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Preface to the Second Edition

This edition includes five new sections and a third appendix. Most other sec-
tions are expanded, in particular Sects. 5.2 and 5.6 on hyperfine interactions.

Section 3.8 offers an introduction to the important field of relativistic
quantum chemistry. In Sect.5.7, the coupling of the anomalous magnetic
moment is needed for a relativistic treatment of the proton in hydrogen. It
generalizes a remarkable feature of leptonium, namely the non-hermiticity of
magnetic hyperfine interactions. In Appendix C, the explicit calculation of
the expectation value of an operator which is frequently approximated by
a delta-function confirms that the singularity of relativistic wave functions at
the origin is correct.

The other three new sections cover dominantly nonrelaticistic topics, in
particular the quark model. The coupling of three electron spins (Sect. 3.9)
provides also the basis for the three quark spins of baryons (Sect. 5.9). For less
than four particles, direct symmetry arguments are simpler than the repre-
sentions of the permutation group which are normally used in the literature.

Another new topic of this edition is the confirmation of the E2-dependence
of atomic equations by the relativistic energy conservation in radiative atomic
transitions, according to the time-dependent perturbation theory of Sect. 5.4.
In the quark model, the E?-theorem applies not only to mesons, but also to
baryons as three-quark bound states. Unfortunately, the non-existence of free
quarks prevents a precise formulation of the phenomenological “constituent
quark model”, which remains the most challenging problem of relativistic
quantum mechanics.

Karlsruhe, May 2005 Hartmut M. Pilkuhn



Preface

Whereas nonrelativistic quantum mechanics is sufficient for any understand-
ing of atomic and molecular spectra, relativistic quantum mechanics explains
the finer details. Consequently, textbooks on quantum mechanics expand
mainly on the nonrelativistic formalism. Only the Dirac equation for the
hydrogen atom is normally included. The relativistic quantum mechanics
of one- and two-electron atoms is covered by Bethe and Salpeter (1957),
Mizushima (1970) and others. Books with emphasis on atomic and molecular
applications discuss also effective “first-order relativistic” operators such as
spin-orbit coupling, tensor force and hyperfine operators (Weissbluth 1978).
The practical importance of these topics has led to specialized books, for
example that of Richards, Trivedi and Cooper (1981) on spin-orbit coupling
in molecules, or that of Das (1987) on the relativistic quantum mechanics of
electrons. The further development in this direction is mainly the merit of
quantum chemists, normally on the basis of the multi-electron Dirac-Breit
equation. The topic is covered in reviews (Lawley 1987, Wilson et al. 1991);
an excellent monograph by Strange (1998) includes solid-state theory.

Relativistic quantum mechanics is an application of quantum field theory
to systems with a given number of massive particles. This is not easy, since
the basic field equations (Klein-Gordon and Dirac) contain creation and an-
nihilation operators that can produce unphysical negative-energy solutions in
the derived single-particle equations. However, one has learned how to han-
dle these states, even in atoms with two or more electrons. The methods are
not particularly elegant; residual problems will be mentioned at the end of
Chap. 3. But even there, the precision of these methods is impressive. For ex-
ample, the influence of virtual electron-positron pairs is included by vacuum
polarization, in the form of the Uehling, Kroll-Wichman and Kéllen-Sabry
potentials (Sect. 5.3). For two-body problems, improved methods allow for
a fantastic precision, which provides by far the most accurate test of quan-
tum electrodynamics itself.

The present book introduces quantum mechanics in analogy with the
Maxwell equations rather than classical mechanics; it emphasizes Lorentz
invariance and treats the nonrelativistic version as an approximation. The
important quantum field is the photon field, i.e. the electromagnetic field in
the Coulomb gauge, but fields for massive particles are also needed. On the
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other hand, the presentation is very different from that of books on quan-
tum field theory, which include preparatory chapters on classical fields and
relativistic quantum mechanics (for example Gross 1993, Yndurain 1996).

The Coulomb gauge is mandatory not only for atomic spectra, but also
for the related “quark model” calculations of baryon spectra, which form
an important part of the theory of strong interactions. A by-product of an
entirely relativistic bound state formalism is a twofold degenerate spectrum,
due to explicit charge conjugation invariance. Quark model calculations might
benefit from such relatively simple improvements, even when the spectra may
eventually be calculated “on the lattice”.

A new topic of this book is a rather broad formalism for relativistic
two-body (“binary”) atoms: Nonrelativistically, the Schrédinger equation for
an isolated binary can be reduced to an equivalent one-body equation, in
which the electron mass is replaced by the “reduced mass”. The extension of
this treatment to two relativistic particles will be explained in Chap. 4. The
case of two spinless particles was solved already in 1970, see the introduc-
tion to Sect.4.5. The much more important “leptonium” case is treated in
Sects. 4.6 and 4.7.

Stimulated by the enormous success of the single-particle Dirac equa-
tion, Bethe and Salpeter (1951) constructed a sixteen-component equation
for two-fermion binaries. However, increasingly precise calculations disclosed
weak points. An effective Dirac equation with a reduced mass cannot be
derived from a sixteen-component equation except by an approximate “qua-
sidistance” transformation. On the other hand, such a Dirac equation does
follow very directly in an eight-component formalism, in which the relevant
S-matrix is prepared as an 8 x 8-matrix. The principle will be explained in
Sect. 4.6, the interaction is added in Sect.4.7. Like in the Schrodinger equa-
tion with reduced mass, the coupling to the photon vector potential operator
is treated perturbatively. The famous “Lamb shift” calculation will be pre-
sented in Sect. 5.5, extended to the two-body case.

A remarkable property of the new binary equations is the absence of “re-
tardation”. Its disappearance will be demonstrated in Sect. 4.9. Most fermions
have an inner structure which requires extra operators already in the single-
particle equation. As an example, the fine structure of antiprotonic atoms
will be discussed in Sect. 5.6. The Uehling potential is also detailed for these
and other “exotic” atoms.

Preparatory studies for this book have been supported by the Volkswa-
genstiftung. The book would have been impossible without the efforts of my
students and collaborators, B. Meli¢ and R. Hackl, M. Malvetti and V. Hund.
A textbook by Hund, Malvetti and myself (1997) has provided some of its
material.

I dedicate this book to the memory of Oskar Klein.

Karlsruhe, March 2002 Hartmut M. Pilkuhn
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1 Maxwell and Schrodinger

1.1 Light and Linear Operators

Electromagnetic radiation is classified according to wavelength in radio and
microwaves, infrared, visible and UV light, X- and Gamma rays. These names
indicate that the particle aspect of the radiation dominates at short wave-
lengths, while the wave aspect dominates at long wavelengths. Nevertheless,
the radiation is described at all wavelengths by electric and magnetic fields,
E and B, which obey wave equations. The quantum aspects of these fields
will be discussed in Chap. 3. In vacuum, the equation for E is

(—c 20} +02+02+02)E=0, 0, =0/0t, 0,=0/0x, (1.1)

where ¢ = 299 792 458 m/s is the velocity of light in vacuum. For the time
being, we are mainly interested in the form of this differential equation, which
guided Schrédinger in the construction of his equation for electrons. In vec-
torial notation, r = (x,y, z) is the position vector, and V = (9;,0y,0,) =
“nabla” is the gradient vector; its square is the Laplacian A. Particularly in

relativistic context, one prefers the notation z° = (z!, 22, 23) = (z,v, 2):

3
VP=A=9+0;+02=) 0}, 0i=0/0x". (1.2)
i=1
The z* is conveniently combined with z° = ct into a four-vector z* =

(2%,2%) = (2% ), and the —c?9? of (1.1) is combined with V? into the
d’Alembertian operator O, also called “quabla”:

OE=0; O=-82+V2 8=208/d(ct). (1.3)

The full use of this nomenclature will be postponed to Chap. 2. For the mo-
ment, ¢ is expressed in terms of z° merely to suppress the constant c. Today,
¢ is in fact used in the definition of the length scale, see Sect. 1.6.
Differential operators D are linear in the sense D(E1+E5) = DE1+DE5.
If E, and E5 are two different solutions of (1.1), E = E; + E5 is a third
one. This is called the superposition principle. The intensity I of light is
normally measured by E?, I ~ E? = square(E), but nonlinear opera-
tors such as “square” are not used in quantum mechanics. V and V? are



2 1 Maxwell and Schrédinger

Fig. 1.1. Cylinder coordinates

both linear operators. The simplest operator is a multiplicative constant
C, C(E1 + E3) = CE{ + CE,. We now recall some operators of classical
electrodynamics, which will be needed in quantum mechanics. The Laplacian
is in cylindrical coordinates (Fig.1.1)

T =pcosep, y= psing, (1.4)
V? =02+ p'0,p0, + p~ 203, (1.5)
and in spherical coordinates (Fig.1.2):

z=rcosb, p=rsinb, (1.6)
V2 =r710%r +1r72(r x V)2 (1.7)

r X V is somewhat complicated, but its z-component is simple:
(rx V), =20y —yoy = 0. (1.8)

The square of r x V is also relatively simple,

(rxV)?=031—-u?)""+08,(1-u?)dy, u=cosb. (1.9)

Two operators A and B are said to commute if the order in which they are
applied to the wave function does not matter, AB = BA. For example, as
7 x V depends only on § and ¢, not on r, one has r—2(r x V)% = (r x V)2r=2.
On the other hand, in the radial part 7=*92r of the Laplacian (1.7), the first

Fig. 1.2. Spherical coordinates
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two operators do not commute, r 192 # 92r~! (otherwise one would have
r~192r = 9?). Valid alternative forms are

rr0%r = (0, +1/r)* = 0% +2r10,. (1.10)

To check these, apply the operators to an arbitrary function f(r) and use

Orf(r) = f'(r), O:fg = f'g+fg', (O +1/r)* = (0r + 1/7)(0; + 1/7).

