalgebra with unit in B(HS), typically having the structure of a von Neumann
algebra RS (Example 3.44(3)), generated by the PVMs of the system’s observables
(in the sense of Remark 3.41(2)). Making this a von Neumann algebra implies strong
closure, thus allowing to integrate spectral meaures, at least in bounded measurable
functions, and still obtain elements of the algebra. Taking bounded operators is no
major restriction from the physics’ point of view. Any observable A represented by
an unbounded self-adjoint operator, namely, is physically the same as the sequence of
observables represented by bounded self-adjoint operators An :=

∫
(−n,n]λdP(A)(λ ),

n = 1,2, . . .. For the time being we will assume AS =RS =B(HS), and later return to
the general case, when superselection rules are turned on.

Clearly every state ρ ∈ S(HS) determines a (normal) algebraic state on the C∗-
algebraB(HS) by setting ωρ(A) := tr(ρA), A∈B(HS). From what we said, a state in
S(HS) is pure iff it is algebraically pure in the C∗-algebraB(HS). The set of algebraic
states on B(HS) coming from positive trace-class operators with unit trace does not
exhaust all algebraic states on B(HS), but only a small part of them.

Nevertheless, viewing the C∗-algebra of observables as a specific C∗-algebra of
operators on a Hilbert space (possibly the entire algebra of bounded operators) in the
general framework of the algebraic formulation would be a backslide in the theory,
for it would lead to assume theoretically the existence of a privileged Hilbert space
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where states are described. This would rule out, for systems with infinitely many
degrees, a host of states corresponding to non-unitarily equivalent representations,
which do exist and have a meaning.

In the general case observables are therefore taken to form an abstract C∗-algebra
A; the Hilbert space representation is fixed only after a state ω has been given, and is
the Hilbert space Hω of the GNS construction. At that point, in the Hilbert space the
C∗-algebra may be enlarged to a von Neumann algebra (still C∗), simply by taking
the πω(A)′′ generated by πω(A). Notice that as πω(A)′′ is closed in the weak, strong
and uniform topologies, there are elements in πω(A)′′ that are not limits in π(A) in
the uniform topology (coinciding with the topology of A under πω ). These elements
do not correspond to elements of A, and cannot be considered, in this sense, “true ob-
servables of the system”, independent of the choice of state. In particular elementary
propositions like: “the reading of a falls in the Borel set E” are not usually thinkable
as elements of A, i.e. observables. These should correspond to maps χE(a), where
the function of the self-adjoint a is defined via continuous functional calculus under
the representation Φa : C(σ(a))→ A of Theorem 8.36. But χE �C(σ(a)) in general.
We can make sense of these observables only after having fixed a state, working in
its GNS representation. At this juncture the abstract formulation appears to part evid-
ently from the elementary formulation, which is based on a preexisting Hilbert space
and the fundamental nature of elemenary propositions about observable readings.

The process of reduction of the state, that follows the outcome of a measurement,
should be treated likewise. Take an observable a ∈ A, suppose the system is in the
pre-measurement state ω , and let the (ideal) reading of a fall in the Borel set E. After
the measurement the state is

ωE : A � b 	→ (Ψω |PEπω(b)PEΨω)
(PEΨω |PEΨω)

,

where PE is the PVM element of the self-adjoint operator πω(a) corresponding to the
Borel set E.

It would, actually, be possible to narrow down the gap between the two formula-
tions in the following manner. From Chapter 8 we know that the integral of a bounded,
measurable map in a PVM on the Hilbert space H is defined using the uniform topo-
logy, which is the natural topology of the C∗-algebra B(H). Hence one could always
ask the C∗-algebra A of observables of a physical system be generated by the p ∈ A
that have the same features of orthogonal projectors in Hilbert spaces: p = pp and
p∗ = p. These elements correspond to orthogonal projectors in the Hilbert space of
any GNS representation of A. Therefore one could choose the elements p, using GNS
representations of physically meaningful states, so to obtain the PVMs of the relevant
observables, whence also the (bounded measurable) maps of those observables.

In a general setup it is further reasonable to suppose the C∗-algebra Awhose self-
adjoint elements represent observables is simple.

Definition 14.18. A C∗-algebra A is simple if its only closed two-sided ideals that
are invariant under the involution are A and {0}.
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The reason for wanting simple algebras is that then every non-trivial representa-
tion (whether GNS or not), on whichever Hilbert space, is faithful, i.e. injective hence
isometric, as the next proposition proves.

Proposition 14.19. If A is a simple C∗-algebra with unit and π : A→ B(H) a non-
zero representation on the Hilbert space H, then π is faithful (one-to-one) and iso-
metric.

Proof. The null space of π : A→ B(H) is a two-sided ideal in A that is closed (π
is continuous by Theorem 8.22) and invariant under the involution, as is immedi-
ate to see. As the trivial representation maps everything to the zero operator, our
representation must be injective because Ker(π) = {0}, and so isometric by The-
orem 8.22. �

This means every operator representation of a simple C∗-algebra with unit faith-
fully represents the algebra, quite literally.

Sometimes the C∗-structure is too rigid, whereas a ∗-algebra with unit is better
tailored to described observables. This is the case when one studies Bosonic quantum
fields without using Weyl C∗-algebras. The key part of the GNS theorem is still valid.
In fact, we have the following version of the GNS theorem, whose proof is an easy
consequence of the above.

Theorem 14.20 (GNS theorem for ∗-algebras with unit). LetA be a ∗-algebra with
unit I and ω : A→ C a positive linear functional with ω(I) = 1. Then

(a) there exists a quadruple (Hω ,Dω ,πω ,Ψω) made of a Hilbert space Hω , a sub-
space Dω ⊂ Hω , a linear map πω : A→ L(Dω ,Hω) and an elementΨω ∈Dω , such
that:

(i) Dω is πω(a)-invariant for every a ∈ A, since Dω = πω(A)Ψω ;
(ii) Ψω is cyclic for πω : Dω is dense in Hω ;
(iii) πω : A→ πω(A) is an algebra homomorphism satisfying: πω(I) = I and

πω(a∗) = πω(a)∗�Dω , a ∈ A ;
(iv) (Ψω |π(a)Ψω) = ω(a), a ∈ A.

(b) If (H,D ,π,Ψ) fulfills (i)–(iv), there exists a unitary operator U : Hω → H such
thatΨ = UΨω , D = UDω and π(a) = Uπω(a)U−1 for any a ∈ A.

Now the function πω is not (necessarily) continuous. The operators πω(a) do
not belong in B(Hω), in general. Every operator πω(a) is closable in Dω by The-
orem 5.10(b), since the domain contains the dense subspace Dω , making πω(a)∗
densely defined.

A general quantum theory, formulated algebraically, seeks to find, among the im-
mense collection of algebraic states on a C∗-algebra of observables in a given phys-
ical system, those states with some meaning. We refer to the aforementioned readings
for an in-depth study of such a wide-ranging topic. We shall return to this point at
the end of the next section, although usually it is physics that suggests the choice
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of some privileged state ω . For instance, the referene state of quantum field theories
in the lack of gravity (Minkowski’s flat spacetime) and without interactions is the
so-called vacuum state, which corresponds to the absence of particles associated to
the field in question, and is invariant under the Poincaré group. The picture changes
abruptly when “turning on gravity”, i.e. introducing curvature on the spacetime: the
absence of the Poincaré symmetry, in general, does not allow to select one’s favourite
(algebraic) state uniquely, but rather an entire class of states, most of the time what
are known as Hadamard states [Wald94]. These enable to make sense of renormal-
isation, and also define important observables such as the energy-momentum tensor
(cf. [Mor03], for example).

14.1.4 Superselection rules and Fell’s theorem

We want to emphasise how the algebraic formulation permits to handle situations –
necessary on physical grounds, as we said – in which non-unitarily equivalent rep-
resentations of the same algebra AS of observables of a given system S coexist. Such
representations are associated to pair of distinct algebraic states giving inequivalent
GNS representations.

Recall that given a C∗-algebra with unit A representing the observables, pure
states determine every irreducible representation (all GNS representations, as we
saw). We may decompose the set of pure states, i.e. of irreducible representations, in
equivalence classes under the relation:

ω1 ∼ ω2 if and only if πω1 � πω2 .

These classes have a meaning in relationship to superselection rules (see
Chapter 11.1, 7.4.5), as Haag noticed.

To go into the matter we need to take a step back. We return to the standard for-
mulation in the Hilbert space, though revisited under the algebraic light, and consider
a quantum theory that admits superselection rules: these require an observable Q (like
the electric charge) to be always defined, with arbitrary value q, on pure normal states.
We will assume for a moment that the possible values are countable, so to have closed,
pairwise orthogonal coherent sectors HSqi in the separable Hilbert space HS. The HSqi

are the eigenspaces of Q with eigenvalues qi. The algebra of (bounded) observables
(see Remarks 7.47, 11.2) is the von Neumann algebra AS := RS generated by the or-
thogonal projectors in P(HS) (hence all bounded operators) that commute with the
projectors Pqk onto the HSqk . In other words RS := ({Pqk | k ∈ N}′)′′ = {Pqk | k ∈ N}′.
ClearlyRS has a non-trivial centre, that contains Pqk , and states are now viewed as nor-
mal algebraic states on RS. Therefore each coherent sector is invariant under every
physically admissible observables, and on every sector there will be a representa-
tion of the observable algebra obtained by restricting observables to the closed in-
variant space. Every value qk that Q can take gives a coherent sector HSqk . Distinct
choices of qk produce unitarily inequivalent representations. In fact, if q1 � q2 on
HSq1 and HSq2 , Q is represented by different multiples of the identity q1I and q2I;
thus Uq1IU−1 = q1I � q2I whichever unitary U : HSq1 → HSq2 we take. If more than
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one superselection rule is activated, Wightman [Wigh95] conjectured1 that the rules
are associated to pairwise compatible observables Q j in the centre of RS. Assuming
Wightman is right, the Hilbert space splits in an orthogonal sum of coherent sectors
common to all superselecion rules. On each sector all charges of the superselection
rules are defined simultaneously, and on the single sector we have a representation
of all the observables of the system. These representations are mutually unitarily in-
equivalent, and they are also taken to be irreducible representations of the observable
algebra in case they describe the physical system completely. In the standard descrip-
tion we have used that the Hilbert space HS = ⊕k∈NHSk is somehow “too big”, be-
cause not all vectors ψ ∈ HS define physical pure (normal, algebraic) states. Only
those belonging to a single sector HSk do so (this is easily proved), and every irredu-
cible algebra representation is in one coherent sector only. Furthermore, there exist
several representations for the same normal state. The vectorψ =∑k∈Nψk ∈HS, with
ψk ∈ HSk, carries the same amount of information of ψ ′ = ∑k∈N eiαkψk, with αk ∈ R
fixed arbitrarily, and of the incoherent superposition ρψ = ∑i∈Nψi(ψi| · ). In fact:
(ψ |Pψ) = (ψ ′|Pψ ′) = tr(ρψP) for every P ∈P(HS)∩RS (P commutes with coher-
ent projectors) and the identity extends to (ψ |Aψ) = (ψ ′|Aψ ′) = tr(ρψA), for A∈RS,
by the spectral theorem. Each normal state, seen as statistical operator, decomposes
as convex combination (in general infinite, with respect to the uniform topology) of
pure normal states, by the spectral decomposition theorem for compact operators.
For the sake of completeness we note that we could consider the situation where the
centre of RS contains observables with continuous spectrum, and then one would
speak of continuous superselection rules [Giu00]. If so, things get more complicated
because HS is no longer an orthogonal sum of coherent subpaces (a direct integral
is necessary). Still, by the Krein–Milman Theorem 2.77, we can write normal states
of RS as combinations (infinite, in the ∗-weak topology) of extreme algebraic states.
That said, though, these extreme elements are usually not normal but just algebraic
states, if we view RS as a C∗-algebra. In this sense – concerning the notion of state –
continuous superselection rules lead naturally to the algebraic formulation.

Let us start from the algebraic formulation, based on a C∗-algebra of observables
and the general notion of algebraic state – thus freeing ourselves from Hilbert spaces
and von Neumann algebras as the characterising structures of a physical system. The
picture now is suddenly more straighforward, for the use of C∗-algebras eschews
convoluted argumentations and technical complications. Extending Wightman’s as-
sumption, in the algebraic formalism, superselection rules are accounted for by ob-
servables Q in the centre of the C∗-algebra AS of observables, i.e. the subalgebra of
elements commuting with all of AS. Every pure algebraic state ω , corresponding to
an irreducible representation of the algebra of observables, must inevitably select a

1 In non-Abelian gauge theories, like quantum chromodynamics, every admissible state must
be invariant under a unitary representation of the gauge group. Self-adjoint operators gener-
ating the Lie algebra cannot be simultaneously defined on admissible states, because they do
not commute with one another by hypothesis. Then self-adjoint operators do not represent
observables, and the selection of admissible states is not due to Wightman’s superselection
rule.
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value of Q in the GNS representation by Schur’s lemma, as πω(Q) commutes with
all elements. That is to say, πω(Q) = qI for some q ∈ R (now the values may be
uncountable, since the separable Hilbert space is not unique). Exactly as before, two
pure algebraic states ω ,ω ′ with distinct q � q′ produce inequivalent GNS represent-
ations, so there is no unitary operator U : Hω → Hω ′ such that Uπω(a)U−1 = πω ′(a)
for each a ∈ AS (this identity is false for a = Q).

In general we expect that families of non-equivalent pure states (i.e. of inequival-
ent irreducible representations) can be labelled by distinct values of a charge of sorts,
corresponding to a central observable. Eventually, the existence of superselection
charges might be the reason for the existence of inequivalent irreducible representa-
tions of theC∗-algebra of observablesAS. It is worth observing the new superselection
rules can anyway show up in a specific GNS representation ofAS associated to a state
ω , in case we think the algebra, in such representation, as the von Neumann algebra
πω(AS)′′: this is larger than πω(AS), so in general it has a non-trivial centre even if
AS does not. (See [Prim00] for this point, in particular concerning the interpretation
of central observables of πω(AS)′′ as classical observables.)

