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Preface to the Second Edition

This edition includes five new sections and a third appendix. Most other sec-
tions are expanded, in particular Sects. 5.2 and 5.6 on hyperfine interactions.
Section 3.8 offers an introduction to the important field of relativistic

quantum chemistry. In Sect. 5.7, the coupling of the anomalous magnetic
moment is needed for a relativistic treatment of the proton in hydrogen. It
generalizes a remarkable feature of leptonium, namely the non-hermiticity of
magnetic hyperfine interactions. In Appendix C, the explicit calculation of
the expectation value of an operator which is frequently approximated by
a delta-function confirms that the singularity of relativistic wave functions at
the origin is correct.
The other three new sections cover dominantly nonrelaticistic topics, in

particular the quark model. The coupling of three electron spins (Sect. 3.9)
provides also the basis for the three quark spins of baryons (Sect. 5.9). For less
than four particles, direct symmetry arguments are simpler than the repre-
sentions of the permutation group which are normally used in the literature.
Another new topic of this edition is the confirmation of the E2-dependence

of atomic equations by the relativistic energy conservation in radiative atomic
transitions, according to the time-dependent perturbation theory of Sect. 5.4.
In the quark model, the E2-theorem applies not only to mesons, but also to
baryons as three-quark bound states. Unfortunately, the non-existence of free
quarks prevents a precise formulation of the phenomenological “constituent
quark model”, which remains the most challenging problem of relativistic
quantum mechanics.

Karlsruhe, May 2005 Hartmut M. Pilkuhn



Preface

Whereas nonrelativistic quantum mechanics is sufficient for any understand-
ing of atomic and molecular spectra, relativistic quantum mechanics explains
the finer details. Consequently, textbooks on quantum mechanics expand
mainly on the nonrelativistic formalism. Only the Dirac equation for the
hydrogen atom is normally included. The relativistic quantum mechanics
of one- and two-electron atoms is covered by Bethe and Salpeter (1957),
Mizushima (1970) and others. Books with emphasis on atomic and molecular
applications discuss also effective “first-order relativistic” operators such as
spin-orbit coupling, tensor force and hyperfine operators (Weissbluth 1978).
The practical importance of these topics has led to specialized books, for
example that of Richards, Trivedi and Cooper (1981) on spin-orbit coupling
in molecules, or that of Das (1987) on the relativistic quantum mechanics of
electrons. The further development in this direction is mainly the merit of
quantum chemists, normally on the basis of the multi-electron Dirac-Breit
equation. The topic is covered in reviews (Lawley 1987, Wilson et al. 1991);
an excellent monograph by Strange (1998) includes solid-state theory.
Relativistic quantum mechanics is an application of quantum field theory

to systems with a given number of massive particles. This is not easy, since
the basic field equations (Klein-Gordon and Dirac) contain creation and an-
nihilation operators that can produce unphysical negative-energy solutions in
the derived single-particle equations. However, one has learned how to han-
dle these states, even in atoms with two or more electrons. The methods are
not particularly elegant; residual problems will be mentioned at the end of
Chap. 3. But even there, the precision of these methods is impressive. For ex-
ample, the influence of virtual electron-positron pairs is included by vacuum
polarization, in the form of the Uehling, Kroll-Wichman and Källen-Sabry
potentials (Sect. 5.3). For two-body problems, improved methods allow for
a fantastic precision, which provides by far the most accurate test of quan-
tum electrodynamics itself.
The present book introduces quantum mechanics in analogy with the

Maxwell equations rather than classical mechanics; it emphasizes Lorentz
invariance and treats the nonrelativistic version as an approximation. The
important quantum field is the photon field, i.e. the electromagnetic field in
the Coulomb gauge, but fields for massive particles are also needed. On the
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other hand, the presentation is very different from that of books on quan-
tum field theory, which include preparatory chapters on classical fields and
relativistic quantum mechanics (for example Gross 1993, Yndurain 1996).
The Coulomb gauge is mandatory not only for atomic spectra, but also

for the related “quark model” calculations of baryon spectra, which form
an important part of the theory of strong interactions. A by-product of an
entirely relativistic bound state formalism is a twofold degenerate spectrum,
due to explicit charge conjugation invariance. Quark model calculations might
benefit from such relatively simple improvements, even when the spectra may
eventually be calculated “on the lattice”.
A new topic of this book is a rather broad formalism for relativistic

two-body (“binary”) atoms: Nonrelativistically, the Schrödinger equation for
an isolated binary can be reduced to an equivalent one-body equation, in
which the electron mass is replaced by the “reduced mass”. The extension of
this treatment to two relativistic particles will be explained in Chap. 4. The
case of two spinless particles was solved already in 1970, see the introduc-
tion to Sect. 4.5. The much more important “leptonium” case is treated in
Sects. 4.6 and 4.7.
Stimulated by the enormous success of the single-particle Dirac equa-

tion, Bethe and Salpeter (1951) constructed a sixteen-component equation
for two-fermion binaries. However, increasingly precise calculations disclosed
weak points. An effective Dirac equation with a reduced mass cannot be
derived from a sixteen-component equation except by an approximate “qua-
sidistance” transformation. On the other hand, such a Dirac equation does
follow very directly in an eight-component formalism, in which the relevant
S-matrix is prepared as an 8 × 8-matrix. The principle will be explained in
Sect. 4.6, the interaction is added in Sect. 4.7. Like in the Schrödinger equa-
tion with reduced mass, the coupling to the photon vector potential operator
is treated perturbatively. The famous “Lamb shift” calculation will be pre-
sented in Sect. 5.5, extended to the two-body case.
A remarkable property of the new binary equations is the absence of “re-

tardation”. Its disappearance will be demonstrated in Sect. 4.9. Most fermions
have an inner structure which requires extra operators already in the single-
particle equation. As an example, the fine structure of antiprotonic atoms
will be discussed in Sect. 5.6. The Uehling potential is also detailed for these
and other “exotic” atoms.
Preparatory studies for this book have been supported by the Volkswa-

genstiftung. The book would have been impossible without the efforts of my
students and collaborators, B. Melić and R. Häckl, M. Malvetti and V. Hund.
A textbook by Hund, Malvetti and myself (1997) has provided some of its
material.
I dedicate this book to the memory of Oskar Klein.

Karlsruhe, March 2002 Hartmut M. Pilkuhn
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1 Maxwell and Schrödinger

1.1 Light and Linear Operators

Electromagnetic radiation is classified according to wavelength in radio and
microwaves, infrared, visible and UV light, X- and Gamma rays. These names
indicate that the particle aspect of the radiation dominates at short wave-
lengths, while the wave aspect dominates at long wavelengths. Nevertheless,
the radiation is described at all wavelengths by electric and magnetic fields,
E and B, which obey wave equations. The quantum aspects of these fields
will be discussed in Chap. 3. In vacuum, the equation for E is

(−c−2∂2t + ∂
2
x + ∂

2
y + ∂

2
z )E = 0, ∂t = ∂/∂t, ∂x = ∂/∂x, (1.1)

where c = 299 792 458m/s is the velocity of light in vacuum. For the time
being, we are mainly interested in the form of this differential equation, which
guided Schrödinger in the construction of his equation for electrons. In vec-
torial notation, r = (x, y, z) is the position vector, and ∇ = (∂x, ∂y, ∂z) =
“nabla” is the gradient vector; its square is the Laplacian ∆. Particularly in
relativistic context, one prefers the notation xi = (x1, x2, x3) = (x, y, z):

∇2 = ∆ = ∂2x + ∂
2
y + ∂

2
z =

3∑
i=1

∂2i , ∂i ≡ ∂/∂x
i. (1.2)

The xi is conveniently combined with x0 = ct into a four-vector xµ =
(x0, xi) = (x0, r), and the −c2∂2t of (1.1) is combined with ∇

2 into the
d’Alembertian operator �, also called “quabla”:

�E = 0; � = −∂20 +∇
2, ∂0 = ∂/∂(ct). (1.3)

The full use of this nomenclature will be postponed to Chap. 2. For the mo-
ment, t is expressed in terms of x0 merely to suppress the constant c. Today,
c is in fact used in the definition of the length scale, see Sect. 1.6.
Differential operatorsD are linear in the senseD(E1+E2) = DE1+DE2.

If E1 and E2 are two different solutions of (1.1), E = E1 + E2 is a third
one. This is called the superposition principle. The intensity I of light is
normally measured by E2, I ∼ E2 ≡ square(E), but nonlinear opera-
tors such as “square” are not used in quantum mechanics. ∇ and ∇2 are
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x

y

z

ϕ

ρ

Fig. 1.1. Cylinder coordinates

both linear operators. The simplest operator is a multiplicative constant
C, C(E1 + E2) = CE1 + CE2. We now recall some operators of classical
electrodynamics, which will be needed in quantum mechanics. The Laplacian
is in cylindrical coordinates (Fig. 1.1)

x = ρ cosφ, y = ρ sinφ, (1.4)

∇2 = ∂2z + ρ
−1∂ρρ∂ρ + ρ

−2∂2φ, (1.5)

and in spherical coordinates (Fig. 1.2):

z = r cos θ, ρ = r sin θ, (1.6)

∇2 = r−1∂2rr + r
−2(r ×∇)2. (1.7)

r ×∇ is somewhat complicated, but its z-component is simple:

(r ×∇)z = x∂y − y∂x = ∂φ. (1.8)

The square of r ×∇ is also relatively simple,

(r ×∇)2 = ∂2φ(1− u
2)−1 + ∂u(1− u

2)∂u, u = cos θ. (1.9)

Two operators A and B are said to commute if the order in which they are
applied to the wave function does not matter, AB = BA. For example, as
r×∇ depends only on θ and φ, not on r, one has r−2(r×∇)2 = (r×∇)2r−2.
On the other hand, in the radial part r−1∂2rr of the Laplacian (1.7), the first

x

y

z

ϕ

ρ

r

ϑ

Fig. 1.2. Spherical coordinates
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two operators do not commute, r−1∂2r �= ∂
2
rr
−1 (otherwise one would have

r−1∂2rr = ∂
2
r ). Valid alternative forms are

r−1∂2rr = (∂r + 1/r)
2 = ∂2r + 2r

−1∂r. (1.10)

To check these, apply the operators to an arbitrary function f(r) and use
∂rf(r) = f

′(r), ∂rfg = f
′g + fg′, (∂r + 1/r)

2 = (∂r + 1/r)(∂r + 1/r).
Equation (1.1) has plane-wave solutions of the type

E = E0e
ikr−iωt, ω = 2πν. (1.11)

k = (kx, ky, kz), λ = 2π/k, (1.12)

where k is the wave number vector, pointing into the direction of propagation
of the plane wave, and λ is the wavelength. Insertion of

∂tE = −iωE, ∂zE = ikzE, . . . (1.13)

shows that (1.11) is a solution of the wave equation (1.1) only for

ω2/c2 = k2 = k2x + k
2
y + k

2
z . (1.14)

We shall also need cylindrical and spherical waves, where∇2 is required in the
forms (1.5) and (1.7). Such waves can also be monochromatic, meaning that
they contain only one (angular) frequency ω. The common wave equation for
all monochromatic waves in vacuum is

E(xµ) = e−iωtEω(r), (ω
2/c2 +∇2)Eω(r) = 0. (1.15)

This “Helmholtz equation” is still a partial differential equation in three
variables; we recall a few tricks for the solution of such equations. The main
trick is to express ∇2 in terms of commuting operators A,B,C, and then to
construct “eigenfunctions” of these operators. When A is applied to any of
its eigenfunctions fn, it may be replaced simply by a constant an, called the
eigenvalue:

Afn = anfn. (1.16)

For example, the square of the operator ∂φ occurs both in cylindrical and
in spherical coordinates. The normalized eigenfunctions of ∂φ are

ψml(φ) = (2π)
−1/2eimlφ, ml = 0,±1,±2 . . . (1.17)

In quantum mechanics, ml is called the (orbital) magnetic quantum number
(Sect. 1.4). The normalization is chosen such that∫ 2π

0

ψ∗mlψmldφ =

∫ 2π
0

|ψml |
2dφ = 1. (1.18)
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It fixes the scale of the eigenfunction. An essential point of (1.17) is the
restriction of the eigenvalues ml of −i∂φ to integer values, due to the required
single-valuedness of ψ at all φ:

ψml(φ+ 2π) = ψml(φ). (1.19)

For such eigenfunctions, one may replace the operator ∂2φ by one of its eigen-

values −m2l in the operators (1.5) or (1.9). For commuting operators A and
B there exist common eigenfunctions,

Afan,bm = anfan,bm , Bfan,bm = bmfan,bm , (1.20)

because ABf = BAf = anBf shows that Bf is also an eigenfunction of A,
again with eigenvalue an. A rather trivial example of common eigenfunctions
is given by the plane waves (1.11), which are eigenfunctions of ∂x, ∂y, ∂z,
with eigenvalues ikx, iky, ikz respectively. A famous example in spherical co-
ordinates are the “spherical harmonics” Y ml (θ, φ) (with simplified notation
ml ≡ m), which are not only eigenfunctions of ∂φ, but also of (r × ∇)2 as
given by (1.9):

Y ml (θ, φ) = Θ
m
l (θ)ψm(φ), (1.21)

(r ×∇)2Y ml = −l(l + 1)Y
m
l , l = 0, 1, 2 . . . − l ≤ m ≤ l. (1.22)

Θml is a polynomial of degree |m| in sin θ and degree l − |m| in u = cos θ.
Some of these functions are collected in Table 1.1.
TheΘ0l are Legendre polynomials Pl, apart from a normalization constant:

Θ0l = (l +
1
2 )
1
2Pl(u). P0 = 1, P1 = u, P2 =

1
2 (3u

3 − 1), P3 =
1
2 (5u

3 − 3u).
(1.23)

When applied to the spherical harmonics, the Laplacian (1.6) effectively be-
comes a radial operator, i.e. independent of θ and φ. ThusEω(r) has solutions
of the form

Eω(r) = E0(ω)Rω,l(r)Y
m
l (θ, φ), (1.24)

(ω2/c2 +∇2)Eω = E0Y
m
l [ω

2/c2 + (∂r + 1/r)
2 − l(l + 1)/r2]Rω,l(r). (1.25)

Table 1.1. Y ml for l < 3. Normalization (1.186), x± = ∓x− iy.

Y 00 = (4π)−
1
2 ,

Y 01 = (3/4π)
1
2 cos θ = (3/4π)

1
2 z/r,

Y ±11 = ∓(3/8π)
1
2 sin θe±iφ = (3/8π)

1
2 x±/r,

Y 02 = (5/16π)
1
2 (3 cos2 θ − 1) = (5/16π)

1
2 (2z2 + x+x−)/r

2,

Y ±12 = ∓(15/8π)
1
2 cos θ sin θe±iφ = (15/8π)

1
2 x±z/r

2,

Y ±22 = (15/32π)
1
2 e±2iφ sin2 θ = (15/32π)

1
2 x2±/r

2.
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Dividing off the first two factors, one finds the differential equation for the
radial wave function R(r),

[ω2/c2 + (∂r + 1/r)
2 − l(l + 1)/r2]Rω,l(r) = 0. (1.26)

Also this equation has simple solutions, to be discussed in Sect. 1.10.
E need not be an eigenfunction of any of these operators, but it may be

expanded in terms of the eigenfunctions. Real light has a “spectral decom-
position”,

E(t, r) =

∫ ∞
0

dωEω(r)e
−iωt, (1.27)

which expresses a wave train (or wave packet) as a superposition of monochro-
matic waves. Similarly, there will be a double integral over the directions of k
in (1.11), or equivalently a sum over l and m in (1.24). As a simple example
of a summation, consider a wave in a waveguide along the z-axis. The walls
of the waveguide in the x- and y-planes require standing waves along these
directions, of the form sin(kxx) sin(kyy). But

sin(kxx) = (2i)
−1eikxx − (2i)−1e−ikxx (1.28)

displays a standing wave as a superposition of two counterpropagating plane
waves. This also demonstrates that ∇2 has real eigenfunctions. The solution
(1.28) is an eigenfunction of ∂2x, even though it is not an eigenfunction of ∂x.
Similarly, the spherical harmonics are only complex because we insisted on
using eigenfunctions of ∂φ in (1.17), where sinφ and cosφ would have been
equally possible from the point of view of ∂2φ.

We conclude with the solution of (1.26) for l = 0, [ω2/c2 + (∂r +
1/r)2]Rω,0(r) = 0. Also this equation has two solutions,

R± = r
−1e±ikr, (∂r + 1/r)R± = r

−1∂re
±ikr = ±ikR±, (1.29)

with k2 = ω2/c2, as usual.R+ is the simplest example of an outgoing spherical
wave. (It does not represent dipole radiation, because the Coulomb gauge
condition divE = 0 has been ignored.) For complex E, the intensity is I ∼
E∗E instead of E2. It decreases with r as r−2, as expected.

1.2 De Broglies Idea and Schrödingers Equation

Although light does propagate according to the wave equation just dis-
cussed, it is nevertheless emitted and absorbed in quanta called photons.
In monochromatic light of the type (1.15), each photon has the same energy
E = hν, and in the case of a plane monochromatic wave (1.11), it also has
a fixed momentum p = hk/2π:

E = hν = h̄ω = hc/λ, p = h̄k, (1.30)

h̄ = h/2π = 6.58218× 10−16 eV s, (1.31)



6 1 Maxwell and Schrödinger

where h is Planck’s constant. The constants c and h̄ (“hbar”) are so funda-
mental in relativistic quantum mechanics that they are often taken as natural
units (Sect. 1.6). On the basis of (1.30), Einstein (1905) translated the relation
ω2/c2 = k2 into an energy-momentum relation for photons,

E2/c2 = p2. (1.32)

For massive particles, he had to reconcile Newton’s expression EN = p
2/2m

(m = particle mass, p = mv) with his photon formula (1.32). As Newtonian
mechanics fixes EN only up to a constant, Einstein put E = mc

2 + EN
and interpreted this expression as an approximation for small p/mc of the
function

E/c =
√
m2c2 + p2 = mc+ p2/2mc− p4/8m3c3 ± . . . (1.33)

He thus postulated the energy-momentum relation

E2/c2 − p2 = m2c2 (1.34)

for all kinds of particles (including composite ones and even watches), and
obtained (1.32) as a special case for zero-mass particles. It may also be noted
that for p/mc > 1, the expansion (1.33) of the square root diverges. Instead,
the expansion in terms of mc/p < 1 is now convergent:

E/c = p+m2c2/2p−m4c4/8p3 ± . . . (1.35)

Comparing with the E/c = p of (1.32), one may say that all particles of large
momenta mc/p ≈ 0 move also with the speed of light. There exist weakly in-
teracting particles called neutrinos, which appear in beta decay. Their masses
are not exactly zero, but are neglible in all terrestrial experiments, such that
neutrinos move with the speed of light. In cosmic rays, electrons, protons
and even heavier nuclei sometimes move with the speed of light, too. For
most experiments, however, the system’s total energy E is close to

∑
imic

2,
where the sum includes all particles which are explicitly considered. Even in
a fully relativistic calculation, it is often practical to subtract this constant.
Let us call the remaining energy EN in honour of Newton, even when the
calculation is relativistic. For example, when the energy levels of alkali atoms
are approximated by a single-electron model, one sets

E = mec
2 +EN , mec

2 = 510.9989 keV. (1.36)

Already before the discovery of quantum mechanics, Rydberg found an em-
pirical formula for EN ,

EN (n, l) = −R∞/(n−β)
2 ≡ −R∞/n

2
β , n = 1, 2, 3 . . . , R∞ = 13.605691 eV.

(1.37)
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R∞ is the Rydberg constant for an infinitely heavy nucleus, n is the prin-
cipal quantum number, nβ the “effective” principal quantum number, (also
denoted by n∗), and β = β(l, n) is a “quantum defect” at orbital angular
momentum l (1.22). In alkali atoms, β > 0 is relatively large at small l where
the valence electron sees an increasing fraction of the nuclear charge Ze in-
side the screening charge cloud of the other electrons. (Actually, n = 1 exists
only for atomic hydrogen, which was studied later. Lithium (Z = 3) begins
with n = 2, sodium (Na, Z = 11) with n = 3, see Sect. 3.8. The other two
electrons of Li occupy the n = 1 “shell” which is “closed” according to Pauli
(1925); the other ten electrons of Na occupy the closed n = 1 and n = 2
shells, nowadays called K and L shells.)
This book is mainly concerned with hydrogen-like atoms that have no

further electrons. For pointlike nuclei, β is small and strictly independent of
n, β = β(l) ≡ βl. It will be shown in Sect. 1.6 that 1/n2β is the eigenvalue of
the “standard form” of relativistic equations for hydrogenic atoms.
Long before Schrödinger found his equation (1926), Bohr (1913) inter-

preted the Rydberg formula as the energies of certain classical Kepler orbits:

EN = −Z
2R∞/n

2, R∞ = e
4me/2h̄

2, (1.38)

Z being the nulear charge. This form applies to the whole isoelectric sequence
of hydrogen (H, He+, Li++, Be+++ . . .). Together with Sommerfeld, Bohr
established the quantization condition

∫
pdq = nh for closed bound orbits.

They also included a nuclear recoil in the form R = R∞m2/(m2+me), which
amounts to replacing the electron mass by the “reduced mass” mem2/(me+
m2), m2 being the nuclear mass. However, the orbits in many-electron atoms
are confined but not closed. The hopping (“quantum jumps”) from one orbit
to another remained also obscure.
De Broglie (1923) proposed that an electron, bound or free, did not at

all follow a path re = re(t), but that its propagation was described by
a wave equation. A bound electron would then correspond to a bound stand-
ing wave, analogous to a photon in a cavity. The cavity has eigenmodes n,
say, with eigenfrequencies ωn, which happen to obey Rydberg’s law (1.37). Of
course, de Broglie did not mean that atoms are confined by walls. Instead, the
Coulomb attraction by the atomic nucleus would confine the wave to a finite
volume. There is in fact an analogy with light reflection from a glass. Consider
a plane wave exp{ikr} incident on a window which is normal to the x-axis.
Even under the conditions of total reflection, the wave equation excludes an
abrupt jump to zero of the wave function. Instead, the factor exp{ikxx} of
exp{ikr} becomes exp{−κx}, where −κ corresponds to the continuation of
kx to an imaginary value, kx = iκ, ikx = −κ. Next, replace the plane wave in
the vacuum by a spherical wave in a small bubble in the glass, for example by
R+ of (1.29). If now for some reason k is replaced by iκ outside the bubble,
then the wave function exp{−κr}/r is exponentially falling in all directions.
When the bubble shrinks to zero, only this “forbidden” region remains; the
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complete wave function is then R = exp{−κr}/r, which is the asymptotic
(r → ∞) form of the hydrogen atom’s wave functions, see Sect. 1.5. Taking
now an electron instead of light, the volume filled by the electronic wave
functions has a radius of the order of κ−1 ≡ aB. This must roughly corre-
spond to the radius of Bohr’s lowest classical circular orbit, which de Broglie
knew from the Bohr-Sommerfeld model. For the nth orbit around a nucleus
of electric charge Ze,

κn = Z/naB, aB = h̄
2/e2me = 0.05291772 nm. (1.39)

The Bohr radius is much smaller than the wavelength of visible light. This is
the main reason for the late discovery of the wave equation for eletrons.
The quantitative result of de Broglie’s hypothesis was that a free electron

of momentum p = mev propagates like the plane wave (1.11) in vacuum,
with k = p/h̄ and with the “de Broglie wavelength”

λ = 2π/k = 2πh̄/p = h/mev. (1.40)

Due to the smallness of λ, the verification of de Broglies idea came late. Today,
electron diffraction is used in LEED (= low-energy electron diffraction; the
low energy is needed for a sufficiently small value of v). The first application of
particle interferometry came from low-energy neutron diffraction on crystals,
analogous to X-ray diffraction.
Schrödinger (1926) constructed the wave equation for a free particle of

mass m according to the ideas of de Broglie. He took Einstein’s relation
(1.34) and substituted backwards the values (1.30) for E and p for a plane
monochromatic wave,

h̄2(ω2/c2 − k2) = m2c2, ψ = ψ0e
ikr−iωt. (1.41)

We shall denote the wavefunctions of all kinds of particles except photons
by ψ. The ψ0 is analogous to the E0 in (1.11). In the case of spinless particles,
it is a single constant. For spin-1/2 particles such as elctrons, protons and
neutrons, it is a pair of constants called a spinor, just as the E0 is a triplet of
constants called a vector. But spin was added one year later (Pauli 1927), and
it is still customary to treat the electron as a spinless particle for a while. (Spin
enters nonrelativistic equations only in a magnetic field, see (2.54).) In order
to obtain a differential equation whose solutions satisfy the superposition
principle, Schrödinger interpreted ω/c and k as eigenvalues of the operators
i∂0 = i∂/∂(ct) and −i∇, respectively:

[(ih̄∂0)
2 − (−ih̄∇)2)]ψ = m2c2ψ. (1.42)

Today, the “momentum operator” −ih̄∇ is denoted by p;

(−h̄2∂20 − p
2 −m2c2)ψ = 0, p = −ih̄∇. (1.43)
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The notation E is not used for ih̄∂t, only for one of its eigenvalues (see also
Sect. 1.4). The stationary free-particle Schrödinger equation

ψ(xµ) = eiEt/h̄ψ(r), (E2/c2 − p2 −m2c2)ψ(r) = 0 (1.44)

is the Helmholtz equation for a massive particle. In the notation of (1.15), it
reads

(ω2/c2 +∇2 −m2c2/h̄2)ψ(r) = 0, (1.45)

which obviously reduces to (1.15) for m = 0. However, this form is not used,
because the potentials of the next section would also have to be divided by h̄.
The significance of (1.44) will appear repeatedly in this book: for particles
of arbitrary spins in Sect. 4.4, and for the asymptotic region of “binaries” in
Sects. 4.5 and 4.6.
Example of wavelengths: The n = 3 to n = 2 transition in hydrogen

emits a photon (the red Hα line) of energy E = R∞(1/4−1/9) = 1.88 eV. Its
wavelength is λ = hc/E = 656.3 nm. The wavelength of a free electron with
the same energy 1.88 eV is λe = h/p = h/(2meE)

1/2 = hc/E(2mec
2/E)1/2.

With 2mec
2 ≈ 106 eV (1.36), the square root is of the order of 10−3, and

consequently λe(1.88 eV) ≈ 0.9 nm. The neutron mass is 940× 106 eV, so λn
is 43 times smaller.

1.3 Potentials and Gauge Invariance

The traditional method of including Coulomb and vector potentials in the
Schrödinger equation of a charged particle uses a Hamiltonian formalism. But
in the first place, this formalism applies to relativistic fields. The Hamiltonian
of light in vacuum will be given in Sect. 3.1, that of the electron-positron field
in (3.89). Relativistic quantum mechanics is the art of obtaining from these
fields equations for systems with a fixed number of massive particles (in the
cases of atoms, ne electrons plus one nucleus). The resulting operators in dif-
ferential equations are also called “Hamiltonians”, but they are never exact.
For the hydrogen atom, the old Dirac Hamiltonian is a good first approxima-
tion. For ne > 1, the correct treatment of “negative-energy” states (Sect. 2.7)
is rather tricky. As these problems disappear in the nonrelativistic limit, it
may in fact be appropriate to first mention the nonrelativistic Hamiltonian,
which the reader has certainly already seen somewhere.
The nonrelativistic Schrödinger equation is of first order in i∂t; the trans-

formation of −∂2t into i∂t is somewhat complicated. For the time being, we
therefore consider the statinary equation (1.44) and replace E by mc2 +EN
as in (1.36):

(2mEN +E
2
N/c

2 − p2)ψ(r) = 0. (1.46)

E2N/c
2 is neglected and (1.46) is rewritten as

ENψ(r) = H0ψ(r), H0 = p
2/2m. (1.47)
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In classical Hamiltonian mechanics, the complete Hamiltonian is the sum of
the kinetic energy p2(t)/2m (with p(t) = mv(t)) and the potential energy
V (r(t)):

H = p2/2m+ V. (1.48)

Bohr and Sommerfeld used this H, for an electron in the nuclear electrostatic
potential φ = Ze/r, V = −eφ = −Ze2/r (the electron has charge −e).
They calculated the resulting Kepler ellipses, subject to their quantization
condition ∫ pdr = nh. Schrödinger also adopted H, but instead of taking
r = r(t) and p = mv(t) of a classical path, he took r and p as time-
independent operators acting on ψ(r),

ENψ(r) = Hψ(r), H = −h̄
2∇2/2m+ V (r). (1.49)

He solved this equation for bound states in the potential V = −Ze2/r and
found that the eigenvalues EN (n, l) did reproduce the Bohr-Sommerfeld for-
mula (1.38), independently of the quantum number l. Encouraged by this
success, Schrödinger returned to his relativistic equation (1.32) and replaced
E → E − V → ih̄∂t − V :

(π0
2
− p2 −m2c2)ψ = 0, π0 = (ih̄∂t − V )/c = ih̄∂0 − V/c. (1.50)

However, the relativistic effects of this equation are complete only for spinless
particles. After Dirac discovered his equation for relativistic electrons (1928),
(1.50) was discarded for several years. Dirac was convinced that any wave
equation, relativistic or not, had to be of the form ih̄∂tψ = Hψ. Today,
(1.50) is known as the Klein-Gordon (KG) equation (Klein 1926, Gordon
1926). It describes the relativistic binding of pionic and kaonic atoms, where
the pion π− and kaon K− are the negatively charged members of the spinless
“mesons” π and K, with mc2 of 139.57 and 493.68MeV, respectively.
Maxwell’s equations of electrodynamics have a peculiar “gauge invari-

ance”, and the best way to introduce interactions in quantum mechanics is
by postulating gauge invariance also here. The method requires wave equa-
tions; it does not exist in classical mechanics. It has been known since long,
but its universality became clear only after the discovery of the “electroweak”
interaction. Like Lorentz invariance, gauge invariance is somewhat hidden in
the standard form of Maxwell’s equations:

∇B = 0, ∇×E + ∂0B = 0, ∂0 = ∂/∂(ct), (1.51)

∇E = 4πρel, ∇×B − ∂0E = 4πc
−1jel. (1.52)

The inhomogeneous equations (1.52) refer to the cgs-system, 4πε0 =
11.12× 10−11 As/Vm; ρel and jel are the electric charge and current den-
sities. The two vector fields E and B can be expressed in terms of a single
“vector potential” A and a scalar potential A0 = φ,

B = ∇×A, E = −∇A0 − ∂0A, (1.53)
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in which case the homogeneous equations (1.51) are automatically satisfied.
The inhomogeneous equations become

−∇2A0−∇∂0A = 4πρel, ∇×∇×A+∂0(∇A
0+∂0A) = 4πc

−1jel. (1.54)

Gauge transformation are defined as those transformations of Aµ = (A0,A)
which do not change B and E:

A0
′
= A0 − ∂0Λ, A

′ = A+∇Λ, B′ = B, E′ = E. (1.55)

The gauge function Λ = Λ(x0, r) must be unique and differentiable but is
otherwise arbitrary. It need not be a scalar or a Lorentz invariant. As a rule,
Λ is defined indirectly by a gauge fixing condition, for example

Coulomb gauge : ∇A = 0, (1.56)

Lorentz gauge : ∇A+ ∂0A
0 = 0. (1.57)

An explicit Λ is then only required for a change of gauge, for example from
Coulomb to Lorentz. The Coulomb gauge has ∇∂0A = ∂0∇A = 0 and ∇×
∇×A = ∇(∇A)−∇2A = −∇2A, such that (1.54) is simplified as follows:

−∇2A0 = 4πρel, (∂
2
0 −∇

2)A+∇∂0A
0 = 4πc−1jel. (1.58)

The first of these equations is the Poisson equation, with the solution

A0(t, r) =

∫
d3r′ρel(t, r

′)/|r − r′|, |r − r′| = [(r − r′)2]1/2. (1.59)

In the Coulomb gauge, the nuclear charge density ρel(t, r
′) is independent of

t in the system where the nucleus is at rest. A pointlike nucleus has

ρel(t, r
′) = Zeδ(r′), A0 = φ = Ze/r. (1.60)

The Hamiltonian (1.48) and the KG equation (1.50) refer to that gauge.
Returning to quantum mechanics, gauge invariance is postulated as

follows:

Wave equations are independent of local and temporal phases.

Let qΛ(x0, r)/h̄c denote a change of phase of ψ, q being the particle’s
electric charge:

ψ′ = eiqΛ/h̄cψ. (1.61)

Such a transformation does affect the differential operators, for example i∂t:

ih̄∂0e
iqΛ/h̄cψ = eiqΛ/h̄c(ih̄∂0 − q[∂0, Λ]/c)ψ. (1.62)

Here we have written [∂0, Λ] ≡ ∂Λ/∂x0 in order not to contradict the rule
that operators apply to all expressions to their right, ∂0Λψ = ψ∂0Λ+Λ∂0ψ,
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analogous to ∂rfg following (1.10). To compensate the change of ih̄∂0 under
the time-dependent phase transformation, this operator must be accompanied
by a function −qA0, which is gauged according to (1.55). In other words, the
interaction of a particle of charge q is obtained by replacing the free-particle
operator ih̄∂0 by

π0 = ih̄∂0 − qA
0/c. (1.63)

This allows one to pull the phase to the left of the differential operator and
eventually divide it off:

π0
′
ψ′ = eiqΛ/h̄cπ0ψ, π0

′2
ψ′ = eiΛ/h̄cπ0

2
ψ. (1.64)

Similarly, whenever −ih̄∇ operates on ψ, it must be accompanied by a func-
tion −qc−1A which cancels the gradient of Λ according to its gauge trans-
formation (1.55):

π = p− qc−1A = −ih̄∇− qc−1A. (1.65)

Thus the phase-invariant relativistic Schrödinger (or KG) equation is

(π0
2
− π2 −m2c2)ψ = 0. (1.66)

It is gauge transformed either by (1.55) at fixed phase of ψ, or by (1.61)
at fixed Aµ. An example of the latter transformation is given in (1.174)
below. The operators π and p are called kinetic and canonical momenta,
respectively. They will appear again in the Dirac equation, and in slightly
generalized forms in any local quantum field theory. It should also be warned
that measurable nonlocal phase effects do exist (Aharanov and Bohm 1959).
The coupling provided by π0 and π is called the “minimal coupling”. But

as E and B are gauge invariant, they may appear in additional couplings in
(1.66), at least for composite particles.
In atomic theory, gauge invariance is more important than Lorentz invari-

ance. The gauge-invariant form of the nonrelativistic Schrödinger equation
(1.49) is

(cπ0N − π
2/2m)ψN = 0, π

0
N ≈ π

0 −mc. (1.67)

The connection between ψ and ψN is postponed to Sect. 2.8. Also postponed
are the Lorentz transformations of 4-vectors such as xµ = (ct, r),

pµ = (p0,p) = ih̄(∂0,−∇), π
µ = (π0,π) = pµ − qAµ/c. (1.68)

For the moment, the 4-vector notation mainly implies that all 4 components
have the same dimension, which can be helpful as a dimensionality check
also in nonrelativistic equations such as (1.67) (note that mc has also the
dimension of a momentum, according to (1.66)). However, as one is confronted
with 4-vectors already in contexts such as classical electrodynamics, one may
wonder why ∇ appears with a minus sign in pµ, whereas xµ has no minus sign
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in front of r. This sign arises from the combination ikr− iωt in the exponent
of the plane wave (1.11), combined with the avoidance of a minus sign in
the eigenvalue equation pψ = h̄kψ (1.30). The 4-vectors introduced so far
are all “contravariant”. Later, some minus signs will be hidden in covariant
4-vectors. In addition to ∂µ = (∂0,−∂i), one also uses ∂µ = (∂0, ∂i). But then
minus sign appear in other places, for example in Aµ = (A

0,−A).

1.4 Stationary Potentials, Zeeman Shifts

Time-independent potentials are called stationary. The only operator which
refers to t in the Schrödinger equation (relativistic or not) is then ih̄∂t. Its
eigenfunctions are exp{−iEnt/h̄}, where the eigenvalues are denoted by En:

ih̄∂te
−iEnt/h̄ = Ene

−iEnt/h̄. (1.69)

In this case, the equation has solutions of the type

ψEn(t, r) = e
−iEnt/h̄ψn(r). (1.70)

ψn(r) is called a statinary solution, but in a sense the whole ψEn is stationary,
because |ψEn |

2 is time-independent. A truly time-dependent solution must
contain several different time exponents, which means several different values
of En:

ψ(t, r) =
∑
n

cnψEn =
∑
n

cne
−iEnt/h̄ψn(r). (1.71)

It is analogous to the spectral decomposition (1.27) of E(t, r). The integral
∫ dω is replaced here by a sum over discrete bound states n, but an additional
integral over the continuous energies E of electron scattering states (which
refer to an ionized atom) may also contribute. The coefficients cn appear
only when the functions ψn(r) are separately normalized (Sect. 1.8). They
are analogous to the E0(ω) in (1.24). Decently moving wave packets can be
constructed for the harmonic oscillator (Sect. 1.8). In other potentials includ-
ing the Coulomb potential, |ψ|2 wobbles or disperses. The beginner should
not waste time on classical trajectories as limits of moving wave packets.
In the following, we consider a stationary solution of the type (1.69) and

drop the index n. We may then replace ih̄∂0 by E/c everywhere, and in
particular in the gauge invariant combination π0 (1.63). We also return to
the Coulomb gauge and write qA0/c = V/c (1.50),

π0 = (E − V )/c. (1.72)

Insertion into the KG equation (1.66) gives

[(E − V )2/c2 −m2c2 − π2]ψ(r) = 0. (1.73)
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This equation contains at least two constant operators, namely E2/c2 and
m2c2. It is useful to combine these into a single constant,

E2/c2 −m2c2 = h̄2k2. (1.74)

In a region in space where the potentials vanish (called the asymptotic region
in the case of the Coulomb potential, because it occurs at r →∞), ψ reduces
to a free-particle solution,

(h̄2k2 − p2)ψas = 0. (1.75)

The general form of ψas will be elaborated in Sect. 1.10. In solids V may tend
to a constant (the chemical potential Vchem) at large r. In such cases one
would replace E by E−Vchem in the definition (1.74) of k2. Apart from such
trivial generalizations, (1.73) becomes

(h̄2k2 − 2EV/c2 + V 2/c2 − π2)ψ(r) = 0. (1.76)

For comparison with the nonrelativistic limit (1.67), one may define a slightly
energy-dependent “quasi-Hamiltonian”,

2EV/c2 − V 2/c2 + π2 = 2mHquasi, h̄
2k2ψ = 2mHquasiψ. (1.77)

The combination 2EV/c2 is normally close to 2mV . When relativity was
discovered, one noted that one had to replace m by E/c2 in some places. One
then called m the rest mass and E/c2 the moving mass. The latter expression
is not used any longer, as one wishes to emphasize the fact that energy and
momentum form a 4-vector. Today, the rest mass is simply called “mass”.
In Sect. 1.1, we saw that ∇2 contains ∂2φ/ρ

2, and that ∂2φ could be replaced

by its eigenvalues −m2l for the eigenfunctions (1.17). In spherical coordinates
it contains (r ×∇)2/r2, which reduces to −l(l + 1)/r2 for the spherical har-
monics Y mll , independently of ml. When V is independent of φ, V = V (z, ρ)

(cylindrical symmetry) or V = V (r), r =
√
z2 + ρ2 (spherical symmetry),

these eigenfunctions and eigenvalues can also be used in solving (1.77). In
these cases, the addition of a small magnetic field B (B2 ≈ 0) produces en-
ergy shifts linear in Bml, provided the z-axis points along the direction of B
(for V = V (r), this is no loss of generality):

E(B) = E(0) +Beh̄cml/2E(0). (1.78)

This is already the relativistic formula, which is easily derived. B is taken
constant over the atomic dimensions, and the z-axis is taken along B. With
B = ∇×A, the Coulomb gauge ∇A = 0 determines A only up to a constant,
which is called b in the following:

A =

⎛⎝AxAy
Az

⎞⎠ = B
⎛⎝ −by
(1− b)x
0

⎞⎠ , B =

⎛⎝ 00
B

⎞⎠ , (1.79)
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plus linear terms ax+cx in Ax and −ay+cy in Ay (to keep ∂xAx+∂yAy = 0),
which are rarely needed. A apears in the π2 of (1.76),

π2 = (p+ eA/c)2 = p2 + (Ap+ pA)e/c+ e2A2/c2. (1.80)

There is a problem of notation here, which is the spatial analogue of Λ̇ in
(1.62). With p = −ih̄∇ and the Coulomb gauge ∇A = 0, one might conclude
pA = 0. But since pA operates on ψ, one has instead∇Aψ = ψ∇A+A∇ψ =
A∇ψ �= 0. Consequently, whenA is used as an operator, one should not write
∇A = 0. The alternative divA = 0 is not good either, since the operators div,
grad and rot are sometimes also meant to operate on everything to their right
(unlike the dot in Λ̇ψ, which is placed on top of its object). The quantum
technicians have therefore elaborated special symbols for the redistribution
of operators, in particular the commutator [ , ] and anticommutator { , }. For
any two operators A and B,

[A,B] = AB −BA, {A,B} = AB +BA, (1.81)

{A,B} = 2AB − [A,B] = 2AB + [B,A]. (1.82)

A precise form of the Coulomb gauge in the context of operators is thus

[∇,A] = 0, (1.83)

because its second term −A∇ψ cancels the +A∇ψ which is part of ∇Aψ.
Similarly, when the ∇2A0 of (1.54) is needed as an operator on ψ, it must be
replaced by the double commutator [∇, [∇, A0]], see (2.261).
Returning now to (1.79), the “circular gauge” b = 1

2 , maintains rotational
symmetry around the z-axis:

Aci =
1
2B × r, A

2
ci = (x

2 + y2)B2/4. (1.84)

Then 2Ap contains the combination r × p which is called angular momen-
tum l, in view of the corresponding combination in classical mechanics:

l = r × p = −ih̄(r ×∇), (1.85)

2Acip = (B × r)p = Bl = Blz = −iBh̄∂φ. (1.86)

Electrons have an additional “spin” angular momentum; a more precise name
for l is then “orbital angular momentum”.
As spherical symmetry is a special case of cylindrical symmetry, we assume

V = V (z, ρ) and separate only the φ-dependence from ψ(r),

ψ(r) = ψ(z, ρ)ψml(φ), −i∂φψ = mlψ. (1.87)

In π2ψ, one may then replace ∂φ by iml everywhere:

π2 = −h̄2(∂2z + ρ
−1∂ρ + ∂

2
ρ −m

2
l /ρ

2) +Bh̄mle/c+ e
2B2ρ2/4c2. (1.88)
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The function ψml(φ) can now be divided off. We also assume bound states
in which the range of ρ2 is confined by V , such that B2ρ2 may be neglected.
The only remaining B-dependent operator in the KG-equation (1.73) is then
the constant −2Bh̄mle/c, which may be included in the definition of h̄

2k2 as
in (1.74),

E2/c2 −m2c2 −Bh̄mle/c ≡ h̄
2k2, (1.89)

With this definition, one may use (1.76) with π2 = p2 = first half of (1.88),

(h̄2k2 − 2EV/c2 + V 2/c2 − p2)ψ(z, ρ) = 0. (1.90)

B is now completely hidden in the redefinition of k2. For given k2, the de-
pendence of E on B follows from (1.89):

E(B) = (m2c4 + h̄2c2k2 +Bh̄mlec)
1
2 = (E2(0) +Bh̄mlec)

1
2 . (1.91)

To first order in B, expansion of the square root produces (1.78). In the
nonrelativistic limit, the factor 1/E(0) is replaced by 1/mc2. One also defines
the Bohr magneton µB:

µB = eh̄/2mc, E(B) ≈ E(0) +BµBml. (1.92)

A coincidence of nd different energy levels is called an nd-fold degeneracy.
For V = V (r) and ψ(z, ρ) = R(r)Θmll (θ) (1.21) p

2 is independent of ml
according to (1.22). The energy levels El,ml(B = 0) are then 2l + 1-fold
degenerate, Σlml=−l = 2l+1. The degeneracy is lifted by the Zeeman-splitting
which is linear in Bml (Fig. 1.4). In the case of strictly vanishing quantum
defects (1.37), different l-values become also degenerate, which may lead to
the more complicated “quadratic Zeeman effect”.
Whereas p2 = −h̄2∇2 is a real operator with real eigenfunctions (remem-

ber (1.28)), π2 is complex and does require complex eigenfunctions. A real
eigenfunction can only depend on m2l , not on ml. The Zeeman shift demon-
strates the necessity of complex functions. The eigenvalues E remain real,
due to the hermiticity of operators, see Sect. 1.8.

1.5 Bound States

Conducting electrons in metals move like free particles in a constant potential
of depth −V0, which is measured from the ionization limit to the bottom of
the conducting band. Due to the Pauli principle, they fill all levels of energies
E < EF, where EF < 0 is the Fermi energy. It is customary here to shift
the energy scale such that one has V = 0 inside the metal. The asymptotic
region where (1.75) applies, (k2 + ∇2)ψ = 0, is then inside the metal. The
details of the metal surface are often unimportant, and it is convenient to
use the limit V = +V0 → ∞ there. In this limit, ψ must vanish at the
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surface, precisely as the standing waves in the waveguide mentioned near the
end of Sect. 1.1. Consider now a wire along the z-axis, with a rectangular
basis of dimensions Lx, Ly. The appropriate solutions of the wave equation
are

ψ(x, y, z) = eikzz sin kxx sin kyy, sin kiLi = 0 (i = 1, 2). (1.93)

The last two conditions imply

ki = niπ/Li, ni = 1, 2, 3, 4, 5, . . . (1.94)

whereas kz remains arbitrary, positive or negative. If one now cuts the
wire at zmax = Lz, kz must also be positive and obey condition (1.94)
for i = 3. The possible energy levels are then suddenly discrete or “quan-
tized”,

E =
√
m2c4 + c2h̄2k2 =

√
m2c4 + c2(n2x/L

2
x + n

2
y/L

2
y + n

2
z/L

2
z)h

2/4,

(1.95)
with h̄π = h/2. For a macroscopic piece of metal, one hastens to the limit
Lx = Ly = Lz → ∞, where the energy levels become again dense within
the conducting band (thence the name “band”). Our point here is the op-
posite one, namely confining the wavefunction to a finite volume LxLyLz
entails a discrete energy spectrum. This is the massive particle analogue of
a microwave cavity, where the modes are quantized according to

E(nx, ny, nz) = h̄ω = (n
2
x/L

2
x + n

2
y/L

2
y + n

2
z/L

2
z)
1/2ch/2. (1.96)

But whereas a single cavity mode can host many photons, a mode in a metal
can host at most two electrons, due to the Pauli principle (the factor 2 ac-
counts for the electron spin). The modes for electrons are commonly called
“orbitals”. Such modes exist approximately also in a single many-electron
atom. In the simplest form of the atomic shell model, the orbitals are suc-
cessively filled with electrons. The word “state”, on the other hand, means
a precise wave function. In single-particle problems, there is hardly any differ-
ence. But the ground state of the helium atom has a wave function ψ(r1, r2),
which depends on the two electon positions r1 and r2. It is an antisym-
metrized product of orbitals only if the mutual repulsion of the two electrons
is either neglected or approximated by an over-all weakening of binding. In
the mathematical sense, the concept of a “state” is more general than a wave
function, as will be explained in Sect. 1.9.
The wavefunction of a single spinless particle can be bound by an at-

tractive, spherically symmetric potential V (r) < 0, r = (x2 + y2 + z2)1/2

according to (1.76), but now with A = 0, π2 = p2 = −h̄2∇2. In spherical
coordinates (1.6), (1.22), ψ(r) has solutions that factorize into angular and
radial parts,

ψk2(r) = Y
ml
l (θ, φ)Rk2,l(r). (1.97)
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After (1.22) has been used, the angular part can be divided off, and the
following equation is obtained for the radial part:

[k2 − 2EV/c2h̄2 + V 2/c2h̄2 + (∂r + 1/r)
2 − l(l + 1)/r2]Rk2,l = 0. (1.98)

States with l = 0, 1, 2, 3 are called s, p, d, f, respectively. To solve the radial
equation, consider first the asymptotic region, V (r → ∞) = 0. For r → ∞,
l(l + 1)/r2 is also negligible. The solutions Ras(r) = R±(r) of (1.98) have
already been given in (1.29). For real k, they are not confined in space and
correspond to an ionized electron. The general solution is a linear combination
with two coefficients b+ and b−. Bound states require imaginary k,

k = iκ, Ras(r) = r
−1(b+e

−κr + b−e
κr), (1.99)

and the special value b− = 0, to exclude exponential growth of R(r) for
r → ∞. The solution of the complete equation (1.98) is now taken in the
form

Rk2,l = e
−κrv(r), (∂r + 1/r)

2e−κr = e−κr(∂r + 1/r − κ)
2, (1.100)

where both b+ and r
−1 have become parts of the new function v. The factor

e−κr is divided off, leading to

[−2EV/c2h̄2+V 2/c2h̄2+(∂r+1/r)
2−2κ(∂r+1/r)−l(l+1)/r

2]v = 0. (1.101)

Although Rk2,l(r) is now bound, the values of k
2 = −κ2 are not yet quantized.

Quantization requires a second boundary condition, which arises at r → 0.
We first consider the case l > 0. With a finite nuclear charge distribution
ρ(r′), V (r = 0) remains finite according to (1.59). To find the singular part
of (1.101) for r → 0, one multiplies the equation by r2 and then lets r → 0:

[(∂r + 1/r)
2 − l(l + 1)/r2]v(r → 0) = 0. (1.102)

Also this equation has two linearly independent solutions,

v(r → 0) = c+r
l + c−r

−l−1. (1.103)

The quantization of κ2 arises only when one postulates both

b− = 0, c− = 0. (1.104)

These postulates are necessary to make ψ(r) “normalizable”, i.e. the integral

I =

∫
|ψ|2d3r =

∫
ψ∗(r)ψ(r)r2drdφdu (1.105)
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must be finite. Althought the electron itself is not “smeared out”, its wave
function implies an extended charge distribution ρel(t, r). Nonrelativistically,

ρel = −eρ ∼ −e|ψ(t, r)|
2, (1.106)

is to be used as one source of the scalar potential A0, −∇2A0 = 4πρel accord-
ing to Maxwell’s equation (1.58). For stationary states, ρ is time-independent.
And as the total charge must give the charge −e of the electron, the nonrel-
ativistic case requires I = 1. The spherical harmonics are separately normal-
ized to unity by integration over dφdu, such that one is left with

I =

∫ ∞
0

R2k2,lr
2dr =

∫ ∞
0

e−2κrv2(r)r2dr. (1.107)

This integral would diverge already for the smallest nonzero value l = 1, v2 =
b2−r

−4, except for c− = 0. An ordinary second-order differential equation such
as (1.98) has two linearly independent solutions. With the two extra condi-
tions (1.104), both solutions are killed, one is left with ψ = 0. However, when
considered as a function of one of its parameters, the equation may have
nontrivial solutions at certain discrete values of that parameter. In our case,
that parameter is k2, from which E follows according to (1.74) or (1.91). The
above argument fails for l = 0, where both solutions of (1.101) are normal-
izable. Nonrelativistically and for V = −Ze2/r, the second solution behaves
like r−1 − (2mZe2/h̄2) log r for small r. It gets excluded by more general
arguments involving the kinetic energy operator p2/2m. In the relativistic
equation (1.101), the term V 2/c2h̄2 contributes another r−2 -operator, which
also leads to an equation of the type (1.102), but with l replaced by an lα < l.
And with the relativistic form (1.197) below of the normalization integral,
one finds that c− = 0 is required for all values of l.
Exact solutions of (1.101) exist only for the point Coulomb potential,

V = −Ze2/r. For modified V , numerical integrations may use the point
Coulomb k2 as a starting value and integrate from large κr inwards, beginning
with the function e−κr. The integration will end at r = 0 with R(0) = +∞ or
−∞. By repeating the procedure with a slightly different κ one will be able
to approach R(0) = 0 (for l > 0) or R(r) = const. (for l = 0). Conversely,
if one integrates from r = 0 outwards, starting with R = rl, R(κr 
 1) will
behave as b−e

+κr, and modifications of κ will eventually lead to b− ∼ 0.
A spherical potential V (r) is invariant under the parity transformation

r → −r, which in spherical coordinates (Fig. 1.2) means

r → r, φ→ φ+ π, θ → π − θ (u→ −u). (1.108)

The parity of the bound states (1.97) is independent of their φ dependence,

ψk2(−r) = (−1)
lψk2(r). (1.109)

This follows from the decomposition (1.21) of Y mll . The factor e
imlφ has

the parity (−1)ml , while Θmll has the parity (−1)l−ml (note the invariance
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of (1.9) under u → −u). Consequently, a superposition of states (1.97) with
different ml remains a parity eigenstate. This gives rise to useful “selections
rules”, in particular for the “dipole operator” r itself,∫

ψ
m′l∗
l ψmll rd

3r = 0. (1.110)

States that contain both even and odd l-values are not parity eigenstates. This
applies for example to plane waves, which will be decomposed into spherical
waves in Sect. 1.10. In the Dirac equation, parity eigenstates do contain both
even and odd l-values, but the selection rule for dipole radiation remains
(Sect. 5.4).

1.6 Spinless Hydrogenlike Atoms

We now turn to the complete solution of the radial equation (1.101) for
a pointlike nucleus, V = −Ze2/r. Z > 1 is needed for hydrogenlike ions, and
also in some variational calculations. For V/h̄c, we introduce Sommerfeld’s
fine structure constant, which has the pleasant property of being dimension-
less:

e2/h̄c ≡ α = (137.036)−1, (1.111)

[2EZα/h̄cr − lα(lα + 1)/r
2 + (∂r + 1/r)

2 − 2κ(∂r + 1/r)]v(r) = 0, (1.112)

lα(lα + 1) = l(l + 1)− Z
2α2. (1.113)

The notation lα(lα+1) allows us to keep (1.101), with the replacement l→ lα.
The orbital angular momentum quantum number l remains integer, of course,
the spherical harmonics are not affected.
In this book, we shall use altogether three abbreviations for products of

α with constants

αZ = Zα, αdip = e
2
dip/h̄c, απ = α/π. (1.114)

Ze is the nuclear charge, edip is the “dipole charge” (5.164). These symbols
not only shorten the sometimes lengthy formulas, they also facilitate their
understanding: αZ occurs in the electron-nucleus interaction, edip occurs in
the electric dipole radiation of the whole atom including the nucleus, and απ
arises from Cauchy integrals (“loops” in the language of Feynman diagrams)
involving the electron alone (for example the anomalous magnetic moment
(2.76)). Atomic dipole loops contains αdip/π. A two-photon electron-nucleus
loop will be mentioned in (5.196), which contains α2Z/π. It is quite common
today to distinguish between α and αZ even for Z = 1. The isolated α appears
in multi-electron atoms, namely in the repulsive potential (3.80) between
two electrons (and also in some small loop terms which contain παπ, see the
remark following (C.25)). αdip and απ will not be needed before Chap. 5.
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To solve (1.112), one multiplies it by r/2κ and expresses it in terms of
the dimensionless variable z = 2κr:

[nβ − lα(lα + 1)/z + z(∂z + 1/z)
2 − z∂z − 1]v(z) = 0, (1.115)

z = 2κr, nβ = αZE/h̄cκ. (1.116)

nβ will come out as the “effective principal quantum number” of the Rydberg
formula.
The singular operator −lα(lα + 1)/z is removed by the substitution

v(z) = zlαw, (∂z + 1/z)
2zlα = zlα(∂z + 1/z + lα/z)

2 : (1.117)

[nβ + z∂
2
z + 2∂z(1 + lα)− z∂z − lα − 1]w = 0. (1.118)

This is the differential equation of the confluent hypergeometric function
F (z) = 1F1(a, b, z):

[z∂2z + (b− z)∂z − a]F (a, b, z) = 0, (1.119)

b = 2lα + 2, a = lα + 1− nβ . (1.120)

F has the following power series in z:

F = 1 + za/b+ a(a+ 1)/[b(b+ 1)]z2/2!

+ a(a+ 1)(a+ 2)/[b(b+ 1)(b+ 2)]z3/3! . . .
(1.121)

To prove this, one writes F = Σkakz
k,

(b− z)F ′ = Σkz
k[b(k + 1)ak+1 − kak], zF

′′ = Σkz
kk(k + 1)ak+1, (1.122)

which leads to the recurrence relation

ak+1(k + 1)(k + b) = ak(a+ k). (1.123)

For k → ∞, ak+1/ak = k shows that the series diverges as ez = Σzk/k! at
large z. The precise relation between R and F is

Rk2,l = e
−κr(2κr)lαc+w = Ne

−z/2zlαF (z), (1.124)

such that R goes as e−z/2ez = ez/2 = eκr, as expected from (1.99). How
can one avoid this rising exponent? There are certain values of the param-
eter a (1.120) for which F does not grow exponentially; for example a = 0
gives F = 1. More generally, when a is a negative integer −nr, F reduces to
a polynomial of degree nr in z:

F = F (−nr, b, z) = 1− nrz/b+ (−nr)(−nr + 1)z
2/2!b(b+ 1) . . . ,

F (nr = 1) = 1− z/b, F (nr = 2) = 1− 2z/b+ z
2/[b(b+ 1)]. (1.125)
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Apart from normalization, these are the Laguerre polynomials (1.179) below.
For each a (1.120) of F , E is now calculated using (1.116) and (1.120):

nβ = αZE/κh̄c = nr + lα + 1 ≡ n− βl, βl = l − lα. (1.126)

The integers nr and n are the “radial” and “principal” quantum numbers,
respectively,

n = nr + l + 1. (1.127)

The normalization constantN of (1.124) is given in Appendix A, the complete
nonrelativistic wave functions for n = 1 and 2 are

ψnlm(θ, φ, r) = Y
m
l (θ, φ)(Z/naB)

3/2e−Zr/naBR̂nl(r),

R̂10 = 2, R̂20 = 2− Zr/aB, R̂21 = 3
−1/2Zr/aB. (1.128)

For the calculation of E from (1.126), κ must be eliminated. E2 = m2c4 +
c2h̄2k2 = m2c4 − h̄2c2κ2 implies κh̄c = (m2c4 − E2)1/2, such that (1.126)
becomes αZE/(m

2c4 − E2)1/2 = nβ . Resolving this expression for E, one
finds

E = mc2

(
1 +
α2Z
n2β

)−1/2
, h̄cκ =

αZE

nβ
= mc2

(
n2β
α2Z
+ 1

)−1/2
. (1.129)

Note the absence of odd powers of αZ . For α
2
Z/n

2
β � 1, one expands

[1 + α2Z/n
2
β ]
−1/2 − 1 = −12α

2
Z/n

2
β +

3
8α
4
Z/n

4
β −

5
16α

6
Z/n

6
β . . . ≡ f. (1.130)

A more practical quantity is then EN = E −mc2 (1.36), which is given here
to the order α8Z/n

8
β :

EN = mc
2f = −12mc

2α2Zn
−2
β (1−

3
4α
2
Z/n

2
β +

5
8α
4
Z/n

4
β −

35
64α

6
Z/n

6
β). (1.131)

The leading term gives Rydberg’s expression (1.37). As βl ≡ β is also small,
one expands

α2Z/n
2
β = α

2
Z/(n− β)

2 = α2Z/n
2(1 + 2β/n+ 3β2/n2 + 4β3/n3). (1.132)

Writing (1.113) in the form (lα + 1/2)
2 = (l + 1/2)2 − α2Z , one finds

βl = l − lα = l +
1
2 − [(l +

1
2 )
2 − α2Z ]

1/2. (1.133)

Expansion of the square root in powers of α2Z gives:

βl = α
2
Z(2l + 1)

−1[1 + α2Z/(2l + 1)
2 + 2α4Z/(2l + 1)

4]. (1.134)
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It shows that the order α8Z requires at most two powers of βl in α
4
Z/n

4
β and

one power in α6Z/n
6
β :

α4Z/n
4
β = α

4
Zn
−4[1+4β/n+10β2/n2], α6Z/n

6
β = α

6
Zn
−6(1+6β/n). (1.135)

The expansion of EN in n and l to order α
3
Z is postponed to (2.149), where

it is presented for the more important Dirac equation. As βl arises from the
inclusion of V 2 in the KG-equation, it need not be viewed as a relativistic
effect. One may define a “KG potential” for use in the KG equation (1.76):

(h̄2k2 − 2EVKG − π
2)ψ = 0, VKG = V (1− V/2E). (1.136)

Even without the approximation V/E ≈ V/mc2, βl is strictly independent
of n. The expression for EN to lowest nonvanishing order in α

2
Z has of course

βl = 0, EN = −α2Zmc
2/2n2, in agreement with the Bohr-Sommerfeld for-

mula. These energies depend on nr and l only via their sum nr + l = n − 1
according to (1.127). And as a given l-value contains already 2l + 1 mag-
netic sublevels, the total degeneracy of the nonrelativistic energy levels of
the spinless hydrogen atom is

gspinless(n) = Σ
n−1
l=0 (2l + 1) = n

2. (1.137)

A systematic degeneracy of this type (as opposed to accidental degeneracy for
particular values of some parameters) can always be reduced to a symmetry
argument. For spherically symmetric potentials, E is independent of ml. For
V = −Ze2/r and negligible V 2/E, E is also independent of l, which is a con-
sequence of O4 symmetry (its mechanical analogue is the conservation of the
Runge-Lenz vector, which will not be discussed here). O4 is a nonrelativistic
symmetry which is broken in the relativistic case.
The operator l(l + 1)/r2 may also be combined with VKG, which is then

called an effective potential:

Veff = VKG + l(l + 1)h̄
2c2/2Er2. (1.138)

The second term corresponds to the centrifugal potential of classical mechan-
ics. The nonrelativistic approximation c2/2E = 1/2m gives

Veff, nr = V + l(l + 1)h̄
2/2mr2. (1.139)

This function is plotted in Fig. 1.3 for V = −e2/r and for l = 0, 1, 2 (“s”-,
“p”-, “d”-states). The degeneracy of En in these very different potentials
is not at all evident. It is reflected in the shell model of atoms. Electronic
shells with n = 1, 2, 3 are called K, L, M . Examples of spinless hydrogenlike
atoms are mesic atoms (pionic and kaonic atoms, normally with Z > 1).
Their energy levels are influenced by strong interactions at short distances,
which drastically reduce the lifetimes of mesic atoms in s-states, and for
heavier nuclei also in p-states. For such atoms, the order α4Z-binding effects
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Fig. 1.3. The energy levels EN = −α
2mc2/2n2 and Veff = −e

2/r + h̄2�(� +
1)/2mr2 for � = 0, 1, 2, (s, p, d)

of the KG equation have been verified with moderate precision in p- and
d-states. Foe a theoretician, the best test of these effects is a by-product
of ordinary “electronic” hydrogenlike atoms, in the form of a fine-structure
average (see the discussion following (2.149) below). The precise values of the
electron mass and the Bohr radius aB have already been given in Sect. 1.2. For
scattering states (which contain one ion and one unbound electron), (1.98)
applies with positive k2; the substitution k = iκ is then inappropriate. We
therefore resubstitute in (1.120)

z = −2ikr, a = lα + 1 + iη, η = −αZE/h̄ck, (1.140)

F = F (lα + 1 + iη, 2lα + 2, −2ikr). (1.141)

E > mc2 is now a continuous parameter, and the confluent hypergeomet-
ric function F (a, b, z) contains both eikr and e−ikr for r → ∞. Such waves
are called Coulomb distorted waves (see also (1.299) and Sect. 2.7); η is the
“Sommerfeld parameter” (the distortion vanishes for η = 0). At very high
energies, one has VKG = V , and the centrifugal potential at fixed l becomes
also unimportant.

3s 3p 3d
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Fig. 1.4. The Zeeman splitting for the spinless hydrogen atom, at n = 3
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The KG equation plays a central role in relativistic quantum mechanics,
as the Dirac and binary equations can be reduced to the same form. It is
therefore useful to simplify that form as much as possible. For the point
Coulomb potential, multiplication of (1.76) by (c/EZα)2 = c2/E2α2Z gives
the “standard form”

(2/rε + α
2
Z/r

2
ε − π

2
ε)ψ = −(h̄kc/EαZ)

2ψ, (1.142)

rε = rαZE/h̄c, pε = cp/αZE. (1.143)

It contains only two constants, namely α2Z and n
−2
β ,

Kψ = −(h̄kc/EαZ)
2ψ = n−2β ψ, K = 2/rε + α

2
Z/r

2
ε − π

2
ε , (1.144)

according to the definition (1.116) and k2 = −κ2 for bound states. The
original KG equation is an “implicit” eigenvalue equation, i.e. the operator
itself contains E. Its standard form is an explicit eigenvalue equation for
n−2β , which is an advantage in perturbation theory of π

2 (for example of the
Zeeman shift calculation (2.307) in Sect. 2.9). This point is hidden in the four-
component Dirac equation HDψD = EψD (Sect. 2.4), but becomes evident
in the two-component “Kramers version” (2.135) below. The standard form
of the nonrelativistic Schrödinger equation for V = −αZ/r (1.49) is (2/re −
π2e)ψ = n

−2
β ψ; it is used in quantum defect theory (Seaton 1966). But there

the advantage is less important, as (1.49) is already an explicit eigenvalue
equation for EN . Equation (1.119) is an explicit eigenvalue equation in z,
with eigenvalue a.
Immediate results of the standard form are that it contains only α2Z ,

E2 and m2. Whereas the α2-dependence survives in the nonrelativistic
Schrödinger equation, the appearance of E2 and m2 is characteristic of rel-
ativity. It is already present in Einstein’s relation (1.34) for freely moving

objects. In particular, m is only defined as ±
√
m2. The sign of m is a matter

of definition. Einstein should really have used a new symbol on the right-
hand side of his equation (1.34), for example the letter s which will be
introduced in (4.72) for the mass2 of a composite particle. The arbitrari-
ness in the sign of E is more difficult. In Sect. 3.2, negative energies will be
needed for positrons, which are repelled by the hydrogen nucleus. But near
the end of Sect. 4.7, it will become clear that the static KG and Dirac equa-
tions also represent limiting cases of relativistic two-body equations, in which
hydrogen and antihydrogen appear as degenerate solutions with eigenvalue
s = (±E ±mmucleus)2.
The natural units of relativistic quantum mechanics are h̄ = c = 1. A pop-

ular energy unit is the electron Volt, eV. From h̄ (1.31) and c (1.1), one gets

1 = h̄ = h̄c = 6.58218× 10−16 eV s = 1.973289× 10−5 eV cm. (1.145)

Both cm and s have then the dimension eV−1. As the precision of c exceeds
that of the original Paris meter, the meter has been redefined as 1m = 1 s× c.
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The fine structure constant e2/h̄c (1.111) remains dimensionless, e2 = α =
1/137.036. Measurements of α are discussed by Kinoshita (1996). Magnetic
fields are quoted in Tesla,

1 T = 10 000Gauss = 692.76 eV2. (1.146)

With me = 510 999 eV, the corresponding Larmor frequency ((1.173) below)
is small,

ωLarmor =
1
2eB/mec =

1
2 (B/T)1.15768× 10

−4 eV. (1.147)

The energy scale of thermal dirstibution is given by the Boltzman constant,
kB = 8.61734× 10−5 eV/K.
Unfortunately, some theorists use h̄ = c = 1 in connection with Heaviside-

Lorentz units, where the 4π is missing in the inhomogeneous Maxwell equa-
tions (1.52). There are thus two different units of charge in use,

e =
√
α = 0.08542, eHL = e

√
4π, α = e2HL/4π, (1.148)

which is a permanent source of errors.
On the other hand, atomic theorists prefer “atomic” units, h̄ = me =

e = 1. From e2/h̄c = α, this fixes c = 1/α. The Bohr radius is aB =
h̄2/e2me = 1, the Rydberg constant R∞ = 1/2. The smaller “Rydberg”
unit R∞ = 1 is also used, thus providing errors of factors 2.

1.7 Landau Levels and Harmonic Oscillator

A free spinless particle of charge q = −e in a constant magnetic field is
described by (1.76) for V = 0 and π2 given by (1.80):

(h̄2k2 − π2)ψ = (h̄2k2 − p2 − 2Ape/c−A2e2/c2)ψ = 0. (1.149)

As A (1.79) is independent of z, there exist solutions with plane waves along
the z-axis,

ψ(r) = eikzzψ(x, y), (h̄2k2t − p
2
x − p

2
y − 2Ape/c−A

2e2/c2)ψ(x, y) = 0;
(1.150)

h̄2k2t = h̄
2k2 − h̄2k2z = E

2/c2 −m2c2 − h̄2k2z . (1.151)

This equation may be solved both in cartesian and in cylindrical coordinates;
the two sets of solutions are quite different. To understand their connection,
it helps to recapitulate the corresponding classical paths. These follow from
the Lorentz force

ṗ = −e(E + v ×B), v = ṙ = dr/dt (1.152)
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for the special case E = 0. The relativistic form of p is mu = mdr/dτ , where
τ is the particle’s proper time. When the particle energy E is conserved, one
has t = τγ = τE/mc2 (“time dilatation”) and ṗ = r̈E/c2. Consequently,
the relativistic Lorentz force contains m only indirectly via E, precisely as
the Klein-Gordon equation (1.151). The classical path in three dimensions is
a helix along the z-axis (the direction of the magnetic field), its projection
on the xy-plane being a circle of radius

R = pt/ecB. (1.153)

Relativistic particle momenta are in fact measured from curvatures in mag-
netic fields. The relativistic Larmor frequency is ωLarmor = ecB/2E. The
classical helix has its “guiding center” defined by its coordinates (xg, yg) in
the xy-plane. The quantum mechanical solutions of (1.149) have no orbits
with xg and yg as simultaneous eigenvalues, as the corresponding operators
do not commute. The circular gauge (1.84) contains orbits with guiding cen-
ters at a fixed distance ρg from the origin. The “Landau gauge” takes b = 0
in (1.79). Then A depends only on y, and xg can be fixed. For general b, one
obtains solutions with fixed ellipses of guiding centers. Rotated and shifted
ellipses would require more parameters in (1.79).
The Landau levels are most easily calculated in the Landau gauge

b = 0, Az = Ax = 0, Ay = Bx, (1.154)

ψ(x, y) = eikyyψ(x), [k2t + ∂
2
x − (ky + xeB/h̄c)

2]ψ(x) = 0. (1.155)

The equation is rewritten as

[k2t + ∂
2
x − (eB/h̄c)

2(x− x0)
2]ψ = 0, x0 = −h̄cky/eB. (1.156)

It is made dimensionless and the x0 is removed by the substitution

x− x0 = s
1/2ξ, ∂x = s

−1/2∂ξ, s = h̄c/eB, (1.157)

[k2t s+ ∂
2
ξ − ξ

2]ψ(ξ) = 0. (1.158)

The equation is equivalent to the nonrelativistic Schrödinger equation (1.49)
in one dimension (∇2 → ∂2x, EN = h̄

2k2/2m) with the harmonic oscillator
potential V (x) = 1

2mω
2
N (x− x0)

2, which will be commented on in Sects. 1.8
and 1.9, and also in Sect. 3.1 in connection with photons. The harmonic
oscillator becomes dimensionless for s = h̄/mωN ,

ENψ =
1
2 h̄ωN (ξ

2 − ∂2ξ )ψ. (1.159)

Note also that we have this time ignored our rule that the separation of
the plane wave exp(ikyy) in (1.155) replaces the constant k

2
t by k

2
x = k

2
t −k

2
y,

because k2y was needed in the shift of variable (1.156). The physical range of
ξ in the differential equation (1.158) is −∞ < ξ < +∞; the point ξ = 0 is
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harmless this time. The asymptotic solution at ξ2 → ∞ is found by setting
k2t = 0,

(ξ2 − ∂2ξ )ψas = 0, ψas = N+e
ξ2/2 +Ne−ξ

2/2, (1.160)

The coefficient N+ must vanish, because the function exp{ξ2/2} explodes for
ξ →∞. The complete solution for finite ξ is again taken as a product,

ψn(ξ) = Nne
−ξ2/2Hn(ξ). (1.161)

The new label n refers to the nth eigenvalue k2tn of (1.156). We shall find
n = 0 for the lowest eigenvalue k2t0, where ψ0 is called the ground state.
(In the hydrogen atom, the ground state has the principal quantum number
n = 1 and l = 0.) At this moment, the values of n are still open. The factor
exp{−ξ2/2} is again pulled to the left of all operators and then divided off:

∂2ξe
−ξ2/2 = e−ξ

2/2(∂ξ − ξ)
2 = e−ξ

2/2(∂2ξ − ξ∂ξ − ∂ξξ + ξ
2), (1.162)

(∂2ξ − ξ∂ξ − ∂ξξ + 2n
′)Hn(ξ) = 0, n

′ = k2t s. (1.163)

One may of course also rewrite

∂ξξ = ξ∂ξ + 1, (1.164)

remembering ∂ξξH = ξ∂ξH +H = (ξ∂ξ + 1)H:

(∂2ξ − 2ξ∂ξ + 2n)Hn = 0, n = n
′ − 12 . (1.165)

This differential equation is solved by a power series expansion,

Hn =
∞∑
ν=0

aνξ
ν , 2(n−ξ∂ξ)ξ

ν = 2(n−ν)ξν , ∂2ξ ξ
ν = ν(ν−1)ξν−2, (1.166)

(ν + 2)(ν + 1)aν+2 + 2(n− ν)aν = 0. (1.167)

The first term in (1.167) originates from aν+2∂
2
ξ ξ
ν+2. For ν → ∞, one has

aν+2/aν ≈ 2/ν. The same ratio appears also in the power series expansion
exp{ξ2} = Σn(ξ2)n/n! = Σνξν/(ν/2)!. As in the hydrogen case, it corre-
sponds to the growing part of ψas (1.160). It can be avoided only if the series
stops at a certain maximal power νmax of ξ. This requires the n of (1.165) to
be an integer, n = νmax; in that case aνmax+2 vanishes according to (1.167).
The coefficients of the two highest powers of ξ follow from (1.167) by setting
ν = n− 2, and by Hermite’s choice of normalization, an = 2n.

n(n− 1)an − 4an−2 = 0, Hn = 2
n[ξn − n(n− 1)/4ξn−2 . . .] (1.168)

The series begins with a0 for even n and with a1 for odd n,

H0 = 1, H1 = 2ξ, H2 = 4ξ
2 − 2, H3 = 8ξ

3 − 12ξ. (1.169)
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The polynomials Hn are called Hermite polynomials. With n
′ = n + 1

2 ac-
cording to (1.165), the eigenvalues k2t of (1.158) assume the values

k2t,n = n
′eB/h̄c = (n+ 12 )/s, n = 0, 1, 2 . . . . (1.170)

Thus the Landau levels are equidistant in k2t and also in E
2 according to

(1.151). At fixed kz, one may also define a mass for the transverse motion,

m2t = m
2 + h̄2k2z/c

2, (1.171)

En/c =

√
m2t c

2 + h̄2k2t = mtc+ n
′eBh̄/2mtc

2 − n′2e2B2h̄/8m3t c
5 . . . .

(1.172)
In the nonrelativistic limit, the third term is already negligible, such that the
energy levels En themselves become equidistant,

EN,n = n
′h̄ωLarmor, ωLarmor = eB/2mc. (1.173)

It is instructive to construct the Landau levels also in the gauge (1.79) with
b �= 0. For that purpose, we separate a phase from ψ(x, y) (1.155) as in (1.61),

ψ(x, y) = eieΛ/h̄cψ′(x, y), Λ = −bxyB, (1.174)

−ih̄∂xe
... = e...(−ih̄∂x + byeB/c), −ih̄∂ye

... = e...(−ih̄∂y + bxeB/c).
(1.175)

The equation for ψ′(x, y) keeps the form (1.150), but now with A given by
(1.79). In the circular gauge b = 1

2 , (1.84) and (1.86) give

(h̄2k2t−p
2
x−p

2
y+ieB∂φh̄/c−e

2ρ2B2/4c2)ψ′(x, y) = 0, ρ2 = x2+y2. (1.176)

This is still the old equation, with solutions ψ′ = e−ieΛ/h̄ce−kyyψ(x). How-
ever, it also has other simple solutions. They are found in cylindrical coordi-
nates by the ansatz

ψ′(x, y) = ψml(φ)ψci(ρ), (1.177)

where the ψml(φ) are the eigenfunctions of −i∂φ, with eigenvalues ml =
0, ±1, ±2 . . . . The operator π2 is then given by (1.88), but with the addi-
tional simplification ∂2z → −k

2
z :

[k2t + ρ
−1∂ρ + ∂

2
ρ −m

2
l /ρ

2 − eBml/h̄c− (eρB/2h̄c)
2]ψci(ρ) = 0. (1.178)

The substitution z = (e/2h̄c)Bρ2 and the ansatz ψci = e
−z/2z|ml|/2w(z)

lead again to the confluent hypergeometric differential equation for w, w =
F (a, b, z), this time with b = 1 + |ml|/2, −a = (k2t /eB − 1 −ml − |ml|)/2.
Its polynomial solutions have −a = nρ, n′ = nρ+ml+ |ml|+1)/2. They are
the (“associated”) Laguerre polynomials Lpq :

Lpnρ = (nρ + p)!
2(nρ!p!)

−1F (−nρ, p+ 1, z), (1.179)

with p = |ml|/2, q = nρ, and the harmonic oscillator quantum number n =
p+ nρ.
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1.8 Orthogonality and Measurements

The point Coulomb potential and the constantB-field (“harmonic oscillator”)
practically exhaust the list of explicit solutions not only for the KG-equation
(1.73), but also for the Dirac equation below. The nonrelativistic Schrödinger
equation has additional explicit solutions in cases that involve the conserved
Runge-Lenz vector, but these are less interesting. In this situation, the anal-
ysis of implicit solutions becomes particularly important.
In linear algebra, an operator A† Hermitian adjoint to A is defined over

the space of square integrable functions ψ, ψ′ as follows:

∫ ψ′∗A†ψ = ∫ ψ(Aψ′)∗ = ∫ ψA∗ψ′∗. (1.180)

The integration extends at least over those variables on which A acts. For A =
x, f(x), ∂x, ∂

2
x etc. one may only have to integrate over x, even if ψ(r) is also

a function of the orthogonal coordinates y, z. But there are also wavefunctions
ψ(r1, r2) which are needed for atoms with two electrons, in which case a two-
particle operator A12 might require integrals over d

3r1 and d
3r2 in (1.180).

A popular notation is ∫ dτ , without specification of τ . For A† = A, the
operator is called “self-adjoint”. The operator x (= multiplication by x) is
self-adjoint, but ∂x is not. i∂x is self-adjoint for those functions that vanish
at the integration limits. (i∂x)

∗ = −i∂x, and the minus sign is canceled by
a partial integration, ∫ ψ′∗∂xψ = −∫ ψ∂xψ′∗.
In practice, A† = A may be weakened to apply to a class of integrals

called “expectation values”, to be defined in (1.206) below. This is called

“hermiticity”, A†H = AH. Eigenfunctions ψi of AH have real eigenvalues,
ai = a

∗
i . For the proof, we set ψ = ψi, ψ

′ = ψi in (1.180):

∫ ψ∗iAHψi = ai ∫ ψ
∗
i ψi = ∫ ψi(AHψi)

∗ = a∗i ∫ ψ
∗
i ψi. (1.181)

In physics, it has become customary to replace the term “self-adjoint” by
“Hermitian”, except perhaps in the discussion of “observables”, see below.
Eigenfunctions ψi and ψj with two different eigenvalues of the same op-

erator AH are “orthogonal” to each other,

Aψi = aiψi, Aψj = ajψj , ∫ ψ
∗
jψi = 0 for ai �= aj . (1.182)

For the proof, consider (1.181) with ψ∗i replaced by ψ
∗
j :

∫ ψ∗jAψi = ai ∫ ψ
∗
jψi = ∫ ψi(Aψj)

∗ = aj ∫ ψiψ
∗
j , (1.183)

in view of the reality of aj . Consequently, (ai − aj) ∫ ψ∗jψi = 0 results in
∫ ψ∗jψi = 0 for ai − aj �= 0. For i = j, the integral remains open, and
a normalization constant Ni is used to get ∫ |ψi|2 = 1. The functions are then
said to be orthonormal,

∫ ψ∗jψi = δij = (1 for i = j, 0 for i �= j). (1.184)
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A trivial example of orthogonality relations is provided by the functions
ψml(φ) (1.17), which have the universal normalization constant N(ml) =
(2π)−1/2: ∫ 2π

0

dφψ∗m′(φ)ψm(φ) = δmm′ . (1.185)

The piece ∂u(1 − u2)∂u of (r ×∇)2 is separately Hermitian in the variable
−1 < u < 1, u = cos θ, such that (r ×∇)2 is also Hermitian (with eigen-
values −l(l + 1), as we know). Consequently, the spherical harmonics satisfy
orthogonality relations in the two variables u = cos θ and φ:∫ 2π

0

dφ

∫ 1
−1
duY m

′

l′ (θ, φ)Y
m
l (θ, φ) ≡ ∫ dΩY

m′∗
l′ Y ml = δmm′δll′ . (1.186)

The operators ξ and pξ = −i∂ξ are Hermitian for the harmonic oscillator
wave funcions, and so is their combination ξ2 + p2ξ = ξ

2 − ∂2ξ . The resulting

eigenvalues n + 1
2 of k

2h̄c/eB (1.170) are real, so the eigenfunctions ψn(ξ)
are orthonormal:

∫ dξNmNne
−ξ2HmHn = δmn. (1.187)

In this case, the normalization constant Nn is relatively complicated:

∫ e−ξ
2

H2ndξ = π
1
2 2nn!, Nn =

(
π
1
2 2nn!

)−1/2
. (1.188)

It will be derived by a simpler method in (1.227). If one wishes to normalize
in the more physical coordinate x′, the relation dx′ = sdξ gives

Nx,n =
[
(πs)

1
2 2nn!

]−1/2
. (1.189)

ψ0

ψ1

ψ2

ψ3

−4 4

Fig. 1.5. The harmonic oscillator functions ψn for n = 0 to 3
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Orthogonality relations of eigenfunctions of operators A with real eigenval-
ues ai are taught in linear algebra. Their significance in quantum physics
is also connected with the theory of measurements: The result of a mea-
surement is the eigenvalue of a fixed and known operator. For example, the
momentum h̄k of a free particle is one of the infinitely many eigenvalues of
the operator p = −ih̄∇. But what happens with the hermiticity of p for
plane waves which refuse to vanish at the integration limits? As an example,
consider the functions

ψ = eikzzψ(x, y), ψ′ = eik
′
zzψ′(x, y).∫ zmax

zmin

ψ′∗∂zψ = −

∫ zmax
zmin

ψ∂zψ
′∗ + ψ′∗(zmax)ψ(zmax)− ψ

′∗(zmin)ψ(zmin).

