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Preface

It is more important to repair errors than to prevent them. This is the
quintessence of the philosophy of human cognition known as critical ratio-
nalism which is perhaps at its most dominant in modern natural sciences.
According to it insights are gained through a series of presumptions and
refutations, through preliminary solutions that are continuously, rigorously,
and thoroughly tested. Here it is of vital importance that insights are never
verifiable but, at most, falsifiable. In other words: a natural scientific theory
can at most be regarded as “not being demonstrably false” until it can be
proven wrong. By contrast, a sufficient criterion to prove its correctness does
not exist.

Newtonian mechanics, for example, could be regarded as “not being
demonstrably false” until experiments with the velocity of light were per-
formed at the end of the 19th century that were contradictory to the pre-
dictions of Newton’s theory. Since, so far, Albert Einstein’s theory of special
relativity does not contradict physical reality (and this theory being simple
in terms of its underlying assumptions), relativistic mechanics is nowadays
regarded as the legitimate successor of Newtonian mechanics. This does not
mean that Newton’s mechanics has to be abandoned. It has merely lost its
fundamental character as its range of validity is demonstrably restricted to
the domain of small velocities compared to that of light.

In the first decade of the 20th century the range of validity of Newtonian
mechanics was also restricted with regard to the size of the physical objects
being described. At this time, experiments were carried out showing that
the behavior of microscopic objects such as atoms and molecules is totally
different from the predictions of Newton’s theory. The theory more capable
of describing these new phenomena is nonrelativistic quantum mechanics and
was developed in the subsequent decade. However, already at the time of its
formulation, it was clear that the validity of this theory is also restricted as
it does not respect the principles of special relativity.

Today, about one hundred years after the advent of nonrelativistic quan-
tum mechanics, it is quantum field theories that are regarded as “not being
demonstrably false” for the description of microscopic natural phenomena.
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They are characterized by the facts that

• they can be Lorentz-covariantly formulated, thus being in agreement with
special relativity

• they are many-particle theories with infinitely many degrees of freedom
and account very precisely for particle creation and annihilation processes.

Naturally, the way toward these modern theories proceeded through some
intermediate steps. One began with nonrelativistic quantum mechanics – in
conjunction with its one-particle interpretation – and tried to extend this
theory in such a way that it becomes Lorentz-covariant. This initially led
to the Klein-Gordon equation as a relativistic description of spin-0 particles.
However, this equation contains a basic flaw because it leads to solutions with
negative energy. Apart from the fact that they seem to have no reasonable in-
terpretation, their existence implies quantum mechanically that stable atoms
are not possible as an atomic electron would fall deeper and deeper within
the unbounded negative energy spectrum via continuous radiative transitions.
Another problem of this equation is the absence of a positive definite prob-
ability density which is of fundamental importance for the usual quantum
mechanical statistical interpretation. These obstacles are the reason that for
a long time, the Klein-Gordon equation was not believed to be physically
meaningful.

In his efforts to adhere to a positive definite probability density, Dirac
developed an equation for the description of electrons (more generally: spin-
1/2 particles) which, however, also yields solutions with negative energy. Due
to the very good accordance of Dirac’s predictions with experimental results
in the low energy regime where negative energy solutions can be ignored
(e.g. energy spectrum of the hydrogen atom or gyromagnetic ratio of the
electron), it was hardly possible to negate the physical meaning of this theory
completely.

In order to prevent electrons from falling into negative energy states, Dirac
introduced a trick, the so-called hole theory. It claims that the vacuum con-
sists of a completely occupied “sea” of electrons with negative energy which,
due to Pauli’s exclusion principle, cannot be filled further by a particle. Addi-
tionally, this novel assumption allows for an (at least qualitatively acceptable)
explanation of processes with changing particle numbers. According to this,
an electron with negative energy can absorb radiation, thus being excited
into an observable state of positive energy. In addition, this electron leaves
a hole in the sea of negative energies indicating the absence of an electron
with negative energy. An observer relative to the vacuum interprets this as
the presence of a particle with an opposite charge and opposite (i.e. pos-
itive) energy. Obviously, this process of pair creation implies that, besides
the electron, there must exist another particle which distinguishes itself from
the electron just by its charge. This particle, the so-called positron, was indeed



Preface VII

found a short time later and provided an impressive confirmation of Dirac’s
ideas. Today it is well-known that for each particle there exists an antiparticle
with opposite (not necessarily electric) charge quantum numbers.

The problem of the absence of a positive definite probability density could
finally be circumvented in the Klein-Gordon theory by interpreting the quan-
tities ρ and j as charge density and charge current density (charge interpreta-
tion). However, in this case, the transition from positive into negative energy
states could not be eliminated in terms of the hole theory, since Pauli’s ex-
clusion principle does not apply here and, therefore, a completely filled sea
of spin-0 particles with negative energy cannot exist.

The Klein-Gordon as well as the Dirac theory provides experimentally
verifiable predictions as long as they are restricted to low energy phenomena
where particle creation and annihilation processes do not play any role. How-
ever, as soon as one attempts to include high energy processes both theories
exhibit deficiencies and contradictions. Today the most successful resort is –
due to the absence of contradictions with experimental results – the transition
to quantized fields, i.e. to quantum field theories.

This book picks out a certain piece of the cognitive process just described
and deals with the theories of Klein, Gordon, and Dirac for the relativistic
description of massive, electromagnetically interacting spin-0 and spin-1/2
particles excluding quantum field theoretical aspects as far as possible (rel-
ativistic quantum mechanics “in the narrow sense”). Here the focus is on
answering the following questions:

• How far can the concepts of nonrelativistic quantum mechanics be applied
to relativistic quantum theories?

• Where are the limits of a relativistic one-particle interpretation?

• What similarities and differences exist between the Klein-Gordon and Dirac
theories?

• How can relativistic scattering processes, particularly those with pair cre-
ation and annihilation effects, be described using the Klein-Gordon and
Dirac theories without resorting to the formalism of quantum field theory
and where are the limits of this approach?

Unlike many books where the “pure theories” of Klein, Gordon, and Dirac
are treated very quickly in favor of an early introduction of field quantization,
the book in hand emphasizes this particular viewpoint in order to convey a
deeper understanding of the accompanying problems and thus to explicate
the necessity of quantum field theories.

This textbook is aimed at students of physics who are interested in a
concisely structured presentation of relativistic quantum mechanics “in the
narrow sense” and its separation from quantum field theory. With an em-
phasis on comprehensibility and physical classification, this book ranges on
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a middle mathematical level and can be read by anybody who has attended
theoretical courses of classical mechanics, classical electrodynamics, and non-
relativistic quantum mechanics.

This book is divided into three chapters and an appendix. The first chap-
ter presents the Klein-Gordon theory for the relativistic description of spin-0
particles. As mentioned above, the focus lies on the possibilities and limits
of its one-particle interpretation in the usual nonrelativistic quantum me-
chanical sense. Additionally, extensive symmetry considerations of the Klein-
Gordon theory are made, its nonrelativistic approximation is developed sys-
tematically in powers of v/c, and, finally, some simple one-particle systems
are discussed.

In the second chapter we consider the Dirac theory for the relativistic
description of spin-1/2 particles where, again, emphasis is on its one-particle
interpretation. Both theories, emanating from certain enhancements of non-
relativistic quantum mechanics, allow for a very direct one-to-one comparison
of their properties. This is reflected in the way that the individual sections
of this chapter are structured like those of the first chapter – of course, apart
from Dirac-specific issues, e.g. the hole theory or spin that are considered
separately.

The third chapter covers the description of relativistic scattering proces-
ses within the framework of the Dirac and, later on, Klein-Gordon theory. In
analogy to nonrelativistic quantum mechanics, relativistic propagator tech-
niques are developed and considered together with the well-known concepts
of scattering amplitudes and cross sections. In this way, a scattering for-
malism is created which enables one-particle scatterings in the presence of
electromagnetic background fields as well as two-particle scatterings to be
described approximately. Considering concrete scattering processes to low-
est orders, the Feynman rules are developed putting all necessary calcula-
tions onto a common ground and formalizing them graphically. However, it
is to be emphasized that these rules do not, in general, follow naturally from
our scattering formalism. Rather, to higher orders they contain solely quan-
tum field theoretical aspects. It is exactly here where this book goes for the
first time beyond relativistic quantum mechanics “in the narrow sense”. The
subsequent discussion of quantum field theoretical corrections (admittedly
without their deeper explanation) along with their excellent agreement with
experimental results may perhaps provide the strongest motivation in this
book to consider quantum field theories as the theoretical fundament of the
Feynman rules.

Important equations and relationships are summarized in boxes to allow
the reader a well-structured understanding and easy reference. Furthermore,
after each section there are a short summary as well as some exercises for
checking the understanding of the subject matter. The appendix contains a
short compilation of important formulae and concepts.
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Finally, we hope that this book helps to bridge over the gap between
nonrelativistic quantum mechanics and modern quantum field theories, and
explains comprehensibly the necessity for quantized fields by exposing rela-
tivistic quantum mechanics “in the narrow sense”.

Cologne, March 2010 Armin Wachter
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1. Relativistic Description of Spin-0 Particles

In this chapter, we deal with the relativistic description of spin-0 particles
in the “narrow sense” as mentioned in the preface, i.e. on the basis of an
adequate enhancement of nonrelativistic quantum mechanics. In doing so,
we will adhere to the one-particle interpretation of the nonrelativistic theory
to the greatest possible extent. Before we start our discussion, the principles
underlying this interpretation are summarized as follows:

Theorem 1.1: Principles of nonrelativistic quantum mechanics

1)The quantum mechanical state of a physical system is described by a
state vector |ψ(t)〉 in a complex unitary Hilbert space H. In this space a
positive definite scalar product 〈ψ|ϕ〉 is defined with the following prop-
erties:

• 〈ψ|ψ〉 ≥ 0

• 〈ψ|ϕ〉 = 〈ϕ|ψ〉∗

•
〈ψ| (λ1 |ϕ1〉 + λ2 |ϕ2〉 ) = λ1 〈ψ|ϕ1〉 + λ2 〈ψ|ϕ2〉
(〈ψ1| λ1 + 〈ψ2| λ2) |ϕ〉 = λ∗

1 〈ψ1|ϕ〉 + λ∗
2 〈ψ2|ϕ〉 ,

with |ψ1,2〉 , |ϕ1,2〉 ∈ H , λ1,2 ∈ C .

2)Physical observables are quantities that can be measured experimentally.
They are described by Hermitean operators with real eigenvalues and a
complete orthogonal eigenbasis. The quantum mechanical counterparts
to the independent classical quantities “position” xi and “momentum”
pi are the operators x̂i and p̂i, for which the following commutation
relations hold:

[x̂i, x̂j ] = [p̂i, p̂j ] = 0 , [x̂i, p̂j ] = ih̄δij , i, j = 1, 2, 3 .

The Hermitean operators corresponding to the classical dynamical vari-
ables Ω(xi, pi) are obtained from the mapping

Ω̂ = Ω(xi → x̂i, pi → p̂i) .
�
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2 1. Relativistic Description of Spin-0 Particles

However, there also exist observables without classical analogons such as
the particle spin.

3)Every state vector |ψ〉 can be expanded in the orthonormal eigenbasis
{|ωi〉} of an observable Ω̂:

|ψ〉 =
∑

i

|ωi〉 〈ωi|ψ〉 , Ω̂ |ωi〉 = ωi |ωi〉 , 〈ωi|ωj〉 = δij .

A measurement of a dynamical variable corresponding to the operator
Ω̂ yields one of its eigenvalues ωi with probability

W (ωi) =
| 〈ωi|ψ〉 |2
〈ψ|ψ〉 .

The statistical average (expectation value) of an observable Ω̂, resulting
from a large number of similar measurements on identical systems, is
(assuming |ψ〉 is normalized such that 〈ψ|ψ〉 = 1)

〈Ω̂〉 = 〈ψ|Ω̂ψ〉 = 〈ψ|Ω̂|ψ〉 .

4)The state vector |ψ(t)〉 satisfies the Schrödinger equation

ih̄
d |ψ(t)〉

dt
= Ĥ |ψ(t)〉 ,

where Ĥ denotes the Hermitean operator of total energy (the Hamilton
operator). In the simplest case it is obtained from the Hamilton function
of the corresponding classical system:

Ĥ = H(xi → x̂i, pi → p̂i) .

The Hermitecity of Ĥ leads to the conservation law d 〈ψ|ψ〉 /dt = 0.

These basic laws or axioms formulated in the Schrödinger picture can be con-
cretized further by choosing a particular representation (or basis). In the co-
ordinate or position representation which we will mostly use in this book, the
state vector |ψ(t)〉 is represented by a wave function ψ(x, t) encompassing
all space-time (and other) information of the physical system. The quantity
|ψ(x, t)|2 is interpreted as a probability measure for finding the physical sys-
tem at the space-time point (x, t). In this representation the position and
momentum operators are given by

x̂i = xi , p̂i = −ih̄
∂

∂xi
.

The corresponding expressions for the scalar product and the expectation
value of an observable Ω̂ are

〈ψ|ϕ〉 =
∫

d3xψ†ϕ , 〈ψ|Ω̂|ψ〉 =
∫

d3xψ†Ω̂ψ .
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From this and from the above mentioned 4th axiom follows the conservation
of total probability,

d
dt

∫
d3x|ψ(x, t)|2 = 0 ,

which is necessary for the statistical one-particle interpretation. On the basis
of these principles, particularly the last relation that expresses particle num-
ber conservation – or, rather, conservation of the single considered particle –
we can already now make some statements about to what extent a relativistic
enhancement of the one-particle concept is at all possible.

• Due to the possibility of particle creation at interaction energies that are
at least equal to the rest energy of the particle, the range of validity of the
one-particle view is restricted to particle energies E, particle momenta p,
and electromagnetic interaction potentials Aμ, for which

|E − m0c
2| < m0c

2 , |p|,
∣
∣
∣
e

c
Aμ
∣
∣
∣ < m0c , ΔE � m0c

2 , Δp � m0c ,

where m0 denotes the rest mass of the particle. This is precisely the domain
of the nonrelativistic approximation.

• Given these restrictions and Heisenberg’s uncertainty relation, it follows
that

Δx ≥ h̄

Δp
� h̄

m0c
.

This means that a relativistic particle cannot be localized more precisely
than to an area whose linear extent is large compared to the particle’s
Compton wave length λc = h̄/(m0c).

In the subsequent discussion of the Klein-Gordon theory (as well as of the
Dirac theory in the next chapter) these points will be especially taken into
account and further concretized.

The main features of the Klein-Gordon theory for the relativistic descrip-
tion of spin-0 particles are developed in the first section of this chapter.
Here we will particularly be confronted with negative energy states, which
can, however, be related to antiparticles using the transformation of charge
conjugation. The second section deals with the symmetry properties of the
Klein-Gordon theory. In addition to continuous symmetries, discrete symme-
try transformations are of particular interest as they will lead us to a deeper
understanding of the negative eigensolutions. In the third section we extend
and complete the one-particle picture of the Klein-Gordon theory. Introduc-
ing a generalized scalar product, we modify the nonrelativistic quantum me-
chanical framework in such a way that a consistent one-particle interpretation
becomes possible. Furthermore, we discuss the range of validity of the Klein-
Gordon one-particle picture and show some interpretational problems outside
this range. The fourth section considers the nonrelativistic approximation of
the Klein-Gordon theory. First, the nonrelativistic limit is discussed, which
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leads, as expected, to the laws of nonrelativistic quantum mechanics. Sub-
sequently (higher) relativistic corrections are incorporated by expanding the
Klein-Gordon equation in powers of v/c using the Fouldy-Wouthuysen tech-
nique. This chapter ends with the fifth section, where some simple one-particle
systems are considered, particularly with a view to a consistent one-particle
interpretation.

Note. To avoid misunderstandings, the terms “wave function”, “solution”,
and “state” are used synonymously in the following. They all refer to the
functions that solve the Klein-Gordon equation. In contrast, observable states
realized in nature are termed (anti)particles. From now on, the tag “ ˆ ” for
quantum mechanical operators is suppressed.

1.1 Klein-Gordon Equation

We start our discussion of the Klein-Gordon theory by writing the Klein-
Gordon equation in canonical form. In doing so, we immediately come across
two new phenomena, which have no reasonable interpretation within the
usual quantum mechanical framework: the existence of negative energy so-
lutions and the absence of a positive definite probability density. Following
this, we bring the canonical equation into Hamilton or Schrödinger form,
which will turn out to be very useful for subsequent considerations. At the
end, we return to the above mentioned two phenomena and develop a phys-
ically acceptable interpretation for them using the transformation of charge
conjugation.

1.1.1 Canonical and Lorentz-covariant Formulations of the Klein-
Gordon Equation

In nonrelativistic quantum mechanics the starting point is the energy-
momentum relation

E =
p2

2m
,

which, using the correspondence rule

E −→ ih̄
∂

∂t
, p −→ −ih̄∇ ⇐⇒ pμ −→ ih̄∂μ (four-momentum) ,

leads to the Schrödinger equation for free particles,

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m
∇2ψ(x, t) .

Due to the different orders of its temporal and spatial derivatives, this equa-
tion is not Lorentz-covariant (see footnote 1 on page 352 in the Appendix
A.1). This means that, passing from one inertial system to another, the
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equation changes its structure, thus contradicting the principle of relativ-
ity. Therefore, in order to arrive at a relativistic quantum mechanical wave
equation, it is appropriate to start from the corresponding relativistic energy-
momentum relation for free particles,

E =
√

c2p2 + m2
0c

4 , (1.1)

where m0 denotes the rest mass of the particle. Using the above replacement,
this leads to

ih̄
∂φ(x)

∂t
=
(
−c2h̄2∇2 + m2

0c
4
)1/2

φ(x) , x = (xμ) .

However, this equation has two grave flaws. On the one hand, due to the
unsymmetrical appearance of space and time derivatives, the relativistic form
invariance of this equation is not apparent. On the other hand, the operator
on the right hand side is a square root whose expansion leads to a highly
nonlocal theory.

Free Klein-Gordon equation. Both problems can be circumvented by
starting with the quadratic form of (1.1), i.e.

E2 = c2p2 + m2
0c

4 ⇐⇒ p2
0 − p2 = pμpμ = m2

0c
2 .

In this case, using the above correspondence rule, one obtains the free Klein-
Gordon equation in canonical form

− h̄2 ∂2φ(x)
∂t2

=
(
−c2h̄2∇2 + m2

0c
4
)
φ(x) , x = (xμ) . (1.2)

This can immediately be brought into Lorentz-covariant form,
(
pμpμ − m2

0c
2
)
φ(x) = 0 , (1.3)

so that, for example, the transformational behavior of the wave function φ
is easy to anticipate when changing the reference system. This equation was
suggested by Erwin Schrödinger in 1926 as a relativistic generalization of the
Schrödinger equation. Later it was studied in more detail by Oskar Benjamin
Klein and Walter Gordon.

First it is to be asserted that, contrary to Schrödinger’s equation, the
Klein-Gordon equation is a partial differential equation of second order in
time. So, to uniquely specify a Klein-Gordon state, one needs two initial
values, φ(x) and ∂φ(x)/∂t. Furthermore, the Klein-Gordon equation seems
to be suited for the description of spin-0 particles (spinless bosons), since φ is
a scalar function and does not possess any internal degrees of freedom or, put
differently, the operator in (1.3) only acts on the external degrees of freedom
(space-time coordinates) of φ.

The free solutions to (1.2) or (1.3) with definite momentum can be easily
found. They are
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φ(1)
p (x) = e−i(cp0t−px)/h̄ , p0 = +

√
p2 + m2

0c
2 > 0

φ(2)
p (x) = e+i(cp0t−px)/h̄

or

φ(r)
p (x) = e−iεrpμxμ/h̄ , εr =

{
+1 for r = 1
−1 for r = 2 .

Note that here and in the following, p0 is always meant to be the posi-
tive square root. Obviously, the Klein-Gordon equation leads to solutions
with positive energy eigenvalues E = +cp0 and negative energy eigen-
values E = −cp0 that are separated by the “forbidden” energy interval
] − m0c

2;m0c
2[.1 While the positive solutions can be interpreted as parti-

cle wave functions, the physical meaning of the negative solutions is not clear
a priori. This makes the Klein-Gordon theory seem unattractive as a rela-
tivistic generalization of Schrödinger’s theory. However, as we will see later
on, negative solutions can be related to antiparticles that are experimen-
tally observable so that the Klein-Gordon theory indeed provides a valuable
generalization of Schrödinger’s theory. Incidentally, this is why we consider
φ

(2)
p (x) to be a negative solution with momentum index p, although it has

the momentum eigenvalue −p.
We will return to the interpretational problem of negative solutions later

and investigate next some further properties of the Klein-Gordon equation.

Interaction with electromagnetic fields, gauge invariance. In the
Klein-Gordon equation, the interaction of a relativistic spin-0 particle with an
electromagnetic field can, as in the Schrödinger theory, be taken into account
by the following operator replacement, the so-called minimal coupling:

ih̄
∂

∂t
−→ ih̄

∂

∂t
− eA0 ,

h̄

i
∇ −→ h̄

i
∇ − e

c
A ⇐⇒ pμ −→ pμ − e

c
Aμ ,

where (Aμ) =
(

A0

A

)
denotes the electromagnetic four-potential and e the

electric charge of the particle. With this, (1.2) and (1.3) become2

[(
ih̄

∂

∂t
− eA0

)2

− c2

(
h̄

i
∇ − e

c
A

)2

− m2
0c

4

]

φ = 0 (1.4)

and
[(

pμ − e

c
Aμ

)(
pμ − e

c
Aμ
)
− m2

0c
2
]
φ = 0 . (1.5)

1 In the following, the solutions whose energy eigenvalues lie above the forbidden
interval (limited from below) are termed positive solutions and those with energy
eigenvalues below the forbidden interval (limited from above) negative solutions.

2 The minimal coupling is at most correct for structureless point particles which,
however, have not been observed so far. Therefore, in (1.5) additional (phe-
nomenologically based) terms of the form λFμνF μνφ with F μν = ∂μAν − ∂νAμ

have to be, in principle, taken into consideration.
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As is well-known, the Maxwell equations are invariant under local gauge
transformations of the kind

A0 −→ A′0 = A0 − 1
c

∂χ

∂t
, A −→ A′ = A + ∇χ

or

Aμ −→ A′μ = Aμ − ∂μχ , (1.6)

where χ = χ(x) is an arbitrary real scalar function of the space-time coor-
dinates. As in the nonrelativistic theory, this local gauge invariance can be
carried over to the Klein-Gordon equation (1.4) or (1.5) by multiplying the
wave function φ by a suitably chosen phase:

φ(x) −→ φ′(x) = eiΛ(x)φ(x) . (1.7)

In order to find the function Λ, we express (1.5) in terms of the primed
quantities and calculate as follows:

0 =
[(

pμ − e

c
A′

μ − e

c
∂μχ
)(

pμ − e

c
A′μ − e

c
∂μχ
)
− m2

0c
2
]
φ′e−iΛ

=
[(

pμ − e

c
A′

μ − e

c
∂μχ
)

e−iΛ
(
pμ − e

c
A′μ − e

c
∂μχ + h̄∂μΛ

)

− m2
0c

2e−iΛ
]
φ′

= e−iΛ
[(

pμ − e

c
A′

μ − e

c
∂μχ + h̄∂μΛ

)(
pμ − e

c
A′μ − e

c
∂μχ + h̄∂μΛ

)

− m2
0c

2
]
φ′ . (1.8)

Choosing

Λ(x) =
e

h̄c
χ(x) , (1.9)

(1.8) becomes
[(

pμ − e

c
A′

μ

)(
pμ − e

c
A′μ
)
− m2

0c
2
]
φ′ = 0 ,

which is formally identical to the Klein-Gordon equation (1.5). Since physical
observables are represented by bilinear forms of the kind 〈φ∗| . . . |φ 〉, a com-
mon equal phase factor does not play any role. Therefore, the Klein-Gordon
equation with minimal coupling is invariant under local gauge transforma-
tions of the electromagnetic field.3

3 Remarkably, the transformation (1.7) along with (1.9) is the same as the trans-
formation that leads to local gauge invariance in the nonrelativistic theory.
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Continuity equation. Multiplying (1.4) or (1.5) by φ∗ from the left and
subsequently subtracting the complex conjugate, one obtains a continuity
equation of the form

∂ρ(x)
∂t

+ ∇j(x) = 0 , (1.10)

with

ρ(x) =
ih̄

2m0c2

[
φ∗ ∂φ

∂t
−
(

∂φ∗

∂t

)
φ

]
− e

m0c2
A0φ∗φ

j(x) = − ih̄
2m0

[φ∗∇φ − (∇φ∗)φ] − e

m0c
Aφ∗φ

or, in Lorentz-covariant notation,

∂μjμ(x) = 0 , jμ =
ih̄

2m0
(φ∗∂μφ − φ∂μφ∗) − e

m0c
Aμφ∗φ , (jμ) =

(
cρ
j

)
.

Note that an overall factor was introduced in ρ and j due to analogy with
nonrelativistic quantum mechanics. As usual, spatial integration of (1.10)
yields the conservation law

Q =
∫

d3xρ(x) = const .

Obviously, ρ(x) is not positive definite since, at a given time t, φ and ∂φ/∂t
can take on arbitrary values. Therefore, ρ and j cannot be interpreted as
probability quantities. This problem, in conjunction with the existence of
negative solutions, was the reason that the Klein-Gordon equation was ini-
tially rejected and that attempts were made to find a relativistic wave equa-
tion of first order in time and with a positive definite probability density.
This equation was indeed found by Dirac. However, as we see in Chapter 2,
the Dirac equation also yields solutions with negative energy eigenvalues.

To summarize:

Theorem 1.2: Klein-Gordon equation
in canonical and Lorentz-covariant forms

The Klein-Gordon equation is the relativistic generalization of Schrödin-
ger’s equation for spin-0 particles. For a minimal coupled electromagnetic
field, it is

[(
ih̄

∂

∂t
− eA0

)2

− c2

(
h̄

i
∇ − e

c
A

)2

− m2
0c

4

]

φ(x) = 0 (1.11)

or, in manifestly covariant notation,
[(

pμ − e

c
Aμ

)(
pμ − e

c
Aμ
)
− m2

0c
2
]
φ(x) = 0 , (1.12)

�
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where m0 is the rest mass and e the electric charge of the particle. These
equations are invariant under local gauge transformations of the electro-
magnetic field. From the Klein-Gordon equation follows the continuity
equation

∂μjμ = 0 , (jμ) =
(

cρ
j

)
,

with

ρ(x) =
ih̄

2m0c2

[
φ∗ ∂φ

∂t
−
(

∂φ∗

∂t

)
φ

]
− e

m0c2
A0φ∗φ

j(x) = − ih̄
2m0

[φ∗∇φ − (∇φ∗)φ] − e

m0c
Aφ∗φ ,

⎫
⎪⎪⎬

⎪⎪⎭
(1.13)

as well as the conservation law

Q =
∫

d3xρ(x) = const .

The solutions to the free Klein-Gordon equation (Aμ = 0) are

φ(r)
p (x) =

1
(2πh̄)3/2

√
m0c

p0
e−iεrpμxμ/h̄ , p0 = +

√
p2 + m2

0c
2 ,

with momentum eigenvalue +p (for r = 1) or −p (for r = 2). These
solutions are normalized such that

ih̄
2m0c2

∫
d3x

⎡

⎣φ(r)∗
p

∂φ
(r′)
p′

∂t
−
(

∂φ
(r)∗
p

∂t

)

φ
(r′)
p′

⎤

⎦ = εrδrr′δ(p − p′) .

1.1.2 Hamilton Formulation of the Klein-Gordon Equation

The Klein-Gordon equation from Theorem 1.2 is a differential equation of
second order in time. For our subsequent discussion, it is useful to convert it
into a system of coupled differential equations of first temporal order. In this
way, it acquires a Schrödinger-like form, in which a Hamilton operator can
be identified just as in the nonrelativistic theory. Introducing two new fields
via

φ = ϕ + χ ,

(
ih̄

∂

∂t
− eA0

)
φ = m0c

2(ϕ − χ) (1.14)

=⇒

⎧
⎪⎪⎨

⎪⎪⎩

ϕ =
1

2m0c2

(
m0c

2 + ih̄
∂

∂t
− eA0

)
φ

χ =
1

2m0c2

(
m0c

2 − ih̄
∂

∂t
+ eA0

)
φ ,

(1.15)

(1.11) can be rewritten as
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(
ih̄

∂

∂t
− eA0

)
(ϕ + χ) = m0c

2(ϕ − χ)
(

ih̄
∂

∂t
− eA0

)
(ϕ − χ) =

[
1

m0

(
p − e

c
A
)2

+ m0c
2

]
(ϕ + χ) .

Addition and subtraction of these two equations lead to the system of coupled
differential equations of first order in time,

ih̄
∂ϕ

∂t
=

1
2m0

(
p − e

c
A
)2

(ϕ + χ) + (m0c
2 + eA0)ϕ

ih̄
∂χ

∂t
= − 1

2m0

(
p − e

c
A
)2

(ϕ + χ) − (m0c
2 − eA0)χ ,

which is equivalent to (1.11). Finally pooling ϕ and χ into

ψ =
(

ϕ
χ

)

leads to the Klein-Gordon equation in Hamilton form

ih̄
∂ψ

∂t
= Hψ , H =

τ3 + iτ2

2m0

(
p − e

c
A
)2

+ τ3m0c
2 + eA0 .

Here τi denote the Pauli matrices

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
,

which satisfy the following algebra:

τiτj = iεijkτk + δij , [τi, τj ] = 2iεijkτk , {τi, τj} = 2δij .

The solutions to the free Klein-Gordon equation

ih̄
∂ψ

∂t
= H(0)ψ , H(0) =

(τ3 + iτ2)p2

2m0
+ τ3m0c

2 (1.16)

are given by (see Exercise 1)

ψ(1)
p (x) =

(
m0c + p0

m0c − p0

)
e−ipμxμ/h̄

ψ(2)
p (x) =

(
m0c − p0

m0c + p0

)
e+ipμxμ/h̄ .

To calculate ρ and j in the Hamilton formulation, we insert (1.14) and (1.15)
into (1.13) and obtain

ρ(x) = ψ†(x)τ3ψ(x) = ϕ∗ϕ − χ∗χ

j(x) = − ih̄
2m0

[
ψ†τ3(τ3 + iτ2)∇ψ − (∇ψ†)τ3(τ3 + iτ2)ψ

]

− e

m0c
Aψ†τ3(τ3 + iτ2)ψ .
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Overall, we arrive at the following theorem equivalent to Theorem 1.2:

Theorem 1.3: Klein-Gordon equation in Hamilton form

With the replacements

φ = ϕ + χ ,

(
ih̄

∂

∂t
− eA0

)
φ = m0c

2(ϕ − χ) , ψ =
(

ϕ
χ

)

in (1.11), the Klein-Gordon equation in Hamilton form follows as

ih̄
∂ψ

∂t
= Hψ , H =

τ3 + iτ2

2m0

(
p − e

c
A
)2

+ τ3m0c
2 + eA0 , (1.17)

where τi denote the Pauli matrices. The corresponding expressions for ρ
and j are

ρ(x) = ψ†(x)τ3ψ(x) = ϕ∗ϕ − χ∗χ

j(x) = − ih̄
2m0

[
ψ†τ3(τ3 + iτ2)∇ψ − (∇ψ†)τ3(τ3 + iτ2)ψ

]

− e

m0c
Aψ†τ3(τ3 + iτ2)ψ

Q =
∫

d3xρ(x) =
∫

d3xψ†(x)τ3ψ(x) .

In the Hamilton formulation, the solutions to the free Klein-Gordon equa-
tions are

ψ
(r)
p (x) =

1
(2πh̄)3/2

Ψ (r)(p)e−iεrpμxμ/h̄

Ψ (r)(p) =
1

2
√

m0cp0

(
m0c + εrp0

m0c − εrp0

)
,

⎫
⎪⎪⎬

⎪⎪⎭
(1.18)

with momentum eigenvalue +p (for r = 1) or −p (for r = 2). These
solutions are normalized such that

∫
d3xψ(r)†

p (x)τ3ψ
(r′)
p′ (x) = εrδrr′δ(p − p′)

Ψ (r)†(p)τ3Ψ
(r′)(p) = εrδrr′ , Ψ (r)(p) = Ψ (r)(−p) . (1.19)

It is important to note that in (1.17) the Hamilton operator H is not Her-
mitean (since iτ2 is not Hermitean). From this it immediately becomes appar-
ent, why it is impossible to find a positive definite probability density (includ-
ing total probability conservation): using the nonrelativistic scalar product

〈ψ|φ〉 =
∫

d3xψ†φ , 〈ψ| O |φ 〉 =
∫

d3xψ†Oφ (1.20)

and the adjunction relation

〈ψ| O |φ 〉 =
〈
φ| O† |ψ

〉∗
(O linear operator) , (1.21)
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we have

ih̄
∂ψ

∂t
= Hψ =⇒ ih̄ψ† ∂ψ

∂t
= ψ†Hψ , −ih̄

∂ψ†

∂t
ψ = (Hψ)†ψ = (ψ†Hψ)∗

=⇒ ih̄
∂

∂t
〈ψ|ψ〉 = 〈ψ|H |ψ 〉 − 〈ψ|H |ψ 〉∗ =

〈
ψ|H − H† |ψ

〉
�= 0 .

Furthermore, the non-Hermitecity of H is the reason that its eigenstates are
generally not orthogonal with respect to (1.20).

Another important consequence of the non-Hermitecity of H is that eiH is
not unitary. This is one indication that in the Klein-Gordon theory the usage
of the scalar product (1.20) seems to be unsuitable as it leads to different
results in different pictures (for example, the Schrödinger picture used here,
or the Heisenberg picture). We will tackle this problem in Subsection 1.3.1.

1.1.3 Interpretation of Negative Solutions, Antiparticles

So far, we have written down the Klein-Gordon equation in canonical,
Lorentz-covariant, and Hamilton forms and looked at some of its formal prop-
erties. Now we turn to the negative Klein-Gordon solutions which we have
so far ignored. Our aim is to find a physically meaningful interpretation for
them as well as for the quantities Q, ρ, and j.

Charge conjugation C. We again consider the canonical Klein-Gordon
equation

[(
ih̄

∂

∂t
− eA0

)2

− c2
(
p − e

c
A
)2

− m2
0c

4

]

φ(−)(x) = 0 , (1.22)

where φ(−) denotes a solution with negative energy. Transforming this equa-
tion by taking its complex conjugate, one obtains the mathematically equiv-
alent relation

[(
ih̄

∂

∂t
+ eA0

)2

− c2
(
p +

e

c
A
)2

− m2
0c

4

]

φ
(−)
C (x) = 0 , (1.23)

with

φ
(−)
C (x) = φ(−)∗(x) .

The consequences of this become even clearer if we start from the eigenvalue
equation of a negative eigenstate Ψ (−) in Hamilton form,

[
τ3 + iτ2

2m0

(
p − e

c
A
)2

+ τ3m0c
2 + eA0

]
Ψ (−)(x) = −|E|Ψ (−)(x) , (1.24)

and apply complex conjugation to it. This yields
[
τ3 + iτ2

2m0

(
p +

e

c
A
)2

+ τ3m0c
2 − eA0

]
Ψ

(−)
C (x) = +|E|Ψ (−)

C (x) , (1.25)



1.1 Klein-Gordon Equation 13

with

Ψ
(−)
C (x) = τ1Ψ

(−)∗(x) .

All in all, if φ(−) or ψ(−) describes a negative Klein-Gordon state with charge
+e within the potential Aμ, then φ

(−)
C = φ(−)∗ or ψ

(−)
C = τ1ψ

(−)∗ describes
a positive Klein-Gordon state with charge −e within the same potential Aμ.
Correspondingly, the above transformation is called charge conjugation. Ob-
viously, it is a reciprocal transformation since its twofold application leads
back to the original equation. Furthermore, it is antilinear 4, since, going from
(1.22) to (1.23), the relative sign between the differential and potential terms
is changed. Therefore, charge conjugation opens us a way to a physical inter-
pretation of negative Klein-Gordon solutions whose charge conjugates are to
be regarded as the quantum mechanical wave functions of antiparticles with
charge −e.

As regards the free Klein-Gordon solutions, charge conjugation yields

φ
(1,2)
p,C (x) = φ(2,1)

p (x) , ψ
(1,2)
p,C (x) = ψ(2,1)

p (x) .

In this case the original as well as the charge conjugated wave functions are
solutions to the same equation, because the distinction between free states
with different charges is not possible.

Charge density, charge current density. We are now in a position to
give the quantities Q, ρ, and j physically meaningful interpretations. As we
have seen above, the quantity

ρ = ψ†τ3ψ = ϕ∗ϕ − χ∗χ ,

∫
d3xρ(x) = Q = const

cannot generally be taken as a probability density, since it is not positive defi-
nite. However, if we restrict ourselves to the validity range of the one-particle
interpretation (to be more accurately defined later), i.e. to the nonrelativistic
approximation mentioned at the beginning of this chapter, ρ becomes posi-
tive definite for positive Klein-Gordon solutions, |ϕ| � |χ|, and negative for
negative solutions, |ϕ| � |χ| (see Subsection 1.4.1). Since positive solutions
belong to particles with charge +e and the charge conjugates of negative
solutions belong to antiparticles with charge −e, we can interpret the expres-
sions ρ(±) (built by ψ(±)) as electric charge density and j(±) as electric charge
current density of a particle or an antiparticle. Consequently, Q(±) = ±1 is
the (conserved) total charge of the particle or antiparticle (charge interpre-
tation).5

4 An operator O is called antilinear if O(α1ψ1 + α2ψ2) = α∗
1Oψ1 + α∗

2Oψ2.
5 This interpretation can also be maintained outside the validity range of the one-

particle picture. In this case Q denotes the conserved total charge of all particles
and antiparticles. Consequently, the charge density ρ may take on different signs
at different space-time points.
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Theorem 1.4: Charge conjugation C and charge interpretation
in the Klein-Gordon theory

• In the Klein-Gordon theory the charge conjugation C is defined by the
transformation

φ(x) −→ φC(x) = φ∗(x) (canonical form)

ψ(x) −→ ψC(x) = τ1ψ
∗(x) (Hamilton form).

It turns a positive [negative] Klein-Gordon solution of charge +e [−e]
into a negative [positive] Klein-Gordon solution of charge −e [+e].

• A positive Klein-Gordon solution φ(+) or ψ(+) represents a physical spin-
0 particle of charge +e within the potential Aμ, while the charge con-
jugate of the negative solution φ

(−)
C or ψ

(−)
C (and not the original nega-

tive solution) describes the physical antiparticle with opposite charge −e
within the same potential Aμ.

• The quantities Q, ρ, and j that are composed of φ(+) or ψ(+) [φ(−) or
ψ(−)] can be interpreted as the electric charge, charge density, and charge
current density of the physical particle [antiparticle] (charge interpreta-
tion).

While the wave function of an antiparticle is described by the charge conju-
gated negative solution, one obtains its charge quantities Q, ρ, and j using
the original negative solutions. In Section 1.3, we extend this principle to the
definition of picture-independent scalar products and expectation values.

Now it becomes clear why we have assigned the negative free Klein-
Gordon solution φ

(2)
p [ψ(2)

p ] the index p, although it possesses the momentum
eigenvalue −p. This is because this solution should be associated with the
corresponding antiparticle (with opposite momentum and energy eigenvalue).

That the statements of Theorem 1.4 do in fact agree with nature is con-
firmed, on the one hand, by the experimental fact that, for each known spin-0
particle, a corresponding antiparticle has been found. On the other hand, as
we see in Chapter 3, they are in accordance with experimentally verifiable
predictions from scattering theory.

Overall, we see that the relativistic generalization of Schrödinger’s theory
to the Klein-Gordon theory leads to a new degree of freedom, the electric
charge, whereas the nonrelativistic theory describes states with only one
charge sign.6 In this context it is also important to note that in our con-
siderations we could have equally started with the Klein-Gordon equation
for states of charge −e, since the sign of the charge does not play a decisive
role at any stage. Consequently, particles would carry the charge −e described

6 This is a characteristic of all relativistic enhancements.
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by positive solutions, and antiparticles would have the charge +e described
by the charge conjugated negative solutions.

Interpretation of the negative solutions. Although we were able to give
the charge conjugated negative Klein-Gordon solutions a physically meaning-
ful interpretation, there are still two serious points open, namely:

• the physical implications stemming from the mere existence of negative
solutions and

• the physical interpretation of the negative solutions.

In our previous considerations the existence of solutions with negative energy
leads to problems and physical nonsense. Think, for example, of a pion atom
consisting of a positively charged nucleus and a circuiting negatively charged
pion (spin-0 particle). The corresponding energy spectrum can be calculated,
for example, by incorporating the Coulomb potential into the Klein-Gordon
equation (see Subsection 1.5.4). It is depicted qualitatively in Figure 1.1.

The bound states directly below the positive energy continuum with
E < m0c

2 generally agree with experimental results. So there is no doubt
that these are the true bound states of the pion atom. On the other hand,
the existence of the negative energy continuum implies that a ground state
pion could fall deeper and deeper through continuous radiation transitions.

E

+m0c
2

0

−m0c
2

positive
energy continuum

bound
states

negative
energy continuum

Fig. 1.1. Qualitative energy spectrum of a pion atom. Due to the existence of
negative energy states, the pion could fall deeper and deeper through continuous
radiation transitions.
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Accordingly, the atom would be unstable and a radiation catastrophe would
occur due to the continuous emission of light.7 Nevertheless, it is clear that
none of these effects are observed; our world could not exist if this decay was
present.

As we see later, the same problem exists in the Dirac theory for describing
spin-1/2 particles. But there Dirac introduced a trick known as the hole theory
in order to avoid the radiation catastrophe. According to this model, the
vacuum is regarded as a “sea” completely occupied by spin-1/2 particles with
negative energies, which, due to Pauli’s exclusion principle, cannot be filled
by any further particles. Apart from the fact that the radiation catastrophe
is now avoided, the negative states acquire a direct physical meaning with
physical consequences, for example, the creation and annihilation of particle-
antiparticle pairs or the vacuum polarization.

It is clear that the hole theory cannot be transferred to the spin-0 case in
hand, since the Pauli principle does not apply here. However, even if the hole
theory could be applied here in some way, it is to be kept in mind that, in
any case, it would mean turning away from the one-particle concept toward
a many-particle theory (with infinitely many degrees of freedom). Therefore,
within the framework of the targeted one-particle interpretation, we have to
leave the physical interpretation of the negative solutions open.

Résumé. All in all, it can be ascertained that using the concepts of charge
conjugation and charge interpretation, we can give the positive and the charge
conjugated negative energy solutions as well as Q, ρ, and j physically mean-
ingful interpretations as particle, antiparticle, charge, charge density, and
charge current density. However, with a view to a consistent one-particle
interpretation in the usual nonrelativistic quantum mechanical sense, three
points are still open:

[1] The one-particle interpretation requires that positive and negative solu-
tions can be completely decoupled from one another, i.e. that each charged
Klein-Gordon state can be represented by a superposition of pure negative
or pure positive solutions. However, in general, a Klein-Gordon state is
composed of the complete system of positive and negative solutions. We
therefore have to clarify under which conditions or within which limits a
complete decoupling of positive and negative solutions is possible. Such
a splitting leads simultaneously to a positive or negative definite charge
density so that a quantum mechanical statistical interpretation becomes
possible.

[2] A complete decoupling of positive and negative solutions also implies that
not all relativistic operators are applicable with respect to the one-particle
concept since they generally mix positive and negative solutions. Hence,

7 Strictly speaking, the pion atom is unstable due to other effects. However, these
effects happen much more slowly than the atom’s life time as predicted according
to the radiation transitions into negative energy levels.
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the question arises: what are meaningful one-particle operators and how
can they be constructed?

[3] In order to be able to make quantum mechanical probability statements
about the state of spin-0 particles, we need a physically meaningful defini-
tion of scalar products and expectation values that are independent from
the used picture, for example the Schrödinger or the Dirac picture etc.
(see the remarks after Theorem 1.3).

As we see in the following pages, these (and other) points can be resolved, so
that we finally get a reasonably consistent one-particle picture within certain
limits.

At the end of this section we point out that the charge through which a
boson distinguishes itself from its antiboson does not necessarily need to be
electric. Whereas the pion π− and antipion π+ differ indeed in the sign of the
electric charge, there also exist bosons such as the kaon K0 and antikaon K̄0

that are both electrically neutral but possess different signs of the so-called
strangeness charge. Furthermore, a boson may also carry no charge at all. In
this case the corresponding wave function must obey

φ = φC [ψ = ψC ] =⇒ Q = 0 , ρ = 0 , j = 0 .

However, within a consistent one-particle interpretation, considering such
neutral particles is problematic, since in this case a complete decoupling of
positive and negative solutions is not possible (see [1]).

Summary

• The Klein-Gordon theory is the relativistic generalization of non-
relativistic quantum mechanics for the description of spin-0 particles.
Starting from the canonical or Lorentz-covariant representation, this
theory can be transferred into Hamilton form.

• The Klein-Gordon theory differs from the nonrelativistic theory in two
important points: firstly, the Klein-Gordon equation leads to solutions
with positive and negative energy. Secondly, due to the non-Hermitecity
of the Klein-Gordon-Hamilton operator, j0 is not positive definite and
can therefore not be interpreted as a probability density.

• With the help of the charge conjugation and the charge interpreta-
tion, these two phenomena can be interpreted in a physically meaningful
way: particles of charge +e are described by positive Klein-Gordon so-
lutions and antiparticles of charge −e by the charge conjugates of
negative solutions. j0 is the electric charge density of the particle and
j the corresponding charge current density.

�
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• The problems associated with negative solutions (interpretation, radia-
tion catastrophe) cannot be solved within the one-particle concept.

• With a view to the most consistent probabilistic one-particle interpreta-
tion of the Klein-Gordon theory, two issues are still open: to what extent
is a complete decoupling of positive and negative solutions possible, and
how can we define a physically sensible as well as picture-independent
scalar product?

Exercises

1. Solutions of the free Klein-Gordon equation. Show that the solu-
tions to the free Klein-Gordon equation (1.16) with sharp momentum are
given by (1.18).

Solution. To solve (1.16) we make the ansatz

ψ(x) =
(

ϕ0

χ0

)
ei(px−Et)/h̄ ,

leading to the equation system
(

E − p2

2m0
− m0c

2

)
ϕ0 −

p2

2m0
χ0 = 0

p2

2m0
ϕ0 +

(
E +

p2

2m0
+ m0c

2

)
χ0 = 0 .

⎫
⎪⎪⎬

⎪⎪⎭
(1.26)

It is a necessary condition for the existence of nontrivial solutions that the
coefficient determinant vanishes:

∣
∣
∣
∣
∣
∣
∣
∣

E − p2

2m0
− m0c

2 − p2

2m0

p2

2m0
E +

p2

2m0
+ m0c

2

∣
∣
∣
∣
∣
∣
∣
∣

= 0

⇐⇒ E2 −
(

p2

2m0
+ m0c

2

)2

+
(

p2

2m0

)2

= 0 .

As expected, this again leads to the relativistic energy-momentum relation
for free particles:

E2 = p2c2 + m2
0c

4 =⇒

⎧
⎨

⎩

E(+) = +c
√

p2 + m2
0c

2 = +cp0

E(−) = −c
√

p2 + m2
0c

2 = −cp0 .

The (unnormalized) solutions corresponding to E(+) and E(−) are finally
calculated from (1.26) as



Exercises 19

E(+) : ψ(+)(x) =
(

m0c + p0

m0c − p0

)
e−i(cp0−px)h̄ ∼ ψ(1)

p (x)

E(−) : ψ(−)(x) =
(

m0c − p0

m0c + p0

)
e+i(cp0+px)/h̄ ∼ ψ

(2)
−p(x) .

2. Lagrange density and energy-momentum tensor of the free Klein-
Gordon field. Determine the Lagrange density of the free Klein-Gordon
field in the Hamilton formulation. Using the energy-momentum tensor, show
that the energy is given by

E =
∫

d3xψ†τ3H
(0)ψ , H(0) =

p2

2m0
(τ3 + iτ2) + τ3m0c

2 .

Solution. In the Hamilton formulation the equation of motion of the free
Klein-Gordon field is

ih̄
∂ψ

∂t
= H(0)ψ . (1.27)

ψ is a two-component complex field and can be expressed as

ψ = ψ1 + iψ2 ,

where ψ1,2 denote two real fields. Therefore, the Lagrange density can be
presented as a function of these two fields and their derivatives. Equivalently,
the Lagrange density can also be formulated as a function of ψ, ψ̄ = ψ†τ3,
and their derivatives, leading to

L = ih̄ψ̄
∂ψ

∂t
− h̄2

2m0
(∇ψ̄)(τ3 + iτ2)∇ψ − m0c

2ψ̄τ3ψ .

In order to see this, we look at the Lagrange equations of the action functional

I =
∫

d4xL . (1.28)

Its variation with respect to the components of ψ̄ leads directly to (1.27),
since we have (α = 1, 2)

∂I

∂ψ̄α
= 0 =⇒ ∂L

∂ψ̄α
− ∂μ

∂L
∂(∂μψ̄α)

= 0 (Lagrange equation)

⇐⇒ ∂L
∂ψ̄α

− ∂

∂t

∂L
∂(∂ψ̄α/∂t)

− ∇ ∂L
∂(∇ψ̄α)

= 0

∂L
∂ψ̄α

= −m0c
2[τ3ψ]α + ih̄

∂ψα

∂t
,

∂L
∂(∂ψ̄α/∂t)

= 0

∇ ∂L
∂(∇ψ̄α)

= − h̄2∇2

2m0
[(τ3 + iτ2)ψ]α

and therefore
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ih̄
∂ψα

∂t
= − h̄2∇2

2m0
[(τ3 + iτ2)ψ]α + m0c

2[τ3ψ]α

⎛

⎝
free
Klein-Gordon
equation

⎞

⎠. (1.29)

Varying (1.28) with respect to the components of ψ, one obtains the corres-
ponding equation of motion for ψ̄:

∂I

∂ψα
= 0 =⇒ ∂L

∂ψα
− ∂μ

∂L
∂(∂μψα)

= 0 (Lagrange equation)

⇐⇒ ∂L
∂ψα

− ∂

∂t

∂L
∂(∂ψα/∂t)

− ∇ ∂L
∂(∇ψα)

= 0

∂L
∂ψα

= −m0c
2[ψ̄τ3]α ,

∂L
∂(∂ψα/∂t)

= ih̄ψ̄α

∇ ∂L
∂(∇ψα)

= − h̄2∇2

2m0
[ψ̄(τ3 + iτ2)]α

=⇒ −ih̄
∂ψ̄α

∂t
= − h̄2∇2

2m0
[ψ̄(τ3 + iτ2)]α + m0c

2[ψ̄τ3]α

⎛

⎜
⎜
⎝

free
adjoint
Klein-Gordon
equation

⎞

⎟
⎟
⎠.

Next we use the energy-momentum tensor

Tμν =
∂L

∂(∂μψα)
∂νψα +

∂L
∂(∂μψ̄α)

∂νψ̄α − gμνL

to calculate the energy density T 00:

T 00 =
∂L

∂(∂ψα/∂t)
∂ψα

∂t
+

∂L
∂(∂ψ̄α/∂t)

∂ψ̄α

∂t
− L

=
h̄2

2m0
(∇ψ̄)(τ3 + iτ2)∇ψ + m0c

2ψ̄τ3ψ .

This finally leads to the energy

E =
∫

d3xT 00

=
∫

d3x

[
h̄2

2m0
(∇ψ̄)(τ3 + iτ2)∇ψ + m0c

2ψ̄τ3ψ

]

(partial integration)

=
∫

d3xψ̄

[
− h̄2∇2

2m0
(τ3 + iτ2) + m0c

2τ3

]
ψ

=
∫

d3xψ̄H(0)ψ =
∫

d3xψ†τ3H
(0)ψ ,

which is positive for positive as well as for negative Klein-Gordon fields. The
interpretation of this result becomes apparent in Subsection 1.3.1, where
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we define a generalized scalar product for spin-0 particles and antiparticles
consistent with the one-particle concept.

Note: if we had formulated the Lagrange density L with ψ† instead of ψ̄,
we would have arrived at the same equation of motion (1.29). However, we
require the action I to be real which, in the case of ψ̄, leads to the condition

I =
∫

d3xdt

[
ih̄ψ̄

∂ψ

∂t
− h̄2

2m0
(∇ψ̄)(τ3 + iτ2)∇ψ − m0c

2ψ̄τ3ψ

]

(partial integration)

=
∫

d3xdtψ̄

[
ih̄

∂

∂t
+

h̄2∇2

2m0
(τ3 + iτ2) − m0c

2τ3

]
ψ

=
∫

d3xdtψ†τ3

[
ih̄

∂

∂t
− H(0)

]
ψ = Re(I) .

As one can easily show, this is indeed the case, since ih̄τ3∂/∂t as well as
τ3H

(0) are Hermitean. By contrast, the integral I will not be real if L is
constructed using the field ψ† instead of ψ̄.

1.2 Symmetry Transformations

In this section we initially postpone our efforts for a physically consistent
one-particle interpretation of the Klein-Gordon theory and, instead, begin
by considering some further formal properties of the Klein-Gordon equation,
namely its symmetry properties. We first define more precisely the terms
“transformation” and “symmetry transformation”. Then we consider the con-
tinuous and discrete symmetries of the Klein-Gordon equation. In doing so,
the latter, along with the charge conjugation C from Subsection 1.1.3, will
lead us to a better understanding of the negative solutions, especially with a
view to the aspired one-particle interpretation.

1.2.1 Active and Passive Transformations

In principle, one distinguishes between two classes of transformations. The
first class consists of active transformations where the physical state is trans-
formed, while the original and the transformed states are observed from the
same reference frame. An example of this kind are the gauge transformations
of the electromagnetic field [see (1.6) and (1.7)], which we have already iden-
tified as symmetry transformations of the Klein-Gordon theory, as they leave
the form of the Klein-Gordon equation unchanged.

The second class is passive transformations. Here, not the physical state
but the reference frame (or the basis system) is transformed, so that only
the perspective changes, from which the same state is observed. These trans-
formations are also called coordinate transformations as they always imply a
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change in the space-time coordinates. In this book we are dealing with rel-
ativistic theories, therefore the interesting transformations are the Lorentz
transformations.

It is clear that to each passive transformation we can assign an active
transformation leading to the same consequences with respect to the appear-
ance or the description of a physical state. In other words, transforming the
observer’s reference frame or, instead, the physical state in the “opposite
direction” leads to the same appearance of a physical state.

In order to clarify the general relationship between a passive and the cor-
responding active transformation, consider an observer linked to his reference
frame and looking at a space point, whose position he denotes by x. There he
sees a physical state (e.g. spin-0 particle, electromagnetic field) and calls it
z(x). We initially imagine that a transformation (translation or rotation) of
the reference frame is performed and that the observer is told the correspon-
ding transformation law.8 From this he derives the coordinate vector x′ of
his original observation point in the transformed system, looks at the original
state from the new perspective and denotes its pattern by z′(x′). Obviously,
this procedure is equivalent to the passive transformation (see Figure 1.2 top)

active
transformation

z(x),z′(x)

passive
transformation

z(x),z′(x′)

Fig. 1.2. Passive and active transformations. Upper picture: from the passive view
point the reference frame is shifted to the right and down. Lower picture: from the
active view point the physical state is shifted in the opposite direction.

8 Without restricting generality, it is assumed that the physical state is time-
independent and the transformation purely spatial.
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z(x) −→ z′(x′) .

Now we assume instead that the observer closes his eyes and does not notice
the change in the reference frame. Once he opens his eyes again, he sees a
pattern different from z(x), which he denotes by z′(x), because he thinks
that he is still looking in the same direction at the same point. Obviously,
from the observer’s view point, the active transformation

z(x) −→ z′(x)

has taken place, and he concludes that the physical state itself has been
transformed (see Figure 1.2 bottom).

Once the transformation law of a passive transformation, e.g. of the form

z′(x′) = fK([z(x)] , x′ = K(x) , x = K−1(x′) , (1.30)

is known, the corresponding active transformation follows as

z′(x) = z′
[
K−1(x′)

]
= fK

(
z
[
K−1(x)

])
. (1.31)

The mapping passive transformation −→ active transformation is in principle
always possible, whereas the mapping in the opposite direction is generally
not possible. This means that there exist active transformations that can-
not (or can only partially) be connected to passive transformations. This is
particularly apparent, for example, in the charge conjugation transformation
(see Theorem 1.4).

With this background, the term “symmetry transformation” can now be
specified as follows: a symmetry transformation leads to formally identical
equations of motion and, therefore, to physically equivalent situations, either
at the transition from the original to the transformed reference frame (passive
case) or at the transition from the original to the transformed physical state
(active case).

Keeping these considerations in mind, we now turn to the symmetry op-
erations of the Klein-Gordon theory.

1.2.2 Lorentz Transformations

The fundamental motivation for the Klein-Gordon equation was that it
should obey the principles of special relativity. This implies the form in-
variance of the Klein-Gordon equation (1.12) under Lorentz transformations
(see Appendix A.1) or, rather, under proper Lorentz transformations. How-
ever, it is easy to show that the Klein-Gordon equation is form invariant even
under general transformations of the kind

xμ −→ x′μ = Λμ
νxν + aμ . (1.32)

On the one hand, this is because the scalar character of the Klein-Gordon
wave function implies that under (1.32) it is changed at most by a phase,
which means in the passive case:
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φ(x) −→ φ′(x′) = λφ(x) , |λ| = 1 .

On the other hand, in (1.12) the operator acting on φ is a Lorentz scalar due
to

pμ −→ p′μ = Λμ
νpν , Aμ(x) −→ A′μ(x′) = Λμ

νAν(x) .

From this immediately follows the form invariance of the Klein-Gordon equa-
tion under the whole Poincaré group. If we consider only proper Lorentz
transformations, i.e. boosts and rotations, Λμ

ν depends on continuous param-
eters whose possible values include the identity transformation. Therefore, in
this case, the phase must be λ = 1.9

1.2.3 Discrete Transformations

Parity transformation P . As an example of improper (discrete) Lorentz-
like symmetry transformations, we consider the orthochronous transforma-
tion of space reflection, also called parity transformation, which is defined
via

(Λμ
ν) =

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠ , Λ0

0 > 0 , det(Λμ
ν) = −1 .

It reverses the sign of the spatial coordinates and leaves the temporal compo-
nent unchanged. Obviously, it must hold that λ2 = 1, since a twofold appli-
cation of the parity transformation is the identity transformation (Λ2 = 1).
Thus, in the passive case we have

x −→ x′ = −x , t −→ t′ = t

φ(x, t) −→ φP (x′, t′) = λP φ(x, t) , λP = ±1

A0(x, t) −→ A0
P (x′, t′) = A0(x, t)

A(x, t) −→ AP (x′, t′) = −A(x, t)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

passive space
reversal P ,

where P stands for the parity transformation. This means that, under the
parity transformation, φ behaves either as a scalar (+) or as a pseudo-scalar
(−). Using the general scheme from (1.30) and (1.31), the corresponding
active transformation is obtained as

φ(x, t) −→ φP (x, t) = λP φ(−x, t)

A0(x, t) −→ A0
P (x, t) = A0(−x, t)

A(x, t) −→ AP (x, t) = −A(−x, t)

⎫
⎪⎪⎬

⎪⎪⎭

active space
reversal P . (1.33)

9 Wave functions that are not changed under spatial rotations describe, by defini-
tion, particles with spin 0. Thus, we have a group or transformation theoretical
argument, that the Klein-Gordon equation describes spin-0 particles. In Subsec-
tion 2.2.2 we give a transformation theoretical argument for the fact that the
Dirac equation describes spin-1/2 particles.
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The invariance of the Klein-Gordon equation under this transformation
means that the mirror image of a physical Klein-Gordon process also rep-
resents a process that can be described by the Klein-Gordon equation.10

Applying the active parity transformation to the free Klein-Gordon states
φ

(1,2)
p (x, t) yields

φ(1,2)
p (x, t) −→ λP φ(1,2)

p (−x, t) = λP φ
(1,2)
−p (x, t) .

On the particle level, this is in accordance with our expectation: the parity
transformation reverses the momentum of a spin-0 particle.

Time reversal transformation T . Apart from Lorentz-like transforma-
tions there also exist non-Lorentz-like discrete symmetry operations, for ex-
ample the time reversal transformation. The physical content of the time
reversal can be explained best using the idea of a film. If a physical Klein-
Gordon process is recorded by a camera, time reversal means that the film
played backward also represents a series of physically realizable events.

The time reversal transformation, which should be better termed “motion
reversal transformation”, reverses all directions of motions and that of time,
and therefore all spatial components of the four-momentum. In contrast,
its 0th component remains unchanged due to p0 = p0(p2). The same holds
for the four-potential, since A is generated by moving currents and A0 by
charges. Thus, from the passive point of view, time reversal11 (indicated by
the symbol T ) means

x −→ x′ = x , t −→ t′ = −t

A0(x, t) −→ A0
T (x′, t′) = A0(x, t)

A(x, t) −→ AT (x′, t′) = −A(x, t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

passive time
reversal T

(1.34)

and

ih̄∂0 −→ ih̄∂′0 = −ih̄∂0 , ih̄∂i −→ ih̄∂′i = ih̄∂i .

In order to see how the wave function φ is transformed under time reversal,
we start with the Klein-Gordon equation in the transformed (primed) system,

[(
ih̄∂′

μ − e

c
AT,μ

)(
ih̄∂′μ − e

c
Aμ

T

)
− m2

0c
2
]
φT (x′) = 0 , (1.35)

and express the differential and potential terms by the original quantities

10 This analogy is not yet complete since a mirror merely reverses the component
perpendicular to its plane. Only after an additional rotation by π around this
vertical line one arrives at the parity transformation. However, the rotation is a
proper Lorentz transformation and was already discussed above.

11 We emphasize again that time reversal is not a Lorentz-like transformation.
Strictly speaking, it is therefore not justified to call it a “passive transforma-
tion”. The time reversal is not to be confused with the nonorthochronous Lorentz
transformation of time reflection, to which we return in Exercise 3.
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0 =
[(

−ih̄∂0 −
e

c
A0

)(
−ih̄∂0 − e

c
A0
)

+
(
ih̄∂i +

e

c
Ai

)(
ih̄∂i +

e

c
Ai
)

− m2
0c

2
]
φT (x′) .

As can easily be seen, this relationship leads to the Klein-Gordon equation
in the unprimed system, formally identical to (1.35), if φ is transformed as

φ(x, t) −→ φT (x′, t′) = λT φ∗(x, t) , |λT | = 1
}

passive time
reversal T . (1.36)

Here the condition for λT reflects the fact that the twofold application of
time reversal leads back to the original state. The active time reversal trans-
formation follows from (1.34) and (1.36) as

φ(x, t) −→ φT (x, t) = λT φ∗(x,−t)

A0(x, t) −→ A0
T (x, t) = A0(x,−t)

A(x, t) −→ AT (x, t) = −A(x,−t)

⎫
⎪⎪⎬

⎪⎪⎭

active time
reversal T . (1.37)

Applied to the free Klein-Gordon solutions, active time reversal yields

φ(1,2)
p (x, t) −→ λT φ(1,2)∗

p (x,−t) = λT φ
(1,2)
−p (x, t) .

Like the parity transformation, the time reversal reverses the momentum of
a spin-0 particle.
PCT -transformation (no symmetry transformation). We now come
to a central point, which is particularly important for the further development
of both the one-particle interpretation in the next section as well as the rela-
tivistic scattering theory in Chapter 3. On the basis of the charge conjugation
discussed in Subsection 1.1.3, the wave function of a physical spin-0 particle
of charge −e is obtained by starting with the negative Klein-Gordon solution
φ(−) with charge +e and taking the charge conjugate φ

(−)
C of it. However,

since space reversal P and time reversal T are symmetry transformations,
we can equally use them for the construction of antiparticle wave functions.
Thus, following Theorem 1.4 as well as (1.33) and (1.37), the combination of
the three transformations P , T , and C, and their application to the negative
solution φ(−) yields in the active case (ignoring any phases)

φ(−)(x) −→ φ
(−)
PCT (x) = φ(−)(−x) .

Since φ
(−)
PCT must be the wave function of an antiparticle because of the

C-operation, an important statement, known as Feynman-Stückelberg inter-
pretation, follows:

Theorem 1.5: Feynman-Stückelberg interpretation
in the Klein-Gordon theory

Due to the PCT -transformation, the wave function of a physical spin-0
antiparticle of charge −e can be interpreted as a negative Klein-Gordon
solution of charge +e moving backward in space and time.
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We can easily prove the correctness of this interpretation by taking the eigen-
value equation for a negative Klein-Gordon state of charge +e in the Hamilton
formulation,

[
τ3 + iτ2

2m0

(
h̄

i
∇x − e

c
A(x)

)2

+ τ3m0c
2 + eA0(x)

]

Ψ (−)(x)

= −|E|Ψ (−)(x) ,

and applying the passive PCT -transformation to it. Taking into account

x′μ = −xμ , ∇x′ = −∇x , ΨPCT (x′) = τ1Ψ(x) , Aμ
PCT (x′) = Aμ(x) ,

this yields
[

τ3 + iτ2

2m0

(
h̄

i
∇x′ +

e

c
APCT (x′)

)2

+ τ3m0c
2 − eA0

PCT (x′)

]

Ψ
(−)
PCT (x′)

= +|E|Ψ (−)
PCT (x′) ,

which is the eigenvalue equation for a positive Klein-Gordon state of charge
−e with reversed direction of motion in space and time.

The Feynman-Stückelberg interpretation has two important consequences.
First, it offers a way to describe antiparticles and particularly their most likely
quantum states by the original negative solutions (and not only by their
charge conjugates). This fact is utilized in the next section for the definition
of physically meaningful expectation values in the sense of the one-particle
interpretation. The other consequence is that its application gives a great ad-
vantage in describing relativistic scattering processes (Chapter 3) and leads
to experimentally verifiable results.

Extended charge conjugation C. The charge conjugation C is a math-
ematical equivalence operation but not a symmetry transformation as it
changes the formal shape of the Klein-Gordon equation [compare (1.22) with
(1.23) and (1.24) with (1.25)]. However, we can extend it to a non-Lorentz-like
symmetry transformation, if we additionally change the sign of the electro-
magnetic potentials:

φ(x, t) −→ φC(x, t) = λCφ∗(x, t) , |λC | = 1

A0(x, t) −→ A0
C(x, t) = −A0(x, t)

A(x, t) −→ AC(x, t) = −A(x, t)

⎫
⎪⎪⎬

⎪⎪⎭

active charge
conjugation C. (1.38)

We also call this extended transformation charge conjugation and introduce
the new symbol C to distinguish it from the former C-transformation. As
before, the constraint of λC honors the fact that twofold application of C
leads back to the original state.

On the level of wave functions the effect of C is, for example, that the
Klein-Gordon equation for a positive solution φ(+) of charge +e within the
potential +Aμ,
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[(
ih̄

∂

∂t
− eA0

)2

− c2
(
p − e

c
A
)2

− m2
0c

4

]

φ(+)(x) = 0 ,

is transformed into the Klein-Gordon equation for a negative solution φ
(+)
C =

φ(+)∗ with the same charge +e within the potential Aμ
C = −Aμ, i.e.

[(
ih̄

∂

∂t
− eA0

C

)2

− c2
(
p − e

c
AC
)2

− m2
0c

4

]

φ
(+)
C (x) = 0 .

However, due to the original C transformation, the latter can be identified
with the Klein-Gordon equation for a positive solution φ

(+)
CC of charge −e

within the potential −Aμ having the same quantum numbers as the original
solution φ(+).

Therefore, on the physical particle level, the charge conjugation C means
the conversion of a boson into an antiboson with opposite charge and other-
wise identical quantum numbers. Consequently, the physical content of the
symmetry transformation C can be described by the classically comprehen-
sible fact that the dynamics of a boson with charge +e within the potential
+Aμ is exactly the same as that of the corresponding antiboson of charge −e
within the potential −Aμ.

Further symmetry considerations. We have now discussed all fundamen-
tal symmetry transformations of the Klein-Gordon equation. They all mean
that the original and the corresponding transformed situations are equivalent.
Therefore, arbitrary combinations of symmetry transformations always lead
to physically equivalent constellations provided, of course, that the underly-
ing theory yields a correct description of the physics under consideration.

As experiments have shown, the discrete symmetries P , C, and T are
indeed realized in nature, both with respect to electromagnetic and strong
interaction phenomena which supports the correctness of the Klein-Gordon
theory for the description of spin-0 particles. However, this is no longer true
for physical processes containing weak interactions where each of the three
symmetries is violated. On the other hand, within modern quantum field
theories (with any type of interaction), there follows from Lorentz invariance
and the usual relationship between spin and statistics the so-called PCT -
theorem. It states that the three-way combination of P , C, and T is always a
symmetry transformation (see Exercise 3). The PCT -theorem implies (among
other things) that particle and antiparticle have the same life time.

Summary

• Transformations can be classified into active and passive transfor-
mations. At active transformations the physical state, and at passive
transformations the underlying basis system is transformed.

�
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• Symmetry transformations lead to formally equivalent equations of
motions and thus to physically equivalent situations.

• The Klein-Gordon theory is invariant under the full Poincaré group. Dis-
crete symmetry transformations of the theory are the improper Lorentz
transformations of space reflection P , the non-Lorentz-like transfor-
mations of time reversal T , and the extended charge conjugation
C.

• The wave function of a spin-0 antiparticle of charge −e can be interpreted
as a negative Klein-Gordon solution of charge +e, moving backward in
space and time (Feynman-Stückelberg interpretation).

Exercises

3. Lorentz behavior of the PCT -symmetry transformation (I). Show
that the PCT -transformation12 is a Lorentz-like symmetry operation by con-
sidering the improper and nonorthochronous Lorentz transformation of time
reflection. The latter is also called Racah time reflection and is defined via

(Λμ
ν) =

⎛

⎜
⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ , Λ0

0 < 0 , det(Λμ
ν) = −1 .

Solution. For the passive and active transformation laws of the Racah time
reflection (denoted by the symbol R), one obtains

x −→ x′ = x , t −→ t′ = −t

φ(x, t) −→ φR(x′, t′) = λRφ(x, t) , λR = ±1

A0(x, t) −→ A0
R(x′, t′) = −A0(x, t)

A(x, t) −→ AR(x′, t′) = A(x, t)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

passive
time

reflection R

and
φ(x, t) −→ φR(x, t) = λRφ(x,−t)

A0(x, t) −→ A0
R(x, t) = −A0(x,−t)

A(x, t) −→ AR(x, t) = A(x,−t)

⎫
⎪⎪⎬

⎪⎪⎭

active
time

reflection R.

Comparing the last relations with (1.37) and (1.38), i.e. the active transfor-
mation laws of time reversal T and charge conjugation C, it becomes apparent
that the combination of C and T is identical to the Racah time reflection:
12 Not to be confused with the PCT -transformation.
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CT = R =⇒ PCT = PR .

Since P and R are Lorentz-like, it follows that the PCT -transformation is
Lorentz-like, too.

1.3 One-Particle Interpretation of the
Klein-Gordon Theory

Based on the preceding results, particularly those in Subsections 1.1.3 and
1.2.3, we are now in a position to complete the one-particle interpretation of
the Klein-Gordon theory. The essential points that need to be clarified have
already been mentioned in Subsection 1.1.3, namely,

[1] under which conditions is a decoupling of the Klein-Gordon theory into
two one-particle theories possible,

[2] which operators are appropriate for the one-particle concept and how can
they be constructed,

[3] how can physically meaningful and picture- as well as representation-
independent one-particle expectation values be defined?

In our subsequent discussion, we first concentrate on point [3] and define a
generalized scalar product that complies with the findings in Theorem 1.5.
This definition also requires a generalization of the terms “Hermitecity” and
“unitarity” in order to ensure the picture-independence of the generalized
scalar product. Based on this formalism, we then turn to question [2]. Finally,
we carry out a thorough discussion of point [1], trace out the range of validity
of the one-particle concept and outline inconsistencies outside this range.

For clarity and simplicity and particularly on account of the close affinity
to nonrelativistic quantum mechanics, we preferentially use the Hamilton
formulation of the Klein-Gordon theory.

1.3.1 Generalized Scalar Product

As already pointed out in Subsection 1.1.3, in the nonrelativistic approxima-
tion we have for positive Klein-Gordon solutions |ϕ| � |χ| (and for negative
solutions |ϕ| � |χ|; see Subsection 1.4.1). At least in this validity range of the
one-particle concept (to be defined later in more detail) the charge density
for positive solutions is positive definite and can therefore be interpreted as
a probability density:

ρ = ψ†τ3ψ
|ϕ|�|χ|
≈ ψ†ψ ,

∫
d3xρ(x) = +1 .

From this follows that the most likely quantum state of a spin-0 (anti)particle
with respect to an observable O can be described by the usual expectation
value of the nonrelativistic theory. For particles with charge +e, we have
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〈
ψ(+)

∣
∣O
∣
∣ψ(+)

〉
=
∫

d3xψ(+)†(x)Oψ(+)(x)
〈
ψ(+)

∣
∣ψ(+)

〉
= +1 .

⎫
⎬

⎭
(1.39)

In the case of antiparticles of charge −e, it follows, due to the charge conju-
gation C and Theorem 1.5, that

〈
ψ

(−)
C

∣
∣
∣O
∣
∣
∣ψ(−)

C

〉
=
∫

d3xψ
(−)†
C (x)Oψ

(−)
C (x) ,

〈
ψ

(−)
C

∣
∣
∣ψ(−)

C

〉
= +1

=
∫

d3xψ(−)†(−x)Oψ(−)(−x)

= −
∫

d3xψ(−)†(x)Oψ(−)(x)

= −
〈

ψ(−)
∣
∣
∣O
∣
∣
∣ψ(−)

〉
,
〈

ψ(−)
∣
∣
∣ψ(−)

〉
= −1 . (1.40)

The third relation reflects the fact that the reversal of all space and time
directions (PCT -transformation) causes the reversal of all eigenvalues and
consequently of all expectation values of a wave function. Combining (1.39)
and (1.40) finally leads to the generalized expectation value

〈ψ| O |ψ 〉G =
∫

d3xψ(x)τ3Oψ(x) , (1.41)

where, in the case of particles with charge +e, positive solutions ψ(+) with〈
ψ(+)

∣
∣ψ(+)

〉
G

= Q(+) = +1 and, in the case of antiparticles with charge −e,
negative solutions ψ(−) with

〈
ψ(−)

∣
∣ψ(−)

〉
G

= Q(−) = −1 are to be inserted.
Obviously, this result explains and generalizes the third point from The-

orem 1.4, namely, that quantum states of antiparticles can be described by
negative Klein-Gordon solutions and not only by their charge conjugates. In
this way, we arrive at a desirable symmetry in the description of particles and
antiparticles enabling us to regard – with certain reservations – the negative
solutions ψ(−) as antiparticle wave functions.13

All in all, (1.41) leads to a novel definition of the scalar product that fol-
lows, like in the Schrödinger theory, the form of ρ and which has already been
anticipated in Theorems 1.2 and 1.3 for the case of free particles (compare
to Exercise 2).

13 However, from this another asymmetry follows. For a positive eigensolution of an
operator its eigenvalues and expectation values are identical, whereas for a neg-
ative eigensolution these quantities are opposites. Therefore, when using (1.41),
the third principle of Theorem 1.1 can no longer be sustained. This weak point
can be circumvented by adhering to the definition of the nonrelativistic expec-
tation value for both positive and negative solutions and, in return, redefining
physical observables in an appropriate way. We do not address this possibility in
the following.
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Definition: Generalized scalar product

The generalized scalar product (G-scalar product) of the Klein-Gordon
theory is defined as

〈ψ|φ〉G =
∫

d3xψ†(x)τ3φ(x) .

Two states ψ and φ are called generalized orthogonal (G-orthogonal) if
〈ψ|φ〉G = 0. The expression

〈O〉G = 〈ψ| O |ψ 〉G =
∫

d3xψ(±)†(x)τ3Oψ(x) , Q = 〈ψ|ψ〉G = ±1

is the generalized expectation value (G-expectation value) of the observable
O denoting the statistical average of many similar measurements of O on
identical spin-0-[anti]particle systems of charge +e [−e]. Positive Klein-
Gordon solutions ψ(+) with Q(+) = +1 are inserted for particles, and neg-
ative solutions ψ(−) with Q(−) = −1 for antiparticles.

As can easily be shown, 〈ψ|φ〉G has the same properties as 〈ψ|φ〉 except for
positive definiteness, namely

• 〈ψ|φ + χ〉G = 〈ψ|φ〉G + 〈ψ|χ〉G
• 〈ψ| aφ〉G = a 〈ψ|φ〉G
• 〈ψ|φ〉G = 〈φ|ψ〉∗G .

Relating 〈ψ| O |φ 〉G back to 〈ψ| O |φ 〉 gives the following adjunction relation
corresponding to (1.21):

〈ψ| O |φ 〉G = 〈ψ| τ3O |φ 〉 =
〈
φ| O†τ3 |ψ

〉∗
=
〈
φ| τ3O†τ3 |ψ

〉∗
G

.

From this follows immediately that an operator O with O = τ3O†τ3 has real
G-expectation values. In Exercise 4 we show that such an operator also has
the following properties:

• The eigenvalues of charged eigenstates ψ (with 〈ψ|ψ〉G �= 0) are real.

• Charged eigenstates corresponding to different eigenvalues are G-orthogonal.

Thus, with a view to the Hermitean operators in nonrelativistic quantum
mechanics, we can formulate the following:

Definition: Generalized Hermitean operator

A linear operator O is called generalized Hermitean (G-Hermitean) if

O = τ3O†τ3 ⇐⇒ τ3O = (τ3O)† ,

i.e. if τ3O is an Hermitean operator. Such an operator has real G-
expectation values.

�
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With respect to the one-particle interpretation, only those G-Hermitean
operators represent physically meaningful quantities whose eigenstates form
a complete system, i.e. in which each Klein-Gordon state with a finite G-
norm can be expanded (one-particle operators).

From this follows generally (not only for the free case) that charged eigen-
states of H and p are G-orthogonal since H and p are G-Hermitean operators.

Apart from G-Hermitean operators, the G-scalar product leads to another
important class of operators, namely the transformation operators which
leave the scalar product invariant. To this we consider the operator U as
well as the transformation

ψ′ = Uψ , φ′ = Uφ

and require that

〈ψ′|φ′〉G = 〈ψ′| τ3 |φ′ 〉 =
〈
ψ|U†τ3U |φ

〉
=
〈
ψ| τ3U

†τ3U |φ
〉
G

!= 〈ψ|φ〉G .

Therefore, we define:

Definition: Generalized unitary operator

A linear transformation operator U is called generalized unitary (G-unitary)
if

τ3U
†τ3 = U−1 .

Such an operator leaves the G-scalar product invariant.

G-unitary operators also possess the following properties analogous to those
of unitary operators (see Exercise 4):

• The product of two G-unitary operators is also a G-unitary operator.

• If U describes an infinitesimal G-unitary transformation U = 1 + iεO with
|ε| � 1, then, O is G-Hermitean.

• If O is G-Hermitean, then, eiO is G-unitary.

Because of the last property, eiH is a G-unitary operator, since H is G-
Hermitean. This means that the chosen definition of the G-scalar product
also ensures its picture-independence; using eiH (or eiHt/h̄) we can, as usual,
switch between different pictures (Schrödinger picture, Heisenberg picture
etc.), all of them giving equivalent descriptions of the Klein-Gordon theory
with respect to the generalizations discussed.

1.3.2 One-particle Operators and Feshbach-Villars Representation

Having solved problem [3] through the definition of the G-scalar product, we
now turn to the generalized form of the Ehrenfest theorem in order to tackle
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the question which G-Hermitean operators represent physically meaningful
one-particle operators in the sense of the definition of page 32 and how they
can be constructed (point [2]).

Generalized Ehrenfest theorem. Our starting point is the Heisenberg
equation known from nonrelativistic quantum mechanics and clearly also
valid in the relativistic case:

ih̄
dOH

dt
= [OH,HH] + ih̄

∂OH

∂t
.

It represents an operator equation in the Heisenberg picture which corre-
sponds to the Hamiltonian Klein-Gordon equation. The states and operators
in the Schrödinger picture (without index) and in the Heisenberg picture
(with index H) are connected via the representation-independent relations

|ψH〉 = e−ih̄H(t−t0) |ψ(t)〉 = |ψ(t0)〉 , OH = e−ih̄H(t−t0)Oeih̄H(t−t0) .

Multiplying the Heisenberg equation by τ3 from the left and taking into ac-
count d |ψH〉 /dt = 0, we obtain the (picture- and representation-independent)
Heisenberg equation for G-expectation values

d 〈O〉G
dt

=
1
ih̄

〈[O,H]〉G +
〈

∂O
∂t

〉

G

as well as – for explicitly time-independent operators (∂O/∂t = 0) – the
generalized Ehrenfest theorem

d 〈O〉G
dt

=
1
ih̄

〈[O,H]〉G . (1.42)

Without the index G, both relations are also valid in the nonrelativistic
theory. There the Ehrenfest theorem also implies the formal equivalence
with the Hamilton equations of classical mechanics where the classical quan-
tities are replaced by their mean values. Examples of this kind are [with
H = p2/2m0 + V (x)]

d 〈p〉
dt

=
1
ih̄

〈[p,H]〉 = −〈∇V 〉 ←→ dp

dt
= −∂H

∂x
= −∇V

d 〈x〉
dt

=
1
ih̄

〈[x,H]〉 =
〈

p

m0

〉
←→ dx

dt
=

∂H

∂p
=

p

m0
.

In the relativistic Klein-Gordon theory this correspondence principle does not
hold generally. For example, in the free case, we have the operator equation

d 〈x〉G
dt

=
1
ih̄

〈
[x,H(0)]

〉

G
=
〈

(τ3 + iτ2)p
m0

〉

G

, H(0) from (1.16) ,

whereas the classical relationship is given by

dx

dt
=

p

m
=

cp

p0
, m = m0/

√
1 − v2/c2 . (1.43)
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As one can see, the right hand sides of both equations are different. An-
other important difference to the nonrelativistic theory is that the “velocity
operator”

v =
(τ3 + iτ2)p

m0
(1.44)

is G-Hermitean but does not represent an observable or a one-particle opera-
tor in the sense of the definition of page 32 since the eigenvalues of the matrix
τ3 + iτ2 are zero. Furthermore and against our expectation, the operator v is
not constant for free particles , due to [v,H(0)] �= 0. From all of this we must
conclude that, in the Klein-Gordon theory, not all operators (e.g. constructed
via the generalized Ehrenfest theorem) are physically sensible.

The reason for this phenomenon lies in the one-particle concept: according
to the definition of one-particle operators, only even operators are allowed
that do not mix positive and negative states since only these may possess a
complete basis system.14 Since each operator O is divisible into an even and
an odd operator,

O = [O] + {O} , [O] = even , {O} = odd ,

its even part, i.e. the sought one-particle operator, can be separated.
Obviously, the free Hamilton operator H(0) and the momentum operator

p are one-particle operators, since they possess the positive and negative
states (1.18) as a (common) eigenbasis. In contrast, the position operator x
is not an even operator, as [x,H(0)] is not even. As discussed in the next
section, the full Hamilton operator H from (1.17) is not even, either.

Feshbach-Villars representation. The general investigation of even and
odd operators becomes much simplified in a specific representation (in a
specific basis system), where the positive and negative states are of the form

ψ(+) ∼
(

1
0

)
, ψ(−) ∼

(
0
1

)
.

This is because here the even operator [O] of an operator O is its diagonal
part:

O =
(
O11 O12

O21 O22

)
, [O] =

(
O11 0
0 O22

)
, {O} =

(
0 O12

O21 0

)
.

The transition to such a representation is equivalent to the diagonalization of
the Hamilton operator which, in general, is only possible approximately (see
the next section). However, in the free case the diagonalization can be carried

14 An operator O is called even if Oψ(±) = ψ′(±), where ψ(±) and ψ′(±) denote
arbitrary positive (+) and negative (−) states. If, on the other hand, Oψ(±) =

ψ′(∓), the operator O is called odd.
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out exactly and leads to the so-called Feshbach-Villars representation (FV-
representation). The transition from the Schrödinger momentum representa-
tion (in which p and p0 are C-numbers) to the corresponding Feshbach-Villars
representation is facilitated by the G-unitary transformation operator

U =
(m0c + p0) − τ1(m0c − p0)

2
√

m0cp0
, U−1 =

(m0c + p0) + τ1(m0c − p0)
2
√

m0cp0
,

since we have

Ψ̃ (1) = UΨ (1)(p) =
(

1
0

)
, Ψ̃ (2) = UΨ (2)(p) =

(
0
1

)

and (see Exercise 5)

H̃(0) = UH(0)U−1 = cp0τ3 , H̃(0)Ψ̃ (1,2) = ±cp0Ψ̃
(1,2) (1.45)

as well as

p̃ = UpU−1 = UU−1p = p .

The last relations show, once again, that H(0) and p are even operators, i.e.
H(0) = [H(0)], p = [p]. Furthermore, contrary to H(0), the operator H̃(0) is
Hermitean.

One-particle operators for position and velocity. With the help of the
Feshbach-Villars representation and the transformation operator U , we are
now able to determine the one-particle position operator from x as well as
the one-particle velocity operator from (1.44) for the free case. To this end,
it is useful to distinguish explicitly between the following representations (in
the Schrödinger picture):

• Position representation: in this representation (which we have mostly been
working in so far), the position operator x is given by the C-number x,
the momentum operator p by −ih̄∇, and the Hamilton operator H(0) by
(1.16).

• Momentum representation: here x is given by ih̄∇p and p by the C-number
p.

• FV-momentum representation: this is obtained by diagonalizing H(0) in
momentum representation as shown in (1.45).15

Let us now consider the position operator in momentum representation,

x = ih̄∇p .

In FV-momentum representation, it becomes (see Exercise 5)

15 Note that we are dealing with two different categories of representations that
are combined. In the first category x or p are diagonal (position or momentum

representation). In the second one the Hamilton operator H(0) is diagonal and
results essentially from a rotation in τ -space (Feshbach-Villars representation).
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x̃ = ih̄U∇pU−1 = ih̄∇p − ih̄
τ1p

2p2
0

. (1.46)

Since τ1 is nondiagonal, the one-particle position operator follows as

[x̃] = ih̄∇p . (1.47)

It is the canonical conjugate to the momentum operator since we have

[[x̃]i, [p̃]j ] = ih̄
[

∂

∂pi
, pj

]
= ih̄δij ,

as in nonrelativistic quantum mechanics. Inverting the transformation U , one
obtains from (1.47) the one-particle position operator in momentum repre-
sentation (see Exercise 5):

[x] = ih̄U−1∇pU = ih̄∇p + ih̄
τ1p

2p2
0

, p = C-number , (1.48)

and from this the one-particle position operator in position representation:

[x] = x + ih̄
τ1p

2p2
0

, p = −ih̄∇ .

To determine the one-particle velocity operator [ṽ] in FV-momentum rep-
resentation, we use the generalized Ehrenfest theorem (1.42) with [x̃] from
(1.47) and [H̃(0)] = H̃(0) = cp0τ3 to find

〈[ṽ]〉G =
d 〈[x̃]〉G

dt
=

1
ih̄

〈[
[x̃], H̃(0)

]〉

G
=
〈

τ3
cp

p0

〉

G

=⇒ [ṽ] =
cpτ3

p0
, p = C-number .

Thus, in FV-momentum representation and in the case of positive states,
we have the same relations between the one-particle velocity and momentum
operators as in classical relativistic mechanics. For negative states, this is
only true with respect to the absolute amounts. The one-particle velocity
operator in momentum representation is calculated from the last relation as
(see Exercise 5)

[v] = U−1 cpτ3

p0
U =

(τ3 + iτ2)p
2m0

+
(τ3 − iτ2)m0c

2p

2p2
0

, p = C-number .(1.49)

In position representation this finally yields

[v] =
(τ3 + iτ2)p

2m0
+

(τ3 − iτ2)m0c
2p

2p2
0

, p = −ih̄∇ .

This operator has a common eigenbasis with H(0) and p, namely, the positive
and negative Klein-Gordon solutions ψ

(r)
p from (1.18) with the energy eigen-

values εrcp0, the momentum eigenvalues εrp, and the one-particle velocity
eigenvalue cp/p0.
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Theorem 1.6: One-particle operators and FV-representation
in the Klein-Gordon theory

In the one-particle interpretation of the Klein-Gordon theory only those G-
Hermitean operators that do not mix positive and negative states (compare
to the definition of page 32) are sensible descriptions of physical quanti-
ties. In the free case the corresponding Hamilton operator H(0) can be
diagonalized using the G-unitary Feshbach-Villars transformation

U =
(m0c + p0) − τ1(m0c − p0)

2
√

m0cp0
,

which leads to the Feshbach-Villars representation. Here the even part of an
operator can be determined very easily as it is simply given by its diagonal
part.
Contrary to H(0) and p, the position operator x and the velocity operator v
are not even. Transforming them into the Feshbach-Villars representation,
separating their diagonal parts, and subsequently transforming the latter
back, one finds the one-particle position operator [x] and the one-particle
velocity operator [v] in the usual position or momentum representation to
be

[x] = x + ih̄
τ1p

2p2
0

, [v] =
(τ3 + iτ2)p

2m0
+

(τ3 − iτ2)m0c
2p

2p2
0

.

In this context note the following: although the operator [v] seems to be ac-
ceptable within the one-particle interpretation, it contains a flaw, since in
position representation, we have:

[p]ψ(1,2)
p (x) = ±pψ(1,2)

p (x) , [v]ψ(1,2)
p (x) = +

cp

p0
ψ(1,2)

p (x) .

This means that, for negative solutions ψ
(2)
p , the eigenvalue (or G-expectation

value) of [v] is opposed to the eigenvalue (or G-expectation value) of [p]. The
reason for this unphysical behavior is related to the fact that according to
Theorem 1.5, negative solutions are propagating backward in time.

Smearing of position wave functions. We now come to an important
consequence resulting from the difference between the usual position operator
x and the one-particle position operator [x] or, equally, from the noncommu-
tativity of x and the Feshbach-Villars transformation U . In FV-momentum
representation the common eigenstates of the charge operator τ3 and the
one-particle position operator [x̃] are given by

φ̃
(1)
x′ (p) =

1
(2πh̄)3/2

(
1
0

)
e−ipx′

, φ̃
(2)
x′ (p) =

1
(2πh̄)3/2

(
0
1

)
e−ipx′

,

with

[x̃]φ̃(r)
x′ (p) = ih̄∇pφ̃

(r)
x′ (p) = x′φ̃

(r)
x′ (p) , τ3φ̃

(r)
x′ (p) = εrφ̃

(r)
x′ (p) .
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The corresponding eigenstates of the one-particle position operator [x] in
momentum representation follow from this as

φ
(r)
x′ (p) = U−1φ̃

(r)
x′ (p) =

1
(2πh̄)3/2

1
2
√

m0cp0

(
m0c + εrp0

m0c − εrp0

)
e−ipx′/h̄ .

As known from nonrelativistic quantum mechanics, the transition from mo-
mentum to position representation is carried out via

ψ
(r)
x′ (x) =

1
(2πh̄)3/2

∫
d3peipx/h̄φ

(r)
x′ (p) .

After some lengthy calculations which we do not present here, one finally
finds

ψ
(1)
x′ (x) z�1∼

(
z−7/4 + z−9/4

z−7/4 − z−9/4

)
e−z , ψ

(2)
x′ (x) z�1∼

(
z−7/4 − z−9/4

z−7/4 + z−9/4

)
e−z,

with z = m0c|x−x′|/h̄. Hence, in position representation, the eigenfunctions
of the one-particle position operator [x] are not strict δ(x − x′)-functions,
but exhibit a certain smearing over an area of magnitude

z ∼ 1 =⇒ |x − x′| ∼ h̄

m0c
.

These considerations lead us to the following conclusions: due to [x, U ] �= 0,
the Feshbach-Villars transformation U is a nonlocal transformation. The
transformed wave function ψ̃(x) is obtained from the original wave func-
tion ψ(x) by averaging its position argument x over an area whose linear
extent is comparable to the Compton wave length of the particle. As already
mentioned in the introduction of this chapter, with respect to the one-particle
interpretation, only those Klein-Gordon wave packets are physically sensible
whose extent is large compared to the corresponding Compton wave length.
Therefore, averaging effects stemming from nonlocal changes of representa-
tions can essentially be ignored.

1.3.3 Validity Range of the One-particle Concept

Using the Hamilton form of the Klein-Gordon equation and introducing the
G-scalar product, we have so far developed a formalism which references non-
relativistic quantum mechanics in many respects. Within it the positive and
(charge conjugated) negative solutions can be interpreted as two different
one-particle systems with opposite charge signs and positive G-expectation
values. In order to complete the one-particle concept, we still have to investi-
gate the conditions of its physical consistency and thus clarify the still open
point [1].

First of all, from the introductory remarks of this chapter, it is clear
that the one-particle interpretation of the Klein-Gordon theory can only be
applied to physical situations where processes changing the particle number
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(particle creation and annihilation) do not play any role. This is the case
only for particle energies, particle momenta, and electromagnetic potentials
for which

|E − m0c
2| < m0c

2 , |p|,
∣
∣
∣
e

c
Aμ
∣
∣
∣ < m0c , Δp � m0c .

This, in turn, implies, due to Heisenberg’s uncertainty relation, a necessary
position uncertainty of

Δx � λc =
h̄

m0c
(1.50)

for the wave packet of the considered particle. Now we examine what addi-
tional constraints need to be satisfied for the decoupling of the Klein-Gordon
theory into two one-particle theories with pure positive or negative solutions
(point [1]) so that

• charged particles and antiparticles can be reasonably described

• the charge density is either positive or negative allowing a quantum me-
chanical statistical interpretation of G-expectation values.

To this end, we consider a free Klein-Gordon wave packet of charge +e located
around the origin at t = 0 according to

ψ(x, t = 0) = (πΔ2)−3/4e−x2/(2Δ2)

(
1
0

)
, Q = 〈ψ|ψ〉G = +1

and ask, in which circumstances negative parts with significant amplitude are
to be expected? To do this, we decompose the wave packet into its Fourier
components,16

ψ(x, t = 0) =
(

Δ2

πh̄2

)3/4 ∫ d3p′

(2πh̄)3/2
e−p′2Δ2/(2h̄2)eip′x/h̄

(
1
0

)
, (1.51)

and compare this expression with the general solution for t = 0,

ψ(x, t = 0) =
∫

d3p′
2∑

r=1

a(r)(p′)ψ(r)
p′ (x, t = 0) .

This yields
(

Δ2

πh̄2

)3/4

e−p′2Δ2/(2h̄2)

(
1
0

)
= a(1)(p′)Ψ (1)(p′) + a(2)(−p′)Ψ (2)(−p′) .

Multiplying this equation by Ψ (r)†(p′)τ3 from the left and using (1.19) we
obtain the series coefficients a(r)(p′) as

16 To avoid confusion, we denote the Fourier momentum by p′. The group momen-
tum of the wave packet is p = 0.
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a(1)(p′) =
(

Δ2

πh̄2

)3/4
m0c + p′0
2
√

m0cp′0
e−p′2Δ2/(2h̄2)

a(2)(−p′) =
(

Δ2

πh̄2

)3/4
m0c − p′0
2
√

m0cp′0
e−p′2Δ2/(2h̄2) .

We see that the amplitudes a(2)(p′) of the negative solution ψ
(2)
p′ (x) in the

wave packet are nonzero, which reflects the fact that only the positive and
negative solutions together form a complete system. The ratio of the ampli-
tudes of positive and negative solutions is

a(2)(−p′)
a(1)(p′)

=
m0c − p′0
m0c + p′0

=
m0c −

√
m2

0c
2 + p′2

m0c +
√

m2
0c

2 + p′2
.

From this follows that only the amplitudes of negative solutions with Fourier
momenta |p′| ~

<

m0c contribute significantly to the wave packet. On the
other hand, the Fourier transformation (1.51) shows that only momenta with
|p′| <~ h̄/Δ are predominantly present in the wave packet. We therefore con-
clude that for a significant contribution of negative solutions, the wave packet
must be localized within an area whose extent is comparable to the Compton
wave length of the spin-0 particle: Δ <~ h̄/m0c. Put differently: demanding
the Klein-Gordon theory to be completely decoupleable into two one-particle
theories leads again to the constraint (1.50), i.e. to Klein-Gordon wave packets
whose extent is large compared to the corresponding Compton wave length.

For the sake of clarity, we summarize the limits of the one-particle inter-
pretation of the Klein-Gordon theory as follows:

Theorem 1.7: Validity range of the one-particle concept

A consistent one-particle interpretation of the Klein-Gordon theory is pos-
sible only in those cases where

• the particle’s energy and momentum as well as the electromagnetic po-
tentials obey the conditions

|E − m0c
2| < m0c

2 , |p|,
∣
∣
∣
e

c
Aμ
∣
∣
∣ < m0c , ΔE � m0c

2 , Δp � m0c ,

• the particle’s wave packet has a spatial extent Δ, which is large compared
to the corresponding wave length:

Δ � λc =
h̄

m0c
.

The second condition follows, on the one hand, from the first condition in
conjunction with Heisenberg’s uncertainty relation and, on the other hand,
from the requirement that the charged spin-0 particle or antiparticle must
be representable by sole positive or negative Klein-Gordon solutions. With

�
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these prerequisites, the Klein-Gordon theory decouples into two one-
particle theories with positive and negative definite charge densities, al-
lowing a statistical one-particle interpretation. Beyond these limits, the
one-particle concept leads to contradictions that can be solved satisfacto-
rily only within quantum field theoretical considerations.

Such contradictions appear, for example, in the shaky movement (see Exercise
7) and in the Klein paradox, to which we now turn.

1.3.4 Klein Paradox

We consider a onedimensional spin-0 particle, that, coming from the left, is
scattered against a potential step of the form (see Figure 1.3)

eA0(z) = V (z) =

{
0 for z < 0 (area I)

V0 for z > 0 (area II)

}

, V0 > 0 , A = 0 .

The corresponding canonical Klein-Gordon equation is
(

ih̄
∂

∂t
− V (z)

)2

φ(z, t) +
(

c2h̄2 d2

dz2
− m2

0c
4

)
φ(z, t) = 0 .

Separating the time-dependent part via

φ(z, t) = Φ(z)e−iEt/h̄ ,

we obtain the stationary equation

d2Φ(z)
dz2

=
1

c2h̄2

{
m2

0c
4 − [E − V (z)]2

}
Φ(z) . (1.52)

For its general solution in the areas I (z < 0) and II (z > 0), we set

ΦI(z) = Φin(z) + Φref(z) , ΦII(z) = Φtrans(z) ,

with

Φin(z) = Aeik1z , Φref(z) = Be−ik1z , Φtrans(z) = Ceik2z

V (z)

V0

z

E

I II

Fig. 1.3. Onedimensional potential step.
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k1 =

√
E2 − m2

0c
4

c2h̄2 , k2 =

√
(E − V0)2 − m2

0c
4

c2h̄2 ,

where Φin, Φref , Φtrans denote the incoming, reflected, and transmitted parts,
respectively. The integration constants A, B, and C follow from the continuity
conditions of Φ(z) and Φ′(z) at z = 0 as17

B =
1 − r

1 + r
A , C =

2A

1 + r
, r =

k2

k1
.

