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Foreword

Matteo Campanella graduated cum laude in Electronic Engineering at the
University of Palermo in May 1972. He has been an Assistant Professor at the same
university since 1973. He became an Associate Professor on Fundamentals of
Electrical Engineering in 1983 and on Telecommunications in 1992. Since 2002, he
has been a Full Professor on Telecommunications at the University of Palermo.

Matteo Campanella has been always a very eclectic researcher, as demonstrated
not only by the heterogeneity of his research interests, but also by the variety of
subjects that he taught during his career. He started with a class about Synthesis of
Passive and Active Circuits in 1973, then he taught Applied Electronics from 1974
to 1978 and Circuit Theory from 1974 to 1991. Although since 1983 he was an
Associate Professor on Fundamentals of Electrical Engineering, with the official
course on Circuit Theory, in 1980, 1987, and 1988 he taught the course of
Electromagnetic Fields and Circuits, and in 1985–1986 he taught again the course
of Applied Electronics. In 1991, he taught for the first time the course of Numerical
Transmission Systems that he kept during the rest of his career. Since 1997, he also
taught the course of Digital Processing for the Master Program of
Telecommunication Engineering and Computer Engineering.

He participated in the Ph.D. course on Communications at the University of
Palermo and he was the advisor of several master thesis and Ph.D. thesis dealing
with distributed circuits and numerical transmission systems. He devoted his studies
to the theory of microwave circuits, optimization techniques for continuous phase
modulated systems, evaluation of limit performance of constant envelop channels
as well as codes and lattices, and convolutional codes over groups and turbo codes.
He has been reviewer for several important journals, among which some of the
journals are IEEE Transactions on Communications, IEEE Transactions on
Information Theory, and IEEE Communications Magazine. He also worked on
several national research programs, funded by the Italian Minister of University and
Research (MIUR).

Matteo Campanella was a very intellectually gifted researcher, but also a very
charismatic lecturer. He delighted colleagues and students with his wide knowledge
and vibrant passion for ideas as well as the strength of his coherence. Although he
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was a very reserved and modest person, his mild temperament and strong per-
sonality, as well as his way of facing complex problems as a sequence of obvious
intuitive steps, provided that good analysis instruments were defined, significantly
affected hundreds of students and the whole group of Telecommunications at the
University of Palermo.

Palermo, Italy
January 2018

Pierluigi Gallo
Giovanni Garbo

Giovanni Mamola
Stefano Mangione
Ilenia Tinnirello

vi Foreword



Preface

Professor Matteo Campanella was born in Palermo on September 27, 1947, and
died prematurely on June 18, 2016. He was a Professor at the DEIM Department
(Dipartimento di Energia, ingegneria dell’Informazione e modelli Matematici),
Palermo University. This monograph presents a selection of his writings on the
foundations on quantum mechanics and on a possible derivation of the Born rule.
The notes are presented just as he wrote them. Professor Matteo Campanella
planned to explore some of these ideas in more depth, but could not complete his
work, because of his premature death.

I met my husband Matteo in 1982, and was immediately fascinated by his
personality. His cultural interests ranged from the sciences to music, history, and
philosophy. He was just as passionate about the sciences as he was about political
and social issues. He loved physics and mathematics. He had been studying the
foundations of quantum mechanics and, in particular, its interpretation, for years.
Sometimes he spoke with me about these topics, and I always tried to encourage
him to publish his work. In 2011, he told me about an interesting new result. This
time, I really tried to persuade him to publish his results, but he wasn’t fully
satisfied with what he’d written, and intended to modify some parts of it. Five years
passed: I often asked him how his work was going, and he always told me that it
wasn’t entirely clear. Over these 5 years, he continued to study the problem. The
results of his studies can now be found in over 100 files from his computer, and in a
wealth of written notes. I decided to publish a part of his writings on this subject,
hoping that someone will someday continue his work.

Palermo, Italy Maria Stella Mongiovì
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Introduction

This monograph contains some posthumous mathematical writings of
Prof. Matteo Campanella on some interpretative aspects of quantum mechanics.
The general goal of this work is to arrive to Born’s rule, one of the key principles
of the probabilistic interpretation of quantum mechanics, in a way independent of
any a priori probabilistic interpretation. This topic is indeed a very active line of
research nowadays, because of its fundamental interest. Here we try to outline and
summarize the main lines of this work. To simplify the reading of the text, we have
split each chapter in a few sections; this division was not introduced by Campanella
himself, and it is only aimed to provide an indicative guide to the main lines of the
content.

General Context

Born’s rule was proposed by Max Born in 1926, in an attempt to interpret the
physical meaning of the wave function introduced by Schrödinger, by relating it to
the probability of obtaining a particular value in the set of the allowed values of the
physical quantities characterizing the system, when making a measurement on the
system. It thus plays an essential role in the connection between quantum theory
and experiments and it has a deep conceptual interest because it was one of the
ways in which indeterminism entered in fundamental physics, in parallel with
Heisenberg’s relations. In the standard formalism of quantum mechanics, it is
considered as a basic postulate. However, due to its deep implications and its
operational role in measurement theory, its physical derivation and its philosophical
interpretation have always deserved much interest [18, 20, 24, 192, 188, 191, 206,
236, 198]. Recall, for instance, that the same idea of probabilistic interpretation
of the wave function aroused much discussions between Einstein, for whom this
probabilistic character was an indication of some missing information about the
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actual physical world, and Bohr and many other researchers, for whom this prob-
abilistic character was inherent of deep physical reality, and quantum mechanics
was a complete theory.

Many attempts toward a consistent derivation of Born’s rule have been made
along several different lines, for instance, in the many-universes interpretation
(since 1957) [131, 197, 134], in the de Broglie-Bohm interpretation (since 1920) [6,
187, 5, 139, 146, 145, 244, 127, 140], or from Gleason’s theorem (since 1957) [9,
207, 224]. At the turning of the twenty-first century, other kinds of proposals arised,
stimulated by a stronger emphasis on the idea of decoherence and of entanglement
and on the fast expansion of research on quantum information. Let us mention a few
approaches: Deutsch proposed to derive Born’s probabilistic rule from the non-
probabilistic axioms of quantum mechanics combined with classical decision theory
[39, 61, 11, 40, 41]; Zurek proposed an environment-related derivation based on the
invariance (relative to a given environment E, and therefore called “envariance” in
short) of entangled states under a swap of the outcomes of the system S without
changing the outcomes of the environment E [248, 249, 251, 53, 250, 87, 23, 27].
Zurek derivation has been examined by several authors [212, 221, 188, 211, 224,
10]. Relational quantum mechanics (since 1994) [180, 183, 182, 181], or cate-
gorical quantum mechanics (since 2005) [31, 29, 28, 30], especially stressing the
role of relations or of processes or Bayesian quantum mechanics [194], intuition-
istic quantum mechanics [232], Ithaca approximation [186, 104] are other con-
temporary approaches of giving new interpretation to several basic aspects of
quantum foundations and quantum logic.

The Present Work

Campanella’s work participates to this general trend of research and it aims to
giving a more rigorous mathematically based form to proposals in the line set forth
by Zurek since 1992.

Quantum mechanics in general, and the mentioned derivations in particular,
make several important mathematical assumptions about the definition of state
of the system, the invariant transformations related to it, the relation between the
state and probabilities, and so on. The aim of Campanella’s work is to start from the
uncontroversial interpretative assumptions of quantum mechanics and to use a
suitable mathematical formalism, to derive the other most relevant interpretative
items of quantum mechanics, especially Born’s rule.

In Chap. 1, the general assumptions and aims of the work are presented. The
mathematical assumptions underlying the interpretative items of quantum
mechanics are: 0) the properties of a quantum system H can be described in terms
of a Hilbert space H associated with it; 1) if the system W is a universe, a state of it
may be identified as a ray of W , that is, an element of a projective space PðWÞ; 2) if
a system L is composed of two subsystems H and K its Hilbert space is a tensor
product H � K; 3) the only allowed transformations for the states of a universe W
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are induced by unitary transformations of its Hilbert space W . These are well-
accepted features in quantum mechanics. At this point, an essential part of
Campanella’s program is the use of a formulation mathematically equivalent to
transformations but involving a single state of an extended composite system
which, seen from different partial points of view, appears as the transformation, the
state “before” the transformation and the state “after” the transformation. In doing
so, it is intended to avoid two drawbacks of a transformation involving a) the
totality of states and b) the idea of an “evolution” from an old state to a new one.

Chapters 2–3 are the central ones. In Chap. 2, the state of a subsystem of a
quantum system is characterized independently of any probabilistic interpretation.
In contrast to classical mechanics, in quantum mechanics the nature of a state of a
subsystem of a given composite system is deeply different as that of the whole
system, because of the presence of entanglement for the states. In the conventional
setting of quantum mechanics, the state of the subsystem is described by a partial
density operator, whose definition is justified by the probabilistic interpretation and
the use of Born’s rule. In Chap. 2, instead, it is shown that one way of charac-
terizing the state of a subsystem is through a partial density operator independently
of any a priori probabilistic interpretation. The latter will come out as a conse-
quence of the formalism and of a few assumptions, connected with the notion of a
state. Suppose that a composite system C consists of two parts S (the “system”)
and E (the “environment”) with respective Hilbert spaces H and K. A key step for
the introduction of a natural definition of a state of S is the formalization of the
“envariance” property introduced by Zurek (namely, an “environment-assisted”
invariance exhibited by entangled systems). From this assertion, and describing the
states of the composite system (“the universe”) as pure states, it is concluded that
the state of S associated with a pure state j/i of the composite system may be
defined as the orbit of j/i under the action of the group I�UðKÞ, being I the
identity operator and UðKÞ the group of the unitary transformations in K.

According to this, the state of S is characterized as a subset of the space of the
composite system. To arrive at a definition involving only points of the Hilbert
space ofS, any set of mathematical objects in bijection with the orbits of I�UðKÞ
can be as well used to define the state. Thus, the author arrives at a characterization
of a state of S as a density operator arising as an orbit invariant without any a
priori probabilistic interpretation.

In Chap. 3, the step from the above non-probabilistic definition of the state of S
to a probabilistic definition is given. Two related, but distinct items about this
discussion are considered. The first consists in the different ways of representing
the state of S depending on whether it is considered isolated or not. Classically,
the state of a composite system is described as a point in its phase space, expressed
as the Cartesian product of the phase spaces of the component subsystems. If also in
the classical case the state of S is defined a la Zurek, with the role of UZðKÞ
substituted by the role of the group of the canonical transformations of the phase
space of E, the orbits of the latter group can be parameterized by the points of the
phase space of S both in the absence and in the presence of interaction. So in the
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classical case the conventional definition of states of the subsystem is compatible
with Zurek’s point of view. In the latter case, the projections of the initial and final
points of the composite system are points of the phase space of S even if an
interaction takes place. Since the final point of S depends both on the initial states
of S and of E, if the state of the environment E is not completely known statistical
methods must be introduced, but the description of the state of S by means of a
point in its phase space is not forbidden, at least in principle. The situation is quite
different in the quantum case. Even if the initial state is described by a point of
PðHÞ, the final state of S (i.e., the “projection” of the final state of the composite
system) is a density operator with rank [ 1 and not just a one-dimensional pro-
jector if an interaction with the environment has taken place.

The second question concerns the different ways of describing the evolution
of the system in the absence or in the presence of interaction. Both in classical and
quantum cases the interaction precludes the possibility of establishing a functional
relationship between the initial and the final states of S: the only thing that can be
said, in general, is that both are “projections” of the initial and final states of the
composite system. But, in contrast to the classical case, in the quantum case a
fundamental difference exists in the mathematical description of the states of S
depending on whether the system is considered as isolated or as a subsystem of C.
In the first case, the states are points of PðHÞ, while in the second one they are
represented by density operators. In the most popular axiomatics of quantum
mechanics, the need of this difference is a consequence of the a priori introduction
of a probabilistic interpretation of the theory and its quantitative expression
through Born’s rule. Instead, here this difference is a direct consequence of two
assumptions: that a composite system is described by a tensor product and that the
correct notion of state of a subsystem is the one implied by Zurek’s considerations.
Neither of these assumptions involves probability; specifically, the density operator
arises merely as an orbit invariant.

Suppose we may consider the system S isolated from the environment E before
some instant t0, but that the interaction is switched on, until t1, so that, for t[ t1S
and E can be again modeled as mutually isolated. Before t0, S and E evolve
independently; at t\t0, S is in a well-definite state 1 2 PðHÞ and E in a state
s 2 PðKÞ. At t0 the interaction is switched on. Therefore, the state of the composite
system C after t0 becomes entangled. In particular, let wj i denote a normalized
representative of the state at t1. At this instant the system must be considered as
interacting with the environment as the “past” is concerned, and as non-interacting
regards to the “future.” If “non-interacting” were the same thing as “isolated,” we
could think that both descriptions of the state must hold: as an interacting system, it
ought to be described by qS ¼ trE wj i wh j; (which means a partial specification of the
state of C) and, as a non-interacting system, by a (perhaps partial) specification of
some point of n of PðHÞ.

A careful analysis shows that, when there is in qS some kind of degeneracy, the
notions of “non-interacting” and “isolated” are not equivalent. This means that not
for all the density operators the description in terms of states of an isolated system is
possible. More precisely, it is shown that if a system H can be considered isolated
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there is at most a single multidimensional eigenspace of qH and that, if it exists, it is
the null eigenspace. The spectral expansion of qH is qH ¼ P

wP wð Þ where all the
projectors P wð Þ are of rank one, and the possible states of H in qH as an isolated
system are the states associated with these projectors.

In the next step, it is seen that we are forced to give to a density operator whose
non-null eigenspaces are all one-dimensional, called generic density operator, a
probabilistic interpretation: it is shown that it is possible to fix uniquely a proba-
bility law on the set N of eigenstates of qS, so that the state becomes a well-defined
random variable.

This result is obtained in the last chapter (Chap. 4). The lines of thought to
obtain this are the following. In Sect. 4.1, the structure of the set DN of generic
density operators is analyzed. Barycentric coordinates with respect to an orthogonal
set of states are introduced, bringing a simplex structure together with the standard
topology. After a detailed mathematical analysis of the set DN, in Sect. 4.2, the
problem of the probability of the non-null eigenstates of a generic density operator
is studied and the universality of the probability distribution is shown. Sections 4.3
and 4.4 are devoted to the determination of a functional equation for the probability
distribution function and of its solution. One sees that the only solution for the
obtained functional equation is the identity. One concludes that if two operators
have the same spectrum, they coincide. This final result assures that, without any
additional axiom, the probability of each state is shown to be equal to the cor-
responding eigenvalue of the density operator. Thus, Born’s rule is recovered as a
consequence rather than introduced as an axiom.

The appendices discuss many mathematical details which would have broken the
continuity of the discussion of the former chapters if they had been included at the
corresponding points. For instance, they deal with barycentric coordinates, mapping
between Hilbert spaces, tensor products between linear spaces, orbits of vectors of a
linear space, under the action of its structure group and the class of Hilbert space as
a category. In particular, in Appendix D, the proof of the Theorem 2.4, that is, an
important stem in Campanella’s discussion, can be found.

In the writings of Prof. Campanella, there was not an explicit bibliography at
well-defined points. Instead, the bibliography he used for his work was collected in
several files. To be as faithful as possible to his work we present the bibliography as
it was structured in his several files. For the sake of completeness regarding the
general context, we have added in an independent list other references related to this
topic.

David Jou
Maria Stella Mongiovì
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Chapter 1
Fundamental Assumptions

1.1 Basic Assumptions of Quantum Mechanics

The approach to our discussion will be roughly the following. We will state without
further analysis the interpretative assumptions of Quantum Mechanics which are at
present substantially uncontroversial. On the contrary, we will try to derive from
them and from the mathematical formalism the other most relevant interpretative
items (including Born’s rule).

The first assumption we make without discussion is that, if a system W is consid-
ered as a universe, a state of it can be specified by a ray of W , that is an element of
the associated projective space P (W ).

An equivalent formulation is to specify the state through a projector P of rank
one operating on W . We will denote ψ an element of P (W ) and |ψ〉 any normal-
ized ket representing ψ (defined up to an arbitrary phase factor). Consequently, the
corresponding projector is P = |ψ〉 〈ψ |.

The second assumption is that, if a system L is composed with the two subsystems
H and K , its Hilbert space is a tensor product H ⊗ K (as a Hilbert space).

Weobserve that a tensor product of two spaces is, strictly speaking, not a space, but
a bilinear mapping whose domain is the Cartesian product H × K . Hence, we ought
to say that the Hilbert space of L is the image of a tensor product. Furthermore, tensor
products are defined up to isomorphisms. The choice of one or another realization
of the tensor product is not essential, because we can translate in a one-to-one way
any statement expressed in a realization into a statement expressed in any other.

However, a natural and, for many instances, convenient realization of H ⊗ K in
the case of (finite-dimensional)Hilbert spaces is the linear space Hom (H∗, K ) of the
linear mappings from the dual H∗ of the space H to the space K . The scalar product
〈ϕ,ψ〉 is defined as tr (ϕ∗ ◦ ψ), where ϕ∗ denotes the adjoint of ϕ [see Appendices
C and D]. A mapping of rank one of Hom (H∗, K ) is expressed as |k〉K H∗ 〈h|. We
have

Note: The content of this chapter can be found in Campanella’s file Zurekabs (16-12-2011).

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
M. Campanella et al., Interpretative Aspects of Quantum Mechanics,
UNIPA Springer Series,
https://doi.org/10.1007/978-3-030-44207-1_1
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2 1 Fundamental Assumptions

(|k〉K H∗ 〈h|) (|x〉H∗) = |k〉K H∗ 〈h|x〉H∗ = H 〈x |h〉H |k〉K .

Simplifying the notation, an element of rank one will be expressed as |h〉 |k〉, with
the rule of calculation

(|k〉 H∗ 〈h|) (|x〉H∗) = 〈x |h〉 |k〉 .

We put |h〉 ⊗ |k〉 = |h〉 |k〉. Hence, in this realization, the separable elements of
H ⊗ K are the linear mappings of rank one. Unless differently specified, the above
realization of a tensor product will be understood.

The third uncontroversial notion is that the only allowed transformations for the
states of a universe W are induced by unitary transformations of its Hilbert space.
This means that an allowed transformation of the elements of P (W ) is induced by
an element of the group U (W ) of the unitary transformations of W .

1.2 Quantum States as Rays and Related Mathematical
Concepts

The notion of a transformation implies a mapping, which associates to any state
“before” a corresponding state “after.” This point of view has two drawbacks: it
involves the totality of states and it involves the idea of an “evolution” from an old
state to a new one.Wewould like to arrive at amathematically equivalent formulation
which involves a single state (of an extended composite system) which, seen by
different partial points of views, appears as the transformation, the state “before”
and the state “after.” A more precise sense of what we mean will come out from the
following analysis.

The key observationwhich allows to carry on this program is the bijection between
linear mappings and elements of tensor products. To the space of linear mappings
Hom (X,Y ), we associate the tensor product X∗ ⊗ Y . Using the canonical isomor-
phism between X∗ ⊗ Y and L = Y ⊗ X∗, we associate a ket of the latter space to a
specific linear mapping, which can be considered as a representative of a state of a
composite system L. If Z is another space, ψ ∈ Hom (X,Y ) and ϕ ∈ Hom (Y, Z),
the composition ϕ ◦ ψ is defined and belongs to Hom (X, Z). Introducing the tensor
products M = Z ⊗ Y ∗ and N = Z ⊗ X∗, we associate toψ and ϕ the corresponding
kets |ψ〉 ∈ L and |ϕ〉 ∈ M . The ket |ϕ ◦ ψ〉 depends linearly on ϕ ◦ ψ as well as |ψ〉
and do on ψ and ϕ. Hence, the mapping which associates to the pair (|ϕ〉 , |ψ〉) the
ket |ϕ ◦ ψ〉 is bilinear. Consequently, there is a unique linear mapping

M ⊗ L
κY−→ N such that |ϕ ◦ ψ〉 = κY (|ϕ〉 ⊗ |ψ〉) . (1.2.1)

There is a canonical isomorphismbetween the spacesM ⊗ L and Z ⊗ Y ∗ ⊗ Y ⊗ X∗.
With an abuse of notation we will understand |ϕ〉 ⊗ |ψ〉 as an element of the latter
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space, and κY with the same space as its domain. The application of κY will be called
contraction in Y .

Conversely, given a ket |χ〉 ∈ Z ⊗ Y ∗ ⊗ Y ⊗ X∗ admitting a factorization

|χ〉 = |ϕ〉 ⊗ |ψ〉 , with |ϕ〉 ∈ Z ⊗ Y ∗ and |ψ〉 ∈ Y ⊗ X∗,

the factors |ϕ〉 and |ψ〉 are determined up to scalar factors λ and μ such that λμ = 1.
From the object |χ〉, we can thus recover the ket |ϕ ◦ ψ〉, but not the factors of its
decomposition because of the above indeterminacy. The latter is however removed
if we pass to the corresponding rays.

A ray of morphisms belonging to Hom (X,Y ) can be represented as a ray of
Y ⊗ X∗ and a ray of Hom (V, Z) can be represented as a ray of Z ⊗ V ∗. A pair
of such rays can be represented in a one-to-one way as a ray of Z ⊗ V ∗ ⊗ Y ⊗ X∗.
If V = Y the composition of morphisms is possible and the corresponding ray is
obtained contracting on Y .

If a ray of Z ⊗ V ∗ ⊗ Y ⊗ X∗ is the corresponding of a pair of rays of Z ⊗ V ∗ and
Y ⊗ X∗, we would like to recover the original rays through contractions. This is not
possible in a direct way, but we can proceed as follows. To a ray represented by |x〉 ∈
X we can associate the ray generated by the element |x〉 〈x | ∈ Hom (X, X), which
corresponds to the element |x〉 ⊗ 〈x | ∈ X ⊗ X∗. The original ray can be uniquely
recovered by the ray generated by the latter element.

For our purposes, it is more useful to work with the ray generated by |x〉 ⊗ 〈x |
rather thanwith the original ray. In our case, if a ket |ψ〉 represents a ray ofY ⊗ X∗, we
will use instead a ray generated by |ψ〉 ⊗ 〈ψ | which belongs to Y ⊗ X∗ ⊗ X ⊗ Y ∗.
Similarly, if a ray of Z ⊗ V ∗ is represented by |ϕ〉, we will use the ray generated by
|ϕ〉 ⊗ 〈ϕ| which belongs to Z ⊗ V ∗ ⊗ V ⊗ Z

∗
. The pair (|ϕ〉 , |ψ〉) is represented

by an element of Z ⊗ V ∗ ⊗ V ⊗ Z
∗ ⊗ Y ⊗ X∗ ⊗ X ⊗ Y ∗. The ray generated by

|ϕ〉 ⊗ 〈ϕ| can be recovered contracting on X and then on Y , while the ray generated
by |ψ〉 ⊗ 〈ψ | is obtained contracting on V and then on Z . Finally, if V = Y , the ray
generated by |ϕ ◦ ψ〉 ⊗ 〈ϕ ◦ ψ | is obtained by contracting on V ∗ and Y and on V
and Y ∗.

In order to be able to deal in a simple way with situations of arbitrary complexity,
we need to build a general formalism which is similar to tensor algebra. The main
difference is that, while in the latter we deal with iterated tensor products obtained
starting from a fixed space and its dual, here we build tensor products of arbitrary
(finite-dimensional) spaces.

We remember that to each ring we can associate a module in the following way.
Let (R,+, ·) be a ring. Let {̂ } be a singleton disjoint from R and let ̂R = R × {̂ }.

We will denote r̂ the pair (r,̂). We introduce in ̂R a structure of additive group
putting r̂ + ŝ = r̂ + s. We further define r ŝ = r̂ s. With the above definitions, ̂R is
equipped with a structure of R-module. In particular, if R is a field, ̂R is a linear
space over R.

If we take R = C,̂C is a complex linear space. Usually, an improper terminology
is used, saying that C can be regarded a complex linear space over itself. The precise
meaning of this terminology is the above construction.
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For any linear space X over C, its dual is defined as the space of linear mappings
from X to C. An element of this space is thus a mapping

X
ϕ−→ C such that ϕ (λx + μy) = λϕ (x) + μϕ (y) . (1.2.2)

If we define the mapping ϕ̂ through the position ϕ̂ (x) = (ϕ (x) ,̂), we obtain
an element of Hom

(

X,̂C
)

. We redefine the dual space as the linear space X∗ =
Hom

(

X,̂C
)

and neglect the hat in ϕ̂.

There is a natural linear mapping X
ιX−→ X∗∗ defined as follows. The expression

x∗ (x) defines a mapping X∗ × X → ̂C which is linear in both arguments. In partic-
ular, for each fixed x we obtain a linear mapping from X∗ to ̂C, that is, an element
ι (x) of X∗∗.

We recall that a basis of a linear space X is a set mapping B
β−→ X such that (β, X)

is a free linear space, and that X is finite-dimensional if there is some basis such that
|B| is finite. It is well known that a linear space always has a basis and that all bases
have the same cardinality. In the finite-dimensional case, the natural number |B| is
the dimension of the space. We emphasize that a basis is a mapping and not a set.

The image of a basis will be called a basis set. Given a basis B
β−→ X , we can define

the dual basis B
β∗−→ X∗ as follows. The position

β∗ (b)
(

β
(

b′)) = δbb′̂1

uniquely defines an element β∗ (b) of X∗ as

β∗ (b) (x) = β∗ (b)
(
∑

x
(

b′) β
(

b′)
)

= x (b)̂1.

The mapping ιX is an isomorphism in the case of finite-dimensional spaces.
If ϕ ∈ Hom (X,Y ), we can define the transpose ϕt ∈ Hom (Y ∗, X∗) as follows.

For each y∗ ∈ Y ∗, themapping y∗ ◦ ϕ is an element of Hom
(

X,̂C
)

, that is, of X∗. As
y∗ varies in Y ∗, we get a linear mapping, that is, an element ϕt of Hom (Y ∗, X∗). The
mapping ( )t is a linear mapping from Hom (X,Y ) to Hom (Y ∗, X∗). The mapping
ϕt t is an element of Hom (X∗∗,Y ∗∗). Consequently, ι−1

Y ◦ ϕt t ◦ ιX is defined. It can
be easily shown that ι−1

Y ◦ ϕt t ◦ ιX = ϕ.

Let us apply the above notions to the space ̂C. The set injection

{1} → ̂C : 1 
→̂1

equips ̂C with a structure of free space over {1}, so that this mapping is a basis of ̂C.
Let f be an element of ̂C

∗. If x̂ ∈ ̂C, x̂ = x̂1, so that

f (̂x) = x f
(

1̂
)

= xλ̂1,
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where λ̂1 � f (̂1 ). Hence f (̂x) = λx̂ . Conversely, for each λ ∈ ̂C the above position
defines an element of ̂C

∗.
Let C

˜ϑ−→ ̂C
̂C be the mapping defined by

˜ϑ (λ) ( x̂ ) = λx̂ .

Then ̂C
∗ = Im ϑ̃ and the restriction ϑ of ϑ̃ to its image is a bijection. We have

x∗ (x) = ϑ−1
(

x∗) x .

Remembering that ιX (x) (x∗) = x∗ (x), we get ιX (x) (x∗) = ϑ−1 (x∗) x so that

ιX = · ◦ ϑ−1,

where “·” denotes the action of C on ̂C defined by the scalar multiplication. Each

element of the image of ιX is a mapping C
γ̃x−→ ̂C defined by γx (λ) = λx . For each

x , we get an element of ̂C
C. Hence, we have a mapping ̂C

γ̃−→ ̂C
C. Hence

̂C
∗∗ = Im γ̃ ⊆ ̂C

C.

Hence, while the elements of̂C∗ are all the mappings from̂C to itself corresponding
to a scalar multiplication, the elements of C

∗∗ are all the mappings from C to ̂C

corresponding to a multiplication by an element of ̂C.
We can consider the mapping C × ̂C

·−→ ̂C. For each fixed λ ∈ C, we get an
element of C

∗ defined by the rule x 
→ λ · x , while for each fixed x we get an
element ιX (x) of C

∗∗ defined by the rule λ 
→ λ · x . The dual basis of 1 
→̂1 is
1 
→̂1∗ wherê1∗(̂1 ) =̂1, so that̂1∗ (̂x) = x̂1 = x̂ . The position

1 
→̂1 
→ ι(̂1 ) �̂1∗∗

equips C
∗∗ with the structure of a free space over {1}.

Defining 〈̂x |̂y〉 = x∗y, all the properties of a scalar product are satisfied, so that
̂C becomes a Hilbert space. Hence, any element f ∈ ̂C

∗ can be uniquely represented
as f (ŷ) = 〈̂x |̂y〉 = x∗y. In the bra-ket notation, an element of ̂C is denoted as a
ket, and an element of ̂C

∗ as a bra. This notation allows the elimination of hats.
Indeed, we can put ŷ = |y〉. In this notation, the symbol inside the ket denotes a
complex number. We can say that an element of ̂C is a complex number “dressed
with a ket-suit.” The sum of two ket-dressed complex numbers is the sum of the
undressed complex numbers, dressed with a ket-suit, that is, |x〉 + |y〉 = |x + y〉.
The product λ |x〉 is the ket |λx〉. The bra corresponding to |x〉, and consistently
denoted with 〈x | (the same complex number, dressed with a bra-suit), is the linear
functional defined by the position 〈x | (|y〉) = 〈x |y〉 = x∗y. The ket |1〉 is a basis of
̂C because |x〉 = |x1〉 = x |1〉. Hence, there is in ̂C a canonical basis. We can also
say that, defining the set injection
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{1} ι−→ ̂C : 1 
→ |1〉 ,

C canonically defines a structure (ι,̂C) of free linear space over the set {1}. Similarly,
the set injection

{1} ι∗−→ ̂C
∗ : 1 
→ 〈1|

defines a structure (ι∗,̂C∗) of free linear space over the set {1}.
The above structure allows the definition of a canonical isomorphism between any

(finite-dimensional) Hilbert space H and the Hilbert space Hom(̂C, H). Indeed, for
any ϕ ∈ Hom(̂C, H), we put

υ (ϕ) = ϕ (|1〉) .

This mapping is linear. The condition υ (ϕ) = 0 entails ϕ (|c〉) = cϕ (|1〉) = 0. Fur-
thermore, if, for any |h〉 ∈ H , we put ϕ (|c〉) = c |h〉, we get υ (ϕ) = |h〉. This shows
that υ is an isomorphism. Its inverse υ−1 is expressed as υ−1 (|h〉) = |h〉 〈1|. Its
adjoint is |1〉 〈h|, so that its squared norm is tr (|1〉 〈h|h〉 〈1|) = 〈h|h〉. We conclude
that υ is an isometry. Using this isometry, we can replace each Hilbert space H with
the space Hom

(

̂C, H
)

and its dual H∗ with Hom
(

H,̂C
)

. Hence, we replace |h〉
with |h〉 〈1| and 〈h| with |1〉 〈h|.

In general, the space Hom (H, K ) can be considered a realization of the tensor
product K ⊗ H∗. In this realization, a rank one element |k〉 〈h| is regarded as the
separable element |k〉 ⊗ 〈h|. The first notation for a rank one element will be called
the “dyadic notation,” while the second one will be called the “tensor notation.”
We observe that the first notation may give rise to confusion in some circumstances.
Namely, suppose that H = K . A rank one element can be written in the form

∣

∣h′〉 〈h|.
Suppose now that H is the adjoint of some space L , that is H = L∗. Then

∣

∣h′〉
H

=
L
〈

l ′
∣

∣ and H 〈h| = |l〉L . The element is then written as L
〈

l ′
∣

∣ |l〉L . This is a correct
notation, but we must maintain the double bar, otherwise the meaning is different: it
represents the scalar product. In similar circumstances, the bra-ket notation becomes
cumbersome.

For any space X , there is a canonical isomorphism with X ⊗ ̂C
∗. Furthermore,

there is a canonical isomorphismbetween X and (X∗)∗. But the latter is Hom(X∗,̂C),
that is,̂C ⊗ X∗∗, which is canonically isomorphic tôC ⊗ X . Hence, there is a canon-
ical isomorphism between X ⊗ ̂C

∗ and ̂C ⊗ X . In this isomorphism, the elements
|x〉 ⊗ 〈1| and |1〉 ⊗ |x〉 correspond to each other.

An element of a space X will be regarded as an element of X ⊗ ̂C
∗. But the same

X can always be regarded as the dual of some Y . As a member of a space of linear
functionals on Y , it is an element of ̂C ⊗ Y ∗. But we can take Y = X∗, so that the
element is a member of ̂C ⊗ X . As an element of X ⊗ ̂C

∗ it can be written in the
form ψ ⊗ 〈1|, while as an element of ̂C ⊗ X it will be written as |1〉 ⊗ ψ . In order
to specify that ψ belongs to X , we write ψ X .

A unitary transformation of W can be regarded as an element of Hom (W,W ),
which is the standard realization of W ∗ ⊗ W . A decomposable element of the latter
space is written as
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|x〉W ∗ ⊗ |y〉W = |y〉 〈x | .

Hence, a unitary transformation of W can be viewed as a ket of W ∗ ⊗ W . The
corresponding ray can be viewed as a state of the universe W ∗ ⊗ W . This state allows
us to recover the action of the unitary transformation T on P (W ). Indeed, this ray is
the set CT . If we impose the unitarity of S = λT , we recover T up to a phase factor,
which has no influence on its action on P (W ).

A state of the universe W can be represented through a rank one projector, which
in turn can be regarded as a ket of W ∗ ⊗ W of the form |x〉W ∗ ⊗ |x〉W . This ket can
be considered as a representative of a state from which it can be uniquely recovered.
Indeed, if we impose the condition that λP is a projector, we obtain λ = 1. If a state
of W is represented by a projector P of rank one, the transformed state under the
unitary transformation T is T PT ∗.

Let us discuss this relation in terms of tensor products. However, it is useful to
discuss first the following problem. Let ϕ ∈ Hom (K , L) and ψ ∈ Hom (H, K ).
Then ϕ ◦ ψ ∈ Hom (H, L). The corresponding |ϕ〉 and |ψ〉 are kets of K ∗ ⊗ L and
H∗ ⊗ K , respectively. The ket |ϕ〉 ⊗ |ψ〉 is an element of (K ∗ ⊗ L) ⊗ (H∗ ⊗ K ).
Using the associative and the commutative property of the tensor products, we have
the canonical isomorphism

(

K ∗ ⊗ L
) ⊗ (

H∗ ⊗ K
) ι−→ (

H∗ ⊗ L
) ⊗ (

K ∗ ⊗ K
)

.

But the latter is nothing but Hom (H, L) ⊗ Hom (K , K ). In the latter space, we
define t̂r K (A ⊗ B) = A tr B and extend it by bilinearity.

Finally, for any |x〉 ∈ (K ∗ ⊗ L) ⊗ (H∗ ⊗ K ) we define trK |x〉 = t̂r K ι (|x〉). It
is easy to show that ϕ ◦ ψ = trK |ϕ〉 ⊗ |ψ〉.

We can put the matter in other terms. We consider a tensor product of the form
(K ∗ ⊗ L) ⊗ (H∗ ⊗ K ) and a separable element in it admitting a factorization |ψ〉 ⊗
|ϕ〉 with |ψ〉 ∈ H∗ ⊗ K and |ϕ〉 ∈ K ∗ ⊗ L .

The transformation T corresponds to a ket |T 〉W ∗⊗W . We emphasize that, being
the transformation a mapping, the rays involved in it must be regarded as variables,
namely, as different variables, although taking values in the same set. The formalism
of bra and kets allows to take into account this difference. Consider the variable
ψ for a state of W . We can assign to it as values the rays of W . We will interpret
this variable as an initial state of the system. If |ψ〉 is a normalized ket representing
the ray, the equivalence class of normalized kets representing it will be denoted as
ψ〉, that is, ψ〉 = {

eiϕ |ψ〉}. The variable ψ as a final state will be represented by
〈ψ = {

eiϕ 〈ψ |}. In the usual notation, using kets to represent the states and primes to
represent states after the transformation, we write ψ ′ = Tψ . Using representatives,
we have

∣

∣ψ ′〉 = T |ψ〉.
If no structure is imposed on H besides that of a Hilbert space, the group of

allowed transformations is the full unitary group U (H). In this case, the state of H is
specified by a ray of H . If ψ denotes a state, we will denote |ψ〉 any ket representing
it. As a rule, we will use normalized kets. With this condition, a ket representing a
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given state is defined up to an arbitrary phase factor. The state of the system may
be subjected to a change. By this we mean that we are considering two states: a
state ψ “before” the change and a state ψ ′ “after” the change. We emphasize that
the terms “before” and “after” are rather conventional: no temporal evolution is in
general understood.

The action of the group U (H) passes to the space P (H) of the rays of H , and
this latter action is transitive. For notational simplicity, we will denote with the
same symbol the action of an element of U (H) on H and on P (H). For every pair
(

ψ,ψ ′) ∈ P (H), the set of elements T ∈ U (H) such that ψ ′ = Tψ is nonempty: it
consists of a left coset of the stabilizer of ψ .

We can “explain” why a state of a universe is represented by a ray and not by a
ket in the following way. Consider the tensor product ̂C ⊗ H where ̂C is C regarded
as a vector space over itself with the structure of Hilbert space defined by the scalar
product 〈x |y〉 = x∗y. All of its elements are separable, and the position |c〉 ⊗ |x〉 →
c |x〉 defines an isomorphism between ̂C ⊗ H and H .

We associate to a universe W an extended system that we call extended universe
We. If W is the Hilbert space of W, we introduce for We the Hilbert space We =
̂C ⊗ W . The states of an extended universe are kets in its Hilbert space We. By
definition, in an extended universe, different kets correspond to different states. We
assume that a state |we〉 of the extended universe defines uniquely the state of the
corresponding universe. A state of We can be always be represented as |c〉 ⊗ |x〉, but
each factor is defined up to a scalar coefficient.



Chapter 2
The State of a Quantum System as a
Subsystem of a Composite System

An important difference between the notion of a state of a physical system in quantum
and in classical mechanics is the fact that, while in the latter the nature of a state of
a subsystem of a given system is the same as that of the whole system, in quantum
mechanics their character is deeply different. Indeed, the presence of entanglement
for the states of composite systems prevents, in general, the possibility of ascribing
to a subsystem a definite state, in the sense of a pure state of an isolated system. In
the conventional setting of the interpretative rules of quantummechanics, the state of
the subsystem is described by a partial density operator, whose definition is justified
by the probabilistic interpretation and the use of Born’s rule.

2.1 Non-probabilistic Characterization of the State of a
Subsystem

In this section, we wish to arrive at a characterization of the state of a subsystem of a
quantum system independently from any probabilistic interpretation. Starting from
a natural way of defining such a state, we will find that one way of characterizing
it is through a partial density operator independently of any a priori probabilistic
interpretation. The latter will come out as a consequence of the formalism and of a
few reasonable assumptions, connected with the notion of a state.

Suppose that a composite system C consists of two parts S (the “system”) and
E (the “environment”). We denote withH the Hilbert space ofS and withK the
Hilbert space of the environment. As the goal of this work is merely an assessment

The content of this chapter can be found in Campanella’s files ZurekState (2011-09-01) and sav-
Consideration on Zurek’s interpretation of quantum mechanics (2010-09-05).

© The Editor(s) (if applicable) and The Author(s), under exclusive
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of interpretative aspects of Quantum Mechanics, we will avoid the technicalities
connected with infinite-dimensional Hilbert spaces, so that all the Hilbert spaces
involved in our discussion will be supposed finite-dimensional. It is hoped that the
generalization to the infinite-dimensional case does not involve significant changes
of the interpretative framework.

A key step for the introduction of a natural definition of a state ofS as a subsystem
of the composite system is the formalization of a property indicated by Zurek. In the
words of Zurek: “Unitary transformations must act on the system to alter its state.
That is, when an operator does not act on the Hilbert space ofS , i.e., when it has the
form I ⊗ ( ), the state ofS does not change.” If we agree with this assertion, and we
describe the states of the composite system as pure states (according to the idea that
the composite system is “the Universe”), we conclude that the state ofS associated
with a pure state |ψ〉 of the composite system must depend only on the orbit of |ψ〉
under the action of the group I ⊗ U (K ). We will suppose conversely that different
orbits correspond to different states. This is not a strong assumption as it may appear
at first sight. Indeed, if there were different orbits physically indistinguishable, we
could always redefine the states through the passage to suitable equivalence classes.

In this way, we may tentatively define the state of S as a subsystem of the
composite system associated with |ψ〉 simply as the orbit of |ψ〉. According to this
definition, the state of S is characterized as a subset of the space of the composite
system. Instead, we would like to arrive at a definition which involves only points
of the Hilbert space ofS . To this purpose, we observe that any set of mathematical
objects in bijection with the orbits of I ⊗ U (K ) can be as well used to define the
state.

If we adopt this (implicit) definition of a state of S in the presence of the envi-
ronment E , we can arrive in a natural way at a characterization of a state of S as
a density operator. We emphasize that in this association no a priori probabilistic
interpretation (and, a fortiori, no Born’s rule) will be involved. Indeed, the density
operator will arise as an orbit invariant.

2.2 Mathematical Characterization of Zurek’s Envariance

A central concept in Zurek’s approach to quantum mechanics is envariance
(environment-induced superselection). Let us consider a quantum system S inter-
acting with another system, which will be called the environment and will be denoted
E . A state of the composite system is the ray defined by a vector |ψ〉 of the tensor
productH ⊗ K of the Hilbert spaces ofS and E , respectively. The vector |ψ〉 can
be expanded in a Schmidt basis as follows:

|ψ〉 =
∑

ak |sk〉|εk〉, (2.2.1)

where |sk〉 and |εk〉 form orthonormal bases of H and K , respectively.
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According to Zurek, we say that |ψ〉 is invariant with respect to U ∈ U (H ) if
there is V ∈ U (K ) such that U ⊗ V |ψ〉 = |ψ〉.

It is easy to show that from the following theorem.

Theorem 2.1 The set of transformations under which |ψ〉 is invariant is a group.

Indeed, let S be the set of such transformations. If U ∈ S, there is V ∈ U (K ) such
that

U ⊗ V |ψ〉 = |ψ〉.

Therefore,
U−1 ⊗ V −1|ψ〉 = |ψ〉,

so thatU−1 ∈ S. Furthermore, ifU1 ∈ S andU2 ∈ S, there are V1, V2 ∈ U (K ) such
that

U1 ⊗ V1|ψ〉 = |ψ〉 and U2 ⊗ V2|ψ〉 = |ψ〉.

Therefore, U1U2 ⊗ V1V2|ψ〉 = |ψ〉 and U1U2 ∈ S. �
In what follows trS( ) and trE ( ) will denote the partial traces over S and E ,

respectively. We now prove the following.

Theorem 2.2 The state |ψ〉 is invariant under U ∈ U (H) if and only if

U trE (|ψ〉〈ψ |) U−1 = trE (|ψ〉〈ψ |).

Proof If |ψ〉 is invariant under U , there is V ∈ U (K ) such that U ⊗ V |ψ〉 = |ψ〉.
Using (2.2.1), we get

|ψ〉〈φ| =
∑

aka∗
h |skεk〉〈shεh |.

Therefore

U ⊗ V |ψ〉 = |ψ〉〈ψ | (U ⊗ V )∗ =
∑

aka∗
hU |sk〉〈sh |U ∗ ⊗ V |εh〉〈εk |V ∗

and
trE |ψ〉〈ψ | =

∑
aka∗

h trE |sk〉〈sh | ⊗ |εh〉〈εk | =
∑

|ak |2|sk〉〈sk |.

Similarly,

trEU ⊗ V |ψ〉〈ψ |(U ⊗ V )∗ =
∑

aka∗
hU |sk〉〈sh |U ∗tr(V |εh〉〈εk |V ∗).

But
tr(V |εh〉〈εk |V ∗) = 〈εh |εk〉 = δhk,

therefore
trEU ⊗ V |ψ〉〈ψ |(U ⊗ V )∗ =

∑
|ak |2U |sk〉〈sk |U ∗.
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But
U ⊗ V |ψ〉 = |ψ〉,

so that
trE |ψ〉〈ψ | = U

∑
|ak |2|sk〉〈sk |U ∗ = UtrE |ψ〉〈ψ | U ∗.

Conversely, suppose

U trE (|ψ〉〈ψ |) U−1 = trE (|ψ〉〈ψ |).