(1.190)
The “surface terms” must be eliminated in order to make −ih̄∂z a Hermitian
operator. Two different methods are used here. The first one takes right away
zmin = −∞, zmax = +∞, but replaces the phase ikzz by ikzz − κ|z| with
κ > 0. In this case each surface term of (1.190) vanishes, and at the end of the
calculation one may take κ→ 0. The second method uses a finite integration
interval, zmax − zmin = Lz as in Sect. 1.5, and imposes periodic boundary
conditions, ψ(zmax, x, y) = ψ(zmin, x, y). In this case the two surface terms of
(1.190) cancel each other. At the end of the calcutation, one takes Lz →∞,
see Sect. 2.2. In this method, the possible values of kz are restricted to

kz = nz2π/Lz, nz = 0,±1,±2,±3,±4 . . . . (1.191)

Their spacing is twice as large as in the case (1.94) for bound states, but
negative values are now also allowed. The total number of states for large Lz
is thus the same, and one is no longer restricted to standing waves sin kzz.
Contrary to pz, the component lz = −ih̄∂φ of the angular momentum op-
erator l = r × p (1.85) is automatically Hermitian, due to the periodicity
condition ψ(φ) = ψ(φ+2π) of a single-valued function on a circle. This prop-
erty has been converted into another useful trick for wavefunctions (1.190)
that extend only over a finite region in x and y: The space is deformed into
a torus of length Lz = 2πR→∞. The region z > zmax has a trivial meaning
in this torus.
The stationary KG-equation (1.73) is of second order in ai = Ei. For

V = 0, the equation may be rewritten as π2ψ = h̄2k2ψ, which is again an ex-
plicit eigenvalue equation π2ψi = aiψi, ai = h̄

2k2. (The fact that ai contains
E2i instead of Ei is only relevant for the physical content.) A complication
arises for V �= 0, for those variables (normally only r) that occur in V .
For the derivation of orthogonality relations, one needs the KG-equation

at energy Ei and its complex conjugate at energy Ej (the hydrogen atom
without magnetic field has Ei = E(ni, li), Ej = E(nj , lj), but one may
immediately set li = lj in view of (1.186)):
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[(Ei − V )
2/c2 −m2c2 − π2]ψi = 0, [(Ej − V )

2/c2 −m2c2 − π2
∗
]ψ∗j = 0.
(1.192)

We multiply the first equation by ψ∗j , the second one by ψi and subtract the
two products:

ψ∗j (E
2
i − 2EiV − π

2c2)ψi − ψi(E
2
j − 2EjV − π

2∗c2)ψ∗j = 0. (1.193)

This is now integrated over all space. As π = p + eA/c is Hermitian, the
operators π2 and π2∗ cancel each other after integration, and one is left with

∫ ψ∗j [Ei(Ei − 2V )−Ej(Ej − 2V )]ψi = 0. (1.194)

Observing E2i −E
2
j = (Ei−Ej)(Ei+Ej), one may extract a factor (Ei−Ej);

∫ ψ∗j (Ei +Ej − 2V )ψi = 0 for Ei �= Ej . (1.195)

For a spherically symmetric potential V (r) = V (r), (1.195) simplifies to∫ ∞
0

r2drRk′2,lRk2,l(E +E
′ − 2V ) = 0 for E �= E′. (1.196)

These expressions generalize (1.182). The nonrelativistic limit takes |V | � E,
in which case (1.182) remains correct also in the presence of V in the
Schrödinger equation.
The normalization integral (the left-hand side of (1.196) for E′ = E) can

be set equal to 1 as in (1.184), but it is better to divide the expression by
2mc2 or by E in order to keep the nonrelativistic limit E ∼ E′ ∼ mc2, V ∼ 0
in the form (1.184):

∫ ψ∗j (
1
2Ej +

1
2Ei − V )ψi/mc

2 = δij . (1.197)

When the time exponents exp(−iEit/h̄) of ψi and exp(iEjt/h̄) of ψ∗j are
included, (1.197) may be written as

〈j|i〉 ≡ ∫ ψ∗j (t, r)[(−
1
2 ih̄
←−
∂ t +

1
2 ih̄∂t − V )/mc

2]ψi(t, r) = δij , ψ
∗←−∂ t ≡ ψ̇

∗.
(1.198)

This form applies also to truly time-dependent wave functions such as (1.71),
for which Dirac introduced the compact notations of kets |〉 and bras 〈|:

|ψ〉 =
∑
i

ci|i〉, 〈ψ
′| =

∑
i

c′∗i 〈i| (1.199)

〈ψ′|ψ〉 =
∑
ij

c′∗j ci〈j|i〉 =
∑
i

c′∗i ci. (1.200)

The Dirac notation is rather flexible, |i〉 = |ψi〉. In nonrelativistic context,
〈ψ′|ψ〉 always means ∫ ψ′∗ψ. Two general solutions ψ and ψ′ of an equation
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are said to be orthogonal, 〈ψ′|ψ〉 = 0 if they have not a single ψi in common,
i.e. c′i = 0 for ci �= 0. The normalization is

〈ψ|ψ〉 =
∑
i

|ci|
2 = 1. (1.201)

The coefficient cj of a specific state |j〉 is projected out of |ψ〉 (1.199) by
means of (1.198), which defines the “scalar product” of |j〉 and |ψ〉;

cj = 〈j|ψ〉 =

∫
ψ∗j (

1
2Ej +

1
2 ih̄∂t − V )ψ/mc

2. (1.202)

The interpretation of a general state |ψ〉 is based on the observation of
discrete and reproducible bound state energies, the superposition principle
and on the orthogonality relations. In the absence of degeneracy, a measure-
ment of E which results in the value Ei identifies the state |i〉, apart from
a phase. Consider for example the states |i〉 = |ni, li,mi〉 = ψni,li,mli(r, θ, φ)
of a hydrogen atom in a magnetic field, where the degeneracy with respect to
the magnetic quantum number ml is lifted by the Zeeman splitting (1.78). If
the magnetic field B has been measured by some classical method, one can
calculate the possible values Ei before measuring the atomic energies. The
corresponding ψi play the role of unit vectors in the vector space of square in-
tegrable functions, 〈ψ|ψ〉 <∞, which is called a Hilbert space. This space has
infinitely many dimensions, but in most cases one needs only a small number
of components, namely those for which nonzero expansion coefficients ci are
expected in the actual energy measurement of the hydrogen atom. Hermiti-
tan operators that generate a complete set of states (see (1.250) below) are
also called “observables”.
Suppose now that a single hydrogen atom in a trap is excited at time t = 0

by a short laser pulse from its ground state (n = 1, l = 0, ml = 0) to a mix-
ture of its four n = 2-states (spin is neglected). The state l = 0 of n = 2 can
only be excited by two-photon absorption, which is negligible. We thus expect
a linear combination of the three states (n = 2, l = 1, ml = −1, 0, +1),
with coefficients c−1, c0 and c1, and of the unexcited ground state with co-
efficient c00. However, in an actual measurement one finds only one of these
four energies, for example from the frequency of the photon which is cre-
ated in the atomic de-excitation. This frequency is always that of one of the
discrete Zeeman components, never in between. The only possible interpreta-
tion of (1.201) is that |ci|2 is the probability to find that Zeeman component.
As the single hydrogen atom in the trap can emit at most one photon, one
cannot determine |cn|2 with a single pulse. One may either use many pulses
with a sufficiently slow repetition rate, or one may fill the trap with many
hydrogen atoms which are all in the atomic ground state. In the latter case,
the gas must be sufficiently thin to avoid inter-atomic perturbances (and in
particular recombination into molecular hydrogen H2). In practice, it is eas-
ier to use a beam of atomic hydrogen. In that case, however, the “Doppler”
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line broadening caused by the thermal velocity distribution must be much
smaller than the Zeeman splitting. Such a beam is then described by a “den-
sity matrix”. In any case, the outcome of these experiments will be the three
positive numbers |c−1|2, |c0|2 and |c1|2, with |c−1|2 + |c0|2 + |c1|2 < 1. Dif-
ferent experiments are necessary to measure the relative phases between the
ci, for example the application of a probe laser pulse at time t > 0. A real-
istic theory of measurement in a given system may be quite complicated. As
a rule, the precision of the apparatus has a natural limit. The preparation of
a ψ with components in different energy eigenstates Ei requires a laser pulse
with a correspondingly broad frequency band ∆ωlaser. According to (1.27)
and the theory of Fourier transforms, this is achieved with a pulse length
∆tlaser ∼ 1/∆ωlaser. The limit ∆tlaser → 0 would contain frequencies that
lead to ionization of the atom.
The probability interpretation has some strange consequences. Registra-

tion of the decay photon at time t signals that the atom is now certainly in its
de-excited state, which is normally the ground state, ci(t) = δi,00. Thus the
wavefunction has “collapsed” on the state which has been identified by the
measurement. Every energy measurement of a quantum state changes that
state, except when it was already in a stationary state.
Equation (1.202) is rarely needed in the context of time-dependent prob-

lems, even in the analogous case of the Dirac equation for electrons. In our
relativistic treatment of the spinless Zeeman effect, B2-terms (mentioned in
(1.88) and (1.91)) were neglected. This is equivalent to the use of first-order
perturbation theory (Sects. 2.8 and 3.4), where the expansion coefficients may
be calculated from the unperturbed wave function. The unperturbed atomic
states (corresponding to B = 0) are degenerate at fixed l, and the simpler
orthogonality relations (1.186) are sufficient. The magnetic components Y ml
are projected out as follows:

|ψ/Rnl(r)〉 =
∑
m

cmY
m
l ≡

∑
m

cm|lm〉; (1.203)

cm′ =

∫
dΩY m

′∗
l

∑
m

cmY
m
l ≡ 〈lm

′|ψ/Rnl〉. (1.204)

For B = 0, the |cm|2 may be measured not from the energies of the decay
photons (which have converged to a single monochromatic line), but from
their circular and linear polarizations.
For the point Coulomb potential −Ze2/r, the explicit eigenvalue equation

(1.144) leads again to orthogonality relations of the type (1.184),

∫ d3rεψ
∗
j (rε)ψi(rε) = δij , (1.205)

where rε is merely a complicated notation of the integration variable. In
terms of the “physical” variable r, one has ψj(rε) = ψj,old(EjαZr). As the
physical interpretation of ψ requires orthogonality relations, its relativistic
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extension is not so obvious. In practice, measurements often result in pulses
on an oscilloscope; their interpretation requires detailed knowledge of the
apparatus. The integral

∫ ψ∗Aψ ≡ 〈ψ|A|ψ〉 ≡ 〈A〉ψ (1.206)

is called an expectation value. When A is Hermitian, ψ may be expanded in
terms of its eigenfunctions ψi as in (1.199), and one finds

〈AH〉ψ =
∑
j,i

c∗jciai〈j|i〉 =
∑
i

|ci|
2ai. (1.207)

This is the ordinary definition of a mean value: each possible outcome ai of the
measurement is weighted with its probability |ci|2. After each measurement,
the state collapses onto the relevant eigenstate with probability one. It may
there be verified at any later time, provided A commutes with the operator
of the equation of motion, which in the case at hand is the KG-equation. In
analogy with classical mechanics, one calls such an A a conserved operator.
The measurement of eigenvalues of nonconserved operators is problematic. In
particular, the x-component x of the position operator r does not commute
with p2x which occurs already in the free KG-equation.
The connection between quantum states and the classical motion of a par-

ticle seems simple only for the harmonic oscillator potential. Such a poten-
tial supports the “coherent states” below, which oscillate nearly rigidly with
sin(ωt). For a pendulum, ω = ωN is the classical pendulum frequency (see
also Sect. 1.9). However, the most important application is to a nearly classi-
cal electromagnetic field (laser field) of a sharp frequency ω. In both cases, the
equation ih̄∂tψ = Hψ applies. For the pendulum, H is given by the right-
hand side of (1.159). The laser field Hamiltonian has ξ and −i∂ξ replaced
by the “quadrature components” (3.34) of the monochromatic electric field.
A necessary condition for the existence of solutions with the time depen-
dence sin(ωt) is an infinite spectrum of equidistant energy levels. Below, we
shall discuss coherent relativistic Landau states, which are equidistant in the
variable k2t = (E

2/c2 −m2c2)/h̄2 − k2z according to (1.170).
Any energy eigenstate ψn(r, t) = ψn(r)e

−iEnt/h̄ has ρn = ψ
∗
nψnEn/mc

2 =
|ψn(r)|2En/mc2 (the integrand of (1.197) for V = 0) time-independent, which
justifies the name “stationary”. To obtain a time-dependent ρ, ψ must be a su-
perposition of states ψi with different energies Ei. Only then are expectation
values time dependent, 〈r〉 = 〈r〉(t), 〈p〉 = 〈p〉(t). If the coefficients ci of
this superposition are chosen at random, ρ will fluctuate rather unclassically
within the range of the classical pendulum, subject only to the periodicity
restriction ρ(t + 2π/ω) = ρ(t). Periodicity occurs of course also for a finite
number of equidistant energy levels, for example for an arbitrary superpos-
ition of Zeeman sublevels.
At any given time, the coherent state is a shifted stationary state, shifted

both in position ξ and velocity −i∂ξ. Normally the ground state ψ0 is shifted,
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such that the coherent state has a simple Gaussian form. The shift is accom-
plished by a Taylor expansion, which may be written in exponential form
as in (1.275) below. The most general shift is best described by a complex
parameter α,

ψα(ξ, t = 0) = D(α)ψ0(ξ), D(α) = exp[α(ξ − ∂ξ)/
√
2− α∗(ξ + ∂ξ)/

√
2].

(1.208)
α is the eigenvalue of a non-Hermitian operator,

aψα(ξ, t = 0) = αψα(ξ, t = 0), a = (ξ + ∂ξ)/
√
2. (1.209)

The complete coherent solution of ih̄∂tψ = Hψ, with H given in (1.159), is

ψα = Σ
∞
n=0e

−iωN tcnψn(ξ), cn = e
−|α|2/2αn/

√
n!. (1.210)

The |cn|2 are Poisson distributed, as shown in Fig. 1.6. Turning now to the
relativistic Landau orbitals, we define a new variable τ(t) such that

ψα(ξ, τ) = Σ
∞
n=0e

−iωτcnψn(ξ) (1.211)

corresponds to the equidistance in k2t , and not in E. In terms of the Larmor
frequency ωLarmor (1.173), we find ω = 2ωLarmor. τ is the wave packet’s own
“coherent time”, each component having a slightly different time,

tn = τEn/mc
2. (1.212)

Consequently, the wave packet of a relativistic particle in a constant magnetic
field disperses in time, but not in its own “coherent time” (the component
parallel to the field disperses always). However, this τ is not appropriate for
the interaction with light, see (5.158).
Returning to a general operator A with eigenvalues ai, the eigenvalues of

A2 are a2i , and the corresponding expectation value is

〈A2〉 =
∑
i

|ci|
2a2i . (1.213)

0 1 2 3 4 5 6 7 8 9 10n : . . .

|cn|
2

Fig. 1.6. The Poisson distribution for |α|2 = 4
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This is the same as 〈A〉2 only if the ψ in question is an eigenstate of A. The
eigenstate ψj has ci = δij . Otherwise, 〈A2〉−〈A〉2 is positive. The distribution
of |ci|2 (for example the |cn|2 of Fig. 1.6) may be characterized by a few
parameters such as the “mean square deviation” and the “skewness”. The
former is

σA =
(
〈A2〉 − 〈A〉2

)1/2
=
[∑
i

|ci|
2a2i −

(∑
i

|ci|
2ai

)2]1/2
. (1.214)

For the distributions of two operators A ans B, one can prove the “triangle
inequality”

(〈A2〉 − 〈A〉2)(〈B2〉 − 〈B〉2) ≥ |〈[A,B]〉/2|2. (1.215)

Applying this to the operators A = x, B = px, one finds from [A,B] = ih̄
Heisenbergs “uncertainty relation”

(〈x2〉 − 〈x〉2)(〈p2x〉 − 〈px〉
2) ≥ h̄2/4. (1.216)

This is fascinating from the point of view of classical mechanics, because it
implies that one cannot measure position and velocity of a particle at the
same time, “∆x∆px ≥ h̄/2”. In a loose sense, one may also regard the time
variable t as a clock operator and put A = t, B = ih̄∂t. which gives again
[A,B] = ih̄. As the eigenvalues of B are the energies En, this means that
one can measure E with a prescribed precision ∆E only in a sufficiently long
time interval ∆t, see Sect. 5.4.
Books on nonrelativistic quantum mechanics define not only ρ(r, t) =

ψ∗(r, t)ψ(r, t) as the probability to find the electron at position r, but also
a probability current j(r, t) = −ih̄(ψ∗∇ψ − ψ∇ψ∗), because this entails
a continuity equation, ∂tρ+∇j = 0. With 〈r〉(t) = ∫ rρ(t), it is then easily
shown that 〈r〉(t) satisfies the relation of classical mechanics, md〈r〉/dt =
−i〈h̄∇〉 = 〈p〉(t) (Ehrenfest theorem). This is good for a classical motion
where it exists, but it is of little use in quantum mechanics. ψ∗ψ need not
have a maximum at 〈r〉, it may even vanish there. In (2.18) below, a continuity
equation for the electric charge will be derived from the Maxwell equations.
A separate equation for a flow of probability does not exist.

1.9 Operator Methods, Matrices

It was mentioned in Sect. 1.7 that the differential equation (1.158) for the
Landau levels is equivalent to that of the harmonic oscillator,

ENψ = h̄ωĤψ, Ĥ =
1
2 (ξ
2 − ∂2ξ ). (1.217)

The harmonic oscillator potential arises from the expansion of the potential
V (x) (in one dimension) about its minimum value at x = x0:

V (x) ≈ V (x0) +
1
2 (x− x0)

2∂2xV (x = x0), ∂
2
xV (x = x0) ≡ mω

2
N . (1.218)
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It is the favorite potential of nonrelativistic quantum mechanics because
V (x → ∞) = ∞ kills the dissociation continuum. A physical example is
the effective potential between the two atoms of a diatomic molecule, where
x0 > 0 is the equilibrium distance and h̄ωN the approximately constant sep-
aration between those vibrational levels that are well below the dissociation
energy (the mass m in the kinetic energy operator refers the reduced mass of
the two atomic nuclei). A more hypothetical example is the quantum treat-
ment of a pendulum.
In general quantum physics, Ĥ is related to the counting operator

N = Ĥ − 12 , N |n〉 = n|n〉, n = 0, 1, 2 . . . , (1.219)

where |n〉 may represent the wavefunction ψn(ξ). The eigenvalues n arose
in (1.170) from the condition that the function H(ξ) defined in (1.161) be
a polynomial in ξ, the degree of which was called n. In the following, n and |n〉
are derived more directly, without referring to a wavefunction. One defines
a non-Hermitian operator a and a Hermitian N ,

a = 2−1/2(ξ + ∂ξ), a
† = 2−1/2(ξ − ∂ξ), N = a

†a. (1.220)

The relation Ĥ = N + 12 follows from

[∂ξ, ξ] = 1, [a, a
†] ≡ aa† − a†a = 1. (1.221)

The complete spectrum (1.219) will now be derived from N = a†a and
[a.a†] = 1.
We first show that if |n〉 is an eigenstate of N with some unknown eigen-

value n, then a|n〉 = |an〉 is also an eigenstate, with eigenvalue n− 1:

Na = a†aa = (aa† − 1)a = a(a†a− 1) = a(N − 1), (1.222)

Na|n〉 = a(N − 1)|n〉 = a(n− 1)|n〉 = (n− 1)a|n〉; [N, a] = −a. (1.223)

Apart from a constant, |an〉 is thus identical with the state |n− 1〉. Normal-
izing 〈n|n〉 = 1, we can from (1.223) calculate that constant:

〈an|an〉 = 〈n|a†a n〉 = n〈n|n〉 = n, (1.224)

a|n〉 = n1/2|n− 1〉. (1.225)

(A relative phase between states of different eigenvalues remains always open
and is taken to vanish by definition.)
With a more explicit notation for 〈an|an〉, (1.224) reads ∫ |aψn|2dξ = n,

which shows that n cannot be negative. If nmin denotes the smallest such
value, what happens with (1.225) for n = nmin? As nmin − 1 is negative, the
state |nmin − 1〉 would have a negative norm, which is impossible according
to the normalization integral. The only way out of this contradiction is

a|nmin〉 = 0, (ξ + ∂ξ)ψ0 = 0. (1.226)
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This equation is satisfied with ψ0 = N0exp(−ξ2/2), which is in fact identical
with the solution (1.161) for n = 0. Obviously, the ground state of the number
operator N = (ξ − ∂ξ)(ξ + ∂ξ)/2 is already determined by its first factor
acting on ψ (remember that mathematical formula, like semitic scripts, are
read from right to left). Moreover, multiplication of (1.225) by a† gives the
recurrence relation

|n〉 = n−1/2a†|n− 1〉, ψn = (2n)
−1/2(ξ + ∂ξ)ψn−1, (1.227)

by means of which ψn is constucted iteratively, including its normaliza-
tion factor (1.188). The operators a† and a are called raising and lower-
ing, or creation and annihilation operators. In Fig. 1.7, they are illustrated
by steps on a ladder. They introduce addition and subtraction into quan-
tum mechanics: 0 + 1 = 1, 1 + 1 = 2 and so on. Matrix elements of a
and a† between the more complicated Landau states (1.177) are derived in
the review of Canuto and Ventura (1977), together with applications in as-
trophysics. The operator method can be extended to the angular momen-
tum l = r × p. With p = −ih̄∇, we set aside the factor h̄ and define
l = h̄l̂, l̂ = −ir ×∇:

l̂x = −i(y∂z − z∂y), l̂y = −i(z∂x − x∂z), l̂z = −i(x∂y − y∂x), (1.228)

[l̂x, l̂y] = il̂z, [l̂y, l̂z] = il̂x, [l̂z, l̂x] = il̂y. (1.229)

The second and third expressions follow from the first ones by the cyclic per-
mutations xyz → yzx→ zxy. The non-commutativity of l prevents common
eigenstates |lx, ly, lz〉, except for lx = ly = lz = 0, Y 00 = (4π)

−1/2. Neverthe-

less, the operator l̂2 does commute with each component l̂i; its eigenvalues
l(l + 1) have already been mentioned in (1.22). To construct the eigenstates

a

a†

Fig. 1.7. Counting ladder
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of l̂2 and l̂z, we introduce operators l̂± which change the eigenvalues of l̂z by
one unit:

l̂− = l̂x − il̂y, l̂+ = l̂
†
− = l̂x + il̂y. (1.230)

The eigenvalues of l̂x would be changed by l̂z ± il̂x, but one prefers
eigenstates of l̂z, in view of their simplicity (1.17) in spherical coordi-
nates.
Insertion of the commutators (1.229) into (1.230) produces

[l̂z, l̂−] = −l̂−, [l̂z, l̂+] = l̂+. (1.231)

The first relation is reached from (1.222) with the substitutions N → l̂z,
a → l̂−. To calculate the eigenvalues m of l̂z by operator methods, we may
translate (1.223) and (1.224) into

l̂z l̂−|m〉 = (m− 1)l̂−|m〉, 〈l̂−m|l̂−m〉 = 〈m|l̂+ l̂−m〉 ≡ n−. (1.232)

But whereas the eigenvalue n of a†a was known in (1.224), the state |l̂+ l̂−m〉
is as yet unknown. To begin with, we note that (1.231) implies that l̂+ l̂−
commutes with l̂z:

l̂z l̂+ l̂− = (l̂+ + l̂+ l̂z)l̂− = l̂+ l̂− + l̂+(l̂− l̂z − l̂−); [l̂z, l̂+ l̂−] = 0. (1.233)

This ensures the existence of common eigenstates of l̂z and l̂+ l̂−:

l̂+ l̂−|n−,m〉 = n−|n−,m〉, l̂z|n−,m〉 = m|n−,m〉. (1.234)

And as the norm n− of |l̂−m〉 (1.232) must not be negative, there is again
a minimum of n−, namely n−min = 0. To proceed, we must now isolate the
m-dependence of n−. The explicit expression

l̂+ l̂− = (l̂x + il̂y)(l̂x − il̂y) = l̂
2
x + l̂

2
y + l̂z = l̂

2 − l̂2z + l̂z (1.235)

shows that l̂z commutes also with l̂
2. For the eigenstates (1.234), we have

n− = λ−m
2 +m, l̂2|n−,m〉 = λ|n−,m〉. (1.236)

The claim is now that the eigenvalues λ of l̂2 are independent of the eigen-
values m of l̂z. This is so because l

2 contains l2x, l
2
y and l

2
z in a symmetrical

way. Although none of the components commmute according to (1.229), they
all commute with l2. Thus our choice of the basis of eigenfunctions of lz is
immaterial form the point of view of l2. In most textbooks, this symmetry is
mentioned at the very beginning, and the fact that λ is independent of the
eigenvalues of lz is taken for granted. The relation n− = 0 is then translated
according to (1.236) into

mmin(mmin − 1) = λ. (1.237)
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The main deviation from the harmonic oscillator arises from the commutator

[l̂−, l̂+] = −2l̂z, (1.238)

instead of the HO-relation [a, a†] = +1. Clearly, |n−,m〉 is also an eigenstate
of l̂− l̂+:

l̂− l̂+|n−,m〉 = n+|n−,m〉, n+ = n− − 2m = λ−m(m+ 1). (1.239)

Whereas l̂− lowers the eigenvalues of l̂z, l̂+ lowers those of −lz. Consequently,
n+ must vanish at the largest value of m,

mmax(mmax + 1) = λ. (1.240)

In combination with (1.236) this implies mmin(mmin−1) = mmax(mmax+1),
and as by definition mmax > mmin, this quadratic equation has only one
solution,

mmax = −mmin ≡ l. (1.241)

Finally, as m is lowered and raised in steps of 1, mmax −mmin = 2l must be
an integer, and insertion of (1.237) or (1.240) gives

λ = l(l + 1), n− = λ−m(m− 1) = (l +m)(l −m− 1). (1.242)

This is in agreement with the values of l andm quoted in (1.22), but it admits
additional solutions in which l is half-integer. Such solutions are excluded
in the KG-equation, but they will be needed in Sect. 2.5. There, r × p is
not conserved (it does not commute with the Dirac operator, even if the
potential is spherically symmetric). It is replaced by another conserved vector
operator j with the same commutation relations.
The entity of eigenvalues of an operator is called its “spectrum”. This

definition may be used also in the case of implicit eigenvalue equations such

� = 0

� = 1

� = 2

-2

-1

0

1

2

m

Fig. 1.8. The first three orbital angular momentum ladders
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as the KG-equation in the presence of a Coulomb potential. The resulting
E-spectrum has a discrete part (the bound states) and a continuous part

(the scattering states). On the other hand, the operators N and l̂ have only
discrete spectra. Their eigenstates are conveniently written as unit vectors,
the operators as matrices. In the following, the eigenvalues are arranged in
increasing order from bottom to top:

N =

⎛⎜⎜⎜⎜⎜⎝
. . .

3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , |0〉 =
⎛⎜⎜⎜⎜⎜⎝
...
0
0
0
1

⎞⎟⎟⎟⎟⎟⎠ , |1〉 =
⎛⎜⎜⎜⎜⎜⎝
...
0
0
1
0

⎞⎟⎟⎟⎟⎟⎠ , |2〉 =
⎛⎜⎜⎜⎜⎜⎝
...
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠ (1.243)

For the following operators, the dots are omitted for brevity:

a =

⎛⎜⎜⎜⎝
0 0 0 0

3
1
2 0 0 0

0 2
1
2 0 0

0 0 1 0

⎞⎟⎟⎟⎠ , a† =
⎛⎜⎜⎜⎝
0 3

1
2 0 0

0 0 2
1
2 0

0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎠ , ξ = 2−12
⎛⎜⎜⎜⎜⎝
0 3

1
2 0 0

3
1
2 0 2

1
2 0

0 2
1
2 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎠
(1.244)

One may now verify algebraic relationships such as (1.219)–(1.227) by matrix
multiplication. The connection between these matrices and the differential
operators of Sect. 1.8 follows from the scalar product (1.200) of two arbitrary
vectors |ψ〉 = Σiψici and 〈ψ′| = Σiψ∗i c

′∗
i . With |ψ〉 in the form of a column

vector, 〈ψ′| is a row vector, such that the scalar product is a (complex)
number:

〈ψ′| = (. . . , c′∗2 , c
′∗
1 , c

′∗
0 ), |ψ〉 =

⎛⎜⎜⎜⎝
...
c2
c1
c0

⎞⎟⎟⎟⎠ , 〈ψ′|ψ〉 =∑
i

c′∗i ci. (1.245)

This notation is not quite conventional. As a page is written from top to
bottom, one frequently begins with the state of lowest eigenvalue and then
puts the dots further down when one gets tired or runs out of space. In a level
scheme, on the other hand, the ground state appears always at the bottom.
The excited states which appear further up are related to raising operators,
at least at some stage of the formalism. Thus the notation chosen here avoids
redefinitions in other sections.
For an arbitrary operator B, B|ψ〉 = |Bψ〉 is again written as a col-

umn vector, namely as ΣiB|i〉ci in terms of the eigenstates of N . Its
j-component is obtained by multiplication with the unit vector 〈j|, giving
|Bψ〉j = 〈j|ΣiB|i〉ci. The matrix elements of B are now defined as

Bji ≡ 〈j|B|i〉 = ∫ ψ
∗
jBψi, (1.246)
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because this entails the rule for multiplication by a matrix B:

|Bψ〉j = ΣiBjici. (1.247)

The multiplication rule for two matrices is more difficult to derive:

(AB)ji = 〈j|AB|i〉 = Σn〈j|A|n〉〈n|B|i〉. (1.248)

The Σn extends over a complete set of eigenstates of a Hermitian operator.
Unless stated differently, this operator is the same as in the definition of |i〉
and 〈j|, such that for example 〈j|1|n〉 = δnj . In our example, this is the
number operator N . To derive (1.248), we must first derive a property of the
“number wave function” ψi(ξ) which is called “completeness”. It follows from
the fact (not proven here) that any square integrable but otherwise arbitrary
function ψ(ξ) can be expanded in terms of the ψn, ψ(ξ) = Σncnψn(ξ) (ex-
amples will follow in Sect. 4.2). A coefficient cn of ψ is obtained by means
of the orthogonality relations, which in the present example appear in the
“nonrelativistic” form (1.184):

cn = ∫ ψ
∗
n(ξ

′)ψ(ξ′)dξ′, ψ(ξ) = Σn ∫ ψ
∗
n(ξ

′)ψ(ξ′)dξ′ψn(ξ). (1.249)

The last relation expresses the arbitrary function ψ(ξ) in terms of ψ(ξ′) at
different positions ξ′. This is only possible if the integrand is a delta function:

Σnψ
∗
n(ξ

′)ψn(ξ) = δ(ξ − ξ
′). (1.250)

This is the desired completeness relation, also called closure. Turning now
to (1.248), one may define C = AB, where 〈j|C|i〉 contains only a single
integral, ∫ dξ. It is converted into a double integral by means of the delta
function, ∫ dξ = ∫ ∫ dξdξ′δ(ξ− ξ′). The delta function is then replaced by the
sum (1.250), which in Dirac’s ket and bra notation reads

Σn|n〉〈n| = 1, (1.251)

or even shorter |〉〈| = 1. The sum is inserted between A and B in (1.248).
In the case of the attractive Coulomb potential, the sum over the principal

quantum number n must be extended to include the integral over the contin-
uum states (the unbound Coulomb wave functions of Sect. 1.10), even when
both indices j and i of (1.248) refer to bound states. This strongly reduces
the use of the present method for matrix products. A more appropriate tool
is the Coulomb Greens function of Appendix B.
In the relativistic case, the KG equation and also the Dirac equation

have additional continuum solutions at negative E, which are also required
in the completeness relation. On the other hand, these states decouple in
many relativistic systems. For the number operator at hand, the relevant
eigenvalue for the Landau levels is h̄2k2 = E2/c2 − m2c2, and one merely
needs a complete set of eigenvalues of h̄2k2. More generally, if |i〉 and |j〉 in
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(1.248) are both positive-energy states and if either 〈j|A|n〉 or 〈n|B|i〉 vanish
for all negative-energy states |n〉, then those states may simply be omitted.
For example, this is the case for the angular momentum matrices l, which
commute with the KG-operator in the pure central Coulomb potential and
thus do not change E.
The completeness relation for plane waves (in one dimension of length L)

requires the normalized version of eikx,

ψ̂k(x) = L
−1/2eikx, L−1Σne

iknxe−iknx
′

= δ(x− x′), (1.252)

with kn = 2πn/L. The three-dimensional normalized plane wave is

ψk(r) = e
ikrV −1/2, V = LxLyLz, (1.253)

with V = normalization volume. As L → ∞, the kn-values become dense,
and the sum approaches the integral over dk = 2πdn/L. This leads to the
famous formula for the delta function,∫ ∞

−∞
dk eik(x−x

′) = 2πδ(x− x′). (1.254)

We conclude with a few comments on Hermitian adjoint operators and ma-
trices. Successive application of the definition (1.180) gives

∫ ψ′∗A++ψ = ∫ ψA+∗ψ′∗ = ∫ ψ′∗A∗∗ψ = ∫ ψ′∗Aψ, (1.255)

as double complex conjugation gives the original operator. Another useful
extension of (1.180) is obtained by replacing ψ by B+ψ:

∫ ψ′∗A+B+ψ = ∫(B+ψ)A∗ψ′∗ = ∫ ψB∗A∗ψ′∗ = ∫ ψ(BA)∗ψ′∗, (1.256)

which shows that A+B+ is the Hermitian conjugate of BA,

(BA)+ = A+B+. (1.257)

As a special case, take B = A+:

(A+A)+ = A+A. (1.258)

Thus already the mere definition of the number operator in terms of an
arbitrary operator a guarantees that all its eigenvalues are real. The same
remark applies to l̂+ l̂−.
Turning now to matrices, the Hermitian conjugate of a matrix is the

complex conjugate of its transposed,

B+ = B∗tr, (B
+)ji = (B

∗)ij . (1.259)

In view of the definition (1.246), this is also the matrix representing the Her-
mitian adjoint operator. From (1.259), one also verifies B++ = B∗∗trtr = B and
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(BA)+ = A+B+. The elements of the unit matrix are called δij ; a diagonal
matrix Bd has nonzero elements only in the diagonal positions i = j. The
diagonal elements Bii will be called bi:

(Bd)ij = biδij . (1.260)

Vectors of the type |n〉 in (1.243) are eigenvectors of B, in the sense that
matrix multiplication by B reproduces the vector up to a factor bn, which is
called the eigenvalue. Today, linear operators and matrices are synonymous
expressions. For example, finding the eigenvalues of an operator is called di-
agonalization of the operator. The word “state” comprises a wave function
and its representation by a vector. Eigenstates are eigenfunctions of an op-
erator or eigenvectors of a matrix, and so on. The space of square integrable
complex functions is called a Hilbert space. It is a linear vector space, which
expresses the superposition principle: Linear combinations of states are again
possible states. As a rule, states are taken to be normalized.
The elements l̂ij of angular momentum matrices l̂ are characterized by

index pairs, i = (l,m), j = (l′,m′), and l̂2 is diagonal in both: (̂l2)l′m′,lm =

l(l + 1)δll′δmm′ . All three matrices l̂ are diagonal in l:

(̂l)l′m′,lm = δll′ (̂l
(l))m′m. (1.261)

The submatrices l̂(l) have finite dimensions (2l+1)(2l+1). For l = 0 one has

l̂ = 0 (l̂z = l̂− = l̂+ = 0), for l = 1 and l = 2

l̂z
(1) =

⎛⎝1 0 00 0 0
0 0 −1

⎞⎠ , l̂(1)− =
⎛⎜⎝ 0 0 02

1
2 0 0

0 2
1
2 0

⎞⎟⎠ , l̂(1)+ =
⎛⎜⎝0 2

1
2 0

0 0 2
1
2

0 0 0

⎞⎟⎠ (1.262)

l̂z
(2) =

⎛⎜⎜⎜⎜⎝
2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

⎞⎟⎟⎟⎟⎠ , l̂(2)− =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

4
1
2 0 0 0 0

0 6
1
2 0 0 0

0 0 6
1
2 0 0

0 0 0 4
1
2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (1.263)

Not shown is l̂
(2)
+ , which is the Hermitian adjoint of l̂

(2)
− . Unit matrices may

be written as 1, such that for example (1.235) reads

l̂
(l)
+ l̂
(l)
− = l(l + 1)− l̂

2
z + l̂z. (1.264)

This convention becomes mandatory as more and more degrees of freedom are
included, such as electronic spin (Sect. 2.3) and nuclear spin (Sects. 4.3, 4.4,
4.6). Without it, an operator A would have to be written as A⊗1s⊗1t⊗1u . . .,
to indicate all the spaces s, t, u . . . in which A does not act.
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It was mentioned in Sect. 1.8 after (1.202) that Hermitian operators have
orthonormal sets of eigenstates |i〉 = ψi which can be used as basic unit
vectors in a Hilbert space. An actual physical state ψ is specified by its
components ci along these vectors. Occasionally, one has to exchange this
“coordinate system” with some other set of orthogonal unit vectors,

ψ = Σiciψi = Σmcmψ
′
m. (1.265)

To avoid the infinitely many components of general Hilbert space vectors,
consider an angular wave function ψ(θ, φ) which happens to be an eigenfunc-

tion of l̂2, such that it has only 2l + 1 nonvanishing components. Normally,
one would take the spherical harmonics Y ml as basic unit vectors in this case,
ψi = Y

i
l . In vector notation |i〉z these are for l = 1

|+ 1〉z =

⎛⎝10
0

⎞⎠ , |0〉z =
⎛⎝01
0

⎞⎠ , | − 1〉z =
⎛⎝00
1

⎞⎠ , (1.266)

where the index z is a reminder that these are eigenfunctions of l̂z. Suppose
now that one wants to use the eigenvectors ψ′m = |m〉x of l̂x = (l̂−+ l̂+)/2 as
an alternative set of coordinates. For l = 1,

l̂(1)x =
1
√
2

⎛⎝0 1 01 0 1
0 1 0

⎞⎠ , |±〉x = 1
2

⎛⎝ 1
±21/2

1

⎞⎠ , |0〉x = 1
√
2

⎛⎝10
1

⎞⎠ . (1.267)
They are linear combinations of the Y i1 (θ, φ),

ψ′m = ΣiUmiψi, ψ
′∗
n = ΣjU

∗
njψ

∗
j . (1.268)

The fact that both the ψi and the ψ
′
m form orthonormal sets,

〈j|i〉 = δij , 〈n|m〉 = δnm, (1.269)

imposes a condition on the coefficients Umi:

δnm = ΣjU
∗
nj〈j|ΣiUmi|i〉 = Σj,iU

∗
njUmiδji = ΣjU

∗
njUmj . (1.270)

Taking the Umj as elements of a matrix U , with U
† ≡ U+ = U∗tr (in compo-

nents U∗nj = (U
†)jn, see (1.259)), the matrix form of (1.270) becomes

1 = UU†. (1.271)

Such a matrix is called unitary. Its Hermitian adjoint equals its inverse,
U† = U−1. Thus a change of basis in Hilbert space is accomplished by a uni-
tary transformation. In our example it is a 3 × 3-matrix, the coefficients of

which are just the elements of the state vectors (1.266). It is called D
(1)
y (π/2),
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as it has the meaning of rotating the cartesian coordinates by π/2 about the
y-axis (which brings the x-axis into the position of the old z-axis). For l = 2,
the corresponding matrix U is 5× 5-dimensional: it is called D(2)(π/2).
Unitary transformations are used in many places, for example for a change

of basis of the Landau levels. However, they are used most extensively in
connection with rotations. In the following, we consider a particularly sim-
ple rotation, namely one by an angle α about the z-axis. Here each Y ml is
transformed into itself, only its phase is changed: with φ′ = φ− α,

eimφ
′

= eim(φ−α) = e−imαeimφ. (1.272)

The resulting transformation matrix Dz(α) is diagonal,

(Dz(α))mn = δmne
−imα, Dz(α) = e

−il̂zα. (1.273)

The exponentiation of a general matrixM is defined by the converging series

eM = 1 +M +M2/2! + . . . (1.274)

In our example, l̂z = i∂φ in configuration space shows that (1.273) is nothing
but the operatorized form of the Taylor expansion,

e−α∂φf(φ) = f(φ)− α∂φf(φ) +
α2

2!
∂2φf(φ) . . . = f(φ− α). (1.275)

One says that the Hermitian l̂z = −i∂φ “generates” rotations about the
z-axis. If fact, any Hermitian matrix H generates a unitary matrix U , as

U = eiH , U† = (eiH)† = e−iH
†

= e−iH = U−1. (1.276)

The simplest unitary matrix is a multiple of the unit matrix, U0 = e
−iα0 .

For a given ψ in (1.265), it results in the multiplication of all expansion
coefficients by eiα0 . But as an overall phase of all physical states remains
unobservable, this change of expansion coefficients may be eliminated by
multiplying ψ by e−iα0 . For definiteness, one sets α0 ≡ 0. This entails a re-
striction on the allowed matrices H in (1.276), namely trH = 0, for the
following reason: Remembering det(AB) = (detA)(detB), 1 = UU† implies
det(UU†) = |detU |2 = 1 or detU = e−iαU (the case U = e−iα0 would have
αU = α0 dim(U), where dim(U) is the number of diagonal elements of U).
Therefore, any unitary matrix may be decomposed into a phase factor and
a “special” or “unimodular” matrix SU of unit determinant:

U = e−iαUSU, detSU = 1. (1.277)

When SU is expressed as eiH , one gets detSU = eitrH , and consequently
H must be traceless (remember also that a unit matrix has det 1 = 1, but
tr 1 = dim1).
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1.10 Scattering and Phase Shifts

The scattering of particles on atoms may be formulated by a wave equation
with an effective potential Veff . For neutral atoms, Veff is typically confined
to a region r < r0, and the asymptotic wave function ψas satisfies the free
equation (1.75), −h̄2∇2ψas = h̄

2k2ψas. For scattering on ions, the wave at
r > r0 suffers an additional Coulomb distortion, which will be mentioned
below. Spin is again neglected.
Whereas the real scattering of a single particle is a time-dependent pro-

cess, the idealized experiment contains a beam of particles of fixed momen-
tum h̄k (the direction of which is taken as the z-axis), plus a more complicated
outward wave which is produced by the scatterer:

ψas = e
ikru + r−1fk(u)e

ikr, u = cos θ, dσ/dΩ = |f |2, (dΩ = dudφ).
(1.278)

Here fk is the scattering amplitude, and dσ/dΩ is the differential cross sec-
tion for elastic scattering (k′ = k) into the solid angle u = uk, φ = φk.
Superficially, the scatterer appears as a source, but fk(u) is negative in the
forward direction u = 1 (θ = 0), such that the total flux is conserved. The
limitations on fk(u) follow from a partial-wave decomposition of (1.278),

ψas =
∞∑
l=0

Y 0l (u)Rl(kr) = (2π)
−1/2

∞∑
l=0

(l + 12 )
1/2Pl(u)Rl(kr). (1.279)

After division by k2, the radial equation becomes

[1 + (∂kr + 1/kr)
2 − l(l + 1)/k2r2]Rl(kr) = 0. (1.280)

It is identical with (1.98) for V = 0, but the constant 1 was omitted in (1.102).
Defining a dimensionless variable kr = ρ, the general solution of (1.280) is

Rl(ρ) = cl+(k)jl(ρ) + cl−(k)nl(ρ), (1.281)

where jl and nl are the spherical Bessel and Neumann functions: jl is regular
at ρ = 0, jl(ρ → 0) = ρl, while nl(ρ → 0) = ρ−l−1. For l = 0 and 1, one
verifies

j0 = ρ
−1 sin ρ, n0 = ρ

−1 cos ρ, (1.282)

j1 = ρ
−2(sin ρ− ρ cos ρ), n1 = ρ

−2(cos ρ− ρ sin ρ). (1.283)

For l > 0, both jl and nl obey the recurrence relation

jl+1 = ρ
−1(2l + 1)jl − jl−1. (1.284)

The incident wave eiρu of (1.278) is decomposed into partial waves as follows:

eiρu = Σlaljl(ρ)Pl(u), al = i
l(2l + 1). (1.285)

The values of al will be derived below.
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Fig. 1.9. Outgoing spherical waves

If (1.280) would apply at all r, then the normalizibility of ψ would require
cl− = 0 as in (1.103), and there would be no scattering. But as ψas is restricted
to the region r > r0, one may have cl− �= 0. Below the threshold energy for
ionizing collisions, cl−/cl+ remains real. The otherwise unknown Veff is then
real, and the complete KG-equation is also real. Another possible solution is
then

R∗l (kr) = c
∗
l+(jl + nlcl−/cl+), cl−/cl+ ≡ − tan δl, (1.286)

and since ψas is the unique continuation of the unknown inside wave ψ, R
∗
l

can differ from Rl at most by a constant phase, and tan δl must be real. From
the asymptotic forms of jl and nl,

jl(ρ→∞) = ρ
−1 sin(ρ− lπ/2) = (−i)l(2iρ)−1(eiρ − (−1)le−iρ), (1.287)

nl(ρ→∞) = −ρ
−1 cos(ρ− lπ/2) = (−i)l(2ρ)−1(eiρ + (−1)le−iρ), (1.288)

one finds that δl causes a “phase shift” in Rl: With sin(α+ δ) = sinα sin δ+
cosα cos δ,

Rl(ρ→∞) = cl+(ρ cos δl)
−1 sin(ρ− lπ/2 + δl). (1.289)

To calculate a coefficient al in the sum (1.285), it is projected out by means
of the orthogonality relations (1.186) for the Y ml (θ, φ), which are reduced to
those of the Legendre polynomials by the substitution (1.279):∫ 1

−1
duPl′(u)Pl(u) = (l +

1
2 )
−1δll′ : (1.290)

(l + 12 )
−1aljl = ∫ duPle

iρu = (iρ)−1[eiρuPl(u)|
1
−1 − ∫ e

iρuP ′l du]. (1.291)
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For ρ → ∞, the last integral vanishes relative to the first one, as a second
partial integration produces a second factor (iρ)−1. Using also Pl(1) = 1,
Pl(−1) = (−1)l and the asymptotic form (1.287), one has

(l + 12 )
−1al(−i)

l(2iρ)−1[eiρ − (−1)le−iρ] = (iρ)−1[eiρ − (−1)le−iρ], (1.292)

from which the value (1.285) follows. The form (1.292) shows also that the
plane wave eiρu contains both outgoing (eiρPl/iρ) and incoming (e

−iρPl/iρ)
spherical waves. The scattered wave in (1.278) is purely outgoing, of course.
The relation between fk(u) and δl follows after a partial wave decomposition
of fk(u):

fk(u) =
∞∑
l=0

(2l + 1)fl(k)Pl(u). (1.293)

The total coefficient of eikrPl in (1.278) is thus (l+
1
2 )(iρ)

−1(1+2ikfl) accord-
ing to (1.292). This must equal the form (1.289) for Rl(ρ→∞). Rewriting

sin(ρ− lπ/2 + δl) = (2i)
−1e−iδl [eiρe2iδl − (−1)le−iρ] (1.294)

(δl is called the phase shift), agreement is reached for

e2iδl = 1 + 2ikfl, fl = k
−1 sin δle

iδl = (2ik)−1(e2iδl − 1). (1.295)

The differential cross section becomes

dσ/dΩ = |fk|
2 = Σl,l′(2l + 1)(2l

′ + 1)PlPl′flf
∗
l′ . (1.296)

The total cross section σ = ∫ dΩdσ/dΩ is simplified by the orthogonality
relation (1.290),

σ = 4πΣl(2l + 1)|fl|
2 = 4π/k2Σl(2l + 1) sin

2 δl. (1.297)

The notation dΩ = dudφ is common but not very adequate for the scattering
of spinless particles on a central potential where dσ is independent of φ, such
that in practice dΩ = 2πdu.
So much about the scattering on neutral atoms. For the scattering on

ions of total charge Z, the Coulomb potential cannot be dropped outside
the ion radius r0. The corresponding Rl was called e

ikrvl in (1.100), and the
regular solution was vl = r

lαw = rlαF (a, 2lα + 2,−2ikr), with a and η given
in (1.140). Including a normalization constant Nl,

Rl = Nl(2ρ)
lαeikrF (lα + 1 + iη, 2lα + 2,−2ikr). (1.298)

This is the generalization of jl. The generalization of nl is the irregular
Coulomb function Gl. The wave function for the scattering by an ion has
an asymptotic form similar to (1.289),

Rl(ρ→∞) = cl+ρ
−1 sin[ρ− η ln(2ρ)− lπ/2 + σl], (1.299)
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where σl is a phase shift. For the scattering by a bare nucleus (ro = 0), σl can
be calculated explicitly:

σl = argΓ (lα + 1 + iη)− π(lα − l)/2. (1.300)

This is the (relativistic) Coulomb phase shift. The corresponding partial-wave
Coulomb scattering amplitude fl is again given by (1.293) and (1.295),

fk(u) = (2ik)
−1

∞∑
l=0

(2l + 1)Pl(u)(e
2iσl − 1). (1.301)

For nuclear reaction rates, one needs a normalized incident particle flux,
corresponding to cl+ = 1 in (1.299) (see also the discussion in Sect. 4.2). This
determines the original Nl of (1.298) as

Nl = e
−πη/2|Γ (lα + 1 + iη)|/Γ (2lα + 2). (1.302)

The range r0 of most nuclear reactions is so short that one may set e
ikr = 1

and F = 1. The factor (2ρ)lα practically excludes reactions with l > 0. In
the approximation lα = 0, one finds

N20 = 2πη(e
2πη − 1)−1. (1.303)

With charge q1 = Z1e > 0 of the incident nucleus, η = Z1Z2αE/h̄ck is posi-
tive and tends to infinity for k → 0. N20 is then known as Gamow’s “Coulomb
barrier penetration factor”. It largely determines the thermonuclear reaction
rates.
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2.1 Lorentz Transformations

The Laplacian ∇2 (1.2) is invariant under rotations of the coordinate system,
r′ = Rr, ∇′ = R−1∇, where R is a 3 × 3 rotation matrix. Lorentz found
additional transformations involving x0 = ct which leave the d’Alembertian �
(1.3) invariant. Today, the definition of Lorentz transformations is extended
in one respect and narrowed in another one: A Lorentz transformation

x′ = Λx : x′µ = Λµ0x
0 +

3∑
i=1

Λµi x
i ≡ Λµρx

ρ (2.1)

leaves x02−r2 (and ∂20−∇
2, π02−π2 etc.) invariant and has determinant +1.

By this definition the rotations are a subgroup of Λ, namely those matrices
having x0′ = x0 and consequently Λ0i = 0 :

ΛR =

(
1
−→
0

↓ 0 R

)
. (2.2)

An important subgroup of R are the rotations Rz about the z-axis. When
viewed as Lorentz transformations, they are defined by x0′ = x0, z′ = z,
detR = 1. The invariance requirement is reduced to x′2 + y′2 = x2 + y2 and
allows the parametrization of R in terms of one angle, called the rotation
angle α:

z′ = z,
x′ = x cosα− y sinα,
y′ = x sinα+ y cosα

Rz =

⎛⎝1 0 0
0 cosα − sinα
0 sinα cosα

⎞⎠ . (2.3)

α = 0 is the identity transformation x′µ = xµ, which is reached again at
α = 2π, due to the periodicity of cosα and sinα. The matrix is further
simplified by using Cartan components (z, x+, x−) instead of the des Cartes
components (z, x, y)

x± = ∓x− iy, x
′
+ = e

iαx+, x
′
− = e

−iαx−. (2.4)

Perhaps Cartan simply diagonalized Rz. More likely, he wrote x
2 + y2 =

(x + iy)(x − iy) = −x+x− and required separate transformations for each
bracket.
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Turning now to general rotations, we set r = r1+r2 and find that r
2
1, r

2
2

and r1r2 are separate rotation invariants. In the standard vector formalism,
these scalar products are r′2r

′
1 = r2,trRtrRr1 where Rtr is the transposed

of R. Thus the invariance condition reads

RtrR = 1 :
∑
RkiRkj = δij . (2.5)

Such matrices are called orthogonal. Their transpose equals their inverse,
Rtr = R

−1. The product of two such matrices is again orthogonal,

(R2R1)trR2R1 = R1,trR2,trR2R1 = R1,trR1 = 1. (2.6)

With these two properties, the matrices form a group, the “rotation group”.
It allows one to construct complicated rotations from products of simpler
ones. Euler wrote the most general R(α, β, γ) as the product of a rotation
(2.3) about the z-axis, a rotation by β about the new y′-axis (which leaves
y′′ = y′), and a rotation by γ about the new z′-axis.
The determinant of a matrix product is the product of the determinants

of its factors, and det(Rtr) = detR. Consequently, (2.5) implies det
2(R) = 1.

The matrices R(−) of determinant −1 are not rotations (they do not form
a group either, because R(−)2 has determinant +1). They may be written as

the product of a standard matrix R
(−)
0 and a rotation. In cases of 3-dimen-

sional rotational invariance, the standard matrix is the space inversion

S : x0′ = x0, r′ = −r (z′ = −z, x′ = −x, y′ = −y). (2.7)

In many cases, however, external fields destroy rotational invariance except
for rotations about a given axis, which is then taken as the z-axis. A reflection
in the xy-plane,

Rxy : z′ = −z, x′ = x, y′ = y (2.8)

may then be more practical. The two matrices are connected by a rotation
by α = π about the z-axis, S = Rz(π)Rxy. The reason for denying the
status “Lorentz transformation” to transformations with determinant −1 is
mentioned at the end of this section and explained in Sect. 3.2, although it is
irrelevant for this book.
The construction of “proper Lorentz transformations” Λpr is analogous.

A Lorentz transformation along the z-axis is defined as a Λpr for which x
′ = x,

y′ = y. The resulting invariance condition is (x0′)2 − z′2 = x02 − z2 =
(x0 + z)(x0 − z) ≡ x0+x

0
−. One merely has to replace the ±iα in (2.4) by ±η,

where the “rapidity” η is real:

x0± = x
0 ± z, x0′+ = x

0
+e
η, x0′− = x

0
−e
−η; (2.9)

x0′ = x0 cosh η + z sinh η, z′ = x0 sinh η + z cosh η. (2.10)

In classical mechanics, one uses an equivalent parametrization in terms of the
velocity (1.152):
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x0′ = γ(x0 + zv/c), z′ = γ(x0v/c+ z), γ = (1− v2/c2)−1/2. (2.11)

Comparison with (2.10) gives the connection,

γ = cosh η, v/c = sinh η /γ. (2.12)

Due to the simple exponential functions in (2.9), the addition law for two
rapidities in the same direction is the same as for two rotations about the
same axis:

Λpr(η1)Λpr(η2) = Λpr(η1 + η2). (2.13)

The addition law for velocities is complicated and leads to a limiting velocity
v = c for η =∞. Speculations about tachyons (particles moving faster than
light) look little attractive when formulated in terms of rapidity.
In covariant formulations that treat all four components of xµ simultane-

ously, the relative minus sign in � = −∂20+∇
2 must be somehow removed. It

causes the minus sign in x02 − r2 and results in the definition of the Lorentz
invariant scalar product of two 4-vectors Aµ and Bµ (for example Bµ = pµ)

AB = A0B0 −AB. (2.14)

The “archaic” solution of this formal problem is to set x0 = ix4, � =
Σ4µ=1x

µxµ. It becomes very confusing for complex 4-vectors in connec-
tion with complex conjugation. Today, one defines for each (contravariant)
4-vector Aµ a covariant 4-vector Aµ as follows:

Aµ = (A
0,−A), Bµ = (B

0,−B), AB =
3∑
µ=0

AµB
µ ≡ AµB

µ = AµBµ.

(2.15)
Alternatively, some authors define Aµ = (−A0,A) in order to keep the sign
of the Lorentz invariant scalar product of the archaic metric. They write
p2 = −m2c2 for a free particle, instead of the more common p2 = m2c2.
The transformation between co- and contravariant 4-vectors is formalized

by a “metric tensor”g,

Aµ = gµνA
ν , Aν = gνρAρ gµν =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ = gµν . (2.16)

It is heavy machinery for a simple sign, but it may be familiar from general
relativity. Remember that ∂µ has no minus sign:

∂µ = (∂0,∇), ∂
µ = (∂0,−∇), p

µ = ih̄(∂0,−∇), pµ = ih̄(∂0,∇). (2.17)

This distribution of minus signs is unusual but consistent with (2.14). As
mentioned at the end of Sect. 1.3, it arises from the exponent of the plane
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wave (1.11), i(kr−ωt) = −ikµxµ. Another explanation for the “missing sign”
in pµ is based on the Maxwell equations: Maxwell added the term −∂0E in
(1.52) because he wanted a continuity equation for the charge-current density,
div j + ρ̇ = 0. This term produced the Lorentz invariance; the 4-component
version of the continuity equation being

jµel = (cρel, jel), ∂µj
µ
el = 0. (2.18)

Lorentz combined E and B (1.53) into a single field strength tensor,

Fµν = ∂µAν − ∂νAµ : F i0 = ∂iA0 − ∂0A
i = Ei, F ij = −Bk(ijk cyclic),

(2.19)
which enabled him to summarize the inhomogeneous equations (1.52) by
a single 4-component equation:

∂µF
µν = 4πjνel/c. (2.20)

The continuity equation is now necessary, because of ∂ν∂µF
µν = ∂ν∂µ(∂

µAν−
∂νAµ) = 0. Note also that the Lorentz gauge (1.57) is Lorentz invariant.
The metric tensor allows one to write the scalar product of two 4-vectors

in terms of their contravariant components as follows:

AB = AµgµνB
ν = AtrgB. (2.21)

The Lorentz transformation Λ (2.1) must thus satisfy

ΛtrgΛ = g. (2.22)

The proof that Lorentz transformations form a group is analogous to (2.6).
Similarly, (2.22) implies det2(Λ) = 1. There are again matrices Λ(−) of de-
terminant −1 which are not counted as Lorentz transformations. They may
be written as gΛ = SΛ, where the metric tensor g plays the role of the space
inversion S (2.7), and Λ has determinant +1. They may also be written as
−gΛ = TΛ′, where T is the time reversal transformation:

T : x0′ = −x0, r′ = r. (2.23)

With these definitions, ST = −1 is a Lorentz transformation, although S and
T are not. The reason is that x0′ = −x0, z′ = −z can again be reached by
a rotation analogous to (2.3), but now in the (x0, z)-plane, with α = π. The
rotation looks trivial in the archaic metric x0 = ix4, (x4′)2+z′2 = (x4)2+z2.
However, in the region 0 < α < π, the mixing of x4 and z produces complex
values of x0 and z. Nevertheless, there is no problem for operators such as �.
In Sect. 3.2, ST will be identified with “CPT”. There exists one very weak
interaction which violates both CP and T but not CPT , which justifies the
restriction of Lorentz transformations to detΛ = +1.
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The phase exp i(kr − k0x0) of a plane wave is Lorentz invariant, k′0x
0′ −

k′r′ = k0x
0 − kr. It implies that kµ is transformed like xµ. With k0 = ω/c

and the z-axis along v as in (2.11), this gives

ω′ = γ(ω + vkz), k
′
z = γ(ωv/c

2 + kz). (2.24)

An important application is the Doppler shift of the radiation emitted by an
atom of velocity v, as the frequency ω of the atomic calculation always refers
to the atom at rest, v = 0. When the atom moves away from the radiation
detector, kz is negative, and ω

′ is “redshifted”.

2.2 Spinless Current, Density of States

Orthogonality relations were derived in Sect. 1.8 for the solutions of the KG-
equation in a stationary potential V (r) = qA0 (q = −e), both for the sta-
tionary (1.197) and for the time-dependent (1.198) solutions. The latter form
remains valid also for time-dependent Aµ = Aµ(x0, r), as will be seen now.
Quite generally, one first constructs a 4-current density jµ(xν) = (cρ, j),

which fulfills a continuity equation, ∂µj
µ = 0. Integrating ∂tρ = −∇j over

all space and neglecting the surface integral according to the discussion in
Sect. 1.8, one gets ∂t ∫ ρd3r = −∫ jdf = 0. Thus ∫ j0d3r is time-independent;
it is used to define the scalar product.
Particles of charge q �= 0 contribute to the electric 4-current density jµel

on the right-hand side of the Maxwell equations (2.20). Also jµel obeys a con-
tinuity equation (2.18), and as long as the construction of jµ is unique, jµel is
identical with jµ, apart from a constant:

jµel = qj
µ.

With the normalization ∫ ρd3r = 1, q = ∫ ρeld3r is the system’s total charge
which is in fact conserved. In relativistic quantum mechanics, the number
of each type of charged particles (pions, electrons, protons) is separately
conserved, and charge conservation follows from Maxwell’s equations. In the
underlying quantum field theory, however, charged particles may be created
in particle-antiparticle pairs (π−, π+), (e−e+) and may also be transmuted
as in β+-decay, p→ ne+νe. It appears that Maxwell got his conservation law
by divine inspiration, because it remains correct also in these more general
processes. In fact, both the neutron n and the neutrino νe have q = 0, and the
electric charges of proton and positron are equal, q(p) = q(e+) = −qe = e.
In nonrelativistic quantum mechanics, ρ(r, t) may be interpreted as the

probability to find the particle at the position r at time t. More precisely, qρ
is taken as the probability to localize the charge at position r. This interpre-
tation becomes problematic in relativistic quantum mechanics. An instanta-
neous and precise localization measurement requires charged test projectiles
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of high energy, which will always create photons in their collisions. In quan-
tum field theory, r and t become continuous labels of the field operators,
without any “physical” significance.
We now turn to the construction of jµ from the KG-equation in covariant

form. The 4-momentum πµ = pµ − qAµ/c was derived already in (1.68), and
the combination π02 − π2 is now recognized as πµπµ:

πµπ
µψ = m2c2ψ. (2.25)

We shall also need the complex conjugate version,

π∗µπ
µ∗ψ∗ = m2c2ψ∗. (2.26)

From these two equations, we can verify that

jµ = ψ∗πµψ + ψπµ∗ψ∗ (2.27)

satisfies ∂µj
µ = 0. The first term in jµ gives

∂µψ
∗πµψ = (∂µψ

∗)πµψ + ψ∗∂µπ
µψ. (2.28)

In the second half of this expression, we express ∂µ as

∂µ = (πµ + qAµ/c)/ih̄ (2.29)

and use (2.25). In the first half, on the other hand, we use

∂µ = (−qAµ/c− π
∗
µ)/ih̄, (2.30)

and then (2.26). The corresponding substitutions are used in the first term
of (2.27). With the superposition principle, ψ = ψi + ψj of two solutions of
the KG-equation, it follows that

jµji = ψ
∗
j (
←−π µ∗ + πµ)ψi, ←−π

µ∗ = −ih̄
←−
∂
µ
− qAµ/c (2.31)

also fulfills the continuity equation. Its 0-component j0ji is used for the scalar

product 〈j|i〉, as discussed already in (1.198) for time-independent V = qA0.
Consider now a plane wave,

ψ
k0,k(x) = e

−ikx, kx = k0x
0 − kr. (2.32)

With pµψ = h̄kµψ, it satisfies the KG-equation for

kµk
µ = k20 − k

2 = m2c2/h̄2. (2.33)

k0 is then a function of k, apart from a sign:

k0 = ±(k
2 +m2c2/h̄2)1/2. (2.34)
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The sign will be fixed separately in the following, such that the index k0 of
ψ may be dropped. For the construction of the scalar product of two plane
waves, we use three times the one-dimensional integral

∫ d1xeix(kx−k
′
x) = 2πδ(kx − k

′
x), (2.35)

〈k′|k〉 = h̄ ∫ d3rψ∗k′(−i
←−
∂0 + i∂0)ψk = 8π

3h̄(k0 + k
′
0)δ(k − k

′). (2.36)

As δ(k′−k) requires k′2 = k2, one has k′20 = k
2
0, and k0+k

′
0 becomes 2k0 for

equal signs and zero for opposite ones. In comparison with (1.197), we have
dropped a factor h̄/2mc, in order to comprise also massless particles. Very
often, the factor 8π3 is also avoided by a normalization factor (2π)−3/2 in
front of the plane wave (2.32). In the quantum Maxwell field (Sect. 3.1), the
factor 2k0 is likewise eliminated by means of a second normalization factor
(2k0)

−1/2 = (h̄/2ω)1/2. However, (2.36) is in fact more elegant because of its
Lorentz invariance (see below).
A basic concept of quantum mechanics is the density dZ of free-particle

states in the unbound continuum, or more precisely in a constant potential as
mentioned in connection with (1.75). dZ is defined as the number of orthog-
onal states per interval d3k and volume V = LxLyLz. For large Lz, (1.191)
may be written as d(nz/Lz) = dkz/2π, giving dZ = d

3k/8π3. However, this is
inconsistent with the scalar product (2.36), where dZ must cancel all factors.
Consequently, one needs a Lorentz invariant density of states,

d3Lk ≡ d
3k/8π32k0, alternatively d

3
Lk = d

3kmc2/8π3E. (2.37)

The second form is convenient for massive particles, because it agrees with
the nonrelativistic form for E = mc2. In many applications, one requires dZ
as a function of an energy interval, dE or dk0 instead of d

3k. One then uses
spherical coordinates for the components of k,

d3k = k2dkdΩ = k0kdk0dΩ, (2.38)

due to the relation kdk = k0dk0 which follows from (2.34). Consequently,

dZ = kdk0dΩ/16π
3 or = kdEdΩm/8π3h̄2, (2.39)

where the last expression has k0 = E/h̄c = ω/c inserted. The density of states
is important in the theory of metals, where the Pauli principle allows only
two electrons per state. The factor 2 accounts for the electron spin; particles
of spin s have 2s+ 1 times the density of states of spinless particles. This is
so because any free particle satisfies the KG-equation, as we shall see.
The factor mc2/E in (2.36) may be regarded as a Lorentz contraction of

the normalization volume in the direction of flight. For electrons, it becomes
quite small in white dwarf stars where the high density (small volume per
electron) pushes the electrons into relativistic orbitals, even at zero temper-
ature. For bound electrons in a metal, on the other hand, mc2/E is slightly
larger than 1.
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The Lorentz invariance of (2.37) is independent of the specific form of j0.
The Lorentz invariant differential is d4k = dk0d

3k; the integral over k0 is
removed by a Lorentz invariant function, namely δ(kµk

µ − m2c2/h̄2). But
with

δ(k20 − k
2 −m2c2/h̄2) = δ[(k0 − ω/c)(k0 + ω/c)]

= c(2ω)−1[δ(k0 − ω/c) + δ(k0 + ω/c)], ω/c ≡ (k
2 −m2c2/h̄2)1/2, (2.40)

the second value k0 = −ω/c must be removed by the step function, Θ(k0) = 1
for k0 > 0 and 0 for k0 < 0. Θ(k0) is Lorentz invariant for m

2 > 0 (due to
Λ00 ≥ 1, “tachyons” withm

2 < 0 are thus excluded). In summary, the Lorentz
invariant form of (2.37) is

d3Lk = (2π)
−3d4kδ(kµk

µ −m2c2/h̄2)Θ(k0). (2.41)

2.3 Pauli’s Electron Spin

In one-electron atoms, the Zeeman splitting in a weak magnetic field B is
given by a formula similar to (1.92),

Enljmj (B) = Enlj(0) +BµBgljmj , µB = eh̄/2mc. (2.42)

The index j in Enlj(0) is a new quantum number which assumes two differ-
ent values for l > 0, and the old magnetic quantum number ml is replaced
by a new one mj which assumes equidistant values of either sign. With glj
adjusted to the unit distance, mj assumes half-integer values. For l = 0, mj
is ±1/2, while for l = 1 it is ±1/2 for one j and ±1/2, ±3/2 for the other
one. In general, if one defines j in a clever way, then the multiplicity of mj
obeys a simple rule:

j = l ± 12 , −j ≤ mj ≤ j. (2.43)

In comparison with the spinless atom, the number of states at fixed n and l
is doubled. With Σmj = 2j + 1,

Σ
l+1/2
j=l−1/2(2j + 1) = 2(l −

1
2 ) + 1 + 2(l +

1
2 ) + 1 = 2(2l + 1). (2.44)

For l = 0, the states j = −1/2 are absent, but (2.44) remains correct, as
2(0 − 1/2) + 1 = 0. It is one of the first indications of the new two-valued
degree of freedom of the electron, called “spin”. The value of the “g-factor”
in (2.42) was found by Landé:

glj = 1 + 2(j − l)/(2l + 1) = (2j + 1)/(2l + 1). (2.45)

The simple formula (2.42) applies only when the total Zeeman splitting re-
mains small in comparison with the j-splitting, BµBglj(2j + 1) < |El+1/2 −
El−1/2|. For comparable splittings, the Zeeman effect becomes complicated,
but for strong magnetic fields, a new simple pattern appears. The quan-
tum numbers j and mj are then inappropriate and are replaced by a new
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two-valued quantum number, which is simply added to the spinless Zeeman
formula (1.92). Anticipating a bit of theory in the notation, the normalized
two eigenvalues are written as 2ms, ms = ±1/2, where ms is called the “spin
magnetic quantum number”:

E(B) = Enl(0) +BµB(ml + 2ms). (2.46)

This splitting in a strong magnetic field is called the “normal” Zeeman effect,
because it was first understood. (The name referred originally to a similar
formula for certain two-electron atoms, which is valid also for weak B). The
Landé formula (2.42) got the name “anomalous Zeeman effect”, which is still
in use. Its theoretical complication arises from a “spin-orbit” potential, which
is a relativistic spin effect in the Coulomb potential, see Sect. 2.8. For l = 0,
however, (2.45) gives g0j = 2, and both formulas are identical (the spin-orbit
potential vanishes in this case). The situation is simpler in the absence of
a Coulomb field, say for a free electron in a magnetic field. The relativistic
Landau level formula (1.170) has n replaced by n −msq/e, for q = ±e. An
even more precise formula is

k2t (n,ms) = [e(2n+ 1)− qgfreems]B/h̄c, gfree = 2.0023. (2.47)

The constant gfree is called the g-factor of a free electron.
For B = 0 and in the absence of relativistic Coulomb effects such as

the V 2/c2h̄2 in (1.98), the electron spin becomes an “internal” or “hidden”
quantum number, analogous to the two states of polarization of light in an
optically inactive medium. But even then, the spin manifests itself in atoms
and molecules via the Pauli principle, which allows at most one electron
per orbital. If spin is not counted in the orbitals, the Pauli principle allows
two electrons per orbital. For example, the total degeneracy of states in the
nonrelativistic hydrogen atom is gspin(n) = 2gspinless(n), with gspinless given
by (1.136).
Spin must be introduced into the electron wave function ψe in a manner

that admits a rotational invariant coupling between the spin and a vector
field such as B. In the analogous case of light, the two polarization compo-
nents must be incorporated in a 3-component vector A(r, t), such that the
operators Ap and pA in π2 (1.80) are rotational invariant. The Lorentz-
invariant extension of these operators requires yet another component A0

in combinations such as Aµpµ. For electrons, two components are sufficient,
both for rotational invariance and for Lorentz invariance. In this section, only
rotations are considered. The two-component electron wave function is called
a spinor,

ψe ≡ ψ =

(
ψ1/2(x

µ)
ψ−1/2(x

µ)

)
=

(
ψ+(x

µ)
ψ−(x

µ)

)
= ψ+(x

µ)χ+ + ψ−(x
µ)χ−, (2.48)

χ+ =

(
1
0

)
= χ(ms =

1
2 ), χ− =

(
0
1

)
= χ(ms = −

1
2 ). (2.49)
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χ+ and χ− are unit spinors, similar to the three unit vectors into which
A(r, t) can be decomposed. An operator in this two-component space is a 2×2
matrix with at most 4 independent components. If no matrix is written, the
2× 2 unit matrix is understood, which is also denoted by σ0 in this context:

σ0 =

(
1 0
0 1

)
≡ 1. (2.50)

The other three matrices were chosen by Pauli (1927) as

σ3 = σz =

(
1 0
0 −1

)
, σ1 = σx =

(
0 1
1 0

)
, σ2 = σy =

(
0 −i
i 0

)
. (2.51)

They are both Hermitian and unitary; their complete algebra can be written
in a single line:

σiσj = δij + iε
ijkσk, ε123 = 1, εjik = −εijk. (2.52)

For two vectors a and b, it implies

(σa)(σb) = ab+ iσ(a× b). (2.53)

The development of the spin formalism has a complicated history (Enz
2002). It was first believed that the Zeeman effect involved the atomic core.
Pauli suggested to Landé that is might be connected instead with the va-
lence electron. Inspired by Pauli, Kronig suggested that the electron carries
an intrinsic angular momentum 1

2 h̄, but he was argued out of this by Pauli.
Soon afterwards, Goudsmit and Uhlenbeck postulated spinning electrons,
with a factor 2 between the spin and orbital magnetic moments, respectively.
In classical relativity, Thomas calculated the relativistic precession of spin
(“Thomas precession”) in a magnetic field, which also contains the factor 2.
Pauli still rejected a possible connection with the Zeeman effect, but was
finally convinced by Frenkel. Next, the spin-orbit potential was explained by
the Dirac equation (next section), where also the Zeeman operator followed
very elegantly. This and the classical calculation by Thomas created the im-
pression that spin is a relativistic effect. It was only found afterwards that
the Zeeman operator is part of the nonrelativistic kinetic energy operator of
(1.67), provided π2 is replaced by πσ2:

[cπ0N − (πσ)
2/2m]ψN = 0, (2.54)

which will also be derived in Sect. 2.8 in the context of relativistic corrections,
including the spin-orbit coupling. The name “Pauli equation” is associated
both with (2.54) and with the relativistic corrections (2.248) below.
Mathematically, the Laplacian ∆ = ∇2 = ∂2x + ∂

2
y + ∂

2
z is the square of

a 2 × 2 matrix, which is called ∇σ on the basis of the subsequent analysis.
In its standard form, ∂z appears in the diagonal:
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∇σ =

(
∂z ∂−
∂+ −∂z

)
, ∂± = ∂x ± i∂y. (2.55)

Other forms follow from transformations with unitary 2 × 2 matrices. By
matrix multiplication, one verifies the square:

(∇σ)2 =

(
∂z ∂−
∂+ −∂z

)(
∂z ∂−
∂+ −∂z

)
=

(
∂2z + ∂−∂+ ∂z∂− − ∂−∂z
∂+∂z − ∂z∂+ ∂+∂− + ∂

2
z

)
(2.56)

=

(
∇2 0
0 ∇2

)
= ∇2σ0. (2.57)

In Schrödinger’s (relativistic) free-particle equation (1.43) one now replaces
p2 by (pσ)2

[−h̄2∂20 − (pσ)
2 −m2c2]ψ = 0, (2.58)

and then p→ π = p− qA/c for an electron of charge q = −e:

[−h̄2∂20 − (πσ)
2 −m2c2]ψ = 0. (2.59)

This produces the desired new piece of the Zeeman operator,

(πσ)2 = π2 + h̄eBσ/c, Bσ =

(
Bz B−
B+ −Bz

)
, B± = Bx ± iBy. (2.60)

Taking again Bx = By = 0, the new operator has the eigenvalues ±h̄eB/c =
2msh̄eB/c as required by the “normal” Zeeman effect (2.46). It arises from
the replacement of p−p+ by π−π+ (π± = πx ± iπy) in one diagonal element
(according to (2.56)) and of p+p− by π+π− in the other one. The quadratic
terms are equal in both products and produce the part π2x + π

2
y of π

2. The
mixed terms agree only in their anticommutators; π−π+ contains the combi-
nation

(∂x−i∂y)(Ax+iAy)+(Ax+iAy)(∂x−i∂y) = {∂x, Ax}+{∂y, Ay}+iBz, (2.61)

with Bz = [∂x, Ay]− [∂y, Ax]. π+π− has a change of sign in its commutator
part, and thus Bz replaced by −Bz.
For bound states, the approximation E(0) ≈ mc2 implicit in the use of the

Bohr magneton (1.92) in (2.46) is consisitent with additional nonrelativistic
approximations, to be discussed in Sect. 2.8. For V = 0, on the other hand, the
exact validity of (2.59) shows that the relativistic Landau levels of electrons
are obtained from the spinless Landau levels by the replacement E2/c2 −
π2 −→ E2/c2−π2− h̄eσB. Consequently, they have simply the eigenvalues
2h̄emsB/c of this operator added to the spinless E

2-levels, which is precisely
the statement of (2.47) in the approximation gfree = 2.
The raising and lowering matrices σ± are somewhat simpler than the

Pauli matrices:
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σ+ =
1
2 (σx + iσy) =

(
0 1
0 0

)
, σ− =

1
2 (σx − iσy) =

(
0 0
1 0

)
. (2.62)

The matrix Bσ of (2.60) is decomposed into Pauli matrices as follows:

Bσ = Bzσz +B−σ+ +B+σ− = Bzσz +Bxσx +Byσy. (2.63)

This smells rotational invariance: One might argue that B is a vector, σ is
a vector, so Bσ is a scalar. The argument is not quite correct, however, as
the Pauli matrices are fixed standard matrices. Rather, the spinor ψ (2.49) on
whichBσ acts must be transformed under rotations such that ψ†σψ becomes
a vector, with ψ† defined below. We use again the simplest form of a rotation,
namely (2.3) which leaves the z-component invariant. The rotation of a vector
field B(r) is complicated by the fact that its arguments r = (x, y, z) must
also be rotated:

B′z(r
′) = Bz(r), B

′
±(r

′) = B±(r)e
±iα. (2.64)

To simplify the notation, we assume again that B remains constant over
atomic dimensions, and suppress its arguments. The scalar product of two
spinors ψa and ψb is written as ψ

†
bψa; it implies a summation over the spinor

components. For ψb = ψa = ψ,

ψ† = (ψ∗+, ψ
∗
−), ψ

†ψ = ψ∗+ψ+ + ψ
∗
−ψ−. (2.65)

This combination is invariant under transformations by 2×2 unitary matrices,
U† = U−1:

ψ′ = Uψ, ψ′† = ψ†U†, ψ′†ψ′ = ψ†ψ. (2.66)

It was mentioned at the end of Sect. 1.9 that rotations of the functions Y ml
are represented by unitary matrices, see (1.276). If the combination ψ†σzψ is
to transform like the z-component of a vector, the matrix Uz(α) for a rotation
about the z-axis must commute with σz in order to keep ψ

′†σzψ
′ = ψ†σzψ.

And as a multiple eiα0 of the unit matrix is excluded by definition, the only
matrix available for U is σz:

Uz(α) = e
−iαsσz =

(
e−iαs 0
0 eiαs

)
. (2.67)

All 2× 2 matrices of this type have automatically determinant +1, they are
therefore SU2 matrices in the sense of (1.277). A factor s will be necessary
in order to also have ψ†σ±ψ transformed like the ±-components of a vector:

ψ′†σ±ψ
′ = ψ†U†zσ±Uzψ = ψ

†σ±e
±iαψ. (2.68)

We now study the full operator σB (2.60); its rotated version is

B′σ =

(
Bz B−e

−iα

B+e
iα Bz

)
. (2.69)
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In order to get ψ†U†B′σUψ = ψ†Bσψ, one needs

B′σU = UBσ. (2.70)

This requires s = 1/2 in (2.67): By matrix multiplication, one verifies

B′σUz =

(
Bz B−e

−iα

B+e
iα −Bz

)(
e−iα/2 0
0 eiα/2

)
, (2.71)

B′σUz =

(
e−iα/2 0
0 eiα/2

)(
Bz B−
B+ −Bz

)
. (2.72)

The factor s = 1/2 is called the electron spin for the following reason: The
Pauli matrices have the commutators

[σx, σy] = 2iσz, [σy, σz] = 2iσx, [σz, σx] = 2iσy (2.73)

according to (2.52). Therefore, the “spin” operators s = 1
2σ satisfy the com-

mutator algebra (1.229) of the angular momentum operators l̂. This restricts
the possible eigenvalues s(s + 1) and ms of s

2 and sz, and from s =
1
2σ

and σ2x = σ
2
y = σ

2
z = 1 one finds s

2 = 3/4, ergo s = 1/2. One says that
“SU2 -matrices form a two-dimensional representation of the rotation group”.
Strictly, only the inverse is true, because a rotation by 2π is identical with
the unit operator. For the electron spinor, on the other hand, insertion of
s = 1/2 and α = 2π into (2.67) gives

ψe(α = 360
◦) =

(
e−iπ 0
0 eiπ

)
ψe(α = 0) = −ψe. (2.74)

The group SU2 gains additional importance as a subgroup of SL2(C), of
which the 4× 4 Lorentz transformations Λ of Sect. 2.1 form a representation.
This may justify the somewhat pedantic style of this section.
A general rotation may be characterized by a rotation axis α̂ and a rota-

tion angle α in the form of a rotation vector α = αα̂:

ψ′(α) = e−iαSψ. (2.75)

This form of the rotation applies in fact to particles of arbitrary spin s, where
S is a vector of (2s+1)(2s+1) matrices that satisfy the angular momentum
algebra, for example the matrices (1.262) for s = 1.
The two pieces π2 and (h̄e/c)Bσ of (πσ)2 are separately rotational in-

variant. They are also separately gauge invariant, as B = ∇ × A is not
affected by the gauge transformations (1.55). One may thus admit an arbi-
trary factor gfree/2 in front of Bσ. The precise operator in the Pauli equation
is in fact

(πσ)2 + (h̄e/c)κeBσ, κe = (gfree − 2)/2 = 0.00118 ≈ α/2π. (2.76)

Dirac was lucky that the “anomalous magnetic moment” κe is so small. The
proton has κp = 1.79, gp = 5.58.
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2.4 The Dirac Equation

While Pauli’s equation (2.59) is correct as long as A0 vanishes, its simplest
extension ih̄∂0 → π0,

[π02 − (πσ)2]ψ = m2c2ψ, π0 = ih̄∂0 − qA
0/c (2.77)

misses relativistic effects of A0. Today, the name “Pauli equation” is reserved
for the case where also (πσ)2 is treated nonrelativistically. In (1.67), the
π2/2m is then simply replaced by (πσ)2/2m. In the notation of nonrelativis-
tic quantum mechanics, the equation (2.54) reads

ih̄∂tψN = HPψN , HP = (πσ)
2/2m+ V. (2.78)

Relativistic corrections follow from the Dirac equation (Sect. 2.8). Those con-
taining A0 cannot be derived from (2.77), because the electric field

E = −∇A0 − ∂0A (2.79)

is missing. And as E and B are parts of the same tensor Fµν , (2.77) is
not Lorentz invariant. Pauli mentioned this problem in letters to Dirac at
Cambridge and Kramers at Copenhagen and urged them to solve it. When
Dirac published his solution in 1928, Kramers had apparently also solved the
problem, but in a rather different form. Looking at Dirac’s more impressive
form, Kramers was discouraged and published his own form much later (1933)
in an inappropriate periodical. This form was practically ignored but was
popularized 25 years later by Feynman and Gell-Mann (1958) in the context
of parity violation. Its quantum field version was elaborated by Brown (1958)
and Tonin (1959) and is today used in higher-order perturbative expansions
(Chalmers and Siegel 1999). Here we first present the Kramers form, since it
requires only Pauli matrices, and its proof of Lorentz invariance is a trivial
modification of the proof of rotational invariance of the last section.
Kramers remembered the formula a2− b2 = (a+ b)(a− b) for commuting

operators a and b. When he made this replacement in the incorrect equation
(2.77) with the noncommuting operators a = π0, b = πσ,

(π0 + πσ)(π0 − πσ)ψr = m
2c2ψr, (2.80)

the commutator produced the missing E:

[πσ, π0] = σ([ih̄∇, qA0/c]− [qA/c, ih̄∂0]) = −iqh̄σE/c. (2.81)

For the electron, with q = −e, the explicit form of (2.80) is thus

[πµπ
µ − h̄eσ(B − iE)/c]ψr = m

2c2ψr. (2.82)

The correct equation thus contains both B and E, but the proof of Lorentz
invariance is easier in the form (2.80) with the factorizing operator. The
formalism is further simplified by an auxiliary spinor ψl:
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ψl = (mc)
−1(π0 − πσ)ψr. (2.83)

With this definition, (2.80) assumes the form of two coupled linear equations:

(π0 − πσ)ψr = mcψl,

(π0 + πσ)ψl = mcψr.
(2.84)

Kramers could equally well have used the opposite order of factors in (2.80),
which changes the sign of the commutator:

(π0 − πσ)(π0 + πσ)ψl = m
2c2ψl. (2.85)

The two spinors that satisfy (2.80) and (2.85) are unequal; they are dis-
tinguished here by the indices r = “righthanded” and l = “lefthanded”.
Elimination of one of the two spinors from the linear equations produces the
quadratic equation for the other one.
The operatorM = iσE of (2.82) is anti-Hermitian,M† = −M . Moreover,

it apparently destroys the invariance of the equation under the parity trans-
formation r → −r. The 4-potential Aµ transforms under parity as follows:

A0′(r′) = A0(r), A′(r′) = −A(r). r′ = −r. (2.86)

The substitution r′ = −r is the space inversion (2.7). Vectors that change
sign under parity are called “polar”, vectors that don’t are called “axial”.
Both A and E (2.79) are polar, while B =∇×A is axial. Thus the parity
transform of σ(B− iE) is σ(B+ iE), which is also the Hermitian conjugate.
Perhaps these unexpected complications confused Kramers. Dirac (1928)

postulated a wave equation of the Hamiltonian type,

ih̄∂0ψD =
1

c
HDψD,

1

c
HD =

V

c
+ πα+mcβ, (2.87)

with V = −eA0. He then found out that α and β had to be 4 × 4 matri-
ces. Unlike the Pauli matrices, the Dirac matrices are used in two different
standard forms. The form for (2.84) is called the chiral basis,

ψch =

(
ψr
ψl

)
, αch =

(
σ 0
0 −σ

)
, βch =

(
0 σ0

σ0 0

)
. (2.88)

Insertion of these matrices reproduces precisely the pair of first-order equa-
tions that follows from the second-order Kramers equation (2.80). The Dirac
matrices are Hermitian. The operator π = −ih̄∇ + eA/c is a polar vector,
π′(r′) = −π(r). The parity transformation exchanges π0−πσ with π0+πσ,
which must be compensated by an exchange of ψr and ψl. Without the Dirac
form, the parity transformation of (2.84) is

ψ′r(r
′) = ψl(r), ψ

′
l(r
′) = ψr(r). (2.89)



68 2 Lorentz, Pauli and Dirac

For the four-component Dirac spinor ψD, the same transformation is

ψ′D(r
′) = γ0ψD(r), γ

0 = β. (2.90)

The second standard form uses the “parity basis”, in which β is diagonal, see
(2.151) below, where σ0 = 1 is used. Unfortunately, Dirac concluded from his
postulate that the relativistic Schrödinger equation must be wrong. In the
context of quantum field theory, the equation was rehabilitated for spinless
particles by Pauli and Weisskopf (1934). Instead of the abbreviation “KG-
equation” used in this book, “SKGPW-equation” would be more correct.
Parity will be discussed more explicitly in Sect. 2.6. In the absence of the

Kramers equation, emphasis was put on the 4× 4 form of Dirac matrices. It
is frequently easier to express α in terms of the Pauli matrices,

α = γ5σ, γ5ch =

(
σ0 0
0 −σ0

)
. (2.91)

ψr and ψl are eigenspinors of the “chirality matrix” γ
5, with chiralities +1

and −1, respectively. The Dirac equation reads now

(π0 − γ5πσ)ψD = mcβψD. (2.92)

Contrary to parity, proper Lorentz transformations are diagonal in the
chiral basis. The transformations were found by Weyl (1929) and Van der
Waerden (1929). The chiral components ψr and ψl are also called Weyl or
Van der Waerden spinors. In that context, ψl ≡ ψ̇ is called a dotted spinor,
ψr ≡ ψ an undotted one.
As explained in Sect. 2.1, the Lorentz transformation of x0+ = x

0 + z and
x0− = x

0 − z is obtained from the rotation of x+ = −x− iy and x− = x− iy
by replacing the iα in the exponent of x′± = e

±iαx± by a new parameter η,
which is real. The same substitutions apply to the spinor transformations
(2.67). Dropping the i converts the matrix from unitary to Hermitian. Since
its determinant continues to be 1, the matrix is now called SH:

ψ′r = SHψr, SH = e
−ησz/2 =

(
e−η/2 0
0 eη/2

)
. (2.93)

The matrix Bσ (2.60) which was used in the proof of rotational invariance
is replaced by

πµσ
µ =

(
π0− π+
π− π

0
+

)
, π0± = π

0 ± πz, π± = πx ± iπy. (2.94)

A Lorentz transformation along the z-axis,

π0±
′ = e±ηπ0±, π

′
± = π± (2.95)

leads now to
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π′µσ
µSH = (SH)−1πµσ

µ. (2.96)

The explicit proof is analogous to (2.71), with B′σ replaced by π′µσ
µ. Thus

ψ†rπµσ
µψr is Lorentz invariant as anticipated by the notation, but ψ

†
rψr is

not. Instead, it is transformed like the zero-component of a 4-vector,

ψ†r
′ψ′r = ψ

†
r(SH)

2ψr = ψ
†
r

(
e−η 0
0 eη

)
ψr (2.97)

= ψ†rψr cosh η − ψ
†
rσzψr sinh η. (2.98)

The group of complex 2 × 2 matrices is called L2(C), its unimodular
subgroup (which comprises the matrices with det(L2(C)) = 1) is SL2(C).
Any such matrix may be decomposed into a matrix SU and a matrix SH:

SL2(C) = SH2 ⊗ SU2. (2.99)

It has already been mentioned that a Lorentz transformation matrix Λ may
be decomposed into a rotation matrix ΛR (2.2) and a proper Lorentz trans-
formation Λpr, Λ = ΛRΛpr. Consequently, the group of real 4 × 4 Lorentz
transformations represents the group SL2(C). It is presently speculated that
the ultimate “theory of everything” could have more space-time dimensions
than 3 + 1. From the point of view of relativistic quantum theory, it should
be more promising to try to extend SL2(C).
The phase between ψl and ψr in (2.84) is a matter of definition: a factor

eiα in front of mcψl would be compensated by a factor e
−iα in front of mcψr

in the second equation. Similarly, m2 in the Kramers equation (2.82) may
be taken as the product of a lefthanded mass ml that multiplies cψl and
a righthanded mass mr that multiplies cψr in the second equation:

m2 = mlmr, (π
0 − πσ)ψr = mlcψl, (π

0 + πσ)ψl = mrcψr. (2.100)

The corresponding Dirac version is

(π0 − γ5πσ)ψD = mcβsimψD, βsim,ch =

(
0 (ml/mr)

1/2

(mr/ml)
1/2 0

)
.