Equation (1.1) has plane-wave solutions of the type
E = Epetr=t o = 21w, (1.11)

k= (kg ky k), \=2n/k, (1.12)

where k is the wave number vector, pointing into the direction of propagation
of the plane wave, and A is the wavelength. Insertion of

OE =—iwE, 0,E=ik,E,... (1.13)
shows that (1.11) is a solution of the wave equation (1.1) only for
W/ =k =k +k + k2. (1.14)

We shall also need cylindrical and spherical waves, where V? is required in the
forms (1.5) and (1.7). Such waves can also be monochromatic, meaning that
they contain only one (angular) frequency w. The common wave equation for
all monochromatic waves in vacuum is

E(z")=e “'E,(r), (w?/c®+V?)E,(r)=0. (1.15)

This “Helmholtz equation” is still a partial differential equation in three
variables; we recall a few tricks for the solution of such equations. The main
trick is to express V2 in terms of commuting operators A, B, C, and then to
construct “eigenfunctions” of these operators. When A is applied to any of
its eigenfunctions f,, it may be replaced simply by a constant a,, called the
eigenvalue:

Afn = anfn. (1.16)

For example, the square of the operator 0, occurs both in cylindrical and
in spherical coordinates. The normalized eigenfunctions of Jy4 are

Y, (B) = (2m) 71/ 2e™® my =0,+1,42... (1.17)

In quantum mechanics, m; is called the (orbital) magnetic quantum number
(Sect. 1.4). The normalization is chosen such that

27

27
W Ve = /0 o 2o = 1. (1.18)
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It fixes the scale of the eigenfunction. An essential point of (1.17) is the
restriction of the eigenvalues m; of —i0, to integer values, due to the required
single-valuedness of v at all ¢:

P, (¢ +2m) = P, (9)- (1.19)

For such eigenfunctions, one may replace the operator 8; by one of its eigen-
values —m? in the operators (1.5) or (1.9). For commuting operators A and
B there exist common eigenfunctions,

Afan,bm = anfan,bma Bfan,bm = bmfan,bma (120)

because ABf = BAf = a,Bf shows that Bf is also an eigenfunction of A,
again with eigenvalue a,,. A rather trivial example of common eigenfunctions
is given by the plane waves (1.11), which are eigenfunctions of 0,,09,,0;,
with eigenvalues ik,, ik, , ik, respectively. A famous example in spherical co-
ordinates are the “spherical harmonics” Y;™ (6, ¢) (with simplified notation
m; = m), which are not only eigenfunctions of 9, but also of (r x V)? as
given by (1.9):
Y™(0,¢) = 67" (0)Ym(0), (1.21)
(rx V)Y =-1(1+1)Y™, 1=0,1,2... —1<m<lL (1.22)

O7" is a polynomial of degree |m| in sinf and degree [ — |m| in u = cosé.
Some of these functions are collected in Table1.1.
The 9? are Legendre polynomials P}, apart from a normalization constant:

1
O =(1+12P{k). Py=1, Pi=u, P»=}(3u*—-1), P;=1(5u"—3u).
(1.23)
When applied to the spherical harmonics, the Laplacian (1.6) effectively be-
comes a radial operator, i.e. independent of § and ¢. Thus E,(r) has solutions
of the form

E.(r) = Eo(w)Ro(r)Y™ (0, 9), (1.24)
(W?/c® + V) E, = E)Y"[w?/c® + (0, + 1/r)* = 1(1 +1)/r*| Ry (7). (1.25)

Table 1.1. Y;" for | < 3. Normalization (1.186), z+ = Fz — iy.

Yy = (47r)*§,

Y? = (3/47)2 cos6 = (3/4m)2 z/r,

YA — 3(3/8)2 sin et — (3/87) 204 /1,

YY = (5/167r)é (3cos’H —1) = (5/16%);(222 +axix_)/r?,
Y = 212(15/87r); cos f sin fe*'? = (15/8#)53&,2/7"2,

Y2 = (15/32n) 26210 gin2 g — (15/327) 2 z3 /r2.
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Dividing off the first two factors, one finds the differential equation for the
radial wave function R(r),

w2/ + (0 + 1/r)? —1(1+1)/r*| R, 1(r) = 0. (1.26)

Also this equation has simple solutions, to be discussed in Sect. 1.10.

FE need not be an eigenfunction of any of these operators, but it may be
expanded in terms of the eigenfunctions. Real light has a “spectral decom-
position”,

E(t,r) = /000 dwE,,(r)e !, (1.27)

which expresses a wave train (or wave packet) as a superposition of monochro-
matic waves. Similarly, there will be a double integral over the directions of k
in (1.11), or equivalently a sum over ! and m in (1.24). As a simple example
of a summation, consider a wave in a waveguide along the z-axis. The walls
of the waveguide in the z- and y-planes require standing waves along these
directions, of the form sin(k,z) sin(k,y). But

sin(kpx) = (2i) et — (27) e~ e (1.28)

displays a standing wave as a superposition of two counterpropagating plane
waves. This also demonstrates that V2 has real eigenfunctions. The solution
(1.28) is an eigenfunction of 92, even though it is not an eigenfunction of 9,.
Similarly, the spherical harmonics are only complex because we insisted on
using eigenfunctions of d, in (1.17), where sin ¢ and cos ¢ would have been
equally possible from the point of view of 83,.

We conclude with the solution of (1.26) for | = 0, [w?/c? + (0, +
1/r)?]R,, 0(r) = 0. Also this equation has two solutions,

Ry =rte*™ (8,4 1/r)Ry = r10,eT*" = £ikR., (1.29)

with k% = w?/c?, as usual. R, is the simplest example of an outgoing spherical
wave. (It does not represent dipole radiation, because the Coulomb gauge
condition divE = 0 has been ignored.) For complex E, the intensity is I ~
E*E instead of E%. It decreases with 7 as 72, as expected.

1.2 De Broglies Idea and Schrodingers Equation

Although light does propagate according to the wave equation just dis-
cussed, it is nevertheless emitted and absorbed in quanta called photons.
In monochromatic light of the type (1.15), each photon has the same energy
E = hv, and in the case of a plane monochromatic wave (1.11), it also has
a fixed momentum p = hk/27:

E =hv =hw=hec/\, p=hk, (1.30)
h = h/21 = 6.58218 x 10716 &V s, (1.31)
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where h is Planck’s constant. The constants ¢ and % (“hbar”) are so funda-
mental in relativistic quantum mechanics that they are often taken as natural
units (Sect. 1.6). On the basis of (1.30), Einstein (1905) translated the relation
w?/c? = k? into an energy-momentum relation for photons,

E?/c? = p?. (1.32)

For massive particles, he had to reconcile Newton’s expression Ex = p?/2m
(m = particle mass, p = mwv) with his photon formula (1.32). As Newtonian
mechanics fixes Ex only up to a constant, Einstein put £ = mc? + En
and interpreted this expression as an approximation for small p/mc of the
function

E/c=v/m2c + p? = mc+ p?/2me — p*/8m>c + . .. (1.33)
He thus postulated the energy-momentum relation
E?/c? — p? = m?c? (1.34)

for all kinds of particles (including composite ones and even watches), and
obtained (1.32) as a special case for zero-mass particles. It may also be noted
that for p/mec > 1, the expansion (1.33) of the square root diverges. Instead,
the expansion in terms of me/p < 1 is now convergent:

Ejc=p+m?c®/2p —m*c*/8p* + ... (1.35)

Comparing with the E/c = p of (1.32), one may say that all particles of large
momenta mc/p = 0 move also with the speed of light. There exist weakly in-
teracting particles called neutrinos, which appear in beta decay. Their masses
are not exactly zero, but are neglible in all terrestrial experiments, such that
neutrinos move with the speed of light. In cosmic rays, electrons, protons
and even heavier nuclei sometimes move with the speed of light, too. For
most experiments, however, the system’s total energy E is close to Y, m;c?,
where the sum includes all particles which are explicitly considered. Even in
a fully relativistic calculation, it is often practical to subtract this constant.
Let us call the remaining energy Fn in honour of Newton, even when the
calculation is relativistic. For example, when the energy levels of alkali atoms
are approximated by a single-electron model, one sets

E =mc® + Exn, mec® =510.9989 keV. (1.36)

Already before the discovery of quantum mechanics, Rydberg found an em-
pirical formula for Ey,

En(n,1) = —Reo/(n—B)? = —Roo/n3, n=1,2,3..., Ry = 13.605691 V.
(1.37)
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R is the Rydberg constant for an infinitely heavy nucleus, n is the prin-
cipal quantum number, ng the “effective” principal quantum number, (also
denoted by n*), and 8 = §(l,n) is a “quantum defect” at orbital angular
momentum [ (1.22). In alkali atoms, 8 > 0 is relatively large at small [ where
the valence electron sees an increasing fraction of the nuclear charge Ze in-
side the screening charge cloud of the other electrons. (Actually, n = 1 exists
only for atomic hydrogen, which was studied later. Lithium (Z = 3) begins
with n = 2, sodium (Na, Z = 11) with n = 3, see Sect. 3.8. The other two
electrons of Li occupy the n =1 “shell” which is “closed” according to Pauli
(1925); the other ten electrons of Na occupy the closed n = 1 and n = 2
shells, nowadays called K and L shells.)

This book is mainly concerned with hydrogen-like atoms that have no
further electrons. For pointlike nuclei, § is small and strictly independent of
n, B = B(l) = B;. It will be shown in Sect. 1.6 that l/n% is the eigenvalue of
the “standard form” of relativistic equations for hydrogenic atoms.