We suggest to consult [Haa96] to find an exhaustive treatise on superselection
rules in the algebraic formalism. Let us just make one general comment. We saw
how the space of pure states decomposes in disjoint families of states giving inequi-
valent representations, and the states of a same family can be viewed as state vectors
on one Hilbert space. So we would like to know, given a pure state ω , if it is possible,
experimentally speaking, to say which family it belongs to. The answer is not simple,
as shown by a theorem proved by Fell: in the case of pure states on a C∗-algebra with
unit, this says that pure states in a given family are dense in the set of all pure states
for the ∗-weak topology. Let us explain why this abstract fact is relevant. In the real
world we can conduct only a finite (arbitrarily large) number of experiments. Sup-
pose we can measure N observables a1,a2, . . . ,aN . The accuracy is finite, so the true
value αi of the reading ω(ai) of ai is given up to εi > 0:

|ω(ai)−αi|< εi , i = 1,2, . . . ,N .

Now observe that the numbers αi and εi determine a neighbourhood in the space of
states with respect to the ∗-weak topology. Fell’s result implies that it is not possible
to establish to which family a given pure state ω belongs using an arbitrarily large,
but finite, number of measurements with arbitrarily small, yet finite, errors.

One way to simplify the problem [Haa96] is to choose a priori a family of pure
states with some ad hoc criterion. Supposing, for instance, that the algebra is spatially
localisable, we may assume that outside a certain region the physical system is absent.
Then all states of interest are those that outside a given and arbitrarily large region
resemble the vacuum state, when we measure on it observables localised outside the
region.
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14.1.5 Proof of the Gelfand–Najmark theorem, universal
representations and quasi-equivalent representations

The GNS construction has a purely mathematical consequence known as Gelfand–
Najmark theorem (stated in Chapter 8), that proves every C∗-algebra with unit can
be realised as a C∗-algebra of operators on a Hilbert space, even if not uniquely. To
prove the result we need a few technical lemmas.

Lemma 14.21. Let A be a C∗-algebra with unit I. Any bouned linear functional
φ : A→ C with φ(I) = ||φ || is positive.

Proof. We will make use of Theorem 8.25, and, a usual, r(c) will denote the spectral
radius of c. Without loss of generality we assume φ(I) = 1. Let a ∈ A be positive
and set φ(a) = α + iβ , with α ,β ∈ R. We have to show α ≥ 0 and β = 0. For
small s ≥ 0: σ(I− sa) = {1− st | t ∈ σ(a)} ⊂ [0,1], since σ(a) ⊂ [0,+∞); hence
||I− sa|| = r(I− sa) ≤ 1. Therefore 1− sα ≤ |1− s(α + iβ )| = |φ(I− sa)| ≤ 1, so
α ≥ 0. Now define βn := a−αI+ inβ I, n = 1,2, . . .. Then

||bn||2 = ||b∗nbn||= ||(a−αI)2 +n2β 2
I|| ≤ ||a−αI||2 +n2β 2 .

Consequently

(n2 +2n+1)β 2 = |φ(bn)|2 ≤ ||a−αI||2 +n2β 2 n = 1,2, . . .

and then β = 0. �

Lemma 14.22. Let A be a C∗-algebra with unit and a ∈ A.

(a) If α ∈ σ(a) there exists a state φ : A→ C such that φ(a) = α .
(b) If a � 0, there exists a state φ : A→ C with φ(a) � 0.
(c) If a = a∗, there exists a state φ : A→ C such that |φ(a)|= ||a||.
Proof. (a) For any complex numbers β ,γ we have αβ + γ ∈ σ(βa + γI), so |αβ +
γ| ≤ ||βa+ γI||. Hence asking φ(βa+ γI) := αβ + γ defines (unambiguously) a lin-
ear functional on the subspace {βa + γI | β ,γ ∈ C} such that φ(a) = α , φ(I) = 1
and ||φ || = 1. By a corollary to the Hahn–Banach theorem, we can extend φ to a
continuous linear functional on A satisfying ||φ || = φ(I) = 1. The previous lemma
guarantees that the functional is a state on A with φ(a) = α .
(b) If a = a∗ and a � 0, then σ(a) � {0}, for otherwise the properties of the spec-
tral radius of self-adjoint elements would imply ||a||= r(a) = 0. Then the state φ of
part (a) satisfies φ(a) � 0 for α ∈ σ(a)\{0}. Consider when a � a∗, a � 0. Then we
can decompose a = b + ic with b = b∗, c = c∗. If φ(a) = 0 for any state φ : A→ C,
we would have 0 = φ(a) = φ(b) + iφ(c) for any φ . But the GNS theorem implies
φ(d) = φ(d) for d = d∗. Hence φ(b) = φ(c) = 0 for any φ . Since c and d are self-
adjoint, the proof’s starting argument forces b = c = 0 so a = 0. As this was excluded,
there must exist a state with φ(a) � 0.
(c) In the case examined, since ||a|| = sup{|λ | |λ ∈ σ(a)} and σ(a) is compact in
R, there must be an element Λ ∈ σ(a) with |Λ | = ||a||. Using part (a) with α = Λ
proves the claim. �
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Now we are ready to state and prove the Gelfand–Najmark theorem.

Theorem 14.23 (Gelfand–Najmark). For any C∗-algebra with unit A there exist a
Hilbert space H and an (isometric) ∗-isomorphism φ : A→B, where B⊂B(H) is a
C∗-subalgebra of B(H).

Proof. For every x∈A\{0} let us fix a state φx :A→Cwith φx(x)� 0. This state ex-
ists by part (b) of the above lemma. Consider the collection of GNS triples (Hx,πx,Ψx)
associated to each φx, and the Hilbert sum

H :=
⊕

x∈A\{0}
Hx .

In this way the elements of H are ψ =⊕x∈A\{0}ψx := {ψx}x∈A\{0} such that:

∑
x∈A\{0}

||ψx||2x < +∞ . (14.4)

On H we have an inner product making it a Hilbert space:

(ψ |ψ ′) = ∑
x∈A\{0}

(ψx|ψ ′x)x .

Define the map π : A→B(H) by imposing:

π(0) := 0 and (π(a)ψ)x := πx(a)ψx for ψ ∈ H, a ∈ A\{0} .

It is not hard to see π is a ∗-homomorphism of C∗-algebras with unit mapping A to
B(H). In particular, ||π(a)|| ≤ ||a||, as prescribed by Theorem 8.22. In fact if (14.4)
holds, since Theorem 8.22 gives ||πx(a)|| ≤ ||a||, we obtain

||π(a)ψ ||2 = ∑
x∈A\{0}

||πx(a)ψx||2x ≤ ||a||2 ∑
x∈A\{0}

||ψx||2x = ||a||2||ψ ||2 < +∞ .

To end the proof it suffices to show π is isometric. By Theorem 8.22(a) that is equi-
valent to injectivity. Suppose π(a) = 0, so πx(a)ψx = 0 for any x ∈ A\{0}, ψx ∈Hx.
In particular φx(a) = (Ψx|πx(a)Ψx) = 0, so choosing x = a gives φa(a) = 0. But this
is not possible if a � 0. Therefore a = 0 and π is one-to-one, so isometric. �

The Gelfand–Najmark theorem enables us to introduce an extremely useful tech-
nical tool called the universal representation of a C∗-algebra with unit.

Let A be a C∗-algebra with unit and denote by S(A)⊂ A′ its convex set of algeb-
raic states, by (Hω ,πω ,Ψω) the GNS representation of state ω ∈ S(A). Consider the
Hilbert sum

⊕
ω∈S(A) Hω . Its elements ⊕ω∈S(A)ψω := {ψω}ω∈S(A) satisfy

∑
ω∈S(A)

||ψω ||2ω < +∞ . (14.5)

The space
⊕
ω∈S(A) Hω is a Hilbert space for the inner product

(ψ |ψ ′) = ∑
ω∈S(A)

(ψω |ψ ′ω)ω .
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The universal representation of A is the representation:

Π : A→B
⎛

⎝
⊕

ω∈S(A)

Hω

⎞

⎠ given by Π

⎛

⎝
⊕

ω∈S(A)

ψω

⎞

⎠ :=
⊕

ω∈S(A)

πω(a)ψω .

Definition 14.24. Let π : A→ B(H) be a representation of the ∗-algebra A on the
Hilbert space H. A subrepresentation of π is a representation of the form π�H0 :
A→B(H0), where the subspace H0 ⊂ H is closed and π-invariant.

Clearly any GNS representation of a C∗-algebra with unit is a subrepresentation
of the universal representation. Then the next easy, but useful, fact holds.

Proposition 14.25. The universal representation of any given C∗-algebra with unit
is faithful and isometric.

Proof. That a representaion is faithful implies, by Theorem 8.22, that it is isomet-
ric. Faithfulness descends immediately from the fact that Π , as subrepresentation,
contains the representation π used in the proof of the Gelfand–Najmark theorem (the
latter is injective). �

Eventually we mention a result on the structure of the folium of an algebraic state.
First, a notation and an important definition.

Notation 14.26. Let π :A→B(H) be a representation of the ∗-algebraA, and n a car-
dinal number. Then we denote by nπ the representation on

⊕n
i=1 Hi, Hi := H defined

by
nπ(a)(⊕n

i=1ψi) :=⊕n
i=1π(a)ψi for any a ∈ A, ψi ∈ H . �

Definition 14.27. Two representations π1 : A→B(H1), π2 : A→B(H2) of the same
∗-algebra A are called quasi-equivalent, written

π1 ≈ π2 ,

if they are unitarily equivalent up to multiplicities. Equivalently, there exist cardinals
n1, n2 such that n1π1 � n2π2.

For example (indicating (A⊕B)(u⊕ v) := Au⊕Bv)

π : A→B(H) and π1 : A � a 	→ π(a)⊕Uπ(a)U−1 ∈B(H⊕H′)

are quasi-equivalent if U : H→ H′ is a unitary operator. Unitarily equivalent repres-
entations are obviously quasi-equivalent. And quasi-equivalence is an equivalence
relation. About this (see [Haa96] and [BrRo02, vol. 1]) we have

Proposition 14.28. LetA be a C∗-algebra with unit andω :A→C an algebraic state
with GNS representation πω .

(a) If π1 and π2 are representations of A, π1 ≈ π2 if and only if the von Neumann
algebras π1(A)′′, π2(A)′′ are ∗-isomorphic as ∗-algebras, and the ∗-isomorphism re-
stricts to a ∗-isomorphism from π1(A) to π2(A).
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(b) The GNS representations ofA generated by states in Fol(ω) are quasi-equivalent.
In particular, if ω = λω1 +(1−λ )ω2, with λ ∈ (0,1) and ω1 � ω , the GNS repres-
entation of ω1 is unitarily equivalent to a GNS subrepresentation of ω .
(c) If π is a representation of A and π ≈ πω , then π is a GNS representation of a state
in Fol(ω).

14.2 Example of a C∗-algebra of observables: the Weyl C∗-algebra

This section is devoted to the simplest non-trivial C∗-algebra of observables used
in physics. We are talking about the Weyl C∗-algebra involved in the description
of several systems, among which non-interacting Bosonic quantum systems. Almost
all systems that are describable using a Weyl C∗-algebra can also be described by
weakening the observables’ structure to a ∗-algebra. Yet Weyl C∗-algebras are math-
ematically attractive, motivating our interest.

14.2.1 Further properties of Weyl ∗-algebras W (X,σ)

Keeping in mind Chapter 11.3.4, let (X,σ) be a symplectic space: a pair consisting
of a real vector space X of any even dimension (possibly infinite), henceforth non-
trivial, and a weakly non-degenerate symplectic form σ : X×X → R. Let W (X,σ)
denote the Weyl ∗-algebra of (X,σ) introduced in Definition 11.25. We know (The-
orem 11.26) it is defined up to ∗-isomorphisms. We wish to explain that it is possible,
and in a unique way, to enlarge W (X,σ) to a C∗-algebra called the Weyl C∗-algebra
associated to (X,σ). More precisely, we will exhibit on W (X,σ) a unique norm sat-
isfying the C∗ property: ||a∗a|| = ||a||2. The Weyl C∗-algebra is then defined to be
the completion of W (X,σ) for that norm. In order to prove all this we need a few
preliminary facts that form the contents of the section. Various procedures exist, and
distinct (equivalent) formulations, that prove the ensuing properties (see [BrRo02] in
particular). We will essentially follow the approach of [BGP07].

Lemma 14.29. Let X be a non-trivial real vector space, σ : X×X→R a weakly non-
degenerate symplectic form, and consider a Weyl ∗-algebra W (X,σ) associated to
the system.