(2.101)
The basis-independent form of βsim is

βsim = β[mr +ml + (mr −ml)γ
5]/2m. (2.102)

βsim is a simple example of a new matrix in the “proper Dirac” space, which
is spanned by the three matrices γ5, β and γ5β. To profit from the analogy
with the Pauli matrices σ, we now settle on one standard vector of 2 × 2
Dirac matrices in analogy with (2.51), β = (βx, βy, βz). For reasons that
will become clear later, the parity basis (2.151) below is preferred to the
chiral basis, β = βpa,
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β = βz =

(
1 0
0 −1

)
, γ5 = βx =

(
0 1
1 0

)
, iγ5β = βy =

(
0 −i
i 0

)
. (2.103)

σ and β reduce the algebra of the 15+1 4 × 4 Dirac matrices to two inde-
pendent Pauli algebras. For example, the anticommutator of γ5 and β = γ0

which is normally written as

γ5γ0 + γ0γ5 = 0 (2.104)

follows from
βxβ + ββx = 0, (2.105)

as in the case (2.52) of the Pauli matrices. The above matrix βsim fulfills

β2sim = 1, βsimγ
5 = −γ5βsim, (2.106)

but it is not Hermitian. The transformation β → βsim is a similarity trans-
formation (Sect. 2.6). It is also the parity transformation matrix of the new
basis.
In the field equations of quantum electrodynamics as well as in the derived

many-electron equations, γ5 appears only in the combination γ5σ. It justifies
the abbreviation α = γ5σ, which is standard in the literature (a separate γ5

appears only in parity violation, see (2.321)). However, in order to reduce the
relativistic two-fermion problem to an effective one-body equation with a re-
duced mass, one must manipulate the two-fermion Dirac space independently
of the two-fermion spin space (Sects. 3.6 and 4.6). The separate algebras of
σ and β are then indispensable.
The Kramers equation shows that the sign of the mass has no physical

significance. As the Dirac equation is linear in m, it must have an alternative
form with m replaced by −m. The transformed ψD will be denoted by ψ5D:

ψ5D = γ
5ψD, (π

0 − γ5πσ)ψ5D = −mcβψ
5
D. (2.107)

This form is obtained from (2.92) by the substitution ψD = γ
5ψ5D and by

multiplication by γ5 from the left, using (2.104).
It may be noted that for Aµ = 0, the Kramers equation (2.82) becomes the

free KG equation (pµp
µ−m2c2)ψr = 0. In this case one need not reduce ψD to

two components: Writing (2.92) as (E−γ5pσ−mcγ0)ψD = 0, multiplication
by E + γ5pσ +mcγ0 gives

[E2 − (pσ)2 −m2c2]ψD = (E
2 − p2 −m2c2)ψD = 0. (2.108)

As classical mechanics uses Hamiltonian equations of motion, it was nat-
ural for Dirac to postulate an equation such as (2.87). In Chap. 3, we shall see
that Hamiltonian equations do in fact occur in quantum field theory, which
did not yet exist for electrons in 1928. However, equations for systems with
given numbers of massive particles are derived from the quantum field equa-
tions in complicated iterative procedures. These procedures leave little room
for separate postulates. Nevertheless, Dirac’s Hamiltonian form remains use-
ful for equations with several electrons, see (3.87) and particularly (3.112).
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2.5 Addition of Angular Momenta

Setting π0 = (E − V )/c, π = p, the Kramers equation (2.80) becomes

[(E − V )/c+ σp][(E − V )/c− σp]ψr = m
2c2ψr. (2.109)

For a central potential, V (r) = V (r), one needs the vector of Pauli matrices
in polar components:

σ = σr(r̂ + iσ × r̂) = (r̂ − iσ × r̂)σr. (2.110)

By taking the scalar product of this equation with r̂, one finds its radial
component,

σr = σr̂ = σz cos θ + (σ+e
−iφ + σ−e

iφ) sin θ. (2.111)

The angular components are verified by taking the cross product with r,
using the rule a× (b× c) = b(ac)− c(ab):

r̂ × σ = iσrr̂ × (σ × r̂) = iσr(σ · 1− r̂σr) = i(σrσ − r̂), (2.112)

as σ2r = 1. This is the same as (2.110) multiplied by σr, again using σ
2
r = 1.

The operator σp follows from (2.110) as

σp = −ih̄σr(∂r − σl̂/r) = −ih̄(∂r + σl̂/r)σr, (2.113)

with l̂ = r × p/h̄. The product of these two forms shows (σp)2 = p2. In
matrix form,

σr =

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
, σl̂ =

(
l̂z l̂−
l̂+ −l̂z

)
. (2.114)

Neither of these matrices commutes with l̂. For example, from (1.231) one
finds

[l̂z, l̂σ] = −σ+ l̂− + σ− l̂+. (2.115)

On the other hand, using the corresponding commutators of the Pauli ma-
trices,

1
2 [σz, σ±] = ±σ±, (2.116)

1
2 [σz, l̂σ] = σ+ l̂− − σ− l̂+. (2.117)

This is just the opposite of (2.115), such that the sum of these two commu-
tators vanishes. Similarly, one finds [−i∂φ + σz/2, σr] = 0. One defines the
total angular momentum j as follows:

j ≡ l̂+ σ/2, [j, l̂σ] = 0, [j, σr] = 0. (2.118)
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(In nonrelativistic quantum mechanics, l + s = h̄(l̂ + σ/2) is called j. The
definition (2.118) gives the opportunity to get rid of h̄ in the angular momen-
tum algebra without formally setting h̄ = 1). The commutators of j folow
from those of its components:

[jz, j±] = ±j±, [j+, j−] = 2jz. (2.119)

They imply [j2, j] = 0 and the eigenvalues j(j + 1) of j2 and mj of jz.
−j ≤ mj ≤ +j. These eigenvalues explain the multiplet structure in the
anomalous Zeeman splitting mentioned in Sect. 2.3. As l2 commutes with
each component of l, it commutes also with lσ. Already the total number of
states led us to conclude that j assumes the two values l±1/2. The eigenvalues
of l̂σ follow then by squaring (2.118):

l̂σ = j2 − l̂ 2 − σ2/4 = j(j + 1)− l(l + 1)− 3/4. (2.120)

A slightly more convenient operator is l̂σ + 1; by inserting the two possible
values of j, one verifies

l̂σ + 1 = (j − l)(2j + 1). (2.121)

In the Dirac equation, it is j that is conserved and fixed, while l assumes the
two values j ± 1/2. What is commonly called the electron’s orbital angular
momentum (= 0 for s-states, 1 for p-states etc) is the dominant value, see
the next section.
For later applications, the general method of constructing eigenstates

|j(j1j2)m〉 from the product states |j1m1〉|j2m2〉 of two commuting angular
momenta, j = j1 + j2 will be explained. The ji are kept fixed (our example
has j1 = l, j2 = s = 1/2) and will be supressed, |j(j1j2)m〉 = |jm〉. The
quantum number m2 could also be supressed, as it is m −m1. This follows
from

jz|jm〉 = m|jm〉 = (jz1 + jz2)|j1m1〉|j2m2〉 = (m1 +m2)|j1m1〉|j2m2〉.
(2.122)

The new states |jm〉 are expressed in terms of the product states as follows:

|jm〉 =
∑
m1

(m1m2|jm)|j1m1〉|j2m2〉. (2.123)

The coefficients (m1m2|jm) are Clebsch-Gordan (CG) coefficients; they are
normally written in more detail, for example as (j1j2m1m2|j1j2jm). In the
case at hand, m1 assumes only the values m ±

1
2 , as m2 = ms is either +

1
2

or −12 . With the |j2m2〉 = χ(m2) given by (2.49) and |j1m1〉 = Y
m
l (θ, φ), we

obtain the “spinor spherical harmonics”

|jm〉 =

(
(m− 1/2, 1/2|jm)Y m−1/2l

(m+ 1/2,−1/2|jm)Y m+1/2l

)
≡ χjml (θ, φ). (2.124)
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The construction of (m1m2|jm) starts from the “stretched configuration”,
m1 = m1max = j1, m2 = m2max = j2, m = mmax = j1 + j2 = jmax.
The single value m = j1 + j2 fixes both mi at their maximal values ji, the
summation in (2.123) reduces to a single term, and from the normalization
of |jm〉 one has

(j1j2|jmax, j1 + j2) = 1. (2.125)

At the same time, this fixes the phases of all |jmax,m〉, as the states with
lowerm-values are generated by the lowering operator j− = jx−ijy analogous
to (1.230). According to (1.232), the lowering operator produces the state

|j,m−1〉 with a proportionality constant n1/2− , where the value of n− follows
from (1.236), with λ = j(j + 1):

j−|jm〉 = n
1/2
− |j,m− 1〉, n− = j(j + 1)−m(m− 1) = (j +m)(j −m+ 1).

(2.126)
Applying j− to (2.123) and using j− = j1− + j2− on its right side, one gets

n
1/2
− |j,m−1〉 =

∑
m1

(m1m2|jm)[n
1/2
1− |j1,m1−1〉|j2m2〉+n

1/2
2− |j1m1〉|j2,m2−1〉].

Starting now from (2.125), one obtains all CG-coefficients for j = jmax from
the recurrence relation

n
1/2
− (m1m2|j,m− 1) = (j1(j1 + 1)−m1(m1 + 1))

1/2(m1 + 1,m2|jm)
+(j2(j2 + 1)−m2(m2 + 1))1/2(m1,m2 + 1|jm)

.

(2.127)
The relation applies in fact to all j provided one knows the state |j, j〉 also
for j < jmax. This state can be determined from orthogonality requirements.
For example, application of j− to the stretched configuration gives

j1/2max|jmax, j1+ j2− 1〉 = j
1/2
1 |j1, j1− 1〉|j2j2〉+ j

1/2
2 |j1j1〉|j2, j2− 1〉. (2.128)

Apart from an overall sign, the orthogonal combination with the same value
of m1 +m2 is

j1/2max|jmax − 1, j1 + j2 − 1〉 = −j
1/2
2 |j1, j1 − 1〉|j2j2〉+ j

1/2
1 |j1j1〉|j2, j2 − 1〉

(2.129)
(remember the orthonormality of the states on the right-hand side,
〈j1m1|〈j2m2|j1m′1〉|j2m

′
2〉 = δm′1m1δm′2m2). One may of course also check di-

rectly that this is an eigenstate of j2. The overall sign was fixed by Clebsch
and Gordan such that the coefficient of |j1j1〉 is positive. Unfortumately, this
depends on which of the two angular momenta is called j1. The asymmetry
is removed in Wigner’s 3j-symbol(

j1 j2 j3
m1 m2 m3

)
=
(−1)j1−j2−m3

(2j3 + 1)1/2
(m1m2|j3,−m3), m1 +m2 +m3 = 0.

(2.130)
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j= 5
2
j= 3

2

j=3
j=2

j=1

5× 2 = 6 + 4 5× 3 = 7 + 5 + 3

Fig. 2.1. Decomposition of |2,m1〉|1/2,m2〉 and |2,m1〉|1,m2〉 into |j,m〉

It is in fact totally symmetric under permutations of its three columns. For
the coupling of three angular momenta, see for example Weissbluth (1978).
For j2 = 1/2, jmax − 1 = j1 − 1/2 is already the minimal value of j. For

j2 > 1/2, a third state appears at jmax − 2, which must be orthogonalized
with respect to the two arising from the action of j−. The resulting multiplet
structure for j1 = 2, j2 = 1 is included in Fig. 2.1; the general CG-coefficients
for j2 = 1 are given in Table 2.1.
Returning to the present spinor case, one gets from (2.127) for fixed j1 = l,

(m− 12 ,
1
2 |l ±

1
2 ,m) = ±[(l ±m+

1
2 )/(2l + 1)]

1/2,

(m+ 12 ,−
1
2 |l ±

1
2 ,m) = [(l ∓m+

1
2 )/(2l + 1)]

1/2, (2.131)

χjm
j−
1
2

=
1
√
2j

⎛⎝(j +m)12Y m−1/2j−1/2

(j −m)
1
2Y
m+1/2
j−1/2

⎞⎠ ,
χjm
j+
1
2

=
1

√
2j + 2

⎛⎝−(j + 1−m)12Y m−1/2j+1/2

(j + 1 +m)
1
2Y
m+1/2
j+1/2

⎞⎠ . (2.132)

As the Y
m±1/2
l are normalized according to (1.186) and the transformation

(2.124) is unitary, the χjml are automatically orthonormal:

∫ dΩχj
′m′†
l′ χjml = δl′lδj′jδm′m. (2.133)

Table 2.1. The CG-coefficients (m1m2|jm) for j2 = 1 and m2 = +1 (left column),
m2 = 0 (middle), and m2 = −1 (right).

j = j1 + 1 :
(
(j1+m)(j1+m+1)
(2j1+1)(2j1+2)

) 1
2

(
(j1+1)

2−m2

(2j1+1)(j1+1)

) 1
2

(
(j1−m)(j1−m+1)
(2j1+1)(2j1+2)

) 1
2

j = j1 : −
(
(j1+m)(j1−m+1)

2j1(j1+1)

) 1
2

m[j1(j1 + 1)]
−
1
2

(
(j1−m)(j1+m+1)

2j1(j1+1)

) 1
2

j = j1 + 1 :
(
(j1−m)(j1−m+1)
2j1(2j1+1)

) 1
2

−
(
j21−m

2

j1(2j1+1)

) 1
2

(
(j1+m+1)(j1+m)
2j1(2j1+1)

) 1
2
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How does σr (2.111) act in this basis? Being pseudoscalar, it changes the
parity of the state, at fixed j. It transforms χjml into χjm

l̃
, where l̃ = 2j − l

is the other possible l-value. Moreover, σ2r = 1 implies σrχ
jm
l = ±χ

jm

l̃
. Un-

fortunately, our choice j1 = l, j2 = 1/2 implies the minus sign:

σrχ
jm
l = −χ

jm

l̃
, l̃ = 2j − l. (2.134)

2.6 Hydrogen Atom and Parity Basis

The hydrogenic energy levels for an idealized, pointlike and infinitely heavy
nucleus follow from the Dirac equation with the potential V = −Ze2/r =
−h̄cαZ/r (αZ = Zα). Their lowering from the nonrelativistic value EN (n, l)
is indicated in Fig. 2.2. Note the degeneracy of the levels l = j − 1/2 and l =
j+1/2 for all values of the principal quantum number n except n = j+1/2,
where the level with l = j + 1/2 = n does not exist.
The levels are most easily calculated with the Kramers equation (2.109).

Setting E2/c2 −m2c2 = h̄2k2 as usual and dividing by h̄2,

(k2 + 2EαZ/h̄cr + α
2
Z/r

2 +∇2 + i[σ∇, V/h̄c])ψr = 0. (2.135)

According to (2.113), one has

[σ∇, V ] = σr[∂r, V ] = σrV
′, [σ∇,−αZ/r] = σrαZ/r

2. (2.136)

This last operator is absent in the KG equation. It connects states of differ-
ent l according to (2.134), such that a suitable ansatz for ψr requires both
l-values:

ψr+(r) = R+(χ
jm
j+1/2 + iβ̂χ

jm
j−1/2), ψr−(r) = R−(−iβ̂χ

jm
j+1/2 + χ

jm
j−1/2).

(2.137)

The terms proportional to β̂ (see below) are the relativistic corrections with
the “wrong” l-value. Writing the two χ-components of ψr+ and ψr− on top
of each other and decomposing ∇2 = (∂r + 1/r)2 − l̂2/r2 as usual, one sees
that (2.135) contains two 2× 2 matrices acting on these components:

χ =

(
χjm
j+1/2

χjm
j−1/2

)
, l̂ 2 =

(
(j + 12 )(j +

3
2 ) 0

0 j2 − 14

)
, iσr =

(
0 −i
−i 0

)
.

(2.138)
The elements of l̂2 are the familiar l(l + 1), those of iσr follow from (2.134).
In (2.135), both matrices are multiplied by r−2, such that their sum can be
diagonalized independently of r. The diagonalization is simplified if one first
subtracts from l̂2 a multiple of the unit matrix, such that the rest is traceless:

l̂2 = (j + 12 )
2 − (l̂σ + 1), (2.139)
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where l̂σ+1 has the values ±(j+1/2) in the diagonal, according to (2.121):

l̂σ + 1 + iαZσr =

(
−j+ −iαZ
−iαZ j+

)
, j+ ≡ j +

1
2 . (2.140)

The eigenvalues of this matrix follow from its square, which is a multiple of
the unit matrix:

(l̂σ + 1 + iαZσr)
2 = γ2, (2.141)

γ =
√
j2+ − α

2
Z =

√
(j + 12 )

2 − α2Z . (2.142)

The two eigenvalues are thus −γ and +γ, respectively. The other two r−2-
operators of (2.135), namely α2Z/r

2 and −(j + 1
2 )
2/r2 (which has been ex-

tracted from −l̂2/r2), combine into −γ2/r2, such that the two decoupled
equations arising from the diagonalization can be summarized as follows:

(k2 + 2EαZ/h̄cr + (∂r + 1/r)
2 − γ(γ ± 1)/r2)R± = 0. (2.143)

The expansion (2.146) below shows that β̂ is actually of the order αZ . The
substitution k = iκ, R = e−κrv as in (1.100) produces again the radial
KG-equation (1.112), for

lα+ = γ lα− = γ − 1. (2.144)

Its solutions (1.124), effective principal quantum numbers nβ = n − β, and
eigenvalues E (1.129) remain valid, only the quantum defect βl is replaced
by j + 1/2− γ, according to (2.144):

R± = N±e
−z/2zlα±F (−nr, 2lα± + 2, z) z = 2κr, lα± = l − βj , (2.145)

βj ≡ β = j + 1/2− γ = α
2
Z/(2j + 1) + α

4
Z/(2j + 1)

3 . . . . (2.146)

The expansion differs from the spinless case (1.134) only by the replacement
l→ j; insertion of (1.132) and (1.135) into (1.131) gives

EN/mc
2 = −12α

2
Z/n

2(1 + 2β/n− 34α
2
Z/n

2 + 3β2/n2 − 34α
2
Zβ/n

3 + 58α
4
Z/n

4

(2.147)
+4β3/n3 − 152 α

2
Zβ
2/n4 + 154 α

4
Zβ/n

5 + 3564α
6
Z/n

6). (2.148)

The four terms in (2.148) are of the order α8Z . Finally, inserting the expansion
(2.146) for βj , one obtains to order α

6
Z ,

EN (j)

mc2
= −

α2Z
2n2

[
1 +
2α2Z/n

2j + 1
−
3α2Z
4n2

+
α4Z/n

(2j + 1)3
+
5α4Z
8n4

+
3α4Z(n− 2j − 1)

n3(2j + 1)2

]
.

(2.149)
The KG-energies have j replaced by l. The smallest j-value has (2j+1) = 2,
the smallest l-value has (2l+1) = 1. To order α4Z , averaging over j at fixed l
(with the weight (2j + 1)/2(2l+ 1) corresponding to the multiplicity 2j + 1)
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3s 1
2

3p 1
2

3p 3
2

3d 3
2

3d 5
2

Fig. 2.2. Lowering of the hydrogen energy levels from the nonrelativistic value
(upper dotted line) for n = 3

produces the spinless KG energies. In a perturbative treatment of spin, this
is due to the vanishing traces of the Pauli matrices.
The wave functions for lα+ and lα− are quite different. The condition

a = −nr that the confluent hypergeometric function F (a, b, z) reduces to
a polynomial refers to nr, not to nβ = nr + lα + 1 which appears in the
energy formula. A fixed value of nβ means nr = nβ − γ for lα = γ, and
nr = nβ − γ + 1 for lα = γ − 1. In particular, for j = n − 1/2, the first
alternative is excluded by nr = −1, a = +1.
Unfortunately, the ansatz (2.137) for ψr leads to parity eigenstates only

for j = n− 1/2, which limits its use, for example in perturbation theory. In
terms of ψr alone, the parity transformation (2.89) reads

ψ′r(r
′) = (mc)−1(π0 − σπ)ψr(r) (2.150)

according to (2.84). The ansatz (2.137) ignores this. The fact that a parity-
invariant equation has solutions that are not parity eigenstates is not particu-
larly strange; it happens in the excited states of the nonrelativistic hydrogen
atom, and even plane waves are not parity eigenstates. What is embarrassing
is the fact that the representations of the basic group SL2(C) are constrained
by (2.150) in their parity eigenstates. In the 4-component Dirac formulation,
this implies that γ5 and γ0 (2.91) do not commute. The appropriate ba-
sis for parity eigenstates has γ0 diagonal. It is frequently called “Dirac” or
“low-energy” basis; the name “parity basis” seems more appropriate:

ψpa =
1
√
2

(
ψr + ψl
ψr − ψl

)
≡

(
ψg
ψf

)
, γ5pa =

(
0 1
1 0

)
, βpa =

(
1 0
0 −1

)
.

(2.151)
The index g stands for great or large, f for small. The small components van-
ish for σπ → 0. Parity eigenstates require two different radial wave functions
g(r) and f(r), but they have only one l-value in ψg (see (1.109)) and only

the other one (denonted by l̃ in the following) in ψf :

ψg = g(r)χ
jm
l (θ, φ), ψf = −if(r)χ

jm

l̃
(θ, φ). l̃ ≡ 2j − l. (2.152)

The factor −i compensates the i in the coupled radial equations below. Evi-
dently, ψpa has parity (−1)l, which derives from Y ml in the large components.
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The opposite parity of Y m
l̃
in the small components is compensated by the

eigenvalue −1 of γ0. This allows one to define the “orbital angular momen-
tum” l of an electron in a representation-independent way: For fixed j, the
parity (−1)l determines l.
With αpa = γ

5
paσ, the Dirac equation (2.87) assumes the form

π0−ψg = σπψf , π
0
+ψf = σπψg, π

0
± = π

0 ±mc. (2.153)

The hydrogen atom has σπ = σp given by (2.113). When l̂σ+1 acts on χjml ,
its eigenvalue is called −κD (D for Dirac, to avoid confusion with κ = −ik).
The other eigenvalue is then +κD according to (2.121):

(l̂σ + 1)χjml = −κDχ
jm
l , κD = (l − j)(2j + 1),

π0−g = h̄(∂r + 1/r − κD/r)f, π
0
+f = −h̄(∂r + 1/r + κD/r)g. (2.154)

The corresponding ansatz for ψr requires also two radial functions, say R+
and R− in (2.137), but the resulting coupled radial equations are second-order
instead of first-order.
Before proceeding, it is convenient to separate a factor r−1 from g and f ,

g = ug/r, f = uf/r, (∂r + r
−1)r−1 = r−1∂r. (2.155)

This substitution is always practical in spherical coordinates; in the Laplacian
it replaces (∂r+r

−1)2 by ∂2r , see (1.10). It removes a factor r
2 from the volume

element d3r = r2drdΩ, such that i∂r becomes Hermitian, for example

∫ r2drgf = ∫ druguf , ∫ drug(i∂r)uf = ∫ druf (−i∂r)ug. (2.156)

The equations for ug and uf are

π0−ug = h̄(∂r − κD/r)uf , π
0
+uf = −h̄(∂r + κD/r)ug. (2.157)

It is possible to relate ug and uf to a single function u such that both equa-
tions for u become identical. The ansatz

ug = [aπ
0
+ + bh̄(∂r − κD/r)]u, uf = [bπ

0
− − ah̄(∂r + κD/r)]u (2.158)

with free parameters a and b produces

[π0+π
0
−/h̄

2 + ∂2r − κD(κD ± 1)/r
2 ± (b/a)±1αZ/r

2]u = 0. (2.159)

These two equations become identical for −κD+αZb/a = κD−αZa/b, which
determines b/a as

b/a = κD/αZ ∓ (κ
2
D/α

2
Z − 1)

1/2 = (κD ∓ γ)/αZ . (2.160)

With this expression, the r−2-terms of (2.159) combine into −γ2∓γ, and the
equation becomes again (2.143), with R = u/r. Also, insertion of b/a into
(2.158) gives
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ug = a[π
0
+ + (h̄/αZ)(κD ∓ γ)(∂r − κD/r)]u, (2.161)

uf = b[π
0
− − (h̄/αZ)(κD ± γ)(∂r + κD/r)]u. (2.162)

The second expression has been transformed using (b/a)−1 = αZ/(κD∓γ) =
(κD ± γ)/αZ . The signs in front of γ must be chosen such that κD ± γ is of
the order of α2Z .
Also these equations are greatly simplified for nr = 0, κD = −n. With

F (nr = 0) = 1, lα = γ − 1, (1.124) gives

u(nr = 0) = rR = Ne
−κr(2κr)γ(2κ)−1, γ = (n2 − α2Z)

1/2. (2.163)

The value of κ follows from (1.129), but now with nβ = n − βj ≈
n− α2Z/(2j + 1):

κ =
mcαZ
h̄nβ

(
1 +
α2Z
n2β

)−1/2
≈
mcαZ
h̄n

[
1 +
α2Z
2n

(
1

j + 12
−
1

n

)]
. (2.164)

For n = j + 12 , the last bracket vanishes,

κ(nr = 0) = αZmc/h̄n ≡ κnr. (2.165)

Surprisingly, this is also the exact result, as insertion of n2β = γ
2 into (1.129)

shows. It happens to be the nonrelativistic expression (1.39), which appears
in (1.38) for all nr: EN = −h̄

2κ2n/2m. Insertion of u into (2.161) and (2.162)
leads to the replacement ∂r → γ/r − κn. With (h̄/αZ)(−n+ γ)[(γ + n)/r −
αZmc/h̄n] = −h̄αZ/r −mc(γ/n − 1) and E/c = [m2c2 − κ2n]

1/2 = mcγ/n,
the equation for ug is reduced to

ug = a[E/c+mc(2− γ/n)]u = 2mcau. (2.166)

The corresponding equation for uf follows from (2.162) only up to a con-
stant factor, which remains open in the solutions of the two identical equa-
tions (2.159). The precise expression for uf follows instead from the original
(2.157), uf = −(E/c + mc + αZ/r)−1h̄(γ/r − κn − n/r)ug. It takes some
minutes to simplify this expression to

uf = α
−1
Z (n− γ)ug, (2.167)

the main tricks being the replacement of E/c +mc in the denominator by
mc(γ+n)/n and of γ+n by −α2Z/(γ−n). Otherwise, the only deviation from
the nonrelativistic uN is the replacement of r

l+1 by rγ . The main difference
resides in the spinor χjm

l̃
in ψf , which has l̃ = n. For example, the ground

state has
χ
1/2,m
0 = (4π)−1/2χ(m), (2.168)

χ
1/2,m
1 = 3−1/2[−(1−m+ 12 )

1/2Y
m−1/2
1 χ(12 )+ (1+m+

1
2 )
1/2Y

m+1/2
1 χ(−12 )].
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The elimination of the small components in a nonrelativistic expansion will
be discussed in Sect. 2.8.
We have seen in (2.156) that i∂r is Hermitian with respect to ug and

uf , not with respect to g and f . It may be instructive to consider a volume
element in a space of d dimensions, ddr = rd−1drdΩd−1. To make i∂r a Her-
mitian operator, a factor r(d−1)/2 must be absorbed by u and u† each. The
generalization of (2.155) is thus

g = r−(d−1)/2ug, f = r
−(d−1)/2uf ,

r−(d−1)/2∂r = [∂r + (d− 1)/2r]r
−(d−1)/2.

For this reason,

∆r,d = [∂r + (d− 1)/2r]
2 = ∂2r + (d− 1)r

−1∂r + (d/2− 3/2)(d/2− 1/2)r
−2

(2.169)
may be identified with the radial part of the Laplacian in d dimensions.
Rewriting the second factor in front of r−2 as (d/2− 3/2 + 1), one sees that
the choice d = 3+2l cancels the angular part −l(l+1)r−2 of the 3-dimensional
Laplacian. This trick has been discussed by Stillinger (1977) for the Coulomb
Schrödinger equation. Relativistically, l is replaced by lα, such that d is no
longer integer.
The KG and Dirac equations may also be transformed into a radial har-

monic oscillator in d = 4 + 4l dimensions, by the substitution r = s2 (see
for example Dineykhan et al. 1995). However, none of these substitutions has
produced practical progress yet.
Note that the 4 × 4 Dirac matrices α and γ0 are Hermitian, while the

2 × 2 matrix l̂σ + 1 + iαZσr (2.140) is not. As the energies of bound states
must be real, such non-Hermitian matrices in eigenvalue equations must have
a property that guarantees real eigenvalues. In Sects. 1.8 and 1.9 we learnt
that Hermitian matrices A (A = A†) have all eigenvalues real. In diagonal
form, Adiagψi = aiψi. We shall see now that the eigenvalues of any matrix
remain unchanged under a “similarity transformation” with a matrix V ,

Asim = V AdiagV
−1. (2.170)

With V −1V = 1, this follows from

AdiagV
−1V ψi = aiψi, V AdiagV

−1V ψi = aiV ψi. (2.171)

The eigenvalues are the solutions of the determinant equation, det(Asim−a) =
0, where a = a× 1 is a multiple of the unit matrix. Writing a = V aV −1, one
obtains

det[V (Adiag − a)V
−1] = det(Adiag − a) = 0, (2.172)

using det(V X) = det(V ) det(X) (setting a = ai, the diagonal matrix Adiag−
ai has only zeros in the ith row, which makes the determinant vanish).
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In nonrelativistic quantum mechanics, similarity transformations arise
from changes of an orthonormal basis in Hilbert space (Sect. 1.9), in which
case V is unitary (V = U, U−1 = U†), and Asim is Hermitian. In relativistic
quantum mechanics, non-unitary matrices V stem from the simultaneous use
of two function spaces, ψr and ψl in the present case. Here one may impose
V −1 = V ∗, getting for (2.140)

Asim =

(
−j+ −iαZ
−iαZ j+

)
= V

(
−γ 0
0 γ

)
V ∗, Adiag =

(
−γ 0
0 γ

)
, (2.173)

V =

√
γ + j+√
2γ

(
1 iαZ(γ + j+)

−1

−iαZ(γ + j+)−1 1

)
. (2.174)

For ψr± (2.137), the eigenstates of Adiag are now V ψr±. The value of β̂ follows
from (2.174) as

β̂ = (j + 12 − γ)/αZ = β/αZ . (2.175)

However, such constructions fail for potentials other than −αZ/r. In gen-
eral, the Kramers matrix element of an operator O follows from the orthog-
onality relations (2.207) below,

Ofi = ∫ ψ
†
l,fOψr,i. (2.176)

The resulting form of hermiticity is O∗fi = Oif . In the present example,
the transformation (2.170) is unnecessary. Group theory became popular in
quantum physics mainly after Wigner’s book (1959); the correct statement
that “observables may be represented by Hermitian matrices” has since been
shortened to “observables are represented by Hermitian matrices”. The coun-
terexample of the Kramers equation was avoided in the Dirac equation. In
Sect. 4.7, a normal, parity-invariant Dirac equation will be endowed with
a non-Hermitian hyperfine operator Asim which is necessary for positronium
(Sect. 5.2).
The replacement of the nonrelativistic “centrifugal barrier potential” l(l+

1)/r2 by the smaller γ(γ + 1)/r2 becomes particularly important for nuclei
of charge Ze, with Z 
 1, αZ → 1. For j = 1/2, γ becomes imaginary at
Z = 1/α ≈ 137. For pionic atoms, (l + 1

2 )
2 − α2Z becomes negative for l = 0

already at Z = 1/2α. For ordinary atoms, the nuclear charge radius keeps
V (r) finite at r = 0. The “leptonium” bound states such as e−µ+ have no
helpful charge radius, but they have Z = 1, so there is no problem. Problems
can arise when residual perturbations are approximated by operators that
fail for r → 0, see the next section.
Most operators of the quantum mechanical differential equations are ex-

pressed in terms of xµ, ∂µ, Pauli matrices σ etc. There are however several
discrete operators for the classification of symmetry properties of the wave
function. The parity transformation P was already defined in Sect. 1.5. One
may formally write Pr = −rP,

Pf(r, t) = f(−r, t), P2f = Pf(−r, t) = f(r, t). (2.177)
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Consequently, P2 = 1; the eigenvalues of P are +1 (even functions f) and −1
(odd ones). In this sense, it was said that the small components ψf (2.152)
have the opposite parity of the large ones. The quantum mechanical parity
transformation has an additional factor β, which is necessary to keep the
Dirac equation invariant under the transformation r → −r. Its connection
with the classical space inversion (2.7) is in fact not unique, see Sect. 3.2
below. In any case, the transformation PψD(r, t) = βψD(−r, t) fulfills also
P2 = 1. This property holds also for the operators C and T of Sect. 3.2, and for
the two-particle exchange operator P12 which is needed for the formulation of
the Pauli principle. The detailed quantum mechanical form of these operators
follows from the appropriate wave equations, not from the Lorentz group of
classical mechanics.

2.7 Alternative Form, Perturbations

The ansatz (2.161) for ug and uf leads to the radial solution R = u/r of the
Kramers equation, which is obtained from the solution of the KG-equation
simply by replacing l → j in the quantum defect β. However, this approach
seems to be restricted to the point Coulomb potential V = −Ze2/r. In the
presence of small additional operators, it is still possible to bring the radial
equations (2.157) into a form that admits the extraction of the asymptotic
factors e−z/2 and zlα+1 (z = 2κr). We rewrite (2.157) as

mc2 − cπ0

2h̄cκ
ug +

(
∂z −

κD
z

)
uf = 0,

mc2 + cπ0

2h̄cκ
uf +

(
∂z +

κD
z

)
ug = 0,

(2.178)
with cπ0 = E − V = E + Ze2/r = E + 2h̄cκαZ/z. Remembering h̄cκ =
(m2c4 −E2)1/2 = (mc2 +E)1/2(mc2 −E)1/2, one sees that the constants to
the left of ug combine into (mc

2−E)/h̄cκ = (mc2−E)1/2/(mc2+E)1/2. We
divide the equation by (mc2 −E)1/2 and define

(mc2)1/2(mc2 +E)−1/2ug ≡ ûg, (mc
2)1/2(mc2 −E)−1/2uf ≡ ûf . (2.179)

After expressing uf in terms of ûf also in the second equation (2.178), the
square roots disappear again:(

1
2 −
αZ
z

mc2 +E

h̄cκ

)
ûg +

(
∂z −

κD
z

)
ûf = 0, (2.180)

(
1
2 +
αZ
z

mc2 −E

h̄cκ

)
ûf +

(
∂z +

κD
z

)
ûg = 0. (2.181)

Next, we substitute

ûg = u+ + u−, ûf = u+ − u−. (2.182)
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From the sum and difference of (2.180) and (2.181), one obtains

(12−nβ/z−∂z)u− = z
−1(mβ+κD)u+, (

1
2−nβ/z+∂z)u+ = z

−1(mβ−κD)u−,
(2.183)

nβ = αZE/h̄cκ, mβ = αZmc
2/h̄cκ, m2β − n

2
β = α

2
Z . (2.184)

We may now separate the factor e−z/2, and then insert the first equation into
the second one:

u± = e
−z/2v±, v+ = −(mβ + κD)

−1(z∂z + nβ − z)v−, (2.185)

[(∂z − nβ/z)(z∂z + nβ − z) + (m
2
β − κ

2
D)/z]v− = 0. (2.186)

With κ2D = (j +
1
2 )
2, this equation does not distinguish between l = j − 1

2
and l = j + 12 ,

(z∂2z + (1− z)∂z + nβ − 1− γ
2/z)v− = 0. (2.187)

The term −γ2/z is removed by the substitution

v± = z
γw±, [z∂

2
z + (2γ + 1− z)∂z + nβ − γ − 1]w− = 0. (2.188)

This is again the confluent hypergeometric differential equation (1.119).
Apart from a normalization constant, its present solution is

F− = F (1− n
′
r, bD, z), n

′
r = nβ − γ, bD = 2γ + 1. (2.189)

For the exponentially falling functions F , n′r must a positive integer. However,
we can include the value n′r = 0 by a zero in the normalization factor,

w− = −Nγx−F−, x− =
√
(γ − nβ)(κD +mβ). (2.190)

This implies w−(n
′
r = 0) = 0, but the complete solution remains normalized,

due to w+(n
′
r = 0) �= 0, see below. Comparison with the definition (1.126)

nr = nβ − lα− 1 shows nr = n′r for γ = lα+1 (l = j− 1/2), and nr = n
′
r − 1

for γ = lα (l = j + 1/2). The case distinction of the previous section is now
unnecessary. Insertion of v− into (2.185) gives

v+ = Nγx−(κD +mβ)
−1zγ(z∂z − z + nβ + γ)F−. (2.191)

This expression is simplified using the relation

(z∂z − z + b− a− 1)F (1 + a, b, z) = (b− a− 1)F (a, b, z) : (2.192)

(z∂z − z + nβ + γ)F− = (γ + nβ)F (−n
′
r, bD, z).

Combination of the constants leads to

v+ = Nγx+z
γF (−n′r, bD, z), x+ =

√
(γ + nβ)(κD −mβ). (2.193)



84 2 Lorentz, Pauli and Dirac

This is so because

γ2 − n2β = γ
2 −m2β + α

2
Z = κ

2
D −m

2
β. (2.194)

It is customary to denote n′r by nr, even if this is confusing for l = j+
1
2 , not

only with the solution R = u/r (2.145) of the Kramers equation, but also
with the solutions ug and uf (2.158) in terms of the Kramers u. In summary,
g = ug/r and f = uf/r have

ug,f = Nγe
−z/2zγ(1±E/mc2)1/2[x+F (−nr, bD, z)∓ x−F (1− nr, bD, z)].

(2.195)
Note also that b = 2lα+2 is near an even integer in u, whereas bD = 2γ+1 is
near an odd one in ug and uf . Only for j = n−

1
2 , nr = 0 implies nrF− = 0

and ug ∼ u as in (2.166). The constant Nγ in (2.195) follows from the wave
function normalization (Appendix A),

∫ r2dr(g2 + f2) = ∫ dr(u2g + u
2
f ) = 1. (2.196)

The unbound electrons have E > mc2, k = iκ = (E2−m2c4)1/2/h̄c > 0.
The effective principal quantum number nβ is replaced by the continuous
parameter −iη as in (1.140),

nβ = iαZE/h̄ck = −iη, mβ = iαZmc/h̄k = −iηmc
2/E. (2.197)

This implies x∗+ = x−, and

x− = e
−iξ, x+ = e

iξ =
√
(γ − iη)/(κD − iηmc2/E). (2.198)

The exponential e−z/2 = e−κr receives its original form eikr, and the second
confluent hypergeometric function F− of (2.195) is eliminated using

F (a, b, z) = ezF (b− a, b,−z). (2.199)

Finally, (mc2 −E)1/2 = i(E −mc2)1/2, such that (2.195) becomes(
ug
uf

)
= −2iNγ(−2ikr)

γ

(
(E +mc2)1/2Im
(E −mc2)1/2Re

)
eikr+iξF (γ + iη, bD,−2ikr).

(2.200)
The solutions of the Dirac equation fulfill orthogonality relations, which

may be written in various ways. The stationary form of (2.87), Hψ = Eψ is
the standard starting point, as it has the same appearance as the nonrela-
tivistic Schödinger equation. The index D for Dirac is dropped here, but it
must be remembered that ψ = ψD has four components, both in the chi-
ral (2.88) and parity (2.151) bases. The Dirac equation for A = 0 and its
Hermitian adjoint may be written as

Hψi = Eiψi, ψ
†
jH
† = Ejψ

†
j , H

† = V + cp†α+mc2β. (2.201)
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The symbol p† is uncommon as −ih̄∇ = p is a Hermitian operator, but
it is convenient here before integrating over all space, meaning ψ†p† =

(−ih̄∇ψ)† = ψ†ih̄
←−
∇ in analogy with (1.198). Multiplying the first equation

in (2.201) by ψ†j , the second one by ψi from the right and integrating the
difference of these two combinations over all space, one gets

∫ ψ†j (H −H
†)ψid

3r = 0 = (Ei −Ej) ∫ ψ
†
jψid

3r, (2.202)

from which the orthonormality relations follow as

∫ ψ†jψid
3r = δij . (2.203)

The spin-angular functions χjml that form part of ψ in a spherically symmet-
ric potential V (r) are separately orthonormal in (l, j,m) according to (2.133),
such that (2.202) is reduced to orthonormality relations for the radial func-
tions g = ug/r and f = uf/r,

∫ r2dr(gn′gn + fn′fn) = ∫ dr(ug,n′ug,n + uf,n′uf,n) = δn′n. (2.204)

In the chiral basis, (2.203) becomes

∫(ψ†rjψri + ψ
†
ljψli)d

3r = δij , (2.205)

as (2.151) shows. If one now eliminates

ψli = (π
0
i − πσ)ψir/mc, ψ

†
rj = ψ

†
lj(π

0
j +
←−
π
∗
σ)/mc, (2.206)

one obtains again the KG form (1.197):

∫ ψ†lj(Ej +Ei − 2V )ψrid
3r = mc2δij . (2.207)

This result follows also directly from (2.80): When the “non-Hermitian” op-

erator (π0 + πσ)(π0 − πσ) operates on ψ†l to the left, the factors come in
the order required by (2.85).
The perturbation theories of the Dirac equation and the nonrelativistic

Schrödinger or Pauli equations are formally identical. The equation to be
solved is

(H0 +Hper)ψn = Enψn, (2.208)

where both H0 and Hper are time-independent operators, and the unper-
turbed equation has known and exact solutions. The perturbed equation is
solved by expanding both En and ψn in a power series of the matrix elements
of H0,

En = E
0
n +E

1
n +E

(2)
n . . . , (2.209)

ψn = ψ
0
n + ψ

1
n + ψ

(2)
n . . . . (2.210)
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The unperturbed equation is

H0ψ
0
n = E

0
nψ
0
n; (2.211)

it is identical with one of the previously solved equations Hψn = Enψn. But
as it does not solve (2.208), an index 0 is necessary in the formulas; it will be
dropped in the final result. To second order in the matrix elements of Hper,
the series expansions (2.209) and (2.210) give

H0ψ
1
n +Hperψ

0
n = E

0
nψ
1
n +E

1
nψ
0
n, (2.212)

H0ψ
(2)
n +Hperψ

1
n = E

0
nψ
(2)
n +E

1
nψ
1
n +E

(2)
n ψ

0
n. (2.213)

To solve (2.212), one multiplies it with ψ0n
† and integrates over d3r. For

a normalized unperturbed wave function, ∫ ψ0n
†ψ0n = 1, the result is

E0n ∫ ψ
0
n
†ψ1n +E

1
n = ∫ ψ

0
n
†H0ψ

1
n + ∫ ψ

0
n
†Hperψ

0
n. (2.214)

As H0 is Hermitian, H0 = H
†
0 , the integral with H0 may be rewritten as

∫ ψ0n
†H0ψ

1
n = ∫(H0ψ

0
n)
†ψ1n = E

0
n ∫ ψ

0
n
†ψ1n. (2.215)

This integral cancels in (2.214), leaving

E1n = ∫ ψ
0
n
†Hperψ

0
n ≡ 〈Hper〉n. (2.216)

According to the definitions of Sect. 1.9, the energy shift E1 in first-order
perturbation theory is the expectation value of the perturbation in the un-

perturbed state. From (2.213), one can now express E
(2)
n in terms of the

nondiagonal matrix elements of Hper. With the bra and ket notation (1.246)
they read

〈n|Hper|k〉 = ∫ ψ
†
nHperψk. (2.217)

The index 0 of unperturbed states is now omitted. The hermiticity of H0
gives 〈n|H0|n(2)〉 = E0n〈n|n

(2)〉 on the right-hand side of (2.213), such that
the equation is simplified to

E1n〈n|n
1〉+E(2)n = 〈n|Hper|n

1〉, (2.218)

where we have used the normalization 〈n|n〉 = 1 for the coefficient of E(2)n . We
still need the perturbed state |n1〉, which we expand in terms of the complete
set of unperturbed states |k〉 (of energies E0k) as in (1.199):

|n1〉 = Σkckn|k〉, 〈k|n
1〉 = ckn, 〈k|n〉 = δkn. (2.219)

Multiplication of (2.212) by ψ0k
† and integration gives the following relation

for the ckn:
E0nckn +E

1
nδkn = E

0
kckn + 〈k|Hper|n〉. (2.220)
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The term with k = n leads again to the expression (2.216). The coefficient cnn
cancels out and cannot be determined this way; it is set equal to zero in order
to keep the perturbed state |n〉+ |n1〉 normalized:

(〈n|+ 〈n1|)(|n〉+ |n1〉) = 〈n|n〉 = 1 : 〈n|n1〉 ≈ 0. (2.221)

Geometrically, the small vector |n1〉 must be orthogonal to |n〉 in order not
to affect its length. Thus (2.220) gives

ckn = (E
0
n −E

0
k)
−1〈k|Hper|n〉. (2.222)

Its insertion into (2.218 produces the final result

E(2)n = Σk �=n〈n|Hper|k〉〈k|Hper|n〉(E
0
n −E

0
k)
−1. (2.223)

Unfortunately, many of the more complicated perturbative operators are
calculated with nonrelativistic approximations, which normally deteriorate
their behaviour for r → 0. Examples to the order α4Z will be given in the
next section. In such cases, the relativistic wave function R cannot be used
for s-states, where it diverges as zlα = zl−β = z−β . To the orders α6Z logα

2
Z

and α6Z , there exists a special nonrelativistic expansion of quantum electro-
dynamics (NRQED), with nonrelativistic field operators, in which the only
allowed nonperturbative equation is the Schrödinger equation (see for ex-
ample Kinoshita 1996). All terms beyond the Bohr formula are calculated
perturbatively. A special “dimensional regularization” method yields in fact
closed analytic results (Czarnecki et al., 1999). For a while, some of its results
could only be derived from NRQED. However, relativistic equations are in-
dispensable beyond α6Z , particularly for atoms and ions with high Z. In later
chapters, the KG, Dirac etc. equations will be derived from the S-matrix of
QED, which is both Lorentz invariant and easily calculated. The S-matrix
is given in a Born series which has no bound states. Its reproduction by the
solutions of differential (or integral) equations provides bound states, which
are nonperturbative solutions of QED. As it is not possible to reproduce the
full S-matrix in one step, many small elements must be included perturba-
tively. Every perturbation must be included with its correct analytic proper-
ties in coordinate space. This implies that perturbations from “loops” must
be calculated from “dispersion integrals”, which in coordinate space provide
integrals over “Yukawa potentials”, of the form ∫ dxf(x)e−xr/r. This will be
explained in Sect. 5.3 for the vacuum polarization (“Uehling potential”) and
in Appendix C. However, some of the effects can be anticipated by ad hoc
modifications of the relativistic wave function, mainly for r → 0.
Ordinary atoms have “Rydberg states”, in which one electron occupies an

orbital with n up to 100, and l up to 10, depending on the excitation mech-
anism. The resulting “Rydberg spectrum” is practically hydrogenic, corre-
sponding to V = −e2/r. There exists a vast literature on the modification
of V for r → 0 (Drake 1982, 1993). It comprises a “quantum defect theo-
ry” (Seaton 1966), even in a relativistic version (Johnson and Cheng 1979).
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However, the problem is complicated by the presence of the “core” electrons
(Sects. 3.5 and 3.8). It is clearest for the “leptonium” bound states, where no
nuclear charge distribution “softens” V for r → 0.
In the leptonium context, an approximate removal of the divergence of R

was started by Fried and Yennie (1958). With β = l − lα, z−β = e−β log z is
approximated by 1− β log z. Insertion of z = 2κr = 2Erκ/E gives

log z = log(2αZ/n) + log(Er). (2.224)

Suppressing the index − in the Kramers solution, one obtains for l = 0,

R/N = e−κr[1− β log(2αZ/n)− β log(Er)]F (−nr, 2− 2β, z), β0 = α
2
Z ,

(2.225)
with β0 = α

2
Z for KG and β1/2 =

1
2α
2
Z for Kramers. Next, one may adjust

the asymptotic behaviour of R(z → ∞), which is done here for arbitrary l:
Using a relation explained in the course of Landau and Lifshitz (1977),

F (−nr, b, z) ∼ (−z)
nrΓ (b)/Γ (nr + b), (2.226)

the first-order expansion of Γ (nr+b) = Γ (nr+2l+2−2βl) gives Γnr−2βlΓ ′nr
with Γnr = Γ (nr + 2l + 2). Consequently, for l = 0 and z →∞,

R(−nr, −2β + 2, z) ∼ R(−nr 2, z)[1 + 2β(Ψ(n+ 1)− Ψ(1))], (2.227)

Ψ = Γ ′/Γ, Ψ(1) = −γEu, Ψ(n+ 1)− Ψ(1) = Σ
n
i=1i

−1. (2.228)

(γEu = 0.5772 . . . is the Euler constant).
The remaining procedure in the adjustment of the relativistic wave func-

tion is still somewhat incomplete. Gupta et al. (1989) found an operator

r−3G = −∆[log(µr)/r + γEu/r], ∆f = [∇, [∇, f ]], (2.229)

〈r−3G 〉 = 〈r
−3〉 for l > 0, (2.230)

where µ = m1m2/m12 (m12 = m1 +m2). By partial integration,

〈r−3G 〉l=0 = 2α
3
Zµ
3n−3[− log(n/2αZ) + Ψ(n+ 1) + γEu −

1
2n
−1 + 12 ]. (2.231)

Inspection of the higher-order QED results shows that a first approximation
for R is

R = Rβ=0(1− β〈r
−3
G n

3〉/α3Zµ
3). (2.232)

Note that 〈r−3G 〉l=0 < 0 for small αZ . Complete corrections to order α
2
Z will

be derived in Appendix C.
When the relativistic expectation value does not exist, both the zeroth

and first-order in β expectation values must use (2.232). Higher orders in n−1β
are included in the approximation nβ = n. For perturbations with a radial
dependence r−2 (such as the hyperfine perturbation of Sect. 5.1), the expec-
tation value is still the relativistic one. There is however a recoil correction
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to first order in β, which has 1/µ3 replaced by 1/µ2m12. The Gupta operator
occurs also in the “Salpeter shift”, to be mentioned in connection with the
Lamb shift of Sect. 5.5.
A precise formalism based on (2.232) does not exist. In a careful calcu-

lation of perturbations, singular operators such as δ(r) simply do not occur.
Thus the factor z−β of R poses no problem. In the “quarkonium” model of
mesons, the phenomenological potential is expected to be less singular than
r−1 at r = 0 (see also Sect. 4.10).
The radial Dirac functions g and f may be regularized at r = 0 by defining

greg = r
β−1ug, freg = r

β−1uf , provided the operator ∂r+r
−1 is also modified,

(∂r + r
−1 − βr−1)rβ−1 = rβ−1∂r, compare (2.169). But as the orthogonality

relations (2.196) are also modified, nothing is gained for perturbation theory.
The Dirac equation may also be modified by a gauge vector potential,

A = ∇Λ(r) ≡ r̂W (r), which does not contribute to B (see (1.53) and
(1.55)). Suitable choices of W may then produce equations with exact so-
lutions. The choice W = W̃ − κD/r (Alhaidari 2001) sets κD = 0 in
(2.178) and produces an equation without any angular momentum, j =
l̂ + σ/2 = 0. That equation is solved exactly for Morse-type potentials,
VMorse = V0[e

−2(R−R0)/a − 2e−(R−R0)/a], where the variable R refers to the
distance between the two nuclei of a diatomic molecule. To treat a molecule
by an equation which suppresses the electronic coordinates requires an “adi-
abatic” approximation, valid for very slow nuclear motion. It is not clear that
such a modified Dirac equation would be useful for relativistic effects in the
adiabatic approximation.

2.8 The Pauli Equation

In the discussion of the KG equation, we mentioned the connection with the
nonrelativistic Schrödinger equation in (1.77) for stationary solutions, where
π0 = ih̄∂0−V/c is replaced by (E−V )/c. For time-dependent solutions, the
connection is more complicated, as the KG equation is of second order in ∂0,
while the nonrelativistic equation is of first order. The Dirac equation, on the
other hand, is already first-order, which slightly simplifies the derivation of
the nonrelativistic Pauli equation. The derivation leads to familiar concepts
such as kinetic energy and spin-orbit interaction, which are not at all evident
from (2.153), let alone the chiral (2.84) or second-order (2.82) forms.
In the nonrelativistic reduction, the small components ψf may be elim-

inated from the first equation of (2.153) by means of the second one. One
substitutes

ψD = e
imcx0/h̄ψ′D, (2.233)

which removes the mc from π0− = π
0 −mc, and adds mc to π0+ = π

0 +mc:

π0Nψ
′
g = σπψ

′
f , (π

0
N + 2mc)ψ

′
f = σπψ

′
g. (2.234)
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The index N indicates that the eigenvalue of ih̄∂t is now EN = E −mc2. In
nonrelativistic problems, the matrix elements of V (r) and eigenvalues of ih̄∂t
are both much smaller than mc2, such that one may expand π0N + 2mc in
terms of π0N/2mc:

ψ′f = (π
0
N + 2mc)

−1σπψ′g ≈ (2mc)
−1(1− π0N/2mc)σπψ

′
g. (2.235)

One sets ∂0 = ∂t/c and multiplies the first of (2.234) by c:

(ih̄∂t − V )ψ
′
g = [(σπ)

2/2m− σπcπ0Nσπ/4m
2c2]ψ′g. (2.236)

The first term on the right-hand side is brought to the other side and com-
bined with V into the Pauli Hamiltonian

HP = (σπ)
2/2m+ V = (π2 + h̄eσB/c)/2m+ V (2.237)

(the second form uses (2.60)). The rest is a relativistic “perturbation”. The
corresponding ψ′g is the ψN of (1.67):

(ih̄∂t −HP )ψN = 0. (2.238)

In the time-independent perturbation theory, the perturbing operator must
not contain t or ∂t. For the case at hand, the ∂t which is part of cπ

0
N on the

right-hand side of (2.236) was eliminated by Pauli. He substituted

ψ′g = (1−W
2/2)ψ, W = σπ/2mc, (2.239)

multiplied the equation by 1−W 2/2 from the left and neglected these factors
in connection with σπcπ0Nσπ/4m

2c2 which is already small:

(1−W 2/2)(ih̄∂t −HP )(1−W
2/2)ψ = (−ih̄∂tW

2 +WVW )ψ. (2.240)

Here we have used W∂tW = ∂tW
2, assuming that W is time-independent.

These terms cancel out in (2.240). Two new terms W 2HP /2 and HPW
2/2

arise on the left-hand side and are transferred to the right:

(ih̄∂t −HP )ψ = Hrψ, (2.241)

Hr = −
1
2 [W

2(σπ)2 + (σπ)2W 2]/2m− 12W
2V − 12VW

2 +WVW. (2.242)

The last three terms make a double commutator:

Hr = −(σπ)
4/8m3c2 − 12 [W, [W,V ]], (2.243)

[W,V ] = [σπ, V ]/2mc = −ih̄V ′r−1rσ/2mc = −ih̄V ′σr/2mc, (2.244)

−[W, [W,V ]] = −ih̄[σπ, V ′σr]/4m
2c2 = [−h̄2∆V − 2h̄V ′σ(π × r̂)]/4m2c2.

(2.245)
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The symbol ∆V is a common abbreviation for [∇, [∇, V ]], to be evaluated
below. With π = p+ eA/c, the term −p× r̂ is written as r−1r × p = h̄l̂/r;
this piece provides the spin-orbit potential:

Vsl = h̄
2V ′σl̂/4m2c2r. (2.246)

The term
−h̄2∆V/8m2c2 = VDa (2.247)

is called the Darwin term. In summary, one has

Hr = −(σπ)
4/8m3c2 + VDa + Vsl − h̄eV

′σ(A× r)/4m2c3r. (2.248)

The first operator in Hr is “kinematical”, i.e. independent of V . Classically,
one would have the expansion (1.33), with pµ replaced by πµ:

cπ0 = (m2c4 + c2π2)1/2 = mc2 + π2/2m− π4/8m3c2 . . . (2.249)

for an electron π2 is replaced by (σπ)2.
The appearence of (σπ)4 and other singular operators in Hr must not

upset the basic structure of (2.241) as a second-order differential equation.
This is achieved by the perturbation theory of Sect. 2.7, in which we now set
H0 = HP and Hper = Hr:

E1n = ∫ ψ
0†
n Hrψ

0
n ≡ 〈Hr〉n. (2.250)

The expectation value of the square of a Hermitian operator AH may be
evaluated symmetrically:

∫ ψ0n
†A2Hψ

0
n = ∫(AHψ

0
n)
†AHψ

0
n (2.251)

This is useful for −(σπ)4/8m3c2, because one may then replace (σπ)2/2mψ0n
by (E0Nn − V )ψ

0
n. In this way one finds

〈(σπ)4/8m3c2〉n = 〈(E
0
Nn − V )

2/2mc2〉n. (2.252)

This correction appears unchanged in the nonrelativistic reduction of the KG
equation, where π4/8m3c2 is eliminated by the nonrelativistic Schrödinger
equation, π2/2mψ0n = (E

0
Nn − V )ψ

0
n.

Whereas the Pauli equation with relativistic corrections is useful for more
complex systems, the small components are more easily eliminated directly
from (2.153),

(E − V −mc2)ψg = σπc
2(E − V +mc2)−1σπψg, (2.253)

by expanding the denominator in terms of V alone:

(E +mc2 − V )−1 ≈ (E +mc2)−1 + V/(E +mc2)2. (2.254)
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The equation is now multiplied by E +mc2, and the small term c2σπV σπ/
(E +mc2) is approximated by σπV σπ/2m:

[E2 −m2c4 − (E +mc2)V − (cσπ)2 − σπV σπ/2m]ψg = 0. (2.255)

One may now rewrite −σπV σπ as 12 [σπ, [σπ, V ]] −
1
2 (σπ)

2V − 1
2V (σπ)

2

and replace both 12 (σπ)
2V and 12V (σπ)

2 by m(E −mc2 − V )V on account
of their expectation values for ψN (2.238). The result is the old KG equation,
augmented by the double commutator:

[E2 −m2c4 − 2EV + V 2 − (cσπ)2 + [σπ, [σπ, V ]]/4m]ψg = 0. (2.256)

It will be useful when hyperfine vector potentials are included in π.
For the explicit calculation of 〈Hr〉 (indices are now supressed), one needs

the expectation values of r−s for s = 1, 2, 3. They are collected here for
a hydrogen-like ion of nuclear charge Ze, for s up to 6:

〈r−1〉 = κn/n, κn ≡ αZmc
2/h̄cn = Z/aBn, (2.257)

〈r−2〉 = κ2n[n(l +
1
2 )]
−1, (2.258)

〈r−3〉 = κ3n[L
2(l + 12 )]

−1, L2 = l(l + 1), (2.259)

〈r−4〉 = κ4nn
−1(3n2/L2 − 1)/(L2 − 3/4)(2l + 1),

〈r−5〉 = nκn〈r
−4〉(5n2 − 3L2 + 1)/(3n2 − L2)(L2 − 2),

〈r−6〉 = κ2n〈r
−4〉[35n2 − 30L2 + 25 + 3L2(L2 − 2)/n2]

/(3n2 − L2)(L2 − 2)(4L2 − 15).

All 〈r−s〉 are odd functions of n; 〈r−2〉 and 〈r−3〉 are both proportional to
n−3, which will be exploited below.
For the Darwin term, one also needs the wave function at the origin.

With |Y 00 |
2 = 1/4π (Table 1.1) and the nonrelativistic normalization constant

(A.13) for l = 0, N2(l = 0) = 4κ3n,

|ψ(0)|2 = N2(l = 0)/4π = κ3n/π. (2.260)

With V ′ = dV/dr and V = −Ze2/r, one has

∆V = [∇, [∇, V ]] = V ′′ + 2V ′/r = 0. (2.261)

On the other hand, as E = −[∇, A0] = [∇, V/e] is the nuclear electric field,
the Maxwell equation (1.52) [∇,E] = 4πρel becomes

∆V = −e4πρel. (2.262)
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The point limit Zeδ(r) (1.62) of ρel gives ∆V = −4παZδ(r):

〈VDa〉 = h̄
2〈−∆V 〉/8m2c2 = h̄2〈αZ4πδ(r)〉/8m

2c2, (2.263)

〈VDa〉 = αZ h̄
2δl,0π|ψ(0)|

2/2m2c2 = αZ h̄
2δl,0κ

3/2m2c2. (2.264)

〈Vsl〉 is now calculated as expectation value over the unperturbed wave
function,

ψ0 = R(r)χjml (θ, φ), (2.265)

where l is the orbital angular momentum of the large components, but ml
and ms are still mixed according to the prescription (2.132) for χ

jm
l , such

that one can use l̂σψ0 = [(j − l)(2j + 1) − 1]ψ0 from (2.121). Insertion of
a factor 1 = 4(j − l)2 gives

l̂σ = (j − l)(−2j + 4l + 1), (2.266)

l̂σ(j = l + 12 ) = l, l̂σ(j = l −
1
2 ) = −(l + 1). (2.267)

For l = 0, one has 〈l̂σ〉 = 0, which reflects the spherical symmetry of Y 00 ,
〈l̂〉0 = 0. However, (2.259) gives

〈V ′/r〉 = Ze2κ3n[l(l + 1)(l +
1
2 )]
−1, (2.268)

which is infinite for l = 0. It has been customary to exclude the point
r = 0 from 〈V ′/r〉, getting 〈Vsl〉0 = 0 on account of (2.266). For l = 0,
VDa takes over (Bethe and Salpeter, 1957). However, the factor l disappears
from 〈l̂σ/r3〉, giving

〈VDa(l = 0)〉 = 〈Vsl(l = 0)〉 = α
4
Zmc

2/2n3. (2.269)

It is thus possible to ignore the singular part of ∆V and to use 〈Vsl(l = 0)〉
down to l = 0. This ambiguity arises because both r−3 and δ(r) prevent
meanigful solutions of the differential equation, similar to the (σπ)4. Both
operators are eliminated by observing

〈r−3〉 = κnn〈r
−2〉/L2 = αZmc

2〈r−2〉/L2h̄c. (2.270)

Dropping again the expectation brackets, one obtains the mathematically
consistent form of the Pauli equation with relativistic corrections as

[E2 −m2c4 − 2EV + V 2 − (cσπ)2 − 12 h̄cαZV
′l̂σ/L2]ψg = 0. (2.271)

Moreover, V ′ = αZ h̄c/r
2 may be combined with the other r−2-operators of

the radial KG equation into

L2α ≡ lα(lα + 1) ≡ L
2 − α2Z +

1
2α
2
Z l̂σ/L

2. (2.272)
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The lα differs from the exact Dirac lα± (2.144) only at the order α
4
Z . In

summary, the radial KG equation (1.98)

[k2 − 2EV/h̄2c2 + (∂r + 1/r)
2 − L2α/r

2]Rk2,l = 0 (2.273)

applies also to the Dirac equation to order α4Z , provided the lα is chosen
accordingly. The energy levels for l = j ± 1/2 are still degenerate to this
order. With L2α = γ(γ ± 1), the equation would again be exact as in (2.143)
or (2.159).
Of practical interest is the fine structure of spectral lines, which arises

from the splitting of energy levels by Vsl for fixed l and j = l ±
1
2 . For that

case one writes
l̂σ = (j − l)(2l + 1)− 12 (2.274)

and neglects the common downshift of E1n due to the−
1
2 . The splitting follows

then from (2.259) as

∆Efine = 〈Vsl〉l+1/2 − 〈Vsl〉l−1/2 = κ
3
nh̄αZ [2m

2c2l(l + 1)]−1. (2.275)

For s-states, l = 0 implies j = 1
2 , l̂σ = 0, in which case ∆Efine does not exist.

2.9 The Zeeman Effect

In the spinless case, the Zeeman operator arose from π2 = p2 + eBh̄l̂z/c +

O(B2), and l̂z was replaced by one of its eigenvalues ml. The Kramers equa-
tion (2.82) has π2 replaced by πσ2 = π2 + eBh̄σz/c. Neglecting again the
A2 of π2, one has

(πσ)2 = p2 + eBh̄(l̂z + σz)/c = p
2 + eBh̄(mj + σz/2)/c. (2.276)

jz is replaced by one of its eigenvalues, which are called mj in the following.
However, as jx and jy do not commute with σz/2, j

2 may be treated as
a constant of motion only for the first-order Zeeman shift. Second-order effects
may become important for small separations of different j-values. In fact,
j = l + 1

2 and j = l −
1
2 are only separated by the spin-orbit potential Vsl

(2.246), which was also derived by first-order perturbation theory. For the
above use of j as a good quantum number, |Vsl| must be much larger than
the Zeeman splitting. This is the regime of the anomalous Zeeman effect. The
splitting is then described by (2.42). In general, however, both perturbations
must be considered. including the off-digonal elements of σz (those between
the two j-values at fixed l andmj). The resulting mixing is quite complicated
in the Dirac equation. For this reason, we first use the Pauli operator HP
with its relativistic correction Hr. Insertion of (2.276) into (2.241) gives

(ih̄∂t − V − p
2/2m)ψ = [eh̄B(l̂z + σz)/2mc+Hr]ψ. (2.277)
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For Hr ≈ 0 (which implies Vsl ≈ 0), l̂ becomes a useful operator for first-
order perturbation theory. A set of good quantum numbers is then l, lz and
σz, for which (2.277) leads to the “normal” Zeeman effect (2.46), in which l̂z
and σz are replaced by their eigenvalues ml and 2ms.
In Hr, the B-dependent terms appear as follows:

−(σπ)4/8m3c2 = −p4/8m3c2 − eBh̄B(l̂z + σz)p
2/4m3c3, (2.278)

[ih̄∂t −H(B = 0)]ψ = HZeeψ, (2.279)

HZee = eh̄[B(l̂z + σz)(1− p
2/2m2c2)/2mc− V ′σ(A× r)/4m2c3r]. (2.280)

In HZee, all operators except l and σ may be replaced by their nonrelativistic
expectation values, in particular

〈p2〉 = 2m(EN − 〈V 〉) = (αZmc/n)
2, (2.281)

and using A = 1
2B × r,

σ(A× r) = 1
2σ(−r

2B + rBz) = 1
2r
2B(−σz + σr cos θ). (2.282)

The factor r2 is cancelled by V ′ = Zα/r2 in (2.280), which greatly simplifies
the radial expectation value:

−〈V ′σ(A× r)/r〉radial =
1
2 〈V 〉radialB(−σz + σr cos θ). (2.283)

For the angular expectation value, one sets σr = σzz+sin θ(σ+e
−iφ+σ−e

iφ);
only σz cos

2 θ has a nonvanishing expectation value for parity eigenstates:

〈−V ′σ(A× r)/4m2c3r〉 = eh̄Bσzα
2
Z(1− 〈cos

2 θ〉)/8n2mc. (2.284)

The total Zeeman operator with first-order relativistic corrections is thus

HZee = µBB{l̂z(1− α
2
Z/2n

2) + σz[1− α
2
Z(1 + 〈cos

2 θ〉)/4n2)]}, (2.285)

with µB = eh̄/2mc as usual. The ground state has l = 0, n = 1, 〈cos2 θ〉 =
1/3 and thus HB = µBBσz(1− α2Z/3).
For the fully relativistic calculation, we first consider the anomalous Zee-

man effect, where only the diagonal matrix elements of σz in the spinor basis
χjml (l = j ±

1
2 ) are needed. We take the Kramers equation in the form

(π02 − p2 + ih̄eσE/c−m2c2)ψr = Kperψr, Kper = eh̄B(mj + σz/2)/c.
(2.286)

The perturbed energy E = E0 + E1 is part of π0. To first order in E1, one
has

π02 = (E0 +E1 − V )2/c2 = (E0 − V )2/c2 + 2E1(E0 − V )/c2. (2.287)
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The perturbative form of the Kramers equation is thus

[K0r + 2E
1(E0 − V )/c2]ψr = Kperψr, (2.288)

K0r = (E
0 − V )2/c2 − p2 + ih̄eσE/c−m2c2. (2.289)

Expanding also ψr = ψ
0
r + ψ

1
r , the zeroth order equation is K

0
rψ
0
r = 0, and

the first-order equation is

K0rψ
1
r +E

12(E0 − V )c−2ψ0r = Kperψ
0
r . (2.290)

From here on, the calculation of E1 is a straightforward extension of the
nonrelativistic procedure. One multiplies (2.290) by ψ0†l , integrates over all
space and uses

∫ ψ0†l K
0
rψ
1
r = ∫(K

0
l ψ
0
l )
†ψ1r = 0, (2.291)

where K0l differs from K
0
r by the sign of ih̄eσE/c. The factor 2(E

0 − V )/c2

following E1 is absorbed in the orthogonality relation (2.207), leading to

E1 = ∫ ψ0†l Kperψ
0
r/mc ≡ 〈Kper/mc〉. (2.292)

This procedure is avoided in the literature, because the Dirac equation is
an explicit eigenvalue equation, Hψ = Eψ, and its many-electron “Dirac-
Breit” extension of Sect. 3.4 also has that form (which is only lost in the
“improved Breitians”). There is then no difference between relativistic and
nonrelativistic perturbation theory. However, the result (2.303) below follows
rather directly from the Kramers equation with its implicit E-dependence and
its non-Hermitian operator. This equation is a simple example of a more ad-
vanced class of relativistic equations. The example has a drawback, however,
namely the degeneracy of states of opposite parities. When the unperturbed
energies E0n are degenerate, care must be taken that ψ

1
n vanishes for B → 0.

This requires a diagonalization of Kper in the subspaces of degenerate states.
In Sect. 2.6 we saw that for n > j + 12 , l = l−

1
2 is degenerate with l = j +

1
2

(for n = j + 1
2 , the state l = j +

1
2 = n is absent). In the present case, Kper

conserves parity; it is diagonal in Dirac’s parity basis but not for the simpler
states (2.137). Consequently, one must use

ψr = 2
−1/2(ψg + ψf ), ψl = 2

−1/2(ψg − ψf ), (2.293)

〈Kper〉 =
1
2 ∫(gχ

†
l − ifχ

†

l̃
)Kper(gχl − ifχl̃) =

1
2 ∫(g

2χ†lKperχl − f
2χ†
l̃
Kperχl̃).

(2.294)
With the normalization ∫(g2+f2) = 1 one finds for the term eBh̄mj/c ofKper

E1 = eBh̄mj(1− 2 ∫ f
2)/2mc = BµBmj(1− 2 ∫ f

2), µB = eh̄/2mc.
(2.295)

The nonrelativistic limit has ∫ f2 = 0. To first order in relativity, one may
use (2.154) in the form

f ≈ −(h̄/2mc)(∂r + 1/r + κD/r)g. (2.296)



2.9 The Zeeman Effect 97

The s-states have l = 0, j = 1
2 , κD = −1, f ≈ −(h̄/2mc)g

′ , g ≈ Ne−κr, κ =
αZmc/h̄n according to (2.165), which leads to

∫ f2 = (αZ/2n)
2 ∫ g2 = α2Z/4n

2, E1(mj) ≈ BµBmj(1− α
2
Z/2n

2). (2.297)

The general expression ∫ f2 = 1/2 − E/2m follows from (A.33). A simpler
and even more general derivation is to combine in (2.286) the constants into
a new mass m′,

m2c2 + eBh̄mj/c ≡ m
′2c2, m′ ≈ m(1 + eBh̄mj/2m

2c3), (2.298)

and to use (2.149), with m replaced by m′. This also shows that (2.297)
remains valid for l > 0. The expectation values of σz/2 follow from the
spinor spherical harmonics (2.132),

1
2 〈σz〉l=j±1/2 = ∓mj/(2l + 1) = 2mj(j − l)/(2l + 1), (2.299)

E1(σz/2) = 2BµBmj ∫ [g
2(j − l)/(2l + 1)− f2(j − l̃)/(2l̃ + 1)]. (2.300)

The Landé g-factor glj (2.45) follows from (2.299). Use of j − l̃ = −(j − l)
and of

(2l̃+1)−1 = (2l+1)−1+2(l−l̃)(2l̃+1)−1(2l+1)−1 = (2l+1)−1+(l−j)/j(j+1)
(2.301)

produces the final results,

E1(σz/2) = 2BµBmj [(j − l)/(2l + 1)− [4j(j + 1)]
−1 ∫ f2]. (2.302)

With ∫ f2 given above, the complete Zeeman shift becomes

E1 = BµBmj [(2j + 1)/(2l + 1)− [1 + 1/4j(j + 1)](1−E/m)]. (2.303)

For l = 0, this agrees with the BµBmj(1− α2Z/3n
2) of (2.285).

As σz does not commute with l̂σ, the fine structure and Zeeman splittings
are not additive. Vsl is diagonal in the basis χ

jmj
l , but σz mixes j = l+

1
2 with

j = l − 1
2 at fixed l and mj . We consider only the nonrelativistic reduction

of this mixing, where the value l̃ of the small components does not enter.
Writing the state with j = l + 1

2 above that with j = l −
1
2 , one has to

diagonalize the matrix

M = ∆Efine

(
1/2 0
0 −1/2

)
+Bµ′B

1
2σz; (2.304)

µ′B = µB[1− α
2
Z(1 + 〈cos

2 θ〉)/4n2],

1
2σz =

1

2l + 1

(
mj −w
−w −mj

)
; w =

√
(l + 12 )

2 −m2j . (2.305)
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The part Bµ′Bmj of the Zeeman shift is a multiple of the unit matrix in
this basis and is omitted together with the common downshift of Efine (unit
matrices have no influence on diagonalization). The diagonal elements of 12σz
are adopted from (2.299); the nondiagonal elements follow from (2.132) as

〈j = l + 12 |
1
2σz|j = l −

1
2 〉 = −

√
l + 12 −mj

√
l + 12 +mj = −w. (2.306)

The eigenvalues of M are then

M± = ±
1
2

√
∆E2fine + 4∆Efineµ

′
BBmj/(2l + 1) + µ

′
B
2B2.

The limit B2 → 0 gives M± = ±
1
2 [∆Efine + 2µ

′
BBmj/(2l + 1)] and agrees

with the anomalous Zeeman effect, while the opposite limit ∆Efine = 0 gives
the normal Zeeman effect (2.46). For s-states, j = 1

2 implies m
2
j = 1/4,

w = 0,M+ = Bµ
′
Bmj , andM− does not exist. The ratio µ

′
B/µB is also called

a “binding correction” to the free electron’s g-factor gfree.
Instead of the lengthy expression (2.242), one may also use (2.256)

for the Zeeman shift calculation. The “standard form” (1.144) of the KG
equation satisfies standard orthogonality relations, namely (A.36). Writing
K = K0 − δK, they lead to δ(n

−2
β ) = 〈δK〉. The linear expansion n

−2
β =

n−2β (E
2
0) + δ(E

2)dn−2β /dE
2 = n−2β (E

2
0)−m

2α2Z/E
4
0 (h̄ = c = 1) gives

δ(E2) = 〈δK〉α2ZE
4
0/m

2. (2.307)

With πε = pε+eA(rε/E
2) (which is dimensionless), the linear Zeeman effect

has δK = δ(πε)
2 = eB(lz + σz)/E

2
0 . In this manner one finds

δE = δ(E2)/2E0 = eB〈l̂z + σz〉E0/2m. (2.308)

The factor E0/m produces the correction 1 − α2z/2n
2 = 〈1 − p2/2m2c2〉 of

(2.280).

2.10 The Dirac Current. Free Electrons

We have so far studied the Dirac equation in a stationary potential,
V (r) = qA0(r). For time-dependent problems, one needs a conserved cur-
rent, ∂µj

µ = 0, of which j0 is then used for the scalar product. A compact
notation of jµ is ψDγ

µψD. It will be derived in the following from several
more explicit forms. From (2.87), one finds with π = −ih̄∇− c−1qA,

ih̄(∂0 +∇α)ψD = c
−1q(A0 −Aα+mcβ)ψD, qe = −e. (2.309)

Its Hermitian conjugate form is

ih̄ψ†D(
←−
∂ 0 +

←−
∇α) = −c−1qψ†D(A

0 −Aα+mcβ). (2.310)
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From these two equations, one verifies ∂0j
0 +∇j = 0 for

j0 = cψ†DψD, j = cψ
†
DαψD. (2.311)

Note that ψ†DψD is the zero-component of a 4-vector, not a Lorentz invariant.
Its decomposition into chiral components follows from (2.88),

ψ†DψD = ψ
†
rψr + ψ

†
l ψl ≡ ρ. (2.312)

The Lorentz transformation of ψ†rψr has been given in (2.97), that of ψ
†
l ψl

has the rapidity η replaced by −η. They show that ψ†l ψr and ψ
†
rψl are Lorentz

invariants. Their sum is also parity invariant:

ψ†l ψr + ψ
†
rψl = ψ

†
Dγ
0ψD = ψDψD, ψD ≡ ψ

†
Dγ
0. (2.313)

γ0 = β is given in the chiral basis by (2.88) and in the parity basis by (2.103).
In the latter basis, on has

ψDψD = ψ
†
paγ

0
paψpa = ψ

†
gψg − ψ

†
fψf . (2.314)

To express jµ in terms of ψD and ψD, one defines

γ = γ0α = γ0γ5σ, jµ = cψDγ
µψD. (2.315)

The variety of notations can be confusing; ψDγ
0ψD is the same as ψ

†
DψD,

because of (γ0)2 = 1. In the chiral basis, one would in the first place extend
the Pauli matrices σ to two different sets of 4-vector matrices:

σµ = (σ0,σ), σµ = (σ
0,−σ) ≡ σµl , σ

0 = 1. (2.316)

The pair of equations (2.84) reads then

πµσ
µψr = mcψl, πµσ

µ
l ψl = mcψr. (2.317)

The σµl appear only in front of lefthanded spinors; they may be called left-
handed Pauli matrices. One may also define right- and lefthanded currents,

jµr = cψ
†
rσ
µψr, j

µ
l = cψ

†
l σ
µ
l ψl. (2.318)

With the two expressions (2.29) and (2.30) for ∂µ, one finds

i∂µj
µ
r = mc

2(ψ†rψl − ψ
†
l ψr) = −i∂µj

µ
l . (2.319)

Thus, for mc2 �= 0, there is only one conserved 4-current:

jµ = jµr + j
µ
l = cψ

†
rσ
µψr + cψ

†
l σ
µ
l ψl. (2.320)

But its two pieces jµl occur separately in parity-violating weak interactions.
When parity violation was finally discovered (Wu et al. 1957), it was for-
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mulated within the existing standard Dirac notation by means of right- and
left-handed projectors. According to the diagonal form (2.91) of γ5,

Pr =
1
2 (1 + γ

5), Pl =
1
2 (1− γ

5), (2.321)

jµr = ψDγ
µPrψD, j

µ
l = ψDγ

µPlψD. (2.322)

This notation is still in use today. The Hamiltonian for beta decay n→ pe−ν
is Hβ = 2

1/2Gµj
µ,†
eν gµνj

ν
np,

jµeν = Ψνγ
µPlΨe = Ψ

†
ν,lσ

µ
l Ψe,l = j

µ
eν,l (2.323)

while jµr is absent inHβ . (The field operators Ψ will be introduced in Sect. 3.2.
The factor 21/2 is a relict from the time when jµr was coupled with equal
strength. The nucleon current operator jµnp will be given in Sect. 5.8 in the
quark model. Its matrix elements are discussed in textbooks on beta decay
(Konopinski 1966, Pilkuhn 1979).)
One may also express jµ in a form analogous to the spinless current (2.31),

jµ = ψ†l Γ
µψr/mc, Γ

µ =
←−
π
µ∗
+ πµ + ih̄σµν(∂ν +

←−
∂ ν), (2.324)

where σµν is the antisymmetric part of σµl σ
ν ,

σµl σ
ν = gµν + σµν , σµν = −σνµ. (2.325)

gµν is the metric tensor (2.16), and

σ0j = −σj0 = σj , σ
ij = iσk cyclic. (2.326)

However, jµ is rarely used in this form.
The matrices γµ (2.315) are appropriate for the discussion of Lorentz

properties in the four-component spinor formalism. One has

γµγν + γνγµ = 2gµν , γµγν − γνγµ ≡ 2σµν4×4. (2.327)

σµν4×4 is the 4× 4 version of (2.325). From (2.315), one finds

σ0j4×4 = γ
5σ0j , σij4×4 = 1 · σ

ij , (2.328)

where 1 is the Dirac unit matrix.
Among the solutions of the free Dirac equation we discuss again plane

waves,
ψD(k) = e

−iωt+ikruD(k,ms). (2.329)

In the chiral basis uD = (ur, ul), the components satisfy (2.84) in the form

(k0 − kσ)ur = (mc/h̄)ul, (k
0 + kσ)ul = (mc/h̄)ur. (2.330)

These equations are solved by

ur = (h̄k
0 + h̄σk)1/2χ, ul = (h̄k

0 − h̄σk)1/2χ, (2.331)
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because of (k02 − k2)1/2 = mc/h̄. The spin states χ = χ(ms) refer to the
electron at rest. When they are quantized along the direction k̂ of k, they
become eigenstates of the eigenvalue of σk. The eigenvalue of 12σk̂ is called
the helicity λ:

1
2σkχ(λ, k̂) =

1
2kσk̂χ(λ, k̂) = λkχ(λ, k̂). (2.332)

In this case (2.330) is solved by

ur = (h̄k
0 + 2λh̄k)1/2χ, ul = (h̄k

0 − 2λh̄k)1/2χ, (2.333)

In a general basis, the spinor uD(k,ms) is related to the spinor u
′ = u0(ms)

by the inverse of (2.93), which is called a “boost”:

uD(k,ms) = e
ηα/2(mc)1/2χ(ms). (2.334)

From (2.12) one has

cosh η = γ = E/mc2, sinh η = h̄k/mc, (2.335)

eηα/2 = (eηα)1/2 = (E/mc2 + h̄kα/mc)1/2, α = γ5σ, (2.336)

of which (2.333) is a special case in a special Dirac basis. With the angles of
k̂ denoted by θ and φ, σk̂ is again the matrix σr in (2.114). The resulting
helicity spinors are

χ(12 , θ, φ) =

(
cos 12θ
sin 12θe

iφ

)
, χ(−12 , θ, φ) =

(
− sin 12θe

−iφ

cos 12θ

)
. (2.337)

Their orthogonality relations are

χ†(λ′, k̂)χ(λ, k̂) = δλ,λ′ . (2.338)

This leads to

u†rur = h̄(k
0 + 2λk), u†lul = h̄(k

0 − 2λk), u†DuD = 2h̄k
0. (2.339)

The plane wave orthogonality relations follow now from (2.35) as

∫ ψD(k
′)†ψD(k)d

3r = 8π3δ(k − k′)δλλ′2h̄k
0; (2.340)

they agree with (2.36) of the spinless case. The density of free electrons is
then again given by (2.37). The Lorentz invariance of uDuD is checked by
(2.338) as follows:

uDuD = u
†
rul + u

†
lur = δλλ′2(k

02 − 4λ2k2)1/2h̄ = 2mcδλλ′ . (2.341)

The normalization differs from that chosen in Sects. 2.7 and 2.8 for an electron
in an external Coulomb potential. The latter one breaks Lorentz invariance,
but a normalization to 2k0 as in (2.340) is not excluded. For later use, we
also collect the scalar products of helicity spinors that are quantized along
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two different directions k̂ and k̂
′
. The z-axis is taken along k̂, such that

χ(λ, 0, 0) = χ(ms = λ) are the standard unit spinors (2.49):

χ′†χ = δλ′,λ cos
1
2θ + 2λ

′δλ′,−λ sin
1
2θe

−2iλ′φ. (2.342)

This leads to
u′D
†uD = 2χ

′†χ(δλ′,λh̄k
0 + δλ′,−λmc). (2.343)

We shall also need the nonrelativistic expansion of uD. From (2.331) and
with (1 + x)1/2 ≈ 1 + x/2− x2/8,

ur,l = (h̄k
0)1/2(1± σk/k0)1/2χ ≈ (h̄k0)1/2(1± h̄σk/2mc− h̄2k2/8m2c2)χ.