Depending on the choice of V0 or E, we initially distinguish three cases:

1. case: E > V0 + m0c
2. In this case, the wave number k2 is real implying

that the transmitted wave in area II is oscillating, and we have r > 0. The
current densities of the incoming, reflected, and transmitted parts in the
z-direction are calculated as

T =
jtrans

jin
=

4r

(1 + r)2
, R = −jref

jin
=

(1 − r)2

(1 + r)2
= 1 − T .

For each value r > 0, the reflection and transmission coefficients obey 0 <
R,T < 1, in accordance with our expectations.

2. case: V0 −m0c
2 < E < V0 +m0c

2 , E > m0c
2. Here k2 is imaginary, and

the transmitted wave is exponentially damped down.

3. case: m0c
2 < E < V0 − m0c

2 =⇒ V0 > 2m0c
2. As in the first case, the

wave number k2 is real yielding an oscillating transmitted wave in area II.
Obviously, in the first two cases, the Klein-Gordon solutions behave sim-

ilarly to those of nonrelativistic quantum mechanics and can be interpreted
as the scattering of a particle of charge +e at the (from its view) repulsive
potential barrier. However, the third case is starkly contradictory to our ex-
pectations with respect to the one-particle interpretation, since the potential
step should be inpenetrable for a quantum mechanical particle with E < V0.
Another contradiction – in the second case in parts and in the whole third
case – is the different current density signs of the incoming and transmitted
waves for E − V0 < 0,

ρin(z) =
E

m0c2
|Φin(z)|2 > 0 , z < 0

ρtrans(z) =
E − V0

m0c2
|Φtrans(z)|2 < 0 , z > 0 .

17 The continuity of Φ(z) at z = 0 is a consequence of charge current conservation.
Moreover, for potentials V (z) with a finite step at z = 0, we have

Φ′(+δ) − Φ′(−δ) =

+δ∫

−δ

dz
d

dz
Φ′(z) ∼

+δ∫

−δ

dz
[
m2

0c
4 − (E − V (z))2

]
Φ(z)

δ→0−→ 0 .
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According to this, the transmitted part must be regarded as a negative Klein-
Gordon solution whose energy E − V0 relative to the potential V0 is indeed
less than zero (see Figure 1.4).

E

V0 + m0c
2

V0

V0 − m0c
2

m0c
2

0

−m0c
2

k2 real, ρ > 0

k2 imaginary, ρ > 0

k2 imaginary, ρ < 0

k2 real, ρ < 0k1 real, ρ > 0

I II

Fig. 1.4. Energy intervals of the onedimensional potential step. In area I the pos-
itive solutions lie within the interval E > m0c

2 and the negative solutions within
the interval E < −m0c

2. In area II the positive solutions (with energy E − V0

relative to the potential V0) lie within the interval E > V0 +m0c
2 and the negative

ones within the interval E < V0 − m0c
2. In between there are the solutions of the

“forbidden” energy intervals.

The reasons for these circumstances are rooted in the fact that the increase
of V0 up to a value around E corresponds to a decrease of the wave packet’s
penetration depth in area II down to 1/k2 ≈ h̄/m0c, i.e. down to the Compton
wave length of the incoming particle. Choosing, instead, a potential with an
increase less than m0c

2 per Compton wave length, one can show that the
paradoxes tend to vanish. In other words: the above mentioned difficulties
result from too-strong a localization of the particle (see Theorem 1.7).

It is interesting that, when leaving the level of the one-particle interpre-
tation, the third case allows a physically sensible (but at best qualitatively
acceptable) interpretation in terms of pair creation. Here we have to keep
in mind that the negative wave function Φtrans with momentum eigenvalue
+h̄k2 and energy E − V0 < −m0c

2 corresponds to an antiparticle of charge
−e flying with momentum −h̄k2 from the right toward the potential step.
However, since we are assuming incoming movements from the left to the
right, an incoming antiparticle from the right does not make any sense. On
the other hand, we have the freedom to choose the sign of k2. So, replacing
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k2 by −k2, the transmitted wave Φtrans now corresponds to an antiparticle
moving to the right with charge −e and momentum +h̄|k2|. Moreover, we
then have

r < 0 =⇒ R > 1 , T < 0 .

These relations can finally be interpreted as particle-antiparticle creation in
the following way: all particles, coming from the left are totally reflected at
the potential step. Additionally, particle-antiparticle pairs are created with
the particles moving to the left (R > 1) and the antiparticles to the right
(T < 0).

Let us, for completeness, also consider the remaining two energy intervals:
4. case: −m0c

2 < E < m0c
2. In this case, a solution does not exist as long

as we adhere to a rightward directed incoming movement.
5. case: E < −m0c

2. k2 is real, and we have again an oscillating wave in
area II. Replacing k1 and k2 by k1 = −|k1| and k2 = −|k2|, this can be inter-
preted within the one-particle picture, similarly to the above considerations,
as follows: a rightward incoming antiparticle with charge −e is scattered at
the (from its point of view) attractive potential barrier. Compared to the first
case, the charge current densities jin, jref , and jtrans have opposite signs, and
we again obtain r > 0 =⇒ 0 < R,T < 1.

Summary

• With the help of the G-scalar product and the G-expectation value,
statistical mean measurement values of spin-0 [anti]particle systems can
be described symmetrically using positive [negative] Klein-Gordon solu-
tions.

• The G-scalar product leads to the definition of G-Hermitean and G-
unitary operators that correspond to Hermitean and unitary operators
of nonrelativistic quantum mechanics.

• The G-Hermitecity of the Klein-Gordon-Hamilton operator ensures the
picture-independence of the G-scalar product.

• Within the one-particle interpretation, only those G-Hermitean opera-
tors can be regarded as observables that are even operators, i.e. that
do not mix positive and negative Klein-Gordon solutions (one-particle
interpretation). The even part of an operator can be determined best
in a representation where the Hamilton operator is diagonal. In the free
case this is given by the Feshbach-Villars representation.

• The Feshbach-Villars transformation is a nonlocal transformation.
The position argument x of a wave function ψ(x) is averaged or smeared
over a region whose extent is equal to the Compton wave length of the
particle.

�
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• The validity range of the one-particle probabilistic interpretation is re-
stricted, on the one hand, to small energies where particle creation pro-
cesses can be ignored and, on the other hand, to Klein-Gordon wave
packets whose extent is large compared to the corresponding wave length.

• The Klein paradox is a simple example of interpretational difficulties
of the one-particle concept stemming from too-strong a localization of
Klein-Gordon wave packets. Beyond the one-particle concept, this phe-
nomenon can be qualitatively interpreted as pair creation.

Exercises

4. Properties of G-Hermitean and G-unitary operators. Verify the
following properties of G-Hermitean and G-unitary operators:

a)For charged eigenstates the eigenvalues of a G-Hermitean operator are real.

b)Charged eigenstates of a G-Hermitean operator to different eigenvalues are
G-orthogonal.

c) The product of two G-unitary operators is a G-unitary operator, too.

d)If U describes the infinitesimal G-unitary transformation U = 1 + iεO,
|ε| � 1, then O is G-Hermitean.

e) If O is G-Hermitean, then eiO is G-unitary.

Solution.

To a) Let O be a G-Hermitean operator and

O |ψ〉 = a |ψ〉 , 〈ψ|ψ〉G �= 0 .

Then

a 〈ψ|ψ〉G = 〈ψ| O |ψ 〉G = 〈ψ| O |ψ 〉∗G = a∗ 〈ψ|ψ〉∗G =⇒ a = a∗ .

To b) Let at least |φ〉 be charged and

O |ψ〉 = a |ψ〉 , O |φ〉 = b |φ〉 , a �= b , b = b∗ .

Then, we have

〈φ| O |ψ 〉G = a 〈φ|ψ〉G (1.53)

and

〈ψ| O |φ 〉G = b 〈ψ|φ〉G =⇒ 〈φ| O |ψ 〉∗G = b 〈φ|ψ〉∗G
=⇒ 〈φ| O |ψ 〉G = b 〈φ|ψ〉G . (1.54)

The difference between (1.53) and (1.54) leads to

0 = (a − b) 〈φ|ψ〉G =⇒ 〈φ|ψ〉G = 0 .
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To c) Let

τ3U
†τ3 = U−1 , τ3V

†τ3 = V −1 .

Then

τ3[UV ]†τ3UV = τ3V
†U†τ3UV = τ3V

†τ3τ3U
†τ3UV = V −1U−1UV = 1

=⇒ τ3[UV ]†τ3 = [UV ]−1 .

To d)

1 = τ3(1 − iεO†)τ3(1 + iεO) = 1 − iετ3O†τ3 + iεO + O
(
ε2
)

=⇒ τ3O†τ3 = O .

To e) Due to

τ3

(
O†)n τ3 = τ3O†O† . . .O†τ3 = τ3O†τ3τ3O†τ3 . . . τ3O†τ3 = On ,

it follows that

τ3

(
eiO)† τ3 = τ3e−iO†

τ3 =
∑

n

(−i)n

n!
τ3

(
O†)n τ3 =

∑

n

(−i)n

n!
On

= e−iO =
(
eiO)−1

.

5. Feshbach-Villars transformation (I). Prove the relations (1.45), (1.46),
(1.48), (1.49).

Solution.

To (1.45) and (1.49). Taking into account

(1 ± τ1)(τ3 ± iτ2) = 0 , (1 ± τ1)(τ3 ∓ iτ2) = 2(τ3 ∓ iτ2)

and

U2 =
(1 + τ1)p0

2m0c
+

(1 − τ1)m0c

2p0

H(0) =
(τ3 + iτ2)p2

0

2m0
+

(τ3 − iτ2)m0c
2

2
,

it follows for H̃(0) in the FV-momentum and coordinate representation that

H̃(0) = UH(0)U−1 = U2H(0) =
(τ3 + iτ2)cp0

2
+

(τ3 − iτ2)cp0

2
= cp0τ3

and for the one-particle velocity operator [v] in the momentum and coordi-
nate representation that

[v] = U−1 cpτ3

p0
U =

cpτ3

p0
U2 =

(τ3 + iτ2)p
2m0

+
(τ3 − iτ2)m0c

2p

2p2
0

.

Of course, the last relationship is also obtained using the generalized Ehren-
fest theorem
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[v] =
[
∇p +

τ1p

2p2
0

,H(0)

]
,

where the expression on the left hand side of the commutator is the one-
particle position operator in the momentum representation.

To (1.46) and (1.48). In the FV-momentum representation the position
operator obeys

x̃ = ih̄U∇pU−1 = ih̄∇p + ih̄U
(
∇pU−1

)
,

and in the momentum representation the one-particle position operator fulfills

[x] = ih̄U−1∇pU = ih̄∇p + ih̄U−1 (∇pU) .

Moreover, we have

∇pp0 = ∇p

√
p2 + m2

0c
2 =

p
√

p2 + m2
0c

2
=

p

p0

∇p
p0

2
√

m0cp0
=

1
2
√

m0c
∇p

√
p0 =

1
4
√

m0cp0
∇pp0 =

pp0

4
√

m0cp5
0

∇p
m0c

2
√

m0cp0
=

m0c

2
√

m0c
∇p

1
√

p0
= − m0c

4
√

m0cp3
0

∇pp0 = − m0cp

4
√

m0cp5
0

.

From this follows
(
∇pU−1

)
=

(p0 − m0c) − τ1(p0 + m0c)
4
√

m0cp5
0

p

(∇pU) =
(p0 − m0c) + τ1(p0 + m0c)

4
√

m0cp5
0

p

and, therefore,

U
(
∇pU−1

)
= −τ1p

2p2
0

, U−1 (∇pU) = +
τ1p

2p2
0

.

6. Construction of one-particle operators using the sign operator
(I). Construct the one-particle operators [x] and [v] using the G-Hermitean
sign operator

Λ =
H(0)

√
H(0)2

=

p2

2m0
(τ3 + iτ2) + m0c

2τ3

cp0
.

Solution. Evidently, the operator Λ possesses the eigenfunctions ψ
(1,2)
p (x)

with the eigenvalues (energy signs) ±1. We can use this property for the
construction of one-particle operators in the following way: let [O] and {O}
be the even and odd parts of the operator

O = [O] + {O} .

Then, for arbitrary wave packets ψ(±)(x) built by pure positive or negative
free Klein-Gordon solutions, we have
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Oψ(+) = [O]ψ(+) + {O}ψ(+)

Oψ(−) = [O]ψ(−) + {O}ψ(−)

ΛOΛψ(+) = ΛOψ(+) = [O]ψ(+) − {O}ψ(+)

ΛOΛψ(−) = −ΛOψ(−) = [O]ψ(−) − {O}ψ(−) .

Adding the first and the third, and subtracting the second and the fourth
relation, it follows that

[O] =
1
2
(O + ΛOΛ) , {O} =

1
2
(O − ΛOΛ) .

Clearly, if O is a G-Hermitean operator, the operators [O], {O}, and ΛOΛ
are G-Hermitean, too:

(τ3ΛOΛ)† = Λ†O†Λ†τ3 = Λ†O†(τ3Λ)† = Λ†O†τ3Λ = Λ†(τ3O)†Λ
= Λ†τ3OΛ = (τ3Λ)†OΛ = τ3ΛOΛ .

To determine the one-particle position operator, we change to the momentum
representation (x = ih̄∇p, p = C-number) and calculate as follows:

(∇pΛ) =
p(τ3 + iτ2)

m0cp0
− pH(0)

cp3
0

, Λ(∇pΛ) =
pτ3(τ3 + iτ2)

p2
0

− p

p2
0

=
τ1p

p2
0

=⇒ ΛxΛ = ih̄∇p + ih̄Λ(∇pΛ) = ih̄∇p +
ih̄τ1p

p2
0

.

From this we obtain in the momentum and coordinate representation

[x] =
1
2
(x + ΛxΛ) = x +

ih̄τ1p

2p2
0

in accordance with Theorem 1.6. For the one-particle velocity operator, a
similar calculation yields

vΛ =
p(τ3 + iτ2)τ3

p2
0

, ΛvΛ =
(τ3 − iτ2)m0c

2p

p2
0

=⇒ [v] =
1
2
(v + ΛvΛ) =

(τ3 + iτ2)p
2m0

+
(τ3 − iτ2)m0c

2p

2p2
0

,

again complying with Theorem 1.6.

7. Shaky movement (I). Show that the mean current 〈j〉 of an arbitrary
Klein-Gordon wave packet includes a temporally oscillating movement, if it
is composed of positive and negative components. What is the interpretation
of this fact?
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Solution. In the canonical formulation the wave packet may be

φ(x) = φ(+)(x) + φ(−)(x) , φ(±)(x) =
∫

d3pa(1,2)(p)φ(1,2)
p (x) .

Using the adjunction relation 〈φ|A |ψ 〉 =
〈
ψ|A† |φ

〉∗, it follows that

〈j〉 =
1

2m0
[〈φ|p |φ 〉 − 〈φ∗|p |φ∗ 〉]

=
1

2m0

[
〈φ|p |φ 〉 + 〈φ|p |φ 〉∗

]

=
1

m0
〈φ|p |φ 〉

=
1

m0

〈
φ(+) + φ(−)

∣
∣
∣p
∣
∣
∣φ(+) + φ(−)

〉

=
1

m0

[〈
φ(+)

∣
∣
∣p
∣
∣
∣φ(+)

〉
+
〈

φ(−)
∣
∣
∣p
∣
∣
∣φ(−)

〉

+
〈

φ(+)
∣
∣
∣p
∣
∣
∣φ(−)

〉
+
〈

φ(−)
∣
∣
∣p
∣
∣
∣φ(+)

〉]

=
1

m0

[〈
φ(+)

∣
∣
∣p
∣
∣
∣φ(+)

〉
+
〈

φ(−)
∣
∣
∣p
∣
∣
∣φ(−)

〉]

+
2

m0
Re
[〈

φ(+)
∣
∣
∣p
∣
∣
∣φ(−)

〉]

=
∫

d3p
cp

p0

∣
∣
∣a(1)(p)

∣
∣
∣
2

︸ ︷︷ ︸
〈j〉(+)

−
∫

d3p
cp

p0

∣
∣
∣|a(2)(p)

∣
∣
∣
2

︸ ︷︷ ︸
〈j〉(−)

+2Re
(∫

d3p
cp

p0
e2ip0x0/h̄a(1)∗(p)a(2)(−p)

)
.

Besides the time-independent mean currents of the positive and negative
parts, there are also mixed terms oscillating very fast in time. The frequency
of this shaky movement (German: Zitterbewegung) is of order of 2m0c

2/h̄.
Interpreting this phenomenon within the enforced one-particle picture, we
must conclude that the “particle” described by φ performs a periodic oscil-
latory movement around its (classical) trajectory. This example shows, once
again, that the description of neutral spin-0 particles by real Klein-Gordon
wave packets

φ(0)(x) = φ(+)(x) + φ(−)(x) , φ(−)∗ = φ(+)

is problematic with respect to the one-particle interpretation, since it in-
evitably involves a shaky movement.
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1.4 Nonrelativistic Approximation of the
Klein-Gordon Theory

It is a necessary condition for the correctness of the Klein-Gordon theory
that, in the nonrelativistic limit, it passes over to the laws of nonrelativistic
quantum mechanics. This limiting process is the subject of this section. First,
we discuss the nonrelativistic approximation to leading order of v/c that
will lead us to the well-known nonrelativistic Schrödinger equation for spin-
0 particles. Afterward, we include relativistic corrections of higher orders.
For this we use the Fouldy-Wouthuysen transformation by which the Klein-
Gordon-Hamilton operator cannot be diagonalized exactly but (in principle)
to every required finite order of v/c.

1.4.1 Nonrelativistic Limit

Dealing with the nonrelativistic limit of the Klein-Gordon theory, the substi-
tutions (1.15) prove to be very useful as, in this limit, we have for a positive
Klein-Gordon solution18

ϕ =
[
1 + O

(
v2

c2

)]
φ(+) , χ = O

(
v2

c2

)
φ(+)

and for a negative solution

ϕ = O
(

v2

c2

)
φ(−) , χ =

[
1 + O

(
v2

c2

)]
φ(−) .

This means that for positive solutions, the lower component of ψ is suppressed
by a factor of v2/c2 compared to the upper one, whereas for negative solutions
the reverse is true. Consequently, the term (p − eA/c)2χ/2m0 in the upper
part of the Klein-Gordon equation (1.17) can be ignored up to order O

(
v2/c2

)

for positive solutions leading to

ψ =
(

1
O
(
v2/c2

)
)

ϕ

ih̄
∂ϕ

∂t
=
[

1
2m0

(
p − e

c
A
)2

+ m0c
2 + eA0 + O

(
v4

c4

)]
ϕ .

⎫
⎪⎪⎬

⎪⎪⎭
(1.55)

18 In the nonrelativistic limit we can assume that the fields eA0 and eA/c have
at most a magnitude in the range of the particle’s energy and momentum, i.e.
|eA0| ≈ m0v

2/2 � m0c
2 and |eA/c| ≈ m0v � m0c. Thus, it follows that

(p − eA/c)2φ(±)/2m0 = m0c
2O
(
v2/c2

)
φ(±)

and

(ih̄∂/∂t − eA0)φ(+) = m0c
2
[
+1 + O

(
v2/c2

)]
φ(+) for positive states

(ih̄∂/∂t − eA0)φ(−) = m0c
2
[
−1 + O

(
v2/c2

)]
φ(−) for negative states.
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Up to the rest energy term m0c
2, this equation coincides with the well-known

nonrelativistic Schrödinger equation for spinless particles within an electro-
magnetic field. Correspondingly, in the case of negative solutions we obtain
from (1.17) the equation

ψ =
(
O
(
v2/c2

)

1

)
χ

ih̄
∂χ

∂t
=
[
− 1

2m0

(
p − e

c
A
)2

− m0c
2 + eA0 + O

(
v4

c4

)]
χ .

⎫
⎪⎪⎬

⎪⎪⎭
(1.56)

Combining equations (1.55) and (1.56) finally yields the Hamiltonian Klein-
Gordon equation

ih̄
∂ψ

∂t
= Hnrψ

Hnr = τ3

[
m0c

2 +
1

2m0

(
p − e

c
A
)2
]

+ eA0 + O
(

v4

c4

)
,

⎫
⎪⎪⎬

⎪⎪⎭
(1.57)

correct up to order O
(
v2/c2

)
with the diagonal, G-Hermitean, and Hermitean

Hamilton operator Hnr. Multiplying (1.57) from the left by ψ†τ3 and subse-
quently subtracting the adjoint equation leads to the continuity equation

∂ρ(x)
∂t

+ ∇j(x) = 0 ,

with the positive or negative definite charge density

ρ = ψ†τ3ψ ≈
{

ϕ∗ϕ ≥ 0 for positive states

−χ∗χ ≤ 0 for negative states ,

correct up to order O
(
v2/c2

)
, and the charge current density

j =
h̄

2im

[
ψ†∇ψ − (∇ψ†)ψ − 2ie

h̄c
Aψ†ψ

]
.

The last expression is formally identical to the probability current of nonrel-
ativistic quantum mechanics.19

19 Since Hnr in (1.57) is Hermitean, one could define a positive definite probability
density ρ = ψ†ψ for particle and antiparticle (associated with a conserved total
probability) that is connected to the corresponding probability current density
j via ∂ρ/∂t+∇j = 0. However, this relationship would hold only in the present
representation. It would get lost if we changed the representation through a
G-unitary transformation, because then the Hamilton operator would still be
G-Hermitean but not Hermitean any more. The same argument holds for the
diagonalization of the free canonical Klein-Gordon equation (Subsection 1.3.2)
as well as for the general equation (next subsection).
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1.4.2 Relativistic Corrections

In the nonrelativistic Klein-Gordon equation (1.57), the positive and negative
solutions are completely decoupled, which is reflected by the diagonal form
of the Hamilton operator Hnr. Here we can restrict ourselves to the upper or
lower component to obtain a theory for particles or antiparticles that can be
interpreted with respect to our generalized quantum mechanical formalism.

From Subsection 1.3.2 we know that, in the free case, the Hamilto-
nian Klein-Gordon equation can be exactly diagonalized by resorting to
the Feshbach-Villars representation. Therefore, the question naturally arises
whether there exists a method for the exact diagonalization of the general
Klein-Gordon equation where positive and negative solutions are explicitly
decoupled in all orders of v/c. As it turns out, this is not possible (see Exercise
8) due to a quantum field theoretical effect, the so-called vacuum polariza-
tion.20

On the other hand, with the help of the Fouldy-Wouthuysen transforma-
tion, it is always possible to diagonalize the Klein-Gordon-Hamilton operator
to any desired order of v/c. Using this method, wave functions and operators
are successively transformed (carried over into a new representation) in such a
way that, in the new representation, the Hamilton operator is even (diagonal)
up to the respective order of v/c. By disregarding its odd (antidiagonal) part,
we again obtain two explicitly decoupled one-particle theories for particle and
antiparticle that can be interpreted, as before, up to this order. Hence, this
method can be regarded as a generalization of the Feshbach-Villars transfor-
mation for the free case discussed in Subsection 1.3.2.

In order to illustrate the use of the Fouldy-Wouthuysen transformation,
we consider the Klein-Gordon equation (1.17) in the form21

m0c
2Kψ = 0 , K = τ3 + ε + ω ,

where

ε = − 1
m0c2

(
ih̄

∂

∂t
− eA0

)
+

τ3

2m2
0c

2

(
p − e

c
A
)2

= O (1)+O
(

v2

c2

)
(1.58)

or

τ3 + ε = O
(

v2

c2

)

is an even (diagonal) operator and

ω =
iτ2

2m2
0c

2

(
p − e

c
A
)2

= O
(

v2

c2

)
(1.59)

20 Vacuum polarization denotes the creation of charged particle-antiparticle pairs
in strong electromagnetic fields, for example, in the close vicinity of the sources.
These virtual particles interact with the considered particle – in addition to the
external field – thus leading to a polarization of the vacuum (see Section 3.4).

21 Here we introduce dimensionless operators to facilitate the treatment of orders
in v/c.
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is odd (antidiagonal). Passing over to a new representation via the transfor-
mation

U = eiS ,

the Klein-Gordon equation becomes

m0c
2K ′ψ′ = 0 , ψ′ = Uψ , K ′ = UKU−1 .

The Fouldy-Wouthuysen transformation is now characterized by the fact that
the transformation U or S is chosen in such a way that K ′ can also be split
into an even and an odd operator according to

K ′ = τ3 + ε′ + ω′ , τ3 + ε′ = O
(

v2

c2

)
, ω′ = O

(
v4

c4

)
(or higher) ,

where ω′ is suppressed (at least) by a factor of v2/c2 compared to ω and
hence is (at least) two orders higher than τ3 + ε′ or τ3 + ε. Coming from
this representation, we can again seek a transformation U ′ so that, in the
corresponding new representation, we have

m0c
2K ′′ψ′′ = 0 , ψ′′ = U ′ψ′ , K ′′ = U ′K ′U ′−1 = τ3 + ε′′ + ω′′ ,

with

τ3 + ε′′ = O
(

v2

c2

)
, ω′′ = O

(
v6

c6

)
(or higher) .

This method can be iterated infinitely so that the order of the odd opera-
tor can be raised arbitrarily. Once the desired order of the odd operator is
reached, the corresponding even operator yields the relativistic corrections to
both one-particle theories with an error of this order.22

Starting from

K = τ3 + ε + ω , ε from (1.58) , ω from (1.59) ,

we now concretize our considerations and show how to obtain the diagonal
Klein-Gordon-Hamilton operator, correct up to order O

(
v4/c4

)
. To this end,

we need the Baker-Hausdorff expansion23

22 As each power of v/c corresponds to a factor of v/c ∼ p/m0c, the Fouldy-
Wouthuysen transformation can also be regarded as a series expansion in powers
of 1/m0.

23 This is easy to verify when considering the operator function

F (λ) = eiλSKe−iλS =

∞∑

n=0

λn

n!

dnF

dλn

∣
∣
∣
λ=0

,

with

dnF

dλn
= ineiλS [S, [S, · · · , [S, K]] · · ·]e−iλS .
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K ′ = eiSKe−iS

= K + i[S,K] +
i2

2!
[S, [S,K]] +

i3

3!
[S, [S, [S,K]]] + . . . . (1.60)

Since the transformed operator K ′ contains the original operator K, we must
choose S so that ω is eliminated in K ′. As we see shortly, this can be achieved
by the choice

U = eiS , S = − iτ3ω

2
. (1.61)

Taking into account τ3ω = −ωτ3 and τ3ε = ετ3, we now calculate as follows:

i[S,K] =
1
2

[τ3ω, τ3 + ε + ω] = −ω + τ3ω
2 +

τ3

2
[ω, ε]

i2

2
[S, [S,K]] =

1
4

[
τ3ω,−ω + τ3ω

2 +
τ3

2
[ω, ε]

]

= −τ3ω
2

2
− ω3

2
− 1

8
[ω, [ω, ε]]

i3

6
[S, [S, [S,K]]] =

1
6

[
τ3ω,−τ3ω

2

2
− ω3

2
− 1

8
[ω, [ω, ε]]

]

=
ω3

6
− τ3ω

4

6
+

τ3

48
[ω, [ω, [ω, ε]]] .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.62)

Inserting these expressions into (1.60) yields

K ′ = τ3 + ε′ + ω′ ,

with24

O
(

v2

c2

)
O
(

v4

c4

)
O
(

v8

c8

)
O
(

v6

c6

)

↓ ↓ ↓ ↓

τ3 + ε′ = τ3 + ε +
τ3ω

2

2
−τ3ω

4

8
−1

8
[ω, [ω, ε]] + . . . = O

(
v2

c2

)

and

ω′ = −ω3

3
+

τ3

2
[ω, ε] +

τ3

48
[ω, [ω, [ω, ε]]] + . . . = O

(
v4

c4

)
.

As desired, ω is eliminated from K ′ due to the first row of (1.62), and ω′ is
raised up by two orders.25 It should be clear that all subsequent transforma-
tions have the same structure. Applying the transformation

U ′ = eiS′
, S′ = − iτ3ω

′

2
24 As long as the operator ε appears in commutators of the form [. . . , [ω, ε] . . .], it

holds that ε = O
(
v2/c2

)
.

25 Note that the last equation leads to the even operator K′ = τ3 + ε, correct up
to order O

(
v2/c2

)
, as well as to the equation m0c

2(τ3 + ε)ψ′ = 0, in accordance

with (1.57).
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to K ′, we find for K ′′

K ′′ = τ3 + ε′′ + ω′′ , (1.63)

with

O
(

v2

c2

)
O
(

v8

c8

)
O
(

v16

c16

)
O
(

v10

c10

)

↓ ↓ ↓ ↓

τ3 + ε′′ = τ3 + ε′ +
τ3ω

′2

2
−τ3ω

′4

8
−1

8
[ω′, [ω′, ε′]] + . . . = O

(
v2

c2

)

and

ω′′ = −ω′3

3
+

τ3

2
[ω′, ε′] +

τ3

48
[ω′, [ω′, [ω′, ε′]]] + . . . = O

(
v6

c6

)
.

Ignoring all terms of order O
(
v6/c6

)
(and higher), K ′′ becomes an even

operator and is given by

K ′′ = τ3 + ε′ = τ3 + ε +
τ3ω

2

2

= τ3

[
1 +

1
2m2

0c
2

(
p − e

c
A
)2

− 1
8m4

0c
4

(
p − e

c
A
)4
]

− 1
m0c2

(
ih̄

∂

∂t
− eA0

)
.

The Hamiltonian Klein-Gordon equation follows from this as

ih̄
∂ψ′′

∂t
= H ′′ψ′′ ,

with the diagonal, G-Hermitean, and Hermitean Hamilton operator

H ′′ = τ3

[
m0c

2 +
1

2m0

(
p − e

c
A
)2

− 1
8m3

0c
2

(
p − e

c
A
)4
]

+ eA0

and the wave function

ψ′′(x) = e−iτ3ω′/2e−iτ3ω/2ψ(x) .

As desired, we now have two explicitly decoupled O
(
v4/c4

)
-one-particle theo-

ries, whose relativistic corrections result solely from the expansion of the
relativistic kinetic energy

√

c2
(
p − e

c
A
)2

+ m2
0c

4 .

As we show in Exercise 9, electric interaction corrections do not come into
play until a precision of order O

(
v6/c6

)
.

Keep in mind that the Fouldy-Wouthuysen transformation U in (1.61)
and all subsequent transformations U ′, . . . are G-unitary operators since S,
S′, . . . are G-Hermitean. From this follows the invariance of G-expectation
values for operators transforming as U [·]U−1. Thus, it is indeed justified to
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speak of “Fouldy-Wouthuysen representations”. However, there is an impor-
tant restriction for the Hamilton operator itself, because the transition

Kψ = 0 −→ K ′ψ′ = 0 , K ′ = UKU−1 , ψ′ = Uψ

implies the transformation

ih̄
∂ψ

∂t
= Hψ −→ ih̄

∂ψ′

∂t
= H ′ψ′ , H ′ = U

(
H − ih̄

∂

∂t

)
U−1

of the Klein-Gordon equation. This means that the G-expectation values of
the original and transformed Hamilton operators coincide only if ∂A/∂t = 0.

Theorem 1.8: Fouldy-Wouthuysen transformation
in the Klein-Gordon theory

The Fouldy-Wouthuysen transformation provides a systematic procedure
for the diagonalization of the Klein-Gordon-Hamilton operator up to any
(finite) order of v/c. Writing the Klein-Gordon equation (1.17) in the form

m0c
2K(0)ψ(0) = 0 , K(0) = τ3 + ε(0) + ω(0) ,

with the dimensionless even operators ε(0), τ3 + ε(0) = O
(
v2/c2

)
and the

odd operator ω(0) = O
(
v2/c2

)
, and iterating the relations according to

K(n) = τ3 + ε(n) + ω(n) = U (n−1)K(n−1)U (n−1)−1

ψ(n)(x) = U (n−1)ψ(n−1)(x)

U (n) = exp
(
− iτ3ω

(n)

2

)
(G-unitary) ,

one obtains new representations of the Klein-Gordon theory where

τ3 + ε(n) = O
(

v2

c2

)
, ω(n) = O

(
v2n+2

c2n+2

)
.

Ignoring the odd operator, the even part of K(n) leads to two explicitly
decoupled one-particle theories for particle and antiparticle, correct up to
order O

(
v2n/c2n

)
. They can be interpreted with respect to our generalized

quantum mechanical formalism.

As in the Feshbach-Villars representation, the one-particle operators of the
Fouldy-Wouthuysen representations can be constructed by transforming the
original (relativistic) operators appropriately, and subsequently separating its
even (diagonal) part. Here the one-particle position operator exhibits similar
properties as in the case of the Feshbach-Villars transformation. This means
that, due to [x, U ] �= 0, the Fouldy-Wouthuysen transformation is nonlo-
cal, too, and leads to a smearing of the coordinate wave function or, rather,
the position argument, with a magnitude comparable to the Compton wave
length of the particle (see Exercise 9).
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At the end of this section, it should be emphasized, once again, that the
Fouldy-Wouthuysen method makes sense only in those cases where, firstly,
the one-particle interpretation is applicable in the sense of Theorem 1.7 and,
secondly, the Fouldy-Wouthuysen expansion converges. It is particularly not
applicable to physical problems with strong or rapidly changing fields where
particle creation and annihilation processes need to be taken into account.

Summary

• To lowest order, the nonrelativistic approximation of the Klein-Gordon
theory leads to a diagonal, G-Hermitean, and Hermitean Hamilton oper-
ator (nonrelativistic limit). From this follow two explicitly decoupled
one-particle theories for particle and antiparticle, the former coinciding
with the laws of the nonrelativistic Schrödinger theory.

• In the general case, as opposed to the field-free case, the Klein-Gordon-
Hamilton operator cannot be diagonalized exactly but only approxi-
mately. For this the Fouldy-Wouthuysen method can be used, where
the Hamilton operator is successively diagonalized to increasing orders
of v/c. Ignoring the odd part, one obtains a diagonal, G-Hermitean, and
Hermitean Hamilton operator, correct up to the considered order of v/c,
from which two explicitly decoupled one-particle theories can be derived.

• Like the Feshbach-Villars transformation, the Fouldy-Wouthuysen
transformation is also nonlocal, leading to a smearing of the position
argument over a range comparable to the Compton wave length of the
particle.

• The Fouldy-Wouthuysen method is physically sensible only in those cases
where the v/c-expansion converges and the one-particle interpretation is
applicable.

Exercises

8. Diagonalizability of the Hamiltonian Klein-Gordon equation.

a)Show that only in the free case do the two components ϕ and χ of ψ each
obey the canonical Klein-Gordon equation.

b)Evaluate the commutator
[(

p − e

c
A
)2

, ih̄
∂

∂t
− eA0

]
.
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Solution.

To a) Our starting point is the Hamiltonian Klein-Gordon equation (1.17)
in the form

[(
ih̄

∂

∂t
− eA0

)
− τ3 + iτ2

2m0

(
p − e

c
A
)2

− τ3m0c
2

]
ψ = 0 .

Multiplying this from the left by
[(

ih̄
∂

∂t
− eA0

)
+

τ3 + iτ2

2m0

(
p − e

c
A
)2

+ τ3m0c
2

]

yields

0 =

[(
ih̄

∂

∂t
− eA0

)2

− τ3 + iτ2

2m0

(
ih̄

∂

∂t
− eA0

)(
p − e

c
A
)2

−τ3m0c
2

(
ih̄

∂

∂t
− eA0

)
+

τ3 + iτ2

2m0

(
p − e

c
A
)2
(

ih̄
∂

∂t
− eA0

)

−τ3c
2

2
(τ3 − iτ2)

(
p − e

c
A
)2

+ τ3m0c
2

(
ih̄

∂

∂t
− eA0

)

−τ3c
2

2
(τ3 + iτ2)

(
p − e

c
A
)2

− m2
0c

4

]
ψ

=

[(
ih̄

∂

∂t
− eA0

)2

− c2
(
p − e

c
A
)2

− m2
0c

4

]

ψ

+
τ3 + iτ2

2m0

[(
p − e

c
A
)2

,

(
ih̄

∂

∂t
− eA0

)]
ψ .

From this follows that each component of ψ fulfills the Klein-Gordon equation
only for the free case, since only then the commutator term vanishes exactly.
Put differently, only in the free case is the Hamiltonian Klein-Gordon equa-
tion exactly diagonalizable. However, at weak or weakly varying fields, the
commutator term is small compared to the others so that the canonical equa-
tion is solved by ϕ and χ at least approximately. In this case, an approximate
diagonalization of the Hamiltonian equation seems possible.
To b) Taking into account

(
p − e

c
A
)2

= p2 − e

c
(pA) − 2e

c
Ap +

e2

c2
A2 ,

we have
[(

p − e

c
A
)2

, ih̄
∂

∂t
− eA0

]
= −e[p2, A0] − ieh̄

c

[
(pA),

∂

∂t

]

−2ieh̄
c

[
Ap,

∂

∂t

]
+

e2

c
[Ap, A0]

+
ie2h̄

c2

[
A2,

∂

∂t

]
.
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The commutators on the right hand side are calculated as

[p2, A0] = (p2A0) + 2(pA0)p ,

[
(pA),

∂

∂t

]
= −

(
p

∂A

∂t

)

[
Ap,

∂

∂t

]
= −∂A

∂t
p ,
[
Ap, A0

]
= A(pA0) ,

[
A2,

∂

∂t

]
= −2A

∂A

∂t
.

Thus, it follows that
[(

p − e

c
A
)2

, ih̄
∂

∂t
− eA0

]
= −2e

[
(pA0) − ih̄

c

∂A

∂t

](
p − e

c
A
)

−e

{
p

[
(pA0) − ih̄

c

∂A

∂t

]}

= −2ieh̄E
(
p − e

c
A
)
− ieh̄(pE) , (1.64)

with the electric field E = −(∇A0) − e∂A/c∂t.

9. Diagonal Hamiltonian Klein-Gordon equation up to O
(
v6/c6

)
.

Diagonalize the Hamiltonian Klein-Gordon equation (1.17) up to order
O
(
v6/c6

)
.

Solution. If we apply the Fouldy-Wouthuysen transformation

U ′′ = eiS′′
, S′′ = − iτ3ω

′′

2
to K ′′ from (1.63), we obtain the expression

K ′′′ = τ3 + ε′′′ + ω′′′ ,

with

O
(

v2

c2

)
O
(

v12

c12

)
O
(

v24

c24

)
O
(

v14

c14

)

↓ ↓ ↓ ↓

τ3 + ε′′′ = τ3 + ε′′ +
τ3ω

′′2

2
−τ3ω

′′4

8
−1

8
[ω′′, [ω′′, ε′′]] + . . . = O

(
v2

c2

)

and

ω′′′ = −ω′′3

3
+

τ3

2
[ω′′, ε′′] +

τ3

48
[ω′′, [ω′′, [ω′′, ε′′]]] + . . . = O

(
v8

c8

)
.

Ignoring all terms of order O
(
v8/c8

)
(and higher) leads to the even operator

K ′′′ = τ3 + ε′′ = τ3 + ε′ = τ3 + ε +
τ3ω

2

2
− 1

8
[ω, [ω, ε]] .

Because of (1.64), the last term is simplified to

[ω, ε] =
iτ2

2m3
0c

4

[(
p − e

c
A
)2

, ih̄
∂

∂t
− eA0

]
+

i
4m4

0c
4

(
p − e

c
A
)4

[τ2, τ3]

=
eh̄τ2

m3
0c

4
E
(
p − e

c
A
)

+
eh̄τ2

2m3
0c

4
(pE) − τ1

2m4
0c

4

(
p − e

c
A
)4
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=⇒ [ω, [ω, ε]] =
ieh̄

2m5
0c

6

[(
p − e

c
A
)2

,E
(
p − e

c
A
)]

+
ieh̄

4m5
0c

6

[(
p − e

c
A
)2

, (pE)
]
− τ3

2m6
0c

6

(
p − e

c
A
)6

.

All in all, the Hamiltonian Klein-Gordon equation

ih̄
∂ψ′′′

∂t
= H ′′′ψ′′′ ,

follows, correct up to order O
(
v6/c6

)
, with the diagonal, G-Hermitean, and

Hermitean Hamilton operator

H ′′′ = τ3

[
m0c

2

+
1

2m0

(
p − e

c
A
)2

− 1
8m3

0c
2

(
p − e

c
A
)4

+
1

16m5
0c

4

(
p − e

c
A
)6
]

+eA0 − ieh̄
16m4

0c
5

[(
p − e

c
A
)2

,E
(
p − e

c
A
)]

− ieh̄
32m4

0c
5

[(
p − e

c
A
)2

, (pE)
]

(1.65)

and the wave function

ψ′′′(x) = e−iτ3ω′′/2e−iτ3ω′/2e−iτ3ω/2ψ(x) .

The appearance of the relativistic corrections in (1.65) can be understood as
a consequence of the nonlocality of the Fouldy-Wouthuysen transformation
and the accompanying smearing of the position argument x: the effective
potential acting on the wave function at x in a certain Fouldy-Wouthuysen
representation is composed of the contributions of the original potential av-
eraged over an area around x. Therefore, the whole potential has the form
of a multipole expansion of the original potential.

1.5 Simple One-Particle Systems

The last section of this chapter deals with some simple Klein-Gordon one-
particle systems where the canonical representation is used throughout. As
an extension of the Klein paradox from Subsection 1.3.4, we initially con-
sider the onedimensional potential well and discuss its types of solutions
particularly with respect to their one-particle interpretation. Then we turn
to the problem of spherically symmetric potentials that can be, analogously
to the nonrelativistic case, related back to a radial equation by separating the
angular-dependent part. Examples of this radial Klein-Gordon equation are
the free particle, the spherically symmetric potential well, and the Coulomb
potential, the last providing a simple description of pion atoms. At the end
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we modify the Coulomb potential by an oscillator-like potential term in or-
der to take into account the finite extent of atomic nuclei. In so doing, the
fundamental limits of the one-particle concept will become apparent once
again.

1.5.1 Potential Well

We start our investigation of simple one-particle systems with a spin-0 parti-
cle bound within or coming from the left and scattering against a onedimen-
sional potential well of the form

eA(0)(z) = V (z) =

{
0 for −a < z < a (area II)

V0 else (area I, III)

}

, V0 > 0 . (1.66)

To solve the corresponding Klein-Gordon equation, we initially separate the
time-dependent part, as in the case of the potential step in Subsection 1.3.4:

φ(z, t) = Φ(z)e−iEt/h̄ .

This leads us to the stationary equation (1.52) with V (z) from (1.66). Before
tackling this equation in detail, we can try, as in the case of the Klein paradox,
to get a qualitative overview of all possible configurations (see Figure 1.5).

V0 + m0c
2

V0

V0 − m0c
2

m0c
2

0

−m0c
2

I II III

V (z)

z

Fig. 1.5. Energy intervals of the onedimensional potential well.
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1. case: E > V0 + m0c
2. In all three areas I (z < −a), II (−a < z < a),

and III (z > a), we expect to have oscillating Klein-Gordon solutions with
a positive charge density. This can be interpreted as a normal scattering
of a particle with charge +e against the (from its point of view) attractive
potential barrier, since at the area borders, only “allowed” positive energy
regimes are in contact.

2. case: V0 − m0c
2 < E < V0 + m0c

2 , E > m0c
2. In this case, the solu-

tions of the “allowed” positive energy regime of II dive into the “forbidden”
positive (0 < E − V0 < m0c

2) or negative (−m0c
2 < E − V0 < 0) energy

regimes of I and III. Thus, the solutions in I and III are expected to fall off
exponentially with positive or negative charge density, while the solutions in
II are oscillating with positive charge density. This situation corresponds to
a bound particle of charge +e.

3. case: m0c
2 < E < V0−m0c

2 =⇒ V0 > 2m0c
2. Here the “allowed” positive

energy regime of II turns into the “allowed” negative energy regimes of I and
III. The solutions should therefore oscillate in all three areas with positive
charge density in II and negative charge densities in I and III. Beyond the
one-particle picture, this can be viewed as the scattering of an antiparticle
of charge −e against the (from its point of view) repulsive potential barrier,
whereas quasi-bound particle resonances appear in area II.

4. case: −m0c
2 < E < m0c

2. This energy interval encompasses the “forbid-
den” positive (0 < E < m0c

2) and negative (−m0c
2 < E < 0) energy regimes

in II that turn into the “allowed” negative energy regimes of I and III. We
therefore expect exponentially decreasing solutions with positive and nega-
tive charge density in area II and oscillating solutions with negative charge
density in I and III. This case corresponds to the tunneling of an antiparticle
of charge −e through the (from its point of view) repulsive potential barrier.

5. case: E < −m0c
2. Only “allowed” negative energies are involved here

implying oscillating solutions with negative charge densities in all three areas.
This is the case of a normal scattering of an antiparticle of charge −e at the
(from its point of view) repulsive potential barrier.

Let us now consider the above cases in detail:

1., 3., and 5. case in detail. In these three scattering cases, we assume a
particle or an antiparticle coming from the left. For the solution of (1.52) in
the areas I, II, and III, we make the ansatz

ΦI(z) = Φin(z) + Φref(z)

Φin(z) = Aeik1z , Φref(z) = Be−ik1z

ΦII(z) = Ceik2z + De−ik2z

ΦIII(z) = Φtrans(z) = Eeik1z ,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1.67)

with
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k1 = ±

√
(E − V0)2 − m2

0c
4

c2h̄2 , k2 = ±

√
E2 − m2

0c
4

c2h̄2

and k1 = +|k1|, k2 = +|k2| in the 1. case, k1 = −|k1|, k2 = +|k2| in the 3.
case, and k1 = −|k1|, k2 = −|k2| in the 5. case. The continuity conditions of
Φ(z) and Φ′(z) at the area borders z = ±a lead to the following conditional
equations for the integration constants A, B, C, D, and E:

Ae−ik1a + Beik1a = Ce−ik1a + Deik1a

k1

(
Ae−ik1a − Bik1a

)
= k2

(
Ce−ik2a − Deik2a

)

Ceik2a + De−ik2a = Eeik1a

k2

(
Ceik2a − De−ik2a

)
= k1Eeik1a .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1.68)

After some calculations, one finds from this the reflection and transmission
coefficients

R = −jref
jin

=
(k2

1 − k2
2)

2 sin2 2k2a

4k2
1k

2
2 + (k2

1 − k2
2)2 sin2 2k2a

T =
jtrans

jin
=

4k2
1k

2
2

4k2
1k

2
2 + (k2

1 − k2
2)2 sin2 2k2a

= 1 − R .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1.69)

Both coefficients oscillate between zero and one depending on k2 or E. An
interesting special case is sin 2k2a = 0, i.e.

E2 = n2 c2h̄2π2

4a2
+ m2

0c
4 , n = 1, 2, . . . ,

where the reflection coefficient vanishes exactly.

4. case in detail. In this tunneling case, we also assume an antiparticle
coming from the left. For the Klein-Gordon solution, we can therefore apply
ansatz (1.67), where k1 and k2 are chosen as

k1 = −

√
(E − V0)2 − m2

0c
4

c2h̄2 , k2 = iκ2 , κ2 =

√
m2

0c
4 − E2

c2h̄2 .

Taking into account k2
2 = −κ2

2 and sin2 2k2a = − sinh2 2κ2a, the reflection
and transmission coefficients follow immediately from (1.69) as

R =
(k2

1 + κ2
2)

2 sinh2 2κ2a

4k2
1κ

2
2 + (k2

1 + κ2
2)2 sinh2 2κ2a

T =
4k2

1κ
2
2

4k2
1κ

2
2 + (k2

1 + κ2
2)2 sinh2 2κ2a

= 1 − R .

As before, both coefficients range between zero and one. However, the tran-
sition coefficient and, with it, the penetration probability of the potential
barrier decreases exponentially with a and increases exponentially with E.



1.5 Simple One-Particle Systems 65

2. case in detail. Contrary to all the other cases, we expect bound states
here. Therefore, our solution ansatz for (1.52) in the areas I, II, and III is

ΦI(z) = Aeκ1z

ΦII(z) = B cos k2z + C sin k2z

ΦIII(z) = De−κ1z

κ1 =

√
m2

0c
4 − (E − V0)2

c2h̄2 , k2 =

√
E2 − m2

0c
4

c2h̄2 ,

where ΦII is written in trigonometric form for convenience. The continuity
conditions at the area borders yield the equations

Ae−κ1a = B cos k2a − C sin k2a

κ1Ae−κ1a = k2B sin k2a + k2C cos k2a

De−κ1a = B cos k2a + C sin k2a

−κ1De−κ1a = −k2B sin k2a + k2C cos k2a .

Combining the first two and the last two equations leads to

κ1 = k2
B sin k2a + C cos k2a

B cos k2a − C sin k2a
= k2

B sin k2a − C cos k2a

B cos k2a + C sin k2a
,

that, in turn, implies BC = 0. This means that we have to distinguish be-
tween two cases from which follow two different quantization conditions for
the energy E:26

2.a: C = 0 =⇒ A = D.

tan k2a =
κ1

k2
.

2.b: B = 0 =⇒ A = −D.

− cot k2a = tan
(
k2a +

π

2

)
=

κ1

k2
.

By (numerically) solving these two equations, we finally obtain the possible
energy values of the bound states in area II.

The transmission coefficient of the 1., 3., 4., and 5. case is depicted as
a function of the energy E/m0c

2 in Figure 1.6. A potential well of width
a = 6h̄/m0c and of height V0 = 3m0c

2 is chosen here (so that the condition
V0 > 2m0c

2 for the occurrence of the 3. case is fulfilled). For the “proper”
26 Note that the Klein-Gordon equation (1.52) is parity invariant due to the sym-

metric form of the potential (1.66). This means that it is invariant under the
replacement z → −z. From this follows that, with Φ(z), the wave function Φ(−z)
is a Klein-Gordon solution to the same energy E. Due to the linearity of (1.52),
these solutions can be combined to give the new solutions

Φ±(z) = Φ(z) ± Φ(−z) , Φ±(z) = ±Φ±(−z)

with a defined parity. The case 2.a corresponds to solutions with positive and
the case 2.b to solutions with negative parity.
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T

1

5. case 4. case 3. case 2. case 1. case

−1 0 1 2 4 E/m0c
2

Fig. 1.6. Transmission coefficient of a onedimensional potential well of height V0 =
3m0c

2 and width a = 6h̄/m0c as a function of E. The dashed lines indicate the
energy values of the bound states.

scattering cases (1. and 5. case), T shows the typical oscillatory behavior ap-
proaching one with decreasing amplitude at the outskirts of the energy range.
Since the transmission coefficient increases exponentially with the width a in
the 4. case (tunneling case), it is practically zero there. Between the tunnel-
ing case and the 2. case lies the resonance case 3, where T is oscillating, too,
and which cannot be interpreted within the one-particle picture in the strict
sense; in the vicinity of the transmission maxima, an incoming antiparticle
hits against a quasi-bound state appearing as particle resonance so that the
antiparticle can penetrate the (from its point of view) repulsive potential
barrier almost without resistance.

1.5.2 Radial Klein-Gordon Equation

If the Klein-Gordon equation contains a centrally symmetric potential
eA0(x) = V (x) = V (|x|), A = 0, it possesses a central symmetry. As in non-
relativistic quantum mechanics, it is then appropriate to rewrite the Klein-
Gordon equation in terms of spherical coordinates,

x = r cos ϕ sin θ , y = r sin ϕ sin θ , z = r cos θ , r = |x| ,

in order to separate the angular and radial parts. Our starting point is the
Klein-Gordon equation

(
ih̄

∂

∂t
− V

)2

φ(x) +
(
c2h̄2∇2 − m2

0c
4
)
φ(x) = 0 ,

which can be immediately cast into the time-independent Klein-Gordon equa-
tion
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[
(E − V )2 + c2h̄2∇2 − m2

0c
4
]
Φ(x) = 0 , φ(x) = Φ(x)e−iEt/h̄ . (1.70)

Next we write the momentum term as

h̄2∇2 = −p2
r −

L2

r2
,

where

pr = −ih̄
(

∂

∂r
+

1
r

)
, p2

r =
∂2

∂r2
+

2
r

∂

∂r

denotes the radial momentum and L = x× p the angular momentum whose
eigenfunctions are given by the spherical harmonics Yl,m(θ, ϕ) (see Appendix
A.3):

L2Yl,m = h̄2l(l + 1)Yl,m , l = 0, 1, 2, . . .

LzYl,m = h̄mYl,m , m = −l, . . . , l .

With this (1.70) turns into
[
(E − V )2 + c2h̄2

(
∂2

∂r2
+

2
r

∂

∂r

)
− c2L2

r2
− m2

0c
4

]
Φ(x) = 0 .

Using the ansatz

Φ(x) = gl(r)Yl,m(θ, ϕ) ,

the angular-dependent part can now be separated so that we are finally led
to

Theorem 1.9: Radial Klein-Gordon equation
for centrally symmetric potentials

The solutions to the time-independent Klein-Gordon equation with a cen-
trally symmetric potential,

{
[E − V (r)]2 + c2h̄2∇2 − m2

0c
4
}

Φ(x) = 0 ,

can be written in the spherical representation as

Φl,m(r, θ, ϕ) = gl(r)Yl,m(θ, ϕ) .

The functions gl obey the radial Klein-Gordon equation
[

d2

dr2
+

2
r

d
dr

− l(l + 1)
r2

+ k2

]
gl(r) = 0 , k2 =

(E − V )2 − m2
0c

4

c2h̄2 (1.71)

or, using gl(r) = ul(r)/r,
[

d2

dr2
− l(l + 1)

r2
+ k2

]
ul(r) = 0 . (1.72)

�
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These solutions also satisfy the relations

L2Φl,m(r, θ, ϕ) = h̄2l(l + 1)Φl,m(r, θ, ϕ) , l = 0, 1, 2, . . .

LzΦl,m(r, θ, ϕ) = h̄mΦl,m(r, θ, ϕ) , m = −l, . . . , l

[Φl,m]P (r, θ, ϕ) = (−1)lΦl,m(r, θ, ϕ) .

The last equation follows from Yl,m(π − θ, ϕ + π) = (−1)lYl,m(θ, ϕ)
[P=active parity transformation].

Note that (1.71) and (1.72) are formally identical to the corresponding radial
equations of the Schrödinger theory, with k2 = 2m0(E−V )/h̄2. Furthermore,
the following points should be kept in mind:

• Of the solutions gl and ul, only those are physically sensible that are inte-
grable with respect to the G-scalar product. Contrary to the nonrelativistic
case, these integrability conditions depend on the potential, and the fol-
lowing integrals must exist:

∞∫

0

drr2g2
l (r) ,

∞∫

0

drr2g2
l (r)V (r) or

∞∫

0

dru2
l (r) ,

∞∫

0

dru2
l (r)V (r) .

• If the potential diverges more slowly than 1/r2 at the origin: lim
r→0

r2V (r) =
0, the equation

d2ul

dr2
− l(l + 1)

r2
ul = 0

holds around the origin whose solutions are ul(r) ∼ rl+1 (regular solution)
and ul(r) ∼ r−l.

• If, for r → ∞, the potential falls off faster than 1/r: lim
r→∞

rV (r) = 0, we
have for large r

d2u

dr2
+

E2 − m2
0c

4

c2h̄2 u = 0 .

The solutions to this equation behave asymptotically as

|E| < m0c
2 : u(r) ∼ e−kr, ekr

|E| > m0c
2 : u(r) ∼ eikr, e−ikr , k2 =

∣
∣
∣
∣
E2 − m2

0c
4

c2h̄2

∣
∣
∣
∣ .

1.5.3 Free Particle and Spherically Symmetric Potential Well

As an application of centrally symmetric potential problems, we first consider
the easiest case of a free spin-0 particle (V = 0). The discussion can be carried
out analogously to the nonrelativistic case. Using the substitutions
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ρ = kr , gl(r) = ĝl(ρ) , k2 =
E2 − m2

0c
4

c2h̄2 ,

the radial Klein-Gordon equation (1.71) becomes the spherical Bessel equa-
tion (see Appendix A.2)

[
d2

dρ2
+

2
ρ

d
dρ

+ 1 − l(l + 1)
ρ2

]
ĝl(ρ) = 0 . (1.73)

Its solutions are the spherical Bessel functions whose form and asymptotic
behavior are given by

jl(ρ) = (−ρ)l

(
1
ρ

d
dρ

)l sin ρ

ρ
∼

⎧
⎪⎪⎨

⎪⎪⎩

ρl

(2l + 1)!!
for ρ → 0

sin(ρ − lπ/2)
ρ

for ρ → ∞

nl(ρ) = (−ρ)l

(
1
ρ

d
dρ

)l cos ρ

ρ
∼

⎧
⎪⎪⎨

⎪⎪⎩

(2l − 1)!!
ρl+1

for ρ → 0

cos(ρ − lπ/2)
ρ

for ρ → ∞ .

Special combinations of these functions called Hankel functions are of partic-
ular interest:

h
(+)
l (ρ) = nl(ρ) + ijl(ρ)

ρ→∞−→ ei(ρ−lπ/2)

ρ

h
(−)
l (ρ) = nl(ρ) − ijl(ρ)

ρ→∞−→ e−i(ρ−lπ/2)

ρ
.

Their asymptotic behavior for k2 > 0 corresponds to outgoing and incoming
spherical waves, respectively. Depending on E, we now have to distinguish
between two cases:

• |E| < m0c
2: here ĝl(ρ) = h

(+)
l (ρ) is the only bounded solution to (1.73).

However, it has a pole of order l+1 at the origin. Therefore, the eigenvalue
problem has no solution; in accordance with our expectations, there are
no free (anti)particles with an energy E within the “forbidden” interval
−m0c

2 < E < m0c
2.

• |E| > m0c
2: in this case the equation (1.73) has exactly one solution

bounded everywhere, namely, ĝl(ρ) = jl(ρ). The physically possible so-
lution to the Klein-Gordon equation (1.71) is, therefore,

gl(r) = jl(kr) .

Note that the above considerations can easily be carried over to the case of a
potential V (r) that can be split into regions of constant potential values Vi.
In this case E needs to be replaced by E − Vi in each region.
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Spherically symmetric potential well. Keeping the above results in
mind, we now turn to the problem of a spin-0 particle within a spherically
symmetric potential well of the form

eA0(r) = V (r) =

{
−V0 for r < a (area I)

0 for r > a (area II)

}

, V0 > 0 .

We first find the possible solutions to (1.71) within the areas I and II. In the
inner area I, the regular solution at the origin is

• |E + V0| > m0c
2: g

(I)
l (r) = Aljl(k1r) , k1 =

√
(E + V0)2 − m2

0c
4

c2h̄2

or

• |E + V0| < m0c
2: g

(I)
l (r) = Aljl(iκ1r) , κ1 =

√
m2

0c
4 − (E + V0)2

c2h̄2 .

In the outer area II, two cases must be distinguished:

• |E| < m0c
2 (bound states): here

g
(II)
l (r) = Blh

(+)
l (iκ2r) , κ2 =

√
m2

0c
4 − E2

c2h̄2

is the only solution bounded at infinity. The continuity conditions at r = a,

g
(I)
l (a) = g

(II)
l (a) ,

d
dr

g
(I)
l (r)

∣
∣
∣
∣
r=a

=
d
dr

g
(II)
l (r)

∣
∣
∣
∣
r=a

,

determine the ratio of the integration constants Al and Bl. Both condi-
tions can be satisfied simultaneously only for certain discrete values of E;
they determine the energy levels of the bound states. For l=0 states and
additionally assuming E + V0 > m0c

2 (2. case, see below), follows the
condition

tan k1a = −k1

κ2
. (1.74)

• |E| > m0c
2 (unbound states): the general solution is a linear combination

of the spherical Bessel functions that can be written as

g
(II)
l (r) = Bl [jl(k2r) cos δl + nl(k2r) sin δl] , k2 =

√
E2 − m2

0c
4

c2h̄2 .

For l = 0 states the corresponding continuity condition yields for the phase
δ0

tan(k2a + δ0) =
k2

k1
tan k1a , (1.75)

if |E + V0| > m0c
2 (1., 3., and 5. case, see below), or

tan(k2a + δ0) =
k2

κ1
tanh κ1a , (1.76)

if |E + V0| < m0c
2 (4. case, see below).
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As in Subsection 1.5.1, these solutions can be classified and interpreted as
follows (see Figure 1.7):

−V0 − m0c
2

−V0

−V0 + m0c
2

−m0c
2

0

m0c
2

V (r)

r

I II

Fig. 1.7. Energy intervals of the spherically symmetric potential well.

1. case: E > m0c
2. In both areas I and II only “allowed” positive energies

are involved. This corresponds to a normal scattering of a particle with charge
+e against the (from its point of view) attractive potential well (compare to
1. case from Subsection 1.5.1).

2. case: −m0c
2 < E < m0c

2 , E + V0 > m0c
2. At this energy interval the

“allowed” positive energies of I adjoin the “forbidden” positive and nega-
tive energy regimes of II. We therefore have a bound particle of charge +e
(compare to 2. case in Subsection 1.5.1).

3. case: −V0 + m0c
2 < E < −m0c

2 =⇒ V0 > 2m0c
2. Here the “allowed”

positive energy regime of I touches the “allowed” negative energy regime of
II. Beyond the one-particle picture, this can be interpreted as the scattering
of an antiparticle with charge −e against the (from its point of view) repulsive
potential well in the presence of particle resonances (compare to 3. case in
Subsection 1.5.1).

4. case: −V0 − m0c
2 < E < −V0 + m0c

2. The “allowed” negative energy
regime of II adjoins the “forbidden” positive and negative energy regimes
of I. This corresponds to a normal scattering of an antiparticle with charge
−e against the (from its point of view) repulsive potential well while the
penetration depth in area I decreases exponentially (compare to 4. case in
Subsection 1.5.1).
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5. case: E < −V0 −m0c
2. Only “allowed” negative energies are present in I

and II. Thus, we have a normal scattering of an antiparticle with charge −e
against the (from its point of view) repulsive potential well (compare to 5.
case in Subsection 1.5.1).

2. case in detail. Let us now consider the bound case in more detail. We set
V0 = Ze2/a and take the potential well as a naive model for the electrostatic
binding of a pion atom consisting of a nucleus with charge −Ze = +Z|e| and
an orbiting pion of charge +e = −|e|. Figure 1.8 shows the corresponding
energies for 1s-states as a function of the “nucleus charge number” Z and
the “nucleus radius” a following from (1.74). As we can see, for each a-value
there exists a Z-interval, only in which bound 1s-states are possible. At the
lower Z-border the solutions of the upper energy continuum dive into the
bound region and approach the lower energy continuum with increasing Z.
However, we have to bear in mind that, below the zero-energy, the one-

E/mπc2

1

0

−1

100 1000 10000
Z

a/fm = 0.5 1 2 4 8 16 32

E/mπc2

−0.71

−1

300 350 400 450 500
Z

a/fm = 0.5 1 2

Fig. 1.8. Above: energy values of pionic 1s-states (mπc2 = 139.577 MeV, λπ =
1.414 fm) within a spherically symmetric potential well with width a and depth
−V0 = −Ze2/a as a function of Z for different a in a semilogarithmic depiction.
Below: magnified nonlogarithmic depiction in the lower energy regime.
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particle interpretation breaks down more and more due to the high binding
energy |EB| = |E − mπc2| > mπc2.

It is also striking that for small a values (small potential reach and large
potential depth), i.e. far beyond the validity range of the one-particle concept,
the energy curves exhibit a strong left bend in the lower energy regime (two
solutions for a given Z). This left bend results from the antiparticle states
entering the bound region from the lower energy continuum and joining the
particle states at the points of infinite slope. Remarkably, this potential can
therefore bind particles and antiparticles simultaneously (Schiff-Snyder ef-
fect).

1.5.4 Coulomb Potential

We now refine our description of pion atoms and consider the problem of a
spin-0 particle within a Coulomb potential of the form

eA0(r) = V (r) = −Ze2

r
= −Zh̄cαe

r
, αe =

e2

h̄c
= 1/137.03602 ,

where αe denotes the fine structure constant. In this case the radial Klein-
Gordon equation (1.72) is

[
d2

dr2
− l(l + 1) − (Zαe)2

r2
+

2EZαe

h̄cr
− m2

0c
4 − E2

h̄2c2

]
ul(r) = 0 . (1.77)

Since we wish to restrict our discussion to bound states, i.e. to the energy
interval −m0c

2 < E < m0c
2, we can introduce the quantities

ρ = βr , ul(r) = ûl(ρ) , β = 2

√
m2

0c
4 − E2

h̄2c2
, λ =

2EZαe

βh̄c

in order to rewrite (1.77) as
[

d2

dρ2
− l′(l′ + 1)

ρ2
+

λ

ρ
− 1

4

]
ûl(ρ) = 0 , (1.78)

with

l′(l′ + 1) = l(l + 1) − (Zαe)2

=⇒ l′ = −1
2
±

√(
l +

1
2

)2

− (Zαe)2 . (1.79)

Obviously, the equation (1.78) is formally identical to the radial Schrödinger
equation of the nonrelativistic Coulomb problem. We can therefore follow the
way of solving the nonrelativistic problem by first considering (1.78) for the
asymptotic regions ρ → 0,∞.
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ρ → 0: in this case (1.78) reduces to the equation
[

d2

dρ2
− l′(l′ + 1)

ρ2

]
ûl(ρ) = 0 , (1.80)

having the two solutions ûl(ρ) = ρl′+1 and ρ−l′ . Due to (1.79), they can be
summarized in the one solution ûl(ρ) = ρl′+1, whereas the sign in (1.79) re-
mains to be clarified. Now the following points have to be taken into account:

• Physical solutions to our problem exist only for

l +
1
2

> Zαe .

Otherwise, the quantity l′ = −1/2± iσ , σ =
√

(Zαe)2 − (l + 1/2)2 would
be complex so that, near the origin, we would obtain wave functions of the
form ûl(ρ) ∼ ρ1/2 exp(±iσ ln ρ) that oscillate infinitely often for ρ → 0 and
hence yield divergent expectation values of the kinetic energy.

• Because of the 1/r-behavior of the Coulomb potential, the integrability of
the wave function near the origin implies the constraint

l′ + 1 > 0 ,

which is always true for the positive sign in (1.79). If, on the other hand,
Z is sufficiently large for a given l, this constraint is also fulfilled by the
negative sign in (1.79). However, in this case we can find another constraint
that finally rules out the negative sign, for example, that the expectation
value of the kinetic energy must exist.

All in all, the expression

ûl(ρ) = ρl′+1 , l′ = −1
2

+ s , s =

√(
l +

1
2

)2

− (Zαe)2

remains as the only physically sensible solution to (1.80).

ρ → ∞: here (1.78) turns into the equation
(

d2

dρ2
− 1

4

)
û(ρ) = 0 .

Its bounded solution at infinity is

û(ρ) = e−ρ/2 .

Putting both asymptotic regions together we are led to the ansatz

ûl(ρ) = ρl′+1e−ρ/2f(ρ)

for the solution of (1.78), from which the differential equation

ρf ′′(ρ) + (2l′ + 2 − ρ)f ′(ρ) + (λ − l′ − 1)f(ρ) = 0

follows. Inserting the power expansion
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f(ρ) =
∞∑

k=0

akρk

yields
∞∑

k=0

[(k + 1)(k + 2l′ + 2)ak+1 + (λ − l′ − 1 − k)ak] ρk = 0 ,

giving the following recursion formula for the expansion coefficients ai:

ak+1 =
k + l′ + 1 − λ

(k + 1)(k + 2l′ + 2)
ak .

For the wave function ul to obey the integrability condition, i.e. to converge
at infinity, the power expansion must break at some k = n′, i.e.

λ = n′ + l′ + 1 , n′ = 0, 1, 2, . . . .

This is the quantization condition for λ and thus for the energy levels of the
bound spin-0 states. From this it follows that

E2(Zαe)2

m2
0c

4 − E2
=

⎡

⎣n′ +
1
2

+

√(
l +

1
2

)2

− (Zαe)2

⎤

⎦

2

=⇒ En′,l =
m0c

2

√
1 + (Zαe)2(

n′+ 1
2+
√

(l+ 1
2 )

2−(Zαe)2
)2

.

As we can see, the above constraint l + 1/2 ≥ Zαe is also necessary for the
existence of real (i.e. physical) energy eigenvalues. It is most restrictive for
l=0-states and implies: l = 0 =⇒ Z < 68.5, l = 1 =⇒ Z < 205.5, and so
on. Bound states do not exist for larger Z-values. For a comparison with the
nonrelativistic spectroscopic notation, we introduce the principal quantum
number

n = n′ + l + 1

and finally obtain (see Figure 1.9)

En,l =
m0c

2

√
1 + (Zαe)2(

n−(l+ 1
2 )+
√

(l+ 1
2 )

2−(Zαe)2
)2

,
n = 1, 2, . . .
l = 0, 1, . . . , n − 1 .

(1.81)

Obviously, the degeneracy with respect to the angular momentum, which we
encounter in nonrelativistic quantum mechanics, is now removed. Expanding
(1.81) in powers of Zαe yields

En,l = m0c
2

[
1 − (Zαe)2

2n2
− (Zαe)4

2n4

(
n

l + 1
2

− 3
4

)
+ . . .

]
. (1.82)
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E/m0c
2

1

0.8

0.6

0.4

0.2

0

0 50 100 150 200 250 300 350

Z

1s

2s

2p

3p

3d

Fig. 1.9. Energy values of bound spin-0 states within a Coulomb potential of the
form V (r) = −Ze2/r as a function of Z. Each curve ends at a certain maximal
Z-value. For larger Z we get complex (unphysical) energies.

The first term is the rest energy. The second term is the binding energy of the
nonrelativistic Coulomb problem, and the third one is a relativistic correction
where the removal of the angular momentum degeneracy is manifest. It is
identical to the correction stemming from the inclusion of the perturbation
operator H ′ = −(p2)2/(8m3

0c
2) in the Schrödinger equation.

The following items have to be kept in mind for a better understanding
of the above findings:

• In our calculations we have assumed an infinitely heavy atomic nucleus.
However, since it has de facto a finite mass, the nucleus and the pion
move around a common center of gravity that does not coincide with the
nucleus’s center. In Newtonian mechanics as well as in nonrelativistic quan-
tum mechanics this center of gravity motion can easily be separated from
the relative motion, whereas the latter is related back to an effective one-
particle problem with the reduced mass

μ =
m0M

m0 + M
.

However, this division is problematic in relativistic quantum mechanics.
Firstly, there does not exist a satisfactory relativistic two-center equation
and, secondly, the center of gravity system can no longer be defined geo-
metrically but only dynamically. In order to take into account the mutual
repulsion of the particles, one usually proceeds, as in the nonrelativistic
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case, by adhering to the original one-center equation and assigning the
pion the above reduced mass μ. Contrary to the hydrogen atom, this cor-
rection is fairly large for the pion atom, since the pion is about 273 times
heavier than the electron (mπc2 = 139.577 MeV, mec

2 = 0.511 MeV).

• The description of the interaction between nucleus and pion using an ex-
ternal static Coulomb field disregards the finite propagational velocity of
the force between these two constituents. We therefore expect significant
impacts of those retardation effects particularly in the inner shells of the
pion atom where the pion’s velocity is comparable to the velocity of light.
Here the external field approximation and the above mentioned reduced
mass approximation are expected to become poor.

• As we have seen, there seem to exist no bound l=0-states for Z > 68.5.
On the other hand, we know that there definitely exist nuclei with larger
nucleus numbers so that, also for those cases, the Klein-Gordon equation
should yield an acceptable explanation. The reason for this discrepancy lies
in disregarding the nucleus’s finite extent. For example, if we compare the
Bohr radius of a pion, Rπ = 1/(mπcZαe) ≈ 200 fm/Z, with the nucleus
radius RK ≈ 1.5 · A1/3 fm (A = nucleus number), we expect, particularly
for large Z, a considerable overlap of the pion wave function with the
nucleus. In the next subsection, we use a modified Coulomb potential in
order to take the nucleus’s finite extent into account, and we will see that,
in this case, bound states do exist even for large Z and small l.

• Since the probability of finding the pion near the nucleus is considerably
large, we have to include strong interaction corrections whose effects can
be significant.

• Finally, we must also take vacuum polarization effects into account leading
to a screening of the nucleus charge near the nucleus and hence to a further
modification of the Coulomb potential.

1.5.5 Oscillator-Coulomb Potential

All the influences mentioned above have to be taken into account for a more
realistic description of pion atoms. We now single out the finite extent of the
nucleus and (naively) consider it to be a homogeneous charged sphere. The
corresponding potential is (R = nucleus radius)

eA0(r) = V (r) =

⎧
⎪⎪⎨

⎪⎪⎩

−Ze2

2R

(
3 − r2

R2

)
for r < R (area I)

−Ze2

r
for r > R (area II) .

It is composed of an oscillator-like potential in the inner area I and the
Coulomb potential of the preceding subsection in area II. In area I the radial
Klein-Gordon equation is
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⎧
⎪⎪⎨

⎪⎪⎩

d2

dr2
− l(l + 1)

r2
+

[
E + Ze2

2R

(
3 − r2

R2

)2
]
− m2

0c
4

h̄2c2

⎫
⎪⎪⎬

⎪⎪⎭
ul(r) = 0 .

Introducing the quantities

A =
E

h̄c
, B = A2 − m2

0c
2

h̄2 , C =
Zαe

2R3
,

it can be simplified to
[

d2

dr2
− l(l + 1)

r2
+ B − 2ACr2 + C2r4

]
ul(r) = 0 .

To solve this equation we make the power series expansion ansatz

u
(I)
l (r) = rl+1

∞∑

k=0

ckr2k ,

leading to the following conditional equation for the coefficients ck:

0 =
∞∑

k=0

ck(2k + l + 1)(2k + l)r2k+l−1 −
∞∑

k=0

l(l + 1)ckr2k+l−1

+B

∞∑

k=0

ckr2k+l+1 − 2AC

∞∑

k=0

ckr2k+l+3 + C2
∞∑

k=0

ckr2k+l+5 .

Comparing the coefficients for each single order in r finally yields

c1 = − Bc0

2(2l + 3)
, c2 = −Bc1 − 2ACc0

4(2l + 5)

ck = −Bck−1 − 2ACck−2 + C2ck−3

2k(2l + 2k + 1)
, k ≥ 3 .

In area II the radial equations (1.77) and (1.78) hold. Their general solution
is given by

u
(II)
l (r) = û

(II)
l (ρ) = e−ρ/2

∞∑

k=0

akρ1/2+s+k + e−ρ/2
∞∑

k=0

bkρ1/2−s+k , (1.83)

with

ak+1 =
k + 1/2 + s − λ

(k + 1)(k + 1 + 2s)
ak , bk+1 =

k + 1/2 − s − λ

(k + 1)(k + 1 − 2s)
bk (1.84)

and

ρ = βr , β = 2

√
m2

0c
4 − E2

h̄2c2
, λ =

2EZαe

βh̄c
, s =

√(
l +

1
2

)2

− (Zαe)2.

Up to the irrelevant coefficient c0, our problem involves three quantities to be
determined, namely the coefficients a0 and b0, as well as λ or the energy E.
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On the other side we have the same number of conditions, the two continuity
conditions at r = R and the required correct asymptotic behavior of the wave
function for r → ∞.

Extracting a0 and b0 from the sums in (1.84), the expression (1.83) can
be rewritten as

u
(II)
l (r) = a0Ω(s, ρ) + b0Ω(−s, ρ) ,

with

Ω(s, ρ) = e−ρ/2
∞∑

k=0

a′
kρ1/2+s+k , a′

k+1 =
k + 1/2 + s − λ

(k + 1)(k + 1 + 2s)
a′

k , a′
0 = 1.

Now we are able to express both continuity conditions by the compact equa-
tion system

u
(I)
l (R) = u

(II)
l (R) = a0Ω(s, βR) +b0Ω(−s, βR)

du
(I)
l (r)
dr

∣
∣
∣
∣
∣
r=R

=
du

(II)
l (r)
dr

∣
∣
∣
∣
∣
r=R

= a0
dΩ(s, ρ)

dr

∣
∣
∣
∣
r=R

+b0
dΩ(−s, ρ)

dr

∣
∣
∣
∣
r=R

,

which, for given values of m0, Z,R, l, and E, can be uniquely solved.27 The
sought energy eigenvalues E are determined via the required asymptotic be-
havior of the radial wave function at infinity.28 Depending on the number of
zeros, the found energies and states can be classified using the usual spectro-
scopic notation (one zero =⇒ n = 1, two zeros =⇒ n = 2, and so on).

In Figure 1.10 the energy eigenvalues of bound pionic 1s-, 2s-, and 2p-
states are depicted against the nucleus charge number Z, where a nucleus
radius of R = 10 fm is chosen. As we can see, there is an almost linear relation-
ship between the state energies and the nucleus charge number. Furthermore,
we perceive that, compared to the pure Coulomb problem, there also exist
bound states for large Z and small l values (compare to Figure 1.9). At
Z ≈ 760 [935, 1025] the energy value for 1s-[2s-, 2p-]pions reaches E = 0. For
larger Z it becomes negative (compare to Figure 1.8). At Z ≈ 1450 [1670,
1785], we finally find the energy E = −mπc2.

At the end of this subsection, we draw on the results of our last example
to highlight again the basic interpretational difficulties of the Klein-Gordon
theory in relation to the one-particle picture. Table 1.1 shows for two different
nucleus charge numbers Z the G-expectation value of the 1s-pion radius,
〈r〉G, the electrostatic oscillator-Coulomb potential V at the point 〈r〉G, the
binding energy EB = E1s − mπc2, as well as the mean quadratic deviation

Δr =
√
〈r2〉G − 〈r〉2G. Comparing these values with the pion’s rest energy

27 For real s both quantities a0 and b0 are real, too. If s is imaginary, we have
Ω(−s, ρ) = Ω∗(s, ρ) and therefore b0 = a∗

0 so that, also in this case, only two
quantities remain, namely Re(a0) and Im(a0).

28 To do this, one solves the equation system for different energies within the range
−m0c

2 < E < m0c
2 and checks the asymptotic behavior of the corresponding

solutions.
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Fig. 1.10. Energy values of bound 1s-, 2s-, and 2p-pion states in the field of a
homogeneously charged sphere (oscillator-Coulomb potential) as a function of Z.
The sphere’s radius (nucleus radius) is R = 10 fm.

Z = 2 Z = 1450

〈r〉G 146.4 fm 3.7 fm

V
(
〈r〉G

)
−0.02 MeV −298.9 MeV

EB −0.05 MeV −278.8 MeV

Δr 84.3 fm 1.6 fm

Tab. 1.1. Characteristic values of the bound 1s-pion state in the oscillator-Coulomb
potential for the weak (Z = 2) and the strong (Z = 1450) binding cases.

mπc2 = 139.577 MeV and its Compton wave length λπ = 1.414 fm, we have
for the weak binding case

Z = 2 : |EB|, |V (〈r〉G)| � mπc2 , Δr � λπ .

Here all prerequisites of Theorem 1.7 are fulfilled so that the interpretation
of our results within the one-particle concept seems to be justified. However,
in the strong binding case we have

Z = 1450 : |EB|, |V (〈r〉G)| ≈ 2mπc2 , Δr ≈ λπ .

These relations clearly contradict the assumptions in Theorem 1.7, thus show-
ing the impossibility of the one-particle interpretation. A direct confirmation
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of these conclusions is obtained by considering the radial charge density of
the 1s-pion state,

r2ρ(r) =
E − V (r)

mπc2
u2

l (r) .

In the weak binding case (Z = 2) E is positive, and the radial charge den-
sity is positive definite. By contrast, in the strong binding case (Z = 1450)
E is negative so that the radial charge density does not show a uniform
course and turns into negative values at r ≈ 15 fm (see Figure 1.11). This
is clearly incompatible with the one-particle concept. The physical meaning
of this change of sign for strong fields (as for the onedimensional and sphe-
rically symmetric potential wells) can ultimately be understood only within
quantum field theories where the number of particles is variable.

r2ρ(r) · fm

10−7

0

−4 · 10−8

16 18 20 22 24

r/fm

r2ρ(r) · fm

0.25

0

−0.05
5 10 15 20 25

r/fm

Fig. 1.11. G-normalized radial charge density of the 1s-pion state in the oscillator-
Coulomb potential with Z = 1450 and R = 10 fm. The large picture shows a
magnified extract of the small one. At r ≈ 15 fm the charge density changes its
sign.
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Summary

• Studying the onedimensional potential well, we encounter different
classes of solutions depending on the particle’s energy that can be in-
terpreted more or less consistently within the one-particle concept as
scattering or binding of an (anti)particle.

• For centrally symmetric potentials we can separate the angular-
dependent part to obtain the radial Klein-Gordon equation, which
is formally identical to the nonrelativistic radial Schrödinger equation.

• For the free case (and that of a potential with constant regions) this
equation turns into the spherical Bessel differential equation, whose
solutions are given by the spherical Bessel functions.

• Exactly like nonrelativistic electron atoms, pion atoms can be described
approximately using the Coulomb potential. Contrary to the nonrela-
tivistic case, the angular momentum degeneracy is removed. At small
angular momentum values l we find bound pion states only for corre-
spondingly small nucleus charge numbers Z. This results from disregard-
ing the finite extent of the nucleus.

• Taking the nucleus’s finite extent into account by using an oscillator-
Coulomb potential, we also find bound pion states for large Z-values.

• The basic difficulties of the one-particle interpretation in the presence of
strong fields can be clearly demonstrated by means of the solutions to
the oscillator-Coulomb problem.

Exercises

10. Exponential potential. Calculate the bound l=0-states of spin-0 par-
ticles in an exponential potential of the form

eA0(r) = V (r) = −Zαe−r/a , α = m0c
2αe ,

where Z denotes the nucleus charge number, α the coupling constant, and a
the decline constant.

Solution. Since we consider only s-states, the centrifugal term vanishes and
the radial Klein-Gordon equation (1.72) acquires a very simple form:

u′′(r) + k2u(r) = 0 , k2 =
[E − V (r)]2 − m2

0c
4

h̄2c2
.

For its solution we make the separation and substitution ansatz

u(r) = er/2aω(t) , t = 2iZα
a

h̄c
e−r/a .
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From this and taking into account

dt

dr
= −2iZα

h̄c
e−r/a , e−r/a = − ih̄ct

2Zαa
, e−2r/a = − h̄2c2t2

4Z2α2a2

as well as

k2 =
E2 − m2

0c
4

h̄2c2
− iEt

h̄ca
− t2

4a2

u′(r) =
1
2a

er/2aω(t) − 2iZα

h̄c
e−r/2aω′(t)

u′′(r) =
1

4a2
er/2aω(t) − 4Z2α2

h̄2c2
e−3r/2aω′′(t) ,

we obtain the differential equation

ω′′(t) +
(

1/4 − p2a2

t2
− iEa

h̄ct
− 1

4

)
ω(t) = 0 , p2 =

m2
0c

4 − E2

h̄2c2
, (1.85)

which is formally identical to (1.78), if in the latter

λ = − iEa

h̄c
, l′ = −1

2
+ pa

is chosen. The regular solution to (1.85) at r → ∞ (i.e. t = 0) is therefore

ω(t) = t1/2+pae−t/2
∞∑

k=0

aktk , ak+1 =
k + 1/2 + pa − λ

(k + 1)(k + 2pa + 1)
ak .

The discrete energy values follow from the constraint that u(r) [or ω(t)] must
vanish at the origin [or at t0 = t(r = 0)]:

∞∑

k=0

aktk0 = 0 , t0 =
2iZαa

h̄c
.

From this implicit conditional equation the energy values E for s-states can
be determined numerically.

Figure 1.12 shows the energy values of pionic 1s-, 2s-, and 3s-states
depending on the nucleus charge number Z, where a decline constant of
a = λπ = 1.414 fm is chosen. Similarly to the spherically symmetric poten-
tial well (Figure 1.8) and the oscillator-Coulomb potential (Figure 1.10), we
also find here certain Z intervals for the bound states, where the energy val-
ues coming from the upper energy continuum decrease with increasing Z and
eventually border on the lower energy continuum at Z = 778 (1s), Z = 1278
(2s), and Z = 1754 (3s).

If we now reduce the decline constant to a = 0.2 · λπ, the lower border
point for the 1s-state is increased to Z = 2158, as can be seen from Figure
1.13. Additionally and similarly to the spherically symmetric potential well,
we see a strong left bend in the lower energy regime stemming again from
the antiparticle states entering the bound region from the lower energy con-
tinuum. The existence of these antiparticle states is again connected to the
very short reach and the very large depth of the potential.
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Fig. 1.12. Energy values of bound 1s-, 2s-, and 3s-pion states within an exponential
potential with a decline constant a = λπ as a function of Z.
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Fig. 1.13. Energy values of bound 1s-pion states within an exponential potential
with a decline constant of a = 0.2 · λπ as a function of Z. The small picture shows
a magnified extract in the lower energy regime.



2. Relativistic Description of Spin-1/2
Particles

In the preceding chapter we discussed the Klein-Gordon theory for the de-
scription of spin-0 particles as well as its interpretation in relation to the
quantum mechanical one-particle concept. There, for didactic reasons, we
disregarded the chronological order where a sensible one-particle interpre-
tation of the Klein-Gordon theory was not seriously considered until Dirac
established a relativistic quantum mechanics for electrons (more generally:
spin-1/2 particles).

In this chapter we turn to the Dirac theory and also pay specific attention
to a physically consistent one-particle interpretation and its limits (relativistic
quantum mechanics “in the narrow sense”). In practice, this means that we
are again guided by the basic principles presented in the introduction of
Chapter 1, namely

• the principles of nonrelativistic quantum mechanics (Theorem 1.1),

• the limitation of the one-particle interpretation to small interaction ener-
gies compared to the rest energy of the particle as well as to a large position
uncertainty of the wave function compared to the Compton wave length.

In order to make the similarities and differences in the Klein-Gordon and
Dirac theories as transparent as possible, the following sections – except for
Dirac-specific topics – are structured similarly to those of the first chapter.

The first section deals with the foundations of the Dirac theory for the
description of spin-1/2 particles, which, as we will see, exhibit similar features
as the Klein-Gordon theory. In the second section we look at the continuous
and discrete symmetries of the Dirac theory. The third section is dedicated
to the extension, completion, and delimitation of its one-particle interpre-
tation. The nonrelativistic approximation of the Dirac theory to different
orders of v/c is the subject of the fourth section, where we will also resort
to the Fouldy-Wouthuysen method to systematically diagonalize the Dirac-
Hamilton operator. As in the Klein-Gordon case, this chapter ends with some
detailed considerations of simple one-particle systems in the fifth section.

A. Wachter, Relativistic Description of Spin-1/2 Particles. In: A. Wachter, Relativistic

Quantum Mechanics, Theoretical and Mathematical Physics, pp. 85–176 (2011)
DOI 10.1007/978-90-481-3645-2 2 c© Springer Science+Business Media B.V. 2011
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2.1 Dirac Equation

As we saw in Subsection 1.1.1, the relativistic energy momentum relation for
free particles,

E2 = p2c2 + m2
0c

4 , (2.1)

leads through the operator replacement

E −→ ih̄
∂

∂t
, p −→ −ih̄∇

to a scalar wave equation namely the Klein-Gordon equation. This equation
does not allow a positive definite probability density in the sense of non-
relativistic quantum mechanics due to the presence of the second temporal
derivative. Additionally, as a consequence of the quadratic energy momen-
tum dependence, there exist solutions with negative energy that need to be
interpreted adequately.

In his efforts to adhere to a positive definite probability density, Paul Dirac
sought a relativistic generalization of Schrödinger’s equation of first order in
time. Indeed he found this equation in 1928, which describes, contrary to the
Klein-Gordon equation, spin-1/2 particles. However, as every relativistic wave
equation, it also encompasses solutions with negative energy whose physical
meaning is a priori not clear.

In this section we derive the Dirac equation and other basic relationships
of the Dirac theory in the canonical as well as in the Lorentz-covariant formu-
lation. As it turns out, the solutions to the Dirac equation exhibit an inner
degree of freedom which is to be interpreted as a quantum mechanical spin
with the quantum number s = 1/2. Furthermore, we discuss formal proper-
ties of the spin operator, cast it into a Lorentz-covariant form, and utilize it
for the construction of projection operators. At the end we turn to the neg-
ative solutions and their interpretation where, again, the charge conjugation
transformation and, additionally, the hole theory will play an important role.

2.1.1 Canonical Formulation of the Dirac Equation

The starting point of Dirac’s considerations was a relativistic generalization
of the Schrödinger equation for free particles of the form

ih̄
∂ψ(x)

∂t
= H(0)ψ(x) , x = (xμ) , H(0) Hermitean , (2.2)

to which he initially assigned three constraints:

• Equation (2.2) must be Lorentz-covariant. Since its temporal derivative is
of first order, the spatial derivatives must be of first order, too.

• Equation (2.2) must yield the relativistic energy momentum relation (2.1)
in operator form.
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• The quantity ρ = ψ∗ψ must be the temporal component of a conserved
four-vector jμ (i.e. there must exist a Lorentz-covariant continuity equa-
tion) so that its integral over the whole space is invariant.

Due to the first two constraints, the following ansatz seems to be reasonable
for the Hamilton operator in (2.2):

H(0) = cαp + βm0c
2 , p = −ih̄∇ , m0 = rest mass , (2.3)

with the secondary condition

H(0)2 = c2p2 + m2
0c

4 (2.4)

or

−h̄2 ∂2ψ(x)
∂t2

= (c2p2 + m2
0c

4)ψ(x) (Klein-Gordon equation) .

Obviously, condition (2.4) implies that αi and β cannot be ordinary numbers
as there are no mixed terms in αp and β. In order to find out what algebraic
structure αi and β possess, we write (2.2) and (2.3) in the form

ih̄
∂ψ

∂t
=

(
h̄c

i

∑

i

αi∂i + βm0c
2

)

ψ (2.5)

and iterate this relation:

−h̄2 ∂2ψ

∂t2
= ih̄

∂

∂t

(
h̄c

i

∑

i

αi∂iψ + βm0c
2ψ

)

=
h̄c

i

∑

j

αj∂j

(
h̄c

i

∑

i

αi∂iψ + βm0c
2ψ

)

+βm0c
2

(
h̄c

i

∑

i

αi∂iψ + βm0c
2ψ

)

= −h̄2c2
∑

i,j

αiαj + αjαi

2
∂i∂jψ

+
h̄mc2

i

∑

i

(αiβ + βαi) ∂iψ + β2m2
0c

4ψ .

From this we perceive that the secondary condition (2.4) can be fulfilled only
if αi and β are matrices obeying the algebra

{αi, αj} = 2δij , {αi, β} = 0 , α2
i = β2 = 1 . (2.6)

Additionally, these matrices must be Hermitean in order for the Hamilton
operator itself to be Hermitean:

αi = α†
i , β = β† .
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From the last relation in (2.6) it follows further that the eigenvalues of the
matrices are confined to the values ±1. On the other hand, the anticommu-
tators along with the cyclic permutability of the trace, tr(ab) = tr(ba), imply
that the trace of the matrices vanishes, as we have, for example,

tr(αi) = +tr(β2αi) = +tr(βαiβ) = −tr(αi) = 0 .

However, since the trace is just the sum of the eigenvalues, the number of pos-
itive and negative eigenvalues must be equal. From this follows that the ma-
trices must be of an even-numbered dimension. The smallest even-numbered
dimension N = 2 is excluded because here, we are only able to find three an-
ticommuting matrices, namely the Pauli matrices. The smallest dimension,
for which the condition (2.6) for αi and β can be satisfied, is N = 4. We will
be concentrating exclusively on this in the following.

One of the most common explicit representations of the algebra (2.6) is
the Dirac representation

αi =
(

0 σi

σi 0

)
, β =

(
1 0
0 −1

)
.

Here σi denote the Pauli matrices known from Subsection 1.1.2, for which we
will use constantly the symbol σ instead of τ in the context of the Dirac equa-
tion. Another useful representation is the Weyl representation. It is defined
via

αi =
(

σi 0
0 −σi

)
, β =

(
0 −1

−1 0

)
.

Due to N = 4, (2.2) and (2.5) now become a fourdimensional matrix equation,

ih̄
∂ψi(x)

∂t
=

4∑

j=1

[
c(αp)ij + βijm0c

2
]
ψj(x) , i = 1, 2, 3, 4 , (2.7)

and the wave function ψ becomes a fourdimensional column vector,

ψ(x) =

⎛

⎜
⎜
⎝

ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

⎞

⎟
⎟
⎠ ,

which is usually called bispinor. Equation (2.7) denotes the so-called free
Dirac equation in canonical or Hamilton form, for which we will mostly use
the abridging vectorial notation

ih̄
∂ψ

∂t
= H(0)ψ , H(0) = cαp + βm0c

2 . (2.8)

Before we study this equation in more detail, we notice that, as desired, it is
a partial differential equation of first order in space and time. Furthermore,
its Hamilton operator is Hermitean so that we can hope to find a positive
definite probability density. However, whether the Dirac equation is Lorentz-
covariant and thus the rest of the above conditions are also fulfilled is not
obvious at this stage and remains to be verified.
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Solutions of the free Dirac equation. The solutions to the free Dirac
equation (2.8) with defined momentum can be found as easily as those of
the free Klein-Gordon equation. In the Dirac representation they are (see
Exercise 11)

ψ
(1,2)
p (x) =

⎛

⎜
⎝

χ(1,2)

σpχ(1,2)

p0 + m0c

⎞

⎟
⎠ e−i(cp0−px)h̄

ψ
(3,4)
p (x) =

⎛

⎜
⎝

σpχ(3,4)

p0 + m0c

χ(3,4)

⎞

⎟
⎠ e+i(cp0−px)/h̄ ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

with

p0 = +
√

p2 + m2
0c

2 > 0 ,

where χ(1,2) and χ(3,4) respectively denote two linearly independent constant
two-column spinors. As in the Klein-Gordon case, we are again confronted
with two types of solutions: the ones with positive energy E = +cp0 that can
be interpreted as particle wave functions and the others with negative energy
E = −cp0, between whom lies the “forbidden” energy interval ] − m0c

2 :
m0c

2[ (compare to Subsection 1.1.1). For the same reasons as in the Klein-
Gordon case, it is clear that the mere existence of the negative Dirac solutions
seems initially incomprehensible so that we must seek a physically sensible
interpretation of them. As we see in Subsection 2.1.6 (and as the reader
might already suspect), there exists again a relationship between the negative
solutions and antiparticles explaining the reversed assignment of momentum
eigenvalue and index.

Due to the freedom in choosing the spinors χ(1,2) and χ(3,4), the positive
and negative Dirac solutions in (2.9) are not yet uniquely specified. Besides
the Hamilton operator H(0) and the momentum operator p, we therefore ex-
pect there to exist another operator acting only on the wave functions’ inner
degrees of freedom and composing a complete set of commuting observables
together with H(0) and p. In Subsection 2.1.4 we see that this operator is
closely connected to the spin whose quantum number is fixed to 1/2. From
this we deduce that the Dirac equation seems to be appropriate for the de-
scription of spin-1/2 particles (spin-1/2 fermions).

Interaction with electromagnetic fields, gauge invariance. In the
Dirac theory (as in all quantum mechanical theories) the interaction of a
relativistic spin-1/2 particle with an electromagnetic field can be taken into
account by the operator replacement (minimal coupling)1

1 This replacement is valid only for structureless point particles. See Exercises 15
and 27.
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ih̄
∂

∂t
−→ ih̄

∂

∂t
− eA0 , p −→ p − e

c
A

within the free Dirac equation (2.8). This yields the equation

ih̄
∂ψ(x)

∂t
= Hψ , H = cα

(
p − e

c
A
)

+ eA0 + βm0c
2 , (2.10)

with the Hermitean Hamilton operator H and the electric particle charge
e. Performing a calculation similar to the Klein-Gordon case, we can easily
confirm that this equation is invariant under the local gauge transformations

A0 −→ A′0 = A0 − 1
c

∂χ

∂t
, A −→ A′ = A + ∇χ

of the electric field, if the wave function ψ is simultaneously multiplied by an
appropriate phase:

ψ −→ ψ′ = ψeiΛ(x) , Λ(x) =
e

h̄c
χ(x) .

Continuity equation. Due to the Hermitecity of the Hamilton operator,
we expect that, contrary to the Klein-Gordon equation, the Dirac equation
allows the definition of a positive definite probability density in the sense
of nonrelativistic quantum mechanics. To show this, we calculate as follows:
multiplication of (2.10) from the left with ψ† = (ψ∗

1 , ψ∗
2 , ψ∗

3 , ψ∗
4) yields

ih̄ψ† ∂ψ

∂t
=

h̄c

i
ψ†α∇ψ − eψ†αAψ + eA0ψ†ψ + m0c

2ψ†βψ . (2.11)

Taking the adjoint of (2.10) (while taking into account α = α†, β = β†) and
subsequently multiplying this from the right by ψ, we get

− ih̄
∂ψ†

∂t
ψ = − h̄c

i
(∇ψ†)αψ − eψ†αAψ + eA0ψ†ψ + m0c

2ψ†βψ . (2.12)

Subtracting the last two equations leads to a continuity equation of the form

∂ρ(x)
∂t

+ ∇j(x) = 0 , mit ρ = ψ†ψ , j = ψ†cαψ . (2.13)

Applying Gauss’s law finally yields

∂

∂t

∫
d3xρ = −

∫
d3x∇j = −

∮
dFj = 0 .

Together with

ψ†ψ =
∑

i

ψ∗
i ψi =

∑

i

|ψi|2 ≥ 0 ,

this indeed justifies the interpretation of ρ as a positive definite probability
density and, correspondingly, j as a probability current density. Furthermore,
it follows that we can carry over the scalar product from nonrelativistic quan-
tum mechanics (in coordinate representation)
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〈ψ|φ〉 =
∫

d3xψ†(x)φ(x)

including all consequences. In addition to the items of Theorem 1.1, these
consequences are

• the orthogonality of eigenstates of Hermitean operators with different
eigenvalues,

• the picture- and representation-independence of the scalar product under
unitary transformations.

So, in the Hermitean Dirac case and contrary to the non-Hermitean Klein-
Gordon case, we do not need to modify the nonrelativistic quantum mechan-
ical terms “scalar product”, “Hermitecity”, and “unitarity” due to physical
or representational reasons. In the more detailed discussion of particles and
antiparticles in Subsection 2.1.6, we see how the nonrelativistic expectation
value as well as its physical interpretation [see 3) in Theorem 1.1] can be
transferred to the Dirac case.

Theorem 2.1: Dirac equation in canonical form

The Dirac equation is the relativistic generalization of Schrödinger’s equa-
tion for spin-1/2 particles. For a minimal coupled electromagnetic field its
canonical form is

ih̄
∂ψ(x)

∂t
= Hψ(x) , H = cα

(
p − e

c
A
)

+ eA0 + βm0c
2 , (2.14)

where m0 denotes the rest mass and e the electric charge of the particle. ψ is
a fourdimensional column vector (bispinor), and αi, β are fourdimensional
Hermitean matrices obeying the algebra

{αj , αk} = 2δjk , {αj , β} = 0 , α2
j = β2 = 1 .

In the Dirac representation they are

αi =
(

0 σi

σi 0

)
, β =

(
1 0
0 −1

)
.

The Dirac equation is invariant under local gauge transformations of the
electromagnetic field. Furthermore, it allows the definition of a positive
definite probability density

ρ(x) = ψ†(x)ψ(x) ,

∫
d3xρ(x) = const

as well as a probability current density

j(x) = ψ†(x)cαψ(x)
�
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that are connected via the continuity equation

∂ρ

∂t
+ ∇j = 0 .

