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Preface

It is more important to repair errors than to prevent them. This is the
quintessence of the philosophy of human cognition known as critical ratio-
nalism which is perhaps at its most dominant in modern natural sciences.
According to it insights are gained through a series of presumptions and
refutations, through preliminary solutions that are continuously, rigorously,
and thoroughly tested. Here it is of vital importance that insights are never
verifiable but, at most, falsifiable. In other words: a natural scientific theory
can at most be regarded as “not being demonstrably false” until it can be
proven wrong. By contrast, a sufficient criterion to prove its correctness does
not exist.

Newtonian mechanics, for example, could be regarded as “not being
demonstrably false” until experiments with the velocity of light were per-
formed at the end of the 19th century that were contradictory to the pre-
dictions of Newton’s theory. Since, so far, Albert Einstein’s theory of special
relativity does not contradict physical reality (and this theory being simple
in terms of its underlying assumptions), relativistic mechanics is nowadays
regarded as the legitimate successor of Newtonian mechanics. This does not
mean that Newton’s mechanics has to be abandoned. It has merely lost its
fundamental character as its range of validity is demonstrably restricted to
the domain of small velocities compared to that of light.

In the first decade of the 20th century the range of validity of Newtonian
mechanics was also restricted with regard to the size of the physical objects
being described. At this time, experiments were carried out showing that
the behavior of microscopic objects such as atoms and molecules is totally
different from the predictions of Newton’s theory. The theory more capable
of describing these new phenomena is nonrelativistic quantum mechanics and
was developed in the subsequent decade. However, already at the time of its
formulation, it was clear that the validity of this theory is also restricted as
it does not respect the principles of special relativity.

Today, about one hundred years after the advent of nonrelativistic quan-
tum mechanics, it is quantum field theories that are regarded as “not being
demonstrably false” for the description of microscopic natural phenomena.
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They are characterized by the facts that

e they can be Lorentz-covariantly formulated, thus being in agreement with
special relativity

e they are many-particle theories with infinitely many degrees of freedom
and account very precisely for particle creation and annihilation processes.

Naturally, the way toward these modern theories proceeded through some
intermediate steps. One began with nonrelativistic quantum mechanics — in
conjunction with its one-particle interpretation — and tried to extend this
theory in such a way that it becomes Lorentz-covariant. This initially led
to the Klein-Gordon equation as a relativistic description of spin-0 particles.
However, this equation contains a basic flaw because it leads to solutions with
negative energy. Apart from the fact that they seem to have no reasonable in-
terpretation, their existence implies quantum mechanically that stable atoms
are not possible as an atomic electron would fall deeper and deeper within
the unbounded negative energy spectrum via continuous radiative transitions.
Another problem of this equation is the absence of a positive definite prob-
ability density which is of fundamental importance for the usual quantum
mechanical statistical interpretation. These obstacles are the reason that for
a long time, the Klein-Gordon equation was not believed to be physically
meaningful.

In his efforts to adhere to a positive definite probability density, Dirac
developed an equation for the description of electrons (more generally: spin-
1/2 particles) which, however, also yields solutions with negative energy. Due
to the very good accordance of Dirac’s predictions with experimental results
in the low energy regime where negative energy solutions can be ignored
(e.g. energy spectrum of the hydrogen atom or gyromagnetic ratio of the
electron), it was hardly possible to negate the physical meaning of this theory
completely.

In order to prevent electrons from falling into negative energy states, Dirac
introduced a trick, the so-called hole theory. It claims that the vacuum con-
sists of a completely occupied “sea” of electrons with negative energy which,
due to Pauli’s exclusion principle, cannot be filled further by a particle. Addi-
tionally, this novel assumption allows for an (at least qualitatively acceptable)
explanation of processes with changing particle numbers. According to this,
an electron with negative energy can absorb radiation, thus being excited
into an observable state of positive energy. In addition, this electron leaves
a hole in the sea of negative energies indicating the absence of an electron
with negative energy. An observer relative to the vacuum interprets this as
the presence of a particle with an opposite charge and opposite (i.e. pos-
itive) energy. Obviously, this process of pair creation implies that, besides
the electron, there must exist another particle which distinguishes itself from
the electron just by its charge. This particle, the so-called positron, was indeed
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found a short time later and provided an impressive confirmation of Dirac’s
ideas. Today it is well-known that for each particle there exists an antiparticle
with opposite (not necessarily electric) charge quantum numbers.