(2.344)
In this limit, the large and small components (2.151) of uD become useful,

ug = 2
−1/2(ur + ul) = (2mc)

1/2(1 + h̄2k2/8m2c2)χ, (2.345)

uf = 2
−1/2(ur − ul) = (2mc)

−1/2h̄σkχ, (2.346)

because uf vanishes for k → 0. However, (2.345) is dangerous because it
suggests +h̄2k2/8m2c2 as a relativistic correction to the nonrelativistic for-

malism. This is correct only if one renormalises u†DuD to 2mc instead of the
2h̄k0 of (2.339).
The helicity basis is by no means necessary for handling the Pauli matrices

in Lorentz transformations. The algebra (2.52) shows that the most general
function is in fact linear in σ. And as (γ5)2 = 1, this applies also to the
combination γ5σ. By squaring, one easily verifies

eηα/2 = (2γ + 2)−1/2(γ + 1 + γ5σkh̄/mc). (2.347)

Nevertheless, the previous square roots are more compact. They are very
convenient in bilinear forms. Consider for example the “spin summation”

Σu = Σmsu(ms)u
†(ms) = h̄Σms(k

0+ γ5kσ)1/2χ(ms)χ
†(ms)(k

0+ γ5kσ)1/2,
(2.348)

which appears in the calculation of probabilities. The Pauli spinors χ form
a complete set:

Σmsχ(ms)χ
†(ms) =

(
1 0
0 1

)
≡ 1. (2.349)

In the Dirac chiral basis (2.91), Σu has the form

Σu =

(
Σrr Σrl
Σlr Σll

)
, (2.350)

and with (2.331), one finds

Σu = h̄(k
0 + γ5kσ) +mcβ. (2.351)

The mc arises as h̄(k0 ± kσ)1/2(k0 ∓ kσ)1/2.
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3.1 The Photon Field

In classical electrodynamics, the energy contained in the vacuum fields is

Hvaccl = (8π)
−1 ∫ d3r(E2 +B2). (3.1)

On the other hand, Planck’s postulate (1901) requires that in a cavity with
enumerable modes i = 1, 2, 3, 4 . . . of frequencies ωi, the energy measurement
in a given mode yields one of the possible values Eni = nih̄ωi, where ni is the
number of photons in that mode. The interaction between the photons is very
small, such that the photon numbers in different modes can be determined
simultaneously. The state of the electromagnetic field in a cavity can be
expanded in “Fock states” with given photon numbers ni in the modes |i〉,

ψF = |n1, n2, n3, . . .〉, NiψF = niψF . (3.2)

The Ni are number operators, and the photon field Hamiltonian is

HF =
∞∑
i=1

h̄ωiNi. (3.3)

Its lowest eigenvalue is zero, the corresponding Fock ground state is

ψ
(0)
F = |0, 0, 0, . . .〉, HFψ

(0)
F = 0. (3.4)

A number operator N = a†a was already discussed in Sect. 1.9; the matrix
representations of a and a† were given in (1.244). It was Dirac (1926, 1927)

who proposed to use ai and a
†
i as absorption and emission operators for

photons in a mode |i〉. Thus a possible form for Ni arises from

[ai, a
†
i ] = 1, Ni = a

†
iai. (3.5)

The condition of simultaneous measurability of different modes, [Ni, Nj ] = 0,
is satisfied for

[ai, a
†
j ] = δij , [ai, aj ] = 0. (3.6)
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When E and B are taken as linear combinations of these ai and a
†
i , a form

similar to (3.1) leads automatically to (3.3), as will be seen below. It is con-
venient to express both E and B in terms of the four-potential Aµ and to
keep time-independent parts of Aµ unquantized, as “classical” fields Aµcl. The
Coulomb gauge ∇A = 0 is particularly convenient, as a static charge den-
sity ρel implies a time-independent A

0, A0 = A0cl. Thus only a part of the
vector potential becomes a nontrivial operator,

Atot = Acl(r) +A, A = c
∑
i

(h/ωi)
1/2(aiAi + hc), Ai = Ai(r)e

−iωit,

(3.7)
where hc stands for “Hermitian conjugate”, and h = 2πh̄. The normalization
factor (h/ωi)

1/2 refers to the following orthogonality relations

〈i|j〉 = ∫ d3rA∗iAj = δij , (3.8)

which will be verified below. The Ai satisfy the Helmholtz equation that
follows from (1.58) in vacuum, and they also satisfy the Coulomb gauge
condition:

(ω2i /c
2 +∇2)Ai = 0, ∇Ai = 0. (3.9)

Let E and B now denote the pure quantum fields:

E = −∂tA/c = i
∑
i

(hωi)
1/2[aiAi(r)e

−iωit − hc], B =∇×A. (3.10)

Clearly, the hermiticity of E and B requires A = A†. This introduces prod-
ucts aiaj and a

†
ia
†
j into the integrand of A (3.1) which change the photon

numbers by two; these must somehow disappear from the final result (3.3).
The Coulomb gauge condition admits two different modes i for fixed ωi. Re-
placing the cavity walls by periodic boundary conditions allows the use of
the convenient plane waves, normalized according to (1.253):

Ai = ε
(i)(k)eikr−iωtV −1/2, kε(i)(k) = 0, ω2 = c2k2. (3.11)

The orthogonality of the two different polarization vectors ε(i) (i = 1, 2) is
understood in (3.8). When the z-axis is taken along k, they may be taken as
unit vectors along the x- and y-axes, ε(1) = (1, 0, 0), ε(2) = (0, 1, 0). But in
the summation over many modes, it is best to keep a fixed coordinate system.
The cartesian components of k are expressed in terms of their spherical ones:

k = (kx, ky, kz) = k(sin θk cosφk, sin θk sinφk, cosφk). (3.12)

The transversality condition kε = 0 together with the choice ε
(2)
z = 0 lead to

ε(1) = (cos θk cosφk, cos θk sinφk,− sin θk), (3.13)

ε(2) = (− sinφk, cosφk, 0) = ẑ × k̂/ sin θk. (3.14)
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x

y

z

k

ε(1)

ε(2)ϑk

ϕk

Fig. 3.1. The linear polarization vectors of A. The vectors k, ε(1), ε(2) form a rect-
angular system

For light of circular polarization (“helicity”) λ = ±1, one uses

ε(λ)(k) = 2−1/2(−λε(1) − iε(2)). (3.15)

We are now ready to insert E (3.10) into the form (3.1):

(8π)−1 ∫ d3rE2 = −h̄/4 ∫ d3rΣi,j(ωiωj)
1/2(aiAi − a

†
iA
∗
i )(ajAj − a

†
jA
∗
j ).
(3.16)

The products that contain one a and one a† are reduced to a single sum by
the orthogonality relations (3.8):

HE,d =
1
4Σih̄ωi(aia

†
i + a

†
iai) =

1
2Σih̄ωi(Ni +

1
2 ). (3.17)

This is half of the desired operator HF , plus an unwanted zero-point energy,
1
2 h̄ωi per mode. The zero-point energy is physical in cases where a harmonic
oscillator potential is fitted to the minimum of the potential curve of a di-
atomic molecule, and also when Landau levels are joined to a region of vanish-
ing magnetic field. Here, however, it is of no significance. It is eliminated by
stipulating a “normal ordering” or “Wick product” in E2 and also in B2, in
which all lowering operators a appear to the right of all raising operators a†:

HF = (8π)
−1 ∫ d3r(: E2 : + : B2 :), : aa† :≡ a†a. (3.18)

The integrals over aiAiajAj and a
†
iA
∗
i a
†
jA
∗
j are also simplified by orthog-

onality relations. The plane waves Ai(r), (3.11) without the factor e
−iωt,

satisfy
A∗i (r) = A−i(r), (3.19)

where the index −i stands for −k in this particular case. However, (3.19)
applies to arbitrary modes if we understand i as an index for all addi-
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tive quantum numbers of each mode. For spherical modes, for example, one
has

(Y ml (θ, φ))
∗ = Y −ml (θ, φ). (3.20)

The reason for this symmetry is the reality of the Helmholtz equation (3.9);
Ai+A

∗
i is also a solution with the same ωi; the modes in a cavity are in fact

real, not complex (see below). Thus there remains the following nondiagonal
sum in addition to (3.17):

HE,nd = −
1
4Σih̄ωi(aia−ie

−2iωit + a†ia
†
−ie

2iωit). (3.21)

It is cancelled by a corresponding term in ∫ d3r : B2 : /8π; the cancellation
is relatively complicated for arbitrary orbitals. One uses

∇(A×B) = B(∇×A)−A(∇×B) (3.22)

and inserts B = ∇×A:

(∇×A)2 = ∇(A× (∇×A)) +A(∇× (∇×A)). (3.23)

The first term is a divergence and vanishes after integration, and the second
term may be rewritten as −A∇2A in the Coulomb gauge, see the derivation
of (1.58). This equals +ω2A2/c2 according to the Helmholtz equation. To
summarize, the contributions of E2 and B2 to HF are equal in the diagonal
and opposite off-diagonal.
Knowing that the time-independence of HF expresses the energy conser-

vation of the free electromagnetic field, the proof that (3.18) is also time-
independent can be greatly simplified, see Sect. 3.4.
Photons are the excitations of the free electromagnetic field. The com-

mutators of the field operators can also be derived from the postulate of
canonical field quantization, without reference to the excitation spectrum.
The field equations are derived from a Lagrangian free field density,

LF (A, ∂µA) = −(16π)
−1FµνF

µν = (8π)−1(E2 −B2), (3.24)

(with Fµν defined in (2.19)), by the principle of least action:

δC ∫ d
3rdtL = 0. (3.25)

The index C on the variational symbol δ restricts the variation of A to the
space of functions satisfying the Coulomb gauge ∇A = 0. The canonical
momentum field is

Π = ∂L/∂(∂0A) = −E, (3.26)

and H =Π∂0A− L. The postulate of canonical field quantization is

[Ai(r),Πj(r
′)] = ih̄δ

(t)
ij δ(r − r

′), δ
(t)
ij = δij − ∂i∂j/∇

2. (3.27)
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The commutator is analogous to that of r and p, but it is complicated here
by the condition ∇A = 0, which requires [Σ3i=1∂iAi(r),Πj(r

′)] = 0.
In macroscopic matter, the electric polarization p of individual atoms

of density Na(r) adds up to a macroscopic polarization P = Nap. When
the magnetic polarization is negligible, the macroscopic Maxwell equations
are

D = E + 4πP , ∇D = 4πρmov, ∇×B − ∂0D = 4πjel/c, (3.28)

where ρmov is the movable part of ρel. P can be written as a power series in
the components Ei of E, and frequently P = χ(r)E is a good approxima-
tion:

D = εE = −ε∂0A, ε = 1 + χ ≡ n
2, (3.29)

where n is the index of refraction. Dielectrics have ρmov = 0, such that the
Helmholtz and Coulomb gauge equations remain valid, although in slightly
modified forms:

(ω2i n
2/c2 +∇2)Ai = 0, ∇(εA) = 0. (3.30)

The Hamiltonian (3.18) is replaced by

HF = (8π)
−1 ∫ d3r : (ED +B2) : . (3.31)

The canonical field quantization is changed accordingly, but the re-
sulting form (3.3) of the energy operator does not change! One could
write

[ãi, ã
†
j ] = δij , Ni = ã

†
i ãi (3.32)

to notify that these operators refer to “polarons”. For constant n, the modes
of these particles have c replaced by c/n. The important point is that one has
avoided complicated interactions by new decoupled modes. The correspond-
ing quanta are frequently called quasiparticles. The underlying local fields (to
the extent that they exist) are “quasifields” or “effective fields”. Sometimes,
quasiparticles exist only in a few selected modes. A spectacular example is
“squeezed light”, where in a certain mode m raising and lowering operators
get mixed:

ãm = µam + νa
†
m, |µ|

2 − |ν|2 = 1, [ãm, ã
†
m] = 1, Ñm = ã

†
mãm. (3.33)

In some applications, ai and a
†
i are eliminated in favour of their Hermitian

components, which were called ξ and−i∂ξ in the harmonic oscillator example.
For light, one defines the “quadrature” components,

X1 =
1
2 (a

† + a), X2 =
1
2 i(a

† − a), [X1,X2] =
1
2 i, (3.34)
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for each mode separately. The electric field (3.10) for the plane waves (3.11)
is then for real ε

E(r, t) = 2(hω/V )1/2ε(X1 sin(ωt− kr)−X2 cos(ωt− kr)). (3.35)

The matrix elements of a and a† between Fock states follow from (1.225)
and its Hermitian adjoint,

〈n′|a|n〉 = δn′,n−1
√
n, 〈n′|a†|n〉 = δn′,n+1

√
n′. (3.36)

Consequently, all Fock expectation values vanish, 〈n|A|n〉 = 〈A〉n = 0. In the

complete field operator A(r, t), each ai and a
†
i changes the photon number

of exactly one mode:

〈n′1n
′
2|A/ch̄

1/2|n1n2〉 = ω
1
2
1

(
δn′1,n1−1

√
n1A1 + δn′1,n1+1

√
n′1A

∗
1

)
δn′2,n2

+(1↔ 2) .
(3.37)

However, actual fields can rarely be described by a single quantum state; they
require a density matrix formalism.
In the continuum limit, one considers instead of HF the energy density

eF = HF /V ,

eF = HF /V = Σλ ∫ d
3kNλ(k)h̄ω/8π

3, [aλ(k), a
†
λ′(k)] = 8π

3δλλ′δ3(k − k
′).

(3.38)

3.2 C, P and T

The Maxwell equations (2.20) are invariant under the charge conjugation
operator C, which reverses the sign of the four-potential Aµ = (φ,A):

AµC = −A
µ : EC = −E, BC = −B. (3.39)

The extension of this invariance to quantum mechanics requires a sign change
of the electric current, jµel,C = −j

µ
el. We have argued in Sect. 2.2 that j

µ
el differs

from the 4-current density jµ only by the constant q, jµel = qj
µ. Therefore C

invariance of the Maxwell equations requires

jµC = −j
µ. (3.40)

With πµ = ih̄∂µ − (q/c)Aµ, the charge-conjugate 4-momentum is

πµC = ih̄∂
µ + (q/c)Aµ = −πµ∗, (3.41)

where the star denotes complex conjugation. A Klein-Gordon equation (1.66)
containing AµC is

[(−π∗µ)(−π
µ∗)−m2c2]ψC = 0. (3.42)
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This is nothing but the complex conjugate of the original KG equation,

ψC = ψ
∗. (3.43)

In this sense, the KG equation is C-invariant. The antisymmetry of its current
is satisfied by (2.27), jµ = ψ∗πµψ + ψπµ∗ψ∗; the minus sign arises from
πµ → −πµ∗, πµ∗ → −πµ.
The nonrelativistic Schrödinger equation (1.67) is not C-invariant, be-

cause it is linear in π0 = ih̄∂0 − (q/c)A0. C invariance is responsible for
the profound differences between nonrelativistic approximations and the rel-
ativistic formalism and its physical consequences. As the KG operator is
second-order in π0, the eigenvalue ωn of i∂t need not be positive. For a gen-
eral ψ(r, t), the complete sum in (1.71) contains also negative energy states.
The latter ones exist for ω down to −∞. With interactions included, all
charged particles could fall infinitely in energy, for example by emitting ra-
diation. Without charge conjugation, one may rule that all expansion coeffi-
cients vanish when ωn < 0. But ψC = ψ

∗ changes all e−iωt to e+iωt and turns
all positive energies negative. On the other hand, possible negative energy
states ψ(−) in ψ are turned into positive energy states. The only known way
out is to replace ψ by an operator

Ψ = Ψ (+) + Ψ (−), Ψ (+) = Σiaiψie
−iωit, Ψ (−) = Σia−iψ−ie

iωit. (3.44)

ai is a meson lowering operator analogous to the ai (3.5) for a photon in the

mode i, and a−i is a raising operator analogous to the a
†
i for a photon, but

this time for a new particle, namely a meson of opposite electric charge. To
emphasize this point already in the notation, one frequently writes

a−i = b
†
i , a

†
−i = bi. (3.45)

The neutral pion π0 has no electric charge and has in fact ai = bi, which
makes Ψ a Hermitian operator as in the case of light. For the π− on the other
hand, the new particle required by charge conjugation is the π+, which is
also called the antiparticle of the π− (or vice versa). The operator Ψ is then
not Hermitian, one has

Ψ† = Σia
†
iψ
∗
i e
iωit +Σia

†
−iψ

∗
−ie

−iωit. (3.46)

Still, for Aµ = 0, there is no formal difference, because the free KG equations
for ψ and ψ∗ are identical. For Aµ �= 0, there is also no difference as long as
Aµ is charge conjugated according to (3.39). But if the total Aµ contains an
external, “classical” piece as in (3.7), the states are different. In particular,
an attractive Coulomb potential has bound states for π− but not for π+. The
unbound scattering states of π+ satisfy the equation for π− at negative ω.
More importantly, the positron wave functions in β+ decays (see below) may
be calculated from the Dirac equation for electrons.
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Any closed system is charge conjugation invariant, apart from “weak in-
teractions”. Thus, if the Coulomb potential is provided by a proton nucleus p,
there should also exist an “antiproton” nucleus p, whose potential is repul-
sive for π− but attractive for π+. C invariance requires profound deviations
from the traditional Hamiltonian quantum mechanics of binary atoms, to be
discussed in Chap. 4.
Atoms have fixed numbers of electrons, but as Ψ removes an electron,

it does not commute with the electron number operator. The connection
between wave functions ψ and the operator Ψ is complicated. The aim of
relativistic quantum mechanics is to approximate the action of Ψ by effec-
tive operators in the subspaces of fixed electron numbers. One normally sets
Ψ (−) = 0. When necessary, this can be formalized by projectors on positive-
energy states. However, it would be inconsistent to keep such projectors in
completeness relations.
The Dirac equation is also charge conjugation invariant, but the necessary

transformation requires several steps. We take the form (2.8) but express α
as γ5σ in order to separate the Pauli algebra from the Dirac algebra:

(π0 − γ5σπ)ψD = mcβψD, (π
0∗ − γ5σ∗π∗)ψ∗D = mcβψ

∗
D. (3.47)

σx and σz are real, but σy is imaginary, σ
∗
y = −σy. There exists no unitary

matrix that would transform all three σ∗ back to σ. It is however possible
to transform σ∗ into −σ:

σ∗ = −U†CσUC , UC =

(
0 −1
1 0

)
= e−iπσy/2 = −iσy, U

†
CUC = 1, (3.48)

(π0∗ + γ5σπ∗)UCψ
∗
D = mcβUCψ

∗
D. (3.49)

Next, the sign of the second operator in the bracket is changed by a β-
transformation as in parity, using γ5β = −βγ5:

(π0∗ − γ5σπ∗)βUCψ
∗
D = mcUCψ

∗
D. (3.50)

In the final step, the sign of the left-hand side of (3.50) is switched by a γ5-
transformation,

(−π0∗ + γ5σπ∗)ψC = mcβψC , ψC = βγ
5UCψ

∗
D. (3.51)

This replaces the spinless transformation (3.42); it is surprisingly compli-
cated. The joint operator CP fo charge conjugation and parity transforma-
tion is simpler, because the latter one brings another factor β,

ψCP (r) = γ
5UCψ

∗
D(−r). (3.52)

It is accompanied by the CP -transformation of Aµ,

A0CP (r) = −A
0(−r), ACP (r) = A(−r). (3.53)
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It has been found that the weak interaction is neither C nor P -invariant, but
that the ordinary beta decay (p→ e+νn) is still CP invariant. In other forms
of the weak interaction, CP violation is small. If one postulates the invariance
of quantum mechanics under transformations that can represent classical
Lorentz transformations including space inversion, then one can comprise
beta decay only by taking CP as the space inversion operator. The problem
is irrelevant from the mathematical point of view, as the group SL2(C) (2.99)
has no space inversion.
The Maxwell, KG and Dirac equations are also invariant under time re-

versal T , t′ = −t, r′ = r:

A0T (t, r) = A
0(−t, r), AT (t, r) = −A(−t, r), (3.54)

π0T = π
0∗, πT = −π

∗, (3.55)

Aµ∗ is to be taken at time −t. For T , the matrix transformation (3.49) is
already sufficient, because it changes exactly the signs of the three vector
components:

ψT (t, r) = UCψ
∗
D(−t, r). (3.56)

The product CPT is particularly simple: With UCU
∗
C = U

2
C = 1 and (ψ

∗
D)
∗ =

ψD,
ψCPT (x

µ) = γ5ψD(−x
µ) = ψ5D(−x

µ) (3.57)

in the notation of (2.107).
We still have to check the antisymmetry of the Dirac current jµ = jµr +j

µ
l

(2.320) under charge conjugation, jµC = −j
µ, as required by the Maxwell

equations. We begin with jµl /c = ψ
†
l σ
µ
l ψl and express this form in terms of

the transposed spinors,

jµl /c = ψl,trσ
µ
l,trψ

∗
l = ψl,trσ

µ∗
l ψ

∗
l = ψl,trU

†
Cσ
µUCψ

∗
l (3.58)

according to (3.48). Looking now at (3.51), ψC = βγ
5UCψ

∗
D, writing σ

µ as
γ5βσµβγ5 and remembering γ5 = −1 for ψl as well as βψl = ψr, one finds
jµl = j

µ
r,C and correspondingly j

µ
r = j

µ
l,C , which disagrees with the expected

jµC = −j
µ. To resolve this contradiction, one must replace the Dirac spinor

function ψD(r, t) by an operator ΨD(r, t) that lowers the charge of the state
on which it operates by one unit: It destroys an electron with Ψ (+) ≡ ΨDe and
creates a positron with Ψ (−) ≡ ΨDp. The minus sign arises from the postulate

that the components Ψα (α = 1, 2, 3, 4) of ΨD and Ψ
†
β of Ψ

†
D anticommute.

The precise anticommutators will be derived in Sect. 3.3, they are

{Ψ†α(r, t), Ψβ(r
′, t)} = δαβδ(r − r

′), {Ψα(r, t), Ψβ(r
′, t)} = 0. (3.59)

The Dirac current operator will be denoted by jµΨ in the following. As the

form (3.58) has Ψ†l and Ψl in transposed order, it has in fact an extra mi-

nus sign from (3.59), and the correct form is −Ψl,trσ
µ
l,trΨ

†
l,tr + 2δµ0δ(0). The
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last term arises from Σα,βδαβσ
µ
l,tr,αβ = trσ

µ
l = 2δµ0. It is removed by an

antisymmetrization of jµΨ ,

jµΨ/c =
1
2 [Ψ

†
D, γ

µΨD] =
1
2 (Ψ

†
rσ
µΨr − Ψr,trσ

µ
trΨ
†
r,tr + Ψ

†
l σ
µ
l Ψl − Ψl,trσ

µ
l,trΨ

†
l,tr).
(3.60)

This antisymmetrization is always understood but rarely written explicitly.
The resulting density operator ρΨ is the antisymmetrised version of (2.312),

ρΨ =
1
2 [Ψ

†
D, ΨD] =

1
2 (Ψ

†
rΨr − Ψr,trΨ

†
r,tr + Ψ

†
l Ψl − Ψl,trΨ

†
l,tr). (3.61)

Commutators in (3.59) would lead to ρΨ = 0. We shall see later that the
anticommutator form (which is required by charge conjugation) entails the
Pauli principle.
The precise meaning of the operators ai and a−i in Ψ (3.44) is best ex-

plained for a process in which a free electon of energy h̄ck0, momentum h̄k
and spin component ms is removed, for example in the reaction e

−p → νn
(weak electron capture), where the proton (p) is transformed into a neu-
tron (n), and the electron into a neutral and massless spinor particle called
neutrino. The absorption of the initial and creation of the final particles re-
quires the field operator product Ψ†nΨpΨ

†
νΨ . For the electron field Ψ , we only

need the component

Ψk,ms = e
ikr[ak,mse

−iωtu(k0,k) + a−,k,mse
iωtu(−k0,k)], (3.62)

with u given by (2.331). The scattering theory of Sect. 4.2 predicts the con-
servation of energy and momentum, ω+ωp = ωn+ων , and k+kp = kn+kν .
These relations can only be saved if the antiparticle created by a−,k,ms ap-
pears in the final state instead of the initial state, such that for negative ω,
energy conservation reads

ωp = ωn + ων + (−ω). (3.63)

Momentum conservation may be written as

kp = kn + kν + (−k). (3.64)

Consequently, the momentum of the object created by a−,k,ms is −k, not k.
The argument is extended to other quantum numbers which are additively
conserved, in particular to the electric charge: As the removed electron has
q = −e, a created anti-electron has q = +e, which explains the name
“positron”. When the ak,ms of (3.62) contributes to e

−p → νn, the a−,k,ms
contributes to the “β+-decay” p → nνe+. As a free proton is lighter than
a free neutron, β+-decay occurs only in certain nuclei.
The summation index i of Ψ (−) is normally inverted to −i as indicated

already in (3.45). One thus writes

ψ−i = e
−ikriv, v = γ5u(−k0,−k,−ms)/i = γ

5(h̄k0 + h̄kα)1/2χ(−ms);
(3.65)
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γ5v agrees with −βγ5UCu∗ apart from a phase, UCχ(ms) = msχ(−ms). The
γ5 endows vl with an extra minus sign, which ensures uv ∼ −mc+mc = 0,
instead of 2mc as in (2.341).

3.3 Field Operators and Wave Equations

The replacement of the one-electron wave function ψD by an electron field
operator ΨD has far-reaching consequences. The precise Dirac equation ap-
plies no longer to single-electron states as in (2.87), but to the field operator
itself. With πµ = ih̄∂µ + (e/c)Aµtot,

ih̄∂tΨD = [−eA
0
tot + (−ich̄∇+ eAtot)α+mc

2β]ΨD, (3.66)

where also Aµtot contains field operators A
µ in addition to classical fields Aµcl:

Atot = Acl +A, A
0
tot = A

0
cl +A

0, −eA0cl = V (r). (3.67)

In the Coulomb gauge, A0tot satisfies the Poisson equation (1.58),

−∇2A0tot = 4π(ρcl − eρΨ + ρ
′
el). (3.68)

In the case of atoms, ρcl is the nuclear charge density, ρΨ is given by (3.61)
and ρ′ is the charge density of muon, pion etc fields. In the following, ρ′el is
neglected, and the antisymmetrization of ρΨ is omitted. The solution (1.59)
of the Poisson equation for the operator part A0 is then

A0(r, t) = −e ∫ d3r′ρΨ (r
′, t)/|r − r′|, ρΨ = Ψ

†
D(r

′, t)ΨD(r
′, t). (3.69)

The physical meaning ofA and A0 is then very different: WhileA changes the
photon number by ±1 according to our discussion of Sect. 3.1, A0 creates or
absorbs electron-positron pairs. After elimination of A0, the Dirac equation
becomes a nonlinear integro-differential equation for the field operator ΨD.
Wave equations for atoms with electrons are easily derived within a Fock

space for electrons and positrons. We expand ΨD in terms of one-electron or-
bitals ψiD(r) exp(−iωit) and the complex conjugates of one-positron orbitals,

ΨD = ΨDe + ΨDp, ΨDe = ΣibiψiD(r)e
−iωit, ΨDp = Σid

†
iψiD−(r)e

iωit.
(3.70)

The operator bi is analogous to the ai of Sect. 3.1; it removes and electron
from the orbital ψiD(r). d

†
i creates a positron, b

†
i creates an electron, and

Ni = b
†
i bi is the electron number operator for the orbital i. Surprisingly, this

is consistent with the use of anticommutators (Jordan 1927, Jordan and Klein
1927)

bib
†
j + b

†
jbi = δij (3.71)
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instead of the harmonic oscillator commutators bib
†
j − b

†
jbi = δij , provided

one has b2i = 0: The necessary property of a raising operator b
† is

Nb†|n− 1〉 = n1/2N |n〉, N = b†i bi, (3.72)

compare (1.227). For the special case (b†)2 = 0 this is consistent with

b†bb†|n− 1〉 = b†(1− b†b)|n− 1〉 = b†|n− 1〉. (3.73)

A good approximation for an electron bound in a state |a〉 to a nucleus is
expressed in terms of the electron-positron vacuum |0〉 as follows:

ψa(r1, t) = 〈0|ΨD(r1, t)b
†
a|0〉, (3.74)

because of 〈0|d†i = 0 and 〈0|bib
†
a = 0 for i �= a. The index i = a picks the

desired orbital.
We now consider a simplified two-electron state, in which the repulsion

between the two electrons is neglected. That is to say, the electrons occupy
two orbitals |a〉 and |b〉:

ψab(r1, r2, t) = 2
−1/2〈0|ΨD(r1, t)ΨD(r2, t)b

†
bb
†
a|0〉. (3.75)

The factor 2−1/2 ensures normalization, see below. The operator product
contains a double sum,

ΨD(r1, t)ΨD(r2, t) = Σi,jbibjψiD(r1)ψjD(r2)e
−i(ωi+ωj)t. (3.76)

Two combinations of indices contribute to (3.75), namely i = a, j = b and
i = b, j = a. The first combination delivers the product ψa(r1)ψb(r2). For
the second one, the two ΨD’s must be put into inverse order before ΨD(r1, t)

can compensate b†b. This causes a change of sign according to (3.59). The
resulting two-electron state is

ψab = 2
−1/2[ψa(r1)ψb(r2)− ψb(r1)ψa(r2)]e

iωt, ω = ωa + ωb. (3.77)

It vanishes for a = b, thus establishing the Pauli principle (Pauli 1925): an or-
bital can accomodate only one electron. Even in the absence of any interaction
between the electrons, factorizing states ψa(r1)ψb(r2) do not exist. Electrons
cannot be numbered, r1 is used for the position of any of the elctrons.
As an operator in the photon Fock space, the “electron wave function”

(3.74) satisfies (3.66) for A0 = 0,

ih̄∂tψ1 = H1ψ1, H1 = V (r1) + [−ih̄∇1+ eAcl(r1) + eA(r1, t)]α1+mc
2β1.
(3.78)

As A(r1) changes the photon number by one unit, ψa(r1, t) has no diag-
onal elements in the photon number space. The operator A0 of (3.69) disap-

pears because of 〈0|Ψ†D = 0. When (3.78) is applied to the result (3.77) for
|ab〉, one gets
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ih̄∂t|ab〉 = (H1 +H2)|ab〉, (3.79)

which is of limited use because it misses the Coulomb repulsion between the
two electrons,

V12 = e
2/r12, r12 = [(r1 − r2)

2]1/2. (3.80)

r1

r2 r12

ϑ12

Fig. 3.2. The angle ϑ12

For a more general state ψD2 which is not an antisymmetrized product
of orbitals, one must replace b†ab

†
b|0〉 by a state |ee〉 which is only specified

indirectly by its eigenvalue −2e of the total charge operator Q which is con-
served:

Q = −e ∫ d3rρΨ (r, t), Q|ee〉 = −2e|ee〉. (3.81)

With the normalization left open, the generalization of the ansatz (3.75) is

ψD2 = 〈0|ΨD(r1, t)ΨD(r2, t)|ee〉 ≡ 〈0|Ψ1Ψ2|ee〉. (3.82)

The field equation (3.66) for Ψi = ΨD(ri, t) (i = 1, 2) is now written in the
more compact form

ih̄∂tΨi = [Hi − eA
0(ri, t)]Ψi. (3.83)

And as H2 does not operate on Ψ1, one obtains for ψD2

(ih̄∂t−H1−H2)ψD2 = 〈0|[(ih̄∂t−H1)Ψ1]Ψ2+Ψ1[(ih̄∂t−H2)Ψ2]|ee〉. (3.84)

The combination 〈0|(ih̄∂t − H1)Ψ1 = 〈0|A0(r1, t)Ψ1 vanishes again because
of 〈0|A0 = 0. The second round bracket is −eA0(r2, t), for which we insert
(3.69):

(ih̄∂t −H1 −H2)ψD2 = −e〈0|Ψ1 ∫ d
3r′Ψ ′†Ψ ′(e/|r2 − r

′|)Ψ2|ee〉. (3.85)

The operator Ψ ′† = Ψ†(r′, t) is now anticommuted to the left of Ψ1, where one
may use 〈0|Ψ ′† = 0. In this procedure, however, there remains the following
anticommutator:

∑
β

∫
d3r′
{Ψα1(r1), Ψ

†
β(r

′)Ψβ(r
′)}

|r2 − r′|
=

∫
d3r′
δ(r1 − r′)Ψα1(r

′)

|r2 − r′|
=
Ψα1(r1)

r12
.

(3.86)
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Thus, (3.84) finally becomes

(ih̄∂t −H1 −H2 − V12)ψD2 = 0, (3.87)

which is the desired “Dirac-Coulomb” equation. The postulate of canonical
field quantization was formulated for the electromagnetic field in (3.27), but
it was not used there. Instead, the formalism was based on the counting op-
erator N for free field quanta, namely photons or polarons. An analogous
Fock space basis exists also for the electron field operator, but the decompo-
sition into single-electron orbitals neglects their mutual Coulomb repulsion,
as we have seen. For comparison, the interaction between photons or polarons
is so weak that one can have large amounts of quanta before it is felt. For
electrons, the canonical field quantization is most conveniently formulated if
the field equation (in this case the Dirac equation) is already known: There
exists a QED Hamiltonian HQED as a space integral over products of field
operators, such that the field equation follows from the commutator between
the field and HQED,

ih̄∂tΨ(r) = [Ψ(r),HQED], (3.88)

One piece of HQED is already known, namely HF (3.18), which commutes
with Ψ = ΨD. We now add the electron-positron piece,

He = ∫ d
3r′Ψ†D(r

′)(V − 12eA
0 + cπα+mc2γ0)ΨD(r

′). (3.89)

To obtain the field equation as a local differential equation from (3.88), it is
clear that Ψ(r) must either anticommute with Ψ(r′), in which case its an-
ticommutator with Ψ†(r′) must have the form (3.59) in order to cancel the
∫ d3r′, or it must commute with Ψ(r′), in which case a commutator must
be used (see below). For electrons and also for muons, charge conjugation
invariance requires anticommutators, as we have seen. In the particular case
of (3.89), note the factor 12 in front of A

0. It disappears in the Dirac equation

because Ψ†DA
0ΨD is quadratic in Ψ

†
D, compare (3.69). The complete Hamil-

tonian of quantum electrodynamics is

HQED = HF +He +Hµ +Hscalar + · · · (3.90)

Here Hscalar contains the contributions of “scalar fields” for the charged spin-
less particles, such as π±, see Sect. 4.9. The dots represent the Hamiltonians
of possible additional fields that contribute also to ρ′el.
Both the Maxwell (2.20) and Dirac (3.66) field equations may be derived

from the principle of least action (3.25), applied to the Lagrangian

L = (4π)−1[ΨD(γµπ
µ −m)ΨD −

1
4FµνF

µν ], πµ = ih̄∂µ − eAµ. (3.91)

As we know these equations beforehand, there seems no need to define L. But
the space integrals (“loops”) of higher order perturbations are frequently di-
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vergent, in gross contradiction with the spirit of small perturbations. Already
the lowest nonvanishing “self-energy”, depicted by graph a in Fig. 3.3 below,
produces an infinite energy shift. It can be compensated in (3.91) by an ad
hoc mass counterterm ∆m(1)ΨDΨD, such that m in (3.91) has little to do
with the measured electron mass. The same complication arises with the
electric charge e in (3.87), which gets “renormalized” by the “vacuum polar-
ization”. The first-order mass renormalization is nicely explained in the book
of Sakurai (1967). A more convenient method is the “dimensional regular-
ization” (see Sect. 5.3). For the QED Lagrangian (3.91), renormalization can
be extended to all orders, leaving behind smaller and smaller finite terms.
Such a field theory is called “renormalizable”. Until Sect. 5.3, our masses and
charges will be the physical, “renormalized” ones, e = 0.08542 (1.148) and
mec

2 = 511 keV for the electron. The corresponding L (3.91) is not particu-
larly fundamental.
As the electron field operator disappears from equations such as (3.87), the

Pauli principle becomes a separate postulate. The permutation operator P12
for two “identical particles” such as two electrons commutes with H = H1 +
H2 + V12, thus allowing common eigenstates of H and P12:

P12H = HP12, P12ψ = η12ψ. (3.92)

With P 212ψ = ψ, the eigenvalues η12 are +1 and −1. The Pauli principle
excludes the value +1 by hand.
Nuclear motion may be included in (3.87) by a nuclear Hamiltonian term,

normally in a nonrelativistic form:

Hn = −Σi∇
2
ni/2mni +Σi<jZiZje

2/rn,ij .

Atoms have only one nucleus, but molecules such as H2 or N2 may have
several identical nuclei. For any two identical particles i and j, the wave func-
tion ψe,n of the complete system of electrons plus nuclei has ηij = (−1)2si ,
si being the spin of particle i. This is the famous “spin-statistics” theorem.
For integer si, it is known as the “Bose-Einstein” principle. It has drastic
consequences particularly for si = 0: In the vibrational ground state of N2,
all odd rotational excitations are missing, provided both nitrogen nuclei are
of the spinless 14N type.
Like the Pauli principle, the Bose-Einstein principle follows from quan-

tum field theory: The spinless field operator satisfies a Klein-Gordon equa-
tion. The charge conjugation symmetry (3.40) of its current operator requires
commutation relations instead of the anticommutation relations (3.59),

[Ψ†(r, t), Ψ(r′, t)] = δ(r − r′), [Ψ(r, t), Ψ(r′, t)] = 0. (3.93)

However, local quantum fields for isotopes such as 14N, 13N are of little use
in other contexts. The spin-statistics theorem is probably more fundamental.
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3.4 Breit Operators

The “Dirac-Coulomb equation” (3.86) still contains the photon field operators
Ai ≡ A(ri, t). Although their expectation values 〈A〉F vanish for all Fock
states (3.2), it must be remembered that a general state of the electromagnetic
field is a superposition of Fock states. The nondiagonal matrix elements of A
(3.37) appear in second order perturbation theory. In that order, two terms
arise from the combination A1A2; they can be replaced to some extent by an
equivalent “Breit” operator. For its calculation, we separate the full operator
into an “unperturbed” operatorHC in whichA is missing, and a perturbation
Hper which is linear in A1 and A2:

Hper = Hp1 +Hp2, Hpi = eA(ri, t)αi. (3.94)

The unperturbed Dirac-Coulomb equation reads

HCψ
0
n = E

0
nψ
0
n, HC = H1C +H2C + e

2/r12, (3.95)

HiC = V (ri) + πi,clαi +mc
2βi, πi,cl = −ih̄∇i + eAcl(ri). (3.96)

The standard time-independent perturbation theory for an eigenvalue
equation Hψ = Eψ is needed now to the second order. The first-order shift
vanishes because of 〈A〉 = 0. This is good as A is time-dependent; the time
dependence vanishes in the combination 〈n|Hper|k〉〈k|Hper|n〉.
AsHper (3.94) contains two terms, two factors ofHper produce four terms,

namely H2p1, H
2
p2, and Hp1Hp2 = Hp2Hp1. The first two terms are “self-

energies” and contribute to the Lamb shift (Sect. 5.5); the other two produce
the Breit shift EB,n to order α

4:

EB,n = 2Σk �=n〈n|Hp1|k〉〈k|Hp2|n〉(E
0
n −E

0
k)
−1. (3.97)

In 〈n|Hp1|k〉, only the annihilation part cΣi(h/ωi)1/2aiAi(r1)e−iωit of A
(3.7) contributes, and in 〈k|Hp2|n〉 only the corresponding creation part, con-

taining a†iA
∗
i (r2)e

iωit with the same index i. In the product, the t-dependence
disappears. The summation index k comprises the index i for the cre-
ated photon and an index n′ for the intermediate two-electron states. With
〈0|aia

†
i |0〉 = 1,

EB,n = 2e
2Σi,n′(hc/ωi) ∫ ψ

†
nα1ψn′Ai(r1) ∫ ψ

†
n′α2ψnA

∗
i (r

′
2)/∆E, (3.98)

∆E = E0n −E
0
n′ − h̄ωi. (3.99)

a b1

2

1

2

Fig. 3.3a,b. (a) Self interaction and (b) Photon exchange
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The integration over r1 and r2 is understood in the first integral (remember
that ψ = ψ(r1, r2) is a two-electron wave function); the second integral has
integration variables r′1, r

′
2. The Σn′ includes an integral over the continuum

of unbound electrons, but the main contribution comes from states for which
E0n −E

0
n′ is significantly smaller than h̄ωi. We use the approximation ∆E ≈

−h̄ωi, which leads to a great simplification via the completeness relation
(1.250), which in our case becomes

Σn′ψn′(r1, r2)ψ
†
n′(r

′
1, r

′
2) = δ3(r1 − r

′
1)δ3(r2 − r

′
2), (3.100)

EB,n = −2e
2hcΣi ∫ ψ

†
nα1Ai(r1)α2A

∗
i (r2)/h̄ω

2
i . (3.101)

This has the form of an atomic expectation value. With h = 2πh̄,

EB,n = 〈HB〉n, HB = −4πe
2Σiω

−2
i α1Ai(r1)α2A

∗
i (r2). (3.102)

HB is the Breit operator, which reproduces EB,n already in first-order
perturbation theory. For plane waves A(k) and in the continuum limit
(3.38),

HB = −e
2 ∫ d3k(2π2k2)−1Σ2i=1α1e

ikr1ε(i)α2e
−ikr2ε∗(i). (3.103)

Due to the Coulomb gauge condition kε = 0, the tensor Tlm = Σ
2
i=1ε

(i)
l ε
∗(i)
m

is not simply δlm as for a complete set of vectors, but

Tlm = Σ
2
i=1ε

(i)
l ε
∗(i)
m = δlm − klkm/k

2, (3.104)

such that k · Tm = 0. Consequently,

HB = −e
2 ∫ d3k(2π2k2)−1[α1α2 − (α1k)(α2k)/k

2]eikr, r = r1 − r2.
(3.105)

The first integral gives

∫ d3k(2π2k2)−1eikr = 1/r. (3.106)

It follows from the inverse Fourier transformation (which contains a fac-
tor (2π)−3) of (4.50) below. Strictly, the factor k2 must be replaced
by (k2 + a−2s )

−1; as is an “infrared cutoff” in this context: it re-
moves the photons of wave numbers k having k2 < a−2s from the
field A(r, t). At the end of the calculation, one sends as → ∞. The
second integral is reduced to the first one in two steps: Firstly, one
notes

keikr = −i∇eikr (3.107)

and takes the ∇ outside the integration. Secondly, one writes

k/k4 = −12∇k(1/k
2) (3.108)
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and performs a partial integration over k:

−i∇l ∫ d
3keikrkm/(2π

2k4) = 1
2 i∇l ∫ d

3keikr∂m(2π
2k2)−1 = 1

2∇lrm,
(3.109)

∫ d3keikrklkm/(2π
2k4) = 1

2δlm/r −
1
2rlrm/r

3. (3.110)

The complete final expression is thus (Breit 1929)

HB = −
1
2V12[α1α2 + (α1r)(α2r)/r

2], V12 = e
2/r. (3.111)

Note the change of sign inside the bracket! The Dirac-Breit equation reads

(ih̄∂t −H1 −H2 − V12 −HB)ψD2 = 0. (3.112)

It is easily extended to more than two electrons.
Although Hp1 and Hp2 are time-dependent, the combination (3.97) is

not. There exists a more elegant formalism which removes the t-dependence
directly from A = A(r, t). Using the time-independence of HF = Σih̄ωia

†
iai,

one substitutes
A(r, t) = eitHF /h̄ASche

−itHF /h̄, (3.113)

ASch = e
−itHF /h̄A(r, t)eitHF /h̄. (3.114)

The time derivative of ASch is

ih̄∂tASch = e
−itHF /h̄(HFA−AHF + ih̄[∂t,A])e

itHF /h̄. (3.115)

Any mode Ai in (3.7) satisfies

ih̄[∂t,Ai] = ωiAi, ih̄[∂t,A
†
i ] = −ωiA

†
i , (3.116)

which leads to
ih̄[∂t,A] = [A,HF ], (3.117)

and thus to ih̄∂tASch = 0. The operator e
itHF /h̄ has the physical meaning of

a shift of the time variable by −t, compare (1.275); the connection between
A and ASch is simply

ASch = A(r, 0). (3.118)

ASch is called the Schrödinger picture of the vector potential operator, and
A its Heisenberg picture. In the absence of external time dependene, all op-
erators of the KG, Dirac, Dirac-Breit etc. equations are time-independent in
the Schrödinger picture, which guarantees the existence of stationary solu-
tions as in (1.44). The equations of nonrelativistic quantum mechanics have
the form ih̄∂tψ = Hnrψ, where Hnr is Hermitian, and time-independent for
closed systems. In such cases, one may transform all operators as in (3.113),
but with HF replaced by the full Hnr. This Heisenberg picture has all time
dependence of ψ moved to the operators. For example, the position operator
r satisfies

ih̄dr/dt = [r,Hnr]. (3.119)
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In this this book, onlyA is taken in the Heisenberg picture, which is called the
“interaction picture”. Here, t appears only in connection with the interaction
between the charged particles and the photon field. The operators of relativis-
tic quantum mechanics are often energy-dependent, in which case the Heisen-
berg picture is meaningless. This applies in particular to the KG and Kramers
equations. The Dirac Hamiltonian which is derived from the Kramers op-
erator (at the expense of doubling the number of components) is energy-
independent, but replacing Hnr by HD (2.87) in (3.119) still makes no sense.
It leads to dr/dt ≡ v = cα, which implies v2/c2 = α2 = (γ5σ)2 = 3. This
latter result shows also that HB (3.111) cannot be used beyond first-order
perturbation theory. In (3.168) below, it will be replaced by a better operator.

3.5 Two-Electron States and Pauli Principle

The Dirac-Breit equation in a nuclear Coulomb potential is difficult to han-
dle except for nuclei of large electric charges Ze, where V12 and HB may
be treated perturbatively. For Z 
 1, the unperturbed states of the inner
electrons are determinants of one-electron orbitals (“Slater determinants”),
which for two electrons have the form (3.77). The Dirac orbitals may then be
taken as eigenstates of j21 and j1z, j

2
2 and j2z,

j1 = l̂1 + σ1/2, j2 = l̂2 + σ2/2. (3.120)

The effects of V12 and HB require not only the combination of the product
states |j1m1〉|j2m2〉 into states |jm〉 by means of CG-coefficients (2.123), but
also a superposition of such states with different j1 and j2, at fixed j and m.
The conserved total angular momentum operator of an isolated atom (with
a spinless nucleus) is normally denoted by the capital letter J ; for a two-
electron atom this is our j:

J = j1 + j2. (3.121)

This basis of states is needed for “jj-coupling”. For lighter atoms, however, V12
is more important than relativity, in which case the LS or “Russel-Saunders”
coupling is more convenient. Here the orbital angular momenta l̂1 and l̂2 are
first coupled to a total angular momentum L̂, to which the total spin operator
S = σ/2 is added:

J = L̂+ Ŝ, L̂ = l̂1 + l̂2, S = σ/2, σ = σ1 + σ2. (3.122)

Capital letters S, P, D indicate the eigenstates of L̂(L̂ + 1). Without rela-
tivistic effects and in the absence of magnetic fields, L̂ commutes with the
total potential operator Vtot,

[L̂, Vtot] = 0, Vtot = V (r1) + V (r2) + V12(r). (3.123)
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This is so because with r = [(r1 − r2)2]1/2, [l̂1, V12(r)] = −[l̂2, V12(r)]. It is
also geometrically evident, as L̂ generates rotations of both electrons by the
same angle: From (1.273), we have

Dz(α) = exp(−iL̂zα) = exp(−il̂1zα) exp(−il̂2zα). (3.124)

The distance r between the electrons is unchanged by this rotation.
In Sect. 3.6, we shall derive from the Dirac-Coulomb equation the nonrel-

ativistic Pauli Hamiltonian for two spinor particles,

ih̄∂tψS = HnrψS , Hnr = (π1σ1)
2/2m1 + (π2σ2)

2/2m2 + Vtot. (3.125)

For A = 0, Hnr reduces to a totally spin-independent operator,

Hnr(A = 0) = p
2
1/2m1 + p

2
2/2m2 + Vtot. (3.126)

In this approximation, spin has become an “internal degree of freedom”. The
corresponding solutions of (3.125) have a factorizing form,

ψS = ψspinless(r1, r2)χ12. (3.127)

For two different spinor particles as in neutral muonic helium (αµ−e−, α =
helium nucleus), χ12 may be taken as the direct product of eigenspinors χ1
and χ2 of σ1z and σ2z:

χ12(ms1,ms2) = χ1(ms1)χ2(ms2). (3.128)

For two electrons, however, these states exist only for ms1 = ms2. The Pauli
principle requires ψS to be antisymmetric under the simultaneous exchange
r1 ↔ r2, ms1 ↔ ms2. And as the solution (3.127) factorizes, one factor must
be symmetric, the other antisymmetric. The symmetric χ12(ms1 = ms2)
requires an antisymmetric ψspinless = ψas. The resulting ψS is called “ortho”:

ψortho = ψas
3χms , ms = ms1 +ms2. (3.129)

For ms = ±1, one has indeed 3χms = χ1(ms/2)χ2(ms/2). For ms = 0, on
the other hand, the direct spinor product must be symmetrized by hand.
Including a normalization coefficient 2−1/2,

3χ0 = 2−1/2[χ1(
1
2 )χ2(−

1
2 ) + χ1(−

1
2 )χ2(

1
2 )]. (3.130)

The notation 3χms merely means “triplet”; the triplet comprises the three
values ms = 1, −1, 0. The only antisymmetric combination,

1χ0 = 2−1/2[χ1(
1
2 )χ2(−

1
2 )− χ1(−

1
2 )χ2(

1
2 )], (3.131)
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is then a singlet. The corresponding ψspinless must be symmetric, the resulting
ψS is called “para”:

ψpara = ψsy(r1, r2)
1χ0. (3.132)

In the “orbital” approximation, the atomic ground state is ψ00 =
ψ0(r1)ψ0(r2). The ground states of two-electron atoms and ions are always
spin singlets, even in cases such as H− where the orbital approximation is
insufficient (Sect. 3.8).
Note that the mere symmetries of the spin functions entail eigenstates of

S2 = σ2/4. As |ms| = 1 is the largest possible value of |ms|, it belongs to
the value 2 of s(s+ 1). The lowering operator S− = S1− + S2− is symmetric
under the exchange 1 ↔ 2, it cannot transform a symmetric state into an
antisymmetric one. According to the CG-construction (2.126), 3χ0 has thus
also s = 1, and the remaining singlet state has s = 0. Of course, one may
also verify the eigenvalues of σ2 directly by means of

σ2 = σ21 + σ
2
2 + 2σ1σ2 = 6 + 2σ1zσ2z + 4(σ1+σ2− + σ1−σ2+), (3.133)

where σi± are the raising and lowering operators (2.62).
The situation for ψS is very different from that of the one-electron nonrel-

ativistic and unperturbed state ψ0, where a certain combination of χ1(
1
2 ) and

χ1(−
1
2 ) was taken in (2.265) in anticipation of the relativistic perturbation

Vsl. The present Hnr (3.125) contains no such perturbation; the form (3.126)
contains no spin whatsoever.
The level scheme of helium is indicated in Fig. 3.4. The level notation is

adopted from the uncoupled orbitals |n1, l1〉|n2, l2〉, even though the coupling
due to the Coulomb potential e2/r12 between the electrons is not neglected.

1s2

1s2s

1s3s

1s2p

1s3p 1s3d

1s2s

1s3s

1s2p

1s3p 1s3d

E
[eV]

0.0

−24.6

−4.8

Para︷ ︸︸ ︷
1S 1P 1D

Ortho︷ ︸︸ ︷
3S 3P 3D

Fig. 3.4. Helium levels with one electron in the ground state 1s. The zero of E is
chosen accordingly
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One of the two electrons is always in the ground state, |n1, l1〉 = |1s〉. States
with both electrons in excited states are auto-ionising: One electron de-excites
and ejects the other one into the continuum (“Auger-electron”). The energy
levels including the Coulomb repulsion in first-order nonrelativistic pertur-
bation theory are

E = E1+E2+E
1
C , E1+E2 = −Z

2R∞(1+n
−2
2 ), E

1
C = 〈e

2/r12〉. (3.134)

As the spin functions are separately normalized, 〈e2/r12〉 needs only the or-
bital functions

ψsy, as = 2
−1/2[ψ10(r1)ψn2,l2(r2)± ψ10(r2)ψn2,l2(r1)], (3.135)

〈e2/r12〉para,ortho = ∫ d
2r1d

3r2|ψ10(r1)ψn2,l2(r2)± ψ10(r2)ψn2,l2(r1)|
2e2/r12.
(3.136)

There are altogether four integrals in (3.136), which are pairwise equal. One
abbreviates

E1C = 〈e
2/r12〉para,ortho = J ±K, (3.137)

J = ∫ d2r1d
3r2|ψ10(r1)|

2|ψn2,l2(r2)|
2e2/r12, (3.138)

K = ∫ d2r1d
3r2ψ

∗
10(r1)ψn2,l2(r1)ψ10(r2)ψ

∗
n2,l2
(r2)e

2/r12. (3.139)

Both J and K are positive, such that the para-levels ly above the correspond-
ing ortho-levels. J has a probability interpretation, as |ψ10(r1)|2|ψn2,l2(r2)|

2

would be the joint probability to find the first particle at position r1 and
the second one at position r2, provided the particles are distinguishable. For
identical particles, this interpretation is excluded by the second integral K,
which is called the “exchange energy”. Both integrals can be performed ana-
lytically, but first one has to expand 1/r12 in terms of Legendre polynomials
Pl(u), with u = cos θ12 and θ12 shown in Fig. 3.2:

r−112 = (r
2
1 + r

2
2 − 2r1r2u)

−1/2 = r−11 (1 + r
2
2/r

2
1 − 2ur2/r1)

−1/2

=
∞∑
l=0

rl2/r
l+1
1 Pl(u).

This expansion converges only for r2 < r1; otherwise r2 must be extracted
from the square root:

r−112 =
∞∑
l=0

Pl(u)[r
l
2/r

l+1
1 Θ(r1 − r2) + r

l
1/r

l+1
2 Θ(r2 − r1)]. (3.140)

Next, Pl(cos θ12) is decomposed into products of spherical harmonics as fol-
lows:

Pl(cos θ12) = 4π
∑
m

Y m∗l (Ω1)Y
m
l (Ω2). (3.141)
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All angular integrals are then performed by means of the orthogonality re-
lations (1.186). Only l = m = 0 survives in J , and l = l2, m = m2 survives
in K. The ground state (1s)2 has

ψ10(r) = (4π)
−1/2R10, R10 = 2(Z/aB)

3/2e−rZ/aB , J = K = 5
8ZR∞.
(3.142)

In the excited states |1s〉|n2l2〉 with l2 > 0, the factor r
l2
2 pushes the maximum

of Rn2,l2 to the region r2 
 r1. This implies 〈r12〉 ≈ 〈r2〉 and suggests an
asymmetric splitting of Vtot (3.123):

Vtot = −Ze
2/r1 − (Z − 1)e

2/r2 − e
2(1/r2 − 1/r12). (3.143)

Neglect of the last bracket leads to

E ≈ −Z2R∞ − (Z − 1)
2R∞/n

2
2. (3.144)

An improved treatment includes the multipole expansion (3.140) for r2 > r1,

r−12 − r
−1
12 = r1r

−2
2 [u+ r1r

−1
2 P2(u) + . . .]. (3.145)

The decomposition (3.141) shows that every term in (3.145) has vanishing
expectation value. However, second order perturbation theory does produce
nonvanishing “polarization” energies. Here we only treat the dipole polariza-
tion, which arises from the first term in (3.145). The outer electron slightly
displaces the wave function of the inner electron. This increases the mean dis-
tance between the electrons and reduces their mutual repulsion. The second-
order perturbation theory of Sect. 2.7 leads to (2.218), which by 〈ψ0|ψ1〉 = 0
reduces to

E(2) = 〈ψ0|Hper|ψ
1〉, Hper = e

2r1r
−2
2 u. (3.146)

The complicated expansion (2.219) of ψ1 can be avoided in this case. The
intrgration over u = cos θ in 〈ψ0|Hper|ψ1〉 shows that ψ1 must also contain
a factor u, which then gives ∫1−1 u

2du = 2/3. From the point of view of the
inner orbit, e2/r22 is a constant, (it is −e times the electric field E caused by
particle 2 at fixed distance r2). It follows from (3.146) that E

(2) will contain
a factor e4/r42, which acts as an additional operator for the outer orbit. For
the (non-degenerate) ground state of an arbitrary atom, one defines

E(2) = −12αe1E
2 = −12αe1e

2/r42, (3.147)

where αe1 is called the electric polarizability.
The calculation inserts the ansatz ψ1 = uf(r) into the equation

(H1 −E1)ψ1 = e
2rr−22 uψ0 (3.148)

for r1 ≡ r, which is taken here in nonrelativistic form. The −∇2/2m of H1
gives −∇2u/2m = u(−∂2r − 2r

−1∂r + 2r
−2)/2m, after which the factor u

cancels from (3.148). The resulting differential equation for f ,
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f ′′ + 2r−1f ′ − 2r−2f + (−Z2/a2B + 2Z/aBr)f = (4π)
−1/2R10 (3.149)

is solved by

f = −(πa3B/Z
3)−1/2r−22 (raB/Z +

1
2r
2)e−rZ/aB (3.150)

and leads to αe1 = (9/2)(aB/Z)
3. This method has been extended to some

other perturbations by Dalgarno and Lewis. Details can be found in the book
by Schiff (1968). Relativistic corrections use Coulomb Greens functions (Zon
et al. 1972). Kaneko (1977) includes higher multipoles. The energy E(2)(r2)
is now used as additional potential in the equation of motion of the outer
electron. This is an “adiabatic” approximation, which neglects the influence
of H2 on the inner wave function, which after all does depend both on r1
and r2. Equation (2.259) shows that 〈r−4〉 exists only for L2 > 0, while 〈r−6〉
exists only for L2 > 2 (l > 1).

3.6 Elimination of Components

For a single electron, the small Dirac spinor components were eliminated in
Sect. 2.8, and a transformation (2.239) was added in order to preserve the
Hamiltonian form ih̄∂tψ = Hψ, see (2.241). A more general approximate
elimination of components is due to Foldy and Wouthuysen (1950); it splits
the Dirac equation into two separate Hamiltonian equations. The method
has been extended to two fermions by Chraplyvy (1953), Barker and Glover
(1955). In this section, we first present this “CBG”-method. Next, we elimi-
nate the small components of the wave function for two electrons, which will
yield (3.125) in the nonrelativistic limit. Finally, we turn to a very general
method for eliminating half of the components of the Dirac-Coulomb-Breit
equation for a closed system, which includes the nucleus as just another struc-
tureless fermion. Its anomalous magnetic moment coupling will be added in
Sect. 5.7. Spinless nuclei are more complicated (Sect. 4.9). It will become clear
in Chaps. 4 and 5 that closed relativistic systems have some general proper-
ties, which persist even in their coupling to the radiation field.
The CBG-method keeps β1 and β2 diagonal and eliminates γ

5
1 and γ

5
2 . In

the one-fermion case, one writes

H = βmc2 +He +Ho, (3.151)

where the “even” operator He may contain β but not γ
5, and the “odd” op-

erator Ho is proportional to γ
5. Otherwise, He and Ho need not be specified

and may contain additional interactions, for example of additional nonrela-
tivistic particles. A unitary transformation ψ = eiSψ′ that commutes with
ih̄∂t gives after multiplication by e

iS the transformed Hamiltonian equation,

ih̄∂tψ
′ = H ′ψ′, H ′ = eiSHe−iS . (3.152)
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Insertion of the exponential series (1.274) gives

H ′ = H + [iS,H]− 12 [S, [S,H]]−
1
6 [S, [S, [iS,H]]] . . . . (3.153)

In a first approximation, Ho is removed by

S ≈ S1 = iHo/2mc
2β. (3.154)

The factor γ5 in Ho gives for the main term βmc
2 of the first commutator

Hoβ − βHo = 2Hoβ, (3.155)

so Ho is in fact cancelled. The part [iS,He] is a new odd operator which is
eliminated in a second step. In this manner, one arrives at the Hamiltonian
of Foldy and Wouthuysen,

HFW = βmc
2 +He +H

2
oβ/2mc

2 − [[Ho,He],Ho]/8m
2c4 −H4oβ/8m

3c6.
(3.156)

For two relativistic particles, (3.151) is generalized as follows:

H = β1m1c
2 + β2m2c

2 +Hee +Hoe +Heo +Hoo. (3.157)

Hoe andHeo contain factors γ
5
1 and γ

5
2 , respectively, andHoo contains a factor

γ51γ
5
2 . In practice, Hoo is the Breit operator (3.111), which for the present

purpose is put into the form

HB = cbγ
5
1γ
5
2 , b = −

1
2 (σ1σ2 + σ1rσ2r)V12/c. (3.158)

Removal of this operator requires a component Soo in the transformation
(3.153),

Soo = (β2m2 − β1m1)Hoo/2c
2(m22 −m

2
1). (3.159)

The Chraplyvy-Barker-Glover Hamiltonian becomes

HCBG = β1m1c
2 + β2m2c

2 +Hee +H
2
oe/2m

2
1c
2β1 +H

2
eo/2m

2
2c
2β2 (3.160)

+[[Hoe,Hee],Hoe]/8m
2
1c
4 + [[Heo,Hee],Heo]/8m

2
2c
4

−H4oe/8m
3
1c
6β1−H

4
eo/8m

3
2c
6β2+β1β2{{Hoe,Hoo},Heo}/4m1m2c

4. (3.161)

It represents four separate four-component equations, one for each eigenvalue
of β1 and β2. For β1 = β2 = 1, both particle energies come out positive. The
Dirac-Breit equation (3.112) has

Hee = Vtot, Hoe = cγ
5
1σ1π1, H

2
oe = c

2(σ1π1)
2. (3.162)

Equation (3.160) is the nonrelativistic Hamiltonian anticipated in (3.125).
Among its many terms, the two spin-orbit potentials are quoted here for
later reference:
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V CBGs1l = lσ1V
′(12m

−1
1 +m

−1
2 )/2m1r, V

CBG
s2l = lσ2V

′(12m
−1
2 +m

−1
1 )/2m2r.
(3.163)

Their expectation values are simplified by 〈σ2〉 = 〈σ1〉, as 〈σ1−σ2〉 vanishes,
both for triplet and for singlet spin states:

〈V CBGs1l + V CBGs2l 〉 = 〈lσ1V
′/2m1m2r〉(2 +m2/2m1 +m1/2m2). (3.164)

HCBG is a power series expansion in Hoe, Heo, Hoo but not in Hee. However,
with Hoo = HB (3.158), one has H

2
oo = c

2b2 ∼ V 212 ∼ H
2
ee, contrary to

the assumed dominance of Hee. As HB was constructed using first-order
perturbation theory, it is advisable to replace it by an operator with the
same expectation value but with a negligible square (Malvetti and Pilkuhn
1990, 1994). For stationary states of total energy E, the following notation
will be used:

Vtot = V1 + V2 + V12, π
0 ≡ ih̄∂0 − Vtot/c, π1 ≡ π1σ1, π2 ≡ π2σ2 :

(3.165)
(π0 − γ51π1 − γ

5
2π2 −HB/c)ψD2 = c(m1β1 +m2β2)ψD2. (3.166)

One substitutes
ψD2 = (1 +HB/2π

0c)ψDB, (3.167)

multiplies (3.166) by 1 + HB/2π
0c and sets all terms containing H2B equal

to zero. Due to {HB, βi} = 0, the right-hand side of (3.166) gets no linear
terms:

(π0 − γ51π1 − γ
5
2π2 − {HB/2π

0c, γ51π1 + γ
5
2π2})ψDB = c(m1β1 +m2β2)ψDB.

(3.168)
Insertion of (3.158) gives

{HB/2π
0c, γ51π1 + γ

5
2π2} = {b/2π

0, γ52π1 + γ
5
1π2}. (3.169)

One now has Hoo = 0 in (3.157), and the series expansion is harmless. How-
ever, nonrelativistic expansions have another defect, which has been men-
tioned already in Sect. 2.8: Higher-order operators such as π6 in (2.249)
become forbiddingly singular. Special “regularization” procedures must be
introduced already at the order α6Z , which go under the name “nonrelativis-
tic quantum electrodynamics” (NRQED). Each power of Hoe and Heo con-
tributes one power of ∇1 and ∇2, such that HCBG is a “nonlocal” operator,
with all powers of gradients. The original relativistic differential equations of
quantum mechanics are local, however; they contain at most two derivatives.
We conclude the CBG elimination with an approximate reformulation of

the unfamiliar operators (3.169), by inserting π0 ≈ E/c ≈ m12c in b/2π0,
with b = −(σ1σ2 + σ1rσ2r)V12/2c:

{b/2π0, π1} = −{(σ1σ2 + σ1rσ2r)V12,π1σ1}/4m12c
2. (3.170)

With V12 = e
2/r12 and the definition σ

×
12 = σ1 ×σ2, one obtains for A = 0,

πi = pi, and for j �= i.
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−{(σ1σ2 + σ1rσ2r)V12,piσi} = −V12(σipj + σirpjr + σ
×
12,r/r12). (3.171)

The operator −γ5V12σ
×
12,r/4m12c

2r12 has the form of a hyperfine interaction
(Sect. 4.7). The combination

bKD = −
1
2V12(σ1p2 + σ1rp2r) (3.172)

is the Breit interaction between an electron and a spinless particle 2
(Sect. 4.9).
Now we come to our main topic, the fully relativistic elimination of com-

ponents. We first treat (3.166) for two fermions. The operators γ51γ
5
2 and β1β2

commute with each other; they have common eigenstates. The components
of ψD2 with eigenvalues ±1 of γ51γ

5
2 will be called ψ and χ, respectively:

ψD2 =

(
ψ
χ

)
, γ51γ

5
2ψ = ψ, γ

5
1γ
5
2χ = −χ. (3.173)

Their eigencomponents of β1β2 will be distinguished by a single index, g or f .
They are expressed here in terms of the chiral components of ψD2:

ψ =

(
ψg
ψf

)
=
1
√
2

(
ψrr + ψll
ψrr − ψll

)
, χ =

(
χg
χf

)
=
1
√
2

(
ψrl + ψlr
ψrl − ψlr

)
.

(3.174)
The first index r or l refers to the eigenvalues +1 or −1 of γ51 , the second one
to the eigenvalues of γ52 . Equal indices imply γ

5
1γ
5
2 = 1. βi exchanges r ↔ l

in the ith index. In particular, the phase of χ has been chosen such that

β2ψ = χ, β2χ = ψ. (3.175)

ψg and χg are the “large” components of ψ and χ; their “small” components
ψf and χf vanish in the nonrelativistic limit. More important is the fact
that ψg, ψf and χg are symmetric under the exchange of their two indices,
whereas χf is antisymmetric. It is the singlet in the space of “D2” states. In
analogy with (σ1 + σ2)

1χ0 = 0 in ordinary spin space, it fulfills

(γ51 + γ
5
2)χf = 0, (β1 + β2)χf = 0, (3.176)

(γ51β1 + γ
5
2β2)χf = 0. (3.177)

The last equation follows from

γ51β1 + γ
5
2β2 =

1
2 (γ

5
1 + γ

5
2)(β1 + β2)−

1
2 (β1 + β2)(γ

5
1 + γ

5
2). (3.178)

With the notation β = (βx, βy, βz) ≡ (γ5, iγ5β, β), (3.176) and (3.177)
can be summarized as

(β1 + β2)χf = 0. (3.179)

For two electrons, the Pauli principle admits χf only in connection with
triplet spin states and symmetric states in r-space, or in connection with
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singlet spin states and antisymmetric states in r-space. In the classification
of helium levels (Fig. 3.4), such combinations are not mentioned because the
terminology refers to the large components, as in the case of parity.
In the equation for ψ, one may now use γ52 = γ

5
1 ≡ γ

5, while that for χ
has −γ52 = γ

5
1 ≡ γ

5. In addition, β2 is eliminated by (3.175). With all Dirac
matrices of particle 2 eliminated, we may abbreviate

γ51 ≡ γ
5, β1 ≡ β, m2 + βm1 ≡ m+. (3.180)

In the basis (3.173), (3.166) becomes a coupled pair of equations for ψ and χ.
Using c = 1 from now on,

[π0 − γ5(π1 + π2)− b]ψ = m+χ, [π
0 − γ5(π1 − π2) + b]χ = m+ψ. (3.181)

For m1 = m2, m+ = m1(1 + β) vanishes for β = −1, which reduces (3.181)
to

π0ψf = π+bψg, π
0ψg = 2m1χg + π+b(π

0)−1ψgπ+bψg, (3.182)

π0χf = π−bχg, π
0χg = 2m1ψg + π−b(π

0)−1ψgπ−bχg, (3.183)

π±b ≡ π1 ± π2 ± b. (3.184)

Using (3.184) to eliminate χg, one obtains for ψg

[π0 − π−b(π
0)−1π−b][π

0 − π−b(π
0)−1π−b]ψg = 4m

2
1ψg. (3.185)

The approximations b = 0, π0 = 2m1 in the denominators and π
0 = 2m1 +

i∂/∂t in the numerators lead to (3.125) for m1 = m2.
Next, we consider arbitrary masses in (3.181) and eliminate χ by means

of the first equation to obtain a second-order equation for ψ alone:

[π0 − γ5(π1 − π2) + b]m
−1
+ [π

0 − γ5(π1 + π2)− b]ψ = m+ψ. (3.186)

This equation is greatly simplified in the cms, where for A = 0 (p1σ1 −
p2σ2)(p1σ1 + p2σ2) = p

2
1 − p

2
2 = 0. It will turn out in Sect. 4.6 that (3.186)

is not only of first order in Ep ≡ pρ, but also of first order in E
2.

The parity transformation of ψ is

ψ′(r1, r2) = βψ(−r1,−r2). (3.187)

For m1 = m2, the Pauli principle requires a negative eigenvalue of the per-
mutation operator P12 which exchanges π1σ1 with π2σ2:

P12ψ = −ψ, P12πiσi = πjσjP12 (i �= j). (3.188)

However, setting m1 = m2 is not allowed in (3.186) because of m
−1
+ = 0 for

β = −1. Multiplication of (3.186)by m+ removes m
−1
+ everywhere except in

connection with the first γ5, because of
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m+γ
5m−1+ = γ

5m−/m+ ≡ γ
5′, m− = m2 − βm1. (3.189)

One may thus rewrite (3.186) as

[E − Vtot − (π1 − π2)γ
5′ + b][E − Vtot − (π1 + π2)γ

5 − b]ψ = m2+ψ. (3.190)

This equation will be greatly simplified in Chap. 4 for the isolated binary atom
without a magnetic field. The presence of B excludes that simplification. In
the next section, it will be simplified instead by the elimination of the small
components ψf .
In the general case of a closed system of n Dirac particles, we call ne =

n− 1 the number of electrons (one of these particles could also be a muon).
We define the total electronic chirality operator,

γ5e = Π
ne
i=1γ

5
i . (3.191)

The general ψDn is now decomposed into eigenstates ψDne and χDne of γ
5
eγ
5
n,

with eigenvalues +1 and −1, respectively:

γ5nψDne = γ
5
eψDne, γ

5
nχDne = −γ

5
eχDne. (3.192)

Using in addition (3.175) for βn, we have again eliminated the Dirac matrices
of the last particle n. The pair of equations (3.186) is generalized to

[π0 −Σiγ
5
i πi − γ

5
eπn −Σijγ

5
i γ
5
j bij −Σiγ

5
i γ
5
ebin]ψ = m+χ, (3.193)

[π0 −Σiγ
5
i πi + γ

5
eπn −Σijγ

5
i γ
5
j bij +Σiγ

5
i γ
5
ebin]χ = m+ψ. (3.194)

The Σi and Σij extend from 1 to ne = n− 1, and

π0 = E −ΣiVin −ΣijVij , m+ = mn +Σimiβi. (3.195)

When all particles i are electrons, one has m+ = mn +meΣiβi. The bij are
the generalization of (3.158),

bij = −
1
2 (σiσj + σirσjr)Vij . (3.196)

Elimination of χ using (3.193) and multiplication by m+ gives the following
equation for ψ:

[E − V −Σiγ
5
i
′πi + γ

5
e
′πn −Σijγ

5
i
′γ5j
′bij +Σiγ

5
i
′γ5e
′bin] (3.197)

×[E − V −Σiγ
5
i πi − γ

5
eπn −Σijγ

5
i γ
5
j bij −Σiγ

5
i γ
5
ebin]ψ = m

2
+ψ.

γ5i
′ = m+γ

5
i /m+ = γ

5
i (1− 2miβi/m+), (3.198)

γ5e
′ = m+γ

5
e/m+ = γ

5
em−/m+, m− = mn −Σimiβi. (3.199)

This is the generalization of (3.190) to ne > 1 electrons.
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3.7 Brown-Ravenhall Disease, Energy Projectors,
Improved Breitian

The equation for ne electrons, ψDne = ψD(r1, r2, . . . rne) arises from
a straightforward generalization of (3.82); it has 4ne components. Both the
elimination of components and the transformation of Breitians of the previous
section become ineffective for ne > 2. But even for ne = 2, the most precise
calculations of helium-like ions in the region Zα ≈ 1 such as helium-like
uranium (Indelicato and Desclaux 1990) are performed with 16-component
Dirac-Breit equations. The eigenvalue −nee of the charge (3.81) does not ex-
clude the presence of electron-positron pairs in ψD,ne . A corresponding wave
function component would have the form ψD,ne+1,p = ψD(r1 . . . rne+1; rp),
where rp are the positron coordinates. ψD ≈ ψDne is called the “no-pair”
approximation. It does allow for the creation and subsequent reabsorption of
electron-positron pairs by higher orders of the interaction operators. Among
these, the “vacuum polarization” will be calculated in Sect. 4.9, but by
a rather different method.
Equations such as Dirac-Coulomb (3.87) (generalized to ne electrons) are

solved either by variational methods or by treating the electronic Coulomb
repulsion Vij as a perturbation of single-particle orbitals (properly antisym-
metrized, of course). We first discuss the perturbative approach; the first-
order shift E1C was calculated already in Sect. 3.5. The second-order shift
requires the perturbed states |n1〉 expanded in a complete set of unper-
turbed states as in (2.219). The negative-energy states must be included
here. They contain combinations in which one electron has a negative energy
E′1 < −mec

2, while the other one has a much higher energy E′2, such that
E′1+E

′
2 is degenerate with the unperturbed energy, E

′
1+E

′
2 = E1+E2. Conse-

quently, all two-electron states are infinitely degenerate, and the perturbation
theory breaks down. This was first noted by Brown and Ravenhall (1951), it
became known as “Brown-Ravenhall disease”. Over several decades, the influ-
ence of the negative-energy states was kept small by plausible assumptions,
producing in fact increasingly precise results (Pyykkö 1988). The problem
was reformulated by Sucher (1980) as “continuum dissolution”, meaning that
equations such as (3.112) have no bound states at all: An electron may fall
and fall and transfer the energy difference to one or several other electrons by
ejecting them, like in the Auger process mentioned in Sect. 3.5. In QED, the
formally negative energies −k0 in the electron field operator Ψ (3.62) appear
in the energy balance with the correct positive sign, due to the Fock space
operator a−. In a wave function ψ, one can to some extent keep track of Fock
space operators by means of energy sign projectors, one for each electron i:

λ
(±)
i = 1

2 [1±Hi/(H
2
i )
1/2], (3.200)

where Hi is the single-particle Hamiltonian (3.78) in the limit A→ 0,

Hi = V (ri) + [−ih̄∇i + eAcl(ri)]αi +mc
2βi. (3.201)
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The original proposal was to neglect also V and Acl in (3.201),

Hi0 = −ih̄∇iαi +mc
2βi, H

2
i0 = m

2c4 − h̄2∇2i . (3.202)

The resulting equation was elaborated among others by Mittleman (1981),

Hψ = Eψ, H = Σiλ
(+)
i Hiλ

(+)
i +Σi,jλ

(+)
i λ

(+)
j Vijλ

(+)
i λ

(+)
j . (3.203)

It is the previous Dirac-Coulomb Hamiltonian, multiplied by positive-energy
projectors.
The operators Hi in (3.203) still contain the photon field A, which pro-

duces the Breit operators in second-order perturbation theory. The new form
of the Breit operator is

H
(+)
B,ij = λ

(+)
i λ

(+)
j HB,ijλ

(+)
i λ

(+)
j , (3.204)

to be added to H in (3.203). It was mentioned in Sect. 3.6 that H2B,ij ≈ V
2
ij

makesH2B,ij forbiddingly large. This defect is absent inH
(+)
B,ij for the following

reason: Each γ5i of HB,ij connects the large components ψgi of ψi (in the
parity basis (2.151)) with the small ones ψfi. It follows already from (2.153)
with π0± = (E−V )/c±mc that |ψg| is large and |ψf | is small for E ≈ mc

2. On
the other hand, for E ≈ −mc2, |ψg| is small and |ψf | is large. The resulting
〈γ5〉 is small in both cases, but the elements 〈−Ei|γ5i |Ei〉 and 〈Ei|γ

5
i | − Ei〉

are large. In H
(+)
B,ij , these matrix elements are set to zero by the projectors.

The decomposition of Ψ into Ψ (+) and Ψ (−) was given explicitly in (3.62)
for a free electron field, but it was understood in (3.44) that a corresponding
decomposition exists also in the presence of an external classical 4-potential
Aµcl, and in particular in the presence of a Coulomb potential V = −eA

0
cl. The

formulation of QED in external fields is called the “Furry picture”. Its validity
is restricted to systems of relatively small electron numbers, depending on the
strength of the external potential (Lindgren et al. 1955, Shabaev et al. 2000,
Shabaev 2002). For a nucleus with Z = 80, ne = 2, 3, 4 is unproblematic,
while for Z = 1, ne = 3 gives already nonsense: A proton cannot bind three
electrons. On the other hand, ne = 20 is also problematic for Z = 80, because
the number of electron pairs is then ne(ne − 1)/2 = 190 > Z. The formalism
becomes more flexible when the external potential is replaced by an effective
mean potential, but its connection with QED is then less clear.
For high Z and small ne, the energy differences E

0
n − E

0
n′ in ∆E (3.98)

become increasingly important in Breit operators; they can be included in
the Furry picture. The construction is somewhat complicated in the Coulomb
gauge (Bethe and Salpeter 1957). Here we anticipate the covariant interaction
of Chap. 4. The scattering amplitude is given in (4.255). With q0 = (E

′
1 −

E1)/h̄c = (E2 − E′2)/h̄c, the Fourier transform of −t
−1 = (q2 − q20)

−1 leads
to eiq0r/r according to (4.117). Thus the complete interaction Hamiltonian
between electrons 1 and 2 is

H12 = VF (1−α1α2), VF = e
iq0r12e2/r12, (3.205)
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The effects of keeping q0 �= 0 in t−1 are referred to as “retardation” (in
classical electrodynamics they arise from the retarded interaction between
two charged particles). The unretarded Hamiltonian is

H12(q0 = 0) = V12(1−α1α2), V12 = e
2/r12. (3.206)

The piece −α1α2V12 is called the Gaunt interaction. Formally, it arises from
HB (3.111) by the replacement (α1r)(α2r)/r

2 → α1α2. To get the complete
Breit operator in the Furry picture, (3.205) is decomposed as follows:

H12 = V12 −α1α2VF + VF − V12, (3.207)

and VF − V12 is expressed as a double commutator. The Furry states of
particle 2 are eigenstates of H2 with eigenvalues E2 and E

′
2 in the initial and

final states:
[H2, VF − V12] = (E

′
2 −E2)(VF − V12), (3.208)

[H1, [H2, VF −V12]] = (E
′
1−E1)[H2, VF −V12] = −h̄

2c2q20(VF −V12). (3.209)

As VF − V12 contains neither gradients nor Dirac matrices, only the pieces
cpiαi = −ih̄cαi∇i of Hi (2.87) contribute to the commutators. And with
[∇1, r12] = −[∇2, r12] = [∇, r12] = r12/r12, one obtains the following identity:

VF − V12 = −α1[∇, [α2∇, VF − V12]]/q
2
0 . (3.210)

This is the exact result. For small q0, one may expand

VF − V12 = (e
iq0r12 − 1)e2/r12 = ie

2q0 −
1
2q
2
0e
2/r12, (3.211)

α2[∇, VF − V12] = −
1
2q
2
0α2r̂12, r̂12 = r12/r12, (3.212)

VF − V12 =
1
2 [α1α2 − (α1r̂12)(α2r̂12)]. (3.213)

When this is combined with the piece −α1α2VF of (3.207), the old Breit
operator emerges in the limit q0 → 0.
For q0 = 0, (3.206) contradicts (3.213) where Vret does not vanish. The

contradiction is resolved by V 212 which arises from π
02 = (E − V12)2 after the

elimination of χ in (3.190). V 212 is removed by the substitution (Schwinger
1973, Malvetti and Pilkuhn 1994)

(E − V12)
2 = (E + αZ/r12)

2 = E2 + 2EαZ/r ≡ E
2 − 2EV. (3.214)

To first order in αZ , (3.214) merely shifts the origin of r12:

r12 = r + αZ/2E, ∂r12 = ∂r. (3.215)

The new “quasidistance” r applies in the cms of binary atoms, see Sects. 4.5–
4.7, where r1 and r2 are not separately defined. It physical interval will be
0 < Er <∞. In the small Breit operator, r12 − r is negligible. There remain
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however changes in the kinetic energy operators piσi, to which π1 and π2
(3.165) reduce for A = 0. In (2.113), we found σp = −ih̄σr(∂r − σl̂/r), and
in (2.155), an extra factor r−1 was extracted. Setting (p1 − p2)/2 = p12 in
order to avoid confusion with p = −ih̄∇r, the substitution (3.215) in

r12σp12r
−1
12 = −iσr[∂r − (σl̂+ 1)/r12] (3.216)

produces a correction which cancels Vret. This will be verified for the slightly
simpler case of a spinless particle 2, see Sect. 4.9. On the other hand, the
covariant form H12 (3.206) is to be inserted into the equation after the elim-
ination of χ. Then H212 vanishes by construction, one has r12 = r, and there
is no retardation. With these simplifications, one can take b = −V σ1σ2 in
(3.190), combine b with Vtot = V into V± = V (1±σ1σ2) and take V+V− = 0
at the end:

[E − V+ − γ
5′π−][E − V− − γ

5π+]ψ = m
2
+ψ, π± = π1 ± π2. (3.217)

With V+V− = 0 and m± = m2 ± βm1, this leads to

[E2 − 2EV −m2+ − (E − V+)γ
5π+ − π−(E − V−)γ5m−/m+

+π−π+m+/m−]ψ = 0.
(3.218)

One may now eliminate the small components, which have β = −1. Calling
m2 −m1 ≡ δm21 and m1 +m2 = m12 as before,

[E2 − 2EV −m212 + π−π+m12/δm21]ψg

= [(E − V+)π+ + π−(E − V−)δm21/m12]ψf ,
(3.219)

[E2 − 2EV − δm221 + π−π+δm21/m12]ψf

= [(E − V+)π+ + π−(E − V−)m12/δm21]ψg.
(3.220)

The last equation provides

ψf = D
−1[(E − V+)π+ + π−(E − V−)m12/δm21]ψg, (3.221)

D = E2 − 2EV − δm221 − π−π+δm21/m12. (3.222)

The question arises whether this elimination covers the case of positronium,
which has m1 = m2, m12/δm21 =∞. The denominator D of ψf is harmless.
The numerator appears in (3.219) for ψg in the combination

[(E−V+)π++π−(E−V−)δm21/m12]D
−1[(E−V+)π++π−(E−V−)m12/δm21].