The operator ρ = trE |ψ〉〈ψ | is (Hermitian) positive. Therefore, we have the spectral
decomposition ρ = ∑

pk Pk with pk ≥ 0. If

|ψ〉 =
∑

ak |rk〉|εk〉 (2.2.2)

is a Schmidt decomposition of |ψ〉 we have ρ = ∑ |al |2|rl〉〈rl |. We can put together
the terms with equal coefficients getting ρ = ∑

k gk
∑

l |rkl〉〈rkl |. Consequently, we
get gk = pk and Pk = ∑

l |rkl〉〈rkl |. Similarly

U ⊗ I |ψ〉 =
∑

ak |r ′
k〉|εk〉, (2.2.3)

with |r ′
k〉 = U |rk〉 and

trE (U ⊗ I )|ψ〉〈ψ |(U ⊗ I )∗ =
∑

|ak |2|r ′
k〉〈r ′

k | = Utr |ψ〉〈ψ |U ∗.

Therefore ∑
pk Pk =

∑
|al |2|r ′

l 〉〈r ′
l |.

Putting together terms with equal coefficients, we get

∑
pk Pk =

∑

k

pk

∑

l

|al |2|r ′
kl〉〈r ′

kl |, (2.2.4)

therefore Pk = ∑
l |al |2|r ′

kl〉〈r ′
kl |. This means that {|rkl〉} and

{|r ′
kl〉

}
are orthonormal

bases of the same space. We can then write

|r ′
kt 〉 =

∑

l

τ
(k)
lt |rkl〉,

where τ
(k)
lt are the coefficients of a unitary matrix. Regrouping terms in (2.2.3) and

in (2.2.2) in the same way as in (2.2.4), we get
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U ⊗ I |ψ〉 =
∑

kt

akt |r ′
kt 〉|εkt 〉 and |ψ〉 =

∑

kt

akl |rkt 〉|εkt 〉.

Consequently, we get

U ⊗ I |ψ〉 =
∑

kt

akt

∑

l

τ
(k)
lt |rkl〉|εkt 〉.

But ∑

kt

akt

∑

l

τ
(k)
lt |rkl〉|εkt 〉 =

∑

kt

|rkl〉
∑

l

aktτ
(k)
lt |εkt 〉

and
akt = p1/2

k eiϑkt ,

so that
U ⊗ I |ψ〉 =

∑

kl

|rkl〉
∑

t

p1/2
k eiϑkt τ

(k)
lt |εkt 〉.

We have

|ψ〉 =
∑

kl

p1/2
k |rkl〉eiϑkl |εkl〉 and U ⊗ I |ψ〉 =

∑

kl

p1/2
k |rkl〉

∑

t

eiϑkt |εkt 〉.

Putting eiϑkl |εkl〉 = ∑
t eiϑkt |εkt 〉, we get

U ⊗ I |ψ〉 =
∑

kl

p1/2
k |rkl〉eiϑkl |εkl〉.

From the definition, we see immediately that |εkl〉 = V ∗|εkl〉 for some V ∈ U (K ).
Therefore, we have

U ⊗ I |ψ〉 = I ⊗ V ∗|ψ〉,

whence the thesis. �

We can state the above result in the equivalent form.

Theorem 2.3 The group of envariance of a state of the composite system in S is
the group of invariance of the corresponding density operator in S .

Of course the role ofS and E can be exchanged, so that the group of envariance of
a state of the composite system in E is the group of invariance of the corresponding
density operator inS .

We first recall (see Appendix D) that, in the finite-dimensional case, there is a
canonical isomorphism between H ⊗ K and the Hilbert space Hom(H ∗,K ) of
all linear maps fromH ∗ toK , equipped with the scalar product 〈ψ |ψ〉 = tr(ψ∗ψ).
In this isomorphism, the corresponding of the ket |ψ〉 ∈ H ⊗ K will be denoted
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ψ . The action of I ⊗ V (V ∈ U (K )) on |ψ〉 corresponds to the action ψ 	→ V ψ .
The following theorem holds.

Theorem 2.4 The necessary and sufficient condition for the existence of a transfor-
mation V ∈ U (K ) such that ψ ′ = V ψ is that ψ ′∗ψ ′ = ψ∗ψ .

For a proof of this theorem, see Appendix D.
Owing to the above theorem, the state of S corresponding to |ψ〉 can be char-

acterized by ψ∗ψ . The latter is a positive self-adjoint operator operating onH ∗ on
the left if H ∗ is regarded as a space of kets, and on the right if H ∗ is regarded
as the space of bras associated with H , and hence it operates on the left on H .
Furthermore, if |ψ〉 is normalized, trψ∗ψ = 1, so that ψ∗ψ is a density operator. It
easy is to prove that

ψ∗ψ = trE |ψ〉 〈ψ | . (2.2.5)

Indeed, let
|ψ〉 =

∑
ak |sk〉 |εk〉 (2.2.6)

be a Schmidt decomposition of |ψ〉. Denoting |x〉∗a bra of H regarded as a ket of
H ∗, the corresponding linear map ψ is

ψ =
∑

ak

∣∣εk〉(∗〈sk

∣∣), (2.2.7)

so that
ψ∗ψ =

∑
|ak |2|sk〉∗∗ 〈sk |. (2.2.8)

If 〈x | is a bra of H , it must be written |x〉∗ when regarded as a ket of H ∗; we can
then write

ψ∗ψ |x〉∗ =
∑

|ak |2|sk〉∗∗〈sk |x〉∗ =
∑

|ak |2|sk〉∗ 〈x |sk〉. (2.2.9)

Regarding the latter as a bra of H , we get

〈x | ψ∗ψ = 〈x |
∑

|ak |2 |sk〉 〈sk |. (2.2.10)

So that
ψ∗ψ =

∑
|ak |2 |sk〉 〈sk |. (2.2.11)

On the other hand, we have

|ψ〉 〈ψ | =
∑

aka∗
h |sk〉 〈sh | ⊗ |εk〉 〈εh |, (2.2.12)

and trE |ψ〉 〈ψ | = ∑ |ak |2 |sk〉 〈sk | = ψ∗ψ .
The following theorem holds.
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Theorem 2.5 If ψ ∈ Hom(H ∗,K ), there is a unique orthogonal decomposition
H = ⊕Ha such that the restriction of ψ to each H ∗

a is a dilatation on its image
and that images corresponding to different subspaces are orthogonal. The subspaces
Ha are the eigenspaces of ψ∗ψ and the corresponding dilatation coefficients are
the square roots of the associated eigenvalues.

Proof Let H∗
α be the eigenspace of ψ∗ψ associated with the eigenvalue pα . If 〈x | ∈

H∗
α , it can be regarded as a ket of H ∗ and we can write it as |x〉∗. If |y〉 = ψ |x〉∗,

we have
〈y|y〉 = ∗〈x |ψ∗ψ |x〉∗ = p∗

α〈x |x〉.

Therefore, the restriction of ψ to H∗
α is a dilatation, and the dilatation coefficient is√

pα . The orthogonal decomposition H = ⊕Hα is such that the restriction of ψ to
H∗

α is a dilatation. Furthermore, if |x〉∗ ∈ H∗
α and |x ′〉∗ ∈ H∗

β (α = β),

∗〈x |ψ∗ψ |x〉∗ = p∗
α〈x |x〉 = 0,

so that the images of H∗
α and H∗

β are orthogonal. Conversely, let H = ⊕Hα be
an orthogonal decomposition such that the restriction of ψ to each H∗

α is a dilata-
tion and the images of different subspaces are orthogonal. We have the orthogonal
decomposition H ∗ = ⊕H∗

α . If {Pα} is the associated set of projectors, we have

∗〈x |ψ∗ψ |x〉∗ =
∑ ∗〈x |Pαψ∗ψ Pβ |x〉∗.

As the images of different subspaces are orthogonal, we get

∗〈x |ψ∗ψ |x〉∗ =
∑ ∗〈x |Pαψ∗ψ Pα |x〉∗ =

∑
d2α

∗〈x |Pα Pα |x〉∗ =∗ 〈x |
∑

d2α Pα |x〉∗,

where dα are the dilatation coefficients.
We conclude that ψ∗ψ = ∑

d2
α Pα and we recognize in this formula the spectral

decompositionofψ∗ψ . Therefore, the H∗
α are the eigenspaces ofψ∗ψ and the decom-

position is unique. In this unique decomposition, the subspaces are the eigenspaces
of ψ∗ψ and the dilatation coefficients are the square roots of the eigenvalues. �

For each α there is a unique linear mapping ψα such that ψα|x〉∗ = ψ |x〉∗ for
|x〉∗ ∈ H∗

α and for ψα|x〉∗ = 0 for |x〉∗ ∈ H∗
α⊥. Of course, we have

φ =
∑

ψα.

Furthermore, the image of ψα is the same as the image of the restriction of ψ to
H∗

α . Let us consider
∗〈x |ψ∗

βψα|x ′〉∗ for β = α. It is certainly zero for |x ′〉∗ ∈ H∗
γ

with γ = α and for |x ′〉∗ ∈ H∗
δ with δ = β. If |x〉∗ ∈ H∗

β and |x ′〉∗ ∈ H∗
α , ψα|x ′〉∗

is in the image of the restriction of ψ to H∗
α and ψβ |x〉∗ is in the image of the

restriction of ψ to H∗
β . Therefore,

∗〈x |ψ∗
βψα|x ′〉∗ = 0 when |x〉∗ and |x ′〉∗ lie in any

of the spaces H∗
γ . By bilinearity, we conclude that ψ∗

βψα = 0. Let us now consider
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∗〈x |ψ∗
αψα|x〉∗. It is certainly zero when |x〉∗ belongs to some H∗

γ with γ = α. If
|x〉∗ ∈ H∗

γ ,
∗〈x |ψ∗

αψα|x〉∗ = p∗
α

∗〈x |x〉∗. We conclude that ψ∗
αψα = pα Pα . From the

above considerations, the following theorem is derived.

Theorem 2.6 If ψ ∈ Hom (H, K ) is nonzero, there is a unique decomposition

ψ =
∑

dαχα

such that the dα are positive coefficients all different from each other, χ∗
αχβ = 0 for

α = β, and
{
χ∗

αχα

}
is a family of orthogonal projectors.

Indeed, it is sufficient to associate to each pα = 0 the mapping χα = p−1/2
α ψα and

dα = p1/2
α .

The following theorem,which can be regarded as a kind of Schmidt decomposition
theorem in an invariant form, will be useful in subsequent developments.

Theorem 2.7 If |ψ〉 ∈ H ⊗ K , there is a unique decomposition

|ψ〉 =
∑

dα |χα〉

such that dα > 0 with the dα all different from each other, trE |χα〉 〈
χβ

∣∣ = 0 for
α = β, and the set {Pα = trE |χα〉 〈χα|} is a family of orthogonal projectors of H .

Proof In the canonical isomorphism between H ⊗ K and Hom(H ∗,K ), the
correspondingofϕ ∈ Hom(H ∗,K ) is the ket |ϕ〉: ifϕ = |v〉∗〈u|, then |ϕ〉 = |u〉|v〉;
furthermore, ϕ∗ = |u〉∗〈v|. Therefore, if ψ = |v′〉∗〈u′|, then ψ∗ϕ = |u′〉∗〈v′|v〉∗〈u|.
On the other hand, we have |ψ〉 = |u′〉|v′〉 and |ϕ〉〈ψ | = |u〉〈u′| ⊗ |v〉〈v′|. We have
trE |ϕ〉〈ψ | = |u〉〈v′|v〉〈u′|. But |u′〉∗ = 〈u′| and 〈u| = |u〉∗ so that

ψ∗ϕ = trE |ϕ〉〈ψ |. (2.2.13)

By linearity this equation must hold for arbitrary ϕ and ψ . Hence, Theorem2.7
follows from Theorem2.6 as a consequence of the canonical isomorphism.

Henceforth, the decomposition introduced in the above theorem will be called
the canonical decomposition. This decomposition can be regarded as the abstract
counterpart of the well-known singular value decomposition of a matrix.

Remark 2.1 Thekets |χα〉 in the canonical decomposition are not normalized ingen-
eral. Indeed, 〈χα|χα〉 = tr |χα〉 〈χα| = tr E |χα〉 〈χα| = nα where nα is the dimen-
sion of the projection space of Pα . Sometimes it is convenient to recast the canon-
ical decomposition in a form involving normalized kets. To this purpose we put∣∣χ ′

α

〉 = 1/
√

nα |χα〉, so that |ψ〉 = ∑
d ′

α

∣∣χ ′
α

〉
with d ′

α = √
nαdα . The ket |ψ〉 is

normalizedwhenever
∑

(d ′
α)2 = 1. The associated density operator isρS = ∑

d2
α Pα .

Hence, the normalization condition for ρS is
∑

nαd2
α = 1.
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2.3 Characterization of a State Through Its Properties

We know that a state ζ of an isolated system described by a Hilbert spaceX is char-
acterized by the ray associated with some |ψ〉, i.e., by the set {λ |ψ〉 : λ ∈ C} which
is a point of the projective space P(X ). The unitary groupU (X ) acts naturally on
the rays and hence on P(X ). However, the action is not faithful, while the action of
the quotientU Z (X ) ofU (X )modulo its center is. Therefore, we will takeU (X )

as the structure group of P(X ) (in general we will denote G Z the quotient group of
G modulo its center).

We say that a propertyP (x) of the nonzero kets ofX is a property of the states
of the system if, whenever P is true for a nonzero ket |x〉, it is true for all the kets
of the ray generated by |x〉. We say that a property D(x) of the states of the system
defines a state of the system if, for every property P(x) of the states of the system,
the condition P(x) ⇒ D(x) entails P(x) ⇔ D(x).

We say that a state is completely defined if it is constrained by a property of the
type D(x). We say that the state is partially defined if it is constrained by a weaker
property of the states of the system.

The systems S and E are represented by P(H ) and P(K ), respectively, while
the composite system C is represented by P(H ⊗ K ). Their structure groups are
U Z (H ), U Z (K ), and U Z (H ⊗ K ). The elements of U (H ⊗ K ) acting on
indecomposable kets as |h〉 |k〉 	→ |h〉 V |k〉with V ∈ U (K )will be denoted I ⊗ V
and form a subgroup I dH ⊗ U (K ) of U (H ⊗ K ).

We say that a property P (x) of the nonzero kets of P(H ⊗ K ) is a property
of the states of the subsystem S of C if it is a property of the states of C and,
wheneverP is true for a ket |ψ〉, it is true for all the kets of the form I ⊗ V |ψ〉 with
V ∈ U (K ).

Let � be a nonzero orbit of I dH ⊗ U (K ), and �̂ = C�. Then the property
P�̂(x): “ P�̂(x) is true iff x ∈ �̂” is a property of the states of the subsystem S
of C . The property just defined satisfies the condition: if P′(x) is a property of the
states of the subsystem S of C such that P′(x) ⇒ P�̂(x), then P′(x) ⇔ P�̂(x).

We say that a propertyD(x) of the states of the subsystemS of C defines a state
of the subsystemS of C if whenever a propertyP(x) of the states of the subsystem
S of C is such that P(x) ⇒ D(x) then P(x) ⇔ D(x).

We say that D(x) and D′(x) define the same state of the subsystem S of C if
D(x) ⇔ D′(x). If �̂ = C�,P�̂(x) defines a state of the subsystemS ofC . IfD(x)

defines a state of the subsystemS ofC there is a �̂ = C� such thatD(x) ⇔ P�̂(x).
Conversely, if there is a �̂ = C� such thatD(x) ⇔ P�(x),D(x) defines a state of
the subsystem S of C . Of course P�̂(x) ⇔ P�̂′(x) iff �̂ = �̂′.

Let D(x) be a property of the states of the composite system C . The following
theorem holds.

Theorem 2.8 D(x) defines a state of the subsystem S of C iff there is a density
operator ρS such that D(x) ⇔ 〈x |x〉−1trE |x〉 〈x | = ρS.
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〈x |x〉−1trE |x〉 〈x | = ρS and 〈x |x〉−1trE |x〉 〈x | = ρ ′
S define the same state of the

subsystem S of C iff ρS = ρ ′
S. If DimH ≤ DimK , for every density operator

ρS, 〈x |x〉−1trE |x〉 〈x | = ρS defines a state of the subsystem S of C .

Proof IfD(x) defines a state of the subsystemS ofC there is a unique �̂ = C� = 0
(being � an orbit of I ⊗ U (K )) such that D(x) is true whenever x ∈ �̂. Let |ψ〉
be a nonzero ket of �̂. Then x ∈ �̂ iff there are λ ∈ C (λ = 0) and

∣∣x ′〉 such that
∣∣x ′〉

belongs to the orbit of |ψ〉 and ∣∣x ′〉 = λ |x〉. We define

ρS = 〈ψ |ψ〉−1trE |ψ〉 〈ψ | .

Then
∣∣x ′〉 belongs to the orbit of |ψ〉 iff trE

∣∣x ′〉 〈x ′∣∣ = 〈ψ |ψ〉 ρS , i.e., iff

|λ|2trE |x〉 〈x | = 〈ψ |ψ〉 ρS.

Taking the traces with respect to S of both sides we get |λ|2 = 〈x |x〉−1 〈ψ |ψ〉
and hence 〈x |x〉−1trE |x〉 〈x | = ρS . Then D(x) ⇔ 〈x |x〉−1trE |x〉 〈x | = ρS.

Conversely, suppose that there is a density operator such that

D(x) ⇔ 〈x |x〉−1trE |x〉 〈x | = ρS.

Let �̂ = {|x〉 |〈x |x〉−1trE |x〉 〈x | = ρS
}
. Let D(x) be true for x = |ψ〉. Therefore,

ρS = 〈ψ |ψ〉−1trE |ψ〉 〈ψ | so that |ψ〉 ∈ �̂. Let � be the orbit of |ψ〉. |x〉 ∈ �̂ iff
〈x |x〉−1trE |x〉 〈x | = 〈ψ |ψ〉−1trE |ψ〉 〈ψ | . Putting

∣∣ψ ′〉 = 〈x |x〉−1/2 〈ψ |ψ〉1/2 |x〉
we get trE

∣∣ψ ′〉 〈ψ ′∣∣ = trE |ψ〉 〈ψ | , so that �̂ = C�. Therefore,D(x) ⇔ x ∈ �̂ and
D(x)defines a state of the subsystemS ofC .As �̂ = {|x〉 |〈x |x〉−1trE |x〉 〈x | = ρS

}

and �̂′ = {|x〉 |〈x |x〉−1trE |x〉 〈x | = ρ ′
S

}
coincide iff ρS = ρ ′

S, the states coincide
iff the latter condition holds. Let ρS be a density operator. In order to show that
it defines a state of the subsystem S of C , it is sufficient to prove that the equa-
tion 〈x |x〉−1trE |x〉 〈x | = ρS has solutions. Starting from the spectral decomposi-
tion ρS = ∑

pα Pα we can choose an orthonormal basis adapted to the decompo-
sition and select a bijection between this basis and an orthonormal set of vectors
of K . If |χα〉 denotes the normalized sum of the tensor products of correspond-
ing vectors associated with the eigenspace defined by Pα , the vector of K defined
as |ψ〉 = ∑√

pα |χα〉 is normalized and ρS = trE |ψ〉 〈ψ | = 〈ψ |ψ〉−1trE |ψ〉
〈ψ |. �

We observe that the states of the subsystemS of C have been defined indirectly,
i.e., through the formulation according to which some suitable specific property
of the nonzero kets of C defines a state of the subsystem S of C . Among the
infinite possibilities we can, owing to Theorem2.8, choose the property Dρ (x) :
〈x |x〉−1trE |x〉 〈x | = ρS. We read it as “〈x |x〉−1trE |x〉 〈x | = ρS defines a state of
the subsystem S of C .” Similarly “〈x |x〉−1trE |x〉 〈x | = ρ ′

S defines a state of the
subsystemS of C ”; but the two states are different if ρS = ρ ′

S , so that wemust label
the states in order to distinguish them. We can use as labels the density operators.
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Therefore, wewrite the first sentence as “〈x |x〉−1trE |x〉 〈x | = ρS defines the state ρS

of the subsystem S of C .” The sentence “the state of the subsystem S of C is ρS” is
true (bydefinition) iff the sentence “the state |x〉ofC is such that 〈x |x〉−1trE |x〉 〈x | =
ρS is satisfied” is true.

We remember that the composite system is “the Universe,” so that it is in some
state defined by a ray of P(H ⊗ K ), and the prescription of a state of the subsystem
S of C is simply a constraint on the possible states of C . Therefore, the complete
specification of the state of the subsystem S of C can be regarded as a partial
specification of the state of C .



Chapter 3
Relation Between the State of a System as
Isolated and as Open

Naively, we can consider S sometimes as a subsystem of C and sometimes as a
closed system. Our next goal is to arrive at a sharp mathematical formulation of
the physical conditions under which the first or the second point of view can be
adopted. A necessary condition for the second possibility is the assumption that
no interactions between the system and the environment take place. This sentence
implies the idea of a transformation: we say that there is no interaction when the
physical conditions are such that only specific types of transformations are allowed
for the composite system, i.e., those which can be represented as a tensor product of
a transformation of U (H ) and a transformation of U (K ). As already discussed,
a transformation involves two states: a state “before” the transformation and a state
“after” the transformation.

If we assume that S can be considered as isolated, there is no interaction and
its states are modeled as elements of P (H ). Standard quantum mechanics assumes
that there is T ∈ U Z (H ) such that the possible pairs (state before, state after) are
the pairs (ζ, T ζ ) with ζ ∈ P (H ). If we assume thatS is not isolated, in general, it
is only at the level of C (which is closed) that the states can be modeled as points of
a projective space (in this case P(H ⊗ K )) but not at the level of S . In this case,
the state of S before is a density operator ρS and the state of S after is a density
operator ρ ′

S .
Furthermore, if an interaction takes place, it is only at the level of S that the

states before and after are connected by a transformation of U Z (H ⊗ K ); the
density operators ρS and ρ ′

S are not connected by any simple relation: they are just
“projections” (through the partial trace operation) of the initial and final states of
C . To be more specific, if we represent the “evolution” of C by T ∈ U (H ⊗ K ),
and the state of C “before” with the normalized ket |ψ〉, the state of C “after” is

The content of this chapter can be found in Campanella’s file ZurekState (2011-09-01).

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
M. Campanella et al., Interpretative Aspects of Quantum Mechanics,
UNIPA Springer Series,
https://doi.org/10.1007/978-3-030-44207-1_3
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represented by |ψ ′〉 = T |ψ〉. The states of S as a subsystem of C “before” and
“after” are ρS = tr |ψ〉〈ψ |, and ρ ′

S = tr |ψ ′〉〈ψ ′|.
Even if |ψ〉 = |u〉 |v〉, i.e., “before” both S and E are in well-defined states as

isolated systems, so that ρS = |u〉 〈u|, ρ ′
S , in general, is no more a one-dimensional

projector. Therefore, while the state before can be represented by a point of P(H ),
the state “after” is, generally speaking, a mathematical object of a different nature.

3.1 Representation of Isolated and Non-isolated Systems

There are two related, but distinct items raised by this discussion. The first consists
in the different ways of representing the state of S depending on whether it is
considered isolated or not. Classically, the state of a composite system is described
as a point in its phase space, which is expressed as the Cartesian product of the phase
spaces of the component subsystems.

If also in the classical case we define the state of S a la Zurek, with the role
of U Z (K ) substituted by the role of the group of the canonical transformations of
the phase space of E , we see that the orbits of the latter group (i.e., the states a la
Zurek of S as a subsystem of C ) can be parameterized by the points of the phase
space of S . This entails that the state of the system at each time is represented by
the same object (a point in its phase space) both in the absence and in the presence
of interaction. So in the classical case the conventional definition of states of the
subsystem is compatible with Zurek’s point of view.

In the latter case, the projections of the initial and final points of the composite
system are points of the phase space of S even if an interaction takes place. It is
true that the final point of S depends both on the initial states of S and of E , so
that, if the state of the latter is not completely known (e.g., because E is a complex
system), statistical methods, based on the introduction of the phase density, must be
introduced. But the description of the state of S by means of a point in its phase
space is not forbidden, at least in principle. The situation is quite different in the
quantum case. Even if the initial state is described by a point of P(H ), the final state
of S (i.e., the “projection” of the final state of the composite system) is a density
operator with rank> 1 and not just a one-dimensional projector (which is equivalent
to a point of P(H )) if an interaction with the environment has taken place.

The second question concerns the different ways of describing the evolution of the
system in the absence or in the presence of interaction. In this respect, the classical and
the quantum cases are similar; in both cases, the interaction precludes the possibility
of establishing a functional relationship between the initial and the final states ofS :
the only thing that can be said, in general, is that both are “projections” of the initial
and final states of the composite system.

Hence, the main conclusion of the above discussion is that the basic difference
between the classical and the quantum case in this respect is that in the latter a funda-
mental difference exists in themathematical description of the states ofS depending
on whether the system is considered as isolated or as a subsystem of C . In the first
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case, the states are points of P(H ), while in the second they are represented by den-
sity operators. Of course, in the most popular axiomatics of quantum mechanics the
need of this difference is a consequence of the a priori introduction in the axioms of
a probabilistic interpretation of the theory and of its quantitative expression through
Born’s rule.

We emphasize that instead, in our analysis, this difference is a direct consequence
of two assumptions: the first is that a composite system is described by a tensor
product, and the second is that the correct notion of state of a subsystem is the one
implied by Zurek’s considerations (we emphasize that the “philosophy” underlying
the notion of the state of a subsystem is identical in the classical and in the quantum
case: it is a property of the state of the composite system which is left invariant by all
the transformations that involve only the environment, such that every other invariant
property is a consequence of it). Neither of these assumptions involve probability;
specifically, the density operator arises merely as an orbit invariant. We will see in
the following that we are forced to give it a probabilistic interpretation and that its
quantitative implementation is equivalent to Born’s rule. To carry on this program,
we carefully investigate the relation between the two possible descriptions of the
states of S .

Suppose we have good reasons to consider the system isolated from the environ-
ment before some instant t0, but that this assumption is no longer valid after, up to
the instant t1, while for t > t1 S and E can be again modeled as mutually isolated.
Before t0, S and E evolve independently; at t < t0, S is in a well-definite state
ς ∈ P(H ) and S in a state τ ∈ P(K ). At t ′ < t0, we have ς ′ = Tς and τ ′ = Sτ ,
with T ∈ U Z (H ) and S ∈ U Z (K ). If the normalized kets |σ 〉 and |θ〉 represent
ς and τ , respectively, and

∣
∣σ ′〉 and

∣
∣θ ′〉 represent ς ′ and τ ′ respectively, there are

U representing T and V representing S such that
∣
∣σ ′〉 = U |σ 〉 and

∣
∣θ ′〉 = V |θ〉.

We read the pair (|σ 〉 , |θ〉) saying that at t S is in the state ς and E is in the
state τ . At the same instant, C is in a state ζ represented by |σ 〉 |θ〉. We note that
trE |σ 〉 〈σ | ⊗ |θ〉 〈θ | = |σ 〉 〈σ | so that the density operator is a projector on a one-
dimensional space, which is a description of a pure state equivalent to a ray.

Similarly, at t ′ S is in the state ς ′ and E is in the state τ ′, while C is in a state
ζ ′ represented by U ⊗ V |σ 〉 |θ〉. At t0 the interaction is switched on. Therefore, the
state of C after t0 becomes entangled. In particular, let |ψ〉 denote a normalized
representative of the state at t1. At this instant, the system must be considered as
interacting with the environment as the “past” is concerned, and as non-interacting
regards to the “future.”

If “non-interacting” were the same thing as “isolated,” we may think that both
descriptions of the state must hold: as an interacting system it ought to be described
by ρS = trE |ψ〉 〈ψ |, (which means a partial specification of the state of C ) and as
a non-interacting system by a (perhaps partial) specification of some point of ξ of
P(H ). A careful analysiswill, however, show that not for all the density operators the
description in terms of states of an isolated system is possible. We will, in particular,
find that, when there is in ρS some kind of degeneracy to be specified later, an
obstruction to such a description arises, so that the notions of “non-interacting” and
“isolated” are not equivalent.
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3.2 Conditions for Density Operators

We now assume that ρS is such that a description is possible, and we find the condi-
tions which must be satisfied.

If in the same physical situation ρS is a state of the system as subsystem of C and
ξ a state of S as an isolated system, we expect that there is a relation between ρS

and ξ . Namely, for each allowed ρS there is a set Ξ of possible values for ξ such
that, if it is true that the state of S as a subsystem of C is ρS , the state of S as an
isolated system is an element of the set Ξ .

Let us consider a transformation of C represented by U ⊗ V which leaves ρS

invariant. Then there is no evolution inS as a subsystem of C . The above transfor-
mation indicates that there is no interaction, andwe suppose that the description ofS
as an isolated system is also valid. In this description too there must be no evolution.
The transformation law of the density operator is UρSU ∗. Let ρS = ∑

pαPα be the
spectral expansion of ρS . The transformationU leaves ρS invariant iffU PαU ∗ = Pα ,
∀α.

If P0 is the projector on the null space of ρS , then P0 = I − ∑
Pα andU P0U ∗ =

P0. On the other hand, in the isolated system description, the new state is T ξ , where
T ∈ U Z (H ) is represented by U . Hence, for each possible state ξ of S as an
isolated system given that the state of S as a subsystem of C is ρS , the new state
T ξ must be equal to ξ .

Let Gρ be the stabilizer of ρ, and Gξ the stabilizer of ξ . Hence, Gρ ⊆ Gξ for each
ξ ∈ Ξ , so that

Gρ ⊆
⋂

ξ∈Ξ

Gξ � ΓΞ. (3.2.1)

If |σ 〉 ∈ H represents ξ , and if UρSU ∗ = ρS , then U |σ 〉 = λ |σ 〉 (λ ∈ C, |λ| = 1)
(where λ may depend on U ); furthermore, |σ 〉 has an expansion of the form |σ 〉 =
∑

Pα |σ 〉 + P0 |σ 〉. Hence we must have

∑

U Pα |σ 〉 +U P0 |σ 〉 =
∑

λPα |σ 〉 + λP0 |σ 〉 . (3.2.2)

Multiplying both sides by Pβ we get

U Pβ |σ 〉 = λPβ |σ 〉 , (3.2.3)

and multiplying both sides by P0,

U P0 |σ 〉 = λP0 |σ 〉 . (3.2.4)

But the restrictions ofU to the images of the projectors are arbitrary unitary trans-
formations of these images, so that if Pβ |σ 〉 is nonzero, Im Pβ is one-dimensional.
The same conclusion holds for P0 |σ 〉.
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Furthermore, if P |σ 〉 
= 0 and P ′ |σ 〉 
= 0 with P 
= P ′, we can choose U such
that U P |σ 〉 = eiϕP |σ 〉 and U P ′ |σ 〉 = eiϕ

′
P ′ |σ 〉 with eiϕ 
= eiϕ

′
. But this entails

that eiϕ = λ and eiϕ
′ = λ and this is a contradiction. We conclude that, for each

possible state ξ ofS as an isolated system, given that the state ofS as a subsystem
of C is ρS , ξ is a one-dimensional eigenspace of ρS . Then Ξ is a set of eigenstates
of ρS .

The subgroup ofU Z (H ) which leaves invariant all the elements of Ξ is nothing
but ΓΞ . No evolution is observed in S under ΓΞ if the only possible states of it as
an isolated system are the elements of Ξ . Therefore, no evolution must be observed
inS as a subsystem of C in the state ρS . Consequently, ΓΞ ⊆ Gρ , so that

ΓΞ = Gρ. (3.2.5)

Hence, we must determine the pairs (ρ,Ξ) satisfying the above condition. If
the orthogonal complement LΞ⊥ of the space LΞ generated by Ξ is nonzero, the
restriction of ΓΞ to it acts on it as the full unitary group. But LΞ⊥ is an invariant
subspace of ρS; as the restriction to it of Gρ is the full unitary group, it must consist
of a single eigenspace. We conclude that, besides the elements of Ξ , there is at most
a single eigenspace. If LΞ⊥ = 0, the set of eigenspaces of ρS is Ξ , so that they
all are one-dimensional; if the latter is at least two-dimensional, the set of the one-
dimensional eigenspaces of ρS is Ξ . Finally, if LΞ⊥ = 0 is one-dimensional, the
eigenspaces of ρS consist of Ξ and in addition the orthogonal complement ofLΞ⊥.
All the above possibilities can be summarized in the following.

Theorem 3.1 For each orthogonal set Ξ of rays, the density operators satisfying
the equation ΓΞ = Gρ are all those whose eigenspaces are the elements of Ξ and
the orthogonal complement of the subspace generated by them.

Remark 3.1 Remark on terminology: In order to avoid confusion, we remark that
we call invariant space of an operator a subspace which is transformed into itself by
the operator, while we call eigenspace of the operator a maximal invariant space. As
it is usual, we call eigenvector of the operator a nonzero vector on which the oper-
ator acts as a scalar multiplier. According to our terminology, the one-dimensional
subspace generated by an eigenvector is an eigenspace only if the associated eigen-
value is simple, otherwise it is only an invariant space. An eigenstate is a one-
dimensional eigenspace. (Using this terminology, the null space of a density operator
is the eigenspace corresponding to the zero eigenvalue.)

We can write the most general expression of a density operator consistent with
the conditions imposed as yet. This expression is an immediate consequence of
Theorem2.8. We have

ρS =
∑

ξ∈Ξ

w (ξ) |ξ 〉 〈ξ | + gP, (3.2.6)
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where I = ∑

ξ∈Ξ

|ξ 〉 〈ξ | + P ,Ξ
w−→ R≥ is injective and g /∈ Imwwith g ≥ 0, and with

the normalization condition
∑

ξ∈Ξ

w (ξ) + g = 1.

We note that, given Ξ , the set of eigenspaces of ρS is completely specified. It is
given by the union of Ξ and the orthogonal complement of the space generated by
it. The possible ρS are then specified by prescribing at will the set of nonnegative
different eigenvalues, satisfying the normalization condition.

The above equation shows that the orthogonal set of rays can be chosen at
will and expresses the general solution for ρS . Conversely, suppose that ρS is pre-
scribed and that we want to find all the sets Ξ satisfying the equation ΓΞ = Gρ . By
Theorem2.8, the eigendecomposition of ρS includes at most one eigenspace at least
two-dimensional. If such a space appears in the eigendecomposition, Ξ is given by
the set of the remaining eigenspaces; if all the eigenspaces are one-dimensional, Ξ
is the whole set of eigenspaces with the possible exception of one of them. We can
summarize the situation as follows.

Theorem 3.2 When the systemH in ρH can be considered isolated, there is in ρH

at most a single eigenspace at least two-dimensional; the set Ξ of possible states
of H as an isolated system is the set of eigenstates of ρH if such an eigenspace
exists; if all the eigenspaces of ρH are one-dimensional, the set Ξ consists of all
these eigenspaces with the possible exception of one of them.

A further analysis that we will soon present will remove this indeterminacy.
We remember that H is a subsystem of C , and that the latter is the model of

our “Universe,” so that its state is represented by some |ψ〉 ∈ C such that ρH =
trE |ψ〉 〈ψ |. We now investigate how the conditions just found for ρH are reflected
in the canonical decomposition of |ψ〉. The latter can be put in the form

|ψ〉 =
∑

χ∈X
d (χ) |χ〉, (3.2.7)

with trE |χ〉 〈

χ ′∣∣ = 0 for χ 
= χ ′ and trE |χ〉 〈χ | = P (χ). We get

ρH =
∑

χ∈X
d2 (χ) P (χ). (3.2.8)

The projectors appearing in the above expression correspond to the non-null
eigenspaces of ρH ; they must be one-dimensional but at most one of them, and
hence the kets |χ〉 are indecomposable, but at most one. Each indecomposable

∣
∣χ ′〉

has the form
∣
∣ξ ′ (χ ′)〉 ∣∣η′ (χ ′)〉, so that we get

|ψ〉 =
∑

χ ′∈X ′
d

(

χ ′) ∣
∣ξ ′ (χ ′)〉 ∣∣η′ (χ ′)〉 + d |δ〉 , (3.2.9)
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where d = 0 if all the kets are indecomposable. We have P
(

χ ′) = ∣
∣ξ ′ (χ ′)〉 〈ξ ′ (χ ′)∣∣,

so that
∣
∣ξ ′ (χ ′)〉 and

∣
∣ξ ′ (χ ′′)〉 are orthogonal and hence different for χ ′ 
= χ ′′. The

same conditions hold for the |η〉.
Imagine thatE is in turn a composite system, sayE = K ⊗ L .Wenow introduce

a special type of state in H ⊗ K ⊗ L .

Definition 3.1 We say that a ket |φ〉 ∈ H ⊗ K ⊗ L represents an M-state if there

is a set A, a partition P2 of A, three injections P2
κ−→ H , A

η−→ K , A
ζ−→ L

satisfying the conditions
〈

κ (y) |κ (

y′)〉 = δyy′ ,
〈

η (a) |η (

a′)〉 = δaa′ ,
〈

ζ (a) |ζ (

a′)〉 =
δaa′ , and an injective mapping A

υ−→ R> such that

|φ〉 =
∑

a∈A

υ (a) |κ ◦ π2 (a) η (a) ζ (a)〉, (3.2.10)

where π2 is the canonical projection associated with the partitionP2.

The M-state obtained in the way described above will be denoted (A,P2, κ,

η, ζ, υ). We prove the following.

Theorem 3.3 (A,P2, κ, η, ζ, υ) and (A′,P ′
2, κ

′, η′, ζ ′, υ ′) define the same M-

state if and only if there is a bijection A
j−→ A′ such that υ = υ ′ ◦ j ,P ′

2 = jP2, and

mappings P2
λ−→ C1, A

μ−→ C1, A
ν−→ C1 with (λ ◦ π2) μν = 1 such that κ ◦ π2 =

(λ ◦ π2) κ ′ ◦ π ′
2 ◦ j , η = μη′ ◦ j and ζ = νζ ′. The mappings j , λ, μ, ν are unique.

Proof The expansion that defines |φ〉 is its canonical expansion when |φ〉 is regarded
as an element of (H ⊗ K ) ⊗ L . Hence, the images of υ and υ ′ are the same. Con-
sequently, the equation υ = υ ′ ◦ j has υ ′−1 ◦ υ as its unique solution. Furthermore,
the kets appearing in the expansion are in bijection with the coefficients, so that
|(κ ◦ π2) ηζ 〉 = ∣

∣
[(

κ ′ ◦ π ′
2
)

η′ζ ′] ◦ j
〉

. The single factors in the tensor product are
defined up to phase factors whose product is 1, and hence the thesis. �

We have

ρHK =
∑

a∈A

υ(a)2 |κ ◦ π2 (a) η (a)〉 〈κ ◦ π2 (a) η (a)|.

We observe that the dimension of the space generated by all the

|θ (a)〉 � |κ ◦ π2 (a) η (a)〉

is equal to |A|.
The dimension of K is at least |A|, and at least 2, i.e., dimK ≥ max (2, |A|),

while the dimension ofH is at least 2. Hence, the dimension ofH ⊗ K is at least
2 max (2, |A|) and the codimension of the space generated by all the |θ (a)〉 is at
least 2max (2, |A|) − |A|. Consequently, this codimension is at least |A| if |A| ≥ 2
and at least 3 if |A| = 1. In any case, the codimension is at least 2. Remembering



28 3 Relation Between the State of a System as Isolated and as Open

Theorem 3.2, we conclude in every case that the set of possible states associated with
ρHK is its set of eigenstates, which in this case are nothing but those appearing in
the spectral decomposition of ρHK , i.e., non-null eigenstates.

Let us now evaluate ρH . We have

ρH = tr K ρHK =
∑

a∈A

υ(a)2 |κ ◦ π2 (a)〉 〈κ ◦ π2 (a)| =
∑

y∈P2

|κ (y)〉 〈κ (y)|
∑

a∈y
υ(a)2.

(3.2.11)

Let w̃ (y) �
∑

a∈y
υ(a)2. IfP1 is the partition induced onP2 by w̃, we can uniquely

define an injective mapping P1
w−→ R> such that w̃ (y) = w (x) whenever y ∈ x .

Hence we have

ρH =
∑

y∈P2

w̃ (y) |κ (y)〉 〈κ (y)| =
∑

x∈P1

∑

y∈x
w (x) |κ (y)〉 〈κ (y)| . (3.2.12)

Putting P (x) �
∑

y∈x
|κ (y)〉 〈κ (y)| we get

ρH =
∑

x∈P1

w (x) P (x), (3.2.13)

which, remembering the injectivity of w, is recognized to be the spectral representa-
tion of ρH . We will now show the theorem as follows.

Theorem 3.4 If ρH is an arbitrary density operator of H , there are Hilbert
spaces K and L together with an M-state |φ〉 ∈ H ⊗ K ⊗ L such that ρH =
trK L |ψ〉 〈ψ |.
Indeed, suppose that ρH = ∑

w∈W
wP (w) is the spectral representation of ρH . For

each w, we choose an orthonormal basis Ỹw for the corresponding eigenspace, so

that P (w) = ∑

ỹ∈Ỹw
|̃y〉 〈ỹ|. We define Ỹ = ⋃

w∈W
Ỹw and Ỹ

w̃−→ R> as w̃ (ỹ) = w for

ỹ ∈ Ỹw.
Let us further associate to each ỹ a set y � A (ỹ), with the condition that these

sets are mutually disjoint, and put A = ⋃

ỹ∈Ỹ
A

(

Ỹ
)

. There is a bijection between the

y and the ỹ, so that we can put ỹ = κ (y). We denote P2 the partition of A in

the sets y. We introduce an injective mapping A
γ−→ R> satisfying the condition

∑

a∈y
γ (a) = w̃ (κ (y)). Such a mapping exists if and only if the cardinality of y is at

least 2 for each y associated with a multiple eigenvalue of ρH , so we choose the sets
according to this criterion.
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We now choose two spaces K and L whose dimensionality is at least |A| and
two injections A

η−→ K and A
ζ−→ L such that their images are orthonormal sets.

We put υ (a) = √
γ (a) and define

|φ〉 =
∑

a∈A

υ (a) |κ ◦ π2 (a) η (a) ζ (a)〉. (3.2.14)

A straightforward computation shows that ρH = trK L |φ〉 〈φ|. �
Suppose now that H in ρH can be considered isolated. The state of H as a

subsystem of a larger system is completely described by ρH , so that the possibility
of considering it as isolated and the set of its possible states depend uniquely on ρH

and not on the specific realization of ρH in terms of a larger system. Theorem 3.4
shows that ρH = trK L |φ〉 〈φ| for some M-state |φ〉.

We can show that, if among the eigenspaces of ρH there is a (single) multidi-
mensional eigenspace, the corresponding eigenvalue must be zero. Indeed, suppose
the contrary. The corresponding projector is P (x) �

∑

y∈x
|κ (y)〉 〈κ (y)| for some x .

Hence, the eigenspace contains vectors |κ (y)〉 appearing as factors in the expansion
of ρHK . As each term of the decomposition is a possible state of H ⊗ K as an
isolated system and it is indecomposable, the vectors appearing in P (x) belong to
Ξ . Thus, we have found states of Ξ belonging to a multidimensional eigenspace of
ρH and this is a contradiction. We conclude that, if all the eigenspaces of ρH are
one-dimensional, the possible states ofH are exactly the non-null eigenspaces.

The results of our discussion imply the following theorem.

Theorem 3.5 If the system H can be considered isolated in ρH , then the only
multidimensional eigenspace of ρH , if it exists, is the null eigenspace. The spectral
expansion of ρH is ρH = ∑

wP (w) where all the projectors P (w) are of rank one,
and the possible states of H in ρH as an isolated system are the states associated
with these projectors.

We now introduce some terminology. A density operator whose non-null
eigenspaces are all one-dimensional will be called a generic density operator.

The one-dimensional eigenspaces ofρS are the eigenstatesofρS .Ageneric density
operator always possesses eigenstates. They are the eigenspaces associated with the
nonzero eigenvalues and in addition the null space if it is one-dimensional. Further-
more, it possesses at most one degenerate eigenvalue (the zero eigenvalue). There-
fore, the set Ξ is nonempty for a generic density operator: it consists of its non-null
eigenstates.

The number of eigenstates of a generic density operator will be called its type. The
dimension of its image is its rank. Letm be the type of a generic density operator, r its
rank, and n the dimension of the Hilbert space on which it operates. If ρS = ∑

pαPα

is the spectral decomposition of ρS , all the projectors appearing in this expansion are
eigenstates, so that the rank is the number of terms of the expansion, i.e., the number
of nonzero eigenvalues, or else the number of non-null eigenstates. Hence m ≥ r .
Of course m ≤ r + 1 and if m = r + 1, m = n because otherwise the multiplicity
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of the zero eigenvalue would be greater than one. Thus, if m = r , n ≥ m, while,
if m = r + 1, n = m. Equivalently, n ≥ r and if n = r + 1, m = r + 1, while if
n 
= r + 1, m = r . Else, n ≥ m and if n = m, either r = n or r = n − 1, while if
n > m, r = m.