The problem of the absence of a positive definite probability density could
finally be circumvented in the Klein-Gordon theory by interpreting the quan-
tities p and j as charge density and charge current density (charge interpreta-
tion). However, in this case, the transition from positive into negative energy
states could not be eliminated in terms of the hole theory, since Pauli’s ex-
clusion principle does not apply here and, therefore, a completely filled sea
of spin-0 particles with negative energy cannot exist.

The Klein-Gordon as well as the Dirac theory provides experimentally
verifiable predictions as long as they are restricted to low energy phenomena
where particle creation and annihilation processes do not play any role. How-
ever, as soon as one attempts to include high energy processes both theories
exhibit deficiencies and contradictions. Today the most successful resort is —
due to the absence of contradictions with experimental results — the transition
to quantized fields, i.e. to quantum field theories.

This book picks out a certain piece of the cognitive process just described
and deals with the theories of Klein, Gordon, and Dirac for the relativistic
description of massive, electromagnetically interacting spin-0 and spin-1/2
particles excluding quantum field theoretical aspects as far as possible (rel-
ativistic quantum mechanics “in the narrow sense”). Here the focus is on
answering the following questions:

e How far can the concepts of nonrelativistic quantum mechanics be applied
to relativistic quantum theories?

e Where are the limits of a relativistic one-particle interpretation?

e What similarities and differences exist between the Klein-Gordon and Dirac
theories?

e How can relativistic scattering processes, particularly those with pair cre-
ation and annihilation effects, be described using the Klein-Gordon and
Dirac theories without resorting to the formalism of quantum field theory
and where are the limits of this approach?

Unlike many books where the “pure theories” of Klein, Gordon, and Dirac
are treated very quickly in favor of an early introduction of field quantization,
the book in hand emphasizes this particular viewpoint in order to convey a
deeper understanding of the accompanying problems and thus to explicate
the necessity of quantum field theories.

This textbook is aimed at students of physics who are interested in a
concisely structured presentation of relativistic quantum mechanics “in the
narrow sense” and its separation from quantum field theory. With an em-
phasis on comprehensibility and physical classification, this book ranges on
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a middle mathematical level and can be read by anybody who has attended
theoretical courses of classical mechanics, classical electrodynamics, and non-
relativistic quantum mechanics.

This book is divided into three chapters and an appendix. The first chap-
ter presents the Klein-Gordon theory for the relativistic description of spin-0
particles. As mentioned above, the focus lies on the possibilities and limits
of its one-particle interpretation in the usual nonrelativistic quantum me-
chanical sense. Additionally, extensive symmetry considerations of the Klein-
Gordon theory are made, its nonrelativistic approximation is developed sys-
tematically in powers of v/c, and, finally, some simple one-particle systems
are discussed.

In the second chapter we consider the Dirac theory for the relativistic
description of spin-1/2 particles where, again, emphasis is on its one-particle
interpretation. Both theories, emanating from certain enhancements of non-
relativistic quantum mechanics, allow for a very direct one-to-one comparison
of their properties. This is reflected in the way that the individual sections
of this chapter are structured like those of the first chapter — of course, apart
from Dirac-specific issues, e.g. the hole theory or spin that are considered
separately.

The third chapter covers the description of relativistic scattering proces-
ses within the framework of the Dirac and, later on, Klein-Gordon theory. In
analogy to nonrelativistic quantum mechanics, relativistic propagator tech-
niques are developed and considered together with the well-known concepts
of scattering amplitudes and cross sections. In this way, a scattering for-
malism is created which enables one-particle scatterings in the presence of
electromagnetic background fields as well as two-particle scatterings to be
described approximately. Considering concrete scattering processes to low-
est orders, the Feynman rules are developed putting all necessary calcula-
tions onto a common ground and formalizing them graphically. However, it
is to be emphasized that these rules do not, in general, follow naturally from
our scattering formalism. Rather, to higher orders they contain solely quan-
tum field theoretical aspects. It is exactly here where this book goes for the
first time beyond relativistic quantum mechanics “in the narrow sense”. The
subsequent discussion of quantum field theoretical corrections (admittedly
without their deeper explanation) along with their excellent agreement with
experimental results may perhaps provide the strongest motivation in this
book to consider quantum field theories as the theoretical fundament of the
Feynman rules.