Long before Schrodinger found his equation (1926), Bohr (1913) inter-
preted the Rydberg formula as the energies of certain classical Kepler orbits:

En = —Z%?Ro /0%, Ro = e*m, /202, (1.38)

Z being the nulear charge. This form applies to the whole isoelectric sequence
of hydrogen (H, He™, Li™", Be™™"...). Together with Sommerfeld, Bohr
established the quantization condition [pdg = nh for closed bound orbits.
They also included a nuclear recoil in the form R = R.omz/(mz+m.), which
amounts to replacing the electron mass by the “reduced mass” mems/(m. +
mg), mo being the nuclear mass. However, the orbits in many-electron atoms
are confined but not closed. The hopping (“quantum jumps”) from one orbit
to another remained also obscure.

De Broglie (1923) proposed that an electron, bound or free, did not at
all follow a path r. = 7.(t), but that its propagation was described by
a wave equation. A bound electron would then correspond to a bound stand-
ing wave, analogous to a photon in a cavity. The cavity has eigenmodes n,
say, with eigenfrequencies w,, which happen to obey Rydberg’s law (1.37). Of
course, de Broglie did not mean that atoms are confined by walls. Instead, the
Coulomb attraction by the atomic nucleus would confine the wave to a finite
volume. There is in fact an analogy with light reflection from a glass. Consider
a plane wave exp{ikr} incident on a window which is normal to the z-axis.
Even under the conditions of total reflection, the wave equation excludes an
abrupt jump to zero of the wave function. Instead, the factor exp{ik,x} of
exp{ikr} becomes exp{—kz}, where —k corresponds to the continuation of
k. to an imaginary value, k, = ik, ik, = —x. Next, replace the plane wave in
the vacuum by a spherical wave in a small bubble in the glass, for example by
R, of (1.29). If now for some reason k is replaced by i outside the bubble,
then the wave function exp{—«r}/r is exponentially falling in all directions.
When the bubble shrinks to zero, only this “forbidden” region remains; the



8 1 Maxwell and Schrédinger

complete wave function is then R = exp{—~xr}/r, which is the asymptotic
(r — o0) form of the hydrogen atom’s wave functions, see Sect.1.5. Taking
now an electron instead of light, the volume filled by the electronic wave
functions has a radius of the order of K~! = ag. This must roughly corre-
spond to the radius of Bohr’s lowest classical circular orbit, which de Broglie
knew from the Bohr-Sommerfeld model. For the nth orbit around a nucleus
of electric charge Ze,

kn = Z/nap, ap = h?/e*m, = 0.05291772 nm. (1.39)

The Bohr radius is much smaller than the wavelength of visible light. This is
the main reason for the late discovery of the wave equation for eletrons.

The quantitative result of de Broglie’s hypothesis was that a free electron
of momentum p = m.v propagates like the plane wave (1.11) in vacuum,
with k = p/h and with the “de Broglie wavelength”

A=2r/k =27h/p = h/mev. (1.40)

Due to the smallness of A, the verification of de Broglies idea came late. Today,
electron diffraction is used in LEED (= low-energy electron diffraction; the
low energy is needed for a sufficiently small value of v). The first application of
particle interferometry came from low-energy neutron diffraction on crystals,
analogous to X-ray diffraction.

Schrodinger (1926) constructed the wave equation for a free particle of
mass m according to the ideas of de Broglie. He took Einstein’s relation
(1.34) and substituted backwards the values (1.30) for E and p for a plane
monochromatic wave,

h2(w2/62 _ k2) — m202, w _ woeikr—iwt. (1_41)

We shall denote the wavefunctions of all kinds of particles except photons
by ©. The 1)y is analogous to the Ej in (1.11). In the case of spinless particles,
it is a single constant. For spin-1/2 particles such as elctrons, protons and
neutrons, it is a pair of constants called a spinor, just as the E is a triplet of
constants called a vector. But spin was added one year later (Pauli 1927), and
it is still customary to treat the electron as a spinless particle for a while. (Spin
enters nonrelativistic equations only in a magnetic field, see (2.54).) In order
to obtain a differential equation whose solutions satisfy the superposition
principle, Schrédinger interpreted w/c and k as eigenvalues of the operators
10y = 10/0(ct) and —iV, respectively:

[(ih00)? — (—ih V)] = m2c*ep. (1.42)
Today, the “momentum operator” —ihV is denoted by p;

(=h?02 —p®> —m2P)Y =0, p=—ihV. (1.43)
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The notation E is not used for ih0;, only for one of its eigenvalues (see also
Sect. 1.4). The stationary free-particle Schrodinger equation

Y(at) = Py(r), (B¢ —p* —m’)y(r) =0 (1.44)

is the Helmholtz equation for a massive particle. In the notation of (1.15), it
reads
W2/ + V2 —m?3 /R )p(r) =0, (1.45)

which obviously reduces to (1.15) for m = 0. However, this form is not used,
because the potentials of the next section would also have to be divided by #.
The significance of (1.44) will appear repeatedly in this book: for particles
of arbitrary spins in Sect. 4.4, and for the asymptotic region of “binaries” in
Sects. 4.5 and 4.6.

Example of wavelengths: The n = 3 to n = 2 transition in hydrogen
emits a photon (the red H, line) of energy F = R (1/4—1/9) = 1.88¢V. Its
wavelength is A = he/E = 656.3 nm. The wavelength of a free electron with
the same energy 1.88¢V is A\, = h/p = h/(2m.E)'/? = hc/E(2m.c?/E)'/2.
With 2m.c? ~ 10°eV (1.36), the square root is of the order of 1073, and
consequently \.(1.88eV) ~ 0.9nm. The neutron mass is 940 x 10%eV, so \,
is 43 times smaller.

1.3 Potentials and Gauge Invariance

The traditional method of including Coulomb and vector potentials in the
Schrédinger equation of a charged particle uses a Hamiltonian formalism. But
in the first place, this formalism applies to relativistic fields. The Hamiltonian
of light in vacuum will be given in Sect. 3.1, that of the electron-positron field
in (3.89). Relativistic quantum mechanics is the art of obtaining from these
fields equations for systems with a fixed number of massive particles (in the
cases of atoms, n. electrons plus one nucleus). The resulting operators in dif-
ferential equations are also called “Hamiltonians”, but they are never exact.
For the hydrogen atom, the old Dirac Hamiltonian is a good first approxima-
tion. For n, > 1, the correct treatment of “negative-energy” states (Sect.2.7)
is rather tricky. As these problems disappear in the nonrelativistic limit, it
may in fact be appropriate to first mention the nonrelativistic Hamiltonian,
which the reader has certainly already seen somewhere.

The nonrelativistic Schrédinger equation is of first order in id;; the trans-
formation of —9? into i0; is somewhat complicated. For the time being, we
therefore consider the statinary equation (1.44) and replace E by mc? + Ey
as in (1.36):

(2mEy + Ex/c — p*)(r) = 0. (1.46)

E%/c? is neglected and (1.46) is rewritten as

Ent(r) = Hop(r), Hy=p*/2m. (1.47)
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In classical Hamiltonian mechanics, the complete Hamiltonian is the sum of
the kinetic energy p?(t)/2m (with p(t) = mw(t)) and the potential energy

V(r(t)):

H=p*/2m+V. (1.48)
Bohr and Sommerfeld used this H, for an electron in the nuclear electrostatic
potential ¢ = Ze/r, V = —ep = —Ze?/r (the electron has charge —e).

They calculated the resulting Kepler ellipses, subject to their quantization
condition [pdr = nh. Schrédinger also adopted H, but instead of taking
r = r(t) and p = mwo(t) of a classical path, he took = and p as time-
independent operators acting on ¥ (r),

Ex(r) = Hy(r), H=—-h*V?/2m+V(r). (1.49)

He solved this equation for bound states in the potential V = —Ze?/r and
found that the eigenvalues En(n,!) did reproduce the Bohr-Sommerfeld for-
mula (1.38), independently of the quantum number I. Encouraged by this
success, Schrodinger returned to his relativistic equation (1.32) and replaced
E—FE-V —=iho —V:

(12 —p2 —m22)p =0, 7°= (ihd, — V)/c=ihdy — V/e.  (1.50)

However, the relativistic effects of this equation are complete only for spinless
particles. After Dirac discovered his equation for relativistic electrons (1928),
(1.50) was discarded for several years. Dirac was convinced that any wave
equation, relativistic or not, had to be of the form ih0;y0 = H. Today,
(1.50) is known as the Klein-Gordon (KG) equation (Klein 1926, Gordon
1926). It describes the relativistic binding of pionic and kaonic atoms, where
the pion 7~ and kaon K~ are the negatively charged members of the spinless
“mesons” 7 and K, with mc? of 139.57 and 493.68 MeV, respectively.

Maxwell’s equations of electrodynamics have a peculiar “gauge invari-
ance”, and the best way to introduce interactions in quantum mechanics is
by postulating gauge invariance also here. The method requires wave equa-
tions; it does not exist in classical mechanics. It has been known since long,
but its universality became clear only after the discovery of the “electroweak”
interaction. Like Lorentz invariance, gauge invariance is somewhat hidden in
the standard form of Maxwell’s equations:

VB=0, VXxE+3B=0, 38 =038/9(ct), (1.51)
VE =4npa, V x B—0yE =4nc 'j,. (1.52)

The inhomogeneous equations (1.52) refer to the cgs-system, 4mey =
11.12 x 107" As/Vm; pe and j, are the electric charge and current den-
sities. The two vector fields E and B can be expressed in terms of a single
“yector potential” A and a scalar potential A° = ¢,

B=VxA, E=-VA"—9A, (1.53)
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in which case the homogeneous equations (1.51) are automatically satisfied.
The inhomogeneous equations become

—V2A° — VA = dnpe, VxVxA+0(VA’+0yA) =4dmre 5. (1.54)

Gauge transformation are defined as those transformations of A* = (A%, A)
which do not change B and E:

A = A°—9yA, A'=A+VA, B =B, E =E. (1.55)

The gauge function A = A(x° ) must be unique and differentiable but is
otherwise arbitrary. It need not be a scalar or a Lorentz invariant. As a rule,
A is defined indirectly by a gauge fixing condition, for example

Coulomb gauge: VA =0, (1.56)

Lorentz gauge : VA + 9y A° = 0. (1.57)

An explicit A is then only required for a change of gauge, for example from
Coulomb to Lorentz. The Coulomb gauge has V9ypA = 0h)VA = 0 and V x
V x A=V (VA) - V?A = -V2A, such that (1.54) is simplified as follows:

~V2A% = d7py, (02 — V2)A + VOA® = dnc g, (1.58)

The first of these equations is the Poisson equation, with the solution
At 7) = /dSr'pel(t, =], |r—v|=[r -2 (1.59)

In the Coulomb gauge, the nuclear charge density pe(t, r’) is independent of
t in the system where the nucleus is at rest. A pointlike nucleus has

pa(t,r') = Zed(r'), A°=¢=Ze/r. (1.60)

The Hamiltonian (1.48) and the KG equation (1.50) refer to that gauge.
Returning to quantum mechanics, gauge invariance is postulated as
follows:

Wave equations are independent of local and temporal phases.