3.3 Physical Interpretation of Generic Density Operators

In what follows, our goal is to obtain a complete physical interpretation of a density
operator when it is generic. The interpretation for an arbitrary density operator will
be obtained successively.

Theorem 3.5 states that H can be considered isolated in ρH only if the latter is
a generic density operator; in this case, the set Ξ of its possible states as an isolated
system is the set of non-null eigenstates of ρH , but none of them, in particular, is
specified.

The situation is similar to the case when a number is constrained, say, by a second
degree equation: a set of possibilities is selected (the set of the solutions), but not
any, in particular, is specified.

Hence, we are forced to consider the state ofH in ρH as an isolated system as a
variable with values in Ξ . We have seen that the set Ξ is uniquely specified by ρH .
When the set of its possible values is finite, we can regard a variable as an equivalence
class of random variables, calling equivalent any two random variables with the same
domain of their probability laws. We further note that ρH is specified not only by
Ξ , but also by the set of eigenvalues. We will show in what follows that this set is
enough to fix uniquely a probability law on Ξ , so that the state is a well-defined
random variable. Namely, the result of our analysis will be that of the conventional
interpretation of the density operator: we will find that the probability of each state is
equal to the corresponding eigenvalue of the density operator.We emphasize that this
result will be derived without any additional axiom such as, for instance, a Born’s
rule. On the contrary, Born’s rule will be recovered as a consequence.

We can synthesize the conceptual framework emerging from the above discussion
as follows. The composite system C , as long as it is considered a “Universe,” is in a
state represented as a normalized ket |ψ〉 which is defined up to an arbitrary phase
factor. We call this state generic if the corresponding density operator ρH is generic.
Suppose that the state of C is generic. Hence, its canonical expansion has the form

|ψ〉 =
∑

d |ξ (d) η (d)〉. (3.3.1)

Unless |ψ〉 is indecomposable, neither the state of S nor the state of E as states
of isolated systems can be specified. Instead, the state of S as a subsystem of C in
the sense of Zurek can be specified. This state can be characterized by the density
operator

ρH = trK |ψ〉 〈ψ | =
∑

d2 |ξ (d)〉 〈ξ (d)|. (3.3.2)
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Nevertheless, as long as no interactions take place between S and C , the two sub-
systems can be considered as isolated, so that each of them possesses a state as an
isolated system. But such a state cannot be specified, so that it must be considered as
a variable. The range of this variable can be read off on the canonical decomposition.
Namely, the range of the state of S is the set {|ξ (d)〉}, while the range of the state
of E is the set {|η (d)〉}. We have already anticipated that a unique law of probability
is associated to these variables, so that they will become random variables.



Chapter 4
The Probability Law for Generic Density
Operators

In this last chapter, our effort will be dedicated to the determination of the proba-
bility law of the non-null eigenstates of a generic density operator, by showing that,
given the composite system and its subsystem H , a mapping f arises which asso-
ciates to each generic density operator ρS the probability distribution of its non-null
eigenstates. To afford this problem, it is useful to introduce some preliminary notions.

4.1 Mathematical Structure of a “Generic” Density
Operator

Let us consider an orthogonal set Ξ of states ofH as an isolated system. Let DΞ be
the set of generic density operators having Ξ as the set of their non-null eigenstates.
All the elements of DΞ have the same rankm = |Ξ |. If Pσ is the projector associated
with the state σ ∈ Ξ , any ρS ∈ DΞ has the spectral expansion

ρS =
∑

σ∈Ξ

pσ Pσ , (4.1.1)

and through this equation DΞ is in bijection with the set of the injective mappings p
from Ξ to the set R> of positive real numbers such that

∑
σ∈Ξ

p (σ ) = 1.

The set DΞ is a proper subset of the set TΞ of all the density operators which
can be expressed in the form (4.1.1), with the coefficients pσ belonging to R≥, and
relaxing the injectivity assumption on the mappings p. The barycentric coordinates
pσ introduce in TΞ the structure of an (m − 1)-simplex together with the standard
topology. With respect to the standard topology, D̄Ξ = TΞ .

The content of this chapter can be found in Campanella’s file ZurekState (2011-09-01).
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M. Campanella et al., Interpretative Aspects of Quantum Mechanics,
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It is useful to describe in detail the structure of a set DΞ which comes out from
some theorems.

Theorem 4.1 If the points ρ ∈ DΞ and ρ ′ ∈ DΞ have p and p′ as the vectors of their
barycentric coordinates, p̂ and p̂′ are the restrictions of p and p′ to their images, the
two points belong to the same connected component of DΞ if and only if p̂′ ◦ p̂−1 is
an order isomorphism with respect to the orders induced on Im p and on Im p′ by
the standard order in R.

Proof Let p and p′ be such that p̂′ ◦ p̂−1 is an order isomorphism. As the order
induced in Im p is total, and p̂ is bijective, it induces a total order in Ξ . As p̂′ ◦ p̂−1

is an order isomorphism, p̂′ induces on Ξ the same order. Under this order,

σ < σ ′ ⇒ pσ < pσ ′ and σ < σ ′ ⇒ p′
σ < p′

σ ′ .

Let λ and μ be real numbers such that λ ≥ 0, μ ≥ 0, λ + μ = 1. If ρ ′′ = λρ + μρ ′,
the corresponding vector of barycentric coordinates is

p′′ = λp + μp′.

Hence
p′′

σ − p′′
σ ′ = λ(pσ − pσ ′) + μ(p′

σ − p′
σ ′).

As λ and μ cannot be both zero, if, for instance, λ �= 0, the condition p′′
σ = p′′

σ ′
entailsμ/λ = (pσ − pσ ′)/(p′

σ − p′
σ ′). But the numerator and the denominator of this

fraction have the same sign, so we obtain an absurd. This means that the components
of p′′ must be all different, so that the segment between ρ and ρ ′ belongs to DΞ and
the points ρ, ρ ′ belong to the same arcwise connected component.

Conversely, suppose that p̂′ ◦ p̂−1 is not an order isomorphism. This means that
the orders induced by p̂′ and p̂ onΞ are different, so that there are σ and σ ′ such that
σ < σ ′ and σ <′ σ ′. Correspondently, pσ < pσ ′ and p′

σ > p′
σ ′ . Suppose that there

is an arc [0, 1] α−→ DΞ connecting ρ and ρ ′. If α̂ is the corresponding arc in R
n , we

have α̂(0) = p and α̂(1) = p′. Hence we have

α̂σ (0) = pσ , α̂σ ′(0) = pσ ′, α̂σ (1) = p′
σ , α̂σ ′(1) = p′

σ ′ .

Considerβ(t) =: α̂σ (t) − α̂σ ′(t). Thenβ(0) = pσ − pσ ′ < 0 andβ(1) = p′
σ − p′

σ ′ >

0. We conclude that there is t∗ such that α̂σ (t∗) = α̂σ ′(t∗) and this is in contradiction
with the assumption that the arc belongs to DΞ . We conclude that ρ and ρ ′ belong to
different arcwise connected components. As DΞ is a manifold, connectedness and
arcwise connectedness coincide, so that the theorem is demonstrated.

Remark 4.1 A consequence of Theorem4.1 is that each connected component of
DΞ is convex. Indeed, two points belong to the same connected component iff the
corresponding mapping p̂′ ◦ p̂−1 is an order isomorphism and, if this happens, we
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see from the proof of Theorem4.1 that there is in DΞ a segment connecting them.
The points of DΞ can be classified according to their belonging to its connected
components; they can also be classified according to the total order relations they
induce in Ξ .

Theorem4.1 establishes an injective mapping from the set of connected compo-
nents of DΞ to the set of total order relations in Ξ . Really, this mapping is bijective.
Indeed, given a total order in Ξ , we can always choose a set of values pσ such that
σ < σ ′ ⇒ pσ < pσ ′ . Hence, the connected components of DΞ are in bijection with
the total order relations in Ξ . If < is such a relation and π is a permutation of Ξ , the
total order relation <′ defined as σ<′σ ′ iff π−1σ < π−1σ ′ will be denoted π<.

It is easily shown that the action of the permutation group of Ξ on the total order
relations is simply transitive, so that, if we fix a total order relation inΞ , the set of all
total order relations can be parameterized by the elements of the permutation group
of Ξ . In particular, this shows that DΞ possesses m! connected components.

Each permutation π defines a bijective mapping of TΞ into itself, and the image
of its restriction to DΞ is DΞ , so that a bijective mapping m (π) of DΞ into itself
is obtained. The restriction of this mapping to a connected component sends it in
a connected component and defines a mapping which is an isomorphism of convex
spaces. Therefore, the connected components of DΞ are isomorphic convex spaces.

LetΔ be a connected component. As it is convex, its closure Δ̄ is a convex closed
subspace of TΞ .Wewant to determine the structure of Δ̄ and its relationwithΔ. AsΔ

is associated with a well-defined total order inΞ , we get a well-defined isomorphism
of totally ordered sets between Ξ and the set Nm of the first m natural numbers with
the natural total order. Hence, there is a bijection which associates each point of Δ

with a mapping Nm

−→ R such that pi > 0,

∑
pi = 1 and pi < p j for i < j . This

bijection is obviously the restriction to Δ of a bicontinuous bijection defined by the
same rule between TΞ and the standard (m − 1)-simplex. Calling ΔS the image of
Δ, the image of Δ̄ is the closure Δ̄S of ΔS and hence we have the following lemma.

Lemma 4.1 The closure of ΔS is the set characterized by pi ≥ 0,
∑

pi = 1, and
pi ≤ p j for i < j .

Indeed, let p ∈ ΔS . Hence, there is a sequence pk of elements of ΔS such that

lim
k→∞ pk = p.

Hence, for i < j ,
lim
k→∞(p(k)

i − p(k)
j ) = pi − p j ,

so that pi ≤ p j . The other conditions are obvious.
Vice versa, suppose that p satisfies all the conditions of the lemma. Let εk be a

sequence with positive terms converging to zero. Define



36 4 The Probability Law for Generic Density Operators

p′(k)
1 = p1, p

′(k)
i = pi + (i − 1)εk for 2 ≤ i ≤ m − 1 and p′(k)

m = 1 −
m−1∑

i=1

p′(k)
i .

But

m−1∑

i=1

p′(k)
i = 1 − pm + εk

m−1∑

i=1

(i − 1) = 1 − pm + (m − 1)(m − 2)εk/2.

In order to ensure that p′(k)
m > 0, we require that εk < 2pm/(m − 1)(m − 2). In this

way, p′(k)
i > 0 and

∑
p′(k)

i = 1. Furthermore,

p′(k)
1 − p′(k)

2 = p1 − p2 − εk < 0,

p′(k)
i − p′(k)

i+1 = pi − pi+1 − εk < 0 for 2 ≤ i ≤ m − 1.

The corresponding p(k) belongs to ΔS and lim
k→∞ pk = p. Hence p ∈ ΔS .

The structures of Δ̄S and ΔS are completely characterized by the following the-
orem.

Theorem 4.2 The transformation:

x ′
1 = mx1, .... , x ′

i = (m − i + 1) (xi − xi−1) , .... , x ′
m = xm − xm−1

induces an isomorphism of convex spaces between Δ̄S and the standard (m − 1)-
simplex. In this isomorphism ΔS and the interior of the simplex correspond each
other.

Proof We first observe that the set of conditions xi ≤ x j for i < j (i, j ∈ Nm) is
equivalent to the set of conditions xi ≤ xi+1 for i ∈ Nm−1. Indeed the second set
of conditions is entailed by the first: it is sufficient to observe that we obtain the
second set from the first putting j = i + 1. Conversely observe that for i < j , we

can write x j = xi +
j−1∑
k=1

(xk+1 − xk), from which we see immediately that the first

set of conditions is a consequence of the second. Therefore, if x ∈ Δ̄S , x ′
i ≥ 0 for

1 ≤ i ≤ m.
Furthermore

m∑

i=1

x ′
i =

m∑

i=2

(m − i + 1)(xi − xi−1) + mx1.

In this expression, the coefficient of x1 is m − (m − 1) = 1, while, for m ≥ 2, the

coefficient of x1 is (m − i + 1) − (m − 1) = 1, so that
m∑
i=1

xi =
m∑
i=1

x ′
i .
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Hence, x′ belongs to the standard (m − 1)-simplex. The transformation is com-
posed of the transformation

y1 = x1, yi = xi − xi−1 (2 ≤ i ≤ m)

and of the transformation
x ′
i = (m − i + 1)yi .

Both are invertible, so their composition is invertible. The inverse of the first is

x1 = y1, xi = yi +
i∑

j=2

y j (2 ≤ i ≤ m).

The inverse of the second is

yi = x ′
i/(m − i + 1).

We have therefore

x1 = x ′
1/m, xi =

i∑

j=1

x ′
j/(m − j + 1) (2 ≤ i ≤ m).

As the hyperplane
m∑
i=1

xi = 1 is invariant for the direct transformation, it is invariant

also for the inverse transformation, so that, if
m∑
i=1

x ′
i = 1,

m∑
i=1

xi = 1.

Furthermore, if x ′
i ≥ 0 for all i , xi ≥ 0 for all i . Finally

xi − xi−1 = x ′
i/(m − i + 1) ≥ 0 (2 ≤ i ≤ m).

We conclude that, if x′ belongs to the standard (m − 1)-simplex, x ∈ Δ̄S . Hence, the
transformation induces a bijection between the two which, being the restriction of a
linear transformation, is an isomorphism of convex spaces. �

The structure of ΔS is completely clarified by the following.

Lemma 4.2 In the transformation of Theorem4.2 the points with the coordinates all
different to each other are in bijectionwith the points of the standard (m − 1)-simplex
whose coordinates are all positive with the exception at most of the first.

Proof If the xi are all different, each

x ′
i = (m − i + 1)(xi − xi−1) (2 ≤ i ≤ m)
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is strictly positive. Conversely, if each x ′
i (2 ≤ i ≤ m) is strictly positive, all the

inequalities xi−1 ≤ xi are strict, so that all the xi are different to each other.

From the above lemma, we easily prove the following theorem.

Theorem 4.3 ΔS is the inverse image of the interior of the standard (m − 1)-simplex
for m < n and of the union of it, and the interior of the face opposite to the vertex
whose coordinates are x ′

1 = 1, x ′
i = 0 (2 ≤ i ≤ m) for m = n.

Proof By Lemma4.2 the image of ΔS is the subset of the standard (m − 1)-simplex
characterized by x ′

i > 0 (1 ≤ i ≤ m) form < n, which is the interior of the simplex.
If m = n, the zero value of the first coordinate is allowed. If we remember that

a face of the standard simplex is a set of points with a coordinate equal to zero and
that the face opposite to a given vertex is the unique face that does not contain the
vertex, we see that we must add to the interior of the simplex the interior of the face
opposite to the vertex whose coordinates are x ′

1 = 1, x ′
i = 0 (2 ≤ i ≤ m). �

Using the inverse transformation, we can find the vertices of ΔS , which are in a
one-to-one correspondence with the vertices of the standard simplex. Let Q′

i be the
vertex of the latter with coordinates x ′

ik = δik . For i = 1, we get from the inverse
transformation found in the proof of Theorem4.3 x (1)

j = 1/m, while for i > 1 x (i)
j =

0 for j < i and x (i)
j = 1/(m − i + 1) for j ≥ i . On the basis of Theorem4.3, ΔS is

the interior of ΔS for m < n and the union of it and the interior of the face opposite
to the vertex whose coordinates are all equal to each other for m = n.

We can carry all the previous results back to DΞ and summarize them in the
following theorem.

Theorem 4.4 If DΞ is the set of generic density operators with the same set Ξ of
non-null eigenstates, each ρS ∈ DΞ can be uniquely expanded as

ρS =
∑

σ∈Ξ

pσ Pσ ,

where Pσ is the projector associated to the eigenstateσ and the expansion coefficients
pσ are arbitrarily real different positive numbers such that

∑
σ∈Ξ

pσ = 1. With respect

to the standard topology induced by the coordinates pσ , DΞ consists of m! connected
components in bijection with the m! total order relations that can be defined on Ξ .
The closure Δ̄< of the connected component Δ< corresponding to a specific order
< is a simplex whose vertices can be labeled with the states of Ξ . The vertex εσ

< of
Δ̄< is expressed as

εσ
< = (tr

∑

σ ′≥σ

Pσ ′)
−1 ∑

σ ′≥σ

Pσ ′ .

The component Δ< is the interior of Δ̄<.
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Remark 4.2 The positions of the vertices of Δ̄< have a simple geometric interpre-
tation: the vertex εσ

< is the barycenter of all the vertices of TΞ but those preceding
σ . For example, if TΞ is a triangle whose set of vertices is {A, B,C} and the total
order < is A < B < C , εA

< is the barycenter of the triangle, εB
< is the barycenter of

the side BC , and εC< is C .

4.2 Universality of the Probability Distribution Function of
a Generic Density Operator

Once the structure of DΞ has been thoroughly investigated, we study the problem of
the probability of the non-null eigenstates of a generic density operator.

We suppose first that the probability distribution depends uniquely on the state
ζ of the composite system. This is a reasonable assumption: its meaning is that
the description of C through its state is complete, so the behavior of any of its
parts is completely specified by this state. We claim that, really, it depends only
on ρS . Indeed, if we have an evolution T represented by a unitary transformation
of the form I ⊗ V , H can be considered as isolated and there is no evolution in it.
Consequently, the probability of any state ξ ofH as an isolated subsystem ofC does
not change. This means that it depends only on the orbit of ζ and hence only on ρS .
Consequently, given the composite system and its subsystemH , a mapping f arises
which associates to each generic density operator ρS , the probability distribution of
its non-null eigenstates.

We will now prove the following theorem.

Theorem 4.5 If Ξ , Ξ ′ are the sets of non-null eigenstates of ρS, ρ ′
S, and p, p′

denotes the mappings which associate to each non-null eigenstate the corresponding
eigenvalue then, if ρS and ρ ′

S have the same spectrum, there is a unique bijection

Ξ
β−→ Ξ ′ such that

p′ = p ◦ β−1

and, if q and q′ are the probability distributions of Ξ and Ξ ′, then

q′ = q ◦ β−1.

Proof If ρS and ρ ′
S have the same spectrum, then Im p = Im p′. Furthermore, the

restrictions p̂ and p̂′ of p and p′ to their images are bijections. Hence, (̂p′)−1◦ p̂ is the
unique required bijection β. This bijection can be extended (although in a non-unique
way) to a transformation T ∈ U Z (H ). This means that there is an evolution of the
isolated system H such that, whenever the state “before” is ξ and the state “after”
is β(ξ). This entails that q′ (ξ ′) = q

(
β−1(ξ ′)

)

We now exploit Theorem4.5 and draw from it some useful consequences.



40 4 The Probability Law for Generic Density Operators

Let Ξ be a set of m orthogonal states and DΞ the set of generic density operators
admitting Ξ as the set of its non-null eigenstates. There is a bijection

DΞ
δΞ−→ ΔΞ

between DΞ and the set ΔΞ of all the injective mappings p : Ξ
p−→ R> such that∑

σ∈Ξ

p (σ ) = 1. This bijection is defined as

δΞ (ρS) (σ ) = tr (Pσ ρS) . (4.2.1)

We have
δ−1
Ξ (p) =

∑

σ∈Ξ

p (σ ) Pσ . (4.2.2)

Let f be the mapping which associates to each generic ρS the probability distri-
bution of its eigenstates. We denote fm its restriction to the set of generic density
operators of type m. If fΞ is the restriction of f to DΞ , we define the mapping

f̂Ξ = fΞ ◦ δ−1
Ξ . (4.2.3)

LetΔNm be the set of injective mappings fromNm toR> andNm
γ−→ Ξ a bijection;

we define a mapping through the position

g(γ )

Ξ (m) = f̂Ξ
(
m ◦ γ −1

) ◦ γ, (4.2.4)

for m ∈ ΔNm . We can prove the following.

Theorem 4.6 The mapping g(γ )

Ξ is independent of γ .

Proof Let β be any permutation of Ξ . For each p ∈ ΔΞ , we define ρS = δ−1
Ξ (p)

and ρ ′
S = δ−1

Ξ

(
p ◦ β−1

)
. Their spectra are Im p and Im

(
p ◦ β−1

)
, respectively, and

hence they are the same. If q and q′ are the corresponding probability distributions,
q = fΞ (ρS) and q′ = fΞ

(
ρ ′

S

)
. Owing to Theorem4.5we get fΞ

(
δ−1
Ξ

(
p ◦ β−1

)) =
fΞ

(
δ−1
Ξ (p)

) ◦ β−1, that is,

f̂Ξ
(
p ◦ β−1

) = f̂Ξ (p) ◦ β−1.

Now, if Nm
γ̄−→ Ξ is another bijection, β � γ̄ ◦ γ −1 is a permutation of Ξ ; further,

we have

g(γ̄ )
Ξ (m) = f̂Ξ

(
m ◦ γ̄ −1

)
◦ γ̄ = f̂Ξ

(
m ◦ γ −1 ◦ β−1

)
◦ β ◦ γ = f̂Ξ

(
m ◦ γ −1

)
◦ β−1 ◦ β ◦ γ = g(γ )

Ξ (m) .

�
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We now show that

Theorem 4.7 The mapping gΞ is independent of Ξ .

Proof Let Ξ
β−→ Ξ ′ be a bijection. Applying Theorem4.5, we get

f̂Ξ ′ (p) = f̂Ξ (p ◦ β) ◦ β−1. (4.2.5)

If Nm
γ−→ Ξ ′ is a bijection, we have

gΞ ′ (m) = f̂Ξ ′
(
m ◦ γ −1

) ◦ γ = f̂Ξ
(
m ◦ γ −1 ◦ β

) ◦ β−1 ◦ γ. (4.2.6)

The mapping γ̄ = β−1 ◦ γ is a bijection Nm
γ̄−→ Ξ and

gΞ ′ (m) = f̂Ξ
(
m ◦ γ̄ −1

) ◦ γ̄ = gΞ (m) . (4.2.7)

�

Remark 4.3 The domain of gΞ is ΔNm . For each m, the value of gΞ is a mapping
which associates to each element of Nm the probability of the corresponding state
in the set Ξ of possible states, so that this mapping is an element of the standard
(m − 1)-simplex Tm . Therefore, gΞ is a mapping from ΔNm in Tm . We have just
shown that it depends on Ξ only through its cardinality m, so that it will be denoted
as gm . The domain will be more simply denoted Δm , so that gm is a mapping from
Δm (a subset of Tm) in Tm .

Although the argumentations developed so far do not exclude a possible depen-
dence of gm on the system, we will next show that this is not the case. Before we
pursue this goal, it is useful to furnish an explicit expression of the restriction of f
to the density operators of rank m in terms of gm . This is given by the following
theorem.

Theorem 4.8 If ρS is a generic density operator of rank m,

f (ρS) = gm (δΞ (ρS) ◦ γ ) ◦ γ −1

where Ξ is the set of eigenstates appearing in the spectral decomposition of ρS and

Nm
γ−→ Ξ an arbitrary bijection.

Proof With the notations previously introduced, we get

f (ρS) (σ ) = q (σ ) = f̂Ξ (p) (σ ) . (4.2.8)

If Nm
γ−→ Ξ is a bijection, putting p = m ◦ γ −1, we get
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f (ρS) (σ ) = f̂Ξ
(
m ◦ γ −1

) (
γ ◦ γ −1 (σ )

) = gm (m) ◦ γ −1 (σ ) . (4.2.9)

But m = p ◦ γ , and p = δΞ (ρS), so that fm (ρS) (σ ) = gm (δΞ (ρS) ◦ γ ) ◦ γ −1 (σ ).
�

In the sequel, the following theorem will prove useful.

Theorem 4.9 If π is a permutation of Nm, then gm (m ◦ π) = gm (m) ◦ π .

Proof In Theorem4.8 the bijection γ is arbitrary. Hence, if γ̄ = γ ◦ π ,

gm (m ◦ π) ◦ π−1 ◦ γ −1 = gm (m) ◦ γ −1,

that is, gm (m ◦ π) = gm (m) ◦ π . �

Remark 4.4 The mapping gm is defined on a subset of the standard (m − 1)-
simplex. The set of barycentric coordinates is not independent. Hence, when we
write gm (m) we must regard m as a point of Tm rather than a collection of free
coordinates.

In what follows, we will use for Tm a standard system of free coordinates defined
as xi (m) = m (i) , i ∈ Nm−1. This position yields a bijection between Tm and the

subset T̂m−1 of Rm−1 defined by the inequalities xi ≥ 0,
m−1∑
i=1

xi ≤ 1. If Tm
η−→ T̂m−1

is this bijection, in standard coordinates, we use the mapping ĝm = η ◦ gmη−1. The
domainΔm of gm is given by all the sets of different positive barycentric coordinates.
Hence, the domain Δ̂m of ĝm is given by all the sets of different standard coordinates

in T̂m−1, with the further conditions 1 −
m−1∑
j=1

x j �= xi , i ∈ Nm−1, and excluding further

the boundary of T̂m−1.

We now pursue the goal of showing that gm does not depend on the system (pro-
vided that the dimension of its Hilbert space is at least m).

To this purpose, let us envision a composite systemSS ′ described by a Hilbert
spaceH ⊗ K . Suppose that this system interacts with an environment E described
by aHilbert spaceL , so that the total system is described byH ⊗ K ⊗ L . Suppose
that initially the system is in a state described by a ket |φ〉 |κ〉 |θ〉.

Assume that then an interaction betweenS ′ andE takes place, giving rise to a state
|φ〉 (∑

dα |κα〉 |θα〉) (where the term in parentheses is the canonical decomposition
of the final state of S ′E ) with the coefficients dα all different to each other and in
number of l.

The number l and the quantities dα can be chosen at will provided that l ≤ dimK ,
and that the dimension ofL is chosen not smaller than that ofK and that

∑
d2

α = 1.
Finally, suppose to have an interaction betweenS ′ andS that brings from each

|φ〉 |κα〉 to |φα〉 |κ〉, where the |φα〉 form an orthonormal set of H . This is certainly
possible if l ≤ dimH because the |φ〉 |κα〉, as well as the |φα〉 |κ〉, are orthonormal
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sets in H ⊗ K . It brings the total system from the state
∑

dα |φ〉 |κα〉 |θα〉 to the
state

∑
dα |φα〉 |κ〉 |θα〉.

Consider SS ′ as a subsystem of SS ′E . The initial density operator is

ρS S ′ =
∑

d2
α |φ〉 〈φ| ⊗ |κα〉 〈κα|. (4.2.10)

The set of non-null eigenstates of ρS S ′ is X = {|φ〉 |κα〉}. Whenever SS ′ is in
the state |φ〉 |κα〉, S is in |φ〉 and S ′ is in |κα〉 and hence S ′ is in |κα〉. Vice versa,
wheneverS ′ is in |κα〉,SS ′ is in |φ〉 |κα〉 so that PrS S ′ |φ〉 |κα〉 = PrS ′ |κα〉. Let
us use the elements of Nl to label the states of X , so that we define

Nl
γ−→ X : γ (α) = |φ〉 |κα〉 . (4.2.11)

Wegetγ −1 (|φ〉 |κα〉) = α. Furthermore, δX (ρS S ′) ◦ γ (α) = d2
α .Hence, ifm (α) �

d2
α , we get PrS S ′ |φ〉 |κα〉 = glS S ′

(m) (α).
In order to express PrS ′ |κα〉, we must evaluate ρS ′ . We have ρS S ′ =∑
d2

α |κα〉 〈κα|. With the same procedure we find PrS ′ |κα〉 = glS
′
(m) (α). Hence,

in this case, glS
′
(m) (α) = glS S ′

(m) (α). Similarly, the final density operator is

ρ ′
S S ′ =

∑
d2

α |φα〉 〈φα| ⊗ |κ〉 〈κ|. (4.2.12)

Using once again the samemethod, we conclude that glS (m) (α) = glS S ′
(m) (α).

Hence glS (m) = glS
′
(m). Owing to the previous considerations, m is an arbitrary

point of Δl , so that glS = glS ′ .
We can express the results just obtained in the following.

Theorem 4.10 For each m, a universal mapping gm exists such that in every system
supporting density operators of rank m the probability law on the set Ξ of their
possible states is expressed as f (ρS) = gm (δΞ (ρS) ◦ γ ) ◦ γ −1.

4.3 A Functional Equation for g2

Our next task is the determination of g. We will first determine g2, and then we will
find it for a general rank m. As for the moment, our analysis is focused on m = 2,
we will write it simply g. In this section, we will find a functional equation which
must be obeyed by g. The next section will be dedicated to its solution.

Let us consider a system W composed of three systems R, S , and T . We
call H , K , and L the Hilbert spaces of R, S , and T , respectively, and M =
H ⊗ K ⊗ L the Hilbert space of W . We suppose that H , K , and L are two-
dimensional. It is useful for what follows to introduce some special states ofW that
will be called distinguished states. In order to simplify the terminology, we will say
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“state |χ〉” instead of “state specified by the ket |χ〉.” Furthermore, all the kets will
be normalized.

Definition 4.1 We say that a ket |χ〉 ∈ M is a distinguished state if the following
conditions are satisfied.

(a) The partial density operator ρL is generic and with nonzero eigenvalues;
(b) In the canonical representation, |χ〉 = d1 |ψ1〉 |l1〉 + d2 |ψ2〉 |l2〉 with d1 �=
d2,d1 > 0, d2 > 0, |l1〉 , |l2〉 orthonormal vectors of L and |ψ1〉 , |ψ2〉 orthonor-
mal vectors ofH ⊗ K , trK |ψ1〉 〈ψ1| and trK |ψ2〉 〈ψ2| are generic and have the
same eigenstates.

We can show that

Theorem 4.11 If |χ〉 = d1 |ψ1〉 |l1〉 + d2 |ψ2〉 |l2〉 with d1 �= d2, d1 > 0, d2 > 0,
|l1〉 , |l2〉 orthonormal vectors of L and

|ψ1〉 = √
m1 |h1〉 |k1〉 + √

m2 |h2〉 |k2〉 , (4.3.1)

|ψ2〉 = √
m ′

1 |h1〉 |k2〉 + √
m ′

2 |h2〉 |k1〉 , (4.3.2)

with mi ,m ′
i ≥ 0, m1 + m2 = 1, m ′

1 + m ′
2 = 1, m1 �= m2, m ′

1 �= m ′
2, |h1〉, |h2〉

orthonormal inH , |k1〉 , |k2〉 orthonormal inK , then |χ〉 is a distinguished state.

Proof |ψ1〉 and |ψ2〉 are orthonormal; ρL is generic and with nonzero eigenvalues
as a consequence of the assumptions on d1 and d2. Furthermore

trK |ψ1〉 〈ψ1| = m1 |h1〉 〈h1| + m2 |h2〉 〈h2| , (4.3.3)

and
trK |ψ2〉 〈ψ2| = m ′

1 |h1〉 〈h1| + m ′
2 |h2〉 〈h2| , (4.3.4)

so that they are generic and with the same eigenstates. �

We have ρHK = d2
1 |ψ1〉 〈ψ1| + d2

2 |ψ2〉 〈ψ2| . Putting λ = d2
1 , λ′ = d2

2 , ρ1 =
trK |ψ1〉 〈ψ1| and ρ2 = trK |ψ2〉 〈ψ2|, we get

ρHK = λ |ψ1〉 〈ψ1| + λ′ |ψ2〉 〈ψ2| and ρH = λρ1 + λ′ρ2.

The possible states of the system RS are |ψ1〉 and |ψ2〉. We get

ρH = (
λm1 + λ′m ′

1
) |h1〉 〈h1| + (

λm2 + λ′m ′
2
) |h2〉 〈h2| ,

so that, if λm1 + λ′m ′
1 �= 1

2 , the systemR can be considered isolated in ρH . Hence,
as long as neither m1 + m ′

1 nor m2 + m ′
2 are zero, when the total system is in |χ〉,

R is either in |h1〉 or in |h2〉.
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Suppose first that all them andm ′ are nonzero. In this case, each possibility for the
states ofRS as an isolated system, i.e., |ψ1〉 and |ψ2〉, gives rise to both possibilities
for the states of R, that is, |h1〉 and |h2〉. Hence, we have two disjoint possibilities
of obtaining |h1〉: either with RS in |ψ1〉 or with RS in |ψ2〉. Consequently, the
probability q̄1 of finding R in |h1〉 is the sum of two terms corresponding to these
possibilities. Applying the Bayes rule, the first term is the product of the probability
q1 of finding RS in |ψ1〉 times the probability q(1)

1 of finding R in |h1〉 given that
RS is in |ψ1〉. Similarly, the second term is the product of the probability q2 of
finding RS in |ψ2〉 times the probability q(2)

1 of finding R in |h1〉 given that RS
is in |ψ2〉. Hence, we can write

q̄1 = q(1)
1 q1 + q(2)

1 q2. (4.3.5)

In the same way, we get
q̄2 = q(1)

2 q1 + q(2)
2 q2, (4.3.6)

where q(1)
2 is the probability of findingR in |h2〉 given thatRS is in |ψ1〉, and q(2)

2
is the probability of finding R in |h2〉 given that RS is in |ψ2〉.

Denoting with g(1) and g(2) the two components of g, we have

q1 = g(1)
(
λ, λ′) , q2 = g(2)

(
λ, λ′) ,

q(1)
1 = g(1) (m1,m2) , q(1)

2 = g(2) (m1,m2) ,

q(2)
1 = g(1)

(
m ′

1,m ′
2
)
, q(2)

2 = g(2)
(
m ′

1,m ′
2
)
.

Furthermore

q̄1 = g(1)
(
λm1 + λ′m ′

1, λm2 + λ′m ′
2
)
, (4.3.7)

q̄2 = g(2)
(
λm1 + λ′m ′

1, λm2 + λ′m ′
2
)
. (4.3.8)

By substitution, we get

g(1)
(
λm1 + λ′m′

1, λm2 + λ′m′
2
) = g(1) (m1,m2) g(1)

(
λ, λ′) + g(1)

(
m′

1,m
′
2
)
g(2)

(
λ, λ′) ,

g(2)
(
λm1 + λ′m′

1, λm2 + λ′m′
2
) = g(2) (m1,m2) g(1)

(
λ, λ′) + g(2)

(
m′

1,m
′
2
)
g(2)

(
λ, λ′) .

These equations hold for every
((

λ, λ′) , m, m′) ∈ Δ3
2 (where m = (m1,m2), m′ =

(m ′
1,m

′
2)) such that λm + λ′m′ ∈ Δ2. We now take m1 = 1, maintaining the condi-

tion that neitherm1 + m ′
1 norm2 + m ′

2 are zero. In this case, the possible state |ψ1〉
gives rise to the single possibility |h1〉. Further m ′

2 must be nonzero. If in addition
m ′

2 �= 1, |ψ2〉 gives rise to the both possibilities |h1〉 and |h2〉. Hence, in this case, we
must write a single summand for q̄2 and identify with q1 the summand corresponding
to the possibility |ψ1〉 in q̄1; this is equivalent to take q(1)

1 = 1 and q(1)
2 = 0. So, we

find
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q̄1 = q1 + q(2)
1 q2, (4.3.9)

q̄2 = q(2)
2 q2, (4.3.10)

giving rise to the equations

g(1)
(
λ + λ′m ′

1, λ
′m ′

2
) = g(1)

(
λ, λ′) + g(1)

(
m ′

1,m
′
2
)
g(2)

(
λ, λ′) ,(4.3.11)

g(2)
(
λ + λ′m ′

1, λ
′m ′

2
) = g(2)

(
m ′

1,m
′
2
)
g(2)

(
λ, λ′) . (4.3.12)

If m1 = 1,m ′
2 = 1, |ψ2〉 gives rise to the single possibility |h2〉. In this case, an

identity is obtained. We now take m2 = 1 and m ′
1, m ′

2 both nonzero. This time we
get q(1)

1 = 0 and q(1)
2 = 1 and hence

q̄1 = q(2)
1 q2, (4.3.13)

q̄2 = q1 + q(2)
2 q2, (4.3.14)

so that

g(1)
(
λ′m ′

1, λ + λ′m ′
2
) = g(1)

(
m ′

1,m
′
2
)
g(2)

(
λ, λ′) , (4.3.15)

g(2)
(
λ′m ′

1, λ + λ′m ′
2
) = g(1)

(
λ, λ′) + g(2)

(
m ′

1,m
′
2
)
g(2)

(
λ, λ′) .(4.3.16)

Similarly, we take m ′
1 = 1 and then m ′

2 = 1. In the first case, we get q(2)
1 = 1 and

q(2)
2 = 0, in the second q(2)

1 = 0 and q(2)
2 = 1. We obtain, respectively,

g(1)
(
λm1 + λ′, λm2

) = g(1) (m1,m2) g(1)
(
λ, λ′) + g(2)

(
λ, λ′) , (4.3.17)

g(2)
(
λm1 + λ′, λm2

) = g(2) (m1,m2) g(1)
(
λ, λ′) , (4.3.18)

and

g(1)
(
λm1, λm2 + λ′) = g(1) (m1,m2) g(1)

(
λ, λ′) , (4.3.19)

g(2)
(
λm1, λm2 + λ′) = g(2) (m1,m2) g(1)

(
λ, λ′) + g(2)

(
λ, λ′) . (4.3.20)

We now define an extension g̃ of g as follows:

g̃ (m1,m2) = g (m1,m2) for (m1,m2) ∈ Δ2;
g̃(1) (1, 0) = 1, g̃(2) (1, 0) = 0, g̃(1) (0, 1) = 0, g̃(2) (0, 1) = 1.

Defining
Δ̃2 = Δ2 ∪ {(1, 0) , (0, 1)} ,

we can show that g̃ satisfies the equations
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g̃(1)
(
λm1 + λ′m′

1, λm2 + λ′m′
2
) = g̃(1) (m1,m2) g̃(1)

(
λ, λ′) + g̃(1)

(
m′

1,m
′
2
)
g̃(2)

(
λ, λ′)

g̃(2)
(
λm1 + λ′m′

1, λm2 + λ′m′
2
) = g̃(2) (m1,m2) g̃(1)

(
λ, λ′) + g̃(2)

(
m′

1,m
′
2
)
g̃(2)

(
λ, λ′)

for every
((

λ, λ′) , m, m′) ∈ Δ̃3
2 such that λm + λ′m′ ∈ Δ̃2.

Indeed, it is sufficient to verify the above equationswhen at least one point is (1, 0)
or (0, 1). If

(
λ, λ′) = (1, 0) or (0, 1), we obtain an identity. The other cases are a

consequence of equations already established for the remaining four possibilities.
Let us express this relation in free coordinates. We put m = η−1 (z) and m′ =

η−1
(
z′) so that

λm + λ′m′ = η−1 (
λz + (1 − λ) z′) . (4.3.21)

Therefore

η ◦ g̃
(
λm + λ′m′) = g̃(1)

(
λz + (1 − λ) z′) � ĝ

(
λz + (1 − λ) z′) .

We further have

η ◦ g̃ (m) = ĝ (z) and η ◦ g̃
(
m′) = ĝ

(
z′) ;

finally,
g̃(1)

(
λ, λ′) = ĝ (λ) and g̃(2)

(
λ, λ′) = 1 − ĝ (λ) .

Hence, we get

ĝ
(
λz + (1 − λ) z′) = ĝ (λ) ĝ (z) + (

1 − ĝ (λ)
)
ĝ

(
z′) , (4.3.22)

which holds for all the
(
λ, z, z′) such that the arguments in all the occurrences of ĝ

belong to its domain [0, 1/2)
⋃

(1/2, 1].
The definition of g̃ entails that the boundary conditions ĝ (0) = 0 and ĝ (1) = 1

must be satisfied.
The next section will be dedicated to the solution of this functional equation.

4.4 Solution of the Functional Equation

In the previous section, we have found the functional equation

ĝ
(
λz + (1 − λ) z′) = ĝ (λ) ĝ (z) + (

1 − ĝ (λ)
)
ĝ

(
z′) . (4.4.1)

The function ĝ is defined in Δ2 = [
0, 1

2

)⋃ (
1
2 , 1

]
. Furthermore, the boundary con-

ditions ĝ (0) = 0, ĝ (1) = 1 must be fulfilled and its values must range between 0
and 1. This equation holds in Δ3

2 for λz + (1 − λ) z′ �= 1
2 .
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This section is dedicated to its solution. First, we make the following positions:

x = z − 1

2
, x ′ = z′ − 1

2
, μ = λ − 1

2
, f (x) = ĝ (z) − 1

2
. (4.4.2)

We have λz + (1 − λ) z′ = λx + (1 − λ) x ′ + 1
2 , so that

f
(
λx + (1 − λ) x ′) + 1

2
=

(
f (μ) + 1

2

) (
f (x) + 1

2

)
+

(
1

2
− f (μ)

)(
f
(
x ′) + 1

2

)
,

(4.4.3)
whence

f

[(
μ + 1

2

)
x +

(
1

2
− μ

)
x ′

]
= f (μ)

(
f (x) − f

(
x ′)) + 1

2

(
f (x) + f

(
x ′)).

(4.4.4)
PuttingD = [− 1

2 , 0
) ⋃ (

0, 1
2

]
, this equationholds inD3 for

(
μ + 1

2

)
x + (

1
2 − μ

)
x ′ �=

0. In particular, for x ′ = −x , we get

f (2μx) = f (μ) ( f (x) − f (−x)) + 1

2
( f (x) + f (−x)). (4.4.5)

This equation holds in D2.
The left side is symmetric under the exchange of μ and x , so that we have

− f (μ) f (−x) + 1

2
( f (x) + f (−x)) = − f (x) f (−μ) + 1

2
( f (μ) + f (−μ)).

(4.4.6)
We have f

(− 1
2

) = − 1
2 and f

(
1
2

) = 1
2 , so that, putting μ = − 1

2 , we get

f (x) + f (−x) = 0, (4.4.7)

and hence
f (2μx) = 2 f (μ) f (x) . (4.4.8)

We put F (ζ ) = 2 f
(
1
2ζ

)
, so that f (ζ ) = 1

2 F (2ζ ). Hence, we get F (4μx) =
F (2μ) F (2x), that is,

F (xy) = F (x) F (y) . (4.4.9)

As the domain of f is D, the domain of F is Λ = [−1, 0)
⋃

(0, 1]. Equation (4.4.9)
holds for any (x, y) ∈ Λ × Λ. The functional equation for f can be translated into
a functional equation for F . We have

1

2
F

(
(2μ + 1) x + (1 − 2μ) x ′) = 1

4
F (2μ)

(
F (2x) − F

(
2x ′)) + 1

4

(
F (2x) + F

(
2x ′)) .

(4.4.10)
Putting 2μ = ξ , 2x = u, 2x ′ = v, we obtain
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F

[
1

2
(1 + ξ) u + 1

2
(1 − ξ) v

]
= 1

2
F (ξ) [F (u) − F (v)] + 1

2
[F (u) + F (v)] ,

(4.4.11)
which holds for any (ξ, u, v) ∈ Λ3 such that u + v + ξu − ξv �= 0. We can write

F

(
1

2
u + 1

2
ξu + 1

2
v − 1

2
ξv

)
= 1

2
F (u) + 1

2
F (ξu) + 1

2
F (v) − 1

2
F (ξv) .

(4.4.12)
We restrict the above equation to the subset Σ of Λ3 satisfying the condition u = ξv
and such that v + ξu �= 0. In this subset, we have

F

(
1

2
ξu + 1

2
v

)
= 1

2
F (ξu) + 1

2
F (v) . (4.4.13)

We now put α = ξu = ξ 2v, β = v. The inverse transformation is ξ = ±√
α/β, u =

±√
αβ, v = β. Hence, we have 0 < |β| ≤ 1, 0 < α/β ≤ 1, 0 < αβ ≤ 1. This subset

can be characterized by the inequalities 0 < |α| ≤ |β| ≤ 1 and αβ > 0. Therefore,
the equation

F

(
1

2
α + 1

2
β

)
= 1

2
F (α) + 1

2
F (β) (4.4.14)

holds for 0 < |α| ≤ 1, 0 < |β| ≤ 1, |α| ≤ |β| such that αβ > 0. If |α| > |β| we put
α′ = β, β ′ = α, so that

∣∣α′∣∣ <
∣∣β ′∣∣. We have

F

(
1

2
α + 1

2
β

)
= F

(
1

2
α′ + 1

2
β ′

)
= 1

2
F

(
α′) + 1

2
F

(
β ′) = 1

2
F (α) + 1

2
F (β) .

Hence Eq. (4.4.14) holds for all (α, β) such that 0 < |α| ≤ 1, 0 < |β| ≤ 1, αβ > 0.
As F (x) + F (−x) = 0, we can restrict our analysis to the interval (0, 1]. Hence,

we have the equations

F (xy) = F (x) F (y) , (4.4.15)

F

(
x + y

2

)
= 1

2
F (x) + 1

2
F (y) , (4.4.16)

with (x, y) ∈ (0, 1]2.
Let XN = {

n
2N |n ∈ N, n < 2N

}
. We have the following.