(3.223)
Expanding the denominator as in (2.254), one sees that the main singular
term is canceled by the π−π+m12/δm21 of the left-hand side. In a relativis-
tic treatment ot the binary Zeeman effect, the remaining singular terms
are presently ambiguous because of the transformation (3.215). See also
Sect. 4.10.
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In principle, the Brown-Ravenhall disease can be cured by equations such
as (3.197), in which the nucleus is included among the relativistic particles.
The change of variables from ri to

rEi = ri/E, pEi = Epi = −i∇Ei (3.224)

makes (3.197) an equation in E2 only. The potential energy V contains
−Zα|ri − rn|−1 and α|ri − rj |−1, such that EV becomes V (rE) ≡ VE ,
in which each ri and rn is replaced by rEi and rEn, respectively. We first
demonstrate this E2-theorem for the simpler equation (3.190). In the new
variables, it becomes

[E2 −m2+ − 2VE − (π1E − π2E)γ
5′ − (π1E + π2E)γ

5 − 2Ihf ]ψ = 0, (3.225)

2Ihf = [VE + (π1E − π2E)γ
5′ − bE ][VE + (π1E + π2E)γ

5 + bE ]/E
2. (3.226)

The form −2Ihf in is chosen in analogy with the −2VE , the index hf alludes
to the hyperfine operator (4.235) below. In Chap. 4, rE will also have the
physical interval 0 < rE < ∞. Hopefully, the final version of relativistic
quantum electrodynamics will completely dispense with energy projectors
and Breitians.
Electronic Breitians (which do not involve particle n) occur only for

ne > 1. Here we return to (3.193), which we rewrite as

[E−VE/E−(Σiγ
5
i πEi+Σijγ

5
i γ
5
j bEij)/E−(πEn+Σiγ

5
i bEin)/Eγ

5
n]ψ = m+χ.

(3.227)
The corresponding expression (3.194) is reformulated accordingly. The ab-
sence of even powers of E from the left-hand sides of these equations proves
the E2-theorem.
For even ne, a complication arises from the parity transformation ma-

trix βe,

βe = Π
ne
i=1βi, {βe, γ

5
i } = 0, βeγ

5
e + (−1)

ne+1γ5eβe = 0. (3.228)

It implies {βe, γ5e} = 0 only for odd ne. In that case, the parity transformation
does not mix ψ with χ. For even ne, it does. In that case, the problem
disappears when particle n is spinless. However, its Klein-Gordon equation
must be linearized before spinor particles can be added. This will be done in
Sect. 4.9.

3.8 Variational Method, Shell Model

The ground state energy of an atom or molecule can be calculated by a vari-
ational principle. One takes a normalized trial function with one or several
free parameters and expands it (virtually) in terms of the unknown exact
solutions ψi of the differential equation, which has the form Hψi = Eiψi:
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ψtrial = Σiciψi. (3.229)

The orthogonality relations of the exact solutions give the expectation value,

〈H〉trial = Σi|ci|
2Ei ≥ EgΣi|ci|

2 = Eg, (3.230)

where Eg is the smallest eigenvalue, namely that of the ground state. The
best trial function gives the minimal value of 〈H〉trial, which for well chosen
parameters approaches Eg. For every parameter pj , this means

∂〈H〉trial/∂pj = 0. (3.231)

Excited levels may be calculated by trial functions that are orthogonal to
that of the ground state.
The variational calculation of the helium ground state by Hylleraas (1929)

brought the final acceptance of the many-electron Schrödinger equation as the
basis of nonrelativistic atomic theory. The Hamiltonian (3.125) is written as
Hnr = H1+H2+e

2/r12, with Hi = p
2
i /2m−Zα/ri. Helium itself has Z = 2,

but the calculation remains valid for Li+, Be++ and other helium-like ions.
In the simplest version, ψtrial is assumed in factorizable form, ψpara, trial =
ψtrial(r1)ψtrial(r2)

1χ0, with Z replaced by an effective trial charge Ztrial in the
ground state wave function R10 (3.142), Rtrial = 2(Ztrial/aB)

3/2e−r1Ztrial/aB .
The trick of this ansatz is to express the correct H1 in terms of Ztrial,

H1 = p
2
1/2m+ VtrialZ/Ztrial, Vtrial = −Ztriale

2/r1. (3.232)

AsRtrial solves the equation (p
2
1/2m+Vtrial−E1, trial)Rtrial = 0 with E1, trial =

−Z2trialR∞ according to (1.38), the nonrelativistic limit of the virial theorem
(A.35) gives 〈p2/2m〉trial = −

1
2 〈Vtrial〉trial = Z

2
trialR∞,

2〈H1〉trial = −2R∞(Z
2
trial − 2ZZtrial). (3.233)

And most importantly, 〈e2/r12〉trial can be adopted from (3.142),

〈e2/r12〉trial = Jtrial +Ktrial =
5
4Z
2
trialR∞. (3.234)

The total Ztrial-dependence of 〈Hnr〉trial is thus 2(Z2trial− 2ZZtrial+
5
8Ztrial).

This function has a minimum for ∂〈H〉trial/∂Ztrial = 0, at

Ztrial = Z − 5/16, 〈H〉trial = −2Z
2
trialR∞. (3.235)

〈H〉min is lower than the first order perturbative result of Sect. 3.5 by an
amount 2(5/16)2R∞ (the second order perturbation for the ground state is
also negative as evidenced by (2.223), but is more difficult to calculate). The
value Etrial = −2×2.85R∞ of (3.235) for Z = 2 is still above the experimental
−2 × 2.904R∞ of helium. Application of this simplest variation to the H−

ion (Z = 1) gives 〈H1〉trial = −2(1− 5/16)2R∞ > −R∞, which would mean
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instability against the decay H− → H+e−. Experimentally, H− is stable by
0.75 keV. More precise variational calculations are explained by Bethe and
Salpeter (1957).
An extension of the variational principle is the density-functional for-

malism, for systems with many electrons. The Thomas-Fermi model of an
electron gas is an early example of this method. It describes the electrons by
local plane waves exp{ik(r)r}, which produce an electron density ρ(r). The
surprising successes of this method seem to result partly from good informa-
tion on trial functions from other sources (Parr and Yang 1989).
Relativistic variational methods have been reviewed by Grant and Quiney

(1988, 2002), mainly for “Dirac-Fock” calculations. They are complicated
by the states of negative energies in Dirac-Coulomb equations, which ex-
clude a stable ground state. In most cases, the trial functions can be chosen
such that they avoid negative-energy components. The relativistic density-
functional formalism has also been developed relatively early (Ramana and
Rajagopal 1983, Engel et al. 1995). However, a consistent formalism can ex-
clude the negative-energy states only if these are strictly avoided. We have
seen in the last section that is accomplished by treating also the nucleus
relativistically. It remains to find suitable orbitals for the variational trial
functions. In terms of the 4-momenta kµi and k

µ
n, they should satisfy effective

equations with the Lorentz-invariant eigenvalues

E2in = (ki + kn)
2, E2ij = (ki + kj)

2. (3.236)

With k2i = m
2
i and k

2
n = m

2
n, the desired E

2 results as

E2 = (Σiki + kn)
2 = ΣiE

2
in +ΣijE

2
ij −Σim

2
i −m

2
n. (3.237)

In the traditional static nucleus formulation, the total electronic energy Ee
is the sum of the orbital energies, Ee = ΣiEi, and E

2 = (Ee +mn)
2, apart

from a nonrelativistic recoil correction as in (4.379) below. The effective two-
particle orbitals would satisfy equations of the form (4.276) below. They
may be written in terms of the effective principal quantum number nβ,i as
Kiψi = n

−2
β,iψi.

We now turn to a discussion of the periodic table of elements in terms of
the single-electron orbitals of the atomic shell model. Only the atomic ground
states are discussed. The notation for H and He is (1s)1 and (1s)2.
The Pauli principle pushes the next two elements, Li and Be, into the

n = 2 shell. There they may choose between 2s and 2p, which in the limit of
complete nuclear shielding by the two electrons of the “closed” shell would be
degenerate, with energy −R∞/n2, n = 2. The state (1s)2(2p) is close to this
limit, similar to the (1s)(2p) excited state of helium (compare (3.144), with
Z − 1 replaced by Z − 2). The state (1s)2(2s) lies again lower, as the 2s wave
function penetrates deeper into the electron cloud of the closed shell. Its outer
electron energy may again be parametrized by −Z2effR∞/n

2, with Zeff ≈ 1.25.
Consequently, the Li ground state is (1s)2(2s). Be (Z = 4) has two electrons



3.8 Variational Method, Shell Model 139

in the 2s-shell. In comparison with the Li ground state parametrization, one
could associate two factors −(Zeff +1)2R∞ with them, plus an extra mutual
repulsion. This configuration is in fact lower than (1s)2(2s)1(2p)1, where the
last electron has again Zeff ≈ 1. Once the 2s-subshell is filled, the following
six elements (Z = 5→ 10) successively fill the 2p subshell. A general nl-shell
can accommodate up to 2(2l + 1) electrons, the factor 2 accounting for the
electron spin.
The closed shells with n = 1 and 2 (He and Ne (Z = 10)) have the

electrons so strongly bound that they refuse chemical binding; they make
the lightest noble gases. The next noble gas is Ar (Z = 18), which has the
3s and 3p subshells filled. For the ten electrons in the 3d shell, Zeff is again
relatively small, such that the 4s-shell is filled first. Thus the 4th row of the
periodic table successively fills 4s, 3d, and 4p. It ends with Kr (Z = 36).
The 5th row fills 5s, 4d, 5p, ending with Xe (Z = 54). However, 4s and 3d
as well as 5s and 4d are nearly degenerate. The d orbitals of rows 4 and 5
are filled in the order (4s)2(3d)nd and (5s)2(4d)nd respectively, with nd =
1 . . . 10, with the exception of the “coinage metals” Cu and Ag, which are
(4s)1(3d)10 and (5s)1(4d)10, respectively. In Table 3.1, the 10 elements of the
3d and 4d subshells are listed in two separate rows, merely for compactness
(in chemistry, this arrangement is used for the 2(2 × 3 + 1) = 14 4f and 5f
orbitals (lanthanides and actinides) of rows 5 and 6, which are omitted here).

Table 3.1. The periodic table of elements, including ionization energies in eV. The
elements of the 3d and 4d subshells of the lower half of the table are to be inserted
between the 4s and 4p, 5s and 5p subshells in the upper half. Not shown are row 6
and the 14 4f elements (lanthanides) of row 5.

Group 1 2 3–12 13 14 15 16 17 18

1s H He
eV 13.60 24.59

2s Li Be 2p: B C N O F Ne
eV 5.39 9.32 8.30 11.26 14.53 13.62 17.42 21.56

3s Na Mg 3p: Al Si P S Cl Ar
eV 5.14 7.65 5.99 8.15 10.49 10.36 12.97 15.76

4s K Ca 3d 4p: Ga Ge As Se Br Kr
eV 4.34 6.11 6.00 7.90 9.81 9.75 11.81 14.00

5s Rb Sr 4d 5p: In Sn Sb Te I Xe
eV 4.18 5.70 5.79 7.34 8.64 9.01 10.45 12.13

Group 3 4 5 6 7 8 9 10 11 12

3d Sc Ti V Cr Mn Fe Co Ni Cu Zn
eV 6.54 6.82 6.74 6.77 7.44 7.87 7.86 7.64 7.73 9.39

4d Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
eV 6.38 6.84 6.88 7.10 7.28 7.37 7.46 8.34 7.58 8.99
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The most stable atoms are the light noble gases, helium and neon. They
have the largest ionization energies, 24.6 eV and 21.6 eV, respectively. Rela-
tivistic effects of the outermost or “valence” electrons are generally small,
even in cases where they change the chemical properties. Larger effects oc-
cur in the isoelectric sequences of hydrogen (He+, Li++, Be+++ ≡ Be3+,
B4+, . . .), helium (Li+, Be++, B3+, . . .), and so on. To order α4Z , the binding
energies of the hydrogenic sequence are given by (2.149) with j = 1/2, n = 1:
EN/mc

2 = −Z2α2(1 + Z2α2/4). Xenon (Z = 56) has Z2α2/4 = 0.04, which
is already “large”. For Z 
 3, the helium isoelectric sequence has nearly
twice the total binding energy of the hydrogenic one, as the repulsive poten-
tial e2/r12 and the electronic Breit operator decrease as Z

−1 relative to the
nuclear attraction.
For neutral atoms, the single-electron binding energies of the inner shells

(K, L, M) are approximately measured by X-ray absorption edges: With
increasing X-ray energy, the absorption coefficient makes a jump at each
inner-shell ionization threshold. The largest jumps occur for the last two
shells, L(n = 2) and K(n = 1). The L-shell absorption contains three jumps,
of wich the first two (LIII and LII) arise from the 2p1/2 and 2p3/2 states,
while the last one (LI) arises from the 2s1/2 shell, which is more strongly
bound, at least nonrelativistically. The splitting between 2p1/2 and 2p3/2
increases with increasing Z and eventually exceeds the 2p1/2−2s1/2 splitting,
which would vanish according to the Dirac equation without mutual electron
interaction.
Relativity increases the total atomic binding energy, thereby contracting

the electron cloud. Orbitals with j = 1/2 contract most, those with j =
3/2 remain essentially unchanged up to Z = 70. The reason is that the
contraction of j = 1/2 increases the shielding of the nuclear charge, such that
Zeff decreases for the orbitals with larger j. This indirect effect of relativity
dominates for most of the d-shell (j = 3/2 and 5/2). On the other hand, those
valence orbitals that are already completely shielded without relativity, are
not affected by inner shell contraction.
Turning now to the excited states of valence electrons, one would expect

these to follow the Dirac equation for Zeff ≈ 1, at least for the alkaline atoms.
After all, it was here that Rydberg discovered the principal quantum num-
ber n. The alkalines are the poor man’s hydrogen. However, the nd states
of Na show an “inverted” fine structure, in the sense that the nd3/2 states
are above the nd1/2 states, rather than below as in the Dirac equation (see
also Fig. 2.2), even for very large values of n (Rydberg atoms). Similar effects
are observed in K and Rb, including hyperfine splittings. They arise from
the stronger contraction of j = l − 1/2 states (relative to the j = l + 1/2
states), in combination with a negative exchange energy K (3.139) with the
core electrons. The net result is an upshift of j = l − 1/2 which can over-
compensate the Dirac downshift (Sternheimer 1963, Luc-Koenig 1976). Such
effects become negligibly small in the alkaline isoelectric sequences (Johnson
and Cheng 1979).
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3.9 The Pauli Principle for Three Electrons

We now consider atoms or ions with three electrons, using the LS cou-
pling scheme. A general three-spin state contains products χ1(msa) ×
χ2(msb)χ3(msc), which will be abbreviated by |msamsbmsc〉. The largest
possible value of ms = msa + msb + msc is 3/2 and belongs to S = 3/2,
χ(32

3
2 ) = |

1
2
1
2
1
2 〉. The other three state of this quartet are generated by the

spin-lowering operator σ− = σ1− + σ2− + σ3−. The total symmetry of σ−
guarantees that it does not change the symmetry of the states on which
it operates, which allows one to write down all χ(3/2,ms) without using
Clebsch-Gordan coefficients, for example

χ(32 ,
1
2 ) = 3

−1/2(| − 12 ,
1
2 ,
1
2 〉+ |

1
2 ,−

1
2 ,
1
2 〉+ |

1
2 ,
1
2 ,−

1
2 〉). (3.238)

The factor 3−1/2 follows from the normalization χ†χ = 1. However, these
totally symmetric spin states require totally antisymmetric orbital states,
which are rarely needed. In the orbital approximation, lithium and its iso-
electric sequence always have two electrons in the 1s ground state, ψ1 = ψ2 =
ψ1s ≡ ψ0. The third electron will be in a valence state ψv. The complete state
must be constructed from the three orbital states |00v〉, |0v0〉, |v00〉 and

the six spin states |12 ,−
1
2 ,ms〉, |

1
2 ,ms,−

1
2 〉 and |ms,

1
2 ,−

1
2 〉 with ms = ±

1
2 .

The remaining two states |12 ,
1
2 ,
1
2 〉 and | −

1
2 ,−

1
2 ,−

1
2 〉 are excluded. By the

symmetry of σ−, combinations such as (3.238) are then also excluded. This
implies that all totally antisymmetric combinations ψS of the above three
orbital states and the available spin states automatically have S = 1/2, ms =
±1/2.
In practice, one may then choose one value of ms and take ψS as the

normalized determinant,

ψS = 6
−1/2

∣∣∣∣∣∣∣
ψ0(r1)χ1(

1
2 ) ψ0(r1)χ1(−

1
2 ) ψv(r1)χ1(ms)

ψ0(r2)χ2(
1
2 ) ψ0(r2)χ2(−

1
2 ) ψv(r2)χ2(ms)

ψ0(r3)χ3(
1
2 ) ψ0(r3)χ3(−

1
2 ) ψv(r3)χ3(ms)

∣∣∣∣∣∣∣ (3.239)

Expanding in the elements of the first row, one finds in the compact notation

ψS = 6
−1/2(|00v 12 ,−

1
2 ,ms〉−|0v0

1
2 ,ms,−

1
2 〉−|00v −

1
2 ,
1
2 ,ms〉

+|0v0− 12 ,ms,
1
2 〉+ |v00ms

1
2 ,−

1
2 , 〉 − |v00ms −

1
2 ,
1
2 , 〉). (3.240)

The determinant method (“Slater determinant”) works for any number
of electrons. For four or more electrons, however, it need not produce eigen-
states |S,ms〉 of S

2. It is then helpful to first construct separate irreducible
representations of the permutation group for spins and orbitals, respectively,
and to combine these into the totally antisymmetric form afterwards. This
can be done graphically by means of “Young diagrams” (Weissbluth 1978).
The method works also for identical bosons, where the totally symmetric
combination is needed (Pilkuhn 1979). See also Sect. 5.9.
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4.1 Introduction

As mentioned in the Preface, the main goal of relativistic quantum mechanics
is a precise and powerful basis for bound state calculations. The direct ap-
plication of QED to bound states has been discussed in the last chapter; it is
incomplete and needs improvements, even conceptual ones. Precise calcula-
tions include the nuclear charge distribution, which is normally measured in
high-energy electron-nucleus scattering. This requires a connection between
the bound state and scattering formalisms, which is provided by the Born
series of Sect. 4.1.
In the analytic continuation of the S-matrix below the threshold for scat-

tering, bound states appear as poles. For pointlike nuclei, these poles are
found from solutions such as (1.298). They are then shifted by the form fac-
tors measured in electron or muon scattering.
As the various terms of the Born series have no bound state poles, a purely

numerical continuation of the S-matrix seems excluded. One must have means
to sum the Born series. These can be differential or integral equations. In
the static limit (no nuclear recoil), one may simply modify the interactions
in the already successful KG or Dirac equations such that their scattering
amplitudes reproduce the Born series. In the simplest approximation, the
potential is the Fourier transform of the first Born approximation.
Beyond the static limit, the Born series of two-body scattering is needed;

it will be explained in Sect. 4.2. Again, the first Born approximation is nor-
mally sufficient, but it gains its full power only after reduction to irreducible
submatrices. This delicate point will be discussed in Sect. 4.7.
In more general terms, one must find equations that produce calculable

scattering amplitudes, and then adapt their Born series to that of QED as
far as possible. The S-matrix of the synthetic equation is not exact, but it
is both unitary and analytic. Its pole positions are the approximate atomic
energy levels. They appear as the eigenvalues of the differential equation. The
practical procedure will be explained in Sect. 4.5.
Conservation laws of QED such as energy-momentum conservation,

Lorentz invariance etc are reproduced by the QED Born series. However,
QED refers to electrons and photons only. Muons may be included without
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profound alterations in the “electroweak” field theory, protons not. Never-
theless, we trust that the complicated quark-gluon structure of protons and
other nuclei or even of atoms cannot destroy the consequences of such con-
servation laws in the scattering and decay of these objects. Relations that do
not require explicit knowledge of the S-matrix go under the name “relativistic
kinematics”, they form the main part of Sect. 4.2. In particular, any system
composed of two subsystems of 4-momenta k1 and k2 has (k1 + k2)

2 = s as
a Lorentz invariant. Setting k1+k2 = 0 gives s = (k

0
1+k

0
2)
2 where k01+k

0
2 is

now the total cms energy. Relativistic two-body kinematics allows one to ex-
press k21 = k

2
2 ≡ k

2 in terms of s alone, see (4.75). It combines the equations
p21ψ1 = k

2ψ1 and p
2
2ψ2 = k

2ψ2 into a single equation p
2ψ = k2ψ (4.188) for

the composite system in its cms. This asymptotic equation provides a check
of whatever equation one may find. (Unfortunately, quarks have no well-
defined S-matrix and no asymptotic equation, to which an interaction could
be added.) Similarly, the kinematics of photon emission by atoms provides
a test of time-dependent perturbation theory (Sect. 5.4).

4.2 Born Series and S-Matrix

Stationary scattering theory has been discussed in Sect. 1.10. In this section,
the corresponding time-dependent formalism is explained. In principle, it
requires wave packets instead of plane waves, such that one can define a time
−T at which the particle has not yet reached the scatterer, and a time +T at
which it has definitely left it. The complete solution at all times x0 satisfies
an integral equation, the “Lippmann-Schwinger” equation:

ψ(x) = ψ(0)(x) + e ∫ d4yG(x, y)K′(y)ψ(y), (4.1)

where G andK′ are the Greens function and kernel, respectively. Plane waves
may be used instead of wave packets if K ′ is artificially “switched on” adi-
abatically at x0 = −T , and again switched off at x0 = +T . One may then
idealize the initial state to an incoming plane wave,

ψ(0)(x) = ψi(x) = e
ikir−iωtuDi, (4.2)

where uDi is a possible free Dirac spinor as in (2.334). Similarly, ψ(x0 > +T )
may be expanded in terms of outgoing plane waves:

ψ(x0 > T ) = ΣfSifψf , Sif = lim
t→∞
〈ψf (x, t)|ψ(x, t)〉. (4.3)

ψ†f = e
iωt−ikiru†Df . (4.4)

The expansion coefficients Sif form the scattering matrix.
Born (1926) used an iterative solution of (4.1) (the Born series) for the

construction of the S-matrix. The construction of the Born series begins with
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the conversion of the equation of motion Kψ = 0 from differential to integral
form, which is then solved by iteration. K is split into an operator K0 with
exact solutions ψ(0) and a remainder eK′ which is treated perturbatively:

K = K0 + eK′, K0ψ(0) = 0, K0ψ = −eK′ψ. (4.5)

To solve the latter equation, one defines a Greens function G indirectly:

K0G(x, y) = −δ4(x− y) = −δ(x
0 − y0)δ3(x− y). (4.6)

The formal solution of (4.5) is (4.1), because ψ(0) disappears from the left-
hand side of (4.5), and eK0 ∫ d4yG(x, y) replaces eG(x, y) by eδ4(x − y) ac-
cording to (4.6). This produces the necessary eK′(x)ψ(x) after y-integration.
In the following, we restrict ourselves to the free Greens function, G0 =

∆(x, y) = ∆(x− y); in the Dirac case this function is called S(x− y):

(∂µ∂
µ +m2)∆(x) = δ4(x), (i∂

µγµ −m)S(x) = δ4(x). (4.7)

One sees that
S(x) = −(i∂µγµ +m)∆(x) (4.8)

reduces the equation for S to that for ∆. The integral equation (4.1) is then

ψ(x) = ψ(0) − e ∫ d4y∆(x− y)[i{Aµ(y), ∂
µ}+ eA2(y)]ψ(y), (4.9)

while that for the Dirac equation becomes

ψD(x) = ψ
(0)
D − e ∫ d

4yS(x− y)γµAµ(y)ψD(y). (4.10)

The construction of ∆(x) proceeds via momentum space. The relevant
Fourier transforms are

∆(x) = (2π)−4 ∫ d4pe−ipxΦ(p), δ4(x) = (2π)
−4 ∫ d4pe−ipx (4.11)

and (4.7) reduces to
(m2 − pµp

µ)Φ(p) = 1. (4.12)

This specifies Φ except on the “mass shell”, pµp
µ = m2, where it is adapted to

the physical situation by “iε” rules. In scattering problems, ψ(0)(x) ∼ e−ikx

represents an incident plane wave of 4-momentum kµ. With p0 = ω,

Φ(pµ) = (m2 − ω2 + p2 − iε)−1 = (E2 − ω2 − iε)−1, (4.13)

Φ(pµ) =
1

2E

(
1

E − iε− ω
+

1

E − iε+ ω

)
, E = (m2 + p2)1/2. (4.14)

The significance of the iεn in the denominator of (4.13) appears in the inte-
gration over ω in (4.11). The zero at ω = En is avoided by giving En a small
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imaginary part, see Fig. 4.1. The integral is evaluated as a Cauchy integral,
clockwise along a closed contour,∮

(z − ω)−1dωf(ω) =

{
2πif(z) for z inside the contour

0 for z outside the contour,
(4.15)

provided f is regular inside and on the contour. For x0 > y0, the factor
exp[−iω(x0 − y0)] = exp[(−iReω + Imω)(x0 − y0)] falls exponentially in
the lower half of the complex ω-plane, such that the contour may be closed
there by a large semicircle. Insertion of f = (2E)−1e−iωx

0

gives the socalled
Feynman propagator ∆F ,

∆F (x
0 > 0,x) = i(2π)−3

∫
d3p

2E
eipxe−iEx

0

≡ ∆+(x). (4.16)

In terms of d3Lp (2.37), this may be also be written as

∆+(x− y) = i ∫ d
3
Lpψp(x)ψ

∗
p(y), ψp(x) = e

ipx−iEx0 . (4.17)

Before continuing, let us take a look at the “retarded propagator”,

ΦR = (m
2 − ω2 + p2 − i sign(ω))−1, (4.18)

ΦR =
1

2E

(
1

E − iε− ω
+

1

E + iε+ ω

)
, (4.19)

which has both ω-poles in the lower half plane. The corresponding retarded
Greens function ∆R(x) for x

0 > 0 receives also contributions from the pole at
ω = −E, which in view of (4.16) corresponds to states of negative energies.
The physical absence of such states excludes the use of ΦR in the present
treatment of scattering by equations such as (4.1) which are applied to wave
functions. The correct equations (3.66) apply to the field operator Ψ . Their
Greens functions are in fact the retarded ones, as will be seen in Sect. 5.3.

Reω

Imω

Fig. 4.1. Position of the poles of the Feynman propagator Gω in the complex ω-
plane and closure of the integration path −∞ < ω <∞ by a semicircle at |ω| =∞
for x0 > y0
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For x0 < y0, the factor exp[−iω(x0− y0)] falls exponentially in the upper
part of the complex ω-plane, such that ∆F and ∆R are evaluated by closing
the integration path by a semicircle at Imω > 0:

∆F (x
0 < 0,x) = i

∫
d3Lpe

−ipxeiEx
0

≡ ∆−(x) = ∆+(−x
0,−x), (4.20)

∆R(x
0 < 0) = 0. (4.21)

Here ∆F seems unreasonable, not only because it contains the “states of neg-
ative energies”, but also because the resulting ψ(x) (4.1) depends on later
times, y0 > x0. However, it will be shown below that this part of the Feynman
propagator describes the scattering of antiparticles, after a CPT transforma-
tion.
The Born series of particle scattering solves (4.1) iteratively,

ψ = ψ(0) + ψ(1) + ψ(2), (4.22)

ψ(1)(x) = e ∫ d4yG(x, y)K′(y)ψ(0)(y), (4.23)

ψ(2)(x) = e2 ∫ d4yG(x, y)K′(y) ∫ d4zG(y, z)K′(z)ψ(0)(z). (4.24)

For spinless particles, the derivative of Aµ arising from the operator i∂
µAµ

in (4.9) is avoided by a partial integration,

ψ − ψ(0) = −ie ∫ d4y∆(x− y)[iAµ∂
µ − i

←−
∂
µ
Aµ + eA

2]ψ(y). (4.25)

The S-matrix (4.3) is also constructed iteratively,

S = S(0) + S(1) + S(2) . . . , S
(0)
if = 〈f |i〉. (4.26)

The scalar product 〈ψf (x, t)|ψ(x, t)〉 contains an ∫ d3x, which is trivial, how-
ever: It produces a factor 16π3k0fδ(kf − p) according to (2.36) and the ex-

pression (4.20) for ∆F . This factor is cancelled by the d
3
Lp = (16π

3p0)−1d3p.
The result for Sif is thus simplified, and in particular

S
(1)
if = −ie ∫ d

4yAµ(y)j
µ
if
′(y), (4.27)

jµif
′(y) = ψ∗kf (i∂

µ − i
←−
∂
µ
+ eAµ)ψki . (4.28)

The term −eAµ gives an e2-contribution to S(1)if , which is moved to the next
order S

(2)
if . The remainder will be called j

µ
if (y); it is the free-particle version

of (2.31). Equation (4.27) applies also to electron scattering, where jµ is one
of the forms discussed in Sect. 2.10. One normally uses the compact notation
(2.315),

jµif = ψkf γ
µψki , ψ = ψ

†γ0. (4.29)



148 4 Scattering and Bound States

To lowest order in e, ψki and ψkf are plane waves of the type e
−iky =

e−ik0y0eiky as in (2.329). The y-dependence of jµif is then explicitly

jµif (y) = J
µ
ife
−i(ki−kf )y = Jµife

−iqy, (4.30)

qµ = kµi − k
µ
f : q

0 = k0i − k
0
f , q = ki − kf . (4.31)

The y-integration of (4.27) is trivial for the Fourier components Ãµ of Aµ,

Aµ(y) = ∫ d
4ke−ikyÃµ(k), (4.32)

∫ d4ye−iy(k+q) = (2π)4δ4(k + q), (4.33)

S
(1)
if = −ie(2π)

4 ∫ d4kδ4(k + q)Aµ(k)J
µ
if = −ie(2π)

4Ãµ(−q)J
µ
if . (4.34)

The expression for Jµif for a spinless particle follows from (4.28) by i∂
µψki =

kµi ψki , ψ
∗
kf
(−i
←−
∂
µ
) = ψ∗kf k

µ
f :

Jµif (KG) = k
µ
i + k

µ
f . (4.35)

The matrix elements of the Dirac current follow from (2.329):

Jµif (Dirac) = ufγ
µui = uD(kf ,mf )γ

µuD(ki,mi). (4.36)

The Aµ(y) produced by a stationary target such as a nucleus is independent
of y0, it requires the adiabatic switching on and off of Aµ at y0 = −T and
+T , respectively:∫ +T

−T
dy0e

−iq0y0 = 2 sin(q0T )/q0 → 2πδ(q0). (4.37)

The last expression appears in the limit T →∞. It should not be used in the
calculation of the differential cross section dσif , which contains |Sif |2. To be
precise, dσif is the differential transition rate (which is d

3
Lkf |Sif |

2/2T ) per
incident particle flux (which is vi = ki/k

0
i . There is however an extra factor

(2k0i )
−1 from the normalization of the initial state; the corresponding final

state normalization factor is included in d3Lkf = d
3k/(8π32k0f )):

dσif = |Sif |
2d3Lkf/4Tk

0
i vi, vi = ki/k

0
i . (4.38)

In spherical coordinates for kf , k
2 = k02 −m2 implies kdk = k0dk0,

d3Lkf = k
2
fdkfdΩf/(16π

3k0f ) = kfdk
0
fdΩf/16π

3, (4.39)

dσif = lim
T→∞

(|Sif |
2/2T )kfdk

0
fdΩf/(32π

3ki). (4.40)
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With (4.37), the limit becomes

lim
T→∞

[2 sin(q0T )/q0]2/2T = 2πδ(q0). (4.41)

The dk0f is cancelled by δ(q
0), which fixes not only k0f = k

0
i (energy conser-

vation), but also kf = ki:

dσif = (16π
2)−1dΩf |e ∫ d

3yAµ(y)j
µ
if (y)|

2. (4.42)

To make the contact with the scattering amplitude f of the stationary scat-
tering wave function (1.278), one defines

fif = −(4π)
−1e ∫ d3yAµ(y)j

µ
if (y), dσif = |fif |

2dΩf . (4.43)

A spinless nucleus can only provide a Coulomb potential, A0(y) = Ze/y for
a point nucleus of charge Ze, and A(y) = 0. As mentioned above, we are
primarily interested in deviations from the point potential, which are caused
by an extended nuclear charge distribution ρel(r

′) = ZeρN (r
′), ∫ d3r′ρN = 1.

The relevant A0 is the solution (1.59) of the Poisson equation,

A0(y) = Ze ∫ d3r′ρN (r
′)/|y − r′|, V (r) = −eA0(r). (4.44)

Insertion of (4.30) gives

fif = (4π)
−1J0if ∫ d

3yV (y)eiqy, (4.45)

which is essentially the Fourier transform of V . We first integrate (4.44) over
r′ and then shift the integration variable y of the Fourier transform by r′,
y = r + r′:

∫ d3yeiqy ∫ d3r′ρN (r
′)/r = ∫ d3reiqrFN (q

2)/r, (4.46)

FN (q
2) = ∫ d3r′eiqr

′

ρN (r
′), FN (0) = 1. (4.47)

FN (q
2) is called the nuclear form factor; it is measured rather directly in

high-energy scattering.
The Fourier transform in r is now performed in spherical coordinates,

∫ dΩ = dudφ, ∫ dφ = 2π and with qr = qru:∫
d3r
eiqr

r
= 2π

∫ ∞
0

rdr

∫ 1
−1
dueiqru =

2π

iq

∫ ∞
0

dr(eiqr − e−iqr). (4.48)

This integral does not converge at r = ∞. One defines an artificial charge
screening radius as in the form of an extra factor e

−r/as and lets as →∞ in
the final result:∫ ∞

0

dr[er(iq−a
−1
s ) − er(−iq−a

−1
s )] = −(iq − a−1s )

−1 − (iq + a−1s )
−1

= 2iq(q2 + a−2s )
−1. (4.49)
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In the final result, we write again q2 instead of q2, in order to avoid confusion
with qµq

µ = q02 − q2:

∫ d3reiqre−r/as/r = 4π(q2 + a−2s )
−1 → 4π/q2. (4.50)

As already mentioned, it is the inverse Fourier transform which determines
the point Coulomb potential:

V (r) = (2π)−3 ∫ d3qe−iqr(−4παZ/q
2) = −αZ/r. (4.51)

For the scattering of a spinless particle, one finds from (3.114)

J0if (KG) = 2k
0
i ≡ 2E, fif = −2αZEF (q

2)/q2. (4.52)

And with k2i = k
2
f ≡ k

2, one obtains

q2 = (ki − kf )
2 = 2k2(1− cos θ) = 4k2 sin2(θ/2), (4.53)

where θ is the scattering angle. For electrons, the relevant matrix elements
of J0if (Dirac) have already been calculated in (2.343)
Because of many different units and normalization constants, it is advis-

able to check the dimensions of the final expressions. The differential cross
section dσ has the dimension of an area, cm2 or (eV)−2.

4.3 Two-body Scattering and Decay

In the S-matrix (4.27), we now replace the static limit A0(y) by the full Aµ(y)
which is constructed from Maxwell’s equations (2.20) in the Lorentz gauge
∂µA

µ = 0, now in units c = 1:

∂µ∂
µAν = 4πjνel. (4.54)

The corresponding integral form uses the Greens function D(y−x) satisfying

∂µ∂
µD(x) = δ4(x), Aµ(y) = ∫ d

4xD(y − x)4πjel,µ(x). (4.55)

Comparison with (4.7) shows D(x) = ∆(x, m2 = 0), such that expressions
(4.11) and (4.13) apply with m2 = 0:

D(y − x) = (2π)−4 ∫ d4pe−ipyeipx(−pµp
µ − iε)−1. (4.56)

The −iε is unessential in the following, because pµ will be expressed in terms
of in- and outgoing 4-momenta. For jel,µ only the current density of the target
nucleus is now relevant, jel,µ = Zej2,µ. The notation must be extended to
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the case of two different currents; our previous current of the projectile is
now called jµ1 . Also, we prefer to write j2,µ = gµνj

ν
2 and abbreviate again

Ze2 = αZ :

S
(1)
if = −4πiαZ ∫ d

4yd4xD(y − x)jµ1 (y)gµνj
ν
2 (x). (4.57)

This expression is symmetric in j1 and j2, both currents must have the form
(4.30):

jµ1 (y) = e
−iq1yJµ11′ , j

ν
2 (x) = e

−iq2xJν22′ , qj = kj − k
′
j (j = 1, 2). (4.58)

The index i in Sif comprises the pair of indices (1, 2), while f comprises
the indices (1′, 2′) of the final states. With the form (4.56) of D(y − x), the
x-integral gives

∫ d4xeipxe−iq2x = (2π)4δ4(p− q2), (4.59)

while the y-integral gives (2π)4δ4(p+ q1):

S
(1)
if = 4πiαZ(2π)

4 ∫ d4pδ4(p− q2)δ4(p+ q1)J
µ
11′gµνJ

ν
22′(pµp

µ)−1. (4.60)

The two δ4-functions require

pµ = qµ2 = −q
µ
1 = k

µ
2 − k

′
2
µ = −kµ1 + k

′
1
µ. (4.61)

We also define the total 4-momenta of the initial and final states,

kµi = k
µ
1 + k

µ
2 , k

µ
f = k

µ
1′ + k

µ
2′ , (4.62)

such that Sif becomes

Sif = i(2π)
4δ4(ki − kf )Tif , (4.63)

T
(1)
if = 4παZJ

µ
11′gµνJ

ν
22′/t, t ≡ pµp

µ = q021 − q
2
1. (4.64)

In this form, δ4(ki−kf ) = δ(k0i −k
0
f )δ3(ki−kf ) expresses conservation of the

system’s total energy and momentum. In the previous section, the energy k01
of particle 1 was conserved, which entailed conservation of the magnitude
of its momentum, but not of its direction. Perturbation theory in general is

k′1

k′2

k1

k2

p

Fig. 4.2. The first Born graph for ab→ a′b′
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illustrated by Feynman graphs. The Born series focuses on the number of
exchanged “virtual” photons. The first Born graph is illustrated in Fig. 4.2.
Two-photon exchange graphs are shown in Fig. 5.3 in Sect. 5.5.

Although (4.63) has been derived only for S
(1)
if , the energy-momentum

conserving δ4(ki − kf ) arises in all orders, Tif = T
(1)
if + T

(2)
if + . . .. The point

at which a photon line begins or ends is called a “vertex” (points with two
photon lines will be mentioned in Sect. 5.5). To begin with, each line section
in a Feynman graph is associated with a certain 4-momentum. In T (2), the
three 4-momenta on lines 1 and 2 may be called k1, k

′′
1 , k

′
1 and k2, k

′′
2 , k

′
2. As

in (4.61), 4-momenta are conserved at each vertex. Calling q1 and q2 the two
photon 4-momenta in the order in which they are emitted by particle 2, one
has k′′2 = k2−q1 = k

′
2+q2, and k

′′
1 = k1+q1 = k

′
1−q2 in the “direct” graph, and

k′′1 = k1+q1 = k
′
1−q2 in the “crossed” graph where the photons end in inverse

order on line 1. In the latter case, one rewrites k′′1 as
1
2 (k1+ k

′
1) +

1
2 (q1− q2).

In both cases, one finds k1+k2 = k
′′
1 +k

′′
2 = k

′
1+k

′
2. Thus energy-momentum

conservation proceeds stepwise in the higher order Born graphs. One of the
two qi remains unspecified; it is integrated over. Feynman rules are not used
in this book; the final integrations over the unspecified momenta may be
diverging and require intricate counterterms.
The k01 and k

0
2 are in general not separately conserved. However, there

exists a special coordinate system, called the center-of-mass or center-of-
momentum system (cms), which is defined by

ki = k1 + k2 = 0 = k1′ + k2′ = kf . (4.65)

The total energy in this system is frequently denoted by
√
s. One has

kµi,cms = k
µ
f,cms = (

√
s,0). (4.66)

And as k2 ≡ kµkµ is Lorentz invariant, the cms energy is also a Lorentz
invariant,

k2i = k
2
f = s. (4.67)

The individual energies k01 and k
0
2 of the free ingoing particles in this system

will be denoted by E1 and E2; they are also Lorentz invariants. Their sum is

E1 +E2 =
√
s, (4.68)

while the difference of their squares follows from E21−m
2
1 = k

2
1,cms = E

2
2−m

2
2:

E21 −E
2
2 = m

2
1 −m

2
2 ≡ −m+m−. (4.69)

The combination m+m− occurred already in (3.187). The lighter particle is
called 1, the heavier one 2, such that m+m− is positive. Observing E

2
1−E

2
2 =

(E1 −E2)
√
s, one finds

E1 =
1
2 (s−m+m−)/

√
s, E2 =

1
2 (s+m+m−)/

√
s. (4.70)
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The same formalism applies to the free outgoing particles, with k21,cms re-

placed by k′1,cms
2. Consequently, E1−E1′ = E2′ −E2 = 0 = q01,cms in (4.61).

In higher order Born graphs, expressions (4.70) need not apply to the in-
termediate energies E′′1 and E

′′
2 , because the “virtual particles” associated

with the sections between vertices need not fulfill the free-particle equations
(they are then said to be “off the mass shell”, k2i �= m

2
i ). On the other hand,

ImT (2) has all particles onshell, due to the unitarity relation (4.99) below.
This relation is used in a calculation of T (2) without Feynman rules.
Some expressions of the one-body kinematics of the last section can be

taken over to the two-body kinematics in the cms. Defining qµ1,cms ≡ q
µ, the

Lorentz invariant t of (4.62) becomes −q2:

qµ ≡ qµ1,cms = (0, q), t = −q
2. (4.71)

The minus sign could have been avoided by defining t = −qµqµ, but it is
justified by a sign symmetry of the three Lorentz-invariant “Mandelstam
variables”,

s = (k1 + k2)
2 = (k1′ + k2′)

2, t = (k1 − k1′)
2 = (k2′ − k2)

2, (4.72)

u = (k1 − k2′)
2 = (k2 − k1′)

2, (4.73)

s+ t+ u = 2m21 + 2m
2
2. (4.74)

In the one-body case, we defined in (1.74) E2/c2 − m2c2 ≡ h̄2k2. This
combination of constants occurs not only in the solutions of the KG equation,
but also in those of the Dirac equation, compare (2.135). The correspond-
ing cms value k21,cms = k

2
2,cms will also be called k

2, dropping the boldface
notation. From (4.69), we find

k2 = E21 −m
2
1 = E

2
2 −m

2
2 = [s+m

2
+m

2
−/s− 2m

2
1 − 2m

2
2]/4. (4.75)

It occurs frequently in the combination

4k2s = s2 +m2+m
2
− − 2s(m

2
1 +m

2
2) ≡ λ(s,m

2
1,m

2
2). (4.76)

The “triangle function” λ is symmetric in all three arguments,

λ(a, b, c) = a2 + b2 + c2 − 2(ab+ ac+ bc). (4.77)

More useful is the factorizing form

λ = [s− (m2 +m1)
2][s− (m2 −m1)

2]. (4.78)

Physically, k is the wave number in the cms. The form (4.78) shows that
it vanishes not only at the “threshold” sth = (m1 + m2)

2, but also at the
“pseudothreshold” spth = (m2 −m1)2. Positive values of

√
s refer to particle

scattering, negative ones to the scattering of two antiparticles. Both k2 and
λ are Lorentz invariants.
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In all measurable quantities, one is free to replace mi by −mi, even if they
are derived from Dirac equations. When m1 and m2 are taken of opposite
signs, sth and spth exchange their roles.
The two-body generalization of the differential cross section dσif (4.38)

is somewhat artificial. A more fundamental concept is the transition rate
density r̂if , which is the transition probability |Sif |2 per time interval 2T and
volume V , from a normalized initial state |i〉 = |1, 2〉 to a selected normalized
final state |f〉 = |1′, 2′〉. In the one-body case, we had to replace the energy-
conserving delta-function, δ(q0) = δ(k01 − k

0
1
′) by the adiabatic switching

(4.37) in order to get a well-defined expression for δ2. In the two-body case,
the 4-dimensional δ4(ki − kf ) requires in addition also a large volume V ,
outside which the interaction vanishes at all times. Extending the arguments
that led from |Sif |2/2T to 2π|Tif |2δ(q0) to four dimensions, one gets

r̂if = |Sif |
2/2TV = (2π)4δ4(ki − kf )|Tif |

2. (4.79)

Alternatively, one may also use (4.63) directly but replace one of the two
factors (2π)4δ4 by

(2π)4δ4(ki − kf ) = ∫ d
4xei(ki−kf )x, (4.80)

take kf = ki in the exponent on account of the second factor, and then iden-
tify the resulting ∫ d4x with 2TV , which cancels the denominator of (4.79).
The measurable rate density is proportional to the product of the macro-

scopic phase space densities Fj(kj ,R, T ) of the initial particles j = 1, 2. The
particle density ρj(R, T ) and particle numbers Nj are

ρj(R, T ) = ∫ d
3kjFj , Nj = ∫ d

3rρj . (4.81)

The dependence of F on T and R must be sufficiently smooth in order to
remain compatible with the limiting procedure T → ∞, V → ∞ required
for energy-momentum conservation. A stationary particle beam of sharp mo-
mentum p has

F (k,R, T ) = δ3(k − p)ρ(R, T ); (4.82)

ρ could be damped by absorption (or by decay in the case of unstable parti-
cles) along the beam direction ẑ,

ρ(R, T ) = ρ(x, y, 0)e−z/λ, (4.83)

where λ is a mean free path and ρ(x, y, 0) a macroscopic beam profile. Re-
membering the covariant normalization 〈j|j〉 = 2k0j , the actual transition rate
density to a discrete final state |f〉 is

rif = Πj ∫ d
3kj(2k

0
j )
−1Fj(kj ,R, T )r̂if . (4.84)

For the collision of two stationary beams, F1F2 = δ3(k1 − p1)δ3(k2 − p2)
×ρ1(R, T )ρ2(R, T ) makes rif proportional to the product ρ1ρ2 at a common
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time T in a common place R. If the beams never meet, rif remains zero. The
case of a single unstable particle in |i〉 is discussed below.
In the continuum of unbound two-particle final states, one has a differen-

tial transition rate,

drif = r̂ifd
3
Lk
′
1d
3
Lk
′
2, d

3
Lk = d

3k/16π3k0, (4.85)

where d3Lk is again the Lorentz invariant momentum differential. The six
differentials of drif can be rearranged such that four of them are cancelled
by the δ4(ki − kf ) of r̂if . For this purpose, we define a “Lorentz invariant
phase space” differential, which in the most general case comprises nf ≥ 2
particles of 4-momenta kl in the final state:

dLips(ki, f) = (2π)
4Π
nf
j=1d

3
Lklδ4(ki − kf ), kf = Σ

nf
j=1kl. (4.86)

The differential transition rate is then

drif = |Tif |
2Πj ∫ d

3kj(2k
0
j )
−1FjdLips(ki, f). (4.87)

For the special form (4.82) of F1 and F2, this gives

drif = ρ1ρ2(4k
0
1k
0
2)
−1|Tif |

2dLips. (4.88)

The differential cross section dσif is now defined in terms of drif in a manner
that reduces it to (4.38) in the static limit. One defines ad hoc a “relative
velocity”,

v12 = (2k
0
1k
0
2)
−1
√
λ, drif = ρ1ρ2v12dσif . (4.89)

The factor (k01k
0
2)
−1 is removed because it is not Lorentz invariant. In

summary then,
dσif = (4k

√
s)−1|Tif |

2dLips(ki, f). (4.90)

In the cms and for nf = 2, dLips is essentially the solid-angle differential dΩi
of one of the two particles:

dLips = (16π2E1E2)
−1d3k1d

3k2δ(
√
s−E1 −E2)δ3(k1 + k2) (4.91)

= k21dk1dΩ1δ(
√
s−E)/(16π2E1E2), E ≡ E1 +E2. (4.92)

To cancel the last delta-function, one must express dk1 in terms of dE. From
E2i = m

2
i + k

2
i , one has EidEi = kidki, and with k1 = k2 ≡ k,

dE = dE1 + dE2 = kdk(1/E1 + 1/E2) = k1dk1E/E1E2. (4.93)

After the cancellation, the delta-function implies E =
√
s, but we shall con-

tinue to use E as an alternative symbol for the cms energy:

dLips = kdΩ1/16π
2E, E =

√
s. (4.94)

Elastic scattering has k1 = k and consequently

dσif = dΩ1|Tif |
2/64π2E2. (4.95)
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Comparison with the one-particle formula (1.296), dσ/dΩ = |fk|2, shows the
connection

fk = Tif/8πE. (4.96)

The S-matrix has two fundamental properties, namely unitarity and an-
alyticity, but both are largely lost in the Born series to any finite order. Uni-
tarity (S†S = 1) results from the completeness of the initial and final states
in the defintions (4.3) of the S-matrix. Adapting the notation of (1.270), one
would write ΣjS

∗
fjSji = δif . After a partial-wave expansion as in Sect. 1.10,

one obtains a partial-wave S-matrix Sl, which in the simplest case of exclu-
sively elastic scattering is a 1 × 1 matrix. Here unitarity requires Sl = e2iδl ,
where the phase shift δl(s) remains real up to a value sin where inelastic
scattering begins to contribute. In a more precise notation, one has

ΣjS
∗
fjSjiΠ

nj
n=1d

3
Lkn = 〈i|f〉. (4.97)

In terms of the T-matrix (4.63), this reads

−i(Tif − T
∗
fi) = Σj ∫ dLips(ki, j)T

∗
fjTij . (4.98)

As practically all interactions are time-reversal invariant, one can find a spin
basis in which T is symmetric, Tif = Tfi:

2ImTif = Σj ∫ dLips(ki, j)T
∗
fjTij . (4.99)

This relation connects different powers of T and is violated by any approxi-

mation that ends at a given power. For example, T
(1)
if (4.64) is real, whereas

the right-hand side of (4.99) is nonzero.
Analyticity says that Tif (s, t) has an analytic continuation from the phys-

ical regions of s and t to the unphysical ones, and in particular to s < sth.

While the Born amplitudes are analytic in t (T
(1)
if has a pole a t = 0), they

miss the poles at positions sn < sth that represent the atomic bound states
(in the case of the Coulomb interaction, these poles accumulate near sth. In
a given partial wave, n may be identified with the principal quantum number,
and sn = sth − α2Zm1m2/n

2, as will be seen in Sect. 4.5). The situation may
be illustrated by the function f(x) = (1− x)−1 ≈ 1 + x+ x2, which is ∞ at
x = 1, while its approximation is 3 there.
For the two-body states among j in (4.99), the analytic structure of dLips

follows from (4.94) and the expressions (4.76) and (4.78) for k and λ:

dLips = dΩ1k/16π
2s1/2 = dΩ1

√
s− sth

√
s− spth/32π

2s. (4.100)

It has a pole at s = 0 and two square root cuts, one starting at sth =
(m1 +m2)

2 = m212, the other at the pseudothreshold spth = (m2 −m2)
2. By

analytic continuation, the unitarity equation applies also in the region t > 0,
where is supplies square root cuts at t = tth and t = tpth. These cuts will be
needed for the calculation of vacuum polarization in Sect. 5.3.



4.3 Two-body Scattering and Decay 157

If the initial state consists of a single excited atom of energy E at rest,
then its radiative decay into a photon and a atomic final state of energy E′

gives a momentum k to the photon, and −k to the final atom. As the energy
of an atom is normally quoted for the atom at rest, E′ is to be taken as the
mass m2 in the expression (4.75) for k

2, while m1 = 0 is the photon mass:

k2 = (E4 − 2E′2E2 +E′4)/4E2, (4.101)

k = (E2 −E′2)/2E = E −E′ − (E −E′)2/2E. (4.102)

As E′ is smaller than E, the subtracted term is positive. The energy h̄ω of
the emitted photon is not E − E′ as one might expect, but slightly smaller.
The missing energy is carried away by the recoiling atom. Nonrelativistically,
one has 2E = 2m (m = atomic mass) in the last denominator, giving k =
E−E′−k2/2m. In meson decays, there are some extreme cases like ω → γ+π0

where m2π � m
2
ω implies that the photon and the pion receive about equal

energies, namely 12mω each.
For the inverse process, one may direct a laser beam of photon momen-

tum k′ on the atoms of energy E′ at rest. This requires h̄ω′ > E−E′, because
some energy is required for the motion of the excited atom. The total sym-
metry of the triangle function λ (4.77) implies that whenever one atom is at
rest, the common (momentum)2 of the photon and of the other atom is λ/4,
divided by the cms (energy)2 of the atom at rest, according to (4.76). The
necessary momentum of a laser photon is thus

k′ =
√
λ/2E′ = (E2 −E′2)/2E′ = E −E′ + (E −E′)2/2E′. (4.103)

Excited atoms and other unstable states may be included among the asymp-
totic initial states |i〉 of the S-matrix only if their decay rates may be calcu-
lated by first-order, time-dependent perturbation theory. The Πjd

3kj(2k
0
j )
−1

in (4.84) or (4.87) is then reduced to d3ki/2k
0
i ; the decay rate density is

drif = |Tif |
2 ∫ d3ki(2k

0
i )
−1FidLips(ki, f). (4.104)

A monoenergtic beam of unstable particles has Fi = F (ki, R, T ) again
given by (4.82). The decay rate is the integrated decay rate density, in which
the density ρ of F disappears:

dΓif (ki) = |Tif |
2(2k0i )

−1dLips(k0i ,ki, f). (4.105)

For ki = 0, k
0
i = E, a two-particle decay has dLips given by (4.94). And as

|Tif |2 is Lorentz invariant, the only difference for the lab system arises from
the factor (k0i )

−1 in (4.105):

dΓif (k
0
i ) = (k

0
i )
−1EdΓif (E), (4.106)

where E =
√
s is the mass of the decaying state. The factor E/k0i is the

famous “time dilatation”, which says that moving systems decay more slowly.
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The total decay rate into the state |f〉 integrates over the decay angles Ω1
in (4.94) and sums over the helicities λf of all decay products:

EΓif (E) =

∫ ∑
λf

|Tif |
2k1dΩ1/32π

2E. (4.107)

When |i〉 has vanishing total angular momentum (a “spinless particle”), the
decay is isotropic in the cms, such that ∫ dΩ1 gives 4π. For a system of total
angular momentum j > 0, the decay angular distribution depends on the
magnetic quantum numbers mj present in the initial state. By rotational
invariance, the angular-integrated rate Γif (E) is independent of mj and may
be calculated for a fixed value, say mj = 0.
As an example, consider the decay of a vector meson into an electron-

positron pair, V → e−e+. Here one only needs one of the three mj-values in
the polarization vectors εµ(mj), say e(0) of (4.171) below. We may also set
θ = 0,

T (mj = 0) = (4π)
1/2eV J

z
ep = (4π)

1/2eV ueγzvp = (4π)
1/2eV u

†
eαzvp. (4.108)

The index p stands for positron. eV is a coupling constant, and the (4π)
1/2 is

included such that for the decay of a virtual photon, production and subse-
quent decay is again of the form (4.64), with eV = e. The free Dirac spinors
ue and vp are expressed in terms of Pauli’s χ by (2.331) and (3.65),

ue =
√
Ee + γ5kσχ(me), vp = γ

5
√
Ep + γ5kpσχ(−mp). (4.109)

In the cms, one has Ee = Ep = E/2 and kp = −k. For the electron, we
choose the explicit helicity spinors χ(λ) (2.337). The positron spinor is then
χp(−mp) = χ(λp), because the positron helicity basis has the z-axis along
the positron momentum, which is −k. In this way, one finds

T = (4π)1/2eVΣγ5=±1
√
E/2 + 2γ5λk

√
E/2− 2γ5λpk 〈λ|σz|λp〉, (4.110)

〈λ|σz|λ〉 = 2λ(cos
2 1
2θ − sin

2 1
2θ) = 2λ cos θ, (4.111)

〈λ|σz| − λ〉 = −2 cos
1
2θ sin

1
2θe

−iφ = − sin θe−iφ, (4.112)

T = (4π)1/22eV (2λm cos θδλ,λp −
1
2E sin θe

−iφδλ,−λp), (4.113)∑
λ,λp

|T |2 = 32πe2V (m
2 cos2 θ + 14E

2 sin2 θ). (4.114)

Finally, the angular integral gives ∫ dΩ cos2 θ = 4π/3,

EΓ (V → e−e+) = 2
3e
2
V (2m

2 +E2)k/E. (4.115)

There are several applications of the two-body scattering formalism in
which the cms does not exist. When two electrons scatter in the presence of
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an external A0, of an atomic atomic nucleus, the asymptotic states cannot
be taken as plane waves any longer. They are eigenstates of single-particle
Hamiltonians H1 and H2, with separate eigenvalues k

0
1 and k

0
2. The total

lab energy k01 + k
0
2 is conserved, but the S-matrix has nondiagonal elements,

Sif = 〈k01
′k02
′|S|k01k

0
2〉. The photon propagator is still given by (4.56); the

index 1 of t (4.64) may be dropped:

t = pµpµ = q
2
0 − q

2, q0 = k
0
1
′ − k01 = k

0
2 − k

0
2
′. (4.116)

The Fourier transform of the Born approximation still gives a local potential
V12, but this depends now on the energies of the asymptotic states. Replacing
in (4.50) a−2s by −q

02, one finds

∫ d3reiqreiq0r/r = 4π/(q2 − q20), V12(r, q0) = e
iq0re2/r. (4.117)

(The zero of the denominator is neglected; it corresponds to atomic de-
excitation.)
Explicit spin summations as in(4.114) are normally unelegant. The matrix

element for scattering or collision of a single electron may be written in several
forms,

T = u′Qu = χ†(λ′)Mχ(λ). (4.118)

Q is a linear combination of the sixteen matrices 1, γµ, σµν4×4, γ
5 and γ5γµ.

M contains only the 2 × 2 matrices σ0 = 1 and σ; M = M0 +Mσσ. The
cross section for unpolarized electrons avarages |T |2 over λ;

1
2Σλ|T |

2 = 1
2Σλχ

†(λ′)Mχ(λ)χ†(λ)M†χ(λ′). (4.119)

This is simplified by the completeness relation

Σλχ(λ)χ
†(λ) = 1, Σλ|T |

2 = χ†(λ′)MM†χ(λ′). (4.120)

When the polarization of the outgoing electron is irrelevant, one also has to
sum over its helicity λ′:

Σλ,λ′ |T |
2 = Σλ′,ijχ

∗
i (λ

′)χj(λ
′)(MM†)ij = Σii(MM

†)ii. (4.121)

In this way one obtains the simple expression

1
2Σλλ′ |T |

2 = 1
2 trace(MM

†) = |M0|
2 +MσM

∗
σ. (4.122)

4.4 Current Matrix Elements, Form Factors

The forms (4.35) and (4.36) of current matrix elements ignore the inner struc-
tures of mesons and nuclei. Even the “elementary” leptons (electrons and
muons) have some inner structure that follows from QED. In the present
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section, the most general current matrix elements compatible with Lorentz
and gauge invariance will be constructed.
Gauge invariance is simple; it is equivalent to current conservation:

qµJ
µ
if = 0, q

µ = kµi − k
µ
f . (4.123)

When the meson or nucleus is not excited by the scattering, one has

k2i = k
2
f = m

2, t = (ki − kf )
2 = 2m2 − 2kikf . (4.124)

The general form of Jµif for a spinless particle is then

Jµif (KG) = (ki + kf )
µF (t), F (0) = 1. (4.125)

The first factor ensures (4.123), and F (t) is a “form factor”, which cannot be
calculated exactly for mesons and nuclei. The nuclear form factor FN (q

2) was
introduced in (4.47) as the Fourier transform of the nuclear charge density, in
the limit of a non-recoiling nucleus. In cms scattering, one has in fact −t = q2

according to (4.71). Thus F (−t) is the Lorentz-invariant generalization of
FN (q

2). In principle, F is a function of all possible Lorentz invariants, F =
F (t, k2i , k

2
f , kikf ). But with (4.124), t is the only independent variable, for

a fixed value m of the particle mass. At small t, F is paramatrized by its
slope,

dF (t)/dt = 〈r2ch〉/6, (4.126)

where 〈r2ch〉 is the “mean square charge radius”. The name derives from the
relation (4.47) between F and the static charge density ρN at small q,

exp(iqr′) ≈ 1 + iqr′ − 12 (qr
′)2, (4.127)

1
2 ∫ d

3r(qr′)2ρ = 1
2q
2 ∫ u2dur4drρ = q2 ∫ r4drρ/6 ≡ 〈r2ch〉q

2/6. (4.128)

Qualitative arguments about the poles of analytic functions (which are
handled by “uncertainty relations” in nonrelativistic quantum mechanics)
show that particles with a large mean square radius have low-lying excited
states. For nuclei, such state are produced in inelastic electron-nucleus colli-
sions (“Coulomb excitation”). There one has

k2i = m
2
i , k

2
f = m

2
f > m

2
i . (4.129)

The condition qµJ
µ
if = 0 requires then instead of (4.125)

Jµif (KG) = [(ki + kf )
µt+ qµ(m2f −m

2
i )]G

0
if (t), (4.130)

for a state f that is again spinless and has the same intrinsic parity as the
ground state. For example, the α-particle (4He nucleus) has among its ex-
cited states a state α∗ that also has spin zero and positive parity (0+). The
Coulomb excitation cross section dσ(e−α→ e−α∗) is given by (4.90).
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The G0if in (4.130) is a transition form factor. Excited states appear also
in the higher-order terms of the Born series for elastic scattering, beginning
with the two-photon exchange (4.26):

S
(2)
if = −e

2

∫ +∞
−∞

d4y

∫ y0
−∞
dx0

∫
d3xAµ(y)

∑
l

jµil
′(y)Aν(x)j

ν
lf
′(x). (4.131)

We shall not discuss this expression any further, but note that Aµ is pro-
portional to Ze (compare (4.55)), such that the second Born approximation
is proportional to Z2e4 = α2Z . The contribution of all excited states to the
second Born approximation of elastic scattering is called the (electric) po-
larizability. Its calculation requires a good knowledge of nuclear theory. It
frequently limits the precision of atomic bound state calculations, for exam-
ple for atomic hydrogen. Heavy nuclei have both large 〈r2ch〉 and large Ze.
Turning now to spin-12 particles, the general form of the current matrix

element may be taken as a combination of uf (ki + kf )
µui and ufγ

µui:

Jµif = uf [γ
µGM (t)− F2(t)(ki + kf )

µ/2m]ui. (4.132)

The two functions GM and F2 are the “magnetic” and “Pauli” form factors,
respectively. The condition qµJ

µ
if = 0 is satisfied by each term separately;

the Dirac expression (4.36) for a structureless electron has GM = 1, F2 = 0.
There is an alternative parametrization of Jµif which is better in the presence
of potentials,

Jµif = uf [γ
µF1(t) + σ

µν
4×4qνF2(t)/2m]ui, (4.133)

with σµν4×4 given by (2.327). Its equivalence with (4.132) is based on the Dirac
equations for the free-particle spinors ui and uf ,

ufσ
µν
4×4qνui =

1
2uf [γ

µ(kiγ − kfγ)− (kiγ − kfγ)γ
µ]ui

= uf [γ
µ(mi +mf )− k

µ
i − k

µ
f ]ui, (4.134)

after use of kiγui = miui, ufkfγ = mfuf , and with γ
νγµ = 2gµν−γµγν . For

mi = mf = m the connection between (4.132) and (4.133) is the “Gordon
identity”,

GM (t) = F1(t) + F2(t). (4.135)

F2(0) is the anomalous magnetic moment κan (2.76), as will be seen below.
For leptons (electrons and muons), F1 and F2 may be calculated perturba-
tively as “radiative correction”, caused by the emission and reabsorbtion of
a virtual photon. They are then also called “vertex functions”. The result is
best expressed in terms of a new variable ξ (Lifshitz and Pitaevskii 1973) and
a scaled coupling constant απ,

q2 = −t ≡ m2(1− ξ)2/ξ, απ ≡ α/π, (4.136)

F2 = απξ log ξ/(ξ
2 − 1), F2(0) = F2(ξ = 1) =

1
2απ = κan. (4.137)



162 4 Scattering and Bound States

In other words, a real electron is not quite structureless. The Gordon identity
cannot be used in the presence of potentials. The form (4.133) is better than
(4.132) because the normalization F1(0) = 1 guarantees the correct value of
the electric charge.
For nucleons (protons and neutrons), the large values κp = 1.79, κn =

−1.91 cannot be calculated reliably; they are caused by the “hadronic struc-
ture” of these particles, which is qualitatively explained by the quark model,
Sect. 5.9.
The vertex function F1(t) diverges for t → 0. Like the factor 1/t in the

main term T
(1)
if (4.64), the divergence arises from the vanishing of the denom-

inator of the photon propagator D(y − x) (4.56), this time for the radiation
emitted at position y and reabsorbed at position x. It can be handled by
a charge screening radius as as in (4.50), but now a

−1
s is either called a pho-

ton mass or an infrared cutoff λ:

Dλ(y − x) = (2π)
−4 ∫ d4pe−ipyeipx(λ2 − pµp

µ − iε)−1. (4.138)

The resulting F1 is complicated; for small q
2 it is

F1 = 1− απq
2m−2(13 log(m/2λ)−

1
8 ). (4.139)

The removal of the unphysical parameter λ is postponed to Sect. 5.5. As
the proton is also charged, it has the same form factor at very small q2.
But normally, the inclusion of the hadronic charge radius (4.126) is more
important. The proton has 〈r2ch〉 ≈ (0.85 fm)

2.
The fact that F1 and F2 follow from the Dirac equation (3.66) for the

electron field operator emphasizes the exactness of that equation. However,
as the calculation of radiative corrections is tedious, one prefers to work
with effective field equations in which the dominant radiative corrections
are replaced by auxiliary operators. The most important long-range operator
arises in the approximation F1(t) = 1, F2(t) = F2(0) = κan. The resulting
first-order S-matrix element for the scattering on a four-potential Aµ follows
from the insertion of (4.133) into (4.30) and (4.27),

S
(1)
if = −ie ∫ d

4yAµjµ = −ie ∫ d
4yAµe−iqyuf (γµ + σ4×4,µνq

νκan/2m)ui.
(4.140)

The combination e−iqyqν may be replaced by i∂νe−iqy, and ∂ν = ∂νy may be
transferred to Aµ by partial integration:

S
(1)
if = −ie ∫ d

4ye−iqyuf (A
µγµ − i∂

νAµσ4×4,µνκan/2m)ui. (4.141)

As σ4×4,µν = (γµγν − γνγµ) is antisymmetric in µ and ν, only the antisym-
metric part of ∂νAµ contributes, which is [∂ν , Aµ] = −Fµν/2:

S
(1)
if = −ie ∫ d

4ye−iqyuf (A
µγµ + iF

µνσ4×4,µνκan/4m)ui. (4.142)
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The effective Dirac equation must reproduce this expression. It is unique
only if one excludes additional derivatives. Remembering that the first term
Aµγµ = γ

0(A0 −Aα) originates from the Dirac equation (2.92) in the form

(γµπ
µ −m)ψD = γ

0(π0 − γ5σπ −mγ0)ψD = 0, π = p+ eA, (4.143)

one merely has to add the second term of (4.142) to the interaction operator
of (4.143):

[π0 − γ5σπ −mcγ0(1− ih̄eκanFµνσ
µν
4×4/4m

2c2)]ψanD = 0. (4.144)

This is the anomalous Dirac equation, which will be studied in some detail.
The factors h̄ and c have been included for that purpose. With appropriate
restrictions, the equation also applies to an effective field operator ΨanD which
removes electrons and emits and absorbs photons as in (3.66). The main
restriction is of course that the reabsorption matrix element in the form
connected with F2(t) in (4.133) is set equal to zero. For leptons, the second
restriction is q2/2m2 � 1, where m is the lepton mass. For nucleons, the
same restriction holds, but here m is more of the order of the pion mass. The
restriction also excludes the use of ΨanD for the creation of lepton-antilepton
or nucleon-antinucleon pairs. A field theory with ΨanD is not renormalizable.
The space-space part σij4×4 = σ

ij = iσk (i, j = 1, 2, 3) of σµν4×4 contains
no Dirac matrices according to (2.326). The Fµν follows from (2.19). In the
parity basis where γ0 = β is diagonal, (4.144) reads

(π0 −manc)ψg = (πσ − ih̄κaneσE/2mc)ψf , (4.145)

(π0 +manc)ψf = (πσ + ih̄κaneσE/2mc)ψg, (4.146)

man = m+ h̄eκanσB/2mc, E = −∇A
0 − ∂0A. (4.147)

The nonrelativistic limit of these equations gives E = manc
2 + HP . In the

Pauli Hamiltonian HP one may put man = m, and the additional operator
arising from manc

2 may be shifted into HP as follows:

HPan = V + π
2/2m+ h̄eσBgfree/4mc, gfree = 2 + 2κan. (4.148)

Thus κan is in fact the anomalous magnetic moment defined in (2.76). Later,
the Fourier transform of F1 − 1 will be included as a modification of π0.
Nuclei of ordinary atoms are nearly always nonrelativistic. They get an

index 2 in the following, anticipating the application to binary atoms. Their
Zeeman operators are expressed in terms of the nuclear magneton

HZee = g2nS2Bµn, µn = eh̄/2mpc. (4.149)

Here mp is the proton mass, irrespective of the nuclear mass m2, for all spins
s2 > 0. For s2 = 1/2, S2 = σ2/2, this agrees with (4.148) only for the proton
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itself. If one wants to treat a spin-1/2 nucleus as a Dirac particle, one must
redefine its g-factor:

HZee = h̄ZeσBg2/4m2c, (4.150)

g2 = gn2m2/Zmp. (4.151)

For example, the proton has g2 = gn2 = 5.58, while the nucleus
3He has gn2 =

−2.128 and g2 ≈ (3/2)gn2 = −3.185. The most important manifestation of
nuclear spin in atoms is the magnetic “hyperfine interaction” between S2
and the electrons. In classical electrodynamics, a nucleus with a magnetic
moment

µn = gn2µnS2 (4.152)

fixed at the origin produces a vector potential

A = µn × r/r
3 = −µn × [∇, 1/r] = ∇× (µn/r). (4.153)

This A is now used as an operator in the electron’s Dirac equation. The
procedure is analogous to the calculation of A0 in (4.44), but it is more
questionable here. For any finite Dirac g-factor g2, g2n vanishes in the limit
m2 →∞ according to (4.151), such that the static limit of (4.153) is strictly
speaking zero. It is therefore of interest to see how A arises in the framework
of two-body scattering: The vector components J if of J

µ
if (4.133) contain

u′γu = u′†γ5σu = χ′†[(σk′)σ + σ(σk)]χ = χ′†[k + k′ + iσ × q]χ, (4.154)

u′σiν4×4qνu = −u
′σijqju = 2miχ

′†(σ × q)iχ. (4.155)

This shows that the part J(σ)if which is proportional to σ does contain 1
and κan in the combination 1 + κan = gfree/2:

J if (σ) =
1
2gfreeu

′γu = 1
2 igfreeχ

′†σ × qχ. (4.156)

The σE terms will be included relativistically in Sect. 5.6. Here we elim-
inate ψf (4.146) to obtain a nonrelativistic equation for ψg,

(π0 −mc)ψg = [(πσ)
2/2mc− ih̄κan[eσE,πσ]/4m

2c2]ψg. (4.157)

With eE = [∇, V ], the new operator adds a term −κan[W, [W,V ]] in (2.243).
It results in a factor 1 + 2κan both in Vsl and in VDa (2.246). For s-states,
one finds

〈VDa〉 = (1 + απ)α
4
Zαm/2n

3 = 〈Vsl〉l=0. (4.158)

The analyticity of 〈Vsl〉 as a function of l is thus respected by F2.
The Coulomb potential is modified by the inclusion of F1 in the integrand

of (4.51). With ∫ d3qe−iqrq2/q2 = (2π)3δ(r), one finds

V (r) = −αZ/r + 4παZ [log(m/2λ)− 1/8]δ(r)απ/m
2. (4.159)
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The modified Darwin potential is obtained from (2.263) as δVDa = 2κanVDa =
απαZ4πδ(r)/8m

2, wich cancels the −1/8 of (4.159). It is thus advisable to
use the spinless form factor,

F = F1 −
1
8απq

2m−2 = 1− (απq2/m2)
1
3 log(m/2λ), (4.160)

V (r) + δVDa = −αZ/r + 4παZ log(m/2λ)δ(r)απ/m
2, (4.161)

and to completely discard κan in s-states (except in the σB-term of (4.148),
of course). For a spinless particle, one may simply set Vsl = 0, and identify
F with the spinless form factor F (t) in (4.125), to this order in α.
An order-of-magnitude estimate for λ is half the imaginary momentum

κ = −ik of the asymptotic wave function e−κr, 2λ ≈ κ = Zαm/n, F − 1 ≈
−(απq2/2m2)

1
3 log(n

2/α2Z). Comparison with (4.126) leads to a kind of mean
square radius of electrons and muons,

〈r2ch〉 = (απ/m
2) log(n2/α2Z), (4.162)

although its dependence on αZ = Zα shows that it is a binding effect. It gives
the leading contribution to the “Lamb shift”, which lifts the Dirac degeneracy
of ns1/2 − np1/2 states (compare Fig. 2.2). The complete Lamb shift will be

calculated in Sect. 5.5. (〈r2ch〉
1/2 should not be confused with the “classical

electron radius”, re = α/me, which enters the Compton cross section.)
Unfortunately, the introduction of the photon mass λ violates the gauge

invariance of QED. A modification which does respect gauge invariance is
a QED in d dimensions, where d need not be integer. It simplifies the cancel-
lation of infrared divergences, see for example Brown (1992).

4.5 Particles of Higher Spins

In addition to the photon, the heavy bosons W± and Z0 of the electroweak
interaction have spin 1. All other particles of spin > 1/2 are composite, which
limits the value of their “particle approximation”, neglecting excitation and
breakup. In atomic theory, nuclei are normally treated as single particles. In
some long-range interactions, however, even a whole atom of total angular
momentum j may be treated as a single particle of spin j.
It is postulated that any closed system of total energy h̄ck0 and total mo-

mentum h̄k satisfies the Einstein relation (1.41), h̄2kµk
µ = m2c2, which leads

to the differential equation (1.43), (pµp
µ−m2c2)ψ = 0. For charged particles,

gauge invariance requires the replacement of pµ by πµ, and additional spin
operators O(S) may appear. In units h̄ = c = 1, one thus has

[πµπ
µ −m2 −O(S)]ψ = 0, πµ = pµ − qAµ. (4.163)

Both the KG equation and the Kramers version (2.82) of the Dirac equation
have that form.
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A massive particle of spin 1 at rest is described by a wave function V (r, t),
the three components V± = Vx ± iVy and V0 = Vz of which transform under
rotations like the components of a vector field, for example like the magnetic
field B (2.64) under rotations about the z-axis. A general rotation may be

written as in (2.75), with the matrices S(1) formally identical with the l(1) of
(1.263). This allows still for different Lorentz transformations. One usually
chooses a 4-vector V µ analogous to the electromagnetic potential Aµ. The
fourth component is fixed by the Lorentz gauge condition pµV

µ = 0. For
a free particle, this implies

kµV
µ = 0, V µ(k = 0) = (0,V ), (4.164)

because V 0 is a scalar under rotations, corresponding to a spinless particle.
In the presence of electromagnetic fields, however, the condition itself must
be gauge invariant,

πµV
µ = 0. (4.165)

The solutions of (4.164) are similar to (3.11).

V µ(xν) = e−ikxεµ(k, λ), kµε
µ = 0. (4.166)

λ denotes the helicity, that is one of the eigenvalues of the spin operator
along k. For ky = 0, φ = 0, one finds

εµ(±1) = 2−1/2(0,∓ cos θ,−i,± sin θ), (4.167)

εµ(0) = m−1(k, k0 sin θ, 0, k0 cos θ). (4.168)

The orthonormality and completeness relations are

ε∗µ(λ
′)εµ(λ) = ε0∗(λ′)ε0(λ)− ε∗(λ′)ε(λ) = −δλ′λ, (4.169)

Σλε
µ(k, λ)εν(k, λ) = −gµν + kµkν/m2. (4.170)

For k = 0, k0 = m, one has

εµ = (0,e), e(0) = (sin θ, 0, cos θ). (4.171)

The interactions of particles of arbitrary spins are parametrized in the
Born series. Their current matrix elements have been collected by Walden-
ström and Olsen (1971), see also (5.203). For spin 1,

Jµif = −(ki+kf )
µ[F1ε

∗
f εi−

1
2m
−2F2(ε

∗
fq)(εiq)]−G1[ε

∗µ
f εiq− ε

µ
i ε
∗
fq]. (4.172)

F1, F2 and G1 are three form factors. For small |t|, they are conveniently ex-
pressed in terms of the magnetic, charge and quadrupole form factors FM , FC
and FQ. The “Breit” or “brick-wall” frame is used here, where the initial and
final momenta ki and kf of the spin-one particle are as small as possible,
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under the condition that its recoil effects are shared symmetrically between
initial and final states:

ki = q/2, kf = −q/2, k
0
i = k

0
f ≈ m(1 + τ/2), τ = q

2/4m2. (4.173)

Taking the z-axis along q, one finds

Jµif = −(ki+kf )
µ[F1e

∗
fei+2τe

∗
fzeiz(1+τ)F2]+G1q(ε

∗µ
f eiz− ε

µ
i e
∗
fz)(1+

1
2τ).

(4.174)
The traceless part of e∗fzeiz is the quadrupole operator

e∗fzeiz =
1
3 [e
∗
fei +Qif ], (4.175)

Qif = 2e
∗
fzeiz − e

∗
fxeix − e

∗
fyeiy. (4.176)

FC and FQ are defined as the coefficients of e
∗
fei and of Qif/2τ in J

0/2k0,
while FM is the coefficient of iq×S/2m in J/2E. In this manner, one obtains

FQ = F1 + (1 + τ)F2 +G1, FC = F1 +
2
3τFQ, FM = G1. (4.177)

The magnetic and quadrupole moments are defined at τ = 0,

µ = eG1(0)/2m, Q = FQ(0)/m
2. (4.178)

Their effects on atomic spectra will be discussed in Chap. 5.
For particles of arbitrary spin s, there exists also a spinor wave function ψr

with only 2s + 1 components, together with its parity transform ψl. (Fierz
and Pauli 1939, Joos 1962, Weinberg 1964, Carruthers 1971). As for spin 1/2,
one defines a 2 × 2 matrix γ5 with eigenvalues +1 and −1 for ψr and ψl,
respectively. A free “Dirac” spinor uD is boosted from a spinor χ(ms) in
analogy with (2.334),

u
(s)
D = m

seγ
5ηSχ(s). (4.179)

For a boost to 4-momentum kµ one has

cosh η = k0/m = γ, sinh η = k/m (4.180)

as in (2.335). eηS is the square root of a polynomial of degree 2s in k0 and kS.
The polynomial is constructed from e2ηS as in (2.336). One takes the z-axis
along k, such that 2ηS reduces to 2ηms, where ms is one of the eigenvalues
of Sz. For s = 1

Sz =

⎛⎝1 0 00 0 0
0 0 −1

⎞⎠ ; e2ηSz =
⎛⎝ e2η 0 0
0 1 0
0 0 e−2η

⎞⎠ , (4.181)

e±2η = cosh 2η ± sinh 2η = cosh2 η + sinh2 η ± 2 cosh η sinh η. (4.182)
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In this way one finds, in addition to m1/2eηS
(1/2)

= (k0 + kσ)1/2,

meηS
(1)

= [m2 + 2k0kS + 2(kS)2]1/2, (4.183)

m3/2eηS
(3/2)

= [m2(k0 + 2kS) + (k0 + 23kS)[2(kS)
2 − 12k

2]]1/2, (4.184)

m2eηS
(2)

= [m4+2m2(k0+kS)kS+ 23 (2k
0+kS)kS[(kS)2−k2]]1/2. (4.185)

These boosts depend only on ms = λ = kS/k, not on s. For example, (4.183)
and (4.185) are identical for |λ| < 2. See also Sect. 4.8.
One may also construct eηS from the direct product of 2s spin-1/2 boosts,

with a set of Pauli matrices σ(i). In that case, the product must be put into
a form which contains only

1
2Σiσ

(i) ≡ S. (4.186)

For s = 1,

meηS
(1)

= (k0 + kσ(1))1/2(k0 + kσ(2))1/2. (4.187)

Here one may use k02 = m2 + k2 = m2 + 1
2 (kσ

(1))2 + 1
2 (kσ

(2))2 and then

combine 12 (kσ
(1))2 + 12 (kσ

(2))2 with (kσ(1))(kσ(2)) into 2(kS)2.

4.6 The Equation for Spinless Binaries

A study of the relativistic eikonal approximation (which is omitted in this
book) led Brezin, Itzykson and Zinn-Justin (1970) to a bound state equation
for two relativistic spinless particles (“spinless binaries”). The equation was
rederived by Todorov (1971), who emphasized its exact solutions and also
speculated about additional short-distance operators. In the following, essen-
tially the original equation of Brezin, Itzykson and Zinn-Justin will be called
“Todorov equation”. The discoverers of the equation may console themselves
that Schrödinger did not get his name attached to the Klein-Gordon equation
either.
The Todorov equation is a KG equation with relativistic recoil. It ap-

plies for all mass combinations of the binary system, provided particle 2 is
also spinless (spinor particles 2 are covered by the more complicated “Klein-
Dirac” equation of Sect. 4.9). The relativistic effects of recoil are unmeasur-
ably small already for the mesic helium atoms, which contain the lightest
spinless nucleus. They become large in π−π+ and π−K+ and K−π+ atoms,
but no precise data exist for such binaries. Like the KG equation, the Todorov
equation is verified indirectly: It reproduces the spin-averaged energy levels
of leptonium, which are known with excellent precision. The mathematical
significance of the KG equation for the Dirac equation has been stressed
in Chaps. 2 and 3; the Todorov equation is of comparable significance for
leptonium.
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In the two-body case, the interaction is constructed from the S-matrix in
the cms, p1 = −p2 ≡ p. With p

2
1 = p

2
2 = p

2, two stationary free-particle
equations (1.44) apply simultaneously in the asymptotic region r →∞ where
the interaction vanishes,

(k2 − p21)ψas(r) = 0, (k
2 − p22)ψas(r) = 0, k

2 = E21 −m
2
1 = E

2
2 −m

2
2.