Let qA(z° r)/hc denote a change of phase of 1, ¢ being the particle’s
electric charge: '
Y = e/ hey, (1.61)

Such a transformation does affect the differential operators, for example i0;:
ihdoet 1/ ey = e 4/me (ihdy — g[8y, A] /)i (1.62)

Here we have written [0p, A] = 94/0z° in order not to contradict the rule
that operators apply to all expressions to their right, 9y Ay = Y9y A + Adyr),
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analogous to 9, fg following (1.10). To compensate the change of i7dy under
the time-dependent phase transformation, this operator must be accompanied
by a function —qA°, which is gauged according to (1.55). In other words, the
interaction of a particle of charge ¢ is obtained by replacing the free-particle
operator ihdy by

70 = ihdy — qA°/c. (1.63)

This allows one to pull the phase to the left of the differential operator and
eventually divide it off:

4 2 ;
20 = eiaA/her0y, 0"y id/he 02y, (1.64)

Similarly, whenever —iAV operates on 1, it must be accompanied by a func-
tion —gc™!A which cancels the gradient of A according to its gauge trans-
formation (1.55):

T=p—qc *A=—ihV —qc ' A. (1.65)
Thus the phase-invariant relativistic Schrédinger (or KG) equation is
(1°2 — 72 — m2e2) = 0. (1.66)

It is gauge transformed either by (1.55) at fixed phase of ¢, or by (1.61)
at fixed A*. An example of the latter transformation is given in (1.174)
below. The operators  and p are called kinetic and canonical momenta,
respectively. They will appear again in the Dirac equation, and in slightly
generalized forms in any local quantum field theory. It should also be warned
that measurable nonlocal phase effects do exist (Aharanov and Bohm 1959).

The coupling provided by 7° and 7 is called the “minimal coupling”. But
as E and B are gauge invariant, they may appear in additional couplings in
(1.66), at least for composite particles.

In atomic theory, gauge invariance is more important than Lorentz invari-
ance. The gauge-invariant form of the nonrelativistic Schrédinger equation
(1.49) is

(endy — w2 /2m)Yy =0, 7% ~71° —me. (1.67)

The connection between v and 1y is postponed to Sect. 2.8. Also postponed
are the Lorentz transformations of 4-vectors such as z# = (ct,r),

" = (%, p) = ih(0y,—V), == (n"m)=p"—qAt/ec. (1.68)

For the moment, the 4-vector notation mainly implies that all 4 components
have the same dimension, which can be helpful as a dimensionality check
also in nonrelativistic equations such as (1.67) (note that mc has also the
dimension of a momentum, according to (1.66)). However, as one is confronted
with 4-vectors already in contexts such as classical electrodynamics, one may
wonder why V appears with a minus sign in p*, whereas z* has no minus sign
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in front of r. This sign arises from the combination ikr —iwt in the exponent
of the plane wave (1.11), combined with the avoidance of a minus sign in
the eigenvalue equation py = Fky (1.30). The 4-vectors introduced so far
are all “contravariant”. Later, some minus signs will be hidden in covariant
4-vectors. In addition to 9" = (0y, —0;), one also uses 0, = (0p, 0;). But then
minus sign appear in other places, for example in A4, = (4°,—A).

1.4 Stationary Potentials, Zeeman Shifts

Time-independent potentials are called stationary. The only operator which
refers to t in the Schrédinger equation (relativistic or not) is then ihd;. Its
eigenfunctions are exp{—iE,t/h}, where the eigenvalues are denoted by E,:

ihdye " Ent/h — | e~ iEnt/T (1.69)
In this case, the equation has solutions of the type
Y, (t,r) = e Bt/ (r). (1.70)

¥ (r) is called a statinary solution, but in a sense the whole g is stationary,
because |1g, |? is time-independent. A truly time-dependent solution must
contain several different time exponents, which means several different values
of E,:

Y(t,r) = enthp, =Y cae Et My (). (1.71)

It is analogous to the spectral decomposition (1.27) of E(t,r). The integral
[ dw is replaced here by a sum over discrete bound states n, but an additional
integral over the continuous energies E of electron scattering states (which
refer to an ionized atom) may also contribute. The coefficients ¢, appear
only when the functions v, (r) are separately normalized (Sect.1.8). They
are analogous to the Eg(w) in (1.24). Decently moving wave packets can be
constructed for the harmonic oscillator (Sect. 1.8). In other potentials includ-
ing the Coulomb potential, |1)|?> wobbles or disperses. The beginner should
not waste time on classical trajectories as limits of moving wave packets.

In the following, we consider a stationary solution of the type (1.69) and
drop the index ,. We may then replace ihdy by E/c everywhere, and in
particular in the gauge invariant combination 7° (1.63). We also return to
the Coulomb gauge and write ¢A°/c = V/c (1.50),

™ =(E-V)/c (1.72)
Insertion into the KG equation (1.66) gives

[(E—V)?/c? —m?c® — m*ap(r) = 0. (1.73)
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This equation contains at least two constant operators, namely E?/c? and
m?2c?. It is useful to combine these into a single constant,

E%/c? —m?®c® = h?k2. (1.74)

In a region in space where the potentials vanish (called the asymptotic region
in the case of the Coulomb potential, because it occurs at r — 00), ¥ reduces
to a free-particle solution,

(h?k? — p?)ihas = 0. (1.75)

The general form of 1,5 will be elaborated in Sect. 1.10. In solids V may tend
to a constant (the chemical potential Vehem) at large r. In such cases one
would replace E by E — Vipem in the definition (1.74) of k2. Apart from such
trivial generalizations, (1.73) becomes

(R?E? = 2EV/ 4+ V? /2 — w2)y(r) = 0. (1.76)

For comparison with the nonrelativistic limit (1.67), one may define a slightly
energy-dependent “quasi-Hamiltonian”,

2EV/c? = V?/c? + 7% = 2mHyuasi, 12k = 2mHquasit)- (1.77)

The combination 2EV/c? is normally close to 2mV. When relativity was
discovered, one noted that one had to replace m by E/c? in some places. One
then called m the rest mass and E/c? the moving mass. The latter expression
is not used any longer, as one wishes to emphasize the fact that energy and
momentum form a 4-vector. Today, the rest mass is simply called “mass”.

In Sect. 1.1, we saw that V2 contains 855 /p?, and that 8; could be replaced
by its eigenvalues —m? for the eigenfunctions (1.17). In spherical coordinates
it contains (r x V)?/r?, which reduces to —I(I + 1)/r? for the spherical har-
monics Y™, independently of m;. When V' is independent of ¢, V' =V (z, p)
(cylindrical symmetry) or V = V(r), 7 = /22 + p? (spherical symmetry),
these eigenfunctions and eigenvalues can also be used in solving (1.77). In
these cases, the addition of a small magnetic field B (B? ~ 0) produces en-
ergy shifts linear in Bm;, provided the z-axis points along the direction of B
(for V.=V(r), this is no loss of generality):

E(B) = E(0) + Behcm; /2E(0). (1.78)

This is already the relativistic formula, which is easily derived. B is taken
constant over the atomic dimensions, and the z-axis is taken along B. With
B =V x A, the Coulomb gauge VA = 0 determines A only up to a constant,
which is called b in the following:

A=A, |=Bl0-bz]|, B=|0], (1.79)
A, 0 B
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plus linear terms ax+c, in A, and —ay+c, in A, (to keep 9, A, +0,A, = 0),
which are rarely needed. A apears in the 72 of (1.76),

w2 =(p+eAjec)’ =p®+ (Ap + pAe/c+ e*A? /. (1.80)

There is a problem of notation here, which is the spatial analogue of Ain
(1.62). With p = —iAV and the Coulomb gauge VA = 0, one might conclude
pA = 0. But since pA operates on 9, one has instead VAy = yVA+AVyY =
AV # 0. Consequently, when A is used as an operator, one should not write
VA = 0. The alternative divA = 0 is not good either, since the operators div,
grad and rot are sometimes also meant to operate on everything to their right
(unlike the dot in /iz,b, which is placed on top of its object). The quantum
technicians have therefore elaborated special symbols for the redistribution
of operators, in particular the commutator [,] and anticommutator {, }. For
any two operators A and B,

[A,B]= AB — BA, {A,B}=AB+ BA, (1.81)
{A,B} =2AB — [A,B] = 2AB + [B, A]. (1.82)

A precise form of the Coulomb gauge in the context of operators is thus
[V,A] =0, (1.83)

because its second term —AV1) cancels the + AV which is part of V. Au.
Similarly, when the V2 A° of (1.54) is needed as an operator on ), it must be
replaced by the double commutator [V, [V, A%]], see (2.261).