Theorem 4.12 If F satisfies Eq. (4.4.16), for any N ∈ N and for any x ∈ XN , F (x)
is given by

F (x) = F

(
1

2

)
+

[
1 − F

(
1

2

)]
(2x − 1) . (4.4.17)

Proof The theorem is true for N = 1. Then we prove it by recursion on N .
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If the theorem is true for a given N , all the points (x, F (x)) such that x ∈ XN lie
on the straight line r containing the points

(
1
2 , F

(
1
2

))
and (1, 1).

The set XN+1 is obtained from XN by adjoining to it all the middle points of the
intervals

(
n
2N , n+1

2N
)
for 1 ≤ n < 2N − 1 and further the two points 1

2N − 1
2N+1 and

2N−1
2N + 1

2N+1 .
If N = 1, X1 = {

1
2

}
and X2 is obtained by adjunction of the points 1

4 and 3
4 .

Equation (4.4.16) shows that F
(
3
4

)
is obtained by linear interpolation of the values

F
(
1
2

)
and F (1) = 1, so that

(
3
4 , F

(
3
4

))
belongs to r . The same equation shows that

the linear interpolation between the values F
(
1
4

)
and F

(
3
4

)
must yield F

(
1
2

)
, so that(

1
4 , F

(
1
4

))
belongs to r .

For N > 1, the value of F in themiddle point of each interval
(

n
2N , n+1

2N
)
is obtained

by linear interpolation of the values in its extreme points, so that (x, F (x)) lies on r .
For the point adjoined on the left, F

(
1
2N − 1

2N+1

)
must be such that the linear inter-

polation of it with F
(

1
2N + 1

2N+1

)
yields F

(
1
2N

)
. Hence,

(
1
2N − 1

2N+1 , F
(

1
2N − 1

2N+1

))

belongs to r . Similarly, F
(
2N−1
2N + 1

2N+1

)
must be such that the linear interpolation

of it with F
(
2N−1
2N − 1

2N+1

)
yields F

(
2N−1
2N

)
.

Therefore
(
2N−1
2N + 1

2N+1 , F
(
2N−1
2N + 1

2N+1

))
belongs to r . �

We now use Eq. (4.4.15) for x = y = 1
2 . We get F

(
1
4

) = F
(
1
2

)2
. But 1

4 ∈ X2, so
thatwe canuseTheorem4.12getting F

(
1
4

) = 3
2 F

(
1
2

) − 1
2 .Hence, F

(
1
2

)
satisfies the

equation F
(
1
2

)2 − 3
2 F

(
1
2

) + 1
2 = 0 whose solutions are F

(
1
2

) = 1 and F
(
1
2

) = 1
2 .

In the first case, we get F (x) = 1 and in the second F (x) = x . The first case can
be excluded. Indeed, as F is odd, F (x) = sign (x). If we take, for instance, ξ > 0
u > 0 and such that (1+ξ)u

1−ξ
< 1 and v < − (1+ξ)u

1−ξ
, with the further condition that all

the variables belong to −XN
⋃

XN for some N , the argument of F on the left side
is negative, so that the latter is −1. On the other hand, the right side is F (u), and
hence its value is 1. We conclude that the only possibility is F (x) = x . In this way,
we have proved the following theorem.

Theorem 4.13 For every N ∈ N, the restriction of F to the set −XN
⋃

XN is the
identity.

We are now ready to prove the next theorem.

Theorem 4.14 The only function F satisfying Eqs. (4.4.9) and (4.4.14) and not
greater than 1 in magnitude is the identity.

Proof As F is an odd function, we can limit our analysis to the interval (0, 1] of the
independent variable.

First we observe that in this range F is nonnegative. Indeed, if z ∈ (0, 1], and
x = √

z, x ∈ (0, 1] and, by virtue of (4.4.9), we have

F (z) = F
(
x2

) = F(x)2 ≥ 0.
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Further, F is a non-decreasing function. Indeed, if x < y,

F (x) = F
((

x
y

)
y
)

= F
(
x
y

)
F (y) ≤ F (y) .

Let z ∈ (0, 1]. If z ∈ XN for some N , F (z) = z byTheorem4.13. If z /∈ XN for every
N , for each N we define xN as the greatest x ∈ XN smaller than z and x ′

N as the
smallest x ∈ XN greater than z. It is obvious that {xN } is a non-decreasing sequence
and

{
x ′

N
}
is a non-increasing sequence. Let x̄ = lim

N→∞ xN . We have x̄ ≤ z. If x̄ < z,

for each N we define x̄N as the smallest x ∈ XN greater than x̄ . The neighbor on the
left of x̄N is x̄N − 1

2N which, by definition of x̄N , is not greater than x̄ . Hence, for
sufficiently high values of N we have x̄N < z. But we have xN ≤ x̄ < x̄N < z. This
is a contradiction because xN is the greatest x ∈ XN smaller than z. Therefore, we
have

lim
N→∞ xN = z.

In a similar way, we can show that

lim
N→∞ x ′

N = z.

As xN = F (xN ) ≤ F (z) ≤ F
(
x ′

N
) = x ′

N , F (z) = z. �

Remembering the changes of variables we have made to go from g̃ to F , we
conclude that the unique solution of the functional equation with the conditions
imposed is the identity mapping.

Remark 4.5 We emphasize that no continuity assumption has been made in the
above argument. The only assumption on g besides the fact that it must satisfy the
functional equation is that, as a probability, its values must range between 0 and 1.

4.5 The Function g for Arbitrary Rank

In this section, we generalize the results obtained before, and find the form of the
function g in the general case. To this purpose, we introduce the general notion of a
distinguished state.

Let us consider a system W composed of three systems R, S , and T . We call
H , K , and L the Hilbert spaces of R, S , and T , respectively, and M = H ⊗
K ⊗ L the Hilbert space of W . We suppose that H and K are m-dimensional,
while L is supposed two-dimensional. The notion of a distinguished state in this
more general case is similar to that given for two-dimensional spaces.

Definition 4.2 We say that a ket |χ〉 ∈ M is a distinguished state if the following
conditions are satisfied.
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(a) The partial density operator ρL is generic and with nonzero eigenvalues;
(b) In the canonical representation |χ〉 = d1 |ψ1〉 |l1〉 + d2 |ψ2〉 |l2〉 with d1 �= d2,
d1 > 0, d2 > 0, d2

1 + d2
2 = 1, |l1〉, |l2〉 orthonormal vectors of L and |ψ1〉 , |ψ2〉

orthonormal vectors ofH ⊗ K , trK |ψ1〉 〈ψ1| and trK |ψ2〉 〈ψ2| are generic and
have the same eigenstates.

Let {|hi 〉}i∈Nm
and {|ki 〉}i∈Nm

be arbitrary ordered orthonormal bases of H and K ,
respectively. Let π be a permutation of Nm which displaces all its points.

Let Nm
m−→ R≥ and Nm

m′−→ R≥ be injective mappings with
∑

mi = 1 and∑
m ′

i = 1. Finally, let |l1〉, |l2〉 be orthonormal vectors of L and d1 �= d2, d1 > 0,
d2 > 0. Put

|ψ1〉 =
∑ √

mi |hi 〉 |ki 〉, |ψ2〉 =
∑ √

m ′
i |hi 〉

∣∣kπ(i)
〉
, (4.5.1)

and
|χ〉 = d1 |ψ1〉 |l1〉 + d2 |ψ2〉 |l2〉 . (4.5.2)

We can easily prove the following.

Theorem 4.15 |χ〉 is a distinguished state.

Proof As π (i) �= i , |ψ1〉 and |ψ2〉 are orthonormal. Hence, (4.5.2) is the canonical
representation of |χ〉. The corresponding density operator ρL is given by

ρL = d2
1 |l1〉 〈l1| + d2

2 |l2〉 〈l2| .

Therefore, ρL is generic and with nonzero eigenvalues. Furthermore

trK |ψ1〉 〈ψ1| =
∑

mi |hi 〉 〈hi |,
trK |ψ2〉 〈ψ2| =

∑
m ′

i |hi 〉 〈hi |,

so that they are generic and with the same eigenstates. �

Let us evaluate the density operator ρH of |χ〉 inR. We have

|χ〉 = d1
∑ √

mi |hi 〉 |ki 〉 |l1〉 + d2
∑ √

m ′
i |hi 〉

∣∣kπ(i)
〉 |l2〉 , (4.5.3)

which we recast in the form |χ〉 = ∑ |hi 〉 |θi 〉 with

|θi 〉 = d1
√
mi |ki 〉 |l1〉 + d2

√
m ′

i

∣∣kπ(i)
〉 |l2.〉 (4.5.4)

The kets |θi 〉 are pairwise orthogonal, so that

ρH =
∑

〈θi |θi 〉 |hi 〉 〈hi | = d2
1ρ1 + d2

2ρ2,
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where ρ1 and ρ2 are the density operators inR corresponding to |ψ1〉 and |ψ2〉.
We now discuss the probabilities.
Putting d2

1 = λ, d2
2 = λ′, the spectral decomposition of the density operator ρHK

is ρHK = λ |ψ1〉 〈ψ1| + λ′ |ψ2〉 〈ψ2| . Hence, the system RS is in the state |ψ1〉
with probability q1 and in the state |ψ2〉 with probability q2. Applying the results of
previous section, we have q1 = λ and q2 = λ′.

Furthermore, the spectral expansion of the density operator of |ψ1〉 inR is ρ1 =∑
mi |hi 〉 〈hi |, so that if RS is in |ψ1〉, R is in |hi 〉 with probability q(1)

i . If all the
components of m are nonzero, the rank of ρ1 is m, so that we have q(1) = gm (m).

Similarly, the spectral expansion of the density operator of |ψ2〉 in R is ρ2 =∑
m ′

i |hi 〉 〈hi |, so that ifRS is in |ψ2〉,R is in |hi 〉 with probability q(2)
i . If all the

components of m′ are nonzero, the rank of ρ2 is m, so that we have q(2) = gm
(
m′).

But then the probability thatR is in |hi 〉 is q̄i = q(1)
i q1 + q(2)

i q2, provided that ρH

is generic. But ρH = λρ1 + λ′ρ2 so that ρH = ∑(
λmi + λ′m ′

i
) |hi 〉 〈hi |. Hence, for

the validity of our argument we require that λm + λ′m′ belongs to the domain of gm .
We have q̄ = gm

(
λm + λ′m′).

Hence, by substitution, we get

gm
(
λm + λ′m′) = λgm (m) + λ′gm

(
m′) . (4.5.5)

Wemust be careful about the range of validity of the above equation. In our derivation,
we have supposed λ > 0, λ′ > 0, and λ �= λ′. Furthermore, m and m′ must belong
to the domain of gm , as well as λm + λ′m′.

Suppose now that some single component of m, say mi , is zero. Then the rank of
ρ1 is m − 1 and the possible states of R, given that RS is in |ψ1〉, are all the |hl〉
with l �= i . The probability that R is in |hl〉 is therefore

q̄l = q(1)
l q1 + q(2)

l q2, (4.5.6)

for l �= i and
q̄i = q(2)

i q2. (4.5.7)

We define m̂i = (m1, ...,mi−1,mi+1, ...,mm). We extend the definition of gm
(which is defined for all the m j different from zero) to a domain Δ̂m where at most
a single mk is zero in the following way:

ĝm (m) = gm (m) for m ∈ Δm, (4.5.8)

ĝm,k (m) = 0, ĝm,i (m) = gm−1,i
(
m̂k

)
i �= k when mk = 0. (4.5.9)

We note that Δ̂m is obtained from Δm by adjunction of the subset with nonzero
different barycentric coordinates of each face of Tm . We now prove the following
theorem.

Theorem 4.16 The mapping ĝm satisfies the equation
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ĝm
(
λm + λ′m′) = λĝm (m) + λ′ĝm

(
m′) , (4.5.10)

provided that all the arguments belong to Δ̂m and that λ and λ′ belong to [0, 1] that
they are different from each other and that λ + λ′ = 1.

Proof Indeed, for λ = 1 and λ′ = 1, we obtain an identity. Otherwise, but when all
the arguments belong to Δm Eq. (4.5.10) coincides with Eq. (4.5.5).

If mi = 0 for a single i and m′ ∈ Δm , the argument of ĝm in the left side of
(4.5.10) belongs to Δm , so that the left side of (4.5.10) is the probability distribution
of finding R in the different states |h〉; the components of the right side of (4.5.10)
coincide with the corresponding right sides of (4.5.6) for l �= i and with the right
side of (4.5.7) for l = i . Hence, (4.5.10) is satisfied also in this case.

Exchanging the roles of λ, m and λ′, m′, we see that (4.5.10) is satisfied also
when m ∈ Δm andm ′

i = 0 for a single i . Suppose now thatmi = 0 for a single i and
m ′

k = 0 for a single k with k �= i . In this case, all the states |hl〉 (l �= i, l �= k) result
from both possibilities |ψ1〉 and |ψ2〉, while the state |hi 〉 results only from |ψ2〉 and
the state |hk〉 results only from |ψ1〉. We then have

q̄l = q(1)
l q1 + q(2)

l q2 (l �= k, l �= i) , (4.5.11)

q̄i = q(2)
i q2, (4.5.12)

q̄k = q(1)
k q1. (4.5.13)

As λm + λ′m′ ∈ Δm , the left side of (4.5.10) is the probability distribution of the
states |h〉, while the components of the right side different from i and k coincide with
the corresponding right sides of (4.5.11). The components i and k of the right side
of (4.5.10) coincide with the right side of (4.5.12) and (4.5.13), respectively. Hence,
also in this case (4.5.10) is satisfied.

Finally, suppose mi = m ′
i = 0 for a single i . In this case, the i th component of

both sides of (4.5.10) is zero. Furthermore, the equations for the probabilities are

q̄l = q(1)
l q1 + q(2)

l q2 (l �= i) . (4.5.14)

The other components of the left side of (4.5.10) are the corresponding left sides of
(4.5.14), and the same for the right sides. �

We are now ready to prove the fundamental result of the above analysis.

Theorem 4.17 The unique mapping gm expressing the probability law of the states
is the identity.

Proof We will prove the theorem by recursion on m. The theorem is true for m = 2
(see Sect. 4.4).

Suppose that the theorem is true for m − 1. Let m′′ ∈ Δ̂m . If m ′′
i = 0 for a single

i , by virtue of (4.5.9) we get ĝm,i
(
m′′) = 0 and ĝm,l

(
m′′) = ĝm−1,l

(
m̂′′

i

)
for l �= i .

But, for the recursion hypothesis, ĝm−1,l
(
m̂′′

i

) = m̂′′
i . Hence ĝm

(
m′′) = m′′.
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Suppose now thatm ′′
i �= 0 for every i .We can always choose a segment containing

m′′ whose terminal points m and m′ belong to Δ̂m and to two different faces of Tm ,
opposite to the vertices i and k, respectively, and such thatm′′ is not the middle point.
Then

ĝm
(
m′′) = ĝm

(
λm + λ′m′) = λĝm (m) + λ′ĝm

(
m′) . (4.5.15)

But we have already shown that, for such points, ĝm (m) = m and ĝm
(
m′) = m′, so

that
ĝm

(
m′′) = λm + λ′m′ = m′′. (4.5.16)

�

RememberingTheorem4.8, i.e., that f (ρS) = gm (δΞ (ρS) ◦ γ ) ◦ γ −1,weget f (ρS) =
δΞ (ρS), that is, if ρS = ∑

pα |ξα〉 〈ξα|, f (ρS) (ξα) = pα , that is

Theorem 4.18 If ρs is a generic density operator, the possible states of the system,
considered as isolated, are its non-null eigenstates, and the probability of finding the
system in the state ξ is the correspondent eigenvalue.

We thus recover the standard statistic interpretation of the density operator.
Note that these results have not been stated as a postulate, but derived from the

mathematical formalism, examining in a detailed way each step of the derivation,
and introducing and discussing all the necessary mathematical concepts. This was
the main aim of the present work.



Appendix A
Categories

We will take1 for granted the general notion of a category, but some aspects of the
theory relevant for our purposes will be evidenced here. We first remark that it is
sometimes convenient to describe a category uniquely in terms of morphisms. This
is possible because there is a one-to-one correspondence between the objects and
their identity morphisms.

From this point of view, the category is regarded as a collection of morphisms.
Each morphism can be multiplied on the left by a unique identity, which will be
called its left identity; similarly, it can be multiplied on the right by a unique identity,
which will be called its right identity.

If ϕ is a morphism, and e′, e are its left and right identities, respectively, the source
of ϕ is the object whose identity is e, and the target is the object whose identity is e′.
If X

ϕ−→ X ′, in order to specify the source and the target, we write e′ϕe. If e′′ψe′′′ is a
secondmorphism, we can compose themwithψ on the left if and only if e′ = e′′′ and
the result is e′′ψe′e′ϕe = e′′ψϕe. If the sources and the targets have been declared,
we can omit the identities in our notation.

A covariant functor from a category K to a category K ′ is a mapping F
from K to K ′ such that F (ψϕ) = F (ψ) F (ϕ). A contravariant functor from
a category K to a category K ′ is a mapping F from K to K ′ such that
F (ψϕ) = F (ϕ) F (ψ) .

A.1 The Categories of Sets

Consider the class C of all sets. We can associate to it a category Set in the following
way.Theobjects of Set are all the sets.Given two sets X andY wedefine Hom (X,Y )

1The content of this chapter can be found in Campanella’s files The categories of sets: (2/12/2013),
Summary on G-set: (27/11/2013).

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
M. Campanella et al., Interpretative Aspects of Quantum Mechanics,
UNIPA Springer Series,
https://doi.org/10.1007/978-3-030-44207-1
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as follows. We consider the power sets ℘ (X) and ℘ (Y ). Let M (X,Y ) be the set of
all mappings F from ℘ (X) to ℘ (Y ) that send ∅ in ∅ and singletons in singletons.
Let WX be the subset of ℘ (X) whose elements are all the singletons of X and VX =
WX

⋃ {∅}. Hence, ℘ (X)
F−→ ℘ (Y ) belongs to M (X,Y ) if and only if ∅F = ∅ and

WX F ⊆ WY . As a consequence, VX F ⊆ VY .

Furthermore, we introduce the insertion mapping ιVX of VX in ℘ (X). We have

ιVX F ιVY = ιVX F.

We observe that M (X,Y ) = ∅ if and only if X �= ∅ and Y = ∅. If M (X,Y ) �= ∅,
we define in it an equivalence relation through the rule F ∼ F ′ if and only if ιVX F =
ιVX F

′.
We put Hom (X,Y ) = ∅ if M (X,Y ) = ∅ and Hom (X,Y ) = M (X,Y )/∼ if

M (X,Y ) �= ∅.
We now define the composition law for the morphisms. Let f ∈ Hom (X,Y )

and f ′ ∈ Hom (Y, Z). Then M (X,Y ) and M (Y, Z) are nonempty. Let F, F ′ be
representatives of f, f ′, respectively. Consider the composition F ′′ = FF ′. As F and
F ′ send∅ in∅ and singletons in singletons, also F ′′ does, so that F ′′ ∈ M (X, Z) and
the latter is nonempty. Suppose that F̂ and F̂ ′ represent f and f ′. Then ιVX F = ιVX F̂
and ιVY F

′ = ιVY F̂
′. We have

ιVX F̂ ′′ = ιVX F̂ F̂ ′ = ιVX F̂ ιVY F̂ ′ = ιVX F ιVY F
′ = ιVX F

′′.

Thus, the mapping composition law passes to the quotients, defining a composition
law for the morphisms. The axioms for the composition of morphisms in a category
are automatically satisfied, as they are satisfied for the mappings.

In the category of sets, there is an object A such that for any X , for any a ∈ A,
and for any x ∈ X there is a unique morphism sending a in x . A singleton satisfies
this property. It is obvious that only singletons work, so that A is defined up to
isomorphisms.

In an arbitrary category, we say that a morphism ϕ is cancellable on the left if the
equation ϕξ = ϕζ implies ξ = ζ . We say that a morphism ϕ is cancellable on the
right if the equation ξϕ = ζϕ implies ξ = ζ .

It is easy to see that in the category of sets ϕ is cancellable on the left if and only
if it is injective and that it is cancellable on the right if and only if it is surjective.

The sufficiency is obvious. For the necessity, suppose that ϕ is not injective and
that it is left-cancellable. Then ϕ = ϕζ must imply ζ = e. But ϕ = ϕζ if and only
if every equivalence class modulo is stable under ζ . But not all these classes are
singletons, so there are non-identical ζ leaving them invariant, and then we get a
contradiction.

Suppose now that ϕ is not surjective and that it is right-cancellable. Then ϕ = ζϕ

must imply ζ = e. But ϕ = ϕζ if and only if every element of the image of ϕ is a
fixed point for ζ . But not all the elements of the target of ϕ are in its image, so there
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are non-identical ζ for which all the elements of this image are fixed points, and then
we get a contradiction.

A terminal object T in a categoryK is an object such that for every object X in
K there is a single morphism from X to T. Using the terminology involving only
morphisms, an identity e is terminal if for every e′ there is a unique left multiplier of
e which is also a right multiplier of e′.

If e and e′′ are terminal, there is a unique ϕ such that ϕe and e′′ϕ exist, and a unique
ψ such that ψe′′ and eψ exist. But then ϕψ and ψϕ exist; ϕψ is a left multiplier
of e′′ and a right multiplier of e′′, e′′ enjoys the same property. As e′′ is terminal,
ϕψ = e′′. Similarly, ψϕ = e. Therefore, ϕ and ψ are isomorphisms. We conclude
that there is a unique isomorphism between two terminal elements. As an immediate
consequence, the set of endomorphisms of a terminal element reduces to identity.

In a similar way, we introduce the notion of initial object. An initial object I in a
categoryK is an object such that for every object X in K there is a single morphism
from I to X . Using the terminology involving only morphisms, an identity e is initial
if for every e′ there is a unique right multiplier of e which is also a left multiplier of
e′. If e and e′′ are initial, there is a unique ϕ such that ϕe and e′′ϕ exist, and a unique
ψ such that ψe′′ and eψ exist. But then ϕψ and ψϕ exist; ϕψ is a left multiplier of
e′′ and a right multiplier of e′′, e′′ enjoys the same property. As e′′ is initial, ϕψ = e′′.
Similarly, ψϕ = e. Therefore, ϕ and ψ are isomorphisms. We conclude that there is
a unique isomorphism between two initial elements. As an immediate consequence,
the set of endomorphisms of an initial element reduces to identity.

In the category of sets, an object is terminal if and only if it is a singleton. Indeed, in
Set the only sets having the identity as their unique endomorphism are the singletons.
On the other hand, the only mapping toward a singleton is the constant map.

On the contrary, there is no initial object in Set. For if there were one, it ought to
be a singleton, but there is a bijection between the elements of X and the morphisms
from a singleton to X . However, it is just the latter property that allows us to describe
the elements of X in terms of morphisms. Once we fix a particular singleton, we can
select any element of X through the corresponding morphism, which for this reason
is called a selection morphism.

LetK be a concrete category. Let us investigate the question of the existence of
terminal and initial objects. We know that for such objects the set of endomorphisms
must reduce to identity. If there is someΩ ∈ K whose underlying set is a singleton
and such that for every X there is a morphism fromK toΩ , the latter is obviously
a terminal object. Of course all terminal objects are isomorphic. However, in many
concrete categories such objects are also initial objects, so that themorphisms starting
from such an object select just one element for each object of the category, so that
the situation is quite trivial. This is what happens, for instance, in the category of
linear spaces or in that of groups. This problem is present in every category where a
terminal object is a singleton and is also an initial object.

We can overcome this trivial situation in some concrete categories in the follow-
ing way. Starting from a concrete category K , we define a category KΘ whose
morphisms are all the morphisms of K and in addition all the mappings from a
selected terminal element Θ of Set (that is a singleton) to all the objects ofK and
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define the morphisms of a new categoryΘK as follows. Let FΘ be the set of all the
mappings from Θ to all the objects ofK . For x ∈ FΘ , we denote ex the left unit of
x . The morphisms of ΘK are the words of the form egτe f such that g = τ f . Two
words can be composed if and only if the right symbol of the left word is the same
as the left symbol of the right word and the outcome of the composition is obtained
suppressing the intermediate units and composing the mappings. It is immediate to
check that what we have just defined is indeed a category. If we changeΘ inΘ ′, we
can define a covariant functor F from ΘK to Θ ′K putting F

(
egτe f

) = egιτe f ι

where ι is the mapping fromΘ ′ toΘ . But ex depends only on the image of x . We con-
clude thatΘK is independent ofΘ . We will denoteK ̂ this category. It can happen
when K ̂ has an initial element. In this case, it is unique up to isomorphisms. Let

I = Θ0
ϑ0−→ X0 an initial element. Therefore, for every X ∈ K and every {x} ⊆ X ,

there is a uniqueK -morphism X0
τ−→ X such that τ ◦ ϑ0 (Θ0) = {x}. With an abuse

of terminology, we say that X0 is an initial element ofK if X0 is the target of some
initial element of K ̂.

We can show that:

If (S,M) is a set S equipped with a monoid M of mappings of S into itself, it is
an initial element of some category if and only if there is x0 ∈ S such that for every
x ∈ S there is a unique m ∈M such that x = mx0.

Indeed the necessity follows if we take X = S. For the sufficiency, we observe
that (S,M) itself is a category with (S,M) as its initial element.

Let us investigate the structure of an initial element. If x0 is the image of an initial
element of K ̂, for every x ∈ S there is a unique m ∈M such that x = mx0, so

that a bijective mapping S
ϕxo−→M arises. The orbit of x0 under the action of G must

be simply transitive. As an initial element of K ̂ is defined up to isomorphisms,
we can replace S with M and Θ0 with the identity of M. Consistently, x0 will be
some element m0 of M. The mapping ϑ0 sends from the identity id of M to m0.
The mapping ϕx0 becomes a bijective mapping μm0 from the set M to the monoid
M. If x belongs to the set M, μm0 (x) is the unique m such that x = mm0. There is
a bijection between the mappings ϑ0 and the elements m0. As μm0 (id) = m0, the
mapping which associates each image m0 of ϑ0 with μm0 is injective. We denote
G the group of the invertible elements of M. Let ϑ0 and ϑ ′0 define initial elements
and let m0 and m ′0 be the corresponding images. Then there are unique m ′ and m ′′
such thatm ′0 = m ′m0 andm0 = m ′′m ′0.We getm0 = m ′′m ′m0 andm ′0 = m ′m ′′m ′0,
so that m ′′m ′ = m ′m ′′ = id. Therefore m ′ = g ∈ G and m ′′ = g−1. Defining a left
action of G on M by left multiplication, we conclude that, if m0 is the image of
an initial element, every image of an initial element lies on the orbit of m0 under
this action. If we take m0 = id, we conclude that every image of an initial element
belongs to G . Conversely, every element of G is the image of an initial element. In
fact, the equation m = xg has the unique solution x = mg−1. We conclude that the
set of images of the initial elements is the group of the invertible elements of M.
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A.2 The Category of G-Sets

We recall here some useful notions and properties concerning G-sets. We recall that,
for a given group G, a G-set is a set X equipped with a group morphism from G in
the group of permutations of X .

For technical reasons to be seen later, the notion of a G-set will be needed also
when X empty. In this case, our definition is clear only once we clarify what is to
be understood as the group of permutations of the empty set. This can be easily
explained if we regard sets as the objects of the category Set, and mappings between
nonempty sets as the morphisms of this category. Now, as long as X is nonempty, the
permutations of X are the bijective mappings of X into itself, that is, the automor-
phisms of X as an object of Set. The notation Hom (♦) will be employed to denote
the sets of morphisms between objects of Set, and End (♦) Aut (♦) to denote the
sets of endomorphisms, automorphisms of the objects of Set. For any other cate-
gory, we will write hom (♦), end (♦), and aut (♦). Thus, we can slightly modify
our definition in order to include also the case of X = ∅:

Definition A.1 For a given group G, a G-set is a set X equipped with a group
morphism ϑ from G in the group of automorphisms of X . Thus, for X = ∅

Aut (X) = {
id∅

}
and the unique morphism of G in Aut (∅) is trivial.

For future convenience, the value of a map f in x will be denoted x f rather than
with the more usual “functional” notation f (x). Consistently, the composition of
mappings, and more generally, of morphisms in a category will be expressed in the
reverse order with respect to the usual one.

The homomorphism ϑ is called the action of G on X . Thus, an action is charac-
terized by the condition

(
gg′

)
ϑ = (gϑ)

(
g′ϑ

)
.

Hence, a G-set is characterized by a pair (X, ϑ).

Let X,Y be G-sets and X
γ−→ Y be an element of Hom (X,Y ). We say that γ is

a morphism of G-sets if

(gϑ) γ = γ
(
gϑ ′

)
.

We will denote hom (X,Y ) the set of all morphisms of G-sets from X to Y . The
G-sets together with their morphism form a full subcategory of Set. This category
will be denoted as G-Set.

Let G be a group and H a subgroup of G. Let G/H be the set of the right cosets
of H in G, i.e., the set of subsets of G of the form R = Hg. The position R 
→ Rg
for every R ∈ G/H defines an action of G on G/H . In this way, G/H becomes
a G-set. The terminology adopted here emphasizes the side of the action of G on
G/H rather than the side of H in the definition of the cosets. We observe that any
R = Hg can be expressed as (He) g, so that the coset He can be brought by the
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action ofG on any coset, and hence this action is able to bring any coset on any other.
We say that the action is transitive. Furthermore, the set of solutions of the equation
(He) g = He is the subgroup H .

We canmultiply bothmembers of an equality x = x ′ on the right by an arbitrary g,
obtaining the equality xg = x ′g. This happens because this condition is a shorthand
for x (gϑ) = x ′ (gϑ).

A.2.1 Congruence. Invariant Sets

Consider now an equivalence relation ≡ on X which “behaves as identity,” that is
such that

(
x ≡ x ′

)⇒ xg ≡ x ′g. Such an equivalence relation is called a congruence
and the corresponding classes of equivalence are called classes of congruence. We
denote Cx the unique class of congruence containing {x}.

If ∼ is a congruence, the image Cg of a class of congruence C is a class of
congruence.

Indeed, if x ∈ C we have

Cg = {
x ′g|x ′ ∼ x

} = {
x ′g|x ′g ∼ xg

}
,

so that Cg is the class of congruence of xg. Incidentally, we have also Cxg = Cxg.

We say that a mapping X
γ−→ Y is a morphism of G-sets if (x (gϑ)) γ =

(xγ )
(
gϑ ′

)
. On the other hand, (x (gϑ)) γ = x ((gϑ) γ ) = x (gϑ) γ . If xgγ is

a shorthand notation for x (gϑ) γ we can write (x (gϑ)) γ = xgγ . Furthermore
(xγ )

(
gϑ ′

) = x
(
γ

(
gϑ ′

)) = xγ
(
gϑ ′

)
, so that, if xγ g is a shorthand notation for

xγ
(
gϑ ′

)
, we get xgγ = xγ g.

Both sides of this equation define mappings, so that gγ = γ g. Hence, in this
notation, the condition for γ being a morphism is that it must commute with the
action. However, we emphasize again that the mapping gγ is an abbreviation of
(gϑ) γ , while the mapping γ g is an abbreviation of γ

(
gϑ ′

)
.

We recall that in a general category (in our reversed notation), a morphism which
is right-cancellable is called a mono, a morphism which is left-cancellable is called
an epi, and a morphism which is both mono and epi is called an isomorphism.
Equivalently, an isomorphism is amorphismwhich admits a two-sided inverse,which
is unique.

In the category of sets, a morphism is a mapping and it is a mono (an epi, an
iso) if and only if it is injective (surjective, bijective). In a category whose objects
are sets and whose morphisms are mappings, both notions of mono and injective
(epi and surjective, iso and bijective) make sense, but they must hold distinct in
general. However, there are categories whose objects are sets and whose morphisms
are mappings, for which these notions are pairwise equivalent, as it happens in Set.
It can be shown that this is the case for the category of G-sets.



Appendix A: Categories 63

If X
f−→ Y is a mapping, we define the kernel of f as the equivalence relation∼ f

specified by the rule x∼ f x ′ if and only if x f = x ′ f . Sometimes we will understand
the kernel of f as the set of the equivalence classes of ∼ f .

An equivalence relation ∼ on a G-set X is a congruence if and only if it is the
kernel of some morphism.

Indeed, suppose that∼= ker (γ ). If x ∼ x ′, xγ = x ′γ and xgγ = xγ g = x ′γ g =
x ′gγ , so that xg ∼ x ′g. Conversely, suppose that ∼ is a congruence. Define the
canonical projection X

π−→ X/∼ . Thismapping is defined through the position xπ =
[x], where [x] is the class of congruence of x , so that

(
xπ = x ′π

)⇔ x ∼ x ′ and
then ∼= ker (π).

We define on X/∼ an action∗ through the position [x] ∗ g = [xg]. This definition
iswell posed. Indeed, if [x] = [

x ′
]
, x ′ ∼ x and x ′g ∼ xg, so that

[
x ′g

] = [xg].Under
this action on X/∼ π is a morphism. Indeed, xgπ = [xg] = [x] ∗ g = xπg. Hence,
∼ is the kernel of a morphism.

We observe that, defining for any subset S of X the set Sg = {sg|s ∈ S}, we have
[xg] = [x] g. Indeed, if x ′ ∈ [xg], x ′ ∼ xg. But

[x] g = {
x ′′g|x ′′ ∼ x

} = {
x ′′g|x ′′g ∼ xg

} = {w|w ∼ xg} ,

so that x ′ ∈ [x] g. Conversely, let x ′ ∈ [x] g. Then x ′ = wg for some w ∼ x . Hence,
x ′ ∼ xg, so that x ′ ∈ [xg]. As a consequence, [x] ∗ g = [x] g. This equation means
that the action ∗ on the elements of the set X/∼ is the same as the natural action
inducedon these elements as subsets of X .Wewill use thenotation [x] g to understand
both interpretations.

Given a congruence ∼ on X we can consider the category C∼ whose objects
are all the morphisms whose kernel is ∼. Given two objects γ and γ ′, we define
hom

(
γ, γ ′

)
as the set of all morphisms α such that γ ′ = γα. We can easily show

that the canonical projection π on X/∼ is an initial object of C∼.
Indeed, let γ ∈ Ob C∼. As ker (γ ) =∼, we have the canonical decomposition

γ = πι as mappings, where ι is injective. As π is surjective, each y ∈ X/∼ can be
expressed as xπ . Hence

ygι = xπgι = xgπι = xgγ = xγ g = xπιg = yιg.

Hence, the above canonical decomposition can be regarded as a morphism decom-
position. If γ = πι′, we have πι′ = πι. As a mapping, π is surjective and hence
left-cancellable. We thus conclude that ι = ι′ and this condition can be interpreted as
an equality of morphisms, whence the uniqueness of the decomposition. This shows
that π is an initial object.
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It is well known that, if a category admits an initial object, for any pair of them
there is a unique isomorphism between them. In our case, an arbitrary initial object
has the form π j where j is an arbitrary isomorphism whose domain is X/∼ . Hence,
an object of C∼ is an initial object if and only if it is an epi.

For every pair of epis ε and ε′ whose domain is X , we put ε′ ∼ ε if and only if
there is an isomorphism j such that ε′ = ε j . It is clear that this position defines an
equivalence relation in the class of all epimorphisms whose domain is X . ε and ε′ are
equivalent if and only if they have the same kernel. Indeed, if ε′ = ε j , xε = x ′ε⇔
xε′ = x ′ε′.

Conversely, if ker (ε) = ker
(
ε′

) =∼, ε and ε′ are initial objects of the category
C∼, so that ε′ = ε j .

Henceforth, a class of equivalence of epis from X will be called a quotient object
(shortly quobject) of X . Thus, a mapping arises which associates to each quobject
of X the congruence of X given by the kernel of any member of the quobject.

If ∼ is a congruence of X , we can associate to it the equivalence class of its
projection on X/∼ , giving rise to a mapping from the set of congruences of X to
the set of the quobjects of X . The two mappings just defined are mutually inverse,
so that they are bijective.

If X
γ−→ Y is a morphism, we can associate to it the quobject of X corresponding

to ker γ �∼. An epi ε belongs to this quobject if and only if γ = εμ, where μ is
a mono. Indeed, γ has the canonical decomposition γ = πμ̃ with ker π =∼ and
where μ̃ is a mono. Thus, ε belongs to the class corresponding to ∼ if and only
if π = ε j where j is an isomorphism. Hence, γ = ε jμ̃ = εμ where μ = μ̃ j is a
mono.

For an arbitrary G-set and for arbitrary subsets S ⊆ X and R ⊆ G, we define SR
as the set {sr |r ∈ R, s ∈ S}. If S = {x} (R = {g}) we will use the notation

x R � {x} R (Sg � S {g}).

In particular, if R is a subgroup of G, any s ∈ S can be expressed as s = se with
s ∈ S, e ∈ R, so that S ⊆ SR.

We say that a subset J ⊆ X is an invariant set if and only if JG ⊆ J . Thus, a
subset J ⊆ X is an invariant set if and only if JG = J .

We can easily show that a subset J of aG-set X is an invariant set if and only if it is
the image of amorphism. Indeed, if J = Im (γ ), and y ∈ J , y = xγ for some x ∈ X ,
so that yg = xγ g = xgγ ∈ J . Conversely, let J be an invariant set. Hence, for any
x ∈ J and any g ∈ G xg ∈ J , so that an action of G on J arises. This action will be
called the induced action on J . Equipping J with the induced action, the insertion ι
of J in X is a morphism. Indeed, xgι = xg = xιg. Furthermore, J = Im (ι).

Given an invariant set J of X we can consider the category CJ whose objects
are all the morphisms into X whose image is J . Given two objects γ and γ ′, we
define hom

(
γ ′, γ

)
as the set of all morphisms α such that γ ′ = αγ . We can easily

show that the insertion ι of J is a terminal object of CJ . Indeed, let γ ∈ Ob CJ . As
Im (γ ) = J , we have the canonical decomposition γ = ει as mappings, where ε is
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surjective. We have

xgει = xgγ = xγ g = xειg = xεgι.

Hence gει = εgι. As ι is injective, it is right-cancellable, so that ε is a morphism.
Hence, the above canonical decomposition can be regarded as a morphism decom-
position. If γ = ε′ι, we have ε′ι = ει As a mapping, ι is injective and hence right-
cancellable. We thus conclude that ε = ε′ and this condition can be interpreted as an
equality of morphisms, whence the uniqueness of the decomposition. We conclude
that ι is a terminal object.

It is well known that, if a category admits a terminal object, for any pair of them
there is a unique isomorphism between them. In our case, an arbitrary terminal object
has the form j ι where j is an arbitrary isomorphism whose image is J . Hence, an
object of CJ is a terminal object if and only if it is a mono.

For every pair of monosμ andμ′ whose codomain is X , we putμ′ ∼ μ if and only
if there is an isomorphism j such that μ′ = jμ. It is clear that this position defines
an equivalence relation in the class of all monomorphisms whose codomain is X .
μ and μ′ are equivalent if and only if they have the same image. Indeed, suppose
thatμ′ = jμ if x ∈ Imμ, x = yμ = y j−1μ′, so that Imμ ⊆ Imμ′. Exchanging the
roles of μ and μ′ we obtain the reverse inclusion, so that Imμ = Imμ′. Conversely,
let Imμ = Imμ′ = J . Then μ and μ′ are terminal objects of the category CJ , so
that μ′ = jμ.

Henceforth, a class of equivalence of monos into X will be called a subobject
of X . Thus, a mapping arises which associates to each subobject of X the invariant
subset of X given by the image of any member of the subobject.

If J is an invariant set of X , we can associate to it the equivalence class of its
insertion in X , giving rise to a mapping from the set of invariant subsets of X to the
set of the subobjects of X . The two mappings just defined are mutually inverse, so
that they are bijective.

If Y
γ−→ X is a morphism, we can associate to it the subobject of X corresponding

to Im γ � J . A mono μ belongs to this subobject if and only if γ = εμ, where ε is
an epi. Indeed, γ has the canonical decomposition γ = ε̃ι with Im ι = J where ε̃ is
a mono. Thus, μ belongs to the class corresponding to J if and only if ι = jμwhere
j is an isomorphism. Thus, γ = ε̃ jμ = εμ where ε = ε̃ j is an epi.

We can summarize the above discussion as follows:

There is a bijection between the quobjects of a G-set X and the congruences of
X . The corresponding of each quobject is the kernel of any member of it. The cor-
responding of each congruence is the quobject containing the canonical projection

of the congruence. If X
γ−→ Y is a morphism, γ admits factorizations of the form

γ = εμ, where ε is epi and μ is mono. In any such factorization, the left factor is a
representative of the quobject corresponding to the kernel of γ .

There is a bijection between the subobjects of a G-set X and the invariant subsets
of X . The corresponding of each subobject is the image of any member of it. The
corresponding of each invariant subset is the subobject containing the canonical
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insertion of the invariant subset. If Y
γ−→ X is a morphism, γ admits factorizations of

the form γ = εμ, where ε is epi and μ is mono. In any such factorization, the right
factor is a representative of the subobject corresponding to the image of γ .

In this way, we see that the notions of a congruence and of an invariant set can
be formulated in pure category theoretical terms and they are dual in this sense.

Let X be a G-set andΠ a partition of the set X consisting of invariant subsets of
the G-set X . Then the equivalence relation∼ defined byΠ is a congruence. Indeed,
let x ∼ x ′. Then there is a unique J ∈ Π such that x ∈ J, x ′ ∈ J . As J is invariant,
xg ∈ J, x ′g ∈ J , so that xg ∼ x ′g. If J is an invariant set of X , its complement J̄ in
X is an invariant set. Indeed, let x ∈ J̄ . Suppose that xg /∈ J̄ . Hence xg ∈ J , so that
x = (xg) g−1 ∈ J , a contradiction.

Let J ⊆ X be an invariant set. Then the partition X = J
⋃

J̄ � ΠJ consists of
invariant sets. Thus, the corresponding equivalence relation is a congruence. In this
way, a mapping arises which associates to each invariant subset a congruence. This
congruence defines a corresponding quobject of X . Hence, we get a mappingΥ from
the set of subobjects of X to the set of its quobjects. Let us find the image ImΥ of
this mapping. If ε ∈ ImΥ , then there is an invariant subset J ⊆ X such that ε is the
quobject corresponding to the congruence defined by the partition ΠJ .

A representative of this quobject is the canonical projection on the quotient G-set
modulo the congruence. This G-set is the partition ΠJ �

{
J, J̄

}
equipped with the

trivial action of G on it. The corresponding canonical projection is

πJ : xπJ = J (x ∈ J ); xπJ = J (x ∈ J̄ ).

Thus, JΥ is an equivalence class of epimorphisms from X to a trivial G-set with
two nontrivial subobjects. We have x ∼ x ′ if and only if either they both belong to
J , or they both belong to J̄ .

Let X
γ−→ Y be a morphism. There is a unique decomposition γ = π j in where π

is a projection morphism on a quotient G-set, in is an insertion morphism and j is
an isomorphism.

Indeed, considering γ as a mapping, there is a unique such decomposition as a
composition of mappings. In this decomposition, π projects on X/ker (γ ) and in
inserts Im (γ ) in Y . As ker (γ ) is a congruence and Im (γ ) is an invariant set, π and
in are morphisms. It remains to prove that the bijection j is a morphism. We have
gγ = gπ j in = πg j in = γ g = π j in g = π jg in . Thus πg j in = π jg in . As π is
left-cancellable and in is right-cancellable, g j = jg and j is a morphism. Hence, the
decomposition in mappings is also a decomposition in morphisms. The uniqueness
follows from the fact that a decomposition in morphisms is also a decomposition in
mappings, and the latter is unique.