(4.188)
The complete equation has the interaction operator added. It is already
known in the static limits (m1 � m2 and m2 � m1), namely −2EiV + V 2

according to (1.90). If one now replaces the two limiting operatores −2EiV
(i = 1, 2) by an interpolating −2εV , the resulting first Born scattering am-

plitude fk reproduces exactly the cms Born amplitude T
(1)
if (4.64) of QED,

apart from the S-states (see below):

(k2 − 2εV + V 2 − p2)ψ = 0. (4.189)

The connection between f and T is given by (4.96). In the first Born approx-
imation,

8πEf (1) = T (1) = 4πq1q2J
µ
11′gµνJ

ν
22′/q

2. (4.190)

Insertion of Jµ1 = (k1+k
′
1)
µ (4.125) and Jµ2 = (k2+k

′
2)
µ (in the approximation

F (t) = 1) leads to

T
(1)
if = 4πq1q2(k1 + k

′
1)
µ(k2 + k

′
2)µ/q

2. (4.191)

k1k2 and k
′
1k
′
2 are fixed by (k1 + k2)

2 = (k′1 + k
′
2)
2 = s:

2k1k2 = 2k
′
1k
′
2 = s−m

2
1 −m

2
2. (4.192)

Next, one may use k′1
µ = kµ1 − q

µ and k′2
µ = k2 + q

µ to get

J1J2 = (2k1 − q)(2k2 + q) = (2k
′
1 + q)(2k

′
2 − q). (4.193)

Taking the average and observing q(k2 − k′2) = q(k
′
1 − k1) = q

2 = −q2, one
finds the simple expression

T
(1)
if = 16πq1q2(k1k2/q

2 − 1/4). (4.194)

The Fourier transform of the second term −q1q2 produces a delta function
δ(r) which contributes only to S-states. The spinless particles known to-
day (mesons and nuclei) all have internal structure which results in strong
form factors Fi(−q2). Their effects are negligible for larger orbital angular
momenta l (normally l > 0 is sufficient), but the approximation (4.194) cer-
tainly breaks down for S-states. One may thus ignore the −1/4 in the bracket.
Agreement with the scattering amplitude of (4.189) is then reached for

ε = k1k2/
√
s = (s−m21 −m

2
2)/2
√
s. (4.195)
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The relatively complicated expression (4.75) for k2 in (4.136) is eliminated
in favour of the relativistic reduced mass µ as follows

k2 = ε2 − µ2, µ = m1m2/
√
s = m1m2/E, (4.196)

[(ε− V )2 − µ2 − p2]ψ = 0. (4.197)

Near the threshold E = m1+m2 ≡ m12, µ is close to its nonrelativistic limit
µnr = m1m2/m12. The equation is now in a familiar form, but it is better to
remove the E2 from denominators:

[(12 (E
2 −m21 −m

2
2)−EV )

2 −m21m
2
2 −E

2p2]ψ = 0. (4.198)

Already the inclusion of the nonrelativistic binding energy, E ≈ m12 −
α2Zµnr/2n

2 makes µ n-dependent, which is avoided in (4.198) (this n-
dependence will enter the hyperfine operator of Sect. 5.1). The factor E in
front of V and p is removed by taking r/E ≡ rE as independent variable, as
in (3.224). At the same time, one may multiply the new variable by m1m2
to make it dimensionless:

ρ = m1m2rE = µr, pρ = p/µ = −iE∇/m1m2. (4.199)

ρ is close to the variable ρnr = µnrr of nonrelativistic quantum mechanics.
The price paid for this pedagogical trick is another redefinition of r. The
possibility of such redefinitions stems from the fact that the “position opera-
tor” r is basically a nonrelativistic concept, for example in (3.119). Attempts
to construct a corresponding operator for relativistic quantum mechanics
result in a strange “Zitterbewegung”. In quantum electrodynamics as the
appropriate basis of relativistic quantum mechanics, both r and t serve as
counting operators of fields.
The dimensionless Todorov equation is

[(ε/µ− Vρ)
2 − 1− p2ρ]ψ = 0, Vρ = −αZ/ρ. (4.200)

The form (4.197) of the Todorov equation follows from the KG equation by
the substitutions

E1 → ε, m1 → µ. (4.201)

It guarantees the correctness of the operator V 2 only in the static limits.
One additional energy shift is δE6 =

1
2 〈V

2L2/r2〉m12/m21m
2
2, which has been

calculated by Elkhovskii (1996) in the nonrelativistic approximation for par-
ticle 2, to first order in m1/m2. It is of the order of α

6
Z . Its E

2-form is

1
2δE

2
6 =

1
2 〈V

2
ρ L
2/r2〉. (4.202)

With δ(ε/µ) = 1
2δE

2/m1m2 according to (4.200), the corresponding operator
can be included as a correction V6 in the Todorov equation,

[(ε− V )2 − µ2 − p2 + V6]ψ = 0, V6 = V
2L2/2r2m1m2. (4.203)
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However, V6 was calculated for two spinor particles, and its mere spin-
independe does not prove its validity for spinless particles. Also, the radiative
corrections of Sect. 5.5 are in fact larger.
The standard form of the Todorov equation is identical with (1.144), with

new redefinitions of rε and nβ . With h̄c = 1,

rε = rαzε, nβ = αZε/κ, κ = (µ
2 − ε2)1/2. (4.204)

But whereas the energy E1 of particle 1 in the static limit is proportional to
its mass m1, E1 = m1(1 + α

2
Z/n

2
β)
−1/2 according to (1.129), multiplication

of the corresponding relation between ε and µ by E gives a linear relation
between the square of the total cms energy and m1m2:

E2 −m21 −m
2
2 = 2m1m2(1 + α

2
Z/n

2
β)
−1/2, (4.205)

The threshold value of E2 is (m1+m2)
2 = m212. Its subtraction gives a relation

analogous to (1.131) for EN ,

E2 −m212 = 2m1m2f, f = (1 + α
2
Z/n

2
β)
−1/2 − 1. (4.206)

The calculation of E requires yet another square root,

E = (2m1m2f +m
2
12)
1/2 = m12 + fµnr −

1
2f
2µ2nr/m12 +

1
2f
3µ3nr/m

2
12 ∓ . . . .
(4.207)

With f of the order of α2Z and µnr/m12 vanishing in the static limit, the new
expansion parameter fµnr/m12 is very small for electronic atoms. There, the
terms f2 are attributed to the “Braun recoil formula” for the Dirac equation
(Braun 1973, Eides et al. 2001). Positronium has µnr/m12 = 1/4.
As each expansion complicates the result, one may quote E2 instead of E.

We shall see later that fine and hyperfine splittings as well as radiative cor-
rections contribute small corrections δE2 = 2EδE, such that E2 is the ap-
propriate quantity also under more general circumstances.
It was mentioned already below eq. (4.96) in Sect. 4.2 that the T -matrix is

an analytic function of the Mandelstam variables s and t. Consequently, the
eigenvalues of any relativistic equation depend on E only via s = E2. They are
invariant under the replacement E → −E. The symmetry in E of the spectra
of closed systems follows already from CPT invariance. The field operators
of spinless particles have ΨCPT (x

µ) = ΨCPT (−xµ), while spinor fields get an
additional factor γ5 according to (3.57). A closed system at total energy E
has a time dependence e−iEt, which is changed to e+iEt = e−i(−E)t by CPT .
Physically, the system of energy −E is the antisystem of energy +E. An
atom is transformed into its antiatom by CPT , for example hydrogen (e−p)
into antihydrogen (e+p).
An analogous argument applies also to the appearance of m21 and m

2
2.

Already in Sect. 1.6 it was mentioned that only m2 has physical significance.
This is obscured in the Dirac equation but is evident in its Kramers form,



172 4 Scattering and Bound States

(2.82) or (2.135). In the expression (4.205) for E2, it seems contradicted
by the requirement that m1m2 must be positive. But this sign asymmetry
may be traced back to the requirement that the bound state wave function
must fall as e−κr for r → ∞, i.e. κ = (µ2 − ε2)1/2 must be positive. With
κ = µ(1+n2β/α

2
Z)
−1/2 as the generalization of (1.129), it is clear that negative

m1m2 requires the negative sign of the square root.
In the above formulas, r = r1−r2 has been replaced either by ρ or by rε:

ρ = m1m2r/E, rε = αZεr =
1
2αZρ(E

2 −m21 −m
2
2)/m1m2. (4.208)

The ranges of the new distance variables are 0 ≤ ρ ≤ ∞ and 0 ≤ rε ≤ ∞ as
usual, corresponding to 0 ≤ Er ≤ ∞. Negative E thus requires the negative
sign of the square root that defines r, r = −[(r1 − r2)2]1/2. The traditional
distance variable in antiatoms is to be taken negative, at least in connection
with C, CP or CPT transformations.
When particle 2 is a nucleus with a given charge density ρN (r), the po-

tential VN (rε) = ∫ d3r′ρN (r′)|rε − r′/αZε|−1 respects CPT only if ρN is
the Fourier transform of the nuclear form factor F (q2), and not some other
convenient function. For a proof, define

qε = q/αZε, (4.209)

such that exp(iqr) = exp(iqεrε). Then VN can be rewritten as

VN (rε) = ∫ d
3r′ε(2π)

−3 ∫ d3qεe
−iqεrεFN (q

2
εα
2
Zε
2)|rε − r

′
ε|
−1. (4.210)

The form factor introduces a weak ε2-dependence into VN , which does not
break the invariance under E → −E.
The KG orthogonality relations (1.197) do not directly apply to the

solutions of the Todorov equation, due to the energy dependence of µ,
µi = m1m2/Ei. One must first change the variable r, either to ρ or
to rε. The dimensionless Todorov equation (4.200) is most convenient, with
ε/µ = (E2 −m21 −m

2
2)/2m1m2:

∫ ρ2dρRj(ρ)Ri(ρ)(εi/µi + εj/µj − 2Vρ) = 2δijεi/µi. (4.211)

The generalized radial KG equation (2.273) may also be transformed to the
variable ρ, because L2α = lα(lα + 1) is independent of ε and µ:

[ε2/µ2 − 1− 2Vρε/µ+ (∂ρ + 1/ρ)
2 − L2α/ρ

2]R = 0. (4.212)

It will be seen later that this equation carries the generalized KG equation
to the two-body problem.
The first-order perturbation theory of the standard form, Kψ = n−2β ψ, is

analogous to the formalism of Sect. 2.7:

(K0 +Kper)ψ = [n
−2
β + (n

−2
β )

1]ψ, (n−2β )
1 = 〈Kper〉. (4.213)
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Here n−2β = (n
−2
β )

0 is understood, and (n−2β )
1 will be denoted by δn−2β in the

following. With n−2β = κ
2/α2Zε

2 = α−2Z (µ
2/ε2 − 1), one obtains

δn−2β = α
−2
Z δ(µ

2/ε2) = 4m21m
2
2α
−2
Z δ(E

2 −m21 −m
2
2)
−2. (4.214)

The final result is

δE2 = −α2Z(ε/µ)
3m1m2δn

−2
β = −α

2
Z(ε/µ)

3m1m2〈Kper〉. (4.215)

δE = −12α
2
Z(ε/µ)

3µ〈Kper〉. (4.216)

The nonrelativistic limit has ε/µ = 1, δE2 = 2m12δE, and thus δE =
δ(−12α

2
Zµ/n

2
β) = δEN as expected. The main advantage of the standard

form is the expression for the second-order shift (n−2β )
(2), which is completely

analogous to (2.223):

(n−2β )
(2) = Σk �=n〈n|Kper|k〉〈k|Kper|n〉(n

−2
β,n − n

−2
β,k)

−1. (4.217)

This form applies only to explicit eigenvalue equations.
The order α4Z of E may be calculated from T

(1) alone, setting V 2 = 0.
One first expands all operators to first order in relativity and then uses gauge
invariance qµJ

µ
1 = qµJ

µ
2 = 0. One keeps q0 �= 0 in the cms, because it will

appear in the iteration of T (1). Instead, one splits J into a component J‖
parallel to q and two perpendicular components,

J⊥ = J − q(Jq)/q
2. (4.218)

This leads to

q0J
0 − qJ‖ = 0, J‖ = q0J

0/q, q = |q|. (4.219)

Jµ1 J2µ = J
0
1J
0
2 (1− q

2
0/q

2)− J1⊥J2⊥. (4.220)

Writing now 1 − q20/q
2 = −t/q2, the t is cancelled in (4.64), and one is left

with
Jµ1 J2µ/t = −J

0
1J
0
2/q

2 − J1⊥J2⊥/(q
2 − q20). (4.221)

The first term contains the “instantaneous” interaction, the second one the
“retardation”, which are familiar effects in classical electrodynamics. The
retardation is frequently small and may be evaluated by setting q0 = 0 in the
denominator. Looking at the Breit operator HB (3.105) from this point of
view, we see that with a change of the name of the integration variable from
k to q, the square bracket is

α1⊥α2⊥ = α1α2 − (α1q)(α2q)/q
2. (4.222)

A more precise treatment which keeps q0 �= 0 has been mentioned in Sect. 3.7.
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In the spinless case J = k′ + k = 2k + q,

J⊥ = 2k − 2q(kq)/q
2. (4.223)

From (k′+k)q = (k′+k)(k−k′) = k2−k′2, one concludes that this formalism
does not allow one to set k2 = k′2 either, because otherwise J‖ = 0, J⊥ = J .
The modification (4.221) does reproduce the effect of V 2 to the order α4Z .
Expansions to the order α6Z also comprise retardation (Czarnecki et al., 1999).

4.7 The Leptonium Equation

There are six types of leptons, namely the electron e−, muon µ−, tau lep-
ton τ−, their antiparticles e+ (positron), µ+, τ+, and their neutral massless
partners, the neutrinos ν and antineutrinos ν. The tau lepton is very heavy
and decays within 10−15 s which prevents bound states. The other charged
leptons can form hydrogenlike “leptonium” bound states with each other,
namely positronium e−e+, muonium e−µ+, antimuonium e+µ− and muon-
antimuon bound states µ−µ+. The muon decays after 2.2× 10−6 s, which is
long enough for precision measurements. Its mass is 200 times the electron
mass. For this reason, muonium is chemically very similar to atomic hydrogen.
As the muon is still ten times lighter than the proton, the main differences
arise from the higher mobility of muonium. On the theoretical side, electrons
and muons are ideal Dirac particles. Their anomalous magnetic moments
are calculable from QED, they are very close to the α/2π given in (4.137).
A consistent relativistic binary treatment of ordinary hydrogen is more dif-
ficult, due to the proton’s inner structure which does not follow from QED.
The theoretical study of leptonium is also of intererst for its possible analogy
with a relativistic quarkonium model of mesons.
An essential issue in the description of two fermions is the number of

components of the wave function ψ. In the presence of an external 4-potential
Aµcl, 4× 4 = 16 components are convenient, ψ = ψD2. This follows from the
general ansatz (3.82) which leads to the Dirac-Coulomb equation with the
Breit correction HB (3.111). In Sect. 3.6, ψD2 has been split into two octets ψ
and χ, and χ has been eliminated in (3.186). Finally, ψ has been split into two
quartets ψg and ψf (the large and small components of ψ, respectively), and
elimination of ψf produces a four-component equation for ψg. Any systematic
expansion ends up with four nonrelativistic components, for example the
singlet and triplet spin components.
The construction of the binary equation from the S-matrix for Aµcl = 0

need not follow this procedure. For two spinless particles, we subtracted in
(4.188) for noninteracting orbitals an interaction operator I = 2εV −V 2 and
determined the linear operator 2εV from the first Born approximation. The
V 2 was included because it is required in the two static limits (the two KG
equations). Additional small “recoil operators” may be calculated from the
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“straightforward” Born series up to arbitrary orders. When the differential
equation is replaced by an integral equation, it is known as “Bethe-Salpeter”
equation.
For two Dirac particles, one has traditionally taken an ansatz from the

cms form of (3.166), replacing π1 → p, π2 → −p, π0 → E − I16,

(E − I16 − γ
5
1pσ1 + γ

5
2pσ2)ψD2 = m+ψD2, m+ = m1β1 +m2β2, (4.224)

and then adopted one of the two methods (V 2 or retardation) for the de-
termination of I16. Also in this case, agreement is reached at the order α

4
Z ,

but the details are irritating. If the procedure outlined in (4.220) is adopted,

the first-order result is I
(1)
16 ≈ V + HB, apart from necessary modifications

by “positive-energy projectors”. On the other hand, it follows from (3.206)
that the “retardation” piece Vret of HB vanishes. It does so after the V

2

from (E − V )2 is eliminated, see the discussion in Sect. 3.7 and the explicit
calculation in Sect. 4.9. This indicates the existence of a simpler Born series
for a reduced, 8 × 8 component T -matrix, from which an 8-component in-
teraction I8 is constructed, for direct subtraction in the free (= asymptotic)
equation for the octet ψ. With V = 0, the asymptotic form of (3.186) is

[E − γ5(p1 − p2)]m
−1
+ [E − γ

5(p1 + p2)]ψas = m+ψas. (4.225)

With p1 = −p2 ≡ p,

p1 + p2 = p1σ1 + p2σ2 = p∆σ, p1 − p2 = p1σ1 − p2σ2 = pσ, (4.226)

∆σ = σ1 − σ2, σ = σ1 + σ2. (4.227)

As the more practical form (3.186) has an extra factor m+, the interaction
operator 2I8 is introduced into (4.225) with a factor m

−1
+ ,

[E − γ5(p1 − p2)]m
−1
+ E − γ

5(p1 + p2)]−m
−1
+ 2I8 −m+]ψ = 0. (4.228)

Multiplication by m+ and use of (p∆σ)pσ = 0 gives

[E2 −m2+ − 2I8 − γ
5Ep(σm−/m+ +∆σ)]ψ = 0. (4.229)

By its construction from the first Born approximation, 2I
(1)
8 is linear in V ;

the cancellation between first- and second-order Born terms induced by I16
is already done. More generally, (4.224) and (4.229) give different results at
any given order of the Born series. Agreement is only reached when (4.224)
includes higher orders than (4.229).
The single-particle Dirac equation exists also in two forms, namely the

standard 4-component form and its 2-component Kramers reduction (2.82).
But there it is the 4-component version which is superior in its relation to
the Born series. As emphasized earlier in this chapter, the operator γµA

µ is

the Fourier transform I
(1)
4 of the first Born approximation to the scattering
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matrix. If one first reduces the S-matrix to 2× 2, for example by the use of

(2.324), and then uses its Fourier transform I
(1)
2 as interaction operator in

the Kramers equation, one misses the quadratic operator, AµA
µ = A02−A2,

which follows from gauge invariance of that equation. In both cases, the for-
malism is influenced by parity invariance. The factorizing form (2.80) of the
Kramers equation is parity invariant, but the form (2.82) is not suited for
additions. If at fixed πµπ

µ the first-order operators are modified, parity invari-
ance is lost. The asymptotic form of (4.224), on the other hand, has three par-
ity transformations, namely ψP1D2 = β1ψD2(−r1, r2), ψ

P2
D2 = β2ψD2(r1,−r2),

and ψP12D2 = β1β2ψD2(−r1,−r2). The first two transformations are useless
because they are broken by I16. Equation (4.229) has only one parity transfor-
mation, namely (3.187), which is respected by I8. Obviously, the construction
of the interaction from the S-matrix should be restricted to equations whose
asymptotic forms do not require additional symmetries. This is also illus-
trated by the individual time shifting operators p01 = i∂t1 and p

0
2 = i∂t2 of

the two separate Dirac equations satisfied by ψD2,as,

(γµ1 p1µ −m1)ψD2,as = 0, (γ
µ
2 p2µ −m2)ψD2,as = 0. (4.230)

To obtain a useful two-fermion equation, one must multiply the first equation
by γ01 , the second one by γ

0
2 and then add:

(p0 − γ51p1σ1 − γ
5
2p2σ2 −m1β1 −m2β2)ψD2,as = 0, p

0 = p01 + p
0
2. (4.231)

This aspect was absent in the nonperturbative method of Chap. 3, where only
one time was used.
In the next section, the 2I8 of (4.229) will be constructed directly from the

8×8-component T-matrix of QED. However, 2I8 is also found from (3.225), by
(i) omitting the retardation from the Breit operator, wich amounts to setting
bE = −VEσ1σ2/E, and (ii) by omitting all V 2-operators in Ihf (3.226). With
the abbreviations (4.226), there remains

Ihf = −VE(1 + σ1σ2)pE∆σγ
5 − pEσγ

5′VE(1− σ1σ2)/E
2. (4.232)

The second term vanishes, as σ operates only between triplet spin states,
where 1−σ1σ2 = 0. In the first term, the spin dependence is further simplified
by

(σ1σ2)σ1 = σ2 + iσ1 × σ2, (σ1σ2)σ2 = σ1 − iσ1 × σ2. (4.233)

Insertion of ∆σ = σ1 − σ2 gives

(1 + σ1σ2)∆σ = 2iσ1 × σ2 ≡ 2iσ
×
12, (4.234)

I8 = −VE + Ihf , Ihf = −iγ
5σ×12VEpE/E

2. (4.235)

Ihf is the hyperfine operator, which will be discussed in the next section and
in Chap. 5.



4.7 The Leptonium Equation 177

m+ and m− occur in (4.229) only in the combinations m
2
+ and m−/m+

of (3.189),

m2+ = m
2
1 +m

2
2 + 2m1m2β, m−/m+ = (m2 −m1β)/(m2 +m1β). (4.236)

For I8 = 0, (4.229) must possess simpler forms such as

(E2 −m2+ − 2γ
5Epσ1)ψas,1 = 0, (4.237)

(E2 −m2+ − 2γ
5Epσ2)ψas,2 = 0. (4.238)

Only such forms lead to the asymptotic equation (4.188). To see this, we
insert E2 −m2+ = E

2 −m21 −m
2
2 − 2m1m2β and divide (4.237) by 2E to get

(ε− µβ − γ5pσ1)ψas,1 = 0, (4.239)

with ε and µ defined in (4.195) and (4.197). This form of (4.237) is an effective
one-body Dirac equation. Multiplication by ε+ µβ + γ5pσ1 gives

[ε2 − µ2 − (pσ1)
2]ψas,1 = (k

2 − p2)ψas,1 = 0, (4.240)

as in (2.108).
The transformation from ψas to ψas,1 must remove the factor m−/m+

from σ without changing ∆σ. It contains the “spin permutation” operator,

Pspin =
1
2 (1 + σ1σ2). (4.241)

From (3.133) it follows that (see also (5.67) below)

1
2σ1σ2 = (σ

2 − 6)/4 = s(s+ 1)− 3/2. (4.242)

Consequently, Pspin has the eigenvalue +1 for the s = 1 states which are
symmetric, and −1 for the s = 0 state which is antisymmetric, and P 2spin = 1.
Consider now the transformation

ψ = C1ψ1, C1 = (m+m−)
−1/2(m2 +m1βPspin) (4.243)

from this point of view. σ vanishes when it acts on a singlet state to its right
or left. In the products σC1 and C1σ, one may therefore replace Pspin by its
triplet eigenvalue +1,

σC1 = C1σ = σ(m+m−)
−1/2(m2 +m1β) = σ(m+/m−)

1/2. (4.244)

The inverse of C1 is

C−11 = (m+m−)
−1/2(m2 −m1βPspin), (4.245)

which explains the normalization factor (m+m−)
−1/2 = (m22−m

2
1)
−1/2. From

βγ5 = γ5(−β), one finds
C−11 γ

5 = γ5C1. (4.246)
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Multiplying (4.229) by C−11 from the left, one observes

C−11 γ
5σC1 = γ

5C1σC1 = γ
5σm+/m−. (4.247)

This removes the factor m−/m+ from σ in (4.229) as required. For ∆σ, on
the other hand, one finds

C−11 γ
5∆σC1 = γ

5C1∆σC1 = γ
5∆σ, (4.248)

because ∆σ flips the spin symmetry: a triplet state to the right of ∆σ is
transformed into the singlet state (which has Pspin = −1) and vice versa. In
this manner one achieves the combination ∆σ + σ = 2σ1. The derivation of
(4.238) is similar:

ψ = C2ψ2, C2 = PspinC1 = (m+m−)
−1/2(βm1 +m2Pspin), (4.249)

C−12 γ
5σC2 = γ

5σm+/m−, C
−1
2 γ

5∆σC2 = −γ
5∆σ. (4.250)

The extra minus sign in the operation of C2 on ∆σ produces the combination
−∆σ+σ = 2σ2. The complete binary equation (4.229) is thus equivalent to
two effective Dirac equations

(E2 −m2+ − 2I81 − 2γ
5Epσ1)ψ1 = 0, (4.251)

(E2 −m2+ − 2I82 − 2γ
5Epσ2)ψ2 = 0, (4.252)

I81 = C
−1
1 I8C1, I82 = C

−1
2 I8C2. (4.253)

The relation between ψ1 and ψ2 follows from the inversion of (4.249),

ψ2 = C
−1
2 C1ψ1 = C

−1
1 PspinC1ψ1 = Pspinψ1. (4.254)

Thus Pspin exchanges σ1 with σ2 in the differential equation.

4.8 The Interaction in Leptonium

In the 16-component equation (4.224), the simplest interaction I16 would
be the Fourier transform of the first-order Born approximation T (1) (4.64),
(4.36),

T
(1)
if = 4παZu

′
1γ
µ
1 u1u

′
2γ2,µu2/t. (4.255)

To that one must at least add the retardation operators, as explained in

Sect. 4.5. But if T
(1)
if is first reduced to an 8×8 form (by (3.175) or by using the

eliminations (4.260), (4.261) below), its Fourier transform I8 = I81 in (4.251)
is both simpler and more precise. With u′i = u

′
i
†γ0i and γ

0
i γi = αi = γ

5
i σi,

one obtains
T
(1)
if = 4παZu

′
1
†u′2

†(1− γ51γ
5
2σ1σ2)u1u2/t. (4.256)
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u1 and u2 are the 4-component spinors uD (2.334) for momenta k and
k2 = −k, respectively. The free two-fermion spinors of ψ and χ will be called
v and w. Here it is slightly more convenient to use simultaneous eigenstates
of γ51 and γ

5
2 instead of the states (3.174):

v =

(
u1ru2r
u1lu2l

)
, w =

(
u1ru2l
u1lu2r

)
, u1u2 =

(
v
w

)
, γ51γ

5
2 =

(
1 0
0−1

)
.

(4.257)
The Hermitian adjoint final state spinors are

v′† = (u′1r
†u′2r

†, u′1l
†u′2l

†), w′† = (u′1r
†u′2l

†, u′1l
†u′2r

†). (4.258)

Inspection of (4.256) shows that T
(1)
if can be rewritten as

T
(1)
if = 4παZ [v

′†(1− σ1σ2)v + w
′†(1 + σ1σ2)w]/t. (4.259)

The general Tif may be decomposed into the elements of the four submatrices
Tvv, Tww, Tvw and Twv, but Tvw and Twv appear only for odd numbers of βi
(note that (4.256) contains no βi). To get (4.259) as the elements of an 8× 8
matrix, one may now use the free form of (3.181) to eliminate one of the two
spinors:

w = m−1+ (E − γ
5∆σk)v, v = m−1+ (E − γ

5σk)w, (4.260)

or one of the two Hermitian adjoint final state spinors:

w′† = v′†(E − γ5∆σk′)m−1+ , v
′† = w′†(E − γ5σk′)m−1+ . (4.261)

Here we choose to eliminate w and v′†; the resulting 8 × 8 matrix is called
m−1+ M :

Tif = w
′†m−1+ Mv. (4.262)

The form (4.262) is analogous to the one-fermion case, where the current
operator was reduced to 2×2 components in the form ψ′l

†Γµψr in (2.324). It
is not Hermitian, but it has instead simple Lorentz transformation properties,
as ψ†l transforms inversely to ψr. From (4.259) and the elimination of w
and v′†,

M = 4παZ [m+(E − γ
5σk′)m−1+ (1− σ1σ2) + (1 + σ1σ2)(E − γ

5∆σk)]/t.
(4.263)

The combination σ(1−σ1σ2) vanishes as in (4.232). Consequently (and with
t = −q2),

M = 4παZ [2E − γ
5(1 + σ1σ2)∆σk]/(−q

2). (4.264)

Using (4.233) and (4.234),

M = −8παZ(E − iγ
5kσ×12)/q

2, σ×12 ≡ σ1 × σ2. (4.265)
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The operator 2I8 of (4.229) is the Fourier transform of m
−1
+ M . The addi-

tional factor (2E)−1 in (4.190) is taken care of in the transition to the form
(4.239). The Fourier transform (4.51) of −4παZ/q2 gives V (r) as usual. In
the second term of (4.265), k is the momentum of the initial state ψk(r); the
corresponding operator is p. Taken together, I8 (4.235) results. Note that V p
differs from pV . The Tif in (4.262) arises from χ

′†m−1+ Mψ, and χ
′†p = χ′†k′.

The final momentum k′ has disappeared in (4.264).
For use in the simpler equations (4.251) or (4.252), I8 must be transformed

into I81 or I82 according to (4.253). Like ∆σ, σ
×
12 connects only singlets with

triplets. Consequently,

C1σ
×
12C1 = σ

×
12, C2σ

×
12C2 = −σ

×
12 ≡ σ

×
21. (4.266)

In this notation, I81 = I8 and I82 have identical forms,

I8i = EV (r)− iγ
5σ×ijV (r)p. (4.267)

Division by 2E exhibits the equations with the symbols of (4.239),

[ε− µβ − V (r)− γ5pσi + iγ
5σ×ijV (r)p/E]ψi = 0. (4.268)

It is of course unnecessary to solve both equations. The symmetry under the
exchange 1 → 2 is emphasized here because it is obscured by the notation
in equations such as (4.251). As the reduced mass µ does not distinguish
between the masses of the two particles; the Pauli matrix σi in (4.268) can
be chosen freely. A continuous transition between ψ1 and ψ2 is achieved with
the unitary operator

U(α) = eiPspinα/2, U†σU = σ, (4.269)

U†∆σU = cosα∆σ − sinασ×12, U
†σ×12U = cosασ

×
12 + sinα∆σ. (4.270)

The last term in (4.268) is the hyperfine operator. For comparison, insertion
of (4.153) in the Dirac equation (4.143) gives the static hyperfine operator,

γ5σ1eA = γ
5σ1(gn2/2mp)s2 × [∇,−e

2/r] = γ5(gn2/2Zmp)σ1 × s2[∇, V ],
(4.271)

with −e2/r = V/Z. For the special case s2 = σ2/2, gn2 = 2, Z = 1,
the substitution −[∇, V ] = 2V∇ − {∇, V } shows that the static hyperfine
operator misses the anti-Hermitian {∇, V } (the m−1p represents m−12 ; it is
replaced by E−1 ≈ (m1 +m2)−1 in the binary case).
The non-Hermitian V p in (4.268) does not lead to complex eigenvalues

E. With the choice of phases (2.152) between large and small components,
the coupled differential equations for g and f remain real. The kinetic energy
operator γ5pσ1 is real because the explicit i in front of f(r) makes iγ

5 real,
and because the remaining iσ1p = σ1∇ is real according to (2.36), where
σ1l is real. Writing γ

5σ1 × s2 = (−iγ5)(iσ1 × s2), it remains to show that
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iσ1 × s2 is real. From [s2x, s2y] = is2z etc. and [s1x, s1y] = is1z etc., one
obtains

is1 × s2 = [s2, s2s1] = −[s1, s2s1], (4.272)

which is a generalization of (2.115) and (2.116). The s1s2 is obtained from
the square of the total spin operator S = s1 + s2,

S2 = s21 + s
2
2 + 2s1s2 = 3/4 + s2(s2 + 1) + 2s1s2. (4.273)

The resulting 2s1s2 is diagonal in the space |S,mS〉 of spin states, with
elements s2 and −s2 − 1 for S = s2 ± 1, respectively. From the commutator
(4.272), one thus obtains

〈S′,m′S |iσ1 × s2|S,mS〉 = (S
′ − S)(s2 + 1/2)〈S

′,m′S |σ1|S,mS〉, (4.274)

for arbitrary magnetic quantum numbers mS , m
′
S . Equation (4.274) vanishes

for S′ = S, as required for a matrix that is both real and anti-Hermitian. The
two coupled equations for g and f are thus real, and the resulting eigenval-
ues E are also real. The fact that the standard eigenfunctions are complex
has a different origin, which was mentioned already in Sect. 1.1 in connection
with the eigenfunctions of ∇2.
The hyperfine operator will be treated later as a perturbation. In first

order, only its expectation value enters; its anti-Hermitian part vanishes. At
fixed total angular momentum f and orbital angular momentum l > 0 of the
large components, the anti-Hermitian part mixes j = l+1/2 with j = l−1/2.
As f = j±1/2, this occurs only for f = l > 0. It is particularly important for
positronium, where the hyperfine structure is of the same order of magnitude
as the fine structure. Details will be given in Sect. 5.2.
The E2 dependence of (4.268) is verified by the substitution r = ρ/µ =

ErE as in (4.199). Division by µ gives the dimensionless leptonium equation,

(ε/µ− β − Vρ − γ
5pρσ1 + iγ

5σ×12Vρpρm1m2/E
2)ψ1 = 0. (4.275)

When the E−2 in the last term is approximated by m−212 , one obtains the
“chiral hamiltonian” form

hψ = (ε/µ)ψ, h = β + Vρ + γ
5pρσ1 + iγ

5σ×12Vρpρm1m2/m
2
12, (4.276)

where the dimensionless h is energy-independent. In Sect. 5.4, the time-
dependent vector potential A(t) will be included in h. Using also h†χ =
(ε/µ)χ, one obtains the orthogonality relations

∫ d3ρχ†jψi = δij . (4.277)

The nonperturbative inclusion of the exact hyperfine operator (4.275) re-
quires different orthogonality relations (Appendix A). Neglect of the hyper-
fine operator gives the two-body Dirac-Coulomb equation
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(ε/µ−β−Vρ−γ
5pρσ1)ψ1DC = 0, ε/µ = (E

2−m21−m
2
2)/2m1m2. (4.278)

Equation (4.278) applies also to a spinless nucleus, as long as a correction
α2Zm

2
1/E

2 in (4.371) below is neglected. This correction is smaller than hy-
perfine shifts, except of course in the limit m1/E → 1 (Klein-Gordon limit).
The Dirac-Breit equation of Chap. 3 does reproduce the results of (4.268),

at least to the order α4Z . How is this possible, when it includes retardation
and in its eightcomponent version (3.190) also the combination π02 = E2 −
2EV +V 2, after the statement at the beginning of Sect. 4.6 that the V 2 must
be dropped? The stunning answer is that the r in the two equations cover
slightly different ranges. Denoting the r of the Dirac-Breit equation by r12,
its operator V 212 is eliminated by (3.214),

(E + αZ/r12)
2 = E2 + 2EαZ/r. (4.279)

With the approximation E ≈ m12 = m1 + m2, this relation was found by
Schwinger (1973). The equivalence of the two formulations will be demon-
strated in Sect. 4.9.
The exact solutions of the Dirac-Coulomb equation (4.278) follow again

most easily from its Kramers form as in (2.135), where the lefthanded com-
ponents are eliminated:

(ε2/µ2−1−2Vρε/µ+V
2
ρ +∇

2
ρ+ i[σ1∇ρ, Vρ])ψr = 0, Vρ = −αZ/ρ, (4.280)

with ε2/µ2−1 = k2/µ2. The equation differs from (2.135) only by notation. Its
eigenvalues E2 follow again from (4.206), with the effective principal quantum
number nβ of the Dirac equation,

ε/µ = (1 + α2Z/n
2
β)
−1/2, nβ = n− βj = n+ γ − j −

1
2 . (4.281)

Expansion of the square roots contained in f and γ =
√
(j + 1/2)2 − α2Z gives

to order α6Z the already familiar result (2.149), this time for ε/µ− 1. A final
expansion for E according to (4.207) contains terms that had previously been
calculated only by NRQED.
Again, the levels with n = j + 12 = l + 1 have nβ = γ, and

(1 + α2/n2β)
−1/2 = γ/n, E2 −m21 −m

2
2 = 2m1m2γ/n. (4.282)

The nonrelativistic reduction of (4.278) follows the procedure of Sect. 2.8;
one merely has to replace m by µ. The spin-orbit potential is now denoted
by Vs1l,

Vs1l = h̄
2l̂σ1V

′/4µ2c2r. (4.283)

It shows again that σ1 must not be interpreted as the spin operator of par-
ticle 1. Its l-dependence to order α4Z is cancelled as in (2.273), as required
by the parity degeneracy of the Dirac energy levels. This is in contrast to
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HCBG, where both spin-orbit potentials (3.163) are needed for parity degen-
eracy. Setting σ2 = 0 in the CBG formalism implies a spinless nucleus, which
will be confirmed in Sect. 4.9 below. Comments on the adjustment of the
leptonium interaction to atomic hydrogen will be added in Sects. 5.6 and 5.7.
The charge conjugation of ψD2 is the direct product of two single-fermion

transformations (3.51), ψD2,C = β1β2γ
5
1γ
5
2UC1UC2ψ

∗
D2. The eight compo-

nents ψ of ψD have β1β2 = β and γ
5
1γ
5
2 = 1, which simplifies the transforma-

tion to
ψC = βUC1UC2ψ

∗, UCi = −iσi,y. (4.284)

As in (3.48), one has

σ∗1 = −U
†
C1σ1UC1, (iσ

×)∗ = −U†C1U
†
C2iσ

×UC1UC2. (4.285)

The eigenvalue E of i∂t1 + i∂t2 ≡ i∂t is charge conjugated to −E, but as
(4.275) depends explicitly only on E2, no γ5-transformation is required for
a sign change. For Aµ = 0, ψ and ψC satisfy the same equation. States with
total magnetic quantum number mf = 0 have ψ

∗ = βψ, see (2.152) and (5.8)
below. The CP and CPT transformations of ψ follow from (3.52) and (3.55)
as

ψCP (r) = UC1UC2ψ
∗(−r), ψCPT (x

µ) = ψ(−xµ). (4.286)

In the static limitm1 � m2, V (r) becomes an external potential, as explained
in Sect. 3.2. The e−µ+ system is then charge conjugated into e+µ+ which has
no bound states. But with the slightest recoil, the muon becomes a part of the
dynamical system and must also be charge conjugated. The static limit has
E2 = m2, E = m2+E1. One can charge conjugate a whole atom of electronic
energy Eelectrons, provided one extracts −m2 in the case of negative E:

Estat = m2sign(E) +Eelectrons. (4.287)

Eigenstates of charge conjugation exist for all (neutral) atoms, but they

are presently needed only for positronium. They are generated by a†1b
†
2|0〉,

where b†2 (3.45) creates the positron which is particle 2. This product is charge

conjugated into b†1a
†
2|0〉 = −a

†
2b
†
1|0〉, where the minus sign comes from the

anticommutator. The latter sequence is the permutation P12 (3.188) of the
original one, with the eigenvalues

P12ψ = (−1)
l+s+1ψ, (4.288)

l and s being the orbital angular momentum and spin of the large components.
The small components have l̃ = l ± 1, s̃ �= s, such that ψC (4.284) gets the
same phase for both values of β. This phase is −P12 = (−1)l+s. It is +1 for
the singlet ground state of positronium, which has l = s = 0.
From the definition (3.39) of C, a state of n photons has C = (−1)n.

By C-conservation, the above singlet (“para-positronium”) decays into two
photons. The triplet decays into three photons.Energy-momentum conser-
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vation excludes the decay into a single photon, but the virtual one-photon
intermediate state in electron-positron scattering produces an energy shift,

∆E1γ =
1
2δl,0δs,1µα

4n−3, µ = me/2.

Outside QED, one uses differential equations with other potentials, for
example meson-exchange potentials in nucleon-nucleon scattering. There, the
potential of longest range comes from the exchange of a pion, which is spinless
and has negative parity. It requires a factor γ5i (pseudoscalar coupling) or
γ5i γ

µ
i Pi,µ (pseudovector coupling) at each vertex i. The resulting matrix M

(4.263) has a nonvanishing coefficient of m+γ
5σk′/m+ and thus contains

a term with m−/m+. The same is true for the exchange of a scalar meson,
which is often taken as an approximation for two-pion exchange. On the other
hand, the anomalous magnetic moment couplings (Sect. 5.7) are again free
from m−/m+. This shows that in the eight-component formalism, the QED
interaction is privileged.

4.9 Binary Boosts

Here we discuss the transformation of the binary equation from the lab system
to the “cms”, where the total momentum vanishes. It is rarely needed in
practice.
It is helpful to first recall the solution of the nonrelativistic binary

Schrödinger equation in the lab system. The Hamiltonian (3.126) for Vtot =
V12 ≡ V (r),

Hnr = p
2
1/2m1 + p

2
2/2m2 + V (r) (4.289)

commutes with the generator of translations

P = p1 + p2 = −ih̄∇R. (4.290)

With r =
√
(r1 − r2)2, the following transformation of gradients is appro-

priate:

p1 = plab + c1P , p2 = −plab + c2P , c1 + c2 = 1. (4.291)

The corresponding coordinate transformation is

r1 = R+ c2rlab, r2 = R− c1rlab rlab = r1 − r2. (4.292)

The index “lab” is needed for the relativistic case, where rlab is Lorentz
contracted along P . The transformed Hamiltonian is

Hnr = p
2
lab/2µnr + Pplab(c1/m1 − c2/m2) +

1
2 (c
2
1/m1 + c

2
2/m2)P

2 + V (r),
(4.293)

1/µnr = 1/m1 + 1/m2, µnr = m1m2/m12, m12 = m1 +m2. (4.294)
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The coupling operator Pplab is removed by taking

c1 = m1/m12, c2 = m2/m12. (4.295)

Hnr = p
2
lab/2µnr + V (r) + P

2/2m12. (4.296)

Hnr is now the sum of two commuting operators, such that the Schrödinger
equation ih̄∂tψS = HnrψS has factorizing solutions,

ψS = e
iKRψcms(r), PψS = h̄KψS . (4.297)

The cms wave function ψcms(r) satisfies a Schrödinger equation for a fictitious
particle of mass µnr with a cms energy operator,

(ih̄∂t − h̄
2K2/2m12)ψcms = Hcmsψcms, Hcms = p

2
lab/2µnr + V. (4.298)

For an eigenvalue E of (4.298), the eigenvalue of the original energy operator
is

Elab = E + h̄
2K2/2m12. (4.299)

The coordinate transformation (4.292), (4.295) is of course known from clas-
sical nonrelativistic mechanics. It is repeated here on the quantum level be-
cause the corresponding relativistic transformation gives slightly different
coefficients c1 and c2. There is however a shortcut derivation which avoids
the coordinate transformation. One simply assumes translational invariance
in space and time, which implies stationary solutions of the form

ψlab = e
−iKµX

µ

ψ(r), Pµψlab = h̄K
µψlab(r), (4.300)

leaving R unspecified. One then solves the binary equation only for K = 0,
which is equivalent to setting p1 = −p2 ≡ p from the very beginning. This
specifies the “center-of-momentum” system; the “center-of-mass” system is
only known when R is explicitly given. However, one normally ignores this
logical difference and abbreviates both systems as “cms”. In the following, the
index cms will be omitted whenever possible. Where a distiction is necessary,
the index lab will be used for the laboratory system. In a final step, one
calculates Elab from the assumed Lorentz invariance of K

µKµ (= s = E
2),

Elab = h̄cK
0 =

√
E2 + h̄2c2K2. (4.301)

In the derivation of (4.299), a separate assumption of “Galilei invariance”
was unnecessary.
In the relativistic case, one may use the single-time formalism of Sect. 3.3,

which operates with two quantum fields Ψa(r1, t), Ψb(r2, t) at a common
time t (Malvetti and Pilkuhn 1994). Field commutators at different times are
more complicated.
For the verification of Lorentz invariance, the 8-component equation

(3.218) is again convenient. We set

π0 = K0, π± = p± = p1σ1 ± p2σ2, (4.302)



186 4 Scattering and Bound States

where p1 and p2 refer to the lab system. The lab interaction Ilab is indepen-
dent of R but otherwise unspecified:

(K02 −m2+ + p−p+m+/m− − γ
5K0(p+ + p−m−/m+)− Ilab(rlab))ψlab = 0.

(4.303)
It will be seen that Ilab depends both on K

2 and on rlabK. The Dirac-Breit
equation (3.112) avoids this complication, but it is not strictly Lorentz in-
variant. This is already evident from the approximation q0 = 0 in (4.221).
The merit of the DB-equation is that operators for external potentials are
easily added, such that the equation is not restricted to closed systems. For
(4.303), this is not yet the case; Ilab is constructed from the postulate of
Lorentz invariance. Superficially, this looks like a defect of relativistic quan-
tum mechanics as compared with relativistic quantum field theory, but one
should remember that the interaction between quantum fields has also been
constructed using Lorentz invariance among the postulates. In classical me-
chanics, the filling of a cup with coffee in a moving train also assumes Galilei
invariance. Complications arise only when the train brakes.
The verification of Lorentz invariance of the remaining operators in

(4.303) is instructive, but it is rarely needed. As emphasized in Sect. 4.5,
the atomic spectrum is always calculated in the atomic rest frame, for which
the coordinate transformation is unnecessary. If one really needs the radia-
tion from a moving atom, one assumes the relation K0 = (E2 +K2)1/2. In
a second step, one then calculates the Doppler shifted radiation for a “Lorentz
factor” γ = K0/E. In a more careful treatment, one may use both γ = K0/E
and γ′ = K0/E′, where E′ < E is the cms energy of the atomic final state,
as explained in Sect. 4.2. In any case, explicit coordinate transformations are
not needed for a calculation of the lab radiation spectrum. It must also be
pointed out that a direct application of (4.303) is excluded for m1 = m2.
A more direct approach on the basis of ideas explained in Sect. 4.10 below is
not excluded.
Turning now to the Lorentz invariance of (4.303), one could in a first

step insert K02 ≡ E2 + P 2, thus getting in the first two terms of (4.303)
the combination E2 −m2+ required by the cms equation (4.229). However, if
c1 and c2 in (4.291) are to be free from Dirac operators, there is nothing in
(4.303) that could cancel the P 2. The only alternative is to let p+p− contain
a piece m+m−P

2 and then to combine m2+P
2 with m2+. From (4.302),

p−p+ = p
2
1 − p

2
2 = (p1 − p2)P = 2plabP + (c1 − c2)P

2, (4.304)

one sees that c1− c2 must be proportional to m+m− = m22 −m
2
1. Using now

K0 = γE, the desired cms combination is achieved in the form γ2(E2−m2+)
for

c1 − c2 = −m+m−/E
2. (4.305)

With that choice namely,

m2+ − (c1 − c2)P
2m+/m− = m

2
+(1 + P

2/E2) = m2+γ
2. (4.306)
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The separate values of c1 and c2 follow from c1 + c2 = 1:

c1 =
1
2 −m+m−/2E

2 = E1/E, c2 =
1
2 +m+m−/2E

2 = E2/E. (4.307)

For E near m12, these values are close to the nonrelativistic ones (4.295).
The appearance of E2 makes the coordinate transformation (4.292) state

dependent. Already the approximation E2 ≈ m212 − m1m2α
2
Z/n

2 requires
different coordinates for different values of n. It is then important to keep E
fixed. In radiative decays E is the total cms energy before decay, see (5.160).
After the coordinate transformation, (4.303) becomes[
K0
2
− m2+(1 + P

2/E2) + 2Pplabm+/m− − γ
5γE(p+ + p−m−/m+)− Ilab

]
×ψlab = 0, (4.308)

p+ ≡ (plab − Pm+m−/2E
2)∆σ + 12Pσ,

p− ≡ (plab − Pm+m−/2E
2)σ + 12P∆σ. (4.309)

Next, we use the ansatz (4.300), which reduces the bracket in (4.308) to γ2.
It is further simplified by taking the z-axis along K,

Kplab = Kpz,lab. (4.310)

To simplify the factors of γ5, one γ is divided off. The resulting operator is
called Klab,

Klabψlab = 0, Klab = γ(E
2 −m2+) + 2Kpz,labm+/γm− − γ

5Ep̃− Ilab/γ.
(4.311)

p̃ ≡ p++p−
m−
m+
=

(
plab−K

m+m−
2E2

)(
∆σ+σ

m−
m+

)
+ 12K

(
σz+∆σz

m−
m+

)
.

(4.312)

γ5p̃ = γ5plab

(
∆σ+σ

m−
m+

)
+ 12KE

−2

[
(E2−m2+)γ

5σz+(E
2−m2−)γ

5∆σz
m−
m+

]
.

(4.313)
Several problems remain: Firstly, one must find a transformation,

ψlab(r) = Av(K)ψ(r), (4.314)

which transforms (4.311) into (4.229),

Kψ = 0, K = E2 −m2+ − γ
5Ep(∆σ + σm−/m+)− I8. (4.315)

Secondly, one must relate plab = −i∇lab to p = −i∇. This relation is antici-
pated here:

pz,lab = γpz, px,lab = px, py,lab = py. (4.316)

It is plausible from (4.311), because it simplifies pz,lab/γ = pz.



188 4 Scattering and Bound States

The operator Av may be adopted from a Lorentz transformation of the
free-particle spinor v of ψ. It is the direct product of two single-particle
transformations analogous to (2.336), but with the γ (2.335) of the particle
boosts replaced by the γ for the Lorentz transformation from the cms to the
lab system:

cosh ηb = γ = K
0/E, sinh ηb = K/E ≡ K̂, γ

2 − K̂2 = 1. (4.317)

Using γ51v = γ
5
2v = γ

5v,

Av = (γ + γ
5σ1zK̂)

1/2(γ + γ5σ2zK̂)
1/2. (4.318)

In analogy with a single-particle boost from its rest system, it is the boost of
the binary from its own rest system, in which E plays the role of the mass.
Here we shall go in the opposite direction,

ψ = A−1v ψlab, A
−1
v = (γ − γ

5σ1zK̂)
1/2(γ − γ5σ2zK̂)

1/2. (4.319)

As always, the inverse boost A−1v has K replaced by −K, or equivalently γ
5

by −γ5. One may also combine the factors of A−1v under one square root,

A−1v = (1− K̂γγ
5σz +

1
2K̂

2σ2z)
1/2, (4.320)

using σ1zσ2z = σ
2
z/2− 1. However, Kψ = 0 and KA

−1
v ψlab = 0 do not imply

Klab = KA−1v . Finally, one must find another matrix A
′
w(K) which achieves

Klab = A
′
w
−1KA−1v . (4.321)

In the corresponding single-particle case, the lab operator πµσ
µ (2.94) could

be expressed in terms of the cms operator π′µσ
µ by means of (2.96), πµσ

µ =
SHπ′µσ

µSH, and it was checked explicitly that the matrix to the left of π′µσ
µ

had to be the same as the one to the right, and not its inverse, for example.
In the case at hand, the choice

A′w
−1 = (1− K̂γγ5∆σzm−/m+ +

1
2K̂

2∆σ2z)
1/2 (4.322)

is successful. With σz∆σz = 0 and (σ
2
z +∆σ

2
z)/2 = 2 = 1+ (σ

2
z +∆σ

2
z)/4, it

leads to
A′w
−1A−1v = γ −

1
2K̂γ

5(σz +∆σzm−/m+), (4.323)

A′w
−1βA−1v = βA

′
wA
−1
v = β[γ −

1
2K̂γ

5(σz −∆σzm−/m+)]. (4.324)

It gives

A′w
−1(E2−m2+)A

−1
v = (E

2−m2+)(γ−
1
2K̂γ

5σz)− (E
2−m2−)

1
2K̂γ

5∆σz
m−
m+
.

(4.325)
The first product of (4.325) leads thus directly to terms of Klab. For the
remaining terms, one must observe that A commutes with σz and ∆σz, while
σiz anticommutes with σix and σiy. Av and A

′
w may also be written without

square roots, analogous to the single-particle boost (2.347):
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Av = γ +
1
2K̂γ

5σz −
1
2K̂

2∆σ2z/(2γ + 2), (4.326)

A′w = γ +
1
2K̂γ

5∆σzm−/m+ −
1
2K̂

2σ2z/(2γ + 2). (4.327)

In checking these expressions by squaring, one uses (∆σz)
4 = 4(∆σz)

2, and
K̂4 = K̂2(γ2 − 1). Having checked all this, one may of course try to find
a more elegant derivation of A′w:

A′w = m+Aw/m+, (4.328)

Aw = (1+K̂γγ
5∆σz+

1
2∆σ

2
z)
1/2 = (γ+γ5σ1zK̂)

1/2(γ−γ5σ2zK̂)
1/2. (4.329)

Aw is the boost for the free-particle spinor w of χ, it differs from Av only by
a change of sign of γ5σ2z, because of γ

5
2w = −γ

5w. The extra transformation
with m+ in (4.328) arises from the multiplication of the original equation
(4.228) by m+.
The more elegant forms (4.251) and (4.252) of the cms equation may also

be boosted, of course. For (4.251),

ψ = C1ψ1, Klabψlab = KlabAvψ = KlabAvC1ψ1 = 0, (4.330)

one may write

Klabψlab = KlabC1Av1ψ1, Av1 = C
−1
1 AvC1. (4.331)

Multiplication by C−11 gives

Klab1ψlab1 = 0, Klab1 = C
−1
1 KlabC1, ψlab1 = Av1ψ1. (4.332)

Thus ψ1 is boosted with Av1. Here it is useful to combine m+/m− with γ
5

into a matrix γ5′:

γ5′ = γ5m+/m− = (m−/m+)
1/2γ5(m+/m−)

1/2. (4.333)

The last expression is mentioned merely to show that γ5′ is diagonalized by
a similarity transformation V γ5V −1 as in (2.170), with V = (m−/m+)

1/2 =
V †. Only the last two terms of KL in (4.311) are changed by C1:

C−11 γ
5p̃C1 = 2γ

5plabσ1 +
1
2KE

−2[(E2 −m2+)γ
5′ + (E2 −m2−)γ

5′†]∆σz,
(4.334)

which is again hermitian. The inverse boosts are

A−1v1 = (1− K̂γγ
5′σz +

1
2K̂

2σ2z)
1/2 = γ − 12K̂γ

5′σz −
1
2K̂

2∆σ2z/(2γ + 2),
(4.335)

A′w1
−1 = (1−K̂γγ5′∆σz+

1
2K̂

2∆σ2z)
1/2 = γ− 12K̂γ

5′†∆σz−
1
2K̂

2σ2z/(2γ+2),
(4.336)

The bilinear forms (4.323) and (4.324) become

A′w1
−1A−1v1 = γ −

1
2K̂(γ

5′σz + γ
5′†∆σz), (4.337)

A′w1
−1βA−1v1 = β[γ −

1
2K̂(γ

5′σz − γ
5′†∆σz)]. (4.338)
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For the boost of the interaction, we take immediately the basis ψ1. The
Coulomb part 2EV is the same in I8 and I81; it is boosted with (4.337). The

resulting I
(V )
lab1/γ of (4.311) is

I
(V )
lab1/γ = A

′
w1
−12EV A−1v1 = 2K

0V [1− 12K(γ
5′σz + γ

5′†∆σz)/K
0]. (4.339)

Here we have extracted a factor γ from (4.337) because this replaces EV by
EγV = K0V appropriate for the lab system. However, also the appearance of
V itself is modified. The transformation (4.316) of the gradient components
requires the coordinate transformation

zlab = z/γ, xlab = x, ylab = y. (4.340)

It corresponds to the “Lorentz contraction” along the direction of motion in
classical special relativity. The result is

V = −αZ(x
2 + y2 + z2)−1/2 = −αZ(x

2 + y2 + γ2z2lab)
−1/2. (4.341)

The factor γ in front of zlab compensates the Lorentz contraction, such that
the Coulomb potential is isotropic in the cms. But the proper lab equation

(4.303) contains I
(V )
lab and not I

(V )
lab /γ, such that a second factor γ appears in

front of V :
γV = −αZ [(x

2 + y2)/γ2 + z2lab]
−1/2. (4.342)

Also this expression has an analogy in classical relativity: The field gener-
ated by a moving charge becomes increasingly transverse with increasing γ.
Its analogy in quantum mechanics is known as the “Weizsäcker-Williams”
approximation (Pilkuhn 1979).
When a binary is treated as a single particle, the spin S of that particle

equals the total angular momentum f = l̂ + s1 + s2 in the cms. Setting
Sz = fz in the particle boosts (4.183) to (4.185) ignores the binary structure.

Nevertheless, for l̂z = 0, these boosts do agree with Av (4.318) or (4.320),

Av = [1 +K
0γ5Kσ/E2 + 12 (Kσ/E)

2]1/2, (4.343)

after the replacements m→ E and kS →Kσ/2.

4.10 Klein-Dirac Equation, Hydrogen

Bound states of two spinless and two spinor particles have been discussed
in Sects. 4.5 and 4.6, respectively. For the asymmetric combination of one
spinor and one spinless particle, we now derive the “Klein-Dirac” equation.
It reduces to the single-particle Dirac equation in the limit m1 � m2 and to
the single-particle KG equation in the opposite limit m1 
 m2. An example
with m1 ≈ m2 is µ−π+ and µ+π−, but the experimental information on this
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“pi-muonium” (which appears as a by-product in K0 → πµν decays) is still
poor. Precision data are available for muonic helium µ− 4He, where the 4He
nucleus is the spinless alpha-particle. However, this example is already close
to m1 � m2 and is normally treated by the Dirac equation with first-order
recoil corrections. Spinless particles are discussed here mainly for a better
understanding of the Todorov equation (4.189), and for checking the disap-
pearance of retardation operators. We shall also mention the approximate
“Grotch-Yennie” equation (which is a Dirac equation with shifted parame-
ters) and the “original” Klein-Dirac equation (Pilkuhn 1984), which should
really be called “Klein-Kramers” equation, because it has no Dirac form.
Two-body equations must contain ∂t1 and ∂t2 in the combination ∂t1+∂t2,

which is the total time shifting operator. The KG equation (1.66) for particle 2
is quadratic in π02 = i∂t2−q2A

0
2. In applications to few-body systems, it must

be linearized in π02 . One defines a “secondary field” Ψs = π
0
2Ψ and expresses

π022 Ψ as π
0
2Ψs. The field equation is then a pair of two linear equations, their

Hamiltonian form is (Malvetti and Pilkuhn 1994)

ΨH =

(
Ψ
Ψs

)
, H2ΨH = i∂t2ΨH , H2 =

(
q2A

0
2 1

K2 q2A
0
2

)
, (4.344)

Ψs = π
0
2Ψ, K2 = m

2
2 + π

2
2 . (4.345)

A more complicated linearization has been proposed by Feshbach and Villars
(1958), with large and small components as in the parity basis of the Dirac
equation. However, the Dirac analogy does not help, as the KG operator
does not factorize, unlike the Kramers operator (2.80). The scalar product
is taken from the zero-component j0 of the conserved vector current jµ, as
explained in Sect. 2.2. The index 2 is suppressed in the following formulas.
With j0 = Ψ†π0Ψ + Ψπ0∗Ψ† according to (2.27),

j0 = Ψ†Ψs + Ψ
†
sΨ = Ψ

†
HgΨH , g =

(
0 1
1 0

)
. (4.346)

In this notation, the scalar product of two single-particle states |i〉 and |j〉
becomes

〈j|i〉 = ∫ Ψ†HjgψHi. (4.347)

The matrix g plays the role of a metric in the scalar product; it is necessary
for hermiticity, 〈i|j〉∗ = 〈j|i〉. Equation (4.347) is identical with the spinless
scalar product that was already derived in (1.198).
The field commutators follow again from (3.88), where Hscalar is con-

structed such that it leads to the the KG equation in the form (4.344),

Hscalar = ∫ d
3r′(Ψ†sΨs + Ψ

†K2Ψ), (4.348)

[Ψs(r
′), Ψ†(r)] = [Ψ(r), Ψ†s (r

′)] = δ(r − r′). (4.349)
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The bound state wave function for particles 1 and 2 is now assumed as in
(3.82),

ψH12 = 〈0|ΨD(r1)ΨH(r2)|12〉 = 〈0|Ψ1ΨH |12〉. (4.350)

Its time derivative gives

(i∂t −H1)ψH12 = 〈0| − eA
0
1Ψ1ΨH + Ψ1H2ΨH |12〉 = 〈0|Ψ1H2ΨH |12〉, (4.351)

as 〈0|A0 = 0. H1 is the Dirac Hamiltonian (3.78). ψH12 has altogether eight
components, four ψ12 and four ψs12. Insertion of (4.344) gives the following
two Dirac spinor equations:

(i∂t −H1)ψ12 = 〈0|Ψ1(q2A
0
2Ψ2 + Ψ2s)|12〉, (4.352)

(i∂t −H1)ψs12 = 〈0|Ψ1(q2A
0
2Ψ2s +K2Ψ2s)|12〉. (4.353)

The operator A0 satisfies the Poisson equation (3.68), where the spinless
charge density is part of ρ′el. The spinless contribution A

0
scalar is given by

(3.69), with ρΨ replaced by −ρscalar = −j0 (4.346) (the minus sign accounts
for q2 = −q1 = +e). But as A0scalar commutes with Ψ1 = ΨD1, one arrives
again at 〈0|A0scalar = 0, such that A

0
scalar is in fact unnecessary here. The rest

is analogous to (3.85)–(3.87). With π0 = i∂t − V12 = i∂t + αZ/r12,

(π0 −H1)ψ12 = ψs12, (π
0 −H1)ψs12 = K2ψ12. (4.354)

The π1 in H1 and the π
2
2 in K2 still contain the photon field operator A

which must be included perturbatively, leading to a Breit operator HB as
in Sect. 3.4. One may use π22 = p

2
2 − 2q2p2A2, as A

2
2 does not contribute.

Comparison with (3.94) shows that one merely has to replace α2 by

αKG = π2γKG, γKG =

(
0 0
2 0

)
. (4.355)

The second equation in (4.354) is thus extended to

(π0 −H1)ψs12 = (K2 +KB)ψ12, KB = −V12(α1π2 + α1rπ2r). (4.356)

Note that the factor 12 of (3.111) is cancelled by the factor 2 from γKG. The
second spinor ψs12 is eliminated from (4.356) by use of the first equation
(4.354),

[(π0 −H1)
2 −K2 −KB]ψ12 = 0. (4.357)

Insertion of H1 = m1β + p1α ≡ H
0
1 ((3.96) with V (r1) = 0, Acl = 0) gives

H021 = m
2
1 + (σπ1)

2 ≡ K1 : (4.358)

[π02 − 2π0m1β − {π
0,p1α1}+K1 −K2 −KB]ψ12 = 0. (4.359)

This equation is solved in the following for Aµ = 0 in the cms, p1 =
−p2 ≡ p12,
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π0 = E − V12, K1 −K2 = m
2
1 −m

2
2, E

2 +m21 −m
2
2 = 2EE1 : (4.360)

[EE1−EV12+V
2
12/2−(E−V12)m1β]ψ12 =

1
2 ({π

0,p12α1}+HB)ψ12. (4.361)

At this point, the “quasidistance” transformation (3.214) greatly simplifies
the equation. We define

π01 = E1 − V12 + V
2
12/2E = E1 − V, V = −αZ/r, (4.362)

divide by E and drop the index 1 of σ1. We also insert α1 = γ
5σ and

approximate p12 = p everywhere except in {π
0,p12α1},

[π01 − (1−V12/E)m1β]ψ12 = γ
5[σp12−{V/2E,σp}+V (σp+σrpr)/2E]ψ12.

(4.363)
Miraculously, the square bracket on the right-hand side is just σp, provided
ψ12 is first expressed in terms of the corresponding u12 according to (2.155),

ψ12 = r
−1
12 ψu = (r/r12)ψ. (4.364)

(This reflects the change of volume element, from d3r12 = r
2
12dr12dΩ in

the variable r12 to d
3r = r2drdΩ in the variable r.) After the substitution

ψ12 = r
−1
12 ψu, σp12 is replaced by (3.216)

r12σp12r
−1
12 = −iσr[∂r − (σl̂+ 1)(1/r − αZ/2Er

2)]. (4.365)

The remaining terms inside the square bracket of (4.363) add up to

−σpV/2E + V σrpr/2E = iσr(σl̂+ 1)αZ/2Er
2, (4.366)

by use of ∂rV = V ∂r − V/r. They just cancel the term in the last bracket
of (4.365). In this way, the retardation (which is part of the Breit operator)
disappears. The result is a Dirac equation for particle 1, with an r-dependent
mass m1(r),

[π01 −m1(r)β − γ
5σp]ψ = 0, m1(r) = m1(1 + αZ/Er12). (4.367)

From the point of view of the exact quasidistance transformation (3.214),
m1(r) is the square root of m

2
1(1 + αZ/Er12)

2,

m21(r) = m
2
1(1+ 2αZ/Er), m1(r) ≈ m1(1+αZ/Er−α

2
Z/2E

2r2). (4.368)

The modified Dirac equation is again solved by the ansatz (2.158), with π0±
replaced by π01 ± m1(r). The π

0
1
2 − m21(r) in the solution (2.159) may be

written in several ways. With E21 −m
2
1 = k

2 = ε2 − µ2 and E1 −m21/E = ε:

π01
2 −m21(r) = k

2 − 2εV + V 2 = (ε− V )2 − µ2, (4.369)

which agrees with the previous two-body equations. The αZ/r
2 in the last

term of (2.159) arises from −π0′ = V ′ and is now generalized to −(π01 ±
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m1(r))
′ ≈ V ′(1±m1/E). The derivative of the last term inm1(r) is negligible

here. Thus the complete equations (2.159) become

[(ε−V )2−µ2+∂2r−κD(κD±1)/r
2±(b/a)±1(1±m1/E)αZ/r

2]u = 0. (4.370)

They are equal for

b/a = (κD ∓ γc)/αZ(1−m1/E), γc = [κ
2
D − α

2
Z(1−m

2
1/E

2)]1/2. (4.371)

This may be compared with the Dirac value (2.160) (κD ∓ γ)/αZ , γ =
(κ2D −α

2
Z)
1/2. In electronic atoms, m21/E

2 ≈ m21/m
2
2 is very small, such that

one can expand the square root about γ:

γc ≈ γ + α
2
Zm

2
1/2E

2γ ≈ γ + α2Zm
2
1/m

2
12(2j + 1). (4.372)

The complete coefficient of r−2 in (4.370) is then

γ2 ± γc ≈ γ
2 ± γ ± α2Zm

2
1/2γE

2. (4.373)

To first order inm1/E, the only difference between the E
2-levels of leptonium

and KD is the absence of hyperfine splitting in the latter. To second order in
m1/E, one has to replace the βj = j +

1
2 − γ of (4.281) by

βjl = j +
1
2 − γ − (l − j)(αZm1/E)

2/γ. (4.374)

The change is small but nevertheless significant since it lifts the l-degeneracy
of a given j-level (Barker and Glover 1955). In this way, it contributes to the
“Lamb shift” of such atoms and is in fact the dominant shift in pi-muonium.
A recoil-corrected Dirac equation for the electron is obtained from (4.357)

by defining E ≡ m2 + Ee and by shifting the V12 from π0 to H1. To avoid
confusion, the external V (r1) is now called −eA0.

[(m2 +Ee −He)
2 −m22 − π

2
2 −KB]ψ12 = 0, (4.375)

He = απ1 + βm1 + V12 − eA
0. (4.376)

This is re-arranged into

[Ee −He − (π
2
2 +KB − (Ee −He)

2)/2m2]ψ12 = 0. (4.377)

The static limit m2 
 Ee yields Heψ12 = Eeψ12. Using this as a zeroth
approximation, one obtains the recoil-corrected Dirac equation of Grotch
and Yennie (1967, 1969),

(HGY −Ee)ψ12 = 0, HGY = He + (π
2
2 +KB)/2m2, (4.378)

with KB of (4.356). Refinements are discussed by Sapirstein and Yennie (Ki-
noshita 1990). The equation was originally derived from the assumption that
the Hamiltonian of a composite system should contain the sum of the Hamil-
tonians of its components. With the magnetic hyperfine interaction added as
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an afterthought, the equation may be used for hydrogen. It has been con-
verted into an equation for a field operator Ψ12, which yields all first-order
recoil corrections to arbitrary Feynman graphs of the static limit (Braun
1973). The V6 (4.203) was originally derived by Braun’s method. Further ap-
plications have been given by Pachucki and Grotch (1995). Nuclear size and
structure corrections are collected in the review of Eides et al. (2001).
The Grotch-Yennie solution of (4.370) is obtained by substituting

b/a = (1 − m1/E)1/2(1 + m1/E)−1/2b′/a′, which simplifies the last term
to (b′/a′)±1αGY/r

2, where αGY = αZ(1 − m21/E
2)1/2 is a reduced charge.

This charge is then introduced in (4.369) by redefinitions of ε and µ,
εαZ/r = εGYαGY/r and ε

2 − µ2 = ε2GY − µ
2
GY, but a small discrepancy

remains in V 2 = α2GY/r
2 + α2Zm

2
1/E

2r2.
For atoms with several electrons, one simply assumes additivity of the

kinetic energy operators. An atom with a nonrelativistic nucleus of mass mn
and momentum operator πn = pn = −i∇n has then HGY = He + p

2
n/2mn,

with He given by H (3.203), (3.204), or by Hnr (3.126) for two nonrelativistic
electrons. The atomic rest frame has p1 + p2 + pn = 0, p

2
n = p

2
1 + p

2
2 +

2p1p2. The squares can be combined with the p
2
i /2me of Hnr into p

2
i /2µe,

1/µe = 1/me + 1/mn. The Hamiltonian of the total “Newtonian” energy
EN = E −mn − 2me, HGYψ = ENψ, assumes the form

HGY = He(me → µe) +Hmp, Hmp = p1p2/mn. (4.379)

Hmp is called the mass polarization operator; its expectation value is fre-
quently negligible. Surprisingly, (4.379) remains valid also for the relativistic
H(3.203)− 2m2e.
The Klein-Dirac equation may be extended to atoms with a spinless nu-

cleus and several electrons. For helium, the ansatz (5.75) is generalized to

ψH123 = 〈0|ΨD(r1)ΨD(r2)ΨH(r3)|123〉. (4.380)

Using the same procedure as before, (4.357) is replaced by

(π0tot −H
0
1 −H

0
2 −HB)

2ψ123 = (K3 +K1B +K2B)ψ123, (4.381)

π0tot = E − V13 − V23 − V12, K3 = m
2
3 + (p1 + p2)

2, (4.382)

where HB is again given by (3.111), with r = r1 − r2. The squares of H01
and H02 are conveniently combined with K3,

K3 − (H
0
1 )
2 − (H02 )

2 = m23 − 2m
2
e + 2p1p2. (4.383)

The “Klein-Kramers” equation is obtained from (2.135) by using the rel-
ativistic two-body kinematics (E replaced by ε and k2 = ε2 − µ2) and by
inserting an additional parameter c in front of σr (Pilkuhn 1984):

[(ε− V )2 − µ2 − p2 + icσrV
′]ψr = 0. (4.384)
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As in the Todorov and quarkonium equations, the free parameter is obtained
from the Fourier transform of the one-photon exchange in the cms, T (1) =
−4παZJ

µ
11′gµνJ

ν
22′/q

2, with Jν22′ = (p2 + p
′
2)
ν for the spinless particle 2. The

result is
c = (1−m21/E

2)1/2 ≈ (1−m21/m12)
2. (4.385)

For V = −αZ/r, the eigenvalues of the r−2-operator are γ2±γc as in (4.373),

γc = (κD − α
2
GY)

1/2, αGY = cαZ . (4.386)

Contrary to (4.367), the radial equation has now exact solutions. One need
not approximate V 2 by α2GY/r

2 as in the GY-equation. And contrary to the
KD equation, the KK does not require V = −αZ/r. Remembering that the
leptonium equation with hyperfine interactions has no exact solutions, the
Todorov and the KK equations are the only ones with exact solutions to
order α4Z .
From the theoretical point of view, the most important aspect of (4.384)

is its parity transformation. It is formally identical with (2.89),

ψ′(r′) = ψl(r), [(ε− V )
2 − µ2 − p2 − icσrV

′]ψl = 0, (4.387)

but a linear relation of the type (2.83) between ψr and ψl exists only for
c = 1. The situation is analogous to (3.227), where the parity transformation
for ne = 2 brings in the spinor χ which is not linearly related to ψ after the
expected cancellations in the quadratic equation. In the new E2-equations,
both P and C become rather special for bound states containing an odd
number of fermions.

4.11 Dirac Structures of Binary Bound States

In Sect. 4.6, the eight-component equation for two free leptons was derived
from the sixteen-component two-particle Dirac equation (4.231). A direct
derivation from two Kramers equations is also possible. For atoms, nothing
is gained by this method, but it could suggest improvements of the quark
model, where the large-distance interaction is still unknown.
For two free leptons, the uncoupled equations are first taken as Pauli

equations (2.58), including external vector potentials. Using again the com-
pact notation πi = πiσi, they may be written in forms which also comprise
KG particles,

p02i ψas = Kiψas, Ki = m
2
i + π

2
i . (4.388)

The first step is to combine the two equations into a single one which
contains only a common time shift in the form p01+p

0
2 ≡ p

0. With p021 −p
02
2 =

p0(p01 − p
0
2), the difference of the equations gives

(p01 − p
0
2)p
0ψas = (K1 −K2)ψas. (4.389)
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An eigenvalue K0 of p0 will be assumed. As p01 − p
0
2 commutes with K1 and

K2, a second application of p
0
1 − p

0
2 gives

(p01 − p
0
2)
2ψas = (K

0)−2(K1 −K2)
2ψas. (4.390)

Next, consider the sum of the two equations (4.388),

(p021 + p
02
2 −K1 −K2)ψas = 0. (4.391)

With p01 =
1
2K

0 + 12 (p
0
1 − p

0
2) etc, this leads to

[K02/2 + (K1 −K2)
2/2K02 −K1 −K2]ψas = 0. (4.392)

In terms of the triangle function λ (4.76), (K0)−2λ(K02,K1,K2)ψas = 0.
In the “constraint Hamiltonian mechanics” which dates back to Dirac, the
coupling between the two particles is introduced already in equations (4.388),
but practical success has been limited (Crater and Van Alstine 1994).
For particles of equal spins, λ may be decomposed symmetrically in the

indices 1 and 2:
λ = (K02 −K1 −K2)

2 − 4K1K2. (4.393)

With m22 −m
2
1 = m+m−,

λ = (K02 −m21 −m
2
2)
2 − 2π21(K

02 +m+m−)− 2π
2
2(K

02 −m+m−)

− 4m21m
2
2 + (π

2
1 − π

2
2)
2. (4.394)

For A = 0, the transformation (4.291), (4.307) of variables,

p1 = plab+KE1/E, p2 = −plab+KE2/E, E ≡ (K
02−K2)1/2, (4.395)

yields together with plab,x = px, plab,y = py, plab,z = γpz,

λ = γ2[(E2 −m21 −m
2
2)
2 − 4m21m

2
2 − 4E

2(p2x + p
2
y + p

2
lab,z/γ

2)]. (4.396)

The factor γ2 in front of the square bracket corresponds to the separation of
one factor γ from (4.308). The square bracket is factorized by means of the
Dirac matrices β, γ5 = βx and iγ

5β = βy as follows:

λ/γ2 = (f0 + fzβ + fxβx + fyβy)(f0 − fzβ − fxβx − fyβy), (4.397)

f0 = E
2 −m21 −m

2
2, fz = 2m1m2, fx = 2Epσ1, fy = 0. (4.398)

The second factor of (4.398) is precisely that of the leptonium equation
(4.237). More general forms include a rotation by an arbitrary angle ωD about
the β-axis in Dirac space (2.103), f ′x = 2Epσ1 cosωD, f

′
y = 2Epσ1 sinωD, or

a rotation (4.270) in the Pauli product space. For constant f0, one may also
take fy = 2Epσ2 sinωD, as σ1iσ1j and (σ1i cosωD+iσ2i sinωD)(σ1j cosωD−
iσ2j sinωD) are identical in their symmetric tensor components. (In the quark
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model, fy is not excluded a priori even when f0 is r-dependent. For small
ωD, it would mainly affect the hyperfine structure of quarkonium.)
The inclusion of A is trivial in the 16-component equation (3.186) or

(3.190), whereas (3.218) is still unclear. The first-order relativistic Zeeman
shift δE of the ground state has been calculated by Faustov (1970) and by
Grotch and Hegstrom (1971). Besides the factor (1−α2Z/3) from HZee (2.285)
in the Pauli reduction of the GY-equation (4.378), these authors find essen-
tially a factor m12/E in front of the nonrelativistic recoil corrections of the
σiB -terms. It represents the standard δ(Eε) =

1
2δE

2 = EδE of (4.398), and

excludes additional energy functions such as sin2 ωD = E1/E in the Pauli
reduction. The complete relativistic recoil correction to the static approxi-
mation of Sect. 2.9 for σ1B is (1+µα

2
Z/2n

2m12)m2/m12, and correspondingly
for particle 2.
Leptonium in a constant magnetic field is translational invariant: All three

components of the “pseudomomenta”

ki = πi + qiB × ri (4.399)

commute with the momentum operators πi,lab = pi − qiA(ri), although the
different components of ki don’t commute among themselves. The ki are the
individual displacement operators in a magnetic field. The (σ1π1)

2 may be
expressed as follows:

(σ1π1)
2 = k21 − 2q1Bj1, j1 = l1 +

1
2σ1. (4.400)

When the interaction is included, only the total displacer k1+k2 is conserved.
For neutral atoms (q2 = −q1 = e),

k = p1 + p2 −
1
2eB × (r1 − r2), (4.401)

its components do commute. Eigenfunctions of k with eigenvalue K are, for
p1 + p2 = −i∇R,

ψ(K) = eiKReieB(r1×r2)/2ψ(K = 0). (4.402)

Despite this constant of motion, no extension of (4.398) has yet been found
which could reproduce the simple δ(Eε) mentioned above.
In the presence of external potentials Vi, the elimination of p

0
1 − p

0
2 is

complicated. The Kramers equations

(π0i )
2ψ = Kiψ, π

0
i = p

0
i − Vi (4.403)

may be linearized as in (4.344). With the abbreviation π0 = π01 + π
0
2 , this

leads to the following equation for ψH12 = 〈0|ΨH(r1)ΨH(r2)|12〉:

π0ψ = ψ1s + ψ2s, π
0ψis = ψss +Kiψ, π

0ψss = K1ψ2s +K2ψ1s. (4.404)
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Elimination of ψis = (π
0)−1(ψss +Kiψ) gives the following two equations:

(π02 −K)ψ = 2ψss, K = K1 +K2, (4.405)

(π0 −K/π0)ψss = [K1(π
0)−1K2 +K2(π

0)−1K1]ψ. (4.406)

Multiplication of (4.405) by π0 −K/π0 permits the elimination of ψss:

[π03 − {π0,K}+∆K(π0)−1∆K]ψ = 0, ∆K = K1 −K2. (4.407)

When the Ki are taken from (2.82) appropriate for ψr, (4.407) applies to
the noninteracting components ψas,rr of the two-particle Dirac spinor ψD2,as
(4.231),

ψD2,as,rr = ψ1r(r1)ψ2r(r2). (4.408)

This is checked by insertion into (4.407). For vanishing commutators, mul-
tiplication of (4.407) by π0 reproduces (4.397). A “Dirac factorization” of
(4.407) seems excluded.



5 Hyperfine Shifts, Radiation, Quarks

5.1 First-Order Magnetic Hyperfine Splitting

Atomic fine and hyperfine structures are normally small and may be treated
as perturbations of the nonrelativistic Schrödinger Hamiltonian. However,
many level splittings are measured so precisely that their calculation wound
require second-order and even third-order perturbation theory. It is then
much easier to take the fine structure from the Dirac equation, and to
calculate the hyperfine structure as a perturbation of the Dirac equation.
The experimental hyperfine splittings of the hydrogen and muonium ground
states are 1 420 405.751767 kHz and 4 463 302.8 kHz, respectively (1 kHz ≈
4.1357× 10−12 eV). For such cases, the first-order hyperfine splitting of the
Dirac equation follows from (5.11) below to all orders in αZ .
In this section, the first order perturbation theory (Rose 1961) is adapted

to the two-lepton equation (4.278) (Hund and Pilkuhn 2000). Its application
to positronium requires modifications only in some particular states.
In Sect. 5.2, the magnetic hyperfine operator is modified in order to pro-

duce an equation with hyperfine wave functions as exact solutions. These
wave functions may be used not only for the calculation of second-order hy-
perfine shifts, but also for the inclusion of other perturbations. The emission
and re-absorption of another virtual photon produces several small shifts,
of which only the anomalous magnetic moment and the “self-energy” shift
survive in the static limit m1 � m2. The latter shift implies that the mass of
a bound particle 1 differs from its unbound value m1; it constitutes the main
part of the socalled Lamb shift, which lifts the degeneracy of the two j-levels.
The emission and re-absorption is a second-order process of the type (2.223),
for which the Dirac-Coulomb Greens function may be used. This function
will be discussed in Appendix B.
The derivation of the familiar first-order perturbation theory result,

E1n = 〈Hper〉n requires hermiticity of the unperturbed operator H0. For the
hyperfine operator of (4.275),

Hper = −γ
5σ×12Vρ∇ρm1m2/E

2 (5.1)

H0 is the Dirac-Coulomb Hamiltonian Hρ (4.276), which is Hermitian. The
expectation value of the anti-Hermitian part of Hper contains 〈i{V,p}/2〉,
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which vanishes by partial integration. The first-order shift of ε/µ in (4.275)
contains only i[Vρ,pρ]/2 = −αZ ρ̂/2ρ

2:

(ε/µ)1n = ∫ ψ
0
n
†Hperψ

0
nd
3ρ ≡ 〈Hper〉n = αZ〈γ

5σ×12ρ̂/ρ
2〉m1m2/2E

02
n . (5.2)

The E02n in the denominator of (5.2) are the exact solutions of the Dirac-
Coulomb equation. The extra increase of the hyperfine splitting with decreas-
ing E2 is largest for positronium, but it remains small even there. (The effect
is much larger in the quarkonium model of mesons. The pseudoscalar and vec-
tor mesons represent the singlet and triplet quark-antiquark ground states,
respectively. For the lightest members in each group, the pi and rho mesons,
m2π/m

2
ρ ≈ 1/30 excludes a perturbative treatment of the E

−2-dependence.)
On the left-hand side of (5.2), one has

(ε/µ)1n = (E
2)1n/2m1m2 = E

0
nE
1
n/m1m2, (5.3)

as (E2)1n is the infinitesimal change of E
2
n, δ(E

2
n) = 2EnδEn = 2E

0
nE
1
n. The

Dirac expectation value gives

〈γ5σ×12ρ̂/ρ
2〉 = ∫ ψ†Dγ5σ

×
12ρ̂ψD/ρ

2 = ∫(ψ†gσ
×
12ρ̂ψf + ψ

†
fσ
×
12ρ̂ψg)/ρ

2. (5.4)

Insertion of (2.152) leads to

〈γ5σ×12ρ̂/ρ
2〉 = −i ∫ gfdρ ∫ dΩ(χ†ljσ

×
12ρ̂χl̃j − χ

†

l̃j
σ×12ρ̂χlj). (5.5)

The first angular integral is minus the second one (see below), such that the
expectation value factorizes as follows:

〈γ5σ×12ρ̂/ρ
2〉 = 2 ∫ gfdρ ∫ dΩχ†

l̃j
iσ×12ρ̂χlj . (5.6)

The notation χlj and χl̃j needs some clarification. The Dirac-Coulomb wave

functions contain the spinor spherical harmonics χ
j,mj
l (2.124) in their large

components and χ
j,mj

l̃
in their small ones, where l̃ = 2j − l is the other

possible value of l at fixed j. When the hyperfine operator is added, the only
strictly conserved angular momentum operator is

f = l̂+ 12σ1 +
1
2σ2 = l̂+

1
2σ = j +

1
2σ2. (5.7)

The eigenvalues of f2 and fz are f(f +1) and mf , respectively. In first-order
perturbation theory, only the unperturbed states appear, which do contain
the quantum numbers l, l̃ and j. The quantum number mj , on the other
hand (which was called m in Sects. 2.5 and 2.6), cannot be kept fixed any
longer, because the Dirac-Coulomb eigenvalues are degenerate in mj . The
appropriate states χlj and χl̃j in (5.6) are Clebsch-Gordan combinations of

the χ
j,mj
l ,
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χ
f,mf
lj = Σmj (mj ,m2|f,mf )χ

j,mj
l χ2(m2) ≡ χlj , (5.8)

where the χ2(m2) are the eigenstates of σ2z, with eigenvalues 2m2 = ±1. The
two arguments suppressed in the CG-coefficients (mj ,m2|f,mf ) are j1 = j,
j2 = 1/2. The relevant coefficients are again given by (2.131), with l ±

1
2

replaced by f = j ± 12 . The explicit construction below gives

∫ dΩχ†
l̃j
iσ×12ρ̂χlj = (f − j)8(l − j)(f +

1
2 )
−1. (5.9)

The radial integral is obtained from (A.31) and (A.45), with κD = (l−j)(2j+
1) and κ/µ = αZ(n

2
β + α

2
Z)
−1/2,

Ir = ∫ gfdρ = (κ/µ)
3[2(1 + α2Z/n

2
β)
−1/2κD − 1]/[4γ(γ

2 − 1/4)]. (5.10)

For j = n − 1
2 , it is again simplified by nβ = γ as in (4.282), κ/µ = αZ/n,

and by κD = −n:
Ir = −α

3
Z/[n

3γ(2γ − 1)]. (5.11)

In general, one has to order α2Z

(n2β + α
2
Z)
−3/2 = n−3[1 + 32α

2
Z(n− j −

1
2 )/n

2(j + 12 )]. (5.12)

A factor 4(l− j) may be extracted from the numerator of (5.10) by inserting
2κD = 4(l − j)(j +

1
2 ), and by rewriting 1 = 4(l − j)

2. The γ2 − 1/4 in the
denominator may be put into the form

γ2 − 1/4 = j(j + 1)− α2Z = (l +
1
2 )(l̃ +

1
2 )− α

2
Z , (5.13)

with l̃ = 2j − l. Then (5.10) becomes to order α5Z

Ir = α
3
Z

l − j

j + 12

(n2β + α
2
Z)
− 32

2l + 1

[
1 +

α2Z/2

(j + 12 )
2
+

α2Z
j(j + 1)

−
α2Z(j +

1
2 )

n2(2l̃ + 1)

]
.