Returning now to (1.79), the “circular gauge” b = ;, maintains rotational
symmetry around the z-axis:

Aci = éB X r, A<2:1 = (xz + y2>B2/4 (184)

Then 2Ap contains the combination r x p which is called angular momen-
tum [, in view of the corresponding combination in classical mechanics:

=r xp=—ih(r x V), (1.85)

2A.p = (B x r)p = Bl = Bl, = —iBh,. (1.86)

Electrons have an additional “spin” angular momentum; a more precise name
for I is then “orbital angular momentum”.

As spherical symmetry is a special case of cylindrical symmetry, we assume
V =V/(z,p) and separate only the ¢-dependence from ¥ (r),

¢(7’) = 1/)(2, p)wmz(¢)v —’i8¢1/) = my. (1'87)
In 7v21), one may then replace 04 by im; everywhere:

7 = —h*(02+p 10, + 02 — mi/p?) + Bhmye/c+ 2 B*p* /Ac*.  (1.88)
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The function ¢,,,(¢) can now be divided off. We also assume bound states
in which the range of p? is confined by V, such that B2p? may be neglected.
The only remaining B-dependent operator in the KG-equation (1.73) is then
the constant —2B%mye/c, which may be included in the definition of A%k? as
in (1.74),

E?/® —m2c® — Bhmje/c = h?k?, (1.89)

With this definition, one may use (1.76) with 7% = p? = first half of (1.88),
(R*k? —2EV/c* +V?/c? — p*)ib(z, p) = 0. (1.90)

B is now completely hidden in the redefinition of k2. For given k2, the de-
pendence of E on B follows from (1.89):

(2.4 | 52272 1 _ w2 :
E(B) = (m*c* + h*c*k* 4+ Bhmyec)2 = (E=(0) + Bhmyec)2. (1.91)

To first order in B, expansion of the square root produces (1.78). In the
nonrelativistic limit, the factor 1/E(0) is replaced by 1/mc?. One also defines
the Bohr magneton ug:

up = eh/2me, FE(B) =~ E(0) + Bupm;. (1.92)

A coincidence of ng different energy levels is called an ng-fold degeneracy.
For V.= V(r) and ¢(z,p) = R(r)©;"'(d) (1.21) p? is independent of my
according to (1.22). The energy levels Ej,,, (B = 0) are then 2! + 1-fold
degenerate, Einlzi ; = 20+1. The degeneracy is lifted by the Zeeman-splitting
which is linear in Bm; (Fig.1.4). In the case of strictly vanishing quantum
defects (1.37), different l-values become also degenerate, which may lead to
the more complicated “quadratic Zeeman effect”.

Whereas p? = —h?V? is a real operator with real eigenfunctions (remem-
ber (1.28)), w2 is complex and does require complex eigenfunctions. A real
eigenfunction can only depend on ml2, not on m;. The Zeeman shift demon-
strates the necessity of complex functions. The eigenvalues E remain real,
due to the hermiticity of operators, see Sect. 1.8.

1.5 Bound States

Conducting electrons in metals move like free particles in a constant potential
of depth —Vj, which is measured from the ionization limit to the bottom of
the conducting band. Due to the Pauli principle, they fill all levels of energies
E < Ep, where Ep < 0 is the Fermi energy. It is customary here to shift
the energy scale such that one has V' = 0 inside the metal. The asymptotic
region where (1.75) applies, (kK + V?)y) = 0, is then inside the metal. The
details of the metal surface are often unimportant, and it is convenient to
use the limit V' = +V — oo there. In this limit, ¢ must vanish at the
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surface, precisely as the standing waves in the waveguide mentioned near the
end of Sect.1.1. Consider now a wire along the z-axis, with a rectangular
basis of dimensions L, L,. The appropriate solutions of the wave equation
are

Y(z,y,2) = e*=% gin k,x sinkyy, sink;L; =0 (i=1,2). (1.93)
The last two conditions imply
k‘i ZTLiTF/Li, n; = 1,2,3,4,5,... (194)

whereas k, remains arbitrary, positive or negative. If one now cuts the
wire at zmax = L., k. must also be positive and obey condition (1.94)
for i = 3. The possible energy levels are then suddenly discrete or “quan-
tized”,

E = V/m2ch + 2h2k2 = | [m2eh + 2(n2 /L3 + 02 /L2 + n2/L2)1?/4,

(1.95)
with Aim = h/2. For a macroscopic piece of metal, one hastens to the limit
L, =L, = L, — oo, where the energy levels become again dense within
the conducting band (thence the name “band”). Our point here is the op-
posite one, namely confining the wavefunction to a finite volume L,L,L.
entails a discrete energy spectrum. This is the massive particle analogue of
a microwave cavity, where the modes are quantized according to

E(ng,ny,n,) = hw = (n2/L2 + ni/ij +n2/L32¢ch/2. (1.96)

But whereas a single cavity mode can host many photons, a mode in a metal
can host at most two electrons, due to the Pauli principle (the factor 2 ac-
counts for the electron spin). The modes for electrons are commonly called
“orbitals”. Such modes exist approximately also in a single many-electron
atom. In the simplest form of the atomic shell model, the orbitals are suc-
cessively filled with electrons. The word “state”, on the other hand, means
a precise wave function. In single-particle problems, there is hardly any differ-
ence. But the ground state of the helium atom has a wave function ¥(rq, r3),
which depends on the two electon positions r; and 7. It is an antisym-
metrized product of orbitals only if the mutual repulsion of the two electrons
is either neglected or approximated by an over-all weakening of binding. In
the mathematical sense, the concept of a “state” is more general than a wave
function, as will be explained in Sect. 1.9.

The wavefunction of a single spinless particle can be bound by an at-
tractive, spherically symmetric potential V(r) < 0, 7 = (22 + ¢y? + 22)1/2
according to (1.76), but now with A = 0, w2 = p?> = —h?V?2. In spherical
coordinates (1.6), (1.22), ¢(r) has solutions that factorize into angular and
radial parts,

Y2 (r) = Y™ (0, ) Rz 1 (7). (1.97)
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After (1.22) has been used, the angular part can be divided off, and the
following equation is obtained for the radial part:

(k? = 2BV/c*h> + V2 /h? + (0, + 1/7)? —1(1 + 1) /r*| Ry, = 0. (1.98)

States with [ = 0,1,2,3 are called s, p, d, f, respectively. To solve the radial
equation, consider first the asymptotic region, V(r — oo) = 0. For r — oo,
I(1 +1)/r? is also negligible. The solutions R.s(r) = R4(r) of (1.98) have
already been given in (1.29). For real k, they are not confined in space and
correspond to an ionized electron. The general solution is a linear combination
with two coefficients b, and b_. Bound states require imaginary k,

k =ik, Ras(r)=r"t(bie " +b_e"), (1.99)
and the special value b_ = 0, to exclude exponential growth of R(r) for
r — 00. The solution of the complete equation (1.98) is now taken in the
form

Ri2;=e "u(r), (0, + 1/r)2e " = e (8, + 1/r — k)2, (1.100)

where both b, and r~! have become parts of the new function v. The factor
e " is divided off, leading to

[—2EV/h2+V? /R +(0,41/r)% —2k(8,+1/r)—1(1+1) /r?]Jv = 0. (1.101)
Although Ry ;(r) is now bound, the values of k? = —k? are not yet quantized.
Quantization requires a second boundary condition, which arises at r — 0.
We first consider the case [ > 0. With a finite nuclear charge distribution
p(r"), V(r = 0) remains finite according to (1.59). To find the singular part
of (1.101) for r — 0, one multiplies the equation by r? and then lets r — 0:

[(0r 4+ 1/r)? =11 +1)/r*]v(r — 0) = 0. (1.102)
Also this equation has two linearly independent solutions,
v(r —0) =cyr! +c_r 7L (1.103)
The quantization of k2 arises only when one postulates both

b_=0, c_=0. (1.104)

These postulates are necessary to make 1(r) “normalizable”, i.e. the integral

I :/|w|2d3r = /w*(r)w(r)rzdrdqﬁdu (1.105)
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must be finite. Althought the electron itself is not “smeared out”, its wave
function implies an extended charge distribution pe(t, 7). Nonrelativistically,

Pel = —€P ~ —€|w(t77°)|27 (1106)

is to be used as one source of the scalar potential A%, —V2A° = 47p, accord-
ing to Maxwell’s equation (1.58). For stationary states, p is time-independent.
And as the total charge must give the charge —e of the electron, the nonrel-
ativistic case requires I = 1. The spherical harmonics are separately normal-
ized to unity by integration over d¢du, such that one is left with

I:/ Rz27l7'2d7":/ e 252 (r)r2dr. (1.107)
0 0

This integral would diverge already for the smallest nonzero value [ = 1, v? =
b2 r—4, except for c_ = 0. An ordinary second-order differential equation such
as (1.98) has two linearly independent solutions. With the two extra condi-
tions (1.104), both solutions are killed, one is left with ¢ = 0. However, when
considered as a function of one of its parameters, the equation may have
nontrivial solutions at certain discrete values of that parameter. In our case,
that parameter is k2, from which E follows according to (1.74) or (1.91). The
above argument fails for [ = 0, where both solutions of (1.101) are normal-
izable. Nonrelativistically and for V = —Ze?/r, the second solution behaves
like r=t — (2mZe?/ hz) logr for small r. It gets excluded by more general
arguments involving the kinetic energy operator p?/2m. In the relativistic
equation (1.101), the term V2/c2h? contributes another r~2 -operator, which
also leads to an equation of the type (1.102), but with [ replaced by an [, < I.
And with the relativistic form (1.197) below of the normalization integral,

one finds that ¢ = 0 is required for all values of [.
Exact solutions of (1.101) exist only for the point Coulomb potential,
V = —Ze?/r. For modified V, numerical integrations may use the point

Coulomb k? as a starting value and integrate from large xr inwards, beginning
with the function e™*". The integration will end at » = 0 with R(0) = 400 or
—00. By repeating the procedure with a slightly different x one will be able
to approach R(0) = 0 (for I > 0) or R(r) = const. (for [ = 0). Conversely,
if one integrates from r = 0 outwards, starting with R = r!, R(kr > 1) will
behave as b_e™*", and modifications of x will eventually lead to b_ ~ 0.

