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Preface 

This volume contains papers which were presented at a meeting entitled "Mul­
tiscale Methods in Quantum Mechanics: Theory and Experiment," held at the 
Academia dei Lincei in Rome (December 16-20, 2002). The organizing and 
scientific committee was composed of Ph. Blanchard (University of Bielefeld), 
G.F. Dell'Antonio (University of Rome 1), S. GrafE. (University of Bologna), 
and Th. Paul (Ecole Normale Superieure, Paris). 

The conference could not have happened without the generous support 
of numerous sponsors: the Centro Linceo Interdisciplinare of the Academia 
dei Lincei in Rome, the Istituto di Alta Matematica of the CNR through 
the National Group of Mathematical Physics and the Mathematical Physics 
Sector of the SIS SA in Trieste. We are most grateful to all of them. 

The central theme of the meeting was the comparison of different tech­
niques and strategies used in mathematical physics to tackle the challenging 
problems in quantum mechanics of treating the fast and slow degrees of free­
dom and other multiscale phenomena. In classical mechanics the treatment 
of the corresponding problem is based on various versions of the "adiabatic 
theorem," which requires substantial modifications in order to be applicable 
to quantum mechanics. The topic of multiscale decomposition has attracted 
much attention recently from research groups in mathematical physics, in part 
due to the increasing number of significant physical applications, from the re­
finement of the Born-Oppenheimer approximation to the study of the motion 
of charged particles in slowly varying electromagnetic fields up to decoherence. 
Multiscale methods have also been applied successfully in the analysis of the 
propagation of electromagnetic waves in media with slowly varying indexes of 
refraction. 

Different extensions of adiabatic-like methods motivated by quantum me­
chanics have been proposed. They share on the one hand some common el­
ements but differ on the other hand depending on their different emphases, 
mathematical techniques used, and their results. The goal is to provide a 
better synthesis and contribute therefore to the development of this very in­
teresting and fast developing field of research. In view of the interdisciplinary 
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nature of the subject, each day a lecture was devoted to an experimental 
topic. Indeed, the central theme of this book is a very good example of the 
way in which mathematics and physics are complementary. Displaying and 
encouraging this interaction, one hopes that further insight will arise from 
the cross-fertilization of the two cultures, as has already been the case in the 
past. 

The success of the conference was due first of all to the speakers. Thanks to 
their efforts, it was possible to take into account recent developments as well 
as open problems and to make the conference an exciting meeting. We hope 
that participants and readers will find these articles interesting and useful. 

It is a pleasure to express our gratitude to Anna Anastasi for assistance 
before and during the meeting and Hanne Litschewsky for help in preparing 
the conference and in collecting and editing the manuscripts for publication. 

Ph. Blanchard and G.F. Dell'Antonio 

Bielefeld, Trieste, November 2003 
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Organic Molecules and Decoherence 
Experiments in a Molecule Interferometer 

M. Arndt, L. Hackermiiller, K. Hornberger, and A. Zeilinger 

Institut fur Experimentalphysik 
Universitiit Wien 
Boltzmanngasse 5 
A-lOgO Wien, Austria 

1.1 Classical behaviour from quantum physics 

One of the basic objectives in the foundations of physics is to understand the 
detailed circumstances of the transition from pure quantum effects to classical 
appearances. This field has gained an even increased attention because of the 
fact that quantum phenomena on the mesoscopic or even macroscopic scale 
promise to be useful for future technologies, such as in lithography with clus­
ters and molecules, quantum computing or highly sensitive quantum sensors. 

In the present work we describe one specific type of quantum effect, namely 
the wave-particle duality and the requirements to observe this phenomenon. 
The wave-nature of matter has been known for the last 80 years and it finds 
daily technological confirmation and application in the material sciences which 
use electron diffraction, electron holography or neutron diffraction to investi­
gate surfaces or bulk material. 

Here we shall focus on the extension of matter-wave experiments towards 
more massive, more complex and larger quanta, ranging from carbon clusters, 
over biologically relevant organic molecules to fullerene derivatives. 

The non-observability of quantum wave effects in our daily world can be 
described by various complementing arguments: The first set of theories as­
sumes an objective reduction of the wavefunction, which may be described by 
a non-linear extension of the Schr6dinger equation [8, 18). The second set of 
theories takes the unitarity of the Schr6dinger equation as the central element 
of quantum physics and tries to explain the appearance of classical phenomena 
within the well-established linear dynamics. 

The simplest argument of this category is that quantum effects are often 
simply too small to be observable. For instance, any diffraction pattern of a 
human being would take a diffraction experiment larger than the size of the 
known universe to separate the interference fringes to a measurable distance. 
The de Broglie wavelength of a walking human being is actually below the 
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Planck length of 10-35 m - and one can currently only speculate about the 
meaning of any wave physics with dimensions below that scale. 

Fig. 1.1. The fullerene C70 is composed of 70 carbon atoms in an oval shape 
(left). Tetraphenylporphyrin C44H30N4 (TPP, m=614 amu) is composed of four 
tilted phenyl rings attached to a planar porphyrin structure (middle). The largest 
dimension measures about 2 nm and the aspect ratio (height to width) is roughly 
seven. The fluorinated fullerene C6oF48 (m=1632 amu) (right) is a deformed bucky­
ball surrounded by a shell of 48 fluorine atoms. This molecule exists in different 
isomers and only one structure with D2 symmetry is shown here [20]. 

Now, while this dynamical argument certainly holds, it seems there is 
another mechanism which limits the appearance of quantum effects even 
for smaller objects under real-world conditions: Decoherence theory, which 
started to flourish about two decades ago [21, 22, 14, 9, 2, 23], states that 
isolated quantum systems may always maintain their quantum nature­
independent of their size or mass - but that it becomes increasingly difficult 
to guarantee this isolation for large objects. The qualitative idea is that any 
coupling between the system and the environment will lead to an entangle­
ment of the two. Any coherence in the quantum system will be rapidly diffused 
into the complex environment and will therefore no longer be observable. As 
soon as the environment can distinguish between different quantum states of 
the system, i.e., as soon as which-state information becomes accessible to the 
outer world, a superposition of these states is no longer observable. 

A simple example is given by the fact that a human being is in perpetual 
interaction with its environment through collisions with the surrounding air 
molecules. It is very hard to quantitatively follow the loss of coherence in such 
a macroscopic body, since about 1027 molecules impinge on a human body per 
second. Decoherence is thus expected to occur on time scales well below any 
available experimental resolution. 

However, as we shall discuss below, macromolecule interferometry allows 
us to study the effect of collisions quantitatively as one important origin of 
the transition from the quantum to the classical: Molecules in a high-vacuum 
environment exhibit pure quantum properties if properly prepared. Since the 
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background gas pressure may be well controlled by the experimentalist, quan­
tum effects may be turned gradually and in a controlled way into classical 
appearances. 

1.2 Coherence experiments 

The quantum wave nature of material objects is well established for small 
particles. But the conceptual dissonance between the local character of the 
'particle' and the non-local character of the 'wave' seems to strike our common 
sense even stronger if we consider objects which can already be clearly seen 
as isolated particles under a microscope. This is the case for nanometer sized 
molecules and clusters like the fullerenes, porphyrins or fullerene derivatives 
which are shown in Fig. 1.1 (left to right). 

Fullerenes, named after the geodesic domes created by the architect Buck­
minster Fuller [16], were discovered only in 1985 by Kroto and coworkers [15]. 
The 'buckyball' C60 and the 'bucky-rugbyball' C70 (Fig. 1.1, left) were the first 
macromolecules for which wave-particle duality was demonstrated [1] mainly 
because they can be easily vaporized, they are very stable, and they can be 
efficiently detected using laser ionization [17]. In addition to these practical 
reasons they offer many similarities to bulk material: They possess bulk-like 
excitations such as phonons, excitons and plasmons. They may be regarded 
as their own internal heat bath, and they are known to emit thermal electrons 
or thermal photons or even diatomic molecules when they are heated to suffi­
ciently high temperatures. In that sense they are a very good approximation 
to a classical body on the nanoscale. They have a mass of 840 amu and a 
diameter of roughly 1 nm. They are rigid and highly symmetric. 

In contrast to the fullerenes the second species used in our experiments, 
the porphyrins, are very abundant in nature. The porphyrin structure can 
be found in the core of a heme molecule or in chlorophyll and since a metal 
atom inside the porphyrin structure gives blood its red color and chlorophyll 
its green appearance, porphyrins are often referred to as the 'colors of life'. 
The particles used in our experiments are derivatives of this porphyrin struc­
ture: They are enlarged by four tilted phenyl rings, which lead to the full 
name tetraphenylporphyrin (TPP, Fig. 1.1, center). Although even successful 
interference experiments with porphyrins are obviously far from proving the 
relevance of quantum mechanics in the living world, they are nevertheless an 
interesting twist in an experiment on the foundations of quantum physics: 
The diameter of the TPP molecule - measured by the core to core distance 
of the outermost nuclei - is three times as large as that of e70 , it is flat in­
stead of nearly spherical, it has dangling phenyl rings sticking out and the 
polarizability is much more anisotropic than in the case of the fullerenes. 

Finally, we have also performed matter wave interferometry with the flu­
orinated fullerene C60F 48. It has the shape of a deformed buckyball with 
48 fluorine atoms covalently bound to the outer shell. The diameter of this 
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molecule is in between that of the pure buckyball and the porphyrins, but the 
mass of 1632 amu is about twice the mass of C70 . It represents the current 
record in mass, complexity and number of atoms contained in a single quan­
tum object in a matter wave experiment. 1 The fluorinated fullerenes exist 
in several isomers of different symmetry which were probably present in all 
configurations. 

Slit source Diffraction Scanning 
array mask 

~ 

G, 

38cm 38cm 

Integrating 
detector 

Fig. 1.2. Setup of the Talbot-Lau interferometer: hot, thermal molecules enter a 
near-field interferometer, which consists of three identical gold gratings. The first 
grating represents an array of slit sources which imprint the required coherence 
onto the uncollimated, spatially incoherent molecular beam. The second grating 
images this slit source onto the plane of the third grating. The third grating serves 
as a mask for the detection of the interference fringes: Only molecules position­
synchronized with the grating will pass the structure and may be observed in the 
following detector, composed of laser ionization and ion counting [5]. 

The best way to prove an assumed wave-like phenomenon is to observe in­
terference. Although in earlier experiments with C60 molecules far-field diffrac­
tion was an ideal tool for this purpose because of its conceptual simplicity, 
all experiments described here were performed in a near-field interferometer 
of the Talbot-Lau type which has been proposed by Clauser et al. [7, 6] 
and which has only recently been applied to large molecules [5, 4]. There are 
two main reasons for this choice: Firstly, the three grating arrangement al­
lows us to work with an uncollimated, spatially incoherent molecule source. 
This is essential for the biomolecules and large clusters, since typical source 
intensities are much below those of atomic or fullerene beams. Secondly, the 

1 It is important not to confuse the macroscopically occupied field of a Bose­
Einstein condensate (BEC) with the single many-body wavefunction of a complex 
molecule: the de Broglie wavelength of a BEC is always that of a single atom, 
while the molecular AdB is determined by all participating atoms. 
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dimension requirements (grating constant, and grating separation) are less 
severe in a near-field interferometer compared to far-field diffraction or far­
field interferometry. This is seen by the fact that the grating constant in our 
present near-field interferometer is 1jLm, while it had to be ten times smaller 
for the previous far-field experiments [1]. 

The experimental setup is shown in Fig. 1.2. Molecules are sublimated in 
an oven at the maximum allowed temperature before the onset of molecular 
decomposition, i.e., at 890K for C70, 690K for TPP and 560K for C6oF 48 • 

The molecules fly into the high vacuum chamber and traverse the interfer­
ometer, before they enter the detector. In all C70 experiments the detector 
consists of a laser ionization stage and subsequent ion counting. This method 
is very efficient (rJion "'" 10%) [17] but highly molecule specific. Most large 
organic molecules would rather fragment than ionize. For the porphyrins 
and fluorofullerenes we therefore employ electron impact ionization, which 
also leads to the formation of positive ions. However, the efficiency is re­
duced to rJion "'" 10-4 . Since electron impact is not molecule selective we 
add a quadrupole mass selection stage to separate the porphyrins and fluoro­
fullerenes from air molecules and contaminations in the vacuum chamber. 

The interferometer itself consists of three gold gratings, with a grating 
constant of 990nm and an open fraction of about f = 0.48, i.e., open gaps of 
about 470 nm. The gratings are separated by a distance of L = 38 cm [11]. 

250 

• 
200 

<Jl -- 150 
2l 
c: 
::l 
0 100 () 

50 

0 
58 59 60 61 46 47 48 

position of 3rd grating (mm) position of 3rd grating (mm) 

Fig. 1.3. Left: Interference pattern recorded for porphyrin molecules at 166 m/s. 
The interference contrast of 38% is in good agreement with quantum mechanical 
expectation and in clear disagreement with the classical value of 13%. The inter­
ferogram was recorded over a few minutes. Right: The same experiment performed 
with C60F 48 and recorded over three hours. The picture consists of an average of 
13 'low-noise' single scans which were selected by the magnitude of their frequency 
noise (not by the value of the frequency). [10]. 
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The longitudinal, i.e., spectral coherence length Ie = A 2 / LJ.A inside the 
oven is determined by the velocity spread in the source and it is only about 
1.5 times larger than the de Broglie wavelength, which lies for all particles and 
velocities in the range of 2 ... 5 X 10-12 m. Both the de Broglie wavelength 
and the coherence length are thus 500 ... 1000 times smaller than the size 
of the molecules themselves! The transverse coherence is equally small when 
the molecules leave the oven, and in that sense it is fully justified to speak 
of well-localized particles in the preparation stage. However, each slit in the 
first grating boosts the transverse coherence length of the molecular beam 
at the position of the second grating by about six orders of magnitude [3]. 
The indistinguishable passage through two or more slits leads to quantum 
interference behind the second grating, in particular to the formation of a 
molecular density pattern with the same period as the diffraction structure 
in about the distance of the Talbot length LT = 92 / AdB behind the grating. 
Contributions from different slits in the first grating add up incoherently but in 
phase. The molecular density distribution can be probed using a third grating 
with again the same period, which is shifted transversely to the molecular 
beam. Whenever the molecular structure and the gold grating are in phase, 
most molecules will pass it and reach the detector. If the grating is slightly 
shifted, the count rate is reduced. The interference pattern is thus revealed 
by scanning the mask across the molecule beam. 

Fig. 1.3 (left) shows typical high-contrast interference fringes of porphyrin. 
The contrast of 38% is in good agreement with the theoretically expected 
value and it is about a factor of three higher than the classically expected 
shadow contrast. Both the classical and the quantum calculation include the 
van der Waals interaction between the molecules and the 500 nm thin grating 
walls [11]. The quantum mechanical wave nature can further be proved by the 
way the interference pattern changes with the de Broglie wavelength: We can 
vary the molecule velocity and thus de Broglie wavelength. Since the Talbot 
length depends On AdB, also the interference contrast is effected by the varying 
velocity and we find very good agreement between theory and experiment for 
all velocity classes (see [11]). 

For the fluorinated fullerenes the same experiment was repeated. Fig. 1.3 
(right) shows the result for C6oF48 . The contrast of 27% is clearly above 
the classical expectation of 12% but still below the best possible quantum 
interference contrast of 37%. We attribute this difference mainly to vibrations 
on the level of a few ten nanometers which affect slow molecules more than fast 
ones. C60F 48 had a most probable speed of 100 m/s while the TPP interference 
pattern was recorded for a mean molecular velocity of 166 m/s. The vibration 
hypothesis is further supported by the fact that slow fullerenes can also show 
a decrease in fringe visibility by about 30% and also by dedicated vibration 
experiments [19]. The second reaSOn is the large technical background noise 
in these experiments in addition to the low count rates and correspondingly 
long integration times. Both effects tend to reduce the interference contrast. 
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Fig. 1.4. Idea of the decoherence experiment: The originally delocalized molecules 
may be well localized through interactions with the environment. Collisions with 
background gas molecules start to become relevant at pressures above 10-7 mbar. 
The gas pressure representing the environment can be well controlled by the exper­
imentalist. 

1.3 Decoherence experiments 

Having shown a high level of coherence in experiments with large molecules, 
it is now interesting to investigate the limit of matter wave interferometry 
due to the coupling between the quantum object and its environment. These 
studies have again been performed with C70 to make use of the much higher 
count rates and better statics compared to the TPP and C60F 48 experiments. 

One can imagine many different couplings between a particle and its envi­
ronment. Collisions and radiative interactions will be the most frequent and 
most natural processes in our macroworld, and here we shall focus on colli­
sions in particular. A fullerene molecule in the superposition of two position 
eigenstates ICi'ift) , IC~~ght) will get entangled with a gaseous environment, 
since the state of an incident gas particle Ig) will be changed depending on 
the position of the fullerenes: 

11/J) = ~ [ICleft ) + ICright )] ® I ) coll. ~ [I cleft) 1 left) + Icdght )1 right)] J2 70 70 g ---t J2 70 gscat 70 gscat 

Any 'measurement' on the state of the scattered gas particle, by further inter­
actions with other gas molecules or the walls, can be regarded as an effective 
measurement of the fullerene path. If the scattered gas states are distinguish­
able, i.e., (g;~~tlg~~~~t) = 0, interference between ICi'ift) and IC~~ght) can no 
longer be observed and the superposition state 11/J) has effectively collapsed. 

A more detailed description of the collisional decoherence rate in collision 
experiments has been given in [13, 12]. The main result with respect to our 
investigation is that we expect an exponential loss of the interference contrast 
with increasing pressure of the residua.l gas 
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(1.1) 

In Fig. 1.5 we show the experimental result for fullerenes in interaction 
with Argon atoms at base pressures between 10-8 ••• 10-6 mbar. We find the 
predicted single-exponential decay, and the theoretical decay curve fits the 
experiment without free parameter, except for the contrast at p = 0 mbar, 
which is also influenced by vibrations or other effects that are independent 
of the base pressure. We emphasize that the exponential decay in Fig. 1.5 is 
a clear signature of decoherence. In the case of simple absorption it would 
be the beam intensity that shows an exponential decrease, while the visibil­
ity would remain constant. Note also that decoherence theory describes the 
experiment not only qualitatively but quantitatively. The experiment allowed 
even falsification of an incorrect localization rate that differs by a factor of 27r 
(see the discussion in [12]). 

Let us note that there are two equivalent ways of viewing the decoherence 
process observed in the experiment. On the one hand one can say that the 
change in the state of the scattered gas particle is strong enough to obtain 
full information on the position of a fullerene by a single collision. On the 
other hand one can view the fullerene in the momentum representation. Then 
the recoil during a single collision translates the momentum distribution such 
that the final interference pattern is shifted substantially with respect to the 
unscattered case. Since the collision angles turn from a quantum superposition 
into a broad distribution once the gas particle is 'measured' by the environ­
ment, the summation of many randomly shifted single-molecule interference 
patterns again washes out the total fringe pattern. It is worth noting that 
in our experiment a sizeable number of the collisions between fullerenes and 
residual gas particles lead to kicks out of the detection range and therefore 
to loss. These events do not contribute to the reduction of the fringe con­
trast. Only small angle collisions, with () '" 1 mrad, leave the molecules inside 
the interferometer while they still dephase the interference fringes. We can 
extrapolate the numerical data which we obtained in similar decoherence ex­
periments with different residual gases to predict the feasibility of experiments 
with even larger objects than the porphyrins or fluorofullerenes. It turns out 
that even for objects with masses around 107 amu the l/e-decoherence pres­
sure will 'only' be rv 10-10 mbar, a value which can still be reached with 
standard laboratory equipment [10]. Collisional decoherence - although very 
efficient on the macro-scale - is thus still far from being a limit to interfer­
ometry for objects with sizes below 10 nm. However, the influence of radiative 
interactions, of quasi-static interactions with fluctuating or strongly disper­
sive potentials for molecules with a large electric polarizability, electric or 
magnetic dipole moment still remains to be investigated. 

Quantum optics with macromolecules has only begun. We foresee many 
important developments and future improvements concerning the sources for 
neutral macromolecules, more efficient detection schemes and novel types of 
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Fig. 1.5. Interference fringe visibility for C 70 fullerenes interacting with Argon 
gas at various pressures in the interferometer. A clear single-exponential decay is 
observed as expected from decoherence theory. 

interferometers. Applications will range from fundamental studies of decoher­
ence to the potential use of molecule lithography and nanotechnology. 
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Colored Hofstadter Butterflies 

J.E. Avron 

Department of Physics 
Technion 
32000 Haifa, Israel 

Summary. I explain the thermodynamic significance, the duality and open prob­
lems associated with the two colored butterflies shown in Figures 2.1 and 2.4. 

2.1 Overview 

My aim is to explain what is known about the thermodynamic significance 
of the two colored butterflies shown in Figures 2.1 and 2.4 and what remains 
open. Both diagrams were made by my student, D. Osadchy [14], as part of his 
M.Sc. thesis. I shall explain their interpretation as the T = 0 phase diagrams 
of a two-dimensional gas of charged, though non-interacting, fermions. Fig. 2.1 
is associated with weak magnetic fields (and strong periodic potentials) while 
Fig. 2.4 with strong magnetic fields (and weak periodic potentials). The two 
cases are related by duality. The duality, which is further discussed below, is 
manifest if colors are disregarded. 

The horizontal coordinate in both figures is the chemical potential f.L and 
the vertical coordinate is proportional to the magnetic induction B in Fig. 2.1 
and 1/ B in Fig. 2.4. The colors represent the quantized values of the Hall 
conductance, i.e., represent integers. 1 Warm colors represent positive multiples 
and cold colors represent negative ones: Orange represents 2, red 1, white 0, 
blue -1 etc. 

Remark: It is problematic to represent integers by colors with good con­
trast between nearby integers. This is related to the fact that colors are not 
ordered on the line but rather are represented by the simplex (r, g, b) with 
r + g + b = 1. (Pure colors are located on the boundary of the simplex.) The 
assignment in the figures becomes problematic for large, positive or negative, 
integers: Large positive integers are not represented anymore by warm colors 
but rather by yellow and green. 

1 The quantum unit of conductance, e2 /h, is 1/271", in natural units where e = Ii = 1. 

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
© Birkhäuser Boston 2004
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I shall also present an open problem. Namely, how do these diagrams 
change if one replaces the magnetic induction B by the magnetic field H as 
the thermodynamic coordinate. 

2.2 Some history 

That the Hall conductance took different signs in different metals was an em­
barrassment to Sommerfeld theory. Since charge is carried by the electrons, 
one sign was predicted. The wrong sign was called the anomalous Hall effect 
and was explained by R. Peierls [5J who showed that the periodicity of the 
electron dispersion E(k) plus the Pauli principle allow for either sign, depend­
ing on /1. This subsequently led to the important concept of holes as charge 
carriers-a term not used by Peierls in his original work. 

The electron-hole anti-symmetry ofthe Hall conductance is seen in Fig. 2.1 
where cold and warm colors are interchanged upon reflection about the vertical 
axis. However, the figure is much more complicated than what Peierls had in 
mind. 

Fig. 2.1. Colored Hofstadter butterfly for Bloch electrons in weak magnetic field. 
The horizontal axis is the chemical potential; the vertical axis is the magnetic flux 
through the unit cell. The diagram is periodic in the flux and one period is shown. 
It admits a thermodynamic interpretation of a phase diagram. (See color insert 
following p. 22.) 

Mark Azbel [2J realized that the Schrodinger equation in a periodic po­
tential and magnetic field had tantalizing spectral properties. But it was the 
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graphic rendering of the spectrum by D. Hofstadter [9], shown in Fig. 2.2, 
(and his scaling rules,) that brought the problem into the limelight. The rich­
ness of spectral properties is a result of competing area scales: One dictated 
by the unit cell of the underlying periodic potential and the other by the area 
that carries one unit of magnetic flux. When <P is rational the two areas are 
commensurate, when it is irrational, they are not. At T = 0 the electron gas 
is coherent on large distance scales and commensuration leads to interference 
phenomena that affect spectral properties at very small energy scales. The del­
icate spectral properties attracted considerable attention of a community of 
spectral analysts. Reference [1] is a pointer to a rich and wonderful literature 
on the subject. 

Fig. 2.2. The original, monochrome, Hofstadter butterfly, shows the spectrum, on 
the horizontal axis, as function of the flux P which is the vertical axis. The spectrum 
is the complement of the colored set shown in Fig. 2.1. 

In a seminal work, TKNN [18] realized that the Hall conductance of the 
Hofstadter model admits a topological characterization in terms of Chern 
numbers. This discovery is an interesting piece of lost history. In fact S. Nov­
ikov was apparently the first to realize the topological significance of the spec­
tral gaps for Bloch electrons in magnetic fields [13]. However, he missed their 
significance as Hall conductance. TKNN [18] were not aware of the work of 
Novikov. Instead, they were motivated by a puzzle that follows from applying 
the Laughlin argument for the quantization of the Hall conductance to the 
Hofstadter model. By essentially reinventing the proof of integrality of Chern 



14 J.E. Avron 

numbers in a special case, they showed that whenever the Fermi energy is in 
a gap the Hall conductance is quantized. 

In the two diagrams, Figs. 2.1 and 2.4, the Hall conductance is quantized 
almost everywhere. The set of points where the Hall conductance is not quan­
tized is a set of zero measure and so invisible. This is related to the fact that 
the spectrum is a set of measure zero (see e.g., [1] and references therein). 

2.3 Thermodynamics considerations 

It is interesting to consider the colored butterflies from the perspective of 
thermodynamics. 

2.3.1 Gibbs phase rule 

The first and second laws of thermodynamics constrain the shape of phase 
diagrams. The phase rules depend on the choice of the independent thermody­
namic coordinates X, be they extensive, such as X = (E, V, N), or intensive, 
such as (P, T). 

Let X = (E, V, N) be the extensive coordinates of a simple thermody­
namic system. X and AX with A > 0 are thermodynamically equivalent sys­
tems, while X and Y i- AX are not. Mixing X and Y, in any proportion, 
is, in general, an irreversible process. The second law then says that the en­
tropy of the mixed system is not smaller than the sum of the entropies of its 
constituents. Namely, for 0 :::; A :::; 1, 

S(AX + A'Y) ~ S(AX) + S(A'Y) = AS(X) + A'S(Y), A' = 1 - A. (2.1) 

The first law, conservation of energy, (plus conservation of number of particles 
and additivity of volumes), was used in the first step and the extensivity of 
the entropy, S(AX) = AS(X), in the second. Eq. (2.1) says that the entropy 
SeX) is a concave function of its arguments. This embodies the basic laws of 
thermodynamics. 

Equality in Eq. (2.1) holds if mixing is reversible which is, of course, the 
case if a phase is mixed with itself. It is also the case if coexisting phases 
are mixed: Clearly one can separate ice from water by mechanical means 
alone. The geometric expression of equality in Eq. (2.1) is that S contains a 
linear segment: For a pure phase this is the half line S(AX) = AS(X). When 
X i- AY are in coexistence, S contains a two-dimensional cone: S(A1X + 
A2Y) = A1S(X) + A2S(Y), A12 > o. (This notion extends to multiple phase 
coexistence. ) 

Positivity of the temperature implies that S is an increasing function 
of E. Consequently, SeE, V, N) can be inverted to give the internal energy 
E(S, V, N). Since S is a concave function of its arguments, E(S, V, N) is a 
convex function of its arguments (which are the extensive state variables). Its 
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Fig. 2.3. S(E, V, N) is a concave function shown here for N fixed. The strictly 
convex pieces are associated with pure phases. The ruled piece is where two phases 
coexist. The boundary of the region of coexistence is shown as a black line. 

Legendre transform with respect to all its arguments gives a function of the 
intensive variables T, P and J.1 alone which, by scaling, must be identically 
zero. This is the Gibbs-Duhamel relation. It determines the pressure P as a 
convex function of the remaining intensive coordinates, (T, J.1): 

PV = J.1N + T S - E . (2.2) 

The pressure is a convenient object to consider because all the terms on the 
rhs of Eq. (2.2) admit a simple representation in statistical mechanics. -Pis 
sometimes called the grand potential, e.g., [12J. Since the pressure is the Leg­
endre transform of the internal energy with respect to Sand N, the convexity 
of E then implies the convexity of the pressure with respect to T and J.1. 

Now, it is a consequence of the duality of the Legendre transform that 
if E has a linear segment of length LlX, then its Legendre transform P has 
a corresponding jump in gradient with .:::::l(V' P) = .:::::lX. It follows that pure 
phases correspond to points where peT, J.1) has a unique tangent, while two 
phases coexist at those points (T, J.1) where P has two (linearly independent) 
tangent planes. (Triple points are similarly defined.) 

It is now a fact about convex functions that almost all points have a unique 
tangent while the set with multiple tangents has codimension 1 (in the sense of 
comparing Hausdorff dimensions). A geometric proof of this fact can be found 
in [6J. This gives a weak version of the Gibbs phase rule: If one considers the 
pressure P as a function of (T, J.1), (or alternatively, chemical potential J.1 as a 
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function of (P, t)), then pure phases are the typical sets while phases coexist 
on exceptional, Le., small, sets. 

2.3.2 Magnetic systems 

At T = 0 the entropy term in Eq. (2.2) drops. For a system of non-interacting 
Fermions all single particle states below 11 are occupied, while those above are 
empty. This says that for the single particle Hamiltonian H and area A the 
pressure is 

P = l~oo ~ Tr ((11- H)+X(A)} (2.3) 

X is the characteristic function of the area and x+ = x O( x) with 0 a unit step 
function. 

Let B denote the magnetic induction (i.e., the macroscopic average of the 
local magnetic field [11]). The Hamiltonian is a function of B and so is the 
pressure. The density p and the (specific) magnetization M are then given by 
[11] 

oP 
p = 011' 

OP 
M= oB. 

The Hall conductance is thermodynamically defined by 

op oM 
l7H = oB = 011 . 

(2.4) 

(2.5) 

It follows that, in the the wings of the butterflies where the Hall conductance 
is quantized, P is given by 

(2.6) 

where 9 is a discrete wing label. The wings represent pure phases since P has 
a unique tangent in the gaps. 

2.3.3 The order of the transitions 

P, P and Mare bi-linear in 11 and B in the gaps. P and p are actually 
also continuous functions of 11 on the spectrum. For rational flux this is a 
consequence of Floquet theory. For irrational flux this can be seen by a limiting 
argument. 

At the same time, the Hall conductance, being integer-valued on a set of 
full measure, can not be extended to a continuous function. 2 (In fact, it is not 
even bounded.) The continuity of the first derivative and the discontinuity of 
the second derivatives makes the phase transitions in 11 second order according 
to the Ehrenfest classification [3]. 

2 The magnetization does not extend to a continuous function on the spectrum for 
rational fluxes [7]. 
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2.3.4 Phases and their boundaries 

In the colored Hofstadter butterflies, pure phases are open sets. The boundary 
of a given phase, say the red wing, is a curve; it is not a smooth curve as at 
rational values of B it has distinct tangents, but it is still a curve of Hausdorf 
dimension 1 [15]. This is reminiscent of the Gibbs phase rule. Note, however, 
that the notion of the boundary of a pure phase, and the notion of phase 
coexistence, are distinct. The phase with Hall conductance 1 meets the phase 
o at a single point, at the tip of the butterfly, not on a line, as one might 
expect by the Gibbs phase rule. This holds in general: The boundary of the 
phases i intersects the boundary of the phase j on a set of codimension 2, 
not 1 [15]. Moreover, any small disc that contains two distinct phases of the 
butterfly contain infinitely many other phases. 

2.3.5 Magnetic domains and phase coexistence 

Is the fractal phase diagram of the butterfly in conflict with basic thermody­
namic principles? 

The Gibbs phase rule one finds in classical thermodynamics [3] says that 
two phases meet on a smooth curve, which is clearly not the case for the 
butterfly. However, this strong version of the Gibbs rule involves assumptions 
of smoothness of free energies that mayor may not hold. Convexity alone 
gives a weaker version of the Gibbs phase rule, which we briefly discussed in 
section 2.3.1, which allows for all kind of wild behaviors, and does not rule 
out fractal phase diagrams like the butterfly.3 

More worrisome is the lack of convexity of the pressure, P(/-t, B) which is 
manifest in the periodicity of Fig. 2.1 in B. This raises the question if this 
reflects a problem with the Hofstadter model. It does not. A little reflection 
shows that rather, it a consequence of choosing B, the magnetic induction, 
as the thermodynamic coordinate. In the remaining part of this section I 
shall explain why it is actually more natural to choose, for the independent 
thermodynamic variable, the magnetic field H and the difficulties in drawing 
the butterflies in the /-t - H plane. 

Imagine a two-dimensional system with finite width which is broken to 
domains. Assume that the magnetic field in each of the domains is perpendic­
ular to the plane and is constant through the given domain. Since V x H = 0, 
the magnetic field H must be the same in adjacent domains. Hence the notion 
of constant magnetic field is constant H, while B will not be constant if the 
system breaks into domains. The problem with H constant is more difficult 
because it is B, not H, that enters in the Hamiltonian [11]. 

Given the colored butterfly as a function of B, what can one say about the 
colored butterfly as a function of H? Recall that B, H and the magnetization 

3 Instructive examples are given on p.8 of [17]. I thank Aernout van Enter for 
pointing out this example to me and for a clarifying discussion on the Gibbs 
phase rule. 
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M are related by 

B=H+47rM. (2.7) 

Since M is a function of B, so is H. However, B may fail to be a (univalued) 
function of H. This is the case if -47rOBM 2: 1; if the magnetic susceptibility 
is sufficiently negative. When this happens, the relation H(B) can not be 
inverted to a function B(H). Domains with different values of M and B may 
then form and coexist [11, 4J. 

The condition for coexistence is a stability condition: The system will pick 
a value of B, consistent with H, that will minimize the entropy. However, 
at T = 0 the entropy of a gas of Fermions vanishes, so the different solu­
tions Bj(H, /1) all give the same entropy, zero. This suggests that all the B j 
represent phases at coexistence. 

There is no reason why this degeneracy will hold if T is not strictly O. Then, 
for most values of H a distinguished solution of Bo(H, /1) will be picked. The 
simple scenario is that Bo(H, /1) will depend, for most H, continuously on 
H. In these intervals, the phases of the colored butterfly in (/1, H) will be a 
deformed version of the phases in (/1, B). However, since a value of Bo (H, /1) is 
picked by a minimization procedure, there is no guarantee for continuity and 
Bo(H, /1) will be, in general, a discontinuous function of its arguments. At the 
discontinuities, major qualitative changes in the diagram will take place and 
it is interesting to investigate the colored butterfly in the /1 - H plane. 

Another open problem in this context is to analyze the domain structure 
for coexisting phases. The quasi-periodic character of the electronic problem 
for irrational fluxes suggest that the domain structure could be rich and inter­
esting as well, (e.g., a quasi-periodic domain structure for irrational fluxes). 

2.4 Duality 

We now turn to the duality relating the two diagrams. 

2.4.1 Weak magnetic fields 

Consider the "Bloch band" dispersion relation 

E(k) = cos(k . a) + cos(k . b) (2.8) 

on the two-dimensional Brillouin zone. a, b are the unit lattice vectors. The 
Hamiltonian describing a weak external magnetic field is obtained by imposing 
the canonical commutation relation 

[k . a, k . bJ = ia x b· B = i P. (2.9) 

This procedure is known as the Peierls substitution [16]. The model is known 
as the Harper model, after a student of Peierls. The spectrum, plotted in 
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Fig. 2.2, is a set of measure zero and so invisible in Fig. 2.1. Figs. 2.1 and 2.2 
describe disjoint and complementary sets, whose union is the plane. 

Although there is considerable interest in the Hofstadter model for its own 
sake (see e.g., [1] and references therein) its physical significance to the two­
dimensional electron gas is limited. One reason is that the flux <fJ, even for the 
strongest available magnetic fields, is tiny and only a horizontal sliver of the 
diagram in Fig. 2.1 near zero flux can be realized. Moreover, <fJ of order 1 is 
presumably outside the region of weak field for which the model approximates 
the Schrodinger equation. 

By gauge invariance, time-reversal and electron-hole symmetry, the pres­
sure satisfies [7] 

P(/-L, <fJ) = P(/-L, -<fJ) = P(/-L, <fJ + 1) = -/-L + P( -/-L, <fJ) . (2.10) 

This gives Fig. 2.1 its symmetry. 

2.4.2 Strong magnetic fields 

A classical charged particle in a homogeneous magnetic field moves on a circle. 
The center of the circle is, classically, 

v x B 
c=x+-W; (2.11) 

c commutes with v, but the components of the center do not commute, rather 
they satisfy the canonical commutation relations 

B· a* x b* 
[c· a*, c . b*] = -i B2 

(a*, b*) are dual vectors to (a, b). 

(2.12) 

If the wave function 'ljJ belongs to a given Landau level, then the shifts 
eic.a'ljJ, for a E ]R2, span the spectral subspace of that level. This means that 
the Hamiltonian 

cos(c· a*) + cos(c· b*), (2.13) 

acts within Landau levels. For large B it approximates the periodic potential 
cos(x . a*) + cos(x . b*), which couples different Landau levels. This is seen 
from the fact that in a given Landau level v = O(VB), hence, by Eq. (2.11), 
c ~ x for large B. The Hamiltonian in Eq. (2.12) is the same as that of 
Eq. (2.8), except that in the commutator <fJj27f of Eq. (2.9) is replaced by 
27f j<fJ of Eq. (2.12). 

Although the spectral problem of the two models is essentially the same, 
the phase diagrams are different. This is explained in the next subsection. 

Unlike the tight-binding model which is mostly of academic interest, the 
model of a split Landau level can be realized in artificial superlattices that 
accommodate a unit of quantum flux at attainable fields. 
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Fig. 2.4. Colored Hofstadter butterfly for Landau level split by a super-lattice 
periodic potential. The horizontal axis is the chemical potential; the vertical axis 
is the average number of unit cells associated with a unit of quantum flux. As the 
number increases by 1, the pattern repeats but with a different coloring code. (See 
color insert following p. 22.) 

2.4.3 Thermodynamic duality 

The pressure of a split Landau level, P", and split Bloch band Pb, for any 
temperature T, are related by [7] 

(2.14) 

This is a duality transformation: It is symmetric under the interchange 
b ~ l. It implies that the thermodynamics of the split Bloch band deter­
mine the thermodynamics of a split Landau level and vice versa. The factor 
cI> on the right is the reason that P" is not periodic, although Pb is. 

A check on the factor cI> /27r comes by considering large J.L. Then, the tight 
binding model has all sites occupied and the electron density is Pb ~ 1. This 
implies Pb ~ J.L. In contrast, a full Landau level has electron density that is 
proportional to the flux through unit area: PI ~ cI>/27r so P" ....... cI>J.L/27r. 
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The magnetization and the Hall conductances of the two models are there­
fore related by: 

When J.L is large, ab = 0, since a full band is an insulator. At the same time, a 
full Landau level has a unit of quantum conductance, at = 1/27r, in agreement 
with the Eq. (2.15). 

Acknowledgment: I thank A. van Enter and O. Gat for useful discussions 
and criticism. This work is supported by the Technion fund for promotion of 
research and EU grant HPRN-CT-2002-00277. 

2.5 Appendix: Diophantine equation 

Let me finally describe the algorithm of [18J for coloring the gaps in the 
butterfly Fig. 2.1. Suppose that the magnetic flux through a unit cell is ~. For 
p and q relatively prime, define the conjugate pair (m, n) as the solutions of 

pm-qn = 1. (2.16) 

m is determined by this equation modulo q and n modulo p. The algorithm 
for solving Eq. (2.16) is the division algorithm of Euclid. (Standard computer 
packages for finding the greatest common divisor of p and q, yield also m and 
n such that pm + qn = gcd(p, q).) The Hall conductance kj, associated with 
the j-th gap, in the tight binding case, is given by [18J 

kj = jm mod q, Ikj I ::; q/2. (2.17) 

In the case of a split Landau band, Eq. (2.17) again determines k j provided 
p and q are interchanged. 

References 

1. A. Avila and R. Krikorian, http://xxx .lanl. gov / abs/math. OS/0306382; 
J. Puig, Cantor spectrum for the almost Mathieu operator, mp-arc 03-145. 

2. M.Ya. Azbel, Sov. Phys. JETP 19 (1964), 634-645. 
3. H.B. Callen, Thermodynamics and an Introduction to Thermostatics, Wiley, 

1985. 
4. J.H. Condon, Phys. Rev. 145 (1966), 526. 
5. R.H. Dalitz and Sir R. Peierls, Selected Scientific Papers of Sir Rudolph Peierls, 

World Scientific, 1997. 



22 J.E. Avron 

6. K. Falconer, Fractal Geometry, Wiley, 1990. 
7. O. Gat and J. Avron, Magnetic fingerprints of fractal spectra, New J. Phys. 5 

(2003), 44.1-44.8; http://arxiv . org/abs/cond-mat/0212647. 
8. O. Gat and J. Avron, Semiclassical analysis and the magnetiza­

tion of the Hofstadter model, Phys. Rev. Lett. 91 (2003), 186801; 
http://arxiv.org/abs/cond-mat/0306318. 

9. D. Hofstadter, Phys. Rev. B 14 (1976), 2239-2249. 
10. R. Israel, Convexity in the Theory of Lattice Gases, Princeton, 1979. 
11. L.D. Landau and E.M. Lifshitz, Electrodynamics of continuous media, 

Butterworth-Heinemann, 1983. 
12. E.M. Lifshitz and L.P. Pitaevskii Statistical Physics, Pergamon, 1980. 
13. S.P. Novikov, JETP 52 (1980), 511. 
14. D. Osadchy, M.Sc. thesis, Technion, 2001. 
15. D. Osadchy and J. Avron, Hofstadter butterfly as quantum phase diagram, 

J. Math. Phys. 42 (2001),5665-5671; http://arxiv . org/abs/math-ph/0101019. 
16. G. Panati, H. Spohn and S. Teufel, Phys. Rev. Lett. 88 (2002), 250405; and 

http://arxiv.org/abs/math-ph/0212041. 
17. A.W. Roberts and D.E. Varberg, Convex Functions, Academic Press, 1973. 
18. D.J. Thouless, M. Kohmoto, M.P. Nightingale, and M. den Nijs, Phys. Rev. 

Lett. 49 (1982), 405-408. 





3 

Semiclassical Normal Forms 

D. Bambusi 

Dipartimento di Matematica 
Via Saldini 50 
1-20133 Milano, Italy 

Summary. Given a classical Hamiltonian function having an absolute minimum, 
we consider the problem of describing in the semiclassical limit the lowest part of 
the spectrum of the corresponding quantum operator. To this end we present an 
extension of the classical Birkhoff normal form to the semiclassical context and we 
use it to deduce spectral information on the quantum Hamiltonian. The properties of 
the spectrum turn out to be strongly dependent on the resonance relations fulfilled 
by the frequencies of small oscillations of the classical system. Here we concentrate on 
two opposite cases, namely the completely nonresonant and the completely resonant 
one and describe the spectrum of the Hamiltonian in these cases. 

3.1 Introduction 

Consider a Hamiltonian system with Hamiltonian function 

H(~,x) := Ho + V(x) , Ii (C ).= ~ (f + w;x; 
o <",x. ~ 2 ' 

i=l 

(3.1) 

where V (x) is a Coo function having a zero of at least third order at the origin, 
and WI are the frequencies of small oscillation. 

In the classical case it is well known that there exists a canonical trans­
formation putting the system in Birkhoff normal form up to small remainder. 
Such a normal form can be used to describe the small amplitude solutions of 
the system. A corresponding quantum procedure has been recently introduced 
in [BV90, GP87, Bam95, Sj092, BGP99, BCT03] (see also [PopOOa, PopOOb]). 
Accordingly one can construct a unitary transformation putting the quantum 
system in normal form. Such a normal form can be used to deduce spectral 
information on the Hamiltonian operator. Moreover such information remains 
valid in the semiclassical limit. 