Given a set S, a free G-set over S is a mapping S
ι−→ F (S) into the G-set F (S)

such that for every mapping S
l−→ X there is a unique morphism F (S)

γ−→ X of
G-sets such that l = ιγ .
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Let us consider the set F = S × G. For every z = (s, ḡ) ∈ F and every g ∈ G, we
define zg = (s, ḡg). In this way, F is equipped with a structure of G-set. We further

define S
ι−→ F : sι = (s, e). For each S

l−→ X weput zγ = (s, g) γ = (sl) g.Wehave
sιγ = sl. The mapping γ is a morphism. Indeed, zgγ = (s, ḡ) gγ = sl · ḡg = zγ g.
For an arbitrary z ∈ F we can write z = (s, e) g. Let γ ′ be such that l = ιγ ′. Hence
(s, e) γ ′ = (s, e) γ . Consequently

zγ ′ = (s, e) gγ ′ = (s, e) γ ′g = (s, e) γ g = (s, e) gγ = zγ

which proves the uniqueness of γ . We conclude that F (S) = S × G with the action
(s, ḡ) g = (s, ḡg) andwith themapping S

ι−→ S × G : sι = (s, e) is a freeG-set over

S. According to a general property of a free object in a category, if S
ι′−→ F ′ (S) is

an arbitrary free G-set over S, there is a unique isomorphism S × G
η−→ F ′ (S) such

that ι′ = ιη. We will call the free G-set S
ι−→ S × G : sι = (s, e) the standard G-set

over S.
The mapping ι is clearly injective. Furthermore, Sι generates S × G. Indeed,

any invariant set containing Sι must contain all the elements of the form (s, e) g
together with (s, e). Every element of S × G can be expressed as (s, e) g, so that
J (Sι) = S × G. We observe that the representation of (s, g) as (s, e) g is unique,
because

(s, e) g = (
s ′, e

)
g′ ⇒ (s, g) = (

s ′, g′
)
.

A.2.2 Orbits. Stabilizer

If X is a G-set, we introduce in it a relation Ω̃ by declaring xΩ̃x ′ if and only if there
is g ∈ G such that x ′ = xg. Ω̃ is clearly an equivalence relation.

An orbit in X is a class of equivalence of Ω̃ . Really, Ω̃ is a congruence. Indeed,
if xΩ̃x ′, x ′ = x ḡ for some ḡ, so that x ′g = x ḡg = xg

(
g−1ḡg

)
and then xgΩ̃x ′g.

The congruence Ω̃ will be called orbit congruence, and the set of its classes of
congruence (the orbits) will be denoted as Ω .

Clearly, if J is an invariant set of X , considering it as a G-set for the induced
action, the orbit congruence for J is the restriction to it of the orbit congruence for
X . Consequently, an orbit of the G-set J is an orbit of the G-set X and an orbit of
the G-set X contained in J is also an orbit for the G-set J .

We say that a G-set is homogeneous if it consists of a single orbit. We say that an
invariant set is homogeneous if it is a homogeneous G-set for the induced action.

If X is homogeneous, the only nonempty G-invariant subset of X is X itself.
Indeed, if there were a nontrivial G-invariant subset J in X , choosing x ′ /∈ J , we
would have J ⊂ J ′ � J

⋃ {
x ′

}
. As X is homogeneous, choosing x ∈ J , therewould
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be g ∈ G such that x ′ = xg. But this is in contradiction with the invariance of J ,
because g brings from an element of J to an element outside J .

A nonempty invariant set J is called minimal if for every nonempty invariant set
J ′, J ′ ⊆ J ⇒ J ′ = J . For a nonempty invariant set, the following propositions are
equivalent:

1)J is minimal,

2)J is an orbit of X,

3)J is homogeneous.

2)⇔ 3). Indeed, J is an orbit of X and is contained in J , so that it is also an orbit
of itself, and therefore J consists of a single orbit for the induced action, and then it
is homogeneous. Conversely, if it is homogeneous, it consists of a single orbit. This
orbit is also an orbit of X .
1)⇒ 2). Let J be a minimal invariant set. Its decomposition in orbits must consist
of a single orbit, otherwise J would not be minimal. This single orbit is also an orbit
of X .
3)⇒ 1). As J is homogeneous, its only nonempty invariant set is J itself, so that J
is minimal.

Given an element x of a G-set X , the stabilizer of x is the subgroup

Hx � {g ∈ G|xg = x} .

It is immediate to show that Hxg = g−1Hxg.
Two elements x, x ′ ∈ X are called costable if and only if Hx = Hx ′ . Clearly the

costability is an equivalence relation. A costability class is a class of equivalence of
the costability relation. Really, costability is a congruence. Indeed, if x and x ′ are
costable, then Hx = Hx ′ . We have Hxg = g−1Hxg = g−1Hx ′g = Hx ′g , so that xg
and x ′g are costable.

Let X
γ−→ Y be a morphism. We have

x = xg ⇒ xγ = xgγ ⇔ xγ = xγ g ⇔ g ∈ Hgγ .

Hence Hx ⊆ Hxγ . If γ is an isomorphism, Hx = Hxγ .
A homogeneous G-set is called a torsor if the stabilizer of a (and hence of every)

point is {e}. It is clear that, if X is a torsor, the equation y′ = yg has a unique solution
for g. For future convenience, we introduce a special notation for this solution.
Namely, we put yy′θ � g. The following calculation rules are obvious:

1)yyθ = e,

2)y′yθ = (
yy′θ

)−1
,

3)
(
yy′θ

) (
y′y′′θ

) = (
yy′′θ

)
.
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Furthermore, y
(
y′g

)
θ = yy′θg. Indeed, if yy′θ = g1, then y′ = yg1 and if

y
(
y′g

)
θ = g2, y′g = yg2, so that yg1g = g2, i.e., y

(
y′g

)
θ = yy′θg. We also have

(yg) y′θ = (
y′ (yg) θ

)−1 = g−1yy′θ.

For a morphism γ of G-sets, if ω is an orbit of X , ωγ is an orbit of Y . Indeed
ωγ is an invariant subset of Y . Let y, y′ ∈ ωγ . Then y = xγ for some x ∈ ω and
y′ = x ′γ for some x ′ ∈ ω. As ω is homogeneous, x ′ = xg for some g ∈ G, so that
y′ = xgγ = yg. Hence, ωγ is a homogeneous invariant set, that is, an orbit.

If Y is a homogeneous set, γ is surjective, because, if ω is an orbit of X , ωγ is an
orbit, and hence ωγ = Y . Furthermore, the image of every orbit is Y .

Let X be a homogeneous G-set. Given x0 ∈ X , every x ∈ X can be expressed as
x = x0g for some g ∈ G. We put xγx0 = Hx0g. The definition is well posed because
if x = x0g′, g′ = hg with h ∈ Hx0 so that Hx0g

′ = Hx0hg = Hx0g. In this way, we

have defined a mapping X
γx0−→ G/Hx0 . This mapping is a G-morphism. Indeed,

x ḡ = x0gḡ, so that x ḡγx0 = Hx0gḡ = xγx0 ḡ. As G/Hx0 is homogeneous, γx0 is
surjective. Suppose that xγx0 = x ′γx0 . If x = x0g and x ′ = x0g′, we have Hx0g =
Hx0g

′, so that g′ = hg with h ∈ Hx0 and x ′ = x0hg = x . We conclude that γx0 is an
isomorphism.Hence, once a point x0 has been selected in X , a canonical isomorphism
is established between X and G/H .

Two homogeneous G-sets are isomorphic if and only if they have the same con-

jugation class of stabilizers. The condition is necessary. Indeed, let X
γ−→ Y be an

isomorphism. For any y ∈ Y Hy = Hx , where x = yγ−1. Hence, the conjugation
classes of the stabilizers of Y and X have a common element, so that they coincide.
Conversely, suppose that X and Y have the same conjugation class of stabilizers
K . Let us choose x0 ∈ X and put H = Hx0 ∈ K . Hence we have the isomorphism

X
γx0−→ G/H . Choose now in Y an element y0 such that Hy0 = H . As before, we

can build an isomorphism Y
γy0−→ G/H . We conclude that γx0γ

−1
y0 is an isomorphism

between X and Y .
We say that a subset R (L) ofG is a right (left) coset of G if there is H ∈ Sub (G)

such that Rc(L) is a right (left) coset of H in G.
If R is a right coset of G, H is uniquely determined by R. Indeed, if R ∈

G/H , R = Hg for some g ∈ G. If R = H ′g′, we have H ′ = Hgg′−1 and also

H = H ′
(
gg′−1

)−1
. Thus

(
gg′−1

)−1 ∈ H , so that gg′−1 ∈ H and H ′ = H . In this

way, if Sub (G) is the set of all the subgroups of G and R is the set of all right cosets

of G, a mapping R
δ−→ Sub (G) arises. Thus, Rδ is the unique subgroup of G such

that R is a right coset of Rδin G.
In a similar way, if L is the set of all left cosets of G we can define the mapping

L
σ−→ Sub (G). If A is a subset of G we define A−1 = {

a−1|a ∈ A
}
. It is clear that

(
A−1

)−1 = A. In particular, if R = Hg ∈R, R−1 = {
r−1|r = hg, h ∈ H

} = g−1H .
Thus, if R ∈R, R−1 ∈L.
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Let K be the set of conjugation classes of the subgroups of G. We can define a
mapping Sub (G)

κ−→ K which associates to every subgroup of G its conjugation

class. We further introduce the mappingsR
ρ−→ K andL

λ−→ K defined as ρ = δκ

and λ = σκ .
We observe that the position g 
→ Rg defines an action of G on R, which is

equipped in this way with a structure of G-set. Two elements R and R′ belong to the
same orbit if and only if Rδ = R′δ. If R = Rδg, the stabilizer of R is g−1Rδg.

Let X be a G-set. We can partition it in orbits. LetΩ be the set of its orbits. Each
orbit ω ∈ Ω is a homogeneous G-set. The stabilizers of all the elements of a given
orbit are mutually conjugate, so that, if Γ is the set of the conjugation classes of the
subgroups of G, we can assign to each orbit ω a conjugation class κ ∈ Γ . In this
way, a mapping Ω

ς−→ Γ arises. We can associate to each κ ∈ Γ the cardinality of
its inverse image κς−1. Thus, we obtain a surjective mapping � from Γ to the set
of cardinals corresponding to some κ . We will call the mapping � the symmetry
spectrum of X .

We can prove that two G-sets X and X ′ are isomorphic if and only if � = � ′.
For the necessity, we observe that, if j is an isomorphism, the mapping ω 
→ ω j

establishes a bijection between Ω and Ω ′. Furthermore, Hx = Hxj , so that ως =
ω jς ′ and hence ς = jς ′. We haveΩς = Ω ′ς ′. If κ /∈ Ως , κ /∈ Ω ′ς ′ and vice versa,
so that κ� = κ� ′ = 0, while if κ ∈ Ως = Ω ′ς ′ κς ′−1 = κς−1 j , so that κ� =
κ� ′.

Conversely, suppose that� = � ′. Let Γ1 = {κ ∈ Γ |κ� �= 0} and κ ∈ Γ1. Then
κς−1 � Ωκ and κς ′−1 � Ω ′

κ are nonempty. Of course the families {Ωκ |κ ∈ Γ1} and{
Ω ′

κ |κ ∈ Γ1
}
are partitions of the sets of orbitsΩ andΩ ′, respectively, and they are

labeled with injective mappings. As Ωκ and Ω ′
κ have the same cardinality, the set

Bκ of bijections fromΩκ toΩ ′
κ is nonempty. Thus we get a family of nonempty sets

{Bκ |κ ∈ Γ1}. Defining B = ×
κ∈Γ1

Bκ , we select an element b ∈ B, that is, a mapping

b : κ 
→ bκ such that bκ ∈ Bκ . Each bκ is a bijection which assigns to each orbit ω ∈
Ωκ the orbitωbκ ∈ Ω ′

κ . Asω andωbκ have the same conjugation class of stabilizers,
the setΦω of isomorphisms from ω to ωbκ is nonempty. If we defineΦκ = ×

ω∈Ωκ

Φω,

we select an element ϕκ ∈ Φκ , that is, a mapping ϕκ : ω 
→ ϕ̃ω |ω ∈ Ωκ such that
ϕ̃ω ∈ Φω. For each orbitω ∈ Ω there is a unique κ ∈ Γ1 such thatω ∈ Ωκ . We define
ϕω = ϕ̃ω. Its codomain is ωbκ ∈ Ω ′

κ . For each x ∈ X there is a unique ω ∈ Ω such
that x ∈ Ω . We can associate to x the element x ϕ̃ω. In this way, we get a mapping
X

ϕ−→ X ′ which is an injective morphism. As the codomain of ϕ is the union of the
family of the codomains of all the ϕ̃ω, it coincides with the union of the family of all
orbits each belonging to some set Ω ′

κ for all κ ∈ Γ1, that is, to all orbits and hence
with X ′. We conclude that ϕ is an isomorphism.
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Let X be aG-set andΩ its partition in orbits. Putting Kω = ως ∈ Γ , we consider
the set K � ×

ω∈Ω
Kω. We select an element ψ ∈ K , that is, a mapping ω 
→ Hω such

that Hω ∈ Kω and define X ′ = ⋃

ω∈Ω
{ω} × G/Hω . We introduce in X ′ the action

(ω, Rω) g � (ω, Rωg). The elements (ω2, R2) and (ω1, R1) belong to the same orbit
if and only if there is g ∈ G such that (ω2, R2) = (ω1, R1) g. Thus any orbit ω′
has the form ω′ = {ω} × G/Hω. Hence, the above definition of X ′ is also its orbit
decomposition.

We now define O = ×
ω∈Ω

ω and select an element o ∈ O , that is, a mapping ω 
→
oω such that oω ∈ ω and for each ω we introduce the standard isomorphism ω

γoω−→
G/Hω. For each x ∈ X there is a unique ω ∈ Ω such that x ∈ ω.

We define a mapping X
ϕ−→ X ′ through the rule xϕ = (

ω, xγoω
)
. The mapping

just introduced is clearly an isomorphism between X and X ′. We emphasize that
this isomorphism is in no way canonical, because X ′ depends on ψ and, given ψ , ϕ
depends on o. It is easy to check that � ′ = � , as it must be.

Let S
ι−→ X be a free G-set on S and∼ a congruence relation on X . The bijection

(s, g) 
→ (sι) g allows the transfer of the congruence in the freeG-set S × G, so that,
without loss of generality, we can put X = S × G and ι : s 
→ (s, e). Let X

π−→ X/∼
be the canonical projection on the quotient. The congruence ∼ is the kernel of π as
well as the kernel of anymorphism of the form π j , being j an arbitrary isomorphism.

Let Ω be the set of orbits of X/∼, Kω the conjugation class of the orbit ω,
K = ×

ω∈Ω
Kω, and ψ ∈ K . We introduce the G-set X ′ = ⋃

ω∈Ω
{ω} × G/H̄ω where

H̄ω � ωψ .
Let ϕ be an isomorphism between X/∼ and X ′, and put χ = πϕ. X

χ−→ X ′ is an
epimorphism and ∼= ker (χ). Hence x ∼ x ′ is and only if xχ = x ′χ .

As X is free, each x ∈ X is uniquely expressed as x = (sι) g.Defining themapping

S
ϑ−→ X ′ as ϑ = ιχ we have xχ = (sι) gχ = sϑg. X ′ is a subset of the Cartesian

productΩ×R.We can define the mappings X ′
p1−→ Ω and X ′

p2−→R as the restrictions
to X ′ of the projections of the Cartesian product on Ω and R, respectively.

We introduce the mappings S
f1−→ Ω and S

f2−→R defined as f1 = ϑ p1 and f2 =
ϑ p2. We have sϑ = (s f1, s f2). Hence, Xχ = {(s f1, s f2g) |s ∈ S, g ∈ G}. As χ is
surjective, f1 = ϑp is surjective. Therefore, we can introduce a partitionΣ of S such
that f1 = qv, where q is the canonical projection onΣ and v is a bijectionΣ

v−→ Ω .
For every Q ∈ Σ we introduce HQ � H̄Qv.

As sϑ = (s f1, s f2) ∈ X ′, s f2 belongs to G/H̄s f1 = G/Hsq . If we put sq = Qs ,
we conclude that (s, g) ∼ (

s ′, g′
)
if and only if Qs = Qs ′ and Rsg = Rs ′g′, with

Rs and Rs ′ right cosets of HQs . We define S
φ−→R through the rule s 
→ Rs , that is,

φ = f2. As Rsδ = HQs , Qs = Qs ′ ⇒ Rsδ = Rs ′δ. LetΣφ be the partition associated
to φδ. Then the partition Σ is a refinement of Σφδ (written Σ ≤ Σφδ). With these
definitions, we can say that (s, g) ∼ (

s ′, g′
)
if and only if sq = s ′q and sφg = s ′φg′-
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Summarizing the above discussion, we can say that for each congruence on the

free G-set X over the set S there are a mapping S
φ−→R and a partition Σ of S

satisfying the condition Σ ≤ Σφδ such that x = (sι) g ∼ (
s ′ι

)
g′ = x ′ if and only if

sq = s ′q and sφg = s ′φg′.
Weobserve that the conditionΣ ≤ Σφδ is equivalent to the fact thatq is a left factor

of φδ, that is, φδ = qr with Σ
r−→ Sub (G). The mapping r is uniquely determined

by φδ and q. Indeed, each Q ∈ Σ can be expressed as Q = sq for some s ∈ S, so
that Qr = sqr = sφδ. Thus we conclude that

For each congruence on the free G-set X over the set S, there are a mapping S
φ−→R

and a projection q of S on a quotient set Σ satisfying the condition that q is a
left factor of φδ such that x = (sι) g ∼ (

s ′ι
)
g′ = x ′ if and only if sq = s ′q and

sφg = s ′φg′.
Conversely, suppose that a mapping S

φ−→R and a projection q of S on a quotient
setΣ satisfying the condition that q is a left factor of φδ are given. Then the relation
x = (sι) g ∼ (

s ′ι
)
g′ = x ′ if and only if sq = s ′q and sφg = s ′φg′ is a congruence.

Indeed the above relation is an equivalence relation. It is then sufficient to prove
that (sι) g ∼ (

s ′ι
)
g′ ⇒ (sι) gḡ ∼ (

s ′ι
)
g′ḡ for every ḡ ∈ G.

Suppose that (sι) g ∼ (
s ′ι

)
g′. Then sq = s ′q and sφg = s ′φg′. Given ḡ ∈ G, we

have sφ (gḡ) = (sφg) ḡ = (
s ′φg′

)
ḡ = s ′φ

(
g′ḡ

)
, so that x ḡ = (sι) (gḡ) and x ′ḡ =(

s ′ι
) (
g′ḡ

)
with sq = s ′q and sφ (gḡ) = s ′φ

(
g′ḡ

)
, whence x ḡ ∼ x ′ḡ.

Introducing the mapping X
ζ−→ Σ×R: (s, g) 
→ (sq, sφg), the classes of congru-

ence are the inverse images (Q, R) ζ−1 of the elements of the image of ζ . The latter
is the set of pairs (Q, R) for which the equations sq = Q, sφg = R have a solution
for (s, g) and, for each such pair (Q, R), the corresponding class of congruence is
the set of solutions of these equations.

We have sφgδ = sφδ = Rδ, whence sqr = Rδ, so that Qr = Rδ. Conversely,
if this condition is satisfied, putting Qr = HQ and sφ = Rs , the equations become
sq = Q and Rsg = R with Rδ = HQ and Rsδ = HQ . The general solution of the
first equation is s ∈ Q. Let us express the general solution for g of the equation
Rsg = R. Suppose that Rs = HQḡs and R = HQḡ, so that HQḡsg = HQḡ and then
g ∈ ḡ−1s HQḡ = ḡ−1s HQHQḡ. Thus, g is a solution if and only if g ∈ R−1s R. Hence,
the image of ζ is the set P of pairs (Q, R) such that Qr = Rδ and, if C(Q,R) is
the congruence class of the pairs (s, g) labeled by (Q, R) ∈ P , we get C(Q,R) ={
(s, g) |s ∈ Q, g ∈ Rs

−1R
}
.

Putting R−1s = Ls , we can represent C(Q,R) in the form

C(Q,R) =
⋃

s∈Q
{s} × Ls R (A.2.1)

with Q ∈ ker (q), φδ = qr , Qr = Rδ and Ls = (sφ)−1.
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The given congruence can be characterized by a mapping which associates to
each

(
s ′, g

)
its class of congruence C(s ′,g). Then there is a unique pair (Q, R) in the

given representation such that C(s ′,g) = C(Q,R). We have Q = s ′q and g ∈ Ls ′R. If
Ls ′ = g′HQ , we have e ∈ g−1g′R and then R = HQg′−1g = L−1s ′ g = Rs ′g. Thus,
we get

C(s ′,g) =
⋃

s∈s ′q
{s} × R−1s Rs ′g, (A.2.2)

where Rs = sφ and with the condition that q is a left factor of φδ.
Putting g = e in (A.2.2) and calling pS be the projection of S × G on the first

factor, we get [C(s ′,e) = ⋃

s∈Q
{s} × R−1s Rs ′ and then C(s ′,e) pS = ⋃

s∈Q
{s} = Q. Hence,

the partition Σ is uniquely determined by the congruence and the mapping q with
it. Thus, two representations of the same congruence must give rise to the same
partition.

We also haveC(s ′,e)
⋂ (

sp−1S

) = {s} × R−1s Rs ′ for every s ∈ C(s ′,e) pS = Q. If pG
denotes the projection of S × G on the second factor, we get R−1s Rs ′ =(
C(s ′,e)

⋂ (
sp−1S

))
pG for s, s ′ ∈ Q with Rsδ = HQ . These equations must be sat-

isfied for every representation of the given congruence. Thus, if R̄s with R̄sδ =
H̄Q and Rs with Rsδ = HQ correspond to two representations of the same con-
gruence, we must have R−1s Rs ′ = R̄−1s R̄s ′ for s, s ′ ∈ Q. Let us represent R̄s as
R̄s = H̄Q ḡs and Rs as Rs = HQgs . Thus, we have g−1s HQgs ′ = ḡ−1s H̄Q ḡs ′ . If we
take s ′ = s, we see that HQ and H̄Q belong to the same conjugation class, so
that there is ĝ ∈ G such that HQ = ĝ H̄Q ĝ−1. Thus, we have g−1s ĝ H̄Q ĝ−1gs =
ḡ−1s H̄Q ḡs , i.e., ḡsg−1s ĝ H̄Q ĝ−1gs ḡ−1s = H̄Q . Therefore ĝ−1gs ḡ−1s ∈ N̄Q where N̄Q

is the normalizer of H̄Q . Hence we get gs = ĝns ḡs with ns ∈ N̄Q . Then we obtain
Rs = ĝ H̄Q ĝ−1ĝns ḡs = ĝ H̄Qns ḡs = ĝns H̄Q ḡs = ĝns R̄s . We further have R−1s Rs ′ =
R̄−1s n−1s ns ′ R̄s ′ = R̄−1s R̄s ′ . Consequently ḡ−1s H̄Qn−1s ns ′ H̄Q ḡs ′ = ḡ−1s H̄Q ḡs ′ , i.e.,
H̄Qn−1s ns ′ = H̄Q . This means that ns H̄Q = ns ′ H̄Q , that is, that the element ns H̄Q

of N̄Q/H̄Q is independent of s for s ∈ Q. Thus, there is n ∈ N̄Q such that
ns H̄Q = nH̄Q . Consequently, ns = nhs with hs ∈ H̄Q . Thus Rs = ĝns R̄s = ĝn R̄s .
Putting gQ = ĝn, we have Rs = gQ R̄s , which entails HQ = gQ H̄Qg

−1
Q . Conversely,

if Rs = gQ R̄s , R−1s Rs ′ = R̄−1s g−1Q gQ R̄s ′ = R̄−1s R̄s ′ . As q and φ uniquely determine
the congruence, we conclude the following.

The mappings φ, q and φ′, q ′ such that q is a left factor of φδ and q ′ is a left
factor of φ′δ define the same congruence if and only if q ′ = q and there is a mapping

S/ker (q)
μ−→ G factorizable by q on the left such that sφ′ = (sqμ) (sφ).

Returning to the initial free G-set S
ι−→ X we can rewrite (A.2.2) in the form

C(s ′ι)g =
⋃

s∈s ′q
(sι) (sφ)−1

(
s ′φ

)
g. (A.2.3)

The mapping q is completely determined by the congruence, while φ is determined
by the congruence up to an arbitrary pointwise left multiplier qμ with values in G.
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Consider the special case when Σ consists of singletons. In this case, (A.2.3)
becomes C(sι)g = (sι) (sφ)−1 (sφ) g. We can express sφ as sφ = (sφδ) gs , so that
(sφ)−1 (sφ) = g−1s (sφδ) gs which is a group Hs independent of the choice of φ
for the given congruence. Thus, in this special case, the congruence is uniquely
represented through a mapping s 
→ Hs with values in Sub (G). We have C(sι)g =
(sι) Hsg.

A.2.3 Generators. Frame

We say that a subset T of aG-set Y is a free set of generators for Y if T
in−→ Y is a free

G-set.We say that Y is freely generated if it admits a free set of generators. AG-set is
freely generated if and only if it is isomorphic to the codomain of a freeG-set. Indeed,

if Y is freely generated, there is a free set T of generators, so that T
in−→ Y is a free

G-set and Y
id−→ Y is an isomorphism. Conversely, suppose that Y is isomorphic to

the codomain of a free G-set S
ι−→ X . Let X

η−→ Y be an isomorphism. Put T = Sιη.

Then T
in−→ Y is a free G-set. Indeed, let T

f−→ Z be a mapping in a G-set. Let
β in be the canonical decomposition of ιη and define f ′ = β f . There is a unique

morphism X
ϕ′−→ Z such that f ′ = ιϕ′. Define ϕ = η−1ϕ′. We have inη−1 = β−1ι,

so that inϕ = β−1ιϕ′ = β−1 f ′ = f . The morphism ϕ is unique. Indeed, if inϕ̄ = f ,
ϕ̄′ � ηϕ̄ satisfies f ′ = ιϕ̄′ so that ϕ̄′ = ϕ′ and hence ϕ̄ = ϕ.

A free set of generators of the freely generatedG-set Y will also be called a frame.
Suppose that Y is freely generated and that T is a free set of generators of Y . As

T
in−→ Y is a free G-set, any y ∈ Y is expressed in a unique way as y = tg. Thus,

there is a bijection T × G
FT−→ Y : (t, g) 
→ tg. We call (t, g) the T-coordinates of

y with respect to the frame T . T
ι−→ T × G and T

in−→ Y are free, so that there
is a unique isomorphism from T × G to Y that extends the mapping defined by
(t, e) 
→ in · t = t . As (t, e) FT = t , FT is this unique morphism. This morphism
is called the T-coordinate morphism of Y with respect to the frame T . Conversely,
suppose that T ⊆ Y is such that each y ∈ Y is expressed in a unique way as y = tg
with (t, g) ∈ T × G. The isomorphism (t, g) 
→ tg extends the mapping (t, e) 
→
in · t = t , so that T

in−→ Y is a free G-set. Thus we conclude the following.
A G-set Y is freely generated if and only if there is T ⊆ Y such that any y ∈ Y is

expressed in a unique way as y = tg with (t, g) ∈ T × G.
LetΩ be the set of orbits ofY . Ifω ∈ Ω ,ωF−1T is an orbit of T × G and conversely.

But we know that all the orbits of T × G are torsors. As Y is an isomorphic image of
T × G, each orbit of Y is a torsor. Conversely, suppose that each orbit of a G-set is a
torsor. Consider the canonical projection Y

π−→ Ω . LetΩ
σ−→ Y be a section of π . We

prove that T � Ωσ is a free set of generators for Y Indeed, let y ∈ Y . The element
y and yπσ belong to the same orbit. Hence there is g ∈ G such that y = (yπσ) g.
Putting t = yπσ ∈ T we can write y = tg. Let y = t ′g′ with t ′ ∈ T . Thus t ′ = ω′σ
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for some ω′ ∈ Ω and then y = ω′σg′. But yπ = ω′, so that t = yπσ = ω′σ = t ′.
Thus y = tg = tg′. As every orbit is a torsor, g′ = g. Thus y is uniquely expressed
as tg with (t, g) ∈ T × G, so that Y is a freely generated G-set. Thus we conclude
the following.

The G-set Y is freely generated if and only if its every orbit is a torsor.
Furthermore, the above argument proves the following.
If the G-set Y is freely generated and Y

π−→ Ω is the canonical projection of Y on
the set Ω of its orbits, the image of every section of π is a set of free generators for
Y .

We now prove the following.
If the G-set Y is freely generated and Y

π−→ Ω is the canonical projection of Y on
the set Ω of its orbits, T ⊆ Y is a frame if and only if it is the image of a section of
π . Two sections define the same frame if and only if they are equal. The restriction
τ of π to T is bijective.

The sufficiency has already been proved. Conversely, suppose that T is a free set
of generators. Let ω ∈ Ω . Then there is y such that ω = yπ . But y admits a unique
representation y = tg. Let ω = y′π and y′ = t ′g′. Furthermore, y′ = yḡ for some
ḡ ∈ G. Thus y = t ′g′ḡ−1 and, for the uniqueness of the representation, t ′ = t . In
this way, a well-defined mapping Ω

σ−→ Y arises which associates t to ω. We have
ω = yπ = tgπ = tπ = ωσπ . Thus σπ = id and σ is a section of π .

Furthermore Ωσ ⊆ T . Let t̄ ∈ T and ω = t̄π . Let us evaluate ωσ . As ω = t̄π ,
we can take y = t̄ in the equation y = tg which defines σ . Thus, we have t̄ = (ωσ) g
which has

(
t̄, e

)
as its unique solution. In particular, t̄ = ωσ , so that T = Ωσ . Thus

the necessity is proved.
LetΩσ = Ωσ ′. Suppose that ω ∈ Ω . Then t = ωσ ∈ Ωσ ′. Thus t = ω′σ ′, ω′ ∈

Ω .Wehave tπ = ω, tπ = ω′, so thatωσ = ωσ ′ andσ = σ ′. Furthermoreωσπ = ω

and tπσ = t . If υ is the restriction of σ to its image, this means that τ and υ are
inverse to each other.

From the above discussion, we can conclude that the following sentences are
equivalent:

1) Y is a freely generated G-set,

2) every orbit of Y is a torsor, and

3)Y is a disjoint union of torsors.

The equivalence of 1) and 2) has already been proved. Furthermore 2)⇒3) because
the orbits are mutually disjoint. Let Y be a disjoint union of torsors. If y ∈ Y , it
belongs to a unique torsor of the union. This torsor is a homogeneous G-set and
hence is an orbit. Therefore, every orbit of Y is a torsor.

If T ′ is a new frame of Y , each given element y ∈ Y has T-coordinates
(
t ′, g′

)

in the new frame, such that y = tg = t ′g′. We obtain a new T-coordinate morphism

T ′ × G
FT ′−→ Y , so that a bijection T × G

FT F
−1
T ′−−−→ T ′ × G arises. The coordinate trans-

formation which expresses the new coordinates of y in terms of the old ones is
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(t, g) FT F
−1
T ′ =

(
t ′, g′

)
. Let τ, τ ′ be the restrictions of Y π−→ Ω to the frames T, T ′,

respectively. We can write yπ = tπ = tτ = t ′π = t ′τ ′. Thus t ′ = tττ ′−1. Putting
f1 = ττ ′−1, we can write t ′ = t f1. We observe that T

f1−→ T ′ is a bijection. Given
t , the equation tg = (t f1) g′ defines a mapping g 
→ g′. As tgḡ = (t f1) g′ḡ, for the
uniqueness of the representation gḡ 
→ g′ḡ. Thus, introducing the mapping T

f2−→ G
uniquely defined by the position t = (t f1) (t f2), we can write g′ = (t f2) g. Hence
(t, g) FT F

−1
T ′ = (t f1, (t f2) g). We conclude as given below.

If T, T ′ are frames of a freely generated G-set Y , the T-coordinates of any element
of Y in the frame T ′ are expressed in terms of the coordinates of the same element
in the frame T by means of the transformation t ′ = t f1 and g′ = (t f2) g, where
f1 = ττ ′−1 and f2 is uniquely defined by the position t = (t f1) (t f2).
There is a natural bijection between the frame T and the set Ω . This bijection is

T
τ−→ Ω . Thus, we can use (ω, g) as the coordinates of an element of Y rather than

(t, g). Such coordinates will be called orbit coordinates (shortly Ω-coordinates).
The element y is expressed in terms of these coordinates as y = tg = (ωσ) g. The
transformation from (ω, g) to (t, g) is given by (ω, g) 
→ (ωυ, g), and the inverse
transformation is (t, g) 
→ (tτ, g). The transformation rule for orbit coordinates from
the frame T to the frame T ′ can be obtained by transformation composition.We have

(ω, g) 
→ (ωυ, g) 
→ (ωυ f1, (ωυ f2) g) 
→
(
ωυ f1τ

′, (ωυ f2) g
)
.

But υ f1τ ′ = υττ ′−1τ ′ = id. Thus, putting υ f2 = f , we have the transformation

law ω′ = ω, g′ = (ω f ) g, with Ω
f−→ G.

The frame T is represented in T-coordinates by the set T × {e}, and in Ω-
coordinates by Ω × {e}. Hence, the frame T is represented in the frame T ′ in Ω-
coordinates by {(ω, ω f ) |ω ∈ Ω}. Thus we conclude the following.

If T, T ′ are frames of Y and (ω, g) ,
(
ω′, g′

)
are the Ω-coordinates of a point of

Y in T and T ′, respectively, there is a unique mapping Ω
f−→ G such that ω′ = ω,

g′ = (ω f ) g. This mapping is defined by the condition that ω f represents the shift
from the point over ω of frame T ′ to the point over ω of frame T . Consequently, the
corresponding sections are transformed according to the rule σ = σ ′ f , where the
action is defined pointwise.

We note that, while the domain of T-coordinates is frame-dependent, the domain
of Ω-coordinates is not, and it is given by Ω × G.

Henceforth, the Ω-coordinates will be used in most cases, so that we will call
them simply coordinates.



Appendix B
Barycentric Coordinates

B.1 Simplexes and Systems of Linear Inequalities

Let us consider1 a finite set E of cardinality n. We suppose that a total order is
specified on it, so that we can attach to each element of E a label belonging to
Nn � {i ∈ N |i ≤ n}.

We interpret E as the set of vertices of an (n − 1)-dimensional simplex Tn−1.
Introducing the barycentric coordinates, a point P of the simplex will be represented

as P =
n∑

i=1
piei where pi ≥ 0 and

n∑

i=1
pi = 1.

Consider the subset Sn−1 of Tn−1 defined by the inequalities p1 ≥ p2 ≥ .. ≥ pn ,
which is a convex set. Its extreme points are obtained by taking n − 1 among the
2n − 1 inequalities p1 ≥ p2 ≥ .. ≥ pn and pi ≥ 0 with equality sign in all possible
way consistent with them.

If we take all the equalities in the first group, we get pi = 1/n . If we take at
least an equality in the second group, there will be a smallest index k + 1 for which
pk+1 = 0.

Of course, observing that at least one of the pi must be nonzero, we must have
k ≥ 1. This entails pk+2 = .. = pn = 0. Hence, there are n − k + 1 equalities of
this kind. The remaining n − 1− (n − k) = k − 1 must belong to the first group.
Thus, we must have p1 = p2 = .. = pk and pk+1 = .. = pn = 0. Hence we have
pi = 1/k for i ≤ k and pi = 0 for i > k.

Thus, the extreme points of Sn−1 are Pk =
k∑

i=1
1
k ei . Their number is n and they are

independent. Therefore, is simple, so that

Sn−1 =
{

n∑

k=1
λk Pk | λk ≥ 0,

n∑

k=1
λk = 1

}

.

1The content of this chapter can be found in the Campanella’s file bary (29-03-2014)

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
M. Campanella et al., Interpretative Aspects of Quantum Mechanics,
UNIPA Springer Series,
https://doi.org/10.1007/978-3-030-44207-1
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Let B denote the set of forms of the type
n∑

i=1
ai pi with ai ∈ {0, 1}.

If b, b′ belong to B, consider the inequality b ≤ b′. The set of solutions of this
inequality belonging to Sn−1 may be empty, or it may be a proper subset of Sn−1, or
else it may be the whole Sn−1. In the last case, we say that b ≤ b′ is a theorem. In
the first case, we say that b ≤ b′ is a contradiction, while in the second case we say
that b ≤ b′ is an axiom.

Letb =
n∑

i=1
ai pi andb′ =

n∑

i=1
a′i pi . The inequalityb ≤ b′ is equivalent to

n∑

i=1
ci pi ≥

0 with ci = a′i − ai ∈ {−1, 0, 1}. Conversely, an inequality of the latter form is
always equivalent to an inequality of the form b ≤ b′. Indeed, for each i ∈ Nn put
ai = 0 if ci ≥ 0 and ai = 1 otherwise. Similarly, we put a′i = 0 if ci ≤ 0 and a′i = 1
otherwise.

Thus, for each class of equivalence of inequalities, there is a unique representative
in which no term on the left side appears in the right side. This unique representative
will be called the reduced form of the inequality. An inequality is a theorem (a
contradiction, an axiom) if and only if its reduced form is a theorem (a contradiction,
an axiom).We observe that the reduced forms are in bijection with the sequences ci .

The restriction to Sn−1 of the form
n∑

i=1
ci pi can be expressed using the barycentric

coordinates of Sn−1. We get
n∑

i=1
ci pi =

n∑

k=1
λk
k zk with zk =

k∑

i=1
ci .

If the inequality is a contradiction, this expression must take negative values in
all the points of Sn−1. In particular, it must take negative values on the vertices, so
that we must have zk < 0 for every k ∈ Nn . This condition is clearly also sufficient
because the λk are nonnegative and at least one is nonzero. We say that the sequence
zk is strictly definite negative.

Suppose now that the inequality is a theorem. In this case the form must take
nonnegative values on the vertices. Thus we must have zk ≥ 0 for every k ∈ Nn .
This condition is clearly also sufficient because the λk are nonnegative. We say that
the sequence zk is semidefinite positive.

Clearly the inequality is an axiom if and only if it is neither a contradiction nor a
theorem. Thus there must be h ∈ Nn such that zh < 0 and k ∈ Nn such that zk ≥ 0.
Thus, the sequence is indefinite or semidefinite negative, but not strictly.

Thus

b ≤ b′ theorem ⇔ z semidefinite positive

b ≤ b′ contradiction⇔ z strictly definite negative

b ≤ b′ axiom ⇔ z indefinite or semidefinite negative, but not strictly.

If we exchange the roles of b and b′, z is changed in its opposite, so that we have
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z indefinite ⇔ both b ≤ b′ and b′ ≤ b axioms

z semidefinite positive but not strictly ⇔ b ≤ b′ theorem and b′ ≤ b axiom

z strictly definite positive ⇔ b ≤ b′ theorem and b′ ≤ b contradiction

z strictly definite negative ⇔ b ≤ b′ contradiction and b′ ≤ b theorem

z semidefinite negative but not strictly ⇔ b ≤ b′ axiom and b′ ≤ b theorem

In what follows, we consider strict inequalities. This means that from the set of
solutions of an inequality we exclude the boundary. Thus, we will exclude from our
considerations the case of semidefinite forms.

We have:

z indefinite ⇔ both b ≤ b′ and b′ ≤ b axioms

z strictly definite positive ⇔ b ≤ b′ theorem and b′ ≤ b contradiction

z strictly definite negative⇔ b ≤ b′ contradiction and b′ ≤ b theorem

B.1.1 Consistent Sets in a Simplex

We denote with Λn−1 the standard simplex of R
n . For each λ ∈ Λn−1, we have the

natural total order in the set {b (λ) | b ∈ B}.
We put

b≤λ b
′ if and only if b (λ) ≤ b′ (λ) .

This relation is clearly reflexive and transitive, that is, a preorder relation. Furthermore
every pair b, b′ can be compared, so that it is a total preorder relation. It is a total order
relation if and only if λ is not a solution of any equation of the form b (λ) = b′ (λ)
for b �= b′.

We can define in Λn−1 an equivalence relation through the position

λ ∼ λ′ if and only if ≤λ = ≤λ′ . (λ, λ′ ∈ Λn−1)

Let C be a class of equivalence of ∼. Then C is a convex set.
Indeed, let λ, λ′ ∈ C . Thus ≤λ = ≤λ′ , that is, b (λ) ≤ b′ (λ)⇔ b

(
λ′

) ≤ b′
(
λ′

)
.

Let λ′′ = μλ+ νλ′ withμ ≥ 0, ν ≥ 0 andμ+ ν = 1. Then λ′′ ∈ Λn−1 and b
(
λ′′

) =
μb (λ)+ νb

(
λ′

)
and similarly for b′. Let b (λ) ≤ b′ (λ). Then b

(
λ′

) ≤ b′
(
λ′

)
and

b
(
λ′′

) = μb (λ)+ νb
(
λ′

) ≤ μb′ (λ)+ νb′
(
λ′

) = b′
(
λ′′

)
.

Conversely, suppose that b
(
λ′′

) ≤ b′
(
λ′′

)
. Then μ

(
b (λ)− b′ (λ)

)+ ν
(
b

(
λ′

)−
b′

(
λ′

)) ≤ 0. If ¬ (
b (λ) ≤ b′ (λ)

)
, then ¬ (

b
(
λ′

) ≤ b′
(
λ′

))
, so that both b (λ)−

b′ (λ) and b
(
λ′

)− b′
(
λ′

)
are positive and we get a contradiction.
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Let C be a class of equivalence defining a total order. If λ̄ ∈ C the relation ≤λ̄,
regarded as a subset of B × B, is

Sλ̄ =
{(
b, b′

) ∈ B × B | b (
λ̄
) ≤ b′

(
λ̄
)}
.

Every pair of different elements can be compared and, being≤λ̄ a total order, for every
such pair we must have b

(
λ̄
)
< b′

(
λ̄
)
. Let λ be a solution of the set of inequalities

{
b (x) < b′ (x) | (b, b′) ∈ Sλ̄, b �= b′

}
.

Then λ ∈ C . Indeed, let b≤λ̄ b
′, b �= b′. Then

(
b, b′

) ∈ Sλ̄, b �= b′. Consequently,
b (λ) < b′ (λ) and b≤λ b′. If b≤λ̄ b

′ and b = b′, then b≤λ b′. Thus ≤λ̄ ⊆ ≤λ. As
≤λ̄ and≤λ are total orders,≤λ̄ = ≤λ and λ ∈ C . Conversely, if λ ∈ C , λ is a solution
of the set of inequalities

{
b (x) < b′ (x) | (b, b′) ∈ Sλ̄, b �= b′

}
.

To each class of equivalence C representing a total order we can associate a set
of inequalities SC defined as follows.

We choose λ̄ ∈ C and stipulate
(
b (x) < b′ (x)

) ∈ SC if and only if b
(
λ̄
)
< b′

(
λ̄
)
.

The definition is well posed, because it is independent of λ̄. Indeed, let λ ∈ C . Thus,
we get for this choice the definition

(
b (x) < b′ (x)

) ∈ S′C if and only if b (λ) <
b′ (λ).

Let
(
b (x) < b′ (x)

) ∈ SC . Then b
(
λ̄
)
< b′

(
λ̄
)
, so that b≤λ̄ b

′ and b �= b′. As
λ ∈ C , b≤λ b′ and b (λ) ≤ b′ (λ). As C defines a total order, we have b (λ) < b′ (λ),
whence

(
b (x) < b′ (x)

) ∈ S′C .
Conversely, suppose that

(
b (x) < b′ (x)

) ∈ S′C . Then b (λ) < b′ (λ), so that
b≤λ b′ and b �= b′. As λ̄ ∈ C , b≤λ̄ b

′ and b
(
λ̄
) ≤ b′

(
λ̄
)
. As C defines a total order,

we have b
(
λ̄
)
< b′

(
λ̄
)
, whence

(
b (x) < b′ (x)

) ∈ SC . It is clear that λ ∈ C if and
only if it is a solution of all the inequalities

(
b (x) < b′ (x)

) ∈ SC .
The set SC is nonempty, because for every λ ∈ Λn−1 0 (λ) = 0 and 1 (λ) = 1.

Furthermore, as C is nonempty, the set of solutions of the set SC of inequalities is
nonempty.

Suppose now that
(
b (x) < b′ (x)

)
/∈ SC . Let λ̄ ∈ Λn−1 be a solution of the set of

inequalities SC ∪
{(
b (x) < b′ (x)

)}
. As λ̄ satisfies all the inequalities of SC , λ̄ ∈ C .

But in addition b
(
λ̄
)
< b′

(
λ̄
)
, so that

(
b (x) < b′ (x)

) ∈ SC . From the contradiction,
we deduce that SC cannot be included in a larger set of inequalities of the form
b (x) < b′ (x) with b �= b′ having solutions in Λn−1.

Let Υ be the set of inequalities defined by

Υ = {
b (x) < b′ (x) | (b, b′) ∈ B × B, b �= b′

}
.