Important equations and relationships are summarized in boxes to allow
the reader a well-structured understanding and easy reference. Furthermore,
after each section there are a short summary as well as some exercises for
checking the understanding of the subject matter. The appendix contains a
short compilation of important formulae and concepts.
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Finally, we hope that this book helps to bridge over the gap between
nonrelativistic quantum mechanics and modern quantum field theories, and
explains comprehensibly the necessity for quantized fields by exposing rela-
tivistic quantum mechanics “in the narrow sense”.

Cologne, March 2010 Armin Wachter
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1. Relativistic Description of Spin-0 Particles

In this chapter, we deal with the relativistic description of spin-0 particles
in the “narrow sense” as mentioned in the preface, i.e. on the basis of an
adequate enhancement of nonrelativistic quantum mechanics. In doing so,
we will adhere to the one-particle interpretation of the nonrelativistic theory
to the greatest possible extent. Before we start our discussion, the principles
underlying this interpretation are summarized as follows:

Theorem 1.1: Principles of nonrelativistic quantum mechanics

1) The quantum mechanical state of a physical system is described by a
state vector |9(t)) in a complex unitary Hilbert space H. In this space a
positive definite scalar product (| ¢) is defined with the following prop-
erties:

o (¢ly) >0
o (| @) = (pl9)”
(V] (ALlw1) +A2lp2)) = A (] 1) + X2 (] p2)

(1] M+ (Y] A2) [) = AL (91| p) + A5 (Y2l )
with |1/11’2> ,|<p1’2> eEH, M2€C.

2) Physical observables are quantities that can be measured experimentally.
They are described by Hermitean operators with real eigenvalues and a
complete orthogonal eigenbasis. The quantum mechanical counterparts
to the independent classical quantities “position” z; and “momentum”
p; are the operators Z; and p;, for which the following commutation
relations hold:

The Hermitean operators corresponding to the classical dynamical vari-
ables 2(x;,p;) are obtained from the mapping

Q= Q(z; — i, pi — Pi) -

A. Wachter, Relativistic Description of Spin-0 Particles. In: A. Wachter, Relativistic
Quantum Mechanics, Theoretical and Mathematical Physics, pp. 1-84 (2011)
DOI 10.1007/978-90-481-3645-2_1 (© Springer Science+Business Media B.V. 2011
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However, there also exist observables without classical analogons such as
the particle spin.

3)Every state vector |¢) can be expanded in the orthonormal eigenbasis
{|w;)} of an observable {2:

[4) :Z|Wi> (Wil ¥) , 2|ws) = wi|wi) {wilwy) = 6i5

A measurement of a dynamical variable corresponding to the operator
{2 yields one of its eigenvalues w; with probability

Wi 2
W) = L)

(Y1)

The statistical average (expectation value) of an observable 12, resulting
from a large number of similar measurements on identical systems, is
(assuming |1) is normalized such that (|) =1)

(12) = (P|2p) = (| 2]p) .

4) The state vector |(t)) satisfies the Schrodinger equation

S dlv(®) g4
ih——— = H |y(t
L= ey
where H denotes the Hermitean operator of total energy (the Hamilton
operator). In the simplest case it is obtained from the Hamilton function
of the corresponding classical system:

H = H(z; — &;,p; — i) -
The Hermitecity of H leads to the conservation law d (4] ) /dt = 0.