In this article we will present the results of [Bam95, BGP99, BCT03] in 
a unified way. First we will introduce at a purely formal level the classical 
and the quantum algorithm that put the system in normal form. Then we 

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
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will show how to obtain a unified treatment. Precisely we will construct a 
unitary transformation that transforms the quantum Hamiltonian operator 
of the system into a normalized one. We will show that, when n ---t 0 the 
symbol of the normalized operator reduces to the classical normal form of the 
Hamiltonian (3.1). 

Subsequently we will make the theory rigorous by adding estimates of the 
remainder. Such estimates are uniform in the semiclassical limit. This will be 
done in three steps. Each step will deal with a case that is more realistic, 
but technically more difficult, than the previous one. The result is that the 
low-lying eigenvalues of the normal form operator and those of the original 
Hamiltonian operator are close to each other. 

In order to deduce precise spectral information one has to study the spec­
trum of the normal form: We will concentrate on two particular cases, namely 
the completely nonresonant and the completely resonant case. 

In the nonresonant case the normal form has the structure 

(3.2) 

where 

(3.3) 

is the quantization of the harmonic oscillators, and ZQ = ZQ(il,"" in) is a 
function of the operators 

The eigenvalues of (3.2) are given by 

This will give a quantization formula for the eigenvalues of the original oper­
ator. 

We come to the completely resonant case. Here the frequencies are integer 
multiples of a single one, say v. The normal form has again the structure (3.2), 
but the only available information on the operator ZQ is that it commutes 
with fIo. 

To describe our procedure and results, we remark that in the linear ap­
proximations the spectrum of the system is given by (n + 1/2)vn, n E N. 
Moreover the eigenvalues have a multiplicity that grows with n. The first ef­
fect of the nonlinearity is expected to be a splitting of the degeneracy and a 
transformation of a single eigenvalue into a small band of eigenvalues close to 
each other. We will show that the width of the band can be computed in the 
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semiclassical limit (Ii ~ 0 with nli ~ E) using the normal form of the system. 
The idea is that the restriction of ZQ to an eigenspace of flo is a Toeplitz op­
erator whose principal symbol is the restriction of the classical normal form 
to a surface of constant harmonic energy. So, using standard properties of 
Toeplitz operators one has that the extrema of such a restricted normal form 
are essentially the lowest and the highest eigenvalues of the above operator. 

Related results were obtained by Zhilinski and coworkers [Zhi89, VSZBOl] 
and by San Vii Ng9c in his thesis [Vun98]. 

3.2 Formal theory 

3.2.1 Classical Lie transform 

We begin by recalling the classical Lie transform and its use to put systems 
in normal form. 

To make the discussion clearer we introduce an artificial parameter E, and, 
instead of the Hamiltonian (3.1) we consider, on ~2n, the system 

HE := Ho + EV . (3.5) 

We fix a large M and look for a canonical transformation putting (3.5) in 
normal form up to terms of order EM. 

Let X be a smooth function defined on ~2n, and denote by 

x - ( 8X 8X) (C,x) E ~2n 
X = - 8x' 8~ , .,. 

the corresponding Hamiltonian vector field. Consider the Hamiltonian equa­
tions of X, namely 

i = Xx(z) , z = (~,x) (3.6) 

and let Pt be the corresponding flow. 

Definition 1. The map P := P, = Ptlt=E will be called a Lie transform gen­
erated by X. D 

Remark 1. P is a canonical transformation of the form 

Given a function 9 one can consider the transformed function goP. Using 
the equality 

it is easy to see that 
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where the gl's are defined by 

00 

9 0 iP = 2:: (31 gl , 
1=0 

1 
gl = T {X; gl-d, l 2: 1; go = 9 . (3.7) 

We want to choose a function X such that H€ oiP is in normal form up to order 
(32. By explicit computation one has 

so X has to fulfill the so-called homological equation: 

v + {X;Ho} = Z (3.8) 

where Z Poisson commutes with H o, i.e., 

{Ho;Z}=O. 

It is well known that, at least formally equation (3.8) is always solvable, 
however the properties of Z strongly depend on the resonance relations fulfilled 
by the frequencies. In particular, if the frequencies are nonresonant, then Z 
turns out to be a function of the actions I j = (t;J + wJxJ)/2wj only. On the 
contrary, in the completely resonant case the only available information on Z 
is that it Poisson commutes with Ho. So one can use the function X solving 
(3.8) to generate the Lie transform and to put the Hamiltonian in the form 

(3.9) 

with a suitable V(l). Then one can iterate the construction and after M steps 
one gets a Hamiltonian of the form 

(3.10) 

where the nonnormalized part has been pushed to an arbitrarily high order. 

3.2.2 Quantum Lie transform 

Let W be a self-adjoint operator on L2(JRn), and consider the corresponding 
unitary operator X t defined by: 

Definition 2. The unitary operator X .- X€ = Xtl t=€ will be called the 
quantum Lie transform generated by W. 
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Given a linear operator G, consider the transformed operator XGX-\ 
exploiting the equation 

one has that the Taylor expansion of XGX- 1 in f is given by 

where 

00 

XGX- 1 = L flGI , 

1=0 

(3.11) 

Again one can use the quantum Lie transform to put a Hamiltonian of the 
form 

(3.12) 

in normal form. Proceeding as in the classical case one has 

and therefore, if one is able to solve the quantum homological equation, namely 
to determine Wand ZQ such that 

(3.13) 

then one has that the system is in normal form up to terms of order f2. 

Iterating the construction, one has that the system can be put in normal form 
up to a remainder of order fM. 

It is clear that formally the two procedures are very similar. The true 
correspondence can be established by the use of Weyl quantization. 

3.2.3 Semiclassical Lie transform 

Given a function 9 on the classical phase space, one can define the correspond­
ing quantum operator Opw (g) by 

(OpW(g)'ljJ)(x) = (27rn)-n r g((x + y)/2,f,)e i (x- y ,t;)/Ii'ljJ(y) dydE". (3.14) 
JlRn xlRn 

It is possible to show that, under suitable assumptions, OpW(g) is well defined 
and fulfills the standard properties of the quantization by the symmetriza­
tion rule (for a systematic description of this quantization procedure see, e.g., 
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[BS91, R087]). Due to formula (3.14) one has a correspondence between a 
suitable class of functions and self-adjoint operators in L2. The function cor­
responding to a given operator (when it exists) is called the symbol of the 
operator. The main point is that, given two functions gl and g2, there exists a 
unique function whose Weyl quantization is * [OpW(gr); OpW(g2)]. This func­
tion is the so-called Moyal bracket of gl and g2, and is usually denoted by 
{gl; g2} M· By formally expanding the Moyal bracket in powers of fi, one gets 
[BS91] 

(3.15) 

Moreover it can be shown that if one of the functions gl or g2 is a polynomial 
of degree at most 2, then 

{gl; g2} M = {gl; g2} 

so that, in particular {Ho;g}M = {Ho;g} for any function g. It is possible 
to reformulate the quantum normalization procedure of the previous section 
in terms of Moyal brackets. Indeed, given two functions X and g, define the 
sequence {9Ih~0 by 

90 :=g, (3.16) 

and the function 
00 

9:= LI,}91 (3.17) 
[=0 

Then (formally) 9 = 9 0 q5 + O(fi2), where <P is the classical Lie transform 
generated by X. Moreover, comparing with the formulae of the previous section 
one has 

(3.18) 

where X is the quantum Lie transform generated by OpW(X). Repeating the 
construction of the previous section in terms of symbols of the operators, one 
has the following 

Proposition 1. For any M there exists a formal unitary transformation con­
jugating the Hamiltonian operator OpW(He) (with He given by (3.5)) to an 
operator with symbol of the form 

Ho + EZ~M) + EM+1V(M) 

where Z~M) = Z~M)(x,~,fi) fulfills 

{ Z~M) ,Ho } = { Z~M), Ho } M = 0, 

and moreover Z~M) (x,~, 0) coincides with the Birkhoff normal form Z(M) of 
the classical Hamiltonian system (3.5). 
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3.3 Rigorous theory 

3.3.1 The case of analytic fast decreasing perturbations 

Up to now the theory has been developed at a heuristic level, indeed we paid 
no attention to the problem of convergence of series or to that of estimating 
the remainder V(M). In this subsection we will give some rigorous results on 
the spectrum in the technically simplest situation. The main point consists 
in introducing a class of functions which behaves well under the operations 
involved in the construction of the normal form, namely quantum Lie trans­
form and solution of the homological equation. To obtain the wanted class of 
functions, we begin by defining an analytic action tJt of ,][,n into ]R2n through 
the flow of Ho: 

tJt ,][,n X ]R2n ---+ ]R2n, 

( <p, (~, x)) I---> (e, x') = tJt 'P (~, x), 

I ~k. 
xk := - sm <Pk + Xk cos 'Pk, 

Wk 

~~ := ~k cos 'Pk - WkXk sin 'Pk . 

Remark that, denoting Z := (~, x), the flow ¢/(z) of XHo is ¢/(z) = Wwt(z). 
Define the angular Fourier coefficient of order k of a function g by 

Remark 2. If g E (:1, then 

-Given p > 0, (Y > 0, denote by (g)k(S) the space of Fourier transforms of 
(g)k(Z) and define 

(3.19) 

Definition 3. The space of the analytic functions such that the norm (3.19) 
is finite will be denoted by Ap,O". 

Remark 3. A function f (~, x) of class Ap,O" in particular is integrable over the 
whole of ]R2n. 

By standard results on Weyl quantization one has 

(3.20) 

The class Ap,O" behaves well under the quantum Lie transform. Indeed one has 
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Proposition 2. [BGP99] Let g E Ap,a- and X E Ap,a- be two smooth symbols, 
fix 15 < (1 and assume that 

Ellxllp,a- ::; 152 ; 

then the series 91 defined by (3.16), (3.17) converges in the norm of A p,a--8, 
and one has 

XOpW(g)X-1 = L OpW(91)E1 

1;:::0 

where X is the quantum Lie transform generated by Opw (X) and the series 
on the r.h.s. converges also in the operator norm. 

In order to solve the homological equation we have to make some assump­
tions on the frequencies. 

HI) There exist 'Y > 0 and 7 E lR such that, for any k E zn, one has 

either w· k = 0 or (3.21) 

Proposition 3. [BGP99] Assume Hi, let g E Ap,a-. Then the quantum ho­
mological equation 

{Ho,X}M + Z = g (3.22) 

admits solutions X, Z E Ap-d,a-, where d < p is a positive parameter. Moreover 
one has {Ho, Z} = 0 and: 

IIZII < II II II II < c IIgll p,a-. p,a- _ g p,a-; X p-d,a- - '" dr ' (7)r 1 
c",:= ; ::y . 

Combining the above propositions and the iterative algorithm introduced 
in the previous section one gets 

Theorem 1. Consider the Hamiltonian operator (3.12), assume V E Ap,a-, 
fix 15 < min {p, a"}, and assume also that Hi holds. There exist constants G1, 
G2 , such that, for any integer M > 0, the following holds true: if 

(3.23) 

then there exists a unitary transformation conjugating the system (3.12) to 

where Z~M)(z,E,n) E A p-8,a--8 is in normal form. Z~M)(Z,E,O) coincides with 
the classical Birkhoff normal form of H o +EV computed up to order M. More­
over, one has 

(3.24) 
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Remark 4. Choosing M = Mopt '" c l /(2+r), one gets an exponentially small 
estimate of the remainder: 

(3.25) 

with redefined constants Gl , G2 . In the following we will concentrate on this 
kind of exponential estimates. 

Remark 5. In the nonresonant case where w . k f:. 0 for k f:. 0, one has 

Z~M) = Z~M) (It, ... , In, €, Ii) , 

i.e., the function Z~M) depends only on the actions. 

3.3.2 The case of compactly supported perturbations 

The applicability of the above theorem is not clear, since the definition of 
the class Ap,O" is quite implicit. In the present subsection we will extend the 
result to the case of G= compactly supported perturbations of class Gevrey 
(precisely fulfilling the assumption HG below); in the next subsection we will 
show how to deal with the general cases. So we assume that V = V(x,';) has 
compact support and is of class Gevrey, namely that 

(HG) there exist a > 0, K > 0 and 1 < e < 00 such that Vj = (jl, ... ,l2n), 

sup -. V(z) :s; Ka-IJI(ljl!)i, z = (';,x) . I aljl I . 
zER.2n azJ 

(3.26) 

Theorem 2. Consider the operator (3.12), assume Hi and HG. Then there 
exist constants Gl , G2 , b > 0 such that the following holds true: if € is small 
enough, then there exists a unitary transformation conjugating the system 
(3.12) to 

OpW(Ho) + €OpW(ZQ) + Rapt 

where ZQ(z, €, Ii) is in normal form. ZQ(z, €, 0) coincides with the classical 
Birkhoff normal form of Ho + €V computed up to a suitable € dependent order. 
Moreover, one has 

IIRoptll£2-+£2 :s; Gl€exp( -C2/€b) . (3.27) 

Idea of the proof. For A > 0 and K > 0, approximate V by 

VA,K (z):= L 1 ~(s)ei(S,Z) ds 
Ikl:S:K 181<.1 

(3.28) 

and apply Theorem 1 (with exponential estimate of the remainder) to Ho + 
V A,K, keeping track of the dependence of all the constants on A and K. Then 
choose A and K in such a way that the estimate (3.25) of the remainder is of 
the same order of magnitude as the error due to the approximation of V by 
V A,K. This gives the result. For details see [BGP99]. 
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3.3.3 The case of an unbounded potential 

Using microlocal analysis it is possible to reduce a quite general case to the 
previous one. The idea is to consider a quantum Hamiltonian of the form 

(3.29) 

with a possibly unbounded V = V(x) having a zero of third order at the 
origin and then to substitute the potential V with a different function, say V';c, 
with support contained in a ball of radius 2E in the phase space and coinciding 
with the original one in a ball of radius E. One expects the lowest parts of the 
spectra of 

to be close to each other. This is exactly the content ofthe forthcoming results. 
The precise relation between the spectra is captured by the following defini­
tion. Let H 1 (",), H 2 (",) be two families of self-adjoint operators depending on 
the parameters", EVe ]Rk, let Jr< C ]R be a family of bounded interval, and 
set SpecJ" (Hl ,2) := Spec(Hl ,2) n Jr<' 

Definition 4. Let g : 1) --> ]R be a real function vanishing at 1';,. We say that 
SpecJ" (Hd = SpecJ" (H2 ) (mod g) as", --> 1';, if 

(3.30) 

imply 

(3.31 ) 

and, conversely. 

Remark 6. IfSpecJ" (HI) = SpecJ" (H2 ) mod g, then for any A1 E SpecJ" (Hd 
there exists A2 E SpecJ" (H2) such that Al ("') = A2("') +eg("')) and conversely 
with a constant e uniform on Jr<' 

In order to use micro local analysis we need the following assumptions: 

H2) H --> +00, Ixl --> 00; H(x,~) > 0 for (x,~) -=1= O. 
H3) There exist v E ]R ej > 0, a > 0, K(U) > 0 and 1 < £ < 00 such that, 

Vi = (il,'" ,in), Iii := lill + ... + linl, and for any bounded U C ]Rn: 

SUPxElRn 1(1 + IxI2)V-ljl/28~IV(x)1 ::::: ej, 

sUPxEU 18~IV(x)1 ::::: K(U)a-1jl(UI!)£. (3.32) 

We are now ready for the application of the results of the previous sections. 
This is obtained in four steps. 
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1) We rescale the variables using the unitary transformation 

(3.33) 

The image of OpW(H) under U. is the Weyl quantization of 

2 2 - - 3 E H. := E (Ho + EV), V(x):= E- V(EX) , (3.34) 

but a Weyl quantization where ti is substituted by ti' := ti/ E2. 

2) We make a cutoff of HE) namely, fix R and consider a Gevrey function t 

such that t(s) == 1 for lsi S R, t(s) == ° for lsi 2: 2R, and define 

(3.35) 

3) We compare the spectrum of the Hamiltonian OpW(H.) with the spectrum 
of OpW(Ht) where 

Ht := Ho + Ea.,R . (3.36) 

This is done by the following 

Proposition 4. [BGP99] Assume H2,H3, let J c lR+ be bounded and fixed. 
Then there exist R > ° and E* > ° independent of E, ti', such that, provided 
° S E S E*, one has 

4) Rescale back the variables, namely apply the transformation U.- 1 to Ht. 
Defining V. := V(x)t(lxl/E)t(I~I/E), one has 

E2U.HtU.- 1 = OpW(Ho) + OpW(v.) . 

It follows that 

Spec.2J(OpW(Ho + V)) = Spec.2J(OpW(Ho + 11.)) (mod e-c (€2/ n)1/i) 

5) Now apply Theorem 2 to Ho + 11.. One has 

TheoreIn 3. Assume Hl,H2,H3. Then there exist b > 0, h* > 0, E* > 0, A > 
0, B > ° (independent of ti and E) and a smooth function 

Z(~, x; ti, E) : lR2n X [0, h*] x [0, E*] -+ lR 

which commutes with Ho, such that, "iE S E*, ti S ti*E2 one has 

Spec.2J(OpW(Ho + V)) = Spec€2J(OpW(Ho + Z)) 

mod (e- c(€2/ n)1/i + E3e-A /. b ) • 

Moreover Z admits a full asymptotic expansion in ti, has support in a ball 
of radius 2E and Z(~, x, 0, E) coincides in a ball of radius E with the classical 
Birkhoff normal form truncated at an E dependent order. 
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In the nonresonant case one thus gets a complete description of the spec­
trum of the Hamiltonian operator. 

Corollary 1. [BGP99] With the same assumptions and notation of Theorem 
3, assume also that the frequencies are nonresonant, then the eigenvalues of 
OpW(H) in [0, f2] have the representation 

(k + 1/2), w)1i + Z «k + 1/2)1i, Ii, f) + 0 (e-(Bf 2 In)1/t) + 0 (f3e-Alfb) 

(3.37) 

with k E Nn . 

3.4 The Resonant Case 

In this section we study the case where the linear frequencies are completely 
resonant, i.e., there exists v E ~+ and integers lj such that Wj = vlj. In 
this case it is nontrivial to study the spectrum of Ho + Z. A first qualitative 
change in the spectrum is induced by the first nonlinear term of Z. Assume 
for simplicity that 

Z=Nt+R 

with Nt coinciding in a ball of radius f with a polynomial of order 4 and R 
having a zero of order 5 at the origin. We will study the spectrum of the Weyl 
quantization of 

(3.38) 

Remark that the spectrum of OpW(Ho) is given by 

Fix E E Sp(OpW(Ho)), E < f2 and remark that OpW(Nt) restricts to a well­
defined operator N1 on the eigenspace corresponding to E. The remarkable 
fact is that such an operator can be realized as a Toeplitz operator whose 
principal symbol coincides with the restriction of Nt to the level surface Ho = 
E. To come to this result we recall some facts about classical and quantum 
reduction. 

3.4.1 Bargmann transform 

We define the Bargmann transform Ln acting on L2(~n) by 
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It can be shown that Ln is an isomorphism between L2(JRn ) and the Bargmann 
space Bn of entire holomorphic functions f such that the following integral is 
finite, 

(3.39) 

Remark 7. The Bargmann space is particularly adapted to harmonic oscilla­
tors. Indeed one has 

(3.40) 

so that it is immediate to see that, having fixed a positive integer k, the 
eigenspace £k of OpW(Ho) corresponding to Ek = vn(k + Ill/2) is 

£k := Span {zO<}"..I=k . (3.41) 

For any Weyl symbol P(~,x), one has that LnOpW(P)L-,;l is the Weyl 
quantization of 

Pb(Z, z) := P ( Z ~z, ~~) . 
The main point for our developments is that such an operator is a Toeplitz 

operator. 

3.4.2 Geometric quantization and Toeplitz operators 

Consider a 2n-dimensional symplectic manifold P and assume that it admits 
a compatible complex structure. Assume also that it is endowed with a pre­
quantization line bundle L -+ P, i.e., a Hermitian line bundle fulfilling some 
compatibility conditions. To fix ideas one can think of P as en endowed by 
the coordinates z, z and of L as the trivial bundle <C x en -+ en. For any k 
consider the Hilbert space of the holomorphic sections of D'g)k, 

Here l/k plays the role of n. We assume that 1ik is a closed subspace of the 
space L2(P, L0k) of the L2 sections of p0k, then there exists an orthogonal 
projector Ih : 1ik -+ L2(P, L0k). 

Definition 5. Given a function f E COO(P), consider the multiplication op­
erator 

Mf : 1ik -+ L2(P, L0k), 

'IjJ 1-+ f'IjJ 

where the Toeplitz operator Tf with symbol f is defined by Tf := IhMf. 
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In the example quoted above where P == en, one can prove that one has 
Hk == Bk-l, and, given a Weyl symbol P(~), one has 

(3.42) 

where 

(3.43) 

and eM is the inverse of the semigroup generated by the heat equation (namely 
it is the backwards evolution of P for a time t through the heat semigroup). 
So, formally one has 

F(z, z, k) = Pb(Z, z) + O(ljk). 

3.4.3 Reduction 

Consider now the symplectic manifold M obtained by the Marsden-Wein­
stein reduction procedure from ]R2n endowed by the group action ¢>t, (where 
¢>t denotes again the flow of the linearized Hamiltonian system Ho; in general 
M is a symplectic orbifold). Namely, assume 1 is a regular value Ho; then 

Moreover, the Hamiltonian (3.38) restricts to M, and its restriction is a Hamil­
tonian system field with Hamiltonian function Nt 1M. SO the problem of study­
ing the classical dynamics of (3.38) is reduced to the study of the dynamics of 
Nt 1M. For the quantum case fix 'Ii = k- 1 , then we have the following theorem. 

Theorem 4. [Guillemin-Sternberg] M is naturally endowed with a complex 
integrable structure and a prequantization bundle L. Furthermore, for any k 
there exists a canonical isomorphism GSk from £k (see (3.41)) onto the space 
Hk of holomorphic sections of L®k. 

Remark 8. Here k plays a double role: first it is the inverse of the Planck 
constant 'Ii and secondly it is the number labelling the unperturbed eigenvalue 
we are studying. Due to this, the limit k ---+ 00 is actually the semiclassical 
limit in which k'li is fixed. 

So the conclusion is that geometric quantization behaves well under sym­
plectic reduction. We are now interested in the behavior of operators when 
one applies symplectic reduction. We present only the case of interest for the 
application to resonant systems. 

Theorem 5. [Charles [Cha02]] Consider a Toeplitz operator on the space Bk 
with C=, compactly supported symbol of the form 



3 Semiclassical Normal Forms 37 

where the fl's have compact support, commute with Ha, and the series is 
asymptotic in the topology of COO functions. Let (Tj ) k be the restriction of Tj 
to £k and fo be the restriction of fa to M. Then the operator GSk(Tj )kGSk1 
is a Toeplitz operator with principal symbol fo. 

Corollary 2. The restriction of OpW(Nt) to £j is a Toeplitz operator with 
principal symbol 

3.4.4 The resonant normal form 

Remarking that the spectrum of a Toeplitz operator is contained between 
the maximum and the minimum of its symbol, one immediately has that the 
spectrum of OpW(H) has a band structure. Precisely one has 

Proposition 5. [BCT03) Let /'1 > ~. There exists Ii* > 0 such that for Ii :::; 
Ii*, 

Spec(OpW(H)) n (-00, n'l) c U B(E, ~wli) 
EESpeC(OpW(Ho)) 

where B(E, ~wli) is the interval [E - ~wli, E + ~wli]. Furthermore if Ii :::; n*, 
for every eigenvalue E of Opw (Ha) smaller than n' , 

#Spec(OpW(H)) n B(E, ~wn) = m(E, Ii) 

where m(E, n) is the multiplicity of E. 

Then, by the above theory one has that the spectrum in each band can 
be (approximatively) computed using the normal form. Denote by NM the 
restriction of Nt to M, which coincides with the restriction of the classical 
normal form of order 4 to M, then one has our main result for the resonant 
case: 

Theorem 6. [BCT03) In the considered range of parameters, one has 

Spec(OpW(H))nB(E,~wli) =E+f2Spec(TNM ) mod E2(~ +E1/2). 

(3.44) 

The first information one can deduce from the above theorem pertains to 
the extrema of the band and the distribution of the eigenvalues in the band. 
By standard properties of Toeplitz operators one has 
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Theorem 7. Let '1'1, '1'2 be such that ~ < '1'1 < '1'2 < 1. Choose n* as in 
proposition (5). For n ::; n* and for every eigenvalue E ::; ;('11 of iI, denote by 

the eigenvalues ofa in B(E, !wn) counted with multiplicity. Then when ni2 ::; 
E < fi'l - , 

and similarly 

Let f be a c= function on~. Then, when ni2 ::; E ::; nil, 

where j,LE is the Liouville measure of {H = E}. 
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Summary. We review the foundations of the scattering formalism for one-particle 
potential scattering and discuss the generalisation to the simplest case of many non­
interacting particles. We point out that the "straight path motion" of the particles, 
which is achieved in the scattering regime, is at the heart of the crossing statistics 
of surfaces, which should be thought of as detector surfaces. We prove the relevant 
version of the many-particle flux across surfaces theorem and discuss what needs to 
be proven for the foundations of scattering theory in this context. 

4.1 Introduction 

Quantum mechanical scattering theory is usually about the S-matrix. The 
operator S maps the so-called in-states a to out-states (3. That may seem 
sufficiently self explanatory as a basic principle since 

and 

An experimentalist generally prepares a state . .. at t --+ -00 and then 
measures what this state looks like at t --+ +00. - S. Weinberg in "The 
quantum theory of fields" [18], Chapter 3.2: The S-Matrix 

The S -matrix SQ,{3 is the probability amplitude for the transition a --+ 

(3 .... - [18] Chapter 3.4: Rates and Cross Sections 

so everything seems settled. However the quote continues 

. .. but what does this have to do with the transition rates and cross 
sections measured by experimentalists? ... 
. .. we will give a quick and easy derivation of the main results, 

actually more a mnemonic than a derivation, with the excuse that (as 

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
© Birkhäuser Boston 2004

s



42 D. Diirr and S. Teufel 

far as I know} no interesting open problems in physics hinge on getting 
the fine points right regarding these matters. . .. - Chapter 3.4: Rates 
and Cross Sections 

The mnemonic recalls that the plane waves in the S-matrix: formalism are 
limits of wave packets, but it does not come to grips with the time-dependent 
justification of the scattering formalism, in fact it does not connect to the 
empirical cross section. 

We remark aside, that apart from not making contact with the empiri­
cal cross section, there is another-though quite related-problem with the 
mnemonic, which-as is felt by many--can only be settled by interesting new 
physics: When a particle is scattered by a potential its wave will be spread all 
over. What accounts then for the fact that a point-particle event is registered 
at one and only of the detectors? Where did the particle come from which 
is suddenly manifest in that detector event? This is some facet of the mea­
surement problem of orthodox quantum theory [3, 4]. We shall not say more 
on that in this paper and refer to [11]. We emphasize however that we shall 
use Bohmian mechanics for a theoretical description of the cross section-a 
theory free from the conceptual problems of quantum mechanics. 

We immediately jump now to the technical heart of foundations of scat­
tering theory by observing that 

t -+ ±oo 

means the mathematical limit of the formulas capturing the physical situ­
ation (see (4.8) below). Experimentalists prepare and measure states at large 
but finite times. They count the number of particles entering the detectors. 
The physical meaning of the S-matrix derives from being the limit expression 
of the theoretical formula for the number count. It is moreover immediately 
clear-once this point of the finiteness of the physical situation has been 
recognized-that the times at which particles cross the detector surfaces are 
random. The detector clicks when the particle arrives. That time is random 
and not fixed by the experimenters. Thus the foundations of quantum mechan­
ical scattering theory become slippery: No observables exist, neither for time 
measurements nor for position measurements at random times. The question 
is thus: What are the formulas which theoretically describe the empirical cross 
section and which result in the appropriate limit in the S-matrix formalism? 

In this paper we shall shortly review the simple one-particle potential scat­
tering situation. Apart from discussing the quantum flux we shall introduce 
Bohmian mechanics, which allows us to capture the theoretical foundations 
of scattering theory in the most straightforward way. We shall then extend 
our considerations to multi-particle potential scattering and show why the 
multi-time flux (which we shall introduce) determines the statistics in this 
case in terms of a generalized flux across surfaces theorem. The first paper 
on the flux across surfaces theorem [9] discusses also the multi-particle flux 
but restricts the computation of statistics to the marginal statistics of one 
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particle only, ignoring thus the most important correlations due to entangled 
wave functions. Our multi-time analysis deals specifically with entangled wave 
functions. 

4.2 The theoretical cross section 

We adopt conventional units in which !!; = 1 and recall that the theoretical 
prediction aka CL') for the cross section as given by S-matrix theory is 

aka (E) = 167r4 J dw \T(\ko\w, kO)\2 . (4.1) 

E 

Here T = S - I, where the identity I subtracts the unscattered particles from 
the scattered beam. As to be explained below, (4.1) is based on a model for a 
beam of particles. Using heuristic stationary methods, Max Born [7] computed 
T in the first paper on quantum mechanical scattering theory. We shall recall 
his argument shortly, since it serves on its own as defining a theoretical cross 
section. 

Consider solutions 1/J of the stationary Schrodinger equation with the 
asymptotics 

(4.2) 

and x = w\x\. In naive scattering theory the first term is regarded as repre­
senting an incoming plane wave and the second term as the outgoing scattered 
wave with angle-dependent amplitude. 

Such wave functions can be obtained as solutions of the Lippmann­
Schwinger equation 

. 1 J eilkllx-YI 
1/J(x, k) = e1k.x - 27r dy \x _ y\ V(y) 1/J(y, k). (4.3) 

The solutions form a complete set, in the sense that an expansion in terms of 
these generalized eigenfunctions, a so-called generalized Fourier transforma­
tion, diagonalizes the continuous spectral part of H. Hence the T-matrix can 
be expressed in terms of generalized eigenfunctions and one finds (cf. [16]) 
that 

T(k, k') = (27r)-3 J dxe- ik.x V(x) 1/J(x, k'). (4.4) 

Thus the iterative solution of (4.3) yields a perturbative expansion for T, 
called the Born series. 

Moreover, comparing (4.2) and (4.3), expanding the right-hand side of 
(4.3) in powers of \x\-i, we see from the leading term that 
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jko(W) = _(27r)-1 J dye-ilkolw,y V(y) 'IjJ(y, ko). 

Thus jko(w) = -47r2T(wlkol, ko). 
We remark that in the so-called naive scattering theory, jkO (w) is called the 

scattering amplitude since Born's ansatz offers also a heuristic way of defining 
a cross section. One simply uses the stationary solutions of Schrodinger's 
equation with the asymptotic behavior (4.2) to obtain the cross section from 
the quantum probability flux through E generated by the scattered wave: 
The incoming flux has unit density and velocity v = ko. In the outgoing flux 

j k ( )eilkOIIXI f f generated by 0 w -I-x-I - the number 0 particles crossing an area 0 size 

x 2 dw about an angle w per unit of time is 

Normalizing this with respect to the incoming flux suggests the identification 
of the cross section with 

(4.5) 

in agreement with the above. However, such a heuristic derivation of the 
formula (4.5) for the cross section, based solely on the stationary picture of a 
one-particle plane wave function, is unconvincing [8]. 

4.3 The empirical cross section 

Consider a scattering experiment of the most naive kind where one particle is 
scattered by a potential. In Figure 4.1 we depict a model for such a scattering 
experiment, where a beam of identical independent particles (defining the 
ensemble) is shot on a target potential. 

The scattering cross section for a potential scattering experiment is mea­
sured by the detection rate of particles per solid angle E divided by the flux 
Ijl of the incoming beam. L1T is the total time of duration of the measure­
ment. With N(L1T, RE) denoting the random number of particles crossing 
the surface of the detector located within the solid angle E, the empirical 
distribution is 

(L1T E) '= N(.:1T, RE) 
p , . L1T iii . (4.6) 

The empirical distribution is a random variable on the space of "initial 
conditions": initial position of the wave packet within the beam, time of cre­
ation of wave packet, and also of the quantum randomness, encoded in the 1'P12 
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Fig. 4.1. A beam of particles is created in a source far away (distance L) from 
the scattering center. The particles' waves are all independent from each other. The 
detectors are a distance R away from the scattering center. In the simplest such 
models, the wave functions are randomly distributed over the area A of the beam. 
The particles arrive independently at random times at random positions at the 
detector surfaces. 0-(17) is the cross section, an area which when put in the incident 
beam is passed by an equal number of particles which per unit of time cross the 
detector surface defined by the solid angle 17. The random Bohmian position of 
the particle within the support of the wave is also depicted as well as its straight 
Bohmian path X(t) far away from the scattering center. 

randomness. It also depends (in fact very much so) on the parameters captur­
ing the physical situation, like the distances L, R and the area A of the beam. 
The difficult part of this random variable is the dependence on the quantum 
randomness, which, as we shall show, becomes simple in the limit of large dis­
tances. We wish to stress that the classical randomness (position of the wave 
function within the beam, time of creation of the wave function) which arises 
from the preparation of the beam and which in classical scattering theory is 
all the randomness there is, adds by virtue of the typical dimensions of the 
experiment very little to the scattering probabilities in quantum scattering 
theory (see [11] for more on that). 

The goal of scattering theory is to predict the theoretical value of (4.6). 
The value predicted is (4.1) or if one so wishes (4.5). 
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What needs to be shown is thus that, in the sense of the law of large 
numbers, 

" lim " lim p(LlT, E) = (7ko(E) , 
t--+±oo LlT--+oo 

(4.7) 

where the law oflarge numbers (contained in limLlT--+oo) will have to be formu­
lated with the measure on the space of the initial conditions. The "limt--+±oo" 
refers to large distance limits and limits which make the expression beam­
model independent: 

" lim "- lim lim lim lim. 
t--+±oo liI'(k)12--+8(k-ko) L--+oo IAI--+oo R--+oo 

(4.8) 

In particular the limit limR--+oo is taken to obtain the "local plane wave" 
structure (see (4.13)) of the scattered wave, which allows for a particular 
simple expression for the crossing probability of a particle through the detector 
surface. For more explanations of the limits see [11, 10]. 

4.4 The heuristics of quantum randomness 

The random number N(LlT, RE) defining (4.6) is the random sum of "in­
dependent" single-particle contributions, i.e. it depends on the "trivial" ran­
domness arising from the beam, which is simply ensuring the independence 
of the single detections in the ensemble for the law of large numbers to hold. 
Most importantly, however, it depends on the quantum randomness inherent 
in a single event. We shall from now on focus on the scattering of one single 
particle and forget the beam. One particle is send towards the scattering cen­
ter. The question we must then answer is: Which detector clicks? We must 
answer this question for the real situation where the detectors are a finite 
distance away from the scattering center. The answer might be complicated 
but it is that answer of which one can then take the mathematical limit of 
infinite distances to obtain a simpler looking formula. 

Once this question is clear one immediately sees that this question is coarse 
grained, it already ignores that the time at which the particle is registered is 
random too. The fundamental question is: Which detector clicks when? In 
other words: What is the distribution for the first exit time and exit position 
of the particle from the region defined by the detector surfaces (see Figure 4.2). 

pcp (X(Te) E dE, Te Edt) = ? (4.9) 

Heuristically it is clear that the probability is given by the quantum flux 
through the surfaces. The quantum flux is 
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supp 'P - V fj'Pt 

Fig. 4.2. Which detector clicks when? The detection time Te and position Xe = 
X(Te) are random exit time and exit position. 

and appears in an identity-the so-called quantum flux equation-that holds 
for any <Pt being a solution of Schrodingers equation: 

&1<ptI 2 + d· ·'Pt - 0 at IV J - . (4.10) 

Consider as in Figure 4.3 the escape of a particle initially localized in G 
through a section dB of the boundary &G (we can but need not think of a 
freely evolving wave). If the surface is far away from the scattering region, it 
is very suggestive that the probability should be given by the flux integrated 
against the surface 

]P>'P(X(Te) E dB, Te E dt) ~ lim j'Pt(R, t) . dBdt. 
IRI---+= 

(4.11) 

Based on this heuristic connection the flux across surfaces theorem, which we 
formulate here in a lax manner, becomes a basic assertion in the foundations of 
scattering theory [2, 17, 15, 13, 11]. By integrating the flux against the surface 
integral over all times, we ignore the time at which the particle crosses the 
surface and we focus merely on the direction in which the particle moves: 

Theorem "FAST": Let <P be a (smooth) scattering state, then 
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dS aG 

Fig. 4.3. Escape of the particle from the region e. When the boundary Be is far 
from the initial support of the wave function, the exit statistics are approximated 
by the flux through the surface. 

lim roo dt { j'P t • dS = lim roo dt { Ij'Pt. dSI 
R-oo 10 1 RE R-oo 10 } RE 

(4.12) 

1 -- 2 = dk IW';'P(k) I . 
CE 

The heuristics of the FAST is easy to grasp. If we think of a freely evolving 
wave packet, then its long-time asymptotic (which goes hand in hand with a 
long-distance asymptotic) is (recall !Ii = 1) 

(4.13) 

We call this approximation the local plane wave approximation. It corresponds 
to a radial outward pointing flux. For scattering states 'P of (short range) 
potential scattering there exists a state 'Pout moving freely, so that 

which leads to the wave operator 

with 

W+ := s- lim eiHte-iHot 
t_oo 
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W..;:. 'P = 'Pout· 

Combining this with (4.13) and computing the flux for this approximation 
yields that the left-hand side of (4.12) equals the right-hand side of (4.12). 
We note that the first equality in (4.12) asserts that the flux is outgoing, 
a condition of vital importance for its interpretation as crossing probability. 
We shall discuss its importance below. We remark that the further treatment 
of the right-hand side of (4.12) is more or less standard and becomes upon 
averaging over the beam statistics essentially (4.1) [1, 11, 10]. That is, given 
the FAST, the connection with the S-matrix formalism is standard. The cross 
section is justified in the sense of the law of large numbers, once (4.11) is 
accepted. 

4.5 Bohmian mechanics and the justification of (4.11) 

The foregoing discussion is necessarily unprecise since the fundamental objects 
exit time and exit position remain undefined: There is no time-dependent 
position of the particle in quantum theory defining these random variables. In 
Bohmian mechanics, e.g., [6], when the wave function is 'Pt, there is a particle, 
and the particle moves along a trajectory X (t) determined by the differential 
equation 

dd X(t) = v'Pt(X(t)) := 1m \1'Pt (X(t)). 
t 'Pt 

(4.14) 

Its position at time t is randomly distributed according to the probability 
measure JIl''Pt having density Pt = l'PtI2, see [12]. 

The continuity equation for the probability transport along the vector 
field v'Pt(x, t) becomes for the particular choice Pt = l'Ptl2 the quantum flux 
equation (4.10), which establishes that l'Ptl2 is an equivariant density. 

Hence the trajectories X(t, Xo) are random trajectories, where the ran­
domness comes from the JIl''P-distributed random initial position X o, with 'P 
being the "initial" wave function. Having this, the escape time and position 
problem (4.9) is readily answered. Define Te = inf{tl X(t) E GC} and put 
Xe = X(Te), then both variables are random variables on the space of ini­
tial positions of the particle and JP''P( {XI Te(X) Edt, X(Te(X), X) E dS}) is 
clearly the exit distribution we are looking for. Note also, that we may now 
specify rigorously the probability space on which the empirical distribution 
(4.6) is naturally defined, and we furthermore have the measure, with which 
the law of large numbers (4.7) can be proven. 

We explain now the connection of this exit probability with the flux. Con­
sider some possible exit scenarios of the particle as in Figure 4.4. We introduce 
the random variables number of crossings 

N(dS,dt) := N+(dS,dt) + N_(dS,dt) 
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Fig. 4.4. Signed number of crossings of possible trajectories through the boundary 
of the region G. 

and number of signed crossings 

where N±(dS,dt) are the number of outward, resp. inward, crossings. Their 
expectations are readily computed in the usual statistical mechanics manner: 
For a crossing of dS in the time interval (t, t + dt) to occur, the particle has 
to be in a cylinder (Boltzmann collision cylinder) of size Iv"'" . dS dtl at time 
t. Thus 

lE""(N( dS, dt)) = l<pt 12 Iv'P' . dSI dt = Ij'Pt . dSI dt 

and 

lE'P(Ns(dS, dt)) = j'Pt . dS dt. (4.15) 

Under the condition that the flux is positive for all times through the boundary 
of G (a condition which needs to be proven, and which is asserted in the first 
equality of (4.12)) every trajectory crosses the boundary of G at most once. 
Hence 

lE'P(N(dS, dt)) = lE'P (Ns (dS, dt)) 

= 0 ·1P''P(Te rJ. dt or Xe rJ. dS) + 1 ·1P''P(Xe E dS and Te Edt). 

In that particular situation the exit probability is thus 

1P''P(Xe E dS and Te Edt) = j'Pt . dS dt . (4.16) 

This and (4.12) are at the basis of quantum mechanical scattering theory 
for single-particle potential scattering. 
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4.6 Multi-time distributions for many particles 

We extend the fo.rego.ing to. the case o.f many-particle scattering. We shall dis­
cuss some of the main steps, which need to be filled with rigo.ro.us mathematics 
in future wo.rks. For simplicity we consider the free case where the particles 
are guided by an entangled wave functio.n, but they do no.t interact via a 
potential term in the Hamiltonian with each other. Ho.wever, the fo.llo.wing 
naturally generalizes to. interacting particles by replacing the wave functio.n 
cp by its free outgo.ing asympto.te CPout = W-i'- cpo While Bo.hmian mechanics 
naturally extends to. many particles (see (4.19) below), o.ne sees immediately 
that o.ur task o.f getting o.ur hands o.n the exit statistics fo.r many particles is 
nevertheless nontrivial, since every particle has its own exit time and po.sitio.n. 
I.e. we need to. handle 

1P''f' (TP) E dt(1) , X(1)(T~1)) E dS(l), ... ,T~n) E dt(n) ,x(n)(T~n») E ds(n») . 
(4.17) 

To. apply the statistical mechanics argument which we used in the last sec­
tio.n to. co.mpute the cro.ssing probability, the multi-time po.sitio.n distributio.n 
is needed 

1P''f'(X(1)(t(l») E dx(1), ... ,x(n)(t(n») E dx(n») (4.18) 

= p(X(l), t(l), ... ,x(n), t(n») dX(l) ... dx(n) , 

which in general will no.t be a simple functional of the wave functio.n. We will 
show that in the scattering regime, when the wave approaches the local plane 
wave structure, this multi-time po.sition distribution can be co.mputed and the 
exit statistics are in fact given by a particular multi-time flux fo.rm. To. o.ur 
best kno.wledge, this o.bservation is new. The single-time multi-particle flux 
has been used in [9] to. co.mpute exist statistics, necessarily igno.ring particle 
correlatio.ns. 