(a) There exists a norm || || on W (X,σ) satisfying the C∗ property: ||a∗a|| = ||a||2
for any a ∈W (X,σ).
(b) If ψ ∈ X, the generator W (ψ) is unitary, so for the above norm ||W (ψ)||= 1.
(c) If ψ ,φ ∈ X, ψ � φ , in the above norm

||W (ψ)−W (φ)||= 2 ,

so W (X,σ) is not separable.
(d) If we set, for any a ∈W (X,σ):

||a||c := sup{p(a) | p : W (X,σ)→ [0,+∞) is a C∗ norm} ,

then || ||c is a C∗ norm.
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Proof. (a) Let us focus again on the construction of W (X,σ) of Theorem 11.26(a).
Consider the complex Hilbert space H := L2(X,μ) where μ is the counting measure
on X. For u ∈ X the operators W (u) ∈ B(L2(X,μ)), (W (u)ψ)(v) := eiσ(u,v)ψ(u+ v)
for ψ ∈ L2(X,μ), v ∈ X, define a Weyl ∗-algebra associated to (X,σ): W (X,σ) ⊂
B(H). The norm || || of B(H) satisfies the C∗ property. Starting from a different
representation W ′(X,σ), || || induces a C∗ norm on W ′(X,σ) by means of the ∗-
isomorphism α : W (X,σ)→W ′(X,σ) of Theorem 11.26(c).
(b) From the Weyl relations W (ψ)W (ψ)∗ = W ∗(ψ)W (ψ) = I, so W (ψ) is unitary.
The C∗ property implies ||W (ψ)||= 1.
(c) Let us complete W (X,σ) with respect to the norm || || of (a), so to obtain a C∗-
algebra. By Weyl’s relations we have W (χ)W (φ −ψ)W (χ)−1 = e−iσ(χ,φ−ψ)W (φ −
ψ). Since W (φ −ψ) is unitary, σ(φ −ψ)⊂ {z ∈ C | |z|= 1}. By definition of spec-
trum

σ(W (χ)W (φ −ψ)W (χ)−1) = σ(W (φ −ψ)) = e−iσ(χ,φ−ψ)σ(W (φ −ψ)) .

Sinceψ � φ ,σ(χ,φ−ψ) covers the wholeR as χ varies in X. Henceσ(W (φ−ψ)) =
{z ∈ C | |z| = 1}. Therefore σ(eiσ(ψ,φ)W (φ −ψ)− I) is the unit circle in C centred
at −1, so if r is the spectral radius, r(eiσ(ψ,φ)W (φ −ψ)) = 2. But eiσ(ψ,φ)W (φ −ψ)
is normal: 2 = r(eiσ(ψ,φ)W (φ −ψ)) = ||eiσ(ψ,φ)W (φ −ψ)− I||. Using the norm’s
C∗ property ans the generators’ unitarity, the Weyl identities imply that ||W (φ)−
W (ψ)||2 equals

||(W (φ)∗ −W (ψ)∗)(W (φ)−W (ψ))||= ||eiσ(ψ,φ)W (φ −ψ)− I||= 4 .

There are uncountably many elements ψ ∈ X (X � {0} by assumption), so W (X,σ)
is not separable: if S ⊂ X were dense, there would be an element of S inside the ball
of radius 1/2 centred at each W (ψ), but said balls do not intersect, so S cannot be
countable.
(d) Every property of a norm, plus the C∗ property ||a∗a||c = ||a||2c , hold by direct in-
spection. The only thing left is to show that the supremum defining ||a||c is finite. To
this end, on W (X,σ) we have a norm (not C∗ in general): ||∑i aiW (ψi)||0 := ∑i |ai|.
As every W (ψ) has unit norm with respect to any C∗ norm p, as seen in (b), we have
p(a) ≤ ||a||0 < +∞. Therefore the least upper bound in ||a||c is smaller than ||a||0,
hence finite. �

Lemma 14.30. Let (X,σ) be a non-trivial weakly non-degenerate real symplectic
space, W (X,σ) a Weyl ∗-algebra associated to (X,σ). Denote by CW (X,σ) the C∗
completion of W (X,σ) in the norm || ||c of Lemma 14.29(d).
Then CW (X,σ) is simple: it does not admit two-sided closed ideals invariant under
the involution other than {0} and CW (X,σ) itself.

Proof. Write A for the C∗-algebra with unit obtained by completion of W (X,σ)
under || ||c. Suppose I ⊂ A is a closed, two-sided ideal that is ∗-invariant. Then
I0 := I∩{cW (0) |c ∈C} is a complex subspace of {cW (0) |c ∈C} identified with C.
Hence I0 = {0} or I0 = {cW (0) | c ∈ C}. In the latter case I would then contain I, so
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it would coincide with A. So assume I0 = {0} and consider the map:

P : W (X,σ)→{cW (0) | c ∈ C} ,

with

P

(

∑
φ∈F⊂X

W (φ)

)

= a0W (0) in case F ⊂ X is finite .

We claim P is bounded, and that it extends continuously to an operator, P, defined on
A. To do so let us realise W (X,σ) in the C∗-algebra of operators B(L2(X,μ)), as in
the proof of Lemma 14.29(a). Call δ0 ∈ L2(X,μ) the map δ0(0) = 1, δ0(φ) = 0 for
φ � 0. For a = ∑φ∈F⊂X aφW (φ) and ψ ∈ X we have

(aδ0)(ψ) =

(

∑
φ∈F⊂X

aφW (φ)δ0

)

(ψ) = ∑
φ∈F⊂X

aφeiσ(φ ,ψ)/2δ0(φ +ψ)

= a−ψeiσ(−ψ,ψ)/2 = a−ψ .

Consequently

(δ0|aδ0)L2(X,μ) = ∑
ψ∈X

δ0(ψ)(aδ0)(ψ) = (aδ0)(0) = a0 .

In addition, ||δ0||= 1, so

||P(a)||c = ||a0W (0)||c = |a0|= |(δ0|aδ0)L2 | ≤ ||a||op ≤ ||a||c ,

proving P extends to a bounded operator on A.
Take now a ∈ I ⊂ A and fix ε > 0. Write

a = a0W (0)+
n

∑
j=1

a jW (φ j)+ r,

where the φ j are all distinct and ||r||c < ε . For ψ ∈ X we have

I �W (ψ)aW (−ψ) = a0W (0)+
n

∑
j=1

a je
−iσ(ψ,φ j)/2W (φ j)+ r(ψ) ,

since
||r(φ)||c = ||W (ψ)rW (−ψ)||c ≤ ||r||c < ε .

Choosing ψ1 and ψ2 so that e−iσ(ψ1,φn) =−e−iσ(ψ2,φn), then adding two elements

a0W (0)+
n

∑
j=1

a je
−iσ(ψ1,φ j)/2W (φ j)+ r(ψ1) ∈ I

and

a0W (0)+
n

∑
j=1

a je
−iσ(ψ2,φ j)/2W (φ j)+ r(ψ2) ∈ I
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gives

a0W (0)+
n−1

∑
j=1

a′jW (φ j)+ r1 ∈ I ,

where ||r1||c = 1
2 ||r(ψ1) + r(ψ2)||c < (ε + ε)/2 = ε . We can repeat the argument,

and eventually obtain, for some rn with ||rn||c < ε :

a0W (0)+ rn ∈ I .

As ε > 0 is arbitrary and I closed, we conclude P(a) = a0W (0) ∈ I0, so a0 = 0.
With ψ ∈ X and a =∑φ aφW (φ)∈ I arbitrary, we similarly have W (ψ)a∈ I, whence
P(W (ψ)a) = 0. This means a−ψ = 0 for any ψ ∈ X, so a = 0. Therefore I = {0},
ending the proof. �

Now to the key theorem on a given symplectic space’s Weyl C∗-algebras.

Theorem 14.31. Let (X,σ) be a non-trivial weakly non-degenerate real symplectic
space, and consider a Weyl ∗-algebra W (X,σ) associated to (X,σ).

(a) There exist a unique norm on W (X,σ) satisfying the C∗ property:

||a∗a||= ||a||2 for any a ∈W (X,σ).

(b) Let CW (X,σ) be the C∗-algebra completion of W (X,σ) for the C∗ norm of (a).
If W ′(X,σ) is another Weyl ∗-algebra associated to the same space (X,σ) and || ||′
the unique C∗ norm, call CW ′(X,σ) the corresponding C∗-algebra with unit.
Then there is a unique isometric ∗-isomorphism γ : CW (X,σ) → CW ′(X,σ) such
that:

γ(W (ψ)) = W ′(ψ) for any ψ ∈ X,

where W (ψ), W ′(ψ) are generators of the Weyl ∗-algebras W (X,σ), W ′(X,σ).

Proof. (a) By Theorem 11.26(c) it is known that two Weyl ∗-algebras W (X,σ),
W ′(X,σ) on the same symplectic space are ∗-isomorphic under some α : W (X,σ)→
W ′(X,σ) that is totally determined by α(W (ψ)) = W ′(ψ), ψ ∈ X. Equip W (X,σ),
W ′(X,σ) with C∗ norms || ||, || ||′. Then ||a||1 = ||α(a)||′ is a C∗ norm on W (X,σ),
other than || || in general. By definition of || ||c we have ||α(a)||′ ≤ ||a||c, soα extends
to a ∗-homomorphism of C∗-algebras:

α̃ : W (X,σ)|| ||c →W (X′,σ ′)|| ||′ .

The kernel of α̃ is a closed ∗-invariant two-sided ideal, hence trivial by the previous
lemma. In conclusion α̃ is one-to-one and an isometry by Theorem 8.22(a). Suppose
now W (X,σ) = W ′(X,σ), so || ||= || ||′ too. Then α has to be the identity, extending
to the identity α̃ , and also isometric by the above argument. So, || ||c = || ||′ = || || is
the only C∗ norm on W (X,σ).
(b) We have to prove that the ∗-isomorphism α : W (X,σ) → W ′(X,σ), determ-
ined by α(W (ψ)) = W ′(ψ), ψ ∈ X, extends to a ∗-isomorphism between the C∗-
algebras CW (X,σ) and CW ′(X,σ). The same argument used above (now we do
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know || || = || ||c) shows that α extends to an injective ∗-homomorphism γ :
CW (X,σ) → CW ′(X,σ). On the other hand we can swap W (X,σ) and W ′(X,σ),
and extend α ′ : W ′(X,σ) → W (X,σ), determined by α ′(W ′(ψ)) = W (ψ), ψ ∈ X,
to γ ′ : CW ′(X,σ)→CW (X,σ). By construction α ′α = idW (X,σ), αα ′ = idW ′(X,σ),
which continue to hold, by continuity, when extended to γ ′γ = idCW (X,σ), γγ ′ =
idCW ′(X,σ). Therefore γ is onto, as well, and thus a ∗-isomorphism. �

14.2.2 The Weyl C∗-algebra CW (X,σ)

By keeping Theorem 14.31 into account, we can define Weyl C∗-algebras.

Definition 14.32. Let X be a non-trivial real vector space equipped with a weakly
non-degenerate symplectic form σ : X×X → R. The Weyl C∗-algebra CW (X,σ)
associated to (X,σ) is a C∗-algebra with unit generated by non-zero elements W (ψ),
ψ ∈ X, satisfying the Weyl relations:

W (ψ)W (ψ ′) = e−
i
2σ(ψ,ψ ′)W (ψ+ψ ′) , W (ψ)∗ = W (−ψ) , ψ ,ψ ∈ X .

This notion is well defined, and as consequence of Theorem 14.31 we obtain the
following result. It shows that the Weyl C∗-algebra is unique up to ∗-isomorphisms.

Theorem 14.33. Let (X,σ) be a non-trivial weakly non-degenerate real symplectic
space, CW (X,σ) a Weyl C∗-algebra associated to it.

(a) If CW ′(X,σ) is a second Weyl C∗-algebra associated to (X,σ), there exists a
unique (isometric) ∗-isomorphism γ : CW (X,σ)→CW ′(X,σ) such that

γ(W (ψ)) = W ′(ψ) for any ψ ∈ X,

where W (ψ), W ′(ψ) generate the Weyl ∗-algebras W (X,σ), W ′(X,σ) respectively.
(b) CW (X,σ) is simple: there are no non-trivial closed, ∗-invariant two-sided ideals.
(c) If CW (X′,σ ′) is the Weyl C∗-algebra associated to the weakly non-degenerate
symplectic space (X′,σ ′) and f : X → X a symplectic homomorphism, there is a
unique injective and isometric ∗-homomorphism γ f : CW (X,σ)→CW (X′,σ ′) such
that:

γ f (W (ψ)) = W ′( f (ψ)) for any ψ ∈ X.

γ f (CW (X,σ)) is a C∗-subalgebra with unit of CW (X′,σ ′).

Proof. Items (a) and (b) were actually proven with Theorem 14.31. Let us see to
(c). By Theorem 11.26(f) there is one injective ∗-homomorphism α f : W (X,σ) →
W (X′,σ ′) such thatα f (W (ψ)) =W ′( f (ψ)),ψ ∈X. TheC∗ norm || ||′ onCW (X′,σ ′)
induces a C∗ norm on W (X,σ), ||a||= ||α f (a)||′. By uniqueness of the C∗ norm on
a Weyl ∗-algebra, the latter coincides with the original norm of CW (X,σ). Hence
α f is isometric and continuous, and extends continuously to an isometric (so inject-
ive) ∗-homomorphism γ f : CW (X,σ) → CW (X′,σ ′). That γ f (CW (X,σ)) is a C∗-
subalgebra with unit in CW (X′,σ ′) follows from Theorem 8.22(b). �
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Remarks 14.34. If μ : X×X→ R is a real inner product fulfilling

1
4
|σ(ψ ,φ)|2 ≤ μ(ψ ,ψ)μ(φ ,φ) , for any ψ ,φ ∈ X,

it can be proved there exists a unique algebraic state ωμ on CW (X,σ) such that:

ωμ(W (ψ)) = e−
1
2 μ(ψ,ψ) .

This type of states are called Gaussian or quasi-free, and play a big role in physical
theories. The GNS representations of a quasi-free state generates Hilbert spaces with
totally symmetric Fock structure (Bosonic Fock spaces). �

Example 14.35. Take Minkowski’s spacetime, with coordinates (t,x) ∈R×R3, and
consider there the Klein–Gordon equation:

− 1
c2

∂ 2φ
∂ t2 +Δxφ − m2c2

h̄2 φ = 0 ,

where c is the speed of light and m > 0 the mass of the particles associated to the
Bosonic field φ . Indicate with X the vector space of real smooth solutions φ such that
R

3 � x 	→ φ(t,x) have compact support for every t ∈ R. This space admits a weakly
non-degenerate symplectic form:

σ(φ ,φ ′) :=
∫

R3

(

φ(t,x)
∂
∂ t
φ ′(t,x)−φ ′(t,x)

∂
∂ t
φ(t,x)
)

dx .