A spherical potential V(r) is invariant under the parity transformation
r — —r, which in spherical coordinates (Fig.1.2) means

r—=r, ¢—=o¢+m O0—=>71—0 (u— —u). (1.108)
The parity of the bound states (1.97) is independent of their ¢ dependence,
i (—1) = (1) (7). (1.109)

This follows from the decomposition (1.21) of ¥;". The factor ¢"™? has
the parity (—1)™, while ©" has the parity (—1)'"™ (note the invariance
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of (1.9) under v — —u). Consequently, a superposition of states (1.97) with
different m; remains a parity eigenstate. This gives rise to useful “selections
rules”, in particular for the “dipole operator” r itself,

/¢{”5*¢;”lrd3r =0. (1.110)

States that contain both even and odd [-values are not parity eigenstates. This
applies for example to plane waves, which will be decomposed into spherical
waves in Sect. 1.10. In the Dirac equation, parity eigenstates do contain both
even and odd [-values, but the selection rule for dipole radiation remains
(Sect. 5.4).

1.6 Spinless Hydrogenlike Atoms

We now turn to the complete solution of the radial equation (1.101) for
a pointlike nucleus, V = —Ze?/r. Z > 1 is needed for hydrogenlike ions, and
also in some variational calculations. For V/he, we introduce Sommerfeld’s
fine structure constant, which has the pleasant property of being dimension-
less:

e?/he = a = (137.036) 1, (1.111)
2EZa/her —lo(lo +1) /7% 4+ (0r + 1/7)? = 26(0, + 1/r)]v(r) = 0, (1.112)
la(la +1) =11 +1) — Z%a°. (1.113)

The notation I, (I, +1) allows us to keep (1.101), with the replacement | — I,
The orbital angular momentum quantum number [ remains integer, of course,
the spherical harmonics are not affected.

In this book, we shall use altogether three abbreviations for products of
«a with constants

az =Zo, ogip = efup/hc, ar = am. (1.114)

Ze is the nuclear charge, eqip is the “dipole charge” (5.164). These symbols
not only shorten the sometimes lengthy formulas, they also facilitate their
understanding: az occurs in the electron-nucleus interaction, eqip occurs in
the electric dipole radiation of the whole atom including the nucleus, and o,
arises from Cauchy integrals (“loops” in the language of Feynman diagrams)
involving the electron alone (for example the anomalous magnetic moment
(2.76)). Atomic dipole loops contains agip/7. A two-photon electron-nucleus
loop will be mentioned in (5.196), which contains a2 /7. It is quite common
today to distinguish between « and a7 even for Z = 1. The isolated « appears
in multi-electron atoms, namely in the repulsive potential (3.80) between
two electrons (and also in some small loop terms which contain wa.,, see the
remark following (C.25)). aqip and «, will not be needed before Chap. 5.
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To solve (1.112), one multiplies it by r/2x and expresses it in terms of
the dimensionless variable z = 2kr:

g —la(la +1)/2 + 2(0, + 1/2)* — 20, — 1]v(2) = 0, (1.115)

z=2kr, ng=azFE/hck. (1.116)

ng will come out as the “effective principal quantum number” of the Rydberg
formula.
The singular operator —I,(l, + 1)/z is removed by the substitution

low, (0,4 1/2)%2l =28, +1/2+1a/2)? : (1.117)

v(z) =z
[ng + 202 +20,(1 + 1) — 20, — lo — 1w = 0. (1.118)

This is the differential equation of the confluent hypergeometric function
F(z) =1Fi(a,b,2):

[202 + (b— 2)0, — a]F(a,b, ) = 0, (1.119)
b=2lo+2, a=lo+1—ng. (1.120)
F' has the following power series in z:

F=1+za/b+a(a+1)/[b(b+1)]z2/2!

+ala+1)(a+2)/[bb+1)(b+2)]23/3!... (1.121)

To prove this, one writes F' = Yyay2",
(b—2)F' = 532°b(k + Vag1 — kar], 2F" = Sp2%k(k + Va1, (1.122)

which leads to the recurrence relation
ak+1(k+1)(k+0b) = ax(a+ k). (1.123)

For k — 00, ag,1/ar = k shows that the series diverges as e* = X2%/k! at
large z. The precise relation between R and F' is

Ryzy = e " (2kr) e ciw = Ne */22l F(2), (1.124)

such that R goes as e~*/2e* = e*/2 = e, as expected from (1.99). How
can one avoid this rising exponent? There are certain values of the param-
eter a (1.120) for which F' does not grow exponentially; for example a = 0
gives F' = 1. More generally, when a is a negative integer —n,., F' reduces to

a polynomial of degree n, in z:
F=F(-n,, b 2)=1-n,.2/b+ (—n,)(—n, + 1)2%/2b(b+1)...,

Fn,=1)=1-2/b, F(n,=2)=1-2z/b+2%/[b(b+1)]. (1.125)
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Apart from normalization, these are the Laguerre polynomials (1.179) below.
For each a (1.120) of F', E is now calculated using (1.116) and (1.120):

ng=oazE/khc=n,+lo+1=n—-0, [fi=I1-I, (1.126)
The integers n, and n are the “radial” and “principal” quantum numbers,

respectively,
n=mn,+1+1. (1.127)

The normalization constant N of (1.124) is given in Appendix A, the complete
nonrelativistic wave functions for n = 1 and 2 are

wnlm (9’ ¢>7 T) = }/lm(07 ¢)(Z/naB)3/2€_ZT/naB Rnl (T)z

RlO =2, Rzo =2— ZT‘/CLB, R21 = 3_1/2ZT‘/CLB. (1.128)

For the calculation of E from (1.126), x must be eliminated. E? = m?c* +
AER%k? = m2c* — h?ck? implies khe = (m2c* — E?)Y/2, such that (1.126)
becomes azE/(m?c* — E?)'/? = ng. Resolving this expression for E, one
finds

—1/2 —1/2

2 ay / azk 2 (B /

E=mc |1+ 2 , hek = ne =M€ 5 t+1 . (1.129)
B B

Note the absence of odd powers of az. For aZ/n} < 1, one expands
[1+a%/n3] 2 —1=—1ag/nd+ 3ah/ny — Ja%/nG...=f (1.130)

A more practical quantity is then Ey = E —mc? (1.36), which is given here
to the order o /nf:

Ey =mcf = —ymc®azng?(1 — ja/n% + jay/nh — ¥a%/nf). (1.131)

The leading term gives Rydberg’s expression (1.37). As 5; = (3 is also small,
one expands

0% /n2 = a%/(n— B)? = o} /m?(1+28/n+ 362 /n? + 46%/n®).  (1.132)
Writing (1.113) in the form (I, + 1/2)* = (I +1/2)? — a%, one finds
Br=l—lo=1+1—[(1+1)?—a3]¥2 (1.133)
Expansion of the square root in powers of 0‘22 gives:

B =a% 20+ 1)1 +a% /(20 +1)% + 2a% /(20 + 1)4]. (1.134)
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It shows that the order o} requires at most two powers of §; in oy /nj and
one power in ag /nf:

ay/ng = azn *1+48/n+108%/n%), af/nj=afn %(1+63/n). (1.135)

The expansion of Ex in n and [ to order o} is postponed to (2.149), where
it is presented for the more important Dirac equation. As 3; arises from the
inclusion of V2 in the KG-equation, it need not be viewed as a relativistic
effect. One may define a “KG potential” for use in the KG equation (1.76):

(h?k? —2EViq — ) =0, Vkag = V(1 —V/2E). (1.136)

Even without the approximation V/E ~ V/mc?, (3, is strictly independent
of n. The expression for Ey to lowest nonvanishing order in a% has of course
G =0, En = —a2Zm02 /2n?, in agreement with the Bohr-Sommerfeld for-
mula. These energies depend on n, and [ only via their sum n, +1=n—1
according to (1.127). And as a given [l-value contains already 2! + 1 mag-
netic sublevels, the total degeneracy of the nonrelativistic energy levels of
the spinless hydrogen atom is

Gspintess(n) = TP (20 + 1) = n?. (1.137)

A systematic degeneracy of this type (as opposed to accidental degeneracy for
particular values of some parameters) can always be reduced to a symmetry
argument. For spherically symmetric potentials, F is independent of m;. For
V = —Ze?/r and negligible V2/E, E is also independent of [, which is a con-
sequence of O4 symmetry (its mechanical analogue is the conservation of the
Runge-Lenz vector, which will not be discussed here). Oy is a nonrelativistic
symmetry which is broken in the relativistic case.