For ease o.f no.tatio.n we co.nsider two particles with po.sitio.ns X, Y and 
wave function cp(x, y, t). The Bohmian law o.f mo.tion is 

X(t) = vf(X(t), Y(t)) = 1m \l xcp(x, y, t) I ' 
cp(x, y, t) x=X(t), y=Y(t) 

(4.19) 

Y(t) = vf(X(t) , Y(t)) = 1m \l yCp(x, y, t) I ' 
cp(x, y, t) x=X(t), y=Y(t) 

( 4.20) 

iOtcp(x, y, t) = -HLlx + Lly)cp(x, y, t). (4.21) 

With H = Hx + Hy = -~(Llx + Lly) we can easily pro.duce a two-times 
wave function by the appro.priate actio.n o.f the single-particle Hamilto.nians 
thro.ugh 
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(4.22) 

which reduces to the usual single-time wave function for t = s, because the 
Hamiltonians Hx and Hy commute. Hence one could as well include single­
particle potentials into Hx and Hy. While the definition of rp(x, t, y, s) seems 
very natural at first sight, note that the physical meaning of Irp(x, t, y, s) 12 is 
not at all obvious. To get our hands on this question, let 

Pt(x,y) = (pf(x, y), p¥(x, y)) = (X(t, x, y), Y(t,x, y)) 

be the Bohmian flow along the vector field given by (4.19) transporting the 
initial values x, y along the Bohmian trajectories to values at time t and let 

Pt,s(x, y) = (pf(x, y), cp;(x, y)) = (X(t, x, y), Y(s, x, y)) 

be the two-times Bohmian flow. Observe that 

OtCPt,s(x,y) = (OtCPnx,y),O) = (vf(pt(x,y)),o), 

osCPt,s(x,y) = (O,oscp;(x,y)) = (o,v~(Ps(x,y))). 

(4.23) 

(4.24) 

From the definition of the multi-time wave function (4.22) it follows in the 
same way as in the single-time case that 

at l<p(x, t, y, s W = - V' x . Im(rp(x, t, y, s)*V' xrp(x, t, y, s)), 

aS 1<p(X, t, y, sW = -V' y . Im( rp(x, t, y, s )*V' yrp(x, t, y, s)), 

which leads us to define a multi-time velocity field: 

(4.25) 

x ( ) I V'xrp(x,t,y,s) ( ) 
Vt,s x,y = m <p(x,t,y,s) 4.26 

if <p(x,t,y,s) -=I- 0 and v;'s(x,y) = 0 if rp(x,t,y,s) = 0 and analogously for 
vL(x, y). 

We show now, that under certain conditions there exists a two-times conti­
nuity equation for a two-times density p(x, t, y, s). We start with the definition, 
setting p(x, 0, y, 0) = p(x, y), 

IE'" (f (X(t), Y(s))) = f dxdy f( Pt,s(x, y) )p(x, y) 

=: f dxdy f(x, y)p(x, t, y, s), (4.27) 

where f varies in a suitable class of test functions. Next differentiate the 
equation with respect to t, respectively s. This yields in the second equality 

at f dxdy f( Pt,s(x, y) )p(x, y) 

= f dxdYV'Cl)!(CPt,s(x,y))' vf(Pt(x,y))p(x,y) 

= f dxdyf(x,y)otp(x,t,y,s), (4.28) 
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and similarly for differentiation with respect to s. Here V (1) denotes the gra­
dient with respect to the first argument. If the following "multi-time indepen­
dence" condition 

vf( tf>t(x, y)) = vf,s (tf>f (x, y), tf>Hx, y)), 

vn tf>t(x, y)) = v¥,s (tf>f(x, y), tf>~(x, y)) 

is satisfied, we can replace vf (tf>t(x,y)),vntf>t(x, y)) in (4.28) by 

vf, s ( tf>f ( x, y), tf>~ ( x, y)) . 

(4.29) 

Using definition (4.27) followed by partial integration yields for the second 
integral in (4.28) 

J dxdyV(l)f(tf>t,s(x,y)) . vf(tf>t(x,y))p(x,y) 

= J dxdy V(l)f(tf>t,s(x, y)) . vf,s(Pt,s(x, y))p(x, y) 

(4;;8) J dxdy V(l)f(x, y) . vf,s(x, y)p(x, t, y, s) 

-J dxdyf(x,y)V x · (vf,s(x,y)p(x,t,y,s)) 

From this and (4.28) we may conclude, repeating the same for the s-differen­
tiation, the two-times continuity equation 

OtP(x,t,y,s) = -Vx · (vf,s(x,y)p(x,t,y,s)) , 

osp(x,t,y,s) = -V y · (vf,s(x,y)p(x,t,y,s)) . (4.30) 

Comparing this with (4.25) we see that p(x,t,y,s) = 1<p(x,t,y,s)1 2 is equiv­
ariant. All this depends crucially on the "multi-time independence" condition 
(4.29). It is easy to see that the condition is satisfied if the wave function 
is a product wave function. But that is uninteresting. The condition can be 
expected to be also approximately satisfied when the wave function attains 
the local plane wave structure 

. x 2 .12. 
e'2[ e'28 ~ x y 

<p(x, t, y, s) ~ -3 -3 <p( -, -) 
t2 s2 t S 

(4.31) 

of an outgoing scattering state at large times (see next section). In this case 
the trajectories are approximately straight lines and the velocity of parti­
cle X does not change if particle Y is moved along its straight path and 
vice versa. We remark that the local plane wave structure is preserved under 
multi-time evolution (as it is preserved under single-time evolution). Thus in 
the scattering regime condition (4.29) holds true and we conclude that in this 



54 D. Diirr and S. Teufel 

regime the two-times wave function (4.22) yields the two-times joint distribu­
tion p(x, t, y, s) = Irp(x, t, y, sW for the positions of the two particles. Hence, 
approximately, we have that 

JID'f' (X(t) E Al and Yes) E A2 ) ~ r dx r dy Irp(x, t, y, sW . iA 1 iA2 
Moreover we have in that regime single crossings only. We can thus com­

pute the exit statistics in the scattering regime as before (the Boltzmann col­
lision cylinder argument) but now using the two-times density Irp(x,t,y,s)1 2 

and the approximate straight path velocities 

vfs(x,y)~~ ,vfs(x,y)~~. , t, s 

This way one obtains 

JID'f'(T.;" Edt, Tl E ds, X (T.;") E dSx , Y(Tl) E dSY ) 

~ Icp(~, ~W (~ . dSX ) (~ • dSY ) dtds 
t s t s 

~: jSP(x, t, y, s) . (dSX 0 dSY ) dt ds, 

(4.32) 

( 4.33) 

where the two-times "straight paths" flux form jSP(x, t, y, s) is the straight 
path approximation to the multi-time flux form 

j(x,t,y,s):= Irp(x,t,y,sW v[,s(x,y)0v¥,s(x,y). (4.34) 

It is remarkable and relevant for its meaning in the foundations of scatter­
ing theory that this unmeasured Bohmian joint probability is in this particular 
situation the same as the measured probability, which is in general not true 
for joint probabilities [5J. Measurements lead-in the language of orthodox 
quantum theory-to a collapse of the wave function, which in the local plane 
wave approximation however does not have any effect on the trajectory of the 
other particles. In the two-particles case the collapse (due to the detection of 
one particle) picks out simply the rightly correlated pair, which in fact can be 
EPR correlated pairs. 

The N-particle multi-time flux (4.34) as well as the N-particle single­
time flux have taken alone no significance for the description of scattering (in 
contrast to the one-particle situation), while the crossing probabilities (4.33) 
of course do. We shall in the next section compute the value of the right-hand 
side of (4.33), which is the usual scattering into cones (in momentum space) 
formula. 

4.7 The exit statistics theorem for N particles 

We abbreviate the joint exit time-exit position distribution for N particles 
through a sphere of radius R as 
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JP''P(dh '" dtN dBI ... dBN ) 

:= JP''''(XI(Tle) E dBI , TIe E dtl,"" XN(TNe) E dBI , TNe E dtN), 

where we recall that Tne is the first exit time of the nth particle through the 
sphere and dBn an infinitesimal surface element on this sphere. Neglecting the 
possibility of clustering, the generalization of the flux-across surfaces theorem 
of potential scattering then becomes the following conjecture. 

Exit Statistics Theorem: Let'P be a (smooth) scattering state of an N -body 
Hamiltonian H at time t = 0; then for any -00 < T < 00, 

lim {'XJ ... roo { ... ( JP''''(dh ... dtN dBI ... dBN ) 

R-+ooiT iT iREl iREN 

lim {OOdtl'" {OOdtN { ... 
R-+oo iT iT iREl 

... ( j"'out.8P (XI, ... ,XN,tt, ... ,tN)(dBI @···@dBN) 
iREN 

(4.35) 

Recall that 'Pout = W+ 'P and that 
',d t ',d t 

'Pout (tl, ... , tN) = e' "'1 ' ••• e' "'N N 'Pout 

evolves according to the free multi-time evolution. 
The theorem provides a precise connection between the joint distribution 

of the measured exit positions of N scattered particles (the first expression 
in (4.35)) and the empirical formula for this quantity in terms of the Fourier 
transform of the outgoing wave (the last expression in (4.35)). A rigorous proof 
of this connection seems to involve necessarily a multi-time formulation of the 
quantum mechanics in the scattering regime in the sense of the intermediate 
expression in (4.35). Notice that the first equality in (4.35) is, as discussed 
in the previous section, the highly nontrivial part to prove. More precisely, 
one needs to establish (4.33) rigorously and with error estimates which are 
integrable in the sense of (4.35). The second equality in (4.35) is an easy 
computation, with which we shall conclude the paper. We shall first remind 
the reader of the local plane wave structure which approximates the scattering 
state and which is presumably crucial for the proof of the theorem. 

Since I CPout (k) I is invariant under the free time-evolution we can choose 
without loss of generality T ?::: 1. To shorten notation let us introduce the 
configuration variables x = (Xl, ... , X N) and t = (tt,. .. , t N ). Then 

'Pout (x, t) = (ei ,d"" tl ..• ei,d", N tN) 'Pout (x) 
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where here and in the following <Pout without a time-argument means always 
<Pout(t = 0). Expanding every factor in the integrand as 

e' 2tn = e 2tn e tn + e 2tn e tn e' 2tn - 1 , ·l x n-YnI 2 ilxnl2 -i."'.n..:.1l.n. ilxnl2 -i."'.n..:.1l.n. ('lynI 2 ) 

one obtains 

iE.J£ i~ 
_ _ e 2tl e 2tN ~ (Xl XN) __ 

<Pout (X, t) = --3 •. , ---3 <Pout -, ... , - + R(x, t), 
(ih)2 (itN)2 h tN 

(4.36) 

where every term in the sum R has at least one factor of the form 

(eil~~t - 1) 
in the integrand. Under appropriate assumptions on <Pout it is now easy to 
get estimates on the remainder term R(x, t) for large tn by stationary phase 
methods. For details we refer to [14]. In particular the remainder term does 
not contribute to the time integrals in (4.35). 

Neglecting R we obtain from (4.36) for the nth component of the velocity 

'M' ~ (Xl XN) 
X 1 vn<Pout f"" 't n(-) nIl N VtX =-+-m , 
tn tn (';:; (.:!:.l.. '!!..K) 'rout h"'" tN 

(4.37) 

of which we only need the first term (the straight path velocity) and for the 
density 

I <Pout (X, tW = tr' .1. t}.l~ut (~: , ... , ~:) 12 

Using Xn ·d8n = IXnlR2dwn = R 3dwn, where dw denotes Lebesgue measure 
on the unit sphere 8 2 C ]R3, we now conclude with the computation of the 
second equality of (4.35): 

lim [dtl'" [dtN [ ... [ j'Pout,sP(x,t).(d81 @ ... @d8N) 
R----+ooiT iT iREl iREN 

1 ( ) 1
2 

~ RWI RWN 
<Pout tl' ... , tN 3N 

4 4 R tl ... tN 

dWI" ·dWN 
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In the above computation we substituted kn = t-, which, in particular, gives 

dtn = _t~R-ldlknl and R/tn = Iknl· 

4.8 Conclusion 

For the first time we formulate the connection between the joint distribution 
of the measured exit positions of N scattered particles and the empirical for­
mula for this quantity in terms of the Fourier transform of the outgoing wave. 
While in the case of potential scattering for a single particle the distribu­
tion of the measured exit position can be formulated, at least heuristically, 
in terms of the quantum flux, this is no longer true for the joint distribu­
tion of N particles. In the case of N-particle scattering even the definition 
of the relevant distribution is not possible within orthodox quantum mechan­
ics. Therefore we use the Bohmian trajectories of the particles to define the 
distribution of exit positions and times. The flux-across-surfaces theorem for 
N particles then connects this fundamental joint distribution with the em­
pirical formulas of quantum mechanics. While a completely rigorous proof of 
the flux-across-surfaces theorem for N particles seems a challenging task, we 
sketched a possible argument and showed that a multi-time formulation of 
the quantum mechanics in the scattering regime should play a crucial role in 
this program. 
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5.1 Introduction 

We consider the system of evolution equations 

. 81/;e (H)."e Uc;-a; =oPe 'f' , 

where c is a small parameter, 1/;e = 1/;e(t, x) a vector-valued bounded family in 
L2(IRd), H = H(t, x,~) a matrix-valued Hamiltonian. The variable x denotes 
the position variable and ~ the momentum. We use Weyl quantization: 

oPe (a) = r ei(X-YHa(X+Y,cE)f(y)dYd~. 
}IRdXIRd 2 (27r)d 

We are concerned with the description as c goes to 0 of the Wigner trans­
form W 1/;e (t, x,~) of the family (IV), 

W ."e( C) _ r iv.t;,."e( v) ."e( v) dv 
'f' t,x,., - }IRd e 'I-' t,x-2" 0'1-' t,x+c2" (27r)d' 

More precisely, for all reasonable a, we want to describe the asymptotic be­
havior of 

It is well known that the limit points of W1/;e are positive matrix-valued 
measures JL (see [17], [11]), called semi-classical measure or Wigner measure 
of the family (1/;e). 

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
© Birkhäuser Boston 2004
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If H is scalar, 11 = I1t is a scalar measure solution of 

where 

In other words, the measure 11 propagates along the classical Hamiltonian 
trajectories. 

If H has N eigenvalues of constant multiplicity E I , ... , EN, then 

where llj is the spectral projector associated to E j and I1j satisfies 

We want to discuss what happens when H displays eigenvalues crossing. 
Of typical interest is the situation where H is a two-by-two matrix of the form 

H = kId + ( Pl. P2 + iP3) . 
P2 - ~P3 -PI 

The eigenvalues of Hare E± = k ± Ipl. They cross above the co dimension 4 
subset of the phase space 

s = {PI = P2 = P3 = T + k = o} c T* (lRt x lR~). 

Under appropriate assumptions that we shall state below, classical trajectories 
of E± can be continued through S. Then occurs the following problem: 

Problem: Assume that the incoming Wigner measure is supported on the 
classical trajectories of one mode (say E+) which hit S. How can the splitting 
of the outgoing Wigner measure on both modes be described? 

Such problems appear in different areas of Mathematical Physics. 
a) The crossings in Born-Oppenheimer approximation have been studied by 
Hagedorn ([12], [13]) and Hagedorn and Joye ([14), [15]). In their works, the 
Hamiltonian H is of the form 

H(t,x,f,) = 1£;,1 2 + ( q(x) + ~I(X) P2(X) + iP3(X)) . 
p2(X) - ~P3(X) q(x) - PI(X) 

Ansatz for specific data and linear functions q and P are precisely calculated 
and emphasize a transfer of energy between the two modes at leading order 
(see also [10] in the case P3 = q = 0, PI = 6, P2 = 6 and [5] for generic cases 
with Wigner measure approach). 
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b) The study of the motion of electrons in a crystal leads to the study of 
Hamiltonians of the form 

In the case V = V(x), P1 = 6, P2 = 6, q = P3 = 0, the crossing has been 
studied from a Wigner measures point of view in [7]. 
c) Another example consists in a Dirac type equation (see [4] and [6]) 

H(t, x,~) = V(t, x) + P(~ - A(t, x)), 

where 
p = ( "11. "12 + i"13) . 

"12 - Z"13 -"11 

The first model studied is Landau and Zener's in the decade 1920 to 1930 
(see [16] and [18]), 

The crossing occurs at t = Xl = X2 = O. Both critical trajectories lie above 
the line {Xl = X2 = O}. Stretching variables 

t = ..j€8, X = :rc 
leads to a scattering problem for the system 

i8s 'l/J = ( 8. Y1 + iY 2 ) 'l/J. 
Y1 - ZY2 -8 

It is possible to calculate explicitly the scattering matrix in terms of y. This 
yields in particular the transmission coefficient for the Wigner measure (or 
just 'If; ® -;j}): 

T(y) = e-1rlyI2, 

I I - distance to critical trajectories 
y- y'i . 

This quick analysis of the Landau and Zener problem emphasizes a point 
which will be crucial to analyze crossings in more general settings: the energy 
transfer depends on a second scale y'i. In the following, we shall introduce 
an enlarged phase space including rescaled coordinates, normal to the set of 
critical trajectories. With this generalized phase space, we will associate some 
new Wigner measures, more accurate than the usual ones. This analysis will 
allow us to prove the existence of a universal (i.e., independent of the data) 
transmission coefficient for these measures and compute it in terms of the 
geometry of the system. 
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In [2] and [3], Y. Colin de Verdiere has proved recently a very refined 
normal-form result in the spirit of the work of [1] for symmetric systems. In 
view of the invariance of Wigner measures through canonical transforms, it is 
likely that his result implies ours. 

As a conclusion to this introduction, let us mention that an expanded ver­
sion of this note will appear in [9]. The case of symmetric systems is described 
in [8]. 

Summary: 

1. Two-scale Wigner measures. 

2. Geometric assumptions on the system. 

3. Statement of the result. 

4. Main steps of the proof. 

5. Concluding remarks. 

5.2 Two-scale Wigner measures 

We consider a classical phase space T*(IRP) and f = (il, ... , fm), m smooth 
and independent functions on T*(IRP) satisfying the commutating relations 

{jj,/k} = 0, 1:S j,k:S m. 

Then, J = {j = O} is an involutive submanifold of T*(IRP). 
We define a new class A of testing symbols 

a = a(z, (, 'f}) E coo (1R? x IRf x IR';), 

compactly supported in (z, () with radial limits at infinity in 'f}, 

a(z,(,R'f})~aoo(z'('I~I)' R~oo. 

Therefore, a extends to a function on IR? x IRf x Dr; where IRm is the 
compactification of IRm with a sphere at infinity. 

Theorem 1. Let ('ljJE:) be any bounded family in L2 (IRD , eN). Up to extracting 
a subsequence, there exists a (matrix-valued) positive measure Vf on J x W" 
such that, for every a E A, 

where 11 is a Wigner measure of 'ljJE: • 
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• Notice that the measure IJ f-l can be recovered from vf through 

• Intrinsic definition of v. If 9 = M . f is another system of commuting 
equations of J, 

( _ a(z,(,17')dvg (z,(,r7') = ( _ a(z,(,M·17)dvf(z,(,17)· 
iJxm= iJxm= 

Hence one can define a measure VJ on N(J), the compactified normal bundle 
above J which is the bundle above J with fibres obtained by adding a sphere at 
infinity to those of T(T*(1RP))jT(J). Then, for every system f of commuting 
equations of J, we have 

~ a(p, df(p) . lop]) dVJ(p, lop]) = ( _ a(z, (,17) dVf(z, (,17)· 
iN(J) iJxm= 

• Localization and propagation of v J. Assume 'Ij;" is a solution of a scalar 
equation 

op"(H)'ljf = 0 

and J is involutive and contained in the energy surface E = {H = a}. Then 

- VJ is supported in the compactification of T(E)jT(J). 

- v J is invariant by the linearization of the Hamiltonian flow of H. Indeed, 
if 

denotes the Hamiltonian flow, the linearized flow 

Dcps : T(E)jT(J) -+ T(E)jT(J), 

can be extended to the spherical compactifications. 

5.3 Geometric assumptions on the system 

Consider the Hamiltonian 

The energy surface is 

H = kId + ( Pl. P2 - i P3 ) • 
P2 + ZP3 -PI 

and the eigenvalues are 
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E± = k± Ipl. 
Assume Pl,P2,P3 are independent, and let 

Introduce the electric and magnetic fields as vector-valued functions on the 
space-time phase space 

Remark that if k = V(t,x) and P = ~ - A(t,x), then E = -\7x V - OtA and 
B = \7 x A. 

We need that the Hamiltonian curves of A± = T + E± are transversal to 
S and can be continued through S. This corresponds to one of the following 
two situations on S, 

(HI) E· B = 0, IEI2> IBI2, 
(H2) E· B =1= o. 

We assume (HI) identically on S, which covers the cases of the Born~ 
Oppenheimer approximation and of the motion in a crystal, where B = O. 
Then define J±,in as the union of (incoming) trajectories for A± arriving on S 
and J±,out the union of (outgoing) trajectories for A± leaving from S. One can 
prove that these four manifolds are involutive, of co dimension 3, and that J±,in 
connects smoothly to J~,out. We can therefore define the four corresponding 
two-scale Wigner measures 

I/J±,in, I/J±,out. 

These measures are transported by the linearized Hamiltonian flows of 
T+E±, which are transversal to S. Therefore, they have traces on S, denoted 
by 

±,in ±,out 
1/8 ,1/8 

which are measures on bundles above S with fibres obtained by compactifica­
tions of the planes T(E±)/T(J±). 

5.4 Statement of the result 

The planes T(E±)/T(J±) can be identified to the normal plane ofthe electric 
field E through the map 
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A -in 'h Theorem 2. 88ume vs ' = O. T en 

-,out _ T +,in +,out _ (1 _ T) +,in Vs - Vs ,vs - Vs 

wit'h 

Notice in particular that: 

• On the circle at infinity, T = 0 : there is total reflection on the + mode . 

• If B = 0 and lEI» 1, then T -? 1 on the set WI < +CXl. In other words, 
the mode conversion is total for high electric fields (in the same spirit, see [6] 
for analysis of Dirac equations with high electromagnetic fields). 

5.5 Main steps of the proof 

Step 1. First (rough) normal form and analysis on the circle at infinity. 

Near Po E S, there exists a change of canonical coordinates 

K,: (t,x,T,~) ~ (8,Z,0",() 

and an invertible matrix A = A(t, x, T,~) such that, if U is a unitary Fourier 
integral operator associated to K" the new unknown 

satisfies 

( 0" + 8 1'1 (1 + 1'2(2) E: 0 
OPE: - r + - r v '" 1'1,>1 1'2,>2 0" - 8 

where 'Yj = 'Yj(8,Z,0",(), Im(')'1'Y2) =f. o. 
Moreover, in these new coordinates, 

E = {0"2 = 8 2 + a + (n, 
S = {8 = 0" = (1 = (2 = O}, 

J±,in = {O" =f 8 = (1 = (2 = 0, s < O}, 
J±,out = {O" ± 8 = (1 = (2 = 0, s > O}. 

By pseudo differential energy estimates, one can prove the reflection of the 
energy located at infinity, i.e., for large scales of oscillations with respect to 
VE, {(r + (?)1/2 » VE} ; in other words, 

V~,in = v~,out on the circle at infinity. 
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Step 2. Analysis at finite distance. 

Using that I(i I rv .,fi, one can refine the normal form and assume that 
"Ii = "Ii(z,(). We are reduced to the system 

.l::. e (S1 .,fiG) e 
u::usu = .,fi G* -s 1 u 

where 

G = oPe ( ( "11 ~ + "12 ~) X (R'ft, R~) ) 
and X is a cutoff function with R large enough. One can then conclude using 
the following operator-valued Landau-Zener formula. 

Theorem 3. Let G = Ge be a bounded family of operators on a Hilbert space 
1t. Let ue E C(IRs, 1t x 1t) be a solution of 

.l::. e (S1 .,fiG) e 
2€u s U = .,fi G* -s 1 u 

with sUPe,s luel'H < +00. 
There exist families of vectors, (aj), (wj), j = 1,2, such that for any cutoff 

function X E Co(IR), x(GG*)ai, x(G*G)a2' X(GG*)wi and X(G*G)W2 are 
bounded in 1t and such that up to a small error in 1t, 

x(GG*)uHs) rv x(GG*)e-is2/2e I JeI- iCC*/2 ai , s < 0, 

2 I l-iCC* /2 x(GG*)uHs) rv x(GG*)e-is /2e Je wi , s > 0, 

2 I liG*C/2 x(G*G)uHs) rv x(G*G)eis /2e Je a2 , s < 0, 

2 I liC*C/2 x(G*G)uHs) rv x(G*G)eis /2e Je w2 , s > o. 

Moreover 

( Wi) _ (a(GG*) -b(GG*)G) (ai ) 
w2 - b(G*G)G* a(G*G) a2' 

with 

a(oX) = e-7rA/ 2 , 

b(oX) = 2iei7r/ 4 oX -1 7r-l/2Ti A/2e-7rA/4 r (1 + i~) sinh(7r oX/2), 

a(oX)2 + oXlb(oX)12 = 1. 
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5.6 Concluding remarks: Advantages and disadvantages 
of Wigner measures in the analysis of eigenvalue 
crossings 

• Wigner measures lead to explicit and geometric formulae for leading order 
terms of Wigner transforms, independently of the specific expression of the 
initial wave functions. Moreover, they allow a global and fairly simple de­
scription of the leading dynamics (see, e.g., [10] for an example in the Born­
Oppenheimer context) . 

• On the other hand, this analysis, because of its focusing on quadratic ob­
jects, does not provide information about possible interferences between the 
two modes. This information would necessitate a more precise description of 
the wave function (as in the last theorem). The corresponding geometric ob­
jects (concentration profiles on the involutive manifolds J?) are still to be 
introduced for arbitrary data. Moreover, it would be interesting to have a 
more accurate description including lower order terms. 
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Stability of Three- and Four-Body Coulomb 
Systems 

A. Martin 

Theoretical Physics Division, CERN 
CH - 1211 Geneva 23 
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LAPP - F 74941 ANNECY LE VIEUX 

Summary. We discuss the stability of three- and four-particle systems interacting 
by pure Coulomb interactions, as a function of the masses and charges of the parti­
cles. We present a certain number of general properties which allow us to answer a 
certain number of questions without or with fewer numerical calculations. 

6.1 Introduction 

In this talk, I would like to speak of the problem of the stability of three­
and four-body non-relativistic purely Coulombic systems. A system will be 
said to be stable if its energy is lower than the energy of any subdivision in 
subsystems. This is a restrictive definition of stability, because besides that 
there are other useful notions: "metastability" and "quasi-stability" on which 
we shall say only a few words later. The reason I chose this subject when I 
was invited to the conference on multiscale methods in quantum mechanics is 
that in the work, scaling is used a lot and in different ways: various scalings of 
the masses, scaling of the charges. The works I will present are due, in what 
concerns the three-body case, to J.-M. Richard, T.T. Wu and myself. The 
four-body work is due to J.-M. Richard in collaboration with various other 
persons, including J. Frohlich, a participant in this conference. I shall speak 
of: 

i) three-body systems with equal absolute value of the charge, i.e., -e+e+e, 
or +e - e - e, since it is clear that +e + e + e is unbound. Then binding 
or no binding will depend on the masses; 

ii) three-body systems with unequal charges; 
iii) four-body systems with charges with equal absolute value. It will be mostly 

+e + e - e - e. However, I shall say a word on +e - e - e - e. 

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
© Birkhäuser Boston 2004

s
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6.2 Three-body case: Equal I charges I 
The problem we discuss now is whether a system of three charged particles 
(1,2,3), 1 having charge +e and 2 and 3 charges -e, is stable or will dissociate 
into a two-body system and an isolated particle, (1,2)+3 or (1,3)+2. The 
system will be stable if the algebraic binding energy of the (1,2,3) system is 
strictly less than the binding energy of both (1,2) and (1,3). If, on the other 
hand, the infimum of the spectrum of the (1,2,3) system coincides with the 
lowest of the (1,2) and (1,3) binding energies the system will be unstable. 
This is an old problem which has been treated in many particular cases. For 
instance, long ago, Bethe has shown that the hydrogen negative ion (pe-e-) 
has one bound state [4], and Hill has shown that there is only one such bound 
state with natural parity [12], and Drake has also shown that there exists 
an unnatural parity state [6] and finally Grosse and Pittner [11] have shown 
also that this unnatural parity state is unique. In what follows we shall treat 
only the natural parity states, i.e., states such that P = (-l)L, where L is 
the total orbital angular momentum (we neglect spin interactions!). For three 
particles there is no problem with the Pauli principle even if two of them 
are identical fermions, since we can adjust the spin. Wheeler [24] has also 
shown that the system e+ e- e- is bound, and, more generally, Hill [12] has 
shown that any three-body system in which the two particles with the same 
sign of the charge have the same mass is stable. This covers the two previous 
cases. As an example of an unstable system (there are many others !), we can 
give the proton-electron-negative muon system, for which a heuristic proof 
was given by Wightman in his thesis [25] and a rigorous proof was given 
by a collaboration including Glaser, Grosse, Thirring and I [10]. Richard, 
Wu and I [17] have tried to organise the results on stability, and, by using 
simple properties, save numerical calculations. From the reactions we had from 
experts on numerical calculations we believe that this was not totally useless. 
The three-body Schrodinger equation reads 

(6.1) 

and the corresponding two-body equations can be obtained by omitting some 
terms. It is obvious that we have scaling properties: 

i) the charges can be multiplied by some arbitrary number without changing 
the stability problem; 

ii) the masses can also be multiplied by an arbitrary number, so that the 
stability problem depends only on the ratio of the masses, i.e., of two 
parameters. 

It will be convenient to introduce some variables: 

• the inverse of the masses 
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1 
Xl=­

ml 

1 1 
X2 = - X3=-, 

m2 m3 
(6.2) 

then the ground state energy of the system will be concave in Xl, X2, X3, 

and, in particular, concave in Xl when X2 and X3 are fixed (and circular 
permutations!) ; 

• the constrained inverse of the masses 

such that 

Xl 
al=-----

Xl + X2 + X3 
etc. (6.3) 

(6.4) 

With these new variables, any system of three particles can be represented 
by a point in a triangle, at, a2, a3 being the distances to the sides of the 
triangle. Figure 6.1 represents such a triangle with a few points representing 
some three-body systems. 

ppe-

pwe- pe-e­

Fig. 6.1. 

U3=O 

It is of course sufficient, for the time being (Le., for equal charges of 2 and 
3) to consider the left half of the triangle, i.e., to assume m2 2': m3. Let us 
remember that since we have, according to Hill's theorem, strict stability for 
m2 = m3, Le., a2 = a3, there will be some neighbourhood of the line a2 = a3 

where we shall have stability. However, not all systems will be stable. We 
have already mentioned the pe- fL- system as unstable. Another point where 
instability is obvious is the left summit marked 3, where we have two infinitely 
heavy particles with opposite charge producing zero attraction on the third 
particle. There is, therefore, an instability region in the left-half triangle. We 
have proved three theorems on the instability region in the left-half triangle. 
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Theorem 1. The instability region in the left-half triangle is star-shaped with 
respect to summit 3. 

The proof is based on the Feynman-Hellmann theorem combined with scal­
ing. take a point P (Fig. 6.2) where the system is unstable or at the limit of 
stability. First we use the variables Xl, X2, X3. From the Feynman-Hellmann 
theorem, dEd(123) > 0, if Xl and X2 are fixed. The binding energy of the subsys-

X3 

tern 12 is fixed. Hence the residual binding can only increase (algebraically). 
X3 moves from X3(P) to infinity. The image of this in the rescaled 0: variable 
is the segment, P3, where 0:1/0:2 = constant. If there is no binding at P there 
is no binding on the whole segment. 

1 

3 M:.------'~....!-~----~2 

Fig. 6.2. 

Theorem 2. In the left-half triangle, the instability region is convex. 

Take two points pI and P" on the border of the stability domain inside 
the triangle with the 0: variables. At pI and P" we have E p ,(12) = Ep'(123), 
Ep,,(12) = E p ,,(123). It is possible to find a linear rescaling P ....... M such 
that EM' (12) = EM" (12) = EM' (123) = EM" (123). Then one can interpolate 
linearly between M' and Mil: 

M). = AM' + (1 - A)M" , 0< A < 1 . 

For any M)., EM). (12) = canst. and EM). (123) is concave in A, and there­
fore EM). (123) 2:: EM ,(123) = EM,,(123). Returning to the original variables 
0:10:20:3 and noticing that the scaling is linear we see that, on P'P" we have 
E(123) 2: E(12). Hence we have instability (Fig. 6.2). There is, in fact, a more 
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refined theorem, which we found, following a question by the late V.N. Gribov 
during a seminar in Budapest in 1996. 

TheoreIll 3. The domain (in the left-half triangle) where 

is convex. 

E(123) 1 
E(12) ::; + 10 , 

10>0 

The meaning of this theorem is that the lines along which the relative 
binding is constant have a definite convexity. Note the sign of the inequality 
because E(123) and E(12) are both negative. We believe that the proof is 
essentially obvious, since, in the previous theorem, one goes through a rescal­
ing, replacing P and P' by M and M' where the two-body energies are equal. 
Theorem 2 is of course becoming a special case of Theorem 3, with 10 --> O. Let 
us give a very simple application of Theorem 2. We know that, according to 
Glaser et al., the system pooA-e- is unstable if mA- > 1.57me - (Poo means 
a proton with infinite mass). Similarly, we know, from the work of Armour 
and Schrader [1], that the system PooA+ B- is unstable if mA+ /mB- < 1.51. 
This means that pooe- e+ is unstable (not because of annihilation that we 
neglect, but of dissociation into pooe- and e+). In Fig. 6.3, PooA+ B- and 
pooA-e- with the limit masses corresponding respectively to X and Y. Any 
point to the left of the segment XY corresponds, according to Theorem 2, to 
an unstable system. Therefore, pe+ e-, PfL+ fL-, with the actual mass of the 
proton, are unstable, and one can go up to pz- z+ which will be unstable if 
mp/mz > 2.2. 

We obtain too that the system PfL- e-, with the actual proton mass is un­
stable, and also (disregarding again annihilation) ppe -, PPfL -. One can also 
use convexity to get results in the opposite direction, i.e., prove that certain 
three-body systems are stable. We know that the systems represented by a 
point on the vertical bisector of the triangle are stable. In practice we know 
more than that, namely we have an estimate or more exactly a lower bound of 
the absolute value of the binding energy of many systems by using variational 
calculations and, in fact, by playing with convexity again it is possible to have 
a lower bound of the absolute value of the binding energy at any point on the 
bisector which corresponds to a2 = a3, 0 ::; a2 ::; 1. Now we use convexity 
along a horizontal line al = const. The systems aI, a2, a3, aI, a3, a2 repre­
sented in Fig. 6.2 by Q and Q', are of course completely equivalent. Hence 

( a2 + a3 a2 + a3 ) 
EI23(al, a2, a3) = E I23 (al, a3, a2) < E l23 aI, 2 '2 ' 

by convexity and 
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p~-e­

(off scale!) 

Fig. 6.3. 

where g represents the relative excess in binding energy. We are assured of 
stability if 

i.e., if 

e2 1 < (1 + g(O:1)) e2 _2_. 
2 0:1 + 0:2 2 1 + 0:1 

In this way, it is possible to prove that the system pdp-, important for fusion 
processes, is stable, though it is off the diagonal. One would like to show also 
in this way that n+ p- p+ and p+n+n- are stable, but these considerations 
are not sufficient. There is a hint that they are stable because, from explicit 
calculations at 0:1 = 0, one sees that this method tends to give a band of 
stability which is two times narrower than the real one and this is just what 
one needs. 

6.3 Three-body case. Unequal charges 

On this topic, Richard, Wu and I have published one paper [18]. We have the 
right to take q1 = 1, the charge of the particle which is opposite to the other 
two, of the same sign, q2 and q3. 

A) Unequal charges, but q2 = q3 

This is the simplest case, very similar to the case of all equal charges. For 
fixed q2 = q3 we can again represent a system with the variables 0:10:20:3, and, 
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on the bisector of summit 1, the energies of the subsystems (12) and (13) are 
equal. The fact that the instability regions are star-shaped with respect to 3 
for the left-half of the triangle and to 2 for the right-half persists, and as well 
the convexity of the instability regions. There are two major differences which 
are: 

i) that if q2 = q3 < 1, all three-body systems are stable, because near summit 
3, for instance, the subsystem (12) is very compact and exerts a Coulomb 
attraction at long distances on particle 3; it may seem strange that as 
q2 ~ 1 part of the triangle becomes unstable, but this is just due to the 
fact that the binding energy, in that region, tends to zero as q2 ~ 1; 

ii) that if q2 = q3 is large enough, stability disappears completely. 

Figure 6.4 summarizes the situation. For q2 > 1 but very close to 1, there 
is no qualitative difference, but for a certain critical value 1 < q2c < 1.1, 
the stability band breaks into two pieces, and from calculations by Hill and 
collaborators [2] stability near Q2 = Q3 = 1/2, QI = 0 disappears completely 
for q2 2: 1.1, and from the calculations of Hogreve it disappears near 0!2 = 
Q3 = 0, QI = 1 for q2 > 1.24. From convexity, it hence disappears completely 
along the segment joining Q2 = Q3 = 0 and Q2 = 0!3 = 1/2, and from the 
star-shaped property, there is no stability at any point in the triangle for 
q2 > 1.24. 

Fig. 6.4. 

B) Unequal charges, but q2 # qa fixed 

First we continue to use the QI, Q2, Q3 variables to describe the three-body 
system for fixed charges. A fundamental difference is that the bisector of 
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summit 1 of the triangle no longer plays a special role. It is, instead, the line 
along which El2 = E l3 , i.e., 

which becomes important. This line goes through the point a2 = a3 = 1, 
symmetric to summit 1 with respect to the line al = 0 (Fig. 6.5). The line 
divides the triangle into two subregions. If we decide to take q2 2: q3, El2 < 
El3 in the left region which contains the summit 1. 

2 f------+----''---71 3 
\ I 

\ I 
\ I 
\ I 

\ I 
\ I 

\ I 
\ I 

\ I 
\ I 

\ I 
\ I 

\ I 
\ I 

\ I 
\ I 

\/U2 =U3=1 

Fig. 6.5. 

If q2 and q3 are both less than 1, we have again stability everywhere. If 
q2 2: 1, part of the triangle becomes unstable. For details, see [15]. 

C) q2 and q3 variable, fixed masses 

Instead of holding charges fixed one can fix the masses and study stability in 
the q2, q3 plane. 

In the Q2, Q3 plane there is again for the general mass case a dividing line 
where the binding energies of the two subsystems (12) and (13) are equal: 

In the two sectors thus defined there are two instability regions for which we 
have been able to derive a new concavity property: 
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1 I--==--/.,f 
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/ 
/ 

/ 
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/ 
/ 

/ 

/ 1 

/ 
/ 

/ 

Fig. 6.6. 

(T) 

Theorem 4. Define Z2 = 1/q2, Z3 = 1/q3 , the image of q2 > 0 q3 > 0 is 
Z2 > 0 Z3 > O. Then, in the Z variables the two instability regions are convex 
(Fig. 6.7). The proof is based on a rescaling such that the binding energy of 
the relevant subsystem remains constant on a segment in the Z2Z3 plane. 

o 

Fig. 6.7. 

D) An illustration: The instability of the systems ape- or apIL 

In the Born-Oppenheimer limit it is known that such systems are unstable 
[3]. Spruch and collaborators [5] have given arguments which seem to indicate 
that this might remain true for the actual masses of the protons and of the a 
particle, but, to our knowledge, a completely rigorous proof does not exist. 

STEP 1 Take m2 = m3. Then if q2 = q3 we have instability if q2 = q3 ~ 1.24 
and m2 = m3 = 0 and m2 = m3 = 00, and by concavity for any m2 = m3' 
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Now consider the segment q2 = 1.24, 0 < q3 < 1.24. Along this segment 
the subsystem with the most negative binding energy is (12) and this energy 
is constant. There is no stability for q2 = q3 = 1.24, and no stability for 
q2 = 1.24, q3 very close to zero, because then particle 3 is submitted to a 
very weak force and is therefore very far away most of the time while (12) 
is overall repulsive for 3. By concavity there is no stability for q2 = 1.24, 
0< q3 < 1.24. The same kind of argument applies to 1.24 < q3 < 00, because 
one has instability for q3 --+ 00 q2 > 1, and one can use concavity in the 
inverse charge. The conclusion is that if m2 = m3, one has no stability if 
either q2 2: 1.24 or q3 2: 1.24. 

STEP 2 Assume q2 2: q3. Then, in the whole sector, m2 > m3, the lowest 
two-body threshold is given by the (12) system. Therefore in the a triangle 
the region a2 < a3, is completely unstable for q2 > 1.24 by use of the star 
shaped property. The systems 

ape- aPlr, 
ade- adf-l-, 
ate- atf-l-

satisfy precisely the conditions: q2 > 1.24, q3 = 1, m2 > m3, and are 
therefore unstable, in the sense we have given to "instability". Notice that the 
proof would fail if the particle with charge 2 was lighter than the particle with 
charge 1. However, as pointed out by for instance Gerstein [9], some of the 
levels of these systems are "quasi stable" in the Born-Oppenheimer approxi­
mation in the sense that the minimum of the Born-Oppenheimer potential is 
below the value it takes for infinite separation between the two nuclei where 
one of the limit atomic states is excited and degenerate with the other one. 
For instance, in the af-l-d system, there exists a quasi-stable state in which, 
for large separations, the af-l- system is in an N=1 state and the df-l- system 
is in an N=2 state. Gerstein [8] went as far as estimating the lifetimes of these 
quasi-stable states and showed that the lifetime increases drastically when the 
proton is replaced by a triton. One should also mention metastability, where 
the Born-Oppenheimer curve has a minimum above zero [15]. 

6.4 Four-body case: Equal charges 

Most of what I will say concerns systems of two positive and two negative 
charges of absolute value e. However, let me start with the case 

pe e e 

i.e., a doubly negative hydrogen ion. Such a state according to a review by 
Hogreve [13] does not seem to exist. In the limit of an infinitely heavy proton, 
the Lieb bound on n, the number of electrons around a charge Z [16], n < 
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2Z + 1, which is a strict inequality, gives n < 3. In fact no doubly negative 
atomic ions seem to exist in nature, while singly negative ions may (like H-) 
or may not exist (like the case of the rare gases). 

We return now to systems with charges -e - e + e + e, and first of all 
m - m - M+ M+, i.e., two negatively charged particles with equal mass and 
two positively charged particles with equal masses. A familiar example is 
the hydrogen molecule e-e-p+p+. A more exotic example is the positronium 
molecule e-e-e+e+. It has been realized by Jurg Frohlich that up to very 
recently there did not exist any rigorous proof of the stability of the hydro­
gen molecule. It was believed to be stable because of experiment of course, 
and of Born-Oppenheimer calculations. Two groups (Frohlich et al., Richard) 
investigated this problem and finally joined their efforts to produce a com­
pletely rigorous proof [7]. The simplest approach, whose idea comes from J.-M. 
Richard [20] consists of starting from the work of 0re, which is valid by scal­
ing for a system A-A-A+ A+ [14]. 0re used a very simple variational trial 
function, of the form 

'IjJ = exp -~ (T13 + T14 + T23 + T24) , 

cosh [ ~ (T13 - T14 - T23 + T24) ] . 

Notice that the distances between particles with same charge sign do not 
appear. All integrals can be carried analytically and it is found that the energy 
is less than 

2.0168 Eo(A+ A-) . 

The system is therefore stable because it cannot dissociate into A + A - + 
A + A +. It cannot dissociate either in A + A-A + + A -, because between these 
two systems there is a long-distance Coulomb force, producing unavoidably 
infinitely many bound states. If we take now 

1 1 2 
Xe + xp = - + - = - , 

me mp mA 

we see that the binding energy of e-p is the same as that of A+ A-. However, 

by concavity in the inverse masses. So, 

Hence, ppee is stable. One can wonder if stability remains if the masses of two 
particles of the same charge are different, i.e., 
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A+B+C-C-. 

Then there is still a unique possible dissociation threshold: 

A+C- + B+C-. 