The set SC ⊆ Υ has the following properties:

1) SC �= ∅,
2) SC has solutions in Λn−1, and
3) if S′ ⊆ Υ satisfies 1) and 2) and SC ⊆ S′, then S′ = SC .
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Conversely, suppose that S ⊆ Υ has the properties 1) –3). Then there is a total
order class of equivalence C such that SC = S. Indeed, choosing a solution λ̄ of
the set S, the relation ≤λ̄ defined by the conditions b≤λ̄ b and b≤λ̄ b

′ if and only
if b

(
λ̄
)
< b′

(
λ̄
)
for b �= b′ is a total order. Let C be the class of equivalence of

≤λ̄. Then the inequality b (x) < b′ (x) belongs to SC if and only if b
(
λ̄
)
< b′

(
λ̄
)
.

Consequently, if
(
b (x) < b′ (x)

) ∈ S, it belongs to SC , so that S ⊆ SC . As S is
maximal, SC = S.

A subset S of Υ satisfying 1)–3) will be called a maximal consistent subset.
We have shown that, if S is a maximal consistent subset, the equation SC = S has

a solution for C in the set of total order classes of equivalence. We now show that
there is a unique solution.

Indeed, suppose that SC = SC ′ with C �= C ′. Let λ̄ ∈ C . Then λ̄ is a solution of
the set SC and hence of the set SC ′ . Thus λ̄ ∈ C ′. But this is a contradiction, because
different classes of equivalence are disjoint.

We conclude that there is a bijection between the set of classes of equivalence of
total order and the set of maximal consistent subsets of Υ .

A subset of Υ having solutions in Λn−1 is called a consistent set. The empty set
is trivially consistent. By definition, a consistent set has a nonempty set of solutions
in Λn−1.

Two consistent sets K and K ′ are equivalent if they have the same set of solutions.
Let K be a consistent set. The class of equivalence of K is a finite set and is composed
of finite sets. Hence, in its class of equivalence, there are representatives of minimum
cardinality.

A consistent set is called minimal if it is of minimum cardinality in its class of
equivalence. A minimal consistent set is called a total order minimal consistent set
if it is minimal and its class of equivalence contains a maximal consistent subset.

Given a nonempty subset S of Υ the problem to establish whether it is consistent
arises.

If the set S is
S = {αi (x) < βi (x) | i ∈ [1,m]} ,

it is consistent if the system αi (x) < βi (x) together with
n∑

j=1
x j = 1 has nonnegative

solutions.

If αi (x) =
n∑

j=1
ai j x j and βi (x) =

n∑

j=1
bi j x j , putting ci j = ai j − bi j , S is consis-

tent if and only if the set of conditions
n∑

j=1
ci j x j < 0,

n∑

j=1
x j = 1 has nonnegative

solutions. This happens if and only if the set of strict inequalities
n∑

j=1
ci j x j < 0 and

n∑

j=1

(−x j
)
< 0 has nonnegative solutions. Indeed, let ξ j ≥ 0 ( j ∈ [1, n]) satisfy the
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conditions
n∑

j=1
ci jξ j < 0 and

n∑

j=1
ξ j = 1. Then

n∑

j=1

(−ξ j
)
< 0, so that ξ j ( j ∈ [1, n])

is a nonnegative solution of
n∑

j=1
ci j x j < 0 and

n∑

j=1

(−x j
)
< 0.

Conversely, let
n∑

j=1
ci jξ j < 0 and−a �

n∑

j=1

(−ξ j
)
< 0. Then, putting ξ ′ j = ξ j/a

≥ 0, we get
n∑

j=1
ci jξ ′ j < 0 and

n∑

j=1
ξ ′ j = 1, so that the set of conditions

n∑

j=1
ci j x j < 0,

n∑

j=1
x j = 1 has nonnegative solutions. Adding the subscript 0 and defining di j = ci j

for i �= 0 and doj = −1, we conclude that S is consistent if and only if the set of

inequalities
n∑

j=1
di j x j < 0 has nonnegative solutions.

If S is consistent, there are ξ j ≥ 0 ( j ∈ [1,m]) such that βi �
n∑

j=1
di jξ j < 0.

Putting β � max {βi |i ∈ [0,m]}, we have
n∑

j=1
di jξ j ≤ β. Introducing the quanti-

ties ξ ′i � ξi/|β| ≥ 0 we get
n∑

j=1
di jξ ′ j ≤ −1. Hence, the set S′ of inequalities

n∑

j=1
di j x j ≤ −1 has nonnegative solutions. Conversely, suppose that S′ has nonneg-

ative solutions. Hence, the set
n∑

j=1
di j x j < 0 has nonnegative solutions.

Weconclude that S is consistent if and only if the set of inequalities
n∑

j=1
di j x j ≤ −1

has nonnegative solutions.
In turn, this set of inequalities is feasible if and only if the maximum of ζ =

−x0 subject to the constraints
n∑

j=1
di j x j − x0 ≤ −1, x j ≥ 0 for j ∈ [0, n] is zero.

Indeed, suppose that the set of inequalities
n∑

j=1
di j x j ≤ −1 is feasible. Then there

are ξ j ≥ 0 ( j �= 0) such that
n∑

j=1
di jξ j ≤ −1. The point (0, ξ1, .., ξn) satisfies all

the constraints and ζ attains the value 0 in this point. But, owing to the constraint
x0 ≥ 0, the maximum attainable value of ζ is not positive. Hence the maximum of
ζ is 0. Conversely, suppose that the maximum of ζ = −x0 subject to the constraints
n∑

j=1
di j x j − x0 ≤ −1, x j ≥ 0 for j ∈ [0, n] is zero. This means that there are ξ j ≥

0 ( j �= 0) such that the point (0, ξ1, .., ξn) satisfies all the constraints, and hence
n∑

j=1
di jξ j ≤ 0 and the set of inequalities

n∑

j=1
di j x j ≤ 0 is feasible.
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We conclude that
S is consistent if and only if the maximum of ζ = −x0 subject to the constraints

n∑

j=1
di j x j − x0 ≤ −1, x j ≥ 0 for j ∈ [0, n] and i ∈ [0,m] is zero.



Appendix C
Linear Spaces

C.1 Duals and Adjoints

Let X be a1 complex linear space. Its dual Xd is by definition the set of all the linear
mappings in C, with its natural structure of linear space. If X is finite-dimensional,
Xd is isomorphic to X (but no canonical isomorphism is defined). However, there
is a canonical isomorphism between X and its double dual Xdd which allows the
identification of the latter with X . This isomorphism is defined by the position

xdd
(
xd

) = xd (x) .

If X
ϕ−→ Y is a linear mapping, we can define the transpose mapping

Y d ϕd−→ Xd as
(
ϕd yd

)
(x) = yd (ϕx) .

We can write ϕd yd = ydϕ. The rule of calculation

(ϕ ◦ ψ)d = ψd ◦ ϕd

holds. Furthermore, identifying X with Xdd , we have
(
ϕd

)d = ϕ.

If X is a Hilbert space H , the dual of H will be denoted H∗. In this case, a
canonical anti-isomorphism ∗ between H and H∗ is induced by the scalar product.
The canonical anti-isomorphism will be called conjugation. In the bra-ket notation,
the conjugate of |x〉 will be denoted 〈x | and will be called the bra conjugate to |x〉.
Hence we write |x〉∗ = 〈x |.

1 The content of this chapter can be found in the Campanella’s files Mathtools (12/10/2011) and
appnew (10/12/2011).

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
M. Campanella et al., Interpretative Aspects of Quantum Mechanics,
UNIPA Springer Series,
https://doi.org/10.1007/978-3-030-44207-1
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However, sometimes this notation is ambiguous. Indeed, in this notation, it is
understood that the fundamental space is H , while the space H∗ of the bras (i.e., the
dual space of the linear functionals on H ) is a derived construction. This circumstance
is translated in the formalism using the ket notation |x〉 for the elements of H and
the bra notation 〈x | for the elements of H∗. But it will be essential in several points
of our analysis to treat H and H∗ on the same footing. This possibility is essentially
a consequence of the fact that H and its double dual H∗∗ can be identified. We
can consider a bra of H (i.e., a linear functional on H ) as a ket of H∗ (and in this
perspective we change the role of H∗ from derived to fundamental) and consequently
a bra of H∗ (i.e., a linear functional on H∗, which is a derived construction if we
regard H∗ as fundamental) is an element of H∗∗, i.e., an element of H . In this way,
the kets of H become a derived construction if H∗ is regarded as fundamental.

All this is reflected into the notation in the following way. First, if H is considered
fundamental, an element of it will be denoted |x〉H . The corresponding bra (that is,
the functional on H ) will be denoted H 〈x |. The same bra of H must be written
as a ket of H∗ if the latter is considered as fundamental (that is, as an element
of the dual space H∗ considered as a linear space in its own). We therefore have
H 〈x | = |x〉H∗ ; similarly, changing H in H∗, we get H∗ 〈x | = |x〉H . Furthermore we
have |x〉∗H = H 〈x | and, denoting with a star on the left the action of conjugation on
a bra of H , we have also ∗H 〈x | = |x〉H . We conclude that, besides the rules

|x〉∗H = H 〈x | and ∗
H 〈x | = |x〉H ,

the rules
H 〈x | = |x〉H∗ and H∗ 〈x | = |x〉H

hold. The rules
|x〉∗H = |x〉H∗ and ∗

H 〈x | = H∗ 〈x |

follow. Changing in the latter H with H∗, the rules

|x〉∗H∗ = |x〉H and ∗
H∗ 〈x | = H 〈x |

are obtained.

Let H
ϕ−→ K be a linear mapping between Hilbert spaces. If |k〉K is the image of

|h〉H , we write |k〉K = ϕ|h〉H .
The transpose of ϕ is a linear mapping K ∗

ϕd−→ H∗. We can then write

ϕd |y〉K ∗ = K 〈y|ϕ.

Putting ϕ = ϕ′d we get ϕ′|y〉K ∗ = K 〈y|ϕ′d and putting K = H∗ and calling ϕ the
arbitrary linear mapping ϕ, we have
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ϕ|y〉H = H∗ 〈y|ϕd .

We define the adjoint of ϕ as

ϕ∗ = ( )∗ϕd( )∗,

so that the action of ϕ∗ on a ket |y〉K is given by

|y〉K
∗−→ |y〉K ∗ ϕd−→ ϕd |y〉K ∗ = K 〈y|ϕ

∗−→ (K 〈y|ϕ)∗ = ϕ∗|y〉K .

As a consequence of the definition of the adjoint, we have that

if H 〈x | = K 〈y|ϕ, then |x〉H = ϕ∗|y〉K .

From the definition of adjoint, we get also ϕ∗∗ = ϕ.
Let |y〉K = ϕ|x〉H . Hence |y〉K = H∗ 〈x |ϕd . Consequently,

H 〈x |
∗−→ H∗ 〈x | 
→ H∗ 〈x |ϕd = |y〉K

∗−→K 〈y| .

Hence K 〈y| = K 〈x |ϕ∗.

C.2 Free Vector Spaces

We recall that a free vector space over S is a mapping S
σ−→ X from S in a vector

space X such that every mapping S
τ−→ Z in a vector space Z uniquely factorizes as

τ = ϑ ◦ σ where ϑ is linear. It is well known that every vector space is free over
some subset of it. Each such subset is called a (Hamel) basis.

The standard free space over S is the set F of finite support mappings S → C

with pointwise addition and scalar multiplication, together with the mapping S
σ−→ F

defined as
σ (s)

(
s ′

) = δss ′ .

The image E of σ is a basis of F which will be called the standard basis of F . The
restriction of σ to E is a bijection. The element of E corresponding to s ∈ S will be
denoted es . When S is finite, the finite support condition is trivially verified.

Every free linear space over S can be regarded as a free linear space over the basis
corresponding to S. Conversely, every linear space with a selected basis E can be
regarded as a free linear space over E .

Let {Xα} be a family of (not necessarily distinct) linear spaces. A direct sum
of the family is a family of linear mappings Xα

ια−→ X such that every family of
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linear mappings Xα

fα−→ Z is uniquely factorizable as fα = f ◦ ια through the linear
mapping f .

If {ια} and
{
ι′α

}
are direct sums of the same family, there is a unique isomorphism

X
ι−→ X ′ of linear spaces such that ι′α = ι ◦ ια . It can be shown that the ια are injective.
A possible direct sum of the family {Xα} is obtained as follows. We call A the

set of all indexes α and define X as the set of all mappings

A
x−→

⋃

α∈A
Xα

offinite support and such that xα ∈ Xα . X is a linear space under elementwise addition
and scalar multiplication. We put

ια(xα)β = δαβxα.

It is easily verified that these positions satisfy the definition of a direct sum. The
direct sum obtained with the above construction will be called the standard direct
sum. The space X will be denoted ⊕αXα and the injections ια will be understood.

C.2.1 Finite-Dimensional Free Vector Spaces

We will consider here only finite-dimensional spaces.
Suppose that {Sα} is a family of finite sets with the same cardinality and that to

each pair (β, α) a mapping Sβ × Sα
t (βα)−−→ C is associated satisfying the following

conditions:

a) t (αα)s ′s = δs ′s ,
b)

∑

s ′′
t (γβ)s ′s ′′ t

(βα)

s ′′s = t (γ α)s ′s .

For each Sα , let Fα be (the codomain of) the standard free vector space over Sα
and Σ their standard direct sum. Let Γ be the subspace of Σ generated by all the
elements of the form

ιβ

(
e(β)s ′

)
−

∑

s

t (βα)s ′s ια
(
e(α)s

)
.

The quotient space Σ/Γ will be called the gluing of the family of the standard
free spaces {Fα} through the family of gluing mappings

{
t (βα)

}
. This space will be

denoted as
G

({Fα} ,
{
t (βα)

})
.

We observe that the set
{
ιβ(e

(β)

s ′ )
}
is a basis forΣ . Furthermore, for a fixed ᾱ, we

define, for each β �= ᾱ, the vectors
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h(βᾱ)s ′ = ιβ(e
(β)

s ′ )−
∑

s

t (βᾱ)s ′s ιᾱ(e
(ᾱ)
s ).

The vectors h(βᾱ)s ′ together with the ιᾱ(e
(ᾱ)
s ′ ) are a basis of Σ . Indeed, for

β �= ᾱ, ιβ(e
(β)

s ′ ) = h(βᾱ)s ′ +
∑

s

t (βᾱ)s ′s ιᾱ(e
(ᾱ)
s ).

This shows that the set
{
h(βᾱ)s ′ , ιᾱ(e

(ᾱ)
s ′ )

}
spansΣ . Furthermore this set is independent.

Indeed, if
∑

β �=ᾱ
λ
(β)

s ′ h
(βᾱ)

s ′ +∑

s ′
μs ′ ιᾱ(e

(ᾱ)
s ′ ) = 0,

∑

β �=ᾱ
λ
(β)

s ′ ιβ(e
(β)

s ′ )−
∑

β �=ᾱ

∑

s
λ
(β)

s ′ t
(βᾱ)

s ′s ιᾱ(e(ᾱ)s )+∑

s ′
μs ′ ιᾱ(e

(ᾱ)
s ′ ) = 0.

This entails λ(β)s ′ = 0 and hence μs ′ = 0. We have

h(βα)s′ = ιβ

(
e(β)s′

)
−

∑

s

t (βα)s′s ια

(
e(α)s

)
= h(βᾱ)s′ +

∑

s

t (βᾱ)s′s ιᾱ

(
e(ᾱ)s

)
−

∑

s

t (βα)s′s ια

(
e(α)s

)
.

But we can write

∑

s

t (βα)s ′s ια
(
e(α)s

) =
∑

s

t (βα)s ′s h(αᾱ)s +
∑

s

t (βα)s ′s

∑

s ′′
t (αᾱ)ss ′′ ιᾱ

(
e(ᾱ)s ′′

)

and ∑

s

t (βα)s ′s

∑

s ′′
t (αᾱ)ss ′′ ιᾱ

(
e(ᾱ)s ′′

)
=

∑

s ′′
t (βᾱ)s ′s ′′ ιᾱ

(
e(ᾱ)s ′′

)

so that

h(βα)s ′ = h(βᾱ)s ′ +
∑

s

t (βᾱ)s ′s ιᾱ
(
e(ᾱ)s

)−
∑

s

t (βα)s ′s h(αᾱ)s −
∑

s ′′
t (βᾱ)s ′s ′′ ιᾱ

(
e(ᾱ)s ′′

)

that is h(βα)s ′ = h(βᾱ)s ′ −∑

s
t (βα)s ′s h(αᾱ)s .

We conclude that Γ admits
{
h(βᾱ)s

}
as a basis. Hence,Σ is the internal direct sum

of ιᾱ (Fᾱ) and Γ . Consequently, the quotient space X = Σ/Γ has the basis

{
ē(ᾱ)s = ιᾱ

(
e(ᾱ)s

)+ Γ
}
.

As ᾱ is arbitrary, every
{
ē(α)s = ια

(
e(α)s

)+ Γ
}
is a basis of X . Consequently, every

x ∈ X has the unique expansion x =∑

s
x (α)s ē(α)s . The expansion of the same vector
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with respect to the basis
{
e(β)s ′

}
is x =∑

s ′
x (β)s ′ ē(β)s ′ . As ē(α)s =∑

s ′
t (αβ)ss ′ ē(β)s ′ , we obtain

x (β)s ′ =
∑

s
x (α)s t (αβ)ss ′ .

The above analysis leads to the following.

Theorem C.1 if {Fα} is a family of free linear spaces over the sets Sα , and X the
gluing of the family through the family

{
t (βα)

}
of gluing mappings, each set

{
ē(α)s = ια

(
e(α)s

)+ Γ
}

is a basis of X. If x =∑

s
x (α)s ē(α)s =∑

s ′
x (β)s ′ ē(β)s ′ then x (β)s ′ =

∑

s
x (α)s t (αβ)ss ′ .

Remark C.1 Let x ∈ X be represented by f ∈ ⊕α fα . Given ᾱ, we have the expan-
sion x =∑

s
x (ᾱ)s ē(ᾱ)s that is x =∑

s
x (ᾱ)s e(ᾱ)s + Γ . This means that x can be repre-

sented by an element of ιᾱ (Fᾱ). This representation is unique (for given ᾱ), because
Σ = Fᾱ + Γ . This means also that every element of Σ is equivalent to a unique
element of ιᾱ (Fᾱ) modulo Γ .

Suppose now that X is a finite-dimensional linear space. Let {Sα} a set of bases of
X . For each Sα , we introduce the standard free linear space Fα over Sα . If Sα = { f }
and Sβ =

{
f ′

}
we have the expansion f =∑

f ′
t (αβ)f f ′ f ′.

We can then build the gluing X̂ of the family {Fα} through the family of the

gluing mappings
{
t (αβ)f f ′

}
. Let x̂ ∈ X̂ . For a given α, there is a unique representative

∑

f
x (α)f ια

(
e(α)f

)
of x̂ belonging to ια (Fα). The elements e(α)f of the standard basis

of Fα are in bijection with the elements f of the basis Sα . We put x =∑

f
x (α)f f .

The element x does not depend on the choice of α. Indeed, if x̂ is represented by
∑

f ′
x (β)f ′ ιβ

(
e(β)f ′

)
, then

x (β)f ′ =
∑

f

x (α)f t (αβ)f f ′ , x =
∑

f

x (α)f

∑

f ′
t (αβ)f f ′ f ′ =

∑

f ′
x (β)f ′ f ′.

In this way, we get a linear mapping X̂
j−→ X . This mapping is clearly bijective, so

that it is an isomorphism of linear spaces. In this way, we have proved the following
theorem.

Theorem C.2 If X is a finite-dimensional linear space and {Sα} is a set of bases
of X, there is a canonical isomorphism j between the gluing X̂ of the family {Fα}
of the corresponding free linear spaces through the family of transition mappings
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between the bases and the space X. If
∑

f ∈Sα
x (α)f ια

(
e(α)f

)
is the unique representative

of x̂ belonging to ια (Fα), j
(
x̂
) = ∑

f ∈Sα
x (α)f f .

We now consider a family
{
Xα,

{
e(α)s

}}
of linear spaces, each equipped with a

prescribed basis. It can be considered as a family of linear free spaces over the family
of sets

{{
e(α)s

}}
. If we prescribe a family

{
t (βα)

}
of transition mappings, we get a

gluing for the family. Let
{{
ẽ(a)s

}}
a new family of bases, and

{
t̃ (ba)

}
a new family

of transition mappings. We want to establish the necessary and sufficient conditions
in order that the same gluing space is obtained. Fixing some ᾱ, Γ has a basis given
by the set

{

h(βᾱ)s ′ = ιβ

(
e(β)s ′

)
−

∑

s

t (βᾱ)s ′s ιᾱ
(
e(ᾱ)s

)
}

with β �= ᾱ, and similarly, fixing some ā, Γ̃ has a basis given by the set

{

h̃(bā)s ′ = ιb

(
ẽ(b)s ′

)
−

∑

s

t̃ (bā)s ′s ιā
(
ẽ(ā)s

)
}

with b �= ā. But ẽ(a)s ′ =
∑

s
u(aα)s ′s e(α)s , so that

h̃(bā)s ′ = ιb

(
∑

s

u(bβ)s ′s e(β)s

)

−
∑

s ′′
t̃ (bā)s ′s ′′ ιā

(
∑

s

u(āᾱ)s ′′s e(ᾱ)s

)

.

We then get

h̃(bā)s ′ =
∑

s

u(bβ)s ′s h(βᾱ)s +
∑

s

u(bβ)s ′s

∑

s ′′
t (βᾱ)ss ′′ ιᾱ

(
e(ᾱ)s ′′

)
−

∑

s ′′
t̃ (bā)s ′s ′′ ιā

(
∑

s

u(āᾱ)s ′′s e(ᾱ)s

)

.

The necessary and sufficient condition in order that Γ̃ = Γ is therefore

∑

s ′′
u(bβ)s ′s ′′

∑

s

t (βᾱ)s ′′s ιᾱ
(
e(ᾱ)s

)−
∑

s ′′
t̃ (bā)s ′s ′′ ιā

(
∑

s

u(āᾱ)s ′′s e(ᾱ)s

)

= 0

that is ∑

s ′′
u(bβ)s ′s ′′ t

(βᾱ)

s ′′s −
∑

s ′′
t̃ (bā)s ′s ′′ u

(āᾱ)
s ′′s = 0.

Finally, remembering that ᾱ and ā are arbitrary (provided that they refer to the same
space) we obtain
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t̃ (ba)s ′s =
∑

s ′′s ′′′
u(bβ)s ′s ′′ t

(βα)

s ′′s ′′′ u
(αa)
s ′′′s .

We have thus established the following theorem.

Theorem C.3 Let {Xα} be a family of linear spaces with the same dimension. Let

{Eα} ,
{
Ẽα

}
be two families of selected bases in the spaces Xα . Let

{
t (βα)

}
,
{
t̃ (βα)

}

two families of gluing mappings associated with the family of bases {Eα} and
{
Ẽα

}
,

respectively. Let ẽ(a)s ′ =
∑

s
u(α)s ′s e

(α)
s . The two families of gluing mappings yield the

same gluing space if and only if

t̃ (βα)s ′s =
∑

s ′′s ′′′
u(β)s ′s ′′ t

(βα)

s ′′s ′′′ u
(α)−1
s ′′′s .

C.3 Tensor Products

We recall that a tensor product is a bilinear mapping

X × Y
⊗−→ Z

such that every bilinear mapping X × Y
β−→ V uniquely factorizes as β = ϕ ◦ ⊗

through a linear mapping Z
ϕ−→ V . The elements of the image of ⊗ are called inde-

composable (or separable) elements. It is well known that, given X and Y , a tensor
product with domain X × Y can be defined through the following construction. First
the free linear space F over the set X × Y is introduced. Then the subspace Γ of F
generated by all elements of the forms

(λx, y)− λ (x, y) , (x, λy)− λ (x, y) and

(
x + x ′, y

)− (x, y)− (
x ′, y

)
,
(
x, y + y′

)− (x, y)− (
x, y′

)
.

If π is the canonical projection of F over F/Γ , we define x ⊗ y = π (x, y).
The above construction holds also for infinite-dimensional spaces. It is also well

known that, given the spaces X and Y , a tensor product is defined “up to isomor-

phisms.” This means that, if X × Y
⊗−→ Z and X × Y

⊗′−→ Z ′ are tensor products,

there is a unique isomorphism of linear spaces Z
η−→ Z ′ such that ⊗′ = η ◦ ⊗.

When X and Y are finite-dimensional, another way of defining a tensor product

is possible. We first observe that a canonical linear mapping X
η−→ Xdd from X to its

double dual can be defined in the following way. If ξ ∈ Xd and x ∈ X , we introduce
the notation
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〈ξ, x〉 = ξ (x)

Then for each x 〈ξ, x〉 depends linearly on ξ , so that an element η (x) of Xdd arises.
The dependence of η (x) on x is linear, and hence η is a linear mapping from X to
Xdd . In the above notation,η is uniquely defined by the equation 〈η (x) , ξ 〉 = 〈ξ, x〉 .
When X is finite-dimensional, it is easily shown that η is an isomorphism.

We now introduce the linear space Hom
(
Xd ,Y

)
. For each (x, y) ∈ X × Y , we

define an element x ⊗ y ∈ Hom
(
Xd ,Y

)
through the position

(x ⊗ y) (ξ) = 〈η (x) , ξ 〉 y = 〈ξ, x〉 y.

The mapping⊗ is clearly bilinear. Furthermore, let X × Y
β−→ V a bilinear mapping.

We introduce bases {eα}α∈A and { fb}b∈B of X and Y , respectively. Then
{eα ⊗ fb}α∈A ,b∈B is a basis of Hom

(
Xd ,Y

)
. Indeed {η (eα)}α∈A is a basis of

(
Xd

)d
,

so that the set {ēα′ }α′∈A defined by 〈η (eα) , ēα′ 〉 = δαα′ is a basis of Xd .
Furthermore, the elements of Hom

(
Xd ,Y

)
defined by ϕαb (ēα′) = δαα′ fb form

a basis. But (eα ⊗ fb) (ēα′) = δαα′ fb, so that eα ⊗ fb = ϕαb. Now if β = ϕ ◦ ⊗, we
get β (eα, fb) = ϕ (eα ⊗ fb), so that ϕ must be the unique linear mapping that takes
the values β (eα, fb) on the elements of the basis {eα ⊗ fb}α∈A ,b∈B .

Conversely, if ϕ is defined in this way, we get β = ϕ ◦ ⊗ by bilinearity. Thus ⊗
is a tensor product. In the case of finite-dimensional spaces X and Y , the mapping
⊗ defined above will be called the canonical tensor product of X and Y . For this
tensor product, the separable elements are the elements of Hom

(
Xd ,Y

)
of rank at

most one. Indeed, if either x or y is zero, x ⊗ y is of rank zero. If both x and y are
nonzero, then x ⊗ y is of rank one. Conversely, the zero homomorphism is the image
of 0⊗ 0 and a homomorphism of rank one must have the form ϕ (ξ) = ϑ (ξ) y for
some fixed y ∈ Y . ϑ must be a linear functional on Xd and hence an element of Xdd .
Hence ϑ = η (x) and ϕ (ξ) = 〈η (x) , ξ 〉 y, so that ϕ = x ⊗ y. We can summarize
the above results in the following theorem.

Theorem C.4 If X and Y are finite-dimensional linear spaces, the mapping

X × Y
⊗−→ Hom

(
Xd ,Y

)

defined by the position
(x ⊗ y) (ξ) = 〈ξ, x〉 y

is a tensor product. The separable elements are all the elements of Hom
(
Xd ,Y

)

whose rank is not greater than one; each pair of bases {eα}α∈A and { fb}b∈B of X
and Y , respectively, defines a basis

{eα ⊗ fb}α∈A ,b∈B of Hom
(
Xd ,Y

)

formed uniquely with separable elements.
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Let X × Y
⊗−→ Z and X ′ × Y ′ ⊗

′−→ Z be two tensor products. We say that ⊗ and

⊗′ are equivalent if there are linear space isomorphisms X ′
ϕ−→ X and Y ′ ϑ−→ Y such

that
⊗′ = ⊗ ◦ (ϕ × ϑ) .

We say that a structure of tensor product is defined in Z when a class of equiv-

alence of tensor products whose codomain is Z is specified. Let X × Y
⊗−→ Z be a

representative of the class of equivalence. Let E and F be bases of X and Y , respec-
tively. Then E ⊗ F (i.e., the set of all elements of the form e ⊗ f with e ∈ E, f ∈ F)
is a basis of Z . There is a bijection E × F

η−→ E ⊗ F defined by η (e, f ) = e ⊗ f .
The mapping η is obviously surjective. The injectivity follows immediately from the
fact that e′ ⊗ f ′ = e ⊗ f entails e′ = λe and from the fact that the elements of E
are linearly independent. If πE and πF denote the natural projections of E × F , we
can define two equivalence relations on E ⊗ F as follows:

u ∼ v ⇔ πEη
−1 (u) = πEη

−1 (v) ,

u ≈ v ⇔ πFη
−1 (u) = πFη

−1 (v) .

Let π∼ and π≈ denote the natural projections of ∼, ≈ and C∼, C≈ the corre-
sponding images. The intersection of any element of C∼ with any element of C≈ is
a singleton.

We say that two equivalence relations on the same set are transversal if every
intersection of a class of equivalence c1 of one of them with a class of equivalence
c2 of the other is a singleton. The element defined by this singleton will be denoted
c1 ∧ c2. There are a unique bijection C∼

α−→ E such that α ◦ π∼ = πE ◦ η−1 and a

unique bijection C≈
β−→ F such that β ◦ π≈ = πF ◦ η−1.

We denote X̂ the free linear space over C∼ and Ŷ the free linear space over C≈.
For the sake of notational simplicity, we will identify C∼ and C≈ with their images
in X̂ and Ŷ , respectively.

We now define ⊗̂ as the unique bilinear extension of c1 ∧ c2 to the whole X̂ × Ŷ ,
thus obtaining a tensor product with codomain Z .

If we now define ϕ as the linear extension of α to the whole X̂ and ϑ as the linear
extension of β to the whole Ŷ , we obtain ⊗̂ = ⊗ ◦ (ϕ × ϑ).

Conversely, let B be a basis of Z and (∼,≈) a pair of transversal equivalence
relations on it. If we define the sets C∼ and C≈ of equivalence classes, the corre-
sponding free spaces X̂ and Ŷ and ⊗̂ as the bilinear extension of c1 ∧ c2, we get a
tensor product with codomain Z .

We call this product the standard tensor product associated with (B,∼,≈).



Appendix C: Linear Spaces 95

Definition C.1 Let (B,∼,≈) be a basis of the linear space Z together with a pair
of transversal equivalence relations on it. If C∼ and C≈ are the corresponding sets
of equivalence classes, the unique tensor product from the Cartesian product of the
free spaces X̂ and Ŷ over C∼ and C≈, respectively, into Z defined by the mapping
c1 ∧ c2 is called the standard tensor product associated with (B,∼,≈).
The above discussion can be summarized in the following theorem.

Theorem C.5 For every tensor product ⊗ whose codomain is the linear space Z
there are a basis B of Z and a pair (∼,≈) of transversal equivalence relations on B
such that⊗ is equivalent to the standard tensor product ⊗̂ associatedwith (B,∼,≈).
Furthermore, for every (B,∼,≈) the associated standard tensor product has Z as
its codomain and thus defines a structure of tensor product on it.

On the basis of the above theorem we conclude that for every structure of ten-
sor product on Z there is a representative consisting in a standard tensor product
associated with some (B,∼,≈).

Nevertheless, different (B,∼,≈) can give rise to the same structure of tensor
product on Z . Hence, we are led to investigate the necessary and sufficient conditions
to be satisfied in order that (B,∼,≈) and (

B ′,∼′,≈′) define equivalent standard

tensor products. The equivalence entails the existence of X̂ ′
ϕ−→ X̂ and Ŷ ′ ϑ−→ Ŷ such

that ⊗̂′ = ⊗̂ ◦ (ϕ × ϑ). If C ′∼ and C ′≈ are the sets of equivalence classes associated
with∼′ and≈′, ϕ (

C ′∼
)
and ϑ

(
C ′≈

)
are bases of X̂ and Ŷ . Hence, for c′∼ ∈ C ′∼ we

can write ϕ
(
c′∼

) = ∑

c∼∈C∼
a

(
c′∼, c∼

)
c∼. Similarly, ϑ

(
c′≈

) = ∑

c≈∈C≈
b

(
c′≈, c≈

)
c≈.

Hence, we get

c′∼ ∧ c′≈ =
∑

c∼∈C∼

∑

c≈∈C≈
a

(
c′∼, c∼

)
b

(
c′≈, c≈

)
c∼ ∧ c≈.

But, given (B,∼,≈) and (
B ′,∼′,≈′), we have the unique expansion

c′∼ ∧ c′≈ =
∑

c∼∈C∼

∑

c≈∈C≈
t
(
c′∼, c′≈, c∼, c≈

)
c∼ ∧ c≈ (1.1)

so that there must be mappings a and b such that t
(
c′∼, c′≈, c∼, c≈

) = a
(
c′∼, c∼

)
b(

c′≈, c≈
)
. We observe that the mappings a and b are nonsingular, in the sense that

the set of elements
∑

c∼∈C∼
a

(
c′∼, c∼

)
c∼ and

∑

c≈∈C≈
b

(
c′≈, c≈

)
c≈ are bases of X̂ and

Ŷ , respectively.
Conversely, if there are nonsingular mappings a and b such that t

(
c′∼, c′≈, c∼,

c≈) = a
(
c′∼, c∼

)
b

(
c′≈, c≈

)
, putting

ϕ
(
c′∼

) =
∑

c∼∈C∼
a

(
c′∼, c∼

)
c∼
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and
ϑ

(
c′≈

) =
∑

c≈∈C≈
b

(
c′≈, c≈

)
c≈

we can uniquely extend by linearity ϕ and ϑ getting ⊗̂′ = ⊗̂ ◦ (ϕ × ϑ).

This result can be formulated in amore abstract form. Each τ � (B,∼,≈) defines
a tensor product

X̂τ × Ŷτ
⊗̂τ−→ Z .

Each basis B of Z defines an isomorphism jτ from the free space Zτ over B to the
space Z . We define

⊗̃τ = j−1τ ◦ ⊗̂τ

whose domain is the Cartesian product of the free spaces over C∼ andC≈ and whose
codomain is the free space Zτ over Bτ .

Equation (1.1) represents the isomorphism jτ−1 ◦ jτ ′ . The existence of the map-
pings a and b means that jτ−1 ◦ jτ ′ is a tensor product.

In this way, a small category is defined whose objects are the free spaces X (τ )

over C (τ )∼ . The set of morphisms Φ(τ
′τ) = Mor

(
X (τ ), X(τ

′)
)
is defined as the set

of left factors of the factorization of jτ ′−1 ◦ jτ as a tensor product.
The above definitions furnish a subcategory K of the whole category of linear

spaces whose set of objects is the family {Xτ }. Indeed, Φ(ττ) is the set of left factors
of idZτ , so that idXτ

∈ Φ(ττ). Furthermore, if ϕ′ ∈ Φ(τ ′′τ ′) and ϕ ∈ Φ(τ ′τ), we have
ϕ′ ⊗ ϑ ′ = jτ ′′

−1 ◦ jτ ′ for some ϑ ′ and ϕ ⊗ ϑ = jτ ′
−1 ◦ jτ for some ϑ , so that

ϕ′ ◦ ϕ ⊗ ϑ ′ ◦ ϑ = jτ ′′
−1 ◦ jτ and ϕ

′ ◦ ϕ ∈ Φ(τ ′′τ).

An immediate consequence of this definition is that, if ϕ and ϕ′ belong toΦ(τ ′τ),
then ϕ′ = λϕ. In particular, Φ(ττ) consists of all scalar nonzero multiples of idXτ

.
We now prove the existence of a subcategory S of K with the same objects

and containing a single morphism for each pair of objects. We start choosing a
ϕ(τ

′τ) for eachΦ(τ
′τ). Themorphismϕ(τ

′τ) ◦ ϕ(ττ ′) = λ(τ
′τ)idXτ ′ . Similarlyϕ(ττ

′) ◦
ϕ(τ

′τ) = λ(ττ
′)idXτ

. Multiplying the last on the left by ϕ(τ
′τ) we get λ(τ

′τ)ϕ(τ
′τ) =

λ(ττ
′)ϕ(τ

′τ), whence (observing that ϕ(τ
′τ) is nonzero) λ(τ

′τ) = λ(ττ
′). Defining

ϕ̄(τ
′τ) =

(
λ(τ

′τ)
)− 1

2
ϕ(τ

′τ),

ϕ̄(τ
′τ) ∈ Φ(τ ′τ) and we get ϕ̄(τ ′τ) ◦ ϕ̄(ττ ′) = idXτ ′ . This means that ϕ̄(τ

′τ) and ϕ̄(ττ
′)

are reciprocally inverse isomorphisms. We have
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ϕ̄(τ
′′τ ′) ◦ ϕ̄(τ ′τ) = λ(τ

′′τ ′τ)ϕ̄(τ
′′τ).

By cyclic permutation we get ϕ̄(τ
′τ) ◦ ϕ̄(ττ ′′) = λ(τ

′ττ ′′)ϕ̄(τ
′τ ′′). Multiplying on the

left by ϕ̄(τ
′′τ ′) we obtain λ(τ

′′τ ′τ) = λ(τ
′ττ ′′). Furthermore, taking the inverse mor-

phisms, we get

λτ
′′ττ ′ =

(
λτ

′′τ ′τ
)−1

.

If we put ϕ̄(τ
′′τ ′) = μ(τ

′′τ ′)ϕ̃(τ
′′τ ′) and so on for the other morphisms, we can get

ϕ̃(τ
′′τ ′) ◦ ϕ̃(τ ′τ) ◦ ϕ̃(ττ ′′) = idXτ ′′ provided that μ(τ

′′τ ′)μ(τ
′τ)μ(ττ

′′) = λ(τ
′′τ ′τ).

We now show that these equations possess a solution. Let us fix τ ′′ = τ0. We put
μ(τ

′τ) = λ(τ0τ
′τ). Substituting we get

λ(τ0τ
′′τ ′)λ(τ0τ

′τ)λ(τ0ττ
′′)

(
λ(τ

′′τ ′τ)
)−1 = 1

which can be written as

λ(τ
′′τ ′τ)

(
λ(τ0τ

′τ)
)−1

λ(τ0τ
′′τ)

(
λ(τ0τ

′′τ ′)
)−1 = 1.

The latter equation is satisfied. Indeed, it can be shown with some algebra that the
latter equation is a consequence of the definition of the quantities λ in terms of the
mappings ϕ̄.

Our final conclusion is that there is a subcategory S of K with the same objects
and containing a single morphism for each pair of objects. Such a subcategory is far
from being unique. If

{
ϕ̃(ττ

′)} and
{
ϕ̃
′(ττ ′)} are the families of morphisms of S and

S′, respectively, we must have

ϕ̃′(
ττ ′) = λ(ττ

′)ϕ̃(ττ
′).

The conditions ϕ̃(ττ
′) ◦ ϕ̃(τ ′τ) = idτ ,ϕ̃(τ

′′τ ′) ◦ ϕ̃(τ ′τ) ◦ ϕ̃(ττ ′′) = idτ ′′ together with
the corresponding conditions for the ϕ̃′ entail the equations

λ(ττ
′)λ(τ

′τ) = 1 and λ(τ
′′τ ′)λ(τ

′τ)λ(ττ
′′) = 1.

The most general solution of these equations is given by λ(τ
′τ) = μ(τ

′)
(
μ(τ)

)−1
for

arbitrary values of the quantities μ. Indeed, the above positions satisfy identically
the equations. Conversely, if we fix τ ′′ = τ0, we get λ(τ

′τ) = λ(τ
′τ0)

(
λ(ττ0)

)−1
. The

quantities μ are defined up to an arbitrary (nonzero) common factor.
We now fix a subcategory S and introduce X̂ = ⊕τ X̂ (τ ) as the standard direct sum

of the family of free spaces X̂ (τ ). We define in it the subspace Γ generated by all the
elements of the form e(τ ) − ϕ(τ

′τ)
(
e(τ )

)
with ϕ(τ

′τ) ∈ S for arbitrary τ, τ ′ and for
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arbitrary e(τ ) belonging to the standard basis of X̂ (τ ). This subspace is independent
of the choice of S.

C.3.1 Some Properties of Tensor Products Between Linear
Spaces

Let S be a set. Let (∼,≈) be a pair of equivalence relations on S. We say that they
are a transversal pair of equivalence relations (t.p. for brevity) if the intersection of
two arbitrary equivalence classes of ∼ and ≈, respectively, is a singleton.

If p1 and p2 are the canonical projections associated with ∼ and ≈, respectively,
and S1, S2 are their images, the pair (p1, p2) is a direct product of S1 and S2. Indeed,
the Cartesian product S1 × S2 together with its natural projections π1, π2 is a direct

product. The unique mapping S
j−→ S1 × S2 defined by p1, p2 is a bijection. Further-

more, πi ◦ j = pi , so that (p1, p2) is a direct product. A pair (p1, p2) obtained in
the way described above will be called an internal direct product associated with S.

Theorem C.6 If L is a subspace of Z ⊗W consisting uniquely of indecomposable
elements, it has the form z ⊗ L ′ where z ∈ Z and L ′ is a subspace of W or L ′ ⊗ w
where w ∈ W and L ′ is a subspace of Z. The subspace L ′ is uniquely defined by L
while z (or w) is defined up to a factor. The position l ′ 
→ z ⊗ l ′ (or l ′ 
→ l ′ ⊗ w)
defines a linear space isomorphism between L ′ and L.

Proof If L is zero or one-dimensional, the thesis is obvious. Otherwise, let l1 = z1 ⊗
w1 and l2 = z2 ⊗ w2 be linearly independent elements of L . Then l = αl1 + βl2 =
αz1 ⊗ w1 + βz2 ⊗ w2 belongs to L . If z1, z2 andw1,w2 are linearly independent, we
can include z1, z2 in a basis {zα} of Z and w1,w2 in a basis

{
wμ

}
of W . Therefore,

the expansion coefficients lαμ of l are l11 = α l12 = 0 l21 = 0 l22 = β, while all the
remaining coefficients are zero. We conclude that L contains elements which are not
indecomposable. From the contradiction, we conclude that either z1, z2 or w1,w2

must be collinear. Suppose, for instance, that z1 and z2 are collinear. If we rescale
w1 and w2 we have l1 = z ⊗ w1, l2 = z ⊗ w2.

Let l ∈ L be collinear with l1 o r l2. Then it can be represented as l = z ⊗ w. If l
is not collinear with l1 and with l2, suppose that l = z′ ⊗ w with z′ not collinear with
z. Then w must be collinear with both w1 and w2. But this is impossible, because w1

and w2 are independent. Hence l = z ⊗ w. We conclude that there is z ∈ Z such that
every l ∈ L can be represented as l = z ⊗ w.

The position w 
→ z ⊗ w defines an injection W into Z ⊗W . Hence, for every
l ∈ L there is a unique w such that l = z ⊗ w. The set of such elements w is a
subspace L ′ of W , so that L = z ⊗ L ′ and the position l ′ 
→ z ⊗ l ′ defines a linear
space isomorphism between L ′ and L . If z ⊗ L ′ = z̄ ⊗ L̄ ′, then L ′ = L̄ ′ and z = λz̄.
Indeed, if x = z ⊗ l ′ = z̄ ⊗ l̄ ′, z̄ = λz and l̄ ′ = λ−1l ′. Had we supposed that w1 and
w2 are collinear, wewould have concluded that L = L ′ ⊗ wwithw ∈ W and L ′ ⊆ Z .
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C.3.2 Linear Mappings Between Tensor Products

Let X,Y, Z ,W be linear spaces. We want to find the most general form of a lin-
ear mapping T from X ⊗ Y to Z ⊗W which sends indecomposable elements into
indecomposable elements.

The mapping T is uniquely defined by its values on the set of indecomposable
elements of X ⊗ Y . For each y we define

Ty (x) = T (x ⊗ y) .