For given solutions X, one can prove that the symplectic form does not depend on
the choice of t ∈R by the nature of the Klein–Gordon equation itself. The C∗-algebra
CW (X,σ) is the algebra of observables of the Klein–Gordon quantum field φ , and
can be taken as the starting point for the procedure of “second quantisation” of Bo-
sonic fields. In this case an algebraic state of paramount importance is the so-called
Minkowski vacuum, i.e. the Gaussian state (see Remark 14.34) determined by a spe-
cial μ that takes spatial Fourier transforms of solutions at time t = 0. This partic-
ular state represents the absence of particles, and is invariant under the Poincaré
group. In the GNS representation of the state, the Weyl generators have the form
πωμ (W (φ)) = eiΦ(φ). The self-adjoint operatorΦ(φ) is called operator of the field of
second quantisation. �

14.3 Introduction to Quantum Symmetries within the algebraic
formulation

In this section we briefly discuss how quantum symmetries are dealt with in the al-
gebraic formulation [Haa96, Str05b]. After recalling the basic notions, we will prove
two theorems about the (anti)unitary representation of symmetries on the space of
the GNS representation of an invariant algebraic state. The strategy allows to de-
scribe precisely, in mathematical terms, the concept of the spontaneous breaking of
symmetry.
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14.3.1 The algebraic formulation’s viewpoint on quantum
symmetries

Consider a quantum system S described by the C∗-algebra with unit AS of observ-
ables. Said better, observables are the self-adjoint elements of AS. A quantum sym-
metry α should be seen as a ∗-automorphism α : AS → AS, i.e. as a bijective ∗-
homomorphism (hence isometric), or as a ∗-anti-automorphism.

Definition 14.36. If A is a C∗-algebra with unit I, a ∗-anti-automorphism is a
bijective, antilinear isometry α : A → A such that α(I) = I, α(a∗) = α(a)∗ and
α(ab) = α(a)α(b), for any a,b ∈ A.

A “psychological explanation” for the above definition of algebraic symmetry
emerges from the notion of quantum symmetry when the theory is formulated over
a Hilbert space and recalling the theorems of Wigner and Kadison. Fix a GNS triple
(Hω ,πω ,Ψω), suppose the GNS representation πω : AS → B(H) is injective (always
the case if AS is simple, as we said in Chapter 14.1.3), and represent the symmetry
on Hω by the operator U , unitary or anti-unitary. Then we can set

α(a) := π−1
ω (γ∗(πω(a))) , a ∈ AS,

where, mimicking the previous section’s definition, the action γ of the symmetry U
on observables is:

γ∗(A) := U−1AU .

α is well defined, and gives a ∗-automorphism or ∗-anti-automorphism provided
U−1 ·U maps observables (seen as operators) to observables, as is only natural to
suppose.

Here is the formal definition.

Definition 14.37. Let S be a physical system described by the C∗-algebra with unit
AS of observables. An (algebraic) quantum symmetry of S is a ∗-automorphism or
∗-anti-automorphism α : As → As.

This natually begs a question: given a symmetry α and an algebraic state ω , un-
der which assumptions is α representable by a unitary, or anti-unitary, operator on
the Hilbert space Hω of the GNS representation of ω? The next theorem is a big step
forward in this direction.

Theorem 14.38. Let α be an algebraic quantum symmetry of system S, described by
the C∗-algebra with unit AS of observables. Suppose ω is an α-invariant algebraic
state on AS, :

ω(α(a)) = ω(a) for a ∈ AS with a = a∗. (14.6)

If (Hω ,πω ,Ψω) is the GNS triple of ω , there exists only one operator Uα : Hω →Hω ,
unitary or anti-unitary according to whether α is linear or antilinear, such that:

UαΨω =Ψω and U−1
α πω(a)Uα = πω(α(a)) , a ∈ AS. (14.7)
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Remarks 14.39. Since any a ∈ AS can be written a = a1 + ia∗2 with a1,a2 self-
adjoint, and ω(a∗) = ω(a) for any state ω (straightforward from the GNS theorem),
ω being α-invariant is the same as imposing ω(α(a)) = ω(a) if α is linear, or
ω(α(a)) = ω(a), if α is antilinear, for any a ∈ AS. �

Proof of Theorem 14.38. The idea is to define Uα first on the dense space π(AS)Ψω
by

Uπω(a)Ψω = π(α−1(a))Ψω , (14.8)

and then extend it continuously to Hω . The definition is unambiguous if πω(a)Ψω =
πω(a′)Ψω implies π(α−1(a))Ψω = π(α−1(a′))Ψω , i.e. if πω(b)Ψω = 0 implies
π(α−1(b))Ψω = 0. But this is true by the GNS theorem and ω’s invariance:

||π(α−1(b))Ψω ||2 = (π(α−1(b))Ψω |π(α−1(b))Ψω) = (Ψω |π(α−1(b∗))π(α(b))Ψω)

= (Ψω |π(α−1(b∗b))Ψω) = ω(α−1(b∗b)) = ω(b∗b) = (Ψω |π(b∗b)Ψω)
= ||π(b)Ψω ||2 .

By construction U , as in (14.8), is linear or antilinear depending on how α is.
Moreover, it is isometric/anti-isometric, if α is a ∗-isomorphism/anti-isomorphism
respectively. Hence it is continuous, as above computations show that

||Uπ(b)Ψω ||2 = ||π(b)Ψω ||2 .

We extend U by continuity to HS, since π(AS)Ψω is dense in H, and obtain a lin-
ear/antilinear operator Uα : Hω → Hω preserving norms. U is onto as inverse of the
analogous uniquely-defined extension of

U−1πω(a)Ψω = π(α(a))Ψω . (14.9)

Therefore Uα : Hω →Hω is well defined, unitary/anti-unitary if α is linear/antilinear,
and satisfies (14.7). The first condition is trivially true setting b = I in (14.8). As for
the second one, put a = bc in (14.9):

U−1
α πω(b)πω(c)Ψω = π(α(b))πω(α(c))Ψω .

Using (14.9):

U−1
α πω(b)Uαπω(α(c))Ψω = π(α(b))πω(α(c))Ψω .

That is to say, if Φ ∈ πω(α(AS))Ψω = πω(AS)Ψω :

U−1
α πω(b)UΦ = π(α(b))UαΦ .

Since πω(AS)Ψω is dense in Hω , the second identity in (14.7) holds. Uniqueness of
Uα is patent by construction, because if V satisfies (14.7) (V replacing Uα ) it must
satisfy (14.9) as well (V replacing U), which fact fixes it. �

Remarks 14.40. A system S may admit an algebraic symmetry α that is not repres-
entable unitarily (or anti-unitarily) on the Hilbert space of the theory (e.g., a GNS
representation of a reference algebraic state ω). If so, the symmetry α is said to have
been broken spontaneously by the representation employed. The phenomenon of
spontaneous symmetry breaking is hugely important in particle physics and stat-
istical mechanics [Str05b]. �
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14.3.2 (Topological) symmetry groups in the algebraic formalism

We want to show, concisely, how Theorem 14.38, proven in Chapter 14.3.1 in the
algebraic formalism, generalises naturally to the situation where the algebraic sym-
metry α is replaced by an algebraic symmetry group.

So take a quantum system S described, in the algebraic formalism, by the C∗-
algebra with unit AS, whose self-adjoint elements are the system’s observables.
Suppose there is a representation α : G � g 	→ αg of the group G in terms of ∗-
automorphisms αg of AS. If ω is an invariant algebraic state, Theorem 14.38 guaran-
tees every αg is representable by a unitary operator Uαg on the Hilbert space Hω of
the GNS representation of ω . We will show that this correspondence produces auto-
matically a unitary right representation of G, without the need to redefine the phases
of the unitary Ug. This representation is also strongly continuous under a certain hy-
pothesis. In the sequel we will refer to Remark 12.22(4) and the definition of right
representation (Definition 12.23).

Theorem 14.41. Let S be a quantum system described, in the algebraic formalism,
by the C∗-algebra with unit AS, and let G be a group with a representation

α : G � g 	→ αg

by ∗-automorphisms αg of AS. Suppose ω is a G-invariant algebraic state on S rep-
resented by α:

ω(αg(a)) = ω(a) for any g ∈G, a ∈ AS with a = a∗. (14.10)

(a) If Uαg : Hω →Hω is the unitary operator associated to the ∗-automorphism αg by
Theorem 14.38, for any g ∈G the map

G � g 	→Uαg (14.11)

is a unitary right representation of G.
(b) If G is a topological group and G � g 	→ ω(a∗αg(a)) is continuous for any given
a ∈ AS, the representation (14.11) is strongly continuous.

Proof. Consider the operators Uαg defined by Theorem 14.38. By assumption, since
UαhΨω =Ψω :

UαgUαhπω(a)Ψω = UαgUαhπω(a)U−1
αh
Ψω = Uαgπω(α−1

h (a))Ψω

= Uαgπω(α−1
h (a))U−1

αg
Ψω = πω(α−1

g (α−1
h (a)))Ψω = πω(α−1

hg (a))Ψω

= Uαhgπω(a)Ψω .

As πω(AS)Ψω is dense in HS, we have UαgUαh = Uαhg . Similarly we can prove
U−1
αg

= Uαg−1 and Uαe = I. In other terms (14.11) is a unitary right representation

of G.
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Now assume G is a topological group and G � g 	→ ω(a∗αg(a)) continuous for
every a ∈ AS. By the GNS theorem, and the fact that UαgΨω =Ψω , this implies
G � g 	→ (πω(a)Ψω |Uαgπω(a)Ψω) is a continuous function. But a ∈ AS is generic, so
we have proved that for every Φ in the dense space πω(AS)Ψω , G � g 	→ (Φ |UαgΦ)
is continuous. Using that Uαg is unitary, it is easy to see that, consequently:

||UαgΦ−Uαg′Φ ||2 = ||Uαgg′−1Φ−Φ ||2 → 0

for g → g′, and any Φ in the dense subspace πω(AS)Ψω . Therefore G � g 	→ Uαg

is strongly continuous on the dense space πω(AS)Ψω . This generalises to the gen-
eric vectorΨ ∈ HS as follows. For every ε > 0 we can find Φ ∈ πω(AS)Ψω so that
||Ψ −Φ || < 2ε/3. For such Φ , there is a neighbourhood Ig′ of g′ in G such that
||UαgΦ−Uαg′Φ ||< ε/3 if g ∈ Ig′ . Hence for g′ ∈ G and any ε > 0 there is a neigh-
bourhood Ig′ of g such that:

||UαgΨ −Uαg′Ψ || ≤ ||UαgΨ −UαgΦ ||+ ||UαgΦ−Uαg′Φ ||+ ||Uαg′Φ−Uαg′Ψ ||

= ||Ψ −Φ ||+ ||UαgΦ−Uαg′Φ ||+ ||Φ−Ψ ||< ε

for g ∈ Ig′ . This ends the proof. �

Remark 14.42. (1) Obtaining a right representation simply depends on the fact The-
orem 14.38 associates to the algebraic symmetry α the unitary operator Uα such that
πω(α(a)) = U−1

α πω(a)Uα : we are reading the action of α as dual action on observ-
ables of a Wigner (or Kadison) symmetry, for which the emphasis is put on state
vectors rather than observables.The symmetry acts as UαΨ on states. We could also
decide to make the algebraic symmetry α act by πω(α(a)) = Uαπω(a)U−1

α , calling
Uα the previous U−1

α . Under the above theorem, we would now obtain G � g 	→Uαg

in the form we are more accustomed to. In the algebraic formulation, where the focus
is more on observables than on states, one normally follows this second road.
(2) In case G is the topological group R, and {αt}t∈R satisfies part (b) for the
invariant state ω , Stone’s theorem warrants that the one-parameter unitary group
{Ut}t∈R representing R (πω(αt(a)) = U−1

t πω(a)Ut) admits a self-adjoint generator
H : D(H)→Hω defined on the dense domain D(H)⊂Hω , for which Ut = eitH . Then
we may think {αt}t∈R as a one-parameter group of ∗-automorphisms that describes
the evolution of the system with the parameter t as time.

By Stone’s theorem, the first condition in (14.7) impliesΨω ∈D(H) and HΨω = 0,
so 0 ∈ σp(H). If σ(H)⊂ [0,+∞) and dim(Ker(H)) = 1, ω is called a ground state
for the time evolution {αt}t∈R. �
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Appendix A

Order relations and groups

A.1 Order relations, posets, Zorn’s lemma

A relation ≥ on an arbitrary set X is called a partial order (relation) if it is reflex-
ive (x ≥ x, ∀x ∈ X), transitive (x ≥ y ≥ z ⇒ x ≥ z, ∀x,y,z ∈ X) and skew-symmetric
(x ≥ y ≥ x ⇒ x = y, ∀x,y ∈ X). The pair (X,≥) is then said a partially ordered set
(shortened to poset).

An equivalent writing of a≥ b is b≤ a.
The partial order≥ is a total order if, further, either x≥ y or y≥ x for any x,y∈X.

If (X,≥) is a partially ordered set:

(i) Y ⊂ X is upper bounded (resp. lower bounded) if it admits an upper bound
(lower bound), i.e. x ∈ X such that x≥ y (y≥ x) for any y ∈ Y ;

(ii) an element x0 ∈ X for which there exists no element x � x0 in X such that x≥ x0

is maximal in X. (Note that for us a maximal element in X may not be an upper
bound in X).

If (X,≥) is a poset, a subset Y ⊂X is (totally) ordered if the relation≥, restricted
to Y ×Y , is a total order.

Recall that Zorn’s lemma is an equivalent statement to the Axiom of Choice (also
known as Zermelo’s axiom).

Theorem A.1 (“Zorn’s lemma”). If any ordered subset in a poset (X,≥) is upper
bounded, X admits a maximal element.