The operator (I + 1)/r? may also be combined with Vg, which is then
called an effective potential:

Veg = Via + (1 + 1)h*c? /2 Er2. (1.138)

The second term corresponds to the centrifugal potential of classical mechan-
ics. The nonrelativistic approximation ¢?/2E = 1/2m gives

Vet e = V 4+ 1(1 + 1)R*/2mr?. (1.139)

This function is plotted in Fig. 1.3 for V = —e?/r and for [ = 0, 1, 2 (“s”-,
“p”-, “d”-states). The degeneracy of F, in these very different potentials
is not at all evident. It is reflected in the shell model of atoms. Electronic
shells with n = 1, 2, 3 are called K, L, M. Examples of spinless hydrogenlike
atoms are mesic atoms (pionic and kaonic atoms, normally with Z > 1).
Their energy levels are influenced by strong interactions at short distances,
which drastically reduce the lifetimes of mesic atoms in s-states, and for
heavier nuclei also in p-states. For such atoms, the order a%-binding effects
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Fig. 1.3. The energy levels En = fa2m02/2n2 and Ve = 762/7‘ + h%(f +

1)/2mr? for £ = 0,1,2, (s, p, d)

of the KG equation have been verified with moderate precision in p- and
d-states. Foe a theoretician, the best test of these effects is a by-product
of ordinary “electronic” hydrogenlike atoms, in the form of a fine-structure
average (see the discussion following (2.149) below). The precise values of the
electron mass and the Bohr radius ap have already been given in Sect. 1.2. For
scattering states (which contain one ion and one unbound electron), (1.98)
applies with positive k2; the substitution k& = ik is then inappropriate. We
therefore resubstitute in (1.120)

z==2ikr, a=l,+1+in, n=—azE/hck, (1.140)

F = F(lo 4+ 1+in, 2o + 2, —2ikr). (1.141)

E > mc? is now a continuous parameter, and the confluent hypergeomet-
ric function F(a,b,2) contains both e**" and e~*" for r — co. Such waves
are called Coulomb distorted waves (see also (1.299) and Sect.2.7); 7 is the
“Sommerfeld parameter” (the distortion vanishes for n = 0). At very high
energies, one has Vg = V, and the centrifugal potential at fixed [ becomes
also unimportant.

0 0 0
3s 3p 3d

Fig. 1.4. The Zeeman splitting for the spinless hydrogen atom, at n = 3
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The KG equation plays a central role in relativistic quantum mechanics,
as the Dirac and binary equations can be reduced to the same form. It is
therefore useful to simplify that form as much as possible. For the point
Coulomb potential, multiplication of (1.76) by (¢/EZa)? = c¢*/E%*a% gives
the “standard form”

(2/rc + a%)r2 — w2)p = —(hkc/Eagz)?, (1.142)

rc=razE/he, p.=cp/azE. (1.143)

It contains only two constants, namely a2 and nng,
K¢ = —(hkc/Bag)®*y =nz*y, K =2[rc+aj/rl—=Z,  (1.144)

according to the definition (1.116) and k* = —k? for bound states. The
original KG equation is an “implicit” eigenvalue equation, i.e. the operator
itself contains E. Its standard form is an explicit eigenvalue equation for
ngz, which is an advantage in perturbation theory of 72 (for example of the
Zeeman shift calculation (2.307) in Sect. 2.9). This point is hidden in the four-
component Dirac equation Hpy¥p = Evp (Sect.2.4), but becomes evident
in the two-component “Kramers version” (2.135) below. The standard form
of the nonrelativistic Schrodinger equation for V = —az/r (1.49) is (2/re —
i) = n§2w; it is used in quantum defect theory (Seaton 1966). But there
the advantage is less important, as (1.49) is already an explicit eigenvalue
equation for Ey. Equation (1.119) is an explicit eigenvalue equation in z,
with eigenvalue a.

Immediate results of the standard form are that it contains only o,
E? and m?. Whereas the a?-dependence survives in the nonrelativistic
Schrédinger equation, the appearance of E? and m? is characteristic of rel-
ativity. It is already present in Einstein’s relation (1.34) for freely moving
objects. In particular, m is only defined as +v/m2. The sign of m is a matter
of definition. Einstein should really have used a new symbol on the right-
hand side of his equation (1.34), for example the letter s which will be
introduced in (4.72) for the mass? of a composite particle. The arbitrari-
ness in the sign of E is more difficult. In Sect. 3.2, negative energies will be
needed for positrons, which are repelled by the hydrogen nucleus. But near
the end of Sect. 4.7, it will become clear that the static KG and Dirac equa-
tions also represent limiting cases of relativistic two-body equations, in which
hydrogen and antihydrogen appear as degenerate solutions with eigenvalue
s = (:l:E =+ mmucleus)z-

The natural units of relativistic quantum mechanics are h = ¢ = 1. A pop-
ular energy unit is the electron Volt, éV. From % (1.31) and ¢ (1.1), one gets

1=h=hc=06.58218 x 107 %eVs = 1973289 x 10 °eVcem.  (1.145)

Both cm and s have then the dimension eV~!. As the precision of ¢ exceeds
that of the original Paris meter, the meter has been redefined as 1m = 1s X c.
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The fine structure constant e?/fic (1.111) remains dimensionless, e? = a =
1/137.036. Measurements of « are discussed by Kinoshita (1996). Magnetic
fields are quoted in Tesla,

1T = 10 000 Gauss = 692.76 V2. (1.146)

With m,. = 510999 eV, the corresponding Larmor frequency ((1.173) below)
is small,

Wearmor = 3€B/mec = 3(B/T)1.15768 x 10~ * eV. (1.147)

The energy scale of thermal dirstibution is given by the Boltzman constant,
kp = 8.61734 x 1075 eV /K.

Unfortunately, some theorists use i = ¢ = 1 in connection with Heaviside-
Lorentz units, where the 47 is missing in the inhomogeneous Maxwell equa-
tions (1.52). There are thus two different units of charge in use,

e=+/a=0.08542, epp =eVir, o=e¥ /4, (1.148)

which is a permanent source of errors.

On the other hand, atomic theorists prefer “atomic” units, h = m, =
e = 1. From e?/hc = a, this fixes ¢ = 1/a. The Bohr radius is ag =
h?/e?m, = 1, the Rydberg constant R, = 1/2. The smaller “Rydberg”
unit R, = 1 is also used, thus providing errors of factors 2.

1.7 Landau Levels and Harmonic Oscillator

A free spinless particle of charge ¢ = —e in a constant magnetic field is
described by (1.76) for V = 0 and 72 given by (1.80):

(h?k? — %)y = (W®k? — p* — 2Ape/c — A%e%/c*)y = 0. (1.149)

As A (1.79) is independent of z, there exist solutions with plane waves along
the z-axis,

P(r) = e*Zp(z,y), (WK} —pl — pp — 2Ape/c— A%e*/®)Y(z,y) = 0;
(1.150)
hzkt2=h2k2—h2k§:Ez/c2—m202—h2kz. (1.151)

This equation may be solved both in cartesian and in cylindrical coordinates;
the two sets of solutions are quite different. To understand their connection,
it helps to recapitulate the corresponding classical paths. These follow from
the Lorentz force

p=—-eE+vxB), v=r=dr/dt (1.152)
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for the special case E = 0. The relativistic form of p is mu = mdr/dr, where
7 is the particle’s proper time. When the particle energy E is conserved, one
has t = 7y = 7E/mc? (“time dilatation”) and p = #FE/c?. Consequently,
the relativistic Lorentz force contains m only indirectly via E, precisely as
the Klein-Gordon equation (1.151). The classical path in three dimensions is
a helix along the z-axis (the direction of the magnetic field), its projection
on the xy-plane being a circle of radius

R =pi/ecB. (1.153)

Relativistic particle momenta are in fact measured from curvatures in mag-
netic fields. The relativistic Larmor frequency is wparmor = ecB/2E. The
classical helix has its “guiding center” defined by its coordinates (x4, y,) in
the zy-plane. The quantum mechanical solutions of (1.149) have no orbits
with x4, and y, as simultaneous eigenvalues, as the corresponding operators
do not commute. The circular gauge (1.84) contains orbits with guiding cen-
ters at a fixed distance p, from the origin. The “Landau gauge” takes b = 0
in (1.79). Then A depends only on y, and x4 can be fixed. For general b, one
obtains solutions with fixed ellipses of guiding centers. Rotated and shifted
ellipses would require more parameters in (1.79).
The Landau levels are most easily calculated in the Landau gauge

b=0, A.=A,=0, A,=Buz, (1.154)
U(z,y) = e™Vyp(x), [k7 + 02 — (ky +zeB/he)?|y(x) = 0. (1.155)
The equation is rewritten as
(k7 + 02 — (eB/hc)*(x — x0)?| =0, o = —hck,/eB. (1.156)
It is made dimensionless and the x( is removed by the substitution
r—xzo=s/%, 8, = 871/265, s = hc/eB, (1.157)

[kis + 0F — E2](€) = 0. (1.158)

The equation is equivalent to the nonrelativistic Schrédinger equation (1.49)
in one dimension (V2 — 82, Ey = h%k?/2m) with the harmonic oscillator
potential V(z) = mw3 (z — x0)?, which will be commented on in Sects. 1.8
and 1.9, and also in Sect.3.1 in connection with photons. The harmonic

oscillator becomes dimensionless for s = ii/mwy,
Ent = Jhwn (€ — 83)y. (1.159)

Note also that we have this time ignored our rule that the separation of
the plane wave exp(ikyy) in (1.155) replaces the constant k7 by k2 = ki — k2,
because k; was needed in the shift of variable (1.156). The physical range of
¢ in the differential equation (1.158) is —oo < & < +o0; the point € = 0 is
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harmless this time. The asymptotic solution at £2 — oo is found by setting
k2 =0,
(€2 — 02)thas = 0, s = Nye& /2 4 Ne /2, (1.160)

The coefficient N, must vanish, because the function exp{¢2/2} explodes for
& — 00. The complete solution for finite £ is again taken as a product,

Yu(€) = Nue €72 H, (6). (1.161)

The new label n refers to the nth eigenvalue k2, of (1.156). We shall find
n = 0 for the lowest eigenvalue k2, where vy is called the ground state.
(In the hydrogen atom, the ground state has the principal quantum number
n =1 and ! = 0.) At this moment, the values of n are still open. The factor
exp{—&2/2} is again pulled to the left of all operators and then divided off:

B2eE/2 = €29 — )2 = IO — €0 — Ot + €2),  (1162)
(0F — D¢ — Ol +2n')H (€) =0, n/ =kf's. (1.163)
One may of course also rewrite
Oct = E0¢ + 1, (1.164)
remembering 0¢§H = £0¢H + H = (£0: + 1)H:
(0f —260¢ +2n)H, =0, n=n'— . (1.165)