0re has predicted explicitly that the system pe+e-e- is stable [19], and this 
has been observed experimentally by Schrader and collaborators [21]. It is 
also easy, from the upper bound of the energy of e+e+e-e- to show that the 
systems p d e-e-, p t e- e-, d t e-e- are stable. This is implicit in the work 
of Richard [20], established in the thesis of Seifert [22] and I present here my 
own version. By concavity we have 

E(XA +XB Xe XA +XB Xe XA +XB Xe XA +XB xc) 
< 4 + 2' 4 + 2' 4 + 2' 4 + 2 

1 
< -2.0168 

4 

If the inequality 

1 

is satisfied, the system is stable. If mA > mB > me, one finds that this 
condition is certainly satisfied if mB > 5me. Using the more refined bound [7] 

which uses a more sophisticated trial function and must be "cleaned" from 
numerical roundup errors, one gets 

mB > 2.45me . 

However, Varga and collaborators [23], using trial functions leading to in­
tegrals which can be expressed analytically, and adjusting parameters, have 
found that one has stability for any mA and mB, including the case where 
one or two of them are less than me. By a tedious but feasible exercise, one 
could, using concavity, transform this calculation, which is unavoidably done 
for discrete values of the masses, into a very inelegant proof. Let us hope that 
someone, in the future, will find a still more clever trial function and avoid 
this. 
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Summary. In the first part the general framework of almost invariant subspaces 
for quantum evolutions (which can be viewed as a far-reaching generalization of the 
standard reduction theory [Ka] which lies at the core of Rellich-Kato theory of ana­
lytic perturbations) is reviewed. As examples, in the second part, (non-convergent) 
expansions leading to almost invariant subspaces are presented in more detail for 
time-dependent perturbations, as well as for the semi-classical limit. 

7.1 Introduction 

Let Ug(t, to) be the unitary evolution as given by the Schr6dinger equation 

in the limit € --t O. Since the direct integration of (7.1) is a difficult task we 
consider here the problem of obtaining information about Ug(t, to) without 
actually solving (7.1) in full generality. 

The simplest case of such a program is the Rellich-Kato reduction theory 
when Hg(t) does not depend on time and is of the form Hg = Ho + € V, with 
V relatively bounded with respect to Ho. As is well known [Ka], in this case 
if ao is a bounded isolated part of the spectrum of H o, then for sufficiently 
small c, Hg still has an isolated bounded part of the spectrum, a g, coinciding 
with ao in the limit c --t 0 and moreover the corresponding Riesz projection 
has, for sufficiently small €, a norm convergent expansion: 

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
© Birkhäuser Boston 2004
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and r is a contour enclosing 0'0. 

By Stone's theorem, Ue;(t, to) = e-i(t-to)He has a block-diagonal structure 
with respect to the decomposition given by Pe;: (1 - Pe;)Ue;(t, to)Pe; = 0 or 
alternatively Pe; = Ue;(t, to)Pe;Ue;(t, to)* i.e., Pe;1i is an invariant subspace for 
the evolution Ue;(t, to). Moreover, if Ne; is the Sz-Nagy matrix intertwining Pe; 
and Po, 

then N;Ue;(t, to)Ne; is block-diagonal with respect to the c-independent de­
composition given by Po: [Po, N;Ue;(t, to)Ne;] = 0 and the reduced evolution in 
Po1i, 

(7.4) 

satisfies the equation 

i ! Ueff,e; = heff,e;Ueff,e;; heff,e; = PoN; He;Ne;Po· (7.5) 

Also, the spectrum of He; enclosed by r coincides with the spectrum of heff,e; 

(as an operator in Po1i). The point of the reduction process [Ka] outlined 
above, is that it allows us to replace part of the evolution problem (as well 
as spectral analysis of He;) in 1i with a reduced one (which is easier and 
more suited to analytical and numerical studies; e.g., in the one-dimensional 
case the integration of (7.5) is trivial) in the smaller Hilbert space (in many 
instances finite-dimensional) Po1i. Clearly, the crucial condition for such a 
reduction theory is the existence of an invariant subspace. 

Unfortunately, the Rellich-Kato perturbation theory covers only a small 
part of the "perturbation" like problems of quantum mechanics, so an exten­
sion of the above reduction theory was needed. Gradually it become clear that 
the adiabatic theorem of quantum mechanics, the theory of spectral concen­
tration, the theory of adiabatic invariants for linear Hamiltonian systems, the 
theory of simplifications and diagonalization of differential evolution equations 
and more recently singular perturbations as well as the semi-classical limit in 
quantum mechanics can be viewed as particular instances of a far reaching 
extension of the Rellich-Kato reduction theory. The price to be paid for such 
a generality is that one has to replace invariant subspaces by almost invariant 
subspaces and accordingly one of the central issues is to estimate the error. 

The aim of this article is to present the basic facts, as well as some ap­
plications of this extension. Due to the space limitations we cannot cover, 
even partially, the very ramified topic of "singular perturbations" (adiabatic 
theorem and semi-classical limit included) in quantum mechanics and we apol­
ogize for not mentioning some other related important developments (for ex­
ample, nothing will be said about Berry's phase, Landau-Zener formulae and 
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magnetic perturbation theory). Also due to the very extended bibliography 
we would need, we shall give, whenever possible, mainly review papers from 
which additional bibliography can be traced. 

The content of this article is as follows. In Section 7.2, we present the gen­
eral setting and show that the existence of almost invariant subspaces leads, 
up to some controlled errors, to the same kind of results about evolutions as 
the existence of invariant subspaces. Also, the construction of almost invariant 
subspaces (more precisely the orthogonal projection onto those subspaces) out 
of some almost idempotents, Te(t), is written down. The core of the theory 
is exemplified in Section 7.3 and consists in the "perturbative" construction 
of Te (t) in various cases. The difficulty stems from the fact that the expan­
sion in (7.2) can be at most asymptotic and the formula (7.2) does not hold. 
Accordingly, one has to find in each particular case an alternative formula 
for E j . 

7.2 Almost invariant subspaces: Generalities 

A family, Le(t), of (closed) subspaces given by a family of orthogonal projec­
tions, Le(t) = Pe(t)1t; Pe(t) = Pe(t)* = Pe(t)2 is said to be almost invariant 
under the evolution Ue(t, to) given by (7.1) if 

In each particular case one has to find the time scales for which (7.6) holds 
true; the most usual are It - tol '" c-P ; e-C/e. At the heuristic level the 
differential form of (7.6) is 

(7.7) 

We take (7.7) as the definition of almost invariant subspaces and indeed one 
can show (see below) that (7.6) implies (7.7) with w(c; t, to) ::; It: O(c; u)du. 
Some remarks are in order here. 

i. We would like to stress once again that Pe(t) have to be constructed 
from He(t) without any reference to Ue(t, to). 

ii. Our presentation here is at a heuristic level but at the technical level, 
since in general He(t) are unbounded self-adjoint operators, one has to make 
precise the domain questions, existence of Ue(t, to), etc; in particular, in order 
(7.7) to make sense one needs a dense subspace Do C D(He(t)) such that 
Pe(t)Do C D(He(t)). These matters have to be settled for each particular 
case at hand. 

iii. Although true in some cases, in general it is not required that He(t) 
and/or Pe(t) have limits as c -+ o. 
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The next object we introduce is the approximate evolution UA,E(t, to) 
(called sometimes superadiabatic evolution), which is the generalization [NeO, 
Ne4, Ne5, JP1] to the present setting of Kato's adiabatic evolution. More 
precisely UA,E(t,tO) is given as the solution of 

i! UA,E(t, to) = (HE(t) - BE(t))UA,E(t, to); UA,E(tO, to) = 1, 

.d 
BE(t) = -(1 - 2PE(t))(z dt PE(t) - [HE(t), PE(t)]). 

The point is that on one hand PE (t) is invariant under U A,E (t, to), i.e., 

and on the other hand UA,E(t, to) is close to UE(t, to) : 

(7.8) 

(7.9) 

UE(t, to) = UA,E(t, to)flA,E(t, to); /I flE,A(t, to) - 1 II::::; t t5(e, u)du. (7.10) 
lto 

Notice that (7.9), (7.10) imply (7.6) with wee; t, to) ::::; It: t5(e, u)du. The 
equality (7.9) means that the time-dependent family PE(t) is invariant un­
der U A,E(t, to). In most cases it is possible to do better and to define a related 
evolution which leaves invariant a fixed subspace called reference subspace. 
More precisely suppose that one can find WE(t)* = WE(t)-l; Po = Po = Pg 
such that: 

Then one can write the analog of (7.5). Indeed, set (the "interaction" picture) 

and verify by a simple computation that [UE,A(t, to), Po] = 0, i.e., UE,A(t, to) 
is block diagonal with respect to the decomposition given by Po. Further, if 
one defines Ueff,E(t, to) == POUE,A(t, to)Po, then 

(7.11) 

with 

heff,E(t) and Ueff,E(t, to) are called effective hamiltonian and effective evolu­
tion respectively in the reference subspace Po 'J-l. Putting the things together 
one can write UE(t, to)PE(to) in terms of Ueff,E(t, to) up to errors less than 

It: t5(e, u)du: 

(7.13) 
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with 

II r(t, to) II::; it c5(c:,u)du. 
to 

(7.14) 

With this our generalized reduction theory is complete. Of course all that is 
nothing but soft "general nonsense" since we are left with the construction of 
Pe:(t) and We:(t). While in most case one can find Po such that for sufficiently 
small c:, SUPtElR II Pe:(t) - Po 11< 1 and then We:(t) can be taken to be the 
Sz-Nagy matrix intertwining Fe:(t) and Po, the construction of Fe:(t) is, as 
already said, the hard core of the whole theory and we shall deal with this 
problem in the next section. Actually what will be constructed is not a family 
of orthogonal projections but a family of almost (self-adjoint) idempotents 
Te:(t) satisfying 

II Te:(t)2 - Te:(t) II::; ry(c:, t) < 3/16, 

d -II i dt Te:(t) - [He: (t), Te:(t)] II::; c5(c:; t) . 

(7.15) 

(7.16) 

Then the needed Pe:(t) is given by the following Lemma [Ne4J, [Ne5]. 

Lemma 1. Suppose that Te:(t) is self-adjoint and satisfy {7.15} and {7.16}. 
Then Pe: (t) given by 

Pe:(t) == 2i 1 (Te:(t) - z)-ldz 
1f Jiz-ll=1/2 (7.17) 

= Te:(t) + (Te:(t) - 1/2)[(1 + 4(Te:(t)2 - Te:(tm- 1/ 2 - 1] 

satisfies 

(7.18) 

and 

(7.19) 

We end this section with a remark concerning the time-independent case, 
i.e., He:(t) = He:. In this case Fe:(t) = Pe:, We:(t) = We: and (7.7) becomes 

(7.20) 

Actually, by Howland's trick (known by physicists as the Floquet theory) one 
can consider only the time-independent case (at least as far as the construction 
of Pe:(t)) is considered). Indeed defining the hamiltonian 

(7.21) 
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and the almost invariant subspace 

lP'c; = LifJ Pc;(t) dt (7.22) 

in the Hilbert space][( = J: 1i dt, one observes that -i fit Pc; (t) + [Hc;(t), Pc; (t)] 
can be rewritten as [1HIc;, lP' c;]. 

7.3 Examples 

In this section we give examples of "perturbative" construction of Tc;. The 
heuristic is as follows. We seek Pc;(t) of the form 

ex> 

Pc;(t) ""' Lcj Ej(t) 
j=O 

(7.23) 

and try to determine E j (t) from the condition that the formal series in the 
Lh.s. of (7.23) solves (at the formal series level) 

i ! Pc;(t) - [Hc;(t), Pc; (t)] rv 0, Pc;(t) rv Pc;(t)* rv pc;(t)2 . (7.24) 

As already said, since we are dealing with singular perturbations the series in 
the L h. s. of (7.23) is not convergent (or even worse, only a finite number of 
E j exist) so one has to truncate the series and define 

N" 

Tc;(t) = Lcj Ej(t) 
j=O 

(7.25) 

where Nc; has to be chosen for each problem at hand. From the physical point 
of view the most useful is to choose Nc; = N independent of c. This choice 
gives for the error 8(c, t) the form 

(7.26) 

In view of physical applications, it is an important feature of the theory that 
the constants CN can be computed explicitly (at least for low values of N). An 
example of such an estimation is given in [ANe] (see also [Te] for a discussion 
of this point). In many cases one can make a better choice, namely to take an 
c-dependent truncation according to an optimal reminder estimate rule and 
this leads (under appropriate technical conditions on Hc;) to exponentially 
small errors 

8(c, t) = Ce- c/ c;"', C < 00, C > 0, a > 0. (7.27) 

However in this case the constants are much more difficult (if not impossible) 
to control. 
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7.3.1 Asymptotic perturbation theory for quantum mechanics 

We send the interested reader to [Ne6, Ne2] for a detailed discussion and 
additional bibliography and to [NeO, Ne3, Ne5] for proofs. Here we only re­
call that the results cover practically all singular perturbations interesting 
from the physical point of view (e.g., Stark and Zeeman effects in atoms and 
molecules and the Stark-Wannier ladder problem in solids) and that the per­
turbed subspaces are almost invariant up to exponentially long times, which 
in the present setting is the analog of the fact that the imaginary part of the 
corresponding resonances (in the cases when they can be defined) are expo­
nentially small. Let us mention also that the idea of almost invariant subspaces 
has been used recently in a nonlinear context [G MS]. 

7.3.2 Adiabatic expansions 

Most of the theory of almost invariant subspaces has been developed in con­
nection with this subject and the reader is sent to [Nel]-[Ne5], [MN2, ASY, 
AE, JP2] for reviews, further references and related results. Here we only 
mention that adiabatic expansion has been recently used [AES, ES] in the 
beautiful rigorous proof of the Kubo formula in the context of QHE and the 
fact that by Howland's trick mentioned above, the adiabatic expansions can 
be considered as particular cases of semi-classical expansions (see [Sj, MaNe] 
as well as the extended discussion in [Tel). 

7.3.3 Time Dependent Perturbations 

In this case [MN1] 

Hc(t) = Ho + c Vet) (7.28) 

where for simplicity we assume that Vet) is uniformly bounded, II Vet) II:::; v < 
00. The most common examples of (7.28) are atoms or molecules subjected 
to external electromagnetic fields or spin systems in time variable magnetic 
fields. The "atomic" time-independent hamiltonian, Ho, is supposed to have a 
group, ao, of discrete almost degenerate eigenvalues, well separated from the 
rest of the spectrum. For a long time the basis for a perturbative computation 
of (7.1) was (Volterra-)Dyson series in the interaction picture. While the 
Dyson series is convergent for all times, the first nontrivial term gives a good 
approximation only for It - tol ;S l/cv. On the other hand, for the particular 
case, Vet) = cos(wt)V, if the distance between ao and the rest ofthe spectrum 
is of order Ll » w, it is known that resonant transitions between subspaces 
corresponding to ao and a(Ho) \ ao, respectively, become important only on 
time scales It - tol "" l/.x[A/wj and this suggests the existence of an almost 
invariant subspace up to this time scale. This phenomenon of breakdown of 
the usual perturbation theory on time scales much shorter than the time scale 
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of the onset of resonant transitions was known as the appearance of "secular 
divergences" in quantum mechanics (for a detailed discussion as well as for 
a solution of the secular divergences problem in the particular case when ao 
consists in a single nondegenerate eigenvalue see [LEKJ). The existence of 
the almost invariant subspace below provides the solution to the problem of 
secular divergences in the general case i.e., when ao consists of a group of 
discrete almost degenerate eigenvalues of total multiplicity N. In this case the 
effective hamiltonian is called the "dressed" N-level hamiltonian system. So 
much for the physical motivation and let us describe more precisely the result. 
Let a(Ho) = ao U aI, 

V(t) = L dwV(w)e- iwt , J dw(1 + Iwl) II yew) 11< 00, 

aj(u) = {E+uIE E aj}; wn = (WI, ... ,W(n)) E on 
n j 

L'j(w(n)) = U aj( L wn ) U aj; dn == WI dist(L'o(w(n)), 171 (w(n)). 
m=l k=m 

(7.29) 

While the above (complicated!) definition of dn is the one needed in the proof 
of the result below, there is an alternative expression which is much more 
transparent from the physical point of view: 

m 

dn = inf{IEi - Ef - LWjl, lEi - Efl} (7.30) 
j=l 

where the infimum is taken over Ei E ao, Ef E aI, Wj EO, m = 1,2, ... , n. 
From (7.30) one sees that dn decreases with n. Moreover (7.30) makes clear the 
physical meaning of No defined as the smallest integer for which dNo+1 = 0: 
one needs at least No + 1 "photons" for a resonant transition between ao and 
0"1. The explicit formula for E j (t) is contained in: 

Lemma 2. Let No be the smallest integer for which dNo+!= 0 and for w(j) E 
n j , j :::; No, let r(w(j)) be a contour enclosing L'o(w(j)) but no points of 
L'l(W(j)). Then for 1 :::; j :::; No, 

Ej(t) = 2~ i (j) dZ{ IT (Ro(z + t wp)V(wm )) }Ro(z) 
r(w) m=l p=m 

(7.31) 

satisfy 
j .d 

Ej(t) = LEj-k(t)Ek(t); ZdtEj(t) = [Hc(t),Ej-1(t)] 
k=O 

with Eo = Po (the spectral projection of Ho corresponding to ao). 

Working out the procedure outlined in Section 7.2 one obtains almost 
invariant subspaces on time scale It - tol :s 1/ ANo. The result is optimal in the 
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sense that on larger time scales, resonant transition sets in giving, in general, 
nonzero transition rates. Notice that in this case lime---7o II Pe(t) - Po 11= 0 
and the procedure outlined in Section 7.2 leads to effective dynamics in the 
reference subspace Po 1t. For estimations as well as for the explicit computation 
of a few terms of the expansion in >. of the effective hamiltonian, we send the 
reader to [MN1] 

7.3.4 The Semi-classical Limit 

We shall consider here only the time-independent case. We take He to be the 
Weyl quantization of a matrix or even operator-valued symbol on the phase 
space ]R2n, h(q,p;c): 

(He</»(q) = (OP':(h)</» (q) 

1 J '( ) / A q + u = (27f c)n e' q-u p eh(-2-'P; c)¢(u) dudp. 
(7.32) 

We seek almost invariant subspaces corresponding to isolated parts of the 
spectrum of h(q,p; 0). We shall first outline [NS], at the heuristic level, the 
main points of the construction of almost invariant subspaces. We start by 
recalling (see, e.g., for details [Mal) that if Ae = Op':(&), Be = Op':(b), then 
AeBe = Op': (c) where c is given by the Weyl symbol product: 

c(q,p; c) == (;;fib)(q,p; c) = (27f ~)2n J ei ((p-'1)(v-q)+(p-O)(q-v))/ 10, 

Aq+U Aq+V 
a(-2-' "'; c)b(-2-' (); c)du dvd", d() . 

Further if & is a semi-classical symbol, i.e., it has an asymptotic expansion 
&(q,p;c) rv E;:oaj(q,p)Cj , we say that a(q,p;c) == E;:oaj(q,p)Cj is the 
formal symbol of Ae (or equivalently &(q,p; c)). Recall that the formal sym­
bol does not define uniquely the symbol. The formal Moyal- Weyl product is 
defined by (here D = io) 

~ (-1)1,61 f3 f3 
(a#b)j(q, p) = L.t a!(3!2Io:I21f31 0; Dq ak(q, p)op D~bl(q, p). 

lo:l+If3I+k+l=j 

The formal symbol of the Weyl product equals the Moyal-Weyl product of the 
corresponding formal products. The vector space of formal symbols equipped 
with the # product is called the Moyal algebra. The very important feature 
of the formal product, #, is that it is local in phase space, i.e., for each 
j, (a#b) j depends only on a finite number of ak, bk and a finite number of 
their derivatives. The basic idea of finding almost invariant subspaces in semi­
classical context is to construct first Moyal projections in the Moyal algebra, 
i.e., formal symbols 



92 G. Nenciu 

00 

7r(x,p;c) '" L7rj(q,p; c) cj 

j=o 

satisfying (at a formal series level) 

7r '" 7r* '" 7r#7r; 7r#h - h#7r '" 0 

(7.33) 

(7.34) 

(here by 7r*(q,p; c) we mean the adjoint of the matrix 7r(q,p; c)). The lemma 
below says that one can always construct Moyal projections corresponding to 
isolated parts of the spectrum of the principal symbol ho(q,p) of h(q,p;c) : 
h(q,p; c) = ho(x,p)+O(c). Let (J(q,p) be the spectrum of ho(x,p) and suppose 
that, for some (qo,Po) E ]R2n, (J(qo,Po) = (Jl(qO,PO) u (J2(qO,PO), 

(7.35) 

Then by perturbation theory there exists a neighborhood U(qO, Po) of (qO,Po) 
such that, for (q,p) E U(qO,Po) the spectrum of ho(q,p) is well separated, i.e., 
(7.35) is satisfied on U(qO,Po) with d(q,p) ~ d(qo,Po)/2, and there exists a 
contour rqO,po (not depending upon (q,p) E U(qO,Po)) enclosing (Jl(q,p) and 
satisfying 

(7.36) 

Lemma 3. Suppose (7.35) holds true. Then, for (q,p) E U(qO,Po), there exist 
unique 7rj(q,p) , j = 0,1, ... , such that 7ro(q,p) is the spectral projection of 

00 

ho(q,p) corresponding to (Jl (q, p) and the formal symbol L 7rj(q,p) cj satisfies 
j=O 

(7.34)· 

Lemma 3 appeared many times in the literature (see: [HS, EW, BN] and 
[Sj] where the earlier construction [NeI, JPI] of adiabatic projections corre­
sponding to the case h(q,p; c) = p + Hc(q) was obtained in the framework of 
the theory of pseudo-differential operators). There are essentially two meth­
ods of proof. The first one [NeI], [EW, BN], is a recurrent construction for 7rj 
solving the equations coming from (7.34). The second one [HS],[Sj] is close in 
spirit to Rellich-Kato perturbation theory outlined in the introduction: due 
to (7.36), for all z E rqO,po, one can construct (see, e.g., [Mal) the parametrix 

00 

r(q,p; c, z) '" L rj(q,p; z) cj 

j=O 

satisfying (at a formal series level) 

r#(h - z) '" (h - z)#r '" 1 

and then obtain 7rj(q,p) from the Riesz formula for spectral projection 

(7.37) 
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In [NS] the second method has been used since, on the one hand, it gives 
explicit formulae for 7rj and, on the other hand, allows a much easier control 
on 7fj (q, p) and their derivatives than the recurrent construction. Provided 
7rj(q,p) can be globally defined (i.e., O"l(qO,PO) is isolated for all (q,p) E ]Rn) 
and are uniformly bounded together with their derivatives, by the Calderon­
Vaillancourt theorem, one can define 

(7.39) 

Notice that in this case E j themselves depend on c. As an example we con­
sider two-component Klein-Gordon systems [NS]. For further applications, 
extensions and extensive bibliography on older and more recent developments 
see [Te] (also the article by S. Teufel in this volume). The two-component 
Klein-Gordon hamiltonian is 

(7.40) 

acting on 'H = L2(]Rn)EB2 = L2(]Rn)EJ7L2(]Rn). Here a(p) = (Vp2 + 1-1), 12 is 
the 2 x 2 identity matrix and V(q) is a 2 x 2 hermitian matrix-valued function 
that admits an analytic extension in some strip la = {q E (Cn ; IImql < a}, 
a > O. Since we have in mind applications to scattering theory we assume that 

V(q) to be "short range", i.e., there exists V= = (>'1600 A 0 ) such that 
2,= 

(7.41 ) 

with 6 > 1. Concerning the spectrum of V(q), we assume that the two eigen­
values Al(q) > A2(q), satisfy 

(7.42) 

It follows that on la, 

where 7ro(q) is a bounded projection in (C2, analytic in la and self-adjoint for 
q E ]Rn. Moreover, we suppose that Vij(q) = Vij(q). In what follows, for an 
operator A and 'T] > 0 we shall denote 

II A 11'1)= sup II (x)t'l)A(X)(l-t)'I) II . 
tE[O,l] 

Under the above conditions one can prove [NS] that HE has an almost in­
variant subspace and is unitarily equivalent with an almost diagonal effective 
hamiltonian. 
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Theorem 1. He is unitarily equivalent with 

(7.43) 

where Be,ij; i,j = 1,2 are bounded operators satisfying 

(7.44) 

uniformly with respect to sufficiently small f. 

We turn now to applications to spectral and scattering theory for He. 
Consider the scattering matrix, 8, corresponding to the pair He and 

(7.45) 

Theorem 2. Let, for j = 1,2: 

(7.46) 

acting in L2(Rn) and 8 j the scattering operator corresponding to the pair 
Heff,e,j, HO,e,j. Then, there exists c > O-independent of 10, such that, for any 
(here ¢ denotes the Fourier transform) ¢k E H, ¢k E CO"(Rn\{0})EB2, k = 1,2 
and 10 E (0,100] sufficiently small, we have 

(7.47) 

for some constant C((/>1, tP2 ) > 0 depending on ¢l, ¢2 but not on Eo 

Since 8 commutes with He,o, one can define the scattering matrix at fixed 
energy 8(E). Let us stress that Theorem 2 does not imply the correspond­
ing result for 8(E); when shrinking the supports of ¢l and (P2 the constant 
C(¢l, ¢2) may blow up. At the heuristic level the reason for this blow up is 
clear: Theorem 1 (via the Duhamel formula) implies that the transitions per 
unit time between the two levels is exponentially small, but if, at the given 
energy, there is a resonance very (exponentially) close to the real axis, it has 
an exponentially long life time and during this time considerable transitions 
can take place. Accordingly, one expects exponentially block diagonalization 
of 8(Eo) only if there are no resonances around Eo or in other words if 8(E) 
is smooth in a neighborhood of Eo. 

We turn now to some direct applications of Theorem 1 to spectral theory. 
We shall discuss Heff,e but all the results apply to He also, since they are 
unitarily equivalent. If infxElRn A2(X) := m2 < A2,oo, then Heff,e has discrete 
spectrum in the interval (m2' A2,oo) which, up to exponentially small errors, 
equals the union of the (discrete) spectra of He in this interval (see [Ne5] for 
details). Suppose now infxElRn Al(X) := ml < Al,oo. Then Heff,e,l has bound 
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states in the interval (m1' '\1,00) and as a consequence the diagonal part of 
Heff,c has bounded states embedded in the continuum spectrum in the interval 
(max{m1' '\2,00}, '\1,00). The small off-diagonal term turns (generically) these 
bound (stable) states into metastable states. Let tIt be an eigenfunction of 
such a bound state, i.e., 

H eff,c,1tIt = EtIt, E E (max{m1' '\2,oo}, '\1,00). 

Then from Theorem 1 

i.e., tIt, E are pseudo-eigenvectors and pseudo-eigenvalues (see [Ka]) of expo­
nential order for Heff,c (the name quasi-modes is also used). A more physical 
picture is given by Duhamel's formula which together with Theorem 1 gives 

Corollary 3 

(7.48) 

As it stands Corollary 3 gives the existence and the control on the (ex­
ponentially long) life time of metastable states (quasi-modes) in the semi­
classical limit. However in many instances one can make the connection with 
the resonances (defined as poles of the resolvent). In the cases when this 
connection can be made, Corollary 3 says that the imaginary part of the 
resonances is exponentially small. 

We end this subsection by once again calling the reader's attention to the 
recent review [Tel where the semi-classical limit together with applications 
not covered here is extensively discussed. In particular applications to the 
dynamics of Bloch and Dirac electrons subjected to slowly varying external 
potentials are considered. Our remark here is that, while in order to deal with 
nice classes of symbols one has to assume that the external potentials have to 
be bounded, a closer look at the particular structure of the symbols involved 
allows us to treat ( without any additional technicalities) the case when only 
the fields (i.e., the derivatives of the potentials) have to be uniformly bounded 
(a condition with a clear physical meaning). 
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8.1 Introduction 

8.1.1 The problem 

Although the mathematical analysis can be extended to other models, our 
main motivation is the understanding of the nonlinear dynamics of 1D quan­
tum electronic devices like resonant tunneling diodes and superlattices. The 
final aim is the development of reduced models and algorithms in order to 
compute and predict the behavior of such devices. Experiments (reported a.e. 
in [3]) show rather complex nonlinear phenomena, with hysteresis and steadily 
oscillating currents, which have been only partially elucidated up to now. 

We are interested in the nonlinear dynamics of a beam of particles ex­
perimenting a localized nonlinear interaction in a potential structure like the 
one in Fig. 8.1. Before writing the complete system, here is the mathematical 
program that can be followed for such a nonlinear problem: 

1) Functional framework: existence, uniqueness and stability under perturba­
tion (done in [1][2][12]). 

2) Determination of steady states (studied in [8J [13J and present work). 
3) Large time asymptotics, nonlinear stability and instability of steady states, 

attractors (studied in [8J [13]). 
4) Control theory (unstable steady states might be the most interesting from 

a technological point of view). 

The initial problem is modelled by an infinite-dimensional dynamical sys­
tem and in order to develop the above program as accurately as possible one 
can try to reduce it to some finite-dimensional one. Here we are led by the 
intuition of physicists who claim that the nonlinear dynamics of such systems 
is governed by a finite number of quantum resonant states. The model should, 

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
© Birkhäuser Boston 2004
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Fig. 8.1. Potential: Linear part V8' + B. 

at least in some asymptotic meaning, follow this intuition and the more ad­
vanced work in this direction up to now is the one by Jona-Lasinio, Presilla 
and Sjostrand in [8] and [13]. Here we will be slightly more specific about the 
asymptotics in order to develop a full mathematical asymptotic analysis of 
the nonlinear problem. 

8.1.2 The Illodel 

Here are the characteristics of the model: 

1) Electronic repulsion is described in a Hartree approximation valid for 1D 
systems and also called a Schrodinger-Poisson system. 

2) Out of equilibrium steady states in 1D, can be described as functions of the 
asymptotic momentum f(P-) = s-limt--->-oo eitH fCf)e- itH and involve 
scattering quantities whereas equilibrium states are function of the energy 
(see [12] for a more general presentation). 

3) In order to have a finite of number of quantum resonant states asymptot­
ically split from the rest of the continuous spectrum (that is very close 
to the real axis), one can consider the situation of quantum wells in a 
semiclassical island. 

The small parameter h > 0 can be introduced after a rescaling under 
the assumption that the potential barriers are wide or high. The quantum 
hamiltonian for a single electron has the form 

(8.1) 

with a nonlinear potential V"oL(X) (which is nonnegative). The first potential 
term B(x) simply includes the bias voltage applied to the device. It is piecewise 
affine 
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[
X - a ] B(x) = -B b _ a l[a,bj(x) + 1 [b,+oo) (x) . 

The second term describes the barriers and the quantum wells, 

h ~ (X-c.) Vo (x) = V01[a,bj(x) + ~ Wj T ' 
with the constants Vo > 0, a < Cl < C2 < .. , < CN < b and the compactly 
supported potentials Wj E LOO(R), Wj ::; 0, fixed. When the potentials -Wj, 
j E {l, ... ,N}, are bounded from above by Vo, the hamiltonian Hh has only 
absolute continuous spectrum and a function of the asymptotic momentum 
can be written in terms of generalized eigenfunctions: 

f(P~)(x, y) = l f(k)1/J~ (k, x)1/J~ (k, y) 2~h' (8.2) 

In our specific one-dimensional situation, the incoming generalized eigenfunc­
tions 1/J-(k,x) are given for k > 0 by 

Hh(X,hDx)1/J~(k,x) = k21/J_(k,x) for x E R, 

1/J~(k,x) = eikx /h + R(k)e-ikx /h for x::; a 

(8.3) 

(8.4) 

and for k < 0, k 2 i=- B, by 

Hh(x,hDx)1/J~(k,x) = (k2 - B)1/J-(k,x) for x E R, (8.5) 

1/J~(k, x) = eikx /h + R(k)e- ikx /h for x ~ b. (8.6) 

The shape of the incoming beam of electrons is contained in the given func­
tion f. A beam coming from the left-hand side is described by a function f 
supported in k ~ 0 and we assume the form 

f(k) = g(k2)11R+ (k), with 0 ::; 9 ::; 9rnax < +00. 

The density n h of particle associated with f(P-) is then defined as a 
positive measure by duality: 

It equals 
r+ OO 2 dk 

nh(x) = 10 g(k2) 11/J~(k,x)1 27Th' 

Finally the nonlinear potential V& L is obtained as the solution of the 
Poisson equation 

{ -8;V&L(x) = nh(x), in (a, b) 
V&L(a) = V&L(b) = o. (8.8) 
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8.2 Mathematical asymptotic analysis 

The existence of steady states for the system (8.1)(8.7)(8.8) for a fixed h > 0 
was proved in [1] [2] and [12]. We consider the asymptotics h --+ 0 in order 
to derive an easily solvable model involving only the real part of resonances 
which are in a finite number. 

8.2.1 Assumptions, notation 

The assumptions are: 

Hypothesis 8.2.1 
a) The number of quantum wells N is finite, a < C1 < ... < CN < band 
the potentials W j , j E {I, ... ,N} are bounded compactly supported with 

o ::; Wj ::; Vo, Vo > O. 

b) The quantity A = Vo - B is positive. 
c) The function g is nonnegative and belongs to C~«O, A)), the space of com­
pactly supported continuous functions in (0, A). 
d) For some small constant 0 < cg ::::; 1, cg determined by g, the distance 
between the wells satisfies CN - Cl < cg min {( C1 - a), (b - CN)}.l 

For technical reasons, we assume in c) that the energy support of the 
incoming beam avoids the energy threshold O. The situation where g is a 
decaying function on (0, +(0) is recovered afterwards by considering the limit 
€ --+ 0 for a family of functions ge(A) = X(C 1 A)g(A) with supPX c (0,+00), 
X == I for A :2 1. 

For j E {I, ... , N}, we introduce the finite set {Ej,k' 1::; k ::; K(j)} of 
negative eigenvalues of the one-well quantum hamiltonian -a;' + Wj(x), la­
belled in the increasing order. (In dimension d = I these eigenvalues are 
simple.) The set of all these energy levels is C = Uf=l {I, ... ,K(j)}. For 
l = (j, k) c C, we set j(l) = j, k(l) = k and the quantity 

(8.9) 

1 Such an assumption ensures that the resonances of Hh(X, hDx } involved in the 
nonlinear problem are simple and can be treated individually even if there is 
some interaction between the wells according to the universal lower bound of the 
splitting for I-dimensional hamiltonians given in [9]. Without this assumption 
one encounters the problem of possible multiple or accumulating resonances as in 
[5] with Jordan blocks or ill-conditioned diagonalization. Although this difficulty 
should be solved or bypassed in the present problem, we were not able to do it 
right now. 
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denotes the energy level shifted along the energy axis due to the classical linear 
potential Vo1[a,bJ(x) + B(x). The density nh will lie in the space Mb((a, b» of 
bounded measures on (a, b) and the nonlinear potential Vlh in 

BVtf([a,b]) = {V E CO([a,b]), V" E Mb((a,b», V(a) = V(b) = o}. 
This space is continuously embedded in the space of Lipschitz functions 
W1,ClO([a, b]) and compactly embedded in the Holder space CO,a([a, b]) for any 
a < 1. We will prove that the possible asymptotic potentials stand in the 
finite-dimensional subspace 

W6[el = {V E CO([a, b]), V(a) = V(b) = 0, vi affine for j E {O, ... ,N}} , 
[Cj,cH,] 

with e = {eo = a,Cl, .. · ,CN,CN+1 = b}. 

For a nonnegative potential V E BVo2([a, b]), V ~ 0, and an energy A E (0, A), 
we introduce the Agmon distance associated with Vh(x) = vt;(x) + B(x) + 
Vex), 

Va ~ x ~ Y ~ b, dAg(X, Yj A, V) = l Y vvt;(t) + B(t) + Vet) - A dt. 

(8.10) 

The possible asymptotics of the potential VjJ L will be discussed according to 
the quantities L(l, V), 8+(l, V) defined below for l E C, V E BVo2([a,b]). We 
set first 

jM(l) = max {j(l'), 

and jm(l) = min {j(l'), 

AI' + V(Cj(I') = Al + V(Cj(I)' l' E C} 

AI' + V(Cj(I') = Al + V(Cj(I)' l' E C} . 

(8.11) 

(8.12) 

Then L(l, V) and 8+(l, V) are respectively defined for Al + V(cj(l» E (0,..1) 
by: 

L (l, V) = dAg(a, Cjm(l); *) - dAg(Cjm(l) , bj *) 

and 8+(l, V) = dAg(CjM(l) , bj *) - dAg(a, CjM(I), *), 

where * stands here for (AI + V(Cj(l), V). We have 

8+(l, V) ~ -L(l, V) 

with equality only when jm(l) = jM(l), which means 

{l' E C,Al' + V(Cj(l') = Al + VCj(I)} = {l}. 
We end this set of notation with 

(8.13) 

(8.14) 

Definition 1. The set of nonnegative potentials W6[el+ = {V E Ware], V ~ O} 
is partitioned into two subsets 

C = {V E W6[el+, Vl E C, (0 < Al + V(Cj(I) < A) 

=? (L(l, V) > 0 or 8+(l, V) > O)}, 

Q = W6[el+ \C. 
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8.2.2 Main results 

Here are the main mathematical results. 

Theorem 8.2.2 The solutions VJh, hE (0,1], describe a bounded set of 

BVi([a,b])+ = {V E BV2 ([a,b]), V 2: 0, yea) = V(b) = o} 

and thus is relatively compact in CO,a([a, b]) for any a < 1. The set of A of 
its limit points as h --+ 0 is included in lP'6([a, b])+. More precisely, any V E A 
solves 

-8;V = 2:::>lg (AI + V(Cj(l))) 8cj(ll' Yea) = V(b) = 0, (8.15) 
IEC 

where the coefficients tl, lEe, satisfy 

o :S tl :S 1, (L(l, V) > 0) =} (tl = 1) and (8+(1, V) < 0) =} (tl = 0). (8.16) 

The possible limits lying in C can be given by a variational formulation 
using 

r+oo 

G(A) = - J). g(s) ds. 

Theorem 8.2.3 The set An C is given by the collection of critical points in 
lP'6([a, b])+ for the functionals 

Kee, (8.17) 

which satisfy the compatibility condition 

K = {l E e, 0 < Al + V(Cj(l)) < A and 8_(l, V) > O}. 

Included in some bootstrap process, the strategy of the proof is the fol­
lowing: 

a) One first obtains uniform estimates for the density nh E Mb«a, b)) with 
two monotonicity principles: 

First monotony principle: Any bounded function of the asymptotic 
momentum f(P!:.) can be estimated by a decaying function of the energy 

f(P!:.) :S X(Hh(x, hDx)) if f(k) :S X(£(k)), 

with £(k) = k2 for k 2: 0 and £(k) = k2 - B for k < O. Hence the particle 
density n h is estimated by the density (8.7) nh defined by 
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Second monotonicity principle: If one calls nv the density defined 
above for a Hamiltonian Hv = Ho + V(x) for a decaying function X, one 
has the convexity inequality (see a.e. [11] and [10]) 

lb [nv2 - iiVl] [V2 - V1] dx :::; O. 

b) Linear analysis: Adapt Helffer-Sjostrand's theory of resonances (see [7]) to 
the case of a Lipschitz potential in 1D with a systematic use of Grushin's 
problem (generalized and more flexible version of the Feshbach method) 
and Agmon distance (action) in order to describe accurately the effect 
of resonances close to the real axis on the quantities iih and nh. A polar 
expansion of the local density of states which can be adapted from [4] 
leads to an accurate approximation of iih. The derivation of a similar 
asymptotic formula for n h requires a similar development for functions of 
the asymptotic momentum as for function of the energy. The discussion 
about the comparison between Agmon distance to x = a and to x = b 
enters at this last point. 

8.3 Applications 

8.3.1 Comments 

One may question the validity of this asymptotic modelling compared to real 
situations. Indeed in actual electronic devices the widths of the wells and of 
the barrier have the same order of magnitude. Here are the answer that we 
give to justify such an analysis. 

a) Indeed the introduction of the small parameter is not motivated by an 
exact geometrical scaling but should try to fit the important physically 
relevant quantities which are the positions of the real part of resonances. 
Here is the way to adjust the scaling to the physically realistic case: 1) 
Compute the resonances for the real potential with B = 0 and VNL = 0.2) 
Replace the real hamiltonian by an h-dependent hamiltonian (8.1) chosen 
so that the real part of resonances coincide for B = 0 and V N L = 0 and so 
that the Cj'S equal the middle position of the wells. 3) Solve the asymptotic 
nonlinear problem (8.15). 

b) The previous method is not exact but implements the idea that the non­
linear phenomena are governed by a finite number of resonances. The in­
tuition of physicists is certainly correct, because the parameter h does not 
need to be very small (or in more physically realistic interpretation, the 
barriers do not need to be very wide or high) so that the resonances are 
very close to the real axis (remember that the imaginary part of resonances 
are of order e-2So / h for some Agmon distance Bo.). 
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c) As will be explained below for one or two wells, the number of nonlinear 
steady states rely on topological and geometrical arguments which should 
be robust under the modification proposed in a). 

d) It is certainly hard for two reasons to find all the nonlinear steady states by 
numerical computations after discretisation of the full quantum problem: 
1) The discretisation of the continuous spectrum may miss the narrow 
energy window of order e-2So / h were the quasiresonances lie. 2) As shown 
in the simple 2-wells case below, the number of nonlinear solutions may be 
quite high (up to 7) and any efficient nonlinear algorithm has to start close 
enough to a solution to find it. Hence if one wants accurate and realistic 
numerical results, the strategy could be the following: 1) Compute all the 
possible nonlinear solutions of the asymptotic model (8.15) according to 
the algorithm below; 2) use these solutions as initial guesses in a numerical 
simulation of the full quantum problem. 

e) The variational formulation (8.17) suggests a way to analyze the nonlinear 
stability of C-steady states. When the energies Al + V(Cj(I)) lie in a region 
where 9 is decreasing, the functional JK, in (8.17) is convex. The convexity 
inequality should playa role in the stability analysis. 

f) Finally, as explained in the last paragraph, a more refined analysis provides 
a guess for possible sudden transitions from steady currents to oscillating 
ones as observed in experiments. 

8.3.2 Algorithms 

A more detailed analysis shows that the coefficients tl are different from 0 or 
1 when there are equalities of Agmon distance or equalities of energy levels. 
They can be thought as Lagrange multipliers, the number of undefined pa­
rameters tl corresponding to the number of equations given by the constraint. 
Hence the problem of finding all the possible asymptotic steady states is well 
posed. 

It is more natural to work with a function 9 which decays on [0, +(0). 
As mentioned above this situation can be recovered after introducing another 
parameter c and considering the limit c --+ 0 for the family of problems as­
sociated with ge(A) = X(c 1 A)g(A) with supp X C (0, +(0), X == 1 for A ~ 1. 
One gets the same kind of asymptotic equation as in Theorem 8.2.2 but with 
an undetermined tl E [0,1] when Al + V(CI) = O. If one forgets the constraints 
on the Agmon distance, the variational formulation says that there is one 
unique solution for everyone of the 3N cases sorted by all the possible choices 
Al + V(ct} < 0, Al + V(CI) = 0 and Al + V(Cl) > O. 

Finally, it is not easy to understand the geometry of the constraints on 
the Agmon distances for N > 1. A simple way to handle it numerically is by 
using a penalization method. If one looks first for situations where there is no 
interaction between the wells, the penalization method reduces to 
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where l/ > 0 is a small parameter. This parameter has to be adjusted manually: 
Accurate results require a small value for l/ while a very small l/ affects the 
convergence of the Newton algorithm. 