As in Schrödinger’s theory and contrary to the Klein-Gordon theory, the
scalar product is defined by (compare the definition of the G-scalar product,
Subsection 1.3.1)

〈ψ|φ〉 =
∫

d3xψ†(x)φ(x) .

In the Dirac representation the solutions to the free Dirac equation are

ψ(r)
p (x) =

1
(2πh̄)3/2

√
m0c

p0
e−iεrpμxμ/h̄ω(r)(p) , εr =

{
+1 for r = 1, 2
−1 for r = 3, 4

p0 = +
√

p2 + m2
0c

2 ,

with

ω(1,2)(p) =
√

p0 + m0c

2m0c

⎛

⎝
χ(1,2)

σp

p0 + m0c
χ(1,2)

⎞

⎠ , χ(i)†χ(j) = δij

ω(3,4)(p) =
√

p0 + m0c

2m0c

⎛

⎝

σp

p0 + m0c
χ(3,4)

χ(3,4)

⎞

⎠ , χ(i)†χ(j) = δij

(momentum eigenvalue +p for r = 1, 2 and −p for r = 3, 4), and are
normalized such that

〈
ψ(r)

p

∣
∣
∣ψ(r′)

p′

〉
= δrr′δ(p − p′) , ω(r)†(εrp)ω(r′)(εr′p) =

p0

m0c
δrr′ . (2.15)

Due to the freedom in the choice of χ(r), these solutions are not yet uniquely
specified.

Besides (2.15) there also exist the following useful completeness and orthog-
onality relations, which are all proven in Exercise 18 (Section 2.2):

ω̄(r)(p)ω(r′)(p) = εrδrr′

4∑

r=1
εrω

(r)
α (p)ω̄(r)

β (p) = δαβ

4∑

r=1
ω

(r)
α (εrp)ω(r)†

β (εrp) =
p0

m0c
δαβ .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2.16)

Here

ψ̄ = ψ†β (2.17)

denotes the Dirac-adjoint or simply adjoint bispinor in relation to ψ.
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2.1.2 Dirac Equation in Lorentz-Covariant Form

Having found a relativistic generalization of the Schrödinger equation of first
order in space and time possessing a positive definite probability density, we
are left to show that, with respect to Dirac’s three constraints presented on
page 86, this equation has the same form in all inertial systems, in accordance
with the relativity principle. Because of the symmetry between ct = x0 and
xi, it is advantageous to introduce the γ-matrices

γ0 = β , γi = βαi ,

which, due to (2.6), obey the Clifford algebra

{γμ, γν} = 2gμν , (γμ)2 = gμμ . (2.18)

Furthermore, following from the Hermitecity of αi and β, we have the rela-
tions

γμ† = gμμγμ ⇐⇒ γμ† = γ0γμγ0 . (2.19)

Using these matrices as well as the four-notation for the momentum and the
electromagnetic field,

(pμ) = ih̄(∂μ) = ih̄
(

∂/(c∂t)
−∇

)
, (Aμ) =

(
A0

A

)
,

the canonical Dirac equation (2.14) can be reformulated as
[
γμ
(
pμ − e

c
Aμ(x)

)
− m0c

]
ψ(x) = 0 , (2.20)

clearly with the same free solutions as in Theorem 2.1. In the Dirac repre-
sentation the γ-matrices are given by

γ0 =
(

1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
,

and in the Weyl representation they are

γ0 =
(

0 −1
−1 0

)
, γi =

(
0 σi

−σi 0

)
.

For the Dirac equation to be Lorentz-covariant (form invariant), the following
needs to be shown: given a physical state ψ(x) in the inertial system K,
there must exist an explicit description that allows the calculation of the
corresponding ψ′(x′) in the inertial system K’ describing the same physical
state (passive transformation, see Subsection 1.2.1). Additionally, ψ′(x′) must
be a solution to the primed equation

[
γ′μ
(
p′μ − e

c
A′

μ(x′)
)
− m0c

]
ψ′(x′) = 0 ,

where the primed matrices also obey the relations (2.18) and (2.19). However,
one can show that two sets of matrices being in accordance with (2.18) differ
only by a unitary transformation:
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γ′μ = U†γμU , U† = U−1 .

This means that we have just another representation of the γ-matrices in
the primed system. Without restricting generality, we therefore assume that
the γ-matrices have the same form in both systems so that the primed Dirac
equation can be rewritten as

[
γμ
(
p′μ − e

c
A′

μ(x′)
)
− m0c

]
ψ′(x′) = 0 . (2.21)

The bispinor transformation D(Λ) which transfers ψ(x) into ψ′(x′) must be
linear since the Lorentz transformation Λ of the coordinates is linear, too.
This means2

ψ′(x′) = ψ′(Λx) = D(Λ)ψ(x) = D(Λ)ψ(Λ−1x′)

or, equivalently,

ψ(x) = D−1(Λ)ψ′(x′) = D−1(Λ)ψ′(Λx)

and

ψ(x) = D(Λ−1)ψ′(x′) .

The last two relations imply the equalization

D−1(Λ) = D(Λ−1) .

In order to obtain a conditional equation for D, we express the primed quan-
tities in (2.21) by the unprimed ones:

[
γμ
(
pν − e

c
Aν(x)

)
[Λ−1]νμ − m0c

]
D(Λ)ψ(x) = 0 .

Multiplying this equation from the left by D−1(Λ) yields
[
D−1(Λ)γμ

(
pν − e

c
Aν(x)

)
[Λ−1]νμD(Λ) − m0c

]
ψ(x) = 0 .

From this we perceive that the Dirac equation is Lorentz-covariant if, and
only if, to each Lorentz transformation Λ there exists a matrix D(Λ) for
which3

D−1(Λ)γμ[Λ−1]νμD(Λ) = γν ⇐⇒ D−1(Λ)γμD(Λ) = Λμ
νγν . (2.22)

It should be mentioned in advance that the matrix D(Λ) is generally not
unitary. In Exercise 12 it is shown that most generally the relation
2 Of all the transformations xμ → x′μ = Λμ

νxν + aμ of the full Poincaré group,
we only consider the homogeneous Lorentz transformations (aμ = 0) since the
invariance of the Dirac equation under space-time translations is obvious:

xμ → x′μ = xμ + aμ =⇒ A′μ(x′) = Aμ(x) , p′μ = pμ =⇒ ψ′(x′) = ψ(x) .
3 Since we are assuming the same γ-matrices in the unprimed and primed systems,

it is not justified to consider γμ to be four-vectors as suggested by the μ-indices.
However, in the next subsection we see that, with respect to Lorentz transfor-
mations, bilinear forms of the kind ψ̄ · · ·ψ behave as if γμ was a four-vector.
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D†(Λ) = bγ0D−1(Λ)γ0 , b =
Λ0

0

|Λ0
0|

= ±1 (2.23)

holds if det(D) = 1 is presupposed.
So far we have found the conditional equation (2.22) for the bispinor

transformation D(Λ). To some extent, it represents a necessary criterion for
the Lorentz covariance of the Dirac equation. In order to complete our line
of argument, we are left to show that such bispinor transformations indeed
exist by, for example, explicitly constructing them. We will return to this
issue in Section 2.2. However, it should be mentioned here that it is indeed
possible to write down the corresponding bispinor transformation not only
for proper Lorentz transformations (which would be sufficient) but also for
all transformations of the Poincaré group.

Adjoint bispinor, adjoint Dirac equation. In (2.17) we already intro-
duced the adjoint bispinor

ψ̄ = ψ†β = ψ†γ0 ,

whose explicit forms in the Dirac and Weyl representations are given by

ψ̄ = (ψ∗
1 , ψ∗

2 ,−ψ∗
3 ,−ψ∗

4) and ψ̄ = (−ψ∗
3 ,−ψ∗

4 ,−ψ∗
1 ,−ψ∗

2) .

A big advantage of its use is that, under Lorentz transformations, it behaves
inversely to ψ since, taking (2.23) into account, we find

ψ̄′(x′) = ψ′†(x′)γ0 = [Dψ(x)]†γ0 = ψ†(x)D†γ0 = bψ†(x)γ0D−1

= bψ̄(x)D−1 . (2.24)

This means that we can combine ψ̄ and ψ to form covariant bilinear forms
with a defined transformational behavior under Lorentz transformations (see
below as well as Subsection 2.1.3).

Using the relation

(ih̄γμ∂μψ)† =
(

ih̄γμ ∂ψ

∂xμ

)†
= −ih̄

∂ψ†

∂xμ
γμ† = −ih̄∂μψ†γμ† ,

one obtains
(
−ih̄∂μ − e

c
Aμ

)
ψ†γμ† − m0cψ

† = 0 ,

which is the Hermitean conjugate to the Dirac equation (2.20). Multiplying
this relation by γ0 from the right and exploiting (2.19) finally yields the
adjoint Dirac equation

(
−pμ − e

c
Aμ

)
ψ̄γμ − m0cψ̄ = 0 ,

which is equivalent to the Dirac equation.
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Lorentz covariance of the continuity equation. With the help of the
adjoint bispinor, it is now easy to show that the quantity

jμ = cψ†γ0γμψ = cψ̄γμψ , (jμ) =
(

cρ
j

)

is a contravariant four-vector under orthochronous Lorentz transformations
and hence that the continuity equation can be written in the manifestly
covariant fashion

∂μjμ = 0 .

This is because, taking into account (2.22) and (2.24) with b = +1, it follows
that

j′μ(x′) = cψ̄′(x′)γμψ′(x′) = cψ̄(x)D−1(Λ)γμD(Λ)ψ(x)
= cψ̄(x)Λμ

νγνψ(x) = Λμ
νjμ(x) .

Theorem 2.2: Dirac equation in Lorentz-covariant form

Using the γ-matrices

γ0 = β , γj = βαj ,

the Dirac equation for a minimal coupled electromagnetic field is
[
γμ
(
pμ − e

c
Aμ(x)

)
− m0c

]
ψ(x) = 0 . (2.25)

It is Lorentz-covariant if, for each Lorentz transformation

Λ : xμ −→ x′μ = Λμ
νxν ,

one can find a bispinor transformation

D(Λ) : ψ(x) −→ ψ′(x′) = D(Λ)ψ(x)

with

D−1(Λ)γμD(Λ) = Λμ
νγν . (2.26)

With this constraint, the four-current density

jμ = cψ†γ0γμψ = cψ̄γμψ

transforms as a contravariant four-vector under orthochronous Lorentz
transformations, and the Lorentz-covariant continuity equation

∂μjμ = 0

holds. The adjoint bispinor

ψ̄ = ψ†γ0

�
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obeys the adjoint Dirac equation
(
−pμ − e

c
Aμ

)
ψ̄γμ − m0cψ̄ = 0 .

Using

D†(Λ) = bγ0D−1(Λ)γ0 , b =
Λ0

0

|Λ0
0|

= ±1 , det(D) = 1 ,

the transformational behavior of the adjoint bispinor follows as

ψ̄(x) −→ ψ̄′(x′) = bψ̄(x)D−1(Λ) .

2.1.3 Properties of γ-Matrices and Covariant Bilinear Forms

Before continuing the discussion of Dirac’s equation with respect to its solu-
tions, we present some intermediate considerations about formal properties of
the γ-matrices and their use for the composition of covariant bilinear forms.

Complete basis system. The four matrices γμ are linearly independent,
but they do not compose a complete basis within the 16-dimensional space
of 4×4-matrices. However, by simple matrix multiplications of the γμ, it is
possible to find 16 linearly independent basis elements of this space. They
are listed in Tab. 2.1.

explicit form
Notation Number

(
Γ (n)

)2
= +1

(
Γ (n)

)2
= −1

Γ (S): 1 1 1

Γ (V): γμ 4 γ0 γ1, γ2, γ3

Γ (T): γμγν , μ < ν 6 γ0γ1, γ0γ2, γ0γ3 γ1γ2, γ1γ3, γ2γ3

Γ (A): γμγ5 4 iγ0γ2γ3, iγ0γ3γ1, iγ0γ1γ2 iγ1γ2γ3

Γ (P): γ5 1 iγ0γ1γ2γ3

Tab. 2.1. Basis elements of the 4×4-matrix space.

As for the γ-matrices themselves, the square of the matrices summarized
by the five types Γ (n) is +1 or −1. The upper indices stand for scalar (S), vec-
tor (V), tensor (T), pseudo-scalar (P), and pseudo- or axial vector (A). They
refer to the respective transformational behavior of the corresponding matri-
ces in combination with ψ̄ and ψ under Lorentz transformations (see below).
The unity matrix alone commutes with all the other matrices. Every other
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matrix commutes with exactly 8 of the 16 matrices and anticommutes with
the remaining 8. It is clear that each product of more than four γ-matrices
necessarily contains matrices with a same index so that such a product can be
related back to one of the 16 elements by using the anticommutator relation
(2.18).

Now, by the following line of argument, we can show that the above listed
matrices indeed compose a complete basis within the space of 4×4-matrices:

• For each matrix Γ (n) �= Γ (S) there exists a matrix Γ (m) so that

Γ (n)Γ (m) = −Γ (m)Γ (n) .

This implies a vanishing trace of Γ (n),

± tr
[
Γ (n)

]
= tr

[
Γ (n)

(
Γ (m)

)2
]

= −tr
[
Γ (m)Γ (n)Γ (m)

]

= −tr
[
Γ (n)

(
Γ (m)

)2
]

= 0 , (2.27)

where, in the second last relation, the cyclic permutability of the trace has
been used.

• For each Γ (a) and Γ (b) �= Γ (a) there exists an Γ (n) �= Γ (S) so that

Γ (a)Γ (b) = Γ (n) . (2.28)

• Now we assume the existence of numbers an with
∑

n

anΓ (n) = 0 . (2.29)

Multiplying this relation by Γ (m) and subsequently taking the trace yields
∑

n

antr
[
Γ (n)Γ (m)

]
= 0 .

In the case of Γ (m) �= Γ (S) we have, due to (2.27) and (2.28), am = 0. If,
on the other hand, Γ (m) = Γ (S), we find aS = 0. Therefore, all coefficients
in (2.29) are zero, which proves the linear independence of Γ (n).

Inverse matrices. As for four-vectors (more generally: Lorentz tensors), we
can define the matrix γμ corresponding to γμ by lowering the index via

γμ = gμνγν .

Based on (2.18) (no summation over μ) we have

γμγμ = γμgμνγν = (γμ)2 gμμ = gμμgμμ = 1 .

This means that γμ is the inverse matrix to γμ. Therefore, one generally
obtains the inverse matrix to Γ (n) by reversing the order of its matrices
γμ, replacing them by γμ and adding a sign to each i-factor. Following this
procedure, for example, the inverse matrix of iγ1γ2γ3 reads −iγ3γ2γ1.
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Covariant bilinear forms. As already mentioned above, we can use the γ-
matrix combinations Γ (n) from Tab. 2.1 to build covariant bilinear forms with
a well-defined transformational behavior under Lorentz transformations. We
now specify such bilinear forms and the corresponding transformational be-
havior in more detail, restricting ourselves to orthochronous transformations
(b = +1) and making use of the relations

ψ −→ ψ′ = Dψ , ψ̄ −→ ψ̄′ = ψ̄D−1 , D−1γμD = Λμ
νγν .

• Scalar bilinear form, Γ (S). This bilinear form is given by ψ̄1ψ = ψ̄ψ and
obviously transforms as a Lorentz scalar:

ψ̄ψ −→ ψ̄D−1Dψ = ψ̄ψ .

• Vectorial bilinear form, Γ (V). It is composed of ψ̄γμψ and represents the
four-current which we already know to transform as a contravariant vector:

ψ̄γμψ −→ ψ̄D−1γμDψ = ψ̄Λμ
νγνψ = Λμ

νψ̄γνψ .

• Tensorial bilinear form, Γ (T). This quantity is ψ̄γμγνψ. Its transforma-
tional behavior is calculated as

ψ̄γμγνψ −→ ψ̄D−1γμγνDψ = ψ̄D−1γμDD−1γνDψ

= Λμ
αΛν

βψ̄γαγβψ .

Thus, ψ̄γμγνψ transforms as a contravariant tensor of rank 2.

• Pseudo-scalar bilinear form, Γ (P). A corresponding calculation for ψ̄γ5ψ
yields

ψ̄γ5ψ = iψ̄γ0γ1γ2γ3ψ −→ iψ̄D−1γ0DD−1γ1DD−1γ2DD−1γ3Dψ

= iΛ0
αΛ1

βΛ2
δΛ

3
ρψ̄γαγβγδγρψ . (2.30)

For further evaluation we have to keep in mind that terms with at least
two equal indices do not contribute, as, for example, we have

Λ2
μΛ3

μγμγμ = Λ2
μgμνΛ3

ν

that vanishes, due to (A.2) and (A.3) in the Appendix. Furthermore, be-
cause of the anticommutativity of the γ-matrices, it follows that

Λ0
αΛ1

βΛ2
δΛ

3
ργ

αγβγδγρ = εαβδρΛ0
αΛ1

βΛ2
δΛ

3
ργ

0γ1γ2γ3

= det(Λ)γ0γ1γ2γ3 .

All in all, (2.30) can therefore be written as

ψ̄γ5ψ −→ det(Λ)ψ̄γ5ψ .

Consequently, ψ̄γ5ψ is a pseudo-scalar whose transformational behavior
differs from that of a scalar by an additional factor of det(Λ).
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• Pseudo- or axial vector bilinear form, Γ (A). The last bilinear form is
ψ̄γμγ5ψ. Here a line of argument similar to the previous point leads to
the following transformation law:

ψ̄γμγ5ψ −→ iΛμ
νΛ0

αΛ1
βΛ2

δΛ
3
ρψ̄γμγαγβγδγρψ

= iΛμ
νεαβδρψ̄γμγ0γ1γ2γ3ψ

= det(Λ)Λμ
νψ̄γνγ5ψ .

Therefore, ψ̄γμγ5ψ is a contravariant pseudo-vector. It transforms as a
vector up to an additional factor of det(Λ).

2.1.4 Spin Operator

In Subsection 2.1.1 we already pointed out that, besides H(0) and p, there
must exist another operator acting solely on the inner degrees of freedom of
the Dirac wave functions and commuting with H(0) and p. In order to find
this operator, we initially consider the free Hamilton operator for resting free
particles in the Dirac or Weyl representation,

H(0) = βm0c
2 ,

and notice that the operator

S =
h

2
σ̂ , σ̂ =

(
σ 0
0 σ

)
(2.31)

commutes with H(0). Since S, on the one hand, exhibits a formal similarity
to the spin operator of nonrelativistic quantum mechanics and, on the other
hand, obeys the typical commutator relations

[Si, Sj ] = ih̄εijkSk , i, j, k = 1, 2, 3

for quantum mechanical angular momenta, it can be identified with the spin
operator of the Dirac theory. Its quantum number follows from the attribution

S2 =
h̄2

4
σ̂2 =

3
4
h̄2 = h̄2s(s + 1) =⇒ s =

1
2

,

indicating that the Dirac solutions describe spin-1/2 particles.4 Furthermore,
it follows from the well-known rules of the angular momentum algebra that
the projection of the spin onto an arbitrary spatial direction,

Sn(0) = n(0)S , |n(0)| = 1 ,

possesses the eigenvalues or quantum numbers

h̄mn(0) , mn(0) = ±1/2 .

Therefore, the sought operator is Sn(0) . Together with H(0), p (and S2),
it composes a complete set of commuting observables. Consequently, in the
4 A more formal transformation theoretical argument is given in Subsection 2.2.2.
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rest case, the Dirac solutions in Theorem 2.1 can be uniquely specified by
quoting their eigenvalues of energy, momentum, and the spin projection onto
an arbitrary space direction. If the spin is oriented in or opposite to the
z-direction (mz = ±1/2), the corresponding spinors may be chosen as, for
example,

χ(1,3) ∼
(

1
0

)
=⇒ Szω

(1,3)(0) = +
h̄

2
ω(1,3)(0)

χ(2,4) ∼
(

0
1

)
=⇒ Szω

(2,4)(0) = − h̄

2
ω(2,4)(0) ,

with

Sz = Sn(0) , n(0) =

⎛

⎝
0
0
1

⎞

⎠ .

Let us now turn to the more general case of a moving free particle described
by the Hamilton operator H(0) from (2.8). Contrary to the nonrelativistic
theory, in this case, the spin operator S or Sn(0) does not, in general, com-
mute with H(0). However, we can easily extend it to a Lorentz-covariant
operator that commutes with H(0) and p in every case. Here we notice the
following according to Subsection 2.1.2: if Λv denotes the proper Lorentz
transformation which transforms from the rest system of a spin-1/2 particle
to a reference frame moving with velocity v, it holds that

ω(r)(−p) = D(Λv)ω(r)(0) ⇐⇒ ω(r)(p) = D(Λ−v)ω(r)(0)
⇐⇒ ω(r)(0) = D−1(Λ−v)ω(r)(p)
⇐⇒ ω(r)(0) = D(Λ−1

−v)ω(r)(p)

⇐⇒ ω(r)(0) = D(Λv)ω(r)(p) ,

where D(Λv) is the bispinor transformation belonging to Λv = Λ−1
−v, ω(r)(0)

are the bispinors for resting particles, and ω(r)(p) are the bispinors for free
particles with momentum p. If we now assume that the bispinors χ(r) are
chosen in a way that the bispinors ω(r)(0) of the rest system are eigenstates
of Sn(0) , i.e.

Sn(0)ω(r)(0) = h̄mn(0)ω(r)(0) , mn(0) = ±1
2

,

it follows that

Sn(0)D(Λv)ω(r)(p) = h̄mn(0)D(Λv)ω(r)(p)

⇐⇒ D−1(Λv)Sn(0)D(Λv)ω(r)(p) = h̄mn(0)ω(r)(p) .

In other words, if ω(r)(0) are eigenstates of Sn(0) , then ω(r)(p) are eigenstates
of the Lorentz-covariant spin operator

S(n, p) = D−1(Λv)Sn(0)D(Λv) (2.32)
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with the same eigenvalues. The desired commutator relations necessarily fol-
low from this:

[
S(n, p),H(0)

]
= [S(n, p),p] = 0 .

The notation S(n, p) becomes apparent if we cast (2.32) in a slightly different
form and eliminate the bispinor transformation D. To do this, we initially
rewrite Sn(0) in the form

Sn(0) =
h̄

2m0c
γ5γμn(0)

μ γνp(0)
ν ,

where
(
n(0)μ

)
=
(

0
n(0)

)
,
(
p(0)μ

)
=
(

m0c
0

)

respectively denote the four-vector extension of the direction of spin projec-
tion and the four-momentum in the rest system. Using (2.26) the relation
(2.32) turns into

S(n, p) = D−1(Λ−1
−v)Sn(0)D(Λ−1

−v)

=
h̄

2m0c
γ5D−1(Λ−1

−v)γμD(Λ−1
−v)n(0)

μ D−1(Λ−1
−v)γνD(Λ−1

−v)p(0)
ν

=
h̄

2m0c
γ5[Λ−1

−v]μ
α
γαn(0)

μ [Λ−1
−v]ν

β
γβp(0)

ν

=
h̄

2m0c
γ5γαn(0)

μ [Λ−1
−v]μ

α
γβp(0)

ν [Λ−1
−v]ν

β

=
h̄

2m0c
γ5γαnαγβpβ , (2.33)

with

nμ = [Λ−v]μνn(0)ν , pμ = [Λ−v]μνp(0)ν .

In the second row of (2.33) the relation [D, γ5] = 0 is used, which is valid for
proper Lorentz transformations.5 All in all, we can therefore record:

Theorem 2.3: Lorentz-covariant spin operator
and four-polarization

The Lorentz-covariant spin operator (more precisely: the Lorentz-covariant
projection of the spin) of the Dirac theory is representation-independently

S(n, p) =
h̄

2m0c
γ5γμnμγνpν ,

[
S(n, p),H(0)

]
= [S(n, p),p] = 0 .

�

5 {γ5, γμ} = 0 =⇒ [γ5, σμν ] = 0; see Theorem 2.6 in Subsection 2.2.1.
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n = (nμ) denotes the four-polarization and p = (pμ) the four-momentum
that are connected to the corresponding expressions of the rest system via

pμ = [Λ−v]μνp(0)ν , (p(0)μ) =
(

m0c
0

)

nμ = [Λ−v]μνn(0)ν , (n(0)μ) =
(

0
n(0)

)
.

If the free bispinors ω(r)(0) are eigenstates of S(n(0), p(0)) = Sn(0) , then
ω(r)(p) = D(Λ−v)ω(r)(0) are eigenstates of S(n, p) with the same eigenval-
ues.

A special case of the Lorentz-covariant spin operator is the so-called helicity
operator. It is defined by the projection of the spin S onto the momentum
direction, i.e. n(0) = p/|p|. Taking into account6 [Sp,D(Λv)] = 0 and (2.32),
it can be written as

S(p, p) = Sp =
pS

|p| =
h̄

2|p|γ
5γ0γp ,

where the right hand side expression is independent from the chosen repre-
sentation. The corresponding quantum number mp is called helicity.

2.1.5 Projection Operators

For practical calculations it is often helpful to have operators that project
bispinors with a given energy sign and spin orientation out of the general
solutions to the free Dirac equation with momentum index p.
Energy projection operators. The projectors for solutions with defined
energy follow immediately from the free Dirac equation in momentum space:

γμpμω(1,2)(p) = m0cω
(1,2)(p) , γμpμω(3,4)(p) = −m0cω

(3,4)(p) . (2.34)

On this basis, we can define the operators

Λ+(p) =
γμpμ + m0c

2m0c
, Λ−(p) =

−γμpμ + m0c

2m0c
,

with the properties

Λ+(p)ω(1,2)(p) = ω(1,2)(p) , Λ+(p)ω(3,4)(p) = 0

Λ−(p)ω(1,2)(p) = 0 , Λ−(p)ω(3,4)(p) = ω(3,4)(p) .

Thus, Λ+(p) projects onto positive and Λ−(p) onto negative solutions at
arbitrary spin orientation. This complete and Lorentz-covariant projection
system satisfies the equations

Λ2
±(p) = Λ±(p) , Λ±(p)Λ∓(p) = 0 , Λ+(p) + Λ−(p) = 1 (2.35)

that are characteristic for projection operators.
6 See (2.60) in Subsection 2.2.1.
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Spin projection operators. In order to obtain analogous expressions for
the spin, we assume that χ(r) are chosen so that

S(n, p)ω(1,3)(p) = +
h̄

2
ω(1,3)(p)

(
spin oriented toward
n(0) in the rest system

)

S(n, p)ω(2,4)(p) = − h̄

2
ω(2,4)(p)

(
spin oriented toward
−n(0) in the rest system

)
.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2.36)

Following Theorem 2.3 and (2.34), we then have

S(n, p)ω(1,2)(p) =
h̄

2m0c
γ5γμnμγνpνω(1,2)(p)

=
h̄

2
γ5γμnμω(1,2)(p)

= ± h̄

2
ω(1,2)(p)

=⇒ γ5γμnμω(1,2)(p) = ±ω(1,2)(p)

S(n, p)ω(3,4)(p) =
h̄

2m0c
γ5γμnμγνpνω(3,4)(p)

= − h̄

2
γ5γμnμω(3,4)(p)

= ± h̄

2
ω(3,4)(p)

=⇒ γ5γμnμω(3,4)(p) = ∓ω(3,4)(p) .

This yields the Lorentz-covariant spin projectors

Σ(n) =
1
2
(1 + γ5γμnμ) , Σ(−n) =

1
2
(1 − γ5γμnμ) ,

acting on ω(r)(p) in the following way:

Σ(n)ω(1,4)(p) = ω(1,4)(p) , Σ(n)ω(2,3)(p) = 0

Σ(−n)ω(1,4)(p) = 0 , Σ(−n)ω(2,3)(p) = ω(2,3)(p) .

⎫
⎬

⎭
(2.37)

This means that Σ(n) [Σ(−n)] projects onto bispinors with positive [negative]
energy whose spin is oriented toward +n(0) in the rest system, and onto
bispinors with negative [positive] energy whose spin is oriented toward −n(0)

in the rest system. We can easily see that Σ(±n) also compose a complete
projection system fulfilling the corresponding characteristic equations similar
to (2.35). Since the projectors for energy and spin both possess ω(r)(p) as
a common system of eigenvectors, we further have [Λ±(p), Σ(±n)] = 0. We
can therefore immediately write down four additional projection operators,
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P1(p) = Λ+(p)Σ(n)
P2(p) = Λ+(p)Σ(−n)
P3(p) = Λ−(p)Σ(−n)
P4(p) = Λ−(p)Σ(n) ,

acting as

Pr(p)ω(r′)(p) = δrr′ω(r)(p) .

In (2.37) it is apparent that the action of the spin projector for negative en-
ergy states is reverse to what would be expected based on (2.36). We have
already encountered a similar situation in Theorem 2.1 where the solutions
with negative energy and momentum index p are eigenfunctions of the mo-
mentum operator with eigenvalue −p. The physical reason for these seem-
ingly reversed assignments is connected to the interpretation of the negative
solutions addressed in the next subsection.

Theorem 2.4: Projection operators for energy and spin

Introducing for ω(r)(p) the commonly used notation

ω(1)(p) = u(p, n) , ω(2)(p) = u(p,−n)

ω(3)(p) = v(p,−n) , ω(4)(p) = v(p, n) ,

with the secondary condition (2.36), the Dirac eigensolutions [to H(0), p,
and S(n, p)] can be specified by their energy sign ε, four-momentum index
p = (pμ), and four-polarization index n = (nμ) as

ψε,p,n(x) =
1

(2πh̄)3/2

√
m0c

p0
e−iεpμxμh̄ ×

{
u(p, n) for ε = +1

v(p, n) for ε = −1

}

(compare to Theorem 2.1). For negative solutions the four-momentum and
four-polarization indices are opposite to the corresponding eigenvalues.
The Lorentz-covariant energy and spin projectors are

Λ±(p) =
±γμpμ + m0c

2m0c
, Σ(n) =

1
2
(1 + γ5γμnμ) .

They act on the bispinors u, v in the following way:

Λ+(p)
{

u(p,±n)
v(p,±n)

}
=
{

u(p,±n)
0

}

Λ−(p)
{

u(p,±n)
v(p,±n)

}
=
{

0
v(p,±n)

}

�
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Σ(+n)
{

u, v(p,+n)
u, v(p,−n)

}
=
{

u, v(p,+n)
0

}

Σ(−n)
{

u, v(p,+n)
u, v(p,−n)

}
=
{

0
u, v(p,−n)

}
.

Put differently, from a general free Dirac solution with four-momentum
index p,

• Λ±(p) projects onto its portions with energy sign ε = ±
• Σ(±n) projects onto its portions with four-polarization index ±n.

2.1.6 Interpretation of Negative Solutions, Antiparticles
and Hole Theory

So far we have disregarded the negative solutions to the Dirac equation and
their interpretation. The problems due to their mere existence are the same as
those addressed within the discussion of the negative Klein-Gordon solutions
in Subsection 1.1.3.

Charge conjugation C. In that subsection we saw that there exists a con-
nection between the negative Klein-Gordon solution φ(−) of charge +e and
its charge conjugate φ

(−)
C with charge −e, where the latter was identified with

an antiparticle wave function with positive energy. We therefore conjecture
that a similar relationship can be established in the case in hand. Therefore,
starting from the Dirac equation

[
γμ
(
ih̄∂μ − e

c
Aμ(x)

)
− m0c

]
ψ(−)(x) = 0 (2.38)

for a negative solution ψ(−) of charge +e in the potential Aμ, it should be
possible to deduce the Dirac equation

[
γμ
(
ih̄∂μ +

e

c
Aμ(x)

)
− m0c

]
ψ

(−)
C (x) = 0 (2.39)

for a positive solution ψ
(−)
C of charge −e in the same potential Aμ. Obvi-

ously, as in the Klein-Gordon case, this is possible only if the corresponding
transformation of ψ(−) is antilinear since moving from (2.38) to (2.39) the
relative sign between the differential and potential terms changes. Therefore,
we make the following (reciprocal) ansatz:

ψ
(−)
C (x) = Cψ(−)∗(x) , C2 = 1 , C linear.

Inserting this expression into (2.39), multiplying from the left by C−1, and
subsequently taking the complex conjugate, we finally arrive at (2.38), if C
satisfies the condition
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C−1γμC = −γ∗μ . (2.40)

The solution to this equation can be found easily. In the Dirac or Weyl
representation it is

C = iγ2 .

That ψ
(−)
C is indeed a solution with positive energy can be seen most easily by

considering the eigenvalue equation of a negative energy state Ψ (−) [compare
to (1.24), (1.25)]:

[
cα
(
p − e

c
A
)

+ eA0 + βm0c
2
]
Ψ (−)(x) = −|E|Ψ (−)(x) .

Complex conjugation and subsequent multiplication from the left by iγ2 =
iβα2 leads, along with (2.6) and α1,3 = α∗

1,3, α2 = −α∗
2, to the eigenvalue

equation
[
cα
(
p +

e

c
A
)
− eA0 + βm0c

2
]
Ψ

(−)
C (x) = +|E|Ψ (−)

C (x) ,

with

Ψ
(−)
C (x) = iγ2Ψ (−)∗(x) .

All in all, we can therefore state (compare to Theorem 1.4):

Theorem 2.5: Charge conjugation C in the Dirac theory

• In the Dirac and Weyl representations the charge conjugation C of the
Dirac theory is defined by the transformation

ψ(x) −→ ψC(x) = iγ2ψ∗(x) .

It turns a positive [negative] Dirac solution of charge +e [−e] into a
negative [positive] Dirac solution of charge −e [+e].

• A positive Dirac solution ψ(+) represents a physical spin-1/2 particle
of charge +e in the potential Aμ, whereas the charge conjugate of the
negative solution ψ

(−)
C (and not the original negative solution) describes

the physical antiparticle with opposite charge −e in the same potential
Aμ.

With respect to the first two points in both Theorems 1.4 and 2.5, the cir-
cumstances of the Klein-Gordon and Dirac cases are completely identical. In
particular, the Dirac theory, as a relativistic enhancement of Schrödinger’s
theory, also leads to a new degree of freedom and hence to the prediction of
antiparticles which, so far, have been verified experimentally for every known
spin-1/2 particle. However, the third point in Theorem 1.4 (charge interpre-
tation) does not have a counterpart in the above Theorem since here, Q, ρ,
and j are to be interpreted as probability quantities (see Theorem 2.1).

Based on Theorem 2.5 and the annotations before Theorem 2.1, we can
now specify the quantum mechanical expectation value of an observable for
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particles and antiparticles in the Dirac theory (compare to the definition of
the G-expectation value in the Klein-Gordon theory, Subsection 1.3.1):

Definition: Expectation value in the Dirac theory

In the Dirac theory the expectation value of the observable O is defined by

〈O〉 = 〈ψ| O |ψ 〉 =
∫

d3xψ†(x)Oψ(x) , 〈ψ|ψ〉 = +1 . (2.41)

It denotes the statistical average of many similar measurements of O at
identical spin-1/2 [anti]particle systems of charge +e [−e]. For particles
positive Dirac solutions ψ(+), and for antiparticles charge conjugated neg-
ative solutions ψ

(−)
C are to be inserted.

Before we turn to the interpretation of the negative solutions, let us look at
the charge conjugation C in more detail. We consider the expectation value
of an operator O in the state ψC and calculate in the Dirac or Weyl repre-
sentation as follows:

〈O〉C = 〈ψC | O |ψC 〉 =
∫

d3xψ†
COψC =

∫
d3x(iγ2ψ∗)†Oiγ2ψ∗

=
∫

d3xψ∗†γ2†Oγ2ψ∗ =
∫

d3xψ∗†γ0γ2γ0Oγ2ψ∗

= −
∫

d3xψ∗†γ2γ0γ0Oγ2ψ∗ = −
∫

d3xψ∗†γ2Oγ2ψ∗

= −
(∫

d3xψ†γ2O∗γ2ψ

)∗
= −

〈
ψ| γ2O∗γ2 |ψ

〉∗
. (2.42)

With these relations, the following can be derived easily (see Exercise 14):

〈β〉C = −〈β〉
〈x〉C = 〈x〉
〈α〉C = 〈α〉
〈p〉C = −〈p〉
〈S〉C = −〈S〉
〈L〉C = −〈L〉 , L = x × p

〈J〉C = −〈J〉 , J = L + S

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.43)

〈H(−e)〉C = −〈H(e)〉 , H(e) = cα
(
p − e

c
A
)

+ eA0 + βm0c
2 . (2.44)

Furthermore, we have

ρC = ψ†
CψC = ψ†ψ = ρ , jC = ψ†

CcαψC = ψ†cαψ = j . (2.45)

According to this, ψC and ψ possess the same probability density and prob-
ability current density in all space-time points. Therefore, the electric charge
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and current densities of ψC and ψ are opposite to each other. From (2.44) it
becomes apparent once again that the solutions to the Dirac equation with
negative energy correspond to the charge conjugated solutions with positive
energy and vice versa. Finally, (2.43) and (2.44) express the important result
that the charge conjugation C reverses the charge, energy, momentum, and
spin of a Dirac state.

Applied to free Dirac solutions, the charge conjugation yields, up to a
constant phase factor (see Exercise 13),

ψε,p,n(x) ←→ ψ−ε,p,n(x) (2.46)

showing that u(p, n) and v(p, n) are the charge conjugates of each other and
that the original and charge conjugated states are described by the same
four-momentum and four-polarization indices. This is clearly a consequence
of the reversed assignment of the eigenvalues and indices for momentum and
spin in the negative solutions which we have introduced analogously to the
Klein-Gordon case, since the negative solutions should refer to antiparticles
described by the charge conjugates of the negative solutions.7

Interpretation of negative solutions, hole theory As in the Klein-
Gordon case, the mere existence of negative Dirac solutions causes difficulties,
namely with respect to their physical consequences and to their interpretation
(compare to the discussion in Subsection 1.1.3). In particular, we are again
confronted with the problem that the theory seems to allow the transition
from positive energy states to deeper and deeper negative energy levels (see
Figure 1.1), although those transitions obviously do not occur in nature (sta-
bility of matter). As we already noted in Subsection 1.1.3, we must postulate
the nonexistence of the radiation catastrophe as long as we restrict ourselves
to the one-particle view. However, beyond the one-particle picture, the Dirac
theory offers an explanation found by Dirac himself known as hole theory.

In this theory the dilemma caused by the negative Dirac solutions is solved
by filling the negative energy levels with electrons (more generally: spin-1/2
particles) in agreement with Pauli’s exclusion principle. Accordingly, the vac-
uum state is the one where all negative energy levels are occupied by electrons
and all positive energy levels are empty. As a consequence, the transition
catastrophe is now eliminated since Pauli’s exclusion principle forbids the
transition of real electrons (with positive energy) into the completely filled
sea of negative energies (see Figure 2.1 left).

This novel assumption of a sea occupied by electrons has many conse-
quences. For example, an electron with negative energy can shift into a state
of positive energy by absorbing radiation. If this occurs, one observes an elec-
tron with charge +e and energy +E. Additionally, a hole is created in the
sea of negative energies indicating the absence of an electron with charge +e

7 As in the Klein-Gordon case, we note that in the free case the distinction of
charged particles is not possible. Therefore, the original and the charge conju-
gated states are solutions to the same Dirac equation.
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E E

+m0c
2
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−m0c
2

positive
energy
continuum

bound
states

negative
energy
continuum

γ-quantum
with energy
h̄ω > 2m0c

2

Fig. 2.1. Left: within the hole theory, the vacuum is characterized by the fact that
each negative energy level is occupied by two electrons (spin up and spin down) (•),
whereas all positive energy levels are empty. Right: in the process of pair creation
an electron of negative energy absorbs radiation with energy h̄ω > 2m0c

2 and shifts
into a positive electron state ( ). This causes a hole in the sea of negative energies
(◦) which appears as an additional antiparticle (positron).

and energy −E. An observer relative to the vacuum perceives this hole as a
particle of charge −e and energy +E (antiparticle) (Figure 2.1 right). Thus,
the hole theory also provides an explanation for the creation of particle-
antiparticle pairs (pair creation). This new perspective implies that there
must exist a unique relationship between negative Dirac solutions with charge
+e and positive solutions with charge −e which is, as we already know, pro-
vided by the charge conjugation C. Accordingly, within the hole picture, an
occupied electron state with negative energy is described by ψ(−), whereas
its absence, i.e. the corresponding hole, is described by ψ

(−)
C , which is the

wave function of the antielectron, the so-called positron. This interpretation
becomes clear again once we write down the charge, energy, and momentum
balances of the pair creation process:

Qphoton = 0 = Qelectron pos. energy − Qelectron neg. energy

= Qelectron + Qpositron

Ephoton = h̄ω = Eelectron pos. energy − Eelectron neg. energy

= Eelectron + Epositron

pphoton = h̄k = pelectron pos. energy − pelectron neg. energy

= pelectron + ppositron .
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The effect opposite to pair creation, the particle-antiparticle annihilation
(pair annihilation), can equally be described within the hole theory. Here
a light emitting electron falls into an electron hole in the sea of negative
energies and hence destroys the positron associated with the hole.

As in the Klein-Gordon case, note that in our discussion of the Dirac
theory, the charge sign does not play any role so that we could also have
interpreted positrons of charge −e as particles (described by positive Dirac
solutions) and electrons of charge −e as antiparticles (described by charge
conjugated negative solutions). Consequently, the Dirac sea would have con-
sisted of positrons with negative energy and its holes would have been elec-
trons.

Further consequences of the hole theory. If one tries to examine the
conclusions of the hole theory in more detail, insufficiencies and contradic-
tions inevitably arise that can ultimately be solved only within quantum
field theoretical considerations. Nevertheless, the hole theory is of great im-
portance since, for the first time, it provided a (naive) model of the vacuum
which is not characterized by the absence of everything but possesses an
internal structure that is subject to modification. For example, external elec-
tromagnetic fields can deform the wave functions of the electrons within the
sea of negative energies thus creating a measurable vacuum polarization (dis-
placement charge of the vacuum) compared to the field-free case. For a real
electron repelling the electrons of the Dirac sea, this deformation implies that
its electric charge is weakened compared to its “bare” charge – an effect which
is observed, for example, in the energy spectrum of the hydrogen atom.

A further consequence of the hole theory in the present form is that the
vacuum obviously possesses an infinite charge and energy that must be renor-
malized to zero by fixing an appropriate charge and energy zero point. This
procedure is principally possible although not very satisfactory (aesthetic).
However, the most serious flaws of the hole theory are, firstly, that it con-
tains an asymmetry in the description of particles and antiparticles. Secondly,
the question remains unanswered how to treat the mutual interaction of the
occupied states within the sea of negative energies.

Finally, we note the following: the hole theory was introduced by Dirac,
among others, to provide an interpretation of the negative Dirac solutions
as well as to give a plausible explanation for the absence of the radiation
catastrophe. However, this theory inevitably exceeds the one-particle concept
since it describes particles with both charge signs simultaneously. As we have
already stated, we have to accept the fact that in the Dirac as well as in the
Klein-Gordon case, the problem of negative energies cannot be solved within
a strict one-particle interpretation.

Résumé. As in the discussion of the Klein-Gordon theory at the end of
Subsection 1.1.3, we now draw an interim summary by gathering the already
clarified as well as still open points relevant to the desired one-particle inter-
pretation.
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With respect to the interpretation of the Dirac and Klein-Gordon so-
lutions, the circumstances are completely equal: positive solutions describe
particles with charge +e, and charge conjugated negative solutions describe
antiparticles with charge −e. Concerning the quantities ρ and j: in the Klein-
Gordon case they do not come into question as probability quantities due to
the non-Hermitecity of the Hamilton operator. Instead, they can be inter-
preted as charge quantities where positive Klein-Gordon solutions are to be
inserted for particles and negative solutions for antiparticles. In contrast,
the Dirac-Hamilton operator is Hermitean so that ρ can be interpreted as a
probability density and j as a probability current density. For particles we
have to insert positive Dirac solutions, and for antiparticles the charge con-
jugated negative solutions or – due to ρC = ρ, jC = j – the original negative
solutions.

For the completion and inner consistency of the one-particle interpretation
of the Dirac theory, the following points remain to be clarified that will be
tackled in Section 2.3 (compare to the points [1], [2], and [3] in Subsection
1.1.3):

[1] A necessary condition for the one-particle interpretation is that positive
and negative solutions are completely decoupled since only then particles
and antiparticles can be described sensibly. However, as in the Klein-
Gordon case, only the positive solutions together with the negative ones
compose a complete function system. Therefore, we have to ask to what
extent a complete decoupling is possible.

[2] A complete decoupling also implies that we must strive toward physically
sensible one-particle operators that do not mix positive and negative so-
lutions.

Here we do not need to cite a point equivalent to [3] in Subsection 1.1.3,
since with (2.41), we have already found a physically sensible definition of
quantum mechanical statistical expectation values that are invariant under
unitary transformations (picture-independent).

Parallel to the final remarks at the end of Subsection 1.1.3, we note that,
besides the electric charge, there exist other types of charge by which some
fermions differ from their antifermions. For example, there are quarks carry-
ing a complicated color charge in addition to their electric charge.

Summary

• The Dirac equation is a fourdimensional system of coupled differential
equations of first order in space and time. It represents the relativistic
generalization of Schrödinger’s equation for spin-1/2 particles.

�
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• The Dirac theory differs from the nonrelativistic theory in one impor-
tant point: it encompasses solutions (bispinors) for both positive and
negative energies.

• The Hermitecity of the Dirac-Hamilton operator allows the definitions of
a positive definite probability density and a probability current density
that are formally identical to those of nonrelativistic quantum mechanics.
We can therefore carry over the scalar product and expectation value
from the nonrelativistic theory, including the consequences with respect
to Hermitean and unitary operators.

• Combining the 16 basis elements of the γ-matrix space with ψ̄ and ψ,
one can build covariant bilinear forms with a well-defined transfor-
mational behavior under orthochronous Lorentz transformations.

• The free plane Dirac wave functions are not yet uniquely specified as the
eigensolutions to the Hamilton and momentum operators. They possess
an additional degree of freedom leading to a spin operator with quantum
number s = 1/2.

• Due to the charge conjugation, the Dirac solutions can be interpreted
in the following way: particles of charge +e are described by positive
Dirac solutions and antiparticles of charge −e by the charge conju-
gated negative solutions.

• Within the one-particle concept, the problems connected to negative so-
lutions (interpretation, radiation catastrophe) cannot be solved. Beyond
the one-particle picture, the hole theory provides a qualitatively ac-
ceptable explanation for them. According to it, the vacuum possesses a
modifiable inner structure with physical consequences (pair creation
and annihilation, vacuum polarization).

• With a view to the most consistent one-particle probability interpretation
of the Dirac theory, it remains to be clarified to what extent a complete
decoupling of positive and negative solutions is possible.

Exercises

11. Solutions of the free Dirac equation. Show that in the Dirac repre-
sentation the solutions to the free Dirac equation (2.8) with a sharp momen-
tum are given by (2.9).
Solution. To solve this problem, we can proceed similarly to Exercise 1. Our
ansatz is

ψ(x) =
(

ϕ0

χ0

)
ei(px−Et)/h̄ ,
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where ϕ0 and χ0 each denote two-component constant spinors. Inserting this
into (2.8) leads to the equation system

(E − m0c
2)ϕ0 − cσpχ0 = 0

−cσpϕ0 + (E + m0c
2)χ0 = 0 ,

}

(2.47)

which possesses nontrivial solutions only if the coefficient determinant van-
ishes:

∣
∣
∣
∣
∣

E − m0c
2 −cσp

−cσp E + m0c
2

∣
∣
∣
∣
∣
= E2 − m0c

2c4 − c2(σp)(σp) = 0 .

From this and taking into account the identity

(σA)(σB) = AB + iσ(A × B) ,

we obtain the relativistic energy-momentum relation for free particles,

E2 − m2
0c

4 − c2p2 = 0 =⇒

⎧
⎨

⎩

E(+) = +c
√

p2 + m2
0c

2 = +cp0

E(−) = −c
√

p2 + m2
0c

2 = −cp0 ,

in accordance with our expectations. The solutions to our problem finally
result from the insertion of E(+) and E(−) into (2.47). They can be written
in the (unnormalized) form

E(+) : ψ(+)(x) =

⎛

⎜
⎝

χ(1,2)

σpχ(1,2)

p0 + m0c

⎞

⎟
⎠ e−i(cp0−px)h̄ ∼ ψ(1,2)

p (x)

E(−) : ψ(−)(x) =

⎛

⎜
⎝

−σpχ(3,4)

p0 + m0c

χ(3,4)

⎞

⎟
⎠ e+i(cp0+px)/h̄ ∼ ψ

(3,4)
−p (x) ,

where χ(1,2) and χ(3,4) respectively denote two linearly independent spinors.

12. Nonunitarity of bispinor transformations (I). Verify (2.23).

Solution. We have the relations [see (2.19) and (2.22)]

Λμ
νγν = D−1γμD ⇐⇒ Λμ

νγν† = D†γμ†D†−1 (2.48)

and

γμ† = γ0γμγ0 . (2.49)

From the second equation of (2.48) and from (2.49) follows that

Λμ
νγ0γνγ0 = D†γ0γμγ0D†−1

=⇒ γ0Λμ
νγ0γνγ0γ0 = γ0D†γ0γμγ0D†−1γ0 = γ0D†γ0γμ

(
γ0D†γ0

)−1
.

On the other hand, the first relation of (2.48) can be rewritten as
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Λμ
νγν = Λμ

νγ0γν†γ0 = γ0Λμ
νγ0γνγ0γ0 = D−1γμD .

Comparing the last two relations leads to

D−1γμD = γ0D†γ0γμ
(
γ0D†γ0

)−1

or

γμ = Dγ0D†γ0γμ
(
γ0D†γ0

)−1
D−1 = Dγ0D†γ0γμ

(
Dγ0D†γ0

)−1
.

Thus, Dγ0D†γ0 commutes with all γμ and is therefore proportional to the
unity matrix:

Dγ0D†γ0 = b =⇒ Dγ0D† = bγ0. (2.50)

From this, we obtain the sought relation

D† = b
(
Dγ0

)−1
γ0 = bγ0D−1γ0

as well as
(
Dγ0D†)† = Dγ0D† = b∗γ0 =⇒ b = b∗ .

In order to determine the real constant b, we use that det(D) = 1 was pre-
supposed. The calculation of the determinant of (2.50) then yields

b4 = 1 =⇒ b = ±1 .

Next we consider the equation

D†D = bγ0D−1γ0D = bγ0Λ0
νγν = bΛ0

0 + b

3∑

k=1

Λ0
k γ0γk

︸ ︷︷ ︸
αk

(2.51)

and argue as follows: since det(D†D) is equal to the product of all eigenvalues,
all of them must be nonzero. Furthermore, the operator D†D is Hermitean.
For its real eigenvalues, it therefore holds that

D†Dψa = aψa =⇒ aψ†
aψa = ψ†

aD†Dψa = (Dψa)†Dψa > 0 =⇒ a > 0 .

Since the trace of D†D is equal to the sum of all eigenvalues, it follows from
(2.51) and tr(αk) = 0 that

0 < tr(D†D) = 4bΛ0
0 .

So, in total, we have

b =
Λ0

0

|Λ0
0|

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+1 for orthochronous Lorentz transformations
preserving the time direction

−1 for nonorthochronous Lorentz transformations
changing the time direction.
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13. Charge conjugation of free Dirac states. Verify (2.46).

Solution. Our starting point is a plane free Dirac wave function ψε,p,n with
energy sign ε, four-momentum index p, and four-polarization index n fulfilling
the projection relation

ψε,p,n(x) =
(

εγμpμ + m0c

2m0c

)(
1 + γ5γμnμ

2

)
ψε,p,n(x) .

On the basis of (2.40), {C, γ5} = 0, γ5 = γ5∗, and the fact that in the first
bracket term pμ = p∗μ is a real number (and not an operator), the charge
conjugated wave follows as

[ψε,p,n]C (x) = C

(
εγμ∗pμ + m0c

2m0c

)(
1 + γ5γμ∗nμ

2

)
ψ∗

ε,p,n(x)

= C

(
εγμ∗pμ + m0c

2m0c

)
C−1C

(
1 + γ5γμ∗nμ

2

)
C−1Cψ∗

ε,p,n(x)

=
(
−εγμpμ + m0c

2m0c

)(
1 + γ5γμnμ

2

)
Cψ∗

ε,p,n(x)

=
(
−εγμpμ + m0c

2m0c

)(
1 + γ5γμnμ

2

)
[ψε,p,n]C (x)

= ψ−ε,p,n(x) .

14. Expectation values of charge conjugated Dirac states. Show that
the relations (2.43), (2.44), and (2.45) are true.

Solution. We provide the proof with the help of (2.42) and the adjunction
relation 〈ψ| O |ψ 〉∗ =

〈
ψ| O† |ψ

〉
in the Dirac or Weyl representation.

To show: 〈β〉C = −〈β〉, with β = γ0.

〈β〉C = −
〈
ψ| γ2γ0γ2 |ψ

〉∗
=
〈
ψ| γ2γ2γ0 |ψ

〉∗
= −

〈
ψ| γ0 |ψ

〉∗

= −
〈
ψ| γ0 |ψ

〉
= −〈β〉 .

To show: 〈x〉C = 〈x〉.

〈x〉C = −
(∫

d3xψ†γ2xγ2ψ

)∗
=
(∫

d3xψ†xψ

)∗
= 〈ψ|x |ψ 〉∗

= 〈ψ|x |ψ 〉 = 〈x〉 .

To show: 〈α〉C = 〈α〉, with αi = γ0γi.

γ2α∗
i γ

2 = γ2γ0γi∗γ2

=

{
γ2γ0γiγ2 = γ2γ2γ0γi = −γ0γi for i = 1, 3

−γ2γ0γ2γ2 = γ2γ0 = −γ0γ2 for i = 2

}

= −αi

=⇒ 〈αi〉C = −
〈
ψ| γ2α∗

i γ
2 |ψ
〉∗

= 〈ψ|αi |ψ 〉∗ = 〈ψ|αi |ψ 〉 = 〈αi〉 .
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To show: 〈p〉C = −〈p〉, with p = −ih̄∇.

〈p〉C = −
[∫

d3xψ†γ2(ih̄∇)γ2ψ

]∗
= −

[∫
d3xψ†(−ih̄∇)ψ

]∗

= −〈ψ|p |ψ 〉∗ = −〈ψ|p |ψ 〉 = −〈p〉 .

To show: 〈S〉C = −〈S〉, with S =
h̄

2

(
σ 0
0 σ

)
.

γ2S∗
i γ2 =

h̄

2

(
0 σ2

−σ2 0

)(
σ∗

i 0
0 σ∗

i

)(
0 σ2

−σ2 0

)

= − h̄

2

(
σ2σ

∗
i σ2 0
0 σ2σ

∗
i σ2

)
=

h̄

2

(
σ∗T

i 0
0 σ∗T

i

)
= S†

i

=⇒ 〈Si〉C = −
〈

ψ|S†
i |ψ
〉∗

= −〈ψ|Si |ψ 〉 = −〈Si〉 .

To show: 〈L〉C = −〈L〉, with L = x × (−ih̄∇).

〈L〉C = −
[∫

d3xψ†γ2x × (ih̄∇)γ2ψ

]∗
= −

[∫
d3xψ†x × (−ih̄∇)ψ

]∗

= −〈ψ|L |ψ 〉∗ = −〈ψ|L |ψ 〉 = −〈L〉 .

To show: 〈J〉C = −〈J〉, with J = L + S.

〈J〉C = 〈L〉C + 〈S〉C = − [〈L〉 + 〈S〉] = −〈J〉 .

To show: 〈H(−e)〉C = 〈H(e)〉, with H(e) = cα
(
p − e

c
A
)

+ eA0 + βm0c
2.

We have

γ2α∗γ2 = −α =⇒ 〈αp〉C = −〈αp〉 , 〈αA〉C = 〈αA〉
and

〈
A0
〉

C
=
〈
A0
〉

, 〈β〉C = −〈β〉 .

=⇒ 〈H(−e)〉C = c
(
〈αp〉C +

e

c
〈αA〉C

)
− e
〈
A0
〉

C
+ m0c

2 〈β〉C

= −
[
c
(
〈αp〉 − e

c
〈αA〉

)
+ e
〈
A0
〉

+ m0c
2 〈β〉

]

= −〈H(e)〉 .

To show: ρC = ρ, with ρ = ψ†ψ.

ρC = ψ†
CψC =

(
iγ2ψ∗)† iγ2ψ∗ = ψT γ2†γ2ψ∗ = −ψT γ2γ2ψ∗

= ψT ψ∗ =
(
ψ†ψ

)∗
= ψ†ψ = ρ .

To show: jC = j, with j = ψ†cαψ.

jC = ψ†
CcαψC = c

(
iγ2ψ∗)† αiγ2ψ∗ = cψT γ2†αγ2ψ∗

= −cψT γ2αγ2ψ∗ = cψT α∗ψ∗ =
(
ψ†cαψ

)∗
= ψ†cαψ = j .
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15. Dirac equation for structured particles. The Dirac equation of a
structured particle (e.g. proton or neutron) in an external electromagnetic
field exhibits an additional term which describes the interaction of the par-
ticle’s anomalous magnetic moment with this field:

[
γμ
(
pμ − e

c
Aμ

)
− h̄δ

4m0c
σμνFμν − m0c

]
ψ(x) = 0 ,

with

σμν =
i
2
[γμ, γν ] , Fμν = ∂μAν − ∂νAμ .

a)Show that, with this gauge and Lorentz-invariant term, the Dirac operator
is Hermitean and the probability remains conserved.

b)Express σμνFμν in terms of the electromagnetic fields E and B in the
Dirac representation.

Solution.

To a) First of all, we notice that, in the above equation, it is not the bracket
term that must be Hermitean but the Dirac-Hamilton operator which is ob-
tained by rewriting the equation in canonical form:

ih̄
∂ψ

∂t
=
[
cα
(
p − e

c
A
)

+ eA0 +
h̄δ

4m0c
γ0σμνFμν + m0c

2γ0

]
ψ . (2.52)

From this the Hermitecity condition

γ0σμνFμν =
(
γ0σμνFμν

)†
(2.53)

follows, and (since Fμν is a real tensor field)

σμν† = γ0σμνγ0 .

This condition can be immediately verified with the help of (2.19):

(σμν)† = − i
2
[γν†, γμ†] = − i

2
[γ0γνγ0, γ0γμγ0] =

i
2
γ0[γμ, γν ]γ0

= γ0σμνγ0 .

To prove the conservation of probability, we argue similarly to what led to
(2.11) and (2.12), now on the basis of the modified Dirac equation (2.52).
With (2.53) taken into account, the same additional term appears on the
right hand side of both equations (2.11) and (2.12):

h̄δ

4m0c
ψ†γ0σμνFμνψ .

Subtraction of both equations leads again to the continuity equation (2.13)
with the same probability density and probability current density.
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To b) Exploiting the antisymmetry of σμν and Fμν as well as the explicit
form of Fμν ,

(Fμν) =

⎛

⎜
⎜
⎝

0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

⎞

⎟
⎟
⎠ , Fμν = gμαgνβFαβ ,

the term σμνFμν can be rewritten as

σμνFμν = 2
∑

μ<ν

σμνFμν = 2
∑

i

σ0iEi + 2(−σ12B3 + σ13B2 − σ23B1) .

Furthermore, we have in the Dirac and Weyl representation

σ0i = iαi , σij = εijkσ̂k , σ̂k =
(

σk 0
0 σk

)
,

so that

σμνFμν = 2(iαE − σ̂B) . (2.54)

As we show in the next section, the matrix σμν is connected to the bispinor
transformations of proper Lorentz transformations.

16. Quadratic form of the Dirac equation. Show that the Dirac equa-
tion (2.25) can be cast into the following representation-independent form:

[(
pμ − e

c
Aμ
)(

pμ − e

c
Aμ

)
− h̄e

2c
σμνFμν − m2

0c
2

]
ψ = 0 . (2.55)

Solution. Multiplying (2.25) from the left by

γν
(
pν − e

c
Aν

)
+ m0c

and respecting the anticommutator relation {γμ, γν} = 2gμν leads to

0 =
[
γν
(
pν − e

c
Aν

)
+ m0c

] [
γμ
(
pμ − e

c
Aμ

)
− m0c

]
ψ

=
[
γνγμ

(
pνpμ +

e2

c2
AνAμ

)
− e

c
γνγμ(Aνpμ + pνAμ) − m2

0c
2

]
ψ

=
[
1
2
{γν , γμ}

(
pνpμ +

e2

c2
AνAμ

)

− e

2c
(γνγμ − γμγν + {γν , γμ})(Aνpμ + pνAμ) − m2

0c
2
]
ψ

=
[
pμpμ +

e2

c2
AμAμ − e

c
(Aμpμ + pμAμ)

− e

2c
(γνγμ − γμγν)(Aνpμ + pνAμ) − m2

0c
2
]
ψ

=
[(

pμ − e

c
Aμ
)(

pμ − e

c
Aμ

)
− e

2c
[γν , γμ](pνAμ) − m2

0c
2
]
ψ .
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In the last-but-one term (pνAμ) the operator pν only acts on Aμ and not on
ψ. Using pμ = ih̄∂μ and (all derivatives only act on Aμ again)

σμνFμν =
i
2
[γμ, γν ](∂μAν − ∂νAμ) = i(γμγν∂μAν − γνγμ∂μAν)

= i[γμ, γν ]∂μAν ,

we finally arrive at (2.55).
17. Lagrange density and energy-momentum tensor of the free
Dirac field. Determine the Lagrange density of the free Dirac field similarly
to Exercise 2. Subsequently, show with the help of the energy-momentum ten-
sor that the energy is

E =
∫

d3xψ†H(0)ψ , H(0) = cαp + βm0c
2 .

What is the interpretation of this result?
Solution. The Lagrange density of the free Dirac field is

L = ψ̄(ih̄cγμ∂μ − m0c
2)ψ

since the variation of the corresponding action functional I =
∫

d4xL with
respect to the components of ψ̄ and ψ leads to

∂I

∂ψ̄
= 0 =⇒ ∂L

∂ψ̄
− ∂μ

∂L
∂(∂μψ̄)

= 0 (Lagrange equation)

∂L
∂ψ̄

= (ih̄cγμ∂μ − m0c
2)ψ ,

∂L
∂(∂μψ̄)

= 0

=⇒ (ih̄cγμ∂μ − m0c
2)ψ = 0 (free Dirac equation)

and
∂I

∂ψ
= 0 =⇒ ∂L

∂ψ
− ∂μ

∂L
∂(∂μψ)

= 0 (Lagrange equation)

∂L
∂ψ

= −m0c
2ψ̄ ,

∂L
∂(∂μψ)

= ih̄cψ̄γμ

=⇒ ih̄c∂μψ̄γμ + m0c
2ψ̄ = 0 (free adjoint Dirac equation) .

The energy density T 00 follows from the energy-momentum tensor

Tμν =
∂L

∂(∂μψ)
∂νψ +

∂L
∂(∂μψ̄)

∂νψ̄ − gμνL

as

T 00 =
∂L

∂(∂0ψ)
∂0ψ +

∂L
∂(∂0ψ̄)

∂0ψ̄ − L

= ih̄cψ̄γ0∂0ψ − ψ̄(ih̄cγμ∂μ − m0c
2)ψ

= −ih̄cψ̄γi∂iψ + m0c
2ψ̄ψ

= ψ†(cαp + βm0c
2)ψ = ψ†H(0)ψ .
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Therefore, the energy is

E =
∫

d3xT 00 =
∫

d3xψ†H(0)ψ =
〈
ψ
∣
∣
∣H(0)

∣
∣
∣ψ
〉

.

Comparing this result with the corresponding result of the Klein-Gordon case
in Exercise 2, we find that in both cases the field energy coincides with the
(G-)expectation value for positive as well as for negative solutions.

In the Klein-Gordon case we saw that for the description of spin-0 an-
tiparticles we have to use negative solutions and not their charge conjugates
(definition of the G-scalar product, Subsection 1.3.1). From this we concluded
that, with respect to the G-expectation values, it is justified to consider the
original negative solutions to be antiparticle wave functions. This is supported
by the consideration of the field energy that yields positive (physical) values
for both types of solutions. In the case in hand this is no longer true: for
positive solutions we have positive (physical) values of the field energy and
the energy expectation value, whereas for negative solutions we have negative
(unphysical) ones. This implies that the negative Dirac solutions cannot be
the wave functions of spin-1/2 antiparticles. In fact, we have already found
that, for the description of antiparticles, we must insert the charge conjugates
of the negative solutions into the corresponding expectation values (definition
on page 108).

2.2 Symmetry Transformations

As in the symmetry considerations of the Klein-Gordon theory in Section 1.2,
we now turn to the symmetry properties of the Dirac equation. Here we again
resort to the differentiation between active and passive transformations. Our
task consists in explicitly constructing the bispinor transformations D(Λ)
belonging to the homogeneous (i.e. proper and improper) Lorentz transfor-
mations Λ, thus completing the proof of the covariance of the Dirac equation
under the full Poincaré group.8 The basic prerequisites to be fulfilled are pre-
sented already in Subsection 2.1.2. Moreover, in connection with spatial rota-
tions, we provide a transformation theoretical argument for Dirac’s spin oper-
ator introduced in Subsection 2.1.4. Finally, we also consider non-Lorentz-like
symmetry operations from which the important Feynman-Stückelberg inter-
pretation is derived once again.

2.2.1 Proper Lorentz Transformations

Proper Lorentz transformations (with Λ0
0 > 0, det Λ = +1) are distinguished

by the fact that they can be composed of a series of infinitesimal transfor-
mations; that is why they are also called continuous. We therefore initially
8 In addition to the homogeneous Lorentz transformations, the Poincaré group also

contains space-time translations for which the proof can be carried out easily.
See footnote 2 on page 94.
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consider an infinitesimal proper Lorentz transformation for which we can
generally assume the form

Λμ
ν = gμ

ν + Δωμ
ν , Δμν = −Δνμ . (2.56)

The last relation follows from (A.2) in the appendix as, up to linear order of
Δω, we have

Λμ
αgμνΛν

β = gαβ

⇐⇒ (gμ
α + Δωμ

α)gμν(gν
β + Δων

β) = gαβ

⇐⇒ gμ
αgμνgν

β + Δωμ
αgμνgν

β + gμ
αgμνΔων

β = gαβ

⇐⇒ gαβ + Δωμ
αgμβ + gανΔων

β = gαβ

⇐⇒ gβμΔωμ
α + gανΔων

β = 0

⇐⇒ Δωβα = −Δωαβ .

Since with Λ the corresponding bispinor transformation D(Λ) will also devi-
ate only infinitesimally from the unity transformation, we make the following
ansatz:

D = 1 − i
4
σμνΔωμν , D−1 = 1 +

i
4
σμνΔωμν , σμν = −σνμ . (2.57)

If we now insert (2.56) and (2.57) into the conditional equation (2.26) from
Theorem 2.2 which is valid for Lorentz-like bispinor transformations, we ob-
tain to linear order of Δω

Δωμ
νγν = − i

4
Δωαβ [γμ, σαβ ] .

From this and taking into account the antisymmetry of Δωμ
ν ,

Δωμ
ν =

1
2
Δωαβ(gμ

αgνβ − gμ
βgνα) ,

it follows that

2i(gμ
αγβ − gμ

βγα) = [γμ, σαβ ] . (2.58)

Thus, the construction of bispinor transformations for proper Lorentz trans-
formations is reduced to finding an antisymmetric matrix σαβ that obeys
(2.58). We can easily see that this matrix is given by (compare to Exercises
15 and 16)

σαβ =
i
2
[γα, γβ ]

since, due to (2.18), we have
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i
2
[γμ, [γα, γβ ]] =

i
2

([γμ, γαγβ ] − [γμ, γβ , γα])

=
i
2

([γμ, γαγβ ] − 2[γμ, gαβ ] + [γμ, γα, γβ ])

= i[γμ, γαγβ ]
= i
(
γμγαγβ − 2gμ

βγα + γαγμγβ

)

= i
(
γμγαγβ − 2gμ

βγα + 2gμ
αγβ − γμγαγβ

)

= 2i
(
gμ

αγβ − gμ
βγα

)
.

We are now in a position to construct finite bispinor transformations by a
repeated application of infinitesimal transformations via

D(Λ) = lim
N→∞

(
1 − i

4
σμνΔωμν

)N

= exp
(
− i

4
σμνΔμν

)
.

To do this, it is advantageous to rewrite the infinitesimal quantity Δωμ
ν as

Δωμ
ν = Δω(In)μ

ν , lim
N→∞

NΔω = ω ,

where Δω denotes the infinitesimal “rotation angle” around an axis in n-
direction, ω the corresponding finite rotation angle, and In the 4×4-coefficient
matrix (in space and time) of the “unity Lorentz rotation” around this axis.

Theorem 2.6: Bispinor transformations
for proper Lorentz transformations

To the proper Lorentz transformation

Λ : xμ −→ x′μ = Λμ
νxν

around the rotation axis n with the rotation angle ω there belongs the
passive bispinor transformation

D(Λ) : ψ(x) −→ ψ′(x′) = D(Λ)ψ(x) ,

with

D(Λ) = exp
(
− i

4
ωσμν(In)μν

)
, σμν =

i
2
[γμ, γν ] ,

where In denotes the unity Lorentz rotation around the axis n.

This theorem completes the proof for the form invariance of the Dirac equa-
tion under proper Lorentz transformations. The proof for improper Lorentz
transformations as well as for non-Lorentz-like transformations will be carried
out in Subsection 2.2.3.

Lorentz boosts. As a first concrete application of Theorem 2.6, we calculate
the bispinor transformation for a Lorentz boost describing the transition to an
inertial system moving with velocity v relative to the original reference frame.
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To do this, we initially determine the corresponding infinitesimal Lorentz
boosts along the three spatial axes,

(Λ(1)μ
ν) =

⎛

⎜
⎜
⎝

cosh Δω1 sinhΔω1 0 0
sinh Δω1 cosh Δω1 0 0

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠

Δω1�1= (gμ
ν) + Δω1

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

(Λ(2)μ
ν) =

⎛

⎜
⎜
⎝

cosh Δω2 0 sinhΔω2 0
0 1 0 0

sinh Δω2 0 cosh Δω2 0
0 0 0 1

⎞

⎟
⎟
⎠

Δω2�1= (gμ
ν) + Δω2

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

(Λ(3)μ
ν) =

⎛

⎜
⎜
⎝

cosh Δω3 0 0 sinh Δω3

0 1 0 0
0 0 1 0

sinh Δω3 0 0 cosh Δω3

⎞

⎟
⎟
⎠

Δω3�1= (gμ
ν) + Δω3

⎛

⎜
⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞

⎟
⎟
⎠ ,

to construct the infinitesimal Lorentz boost in the direction of v = v

⎛

⎝
cos θ1

cos θ2

cos θ3

⎞

⎠:

Λμ
ν

Δω�1= gμ
ν + ΔωIμ

ν , (Iμ
ν) =

⎛

⎜
⎜
⎝

0 cos θ1 cos θ2 cos θ3

cos θ1 0 0 0
cos θ2 0 0 0
cos θ3 0 0 0

⎞

⎟
⎟
⎠ .

For the bispinor transformation belonging to the finite Lorentz boost, we
have according to Theorem 2.6

σμνIμν = σμνgνρIμ
ρ = −2

∑

i

σ0i cos θi = 2i
αv

v

=⇒ D(Λv) = exp
(ω

2
αv

v

)
.

With the help of the representation-independent relations
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(αv) = v2n , (αv)2n+1 = v2nαv ,

the exponential term can be carried out as follows:

exp
( ω

2v
αv
)

=
∞∑

n=0

1
n!

( ω

2v

)n

(αv)n

=
∞∑

n=0

1
(2n)!

( ω

2v

)2n

(αv)2n

+
∞∑

n=0

1
(2n + 1)!

( ω

2v

)2n+1

(αv)2n+1

=
∞∑

n=0

1
(2n)!

(ω

2

)2n

+
αv

v

∞∑

n=0

1
(2n + 1)!

(ω

2

)2n+1

= cosh
(ω

2

)
+

αv

v
sinh

(ω

2

)
.

Taking into account

cosh ω =
1

√
1 − β2

, β =
v

c

as well as

cosh
(ω

2

)
=

√
1
2
(cosh ω + 1) , sinh

(ω

2

)
= −

√
cosh2

(ω

2

)
− 1 ,

we finally obtain the result

D(Λv) =

√√
√
√1

2

(
1

√
1 − β2

+ 1

)

− αv

v

√√
√
√1

2

(
1

√
1 − β2

− 1

)

. (2.59)

If the original reference frame is equal to the rest system of the particle, the
particle possesses the momentum p ∼ −v in the Lorentz transformed system.
In this case, using

√
1 − β2 = m0c/p0, p0 > 0, we can rewrite (2.59) as9

D(p) =
p0 + m0c + αp
√

2m0c(p0 + m0c)
. (2.60)

In return, D(−p) transforms to the rest system of a particle with momentum
p in the original system.

Spatial rotations. Next we consider the spatial Lorentz rotation around a
unit axis u, |u| = 1 by the rotation angle ϕ and calculate the corresponding
bispinor transformation. We can proceed, as in the boost case, by calculating
the mathematically positive infinitesimal rotations around the three Carte-
sian axes which, in total, lead to the infinitesimal rotation

9 Be aware of the notational difference in (2.59) and (2.60): D(Λv ) and D(p)
transform the original reference frame in opposite directions.
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Λμ
ν

Δϕ�1
= gμ

ν + ΔϕIμ
ν , (Iμ

ν) =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 u3 −u2

0 −u3 0 u1

0 u2 −u1 0

⎞

⎟
⎟
⎠ . (2.61)

For the bispinor transformation belonging to the finite Lorentz rotation there
follows in the Dirac and Weyl representations (but not in every representa-
tion!)

σμνIμν = σμνIμ
ρg

ρν = −2(σ12u3 + σ31u2 + σ23u1)

= −2uσ̂ , σ̂ =
(

σ 0
0 σ

)

=⇒ D(Λϕ) = exp
(

i
2
ϕuσ̂

)
. (2.62)

With the help of

(uσ̂)2n = 1 , (uσ̂)2n+1 = uσ̂ ,

we can carry out the exponential term in (2.62) in a similar way as in the
boost case. This results in

exp
(

i
2
ϕuσ̂

)
=

∞∑

n=0

in

n!

(ϕ

2

)n

(uσ̂)n

=
∞∑

n=0

i2n

(2n)!

(ϕ

2

)2n

+ uσ̂
∞∑

n=0

i2n+1

(2n + 1)!

(ϕ

2

)2n+1

=
∞∑

n=0

(−1)n

(2n)!

(ϕ

2

)2n

+ iuσ̂

∞∑

n=0

(−1)n

(2n + 1)!

(ϕ

2

)2n+1

=⇒ D(Λϕ) = cos
(ϕ

2

)
+ iuσ̂ sin

(ϕ

2

)
.

Note that, after a rotation by 2π, the original state is not reached. Instead,
we have

D(Λ2nπ) = (−1)n ,

which is a general characteristic of half-integer spins. Therefore, physically
observable quantities must always be bilinear in the fields ψ(x) or must con-
tain an even power of them. Only then, physical observations return to their
original states at spatial rotations by 2π, in accordance with our experience.

2.2.2 Spin of Dirac Solutions

On the basis of (2.62) and the general relationship between passive and active
transformations, we can now give a transformation theoretical argument for
the spin operator (2.31) introduced in Subsection 2.1.4 and thus for the fact
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that Dirac solutions describe spin-1/2 particles. First we note that each active
rotation of a physical system around a unit axis u by the angle −Δϕ can be
expressed, with the help of the total angular momentum J = L + S, as

ψ′(x) = exp
(

iΔϕuJ

h̄

)
ψ(x)

Δϕ�1
=

(
1 +

iΔϕuJ

h̄

)
ψ(x) (2.63)

or, equally, that L, S, and J are defined by this relation. On the other hand,
we know that each active rotation can also be derived from the corresponding
passive transformation of the reference system in the opposite direction [see
(1.30) and (1.31) in Subsection 1.2.1]:

passive rotation
around u by +Δϕ

}
: ψ′(x′) = D(ΛΔϕ)ψ(x)

�
Active rotation
around u by −Δϕ

}
: ψ′(x) = D(ΛΔϕ)ψ(Λ−1

Δϕx) = D(ΛΔϕ)ψ(Λ−Δϕx) .

Restricting ourselves to infinitesimal rotation angles, we can rewrite the last
relation with the help of (2.61) and (2.62) as

ψ′(x)
Δϕ�1

=
(

1 +
iΔϕuσ̂

2

)
ψ[x0, x1 + Δϕ(−u3x

2 + u2x
3),

x2 + Δϕ(u3x
1 − u1x

3),
x3 + Δϕ(−u2x

1 + u1x
2)]

=
(

1 +
iΔϕuσ̂

2

){
ψ(x) + Δϕ

[
∂ψ

∂x1
(−u3x

2 + u2x
3)

+
∂ψ

∂x2
(u3x

1 − u1x
3)

+
∂ψ

∂x3
(−u2x

1 + u1x
2)
]}

=
(

1 +
iΔϕuσ̂

2

)(
1 +

iΔϕuL

h̄

)
ψ(x)

=
[
1 +

iΔϕu

h̄

(
L +

h̄σ̂

2

)]
ψ(x) .

Comparison with (2.63) finally leads to the already known expression for the
Dirac spin operator:

S =
h̄

2
σ̂ .

2.2.3 Discrete Transformations

We now come to the case of improper Lorentz transformations (with detΛ =
−1) as well as to other non-Lorentz-like transformations that cannot be con-
structed by repeated application of infinitesimal operations wherefore they
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are called discrete. Here we proceed similarly to the Klein-Gordon case (Sub-
section 1.2.3). The corresponding physical implications have already been
discussed there and can be completely carried over.
Parity transformation P . The improper orthochronous Lorentz-like par-
ity transformation or space reflection is defined by

(Λν
μ) =

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠ = gμν , det(Λ) = −1 , Λ0

0 > 0 .

In order to show that Dirac’s equation is form invariant under this opera-
tion, we need to find a bispinor transformation D(Λ) obeying the conditional
equation (2.26) for Lorentz-like bispinor transformations. Introducing the no-
tation P for D(Λ), this means

P−1γμP = Λμ
νγν = gμμγμ (no summation over μ) . (2.64)

Furthermore and as in spatial rotations by 4π, we demand that four space
reflections transform a bispinor back into itself, i.e.

P 4 = 1 . (2.65)

As can be seen easily, this is achieved by the representation-independent
choice P = λP γ0 with λ4

P = 1. In the passive case we then have

x −→ x′ = −x , t −→ t′ = t

ψ(x, t) −→ ψP (x′, t′) = Pψ(x, t) , P = λP γ0 , λ4
P = 1

A0(x, t) −→ A0
P (x′, t′) = A0(x, t)

A(x, t) −→ AP (x′, t′) = −A(x, t)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

passive
space

reflection P

and in the active case
ψ(x, t) −→ ψP (x, t) = Pψ(−x, t)

A0(x, t) −→ A0
P (x, t) = A0(−x, t)

A(x, t) −→ AP (x, t) = −A(−x, t)

⎫
⎪⎪⎬

⎪⎪⎭

active space
reflection P . (2.66)

Applying the active space reflection to a free plane Dirac solution yields (see
Exercise 20)

⎧
⎪⎨

⎪⎩

ψε,p,n(x)

p =
(

p0

p

)
, n =

(
n0

n

)

⎫
⎪⎬

⎪⎭
−→

⎧
⎪⎨

⎪⎩

ψε,p′,n′(x)

p′ =
(

p0

−p

)
, n =

(
−n0

n

)

⎫
⎪⎬

⎪⎭
. (2.67)

Hence, a free solution with opposite spatial momentum index is created,
whereas the spatial spin index is unchanged. Since ε is unchanged, too, this
relationship can be carried over to the particle level: the space reflection
reverses the momentum of a spin-1/2 particle and leaves its spin orientation
unchanged.
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Time reversal transformation T . The time reversal or, rather, motion
reversal transformation is a non-Lorentz-like symmetry operation which, from
the passive point of view, is defined by

x −→ x′ = x , t −→ t′ = −t

A0(x, t) −→ A0
T (x′, t′) = A0(x, t)

A(x, t) −→ AT (x′, t′) = −A(x, t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

passive time
reversal T

(2.68)

so that

ih̄∂0 −→ ih̄∂′0 = −ih̄∂0 , ih̄∂i −→ ih̄∂′i = ih̄∂i .

Due to the non-Lorentz-like character of this operation, it is clear that we
cannot make use of the relation (2.26) in order to construct the corresponding
bispinor transformation. We therefore start with the Dirac equation in the
transformed (primed) system,

[
γμ
(
ih̄∂′

μ − e

c
AT,μ(x′)

)
− m0c

]
ψ′(x′) = 0 , (2.69)

make the (antilinear and reciprocal) ansatz

ψ′(x′) = Tψ∗(x) , T 2 = 1 , T linear ,

and express (2.69) by the original (unprimed) quantities:
[
γ0
(
−ih̄∂0 −

e

c
A0(x)

)
+ γi

(
ih̄∂i +

e

c
Ai(x)

)
− m0c

]
Tψ∗(x) = 0 .(2.70)

If we now require that

T−1γμT = gμμγμ∗ (no summation over μ) , (2.71)

then multiplying (2.70) from the left by T−1 and subsequently taking the
complex conjugate leads to the equation

[
γ0
(
ih̄∂0 −

e

c
A0(x)

)
+ γi

(
ih̄∂i −

e

c
Ai(x)

)
− m0c

]
ψ(x) = 0

in the original system. This is formally identical to (2.69). The solution to
(2.71) is not hard to find and is given by T = iλT γ1γ3 in the Dirac or Weyl
representation. To complete (2.68), we can therefore write:

ψ(x, t) −→ ψT (x′, t′) = Tψ∗(x, t) ,
T = iλT γ1γ3

|λT | = 1

}
passive time
reversal T .

Accordingly, for the active time reversal, we have

ψ(x, t) −→ ψT (x, t) = Tψ∗(x,−t)

A0(x, t) −→ A0
T (x, t) = A0(x,−t)

A(x, t) −→ AT (x, t) = −A(x,−t)

⎫
⎪⎪⎬

⎪⎪⎭

active time
reversal T . (2.72)
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Applied to a free plane Dirac solution, the active time reversal yields (see
Exercise 20)

⎧
⎪⎨

⎪⎩

ψε,p,n(x)

p =
(

p0

p

)
, n =

(
n0

n

)

⎫
⎪⎬

⎪⎭
−→

⎧
⎪⎨

⎪⎩

ψε,p′,n′(x)

p′ =
(

p0

−p

)
, n =

(
n0

−n

)

⎫
⎪⎬

⎪⎭
. (2.73)

On the level of wave functions the spatial momentum and spin indices are
reversed. On the particle level this implies, due to the unchanged ε, that the
time reversal reverses the momentum and spin of a spin-1/2 particle.

PCT -transformation (no symmetry transformation). Instead of the
charge conjugation C from Subsection 2.1.6, we can, as in the Klein-Gordon
case, apply a combination of the three transformations C, P , and T to nega-
tive Dirac solutions ψ(−) in order to generate wave functions for antiparticles.
Taking into account Theorem 2.5 as well as (2.66) and (2.72), this yields for
the active case in the Dirac or Weyl representation (possible phases ignored)

ψ(−)(x) −→ ψ
(−)
PCT (x) = iγ5ψ(−)(−x) .

This, in turn, leads again to the Feynman-Stückelberg interpretation to which
we will refer particularly at the description of scattering processes in Chapter
3 (compare to Theorem 1.5).

Theorem 2.7: Feynman-Stückelberg interpretation
in the Dirac theory

Due to the PCT -transformation, the wave function of a physical spin-1/2
antiparticle of charge −e can be interpreted as a negative Dirac solution of
charge +e moving backward in space and time.

As in the Klein-Gordon case, this interpretation can be verified by applying
the PCT -transformation to the eigenvalue equation of a negative Dirac state
with charge +e and then observing that the resulting equation corresponds to
the eigenvalue equation for a positive Dirac state of charge −e with opposite
direction of motion in space and time.

Extended charge conjugation C. We can again extend the mathematical
equivalence operation C to a symmetry operation by also transforming the
electromagnetic fields in an appropriate way:

ψ(x, t) −→ ψC(x, t) = iλCγ2ψ∗(x, t) , |λC | = 1

A0(x, t) −→ A0
C(x, t) = −A0(x, t)

A(x, t) −→ AC(x, t) = −A(x, t)

⎫
⎪⎪⎬

⎪⎪⎭

active charge
conjugation C. (2.74)

On the level of wave functions the action of this extended charge conjugation
is, for example, that the Dirac equation for a positive solution ψ(+) with
charge +e within the potential +Aμ,
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[
γμ
(
ih̄∂μ − e

c
Aμ(x)

)
− m0c

]
ψ(−)(x) = 0 ,

is transformed into the Dirac equation for a negative solution ψ
(+)
C = iγ2ψ(+)∗

with the same charge +e within the potential Aμ
C = −Aμ, i.e.

[
γμ
(
ih̄∂μ +

e

c
Aμ(x)

)
− m0c

]
ψ

(+)
C (x) = 0 .

However, due to the original C-transformation, the last equation can be in-
terpreted as the Dirac equation for a positive solution ψ

(+)
CC with charge −e

within the potential −Aμ possessing the same quantum numbers as the orig-
inal solution ψ(+).

On the particle level this can be interpreted analogously to the Klein-
Gordon case as follows: the charge conjugation C turns a fermion into an
antifermion with an opposite charge but in all other respects identical quan-
tum numbers. In other words, a fermion of charge +e within the potential
+Aμ behaves exactly as the corresponding antifermion of charge −e within
the potential −Aμ, in accordance with our expectations.
Further symmetry considerations. Having discussed the most important
symmetry properties of the Dirac theory, which are in principle the same as
those of the Klein-Gordon theory, we supplement the final statements of Sec-
tion 1.2 with the following remarks: generally, the theoretical and experimen-
tal investigation of symmetry principles is a very important instrument for
finding or verifying theoretical descriptions of microscopic physical proces-
ses. For example, we know that all three discrete symmetries C, P , and T are
conserved within electromagnetic interactions, such as the electron-electron
scattering, so that the Dirac-Hamilton operator can only contain terms that
do not disturb these symmetries. This is ensured by the minimal coupling
(for the description of elementary particles) and by certain additional terms
(for the description of nonelementary particles with anomalous magnetic mo-
ment, see Exercise 15), which give additional support for the correctness of
the Dirac theory.

As another example, let us consider the weak process of β-decay (neutron
decay),

ν + n → p + e ,

where n, p, e, and ν stand for neutron, proton, electron, and neutrino, re-
spectively. Here one initially assumed that the Lorentz-invariant amplitude
of this process can be expressed by the product of two weak vector currents
as

M ∼ Gj
(weak),μ
(p,n) · j(weak)

(e,ν),μ (G=Fermi constant)

j
(weak),μ
(p,n) = ψ̄pγ

μψn , j
(weak),μ
(e,ν) = ψ̄eγ

μψν

⎫
⎬

⎭
, (2.75)

in complete analogy to the electromagnetic process of electron-proton scat-
tering which is described to first order perturbation theory by the Lorentz-
invariant amplitude



132 2. Relativistic Description of Spin-1/2 Particles

M ∼ e2

q2
j
(em),μ
(p,p) · j(em)

(e,e),μ

(
q=four-momentum transfer of the

virtual one-photon exchange

)
,

with the electromagnetic vector currents

j
(em),μ
(p,p) = ψ̄pγ

μψp , j
(em),μ
(e,e) = ψ̄eγ

μψe

(see Subsection 3.3.2).10 However, the choice of the vector operator γμ within
the weak currents is very special, and there is a priori no reason for not taking
another γ-matrix combination discussed in Subsection 2.1.3 in order to build
covariant bilinear forms (currents). It is true that the amplitude in (2.75) is
capable of describing some properties of the β-decays, but not others. There-
fore, a vast number of β-decay experiments have been carried out in order
to find the correct form of the weak interaction amplitude. This culminated
in Lee and Yang in 1956 proposing certain experiments which revealed that
the parity is not preserved within weak interaction processes. This implies,
among other things, that only left-handed neutrinos (with negative helicity)
and right-handed antineutrinos (with positive helicity) appear, but no right-
handed neutrinos or left-handed antineutrinos. From this it follows that the
C-invariance must be violated, too, since the C-transformation turns a left-
handed neutrino into a left-handed antineutrino which is never observed.
From all this can be concluded that vector and pseudo-vector interactions
are present (but no scalar, pseudo-scalar or tensor interactions) that must
appear in a certain combination to produce a mixture with no well-defined
parity. Eventually, the amplitude

M ∼ G[ψ̄pγ
μ(1 − λγ5)ψn][ψ̄eγμ(1 + γ5)ψν ] , λ ≈ −1.25

proved to be the correct choice for the above β-decay where λ denotes the
mixing ratio of the vector-pseudo-vector coupling (also called vector-axial
vector coupling) in the hadronic current. This example demonstrates, once
again, how helpful symmetry considerations are for finding the correct math-
ematical description of physical processes.

Summary

• The proof of the Lorentz covariance of the Dirac theory is completed
by the explicit construction of bispinor transformations to given Lorentz
transformations.

• The Dirac theory is covariant under the full Poincaré group. Discrete
symmetry transformations of the theory are the improper Lorentz trans-
formation of space reflection P as well as the non-Lorentz-like trans-

�

10 Here the proton and the neutron are considered approximately to be structureless
(point-like).
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formations of time reversal T and the extended charge conjugation
C.

• Exploiting the relationship between passive and active transformations
and the definition of the total angular momentum via active rotations,
one obtains a transformation theoretical argument for the fact that Dirac
solutions describe spin-1/2 particles.

• The wave function of a spin-1/2 antiparticle of charge −e can be seen
as a negative Dirac solution of charge +e moving backward in space and
time (Feynman-Stückelberg interpretation).

Exercises

18. Completeness and orthogonality relations of free bispinors. Ver-
ify the completeness and orthogonality relations (2.15) and (2.16) with the
help of the bispinor transformation (2.60) for Lorentz boosts.

Solution. For the proof of (2.15), we turn to the rest system and exploit
D†(p) = D(p):

ω(r)†(εrp)ω(r′)(εr′p) = ω(r)†(0)D†(εrp)D(εr′p)ωr′
(0)

= ω(r)†(0)D(εrp)D(εr′p)ωr′
(0)

= ω(r)†(0)
(p0 + m0c)2 + εrεr′p2

2m0c(p0 + m0c)
ω(r′)(0)

+ω(r)†(0)
(p0 + m0c)(εr + εr′)αp

2m0c(p0 + m0c)
ω(r′)(0) .

Since ω(r)†(0)αpω(r′)(0) is nonzero only for εr �= εr′ , the second term does
not contribute. Therefore, we find

ω(r)†(εrp)ω(r′)(εr′p) =
(p0 + m0c)2 + p2

2m0c(p0 + m0c)
δrr′ =

p0

m0c
δrr′ .

It is sufficient to prove the first equation of (2.16) in the rest system as the
left hand side is a Lorentz scalar.

The second equation can also be easily verified by transforming it to the
rest system where it is certainly true:

∑

r

εrω
(r)
α (p)ω̄(r)

β (p) =
∑

r,α′,β′

εrDαα′(p)ω(r)
α′ (0)ω̄(r)

β′ (0)D−1
β′β(p)

=
∑

αα′

δα′β′Dαα′(p)D−1
β′β(p) = δαβ .

For the third relation there follows similarly
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∑

r

ω(r)
α (εrp)ω(r)†

β (εrp) =
∑

r,α′,β′

Dαα′(εrp)ω(r)
α′ (0)ω(r)†

β′ (0)D†
β′β(εrp)

=
∑

r,α′,β′

δα′β′δα′rDα,α′(εrp)D†
β′β(εrp)

=
∑

r

Dαr(εrp)Drβ(εrp)

=
p0

m0c

∑

r

U†
αrUrβ =

p0

m0c
δαβ ,

with

U =
p0 + m0c + βαp
√

2p0(p0 + m0c)
, U† = U−1 =

p0 + m0c − βαp
√

2p0(p0 + m0c)
.

19. Nonunitarity of bispinor transformations (II). Show the validity
of (2.23) for proper Lorentz transformations, i.e.

D†(Λ) = γ0D−1(Λ)γ0 ,

by using the explicit form of D(Λ).

Solution. The most simple solution consists in starting from the infinitesi-
mal representation of D(Λ):

D = 1 − i
4
σμμΔωμν , σμν =

i
2
[γμ, γν ] .

Then, with

σμν† = γ0σμνγ0 ,

the corresponding adjoint transformation immediately follows as

D† = 1 +
i
4
σ†

μνΔωμν = 1 +
i
4
γ0σμνγ0Δωμν = γ0

(
1 +

i
4
σμνΔωμν

)
γ0

= γ0D−1γ0 .

20. Free Dirac states under space reflection and time reversal. Verify
the relations (2.67) and (2.73).

Solution. For a plane free Dirac wave function with energy sign ε, four-
momentum index p, and four-polarization index n,

ψε,p,n(x) =
(

εγμpμ + m0c

2m0c

)(
1 + γ5γμnμ

2

)
ψε,p,n(x) ,

and with (2.64) as well as {P, γ5} = 0, we have

[ψε,p,n]P (x, t) = P

(
εγμpμ + m0c

2m0c

)
P−1P

(
1 + γ5γμnμ

2

)
P−1

×Pψε,p,n(−x, t)
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=
(

εgμμγμpμ + m0c

2m0c

)(
1 − γ5gμμγμnμ

2

)
Pψε,p,n(−x, t)

=
(

εγμp′μ + m0c

2m0c

)(
1 + γ5γμn′

μ

2

)

[ψε,p,n]P (x, t) ,

where

p′μ = gμμpμ , n′μ = −gμμnμ .

On the other hand, using (2.71) and [T, γ5] = 0, it follows that

[ψε,p,n]T (x, t) = T

(
εγ∗μpμ + m0c

2m0c

)
T−1T

(
1 + γ5γ∗μnμ

2

)
T−1

×Tψ∗
ε,p,n(x,−t)

=
(

εgμμγμpμ + m0c

2m0c

)(
1 + γ5gμμγμnμ

2

)
Tψ∗

ε,p,n(x,−t)

=
(

εγμp′μ + m0c

2m0c

)(
1 + γ5γμn′

μ

2

)

[ψε,p,n]T (x, t) ,

with

p′μ = gμμpμ , n′μ = gμμnμ .

21. Expectation values of time-reversed Dirac states. Show the fol-
lowing relations between time-reversed Dirac states:

jμ
T (x′) = jμ(x) , 〈x〉T = 〈x〉 , 〈p〉T = −〈p〉 .

Solution. First we note that, due to the properties of the γ-matrices, we
have in the Dirac and Weyl representations

T = iγ1γ3 = T † = T−1 , ψT (t′) = Tψ∗(t) , ψ†
T (t′) = ψT (t)T−1 ,

where the spatial argument is suppressed. From this and [T, γ0] = 0 as well
as T−1γμT = γ∗

μ, the current density follows as

jμ
T (t′) = ψ̄T (t′)γμψT (t′) = ψT (t)T−1γ0γμTψ∗(t)

= ψT (t)γ0T−1γμTψ∗(t) = ψT (t)γ0γ∗
μψ∗(t)

= ψα(t)[γ0γ∗
μ]αβψ∗

β(t) = ψ∗
β(t)[γ0γ∗

μ]Tβαψα(t) = ψ∗(t)γ†
μγ0ψ(t)

= ψ∗(t)γ0γμγ0γ0ψ(t) = ψ̄(t)γμψ(t) = jμ(t) .

For the position expectation value we obtain ([T,x] = 0)

〈x〉T =
∫

d3xψ†
T (t′)xψT (t′) =

∫
d3xψT (t)T−1xTψ∗(t)

=
∫

d3xψT (t)xψ∗(t)
︸ ︷︷ ︸

real

=
∫

d3xψ†xψ(t) = 〈x〉
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and for the momentum expectation value ([T,p] = 0)

〈p〉T =
∫

d3xψT (t)T−1pTψ∗(t) =
∫

d3xψT (t)pψ∗(t)

= −ih̄
∫

d3x[∇ψ†(t)]ψ(t)

= −ih̄
∫

d3x∇[ψ†(t)ψ(t)] + ih̄
∫

d3xψ†(t)∇ψ(t)

= −ih̄
∫

∂V

dFψ†(t)ψ(t)

︸ ︷︷ ︸
0

−
∫

d3xψ†(t)pψ(t) = −〈p〉 .

22. Lorentz behavior of the PCT -symmetry transformation (II).
Similarly to Exercise 3, show the Lorentz-like behavior of the PCT -transformation
in the Dirac case by considering the improper and nonorthochronous Lorentz
transformation of the Racah time reflection.

Solution. To determine the bispinor transformation belonging to the Racah
time reflection, we can use the relation (2.26), i.e.

R−1γμR = Λμ
νγν , (Λμ

ν) =

⎛

⎜
⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ .

As can easily be proven, its solution is

R = γ1γ2γ3 =⇒ R−1 = −γ3γ2γ1 = −γ0R†γ0 .

For the passive and active transformation laws of the Racah time reflection
we therefore obtain

x −→ x′ = x , t −→ t′ = −t

ψ(x, t) −→ ψR(x′, t′) = Rψ(x, t) ,
R = λRγ1γ2γ3

λR = ±1
A0(x, t) −→ A0

R(x′, t′) = −A0(x, t)

A(x, t) −→ AR(x′, t′) = A(x, t)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

passive time
reflection R

and

ψ(x, t) −→ ψR(x, t) = Rψ(x,−t)

A0(x, t) −→ A0
R(x, t) = −A0(x,−t)

A(x, t) −→ ARx, t) = A(x,−t)

⎫
⎪⎪⎬

⎪⎪⎭

active time
reflection R.

As in Exercise 3, a comparison of the last relations with the active transfor-
mation laws of the time reversal T and the charge conjugation C, i.e. (2.72)
and (2.74), shows that the Racah time reflection is identical to the combina-
tion of C and T :
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CT = R =⇒ PCT = PR .

This in turn means that the PCT -transformation is Lorentz-like.
Note that the adjoint bispinor ψ̄ transforms under the Racah time reflec-

tion as

ψ̄ −→ ψ̄R = ψ†R†γ0 = −ψ†γ0R−1γ0γ0 = −ψ̄R−1

in accordance with our general result (2.24) for nonorthochronous Lorentz
transformations (b = −1). Therefore, the current density transforms as a
pseudo-vector:

jμ
R = ψ̄RγμψR = −Λμ

νψ̄γνψ .

However, since Aμ transforms as a four-vector, the field equation for the radi-
ation field, ∂ν∂νAμ = 4πejμ, is not invariant under the Racah time reflection
(see Subsection 3.3.2).

2.3 One-Particle Interpretation of the Dirac Theory

As in the Klein-Gordon case in Section 1.3, we now turn back to the one-
particle interpretation of the Dirac theory and deal with the clarification of
the still open questions from Subsection 2.1.6, namely

[1] what prerequisites are required for the complete decoupling of the Dirac
theory into two one-particle theories and

[2] how can physically sensible one-particle operators be constructed, i.e. op-
erators that do not mix positive and negative solutions.

To this end, we first address the second point and then the first one. At the
end we discuss the Klein paradox in order to highlight some contradictions
– in principle the same as in the Klein-Gordon case – arising outside the
validity range of the one-particle concept.