(5.14)
Collecting the various factors from (5.2) and (5.6), one obtains

(ε/µ)1hf =
α4Zm1m2
2E2n3

2(f − j)

(f + 12 )(l +
1
2 )(j +

1
2 )

(
1 + α2Zc

(2) + . . .
)
, (5.15)

c(2) =

(
3(n− j − 12 )

2n2(j + 1/2)
+

1/2

(j + 12 )
2
+

1

j(j + 1)
−
j + 1/2

n2(2l̃ + 1)

)
. (5.16)

For S-states, one has to add to c(2) a “wave function correction” c
(2)
wf , which

can be expressed in terms of 〈r−3G 〉l=0 from (2.231),

c
(2)
wf = 2

[
log

n

2αZ
− Ψ(n+ 1)− γEu −

n− 1

2n

]
µ

m12
= −

n3

α3Zµ
2m12

〈r−3G 〉l=0,

(5.17)
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plus an n-independent correction which is omitted here. Insertion of (5.3),
(ε/µ)1hf = EδEhf/m1m2 includes contributions to δEhf ,

δEhf = (ε/µ)hfm1m2/E =
1
2α
4
Zm

2
1m
2
2(nm12 − α

2
Zµ/2n)

−3 . . . (5.18)

that had previously to be calculated by NRQED.

In the following, the states χ
f,mf
lj are given for mf = 0. With the compact

notation

χ11 = χ1(
1
2 )χ2(

1
2 ), χ

−1
1 = χ1(−

1
2 )χ2(−

1
2 ), χ

0
1 =

3χ0, χ00 =
1χ0 (5.19)

and with 3χ0 and 1χ0 given in (3.130) and (3.131),

χf0
f−1,f−1/2 = (4f − 2)

−
1
2 [(f − 1)

1
2 (Y −1f−1χ

1
1 + Y

1
f−1χ

−1
1 ) + (2f)

1
2Y 0f−1χ

0
1],

(5.20)

χf0
f+1,f+1/2 = (4f + 6)

−
1
2 [(f + 2)

1
2 (Y −1f+1χ

1
1 + Y

1
f+1χ

−1
1 )− (2f + 2)

1
2Y 0f+1χ

0
1],

(5.21)

χf0
f,f−1/2 = (4f + 2)

−
1
2 [(f + 1)

1
2 (−Y −1f χ

1
1 + Y

1
f χ
−1
1 )− (2f)

1
2Y 0f χ

0
0], (5.22)

χf0
f,f+1/2 = (4f + 2)

−
1
2 [(f)

1
2 (−Y −1f χ

1
1 + Y

1
f χ
−1
1 ) + (2f + 2)

1
2Y 0f χ

0
0]. (5.23)

Both χ01 and χ
0
0 are normalized, and so are all four states χ

f0
lj . The spherical

harmonics Y mll occur for l = f − 1 in (5.20), for l = f + 1 in (5.21), and for
l = f in (5.22) and (5.23). This guarantees the orthogonality of the χf±1,j to
each other and also to the two states with l = f . The latter two states, on the
other hand, are combinations of identical components; they are orthonormal
due to their coefficients. In particular, ∫ dΩ(−Y −1∗l χ11

†+Y 1∗l χ
−1
1
†)(−Y −1l χ

1
1+

Y 1l χ
−1
1 ) = 2 makes the scalar product of the first terms in the square brackets

2f
1
2 (f + 1)

1
2 , which equals minus the scalar product of the last terms.

As j is not conserved by the hyperfine operator, an alternative basis may
be used in which S2 = σ2/4 is diagonal, with eigenvalues S(S + 1). The
appropriate CG-expansion is

χ
f,mf
l,S =

∑
ml

(ml,ms|fmf 〉Y
ml
l χ

ms
S , (5.24)

with j1 = l and j2 = S in (2.123). The χ
ms
S are identical with the ones defined

in (5.19). For S = 0, the expansion (5.24) requires l = f , where it reduces to
a single term:

χ
f,mf
f,0 = Y

mf
f χ00. (5.25)

Also simple is the expansion for l = f, S = 1, mf = 0:

χf,0f,1 = 2
−1/2(−Y −1f χ

1
1 + Y

1
f χ
−1
1 ). (5.26)
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The CG-coefficient of Y 0f χ
0
1 vanishes in χ

f,0
f,1. Comparison with the states χf,j

of (5.22) and (5.23) shows

χ
fmf
f,f−1/2 = cχ

f,mf
f,1 − sχ

f,mf
f,0 , χ

fmf
f,f+1/2 = sχ

f,mf
f,1 + cχ

f,mf
f,0 ,

c ≡ [(f + 1)/(2f + 1)]−1/2, s ≡ [f/(2f + 1)]−1/2. (5.27)

c2 + s2 = 1 shows that (5.27) is an orthogonal transformation. Such a “re-
coupling of angular momenta” is independent of mf , see Sect. 5.6. In short,

χf,1 = cχf,f−1/2 + sχf,f+1/2, χf,0 = −sχf,f−1/2 + cχf,f+1/2. (5.28)

The CG-coefficients for l = f ∓1, S = 1 are more complicated, see Table 2.1.
On the other hand, a look at χf0

f∓1,f∓1/2 shows that these contain only χ
ms
1 ;

the singlet spin state χ00 does not contribute. Consequently, the χ
f0
f∓1,f∓1/2

are identical with the χf0f∓1,1. Also these relations remain valid for all mf :

χ
fmf
f−1,f−1/2 = χ

fmf
f−1,1, χ

fmf
f+1,f+1/2 = χ

fmf
f+1,1. (5.29)

The reason is that l = f ∓ 1 requires not only S = 1, but also j = f ∓ 1/2 =
l ± 1/2. The second lower index is unnecessary for the states (5.29) and is
dropped in the following.
At fixed eigenvalue f(f +1) of f2 and for all values of mf , the operators

l2, σ1l, σ2l and σ
×l are 4 × 4 matrices. The upper indices f and mf are

now suppressed. A special symbol for the eigenvalues f(f +1) of f2 will also
be useful,

f2χ = f(f + 1)χ ≡ F 2χ, F =
√
f(f + 1). (5.30)

For example,

l2χf+1 = l(l + 1)χf+1 = (f + 1)(f + 2)χf+1 = (F
2 + 2f + 2)χf+1. (5.31)

In the triplet-singlet basis, one thus gets

χl,S =

⎛⎜⎜⎝
χf+1
χf−1
χf,1
χf,0

⎞⎟⎟⎠ , l2 =
⎛⎜⎜⎝
F 2 + 2f + 2 0 0 0

0 F 2 − 2f 0 0
0 0 F 2 0
0 0 0 f2

⎞⎟⎟⎠ , (5.32)

σ1,2l =

⎛⎜⎜⎝
−f − 2 0 0 0
0 f − 1 0 0
0 0 −1 ±F
0 0 ±F 0

⎞⎟⎟⎠ . (5.33)

Note the sum check

σ1l+ σ2l = σl = f
2 − l2 − σ2/4. (5.34)
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The matrix σ×l has σ× = i12 (1 + σ1σ2)∆σ according to (4.234), and as
∆σl = 0 in the states with l = f ± 1, we quote only its nonvanishing 2× 2
submatrix in the lower right-hand corner of the 4× 4 matrix, with an addi-
tional factor i which will be needed later:

iσ×l =
1 + σ1σ2
2

∆σl =

(
1 0
0−1

)(
0 2F
2F 0

)
= 2

(
0 F
−F 0

)
. (5.35)

In the j = l ± 12 -basis for l = f , one has by inversion of (5.27)

χj =

(
χl+1/2
χl−1/2

)
, σ1,2l =

(
s c
c −s

)(
−1 ±F
±F 0

)(
s c
c −s

)
, (5.36)

σ1l =

(
l 0
0 −l−1

)
, σ2l =

1

2l + 1

(
−l(2l + 3) −2l(l + 1)
−2l(l + 1) (2l − 1)(l + 1)

)
. (5.37)

The eigenvalues of σ1l agree with (2.121). σ2l is diagonal in the j2-basis
(j2 = l+ σ2/2), with the same eigenvalues.
At large distances, hydrogenic atoms behave like particles of spin f . Their

magnetic hyperfine interaction causes a quadrupole moment, which may be
calculated from the Dirac equation (Baryshevsky and Kuten 1978).

5.2 Nonrelativistic Magnetic Hyperfine Operators

To the order α4Z , convenient magnetic hyperfine operators are obtained by
elimination of the small components of the leptonium equation. We rewrite
(4.268) as

(ε− V − µβ − γ5σ1π)ψ1 = 0, (5.38)

π = p+ eAhf , eAhf = −iV σ2 × p/E. (5.39)

By copying the steps of Sect. 2.8, one finds

(ε− V − µ)ψg = σ1π(ε− V + µ)
−1σ1πψg. (5.40)

Expansion of the denominator in V/(ε+ µ) gives (2.256),

[(ε− V )2 − µ2 − (σ1π)
2 + [σ1π, [σ1π, V ]]/4µ]ψg = 0. (5.41)

The double commutator is a relativistic correction; to order α4Z , it may be
evaluated in the limit Ahf = 0. Consequently, also (2.271) applies again, in
the form

[(ε− V )2 − µ2 − (σ1π)
2 − 12αZσ1lV

′/L2]ψg = 0, L
2 = l(l + 1). (5.42)

To the order α4Z , the hyperfine operator arises exclusively from (σ1π)
2. In-

sertion of σ1π = σ1p− iV pσ×/E (σ× ≡ σ
×
12) gives

(σ1π)
2 = p2 − i{σ1p, V pσ

×}/E − (V pσ×/E)2. (5.43)
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The nonrelativistic hyperfine operator arises from the terms linear in V :

{σ1p, V pσ
×} = σ1[p, V ]pσ

× + V {σ1p,pσ
×}. (5.44)

The last anticommutator vanishes. Inserting −i[p, V ] = −[∇, V ] = −V ′r/r,
one obtains the complete nonrelativistic hyperfine operator from (σ1π)

2/2µ,

−i{σ1p, V pσ
×}/2µE = −(V ′/r)(σ1r)σ1(σ2 × p)/2m1m2. (5.45)

By (2.53),

(σ1r)σ1(σ2 × p) = r(σ2 × p) + σ1(r × (σ2 ×∇)). (5.46)

The hyperfine operator is then decomposed into two terms,

−i{σ1p, V pσ
×}/2µE = Vs2l +H

′
hf . (5.47)

Vs2l arises from the first operator in (5.46), it is independent of σ1,

Vs2l = V
′σ2l/2m1m2r. (5.48)

As Vs1l (4.283) is still called the spin-orbit potential, the part Vs2l of the
nonrelativistic hyperfine operator is called the “other” spin-orbit potential.
It is always smaller than Vs1l. Form1 = m2, it is half as large. Both potentials
Vsil are symmetric in m1 and m2 and must not be attributed to particles i
(Pilkuhn 2001). The sum of their expectation values agrees with (3.164).
The remaining H ′hf of (5.47) requires a somewhat tricky decomposition

of r× (σ2×∇): The rule a× (b×c) = b(ac)− (ab)c implies r× (σ2×∇) =
σ2(r∇)− (rσ2)∇, thus giving

−(V ′/r)σ1[r × (σ2 ×∇)] = (V
′/r)[−σ1σ2(r∇) + (σ2r)(σ1∇)]. (5.49)

The last operator can be decomposed into the product of a spin operator
and a tensor t in coordinate space, provided the summation indices which
are hidden in the scalar products are written explicitly:

(σ2r)(σ1∇) =
∑
i,j

σ2iσ1jtij , tij = ri∂j . (5.50)

A tensor t has 3 × 3 components; it may be decomposed into three “irre-
ducible” tensors which do not mix under rotations,

t = t(0) + t(1) + t(2), (5.51)

t(l) transforms under rotations like an operator of angular momentum l; t(0)

like a scalar, t(1) like a vector:

t
(0)
ij = δijΣktkk/3. (5.52)
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δij are the elements of the unit matrix 1, which remains the unit matrix after
a rotation. With trace(1) = 3, the remaining matrix t(1) + t(2) is traceless;
t(1) is its antisymmetric part:

t
(1)
ij =

1
2 (tij − tji). (5.53)

It vanishes for i = j and has only three independent components. The remain-
ing tensor t(2) is now automatically symmetric and traceless and contains the
remaining five independent components,

t
(2)
ij =

1
2 (tij + tji)− δijΣktkk/3. (5.54)

One easily checks tij = t
(0)
ij +t

(1)
ij +t

(2)
ij . One writes symbolically 3×3 = 1+3+5.

A general tensor is decomposed into its irreducible pieces by means of the
“Clebsch-Gordan series”. More about tensors in Sect. 5.6. The complicated
decomposition of tij is not necessary, but it helps. In (5.50), tij = ri∂j gives

t
(0)
ij = δijr∇/3 = δijr∂r/3, (5.55)

t
(1)
ij =

1
2 (ri∂j − rj∂i) =

1
2 (r ×∇)k =

1
2 ilk. (5.56)

The decomposition of H ′hf of (5.47) into irreducible pieces is

H ′hf = −(V
′/r)σ1[r × (σ2 ×∇)]/2m1m2 = H

(0)
hf +H

(1)
hf +H

(2)
hf , (5.57)

where H
(0)
hf includes the first term of (5.49):

H
(0)
hf = −(V

′/r)σ1σ2(r∇)/3m1m2, (5.58)

H
(1)
hf = (V

′/r)iσ×l/4m1m2 ≡ Vs12l, (5.59)

H
(2)
hf = (V

′/r)[σ2rσ1∇/2 + σ1rσ2∇/2− σ1σ2(r∇)/3]/2m1m2. (5.60)

H
(1)
hf is an anti-Hermitian spin-orbit potential. Its expectation value vanishes,

such that it is needed in E(α4Z) only in the case of degeneracy (see below). The
other two operators contribute only with their Hermitian parts. For s-states,
these parts are formally too singular, as in the case of the Darwin term dis-
cussed at the end of Sect. 2.8. Also here, one can simply ignore the s-state
operators and instead extrapolate the energy shifts in the orbital angular mo-
mentum l down to l = 0. In the following, the traditional method is presented,
in which any operator containing l is taken to vanish for s-states. To illustrate

the problem, set r∇ = r∂r in H
(0)
hf . For V = −αZ/r, the Hermitian part of

−V ′∂r = −αZ/r2∂r is αZ [∂r, r−2]/2 = −αZr−3, with 〈r−3〉l=0 =∞ accord-
ing to (2.259). To obtain the correct result, one must return to the Hermitian
part of the original operator (5.44), which means the re-substitution

(V ′/r)r∇ = [∇, V ]∇. (5.61)
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As [∇, V ] and ∇ are Hermitian and anti-Hermitian, respectively, the Hermi-
tian part of (5.61) is

1
2 [∇, V ]∇−

1
2∇[∇, V ] = −

1
2 [∇[∇, V ]] = −

1
2∆V = 2παZδ(r). (5.62)

The last expression follows from (2.262). The Hermitian part of H
(0)
hf is called

the Fermi contact term,

Vcon =
1
2 (H

(0)
hf +H

(0)†
hf ) =

2
3παZδ(r)σ1σ2/m1m2. (5.63)

With σ1σ2 = 1 for triplet states and −3 for singlet states, the Fermi splitting
of s-states, EF = E(triplet)−E(singlet) is

EF =
8
3α
4
Zµ
3/n3m1m2 =

8
3α
4
Zµ
2/n3m12. (5.64)

The expectation value of H
(2)
hf vanishes for s-states by rotational invari-

ance. And as 〈δ(r)〉 vanishes for all other states, the operator σ1σ2(r∇)/3

can be omitted from H
(2)
hf . The Hermitian parts of [∂i, V ]∂j and [∂j , V ]∂i are

both −12 [∂j , [∂i, V ]] =
1
2αZ [3rirj/r

5 − δij/r3]. Consequently,

H
(2)
hf = αZσt/4m1m2r

3 = σtV
′/4m1m2r ≡ Vt, σt ≡ 3σ1rσ2r − σ1σ2.

(5.65)
This is the “tensor potential”. In ordinary atoms, particle 2 is a nucleus with
spin operator s2 and g-factor g2n. There, σ2/m2 is replaced by g2ns2/mp,
where mp arises from the use of the nuclear magneton µn as in the Zeeman
operator (4.149).
To calculate σt, one observes that the pseudoscalar σir = σir/r change l

by one unit. In the triplet-singlet basis (5.32), one has

σir =

(
0 σ̂ir
σ̂†ir 0

)
, σ̂1r =

(
s c
c −s

)
, σ̂2r =

(
s −c
c s

)
. (5.66)

The matrix σ̂1r is the same as in (5.36); it arises from the transformation
(5.27). The product σ1rσ2r changes l by 0 or 2 units:

σ1rσ2r =
1

2f+1

⎛⎜⎜⎝
−1 2F 0 0
2F 1 0 0
0 0 2f+1 0
0 0 0 −2f−1

⎞⎟⎟⎠ , σ1σ2 =
⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞⎟⎟⎠ . (5.67)
The anti-Hermitian Vs12l contributes to the α

4
Z level splitting only in

l-degenerate states at fixed f , for example in P states where it mixes 3P with
1P for f = 1. The nonvanishing submatrix of iσ×l is given in (5.35). It is
conveniently combined with the submatrices of σt and σ2l:

χ =

(
χf,1
χf,0

)
, σt =

(
2 0
0 0

)
, Vt +Vs2l +Vs12l =

(
0 0
F 0

)
−V ′

rm1m2
. (5.68)
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Writing moreover 1/m1m2 = µ/Eµ
2, this may be combined with the ordinary

spin-orbit potential Vs1l into the total spin potential,

Vs = Vs1l + Vt + Vs2l + Vs12l =

(
−1 F

F (1−4µ/E) 0

)
V ′

4rµ2
. (5.69)

For its use in first-order perturbation theory, the matrix must be diagonalized;

its eigenvalues will be denoted by −2a(±)l l(l + 1) for later purposes:

−2a(±)l l(l + 1) =
1
2 [−1±

√
1 + 4l(l + 1)(1− 4µ/E)]. (5.70)

Here we have inserted F 2 = l(l + 1). To first order in µ/E, this produces
the ordinary fine and hyperfine splitting. Note in particular that µ/E = 0
reduces the square bracket to

1
2 ± (l +

1
2 ) =

1
2 + (l − j)(j +

1
2 ), (5.71)

where j = l± 12 as in (2.121). Positronium, on the other hand, has µ/E ≈ 4,

2a
(+)
l l(l + 1) = −1, 2a

(−)
l = 0. (5.72)

By charge conjugation, the factor 1 − 4µ/E must in fact be replaced by
a factor that vanishes exactly for m1 = m2. Such a factor is m

2
−/E

2 for
β = 1, namely δm2/E2 ≡ δm̂2, with δm = m2 −m1:

Vs = AsimV
′/4rµ2, Asim =

(
−1 F
Fδm̂2 0

)
. (5.73)

In the CBG-reduction of the 16-component formalism, a corresponding ma-
trix ACBG arises from V CBGs1l + V CBGs2l + V CBGt (see (3.164). As Vt (5.65) is
both Hermitian and symmetric in (m1,m2), one has V

CBG
t = Vt). The iden-

tical eigenvalues of Asim and A
CBG imply a similarity transformation as in

(2.170):

Asim =MA
CBGM−1, ACBG =

(
−1 Fδm̂
Fδm̂ 0

)
, M =

(
δm̂−1/2 0
0 δm̂1/2

)
.

(5.74)
The Hermitian form simplifies higher order perturbation theory.
Expansion of the square root of (5.70) to order (µ/E)2 produces energy

shifts that are classified as quadratic hyperfine shifts. For the calculation
of other second-order effects, one must either use second-order perturbation
theory, or one must include the operators non-perturbatively. The latter pos-
sibility exists for the “generalized Todorov” equation (4.213), which is the
two-body version of the generalized KG equation (2.273). One merely has to
use the appropriate generalization of lα(lα + 1) (2.272),

L2α = L
2 − α2Z − α

2
ZAl, L

2 = l(l + 1), (5.75)

Al = −[2l(l + 1)]
−1[σ1l+ (2σ2l+ 2iσ

×l+ σt)µ/m12], (5.76)
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which is then diagonalized at fixed l. The eigenvalues are a
(±)
l , or alf in

the case of f = l ± 1. This form is only possible because V ′/r = αZ/r3 is
equivalent to r−2α2Zµ/L

2, or better V ′ρ/ρ ≈ ρ
−2α2Z/L

2
α according to (A.43),

with ε/µ ≈ 1. It is essential that the equivalence is independent of n, such
that it remains valid also for the continuum states.
Note that 〈σt〉l,0 = 0, and that

〈σt〉f−1 = 3/(2l + 3)− 1 = −l/(l + 3/2), (5.77)

such that aljf remains finite for l = 0:

af=l+1 = −(2l + 2)
−1 − (l + 3/2)−1µ/m12. (5.78)

The part −(2/3)µ/m12 of a0,1/2,1 is the triplet part of the Fermi splitting EF ,
which in the nonrelativistic reduction arises from the contact term (5.63).
Clearly, the extrapolation of the relativistic equation is simpler than the
nonrelativistic reduction. Higher orders in αZ may contain operators which
cannot be extrapolated to l = 0. However, whenever the extrapolation is
finite, it is also correct. The relativistic equation is a regular function of l,
with no singularity at l = 0.
Defining the quantum defect βl = l − lα as in (1.126), one obtains the

solutions of the nonrelativistic Schrödinger version (4.212) in the form of the
quantum defect formula,

ε/µ− 1 = −12α
2
Z(n− βl)

−2 ≈ −12α
2
Z(n

−2 + 2βln
−3 + 3β2l n

−4), (5.79)

βl = l + 1/2−
√
(l + 1/2)2 − α2Z(1 + aljf ) ≈ α

2
Z(1 + aljf )/(2l + 1). (5.80)

which differs from the original form (1.37) only by the substitutions EN →
ε− µ and me → µ. The nonrelativistic appearance of the hyperfine operator
is not new: In the Pauli Hamiltonian (2.237), its static limit emerges from
(π1σ1)

2/2m1, with π1 = p1 + (e/c)Ahf and with Ahf from (4.153).
Generalizations of Vs for large g-factors will be given in Sect. 5.7.

5.3 Vacuum Polarization, Dispersion Relations

The Poisson equation (1.58) was solved in (1.60) for a nuclear point charge,
ρel = Zeδ(r), giving A

0 = Ze/r and the familiar point Coulomb potential,
V = −eA0 = −αZ/r in the equation of motion of a particle of charge −e.
The quantum field version of that equation,

−∇2A0tot = 4π[Zeδ(r)− eΨ
†
DΨD + ρ

′
el] (5.81)

gave the additional Coulomb potential Vij = e
2/rij between a pair (i, j) of

electrons. But even for hydrogen-like, one-electron atoms the operator eΨ†DΨD
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makes a small contribution which is illustrated by the picture of “vacuum po-
larization”: Ψ†DΨD creates “virtual” electron-positron pairs, with a vanishing
charge density in the absence of external charges. This “cloud” of virtual
pairs gets polarized in the nuclear vicinity, which entails a partial screening
of the nuclear charge. A bound electron is moving mainly outside the po-
larized cloud, where it sees the screened charge which is smaller than the
“naked” charge of the nucleus inside. The cloud has a radius of about 1/2me,
which is much smaller than the electron Bohr radius (1.39), aB = 1/αme. The
naked nuclear charge appears only near r = 0, where the additional operator
is well approximated by a function δ(r). For muonic, mesic or antiprotonic
atoms, on the other hand, one must compare the cloud radius 1/2me with
the extension of the wave function e−κr/r,

κ−1 = n/αZµ, (5.82)

where µ 
 me is the reduced mass. These two radii are of the same order
of magnitude, and the vacuum polarization produces a special potential VU
(Uehling 1935), which has been evaluated in great detail mainly for muonic
atoms (Borie and Rinker 1982). A convenient form of VU is a superposition
of “Yukawa potentials” e−xr/r,

VU =
2
3q1q2απI(2mer)/r, (5.83)

I =

∫ ∞
1

dξe−2merξ(ξ−2 + 12ξ
−4)(ξ2 − 1)1/2, (5.84)

with απ = α/π. Hydrogenlike atoms have q1q2 = −Ze2 = −αZ , but the
Uehling potential operates also in proton-nucleus scattering, where it in-
creases the Coulomb repulsion. For hydrogenlike atoms, the total potential is

V = VC + VU , VC = −αZ/r. (5.85)

This V is sometimes called the “electric” potential. It appears also in the
hyperfine operator (4.235).
If one wants to derive VU by the nonperturbative method of Chap. 3, one

must modify the ansatz (3.69) for the bound state. Despite the above inter-
pretation of the phenomenon, it is best calculated from the QED Born series.
The calculation is complicated and entails a redefinition (“renormalization”)
of the electric charge, not only for nuclei, but for all particles.
In the higher orders of the QED Born series, one must really use the

equations of motion for field operators Ψ , not for wave functions ψ. The
“causality principle” of time-dependent perturbation theory postulates that
a perturbation at time y0 modifies the initial field Ψin(x) = Ψin(x

0,x) only
at times y0 > x0. The iterative solution of the equation for Ψ is again of the
form (4.10), but now the propagator S(x− y) must be taken as the retarded
one,

Ψ(x) = Ψin(x)− e ∫ d
4ySR(x− y)γ

µAµ(y)Ψ(y), SR(y
0 < x0) = 0. (5.86)
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According to (4.8),

SR = −(i∂
µγµ +me)∆R, ∆R(x) = (2π)

−4 ∫ d4pe−ipxΦR(p
µ), (5.87)

where ΦR is the retarded propagator (4.19). The current operator j (3.60) is
expanded in powers of e,

jµ =
1
2 [Ψ

†, γµΨ ] = j
(0)
µ + j

(1)
µ + . . . , (5.88)

j(0)µ =
1
2 [Ψ

†
in, γµΨin], (5.89)

−ej(1)µ = ∫ d
4x′Πµν(x− x

′)Aν , (5.90)

Πµν =
1
2e
2{[Ψ†in, γµSR(x− x

′)γνΨin(x
′)] + [Ψ†in(x

′)γνS
†
R(x− x

′), γµΨin]}.
(5.91)

S†R ≡ (i∂
µγµ −me)∆R. (5.92)

This expression can be used directly in the S-matrix of two-body scattering,

for example by replacing in (4.57) the gµνj
ν
2 = j2,µ by j

(1)
µ :

S
(2)
if = −4πie

2 ∫ d4yd4xD(y − x)jµ1 (y)j
(1)
µ (x). (5.93)

The Aν to be used in j
(1)
µ is again of the form (4.55), but with jel replaced

by the current Zej2 of the other particle:

Aν(x′) = ∫ d4zD(x′ − z)4πZejν2 (z). (5.94)

In this manner, the final form of S
(2)
if is again symmetric in j1 and j2. When

neither j1 nor j2 contain electrons or positrons

S
(2)
if = i16π

2αZ ∫ d
4yd4zjµ1 (y)j

ν
2 (z) ∫ d

4xd4x′D(y − x)D(x′ − z)Π(0)µν (x− x
′),

(5.95)

where the “vacuum polarization tensor” Π
(0)
µν is the expectation value of Πµν

with respect to the electron-positron vacuum:

Π(0)µν = 〈0|Πµν |0〉. (5.96)

The symmetry of (5.95) shows that vacuum polarization is not a property of
one of the two particles. It modifies both charges, q1 = −e and q2 = Ze. It
is visualized by the Feynman graph of Fig. 4.3. For the details, one Fourier

transforms D according to (4.56) and also Π
(0)
µν :

Π(0)µν (x− x
′) = (2π)−4 ∫ d4qe−iq(x−x

′)Πµν(q). (5.97)

The integrations over y, z, x and x′ are then performed explicitly. Each in-
tegration produces a δ4-function of some combination of 4-momenta. Three
of these δ4-functions are cancelled by the integrals over p, p

′ and q of the
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�
Fig. 5.1. The vacuum polarization graph

Fourier transforms. The remaining δ4-function expresses energy-momentum
conservation as in (4.63). The total T -matrix T = T (1) + T (2) is then

Tif = 4παZJ
µ
11′(gµν/t+Πµν(q)/t

2)Jν22′ . (5.98)

Current conservation requires ∂µΠ
(0)
µν = ∂νΠ

(0)
µν = 0. For Πµν(q), this entails

the tensorial form

Πµν(q) = (qµqν − gµνt)Π(t), t = q
02 − q2. (5.99)

For q0 > 0, a dependence of Π on the sign of q0 would be compatible with
Lorentz invariance. But this is ruled out by CPT, which says that the inverse
antiparticle scattering f → i is related to Tif simply by the reversal of all
4-momenta (see the end of Sect. 3.2):

T
f,i
(qµ, . . .) = Tif (−q

µ,− . . .). (5.100)

The additional 4-momenta are suppressed because they do not enter Π. If
Tif for the particle scattering is evaluated in its cms q = 0, q

0 > 0, T
f,i

of the corresponding antiparticle scattering is identical to Tif at cms energy
−q0. Therefore, Lorentz invariance plus CPT implies

Π(q0) = Π(−q0). (5.101)

On the other side, Jµ11′qµ = 0 and J
ν
22′qν = 0 eliminate a possible contribution

of qµqν :
Tif = 4παZJ

µ
11′gµνJ

ν
22′(1−Π(t))/t. (5.102)

When the potential V (r) is calculated as the Fourier transform of T , its long-
range limit V (r → ∞) depends only on T (t → 0), V (r → ∞) = −αZ(1 −
Π(0))/r. If one wants to keep the notation V = −αZ/r, one must identify
the e in Tif with the “naked” charge en:

VC = −Ze
2/r, e2/h̄c = α, e2 = e2n(1−Π(0)). (5.103)

Alternatively, one may keep the symbol e for the naked charge, in which case
the charge e in the Coulomb potential must be specified as “renormalized
charge” er, with e

2
r/h̄c = α. This is less elegant because it turns out that the

naked charge has no physical significance, to all orders in perturbative QED.
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Although Π has been assumed to be small, it is in fact infinite. For small
Π(0), the combination e2n(1−Π(t)) in (5.102) may be rewritten as

e2n[1−Π(t)] = e
2[1−Π(t) +Π(0)], (5.104)

neglecting terms of order Π2. These terms are taken care of by higher or-
der perturbation theory, and their measurable parts are tiny. The difference
Π(t)−Π(0) is small and produces the Uehling potential, which has been ver-
ified experimentally with good precision. In summary, Tif (5.98) is expressed
in terms of the measured charge e by means of (5.104),

Tif = 4πZe
2Jµ11′gµνJ

ν
22′t

−1[1 +Π(0)−Π(t)]. (5.105)

A standard way of calculating higher-order radiative corrections is by
means of “Feynman rules” in momentum space. The “loop integrals” ∫ d4k
diverge and need a momentum cutoff Λ = kmax. Unfortunately, this proce-
dure destroys gauge invariance. The contribution of qµqν in (5.99) does not
vanish and makes the integral diverge quadratically, i.e. as Λ2. It has been
customary to first postulate gauge invariance to get the form (5.102), and
to introduce the cutoff afterwards. This inconsistent procedure was later re-
placed by t’ Hooft and Veltman (1972) by the gauge invariant “dimensional
regularization”. It replaces the ∫ d4k by a ∫ ddk, where d < 4 is an artificially
lowered dimension of space-time. This is technically simple in the Feynman
parametrisation of Feynman integrals (see for example Ryder 1985, Itzykson
and Zuber 1990, Brown 1992, Weinberg 1995). In the following, a different
“dispersion relation” method is presented which uses unitarity and analytic-
ity of the S-matrix. It is independent of the convergence of the Born series,
and it is also more “physical” in that only the experimentally measured mass
spectrum appears in the unitarity equation. Moreover, for vacuum polariza-
tion, it is by far the simplest procedure.
We begin with the Fourier inversion of (5.97) and take q0 explicitly com-

plex, q0 = Re q0+i Im q0. We also abbreviate x0−x0′ = ∆t, and x−x′ = ∆r:

Πµν(q) =

∫
d3r∆re−iq∆r

∞
∫
0
d∆tei∆tRe q

0

e−∆t Im q
0

Πµν(∆t,∆r). (5.106)

The retarded Greens function SR in (5.91) guarantees Πµν(x
0 − x0′) = 0

for x0′ < x0, such that the ∫0−∞ d∆t . . . vanishes. Consequently, Πµν(q) falls
exponentially for Im q0 > 0, which is the upper half of the complex q0 plane.
Calling q0 = z and Πµν(q

0) = f(z) for a moment, one can evaluate f(z) by
means of a Cauchy integral as in (4.15), which in the present case encloses
the upper half z-plane counterclockwise:

f(z) = (2πi)−1
∫ ∞
−∞
dxf(x)(x− z)−1. (5.107)

Equation (5.107) is the origin of the factor π−1 in the απ = α/π defined
in (1.114).
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A direct use of the CPT symmetry (5.101) is not possible because it
changes the sign of Im q0. An analytic function f(z) is decomposed into its
“real-analytic” and “imaginary-analytic” parts as follows:

f(z) = h(z) + g(z), h∗(z) = h(z∗), g∗(z) = −g(z∗). (5.108)

For real z, h and g are real and imaginary, respectively. We shall find be-
low from unitarity that ImΠ vanishes on a part of the real q0-axis, namely
0 < q0 < 2me, 2me being the threshold for production of electron-positron
pairs. By analytic continuation, a function which vanishes on a line vanishes
everywhere. Thus g = 0; Π is real-analytic, f(z∗) = f∗(z). f may be con-
tinued across this line from the upper half plane into the lower one, and the
Cauchy integral may enclose the entire complex q0 plane, except for the cut
2me < q

0 < ∞ of the particle process and the cut −∞ < q0 < −2me of its
antiparticle process. As the integration contour goes clockwise in the upper
half plane, it goes counterclockwise in the lower half plane. Close to the real
q0-axis, this leads to the conbination f(x+)− f(x−) = 2 Im f(x+), where

x± = x± iε, (5.109)

and x = q0′ is now real. The Cauchy integral becomes

Π(q0+) = π
−1

(∫ −2me
−∞

+

∫ ∞
2me

)
dx

x− q0+
ImΠ(x). (5.110)

Equations of this type were first found by Kramers and Kronig for the index
of refraction in optics; they are called dispersion relations. They result from
the use of retarded propagators, which obey the causality postulate (see also
Stone 2000). The case at hand is simplified as follows:

π−1
∫ ∞
2me

(
dx

x− q0+
+

dx

x+ q0−

)
ImΠ(x) = π−1

∫ ∞
2me

2xdx

x2 − q02 − iε
ImΠ(x).

(5.111)
In terms of the variable t′ = x2 with 2xdx = dt′,

Π(t+) = π
−1

∫ ∞
tth

dt′

t′ − t+
ImΠ(t′), tth = 4m

2
e. (5.112)

With Π = ReΠ + i ImΠ, the imaginary part of the dispersion relation is an
identity. To see this, call t′ − t− iε = x− iε. In the integrand,

(x− iε)−1 = x(x2 + ε2)−1 + iε(x2 + ε2)−1 = P/x+ iπδ(x). (5.113)

P is the “principal value”, which says that an infinitesimal interval δ on either
side of x = 0 is omitted from the integral. For any function f(x) which is
regular at x = 0,∫ δ

−δ

xdxf(x)

x2 + ε2
=

∫ δ/ε
−δ/ε

ydyf(εy)

y2 + 1
→ f(0)

∫ δ/ε
−δ/ε

ydy

y2 + 1
= 0. (5.114)
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The imaginary part of (5.113) follows from∫ x2
x1

εdxf(x)

x2 + ε2
= tan−1

(x
ε

)x2
x1
−

∫ x2
x1

tan−1
(x
ε

) df
dx
= πf(0), (5.115)

as tan−1(x/ε) is either +π/2 or −π/2 in the limit ε → 0, depending on the
sign of x. The useful part of (5.112) is thus

ReΠ(t) = π−1P

∫ ∞
tth

dt′

t′ − t
ImΠ(t′). (5.116)

A last difficulty is the divergence of the integral for t′ → ∞. It is removed
by subtracting from (5.112) the relation for Π at a given point t = ts. With
(t′ − t)−1 − (t′ − ts)−1 = (t− ts)/(t′ − t)(t′ − ts),

Π(t)−Π(ts) = π
−1P(t− ts)

∫ ∞
tth

dt′

(t′ − t)(t′ − ts)
ImΠ(t′). (5.117)

The extra power of t′ in the denominator makes the integral convergent.
Insertion of t = ts in (5.117) shows that Π(ts) remains undetermined. The
particular value of the subtraction point ts is a matter of convenience. For
atomic bound state calculations, it is advisable to set ts = 0 in view of the
asymptotic form (5.103) with its known value, α = 137.036−1: ImΠ(t′ <
4m2e) = 0 implies that the principal value prescription is unnecessary for
t < 4m2e,

t−1[Π(t)−Π(0)]t<tth = π
−1

∫ ∞
tth

dt′ ImΠ(t′)/t′(t′ − t). (5.118)

For possible bound states deep inside the vacuum polarization cloud, a value
ts < 0 could be chosen in order to subtract a constant value of the vacuum
polarization. In that case

αZ(ts) = αZ [1 +Π(0)−Π(ts)] (5.119)

is larger than αZ . In the quarkonium model of mesons, the absence of the
asymptotic region V (r → ∞) = 0 makes ts = 0 useless. There, the coupling
constant αs(ts) is a decreasing function of ts (a “running coupling constant”).
The t-dependence of the left-hand side of (5.118) is precisely the com-

bination occurring in Tif (5.105); its Fourier transform gives the Uehling
potential VU . The Fourier transformation can be carried out explicitly under
the t′-integral for arbitrary ImΠ(t′). Calling t = −q2, the transformation
assumes a form that has been calculated already in (4.50),

∫ d3reiqre−r
√
t′/r = 4π(q2 + t′)−1. (5.120)

Apart from the product of coupling constants, the function e−r
√
t′/r is called

a Yukawa potential. It corresponds to the exchange of a photon of “mass”
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√
t′ ≡ x. The Uehling potential is thus an integral over Yukawa potentials.
The explicit form (5.83) includes only the ee (≡ e−e+)-contribution, which
is by far the largest one.
ImΠ(t′) is now obtained from the imaginary part of (5.102) on one side,

and from the unitarity equation (4.99) on the other. In the rest frame of the
virtual photon, one has J0 = 0,

ImTif = 4παZJ1,1′J2,2′t
−1 ImΠ(t)

= 1
2

∑
λ,λp

∫
dLips(t)T ∗(f → ee)T (i→ ee). (5.121)

The equation applies at fixed value of the total magnetic quantum number
mj , and one may restrict oneself to mj = 0 as in (4.108). With eV = e,

T (i→ ee, 0) = eHLJ
z
1,1′t

−1T (0), T (f → ee, 0) = eHLJ
z
2,2′t

−1T (0). (5.122)

Here we have abbreviated
√
4πe = eHL mainly in order to shorten the ex-

pressions, but also to illustrate the advantage of the Heaviside-Lorentz units
which are otherwise avoided in this book. Comparison between the two sides
of (5.121) shows, with (4.115) and e2 = α, E =

√
t′,

ImΠ(t′) = EΓ (γ → e−e+) = 2
3α(1 + 2m

2
e/t
′)k/
√
t′. (5.123)

k is the t-channel cms momentum at total energy
√
t′ ≡ x,

k =
√
t′/4−m2e =

√
x2/4−m2e. (5.124)

The ee-continuum begins at the threshold xth = 2me, which is conveniently
extracted from k:

√
t′ = x = 2meξ, k = me

√
ξ2 − 1. (5.125)

The final integral over ξ in (5.118) is now performed using (C.18); its Fourier
transform produces VU as given by (5.83). In ordinary electronic atoms, z =
2mer is 
 1,

I(2mer 
 1) =
3
4 (π/mer)

1/2e−2mer/2rme. (5.126)

In many muonic, mesic and antiprotonic atoms, 2mer < 1 dominates (see
Sect. 5.6). The r

√
t′ in the exponent of (5.120) becomes 2meξr, such that the

form (5.83) of the Uehling potential results.
In one-electron atoms, 2mer > 1 domimates. There, 〈VU 〉 may be calcu-

lated as a power series in αZ . With (C.19) and (C.23),

〈VU 〉nr = −4απα
4
Zµ
3δl,0/15n

3m2e = −απαZδl,0|ψn(0)|
2/15m2e, (5.127)

with |ψ(0)|2 = 4(αZµ/n)3δl,0. This forms a minor part of the Lamb shift. Its
first-order relativistic correction is derived in (C.25).



5.4 Atomic Radiation 219

As the relativistic |ψn(0)|2 diverges, the wave function correction (2.232)
appears at the order α6Z . The complete correction is derived in (C.46),

1+α2Z [log(nme/2αZµ)−Ψ(n+1)+Ψ(2)+ 2/n− 2/n
2− 1/28n2+326/105].

(5.128)
The log(nme/2αZµ) = log(me/2κ) is derived in (C.30). The term 2/n may
be viewed as the sum of 1/2n which appears in 〈r−3G 〉, and 3/2n which arises
from the product of two quantum defects in the expansion (2.147). Keeping
only the β-dependent terms, one has

EN/mc
2 = −α2Zn

−3(βel + 3β
2
el/2n . . .), βel = βj + βU . (5.129)

Here βU is the quantum defect caused by the short-range Uehling potential.
β0 = α

2
Z/2 and βU are both positive. The term linear in β produces the main

energy shift (5.127), while the product α2ZβU in β
2 gives the above −3/2n.

Higher-order corrections to the vacuum polarization have either two or
more ee loops, or at least two more photon couplings (“vertices”) on the
electron loop of Fig. 5.1. Loops with an odd number of vertices vanish by
charge conjugation invariance (“Furry’s theorem”. Each photon in the initial
or final state brings a factor −1 to charge conjugation, see also the end
of Sect. 4.7). The simplest correction has one additional photon emitted and
reabsorbed by the loop (“Källén-Sabry potential”), which gives an additional
factor of e2 = α. Next come two-photon corrections, either with one photon
from the loop to the upper line, the other to the lower line (factor ααZ),
or with both photons to the upper line (factor α2), or with both photons
to the lower line (factor α2Z = Z

2α2). The last graph gives the potential of
Wichman and Kroll (1956). It becomes the dominant correction for Z2α > 1.
Our introductory picture of “vacuum polarization by the nucleus” is then at
least partly correct. Results for such higher-order corrections are reviewed by
Eides et al. (2001).

5.4 Atomic Radiation

With the exception of the ground states, atomic states are unstable.
Some states above the ionization limit decay by electron emission (“auto-
ionization”), all others decay by photon emission. By far the largest decay
rates arise from electric dipole radiation, in which the orbital angular mo-
mentum of the atom changes by one unit, without a change of spin. The
radiation has an indirect effect also on the ground state, in that its “dis-
persive” part shifts its energy (Lamb shift). The finite lifetimes of excited
states cause a “natural line width”, which is largest for states decaying by
electric dipole radiation. The lifetime of the 2p state is 1.6 ns, its width is
41× 10−8 eV (the lifetime is the inverse of the decay rate Γ , the width in
eV is 6.582× 10−16 times the lifetime). The 2s state decays by two-photon
emission to the 1s ground state, with a rate of 8.22 s−1.
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The decay rate is calculated by time-dependent perturbation theory
(Dirac 1926, 1927),

(ih̄∂t −H
0)ψ(r1, r2, t) = Hper(r1, r2, t)ψ(r1, r2, t). (5.130)

The units h̄ and c are carried along for a while, because the atomic radiation
is a basically new phenomenon. The notation is for two particles with posi-
tion operators r1 and r2 as in Sect. 3.4; H

0 is typically the Dirac-Coulomb
Hamiltonian (3.96),

H0C = Σi(αiπi,cl +miβi) + V, (5.131)

and
Hper(r1, r2, t) = −q1A(r1, t)α1 − q2A(r2, t)α2 (5.132)

is the “perturbing” time-dependent operator. The perturbative solution of

(5.130) requires knowledge of the solutions ψ
(0)
n of the unperturbed problem,

H0ψ(0)n = Enψ
(0)
n , ψ

(0)
n = une

−iωnt, ωn = En/h̄. (5.133)

The complete solution is expanded in terms of the ψn with time-dependent
coefficients,

ψ(r1, r2, t) = Σncn(t)un(r1, r2)e
−iωnt. (5.134)

The unperturbed ψ
(0)
n cancel out on the left-hand side of (5.130), and with

∂tcm ≡ ċm, one finds

Σmih̄ċmume
−iωmt = ΣncnHperune

−iωnt. (5.135)

A single ċf (f for “final”) is picked out of the sum by means of the orthogo-
nality relations 〈uf |um〉 = δm,f ,

ih̄ċf = Σncn(t)〈f |Hper|n〉e
iωfnt, ωfn = ωf − ωn. (5.136)

Next, the cn are classified according to the power N of Hper on which they
depend:

cn(t) = ΣNc
(N)
n (t), c

(0)
n (t) = δn,iΘ(t− t0). (5.137)

The last equation specifies the atom to be in its “initial state” |i〉 at t = t0.
As a rule, one can assume that this state is suddenly created at t0 = 0, but
in second order pertubation theory the details of the preparation of |i〉 may
become relevant. With the classification (5.137), (5.136) becomes a recurrence
relation in the order N of the perturbation,

c
(N)
f (t) = −ih̄

−1
t

∫ dt′Σnc
(N−1)
n (t′)〈f |Hper(t

′)|n〉eiωfnt
′

. (5.138)

To perform the integral, one must specify the time dependence ofHper. Here it
is convenient to decompose the vector potentialA ofHper into modes of given
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frequencies ωi, aiAi(r)e
−iωit and a†iA

∗
i (r)e

+iωit according to (3.7). However,
the index i is suppressed in the following. In first-order perturbation theory
for decay, we could also contend ourselves with the “negative frequency” part
which is proportional to e+iωt, because only the operator a† can create the
outgoing photon. It is nevertheless instructive to keep the e−iωt-part, which
would describe the further excitation by an incident photon. We therefore
decompose

Hper = H
(+)
per e

iωt +H(−)per e
−iωt, c

(N)
f = c

(N+)
f + c

(N−)
f . (5.139)

The solution of (5.138) for N = 1 is then

c
(1±)
f =

∑
n

〈f |H(±)|n〉

h̄(ωfn ± ω)

[
ei(ωfn±ω)t − ei(ωfn±ω)t0

]
δni. (5.140)

In decay, the initial energy Ei is larger than the final one Ef , and ωfi is
negative. For this situation, we define

∆ω = ω + ωfi = ω − ωif = ω − (Ei −Ef )/h̄. (5.141)

We also abbreviate ∆t = t− t0 and obtain

c
(1+)
f = −〈f |H(±)|i〉ei∆ωt0(ei∆ω∆t − 1)/h̄∆ω. (5.142)

The probability to find the atom in the state |f〉 after a time ∆t is |cf |2, and
the decay rate is

Γif = |cf |
2/∆t. (5.143)

To compute |cf |2, one extracts a phase ei∆ω∆t/2 from the bracket in (5.142),

ei∆ω∆t − 1 = ei∆ω∆t/2 × 2 sin(∆ω∆t/2), (5.144)

and takes the limit ∆t→∞:

4 sin2(∆ω∆t/2)/(∆ω)2∆t→ πδ(∆ω/2) = 2πδ(∆ω). (5.145)

The decay rate is then independent of ∆t.
Expression (5.143) refers to a single mode of the electromagnetic field.

Examples are provided by an atom in a perfect cavity with non-degenerate
modes, and by a single-mode laser beam where (n′1)

1/2 in (3.37) may assume
very large values. In the latter case, the decay into mode 1 is called “induced”
and may be much larger that the “spontaneous” decays into all other degen-
erate modes (which have ni = 0, n

′
i = 1). In the following, only spontaneous

decays are considered. In the continuum limit, the differential decay rate into
photons within a solid angle element dΩk of wavenumber k and helicity λ is

dΓif = (d
3k/8π3)|〈k, λ, f |H(+)|i〉|22πδ(ω − ωif )/h̄

2, (5.146)
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with d3k = k2dkdΩk. One may use dk = dω/c to cancel dω against δ(ω −
ωif ), which then fixes the variable ω at the value ωif as required by energy
conservation:

dΓif = k
2dΩk|〈k, λ, f |H

(+)|i〉|2/4π2ch̄2. (5.147)

This is “Fermi’s golden rule”. One normally extracts fromH(+) the additional

normalization factors and the n
1/2
f from the Fock matrix element of a† (3.36),

H(+) = c(h̄nf/ω)
1/2〈k, λ, f |Ĥ(+)|i〉, (5.148)

where Ĥ(+) = −ΣiqiAf (ri)αi still contains the desired radiation mode, for
example a plane wave (3.11). The relations

αi = i[HC , ri], 〈f |HCri − riHC |i〉 = (Ef −Ei)〈f |ri|i〉, (5.149)

display dΓif in terms of the dipole operators:

dΓif = (ω
3n(k)/2πc2)dΩk|〈f |ε

∗
λ(k)Σie

−ikriqiri|i〉|
2. (5.150)

The same formula results if one or both particles are spinless, relativistic or
not. In the latter case one starts from H(+) = −ΣiqiAf (ri)πi/mic, where

[Σiri,Hnr] = [Σiri,π
2
i /2mi] = ih̄Σiπi/mi. (5.151)

Thus Fermi’s golden rule is more general than one might have expected.
It contains two powers of ω from parity conservation and one power from
momentum space (the necessity of parity change was already mentioned in
(1.110) for the nonrelativistic limit).
The total decay rate into the channel f follows after integration over dΩk

as in (4.107). The atomic disappearance rate is of special interest, which also
sums over different decay channels. In hydrogen for example, a 2p state can
only decay into the 1s state, but a 3p state has the choice between 1s and
2s, which are called different “channels” in this context. The disappearance
rate is defined as Γi =

∑
f Γif . Like dΓif and Γif , it is time-independent

according to (5.145). Denoting the surviving probability by Ni(t), one has
dNi/dt = Γi, which by integration leads to the exponential decay law,

Ni(t) = Ni(t0)e
−Γi(t−t0). (5.152)

At finite t − t0, this contradicts (5.137) which puts ci = 1 for all times.

A better ansatz is c
(0)
n (t) = δn,iΘ(t − t0)e−Γi(t−t0)/2, as it includes already

the exponentially falling survival probability. It is equivalent to shifting the
unperturbed energies En by an amount −ih̄Γn/2 into the lower complex
plane,

ω̃n = ωn − iΓn/2 = (En − ih̄Γn/2)/h̄. (5.153)
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The resulting c
(1+)
f is

c
(1+)
f =

〈f |H(+)|i〉

h̄(ωfi + ω − iΓi/2)

[
ei(ωfi+ω)te−Γit/2 − ei(ωfi+ω)t0e−iΓit0/2

]
.

(5.154)
Setting t0 = 0 and t =∞ simplifies this to

c
(1+)
f (∞) = h̄−1〈f |H(+)|i〉(ωfi + ω − iΓi/2)

−1. (5.155)

The corresponding transition probability is dWif = |cf |2 as a function of ω:

dWif/dω = (Γif/2π)(∆ω
2 + Γ 2i /4)

−1. (5.156)

This is conveniently expressed in terms of the “Lorentz curve”,

L(ω) = (Γi/2π)(∆ω
2 + Γ 2i /4)

−1, dWif/dω = L(ω)Γif/Γi. (5.157)

In the limit Γi → 0, L is normalized to δ(∆ω). Γif/Γi is the “branching
ration” for channel f , and ΣfΓif/Γi = 1.
L has its maximum of 2(πΓi)

−1 at ∆ω = 0, and half that value at
∆ω = ±Γ/2. In the finite time interval ∆t ≈ Γi granted by (5.152), Ei = h̄ω
is unsharp with ∆E ≈ h̄∆ω ≈ h̄Γi/2, such that ∆E∆t ≈ h̄/2, in agree-
ment with the “uncertainty relation” mentioned at the end of Sect. 1.8. The
Lorentz curve is verified by precise measurements of the frequency distribu-
tion of the decay photon. Doppler shifts (2.24) from the thermal motion of
the excited atoms superimpose a Boltzmann factor Ne−Ekin/kBT on dWif/dω,
with Ekin =

1
2Ev

2 and N = (E/2πkBT )
3/2 in the nonrelativistic limit. The

resulting curve is known as “Voigt profile”.
For the inclusion of atomic recoil, the stationary binary equation (4.276)

is extended to a time-dependent equation (Pilkuhn 2004). The unperturbed
“chiral hamiltonian” is denoted by h0 in the following (with h̄ = c = 1):

(i∂τ − h
0)ψn = hper(t)ψn, τ = µt, h

0ψ(0)n = (ε/µ)nψ
(0)
n . (5.158)

The exponent −iωnt in (5.133) becomes −i(ε/µ)nτ , which implies that each
state |n〉 has its individual time tn (the proper time). Consequently, the factor
(ωi − ωf )t of the decay according to (5.141) is replaced by

[(ε/µ)i − (ε/µ)f ]τ =
1
2τ(E

2
i −E

2
f )/m1m2, (5.159)

as the constants in ε/µ = (E2 −m21 −m
2
2)/2m1m2 are canceled. The δ(∆ω)

in (5.145) is replaced by δ(Eiω −E2i /2 +E
2
f/2), giving

∆ω = ω − (E2i −E
2
f )/2Ei, (5.160)

as anticipated in (4.102). The Lorentz curve has its maximum shifted from
ω = Ei − Ef to ω = (E2i − E

2
f )/2Ei = k, as required by (4.102). Instead
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of (5.153), the unperturbed E2n are shifted by an amount −ih̄EnΓn into the
lower complex plane. The combination EnΓn does not depend on the sign of
En, such that atoms and antiatoms have identical decay rates.
Unless one wants to measure the polarization of the emitted light (for

example in connection with Zeeman splitting), one has to sum (5.150) over
the helicity λ. This can be done with explicit expressions such as (3.13), but
there is again a more elegant way based on (3.104): In cartesian components
ελ = (ελi),

Σλε
∗
λiελj = δij − k̂ik̂j . (5.161)

The integration over the photon angles Ωk is then trivial. One has ∫ dΩk =
4π, ∫ k̂ik̂jdΩk = δij ∫ dΩkk̂2i = δij4π/3,

∫ dΩkΣλε
∗
λiελj = δij8π/3. (5.162)

Radiative transitions in atoms are classified into electric and magnetic
multipoles (Lifshitz and Pitaevskii 1973). 〈f |r|i〉 cannot be much larger
than the atomic radius, which for hydrogenic atoms is the Bohr radius
aB = h̄

2/Ze2µ. In k = ∆ω/c = ∆E/h̄c on the other hand, ∆E is certainly
smaller than the ground state binding energy, −E1 = α2Zµc

2/2 = αZ h̄c/2aB.
The order of magnitude of 〈f |kr|i〉 is thus αZ/2, which is small for mod-
erate Z. For dipole radiation one approximates eikr = 1, for quadrupole
radiation eikr = 1 + ikr. With q1 = −e, q2 = Ze and r1 = R + rE2/E,
r2 = R − rE1/E from (4.292) and (4.307), the sum in (5.150) simplifies in
the dipole approxmation to

Σie
−ikriqiri = e

−ikR[−(R+ rE2/E)e+ (R− rE1/E)Ze]. (5.163)

The R in the square bracket does not induce dipole transitions. The
only other R-dependence in dΓif is a factor e

−iKR from 〈f |, yielding
∫ d3Re−iKR e−ikR = 8π3δ(k + K). It expresses momentum conservation
as anticipated in (4.102).
The remaining terms in (5.163) are combined into

−edipr, edip = e[1 + (Z − 1)E1/E], E1/E ≈ m1/m12, (5.164)

where edip is the effective “dipole radiation charge”. In single-fermion ions,
edip reaches its maximum for the nucleus

40Ca, with (Z−1)/m2 ≈ 19/40mp =
0.475mp. The decay rate of the above-mentioned 2s-states contains a fac-
tor e4dip. Z = 1 gives edip = e, but even there it may be useful to keep
the distinction between e and edip, in view of a coherence classification
(Sect. 5.5).
For binary atoms, the commutator (5.149) is replaced by α = i[h0,ρ],

and

〈f |h0ρ− ρh0|i〉 = [(ε/µ)f − (ε/µ)i]〈f |ρ|i〉 = −ω〈f |r|i〉,
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where h̄ω ≈ ∆E(1 − ∆E/2m12c2) is again the actual outgoing photon en-
ergy. Thus Fermi’s golden rule for dipole emission from a relativistic binary
becomes

Γif,dip = (4ω
3/3c2)αdip|〈f |r|i〉|

2, αdip = e
2
dip/h̄c. (5.165)

Obviously, the factor ω3 is independent of the detailed structure of H or h.
For an arbitrary atom, the kinematically correct vaule of ω requires the h0 in
(5.158) to have eigenvalues 12 (E

2
n − const)/m1m2, En being the total atomic

mass of the state |n〉. This simple E2-dependence is more restrictive than
the requirement of invariance under E → −E of the eigenvalue equation
itself.

5.5 Soft Photons, Lamb Shift

So far in this book, the interaction operator in the equations for binary
atoms has been the Fourier transform of the one-photon exchange ampli-
tude T (1) (4.64). Without form factors, the resulting interaction in the cms
is the Coulomb potential, V = −αZ/r, possibly with additional hyperfine
operators as in (4.268). Phenomenological form factors are particularly im-
portant for the atomic nucleus, giving rise to modified Coulomb potentials
of the type (4.44), to phenomenological hyperfine operators (4.153) etc. For-
tunately, these effects are supressed by large denominators. When particle 1
is an electron, the situation is qualitatively different. The form factors F1
and F2 ar small but do shift the energy by an amount ∆E

(1) (the upper
index 1 is a reminder of the one-photon exchange) which is of the order of
meα

4
Zαπ (απ = α/π). It is part of the “Lamb shift”, which is larger than the

α6Z effects included in the Dirac etc. equations.
Whereas the modified Dirac equation with F2 ≈ κan is still (nearly) con-

sistent, a direct inclusion of F (4.160) is ruled out by its infrared divergence
log λ. This problem is solved by adding to the elastic cross section the “nearly
elastic” cross section σsoft for the emission of an additional “soft” photon of
energy smaller than a certain ωmax. With λ� ωmax, the infrared divergence
disappears, at the expense of the new parameter ωmax. The result can be
expressed in terms of an effective form factor Feff(ωmax), which is then used
for the calculation of ∆E(1).
It may be surprising that the high-energy approximation Tif ≈ T

(1)
if pro-

vides such a good potential for bound state equations. At the order α4Zαπ,
this is only true for ∆E(1). There is a low-energy piece ∆E< which must
be calculated perturbatively for the solutions of the binary equation. To the
order α4Zαπ, the Schrödinger equation is sufficient here, and the dipole ap-
proximation may also be used. It is the whole atom which emits and reab-
sorbes the “virtual” photon by means of the dipole operator edipr (5.164),
including emission by one particle and absorption by the other one (compare
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Fig. 3.3b, in the presence of the Coulomb potential). To order α4Z , such terms
are included in the relativistic binary equation, but to order α4Zαπ, they are
not. In most books, the Lamb shift is discussed in the static limit, where
those exchange terms vanish. In the following, we also begin with this limit,
in which particle 2 is unable to interact with photons. The T -matrix for the
emission of a soft photon factorizes,

Tsoft = TifMsoft. (5.166)

Msoft can be calculated classically as the soft dipole radiation emitted from
accelerated charges, but it also follows from the Feynman rules. Restricting
ourselves to the radiation from particle 1 (the electron), the in- and outgoing
4-momenta of that particle will be called pµ and pµ′, while kµ will denote the
4-momentum of the soft photon. When the electron emits the photon from
the initial state before the proper scattering, its propagator to the scattering
is

[m21 − (p− k)µ(p− k)
µ]−1 = (2pk)−1, (5.167)

according to (4.12) and with pµp
µ = m21, kµk

µ = λ2 ≈ 0. For emission of the
same photon after the scattering, the electron propagates with a 4-momentum
(p′ + k)µ, leading to

[m21 − (p
′ + k)µ(p

′ + k)µ]−1 = −(2p′k)−1. (5.168)

The Feynman graph corresponding to this emission amplitude is shown in
Fig. 5.2. There are altogether four emission amplitudes, one for each incoming
and outgoing particle.
In the following, only the nonrelativistic limit is needed, pµ = p′µ ≈

(m1, 0, 0, 0). The matrix elements for the photon emission are −eε∗p and
−eε∗p′, respectively, such that the complete matrix element for the additional
emission of one soft photon from particle 1 is

Tsoft = Tifeε
∗(p/pk − p′/p′k)/2 = Tifeε

∗q/m1ω. (5.169)

The cross section for the emission of an extra photon is given by (4.90), where
dLips (4.86) contains a factor d3k/16π3ω for the photon, but the normaliza-

Fig. 5.2. Soft photon emission



5.5 Soft Photons, Lamb Shift 227

tion factor (h/ω)1/2 = (4πh̄/2ω)1/2 brings an extra 4π. As kµ is neglected in
the δ4-function of (4.86), one obtains the simple relation

dσsoft = dσifαπ(ε
∗q/m1ω)

2d3k/4πω. (5.170)

This is integrated up to a value ωmax which is small enough but nevertheless
much larger than λ. With ∫ dΩ(qk)2 = 4πq2k2/3,

dσsoft = dσifαπq
2m−21

∫ ωmax
0

[
1−

k2

3(k2 + λ2)

]
k2dk

(k2 + λ2)3/2
, (5.171)

dσsoft = dσifαπq
2(log(2ωmax/λ)−

5
6 )
2
3m
−2
1 . (5.172)

For sufficiently small ωmax, dσsoft will be counted as part of the elastic scat-
tering cross section dσif , such that only the sum of the two quantities has
a physical meaning. In dσif , one must at this order of precision also include

the form factor F (4.160), dσif = dσ
(1)
if F

2. The cross section including linear
terms in F is

dσsoft + dσif = dσ
(1)
if [1−

2
3m
−2
1 απq

2m21(log(m1/2ωmax) +
5
6 )]. (5.173)

dσ
(1)
if is the first Born cross section, it has F1 = 1 and F2 = 0. The log λ

terms have disappeared as expected. The result can be viewed as the Born
cross section with a modified, “effective” form factor,

Feff − 1 = −
1
3m
−2
1 απq

2m21(log(m1/2ωmax) +
5
6 ). (5.174)

The exchanged photon contributes a factor 1/q2, the Fourier transform
of q2/q2 = 1 introduces a factor δ3(r), and with 〈δ3〉 = |ψ(0)|2 =
4δl0(αZm1/n)

3 (compare (5.127)), the energy shift due to Feff is

∆E(1) = α4Zαπ
4
3m1n

−3(log(m1/2ωmax) +
5
6 ). (5.175)

Turning now to the soft photon emission by particle 2, one simply replaces
−e by Ze, p by −p (in the cms), and m1 by m2, of course. The factor ep/m1
becomes Zep/m2. The total soft photon emission matrix element contains
the combination

e/m1 + Ze/m2 = e/µ+ (Z − 1)e/m2 = edip/µ, (5.176)

where edip is the dipole radiation charge (5.164) as expected. The square of
(5.176) appears in dσsoft,

αdip/µ
2 = α/m21 + Z

2α/m22 + 2Zα/m1m2. (5.177)

The first term agrees with (5.170) and cancels the infrared singularity of F 2 as
before. The second term is the analogous expression for particle 2, as its form
factor F (2) has e2/m21 replaced by (Ze)

2/m22. The third term in (5.15) has
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no partner among the form factors. Insisting on the cancellations of infrared
singularities, one must add an “interference function” to the product of form
factors in dσif ,

dσif = dσ
(1)
if [F (1)

2F (2)2 + 2Fint], (5.178)

Fint = −
2
3απ(Zq

2/m1m2)[log((m1m2)
1/2/2λ)− x]. (5.179)

A finite function x remains open. The log(m1m2)
1/2 is not necessary either,

but it will be useful in connection with (5.195) below. This then leads to the
very compact expression,

∆E(1) = 4
3α
4
Zαdipµ(3πn

3)−1[log(µ/2ωmax) +
5
6 ]. (5.180)

In the standard QED calculation with Feynman rules, the cancellation of in-
frared divergences appears automatically. Fint is then hidden in a two-photon
exchange amplitude (that amplitude is normally calculated in a covariant
gauge, in which A0 contains also a field operator). Such calculations, which
provide the complete “Salpeter shift” mentioned below, are more compli-
cated.
In (5.180), ωmax must be small enough to allow for the soft photon ap-

proximation, but it must be much larger than α2Zµ where Coulomb distortion
is important:

α2Zµ� ωmax � µ. (5.181)

Fortunately, it turns out that both conditions are satisfied, but the ques-
tion arises how to calculate the residual energy shift ∆E< from the region
E < ωmax. Two procedures are possible here. In the first one, one solves
the Schrödinger, KG of Dirac equation with π = p + eA to second order
in the field operator A in the Schrödinger picture (3.118) in the dipole ap-
proximation ASch = A(0, 0). The result has the form (2.223), cut off at
ωmax. From this one has to subtract the corresponding energy shifts of the
free (!) particles. The difference contains a term logωmax which cancels the
− logωmax of (5.180). It implies a renormalization of particle masses, which
is quite complicated in the relativistic case. It may be replaced by the more
elegant dimensional renormalization, but even this is not at all trivial. For
binary atoms, the renormalization must also be applied to particle 2, which
is not really possible for composite particles such as protons.
The second method is based on unitarity and analyticity, as explained

for the vacuum polarization. The complex energy ω̃n (5.153) is calculated
by first-order perturbation theory, where En still has its unperturbed value.
Quite generally, one has for not too large Γn,

ω̃n = ωn +∆ωn = ωn +∆En − iΓn/2. (5.182)

Dropping again h̄ and c, (5.146) may be continued as follows:

∆Ei − iΓi/2 = −(8π
3)−1 ∫ d3k|〈k, λ, f |H(+)|i〉|2(ω − ωif − iε)

−1, (5.183)



5.5 Soft Photons, Lamb Shift 229

by reading (5.113) backwards, iπδ(x)+P/x = (x− iε)−1. The resulting ∆Ei
agrees with (2.223), it is in the dipole approximation

∆Ei = ∫ d
3k(8π3ω)−1Σfω

2
ifαdip|〈f |rε|i〉|

2(ωif − ω)
−1. (5.184)

The Σf extends over all excited levels, including the ionization continuum.
The ground state has ωif < 0, its ∆Ei is negative, as always in second-
order perturbation theory (compare also (2.223)). The k-integral diverges
again. In the language of Feynman, such “ultraviolet” divergences arise in
loop diagrams. The dispersion relation technique offers an attractive alterna-
tive. A diverging dispersion integral is simply replaced by its once subtracted
form as explained in Sect. 5.3. The technique is quite general; it can be ap-
plied to the form factors F1 and F2 (Lifshitz and Pitaevskii 1973, Pilkuhn
1979). The proof of analyticity requires some theory of complex functions,
however.
Unitarity and analyticity apply not only to scattering processes as in

(4.99), but also to the decays of unstable particles or narrow resonances that
are described by a complex energy as in (5.182). The δ-function limit (5.146)
gives ω = ωif and thus

∆E< =

∫ ωmax
0

dω

∫
dΩk(8π

3)−1
∑
f

ω3ifαdip|〈f |rε|i〉|
2(ωif − ω)

−1. (5.185)

After the usual helicity summation and photon angular integration, one ob-
tains, with ωif = −ωfi,

∆E< =

∫ ωmax
0

dω
2

3π

∑
f

ω3ifαdip
|rif |2

ωif − ω
=
2αdip
3π

∑
f

ω3fi|rif |
2 log

ωmax
ωfi
.

(5.186)
The Σf without the log(ωmax/ωfi) is simple:

Σfω
3
fi|rif |

2 = −〈∆V 〉/2µ2 = 2µα4Z/n
3. (5.187)

It follows from the Schrödinger equation ωfirif = 〈f |[r,H]|i〉 = i〈f |p/µ|i〉
as in (5.151), and

Σfωfi〈f |p
2|i〉 = −〈i|[p,H]p|i〉 = 〈p[p,H]〉i = −

1
2 〈[p, [p,H]]〉i = −

1
2 〈∆V 〉i.
(5.188)

The logarithm may be decomposed as follows:

log(ωmax/ωfi) = log(2ωmax/µ) + log(µ/2ωfi), (5.189)

∆E< =
4αdipµα

4
Z

3πn3
log(2ωmax/µ) +

2αdip
3π

∑
f

ω3fi|rif |
2 log(µ/2ωfi). (5.190)
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The total self-energy shift ∆E = ∆E< + ∆E
(1) from all frequencies

0 < ω <∞ is thus free of log(2ωmax/µ):

∆E = 4
3µαdipα

4
Z(πn

3)−1[56 + n
3(µα4Z)

−1
∑
f
1
2ω
3
fi|rif |

2 log(µ/2ωfi)].
(5.191)

The matrix elements rif are proportional to αZ/µ, and

ωfi = Ef −Ei = α
2
Zµ
1
2 (n

−2
i + 2Ef/α

2
Zµ) (5.192)

is proportional to α2Zµ, even for the unbound states. The µ
−1Σf . . . is there-

fore independent of µ, and its αZ-dependence is given by log(µ/2ωfi) =
logα−2Z + log(µα

2
Z/2ωfi):

∆E = 4
3µαdipα

4
Z(πn

3)−1[56 + logα
−2
Z − log k0], (5.193)

log k0 = −
1
2n
3(µα4Z)

−1Σfω
3
fi|rif |

2 log(α2Zµ/2ωfi). (5.194)

log k0 is the Bethe logarithm. Numerical values of log k0 for ni = 1, 2, 3, 4,
and ∞ are 2.984, 2.812, 2.768, 2.750 and 2.721, respectively. The largest
contribution to the Lamb shift comes from the term log(Z−2α−2) in (5.193);
for the hydrogenic ground state it gives an upward shift of 1330MHz out
of 1040MHz. It can be attributed to the electron mean square radius that
was estimated already in (4.162). The Bethe logarithm is the net effect of
second-order perturbation theory; it gives a downward shift as expected.
In most textbooks, one finds the vacuum polarization (5.127) added in

∆E, which gives 5/6− 1/5 = 19/30. However, 〈VU 〉 is proportional to α, not
to αdip, and contains a factor µ

2/m2e.
The calculations so far are entirely nonrelativistic and remain valid for

particles of arbitrary spins 0, 1/2, 1, 3/2 . . . which may appear when parti-
cle 2 is a nucleus. In contrast, the α4Z -contribution of Sect. 4.9 applies only
for a binary of a Dirac particle (electron or muon) and a spinless nucleus.
A further correction to ∆E arises from the numerators of the logs in

(5.174), in the corresponding expression for particle 2, and in (5.179). These
are combined by a common factor α[1+(Z−1)m1/m12] = eedip. The resulting
“∆Eint” is

∆Eint = −
4µα4Z
3πn3

eedip

[
m2
m12

log
m2
m12

+ Z
m1
m12

log
m1
m12

]
. (5.195)

The factor edip indicates the soft photon origin of (5.195). Whereas a factor
e2dip shows that the photon is emitted and absorbed coherently by the whole
atom, a factor eedip implies that the photon is either emitted or absorbed
coherently. Note also that (5.195) vanishes at both static limits.
The energy shift due to two-photon exchange was originally calculated by

Salpeter (1952). With ∆E′Sal = ∆ESal −∆Eint,

∆E′Sal = −
α2Z/π

m1m2

[
7

3
〈r−3G 〉 −

(αZµ
n

)3(7
3
log

µ

m12
−
m21 +m

2
2

m+m−
log
m2
m1

)]
,

(5.196)
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where r−3G is the operator (2.229). Also this shift vanishes at both static limits.
It was recalculated by Gupta et al. (1989) from a potential V (2) obtained
from the two-photon exchange graphs T (2) (Fig. 5.3) of the Born series. V (2)

is the Fourier transform of that part of T (2) which does not arise from the
iteration of the first Born graph. The method extends the calculation of
V (r) as the Fourier transform of the one-photon exchange T (1). The direct
iteration of T (1) gives the imaginary part of T (2), see (4.99). In the differential
(or integral) equations of quantum mechanics, it is automatically reproduced
by V . Moreover, the static limit of T (2) is also reproduced by V . In T (1),
q0cms = 0 explains the absence of “retardation”. In T

(2), the energy transfers
q01 and q

0
2 of the exchanged photons are integration variables, subject to the

condition (q01 + q
0
2)cms = 0. But in the static limit, the treatment of Sect. 4.1

applies, where the energy of particle 1 is always conserved, q01 = q
0
2 = 0.

Consequently, the correction potential V (2) has no static limit.
The emission and reabsorption of n soft photons with n > 1 gives small

corrections to the Lamb shift. In leading order, these graphs produce energy
shifts proportional to logn α−2Z , which may be calculated by special “renor-
malization group” equations (Manohar and Stewart 2000). This important
aspect exists also in nonrelativistic quantum mechanics.
We conclude this section with some comments on Feynman graphs with

more than one photon on a scattering particle. The number and shape of
such graphs is the same in the KG and Kramers formalisms, while the Dirac
formalism has fewer graphs. The operator πµπµ of KG and Kramers implies
“contact graphs”, where two photons originate from a single point on the
particle line. In the Dirac linearization of the coupling, these graphs disap-
pear. For example, the “Compton” scattering of a photon on a free electron
has two Dirac graphs and three Kramers graphs (Brown 1958, Tonin 1959,
Chalmers and Siegel 1999). Its contact graph is called “seagull” here, the two
photons forming the wings (Fig. 5.4). In the nonrelativistic “Thomson” limit
of Compton scattering, only this graph survives, which is somewhat unprac-
tical for Dirac graphs where the seagull is eliminated by linearization. The
Thomson scattering cross section is independent of the particle spin. The
contact graphs for the soft photon emission of Fig. 5.2 have the photon emit-
ted right at the main scattering, neither before nor after (remember that the
description of the exchanged “photon” depends also on the choice of gauge).

a b

Fig. 5.3a,b. (a) Direct two-photon exchange and (b) Crossed two-photon exchange
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�
Fig. 5.4. The seagull graph

Fig. 5.3 has three contact terms, “V” where the two exchanged photons meet
at the lower line, “Λ” where they meet at the upper line, and “O” where they
meet at both lines. The amplitudes are normally different for particles of dif-
ferent spins. The results for spinless particles are expected to be particularly
simple, but they have not yet been calculated for the two-photon exchange.

5.6 Antiprotonic Atoms, Quadrupole Potential

Whenever an antiproton (p) hits a proton or a neutron in an s- or p-wave, it
is immediately annihilated. The precision spectroscopy of antiprotonic atoms
uses states of sufficiently large orbital angular momentum l, where the cen-
trifugal barrier l(l+1)/r2 prevents any contact between the p and the atomic
nucleus, even for Z = 90.
The p is normally slowed down before it is captured on a neutral atom.

It gets caught by ejection of a loosely bound electron (“Auger” electron).
For an order-of-magnitude estimate, one assumes capture into a p Bohr orbit
with principal quantum number n. The binding energy of that orbit must
be comparable with that of the electron before ejection, which means n ≈
(mp/me)

1/2 ≈ 40. For atoms heavier than helium, the further de-excitation
occurs in two phases. In phase 1, all remaining electrons are Auger-ejected.
In phase 2, the p de-excites in a cascade of successive E1 transitions. Due to
the very small Bohr radii of hydrogen-like p atoms, the emitted quanta are
X-rays.
Protonium (pp) is electrically neutral and gets de-excited by Stark mix-

ing collisions with other hydrogen atoms. Antiprotonic helium (p4He or p3He)
may end up in high-lying metastable states in which the last electron is pro-
tected against Auger emission by selection rules (Yamazaki et al., 2002). In
such cases, the p must de-excite by the emission of optical photons, thus
allowing for laser spectroscopy. These longlived pe−He bound states (“atom-
cules”) are disregarded in the following because they require complicated
molecular calculations.
The X-ray cascade puts the p preferentially into the “circular” orbits with

nr = 0, n = l + 1. The quantum defect βl = l − lα remains small in states
with l > 1: nβ = n − βl (1.126) is close to n, such that the relevant states
are not highly relativistic. The first-order relativistic correction is frequently
sufficient,
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EN ≈ −
1
2µnr(α

2
Z/n

2
β)(1− 3α

2
Z/4n

2
β), µnr = m1m2/m12. (5.197)

The largest corrections arise from vacuum polarization and “recoil”. The only
spin-independent recoil correction in addition to µnr may be taken from the
relativistic µ (4.196) of the Todorov equation, the vacuum polarization can
be summarised by a term av(n, l), and the spin structure (which is hidden in
the βl) can be summarized by terms aljf as in (5.75):

EN = −
1
2µnr

α2Z
n2

[
1 +
α2Z
n2

(
µnr
4m12

−
3

4
+

n

l + 1/2
(1 + av + aljf )

)]
. (5.198)

Because of the antiproton’s large g-factor, any form of Dirac equation re-
quires essential modifications (see below), such that the generalized Todorov
equation (4.212) is more convenient. The first term in the round bracket of
(5.198) arises from (4.207). As a rule, av can be calculated perturbatively
from the Uehling potential, but that potential may be large enough to mod-
ify the spin structure (Bohnert et al., 1985). At fixed integration variable ξ,
the r-dependence of VU (5.83) is that of a Yukawa potential, e

−2merξ/r. Its
hydrogenic expectation value is expressed in (C.1) in terms of the standard
integral Jλ1, but with κ = ε/αZnβ including recoil. As y = κ/meξ is relatively
large, the form (C.7) of Jλ1 is appropriate here:

〈e−xrξ/r〉 = 2κ
ε2

µ2
Γ (b+ nr)

nr!2nβΓ (b)
y−2nr(1+1/y)−2nF (−nr, −nr, b; y

2) ≈ I ′n/n
3,

(5.199)
I ′n = (n+ l)!(1+1/y)

−2ny−2nrF (−nr, −nr; 2l+2; y
2)/(2l+1)!nr!, (5.200)

with F = hypergeometric function. Special cases of I ′n are

I ′n(n = l + 1) = (1 + y
−1)−2n, (5.201)

I ′n(l = 0) = n(1 + 1/y)
−2ny−2n+2F (−n+ 1, −n+ 1; 2; y2). (5.202)

Generalizations of Vs (5.203) for large g-factors and for spins �= 1/2, in partic-
ular s2 = 0, 1 and 3/2 have been given by Waldenström and Olsen (1971). To
order α4Z , the spin-dependent potential in the Schrödinger equation with re-
duced mass follows from the CBG-reduction (Sect. 3.6) of the 16-component
equation,

V CBGs = c1ls1V
′/µ2r + c2ls2V

′/µ2r + Vt + VQ, (5.203)

ci = (gi/2si − µ/mi)µ/2mi, (5.204)

Vt = ctS12V
′/µ2r, ct = g1g2µ/16m12s1s2, (5.205)

VQ = −QS22α2s2(2s2 − 1)/r
3, Sij = 3sirsjr − s1s2. (5.206)

Vt is the generalization of the tensor potential (5.65). The g-factors are here
defined as gi = 2(κi + 1) as in (2.76), corresponding to particles satisfying
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the Pauli equation. They are related to the nuclear g-factors gn2 by (4.151).
For si = σi/2 and gi = 2, the two spin-orbit potentials agree with (3.163):

c1 =
1
2 (1−m

2
1/m

2
12), c2 =

1
2 (1−m

2
2/m

2
12). (5.207)

Q is the electric quadrupole moment of (4.178). Possible octupole moments
of s2 = 3/2 do not contribute at the order α

4
Z . The av of (5.200) is

av = (3πZ
2α)−12n(2l + 1)

∞
∫
1
dξI ′n(ξ)(ξ

2 − 1)1/2(ξ−2 + 12ξ
−4) (5.208)

according to (5.83). This integral is best performed numerically. For example,
the f-states of p4He have av(l = 3, n→∞) ≈ 20.
The aljf of (5.198) follow from (5.203) by removal of the common factor

V ′/µ2r and insertion of a factor −2(αZL2)−1 (αZL2 from the conversion of
r−3 to r−2, a factor 2 from the replacement of σi by si):

aljf = −2〈c1ls1 + c2ls2 + ctS12 − S22Z
−1Qµ2〉ljf/l(l + 1). (5.209)

In the presence of hyperfine mixing, one must diagonalize either the 2 × 2
matrix 〈j′|alf |j〉 for j ≡ j1 = l ±

1
2 , or the 2 × 2 matrix 〈S

′|alf |S〉 for
S = s2±

1
2 . The “stretched” configurations, f = l+

1
2 + s2 and f = l−

1
2 − s2

have no mixing, the values of j, j2 and S are then fixed at their maximal
and minimal values. Both spin-orbit operators lsi are automatically diagonal
here:

lsi =
1
2 (j

2
i − l

2 − s2) = 1
2 [ji(ji + 1)− l(l + 1)− si(si + 1)]. (5.210)

The maximal value ji = l + si gives lsi = lsi. Similarly, the minimal value
ji = l − si gives lsi = −(l + 1)si. In the first case, the factor l of the
denominator in (5.209) is cancelled (as required for l = 0), in the other one
the factor l + 1. Writing the sign as 2(j − l), one obtains for the spin-orbit
operators,

al, f=l±S = 2(j − l)(j +
1
2 )
−1(c1 + 2s2c2). (5.211)

The tensor operator (5.206), S12 = 3s1rs2r − s1s2 has been constructed

in (5.67) for s2 = 1/2. For s2 = 1, the three matrices s
(1)
2 have the form

of the l̂
(1)
of (1.262), from which s2r is constructed as in (2.114). Its matrix

elements for fixed j2 are known from (5.210). For example, j2 = l+s2−1 gives
ls2 = l(s2−1)−s2. Whereas the operator is now easily constructed in the basis
|j2, s1, f,mf 〉, it is actually needed in the basis |j1, s2, f,mf 〉, because the fine
structure is diagonal there. A “recoupling of angular momenta” is needed. To
minimize the confusion of indices, we first consider the transformation to the
basis |S, l, f,mf 〉, where S(S+1) is the eigenvalue of S = s1+s2 (for s2 = 1/2,
this is the basis shown in (5.32)). For the first basis, we write f = s1 + j2,
for the second one f = S + l. The states |f,mf 〉 are thus constructed by
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means of CG-coefficients in two different ways. Using the compact notation
of Sect. 2.5,

|fmf 〉 = Σm1〈m1mj2|fmf 〉|s1m1〉|j2mj2〉 = ΣmS 〈mSml|fmf 〉|SmS〉|lml〉.
(5.212)

The states |j2mj2〉 and |SmS〉 are now also CG-composed,

|j2mj2〉 = Σm2〈m2ml|j2mj2〉|s2m2〉|lml〉, (5.213)

|SmS〉 = Σm1〈m1m2|SmS〉|s1m1〉|s2m2〉. (5.214)

|fmf 〉 is thus a double sum over |s1m1〉|s2m2〉|lml〉 in two different ways,
namely firstly with coefficients 〈m1mj2|fmf 〉〈m2ml|j2mj2〉, and secondly
with 〈mSml|fmf 〉〈m1m2|SmS〉. By using the CG orthogonality relations,
one may then express a state of the second form of |fmf 〉 in terms of states
of the first form. In a shorthand notation,

|(s1s2)Sl, fmf 〉 = Σj2 |s1(s2l)j2, fmf 〉〈s1(s2l)j2, f |(s1s2)Sl, f〉. (5.215)

Other notations are

〈s1(s2l)j2, f |(s1s2)Sl, f〉 = (2j2 + 1)
1/2(2S + 1)1/2W (s1s2fl;Sj2), (5.216)

W (s1s2fl;Sj2) = (−1)
s1+s2+l+f

{
s1 s2 S
l f j2

}
. (5.217)

W is called a Racah coefficient, and {. . . . . .} is Wigner’s 6j-symbol. It is
symmetric under the exchange of columns as well as interchange of upper
and lower indices in any two columns. Tabulations are found e.g. in the book
of Weissbluth (1978).
The s1s2 of the tensor operator is diagonal in the |S,mS〉-basis, with

elements s2/2 and −(s2 + 1)/2 according to (4.273).
The Dirac equation for one electron produces effects such as the modifica-

tion of the spin-orbit interaction by the electric quadrupole potential, which
for Z > 1 may exceed the nuclear recoil effects implied by (5.203). It is then
better to include the nuclear spin operator s2 (normally denoted by I) in
the static approximation. There, the electric multipole interaction is derived
from a nuclear wave function ψ(rp1, rp2 . . . rn1rn2 . . .), in which rpi and rni
denote the positions of pointlike protons and neutrons. The Coulomb energy
of a test particle of charge −e at position r is V (r, rpi) = −α/|r−rpi|, which
is expanded as in (3.140) (the second step function is negligible as the an-
tiproton must not enter the nucleus). The Y m∗l (Ω1) (3.141) in the expansion
is conveniently rewritten as Y −ml (Ω1); the summation indices l and m are
replaced by k and mk:

V (r, rpi) = −4παΣ
∞
k=0r

−k−1ΣZpi=1r
k
piΣmY

−mk
k (Ω1)Y

mk
k (Ωpi). (5.218)

The term with k = 0 is independent of rpi; with 4πY
0
0 (Ω1)Y

0
0 (Ω(pi) = 1

it gives Z identical terms, V0 = −Zα/r as expected. The term with k = 1
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changes the parity of the nuclear state. In the nonrelativistic limit, this fol-
lows essentially from (1.110). If the two lowest nuclear states would form
a nearly degenerate parity doublet, the antiproton could in principle dipole
excite the nucleus to its parity partner. In all other cases, the k = 1-term of
(5.218) vanishes by parity conservation. The k = 2-term contains the inter-
action between the antiproton and the nuclear quadrupole moment, which
is important for highly deformed nuclei. Nuclear quadrupole excitation may
then be possible. However, the normal case is the quadrupole potential VQ
(5.206), where the nucleus is not excited.
Any operator tij of a closed system may be decomposed into irreducible

tensor operators tmkk , which transform under rotations like an angular mo-
mentum state |k,mk〉. In atomic theory these quantum numbers are integer.
Both r and the Pauli matrices σ are vector operators, these have k = 1 and
mk = ±1, 0. They are the Cartan components, z and x± (Table 1.1) in the
case of r, and σz (2.51) and σ± (2.62) in the case of σ (for σ±, the factor
1/2 must be replaced by 2−1/2 as in Table 1.1).
When tmkk operates on a state |jimi〉|n〉 (the n comprises all addi-

tional quantum numbers), the resulting states transform under rotations as
|k,mk〉|jimi〉|n〉 (Wigner-Eckart theorem). The product can be decomposed
into states that transform like |j′m′〉. The matrix elements of tmkk are then

〈n′|〈j′m′j |t
mk
k |jimi〉|n〉 = (mimk|j

′m′j)〈n
′j′||t||jin〉, (5.219)

where (mimk|j′m′j) = (j1j2m1m2|j
′m′j) is the appropriate Clebsch-Gordan

coefficient. The remaining “reduced” matrix element 〈n′j′||t||jin〉 is indepen-
dent of mi, mk and m

′
j . It may be calculated for any convenient combination

of these magnetic quantum numbers, for example mk = 0, m
′
j = mi. For

the electric dipole interaction, this implies that only the matrix elements of
z = x0 is needed; the rest follows from CG’s. By (5.219) and parity con-
servation, the electric dipole interaction changes the atomic orbital angular
momentum by exactly one unit.
The electric quadrupole interaction is the product of the two operators

with k = 2 in (5.218),

VQ(r, rpi) = −αΣmkt
−mk
2 Qmk2 , (5.220)

t−mk2 = (4/5)1/2r−3Y −mk2 (Ω1), (5.221)

Qmk2 = (4/5)1/2ΣZpi=1r
2
piY

mk
2 (Ωpi). (5.222)

The Y −mk2 can change the atomic orbital momentum by 0 or 2; ∆l = 1 is
excluded by parity conservation. In this case, one may insert between t−mk2

and Qmk2 in (5.220) two different complete sets of angular momentum states.
For the application of (5.219), one needs the set |j′m′j〉〈j

′m′j | of atomic states.
For the corresponding Wigner-Eckart theorem for Qmk2 , one needs the nuclear
spin states, |s′2m

′
2〉〈s

′
2m
′
2|. For fixed total angular momentum f , the second
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basis is related to the first one by the recoupling coefficients (5.215), but now
other quantum numbers are relevant. The resulting expectation value is

〈Σmkt
−mk
2 Qmk2 〉s2jfmf = (−1)

f+j+s2

{
s2 j f
j s2 2

}
〈s2||Q2||s2〉〈j||t2||j〉.