8.3.3 One-well case 

Here we compare our results with the results obtained by Jona-Lasinio, Pre­
silla and Sjostrand in [8] [13] where they explain the hysteresis phenomenon 
without developing completely the asymptotic analysis 2. By taking the un­
known V(CI) or equivalently £ = >'1 + V(CI) where Al depends linearly on B, 
they derive the equation 

£ = AI(B) + Cg(£), by assuming CI - a -<-< b - CI, (8.18) 

where C = C(a, b, CI) is a positive constant determined by the positions a, CI 

and b. The number of possible steady states is 1, 2 or 3 depending on the 
relative position of the curves y = x - AI(B) and y = Cg(x) as shown below. 

y 
" /I. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 solution 3 solutions 1 solution 

x 

Fig. 8.2. Intersection of y = x - ),1 (B) and y = C g( x). 

Meanwhile, the equation (8.15) leads in this case to 

(8.19) 

with h = 1 when dAg(a,Cj£,V) < dAg(c,bj£,V), tl = 0 when dAg(a,Cj 
£, V) > dAg(C, bj £, V) and tl E [0,1] when dAg(a, Cj £, V) = dAg(c, bj £, V). In 

2 Such a result was also rigorously derived by G. Perelman in unpublished notes 
for a simplified nonlinearity. 
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the Agmon distance comparison, the potential V is completely determined by 
E and B and it is rather easy to analyze the one-variable equation in E, 

dAg(a, c; E, V) = dAg(C, b;£, V) with B given. (8.20) 

For b - c < c - a: Equation (8.20) admits no solution for any B ;::: 0 and 
one must take h = O. For b - c ~ c - a: Equation (8.20) admits a unique 
solution EB ;::: 0 and one must take tl = 1 for E < EB, tl = 0 for E > EB 
and tl E [0,1) for E = E B . 

The difference between the first and the second result can be viewed graph­
ically: For b-c ;::: c-a with () = ~=~ close to 1/2, the graph y = g(x) has to be 
replaced by the truncated one along x = E B . Hence a hysteresis phenomenon 
(which occurs in the presence of three possible solutions) can appear when 
() = ~=~ :::; 1/2 while it is impossible for () = ~=~ > 1/2. The transition from 
one case to the other one can be understood after checking that E B decreases 
as () (and B) increases. 

The second picture shows how the treatment of the constraint on the 
Agmon distance via a penalization process affects the numerical results. 
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Fig. 8.3. Vanishing of the hysteresis phenomenon as c = () approaches 1/2 

8.3.4 Situation with two wells 

Even when the constraints on the Agmon distances are not active, that is in 
cases where the wells are closer to a than b, the bifurcation diagram can be 
quite complicated. The next numerical results obtained for two resonances in 
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Fig. 8.4. Numerical results: Penalization versus exact constraint. 

two wells (with artificial data) show the possible existence of seven steady 
states. Four of them are presumably stable and three df them unstable: 
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Fig. 8.5. Two wells 01 = 0.3 and O2 = 0.45: The energy level in the first well. 

Finally let us mention the case where the first well is closer to a than b 
and the second well closer to b than a: 
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Fig. 8.6. Two wells (h = 0.3 and fh = 0.45: The charge in the first well. 

C1 - a < 1/2 and 
b-a 

Cb
2 - a > 1/2. 
-a 

When the energies £1 = A1 + V(ct) and £2 = A2 + V(C2) are different the 
only possible coefficients due to the Agmon distance comparison are t1 = 1 
and t2 = 0 and the problem reduces to the one well case. However when 
£1 = £2, there is a possibility of having any (t1' t2) E [0,1)2. A bifurcation 
to this case can occur quite rapidly when the applied bias B varies. Here 
the question is whether this new steady state is stable or if some nonlinear 
beating effect between the two wells occurs. This might explain experimental 
sudden transitions from steady currents to oscillating ones. It requires, in 
this framework involving quantum resonances instead of bound states, an 
adaptation of the recent article [6) of Grecchi, Martinez and Sacchetti about 
the stability of the nonlinear beating effect for ammoniac molecules coupled 
to a mean electromagnetic field. 

References 

1. N. Ben Abdallah, P. Degond, and P.A. Markowich, On a one-dimensional 
Schrodinger-Poisson scattering model, Z. Angew. Math. Phys. 48:1 (1997), 
135-155. 

2. N. Ben Abdallah, On a multidimensional Schrodinger-Poisson scattering model 
for semiconductors, J. Math. Phys. 41:7 (2000), 4241-4261. 

3. L.L. Bonilla et al., Self-oscillations of domains in doped GaAs-AlAs superlat­
tices, Phys. Rev. B 52:19 (November 1995), 13761-13764. 



8 Nonlinear Asymptotics for Quantum Out-of-Equilibrium ID Systems 111 

4. C. Gerard and A. Martinez, Semiclassical asymptotics for the spectral function 
of long-range Schrodinger operators, J. Funct. Anal. 84:1 (1989), 226-254. 

5. V. Grecchi, A. Martinez, and A. Sacchetti, Double well Stark effect: Crossing 
and anticrossing of resonances, Asymptotic Analysis 13 (1996), 373-391. 

6. V. Grecchi, A. Martinez, and A. Sacchetti, Destruction of the beating effect for 
a non-linear Schrodinger equation, Commun. Math. Phys. 227 (2002), 191-209. 

7. B. Helffer and J. Sjostrand, Resonances en limite semi-classique, Mem. Soc. 
Math. France 399 (1984). 

8. G. Jona-Lasinio, C. Presilla, and J. Sjostrand, On Schrodinger equations with 
concentrated nonlinearities, Ann. Phys. 240:1, 1995. 

9. W. Kirsch and B. Simon, Universal lower bound on eigenvalue splittings for one 
dimensional Schrodinger operators, Commun. Math. Phys. 97 (1985), 453-460. 

10. F. Nier, Schrodinger-Poisson systems in dimension d ~ 3: The whole-space 
case, Pmc. Roy. Soc. Edinburgh 123A (1993), 1179--1201. 

11. F. Nier, A variational formulation of Schrodinger-Poisson systems in dimension 
~ 3, CPDE 18:7-8 (1993), 1125-1147. 

12. F. Nier, The dynamics of some quantum open systems with short-range non­
linearities, Nonlinearity 11 (1998), 1127-1172. 

13. C. Presilla and J. Sjostrand, Transport properties in resonant tunneling het­
erostructures, J. Math. Phys. 37:10 (1996), 4816-4844. 



9 

Decoherence-induced Classical Properties in 
Infinite Quantum Systems 

R. Olkiewicz 

Institute of Theoretical Physics 
University of Wroclaw 
PI. Maxa Borna 9 
P-50-204 Wroclaw, Poland 

9.1 Introduction 

In recent years decoherence has been widely discussed and accepted as a mech­
anism responsible for the emergence of classicality in quantum measurements 
and the absence in the real world of Schrodinger-cat-like states [2,6,7,11,12). 
Let me start with recalling the Schrodinger cat paradox. It was a hypothetical 
experiment proposed by Schrodinger in 1935 which can be briefly described 
as follows. 

A cat is penned up in a steel chamber, along with the following device: 
in a Geiger counter there is a tiny amount of radioactive substance, 
so small, that perhaps in the course of one hour one of the atoms 
decays, but also, with equal probability, perhaps none. If it happens, 
the counter tube discharges and through a relay releases a hammer 
which shatters a small flask of hydrocyanic acid. If one has left the 
entire system to itself for an hour, one would say that the cat still 
lives if meanwhile no atom has decayed. The first atomic decay would 
have poisoned it. 

Therefore, after one hour, the system should be described by a quantum state 
which is a linear superposition over live and dead states of the cat. It is not 
a surprise that such an experiment caused some confusion among physicists. 
The standard interpretation of quantum mechanics, the so-called Copenhagen 
interpretation, which says that the recognition that interaction between the 
measuring tools and the physical system under investigation constitute an 
integral part of quantum phenomena, was not convincing for some physicists. 
They simply could not accept that quantum mechanics requires us to regard 
any question concerning the status of the cat as meaningless until we establish 
an observational relationship with it. For example in a letter to Schrodinger 
in 1950 Einstein wrote: 

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
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You are the only contemporary physicist, besides Laue, who sees that 
one cannot get around the assumption of reality - if only one is honest. 
Most of them simply do not see what sort of risky game they are play­
ing with reality - reality as something independent of what is exper­
imentally established. Their interpretation is, however, refuted most 
elegantly by your system of radioactive atom + amplifier + charge of 
gun powder + cat in a box, in which the ~-function of the system 
contains the cat both alive and blown to bits. Nobody really doubts 
that the presence or absence of the cat is something independent of 
the act of observation. 

Our intuition tells us that after one hour the state of the cat should be a sta­
tistical mixture of live and dead states of it, the so-called classical states, with 
equal probabilities. The main idea of decoherence was to get rid of such para­
doxes. It claims that classicality is an emergent property induced in quantum 
open systems by their environment. Quantum interference effects for macro­
scopic systems are practically unobservable because superpositions of their 
quantum states are effectively destroyed by the surrounding environment. 
However, when people speak of classical properties induced in a quantum 
system by its environment they usually mean superselection rules or pointer 
states. In this talk I will try to show that new perspectives arise when we pass 
from quantum systems with a finite number of degrees of freedom to quantum 
systems in the thermodynamic limit. 

9.2 Algebraic framework 

Everybody agrees that concepts of classical and quantum physics are oppo­
site in many aspects. Therefore, in order to demonstrate how quanta become 
classical we express them in one algebraic framework. In this approach ob­
servables of any physical system are represented by self-adjoint elements of 
some operator algebra M acting in a Hilbert space associated with the sys­
tem. Genuine quantum systems are represented by factors, i.e., algebras with 
a trivial center Z(M) = C· 1, 1 stands for the identity operator, whereas 
classical systems are represented by commutative algebras. Since a classical 
observable by definition commutes with all other observables, it belongs to the 
center of algebra M. Hence the appearance of classical properties of a quan­
tum system results in the emergence of an algebra with a nontrivial center, 
while transition from a noncommutative to commutative algebra corresponds 
to the passage from quantum to classical description of the system. 

In order to study decoherence, analysis of the evolution of the reduced 
density matrices obtained by tracing out the environmental variables is the 
most convenient strategy. More precisely, the joint system composed of a 
quantum system and its environment evolves unitarily with the Hamiltonian 
H consisting of three parts: 
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H = Hs 01E + Is 0 HE + HI· (9.1) 

The time evolution of the reduced density matrix is then given by 

(9.2) 

where Tr E denotes the partial trace with respect to the environmental vari­
ables, and WE is a reference state of the environment. Alternatively, one may 
define the time evolution in the Heisenberg picture by 

(9.3) 

where A E M is an observable of the system and PE denotes the condi­
tional expectation onto the algebra M with respect to the reference state WE. 

Superoperators Tt being defined as the composition of a * -automorphism and 
conditional expectation satisfy in general a complicated integra-differential 
equation. However, for a large class of models, this evolution can be approx­
imated by a dynamical semigroup Tt = etL , whose generator L is given by a 
Markovian master equation, see [1,8]. 

We are now in a position to discuss rigorously the dynamical emergence 
of classical observables. As was shown in [9] for each (up to some technical 
assumptions) Markov semigroup Tt on M one may associate a decomposition 

(9.4) 

such that both MI and M2 are Trinvariant and the following properties hold: 

(i) MI is a subalgebra of M and the evolution Tt when restricted to MI is 
reversible, given by a one-parameter group of *-automorphisms of MI. 

(ii) M2 is a linear space (closed in the norm topology) such that for any 
observable B = B* E M2 and any statistical state p of the system there is 

lim (TtB) p = 0, 
t-+cX) 

(9.5) 

where (A) p stands for the expectation value of an observable A in state p. 

The above result means that any observable A of the system may be 
written as a sum A = Al +A2 , Ai E M i, i = 1, 2, and all expectation values of 
the second term A2 are beyond experimental resolution after the decoherence 
time. Hence all possible outcomes of the process of decoherence can be directly 
expressed by the description of subalgebra MI and its reversible evolution. 
Therefore they can be classified in the following way . 

• MI is noncommutative and Z(Md =I C·!. Such a case corresponds 
to environment induced superselection rules [4] . 

• MI is commutative and Ttl M1 is trivial. In such a case we speak of 
environment induced pointer states [4,5]. 
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• MI is commutative and TtlM1 is given by a nontrivial flow on the con­
figuration space of MI. In such a case we speak of environment induced 
continuous dynamics [4,9,10] . 

• MI is still a factor but with significantly different properties. In such a 
case we say that environment changes the properties of a given system, for 
example it may reduce the number of degrees of freedom [3]. 

It is worth noting that the above classification is complete. Clearly, in dis­
cussion on emergence of classical properties the case when MI is commutative 
is the most interesting one. 

9.3 Examples 

Continuous pointer states [5]. The apparatus is a semi-infinite linear array 
of spin-~ particles, fixed at positions n = 1, 2, ... at infinite temperature. 
The algebra M of its (bounded) observables is given by the O"-weak closure 
of 7f(®j'" M 2X2 ), where 7f is a (faithful) GNS representation with respect to a 
tradal state tr on the Glimm algebra. Since there is no free evolution of the 
apparatus, HA = o. 

The reservoir is chosen to consist of noninteracting phonons of an in­
finitely extended one-dimensional harmonic crystal at the inverse temperature 
(3 = k~· Since the phonons are noninteracting, their dynamics is completely 
determined by the energy operator 

HE = Ho®I - I®Ho, 

Ho = dr(w) = J w(k)ap(k)aF(k)dk, 

where w(k) = Ikl, ap (aF) are creation (annihilation) operators in the Fock 
representation, and n = 1, c = 1. The reference state of the reservoir is taken 
to be a gauge-invariant quasi-free thermal state given by 

WE(a*(f)a(g)) = J p(k)g(k)f(k)dk, 

where 
1 

p(k) = ef3w(k) _ 1 

is the thermal equilibrium distribution. Clearly, WE is invariant with respect to 
the free dynamics of the environment. The Hamiltonian H of the joint system 
consists of the reservoir term HE and an interacting part HI. We assume that 
the coupling is linear (as in the spin-boson model), i.e., HI = )..Q ® cp(g), 
where 
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O"~ is the third Pauli matrix in the n-th site, and>' > 0 is a coupling con­
stant. Using the so-called singular coupling limit one gets the following master 
equation for dynamics of the apparatus, 

L(X) = ib[X, Q2] + >.a(QXQ - HQ2 , X}). 

It can be easily checked that for the semigroup Tt = etL the decomposition 
(9.4) holds. 

Theorem 1. Ml is a continuous commutative subalgebra of functions on the 
configuration space of the one-dimensional Ising model. Moreover, TtlMl is 
trivial. 

Continuous classical dynamics [10]. Again, the system is a semi-infinite linear 
array of spin-~ particles, fixed at positions n = 1, 2, ... at infinite temper­
ature. The free evolution of the system is given by a O"-weakly continuous 
one-parameter group of automorphisms at : M -+ M constructed in the fol­
lowing way. Suppose U(2kn ), k = 0, 1, ... , 2n -1, is a representation of a cyclic 
group {2~}' with addition modulo 1, in the space C 2n , such that 

Since it is a restriction of the standard unitary representation of the permu­
tation group S2n, the U( 2~) are unitary matrices in M 2n x2n. Because there is 
an embedding of M2n x2n into M, so they induce a discrete group of unitary 
automorphisms of M, 

This homomorphism extends to the whole set of real numbers, yielding a 
group of unitary automorphisms 

at(X) = eitH Xe- itH . 

It is clear from the construction that am = id, for any integer m. Suppose 
now that dynamics of the system is given by the master equation 

!X = L(X) = i[H, X] + LD(X), 

where the dissipative part LD is constructed in the following way. On a sub­
algebra M2n x2n we put LD(A) = Ln 0 A, where 0 stands for the Hadamard 
(entrywise) product and Ln is a 2n x 2n matrix given by 
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It is clear that operator L D can be extended to a bounded and dissipative 
operator on the whole algebra M and so the operator L generates a quantum 
dynamical semigroup Tt on M. Again one can check that the decomposition 
(9.4) holds for the semigroup Tt . 

Theorem 2. (Ml' Tt ) is isomorphic with the classical dynamical system 
(81 , Ut ), where Ut is a uniform rotation of the circle 8 1 . 
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Summary. In a previous paper we proposed a model to describe a gas of pyra­
midal molecules interacting via dipole-dipole interactions. The interaction modifies 
the tunneling properties between the classical equilibrium configurations of the sin­
gle molecule and, for sufficiently high pressure, the molecules become localized in 
these classical configurations. The model explains quantitatively the shift to zero­
frequency of the inversion line observed upon increase of the pressure in a gas of 
ammonia or deuterated ammonia. Here we analyze further the model especially with 
respect to stability questions. 

10.1 Introduction 

The behavior of gases of pyramidal molecules, i.e., molecules of the kind XY3 
like ammonia N H 3 , has been the object of investigations since the early de­
velopments of quantum mechanics [11]. In recent times the problem has been 
discussed again in several papers [4, 12, 17, 7, 13, 14] from a stationary point 
of view while in [8, 9, 10] a dynamical approach has been attempted. For a 
short historical sketch of the issues involved we refer to [4, 17, 13]. 

In [13] we have constructed a simplified mean-field model of a gas of pyra­
midal molecules which allows a direct comparison with experimental data. Our 
model predicts, for sufficiently high inter-molecular interactions, the presence 
of two degenerate ground states corresponding to the different localizations 
of the molecules. This transition to localized states gives a reasonable expla-
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nation of the experimental results [1, 2, 3]. In particular, it describes quanti­
tatively, without free parameters, the shift to zero-frequency of the inversion 
line of N H3 and N D3 on increasing the pressure. 

In the present paper we first reconsider our model from the standpoint of 
stationary many-body theory, clarifying the meaning of the mean-field energy 
levels. We then analyze the mean field states with respect to the energetic sta­
bility. The conclusions agree with those found in [10] via a dynamical analysis 
of the same type of model to which dissipation is added. 

10.2 The model 

We model the gas as a set of two-level quantum systems, that mImIC the 
inversion degree of freedom of an isolated molecule, mutually interacting via 
the dipole-dipole electric force. 

The Hamiltonian for the single isolated molecule is assumed of the form 
- LJ.2E O"x, where O"X is the Pauli matrix with symmetric and antisymmetric 
delocalized tunneling eigenstates 'P+ and 'P-, 

x = (01) 
0" 10 (10.1) 

Since the rotational degrees of freedom of the single pyramidal molecule are 
faster than the inversion ones, on the time scales of the inversion dynamics set 
by L1E the molecules feel an effective attraction arising from the angle averag­
ing of the dipole-dipole interaction at the temperature of the experiment [15]. 
The localizing effect of the dipole-dipole interaction between two molecules i 
and j can be represented by an interaction term of the form -gijO"iO"J, with 
gij > 0, where O"Z is the Pauli matrix with left and right localized eigenstates 
'PL and 'PR, 

Z = (1 0) 
0" ° -1 

The Hamiltonian for N interacting molecules then reads 

dE N 
H = -2 L 11 Q9 12 Q9 ..• Q9 O"i Q9 ... Q9 IN 

i=1 

N N 

- L L gij 11 Q9 .•• Q9 O"i Q9 •.• Q9 O"J Q9 ..• Q91N· 

i=l j=i+l 

(10.2) 

(10.3) 

For a gas of moderate density, we approximate the behavior of the N » 1 
molecules with the mean-field Hamiltonian 

(10.4) 
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where 'ljJ is the single-molecule state (('ljJ, 'ljJ) = 1) to be determined self­
consistently by solving the nonlinear eigenvalue problem associated to (10.4). 
The parameter G represents the dipole interaction energy of a single molecule 
with the rest of the gas. This must be identified with a sum over all possible 
molecular distances and all possible dipole orientations calculated with the 
Boltzmann factor at temperature T. Assuming that the equation of state for 
an ideal gas applies, we find [13] 

G= 47f (To)2 Pd3 
9 T ' 

(10.5) 

where To = /-L2/(47fcocrd3kB) , co and Cr being the vacuum and relative dielec­
tric constants, d the molecular collision diameter and /-L the molecular electric 
dipole moment. Note that, at fixed temperature, the mean-field interaction 
constant G increases linearly with the gas pressure P. 

10.3 Molecular states 

The nonlinear eigenvalue problem associated to (10.4), namely 

(10.6) 

has different solutions depending on the value of the ratio G / L1E. If G / L1E < 
~, we have only two solutions corresponding to the delocalized eigenstates of 
an isolated molecule 

/-Ll = -L1E/2, 

/-L2 = +L1E /2. 

If G /..1E > ~, there appear also two new solutions, 

J1 L1E J1..1E 
'ljJM3 = "2 + 4G 'P+ + "2 - 4G 'P- /-L3 = -G, 

J1 L1E J1..1E 
'ljJM4 = "2 + 4G 'P+ - "2 - 4G 'P- /-L4 = -G, 

(10.7) 

(10.8) 

(10.9) 

(10.10) 

which in the limit G ~ dE approach the localized states 'PL and 'PR, re­
spectively. Solutions (10.9) and (10.10) are termed chiral in the sense that 
'ljJM4 = iJx 'ljJM3· 

The states 'ljJM determined above, are the stationary solutions 'ljJ(t) = 
exp(i/-Lt/fi)'ljJM of the time-dependent nonlinear Schrodinger equation 

(10.11) 



122 C. Presilla, G. Jona-Lasinio, and C. Toninelli 

The generic state 'IjJ(t) solution of this equation has an associated conserved 
energy given by 

(10.12) 

The value of this functional calculated at the stationary solutions (10.7-10.10) 
provides the corresponding single-molecule energies ei = £ ['IjJ JLJ, 

el = -i1E/2, 

e2 = +i1E/2, 

e3 = e4 = - i12E - 2~ (i12E _ G) 2 

(10.13) 

These energies are plotted in Fig. 10.1 as a function of the ratio G/i1E. The 
state effectively assumed by the molecules in the gas will be that with the 
minimal energy, namely the symmetric delocalized state 'IjJ{tl for G / i1E < ~ 
or one of the two degenerate chiral states for G / i1E > ~. 

2 
0.51------~--------_____"I 

o 

-I 

o 0.5 1.5 
GiLlE 

Fig. 10.1. Single-molecule energies ei (solid lines) of the four stationary states 'l/JJ.'il 
i = 1,2,3,4, as a function of the ratio G I.:1.E. The dashed lines are the eigenvalues, 
divided by N, of the Hamiltonian (10.3) with 9ij = GIN and N = 12. 

The above results imply a bifurcation of the mean-field ground state at a 
critical interaction strength G = i1E /2. According to Eq. (10.5), this tran­
sition can be obtained for a given molecular species by increasing the gas 
pressure above the critical value 

9 (T)2 
Pcr = 87T PO To ' (10.14) 

where Po = i1E / d3 . In Table 10.1 we report the values of To and Po calculated 
for different pyramidal molecules. 
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NH3 
ND3 
PH3 
AsH3 

0.81 
0.053 

3.34 x 10-14 

2.65 X 10-18 

jL (Debye) d (A) To (Kelvin) 
1.47 4.32 193.4 
1.47 4.32 193.4 
0.57 29.1 
0.22 4.3 

Po (atm) 
1.97 
0.13 

8.llx 10-14 

6.44x 10-18 

Table 10.1. Measured energy splitting LY:.E, collision diameter d, and electric dipole 
moment jL, for different pyramidal molecules as taken from [16, 5]. In the fourth 
and fifth columns we report the temperature To and the pressure Po evaluated as 
described in the text. In the case of PH3 and AsH3 the collision diameter, not 
available, is assumed equal to that measured for N H3 and N D3 . We used Cr = 1. 

10.4 Inversion line 

When a gas of pyramidal molecules which are in the delocalized ground state 
is exposed to an electromagnetic radiation of angular frequency Wo rv t1E In, 
some molecules can be excited from the state 'P+ to the state 'P-. For a non­
interacting gas this would imply the presence in the absorption or emission 
spectrum of an inversion line of frequency iJ = t1E / h. Due to the attractive 
dipole-dipole interaction, the value of hiJ evaluated as the energy gap between 
the many-body first excited level and the ground state is decreased with re­
spect to the noninteracting case by an amount of the order of G. As shown 
in Fig. (10.2), the value of the inversion line frequency is actually a function 
of the number N of molecules and in the limit N » 1 approaches the mean 
field value [13] 

(10.15) 

According to (10.15), the inversion line is obtained only in the range 0 :s: G :s: 
t1E /2 and its frequency vanishes at G = t1E /2. 

In [13J we have compared the mean field theoretical prediction for the 
inversion line with the spectroscopic data available for ammonia [1, 2] and 
deuterated ammonia [3]. In these experiments the absorption coefficient of 
a cell containing NH3 or ND3 gas at room temperature was measured at 
different pressures, i.e., according to (10.5) at different values of the interaction 
strength G. The measured frequency iJ decreases by increasing P and vanishes 
for pressures greater than a critical value. This behavior is very well accounted 
for by the the mean field prediction (10.15). In particular, the critical pressure 
evaluated according to Eq. (10.14) with no free parameters, at T = 300 K 
is Per = 1.695 atm for NH3 and Per = 0.111 atm for ND3 in very good 
agreement with the experimental data. 
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Fig. 10.2. Inversion line frequency as a function of the ratio GIL1E in the mean 
field model (solid line) and obtained from the Hamiltonian (10.3) with gij = GIN 
and N = 4, 8, and 12. 

10.5 Energetic stability of the molecular states 

In order to discuss the energetic stability of the mean field molecular states 
found in Section 10.3 we introduce the free energy F['l,b] = E['l,b]- /1('l,b, 'l,b). The 
stationary solutions of Eq. (10.11) then can be viewed as the critical points 
of the Hamiltonian dynamical system 

. {} ('l,b) (0 1) (~) zfi at 'l,b* = -10 J{l~J· (10.16) 

Under the effect of a perturbation which dissipates energy, a stationary state 
'l,b" will remain stable only if F['l,b,,] is a minimum. Therefore we are inter­
ested in exploring the nature of the extremal values F['l,b,,] of the free energy 
functional. In general, this can be done in terms of the eigenvalues and the 
eigenvectors of the linearization matrix associated to the dynamical system 
(10.16) as explained in [6] for a Gross-Pitaevskii equation. Here, due to the 
simplicity of the model, we can provide a more direct analysis. 

For a variation of the stationary solution 'l,b" ---+ 'l,b" + Jcp, up to the second 
order in Jcp, we have 

(10.17) 

where 

J2 F['l,b", Jcp] = - Ll2E (Jcp, aXJcp) - /1 (Jcp, Jcp) 

-G C'l,b",az'l,b,,)(JCP,azJCP) + ('l,b",azJcp)(J¢,az'l,b,,) 

+~('l,b", aZJcp) 2 + ~(JCP, aZ'l,b,,) 2 ) . (10.18) 
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The variation Jep can be taken in the most general form 

Jep = aeiIJa'P+ + beiIJb'P_, (10.19) 

where 'P± are the delocalized tunneling eigenstates (10.1) and a, b, ea , and 
(h arbitrary real parameters with the constraint that ('l/JJL + Jep, 'l/JJL + Jep) = 
1 + O(Jep2). By writing 

(10.20) 

with the real coefficients a" and bIJ deduced by Eqs. (10.7-10.10), the above 
constraint implies 

(10.21) 

The second variation of the free energy evaluated at the four stationary solu­
tions 'l/JIJi' i = 1,2,3,4, with the condition (10.21) gives 

(10.22) 

(10.23) 

(10.24) 

where k = 3,4 and the signs =F refer respectively to k = 3 and k = 4. We 
see that, for the state 'l/J"l' the variation J2:F is always positive for G < 6.2E 

and can be negative for G > 6.2E. The variation J2 F is always negative in the 

case of 'l/J"2' For the states 'l/J"3 and 'l/J"4' which exist only for G > 6.2E, the 
variation J2:F is always positive. We conclude that the free energy has a single 
minimum in correspondence of the delocalized state 'l/J"l when G < 6.2E, and 
two degenerate minima in correspondence of the chiral states 'l/J"3 and 'l/JJL4 
when G > 6.2E. The energetic stability analysis is summarized in Table 10.2. 
Note that our results coincide with those reported in [10] where a standard 
linear stability analysis is performed for the same model considered here to 
which an explicit norm-conserving dissipation is added. 

10.6 Conclusions 

The specific prediction of our model for the critical pressure Per in terms of 
the electric dipole JL of the molecule, its size d, the splitting L1E and the 
temperature T of the gas, successfully verified in the case of ammonia, could 
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'l/JJ.Ll 'l/JJ1.2 'l/JJ1.3 'l/JJ1.4 

F['l/JJ1.J -i1E +i1E ~[1_(~~)2] ~ [1 _ (~~)2] 
G < Ll2E 82 F> 0 82F < 0 

minimum maximum 

G > Ll2E 82 F ~ 0 82 F < 0 82 F > 0 82 F > 0 
saddle point maximum minimum minimum 

Table 10.2. Value of the free energy F['l/JJ1.J and sign of its second variation at the 
four extrema 'l/JJ1.i' i = 1,2,3,4. 

be experimentally tested also for other pyramidal gases for which Eqs. (10.14) 
and (10.15) predict the scaling law 

i/xY3(P) _ iJX'y;C1'P) 
iJXY3 (0) - iJx'y; (0) , 

where 'Y = Per X'Y; / Per XY3· 

(10.25) 

Our model applies not only to molecules XY3 but also to their substituted 
derivatives XYWZ. An important difference between the two cases is that for 
XY3 the localized states can be obtained one from the other either by rotation 
or by space inversion, while for XYW Z they can be connected only by space 
inversion. This implies that XYW Z molecules at a pressure greater than the 
critical value are chiral and therefore optically active. The measurement of the 
optical activity of pyramidal gases for P > Per would allow a direct verification 
of this prediction. 
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On the Quantum Boltzmann Equation 
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Summary. In this contribution I describe the problem of deriving a Boltzmann 
equation for a system of N interacting quantum particles under suitable scaling 
limits. From a rigorous viewpoint, the problem is still open and only partial results 
are available, even for short times. The present report is based on a systematic 
collaboration with D. Benedetto, F. Castella and R. Esposito: possible mistakes and 
inconsistencies are however the responsibility of the author. 

11.1 The problem 

A large quantum system of identical interacting particles can be often con­
veniently described in terms of a Boltzmann equation. This description is 
physically meaningful only in suitable regimes, namely when the number of 
particles is large and the interaction is moderate (weak-coupling limit), or 
when the particle gas is rarefied (low-density limit). 

In this contribution I try to establish the problem of a logically well 
founded and mathematically rigorous transition from the usual description 
of quantum mechanics in terms of the Schr6dinger equation and the more 
manageable kinetic picture as given by the nonlinear Boltzmann equation 
associated to the system at hand. This is done by means of an appropriate 
scaling limit referring to the physical situation we are dealing with. 

It is probably useful to note that such a transition is delicate and techni­
cally difficult because it treats time-reversible systems as irreversible ones, as 
largely argued for classical systems where a rigorous derivation of the classi­
cal Boltzmann equation in the low-density regime was obtained by Lanford in 
1975 for short times (see [L]) and in Ref. [IP) globally in time, but for special 
situations (see also [CIP) for additional comments). 

We finally remark that, in contrast with the quantum case, classical sys­
tems in the weak-coupling limit are described by a diffusive (in velocity) ki­
netic equation, the so-called Landau-Fokker-Planck equation (see [SI]). Thus 
the applicability of the Boltzmann equation is larger for quantum systems 

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
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(where kinetic descriptions, besides those for dilute gases, including dense 
weakly interacting systems, as for example the electron gas in semiconduc­
tors) than for classical ones. 

One pragmatic way to introduce the quantum Boltzmann equation (see 
e.g., [CC] and [UU]) is to solve the scattering problem in quantum mechanics 
and then to replace, in the classical Boltzmann equation, the classical cross 
section with the quantum one, taking into account the statistics when it is 
the case. 

A more logically founded approach is to derive an evolution equation for 
the Wigner transform of a quantum state associated to the particle system. 
Working on this equation, one can hope to recover, at the quantum level, 
the same physical arguments as those used at the classical level to obtain 
propagation of chaos and a suitable kinetic description for the one-particle 
distribution function. This is the strategy we illustrate here. 

We consider an N-particle quantum system in]R3 and assume the mass of 
the particles, as well as ti, to be 1. The interaction is described by a two-body 
potential ¢ so that the potential energy is: 

U(XI ... XN) = I:: ¢(Xi - Xj). 
i<j 

The Schrodinger equation reads: 

(11.1) 

(11.2) 

where ..:1N = 2:!1 L\i, L\i is the Laplacian with respect to the Xi variables, 
and X N is a shorthand notation for Xl •.• X N . 

We rescale the equation according to the hyperbolic space-time scaling 

X ---+ EX , t ---+ ct (11.3) 

and simultaneously we rescale also the potential ¢ ---+ -jE¢. Hence the resulting 
equation is 

where 

and 

2 

iEOtljFE:(XN, t) = E2 L\NljFE:(XN' t) + UE:(XN )ljFE:(XN' t), 

UE:(XI ... XN) = I::¢E:(Xi - Xj) 
i<j 

X 
¢E: = -jE¢( -). 

E 

(11.4) 

(11.5) 

(11.6) 

Note that ljFE:(XN' t) is fully determined by Eq.(1.4) and the initial datum 
which will be specified later on. 
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We want to analyze the limit c ~ 0 in the above equations, while keeping 

(11. 7) 

This kind of limit is usually called a weak-coupling limit. Another possible 
scaling to be considered is the low-density limit. In this case ¢ is unscaled but 
N = O(c-2 ). In the classical context this is nothing but the Boltzmann-Grad 
limit (see for example [eIP]). We refer the interested reader to [82], which 
discusses and makes clear the two scaling limits and the expected kinetic 
equations. 

We now introduce the Wigner function: 

A standard computation yields: 

(11.9) 

where VN . "V N = I:~l Vi . V' Xi and (at + VN . "V N) is the usual free-stream 
operator. Also, we have introduced 

(TRrWN) (XN, VN ) = L (Tk,l'WN) (XN , VN), (11.10) 
O<k<R5,N 

with 

(11.11) 

In other words, 

(Tk,RWN ) (XN, VN ) = -i L 0' J (2~3¢(h)ei~(Xk-Xt) 
a=±l (11.12) 

N O'h O'h 
xW (Xl,Vl, ... ,Xk,Vk - 2, ... ,XR,VR+ 2 , ... ,XN,VN). 

The operator Tk R describes the "collision" of particle k with particle e, and 
the total operat~r TRr takes all possible "collisions" into account. Here and 
below, j = (F§{)(() denotes the Fourier transform of f. 

We now introduce the Wigner transform of the partial traces according to 
the formula, for j = 1, ... , N - 1: 
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ff (Xj, Yj) = J dXj+1'" J dXN J dVj+1'" J dVN 

xWN (Xj, Xj+1'" xNi Yj, Vj+1'" VN). 

Obviously, we set fff = WN. 

(11.13) 

From now on we shall suppose that, due to the fact that the particles are 
identical, the objects which we have introduced (lJie , W N , ff) are all symmet­
ric in the exchange of particles. 

Proceeding as in the derivation of the BBKGY hierarchy for classical sys­
tems (see e.g., [CIP)), we readily arrive at the following hierarchy of equations 
(for 1 ::; j ::; N): 

( ~ ~ t"7 )fN 1 ef N -jce fN 
Vt + L......Vk· Vk j = -JETj j + -JE j+1 j+1' 

k=1 

(11.14) 

The operator CJ+1 is defined as 

j 

Cj+1 = L C k,j+1 , (11.15) 
k=1 

and 

(11.16) 

The operator C k,j+1 describes the "collision" of particle k, belonging to 
the j-particle subsystem, with a particle outside the subsystem, conventionally 
denoted by the number j + 1 (this numbering uses the fact that all particles 
are identical). The total operator CJ+1 takes into account all such collisions. 
As usual (see e.g., [CIP)) , Eq. (11.14) shows that the dynamics of the j­
particle subsystem is governed by three effects: the free-stream operator, the 
collisions "inside" the subsystem (the T term), and the collisions with particles 
"outside" the subsystem (the C term). 

We finally fix the initial value {fJ}.f=1 of the solution {ff (t)}§'{ assuming 
that {fJ}.f=1 is factorized, that is, for all j = 1, N, 

f a _ ~0j 
j - Jo , (11.17) 

where fa is a one-particle Wigner function which we assume also to be a prob­
ability distribution. We recall that a quantum state, whose Wigner transform 
is a general positive fa, is not in general a wave function but rather a density 
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matrix. As a consequence the evolution equation we have to use is not the 
Schr6dinger equation (1.4) but rather the Heisenberg equation for the density 
matrix. In both cases the corresponding Wigner equation is Eq. (11.9) or, 
equivalently, Eq. (11.14). 

We expect that in the limit c -> 0 the one-particle distribution function 
Jf converges to the solution of a suitable Boltzmann equation J which we 
are going to introduce. 

Let J(t), t E [0, to) be the solution of the "classical" Boltzmann equation 

where 

Q(f, f)(x, v) = J dVI J dwB(w, Iv - vII) 

x (f(x, v')J(x, vD - J(x, v)J(x, VI)) 

(11.18) 

(11.19) 

and v' and vi are the outgoing velocities after a collision with impact param­
eter W E 8 2 and incoming velocities v and VI' Explicitly, 

v' = v - (v - vd . W w, 

vi = VI - (v - VI) . W W. 

Finally B is the cross-section and depends on the interaction potential. In 
the weak-coupling limit the collisions take place with a small energy and in 
a scale distance of order c. Therefore the cross section must be computed via 
the quantum rules and at low energy. In other words it is expected to be the 
Born approximation, namely: 

1 A 2 
B(w,w) = 87r2Iw,wll4>(w(w,w))I. (11.20) 

What we have illustrated so far, called Problem 1 in the sequel, is the 
weak-coupling limit for particles without statistics or obeying the Maxwell­
Boltzmann (M-B) statistics. 

A more interesting problem (Problem 2 in the sequel) is however to con­
sider particles obeying the Fermi-Dirac (F-D) or Bose-Einstein (B-E) statis­
tics. In this case, although the dynamics is that introduced above, we cannot 
assume the independence property (1.17), because the statistics yields cor­
relations even at time zero. The most uncorrelated state one can introduce 
not violating the F-D or B-E statistics, are called quasi-free. The program 
of showing the Boltzmann equation for such system should pass through the 
characterization of the quasi-free states in terms of the Wigner function and 
hence replacing condition (1.17) by a more appropriate independence prop­
erty taking into account the statistics. The one-particle distribution function 
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is then expected to converge to the solution of the Boltzmann equation (1.18) 
with: 

Q(f, J)(x, v) = J J dvIdwBo(w, Iv - VII) x (11.21) 

[f(x, v')f(x, vD(1- Bf(x, v)f(x, VI)) - f(x, v)f(x, VI)(1- Bf(x, v')f(x, vD)] 

where () = +1 and B = -1 according to the B-E and F-D statistics respec­
tively and Bo is the symmetrized or antisymmetrized cross-section. 

Finally Problems 3 is concerned with the low-density limit. In this case, 
due to the rarefaction limit, we expect that all the statistics asymptotically co­
incides. The expected Boltzmann equation is still Eq.(1.18), with the collision 
term given by Eq.(1.19). Indeed the particles are too rare to make effective 
the statistical correlations . However the collision takes place at large energies 
so that the cross-section should be the full one and not that at first order in 
the Born expansion. 

In the next section I will briefly discuss the very few results concerning 
the above three problems. 

11.2 Detecting the leading terms 

As regards Problem 1, one can try to handle the hierarchy (1.14) as for the 
Boltzmann-Grad limit for classical systems, namely to study the asymptotic 
behavior of the solution expressed in terms of the series expansion for 1 ::; j ::; 
N, obtained by iterating the Duhamel formula, 

(11.22) 

Here Sint(t)fJ is the j-particle interacting flow, namely the solution to the 
initial value problem: 

{
(at + Vj . '\lj)S:nt(t)fj : )eTJSint(t)fj, 

Sint (O)fJ - fj· 

If we expand Sint(t) as a perturbation of the free flow S(t) defined as 

we find 

(11.23) 

(11.24) 
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8(T1 - T2)TJ ... 8(Tm-1 - Tm)TJS(Tm)fj. (11.25) 

Inserting (2.4) into (2.1), the resulting series contains a huge number of terms. 
However, we expect that many of these contributions are negligible in the 
limit. For instance if we analyze up to the second order terms (in the potential) 
the full expansion, we find the following four terms: 

j 

=L 
r=ll:S;s<£:S;j+1 

where 

T':,l,s 
4 , 

(11.26) 

(11.27) 

(11.28) 

(11.29) 

(11.30) 

It is possible to show (see [BeEP]) that Ii, i = 1,2,3 are negligible in the 
limit c ----+ 0 for oscillation or cancellations. Also, all the contributions to I4 
except those for r = £ and s = j + 1, corresponding to a collisionjrecollision 
event, are equally vanishing. As matter of fact, the only 0(1) term is Ii,£,j+l 
which corresponds to a creation-recollision event. Let us compute this term 
for £ = j = 1. It is: 

I 1 ,1,2 _ 
4 -

N - j ,t rtl J J J dh J dk 
--c;- a ~±l (m Jo dh Jo dTl dX2 dV2 (2n)3 (21f)3 

X ¢(h )¢(k )ei~ . (Xl -X2-Vl (t-h») ei~' (Xl -X2-(Vl -V2)(t-tl)-(Vl -V2- a l h )(tl -rll) 

o ( ah a' k ah a' k 
Xf2 Xl - Vlt + 2tl + TTl, X2 - v2t - 2tl - TTl; (11.32) 

ah a' k ah a' k) 
vl- 2 -T,V2+ 2 +T' 

Making the following change of variables: 
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we arrive at 

I 1 ,1,2 _ 
4 -

tl - 71 = ESI , (i.e. 71 = tl - Esd , 

f,=(h+k)/E. 

In the limit E ---. 0 we recover the asymptotics, 

(11.33) 

(11.34) 

(11.35) 

which can be justified from a rigorous viewpoint (see [BCEP]). Moreover 

Re lo= dS1 e-iSlk,(vl-v2+ak) = -7r8(k· (VI - V2 + ak)) . (11.36) 

Using formula (2.15) we realize that the contribution a = -a' gives rise to 
the gain term: 

lot dtl J dV2 J dwB(w, IVI - v21) 
(11.37) 

jg(Xl - Vl(t - td - v~tl' X2 - V2(t - tl) - v~tl; v~, v~). 

Notice that k is the momentum transferred in the collision and that the 8 
in (2.15) expresses nothing else than the conservation of the energy in the 
collision. The momentum conservation is automatically satisfied. 

The term a = a' yields the loss part: 

(11.38) 

We finally remark that the imaginary part of the time integral in the left hand 
side of (2.15) does not give any contribution because of cancellations. 

All these steps have been rigorously proved in [BCEP] and this shows, in 
a sense, that our quantum system agrees with the Boltzmann evolution up to 
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the second order. This is far from conclusive since there are examples (see e.g. 
the pathologies of the Broadwell model in [CIP]) in which the agreement fails 
at the fourth order. However it is possible to show that the subseries formed by 
all the contributions' creation-recollision terms is indeed convergent, for short 
times, and approaching, in the limit c -+ 0, the corresponding series obtained 
by solving the Boltzmann equation. We note also that a rigorous proof of 
the term-by-term convergence is still missing. Even more difficult is to find 
a bound of the full series, thus a mathematical justification of the quantum 
Boltzmann equation is a still open, challenging and difficult problem. 

The situation is more complicated when considering the case of bosons 
and Fermions (Problem 2). The statistics involves the structure of the states 
and a complete factorization is not compatible with B-E or F-D statistics. 
Indeed systems of independent particles are called quasi-free and have reduced 
density matrices satisfying the property 

j 

Pj(Xl ... Xj;Yl .. ·Yj) = L IIp(xi;Y7I'(i)) (11.39) 
71'EPj i=l 

where p(x, y) is the kernel of a one-particle density matrix and Pj is the group 
of the permutations of j elements. 