2.3.1 One-Particle Operators and Feshbach-Villars Representation

Based on our considerations in Subsection 1.3.2, we may assume that in the
Dirac case, too, not every relativistic operator is physically sensible in relation
to the one-particle picture. To see this, we go back to the Ehrenfest theorem
(1.42), now, of course, without the index G:

∂O
∂t

= 0 =⇒ d 〈O〉
dt

=
1
ih̄

〈[O,H]〉 . (2.76)

In the free case [H = H(0) from (2.8)] this leads to the “velocity operator”

〈v〉 =
〈dx〉
dt

=
1
ih̄

〈
[x,H(0)]

〉
= 〈cα〉 =⇒ v = cα .
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Obviously, this operator has no formal similarity with the corresponding clas-
sical relation v = cp/p0 as one would expect from the correspondence prin-
ciple. Furthermore, we have [α,H(0)] �= 0 so that, for free particles, v is
not constant. Finally, due to [αi, αj 	=i] �= 0, the components vi cannot be
simultaneously measured, which seems to be unphysical, too.

The reason for these unsatisfactory findings is related, as in the Klein-
Gordon case, to the fact that α turns positive Dirac solutions into negative
ones and vice versa, i.e. that α is an odd operator.11 However, it is clear
that, with respect to the one-particle concept, only even operators can be
accepted, i.e. one-particle operators that do not mix positive and negative
states. From a relativistic operator

O = [O] + {O} , [O] = even , {O} = odd

we therefore have to isolate its even part [O].

Feshbach-Villars representation. For the explicit construction of one-
particle operators, we can completely resort to the corresponding discussion in
Subsection 1.3.2. This means that we first diagonalize the Hamilton operator
in the α-matrix space to move to a representation where [O] is the diagonal
part of O. As in the Klein-Gordon case, it also holds here that an exact
diagonalization is possible only for the free case. As before, the corresponding
representation is called Feshbach-Villars representation. To get to it we need
an appropriate transformation that can be obtained by the following line
of argument: in the Schrödinger momentum representation the eigenbasis of
the free Dirac-Hamilton operator is {ω(r)(εrp)} (see Theorem 2.1) with the
energy eigenvalues εrcp0. They compose an orthogonal system due to (2.15).
The inverse of the unitary transformation U mediating between the lastly
mentioned and the canonical basis is therefore given by

U−1 =
√

m0c

p0

[
ω(1)(p), ω(2)(p), ω(3)(−p), ω(4)(−p)

]

=
p0 + m0c − βαp
√

2p0(p0 + m0c)
.

From this follows that

U = U−1† =
p0 + m0c + βαp
√

2p0(p0 + m0c)
.

With the help of U , we can now perform the transition from the Schrödinger
momentum representation to the corresponding Feshbach-Villars representa-
tion to find

11 An even operator O is defined by the relation Oψ(±) = ψ′(±), where ψ(±) and
ψ′(±) denote arbitrary positive (+) and negative (−) Dirac solutions respectively.

The operator O is called odd, if Oψ(±) = ψ′(∓).
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ω̃(1) = Uω(1)(p) =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ , ω̃(2) = Uω(2)(p) =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠

ω̃(3) = Uω(3)(−p) =

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ , ω̃(4) = Uω(4)(−p) =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠

and (see Exercise 23)

H̃(0) = UH(0)U−1 = cp0β , H̃(0)ω̃(r) = εrcp0ω̃
(r) (2.77)

as well as

p̃ = UpU−1 = UU−1p = p .

As in the Klein-Gordon case, the operators H(0) and p are even: H(0) =
[H(0)], p = [p].

One-particle operators for position and velocity. We now determine
the one-particle position operator [x] and the one-particle velocity operator
[v] using the well-known transformation and separation scheme

coordinate repres. → momentum repres. → FV-momentum repres. →
→ isolation of the diag. part → momentum repres. → coordinate repres..

The corresponding detailed calculations are presented in Exercise 23.

Position operator in coordinate representation:

x = C-number (p = −ih̄∇) .

Position operator in momentum representation:

x = ih̄∇p (p = C-number) .

Position operator in FV-momentum representation:

x̃ = UxU† = ih̄∇p + ih̄
(

iσ̂ × p

2p0(p0 + m0c)
+

β(αp)p
2p2

0(p0 + m0c)
− βα

2p0

)
.(2.78)

One-particle position operator in FV-momentum representation:

[x̃] = ih̄∇p + ih̄
iσ̂ × p

2p0(p0 + m0c)
, [[x̃]i, [p̃]j ] = ih̄

[
∂

∂pi
, pj

]
= ih̄δij . (2.79)

One-particle position operator in momentum representation:

[x] = U†[x̃]U = ih̄∇p + ih̄
(

iσ̂ × p

2p2
0

+
m0cβα

2p2
0

)
. (2.80)

One-particle position operator in coordinate representation:
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[x] = x + ih̄
(

iσ̂ × p

2p2
0

+
m0cβα

2p2
0

)
. (2.81)

Velocity operator in coordinate or momentum representation:

v = cα .

Velocity operator in FV-momentum representation:

ṽ = UvU† = cα +
cβp

p0
− cp(αp)

p0(p0 + m0c)
. (2.82)

One-particle velocity operator in FV-momentum representation:

[ṽ] =
cβp

p0

or, via Ehrenfest’s theorem (2.76):

〈[ṽ]〉 =
1
ih̄

〈[
[x̃], H̃(0)

]〉
=
〈

cβp

p0

〉
=⇒ [ṽ] =

cβp

p0
,

with [x̃] from (2.79) and H̃(0) = [H̃(0)] = cp0β.

One-particle velocity operator in momentum or coordinate representation:

[v] = U†[ṽ]U =
m0c

2βp

p2
0

+
cp(αp)

p2
0

. (2.83)

As in the Klein-Gordon case, the following items must be kept in mind:

• The Feshbach-Villars transformation U is a nonlocal transformation where
the transformed wave function ψ̃(x) results from the original wave function
ψ(x) by smearing the position argument x over a region comparable to the
Compton wave length of the particle. This can be seen, for example, in the
eigenfunctions of the one-particle position operator [x] from (2.81) that are
not pure δ-functions any more but possess an extent of size ∼ h̄/m0c.

• In terms of the one-particle concept, the one-particle velocity operator
now seems to be acceptable as the “true velocity operator”. In the FV-
momentum representation we find for positive Dirac solutions the same
relation between [ṽ] and [p̃] as in relativistic mechanics. For negative solu-
tions this is true only for the absolute values.

• Together with H(0) and p, the one-particle velocity operator possesses a
common eigenbasis which, in coordinate representation, is given by ψ

(r)
p (x),

with the energy eigenvalues εrcp0, momentum eigenvalues εrp, and the one-
particle velocity eigenvalue cp/p0. Accordingly, for negative eigensolutions
the eigenvalue (or expectation value) of v is opposite to the eigenvalue (or
expectation value) of p. This seemingly contradictory behavior is again a
consequence of the propagation of negative solutions backward in time (See
Theorem 2.7).
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Theorem 2.8: One-particle operators and FV-representation
in the Dirac theory

With respect to the one-particle interpretation of the Dirac theory, only
even Hermitean operators are sensible for the description of physical quan-
tities that do not mix positive and negative Dirac states. In the case of
free spin-1/2 particles the corresponding Hamilton operator H(0) can be
diagonalized by applying the unitary Feshbach-Villars transformation

U =
p0 + m0c + βαp
√

2p0(p0 + m0c)

leading to the Feshbach-Villars representation. In this representation the
even part of an operator can be determined most easily since it is simply
given by its diagonal part.
Contrary to H(0) and p, the position operator x and the velocity opera-
tor v are not even operators. Transforming them into the Feshbach-Villars
representation, separating the diagonal parts, and subsequently transform-
ing the latter back to the original representation, one finds the one-particle
position operator [x] and the one-particle velocity operator [v] in the usual
coordinate or momentum representation to be

[x] = x + ih̄
(

iσ̂ × p

2p2
0

+
m0cβα

2p2
0

)
, [v] =

m0c
2βp

p2
0

+
cp(αp)

p2
0

.

2.3.2 Validity Range of the One-Particle Concept

So far we have progressed well on our way to a consistent one-particle in-
terpretation of the Dirac theory by giving the positive and the (charge-
conjugated) negative Dirac solutions a physically meaningful interpretation
and by setting up a formal framework which, with respect to expectation val-
ues, is aligned even more closely to the nonrelativistic quantum mechanical
formalism as in in the Klein-Gordon case. However, point [1] remains to be
clarified, i.e. under which circumstances a complete decoupling of the Dirac
theory is possible and, therefore, a meaningful separation of particles and
antiparticles in terms of the one-particle concept is feasible.

First of all, the general plausibility arguments in the introduction to Chap-
ter 1 hold, namely that, within the considered physical process, the involved
energies must be sufficiently small so that particle changing processes can be
ignored. In order to see what additional constraints arise for a complete de-
coupling of the Dirac theory into two one-particle theories with pure positive
or pure negative solutions, we proceed analogously to the Klein-Gordon case
in Subsection 1.3.3. This means that we ask again, under which conditions a
Dirac wave packet contains (almost) pure positive or negative solutions.
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It is clear that a free wave packet which was originally built by solely
positive solutions will not develop components with negative energies in the
absence of external forces. On the other hand, a wave packet originally lo-
calized to a finite area generally encompasses solutions of both energy signs,
whereas their ratio will presumably depend on the wave packet’s initial lo-
calization. For this we consider a resting spin-1/2 particle whose wave packet
has the following Gaussian distribution at time t = 0:

ψ(x, t = 0) = (πΔ2)−3/4e−x2/(2Δ2)ω(1)(0) , 〈ψ|ψ〉 = 1 .

A Fourier decomposition of this expression yields

ψ(x, t = 0) =
(

Δ2

πh̄2

)3/4 ∫ d3p

(2πh̄2)3/2
e−p2Δ2/(2h̄2)eipx/h̄ω(1)(0) . (2.84)

Comparing this with the general solution for t = 0,

ψ(x, t = 0) =
∫

d3p

4∑

r=1

a(r)(p)ψ(r)
p (x, t = 0) ,

it follows that
√

m0c

p0

4∑

r=1

a(r)(εrp)ω(r)(εrp) =
(

Δ2

πh̄2

)3/4

e−p2Δ2/(2h̄2)ω(1)(0) .

With the help of (2.15), this becomes

a(r)(εrp) =
√

m0c

p0

(
Δ2

πh̄2

)3/4

e−p2Δ2/(2h̄2)ω(r)†(εrp)ω(1)(0)

so that
∣
∣
∣
∣
a(3,4)(−p)
a(1,2)(p)

∣
∣
∣
∣ =
∣
∣
∣
∣
ω(3,4)†(−p)ω(1)(0)
ω(1,2)†(p)ω(1)(0)

∣
∣
∣
∣ =

|p|
p0 + m0c

.

Similarly to the Klein-Gordon case, we find that negative solutions contribute
significantly to the wave packet for Fourier momenta |p| ~

<

m0c. According to
(2.84), they are suppressed only if

Δ � h̄

|p| =⇒ Δ � h̄

m0c
= λc .

Hence we see that the requirement of a complete decoupling of the Dirac
theory leads again to the well-known constraint, namely to wave packets
with a large extent compared to the corresponding Compton wave length.

All in all we find that the statements concerning the validity range of
the one-particle concept within the Klein-Gordon and Dirac theories (up to
the necessity of a positive or a negative definite charge density in the Klein-
Gordon case) are identical so that we can dispense here with a theorem
corresponding to Theorem 1.7.
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2.3.3 Klein Paradox

In the Dirac case, as in the Klein-Gordon case, the Klein paradox is a prime
example for highlighting interpretational difficulties of the one-particle con-
cept beyond its range of validity. To illustrate this we consider, analogously to
the discussion in Subsection 1.3.4, a onedimensional electron (more generally:
spin-1/2 particle) which, coming from the left along the z-axis, is scattered
against a potential step of the form

eA0(z) = V (z) =

{
0 for z < 0 (area I)

V0 for z > 0 (area II)

}

, V0 > 0 , A = 0

(see Figure 1.3). The stationary energy solutions in area I (z < 0) are com-
posed of free incoming and reflected waves for which we choose the ansatz
(see Theorem 2.1)

ψI(z, t) = e−iEth̄Ψ(z) , Ψ(z) = Ψein(z) + Ψref(z)

Ψein(z) = Aeik1z

⎛

⎜
⎜
⎝

1
0

ch̄k1
E+m0c2

0

⎞

⎟
⎟
⎠ , k1 =

√
E2 − m2

0c
4

c2h̄2

(
rest spin

in z-direction

)

Ψref(z) = Be−ik1z

⎛

⎜
⎜
⎝

1
0

−ch̄k1
E+m0c2

0

⎞

⎟
⎟
⎠+ Ce−ik1z

⎛

⎜
⎜
⎝

0
1
0

−ch̄k1
E+m0c2

⎞

⎟
⎟
⎠ ,

where the time-independent expressions fulfill the free time-independent
Dirac equation

HΨ = EΨ , H = −ih̄cα3
d
dz

+ V (z) + βm0c
2 (2.85)

with V (z) = 0. Note that for Ψref a potentially contributing term with oppo-
site spin is taken into account.

For the transmitted wave we need the solutions to (2.85) in the presence
of a constant potential V (z) = V0. They differ from the free solutions only
by the substitution E → E − V0 so that we can write for area II (z > 0)

ψII(z, t) = e−iEt/h̄Ψtrans(z)

Ψtrans(z) = Deik2z

⎛

⎜
⎜
⎝

1
0

ch̄k2
E−V0+m0c2

0

⎞

⎟
⎟
⎠+ Eeik2z

⎛

⎜
⎜
⎝

0
1
0

−ch̄k2
E−V0+m0c2

⎞

⎟
⎟
⎠ ,

with

k2 =

√
(E − V0)2 − m2

0c
4

c2h̄2 .
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The amplitudes follow from the continuity constraint of the solutions at z = 0
due to current conservation. We obtain for them

C = E = 0

(no spin flip on the level of wave functions) and

B =
(1 − r)A

1 + r
, D =

2A

1 + r
, r =

k2(E + m0c
2)

k1(E − V0 + m0c2)
.

Depending on the choice of V0 or E, we consider the following cases (compare
to the cases in Subsection 1.3.4 and to Figure 1.4):

1. case: E > V0 + m0c
2. The wave number k2 is real so that in area II the

transmitted wave oscillates and r > 0 holds. Furthermore, for the current
densities of the incoming, reflected, and transmitted parts in z-direction, we
have

T =
jtrans

jin
=

4r

(1 + r)2
, R = −jref

jin
=

(1 − r)2

(1 + r)2
= 1 − T

and thus, in accordance with our expectation, r > 0 =⇒ 0 < R,T < 1.

2. case: V0 −m0c
2 < E < V0 +m0c

2 , E > m0c
2. Since k2 is imaginary, the

transmitted wave is exponentially damped.

3. case: m0c
2 < E < V0 − m0c

2 =⇒ V0 > 2m0c
2. As in the 1. case, k2

is real. On the other hand, we now have r < 0, i.e. we obtain a negative
transmission current as well as a reflection current whose absolute value is
even larger than that of the incoming current.

Similarly to the Klein-Gordon case, the first two cases can be sensibly
interpreted within the framework of the one-particle picture as scattering of
a particle with charge +e against (from its point of view) repulsive potential
barrier. In contrast, the 3. case again seems to be incomprehensible due to
the oscillating transmission wave since, for the considered energy interval, the
potential step should be inpenetrable. As before, this is caused essentially by
too-strong a localization of the particle since a potential step of height V0 ≈
E delimits the penetration depth in area II to an extent of the magnitude
1/k2 ≈ h̄/m0c.

However, even outside the strict one-particle view, the 3. case holds some
puzzles. Here we first note that the transmitted wave has a negative energy
relative to the potential V0. Therefore, as in the Klein-Gordon case, it is
reasonable to replace k2 by −k2 so that ψtrans corresponds to an antiparticle
of charge −e moving to the right with momentum +h̄|k2| which, for its part,
is described by iγ2ψ∗

trans. This leads to the following consequences: for the
reflection and transmission coefficients we now have 0 < R,T < 1. This means
that, contrary to the Klein-Gordon case, the conception of pair production at
the border z = 0 where particles move to the left and antiparticles move to
the right cannot be sustained here. In fact, some of the particles coming from
the left are transformed into antiparticles moving to the right. Obviously, this
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particle transformation leads to a violation of charge conservation, whereas, in
the Klein-Gordon case, the total charge is explicitly conserved. Furthermore,
the transformation implies a spin flip on the particle level. Due to these facts,
we often speak of the Klein super paradox.

As in Subsection 1.3.4, we now give the remaining energy intervals, in-
cluding their interpretation:

4. case: −m0c
2 < E < m0c

2. A solution for a particle movement from the
left to the right does not exist here.

5. case: E < −m0c
2. If we choose k1 = −|k1| and k2 = −|k2|, this case can

again be interpreted within the one-particle picture as an antiparticle with
charge −e moving to the right and scattering against the (from its point of
view) attractive potential barrier, with r > 0 =⇒ 0 < R,T < 1.

Summary

• In terms of the one-particle interpretation, only those Hermitean opera-
tors that are even operators can be regarded as observables, i.e. those
that do not mix positive and negative Dirac solutions (one-particle op-
erators). The even part of an operator is determined most easily within
a representation where the Hamilton operator is diagonal. In the free
case, this is given by the Feshbach-Villars representation.

• The Feshbach-Villars transformation is a nonlocal transformation.
Here the position argument x of a wave function ψ(x) is averaged over
a region whose extent is comparable to the Compton wave length of the
particle.

• The validity range of the one-particle probabilistic interpretation is lim-
ited, on the one hand, to small energies where particle creation processes
can be ignored and, on the other hand, to Dirac wave packets whose
extent is large compared to the corresponding wave length.

• The Klein paradox is a simple example of interpretational difficulties
of the one-particle concept stemming from too-strong a localization of
Dirac wave packets. Even outside the one-particle picture one encounters
contradictions, for example the nonconservation of the total charge or the
spin flip on the particle level.

Exercises

23. Feshbach-Villars transformation (II). Verify the relationships (2.77),
(2.78), (2.80), (2.82), and (2.83).
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Solution. For the subsequent calculations we need:

(αp)α = iσ̂ × p + p , {α,αp} = 2p , (αp)(αp) = p2

(αp)α(αp) = 2p(αp) − αp2

[σ̂, β] = 0 , [σ̂i, αj ] = 2iεijkαk , [σ̂ × p,αp] = 2i[αp2 − (αp)p]

(αp)σ̂ × p(αp) = −p2σ̂ × p .

To (2.77).

H̃(0) = UH(0)U†

=
(p0 + m0c + βαp)(cαp + βm0c

2)(p0 + m0c − βαp)
2p0(p0 + m0c)

=
[cp0αp + β(p0m0c

2 + m2
0c

3 + cp2)](p0 + m0c − βαp)
2p0(p0 + m0c)

=
[cαp + cβ(p0 + m0c)](p0 + m0c − βαp)

2(p0 + m0c)

= cβ
(p0 + m0c)2 + p2

2(p0 + m0c)
= cp0β = β

(
m2

0c
4 + c2p2

)1/2
.

To (2.78).

(∇pU†) = ∇p
p0 + m0c − βαp
√

2p0(p0 + m0c)

=
p/p0 − βα

√
2p0(p0 + m0c)

− U† (2p0 + m0c)p
2p2

0(p0 + m0c)

U(∇pU†) =
(p0 + m0c + βαp)(p/p0 − βα)

2p0(p0 + m0c)
− (2p0 + m0c)p

2p2
0(p0 + m0c)

=
(αp)α

2p0(p0 + m0c)
+

β(αp)p
2p2

0(p0 + m0c)
− βα

2p0
− p

2p0(p0 + m0c)

=
iσ̂ × p

2p0(p0 + m0c)
+

β(αp)p
2p2

0(p0 + m0c)
− βα

2p0

=⇒ x̃ = UxU† = ih̄∇p + ih̄U(∇pU†)

= ih̄∇p + ih̄
(

iσ̂ × p

2p0(p0 + m0c)
+

β(αp)p
2p2

0(p0 + m0c)
− βα

2p0

)
.

To (2.80).

[x] = U†[x̃]U = U†xU + ih̄U† iσ̂ × p

2p0(p0 + m0c)
U

U†xU = ih̄∇p + ih̄
(

iσ̂ × p

2p0(p0 + m0c)
− β(αp)p

2p2
0(p0 + m0c)

+
βα

2p0

)
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U† iσ̂ × p

2p0(p0 + m0c)
U =

(p0 + m0c − βαp)iσ̂ × p(p0 + m0c + βαp)
4p2

0(p0 + m0c)2

= i
(p0 + m0c)2σ̂ × p + (p0 + m0c)β[σ̂ × p,αp]

4p2
0(p0 + m0c)2

+i
(αp)σ̂ × p(αp)
4p2

0(p0 + m0c)2

=
im0cσ̂ × p

2p2
0(p0 + m0c)

− p2βα

2p2
0(p0 + m0c)

+
β(αp)p

2p2
0(p0 + m0c)

=⇒ [x] = ih̄∇p + ih̄
(

iσ̂ × p

2p2
0

+
m0cβα

2p2
0

)
.

To (2.82).

ṽ = UvU† =
(p0 + m0c + βαp)cα(p0 + m0c − βαp)

2p0(p0 + m0c)

=
cα(p0 + m0c)2 − c(αp)α(αp) + cβ{α,αp}(p0 + m0c)

2p0(p0 + m0c)

= cα +
cβp

p0
− cp(αp)

p0(p0 + m0c)
.

To (2.83).

[v] = U†[ṽ]U =
(p0 + m0c − βαp)cβp(p0 + m0c + βαp)

2p2
0(p0 + m0c)

=
m0c

2βp

p2
0

+
cp(αp)

p2
0

.

24. Construction of one-particle operators using the sign operator
(II). Instead of using the Feshbach-Villars representation, Dirac one-particle
operators can be constructed with less effort by taking into account that the
Hermitean sign operator

Λ =
H(0)

√
H(0)2

=
αp + m0cβ

p0

possesses the eigenfunctions ψ
(r)
p (x) with the eigenvalues (energy signs) εr

(compare to Exercise 6). Construct the one-particle operators for position
and velocity, [x] and [v], by exploiting this fact.

Solution. Based on the same argument as in Exercise 6, the even part [O]
and odd part {O} of an operator O are given by

[O] =
1
2
(O + ΛOΛ) , {O} =

1
2
(O − ΛOΛ) ,

where ΛOΛ and, therefore, [O] and {O} are Hermitean, if O is Hermitean.
Now we calculate in the momentum representation (x = ih̄∇p, p =
C-number) as follows:
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(∇pΛ) = ∇p
αp + m0cβ

p0
=

α

p0
− Λ

p

p2
0

Λ(∇pΛ) =
(αp + m0cβ)α

p2
0

− p

p2
0

=
iσ̂ × p

p2
0

+
m0cβα

p2
0

=⇒ ΛxΛ = ih̄∇p + ih̄Λ(∇pΛ) = ih̄∇p +
iσ̂ × p

p2
0

+
m0cβα

p2
0

.

In momentum or position representation the one-particle position operator
follows as (compare to Theorem 2.8 )

[x] =
1
2
(x + ΛxΛ) = x + ih̄

(
iσ̂ × p

2p2
0

+
m0cβα

2p2
0

)
.

For the one-particle velocity operator we obtain from a similar calculation
(compare to Theorem 2.8)

ΛvΛ =
(αp + m0cβ)cα(αp + m0cβ)

p2
0

=
c(αp)α(αp) + m0c

2β{α,αp} − m2
0c

3α

p2
0

=
2m0c

2βp

p2
0

+
2cp(αp)

p2
0

− cα

=⇒ [v] =
1
2
(v + ΛvΛ) =

m0c
2βp

p2
0

+
cp(αp)

p2
0

.

25. Gordon decomposition. Show that for two arbitrary solutions ψ1 and
ψ2 to the free Dirac equation the following holds:

ψ̄2γ
μψ1 =

1
2m0c

[
ψ̄2p

μψ1 − (pμψ̄2)ψ1

]
− i

2m0c
pν(ψ̄2σ

μνψ1) . (2.86)

Solution. For two arbitrary four-vectors aμ and bμ we have

γμaμγνbν = aμbν

[
1
2
(γμγν + γνγμ) +

1
2
(γμγν − γνγμ)

]

= aμbν

(
1
2
{γμ, γν} +

1
2
[γμ, γν ]

)

= aμbμ − iaμbνσμν .

This and using the free Dirac equation as well as its adjoint (
←
pμ acts to the

left) yield

0 = ψ̄2(−γμ ←
pμ −m0c)γνaνψ1 + ψ̄2γ

νaν(γμpμ − m0c)ψ1

and

2m0cψ̄2γ
νaνψ1 = −ψ̄2γ

μ ←
pμ γνaνψ1 + ψ̄2γ

νaνγμpμψ1

= −ψ̄2

(←
pμ aμ + i

←
pν aμσμν

)
ψ1 + ψ̄2 (pμaμ − ipνaμσμν) .
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With aμ = δμρ there follows (2.86). Physically, the Gordon decomposition
separates the Dirac probability current density jμ = cψ̄γμψ into a convection
current density

jμ
K =

1
2m0

[
ψ̄pμψ − (pμψ̄)ψ

]
(2.87)

(similar to the nonrelativistic probability current density or the Klein-Gordon
charge current density) and a spin current density

jμ
S = − i

2m0
pν(ψ̄σμνψ) . (2.88)

26. Shaky movement (II). Calculate the mean current of an arbitrary free
Dirac wave packet similarly to Exercise 7. Show that the interference terms
of positive and negative solutions contain a temporally oscillating movement.

Solution. Our starting point is the wave packet

ψ(x) = ψ(+)(x) + ψ(−)(x)

ψ(+)(x) =
∫

d3p

2∑

r=1

a(r)(p)ψ(r)
p (x)

ψ(−)(x) =
∫

d3p
4∑

r=3

a(r)(p)ψ(r)
p (x) .

To calculate the mean spatial convection current (2.87) we use the identity

(pψ̄)ψ = −(pψ)†γ0ψ = −ψT γ0,T (pψ)∗ = −(ψ†γ0pψ)∗ = −(ψ̄pψ)∗

from which follows that

jK =
1

m0
Re
(
ψ̄pψ

)
.

Exploiting the adjunction relation 〈φ|A |ψ 〉 =
〈
ψ|A† |φ

〉∗, we further have

〈j〉K =
1

m0

〈
ψ| γ0p |ψ

〉

=
1

m0

〈
ψ(+) + ψ(−)

∣
∣
∣ γ0p

∣
∣
∣ψ(+) + ψ(−)

〉

=
1

m0

[〈
ψ(+)

∣
∣
∣ γ0p

∣
∣
∣ψ(+)

〉
+
〈

ψ(−)
∣
∣
∣ γ0p

∣
∣
∣ψ(−)

〉

+
〈

ψ(+)
∣
∣
∣ γ0p

∣
∣
∣ψ(−)

〉
+
〈

ψ(−)
∣
∣
∣ γ0p

∣
∣
∣ψ(+)

〉]

=
1

m0

[〈
ψ(+)

∣
∣
∣ γ0p

∣
∣
∣ψ(+)

〉
+
〈

ψ(−)
∣
∣
∣ γ0p

∣
∣
∣ψ(−)

〉]

+
2

m0
Re
(〈

ψ(+)
∣
∣
∣ γ0p

∣
∣
∣ψ(−)

〉)
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=
∫

d3p
cp

p0

2∑

r=1

∣
∣
∣a(r)(p)

∣
∣
∣
2

︸ ︷︷ ︸

〈j〉(+)
K

+
∫

d3p
cp

p0

4∑

r=3

∣
∣
∣a(r)(p)

∣
∣
∣
2

︸ ︷︷ ︸

〈j〉(−)
K

+2Re
[∫

d3p
cp

p0
e2ip0x0/h̄

×
∑

r = 1, 2
r′ = 3, 4

a(r)∗(p)a(r′)(−p)ω̄(r)(p)ω(r′)(−p)
]

. (2.89)

For the evaluation of the mean spatial spin current
〈
jk
〉
S

= − i
2m0

∫
d3xpν

(
ψ̄(+) + ψ̄(−)

)
σkν
(
ψ(+) + ψ(−)

)

[see (2.88)], we have to take into account that the individual terms∫
d3xpν

(
ψ̄(±)σkνψ(±)

)
lead to integrals of the form

∫
d3p

∫
d3p′(p′ν − pν)δ(p′ − p) . . .

and hence do not contribute. On the other hand, the interference terms∫
d3xpν

(
ψ̄(±)σkνψ(∓)

)
yield the integrals

∫
d3p

∫
d3p′(p′ν + pν)δ(p′ + p) . . .

{
�= 0 for ν = 0

= 0 else .

Therefore, it remains that
〈
jk
〉
S

= − i
2m0

∫
d3x
[
p0

(
ψ̄(+)σk0ψ(−)

)
+ p0

(
ψ̄(−)σk0ψ(+)

)]
.

Finally, this expression can be further simplified using

p0

(
ψ̄(−)σk0ψ(+)

)
= p0

(
ψ(−)†γ0σk0ψ(+)

)
= p0

(
ψ(+)T σk0,T γ0,T ψ(−)∗

)

= p0

(
ψ(+)†σk0†γ0ψ(−)

)∗
= p0

(
ψ̄(+)γ0σk0†γ0ψ(−)

)∗

= p0

(
ψ̄(+)σk0ψ(−)

)∗
= −

[
p0

(
ψ̄(+)σk0ψ(−)

)]∗

to become
〈
jk
〉
S

=
1

m0
Im
[∫

d3xp0

(
ψ̄(+)σk0ψ(−)

)]

= 2Im
[
c

∫
d3pe2ip0x0/h̄

×
∑

r = 1, 2
r′ = 3, 4

a(r)∗(p)a(r′)(−p)ω̄(r)(p)σk0ω(r′)(−p)
]

. (2.90)
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With (2.89) and (2.90), one realizes that the movement of a Dirac wave packet
contains a temporally oscillating movement (shaky movement) if and only if
it encompasses positive and negative components. This fact is already known
from the corresponding considerations of the Klein-Gordon case (Exercise 7).

2.4 Nonrelativistic Approximation of the Dirac Theory

In our previous discussion of the Dirac theory we have not yet addressed
one important question, namely whether it is possible to derive the correct
equations of nonrelativistic quantum mechanics from it. Of course, this should
be the case for the Dirac theory to be an acceptable relativistic enhancement.
In this section we focus on this issue closely following the discussion of the
Klein-Gordon case in Section 1.4. First we consider the nonrelativistic limit
to leading order of v/c which will lead us to the nonrelativistic Pauli equation
for spin-1/2 particles. Subsequently, we make use of the Fouldy-Wouthuysen
transformation to include higher relativistic corrections, i.e. to diagonalize the
Hamilton operator in higher orders of v/c. All considerations in this section
refer to the Dirac representation.

2.4.1 Nonrelativistic Limit

The starting point for our discussion is the Dirac equation (2.14) in canonical
form,

ih̄
∂ψ(x)

∂t
=
[
cα
(
p − e

c
A
)

+ eA0 + βm0c
2
]
ψ(x) . (2.91)

In order to study its nonrelativistic limit, it is advantageous to introduce the
two-component spinors

ψu =
(

ψ1

ψ2

)
, ψd =

(
ψ3

ψ4

)
, ψ =

(
ψu

ψd

)

so that (2.91) can be transformed into the equation system

ih̄
∂ψu

∂t
= cσ

(
p − e

c
A
)

ψd + (eA0 + m0c
2)ψu

ih̄
∂ψd

∂t
= cσ

(
p − e

c
A
)

ψu + (eA0 − m0c
2)ψd

⎫
⎪⎬

⎪⎭
, (2.92)

where the index u stands for “up” (the two upper components) and d for
“down” (the two lower components). Taking into account

(
ih̄

∂

∂t
− eA0

)
ψ

(±)
u,d = m0c

2

[
±1 + O

(
v2

c2

)]
ψ

(±)
u,d ,

the second equation of (2.92) yields for positive solutions (+)
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ψ
(+)
d =

σ

2m0c

(
p − e

c
A
)

ψ(+)
u + O

(
v2

c2

)
, (2.93)

whereas for negative solutions (−), the first equation leads to

ψ(−)
u = − σ

2m0c

(
p − e

c
A
)

ψ
(−)
d + O

(
v2

c2

)
. (2.94)

This means that in the case of positive solutions the spinor ψd relative to
ψu, and in the case of negative solutions, the spinor ψu relative to ψd is
suppressed by a factor of v/c. Inserting (2.93) or (2.94) into the remaining
equation of (2.92), we have for positive solutions

ψ =
(

1
O (v/c)

)
ψu

ih̄
∂ψu

∂t
=
{

1
2m0

[
σ
(
p − e

c
A
)]2

+ m0c
2 + eA0 + O

(
v3

c3

)}
ψu

and for negative solutions

ψ =
(
O (v/c)

1

)
ψd

ih̄
∂ψd

∂t
=
{
− 1

2m0

[
σ
(
p − e

c
A
)]2

− m0c
2 + eA0 + O

(
v3

c3

)}
ψd .

With the help of the identities

(σA)(σB) = (AB) + iσ(A × B) ,
(
p − e

c
A
)
×
(
p − e

c
A
)

= −eh̄

ic
B ,

these relations can finally be summarized in the Dirac equation

ih̄
∂ψ

∂t
= Hnrψ

Hnr = β

[
m0c

2 +
1

2m0

(
p − e

c
A
)2

− eh̄

2m0c
σ̂B

]
+ eA0

+O
(

v3

c3

)
, σ̂ =

(
σ 0
0 σ

)
,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(2.95)

correct up to order O
(
v2/c2

)
, with the diagonal and Hermitean Hamilton

operator Hnr [compare to the nonrelativistic Klein-Gordon equation (1.57)].
If we restrict ourselves to positive solutions, i.e. to the two upper components,
this equation is – up to the rest energy m0c

2 – identical to the nonrelativistic
Pauli equation for spin-1/2 particles within an electromagnetic field. Espe-
cially noteworthy is the fact that the nonrelativistic limiting process of the
Dirac equation automatically leads to an interaction term −MB between
the magnetic moment (or spin) of the particle and the external magnetic
field which, in the case of the elementary electron, has the correct magnetic
moment or, rather, the correct gyromagnetic ratio
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M (e) =
eh̄

2m0c
σ =

eg

2m0c
S , g = 2 (Landé factor) .

By contrast, in the Pauli equation this term has to be introduced by hand.
Historically it was this feature that gave an important impetus for the con-
fidence in the Dirac theory.

For nonelementary particles, such as protons or neutrons, the above lim-
iting process leads to the wrong results M (p) = −eS/(mpc) (proton) and
M (n) = 0 (neutron). Obviously, in those cases the minimal coupling is not
sufficient for taking external electromagnetic fields into account. However,
even for those particles, we can obtain the corresponding nonrelativistic equa-
tions with the correct magnetic moments by adding phenomenologically mo-
tivated terms (see Exercises 15 and 27).

For the sake of completeness, we also note the expressions of the prob-
ability density and the probability current density belonging to (2.95) and
correct up to order O

(
v2/c2

)
:

ρ = ψ†ψ , j =
h̄

2im

[
ψ†β∇ψ − (∇ψ†)βψ − 2ie

h̄c
Aψ†βψ

]
.

They are connected via the continuity equation ∂ρ/∂t + ∇j = 0 and, in the
case of positive solutions, coincide with the corresponding formulae of the
nonrelativistic theory.

2.4.2 Relativistic Corrections

In the previous subsection the reduction of the Dirac theory to the nonrel-
ativistic Pauli theory is correct up to order O

(
v2/c2

)
, and the error of the

Hamilton operator in (2.95) is of order O
(
v3/c3

)
. In this limit Hnr is diag-

onal, and the positive and negative solutions are completely decoupled. In
order to diagonalize the Hamilton operator in higher orders systematically,
i.e. to take higher relativistic corrections into account, we can, as in the Klein-
Gordon case, utilize the Fouldy-Wouthuysen method which we now apply to
the general Dirac equation (2.91). Here the same considerations hold as in
Subsection 1.4.2, especially that an exact diagonalization of the Dirac theory
is not possible due to vacuum polarization effects.

In order to simplify the treatment of orders in v/c, we start our discussion
by rewriting the Dirac equation (2.91) in the form

m0c
2Kψ = 0 , K = β + ε + ω ,

with

ε = − 1
m0c2

(
ih̄

∂

∂t
− eA0

)
= O (1) + O

(
v2

c2

)
, β + ε = O

(
v2

c2

)

and

ω =
cα

m0c2

(
p − e

c
A
)

= O
(v

c

)
,
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where ε and β + ε are even (diagonal) and ω odd (antidiagonal) operators.
With the help of appropriately chosen Fouldy-Wouthuysen transformations
U = eiS , U ′ = eiS′

, . . . we aim to change to new representations where
ω is of higher and higher order of v/c so that disregarding it leads to a
diagonal K operator correct up to the respective order of v/c. So, after the
first transformation, we should have

m0c
2K ′ψ′ = 0 , ψ′ = Uψ , K ′ = UKU−1

K ′ = β + ε′ + ω′ , β + ε′ = O
(

v2

c2

)
, ω′ = O

(
v3

c3

)
(or higher) ,

and after the second one
m0c

2K ′′ψ′′ = 0 , ψ′′ = U ′ψ , K ′′ = U ′K ′U ′−1

K ′′ = β + ε′′ + ω′′ , β + ε′′ = O
(

v2

c2

)
, ω′′ = O

(
v5

c5

)
(or higher) ,

and so forth. As in (1.61), a good choice for the first transformation is

U = eiS , S = − iβω

2
. (2.96)

We can again make use of the Baker-Hausdorff expansion (1.60) as well as of
the formulae (1.62) with the replacement τ3 → β to calculate the resulting
K ′. This yields

K ′ = β + ε′ + ω′ ,

with

O
(

v2

c2

)
O
(

v2

c2

)
O
(

v4

c4

)
O
(

v4

c4

)

↓ ↓ ↓ ↓

ε′ = ε +
βω2

2
−βω4

8
−1

8
[ω, [ω, ε]] + . . . = O

(
v2

c2

)

and

ω′ = −ω3

3
+

β

2
[ω, ε] +

β

48
[ω, [ω, [ω, ε]]] + . . . = O

(
v3

c3

)
.

As one can see, ω′ is now raised by two orders of v/c. From this we obtain
the even operator K ′ = β + ε correct up to order O

(
v2/c2

)
resulting in the

Pauli equation (2.95).
In order to suppress the odd part of the K-operators even further, we

perform a second Fouldy-Wouthuysen transformation on K ′ with

U ′ = eiS′
, S′ = − iβω′

2
.

From this follows that

K ′′ = β + ε′′ + ω′′ ,
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with

O
(

v2

c2

)
O
(

v6

c6

)
O
(

v12

c12

)
O
(

v8

c8

)

↓ ↓ ↓ ↓

ε′′ = ε′ +
βω′2

2
−βω′4

8
−1

8
[ω′, [ω′, ε′]] + . . . = O

(
v2

c2

)

and

ω′′ = −ω′3

3
+

β

2
[ω′, ε′] +

β

48
[ω′, [ω′, [ω′, ε′]]] + . . . = O

(
v5

c5

)
.

Disregarding all terms of order O
(
v5/c5

)
(and higher), we obtain the even

operator

K ′′ = β + ε +
βω2

2
− βω4

8
− 1

8
[ω, [ω, ε]] + O

(
v5

c5

)
(2.97)

finally leading to the Dirac equation

ih̄
∂ψ′′

∂t
= H ′′ψ′′

correct up to order O
(
v4/c4

)
, with the diagonal and Hermitean Hamilton

operator (see Exercise 28)

H ′′ = β

[
m0c

2 +
1

2m0

(
p − e

c
A
)2

− eh̄

2m0c
σ̂B

]
+ eA0

−β

[
1

8m3
0c

2

(
p − e

c
A
)4

+
e2h̄2

8m3
0c

4
B2

− eh̄

8m3
0c

3

{
σ̂B,

(
p − e

c
A
)2
}]

− eh̄2

8m2
0c

2
∇E − ieh̄2

8m2
0c

2
σ̂(∇ × E) − eh̄

4m2
0c

2
σ̂(E × p)

+O
(

v5

c5

)
(2.98)

and the wave function

ψ′′(x) = e−iβω′/2e−iβω/2ψ(x) .

All in all, we see that the successive diagonalization of the Dirac-Hamilton
operator to higher orders of v/c can be performed quite similarly to the Klein-
Gordon case in Subsection 1.4.2. However, as before, we should bear in mind
the following:

• Since S, S′, . . . are Hermitean, all Fouldy-Wouthuysen transformations U ,
U ′, . . . of the form (2.96) are unitary transformations. This implies the
invariance of expectation values that transform as U [·]U−1.
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• For the Dirac-Hamilton operator, this is only true if ∂A/∂t = 0, since the
transition

Kψ = 0 −→ K ′ψ′ = 0 , K ′ = UKU−1 = UKU† , ψ′ = Uψ

is equivalent to

ih̄
∂ψ

∂t
= Hψ −→ ih̄

∂ψ′

∂t
= H ′ψ′ , H ′ = U

(
H − ih̄

∂

∂t

)
U† .

• One-particle operators are obtained within a Fouldy-Wouthuysen repre-
sentation by accordingly transforming the original (relativistic) operators
and subsequently separating their diagonal parts. As in the Klein-Gordon
case, [x, U ] �= 0, i.e. the Fouldy-Wouthuysen method is nonlocal and causes
a smearing of the coordinate wave function with an extent comparable to
the Compton wave length of the particle.

• The Fouldy-Wouthuysen method is only applicable to physical problems
within the validity range of the one-particle picture where the Fouldy-
Wouthuysen expansion converges.

Theorem 2.9: Fouldy-Wouthuysen transformation
in the Dirac Theory

The Fouldy-Wouthuysen transformation provides a systematic procedure
for diagonalizing the Dirac-Hamilton operator up to any (finite) order of
v/c. Writing the Dirac equation (2.91) in the form

m0c
2K(0)ψ(0) = 0 , K(0) = β + ε(0) + ω(0) ,

with the dimensionless even operators ε(0), β + ε(0) = O
(
v2/c2

)
, the odd

operator ω(0) = O (v/c), and iterating the relations according to

K(n) = β + ε(n) + ω(n) = U (n−1)K(n−1)U (n−1)†

ψ(n)(x) = U (n−1)ψ(n−1)(x)

U (n) = exp
(
− iβω(n)

2

)
(unitary) ,

we obtain new representations of the Dirac theory where

β + ε(n) = O
(

v2

c2

)
, ω(n) = O

(
v2n+1

c2n+1

)
.

Disregarding the odd operator, the even part of K(n) leads to two explicitly
decoupled one-particle theories for particle and antiparticle, correct up to
order O

(
v2n−1/c2n−1

)
.
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Electron in an electrostatic central potential. Let us, at the end of this
section, turn back to (2.98). This equation can be cast into a well-established
form by considering the case of an electron within a centrally symmetric
potential:

eA0 = V (|x|) = V (r) , A = 0 .

In this case we have

B = 0 , E = −∇A0 = −1
e

x

r

∂V

∂r
, ∇ × E = 0 .

Restricting ourselves to the upper two components, the corresponding Hamil-
ton operator is

H ′′
u = m0c

2 +
p2

2m0
+ V (r) − p4

8m3
0c

2
+

h̄2

8m2
0c

2
∇2V +

h̄

4m2
0c

2

1
r

∂V

∂r
σL .

The fourth term on the right hand side is a relativistic correction to the
kinetic energy. The fifth term is a relativistic correction to the central po-
tential known as Darwin term and can be accredited to the shaky move-
ment of the electron. The last term contains the interaction energy between
the electron’s spin (or magnetic moment) and its orbital angular momentum
(spin-orbit coupling). Note that, in this term, the Thomas precession is taken
into account correctly by a factor of 4 in the denominator.12 In the case of a
Coulomb potential V (r) = −Ze2/r, the last two terms are

πZe2h̄2

2m2
0c

2
δ(r) and

Ze2h̄

4m2
0c

2r3
σL .

Here the Darwin term only influences the s-states.

Summary

• To lowest order (nonrelativistic limit) the nonrelativistic approxima-
tion of the Dirac theory leads to a diagonal and Hermitean Hamilton
operator. From this follow two explicitly decoupled one-particle theories
for particle and antiparticle, the former being identical to the nonrela-
tivistic Pauli equation for spin-1/2 particles.

• Generally and contrary to the field-free case, the Dirac-Hamilton opera-
tor is diagonalizable only approximately. This can be achieved by using
the Fouldy-Wouthuysen method where the Hamilton operator is dia-

�

12 In nonrelativistic quantum mechanics this term is explained classically as follows:
in the rest system of the electron the force center produces a magnetic field at
the electron’s position that interacts with its spin. However, since this argument
disregards (among other things) the nonuniform motion of the electron, the term
turns out to be too large by a factor of 2.



158 2. Relativistic Description of Spin-1/2 Particles

gonalized successively to higher and higher orders of v/c. The respective
even part yields a diagonal and Hermitean Hamilton operator correct
up to the considered order of v/c, from which two explicitly decoupled
one-particle theories for particle and antiparticle can be derived.

• The Fouldy-Wouthuysen transformation is, like the Feshbach-
Villars transformation, a nonlocal transformation and leads to a smearing
of the position argument comparable to the Compton wave length.

• The Fouldy-Wouthuysen method is reasonable only for those cases where,
on the one hand, the v/c-expansion converges and, on the other hand,
the one-particle interpretation is applicable.

Exercises

27. Anomalous magnetic moment of structured particles. Show that
adding the term

h̄δβ

4m0c
σμνFμν , Fμν = ∂μAν − ∂νAμ

to (2.91) yields an equation in the nonrelativistic limit that describes a par-
ticle with the magnetic moment

M (i) =
h̄(ei + δ)

2mic
σ ,

where ei and mi denote the particle’s charge and rest mass respectively.

Solution. Starting with (2.91), incorporating the above term, and repeat-
ing the line of argument resulting in (2.95), one obtains the modified Pauli
equation

ih̄
∂ψ

∂t
=
{

β

[
mic

2 +
1

2mi

(
p − ei

c
A
)2

− eih̄

2mic
σ̂B +

h̄δ

4mic
σμνFμν

]

+ eiA
0

}
ψ . (2.99)

The second last term of this equation was already calculated in Exercise 15
and is

σμνFμν = 2(iαE − σ̂B) .

Thus, the third and second last terms in (2.99) lead to the above mentioned
magnetic moment (plus electric terms suppressed by a factor of v/c).

For the elementary electron as well as for the composed proton and neu-
tron experiments determine the following values of δ (e =electron charge):
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electron : δ = 0 =⇒ M (e) =
eh̄

2mec
σ

proton : δ ≈ 3.79e =⇒ M (p) ≈ h̄(−e + 3.79e)
2mpc

σ =
2.79eh̄

2mpc
σ

neutron : δ ≈ −1.91e =⇒ M (n) ≈ h̄(0 − 1.91e)
2mnc

σ =
−1.91eh̄

2mnc
σ .

28. Fouldy-Wouthuysen transformation. Show the transition from (2.97)
to (2.98).
Solution.

ω2 =
1

m2
0c

2

[
α
(
p − e

c
A
)] [

α
(
p − e

c
A
)]

=
1

m2
0c

2

∑

i,j

αiαj

(
pi −

e

c
Ai

)(
pj −

e

c
Aj

)

=
i

m2
0c

2

∑

i,j,k

εijkσ̂k

(
pi −

e

c
Ai

)(
pj −

e

c
Aj

)
+

1
m2

0c
2

(
p − e

c
A
)2

= − ie
m0c3

σ̂(p × A) +
1

m2
0c

2

(
p − e

c
A
)2

= − eh̄

m2
0c

3
σ̂B +

1
m2

0c
2

(
p − e

c
A
)2

[ω, ε] = − 1
m2

0c
3

[
α
(
p − e

c
A
)

, ih̄
∂

∂t
− eA0

]

=
1

m2
0c

3

{
e[αp, A0] +

ieh̄
c

[
A,

∂

∂t

]}

= − ieh̄
m2

0c
3
α

(
∇A0 +

1
c
Ȧ

)
=

ieh̄
m2

0c
3
αE

[ω, [ω, ε]] =
ieh̄

m3
0c

4

[
α
(
p − e

c
A
)

,αE
]

=
ieh̄

m3
0c

4
[αp,αE]

=
ieh̄

m3
0c

4

∑

i,j

αiαj(piEj − Eipj)

=
ieh̄

m3
0c

4

∑

i,j

{αiαj(piEj) + [αi, αj ]Ejpi}

=
ieh̄

m3
0c

4

⎧
⎨

⎩

∑

i,j,k

(iεijkσ̂k + δij) (piEj) +
∑

i,j

2iεijkσ̂kEjpi

⎫
⎬

⎭

=
ieh̄2

m3
0c

4
σ̂(∇ × E) +

eh̄2

m3
0c

4
∇E +

2eh̄

m3
0c

4
σ̂(E × p) .
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Here it was made use of the identities

αiαj = iεijkσ̂k + δij , [αi, αj ] = 2iεijkσ̂k .

2.5 Simple One-Particle Systems

In order to complete the parallelism of the discussions of the Klein-Gordon
and Dirac cases, we finish this chapter with some simple examples of Dirac
one-particle systems proceeding in analogy to the Klein-Gordon case, Section
1.5. First we extend our considerations of the Klein paradox from Subsec-
tion 2.3.3 to the case of a onedimensional potential well. Subsequently we
turn to the problem of centrally symmetric potentials that, as in the Klein-
Gordon theory, can be transformed into a radial problem by separating the
angular-dependent part. Concrete examples are the free particle, the centrally
symmetric potential well, and, finally, the Coulomb potential. As before, all
considerations refer to the Dirac representation.

2.5.1 Potential Well

To start, we consider a spin-1/2 particle in the presence of a onedimensional
potential well of the form

eA(0)(z) = V (z) =

{
0 for −a < z < a (area II)

V0 else (area I,III)

}

, V0 > 0. (2.100)

With respect to the qualitative discussion of the possible solutions, we can
completely carry over the statements from Subsection 1.5.1 as well as Figure
1.5. For a more detailed analysis, we first separate the time-dependent part
of the Dirac wave function via

ψ(z, t) = Ψ(z)e−iEt/h̄

so that Ψ(z) fulfills the stationary equation (2.85) with V (z) from (2.100).
Next we concentrate on the scattering cases (1., 3., and 5. case), then the
tunneling case (4. case), and, finally, the bound case (2. case).

1., 3., and 5. case in detail. For these scattering cases we assume a
(anti)particle coming from the left along the z axis and scattering against
the potential well. Therefore, our ansatz for the solution of (2.85) within the
areas I (z < −a), II (−a < z < a), and III (z > a) is (rest spin in z-direction)

ΨI(z) = Ψin(z) + Ψref(z)

Ψin(z) = Aeik1z

⎛

⎜
⎜
⎝

1
0
λ1

0

⎞

⎟
⎟
⎠ , Ψref(z) = Be−ik1z

⎛

⎜
⎜
⎝

1
0

−λ1

0

⎞

⎟
⎟
⎠
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ΨII(z) = Ceik2z

⎛

⎜
⎜
⎝

1
0
λ2

0

⎞

⎟
⎟
⎠+ De−ik2z

⎛

⎜
⎜
⎝

1
0

−λ2

0

⎞

⎟
⎟
⎠

ΨIII(z) = Ψtrans(z) = Eeik1z

⎛

⎜
⎜
⎝

1
0
λ1

0

⎞

⎟
⎟
⎠ ,

with

k1 = ±
√

(E − V0)2 − m2
0c

4

h̄2c2
, k2 = ±

√
E2 − m2

0c
4

h̄2c2

λ1 =
ch̄k1

E − V0 + m0c2
, λ2 =

ch̄k2

E + m0c2
,

and k1 = +|k1|, k2 = +|k2| in the 1. case, k1 = −|k1|, k2 = +|k2| in the 3. case,
and k1 = −|k1|, k2 = −|k2| in the 5. case. This approach takes into account
our findings in Subsection 2.3.3, namely that, at the area borders z = ±a,
there is no spin flip on the level of wave functions. The continuity conditions
ΨI(−a) = ΨII(−a) and ΨII(a) = ΨIII(a) lead to the following conditional
equations for the integration constants A to E:

Ae−ik1a + Beik1a = Ce−ik1a + Deik1a

λ1

(
Ae−ik1a − Bik1a

)
= λ2

(
Ce−ik2a − Deik2a

)

Ceik2a + De−ik2a = Eeik1a

λ2

(
Ceik2a − De−ik2a

)
= λ1Eeik1a .

They are formally identical to the corresponding equations (1.68) of the Klein-
Gordon case with the prefactor replacement ki → λi. Therefore, the same
replacement in (1.69) immediately leads to the reflection and transmission
coefficients

R = −jref
jin

=
(λ2

1 − λ2
2)

2 sin2 2k2a

4λ2
1λ

2
2 + (λ2

1 − λ2
2)2 sin2 2k2a

T =
jtrans

jin
=

4λ2
1λ

2
2

4λ2
1λ

2
2 + (λ2

1 − λ2
2)2 sin2 2k2a

= 1 − R .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2.101)

As in the Klein-Gordon case, both coefficients oscillate between 0 and 1 de-
pending on k2 or E. For sin 2k2a = 0, i.e. for

E2 = n2 c2h̄2π2

4a2
+ m2

0c
4 , n = 1, 2, . . . ,

the reflection coefficient vanishes exactly.
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4. case in detail. For this tunneling case the above ansatz can be adopted,
whereas k1, k2, λ1, and λ2 should be chosen as

k1 = −
√

(E − V0)2 − m2
0c

4

h̄2c2
, k2 = iκ2 , κ2 =

√
m2

0c
4 − E2

h̄2c2

λ1 =
ch̄k1

E − V0 + m0c2
, λ2 = iξ2 , ξ2 =

ch̄κ2

E + m0c2
.

The corresponding reflection and transmission coefficients follow from (2.101)
as

R =
(κ2

1 + ξ2
2)2 sinh2 2κ2a

4κ2
1ξ

2
2 + (κ2

1 + ξ2
2)2 sinh2 2κ2a

T =
4κ2

1ξ
2
2

4κ2
1ξ

2
2 + (κ2

1 + ξ2
2)2 sinh2 2κ2a

= 1 − R .

As before, both coefficients lie between 0 and 1, whereas the transmission co-
efficient is now decreasing exponentially with a and increasing exponentially
with E.

2. case in detail. As in the corresponding 2. Klein-Gordon case, we choose
the bound wave functions to be

ΨI(z) = Aeκ1z

⎛

⎜
⎜
⎝

1
0

−iξ1

0

⎞

⎟
⎟
⎠

ΨII(z) =

⎛

⎜
⎜
⎝

B cos k2z + C sin k2z
0

iλ2(B sin k2z − C cos k2z)
0

⎞

⎟
⎟
⎠

ΨIII(z) = De−κ1z

⎛

⎜
⎜
⎝

1
0
iξ1

0

⎞

⎟
⎟
⎠ ,

with

κ1 =

√
m2

0c
4 − (E − V0)2

h̄2c2
, k2 =

√
E2 − m2

0c
4

h̄2c2

ξ1 =
ch̄κ1

E − V0 + m0c2
, λ2 =

ch̄k2

E + m0c2
.

In this case the continuity conditions at the area borders lead to

Ae−κ1a = B cos k2a − C sin k2a

ξ1Ae−κ1a = λ2B sin k2a + λ2C cos k2a

De−κ1a = B cos k2a + C sin k2a

ξ1De−κ1a = λ2B sin k2a − λ2C cos k2a .
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Combining the first two and the last two equations, one obtains

ξ1 = λ2
B sin k2a + C cos k2a

B cos k2a − C sin k2a
= λ2

B sin k2a − C cos k2a

B cos k2a + C sin k2a
,

from which the condition BC = 0 follows. Thus, we have to distinguish again
the following two cases leading to different quantization conditions for the
energy E:

2.a: C = 0 =⇒ A = D.

tan k2a =
ξ1

λ2
.

2.b: B = 0 =⇒ A = −D.

− cot k2a = tan
(
k2a +

π

2

)
=

ξ1

λ2
.

Analogously to footnote 26 on page 65, we point out that, due to the form of
V (z), the Hamilton operator in (2.85) commutes with the parity transforma-
tion of Subsection 2.2.3. Up to an irrelevant constant, we have in the active
case

[H(z)Ψ(z)]P = γ0H(−z)Ψ(−z) = H(z)γ0Ψ(−z) = H(z)ΨP (z) .

Thus, the wave function Ψ(z) as well as its parity transformed ΨP (z) are both
solutions to (2.85) with the same energy eigenvalue:

EΨ(z) = H(z)Ψ(z) =⇒ EΨP (z) = [H(z)Ψ(z)]P = H(z)ΨP (z) .

Due to the linearity of the Dirac equation, both solutions can be combined
to give new solutions with defined parity,

Ψ (±)(z) = Ψ(z) ± ΨP (z) , Ψ
(±)
P (z) = ±Ψ (±)(z) .

Case 2.a corresponds to even solutions (+) and case 2.b to odd solutions (−).

2.5.2 Radial Form of the Dirac Equation

Now we turn to the case of a spin-1/2 particle in a centrally symmetric
potential of the form eA0(x) = V (x) = V (|x|), A = 0. Due to the rotational
symmetry of the corresponding Dirac-Hamilton operator, it is useful to pass
over to spherical coordinates,

x = r cos ϕ sin θ , y = r sin ϕ sin θ , z = r cos θ ,

in order to isolate the angular-dependent and radial parts. To this end, we
start with the Dirac equation

ih̄
∂ψ(x)

∂t
=
[
cαp + βm0c

2 + V (r)
]
ψ(x) , r = |x|

and rewrite it as the time-independent (stationary) equation
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HΨ(x) = EΨ(x) , H = cαp+βm0c
2+V (r) , Ψ(x) = ψ(x)e−iEt/h̄.(2.102)

To separate the radial and angular-dependent parts in the momentum term
αp, we introduce the radial momentum

pr = −ih̄
1
r

∂

∂r
r = −ih̄

(
∂

∂r
+

1
r

)

and the radial velocity

αr =
αx

r
.

From this and taking into account

(σA)(σB) = AB + iσ(A × B) , x∇ = r∂/∂r ,

it follows that

(αx)(αp) = xp + iσ̂L = rpr + i
(

h̄ +
2SL

h̄

)
. (2.103)

Multiplying this expression from the left by αr/r finally yields

αp = αr

[
pr +

i
r

(
h̄ +

J2 − S2 − L2

h̄

)]
, (2.104)

where J = L + S denotes the total angular momentum of the particle.
As one can easily show, the operators {H,J2, Jz} together with the parity
transformation P form a complete set of commuting observables. Therefore,
we construct the solutions to (2.102) in such a way that they are eigenvectors
of these four operators. If we restrict ourselves to two solutional components,
we can immediately quote the eigenfunctions of J2 and Jz (and L2, S2) by
resorting to the corresponding results of nonrelativistic quantum mechanics:

Y(l)
J,M (θ, ϕ) =

∑

m+ms=M

〈
l,ml;

1
2
,ms

∣
∣
∣
∣ J,M

〉
Yl,m(θ, ϕ)χ(ms) , l = J ∓ 1

2
,

with

J2Y(l)
J,M = h̄2J(J + 1)Y(l)

J,M , JzY(l)
J,M = h̄MY(l)

J,M , M = −J, . . . , J .

These spinor spherical harmonics are composed of the spherical harmonics
Yl,m(θ, ϕ), with

L2Yl,m = h̄2l(l + 1)Yl,m , LzYl,m = h̄mYl,m , m = −l, . . . , l ,

and the spinors χ(ms), with

S2χ(ms) =
3h̄2

4
χ(ms) , Szχ(ms) = h̄msχ(ms) , S =

h̄

2
σ , ms = ±1

2
.

〈 . . .| . . .〉 denote the usual Clebsch-Gordan coefficients. Next we have to com-
bine two spinor spherical harmonics with the same J and M so that the
resulting bispinor has a defined parity. Note that the behavior of the spheri-
cal harmonics under space reflection,
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Yl,m(π − θ, ϕ + π) = (−1)lYl,m(θ, ϕ) ,

imply for the spinor spherical harmonics that

Y(l)
J,M (π − θ, ϕ + π) = (−1)lY

(l)
J,M (θ, ϕ) .

On the other hand, applying the active parity transformation to a bispinor
yields up to an irrelevant phase

(
Ψu(x)
Ψd(x)

)
−→

(
Ψu(x)
Ψd(x)

)

P

=
(

Ψu(−x)
−Ψd(−x)

)
.

From this it follows that we have to combine two Y(l)
J,M whose l-values differ by

1 in order to get states with defined parity. Including the radial dependence,
the two possible combinations can be written as

Ψ
(ω)
J,M (r, θ, ϕ) =

1
r

⎛

⎝
FJ+ω/2(r)Y(J+ω/2)

J,M (θ, ϕ)

iGJ−ω/2(r)Y(J−ω/2)
J,M (θ, ϕ)

⎞

⎠ , ω = ±1 ,

with
[
Ψ

(ω)
J,M

]

P
(θ, ϕ) = (−1)J+ω/2Ψ

(ω)
J,M (θ, ϕ) .

Here Fl(r) and Gl(r) denote two yet unspecified, solely r-dependent scalar
functions and ω the parity quantum number. Due to

L2Ψ
(ω)
J,M = h̄2l(l + 1)Ψ (ω)

J,M = h̄2

[
J(J + 1) +

1
4

+
ω

2
β(2J + 1)

]
Ψ

(ω)
J,M ,

the bracket term in (2.104) can be cast as
(

h̄ +
J2 − S2 − L2

h̄

)
Ψ

(ω)
J,M = − h̄ω

2
(2J + 1)βΨ

(ω)
J,M

so that, in total, (2.102) becomes
[

cαr

(

pr −
ih̄ω
(
J + 1

2

)

r
β

)

+ βm0c
2 + V (r)

]

Ψ
(ω)
J,M = EΨ

(ω)
J,M .

Using the identities (see Exercise 29)
σx

r
Y(J±ω/2)

J,M = −Y(J∓ω/2)
J,M (2.105)

and

pr

(
f(r)

r

)
= −ih̄

1
r

df

dr
,

we finally arrive at
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Theorem 2.10: Radial Dirac equations
for centrally symmetric potentials

The solutions to the time-independent Dirac equation with a centrally sym-
metric potential

HΨ(x) = EΨ(x) , H = cαp + βm0c
2 + V (r) ,

can be written in spherical coordinates as

Ψ
(ω)
J,M (r, θ, ϕ) =

1
r

⎛

⎝
FJ+ω/2(r)Y(J+ω/2)

J,M (θ, ϕ)

iGJ−ω/2(r)Y(J−ω/2)
J,M (θ, ϕ)

⎞

⎠ ,

where the functions Fl and Gl fulfill the radial Dirac equations
[

− d
dr

+
ω
(
J + 1

2

)

r

]

GJ−ω/2(r) =
E − m0c

2 − V

ch̄
FJ+ω/2(r)

[
d
dr

+
ω
(
J + 1

2

)

r

]

FJ+ω/2(r) =
E + m0c

2 − V

ch̄
GJ−ω/2(r).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2.106)

Furthermore, these solutions obey the relationships

J2Ψ
(w)
J,M (r, θ, ϕ) = h̄2J(J + 1)Ψ (ω)

J,M (r, θ, ϕ) , J =
1
2
,
3
2
, . . .

JzΨ
(w)
J,M (r, θ, ϕ) = h̄MΨ

(ω)
J,M (r, θ, ϕ) , M = −J, . . . , J

[
Ψ

(ω)
J,M

]

P
(r, θ, ϕ) = (−1)J+ω/2Ψ

(ω)
J,M (r, θ, ϕ) , ω = ±1 .

2.5.3 Free Particle and Centrally Symmetric Potential Well

The simplest application of Theorem 2.10 is a free spin-1/2 particle (V = 0).
If, in this case, the second radial equation is solved for G,

GJ−ω/2(r) =
ch̄

E + m0c2

[
d
dr

+
ω
(
J + 1

2

)

r

]

FJ+ω/2(r) , (2.107)

and subsequently inserted into the first, one obtains
[

− d2

dr2
+

(
J + 1

2

) (
J + 1

2 + ω
)

r2

]

FJ+ω/2(r) =
E2 − m2

0c
4

c2h̄2 FJ+ω/2(r) .

Taking into account

l = J +
ω

2
=⇒

(
J +

1
2

)(
J +

1
2

+ ω

)
= l(l + 1) ,

it follows that
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[
d2

dr2
− l(l + 1)

r2
+ k2

]
Fl(r) = 0 , k2 =

E2 − m2
0c

4

c2h̄2 . (2.108)

Obviously, this equation is formally identical to the radial Klein-Gordon equa-
tion (1.72) in Theorem 1.9. For further evaluation, we can therefore resort to
the corresponding calculations of the Klein-Gordon case. Making the substi-
tutions

ρ = kr , Fl(r) = ρF̂l(ρ) , Gl(r) = ρĜl(ρ) ,

(2.107) and (2.108) pass over to the equation system
[

d2

dρ2
+

2
ρ

d
dρ

− l(l + 1)
ρ2

+ 1
]

F̂l(ρ) = 0

ĜJ−ω/2(ρ) =
ch̄k

E + m0c2

[
d
dρ

+
ω
(
J + 1

2

)

ρ

]

F̂J+ω/2(ρ) .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2.109)

The first equation is the spherical Bessel differential equation which was
already discussed in Subsection 1.5.3 and whose solutions are given by the
spherical Bessel functions jl, nl, h

(±)
l . The following recursion formulae hold

for them (F̂l = jl, nl, h
(±)
l ):

F̂l−1(ρ) =
d

dρ
F̂l(ρ) +

l + 1
ρ

F̂l(ρ) , F̂l+1(ρ) = − d

dρ
F̂l(ρ) +

l

ρ
F̂l(ρ) .

Thus, the second equation of (2.109) yields for Gl:

ĜJ−ω/2(ρ) =
ch̄kω

E + m0c2
F̂J−ω/2(ρ) .

With respect to the physical content of these solutions, we again have to
distinguish the following cases:

• |E| < m0c
2: in this energy range, there is no solution to the spherical Bessel

differential equation that is bounded at infinity and regular at the origin.
As in the Klein-Gordon case, a free (anti)particle with energy E within the
“forbidden range“ −m0c

2 < E < m0c
2 is not possible.

• |E| > m0c
2: here we have exactly one solution to the Bessel equation

bounded everywhere, namely F̂l(ρ) = jl(ρ). Returning to the original quan-
tities, the physical solution to (2.106) is therefore

FJ+ω/2(r) = AJ+ω/2rjJ+ω/2(kr) , k =

√
E2 − m2

0c
4

c2h̄2

GJ−ω/2(r) = AJ+ω/2
ch̄kω

E + m0c2
rjJ−ω/2(kr) ,

⎫
⎪⎪⎬

⎪⎪⎭
(2.110)

with the normalization constant AJ+ω/2. Thus, to each energy value |E| >
m0c

2, we obtain a free spherical wave with angular momentum J,M , and
parity (−1)J+ω/2.
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Spherically symmetric potential well. It is easy to extend our consid-
erations to the case of a spherically symmetric potential well given by

eA0(r) = V (r) =

{
−V0 for r < a (area I)

0 for r > a (area II) .

}

, V0 > 0

(see Figure 1.7). Concerning the upper radial function Fl, the same line of
argument hold as for the Klein-Gordon case in Subsection 1.5.3. Thus, using
the abbreviations l = J + ω/2, l′ = J − ω/2, the regular solution to (2.106)
in area I is

• |E + V0| > m0c
2:

⎧
⎪⎪⎨

⎪⎪⎩

F
(I)
l (r) = Alrjl(k1r) , k1 =

√
(E + V0)2 − m2

0c
4

c2h̄2

G
(I)
l′ (r) = Al

ch̄k1ω

E + V0 + m0c2
rjl′(k1r)

or

• |E + V0| < m0c
2:

⎧
⎪⎪⎨

⎪⎪⎩

F
(I)
l (r) = Alrjl(iκ1r) , κ1 =

√
m2

0c
4 − (E + V0)2

c2h̄2

G
(I)
l′ (r) = Al

ich̄κ1ω

E + V0 + m0c2
rjl′(iκ1r)

which is obtained from the free solution (2.110) with the replacement E →
E + V0. The following two cases must be distinguished in the outer area II:

• |E| < m0c
2 (bound states): in this case the only solution to (2.106) bounded

at infinity is given by

F
(II)
l (r) = Blrh

(+)
l (iκ2r) , κ2 =

√
m2

0c
4 − E2

c2h̄2

G
(II)
l′ (r) = Bl

ich̄κ2ω

E + m0c2
rh

(+)
l′ (iκ2r) .

The continuity conditions at the area border r = a,

F
(I)
l (a)
a

=
F

(II)
l (a)

a
,

d
dr

F
(I)
l (r)
r

∣
∣
∣
∣
∣
r=a

=
d
dr

F
(II)
l (r)

r

∣
∣
∣
∣
∣
r=a

,

can be simultaneously satisfied only for discrete energy values E, the energy
levels of the bound states. For l=0-states (with respect to the F -function,
i.e. J = 1/2, ω = −1) and E + V0 > m0c

2, one obtains the quantization
condition

tan k1a = −k1

κ2
,

which is formally identical to the Klein-Gordon condition [see (1.74)]
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• |E| > m0c
2 (unbound states): here a linear combination of the spherical

Bessel functions seems to be feasible. We therefore write for the solution
of (2.106):

F
(II)
l (r) = Blr[jl(k2r) cos δl + nl(k2r) sin δl] , k2 =

√
E2 − m2

0c
4

c2h̄2

G
(II)
l′ (r) = Bl

ch̄k2ω

E + m0c2
r[jl′(k2r) cos δl + nl′(k2r) sin δl] .

If we focus on l=0-states (with respect to the F -function), the correspon-
ding continuity conditions determine the phase δ0 to be

tan(k2a + δ0) =
k2

k1
tan k1a for |E + V0| > m0c

2

or

tan(k2a + δ0) =
k2

κ1
tanhκ1a for |E + V0| < m0c

2 .

These relations are also formally identical to the Klein-Gordon relations [com-
pare to (1.75), (1.76)].

At this stage, we leave out a more detailed division and interpretation
of these solutions since they result in the five cases discussed in Subsection
1.5.3.

2.5.4 Coulomb Potential

As the last example of centrally symmetric problems, we now turn to a bound
spin-1/2 particle in a Coulomb potential of the form (hydrogen-like atom)

eA0(r) = V (r) = −Ze2

r
= −Zh̄cαe

r
, αe =

e2

h̄c
= 1/137.03602 .

As in the corresponding Klein-Gordon problem (Subsection 1.5.4), we first
investigate the asymptotic regions of the radial Dirac equations for small and
large distances in order to find an appropriate power series expansion to solve
these equations.
r → ∞: in the limit of large r the radial Dirac equations (2.106) become

−dG

dr
=

E − m0c
2

ch̄
F ,

dF

dr
=

E + m0c
2

ch̄
G ,

whereas here and in the following the indices J ± ω/2 are suppressed. Com-
bining these two equations yields the relation

d2F

dr2
= −E2 − m2

0c
4

c2h̄2 F .

Its normalizable solution (descending at infinity) is given by

F (r → ∞) ∼ e−kr , k =

√
m2

0c
4 − E2

c2h̄2 .
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r → 0: in this case (2.106) passes over to the equations
[

− d
dr

+
ω
(
J + 1

2

)

r

]

G =
Zαe

r
F

[
d
dr

+
ω
(
J + 1

2

)

r

]

F =
Zαe

r
G

that can be combined to give
{

r
d2

dr2
+

d
dr

+
1
r

[

(Zαe)2 −
(

J +
1
2

)2
]}

F = 0 .

Its regular solution13 is

F (r → 0) ∼ rs , s = +

√(
J +

1
2

)2

− (Zαe)2 .

In order to facilitate the following calculations, we introduce the substitutions

ρ = kr , F (r) = F̂ (ρ) , G(r) = Ĝ(ρ) , k =

√
m2

0c
4 − E2

c2h̄2

τ = ω

(
J +

1
2

)
, ν =

√
m0c

2 − E

m0c2 + E

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2.111)

so that the original radial equations (2.106) become
(
− d

dρ
+

τ

ρ

)
Ĝ =

(
−ν +

Zαe

ρ

)
F̂

(
d
dρ

+
τ

ρ

)
F̂ =

(
1
ν

+
Zαe

ρ

)
Ĝ .

To solve them we choose, due to the above considerations, the ansatz

F̂ (ρ) = ρse−ρ
∑

i

aiρ
i , s =

√
τ2 − (Zαe)2

Ĝ(ρ) = ρse−ρ
∑

i

biρ
i ,

⎫
⎪⎬

⎪⎭
(2.112)

which leads to the following recursive conditional equations for the expansion
coefficients ai and bi:

(τ − s)b0 = Zαea0

(τ + s)a0 = Zαeb0

bi−1 + (τ − s − i)bi = −νai−1 + Zαeai , i ≥ 1

−ai−1 + (τ + s + i)ai =
bi−1

ν
+ Zαebi , i ≥ 1 .

13 Here we assume that Zαe < J + 1/2. Fortunately, this is the case for Z < 137,
i.e. for all nuclei that can be found in nature (otherwise, the discussion of the
regularity conditions at the origin would be more extensive).
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From the first two equations we obtain again s =
√

τ2 − (Zαe)2, while the
last two equations yield

bi =
Zαe − ν(τ + s + i)
τ − s − i − νZαe

ai

and

ai+1
(Zαe)2 + (τ + s + i + 1)(−τ + s + i + 1)

τ − s − i − 1 − νZαe

= ai
Zαeν

2 + 2ν(s + i) − Zαe

ν(τ − s − i − νZαe)
. (2.113)

For F̂ (ρ) and Ĝ(ρ) to have the desired (descending) behavior at infinity, the
power series in (2.112) needs to terminate at some i = n′. This means that

Zαe − 2ν(n′ + s) − ν2Zαe = 0 .

From this we get the quantization condition

ν = −n′ + s

Zαe
+

√(
n′ + s

Zαe

)2

+ 1

and, together with (2.111), the possible energy levels of the hydrogen atom
for bound states,

En′,J =
m0c

2

√
1 + (Zαe)2(

n′+
√

(J+ 1
2 )

2−(Zαe)2
)2

.

Introducing the principal quantum number

n = n′ + J +
1
2

,

the final result is

En,J =
m0c

2

√
1 + (Zαe)2(

n−(J+ 1
2 )+
√

(J+ 1
2 )

2−(Zαe)2
)2

, (2.114)

where n and J can take on the values

n = 1, 2, . . . ,∞ , J =
1
2
,
3
2
, . . . , n − 1

2
.

Equation (2.114) is formally identical to the corresponding relation (1.81) of
the Klein-Gordon case, if, in the latter, l is replaced by J . Consequently, the
series expansion of (2.114) in powers of Zαe can be immediately read off from
(1.82):

En,J = m0c
2

[
1 − (Zαe)2

2n2
− (Zαe)4

2n4

(
n

J + 1
2

− 3
4

)
+ . . .

]
. (2.115)
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The first term is the mass term. The second one complies with the quantity
predicted from nonrelativistic quantum mechanics. All subsequent terms are
relativistic corrections. Their effect is that the nonrelativistic degeneracy of
all levels with the same n is removed. Instead, we now encounter a degeneracy
of levels with the same n and J . At fixed n the energy of each level is slightly
raised depending on J .

For an easier distinction between the various solutions, one usually adopts
the nonrelativistic spectroscopic notation nlJ , whereas the l-value convention-
ally refers to the two upper components of the Dirac bispinor, i.e. l = J+ω/2.
Table 2.2 provides an overview of the electron energies of hydrogen-like atoms
for the ground state as well as for the first excited states together with their
spectroscopic labels and the corresponding quantum numbers. To each J

n J ω l nlJ EnJ/m0c
2

1 1/2 −1 0 1s1/2

√
1 − (Zαe)2

2 1/2 −1 0 2s1/2

√
1+

√
1−(Zαe)2

2

2 1/2 +1 1 2p1/2 ”

2 3/2 −1 1 2p3/2

√
4−(Zαe)2

2

3 1/2 −1 0 3s1/2
2+

√
1−(Zαe)2√

5+4
√

1−(Zαe)2

3 1/2 +1 1 3p1/2 ”

3 3/2 −1 1 3p3/2
1+

√
4−(Zαe)2√

5+2
√

4−(Zαe)2

3 3/2 +1 2 3d3/2 ”

3 5/2 −1 2 3d5/2

√
9−(Zαe)2

3

Tab. 2.2. Energy levels of hydrogen-like atoms.

there belong two series of 2J + 1 solutional functions with opposite parities,
except for J = n − 1/2 for which only one series of 2J + 1 solutions with
parity (−1)n−1 exists. The latter is a consequence of the fact that the right
hand side of (2.113) becomes singular for n′ = 0 and ω = +1 (and only for
this combination).

Until 1947 the spectroscopic observations of the hydrogen atom (and
hydrogen-like atoms, particularly He+) agreed well with the above results
after they had been complemented by the interaction effects between the
spins of the electron and the nucleus (hyperfine structure splitting). However,
in 1947 Lamb and Retherford observed a small shift of the hydrogen level
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2s1/2 upward, which amounts to roughly one tenth of the distance between
the 2p3/2- and 2p1/2-levels (see Figure 2.2). This effect, known as Lamb shift,

n = 2

2s1/2,2p1/2

2p3/2
2p3/2

2p1/2

2s1/2

Schrödinger theory Dirac theory Lamb shift hyperfine
structure

Fig. 2.2. Line splittings of the nonrelativistic n=2-hydrogen level including rela-
tivistic effects (Dirac theory, main part: fine structure splitting), the Lamb shift, as
well as the hyperfine structure splitting.

is today seen as a consequence of the interaction between the electron and
the fluctuations of the quantized radiation field and can fully be understood
only within the framework of quantum electrodynamics (see Section 3.4, par-
ticularly Subsection 3.4.4). The Dirac theory deals with the major part of
this interaction, i.e. the Coulomb potential, and the Lamb shift represents
the radiation corrections within this approximation.

We now quote the Dirac wave functions for the ground state of the hy-
drogen atom. In this case, we have

n = 1 , J =
1
2

, M = ±1
2

, ω = −1

and

k =
m0cZαe

h̄
, s =

√
1 − (Zαe)2 , ν =

1 − s

Zαe

so that

Ψ
(ω=−1)
J=1/2,M=+1/2(r, θ, ϕ) = N(2kr)s−1e−kr

⎛

⎜
⎜
⎜
⎝

1
0

i(1−s)
Zαe

cos θ
i(1−s)
Zαe

sin θeiϕ

⎞

⎟
⎟
⎟
⎠

Ψ
(ω=−1)
J=1/2,M=−1/2(r, θ, ϕ) = N(2kr)s−1e−kr

⎛

⎜
⎜
⎜
⎝

0
1

i(1−s)
Zαe

sin θe−iϕ

− i(1−s)
Zαe

cos θ

⎞

⎟
⎟
⎟
⎠

,
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with

N =
(2k)3/2

√
4π

√
1 + s

2Γ (1 + 2s)

and the Gamma-function Γ (x). The normalization constant N is chosen so
that∫

d3xΨ
(ω=−1)†
J=1/2,M=±1/2(r, θ, ϕ)Ψ (ω=−1)

J=1/2,M=±1/2(r, θ, ϕ) = 1 .

In the nonrelativistic limit s → 1 and (s − 1)/Zαe → 0, the two upper com-
ponents pass over to the Schrödinger wave functions multiplied by the Pauli

spinors
(

1
0

)
and

(
0
1

)
respectively. Contrary to the nonrelativistic expres-

sions, the relativistic wave functions exhibit a weak but square-integrable
singularity rs−1. For Zαe > 1, s becomes imaginary and the solutions start
to oscillate. At Zαe = 1 the “slope“ of the energy E1,1/2 is

dE1,1/2

dZ

∣
∣
∣
∣
Zαe=1

= − m0c
2Zα2

e√
1 − (Zαe)2

∣
∣
∣
∣
∣
Zαe=1

−→ −∞ .

At the end, we point out that the Dirac equation with an external Coulomb
potential is just a rough approximation for the description of hydrogen-like
bound states. With respect to the accompanying exclusions, similar state-
ments hold as in the Klein-Gordon case, Subsection 1.5.4.

Summary

• Depending on the particle energy, the discussion of the onedimensional
potential well leads to different Dirac solutions which can be interpreted
within the one-particle picture more or less consistently as scattering
or binding of particles or antiparticles.

• Within the Dirac equation with a centrally symmetric potential the radial
and angular-dependent parts can be separated, the latter being solved
by the spinor spherical harmonics, i.e. the eigenfunctions of J2, Jz,
and of the parity transformation P . For the solution of the radial part
there remain two radial Dirac equations.

• For the free case (as well as that of constant potential sections), the radial
Dirac equations lead to the spherical Bessel differential equation
whose solutions are given by the spherical Bessel functions.

• Similar to pion atoms in the Klein-Gordon case, hydrogen-like atoms can
be described approximately using the Coulomb potential. Here bound en-
ergy levels with the same principal and total angular momentum quan-
tum numbers turn out be degenerate.
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Exercises

29. Properties of spinor spherical harmonics. Prove the identity [see
(2.105)]

σx

r
Y(l=J±1/2)

J,M = −Y(l=J∓1/2)
J,M .

Tip: exploit the fact that Y(l)
J,M are eigenfunctions of σL and calculate the

commutator [σx/r,σL].

Solution. To calculate the first half of the commutator, we use (2.103) to
obtain

(σx)(σp) = (xp) + iσL .

Multiplying this equation by (σx) yields

r2(σp) = (σx)(xp) + i(σx)(σL)

and finally

σx

r
σL = −ir(σp) + i

(σx)(xp)
r

. (2.116)

Written down explicitly, the other half of the commutator is

σL
σx

r
= −ih̄

∑

i,j,k,l

εijkσixj
∂

∂xk
σl

xl

r

= −ih̄
∑

i,j,k,l

σiσlεijkxj

(
δkl

r
− xlxk

r3
+

xl

r

∂

∂xk

)
.

Here the first term yields

−ih̄
∑

i,j,k,l

σiσlεijkxj
δkl

r
= −2h̄

σx

r
.

The second term does not contribute whereas the third term is calculated as

−ih̄
∑

i,j,k,l

σiσlεijk
xjxl

r

∂

∂xk
=

h̄

r
(x × σ)(x × ∇)

=
i
r
(x × σ)(x × p)

= ir(σp) − i
(σx)(xp)

r
.

Thus, we have

σL
σx

r
= −2h̄

σx

r
+ ir(σp) − i

(σx)(xp)
r

and, together with (2.116), it follows that
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σL
σx

r
= −σx

r
σL − 2h̄

σx

r
.

Now we make use of the fact that Y(l)
J,M are eigenfunctions of σL and write

σL = h̄

[
J(J + 1) − l(l + 1) − 3

4

]

σL
σx

r
= −h̄

[
J(J + 1) − l(l + 1) +

5
4

]
σx

r
.

Applying this to Y(l=J±ω/2)
J,M yields

σLY(l=J+ω/2)
J,M = −h̄

(
ωJ +

ω

2
+ 1
)
Y(l=J+ω/2)

J,M

σL
σx

r
Y(l=J−ω/2)

J,M = −h̄
(
ωJ +

ω

2
+ 1
) σx

r
Y(l=J−ω/2)

J,M .

The function σx
r Y(l=J−ω/2)

J,M is an eigenfunction of σL with the same eigen-

value as Y(l=J+ω/2)
J,M , meaning that

σx

r
Y(l=J−ω/2)

J,M = clY(l=J+ω/2)
J,M . (2.117)

Due to (σx/r)2 = 1, the constant of proportionality cl is restricted to |cl| = 1.
Furthermore, if we take into account the parities of both sides of (2.117) as
well as the fact that σx/r is a pseudo-vector (and does not change under
space reflection), we finally arrive at cl = c = −1.



3. Relativistic Scattering Theory

Having laid down the framework for the relativistic quantum mechanical
description of spin-0 and spin-1/2 particles with a special regard for the one-
particle interpretation, we will now deal with the scattering of those particles.

The study of scattering processes is an important instrument, particularly
for the exploration of microscopic interaction effects as, due to their narrow-
ness, they are not directly accessible to the human senses and therefore need
to be magnified appropriately. In practice, this is achieved by, for example,
directing a collimated particle beam toward a fixed target and comparing
the measured angular distribution of the scattering products with theoretical
calculations. In this way, a large number of new particles have been discov-
ered. Many of them are not only subject to the electromagnetic force but
also to two other very short-ranged forces, namely the strong and the weak
interaction. Today it is assumed that all three types of interactions can be
described by quantum field theories: the electromagnetic interaction by quan-
tum electrodynamics, the strong one by quantum chromodynamics, and the
weak one by quantum flavordynamics.

Of these three elementary types of interactions, as in the preceding two
chapters, we restrict ourselves to the electromagnetic interaction. Since the
theoretical description of relativistic scattering processes at not too small
energies must inevitably take into account particle creation and annihilation
processes, one may suspect that, at this stage, we have to give up our for-
malism with focus on the one-particle interpretation developed so far and,
instead, have to consider the above mentioned quantum electrodynamics, as
a many-particle theory (with infinitely many degrees of freedom). However,
as Feynman and Stückelberg have shown, relativistic scattering processes
can, similarly to nonrelativistic scattering processes, also be described us-
ing propagator techniques that directly tie in with the level of knowledge in
the preceding chapters, particularly with the interpretation of solutions with
negative energy (Feynman-Stückelberg interpretation). Apart from the fact
that propagator techniques seem to be more appropriate for our intention
to suppress quantum field theoretical aspects as much as possible (relativis-
tic quantum mechanics “in the narrow sense“), they provide the following
advantages:

A. Wachter, Relativistic Scattering Theory. In: A. Wachter, Relativistic Quantum
Mechanics, Theoretical and Mathematical Physics, pp. 177–348 (2011)
DOI 10.1007/978-90-481-3645-2 3 c© Springer Science+Business Media B.V. 2011
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• Contrary to quantum electrodynamics, propagator techniques provide a
less deductive but intuitively more comprehensible approach to the de-
scription of relativistic processes, which seems to be particularly suited for
the non-expert.

• Via propagator methods one arrives relatively fast to the mathematical
techniques necessary for the calculation of concrete scattering processes.

For these reasons, the following pages will center on propagator methods,
while we emphasize that the deeper grounds for the formalisms developed
here, particularly the radiation corrections at higher orders, can only be fully
understood within quantum electrodynamics.

The first section of this chapter restates the formalism of nonrelativis-
tic scattering theory and introduces the necessary mathematical concepts of
propagator, scattering matrix, and cross section. In the second section these
concepts are transferred and adequately extended to the relativistic case of
Dirac’s theory. The third section deals with the concrete calculation of rel-
ativistic spin-1/2 scattering processes to the lowest orders of the scattering
theory as well as with the development of the Feynman rules. With their
help, arbitrarily complex scattering processes can be formulated mathemat-
ically. The fourth section discusses quantum field theoretical corrections in
higher orders. As we will see, certain divergences stemming from radiation
corrections appear, which, however, can be eliminated using the program of
renormalization. At the end we transfer the developed formalisms to the scat-
tering processes of spin-0 particles and extend the Feynman rules in such a
way that they also cover the spin-0 case.

Note. In this chapter we diverge from the order used so far, in that we ad-
dress the scattering of spin-0 particles at the end and a little more succinctly.
This is because all known spin-0 particles are not elementary but composed
of quarks. They, in turn, are subject to strong and weak interactions that
usually overlap electromagnetic effects. By contrast, electrons and positrons
that we discuss predominantly in the context of spin-1/2 particle scatter-
ings are, indeed, to be regarded as elementary (structureless) so that, in this
case, electromagnetic interactions can be studied theoretically and experi-
mentally in the purest form. It is exactly in this domain where all predictions
of quantum electrodynamics turn out to be very precise. That is why quan-
tum electrodynamics is regarded as one of the most successful theories in
physics.

3.1 Review: Nonrelativistic Scattering Theory

In this section we recall the nonrelativistic treatment of scattering processes
using propagator techniques and prepare the accompanying concepts with a
view to a subsequent relativistic generalization. First we turn our attention
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to the solution of the general Schrödinger equation using the Green function
calculus. From this we derive the retarded and advanced propagators. They
can be used to describe and calculate, at least approximately, the propaga-
tion of Schrödinger solutions in temporally forward and backward directions.
After some intermediate considerations on propagators, we come to the ac-
tual scattering of particles and utilize the propagators to cast the scattering
amplitudes into a calculable form. In this context, we also derive the rela-
tionship between scattering amplitudes and the experimentally interesting
quantity, the differential cross section. At the end, the developed formalisms
are applied to the concrete problem of Coulomb scattering.

3.1.1 Solution of the General Schrödinger Equation

The starting point of our considerations is the time-dependent Schrödinger
equation1

(
ih̄

∂

∂t′
− H ′

)
ψ(x′, t′) = 0 , H ′ = H ′(0) + V (x′, t′) , H ′(0) =

p′2

2m0
, (3.1)

for whose solution we wish to develop a general formalism using the Green
function calculus.

First of all, we can assert that (3.1) is a differential equation of first order
in time. This means that the temporal evolution of a wave function ψ(x, t)
known at a specific time t is uniquely determined for all future times t′ > t
as well as for all past times t′ < t. Furthermore, (3.1) is linear so that, firstly,
solutions are superposable, and, secondly, the relation between solutions at
different times must be linear. From this follows that the wave function ψ
must obey a linear integral equation of the form

ψ(x′, t′) = i
∫

d3xG(x′, t′,x, t)ψ(x, t)

or

ψ(x′) = i
∫

d3xG(x′, x)ψ(x) , x = (x, t) , (3.2)

where the integration is carried out over the whole space. G(x′, x) denotes
the Green function containing the entire information with respect to the
evolution from ψ(x) to ψ(x′) during the time from t to t′. Obviously, the
relation (3.2) does not distinguish between the two temporal directions of
evolution, t′ > t and t′ < t. However, with a view to our actual intention,
namely the description of quantum mechanical scattering processes, such a
distinction would be preferable. This can be achieved by splitting up (3.2)
according to both temporal directions of evolution as follows:2

1 Note that, in the following, the free position and time arguments are often de-
noted by x′ und t′ (instead of x and t).

2 The positive sign holds for the upper equation, the negative sign for the lower
one.
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{
Θ(t′ − t)
Θ(t − t′)

}
ψ(x′) = ±i

∫
d3xG(±)(x′, x)ψ(x) , (3.3)

where Θ(t) denotes the step function defined by

Θ(t) =

{
0 for t < 0

1 for t > 0 .

As can be easily perceived from (3.3), now the Green functions G(±)(x′, x)
allow a propagation from ψ(x) to ψ(x′) only in a positive or a negative
temporal direction. Due to this causal behavior, one calls G(+) the retarded
propagator and G(−) the advanced propagator.

Differential equation for G(±). In order to obtain a conditional equation
for the propagators G(±), we apply the operator in (3.1) to the upper equation
of (3.3) to get

(
ih̄

∂

∂t′
− H ′

)
Θ(t′ − t)ψ(x′) = ih̄δ(t′ − t)ψ(x′)

= i
∫

d3x

(
ih̄

∂

∂t′
− H ′

)
G(+)(x′, x)ψ(x)

=⇒ 0 =
∫

d3x

[(
ih̄

∂

∂t′
− H ′

)
G(+)(x′, x) − h̄δ(t′ − t)δ(x′ − x)

]
ψ(x)

=⇒
(

ih̄
∂

∂t′
− H ′

)
G(+)(x′, x) = h̄δ(x′ − x) ,

with

δ(x′ − x) = δ(t′ − t)δ(x′ − x) .

Applying (ih̄∂/∂t′ − H ′) to the lower equation of (3.3) leads to the exactly
same differential equation for G(−) so that both cases can finally be combined
in3

(
ih̄

∂

∂t′
− H ′

)
G(±)(x′, x) = h̄δ(x′ − x) . (3.4)

This equation along with the boundary conditions of the temporal direction
of evolution,

G(+)(x′, x) = 0 for t′ < t and G(−)(x′, x) = 0 for t′ > t , (3.5)

determines the propagators G(±) uniquely.

3 This is the reason why the relative sign between the two equations was introduced
in (3.3).
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Integral equation for G(±) and ψ. At first sight, the introduction of
the propagators G(±) does not seem to be advantageous for solving the
Schrödinger equation (3.1), since, for the propagators, we also have to solve
a Schrödinger-like differential equation (3.4) [with a space-time point source
of “unity strength“ h̄δ(x′ − x)]. However, as we see shortly, the advantage of
using propagators is that they lead to integral equations that, in general, can
also not be solved exactly but at least approximately.

Writing the differential equation (3.4) in the form
(

ih̄
∂

∂t′
− H ′(0)

)
G(±)(x′, x) = h̄δ(x′ − x) + V (x′)G(±)(x′, x) , (3.6)

one can show that it is most generally solved by

G(±)(x′, x) = G(0,±)(x′, x)

+
1
h̄

∫
d4x1G

(0,±)(x′, x1)V (x1)G(±)(x1, x) , (3.7)

where G(0,±) denote the free retarded and advanced propagators that, in
turn, fulfill the differential equation

(
ih̄

∂

∂t′
− H ′(0)

)
G(0,±)(x′, x) = h̄δ(x′ − x) . (3.8)

This is because inserting (3.7) into (3.6) together with (3.8) yields
(

ih̄
∂

∂t′
− H ′(0)

)
G(±)(x′, x)

= h̄δ(x′ − x)

+
1
h̄

∫
d4x1

(
ih̄

∂

∂t′
− H ′(0)

)
G(0,±)(x′, x1)V (x1)G(±)(x1, x)

= h̄δ(x′ − x) +
∫

d4x1δ(x′ − x1)V (x1)G(±)(x1, x)

= h̄δ(x′ − x) + V (x′)G(±)(x′, x) .

Combining (3.7) with (3.3), we obtain an integral equation for ψ,

ψ(x′) = ±i lim
t→∓∞

∫
d3xG(±)(x′, x)ψ(x)

= ±i lim
t→∓∞

[∫
d3xG(0,±)(x′x)ψ(x)

+
1
h̄

∫
d3x

∫
d4x1G

(0,±)(x′, x1)V (x1)G(±)(x1, x)ψ(x)
]

= ψfree(x′) +
1
h̄

∫
d4x1G

(0,±)(x′, x1)V (x1)ψ(x1) , (3.9)

where
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ψfree(x′) = ±i lim
t→∓∞

∫
d3xG(0,±)(x′, x)ψ(x)

solves the free Schrödinger equation. Thus, once the explicit form of the free
propagators G(0,±) is known, the full propagators G(±) as well as ψ can
be approximately determined for all times by iterating the relation (3.7) or
(3.9)4, whereas the causality principle (3.5) is automatically carried over from
G(0,±) to G(±).

Theorem 3.1: Solution of the general Schrödinger equation
in the propagator formalism

The solution to the general Schrödinger equation
(

ih̄
∂

∂t′
− H ′

)
ψ(x′) = 0 , H ′ = H ′(0) + V (x′) , H ′(0) =

p′2

2m0

with the constraint ψ(x) at time t is given for a later or sooner time t′ by
{

Θ(t′ − t)
Θ(t − t′)

}
ψ(x′) = ±i

∫
d3xG(±)(x′, x)ψ(x) . (3.10)

G(+) and G(−) are called retarded and advanced propagators. They con-
tain the entire temporally forward or backward directed dynamics of the
problem and obey the differential equations

(
ih̄

∂

∂t′
− H ′

)
G(±)(x′, x) = h̄δ(x′ − x) (3.11)

as well as the integral equations

G(±)(x′, x) = G(0,±)(x′, x)

+
1
h̄

∫
d4x1G

(0,±)(x′, x1)V (x1)G(±)(x1, x) . (3.12)

G(0,±) denote the free retarded and free advanced propagators whose
Fourier decomposition is given by

G(0,±)(x′, x) = G(0,±)(x′ − x)

=
∫

d3p

(2πh̄)3

∫
dE

2πh̄
eip(x′−x)/h̄e−iE(t′−t)/h̄G̃(0,±)(E,p)

G̃(0,±)(E,p) =
h̄

E − p2

2m0
± iε

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.13)

(see Exercise 31). For ψ we have the integral equation
�

4 The correctness of (3.9) can be proven immediately by inserting it into the

Schrödinger equation
(
ih̄∂/∂t′ − H(0)

)
ψ(x′) = V (x′)ψ(x′).
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ψ(x′) = ψfree(x′) +
1
h̄

∫
d4x1G

(0,±)(x′, x1)V (x1)ψ(x1) . (3.14)

In Subsection 3.1.2 we show that, besides (3.10), the relations
{

Θ(t − t′)
Θ(t′ − t)

}
ψ∗(x′) = ±i

∫
d3xψ∗(x)G(±)(x, x′) (3.15)

also hold. They describe the temporally backward and forward propaga-
tions of the complex conjugated wave function ψ∗, respectively.

3.1.2 Propagator Decomposition by Schrödinger Solutions

Before we combine Theorem 3.1 with quantum mechanical scattering proces-
ses, we first consider more concretely the form of the propagators and then
show the validity of (3.15). We assume that a complete set of orthonormal
solutions {ψn} to the general Schrödinger equation is known, i.e.

(
ih̄

∂

∂t′
− H ′

)
ψn(x′) = 0 ,

∑

n

ψn(x′, t′)ψ∗
n(x, t′) = δ(x′ − x) ,

where the sum
∑

n
is meant to be the generalized sum or integral over the

spectrum of the quantum numbers n. It then follows that

G(+)(x′, x) = −iΘ(t′ − t)
∑

n
ψn(x′)ψ∗

n(x)

G(−)(x′, x) = +iΘ(t − t′)
∑

n
ψn(x′)ψ∗

n(x)

⎫
⎬

⎭
(3.16)

solve the differential equation
(

ih̄
∂

∂t′
− H ′

)
G(±)(x′, x) = h̄δ(x′ − x) ,

because
(

ih̄
∂

∂t′
− H ′

)
G(±)(x′, x)

= h̄δ(t′ − t)
∑

n

ψn(x′)ψ∗
n(x)

∓i
{

Θ(t′ − t)
Θ(t − t′)

}∑

n

[(
ih̄

∂

∂t′
− H ′

)
ψn(x′)

]
ψ∗

n(x)

= h̄δ(t′ − t)δ(x′ − x) = h̄δ(x′ − x) .

Since, in addition, the expressions (3.16) obey explicitly the causality princi-
ple, they are indeed the retarded and advanced propagators. With the help
of (3.16) and the well-known solutions to the free Schrödinger equation,
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ψp(x) =
1

(2πh̄)3/2
eipx/h̄e−iEt/h̄ ,

∫
d3xψ∗

p′(x)ψp(x) = δ(p′ − p) ,

we are now in a position to derive explicit expressions for the free propagators
G(0,±). Using E = p2/2m0 and quadratic completion, we have

∑

n

ψn(x′)ψ∗
n(x) =

∫
d3pψp(x′)ψ∗

p(x)

=
1

(2πh̄)3

∫
d3pe−iE(t′−t)/h̄eip(x′−x)/h̄

=
1

(2πh̄)3

∫
d3p exp

(
− ip2(t′ − t)

2h̄m0
+

ip(x′ − x)
h̄

)

=
1

(2πh̄)3
exp
(

im0(x′ − x)2

2h̄(t′ − t)

)

×
∫

d3p exp

[

− i(t′ − t)
2h̄m0

(
p − m0(x′ − x)2

t′ − t

)2
]

=
(

m0

2πih̄(t′ − t)

)3/2

exp
(

im0(x′ − x)2

2h̄(t′ − t)

)
.