Useful among the various notions on posets (X,≥) are those of supremum and
infimum:

(i) a is called least upper bound (or supremum, or just sup) of the set A ⊂ X,
written a = supA, if a is an upper bound of A and any other upper bound a′ of
A satisfies a≤ a′;

(ii) a is called greatest lower bound, (or infimum or inf) of A⊂X, written a = infA,
if a is a lower bound for A and any other lower bound a′ satifies a′ ≤ a;
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It is immediate to see that any subset A ⊂ X has at most one least upper bound
and one greatest lower bound.

A.2 Round-up on group theory

A group is an algebraic structure (G,◦) consisting in a set G and an operation
◦ : G×G → G (the composition law, often called product) satisfying three prop-
erties:

(1) ◦ is associative

g1 ◦ (g2 ◦g3) = (g1 ◦g2)◦g3 , for any g1,g2,g3 ∈G ;

(2) there exists an element e ∈G, called identity or neutral element, such that

e◦g = g◦ e = g , for any g ∈ G ;

(3) each element g ∈G admits an inverse, i.e.

for any g ∈ G there exists g−1 ∈G such that g◦g−1 = g−1 ◦g = e .

The identity and the inverse to a given element are easily seen to be unique.
A group (G,◦) is commutative or Abelian if g ◦ g′ = g′ ◦ g for any g,g′ ∈ G;

otherwise it is noncommutative or non-Abelian.
A subset G′ ⊂G in a group is a subgroup if it becomes a group with the product

of G restricted to G′ ×G′. A subgroup N in a group G is normal if it is invariant
under conjugation, i.e. for any n ∈ N and g ∈ G the conjugate element g ◦ n ◦ g−1

belongs to N.
If N is a normal subgroup in G, then G/N denotes the quotient, i.e. the set of

equivalence classes in G with respect to the equivalence relation g ∼ g′ ⇔ g = ng′
for some n∈N. It is easy to prove that G/N inherits a natural group structure from G.

The centre Z of G is the commutative subgroup of G made by elements z that
commute with every element of G. In other words, z ∈ Z ⇔ z ◦ g = g ◦ z for any
g ∈ G.

If (G1,◦1) and (G2,◦2) are two groups, a (group) homomorphism from G1 to
G2 is a map h : G1 → G2 that preserves the groups’ structures, i.e.:

h(g◦1 g′) = h(g)◦2 h(g′) for any g,g′ ∈G1 .

With the obvious notation it is clear that h(e1) = e2 and h(g−11) = (h(g))−12 for any
g ∈G1.

The kernel Ker(h)⊂ G of a homomorphism h : G → G′ is the pre-image under
h of the identity e′ of G′, i.e. the set of elements g such that h(g) = e′. Notice Ker(h)
is a normal subgroup. Clearly h is one-to-one if and only if its kernel contains the
identity of G only. It turns out that the image h(G) of a homomorphism h : G → G′
is a subgroup of G′ isomorphic to G/Ker(h).
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A group isomorphism is a bijective group homomorphism. An isomorphism h :
G→G is an automorphism of G. The set Aut(G) of automorphisms of G is itself a
group under composition of maps.

If G1, G2 are groups, the direct product G1⊗G2 is a group with the following
structure. The elements of G1⊗G2 are pairs (g1,g2) of the Cartesian product of the
sets G1, G2. The composition law is

(g1,g2)◦ ( f1, f2) := (g1 ◦1 f1,g2 ◦2 f2) ∀(g1,g2),( f1, f2) ∈G1×G2 .

The neutral element is obviously (e1,e2), where e1, e2 are the identities of G1, G2.
Moreover, G1 and G2 can be identified with normal subgroups of G1⊗G2.

The ensuing generalisation of the notion of product plays a big role in physical
applications. Let (G1,◦1), (G2,◦2) be groups and suppose that for any g1 ∈G1 there
is a group isomorphism ψg1 : G2 →G2 such that:

(i) ψg1 ◦ψg′1 = ψg1◦1g′1 ;
(ii) ψe1 = idG2 ;

where ◦ is the composition of functions and e1 the neutral element in G1. (Equival-
ently, ψg ∈ Aut(G2) for any g ∈ G1, and the map G1 � g 	→ ψg is a group homo-
morphism from G1 to Aut(G2).) We can endow the Cartesian product G1×G2 with
a group structure simply by defining the composite of (g1,g2),( f1, f2) ∈G1×G2 as

(g1,g2)◦ψ ( f1, f2) := (g1 ◦1 f1, g2 ◦2ψg1( f2)) .

The operation is well defined, so (G1 ⊗ψ G2,◦ψ) is a group called the semidirect
product of G1 and G2 by ψ . The order of the factors in the product is clearly relev-
ant.

Looking at the semidirect product (G⊗ψ N,◦ψ) we could prove N is a normal
subgroup of G⊗ψ N, and

ψg(n) = g◦ψ n◦ψ g−1 for any g ∈G, n ∈ N.

There is also a converse of sorts. Consider a group (H,◦), let G be a subgroup of
H and N a normal subgroup. Assume N ∩G = {e}, e being the identity of H. Sup-
pose also H = GN, meaning that for any h ∈ H there exist g ∈G and n ∈ N such that
h = gn. Then one can prove that the pair (g,n) is uniquely determined by h, and H is
isomorphic to the semidirect product G⊗ψ N with

ψg(n) := g◦h◦g−1 for any g ∈ G, n ∈ N.

If now V is a vector space (real or complex), GL(V) denotes the group of bijective
linear maps f : V→ V with the usual composition law. GL(V) is called the (general)
linear group of V.

If V := Rn or Cn then GL(V) is denoted by GL(n,C) or GL(n,R), respectively.
Let us define linear representations of a group. Take (G,◦) a group and V a vector

space. A (linear) representation of G on V is a homomorphism ρ : G→ GL(V).
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A representation ρ : G→ GL(V) is called:

(1) faithful if it is injective;
(2) free if the subgroup made of elements hv such that ρ(hv)v = v is trivial for any

v ∈ V\{0}, i.e. it contains only the neutral element of G;
(3) transitive if, for any v,v′ ∈ V\{0} there exists g ∈G with v′ = ρ(g)v;
(4) irreducible if no proper subspace S⊂V exists that is invariant under the action

of ρ(G), i.e. ρ(g)S ⊂ S for any g ∈G.

In case V is a Hilbert or Banach space and ρ defines bounded operators on the entire
V, the representation is said irreducible if there are no closed ρ(G)-invariant sub-
spaces in V.



Appendix B

Elements of differential geometry

Let n,m = 1,2, . . ., k = 0,1, . . . be fixed integers and Ω ⊂ Rn an open non-empty set.
A map f :Ω → Rm is of class Ck (or simply Ck), written f ∈Ck(Ω ;Rn), if all partial
derivatives of the components of f are continuous up to order k included. Conven-
tionally, Ck(Ω) := Ck(Ω ;R).

A function f :Ω → Rm is (of class) C∞, or smooth, if it is Ck for any k = 0,1, . . .,
so one defines

C∞(Ω ;Rn) :=
⋂

k=0,1,...

Ck(Ω ;Rn) .

Again, C∞(Ω) := C∞(Ω ;R). Eventually, f : Ω → Rm is Cω or real-analytic if it
is C∞ and it admits a Taylor expansion (in several real variables) at any p ∈ Ω , on
some open ball around p of finite radius, contained in Ω . Usually, when the order k
of differentiability is not mentioned explicitly it means that k = ∞.

Notation B.1. In this section upper indices denote coordinates ofRn and components
of (contravariant) vectors. Thus the standard coordinates on Rn will be denoted by
x1, . . . ,xn, instead of x1, . . . ,xn. �

B.1 Smooth manifolds, product manifolds, smooth functions

The most general and powerful tool apt to describe the features of spacetime, three-
dimensional physical space, and the abstract space of physical systems in classical
theories, is the notion of smooth manifold. In practice a smooth manifold is a col-
lection of objects, generally called points, that admits local coordinates identifying
points with n-tuples of Rn.
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Definition B.2. Let n = 1,2,3, · · · and k = 1,2, ...,∞,ω be fixed numbers. A Ck man-
ifold of dimension n is a set M, whose elements are called points, equipped with the
geometric structure defined below.

(1) M has a differentiable structure A = {(Ui,φi)}i∈I of class Ck, that is a collec-
tion of pairs (Ui,φi), called local charts, where Ui is a subset in M and φi a map from
Ui to Rn (the local coordinate system or local frame) such that:

(i) ∪i∈IUi = M, any φi is injective and φi(Ui) is open in Rn (so M is called an
n-dimensional manifold, or just n-manifold);

(ii) local charts in A must be pairwise Ck-compatible. Two injective maps
φ : U → Rn, ψ : V → Rn with U,V ⊂ M are Ck-compatible if either
U ∩V = ∅, or U ∩V � ∅ and the maps φ ◦ψ−1 : ψ(U ∩V )→ φ(U ∩V ),
ψ ◦φ−1 : φ(U ∩V )→ ψ(U ∩V ) are both Ck;

(iii) A is maximal, i.e.: if U ⊂M is open and φ : U →Rn compatible with every
local chart of A , then (U,φ) ∈A .

(2) Topological requirements:

(i) M is a second-countable Hausdorff space;
(ii) M is, by way of A , locally homeomorphic to Rn. In other terms, if (U,φ) ∈

A then U is open and φ : U → φ(U) is a homeomorphism.

A smooth Cω manifold is more often called real-analytic manifold.

Remark B.3. (1) Every local chart (U,φ) enables us to assign n real numbers
(x1

p, · · · ,xn
p) = φ(p) bijectively to every point p of U . The entries of the n-tuple are

the coordinates of p in the local chart (U,φ). Points in U are thus in one-to-one cor-
respondence with n-tuples of φ(U)⊂ Rn.
(2) If U ∩V � ∅, the compatibility of local charts (U,φ), (V,ψ) implies that the Jac-
obian matrix of φ ◦ψ−1 is invertible and so has everywhere non-zero determinant.
Conversely, if φ ◦ψ−1 : ψ(U ∩V ) → φ(U ∩V ) is bijective, of class Ck, and with
non-vanishing Jacobian determinant on ψ(U ∩V ), then also ψ ◦φ−1 : φ(U ∩V )→
ψ(U ∩V ) is Ck and the local charts are compatible. The proof can be found in the
renowned [CoFr98II].

Theorem B.4 (Implicit function theorem). Let D ⊂ Rn be open, non-empty, and
f : D→ Rn a Ck function for some k = 1,2, . . . ,∞. If the Jacobian of f at p ∈ D has
non-zero determinant there exist open neighbourhoods U ⊂ D of p and V of f (p)
such that: (i) f �U : U →V is bijective, (ii) the inverse f �−1

U : V →U is Ck.

(3) The topological requirements in (2)(i) (valid for the standard topology of Rn) are
technical and guarantee unique solutions to differential equations on M (necessary
in physics when the equations describe the evolution of physical systems) and the
existence of integrals on M. Condition (2)(ii) intuitively says that M is, around any
point, “continuous” likeRn. Standard counterexamples show that the Hausdorff prop-
erty of Rn is not carried over to M by local homeomorphisms, so it must be imposed
explicitly.
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(4) Let M be a second-countable Hausdorff space. A collection of local charts A on
M satisfying (i) and (ii) in (1), but not necessarily (iii), plus (ii) in (2) is called a Ck

atlas on the n-manifold M. It is not hard to see that any atlas A on M is contained
in some maximal atlas. Two atlases on M such that every chart of one is compatible
with any chart of the other induce the same differentiable structure on M. Thus to
assign a differentiable structure it suffices to prescribe a non-maximal atlas, one of
the many that determine it. The unique differentiable structure associated to a given
atlas is said to be induced by the atlas.
(5) If 1≤ k <∞ there might be superfluous charts in the differentiable structure (only
a finite number!), eliminating which gives a C∞ atlas. �

Examples B.5. (1) The simplest examples of differentiable manifolds, of class C∞

and dimension n, are non-empty open subsets ofRn (includingRn itself) with standard
differentiable structure determined by the identity map (the inclusion, alone, defines
an atlas).
(2) Consider the unit sphere S2 in R3 (with topology inherited from R3) centred at
the origin:

S
2 :=
{
(x1,x2,x3) ∈ R3

∣
∣ (x1)2 +(x2)2 +(x3)2 = 1

}

in canonical coordinates x1,x2,x3 of R3. It has dimension 2 and a smooth structure
induced by R3 by defining an atlas with 6 local charts (S2

(i)±,φ (i)
± ) (i = 1,2,3) as

follows. Take the axis xi (i = 1,2,3) and the pair of open hemispheres S2
(i)± with

south-north direction given by xi, and consider local charts φ (i)
± : S2

(i)± →R2 that map

p ∈ S2
(i)± to its coordinates on the plane xi = 0. It can be proved (see below) that S2

cannot be covered by a single (global) chart, in contrast to R3 (or any open subspace).
This proves that the class of smooth manifolds does not reduce to open non-empty
subsets of Rn, and hence is quite interesting. A similar example is the circle in R2. �

Given Ck manifolds M and N of respective dimensions m, n, we can construct
a third Ck manifold of dimension m + n over the topological product M×N. (The
resulting space will be Hausdorff and second-countable.) This is called product man-
ifold of M and N, and denoted simply by M×N. The structure described herebelow
is called product structure. Given local charts (U,φ) on M and (V,ψ) on N it is im-
mediate to see

U ×V � (p,q) 	→ (φ(p),ψ(q)) =: φ ⊕ψ(p,q) ∈ Rm+n (B.1)

is a local homeomorphism. If (U ′,φ ′) and (V ′,ψ ′) are other charts, compatible with
the previous ones, the charts (U ×V,φ ⊕ψ) and (U ′ ×V ′,φ ′ ⊕ψ ′) are obviously
compatible. As (U,φ) and (V,ψ) vary on M and N the charts (U ×V,φ ⊕ψ) define
an atlas on M×N. The structure this atlas generates is, by definition, the product
structure.