These basic laws or axioms formulated in the Schrédinger picture can be con-
cretized further by choosing a particular representation (or basis). In the co-
ordinate or position representation which we will mostly use in this book, the
state vector |1(t)) is represented by a wave function ¢(x,t) encompassing
all space-time (and other) information of the physical system. The quantity
|v(z,t)|? is interpreted as a probability measure for finding the physical sys-
tem at the space-time point (x,t). In this representation the position and
momentum operators are given by

Ty =w;, pi = —ih

aﬂfi '

The corresponding expressions for the scalar product and the expectation
value of an observable 2 are

<ww=/&w%,WMW=/¥wmw
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From this and from the above mentioned 4th axiom follows the conservation
of total probability,

S [ @i np =0,

which is necessary for the statistical one-particle interpretation. On the basis
of these principles, particularly the last relation that expresses particle num-
ber conservation — or, rather, conservation of the single considered particle —
we can already now make some statements about to what extent a relativistic
enhancement of the one-particle concept is at all possible.

e Due to the possibility of particle creation at interaction energies that are
at least equal to the rest energy of the particle, the range of validity of the
one-particle view is restricted to particle energies F, particle momenta p,
and electromagnetic interaction potentials A*, for which

|E —moc?| < moc® , |pl, <moc, AE < moc? | Ap < moc ,

Car
C

where mg denotes the rest mass of the particle. This is precisely the domain
of the nonrelativistic approximation.

e Given these restrictions and Heisenberg’s uncertainty relation, it follows
that
h h
Ax > — > — .
Ap moc
This means that a relativistic particle cannot be localized more precisely
than to an area whose linear extent is large compared to the particle’s
Compton wave length \c = h/(mqc).

In the subsequent discussion of the Klein-Gordon theory (as well as of the
Dirac theory in the next chapter) these points will be especially taken into
account and further concretized.

The main features of the Klein-Gordon theory for the relativistic descrip-
tion of spin-0 particles are developed in the first section of this chapter.
Here we will particularly be confronted with negative energy states, which
can, however, be related to antiparticles using the transformation of charge
conjugation. The second section deals with the symmetry properties of the
Klein-Gordon theory. In addition to continuous symmetries, discrete symme-
try transformations are of particular interest as they will lead us to a deeper
understanding of the negative eigensolutions. In the third section we extend
and complete the one-particle picture of the Klein-Gordon theory. Introduc-
ing a generalized scalar product, we modify the nonrelativistic quantum me-
chanical framework in such a way that a consistent one-particle interpretation
becomes possible. Furthermore, we discuss the range of validity of the Klein-
Gordon one-particle picture and show some interpretational problems outside
this range. The fourth section considers the nonrelativistic approximation of
the Klein-Gordon theory. First, the nonrelativistic limit is discussed, which
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leads, as expected, to the laws of nonrelativistic quantum mechanics. Sub-
sequently (higher) relativistic corrections are incorporated by expanding the
Klein-Gordon equation in powers of v/c using the Fouldy- Wouthuysen tech-
nique. This chapter ends with the fifth section, where some simple one-particle
systems are considered, particularly with a view to a consistent one-particle
interpretation.

Note. To avoid misunderstandings, the terms “wave function”, “solution”,
and “state” are used synonymously in the following. They all refer to the
functions that solve the Klein-Gordon equation. In contrast, observable states
realized in nature are termed (anti)particles. From now on, the tag “"” for
quantum mechanical operators is suppressed.

1.1 Klein-Gordon Equation

We start our discussion of the Klein-Gordon theory by writing the Klein-
Gordon equation in canonical form. In doing so, we immediately come across
two new phenomena, which have no reasonable interpretation within the
usual quantum mechanical framework: the existence of negative energy so-
lutions and the absence of a positive definite probability density. Following
this, we bring the canonical equation into Hamilton or Schrédinger form,
which will turn out to be very useful for subsequent considerations. At the
end, we return to the above mentioned two phenomena and develop a phys-
ically acceptable interpretation for them using the transformation of charge
conjugation.

1.1.1 Canonical and Lorentz-covariant Formulations of the Klein-
Gordon Equation

In nonrelativistic quantum mechanics the starting point is the energy-
momentum relation

p2

T om’

which, using the correspondence rule

0
E —ih— , p— —ihV < p! — iho" (four-momentum) ,

ot
leads to the Schrodinger equation for free particles,
o O(x, t) R oo
h——r = —— t) .
th—s, 2mV Y(z, 1)

Due to the different orders of its temporal and spatial derivatives, this equa-
tion is not Lorentz-covariant (see footnote 1 on page 352 in the Appendix
A.1). This means that, passing from one inertial system to another, the
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equation changes its structure, thus contradicting the principle of relativ-
ity. Therefore, in order to arrive at a relativistic quantum mechanical wave
equation, it is appropriate to start from the corresponding relativistic energy-
momentum relation for free particles,

E =\/c2p? +m3c* (1.1)

where m( denotes the rest mass of the particle. Using the above replacement,
this leads to

9o(x) _

o
However, this equation has two grave flaws. On the one hand, due to the
unsymmetrical appearance of space and time derivatives, the relativistic form
invariance of this equation is not apparent. On the other hand, the operator
on the right hand side is a square root whose expansion leads to a highly
nonlocal theory.

ih (7627—12V2 + mget) Yz o(z) , v = (a").