Thus, in total, it follows that

G(0,+)(x′, x) = −iΘ(t′ − t)

×
(

m0

2πih̄(t′ − t)

)3/2

exp
(

im0(x′ − x)2

2h̄(t′ − t)

)

G(0,−)(x′, x) = +iΘ(t − t′)

×
(

m0

2πih̄(t′ − t)

)3/2

exp
(

im0(x′ − x)2

2h̄(t′ − t)

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(3.17)

and

G(0,±)(x′, x) = G(0,±)(x′ − x) .

The latter is a consequence of the homogeneity of space and time and is gen-
erally true only for the free propagators. The relations (3.17) can be derived
alternatively by passing over from the time-space to the energy-momentum
representation and solving the differential equation (3.11) directly. In doing
so, one obtains a complex energy integral for G(0,±) with one singularity at
E = p2/2m0, whose shift into the lower or upper half plane is equivalent to
incorporating the causality principle belonging to G(0,+) or G(0,−) [see (3.13)].
In Exercise 31 we show the corresponding calculation, and we encounter some
more of the same type in the following.

Relationship between temporally forward and backward directed
evolutions. In order to show the validity of relation (3.15) stated at the
end of Theorem 3.1, we first focus on the retarded case, multiply the first
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equation of (3.16) by ψ∗
m(x′) and then perform an integration over x′. This,

in conjunction with the orthonormality of the ψn, leads to the relation

i
∫

d3x′ψ∗
m(x′)G(+)(x′, x) = Θ(t′ − t)

∑

n

∫
d3x′ψ∗

m(x′)ψn(x′)
︸ ︷︷ ︸

δmn

ψ∗
n(x)

= Θ(t′ − t)ψ∗
m(x) .

A similar relation holds for the advanced case so that, finally, both cases can
be combined to give (3.15). Hence, the same propagators G(±) that describe
the temporally forward and backward directed evolutions of a Schrödinger
wave function according to (3.10) also determine the temporally backward
and forward directed evolutions of the complex conjugated wave function ψ∗.

3.1.3 Scattering Formalism

We are now able to connect the propagator formalism developed in the pre-
ceding two subsections with nonrelativistic quantum mechanical scattering
processes. To do this, we concentrate on the scattering of particles against a
fixed scattering center.

A typical scattering experiment is depicted in Figure 3.1. A homoenergetic
collimated particle beam is directed toward a fixed target. At a sufficiently
large distance, the particles scattered by a certain angle θ relative to the
incoming beam are registered by a detector.5 This means that the detector
essentially counts all scattered particles with a momentum directed toward
the spherical surface element dΩ. Usually the setting of such experiments is
chosen in a way so that the following prerequisites are fulfilled:

z

y

x

detector

dΩ

θ

Fig. 3.1. Experimental arrangement of particle scattering against a fixed target.

5 For rotationally symmetric potentials the measurements are independent from
the azimuth angle ϕ.
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1. The interaction potential of the target is spatially confined:

lim
|x|→∞

V (x, t) = 0 .

2. The particle beam is created at a sufficiently large distance from the target
so that the incoming particles can be regarded as initially free.

3. The detector is located at a sufficiently large distance from the target so
that the registered scattered particles can also be treated as free particles.

With a view to a quantum mechanical description of such scattering proces-
ses, we need to tackle the following question: given a free wave packet with
mean momentum pi (i=incident) moving toward the target. What shape does
the wave packet possess “long after“ the scattering where it can be regarded
as free or, putting it differently, what is the probability for the wave packet
to have the sharp momentum pf (f=final) long after the scattering? Once we
have answered this question, we can sum over the individual probabilities for
scattering momenta directed toward dΩ and relate them to experimentally
detected particle numbers.

For the mathematical realization of this program, it is much easier to de-
scribe the initially created particles propagating toward the target by plane
waves instead of wave packets, which we do in the following. However, this
implies that the actual scattering process is no longer confined in space and
time since incoming and scattered waves now coexist (see Figure 3.2). Con-
sequently, the above 2. and 3. prerequisites are violated. A way out of this is
provided by the adiabatic approximation. Here it is assumed that the inter-
action potential V is temporally localized according to

lim
t→±∞

V (x, t) → 0

incident
wave

scattered wave

detector

Fig. 3.2. Idealized description of a quantum mechanical scattering process where
incoming particles are represented as initially free plane waves. Due to the infinite
extent of plane waves, the space-time confinement of the actual scattering is lost.
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in such a way that it is adiabatically switched on in the far past t → −∞
and adiabatically switched off in the far future t → +∞.6 To some extent,
this approximation turns the space-time confinement of scattering processes
given automatically for wave packets into a pure temporal confinement for
plane waves. Similarly to the above 2. and 3. prerequisites, this allows us to
regard incoming and scattering waves as being free in the far past and the
far future and, particularly,

• to represent the incoming wave function as a plane wave with momentum
pi in the limit t → −∞,

• to study the projection of the scattered wave onto plane waves with scat-
tering momenta pf in the direction of dΩ in the limit t → +∞.

Clearly, interference effects between the incoming and scattering waves have
to be excluded when doing so.

Scattering amplitude, scattering matrix. Let us now assume that7

Ψi(x) =
1

(2πh̄)3/2
eipix/h̄e−iEit/h̄

is the incoming plane wave with momentum pi, ψi is the temporally forward
moving scattered wave,

lim
t→−∞

ψi(x) = Ψi(x) ,

and

Ψf (x) =
1

(2πh̄)3/2
eipf x/h̄e−iEf t/h̄

is a plane wave with momentum pf . According to the above, we are interested
in the projection of ψi onto Ψf in the far future, i.e.

Sfi = lim
t′→+∞

∫
d3x′Ψ∗

f (x′)ψi(x′) . (3.18)

This expression is called scattering amplitude, transition amplitude or proba-
bility amplitude for the transition Ψi → Ψf . The totality of all the scattering

6 In this context, adiabatic means that the solutions to the Schrödinger equation
are approximated by the stationary eigensolutions to the instantaneous Hamilton
operator so that, at a given time, a certain eigenfunction passes over continu-
ously to the corresponding eigenfunction at a later time. The justification of the
adiabatic approximation becomes apparent in calculations of concrete scattering
processes where the wave function is initially normalized to a finite volume V so
that the actual scattering process is confined to the time range [−T/2 : T/2]. It
is then easy to imagine that the potential is adiabatically switched on in the time
interval [−∞ : −T/2] and adiabatically switched off in the interval [T/2 : ∞];
not until the end of the calculations is the limiting process V, T → ∞ performed.

7 Here and in the following the plane solutions to the free Schrödinger equation
are denoted by the capital symbol Ψ .
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amplitudes are the elements of the Heisenberg scattering matrix, also called
the S-matrix. For further evaluation of (3.18), we can make use of Theorem
3.1. Taking into account [see (3.14)]8

ψi(x′) = Ψi(x′) +
1
h̄

∫
d4x1G

(0,+)(x′ − x1)V (x1)ψi(x1)

and

Ψ∗
f (x1) = lim

t′→+∞
i
∫

d3x′Ψ∗
f (x′)G(0,+)(x′ − x1)

∫
d3x′Ψ∗

f (x′)Ψi(x′) = δ(pf − pi) ,

it follows from (3.18) that9

Sfi = lim
t′→+∞

[∫
d3x′Ψ∗

f (x′)Ψi(x′)

+
1
h̄

∫
d4x1

∫
d3x′Ψ∗

f (x′)G(0,+)(x′ − x1)V (x1)ψi(x1)
]

= δ(pf − pi) −
i
h̄

∫
d4x1Ψ

∗
f (x1)V (x1)ψi(x1) .

Iterating ψi in the way

ψi(x1) = Ψi(x1)

+
1
h̄

∫
d4x2G

(0,+)(x1 − x2)V (x2)Ψ(x2)

+
1
h̄2

∫
d4x2

∫
d4x3G

(0,+)(x1 − x2)V (x2)

×G(0,+)(x2 − x3)V (x3)Ψ(x2)
+ . . . ,

we finally obtain

Theorem 3.2: Scattering matrix in the Schrödinger theory

With respect to the quantum mechanical scattering of a particle against
a target, the scattering matrix element Sfi is defined as the probability
amplitude for the transition Ψi → Ψf , where Ψi denotes the free initial
state long before and Ψf the free final state long after the scattering. In
other terms, Sfi is the projection of ψi onto Ψf , where ψi is the evolutionary
state during the scattering process originating from Ψi: �

8 Since we wish to study the scattering process in temporally forward direction,
the retarded case has to be chosen.

9 In concrete calculations of scattering amplitudes we will use wave functions nor-
malized to a box volume V instead of the continuum normalization. This implies
the replacement δ(pf − pi) → δfi.
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Sfi = lim
t′→+∞

∫
d3x′Ψ∗

f (x′)ψi(x′) , lim
t→−∞

ψi(x) = Ψi(x) . (3.19)

Using the propagator formalism, Sfi can be expanded in the following way:

Sfi = δ(pf − pi) −
i
h̄

∫
d4x1Ψ

∗
f (x1)V (x1)ψi(x1)

= δ(pf − pi)

− i
h̄

∫
d4x1Ψ

∗
f (x1)V (x1)Ψi(x1)

− i
h̄2

∫
d4x1

∫
d4x2Ψ

∗
f (x2)V (x2)G(0,+)(x2 − x1)V (x1)Ψi(x1)

− i
h̄3

∫
d4x1

∫
d4x2

∫
d4x3Ψ

∗
f (x3)V (x3)G(0,+)(x3 − x2)

×V (x2)G(0,+)(x2 − x1)V (x1)Ψi(x1)
− . . . . (3.20)

V denotes the interaction potential of the target and G(0,+) the free re-
tarded propagator.
Due to the adiabatic approximation, it is justified to consider Ψi to be a
free plane wave in the limit t → −∞ and to study the projection of ψi onto
plane waves in the limit t → +∞.

As one can see, at the transition from (3.19) to (3.20), the unknown wave
function ψi has completely disappeared. Instead, the known free propagator
G(0,+) appears in a series of multiple scatterings which encompasses the en-
tire dynamics of the scattering process. For a better understanding of this
theorem, the following items have to be kept in mind:

• A general property of the scattering matrix S, following from the Her-
mitecity of the Schrödinger-Hamilton operator, is its unitarity (see Exer-
cise 33) expressing, once again, the conservation of the total probability.
Furthermore, it is easy to realize that the S matrix shares all the properties
of the Hamilton operator.

• From the Hermitecity of the Hamilton operator follows that the S matrix
can be defined equivalently via

Sfi = lim
t→−∞

∫
d3xψ∗

f (x)Ψi(x) , lim
t′→+∞

ψf (x′) = Ψf (x′) ,

where ψf denotes the wave that, originating from Ψf in the far future, is
moving backward in time and is scattered against V . This is because, using

ψi(x′) = lim
t→−∞

i
∫

d3xG(+)(x′, x)Ψi(x)

ψ∗
f (x′) = lim

t′→+∞
i
∫

d3x′Ψ∗
f (x′)G(+)(x′, x) ,
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we have

Sfi = lim
t→−∞

∫
d3xψ∗

f (x)Ψi(x)

= lim
t → −∞
t′ → +∞

i
∫

d3x

∫
d3x′Ψ∗

f (x′)G(+)(x′, x)Ψi(x)

= lim
t′→+∞

∫
d3x′Ψ∗

f (x′)ψi(x′) .

Consequently, it makes no difference whether we let the initial state Ψi

propagate in temporally forward direction or the final state Ψf in tempo-
rally backward direction.

• Equation (3.20) essentially represents an expansion in powers of the inter-
action potential. In practice, only the first few terms need to be calculated
depending on how fast the expansion converges.

• Taking into account

Ψi(x1) = lim
t→−∞

i
∫

d3xG(0,+)(x1 − x)Ψi(x)

Ψ∗
f (xn) = lim

t′→+∞
i
∫

d3x′Ψ∗
f (x′)G(0,+)(x′ − xn) ,

the individual terms in (3.20) can be interpreted as follows: during its tem-
poral evolution between the space-time points x = (x, t) and x′ = (x′, t′),
the particle is scattered at different intermediate points xi with the prob-
ability amplitude V (xi) per space-time volume unit into a particle moving
undisturbed with the probability amplitude G(0,+)(xi+1 − xi) toward the
next interaction point xi+1. Thereby, the integration is carried out over all
possible intermediate points. Another way of putting it is: at the vortex
xi, the potential V (xi) destroys a particle that has moved freely to xi and
creates a particle that will move freely to xi+1. Here it is of vital impor-
tance that the propagators G(0,+) allow only chronological scatterings (in
the temporally forward direction). This implies that there cannot exist any
terms leading to ∨- or ∧-like diagrams (see Figure 3.3). As we will see later,
this is different in relativistic scattering theories.

Total cross section, differential cross section. Having found a reliable
formalism for the description of nonrelativistic quantum mechanical transi-
tions in terms of the scattering amplitudes Sfi, we now have to relate it to
the particle numbers detected in scattering experiments. To this end, we ini-
tially ask for the transition rate R, i.e. the number of particles scattered in
any direction (except for the direction of incidence) within the time T :

R =
number of scattered particles

T
.
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t

x

t

x

t

x

a

Ψi

x1

Ψ∗
f

b

Ψi

x1

x2

Ψ∗
f

c

Fig. 3.3. Pictorial representations (Feynman diagrams) of the series expansion
given by (3.20). a represents the first δ-term (zeroth order), i.e. the free propagation
of a particle. b symbolizes the second term (first order). At the intermediate point
x1 = (x1, t1) the particle suffers one scattering at the potential V . c depicts the third
term (second order) where the particle is scattered at two intermediate points x1 =
(x1, t1) and x2 = (x2, t2). In principle, only those space-time paths are possible
that are directed temporally forward.

If we know the number N of particles moving through the cross sectional area
A of the incident particle beam per time interval T , as well as the total cross
section σ of the target, i.e. the area which has to be crossed perpendicularly
by the incident particles to be deflected at all, we have for R:

R =
N

T

σ

A
= ρvσ = |ji|σ , ρ =

N

vTA
. (3.21)

ρ denotes the particle density, v the particle velocity and |ji| the particle
current density of the incident particle beam (see Figure 3.4).10 On the other

vT A

σ

Fig. 3.4. Scattering of a particle beam with particle current density |ji| = ρv and
cross sectional area A against a fixed scattering center with total cross section σ.

10 Strictly speaking, this is the transition rate per target particle since, in real
scattering experiments, the target consists of many particles. However, there
mutual distances can be assumed to be large compared to σ.
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hand, the transition rate R can also be expressed using the scattering ampli-
tude Sfi since, in the wave picture, it denotes the probability for the transi-
tion Ψi −→ Ψf . Consequently, in the experimentally relevant particle picture,
it gives the statistical fraction of the incident particles with momentum pi

scattered into states with momentum pf so that

R =
N

T

∑

f

|Sfi|2 =
N

T

∫
|Sfi|2dNf , (3.22)

where dNf denotes the state density or the number of all possible states in
the momentum interval [pf : pf +d3pf ]. Combining the equations (3.21) and
(3.22) leads to the total cross section

σ =
N

T |ji|

∫
|Sfi|2dNf , (3.23)

with the expected dimension of an area. For further evaluation of this expres-
sion, we have to keep in mind that we aim to describe the entire quantum
mechanical scattering process with the help of plane waves, instead of local-
ized wave packets. This means that, due to the plane waves’ normalization
to the whole space, the state density dNf becomes arbitrarily large and the
particle number in any considered volume vTA arbitrarily small. However,
we can circumvent these ill-defined mathematical infinities by initially nor-
malizing the plane waves to a finite volume V and performing the limiting
process V, T → ∞ at the end. As a result we have N = 1 (there is exactly
one particle in the volume V ). Furthermore, the state density becomes finite
due to the requirement of standing waves within the volume V (i.e. periodical
boundary conditions at the volume’s border). Therefore, we can write

V =
∏

k

Lk , eipf k
Lk/h̄ = 1 =⇒ pf kLk/h̄ = 2πnk =⇒ dnk =

Lk

2πh̄
dpf k

=⇒ dNf =
∏

k

dnk =
V d3pf

(2πh̄)3
(phase space factor) .

Thus, taking into account d3pf = p2
fd|pf |dΩ (compare to Figure 3.1), (3.23)

turns into

σ =
V

(2πh̄)3T |ji|

∫
|Sfi|2d3pf =

V

(2πh̄)3T |ji|

∫
d|pf |p2

f

∫
dΩ|Sfi|2 . (3.24)

With regard to the experimental situation, this expression can be interpreted
as

σ =
number of scattered particles/T

incident particle current density
.

Differentiating (3.24) with respect to Ω and suppressing the remaining pf -
integral sign, we obtain the dimensionless differential cross section



3.1 Review: Nonrelativistic Scattering Theory 193

dσ

dΩ
=

|Sfi|2
T |ji|

V p2
fd|pf |

(2πh̄)3
,

with the experimental interpretation

dσ

dΩ
=

number of particles scattered toward dΩ/T

incident particle current density·dΩ
.

This is exactly the quantity measured in scattering experiments if dΩ is
replaced by the small but finite detector surface.

Theorem 3.3: Cross section

The differential cross section of a quantum mechanical scattering is given
by

dσ =
|Sfi|2
T |ji|

V d3pf

(2πh̄)3

⎛

⎜
⎜
⎝

number of particles scattered
toward [pf : pf + d3pf ]

/
T

incident particle current density

⎞

⎟
⎟
⎠

or (pf -integral sign suppressed)

dσ

dΩ
=

|Sfi|2
T |ji|

V p2
fd|pf |

(2πh̄)3

(
number of particles scattered toward dΩ/T

incident particle current density·dΩ

)
.

Sfi denotes the scattering amplitude for the transition Ψi → Ψf , V the
normalization volume of Ψi,f , ji the particle current density of Ψi (toward
the target), T the duration of the scattering process, and dΩ the considered
spherical surface element. Within concrete calculations and in the limit
V, T → ∞, the quantities V and T are removed.
Integrating the last expression over Ω yields the total cross section σ. In the
particle picture it represents the effective area of the target that incident
particles have to cross to be deflected at all.

Note that this theorem does not rely on specifically nonrelativistic relation-
ships. Therefore, it is also valid for relativistic scattering theories. All in all, it
can be ascertained that with the last three Theorems 3.1 to 3.3 we have found
a viable formalism for the description of nonrelativistic quantum mechanical
scattering processes that particularly allows a direct comparison with experi-
mental measurements. In the following our task will be an adequate extension
of this formalism to relativistic scattering processes within the scope of the
Dirac and Klein-Gordon theories.

3.1.4 Coulomb Scattering

At the end of our review of nonrelativistic scattering theory we demonstrate
its application by considering the concrete problem of Coulomb scattering
(Rutherford scattering). We assume an interaction potential of the form
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V (x) =
α

|x| , α = −Ze2

that is hit by a particle beam directed along the z-axis, and we restrict our-
selves to the calculation of the scattering amplitude as well as the differential
cross section to leading order. First we need the plane solutions Ψi and Ψf to
the free Schrödinger equation normalized to a volume V :

Ψi(x) =
1√
V

eipix/h̄e−iEit/h̄ , Ψf (x) =
1√
V

eipf x/h̄e−iEf t/h̄ .

Following Theorem 3.2, the scattering amplitude can then be written as (f �=
i):

Sfi = − i
h̄

∫
d4xΨ∗

f (x)V (x)Ψi(x)

= − i
h̄V

T/2∫

−T/2

dtei(Ef−Ei)t/h̄

∫

V

d3xe−iqx/h̄ α

|x| , q = pf − pi ,

with the momentum transfer q. Note that the temporal confinement of the
scattering in the interval [−T/2 : T/2] is accomplished by the spatial con-
finement of Ψi,f to the volume V . For the time and space integrals follows
that

T/2∫

−T/2

dtei(Ef−Ei)t/h̄ T→∞= 2πh̄δ(Ef − Ei) (3.25)

∫

V

d3x
e−iqx/h̄

|x| = − h̄2

q2

∫

V

d3x
1
|x|∇

2e−iqx/h̄

= − h̄2

q2

∫

V

d3x

(
∇2 1

|x|

)
e−iqx/h̄

= − h̄2

q2

∫

V

d3x[−4πδ(x)]e−iqx/h̄ =
4πh̄2

q2
, (3.26)

so that the scattering amplitude finally turns into

Sfi = −i
4πh̄α[2πh̄δ(Ef − Ei)]

V q2
.

Now we need to supply the particle current density in z-direction to calculate
the differential cross section:

|ji| =
h̄

2im0
|Ψ∗

i ∇Ψi − Ψi∇Ψ∗
i | =

|pi|
m0V

.

Hence, according to Theorem 3.3, we obtain
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dσ

dΩ
=

2α2m0[2πh̄δ(Ef − Ei)]2p2
fd|pf |

πh̄T |pi|q4
, (3.27)

where the integration has to be carried out over all scattering momenta pf .
Obviously, this formula contains the mathematically ill-defined expression
δ2(Ef − Ei) resulting from the fact that we have performed the limiting
process T → ∞ in (3.25) too early. In Exercise 34 we show that for a finite
scattering time T , it is justified to make the replacement

[2πh̄δ(Ef − Ei)]2 −→ 2πT h̄δ(Ef − Ei) (3.28)

in (3.27) so that the scattering amplitude becomes

dσ

dΩ
=

∞∫

0

d|pf |
4α2m0δ(Ef − Ei)p2

f

|pi|q4
.

This equation is well-defined and the normalization volume V as well as the
scattering time T have disappeared. Furthermore, the remaining δ-function
expresses explicitly the energy conservation of the scattering process. Using
the identities

Ei,f =
p2

i,f

2m0
, d|pf | =

m0dEf

|pf |
, pipf ||pf |=|pi| = p2

i cos θ

q2
|pf |=|pi| = 4p2

i sin2 θ

2
= 8m0Ei sin2 θ

2
,

dσ/dΩ can be further simplified to give the famous Rutherford scattering
formula

dσ

dΩ
=
(

dσ

dΩ

)

Ruth

=

∞∫

0

dEf

4α2m2
0δ(Ef − Ei)p2

f

|pi||pf |q4

=
4α2m2

0

q4

∣
∣
∣
∣
|pf |=|pi|

=

(
α

4Ei sin2 θ
2

)2

. (3.29)

Note that this equation is true exactly and not only in the demonstrated
approximation.

Summary

• The solution of the general Schrödinger equation can be related back
to an integral equation for the retarded and advanced propagators
as well as for the wave function itself which is solvable approximately
through iteration.

• The retarded propagator describes the temporally forward evolution of
a wave function known at a fixed time, while the advanced propagator
describes its temporally backward evolution.

�
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• Quantum mechanical scattering processes are described by the scatter-
ing matrix. With the help of the propagator formalism, the scattering
amplitudes can be expanded in powers of the interaction potential (se-
ries of multiple scatterings).

• Due to the adiabatic approximation, incident wave functions can be
regarded as free plane waves in the limit t → −∞. In the limit t → +∞
the scattered wave can also be regarded as free (but in general not as
plane).

• In scattering experiments one usually directs a collimated particle beam
toward a target and measures the differential cross section, i.e. the
number of particles scattered toward different spherical surface elements.
The scattering amplitudes are of vital importance for a theoretical de-
scription of these measures.

• Integrating the differential cross section over all spherical surface ele-
ments, one obtains the total cross section. It is equal to the (fictitious)
area of the target that incident particles have to cross to be deflected at
all.

Exercises

30. Integral representation of the Θ-function. Show that the step func-
tion

Θ(τ) =

{
1 for τ > 0

0 for τ < 0

can be expressed by

Θ(τ) = − 1
2πi

lim
ε→0

∞∫

−∞

dω
e−iωτ

ω + iε
, ε > 0 . (3.30)

Solution. To calculate this expression we perform the integration in the
complex ω-plane along a closed integration path K depending on τ .

τ < 0: in this case the upper semicircle H(0, R,+) shown in Figure 3.5 seems
to be appropriate in the limit R → ∞ since then the integration along the
circular arc B(0, R,+) vanishes so that we are left with the integration along
the real ω-axis. This is because, using the parametrization

B(0, R,+) : t → ω(t) = eiRt , t ∈ [0 : π] ,

we can make the following estimation:
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Im ω

Re ω

R

−iε

H(0, R, +) , τ < 0

H(0, R,−) , τ > 0

Fig. 3.5. Integration paths in the complex ω-plane. The upper closed semicircle
H(0, R, +) in the mathematically positive direction is to be chosen for τ < 0 and
the lower closed semicircle H(0, R,−) in the mathematically negative direction for
τ > 0.

∣
∣
∣
∣
∣
∣
∣

∫

B(0,R,+)

dω
e−iωτ

ω

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

π∫

0

dt
e−iτR(cos t+i sin t)

Reit
iReit

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
i

π∫

0

dte−iτR cos teτR sin t

∣
∣
∣
∣
∣
∣

<

∣
∣
∣
∣
∣
∣
i

π∫

0

dte−|τ |R sin t

∣
∣
∣
∣
∣
∣

R→∞−→ 0 .

Now the only singularity ωs = −iε of the integrand lies outside the region
enclosed by H(0, R,+) so that, according to Cauchy’s integral theorem, we
have11

Θ(τ) = − lim
ε → 0

R → ∞

∮

H(0,R,+)

dω
e−iωτ

ω + iε
= − lim

ε→0

∮

H(0,R,+)

dω
e−iωτ

ω + iε
= 0 .

τ > 0: here we choose the lower semicircle H(0, R,−) shown in Figure 3.5 in
the limit R → ∞ so that, due to the same reasoning as above, the integration
along the circular arc B(0, R,−) vanishes. Hence, it follows that

Θ(τ) = −−1
2πi

lim
ε→0

∮

H(0,R,−)

dω
e−iωτ

ω + iε
.

11 Note that in the following the limiting process R → ∞ will not be considered any
more. As long as the integrand is regular up to its singularities, we can shrink
the integration path to an arbitrary contour enclosing all singularities.
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The additional sign on the right hand side results from the mathematically
negative direction of H(0,R,−). For further evaluation of this expression, we
have to take into account that now the singularity ωs = −iε lies inside the
area enclosed by H(0,R,−) so that the residue theorem must be applied:

f(ω) =
e−iωτ

ω + iε
=⇒

∮

H(0,R,−)

f(ω)dω = 2πi Res
ωs = −iε

f = 2πie−ετ .

We therefore obtain

Θ(τ) =
1

2πi
lim
ε→0

∮

H(0,R,−)

f(ω)dω = 1 .

This completes the proof of the above proposition.
With a view to Exercise 31, we point out that the complex conjugate of

(3.30) leads to the representation

Θ(−τ) =
1

2πi
lim
ε→0

∞∫

−∞

dω
e−iωτ

ω − iε
, ε > 0 . (3.31)

Here the singularity lies above the real axis.

31. Fourier decomposition of G(0,±). Show the validity of (3.13).

Solution. Our starting point is the differential equation
(

ih̄
∂

∂t′
− H ′(0)

)
G(0,±)(x′ − x) = h̄δ(x′ − x) (3.32)

for the free retarded and advanced propagators. We use the fourdimensional
Fourier representation of G(0,±)(x′ − x) and δ(x′ − x) for its solution:

G(0,±)(x′ − x) =
∫

d3p

(2πh̄)3

∫
dE

2πh̄

×eip(x′−x)/h̄e−iE(t′−t)/h̄G̃(0,±)(p, E) (3.33)

δ(x′ − x) =
∫

d3p

(2πh̄)3

∫
dE

2πh̄
eip(x′−x)/h̄e−iE(t′−t)/h̄ .

Inserting these expressions into (3.32) yields a corresponding equation for
G̃(0,±)(p, E):

∫
dp

(2πh̄)3

∫
dE

2πh̄

(
E − p2

2m0

)
eip(x′−x)/h̄e−iE(t′−t)/h̄G̃(0,±)(p, E)

= h̄

∫
d3p

(2π)h̄3

∫
dE

2πh̄
eip(x′−x)/h̄e−iE(t′−t)/h̄ .

The solution to this equation can be easily obtained. For E �= p2/2m0 it is
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G̃(0,±)(p, E) =
h̄

E − p2

2m0

.

Thus, (3.33) turns into

G(0,±)(x′ − x) =
∫

d3p

(2πh̄)3
eip(x′−x)/h̄

∫
dE

2π

e−iE(t′−t)/h̄

E − p2

2m0

. (3.34)

Next we have to carry out the E- and p-integrations bearing in mind the
singularity at Es = p2/2m0. We first consider the integration over E,

I =
∫

dE

2π

e−iE(t′−t)/h̄

E − p2

2m0

= exp
(
− ip2(t′ − t)

2h̄m0

)∫
dω

2π

e−iω(t′−t)

ω
, (3.35)

where, on the right hand side, the substitution ω = (E − p2/2m0)/h̄ has
been made. Clearly, the ω-integral can be related back to the integrals (3.30)
and (3.31) discussed in Exercise 30, if the singularity in the denominator is
shifted by adding or subtracting an imaginary part iε. If we decide in favor
of the addition, comparison with (3.30) yields

∫
dω

2π

e−iω(t′−t)

ω
−→ lim

ε→0

∫
dω

2π

e−iω(t′−t)

ω + iε
= −iΘ(t′ − t) . (3.36)

This clearly corresponds to a temporally forward directed movement (re-
tarded case). If, on the other hand, we choose to subtract iε in (3.35), com-
parison with (3.31) leads to

∫
dω

2π

e−iω(t′−t)

ω
−→ lim

ε→0

∫
dω

2π

e−iω(t′−t)

ω − iε
= +iΘ(t − t′) , (3.37)

expressing a temporally backward movement (advanced case). Hence, the
correct Fourier decomposition of G(0,±) is indeed given by (3.13).

Combining the equations (3.34), (3.35), (3.36), and (3.37), we obtain for
the retarded case the explicit form

G(0,+)(x′ − x) = −iΘ(t′ − t)
∫

d3p

(2πh̄)3
exp
(
− ip2(t′ − t)

2h̄m0
+

ip(x′ − x)
h̄

)

and, for the advanced case

G(0,−)(x′ − x) = +iΘ(t − t′)
∫

d3p

(2πh̄)3
exp
(
− ip2(t′ − t)

2h̄m0
+

ip(x′ − x)
h̄

)
.

As expected, these results coincide with the equations that were derived
differently in Subsection 3.1.2; the further evaluation of the p-integral is the
same as there.
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32. General properties of G(±). Show that the following relations hold:

G(+)(x′, x) = G(−)∗(x, x′) (3.38)

G(+)(x′, x) = i
∫

d3x1G
(+)(x′, x1)G(+)(x1, x) if t′ > t1 > t (3.39)

G(−)(x′, x) = −i
∫

d3x1G
(−)(x′, x1)G(−)(x1, x) if t′ < t1 < t (3.40)

δ(x′ − x) =
∫

d3x1G
(+)(x′, t,x1, t1)G(−)(x1, t1,x, t) if t > t1 (3.41)

δ(x′ − x) =
∫

d3x1G
(−)(x′, t,x1, t1)G(+)(x1, t1,x, t) if t < t1. (3.42)

Solution.

To (3.38). This can be proven quickly by complex conjugation of (3.15) and
subsequently comparing it with (3.10).

To (3.39) and (3.40). Here we start from the defining equation (3.10) of
the retarded propagator,

ψ(x′) = i
∫

d3xG(+)(x′, x)ψ(x) if t′ > t , (3.43)

where we are free to consider also ψ(x) to be the result of a propagation from
the earlier time t1 to t, i.e.

ψ(x′) = −
∫

d3x

∫
d3x1G

(+)(x′, x)G(+)(x, x1)ψ(x1) if t′ > t > t1

or, after exchanging the variables x ↔ x1,

ψ(x′) = −
∫

d3x

∫
d3x1G

(+)(x′, x1)G(+)(x1, x)ψ(x) if t′ > t1 > t .

Comparing this relation with (3.43) finally leads to (3.39). The proof of (3.40)
proceeds analogously.

To (3.41) and (3.42). At a constant time t ψ can be represented as

ψ(x′, t) =
∫

d3xδ(x′ − x)ψ(x, t) . (3.44)

On the other hand, we have

ψ(x′, t) = i
∫

d3x1G
(+)(x′, t,x1, t1)ψ(x1, t1) if t > t1

and

ψ(x1, t1) = −i
∫

d3xG(−)(x1, t1,x, t)ψ(x, t) if t > t1

as well as their combination
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ψ(x′, t) =
∫

d3x

∫
d3x1G

(+)(x′, t,x1, t1)G(−)(x1, t1,x, t)ψ(x, t)

if t > t1 .

Comparing this relation with (3.44) yields (3.41). The proof of (3.42) can be
carried out similarly.

33. Unitarity of the scattering matrix. Show that the scattering matrix
S is unitary.

Solution. As long as we focus on wave functions normalized to a finite vol-
ume, we need to show that

a)
∑

k

SfkS†
ki =

∑

k

SfkS∗
ik = δfi

b)
∑

k

S†
fkSki =

∑

k

S∗
kfSki = δfi

[in the case of normalization to the whole space, the replacements∑

k

→
∫

d3pk and δfi → δ(pf − pi) have to be made].

To a) It holds that

Sfk = i lim
t′ → +∞
t → −∞

∫
d3x′

∫
d3xΨ∗

f (x′, t′)G(+)(x′, t′,x, t)Ψk(x, t)

and, due to (3.38),

S∗
ik = −i lim

t′ → +∞
t → −∞

∫
d3y′

∫
d3yΨi(y′, t′)G(+)∗(y′, t′,y, t)Ψ∗

k (y, t)

= −i lim
t′ → +∞
t → −∞

∫
d3y′

∫
d3yΨ∗

k (y, t)G(−)(y, t,y′, t′)Ψi(y′, t′) .

{Ψk(x, t)} is a complete orthonormal solution system to the free Schrödinger
equation with

∫
d3xΨ∗

k (x, t)Ψj(x, t) = δkj ,
∑

k

Ψk(x, t)Ψ∗
k (y, t) = δ(x − y) ∀ t .

Therefore, along with (3.41), it follows that
∑

k

SfkS∗
ik = lim

t′ → +∞
t → −∞

∑

k

∫
d3x′

∫
d3x

∫
d3y′

∫
d3y

×Ψ∗
f (x′, t′)G(+)(x′, t′,x, t)Ψk(x, t)

×Ψ∗
k (y, t)G(−)(y, t,y′, t′)Ψi(y′, t′)

= lim
t′ → +∞
t → −∞

∫
d3x′

∫
d3x

∫
d3y′
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×Ψ∗
f (x′, t′)G(+)(x′, t′,x, t)G(−)(x, t,y′, t′)Ψi(y′, t′)

= lim
t′→∞

∫
d3x′Ψ∗

f (x′, t′)Ψi(x′, t′) = δfi .

The proof of b) proceeds analogously.

34. Square of the δ-function. Show by considering (3.25) for large but
finite T that in (3.27) the expression [2πh̄δ(Ef − Ei)]2 can be replaced by
2πT h̄δ(Ef − Ei).

Solution. In (3.25) we have equated

2πh̄δ(Ef − Ei) =

∞∫

−∞

dtei(Ef−Ei)t/h̄

which is surely justified for an infinitely long scattering period T . Unfortu-
nately, this leads to the badly defined expression [2πh̄δ(Ef −Ei)]2. However,
according to our scattering formalism, we have to bear in mind that we ini-
tially presume a finite scattering period T and do not perform the limiting
process T → ∞ until the end. Thus, we have

2πh̄δ(Ef − Ei) →
T/2∫

−T/2

dtei(Ef−Ei)t/h̄ =
h̄

i(Ef − Ei)
e(Ef−Ei)t/h̄

∣
∣
∣
∣

T/2

−T/2

=
2h̄ sin[(Ef − Ei)T/2h̄]

Ef − Ei

and

[2πh̄δ(Ef − Ei)]2 → 4h̄2 sin2[(Ef − Ei)T/2h̄]
(Ef − Ei)2

.

On the other hand,
∞∫

−∞

dEf
4h̄2 sin2[(Ef − Ei)T/2h̄]

(Ef − Ei)2
= 2T h̄

∞∫

−∞

dx
sin2 x

x2
= 2πh̄T (3.45)

is valid. Therefore, we can conclude that

[2πh̄δ(Ef − Ei)]2 = 2πh̄δ(0)2πh̄δ(Ef − Ei) → 2πh̄Tδ(Ef − Ei) ,

and hence 2πh̄δ(0) → T so that, according to (3.45), the integration over Ef

adds up to 2πh̄T .

3.2 Scattering of Spin-1/2 Particles

Building on the results of the preceding section, we now turn to the descrip-
tion of relativistic scattering processes of spin-1/2 particles. Analogously to
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the preceding section, we first develop an appropriate propagator formalism
for solving the general Dirac equation in which, however, we need to imple-
ment a modified causality principle for the so-called Feynman propagator from
the start in order to meet the Feynman-Stückelberg interpretation of posi-
tive and negative Dirac solutions. After the derivation of the free Feynman
propagator in momentum space, we turn to the actual scattering formalism
and look particularly at its specific relativistic aspects. At the end we discuss
some identities related to the traces of γ-matrices. This will turn out to be
very useful for the concrete calculation of scattering processes.

Note. Since in the following we will often encounter equations with numer-
ous γ-matrix operations, we introduce the convenient “slash notation“

/a = aμγμ

at this stage. Likewise, for convenience, we will often denote (elementary)
spin-1/2 particles by “electron“ and spin-1/2 antiparticles by “positron“.

3.2.1 Solution of the General Dirac Equation

As in Subsection 3.1.1, we start with the time-dependent Dirac equation
[
/p′ − e

c
/A(x′) − m0c

]
ψ(x′) = 0 . (3.46)

For the same reasons as in the Schrödinger case, the solutions to this equation
should be expressible by a linear homogeneous integral equation of the form

ψ(x′) = i
∫

d3xS(x′, x)γ0ψ(x) , x = (x0,x) = (ct,x) .

Here and further on we denote the corresponding Green function by S. The
factor γ0 results from the covariant Dirac equation which is derived from the
canonical equation by multiplying the latter by γ0/c. Apparently, it is again
appropriate to introduce a causality principle via

{
Θ(x′0 − x0)
Θ(x0 − x′0)

}
ψ(x′) = ±i

∫
d3xS(±)(x′, x)γ0ψ(x) , (3.47)

guaranteeing the temporally forward or backward evolution of ψ(x) to ψ(x′)
independently of the positive and negative energy contributions built up in
the course of time. However, with respect to the description of relativistic
scattering processes of electrons and positrons, it is more sensible to ad-
just the temporal evolutionary direction of ψ according to its positive and
negative parts in such a way that the positive parts ψ(+) can propagate
only in the temporally forward direction and the negative parts ψ(−) only
in the temporally negative direction. In this way, the proportionate tempo-
rally forward evolution of ψ can be interpreted as forward directed particle
propagation (electron) and, likewise, due to the Feynman-Stückelberg inter-
pretation (Theorem 2.7), the proportionate temporally backward evolution of
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ψ as forward directed antiparticle propagation (positron). We return to this
point later on. Based on the above reasoning, we now introduce the following
modified causal relationship12 instead of (3.47):

{
Θ(x′0 − x0)
Θ(x0 − x′0)

}
ψ(±)(x′) = ±i

∫
d3xSF(x′, x)γ0ψ(±)(x) . (3.48)

This is the defining equation of the Feynman fermion propagator.

Differential equation for SF. The following procedure is similar to that
in Subsection 3.1.1 in that we first determine the differential equation for SF

and then derive iteratively solvable integral equations for SF and ψ. Applying
the operator in (3.46) to (3.48) yields

[
/p′ − e

c
/A(x′) − m0c

]{Θ(x′0 − x0)
Θ(x0 − x′0)

}
ψ(±)(x′)

= ±ih̄γ0δ(x′0 − x0)ψ(±)(x′)

= ±i
∫

d3x
[
/p′ − e

c
/A(x′) − m0c

]
SF(x′, x)γ0ψ(±)(x)

=⇒
∫

d3x
{[

/p′ − e

c
/A(x′) − m0c

]
SF(x′, x)

− h̄δ(x′0 − x0)δ(x′ − x)
}

γ0ψ(±)(x) = 0

=⇒
[
/p′ − e

c
/A(x′) − m0c

]
SF(x′, x) = h̄δ(x′ − x) .

Integral equation for SF and ψ. Rewriting the last equation as

(/p′ − m0c) SF(x′, x) = h̄δ(x′ − x) +
e

c
/A(x′)SF(x′, x) , (3.49)

we see that its solution is given by

SF(x′, x) = S
(0)
F (x′, x) +

e

h̄c

∫
d4x1S

(0)
F (x′, x1)/A(x1)SF(x1, x) , (3.50)

with the free fermion propagator S
(0)
F that, in turn, must obey the differential

equation

(/p′ − m0c) S
(0)
F (x′, x) = h̄δ(x′ − x) .

The corresponding integral equation for ψ = ψ(+) + ψ(−) follows from (3.48)
and (3.50) as

12 As before, the plus sign holds for the upper equation and the minus sign for the
lower one.
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ψ(±)(x′) = ±i lim
t→∓∞

∫
d3xSF(x′, x)γ0ψ(±)(x)

= ±i lim
t→∓∞

[∫
d3xS

(0)
F (x′, x)γ0ψ(±)(x)

+
e

h̄c

∫
d3x

∫
d4x1S

(0)
F (x′, x1)/A(x1)SF(x1, x)γ0ψ(±)(x)

]

= ψ
(±)
free(x

′) +
e

h̄c

∫
d4x1S

(0)
F (x′, x1)/A(x1)ψ(±)(x1)

=⇒ ψ(x′) = ψfree(x′) +
e

h̄c

∫
d4x1S

(0)
F (x′, x1)/A(x1)ψ(x1) .

Analogously to the equations (3.12) and (3.14) of the nonrelativistic case,
we arrive at integral equations for the fermion propagator SF and the wave
function ψ that can be solved approximately once the free propagator S

(0)
F is

known. However, the fundamental difference to the nonrelativistic case is that
there the integrands contribute either only for past times (x′0 > x0

1 > x0,
retarded case) or only for future times (x′0 < x0

1 < x0, advanced case),
whereas here both temporal directions, past and future, play a role.

Theorem 3.4: Solution of the general Dirac equation
in the propagator formalism in consideration of
the Feynman-Stückelberg interpretation

Given that the solution to the general Dirac equation
[
/p′ − e

c
/A(x′) − m0c

]
ψ(x′) = 0 , ψ(x′) = ψ(+)(x′) + ψ(−)(x′)

is subject to the boundary condition ψ(x) at time t, the Feynman fermion
propagator SF describes the temporal evolution of the positive parts ψ(+)

in forward direction and of the negative parts ψ(−) in backward direction
according to

{
Θ(x′0 − x0)
Θ(x0 − x′0)

}
ψ(±)(x′) = ±i

∫
d3xSF(x′, x)γ0ψ(±)(x) . (3.51)

For SF we have the differential equation
[
/p′ − e

c
/A(x′) − m0c

]
SF(x′, x) = h̄δ(x′ − x)

as well as the integral equation

SF(x′, x) = S
(0)
F (x′, x) +

e

h̄c

∫
d4x1S

(0)
F (x′, x1)/A(x1)SF(x1, x) .

S
(0)
F denotes the free fermion propagator given by the Fourier decomposition

�
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S
(0)
F (x′, x) = S

(0)
F (x′ − x) =

∫
d4p

(2πh̄)4
e−ipμ(x′μ−xμ)/h̄S̃

(0)
F (p)

S̃
(0)
F (p) =

h̄(/p + m0c)
pμpμ − m2

0c
2 + iε

⎫
⎪⎪⎬

⎪⎪⎭
(3.52)

(see next subsection). For ψ the integral equation follows as

ψ(x′) = ψfree(x′) +
e

h̄c

∫
d4x1S

(0)
F (x′, x1)/A(x1)ψ(x1) .

In Exercise 36 we show (at least for the free case) that, besides (3.51), the
causality relations

{
Θ(x0 − x′0)
Θ(x′0 − x0)

}
ψ̄(±)(x′) = ±i

∫
d3xψ̄(±)(x)γ0SF(x, x′) (3.53)

also hold. They describe the temporally backward and forward evolutions
of ψ̄(+) and ψ̄(−), respectively.

3.2.2 Fourier Decomposition of the Free Fermion Propagator

In order to show the validity of (3.51) and (3.52), we proceed as in Exercise
31 and consider the differential equation

(/p′ − m0c) S
(0)
F (x′, x) = h̄δ(x′ − x) (3.54)

for the free fermion propagator by passing from the time-space representation
to the energy-momentum representation. Using

S
(0)
F (x′, x) = S

(0)
F (x′ − x) (homogeneity of space and time)

S
(0)
F (x′ − x) =

∫
d4p

(2πh̄)4
e−ipμ(x′μ−xμ)/h̄S̃

(0)
F (p)

δ(x′ − x) =
∫

d4p

(2πh̄)4
e−ipμ(x′μ−xμ)/h̄ ,

(3.54) becomes
∫

d4p

(2πh̄)4
(/p′ − m0c) e−ipμ(x′μ−xμ)h̄S̃

(0)
F (p) = h̄

∫
d4p

(2πh̄)4
e−ipμ(x′μ−xμ)/h̄.

From this follows that

(/p − m0c) S̃
(0)
F (p) = h̄ =⇒ (/p + m0c) (/p − m0c) S̃

(0)
F (p) = h̄ (/p + m0c)

=⇒
(
pμpμ − m2

0c
2
)
S̃

(0)
F (p) = h̄ (/p + m0c)

=⇒ S̃
(0)
F (p) = h̄

/p + m0c

pμpμ − m2
0c

2
, pμpμ �= m2

0c
2

and finally
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S
(0)
F (x′ − x) = h̄

∫
d4p

(2πh̄)4
/p + m0c

pμpμ − m2
0c

2
e−ipμ(x′μ−xμ)/h̄

=
∫

d3p

(2πh̄)3
eip(x′−x)/h̄

∫
dp0

2π

/p + m0c

pμpμ − m2
0c

2
e−ip0(x

′0−x0)/h̄. (3.55)

The evaluation of the energy integral

I =
∫

dp0

2π

/p + m0c

pμpμ − m2
0c

2
e−ip0(x

′0−x0)/h̄ (3.56)

can again be best carried out by choosing an appropriate closed path
within the complex p0-plane with special regard for the singularities at
±
√

p2 + m2
0c

2:

• For x′0 > x0: a semicircle in the lower complex half plane and

• For x′0 < x0: a semicircle in the upper complex half plane.

The effect of this choice is that in the limit R → ∞ the integration along the
respective angular arc vanishes so that we are left with the integration along
the real p0-axis.

Next we need to clarify how the integration path along the real p0-axis
is to be passed around the singularities or, put differently, how the singular-
ities are to be shifted into the complex half planes by adding or subtracting
an imaginary part iε. Obviously, we have more options here than in the en-
ergy integral (3.35) of the nonrelativistic propagator due to the quadratic
energy-momentum dependence. They are all depicted in Figure 3.6 and lead
to different causal relationships. As we see shortly, the case d of Figure 3.6
turns out to be the right choice and leads to the desired causal behavior
(3.51). Clearly, this case is equivalent to shifting the pole −

√
p2 + m2

0c
2 into

a b

c d

Fig. 3.6. Possible integration paths around the two singularities at ±
√

p2 + m2
0c

2

along the real p0-axis. They all enforce different causal relationships. a corresponds
to the first equation of (3.47)and b to the second equation (retarded or advanced
propagator). c reflects (3.51) but with reversed temporal order. This means that
here positive parts would propagate temporally backward and negative parts tem-
porally forward. d finally yields the desired causality principle as defined in (3.51).
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the upper and the pole +
√

p2 + m2
0c

2 into the lower complex half plane so
that (3.56) can be rewritten as

I = lim
ε→0

∮

H(0,R,±)

dp0

2π

(γ0p0 − γp + m0c)e−ip0(x
′0−x0)/h̄

(
p0 +

√
p2 + m2

0c
2 − iε

)(
p0 −

√
p2 + m2

0c
2 + iε

) ,

where H(0, R,±) denotes the semicircles with radius R in the upper and
lower half planes, respectively. This equation can now be evaluated easily
using the residue theorem.

x′0 > x0: in this case only the pole at +
√

p2 + m2
0c

2 lies inside the region
enclosed by H(0, R,−). Taking into account the mathematically negative
direction of circulation of H(0, R,−), we therefore obtain

I = −i
(γ0p0 − γp + m0c)e−ip0(x

′0−x0)/h̄

2p0
, p0 = +

√
p2 + m2

0c
2 ,

with p0 as the positive free energy (instead of the integration variable as
before). Inserting this expression into (3.55) leads to

S
(0)
F (x′ − x) = −i

∫
d3p

(2πh̄)3
eip(x′−x)/h̄e−ip0(x

′0−x0)/h̄ γ0p0 − γp + m0c

2p0

= −i
∫

d3p

(2πh̄)3
eip(x′−x)/h̄e−ip0(x

′0−x0)/h̄ /p + m0c

2p0

= −i
∫

d3p

(2πh̄)3
e−ipμ(x′μ−xμ)/h̄ m0c

p0
Λ+(p) ,

with the energy projectors Λ±(p) = (±/p + m0c)/2m0c from Theorem 2.4.

x′0 < x0: here we have to consider the pole at −
√

p2 + m2
0c

2 enclosed by
H(0, R,+) so that

I = −i
(−γ0p0 − γp + m0c)eip0(x

′0−x0)/h̄

2p0
, p0 = +

√
p2 + m2

0c
2 .

With this (3.55) turns into

S
(0)
F (x′ − x) = −i

∫
d3p

(2πh̄)3
eip(x′−x)/h̄eip0(x

′0−x0)/h̄−γ0p0 − γp + m0c

2p0

= −i
∫

d3p

(2πh̄)3
e−ip(x′−x)/h̄eip0(x

′0−x0)/h̄−γ0p0 + γp + m0c

2p0

= −i
∫

d3p

(2πh̄)3
e−ip(x′−x)/h̄eip0(x

′0−x0)/h̄−/p + m0c

2p0

= −i
∫

d3p

(2πh̄)3
eipμ(x′μ−xμ)/h̄ m0c

p0
Λ−(p) ,
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where the replacement p → −p was made in the second row. Both cases can
finally by summarized in13

S
(0)
F (x′ − x) = −iΘ(x′0 − x0)

∫
d3p

(2πh̄)3
e−ipμ(x′μ−xμ)/h̄ m0c

p0
Λ+(p)

−iΘ(x0 − x′0)
∫

d3p

(2πh̄)3
eipμ(x′μ−xμ)/h̄ m0c

p0
Λ−(p) . (3.57)

As shown in Exercise 35, this expression can be rewritten, analogously to the
nonrelativistic case, as

S
(0)
F (x′ − x) = −iΘ(x′0 − x0)

∫
d3p

2∑

r=1

ψ(r)
p (x′)ψ̄(r)

p (x)

+iΘ(x0 − x′0)
∫

d3p

4∑

r=3

ψ(r)
p (x′)ψ̄(r)

p (x) . (3.58)

With it the validity of the second causal relationship (3.53) for the free case
is proven easily (Exercise 36).

All in all, we arrive at the result that the correct free fermion propagator
in momentum space is given by

S̃
(0)
F (p) =

h̄(γμpμ + m0c)(
p0 +

√
p2 + m2

0c
2 − iε

)(
p0 −

√
p2 + m2

0c
2 + iε

)

=
h̄(γμpμ + m0c)

pμpμ − m2
0c

2 + 2iε
√

p2 + m2
0c

2 + ε2

≈ h̄(γμpμ + m0c)
pμpμ − m2

0c
2 + iε′

in accordance with (3.52).
At the end, we point out that the choice of the propagator depends de-

cisively on the vacuum or on the states that are interpreted as electrons or
positrons. In our preceding calculations we have tacitly assumed that the
states of the negative energy continuum are occupied and that holes in it are
to be regarded as positrons. However, one can also imagine situations (e.g.
in the presence of strong fields) where certain states of the negative energy
continuum need to be interpreted as electrons with a temporally forward di-
rection of evolution. In such cases the integration path for S

(0)
F in the complex

p0-plane must be adjusted appropriately.

13 It is easy to see from this that in the nonrelativistic limit p0 ≈ m0c + E/c, E ≈
p2/2m0 the free fermion propagator S

(0)
F turns into the free retarded propagator

G(0,+) from (3.16).
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3.2.3 Scattering Formalism

With Theorem 3.4 we have a relativistic propagator formalism for the prop-
agation of electrons and positrons on which we now build the corresponding
scattering theory. We can carry over many of the prerequisites from Subsec-
tion 3.1.3, namely

• that we assume particle scatterings against a fixed target with a locally
confined interaction potential,

lim
|x|→∞

V (x) = 0 ,

• that, for the sake of simplicity, we describe the initially free incoming par-
ticles by plane waves instead of localized wave packets,

• which is justified because of the adiabatic approximation according to
which the asymptotic freedom of localized wave packets in the limit
|x| → ∞ can be replaced by the asymptotic freedom of an incident plane
wave as well as of the resulting scattered wave in the limit t → ±∞:

lim
t→±∞

V (x) = 0 .

Scattering amplitude, scattering matrix. As in the nonrelativistic case,
we define the scattering amplitude Sfi by the projection of ψi onto the free
plane wave Ψf long after the scattering, where ψi denotes the scattered wave
evolving from the free plane wave Ψi:

Sfi = lim
t′→±∞

∫
d3x′Ψ †

f (x′)ψi(x′) . (3.59)

The main difference to the nonrelativistic case is that we now have to con-
sider one of two limits, t′ → +∞ or t′ → −∞, depending on the particle
types involved in the scattering process. If we are interested in electronic
scattering states Ψf is an electron wave with positive energy propagating for-
ward in time so that the limit t′ → +∞ is to be chosen. If, on the other
hand, we wish to study scatterings into positron states then, according to
the Feynman-Stückelberg interpretation, Ψf is an electron wave with nega-
tive energy propagating backward in time. In this case the limit t′ → −∞ is
relevant. Corresponding considerations hold for the incident particles: if they
are electrons, we have lim

t→−∞
ψi(x) = Ψi(x), where Ψi is an electron wave with

positive energy. In the case of positrons lim
t→+∞

ψi(x) = Ψi(x) follows with Ψi

as an electron wave with negative energy.
With the help of Theorem 3.4, we can now conclusively derive further

expressions for the scattering amplitude (3.59) with respect to the four scat-
tering scenarios

electron or positron −→ electron or positron
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in the following way, where the upper limit is to be chosen for electrons
(rf = 1, 2; εf = +1) and the lower limit for positrons (rf = 3, 4; εf = −1) in
their final states: due to

ψi(x′) = Ψi(x′) +
e

h̄c

∫
d4x1S

(0)
F (x′ − x1)/A(x1)ψi(x1)

and14

Ψ̄f (x1) = lim
t′→±∞

iεf

∫
d3x′Ψ̄f (x′)γ0S

(0)
F (x′ − x1)

∫
d3xΨ

(rf )†
f (x)Ψ (ri)

i (x) = δ(pf − pi)δrf ri
,

(3.59) turns into

Sfi = lim
t′→±∞

[∫
d3x′Ψ †

f (x′)ψi(x′)

+
e

h̄c

∫
d3x′

∫
d4x1Ψ̄f (x′)γ0S

(0)
F (x′ − x1)/A(x1)ψi(x1)

]

= δ(pf − pi)δrf ri
− ieεf

h̄c

∫
d4x1Ψ̄f (x1)/A(x1)ψi(x1) .

Iterating ψi in the way

ψi(x1) = Ψi(x1)

+
e

h̄c

∫
d4x2S

(0)
F (x1 − x2)/A(x2)Ψi(x2)

+
( e

h̄c

)2
∫

d4x2

∫
d4x3S

(0)
F (x1 − x2)/A(x2)

×S
(0)
F (x2 − x3)/A(x3)Ψi(x3)

+ . . . ,

we finally obtain, analogously to Theorem 3.2:

Theorem 3.5: Scattering matrix in the Dirac theory

The scattering amplitude Sfi is defined by the projection of ψi onto Ψf

long after the scattering against a target, where ψi is the scattered wave
evolving from the free plane wave Ψi:

Sfi = lim
t′→±∞

∫
d3x′Ψ †

f (x′)ψi(x′) , lim
t→∓∞

ψi(x) = Ψi(x) . (3.60)

In the case of scattered electron [positron] states, Ψf is a plane electron wave
with positive [negative] energy propagating forward [backward] in time so

�

14 See footnote 9 on page 188.
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that, on the left hand side of (3.60), the limit t′ → +∞ [t′ → −∞] has to
be considered. If the incident particles are given by electrons [positrons]
then Ψi is a plane electron wave with positive [negative] energy and, on the
right hand side of (3.60), the limit t → −∞ [t → +∞] is relevant.
With the help of the Feynman propagator formalism, the scattering ampli-
tude Sfi can be expanded in a series of multiple scatterings:

Sfi = δ(pf − pi)δrf ri
− ieεf

h̄c

∫
d4x1Ψ̄f (x1)/A(x1)ψi(x1)

= δ(pf − pi)δrf ri

−iεf
e

h̄c

∫
d4x1Ψ̄f (x1)/A(x1)Ψi(x1)

−iεf

( e

h̄c

)2
∫

d4x1

∫
d4x2Ψ̄f (x2)/A(x2)S

(0)
F (x2 − x1)/A(x1)Ψi(x1)

−iεf

( e

h̄c

)3
∫

d4x1

∫
d4x2

∫
d4x3Ψ̄f (x3)/A(x3)S

(0)
F (x3 − x2)

×/A(x2)S
(0)
F (x2 − x1)/A(x1)Ψi(x1)

− . . . . (3.61)

Aμ denotes the four-potential of the target, S
(0)
F the free fermion propaga-

tor, and εf the energy sign of Ψf .
This theorem is based on the adiabatic approximation and the Feynman-
Stückelberg interpretation.

As in the remarks after Theorem 3.2, we note the following:

• The unitarity of the scattering matrix S follows again from the Hermitecity
of the Dirac-Hamilton operator along with the resulting conservation of
the total probability. However, the direct proof is a little more intricate
than in the nonrelativistic case as here the sum of the unitarity condition∑

k

S∗
kfSki = δfi needs to be taken over all states into which a given ini-

tial state can scatter. Therefore, the proof is best carried out within the
framework of quantum electrodynamics.

• Similarly to the nonrelativistic case, we may consider the evolution of ψf

starting from Ψf (instead of ψi starting from Ψi) in the opposite temporal
direction. In this case the scattering matrix is defined via

Sfi = lim
t→∓∞

∫
d3xψ†

f (x)Ψi(x) , lim
t′→±∞

ψf (x′) = Ψf (x′) ,

which, up to a phase, is identical to (3.60). This is because from

ψi(x′) = lim
t→∓∞

iεi

∫
d3xSF(x′, x)γ0Ψi(x)

ψ̄f (x) = lim
t′→±∞

iεf

∫
d3x′ψ̄f (x′)γ0SF(x′, x)
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follows that

Sfi = lim
t→∓∞

∫
d3xψ†

f (x)Ψi(x) = lim
t→∓∞

∫
d3xψ̄f (x)γ0Ψi(x)

= lim
t → ∓∞
t′ → ±∞

iεf

∫
d3x

∫
d3x′ψ̄f (x′)γ0SF(x′, x)γ0Ψi(x)

= lim
t′→±∞

εiεf

∫
d3x′Ψ †

f (x′)ψi(x′) .

• As one can see, the scattering series (3.61) is essentially an expansion in the
fine structure constant in αe = e2/h̄c ≈ 1/137 (in practice, /A itself contains
the electric charge e). It is exactly the smallness of αe that guarantees a
fast convergence of (3.61) so that, in most cases, only the first few terms
need to be taken into account.

Let us now consider the physical implications of Theorem 3.5 in more detail.
First, along with

Ψi(x1) = lim
t→∓∞

iεi

∫
d3xS

(0)
F (x1 − x)γ0Ψi(x)

Ψ̄f (xn) = lim
t′→±∞

iεf

∫
d3x′ψ̄f (xn)γ0S

(0)
F (x′ − xn) ,

the individual expansion terms of (3.61) can be interpreted, analogously to
the nonrelativistic case, in such a way that a particle moves freely between
the space-time points x and x′ passing various intermediate points or vortices
xi with the probability amplitude S

(0)
F (xi+1 − xi) where it suffers a scatter-

ing through the interaction potential Aμ. The total amplitude results from
integration over all possible vortices. Contrary to the nonrelativistic case,
the scatterings do not necessarily proceed in chronological order, which is
a consequence of the construction of the fermion propagator or, rather, the
causality principle (3.51) connected to it.

Electron scattering. If we are interested in the process of electron scatter-
ing

εi = +1 , Ψi in the limit t → −∞

εf = +1 , Ψf in the limit t′ → +∞ ,

}

(3.62)

the relevant terms of Sfi to zeroth, first, and second order can again be
represented by the Feynman diagrams a, b, and c in Figure 3.3 (with the re-
placement Ψ∗ → Ψ̄). Additionally, in second order the “achronological“ zigzag
diagram in Figure 3.7 contributes, which, following the Feynman-Stückelberg
interpretation, we can interpret on the particle level as follows: an electron-
positron pair is created at x2. While the electron is moving out of the region
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t

x
Ψi

Ψ̄f

x1

x2

Fig. 3.7. Besides Figure 3.3c, this jagged Feynman diagram also contributes to the
scattering amplitude for electron scattering to second order.

of interaction, the positron is moving toward x1, where it is annihilated to-
gether with the incident electron.15 Note that all particle movements proceed
in temporal forward direction as physically required.

Within the hole theory, Figure 3.7 can also be interpreted in a way where,
at x2, an electron with negative energy is scattered into an electron with
positive energy, leaving a hole in the Dirac sea. While the latter electron is
moving out, the hole is propagating toward x1 where it is finally filled (or
destroyed) by the scattering of the incident electron.

Positron scattering. As one can easily see, for the positron scattering

εi = −1 , Ψi in the limit t → +∞

εf = −1 , Ψf in the limit t′ → −∞ ,

}

(3.63)

the corresponding terms of Sfi lead to the same Feynman diagrams as those
of the electron scattering rotated by 180◦. They can also be interpreted con-
sistently with the help of the Feynman-Stückelberg interpretation as well as
with respect to the hole theory.

Pair creation. Apart from (3.62) and (3.63), we may also consider the com-
bination

εi = −1 , Ψi in the limit t → +∞

εf = +1 , Ψf in the limit t′ → +∞ ,

which clearly corresponds to a positron and an electron both moving out of
the region of interaction, i.e. the process of real electron-positron creation.
Here, to first and second order, Sfi is represented by the Feynman diagrams
of Figure 3.8a-c, where in b and c the second order is split up according to
the different temporal orders of the two scatterings: in b the positron, and
in c the electron suffers an additional scattering after its creation.
15 Since the positron exists only for a very short time, it is also called virtual. In

general, one distinguishes between real particles whose Feynman diagrams are
open on one side (open or external lines) and virtual particles whose Feynman
diagrams have a start and an end point (closed or internal lines).
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t

x

t

x

t

x

Ψi Ψ̄f

a

Ψi Ψ̄f

b

Ψi Ψ̄f

c

Fig. 3.8. Feynman diagrams of the scattering amplitude for the electron-positron
creation to first and second order. In b and c the contribution to second order is
split up according to the different temporal orders of both scatterings.

Pair annihilation. Finally, if one rotates the diagrams of Figure 3.8 by 180◦

one obtains the diagrams of Sfi to first and second order for the remaining
combination

εi = +1 , Ψi in the limit t → −∞

εf = −1 , Ψf in the limit t′ → −∞ .

This corresponds to a situation where both electron and positron are entering
the region of interaction thus destroying one another.

By these simple examples the physical meaning and necessity of the mod-
ified causality principle (3.51) that we have incorporated into the fermion
propagator become very clear. Only using this, together with the Feynman-
Stückelberg interpretation, is it possible to interpret the various expressions
in Sfi as electron and positron scattering, pair creation and annihilation, i.e.
as those phenomena that are indeed observed in nature.

To summarize, we can ascertain that Theorems 3.4 and 3.5 in conjunction
with Theorem 3.3 provide a meaningful description of relativistic scattering
processes of Dirac particles. In the following we will apply this formalism
to several concrete problems and extend it to more complicated scattering
situations. In so doing, we will encounter many complex but structurally
similar bispinor-γ-matrix combinations. Therefore, we first investigate some
properties of such combinations in more detail.

3.2.4 Trace Evaluations with γ-Matrices

For concrete scattering problems the calculation of |Sfi|2 often leads to double
spin sums of the form

∑

sf ,si

[ū(pf , sf )Γ1u(pi, si)][ū(pi, si)Γ2u(pf , sf )] ,

with u(p, s) or v(p, s) from Theorem 2.4 and Γ1,2 as operators containing
certain γ-matrix combinations. Such expressions can generally be put down
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to traces and subsequently calculated further using some γ-matrix trace rules
so that the explicit form of the bispinors does not need to be considered any
more. In the following we summarize some relevant relationships concerning
this matter and prove them directly afterward.

Theorem 3.6: Trace evaluations with γ-matrices

The following relations hold:
∑

sf ,si

[ū(f)Γ1u(i)][ū(i)Γ2u(f)] = tr [Λ+(pf )Γ1Λ+(pi)Γ2]
∑

sf ,si

[v̄(f)Γ1v(i)][v̄(i)Γ2v(f)] = tr [Λ−(pf )Γ1Λ−(pi)Γ2]
∑

sf ,si

[ū(f)Γ1v(i)][v̄(i)Γ2u(f)] = −tr [Λ+(pf )Γ1Λ−(pi)Γ2]
∑

sf ,si

[v̄(f)Γ1u(i)][ū(i)Γ2v(f)] = −tr [Λ−(pf )Γ1Λ+(pi)Γ2] ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(3.64)

with the abbreviatory notation u(i) = u(pi, si) and so on. Depending on
the concrete form of the operators Γ1,2, the traces can be calculated further
with the help of the following identities:

tr(/a/b) = 4a · b
tr(/a1 · · · /an) = 0 if n is odd

tr(/a1/a2 · · · /a2n) = tr(/a2n · · · /a1)

tr(/a1 · · · /an) = a1 · a2tr(/a3 · · · /an)

−a1 · a3tr(/a2/a4 · · · /an)

+ . . . + (−1)na1 · antr(/a2 · · · /an−1)

tr(γ5) = 0

tr(γ5/a1 · · · /an) = 0 if n is odd

tr(γ5/a/b) = 0

tr(γ5/a/b/c/d) = −4iεαβγδaαbβcγdδ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.65)

γμγμ = 4

γμ/aγμ = −2/a

γμ/a/bγμ = 4a · b
γμ/a/b/cγμ = −2/c/b/a

γμ/a/b/c/dγμ = 2/d/a/b/c + 2/c/b/a/d .

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(3.66)

Note the index saving notation a · b for aμbμ which will be used often in the
following.
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To (3.64). Due to the projection relations (see Theorem 2.4)

ω̄(1,2)(p)Λ+(p) = ω̄(1,2)(p) , ω̄(3,4)(p)Λ+(p) = 0
ω̄(3,4)(p)Λ−(p) = ω̄(3,4)(p) , ω̄(1,2)(p)Λ−(p) = 0

and the second equation of (2.16), we have

∑

si

uα(i)ūβ(i) =
2∑

r=1

ω(r)
α (pi)ω̄

(r)
β (pi)

=
4∑

ε,r=1

εrω
(r)
α (pi)ω̄

(r)
δ (pi) [Λ+(pi)]δβ

= [Λ+(pi)]αβ (3.67)

∑

si

vα(i)v̄β(i) =
4∑

r=3

ω(r)
α (pi)ω̄

(r)
β (pi)

= −
4∑

ε,r=1

εrω
(r)
α (pi)ω̄

(r)
δ (pi) [Λ−(pi)]δβ

= − [Λ+(pi)]αβ . (3.68)

Concerning the first equation of (3.64), it follows that
∑

sf ,si

[ū(f)Γ1u(i)][ū(i)Γ2u(f)] =
∑

α, β, δ, ε
si, sf

ūα(f)[Γ1]αβuβ(i)ūδ(i)[Γ2]δεuε(f)

=
∑

α, β, δ, ε
sf

ūα(f)[Γ1]αβ [Λ+(pi)]βδ[Γ2]δεuε(f)

=
∑

α, β, δ, ε
sf

uε(f)ūα(f)[Γ1]αβ [Λ+(pi)]βδ[Γ2]δε

=
∑

α,β,δ,ε

[Λ+(pf )]εα[Γ1]αβ [Λ+(pi)]βδ[Γ2]δε .

Putting the matrix multiplications into one single matrix finally yields the
proposition. The proof of the remaining equations of (3.64) proceeds analo-
gously.

To prove (3.65) we particularly need the anticommutator relations
{γμ, γν} = 2gμν and {γ5, γμ} = 0 as well as the cyclic permutability of
the trace: tr(AB) = tr(BA). In the following the use of these relations is
marked by the symbols a and c over the corresponding equal sign.
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To 1. equation of (3.65).

tr(/a/b) c= tr(/b/a) =
1
2
tr(/a/b + /b/a) =

1
2
aμbνtr(γμγν + γνγμ)

a= aμbνtr(gμν) = aμbνgμνtr(1) = 4a · b .

To 2. equation of (3.65).

tr(/a1 · · · /an) = tr(/a1 · · · /anγ5γ5) c= tr(γ5/a1 · · · /anγ5)
a= (−1)ntr(/a1 · · · /anγ5γ5) = (−1)ntr(/a1 · · · /an) .

To 3. equation of (3.65). Here we make use of the charge conjuga-
tion transformation C from Subsection 2.1.6 with the property C−1γμC =
−γ∗μ = −γ0γμ,T γ0 [see (2.40)] and calculate as follows:

tr(/a1 · · · /a2n) = tr(CC−1/a1CC−1/a2 · · ·CC−1/a2n)
c= tr(C−1/a1CC−1/a2 · · ·CC−1/a2nC)
= (−1)2ntr

(
γ0/aT

1 γ0γ0/aT
2 γ0 · · · γ0/aT

2nγ0
)

c= tr
(
/aT

1 · · · /aT
2n

)
= tr(/a2n · · · /a1)T = tr(/a2n · · · /a1) .

To 4. equation of (3.65).

tr(/a1/a2 · · · /an) a= tr [(−/a2/a1 + 2a1 · a2)/a3 · · · /an]
= 2a1 · a2tr(/a3 · · · /an) − tr(/a2/a1/a3 · · · /an) .

Further continuation of this procedure leads to

tr(/a1 · · · /an) = 2a1 · a2tr(/a3 · · · /an) − 2a1 · a3tr(/a2/a4 · · · /an) + . . .

+(−1)ntr(/a2 · · · /an/a1) .

From this, along with tr(/a2 · · · /an/a1)
c= tr(/a1 · · · /an), follows the asserted

equation. This relation is exceedingly useful for calculating complex traces of
γ-matrices. However, even for moderate n, the number of the arising individ-
ual terms can be considerably large. For example, in the case of n = 4, the
4. and 1. equations of (3.65) yield

tr(/a/b/c/d) = 4 [(a1 · a2)(a3 · a4) + (a1 · a4)(a2 · a3) − (a1 · a3)(a2 · a4)] .

To 5. equation of (3.65).

tr
(
γ5
)

= tr
(
γ5γ0γ0

) a= −tr
(
γ0γ5γ0

) c= −tr
(
γ5γ0γ0

)
= 0 .

To 6. equation of (3.65).

tr(γ5/a1 · · · /an) c= tr(/a1 · · · /anγ5) a= (−1)ntr(γ5/a1 · · · /an) .
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To 7. equation of (3.65). The proof is adduced if we can show that
tr
(
γ5γμγν

)
=0. We only need to consider the case μ �= ν due to the 5. equa-

tion of (3.65). For λ �= μ, ν follows that

tr
(
γ5γμγν

)
= tr

[
γ5γμγν

(
γλ
)−1

γλ
]

c= tr
[
γλγ5γμγν

(
γλ
)−1
]

a= (−1)3tr
[
γ5γμγνγλ

(
γλ
)−1
]

= (−1)3tr
(
γ5γμγν

)
= 0 .

To 8. equation of (3.65). Here we consider the expression tr
(
γ5γαγβγγγδ

)
.

This trace vanishes if two indices take on the same value. This is because if,
for example, the first and the third indices are equal, we have

tr
(
γ5γαγβγαγδ

) a= tr
[
γ5γα

(
2gαβ − γαγβ

)
γδ
]

= 2gαβtr
(
γ5γαγδ

)
− gααtr

(
γ5γβγδ

) 6.eq.
= 0 .

Thus, only the trace

tr
(
γ5γ0γ1γ2γ3

)
= tr

(
−iγ5γ5

)
= −4i = −4iε0123

contributes, as well as those with permuted indices. However, due to the
above anticommutator relations, the result remains unchanged for even per-
mutations, while for odd permutations there appears an additional sign, in
accordance with εαβγδ.

To 1. equation of (3.66).

γμγμ = gμνγνγμ a= gμν (2gμν − γμγν) = 2gμνgμν − γμγμ = 8 − γμγμ.

To 2. equation of (3.66).

γμ/aγμ = γμaνγνγμ a= γμaν (2gμν − γμγν)
1.eq.
= 2/a − 4/a = −2/a .

To 3. equation of (3.66).

γμ/a/bγμ = γμ/abνγνγμ a= γμ/abν (2gμν − γμγν)
2.eq.
= 2/b/a + 2/a/b

a= 4a · b − 2/a/b + 2/a/b = 4a · b .

To 4. equation of (3.66).

γμ/a/b/cγμ = γμ/a/bcνγνγμ a= γμ/a/bcν (2gμν − γμγν)
3.eq.
= 2/c/a/b − 4a · b/c

a= 4/ca · b − 2/c/b/a − 4a · b/c = −2/c/b/a .

To 5. equation of (3.66).

γμ/a/b/c/dγμ = γμ/a/b/cdνγνγμ a= γμ/a/b/cdν )(2gμν − γμγν)
4.eq.
= 2/d/a/b/c + 2/c/b/a/d.
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Summary

• Similarly to the nonrelativistic case, the Dirac equation can be rewritten
as an integral equation for the propagator and for the wave function itself
that is solvable approximately.

• Due to the quadratic energy-momentum relation, there exist four pos-
sible boundary conditions (instead of two as in the nonrelativistic case)
to determine the propagator uniquely. They all lead to different causal
relationships.

• The Feynman fermion propagator describes the temporally forward
[backward] evolution of a positive [negative] wave function. Through this
and the Feynman-Stückelberg interpretation, the positive [negative] parts
can be interpreted as temporally forward directed particle [antiparticle]
propagation.

• Relativistic scattering processes are described by scattering amplitudes.
Using the Feynman propagator formalism, they can be expanded in a
series of multiple scatterings. Compared to the nonrelativistic case, the
graphical representations of the individual expansion terms (Feynman
diagrams) are more complicated reflecting the more versatile scattering
constellations, particularly the possibility of particle creation and anni-
hilation processes.

• The concrete calculation of scattering processes is based on the same
considerations as in the nonrelativistic case (plane waves, adiabatic ap-
proximation and cross section).

Exercises

35. Decomposition of S
(0)
F by plane waves. Show the transition from

(3.57) to (3.58).

Solution. For plane Dirac wave functions (see Theorem 2.4)

ψ(1,2)
p (x) =

1
(2πh̄)3/2

√
m0c

p0
e−ipμxμ/h̄u(p,±s)

ψ(3,4)
p (x) =

1
(2πh̄)3/2

√
m0c

p0
e+ipμxμ/h̄v(p,∓s)

we have the relations [see (3.67)and (3.68)]
∑

s

u(p, s)ū(p, s) = Λ+(p) ,
∑

s

v(p, s)v̄(p, s) = −Λ−(p) ,

from which follows that
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(2πh̄)3
2∑

r=1

ψ(r)
p (x′)ψ̄(r)

p (x) = e−ipμ(x′μ−xμ)/h̄ m0c

p0

∑

s

u(p, s)ū(p, s)

= e−ipμ(x′μ−xμ)/h̄ m0c

p0
Λ+(p)

(2πh̄)3
4∑

r=3

ψ(r)
p (x′)ψ̄(r)

p (x) = eipμ(x′μ−xμ)/h̄ m0c

p0

∑

s

v(p, s)v̄(p, s)

= −eipμ(x′μ−xμ)/h̄ m0c

p0
Λ−(p) .

Comparison with (3.57) yields (3.58).

36. Causality principle of S
(0)
F . Show the validity of both causal relation-

ships (3.51) and (3.53) for the free case by exploiting (3.58).

Solution. Let

ψ(x) = ψ(+)(x) + ψ(−)(x) =
∫

d3p′
4∑

r′=1

a(r′)(p′)Ψ (r′)
p′ (x)

be an arbitrary free Dirac wave packet. Then it holds that
∫

d3xS
(0)
F (x′ − x)γ0ψ(x)

= −iΘ(x′0 − x0)
∫

d3x

∫
d3p

∫
d3p′

×
2∑

r=1

4∑

r′=1

ψ(r)
p (x′)ψ(r)†

p (x)ψ(r′)
p′ (x)a(r′)(p′)

+iΘ(x0 − x′0)
∫

d3x

∫
d3p

∫
d3p′

×
4∑

r=3

4∑

r′=1

ψ(r)
p (x′)ψ(r)†

p (x)ψ(r′)
p′ (x)a(r′)(p′)

= −iΘ(x′0 − x0)
∫

d3p

∫
d3p′

2∑

r=1

4∑

r′=1

δrr′δ(p − p′)ψ(r)
p (x′)a(r′)(p′)

+iΘ(x0 − x′0)
∫

d3p

∫
d3p′

4∑

r=3

4∑

r′=1

δrr′δ(p − p′)ψ(r)
p (x′)a(r′)(p′)

= −iΘ(x′0 − x0)
∫

d3p

2∑

r=1

ψ(r)
p (x′)a(r)(p)

+iΘ(x0 − x′0)
∫

d3p

4∑

r=3

ψ(r)
p (x′)a(r)(p)

= −iΘ(x′0 − x0)ψ(+)(x′) + iΘ(x0 − x′0)ψ(−)(x′) .
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Similarly, we have
∫

d3xψ̄(x)γ0S
(0)
F (x − x′)

= −iΘ(x0 − x′0)
∫

d3x

∫
d3p′

∫
d3p

×
4∑

r′=1

2∑

r=1

a(r′)∗(p′)ψ(r′)†
p′ (x)ψ(r)

p (x)ψ̄(r)
p (x′)

+iΘ(x′0 − x0)
∫

d3x

∫
d3p′

∫
d3p

×
4∑

r′=1

4∑

r=3

a(r′)∗(p′)ψ(r′)†
p′ (x)ψ(r)

p (x)ψ̄(r)
p (x′)

= −iΘ(x0 − x′0)
∫

d3p′
∫

d3p

4∑

r′=1

2∑

r=1

a(r′)∗(p′)ψ̄(r)
p (x′)δrr′δ(p − p′)

+iΘ(x′0 − x0)
∫

d3p′
∫

d3p
4∑

r′=1

4∑

r=3

a(r′)∗(p′)ψ̄(r)
p (x′)δrr′δ(p − p′)

= −iΘ(x0 − x′0)
∫

d3p

2∑

r=1

a(r)∗(p)ψ̄(r)
p (x′)

+iΘ(x′0 − x0)
∫

d3p

4∑

r=3

a(r)∗(p)ψ̄(r)
p (x′)

= −iΘ(x0 − x′0)ψ̄(+)(x′) + iΘ(x′0 − x0)ψ̄(−)(x′) .

3.3 Spin-1/2 Scattering Processes

After the preparatory considerations of the preceding two sections, we now
carry out concrete calculations of spin-1/2 scattering processes to the lowest
orders of the scattering theory. As the simplest example, we first consider
the Coulomb scattering of electrons. Thereafter, we discuss the more realistic
case of electron scattering against freely moving protons. Here we encounter
a close correspondence between scattering processes, Feynman diagrams, and
scattering amplitudes that can be cast into a simple set of rules, the so-called
Feynman rules. Furthermore, we address the processes of electron-electron
and electron-positron scattering as well as Compton scattering against elec-
trons, electron-positron creation by two photons, and electron-positron an-
nihilation into two photons. The first two and the last three processes are
interconnected via the principle of crossing symmetry. This section ends with
a complete compilation of the Feynman rules.
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Before we start, we highlight some points that are essential for the correct
understanding of the whole third chapter.

• The Dirac equation deals with the movement of (anti)fermions within an
external classical background potential. The same is true for the propa-
gator formalism (Theorem 3.5) as it is merely based upon a perturbation
theoretical expansion of the Dirac equation.

• In this respect, the scattering of an electron against an external classical
Coulomb potential is a concrete and totally legitimate application of this
formalism.

• Strictly speaking, the electron-proton scattering lies outside the range of
our formalism. However, it can be integrated into it by a plausible exten-
sion, namely that the external potential is considered to be created by the
proton or electron current. In this way, any two-particle scatterings can
generally be described as current-current interactions within this formal-
ism, whereas the interactions themselves, i.e. the Aμ-fields in the scattering
series (3.61), can be interpreted as the exchange of n virtual photons be-
tween both particles to n-th order.

• The other processes, Compton scattering, electron-positron annihilation,
and electron-positron creation, clearly go beyond the scope of our formal-
ism since they involve photonic initial and final states. Fortunately, even
here one can find a reasonable way of integration by considering the Aμ-
fields in the term of the lowest (here: second) order of (3.61) as the incoming
and outgoing photons. However, in this case the question naturally arises
how the Aμ-fields of higher-order terms are to be interpreted.

• As we will see, the scattering amplitudes of all of these processes can be
graphically depicted and calculated using the Feynman rules. However,
the Feynman rules are much more general than what follows from our
scattering formalism. Besides tree diagrams, they also allow the presence
of loop diagrams corresponding to the creation and subsequent annihilation
of virtual particles. Strictly speaking, those effects (radiation corrections)
cannot be explained by our formalism and are purely of quantum field
theoretical nature.

• In other words, the Feynman rules are the quantum electrodynamical di-
rectives for the construction of scattering amplitudes. They can be de-
duced from the propagator scattering formalism with some additional, not
necessarily obvious generalizations. In the narrow sense, the propagator
scattering formalism only provides their tree level part.

• Apart from the presentation of the complete Feynman rules, this section
deals exclusively with scattering processes on tree level. Quantum electro-
dynamical corrections (loop level) are the subject of Section 3.4.
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Further notes. From now on we use the natural unit system throughout in
order to keep our calculations as clear as possible. In this system we have

h̄ = c = 1 .

Consequently, there is only one energy or mass unit left which is typically
measured in electron volt (eV). Furthermore, length and time are propor-
tional to each other and possess the unit 1/eV. The conversion from the
MKS to the natural system is

1s =
1.519 · 1015

eV
, 1m =

5.068 · 106

eV
. (3.69)

Finally, note that we will use two different notions of order in the following.
Firstly, “order” refers to the number of the term within the series of multiple
scatterings from Theorem 3.5 starting from zero. Secondly, it means the order
in the coupling constant e.

3.3.1 Coulomb Scattering of Electrons

First, we consider the scattering of electrons against a Coulomb potential of
the form

eA0(x) = V (x) =
α

|x| , A(x) = 0 , α = −Ze2 ,

where we proceed similarly to the nonrelativistic calculation in Subsection
3.1.4. Since incoming and scattered particles are electrons, we choose for Ψi,f

positive plane Dirac waves normalized to the volume V with electron mass
m0, energies Ei,f , four-momentum indices pi,f , and four-polarization indices
si,f [compare to (3.62)]:

Ψi(x) =
√

m0

EiV
u(pi, si)e−iEiteipix (in the limit t → −∞)

Ψf (x) =
√

m0

EfV
u(pf , sf )e−iEf teipf x (in the limit t → +∞) .

According to Theorem 3.5, the corresponding scattering amplitude to first
order (εf = +1, f �= i) is

Sfi = −ie
∫

d4xΨ̄f (x)γμAμ(x)Ψi(x)

= − iα
V

√
m2

0

EfEi
ū(pf , sf )γ0u(pi, si)

×
T/2∫

−T/2

dtei(Ef−Ei)t

∫

V

d3xe−iqx 1
|x| , q = pf − pi

= − i[2πδ(Ef − Ei)]
V

√
m2

0

EiEf
Mfi , Mfi =

4πα

q2
ū(pf , sf )γ0u(pi, si) ,
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where, in the last step, the relations
T/2∫

−T/2

dtei(Ef−Ei)t T→∞= 2πδ(Ef − Ei) ,

∫

V

d3x
e−iqx

|x| =
4π

q2

[see (3.25) and (3.26)] have been used. Due to Theorem 3.3, the differential
cross section follows as

dσ =
|Sfi|2

T |ji|
V d3pf

(2π)3
=

m0

Ei

[2πδ(Ef − Ei)]2

TV |ji|
|Mfi|2

m0d3pf

(2π)3Ef

or, after the replacement [2πδ(Ef − Ei)]2 → 2πTδ(Ef − Ei) with finite T ,

dσ =
m0

Ei

1
V |ji|

|Mfi|2(2π)δ(Ef − Ei)
m0d3pf

(2π)3Ef
. (3.70)

To determine the current density |ji| we assume the velocity of the incoming
particle to be oriented toward the z-direction. It then follows that

|ji| =
m0

EiV

∣
∣u†(pi, si)α3u(pi, si)

∣
∣

and, in the Dirac representation,

u(pi, si) =
√

Ei + m0

2m0

⎛

⎜
⎝

χsi

σ3|pi|
Ei + m0

χsi

⎞

⎟
⎠ , χ†

si
χsi

= 1 ,

where the concrete form of the spinors χsi
depends on the direction of po-

larization si. From this follows the polarization-independent and intuitively
expected relation

|ji| =
|pi|
EiV

.

Inserting this into (3.70), the differential cross section becomes

dσ =
m0

|pi|
|Mfi|2(2π)δ(Ef − Ei)

m0d3pf

(2π)3Ef
,

where, as desired, all dependencies of T and V are removed. Taking into
account

d3pf = p2
fd|pf |dΩ , E2

f = p2
f + m2

0 =⇒ d|pf | =
EfdEf

|pf |
,

we finally get

dσ

dΩ
=

m2
0

(2π)2|pi|

∫
dEf |pf ||Mfi|2δ(Ef − Ei)

=
m2

0

(2π)2
|Mfi|2|pf |=|pi|

=
4α2m2

0

q4

∣
∣ū(pf , sf )γ0u(pi, si)

∣
∣2
|pf |=|pi| . (3.71)
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As expected, in the nonrelativistic limit this expression turns into Ruther-
ford’s scattering formula (3.29):

∣
∣ū(pf , sf )γ0u(pi, si)

∣
∣2 =

∣
∣
∣
∣(1, 0)

(
1 0
0 1

)(
1
0

)∣∣
∣
∣

2

= 1 .

Unpolarized cross section. To calculate (3.71) further, we initially assume
that in the scattering experiment neither the polarization of the incoming
particle beam is prepared nor the polarization of the scattered particles is
measured – quite a typical practical situation. This implies that in (3.71) the
average over all possible initial polarizations si and the sum over all possible
final polarizations sf must be taken (every possible si occurs with the same
probability and every possible sf is measured):

dσ

dΩ
=

4α2m2
0

q4

1
2

∑

sf ,si

∣
∣ū(pf , sf )γ0u(pi, si)

∣
∣2
|pf |=|pi| . (3.72)

The appearance of such double spin sums within cross sections allows a com-
fortable evaluation using Theorem 3.6 where the concrete form of the involved
bispinors does not matter. Therefore, here and in all subsequent scattering
problems, we will strive to cast the corresponding cross section into a form
similar to (3.72). In the case of (3.72), it follows from (3.64) and the second
equation of (3.65) that

∣
∣ū(pf , sf )γ0u(pi, si)

∣
∣2 =

[
ū(pf , sf )γ0u(pi, si)

] [
ū(pf , sf )γ0u(pi, si)

]†

=
[
ū(pf , sf )γ0u(pi, si)

] [
ū(pi, si)γ0u(pf , sf )

]

=⇒
∑

sf ,si

∣
∣ū(pf , sf )γ0u(pi, si)

∣
∣2 = tr

[
Λ+(pf )γ0Λ+(pi)γ0

]

= tr
(

/pf + m0

2m0
γ0 /pi + m0

2m0
γ0

)

=
1

4m2
0

tr(/pfγ0/piγ
0) +

1
4m0

tr(/pf )

+
1

4m0
tr(/pi) +

1
4
tr(1)

=
1

4m2
0

tr(/pfγ0/piγ
0) + 1 .

Introducing the four-vector (aμ) = (1, 0, 0, 0) and using the fourth and first
equations of (3.65), the remaining trace becomes

tr
(
/pfγ0/piγ

0
)

= tr (/pf/a/pi/a)
= 2(pf · a)tr(/pi/a) − (pf · pi)tr(/a/a)
= 8(pf · a)(pi · a) − 4(pf · pi)(a · a)
= 8EiEf − 4 (EiEf − pipf )
= 4EiEf + 4pipf . (3.73)



3.3 Spin-1/2 Scattering Processes 227

All in all, (3.72) turns into Mott’s scattering formula

dσ

dΩ
=

(
dσ

dΩ

)

Mott

=
2α2m2

0

q4

(
1 +

EiEf + pipf

m2
0

)

|pf |=|pi|

=
4α2

q4

(
E2

i cos2
θ

2
+ m2

0 sin2 θ

2

)
=

α2
(
1 − v2

i sin2 θ
2

)

4v4
i E2

i sin4 θ
2

, (3.74)

where, in the last row, the identities

pipf ||pf |=|pi| = p2
i cos θ , cos θ = cos2

θ

2
− sin2 θ

2

q2
∣
∣
|pf |=|pi| = 4p2

i sin2 θ

2
, p2

i = v2
i E2

i

have been used.

Partially polarized cross section. Next we suppose that the polarization
sf of the scattered particles is measured while the incoming particle beam is
still unpolarized. Instead of (3.72), we now have to consider

dσ

dΩ
(sf ) =

4α2m2
0

q4

1
2

∑

si

∣
∣ū(pf , sf )γ0u(pi, si)

∣
∣2
|pf |=|pi| (3.75)

resulting from (3.71) by averaging over all possible initial polarizations si.
Obviously, this expression does not possess the desired form of a double
spin sum. However, using the spin projectors Σ(s) of Theorem 2.4, we can
transform the single spin sum in (3.75) into a double spin sum which, as
before, can be easily evaluated further with the help of Theorem 3.6. Taking
into account

Σ(s)u(p, s) = u(p, s) , Σ(s)u(p,−s) = 0 ,

we have
∑

si

∣
∣ū(pf , sf )γ0u(pi, si)

∣
∣2

=
∑

si

[
ū(pf , sf )γ0u(pi, si)

] [
ū(pf , sf )γ0u(pi, si)

]†

=
∑

si

[
ū(pf , sf )γ0u(pi, si)

] [
ū(pi, si)γ0u(pf , sf )

]

=
∑

s′
f
,si

[
ū(pf , s′f )γ0u(pi, si)

] [
ū(pi, si)γ0Σ(sf )u(pf , s′f )

]

= tr
[
Λ+(pf )γ0Λ+(pi)γ0Σ(sf )

]

=
1

8m2
0

tr
[
(/pf + m0)γ0(/pi + m0)γ0(1 + γ5/sf )

]
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=
1

8m2
0

tr
(
/pfγ0/piγ

0
)

+
1
2

=
1
2

(
1 +

EiEf + pipf

m2
0

)
. (3.76)

The last-but-one step results from the fact that traces consisting of an odd
number of /a-multiplications (with or without an additional γ5) vanish and
that terms with an even number of /a-multiplications and one additional γ5

can be related back to terms of the form tr(γ5/a/b) = 0 by anticommuting with
γ0. The last step follows from (3.73). Inserting the last relation into (3.75)
and comparing this with (3.74) we obtain the final result

dσ

dΩ
(sf ) =

α2m2
0

q4

(
1 +

EiEf + pipf

m2
0

)

|pf |=|pi|
=

1
2

(
dσ

dΩ

)

Mott

. (3.77)

Accordingly, dσ(sf )/dΩ is independent from the measured spin of the scat-
tered particles – an effect which is only true in the lowest order of the scat-
tering theory.

The cross section of the complementary situation where the incoming
particle beam is polarized while the polarization of the scattered particles is
not measured can be obtained analogously. To do this, one has to consider
the equation [see (3.71)]

dσ

dΩ
(si) =

4α2m2
0

q4

∑

sf

∣
∣ū(pf , sf )γ0u(pi, si)

∣
∣2
|pf |=|pi| ,

in which all possible final polarizations are summed up. Performing a calcu-
lation similar to (3.76) where the spin projector Σ(si) [instead of Σ(sf )] is
inserted appropriately, one finds

∑

sf

∣
∣ū(pf , sf )γ0u(pi, si)

∣
∣2 =

1
2

(
1 +

EiEf + pipf

m2
0

)

and hence

dσ

dΩ
(si) =

2α2m2
0

q4

(
1 +

EiEf + pipf

m2
0

)

|pf |=|pi|
=

(
dσ

dΩ

)

Mott

. (3.78)

Totally polarized cross section. Let us now consider the remaining case
where the incoming particle beam is polarized and the polarization of the
scattered particles is measured. Here we have [see (3.71)]

dσ

dΩ
(si, sf ) =

4α2m2
0

q4

∣
∣ū(pf , sf )γ0u(pi, si)

∣
∣2
|pf |=|pi| .

Similarly to the earlier cases, this expression can also be written as a double
spin sum by inserting the spin projectors Σ(si) and Σ(sf ) and subsequently
simplifying the result using Theorem 3.6:
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∣
∣ū(pf , sf )γ0u(pi, si)

∣
∣2

=
[
ū(pf , sf )γ0u(pi, si)

] [
ū(pi, si)γ0u(pf , sf )

]

=
∑

s′
f
,s′

i

[
ū(pf , s′f )γ0Σ(si)u(pi, s

′
i)
] [

ū(pi, s
′
i)γ

0Σ(sf )u(pf , s′f )
]

= tr
[
Λ+(pf )γ0Σ(si)Λ+(pi)γ0Σ(sf )

]

= tr
(

/pf + m0

2m0
γ0 1 + γ5/si

2
/pi + m0

2m0
γ0 1 + γ5/sf

2

)

=
1

16m2
0

{
tr
[
(/pf + m0)γ0(/pi + m0)γ0

]

+tr
[
(/pf + m0)γ0γ5/si(/pi + m0)γ0

]

+tr
[
(/pf + m0)γ0(/pi + m0)γ0γ5/sf

]

+tr
[
(/pf + m0)γ0γ5/si(/pi + m0)γ0γ5/sf

]}
.

Here the second and third traces vanish due to the same line of argument as
in (3.76). Therefore, it follows that

dσ

dΩ
(si, sf ) =

α2

4q4

{
tr
[
(/pf + m0)γ0(/pi + m0)γ0

]

+ tr
[
(/pf + m0)γ0γ5/si(/pi + m0)γ0γ5/sf

]}

|pf |=|pi|
. (3.79)

Contrary to (3.77) and (3.78), the polarization dependencies are still present.
Thus, for further evaluation of this expression, the four-polarizations si and
sf need to be concretized. For this purpose, consider an electron whose rest
spin is directed toward s(0), |s(0)| = 1. Then, according to Theorem 2.3,
the electron’s four-polarization in a system where it is moving with velocity
v = p/E is (c = 1)

(sμ) = [Λ−v]μν

(
0

s(0)

)
=
(

ps(0)

m0
, s(0) +

ps(0)

m0(E + m0)
p

)
, (3.80)

where Λ−v denotes the Lorentz transformation for the transition from the
electron’s rest system to a system moving with velocity −v relative to it. If
we now assume that the electron’s rest spin is parallel or antiparallel to its
direction of motion, i.e. that it has positive or negative helicity

s(0) =
λp

|p| , λ = ±1 ,

then (3.80) turns into

(sμ) = λ

(
|p|
m0

,
E

m0

p

|p|

)
.

Hence, for the case of incoming and scattered particles each with positive or
negative helicity, (3.79) can be rewritten as
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dσ

dΩ
(λi, λf ) =

α2

4q4

{
tr
[
(/pf + m0)γ0(/pi + m0)γ0

]

+λiλf tr
[
(/pf + m0)γ0γ5/si(/pi + m0)γ0γ5/sf

]}

|pf |=|pi|
,

with

(sμ
i ) = λisi , si =

(
|pi|
m0

,
Ei

m0

pi

|pi|

)

(sμ
f ) = λfsf , sf =

(
|pf |
m0

,
Ef

m0

pf

|pf |

)
.

Taking into account |pf | = |pi|, cos θ = pipf/|pi|2, examination of the re-
maining traces according to Theorem 3.6 yields

tr
[
(/pf + m0)γ0(/pi + m0)γ0

]
= 8

(
E2

i cos2
θ

2
+ m2

0 sin2 θ

2

)

tr
[
(/pf + m0)γ0γ5/si(/pi + m0)γ0γ5/sf

]
= 8

(
E2

i cos2
θ

2
− m2

0 sin2 θ

2

)
.

Therefore, the totally polarized differential cross section is

dσ

dΩ
(λi, λf ) =

2α2

q4

[
E2

i cos2
θ

2
+ m2

0 sin2 θ

2

+ λiλf

(
E2

i cos2
θ

2
− m2

0 sin2 θ

2

)]
.

As expected, after averaging over λi and/or summing over λf , this turns
into the expressions (3.74), (3.77), and (3.78) for the unpolarized and par-
tially polarized cross sections. Thus, even in first order, the counting rates
of the scattered particles with a particular spin orientation depend on the
polarization of the incoming particle beam.

Besides the cross section, the degree of polarization is also of interest in
spin-sensitive scattering experiments. It is defined as the difference between
the counting rates for positive and negative helicity divided by the total
counting rate:

P (λi) =
dσ(λf = +1) − dσ(λf = −1)
dσ(λf = +1) + dσ(λf = −1)

.

If the initial state is totally polarized, e.g. λi = +1, the corresponding degree
of polarization is

P (λi = +1) = 1 −
2m2

0 sin2 θ
2

E2
i cos2 θ

2 + m2
0 sin2 θ

2

.

In the nonrelativistic limit E → m0, it becomes

P (λi = +1) ≈ 1 − 2 sin2 θ

2
= cos θ ,
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which is simply the geometric overlap of the quantization axes of the initial
and final states. This implies that, in this limit and seen from a fixed system,
the spin is not influenced by the scattering at all.

Theorem 3.7: Coulomb scattering of electrons to leading order

The scattering amplitude for the scattering of electrons against a fixed
Coulomb potential of the form

eA0(x) =
α

|x| , A(x) = 0

is given in leading order by (f �= i)

Sfi = −i
2πδ(Ef − Ei)

V

√
m2

0

EiEf
Mfi ,

with

Mfi =
4πα

q2
ū(pf , sf )γ0u(pi, si) , q = pf − pi .