Writing down the explicit expression of the Wigner transforms of quasi­
free states, we can investigate the asymptotics of the series expansion of the 
solution up to the second order in the same sense explained above for the 
M-B statistics. We actually recover Eq. (11.21) for a suitable Bo. This work 
is in progress. 

We mention that a similar analysis, using commutator expansion in the 
framework of the second quantization formalism, has been performed in [HL) 
(following [H]) in the case of the Van Hove limit for lattice systems (that is the 
same as for the weak-coupling limit without rescaling the distances). For more 
recent formal results in this direction, but in the context of the weak-coupling 
limit, see [ESY). 

We finally observe that in the low-density regime (Problem 3) the num­
ber of vanishing terms is much less. Indeed while for the weak-coupling the 
only 0(1) terms are those of the form CT, for the low-density also the terms 
CT ... Tare 0(1). Actually they must be resummed to recover the full cross­
section, making convergent (under suitable smallness assumptions on the po­
tential) the Born series. Also this is work in progress. 
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Summary. It has been well known from the beginning of quantum theory that 
there exist deep connections between the time evolution of a classical Hamiltonian 
system and the bound states for the Schrodinger equation, in particular in the 
semiclassical regime. These connections are well understood for integrable systems 
(Bohr~Sommerfeld quantization rules). But for more intricate systems (like classi­
cally chaotic Hamiltonian) the mathematical analysis of the bound states is much 
more difficult and there are few rigorous mathematical results. In this paper our 
goal is to revisit some of these results and to show that they can be proven, and 
sometimes improved, by using essentially two technics: the Wigner~Weyl calculus 
and the propagation of observables on one side, the propagation of coherent states 
on the other side. We want to emphasize that in our approach we get rather explicit 
estimates in terms of classical dynamics. 

The main ideas explained here, in particular the use of coherent states, are the 
results of several years of collaboration with Monique Combescure. 

12.1 Introduction 

One of the most important problems in quantum mechanics is to compute 
matrix elements Ajk(n) = (A<pj, <Pk) (transition amplitudes), where A is an 
observable and {<pj} is an orthonormal system of normalized bound states of 
a given quantum Hamiltonian iI. iI is supposed to be a self-adjoint operator 
in the Hilbert space in L2(~d) for a system with d degrees of freedom. 

In the semiclassical regime considered here, iI is obtained as the n-Weyl 
quantization of a classical Hamiltonian H. We have iI<pj = Ej<pj, where Ej 
is the eigenenergy of <pj. 

The diagonal matrix elements Ajj(n) are clearly related with trace for­

mulas. Assume for simplicity in a first step that iI = - n; 6 + V where V is 
a smooth confining electric potential, i.e., lim V(q) = +00 (like a polyno­

Iql---.+oo 
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mial). A(q,p) can be any smooth classical observable on the phase space with 
polynomial behaviour in (q,p) at 00. 

Let {<pj h:::o be an orthonormal basis of bounded states. So we have 

Tr(.Af(H)) = L f(Ej)Ajj(Ii). 
j?O 

Consider, for example, the Gibbs states at temperature T = (3-1, (;((3) 
e-;3H /Tr(e-;3H). By standard application ofWeyl-Wigner calculus, it is easily 
proved that 

and 

(12.2) 

2 

and H(z) = y + V(q), z = (q,p). 
These two asymptotics give a rough average behaviour for the energies 

Ej and the matrix elements .Ajj(Ii). To get more accurate information, as it 
is well known, we need to work in a small window in the energy spectrum, 
E j E [E - 0, E + 0] where E is a fixed classical energy and 0 > 0 is as 
small as possible. But doing that, time-dependent phenomena occur, as it 
is expected from the time-energy uncertainty principle. More precisely, the 
classical dynamics of the Hamiltonian H enter the game when 0 is of the 
same order as Ii. This is transparent with the Gutzwiller trace formula which 
displays a semiclassical asymptotic for 

(12.3) 

where the Fourier transform p of p is a smooth function with bounded support. 
Only periodic trajectories of energy E of the classical Hamiltonian contribute 
in the asymptotic expansion of Sp,A(Ii). This is also true for the average of 
an observable in the Gibbs state if the temperature is low, of the same order 
of the Planck constant Ii (see [6]). 

A closely related problem is to estimate the counting function of the 
eigenenergies in a fixed real interval I = [E', E]. Let us denote by NJ (Ii) 
the number of bound states of H in I. Under generic assumptions (E', E are 
not critical for V) we have the Weyl law 
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As we shall see later, a more difficult problem is to find a second term and 
to estimate the error. Some properties of the classical flow at large time are 
also needed because periodic trajectories give oscillatory contributions. This 
is already obvious for the harmonic oscillator (V(q) = q2). 

When the classical dynamics is chaotic (ergodic) on the energy shell EE := 
H-1(E) (E noncritical), we shall also discuss the quantum ergodic theorem, 
whose meaning is the following. Let be In = [E - 81'1, E + 81'1] shrinking to E 
in a suitable way. Then, except for a negligible set of eigenenergies in In, we 
have 

(12.4) 

where diJE is the normalized Liouville measure on E E. 
The links between time-dependent and time-independent phenomena ap­

pear also clearly in the following question. It is conjectured that the behaviour 
of Ajk(n) resembles a random matrix model. (see for example[28, 29]) For clas­
sically chaotic systems, Wilkinson [28] conjectures that the matrix elements 
Ajk(n) are independent, Gaussian, with mean zero when j =f=. k. The last 
statement is supported by results proved in ([4]). The variance introduced by 
Wilkinson is 

V(f,g)(n, E, T) = 
IAjk(nW fn (E - ~(Ej(n) + Ek(n)) .g (T - Wjk(n)) (12.5) 

where E is inside the interval In, Wjk(n) = Ej(n)~Ek(n), f, g are Gaussian 
regularizations of the Dirac 80 distribution. fn(u) := *f(*) with feu) = 
_1_eu2/2<T~ and g(u) = _1_eu2 /2<T~ a a > o. 
<Tl v'21r <T2 v'21r ' 1> 2 

This variance has a nice semiclassical limit. If the Fourier transform j of 
f has a small support around zero, then 

where j (Fourier transform of f) has a small support around zero and C A (E, t) 
is the classical autocorrelation function 

CA(E, t) = f A(z)A(pk(z))dvE(Z). lEE 
If the support of f contains some nonzero periods of the classical flow, we 
have oscillatory terms, as in the Gutzwiller trace formula as we shall see later. 

It seems much more difficult to prove a similar result for Gaussian test 
functions. The main difficulty comes from f: we need some control of the large 
periods of the classical flow which are not well known up to now. Concerning g 
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one can use recent results obtained in [lJ where accurate estimates for longtime 
propagation of observables are proved. 

Our main goal in this paper is to revisit some already known connections 
between time-dependent and time-independent properties for Schrodinger 
equations by adding when possible explicit estimates. We will give some ideas 
about proofs, showing that they can be deduced essentially from two basic 
long-time dependent accurate results: propagation of observables and propa­
gation of coherent states. This last technique will be used instead of the BKW 
method to avoid the well-known caustic problem. Moreover this way we can 
get time-dependent estimates up to the Ehrenfest time (of order 1 log 11,1 in the 
chaotic case, 11,-", VI), < 1/8, in the integrable case). These time-dependent 
estimates are useful, for example, to improve the remainder estimate in the 
Weyl formula with two terms or to control the speed of convergence in the 
quantum ergodic theorem. 

The content of the paper is the following. 
We first recall from [lJ the results concerning propagation of observables. 

Then we recall from [6, 25J the main facts concerning coherent states and their 
propagation by the time-dependent Schrodinger equation. 

We will explain how to apply these tools to different spectral problems. We 
discuss the trace Gutzwiller formula and the main steps to prove it according 
to the method used in [3J. Then we apply this to the Weyl law with two 
terms and remainder estimate. We also discuss the proof of the semiclassical 
expansion for the Wilkinson variance. 

In the last section we explain some results concerning diagonal and non­
diagonal matrix elements Ajk(n), in particular the quantum ergodic theorem 
and related topics. 

12.2 Propagation of observables 

Let us denote by X = ]Rd the configuration space of a classical mechanical sys­
tem with d degrees of freedom. The corresponding phase space Z is identified 
with ]R2d equipped with the symplectic form (7 defined by 

(7(Z, z') = Jz· z' (12.6) 

where· is the Euclidean scalar product and J is the 2d x 2d matrix 

J- ( 0 
- -][d (12.7) 

A generic point in Z is denoted by z and its coordinates by (q,p) where 
q,p E ]Rd. 

A classical Hamiltonian is a smooth real function H : Z ---t lR. Our basic 
example will be H(q,p) = ~~ + V(q) (m > 0), where Ipl2 = p. p. 
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The motion of the classical system is determined by the system of Hamil­
ton's equations 

(12.8) 

The equations (12.8) generate a flow tfJk on the phase space Z, defined by 
tfJk(q,p) = (qt,Pt). Let us consider a classical observable A, i.e., A a smooth 
real-valued function defined on Z. The time evolution of A is given by 

(12.9) 

where {H, A} is the Poisson bracket defined by 

(12.10) 

Here we have used the notation 8q = %q. By Weyl quantization of H and A, 

we get quantum observables iI and A in L2(X) with iI self-adjoint. So we can 

define the one-parameter group of unitary operators U(t) = exp (-iJiI). The 

quantum time evolution of the observable A is given by A(t) = U( -t)AU(t) 
which satisfies the Heisenberg-von Neumann equation: 

dA(t) = i[iI A] 
dt n" (12.11) 

where [K, B] = KB-BK is the commutator of K, B. Let us recall the n-Weyl 
quantization formula, for A E S(Z) (the space of Schwartz functions) and for 
'ljJ E SeX), we have: 

OPh'AW(x) = AW(x) = (27rn)-d J l A (x;Y,p) eili - 1 (x-YhW(y)dydp. 

(12.12) 

This definition can be extended to the following classes of observables. 

Definition L 
(i) A weight function on the phase space Z is a positive continuous function 
J..l on Z such that there exist G > 0, M 2: 0 such that for every z, z' E Z, 

/-l(Z) ::; G(l + Iz - z'I)M J..l(z') . 

(ii) A E O(/-l), where /-l is a weight, if and only if Z ~ C is Goo in Z and for 
every multi-index I E N2d there exists G"( > 0 such that 

18IA(z)1 ::; G,,(/-l(z), Vz E Z. 
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(iii) We say that A is a semiclassical observable of weight f-t if there exist 
Iia > 0 and a sequence Aj E O(f-t), j E N, such that for every N E Nand 
every f E N2d there exists GN > 0 such that for all Ii E]O, Iia[ we have 

SUPf-t-I(z)18~(A(Ii,z) - I: IijAj(z)) I ::; GNIiN+I. 
z 05.j5.N 

(12.13) 

Ao is called the principal symbol, Al the sub-principal symbol of A. The set 
of semiclassical observables of weight f-t is denoted by Osc(f-t). Its range by the 
Ii- Weyl quantization is denoted 8sc (f-t). 

If f-t(z) = f-tm(z) = (1 + Izl)m, m E JR, we say that the observable is of 
weight m. 

Notation : For any A and Aj satisfying (12.13), we will write: A(Ii) :=:: 
2: j 2:0 lij Aj in Osc(f-t). 

Let us now recall from [1] a statement for the propagation of observables 
which will be useful for applications to bound states. 

Assume that H E Osc(f-t). Let n be a bounded open set in the phase space 
z. We assume that the closure n of n is invariant by the flow cpt := CPko 
(\:It E JR) and that there exists an increasing function s from ]0, oo[ in [1, +oo[ 
satisfying seT) 2: T and such that the following estimates are satisfied: 

sup 18~CPt(z)l::; G')'s(T) hi 
zES1,ltl5.T 

where G')' depends only on f E N2d . Then we have: 

(12.14) 

Theorem 1. For every smooth observable A, with compact support in n, A(t) 
is a semiclassical observable of weight -00, with semiclassical symbol sup­
ported in n, such that 

where 

and for j 2: 2, by induction, 

A(t, Ii) :=:: I: Aj(t)lij 
j2:0 

(12.15) 

Aj(t, z) = I: G(a, {3) it [(8;8~ Hk)(8:;8: At) (T)](CPt-T (Z))dT, 
l(a,!3)I+k+!=j+l 0 

05.l5,j-l 

(12.16) 

with _ (-1)1,81 - (_1)lct l ·-I-J(ct,,B)1 
G(a, {3) - a!.B!2 Ictl+I,B1 z (12.17) 
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Furthermore we have the following estimates in L2 operator-norm of the re­
mainder term: 

IIA(t) - 2: 11,3 Aj(t) 11£2 ~ CNliN+l(1 + Itl)N+l S(ltl)(2N+€d)ltl 
O~j~N 

(12.18) 

where CN is independent oft and li, Ed is a universal constant (Ed = 5d+ 10). 

Remark 1. Using a classical result on ODE (Gronwall inequality), we always 
have estimates with exponential time: seT) = eAT for some A > O. If the 
classical system is integrable, nonsingular in n, then we can choose seT) = 
1 + T ([1]). In particular the semiclassical regime is still valid in time intervals 
[-Tn,Tn] where Tn = l;Aclloglil for the general case and Tn = lic- 1/ 3 in the 
integrable case, for arbitrary IS > O. 

Remark 2. If the expansion of H in li is even (in particular if H is "classical" : 
H = Ho) then the li-expansion of A(t) is even and in the remainder estimate 
(12.18) the term 2N in the exponent becomes 3N/2. This kind of improvement 
may be useful for some applications, as one can see in [9]. 

12.3 Propagation of Gaussian coherent states 

Let us consider in this section the time-dependent Schrodinger equation 

. a'l/Jz,t ~ 
~li-rit = H'l/Jz,t, 'l/Jz,o = 'l/Jz, (12.19) 

where iI is a semiclassical self-adjoint Hamiltonian of weight m E ~ and 'l/Jz 
is a coherent state maximized at z E Z. So we have 

'l/Jz,t = U(t)'l/Jz, with U(t) = e(-it/n)H . (12.20) 

A well-known method to construct asymptotic solutions of (12.19) is the WKB 
expansion. One of the main difficulties of WKB methods comes from the oc­
curring of caustics so that the shape of WKB approximations changes dra­
matically when time increases (caustics may appear at times of order 1 in 
the Planck scale li, as we can see, for example for the harmonic oscillator 
propagator). To get rid of the caustics we can replace the real phase of the 
WKB method by complex-valued phases. Here we shall report on a related 
but more explicit approach using elementary properties of coherent states. 
Coherent states have been used in partial differential equations for a long 
time, starting with Schrodinger himself and following by many authors (see 
[14,6, 3, 20, 25, 19] for applications and historical comments). 

We shall follow the presentation given in [25]. Let us now recall some basic 
definitions concerning coherent states. We start with the ground state of the 
harmonic oscillator, 
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go(x) = 1f-d / 4 exp (-lxI2 /2) . (12.21 ) 

For z = (q,p) E R2d , the Weyl-Heisenberg operator of translation by z in 
phase space is 

(12.22) 

Let us define the dilation operator An7f(x) = n-d / 4 7f (xn- 1/ 2 ). So the coherent 
state picked on z is defined by tfz = Tn(z)go. A more explicit expression for 
7fz is 

(12.23) 

For n = 1 we shall denote tfz = gz and Tn(z) = T(z). 
It is well known that {7fzLElR2d is an "overcomplete basis" in L 2 (Rd ). So 

for every trace-class observable iJ in L2 (Rd) we have 

(12.24) 

where (-,.) is the scalar product in L 2(JRd). 
Under rather general assumptions, an asymptotic expansion for the quan­

tum evolution of coherent states, U(t)7fz, was obtained in [6], with an error 
term of order O(nOO ), with some control for large time of order O(log(n-l)) 
(Ehrenfest time). 

Recall that Zt = (qt,Pt) is the solution of (12.8) starting from z = (q,p). 
For simplicity it is assumed that z E il, where il is as in Section 12.1 and the 
flow satisfies (12.14). Let us define 

qt' Pt - q. P t 
bt(z) = S(t, z) - 2 where S(t, z) = io Ps . qsds - tHo(z) 

(12.25) 

is the classical action. The Jacobi stability matrix, Ft , is the linearized 
flow associated with (12.8) at the point Zt of the classical trajectory. Ft is 
also the Hamiltonian flow defined by the quadratic Hamiltonian K 2 (t, () = 
~8;,zH(zt)(' ( for ( E R 2d , where 8;,zH is the Hessian matrix of H(z) in the 
variables z. We have Fo = IT and Ft is a symplectic, 2d x 2d matrix. It can be 
written as four d x d blocks : 

(12.26) 

We also need to introduce the quantization of F t which can be defined as the 
quantum propagator M[Ft ]' with Planck constant equal to 1, for the quadratic 
Hamiltonian 0pi"[K2 (t)]. In particular we have the useful formulas 
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M[Ft)go(x) = 7r-d / 4 (det(At + iBt ))-l/2 eirtx.x/2, (12.27) 

M[Ft)-lOp¥'[L)M[Ft) = Op¥'[L 0 Ft]' (12.28) 

where rt = (Ot +iDt)(At +iBt)-l and L is any classical (smooth) observable 
defined on Z. rt is a complex symmetric, d x d matrix, with positive definite 
imaginary part given as 

Imrt = (AA' + BB,)-l (12.29) 

where A' denotes the transposed matrix of A. 
Let us now state the following result [6, 25). 

Theorem 2. Under the above assumptions, there exists a family of polyno­
mials {bj(t,x)}jEN in d real variables x = (Xl,'" ,Xd), with time-dependent 
coefficients, such that for every It I ::; T, h E)O, 1], N E N, we have 

IIU(t)'lj!z - eXPCJt~Z) )T(zt)AnM[Ft) ( L n)l2bj (t)go) t2 IRd 
05,j5,N ( ) (12.30) 

::; ONs(T)(3N+€d)(1 + T)N+lh(N+1)/2 

where seT) can be chosen as in Section 12.2, formula (12.14), and the constant 
ON is independent of T and h. 

Remark 3. 
1) This result is proved in [6]. Theorem 2 is applied at finite time to give a 
proof of the Gutzwiller trace formula. 

In [25) Gevrey type estimates for ON, N large, have been computed. 
2) The polynomials bj(t, x) can be explicitly computed by induction along the 

classical trajectories z(t). In particular bo(t, x) = exp( -i J~ Hl (zs)ds). 
3) As for evolution of observables, we get a critical time Tn for the validity 
of semiclassical approximation. In the general case (J(T) = eAT and Tn = 
l6AE I log hi. In the integrable case we can choose Tn = hE- l / 8 • These validity 
times are smaller than those found for propagation of observables. 

12.4 Semiclassical trace asymptotics 

All Hamiltonians considered here satisfy the following general technical as­
sumptions: 

(TAl) J-to(z) := 1 + IHo(z)1 is a weight function on Z and H is a semiclas­
sical observable with weight J-to and principal symbol Ho. 

(TA2) E is a fixed energy such that there exists a < E < band Hol [a, b) 
is a bounded closed set in the phase space Z. Moreover E is noncritical for 
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Ho, i.e., "il Ho(z) =I- 0 for every z E EE where EE = HC;I(E). So the Liouville 
measure is well defined on E E, 

dEdz) 
dVE(Z) = 1"9 Ho(z)I' 

where dEE is the canonical measure on the hypersurface EE. 
Our main goal in this section is to revisit the following spectral distribu­

tion: 

3 p,A(E, n) = LP( E j ; E)Ajj(n) 
j?O 

(12.31) 

where the Fourier transform P of P has a compact support. The ideal P should 
be the Dirac delta function, which needs too much information. So we will 
try to control large support for p. To do that we take PT(t) = TpI(tT) with 
T 2: 1, where PI is a nonnegative, even, smooth real function, iRPI(t)dt = 1, 
supp{h} c [-1,1]' PI (t) = 1 for It I ::; 1/2. 

By applying the propagation theorem for coherent states stated in Sec­
tion 12.3, we can write 3 pT ,A(E, n) as a Fourier integral with an explicit 
complex phase. The classical dynamics enter the game in a second step, to 
analyse the critical points of the phase. Let us describe the steps (see [3] for 
the details). 

(i) Modulo a negligible error, we can replace A by Ax = X(H)AX(H) where 
X is smooth with support in a small neighborhood of E like ]E - 6n, E + 6n[ 
such that lim 6n = o. 

n-O 
(ii) Using an inverse Fourier formula we have the following time-dependent 

representation: 

~ _ 1 r _ (t) (A it (E-il)) 
'::'PT,A(E, n) - 271" JR PI T Tr Axe" dt. (12.32) 

(iii) If B is a symbol, then we have B'ljJz = B(z)'ljJz + ... where the··· are 
correction terms in half powers of n which depend on the Taylor expansion of 
Bat z. 

(iv) Putting all things together, after some computations, we get for every 
N 2: 1: 

Spl,A(E,n) = (271"n)-d r h(Tt )a(N)(t,z,n)e-kWE(t,Z)dtdz+'RN,T,n. 
JRt XR;d 

(12.33) 

The phase rIFE is given by 

rIFE(t, z) = t(E - Ho(z)) + ~ lt a(zs - z, zs)ds 

+ ~(][d - Wt)(z - zt) . (z - Zt), (12.34) 
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with z = q+ipif z = (q,p) and Wt = Ztyt-l whereYt = Ct-Bt+i(At+Dt ), 
Zt = At - Dt + i(Bt + Ct ). 

The amplitude a(N) has the property 

a(N)(t,z,n) = L aj(t,z)nj , 
O~j~N 

(12.35) 

where each aj(t, z) is smooth, with support in variable z included in the 
neighborhood [l = Hol[E - bE, E + bEl of EE, and estimated in t as 

(12.36) 

In particular for j = 0 we have 

(12.37) 

The remainder term satisfies 

n < C s(T)6N+€d(1 + T)2N+1 nN+1 . N,T,n _ N (12.38) 

From the above computations we can easily see that the main contributions 
as n ~ 0 in SpT,A(E, n) come from the periods of the classical flow as it is 
expected. Let us first remark that we have 

Here (,) is the Hermitian product on C. Because of positivity of 1m rt we 
get the following lower bound: there exists Co > 0 such that for every T and 
It I :::; T we have 

ImWE(t, z) + 18tWE(t, Z)12 2 Co (IHo(z) - EI2 + s(T)-4Iz - ztI 2 ). (12.39) 

The stationary phase theorem with complex phase [17], voLl, gives easily the 
contribution of the O-period. 

Theorem 3. If To is chosen small enough, such that To < sup{ t > 0, V z E 
EE, pt(z) i=- z}, then we have the following asymptotic expansion: 

SPTo ,A(E, n) :::::: (21rn)-d L (tA,j(E)nj+l 
j?O 

where the coefficients (tA,j do not depend on p. In particular 

(12.40) 
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By using a Tauberian argument [24], a Weyl formula with an error term 
O(n1- d ) can be obtained from (12.40). 

The contributions of periodic trajectories can be computed if we have 
some specific assumptions on the classical dynamics. However Petkov-Popov 
[22] succeed in giving a very general trace formula modulo an error 0(n1- d) 
using Hormander's Fourier integral operator theory. With our coherent states 
analysis it is possible to recover their result. Let us recall that in [3] this 
coherent states analysis is used to give a proof of the Gutzwiller trace formula. 
Let us recall now the rigorous statement. 

The main assumption is the following. Let PE,T be the set of all periodic 
orbits on EE with periods T" 0 < IT,I ::.; T (including repetitions and change 
of orientation). T; is the primitive period of 'Y. Assume that all 'Y in PE,T 

are nondegenerate, i.e., 1 is not an eigenvalue for the corresponding "Poincare 
map", P,. It is the same to say that 1 is an eigenvalue of FT-y with algebraic 
multiplicity 2. In particular, this implies that PE,T is a finite union of closed 
path with periods T,j' -T ::.; T'l < ... < T'N ::.; T. 

Theorem 4 (Trace Gutzwiller Formula). Under the above assumptions, 
for every smooth test function p such that supp{p} c] - T, T[, the following 
asymptotic expansion holds true, modulo O(nOO ), 

Sp,A(E, n) ~ (27rn)-dp(0) 2: CA,j(p)nj+l 
j?O 

+ 2: (27r)d/2-1exp(i(~ + 0";7r))ldet(TI_P,)1-1/2 
,EPE,T 

(2: d1,j (p)nj) 
j?O 

(12.42) 

where 0", is the M aslov index of 'Y ( 0", E Z ), S, = i, pdq is the classical 
action along 'Y, CA,j(p) are distributions in p supported in {O}, in particular 

d] (p) are distributions in p with support {T,}. In particular 

(12.43) 

Remark 4. By the same method it is possible as well to consider integrable 
systems to get the Berry-Tabor formula or more generally systems satisfying 
the clean intersection property [3]. 

For larger time we can use the time-dependent estimates given above to 
improve the remainder estimate in the Weyl asymptotic formula, as Volovoy 
did for elliptic operators on compact manifolds [27]. For that, let us introduce 
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some control on the measure of the set of periodic path. We call this property 
condition (NPC). Let JE =]E - 8, E + 8[ be a small neighborhood of energy 
E and sE(T) an increasing function as in (12.14) for the open set DE = 
H01(JE ). We assume for simplicity here that SE is either an exponential 
(sE(T) = exp(ATb), A > 0, b > 0) or a polynomial (sE(T) = (1 +T)a, a 2: 1). 

The condition is the following: 
(NPC) VTo > 0, there exist positive constants C1, C2, '"'1, '"'2 such that for all 
A E JE we have 

VA {z E E A , :3t, To ::; It I ::; T, Iq;t(z) - zl ::; c1s(T)-K,1 } ::; c2s(T)-K,2 . 
(12.44) 

The following result, proved by using stationary phase arguments, estimates 
the contribution of the "almost periodic points ": 

Proposition 1. For all 0 < To < T, let us denote PToT(t) = (l-PTo)(t)PT(t), 
where 0 < To < T. Then we have 

(12.45) 

for some positive constants C3 , C4 , '"'3, '"'4' 

Let us now introduce the integrated spectral density 

O"A,I(Ii) = L Ajj(li) (12.46) 
EjEI 

where I = [E', E] is such that for some A' < E' < E < A, HOI [A', A] is a 
bounded closed set in Z and E', E are regular for Ho. We have the following 
two-term Weyl asymptotics with a remainder estimate. 

Theorem 5. Assume that there exist open intervals J E and J E' satisfying the 
condition (NPC). Then we have 

O"A,I(Ii) = (27r1i)-d r A(z)dz - (27r)-dIi1- d 
lHol(I) 

X (tE A(z)H1(z)dv(z) - tEl A(z)H1(z)dv(z)) + 0 (1i1- dr](Ii)) 
(12.47) 

where r](Ii) = Ilog(lil- 1 / b if sE(T) = exp(ATb) and r](Ii) = liE:, for some 
c > 0, if sE(T) = (1 + T)a. Furthermore if IE,J1,J2 (Ii) = [E + 81 Ii, E + 821i] 
with 81 < 82 , then we have 

L Ajj(li) = (27r1i)1-d(82 - 81) 1 A(z)dvE + 0 (1i1- dr](Ii)) . 
E+Jln~Ej~E+J2n EE 

(12.48) 
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Remark 5. (i) Formula 12.48 was first proved in [2], without remainder esti­
mate. 

(ii) Theorem 5 is deduced from Proposition 1 by a Tauberian argument as 
in [23, 27, 2] 

As was done in [5], by the same technique used above it is possible to give 
a semiclassical asymptotic expansion for the Wilkinson variance introduced 
before. Let us first write the time-dependent representation formula 

fi- 1 if V(p,g,A)(fi,E,T) = -4 2 p(t)g(u - t/2) 
7r IRxlR (12.49) 

(

A A it ( A fiT) ) . xTr AuAexp-/i H-E+ 2 etU7'dtdu. 

We know from Section 12.2 that Au := U(-u)AU(u) is a semiclassical ob­
servable, with uniform estimates for /T/ :S C log(fi-l). So for p as in (12.42) 
(smooth with compact support) we can choose 9 Gaussian. It is enough to 
assume that 9 is a smooth function such that /g(T)/ :S Ce- i7'i/c , for c > 0 
small enough (depending only on s(T)). Then under the same conditions as 
for the Gutzwiller trace formula we have 

Theorem 6 (Wilkinson Trace Formula). 

V(p,g,A)(fi,E,T);:::: (27rfi)-d'L,CA,j(T,p,g)fij + 'L, (27r)d/2-1 
j~O ",(EPE,T 

x exp (i (~"'( + IT;7r)) / det(lI - P"'() /-1/2 ('L, d},j (T, p, 9 )fij - 1) 

j~O 

(12.50) 

where CA,j(T,p,g) are distributions in p supported in {O}, in particular 

where C A (E, t) is the classical autocorrelation function 

CA(E, t) = r A(z)A(q;t(z)dvE(Z). lEE 

(12.51 ) 

(12.52) 

Moreover, d] (T, p, g) are distributions in p with support {T",(}, In particular 

T* 

dJ(T,p,g) = p(T",()exp ( -i 10 -r (HI (zu) +T/2)du) 

·l Cl(u)g(~"'( _u)eiU7'du. 

(12.53) 

where Cl(u) = JOT; A(ZUH)A(zt}dt is the autocorrelation function along ,. 
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Remark 6. In [7J a similar result was found in the theory of linear response. 
As a distribution in g, clJ (p, g) can be conveniently written with the Fourier 
coefficient of the T; -periodic function C1 ( u ). So we get 

(12.54) 

with the Fourier decomposition C1 ( u) = ;* 2: Clk exp (2i;:U ) . 
~ kEZ ~ 

This shows, in particular, that clJ (T, p, g) is a distribution in 9 supported 
in the discrete set {(2rrk/T;) + T, k E Z}. 

12.5 Quantum ergodicity and mixing 

This section revisits some results first proved by Sunada [26J and Zelditch 
[29J for compact manifolds. Our presentation is somehow different and some 
estimates are improved. Let us begin with a rough estimate concerning the 
matrix elements Ajk(!i) and wj,k(Ii). Let I = [E', EJ be an energy interval, an 
observable A E O(fL) for some weight fL. Assume that for some >..' < E' < E < 
>.., HOI [>..', >..J is compact. Let us choose X, a smooth cutoff supported in JA', >..[, 
such that X = Ion I. Let us introduce the new observable Ax = X(H)AxCfI). 
Then starting from the equality 

by induction, we get for every N ::::: 1, IWj,k(Ii)INIAjk(Ii)1 ::; CN where CN is 
independent of Ii. 

The following result, proved in [5J and following Helton's trick, show that 
a single nonperiodical trajectory disturbs very much the energy spectrum. 

Theorem 7. Suppose that on EE there exists at least one periodical classical 
trajectory. Let 0 < fin such that lim lin = O. Then for every E: > 0 and c > 0, 

n~O 

the set 
{Wj,k(Iin), n E N, Ej,Ek E [E - cli~-c,E + cfi~-cJ} 

is dense in JR. 

Sketch of proof: For every observable A, BE 0(0) and every integrable 
function f, let us introduce Af = In~ f(t)Atdt where At = U( -t)AU(t). An 
easy formal computation, assuming for simplicity that <pj is an orthonormal 
basis in L2(JRd ), gives 
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Tr(AfB) = L Ajk(n)Bkj(n)j(Wj,k(n)). 
j,k 

(12.55) 

Assume that j(Wj,k(nn)) = 0 for all j, k, n. Taking the limit n --+ +00, we get 
fz A(pt(z)B(z)f(t)dtdz = O. Using existence of one nonperiodical trajectory 
we construct suitable observables such that for every smooth function k(t), 
with compact support, we can get fIR k(t)f(t)dt = 0, hence f == O. 0 

We shall now consider some specific dynamical properties for the flow on 
the energy shell EE, equipped with the flow invariant Liouville measure. For 
A E L1(EE), let us denote its average (A)E = fEE A(z)dvE(Z). 

Definition 2. 

(i) pt is ergodic on EE if for every measurable function A on EE we have 

flft E ~,A 0 pt = A} {:=} {A = constant a.e on EE}. (12.56) 

(ii) pt is weakly mixing on EE if for every A E L2(EE) we have 

1 jT 
lim -T CA(E, t)dt = (A)~ . 

T-'>(x) 2 -T 
(12.57) 

Let us introduce the unitary group in L2(EE) defined as (U(t)A)(z) = 
A(pt(z)). A consequence of spectral theory is existence, for every A E L 2(EE), 
of a finite Borel measure f1A on the real axis ~ such that 

Then we have the following spectral characterizations: 

{pt ergodic} {:=} {SUPP{f1A} = {O} =? A = constant} 

{pt weakly mixing} {:=} {A E L 2(EE), (A)E = 0 

==? f1A is continuous} . 

(12.58) 

(12.59) 

Let us consider a small slice of energy, Ir, = [E-cn1- c , E-cn1- c ], where c 2: O. 
The quantum analogue of the Liouville measure and the spectral measures for 
a flow can be defined as follows. 

We have Spec[.H] n Ir, = {El :S: E2 :S: .. , :S: E N~} with multiplicities and 

we introduce the spectral projectors IIr, of ir on Ir, so that Tr(IIr,) = Nr,. 
Using Weyl asymptotics, it is not difficult to prove, for every c > 0, 

1 A J lim Nc Tr(IIr,A) = A(z)dvE(Z) . 
h-O h EE 

(12.60) 
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It is well known that we can modify the quantization A with an error 
O(n) such that A ~ Ajj is a positive Radon measure. This is done by 
taking Ajj = (Op~W A<pj, <Pj), where Op~w is the anti-Wick quantization, 
easily defined using coherent states analysis of Section 12.1: Op~w'f](q) = 
(21l"n)-d Jz A(z)('f], 'ljJz)'ljJz(q)dz. So we can write Ajj(n) = Jz Advj(z) where 
dVj is a probability measure on Z. Then, for every € > 0, we have for the 
weak convergence of measures 

1 
lim -N '" dVj = dVE . n->O e ~ 

n {EjEIU 

(12.61) 

We can also define, modulo O(nCO), the Borel measures dmA,n, 

(12.62) 

We also have 

r f(())dmA,n(()) = ~e Tr(II~AfII~A). 
lR. n 

(12.63) 

Taking the classical limit we have the weak convergence of dmA,n to dJ-LA, 

lim r f(())dmA,n(()) = r f(())dJ-LA(()). 
n->olR. lR. 

(12.64) 

The ergodic quantum theorem can be stated as follows: 

Theorem 8. Let us assume here € = 0 and denote N~ = N n, I~ = I~. If the 
classical system is ergodic on E E, then we have 

~~ ~n L If AdVj - (A)EI
2 

= o. 
{EjEIn} 

(12.65) 

Furthermore, we have some estimate on the rate of classical ergodicity, and if 
the (NPC) condition is fulfilled, then we get a control of the quantum ergod­
icity. So let us assume that for some 0 < a :::; 1 we have 

r lIT jT A(pt(z))dt _ (A)EI2 dVE(Z) = O(T-a ); 
lEE 2 -T 

then there exists C > 0 such that 

(12.66) 

(12.67) 

The inverse problem was discussed by Sup-ada [26] and Zelditch [29]. It is 
still open. But a partial result can be proved by considering contribution of 
nearby nondiagonal matrix elements. 
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Theorem 9. Let us assume that the condition (NPC) is satisfied. Then 
the classical flow is ergodic on EE if and only if for every A E 0(0) 
such that (A)E = 0 and every a :)0,1) ........ )0, +oo[ such that lim a(fi) = 0, 

Ii-->O 
lim a(fi) I log(fi) I = +00, we have 
Ii->O 

(12.68) 

We can also get a similar result for weak-mixing systems. 

Theorem 10. Let us assume that the condition (NPC) is satisfied. Then 
the classical flow is weakly-mixing on EE if and only if for every ). E lR, 
every A E 0(0) such that (A)E = 0 and every a :)0,1) ........ )0, +oo[ such that 
lim a(fi) = 0, lim a(fi) I log(fi) I = +00, we have 
Ii->O Ii-->O 

1. 1 
Im­

Ii--->O Nii 
L IAjk (fi)1 2 = o. 

{Ej Eln! 
IWjk (/i)-A I SaC/i)} 

(12.69) 

The starting points to prove these results are the following trace formulae. 
For the ergodic case we use 

L IAjk(fi)MT(Wjk(fi)) 12 = Tr (AMT)2 
{Ej,EkEI/i} 

(12.70) 

with MT(U) = 2~1I[_T,Tl and for the weak-mixing case, 

L IAjk (fi)1 2 !:if> (wjk(fi) - ,X)) = Tr(l. eitA AtAM~2)(t)dt) (12.71) 
{Ej,EkEIn} 

with M~2) = MT * MT (* denotes the convolution product). Then the two 
theorems are proved by computing the semiclassical limits of the right-hand 
side carefully. 0 

Remark 7. The definition of quantum ergodicity or quantum weak mixing pro­
posed by Sunada and Zelditch is property (12.65) or (12.69) with a(fi) == o. 
It is not known if these definitions are equivalent to the classical ones. 

Acknowledgment. The author thanks M. Combescure for her comments on 
this paper. 
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Nonlinear Time-dependent Schrodinger 
Equations with Double-Well Potential 

A. Sacchetti 
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I-41100 Modena, Italy 

Summary. We consider a class of Schrodinger equations with a symmetric double­
well potential and a nonlinear perturbation. We show that, under certain conditions, 
the reduction of the time-dependent equation to a two-mode equation gives the 
dominant term of the solution with a precise estimate of the error. 

13.1 Introduction 

Recently the nonlinear time-dependent Schrodinger equation (hereafter NLS) 

{ in~~ = [-n2Ll + V] 7jJ + t:j7jJ, E ERn 
x E R , n> 1, 

7jJ(t, x)lt=o = 7jJO(x) -
(13.1) 

where V = Vex) is a given potential and Ej(I7jJI, x) is a nonlinear perturbation 
with strength E, has received an increasing interest. Indeed, applications of 
such an equation can be found in many fields: laser physics, optical fibers, 
dynamics of chemical reactions and bosonic matters, to name some of them. 
More precisely, the nonlinear Schrodinger equation arises in various physical 
contexts concerning nonlinear waves, such as propagation of a laser beam 
in a medium whose index of reflection is sensitive to the wave amplitude, 
water waves at the free surface and plasma waves [13]. NLS also appears in 
the description of the Bose-Einstein condensates, a context where (13.1) is 
often called the Gross-Pitaevskii equation [1], and in the description of the 
localization effect in a pyramidal molecule like ammonia N H3 [8], [15]. 

The last few years have witnessed a rapid development in research on 
NLS-related applications, and this has created an enormous number of new 
mathematical problems for mathematicians. Despite such a large interest the 
theoretical treatment of these equations is very far from complete, in fact 
it practically begins with the seminal work by Ginibre and Velo [4], and, 
when the potential V is not zero, very few rigorous results for the study 
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of the solution of the time-dependent equation (13.1) exist. In fact, these 
results concern the existence of solutions asymptotically given by solitary 
wave functions when the discrete spectrum of the linear Schrodinger operator 
has only one nondegenerate eigenvalue [14], [17]. 

In this paper I summarize some recent results [6], [11], [12] where we 
consider the NLS equation of the form (13.1) with a symmetric double-well 
potential, that is, 

Vex', -xn ) = Vex', x n ), x = (x', x n ), x' E Rn - 1 , x" E R. (13.2) 

In particular, we prove that the beating motion, usually observed in the 
linear Schrodinger equation with a double-well potential, disappears when 
the strength of the nonlinear term is larger than a critical value. In order to 
be more precise let us briefly recall the basic notion of beating motion for a 
double-well Schrodinger equation. Let E+ < E_ be the two lowest eigenvalues 
of H, where H is the linear operator formally defined on L2 (R n , dx) as 

n 82 

H = -11,2.::1. + Vex), L1 = L!::> 2' 
ux· 

j=l J 

with associated normalized eigenvectors 'P+ and 'P-. By means of a suitable 
choice of gauge we can always choose the eigenvectors such that they are 
real-valued and 

If the state 'ljJ is initially prepared on the first two states, i.e., 

where IIe denotes the projector operator defined as 

then equation (13.1) has a solution given by 

'ljJ(t, x) = c+e-iE+tjn'P+ + c_e-iE_tjn'P_ 

and the center of mass of the wavefunction 'ljJ, defined as 

(g)t = ('ljJ(t, .), g(-)'ljJ(t, .)), 

is a periodic function with period 

T _ nn 
- , 

w 

(13.3) 

Here, 9 E L2(Rn, dx) is any bounded function such that g(x', -xn ) = 
-g(x', x n ), that locally it behaves like x n . In particular, the center of mass 
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periodically assumes positive and negative values, that is we observe the so­
called beating motion of the wavefunction. 

The question we discuss in this work is the following one: is such a beat­
ing motion still present when we restore the nonlinear term'? This problem, 
as we'll see later, plays a basic role in understanding the localization effect 
for some relevant physical systems, e.g., existence of chiral configurations in 
symmetrical molecules like ammonia. 

We emphasize that the unit time, for our purposes, is the beating period 
T. Hence, we will introduce a slow time defined as 

tw 
T= Ii' (13.4) 

In this paper we will show that, under certain circumstances, when the 
nonlinear parameter E is larger than a critical value, then the beating motion 
disappears and the wavefunction 'ljJ remains essentially localized within one of 
the two wells. This result follows from the asymptotic behavior of the solution 
of equation (13.1) in the semiclassical limit, with a precise estimate of the error 
uniformly in the interval T E [0, T'] for any fixed T'. 

13.2 Description of the model 

Here, we essentially study the NLS equation (13.1) having in mind two appli­
cations: the description of the inversion motion of pyramidal molecules and 
the dynamics of Bose-Einstein condensate states trapped in a double-well 
potential. 

13.2.1 Inversion motion of pyramidal molecules 

The existence of a well-defined molecular structure for a symmetric molecule is 
an old and ongoing problem in chemistry [15]. It was clear from the beginning 
that the action of the environment would be the basic cause of this effect, since 
from a quantum mechanics point of view an isolated symmetric molecule has 
no structure. 

As a particularly interesting example, we have pyramidal molecules such 
as ammonia, N H 3 . Such molecules should have a pyramidal structure with the 
nuclei H in a triangular basis and the nucleus N in a vertex; the chirality will 
depend on the choice of the vertex. Quantum mechanics predicts symmetrical 
molecules with the nucleus N delocalized in both vertices. Indeed, in the 
Bohr-Oppenheimer approximation the nucleus N is affected by a double-well 
potential, and we have even and odd stationary states and beating states. In 
fact, physically we always observe the structure of a pyramidal molecule for 
pressure large enough. 

Davies [2] suggested a nonlinear Stark-type model in order to consider the 
interaction of a single molecule with the other molecules of a given gas. In 
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the mean field approximation this term could be described by means of the 
effective potential depending on the wavefunction itself [5], [8], [9]: 

f = f(I'l/J1) = E(g}g, (g) = ('l/J, g'l/J), E E R, (13.5) 

where 9 is a bounded odd function, g(x', -xn ) = -g(x', xn ), (g) measures 
the dipole of the molecule and E measures the strength of the dipole-dipole 
interaction. Hence, the inversion motion of the atom N is described by means 
of an NLS equation of the form 

ili~~ = [-1i2 Ll+V(x)+E('l/J,g'l/J)g(x)]'l/J. (13.6) 

Here, we prove that the beating motion of the center of mass, defined by (g), 
disappears when the nonlinear strength is larger than a critical value, giving 
so the chiral configuration of the ammonia molecule. 