Free Klein-Gordon equation. Both problems can be circumvented by
starting with the quadratic form of (1.1), i.e.

E? =c*p? +mict <= pi —p’ = pupt = mic? .

In this case, using the above correspondence rule, one obtains the free Klein-
Gordon equation in canonical form

2
— hza;;(zx) = (—02h2V2 +mget) p(z) , = (z") . (1.2)
This can immediately be brought into Lorentz-covariant form,
(pup" = mie?) o(a) =0, (1.3)

so that, for example, the transformational behavior of the wave function ¢
is easy to anticipate when changing the reference system. This equation was
suggested by Erwin Schrédinger in 1926 as a relativistic generalization of the
Schrodinger equation. Later it was studied in more detail by Oskar Benjamin
Klein and Walter Gordon.

First it is to be asserted that, contrary to Schriédinger’s equation, the
Klein-Gordon equation is a partial differential equation of second order in
time. So, to uniquely specify a Klein-Gordon state, one needs two initial
values, ¢(x) and Jd¢(x)/It. Furthermore, the Klein-Gordon equation seems
to be suited for the description of spin-0 particles (spinless bosons), since ¢ is
a scalar function and does not possess any internal degrees of freedom or, put
differently, the operator in (1.3) only acts on the external degrees of freedom
(space-time coordinates) of ¢.

The free solutions to (1.2) or (1.3) with definite momentum can be easily
found. They are
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1(91)(95) — e~ ilepot—pm)/h . po = +1/p? +m2c? >0

¢£’2)($) — eTi(cpot—pz)/h
or

50 @) = eI, =

+1 for r =1
—1forr=2.

Note that here and in the following, py is always meant to be the posi-
tive square root. Obviously, the Klein-Gordon equation leads to solutions
with positive energy eigenvalues E = +cpg and negative energy eigen-
values E = —cpg that are separated by the “forbidden” energy interval
] — moc?; moc?[.! While the positive solutions can be interpreted as parti-
cle wave functions, the physical meaning of the negative solutions is not clear
a priori. This makes the Klein-Gordon theory seem unattractive as a rela-
tivistic generalization of Schrodinger’s theory. However, as we will see later
on, negative solutions can be related to antiparticles that are experimen-
tally observable so that the Klein-Gordon theory indeed provides a valuable
generalization of Schrédinger’s theory. Incidentally, this is why we consider
1(92)(1‘) to be a negative solution with momentum index p, although it has
the momentum eigenvalue —p.
We will return to the interpretational problem of negative solutions later
and investigate next some further properties of the Klein-Gordon equation.

Interaction with electromagnetic fields, gauge invariance. In the
Klein-Gordon equation, the interaction of a relativistic spin-0 particle with an
electromagnetic field can, as in the Schrodinger theory, be taken into account
by the following operator replacement, the so-called minimal coupling:

0 0 h h

ih——>ih—t—eA°, vV —

e e
V- -A<+p' —pt—-A*
ot 0 c P P c ’

i i
AO
where (A*) = < A > denotes the electromagnetic four-potential and e the

electric charge of the particle. With this, (1.2) and (1.3) become?
0 ? h e\’
inZ _eA) —2(lv_a) 2t o= 1.4
[(lhat e > c(,1 . ) moc]¢ 0 (1.4)

(5054 (7~ 47) -mi =0 ®

! In the following, the solutions whose energy eigenvalues lie above the forbidden
interval (limited from below) are termed positive solutions and those with energy
eigenvalues below the forbidden interval (limited from above) negative solutions.