Definition B.6. Given Ck manifolds M, N of dimension m, n, the product manifold
is the set M×N equipped with product topology and Ck structure induced by the
local charts (U ×V,φ ⊕ψ) as of (B.1), when (U,φ), (V,ψ) vary on M, N.
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Since a manifold is locally indistinguishable from Rn, the differentiable structure
allows to make sense of differentiable functions defined on a manifold other than Rn

or subsets. The idea is simple: reduce locally to the standard notion on Rn using the
local charts that cover the manifold.

Definition B.7. Let M,N be manifolds of dimensions m,n and class Cp, Cq respect-
ively (p,q≥ 1). A continuous map f : M →N is said Ck (0≤ k≤ p,q, possibly k =∞
or ω) if ψ ◦ f ◦φ−1 is a Ck map from Rm to Rn, for any choice of local charts (U,φ)
on N and (V,ψ) on M.
The collection of Ck functions from M to N, k = 0,1,2, . . . ,∞,ω is denoted Ck(M;N);
if N = R one just writes Ck(M).
A Ck diffeomorphism f : M → N is a bijective Ck map with Ck inverse. If there is a
Ck diffeomorphism f mapping M to N, the two manifolds are called diffeomorphic
(under f ).

Remark B.8. (1) Notice how we allowed for differentiable maps of class C0, which
are actually just continuous maps (like C0 diffeomorphisms are just homeomorph-
isms). Every Ck diffeomorphism is clearly a homeomorphism, which explains why
there cannot exist any diffeomorphism between S2 and (a subset of)R2, for the former
is compact, the latter not. Consequently, the sphere S2 does not admit global charts.
(2) For f : M → N to be Cp it is enough that ψ ◦ f ◦ φ−1 is Ck for any local charts
(U,φ),(V,ψ) in the given atlases, without having to check the condition for every
possible local charts on the manifolds. �

A useful notion is that of embedded submanifold.Rn is an embedded submanifold
in Rm if m > n. In the canonical coordinates x1, · · · ,xm on Rm, Rn is identified with
the subspace given by equations xn+1 = · · ·= xm = 0, while the first n coordinates of
R

m, x1, · · · ,xn, are identified with the standard coordinates on Rn. Now the idea is to
replace Rn, Rm using local frames, and generalise to manifolds N, M.

Definition B.9. Let M be a Ck (k ≥ 1) manifold of dimension m > n. An embedded
Ck submanifold of M of dimension n is the following n-manifold N of class Ck.

(a) N is a subset in M with induced topology.
(b) The differentiable structure di N is given by the atlas {(Ui,φi)}i∈I where:

(i) Ui = Vi∩N, φi = ψ�Vi∩N for a suitable local chart (Vi,φi) on M;
(ii) in the frame x1, · · · ,xm associated to (Vi,φi), the set Vi∩N is determined by

xn+1 = · · ·= xm = 0, and the remaining coordinates x1, · · · ,xn are the local
framing associated to φi.

To finish we state an important result (see [doC92, Wes78] for example) to decide
when a subset in a manifold is an embedded submanifold. The proof is straightfor-
ward from Dini’s theorem [CoFr98II].

Theorem B.10 (On regular values). Let M be a Ck manifold of dimension m. Con-
sider the set

N := {p ∈M | f j(p) = v j , j = 1, · · · ,c}
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determined by c(< m) constants v j and c functions f j : M → R of class Ck. Suppose
that around each point p ∈ N there exists a local chart (U,φ) on M such that the
Jacobian matrix ∂ ( f j ◦φ−1)/∂xi|φ(p) ( j = 1, · · · ,c, i = 1, · · · ,m) has rank r. Then N
is an embedded Ck submanifold in M of dimension n := m− c.
In particular, if the square c× c matrix

∂ f j ◦φ−1

∂xk , j = 1, . . . ,c, k = m− c+1,m− c+2, . . . ,m

is non-singular at φ(p), p ∈ N, then the first n coordinates x1, . . . ,xn define a frame
system around p in N.

B.2 Tangent and cotangent spaces. Covariant and contravariant
vector fields

Ler M be Ck manifold of dimension n (k ≥ 1). Consider the space Ck(M) as an R-
vector space with linear combinations

(a f +bg)(p) := a f (p)+bg(p) , for any p ∈M

where a,b ∈ R, f ,g ∈Ck(M). Given a point p ∈ M, a derivation at p is an R-linear
map Lp : Ck(M)→ R satisfying the Leibniz rule:

Lp( f g) = f (p)Lp(g)+g(p)Lp( f ) , f ,g ∈Ck(M). (B.2)

A linear combination aLp +bL′p of derivations at p (a,b ∈ R),

(aLp +bL′p)( f ) := aLp( f )+bL′p( f ) , f ,g ∈Ck(M),

is still a derivation. Hence derivations at p form a vector space over R, which we
denote Dk

p. Every local chart (U,φ) with U � p automatically gives n derivations at
p, as follows. If x1, . . . ,xn are coordinates associated to φ , define the kth derivation
to be

∂
∂xk

∣
∣
∣
∣

p
: f 	→ ∂ f ◦φ−1

∂xk

∣
∣
∣
∣
φ(p)

, f ,g ∈C1(M). (B.3)

If 0 is the null derivation and c1,c2, · · · ,cn ∈ R satisfy ∑n
k=1 ck ∂

∂xk

∣
∣
∣

p
= 0, we choose

a differentiable function conciding with the coordinate map xl on an open neighbour-

hood of p (whose closure is in U) and vanishing outside. Then the n derivations ∂
∂xk

∣
∣
∣

p

at p are linearly independent: ∑n
k=1 ck ∂

∂xk

∣
∣
∣

p
f = 0 imples cl = 0. Since we are free to

choose l arbitrarily, every coefficient cr is zero for r = 1,2, . . . ,n. Hence the n deriv-

ations ∂
∂xk

∣
∣
∣

p
form a basis for an n-dimensional subspace of Dk

p (actually if k =∞ the
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subspace coincides with D∞
p ). Changing chart to (V,ψ), V � p, with frame y1, . . . ,yn,

the new derivations are related to the old ones by:

∂
∂yi

∣
∣
∣
∣

p
=

n

∑
k=1

∂xk

∂yi

∣
∣
∣
∣
ψ(p)

∂
∂xk

∣
∣
∣
∣

p
. (B.4)

The proof is direct from the definitions. Because the Jacobian ∂xk

∂yi

∣
∣
∣
ψ(p)

is invertible

by definition of chart, the subspace of Dk
p spanned by the ∂

∂yi

∣
∣
∣

p
coincides with the

span of the ∂
∂xk

∣
∣
∣

p
. The subspace is thus intrinsically defined.

Definition B.11. Let M be an n-dimensional Ck manifold (k ≥ 1), and fix a point
p ∈ M. The vector subspace of derivations at p ∈ M generated by the n derivations
∂
∂xk

∣
∣
∣

p
, k = 1,2, . . . ,n, in any local coordinate system (U,φ) with U � p, is called

tangent space of M at p and is written TpM. The elements of the tangent space at p
are the tangent vectors at p to M. Tangent vectors are examples of contravariant
vectors.

We recall that the space V ∗ of linear maps from a real vector space V to R is
called dual space to V . If the dimension of V is finite, so is the dimension of V ∗, for
they coincide. In particular, if {ei}i=1,...,n is a basis of V , the dual basis in V ∗ is the
basis {e∗ j} j=1,...,n defined via: e∗ j(ei) = δ j

i , i, j = 1, . . . ,n, by linearity. With f ∈V ∗,
v ∈V , one uses the notation 〈v, f 〉 := f (v).

Definition B.12. Let M be an n-dimensional Ck manifold (k ≥ 1), p ∈ M a given
point. The dual space to TpM is called cotangent space of M at p, written T ∗

p M.
Points of the cotangent space at p are called cotangent vectors at p or 1-forms at

p, and are instances of covariant vectors (covectors). For any basis ∂
∂xk

∣
∣
∣

p
of TpM,

the n elements of the dual basis are indicated by dxi|p. By definition

〈
∂
∂xk |p,dxi|p

〉

= δ i
k .

Let us move on to vector fields on a manifold M.
Suppose M is an n-dimensional Ck manifold (including k =∞ and k =ω). A con-

travariant Cr vector field, r = 0,1, . . . ,k, is a map assigning a vector v(p) ∈ TpM to
any p ∈M, so that for any local chart (U,φ) with coordinates x1, . . . ,xn where

v(q) =
n

∑
i=1

vi(x1
q, . . . ,x

n
q)

∂
∂xi

∣
∣
∣
∣
q

,

the n functions vi = vi(x1, . . . ,xn) are Cr on φ(U). Similarly, a covariant Cr vector
field, r = 0,1, . . . ,k is a map sending p ∈ M to a covector ω(p) ∈ T ∗

p M, so that for
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any local chart (U,φ) with coordinates x1, . . . ,xn where

ω(q) =
n

∑
i=1

vi(x1
q, . . . ,x

n
q) dxi
∣
∣
q ,

the n functions ωi = ωi(x1, . . . ,xn) are Cr on φ(U).

Remarks B.13. Take v ∈ TpM and two local charts (U,φ), (V,ψ) with
U ∩ V � p and respective coordinates x1, . . . ,xn, x′1, . . . ,x′n. Then v =

∑n
i=1 vi ∂

∂xi

∣
∣
∣

p
= ∑n

j=1 v′ j ∂
∂x′ j

∣
∣
∣

p
. Hence ∑n

i vi ∂
∂xi

∣
∣
∣

p
= ∑n

j,i=1 v′ j ∂xi

∂x′ j

∣
∣
∣
ψ(p)

∂
∂xi

∣
∣
∣

p
,

so ∑n
i=1

(

vi−∑n
j=1

∂xi

∂x′ j

∣
∣
∣
ψ(p)

v′ j
)

∂
∂xi

∣
∣
∣

p
= 0. Since the derivations ∂

∂xi

∣
∣
∣

p
are linearly

independent, we conclude that the components of a tangent vector in TpM transform,
under coordinate change, as

vi =
n

∑
j=1

∂xi

∂x′ j

∣
∣
∣
∣
ψ(p)

v′ j
. (B.5)

The same argument gives the formula for covariant vectors ω = ∑n
i=1ωi dxi

∣
∣

p =

∑n
j=1ω ′ j dx′ j

∣
∣

p, namely

ωi =
n

∑
j=1

∂x′ j

∂xi

∣
∣
∣
∣
ψ(p)

ω ′ j . (B.6)

�

B.3 Differentials, curves and tangent vectors

Let f : M → R be a Cr scalar field on the Ck n-manifold M, and assume k ≥ r > 1.
The differential d f of f is the covariant vector field of class Cr−1

d f |p =
n

∑
i=1

∂ f
∂xi

∣
∣
∣
∣
ψ(p)

dxi|p

in any local chart (U,ψ).
Consider a Cr curve inside the Ck manifold M (r = 0,1, . . . ,k), i.e. a Cr function

γ : I →M where I ⊂ R is an open interval thought of as a submanifold in R. Assume
explicitly that r > 1. We can define the tangent vector to γ at p ∈ γ(I) by

γ̇(p) :=
n

∑
i=1

dxi

dt

∣
∣
∣
∣
tp

∂
∂xi

∣
∣
∣
∣

p
,

where γ(tp) = p, in any local chart around p. The definition does not depend on the
chart. Had we defined

γ̇ ′(p) :=
n

∑
j=1

dx′ j

dt

∣
∣
∣
∣
tp

∂
∂x′ j

∣
∣
∣
∣

p
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in another frame system around p, using (B.5) would have given

γ̇(p) = γ̇ ′(p) .

So we have this definition.

Definition B.14. A Cr curve, r = 0,1, . . . ,k, in the n-dimensional Ck manifold M is
a Cr map γ : I →M, where I ⊂ R is an open interval (embedded in R). When r > 1,
the tangent vector to γ at p = γ(tp), tp ∈ I, is the vector γ̇(p) ∈ TpM given by

γ̇(p) :=
n

∑
i=1

dxi

dt

∣
∣
∣
∣
tp

∂
∂xi

∣
∣
∣
∣

p
, (B.7)

in any local framing around p.