(5.223)
If one is not interested in nuclear structure, one may employ a more ele-
gant formalism. In analogy with the magnetic hyperfine operator, the inner
nuclear degrees of freedom are averaged out. As long as nuclear excitation
is neglected, the only remaining operator for the atom is the total nuclear
angular momentum s2 = I in this context. After the nuclear averageing, the
Qmkk of (5.222) must be proportional to the only irreducible tensor of rank 2
that can be constructed from I. In cartesian coordinates, it is given by (5.54)
(Landau and Lifshitz 1977)

Qij =
1
2C(IiIj + IjIi −

2
3δijI

2), I2 = I(I + 1). (5.224)

The constant C is chosen such that 〈Qzz〉I3=I = Q,

C = 3Q(2I2 − I)−1. (5.225)

We have already seen in Sect. 4.4 that the minimal value of s2 = I is 1,
which gives C = 3Q. The Q02 of (5.222) becomes (5/16)

1/2Q33 according to
Table 1.1, and 〈Q02〉I3=I = Q/2.
The corresponding tensor operator tik is similarly constructed from the

only atomic operator which remains conserved after inclusion of the fine struc-
ture, namely from j = l+ s1:

tik =
3Qj

2j(2j − 1)
(jijk + jkji −

2
3δikj

2), j2 = j(j + 1). (5.226)

Qj is the atomic quadrupole moment, as seen from outside the atom. The
hyperfine interaction needs the corresponding form inside the atom, which
has j replaced by l and lilk by 〈lilk〉j :

tik =
3Ql

2l(2l − 1)
[〈lilk〉j + 〈lkli〉j −

2
3 l
2], l2 = l(l + 1), (5.227)

where Ql is the orbital angular momentum, which may differ from Qj . The
〈lilk〉j is defined as 〈Σi,kjililkjk〉j = 〈(jl)2〉 = (jl)2, because jl =

1
2 [j(j+1)−

l(l+1)−s(s+1)] is a number. The second operator in (5.227) is 〈Σi,kjilklijk〉j ,
which can be rearranged using [li, lk] = iεiklll, [ji, ll] = iεilmlm. In this
manner, one obtains

Qj = Ql[3jl(2jl− 1)− 2j
2l2][(j + 1)(2j + 3)l(2l − 1)]−1. (5.228)

For s1 =
1
2 , j assumes the values l ±

1
2 :

Qj(j = l +
1
2 ) = Ql, Qj(j = l −

1
2 ) = (l − 1)(2l + 3)/l(2l + 1). (5.229)
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Now back to antiprotonic atoms. When the hyperfine structure is negli-
gible, V CBGs reduces to the antiprotonic spin-orbit coupling c1ls1V

′/µ2r. It
is then useful to construct a relativistic equation of motion for the p which
can be solved nonperturbatively. Its static limit has already been given in
(4.145). For magnetic field B = 0, it reads, with π01 = E1 − V (r),

(π01 −m1)ψg = (pσ − iκaneσE/2m1)ψf , (5.230)

(π01 +m1)ψf = (pσ + iκaneσE/2m1)ψg. (5.231)

And with eE =∇V , the electric field E is eliminated by the substitution

ψ = ea1βV/2ψ̃, a1 = κan/m1. (5.232)

The equation for ψ̃ is

(π01 −m1)e
a1V ψ̃g = pσψ̃f , (π

0
1 +m1)e

−a1V ψ̃f = pσψ̃g. (5.233)

The transformation

π̃01 = π
0
1 cosh(a1V )−m1 sinh(a1V ), m̃1 = m1 cosh(a1V )− π

0
1 sinh(a1V )

(5.234)
produces an ordinary Dirac equation,

(π̃01 − m̃1β − γ
5pσ)ψ̃ = 0. (5.235)

As π̃021 −m̃
2
1 = π

02−m21, it is in fact only the spin structure which is modified
by κan. To first order in a1V = κanV/m1, one approximates cosh(a1V ) = 1,
sinh(a1V ) = a1V and obtains for V = −αZ/r

π̃01 = E1 + (αZ/r)(1 + κan), m̃1 = m1 + (E1 + αZ/r)αZκan/m1r. (5.236)

With these approximations, (5.235) has the form of the Klein-Dirac equation
(4.367); its solution can practically be adopted from (4.371),

γan = [(j +
1
2 )
2 − α2Z(1 + 2κan)]

1/2. (5.237)

This is the static limit m1/m2 = 0. The recoil effects follow from (4.371) and
from the adaption of a1 to c1 (5.204), a1,rec = a1m2/m12. The recoil-corrected
Klein-Dirac equation becomes (in its Kramers form)

[(ε− V )2 − µ2 − p2 + ic10σ1rV
′]ψr = 0, (5.238)

c10 = (c
2
an −m

2
1/m

2
12)
1/2, can = (1 + 2κanm2/m12)

1/2. (5.239)

Its solutions follow from (4.370), with γan replaced by the more general ex-
pression

γc0 = [(j +
1
2 )
2 − α2Z(c

2
an −m

2
1/m

2
12)]

1/2. (5.240)
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A perturbative treatment of vacuum polarization will now automatically in-
clude its influence on the spin-orbit coupling.
For normal electronic atoms, recoil corrections beyond the reduced mass

are normally negligible. This applies particularly to the “Barker-Glover” cor-
rection α2Zm

2
1/m

2
12 in γc. The new term −2α

2
Zκanm2/m12 = −

1
2α
3
Zαπ (4.137)

is much larger. It can influence relativistic polarizabilities and other pertur-
bations.

5.7 The Magnetic Moment Interaction

The anomalous magnetic moments of fermions cause extra spin potentials.

They will be derived by the method of Sect. 4.7, with T
(1)
if given by (4.64) as

before, but now with the general form (4.133) of Jµif , in the approximation

F1 = 1, F2 = κ1 and with q = k1 − k
′
1 = k

′
2 − k2:

T
(1)
if = 4παZJ

µ
11′gµνJ

ν
22′/t = 4παZ(J

0
11′J

0
22′ − J11′J22′)/(q

02 − q2), (5.241)

Jµ11′ = u
′
1(γ

µ
1 + σ

µν
1 qνκ1/2m1)u1. (5.242)

In the cms one has q0 = 0, and with σ0j = γ5σj , σjk = iσl (jkl cyclic),

J011′ = u
′
1
†(1+γ51β1qσ1κ1/2m1)u1, J11′ = u

′
1
†(γ51σ1−iβ1q×σ1κ1/2m1)u1,

(5.243)
where u′1 = u

′
1
†β1 has been used. The corresponding J

ν
22′ has q2 = −q:

J022′ = u
′
2
†(1−γ52β2qσ2κ2/2m2)u2, J22′ = u

′
2
†(γ52σ2+iβ2q×σ2κ2/2m2)u2,

(5.244)

This produces four terms in T
(1)
if ,

T
(1)
if = TD + κ1Tκ1 + κ2Tκ2 + κ1κ2Tκ1,κ2. (5.245)

TD denotes our previous “Dirac” T
(1)
if (4.256). We first evaluate the matrix

element Tκ1,κ2:

Tκ1,κ2 = −4παZu
′
1
†u′1

†[−γ51γ
5
2(qσ1)(qσ2)−(q×σ1)(q×σ2)]βu1u2/4m1m2q

2.
(5.246)

The decomposition of Tκ1,κ2 gives again Tvw = Twv = 0. In Tvv, one uses
γ51γ

5
2βv = βγ

5
1γ
5
2v = βv, while Tww has w

′†γ51γ
5
2 = −w

′†. The matrix el-
ement Mκ1,κ2 is again constructed by expressing w = m

−1
+ (E − γ

5∆σk)v

and v′† = w′†(E − γ5σk)m−1+ , but this time we contend ourselves with the
approximations w = m−1+ Ev, v

′† = w′†Em−1+ . The sign change caused by
γ51γ

5
2 makes the factor of (qσ1)(qσ2) vanish. And with (q × σ1)(q × σ2) =

q2σ1σ2 − (qσ1)(qσ2),

Mκ1,κ2 ≈ −8παZE[(qσ1)(qσ2)− q
2σ1σ2]/4m1m2q

2. (5.247)
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The procedure of Sect. 4.7 was to construct the Fourier transform I8(r) ofM
and then to use either I81 = C

−1
1 I8C1 as the interaction for ψ1 (4.251), or

I82 = C
−1
2 I8C2 for ψ2 (4.252), in order to demonstrate the equivalence of the

two equations. In the following, only the equation for ψ1 will be considered.
The indices 81 will be dropped, and the C1-transformation will be applied
before the Fourier transformation,

MC = C−11 MC1, I(r) = EHI(r) = (2π)
−3 1
2 ∫ d

3qe−iqrMC . (5.248)

As Mκ1,κ2 contains no Dirac matrices and as C
−1
1 (σ1iσ2j + σ1jσ2i)C =

σ1iσ2j + σ1jσ2i, one finds M
C
κ1,κ2 = Mκ1,κ2. For the Fourier transform, one

notes from (4.51)

(2π)−3 ∫ d3qe−iqrqiqj(−4παZ/q
2) = −∂i∂jV (r). (5.249)

In the irreducible tensor part of I(r) or HI(r), one subtracts δij∂
2
i /3 from

∂i∂j as in (5.54), getting

H
(2)
κ1,κ2 = σtV

′/4m1m2r, σt = 3σ1rσ2r − σ1σ2, (5.250)

H
(0)
κ1,κ2 =

2
3παZδ(r)σ1σ2/m1m2 = Hcon (5.251)

as in (5.65) and in (5.63).
The matrix elements Tκ1 and Tκ2 contain only one factor βi and require

a different elimination. Consider first

Tκ2 = −4παZu
′
1
†u′2

†q(−γ52σ2 + iγ
5
1σ
×)β2u1u2/2m2q

2. (5.252)

With β2w = v, v
′†β2 = w

′†, one finds this time Tvv = Tww = 0,

Twv = Tvw = −4παZγ
5q(σ2 + iσ

×)/2m2q
2, (5.253)

Mκ2 = −4παZγ
5m−q(σ2 + iσ

×)/m2q
2. (5.254)

The C1-transformation replaces m−σ2 by

m−
1
2 (σm+/m− −∆σ) =

1
2 (σm+ −∆σm−) = σ2m2 + βσ1m1, (5.255)

which leads to

MCκ2 = −4παZγ
5q[σ2 + iσ

× + β(σ1 − iσ
×)m1/m2]/q

2. (5.256)

As there is no explicit factor E inMCκ2, we quote I(r) instead of HI(r). Using

(2π)−3 ∫ d3qe−iqrq(−4παZ/q
2) = i∇V = irV ′/r, (5.257)

2Iκ2 = (V
′/r)γ5r[iσ2 − σ

× + β(iσ1 + σ
×)m1/m2]. (5.258)

For comparison with the static hyperfine operator (4.271), we neglect the
terms proportional to m1/m2 and add κ2Iκ2 to the previous I8 of leptonium,
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I8+κ2Iκ2 = EV +
1
2γ
5(σ×(1+κ2)[∇, V ]−σ

×{∇, V }+iκ2σ2[∇, V ]). (5.259)

The factor (1 + κ2) = gn2/2 in the Hermitian part of the hyperfine operator
produces the expected nuclear g-factor.
Next, we construct the four nonrelativistic hyperfine operators implied by

(5.258), by eliminating the small components ψf as in (5.40). We immediately
restrict ourselves to the terms linear in V ′,

Vκ2 = {σ1p, (V
′/r)r(iσ2 − σ

×)}/4µE + [σ1p, (V
′/r)r(iσ1 + σ

×)]/4m22.
(5.260)

commutator arises from the extra factor β, because of βψg = ψg, βψf = −ψf .
The operator containing σ×rV ′/r in the anticommutator is the Hermitian

part of the Dirac hyperfine operator, and we simply adopt the results (5.48),
(5.65):

Vs2l,κ2 = Vs2l = V
′σ2l/2Eµr, Vt,κ2 = Vt =

1
2σtV

′/2Eµr. (5.261)

In the commutator, the part containing iσ1 is also Hermitian, giving

Vs1l,κ2 = V
′σ1l/2m

2
2r. (5.262)

For comparison, the CBG reduction finds only one potential for κ2 from c2
(5.204),

V CBGκ2 (s2 =
1
2 ) = σ2lV

′/2µm2r. (5.263)

Again, there is agreement in the expectation values,

〈Vs2l,κ2 + Vs1l,κ2〉 = 〈V
CBG
κ2 〉, (5.264)

but this time a discrepancy will appear in off-diagonal elements at the order
(κ1m2 − κ2m1)2.
The part containing σ× in the commutator is anti-Hermitian and leads

to
Vs12l,κ2 = −iV

′σ×l/4m22r. (5.265)

The operator iσ2r in the anticommutator is more complicated. With iσ1p =
σ1r(∂r−σ1l/r) = (∂r+σ1l/r)σ1r, one obtains, neglecting an operator ∼ ∆V ,
and with σ1rσ2r from (5.67):

χ =

(
χf,1
χf,0

)
, Vah,κ2 = −[σ1rσ2r,σ1l]

V ′

4Eµr
=

(
0 F
−F 0

)
V ′

2Eµr
, (5.266)

where the index ah stands for “anti-Hermitian”.
The calculation of Tκ1 and Iκ1 is formally different, but the result follows

from Iκ2 simply by exchange of m1 and m2. The β2 in (5.252) is replaced by
β1 = ββ2; the C-transformation replaces m−σ1β by

m−
1
2 (σm+/m− +∆σ)β = (σ1m2 + βσ2m1)β = σ2m1 + βσ1m2, (5.267)
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which follows from (5.255) by the exchange of m1 and m2. As a result, the
total operator proportional to κ1 and κ2 is

Vκ = {(σ1l−
1
2 iσ

×l)κ̂+ (σ2l+
1
2σt −

1
2 [σ1rσ2r,σ1l])κ}V

′/2Eµr, (5.268)

κ̂ ≡ κ1m2/m1 + κ2m1/m2, κ ≡ κ1 + κ2. (5.269)

Collecting the matrices, one obtains

Vκ =

(
−κ̂ 0

2F (κ̂− κ) 0

)
V ′

2Eµr
, κ̂− κ = (κ1m2 − κ2m1)

m2 −m1
m1m2

. (5.270)

To this one has to add the tensor interaction κ1κ2H
(2)
κ1,κ2 (5.250) and the

Dirac spin matrix Vs (5.69),

Vs,tot =

(
−1− 2y F
Fx 0

)
V ′

4µ2r
, y = (κ̂− κ1κ2)µ/E, (5.271)

x = 1−4(1−κ̂+κ)µ/E = (m2−m1)(m2−m1+4κ1m2−4κ2m1)/E
2. (5.272)

The eigenvalues of the matrix will again be called −2a(±)l F
2, with F 2 =

l(l + 1) as in (5.70):

−2a(±)l F
2 = −12 − y ±

√
(12 + y)

2 + F 2x. (5.273)

They may be compared with those of the CBG spin matrix. As the off-
diagonal elements of a real 2×2 Hermitian matrix are equal, the correspond-
ing xCBG must be a square:

xCBG = (m2 −m1 + 2κ1m2 − 2κ2m1)
2/E2 = x+ 4(κ1m2 − κ2m1)

2/E2.
(5.274)

The extra square is reminiscent of the V 2 in the form (E−V )2 containing the
Coulomb interaction. For leptonium, it may be canceled by higher-order ver-
tex graphs. For hydrogen and for antiprotonic atoms, however, these graphs
cannot be calculated. The factor m21/E

2 in front of κ22 shows that this part
of xCBG is a second-order hyperfine interaction.
Note that the indices of the spin matrices σ1 and σ2 remain disconnected

from the particle indices. Whereas the original Born amplitude contains the
combinations σ1κ1/m1 and σ2κ2/m2, the function multiplying σ1l is ob-
tained from (5.262) as

Vs1l,κ = (V
′/2r)σ1l(κ2/m

2
2 + κ1/m

2
1). (5.275)

The m1 ↔ m2 symmetry noted earlier in (5.48) is thus extended to
a (κ1, m1 ↔ κ2, m2) symmetry.
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5.8 SU2, SU3, Quarks

A short historical of the quark model may be in order. It all began with the
“isospin” invariance of nuclear physics, which is based on the near equal-
ity of proton and neutron masses, mp = 938.28MeV, mn = 939.57MeV.
Proton and neutron may be regarded as two isospin states of the “nucle-
on” N, with I = 1/2 and I3 = +1/2 and −1/2, respectively. Strong inter-
actions are invariant under unitary transformations SU2 between p and n,
which form an “isospin” doublet like the states χ+ and χ− (2.49) of or-
dinary fermion spin. When the pions π+, π0, π− were found with nearly
equal masses (mπ± = 139.57MeV, mπ0 = 134.96MeV), they were taken
as an isotriplet. They have spin and parity 0−, which allows one to for-
mally treat them as NN bound states (Fermi and Yang 1949), with quantum
numbers 11S0. (The parity of a fermion-antifermion pair of orbital angular
momentum l is −(−1)l, the extra sign coming from the field anticommu-
tator as for charge conjugation (4.288). Like the singlet state of positro-
nium, the π0 decays into γγ). The Clebsch-Gordan series for NN gives
2 × 2 = 3 + 1. The components of the pion triplet may be adopted from
(3.128) and (3.130), although modern textbooks normally use an extra mi-
nus sign for π−. The predicted isosinglet state was found later in the form
of the η meson (also 0−, mη = 547.45MeV). The Fermi-Yang model also re-
sulted in the “Goldberger-Treiman” relation for axial beta-decay, which has
remained correct for different reasons.
Next found were the kaonsK = (K+, K−) and the isoscalar and isovector

“hyperons” Λ and Σ = (Σ+, Σ0, Σ−), which decay weakly to nucleons.
Strong interactions conserve a new “strangeness” quantum number which is
+1 for K, −1 for K and −1 for the hyperons. Although mΛ−mn = 176MeV
is not particularly small, the group of unitary transformations is sometimes
extended from SU2 to SU3.
The group SUn has n

2 − 1 generators of transformations. For SU2, these
are the three Pauli matrices σ which act on the fundamental spinors χ±
(2.49). SU3 has eight 3× 3 traceless generators λk, which act on the funda-
mental triplet, now called u (for isospin “up”), d (for isospin “down”), and s
(for “strange”):

u =

(
χ+
0

)
=

⎛⎝10
0

⎞⎠ , d = (χ−
0

)
=

⎛⎝01
0

⎞⎠ , s =
⎛⎝00
1

⎞⎠ . (5.276)

The first three λ may be identified witht the σ which act only on u and d
(compare (2.75)):

SU3 = exp

{
−12 i

8∑
k=1

αkλk

}
, λ1,2,3 =

(
σ1,2,3 0
0 0

)
. (5.277)
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In analogy with σ1 and σ2 which exchange u with d, one defines λ6 = u1 and
λ7 = u2 as thoses matrices which exchange d with s and leave u invariant:

λ6 =

⎛⎝0 0 00 0 1
0 1 0

⎞⎠ ≡ u1, λ7 =
⎛⎝0 0 00 0 −i
0 i 0

⎞⎠ ≡ u2. (5.278)

The corresponding two matrices “v1, v2” which leave d invariant get the
numbers 4 and 5:

λ4 =

⎛⎝0 0 10 0 0
1 0 0

⎞⎠ ≡ v1, λ5 =
⎛⎝0 0 −i0 0 0
i 0 0

⎞⎠ ≡ v2. (5.279)

One could now identify the remaining λ8 with u3 or v3 or with any linear
combination of these two diagonal matrices. As SU3 is much more broken
than SU2, one takes that combination which commutes with all three SU2
generators λ1, λ2, λ3:

λ8 = 3−1/2

⎛⎝1 0 00 1 0
0 0 −2

⎞⎠ . (5.280)

The −2 in the last row follows from traceλ8 = 0, the normalization factor
3−1/2 follows from traceλiλi = 2δik.
The generators of SUn form the “regular” representation, of dimension

n2 − 1. It is a triplet (isospin 1) in SU2, an octet in SU3. For a while, one
speculated that the baryons p, n and Λ could make the fundamental triplet.
The triplet of Σ hyperons was taken as Λπ bound states. Another isodoublet
Ξ = (Ξ0, Ξ−) of strangeness −2 at higher mass (Table 5.1) was taken as ΛK

bound states. However, the identical spins and parities (12
+
) of all these eight

baryons pointed to the regular representation. In the limit of unbroken SU3
symmetry, all eight baryons should have the same mass.
In analogy with the Clebsch-Gordan decomposition, one can use the u-

spin lowering operator u− = u
1 − iu2 to generate from the neutron state n

the complete “U -spin” triplet |U, U3〉 for U = 1,

|1, 1〉U = n, |1, 0〉U =
1
2 (3

−1/2Λ+Σ0), |1, −1〉U = Ξ
0. (5.281)

Gell-Mann and Okubo proposed that the SU3-breaking “semistrong” inter-
action should also arise from one of the generators, in which case it must be
λ8 in order not to spoil SU2. First-order perturbation theory predicts equal
spacing between the masses of the U -spin triplet,

[m(Ξ−)− 14 (3m(Λ) +m(Σ
0))]/[14 (3m(Λ) +m(Σ

0))−m(n)] = 1. (5.282)

The experimental value of this ratio is 0.92. The E2-theorem replaces the
masses by their squares, in which case the ratio becomes 1.08. Similarly, the
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Table 5.1. Masses and magnetic moments of baryons, from Review of Particle
Physics (2004). The first column gives the (mass)2. The last column gives the
magnetic moment in the quark model.

baryon m2 [GeV]2 m[GeV] µ [µn] µ (quark model)

p = (uud) .880369 .938280 2.79285 (4µu − µd)/3
n = (ddu) .882797 .939573 −1.91304 (4µd − µu)/3
Λ = (uds) 1.24475 1.11568 −.613 µs
Σ+ = (uus) 1.41460 1.18937 2.46 (4µu − µs)/3
Σ0 = (uds) 1.42239 1.19264
Σ− = (dds) 1.43389 1.19745 −1.16 (4µd − µs)/3
Ξ0 = (ssu) 1.72879 1.31483 −1.25 (4µs − µu)/3
Ξ− = (ssd) 1.74586 1.32131 −0.65 (4µs − µd)/3

pions form a pseudoscalar (i.e. spin-parity 0−) octet together with η0 and the
kaon and antikaon doublets, K+ = us, K0 = ds, K− = su, K0 = sd. The
corresponding GMO mass relation is

m2π + 3m
2
η = 4m

2
K . (5.283)

The pseudoscalar SU3 singlet is called η
′; the experimental mass of

950MeV includes some SU3-breaking η − η′-mixing.
In weak decays, the strangeness changes by at most one unit, such that

the Ξ baryons cannot decay directly to nucleons. Instead, they decay in a
“cascade” via the Λ and Σ hyperons, which earned them the name “cas-
cade particles”. As the “charm” quantum number below is also conserved in
strong interactions, many of the “charmed baryons” have even longer decay
sequences.

The Quark Model

One may distinguish between two periods of the quark model, one from the
“eightfold way” of Gell-Mann (1964) and Zweig (1964) to the discovery of the
J/ψ meson in 1974, and the post-1974 period which is dominated by quantum
chromodynamics (QCD), a field theory analogous to QED. Its breakthrough
came already in 1973 with papers by t’Hooft (unpublished), Politzer (1973)
and by Gross and Wilczek (1973), who showed that the effective coupling con-
stant between quarks vanishes at short distances (contrary to QED, where it
is enhanced by vacuum polarization, see Sect. 5.3). Before the J/ψ discovery,
all known mesons and meson resonances (such as the ρ resonance which de-
cays immediately to two pions) could be identified with bound states of one
of the three quarks q = (u, d, s) (with electric charges 2/3, −1/3 and −1/3)
and one of the three antiquarks q = (u, d, s).
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Direct products of SU3 multiplets are decomposed by the Clebsch-Gordan
series, 3 × 3 = 8 + 1 (SU2 has 2 = −2, see (3.95). In SU3, no lin-
ear relation between 3 and 3 exists). Gell-Mann and Zweig interpreted
baryons as bound states of three quarks qqq, with the SU3-decomposition
3 × 3 × 3 = 3 × (6 + 3) = 8 + 10 + 8 + 1. The states 3 × 3 are ab-
sent. The baryon octet has spin 1/2, while the decuplet of resonances
∆ = (∆++, ∆+, ∆0, ∆−), Σ∗ = (Σ∗+, Σ∗0, Σ∗−), Ξ = (Ξ∗0, Ξ∗−) and
Ω− has spin 3/2 (the Ω− has strangeness −3 and is in fact stable against
strong decay). Attemps to ignore the “hyperfine” splitting led to an even
larger symmetry group SU6, which is not used any more.
After the J/ψ discovery, the quark model became much richer and more

precise. Bound states of three heavy quarks c (charm), b (bottom), and t
(top) (with charges 2/3, −1/3 and 2/3, respectively) were found. Today, one
says that quarks come with the six “flavors” u, d, s, c, b, t. The heavy quark
masses are so large that the extension of SU3 to SUNf (Nf = number of
flavours > 3) is useless. The above SU3 is also called SU3,flavor, to distinguish
it from the SU3,color below. The J/ψ itself is 1

3S1cc. It is formed directly
as a sharp resonance in e−e+ collisions at 3.098GeV. The corresponding 2S
and 3S states, ψ′ = ψ(2S)(3.6861) and ψ′′ = ψ(3S)(3.770) are also formed
(the ψ′′ decays strongly into DD, where D stands for the charmed isodoublet
D0 = cu, D+ = cd). The similarity with the positronium spectrum becomes
even more spectacular for the bb resonances Υ (1S)(9.460) − Υ (4S)(10.580);
thence the name “quarkonium”.
With so many striking parallels, it is natural to look again for an un-

derlying field theory of mesons and baryons (“hadrons”) as a rigorous basis.
This field theory is called QCD, the “C” will be explained below. Its short-
range interaction is sufficiently weak for a perturbative treatment in terms
of Feynman graphs for high-energy processes (see for example the book by
Yndurain 1999). As in QED, the Fourier transform of the Born series also
provides the potential for bound states, but now only at short distances. At
large distances, the interaction becomes too strong; presumably it diverges for
r →∞. One defines a phenomenological “QCD parameter” ΛQCD ≈ 200MeV
and the “confinement radius” Rc = Λ

−1
QCD, beyond which the treatment as

an effective two- or three-body problem breaks down. As the Bohr radius aB
decreases with the reduced mass of the system, a sufficiently large reduced
mass gives a ground state as well as a few excited states with wave func-
tions essentially inside Rc. This explains the succes of QCD for charmonium
and bottonium. Other systems such as D = cl (l = u or d) have too large
Bohr radii, but relations between the hyperfine operators (which are of short
range) do persist (see for example Grozin 2004).
On the other hand, all pre-1974 hadrons would extend far beyond Rc

according to QCD. One benefit of QCD remains, namely the “spontaneously
broken” “chiral symmetry” of massless u, d, and perhaps even s quarks (see
for example Donoghue et al. 1992). The pseudoscalar mesons π, K, η are
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treated as Goldstone bosons, a concept which seems incompatible with the
qq model. In the spontaneously broken symmetry, E2 would be linear in
the quark masses, E2 ≈ B(m1 + m2), with B of the order of 1GeV. The
impressive “constituent quark” model of Gell-Mann and Zweig for all the
mesons, nucleons, hyperons etc. before 1974 is not supported by QCD.
Connected with QCD is a hidden quantum number called “color”, which

is needed not only for the form of the interaction (its gauge transformations
are nonabelian), but also for the Pauli principle of bound states. Consider
the quark representation of ∆++, which is 1Suuu3/2. The spin 3/2 state is
totally symmetric under the exchange of the quark spins, and so is uuu.
To avoid a breakdown of the spin-statistics theorem, each quark is endowed
with a “color” which can assume three different values and which make each
q a triplet in a new symmetry group SU3c. Multiplication of 1Suuu3/2 by the
totally antisymmetric combination of three colours saves the Pauli principle
of bound states and the Fermi-Dirac statistics of the quark fields of QCD.
SU3color is assumed to be strictly conserved, such that color singlets remain
“colorless” forever.
However, the color of quarks must be well hidden such that it never shows

up. In principle, the cc bound state could auto-ionize into c+ c, where even
the widely separated quarks would still be in a color singlet. An analogy is
known from the decay π0 → γγ, where the two photons remain in a state of
zero helicity, no matter how far they are apart (such states were called “ver-
schränkt” (entangled) by Schrödinger and are considered for future quantum
computation). The way out in QCD is that the c and c at distances r > R
“hadronize” into (cl) and (cl), such that they appear as D and D in mea-
surements.
The conclusion of QCD for the quark potential model of hadrons is thus

gloomy. As no quark will ever be seen, its mass cannot be measured. Instead,
quark masses must be estimated from the unprecise theory of bound states.
Best suited are states with small relativistic effects. For examplemJ/ψ ≈ 2mc.
A presently acceptable range is 1.15GeV < mc < 1.35GeV. The masses of
light quarks remain largely arbitrary. Nevertheless, the quarkonium model
of the “old” hadrons is qualitatively and sometimes even quantitatively suc-
cessful. The magnetic moment predictions of Table 5.1 will be discussed in
Sect. 5.9. Here we discuss the decay width, which strongly support the binary
bound state hypothesis.
Table 5.2 collects the masses, decay channels and widths of the nonet

of the old “vector mesons” and the J/ψ. The ρ, ω and K∗ are broad “reso-
nances”. The width of ω is comparatively small because the decay ω → π−π+

is forbidden by a combination of charge conjugation and isospin invariance,
whereas the allowed decay ω → π−π0π+ is supressed by a small phase space.
The φ meson and the J/ψ have the same quantum numbers as the ω, but
their three-pion decays have much larger phase spaces available. One would
then expect widths of 100MeV or more. The opposite is true. Before the
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Table 5.2. The (masses)2 and widths of the old vector meson resonances and of
the J/ψ.

meson I, S m2 [GeV] main decay Γ [MeV]

ρ = (ρ+, ρ0, ρ−) 1 0 0.587 π+π− 150
ω 0 0 0.613 π+π0π− 8.5

K∗ = (K∗+, K∗0) 1/2 1 0.796 Kπ 50

K
∗
= (K

∗−
, K

∗0
) 1/2 −1 " Kπ "

φ 0 0 1.0393 KK 4.3
J/ψ 0 0 9.591 hadrons 0.091

discovery of the J/ψ, the relative stability of φ was explained by the OZI
(Okubo-Zweig-Iizuka) rule, saying that the quark and antiquark in the ini-
tial state are unwilling to annihilate. The φ is ss and thus forced to decay
into a pair of kaons. The J/ψ is cc. Here the charmonium model says that
the cc annihilation rate is proportional to the square of the bound state wave
function at the origin, which is small (at least in the nonrelativistic approx-
imation). The success of the OZI rule shows that this argument applies also
to the old vector mesons.
In quark loops, the color degree of freedom provides a factor 3, which is

necessary both in the decay π0 → γγ and in the reaction e+e− → hadrons
(Close 1979, Donoghue et al 1992). Outside loops, the (strong) hyperfine
interaction in qq states is attractive as in positronium. Without color, it
remains attractive there but turns repulsive in the qq subsystems of qqq,
thus predicting spin 3/2 for the ground states of baryons (Close 1979). Here,
however, the anti-Hermitian parts of the hyperfine operators σi × σjV pij
should be included. It might also be worth while to elaborate other possible
Dirac structures such as fy = 2Epσ2 sinωD in (4.397). The qqq states have
not yet been analyzed from this point of view.
Perhaps it is possible to extend QCD to large distances. A new version

might somehow restrict the separate fields for quarks and their “gluons”
(which provide the interaction in QCD). At its extreme, it could return to the
early theory of strong interactions, where mesons were “elementary” particles,
created and absorbed by local fields. The new fields would have to be bilocal
for mesons and trilocal for baryons. It is known that composite particles may
be represented by fields in the local limit; an example has been given in (3.93)
for 14N. In the equations for the inner structure of these fields, one could keep
the Dirac kinetic energy operators γ5i piσi, but add new operators or omit
old ones.
As an example, consider the Dirac equation (2.100) for quark 1 with

right- and left-handed masses m1r and m1l, respectively. Its Dirac version is
(2.101), even if in m1β1,sim (2.102) the γ

5
1 replaced by γ

5
1γ
5
2 , because γ

5
2 does

not operate in the Dirac space of quark 1:

m1β1,sim =
1
2β1[m1r +m1l + (m1r −m1l)γ

5
1γ
5
2 ], (5.284)
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and correspondingly for quark 2. On the other hand, one now has
m1β1,simψ = m1rψ, m1β1,simχ = m1lχ. In the binary equation (3.217), one
thus gets m2+ replaced by

ml+mr+ = (m2l+βm1l)(m2r+βm1r) = m
2
1+m

2
2+m1m2(x+1/x)β, (5.285)

x = m2m1r/m1m2r. (5.286)

Note that x+1/x > 2. The effect arises because the sum of the two similarity
transformed operators is not a similarity transform of the original sum. This
might be helpful for quarkonium models.
The standard QCD Lagrangian has little room for new operators. The

three positively charged quark fields may be combined into a single spinor
field Ψ+, the three negatively charged ones into another spinor field Ψ−, the
masses into 3× 3 diagonal matrices:

Ψ+ =

⎛⎝ΨuΨc
Ψt

⎞⎠ , Ψ− =
⎛⎝ΨdΨs
Ψb

⎞⎠ , (5.287)

m+ =

⎛⎝mu 0 0
0 mc 0
0 0 mt

⎞⎠ , m− =
⎛⎝md 0 0
0 ms 0
0 0 mb

⎞⎠ . (5.288)

The six mass terms of the Lagrangian (3.91) appear then as

Lm = Lm+ + Lm−, Lm+ = Ψ+m+Ψ+, Lm− = Ψ−m−Ψ−. (5.289)

Each ΨΨ is Ψ†rΨl + Ψ
†
l Ψr. We shall see below that the Ψl are linear combina-

tions of fields Ψ ′l that occur in the quark current of beta decay, Ψ±,l = S
†
±Ψ
′
±,l.

Admitting for completeness also similar transformations for righthanded
fields, Ψ±,r = S

†
±,rΨ

′
r, one gets

Lm+ = Ψ
′†
+lm

′
+Ψ
′
+r + Ψ

′
+r
†m′+

†Ψ ′+l, (5.290)

m′+ = S+m+S
†
+r, m

′
− = S−m−S

†
−r. (5.291)

With det(S) = 1, m± and m
′
± have identical eigenvalues; the m

′
± are similar-

ity transforms of m±. The non-unitary matrix V of (2.170) is now replaced
by two unitary matrices. This is convenient for the construction of m± from
m′±. One first considers the product m

′m′† which is Hermitian:

m′m′† = SmS†rSrm
†S† = Sm2S†, (5.292)

as S†rSr = 1 and mm
† = m2. After the diagonalization of Sm2S†, one then

obtains m = (m2)1/2.

The matrix S†+S− (with S+ ≡ S+,l) enters the Lagrangian for beta decay.
The decays n → pe−ν and Λ → pe−ν were originally attributed to two
different currents jµpn and j

µ
Λn in (2.323), with Gµ replaced by two different
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coupling constants Gn and GΛ. Cabibbo (1963) noted a kind of universality,
Gn = Gµ cosΘC , GΛ = Gµ sinΘC . In terms of the quark model, Cabibbo’s
expression is

jµ = Ψ†u,lσ
µ
l (cosΘCΨdl + sinΘCΨs,l). (5.293)

Already before the discovery of charm, this expression was generalized by
Glashow, Iliopoulos and Maiani (1970) to

jµGIM = Ψ
′
+,l
†σµl S

†
+S−Ψ−,l, (5.294)

where the index l of ±, l is again suppressed. The product of the two unitary
matrices S†+ and S− is again unitary and can be kept real by a suitable choice
of phases between the fields:

S†+S− =

(
cosΘC sinΘC
− sinΘC cosΘC

)
. (5.295)

With the discovery of the b (“beauty”) quark, a corresponding t quark of
charge +2/3 was postulated, such that (5.295 could be generalized to a 3× 3
unitary matrix (Kobayashi and Maskawa 1973). This KM matrix may be
taken as SU3, which fixes the relative phase between Ψ+ and Ψ−. Of its
remaining 8 real parameters, two are eliminated by the relative phases in Ψ+,
and two by the relative phases in Ψ−. This leaves 4 parameters, of which 3
may be taken as angles Θ1, Θ2, Θ3, and the last one as a complex phase e

iδ.
It introduces complex coupling constants into beta decay, which violate CP
invariance. This topic is treated in special books (Jarlskog 1989, Bigi and
Sanda 2000). It was first discovered in decays of the long-lived neutral kaon

K0L which is close to a CP eigenstate |K
0
2 〉 = 2

−1/2|K0+K
0
〉, and is presently

under investigation for the B0 states which are linear combinations of |db〉
and |db〉.

5.9 Baryon Magnetic Moments

With the possible exception of “pentaquarks”, all baryons are described as
three-quark bound states. Being color-singlets, they belong to the singlet rep-
resentation “1” of 3× 3× 3 color, which is totally antisymmetric in all three
indices. As it is the same for all baryons, it may simply be ignored. Moreover,
all three quarks in the baryon octet and decuplet are in the (1s)3 state which
is totally symmetric and which may be factored out as well. The remain-
ing problem is then to find the (flavor, spin)-states of baryons. In the limit
of SU3 symmetry, it is analogous to finding totally antisymmetric (orbital,
spin)-states for three electrons, which was discussed in Sect. 3.9. The states
uuu, ddd, and sss contain three identical quarks. As their complete states
including color must be antisymmetric, their spin states χ(S, ms) must be to-
tally symmetric. These are the states χ(3/2, ms) mentioned in Sect. 3.9. They
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are now rewritten in the most compact notation χ(+1/2) = “spin up” = ↑,
χ(−1/2) = “spin down” = ↓:

χ(32 ,
3
2 ) = ↑↑↑, χ(

3
2 ,
1
2 ) = 3

−1/2(↓↑↑ + ↑↓↑ + ↑↑↓). (5.296)

In Sect. 3.9, they were rejected for the orbital combinations |00v〉 (two elec-
trons in the ground state, one electron in a valence state). Now they are
welcome for the orbital state |000〉 of three identical quarks, in particular for
the ∆++ which is uuu. In perfect SU2 symmetry, u and d are identical par-
ticles, which allows one to generate the other members ∆+, ∆0, ∆− of this
isospin quartet by quark lowering operators. For example, the state |32 ,

3
2 〉 of

∆+ is 3−1/2(duu+udu+uud) ↑↑↑, where the bracket results from the quark
lowering operator, precisely as with spin. The spin state |32 ,

1
2 〉 of ∆

+ is then

|∆+ ↑〉 = 1
3 (duu+ udu+ uud)(↓↑↑ + ↑↓↑ + ↑↑↓). (5.297)

Our aim now is to construct the corresponding proton state |p ↑〉, which has
S = 1/2, but which should nevertheless be totally symmetric in the limit of
perfect isospin invariance.
There are two totally symmetric states in addition to (5.297), namely one

which contains only those products in which d has ↓ and each u has ↑,

ψcor = 3
−1/2(udu ↑↓↑ +uud ↑↑↓ +duu ↓↑↑), (5.298)

and the rest, which contains the mixed products:

ψmix = 6
−1/2[duu(↑↓↑ + ↑↑↓) + udu(↓↑↑ + ↑↑↓) + uud(↓↑↑ + ↑↓↑)], (5.299)

Both states are normalized to 1. The desired proton state is that combi-
nation which is orthogonal to (5.297),

〈∆+ ↑ |aψcor + bψmix〉 = 0, (5.300)

with the normalization a2 + b2 = 1. The result is b = −2−1/2a, i.e. a =
(2/3)1/2, b = 3−1/2, which gives explicitly

|p ↑〉 = (18)−1/2[2(duu ↓↑↑ +udu ↑↓↑ +uud ↑↑↓)− uud(↑↓↑ + ↓↑↑)

−udu(↑↑↓ + ↓↑↑)− duu(↑↑↓ + ↑↓↑)]. (5.301)

To check the spin 1/2 of this state, one combines the terms such that two of
the three spin always appear as singlets, for example

udu(2 ↑↓↑ − ↑↑↓ − ↓↑↑) = udu[↑ (↓↑ − ↑↓) + (↑↓ − ↓↑) ↑]. (5.302)

In the nonrelativistic Zeeman operator (4.150), the magnetic moment is
expressed by (4.152), µi = giµnsi = µiσi, µn = eh̄/2mpc being the nuclear
magneton. In Table 5.1, gi/2 is quoted, which would be 1 for a Dirac proton.
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The last column gives the quark model values, µoctet = Σ
3
i=1µiσzi. For the

proton and neutron, these are calculated from (5.301) and from the corre-
sponding expression for |n ↑〉, which has u and d exchanged. The first three
terms of (5.301) have σu1z + σu2z = 2, with a weight 4/18, giving a total of
2 · 3× 4/18 = 4/3. The remaining six terms have σu1z + σu2z = 0. Similarly,
the first three terms contribute −µd with a weight 4/18 each, while the re-
maining six terms contribute +µd with a weight 1/18 each, giving a total of
−µd(12 − 6)/18 = −µd/3. For the up and down quarks, one obtains in this
way

µu = 1.85µn, µd = −.972µn. (5.303)

As the masses of u and d quarks are not known, these values cannot be related
to the g = 2 expected for Dirac quarks. From the quark charges +2/3 and
−1/3, SU2 symmetry predicts µu = −2µd, µp/µn = −3/2. The experimental
value −1.53 is slightly larger, which seems related to the presence of virtual
pions in the nucleons. Using the CG-coefficients (2.131) with I1 = 1, I2 = 1/2
instead of j1 = 1, j2 = 1/2, one finds for the virtual emission of pions by
nucleons,

p→ (2/3)−1/2π+n− 3−1/2π0p, n→ −(2/3)−1/2π−p+ 3−1/2π0n. (5.304)

Consequently, the charged pions appear with weight 2/3 in both cases. If they
were the only source of magnetic moments, one would have µp/µn = −1. The
early theory of strong interactions assumed that each baryon was surrounded
by a cloud of virtual mesons, in which the pions dominate because of their
small mass.
The virtual pion effect is particularly strong in Σ−, which due tom(Σ−)−

mΛ = 82MeV is relatively close to the dissociation limit Σ → πΛ. The quark
model prediction µ(Σ+) − µ(Σ−) = 3.89µn must be compared with the
experimental value 3.62µn.
The Λ-hyperon is a singlet in isospace, which is antisymmetric. The sym-

metry of the complete wave function requires that also the corresponding
spins appear in the antisymmetric combination,

|Λ ↑〉 = (12)−1/2[(ud− du)(↑↓ − ↓↑)s ↑ +s ↑ (ud− du)(↑↓ − ↓↑)

+(usd− dsu)(↑↑↓ − ↓↑↑)]. (5.305)

In this combination, the magnetic moments of u and d disappear, the result
being simply µΛ = µs. If one approximates the kinetic energies of quarks in
baryons by (πσ)2/2mi, one can calculate their “constituent” masses from
µq = Zq/2mq, obtaining (Donoghue et al. 1992)

mu = md ≈ 320MeV, ms ≈ 510MeV. (5.306)
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The orthonormality relations (1.197) for two solutions ψi and ψj of the KG
equation are

∫ r2drRjRi(Ej/2 +Ei/2− V ) = mc
2δij . (A.1)

The resulting normalization for i = j, Ri = Rj = R is

∫ r2drR2(1− V/E) = mc2/E. (A.2)

In the following we set V = −Ze2/r = −αZ h̄c/r, and lα = [(l+
1
2 )
2−α2Z ]

1
2− 12 :

R = NKGe
−z/2zlαF, z = 2κr, F = F (−nr, b, z), b = 2lα + 2. (A.3)

The value of NKG follows from insertion into (A.3):

N2KG(2κ)
−3

∫ ∞
0

dze−zzb(1 + 2αZ h̄cκ/zE)F
2 = mc2/E. (A.4)

This and similar integrals for 〈r−s〉 follow from the formula

Js = ∫ dze
−zzb−sF 2(−nr, b, z) = nr!Γ

−1(b+ nr)Γ (b)Γ (b+ 1− s)[1 +X],
(A.5)

X = nr
(s− 2)(s− 1)

b

[
1 + (nr − 1)

(s− 3)s

22(b+ 1)

(
1 + (nr − 2)

(s− 4)(s+ 1)

32(b+ 2)

)]
,

(A.6)
where X is complete for −3 < s < 6. Using Γ (b+1) = bΓ (b) and b/2+nr =
lα+1+nr = nβ, both J0 and J1 contain the following combination of gamma
functions:

ΠΓ = Γ
2(b)/Γ (b+ nr). (A.7)

The nonrelativistic limit of ΠΓ is

ΠΓ,nr = [(2l + 1)!]
2/(l + n)!. (A.8)

The first three values of Js are

J0 = nr!2nβΠΓ , J1 = nr!ΠΓ , J2 = nr!ΠΓ /(b− 1). (A.9)
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Insertion of J0 and J1 into (A.4) gives

N−2KGmc
2/E = (2κ)−3nr!2(nβ + αZ h̄cκ/E)ΠΓ . (A.10)

The general definition of κ is h̄κ = (m2c2 −E2/c2)1/2. For bound states, h̄κ
is quantized according to (1.129),

h̄cκ = αZE/nβ , (A.11)

such that the second term in the bracket is α2Z/nβ . By means of (1.129),
1 + α2Z/n

2
β = m

2c4/E2, N2KG gets simplified:

N2KG = 4κ
3[nr!nβΓ

2(b)]−1Γ (b+ nr)E/mc
2. (A.12)

The nonrelativistic limit has

N2KG ≈ N
2 = 4κ3(n+ l)!/[(2l + 1)!2nnr!]. (A.13)

The following expectation values are defined as in (1.206), 〈r−s〉 ≡
∫ ψ∗r−sψd3r. For s = 1, 2, 3, 4, and with lα(lα + 1) = L2α, they are

〈r−1〉 = κ2aB = κ
2/αZm, (A.14)

〈r−2〉 = κ3aB/(lα +
1
2 ) = κ

3/αZm(lα +
1
2 ), (A.15)

〈r−3〉 = nβκ
4aB/(lα +

1
2 )L

2
α = αZE〈r

−2〉/L2α, (A.16)

〈r−4〉 = κ5aB[3n
2
β − L

2
α − 1]/L

2
α(l
2
α − 1/4)(lα + 3/2). (A.17)

The last expression in each line sets h̄ = c = 1. The nonrelativistic approxi-
mations of 〈r−s〉 are given in Sect. 2.8. 〈r−3〉l=0 and 〈r−4〉l=0 are only to be
used in connection with an additional factor lα. Note however that the first-
order energy shift E1 is not necessarily 〈r−s〉: The KG perturbation theory
is a special case of the Kramers perturbation theory of Sect. 2.9, where E1 is
given by (2.292). If the Coulomb potential is modified by a small Vper, then
the c2π02 of (2.287) is generalized to

c2π02 = (E0−V +E1−Vper)
2 ≈ (E0−V )2+2(E1−Vper)(E

0−V ). (A.18)

In this case, the Kper of (2.288) is Vper(E
0 − V ), and (2.292) becomes

E1 = 〈Vper(1− V/E
0)〉 = ∫ R2r2drVper(E

0 − V )/mc2. (A.19)

For V = −αZ/r, this integral diverges for Vper ≈ r−2. Physically relevant
modifications of the point Coulomb potential have the Yukawa form, see
Appendix C.
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The Dirac-Coulomb equation has two types of solutions which are equiva-
lent only for j = n− 12 . According to the orthogonality relations (2.207), the
normalization constants N± of the solutions (2.145) equal the Klein-Gordon
constant NKG, taken at the appropriate value of b in ΠΓ (A.7):

N± = NKG(b±), b± = 2lα± + 2, b+ = 2γ + 2, b− = 2γ. (A.20)

The radial wave function components (g, f) of the parity eigenstates are
normalized according to (2.196), ∫(g2 + f2)r2dr = 1. A normalization con-
stant Nγ has been defined in (2.195). However, it is customary to remove the
square roots x± such that F− = F (1 − nr, bD, z) occurs with a factor −nr
(nr = 0, 1, 2 . . .) in the square bracket:

(g, f) = ND(1±E/m)
1/2e−z/2zγ−1[±(mβ − κD)F (−nr, bD, z)− nrF−].

(A.21)
The resultingN2D is, withmβ = αZm/κ according to (2.184), and bD = 2γ+1,

N2D = 4κ
3[nr!ΠΓ (bD, nr)[(mβ − κD)

2 + nr(2γ + nr)]]
−1. (A.22)

Rewriting nr as nβ − γ, one finds nr(2γ + nr) = n2β − γ
2 = m2β − κ

2
D, using

n2β = m
2
β−α

2
Z according to (2.184). This allows one to simplify N

2
D as follows:

N2D = 2κ
3[nr!ΠΓ (bD, nr)mβ(mβ − κD)]−1,

κ ≈ κn[1 +
1
2α
2
Z/n(1/(j +

1
2 )− 1/n)].

(A.23)

The approximate value of κ comes from (2.164). Insertion of the definition
(2.184), mβ = αZm/κ, gives

N2D = 2κ
4[αZmnr!Γ

2(bD)(mβ − κD)]
−1Γ (bD + nr). (A.24)

For l = 0, approximate expressions both for N2D and N
2
KG will be given in

Appendix C. The Dirac expectation values of r−s are, with κD = (l−j)(2j+1)
and γ =

√
κ2D − α

2
Z ,

〈r−1〉D = κ
3(κ2D + nrγ)/γα

2
Zm

2 = (1 + α2Z/γnβ)〈r
−1〉, (A.25)

〈r−2〉D = 2κ
3κD(2κDE/m− 1)[γ(4γ

2 − 1)αZm]
−1E/m, (A.26)

〈r−3〉D =
2κ3

γ(4γ2 − 1)

[
3κDE

κDE/m− 1

m(γ2 − 1)
− 1

]
. (A.27)

The first-order energy shift caused by a perturbative potential V 1 ≈ r−s is
proportional to 〈r−s〉D. The corresponding energy shift in the KG equation
is proportional to 〈r−s(1+αZ/Er)〉, according to (A.19). For s = 1, one finds
from (A.14) and (A.15), δE(s = 1) = 〈r−1〉[1 + α2Z/nβ(lα +

1
2 )], which is in

fact close to the Dirac expression (A.25).
Nondiagonal matrix elements are given by Shabaev (1991), and by

Martinez-y-Romero et al. (2001).
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The expectation values of other operators follow from the “virial theorem”
and its generalizations (Friar and Negele 1976, Goldman and Drake (1982),
Shabaev, Martinez-y-Romero). Some relations are trivial, for example

〈H〉 = E, H = V + pα+mβ. (A.28)

Others follow from an operator Ô as

〈[H, Ô]〉 = 〈EÔ − ÔE〉 = 0. (A.29)

In particular, with Ô = rp and r̂p = pr, one obtains

〈pα〉 = 〈rV ′〉, V ′ ≡ [∂r, V ], (A.30)

〈r−1(αp− αrpr)〉 = 〈V
′〉, (A.31)

The point Coulomb potential VC = −αZ/r has rV ′C = −VC ,

〈pα〉 = −〈VC〉. (A.32)

This is the virial theorem. Insertion into (A.28) cancels VC ,

〈β〉 = E/m : ∫(g2 − f2) = E/m. (A.33)

Taking for Ô any local function f(r), one finds

〈[α∇, f(r)]〉 = 0. (A.34)

Expectation values involving p2 follow most easily from the Kramers equa-
tion (2.135), as the expectation value of the anti-Hermitian operator [σp, V ]
vanishes:

〈p2〉 = E2 −m2 − 2E〈V 〉+ 〈V 2〉. (A.35)

This applies again for any shape of V . Its nonrelativistic limit is obtained
by setting E → E/c = mc + EN/c and neglecting both E2N/c

2 and 〈V 2〉,
〈p2/2m〉 = EN − 〈V 〉. It is identical with the expectation value of the non-
relativistic Schrödinger operator (1.49) and has nothing to do with the non-
relativistic virial theorem 〈p2/2m〉 ≈ −〈VC/2〉, which uses the Schrödinger
expectation value of Ô = rp.
For V = −αZ/r, the orthogonality relations (A.1) are simplified by the

transformation (1.143) of the distance variable, rε = EαZr.

rε = EαZr,

∫ ∞
0

r2εdrεRj(rε/Ej)Ri(rε/Ei) = δij . (A.36)

The Dirac wave functions are normalized according to (2.203), ∫ ψ†jψi = δij ,
which is already as simple as possible. Introduction of rε leaves βm/E as the
only energy-dependent operator. The resulting orthogonality relations are

∫ d3rεψ
†
j (rε/Ej)βψi(rε/Ei) = 0 for j �= i. (A.37)
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The orthogonality relations of the solutions of the ne-electron Dirac-Coulomb
equation are in the standard Dirac form

∫ d3r1d
3r2 . . . ψ

†
j (r1, r2 . . .)ψi(r1, r2 . . .) = δij . (A.38)

The form analogous to (A.37) contains the total electronic energies Ej and
Ei and has β replaced by Σβe. The method can be extended to the solutions
of the Dirac-Breit equation, but the Breit operator of Sect. 3.4 can only be
used as a first-order perturbation, of course.
The Kramers orthogonality relations have already been presented in

(2.207). They have the same form as the KG orthogonality relations, except

that ψ†j must be specified as the lefthanded ψ
†
l,j if ψi is taken as a righthanded

Kramers spinor ψr,i:

∫ ψ†l,j(Ei +Ej − 2V )ψr,i = 2Eδij . (A.39)

The ψ†l is necessary because the Kramers operator K
0
r is not Hermitian.

As long as hyperfine operators are treated perturbatively, the most con-
venient form of binary equations uses the variable ρ = µr, because the or-
thogonality relations (4.211)

∫ ρ2dρRj(ρ)Ri(ρ)(εi/µi + εj/µj − 2Vρ) = 2δijεi/µi. (A.40)

of the Todorov equation and (4.277) ∫ d3ρψ†jψi = δij of the leptonium equa-
tion are then form-identical with those of the single-particle equation, all
differences being concentrated in the physical meaning of the single parame-
ter µ. Equations (A.11, A.14, A.15) and (A.16) are generalized as follows:

κ = αZε/µ, 〈ρ
−1〉 = κ2/αZµ

2 = αZ(ε/nβµ)
2, (A.41)

〈ρ−2〉 = κ3/αZµ
3(lα + 1/2) = α

2
Z(ε/nβµ)

3/(lα + 1/2), (A.42)

〈ρ−3〉 = αZ(ε/µ)〈ρ
−2〉/L2α. (A.43)

In the Dirac case, (A.25) and (A.26) read

〈ρ−1〉D = (κ/µ)
3(κ2D + nrγ)/γα

2
Z , (A.44)

〈ρ−2〉D = 2(κ/µ)
3κD[2κD(1 + α

2
Z/n

2
β)
−1/2 − 1]/γ(4γ2 − 1), (A.45)

with κ/µ = αZ(n
2
β + α

2
Z)
−1/2 independent of µ.

The full leptonium equation (4.275) contains E2, E0 and E−2. The E−2

in the hyperfine operator makes ρ = µr inappropriate for orthogonality rela-
tions. Dividing the equation by E2 and introducing rε as a new independent
variable, one obtains

[12 (1−m
2
+/E

2) + α2Z/rε − αZγ
5pεσ1 + i(α

2
Z/rε)γ

5σ×12αZpε]ψ1 = 0. (A.46)
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The resulting orthogonality relations are

∫ d3rεχ
†
j(rε/Ej)m

2
+ψi(rε/Ei) = 0 for j �= i. (A.47)

χ are the eight components defined in (3.173); as in the Kramers equation,
they appear because one of the operators (in this case the hyperfine operator)
is not Hermitian. The m2+ = m

2
1+m

2
2 +2m1m2β is the generalization of the

β of the Dirac equation.
Without hyperfine interaction, the Kramers form of the leptonium equa-

tion has the following standard form in the variable rε:

K = 2/rε + α
2
Z/r

2
ε + [σ1pε, αZ/rε]− p

2
ε , Kψr = n

−2
β ψr. (A.48)

One of the early arguments against the KG equation was that the inte-
grand of its normalization integral (A.1) can be negative at small r, whereas
that of the Dirac equation is always positive, which is necessary for a prob-
ability interpretation. It is amusing to see that the opposite is true for the
corresponding integrals (A.36) and (A.37).



B Coulomb Greens Functions

In nonrelativistic quantum mechanics, the higher-order effects of a perturba-
tion H ′ (2.208)

(H +Hper)ψ = (E
0 +E1 +E(2) . . .)ψ (B.1)

may be calculated by means of a Greens function G which is defined by the
following inhomogenenous differential equation

(E −H(r,p))G(r, r′, E) = δ(r − r′). (B.2)

In atomic theory, H = −∇2/2m− αZ/r leads to the Coulomb Greens func-
tion. Its radial component is normally sufficient:

(E −Hl)Gl(r, r
′, E) = δ(r − r′), ∇2l = ∂

2
r + (2/r)∂r − l(l + 1)/r

2. (B.3)

The use of these equations rests on the completeness (1.250) of the solutions
ψn of the unperturbed equation Hψn = Enψn (the upper index

0 is now
suppressed)

δ(r − r′) = Σkψk(r)ψ
∗
k(r

′). (B.4)

Using this expression in (B.2), one can for example calculate E(2) (2.223).
Remember that the Coulomb spectrum includes a continuum of unbound
electrons, which adds an ∫ d3k to the

∑
k in (B.4). For G, on the other hand,

one can construct forms in which the whole expression is reduced to a sum.
The first such form was found by Schwinger, see the review by Maquet (1977).
We shall consider the form of Hostler (1970),

Gl(r, r
′, E) = Σ∞n=l+1RnlE(r)RnlE(r

′)(1− κE/κn)
−1, (B.5)

with κn = αZm/n and κE = (−2mE)−1/2. RnlE is the nonrelativistic limit
of (A.3), but with κn replaced by κE :

RnlE(r) = N(E)e
−κEr(2κEr)

lF (l + 1− n, 2l + 2, 2κEr). (B.6)

F is a polynomial of degree nr.
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The Dirac-Coulomb Greens function has also the nonrelativistic form,
see (2.213) with H0 = HC and (2.223). Its completeness relation has ψ

∗
k(r

′)

replaced by ψ†k(r
′) to account for spin:

S(r, r′, E) = Σkψk(r
′)ψ†k(r

′)(E −Ek)
−1. (B.7)

However, the price of this formal simplicity is a 4× 4 matrix. It seems easier
to work with a 2× 2 matrix G in spin space (Zon et al. 1972, Sapirstein and
Yennie, in the book edited by Kinoshita (1990)). Instead of (B.1), one then
has an implicit eigenvalue equation, (K +Kper)ψ = 0, where K is the KG or
Kramers operator, and Kper is a perturbation. The Kramers operator is

K = E2 −m2 + 2EαZ/r +∇
2 + (α2Z + iαZσr)/r

2, (B.8)

and the relativistic Coulomb Greens function G is defined by

KG(r, r′, E) = δ(r − r′). (B.9)

The Dirac-Coulomb Greens function S follows from G as

S(r, r′, E) = (E − V + iγ5σ∇+mβ)G(r, r′, E). (B.10)

The more complicated E-dependence of K in (B.9) prevents simple solutions
of the type (B.7). G satisfies the following integral equation:

G = GS − ∫ d
3xGS(r, x)(α

2
Z + iαZσx̂)/x

2G(x, r′), (B.11)

where GS satisfies (B.9) without the last two terms inK.GS is a Schrödinger-
Coulomb Greens function with relativistic kinematics. The method yields
a closed expression for most of the Bethe logarithm.
The difficulties of relativistic Coulomb Greens functions should disappear

with the use of the KG and Dirac equations in the dimensionless form (1.144).
The interval 0 < rε <∞ need not be expressed in terms of r. The perturbative
expansion for K may be taken in the form

(K0 +Kper)ψE = [(κ
2/E2)(0) + (κ2/E2)(1) + . . .]ψE . (B.12)

The corresponding Greens function satisfies (B.3) in the form

(k2/E2 − p2ε,lα − 2VE + V
2
E)GE,l(rε, r

′
ε) = δ(rε − r

′
ε), (B.13)

where p2ε,lα has l(l+1)/r
2 replaced by lα(lα+1)/r

2
ε . It has a Hostler solution

(B.5) with new parameters, lα and κε = κ/E = αZ/nβ ,

RnlmE = N(m
2/E2)e−κεrε(2κεrε)

lαF (−nr, 2lα + 2, 2κεrε). (B.14)

However, this formalism remains to be applied.



C Yukawa Expectation Values

Yukawa expectation values 〈e−xr/r〉 are needed for the Uehling potential
(5.83). More generally, they are useful for all interactions that can be written
as dispersion integrals. For fermions, this includes the electric and magnetic
form factor potentials. x is the integration variable of the dispersion rela-
tion, x = xthξ; with the threshold value xth = 2me both for the Uehling
potential and for the electron’s form factor potentials. First-order relativistic
corrections are obtained by the Pauli reduction of Sect. 2.8, with the electric
potential VC+VU (Pachucki 1996). Beyond the first order, one needs the fully
relativistic expectation values. For the KG equation, the energy shift E1 of
first-order perturbation theory is obtained from (A.19)

E1(ξ) = ∫ R2e−xr(r + αZ/E)dr(E/m)

= (2κ)−2 ∫ R2e−zx/2κ(z + 2καZ/E)E/mdz. (C.1)

With R from (A.3), the total exponential becomes e−λz,

λ ≡ 1 +meξ/κ ≡ 1 + 1/y, (C.2)

E1(ξ) = (2κ)−2N2KG(Jλ1 + Jλ2)E/m (C.3)

Jλ1 = ∫ e−λzzb−1F 2(−nr, b, z)dz,

Jλ2 = (2καZ/E) ∫ e−λzzb−2F 2(−nr, b, z)dz. (C.4)

The integral Jλ1 is evaluated in closed form (Landau and Lifshitz 1977, Grad-
shteyn and Ryzhik 1980),

Jλ1 = Γ (b)λ
−b−2nr(λ− 1)2nrF (−nr,−nr, b; (λ− 1)

−2), (C.5)

where F is the hypergeometric function,

F (a, a′, b; y) = 1 + aa′y/b+ a(a+ 1)a′(a′ + 1)y2/2!b(b+ 1) + . . . (C.6)

In (C.5), F is a polynomial of degree nr. Insertion of λ = 1 + 1/y gives

Jλ1 = Γ (b)(1 + 1/y)
−b−2nry−2nrF (−nr,−nr, b, y

2). (C.7)

With b = 2lα + 2, b + 2nr gives 2nβ. The integral Jλ2 is more complicated.
The two-body case has κ = αZε/nβ ; when ε is of the order of me, meξ/κ
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is much larger than 1. It is then useful to express Jλ1 and Jλ2 in powers
of y,

F 2 = 1− 2znr/b+ z
2nr[nr/b+ (nr − 1)/(b+ 1)]/b+ . . . , (C.8)

and then use the basic integral

∫ e−λzzνdz = Γ (ν + 1)λ−ν−1 : (C.9)

Jλ1 = Γ (b)y
b[1− 2nβy + y

2(2n2β + nβ)](1 + n
2
ry
2/b). (C.10)

The extra factor 2καZ/m ≈ 2α2Z/n in Jλ2 is sufficient to make the y
2-terms

negligible:
Jλ2 = 2(καZ/E)[Γ (b− 1)y

b−1 − 2nry
bΓ (b)/b]. (C.11)

The last term is conveniently combined with the yb of Jλ1 into

J ′λ1 = Γ (b)y
b[1− 4α2Znr/nb− 2ny + y

2(2n2 + n+ n2r/b)], (C.12)

where we have also approximated nβ by n in the higher powers of y. In
the remainder J ′λ2 of Jλ2, use of Γ (b − 1) = Γ (b)/(b − 1) ≈ Γ (b)/(2l + 1)
gives

J ′λ2 = 2α
2
Zn
−1Γ (b)y2l+1/(2l + 1). (C.13)

The Γ (b) is combined with the (2κ)−2N2KG of (C.3) into

(2κ)−2N2KG = (E/m)κ[nr!nβ ]
−1Γ (b+ nr)/Γ (b). (C.14)

The KG energy shift of the Yukawa potential e−2meξr/r is thus

E1(ξ) = κ

(
E

m

)
Γ (b+ nr)

nr!nβΓ (b)
yb
[
1− 4α2Z

nr
nb
− 2ny + y−1

2α2Z
n(2l + 1)

+ y2(. . .)

]
.

(C.15)
The energy shift of the Uehling potential is given by (5.83),

E1U = −
2
3απ(2κ)

−2N2KG
∞
∫
1
dξ(J ′λ1 + J

′
λ2)(ξ

2 − 1)1/2(ξ−2 + 12ξ
−4). (C.16)

The nonrelativistic limit of this integral has been calculated for the ground
state (nr = 0, b = 2), and recurrence relations have been constructed
for other, not too large values of nr and b (Pustovalov 1957). The cor-
responding Dirac ground state integral has been calculated by Karshen-
boim (1999). A convenient transformation of variable for this purpose
is

ξ = (1− v2)−1/2, dξ(ξ2 − 1)1/2ξ−2 = 2v2dv. (C.17)

Approximate expressions for all j = n − 1
2 are given in the limit of large

κ/me. Such integrals are needed for antiprotonic and other exotic atoms
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(Sect. 5.6). The ξ-integration in (C.16) results in integrals (Gradshtein and
Ryzhik 1980),

∫ dξ(ξ2 − 1)1/2ξ−ν = 1
2B(

3
2 ,
ν
2 − 1) =

1
2Γ (

3
2 )Γ (

ν
2 − 1)/Γ (

ν
2 +

1
2 ). (C.18)

In (C.16), the ξ-integrals appear as

IU,ν = ∫ dξ(ξ
2 − 1)1/2ξ−ν(1 + 12ξ

−2) = 3
4

ν

ν + 1
B(32 ,

1
2ν − 1). (C.19)

Neglecting the y2-terms of (C.12),

E1U = −
2
3απκ

κbΓ (b+ nr)

mbenr!nβΓ (b)

[
IU,b+2 − 2αZ

(
m

me
IU,b+3 −

1

2l + 1

me
m
IU,b+1

)]
.

(C.20)
Insertion of b+ 2 = 2(l + 2− β) leads to

IU,b+2 = Γ (3/2)
Γ (l + 1− β)

Γ (l + 5/2− β)

3

4

l + 2− β

l + 5/2− β
. (C.21)

The index l of βl is suppressed here, to facilitate the comparison with the
Dirac case below. For l = 0, (C.21) becomes

IU,4−β = Γ (3/2)
Γ (1− β)

Γ (3/2− β)

3

4

2− β

(3/2− β)(5/2− β)
. (C.22)

The expansion of Γ in powers of β introduces the function Ψ = Γ ′/Γ ; use of
Ψ(3/2) = −γEu − 2 log 2 + 2 and Ψ(1) = −γEu lead to

IU, l=0 ≈
2
5 [1 + β(−2 log 2 + 2−

1
2 +

2
3 +

2
5 )]. (C.23)

For ν = b + 3 and b + 1, we only consider l = 0 and take the limit
α2Z = 0,

IU,b+3 =
3
4 ·
5
6Γ
2(32 )/Γ (3) =

5
64π, IU,b+1 =

18
64π. (C.24)

with Γ (3/2) = 1
2

√
π. Its contribution to E1U is

E1U =
4
3απα

2
Z(κ/me)

3meπ(
5
64 −

18
64m

2
e/m

2). (C.25)

The presence of an extra π leads to the combination αππα
5
Z = αα

5
Z , which

shows that one-loop graphs do produce some terms without π−1. Next, we
expand the factors in front of the IU in (C.20). For l = 0, nr = n − 1, and
to first order in α2Z , b = 2− 2β, nβ = n− β:

Γ (b+ nr) = Γ (n+ 1− 2β) = n![1− 2βΨ(n+ 1)], (C.26)

(4κ3)−1Γ (b)N2KG = 1− 2β[Ψ(n+ 1)− Ψ(2)− 1/2n]− α
2
Z/2n

2, β = α2Z ,
(C.27)
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with Ψ(n + 1) − Ψ(2) = Σni=2i
−1, see (2.228). The factor (κ/me)

b of (C.15)
is expanded as follows:

κ(κ/me)
b = me(κ/me)

2l+3(κ/me)
−2β , (C.28)

(κ/me)
−2β = e−2β log(κnr/me) ≈ 1− 2β log(κnr/me), (C.29)

with κnr = αZµnr/n (here and in the following, the one-body parameters E
and m are replaced by the two-body quantities ε and µ). We can now check
the correction 1 − 2β log(2αZ/n), which has been guessed in Sect. 2.7 from
the divergence of R2/N2 at r = 0. The −2β log 2 which is missing in (C.29)
is provided by (C.23),

[1− 2β log(κ/me)]IU0 =
2
5{1 + β[2 log(me/2κ) +

3
2 +

2
3 +

2
5 ]}. (C.30)

The logarithmic correction is now complete, including the recoil factor
me/µ.
The calculation of the Dirac expectation values 〈e−xr/r〉D of the Yukawa

potential is more complicated, yet the results are similar:

〈e−xr/r〉D = ∫(g
2 + f2)e−xrrdr = (2κ)−2 ∫(g2 + f2)e−zx/2κzdz. (C.31)

When VU has a short range, one needs g
2+ f2 only at small z. An expansion

of F ≡ F (−nr, bD, z) and F− ≡ F (1−nr, bD, z) to order z2 is then sufficient:

(mβ − κD)
2F 2+n2rF

2
−− 2nr(mβ − κD)(ε/µ)FF− = c0+ c1z+ c2z

2. (C.32)

In c0, one approximates ε/µ by 1− α2Z/2n
2,

c0 = (mβ − κD − nr)
2 + nr(mβ − κD)α

2
Z/n

2. (C.33)

In c1 and c2, one may take ε/µ = 1:

c1 = −2(mβ − κD − nr)(mβ − κD − nr + 1), (C.34)

c2 =
nr

b2D(bD + 1)

{
[(mβ − κD)(mβ − κD − 2nr + 2) + n

2
r − nr]

×[nr(2bD + 1)− bD][nr(2bD + 1)− bD]− nr(nr − 1)(2bD + 1)
}
(C.35)

States with l = j + 1
2 have κD = j +

1
2 ≈ γ + α

2
Z/2γ, mβ − κD = nr −

α2Znr/n(2j + 1),

c0(l = j +
1
2 ) = α

2
Zn
2
r/n

2, c1(l = j +
1
2 ) = 2α

2
Znr/n(2j + 1). (C.36)

In comparison with the S-states, c1 and c2 are suppressed by a factor α
2
Z .

This is in fact true for all P-states.
States with l = j − 1

2 have κD = −j −
1
2 and mβ − κD ≈ (nr + 2γ)[1 +

α2Z/2nγ], where α
2
Z/γ serves merely as an abbreviation for α

2
Z/(j+

1
2 ). Drop-

ping the argument l = j − 12 of ci, one obtains from (C.33)–(C.35)
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c0 = 4γ
2 + α2Z(3 + 3γ/n− 1/n− γ/n

2), c1 = −4nrγ, (C.37)

c2 = [nr(2bD − 1)− bD + 1]nr/bD = nr[2nr − (nr + 2γ)/(2γ + 1)]. (C.38)

The index bD = 2γ + 1 ≈ 2j + 2 = 2l + 3 is then approximately one unit
larger than the b = 2lα+2 of the KG equation. To establish the contact with
the nonrelativistic limit, the arguments of the gamma functions in Π−1Γ =
Γ (bD+nr)/Γ

2(bD) in (A.24) must be lowered by one, using Γ (2γ+1+nr) =
(2γ + nr)Γ (2γ + nr):

1
2κ
−2N2D ≈ κ

2Γ (2γ + nr)[αZµnr!4γ
2Γ 2(2γ)(1 + α2Z/2nγ)]

−1. (C.39)

The integrand of (C.31) contains the combination

e−xrzdz(g2 + f2) = z2γ−1dze−λz(c0 + c1z + c2z
2)N2D/2κ

2. (C.40)

Using now the basic integral (C.9) with ν = bD − 2 = 2γ − 1, ν = 2γ and
ν = 2γ + 1, one arrives at

〈e−xr/r〉D = κ
2Γ (2γ + nr)[αZµnr!Γ (2γ)(1 + α

2
Z/2nγ)]

−1y2γ [ ]y, (C.41)

[ ]y = c0/4γ
2 − y(c0 − c1)/2γ + y

2(1 + 1/2γ)(c0/2− c1 + c2). (C.42)

Rewriting the 2γ in (C.41) as 2j + 1− 2βj = 2l + 2− 2βj , one sees that the
only difference from b = 2l + 2 − 2βl in (C.15) is the replacement of βl by
βj ≈ α2Z/(2j+1) (2.146), except for the y

2-terms. In the following, we restrict
ourselves again to S-states, where γ = 1− α2Z/2,nr + 1 = n and nr + 1 = n:

(1 + 1/2γ)(c0/2− c1 + c2) =
1
2 (5n

2 + 1). (C.43)

Γ (2γ + nr)[nr!Γ (2γ)n(1 + α
2
Z/2nγ)]

−1 = 1− α2Z [ψ(n+ 1)− ψ(2) + 1/2n].
(C.44)

The n−1-term of (C.44) cancels that of c0 (C.37). The only remaining n
−1-

term arises from the κ4 of N2D,

κ4(l = 0) = κ4nr[1 + 2α
2
Z(1/n− 1/n

2)] = κ4nr[1 + 2α
2
Znr/n

2]. (C.45)

Including a contribution from IU,6 = 6/35, the total α
2
Z-correction to 〈VU0〉

is a factor

1 + α2Z

[
log
nme
2αZµ

− Ψ(n+ 1) + Ψ(2)−
1

4n2
+ 2
nr
n2
+
326

105
+
3

14n2

]
, (C.46)

with 326/105 = 3/2+1/3+1/5+15/14. The linear αZ-correction is given by
the first term in the bracket of (C.25), as the corresponding integrals differ
only at the order α2Z .
The relativistic recoil correction in the Uehling energy shift EU is small.

With r = ρ/µ, the dimensionless variable z = 2κr becomes z = 2ρκ/µ, and
the Yukawa exponent −2merξ becomes −2ρξme/µ. In summary, the use of
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ρ replaces κ by κ/µ, and me by me/µ. The dimensionless 〈VU/µ〉 depends
only on κ/me (see (C.28)) and remains unchanged. The only recoil correction
for EU comes from (5.3),

EU = µ(ε/µ)U = µ〈VU/µ〉 ≈
m1m2
m12

(
1 +
α2Zm1m2
2n2m212

)
〈VU/µ〉. (C.47)



Bibliography

Aharanov Y., Bohm D. (1959): Phys. Rev. 115, 485
Alhaidari A.D. (2001): Phys. Rev. Lett. 87, 210405
Baryshevsky V.G., Kuten S.A. (1978): Phys. Lett. A 67, 355
Barker W.A., Glover F.N. (1954): Phys. Rev. 99, 317
Bethe H.A. (1947): Phys. Rev. 72, 339
Bethe H.A., Salpeter E.E. (1951): Phys. Rev. 84, 1232
Bethe H.A., Salpeter E.E.: Quantum Mechanics of One- and Two-Electron
Atoms. Springer, Berlin 1957

Bigi I.I., Sanda A.I. CP Violation. Cambridge Univ. Press, 2000
Bohnert G. et al. (1986): Z. Phys. D 2, 23
Bohr N. (1913): Philos. Mag. 26, 1, 476, 857
Borie E., Rinker G.A. (1982): Rev. Mod. Phys. 54, 67
Braun M.A. (1973): Sov. Phys. JETP 37, 211
Breit G. (1929): Phys. Rev. 34, 553
Brezin E., Itzykson C., Zinn-Justin J. (1970): Phys. Rev. D 1, 2349
De Broglie L. (1923): Compt. Rend. Acad. Sci. 177, 505, 548, 630
Brown L.M. (1958): Phys. Rev. 111, 957
Brown L.M.: Quantum Field Theory. Cambridge Univ. Press, Cambridge
1992

Brown G., Ravenhall D.E. (1951): Proc. R. Soc. London, Ser. A 208, 552
Cabibbo N. (1963): Phys. Rev. Lett. 10, 531
Carruthers P.A.: Spin and Isospin in Particle Physics. Gordon and Breach,
New York 1971

Canuto V., Ventura J. (1977): Fundam. Cosmic Phys. 2, 203
Chalmers G., Siegel W. (1999): Phys. Rev. D 59, 45012, 45013
Close F.E.: An Introduction to Quarks and Partons. Academic Press London,
New York 1979

Chraplyvy Z.V. (1953): Phys. Rev. 91, 388
Crater H.W., Van Alstine P. (1994): Found. of Physics 24, 297
Czarnecki A. et al. (1999): Phys. Rev. A 59, 4316
Das T.P.: Relativistic Quantum Mechanics of Electrons. Harper and Row,
New York 1973

Dineykhan M. et al.:Oscillator Representation in Quantum Physics. Springer
1995.



268 Bibliography

Dirac P.A.M. (1926): Proc. R. Soc. London, Ser. A 112, 661; (1927): Proc.
R. Soc. London, Ser. A 114, 243; (1928): Proc. R. Soc. London, Ser. A
117, 610

Donoghue J.F. et al.: Dynamics of the Standard Model. Cambridge Univ.
Press, Cambridge 1992

Drake G.W.F. (1982): Adv. At. Mol. Phys. 18, 399
Drake G.W.F.: In Long-Range Casimir Forces. Levin F.S., Micha D.A. (eds.),
Plenum, New York 1993

Eides M.I. et al. (2001): Phys. Rep. 342, 63
Einstein A. (1905): Ann. Phys. (Leipzig) 17, 132
Elkhovskii A.S. (1996): Sov. Phys. JETP 83, 230
Engel E. et al.: In Density Functional Theory. Gross E.K.U., Dreizler R.M.
(eds.), Plenum Press, New York 1995

Enz C.P.: No Time to be brief. Oxford Univ. Press, 2002
Faustov R. (1970): Phys. Lett. B 33, 422
Fermi E., Yang C.N. (1949): Phys. Rev. 76, 1739
Feshbach H., Villars F. (1957): Rev. Mod. Phys. 30, 24
Feynman R.P., Gell-Mann M. (1958): Phys. Rev. 109, 193
Fierz M., Pauli W. (1939): Helv. Phys. Acta 12, 297
Foldy L.L., Wouthuysen S.A. (1950): Phys. Rev. 78, 29
Friar J.L., Negele J.W. (1976): Phys. Rev. C 13, 1338
Fried H.M., Yennie D.R. (1958): Phys. Rev. 112, 1391
Gell-Mann M. (1964): Phys. Lett. 8, 214
Glashow S. et al. (1970): Phys. Rev. D 2, 1285
Goldman S.P., Drake G.W.F. (1982): Phys. Rev. A 35, 2877
Gordon W. (1926): Z. Phys. 40, 117
Gradshteyn I.S., Ryszhik I.M.: Tables of Integrals, Series, and Products, Aca-
demic Press, New York 1980

Grant I.P., Quiney H.M. (1988): Adv. At. Mol. Phys. 23, 37; (2000): Phys.
Rev. A 62, 022508; (2002): In Relativistic Electronic Structure Theory,
Part 1 (P. Schwerdtfeger ed., Springer).

Gross D.J., Wilczed F. (1973): Phys. Rev. Lett. 30, 1323 and Phys. Rev. D
8, 3635

Gross F.: Relativistic Quantum Mechanics and Field Theory. Wiley, New
York 1993

Grotch H., Hegstrom R.A. (1971): Phys. Rev. A 4, 59
Grotch H., Yennie D.R. (1967): Z. Phys. 202, 425; (1969): Rev. Mod. Phys.
41, 350

Grozin A.G.: Heavy Quark Effective Theory. Springer, Berlin, Heidelberg
2004

Gupta S.N. et al. (1989): Phys. Rev. D 40, 4100
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