This differential equation is solved by a power series expansion,
Hy, =Y a,, 2n—£0)¢" =2n-v)g’, 03¢ =v(v-1)¢""2, (1.166)
v=0

v+2)(v+1)ays2 +2(n —v)a, =0. (1.167)

The first term in (1.167) originates from ay+28£2£”+2. For v — oo, one has
ay42/a, = 2/v. The same ratio appears also in the power series expansion
exp{€2} = X, ()" /n! = X,£V/(v/2)!. As in the hydrogen case, it corre-
sponds to the growing part of .5 (1.160). It can be avoided only if the series
stops at a certain maximal power vy of €. This requires the n of (1.165) to
be an integer, 7 = Umax; in that case a,,_, 42 vanishes according to (1.167).
The coefficients of the two highest powers of £ follow from (1.167) by setting
v =n — 2, and by Hermite’s choice of normalization, a,, = 2™.

n(n —1)a, —4a, o =0, H,=2"[¢"—n(n—1)/4""2..]  (1.168)
The series begins with ag for even n and with a; for odd n,

Hy=1, H,=2¢, H,=4£6 -2, Hy=8¢ —12¢. (1.169)
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The polynomials H,, are called Hermite polynomials. With n’ = n + % ac-
cording to (1.165), the eigenvalues k? of (1.158) assume the values

ki, =n'eB/lic=(n+})/s, n=0,1,2.... (1.170)

Thus the Landau levels are equidistant in k? and also in E? according to
(1.151). At fixed k,, one may also define a mass for the transverse motion,

m? =m? 4+ h?k?/c?, (1.171)
E,/c= \/mt2(32 + h2k2 = myc +n'eBh/2m,c? — ne*B2h/8mlc . .. .
(1.172)

In the nonrelativistic limit, the third term is already negligible, such that the
energy levels F,, themselves become equidistant,

EN,n - n,hWLarmora WLarmor — eB/2mc. (1173)

It is instructive to construct the Landau levels also in the gauge (1.79) with
b # 0. For that purpose, we separate a phase from ¥ (z,y) (1.155) as in (1.61),

Y@, y) = NP (z,y), A= —bxyB, (1.174)
—ihdye = e (—th0, + byeB/c), —ihdye = e (—ihdy + bxeB/c).
(1.175)

The equation for ¢ (x,y) keeps the form (1.150), but now with A given by
(1.79). In the circular gauge b= 1, (1.84) and (1.86) give

(h*ki —p —p;+ieBOyh/c—e*p* B* [4P )y (x,y) = 0, p* = 2*+y°. (1.176)

This is still the old equation, with solutions ¢’ = e~%¢4/"ce=Fy¥e)(x). How-
ever, it also has other simple solutions. They are found in cylindrical coordi-
nates by the ansatz

w’(ac,y) = wml (¢)¢Cl(p)v (1177)

where the ¢,,,(¢) are the eigenfunctions of —id,, with eigenvalues m; =
0, £1, £2.... The operator 72 is then given by (1.88), but with the addi-
tional simplification 82 — —k2:

[k} + p 10, + 02 —mi /p® — eBmy/hc — (epB/2hc)*|hei(p) = 0. (1.178)

The substitution z = (e/2hc)Bp? and the ansatz 1. = e */221"™l/2(2)
lead again to the confluent hypergeometric differential equation for w, w =
F(a,b,z), this time with b = 1 + |m;|/2, —a = (k?/eB — 1 — m; — |my|)/2.
Its polynomial solutions have —a = n,, n’ = n,+m;+|my|+1)/2. They are
the (“associated”) Laguerre polynomials L?:

L, = (n, +p)2(n,p)) " F(—n,,p+1,2), (1.179)

with p = |my|/2, ¢ = n,, and the harmonic oscillator quantum number n =
p+n,.
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1.8 Orthogonality and Measurements

The point Coulomb potential and the constant B-field (“harmonic oscillator”)
practically exhaust the list of explicit solutions not only for the KG-equation
(1.73), but also for the Dirac equation below. The nonrelativistic Schrodinger
equation has additional explicit solutions in cases that involve the conserved
Runge-Lenz vector, but these are less interesting. In this situation, the anal-
ysis of implicit solutions becomes particularly important.

In linear algebra, an operator AT Hermitian adjoint to A is defined over
the space of square integrable functions 1, 1’ as follows:

[ AT = [p(AY')" = [A Y™ (1.180)

The integration extends at least over those variables on which A acts. For A =
z, f(z), 0,02 etc. one may only have to integrate over x, even if ¢(r) is also
a function of the orthogonal coordinates y, z. But there are also wavefunctions
¥ (r1, r2) which are needed for atoms with two electrons, in which case a two-
particle operator Aj, might require integrals over d®r; and d3rq in (1.180).
A popular notation is [dr, without specification of 7. For At = A, the
operator is called “self-adjoint”. The operator x (= multiplication by z) is
self-adjoint, but 9, is not. i0, is self-adjoint for those functions that vanish
at the integration limits. (i0,)* = —id,, and the minus sign is canceled by
a partial integration, ['*0,¢ = — [0 ™.

In practice, AT = A may be weakened to apply to a class of integrals
called “expectation values”, to be defined in (1.206) below. This is called

“hermiticity”, AL = Ag. Eigenfunctions v¢; of Ay have real eigenvalues,
a; = a}. For the proof, we set ¢ = ¢;, ¥’ = 1; in (1.180):
J i Anvi = a; [ ¥ = [Yi(Auyi)" = af [¥]s. (1.181)

In physics, it has become customary to replace the term “self-adjoint” by
“Hermitian”, except perhaps in the discussion of “observables”, see below.

Eigenfunctions v; and v; with two different eigenvalues of the same op-
erator Ay are “orthogonal” to each other,

Awl = aiwi, A?/)j = a]"(pj, f’l/);sz = 0 fOI‘ a; 7é aj. (1182)
For the proof, consider (1.181) with 9] replaced by %}:
[V AV = a; [ i = [Pi(A;)" = aj [ i)}, (1.183)

in view of the reality of a;. Consequently, (a; — a;) [¥}1; = 0 results in
[¢jdi = 0 for a; —a; # 0. For © = j, the integral remains open, and
2

a normalization constant N; is used to get [ [¢;|* = 1. The functions are then

said to be orthonormal,

[Yji = 0ij = (1fori=j, 0fori# j). (1.184)
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A trivial example of orthogonality relations is provided by the functions
Ym, (@) (1.17), which have the universal normalization constant N(m;) =
(2%)71/2

2m

APy (0)bm (@) = G- (1.185)

0
The piece 9,(1 — u?)d, of (r x V)? is separately Hermitian in the variable
—1 < u < 1, u = cosf, such that (r x V)? is also Hermitian (with eigen-
values —I(I + 1), as we know). Consequently, the spherical harmonics satisfy
orthogonality relations in the two variables u = cos 6 and ¢:

2 1
/ do / duYy" (0, )Y (0, 8) = [ AV Y™ = Grwbur. (1.186)
0 —1

The operators { and ps = —i0¢ are Hermitian for the harmonic oscillator
wave funcions, and so is their combination &2 + pf =& - 8?. The resulting
eigenvalues n + } of k*hc/eB (1.170) are real, so the eigenfunctions vy, (€)
are orthonormal:

[N Nye ™ Hoy Hy = Sy (1.187)

In this case, the normalization constant IV, is relatively complicated:
2 o 1 1 -1/2
[e € H2de = m22"nl, N, = (7T2 2”n!) . (1.188)
It will be derived by a simpler method in (1.227). If one wishes to normalize

in the more physical coordinate z’, the relation dz’ = sd¢ gives

}—1/2

1
Ny = [(ws)aznn! (1.189)

Yo
—4 4
Y1
P2
V3

Fig. 1.5. The harmonic oscillator functions v, for n =0 to 3
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Orthogonality relations of eigenfunctions of operators A with real eigenval-
ues a; are taught in linear algebra. Their significance in quantum physics
is also connected with the theory of measurements: The result of a mea-
surement is the eigenvalue of a fixed and known operator. For example, the
momentum hk of a free particle is one of the infinitely many eigenvalues of
the operator p = —iAV. But what happens with the hermiticity of p for
plane waves which refuse to vanish at the integration limits? As an example,
consider the functions

b = ek=2y(a,y), P = e EY (z,y).

/ o = — / " 0 4 (i) (i) — ' (i )86 (min)-

Zmin Zmin

(1.190)
The “surface terms” must be eliminated in order to make —ifi0, a Hermitian
operator. Two different methods are used here. The first one takes right away
Zmin = —00, Zmax = +00, but replaces the phase ik.z by ik.z — k|z| with
£ > 0. In this case each surface term of (1.190) vanishes, and at the end of the
calculation one may take k — 0. The second method uses a finite integration
interval, zmax — Zmin = L, as in Sect. 1.5, and imposes periodic boundary
conditions, ¥(zmax;, ,y) = ¥(Zmin, Z, y). In this case the two surface terms of
(1.190) cancel each other. At the end of the calcutation, one takes L, — oo,
see Sect. 2.2. In this method, the possible values of k, are restricted to

k. =n.2m/L,, mn,=0,+1,42 43 +4... . (1.191)

Their spacing is twice as large as in the case (1.94) for bound states, but
negative values are now also allowed. The total number of states for large L,
is thus the same, and one is no longer restricted to standing waves sin k., z.
Contrary to p., the component I, = —ihdys of the angular momentum op-
erator I = r x p (1.85) is automatically Hermitian, due to the periodicity
condition ¥(¢) = ¢ (¢+27) of a single-valued function on a circle. This prop-
erty has been converted into another useful trick for wavefunctions (1.190)
that extend only over a finite region in x and y: The space is deformed into
a torus of length L, = 2nR — oo. The region z > zy.x has a trivial meaning
in this torus.

The stationary KG-equation (1.73) is of second order in a; = E;. For
V = 0, the equation may be rewritten as w2y = h2k21, which is again an e