B.4 Pushforward and pullback

Let M and N be manifolds of dimensions m and n, and f : N → M a function (all at
least C1). Given a point p ∈ N consider local charts (U,φ) around p in N and (V,ψ)
around f (p) in M. Indicate by (y1, . . . ,yn) the coordinates on U , by (x1, . . . ,xm) those
on V and introduce maps f k(y1, . . . ,yn) = yk( f ◦φ−1), k = 1, . . . ,m. Now define:

(i) the pushforward d fp : TpN → Tf (p)M, in coordinates:

d fp : TpN �
n

∑
i=1

ui ∂
∂yi

∣
∣
∣
∣

p
	→

m

∑
j=1

(
n

∑
i=1

∂ f j

∂yi

∣
∣
∣
∣
φ(p)

ui

)
∂
∂x j

∣
∣
∣
∣

p
; (B.8)

(ii) the pullback f ∗p : T ∗
f (p)M → T ∗

p N, in coordinates:

f ∗p : T ∗
f (p)M �

m

∑
j=1

ω jdx j| f (p) 	→
n

∑
i=1

(
m

∑
j=1

∂ f j

∂yi

∣
∣
∣
∣
φ(p)

ω j

)

dyi|p . (B.9)

It is not hard to see they do not depend on local frame systems. The pushforward is
also written fp∗ : TpN → Tf (p)M.
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MR(X), 18
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TK , 169
U(1)-central extension of a group by a

multiplier function, 550
U(n), 553
U(t, t ′), 630
W ((t,u)), 493
W (z), 500
Xi, 219, 405, 458, 487
Y m

l , 460
[−∞,∞], 18
[−∞,a), 18
[−∞,a], 18
[a,+∞], 18
ΔAρ , 305, 484
Δ Laplace operator, 470
Δ f , 382
Ω±, 624
ΦT , 337
Φa, 324, 335
⇒ (logical implication), 257
C, 4
N, 4
R+, 4
⊕n

k=1 Hk with n = 1,2, . . . ,+∞ and Hk
Hilbert spaces, 454
⊔

, 4
A (A), 410
B(X), 17, 254
DG, 580
DN , 580
F , phase space, 259

G1⊗ψ G2, 699
G1⊗G2 with G1, G2 groups, 699
H (n), 513
Jk, 591
L 1(X,μ), 23
L 2, 459
L p(X,μ), 50
Li, 459
G Gelfand transform, 330
G , 592
� (logical ‘not’ or logical complement), 257
δi j, 488
�p(N), 52
�p(X), 51
exp of a Lie group, 568
A+, 327
B(X), 53
B(X,Y), 53
B1(H), 188
B2(H), 177
B∞(X), 164
B∞(X,Y), 164
L(X), 53
L(X,Y), 53
M′, 124
P(H), 264
RS von Neumann algebra of observables of

a physical system, 274, 480
S(H), 281
Sp(H), 286
Sp(H)adm, 291
γ∗ for γ symmetry (Kadison or Wigner

automorphism), 539
inf, 697
∫

X f dμ with μ complex measure, 33
∫

X f (x) dP(x) with f bounded, measurable,
348
∫

X f (x)dP(x) with f measurable, not
necessarily bounded, 382, 390
∫

X s(x)dP(x) with s simple, 347
∫
Rn f (t)Vt dt with {Vt}t∈Rn strongly

continuous operators at t, 417
〈A〉ρ , 305, 484
liminf, 13
limsup, 13
ess ran( f ), 429
μ-integrable function, 23

μ(T )
ψ , 398
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μψ , 353
μA
ρ , 484
μψ,φ , 353
μac,μpa,μsing, 31
¬, 260
ν ≺ μ , 27, 33
A with A operator, 211
S with S a set, 11
R, 18
c, 4
⊥, 212
φa, 322
π � π ′, 126
π1 ≈ π2, 685
ψ(φ | ) and (φ | )ψ , 4
ρ(A), 311
H(C), 117
H⊗n, 660
H1⊗·· ·⊗Hn with Hi Hilbert spaces, 452
HS, 274, 479
Hψ , 230
Hp, 398, 626
X′, 53
X∗, 53
X1⊕·· ·⊕Xn, 76
σ -additive positive measure, 19, 49
σ -complete lattice, 261
σ(A), 311
σ(A), 329
σA(a), 320
σc(A), 311
σd(T ), 398
σi, i = 1,2,3, 280
σp(A), 311
σp(T ), 170
σr(A), 311
σac(T ), 399
σap(T ), 399
σess(T ), 398
σpc(T ), 399
σpr(T ), 399
σsing(T ), 399√

A, 136, 465
⊂,⊃, 4
sup, 697
τ , 212
|A|, 139, 466
|μ| with μ complex measure, 32

||A||1 with A operator of trace class, 188
||A||2 with A Hilbert–Schmidt operator, 177
|| ||, 101

|| ||(P)
∞ , 345

|| ||2, 102
|| ||∞, 58
Φ̂T , 338
Ĝω , 550
F̂ , 149
x̂, Gelfand transform, 330
S̃G , 593
{A}′ with A operator, 216
{ f ,g}, 516
∗-algebra, 122
∗-algebra or C∗-algebra generated by a

subset, 122
∗-anti-automorphism, 692
∗-homomorphism, 122, 324, 335
∗-isomorphism, 122
∗-weak topology, 67
a.e., 21
a⊥ b in an orthocomplemented lattice, 261
co(E), 65
d±(A), 227
dzdz, 117
f (T ) with T self-adjoint and f measurable,

neither necessarily bounded, 398
f (T,T ∗) with T bounded normal and f

bounded measurable, 340, 356
f (T,T ∗) with T bounded normal and f

continuous, 337
f (a), 324
f (a,a∗), 335
p( ), 36
r(a), 317
s- lim, 68
sing(A), 175
supp(P), 344
supp(μ), 352
supp( f ), 15
trA with A of trace class, 191
trE , 659
v1⊗·· ·⊗ vn with vi vectors, 450
w-∂α , 220
w- lim, 68
w∗- lim, 68
W (X,σ), 502
D(Rn), 143
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E (‘and’, logical conjuction), 257
F f , 144
Ft , 255
F−g, 144
Hn+1, 254
O (‘or’, logical disjunction), 257
Pn, 660
S (Rn), 72, 143
σ -additivity, 19
σ -algebra, 16, 49
σ -algebra generated by A , 17
σ -finite, 20
ess ranP( f ), 400

Abelian
– algebra, 46
– group, 698
absolutely continuous
– function, 29
– measure with respect to another, 27
– spectrum, 399
absorbing set, 66
abstract differential equations, 431
active transformation, 523
adjoint operator
– general case, 213
– or Hermitian conjugate operator, 120
algebra, 45
– homomorphism, 46
– isomorphism, 46
– of sets, 17
– with unit, 46
algebraic
– dual, 53
– formulation of quantum theories, 292, 667
– state invariant under a quantum symmetry,

692
– state on B∞(H), 293
almost everywhere, 21
analytic function with values in a Banach

space, 310
analytic vector, 230, 410
anions, 664
annihilation operator, 402, 493
anti-isomorphic Hilbert spaces, 105
antiunitary operator, 229, 526
approximate point spectrum, 399
asymptotic completeness, 626
atlas, 702

atomic proposition, 274, 288
attractive Coulomb potential, 475, 617
axiom of choice, 697

Baire’s category theorem, 73
Baker–Campbell–Hausdorff formula, 492,

569
balanced set, 66
Banach
– algebra, 46, 122, 310, 316
– inverse operator theorem, 75
– lemma, 166
– space, 40
Bargmann’s superselection rule for the mass,

601
Bargmann’s theorem, 575
Bargmann–Fock–Hilbert space, 117
basis
– of a Hilbert space, 106, 107
– of a topology, 10, 71
Bell’s inequalities, 653
Beppo-Levi’s monotone convergence

theorem, 24
Bessel’s inequality, 108
bi-invariant Haar measure, 554
bijective map, 5
Boolean
– σ -algebra, 261
– algebra, 261
boost along the ith axis, 598
Borel
– σ -algebra, 17, 254
– measure, 254
– set, 254
Borel-measurable function, 17, 254
Bosonic Fock space, 664
Bosons, 664
bounded
– functional, 53
– lattice, 260
– operator, 53
– projector-valued measure, 344
– set, 37, 164
Busch’s theorem, 638

canonical
– commutation relations, 488
– injection of a central extension, 550
– projection, 76
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– projection of a central extension, 550
– symplectic form, 500
Cartan’s theorem, 568
Cauchy sequence, 40
Cauchy-Schwarz inequality, 98
Cayley transform, 225
CCR, 488
central charge, 574, 599
centre of a group, 698
character of a Banach algebra with unit, 329
characteristic function, 27, 117
chronological reordering operator, 631
closable operator, 211
closed operator, 211
closed set, 10
closure of a set, 11
closure of an operator, 211
coherent
– sectors (of superselection), 289, 525
– superposition, 286
collapse of the wavefunction, 288
commutant, 124
– of an operator, 216
commutative
– algebra, 46
– Gelfand–Najmark theorem, 332
– group, 698
commutator
– of a Lie algebra, 566
– theorem of tensor products, 461
commuting
– elements in an orthocomplemented lattice,

261
– operators, 216, 483
– orthogonal projetions, 132
– spectral measures, 425
compact, 14, 162
– operator, 164
compatible and incompatible
– propositions, 263
– quantities, 248, 252
compatible observables, 483
complete
– measure, 21
– measure space, 21
– metric space, 72, 73
– normed space, 40
– orthonormal system, 107
completely continuous operator, 164

complex measure, 32, 33
complex spectral measure associated to two

vectors, 353
complex-valued simple function, 300
compound quantum system, 650
Compton effect, 242
conjugate observables, 489
conjugate or adjoint operator (in a normed

space), 57
conjugation of the charge, 543
conjugation operator, 229, 526
connected
– components, 15
– set, 15
– space, 15
constant of motion, 639
continuous
– Borel measure on R, 30
– function, 13
– functional, 55
– functional calculus, 322
– map, 37, 71
– operator, 55
– projective representation, 555
– spectrum of an operator, 311
contravariant vector, 706
convergent sequence, 12, 38, 71
convex
– (linear) combination, 282
– hull of a set, 65
– set, 65, 66, 102, 282
Copenhagen interpretation, 247, 253
core of an operator, 218
cotangent space, 705
countable set, 106
counting measure, 51
covariant vector, 706
covering
– map, 567
– space of a topological space, 567
creation operator, 402, 493
cyclic vector for a ∗-algebra representation,

126

Darboux’s theorem, 500
De Broglie wavelength, 245
De Morgan’s law, 261
decoherence, 659
deficiency indices, 227
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degenerate operator, 184
dense set, 11
density matrix, 481
diffeomorphism, 704
differentiation inside an integral, 34
Dini’s theorem on uniform convergence, 43
Dirac
– correspondence principle, 515
– measure, 254
direct
– product of groups, 699
– sum, 76
discrete spectrum, 398
discrete subgroup, 567
distance, 70
distributive lattice, 260
division algebra, 126
domain of an operator, 210
Du Bois-Reymond lemma, 221
dual action of a symmetry on observables,

539
dual vector space, 706
dynamical
– flow, 609
– symmetry, 611
Dyson series, 630

Ehrenfest theorem, 643
eigenspace, 128
eigenvalue, 128
eigenvector, 128
embedded submanifold, 704
entangled states, 651
entire function, 117
EPR paradox, 651
equicontinuous
– family of operators, 64
– sequence of functions, 44
equivalent
– norms, 80
– projective unitary representations, 547
– unitary representations, 547
essential
– norm with respect to a PVM, 345
– rank, 429
– rank of a measurable function with respect

to a PVM, 400
– spectrum, 398
– supremum, 52

essentially
– bounded map for a PVM, 345
– self-adjoint operator, 215
Euclidean, or standard, distance, 71
expansion of a compact operator with respect

to its singular values, 175
exponential mapping of a Lie group, 568
extension of an operator, 210
extremal element of a convex set, 65
extreme element in a convex set, 282

factor (von Neumann algebra), 125, 273
factors of type II1, 273
faithful
– algebraic state, 672
– representation, 544, 700
– representation of a ∗-algebra, 126
Fatou’s lemma, 25
Fermionic Fock space, 664
Fermions, 664
final space of a partial isometry, 133
finite measure, 20
first integral, 639
Fischer–Riesz theorem, 50
– L∞ case, 52
fixed-point theorem, 82
Fock space, 455, 664
folium of an algebraic state, 673
Fourier transform, 144
Fourier-Plancherel transform, 149
Fréchet space, 72
fractional quantum Hall effect, 664
Fredholm equation
– of the first kind, 195
– of the second kind, 198
– of the second kind with Hermitian kernel,

196
Fredholm’s alternative, 198
free representation, 700
FS3 theorem (Flato, Simon, Snellman,

Sternheimer) on the existence of unitary
representations of Lie groups, 581

Fubini–Tonelli’s theorem, 31
Fuglede’s theorem, 372
Fuglede–Putnam–Rosenblum theorem, 374
function of bounded variation, 29
functional calculus, 322
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Gårding
– space, 421, 580
– theorem, 580
Galilean group, 553, 592, 621, 645
Gaussian or quasi-free algebraic states, 691
Gelfand
– formula for the spectral radius, 319
– ideal, 670
– transform, 330
Gelfand–Najmark theorem, 321, 683
Gelfand-Mazur Theorem, 317
general linear group, 552
generator (self-adjoint) of a strongly

continuous one-parameter group of
unitary operators, 423

generator of a unitary representation of a Lie
group, 580

generators of a Weyl ∗-algebra, 502
Gleason’s theorem, 279
Gleason-Montgomery-Zippin theorem, 564
GNS
– representation, 505
– theorem, 669
– theorem for ∗-algebras with unit, 679
Gram-Schmidt orthonormalisation process,

114
graph of an operator, 77, 210
greatest lower bound, 697
ground state, 695
– of the hydrogen atom, 619
group, 698
– automorphism, 699
– homomorphism, 544, 698
– isomorphism, 699
gyro-magnetic ratio of the electron, 7

Hölder’s inequality, 49
Haag theorem, 626
Haar measure, 554, 583
Hadamard’s theorem, 319
Hahn–Banach theorem, 60
Hamilton’s equations, 255
Hamiltonian
– formulation of classical mechanics, 254
– of the harmonic oscillator, 401
– operator, 608
Hausdorff (or T2) space, 10, 37, 49, 254
Heine-Borel theorem, 14

Heisenberg’s
– picture, 638
– relations, 488, 582
– uncertainty principle, 247
Hellinger–Toeplitz theorem, 216
Hermite
– functions, 116, 403, 494
– polynomial, 117
– polynomial Hn, 117
Hermitian
– inner product, 98
– operator, 215
– or self-adjoint element, 122
– semi-inner product, 98
Hilbert
– basis, 106, 107
– space, 101
– space associated to a physical system, 274
– space of a non-relativistic particle of mass

m > 0 and spin 0, 487
– sum, 212, 289, 454
– tensor product, 452
– theorem on compact operators, 170
– theorem on the spectral expansion of a

compact operator, 172
Hilbert–Schmidt operator, 177
Hille–Yosida theorem, 424
homeomorphism, 13
homogeneous Volterra equation on C([a,b]),