The differential cross section follows as

dσ =
m0

Ei

1
V |ji|

|Mfi|2(2π)δ(Ef − Ei)
m0d3pf

(2π)3Ef

=
m0

|pi|
|Mfi|2(2π)δ(Ef − Ei)

m0d3pf

(2π)3Ef

=⇒ dσ

dΩ
=

m2
0

(2π)2
|Mfi|2|pf |=|pi| ,

where, in the last equation, all scattering momenta pf directed toward
dΩ have been integrated out. From this one obtains the unpolarized cross
section (average over si and sum over sf , vi = |pi|/Ei)

(
dσ

dΩ

)

Mott

=
2α2m2

0

q4

(
1 +

EiEf + pipf

m2
0

)

|pf |=|pi|

=
4α2

q4

(
E2

i cos2
θ

2
+ m2

0 sin2 θ

2

)
=

α2
(
1 − v2

i sin2 θ
2

)

4v4
i E2

i sin4 θ
2

,

the partially polarized cross sections (average over si or sum over sf )

dσ

dΩ
(sf ) =

1
2

(
dσ

dΩ

)

Mott

,
dσ

dΩ
(si) =

(
dσ

dΩ

)

Mott

,

and the totally polarized cross section (with initial and final helicities λi,f )
�
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dσ

dΩ
(λi, λf ) =

2α2

q4

[
E2

i cos2
θ

2
+ m2

0 sin2 θ

2

+ λiλf

(
E2

i cos2
θ

2
− m2

0 sin2 θ

2

)]
.

Let us now turn shortly to the Coulomb scattering of positrons to leading
order. In this case we have to describe the outgoing positron (with pf , sf )
by a temporally backward directed negative plane Dirac wave ψi (with −pf ,
−sf ) moving into the scattering area and, accordingly, the incoming positron
(with pi, si) by a temporally backward directed negative plane Dirac wave
ψf (with −pi, −si) moving out of the scattering area. We therefore have
[compare to (3.63)]

ψi(x) =
√

m0

EfV
v(pf , sf )e+iEf te−ipf x (in the limit t → +∞)

ψf (x) =
√

m0

EiV
v(pi, si)e+iEite−ipix (in the limit t → −∞) .

Analogously to the electron case, Theorem 3.5 (εf = −1, f �= i) yields the
scattering amplitude

Sfi = +
i[2πδ(Ef − Ei)]

V

√
m2

0

EiEf
Mfi , Mfi =

4πα

q2
v̄(pi, si)γ0v(pf , sf ) ,

which differs from that of the electron case only by the overall sign (due to
εf ) and the involved bispinors. Due to the kinematically equal situations, the
calculation of the differential cross section leads again to the formula

dσ

dΩ
=

m2
0

(2π)2
|Mfi|2|pf |=|pi| .

Depending on the considered situation (unpolarized, partially or totally po-
larized particle beams), we again have to consider different sums of |Mfi|2.
They all contain traces differing from those of the electron case only by the
replacement Λ+(p) → Λ−(p). Therefore, due to 3.6, it follows that in the
positron case, we get the same |Mfi|2-sums and hence the same cross sec-
tions as in the electron case. However, this coincidence is only true in the
lowest order.

3.3.2 Electron-Proton Scattering (I)

The Coulomb scattering of electrons discussed in the preceding subsection is
equivalent to the electron scattering against a fixed, infinitely heavy, spin-
less, and structureless proton. In this and the next subsection we extend
this scenario and deal with the more realistic scattering of electrons against
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freely moving, finitely heavy protons. These protons are now considered to
be spin-1/2 particles, whereas their internal structure is still ignored. Thus,
particularly due to repulsion effects, we expect some differences compared to
the Coulomb scattering.

The starting point of our discussion is the scattering amplitude to first
order (see Theorem 3.5, εf = +1, f �= i)

Sfi = −ie
∫

d4xΨ̄f (x)/AΨi(x) . (3.81)

As before, Ψi and Ψf denote positive plane Dirac waves for the initial and
final electron states normalized to the volume V . Aμ is the four-potential
generated by the proton whose form is a priori not clear and needs to be
determined. We assume that the proton’s electric current (more precisely:
electric current density) J (p)μ is known. The corresponding electromagnetic
radiation field Aμ can then be calculated via the Maxwell equation16

∂μFμν(x) = 4πJ (p)ν(x) , Fμν = ∂μAν − ∂νAμ

or, using the Lorentz gauge ∂μAμ = 0, via

∂μ∂μAν(x) = 4πJ (p)ν(x) .

For our purposes, it it advantageous to use the Green function calculus and
write the solution to the last equation as

Aμ(x) =
∫

d4yD
(0)
F (x − y)J (p)μ(y) . (3.82)

D
(0)
F is the free photon propagator which, in turn, has to fulfill the equation

∂μ∂μD
(0)
F (x − y) = 4πδ(x − y) . (3.83)

For its solution, we proceed similarly to Exercise 31 and Subsection 3.2.2.
Using the fourdimensional Fourier representations

D
(0)
F (x − y) =

∫
d4q

(2π)4
e−iq·(x−y)D̃

(0)
F (q)

δ(x − y) =
∫

d4q

(2π)4
e−iq·(x−y)

and inserting them into (3.83), it follows that

D̃
(0)
F (q) = −4π

q2
, q2 = qμqμ �= 0

=⇒ D
(0)
F (x − y) =

∫
d4q

(2π)4
−4π

q2 + iε
e−iq·(x−y) . (3.84)

Based on our conclusions in Subsection 3.2.2, we have added a small imagi-
nary part to the denominator from the beginning, which guarantees the de-
sired causal behavior of Aμ, namely that only electromagnetic radiation with
16 The factor 4π/c = 4π results from the use of Gaussian units (c = 1).
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positive frequency, i.e. positive energy, occurs. Of course, we also have contri-
butions with negative energy moving backward in time. However, since the
photon carries no charge and is therefore its own antiparticle, both processes
are physically identical.

Combining the two equations (3.81) and (3.82), the scattering amplitude
follows as

Sfi = −ie
∫

d4xΨ̄f (x)γμAμ(x)Ψi(x)

= −i
∫

d4x

∫
d4y[eΨ̄f (x)γμΨi(x)]Aμ(x)

= −i
∫

d4x

∫
d4y
[
eΨ̄f (x)γμΨi(x)

]
D

(0)
F (x − y)J (p)μ(y) , (3.85)

where the proton current J (p)μ is still undetermined. Obviously, the square
bracket can be identified (to first order) with the current of the electrons:

Jμ(x) = eΨ̄f (x)γμΨi(x) .

Since the electronic and protonic currents should be physically on equal foot-
ing (electron scattering within the proton field ⇐⇒ proton scattering within
the electron field), it makes sense to choose the protonic current (to first
order) as17

J (p)μ(y) = epΨ̄
(p)
f (y)γμΨ

(p)
i (y) . (3.86)

Here ep = −e denotes the proton charge and Ψ
(p)
i,f the proton wave functions

in the initial and final states, i.e. positive plane Dirac waves normalized to the
volume V . Understandably, both currents are also called transition currents.
Inserting the electron and proton wave functions

Ψi(x) =
√

m0

EiV
u(pi, si)e−ipi·x

Ψf (x) =
√

m0

EfV
u(pf , sf )e−ipf ·x

Ψ
(p)
i (y) =

√
M0

E
(p)
i V

u(Pi, Si)e−iPi·y

Ψ
(p)
f (y) =

√
M0

E
(p)
f V

u(Pf , Sf )e−iPf ·y

17 Strictly speaking, this choice of the proton current along with the resulting sym-
metric current-current interaction is an extension of our scattering formalism,
since now the Aμ-field is no longer an external background potential that cannot
be influenced by the scattering. A formal justification of this procedure can only
be found within the framework of quantum electrodynamics (compare to the
introductory notes in this section).
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as well as the photon propagator (3.84) and the proton current (3.86), the
scattering amplitude (3.85) now becomes

Sfi = − i
V 2

√
m2

0

EiEf

√√
√
√ M2

0

E
(p)
i E

(p)
f

∫
d4x

∫
d4y

∫
d4q

(2π)4

×
[
ū(pf , sf )γμu(pi, si)

−4πeep

q2 + iε
ū(Pf , Sf )γμu(Pi, Si)

]

×ei(pf−pi)·xe−iq·(x−y)ei(Pf−Pi)·y ,

where M0, E
(p)
i,f , Pi,f , Si,f denote the mass, energies, four-momentum, and

four-polarization indices of the proton. The x and y integrations can be car-
ried out immediately,

∫
d4xei(pf−pi−q)·x = (2π)4δ(pf − pi − q)

∫
d4yei(Pf−Pi+q)·y = (2π)4δ(Pf − Pi + q) ,

and lead to the q integration

(2π)4
∫

d4qδ(pf − pi − q)δ(Pf − Pi + q)
−4πeep

q2 + iε

= (2π)4δ(pf + Pf − pi − Pi)
−4πeep

(pf − pi)2 + iε
.

All in all, we end up with the expression

Sfi = −
i
[
(2π)4δ(pf + Pf − pi − Pi)

]

V 2

√
m2

0

EiEf

√√
√
√ M2

0

E
(p)
i E

(p)
f

Mfi

Mfi = ū(pf , sf )γμu(pi, si)
−4πeep

q2 + iε
ū(Pf , Sf )γμu(Pi, Si)

q = pf − pi .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.87)

Note that the amplitude Mfi is manifestly Lorentz-invariant. Furthermore,
it displays a perfect symmetry with respect to the electron and proton vari-
ables, which justifies our choice of (3.86) for the protonic transition current.
Finally, the fourdimensional δ-function expresses the fact that, contrary to
the Coulomb scattering, not only energy but also momentum is conserved
(four-momentum conservation).

Cross section. Coming from (3.87), we can now use Theorem 3.3 to cal-
culate the cross section for the electron-proton scattering. Here we have to
keep in mind that the integration needs to be carried out over all possible
final states of both electrons and protons. This means that, in Theorem 3.3,
we have to consider not only the number of final electron states within the
momentum interval [pf : pf +d3pf ] but also the number of final proton states
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within the momentum interval [P f : P f +d3Pf ], which, in total, leads to the
phase space factor

V d3pf

(2π)3
V d3Pf

(2π)3
.

Therefore, the sixfold differential cross section is

dσ =
|Sfi|2

T |ji|
V d3pf

(2π)3
V d3Pf

(2π)3

=
m0

Ei

M0

E
(p)
i

[
(2π)4δ(pf + Pf − pi − Pi)

]2

TV 2|ji|
|Mfi|2

m0d3pf

(2π)3Ef

M0d3Pf

(2π)3E(p)
f

=
m0

Ei

M0

E
(p)
i

1
|ji|V

|Mfi|2(2π)4δ(pf + Pf − pi − Pi)

× m0d3pf

(2π)3Ef

M0d3Pf

(2π)3E(p)
f

. (3.88)

In the last step, the mathematically ill-defined δ-square has been replaced by
the appropriate generalization of (3.28) for a finite T and V :

[
(2π)4δ(pf + Pf − pi − Pi)

]2 −→ TV (2π)4δ(pf + Pf − pi − Pi) .

Next we need the current density |ji| resulting from the relative motion of
the mutually approaching electrons and protons (ρ,vi = particle density
and velocity of the electrons; ρ(p),V i = particle density and velocity of the
protons):

|ji| = |ρvi − ρ(p)V i| =
|vi − V i|

V
=

√(
E

(p)
i pi − EiP i

)2

V EiE
(p)
i

.

Since in the following we focus on collinear currents [(ji‖j(p)
i =⇒ (piP i)2 =

p2
i P

2
i ], this equation can be rewritten as

|ji| =

√
(pi · Pi)2 − m2

0M
2
0

V EiE
(p)
i

. (3.89)

Inserting this into (3.88), the differential cross section follows as

dσ =
m0M0√

(pi · Pi)2 − m2
0M

2
0

|Mfi|2(2π)4δ(pf + Pf − pi − Pi)

× m0d3pf

(2π)3Ef

M0d3Pf

(2π)3E(p)
f

. (3.90)

Note that the last two factors and hence the whole expression are Lorentz-
invariant. This can be seen by considering the identity
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δ [f(x)] =
∑

k

δ(x − xk)∣
∣
∣df
dx

∣
∣
∣
xk

, xk = zeros of f , (3.91)

from which follows that (integration only over p0):

d3p

2E
=

∞∫

0

dp0δ(p2 − m2
0)d

3p =

+∞∫

−∞

d4pδ(p2 − m2
0)Θ(p0) .

Since pμ is a time-like four-vector in every Lorentz system, it generally holds
that p2 = m2

0 =⇒ p2
0 > p2 > 0. The Lorentz invariance of the Θ-function and

of d3p/E follows from this immediately.
Contrary to dσ, the quantity dσ/dΩ is not Lorentz-invariant so that now

we need to specify the reference frame. Since electron-proton scattering ex-
periments are usually performed against a fixed proton target, we choose the
laboratory system where the proton is initially at rest. Taking into account

pi = (Ei,pi) , pf = (Ef ,pf ) , Pi = (M0,0) , pipf = |pi||pf | cos θ

as well as
m0M0√

(pi · Pi)2 − m2
0M

2
0

=
m0M0√

E2
i M2

0 − m2
0M

2
0

=
m0√

E2
i − m2

0

=
m0

|pi|
d3pf = p2

fd|pf |dΩ = |pf |EfdEfdΩ

d3Pf

E
(p)
f

= 2
∫

d4Pfδ(P 2
f − M2

0 )Θ(P 0
f ) ,

(3.90) leads to

dσ

dΩ
=

m2
0M0

2π2|pi|

∫
dEf

∫
d4Pf |pf ||Mfi|2δ(pf + Pf − pi − Pi)

×δ(P 2
f − M2

0 )Θ(P 0
f )

=
m2

0M0

2π2|pi|

∫
dEf |pf ||Mfi|2Pf =Pi+pi−pf

×δ
[
(Pi + pi − pf )2 − M2

0

]
Θ(M0 + Ei − Ef )

=
m2

0M0

2π2|pi|

M0+Ei∫

m0

dEf |pf ||Mfi|2Pf=Pi+pi−pf

×δ
[
(Pi + pi − pf )2 − M2

0

]

=
m2

0M0

2π2|pi|

M0+Ei∫

m0

dEf |pf ||Mfi|2Pf=Pi+pi−pf

×δ
[
2m2

0 − 2M0(Ef − Ei) − 2EiEf + 2|pi||pf | cos θ
]

.

The integration limits result from the fact that, on the one hand, Ef ≥ m0

is required (lower limit) and, on the one hand, Θ(M0 + Ei − Ef ) yields a
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contribution only for Ef < M0 + Ei (upper limit). The remaining integral
can again be evaluated using the identity (3.91) so that, finally, we get

dσ

dΩ
=

m2
0M0|pf |
4π2|pi|

|Mfi|2co
M0 + Ei − |pi|Ef

|pf | cos θ

|Mfi|2co = |Mfi|2Pf=Pi+pi−pf
,

⎫
⎪⎬

⎪⎭
(3.92)

with the secondary condition

2m2
0 − 2M0(Ef − Ei) − 2EiEf + 2|pi||pf | cos θ = 0

connecting Ef or |pf | with θ and Ei or |pi|. Note the index co (=conservation)
that was introduced to abbreviate four-momentum conservation.

Amplitude square. With the last equations, we already have a compact
representation of the differential cross section of electron-proton scattering to
first order where, however, the amplitude square |Mfi|2co needs to be evaluated
further. In order to keep the calculations simple, we do not study polarization
effects. Therefore, instead of (3.92), we consider the unpolarized cross section

dσ

dΩ
=

m2
0M0|pf |
4π2|pi|

|Mfi|2co
M0 + Ei − |pi|Ef

|pf | cos θ
, (3.93)

with the amplitude

|Mfi|2 =
1
4

∑

sf , si

Sf , Si

∣
∣
∣
∣ū(pf , sf )γμu(pi, si)

4πeep

q2 + iε
ū(Pf , Sfγμu(Pi, Si)

∣
∣
∣
∣

2

. (3.94)

The latter results from |Mfi|2 in (3.87) by averaging over all incoming and
summing over all outgoing electronic and protonic spin states. Taking into
account that terms of the form ūγμu are C-numbers, we can rewrite (3.94)
as a product of two double spin sums that, in turn, can be calculated further
with the help of Theorem 3.6:

|Mfi|2 =
(4π)2e2e2

p

4(q2)2
∑

sf , si

Sf , Si

[ū(pf , sf )γμu(pi, si)] [ū(Pf , Sf )γμu(Pi, Si)]

× [ū(pf , sf )γνu(pi, si)]
† [ū(Pf , Sf )γνu(Pi, Si)]

†

=
(4π)2e2e2

p

4(q2)2
∑

sf ,si

[ū(pf , sf )γμu(pi, si)] [ū(pi, si)γνu(pf , sf )]

×
∑

Sf ,Si

[ū(Pf , Sf )γμu(Pi, Si)] [ū(Pi, Si)γνu(Pf , Sf )]

=
(4π)2e2e2

p

4(q2)2
tr [Λ+(pf )γμΛ+(pi)γν ] tr [Λ+(Pf )γμΛ+(Pi)γν ] . (3.95)

Next we introduce the auxiliary quantities
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(aμ) =

⎛

⎜
⎜
⎝

0
1
·
0

⎞

⎟
⎟
⎠
←− μ-th position

, (bν) =

⎛

⎜
⎜
⎝

0
·
1
0

⎞

⎟
⎟
⎠←− ν-th position ,

make the replacements γμ → /a, γν → /b, and calculate as follows:

tr [Λ+(pf )γμΛ+(pi)γν ]
=

1
4m2

0

tr [(/pf + m0)/a(/pi + m0)/b]

=
1

4m2
0

[
tr (/pf/a/pi/b) + m2

0tr (/a/b)
]

=
1

4m2
0

[
(pf · a)tr (/pi/b) − (pf · pi)tr (/a/b) + (pf · b)tr (/a/pi) + m2

0tr (/a/b)
]

=
4

4m2
0

[
(pf )μ(pi)ν − (pf · pi)gμν + (pf )ν(pi)μ + m2

0gμν

]

=
1

m2
0

[
(pf )μ(pi)ν + (pi)μ(pf )ν − gμν(pf · pi − m2

0)
]

.

Correspondingly, the second trace yields

tr [Λ+(Pf )γμΛ+(Pi)γν ] =
1

M2
0

[
Pμ

f P ν
i + Pμ

i P ν
f − gμν(Pf · Pi − M2

0 )
]

.

Hence, after expanding the two traces, (3.95) turns into

|Mfi|2 =
(4π)2e2e2

p

2m2
0M

2
0 (q2)2

[(pi · Pi)(pf · Pf ) + (pi · Pf )(pf · Pi)

− (pi · pf )M2
0 − (Pi · Pf )m2

0 + 2m2
0M

2
0

]
. (3.96)

If we now replace the four-momenta by the kinematic quantities pi = (Ei,pi),
pf = (Ef ,pf ), Pi = (M0,0) in the laboratory system and take into account
the four-momentum conservation Pf = Pi + pi − pf , we arrive at the final
result

|Mfi|2co =
(4π)2e2e2

p

2m2
0M

2
0 (q2)2

{
2M2

0 EiEf + 2M0m
2
0(Ef − Ei)

− (pi · pf )
[
M2

0 + M0(Ef − Ei)
]
+ m2

0M
2
0

}

=
(4π)2e2e2

p

2m2
0M

2
0 (q2)2

{
2M2

0 EiEf + M0m
2
0(Ef − Ei)

+
q2

2
[
M2

0 + M0(Ef − Ei)
]
}

,

which has to be inserted into (3.93). In the last step, the scalar product pi ·pf

was expressed by the quadratic four-momentum transfer

q2 = (pf − pi)2 = p2
f + p2

i − 2pi · pf = 2m2
0 − 2pi · pf .
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Theorem 3.8: Electron-proton scattering to leading order

The scattering amplitude of the electron-proton scattering to leading order
is (f �= i)

Sfi = −i
(2π)4δ(pf + Pf − pi − Pi)

V 2

√
m2

0

EiEf

√√
√
√ M2

0

E
(p)
i E

(p)
f

Mfi ,

with the Lorentz-invariant amplitude (q = pf − pi)

Mfi = ū(pf , sf )γμu(pi, si)
−4πeep

q2 + iε
ū(Pf , Sf )γμu(Pi, Si) .

The differential cross section follows as

dσ =
m0

Ei

M0

E
(p)
i

1
|ji|V

|Mfi|2(2π)4δ(pf + Pf − pi − Pi)

× m0d3pf

(2π)3Ef

M0d3Pf

(2π)3E(p)
f

=
m0M0√

(pi · Pi)2 − m2
0M

2
0

|Mfi|2(2π)4δ(pf + Pf − pi − Pi)

× m0d3pf

(2π)3Ef

M0d3Pf

(2π)3E(p)
f

(collinear currents) .

In the laboratory system where the proton is initially at rest, this becomes

dσ

dΩ
=

m2
0M0|pf |
4π2|pi|

|Mfi|2co
M0 + Ei − |pi|Ef

|pf | cos θ

|Mfi|2co = |Mfi|2Pf =Pi+pi−pf

2m2
0 − 2M0(Ef − Ei) − 2EiEf + 2|pi||pf | cos θ = 0 ,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3.97)

where, in dσ/dΩ, all electronic scattering momenta pf directed toward
dΩ and all protonic scattering momenta P f have been integrated out.
Disregarding electronic and protonic polarization effects, the unpolarized
amplitude square is obtained as

|Mfi|2co =
(4π)2e2e2

p

2m2
0M

2
0 (q2)2

{
2M2

0 EiEf + M0m
2
0(Ef − Ei)

+
q2

2
[
M2

0 + M0(Ef − Ei)
]
}

.

Low-energy and ultrarelativistic limits. We can assure ourselves of the
correctness of this theorem, for example, by proving it for the low-energy
limit, which should lead us back to the laws for the Coulomb scattering of
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electrons. In this limit we have Ei,f , |pi,f | � m0 < M0, and the secondary
condition in (3.97) reduces to Ef ≈ Ei ⇐⇒ |pf | ≈ |pi| (no repulsion effects,
totally elastic electron scattering). Taking into account

q2 ≈ −q2 = −2(E2
i − m2

0) + 2pipf ,

the mean amplitude square now becomes

|Mfi|2co ≈
(4π)2e2e2

p

2m2
0q

4

(
2E2

i − q2

2

)

|pf |=|pi|

=
(4π)2e2e2

p

2q4

(
1 +

E2
i + pipf

m2
0

)

|pf |=|pi|
,

from which follows the expected Mott scattering formula:

dσ

dΩ
≈ m2

0|Mfi|2co
4π2

≈
2m2

0e
2e2

p

q4

(
1 +

E2
i + pipf

m2
0

)

|pf |=|pi|
=

(
dσ

dΩ

)

Mott

.

The other extremum is the ultrarelativistic limit. It is defined by Ei,f/m0 �
1. Together with Ei,f ≈ |pi,f | and

q2 ≈ −2EiEf (1 − cos θ) = −4EiEf sin2 θ

2

=⇒ 1 +
q2

4EiEf
≈ 1 − sin2 θ

2
= cos2

θ

2

as well as the secondary condition

M0(Ef − Ei) ≈ m2
0 − EiEf + EiEf (1 − cos θ) = −2EiEf sin2 θ

2
,

the mean amplitude square becomes

|Mfi|2co =
(4π)2e2e2

pEiEf

m2
0(q2)2

×
[
1 +

q2

4EiEf

(
1 +

Ef − Ei

M0

)
+

m2
0

2EiEf︸ ︷︷ ︸
≈0

Ef − Ei

M0

]

≈
π2e2e2

p

m2
0EiEf sin4 θ

2

(

1 +
q2

4EiEf
− q2

4EiEf

2EiEf sin2 θ
2

M2
0

)

=
π2e2e2

p

m2
0EiEf sin4 θ

2

(
cos2

θ

2
− q2

2M2
0

sin2 θ

2

)
,

and we obtain the unpolarized differential cross section as

dσ

dΩ
≈ m2

0Ef

4π2Ei

|Mfi|2co
1 + 2Ei

M0
sin2 θ

2

≈
e2e2

p

4E2
i sin4 θ

2

cos2 θ
2 − q2

2M2
0

sin2 θ
2

1 + 2Ei

M0
sin2 θ

2

.
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Note that, according to our initial presupposition, this equation disregards
the internal structure of the proton and its anomalous magnetic moment.
In this respect, it does not provide a realistic description of electron-proton
scattering under extremely high energies. A more realistic description is given
by the Rosenbluth formula where the proton’s internal structure is taken
into account by so-called electric and magnetic form factors. Nonetheless,
the above formula describes the scattering of electrons and myons with high
accuracy as both behave like structureless Dirac particles.

Feynman diagrams and characteristic factors. After these many and
sometimes lengthy calculations, it is instructive to highlight their results with
respect to their systematics as well as their relationship to the Feynman
diagrams. Having identified the electronic and protonic transition currents,
we initially found the scattering amplitude of the electron-proton scattering
to be [see (3.85) and (3.86)]

Sfi = −i
∫

d4x

∫
d4y
[
eΨ̄f (x)γμΨi(x)

]
D

(0)
F (x − y)

×
[
epΨ̄

(p)
f (y)γμΨ

(p)
i (y)

]
. (3.98)

With reference to our general considerations in Subsection 3.2.3, this expres-
sion can be depicted in a Feynman diagram in coordinate space as shown
in Figure 3.9a. The left-hand thin line with a positive temporal direction
represents the propagation of the electron (electronic transition current).
Correspondingly, the right-hand thick and likewise temporally forward di-
rected line represents the proton’s propagation (protonic transition current).
The influence of the electromagnetic interaction (photon propagator) is visu-
alized as a wavy line. It can be viewed as a virtual photon which is exchanged

Ψi(x) Ψ
(p)
i (y) u(pi, si) u(Pi, Si)

Ψ̄f (x) Ψ̄
(p)
f (y) ū(pf , sf ) ū(Pf , Sf )

x

D
(0)
F (x − y)

y
eγμ epγμ

−4π

q2 + iε

eγμ epγμ

a b

Fig. 3.9. Feynman diagram of the scattering amplitude for the electron-proton
scattering to first order [or to order O

(
e2
)
] in coordinate space (a) and momentum

space (b). Energy and momentum are conserved at each vortex. Therefore, the
four-momentum transfer is q = pf − pi = −(Pf − Pi).
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between the electron and proton, and causes a scattering at both vortices x
and y. The correspondence is completed by assigning certain factors to the
four external fermion lines (with one open end), the closed photon line (with
a start and an end point) as well as to the vortices. Later on we see that
these factor assignments are characteristic and remain valid for other scat-
tering processes, too. Thus, after some practice, one should be able to deduce
the scattering amplitude directly from the corresponding Feynman diagram.

After inserting the explicit expressions for the wave functions and the
photon propagator into (3.98) and then integrating out the position and
photon momentum variables, we arrived at

Sfi = −i
(2π)4δ(pf + Pf − pi − Pi)

V 2

√
m2

0

EiEf

√√
√
√ M2

0

E
(p)
i E

(p)
f

Mfi

Mfi = ū(pf , sf )γμu(pi, si)
−4πeep

q2 + iε
ū(Pf , Sf )γμu(Pi, Si)

q = pf − pi ,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.99)

where the fourdimensional δ-function ensures energy and momentum con-
servation. The Feynman diagram in momentum space belonging to Mfi is
depicted in Figure 3.9b. It is obviously connected to the diagram in position
space (Figure 3.9a) through the replacements

Ψi,f (x) −→ u(pi,f , si,f ) , Ψ
(p)
i,f (y) −→ u(Pi,f , Si,f )

D
(0)
F (x − y) −→ D̃

(0)
F (q) =

−4π

q2 + iε
, q = pf − pi ,

where the four-momentum transfer q guarantees energy and momentum con-
servation at each vortex. All in all, we see a close correspondence between
scattering processes, Feynman diagrams, and scattering amplitudes, to which
we will often return in the following.

Let us, at the end, consider the formula for the differential cross section

dσ =

(
m0

Ei

M0

E
(p)
i

1
|ji|V

)

|Mfi|2(2π)4δ(pf + Pf − pi − Pi)

× m0d3pf

(2π)3Ef

M0d3Pf

(2π)3E(p)
f

,

which also exhibits some interesting characteristics: apart from the δ-function
and the amplitude square |Mfi|2, there occurs a factor of m0/E for each ex-
ternal fermion line. Furthermore, each outgoing particle yields an additional
phase space factor of d3p/(2π)3. In the case of collinear currents the bracket
term can be expressed by the four-momenta of the incoming particles via
m0M0/

√
(pi · Pi) − m2

0M
2
0 .
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3.3.3 Electron-Proton Scattering (II)

Now, we extend our considerations on the electron-proton scattering even
further and discuss the corrections of second order. First we try to develop the
corresponding Feynman diagrams on the basis of the above correspondences
in order to derive the correct form of the scattering amplitude S

(2)
fi . Then we

verify our reasoning by analytical calculations.

Direct scattering amplitude.18 The scattering amplitude of second order
is characterized by the fact that both particles, electron and proton, suffer
two scatterings caused by the exchange of two virtual photons. Between the
scatterings the fermions and photons move undisturbed with a probability
amplitude proportional to the propagator of the respective particle. There-
fore, it is sensible to draw the corresponding Feynman diagram in coordinate
space as shown in Figure 3.10, where the end point of each photon line is

Ψi(y) Ψ
(p)
i (Y )

Ψ̄f (x) Ψ̄
(p)
f (X)

x

y

X

Y

eγμ

eγν

epγμ

epγν

D
(0)
F (x − X)

D
(0)
F (y − Y )

S
(0)
F (x − y) S

(p,0)
F (X − Y )

Fig. 3.10. Feynman diagram of the direct scattering amplitude for the electron-

proton scattering to second order [or to order O
(
e4
)
] in coordinate space. S

(p,0)
F

denotes the free proton propagator. It differs from the electron propagator S
(0)
F only

by the particle mass.

assigned the factors eγμ and epγμ. From this we conclude the scattering
amplitude to be

S
(2)
fi (dir) = −i

∫
d4x

∫
d4y

∫
d4X

∫
d4Y

×
[
e2Ψ̄f (x)γμS

(0)
F (x − y)γνΨi(y)

]

×D
(0)
F (x − X)D(0)

F (y − Y )
18 In addition to the direct scattering amplitude, there exists the so-called exchange

scattering amplitude that will be discussed later.
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×
[
e2
pΨ̄

(p)
f (X)γμS

(p,0)
F (X − Y )γνΨ

(p)
i (Y )

]
, (3.100)

with an inserted factor of −i following (3.98). Of course, Figure 3.10 shows
only one representative of all the 4! possible temporal arrangements of the vor-
tices (see Figure 3.11). They are automatically taken into account in (3.100)
by the four time integrations over x0, y0, X0, and Y 0.

x

y
X

Y

x

y
X

Y
x

y

X

Y

a b c

Fig. 3.11. Three of the 4! possible relative temporal arrangements of the vortices
in Figure 3.10. In a a virtual positron along with the outgoing electron is created
at x. In b a virtual antiproton along with the outgoing proton is created at X.

If we now perform the corresponding replacements in Figure 3.10 we are
led to the Feynman diagram in momentum space shown in Figure 3.12. Here
energy and momentum conservation is postulated at each vortex, and the
circulating four-momentum q1 remains as a degree of freedom. Together with

u(pi, si) u(Pi, Si)

ū(pf , sf ) ū(Pf , Sf )

eγμ

eγν

epγμ

epγν

−4π

q2
1 + iε

−4π

(q − q1)2 + iε

/pf − /q1 + m0

(pf − q1)2 − m2
0 + iε

/Pf + /q1 + M0

(Pf + q1)2 − M2
0 + iε

Fig. 3.12. Feynman diagram of the direct scattering amplitude for the electron-
proton scattering to second order [or to order O

(
e4
)
] in momentum space. Energy

and momentum are conserved at each vortex. Therefore, the four-momentum trans-
fer is q = pf − pi = −(Pf − Pi).
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the energy and momentum conserving δ-function as well as the normalization

factors
√

m0/Ei,fV and
√

M0/E
(p)
i,f V for the incoming and outgoing fermions

we should finally obtain the integrated scattering amplitude

S
(2)
fi (dir) = −i

(2π)4δ(pf + Pf − pi − Pi)
V 2

√
m2

0

EiEf

√√
√
√ M2

0

E
(p)
i E

(p)
f

×
∫

d4q1

(2π)4
−4πeep

q2
1 + iε

−4πeep

(q − q1)2 + iε

×
[
ū(pf , sf )γμ

/pf − /q1 + m0

(pf − q1)2 − m2
0 + iε

γνu(pi, si)
]

×
[
ū(Pf , Sf )γμ /Pf + /q1 + M0

(Pf + q1)2 − M2
0 + iε

γνu(Pi, Si)
]

(3.101)

with q = pf − pi = −(Pf − Pi) and an inserted factor of −i as in (3.99).
Let us now compare the heuristically derived expressions (3.100) and

(3.101) with the scattering amplitudes calculated on the basis of Theorem
3.5. Our starting point is (εf = +1, f �= i)

S
(2)
fi (dir) = −ie2

∫
d4x

∫
d4yΨ̄f (x)/A(x)S(0)

F (x − y)/A(y)Ψi(y)

= −
∫

d4x

∫
d4y

×
[
ie2Ψ̄f (x)γμS

(0)
F (x − y)γνΨi(y)

]
Aμ(x)Aν(y) . (3.102)

Similarly to the preceding subsection, we first aim to identify the electronic
and protonic transition currents (to second order) in a way that the scattering
amplitude is symmetric under both of them. For the electronic current, the
square bracket term

J (2)
μν (x) = ie2Ψ̄f (x)γμS

(0)
F (x − y)γνΨi(y) (3.103)

seems to be a good choice. The entrainment of the factor i ensures that J
(2)
μν

can be written as a product of first-order transition currents, because, using
the wave decomposition (3.58) of S

(0)
F , we have

J (2)
μν (x) = e2Θ(x0 − y0)Ψ̄f (x)γμ

2∑

p,r=1

Ψ (r)
p (x)Ψ̄ (r)

p (y)γνΨi(y)

−e2Θ(y0 − x0)Ψ̄f (x)γμ

4∑

p,r=3

Ψ (r)
p (x)Ψ̄ (r)

p (y)γνΨi(y)

= e2Θ(x0 − y0)
2∑

p,r=1

[
Ψ̄f (x)γμΨ (r)

p (x)
] [

Ψ̄ (r)
p (y)γνΨi(y)

]
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−e2Θ(y0 − x0)
4∑

p,r=3

[
Ψ̄f (x)γμΨ (r)

p (x)
] [

Ψ̄ (r)
p (y)γνΨi(y)

]

= Θ(x0 − y0)
2∑

p,r=1

[Jμ(x)]f,(p,r) [Jν(y)](p,r),i

−Θ(y0 − x0)
4∑

p,r=3

[Jμ(x)]f,(p,r) [Jν(y)](p,r),i .

Since, according to (3.82), each first-order current causes an electromagnetic
field of the form

Aμ(x) =
∫

d4XD
(0)
F (x − X)J (p)μ(X) ,

it is reasonable to assume that the combination AμAν in (3.102) is connected
to the second-order protonic current J (p,2)μν via

Aμ(x)Aν(y) =
∫

d4X

∫
d4Y D

(0)
F (x − X)D(0)

F (y − Y )J (p,2)μν(X,Y ) ,

which, in turn, has to be chosen as [see (3.103)]

J (p,2)μν(X,Y ) = ie2
pΨ̄

(p)
f (X)γμS

(p,0)
F (X − Y )γνΨ

(p)
i (Y ) .

Consequently, (3.102) turns into

S
(2)
fi (dir) =

∫
d4x

∫
d4y

∫
d4X

∫
d4Y

×
[
e2Ψ̄f (x)γμS

(0)
F (x − y)γνΨi(y)

]

×D
(0)
F (x − X)D(0)

F (y − Y )

×
[
e2
pΨ̄

(p)
f (X)γμS

(p,0)
F (X − Y )γνΨ

(p)
i (Y )

]
. (3.104)

Apart from a factor of −i, this equation does indeed coincide with the heuris-
tically derived expression (3.100). In order to verify (3.101), we now insert
the known expressions for the electron and proton wave functions as well as
the Fourier representations of the electron, proton, and photon propagators.
This leads to

S
(2)
fi (dir) =

1
V 2

√
m2

0

EiEf

√√
√
√ M2

0

E
(p)
i E

(p)
f

∫
d4x

∫
d4y

∫
d4X

∫
d4Y

×
∫

d4q1

(2π)4

∫
d4q2

(2π)4

∫
d4p

(2π)4

∫
d4P

(2π)4

×−4πeep

q2
1 + iε

−4πeep

q2
2 + iε

[
ū(pf , sf )γμ

(/p + m0)
p2 − m2

0 + iε
γνu(pi, si)

]
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×
[
ū(Pf , Sf )γμ (/P + M0)

P 2 − M2
0 + iε

γνu(Pi, Si)
]

×e−iq1·(x−X)e−iq2·(y−Y )eipf ·xe−ip·(x−y)

×e−ipi·yeiPf ·Xe−iP ·(X−Y )e−iPi·Y .

Here we first perform the coordinate integrations,
∫

d4x

∫
d4y

∫
d4X

∫
d4Y e−iq1·(x−X)e−iq2·(y−Y )eipf ·xe−ip·(x−y)

×e−ipi·yeiPf ·Xe−iP ·(X−Y )e−iPi·Y

= (2π)4δ(q1 + p − pf )(2π)4δ(q2 − p + pi)(2π)4δ(−q1 + P − Pf )
×(2π)4δ(−q2 − P + Pi) ,

and then the momentum integrations over p, P , and q2:
∫

d4q1

(2π)4

∫
d4q2

(2π)4

∫
d4p

(2π)4

∫
d4P

(2π)4
(2π)4δ(q1 + p − pf )

×(2π)4δ(q2 − p + pi)(2π)4δ(−q1 + P − Pf )(2π)4δ(−q2 − P + Pi)

×−4πeep

q2
1 + iε

−4πeep

q2
2 + iε

[
ū(pf , sf )γμ

/p + m0

p2 − m2
0 + iε

γνu(pi, si)
]

×
[
ū(Pf , Sf )γμ /P + M0

P 2 − M2
0 + iε

γνu(Pi, Si)
]

= (2π)4δ(pf + Pf − pi − Pi)
∫

d4q1

(2π)4
−4πeep

q2
1 + iε

−4πeep

(pf − pi − q1)2 + iε

×
[
ū(pf , sf )γμ

/pf − /q1 + m0

(pf − q1)2 − m2
0 + iε

γνu(pi, si)
]

×
[
ū(Pf , Sf )γμ /Pf + /q1 + M0

(Pf + q1)2 − M2
0 + iε

γνu(Pi, Si)
]

.

Note that the four δ-functions stemming from the coordinate integrations ex-
press energy and momentum conservation that was postulated at each vortex
in Figure 3.12. For the integrated scattering amplitude we finally obtain

S
(2)
fi (dir) =

(2π)4δ(pf + Pf − pi − Pi)
V 2

√
m2

0

EiEf

√√
√
√ M2

0

E
(p)
i E

(p)
f

×
∫

d4q1

(2π)4
−4πeep

q2
1 + iε

−4πeep

(q − q1)2 + iε

×
[
ū(pf , sf )γμ

/pf − /q1 + m0

(pf − q1)2 − m2
0 + iε

γνu(pi, si)
]

×
[
ū(Pf , Sf )γμ /Pf + /q1 + M0

(Pf + q1)2 − M2
0 + iε

γνu(Pi, Si)
]

, (3.105)
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with q = pf − pi = −(Pf −Pi). Happily this equation also coincides with the
corresponding heuristic expression (3.101) but, again, except for a factor of
−i.

Overall, this example demonstrates very nicely the correspondence be-
tween scattering processes, Feynman diagrams, and scattering amplitudes.
In the next subsection we form this correspondence into some simple rules
that especially remove the observed ambiguities with respect to the i-factors.

Exchange amplitude. Apart from the direct scattering amplitude, there
is another amplitude which contributes to the electron-proton scattering to
second order since the two photons emitted by the proton current cannot be
distinguished.19 This means, for example, that the electron which is inter-
acting with a photon at the space-time point x cannot know whether this
photon comes from the vortex X or Y . The complete scattering amplitude is
therefore given by the addition

S
(2)
fi = S

(2)
fi (dir) + S

(2)
fi (ex) .

S
(2)
fi (ex) denotes the exchange scattering amplitude and is represented by the

Feynman diagram of Figure 3.13. It differs from the direct scattering am-
plitude S

(2)
fi (dir) by the fact that the end points of the photon line on one

side (here: on the proton’s side) together with the associated γ-factors are

Ψi(y) Ψ
(p)
i (Y )

Ψ̄f (x) Ψ̄
(p)
f (X)

eγμ

eγν

epγν

epγμ

D
(0)
F (x − Y )

D
(0)
F (y − X)

S
(0)
F (x − y) S

(p,0)
F (X − Y )

u(pi, si) u(Pi, Si)

ū(pf , sf ) ū(Pf , Sf )

x

y

X

Y

eγμ

eγν

epγν

epγμ

−4π

q2
1 + iε

−4π

(q − q1)2 + iε

/pf − /q1 + m0

(pf − q1)2 − m2
0 + iε

/Pi − /q1 + M0

(Pi − q1)2 − M2
0 + iε

a b

Fig. 3.13. Feynman diagram of the exchange scattering amplitude for the electron-
proton scattering to second order [or to order O

(
e4
)
] in coordinate space (a) and

momentum space (b). Energy and momentum are conserved at each vortex. There-
fore, the four-momentum transfer is q = pf − pi = −(Pf − Pi).

19 Additionally, in this order there also exist diagrams that are related to the pro-
duction and absorption of virtual particles. They are not considered here.
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swapped. Therefore, making the corresponding replacements in (3.105), the
integrated expression for the exchange scattering amplitude can be deter-
mined immediately:

S
(2)
fi (ex) =

(2π)4δ(pf + Pf − pi − Pi)
V 2

√
m2

0

EiEf

√√
√
√ M2

0

E
(p)
i E

(p)
f

×
∫

d4q1

(2π)4
−4πeep

q2
1 + iε

−4πeep

(q − q1)2 + iε

×
[
ū(pf , sf )γμ

/pf − /q1 + m0

(pf − q1)2 − m2
0 + iε

γνu(pi, si)
]

×
[
ū(Pf , Sf )γν /Pi − /q1 + M0

(Pi − q1)2 − M2
0 + iε

γμu(Pi, Si)
]

.

In total, we have

Theorem 3.9: Electron-proton scattering next to leading order

The scattering amplitude for the electron-proton scattering next to leading
order is (f �= i)

S
(2)
fi =

(2π)4δ(pf + Pf − pi − Pi)
V 2

√
m2

0

EiEf

√√
√
√ M2

0

E
(p)
i E

(p)
f

M
(2)
fi ,

with the Lorentz-invariant amplitude (q = pf − pi)

M
(2)
fi =

∫
d4q1

(2π)4
−4πeep

q2
1 + iε

−4πeep

(q − q1)2 + iε

×
[
ū(pf , sf )γμ

/pf − /q1 + m0

(pf − q1)2 − m2
0 + iε

γνu(pi, si)
]

Pμν

and the proton tensor

Pμν = ū(Pf , Sf )
[
γμ /Pf + /q1 + M0

(Pf + q1)2 − M2
0 + iε

γν

+ γν /Pi − /q1 + M0

(Pi − q1)2 − M2
0 + iε

γμ

]
u(Pi, Si) .

Static limit. Generally, due to the fourdimensional integral, a further eval-
uation of this theorem is difficult and nontrivial. However, the calculation
can be carried out a little further in the limit of an infinitely heavy point-like
proton at rest. In this case, taking into account



3.3 Spin-1/2 Scattering Processes 251

M0 → ∞ =⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Pi ≈ Pf ≈ (M0,0)

M2
0

E
(p)
i E

(p)
f

≈ 1

δ(E(p)
f − E

(p)
i + Ef − Ei) ≈ δ(Ef − Ei)

u(Pi,f , Si,f ) ≈ u(0, Si,f )

and

γμu(0, S) = gμ0u(0, S) ,
1

q0
1 + iε

− 1
q0
1 − iε

= −2πiδ(q0
1) ,

the proton tensor is simplified to

Pμν ≈ ū(0, Sf )
[
γμ M0γ

0 + /q1 + M0

(Pf + q1)2 − M2
0 + iε

γν

+ γν M0γ
0 − /q1 + M0

(Pi − q1)2 − M2
0 + iε

γμ

]
u(0, Si)

≈ ū(0, Sf )
[
γμ M0(γ0 + 1)

M2
0 + 2M0q0

1 − M2
0 + iε

γν

+ γν M0(γ0 + 1)
M2

0 − 2M0q0
1 − M2

0 + iε
γμ

]
u(0, Si)

= ū(0, Sf )
[
γμ γ0 + 1

2q0
1 + iε

γν + γν γ0 + 1
−2q0

1 + iε
γμ

]
u(0, Si)

= gμ0gν0u†(0, Sf )u(0, Si)
[

1
q0
1 + iε

− 1
q0
1 − iε

]

= −2πigμ0gν0δSf Si
δ(q0

1) .

The scattering amplitude follows from this as

S
(2)
fi ≈ −i

(2π)4δ(Ef − Ei)δ(pf + P f − pi − P i)δSf ,Si

V 2

√
m2

0

EiEf

×2π

∫
d4q1

(2π)4
−4πeep

q2
1 + iε

−4πeep

(q − q1)2 + iε
δ(q0

1)

×
[
ū(pf , sf )γ0

/pf − /q1 + m0

(pf − q1)2 − m2
0 + iε

γ0u(pi, si)
]

.

Now we assume that momentum and polarization effects of the proton are not
measured. This implies that in the last equation we can make the replacement

(2π)3δ(pf + P f − pi − P i)δSf Si
−→ V

since in the cross section we have (integration over P f , average over Si and
sum over Sf ):

1
2

∑

Sf ,Si

∫
V d3Pf

(2π)3
[
(2π)3δ(pf + P f − pi − P i)

]2
δSf Si
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=
∫

V 2d3Pf

(2π)3
(2π)3δ(pf + P f − pi − P i) = V 2 ,

where, again, [(2π)3δ(pf + . . .)]2 → V (2π)3δ(pf + . . .) has been used. Thus,
all in all, we obtain

S
(2)
fi ≈ −i

2πδ(Ef − Ei)
V

√
m2

0

EiEf

×
∫

d3q1

(2π)3

∫
dq0

1

−4πeep

q2
1 + iε

−4πeep

(q − q1)2 + iε
δ(q0

1)

×
[
ū(pf , sf )γ0

/pf − /q1 + m0

(pf − q1)2 − m2
0 + iε

γ0u(pi, si)
]

= −i
2πδ(Ef − Ei)

V

√
m2

0

EiEf

∫
d3q1

(2π)3
−4πeep

q2
1

−4πeep

(q − q1)2

×
[

ū(pf , sf )
γ0Ei + γ(pf − q1) + m0

p2
f − (pf − q1)2 + iε

u(pi, si)

]

.

As can be shown, this corresponds exactly to the scattering amplitude for the
Coulomb scattering of electrons to second order. The remaining threedimen-
sional integral is divergent, which is due to the long reach of the Coulomb
potential.

3.3.4 Preliminary Feynman Rules in Momentum Space

Before we discuss more scattering processes in the subsequent subsections, we
bring together the correspondences observed so far between scattering pro-
cesses, Feynman diagrams, and scattering amplitudes, and cast them into a
simple set of rules in momentum space that significantly simplifies the calcu-
lation of scattering amplitudes and cross sections. However, these Feynman
rules in their present form are still incomplete and have to be completed
in appropriate places in the following. We will provide the complete set of
Feynman rules in Subsection 3.3.9 after we have discussed other types of
scattering processes, particularly those involving real photons.

1. The scattering amplitude for a scattering process of the kind

I + I ′ −→ F + F ′ (I=incoming, F=outgoing particle)

is given by

Sfi =
(2π)4δ(pf + p′f − pi − p′i)

V 2

√
Ni

Ei

√
N ′

i

E′
i

√
Nf

Ef

√
N ′

f

E′
f

Mfi ,

where N
(...)
i,f = m0i,f

are the fermion factors. Each incoming antifermion
(outgoing fermion wave function with negative energy) yields an addi-
tional factor of (−1).



3.3 Spin-1/2 Scattering Processes 253

2. In the case of collinear currents the corresponding differential cross sec-
tion is

dσ =
NiN

′
i√

(pi · p′i)2 − m2
0,im

′2
0,i

|Mfi|2(2π)4δ(pf + p′f − pi − p′i)

× Nfd3pf

(2π)3Ef

N ′
fd3p′f

(2π)3E′
f

.

3. The Lorentz-invariant amplitude Mfi can be expanded in powers of the
coupling constant e. The expansion terms of order O (en) are obtained
from the Feynman rules in momentum space containing all topological
constellations of fermion lines, photon lines, and n vortices that are con-
sistent with the scattering process.

4. In the Feynman diagrams, all vortices, fermion lines, and photon lines
are assigned the factors given in Figure 3.14.

5. Four-momentum conservation holds at each vortex. All remaining (un-
determined) momenta p are subject to integration with

∫
d4p/(2π)4 in

the amplitude Mfi.

incoming fermion incoming antifermion

u(pi, si) v̄(p̄i, s̄i)

outgoing fermion outgoing antifermion
ū(pf , sf ) v(p̄f , s̄f )

internal fermion line internal photon line vortex

iS̃
(0)
F (p) =

i(/p + m0)

p2 − m2
0 + iε

iD̃
(0)μν
F (q) =

−4πigμν

q2 + iε

−ieγμ

the index μ is
contracted with
that of the
photon line

Fig. 3.14. Feynman diagram elements and characteristic factors in momentum
space.
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To 1. and 2. So far, the validity of these rules has only been shown to first
and partially second order (with respect to the number of the scattering series
term). However, they turn out to be true to any arbitrary order. The factor
(−1) results from εf = −1 in the case of an incoming antifermion.

To 3. (Tree diagrams and loop diagrams). Up to now, we have ex-
clusively studied scattering processes where the electromagnetic potential is
either a classical background field (Coulomb scattering of electrons, Subsec-
tion 3.3.1) or created by the transition currents of mutually scattered particles
(electron-proton scattering, Subsections 3.3.2 and 3.3.3). In the latter case
the electromagnetic interaction can be viewed as an exchange of virtual pho-
tons between both particles. In Feynman diagrams this is reflected by one
internal photon line to first order and two internal photon lines to second
order, each connecting one vortex of the first particle with one vortex of the
second one. If, for example, we calculated the electron-proton scattering in
the same way to higher orders, it would lead graphically to an increasing
number of internal photon lines between the electron and the proton. Those
diagrams are called tree diagrams and are, of course, covered by the 3. rule.

The decisive point is that, due to the combinatory diversity of vortices
and lines, the 3. rule also allows the construction of loop diagrams in higher
orders, as shown, for example, in Figure 3.15. These kinds of diagrams clearly

a b

Fig. 3.15. Possible loop diagrams resulting from the 3. Feynman rule: vacuum
polarization (a) and self-energy (b).

lie outside of our scattering formalism (with its view of classical background
fields or its modification in terms of current-current interactions) and can
only be justified within quantum field theory. Physically, loop diagrams cor-
respond to radiation corrections caused by quantum fluctuations of the vac-
uum. Those corrections have an impact, for example, on the gyromagnetic
ratio of the electron and the bound spectrum of atomic systems. They will
be the subject of Section 3.4. In the current section we further concentrate
on the tree diagrams of scattering processes in the lowest orders (compare to
the introductory notes in this section).

To 4. Principally, one has to bear in mind that the Feynman diagrams are to
be constructed on the level of wave functions. Therefore, the direction of the
four-momentum arrows of the external antifermion lines follow the Feynman-
Stückelberg interpretation, according to which a temporally forward incoming
[outgoing] antifermion is described by a temporally backward outgoing [in-
coming] fermionic wave function with negative energy. On the other hand,
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the momenta and spins in the bispinors refer to the particle level; in the
antifermion case they are reversed to the respective arrow directions.

Obviously, the vortices and internal fermion and photon lines are assigned
slightly different factors than the ones used earlier. This removes uncertainties
in the scattering amplitude with respect to i-factors that we encountered
in the preceding subsection. There we defined the electronic and protonic
transition currents for the electron-proton scattering to first order without a
factor of i but to second order with i. Putting it differently, to first order we
arrived at (3.85) that can be schematically written as

Sfi ∼ −iJμ(x)D(0)
F (x − y)J (p)μ(y) .

By contrast, to second order we came to (3.104), i.e.

S
(2)
fi ∼ −J (2)

μν (x, y)D(0)
F (x − X)D(0)

F (y − Y )J (p,2)μν(X,Y ) ,

where an i-factor was included in both transition currents due to reasons of
factorizability. As this factorizability is supposed to hold to every order, we
obtain an unambiguous treatment of i-factors, if we assign each occurring
fermion propagator the factor +i, each occurring field Aμ the factor −i, and,
in return, drop the inserted factor −i in S

(n)
fi (1. rule) since we have

S
(n)
fi ∼ −i/A(+iS(0)

F ) · · · /A = (−i/A)(+iS(0)
F ) · · · (−i/A) .

As can easily be seen, this corresponds exactly to the factor assignment of
internal fermion and photon lines, and vortices shown in Figure 3.14.

3.3.5 Electron-Electron Scattering

We now turn to the process of electron-electron scattering to leading order,
which we will describe using the rules presented immediately above. The
kinematic situation where the electrons fly past each other is shown in Figure
3.16a. The corresponding Feynman diagram is given in Figure 3.16b and leads
to the Lorentz-invariant amplitude

Mfi(dir) = ū(pf , sf )(−ie)γμu(pi, si)
−4πi

q2 + iε
ū(p′f , s′f )(−ie)γμu(p′i, s

′
i)

q = pf − pi .

Obviously, it has the same structure as the O
(
e2
)
-amplitude of the electron-

proton scattering in Theorem 3.8, which, of course, is due to the kinematic
similarity of both processes. However, apart from this direct scattering, we
have to consider another type of scattering as well since here, contrary to
the electron-proton scattering, we are dealing with identical particles. This
means that in the scattering experiment we are not able to distinguish the
kinematic situation of Figure 3.16a from that of Figure 3.17a where both
particles reflect each other. In addition to the direct amplitude Mfi(dir), we
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pi

pf

p′
i

p′
f

θ

u(pi, si) u(p′
i, s

′
i)

ū(pf , sf ) ū(p′
f , s′f )

−4πi

q2 + iε

−ieγμ −ieγμ

a b

Fig. 3.16. Electron-electron scattering. a depicts the kinematic situation of direct
scattering in the center of mass system and b the Feynman diagram of the direct
O
(
e2
)
-scattering amplitude in momentum space (compare to Figure 3.9b). En-

ergy and momentum are conserved at each vortex. Therefore, the four-momentum
transfer is q = pf − pi = −(p′

f − p′
i).

pi

pf

p′
i

p′
f

θ

u(pi, si) u(p′
i, s

′
i)

ū(pf , sf ) ū(p′
f , s′f )

−4πi

q′2 + iε

−ieγμ −ieγμ

a b

Fig. 3.17. Electron-electron scattering. a depicts the kinematic situation of ex-
change scattering in the center of mass system and b the Feynman diagram of
the exchange O

(
e2
)
-scattering amplitude in momentum space. Energy and mo-

mentum are conserved at each vortex. Therefore, the four-momentum transfer is
q′ = p′

f − pi = −(pf − p′
i).

therefore have to bring along the exchange amplitude Mfi(ex) that results
from Mfi(dir) after the replacement pf ↔ p′f . Thus, overall, we obtain the
scattering amplitude (f �= i)
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Sfi =
(2π)4δ(pf + p′f − pi − p′i)

V 2

√
m2

0

EiEf

√
m2

0

E′
iE

′
f

Mfi

Mfi = Mfi(dir) − Mfi(ex)

Mfi(dir) = ū(pf , sf )γμu(pi, si)
4πie2

q2 + iε
ū(p′f , s′f )γμu(p′i, s

′
i)

Mfi(ex) = ū(p′f , s′f )γμu(pi, si)
4πie2

q′2 + iε
ū(pf , sf )γμu(p′i, s

′
i)

q = pf − pi , q′ = p′f − pi .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.106)

The relative sign between Mfi(dir) and Mfi(ex) accounts for the Fermi-
Dirac statistics according to which, in the case of identical fermions, the
whole scattering amplitude must be symmetric under the exchange of both
fermions in the initial state (pi ↔ p′i) or final state (pf ↔ p′f ).

Cross section. For the calculation of the differential cross section

dσ =
m2

0√
(pi · p′i)2 − m4

0

|Mfi|2(2π)4δ(pf + p′f − pi − p′i)

× m0d3pf

(2π)3Ef

m0d3p′f
(2π)3E′

f

, (3.107)

we can proceed similarly to the calculations of the electron-proton case that
lead to (3.92). However, in this case it is more realistic to work in the center
of mass system instead of the laboratory system. In the former we have due
to momentum conservation

pi + p′
i = 0 = pf + p′

f =⇒
{

pi = −p′
i , pf = −p′

f

Ei = E′
i , Ef = E′

f

and due to energy conservation

Ei + E′
i = Ef + E′

f =⇒
{

Ei = E′
i = Ef = E′

f

|pi| = |p′
i| = |pf | = |p′

f | .

Using these and the identities

m2
0√

(pi · p′i)2 − m4
0

=
m2

0√
(E2

i + p2
i )2 − m4

0

=
m2

0

2Ei|pi|

d3pf = |pf |EfdEfdΩ ,
d3p′f
E′

f

= 2
∫

d4p′fδ(p′2f − m2
0)Θ(p′0f ) ,

(3.107) can be rewritten as (cm=center of mass system)
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(
dσ

dΩ

)

cm

=
m4

0

(2π)2Ei|pi|

∫
dEf |pf |

∫
d4p′f |Mfi|2δ(pf + p′f − pi − p′i)

×δ(p′2f − m2
0)Θ(p′0f )

=
m4

0

(2π)2Ei|pi|

∫
dEf |pf ||Mfi|2p′

f
=p′

i
+pi−pf

×δ
[
(p′i + pi − pf )2 − m2

0

]
Θ(p′0i + p0

i − p0
f )

=
m4

0

(2π)2Ei|pi|

∫
dEf |pf ||Mfi|2p′

f
=p′

i
+pi−pf

δ([4Ei(Ei − Ef )]

×Θ(2Ei − Ef )

=
m4

0

(2π)2Ei|pi|

2Ei∫

m0

dEf |pf ||Mfi|2p′
f
=p′

i
+pi−pf

δ[4Ei(Ei − Ef )]

=
m4

0

(2π)2Ei|pi|

2Ei∫

m0

dEf |pf ||Mfi|2p′
f
=p′

i
+pi−pf

δ(Ef − Ei)
4Ei

=
m4

0

4(2π)2E2
i

|Mfi|2cm . (3.108)

Amplitude square. To determine |Mfi|2cm we assume, as in the electron-
proton case, that polarization effects do not play any role and consider the
amplitude square

|Mfi|2 = |Mfi(dir)|2 + |Mfi(ex)|2 − 2Re
[
Mfi(dir)M†

fi(ex)
]

,

where the average over all incoming spins si, s′i (a factor of 1/4) and the sum
over all outgoing spins sf , s′f are taken. Comparing (3.106) with (3.94), we
can immediately read off the square of the direct and exchange amplitudes
from (3.95) and (3.96) with the corresponding replacements. This yields

|Mfi(dir)|2 =
(4π)2e4

4(q2)2
tr [Λ+(pf )γμΛ+(pi)γν ] tr

[
Λ+(p′f )γμΛ+(p′i)γ

ν
]

=
(4π)2e4

2m4
0(q2)2

[
(pi · p′i)(pf · p′f ) + (pi · p′f )(pf · p′i)

−m2
0(pi · pf ) − m2

0(p
′
i · p′f ) + 2m4

0

]
(3.109)
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|Mfi(ex)|2 =
(4π)2e4

4(q′2)2
tr
[
Λ+(p′f )γμΛ+(pi)γν

]
tr [Λ+(pf )γμΛ+(p′i)γ

ν ]

=
(4π)2e4

2m4
0(q′2)2

[
(pi · p′i)(pf · p′f ) + (pi · pf )(p′f · p′i)

−m2
0(pi · p′f ) − m2

0(p
′
i · pf ) + 2m4

0

]
. (3.110)

With the help of
∑

s
u(p, s)ū(p, s) = Λ+(p), the interference term can be

related back to a double spin sum and subsequently simplified further using
Theorem 3.6:

2Re
[
Mfi(dir)M†

fi(ex)
]

= 2
[
Mfi(dir)M†

fi(ex)
]

=
1
2

∑

sf , si

s′
f , s′

i

[
ū(pf , sf )γμu(pi, si)

4πie2

q2
ū(p′f , s′f )γμu(p′i, s

′
i)
]

×
[
ū(p′f , s′f )γνu(pi, si)

4πie2

q′2
ū(pf , sf )γνu(p′i, s

′
i)
]†

=
(4π)2e4

2q2q′2

∑

sf , si

s′
f , s′

i

[
ū(pf , sf )γμu(pi, si)ū(p′f , s′f )γμu(p′i, s

′
i)
]

×
[
ū(p′i, s

′
i)γ

νu(pf , sf )ū(pi, si)γνu(p′f , s′f )
]

=
(4π)2e4

2q2q′2

∑

sf , si

s′
f , s′

i

[ū(pf , sf )γμu(pi, si)]
[
ū(pi, si)γνu(p′f , s′f )

]

×
[
ū(p′f , s′f )γμu(p′i, s

′
i)
]
[ū(p′i, s

′
i)γ

νu(pf , sf )]

=
(4π)2e4

2q2q′2

∑

sf ,s′
f

[
ū(pf , sf )γμΛ+(pi)γνu(p′f , s′f )

]

×
[
ū(p′f , s′f )γμΛ+(p′i)γ

νu(pf , sf )
]

=
(4π)2e4

2q2q′2
tr
[
Λ+(pf )γμΛ+(pi)γνΛ+(p′f )γμΛ+(p′i)γ

ν
]

=
(4π)2e4

2m4
0q

2q′2
[
−2(pi · p′i)(pf · p′f ) + m2

0(pi · p′i + pi · pf

+ pi · p′f + pf · p′i + pf · p′f + p′i · p′f ) − 2m4
0

]
. (3.111)

Putting all three amplitude square contributions together and replacing the
scalar products with the corresponding relations in the center of mass system,
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pi · pi = p′i · p′i = pf · pf = p′f · p′f = m2
0

pi · p′i = pf · p′f = 2E2
i − m2

0

pi · pf = p′i · p′f = 2E2
i sin2 θ

2
+ m2

0 cos θ

pi · p′f = p′i · pf = 2E2
i cos2

θ

2
− m2

0 cos θ

q2 = (pf − pi)2 = −4(E2
i − m2

0) sin2 θ

2

q′2 = (p′f − pi)2 = −4(E2
i − m2

0) cos2
θ

2
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.112)

we arrive, after some algebraic manipulations, at

|Mfi|2cm =
(2π)2e4

m4
0

[
4(2E2

i − m2
0)

2

p4
i sin4 θ

− 4E2
i (E2

i + p2
i ) − m4

0

p4
i sin2 θ

+ 1
]

.

The fact that this expression contains only trigonometric powers of sin2 θ
is plausible since, due to the identity of the particles, the differential cross
section has to be symmetric under θ → π − θ.

Theorem 3.10: Electron-electron scattering to leading order

The scattering amplitude for the electron-electron scattering (Møller scat-
tering) to leading order is (f �= i)

Sfi =
(2π)4δ(pf + p′f − pi − p′i)

V 2

√
m2

0

EiEf

√
m2

0

E′
iE

′
f

Mfi ,

with the Lorentz-invariant amplitude (q = pf − pi, q′ = p′f − pi)

Mfi = Mfi(dir) − Mfi(ex)

Mfi(dir) = ū(pf , sf )γμu(pi, si)
4πie2

q2 + iε
ū(p′f , s′f )γμu(p′i, s

′
i)

Mfi(ex) = ū(p′f , s′f )γμu(pi, si)
4πie2

q′2 + iε
ū(pf , sf )γμu(p′i, s

′
i) .

The differential cross section follows as

dσ =
m2

0√
(pi · p′i)2 − m4

0

|Mfi|2(2π)4δ(pf + p′f − pi − p′i)

× m0d3pf

(2π)3Ef

m0d3p′f
(2π)3E′

f

and, particularly in the center of mass system,
(

dσ

dΩ

)

cm

=
m4

0

4(2π)2E2
i

|Mfi|2cm .

�
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Here all electronic scattering momenta pf directed toward dΩ as well as
all electronic scattering momenta p′

f have been integrated out. The unpo-
larized amplitude square is evaluated as

|Mfi|2cm =
(2π)2e4

m4
0

[
4(2E2

i − m2
0)

2

p4
i sin4 θ

− 4E2
i (E2

i + p2
i ) − m4

0

p4
i sin2 θ

+ 1
]

.

This example demonstrates nicely how effective and time-saving the consis-
tent use of the Feynman rules is. Note that there is no additional factor 1/2
or
√

1/2 in the scattering amplitude as may be expected due to the particles’
identity. And also the rules for calculating the differential cross section are
not altered at the presence of identical particles. However, we have to attach
a factor of 1/2 to the total cross section in order to avoid double counting
the identical particles in the final state.

3.3.6 Electron-Positron Scattering

Next we discuss the electron-positron scattering to leading order following
the rules of Subsection 3.3.4. In doing so, we will make an interesting discov-
ery, namely that the corresponding scattering amplitude is directly connected
to that of the electron-electron case – a phenomenon which is generally true
when comparing particle-particle and particle-antiparticle scattering proces-
ses.

Analogously to the electron-electron case, the most obvious kinematic
constellation of the electron-positron scattering is the direct scattering, i.e.
the fly-by of both particles as shown in Figure 3.18a. We have to take into
account at the construction of the corresponding Feynman diagram that the
temporally forward incoming [outgoing] positron is related to a temporally
backward outgoing [incoming] electronic Dirac wave with negative energy.
Therefore, on the right hand (positronic) side of Figure 3.18b the time arrows
are directed backward and the vortex is assigned a factor of −ieγμ (and not
+ieγμ as might be expected due to the positron’s charge sign). By contrast,
the momenta and spins in the v-spinors refer to the particle level, i.e. to the
temporally forward moving positron. Overall, we obtain the amplitude

Mfi(dir) = ū(pf , sf )(−ie)γμu(pi, si)
−4πi

q2 + iε
v̄(p̄i, s̄i)(−ie)γμv(p̄f , s̄f )

q = pf − pi .

Another scattering constellation is that the incoming electron and positron
are annihilated during their “collision” and a new outgoing electron-positron
pair is created (see Figure 3.19a). The corresponding annihilation diagram is
shown in Figure 3.19b and leads to the amplitude

Mfi(ex) = v̄(p̄i, s̄i)(−ie)γμu(pi, si)
−4πi

q′2 + iε
ū(pf , sf )(−ie)γμv(p̄f , s̄f )

q′ = pi + p̄i .
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pi

pf

p̄i

p̄f

θ

u(pi, si) v̄(p̄i, s̄i)

ū(pf , sf ) v(p̄f , s̄f )

−4πi

q2 + iε

−ieγμ −ieγμ

a b

Fig. 3.18. Electron-positron scattering. a depicts the kinematic situation of di-
rect scattering in the center of mass system and b the Feynman diagram of the
direct O

(
e2
)
-scattering amplitude (compare to Figure 3.16). The unbarred quan-

tities refer to the electron, the over-barred quantities to the positron. Energy and
momentum are conserved at each vortex. Therefore the four-momentum transfer is
q = pf − pi = −(p̄f − p̄i).

pi

pf

p̄i

p̄f

θ

u(pi, si) v̄(p̄i, s̄i)

ū(pf , sf ) v(p̄f , s̄f )

−4πi

q′2 + iε

−ieγμ

−ieγμ

a b

Fig. 3.19. Electron-positron scattering. a depicts the kinematic situation of an-
nihilation scattering in the center of mass system and b the Feynman diagram
of the annihilation O

(
e2
)
-scattering amplitude in momentum space (compare to

Figure 3.17) for which we keep the symbol “ex” due to convenience. Energy and
momentum are conserved at each vortex. Therefore, the four-momentum transfer
is q′ = pi + p̄i = pf + p̄f .

Here the peculiarity is that, contrary to all processes considered so far, the
four-momentum transfer q′ is time-like, for which reason the photon line is
drawn vertically in Figure 3.19b. This can best be seen in the center of mass
system, where pi = (Ei,p), p̄i = (Ei,−p), and hence q′ = (2Ei,0), q′2 > 0.

Combining the two amplitudes, we finally obtain (f �= i)
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Sfi = − (2π)4δ(pf + p̄f − pi − p̄i)
V 2

√
m2

0

EiEf

√
m2

0

ĒiĒf
Mfi

Mfi = Mfi(dir) − Mfi(ex)

Mfi(dir) = ū(pf , sf )γμu(pi, si)
4πie2

q2 + iε
v̄(p̄i, s̄i)γμv(p̄f , s̄f )

Mfi(ex) = v̄(p̄i, s̄i)γμu(pi, si)
4πie2

q′2 + iε
ū(pf , sf )γμv(p̄f , s̄f )

q = pf − pi , q′ = pi + p̄i .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.113)

The relative sign between Mfi(dir) and Mfi(ex) is, again, a consequence
of the Fermi-Dirac statistics on the level of wave functions. It expresses the
necessary antisymmetry between the incoming electron of positive energy (pi)
and the temporally backward incoming electron with negative energy (−p̄f )
or, equally, between the outgoing electron with positive energy (pf ) and the
temporally backward outgoing electron with negative energy (−p̄i).

Cross section. Since, on the particle level, the electron-positron and electron-
electron scatterings are equal with respect to their energy and momentum
aspects, we can entirely carry over the calculation of the differential cross sec-
tion from the preceding subsection with the replacement p′i,f → p̄i,f . Thus,
in the center of mass, we again obtain

(
dσ

dΩ

)

cm

=
m4

0

4(2π)2Ei
|Mfi|2cm .

Amplitude square. By contrast, the further calculation of |Mfi|2 proceeds
differently. Disregarding any polarization effects, the amplitude square is

|Mfi|2 = |Mfi(dir)|2 + |Mfi(ex)|2 − 2Re
[
Mfi(dir)M†

fi(ex)
]

,

where the average over all incoming spins si, s̄i (a factor of 1/4) and the
sum over all outgoing spins sf , s̄f have been taken. Using Theorem 3.6, the
individual terms are evaluated as

|Mfi(dir)|2 =
(4π)2e4

4(q2)2
∑

sf , si

s̄f , s̄i

[ū(pf , sf )γμu(pi, si)][v̄(p̄i, s̄i)γμv(p̄f , s̄f )]

×[ū(pf , sf )γνu(pi, si)]†[v̄(p̄i, s̄i)γνv(p̄f , s̄f )]†

=
(4π)2e4

4(q2)2
∑

sf , si

s̄f , s̄i

[ū(pf , sf )γμu(pi, si)][ū(pi, si)γνu(pf , sf )]

×[v̄(p̄i, s̄i)γμv(p̄f , s̄f )][v̄(p̄f , s̄f )γνv(p̄i, s̄i)]

=
(4π)2e4

4(q2)2
tr [Λ+(pf )γμΛ+(pi)γν ] tr [Λ−(p̄i)γμΛ−(p̄f )γν ]



264 3. Relativistic Scattering Theory

|Mfi(ex)|2 =
(4π)2e4

4(q′2)2
∑

sf , si

s̄f , s̄i

[v̄(p̄i, s̄i)γμu(pi, si)][ū(pf , sf )γμv(p̄f , s̄f )]

×[v̄(p̄i, s̄i)γνu(pi, si)]†[ū(pf , sf )γνv(p̄f , s̄f )]†

=
(4π)2e4

4(q′2)2
∑

sf , si

s̄f , s̄i

[v̄(p̄i, s̄i)γμu(pi, si)][ū(pi, si)γνv(p̄i, s̄i)]

×[ū(pf , sf )γμv(p̄f , s̄f )][v̄(p̄f , s̄f )γνu(pf , sf )]

=
(4π)2e4

4(q′2)2
tr [Λ−(p̄i)γμΛ+(pi)γν ] tr [Λ+(pf )γμΛ−(p̄f )γν ]

2Re
[
Mfi(dir)M†

fi(ex)
]

= 2
[
Mfi(dir)M†

fi(ex)
]

=
(4π)2e4

2q2q′2

∑

sf , si

s̄f , s̄i

[ū(pf , sf )γμu(pi, si)][v̄(p̄i, s̄i)γμv(p̄f , s̄f )]

×[v̄(p̄i, s̄i)γνu(pi, si)]†[ū(pf , sf )γνv(p̄f , s̄f )]†

=
(4π)2e4

2q2q′2

∑

sf , si

s̄f , s̄i

[ū(pf , sf )γμu(pi, si)][ū(pi, si)γνv(p̄i, s̄i)]

×[v̄(p̄i, s̄i)γμv(p̄f , s̄f )][v̄(p̄f , s̄f )γνu(pf , sf )]

= − (4π)2e4

2q2q′2

∑

sf ,s̄i

[ū(pf , sf )γμΛ+(pi)γνv(p̄i, s̄i)]

×[v̄(p̄i, s̄i)γμΛ−(p̄f )γνu(pf , sf )]

=
(4π)2e4

2q2q′2
tr [Λ+(pf )γμΛ+(pi)γνΛ−(p̄i)γμΛ−(p̄f )γν ] .

Comparing these expressions with the corresponding relations (3.109), (3.110),
and (3.111) for the electron-electron scattering, we find that the amplitude
squares of both processes emerge from each other if the four-momenta are
replaced as shown in Figure 3.20. Obviously, this is due to the fact that
the scattering amplitude of the electron-positron scattering in (3.113) results
from that of the electron-electron scattering (Theorem 3.10) via exactly these
replacements. This crossing symmetry turns out to be generally true – ex-
actly and to every order of the scattering theory – for S-matrix elements of
processes where incoming particles are replaced by the antiversions of the
respective outgoing particles and vice versa. This means, for example, that
the scattering amplitude of the particle-particle reaction A + B → C + D
follows from that of the particle-antiparticle reaction A + D̄ → C + B̄ by
simply replacing the momentum variables p̄B → −pD and p̄D → −pB. And
even processes with a different grouping of incoming and outgoing particles,



3.3 Spin-1/2 Scattering Processes 265

electron-electron scattering

e− + e− → e− + e− pi p′
i pf p′

f

e− + e+ → e− + e+ pi −p̄i pf −p̄f

electron-positron scattering

Fig. 3.20. Crossing symmetry between the electron-electron and electron-positron
scatterings.

for example A → B̄ + C + D and A + B → C + D, are interrelated through
the crossing symmetry.

If we now make the replacements p′i → −p̄f , p′f → −p̄i in (3.109), (3.110),
and (3.111) and then evaluate the scalar products in the center of mass
system, we finally obtain the result

|Mfi|2cm =
(2π)2e4

4m4
0

[
m4

0 + 4p2
i m

2
0 cos2 θ

2 + 2p4
i

(
1 + cos4 θ

2

)

p4
i sin4 θ

2

+
3m4

0 + 4p2
i m

2
0 + p4

i (1 + cos2 θ)
E4

i

−
3m4

0 + 8p2
i m

2
0 cos2 θ

2 + 4p4
i cos4 θ

2

E2
i p2

i sin2 θ
2

]

.

Contrary to the electron-electron case, this formula cannot be expressed by
powers of 1/ sin2 θ since now it is possible to distinguish between forward
scattering (θ < π/2) and backward scattering (θ > π/2).

Theorem 3.11: Electron-positron scattering to leading order

The scattering amplitude for the electron-positron scattering (Bhabba scat-
tering) to leading order is (f �= i)

Sfi = − (2π)4δ(pf + p̄f − pi − p̄i)
V 2

√
m2

0

EiEf

√
m2

0

ĒiĒf
Mfi ,

with the Lorentz-invariant amplitude (q = pf − pi, q′ = pi + p̄i) �
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Mfi = Mfi(dir) − Mfi(ex)

Mfi(dir) = ū(pf , sf )γμu(pi, si)
4πie2

q2 + iε
v̄(p̄i, s̄i)γμv(p̄f , s̄f )

Mfi(ex) = v̄(p̄i, s̄i)γμu(pi, si)
4πie2

q′2 + iε
ū(pf , sf )γμv(p̄f , s̄f ) .

The differential cross section follows as

dσ =
m2

0√
(pi · p̄i)2 − m4

0

|Mfi|2(2π)4δ(pf + p̄f − pi − p̄i)

× m0d3pf

(2π)3Ef

m0d3p̄f

(2π)3Ēf

and, particularly in the center of mass system,
(

dσ

dΩ

)

cm

=
m4

0

4(2π)2E2
i

|Mfi|2cm .

Here all electronic scattering momenta pf directed toward dΩ as well as
all positronic scattering momenta p̄f have been integrated out. The unpo-
larized amplitude square is evaluated as

|Mfi|2cm =
(2π)2e4

4m4
0

[
m4

0 + 4p2
i m

2
0 cos2 θ

2 + 2p4
i

(
1 + cos4 θ

2

)

p4
i sin4 θ

2

+
3m4

0 + 4p2
i m

2
0 + p4

i (1 + cos2 θ)
E4

i

−
3m4

0 + 8p2
i m

2
0 cos2 θ

2 + 4p4
i cos4 θ

2

E2
i p2

i sin2 θ
2

]

.

The electron-positron and electron-electron scatterings are connected via
the crossing symmetry.

3.3.7 Compton Scattering against Electrons

Up to now, we have discussed exclusively scattering processes where virtual
photons have mediated the electromagnetic interaction between real fermions.
Accordingly, the photonic four-momenta were space- or time-like and have
been represented in the Feynman diagrams by closed lines with a start and an
end point. However, there also exist processes with real photons whose four-
momenta satisfy the Einstein condition kμkμ = 0. Three such processes are
the Compton scattering, the electron-positron annihilation and the electron-
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positron creation, all of which we discuss in this and the next subsection as
well as in Exercises 38 and 39.20

Description of real photons. For the description of real photons, we start
from the four-potential Aμ that, in the Lorentz gauge ∂μAμ = 0, fulfills the
Maxwell equation

∂μ∂μAν = 0 .

Similarly to fermions, we assume for Aμ a plane wave (h̄ = c = 1),

Aμ
k(x) = εμNk

(
e−ik·x + eik·x) , kμ =

(
ω
k

)
, k · k = 0 ,

with the normalization constant Nk, the polarization vector εμ, and the con-
ditions

k · ε = 0 , ε · ε = −1 . (3.114)

The first condition follows from the Lorentz gauge and reflects the transversal
nature of Aμ. Since further gauge transformations of the kind

Aμ(x) −→ Aμ(x) − χ(x) , ∂μ∂μχ = 0

do not affect the Lorentz gauge, we can turn to the radiation gauge by choos-
ing χ(x) = A0(x) so that

A0(x) = 0 =⇒ ∇A(x) = 0 .

In this particular Lorentz system the polarization vectors are space-like and
there remain two transversal, linearly independent three-polarization vectors:

(εμ) =
(

0
ε(k, λ)

)
, kε(k, λ) = 0 , ε(k, λ)ε(k, λ) = 1 , λ = 1, 2 .

The normalization constant Nk can be determined by the constraint that the
mean energy of the wave Aμ

k ,

Ek =
1
8π

∫

V

d3x
〈
E2

k + B2
k

〉
,
〈
E2

k

〉
=
〈
B2

k

〉
=

1
T

T∫

0

dtB2
k , T =

2π

ω
,

is just the energy ω of a single photon. Taking into account

Bk = ∇ × Ak = iNkk × ε
(
e−ik·x − eik·x) = 2Nkk × ε sin k · x

20 This clearly implies that we have to modify our scattering formalism in Theorem
3.5 a second time (the first modification was the current-current interaction, see
footnote 17 on page 234), since now we are dealing with emitted or absorbed
photon quanta that are incompatible with a classical background field. However,
at least to leading order O

(
e2
)
, it seems to be plausible to interpret the two Aμ-

fields of the second scattering series term as incoming and outgoing photons. By
contrast, in higher orders one could not get around a quantum field theoretical
treatment (compare to the introductory notes in this section).
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and

(k × ε)2 = k2ε2 − (kε)2 = k2 = ω2 ,

it follows that

Ek =
ω2N2

k

π

∫

V

d3x
〈
sin2(ωt − kx)

〉
=

ω2N2
kV

2π
=⇒ Nk =

√
2π

ωV
.

After these preliminary considerations, we now turn to the Compton scatter-
ing, where a photon is scattered against a free electron as shown in Figure
3.21, and start directly from Theorem 3.5.

ki

kf

pf

pi = 0
θ

Fig. 3.21. Kinematic situation of the Compton scattering in the laboratory system
where the electron is initially at rest.

Direct scattering amplitude. The leading term of the scattering series
for the Compton scattering is number two. Thus, we start with the equation
(the index 2 is suppressed)

Sfi(dir) = −ie2

∫
d4x

∫
d4yΨ̄f (x)/Af (x)S(0)

F (x − y)/Ai(y)Ψi(y)

=
∫

d4x

∫
d4yΨ̄f (x)(−ie)/Af (x)

×(+i)S(0)
F (x − y)(−ie)/Ai(y)Ψi(y) , (3.115)

where it is obvious to identify the four-potentials with the incoming (i) and
outgoing (f) photons. Within our nomenclature, this corresponds to a direct
scattering amplitude. Inserting the known expressions for the electron and
photon wave functions as well as the electron propagator, we obtain

Sfi(dir) = − ie2

V 2

√
m0

EiEf

√
(2π)2

ωiωf

∫
d4x

∫
d4y

∫
d4p

(2π)4

×
[
ū(pf , sf )/ε(kf , λf )

(/p + m0)
p2 − m2

0 + iε
/ε(ki, λi)u(pi, si)

]

×eipf ·x (e−ikf ·x + eikf ·x) e−ip·(x−y)
(
e−iki·y + eiki·y) e−ipi·y .

First we carry out the coordinate integration,
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∫
d4x

∫
d4yeipf ·x (e−ikf ·x + eikf ·x) e−ip·(x−y)

(
e−iki·y + eiki·y) e−ipi·y

=
∫

d4x
[
ei(pf−p−kf )·x + ei(pf−p+kf )·x

]

×
∫

d4y
[
e−i(pi−p+ki)·y + e−i(pi−p−ki)·y

]

= (2π)8 [δ(pf − p − kf ) + δ(pf − p + kf )]
× [δ(pi − p + ki) + δ(pi − p − ki)]

= (2π)8δ(pf − p + kf )δ(pi − p + ki) , (3.116)

where, in the last step, it was taken into account that three of the four δ()δ()-
combinations correspond to other or not realizable kinematic situations (see
Exercise 37). The momentum integration now yields

∫
d4p

(2π)4
(2π)8δ(pf − p + kf )δ(pi − p + ki)

/p + m0

p2 − m2
0 + iε

= (2π)4δ(pf + kf − pi − ki)
/pi + /ki + m0

(pi + ki)2 − m2
0 + iε

,

so that we end up with the integrated scattering amplitude

Sfi(dir) =
(2π)4δ(pf + kf − pi − ki)

V 2

√
m2

0

EiEf

√
(2π)2

ωiωf
Mfi(dir)

Mfi(dir) = u(pf , sf )(−ie)/ε(kf , λf )
(+i)(/pi + /ki + m0)
(pi + ki)2 − m2

0 + iε
×(−ie)/ε(ki, λi)u(pi, si) .

Comparing these expressions as well as the Feynman diagram in Figure 3.22a
belonging to Mfi(dir) with our Feynman rules in Subsection 3.3.4, we see
that these rules can easily be extended to include processes involving real
photons:

1’, 2’. Each incoming or outgoing photon yields a photon factor (Gaussian
unit system) N

(...)
i,f = 2π.

4’. Within Feynman diagrams in momentum space, incoming and outgo-
ing photons are represented by lines and factors as given in Figure
3.23.

3’, 5’. Unchanged compared to 3. and 5.
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εμ(kf , λf ) ū(pf , sf )

εν(ki, λi) u(pi, si)

−ieγμ

−ieγν

+i(/pi + /ki + m0)

(pi + ki)2 − m2
0 + iε

εμ(kf , λf ) ū(pf , sf )

εν(ki, λi) u(pi, si)

−ieγν

−ieγμ

+i(/pi − /kf + m0)

(pi − kf )2 − m2
0 + iε

a b

Fig. 3.22. Feynman diagrams of the direct O
(
e2
)
-scattering amplitude (a) and

the exchange O
(
e2
)
-scattering amplitude (b) for the Compton scattering against

electrons in momentum space. Energy and momentum are conserved at each vortex.

incoming photon outgoing photon

εμ(ki, λi)

εμ(kf , λf )

Fig. 3.23. Supplementary Feynman diagram elements and characteristic factors in
momentum space (see Figure 3.14).

Exchange scattering amplitude. Apart from the direct scattering, we
also have to take into account the constellation where the assignment of
incoming and outgoing or, likewise, absorbed and emitted photons in (3.115)
is reversed. After some calculations, similar to the above ones, this leads to
the integrated exchange scattering amplitude

Sfi(ex) =
(2π)4δ(pf + kf − pi − ki)

V 2

√
m2

0

EiEf

√
(2π)2

ωiωf
Mfi(ex)

Mfi(ex) = u(pf , sf )(−ie)/ε(ki, λi)
(+i)(/pi − /kf + m0)
(pi − kf )2 − m2

0 + iε
×(−ie)/ε(kf , λf )u(pi, si)

together with its graphical representation in Figure 3.22b, both being con-
sistent with our modified rules 1’ to 5’.

All in all, we obtain the scattering amplitude
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Sfi =
(2π)4δ(pf + kf − pi − ki)

V 2

√
m2

0

EiEf

√
(2π)2

ωiωf
Mfi

Mfi = Mfi(dir) + Mfi(ex)

= −ie2ū(pf , sf )
[
/ε(kf , λf )(/pi + /ki + m0)/ε(ki, λi)

(pi + ki)2 − m2
0 + iε

+
/ε(ki, λi)(/pi − /kf + m0)/ε(kf , λf )

(pi − kf )2 − m2
0 + iε

]
u(pi, si) .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.117)

Its invariance under the exchange ki ↔ −kf is another example of the cross-
ing symmetry that we encountered in the preceding subsection. In this case
it means that the scattering amplitude for the absorption and emission of
photons with momenta ki and kf is equal to the scattering amplitude for the
absorption and emission of antiphotons with momenta kf and ki. However,
the differentiation between photon and antiphoton is irrelevant as the photon
is its own antiparticle.
Cross section. The differential cross section is best evaluated in the labo-
ratory system where the electron is initially at rest, pi = (m0,0), so that

dσ =
2πm0√
ω2

i m2
0

|Mfi|2(2π)4δ(pf + kf − pi − ki)
m0d3pf

(2π)3Ef

2πd3kf

(2π)3ωf
.

Using

d3pf

Ef
= 2
∫

d4pfδ(p2
f − m2

0)Θ(p0
f ) , d3kf = ω2

fdωfdΩ ,

we now calculate as follows:
dσ

dΩ
=

2m0

ωi

∫
dωfωf

∫
d4pf |Mfi|2δ(pf + kf − pi − ki)

×δ(p2
f − m2

0)Θ(p0
f )

=
2m0

ωi

∫
dωfωf |Mfi|2pf =pi+ki−kf

×δ[(pi + ki − kf )2 − m2
0]Θ(m0 + ωi − ωf )

=
2m0

ωi

m0+ωi∫

0

dωfωf |Mfi|2pf =pi+ki−kf

×δ[2m0(ωi − ωf ) − 2ωiωf (1 − cos θ)]

=
2m0

ωi

m0+ωi∫

0

dωfωf |Mfi|2pf =pi+ki−kf

×
δ

[

ωf − ωi

1 + ωi

m0
(1 − cos θ)

]

2m0 + 2ωi(1 − cos θ)
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=
ω2

f

ω2
i

|Mfi|2co , |Mfi|2co = |Mfi|2pf =pi+ki−kf
, (3.118)

with the secondary condition

ωf =
ωi

1 + ωi

m0
(1 − cos θ)

.

As a consequence of energy and momentum conservation, the last equation
interrelates the energies of incoming and outgoing photons. With λ = 2π/ω,
it can be cast into the Compton formula

λf = λi + 2π
1

m0
(1 − cos θ) .

Accordingly, the wave length of the scattered photon is raised by an amount
comparable to the electron’s Compton wave length λc = h̄/m0c.

Amplitude square. If we are interested in the case of unpolarized electrons
but keep the photon polarizations λi,f , we are led from (3.117) to (average
over the initial and summation over the final polarizations of the electron)

|Mfi|2(λi, λf ) =
e4

2

∑

sf ,si

[ū(pf , sf )Γ1u(pi, si)] [ū(pf , sf )Γ1u(pi, si)]
†

=
e4

2

∑

sf ,si

[ū(pf , sf )Γ1u(pi, si)] [ū(pi, si)Γ2u(pf , sf )]

=
e4

2
tr [Λ+(pf )Γ1Λ+(pi)Γ2] , (3.119)

with the operators

Γ1 =
/εf (/pi + /ki + m0)/εi

2pi · ki
− /εi(/pi − /kf + m0)/εf

2pi · kf

Γ2 = γ0Γ †
1 γ0 =

/εi(/pi + /ki + m0)/εf

2pi · ki
− /εf (/pi − /kf + m0)/εi

2pi · kf

= Γ1(εi ↔ εf )

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3.120)

and the abbreviations εi,f = ε(ki,f , λi,f ). Due to the many γ-matrix combi-
nations, the evaluation of the trace according to Theorem 3.6 is much more
complicated than in all the preceding examples. However, we can initially
simplify the operators Γ1,2 through the following reasoning: commuting /pi in
Γ1 to the right and in Γ2 to the left, we obtain

Γ1 =
2pi · εi/εf + /εf/ki/εi − /εf/εi(/pi − m0)

2pi · ki

−2pi · εf/εi − /εi/kf/εf − /εi/εf (/pi − m0)
2pi · kf

Γ2 =
2pi · εi/εf + /εi/ki/εf − (/pi − m0)/εi/εf

2pi · ki
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−2pi · εf/εi − /εf/kf/εi − (/pi − m0)/εf/εi

2pi · kf
.

Here we can ignore the (/pi − m0)-terms because they are orthogonal to the
energy projection operators Λ+(pi). Furthermore, we can always find a gauge
where the photon polarizations εi,f are perpendicular to pi. In the laboratory
system this is the radiation gauge where ε0 = 0. Thus, overall, we can replace
Γ1,2 with

Γ1 −→ /εf/ki/εi

2pi · ki
+

/εi/kf/εf

2pi · kf
, Γ2 −→ /εi/ki/εf

2pi · ki
+

/εf/kf/εi

2pi · kf
.

Despite this simplification, the determination of the trace remains quite com-
plicated due to the presence of products with up to eight γ-matrices. Having
struggled through these calculations and taking four-momentum conservation
into account, one arrives at

|Mfi|2co(λi, λf ) =
e4

4m2
0

{
pi · kf

pi · ki
+

pi · ki

pi · kf

+ 4[ε(ki, λi) · ε(kf , λf )]2 − 2
}

. (3.121)

Incorporating the laboratory conditions ki · pi = ωim0, kf · pi = ωfm0 leads
to the Klein-Nishina formula

|Mfi|2co(λi, λf ) =
e4

4m2
0

{
ωf

ωi
+

ωi

ωf
+ 4[ε(ki, λi) · ε(kf , λf )]2 − 2

}
.

To determine the totally unpolarized cross section, we now have to average
over the photon’s initial polarizations and sum over its final polarizations:

|Mfi|2co =
e4

2m2
0

⎧
⎨

⎩
ωf

ωi
+

ωi

ωf
+
∑

λi,λf

[ε(ki, λi) · ε(kf , λf )]2 − 2

⎫
⎬

⎭
. (3.122)

Here the use of the radiation gauge presents itself where, without restricting
generality, we can choose the three-vectors ε(ki, 1) and ε(kf , 1) in such a
way that they lie in the plane spanned by ki and kf . Consequently, the angle
between ε(ki, 1) and ε(kf , 1) is equal to the scattering angle θ. Furthermore,
ε(ki, 2) and ε(kf , 2) are perpendicular to the plane and therefore identical:

ε(ki, 1)ε(kf , 1) = cos θ , ε(ki, 2)ε(kf , 2) = 1

ε(ki, 1)ε(kf , 2) = ε(ki, 2)ε(kf , 1) = 0
∑

λi,λf

[ε(ki, λi) · ε(kf , λf )]2 =
∑

λi,λf

[ε(ki, λi)ε(kf , λf )]2

= 1 + cos2 θ .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3.123)

With this (3.122) finally turns into

|Mfi|2co =
e4

2m2
0

(
ωf

ωi
+

ωi

ωf
− sin2 θ

)
.



274 3. Relativistic Scattering Theory

Theorem 3.12: Compton scattering against electrons
to leading order

The scattering amplitude for the Compton scattering against electrons to
leading order is (f �= i)

Sfi =
(2π)4δ(pf + kf − pi − ki)

V 2

√
m2

0

EiEf

√
(2π)2

ωiωf
Mfi ,

with the Lorentz-invariant amplitude

Mfi = Mfi(dir) + Mfi(ex)

Mfi(dir) = −ie2ū(pf , sf )
/ε(kf , λf )(/pi + /ki + m0)/ε(ki, λi)

(pi + ki)2 − m2
0 + iε

u(pi, si)

Mfi(ex) = −ie2ū(pf , sf )
/ε(ki, λi)(/pi − /kf + m0)/ε(kf , λf )

(pi − kf )2 − m2
0 + iε

u(pi, si) .

The differential cross section follows as

dσ =
2πm0√
(pi · ki)2

|Mfi|2(2π)4δ(pf + kf − pi − ki)
m0d3pf

(2π)3Ef

2πd3kf

(2π)3ωf

and, particularly in the laboratory system where the electron is initially at
rest,

dσ

dΩ
=

ω2
f

ω2
i

|Mfi|2co , |Mfi|2co = |Mfi|2pf =pi+ki−kf

ωf =
ωi

1 + ωi

m0
(1 − cos θ)

.

Here all photonic scattering momenta kf directed toward dΩ as well as all
electronic scattering momenta pf have been integrated out. Disregarding
electronic polarization effects while keeping the photon polarizations leads
to the Klein-Nishina formula

|Mfi|2co(λi, λf ) =
e4

4m2
0

{
ωf

ωi
+

ωi

ωf
+ 4[ε(ki, λi) · ε(kf , λf )]2 − 2

}
.

The totally unpolarized amplitude square is

|Mfi|2co =
e4

2m2
0

(
ωf

ωi
+

ωi

ωf
− sin2 θ

)
.

3.3.8 Electron-Positron Annihilation

Now we apply the extended set of rules 1’ to 5’ from the preceding subsec-
tion to the process of electron-positron annihilation where an electron and
a positron collide and radiate into two photons (see Figure 3.24). The cor-
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pi = 0p̄i

kf

k′
f

θ

Fig. 3.24. Kinematic situation of the electron-positron annihilation in the labora-
tory system where the electron is initially at rest.

responding Feynman diagrams for the direct and exchange scatterings to
leading order in momentum space are depicted in Figure 3.25. They lead to
the scattering amplitude

Sfi =
(2π)4δ(kf + k′

f − pi − p̄i)
V 2

√
m2

0

EiĒi

√
(2π)2

ωfω′
f

Mfi

Mfi = Mfi(dir) + Mfi(ex)

= −ie2v̄(p̄i, s̄i)
[
/ε(k′

f , λ′
f )(/pi − /kf + m0)/ε(kf , λf )
(pi − kf )2 − m2

0 + iε

+
/ε(kf , λf )(/pi − /k′

f + m0)/ε(k′
f , λ′

f )
(pi − k′

f )2 − m2
0 + iε

]

u(pi, si) .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.124)

εμ(kf , λf )

u(pi, si)

εν(k′
f , λ′

f )

v̄(p̄i, s̄i)

−ieγμ −ieγν

+i(/pi − /kf + m0)

(pi − kf )2 − m2
0 + iε

εμ(kf , λf )

u(pi, si)

εν(k′
f , λ′

f )

v̄(p̄i, s̄i)

−ieγν −ieγμ

+i(/pi − /k′
f + m0)

(pi − k′
f )2 − m2

0 + iε

a b

Fig. 3.25. Feynman diagrams of the direct O
(
e2
)
-scattering amplitude (a) and the

exchange or annihilation O
(
e2
)
-scattering amplitude (b) for the electron-positron

annihilation in momentum space. Energy and momentum are conserved at each
vortex.
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The following points have to be kept in mind:

• The leading order of this process is O
(
e2
)

since the radiation of a (free!)
electron-positron pair into a single photon is kinematically not possible.
This means that the condition

k2
f = (pi + p̄i)2 = (p0

i + p̄0
i )

2 − (pi + p̄i)
2 = 0

cannot be satisfied, as can easily be seen in the center of mass system where
pi = −p̄i.

• In accordance with the Bose-Einstein statistics, the scattering amplitude is
symmetric under the exchange of the photons in the final state (kf ↔ k′

f ).

• Obviously, the Feynman diagrams of electron-positron annihilation and
Compton scattering emerge from each other by 90◦-rotations. Furthermore,
comparing the scattering amplitude (3.124) with that in Theorem 3.12, we
encounter, once again, an example of the crossing symmetry according to
which both processes are connected via the substitution rule of Figure 3.26.

Compton scattering

e− + γ → e− + γ pi ki pf kf

e− + e+ → γ + γ pi −p̄i −kf k′
f

electron-positron annihilation

Fig. 3.26. Crossing symmetry between the Compton scattering against two elec-
trons and the electron-positron annihilation.

A similar relationship exists between the Compton scattering and the process
γ + γ → e− + e+, i.e. the electron-positron creation by two photons (see
Exercise 39). Hence, all three processes are interconnected via the crossing
symmetry.
Cross section. In the laboratory system we have pi = (m0,0) and the
differential cross section is

dσ =
m2

0√
m2

0Ē
2
i − m4

0

|Mfi|2(2π)4δ(kf + k′
f − pi − p̄i)

2πd3kf

(2π)3ωf

2πd3k′
f

(2π)3ω′
f

.

With the help of

d3kf = ω2
fdωfdΩ ,

d3k′
f

ω′
f

= 2
∫

d4k′
fδ(k′2

f )Θ(k′0
f ) ,
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this can be rewritten in a familiar way as

dσ

dΩ
=

2m0

|p̄i|

∫
dωfωf

∫
d4k′

f |Mfi|2δ(kf + k′
f − pi − p̄i)δ(k′2

f )Θ(k′0
f )

=
2m0

|p̄i|

∫
dωfωf |Mfi|2k′

f
=p̄i+pi−kf

×δ[(p̄i + pi − kf )2]Θ(Ēi + m0 − ωf )

=
2m0

|p̄i|

m0+Ēi∫

0

dωfωf |Mfi|2k′
f
=p̄i+pi−kf

×δ[2m2
0 + 2m0Ēi − 2ωf (m0 + Ēi − |p̄i| cos θ)]

=
2m0

|p̄i|

m0+Ēi∫

0

dωfωf |Mfi|2k′
f
=p̄i+pi−kf

×
δ
[
ωf − m0(m0+Ēi)

m0+Ei−|p̄i| cos θ

]

2(m0 + Ēi − |p̄i| cos θ)

=
ω2

f

|p̄i|(m0 + Ēi)
|Mfi|2co , |Mfi|2co = |Mfi|2k′

f
=p̄i+pi−kf

,

where the photon energy ωf is related to the energy of the outgoing positron
via

ωf =
m0(m0 + Ēi)

m0 + Ēi − |p̄i| cos θ
.