13.2.2 Bose-Einstein condensate states in a double-well trap 

Bose-Einstein condensation (BEC), predicted more than 70 years ago, obeys 
an NLS equation, known in the literature as the Gross-Pitaevskii equation 
[1], of the form 

(13.7) 

In the case of two Bose-Einstein condensates, under the effect of a double-well 
trap with a barrier between the two condensates, an interesting application is 
the possible occurrence of Josephson-type effects [10]. Usually, the description 
of the dynamics for a Bose-Einstein condensate in a double-well trap is re­
duced to a nonlinear two-mode equation for the time-dependent amplitudes, 
which admits explicit solution. Here, we put on a full rigorous basis the re­
sults obtained by [10] in the two-level approximation giving the proof of the 
stability of such a reduction. 

13.3 Assumptions and parameters 

We assume that the double-well potential V(x) is a function regular enough 
satisfying the condition (13.2) and with two (nondegenerate) minima at x± = 
(0, ±d), d> 0, such that V(x) > V(x±), "Ix -I=- x±; moreover, we assume also 
that V(x) has the following behavior at infinity: 

liminfV(x) > V(x±). 
Ixl-+oo 

Hence, the discrete spectrum of the linear Schrodinger operator H is not 
empty if Ii is small enough. 
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In this paper we consider the semiclassical limit of the NLS equation (13.1) 
where the actual semiclassical parameter is the splitting w « 1 between the 
two wells. More precisely, we consider the simultaneous limit of small splitting 

w->O (13.8) 

and small nonlinear perturbation strength 

E->O 

such that the effective nonlinearity parameter defined as 

CE 
Tf = - = G(l) 

w 
(13.9) 

goes to a constant, where c will be defined later in equation (13.24). 
The condition (13.8) could be obtained in different ways: we take the limit 

of n that goes to zero and fixed double-well potential [6], [12], or we fix n = 1 
and we consider the limit of a large barrier between the two wells [11]. In 
fact, it is well known that the splitting w satisfies the asymptotic behavior 
w = GCe- pln ) where p is the Agmon distance between the two wells. 

13.4 Main result 

Our main result is the following one. 

Proposition. Let 'lj;0 be such that 

(13.10) 

where lIe is the projection operator defined in (13.3). In the semiclassical 
limit (13.9) the destruction of the beating motion follows for any value of the 
effective nonlinearity parameter Tf larger than a critical value. 

Remark. From this fact and since the nonlinear strength is directly related 
to the pressure of the ammonia gas [8], it follows that this model is able 
to describe the appearance of chiral configuration for the ammonia molecule 
when the gas pressure is larger than a critical value. 

Remark. In the semiclassical limit of small n and fixed double-well potential 
the above proposition holds for any dimension d ;:::: 1 if the nonlinear per­
turbation is given by (13.5) [6]. In contrast, in the case of a BEe-type NLS 
equation (13.7) the above proposition holds for dimension d = 1 [12]. 
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Remark. In the case of fixed n and in the limit of a large barrier between the 
two wells we have to introduce some further assumptions [11]; more precisely, 
we assume that the discrete spectrum of the linear operator consists of only 
two nondegenerate eigenvalues and that the dissipative estimate of the type 

(13.11) 

for any p and p', ~ + 1, = 1 and 2 ::; p ::; 00, and where C is a positive 
constant, uniformly hofds. For such a reason we have to assume that the 
dimension should be d = 1 or d = 3. 

13.5 Idea of the proof 

Here, for the sake of definiteness, we restrict ourselves to the one-dimensional 
semiclassical limit of the BEC-type NLS equation 

{ in~~=-n2~:t+V(x)1/J(X)+EI1/J121/J xER n«1 
1/J(t, x)lt=o = 1/JO(x), llc1/Jo = ° ' , , (13.12) 

where the actual semiclassical parameter is the splitting wand the effective 
nonlinearity parameter is given by TJ: where 

TJ=c~=O(1) and w=O(e- p / n), as n---.O, 

for some p > 0. We refer to [12] for details. 
The proof is organized in three different steps. In the first step we give the 

global existence of the solution of the time-dependent Schrodinger equation 
and we prove some useful conservation laws and a priori estimates of the 
solution. In the second step we give the explicit solution of the two-level 
approximation obtained by means of the restriction of the complete equation 
to a bi-dimensional space. Finally, in the third step, we prove the stability 
of the two-level approximation. Let us emphasize that the first two steps 
make use of some standard techniques of nonlinear operator theory and of 
nonlinear dynamical system theory. In contrast, the third step makes use of 
some particular Gronwall-type estimates on the evolution operator applied to 
the nonlinear term. 

13.5.1 Global existence of the solution and conservation laws 

Here, we prove that the Cauchy problem (13.12) admits a solution for all time 
provided that the strength E of the nonlinear perturbation is small enough. 
Moreover, we prove an a priori estimate of the solution 1/J. 

The following results hold. 

Theorem 1. There exist n* > ° and EO > ° such that for any n E (0, n*] 
and E E [-EO, EO], then the Cauchy problem (13.12) admits a unique solution 
1/J(t, x) E Hi for any t E R. Moreover, we have conservation of the norm 
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117/I(t, ')11 = 117/1°(')11 = 1, (13.13) 

conservation of the energy 

(13.14) 

and the following estimates 

117/lllp :::; Cn-7!, Vp E [2, +00], and II ~~ II :::; Cn-~ (13.15) 

for some positive constant C independent of t and n. 

Proof. The first part of the theorem is an immediate consequence of the as­
sumption on 7/10 where 

7/10 = Cl <Pl + C2<P2 E Hl, Cl,2 = (7/10, <Pl,2), 

since the two eigenvectors <Pl,2 E Hl. Therefore, existence of the global solu­
tion 7/1 E C(R, Hl) and the conservation laws (13.13) and (13.14) follow from 
known results (see, e.g., [14] and the references therein) for any E > 0 (repulsive 
nonlinear perturbation) and for any E E (-EO, 0) for some EO > 0 (attractive 
nonlinear perturbation). The proof ofthe estimate (13.15) is a consequence of 
the conservation of the energy functional and from the Gagliardo-Nirenberg 
inequality. Indeed, the conservation of the energy functional gives that 

where 

X = pO", IEll/2 1 k = _n_ A = E(7/lO) - Vmin "-' n- l 
'f' P= -k-«' y'2m' k2 ' 

from which it follows that 

(13.16) 

Now, we make use of the Gagliardo-Nirenberg inequality (see, for instance, 
[16]) 

Ilxll~~t~ :::; C II ~; IICY IlxI1 2+CY
, Va 2: 0, (13.17) 

which gives, for a = 1, the estimate 
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since Ilxli = pli1P1i = p and Ii'lfli = 1. By inserting this inequality in (13.16) it 

follows that "~II satisfies 

(13.18) 

for any t E R. From (13.18) immediately follows that 

II ~~ II ::; y'jAfp (1 + 0(1)), as p -+ O. 

Hence, II~~II::; eM and, from (13.17), we have that 

where we choose now (J" = ~, i.e., p = 2(J" + 2. o 

13.5.2 Two-level approximation 

Let us make the substitution 'If -+ e-iilt/ li 1P and let us introduce the slow time 
defined in (13.4), hence equation (13.12) takes the form (let us still denote, 
with abuse of notation, the solution by 'If) 

(13.19) 

where' denotes the derivative with respect to the slow time r. Let us write 
the solution of this equation in the form 

(13.20) 

where aR(r) and aL(r) are unknown complex-valued functions depending on 
the slow time rand 'lfe = IIe'lf, IIe is the projection onto the space orthogonal 
to the two-dimensional space spanned by the two "single-well" states <PR and 
<PL, i.e., 

By substituting 1P by (13.20) in equation (13.19) we obtain that aR, aL and 
'lfe must satisfy the system of differential equations 

(13.21) 

where 
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and 

and where r Rand T L are given by 

where 

rR = ('PR, 1'l/J1 2'l/J) -la~laR('PR' I'PRI2'PR) 
= ('PR, 1'l/J12(/>L) + aR(I'PRI2, 1<1>£12 + aR'PR¢L + aRrpR</>L) , 

TL = ('PL, 1'l/J1 2'l/J) -lailaL('PL, I'PLI2'PL) 

= ('PL, 1'l/J12<pR) + aL(I'PLI2, I<PRI2 + aL'PL¢R + aLrpL<PR) , 
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(13.22) 

(13.23) 

(13.24) 

We denote by two-level approximation the solutions bR and bL of the sys­
tem of ordinary differential equations 

(13.25) 

obtained by neglecting the remainder terms TR and TL in (13.22) and (13.23). 
It is easy to see that the solution of this system satisfies the conservation law 

IbR(rW + Ih(rW = IbR(OW + Ih(O)1 2 

= laR(OW + laL(O)1 2 = 1, 
(13.26) 

and, moreover, it is also possible to explicitly compute the solution of (13.25) 
by means of elliptic functions. In particular, let us introduce the imbalance 
function and the relative phase, respectively defined as 

z(r) = IbR(r)1 2 -lbL(rW 

(}(r) = arg(bR(r)]- arg(bL(r)]. 
(13.27) 

Then it follows that these two functions have to satisfy the system of ordinary 
differential equations 

{ 
z' = 2Vf=Z2 sin{} 

{}' 2z = - cos{} - 'fJz 
Vf=Z2 ' 

which admits the conservation law 
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1= ~cos()- bz2. (13.28) 

Hence, Z(T) satisfies the differential equation of the first order 

solution of which is given by means of the elliptic Jacobian functions (see 
§7.10 [3]): 

{ 
Acn [A7](T - To)/2k, k] , 

Z(T) = 
Adn [A7](T - To)/2, 11k], 

if k < 1, 

if k > 1, 

where TO depends on the initial condition, 

and 

2 1 [ 1 + ~I7] 1 
k = 2 1 - J b2 + 1 + 17] . 

(13.29) 

We emphasize that Z(T) periodically assumes positive and negative values if, 
and only if, k < 1. 

13.5.3 Stability of the two-level approximation 

Our main result consists in proving the stability of the two-level approximation 
when we restore the remainder terms rR and rL in equation (13.25). 

We prove that: 

Theorem 2. Let'l/Jc = IIc'l/J, aR(T) = ('l/J, CPR) and aL(T) = ('l/J, CPL), where'l/J 
is the solution of equation (13.19), let bR(T) and h(T) be the solution of the 
system of ordinary differential equations (13. 25}. Let E satisfy the condition 
(13.9). Then, for any T' > 0 there exists a positive constant C independent of 
E, Ii and T such that: 

for any Ii E (0, Ii*] and for any T E [0, T']. 

Proof. For the sake of simplicity, hereafter, let us drop the parameters where 
this does not cause misunderstanding. The equations (13.21) and (13.25) can 
be written as 

A' = F(A) + Rand B' = F(B), A(O) = B(O) = a(O), (13.31) 
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A= (aR ), B= (bR ), R= -i~ (rR), aL bL W rL 

F(A) = -i (-aL + 17laRI~aR) . 
-aR + 17laLI aL 

By definition it immediately follows that the function F : 8 2 ----+ 0 2 satisfies 
the Lipschitz condition: 

!P(A) - F(B)I :::; LIA - BI, L = 1 + 317. (13.32) 

We give now the following estimate of the norm of the remainder term 'l/Jc. 
Let 

(3 = max[cE,w] = wmax[l,17] "'"' e- p / li 

where 17 is the nonlinearity parameter defined in (13.9). Let 'l/Jc = IIc'I/J where 
'I/J is the solution of equation (13.19); it satisfies the following uniform estimate 

(13.33) 

for some positive constant 0 independent of n, E and t. 
We emphasize that here we actually make use of the essential assumption 

on the dimension d = 1; for the proof of this result we refer to [12]. 
From this inequality, by the definition of the remainder terms r R,L and 

from the fact that any vector 'PR and 'PL is practically localized on just one 
well, it immediately follows that for any fixed T' > 0 there exists 0 > 0 such 
that 

2 Cli- 1 / 2 , 
max [lrRI, IrLI] :::; O(3n- e , \;IT E [0, T]. 

In fact, let us only consider the term IrRI, the other term IrLI could be treated 
in the same way. By definition and since max[laRI, laLl] :::; 1, it follows that 

IrRI :::; + I ('PR'PL, 1'l/J12) I 
+ I ('PRI'l/J12, 'l/Jc)1 

+ 1(I'PRI2, l<hl2 + aR'PR(h + i'iR'PR<h) I 

(13.34) 

(13.35) 

(13.36) 

and we estimate separately each term. Indeed, one has that (for the details 
see [12] again) 

and 

I ('PR'PL, 1'l/J12) I :::; II'PR'PLlloo '11'l/J2Ih :::; Ow, 

1('PRI'l/J12,'l/Jc)1 :::; II'PRlloo ·11'l/J211·II'l/Jcll:::; 0(3n-2eCli-l/2 
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1(I<pRI 2 , 1(/1£1 2 + aR<PR¢L + i'iRCPR 4>dI 
:::; G [II <PR<PL 1100 + lI<Phllooll'l/JcI1 2 + II<pR<PLilooll'l/Jcll] :::; Gw. 

Collecting all these results we finally obtain the estimate of the remainder 
term rR. 

The proof of the theorem is almost done. Indeed, equations (13.31) can be 
rewritten in the integral form: 

A(T) = A(O) + foT F[A(s)]ds + foT Rds 

and 

B(T) = B(O) + foT F[B(s)]ds, 

from which it follows that for any T E [0, T'], 

IA(T) - B(T)I :::; foT IF[A(s)] - F[B(s)]1 ds + foT IRlds 

iT Ej3/i-2eCli-l/2 
:::; a IA(s) - B(s)1 ds + bT, a = L, b = G--'-----

o w 

from the previous estimates. From this inequality and by means of Gronwall's 
lemma [7] we finally obtain that 

proving (13.30), since 

w + E < L = 1 + 3'11 < G' w + E, 
G'w - ./ - W 

for some G' > 0, which implies that tw :::; G for some G > 0. 

13.6 Destruction of the beating motion for large 
nonlinearity 

Let us consider the motion of the center of mass defined here as 

o 

where 9 E G(R)nL2(R) is a given bounded function such that g( -x) = -g(x). 
We have that 



13 Time-dependent Schrodinger Equations with Double-Well Potential 171 

zD 

\ 
\ .' 
\.\ , 
\ \ 
\ \ 
\. , 
\ , 
'. , , \ 

\ \ 
\. \ 
\ \ 
\ \ , ; 

, ! 
, j 
V 
j, 

... / \, 
, \ I 

"-.J/ V 
2 

I 

/ 

I 
I 

/ 

/ 
I 

\ / : / 

\I 
/\ 

/ 

4 

'to 

/ 

I 
I 

I 

'-' 

, 
, 

\ j 
y 
!\ , , , 

, \ 

6D 

\ 
\ 

Fig. 13.1. Destruction of the beating motion of the center of mass for nonlinearity 
larger than a critical value. Here, we plot the imbalance function z( T) for different 
values of the nonlinearity parameter 'TJ. For 'TJ = 0 (point line) and 'TJ = 3.8 (broken 
line) we still have a beating motion; in contrast for 'TJ larger than the critical value 
4, e.g., 'TJ = 6.5 (full line), the beating motion is forbidden. 

where the remainder term r satisfies the uniform estimate 

If we denote by Z(T) the imbalance function defined in (13.29), then in the 
semiclassical limit it follows that 

hence 

Then we have that: 
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Theorem 3. Let k2 be defined as in (13.29), which depends on the initial 
wavefunction 'ljJ0. For any T' > ° fixed and in the semiclassical limit, the 
function (X) T is, up to a small remainder term, a periodic junction for any 
T E [0, T'l. In particular, if: 

i) k 2 < 1, then (g)T periodically assumes positive and negative values (i.e., 
the beating motion still persists); 

ii) k 2 > 1, then (g)T has a definite sign (i.e., the beating motion is forbidden). 

Remark. Let us close by emphsizing that when the wavefunction is initially 
prepared on just one well, e.g., 'ljJ0 = <PR, then 

I = -b and 

Therefore, from the theorem above it follows that for 1171 larger than the crit­
ical value 4, the beating motion is forbidden (see, for instance, Fig. 13.1, for 
different values of 17: 17 = 0, 3.8 and 6.5) proving thereby the proposition. 
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Classical and Quantum: Some Mutual 
Clarifications 
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CH-1211 Geneva 4, Switzerland 

SUIDIDary. This paper presents two unconventional links between quantum and 
classical physics. The first link appears in the study of quantum cryptography. In the 
presence of a spy, the quantum correlations shared by Alice and Bob are imperfect. 
One can either process the quantum information, recover perfect correlations and 
finally measure the quantum systems; or, one can perform the measurements first 
and then process the classical information. These two procedures tolerate exactly the 
same error rate for a wide class of attacks by the spy. The second link is drawn be­
tween the quantum notions of "no-cloning theorem" and "weak-measurements with 
post-selection" , and simple experiments using classical polarized light and ordinary 
telecom devices. 

14.1 Introduction 

The boundary between classical and quantum physics is a fascinating region, 
that in my opinion, in spite of several important explorations, has not delivered 
its deepest treasures. I will try to motivate this optimistic view on the future of 
research in physics by presenting some remarkable links between "quantum" 
and "classical" physics. 

We have often read in old textbooks or popular books that quantum 
physics is the physics of the "infinitely small", while the "everyday world" 
is governed by classical physics. This might be considered, and probably is, a 
very naive view. Bohr maintained that the distinction between the classical 
measurement device and the quantum measured system is arbitrary but is 
necessary for our understanding. The current view of the physicists working 
in the field, is that everything is quantum, the classicality emerging through 
interactions (the "everyday world" appears then to be classical because of the 
huge amount of interacting particles involved). This last view, the emergence 
of classical behavior simply because of interaction, is nowadays unchallenged 
by observation: no phenomenon can be produced as an evidence of its false-

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
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ness. Thus, it is a satisfactory description for any practical purpose, although 
one may question its validity as a Weltanschauung. 

The links between "classical" and "quantum" that am I going to present 
here are of a different nature: they do not seem to arise simply from many 
interacting quantum objects that together exhibit classical behavior. The first 
link (Section 14.2) deals with quantum cryptographyl. The second link (Sec­
tion 14.3) shows how typical "quantum" notions (namely, the no-cloning the­
orem and the idea of weak measurements with post-selection) manifest them­
selves in phenomena that can be described using an entirely classical theory 
of light, and that can be revealed using the devices of ordinary telecommuni­
cation networks. 

14.2 Classical bounds in quantum cryptography 

Quantum cryptography is nowadays the most developed application of quan­
tum information theory [9]. A more exact name for quantum cryptography 
would be quantum key distribution (QKD): the goal of the quantum processing 
is to establish a secret key between two distant partners, Alice and Bob, avoid­
ing the attacks of a possible eavesdropper Eve. Once a common secret key is 
established, Alice and Bob will encode the message using classical secret-key 
protocols, known to be unbreakable even if the message is sent on a public 
authenticated channel. 

I 
0 I quantum channel 

ID-@ I I, I 
Alice Eve Boh 

Fig. 14.1. The scheme of the QKD implementation with entangled states. Alice 
prepares a maximally entangled state 1<1». She measures one particle (here, a two­
level system) and forwards the other one to Bob. The spy Eve accesses the quantum 
channel and tries to obtain some information by interacting with the flying particle. 

We describe (Fig. 14.1) an implementation of QKD that uses a source of 
entangled states, and for clarity we speak of two-dimensional quantum systems 
(qubits). Alice has a source that produces a pair of qubits in the maximally 
entangled state 

1 This was the topic of my talk during the Workshop Multiscale Methods in Quan­
tum Mechanics, Rome, 16-20 December, 2002. 
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1 
Icp) AB = V2 (I + z) 0 1 + z) + 1 - z) 0 1 - z)) 

1 
= V2 (I + x) 01 + x) - 1- x) 01 - x)) . (14.1) 

She keeps one qubit and forwards the other one to Bob. In the absence of Eve: 
(i) if Alice and Bob measure the same observable, either cr z or crx, they obtain 
the same result, the same random bit; (ii) if one of the partners measures 
crz and the other crx, they obtain completely uncorrelated random bits. This 
protocol is repeated a large number of times. At the end, the items in which 
Alice and Bob have performed different measurements are discarded later by 
public communication on the classical channel, leaving Alice and Bob with a 
list of perfectly correlated random bits: the secret key. This is what happens 
in the absence of the spy. 

Eve can in principle do whatever she wants on the quantum channel. The 
security of QKD comes from the fact that, since any measurement or interac­
tion perturbs the state, Eve's intervention cannot pass unnoticed: Alice and 
Bob know that someone is spying. Two situations are then possible. (I) Eve 
has got a "small" amount of information; in this case, Alice and Bob can 
process their data in order to obtain a shorter but completely secret key. Such 
classical protocols are the object of important studies in classical information 
theory. (II) Eve has got "too much" information; then Alice and Bob discard 
the whole key. This may seem a failure, but it is not: it simply means that 
the spy has no other alternative than cutting the channel and forbid any com­
munication; and this achieves the goal of cryptography, because no encrypted 
message is ever sent that the spy could decode. 

It is then important to quantify the words "small" and "too much" in the 
previous discussion: what is the amount of Eve's information that Alice and 
Bob can tolerate, that is, at what critical value are they obliged to discard 
the whole key? Here is where remarkable links appear between classical and 
quantum information. 

'¥(A,B,E) -..... <l>(A,B)",(E) 

~ l 
P(A,B,E) - .... P'(A,B)P(E) 

Fig. 14.2. Possible ways for the extraction of a secret key. One starts from a global 
quantum state w(A, B, E) of Alice, Bob and Eve, and wants to end up with a clas­
sical secret key PI(A, B)P(E) with PI(A = B) = 1. Horizontal arrows: distillation, 
quantum or classical; vertical arrows: measurement of the quantum system, leading 
to a classical probability distribution. 



178 V. Scarani 

We refer to Fig. 14.2. Because of Eve's intervention, before any measure­
ment the quantum system is in a three-party entangled state of Alice-Bob-Eve, 
l]fABE. Alice and Bob on their own share the mixed state PAB, obtained from 
l]f ABE by partial trace on Eve's system. Two procedures are then possible: 

(a) The one that we described above: all the partners make a measure­
ment, ending in a classical probability distribution peA, B, E). Then, Alice 
and Bob apply classical protocols (advantage distillation) in order to extract a 
shorter secret key, that is, a shorter list of bits distributed according to a new 
distribution PI(A, B)P'(E) in which Eve is uncorrelated and Pl(A = B) = 1. 

(b) If the state PAB is entangled, Alice and Bob can delay any measurement 
and process many copies of PAB, to obtain a smaller number of copies of 
l<ti) AB -and in this case, automatically Eve is uncorrelated. This procedure 
is known as entanglement distillation, and is one of the fundamental processes 
of quantum information. Once Alice and Bob have l<ti) AB' the measurement 
provides them immediately with the secret key. 

Having understood this, we can state the main results that have been 
obtained: 

• Classical advantage distillation of peA, B, E) is possible for bits if and only 
if quantum entanglement distillation is possible for the state PAB (which 
is equivalent to asking that P AB be entangled in the case of qUbits). This 
was demonstrated by Gisin and Wolf when Eve uses the so-called optimal 
individual attack [10], and has been recently extended to all individual 
attacks [1]. 

• The same holds for dits (d-valued random variables) and qudits (d­
dimensional quantum systems), under Eve's individual attack that is sup­
posed to be the optimal one [2, 6]. The demonstration is more involved 
because not all entangled states of two qudits are distillable. 

• If P AB is entangled enough to violate a Bell inequality, then a secret key 
can be extracted from peA, B, E) in an efficient way, that is, using only 
one-way communication. This was first proved in Ref. [8]; for the state-of­
the-question, see [2]. A similar result holds for a multi-partite scheme of 
key distribution known as "quantum secret sharing" [11]. 

Mainly because Eve's optimal attack is not generally known, there are 
still several open questions. The most important ones are reviewed in the last 
section of Ref. [2]. 

This concludes my first "unconventional" link between the classical and 
the quantum worlds: at the level of information processing, specifically of the 
extraction of a secret key from an initially noisy distribution/state, the critical 
parameters are exactly the same, irrespective whether the purification of the 
correlations is performed at the quantum or at the classical level. Moreover, a 
typically quantum feature such as the violation of Bell's inequalities is related 
to the efficiency of the classical key-extraction procedure. 
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14.3 Quantum physicists meet telecom engineers 

This section is devoted to another kind of unconventional link between the 
classical and the quantum world. I prefer to let the examples speak first and 
draw my conclusions later. 

14.3.1 No-cloning theorem 

The first example concerns the no-cloning theorem, a well-known primitive 
concept of quantum information [14]. In its basic form, it states that no evo­
lution (or more generally, no trace-preserving completely positive map) can 
bring I'¢) 010) onto I'¢) 01'¢) for an unknown state I,¢)· 

This no-go theorem has motivated the search for an optimal quantum 
cloner. given that perfect cloning is impossible, what is the best one can do? 
Optimal cloners have indeed been found and widely studied; all the meaning­
ful references can be found in any basic text on quantum information, e.g., 
[4]. In the course of these investigations, a sharp link has been found between 
optimal cloning and the well-known phenomenon of amplification of light [12]: 
stimulated emission of light in a given mode (perfect amplification, or cloning) 
cannot be done without spontaneous emission (random amplification). Sup­
pose that N photons enter an amplifier, and at the output one selects the cases 
in which exactly M > N photons are found: it turns out that this process 
realizes the optimal quantum cloning from N to M copies. The fidelity of the 
amplification is the ratio between the mean number of photons found in the 
initial mode (i.e., the mean number of correct copies) and the total number 
of copies, M here. The optimal fidelity is found to be 

p'pt _ MN+M+N 
N-->M - M(N + 2) 

(14.2) 

We realized an experimental demonstration of optimal cloning using the prin­
ciple just described to clone the polarization of light [7]. Polarized light of 
intensity /-Lin is sent into a conventional fiber amplifier (exactly as those that 
are used in telecommunications); at the output, we have an intensity /-Lout; we 
separate the input polarization mode from its orthogonal, and measure the 
fidelity. The theoretical prediction for this experiment is 

:F Q /-Lout /-Lin + /-Lout + /-Lin 
J.Lin --'I-/-Lout = Q 2 

/-Lout/-Lin + /-Lout 
(14.3) 

where Q E [0, 1] is a parameter related to the quality of the amplification 
process. The experimental results are in excellent agreement (Fig. 14.3). 

It is striking to notice that for Q = 1, formula (14.3) is exactly the same 
as (14.2). Its meaning is however rather different. In our experiment, every­
thing is classical: the laser light is in a coherent state, therefore it can be 
described by a classical field; the amplifier is "classical" in the sense that it 
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transforms coherent states into coherent states. The quantities /-Lin and /-Lout 

that appear in eq.(14.3) are not photon numbers as the Nand M of eq. (14.2), 
but mean values, that have been measured using an intensity detector. As I 
said above, all the devices (source, fibers, amplifier, detectors) are typical of 
telecom engineering. 
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Fig. 14.3. Inset: pout as a function of pin; the linear fit shows that we are far from 
the saturation of the amplifier. Main figure: fidelity as a function of pin. Solid line: 
Q = 0.8, best fit with eq. (14.3). Dotted lines: upper: Q = 1 (optimal cloning); lower: 
Q = a (no cloning). From Ref. [7]. 

14.3.2 Weak measurements with post-selection 

The second example is related to the meaning and physics of the measurement 
process, a widely debated topic of the foundations of quantum mechanics. In 
this context, Aharonov, Vaidman and others introduced the notion of weak 
measurement with post-selection [3], sometimes called the "two-state formal­
ism" of quantum mechanics. The authors' intention in studying this formalism 
is strongly motivated by interpretational issues; that is why most physicists 
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tend to look at these concepts as artificial ones, introduced on purpose, and 
that do not add anything to physics itself. To date, apart from some exper­
iments that were designed on purpose, only some complex tunnelling phe­
nomena and a puzzling result of a cavity-QED experiment [13] had received 
clarification through this formalism. 

We have found however [5] that this formalism does apply to something 
that exists and is extremely widespread: once again, the optical telecommu­
nication network. Telecom engineers are performing weak measurements with 
post-selection in basically all that they do! A modern optical network is com­
posed of different devices connected through optical fibers. With respect to po­
larization, two main physical effects are present. The first one is polarization­
mode dispersion (PMD): due to birefringency, different polarization modes 
propagate with different velocities; in particular, the fastest and the slowest 
polarization modes are orthogonal. PMD is the most important polarization 
effect in the fibers. The second effect is polarization-dependent loss (PDL), 
that is, different polarization modes are differently attenuated. PDL is negli­
gible in fibers, but is important in devices like amplifiers, wavelength-division 
multiplexing couplers, isolators, circulators etc. 

8. 

PMD fiber ;9l;A .. 
Fig. 14.4. When a polarized pulse passes through a PMD fiber, the polarization 
mode H (parallel to the birefringency axis in the Poincare sphere) and its orthog­
onal V are separated in time. A measurement of the time-of-arrival (TOA) is a 
measurement, strong or weak, of the polarization. 

The first piece of the connection we want to point out is the following: a 

PMD element performs a measurement of polarization on light pulses (Fig. 
14.4). In fact, PMD leads to a separation (iT of two orthogonal polarization 
modes in time. If (iT is larger than the pulse width te , the measurement of the 
time of arrival is equivalent to the measurement of polarization - PMD acts 
then as a "temporal polarizing beam-splitter" . However, in the usual telecom 
regime (iT is much smaller than te. In this case, the time of arrival does not 
achieve a complete discrimination between two orthogonal polarization modes 
anymore; but still, some information about the polarization of the input pulse 
is encoded in the modified temporal shape of the output pulse. We are in 
a regime of weak measurement of the polarization. The formulae introduced 
by Aharonov and co-workers are recovered by measuring the mean time of 
arrival, that is, the "center of mass" of the output pulse. 

The second piece of the connection defines the role of PDL: a PDL ele­
ment performs a post-selection of some polarization modes. Far from being an 
artificial ingredient, post-selection of some modes is the most natural situa­
tion in the presence of losses: one does always post-select those photons that 
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have not been lost! This would be trivial physics if the losses were indepen­
dent of any degree of freedom, just like random scattering; but in the case 
of PDL, the amount of losses depends on the meaningful degree of freedom, 
polarization. An infinite PDL would correspond to the post-selection of a pre­
cise polarization mode (a pure state, in the quantum language); a finite PDL 
corresponds to post-selecting different modes with different probabilities (a 
mixed quantum state). 

In summary: by tuning the PMD, we can move from weak to strong mea­
surements of polarization; the PDL performs the post-selection of a pure or 
of a mixed state of polarization. Any telecom network, devices connected by 
fibers, is performing "weak measurements with post-selection". Just as in the 
example of quantum cloning discussed above, all this can be (and is actually) 
described by the classical theory of light. 

14.3.3 The fundamental role of entanglement 

We have shown that two results thought to be "typically quantum", namely 
the no-cloning theorem and the theory of weak measurements, can be demon­
strated with classical light and standard telecom devices. The key for a deep 
understanding is the conceptual distinction between two superposition princi­
ples: the classical one, which is dynamical (fields superpose because Maxwell's 
equations are linear); and the quantum one, which is kinematical: states are 
superposed. These two superposition principles, at the level of interpretation, 
have a completely different meaning. However, it may difficult to tell which is 
acting in a real situation. 

I would like to extend this observation to stress the fundamental role of en­
tanglement. In the traditional textbooks of quantum mechanics, entanglement 
has been considered a kind of a side-issue, and in any case a derived notion: 
if a composed quantum system is described by a tensor product of Hilbert 
spaces, and if the superposition principle has to hold in this total space, then 
non-factorizable states must appear. In other words, traditionally one starts 
with the quantum physics of the single system, states the superposition prin­
ciple in this context, and derives the existence of entanglement a posteriori. 
While this may be an unavoidable approach for a didactic course, I don't 
think that the view so conveyed is really the whole story. Students meeting 
the Stern-Gerlach experiment in their "quantum physics" course fail to realize 
that they have studied its analog with light polarization some months before, 
in their lectures on "classical electrodynamics". But what does it mean? Is a 
spin ~ classical? Or is polarization a quantum intruder in the classical theory 
of light? 

The solution comes by noticing that the Stern-Gerlach experiment is not 
the only experimental result involving the spin! The spins of the electrons 
explain the Mendeleev table via the Pauli exclusion principle, a principle that 
has no classical analogue; different cross-sections have been observed in scat­
tering experiments, according to whether the full spin was in a symmetric or 
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in the anti-symmetric state; spins couple coherently to one another in nuclear 
magnetic resonance, or to the polarization of photons in atomic physics, etc. 
The list may rapidly become very large. But if we give a second glance to this 
list, we notice that it contains only phenomena in which two or more quan­
tum systems are involved. And if we finally notice that "coherent interaction" 
means "entanglement" , we have the solution: we know that a single spin ~ is a 
quantum object because we observe the consequences of its entanglement with 
other spins or other degrees of freedom. The same can be said for polarization. 

The difference between the "classical superposition principle of waves" and 
the "quantum superposition principle of states" lies in the fact that only the 
second gives rise to entanglement. If we had only the quantum physics of 
the single particle (the Stern-Gerlach experiment, Young's double-slit, etc.), 
the most economic solution would be to adopt once for all the de Broglie­
Bohm view of a real particle guided by a hidden wave-and we'd lose all the 
fascinating view of the world that is inspired by quantum physics. 

14.4 Conclusion 

The main message I wanted to convey is that "classical" and "quantum" 
physics - or information - are tightly connected. Specifically, I have discussed 
how in the analysis of the security of quantum cryptography, we discover 
numbers that come from the analysis of the security of classical cryptography 
(Section 14.2); and how experiment with classical light and standard tele­
com devices can provide demonstrations of the no-cloning theorem and of the 
theory of weak measurements with post-selection (Section 14.3). 

In this text, I reported on results obtained at the University of Geneva 
under the direction of Prof. Nicolas Gisin, together with Antonio Acfn, Nicolas 
Brunner, Daniel Collins, Sylvain Fasel, Gregoire Ribordy and Hugo Zbinden. 
I also benefited from several discussions with Franc;ois Reuse and Antoine 
Suarez. 

References 

1. A. Acfn, N. Gisin, L. Masanes, quant-ph/0303053, accepted in Phys. Rev. Lett. 
2. A. Acfn, N. Gisin, V. Scarani, quant-ph/0303009, accepted in Quant. Inj. Com­

put. 
3. Y. Aharonov, D. Albert, L. Vaidman, Phys. Rev. Lett. 60 (1988), 1351. Two re­

cent reviews: Y. Aharonov, L. Vaidman, quant-ph/0l05101 (2001), published in 
Time in Quantum Mechanics, J. G. Muga, R. Sala Mayato and I. L. Egusquiza, 
eds., Lecture Notes in Physics, Springer Verlag, 2002; and A.M. Steinberg, 
quant-ph/0302003 (2003). 

4. D. Bouwmeester, A. Ekert, A. Zeilinger (eds.), The Physics of Quantum Infor­
mation, Springer-Verlag, Berlin, 2000. 



184 V. Scarani 

5. N. Brunner, A. Acin, D. Collins, N. Gisin, V. Scarani, quant-ph/0306108, ac­
cepted in Phys. Rev. Lett.; N. Brunner, quant-ph/0309055. 

6. D. Bruss, M. Christandl, A. Ekert, B.-G. Englert, D. Kaszlikowski, C. Macchi­
avello, Phys. Rev. Lett. 91 (2003), 097901. 

7. S. Fasel, N. Gisin, G. Ribordy, V. Scarani, H. Zbinden, Phys. Rev. Lett. 89 
(2002), 107901. 

8. C. Fuchs, N. Gisin, R.B. Griffiths, C.-S. Niu, A. Peres, Phys. Rev. A 56 (1997), 
1163. 

9. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys 74 (2002), 145. 
10. N. Gisin and S. Wolf, Phys. Rev. Lett. 83 (1999), 4200. 
11. V. Scarani, N. Gisin, Phys. Rev. Lett. 87 (2001), 117901; idem, Phys. Rev. A 

65 (2002), 012311. 
12. C. Simon, G. Weihs, A. Zeilinger, Phys. Rev. Lett. 84 (2000), 2993; J. Kempe, 

C. Simon, G. Weihs, Phys. Rev. A 62 (2000), 032302. 
13. H. Wiseman, Phys. Rev. A 65 (2002),032111. 
14. W.K. Wootters, W.H. Zurek, Nature 299 (1982), 802; P.W. Milonni, M.L. 

Hardies, Phys. Lett. A 92 (1982), 321. 



15 

Localization and Delocalization for 
N onstationary Models 

P. Stollmann 

Fakultiit fur Mathematik 
Technische Universitiit Chemnitz 
D-09107 Chemnitz, Germany 

15.1 Introduction: Leaving stationarity 

In recent years there has been considerable progress concerning mathemat­
ically rigorous results on the phenomenon of localization. We refer to the 
bibliography where we chose some classics, some recent articles as well as 
books on the subject. However, all these results provide only one part of the 
picture that is accepted since the groundbreaking work [4, 79] by Anderson, 
Mott and Twose: one expects a metal insulator transition. This effect is sup­
posed to depend upon the dimension and the general picture is as follows: 
Once translated into the language of spectral theory there is a transition from 

lized 
tate 

E t nded 
tate 

Fig. 15.1. Metal insulator transition. 

a localized phase that exhibits pure point spectrum (= only bound states = 
no transport) to a delocalized phase with absolutely continuous spectrum 
(= scattering states = transport). What has been proven so far is the occur­
rence of the former phase, well known under the name of localization. The 
missing part, delocalization, has not been settled for genuine random models. 

There is need for an immediate disclaimer or, put differently, for an expla­
nation of what I mean by "genuine". 

An instance where a metal insulator transition has been verified rigorously 
is supplied by the almost Mathieu operator, a model with modest disorder 
for which the parameter that triggers the transition is the strength of the 
coupling. As references let us mention [6,40, 57, 58, 59, 73] where the reader 
can find more about the literature on this true evergreen. Quite recently it 

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
© Birkhäuser Boston 2004
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has attracted a lot of interest especially among harmonic analysts; see [7, 8, 
9, 10, 11, 12, 13, 14, 15, 44, 82] 

The underlying Hilbert space is [2(2). Consider parameters a, A, () E R 
and define the self-adjoint, bounded operator ha,A,O by 

(ha,A,ou)(n) = u(n + 1) + u(n - 1) + A cos(27f(oon + O))u(n), 

for u = (u(n))nEZ E [2(2). 
Note that this operator is a discrete Schrodinger operator with a potential 

term with the coupling constant A in front and the discrete analog of the 
Laplacian. For irrational a the potential term is an almost periodic function 
onZ. 

Basically, there is a metal insulator transition at the critical value 2 for the 
coupling constant A. Since these operators are very close to being periodic, 
one can fairly label them as poorly disordered. Moreover, the proof of delo­
calization boils down to the proof of localization for a "dual operator" that 
happens to have the same form. In this sense, the almost Mathieu operator is 
not a genuine random model. 

A second instance, where a delocalized phase is proven to exist is the Bethe 
lattice. See Klein's paper [61]. 

Quite recently, an order parameter has been introduced by Germinet and 
Klein to characterize the range of energies where a multiscale scenario provides 
a proof of a localized regime, [42]. In their work the important parameter is 
the energy. 

However, as we already pointed out above, for genuine random models, 
there is no rigorous proof of the existence of a transition or even of the ap­
pearance of spectral components other than pure point, so far. This is a 
quite strange situation: the unperturbed problem exhibits extended states 
and purely a.c. spectrum but for the perturbed problem one can prove the 
opposite spectral behavior only. 

In this survey we are dealing with models that are not transitive in the 
sense that the influence of the random potential is not uniform in space. The 
precise meaning of this admittedly vague description differs from case to case 
but will be clear for each of them. 

15.2 Sparse random potentials 

The term sparse potentials is mostly known for potentials that have been 
introduced in the 1970s by Pearson [81] to construct Schrodinger operators on 
the line with singular continuous spectrum. To use similar geometries to obtain 
a metal insulator transition can be traced back to Molchanov, Molchanov and 
Vainberg [77, 78] and Krishna [70, 71], see also [63, 64, 72]. We have been 
strongly influenced by the paper [49] from which we take the random operator 
in £2(Rd ), Model I: 
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H(w) = -..:1 + Vw, where Vw(x) = ~ ~k(w)f(x - k), 
kEZ'" 

f :::; 0 is a compactly supported single site potential and the ~k are independent 
Bernoulli variables with Pk := 1P'{~k = 1}. 

To understand the appearance of a metallic regime, we recall the following 
facts from scattering theory: 

We write -..:1 = Ho so that the operators we are interested in can be 
written as H = Ho + V. By O'ac(H) we denote the absolutely continuous 
spectrum, related to delocalized states. 

Theorem 1 (Cooks criterion) If for some To > 0 and all ¢ in a dense set 

['XJ IIVe-itHo¢lldt < 00, (*) 
lTo 

then [L := limt--+ooeitHe-itHo exists and, consequently, [0,00) C (Yac(H) , 
i.e., there are scattering states for H and any nonnegative energy. 

The typical application rests on the fact that (*) is satisfied if 

!V(x) I :::; G(l + Ixl)-(l+€), (**) 

a condition that obviously fails to hold for almost every Vw provided the Pk 
are not summable. However, the following nice result holds; see Hundertmark 
and Kirsch [49] who also provided the absolutely correct name: 

Theorem 2 (Almost surely free lunch theorem) Assume that 

Then Vw satisfies Cook's criterion for a.e. w. 

The proof is so elegant and short that we can not resist to reproduce it 
here. 

Proof. 

IE (l~ l!Vwe-itHo¢lldt) 

1 

= l~ IE (1 Vw(x)2Ie-itHO¢(x)12dX) "2 dt 

1 

= l~ (IE 1 Vw(x)2Ie-itHO¢(XWdX) "2 dt 

:::;l~ (1 IE(Vw (X)2) le-itHO¢(XWdX]) ~ dt 

= roo IIW(x)e-itHo¢lldt 
lTo 

o 
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One can apply this result if the Pk decay fast enough to guarantee sufficient 
decay of W(x). On the other hand one wants to have that L-kPk = 00, since 
otherwise Vw has compact support a.s. by the Borel-Cantelli Lemma. 

For fixed d 2: 3 and ~ + ~ < a < d and Pk rv k- o one can moreover 
control the essential spectrum below 0 as done in [49]: the negative essential 
spectrum consists of a sequence of energies that can at most accumulate at 
o. Therefore, the negative spectrum is pure point. This can be summarized in 
the following picture: 

Localized States Extended States 

+ ?????????????? 
Fig. 15.2. The spectral picture for the sparse model I 

We refer the reader to [49] for more on sparse random potentials, especially 
for models for which the negative spectrum has a richer structure and contains 
intervals. 

ReIllarks 3 In [1'l} we prove absence of an (absolutely) continuous spectrum 
outside the spectrum of the unperturbed operator for certain random sparse 
models reminiscent of Model I above and Model II from /49} but considerably 
more general. We use the techniques from [52, 90, 91j. 

15.3 Random surface models 

Consider the following self-adjoint random operator in L2(l~d) or £2(Zd), ~d = 
~rn X ~d-rn: 

H(w) = -..1 + Vw, where Vw(x) = L qk(w)f(x - (k, 0)), 
kE:l;n 

the qk are i.i.d. random variables and f 2: 0 is a single site potential that 
satisfies certain technical assumptions. This leads to the following geometry 
characterizing random surface models. Sometimes the upper half-plane is con­
sidered only. 

There is a lot of literature, mostly on the discrete case, using a decompo­
sition into a bulk and a surface term see; [5, 18, 21, 46, 50, 51, 54, 53, 55, 56]. 

The moral of the story is the appearance of a metal insulator transition 
at the edges of the unperturbed operator. We now concentrate on the contin­
uum case, where we only know of [16, 49] as references. The existence of an 
a.c. component is proven in [49]. In the following, we present the result from 
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[16], giving strong dynamical localization. Similar but somewhat different re­
sults have been announced in [49]. As discussed there, an additional Dirichlet 
boundary condition "stabilizes" the spectrum so that the appearance of a 
negative spectrum requires a certain strength of the random perturbation. 
Therefore, proving localization at negative energies is easier (compared to the 
case without Dirichlet boundary conditions) since one is automatically dealing 
with a "large coupling" regime. 