If T transforms indecomposable elements into indecomposable elements, the image
of the linear mapping Ty is a subset L of the set S of the indecomposable elements
of Z ⊗W and a linear subspace of Z ⊗W . Owing to TheoremC.6, the image of Ty

has the form L ′ y ⊗ w or z ⊗ L ′ y .
Let us consider the case when there are y and y′ such that the image of Ty has the

form L ′ y ⊗ w and the image of Ty′ has the form z′ ⊗ L ′ y′ . Hence, we can define T̂y

and T̂y′ such that Ty (x) = T̂y (x)⊗ w and Ty′ (x) = z′ ⊗ T̂y′ (x). As

Ty (x)+ Ty′ (x) = T
(
x ⊗ (

y + y′
))
,

T̂y (x)⊗ w + z′ ⊗ T̂y′ (x) is indecomposable for every x . Reasoning as in the proof
of theorem LINS, if X1 is the linear subspace of X such that T̂y (x) is collinear with
z′ and X2 is the linear subspace of X such that T̂y′ (x) is collinear with w, we must
have X1 ∪ X2 = X . This is possible only if either X1 or X2 is the whole X . Indeed,
consider the quotient space X/(X1 ∩ X2) . If u does not belong to X1/(X1 ∩ X2), it is
represented by an element not belonging to X1, so that it is represented by an element
of X2. Hence X/(X1 ∩ X2) is the point-set union of the spaces X1/(X1 ∩ X2) and
X2/(X1 ∩ X2). As there is an inclusion preserving bijection between the subspaces
of a quotient and the subspaces of the “numerator” containing the “denominator,”
the space (X1/(X1 ∩ X2) ) ∩ (X2/(X1 ∩ X2) ) corresponds to X1 ∩ X2 and thus it is
zero.Hence X/(X1 ∩ X2) is both the union and the direct sumof twoof its subspaces.
This is possible only if at least one of these spaces is zero, because otherwise the sum
of two nonzero elements belonging to different subspaces would belong to neither
subspace. We conclude that either X1 ⊆ X2 or X2 ⊆ X1, so that either X1 = X or
X2 = X .

We conclude that either the image of T̂y is the space generated by z′ or the image
of T̂y′ is the space generated by w. Consequently, either the image of Ty or the image
of Ty′ is one-dimensional. Hence, if there are y and y′ such that the image of Ty has
the form L ′ y ⊗ w and the image of Ty′ has the form z′ ⊗ L ′ y′ , there is ȳ such that
the image of Tȳ is one-dimensional, so that it is generated by an element of the form
z̄ ⊗ w̄.

Consider now an arbitrary y. The mapping Ty is either of the form T̂y (x)⊗ w or
of the form z ⊗ T̂y (x). As Ty (x)+ Tȳ (x) is indecomposable, in the first case either
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w is collinear with w̄ or the image of T̂y is generated by z̄. In the first of the latter
alternatives, by suitable rescaling of T̂y for each y we canwrite Ty (x) = Ay (x)⊗ w̄,
where Ay is a linear mapping. The dependence of Ay (x) on y is linear, so that there

is a linear mapping X ⊗ Y
A−→ Z such that Ay (x) = A (x ⊗ y).

We conclude that in the first alternative T (x ⊗ y) = A (x ⊗ y)⊗ w̄ for some
w̄ ∈ Wand some linear mapping A from X ⊗ Y to Z .

Always in the first case, but in the second alternative, T̂y (x) = λy (x) z̄ so that
we can write Ty (x) = z̄ ⊗ λy (x)w. The element λy (x)w must depend linearly on
x , so that there is a linear mapping By such that Ty (x) = z̄ ⊗ Byx . The mapping
which associates to each pair (x, y) of the element Byx is bilinear. Hence, there is a

unique linear mapping X ⊗ Y
B−→ W such that Byx = B (x ⊗ y). We conclude that

in the second alternative T (x ⊗ y) = z̄ ⊗ B (x ⊗ y) for some z̄ ∈ Z and some linear
mapping B from X ⊗ Y toW . Similar conclusions are obtained in the case when the
mapping Ty has the form z ⊗ T̂y (x).

The result of the above analysis is that, when there are y and y′ such that the image
of Ty has the form L ′ y ⊗ w and the image of Ty′ has the form z′ ⊗ L ′ y′ , either there are
w̄ ∈ W and X ⊗ Y

A−→ Z such that T (x ⊗ y) = A (x ⊗ y)⊗ w̄ or there are z̄ ∈ Z

and X ⊗ Y
B−→ W such that T (x ⊗ y) = z̄ ⊗ B (x ⊗ y). By linearity, we can say that

in the first case there are w̄ ∈ W and X ⊗ Y
A−→ Z such that T (u) = A (u)⊗ w̄ and

in the second case there are z̄ ∈ Z and X ⊗ Y
B−→ W such that T (u) = z̄ ⊗ B (u).We

can characterize both cases by saying that T is the composition of a linear mapping
from X ⊗ Y to one of the factors of Z ⊗W with the natural injection of the factor in
Z ⊗W associated with a given vector of the other. A linear mapping from X ⊗ Y to
Z ⊗W which preserves the indecomposable elements and with the above property
will be called of the first kind. Otherwise, it will be called of the second kind. The
above analysis shows that, if there are y and y′ such that the image of Ty has the form
L ′ y ⊗ w and the image of Ty′ has the form z′ ⊗ L ′ y′ , T must be of the first kind.

Suppose now that T is of the second kind. As a consequence, either the image of
Ty has the form L ′ y ⊗ w for all y or it has the form z ⊗ L ′ y for all y. Let us consider
the first case. Let us fix an element ȳ. The linearmapping Tȳ induces a linearmapping
T ′ ȳ whose image is L ′ ȳ , so that Tȳ (x) = T ′ ȳ (x)⊗ w̄ Similarly, for an arbitrary y,
Ty (x) = T ′ y (x)⊗ w. We have

Tȳ (x)+ Ty (x) = T ′ ȳ (x)⊗ w̄ + T ′ y (x)⊗ w.

But Tȳ (x)+ Ty (x) is indecomposable, so that either T ′ ȳ (x) and T ′ y (x) are collinear
or w̄ and w are collinear. Let us fix a value x̄ of x . Put z̄ = T ′ ȳ (x̄). As Ty (x̄) is linear
with respect to y, T ′ y (x̄) enjoys the same property, so that the subset Y1 of Y whose
elements y are such that T ′ y (x̄) is collinear with z̄ is a linear space. On the other
hand, the subset Y2 of Y whose elements y are such that w is collinear with w̄ is
a linear space. Indeed, let Ty1 (x) = T ′ y1 (x)⊗ λ1w̄ and Ty2 (x) = T ′ y2 (x)⊗ λ2w̄.
Then
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Tαy1+β y2 (x) = αT ′ y1 (x)⊗ λ1w̄ + βT ′ y2 (x)⊗ λ2w̄ =
(
αλ1T

′
y1 (x)+ βλ2T

′
y2 (x)

)⊗ w̄.

We conclude that either w is collinear with w̄ for all y or T ′ y (x̄) is collinear with
z̄ for all y. In the first alternative, we get Ty (x) = T ′ y (x)⊗ λyw̄. For each y, we
can rescale T ′ y , so that we get Ty (x) = T ′ y (x)⊗ w̄. T ′ y depends linearly on y, so

that there is a linear mapping X ⊗ Y
A−→ Z such that T (x ⊗ y) = A (x ⊗ y)⊗ w̄.

But in this case T is of the first kind. Hence, the only alternative for a mapping of
the second kind is that T ′ y (x̄) is collinear with z̄ for all y. In this alternative, we can
write T ′ y (x̄) = λy (x̄) z̄.

Remembering the definition of z̄, we get T ′ y (x̄) = λy (x̄) T ′ ȳ (x̄) and, owing to
the linearity of T ′ y , λy does not depend on x̄ . Hence we have Ty (x̄) = λy z̄ ⊗ w. For
each y, we can rescalew, so that wewrite Ty (x̄) = z̄ ⊗ w. The left-hand side depends

linearly on y. Hence, there is a linear mapping Y
V−→ W such that Ty (x̄) = z̄ ⊗ V y.

If we let x̄ vary in X , the left-hand side depends linearly on x̄ . This entails that

there is a linear mapping X
U−→ Z such that T (x ⊗ y) = Ux ⊗ V y. This means that

T = U ⊗ V . If we exploit the canonical isomorphism W ⊗ Z
η−→ Z ⊗W , the sec-

ond case can be reduced to the first, so that we have T = η ◦ (U ⊗ V ), where now

X
U−→ W and Y

V−→ Z .

In order to summarize the results of the above analysis, we introduce the following
notations and definitions. If Z andW are linear spaces, and z ∈ Z ,w ∈ W , we denote
ιw the injection

Z
ιw−→ Z ⊗W

defined by the position z 
→ z ⊗ w and ιZ the injection

W
ιz−→ Z ⊗W

defined by the position w 
→ z ⊗ w.

Definition C.2 If X ⊗ Y
T−→ Z ⊗W is a linear mapping which preserves indecom-

posable elements, we say that T is of the first kind if there are a linear mapping

X ⊗ Y
A−→ Z and w ∈ W such that T = ιw ◦ A or a linear mapping X ⊗ Y

B−→ W
and z ∈ Z such that T = ιz ◦ B.

Definition C.3 If X ⊗ Y
T−→ Z ⊗W is a linear mapping which preserves indecom-

posable elements, we say that T is of the second kind if it is not of the first kind.

Theorem C.7 Every mapping T of the second kind is the tensor product U ⊗ V of

X
U−→ Z andY

V−→ W or the composition η ◦ (
U ′ ⊗ V ′

)
of the tensor productU ′ ⊗ V ′

of X
U ′−→ W and Y

V ′−→ Z with the canonical isomorphism W ⊗ Z
η−→ Z ⊗W.
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Remark C.2 In the particular case of a surjective linear mapping which preserves
indecomposable elements, this mapping is necessarily of the second kind (provided
that Z ⊗W is not trivial). Indeed in this case ιw (or ιz) is strictly injective.

Suppose now that there is a linear space isomorphism T between X ⊗ Y and
Z ⊗W preserving indecomposable elements. A necessary condition for its existence
is that X ⊗ Y and Z ⊗W have the same dimension. Furthermore, on the basis of
the above remark, it must be of the second kind. Consider the first case of Theorem
II SP. Both U and V must be isomorphisms. Indeed, the dimension of the image
of U ⊗ V is the product of the dimensions of the images of U and V , so that if at
least one of them is not surjective, the dimension of this image is strictly lower than
the dimension of Z ⊗W . Furthermore, if the kernel of U or V is nonzero, U ⊗ V
too has a nontrivial kernel. Conversely, if U and V are isomorphisms, U ⊗ V is an
isomorphism. Reasoning in the same way after having exchanged the roles of Z and
W , we conclude that U ′ and V ′ are isomorphisms. Hence we obtain the following.

Theorem C.8 If X ⊗ Y
T−→ Z ⊗W is a bijective linear mapping which preserves

indecomposable elements, it is the tensor product U ⊗ V of X
U−→ Z and Y

V−→ W
where U and V are isomorphisms, or the composition η ◦ (

U ′ ⊗ V ′
)
of the tensor

product U ′ ⊗ V ′ of X U ′−→ W and Y
V ′−→ Z with the canonical isomorphism W ⊗

Z
η−→ Z ⊗W where U ′ and V ′ are isomorphisms.
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D.1 Hilbert Spaces

It is useful1 to regard the Hilbert spaces as members of the category of linear spaces
over C. We recall that the objects of this category are the linear spaces themselves
and that the morphisms are the linear maps. We first observe that C can be regarded
as a linear space over itself. The elements of Hom (L ,C) (i.e., the linear functionals
on the linear space L) form a set Ld which has the natural structure of a linear space.
We will therefore put Ld = Hom(L ,C) and equip it with this structure. We recall
that Ld is called the (algebraic) dual of L .

If M is a linear space and ϕ ∈ Hom (L ,M), we can define ϕd ∈ Hom
(
Md , Ld

)

as follows. If z ∈ Md , z ◦ ϕ ∈ Ld . The corresponding mapping from Md to Ld (for
given ϕ) is linear and we denote it ϕd . This mapping will be called the transpose of
ϕ. Furthermore, ϕd depends linearly on ϕ. Consequently, a canonical linear mapping
is defined from Hom (L ,M) to Hom

(
Md , Ld

)
, but for infinite-dimensional spaces

it is not an isomorphism. It is easy to prove the following rule of calculation:

if ϕ ∈ Hom (L ,M) and ψ ∈ Hom (M, N ) , (ψ ◦ ϕ)d = ϕd ◦ ψd .

A Hilbert space H is a linear space over C equipped with a scalar product 〈 | 〉
which is a Banach space under the norm ‖x‖ = (〈x |x〉)1/2. We recall the algebraic
properties of the scalar product:

〈λx |y〉 = λ∗ 〈x |y〉 , 〈x |λy〉 = λ 〈x |y〉 , 〈y|x〉 = 〈x |y〉∗ .

1The content of this chapter can be found in the Campanella’s files qubit1 (03/08/2011), measure-
ments (26/10/2011), stabilizer (25/05/2014)

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2020
M. Campanella et al., Interpretative Aspects of Quantum Mechanics,
UNIPA Springer Series,
https://doi.org/10.1007/978-3-030-44207-1
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Furthermore, the scalar product is additive with respect to each argument. The norm
induces in H a topology. IfC is equipped with its standard topology, we can select in
Hd the subset H∗ of the continuous functionals of H , which is a linear space. This
space will be called the topological dual of H . In what follows, unless differently
specified, the dual of a Hilbert space must be understood as the topological dual.

D.1.1 Linear Mappings Between Hilbert Spaces

Two basic facts are known from functional analysis. The first is that a linear map-
ping from a Hilbert space H to a Hilbert space K is continuous (with respect to
their norm-induced topologies) if and only if it is bounded. In particular, a linear
functional on a Hilbert space is continuous if and only if it is bounded. The second
is the Riesz representation theorem which states the following.

Riesz Representation Theorem: In a Hilbert space H , for each bounded functional
ϕ on H there is a unique x ∈ H such that ϕ = 〈x | 〉. Furthermore, for each x ∈ H
the linear functional 〈x | 〉 is bounded.

An immediate consequence of this theorem is that for a Hilbert space H there
is a canonical bijection between H and H∗. The element of H∗ which corresponds
to x ∈ H will be denoted with x∗ and is called the conjugate of x . This canonical
bijection is additive, and furthermore (λx)∗ = λ∗x∗. When a mapping enjoys such
properties, we say that it is antilinear. In our case, the mapping is bijective and
consequently we say that it is an anti-isomorphism.

A mapping f from a normed space X to a normed space Y is called an isometry
if it preserves the norm, that is, if ‖ f (x)‖ = f (‖x‖), ∀x ∈ X .

We now prove the following theorem.

Theorem D.1 There is on H∗ a unique structure of Hilbert space such that ∗ is an
antilinear isometry. The scalar product for this structure is defined by

〈
x∗|y∗〉H∗ = 〈y|x〉 .

Proof We will base the proof on the following lemma.

Lemma D.1 If X is a Hilbert space and 〈 | 〉′ is a scalar product such that the
identity map ι is an isometry between the normed spaces (X, ‖ ‖) and (X, ‖ ‖′), then
〈 | 〉 = 〈 | 〉′.
Proof of the Lemma: Owing to the assumption that ι is an isometry, we must have
〈x |x〉 = 〈x |x〉′. Using the properties of the scalar product, it is easy to prove the
following identity:

〈x |y〉 = − 1
4 (〈x − y|x − y〉 − 〈x + y|x + y〉 + 〈x − iy|x − iy〉 − 〈x + iy|x + iy〉)
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so that 〈 | 〉 is uniquely defined by ‖ ‖. Therefore ‖ ‖ = ‖ ‖′ ⇒ 〈 | 〉 = 〈 | 〉′. �

Proof of the theorem: We define 〈x∗|y∗〉H∗ = 〈y|x〉H . We have:

〈
x∗|λ (

y∗
)〉

H∗ =
〈
x∗|(λ∗y)∗〉

H∗ =
〈
λ∗y|x 〉

H
= λ〈y|x〉H = λ

〈
x∗|y∗〉

H∗ .

Thus 〈 | 〉H∗ is linear with respect to the right argument. In a similar way, it can be
shown that it is antilinear with respect to the left argument. The other axioms of a
scalar product are obviously satisfied. Furthermore, we have

∥
∥x∗

∥
∥
H∗ =

〈
x∗|x∗〉1/2H∗ = 〈x |x〉1/2H = ‖x‖H

so that ∗ is indeed an isometry. Finally, if ‖ ‖′H∗ is the norm induced by another
scalar product 〈 | 〉′H∗ , we must have ‖x∗‖′H∗ = ‖x‖H = ‖x∗‖H∗ so that, using the
lemma, 〈 | 〉′H∗ must be equal to 〈 | 〉H∗ . �

In what follows, it will be understood that the dual of a Hilbert space is a Hilbert
space with the scalar product introduced above.

A twofold application of ∗ to H defines a canonical isomorphism between H and
H∗∗. Passing to the quotient category modulo all these isomorphisms, we identify
each Hilbert space with its double dual, so that (x∗)∗ = x . We have

x∗∗
(
z∗

) = 〈
x∗|z∗〉H∗ = 〈z|x〉 .

Therefore, the vector x is identified with a linear functional over H∗, and we write
x (z∗) = 〈z|x〉.

Let H and K be Hilbert spaces. If ϕ ∈ Hom (H, K ), then ϕd ∈ Hom
(
Kd , Hd

)

is uniquely defined. It is not true in general that the restriction of ϕd to K ∗ has its
image in H∗ but, if it does, a linear mapping from K ∗ to H∗ is defined. It can be
shown that this happens if and only if ϕ is bounded. Henceforth, we suppose, unless
differently specified, that all morphisms and antimorphisms between Hilbert spaces
are bounded.

With an abuse of notation, we continue to denote Hom (H, K ) the space of
bounded linear maps from the Hilbert space H to the Hilbert space K . So, in the cat-
egory ofHilbert spaces, themorphismswill be taken as the bounded linearmaps.With
these specifications in mind, the restriction of ϕd to K ∗ belongs to Hom (K ∗, H∗).
This restriction will be denoted ϕ̂ and we continue to call it the transpose of ϕ. The
association of ϕ̂ with each ϕ defines a canonical linear map from Hom (H, K ) to
Hom (K ∗, H∗).

If we define
ϕ∗ = (∗) ◦ ϕ̂ ◦ (∗) ,

we obtain an element of Hom (K , H). The association of ϕ∗ with each ϕ defines a
canonical antilinear map from Hom (H, K ) to Hom (K , H). We call ϕ∗ the Her-
mitean conjugate (or also the adjoint) of ϕ. We easily obtain the calculation rule
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(ϕ1ϕ2)
∗ = ϕ2

∗ϕ1∗.

We now introduce the bra-ket notation. If f ∈ H∗, there is a unique x ∈ H such
that f (y) = 〈x |y〉 ,∀y ∈ H , so that it is natural to put f ( ) = 〈x | 〉 or else f = 〈x |.

In the following, this will be the notation for an element of H∗. Comparing the
previous notation with the actual one, we have x∗ = 〈x |. Furthermore, the identi-
fication of H with H∗∗ leads to the equation x (z∗) = 〈z|x〉, which can be written
x (〈z|) = 〈z|x〉 in the new notation for the elements of H∗. It is then natural to put
x = |x〉.

If H is a Hilbert space, an element of it will be henceforth called a ket and denoted
|x〉, while an element of H∗ will be called a bra and denoted 〈z|. In this notation,
|x〉∗ = 〈x |. From |x〉∗∗ = |x〉 we derive 〈x |∗ = |x〉. We have 〈x |y〉 = 〈|x〉 | |y〉〉.

Of course, the angular brackets are referred to the scalar product in H , so that
we should write more precisely H 〈x | and |y〉H . Such a level of specification is
sometimes important. For example, |x〉H is a vector of H and H 〈x | the corresponding
bra, regarded as a linear functional of H , but the same element can be regarded as
a vector of H∗ and it must consistently be written as a ket of H∗, so that we must
write H 〈x | = |x〉H∗ . But 〈y∗|x∗〉H∗ = 〈x |y〉H , and x∗ = |x〉H∗ , y∗ = |y〉H∗ , so that
we obtain

H∗ 〈y|x〉H∗ = H 〈x |y〉H .

The anti-isomorphism |x〉H 
→ H 〈x | can be rewritten as |x〉H 
→ |x〉H∗ , so that we
have |x〉∗H = |x〉H∗ . A useful mnemonic for these rules is that

|�〉∗H = H 〈�| and |�〉∗H = |�〉H∗ .

In this case, the complete notation is essential. However, we will use the simplified
notation when no ambiguity can arise.

Let ϕ be an element of Hom (H, K ); the element ϕ̂ belongs to Hom (K ∗, H∗);
if 〈y| ∈ K ∗ the composition of maps 〈y| ◦ ϕ is a functional of H that is nothing
but ϕ̂ (〈y|). If we omit the symbol for the composition of maps, we can describe the
action of ϕ̂ as follows:

K ∗
ϕ̂−→ H∗ : 〈y| 
→ 〈y|ϕ.

We have therefore the rule ϕ̂ (〈y|) = 〈y|ϕ.

Using the above notation, the same symbol corresponds to two different objects:
when it operates on the left, it represents some morphism, while when it operates
on the right, it represents its transpose. In order to avoid ambiguities, we use the
convention that the specification of the source and of the target refers to the action
on the left. Namely, if we write ϕ ∈ Hom (H, K ) we intend that when ϕ acts on the
left on an element of H , it produces an element of K , while its action on the right
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on an element of K ∗ produces an element of H ∗ according to the transpose mapping.

Let us now consider ϕ∗ = (∗) ϕ̂ (∗). It operates as follows:

|y〉 
→ 〈y| 
→ 〈y|ϕ 
→ ϕ∗ |y〉 .

If we put |z〉 = ϕ∗ |y〉, then 〈z| = 〈y|ϕ. It is easy to see that ϕ∗∗ = ϕ, so that we also
have

|z〉 = ϕ |y〉 ⇒ 〈z| = 〈y|ϕ∗.

We emphasize that in the above equation ϕ∗ operates on the right, so its action is that
of the transpose morphism.

Summarizing, if ϕ ∈ Hom (H, K ), ϕ∗ ∈ Hom(K , H), but the action of ϕ∗ on the
left leads from K to H and the action of ϕ∗ on the right leads from H∗ to K ∗.

The complex field, as already observed, can be regarded as a linear space over
C. This means that C is regarded as a C-module, i.e., as the additive group C

whose selected endomorphisms are the homotheties c 
→ λc, c ∈ C, λ ∈ C. This
linear space will be denoted LC. We can introduce in it a natural scalar product〈
c|c′〉 = c∗c′, and it becomes of course a Hilbert space under this product. This space
will be denoted HC. A linear functional on HC is uniquely expressed through the posi-
tion c→ a∗c for some a ∈ HC. This position defines the canonical anti-isomorphism
between HC and its dual HC

∗. As the underlying set of HC is C, we can consider the
identity map of HC as a map from HC to C, which is obviously linear, so that this
map is an element of HC

∗. The corresponding ket is nothing but the unit element
of the field C, considered as an element of HC. The space HC is obviously one-
dimensional. The unit element of C is a selected orthonormal basis of HC. Every

x ∈ HC can be uniquely represented as x = c1, c ∈ C. The identity map C
id−→ HC

is an isomorphism of additive groups. If we define a product in HC according to the
rule c1 · c′1 = cc′1, HC becomes a field and id an isomorphism of fields.

More generally, let us consider a one-dimensional Hilbert space. By restriction
of scalars to R we obtain a linear space L over R. If w is a nonzero vector, every
z ∈ H can be written in a unique way as z = (x + iy)w = xw + y (iw), so that L is
two-dimensional. The expression Re

〈
z|z′〉 defines a scalar product in L . Therefore,

L is equipped with a structure of real Hilbert space. The norms of the two spaces
are the same. The expression Im

〈
z|z′〉 defines a bilinear skew-symmetric form. The

angle ϑ between the vectors z and z′ (with 0 ≤ ϑ ≤ π ) is defined by

cosϑ = Re〈z|z′〉
〈z|z〉1/2 〈z′|z′〉1/2

It can be regarded as an orientedEuclidean planewith a selected circle.CH is obtained
by selecting a point on this circle.
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We may also consider an oriented Euclidean plane with a selected point. The
orbit of each point under its structure group is a circle around the selected point.
It becomes a Hilbert one-dimensional space as long as a specific circle around the
selected point is chosen.

If H is a Hilbert space, its dual can be regarded as Hom(H,CH ). In this way, each
bra is the adjoint of a well-defined ϕ ∈ Hom (CH , H). We can then write 〈x | = ϕ∗.
Let us denote |1〉 the selected vector in CH . The corresponding bra is the map CH

ι−→
C which operates as identity on the underlying set. The bra corresponding to ϕ |1〉
is ιϕ∗ = 〈x |. We conclude that |x〉 = ϕ |1〉.

We can therefore associate in a unique way an element of Hom (CH , H) with
each ket of H and its adjoint with the corresponding bra. In this way, the elements
of a Hilbert space (kets) can be represented by morphisms starting from CH , while
their corresponding bras are represented bymorphisms arriving atCH . The canonical
anti-isomorphism corresponds to the passage to the adjoint morphism. If |y〉 = ψ |1〉
and |x〉 = ϕ |1〉, 〈x |y〉 = ϕ∗ψ |1〉.

If H = CH , each element ofCH is represented by an element of Hom (CH ,CH ),
i.e., as an element of C regarded as a multiplier. We can write |c〉 = c |1〉. In this
representation, CH is identified with C

∗
H . Therefore, besides the canonical anti-

isomorphism betweenCH andC
∗
H (which in this representation corresponds to com-

plex conjugation), there is a canonical isomorphism which in this representation
corresponds to identity.

Let ϕ ∈ Hom (H,CH ). Its transpose is an element of Hom
(
C
∗
H , H

∗), that is, an
element of Hom (CH , H∗). According to the rules involving the transpose,

ϕ̂ (〈c|) = 〈c|ϕ.

D.1.2 Tensor Products. Universal Property

Let us now come to tensor products between linear spaces. If L , M , and N are linear
spaces, a mapping from L × M to N is called bilinear if it is linear with respect to
each of its arguments. It is well known that, for given L and M , there is a linear space
L ⊗ M together with a bilinear mapping ⊗ from L × M to L ⊗ M such that every
bilinear mapping ψ from L × M to any N can be uniquely factorized as ψ = ϕ ◦ ⊗
where ϕ is a linear mapping from L ⊗ M to N . The space L ⊗ M is determined up
to isomorphisms and is called the (algebraic) tensor product of L and M .

A specific construction of L ⊗ M is well known. Starting from the set L × M
we build the free linear space over L × M (i.e., the linear space of all formal finite
linear combinations of elements of L × M with coefficients in C), then we pass to
the quotient linear space modulo the subspace generated by all elements of the form
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(l + l ′,m)− (l,m)− (l ′,m),

(l + l ′,m)− (l,m)− (l ′,m),

(λl,m)− λ(l,m),

(λl,m)− λ(l,m),

with m,m ′ ∈ M, n, n′ ∈ N , λ ∈ C. This particular realization of L ⊗ M will be
called the standard tensor product. Unless differently specified, by (algebraic) tensor
product of two linear spaces we will understand their standard tensor product.

We observe that there is a canonical isomorphism between L ⊗ M and M ⊗ L .
In fact ⊗ for the second tensor product can be regarded a bilinear map from L × M
to M ⊗ L , so that there is a unique associated linear map from L ⊗ M to M ⊗ L . By
repeating this argumentation with the roles of L and M interchanged, we conclude
that this map is an isomorphism. The property of the tensor product of uniquely
associating a linear map to an arbitrary bilinear map of fixed domain is known as the
universal property. The elements of the tensor product admitting a representation
l ⊗ m are called indecomposable.

We now define the tensor product of two Hilbert spaces. Let H, K be Hilbert
spaces and consider their tensor product H ⊗ K as linear spaces. For indecomposable
elements h ⊗ k and h′ ⊗ k ′, we define their scalar product as

〈
h ⊗ k|h′ ⊗ k ′

〉 = 〈
h|h′〉 〈k|k ′〉 .

As any element of H ⊗ K can be expressed as a finite sum
∑

i
hi ⊗ ki , we can

extend the definition to the whole space by bi-additivity. The completion of the pre-
Hilbertian space so obtained is by definition the (topological) tensor product of the
given Hilbert spaces. It is obvious that the canonical isomorphism between H ⊗ K
and K ⊗ H as algebraic tensor products is inherited by their topological counterparts.

A natural question now arises: in what measure the universal property of tensor
products for linear spaces can be extended to Hilbert spaces?

Let H, K be Hilbert spaces. It is natural to consider only continuous bilinear

maps. If H × K
Υ−→ L is a bilinear map toward a Hilbert space L , we say that Υ is

bounded if there is M > 0 such that

‖Υ (|x〉 , |y〉)‖ < M ‖x‖ ‖y‖ ∀ |x〉 ∈ H, |y〉 ∈ K .

The natural topology of H × K as a Cartesian product is the product topology,
which is induced by the norm ‖x‖ + ‖y‖, while its topology as direct sum H ⊕ K

is induced by the Hilbert space norm ‖(|x〉 , |y〉)‖ = (‖x‖2 + ‖y‖2)1/2.
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Suppose that a sequence (|xn〉 , |yn〉)→ (|x〉 , |y〉) in the product topology. This
means that for any ε > 0 there is a natural N such that

‖ |xn〉 − |x〉‖ + ‖ |yn〉 − |y〉‖ < ε for n > N .

But
(〈xn − x |xn − x〉 + 〈yn − y|yn − y〉)1/2 ≤ ‖xn − x‖ + ‖yn − y‖ ,

so that (|xn〉 , |yn〉)→ (|x〉 , |y〉), in the Hilbert space topology. Vice versa, suppose
that (|xn〉 , |yn〉)→ (|x〉 , |y〉) in the Hilbert space topology. As

‖xn − x‖ + ‖yn − y‖ ≤ 2max (‖xn − x‖ , ‖yn − y‖) ≤ 2
(
‖xn − x‖2 + ‖yn − y‖2

)1/2
,

(|xn〉 , |yn〉)→ (|x〉 , |y〉) in the product topology.Therefore, the two topologies coin-
cide.

We now show that, if Υ is bounded, it is continuous. Indeed, we have

‖Υ (xn, yn)− Υ (x, y)‖ = ‖Υ (xn − x, yn)+ Υ (x, yn)− Υ (x, y)‖ .

But Υ (xn − x, yn) = Υ (xn − x, yn − y)+ Υ (xn − x, y). Therefore, we have

‖Υ (xn, yn)− Υ (x, y)‖ = ‖Υ (xn − x, y)+ Υ (x, yn − y)+ Υ (xn − x, yn − y)‖ ,
whence

‖Υ (xn, yn)− Υ (x, y)‖ ≤ M ‖xn − x‖ ‖y‖ + M ‖x‖ ‖yn − y‖ + M ‖xn − x‖ ‖yn − y‖ ,

from which we see that Υ is continuous. Conversely, suppose that Υ is continuous.
Let us consider its restriction to S × S′, where S and S′ are the unit spheres of H
and K . As they are compact, ‖Υ ‖ has a maximum; therefore, the bilinearity implies
the boundedness of Υ .

We now afford the question of the universality of the tensor product of two Hilbert

spaces. Let H, K , andL beHilbert spaces and H × K
Υ−→ L a bounded bilinear map.

Let us for the moment H⊗AK denote the algebraic tensor product. If there is a
continuous linear mapping H ⊗ K

ϕ−→ L such that Υ = ϕ ◦ ⊗, its restriction ϕ|A to
H⊗AK is uniquely defined by the universality property of algebraic tensor products,
and it satisfies Υ = ϕ|A ◦ ⊗. As H⊗AK is dense in H ⊗ K , each w ∈ H ⊗ K is the
limit of some sequence wn ∈ H⊗AK . The continuity of ϕ implies that ϕ (w) =
lim
n→∞ϕ|A (wn). Therefore, if ϕ exists, it is unique. Let us show now that ϕ exists. We

first get a unique ϕA from Υ by virtue of the universality property of the algebraic
tensor product; the domain of ϕA is the algebraic tensor product. The boundedness
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of Υ implies that of ϕA; therefore, the latter can be extended to H ⊗ K which is the
adherence of H⊗AK . In this way, we have proved the following theorem.

Theorem D.2 The tensor product of two Hilbert spaces satisfies the universality

property, that is, for every bounded bilinear mapping H × K
Υ−→ L there is a unique

bounded linear mapping H ⊗ K
ϕ−→ L such that Υ = ϕ ◦ ⊗.

D.2 Canonical Factorization

Another important item which will be useful in the following is the canonical
factorization of a morphism. We recall that, if L and M are linear spaces and
ϕ ∈ Hom (L ,M), the following unique factorization holds:

L
π−→ L/ker ϕ

ϑ−→ Im ϕ
ι−→ M,

where π is the canonical projection over the quotient space, ϑ is an isomorphism,
and ι the insertion morphism.

If L = H and M = K are Hilbert spaces, we want to introduce scalar products
in L/ker ϕ and in Im ϕ in such a way that they become Hilbert spaces and all
the morphisms are continuous. To this purpose the following considerations will be
useful.

If Y is a Hilbert space and X
ι−→ Y is an injective linear mapping whose image is a

closed subspace of Y , there is a unique scalar product in X such that ι is an isometry
with respect to the induced norm in X . This unique scalar product is defined by
〈x1|x2〉 = 〈ι (x1) |ι (x2)〉. Furthermore X is complete, so that it becomes a Hilbert
space.

Once a structure of Hilbert space has been defined in X , we can rewrite the isome-
try condition as 〈x1|x2〉 = 〈x1| ι∗ι |x2〉, so that ι∗ι = I dX . The operator ιι∗ acting on Y
is self-adjoint; furthermore, ιι∗ιι∗ = ιι∗, so that it is a projector of Y . The eigenspace
of ιι∗ associated with the eigenvalue 0 is characterized by the equation ιι∗ |y〉 = 0.
Multiplying on the left by 〈y| we get 〈y| ιι∗ |y〉 = 0, which implies 〈y| ι = 0. Vice
versa, 〈y| ι = 0 implies ι∗ |y〉 = 0 and then ιι∗ |y〉 = 0. We therefore have

ιι∗ |y〉 = 0 ⇔ 〈y| ι = 0⇔ ∀ |z〉 ∈ Y 〈y| ι |z〉 = 0.

This means that the null space of ιι∗ is nothing but Im(ι)⊥. Then the other eigenspace
of the projector is Im(ι), so that ιι∗ projects on Im(ι). The following lemma will
prove useful.

Lemma D.2 If L
π−→ M is a surjective linear mapping, its transpose Md πd−→ Ld is

injective.
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Proof If z ∈ Md and y ∈ L , thenπd (z) (y) = z (π (y)). Asπ is surjective,πd (z) =
0⇒ z = 0 so that πd is injective.

If L and M are Hilbert spaces, we have the following.

Lemma D.3 If L
p−→ M is surjective, M

p∗−→ L is injective, and if L
ι−→ M is injec-

tive, M
ι∗−→ L is surjective.

Proof If p∗ |x〉 = 0, then 〈y| p∗ |x〉 = 0∀ |y〉 ∈ L , that is, 〈x | p |y〉 = 0∀ |y〉 ∈ L .
But p |y〉 is an arbitrary vector of M , so that |x〉 = 0. We have ι∗ι = I dL , so that
|x〉 = ι∗ι |x〉 ∀ |x〉 ∈ L and then ι∗ is surjective.

Let us suppose now that L is a Hilbert space and L∗ ⊆ Ld its topological dual.
We also suppose that L is a Hilbert space, M is a linear space, L

π−→ M is surjective,
and ker π is a closed subspace of L . Define

M̃ = (
πd

)−1 (
L∗

)
.

The restriction η of πd to M̃ is an injective linear mapping M̃
η−→ L∗. As a conse-

quence of the assumption that ker π is closed, it can be shown that Im η is a closed
subspace of L∗. Therefore, a unique structure of Hilbert space exists in M̃ such
that η is an isometry. The corresponding scalar product is 〈u|v〉M̃ = 〈η (u) |η (v)〉L∗
∀u, v ∈ M̃ . The adjoint η∗ of η is surjective and leads from L∗ to M̃ . But M̃ is con-
tained in Md , so that each x ∈ M̃ is a functional of M . Therefore, a bilinear mapping

M̃ × M
Υ−→ C is defined as Υ (x, y) = x (y) ∀x ∈ M̃, y ∈ M . For each y ∈ M , a

linear functional of M̃ arises, i.e., Υ ( , y). It can be shown that this functional is
bounded, so that a linear map from M to M̃∗ is defined.

Vice versa, if 〈u| ∈ M̃∗, a bounded linear functional ũ of M̃ is defined. But η (̃u) ∈
L∗, i.e., it is a bra 〈%u|, so that |%u〉 ∈ L and π(|%u〉) ∈ M . There is then a bijection
between M̃∗ and M . This bijection is manifestly antilinear. If we compose it with the
standard anti-isomorphism between M̃ and M̃∗, we get a linear space isomorphism
between M and M̃ .

The construction outlined above shows that this isomorphism is canonical. By
means of this isomorphism we can carry the Hilbert space structure from M̃ to M .
We have just proved the following.

Theorem D.3 If L
π−→ M is a surjective linear mapping, L is a Hilbert space and

ker π is a closed subspace of L, there is a unique Hilbert space structure on M such
that the restriction of πd to

(
πd

)−1
(L∗) is an isometry.

Let us consider the adjoint morphism π∗. We recall that π∗ = (∗) π̂ (∗), where π̂
is the restriction of πd to M∗. Let |y〉 be a ket of M . The passage to 〈y| is isometric.
This bra is a bounded functional of M , that is, an element of M̃ ; we recognize that
π̂ in our case is nothing but η which is an isometry. The final application of (∗) does
not change the norm. We conclude that π∗ is an isometry. We can therefore write
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that 〈y|ππ∗ |y〉 = 〈y|y〉 ∀y ∈ M . Observing thatππ∗ is self-adjoint, we deduce that
ππ∗ = I dM .

Furthermore, also π∗π is self-adjoint, and π∗ππ∗π = π∗π , so that π∗π is a pro-
jector operating in L . The eigenspace of this projector associated with the eigenvalue
zero is ker π , while the eigenspace associated with 1 is its orthogonal complement,
so that π∗π projects on ker π⊥. The whole L is the direct sum of these subspaces. If
υ is the insertion of ker ϕ⊥ in L , πυ is a canonical isometry between ker ϕ⊥ and M .

We can summarize all the previous considerations in the following.

Theorem D.4 If X
ι−→ Y is an injective linear mapping, Y is a Hilbert space and

Im ι is closed in Y , there is in X a unique structure of Hilbert space such that ι is an
isometry. With respect to this structure ι∗ι = I dX and ιι∗ is a projector acting on Y
and projecting on Im ι.

If L
π−→ M is a surjective linear map, L is a Hilbert space and ker π is closed in

L, there is in M a unique structure of Hilbert space such that π∗ is an isometry. We
have ππ∗ = I dM and π∗π is a projector acting on L and projecting on ker π⊥. If υ
is the insertion of ker π⊥ in L, πυ is a canonical isometry between ker π⊥ and M.

Returning to the canonical factorization, and remembering that π is surjective
and ι is injective, we will equip L/ker ϕ and Im ϕ with their natural structures of
Hilbert spaces, so that all the morphisms in the factorization will be here on regarded
as Hilbert space morphisms. In particular, their adjoints are defined and they will be
very useful in the following.

Wewill now prove the following theoremwhich establishes a connection between
tensor products and morphisms.

Theorem D.5 There is a canonical linear space injective morphism from the tensor
product H ⊗ K to Hom (H∗, K ). There is a unique structure of Hilbert space on
its image such that this injection is an isometry.

Proof For the universal property of the tensor product, there is a canonical linear
space isomorphism between the space of bounded linear functionals of H ⊗ K and
the space of bounded bilinear maps of H × K in C. But each linear bounded func-
tional of H ⊗ K is a bra whose associated ket depends antilinearly on the functional.
In this way, we get a canonical anti-isomorphism between H ⊗ K and the space of
bounded bilinear maps of H × K in C and hence an isomorphism between H ⊗ K
and the linear space of the conjugate maps. These maps are bi-antilinear. For each
map, the assignment of any vector |x〉 of H defines a bounded antilinear functional
of K , that is, a ket of K . This functional (i.e., the ket) depends antilinearly on |x〉
and linearly on the corresponding bra 〈x |, and it can be shown that this dependence
is continuous, so that we get an element of Hom (H∗, K ). If we multiply an ele-
ment of H ⊗ K by a scalar, the corresponding conjugate map is multiplied by the
same scalar, so that, for given 〈x |, the ket is multiplied again by the same scalar.
We conclude that the mapping between H ⊗ K and Hom (H∗, K ) is a linear space
morphism, which is injective. The unique structure of Hilbert space of the image is
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obtained trivially by transferring the scalar product. In the canonical injection, the
ket |h〉 ⊗ |k〉 goes in the morphism

H∗ |h〉|k〉−−→ K : 〈x | 
→ 〈x |h〉 |k〉 ,

so that
〈|h〉 |k〉 | ∣∣h′〉 ∣∣k ′〉〉 = 〈

h|h′〉 〈k|k ′〉. �

Remark D.1 The image of the canonical injection is the adherence in Hom (H∗, K )
of the subspace of Hom (H∗, K )whose elements are of finite rank. This adherence is
itself a subspace of Hom (H∗, K ) and it will be called the space of Hilbert–Schmidt
mappings. We will denote this space HS (H∗, K ). We observe that if the Hilbert
spaces involved are finite-dimensional, HS (H∗, K ) = Hom (H∗, K ).

D.3 Hilbert–Schmidt Spaces

Let ϕ be an element of HS (H∗, K ). Its adjoint is an element of HS (H∗, K ) and the
transpose of the latter is an element of HS (H∗, K ). The composition of these two
operations is an anti-isomorphism. Furthermore, there is a canonical isomorphism
between H ⊗ K and K ⊗ H . From the above considerations, the following theorem
is derived.

Theorem D.6 There are canonical isomorphisms among H ⊗ K, K ⊗ H,
HS (H∗, K ) and among (H ⊗ K )∗, (K ⊗ H)∗, H S (H, K ∗). There are canoni-
cal anti-isomorphisms between each element of the first set and each element of the
second.

As the above statements hold for arbitrary H and K , replacing them with H∗ and
K ∗, respectively, we get a canonical isomorphism between H∗ ⊗ K ∗ and (H ⊗ K )∗.

It is convenient to introduce an efficient notation for morphisms based on bra-ket
symbolism.

Let us first consider a particular kind ofmorphismϕ ∈ HS (H, K )whose image is
a one-dimensional subspace of K . Let |k〉 be a generator of this subspace. If |x〉 ∈ H ,
ϕ |x〉 is proportional to |k〉 according to some coefficient which depends linearly and
continuously on |x〉. There is therefore a bra 〈h| ∈ H∗ such thatϕ |x〉 = |k〉 〈h|x〉.We
can then introduce the notation ϕ = |k〉 〈h|. The ket |k〉 is defined up to a coefficient
but, if we multiply |k〉 by a factor, we must divide 〈h| by the same factor in order to
preserve ϕ. A morphism of this type will be henceforth called an indecomposable
morphism.

We know that the action of ϕ on the right defines the transpose. It is easy to check
that the above notation for ϕ is consistent, i.e., that the position 〈x | 
→ 〈x |k〉 〈h|
defines the transpose.

We have 〈x |ϕ∗ = 〈x |h〉 〈k|, so that (|k〉 〈h|)∗ = |h〉 〈k|.
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As a consequence of the isomorphism between tensor products and spaces of
morphisms, an arbitrary ϕ can always be expanded as a (perhaps infinite) sum
ϕ =∑

α

|kα〉 〈hα| (in a highly no unique way). Therefore, all the rules of calcula-

tion to follow will be formulated for indecomposable morphisms. When required,
they will be uniquely extended by additivity.

The spaces H, K are arbitrary Hilbert spaces. Therefore, each of them can be
replaced with its dual.

Let us consider ϕ ∈ HS (H∗, K ). If ϕ = |k〉K H∗ 〈h|, then

ϕ|x〉H∗ = |k〉K H∗ 〈h|x〉H∗ = H 〈x |h〉H |k〉K .

Hence, considering x as a bra of H instead than a ket of H∗ and putting ϕ = |h〉 |k〉,
we write 〈x |ϕ instead of ϕ|x〉H∗ . In this way, ϕ operates on the right.

We further have K 〈x |k〉K H∗ 〈h| = K 〈x |k〉K |h〉H . Therefore, considering x as a
bra of K and the result as a ket of H , the transpose of ϕ operates on the right and
is given by |k〉 |h〉. The adjoint of ϕ is |h〉H∗ K 〈k|, i.e., 〈h| 〈k|. The transpose of the
adjoint operates as H∗ 〈x |h〉H∗ K 〈k| = 〈k| 〈h|x〉; hence, the transpose of 〈h| 〈k| is
〈k| 〈h|.