Amplitude square. Similarly to the Compton scattering, we assume to
have unpolarized fermions while keeping the photon polarizations λf and λ′

f .
Thus, starting from (3.124), we consider the equation (average over all initial
polarizations of the electrons and positrons)

|Mfi|2(λf , λ′
f ) =

e4

4

∑

si,s̄i

[v̄(p̄i, s̄i)Γ̃1u(pi, si)][v̄(p̄i, s̄i)Γ̃1u(pi, si)]†

=
e4

4

∑

si,s̄i

[v̄(p̄i, s̄i)Γ̃1u(pi, si)][ū(pi, si)Γ̃2v(p̄i, s̄i)]

= −e4

4
tr[Λ−(p̄i)Γ̃1Λ+(pi)Γ̃2] , (3.125)

with the operators

Γ̃1 = −
/ε(k′

f , λ′
f )(/pi − /kf + m0)/ε(kf , λf )

2pi · kf

−
/ε(kf , λf )(/pi − /k′

f + m0)/ε(k′
f , λ′

f )
2pi · k′

f
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Γ̃2 = γ0Γ̃ †
1 γ0 = −

/ε(kf , λf )(/pi − /kf + m0)/ε(k′
f , λ′

f )
2pi · kf

−
/ε(k′

f , λ′
f )(/pi − /k′

f + m0)/ε(kf , λf )
2pi · k′

f

.

A further evaluation of these expressions is easy if we bear in mind that
they are connected with the corresponding equations (3.119) and (3.120) of
the Compton scattering via the substitution rule of the crossing symmetry
in Figure 3.26. The additional factor −1/2 in (3.125) results from the facts
that there the average is taken over both fermion polarizations and that a
v-bispinor is involved in the trace (compare to Theorem 3.6). Overall, we can
therefore carry over (3.121) with the corresponding replacements to obtain

|Mfi|2co(λf , λ′
f ) =

e4

8m2
0

{
pi · k′

f

pi · kf
+

pi · kf

pi · k′
f

+ 2 − 4[ε(kfλf ) · ε(k′
f , λ′

f )]2
}

(3.126)

and, after inserting the laboratory conditions pi ·kf = ωfm0, pi ·k′
f = ω′

fm0,

|Mfi|2co(λf , λ′
f ) =

e4

8m2
0

{
ω′

f

ωf
+

ωf

ω′
f

+ 2 − 4[ε(kfλf ) · ε(k′
f , λ′

f )]2
}

.

Energy conservation determines the value of ω′
f to be

ω′
f = m0 + Ēi − ωf = (m0 + Ēi)

(
1 − m0

m0 + Ēi − |p̄i| cos θ

)
.

Summing over the photon polarizations finally yields the totally unpolarized
amplitude square

|Mfi|2co =
e4

2m2
0

(
ω′

f

ωf
+

ωf

ω′
f

+ sin2 θ̃

)

,

where θ̃ denotes the angle between the photon momenta kf and k′
f (in the

case of the Compton scattering θ̃ was identical to the scattering angle θ).

Theorem 3.13: Electron-positron annihilation to leading order

The scattering amplitude for the electron-positron annihilation to leading
order is (f �= i)

Sfi =
(2π)4δ(kf + k′

f − pi − p̄i)
V 2

√
m2

0

EiĒi

√
(2π)2

ωfω′
f

Mfi ,

�
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with the Lorentz-invariant amplitude

Mfi = Mfi(dir) + Mfi(ex)

Mfi(dir) = −ie2v̄(p̄i, s̄i)
/ε(k′

f , λ′
f )(/pi − /kf + m0)/ε(kf , λf )
(pi − kf )2 − m2

0 + iε
u(pi, si)

Mfi(ex) = −ie2v̄(p̄i, s̄i)
/ε(kf , λf )(/pi − /k′

f + m0)/ε(k′
f , λ′

f )
(pi − k′

f )2 − m2
0 + iε

u(pi, si) .

The differential cross section follows as

dσ =
m2

0√
(pi · p̄i)2 − m4

0

|Mfi|2(2π)4δ(kf + k′
f − pi − p̄i)

× 2πd3kf

(2π)3ωf

2πd3k′
f

(2π)3ω′
f

and, particularly in the laboratory system where the electron is initially at
rest,

dσ

dΩ
=

ω2
f

|p̄i|(m0 + Ēi)
|Mfi|2co , |Mfi|2co = |Mfi|2k′

f
=p̄i+pi−kf

ωf =
m0(m0 + Ēi)

m0 + Ēi − |p̄i| cos θ
.

Here all photonic scattering momenta kf directed toward dΩ as well as all
photonic scattering momenta k′

f have been integrated out. Disregarding
fermionic polarization effects while keeping the photon polarizations yields

|Mfi|2co(λf , λ′
f ) =

e4

8m2
0

{
ω′

f

ωf
+

ωf

ω′
f

+ 2 − 4[ε(kfλf ) · ε(k′
f , λ′

f )]2
}

ω′
f = (m0 + Ēi)

(
1 − m0

m0 + Ēi − |p̄i| cos θ

)
.

The totally unpolarized amplitude square is

|Mfi|2co =
e4

2m2
0

(
ω′

f

ωf
+

ωf

ω′
f

+ sin2 θ̃

)

, θ̃ = (kf ,k′
f ) .

The processes of Compton scattering, electron-positron annihilation and
creation are connected via the crossing symmetry.

3.3.9 Conclusion: Feynman Diagrams in Momentum Space

In the preceding subsections we have studied several relativistic spin-1/2
scattering processes. First, we considered pure fermion processes such as
Coulomb, electron-proton, electron-electron, and electron-positron scatter-
ings, where only virtual photons are involved as mediators of the electro-
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magnetic interaction. There it turned out that the corresponding scattering
amplitudes follow particular characteristics that can be formalized in some
simple rules. Subsequently, we discussed the Compton scattering as well as
the electron-positron annihilation and found that also those processes en-
compassing real photons can be described by the discovered rules with a
few extensions. As was pointed out several times in this section, this modus
operandi comprises two important aspects:

• Enhancements to the original scattering formalism in Theorem 3.5. They
allow the description of two-particle scatterings via current-current interac-
tions as well as of processes with real photons and lie beyond the treatment
of Aμ as a classical background field.

• Derivation of the Feynman rules that can only be fully explained within
quantum field theory. In this section we have only considered their tree
level part to the lowest orders.

In the following section we see that it is the purely quantum field theoreti-
cally motivated loop diagrams in higher orders that raise difficulties for the
construction of scattering amplitudes.

At the end of this section we present, once again, the complete set of Feyn-
man rules in momentum space. Here the extensions, compared to the rules in
Subsections 3.3.4 and 3.3.7, refer mainly to the generalization of scattering
processes with more than two scattering products (1. rule), the incorporation
of the quantum mechanical indistinguishability of identical particles (2. rule)
as well as the Fermi statistics (4. rule).

1. The scattering amplitude of an elastic or inelastic scattering process of
the kind

I + I ′ −→ F + F ′ + F ′′ + . . . + F (m)

(
I=incoming particle
F=outgoing particle

)

is given by

Sfi =
(2π)4δ

(
pi + p′i −

m∑

k=1

p
(k)
f

)

V 2

2∏

j=1

√√
√
√N

(j)
i

E
(j)
i

m∏

k=1

√√
√
√N

(k)
f

E
(k)
f

Mfi ,

with a fermion factor of N
(...)
i,f = m0 for each (anti)fermion and a photon

factor of N
(...)
i,f = 2π for each photon. Sfi receives an additional sign for

each incoming antifermion (outgoing fermion wave function with negative
energy).

2. The corresponding differential cross section for collinear currents is

dσ =
NiN

′
i√

(pi · p′i)2 − m2
0,im

′2
0,i

|Mfi|2(2π)4δ

(

pi + p′i −
m∑

k=1

p
(k)
f

)
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×
m∏

k=1

N
(k)
f d3p

(k)
f

(2π)3E(k)
f

.

When calculating the total cross section, the additional degeneracy factor
m∏

k=1

1
g(k)!

has to be taken into account for g(k) identical particles of the kind F (k)

in the final state.

3. The Lorentz-invariant amplitude Mfi can be expanded in powers of the
coupling constant e. The expansion terms of order O (en) are obtained
from the Feynman diagrams in momentum space containing all topolog-
ical constellations of fermion lines, photon lines, and n vortices that are
consistent with the scattering process.

4. All vortices, fermion lines, and photon lines in the Feynman diagrams
are assigned the factors given in Figure 3.27. Furthermore, the following
factors have to be taken into account:

i) a relative sign when two Feynman diagrams differ only by the exchange
of two fermion lines (of the same fermion type).

ii)a factor of (−1) for each closed fermion loop.

5. Four-momentum conservation holds at each vortex. All remaining (un-
determined) momenta p are subject to integration with

∫
d4p/(2π)4 in

the amplitude Mfi.

To 2. The degeneracy factor takes into account the quantum mechanical
indistinguishability of the trajectories of two identical outgoing particles, for
example, as in the electron-electron scattering (see Subsection 3.3.5).

To 4. The relative sign in i) is a consequence of the necessary antisym-
metrization of the whole scattering amplitude on the level of wave functions
due to the Fermi statistics. Therefore, it takes effect also at the exchange
of one incoming [outgoing] particle line with one outgoing [incoming] an-
tiparticle line (see electron-electron scattering, Subsection 3.3.5 and electron-
positron scattering, Subsection 3.3.6). The rule ii) is nothing more than a
special case of rule i) as can be seen immediately by means of Figure 3.28. If
we exchange the two marked fermion lines in a, we obtain diagram b, which
can equally be drawn as in c. Thus, compared to c, diagram a contains a
phase factor of (−1).21

21 As regards the equivalence of the diagrams b and c, recall that, due to the
integration over all space-time points, a Feynman diagram can be arbitrarily
deformed as long as the order of vortices and lines remains unchanged.
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incoming fermion ... antifermion ... photon

u(pi, si) v̄(p̄i, s̄i) εμ(ki, λi)

outgoing fermion ... antifermion ... photon
ū(pf , sf ) v(p̄f , s̄f ) εμ(kf , λf )

internal fermion line internal photon line vortex

iS̃
(0)
F (p) =

i(/p + m0)

p2 − m2
0 + iε

iD̃
(0)μν
F (q) =

−4πigμν

q2 + iε

−ieγμ

the index μ is
contracted with
that of the
photon line

Fig. 3.27. Complete set of Feynman diagram elements and characteristic factors
in momentum space (see Figures 3.14 and 3.23).

=
1

2 1

2

1

2

a b c

Fig. 3.28. Fermion loop (a), exchange of two fermion lines (b), and topologically
equivalent deformation (c).

Summary

• The treatment of relativistic spin-1/2 scattering processes essentially con-
tains the following steps:
– Constructing the scattering amplitude Sfi or Mfi up to the desired

order of the coupling constant e.
�
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– Taking the absolute square |Sfi|2 or |Mfi|2 and, if required, averaging
over the initial polarizations and/or summing over the final polariza-
tions.

– Inserting |Sfi|2 or |Mfi|2 into the formula for the differential cross
section while taking into account the phase factors of all scattering
products involved.

• The first and third steps can be formalized and simplified in a generally
valid way with the help of the Feynman rules. These rules contain
a tree level and a loop level. The latter is of purely quantum field
theoretical nature and goes beyond relativistic quantum mechanics “in
the narrow sense”.

• The second step is best carried out by relating |Mfi|2 back to a dou-
ble spin sum (if required by inserting appropriate projection operators)
and subsequently evaluating this expression using the trace rules from
Theorem 3.6.

• Scattering processes with initial and final fermion products are
the Coulomb, electron-proton, electron-electron, and electron-
positron scattering. Exclusively virtual photons occur here as media-
tors of the electromagnetic interaction.

• Furthermore, there also exist scattering processes with initial and final
photonic states such as the Compton scattering, electron-positron
annihilation, and electron-positron creation.

• Electron-electron and electron-positron scatterings on the one side
and Compton scattering, electron-positron annihilation, and electron-
positron creation on the other side are interconnected via the principle
of crossing symmetry.

Exercises

37. Kinematic constellations at the Compton scattering. Show that
only one of the four δ()δ()-combinations in (3.116) yields a contribution to
the considered scattering process.

Solution. Resolving (3.116) yields the following combinations and momen-
tum balances:

A : δ(pf − p + kf )δ(pi − p + ki) =⇒ pi + ki = pf + kf

B : δ(pf − p − kf )δ(pi − p − ki) =⇒ pi − ki = pf − kf

C : δ(pf − p − kf )δ(pi − p + ki) =⇒ pi + ki = pf − kf

D : δ(pf − p + kf )δ(pi − p − ki) =⇒ pi − ki = pf + kf .
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To A. This balance reflects the correct constellation of the Compton scat-
tering as presupposed: an incoming photon with momentum +ki and an
outgoing photon with momentum +kf .

To B. This case describes the Compton scattering, too, but with reversed
photon momenta: an outgoing photon with momentum −ki and an incoming
photon with momentum −kf .

To C and D. Physically these two balances correspond respectively to the
absorption and emission of two photons via a free electron, which is kinemat-
ically forbidden. In case C this can be seen by considering the equation

pf − pi = ki + kf . (3.127)

Taking into account the mass shell conditions p2
i,f = m2

0 , k2
i,f = 0, its square

is

ωiωf + EiEf − m2
0 = pipf + kikf .

With the inequality

pipf + kikf ≤ |pipf + kikf | ≤ |pi||pf | + |ki||kf |

=
√

E2
i − m2

0

√
E2

f − m2
0 + ωiωf ,

it follows that (Ei,f ≥ m0)

EiEf − m2
0 ≤

√
E2

i − m2
0

√
E2

f − m2
0 =⇒ (Ei − Ef )2 ≤ 0 =⇒ Ei = Ef

and, due to (3.127),

ωi = −ωf ⇐⇒ |ki| = −|kf | =⇒ ωi = ωf = 0 .

Thus, balance C only possesses the trivial solution of a noninteracting elec-
tron. The impossibility of balance D is shown similarly.

38. Electron-positron annihilation in the center of mass system. Use
the results in Subsection 3.3.8 to calculate the totally unpolarized differential
and total cross section of the electron-positron annihilation to leading order
in the center of mass system.
Tip: due to the gauge invariance of the electromagnetic field, the completeness
relations

2∑

λ=1

εμ(k, λ)εν(k, λ) = −gμν (3.128)

for the polarization vectors ε (perpendicular to k) can be used.
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Solution. Our starting point is the differential cross section

dσ =
m2

0√
(pi · p̄i)2 − m4

0

|Mfi|2(2π)4δ(kf + k′
f − pi − p̄i)

2πd3kf

(2π)3ωf

2πd3k′
f

(2π)3ω′
f

,

with Mfi from (3.124), which has to be evaluated in the center of mass system
(see Figure 3.29). Taking into account

m2
0√

(pi · p̄i)2 − m4
0

=
m2

0√
(E2

i + p2
i )2 − m4

0

=
m2

0

2Ei|pi|

d3kf = ω2
fdωfdΩ ,

d3k′
f

ω′
f

= 2
∫

d4k′
fδ(k′2

f )Θ(k′0
f ) ,

it follows that
(

dσ

dΩ

)

cm

=
m2

0

Ei|pi|

∫
dωfωf

∫
d4k′

f |Mfi|2δ(kf + k′
f − pi − p̄i)

×δ(k′2
f )θ(k′0

f )

=
m2

0

Ei|pi|

∫
dωfωf |Mfi|2k′

f
=p̄i+pi−kf

×δ[(p̄i + pi − kf )2]Θ(p̄0
i + p0

i − k0
f )

=
m2

0

Ei|pi|

∫
dωfωf |Mfi|2k′

f
=p̄i+pi−kf

×δ[4Ei(Ei − ωf )]Θ(2Ei − ωf )

=
m2

0

Ei|pi|

2Ei∫

0

dωfωf |Mfi|2k′
f
=p̄i+pi−kf

δ(ωf − Ei)
4Ei

=
m2

0

4Ei|pi|
|Mfi|2cm . (3.129)

To calculate the amplitude square, we can resort to (3.126),

pi p̄i

kf

k′
f

θ

Fig. 3.29. Kinematic situation of the electron-positron annihilation in the center of
mass system. Because of energy and momentum conservation, Ei = Ēi = ωf = ω′

f

and pi = −p̄i , kf = −k′
f .
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|Mfi|2co(λf , λ′
f ) =

e4

8m2
0

{
pi · k′

f

pi · kf
+

pi · kf

pi · k′
f

+2 − 4[ε(kfλf ) · ε(k′
f , λ′

f )]2
}

, (3.130)

where four-momentum conservation as well as the average over the fermions’
initial polarizations are already taken into account. From that we obtain the
totally unpolarized amplitude square (sum over the photons’ final polariza-
tions)

|Mfi|2co =
e4

2m2
0

⎧
⎨

⎩
pi · k′

f

pi · kf
+

pi · kf

pi · k′
f

+ 2 −
∑

λf ,λ′
f

[ε(kfλf ) · ε(k′
f , λ′

f )]2

⎫
⎬

⎭
.

Note that (3.130) was derived under the assumption that the polarization
vectors εf , ε′f are perpendicular to pi (see Compton scattering, Subsection
3.3.7). In the laboratory system (pi = 0) this was easily achieved by choosing
the purely space-like photon polarizations ε = (0, ε). By contrast, in the
more general case in hand it is advantageous to incorporate the conditions
εf · pi = ε′f · pi = 0 by using the approach or gauge transformation

εf → ε̃f = εf − εf · pi

kf · pi
kf , ε′f → ε̃′f = ε′f −

ε′f · pi

k′
f · pi

k′
f (3.131)

that does not affect the other orthogonality and transversality conditions
(3.114):

ε · k = 0 , ε · ε = −1 =⇒ ε̃ · k = 0 , ε̃ · ε̃ = −1 .

Thus, the polarization sum in |Mfi|2co can be rewritten as
∑

λf ,λ′
f

[ε̃f · ε̃′f ]2 =
∑

λf ,λ′
f

ε̃μ
f ε̃′f,με̃ν

f ε̃′f,ν = AμνBμν ,

with

Aμν =
∑

λf

ε̃μ
f ε̃ν

f , Bμν =
∑

λ′
f

ε̃f,με̃f,ν .

If we now use the completeness relations (3.128) both tensors can be simplified
to

Aμν =
∑

λf

(
εf − εf · pi

kf · pi
kf

)μ(
εf − εf · pi

kf · pi
kf

)ν

=
∑

λf

(

εμ
f εν

f − εν
f εα

f

pi,αkμ
f

kf · pi
− εμ

f εα
f

pi,αkν
f

kf · pi
+ εα

f εβ
f

pi,αpi,βkμ
f kν

f

(kf · pi)2

)

= −gμν +
pν

i kμ
f + pμ

i kν
f

kf · pi
−

m2
0k

μ
f kν

f

(kf · pi)2



Exercises 287

Bμν =
∑

λf

εf,μεf,ν =
∑

λ′
f

(

ε′f −
ε′f · pi

k′
f · pi

k′
f

)

μ

(

ε′f −
ε′f · pi

k′
f · pi

k′
f

)

ν

= −gμν +
pi,νk′

f,μ + pi,μk′
f,ν

k′
f · pi

−
m2

0k
′
f,μk′

f,ν

(kf · pi)2
.

Contracting Aμν and Bμν and taking into account the mass shell conditions
k2

f = k′2
f = 0 finally yields

∑

λf ,λ′
f

[ε̃f · ε̃′f ]2 = 2 −
2m2

0kf · k′
f

(kf · pi)(k′
f · pi)

+
m4

0(kf · k′
f )2

(kf · pi)2(k′
f · pi)2

, (3.132)

and the totally unpolarized amplitude square follows as

|Mfi|2co =
e4

2m2
0

[
pi · k′

f

pi · kf
+

pi · kf

pi · k′
f

+
2m2

0kf · k′
f

(kf · pi)(k′
f · pi)

−
m4

0(kf · k′
f )2

(kf · pi)2(k′
f · pi)2

]

. (3.133)

In order to get |Mfi|2cm, which has to be inserted into (3.129), we still have to
incorporate the center of mass conditions. Taking into account |pi| = viEi,
we have

pi · kf = E2
i − |pi||kf | cos θ = E2

i (1 − vi cos θ)
pi · k′

f = E2
i + |pi||kf | cos θ = E2

i (1 + vi cos θ)

kf · k′
f = E2

i + |kf ||k′
f | = 2E2

i .

Thus, the final result for the differential cross section in the center of mass
system is

(
dσ

dΩ

)

cm

=
e4

8E2
i vi

[
1 + vi cos θ

1 − vi cos θ
+

1 − vi cos θ

1 + vi cos θ

+
4m2

0

E2
i (1 − v2

i cos2 θ)
− 4m4

0

E4
i (1 − v2

i cos2 θ)2

]

=
e4

4E2
i vi

1 + 2v2
i (1 − v2

i ) − 2v2
i (1 − v2

i ) cos2 θ − v4
i cos4 θ

(1 − v2
i cos2 θ)2

,

where m2
0/E2

i = 1− v2
i has been used in the last step. The calculation of the

total cross section, particularly the integration over d cos θ, can be carried
out easily:

σ̄ =
1
2

∫ (
dσ

dΩ

)

cm

dΩ =
πe4(1 − v2

i )
4m2

0v
2
i

[
(3 − v4

i ) ln
1 + vi

1 − vi
− 2vi(2 − v2

i )
]

.

The factor 1/2 accounts for the indistinguishability of both photons in the
final state and prevents their double counting.
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39. Electron-positron creation in the center of mass system. Use the
crossing symmetry between the electron-positron creation and annihilation
to calculate the totally unpolarized differential and total cross section of the
electron-positron creation to leading order in the center of mass system.

Solution. Figure 3.30 depicts the kinematic situation of the electron-positron
creation in the center of mass system. Analogously to the preceding exercise,

ki k′
i

p̄f

pf

θ

Fig. 3.30. Kinematic situation of the electron-positron creation in the center of
mass system. Because of energy and momentum conservation, ωi = ω′

i = Ef = Ēf

and ki = −k′
i , pf = −p̄f .

we start from the differential cross section

dσ =
(2π)2

√
(ki · k′

i)2
|Mfi|2(2π)4δ(pf + p̄f − ki − k′

i)
m0d3pf

(2π)3Ef

m0d3p̄f

(2π)3Ēf

and calculate, with the help of

(2π)2
√

(ki · k′
i)2

=
(2π)2

2ωiω′
i

=
(2π)2

2ω2
i

d3pf

Ef
= 2
∫

d4pfδ(p2
f − m2

0)Θ(p0
f ) , d3p̄f = |p̄f |ĒfdĒfdΩ ,

as follows:
(

dσ

dΩ

)

cm

=
m2

0

ω2
i

∫
dĒf |p̄f |

∫
d4pf |Mfi|2δ(pf + p̄f − ki − k′

i)

×δ(p2
f − m2

0)Θ(p0
f )

=
m2

0

ω2
i

∫
dĒf |p̄f ||Mfi|2pf=ki+k′

i
−p̄f

×δ[(ki + k′
i − p̄f )2 − m2

0]Θ(k0
i + k′0

i − p̄0
f )

=
m2

0

ω2
i

∫
dĒf |p̄f ||Mfi|2pf=ki+k′

i
−p̄f

×δ[4ωi(ωi − Ēf )]Θ(2ωi − Ēf )
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=
m2

0

ω2
i

2ωi∫

m0

dĒf |p̄f ||Mfi|2pf =ki+k′
i
−p̄f

δ(Ēf − ωi)
4ωi

=
m2

0

√
ω2

i − m2
0

4ω3
i

|Mfi|2cm .

As expected, this formula makes sense only if the energy of each photon is
at least equal to the rest energy of the created electron or positron. Without
constructing the amplitude Mfi explicitly we can derive its square directly
from the corresponding expression (3.133) of the electron-positron annihila-
tion by considering the relationship of the crossing symmetry in Figure 3.31.
Making the appropriate replacements in (3.133) leads to

electron-positron annihilation

e− + e+ → γ + γ pi p̄i kf k′
f

γ + γ → e− + e+ −ki −k′
i −pf −p̄f

electron-positron creation

Fig. 3.31. Crossing symmetry between the electron-positron annihilation and cre-
ation.

|Mfi|2co =
e4

2m2
0

[
p̄f · ki

p̄f · k′
i

+
p̄f · k′

i

p̄f · ki

+
2m2

0ki · k′
i

(ki · p̄f )(k′
i · p̄f )

− m4
0(ki · k′

i)
2

(ki · p̄f )2(k′
i · p̄f )2

]
.

|Mfi|2cm follows from this by evaluating the scalar products in the center of
mass system:

p̄f · ki = ω2
i − |pf ||ki| cos θ = ω2

i (1 − vf cos θ) , |pf | = vfEf = vfωi

p̄f · k′
i = ω2

i + |pf ||ki| cos θ = ω2
i (1 + vf cos θ)

k̄f · k′
f = ω2

i − |kf ||kf | = 2ω2
i .

In total, we obtain for the differential cross section of the electron-positron
creation in the center of mass system:

(
dσ

dΩ

)

cm

=
e4vf

8ω2
i

[
1 + vf cos θ

1 − vf cos θ
+

1 − vf cos θ

1 + vf cos θ
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+
4m2

0

ω2
i (1 − v2

f cos2 θ)
− 4m4

0

ω4
i (1 − v2

f cos2 θ)2

]

=
e4vf

4ωi

1 + 2v2
f (1 − v2

f ) − 2v2
f (1 − v2

f ) cos2 θ − v4
f cos4 θ

(1 − v2
f cos2 θ)2

.

For the calculation of the total cross section we can resort to the correspon-
ding integration of the electron-positron annihilation to find

σ̄ =
∫ (

dσ

dΩ

)

cm

dΩ =
πe4(1 − v2

f )
2m2

0

[
(3 − v4

f ) ln
1 + vf

1 − vf
− 2vf (2 − v2

f )
]

.

Compared to the annihilation case, a factor of 1/2 is missing here, since now
the scattering products can be distinguished.

40. Furry theorem. Prove the Furry theorem which states the following:
two identical Feynman diagrams, each with one n-vortex fermion loop differ-
ing from the other just by the direction of the circulating fermion,

• yield the same contribution if n is even,

• cancel each other if n is odd.

What about the cases where n = 1 and n = 2?

Solution. Figure 3.32 shows both n-vortex fermion loops with opposite di-
rections of circulation as parts of otherwise identical Feynman diagrams. The

+
x1

x2xn

−ieγμ1

−ieγμ2−ieγμn

x1

x2xn

−ieγμ1

−ieγμ2−ieγμn

Fig. 3.32. n-vortex fermion loops with opposite directions of the virtual fermion.

corresponding amplitude can be written in the form

Mfi = [. . .]
[
M (a) + M (b)

]
[. . .] ,

where M (a) and M (b) denote the contributions of both parts and are given
by

M (a) = tr
[
(−ie)γμn

iS(0)
F (xn − xn−1)(−ie)γμn−1 iS

(0)
F (xn−1 − xn−2) · · ·

× (−ie)γμ1 iS
(0)
F (x1 − xn)

]
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= entr
[
γμn

S
(0)
F (xn − xn−1)γμn−1S

(0)
F (xn−1 − xn−2) · · ·

× γμ1S
(0)
F (x1 − xn)

]

M (b) = tr
[
(−ie)γμ1 iS

(0)
F (x1 − x2)(−ie)γμ2 iS

(0)
F (x2 − x3) · · ·

× (−ie)γμn
iS(0)

F (xn − x1)
]

= entr
[
γμ1S

(0)
F (x1 − x2)γμ2S

(0)
F (x2 − x3) · · · γμn

S
(0)
F (xn − x1)

]
.

The trace results from the cyclic multiplication of the vortex factors and
fermion propagators along the loop. Taking into account the charge conju-
gation transformation C from Subsection 2.1.6 and using the relations [see
(2.40)]

C−1γμC = −γ∗
μ = −γ0γT

μ γ0

C−1S
(0)
F (x)C =

∫
d4p

(2π)4
e−ip·x pμC−1γμC + m0

p2 − m2
0 + iε

=
∫

d4p

(2π)4
e−ip·x−pμγ0γT

μ γ0 + m0

p2 − m2
0 + iε

= γ0S
(0)T
F (−x)γ0 ,

M (b) can be transformed into

M (b) = entr
[
CC−1γμ1CC−1S

(0)
F (x1 − x2)

×CC−1γμ2CC−1S
(0)
F (x2 − x3)CC−1 · · ·

× CC−1γμn
CC−1S

(0)
F (xn − x1)

]

= entr
[
C−1γμ1CC−1S

(0)
F (x1 − x2)

×CC−1γμ2CC−1S
(0)
F (x2 − x3)CC−1 · · ·

× CC−1γμn
CC−1S

(0)
F (xn − x1)C

]

= en(−1)ntr
[
γT

μ1
S

(0)T
F (x2 − x1)γT

μ2
S

(0)T
F (x3 − x2) · · ·

× γT
μn

S
(0)T
F (x1 − xn)

]

= en(−1)ntr
[
S

(0)
F (x1 − xn)γμn

S
(0)
F (xn − xn−1)γμn−1 · · ·

× S
(0)
F (x3 − x2)γμ2S

(0)
F (x2 − x1)γμ1

]

= (−1)nM (a) ,

from which the statement follows. The cyclic permutability of the traces is
used in the second and the last steps.
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n = 1 and n = 2 are the only cases where the Furry theorem cannot be
applied. Here the two corresponding subdiagrams with opposite directions of
circulation are topologically equivalent so that, in fact, only one subdiagram
remains. Because of its specific shape, the n = 1-subdiagram is also called
tadpole diagram. Due to four-momentum conservation, it can only be con-
nected to the rest by a virtual photon (with k = 0), thus contributing to the
self-energy of the electron (or positron). However, contrary to the self-energy
contribution discussed in the following section, this contribution is not ob-
servable because it can be totally absorbed into a (divergent) renormalization
constant. Therefore, it is justified to omit Feynman diagrams with 1-vortex
fermion loops right from the beginning.

3.4 Higher Order Corrections

In the preceding section we dealt with concrete examples of relativistic spin-
1/2 scattering processes to the lowest orders of the scattering theory and
derived the complete set of Feynman rules for the construction of scattering
amplitudes and cross sections. Principally, this system of rules is valid to all
orders. Apart from the tree diagrams, in higher orders it also contains the
quantum field theoretically motivated loop diagrams. Now we turn to the
Feynman rules in higher orders and discuss the new problems arising con-
nected with them. As we will see, these problems result from the fact that
some particular corrections of higher orders, namely those containing loop
diagrams, lead to infinities that put the reasonableness of the whole formal-
ism into question. Fortunately, this divergence problem can be removed with
the program of renormalization. The decisive argument in this context is that
parameters like the electric charge e or mass m0 occurring in the Dirac equa-
tion are to be regarded rather as bookkeeping quantities that do not possess
any physical significance since they do not account for certain experimental
effects. Therefore, those quantities themselves contain divergences that have
to be compensated for by the above mentioned infinities. In other words,
if, instead of the bare quantities e and m0, the physical ones are used any
divergences are removed from the scattering formalism.

As a prominent example, we consider the O
(
e4
)
-corrections to the

electron-positron scattering (compare to Subsection 3.3.6) whose Feynman
diagrams – 18 in total – contain all the topological and kinematically possi-
ble constellations with four external fermion lines and four vortices, as shown
in Figure 3.33.

• Diagrams a and b represent the two-photon exchange of the direct and ex-
change scatterings similar to the O

(
e4
)
-corrections of the electron-proton

scattering in Figures 3.12 and 3.13. Diagrams c and d are annihilation
diagrams. Writing down the amplitudes belonging to a to d and counting
the powers of the integration momentum, one realizes that they can be
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a b c d e[×2]

f[×2] g[×4] h[×4] i j

Fig. 3.33. All Feynman diagrams of the electron-positron scattering amplitude to
order O

(
e4
)
. a to d are tree diagrams and e to j are loop diagrams.

effortlessly calculated with our existing methods. Therefore, they are not
considered any more.

• In diagram e the electron (positron) emits a photon before the exchange
scattering and absorbs it afterward. Diagram f corresponds to a process
where the pair created by the annihilation photon scatters once again be-
fore reaching its final state. Both diagrams belong to the class of vortex
corrections and yield divergent contributions.

• Contrary to e and f, in diagrams g and h the electron (positron) emits
a photon and absorbs it immediately afterward without interacting other-
wise. These divergent diagrams are called self-energy corrections as they
describe the interaction of the electron (positron) with its own radiation
field.

• In diagrams i and j a virtual electron-positron pair is created by the an-
nihilation photon and destroyed immediately afterward. In view of the
fluctuating dipole moment of the virtual pair that may by polarized by the
electric field, those diagrams are termed vacuum polarization. They also
lead to divergent contributions.

Obviously, in Feynman diagrams only loops cause divergences in the cor-
responding scattering amplitudes. They are called radiation corrections. In
Figure 3.35 these components are depicted, once again, together with another
two that occur, for example, in the O

(
e4
)
-electron-positron annihilation di-

agrams (see Figure 3.34, compare to Subsection 3.3.8). All of them imply
four-dimensional momentum integrals diverging differently at k → ∞ (ultra-
violet divergence). While the volume elements behave as k4, the integrands of
the three processes from Figure 3.35 are proportional to k−2, k−3, and k−4

respectively. We therefore expect the strongest divergence for the vacuum
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a b[×2]

Fig. 3.34. Two Feynman diagrams of the scattering amplitude for electron-positron
annihilation to order O

(
e4
)
: internal self-energy (a) and external vacuum polar-

ization (b).

polarization, namely a quadratic one, a linear one for the self-energy, and a
logarithmic one for the vortex correction.

In the following three subsections we discuss the radiation corrections in
more detail and show how they can be absorbed into the bare parameters e
and m0 in a physically sensible way by means of the renormalization program.
The fourth subsection deals with some physical consequences connected with
the radiation corrections.

internal / external vacuum polarization:

internal / external self-energy:

vortex correction:

Fig. 3.35. Vacuum polarization, self-energy, and vortex correction as elements
causing divergences in O

(
e4
)
-Feynman diagrams.

Note. In Figure 3.33, we have defalcated some O
(
e4
)
-Feynman diagrams,

namely those consisting of unconnected parts. One example of this kind is
shown in Figure 3.36. It represents the electron-positron scattering to low-
est order whereas, independently from it, a virtual electron-positron pair
is created out of the vacuum and immediately destroyed thereafter. In the
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Fig. 3.36. Example of an unconnected O
(
e4
)
-Feynman diagram of electron-

positron scattering.

scattering amplitudes the impact of those vacuum fluctuations appears as
a multiplicative factor in the part of the connected diagrams with external
lines. However, since we are interested in scattering amplitudes relative to
the omnipresent vacuum fluctuations, we can simply divide this factor out or
disregard all unconnected diagrams right from the beginning.

3.4.1 Vacuum Polarization

We start with the internal vacuum polarization and consider the modification
of the free photon propagator22

D
(0)μν
F (q) =

−4πgμν

q2 + iε

by a O
(
e2
)
-fermion loop. According to Figure 3.37, this leads to the replace-

ment

D
(0)μν
F (q) −→ Dμν

F (q) = D
(0)μν
F (q) + D

(0)μα
F (q)Pαβ(q)D(0)βν

F (q) , (3.134)

with the polarization tensor

Pμν(q) = −ie2

∫
d4k

(2π)4
tr
[
γμ

/k + m0

k2 − m2
0 + iε

γν
/k − /q + m0

(k − q)2 − m2
0 + iε

]
. (3.135)

-
iD

(0)μν
F (q) iD

(0)μα
F (q)

−ieγα

iS
(0)
F (k)

iS
(0)
F (k − q)

−ieγβ

iD
(0)βν
F (q)

Fig. 3.37. Modification of the free photon propagator by the O
(
e2
)
-vacuum po-

larization. The relative sign results from the fermion loop (fourth rule).

22 The ∼-symbol above the propagators in momentum space is suppressed here and
in the following.
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The trace results from the cyclic multiplication of the γ-matrices by the
propagators along the loop. Before we calculate this quadratically ultraviolet-
divergent expression, it is instructive to take a closer look at its general
properties. First, Pμν is a Lorentz tensor and can therefore be written as

Pμν(q) = Dgμν + gμνq2Π(1)(q2) + qμqνΠ(2)(q2) , (3.136)

with the constant D and the scalar functions Π(1,2)(q2). Furthermore, gauge
invariance considerations yield the constraints Pμνqν = qμPμν = 0 so that
(3.136) is reduced to

Pμν(q) =
(
q2gμν − qμqν

)
Π(q2) , D = 0 , (3.137)

where Π(q2) denotes the polarization function. That the constant D must
vanish can also be shown through another reasoning: going beyond the
O
(
e2
)
-fermion loop and taking higher corrections into account, we obtain

the expansion

DF = D
(0)
F + D

(0)
F PD

(0)
F + D

(0)
F PD

(0)
F PD

(0)
F + . . .

= D
(0)
F + D

(0)
F P

(
D

(0)
F + D

(0)
F PD

(0)
F + . . .

)

= D
(0)
F + D

(0)
F PDF

=
1

[
D

(0)
F

]−1

− P
(Dyson equation) . (3.138)

This corresponds graphically to a series of more and more consecutively linked
fermion loops within the photon line (however, more complicated constella-
tions such as, for example, interleaved fermion loops remain ignored). Thus,
using our general ansatz (3.136), the modified photon propagator in the limit
q2 → 0 and up to order O

(
e2
)

can be written as

Dμν
F (q) ≈ −4πgμν

q2 − D + iε
.

This is exactly the free propagator for a boson with mass
√

D, so that, again,
D = 0 follows.

However, a direct calculation seems to contradict this result since, as al-
ready mentioned, the integral (3.135) is divergent in k and yields an infinite
value particularly for q2 → 0. There exist different approaches to resolve
this problem. They all enforce the convergence of the integral through regu-
larization, for example by cutting off the k-integration at a particular large
momentum or by introducing a damping factor approaching continuously
zero for large k. In the following we use the Pauli-Villars procedure, where a
function with the same asymptotic behavior is subtracted from the integrand
in (3.135) so that the resulting integral becomes convergent. One advantage
of this method is that the gauge invariance condition (3.137) can be up-
held. In practice, this means that, instead of (3.135), we have to consider the
regularized polarization tensor
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P̄μν(p) = −ie2

∫
d4k

(2π)4

N∑

i=0

Ci

×tr
[
γμ

/k + Mi

k2 − M2
i + iε

γν
/k − /q + Mi

(k − q)2 − M2
i + iε

]
, (3.139)

with C0 = 1, M0 = m0 (original integrand). Ci>0, Mi>0 denote appropriately
chosen cut-off parameters that ensure the convergence of the integral. Of
course, at the end of the calculations, we have to take the limit Mi>0 →
∞. Since this cutting off procedure (as any other) is arbitrary, the physical
observables must not depend on the parameters Ci>0 and Mi>0. As we see
shortly, this can indeed be achieved.

The concrete calculation of (3.139) requires some considerable effort that
we do not present here. It shows that the not gauge invariant terms can be
removed using a particular choice of the cut-off parameters. At the end the
gauge invariant expression [compare to (3.137)]

P̄μν(q) =
(
gμνq2 − qμqν

)
Π̄(q2)

remains with the now only logarithmically divergent regularized polarization
function

Π̄(q2) =
e2

2π2

1∫

0

dββ(1 − β)

∞∫

0

dρ

ρ

N∑

i=0

Ci exp
{
iρ
[
−M2

i + β(1 − β)q2
]}

︸ ︷︷ ︸
I

.

If we now assume23 q2 < 4m2
0 � M2

i>0, the I-integral can be rewritten as

I = − lim
η→0

N∑

i=0

Ci ln η −
N∑

i=0

Ci ln
[
M2

i − β(1 − β)q2
]
+

N∑

i=0

Ci

∞∫

0

dt ln te−t

by deforming the integration contour onto the negative imaginary axis. Ob-
viously, the first and the third infinite terms can be eliminated with the

additional parameter condition
N∑

i=0

Ci = 0 so that

I = −
{

ln
[
m2

0 − β(1 − β)q2
]
+

N∑

i=1

Ci ln
[
M2

i − β(1 − β)q2
]
}

≈ −
{

ln
[
m2

0 − β(1 − β)q2
]
+

N∑

i=1

Ci ln M2
i

}

23 This ensures a negative imaginary exponent within the β-integration interval
[0 : 1]. Beyond this, i.e. above the threshold energy q2 = (2m0)

2, the production
of real electron-positron pairs becomes possible.
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= −

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ln
[
1 − β(1 − β)

q2

m2
0

]
+

N∑

i=1

Ci ln
M2

i

m2
0

+
N∑

i=0

Cim
2
0

︸ ︷︷ ︸
0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

= −
{

ln
[
1 − β(1 − β)

q2

m2
0

]
− ln

Λ2

m2
0

}
,

where the abbreviation
N∑

i=0

Ci ln
M2

i

m2
0

= − ln
Λ2

m2
0

(Λ =cut-off momentum)

has been introduced in the last step. Thus, the regularized polarization tensor
finally becomes

P̄μν(q) =
(
gμνq2 − qμqν

)
Π̄(q2)

Π̄(q2) =
1
4π

[
e2

3π
ln

Λ2

m2
0

+ Π(R)(q2)
]

Π(R)(q2) = −2e2

π

1∫

0

dββ(1 − β) ln
[
1 − β(1 − β)

q2

m2
0

]

q2/m2
0�1

=
e2

π

q2

m2
0

(
1
15

+
1

140
q2

m2
0

+ . . .

)
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.140)

As one can see, the effect of the regularization is that now the polarization
tensor

• fulfills the gauge invariance condition (3.137),

• shows the correct asymptotic behavior for q2 → 0,

• possesses no quadratic divergence any more but only a portion that is
independent from q and only logarithmically divergent with the cut-off
momentum Λ,

• and possesses a well-defined, q-dependent, and finite term Π(R)(q2).

However, even this result seems unsatisfactory because of the presence of
a divergent Λ-dependence. This can be understood by turning back to the
modified photon propagator and considering its influence on the electron-
positron scattering. Taking into account (3.134) and (3.140) as well as Figure
3.38, the part of the direct scattering amplitude up to order O

(
e4
)

originating
from the vacuum polarization is

Mfi(dir) = ū(pf )(−ie)γμu(pi) [iDμν
F (q)] v̄(p̄i)(−ie)γνv(p̄f )

= −ie2ū(pf )γμu(pi)D
(0)
F (q)

[
gμν +

(
gμνq2 − qμqν

)
Π̄(q2)

−4π

q2

]



3.4 Higher Order Corrections 299

-

u(pi, si) v̄(p̄i, s̄i)

ū(pf , sf ) v(p̄f , s̄f )

−ieγμ −ieγν

iDμν
F (q)

Fig. 3.38. Feynman diagram of the direct electron-positron scattering up to order
O
(
e4
)

in momentum space resulting from the vacuum polarization. The momentum

transfer is q = pf − pi = −(p̄f − p̄i).

×v̄(p̄i)γνv(p̄f )

= −ie2ū(pf )γμu(pi)D
(0)
F (q)

[
1 − 4πΠ̄(q2)

]
v̄(p̄i)γμv(p̄f )

= −ie2ū(pf )γμu(pi)D
(0)
F (q)

[
1 − e2

3π
ln

Λ2

m2
0

− Π(R)(q2)
]

×v̄(p̄i)γμv(p̄f ) , (3.141)

with D
(0)
F (q) = −4π/q2. In the third step, the fact was used that for free(!)

positrons, we have
(
/̄pf + m0

)
v(p̄f ) = 0 , v̄(p̄i)

(
/̄pi + m0

)
= 0

so that the term proportional to qμqν vanishes:

v̄(p̄i)
(
/̄pi − /̄pf

)
v(p̄f ) = v̄(p̄i)/qv(p̄f ) = qν v̄(p̄i)γνv(p̄f ) = 0 .

Up to an error of order O
(
e6
)
, we can now prefix multiplicatively the log-

arithmically divergent part in (3.141) and finally obtain [compare to the
O
(
e2
)
-scattering amplitude Mfi(dir) in Theorem 3.11]

Mfi(dir) = −ie2ū(pf )γμu(pi)D
(0)
F (q)Z3

[
1 − Π(R)(q2) + O

(
e4
)]

×v̄(p̄i)γμv(p̄f )

= −ie2
Rū(pf )γμu(pi)D

(0)
F (q)

[
1 − Π(R)(q2) + O

(
e4
)]

×v̄(p̄i)γμv(p̄f ) ,

with the renormalized charge

eR =
√

Z3e , Z3 = 1 − e2

3π
ln

Λ2

m2
0

. (3.142)
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At this stage the renormalization argument comes into play. Experimentally,
the charge of a particle is determined by its interaction with another charged
particle. An inseparable part of this interaction is the vacuum polarization
which is not taken into account by using the bare charge e and therefore
causes the divergent factor Z3. Physically, only the renormalized charge eR

is relevant that encompasses the fermion-photon interaction. Its value e2
R ≈

1/137 is determined by scattering experiments with small q2, i.e. by slight
scatterings of two widely separated charges. With this charge renormalization
one finally ends up with a well-defined scattering amplitude correct up to
order O

(
e4
)

where the dependence on the cut-off momentum Λ is completely
absorbed in the electron charge.24 Here the detailed relationship between
bare and renormalized charge and, hence, the regularization procedure are
irrelevant. In order to calculate the influence of the vacuum polarization one
simply uses the renormalized charge eR as well as the renormalized photon
propagator

D
(R)μν
F (q) = D

(0)μν
F (q)

[
1 − Π(R)(q2)

]

and is only faced with finite quantities. Compared to the free photon propa-
gator D

(0)μν
F (q), the actual, physically observable correction is given by the

momentum-dependent term Π(R)(q2). Its contribution is finite, independent
of the cut-off momentum Λ, and vanishes for q2 → 0.

External vacuum polarization. Having discussed the correction of inter-
nal photon lines by the vacuum polarization, it remains to be clarified how
external photon lines are to be modified in the presence of a fermion loop.
As can easily be seen, the direct calculation leads to an undefined expression.
However, in this case it helps to consider that incoming and outgoing fermions
are not actually free but have been emitted sometime from a source and will
be absorbed sometime by an observer so that an external photon line with
a fermion loop can be viewed as an internal photon line with a fermion loop
whose one end is the distant vortex (reduction of the external to the internal
vacuum polarization). This corresponds to the modified photon propagator

q2 ≈ 0 =⇒ Dμν
F (q) = Z3D

(0)μν
F (q)

or the known renormalization eR =
√

Z3e at both end vortices. Thus, we
obtain the simple rule that in an external photon line the contribution of a

24 Note that Z3 only deviates substantially from one if Λ ~

<

m0e
3π/2e2 ≈ 10280m0,

which corresponds to a length of Δx <~ h̄/Λ ≈ 10−293cm. However, in practice,
this is completely irrelevant since the presence of other quantum fields delim-
its the range of validity of quantum electrodynamics to much smaller momenta
and much larger distances. Z3 <~ 1 means that for a remote observer the phys-
ical (renormalized) charge of a fermion seems to be weakened compared to its
bare charge due to the cloud of virtual particle-antiparticle pairs surrounding it
(screening).
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fermion loop can be omitted if the renormalized charge eR instead of e is
used at the photon line’s vortex.

Theorem 3.14: Vacuum polarization

The modification of an internal photon line caused by the vacuum polar-
ization adds a quadratically divergent part to the free photon propagator
D

(0)μν
F (q). Using the Pauli-Villars procedure, this part can be regularized

in such a way that, up to order O
(
e2
)
, the modified photon propagator

can be written as

Dμν
F (q) = Z3D

(0)μν
F (q)

[
1 − Π(R)(q2)

]
,

with the q-dependent, finite function

Π(R)(q2) = −2e2

π

1∫

0

dββ(1 − β) ln
[
1 − β(1 − β)

q2

m2
0

]

q2/m2
0�1

≈ e2

π

q2

m2
0

(
1
15

+
1

140
q2

m2
0

+ . . .

)

and the renormalization constant

Z3 = 1 − e2

3π
ln

Λ2

m2
0

.

As a result, the former quadratic divergence is weakened to a logarithmic
divergence in the cut-off momentum Λ which is solely contained in Z3. Due
to the renormalization idea, Dμν

F (q) can be replaced with the renormalized
photon propagator

D
(R)μν
F (q) = D

(0)μν
F (q)

[
1 − Π(R)(q2)

]

if, at the same time, the renormalized charge

eR =
√

Z3e

instead of the bare charge e is used at its end vortices. The contribution of
the vacuum polarization to an external photon line can be omitted if the
renormalized charge eR is used at its vortex, too.

Note that in Π(R)(q2) up to order O
(
e2
)

the bare charge can also be replaced
with the renormalized charge. Thus, the bare charge falls completely out of
the calculation of scattering amplitudes.

3.4.2 Self-Energy

Next we investigate the impact of the internal O
(
e2
)
-self-energy on the free

fermion propagator
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S
(0)
F (p) =

/p + m0

p2 − m2
0 + iε

.

According to Figure 3.39, the transition to the modified fermion propagator
proceeds along

+
iS

(0)
F (p) iS

(0
F (p)

−ieγμ

iS
(0)
F (p − k)

iD
(0)μν
F (k)

−ieγν

iS
(0)
F (p)

Fig. 3.39. Modification of the free fermion propagator by the O
(
e2
)
-self-energy.

S
(0)
F (p) −→ SF(p) = S

(0)
F (p) + S

(0)
F (p)Σ(p)S(0)

F (p) , (3.143)

with the linearly ultraviolet-divergent self-energy function

Σ(p) = −4πie2

∫
d4k

(2π)4
1

k2 + iε
γμ

/p − /k + m0

(p − k)2 − m2
0 + iε

γμ , (3.144)

which, contrary to the polarization tensor Pμν(p), is a 4×4-matrix in spinor
space. Using the Dyson equation (3.138), we can formally rewrite SF(p) as

SF(p) =
1

[
S

(0)
F (p)

]−1

− Σ(p)
=

1
/p − m0 − Σ(p) + iε

. (3.145)

This expression is correct up to order O
(
e2
)

(and contains additional terms
in higher orders corresponding to more and more consecutively linked self-
energy insertions).

In the following we assume the restriction that SF(p) is placed between
two free electron (and not positron) states, i.e. ū(p)SF(p)u(p), that reside
“near the mass shell”: (/p − m0)u(p) ≈ 0, ū(p)(/p − m0) ≈ 0. In this case a
reasonable ansatz for the energy function is

Σ(p) = δm + (Z2 − 1)(/p − m0) + Σ(R)(p)(/p − m0)2 . (3.146)

It corresponds to a Taylor-like expansion around the “point” /p = m0. The
quantities δm and Z2 − 1 are to be regarded as small constant C-numbers
of order O

(
e2
)

that, as we show later on, contain formally the divergence of
the integral (3.144), whereas the scalar O

(
e2
)
-“residue function” Σ(R)(p) is

finite. Thus, disregarding terms of higher orders, (3.145) turns into

SF(p) =
1

/p − m0 − δm − (Z2 − 1)(/p − m0) − (/p − m0)2Σ(R)(p) + iε

≈ 1
(/p − m0 − δm)[1 − (Z2 − 1)][1 − (/p − m0)Σ(R)(p)] + iε

≈ Z2

(/p − m0 − δm)[1 − (/p − m0)Σ(R)(p)] + iε
, (3.147)
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where [1 − (Z2 − 1)]−1 ≈ Z2 has been used in the last step. If we now make
use of the above restriction concerning quasi-free electron bispinors on the
mass shell, the momentum-dependent correction (/p − m0)Σ(R)(p) in (3.147)
can be ignored, and we obtain

SF(p) ≈ Z2

/p − m0 − δm + iε
=

Z2(/p + m0 + δm)
p2 − (m0 + δm)2 + iε

.

Apart from the multiplicative constant Z2, this corresponds, as expected, to
the free electron propagator, where, however, m0 is replaced by the mass
m0 + δm. Analogously to the charge renormalization in the vacuum polariza-
tion, the divergent self-energy δm can be removed by the argument that the
renormalized mass

mR = m0 + δm

is the actual, physically measured electron mass, whereas the bare mass m0

has no physical meaning since it does not include the interaction of the elec-
tron with its own radiation field. A formal procedure for the mass renormal-
ization is expressing the Dirac equation through the renormalized mass:

(/p − e/A − mR)ψ = −δmψ .

This implies within our scattering formalism that, on the one hand, m0 is to
be replaced by mR everywhere. On the other hand, the additional term or
counter term

−S
(0)
F (p)δmS

(0)
F (p)

arises in (3.143) that eliminates δm in Σ(p) and hence also in (3.147). There-
fore, the modified (mass-renormalized) electron propagator takes the form

SF(p) =
Z2

(/p − mR)[1 − (/p − mR)Σ(R)(p)] + iε
.

The remaining divergent factor Z2 can, once again, be absorbed in the bare
charge e by performing the charge renormalization

e → e′R = Z2e . (3.148)

Contrary to (3.142), here is no root present since each vortex is shared by
two electron lines. All in all, the impact of the electronic self-energy can be
determined in a well-defined way, too, by using the renormalized charge e′R
as well as the charge- and mass-renormalized electron propagator

S
(R)
F (p) =

1
(/p − mR)[1 − (/p − mR)Σ(R)(p)] + iε

,

where the actual, physically relevant correction to the free electron propaga-
tor resides solely in the momentum-dependent and finite function Σ(R)(p).
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External self-energy. Analogously to the vacuum polarization, the effect
of a self-energy insertion in an external electron line can be easily understood
considering that even a free electron was emitted sometime and will be ab-
sorbed sometime. Therefore, it can be regarded as an inner electron on the
mass shell within a larger process sequence (reduction of the external to the
internal self-energy). Consequently, the combination of an external electron
line with or without a self-energy insertion leads to the modified electron
propagator

/p ≈ mR =⇒ SF(p) = Z2S
(0)
F (mR, p) ,

which simply corresponds to a factor of
√

Z2 at both end vortices. Simi-
larly to the external vacuum polarization, we finally obtain the rule that the
self-energy contribution to an external electron line can be omitted if the
renormalized charge e′R instead of e is used at its vortex.

Determination of δm and Z2. We now show how the divergences of the
self-energy function Σ(p) can be shifted to the renormalization constants
δm and Z2. As already mentioned, one ultraviolet divergence of the integral
(3.144) lies at k → ∞ so that it needs to be regularized. However, due to the
first term in the integrand, the integral also contains an infrared divergence at
k → 0. This can be circumvented by introducing a photon mass μ, whereas,
at the end of our calculations, we have to consider the limit μ → 0. Let us
therefore start with the regularized self-energy function

Σ̄(p, μ) = −4πie2

∫
d4k

(2π)4

[
1

k2 − μ2 + iε
γμ

/p − /k + m0

(p − k)2 − m2
0 + iε

γμ + Reg
]

,

where the regularizing Pauli-Villars terms are subsumed within “Reg”. After
some intermediate calculations, this becomes

Σ̄(p, μ) =
e2

2π

1∫

0

dβ(2m0 − β/p)

×

⎡

⎣
∞∫

0

dρ

ρ
exp
{
iρ
[
β(1 − β)p2 − βμ2 − (1 − β)m2

0

]}
+ Reg

⎤

⎦ .

As one can see, the ρ-integral is logarithmically divergent at its lower limit.
For its regularization it is sufficient to subtract from the integrand one single
Pauli-Villars term of the form exp(−iρβΛ2)/ρ with the cut-off momentum Λ.
With the assumption25 p2 < (m0 + μ)2, the ρ-integration can, as in the case
of vacuum polarization, be carried out by deforming the integration contour
onto the negative imaginary axis. Finally, one obtains

25 For four-momenta above the threshold energy p2 = (m0 + μ)2 the virtual photon
can decay into a real fermion and a real photon (compare to footnote 23 on page
297).
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Σ̄(p, μ, Λ) =
e2

2π

1∫

0

dβ(2m0 − β/p) ln
βΛ2

(1 − β)m2
0 + βμ2 − β(1 − β)p2

.

According to our ansatz (3.146), the self-energy contribution δm follows from
calculating Σ̄(p, μ, Λ) on the mass shell. The final result is independent of μ
and reads

δm = Σ̄(p, μ, Λ)
∣
∣
/p=m0,p2=m2

0
=

3e2m0

4π
ln
(

Λ2

m2
0

+
1
2

)
.

However, for Z2 we find the μ-dependent expression

Z2 = 1 +
∂Σ̄(p, μ, Λ)

∂/p

∣
∣
∣
∣
/p=m0,p2=m2

0

= 1 − e2

2π

(
1
2

ln
Λ2

m2
0

+ ln
μ2

m2
0

+
9
4

)
.

The determination of the residue function Σ(R)(p) is much more complicated
and is not pursued here.

It is noticeable that δm as well as Z2 are logarithmically divergent in
Λ whereas an inspection of (3.144) originally led to the more pessimistic
prediction of a linear divergence. Furthermore, the quantity Z2 possesses two
awkward properties: firstly, it is infrared-divergent in the photon mass and
secondly, it is not gauge invariant. However, as we see shortly, this is irrelevant
since Z2 is exactly canceled out by the renormalization constant stemming
from the vortex correction.

Theorem 3.15: Self-energy

The modification of an internal fermion line caused by the self-energy adds
a logarithmically ultraviolet- and infrared-divergent part to the free fermion
propagator S

(0)
F (p). Using the Pauli-Villars procedure, this can be regular-

ized in such a way that, up to order O
(
e2
)
, the modified fermion propagator

can be written as

SF(p) =
Z2

(/p − mR)[1 − (/p − mR)Σ(R)(p)] + iε
,

with the p-dependent, finite function Σ(R)(p) and the renormalization con-
stant

Z2 = 1 − e2

2π

(
1
2

ln
Λ2

m2
0

+ ln
μ2

m2
0

+
9
4

)
.

Here it is assumed that

• SF(p) is placed between quasi-free electron bispinors and

• the mass renormalization has already been carried out everywhere, i.e.
the bare mass m0 has been replaced by the renormalized (physical) mass
mR.

�
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After this Z2 arises as the only constant from the regularization containing
the above mentioned divergences. Due to the renormalization idea, SF(p)
can be replaced with the renormalized fermion propagator

S
(R)
F (p) =

1
(/p − mR)[1 − (/p − mR)Σ(R)(p)] + iε

,

if, at the same time, the renormalized charge

e′R = Z2e

instead of the bare charge e is used at its end vortices. The contribution of
the self-energy to an external fermion line can be omitted if the renormal-
ized charge e′R is used at its vortex, too.

3.4.3 Vortex Correction

The last radiation correction is the O
(
e2
)
-vortex correction. Here a vortex

is modified by an internal photon line according to

γμ −→ Γμ(p′, p) = γμ + Λμ(p′, p) (3.149)

(see Figure 3.40) with the logarithmically ultraviolet-divergent vortex func-
tion26

Λμ(p′, p) = −4πie2

∫
d4k

(2π)4
1

k2 − μ2 + iε

×
[
γν

/p′ − /k + mR

(p′ − k)2 − m2
R + iε

γμ
/p − /k + mR

(p − k)2 − m2
R + iε

γν

]
. (3.150)

+−ieγμ −ieγμ

iS
(0)
F (p′ − k)

iS
(0)
F (p − k)

−ieγν

−ieγν

iD
(0)
F (k)

Fig. 3.40. Modification of a vortex by the O
(
e2
)
-vortex correction.

Similarly to the self-energy function, it also possesses an infrared divergence
due to the photon propagator term, for which reason the photon mass μ
was inserted right from the beginning. As before, our goal is to shift the
present divergences into a multiplicative constant that, in turn, leads to a

26 Remember: mR results from the mass renormalization that has to be performed
everywhere.
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renormalization of the electric charge. For this purpose we split Λμ(p′, p) into
a part Λμ(p, p) representing the “forward scattering” (vanishing momentum
transfer: q = p′ − p = 0) and into a “residue” Λ

(R)
μ (p′, p):

Λμ(p′, p) = Λμ(p, p) + Λ(R)
μ (p′, p) .

Note that the ultraviolet divergence of the integral (3.150) is solely contained
by Λμ(p, p), whereas Λ

(R)
μ (p′, p) is well-defined and finite in this respect. This

can be seen by expanding the second propagator in (3.150) using the Dyson
equation (3.138):

/p′ − /k + mR

(p′ − k)2 − m2
R + iε

=
1

/p′ − /k − mR + iε

=
1

/p − /k − mR + iε − (/p − /p′)

=
1

/p − /k − mR + iε

+
1

/p − /k − mR + iε
(/p − /p′)

1
/p − /k − mR + iε

+ . . . .

For large k the p′-independent term behaves like 1/|k| which causes the loga-
rithmic divergence, whereas the p′-dependent terms possess higher k-powers
in the denominator thus leaving the integral convergent.

Surprisingly, we can leave out an explicit regularization when calculating
the divergent part Λμ(p, p) by using the Ward identity

Λμ(p, p) = −∂Σ(p)
∂pμ

, (3.151)

where Σ(p) is the known self-energy function from (3.144). This identity
follows from the relation27

∂

∂pμ
S

(0)
F (p − k) = −S

(0)
F (p − k)γμS

(0)
F (p − k)

that, in turn, results from the differentiation of S
(0)
F (p− k)S(0)

F

−1
(p− k) = 1

using the product rule:
[

∂

∂pμ
S

(0)
F (p − k)

]
S

(0)
F

−1
(p − k) + S

(0)
F (p − k)

∂

∂pμ
(/p − /k − mR) = 0 .

Due to our ansatz (3.146), the Ward identity yields the simple relationship

Λμ(p, p) = −(Z2 − 1)γμ + O (/p − mR) .

If we restrict ourselves once again to the case where the modified vortex
Γμ(p′, p) is placed between two quasi-free electron bispinors near the mass
27 It means that differentiating the fermion propagator with respect to the mo-

mentum corresponds graphically to an insertion of a photon with momentum
transfer zero into the fermion line.
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shell, i.e. ū(p′)Γμ(p′, p)u(p), (/p−mR)u(p) ≈ 0, ū(p′)(/p′ −m0) ≈ 0, then, due
to the last relation, we can rewrite (3.149) in the form

Γμ(p′, p) = [1 − (Z2 − 1)] γμ + Λ(R)
μ (p′, p)

≈ [1 − (Z2 − 1)]
[
γμ + Λ(R)

μ (p′, p)
]

≈ Z−1
2

[
γμ + Λ(R)

μ (p′, p)
]

,

which is correct up to an error of order O
(
e4
)
. At this point, our goal is

reached: the ultraviolet divergence of the vortex correction, i.e. its dependence
on the cut-off momentum, is contained solely in the multiplicative factor Z−1

2

and can, as for the vacuum polarization and the self-energy, be removed from
the scattering formalism by performing the charge renormalization

e → e′′R = Z−1
2 e (3.152)

if, at the same time, the renormalized vortex

Γ (R)
μ (p′, p) = γμ + Λ(R)

μ (p′, p)

instead of γμ is used. As before, the actual, physically observable correction
is given exclusively by the cut-off momentum-independent residue function
Λ

(R)
μ (p′, p). In the limit q2/m2

R → 0 it becomes, after some lengthy calcula-
tions (for free electron bispinors!),28

Λ(R)
μ (p′, p) ≈ γμ

e2

3π

q2

m2
R

(
ln

mR

μ
− 3

8

)
+

e2

2π

i
2mR

σμνqν ,

with q = p′ − p and σμν = i[γμ, γν ]/2.
Let us now consider the three fundamental radiation corrections together:

vacuum polarization, self-energy, and vortex correction. In calculations of
scattering amplitudes this leads, in total, to the charge renormalization

e →
√

Z3Z2Z
−1
2 e =

√
Z3e

at each vortex correct up to order O
(
e2
)

where the renormalizations stem-
ming from the self-energy and the vacuum polarization cancel out each other.
This result is satisfactory in many respects. Firstly, contrary to (3.148) and
(3.152), the resulting physical charge depends neither on the artificially intro-
duced photon mass nor on the arbitrarily chosen gauge. Secondly, the renor-
malization of the electric charge is exclusively a consequence of the modified
photon propagator caused by the creation of virtual pairs so that two fermions

28 Note that Γ
(R)
μ (p′, p) still possesses an infrared divergence at vanishing photon

mass. However, this so-called infrared catastrophe turns out to be not existent
if one takes into account that in each calculation of elastic scattering processes
one always has to incorporate a “background noise” of inelastic scatterings (e.g.
braking radiation, German: Bremsstrahlung) that cannot be switched off in real
experiments. Those external radiation corrections exactly compensate for the
photon mass dependence of the internal vortex correction (see Exercise 41).
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with the same bare charge (e−, μ−, τ−, . . .) also possess the same physical
charge. Without the above mentioned cancellation or, likewise, without the
Ward identity (3.151) this would not be the case due to the fermion mass
dependence of each renormalization constant.

Theorem 3.16: Vortex correction

The vortex correction adds a logarithmically ultraviolet- and infrared-
divergent part to each vortex factor γμ. Using the Ward Identity, the mod-
ified vortex can be written up to order O

(
e2
)

as

Γμ(p′, p) = Z−1
2

[
γμ + Λ(R)

μ (p′, p)
]

,

with the momentum-dependent, finite function (q = p′ − p)

Λ(R)
μ (p′, p)

q2/m2
R→0
≈ γμ

e2

3π

q2

m2
R

(
ln

mR

μ
− 3

8

)
+

e2

2π

i
2mR

σμνqν

and the renormalization constant Z2 (see Theorem 3.15). Here it is assumed
that Γμ(p′, p) is placed between two quasi-free electron bispinors. Due to
the renormalization idea, Γμ(p′, p) can be replaced with the renormalized
vortex

Γ (R)
μ (p′, p) = γμ + Λ(R)

μ (p′, p)

if, at the same time, the renormalized charge

e′′R = Z−1
2 e

instead of the bare charge e is used. In total, vacuum polarization, self-
energy, and vortex correction lead to the charge renormalization

e →
√

Z3e ,

which is caused solely by the vacuum polarization. This result is a conse-
quence of the Ward identity which is valid in all orders of the scattering
theory.

It is pointed out here, too, that in Λ
(R)
μ the bare charge can also be replaced

by the renormalized charge up to order O
(
e2
)
.

After all three O
(
e2
)
-radiation corrections have been discussed, one may

ask what new problems will arise if one goes beyond them. With the renormal-
ization methods presented so far, we already have all the instruments that are
necessary to obtain unique, finite, and cut-off parameter-independent physi-
cal results in higher orders of the scattering theory. There, however, we should
prepare ourselves for much more calculational effort due simply to the much
larger diversity of combinations in the construction of Feynman diagrams.
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3.4.4 Physical Consequences

At the end of this section we discuss two physical effects caused by the
O
(
e2
)
-radiation corrections that are among the most important touchstones

of quantum electrodynamics. They are the electron anomaly, i.e. the devia-
tion of Landé’s g-factor from 2, and the Lamb shift in the energy spectra of
atomic systems.

Gyromagnetic ratio of the electron. In Subsection 2.4.1 we saw that, in
the presence of an external electromagnetic field, the pure Dirac theory leads
to an interaction term −MB in the Hamilton operator, where

M = gμBS (3.153)

denotes the magnetic moment of the electron with

g = 2 (Landé factor) , μB =
eh̄

2m0c
(Bohr magneton) . (3.154)

Now we investigate the impact of radiation corrections on the magnetic mo-
ment of the electron. We consider the scattering of an electron against an
external electromagnetic potential Aμ

ext to lowest order O (e), include the
O
(
e2
)
-radiation corrections and ask for the corresponding interaction energy

W =
∫

d3xjμAμ
ext . (3.155)

The Feynman diagrams contributing to this process are depicted in Figure
3.41. The self-energy correction is omitted there since, for free particles, it
merely leads to the mass renormalization m0 → mR and, together with the
other corrections, to the charge renormalization e → eR. Diagrams a and b
yield the amplitude (see Theorem 3.14)

M
(a,b)
fi = eRū(pf , sf )γμu(pi, si)D

(R)μν
F (q)jν,ext , q = pf − pi

= eRū(pf , sf )γμu(pi, si)D
(0)μν
F (q)

[
1 − Π(R)(q2)

]
jν,ext ,

and diagram c leads to (see Theorem 3.16)

- +

a b c

Fig. 3.41. Electron scattering against an external potential to lowest order O (e)

(a), including the O
(
e2
)
-radiation corrections of vacuum polarization (b), and

vortex correction (c).
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M
(c)
fi = eRū(pf , sf )Λ(R)

μ (pf , pi)u(pi, si)D
(0)μν
F (q)jν,ext .

Thus, in total, we obtain the amplitude

M
(a,b,c)
fi = jμD

(0)μν
F (q)jν,ext ,

where

jμ = eRū(pf , sf )
{

γμ

[
1 − Π(R)(q2)

]
+ Λ(R)

μ (pf , pi)
}

u(pi, si)

is the O
(
e2
)
-radiation corrected electronic transition current in momentum

space, which has to be inserted into (3.155). After this the interaction energy
of the electron with an external electromagnetic field becomes

W = eR

∫
d3xΨ̄f

{
γμ

[
1 − Π(R)(q2)

]
+ Λ(R)

μ (pf , pi)
}

ΨiA
μ
ext .

Using the explicit expressions of Π(R) and Λ
(R)
μ in the limit q2 → 0 (see

Theorems 3.14 and 3.16), this turns into

W ≈ eR

∫
d3xΨ̄f

{
γμ

[
1 +

e2
Rq2

3πm2
R

(
ln

mR

μ
− 3

8
− 1

5

)]

+
ie2

R

4πmR
σμνqν

}
ΨiA

μ
ext (3.156)

≈ eR

∫
d3x

i
2mR

[
Ψ̄f∂μΨi − (∂μΨ̄f )Ψi

]

×
[
1 +

e2
Rq2

3πm2
R

(
ln

mR

μ
− 3

8
− 1

5

)]
Aμ

ext

+eR

∫
d3x

i
2mR

(
1 +

e2
R

2π

)
Ψ̄fσμνΨiq

νAμ
ext ,

where in the last step the Gordon decomposition [see (2.86)]

Ψ̄fγμΨi =
i

2mR

[
Ψ̄f∂μΨi − (∂μΨ̄f )Ψi

]
+

i
2mR

Ψ̄fσμνΨiq
ν

has been used and the O
(
q3
)
-terms have been omitted. Transforming the

q-factors into derivatives in coordinate space, we finally obtain

W ≈ eR

∫
d3x

{
i

2mR

[
Ψ̄f∂μΨi − (∂μΨ̄f )Ψi

]

×
[
1 − e2

R

3πm2
R

(
ln

mR

μ
− 3

8
− 1

5

)
∂α∂α

]
Aμ

ext

−
(

1 +
e2
R

2π

)
1

2mR
Ψ̄fσμνΨi∂

νAμ
ext

}
.

The first term contains a purely convective current that we do not consider
any further. Using [see (2.54) in Exercise 15]
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σμν∂νAμ =
1
2
(σμν − σνμ)∂νAμ =

1
2
(σμν(∂νAμ − ∂μAν)

= −1
2
σμνFμν = −(iαE − σ̂B) ,

the second term can be rewritten as

δW ≈
(

1 +
e2
R

2π

)
1

2mR

∫
d3xΨ̄f (iαΨiE − σ̂ΨiB) .

Obviously, in the case of a purely magnetic field and of slowly moving elec-
trons where the two upper components of Ψ dominate the lower ones, this
expression can be interpreted as magnetic dipole energy since we have

δW ≈ −2
(

1 +
e2
R

2π

)
1

2mR

∫
d3xΨ̄SΨB

≈ −2
(

1 +
e2
R

2π

)
1

2mR

∫
d3xΨ †SΨB

= −〈M〉B ,

with the magnetic moment

〈M〉 = 2
(

1 +
e2
R

2πh̄c

)
eRh̄

2mRc
〈S〉 = gμB 〈S〉 , g = 2

(
1 +

e2
R

2πh̄c

)
.

Here the physical constants h̄ and c have exceptionally been written down.
Thus, compared to (3.153) and (3.154), the electron’s magnetic moment is
slightly larger when taking into account the O

(
e2
)
-radiation corrections.

With αe = e2
R/h̄c = 1/137.03602, it contains the corrected Landé factor

g = 2
(
1 +

αe

2π

)
= 2(1 + 0.00116141) .

The deviation of this factor from the original value 2 is called electron
anomaly. It was derived by Julian Schwinger in 1948 for the first time and
subsequently verified experimentally by others. A modern experimental value
is

gexp = 2[1 + 0.00115965219(±1)] .

The remaining difference between g and gexp is explained by the omission
of higher order corrections. Taking into account the corrections up to order
O
(
e8
)

yields a theoretical value coinciding with gexp up to a relative deviation
of about 10−11.

Qualitatively, the increase in the magnetic moment can be understood
as follows: the electron continually emits and absorbs virtual photons that
carry away parts of the electron’s energy or mass. Therefore, the ratio of
the electron’s charge and effective mass is raised, and this has an impact on
measurements of the magnetic moment in the presence of a magnetic field.
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Lamb shift. Comparing the experimentally measured, highly resolved bind-
ing spectrum of hydrogen atoms with theoretical predictions of the pure Dirac
theory in Subsection 2.5.4, one encounters differences that, once again, result
mainly from radiation corrections. In the presentation of this relationship,
we will leave out some concrete calculations and, instead, concentrate on the
essentials.

As before, we restrict ourselves to the O
(
e2
)
-radiation corrections and

study their impact on the binding energies of the orbital electron in hydrogen-
like atoms. The relevant contributions can again be depicted with the Feyn-
man diagrams of Figure 3.41. However, now the external and internal fermion
lines represent respectively bound electron solutions and the full electron
propagator of the Dirac equation in the Coulomb field, where the latter en-
compasses all interactions between electron and nucleus to all orders of e. Un-
fortunately, the accompanying calculations are very complicated and lengthy.
However, taking into account that atomic binding energies typically have a
magnitude of Z2e4

RmR [see (2.115)] and are nonrelativistic in the case of light
atoms, the problem can be solved approximately by splitting it up into two
partial problems for high- and low-frequency radiation fields.

High-frequency radiation. For radiation fields with frequencies

ω ≥ ωmin � Z2e4
RmR ,

the effect of the Coulomb field on the radiation corrections can be ignored.
Therefore, it is justified to consider the term

δH = eRγ0

[
γμ

e2
Rq2

3πm2
R

(
ln

mR

μ
− 3

8
− 1

5

)
+

ie2
R

4πmR
σμνqν

]
Aμ

ext

in (3.156) to be a perturbation of the Dirac-Hamilton operator with the
Coulomb potential

[Aμ
ext(x)] =

(
A0

ext(x)
0

)
, A0

ext(x) = −Ze

|x|
and to determine the resulting energy shift of the unperturbed Coulomb
solutions ψν to first order perturbation theory:

δE>
ν =

∫
d3xψ†

νδHψν .

Here one has to bear in mind that the photon mass μ was originally in-
troduced in δH to remove the infrared divergence within the momentum
integration (3.150) of the vortex function. However, due to ω ≥ ωmin, this
integration is now cut off at the bottom so that μ is not needed any more.
As corresponding calculations show, this results in the replacement

ln
mR

μ
−→ ln

mR

2ωmin
+

5
6

in δH. Converting the momentum factors into derivatives in coordinate space,
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γμq2Aμ
ext = γ0

(
− ∂2

∂t2
+ ∇2

)
A0

ext = γ0∇2A0
ext

γ0σμνqνAμ
ext = γ0σ0νqνA0

ext = iγ0σ0ν∂νA0
ext = iγ0σ0k∂kA0

ext

= −iγk∂kA0
ext = −γ∇A0

ext ,

we finally obtain

δE>
ν = eR

∫
ψ†

ν

[
e2
R

3πm2
R

(
ln

mR

2ωmin
+

5
6
− 3

8
− 1

5

)
(∇2A0

ext)

− ie2
R

4πmR
γ(∇A0

ext)
]

ψν

=
e3
R

3πm2
R

(
ln

mR

2ωmin
+

5
6
− 3

8
− 1

5

)
〈
ν| (∇2A0

ext) |ν
〉

− ie3
R

4πmR

〈
ν|γ(∇A0

ext) |ν
〉

.

The expectation values can be calculated using the nonrelativistic approxi-
mation. This yields

〈
ν| (∇2A0

ext) |ν
〉

=
4Z4e7

Rm3
R

n3
δl0

〈
ν|γ(∇A0

ext) |ν
〉

=
2iZ4e7

Rm2
R

n3

[
δl0 ±

2(1 − δl0)
(2J + 1)(2l + 1)

]
,

with the principal quantum number n, the orbital quantum number l, and
the total orbital quantum number J = l ± 1/2 of the Schrödinger-Coulomb
solutions.

Low-frequency radiation. If, on the other hand, we assume that the ra-
diation frequency is

ω ≤ ωmax � mR ,

the problem is completely nonrelativistic. In this case we can simply regard
the radiation corrections as emission and reabsorption of a virtual photon and
treat them perturbation theoretically within the framework of Schrödinger’s
theory. The corresponding perturbation operator is now

δH =
ieR

mR
A∇ ,

where A denotes the photon potential in the radiation gauge for which we
set, as in Subsection 3.3.7,

Ak(x) =

√
2π

ωV
ε(k, λ)

(
e−ik·x + eik·x) ,

{
kε(k, λ) = 0
ε(k, λ)ε(k, λ) = 1 .

With this the energy shift of the electron caused by the emission and reab-
sorption of a photon to second order perturbation theory becomes
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δE<
ν =

∑

ν′,λ

∫

ω<ωmax

V d3k

(2π)3
2π

ωV

e2
R

m2
R

∣
∣〈ν′| eikxε(k, λ)i∇ |ν

〉∣∣2

Eν − Eν′ − ω
.

The sum is to be carried out over all electron states and transversal directions
of the photon’s polarization. Using the dipole approximation eikx ≈ 1 and
taking into account Eν′ − Eν � ωmax, this becomes

δE<
ν ≈ 2e2

R

3π

ωmax∫

0

dωω
∑

ν′

|〈ν′|v |ν 〉|2

Eν − Eν′ − ω
, v = − i∇

mR

≈ 2e2
R

3π

[

− ωmax

〈
ν|v2 |ν

〉

+
∑

ν′

∣
∣〈ν′|v2 |ν

〉∣∣2 (Eν′ − Eν) ln
ωmax

|Eν′ − Eν |

]

.

The first term describes the contribution of the low-frequent photons to the
mass renormalization and must be subtracted since mR is already the physical
electron mass. After a series of further manipulations, there finally follows

δE<
ν ≈ 2e2

R

3π

∑

ν′

∣
∣〈ν′|v2 |ν

〉∣∣2 (Eν′ − Eν) ln
ωmax

|Eν′ − Eν |

=
e3
R

3πm2
R

〈
ν| (∇2A0

ext) |ν
〉
[
ln

2ωmax

mR
− 2 ln(Ze2

R)
]

+
2e2

R

3π

∑

ν′

|〈ν′|v |ν 〉|2 (Eν′ − Eν) ln
Z2e4

RmR/2
|Eν′ − Eν |

.

Before combining the energy shifts of the high- and low-frequency do-
mains, we note that we cover the whole frequency range with the equal-
ization ωmin = ωmax as long as ωmin can be chosen in such a way that
Z2e4

RmR � ωmin � mR. However, for light atoms, this is always possible.
Following this assumption, the total energy shift is

δEν = δE>
ν + δE<

ν

=
4Z4e10

R mR

3πn3

{
Lnl +

[
19
30

− 2 ln(Ze2
R)
]

δl0 ±
3(1 − δl0)

4(2J + 1)(2l + 1)

}
,

with

Lnl =
n3

2Z4e8
RmR

∑

ν′

|〈ν′|v |ν 〉|2 (Eν′ − Eν) ln
Z2e4

RmR/2
|Eν′ − Eν |

.

The quantity Lnl cannot be calculated further analytically and must be de-
termined numerically.

As one can see, compared to the unperturbed binding energies

Enl ≈ −Z2e4
RmR

2n3
,



316 3. Relativistic Scattering Theory

the Lamb shift is very small and suppressed by the factor Z2e6
R. Furthermore,

it removes the degeneracy of states with equal principal quantum number n
and total orbital quantum number J following from the Dirac theory (with
a Coulomb potential). The historically most important example of the Lamb
shift is the increase of the difference between the 2s1/2- and 2p1/2-levels
measured for the first time by Lamb and Rutherford in 1947 (see Figure 2.2
in Subsection 2.5.4). With

mR = 5.11004 · 105eV , L20 = −2.81177 , L21 = 0.03002 ,

the theoretical value of this increase is

δE = δE2s1/2 − δE2p1/2 = 4.298 · 10−6 eV + 5.328 · 10−8 eV
= 1039.3 MHz + 12.9 MHz = 1052.2 MHz .

A modern experimental value is

δEexp = 1057.845(9) MHz .

The resulting relative deviation between theory and experiment with respect
to the binding energies is 10−8. Taking into account further corrections, re-
pulsion effects, as well as the finite radius of the nucleus, the deviation can
be reduced further to < 10−11.

Summary

• Going beyond the lowest orders of scattering theory, interactions of par-
ticles with themselves become possible. They are called radiation cor-
rections.

• Three fundamental O
(
e2
)
-radiation corrections are vacuum polariza-

tion, self-energy, and vortex correction. Within the vacuum polar-
ization a (virtual/real) photon creates a virtual fermion-antifermion pair
which is destroyed thereafter. In the self-energy and the vortex correction
a (virtual/real) fermion emits a virtual photon and absorbs it afterward.

• All radiation corrections are accompanied by particular ultraviolet di-
vergences in the corresponding momentum integrals that can be re-
moved using the program of renormalization. Here a divergence is
isolated into a multiplicative constant through regularization of the
respective integral and subsequently absorbed in the bare quantities e
and m0. The resulting renormalized quantities eR and mR represent
the actual, experimentally relevant and finite parameters.

• Considering the three radiation corrections together, the charge renor-
malization correct up to order O

(
e2
)

results solely from the vacuum
polarization.

�
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• Physically, the radiation corrections appear, for example, in the deviation
of the electron’s gyromagnetic ratio from the value 2, as well as in the
Lamb shift of atomic binding energies.

• Besides the ultraviolet divergence, the vortex correction also contains an
infrared divergence. However, this turns out to be fictitious when all
the scattering processes are taken into account that contribute due to the
particular experimental setup which is used for counting the scattering
products.

Exercises

41. Removal of the infrared catastrophe. The process where an elec-
tron is scattered against another charged particle while emitting real photons
is called braking radiation (German: Bremsstrahlung). For the simpler case
of electron scattering against a Coulomb potential the corresponding Feyn-
man diagrams to leading order are shown in Figure 3.42. In the limit of soft
photons with 0 < ω ≤ ωmax and small electron velocities |vi| = vi � 1
(nonrelativistic limit), the corresponding totally polarized cross section is

(
dσ

dΩ

)

Brems

=

(
dσ

dΩ

)

Mott

8e2
Rv2

i sin2 θ
2

3π
ln

ωmax

μ
(3.157)

containing an infrared divergence at the cut-off frequency μ → 0.
What is the meaning of this result for the O

(
e2
)
-radiation corrected cross

section of the pure Coulomb scattering (without real photon emissions) to
leading order?

Solution. If, for the pure Coulomb case, we consider only the infrared di-
vergence causing vortex correction to leading order we have the amplitude
square (see Theorem 3.7)

Fig. 3.42. Lowest-order Feynman diagrams of the braking radiation within a
Coulomb field.
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|Mfi|2 =
∣
∣
∣
∣
4πZe2

R

q2
ū(pf , sf )

[
γ0 + Λ

(R)
0 (pf , pi)

]
u(pi, si)

∣
∣
∣
∣

2

, q = pf − pi

=
∣
∣
∣
∣
4πZe2

R

q2
ū(pf , sf )γ0u(pi, si)

∣
∣
∣
∣

2

×
∣
∣
∣
∣

[
1 − e2

Rq2

3πm2
R

(
ln

mR

μ
− 3

8

)
+

ie2
R

4πmR
γ0σ0kqk

]∣∣
∣
∣

2

as well as the totally polarized differential cross section

dσ

dΩ
=

(
dσ

dΩ

)

Mott

∣
∣
∣
∣

[
1 − e2

Rq2

3πm2
R

(
ln

mR

μ
− 3

8

)
+

ie2
R

4πmR
γ0σ0kqk

]∣∣
∣
∣

2

|pf |=|pi|
.

Here the dominant infrared divergence at μ → 0 is caused by

A = −
(

dσ

dΩ

)

Mott

2e2
Rq2

3πm2
R

ln
mR

μ

∣
∣
∣
∣
|pf |=|pi|

.

Taking into account

q2
∣
∣
|pf |=|pi| = 4|pi|2 sin2 θ

2
=

4v2
i m2

R sin2 θ
2

1 − v2
i

and considering the nonrelativistic limit |vi| = vi → 0, the term A can be
rewritten as

A = −
(

dσ

dΩ

)

Mott

8e2
Rv2

i sin2 θ
2

3π
ln

mR

μ
.

For the physical interpretation of this fact we have to bear in mind that
the energy resolution ΔE of every measuring device used for counting the
scattered particles is limited. This means that one cannot distinguish between
elastically (pure Coulomb scattering) and inelastically (braking radiation)
scattered particles in experiments as long as the frequency of the emitted
photons fulfills ω ≤ ΔE. Therefore, we have to add to the cross section of
the pure Coulomb scattering that of the soft braking radiation (3.157) with
ωmax = ΔE. After this the critical Coulomb term A becomes

A −→
(

dσ

dΩ

)

Mott

8e2
Rv2

i sin2 θ
2

3π

(
ln

ΔE

μ
− ln

mR

μ

)

=

(
dσ

dΩ

)

Mott

8e2
Rv2

i sin2 θ
2

3π
ln

ΔE

mR
.

As one can see, the infrared divergence of the braking radiation neutralizes
exactly the dominant infrared divergence of the Coulomb scattering – a very
satisfying result which also remains valid in higher orders when all relevant
internal and external radiation corrections are taken into account properly.



3.5 Scattering of Spin-0 Particles 319

3.5 Scattering of Spin-0 Particles

In this last section we deal with the description of relativistic scattering pro-
cesses of spin-0 particles on the basis of an appropriate propagator-scattering
formalism similar to the one for spin-1/2 particles in the preceding sections.
It is not surprising that many of the former concepts can be adopted more
or less unchanged. However, at this point it must be stressed that, compared
to the spin-1/2 case, the application range of the spin-0 scattering formal-
ism will be severely restricted since in nature there do not exist elementary
(point-like) spin-0 particles. Rather, they consist of two spin-1/2 quarks that
are subject to the strong interaction. This, in turn, implies that, due to strong
(quantum chromodynamical) vacuum polarization effects, each spin-0 parti-
cle is inevitably surrounded by a complex cloud of virtual particles that is
totally disregarded due to our restriction to the electromagnetic interaction.
Furthermore, we have to bear in mind that spin-0 particles are not really
stable but decay via the weak interaction. However, with respect to purely
electromagnetic scattering processes, some of them, e.g. pions, can be re-
garded as quasi-stable since their (weak) decay time of 10−8 s lies far above
the characteristic time unit h̄/(m0c

2) < 10−23 s.
Thus, due to these restrictions, our discussion of relativistic spin-0 scat-

tering processes is rather of academic and didactic nature and mainly meant
to highlight the formal correspondence to the spin-1/2 case. This correspon-
dence is also reflected in the Feynman rules that we derive for the boson case
(exclusively from tree level processes) and present in coherence (including the
quantum electrodynamical loop level) at the end.
Note. Analogously to the spin-1/2 case, we will often equate spin-0 particles
with “pions” and spin-0 antiparticles with “antipions”. Furthermore, we will
use the natural unit system (h̄ = c = 1) throughout the whole section.

3.5.1 Solution of the General Klein-Gordon Equation

As in Subsection 3.2.1, we are initially interested in developing a propaga-
tor formalism to solve the general Klein-Gordon equation. It turns out to
be useful for this purpose to assign the charge current density and the G-
scalar product of the Klein-Gordon theory other prefactors than in Chapter
1 (compare to Theorem 1.2):

jμ = i [φ∗∂μφ − (∂μφ∗)φ] − 2eAμφ∗φ = φ∗i
↔
∂μφ − 2eAμφ∗φ (3.158)

〈φ1|φ2〉G =
∫

d3x

(
φ∗

1i
↔
∂0 φ2 − 2eA0φ∗

1φ2

)
. (3.159)

In return, we normalize the free Klein-Gordon solutions as

φ(r)
p (x) =

√
1

2E(2π)3
e−iεrp·x
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so that they still fulfill the G-continuum normalization condition
〈

φ(r)
p

∣
∣
∣φ(r′)

p′

〉

G
= εrδrr′δ(p − p′) .

Consequently, in the case of the G-normalization to a box volume V , which
will be important later on, we have (from now on a capital symbol Φ stands
for free plane Klein-Gordon waves)

Φ
(ri)
i (x) =

√
1

2EiV
e−iεipi·x ,

〈
Φ

(rf )
f

∣
∣
∣Φ(ri)

i

〉

G
= εfδrf ri

δfi . (3.160)

All further steps can be carried out quite analogously to the Dirac case in
Subsection 3.2.1:

• casting the solutions to the Klein-Gordon equation into an integral form
using the Green function calculus,

• calling for an appropriate causality principle for the Green function in
accordance with the Feynman-Stückelberg interpretation,

• deriving a differential equation for the Feynman boson propagator,

• and finally rewriting it as an iteratively solvable integral equation for the
propagator and for the Klein-Gordon wave function itself.

Since these steps are not associated with any new insights, we leave out
their concrete execution and, instead, summarize the relevant results in the
following theorem:

Theorem 3.17: Solution of the general Klein-Gordon equation
in the propagator formalism in consideration of
the Feynman-Stückelberg interpretation

The Klein-Gordon equation

(p′μp′μ − m2
0)φ(x′) = V (x′)φ(x′)

with the modified potential

V (x′) = e[p′μAμ(x′) + Aμ(x′)p′μ] − e2Aμ(x′)Aμ(x′)

is equivalent to the integral equation

φ(x′) = φfree(x′) +
∫

d4xΔ
(0)
F (x′, x)V (x)φ(x)

as long as Δ
(0)
F fulfills the equation

(p′μp′μ − m2
0)Δ

(0)
F (x′, x) = δ(x′ − x) .

The quantity Δ
(0)
F is called free Feynman boson propagator if it also obeys

the causality principles
�
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{
Θ(x′0 − x0)
Θ(x0 − x′0)

}
φ

(±)
free(x

′) = ±i
∫

d3xΔ
(0)
F (x′, x)i

↔
∂0 φ

(±)
free(x)

and
{

Θ(x0 − x′0)
Θ(x′0 − x0)

}
φ

(±)∗
free (x′) = ±i

∫
d3xφ

(±)∗
free (x)i

↔
∂0 Δ

(0)
F (x, x′) .

These principles ensure the temporally forward [backward] propagation of
positive [negative] free Klein-Gordon solutions as well as the respective
reverse propagation of the complex conjugated solutions. The Fourier de-
composition of the free boson propagator is

Δ
(0)
F (x′, x) = Δ

(0)
F (x′ − x) =

∫
d4p

(2π)4
e−ipμ(x′μ−xμ)Δ̃

(0)
F (p)

Δ̃
(0)
F (p) =

1
p2 − m2

0 + iε
.

⎫
⎪⎪⎬

⎪⎪⎭
(3.161)

As can easily be seen by a calculation similar to that in Subsection 3.2.2, the
imaginary part in the denominator of Δ̃

(0)
F is again necessary to ensure the

above causality principles. Furthermore, from this calculation follows the de-
composition

Δ
(0)
F (x′ − x) = −iΘ(x′0 − x0)

∫
d3pφ(1)

p (x′)φ(1)∗
p (x)

−iΘ(x0 − x′0)
∫

d3pφ(2)
p (x′)φ(2)∗

p (x) (3.162)

into free Klein-Gordon solutions, which is used in Exercise 42 to show the
validity of the causality principles explicitly.

3.5.2 Scattering Formalism

Also with respect to the description of bosonic scattering processes, the same
prerequisites (temporal confinement of the scattering interaction, adiabatic
approximation etc.) and considerations are valid as presented in Subsection
3.2.3 for the fermion case. Here we are again interested in the projection of
the scattered wave φi onto the free plane Klein-Gordon wave Φf long after
the scattering, where, long before the scattering, φi is given by the likewise
free plane wave Φi. Accordingly, our ansatz for the scattering amplitude Sfi

in consideration of the G-scalar product (3.159) is

Sfi = lim
t′→±∞

εf

∫
d3x′Φ∗

f (x′)i
↔
∂′
0φi(x′) . (3.163)

As in the fermion case and according to the Feynman-Stückelberg interpre-
tation, one of two limits has to be considered depending on the particle type
in the final state. If we have bosons (pions) Φf is a boson wave function with
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positive energy propagating forward in time so that the upper limit must be
taken. In the case of antibosonic (antipionic) scattering states Φf represents a
temporally backward propagating boson wave function with negative energy
and the lower limit becomes relevant. For the scattered wave φi, originating
from Φi, we have correspondingly

Φi(x) = lim
t→∓∞

φi(x) ,

with the upper limit for incoming bosons and the lower limit for incoming
antibosons. εf in (3.163) is a pure convention. Now, using the relations

φi(x′) = Φi(x′) +
∫

d4x1Δ
(0)
F (x′ − x1)V (x1)φi(x1)

Φ∗
f (x1) = lim

t′→±∞
iεf

∫
d3x′Φ∗

f (x′)i
↔
∂′
0Δ

(0)
F (x′ − x1)

∫
d3xΦ

(rf )∗
f (x)i

↔
∂0 Ψ

(ri)
i (x) = εfδrf ri

δ(pf − pi)

[with the upper limit for bosons (rf = 1; εf = +1) and the lower limit for
antibosons (rf = 2; εf = −1) in the final state], we obtain from (3.163) the
expression

Sfi = lim
t′→±∞

εf

[∫
d3x′Φ∗

f (x′)i
↔
∂′
0Φi(x′)

+
∫

d3x′
∫

d4x1Φ
∗
f (x′)i

↔
∂′
0Δ

(0)
F (x′ − x1)V (x1)φi(x)

]

= δ(p − p′)δrf ri
− i
∫

d4x1Φ
∗
f (x1)V (x1)φi(x1) ,

which is equally valid for all four possible scattering constellations

boson or antiboson −→ boson or antiboson.

Iterating φi in the way

φi(x1) = Φi(x1)

+
∫

d4x2Δ
(0)
F (x1 − x2)V (x2)Φi(x2)

+
∫

d4x2

∫
d4x3Δ

(0)
F (x1 − x2)V (x2)Δ

(0)
F (x2 − x3)Φi(x3)

+ . . . ,

we arrive at (compare to Theorem 3.5)

Theorem 3.18: Scattering matrix in the Klein-Gordon theory

The scattering amplitude Sfi is defined by the projection of φi onto Φf

long after the scattering against a target where φi is the scattered wave
evolving from the free plane wave Φi: �
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Sfi = lim
t′→±∞

εf

∫
d3x′Φ∗

f i
↔
∂′
0φi(x′) , lim

t→∓∞
φi(x) = Φi(x) .

In the case of pionic [antipionic] scattering states Φf is a plane pion wave
with positive [negative] energy propagating forward [backward] in time so
that, on the left hand side of this equation, the limit t′ → +∞ [t′ → −∞]
has to be considered. If the incident particles are pions [antipions] Φi is a
plane pion wave with positive [negative] energy and, on the right hand side,
the limit t → −∞ [t → +∞ ] is relevant.
With the help of the Feynman propagator formalism, the scattering ampli-
tude Sfi can be expanded in a series of multiple scatterings:

Sfi = δ(pf − pi)δrf ri
− i
∫

d4x1Φ
∗
f (x1)V (x1)φi(x1)

= δ(pf − pi)δrf ri

−i
∫

d4x1Φ
∗
f (x1)V (x1)Φi(x1)

−i
∫

d4x1

∫
d4x2Φ

∗
f (x2)V (x2)Δ

(0)
F (x2 − x1)V (x1)Φi(x1)

−i
∫

d4x1

∫
d4x2

∫
d4x3Φ

∗
f (x3)V (x3)Δ

(0)
F (x3 − x2)

×V (x2)Δ
(0)
F (x2 − x1)V (x1)Φi(x1)

− . . . .

V denotes the modified potential of the target (see Theorem 3.17) and Δ
(0)
F

the free boson propagator.
This theorem is based on the adiabatic approximation and the Feynman-
Stückelberg interpretation.

All in all, our reasoning leads to a formalism for the relativistic description
of bosonic scattering processes which is very similar to that of the fermion
case with respect to structure and interpretation. This means that, with
an appropriate relabeling of particles and wave functions, we can adopt all
considerations employed after Theorem 3.5 about electron and positron scat-
terings as well as pair creation and annihilation processes, except for the hole
theory. However, the boson case possesses one peculiarity: the terms in the
scattering series in Theorem 3.18 are no longer identical to the expansion
terms of the coupling constant e since the modified potential V contains one
linear and one quadratic part in e, which both have to be taken into account
adequately.

Analogously to the fermion case, we now apply Theorems 3.17 and 3.18 in
combination with Theorem 3.3 to some concrete spin-0 scattering processes.
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In doing so, we find that, due to the absence of the spin degree of freedom,
some calculations are much simpler than in the fermion case.

3.5.3 Coulomb Scattering of Pions

As the first concrete example we consider the scattering of pions against a
Coulomb potential to lowest order of e. If we initially start with an arbi-
trary background potential Aμ, the corresponding scattering amplitude fol-
lows from Theorem 3.18 (f �= i) as

Sfi = −ie
∫

d4xΦ∗
f (x) [i∂μAμ(x) + Aμ(x)i∂μ] Φi(x)

= −ie
∫

d4x
[
Φ∗

f (i∂μΦi)Aμ − (i∂μΦ∗
f )ΦiA

μ
]

= −ie
∫

d4x

(
Φ∗

f i
↔
∂μ Φi

)
Aμ , (3.164)

where partial integration has been used in the second step. In the case of
pion scattering we have [see (3.160)]

Φi(x) =
1√

2EiV
e−ipi·x , Φf (x) =

1
√

2EfV
e−ipf ·x

so that (3.164) turns into

Sfi =
−ie
V

1
√

4EiEf

∫
d4x(pi + pf )μAμ(x)ei(pf−pi)·x

=
1
V

1
√

4EiEf

(−ie)(pi + pf )μÃμ(q) , q = pf − pi , (3.165)

with the background potential

Ãμ(q) =
∫

d4xeiq·xAμ(x)

in momentum space. If, on the other hand, we are interested in the scattering
of antipions we need to choose

Φi(x) =
1

√
2EfV

e+ipf ·x , Φf (x) =
1√

2EiV
e+ipi·x

so that

Sfi =
1
V

1
√

4EiEf

(−ie)(−pi − pf )μÃμ(q) , q = pf − pi . (3.166)

Obviously, both expressions (3.165) and (3.166) suggest the one-photon vor-
tex29 in momentum space shown in Figure 3.43, where the vortex factor con-
29 In the Klein-Gordon case there also exists the two-photon vortex to which we

return in Subsection 3.5.6.
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1[pf ]

1[pi]

−ie(pi + pf )μ

Ãμ(q)

Fig. 3.43. O (e)-Feynman diagram of pion scattering against a background po-
tential in momentum space [see (3.165) and (3.166)]. Inside the box we have the
one-photon vortex of the bosonic scattering theory. The vortex factor momenta
refer to those of the dashed boson lines on the level of wave functions, whereas the
momenta behind the one-factors of the external boson lines represent the particle
momenta. The latter were introduced in analogy to the fermion case. They do not
occur in matrix elements. The index μ of the vortex factor is contracted with that
of the photon line.

tains the momenta of the adjacent boson lines on the level of wave functions,
contrary to the provisionally introduced momenta in the square brackets be-
hind the one-factors of the external boson lines referring to the particle level.