In [16], no use is made of an additional Dirichlet b.c. and we have the 
following picture: 

Fig. 15.3. A typical realization of a continuum random surface potential. 

It is not hard to see that 

O"(H(w)) = [Eo, 00) where Eo = inf 0"( -..1 + qrnin . fper), 

and 

f per = 2:= f(x - (k, 0)) 
kE7l. rn 

denotes the periodic continuation of f along the surface. Near the bottom of 
the spectrum Eo one expects localization, i.e., suppression of transport as is 
typical for insulators. For nonnegative energies one expects extended states. 
To stress the existence of a metallic phase let us cite Theorem 4.3 of [49] t 

Theorem 4 Let H(w) be as below. Then we have, for every wED: [0,00) C 
O"ac(H(w)). 

The idea of the proof is that a wave packet with velocity pointing away 
from the surface will escape the influence of the surface potential and is asymp­
totically free. The rigorous implementation of this idea uses Enss' technique 
from scattering theory. 

The model (1) 0 < m < d and points in JRd = JRm x JRd-m are written as 
pairs, if convenient; 

(2) The single site potential f ::::: 0, f E LP(JRd) where p ::::: 2 if d :::; 3 and 
p > d/2 if d > 3, and f ::::: 0" > 0 on some open set U -I=- 0 for some 0" > O. 



190 P. Stollmann 

(3) The qk are i.i.d. random variables distributed with respect to a proba­
bility measure"" on JR, such that supp"" = [qmin,O] with qmin < O. 

We will sometimes need further assumptions on the single site distribution 

(4) "" is Holder continuous, i.e., there are constants C, a> 0 such that 

",,[a, b] ::; C(b - a)O for qmin ::; a ::; b ::; O. 

(5) Disorder assumption: there exist C, T > 0 such that 

Localized States Extended States 

?????????? + ?????????????? 

Fig. 15.4. Conclusion and open problems for the continuum surface model. 

What follows is the main result of [16]. 

Theorem 5 Let H(w) be as above with T > d/2 and assume that Eo < O. 
(a) There exists an E: > 0 such that in [Eo, Eo +E:] the spectrum of H(w) is 

pure point for almost every w E [l, with exponentially decaying eigenfunctions. 
(b) Assume that p < 2(2T - m). Then there exists an E: > 0 such that in 

[Eo, Eo + E:] = I we have strong dynamical localization in the sense that for 
every compact set K C JRd: 

JE{sup IIIXIPe-itH(w) P1(H(w))xKII} < 00. 
t>o 

A consequence is a pure point spectrum in the interval [Eo, Eo + E:] = I. 
Together with the previous result on extended states we get the picture from 
Figure 15.4 that still leaves open some important questions. 

Remarks 6 (1) That we have to assume Eo < 0 was pointed out to us by J. 
Voigt. Since we allow arbitrary m and d - m, a negative perturbation will not 
automatically create a negative spectrum. 

(2) In [17) we will present results that cover the negative spectrum for the 
model above using techniques from [52, 90, 91). So far this works only for 
m = 1 but the proofs allow quite arbitrary background perturbations. 
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On a Rigorous Proof of the Joos-Zeh Formula 
for Decoherence in a Two-body Problem 

A. Teta 
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Summary. We consider a simple one-dimensional system consisting of two particles 
interacting with a J-potential and we discuss a rigorous derivation of the asymptotic 
wave function of the system in the limit of small mass ratio. We apply the result for 
the explicit computation of the decoherence effect induced on the heavy particle in 
a concrete example of quantum evolution. 

In this note we shall briefly discuss the asymptotic form of the wave function 
of a two-particle system in the limit of small mass ratio. 

The interest in this problem is motivated by the analysis initiated by Joos 
and Zeh ([JZ]) of the mechanism of decoherence induced on a heavy particle 
by the scattering of light particles (see also [GF],[T],[BGJKS],[GJKKSZ],[DJ). 

The basic idea for the analysis of the process is that the small mass ra­
tio produces a separation of two characteristic time scales, one slow for the 
dynamics of the heavy particle and the other fast for the light ones. 

Following this line, in [JZ] the elementary scattering event between a light 
and a heavy particle is described by the instantaneous transition 

¢>(R)x(r) -+ ¢(R)(SRx)(r) (16.1) 

where ¢ and X are the initial wave functions of the heavy and the light particle 
respectively and SR is the scattering operator of the light particle when the 
heavy particle is considered fixed in its initial position R. 

In (16.1) the initial state is chosen in the form of a product state, i.e., no 
correlation is assumed at time zero; moreover the final state is computed in a 
zero-th order adiabatic approximation for small values of the mass ratio. 

Formula (16.1) gives a simple and clear description of the scattering event; 
nevertheless the approximation chosen is rather crude in the sense that time 
zero of the heavy particle corresponds to infinite time of the light one and the 
evolution in time of the system is completely neglected. 

In order to restore the time evolution, in [JZ] the formula is modified 
introducing by hand the internal dynamics of the heavy particle. 

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
© Birkhäuser Boston 2004

s



198 A. Teta 

Our aim in this note is to discuss how the complete Joos and Zeh formula, 
i.e., modified taking into account the internal motion of the heavy particle, can 
be rigorously derived from the 8chrodinger equation of the whole two-particle 
system. 

In particular, using the result proved in [DFTJ, we shall write the asymp­
totic form of the wave function of the system approximating the true wave 
function in a specific scaling limit (involving the mass ratio and the strength 
of the interaction) with an explicit control of the error. 

Furthermore we shall apply the result for the analysis of decoherence in a 
concrete example of quantum evolution. 

More precisely, we shall consider an initial state with the heavy particle 
in a coherent superposition of two spatially separated wave packets with op­
posite momentum and the light one localized far on the left with a positive 
momentum. 

Under precise assumptions on the relevant physical parameters (spreading 
and momentum of the light particle, effective range of the interaction, spread­
ing and separation of the wave packets of the heavy particle) we shall derive 
an approximated form of the wave function of the system, describing the typ­
ical entangled state with the wave of the light particle split into a reflected 
and a transmitted part by each wave packet of the heavy particle. 

As a consequence, the reduced density matrix for the heavy particle will 
show unperturbed diagonal terms and off-diagonal terms reduced by a factor 
A less than 1, which gives a measure of the decoherence effect induced on the 
heavy particle. 

Due to a phase shift, the waves reflected by the two wave packets are shown 
to be approximately orthogonal if the separation of the two wave packets is 
sufficiently large and then the factor A can be explicitly computed in terms 
of the transmission probability for the light particle subject to a b-potential 
placed at a fixed position. 

We want to emphasize that, at each step, the approximate formulas are 
obtained through rather elementary estimates with explicit control of the 
error. In this sense the model may be considered of pedagogical relevance for 
the analysis of the mechanism of decoherence. 

Let us introduce the model. The hamiltonian of the two-particle system is 
given by 

(16.2) 

where M and m denote the masses of the heavy and the light particle respec­
tively and ao > 0 is the strength of the interaction. 

The hamiltonian (16.2) is a well-defined self-adjoint and positive operator 
in L2(JR2) (see e.g., [AGH-KH]) and moreover it is a solvable model, in the 
sense that the corresponding generalized eigenfunctions and the unitary group 
can be explicitly computed ([8]). 
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We consider an initial state given in a product form 

1/Jo(r, R) = ¢(R)x(r), ¢, X E S(JR) (16.3) 

where S(JR) is the Schwartz space, and we denote by E = ;.:} the mass ratio 
which is the small parameter of the model. 

We are interested in the asymptotic form of the solution of the correspond­
ing Schrodinger equation 

(16.4) 

when E ~ 0 and Ii, M and the parameter 

mao 
a = ---,r (16.5) 

are kept fixed. Notice that a-I is a length with the physical meaning of an 
effective range of the interaction. 

Rescaling the time according to 

Ii 
T= -t 

M 
(16.6) 

the Schrodinger equation can be more conveniently written as 

.o1/J~ 1 A < 1 ( 1 A J:( R)) 0/'< t-- = --£.J.R 1/J + - --£.J.r + au r - 'f/ OT 2 r E 2 r 
(16.7) 

From (16.7) it is clear that for E ~ 0 the kinetic energy of the heavy particle 
can be considered as a small perturbation. 

The situation is similar to the Born-Oppenheimer approximation, with 
the relevant difference that here the light particle is not in a bound state and 
so it cannot produce any effective potential for the heavy particle. 

Then, for E ~ 0, one should expect a scattering regime for the light particle 
in presence of the heavy one in a fixed position and a free motion for the heavy 
particle. 

In fact, the asymptotics for E ~ 0 of 1/J~ is characterized in the following 
proposition ([DFT]). 

Theorem 1. For any initial state (16.3) and any T > 0 one has 

(16.8) 

where 
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and Ho = - ~ ..1, the symbol - denotes the Fourier transform, st't- is the 
wave operator associated to the one-particle hamiltonian Hx = -~..1 + a8(· -
x), for any x E ~; moreover A, B are positive, time-independent constants 
whose dependence on the strength of the interaction and on the initial state 
are explicitly given. 

We want to apply the result stated in Theorem 1 to the analysis of decD­
herence in a concrete example of quantum evolution. In particular we consider 
an initial state 'l/Jo(R, r) = ¢(R)x(r) of the form 

¢(R) = ~ U:(R) + f;(R») , (16.10) 

(16.11) 

1 (r - ro) . x(r) = g8(r) = v'Jg -8-..... e,qOT, 8, qo > 0, ro < -Ro - a - 8, (16.12) 

f, g E Ca( -1,1), IIfll = IIgll = 1. (16.13) 

From (16.10),(16.11) one sees that the heavy particle is in a superposition 
state of two spatially separated wave packets, one localized in R = - Ro with 
mean value of the momentum Po and the other localized in R = Ro with 
mean value of the momentum -Po. 

From (16.12), the light particle is assumed localized around ro, on the left 
of the wave packet ff, with positive mean momentum qo. 

Moreover, to simplify the computation, ff, f;;, g8 are chosen compactly 
supported and with disjoint supports. 

We expect that in the time evolution of the above initial state, for E -+ 0, 
the light particle will be partly reflected and partly transmitted by the two 
wave packets ff, f;;, which approximately act as fixed scattering centers. 

We shall make precise this statement introducing suitable assumptions on 
the physical parameters of the system. 

In order to formulate the result, we introduce the reflection and trans­
mission coefficient associated to the one-particle hamiltonian Hx (see e.g., 
[AGH-KH]) 

Ta(k) = _ ilkl 
a -ilkl 

(16.14) 

and define the transmitted and reflected part of the wave function of the light 
particle 
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Moreover, we shall assume 

1 
qo» 8' 

1 -» CT. 
Q 
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(16.15) 

(16.17) 

The first assumption in (16.17) simply means that the wave function of the 
light particle is well concentrated in momentum space around qo (notice that 
8-1 is the order of magnitude of the spreading of the momentum). 

The second assumption in (16.17) requires that the effective range of the 
interaction is much larger than the spreading in position of each wave packet 
of the heavy particle and this means that the interaction cannot "distinguish" 
two different points in the supports of If and I;;. 

Then 

Proposition 2. For the initial state (16.10), (16.11), (16.12), (16.13) and 
any T > 0 one has 

(16.18) 

lor any n E N, where c is a numerical constant depending on 9 and 

'IjJ~(r,R) = ~ (e- iTHo I:) (R) [9Y(E- 1T,r) + 9nRO(E-1T,r)] 

+ ~(e-iTHO/;;)(R)[9Y(E-IT,r)+g~O(E-IT,r)]. (16.19) 

Proof. Exploiting the explicit expression of the generalized eigenfunctions of 
Hx (see e.g., [AGH-KH]), for x E supp I!, one has 

[(.!?+.)-lg"nk) = ~! dyg,,(y) (e- ikY +na/k)e-ikXeilkllx-YI) 

= T,Ak)g,,(k)O+(k) + [g,,(k) + e-2ikxno(k)g,,( -k)] O_(k) (16.20) 

where we have used the fact that I x - y I = x - y for x E supp I!, y E supp g", 
the identity 1 + no = To and we have denoted by 0+, 0_ the characteristic 
functions of the positive and negative semi-axis respectively. 

From (16.9),(16.10),(16.11),(16.12),(16.19) we can write 
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'IjJ~(r, R) - 'IjJ~(r, R) 

= ~ei-.f;:r2 !dXe-irHO(R - x)U;(x) + f;(x))Ra ( :1 ) 
2ZE-1T E T 

X [g8 C:1T) B_(r) - e-2ix .-"17" g8 (- E:1T) B+(r)] 

+ ~ J dxe-irHo(R-x)f;(x) (9R C:1T ) -gRRO C:1T )) 

+~ J dxe-irHo(R-x)f;(x) (9R C:1T ) -gJio C:1T )) 

== ((1 + (2 + (3)(r, R) . (16.21) 

Noticing that g&(k) = ei(qo-k)r°y'8g(Jk - Jqo), one has 

II(Iil 2 = ~! dxlf;(x) + f;(xW ! dk IRa (k)1 2 Ig8 (k) B_(k) 

_e-2ixk?iJ (-k) B+(k)j2 

::;! dk(lg8(k)B_(kW + Ig&(-k)B+(k)1 2) 

= 2 roo dzlg(z)1 2 (16.22) 
J8Qo 

which is 0 ((Jqo)-n) for any n E N. Concerning (2 we have 

11(211 2 = ~! dxlf;(x)1 2 ! dkIRa(k)12Ig8(k)12je-2ikx _ e2ikRoj2 

::; 2 sup Ix + Rol2 J dkk2IR a(k)12Ig8(k)12 
XE( -Ro-O",-Ro+O") 

(16.23) 

where we have used the inequality k21Ra (k W ::; 0;2. The estimate for (3 

proceeds exactly in the same way, concluding the proof. 0 

Proposition 2 shows that, under the assumptions (16.17), the wave function 
(16.19) of the whole system takes the form of the typical entangled state 
emerging from an interaction of von Neumann type between a system and an 
apparatus. Here the role of the apparatus is played by the light particle which 
is partly transmitted and partly reflected by each wave packet of the heavy 
particle. 

In this process the light particle keeps the information about the position 
of the heavy particle, which is encoded in gRRo and gJio, i.e., in the reflected 
waves by f: and f;; respectively. 

As it should be expected in a one-dimensional scattering process, such 
reflected waves have an identical spatial localization and they only differ for 
a phase factor. 
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In order to discuss the decoherence effect induced on the heavy particle 
one has to consider the density matrix of the whole system p~ (1', R, 1", R') and 
then one should compute the reduced density matrix for the heavy particle 

p~(R, R') == J d1'p~(1', R, 1', R') == J dr'l/J~(r, R)1jJ;(1', R') (16.24) 

which defines a positive, trace-class operator in L2(JR2) with T1' p~ = l. 
We also introduce the approximate reduced density matrix 

p~(R, R') == J d1'p~(r, R, r, R') == J d1'1jJ~(1', R)'l/JH1', R') 

= ~ (e- irHo I:) (R) (e irHo If) (R') + ~ (e- irHo I;;) (R) (e irHo I;; ) (R') 

+4 (e- irHo I:) (R) (e irHO I;;) (R') + ~ (e- irHo I;;) (R) (e irHo If) (R') 

(16.25) 

where, in the last equality, we took into account that 

J drlgr(E- 1r, r) + gnRo (E- 1r, 1'W = J d1'lgr(E- 1r, 1') + giiO(E-1r, 1')1 2 = 1 

(16.26) 

and we defined 

A == J d1' (gr(E-1r, 1') + gnRO (E- 1r,1')) (gr(E- 1r,1') + 9jiO(E-1r,1')) 

(16.27) 

Notice that IAI :::; 1 and the case A = 1 can only occur if a = 0, i.e., when the 
interaction is absent. 

Since L2-convergence of the wave function implies convergence of the cor­
responding density matrix in the trace-class norm, we conclude that p~ is a 
good approximation in the trace-class norm of p~ under the assumptions of 
Theorem 1 and Proposition 2. 

For a = 0 we see from (16.25), (16.27) that p~ reduces to the pure state 
describing the coherent superposition of the two wave packets evolving in time 
according to the free hamiltonian. 

Notice that the last two terms in (16.25), usually called nondiagonal terms, 
are responsible for the interference effects observed when the two wave packets 
have a nonempty overlapping. 

The occurrence of the interference makes the state highly nonclassical and 
it is the distinctive character of a quantum system with respect to a classical 
one. 
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If we switch on the interaction, i.e., for a > 0, the effect of the light particle 
is to reduce the nondiagonal terms by the factor A and this means that the 
interference effects for the heavy particle are correspondingly reduced. 

In this sense one can say that there is a (partial) decoherence effect induced 
on the heavy particle which is completely characterized by the parameter A. 

In the limit A --+ 0, i.e., for a --+ 00, the nondiagonal terms and the 
interference effects are completely cancelled and then the state becomes a 
classical statistical mixture of the two pure states e-irHo It, e-irHo I;;. 

We conclude this note showing that the parameter A can be approximated 
by a simpler expression under further conditions on the parameters. 

First we notice that using the first assumption in (16.17) one easily gets 

A = J drlgT(f-1T, r)1 2 + J drgRRo(f-1T, r)gJiO(f-1T, r) + O((!5qo)-n). 

(16.28) 

Moreover we can show that for a large separation of the two wave packets the 
second integral in (16.28) becomes negligible due to the rapid oscillations of 
the integrand. More precisely we assume 

1 
d» -, 

a 

From (16.16), (16.14) we have 

d» 15, d == 2Ro . 

I== J drgRRo(f-1T, r)gJiO(f-1T, r) 

= J dkIRa(kWI.§o( _kWe2idk 

= JdZ a 2 1.§(zWe2id(O-lZ-qo). 
a 2 + (!5- 1z - Qo)2 

Integrating by parts in (16.30) one obtains 

where, in the last line, we have used the trivial estimates 

(16.29) 

(16.30) 

(16.31) 
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0:28-11~1 0:2 8-11~1 8-11~1 1 
(0:2 + ~2)2 :'S: 0:2 + e 0:2 + ~2 :'S: 0:2 + ~2 :'S: 80: (16.32) 

and the Schwartz inequality. 
Using the estimate (16.31) in (16.28) we conclude that 

IA -J drlgT(f-1r, rWI :'S: d~ + ~ Ilii'll + O((8qo)-n). (16.33) 

This means that, under the assumptions (16.17),(16.29), the decoherence 
effect is measured by the transmission probability of the light particle which 
is explicitly given by 

J drlgT(f-1r, r)12 = J dkITa(k)1 2 Iii,,(kW (16.34) 

The previous analysis of decoherence induced by scattering is clearly lim­
ited by the consideration of a two-body system. 

For a more satisfactory treatment one should consider a model with N 
light particles scattered by the heavy one. The expected result is that the 
effect of the scattering events is cumulative and then the decoherence effect 
is increased at each step ([JZ]). 

We observe that a rigorous proof of this fact would require good estimates 
for the wave operator in a case of many-body scattering problem and it is a 
nontrivial open question. 
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Propagation of Wigner Functions for the 
Schrodinger Equation with a Perturbed 
Periodic Potential 

S. Teufel and G. Panati 
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Technische Universitat Miinchen 
D-80333 M iinchen 

Summary. Let Vr be a lattice periodic potential and A and <jJ external electro­
magnetic potentials which vary slowly on the scale set by the lattice spacing. It 
is shown that the Wigner function of a solution of the Schrodinger equation with 
Hamiltonian operator H = ~ (-iV' x - A(c:x)? + Vr(x) + <jJ(c:x) propagates along the 
flow of the semiclassical model of solid states physics up to an error of order c:. If 
c:-dependent corrections to the flow are taken into account, the error is improved to 
order c:2 • We also discuss the propagation of the Wigner measure. The results are 
obtained as corollaries of an Egorov type theorem proved in [PST3]. 

17.1 Introduction 

One of the central questions of solid state physics is to understand the motion 
of electrons in the periodic potential which is generated by the ionic cores. 
While this problem is quantum mechanical, many electronic properties of 
solids can be understood already in the semiclassical approximation [AsMe, 
Ko, Za]. One argues that for suitable wave packets, which are spread over 
many lattice spacings, the main effect of a periodic potential Vr on the electron 
dynamics corresponds to changing the dispersion relation from the free kinetic 
energy Efree(p) = ~ p2 to the modified kinetic energy En(P) given by the nth 

Bloch function. Otherwise the electron responds to slowly varying external 
potentials A, ¢ as in the case of a vanishing periodic potential. Thus the 
semiclassical equations of motion are 

k, = -\l¢(r) + r x B(r) , (17.1) 

where K, = k - A(r) is the kinetic momentum and B = curIA is the magnetic 
field. (We choose units in which the Planck constant 'Ii, the speed c of light, 
and the mass m of the electron are equal to 1, and absorb the charge e into the 
potentials.) The corresponding equations of motion for the canonical variables 
(r, k) are generated by the Hamiltonian 

P. Blanchard et al. (ed .), Multiscale Methods in Quantum Mechanics
© Birkhäuser Boston 2004

s



208 S. Teufel and G. Panati 

Hsc(r, k) = En(k - A(r)) + <,b(r) , (17.2) 

where r is the position and k the quasi-momentum of the electron. Note that 
there is a semiclassical evolution for each Bloch band separately. The distinc­
tion between the canonical variable k, the Bloch- or quasi-momentum, and 
the kinetic momentum;;, = k - A(r) is often not made explicit in the physics 
literature. It is, however, crucial for the formulation of the precise connec­
tion between the semiclassical equations of motion (17.1) and the underlying 
Schrodinger equation (17.4). 

In [PST3 ] we use adiabatic perturbation theory in order to understand 
on a mathematical level how these semiclassical equations emerge from the 
underlying Schrodinger equation 

iOs tj;(y, s) = (H - iVy - A(sy))2 + Vr(Y) + <,b(SY)) tj;(y,s) (17.3) 

in the limit s ~ 0 at leading order. In addition, the order s corrections to 
(17.1) are established, see Equation (17.7). 

In (17.3) the potential Vr : lRd ~ lR is periodic with respect to some 
regular lattice r generated through the basis {'Y1,"" 'Yd}, 'Yj E lRd, i.e., 

r = {x E lRd : x = ~;=1 CXj 'Yj for some cx E Zd} 
and Vr ( +'Y) = Vr(-) for all 'Y E r. The lattice spacing defines the microscopic 
spatial scale. The external potentials A(sy) and <,b(sy), with A : lRd ~ lRd and 
<,b : lRd ~ lR, are slowly varying on the scale of the lattice, as expressed through 
the dimensionless scale parameter s, s « 1. In particular, this means that the 
external fields are weak compared to the fields generated by the ionic cores, 
a condition which is satisfied for real metals even for the strongest external 
electrostatic fields available and for a wide range of magnetic fields, cf. [AsMe], 
Chapter 12. 

Note that the external forces due to A and <,b are of order s and therefore 
have to act over a time of order S-l to produce finite changes, which is taken 
as the definition of the macroscopic time scale. Hence, one is interested in 
solutions of (17.3) for macroscopic times. The macroscopic space-time scale 
(x, t) is defined through x = sy and t = ss. With this change of variables 
Equation (17.3) reads 

(17.4) 

with initial conditions tj;€(x) = C d/ 2tj;(x/s). If Vr = 0, then the limit s ~ 0 
in Equation (17.4) is the usual semiclassical limit with s replacing n. 

The problem of deriving (17.1) from the Schrodinger equation (17.3) in 
the limit s ~ 0 has been attacked along several routes. In the physics lit­
erature (17.1) is usually accounted for by constructing suitable semiclassical 
wave packets. We refer to [Lu, Ko, Za]. The few mathematical approaches to 
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the time-dependent problem (17.4) extend techniques from semiclassical anal­
ysis, as the Gaussian beam construction [GRT, DGR], or Wigner measures 
[GMMP, BFPR, BMP]. 

In this article we explain and elaborate on recent results from [PST3]. In 
[PST3] we derived (17.1) from (17.4) for quite general external potentials A 
and 4>. The construction is based on the space-adiabatic perturbation theory 
developed in [PSTl , PST2 , Te], see also [NeSo] and the contribution of G. Nen­
ciu in the present volume. The crucial observation is that the step from (17.3) 
to (17.1) involves actually two approximations. Semiclassical behavior can 
only emerge if a Bloch band is separated by a gap from the other bands and 
thus the corresponding subspace decouples adiabatically from its orthogonal 
complement. The dynamics inside this adiabatic subspace is governed by an 
effective Hamiltonian h~ff' which is explicitly given as an c-pseudo-differential 
operator. Eventually, the semiclassical limit of h~ff leads to (17.1). 

Hence (17.3) needs to be reformulated as a space-adiabatic problem. This 
has been done first in [HST] for the case of zero magnetic field and then 
in [PST3] for general electric and magnetic fields. The results obtained in 
this way constitute not only the derivation of the semiclassical model (17.1) 
in this generality, but they allow us to compute systematically higher order 
corrections in the small parameter c. It turns out that the electron acquires a 
k-dependent electric moment An(k) and magnetic moment Mn(k). If the nth 

band is nondegenerate (and isolated) with Bloch eigenfunctions 'l/Jn (k, x), the 
electric dipole moment is given by the Berry connection 

(17.5) 

and the magnetic moment by the Rammal-Wilkinson phase 

(17.6) 

Here (.,.) is the inner product in L2(~d / F) and Hper(k) is H of (17.3) with 
4> = 0 = A for fixed Bloch momentum k. Note that En, An and Mn are 
F*-periodic functions of k, where F* is the lattice dual to F. Hence one can 
as well think of them as functions on the domain M* = ~d / F*, the first 
Brillouin zone. 

The semiclassical equations of motion including first order corrections read 

f = \7 K (En(K-) - c B(r) . Mn(K-)) - c it, x Jln(K-) , 

it, = -\7r(4)(r) -cB(r) . Mn(K-)) +f x B(r) 

with Jln (k) = \7 x An (k) the curvature of the Berry connection. 
In order to state the precise connection between the semiclassical equations 

of motion (17.1) resp. their refined version (17.7) and the underlying Schr6-
dinger equation (17.4), we need some more notation. Let 
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HE = ~ ( - icY' x - A(X))2 + Vr(x/c) + ¢(x) (17.7) 

be the Hamiltonian of (17.4). Under the following assumption on the poten­
tials, which will be imposed throughout, He is self-adjoint on H2(1I~d). Here 
Gb' (JRd) denotes the space of smooth functions which are bounded together 
with all their derivatives. 

Assumption 1 Let Vr be infinitesimally bounded with respect to -.:1 and 
assume that ¢ E Cb'(JRd, JR) and Aj E Cb'(JRd, JR) for any j E {l, ... , d}. 

To each isolated Bloch band En there corresponds an associated almost 
invariant band-subspace II~L2(JRd). The orthogonal projector II~ onto this 
subspace is constructed in [PST3]. Only for states which start in this sub­
space and thus, by construction, remain there up to small errors, can the 
semiclassical equations of motion (17.7) have any significance. 

The flow of the dynamical system (17.7) is denoted by <P~ : JR2d --+ JR2d or 
in canonical coordinates (r, k) = (r, K, + A(r)) by 

?I! (r, k) = (<p~ r (r, k - A (r ) ), <P~ '" (r, k - A ( r )) + A ( r )) . 

The existence of the smooth family of diffeomorphisms <P~ is not completely 
obvious from (17.7) alone, but follows from the Hamiltonian formulation of 
(17.7) presented in the next section. 

Notation 1 Throughout this paper we will use the Frechet space 

C = Cb'(JR2d ) , 

equipped with the metric de induced by the standard family of semi-norms 

Iialia = Ilaaall oo , 

and the subspace of r* -periodic observables 

Cper = {a E C: a(r,k+')'*) = a(r,k) V')'* E r*}. 

We abbreviate dc(a) := dc(a, 0). D 

The main result of [PST3] on the semiclassical limit of (17.4) is the fol­
lowing Egorov type theorem. 

Theorem 1. Let En be an isolated, nondegenerate Bloch band. For each finite 
time-interval I c JR there is a constant C < 00, such that for all a E Cper with 
Weyl quantization a = a(x, -icY' x) one has 

II ( eiHEt/Ea e-iHEt/E - ~) II~ II ::::; cGdc(a) 
t3(£2(JRd)) 

(17.8) 

and 

(17.9) 
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Remark 1. The corresponding statement in [PST3] does not make explicit the 
dependence of the error on the observable a. However, the more precise ver­
sion formulated here is a standard consequence of the Calderon-Vaillancourt 
theorem and the fact that composition with ?i! is a continuous map from C 
into itself. 0 

Remark 2. On an abstract level the distinction between the functions <P~ and 

?i! is immaterial, since both functions express the same dynamical flow in 
two systems of coordinates. However, the distinction between the systems 
of coordinates becomes important when the quantization is considered. The 
Weyl quantization appearing in (17.8) and (17.9) must be understood with 
respect to the system of coordinates (1', k). Analogous considerations hold true 
for formulas involving a Wigner transform, as in Corollary 1. 0 

The main objective of this article is to elaborate on Theorem 1 in order 
to make contact to alternative approaches and results on the semiclassical 
limit of (17.4). These are, as mentioned above, Wigner functions [GMMP, 
BFPR, BMP], semiclassical wave packets [Lu, Ko, Za, SuNil and WKB-type 
solutions of (17.4) [Bu, GRT, DGR]. We focus on the semiclassical transport 
of Wigner functions and Wigner measures in the following. Before we do so, 
it is worthwhile to first examine the equations of motion (17.7) in some more 
detail. 

17.2 The refined semiclassical equations of motion 

The dynamical equations (17.7), which define the c-corrected semiclassical 
model, can be written as 

(17.10) 

with 

(17.11) 

We shall show that (17.10) are the Hamiltonian equations of motion for (17.11) 
with respect to a suitable c-dependent symplectic form aB,e' The semiclassical 
equations of motion (17.7) are defined for arbitrary dimension d. However, to 
simplify presentation, we use a notation motivated by the vector product and 
the-duality between 1-forms and 2-forms for d = 3, which we briefly explain. 

Notation 2 If d =I 3, then B, fln and Mn are 2-forms with components 
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and 

For d = 3. a 2-form Bij(r) is naturally associated with the vector Bk(r) 
Ekij Bij (r). We use the convention that summation over repeated indices is 
implicit. Then in (17.7) the inner product B . Mn refers to the product of 
the associated vectors and we generalize the notation to arbitrary dimension 
d using the inner product of 2-forms defined through 

d d 

B· M:= *-l(B /\ *M) = LLBijMij , 
j=li=l 

where * denotes the Hodge duality induced by the euclidean metric. In the same 
spirit for a vector field wand a 2-form F, the generalized "vector product" is 

d 

(w x F)j := (*-l(W /\ *F))j = L WiFij, 
i=l 

where the duality between 1-forms and vector fields is used implicitly. 0 

We keep fixed the system of coordinates z = (r, Ii) in 1R2d for the 
following. The standard symplectic form Bo = BO(Z)lm dZm /\ dz1, where 
l, mE {I, ... , 2d}, has coefficients given by the constant matrix 

( 0 -1I) Bo(z) = 1I 0 ' 

where 1I is the identity matrix in Mat(d,JR). The symplectic form, which turns 
(17.10) into Hamilton's equation of motion for H sc , is given by the 2-form 
BE, c = BE, c(Z)lm dZm /\ dZI with coefficients 

(17.12) 

For c = 0 the 2-form BE, c coincides with the magnetic symplectic form BE 
usually employed to describe in a gauge-invariant way the motion of a particle 
in a magnetic field ([MaRa], Section 6.6). For c small enough, the matrix 
(17.12) defines a symplectic form, i.e., a closed nondegenerate 2-form. 

With these definitions the corresponding Hamiltonian equations are 

or equivalently 



17 Propagation of Wigner Functions for the Schrodinger Equation 213 

which agrees with (17.10). We notice that this discussion remains valid if Jln 

admits a potential only locally, as it happens generically for magnetic Bloch 
bands. 

The symplectic structure is therefore determined by the magnetic field 
B(r) and by the curvature of the Berry connection Jl(k), which encodes rele­
vant information about the geometry of the Bloch bundle 'lj;n (k, .) 1--+ k E M*. 
One can show that, whenever the Hamiltonian Hper has time-reversal sym­
metry one has that Jln ( - k) = - Jln (k). Moreover, if the lattice r has a center 
of inversion, then Jln ( - k) = Jln (k). Thus, the two symmetries together imply 
that Qn(k) vanishes pointwise. But there are many crystals which do not have 
a center of inversion and, more important, in the presence of a strong uniform 
magnetic field the time-reversal symmetry is broken. The latter is the typical 
setup to describe the Quantum Hall Effect, a situation in which the curva­
ture of the Berry connection plays a prominent role. Indeed, the equations 
of motion (17.7) provide a simple semiclassical explanation of the Quantum 
Hall Effect. Let us specialize (17.7) to two dimensions and take B(r) = 0, 
¢( r) = -£ . r, i.e., a weak driving electric field and a strong uniform magnetic 
field with rational flux. Then, since K, = k, the equations of motion become 
r = V'kEn(k) + £-1Jln(k), k = £, where Jln is now scalar, and £-1 is £ rotated 
by 7r /2. We assume initially k(O) = k and a completely filled band, which 
means to integrate with respect to k over the first Brillouin zone M*. Then 
the average current for band n is given by 

J M* dk Jln (k) is the Chern number of the magnetic Bloch bundle and as such 
an integer, cf. [TKNN]. Further applications related to the semiclassical iirst 
order corrections are the anomalous Hall effect [JNM] and the thermodynam­
ics of the Hofstadter model [GaAv]. 

17.3 Semiclassical transport of vVigner functions 

Theorem 1 provides a semiclassical description of the evolution of observables. 
The most direct way to turn it into a description for the semiclassical evolution 
of states is via duality, i.e., via the Wigner function. Recall that according to 
the Calderon-Vaillancourt theorem there is a constant C < 00 depending only 
on the dimension d such that for a E C one has 

(17.13) 

Hence, the map C 3 a 1--+ ('lj;, a 'lj;) E C is continuous and thus defines an 
element w,! of the dual space C', the Wigner function of 'lj;. Writing 

('lj;, a'lj;) =: (w,!, a)c/,c =: [ dqdp a(q,p)w'!(q,p) 
JJR2d 

(17.14) 
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and inserting into (17.14) the definition of the Weyl quantization for a E 
S(lR2d) , 

one arrives at the formula 

(17.15) 

for the Wigner function. Direct computation yields 

Therefore, wt E L2(~2d) for all c > 0, which explains the notion of Wigner 
function. Although wt is obviously real-valued, it attains also negative values 
in general. Hence, it does not define a probability distribution on phase space. 
However, it correctly produces quantum mechanical distributions via (17.14). 

With this preparation we obtain the following corollary of Theorem 1, 
which says that the Wigner function of the solution of the Schrodinger equa­
tion (17.4) is approximately transported along the classical flow of (17.1) resp. 
(17.7). 

Corollary 1. Let En be an isolated, nondegenerate Bloch band. Then for each 
finite time-interval I c ~ there is a constant C < 00 such that for tEl, 
a E Cper and for 'l/Jo E II~L2(~d) one has 

and 

Here'ljJt = e-iH<t/£'l/Jo is the solution of the Schrodinger equation {17.4}. 

Remark 3. When proving results for the transport of Wigner functions or 
Wigner measures it is common, e.g., [GMMP, MMP, BMP], to write down 

the transport equation for w£(t) := wto 0 ~o-t instead of using the flow ~~. 
Clearly our results can be reformulated in this way, cf. Corollary 2, but the 
resulting transport equation looks complicated compared to the simple dy­
namical system (17.1) governing its characteristics. 0 

Proof {Proof of Corollary 1}. The result is rather a reformulation of Theo­
rem 1 than a real corollary. According to the Definition (17.14) and Theorem 1 
one has 
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(wt" a)c',c = ('¢t, a'¢th2(JRd) 

- (0/' eiHEt/c ~a e-iHEt/c 0/' ) 
- 'f'O, 'f'O £2(JRd) 

= ('¢O, II~ eiWt/c a e-iWt/c II~ '¢O) £2 (JRd) 

= ('¢O, II~ ~ II~ '¢O) £2 (JRd) + O(c2 ) -----= ('¢O, a 0 ~! '¢o) £2 (JRd) + O(c2 ) . 

Since the map C '3 a f---t a o~! E C is continuous, the duality relation (17.14) 
can be applied again and yields 

Since the functions En, Mn and On appearing in the equations of motion 
(17.7) are all r* periodic, the natural phase space for the flow (17.7) is JRd X ']['* 

rather than JR2d. Here ']['d := JRd j r* is the first Brillouin zone M* equipped 
with periodic boundary conditions. Hence one can fold the Wigner transform 
onto the first Brillouin zone and define 

W:red(r, k) = L wt(r, k + ,*) for (r, k) E JRd X ']['d. (17.16) 
,*Er* 

Then for periodic observables a it follows that 

r drdka(r,k)wt(r,k)= L J drdka(r,k+,*)wt(r,k+,*) 
JJR2d 

'Y*Er*JRdxM* 

= L J drdk a(r, k) wt(r, k + ,,*) 
'Y*Er*JRdxM* 

J dr dk a(r, k) w:red (r, k) . 
JRd X,][,d 

Thus the statement of Corollary 1 in terms of the reduced Wigner function 
becomes 

Note that the reduced Wigner function w:red coincides with the "band-Wigner 
function" of [MMP] and the "Wigner series" of [BMP], both defined as 

wts(r,k) = I~*I L ei'.k'¢(r+qj2)'¢*(r-qj2). 
,Er 

This follows by a simple computation on the dense set '¢ E S(JRd): 
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"Y'Er* 

=_1_ '" 1 d~eie'''Y*eie'k1jJ(r+c~/2)'ljJ*(r-c~/2) 
(21T')d ~ d 

"Y'Er* lR 

= I~*I Ld d~ 8r(~) eie ·k 1jJ(r + c~/2) 1jJ*(r - c~/2) 

= I~*I L ei"Y.k1jJ(r+q/2)1jJ*(r-q/2), 
"YEr 

where 8r(~) = L"YET 8(~ - "(). We used the Poisson formula 

1 '" ie."Y' _ 1 
(21T')d ~ e - IM* 18r(O . 

"Y*Er* 

1 7.4 Classical transport of the Wigner measure 

We now turn to the Wigner measure. Recall that the Wigner function wt(q,p) 
can be negative and, as a consequence, does not define a probability distribu­
tion on phase space. In the limit c -------+ 0 however, wt weakly converges to a 
positive finite Radon measure J1'!f; E Mt(JR2d) on phase space JR2d, the Wigner 
measure of 1jJ. For surveys on Wigner measures see e.g., [LiPa, GMMPj. 

Proposition 1. Let Cj j~oo 0 and {1jJj hEN C L2(JRd) be bounded, then 

{ wtj hEN C C' is weak-* compact and every limit point J1 E C' defines a 
bounded positive Radon measure, called a Wigner measure of { 1jJj hEN. 

Proof. The Calderon-Vaillancourt theorem (17.13) implies that {wtJ} C c' is 
bounded. Hence, it is weak-* compact. By (17.14) and the semiclassical sharp 
Garding inequality, e.g., Theorem 7.12 in [DiSj], it follows that for each a ~ 0 
there is some C < 00 such that 

This implies the positivity of all limit points in C', which therefore define 
measures. 

Let J1 E C' be such a limit point with, after possible extraction of a subse­
quence, wtJ -.":" J1. From (17.14) it follows that 

and thus, 

J1(JR2d) = sup{J1( K) : K C JR2d compact} 

~ (J1, l)c' ,c = lim (wti, 1k,c = lim II1jJjlli2(lRd)' 
J~OO J J----+OO 

Hence, J1 is bounded. 
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However, not all limit points are physically sensible. For example the 
bounded sequence 'lj;j(x) := 'lj;o(x - j) E L2(JR.) has a limit point in C' , some 
Banach-limit type functional, but the corresponding measure is zero. More 
generally, there are many continuous linear functionals on C which are zero 
on the (nondense) subset CQ"'(JR.2d ). 

Definition 1. A sequence {'lj;jhEN remains localized in phase space (with 
respect to {CjhEN), if it is compact at infinity, i.e., 

lim limsup r dx ['lj;j(X) [2 = 0, 
n->oo j->oo J1xl?n 

and c-oscillatory, i.e., 

D 

Proposition 2. Let wtJ ~ IL in C' with {'lj;j}jEN C L2(JR.d) bounded and 
localized in phase space, then IL has total mass 

(17.17) 

and its marginals are given through the weak limits (in Mt) of the quantum 
mechanical distributions, i. e., for all a E cg (JR.d) one has 

j IL(dq,dP)a(q) = lim jdq ['lj;j(q)[2a(q) , 
)->00 

(17.18) 

j IL(dq,dP)a(p) = lim cjd jdP[~(P/cjWa(P). 
)->00 

Proof. We start with the position marginal (17.18). Let a E Cb'(JR.d) and 
let {an}nEN C CQ"'(JR.d) and {Xn}nEN C CQ"'(JR.d) satisfy an(q) = a(q) and 
Xn(P) = 1 for [q[ ~ n resp. [p[ ~ n. Then, by dominated convergence, 

j IL(dq, dp) a(q) = nl~~ j IL(dq, dp) an (q)Xn(P) 

= lim (IL, anXn)c',C = lim lim (wti, anXn)C',C 
n-+oo n-+oo J-+OO J 

where 
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IRI::; lim lim I (wt j , (a - anXn))cl,cl 
n---+oo J---+OO J 

::; lim lim (1(1Pj, (a -~) 1Pj)1 + I (1Pj, (~-Gn) 1Pj)l) 
n---+oo)---+oo 

= lim lim (I (1Pj, (a - aX;;) 1Pj) I + I (1Pj, (aX;; - a;;x;;) 1Pj) I) 
n---+oo]---+CX) 

::; lim lim (1Ia1Pj 1111 (1 - Xn)1Pj II + II (a - an)1Pj 1IIIXn 1Pj II) 
n---+oo]---+oo 

=0. 

For the last equality we used that {1Pj} is localized in phase space. In order 
to prove (17.18) also for a E cg, note that we just proved that the right­
hand side of (17.18) defines a measure. Hence, the result follows again by 
dominated convergence. The statements about the momentum marginal and 
the total mass follow analogously. 

We now turn to the propagation of Wigner measures. As remarked in 
the introduction, a popular approach to the semiclassical limit of (17.4) is to 
determine the resulting transport equation for the Wigner measure associated 
with an E-dependent initial condition 

Corollary 2. Let En be an isolated, nondegenerate Bloch band. Let f..Lo be the 
Wigner measure of a bounded sequence {1Po,j} with 1Po,j E II~j L2 (JRd) , i. e., 
wt;°,j ....':" f..Lo E C'. 

Then the Wigner function wt;"j of the the time-evolved sequence 

has the weak-* limit f..Lt E C~er given through 

--t 
f..Lt = f..Lo 0 if>o . (17.19) 

In particular, f..Lt is a positive bounded measure and solves the transport equa­
tion 

in the distributional sense. 

Similar results were proved in [MMP, GMMP, BFPR] for the case of van­
ishing external potentials A and cp. For vanishing magnetic potential A but 
nonzero electric potential cp they follow from the results in [HST] or [BMP]. 

Proof {Proof of Corollary 2}. According to Corollary 1 we have for a E C per 

that 
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Taking the limit j -> 00 on both sides yields the existence of the limit J-lt 
and at the same time (17.19). The transport equation for J-lt follows by taking 

a time-derivative in (17.19) and recalling that ~~ is the Hamiltonian flow of 
(17.2) . 
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