Summarizing, we can give a meaning to any expression consisting of a sum of
terms of the three kinds | 〉 | 〉 , | 〉 〈 | , 〈 | 〈 |; let us call K the Hilbert space of the
left variable and H the Hilbert space of the right variable. A sum of terms |k〉 |h〉 is
interpreted as an element of HS (K ∗, H) acting on K ∗ on the right; a sum of terms
|k〉 〈h| is interpreted as an element of HS (K ∗, H∗) when it acts on K ∗ on the right
and as an element of HS (H, K ) when it acts on H on the left; and finally a sum of
terms 〈k| 〈h| is interpreted as an element of HS (H, K ∗) acting on H on the left.

We have therefore the following scheme:

|k〉 |h〉 HS (K ∗, H) action on the right

|k〉 〈h| HS (K ∗, H∗) action on the right

|k〉 〈h| HS (H, K ) action on the left

〈k| 〈h| HS (H, K ∗) action on the left

The rules of calculation of adjoints can be summarized by saying that when a
term consists of two factors of different types the adjoint is obtained by taking the
conjugates in reverse order, while when it consists of two factors of the same type
the conjugates in the same order must be considered. The transpose is obtained by
exchanging left and right way of operating when a term consists of two factors of
different types and by exchanging the order of factors when they are of the same type.
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We now formulate the composition rules of morphisms in this notation. We con-
sider only monomials, the general case follows by distributivity. If L ,M, andN are
Hilbert spaces and |m〉M L 〈l| ∈ HS (L ,M), |n〉N M

〈
m ′

∣
∣ ∈ HS (M, N ), the com-

position of the two morphisms is

|n〉N M
〈
m ′

∣
∣ ◦ |m〉M L 〈l| = |n〉N M

〈
m ′|m〉

M L 〈l| .

If we replace M with M∗ we get
∣
∣m ′

〉 |n〉N ◦ 〈m| L 〈l| = |n〉N
〈
m|m ′〉 L 〈l| .

We have therefore the eight possibilities:

|n〉 〈m ′∣∣ ◦ |m〉 〈l| = |n〉 〈m ′|m〉 〈l| ,

〈n| 〈m ′∣∣ ◦ |m〉 〈l| = 〈n| 〈m ′|m〉 〈l| ,

|n〉 〈m ′∣∣ ◦ |l〉 |m〉 = |l〉 〈m ′|m〉 |n〉 ,

〈n| 〈m ′∣∣ ◦ |l〉 |m〉 = |l〉 〈m ′|m〉 〈n| ,
∣
∣m ′

〉 |n〉 ◦ 〈m| 〈l| = |n〉 〈m|m ′〉 〈l| ,
∣
∣m ′

〉 〈n| ◦ 〈m| 〈l| = 〈n| 〈m|m ′〉 〈l| ,
∣
∣m ′

〉 |n〉 ◦ |l〉 〈m| = |l〉 〈m|m ′〉 |n〉 ,
∣
∣m ′

〉 〈n| ◦ |l〉 〈m| = |l〉 〈m|m ′〉 〈n| .

We observe that in this notation the canonical isomorphism between H ⊗ K and
HS (H∗, K ) is expressed in a very simple way for indecomposable elements:

|h〉 ⊗ |k〉 
→ |h〉 |k〉 ,

and it is extended by linearity to the whole space.
In what follows we will need the following.

Lemma D.4 If ϕ ∈ HS (H∗, K ), then it is indecomposable if and only if the image
of ϕ∗ ◦ ϕ is one-dimensional; this image is the orthogonal complement of the null
space of ϕ.

Proof Ifϕ = |h〉 |k〉, thenϕ∗ ◦ ϕ = |h〉 〈h| 〈k|k〉 and the image ofϕ∗ ◦ ϕ is generated
by 〈h| so that it is one-dimensional and it is the orthogonal complement of the null
space of ϕ. Conversely, suppose that the image of ϕ∗ ◦ ϕ is one-dimensional. Then
ϕ∗ ◦ ϕ = |l〉 〈h| where |l〉 is some ket of H and 〈h| some bra of H . As ϕ∗ ◦ ϕ is
self-adjoint, 〈l| is collinear with 〈h| and the null space of ϕ coincides with the null
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space of ϕ∗ ◦ ϕ, that is, with the orthogonal complement of Im ϕ∗ ◦ ϕ. Therefore,
the null space of ϕ is one-codimensional so that ϕ is indecomposable. �

The unitary group associated with a Hilbert space H is the group of linear isome-
tries of H and will be denoted U (H). It is the group of all the transformations
preserving the linear structure and the scalar product of H . If X is a closed subspace
of H , we can choose in it an orthonormal basis and extend it to the whole H . If Y is
another closed subspace of H and there is an isometry between X and Y , by means
of it we can transfer to Y the orthonormal basis in X and extend it to the whole H .
AsU (H) is transitive on orthonormal bases, there is T ∈ U (H) that brings from X
to Y . We have therefore:

Lemma D.5 If X and Y are closed subspaces of a Hilbert space H, every isometry
between X and Y can be extended to the whole H. In particular, there is an isometry
of H that brings from X to Y .

We now prove the following theorem:

Theorem D.7 If ϕ and ϕ′ belong to HS (H, K ), there is T ∈ U (K ) such that ϕ′ =
Tϕ if and only if ϕ∗ϕ = ϕ′∗ϕ′.

Proof If ϕ′ = Tϕ, we have ϕ′∗ϕ′ = ϕ∗T ∗Tϕ = ϕ∗ϕ. Vice versa, suppose that
ϕ∗ϕ = ϕ′∗ϕ′. We first show that ker ϕ = ker ϕ′. Indeed,

|x〉 ∈ ker ϕ ⇔ ϕ |x〉 = 0⇔ 〈x |ϕ∗ϕ |x〉 = 0⇔ 〈x |ϕ′∗ϕ′ |x〉 = 0⇔ |x〉 ∈ ker ϕ′.

Now, using canonical factorizations and taking into account that π = π ′, we can
write

π∗ϑ ′∗ι′∗ι′ϑ ′π = π∗ϑ ′∗ϑ ′π = π∗ϑ∗ϑπ

Observing that π∗ is injective, it can be canceled on the left, while π is surjective
and can be canceled on the right; we conclude that ϑ ′∗ϑ ′ = ϑ∗ϑ . As ϑ and ϑ ′ are
isomorphisms, there is a unique κ such that ϑ ′ = κϑ and it is expressed as ϑ ′ϑ−1.
The isomorphism κ brings from Im ϑ = Im ϕ to Im ϑ ′ = Im ϕ′. Furthermore, we
have

κ∗κ = (
ϑ−1

)∗
ϑ ′∗ϑ ′ϑ−1 = (

ϑ−1
)∗
ϑ∗ϑϑ−1 = I dIm ϑ .

Therefore, κ is an isometry between Im ϕ and Im ϕ′, which can be extended to the
whole K . If T is such an extension, starting from an arbitrary |x〉 ∈ Im ϕ, we apply
to it the insertion ι then T . The result is the same as that obtained by applying to |x〉
first κ and then inserting the outcome in K through ι′. We conclude that T ι = ι′κ .
Finally, we get ϕ′ = ι′ϑ ′π = ι′κϑπ = T ιϑπ = Tϕ, T ∈ U (K ). �

For the sake of simplicity, we suppose henceforth that H is finite-dimensional.
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If L is aHilbert space, the groupwhich preserves its structure isU (L). But if some
further structure is introduced in it, its structure group is reduced to some subgroup.
Let us consider this situation when L has the structure of a tensor product. If L is
(or is regarded as) a tensor product H ⊗ K of two Hilbert spaces H and K , we can
exploit the canonical isomorphism between H ⊗ K and Hom (H∗, K ).

If we put L = Hom (M, K ), the groups involved are U (M), U (K ), and U (L).
A triplet

(
g, g′, g′′

) ∈ U (M)×U (K )×U (L) preserves the structure of L as
Hom (M, K ) if ∀ |x〉 ∈ M , |y〉 ∈ K , ϕ ∈ L | |y〉 = ϕ |x〉, then g′ |y〉 = (

g′′ϕ
)
g |x〉;

in particular, if ϕ = |k〉 〈m|, we have g′ |k〉 〈m|x〉 = [
g′′ (|k〉 〈m|)] g |x〉 whence

g′ |k〉 〈m| = [
g′′ (|k〉 〈m|)] g, that is, g′′ (|k〉 〈m|) = g′ |k〉 〈m| g∗.

Through the latter equation a transformation g′′ arises which is well defined on the
indecomposable elements of L . Indeed, for a given element, its first factor is defined
up to a coefficient by whose reciprocal wemust multiply the second factor, so that the
right side of the equation is unaffected. But there is a canonical isomorphism between
L and M∗ ⊗ K . In this isomorphism, the element |m〉M∗ ⊗ |k〉K is sent in |m〉M∗ |k〉K
of Hom

(
M∗∗, K

) = Hom (M, K ). But |m〉M∗ |k〉K = |k〉 〈m|. Then we can transfer
the action of g′′ to the set of indecomposable elements of M∗ ⊗ K , and uniquely
extend it by linearity to the whole M∗ ⊗ K and transfer it back to Hom (M, K ).

Therefore, a homomorphismU (M)×U (K )
ϑ−→ U (L) is obtained. Its kernel is the

subgroup Δ of U (M)×U (K ) : Δ = {(
eiϕ, eiϕ

)
, ϕ ∈ [0, 2π)

}
. We then conclude

with the following.

Theorem D.8 If L = Hom (M, K ), its structure group is uniquely defined by its
action on the indecomposable elements which can be expressed as |k〉 〈m| 
→
g′ |k〉 〈m| g∗ for some g ∈ U (M) and some g′ ∈ U (K ); this group is a subgroup of
U (L) and is isomorphic to U (M)×U (K )/Δ .

It is easy to find an explicit expression for the transformations of the above group.
For g′′ = (

g, g′
) ∈ U (M)×U (K ), we put g′′ϕ = g′ϕg∗. Indeed, the two actions

are the same on indecomposable elements, so they coincide on the whole space.
Let H be a Hilbert space. If |x〉H∗ ∈ H∗ and g is an element of U (H), the

position |x〉H∗ 
→ H∗ 〈x | = |x〉H 
→ g|x〉H 
→ H 〈x | g∗ = g̃|x〉H∗ defines a canon-
ical isomorphism between U (H) and U (H∗). Therefore, if M = H∗ and ϕ ∈
Hom (H∗, K ), we have g′′ϕ = g′ϕg̃∗. But |x〉H∗

g̃−→ g̃|x〉H∗ is the same as H 〈x | 
→
H 〈x | g∗. Consequently, the action |x〉H∗

g̃∗−→ g̃∗|x〉H∗ is the same as H 〈x | 
→
H 〈x | g. If ϕ = |h〉 |k〉, we have 〈x | 
→ 〈x | g |h〉 |k〉 
→ 〈x | g |h〉 g′ |k〉, so that
g′′ (|h〉 |k〉) = g |h〉 g′ |k〉.

We have thus proved the theorem.

Theorem D.9 If L = Hom (H∗, K ), its structure group is uniquely defined by
its action on the indecomposable elements which can be expressed as |h〉 |k〉 
→
g |h〉 g′ |k〉 for some g ∈ U (H) and some g′ ∈ U (K ); this group is a subgroup of
U (L) and is isomorphic to U (H)×U (K )/Δ .
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Observing that the canonical isomorphism between H ⊗ K and Hom (H∗, K )
sends from indecomposable elements to indecomposable elements, we concludewith
the following.

Theorem D.10 The structure group of H ⊗ K is uniquely defined by its action on
the indecomposable elements which can be expressed as |h〉 ⊗ |k〉 
→ g |h〉 ⊗ g′ |k〉
for some g ∈ U (H) and some g′ ∈ U (K ); this group is a subgroup of U (H ⊗ K )
and is isomorphic to U (H)×U (K )/Δ .

Let L denote the Hilbert space Hom (H∗, K ). In what follows it will be useful
to find the subgroup T of U (L) which preserves ϕ∗ϕ, ϕ ∈ L . We already know
that ϕ∗ϕ = ϕ∗′ϕ′ is the necessary and sufficient condition for the existence of a
transformation T ∈ U (K ) such that ϕ′ = Tϕ. The scalar product in L is defined by
〈ψ |ϕ〉 = tr (ψ∗ϕ), so that the above position defines an element of U (L) and con-
sequently a natural homomorphism fromU (K ) toU (L). But other transformations
with this property may exist in U (L) not lying in I ×U (K ). Therefore a detailed
investigation is required. We first observe that the scalar product in L is tr (ψ∗ϕ).
If ϕ is considered as an element of a Hilbert space, it must be regarded as a ket
|ϕ〉, and the same thing for ψ . Hence we must put 〈ψ | = tr (ψ∗◦). In particular, if
ψ = |h〉 |k〉 andϕ = |x〉 |y〉, 〈ψ |ϕ〉 = tr (〈h| 〈k| ◦ |x〉 |y〉) = 〈h|x〉 〈k|y〉. Therefore,
if |ψ〉 = ||h〉 |k〉〉, then 〈ψ | = 〈〈h| 〈k||.

Let g ∈ U (L), ϕ = |h〉 |k〉 and ∣
∣ϕ′

〉 = g |ϕ〉. We have ϕ∗ϕ = 〈h| 〈k| ◦ |h〉 |k〉 =
|h〉 〈h| 〈k|k〉 = ϕ′∗ϕ′. Hence, by Lemma D.4, ϕ′ = |h〉 ∣∣k ′〉, ∣∣k ′〉 depends linearly on
|k〉 and 〈k|k〉 = 〈

k ′|k ′〉. We conclude that g is in I ×U (K ) and that the latter is the
group of all the unitary transformations preserving ϕ∗ϕ . Therefore we have proved
the following.

Theorem D.11 If L = Hom (H∗, K ), the subgroup of U (L) which preserves ϕ∗ϕ
for every ϕ ∈ L is uniquely defined by its action on the indecomposable I ×U (K ).

D.3.1 Orbits. Spectra

Let us now consider the orbits of vectors of L under the action of its structure
group (as Hom (H∗, L)). Starting from a vector ϕ we can act on it first with U (K )
generating the orbit under this action and then with U (H) in order to obtain the
full orbit. We observe that, as the actions of U (H) and U (K ) are permutable, the
full orbit is the union of the orbits relative to U (K ). Each orbit relative to the latter
action is labeled with the operator ρ = ϕ∗ϕ; the action of U (H) on it is effected
by orthogonal similitude transformations. We conclude that each full orbit can be
characterized by the spectrum of the similitude class.

Remembering that ρ is a positive operator, we can describe the spectrum as a
mappingG from R+ to N0 almost everywhere zero. The operator ρ itself can be rep-
resented by its spectral decomposition, which in turn can be described as a mapping
D fromR+ to the set of subspaces of H∗ almost everywhere zero and such that H∗ is



120 Appendix D: Mathematical Frameworks

their orthogonal direct sum. If N is the mapping which associates to each subspace
of H its dimension, we have G = N ◦D. The connection between ρ and D is the
following:

ρ =
∑

λ∈R+

P(D (λ))λ,

where P (X) denotes the projector on X .
We can restrict each spectrum G to its support and to its image, and the same

thing we will do with D. With an abuse of notation, we will use the same symbols
for these restrictions and, if not differently specified, we will refer implicitly to the
restrictions. Furthermore, wewill call spectrum any surjectivemapping from a subset
of R+ to a subset of N0.

The mapping Π which associates each spectral decomposition D with the cor-
responding spectrum G is clearly surjective, so that we can regard the set D of all
spectral decompositions as a fibered space. Each fiber corresponds bijectively to an
orbit of the action of the structure group U (H∗)×U (K )/Δ of the tensor product
on L . Furthermore, we can define a mapping Θ which associates to each spectral
decompositionD its image ImD which is nothing but a decomposition of H∗ in an
orthogonal direct sum. Henceforth, if not differently specified, by decomposition of
a Hilbert space we mean a decomposition of it in an orthogonal direct sum.

With this terminology, the image ofΘ is the set C of all possible decompositions
of H∗. Denoting with S the set of all possible spectra, we have the diagram of

mappingsC
Θ←− D

Π−→ S . We emphasize that, although the mappings are surjective,
they do not define a direct product because the elements of C and of S cannot be
chosen independently and, even when they are compatible, they do not define a
unique element of D . In order to clarify this point, it is convenient to introduce the
following definition:

Definition D.1 We call type of a spectrumG the mapping which associates to each
multiplicity the number of eigenvalues having this multiplicity; we call type of a
decomposition C the mapping which associates to each multiplicity the number of
eigenspaces having this multiplicity.

We will introduce a specific notation to indicate a type T . The set of mul-
tiplicities appearing in T will be put in increasing order in a list; the number
of eigenvalues (eigenspaces) associated with each multiplicity will appear as a
superscript of the multiplicity. We will therefore write: T = {

μ
n1
1 μ

n2
2 ...μ

nr
r

}
with

μ1 < μ2 < ... < μr . If the type refers to a spectrum, the number of different eigen-
values is n1 + n2 + ...+ nr , while, when counted with their multiplicity, their num-
ber is n1μ1 + n2μ2 + ...+ nrμr . There is a constraint for the type because the lat-
ter quantity must be equal to the dimension of the space. If the type refers to a
decomposition, μ1, μ2..., μr are the dimensions of the eigenspaces involved in the
decomposition, n1, n2, ..., nr are their number of occurrences in the decomposition
and n1μ1 + n2μ2 + ...+ nrμr is the dimension of the space.
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Let C be a decomposition of H∗, Hμ the set of spaces of C of dimension μ and
P(Hμ) the group of permutations of Hμ. We define the group G =∏

μ

×P(Hμ)

where × indicates that the product must be interpreted as a group direct product.
Given C ∈ C and S ∈ S , there is D ∈ D such that C = Θ(D) and S = Π(D)

if and only if T (C) = T (S). If the latter condition is satisfied, D is defined up to
the composition on the left with an arbitrary element of G .

Indeed, for each μ the spectral decomposition D establishes a bijection from
the set of eigenvalues possessing this multiplicity and the set of the corresponding
eigenspaces whose dimension must be equal to μ. Therefore the cardinality of these
two sets must be the same, and then T (C) = T (S). Vice versa, suppose that the
latter condition is satisfied. Then for each μ the inverse image of μ for the mapping
S and the set of spaces of dimension μ of the decomposition C have the same
cardinality, so that there is a bijection β from the first to the second set. We therefore
obtain a bijectionD from the domain ofS to the decomposition C. Such a bijection
is a spectral decomposition with the required property. Each bijection β is defined
up to the composition on the left with an arbitrary element ofP(Hμ). ThereforeD
is defined up to the composition on the left with an arbitrary element of G .

In what follows the structure group of Hom (H∗, K ) will be denoted H.
The orbits ofU (L) in the Hilbert space L are the loci of constant norm. The effect

of the group reduction from U (L) to H is to split each orbit in a set of orbits under
the action of H. Each of the latter orbits is labeled by a spectrumS ∈ S . So, while
the orbits under U (L) are labeled by squared norms, the orbits under H are labeled
by spectra. A squared norm is 〈ϕ|ϕ〉 = tr (ϕ∗ϕ) =∑

p
pS (p). The space L as a

tensor product can be regarded as a fibered space with baseS and whose projection
Ψ is the composition of the mapping Ξ which associates to each ϕ the spectral
decomposition of ϕ∗ϕ with the mappingΠ previously introduced, i.e., Ψ = Π ◦Ξ .
A fiber of this space is a H-orbit.

The spectra can be classified according to their type, so that also the fibers are
classified accordingly. Each fiber is a Homogeneous H-space. Hence it can be char-
acterized by means of its conjugation class of stabilizers. In order to investigate this
question it is useful to introduce the Schmidt representation of ϕ (which is nothing
but the abstract version of the singular value decomposition of a matrix).

Let 〈x | be an eigenbra of ϕ∗ϕ. Then ϕ∗ (〈x |ϕ) = 〈x | p for some p ∈ Dom(S).
Then (ϕϕ∗) (〈x |ϕ) = ϕ (〈x | p) = 〈x |ϕp. Consequently, if 〈x | does not belong to the
null space of ϕ, 〈x |ϕ is an eigenket of ϕϕ∗ with eigenvalue p. But 〈x | belongs to the
null space of ϕ if and only if 〈x |ϕϕ∗ = 0, that is ϕ∗ (〈x |ϕ) = 0, i.e., if and only if
p = 0. We conclude that if 〈x | is an eigenbra of ϕ∗ϕ with nonzero eigenvalue, 〈x |ϕ
is an eigenket of ϕϕ∗ with the same eigenvalue. As already observed, the mapping

R
Π−→ S defines a structure of fibered space. The classification of the spectra induces

a classification of the fibers, so that we can speak of type of a fiber as the type of
its projection on the base. The fibered space can therefore be decomposed into the
disjoint union of fibered subspaces; in each of them all the fibers are of the same type
and we can introduce the notion of type for such subspaces.
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Let us concentrate our attention to a subspace of a given type P . An element
S of its base can be identified by a set of m = n1 + n2 + ...+ nr real nonnegative
numbers which will be represented in increasing order in a listP = {p1, p2, ..., pm}.

With the terminology introduced above, the compatibility condition can be
expressed saying that the necessary and sufficient condition for the compatibility
of (C,S) is that T (C) = T (S). For a given T , C is specified by giving n1 spaces
of dimension μ1, n2 of dimension μ2 and so on; hence we can indicate it with
the symbol C = {

H∗
μ1

n1H∗
μ2

n2 ...H∗
μr

nr
}
where it is understood that all products are

orthogonal direct products. As the compatibility condition consists simply in the
identification of types, for a given type C and S can be assigned independently. As
we are considering all the objects relative to a fixed type T , with an abuse of nota-
tion we continue to denote with C and S the sets of decompositions and of spectra
belonging to that type. On the other hand, the specification of C and S defines ρ
up to a transformation of G . We will say that ρ is of type T if its spectrum is of
type T . With the same abuse of notation, we continue to denote with R the set of
density operators of type T . Restricting ourselves to this type, we can consider R
as a G -space whose orbits are specified by elements of C ×S . We can classify the
elements of L according to the type of the correspondingS. If we limit ourselves to
the elements of L of type T and continue to call L the set of such elements (which
is not a linear space), we can specify the orbits of the action on L of the structure
group of the tensor product by the assignment ofR. If we restrict the structure group
to U (K ), the orbits of this action are specified by the assignment of an element of
R. The latter amounts to specify, besides P, an element C ∈ C .

D.4 Class of Hilbert Spaces as a Category

In what follows it will be useful to regard the class of Hilbert spaces as a category.
The objects of this category are the Hilbert spaces themselves, and the morphisms
are the bounded linear maps between them. In this category, there is an involution
which associates an object with its adjoint and a morphism with its adjoint. Owing
to the rule (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗, the involution is a contravariant functor betweenH
and itself.

Definition D.2 A G-space is a doublet (G, X) where X is a set and G a group of its
transformations. Note that in our definition G is not an abstract group, but a group
of transformations of X .

We want to introduce the concept of a category of G-spaces. To this purpose, we
have to introduce the definition of morphism of G-spaces.

Definition D.3 A morphism (G, X)
γ−→ (K ,Y ) is a doublet (α, ϕ) where X

ϕ−→ Y
is a mapping and G

α−→ K is a group morphism such that ϕ (gx) = α (g) ϕ (x) ∀x ∈
X, g ∈ G.
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It can be easily shown that, defining
(
α′, ϕ′

)
(α, ϕ) = (

α′ ◦ α, ϕ′ ◦ ϕ)
, we get a cat-

egory.
We define in X the equivalence relation: x ∼ x ′ ⇔ ϕ (x) = ϕ

(
x ′

)
. We can show

that: x ∼ x ′ ⇒ gx ∼ gx ′. Indeed ϕ (gx) = α (g) ϕ (x) = α (g) ϕ
(
x ′

) = ϕ
(
gx ′

)
, so

that gx ∼ gx ′.
If Z = X/∼ , and π is the canonical projection from X to Z , we can associate

withπ a unique groupmorphismβ such that (β, π) is a G-spacemorphism according
to the following.

Theorem D.12 If (G, X) is a G-space and X
π−→ W is a surjective mapping such

that π (x) = π
(
x ′

)⇒ π (gx) = π
(
gx ′

)
, then there is a unique group morphism ν

such that (ν, π) is a G-space morphism and that for every morphism of the form

(G, X)
(μ,π)−−−→ (

G ′,W
)
μ uniquely factorizes through ν on the right.

Proof We show first that ν exists. If w ∈ W , there is x ∈ X such that w = π (x).
We put ν (g) (w) = π (gx). The definition is well posed. Indeed, if w = π

(
x ′

)
,

π (x) = π
(
x ′

)
and then π (gx) = π

(
gx ′

)
. We have

ν
(
gg′

)
(w) = π

(
gg′x

) = π
(
g

(
g′x

)) = ν (g) π
(
g′x

) = ν (g) ν
(
g′

)
π (x) = ν (g) ν

(
g′

)
(w)

so that ν
(
gg′

) = ν (g) ν
(
g′

)
. This equation shows that each ν (g) is a trans-

formation of W and that ν is a group morphism. If Im ν = K and, with an
abuse of notation, we continue to denote ν its restriction to K , (ν, π) is a mor-

phism (G, X)
(ν,π)−−→ (K ,Y ). If (G, X)

(μ,π)−−−→ (
G ′,W

)
, we must have μ (g) (w) =

μ (g) π (x) = π (gx) = ν (g) (w), so that G ′ ⊇ Imμ = Im ν = K , and μ = ι ◦ ν,
where ι is the insertion of K in G ′. As ν is surjective, it is right-cancellable, so that
the factorization through ν is unique. If ν ′ also satisfies all the conditions of the
theorem, Im ν ′ = Im ν and ν ′ = ι ◦ ν, so that ι = idK and ν ′ = ν. �

D.5 System and Environment

Let us consider a system described by a Hilbert space H interacting with “the rest
of Universe,” represented by the Hilbert space K . In what follows the first system
will be called simply the system, while the second system will be referred as the
environment.

According to standardQuantumMechanics, the states of the composite system are
the rays of the tensor product H ⊗ K , while the states of the system isolated from the
environment are the rays of H . Our next task is to give a natural characterization of
the states of the system considered as open, that is, taking into account the presence of
the environment through a minimal set of data. It’s exactly what we do for a classical
open system, where the effect of the environment is represented by a minimal set of
inputs. In order to accomplish this task, it is useful to see Hilbert spaces as G-spaces,
i.e., as sets equipped with a selected group of allowed transformations.
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The Hilbert space of the environment is K over which an action of the unitary
group U (K ) is defined. The group I ×U (K ) acts on H ⊗ K in such a way so
as to leave unchanged the vectors of H . This group induces an action on the set
of rays of H ⊗ K , that is, on the set of states of the composite system, leaving
unchanged the states of the system (as a closed system). Furthermore, the group acts
transitively on the states of the environment (as a closed system), so that every state
of the environment can be reached from any other by means of transformations of
the group.

It is reasonable to say that a property of a state of the composite system is a property
of the open system alone if and only if it remains unchanged under an arbitrary change
of the state of the environment because such a property is independent on the specific
state of the environment, but at the same time the existence of it is not ignored. On the
basis of the above discussion, we deduce that such a property is a function uniquely
of the orbit described by a state of the composite system under the action of the group
I × A (K ). We finally arrive in a natural way to the following.

Definition D.4 A state of the open system is an orbit of a state of the composite
system under the action of the group I × A (K ).

Although the above definition captures the essential features of the state of the open
system (i.e., that the state of the open system is something independent of the state
of the environment but at the same time it takes into account its presence), mention
of the states of the composite system is involved in it.

In order to eliminate from the definition any reference to the states of the composite
system, we proceed as follows. We will find a map from the set of states of the
composite system onto a set of mathematical objects built up uniquely in terms of H
such that two states of the composite system belong to the same orbit if and only if
their images through themap are equal. In this way, we obtain a bijection between the
orbits and such objects. Therefore, we can use these objects to label the states of the
open system and any reference to the states of the composite system is eliminated.

Owing to the canonical isomorphisms previously introduced, we can regard
the states of the composite system as rays of Hom (H∗, K ). The action of an
element (I, T ) ∈ I ×U (K ) on H ⊗ K corresponds to the action ϕ 
→ Tϕ(ϕ ∈
Hom (H∗, K )). On the basis of Theorem D.7 we easily conclude the following.

If two states of the composite system are represented by ϕ and ϕ′, the necessary and
sufficient condition for them to belong to the same orbit is that ϕ′∗ϕ′ and ϕ∗ϕ are
different only by a numerical factor.

Choosing orthonormal bases in H and K , it is easily shown that ‖ϕ‖2 = trϕ∗ϕ.
If we normalize to 1 the state vectors of the composite system, we conclude that each
orbit (i.e., each state of the open system) is characterized by a positive trace class
operator, normalized to 1.

In the conventional approach, where the probabilistic interpretation and the asso-
ciated Born rule are postulated a priori, such an operator is a density operator and
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it describes a mixture of pure states. We emphasize that instead here no probability
interpretation has as yet been introduced.

Here on we will suppose, for the sake of simplicity, that the system is described
by a finite-dimensional Hilbert space, while the space of the environment will be
supposed infinite-dimensional.

Conversely, suppose that a density operatorρ for the system is prescribed. Its spec-
tral decomposition yields a finite set of eigenspaces to each of which a nonnegative
eigenvalue is associated. These eigenvalues sum to 1.Wechoose an orthonormal basis
in each eigenspace, so that we obtain a finite sequence |u1〉 , |u2〉 , ... |un〉 with their

corresponding eigenvalues p1, p2, ...pn and ρ is expressed as ρ =
n∑

i=1
pi |ui 〉 〈ui |.

Correspondingly, we choose in K a set of orthonormal vectors |v1〉 , |v2〉 , ... |vn〉, and
defineϕ ∈ Hom (H∗, K ) as theuniquemorphism inwhich 〈u1| 
→ √

p1 |v1〉 , 〈u2| 
→
√
p2 |v2〉 , ... 〈un| 
→ √

pn |vn〉. Thismorphism is expressed byϕ =
n∑

i=1
√
pi |ui 〉 |vi 〉.

The adjointmorphism isϕ∗ =
n∑

i=1
√
pi 〈ui | 〈vi |. But (〈ui | 〈vi |) ◦

(∣
∣u j

〉 ∣
∣v j

〉) = ∣
∣u j

〉
δ j i

〈ui |, so that ϕ∗ϕ =
n∑

i=1
pi |ui 〉 〈ui | = ρ.

We conclude that for each density operator ρ there is a state of the composite
system ϕ such that ρ = ϕ∗ϕ.

On the basis of the spectral decomposition of ρ, the state of the open system is
completely specified by the data of its spectral decomposition, i.e., by the list of the
eigenspaces, each associated with the corresponding eigenvalue. For the moment,
we suppose that the Hilbert space of the system is two-dimensional, so that the sys-
tem is, for example, a spin. We further suppose to consider a state whose density
operator is nondegenerate, so that each eigenvalue is different from 1/2. Therefore,
a state will be described by the set {(s1, p1) , (s2, p2)} where s1, s2 are rays of H∗
and p1, p2 their corresponding eigenvalues (such that p1 + p2 = 1). So, a state of
the open system is different from any state of the closed one: it is a weighted set of
states, in the sense that to each member of the set a weight is attributed. Our next
goal is to investigate the nature of these weights.

Suppose that ρ derives from a state of the composite system represented by a
normalized ϕ ∈ Hom (H∗, K ). If 〈u1| , 〈u2| represent the rays of s1, s2, respec-
tively, their images through ϕ will be, say, |v1〉 , |v2〉. If 〈u1| , 〈u2| are normal-
ized, the element ϕ is expressed as ϕ = |u1〉 |v1〉 + |u2〉 |v2〉. Its adjoint is ϕ∗ =
〈u1| 〈v1| + 〈u2| 〈v2|. The linear operator ρ acts on the rays of H . It generates a semi-
group, to which a discrete-time dynamics is associated. The equilibrium points of
this dynamics are the eigenstates of ρ, and they are exactly two as long as ρ is non-
degenerate. The eigenstate associated with the eigenvalue > 1/2 is stable, while the
other one is unstable. If we consider the set of all dynamics with the same equilibrium
points but with different nondegenerate spectra, this set can be partitioned into two
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classes, such that two elements belong to the same class if their stable point is the
same. Correspondingly, we have a set of orbits partitioned into two classes.

We will now show that a measure can be introduced in a natural way in the union
set of this set.

Let us first introduce some further notation. The set of rays of a complex linear
space is called a complex projective space, and the rays are called points. If a closed
quantum system is represented through a Hilbert space H , its states are rays of H as
a linear space, that is, points of the associate projective space, which will be denoted
P (H). For sake of brevity, we put L = Hom (H∗, K ). The states of the composite
system are therefore the points of P (L).

If is a state of the (open) system, |u1〉 , |u2〉 are normalized eigenvectors of ρ
and p1, p2 the corresponding eigenvalues, a possible state of the composite sys-
tem compatible with ρ is represented by ϕ = |u1〉 |v1〉 + |u2〉 |v2〉, where 〈v1|v1〉 =
p1, 〈v2|v2〉 = p2, 〈v1|v2〉 = 0. For given ϕ, |v1〉 and |v2〉 are defined up to arbitrary
phase factors. If we choose another representative of the same state of the composite
system, a further phase factor common to both vector arises, but the latter can be
absorbed in the former. In addition, when the whole orbit is generated operating on
through U (K ), the phase factors can be absorbed in its transformations.

There is still an ambiguity to be dealt with.We have not yet specified which eigen-
vector is labeledwith 1 andwhichwith 2. As p1 �= p2, wewill label with 1 the greater
eigenvalue and the corresponding eigenvector. We conclude that, given ρ, there is a
doublet (|v1〉 , |v2〉) of kets of K such that 〈v1|v1〉 = p1, 〈v2|v2〉 = p2, 〈v1|v2〉 = 0,
ϕ = |u1〉 |v1〉 + |u2〉 |v2〉, and ρ = ϕ∗ϕ.

As long as p1 p2 = 0, a two-dimensional subspace S of K is defined.
Let

(∣
∣v′1

〉
,
∣
∣v′2

〉)
be another doublet which generates a subspace S′. We want to

establishwhen it defines the same ρ as (|v1〉 , |v2〉). This happens if and only if there is
T ∈ U (K ) such that

∣
∣v′1

〉 = T |v1〉 and
∣
∣v′2

〉 = T |v2〉. Such a transformation exists
if and only if there is an isometry between S and S′ which sends |v1〉 in

∣
∣v′1

〉
and

|v2〉 in
∣
∣v′2

〉
. We conclude that they define the same ρ if and only if they are also

orthogonal and with the same norms.

The space L is a linear space which, when equipped with the scalar product
trψ∗ϕ, becomes a Hilbert space. But in L we can also define ψ∗ϕ with values in
Hom (H∗, H∗). The group of linear transformations preserving the scalar product
is U (L), while the group Γ of linear transformations preserving ψ∗ϕ is obviously
a subgroup of it.

We nowdefine formally the category ofHilbert spaces. Its objects are linear spaces
equipped with a scalar product, which are complete with respect to the induced
norm. Its morphisms are all the linear maps which are continuous with respect to
this norm. To each morphism ϕ, we can associate its adjoint ϕ∗. We have the rules
(ϕ + ψ)∗ = ϕ∗ + ψ∗; (ϕψ)∗ = ψ∗ϕ∗; (λϕ)∗ = λ∗ϕ∗; (ϕ∗)∗ = ϕ. The operation of
passage to the adjoint is an involution. The complex field C has the structure of a
Hilbert space in an obvious way. Each vector of a Hilbert space can be replaced
uniquely by a morphism in the following way. If x ∈ H , there is a unique morphism
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C
ϕ−→ H of linear spaces such that ϕ (1) = x . Conversely, given C

ϕ−→ H , we define
x = ϕ (1). The whole H can be replaced by Hom(C, H). The sum of vectors can
be replaced by the sum of corresponding morphisms, and so on. The scalar product
〈x |y〉 is replaced by ϕ∗ψ regarded as an endomorphism of C (where x = ϕ (1) and
y = ψ (1)).

It is useful to introduce a notation similar to the one adopted in ordinary tensor
algebra. If x ∈ H , we will write xH . If y ∈ H∗, we will write yH . The number y (x)
will be denoted yH ◦ xH . The functional yH is the adjoint of some vector yH , so that
we put yH =

(
yH

)∗
. On the other hand, yH is a vector of H∗, and as such it will be

indicated as yH
∗
.More generally, xHK ...L will denote an element of H ⊗ K ⊗ ...⊗ L .

We observe that a ket |k〉 ∈ K corresponds bijectively to a morphism C
|k〉−→ K :

c 
→ c |k〉. Writing the scalar on the right, we will regard this morphism as operating
on the left. The same morphism can be written as acting on the right. Its transpose
|̂k〉 operates according to the rule |̂k〉 〈y| = 〈y|k〉while, if |z〉 = |k〉 c, c∗|k〉∗ = 〈z| =
c∗ 〈k|, so that the adjoint of |k〉 as a morphism is the bra 〈k|. Therefore, when |k〉
operates on the left on C it is regarded as an element of Hom(C, K ), while when
it operates on the right on K it defines the transpose. For a bra, left and right are
interchanged. Let now |h〉 ∈ H and |k〉 ∈ K . If |h〉 is interpreted as an element of
Hom(C, H), |k〉must be interpreted as an element of Hom(K ∗,C) in order to allow
a composition; if 〈x | ∈ K ∗, we operate on the right on it with |k〉 and then we operate
with |h〉 on the right, obtaining the composed morphism |k〉 |h〉 ∈ Hom (K ∗, H). Of
course, the other possibility is obtained interchanging the role of |h〉 and |k〉. We
have 〈h| 〈k| = |h〉∗|k〉∗ = (|k〉 |h〉)∗.

Let us write the relationship between the scalar product in H and in H∗ in the
bra-ket notation. We remember that 〈x |y〉H∗ = 〈y∗|x∗〉H . But x = |x〉H∗ , so that
x∗ = H∗ 〈x | = |x〉H . Similarly, y∗ = |y〉H . Therefore 〈x |y〉H∗ = 〈|y〉H | x〉H 〉 = 〈y.
Hence the rule of calculation 〈x |y〉H∗ = 〈y|x〉H holds. The equation H 〈x | = |x〉H∗

can be interpreted as an equation between functionals. If we apply both members to
|y〉H , we get H 〈x |y〉H = |x〉H∗ |y〉H = H∗ 〈y|x〉H∗ = |y〉H |x〉H∗ .

D.6 Measurement

We afford here the problem of measurement in quantum systems. A measurement
is a special kind of interaction between an observed system and an apparatus. In
an ideal measurement at the end of the interaction process, there is a one-to-one
correspondence between a set of states |hi 〉 of the observed system and a set of states
|ki 〉 of a subsystem of the apparatus which we call the pointer. Consistently, the states
|ki 〉 will be referred to as the pointer states. The final state of the pointer is some
density operator, which for the moment we suppose generic. The result of a specific
experiment yields one among the states |ki 〉. Consequently, the latter are exactly the
non-null eigenstates of the density operator representing the final state of the pointer,
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so that they form an orthonormal set. The correspondence is fixed as a result of the
interaction, in the sense that the set of possible final states of observed system plus
pointer is exactly the set {|hi 〉 |ki 〉}. In this way, we are ensured that, if in a specific
experiment the final state of the pointer is |ki 〉, the final state of the observed system is
|hi 〉. An immediate consequence of the above considerations is that the final state of
observed system plus pointer is amixed state. This fact entails that the apparatusmust
be composed with the pointer and some other subsystem; the latter will be called the
detector. With this terminology the apparatus consists of a detector and a pointer. Let
H, K , andL denote the Hilbert spaces of the observed system (shortly the system),
the pointer, and the detector, respectively, and W = H ⊗ K ⊗ L the Hilbert space
of the whole system. We will denote with the same symbol the systems and their
Hilbert spaces. Supposing that the density operator ρHK is generic, the canonical
decomposition of the final state of the whole system is |ψ〉 =∑

di |hiki 〉 |li 〉, where
the |li 〉 form an orthonormal set of L and the di are positive numbers all different
from each other. The possible states of H , given that the state of the whole system
W is |ψ〉 and that the state of the pointer is any of the pointer states, are the |hi 〉. On
the other hand, the possible states of H , given that the state of the whole system W
is |ψ〉, are the eigenstates of ρH . In an ideal measurement, we require that the two
sets of states are the same.

D.7 Stabilizer

Let H ⊗ K be the tensor product of two finite-dimensional Hilbert spaces. Let |ψ〉 ∈
H ⊗ K . Let Gψ be the stabilizer of |ψ〉 in U (H)⊗U (K ).

In order to describe the structure of Gψ we recall the canonical decomposition
of |ψ〉, based on the following Theorem (1zurekstate I), where trE denotes partial
trace with respect to K .

Theorem If |ψ〉 ∈ H ⊗ K, there is a unique decomposition

|ψ〉 =
∑

dα |χα〉

such that dα > 0 with the dα all different from each other,

trE |χα〉
〈
χβ

∣
∣ = 0

for α �= β, and the set

{Pα = trE |χα〉 〈χα|}

is a family of orthogonal projectors of H. Furthermore

trE |ψ〉 〈ψ | =
∑

d2
αPα.
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For each |h〉 ∈ H , the quantity

(〈h| ⊗ 〈x |) |χα〉

depends antilinearly on |x〉, defining a ket of K depending antilinearly on |h〉 and
hence linearly on 〈h|. Hence |χα〉 uniquely defines a linear mapping from H∗ to K
which we call χα .

We introduce
χ =

∑
χα.

If H is the non-null eigenspace of the projector

P =
∑

Pα,

the restriction of χ to H∗ and to its image is an isometry η (1zurekstate I).
Let Hα be the non-null eigenspace of Pα and Υα the subgroup of U (H) acting as

identity on Hα⊥.
As the groups Υα are mutually commutative, we can define their internal direct

product
Υ+ = ×Υα.

We further define Υ0 as the subgroup of U (H) acting as the identity on H and Υ ′
0

as the subgroup of U (K ) acting as the identity on Im χ .
There is a canonical isomorphism which associates any element of Υ+ with its

restriction to H ; let Υ̂+ be the image of this isomorphism; defining

γ̃ 〈h| = 〈h| γ ∗,

to each γ ∈ Υ̂+ we associate the element ηγ̃ η−1 belonging to the unitary group of
Im χ and in this way we obtain an isomorphism υ between Υ̂+ and a subgroup Υ̂ ′+
of the latter group.

We introduce finally the group Γ̂ as the graph of υ. The isomorphism υ induces an
isomorphism υ̂ between Υ̂+ and Γ̂ . The group Υ̂+ inherits from Υ+ the structure of a
direct product, namely, if Υ̂α is the image of Υα through the canonical isomorphism,
we have Υ̂+ = ×Υ̂α . Thus Γ̂ = ×Γ̂α where Γ̂α is the image of Υ̂α through υ̂.

The groups Γ̂α and Γ̂ act on H × Im χ ; their action can be extended to H × K by
requiring that they act as the identity on H⊥ × (Im χ)⊥. We thus define the groups
Γα and Γ = ×Γα acting on the whole H × K .

If (U, V ) ∈ U (H)×U (K ), the position (U, V ) 
→ U ⊗ V defines an epimor-
phism

U (H)×U (K )
θ−→ U (H)⊗U (K )

of groups. The kernel of this morphism is the group
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{(
cI, c∗ I

) |c ∈ C1
}
.

In (1zurekstate I) it is shown that

Gψ = θ (Γ ) Υ0 ⊗ Υ ′
0.

The stabilizer in U (H)⊗U (K ) of the ray C |ψ〉 is C1Gψ .
Indeed, if g belongs to this stabilizer, theremust beλ ∈ C such that g |ψ〉 = λ |ψ〉.

The unitarity of g entails λ ∈ C1, so that g ∈ C1Gψ .
We now build a matrix representation of Gψ .
We first introduce in each Hα an orthonormal basis |eαa〉, a ∈ Aα . The whole set

of these kets spans the subspace H . We further introduce an orthonormal basis |eb〉,
b ∈ B in H⊥, so that the whole set of kets just introduced gives an orthonormal basis
for the whole H . Using the isometry η, we can introduce in Im χ the orthonormal
basis

| fαa〉 = η (〈eαa|) .

We then introduce an orthonormal basis | fc〉, c ∈ C in the space Im χ⊥. If |e〉
is any element of the basis of H and | f 〉 is any element of the basis of K , the set
of all the elements of the form |e〉 ⊗ | f 〉 (shortly |e f 〉) is an orthonormal basis of
U (H)⊗U (K ).

Let us express |ψ〉 by means of this basis. Each χα sends the 〈eαa| in | fαa〉 and
every other element of the basis of H in 0.

Thus χα (〈x |) =∑

a
〈x |eαa〉 | fαa〉 and then

|χα〉 =
∑

a

|eαa〉 ⊗ | fαa〉.
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