Note that in the construction of scattering amplitudes via Feynman dia-
grams we adopt the i-factor rule of the spin-1/2 scattering theory right from
the beginning: a factor of −i at each one-photon vortex and a factor of +i at
each internal boson line.

Returning to the concrete case of pion scattering against the Coulomb
potential

eAμ(x) =
αgμ0

|x| , α = −Ze2 =⇒ eÃμ(q) = 2πδ(q0)
4παgμ0

q2
,

we obtain from (3.165)

Sfi =
−i[2πδ(Ef − Ei)]

V

1
√

4EiEf

Mfi , Mfi =
4πα

q2
(Ei + Ef ) .

Cross section. To determine the differential cross section

dσ =
|Sfi|2
T |ji|

V d3pf

(2π)3
=

1
2Ei

[2πδ(Ef − Ei)]2

TV |ji|
|Mfi|2

d3pf

2Ef (2π)3

we need the current density |ji| of the incoming pion. Following (3.158), it is

|ji| =
∣
∣
∣
∣−Φ∗

i i
↔
∇Φi

∣
∣
∣
∣ =

pi

2EiV
.

Together with the known replacements

[2πδ(Ef − Ei)]2 = 2πTδ(Ef − Ei) , d3pf = |pf |EfdEfdΩ ,

follows that
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dσ

dΩ
=

1
4(2π)2|pi|

∫
dEf |pf ||Mfi|2δ(Ef − Ei) =

1
4(2π)2

|Mfi|2|pf |=|pi|

=
(

4α2E2
i

q4

)

|pf |=|pi|
=

α2

4v4
i E2

i sin4 θ
2

,

with

q2
∣
∣
|pf |=|pi| = 4|pi|2 sin2 θ

2
= 4v2

i E2
i sin2 θ

2
.

Comparing this with the Mott cross section in Theorem 3.7, one notices an
additional factor of (1 − v2

i sin2 θ/2) in the Dirac case which is ascribed to
the magnetic moment of the electrons. In the limit of small velocities the
corresponding magnetic interaction vanishes and both results coincide.

Theorem 3.19: Coulomb scattering of pions to leading order

To leading order, the scattering amplitude for the scattering of pions against
a Coulomb potential of the form

eA0(x) =
α

|x| , A(x) = 0

is (f �= i)

Sfi = −i
2πδ(Ef − Ei)

V

1
√

4EiEf

Mfi ,

with

Mfi =
4πα

q2
(Ei + Ef ) , q = pf − pi .

The differential cross section follows as

dσ =
1

2Ei

1
V |ji|

|Mfi|2(2π)δ(Ef − Ei)
d3pf

2Ef (2π)3

=
1

2|pi|
|Mfi|2(2π)δ(Ef − Ei)

d3pf

2Ef (2π)3

=⇒ dσ

dΩ
=

1
4(2π)2

|Mfi|2|pf |=|pi| =
α2

4v4
i E2

i sin4 θ
2

,

where all scattering momenta pf toward dΩ have been integrated out in
the last relation.

Clearly, the scattering of antipions leads to the same cross section since both
amplitudes (3.165) and (3.166) differ only by a sign (compare to the notes
after Theorem 3.7).
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3.5.4 Pion-Pion Scattering

Similarly to the Dirac case, we are free to consider the background potential
Aμ to be created by the current of another particle. In this way, we arrive
again at a current-current interaction or at a two-particle scattering. In the
following we discuss the mutual scattering of pions following closely our line
of argument in Subsections 3.3.2 and 3.3.5. If J ′μ denotes the current of the
second pion, then, taking into account (3.82), the scattering amplitude to
lowest order in e follows as (f �= i)

Sfi = −i
∫

d4x

∫
d4y

[

eΦ∗
f (x)i

↔
∂

∂xμ
Φi(x)

]

D
(0)
F (x − y)J ′μ(y) ,

with the free boson propagator [see (3.84)]

D
(0)
F (x − y) =

∫
d4q

(2π)4
−4π

q2 + iε
e−iq·(x−y) .

As before, it seems plausible to interpret

Jμ(x) = eΦ∗
f (x)i

↔
∂

∂xμ
Φi(x)

as the transition current of the first pion (to first order) and, correspond-
ingly,30

J ′μ(y) = eΦ′∗
f (y)i

↔
∂

∂yμ
Φ′

i(y)

as the transition current of the second pion (to first order), where Φ′
i,f are

the initial and final wave functions of the second pion. Thus, in total, there
follows the scattering amplitude

Sfi = −i
∫

d4x

∫
d4y

[

eΦ∗
f (x)i

↔
∂

∂xμ
Φi(x)

]

D
(0)
F (x − y)

×
[

eΦ′∗
f (y)i

↔
∂

∂yμ
Φ′

i(y)

]

,

which is symmetric in both particles. Since both particles are identical, we
have to consider, as for the electron-electron scattering in Subsection 3.3.5,
two contributions corresponding to the experimentally indistinguishable sit-
uations of the mutual fly-by (direct scattering) and the mutual reflection
(exchange scattering). In the case of direct scattering, we have

Φi(x) =
1√

2EiV
e−ipi·x , Φf (x) =

1
√

2EfV
e−ipf ·x

30 See footnote 17 on page 234.
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Φ′
i(y) =

1
√

2E′
iV

e−ip′
i·y , Φ′

f (y) =
1

√
2E′

fV
e−ip′

f ·y ,

so that

Sfi(dir) = − i
V 2

1
√

4EiEf

1
√

4E′
iE

′
f

∫
d4x

∫
d4y

∫
d4q

(2π)4

×(pi + pf )μ
−4πe2

q2 + iε
(p′i + p′f )μ

×ei(pf−pi)·xe−iq·(x−y)ei(p′
f−p′

i)·y .

The coordinate and momentum integrations are the same as before (3.87)
and lead finally to

Sfi(dir) =
(2π)4δ(pf + p′f − pi − p′i)

V 2

1
√

4EiEf

1
√

4E′
iE

′
f

Mfi(dir)

Mfi(dir) = (−ie)(pi + pf )μ
−4πi

q2 + iε
(−ie)(p′i + p′f )μ , q = pf − pi .

The exchange scattering amplitude is simply calculated through the replace-
ment pf ↔ p′f . All in all, we obtain the scattering amplitude for the pion-pion
scattering to lowest order as

Sfi =
(2π)4δ(pf + p′f − pi − p′i)

V 2

1
√

4EiEf

1
√

4E′
iE

′
f

Mfi ,

with

Mfi = Mfi(dir) + Mfi(ex)

Mfi(dir) = (−ie)(pi + pf )μ
−4πi

q2 + iε
(−ie)(p′i + p′f )μ

= (pi + pf )μ
4πie2

q2 + iε
(p′i + p′f )μ , q = pf − pi

Mfi(ex) = (−ie)(pi + p′f )μ
−4πi

q′2 + iε
(−ie)(p′i + pf )μ

= (pi + p′f )μ
4πie2

q′2 + iε
(p′i + pf )μ , q′ = p′f − pi ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.167)

where the amplitudes Mfi(dir) and Mfi(ex) can be represented by the Feyn-
man diagrams of Figure 3.44. Contrary to the electron-electron scattering,
there is no relative sign between Mfi(dir) and Mfi(ex) since, according to the
Bose-Einstein statistics, the whole scattering amplitude must be symmetric
under the exchange of both bosons in the initial state (pi ↔ p′i) or the final
state (pf ↔ p′f ).
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−ie(pi + pf )μ −ie(p′
i + p′

f )μ −ie(pi + p′
f )μ −ie(p′

i + pf )μ

−4πi

q2 + iε

−4πi

q′2 + iε

1[pi] 1[p′
i] 1[pi] 1[p′

i]

1[pf ] 1[p′
f ] 1[pf ] 1[p′

f ]

a b

Fig. 3.44. Feynman diagrams of the direct O
(
e2
)
-scattering amplitude (a) and the

exchange O
(
e2
)
-scattering amplitude (b) for pion-pion scattering in momentum

space (compare to Figures 3.16 and 3.17). As in the Spin-1/2 scattering theory,
internal photon lines are represented as wavy lines and assigned the i-fold of the free
photon propagator. Energy and momentum are conserved at each vortex. Therefore,
the four-momentum transfers are q = pf − pi = −(p′

f − p′
i) and q′ = pf − p′

i =

−(pf − p′
i).

Cross section. Next we need to evaluate the sixfold differential cross section

dσ =
|Sfi|2
T |ji|

V d3pf

(2π)3
V d3p′f
(2π)3

=
1

2Ei

1
2E′

i

1
|ji|V

|Mfi|2(2π)4δ(pf + p′f − pi − p′i)
d3pf

2Ef (2π)3
d3p′f

2E′
f (2π)3

.

This is done in the center of mass system (as regards the kinematic situation,
see Figures 3.16a and 3.17a). Restricting ourselves again to collinear particle
currents, we can adopt formula (3.89) from Subsection 3.3.2 for |ji|,

|ji| =

√
(pi · p′i)2 − m2

0m
′2
0

V EiE′
i

,

in order to obtain the Lorentz-invariant expression

dσ =
1

4
√

(pi · p′i)2 − m2
0m

′2
0

|Mfi|2(2π)4δ(pf + p′f − pi − p′i)

× d3pf

2Ef (2π)3
d3p′f

2E′
f (2π)3

. (3.168)

Inserting the center of mass relation [m0 = m′
0, pi = (Ei,pi), p′i = (Ei,−pi)]

1
4
√

(pi · p′i)2 − m4
0

=
1

8Ei|pi|
as well as the known identities
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d3pf = |pf |EfdEfdΩ ,
d3p′f
2E′

f

=
∫

d4p′fδ(p′2f − m2
0)Θ(p′0f ) ,

(3.168) turns into
(

dσ

dΩ

)

cm

=
1

16(2π)2Ei|pi|

∫
dEf |pf |

∫
d4p′f |Mfi|2δ(pf + p′f − pi − p′i)

×δ(p′2f − m2
0)Θ(p′0f ) .

Obviously, this equation is formally identical to the first row of (3.108) mul-
tiplied by 1/(16m4

0). Due to the kinematics being identical to that of the
electron-electron scattering, we can read off the final result directly from the
last row of (3.108) multiplied by this factor:

(
dσ

dΩ

)

cm

=
1

64(2π)2E2
i

|Mfi|2cm .

Amplitude square. What remains is the explicit determination of |Mfi|2cm.
Starting with (3.167), we have

|Mfi|2 = |Mfi(dir)|2 + |Mfi(ex)|2 + 2Re
[
Mfi(dir)M∗

fi(ex)
]

,

where

|Mfi(dir)|2 =
(4π)2e4

(q2)2
[
pi · p′i + pi · p′f + pf · p′i + pf · p′f

]2

|Mfi(ex)|2 =
(4π)2e4

(q′2)2
[
pi · p′i + pi · pf + p′f · p′i + p′f · pf

]2

2Re
[
Mfi(dir)M∗

fi(ex)
]

= 2Mfi(dir)M∗
fi(ex)

=
2(4π)2e4

q2q′2
(pi · p′i + pi · p′f + pf · p′i + pf · p′f )

×(pi · p′i + pi · pf + p′f · p′i + p′f · pf ) .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.169)

Using the kinematic relations (3.112) of electron-electron scattering in the
center of mass system, this expression can be simplified to

|Mfi|2cm = 4(4π)2e4

[
4(2E2

i − m2
0)

2

p4
i sin4 θ

− 4(2E2
i − m2

0)
p2

i sin2 θ
+ 1
]

.

As expected, this result is again symmetric under θ → π − θ reflecting the
bosons’ indistinguishability.

Theorem 3.20: Pion-pion scattering to leading order

The scattering amplitude for pion-pion scattering to leading order is (f �= i)

Sfi =
(2π)4δ(pf + p′f − pi − p′i)

V 2

1
√

4EiEf

1
√

4E′
iE

′
f

Mfi ,

with the Lorentz-invariant amplitude (q = pf − pi, q′ = p′f − pi) �



3.5 Scattering of Spin-0 Particles 331

Mfi = Mfi(dir) + Mfi(ex)

Mfi(dir) = (pi + pf )μ
4πie2

q2 + iε
(p′i + p′f )μ

Mfi(ex) = (pi + p′f )μ
4πie2

q′2 + iε
(p′i + pf )μ .

The differential cross section follows as

dσ =
1

4
√

(pi · p′i)2 − m4
0

|Mfi|2(2π)4δ(pf + p′f − pi − p′i)

× d3pf

2Ef (2π)3
d3p′f

2E′
f (2π)3

and, particularly in the center of mass system,
(

dσ

dΩ

)

cm

=
1

64(2π)2E2
i

|Mfi|2cm ,

where all pionic scattering momenta pf toward dΩ and all pionic scattering
momenta p′

f have been integrated out in the last relation. The amplitude
square is

|Mfi|2cm = 4(4π)2e4

[
4(2E2

i − m2
0)

2

p4
i sin4 θ

− 4(2E2
i − m2

0)
p2

i sin2 θ
+ 1
]

.

Considering the results of this theorem along with Figure 3.44 in view of the
spinor Feynman rules in Subsection 3.3.9, we see that, with some small ex-
tensions, they also cover the case of bosonic two-particle scatterings. These
extensions (presented in totality at the end of this section) are essentially

• a boson factor of N
(...)
i,f = 1/2 for each (anti)boson (1. and 2. rule),

• a one-factor at each external boson line, the one-photon vortex from Figure
3.43 as well as the two-photon vortex (4. rule) that we discuss later on.

Furthermore, due to the Bose-Einstein statistics, the signs in 4.i) and 4.ii) do
not apply here.

Using these extensions, we now calculate the bosonic-fermionic mixed
process of pion-antipion production by electron-positron annihilation. Subse-
quently, we draw on the Compton scattering to discuss the treatment of real
photons as well as the two-photon vortex originating from the term −e2AμAμ

of the modified potential V in Theorem 3.17.

3.5.5 Pion Production via Electrons

According to our extended Feynman rules, the Feynman diagram for pion-
antipion production via electron-positron annihilation to leading order in
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momentum space is given in Figure 3.45. The scattering amplitude follows
from this as

Sfi =
(2π)4δ(pf + p̄f − pi − p̄i)

V 2

√
m2

0

EiĒi

√
1

4Ef Ēf
Mfi

Mfi = −ie(pf − p̄f )μ
−4πi

q2 + iε
v̄(p̄i, s̄i)(−ie)γμu(pi, si)

=
4πie2

q2 + iε
v̄(p̄i, s̄i)(/pf − /̄pf )u(pi, si)

q = pi + p̄i = pf + p̄f ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.170)

where m0 denotes the electron mass and M0 the pion mass.

u(pi, si) v̄(p̄i, s̄i)

1[pf ] 1[p̄f ]

−ie(pf − p̄f )μ

−4πi

q2 + iε

−ieγμ

Fig. 3.45. O
(
e2
)
-Feynman diagram for the pion-antipion production in momen-

tum space. Energy and momentum are conserved at each vortex. Therefore, the
momentum transfer is given by q = pi + p̄i = pf + p̄f .

Cross section. The starting point for the calculation of the differential cross
section is the formula

dσ =
m2

0√
(pi · p̄i)2 − m4

0

|Mfi|2(2π)4δ(pf + p̄f − pi − p̄i)

× d3pf

2Ef (2π)3
d3p̄f

2Ēf (2π)3
,

which is evaluated in the center of mass system (see Figure 3.46). There we
have

pi = (Ei,pi) , p̄i = (Ei,−pi) =⇒ m2
0√

(pi · p̄i)2 − m4
0

=
m2

0

2Ei|pi|
.
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pi p̄i

pf

p̄f

θ

Fig. 3.46. Kinematic situation of pion-antipion production via electron-positron
annihilation in the center of mass system. Due to energy and momentum conserva-
tion, the relations Ei = Ēi = Ef = Ēf and pi = −p̄i , pf = −p̄f hold.

Thus, along with

d3pf = |pf |EfdEfdΩ ,
d3p̄f

2Ēf
=
∫

d4p̄fδ(p̄2
f − M2

0 )Θ(p̄0
f ) ,

it follows that
(

dσ

dΩ

)

cm

=
m2

0

4(2π)2Ei|pi|

∫
dEf |pf |

∫
d4p̄f |Mfi|2δ(pf + p̄f − pi − p̄i)

×δ(p̄2
f − M2

0 )Θ(p̄0
f )

=
m2

0

4(2π)2Ei|pi|

∫
dEf |pf ||Mfi|2p̄f =pi+p̄i−pf

×δ[(pi + p̄i − pf )2 − M2
0 ]Θ(p0

i + p̄0
i − p0

f )

=
m2

0

4(2π)2Ei|pi|

∫
dEf |pf ||Mfi|2p̄f =pi+p̄i−pf

×δ[4Ei(Ei − Ef )]Θ(2Ei − Ef )

=
m2

0

4(2π)2Ei|pi|

2Ei∫

M0

dEf |pf ||Mfi|p̄f =pi+p̄i−pf
δ[4Ei(Ei − Ef )]

=
m2

0

4(2π)2Ei|pi|

2Ei∫

M0

dEf |pf ||Mfi|2p̄f =pi+p̄i−pf

δ(Ef − Ei)
4Ei

=
m2

0|pf |
16(2π)2E2

i |pi|
|Mfi|2cm .

Amplitude square. The calculation of |Mfi|2 can be carried out quite eas-
ily if we disregard polarization effects and, instead of (3.170), consider the
amplitude square

|Mfi|2 =
(4π)2e4

4q4

∑

si,s̄i

∣
∣v̄(p̄i, s̄i)(/pf − /̄pf )u(pi, si)

∣
∣2
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averaged over the incoming electron spins si, s̄i. In this case and taking into
account

v̄(p̄i, s̄i)(/pf + /̄pf )u(pi, si) = v̄(p̄i, s̄i)(/pi + /̄pi)u(pi, si) = 0

as well as Theorem 3.6, we obtain

|Mfi|2 =
(4π)2e4

4q4

∑

si,s̄i

∣
∣v̄(p̄i, s̄i)(/pf + /̄pf − 2/̄pf )u(pi, si)

∣
∣2

=
(4π)2e4

q4

∑

si,s̄i

∣
∣v̄(p̄i, s̄i)/̄pfu(pi, si)

∣
∣2

=
(4π)2e4

q4

∑

si,s̄i

[v̄(p̄i, s̄i)/̄pfu(pi, si)][ū(pi, si)/̄pfv(p̄i, s̄i)]

= − (4π)2e4

q4
tr
[
Λ−(p̄i)/̄pfΛ+(pi)/̄pf

]

= − (4π)2e4

4m2
0q

4
tr
[
(−/̄pi + m0)/̄pf (/pi + m0)/̄pf

]

=
(4π)2e4

4m2
0q

4

[
tr(/̄pi/̄pf/pi/̄pf ) − m2

0tr(/̄pf /̄pf )
]

=
(4π)2e4

m2
0q

4

[
2(p̄i · p̄f )(pi · p̄f ) − (pi · p̄i)(p̄f · p̄f ) − m2

0(p̄f · p̄f )
]

.

Evaluation of the scalar products in the center of mass system,

pi · p̄i = E2
i + p2

i , pi · p̄f = E2
i + pipf , p̄i · p̄f = E2

i − pipf

p̄f · p̄f = E2
i − p2

f = M2
0 , q2 = 4E2

i ,

finally leads to

|Mfi|2cm =
2(4π)2e4

m2
0q

4

[
E2

i p2
f − (pipf )2

]
=

2π2e4p2
f

m2
0E

4
i

(
E2

i − p2
i cos2 θ

)
.

Theorem 3.21: Pion production via electrons to leading order

The scattering amplitude for pion-antipion production via electron-positron
annihilation to leading order is (f �= i, m0 =electron mass)

Sfi =
(2π)4δ(pf + p̄f − pi − p̄i)

V 2

√
m2

0

EiĒi

√
1

4Ef Ēf
Mfi ,

with the Lorentz-invariant amplitude (q = pi + p̄i = pf + p̄f )

Mfi =
4πie2

q2 + iε
v̄(p̄i, s̄i)(/pf − /̄pf )u(pi, si) .

The differential cross section follows as
�
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dσ =
m2

0√
(pi · p̄i)2 − m4

0

|Mfi|2(2π)4δ(pf + p̄f − pi − p̄i)

× d3pf

2Ef (2π)3
d3p̄f

2Ēf (2π)3

and, particularly in the center of mass system,
(

dσ

dΩ

)

cm

=
m2

0|pf |
16(2π)2E2

i |pi|
|Mfi|2cm ,

where all pionic scattering momenta pf toward dΩ and all antipionic scat-
tering momenta p̄f have been integrated out in the last equation. If electron
polarizations are ignored, the unpolarized amplitude square becomes

|Mfi|2cm =
2π2e4p2

f

m2
0E

4
i

(
E2

i − p2
i cos2 θ

)
.

Total cross section. In order to exemplify the limited application range of
the bosonic scattering theory, we now calculate the total cross section of pion
production via electrons and compare it with the experimental result

Ei = 385 MeV =⇒ σexp = 1.4 · 10−30 cm2 .

According to the above theorem, we have

σ =

2π∫

0

dϕ

1∫

−1

d cos θ

(
dσ

dΩ

)

cm

= 2π
e4|pf |3

32E6
i |pi|

1∫

−1

d cos θ
(
E2

i − p2
i cos2 θ

)

=
πe4|pf |3
16E6

i |pi|

(
2E2

i − 2
3
p2

i

)
≈ πe4|pf |3

12E5
i

,

where the approximation p2
i = E2

i − m2
0 ≈ E2

i has been used in the last step
due to Ei > M0 � m0. Thus, at the experimental measurement point, we
obtain in natural units

Ei = 385 MeV

M0 = 139.6 MeV

|pf | =
√

E2
i − M2

0 = 358.8 MeV

e2 = αe = 1/137

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=⇒ σ = 7.6 · 10−11 1
MeV2

or, after translation to MKS units [see (3.69)],

1
MeV

= 1.973 · 10−11 cm =⇒ σ ≈ 3 · 10−32 cm2 .

Obviously, this value is smaller by about a factor of 50 than the experimen-
tally measured pion production cross section. This shows very clearly that
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the assumption of structureless bosons interacting solely electromagnetically
is not justified. In truth, the virtual photon initially produces other short-
lived mesons that, in turn, decay into pions or take part in other strong
interaction processes.

3.5.6 Compton Scattering against Pions

Now we turn to the description of processes with real photons and discuss the
Compton scattering against pions to lowest order.31 Another process of this
kind, the pion-antipion annihilation, is discussed in Exercise 44. The leading
order of the Compton scattering amplitude is O

(
e2
)
. Hence, in Theorem

3.18, we have to take into account the terms with number one and two where
the relevant parts of the modified potential V up to order O

(
e2
)

are to be
inserted:

Sfi = S
(a)
fi + S

(b)
fi

S
(a)
fi = −ie2

∫
d4x
∫

d4yΦ∗
f (x)

[
i

∂

∂xμ
Aμ(x) + Aμ(x)i

∂

∂xμ

]

×Δ
(0)
F (x − y)

[
i

∂

∂yν
Aν(y) + Aν(y)i

∂

∂yν

]
Φi(y)

S
(b)
fi = ie2

∫
d4xΦ∗

f (x)Φi(x)Aμ(x)Aμ(x) .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.171)

S
(a)
fi corresponds to the Dirac Compton scattering amplitude in Subsection

3.3.7 and consists of direct and exchange contributions. By contrast, the
seagull scattering amplitude32 S

(b)
fi is purely boson specific.

Direct and exchange scattering amplitude. Let us first consider the
direct scattering contribution to S

(a)
fi . Using partial integration, this can be

transformed into

S
(a)
fi (dir) = −ie2

∫
d4x

∫
d4y

{

Φ∗
f (x)i

↔
∂

∂xμ

[

Δ
(0)
F (x − y)i

↔
∂

∂yν
Φi(y)

]}

×Aμ
f (x)Aν

i (y) ,

where, referencing Subsection 3.3.7, the first Aμ-field is identified with the
outgoing and the second one with the incoming photon. The correct ansatz
for these fields is

Aν
i (y) =

√
2π

ωiV
εν(ki, λi)e−iki·y , Aμ

f (x) =

√
2π

ωfV
εμ(kf , λf )e+ikf ·x (3.172)

since, due to the same line of argument as in Subsection 3.3.7 and Exercise
37, all other photon contributions lead to different or not realizable kinematic
constellations. Thus, along with
31 See footnote 20 on page 267.
32 For clarification of this term, see Figure 3.48.
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Φi(y) =
1√

2EiV
e−ipi·y , Φf (x) =

1
√

2EfV
e−ipf ·x (3.173)

and

Δ
(0)
F (x − y) =

∫
d4p

(2π)4
e−ip·(x−y)

p2 − m2
0 + iε

the direct scattering amplitude follows as

S
(a)
fi (dir) = − ie2

V 2

1
√

4EiEf

√
(2π)2

ωiωf

∫
d4x

∫
d4y

∫
d4p

(2π)4

×εμ(kf , λf )(p + pf )μ
1

p2 − m2
0 + iε

εν(ki, λi)(pi + p)ν

×eipf ·xe−ip·(x−y)e−ipi·yeikf ·xe−iki·y

and, after carrying out the coordinate and momentum integrations,

S
(a)
fi (dir) =

(2π)4δ(pf + kf − pi − ki)
V 2

1
√

4EiEf

√
(2π)2

ωiωf
M

(a)
fi (dir)

M
(a)
fi (dir) = εμ(kf , λf )(−ie)(2pf + kf )μ

+i
(pi + ki)2 − m2

0 + iε
×εν(ki, λi)(−ie)(2pi + ki)ν .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3.174)

As expected, this expression and its graphical representation in Figure 3.47a
coincide with our extended Feynman rules.

εμ(kf , λf ) 1[pf ]

εν(ki, λi) 1[pi]

−ie(2pf + kf )μ

−ie(2pi + ki)ν

+i

(pi + ki)2 − m2
0 + iε

εμ(kf , λf ) 1[pf ]

εν(ki, λi) 1[pi]

−ie(2pf − ki)ν

−ie(2pi − kf )μ

+i

(pi − kf )2 − m2
0 + iε

a b

Fig. 3.47. Feynman diagrams of the direct O
(
e2
)
-scattering amplitude (a) and the

exchange O
(
e2
)
-scattering amplitude (b) for the Compton scattering against pions

in momentum space (compare to Figure 3.22). Analogously to the spin-1/2 scat-
tering theory, internal photon lines are assigned the i-fold of the boson propagator.
Energy and momentum are conserved at each vortex.
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The exchange amplitude is obtained by swapping the photons’ coupling
points or by the replacement ki ↔ −kf in (3.174) as (see Figure 3.47b)

S
(a)
fi (ex) =

(2π)4δ(pf + kf − pi − ki)
V 2

1
√

4EiEf

√
(2π)2

ωiωf
M

(a)
fi (ex)

M
(a)
fi (ex) = εμ(kf , λf )(−ie)(2pi − kf )μ

+i
(pi − kf )2 − m2

0 + iε
×εν(ki, λi)(−ie)(2pf − ki)ν .

Seagull scattering amplitude. In the scattering amplitude S
(b)
fi in (3.171),

the incoming and outgoing photons join at the same point. Accordingly, there
exist two mathematically identical ways of assigning the Aμ-fields: either the
first field is considered to be the incoming and the second one the outgoing
photon or vice versa. At the insertion of (3.172) and (3.173) in (3.171), we
therefore have to take into account an additional factor of 2 so that, after the
coordinate and momentum integrations have been performed, we obtain

S
(b)
fi =

(2π)4δ(pf + kf − pi − ki)
V 2

1
√

4EiEf

√
(2π)2

ωiωf
M

(b)
fi

M
(b)
fi = 2ie2εμ(kf , λf )εμ(ki, λi) .

The Feynman diagram corresponding to M
(b)
fi is shown in Figure 3.48. It obvi-

ously exhibits a particularity that does not exist in the fermion case, namely a

1[pf ]

1[pi]

εμ(kf , λf )

εν(ki, λi)

+2ie2gμν

Fig. 3.48. Feynman diagram of the O
(
e2
)
-scattering amplitude M

(b)
fi for the

Compton scattering against pions in momentum space. Inside the box is the two-
photon vortex of the bosonic scattering theory. The indices μ and ν of the vortex
factor are contracted with those of the photon lines. Because of its shape, the two-

photon vortex is also called “seagull vortex” and, correspondingly, M
(b)
fi the “seagull

amplitude”.
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two-photon vortex (seagull vortex) which, as already mentioned, results from
the O

(
e2
)
-contribution of the modified potential V from Theorem 3.17.

Bringing all three contributions, S
(a)
fi (dir), S

(a)
fi (ex), and S

(b)
fi , together,

the scattering amplitude of the Compton scattering against pions to lowest
order follows as

Sfi =
(2π)4δ(pf + kf − pi − ki)

V 2

1
√

4EiEf

√
(2π)2

ωiωf
Mfi

Mfi = M
(a)
fi (dir) + M

(a)
fi (ex) + M

(b)
fi

= −ie2εμ(kf , λf )Tμνεν(ki, λi)

Tμν =
(2pf + kf )μ(2pi + ki)ν

(pi + ki)2 − m2
0 + iε

+
(2pi − kf )μ(2pf − ki)ν

(pi − kf )2 − m2
0 + iε

−2gμν ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.175)

where Tμν denotes the Compton tensor. Incidentally, a more formal justifi-
cation for the factor 2 within the two-photon vortex is that it is necessary
to ensure the invariance of Mfi under gauge transformations of the four-
potential:

εν(k, λ) → εν(k, λ) + kνΛ(k) =⇒ Tμνkν = 0 , kμTμν = 0 .

Cross section. In the laboratory system where the pion is initially at rest,
pi = (m0,0), the differential cross section is (as regards the kinematic situa-
tion, see Figure 3.21)

dσ =
2π

2
√

m2
0ω

2
i

|Mfi|2(2π)4δ(pf + kf − pi − ki)
d3pf

2Ef (2π)3
2πd3kf

(2π)3ωf
.

Using

d3kf = ω2
fdωfdΩ ,

d3pf

2Ef
=
∫

d4pfδ(p2
f − m2

0)Θ(p0
f ) ,

this turns into
dσ

dΩ
=

1
2m0ωi

∫
dωfωf

∫
d4pf |Mfi|2δ(pf + kf − pi − ki)

×δ(p2
f − m2

0)Θ(p0
f ) .

A further evaluation can again be related back to the kinematically equivalent
calculation for the Compton scattering against electrons in Subsection 3.3.7
by noting that the above expression is formally identical to the first row in
(3.118) multiplied by 1/(4m2

0). Thus, from the same equation it follows for
the case in hand that

dσ

dΩ
=

ω2
f

4m2
0ω

2
i

|Mfi|2co , |Mfi|2co = |Mfi|2pf =pi+ki−kf
,
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with the secondary condition

ωf =
ωi

1 + ωi

m0
(1 − cos θ)

⇐⇒ λf = λi +
2π

m0
(1 − cos θ) .

Amplitude square. In view of the evaluation of |Mfi|2 and due to ε(k, λ) ·
k = 0, the Compton tensor in (3.175) is initially simplified to

Tμν =
4pμ

f pν
i

(pi + ki)2 − m2
0 + iε

+
4pμ

i pν
f

(pi − kf )2 − m2
0 + iε

− 2gμν .

Moreover, if we move to the radiation gauge [εμ(k, λ)] = [0, ε(k, λ)], the first
two terms of Tμν vanish because of pi = (m0,0) so that

Tμν = −2gμν .

In other words, in the radiation gauge and in the laboratory system, the
Compton cross section is solely determined by the two-photon vortex. Dis-
regarding any photon polarizations (averaging over the initial and summing
over the final polarizations), the amplitude square finally follows as

|Mfi|2co =
e4

2

∑

λi,λf

|εμ(kf , λf )Tμνεν(ki, λi)|2 (3.176)

= 2e4
∑

λi,λf

[ε(kf , λf )ε(ki, λi)]2 = 2e4
(
1 + cos2 θ

)
,

where θ denotes the angle between ki and kf [see (3.123)].

Theorem 3.22: Compton scattering against pions to leading order

The scattering amplitude of the Compton scattering against pions to lead-
ing order is (f �= i)

Sfi =
(2π)4δ(pf + kf − pi − ki)

V 2

1
√

4EiEf

√
(2π)2

ωiωf
Mfi ,

with the Lorentz-invariant amplitude

Mfi = M
(a)
fi (dir) + M

(a)
fi (ex) + M

(b)
fi

M
(a)
fi (dir) = −ie2εμ(kf , λf )

(2pf + kf )μ(2pi + ki)ν

(pi + ki)2 − m2
0 + iε

εν(ki, λi)

M
(a)
fi (ex) = −ie2εμ(kf , λf )

(2pi − kf )μ(2pf − ki)ν

(pi − kf )2 − m2
0 + iε

εν(ki, λi)

M
(b)
fi = 2ie2εμ(kf , λf )εμ(ki, λi) .

The differential cross section follows as
�
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dσ =
π

√
(pi · ki)2

|Mfi|2(2π)4δ(pf + kf − pi − ki)
d3pf

2Ef (2π)3
2πd3kf

(2π)3ωf

and, particularly in the laboratory system where the pion is initially at
rest,

dσ

dΩ
=

ω2
f

4m2
0ω

2
i

|Mfi|2co , |Mfi|2co = |Mfi|2pf =pi+ki−kf

ωf =
ωi

1 + ωi

m0
(1 − cos θ)

,

where all photonic scattering momenta kf toward dΩ and all pionic scatter-
ing momenta pf have been integrated out in dσ/dΩ. Disregarding photon
polarizations, the unpolarized amplitude square becomes

|Mfi|2co = 2e4
(
1 + cos2 θ

)
.

3.5.7 Conclusion: Enhanced Feynman Rules in Momentum Space

As we see in the preceding examples, the scattering amplitudes of bosonic
scattering processes can be constructed very similarly to those of the fermion
case. In fact, we only need some further extensions to the spin-1/2 Feynman
rules in Subsection 3.3.9 for them to cover also the spin-0 case. In the following
we recapitulate these extensions (marked by E) once again.

E1. One boson factor N
(...)
i,f = 1/2 for each (anti)boson.

E3. If bosons are present, the construction of Mfi involves Feynman dia-
grams with one-photon and two-photon vortices as well as internal and
external boson lines inasmuch as they lead to topological constellations
that are compatible with the considered scattering process.

E4. All vortices and lines within Feynman diagrams belonging to the bosonic
sector are supplied by the factors in Figure 3.49. Furthermore, there is

i) no relative sign between Feynman diagrams differing only by the ex-
change of two boson lines.

ii)a factor of 1/2 for each closed photon loop.

To E4. Contrary to rule 4.i) of the fermion case, rule E4.i) accommodates the
Bose-Einstein statistics, according to which the whole scattering amplitude
must be symmetric under the exchange of two boson lines (of the same type).
The factor 1/2 in rule E4.ii) compensates for the double counting of alterna-
tives to connect both vortices of a photon loop – actually two-photon vortices
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incoming boson incoming antiboson

1[pi] 1[p̄i]

outgoing boson outgoing antiboson
1[pf ] 1[p̄f ]

internal boson line one-photon vortex two-photon vortex

iΔ̃
(0)
F (p) =

i

p2 − m2
0 + iε

−ie(pi + p′
i)

μ 2iegμν

Fig. 3.49. Supplementary Feynman diagram elements and characteristic factors
for the bosonic sector in momentum space. The vortex indices are contracted with
those of the photon lines.

each assigned a factor of 2iegμν – by photon lines. In this context, recall our
discussion of the seagull scattering amplitude in the preceding subsection as
well as the motivation for the factor 2 within the two-photon vortex.

Note that, as in the fermion case, these rules also allow the construc-
tion of loop diagrams in higher orders whose mathematical divergences can
be handled using the renormalization methods discussed in Section 3.4. As
before, those loop diagrams are of pure quantum field theoretical nature.
However, before tackling the concrete calculation of higher order corrections,
one should bear in mind that electromagnetic forces are normally superposed
by the much stronger interactions between bosons themselves as well as with
nucleons that do not play any role in our formalism. To this extent, one should
not necessarily expect a better coincidence with experiments by taking higher
electromagnetic corrections into account.

Summary

• The Klein-Gordon equation can be solved approximately using the same
methods as in the Dirac case.

�
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• Analogously to the fermion propagator, the Feynman boson propa-
gator is defined in such a way that it describes the temporally forward
[backward] oriented evolution of the positive [negative] parts of a wave
function known at a particular time (including its derivative). With this
and the Feynman-Stückelberg interpretation, the positive [negative] parts
can be interpreted as temporally forward directed particle [antiparticle]
propagation.

• Using the Feynman propagator formalism, the amplitude of bosonic scat-
tering processes can be expanded in a series of multiple scatterings. Con-
trary to the fermion case, each series term contains two different orders
of e due to the form of the modified potential.

• A practical calculation of spin-0 scattering processes is based on the
same prerequisites (plane waves, adiabatic approximation, etc.) and steps
(constructing Sfi, squaring, inserting in dσ, and so on) as the spin-1/2
case.

• The corresponding directives can be easily integrated into the spinor
Feynman rules by adding some bosonic extensions.

• With this extended version, Feynman rules allow the study of scattering
processes with an involvement of fermionic, bosonic or photonic initial
or final states. Scattering processes with purely bosonic initial and fi-
nal states are the Coulomb scattering, pion-pion scattering, and
pion-antipion scattering. A fermionic-photonic process is the pion-
antipion production via electrons and photonic-bosonic processes
are the Compton scattering and pion-antipion annihilation.

• Compared to the spin-1/2 scattering theory, the validity range of the
spin-0 scattering formalism is highly restricted since spin-0 particles are
not elementary but consist of quarks that, in turn, are subject to the
strong interaction.

Exercises

42. Causality principle of Δ
(0)
F . Show with the help of (3.162) the causal

relationships mentioned in Theorem 3.17 for the free case.

Solution. The calculation proceeds analogously to that of Exercise 36. Let

φ(x) = φ(+)(x) + φ(−)(x) =
∫

d3p′
2∑

r=1

a(r)(p′)φ(r)
p′ (x)

be an arbitrary Klein-Gordon wave packet. Then,
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∫
d3xΔ

(0)
F (x′ − x)i

↔
∂0 φ(x)

= −iΘ(x′0 − x0)
∫

d3x

∫
d3p

∫
d3p′

×
2∑

r=1

φ(1)
p (x′)φ(1)∗

p (x)i
↔
∂0 φ

(r)
p′ (x)a(r)(p′)

−iΘ(x0 − x′0)
∫

d3x

∫
d3p

∫
d3p′

×
2∑

r=1

φ(2)
p (x′)φ(2)∗

p (x)i
↔
∂0 φ

(r)
p′ (x)a(r)(p′)

= −iΘ(x′0 − x0)
∫

d3p

∫
d3p′

2∑

r=1

εrδr1δ(p − p′)φ(1)
p (x′)a(r)(p′)

−iΘ(x0 − x′0)
∫

d3p

∫
d3p′

2∑

r=1

εrδr2δ(p − p′)φ(2)
p (x′)a(r)(p′)

= −iΘ(x′0 − x0)
∫

d3pφ(1)
p (x′)a(1)(p)

+iΘ(x0 − x′0)
∫

d3pφ(2)
p (x′)a(2)(p)

= −iΘ(x′0 − x0)φ(+)(x) + iΘ(x0 − x′0)φ(−)(x) .

And, likewise:
∫

d3xφ∗(x)i
↔
∂0 Δ

(0)
F (x − x′)

= −iΘ(x0 − x′0)
∫

d3x

∫
d3p′

∫
d3p

×
2∑

r=1

a(r)∗(p′)φ(r)
p′ (x)i

↔
∂0 φ(1)

p (x)φ(1)∗
p (x′)

−iΘ(x′0 − x0)
∫

d3x

∫
d3p′

∫
d3p

×
2∑

r=1

a(r)∗(p′)φ(r)
p′ (x)i

↔
∂0 φ(2)

p (x)φ(2)∗
p (x′)

= −iΘ(x0 − x′0)
∫

d3p′
∫

d3p

2∑

r=1

a(r)∗(p′)φ(1)∗
p (x′)εrδr1δ(p − p′)

−iΘ(x′0 − x0)
∫

d3p′
∫

d3p

2∑

r=1

a(r)∗(p′)φ(2)∗
p (x′)εrδr1δ(p − p′)
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= −iΘ(x0 − x′0)
∫

d3pa(1)∗(p)φ(1)∗
p (x′)

+iΘ(x′0 − x0)
∫

d3pa(2)∗(p)φ(2)∗
p (x′)

= −iΘ(x0 − x′0)φ(+)(x′) + iΘ(x′0 − x0)φ(−)(x′) .

43. Pion-antipion scattering in the center of mass system. Calculate
the differential cross section of pion-antipion scattering to leading order in
the center of mass system using the results from Subsection 3.5.4.

Solution. Similarly to the electron-positron scattering in Subsection 3.3.6,
the scattering amplitude for the pion-antipion scattering to leading order
encompasses a direct and an exchange or annihilation part whose Feynman
diagrams are depicted in Figure 3.50. One obtains from this the scattering

1[pf ] 1[p̄f ]

1[pi] 1[p̄i]

−ie(pi + pf )μ −ie(−p̄i − p̄f )μ

−4πi

q2 + iε

1[pf ] 1[p̄f ]

1[pi] 1[p̄i]

−ie(pf − p̄f )μ

−ie(pi − p̄i)μ

4πi

q′2 + iε

a b

Fig. 3.50. Feynman diagrams of the direct O
(
e2
)
-scattering amplitude (a) and

the exchange or annihilation O
(
e2
)
-scattering amplitude (b) for pion-antipion scat-

tering in momentum space (compare to Figures 3.18 and 3.19). Energy and mo-
mentum are conserved at each vortex. Therefore, the four-momentum transfers are
q = pf − pi = −(p̄f − p̄i), q′ = pi + p̄i = pf + p̄f .

amplitude as

Sfi =
(2π)4δ(pf + p̄f − pi − p̄i)

V 2

1
√

4EiEf

1
√

4ĒiĒf

Mfi

Mfi = Mfi(dir) + Mfi(ex)

Mfi(dir) = (pi + pf )μ
−4πie2

q2 + iε
(p̄i + p̄f )μ , q = pf − pi

Mfi(ex) = (pi − p̄i)μ
4πie2

q′2 + iε
(pf − p̄f )μ , q′ = pi + p̄i .
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A comparison with the scattering amplitude of pion-pion scattering in The-
orem 3.20 shows that, also within the bosonic scattering theory, there exist
crossing symmetries between processes where an incoming particle is per-
muted with the corresponding antiparticle and vice versa (see Figure 3.51).

pion-pion scattering

π− + π− → π− + π− pi p′
i pf p′

f

π− + π+ → π− + π+ pi −p̄i pf −p̄f

pion-antipion scattering

Fig. 3.51. Crossing symmetry between pion-pion and pion-antipion scatterings
(compare to Figure 3.20).

Due to the kinematics being equivalent to that of the pion-pion scattering,
we can take the differential cross section in Theorem 3.20 for the process in
hand, i.e.

(
dσ

dΩ

)

cm

=
1

64(2π)2E2
i

|Mfi|2cm .

If we finally perform the replacements in (3.169) as indicated in Figure 3.51
and subsequently evaluate the scalar products in the center of mass system,
the amplitude square follows as

|Mfi|2cm = (4π)2e4

[(
E2

i + p2
i cos2 θ

2

)2

p4
i sin4 θ

2

+
p4

i cos2 θ

E4
i

−
cos θ

(
E2

i + p2
i cos2 θ

2

)

E2
i sin2 θ

2

]

.

44. Pion-antipion annihilation in the center of mass system. Use the
results from Exercise 38 and Subsection 3.5.6 to calculate the unpolarized
differential cross section of pion-antipion annihilation into two photons to
leading order in the center of mass system.

Solution. As regards the differential cross section, we can resort to the re-
sults of the electron-positron annihilation in Exercise 38 (see also Figure 3.29)
due to the kinematically equivalent situations. Taking into account
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1
4
√

(pi · p̄i)2 − m4
0

=
1

8Ei|pi|

d3kf = ω2
fdωfdΩ ,

d3k′
f

ω′
f

= 2
∫

d4k′
fδ(k′2

f )Θ(k′0
f ) ,

we have

dσ =
1

8Ei|pi|
|Mfi|2(2π)4δ(kf + k′

f − pi − p̄i)
2πd3kf

(2π)3ωf

2πd3kf

(2π)3ω′
f

=⇒
(

dσ

dΩ

)

cm

=
1

4Ei|pi|

∫
dωfωf

∫
d4k′

f |Mfi|2δ(kf + k′
f − pi − p̄i)

×δ(k′2
f )Θ(k′0

f ) .

Obviously, this equation is formally identical to the first row of (3.129) mul-
tiplied by 1/(4m2

0). Thus, for the case in hand, it follows immediately from
the last row of (3.129) that

(
dσ

dΩ

)

cm

=
1

16Ei|pi|
|Mfi|2cm .

Exploiting the relationship of the crossing symmetry between Compton scat-
tering in Subsection 3.5.6 and pion-antipion annihilation (see Figure 3.52), we

Compton scattering

π− + γ → π− + γ pi ki pf kf

π− + π+ → γ + γ pi −p̄i −kf k′
f

pion-antipion annihilation

Fig. 3.52. Crossing symmetry between Compton scattering and pion-antipion an-
nihilation (compare to Figure 3.26).

obtain from (3.176) with the corresponding replacements for the unpolarized
amplitude square (summation over the photon’s final polarizations)
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|Mfi|2cm = e4
∑

λf ,λ′
f

∣
∣εμ(kf , λf )Tμνεν(k′

f , λ′
f )
∣
∣2 , Tμν = −2gμν

= 4e4
∑

λf ,λ′
f

∣
∣ε(kf , λf ) · ε(k′

f , λ′
f )
∣
∣2 .

Here we have to bear in mind that this equation only holds under the con-
straint εf · pi = ε′f · pi = 0 which was achieved in the laboratory system
by using the radiation gauge. Thus, in the center of mass system, the gauge
transformation (3.131) from Exercise 38 is appropriate as there the polariza-
tion sum turns into (3.132). The remaining evaluation proceeds similarly to
that in Exercise 38 and finally leads to

|Mfi|2cm = 4e4

[
2 − 4m2

0

E2
i (1 − v2

i cos2 θ)
+

4m4
0

E4
i (1 − v2

i cos2 θ)2

]

= 4e4 2 − 4v2
i (1 − v2

i ) − 4v4
i cos2 θ + 2v4

i cos4 θ

(1 − v2
i cos2 θ)2

.
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A.1 Theory of Special Relativity

The theory of special relativity is based on the following axioms:

1. Constancy of the velocity of light: the vacuum velocity of light is the same
in all uniformly moving systems, namely c ≈ 3 · 108 m/s. No information
propagates faster than light.

2. Relativity principle: physical laws are equally valid in all inertial systems,
i.e. there is no preferred reference frame.

The relativity principle encompasses the homogeneity of space and time as
well as the isotropy of space according to which there is no preferred point
and direction in space and time.

Due to these axioms, relativistic physical events are described mathemat-
ically within a fourdimensional space where the product of the speed of light
and time, x0 = ct, appears as an additional dimension on an equal footing
with the three space dimensions x1, x2, x3.

Minkowski space. The Minkowski space is a fourdimensional linear vector
space over the body of real numbers. Its elements xμ are represented by
four-component coordinate vectors, also called four-vectors,

[xμ(t)] =

⎛

⎜
⎜
⎝

x0(t)
x1(t)
x2(t)
x3(t)

⎞

⎟
⎟
⎠ , x0(t) = ct .

The scalar product of two four-vectors is defined as

(xμ) · (yμ) = xμgμνyν = xμyμ = xμgμνyν = (xμ) · (yν) ,

with the non-Euclidean metric tensor (1. index=row index, 2. index=column
index)

(gμν) = (gμν) =

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠ , gμαgαν = gμ

ν = δμ
ν .

A. Wachter, Appendix. In: A. Wachter, Relativistic Quantum Mechanics, Theoretical
and Mathematical Physics, pp. 349–361 (2011)
DOI 10.1007/978-90-481-3645-2 c© Springer Science+Business Media B.V. 2011



350 A. Appendix

Notation. Additionally, there exist the following conventions:

• Vectors with an upper index are called contravariant, and those with a
lower index are called covariant. This can be transferred to tensors of higher
rank. For example, Tμν

ρ is a twofold contravariant and onefold covariant
tensor of rank 3.

• Two indices, one of which is an upper and the other a lower index, are
summed over so that the summation sign can be dropped (Einstein sum
convention).

• The metric tensor can be used to pull upper indices down and vice versa.
For example:

xμ = gμνxν , Tμνρ = gμαTα
νρ = gμαgνβTαβ

γ = gμαgνβgργTαβγ etc.

Accordingly, the co- and contravariant vectors xμ and xμ differ solely by
their spatial components.

Contrary to the threedimensional Euclidean case, the norm of a four-vector
is not positive definite. Instead, the following cases can occur:

xμxμ = x2
0 − x2 = c2t2 − x2

⎧
⎪⎪⎨

⎪⎪⎩

> 0 (time-like)

= 0 (light-like)

< 0 (space-like) ,

where the classification corresponds to the vector’s position relative to the
light cone xμxμ = 0.

Lorentz transformations. The axioms of the theory of special relativity
imply that the fourdimensional “distance” between two four-vectors xμ and
yμ is preserved in any inertial system:

(x − y)μ(x − y)μ = (x′ − y′)μ(x′ − y′)μ .

Lorentz transformations describe the relativistic transition from one inertial
system to another. They are defined by the linear transformational equation

xμ → x′μ = Λμ
νxν + aμ , (aμ) = space-time translation (A.1)

of contravariant vectors. Along with the conservation of distance, one obtains
from this the conditional equation

Λμ
αgμνΛν

β = gαβ (A.2)

as well as the corresponding transformational behavior of covariant vectors

x′
μ = gμνx′ν = gμν (Λν

αxα + aν) = xβ [Λ−1]βμ + aμ ,

with the inverse transformation

[Λ−1]βμ = gμνΛν
αgαβ = Λμ

β , [Λ−1]βμΛμ
γ = gμνΛν

αgαβΛμ
γ = δβ

γ .(A.3)
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In matrix notation the condition (A.2) reads ΛT gΛ = g and corresponds to
the property RT R = 1 of rotational matrices of threedimensional Euclidean
geometry. Lorentz transformations with aμ = 0 constitute the homogeneous
Lorentz group. Besides the distance, they also leave the scalar product of two
four-vectors unchanged: xμyμ = x′μy′

μ. For the general case, (aμ) �= 0, one
obtains the inhomogeneous Lorentz group or Poincaré group which is not
considered here.

The homogeneous Lorentz group can be classified in the following way:

symbol det(Λ) Λ0
0 group name

L

P · L

R · L

P · R · L

+1

−1

−1

+1

> 0

> 0

< 0

< 0

proper

orthochronous

homogeneous

Contrary to all others, the transformations of the proper Lorentz group L can
be interpreted as a series of infinitesimal transformations. Noninfinitesimal or
discrete transformations are, for example, the parity transformation (space
reflection)

P : x0 → x′0 = x0 , xk → x′k = −xk

and Racah time reflection

R : x0 → x′0 = −x0 , xk → x′k = xk .

The orthochronous group consists of the proper transformations L, the space
reflection P , and their products P · L. The homogeneous group is composed
of the transformations L, P , R, and their products.

Transformational behavior of differential operators. Taking into ac-
count xν = [Λ−1]νμx′μ [see (A.1)], we have

∂xν

∂x′μ = [Λ−1]νμ =⇒ ∂

∂x′μ =
∂

∂xν

∂xν

∂x′μ =
∂

∂xν
[Λ−1]νμ .

Therefore,

∂

∂xμ
= ∂μ

transforms as a covariant vector and, accordingly,

∂

∂xμ
= ∂μ

as a contravariant vector. Furthermore, it follows that the d’Alembert oper-
ator
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∂μ∂μ =
1
c2

∂2

∂t2
− ∇2

is Lorentz-invariant, i.e. a Lorentz scalar.

Relativistic kinematics. In order to write down the equations of motions
of relativistic mechanics Lorentz-covariantly1 (form invariantly), we must
reformulate the Newtonian quantities of velocity, momentum, and force in
such a way that they have a defined transformational behavior under Lorentz
transformations. Contrary to dt, the eigentime differential

dτ = dt

√

1 − 1
c2

(
dx

dt

)2

is a Lorentz scalar since, due to the conservation of the scalar product, we
have

dτ2 = dt2 − 1
c2

dx2 = dt′2 − 1
c2

dx′2 (dτ2 > 0 for time-like vectors) .

With this, the following quantities can be defined, of which the four-versions
transform as xμ:

• Four-velocity uμ:

uμ =
dxμ

dτ
=

dt

dτ

dxμ

dt
, (uμ) =

1
√

1 − v2

c2

(
c
v

)

v =
dx

dt
= physical velocity.

• Four-momentum pμ:

pμ = m0u
μ , (pμ) =

(
cm
p

)
, m =

m0√
1 − v2

c2

, m0 = rest mass

p = mv = physical momentum.

• Four-force Fμ:

Fμ =
dpμ

dτ
=

1
√

1 − v2

c2

dpμ

dt
, (Fμ) =

1
√

1 − v2

c2

(
cdm

dt

F

)

(A.4)

F =
dp

dt
= physical force.

1 In this book, as in many other textbooks, the transformational behavior of rela-
tivistic four-quantities is called “Lorentz-covariant” regardless of the subtle dif-
ference between “covariant” and “contravariant”. The same holds for relativistic
equations whose form remains unchanged under Lorentz transformations. Quan-
tities and equations are called “Lorentz-invariant” if their value is unchanged by
Lorentz transformations (Lorentz scalar).



A.1 Theory of Special Relativity 353

The first force equation also represents the Lorentz-covariant equation of mo-
tion of relativistic mechanics, whereas the second equation is the threedimen-
sional relativistic analogon of Newton’s equation. In the case of a conservative
force field F = −∇V (x), the latter leads to the energy conservation

E = mc2 + V (x) = const =⇒ E = mc2 for V = 0

and, together with the definition of pμ, the energy-momentum relation for
free particles

pμpμ = p2
0 − p2 = m2

0c
2 ⇐⇒ E2 = p2c2 + m2

0c
4 .

It is not always possible to formulate a given mechanical problem covariantly
via (A.4) since not all types of forces allow a fourdimensional generalization.
One example of this kind is the Coulomb force. As a static long range force, it
requires an infinitely high propagational velocity, thus being in contradiction
to the first axiom of special relativity.

Lorentz-covariant electrodynamics. The basic equations of classical elec-
trodynamics are the four Maxwell equations

∇E(x, t) = 4πρ(x, t)

∇ × E(x, t) +
1
c

∂B(x, t)
∂t

= 0

∇B(x, t) = 0

∇ × B(x, t) − 1
c

∂E(x, t)
∂t

=
4π

c
j(x, t)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.5)

(in the Gaussian unit system), the continuity equation

∂ρ(x, t)
∂t

+ ∇j(x, t) = 0

that follows from the first and fourth Maxwell equation, as well as the Lorentz
force

F L(x, t) = q
[
E(x, t) +

v

c
× B(x, t)

]
, (A.6)

describing the force acting on a particle with charge q due to its movement
through the fields E and B.

That these equations can be formulated Lorentz-covariantly, i.e. that they
are in accordance with special relativity, can be shown as follows:

• First, the continuity equation can be immediately brought into the form

∂μjμ(x) = 0 , (jμ) =
(

cρ
j

)

showing explicitly its Lorentz covariance, provided that jμ is a four-vector.
However, this follows from the experimental fact that the charge q is a
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Lorentz scalar: dq = d3xρ = d3x′ρ′. Thus, dq transforms as a fourdimen-
sional volume element d3xdx0 = d3x′dx′0 and, consequently, ρ as the 0-th
component of a four-vector.

• Introducing the scalar potential φ and the vector potential A,

B(x, t) = ∇ × A(x, t) , E(x, t) +
1
c

∂A(x, t)
∂t

= −∇φ(x, t) , (A.7)

Maxwell’s equations can be rewritten as

∇2φ +
1
c

∂

∂t
∇A = −4πρ

(
∇2A − 1

c2

∂2A

∂t2

)
− ∇

(
∇A +

1
c

∂φ

∂t

)
= −4π

c
j .

From here and choosing the gauge

∇A = −1
c

∂φ

∂t
(Lorentz gauge) ,

one obtains the disentangled inhomogeneous wave equations
(

∇2 − 1
c2

∂2

∂t2

)
φ = −4πρ ⇐⇒ ∂μ∂μφ = 4πρ

(
∇2 − 1

c2

∂2

∂t2

)
A = −4π

c
j ⇐⇒ ∂μ∂μA =

4π

c
j

that are symmetric in A and φ. Since ρ and j are the components of a
four-vector and ∂μ∂μ is a Lorentz scalar, the last three equations can also
be cast into a manifestly Lorentz-covariant form:

∂μAμ = 0 , ∂μ∂μAν =
4π

c
jν , (Aμ) =

(
φ
A

)
.

• Knowing that jμ and Aμ are four-vectors, the Lorentz covariance of
Maxwell’s equations themselves can be shown in the following way: first,
we rewrite the defining equations (A.7) as

Fμν = ∂μAν − ∂νAμ , (Fμν) =

⎛

⎜
⎜
⎝

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞

⎟
⎟
⎠ ,

where the field strength tensor Fμν must be a twofold contravariant (anti-
symmetric) tensor transforming as

F ′μν = Λμ
αΛν

βFαβ .

With this, the two homogeneous Maxwell equations in (A.5) turn into the
Lorentz-covariant equation

∂μFμν =
4π

c
jν .
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Both sides transform as onefold contravariants. With the help of the dual
field strength tensor

Gμν =
1
2
εμναβFαβ = Fμν(E → B , B → −E)

εμναβ =

⎧
⎪⎨

⎪⎩

+1 if (μναβ) even permutation of (0123)
−1 if (μναβ) odd permutation of (0123)
0 else ,

the remaining inhomogeneous Maxwell equations (A.5) acquire the covari-
ant form

∂μGμν = 0 .

• Contrary to the Coulomb force, the Lorentz force (A.6) allows a relativistic
generalization to a four-vector Fμ

L which is

Fμ
L =

q

c
Fμνuν =

q

c
Fμν dxν

dτ
.

According to (A.4), we therefore have the equations

dpμ

dτ
= Fμ

L =⇒

⎧
⎪⎨

⎪⎩

μ = 0 :
d
dt

mc2 = qEv

μ = i :
dp

dt
= q
(
E +

v

c
× B

)
= F L .

A.2 Bessel Functions, Spherical Bessel Functions

Bessel functions. The Bessel differential equation is
[

d2

dx2
+

1
x

d
dx

+
(

1 − m2

x2

)]
f(x) = 0 , m ∈ R .

Its solutions are the Bessel functions Jm and J−m with

Jm(x) =
(x

2

)m ∞∑

i=0

(−1)i

i!Γ (m + i + 1)

(x

2

)2i

.

If m is an integer, then

Jm(x) =
(x

2

)m ∞∑

i=0

(−1)i

i!(m + i)!

(x

2

)2i

, J−m(x) = (−1)mJm(x) .
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Spherical Bessel functions. The spherical Bessel differential equation is
[

d2

dx2
+

2
x

d
dx

+ 1 − l(l + 1)
x2

]
f(x) = 0 , l = 0, 1, 2, . . . .

Its solutions are the spherical Bessel functions jl, nl (the latter are also called
Neumann functions) and, therefore, also the Hankel functions h

(±)
l :

jl(x) =
( π

2x

)1/2

Jl+1/2(x)

nl(x) = (−1)l
( π

2x

)1/2

J−l−1/2(x)

h
(±)
l (x) = nl(x) ± ijl(x) .

Their explicit forms are

jl(x) = Rl(x)
sin x

x
+ Sl(x)

cos x

x

nl(x) = Rl(x)
cos x

x
− Sl(x)

sin x

x

h
(±)
l (x) = [Rl(x) ± iSl(x)]

e±ix

x
,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(A.8)

with

Rl(x) + iSl(x) =
l∑

s=0

is−l

2ss!
(l + s)!
(l − s)!

x−s , Rl, Sl ∈ R .

Rl and Sl are polynomials in 1/x of order l with real coefficients and parity
(−1)l and −(−1)l respectively. For any linear combination fl = ajl + bnl, a, b
fixed, we have the recursion formulae

(2l + 1)fl(x) = x [fl+1(x) + fl−1(x)]

fl−1 =
(

d
dx

+
l + 1

x

)
fl =

1
xl+1

d
dx

(
xl+1fl

)

fl =
(
− d

dx
+

l − 1
x

)
fl−1 = −xl−1 d

dx

(
fl−1

xl−1

)
,

which imply that

fl =

[

xl

(
− 1

x

d
dx

)l
]

f0 .

The first spherical functions are obtained from (A.8) as

j0(x) =
sinx

x
, j1(x) =

sinx

x2
− cos x

x

n0(x) =
cos x

x
, n1(x) =

cos x

x2
+

sinx

x
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h
(±)
0 (x) =

e±ix

x
, h

(±)
1 (x) =

(
1
x2

∓ i
x

)
e±ix

x
.

A.3 Legendre Functions, Legendre Polynomials,
Spherical Harmonics

Legendre functions. The Legendre differential equation is
[
(1 − x2)

d2

dx2
− 2x

d
dx

+ l(l + 1) − m2

1 − x2

]
f(x) = 0 ,

with l = 0, 1, 2, . . ., m = 0, . . . ,±l. Its limited solutions within the interval
[−1 : 1] are the Legendre functions

Pl,m(x) =
(1 − x2)m/2

2ll!
dl+m

dxl+m
(x2 − 1)l . (A.9)

Pl,m is the product of (1−x)m/2 with a polynomial of order l−m and parity
(−1)l−m, and it has l − m zeros within the interval [−1 : 1]. We have the
following recursion formulae (P−1,... = 0):

(2l + 1)xPl,m = (l + 1 − m)Pl+1,m + (l + m)Pl−1,m

(1 − x2)
d
dx

Pl,m = −lxPl,m + (l + m)Pl−1,m

= (l + 1)xPl,m − (l + 1 − m)Pl+1,m

as well as the orthonormality relations
1∫

−1

dxPl,m(x)Pl′,m(x) =
2

2l + 1
(l + m)!
(l − m)!

δll′ .

Legendre polynomials. In the case of m = 0 the Legendre polynomials
follow from (A.9) as

Pl(x) = Pl,0(x) =
1

2ll!
dl

dxl
(x2 − 1)l .

Pl is a polynomial of order l with parity (−1)l and possesses l zeros within the
interval [−1 : 1]. The Legendre polynomials can be obtained by expanding
the functions (1 − 2xy + y2)−1/2 in powers of y:

1
√

1 − 2xy + y2
=

∞∑

l=0

ylPl(x) , |y| < 1 . (A.10)

The first five Legendre polynomials are

P0(x) = 1 , P1(x) = x , P2(x) =
1
2
(3x2 − 1)

P3(x) =
1
2
(5x3 − 3x) , P4(x) =

1
8
(35x4 − 30x2 + 3) .
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Spherical harmonics. The spherical harmonics Yl,m are defined as the
eigenfunctions of the quantum mechanical angular momentum operators L2

and Lz:

L2Yl,m = h̄2l(l + 1)Yl,m , l = 0, 1, 2, . . .

LzYl,m = h̄mYl,m , m = 0, . . . ,±l .

Their explicit forms are

Yl,m(θ, ϕ) =
(−1)l

2ll!

√
(2l + 1)!

4π

√
(l + m)!

(2l)!(l − m)!

×eimϕ sin−m θ
dl−m

d(cos θ)l−m
sin2l θ .

They form a complete orthonormal function system on the unit circle. This
means that the following orthonormality and completeness relations hold:

∫
Y ∗

l,mYl′,m′dΩ =

2π∫

0

dϕ

π∫

0

dθ sin θY ∗
l,m(θ, ϕ)Yl′,m′(θ, ϕ) = δll′δmm′

∞∑

l=0

l∑

m=−l

Y ∗
l,m(θ, ϕ)Yl,m(θ′, ϕ′) =

δ(ϕ − ϕ′)δ(cos θ − cos θ′)
sin θ

= δ(Ω − Ω′).

Further properties are:

• Parity:

Yl,m(π − θ, ϕ + π) = (−1)lYl,m(θ, ϕ) .

• Complex conjugation:

Y ∗
l,m(θ, ϕ) = (−1)mYl,−m(θ, ϕ) .

• Relationship with Legendre functions:

Yl,m(θ, ϕ) =

√
2l + 1

4π

(l − m)!
(l + m)!

Pl,m(cos θ)eimϕ , m ≥ 0 .

• Addition theorem: using

x = r

⎛

⎝
cos ϕ sin θ
sinϕ sin θ

cos θ

⎞

⎠ , x′ = r′

⎛

⎝
cos ϕ′ sin θ′

sin ϕ′ sin θ′

cos θ′

⎞

⎠

and

xx′ = rr′ cos α , cos α = sin θ sin θ′ cos(ϕ − ϕ′) + cos θ cos θ′ ,

it follows that
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Pl(cos α) =
4π

2l + 1

l∑

m=−l

Y ∗
l,m(θ′, ϕ′)Yl,m(θ, ϕ) .

We obtain from this, in line with (A.10),

1
|x − x′| =

1

r

√
1 − 2 r′

r cos α +
(

r′

r

)2
=

1
r

∞∑

l=0

(
r′

r

)l

Pl(cos α)

=
∞∑

l=0

l∑

m=−l

4π

2l + 1
r′l

rl+1
Y ∗

l,m(θ′, ϕ′)Yl,m(θ, ϕ) .

The first spherical harmonics are

Y0,0(θ, ϕ) =
1√
4π

, Y1,1(θ, ϕ) = −
√

3
8π

eiϕ sin θ

Y1,0(θ, ϕ) =

√
3
4π

cos θ , Y2,2(θ, ϕ) =

√
15
32π

e2iϕ sin2 θ

Y2,1(θ, ϕ) = −
√

15
8π

eiϕ sin θ cos θ , Y2,0(θ, ϕ) =

√
5

16π

(
3 cos2 θ − 1

)
.

A.4 Dirac Matrices and Bispinors

The Dirac matrices {α1, α2, α3, β} and {γ0, γ1, γ2, γ3} as well as γ5 and σμν

are defined representation-independently by

{αi, αj} = 2δij , {αi, β} = 0 , α2
i = β2 = 1 , αi = α†

i , β = β†

γ0 = β , γi = βαi , γμ = gμνγν

γ5 = iγ0γ1γ2γ3 = −iγ3γ2γ1γ0 = γ5 , σμν =
i
2
[γμ, γν ] .

This implies the following identities:

{γμ, γν} = 2gμν (Clifford algebra) , (γμ)2 = gμμ

γ5 = − i
4!

εμναβγμγνγαγβ , γ2
5 = 1

{γ5, γμ} = 0

γ5σμν =
i
2
εμναβσαβ

[
γ5, σμν

]
= 0

γμγν = gμν − iσμν

γμγμ = 4
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γμγνγμ = −2γν

γμγνγαγμ = 4gνα

γμγνγαγβγμ = −2γβγαγν

γμγνγαγβγργμ = 2
(
γργνγαγβ − γβγαγνγρ

)

γμσαβγμ = 0
γμσαβγργμ = 2γρσαβ .

Traces:

tr(γμ) = tr(γ5) = 0
tr(γμγν) = 4gμν

tr(σμν) = 0
tr(γμγνγ5) = 0

tr(γμγνγαγβ) = 4(gμνgαβ − gμαgνβ + gμβgνα)
tr(γ5γμγνγαγβ) = −4iεμναβ = 4iεμναβ .

Hermitean conjugation:

γ0† = γ0 , γi† = −γi , γ5† = γ5

γ0γμγ0 = γμ† , γ0γ5γ0 = −γ5†

γ0γ5γμγ0 = (γ5γμ)†

γ0σμνγ0 = σμν† .

Fourdimensional representations of the γ-matrices.

Dirac representation:

γ0 =
(

1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1
1 0

)

σ0i = i
(

0 σi

σi 0

)
, σij = εijk

(
σk 0
0 σk

)
, C = iγ2 .

Weyl representation:

γ0 =
(

0 −1
−1 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
1 0
0 −1

)

σ0i = i
(

σi 0
0 −σi

)
, σij = εijk

(
σk 0
0 σk

)
, C = iγ2

γμ
Weyl = U†γμ

DiracU , U =
1√
2

(
1 −1
1 1

)
.

Majorana representation:

γ0 =
(

0 σ2

σ2 0

)
, γ1 = i

(
σ3 0
0 σ3

)
, γ2 =

(
0 −σ2

σ2 0

)

γ3 = i
(
−σ1 0
0 −σ1

)
, γ5 =

(
σ2 0
0 −σ2

)
, C = 1
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γμ
Majorana = U†γμ

DiracU , U =
1√
2

(
1 σ2

σ2 −1

)
.

Here σi denote the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Dirac bispinors. The bispinors u(p, s), v(p, s), as well as their adjoints
ū(p, s) = u†(p, s)γ0, v̄(p, s) = v†(p, s)γ0, fulfill the Dirac equations in mo-
mentum space (h̄ = c = 1, p0 =

√
p2 + m2

0):

(/p − m0)u(p, s) = 0 , (/p + m0)v(p, s) = 0

ū(p, s)(/p − m0) = 0 , v̄(p, s)(/p + m0) = 0 .

Normalization:

ū(p, s)u(p, s) = 1 , v̄(p, s)v(p, s) = −1

ū(p, s)v(p, s) = v̄(p, s)u(p, s) = 0 .

Completeness relation:
∑

s

uα(p, s)ūβ(p, s) − vα(p, s)v̄β(p, s) = δαβ .

Projection operators:
∑

s

uα(p, s)ūβ(p, s) =
(

/p + m0

2m0

)

αβ

= [Λ+(p)]αβ

−
∑

s

vα(p, s)v̄β(p, s) =
(
−/p + m0

2m0

)

αβ

= [Λ−(p)]αβ

uα(p, s)ūβ(p, s) =
(

/p + m0

2m0

1 + γ5/s

2

)

αβ

= [Λ+(p)Σ(s)]αβ

−vα(p, s)v̄β(p, s) =
(
−/p + m0

2m0

1 + γ5/s

2

)

αβ

= [Λ−(p)Σ(s)]αβ .

Gordon decompositions:

ū(p′, s′)γμu(p, s) =
1

2m0
ū(p′, s′) [(p′ + p)μ + iσμν(p′ − p)ν ] u(p, s)

v̄(p′, s′)γμv(p, s) = − 1
2m0

v̄(p′, s′) [(p′ + p)μ + iσμν(p′ − p)ν ] v(p, s)

ū(p′, s′)γμv(p, s) =
1

2m0
ū(p′, s′) [(p′ − p)μ + iσμν(p′ + p)ν ] v(p, s)

v̄(p′, s′)γμu(p, s) = − 1
2m0

v̄(p′, s′) [(p′ − p)μ + iσμν(p′ + p)ν ] u(p, s) .





Index

action functional, 19, 120
active transformation, 21, 23
adiabatic approximation, 186, 189, 210
adjoint
– bispinor, 92, 95, 96
– Dirac equation, 95, 97, 120
– Klein-Gordon equation, 20
advanced propagator, 180, 182, 198
angular momentum operator, 358
annihilation
– electron-positron, 274, 278, 284
– pion-antipion, 346
– scattering, 262, 275, 345
anomalous magnetic moment, 118, 158
anti
– electron (positron), 110
– kaon, 17
– neutrino, 132
– particle, 6, 89
– photon, 271
– pion, 17
– proton, 245
(spin-0) antiboson, 17, 28
– factor, 331, 341
– wave function, 14, 26, 323
(spin-1/2) antifermion, 112, 131
– factor, 252, 280
– wave function, 107, 130, 211
antilinear transformation, 13, 106
approximation
– adiabatic, 186, 189, 210
– dipole, 315
– external field, 77
– mass shell, 302, 308
– nonrelativistic, 3, 13, 30, 240, 314
– reduced mass, 77
– ultrarelativistic, 240
atom
– hydrogen-like, 169, 172, 313
– nucleus, see nucleus

– pion, 15, 72, 73, 77
axial vector, 100, 132

backward propagation, 26, 130, 182,
205, 211, 321, 323

Baker-Hausdorff expansion, 54
bare
– charge, 111, 292, 300
– mass, 292, 303
Bessel
– differential equation, 69, 167, 355
– function, 69, 167, 355
β-decay, 131
Bhabba scattering, 265
bilinear form, covariant, 95, 99
bispinor, 88, 91, 133
– adjoint, 92, 95, 96
– charge conjugated, 109
– transformation, 94, 96, 114, 123, 134
Bohr
– magneton, 310
– radius, 77
boost, 24, 123, 133
Bose-Einstein statistics, 276, 328, 341
(spin-0) boson, 5, 17, 28
– factor, 331, 341
– propagator, 320
– wave function, 14, 26, 323
box normalization, 192, 320
braking radiation, 308, 317
Bremsstrahlung, 308, 317

canonical form, 8, 91
Cauchy integral theorem, 197
causality principle, 180, 206, 207, 233,

320, 343
charge
– bare, 111, 292, 300
– color, 112
– conjugated bispinor, 109
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– current conservation, 43
– current density, 13, 14
– electric, 9, 14, 91, 107
– interpretation, 14
– nucleus, 72, 79, 82
– operator, 38
– renormalized, 299, 301, 306, 309
– strangeness, 17
charge conjugation, 14, 107
– extended, 27, 130
charge density, 13, 14, 30
– radial, 81
Clebsch-Gordan coefficient, 164
Clifford algebra, 93, 359
color charge, 112
Compton
– formula, 272
– tensor, 339
– wave length, 3
Compton scattering
– against electrons, 268, 274, 283
– against pions, 336, 340
conservation
– current, 43, 144
– energy, 195, 235, 243
– four-momentum, 235, 253, 281
– momentum, 235, 243
continuity equation, 8, 9, 90, 92, 96,

353
continuum normalization, 9, 11, 92
contravariance, 350, 352
convection current density, 149, 311
correspondence principle, 4, 34
Coulomb
– force, 353
– potential, 15, 73, 169
Coulomb scattering
– nonrelativistic, 193
– of electrons, 224, 231, 317
– of pions, 324, 326
counter term, 303
coupling
– constant, 82, 253, 281, 323
– minimal, 6, 8, 89, 91, 153
– spin-orbit, 157
– spin-spin, 100, 172
– vector-axial vector, 132
covariance (form invariance), 24, 93,

350, 352
covariant
– bilinear form, 95, 99
– form, 8, 96
creation, electron-positron, 288

cross section, 190, 193, 280
– (un)polarized, 226–228
crossing symmetry, 264, 271, 276, 289,

346, 347
current
– conservation, 43, 144
– current interaction, 223, 234, 327
– electron, 234, 242, 246, 311
– transition, 234, 242, 246, 311, 327
current density
– charge, 13, 14
– convection, 149
– probability/particle, 91, 149, 191,

193, 236, 325
– spin, 149
cut-off
– frequency, 317
– parameter, 297, 298, 317
cutting of procedure, 297

damping factor, 296
Darwin term, 157
decay, β/neutron, 131
decline constant, 82
degeneracy, 75, 172, 316
– factor, 281
δ-function, square, 202
detector, 185
diagram
– Feynman, 191, 213, 242
– tadpole, 292
– tree/loop level, 223, 254, 293, 319
differential cross section, 190, 193, 280
dipole
– approximation, 315
– energy, 312
– moment, 293
Dirac
– Hamilton operator, 91, 118
– matrices, 91, 96, 97, 359
– particle, see fermion
– representation, 88, 93, 360
– sea, 16, 109, 111, 214
– solution, free, 89, 92, 113
– wave packet, 141, 149
Dirac equation, 118–120
– adjoint, 95, 97, 120
– radial, 166
– time-independent, 143, 166
– with potential, see potential
direct scattering, 244, 255, 327
divergence
– infrared, 304, 306, 317
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– ultraviolet, 293, 296, 302, 306
Dyson equation, 296

Ehrenfest theorem, 137
– generalized, 34
eigentime differential, 352
electric charge, 9, 14, 91, 107
electrodynamics, 353
– quantum, 173, 177, 178
electromagnetic interaction, 6, 28, 89
electron, 109, 152, 158, 203
– (transition) current, 234, 242, 246,

311
– anomaly, 312
– electron scattering, 255, 260
– hole, 109, 214
– positron annihilation, 274, 278, 284
– positron creation, 288
– positron scattering, 261, 265, 292
– propagator, see fermion propagator
– proton scattering, 232, 240, 244, 250
– wave function, see fermion wave

function
energy
– conservation, 195, 235, 243
– continuum, positive/negative, 15, 109
– density, 20, 120
– dipole, 312
– interval, forbidden, 6, 63, 89, 167
– momentum relation, 4, 18, 114, 353
– momentum tensor, 19, 120
– negative, 6, 12, 89, 107
– projector, 103, 105
– rest, 3, 52, 152
– shift (Lamb shift), 172, 173, 313, 316
– threshold, 297, 304
– zero point, 111
even operator, 35, 138
exchange scattering, 249, 256, 327
expectation value, 2, 108
– generalized, 32
exponential potential, 82
extended charge conjugation, 27, 130
external
– background potential, 223, 254, 267
– field approximation, 77
– self-energy, 294, 304
– vacuum polarization, 294, 300

Fermi
– constant, 131
– Dirac statistics, 257, 263, 281
(spin-1/2) fermion, 89, 112, 131

– factor, 252, 280
– loop, 281, 290, 295
– wave function, 107, 130, 211, 234
fermion propagator, 204, 205
– renormalized, 303, 306
Feshbach-Villars=FV
– FV-momentum representation, 36,

139
– FV-representation, 35, 38, 138, 141
– FV-transformation, 38, 141
Feynman
– rules, 223, 252, 269, 280, 331, 341
– Stückelberg interpretation, 26, 130,

203, 205, 213, 320
Feynman diagram, 191, 213, 242
– unconnected, 294
field
– energy, 121
– strength tensor, 354
– theory, quantized, 28, 42, 81, 177,

254
fine structure
– constant, 73
– splitting, 173
forbidden energy interval, 6, 63, 89, 167
form
– canonical, 8, 91
– factor, 242
– Hamilton, 11
– Lorentz-covariant, 8, 96
Fouldy-Wouthuysen transformation,

53, 57, 153, 156
four
– current density, 96
– force, 352
– momentum, 4, 93, 103, 105, 352
– momentum conservation, 235, 253,

281
– momentum transfer, 132, 239, 243
– polarization, 102, 105
– potential, 6, 93, 354
– vector, 349
– velocity, 352
Fourier decomposition
– propagator, 198, 206, 233, 321
– wave packet, 40, 142
Furry theorem, 290

γ-matrices, 96, 97, 359
– trace theorems, 216
Gamma-function, 174
gauge
– invariance, local, 6, 89, 296
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– Lorentz, 233, 354
– radiation, 267, 273
– transformation, local, 7, 90
Gauss unit system, 233, 269, 353
generalized=G
– G-Ehrenfest theorem, 34
– G-expectation value, 32
– G-Hermitean operator, 32, 46
– G-orthonormal states, 32
– G-scalar product, 30, 32
– G-unitary operator, 33, 46
Gordon decomposition, 148, 361
Green function calculus, 179, 203, 233,

320
gyromagnetic ratio, 152, 310

Hamilton
– equations, 34
– form, 11
Hamilton operator
– Dirac theory, 91, 118
– Klein Gordon theory, 11
– nonrelativistic, 2
Hankel function, 69, 356
Heisenberg
– picture, 33, 34
– scattering matrix, 187, 188
– uncertainty relation, 3, 40
helicity, 103, 132, 229
– operator, 103
Hermitean operator, 1, 11, 32, 112
Hilbert space, 1
hole, 109, 214
– theory, 16, 109, 214
homogeneity of space and time, 184,

206, 349
hydrogen-like atom, 169, 172, 313
hyperfine structure splitting, 172

identical particles, 255, 280, 328
improper Lorentz transformation, 24,

29, 128, 136
inertial system, 4, 93, 349
infrared
– catastrophe, 308, 317
– divergence, 304, 306, 317
integrability, 68, 74, 75, 174
interaction
– current-current, 223, 234, 327
– electromagnetic, 6, 28, 89
– strong, 28, 177, 319
– weak, 28, 131, 177, 319
inverse matrix, 98

isotropy, 349

kaon, 17
Klein
– Nishina formula, 273
– paradox, 42, 143
Klein-Gordon
– Hamilton operator, 11
– particle, see boson
– solution, free, 9, 11, 18
– wave packet, 40, 49
Klein-Gordon equation, 8, 11, 20, 320
– adjoint, 20
– radial, 67
– time-independent, 42, 67
– with potential, see potential

Lagrange
– density, 19, 120
– equation, 19, 120
Lamb shift, 172, 173, 313, 316
Landé factor, 153, 312
left-handed neutrino, 132
Legendre
– differential equation, 357
– function, 357
– polynomial, 357
light cone, 350
light-like four-vector, 266, 350
local
– gauge invariance, 6, 89, 296
– gauge transformation, 7, 90
loop
– diagram/level, 223, 254, 293, 319
– fermion, 281, 290, 295
– photon, 341
Lorentz
– boost, 24, 123, 133
– contravariance, 350, 352
– covariance, 93, 350, 352
– covariant form, 8, 96
– force, 353, 355
– gauge, 233, 354
– group, 351
– invariance, 352
– like symmetry transformation, 24,

29, 128, 136
Lorentz rotation, 123
– spatial, 24, 125, 127
Lorentz transformation, 350
– improper, 24, 29, 128, 136
– proper, 24, 121, 123

Møller scattering, 260
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magnetic moment, 152, 312
– anomalous, 118, 158
magneton, Bohr, 310
Majorana representation, 360
many-particle theory, 16, 177
mass
– bare, 292, 303
– reduced, 76
– renormalized, 303, 305
– rest, 9, 91
mass shell
– approximation, 302, 308
– condition, 284
Maxwell equations, 7, 233, 353
meson, 336
metric tensor, 349
minimal coupling, 6, 8, 89, 91, 153
Minkowski space, 349
MKS-unit system, 224, 335
modified potential, 320
momentum
– angular, 358
– conservation, 235, 243
– energy relation, 4, 18, 114, 353
– energy tensor, 19, 120
– index, 6, 14, 89, 105, 109
– operator, 2, 36
– radial, 67, 164
– representation, 36, 39, 252
– transfer, 194, 239
motion reversal transformation, 25, 129
Mott scattering, 227, 231, 326
multiple scatterings, 189
multipole expansion, 61
myon, 242

natural unit system, 224, 335
negative energy, 6, 12, 89, 107
– continuum, 15, 109
Neumann function, 356
neutrino, left/right-handed, 131
neutron, 118, 158
– decay, 131
non-locality, see smearing and position

uncertainty
non-Lorentz-like symmetry transforma-

tion, 25, 129
nonrelativistic
– approximation, 3, 13, 30, 240, 314
– Coulomb scattering, 193
– Hamilton operator, 2
– quantum mechanics, 1, 178
normalization

– box, 192, 320
– continuum, 9, 11, 92
nucleon, 342
nucleus, 15, 72, 76
– charge, 72, 79, 82
– number, 77
– radius, 72, 77, 316
– spin, 172

observable, 1, 32
odd operator, 35, 138
one-particle
– concept/interpretation, 3, 16, 30, 41,

43, 79, 112, 137, 141, 143
– operator, 33, 35, 38, 48, 138, 141, 147
one-photon vortex, 324
operator
– angular momentum, 358
– charge, 38
– even/odd, 35, 138
– G-Hermitean, 32, 46
– G-unitary, 33, 46
– Hamilton, 2, 11, 91, 118
– helicity, 103
– Hermitean, 1, 11, 32, 112
– momentum, 2, 36
– one-particle, 33, 35, 38, 48, 138, 141,

147
– position, 2, 36
– projection, 103–105, 361
– sign, 48, 147
– spin, 100, 102, 126
– unitary, 12, 33
– velocity, 35, 137
Oscillator-Coulomb potential, 77

pair
– annihilation, 111, 215
– creation, 44, 110, 214
paradox, Klein, 42, 143
parity, 65, 132, 163
– transformation, 24, 128, 351
particle
– annihilation, see pair annihilation
– creation, see pair creation
– current density, 191, 193, 236, 325
– detector, 185
– identical, 255, 280, 328
– real/virtual, 53, 214, 242, 254, 266
– resonance, 63, 66
– spin-0, see boson
– spin-1/2, see fermion
– spin-1, see photon
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– transformation, 145
passive transformation, 21, 23
Pauli
– equation, 152, 158
– matrices, 10, 361
– principle, 16, 109
– spinor, 174
– Villars procedure, 296
PCT -transformation, 26, 130
PCT
– theorem, 28
– transformation, 29, 136
penetration
– depth, 44, 71, 144
– probability, 64
perturbation theory, 76, 223, 313
phase space factor, 192, 236, 243
photon
– factor, 269, 280
– loop, 341
– polarization, 267
– wave function, 267
photon propagator, 233
– renormalized, 300, 301
picture-independent scalar product, 12,

33, 112
pion, 17
– (transition) current, 327
– antipion annihilation, 346
– antipion scattering, 345
– atom, 15, 72, 73, 77
– pion scattering, 327, 330
– production via electrons, 331, 334
– wave function, see boson wave

function
Poincaré group, 24, 121, 351
polarization, 102, 105, 226
– degree, 230
– index, 105, 109
– photon, 267
– vacuum, 53, 111, 293–295, 300, 301
polarization function, 296
– regularized, 297
polarization tensor, 295
– regularized, 296
position
– operator, 2, 36
– representation, 2, 36, 39
– uncertainty, 40, 85
positron, 110, 111, 203
– wave function, see antifermion wave

function

potential
– Coulomb, 15, 73, 169
– exponential, 82
– external background, 223, 254, 267
– modified, 320
– Oscillator-Coulomb, 77
– step, 42, 143
– well, 62, 70, 160, 168
principle
– causality, 180, 206, 207, 233, 320, 343
– correspondence, 4
– Pauli, 16, 109
– relativity, 5, 23, 349
probability
– amplitude, 187, 188
– current density, 91, 149
– density, 11, 30, 91
– penetration, 64
projector
– energy, 103, 105
– spin, 104, 105
propagation, backward, 26, 130, 182,

205, 211, 321, 323
propagator
– advanced, 180, 182, 198
– boson, 320
– fermion, 204, 205
– Fourier decomposition, 198, 206, 233,

321
– photon, 233
– renormalized, see renormalization
– retarded, 180, 182, 198
– scattering formalism, 223, 319
– theory, 182, 203, 205
proper Lorentz transformation, 24, 121,

123
proton, 118, 158
– (transition) current, 234, 242, 246
– tensor, 250
– wave function, see fermion wave

function
pseudo
– scalar, 24, 99
– vector, 100

quantization condition, 65, 75, 163, 171
quantum
– chromodynamics, 177, 319
– electrodynamics, 173, 177, 178
– field theory, 28, 42, 81, 177, 254
– flavourdynamics, 177
– fluctuation, vacuum, 173, 254, 295
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quantum mechanics
– nonrelativistic, 1, 178
– relativistic, in the narrow sense, 1,

85, 177
quark, 112, 319

Racah time reflection, 29, 136, 351
radial
– charge density, 81
– Dirac equation, 166
– Klein-Gordon equation, 67
– momentum, 67, 164
– velocity, 164
radiation
– braking, 308, 317
– catastrophe, 16, 109
– correction, 173, 223, 254, 293
– field, 173, 233, 293, 303
– gauge, 267, 273
– transition, 15
radius, Bohr, 77
reciprocal transformation, 13, 106
reduced mass, 76
– approximation, 77
reflection, 43, 64, 143, 161
– space, 24, 128, 134, 351
– time, Racah, 29, 136, 351
– total, 45
regularization, 296
– polarization function, 297
– polarization tensor, 296
– self-energy, 304
relativity
– principle, 5, 23, 349
– theory, special, 349
renormalization, 111, 292, 300
– charge, 299, 301, 306, 309
– constant, 292, 301, 305
– fermion propagator, 303, 306
– mass, 303, 305
– photon propagator, 300, 301
– vortex, 308, 309
representation
– Dirac, 88, 93, 360
– Feshbach-Villars, 35, 38, 138, 141
– Majorana, 360
– momentum, 36, 39, 252
– position, 2, 36, 39
– Weyl, 88, 93, 360
repulsion, 76, 233, 316
residue theorem, 198, 208
rest
– energy, 3, 52, 152

– mass, 9, 91
retarded propagator, 180, 182, 198
right-handed antineutrino, 132
Rosenbluth formula, 242
rotation, 123
– spatial, 24, 125, 127
Rutherford scattering, 193, 195

scalar, 24, 99, 352
scalar product, 1, 92, 349
– generalized, 30, 32
– picture-independent, 12, 33, 112
scattering, 43, 144, 185
– annihilation, 262, 275, 345
– Bhabba, 265
– Compton, 268, 274, 283, 336, 340
– Coulomb, 193, 224, 231, 317, 324,

326
– direct, 244, 255, 327
– electron-electron, 255, 260
– electron-positron, 261, 265, 292
– electron-proton, 232, 240, 244, 250
– exchange, 249, 256, 327
– formalism, 223, 319
– Møller, 260
– matrix, Heisenberg, 187, 188
– Mott, 227, 231, 326
– pion-antipion, 345
– pion-pion, 327, 330
– Rutherford, 193, 195
scattering amplitude, 187
– Dirac theory, 211
– Klein-Gordon theory, 322
– Schrödinger theory, 188
Schiff-Snyder effect, 73
Schrödinger
– equation, 2, 4, 182
– picture, 2, 33
screening, 77, 300
sea, Dirac, 16, 109, 111, 214
seagull
– scattering amplitude, 336, 338
– vortex, 338, 339
self-energy, 292, 293, 301, 305
– external, 294, 304
self-energy function, 302
– regularized, 304
series of multiple scatterings, 212, 323
shaky movement, 49, 149, 157
sign operator, 48, 147
slash notation, 203
smearing, 38, 57, 140, 156
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space
– reflection, 24, 128, 134, 351
– time translation, 350
space-like four-vector, 266, 350
spectroscopy, 75, 172
spherical harmonics, 67, 164, 358
– spinor, 164, 175
spin
– current density, 149
– flip, 144, 145
– index, see polarization index
– nucleus, 172
– operator, 100, 102, 126
– orbit coupling, 157
– projector, 104, 105
– spin coupling, 100, 172
– sum, 215, 226
spin-0 particle, see boson
spin-1/2 particle, see fermion
spin-1 particle, see photon
spinor
– Pauli, 174
– spherical harmonics, 164, 175
splitting
– fine structure, 173
– hyperfine structure, 100, 172
stability of matter, 16, 109
state density, 192
statistics
– Bose-Einstein, 276, 328, 341
– Fermi-Dirac, 257, 263, 281
step
– function, 180, 196
– potential, 42, 143
strangeness charge, 17
strong interaction, 28, 177, 319
symmetry transformation, 23
– Lorentz-like, 24, 29, 128, 136
– non-Lorentz-like, 25, 129

tadpole diagram, 292
tensor, 99
– Compton, 339
– energy-momentum, 19, 120
– field strength, 354
– metric, 349
– polarization, 295, 296
– proton, 250
theorem
– PCT , 28
– γ-matrices, 216
– Cauchy, 197
– Ehrenfest (generalized), 34, 137

– Furry, 290
– residue, 198, 208
Θ-function, 180, 196
Thomas precession, 157
threshold energy, 297, 304
time
– order, 207, 215, 245
– reflection, Racah, 29, 136, 351
– reversal transformation, 25, 129, 134
time-independent
– Dirac equation, 143, 166
– Klein-Gordon equation, 42, 67
time-like four-vector, 266, 350
total
– cross section, 190, 193, 281
– reflection, 45
trace theorems with γ-matrices, 216
transformation
– active, 21, 23
– antilinear, 13, 106
– bispinor, 94, 96, 114, 123, 134
– Feshbach-Villars, 38, 141
– Fouldy-Wouthuysen, 53, 57, 153, 156
– local gauge, 7, 90
– Lorentz, (im)proper, 24, 29, 121, 123,

128, 136
– motion reversal, 25, 129
– parity, 24, 128, 351
– particle, 145
– passive, 21, 23
– PCT , 26, 130
– PCT , 29, 136
– reciprocal, 13, 106
– symmetry, see symmetry transforma-

tion
– time reversal, 25, 129, 134
transition
– amplitude, 187
– current, 234, 242, 246, 311, 327
– radiation, 15
– rate, 190
translation, space-time, 350
transmission, 43, 64, 143, 161
tree diagram/level, 223, 254, 293, 319
tunnel effect, 63, 160
two-photon vortex, 339

ultrarelativistic approximation, 240
ultraviolet divergence, 293, 296, 302,

306
uncertainty
– position, 40, 85
– relation, Heisenberg, 3, 40
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unconnected Feynman diagram, 294
unit system
– Gauss, 233, 269, 353
– MKS, 224, 335
– natural, 224, 335
unitary operator, 12, 33

vacuum, 109, 111, 209, 349
– fluctuation, 173, 254, 295
vacuum polarization, 53, 111, 293, 295,

301
– external, 294, 300
vector, 99
– axial, 100, 132
– axial vector coupling, 132
– pseudo, 100
velocity
– operator, 35, 137
– radial, 164
virtual particle, 53, 214, 242, 254, 266
vortex, 190, 213
– correction, 293, 306, 309

– function, 306
– one-photon, 324
– renormalized, 308, 309
– seagull, 339
– two-photon, 339

Ward identity, 307, 309
wave function, 2
– photon, 267
– spin-0 (anti)boson, 14, 26, 323
– spin-1/2 (anti)fermion, 107, 130, 211
wave packet
– Dirac, 141, 149
– Fourier decomposition, 40, 142
– Klein-Gordon, 40, 49
weak interaction, 28, 131, 177, 319
well potential, 62, 70, 160, 168
Weyl representation, 88, 93, 360

zero point energy, 111
Zitterbewegung, 50


	Cover

	Front Matter

	Preface
	Table of Contents
	List of Exercises

	1. Relativistic Description of Spin-0 Particles
	1.1 Klein-Gordon Equation
	1.1.1  Canonical and Lorentz-covariant Formulationsof the Klein-Gordon Equation
	1.1.2 Hamilton Formulation of the Klein-Gordon Equation
	1.1.3 Interpretation of Negative Solutions, Antiparticles
	Exercises

	1.2 Symmetry Transformations
	1.2.1 Active and Passive Transformations
	1.2.2 Lorentz Transformations
	1.2.3 Discrete Transformations
	Exercises

	1.3  One-Particle Interpretation of the Klein-Gordon Theory
	1.3.1 Generalized Scalar Product
	1.3.2  One-particle Operatorsand Feshbach-Villars Representation
	1.3.3 Validity Range of the One-particle Concept
	1.3.4 Klein Paradox
	Exercises

	1.4  Nonrelativistic Approximation of the Klein-Gordon Theory
	1.4.1 Nonrelativistic Limit
	1.4.2 Relativistic Corrections
	Exercises

	1.5 Simple One-Particle Systems
	1.5.1 Potential Well
	1.5.2 Radial Klein-Gordon Equation
	1.5.3 Free Particle and Spherically Symmetric Potential Well
	1.5.4 Coulomb Potential
	1.5.5 Oscillator-Coulomb Potential
	Exercises


	2. Relativistic Description of Spin-1/2 Particles
	2.1 Dirac Equation
	2.1.1 Canonical Formulation of the Dirac Equation
	2.1.2 Dirac Equation in Lorentz-Covariant Form
	2.1.3 Properties of -Matrices and Covariant Bilinear Forms
	2.1.4 Spin Operator
	2.1.5 Projection Operators
	2.1.6  Interpretation of Negative Solutions, Antiparticlesand Hole Theory
	Exercises

	2.2 Symmetry Transformations
	2.2.1 Proper Lorentz Transformations
	2.2.2 Spin of Dirac Solutions
	2.2.3 Discrete Transformations
	Exercises

	2.3 One-Particle Interpretation of the Dirac Theory
	2.3.1  One-Particle Operatorsand Feshbach-Villars Representation
	2.3.2 Validity Range of the One-Particle Concept
	2.3.3 Klein Paradox
	Exercises

	2.4 Nonrelativistic Approximation of the Dirac Theory
	2.4.1 Nonrelativistic Limit
	2.4.2 Relativistic Corrections
	Exercises

	2.5 Simple One-Particle Systems
	2.5.1 Potential Well
	2.5.2 Radial Form of the Dirac Equation
	2.5.3 Free Particle and Centrally Symmetric Potential Well
	2.5.4 Coulomb Potential
	Exercises


	3. Relativistic Scattering Theory
	3.1 Review: Nonrelativistic Scattering Theory
	3.1.1 Solution of the General Schrödinger Equation
	3.1.2 Propagator Decomposition by Schrödinger Solutions
	3.1.3 Scattering Formalism
	3.1.4 Coulomb Scattering
	Exercises

	3.2 Scattering of Spin-1/2 Particles
	3.2.1 Solution of the General Dirac Equation
	3.2.2 Fourier Decomposition of the Free Fermion Propagator
	3.2.3 Scattering Formalism
	3.2.4 Trace Evaluations with -Matrices
	Exercises

	3.3 Spin-1/2 Scattering Processes
	3.3.1 Coulomb Scattering of Electrons
	3.3.2 Electron-Proton Scattering (I)
	3.3.3 Electron-Proton Scattering (II)
	3.3.4 Preliminary Feynman Rules in Momentum Space
	3.3.5 Electron-Electron Scattering
	3.3.6 Electron-Positron Scattering
	3.3.7 Compton Scattering against Electrons
	3.3.8 Electron-Positron Annihilation
	3.3.9 Conclusion: Feynman Diagrams in Momentum Space
	Exercises

	3.4 Higher Order Corrections
	3.4.1 Vacuum Polarization
	3.4.2 Self-Energy
	3.4.3 Vortex Correction
	3.4.4 Physical Consequences
	Exercises

	3.5 Scattering of Spin-0 Particles
	3.5.1 Solution of the General Klein-Gordon Equation
	3.5.2 Scattering Formalism
	3.5.3 Coulomb Scattering of Pions
	3.5.4 Pion-Pion Scattering
	3.5.5 Pion Production via Electrons
	3.5.6 Compton Scattering against Pions
	3.5.7  Conclusion: Enhanced Feynman Rulesin Momentum Space
	Exercises


	A. Appendix
	A.1 Theory of Special Relativity
	A.2 Bessel Functions, Spherical Bessel Functions
	A.3  Legendre Functions, Legendre Polynomials,Spherical Harmonics
	A.4 Dirac Matrices and Bispinors

	Index