84
homotopy, 16
hydrogen atom, 618

ideal and ∗-ideal, 168
idempotent operator, 78
identical particles, 660
imprimitivity
– condition, 541
– system, 541
– theorem of Mackey, 541
incoherent superposition, 286
incompatible observables, 483
incompatible propositions, 264
indirect or first-kind measurement, 288
induced topology, 10
inertial frame system, 487
infimum, 697
infinite tensor product of Hilbert spaces, 455
initial space of a partial isometry, 133
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inner
– continuity, 19
– product space, 98
– regular measure, 20
integral
– of a bounded measurable map with respect

to a PVM, 348
– of a function with respect to a complex

measure, 33
– of a function with respect to a measure, 23
– of a measurable, not necessarily bounded,

function for a PVM, 390
– of a simple function with respect to a

PVM, 347
interior of a set, 73
internal point of a set, 10
invariant
– subspace, 700
– subspace under a ∗-algebra representation,

126
inverse
– Fourier transform, 144
– operator theorem of Banach, 75
involution, 122
irreducible
– family of operators, 490
– projective unitary representation, 546
– representation, 700
– representation of a ∗-algebra, 126
– subspace for a family of operators on H,

490
– unitary representation, 547
isometric
– element, 122
– operator, 127
isometry, 38, 100, 225
– group of R3, 540
isomorphic algebras, 46
isomorphism
– of inner product spaces, 100
– of Hilbert spaces, 101, 127
– of normed spaces, 38

joint spectral measure, 407, 483
joint spectrum, 407
jointly continuous map, 39

Kadison
– automorphism, 526
– symmetry, 526
– theorem, 535
Kato’s theorem, 472, 615
Kato-Rellich theorem, 468
kernel of a group homomorphism, 698
kernel of an operator, 120
Klein–Gordon equation, 691
Klein–Gordon/d’Alembert equation, 439
Kochen–Specker theorem, 281

Laguerre function, 117
Laguerre polynomial, 117, 618
lattice, 260
lattice homomorphism, 261
least upper bound, 697
Lebesgue
– decomposition theorem for measures on
R, 31

– dominated convergence theorem, 25
– measure on Rn, 28
– measure on a subset, 28
Lebesgue-measurable function, 28
left and right orbit of a subset by a group,

553
left-invariant and right-invariant measure,

554
Legendre polynomials, 115
Lidiskii’s theorem, 194
Lie
– algebra, 516, 566
– algebra homomorphism, 566
– algebra isomorphism, 566
– group, 564
– group homomorphism, 565
– group isomorphism, 565
– subgroup, 567
– theorem, 567
limit of a sequence, 38, 71
limit point, 13
Lindelöf’s lemma, 12
linear representation of a group, 699
Liouville’s
– equation, 255
– theorem, 256
Lipschitz function, 30
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local
– chart, 702
– existence and uniqueness for first-order

ODEs, 87
– homomorphism of Lie groups, 565
– isomorphism of Lie groups, 565
locally
– compact space, 14, 49, 162, 254
– convex space, 66
– integrable map, 220
– Lipschitz function, 87
– path-connected, 16
– square-integrable function, 474
logical
– conjuction, ‘and’, 257
– disjunction, ‘or’, 257
– implication, 257
Loomis–Sikorski theorem, 262
Lorentz group, 553
lower bound, 697
lower bounded set, 697
LSZ formalism, 626
Luzin’s theorem, 26

Mackey’s theorem, 501
maximal ideal, 329
maximal observable, 484
meagre set, 73
mean value, 484
measurable
– function, 17
– space, 17
measure
– absolutely continuous with respect to

another measure, 33
– concentrated on a set, 20
– di Borel, 20
– dominated by another, 27, 33
– space, 19, 49, 254
measuring operators, 637
Mercer’s theorem, 185
metric, 70
– space, 70
metrisable topological space, 72
Minkowski’s inequality, 49
mixed
– algebraic state, 669
– state, 286, 481

mixture, 286
modulus of an operator, 139
momentum
– operator, 221, 405, 458, 487
– representation, 542
monotonicity, 19, 345
multi-index, 72
multiplicity of a singular value, 175
multipliers of a projective unitary

representation, 546

Nelson’s
– theorem on commuting spectral measures,

582
– theorem on essential self-adjointness

(Nelson’s criterion), 231
– theorem on the existence of unitary

representations of Lie groups, 581
Neumark’s theorem, 638
non-destructive or indirect measurements,

481
non-destructive testing, 288
non-meagre set, 73
nonpure state, 286
norm, 36
– topology of a normed space, 37, 70
normal
– coordinate system, 569
– element, 122
– operator, 127
– operator (general case), 215
– state of a von Neumann algebra, 674
– states of an algebraic state, 673
– subgroup, 698
– vector, 98
normed algebra with unit, 46
normed space, 36
nowhere dense set, 73
nuclear operator, 188
number operator, 402, 493
Nussbaum lemma, 231

observable, 296, 482
observable function of another observable,

299
one-parameter group of operators, 413
one-parameter group of unitary operators,

414
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open
– ball, 37
– map, 74
– mapping theorem (of Banach-Schauder),

74
– metric ball, 74
– neighbourhood of a point, 10
– set, 10, 37, 70
operator norm, 54
operators of spin, 589
orbital
– angular momentum, 458
– angular momentum operator, 458
ordered set, 697
orthochronous Lorentz group, 553
orthocomplemented lattice, 260
orthogonal
– complement, 260
– elements in an orthocomplemented lattice,

261
– group, 553
– projector, 130
– space, 98
– system, 107
– vectors, 98
orthomodular lattice, 261
orthonormal system, 107
outer continuity, 19
outer regular measure, 20

Paley–Wiener theorem, 151
parallelogram rule, 98
parastatistics, 664
parity inversion, 542
partial
– isometry, 133, 141, 466
– order, 697
– trace, 659
partially ordered set, 697
passive transformation, 524
path-connected, 15
Pauli
– matrices, 126, 280, 533, 589
– theorem, 635
permutation group on n elements, 660
Peter–Weyl theorem, 584, 588
phase spacetime, 254
photoelectric effect, 241
Plancherel theorem, 149

Planck’s constant, 239
Poincaré
– group, 553
– sphere, 533
point spectrum of an operator, 311
Poisson bracket, 516
polar decomposition
– of bounded operators, 140, 141
– of closed densely-defined operators., 466
– of normal operators, 142
polarisation formula, 99
poset, 697
position operator, 219, 405, 458, 487
positive
– element in a C∗-algebra with unit, 327
– operator, 127
– operator-valued measure, 345, 637
– square root, 136
POVM, 345, 637
preparation of system in a pure state, 288
probabilistic state, 256
probability
– amplitude, 286
– measure, 20, 254
product
– measure, 31
– structure, 703
– topology, 12, 39, 77, 211, 212
projection, 78
– space, 78
projective
– representation of a symmetry group, 544
– space, 282
– unitary representation of a group, 546
– unitary representations of the Galilean

group, 596
projector-valued measure, 296, 344
projector-valued measure su R, 298
pullback, 708
pure
– algebraic state, 669
– point spectrum, 399
– state, 286, 480
purely atomic Borel measure on R, 30
purely residual spectrum, 399
pushforward, 708
PVM, 296
– on R, 298
– on X, 344
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quantum
– group associated to a group, 552
– logic, 273
– Nöther theorem, 641
– state, 275, 281, 480
– symmetry, 521
– symmetry in the algebraic formulation,

692
quasi-equivalent representations of a
∗-algebra, 685

quaternions, 125

Radon measure, 116
Radon–Nikodým
– derivative, 27, 33
– theorem, 27, 33
range of an operator, 120
real-analytic manifold, 702
realisation of a Weyl ∗-algebra, 505
reflexive space, 63, 105
regular complex Borel measure, 59
regular measure, 20
relatively compact set, 14, 162
representation of a ∗-algebra, 126
representation of a Weyl ∗-algebra, 503
residual spectrum of an operator, 311
resolvent, 311
– identity, 312
– set, 311
resonance, 446
restricted Galilean group, 593
Riesz’s theorem
– for complex measures on Rn, 59
– for complex measures, 59
– for positive Borel measures, 26, 294
– on Hilbert spaces, 104
right regular representation, 588
right-invariant Haar measure, 554

scattering, 623
scattering operator, 625
Schröder-Bernstein theorem, 112
Schrödinger’s
– equation, 246, 433
– picture, 639
– wavefunction, 245
Schur’s lemma, 491

Schwartz
– distribution, 73
– space on Rn, 72, 143
second-countable space, 11, 71
Segal–Bargmann transformation, 519
self-adjoint
– operator, 127
– operator (general case), 215
semidirect
– product, 540
– product of groups, 699
seminorm, 36
separable
– Lp measures and spaces, 115
– Borel measures and Lp spaces, 116
– Hilbert space, 113
– measure, 115
– topological space, 11
separating elements, 62
sequentially
– compact, 162
– continuous map, 38
set
– of atoms of a Borel measure on R, 30
– of the first category, 73
– of the second category, 73
sharp state, 256
signed measure, 32
simple C∗-algebra, 678
simple function, 22, 346
simply connected space, 16
singular
– measure with respect to another, 27
– spectrum, 399
– values of a compact operator, 175
smooth
– manifold, 702
– map, 701
– structure, 702
space
– of analytic vectors of a unitary representa-

tion of a Lie group, 580
– of effects, 637
special
– orthochronous Lorentz group, 553
– orthogonal group, 553
– unitary group, 553



726 Index

spectral
– decomposition for normal operators, 359
– decomposition of unbounded self-adjoint

operators, 393
– measure associated to a vector, 353
– measure on R, 298
– measure on X, 344
– multiplicity, 370
– radius, 317
– representation of normal operators in
B(H), 364

– representation of unbounded self-adjoint
operators, 406

spectrum
– of a commutative Banach algebra with

unit, 329
– of an operator, 311
– of the Hamiltonian of the hydrogen atom,

618
spherical harmonics, 460
spin, 249, 588
– statistical correlation, 664
spontaneous symmetry breaking, 693
square root of an operator, 135
standard
– deviation, 484
– domain, 210
– symplectic basis of a symplectic vector

space, 500
– topology, 11
statistical operator, 481
Stone
– formula, 419
– representation theorem, 262
– theorem, 419, 579
Stone–von Neumann theorem, 500
Stone–von Neumann theorem, alternative

version, 501
Stone–Weierstrass theorem, 49, 115
strong topology, 67
strongly continuous
– one-parameter group of operators, 414
– projective unitary representation, 557
– semigroup of operators, 424, 449
structure
– constants of a Lie algebra, 568
– constants of the Galilean group, 594
sub-additivity, 19, 36, 345

subalgebra, 48
subgroup, 698
– of pure Galilean transformations, 594
– of space translations, 594
– of time displacements, 609
– of time translations, 594
subrepresentation of a ∗-algebra, 685
superposition principle of states, 286
superselection rules, 289, 480, 524
– of angular momentum, 290, 592
– of the electric charge, 290
support
– of a complex measure, 33
– of a function, 15
– of a measure, 20
– of a projector-valued measure, 344
– of una measure, 352
supremum, 697
symmetric operator, 215
symmetry group, 544
symplectic
– coordinates, 255
– form, 500
– linear map, 500
– vector space, 500
symplectomorphism, 500

tangent space, 705
tensor
– product of Hilbert spaces, 452
– product of vectors, 450
– product of von Neumann algebras, 461
theorem
– corresponding to Heisenberg’s Uncer-

tainty Principle, 489
– corresponding to Heisenberg’s Un-

certainty Principle for mixed states,
513

– corresponding to Heisenberg’s Un-
certainty Principle, strong version,
512

– of Arzelà–Ascoli, 44
– of Banach–Alaoglu, 69
– of Banach–Mazur, 45
– of Banach–Steinhaus, 63
– of characterisation of pure algebraic states,

675
– of Krein–Milman, 70
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– on ∗-homomorphisms of C∗-algebras with
unit, 326

– on absolutely convergent series, 32
– on Hilbert-space completion, 101
– on positive elements in a C∗-algebra with

unit, 327
– on regular values, 704
– on solutions to Fredholm equations of the

second kind with Hermitian kernels, 196
– on the continuity of positive functionals

over C∗-algebras with unit, 672
– on the eigenvalues of compact operators

in normed spaces, 166
– on the invariance of the spectrum, 326
– on the representability of algebraic

quantum symmetries, 692
time
– homogeneity, 608, 629
– reversal, 542, 633
time-dependent
– dynamical symmetry, 611
– Schrödinger equation, 614
time-evolution
– operator, 609
– operator in absence of time homogeneity,

629
topological
– dual, 53, 105
– group, 541, 552
– space, 10
– vector space, 66
topology, 10
– of a metric space, 70
total angular momentum of a particle with

spin, 590
total order relation, 697
total variation of a measure, 32
trace of an operator of trace class, 192
trace’s invariance under cyclic permutations,

192
trace-class operator, 188
transition
– amplitude, 286, 481
– probability, 286
transitive representation, 700
triangle inequality, 36, 70
Tychonoff’s theorem, 15

uniform
– boundedness principle, 63
– topology, 67
unitarily equivalent irreducible representa-

tions of the CCRs, 667
unitarily equivalent representations of
∗-algebras, 126

unitary
– element, 122
– group, 553
– operator, 101, 127
– representation of a group, 547
– transformation, 101
universal
– covering of a topological space, 567
– representation of a C∗-algebra, 685
upper bound, 697
– set, 697
Urysohn’s Lemma, 15, 294

vector of uniqueness, 230
vector subspace, 5
Volterra
– equation, 183
– equation of the second kind, 201
– operator, 183
von Neumann
– algebra, 124, 125, 273
– algebra generated by a bounded normal

operator and its adjoint, 392
– algebra generated by a subset of B(H),

125, 273
– algebra generated by an operator, 216
– double commutant theorem, 124
– theorem on iterated projectors, 272
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