2 The minimal coupling is at most correct for structureless point particles which,
however, have not been observed so far. Therefore, in (1.5) additional (phe-
nomenologically based) terms of the form \F),, F*”¢ with F*” = 9" A” — 9V A*
have to be, in principle, taken into consideration.

and
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As is well-known, the Maxwell equations are invariant under local gauge
transformations of the kind

AO—>A’O:AO—18—X7 A— A =A+Vy
c Ot
or
AP —— AP = AP Py, (1.6)

where x = x(x) is an arbitrary real scalar function of the space-time coor-
dinates. As in the nonrelativistic theory, this local gauge invariance can be
carried over to the Klein-Gordon equation (1.4) or (1.5) by multiplying the
wave function ¢ by a suitably chosen phase:

(z) — ¢ (x) = " g(a) . (1.7)

In order to find the function A, we express (1.5) in terms of the primed
quantities and calculate as follows:

0= [(pa— 545 = S0ux) (9" = A% = S9x) = me?] et

C

¢ ¢ —i e € o ’

= (o= 24— Lo e (i - LA = Lo )

_ m%ch*M} &
— oA T w_ Coam_ Cau Iz
=e [(pu A ca#xmaﬂA) (p Cam = o+ ho /1)

—me’ ] ¢ (1.8)

Choosing
&
Alz) = — 1.

() = -x(2) , (1.9)

(1.8) becomes
(- £02) (- ) ] o -0,

which is formally identical to the Klein-Gordon equation (1.5). Since physical
observables are represented by bilinear forms of the kind (¢*|...|¢), a com-
mon equal phase factor does not play any role. Therefore, the Klein-Gordon
equation with minimal coupling is invariant under local gauge transforma-
tions of the electromagnetic field.?

3 Remarkably, the transformation (1.7) along with (1.9) is the same as the trans-
formation that leads to local gauge invariance in the nonrelativistic theory.
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Continuity equation. Multiplying (1.4) or (1.5) by ¢* from the left and
subsequently subtracting the complex conjugate, one obtains a continuity
equation of the form

Ip(z) N
TR Vijz)=0, (1.10)
with
_ih L0¢ (097 e 0
ple) = 2mpc? { at ( ot >¢] mOCQA ¢
ih

e

() = — Vo —(Vo*)gp] — — A¢*

§(2) = =g [0V = (V6")o] =~ Ag"s

or, in Lorentz-covariant notation,

. . ih e . cp
0ujt(x)=0, j¢ = Orp — pOP o) — — At S, ()= L ).
(@) =0, 3 = (50— 00n67) - S arae, ()= ()

Note that an overall factor was introduced in p and j due to analogy with
nonrelativistic quantum mechanics. As usual, spatial integration of (1.10)

yields the conservation law

Q= /d3xp(ac) = const .

Obviously, p(z) is not positive definite since, at a given time ¢, ¢ and 9¢/0t
can take on arbitrary values. Therefore, p and j cannot be interpreted as
probability quantities. This problem, in conjunction with the existence of
negative solutions, was the reason that the Klein-Gordon equation was ini-
tially rejected and that attempts were made to find a relativistic wave equa-
tion of first order in time and with a positive definite probability density.
This equation was indeed found by Dirac. However, as we see in Chapter 2,
the Dirac equation also yields solutions with negative energy eigenvalues.
To summarize:

Theorem 1.2: Klein-Gordon equation
in canonical and Lorentz-covariant forms

The Klein-Gordon equation is the relativistic generalization of Schrodin-
ger’s equation for spin-0 particles. For a minimal coupled electromagnetic
field, it is

[(ih% —eA0>2—02 (hV— ZA)2 —mgc‘*] $(z) =0 (1.11)

i
or, in manifestly covariant notation,

[(pﬂ _ ZA”) (p“ _ EA") _ mgcﬂ $(z) =0, (1.12)
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where myg is the rest mass and e the electric charge of the particle. These
equations are invariant under local gauge transformations of the electro-
magnetic field. From the Klein-Gordon equation follows the continuity
equation

a5 =0, (GH)I= (CJ”) ,

with
_ih 00 (09" €0
j(z) = ~omg 0"V é — (Vo*)g] — m—ocA¢ o,

as well as the conservation law
Q= /d3:cp(a:) = const .

The solutions to the free Klein-Gordon equation (A* = 0) are

1 moc _;
(r) _ 0 —ie,puzt/h _ 2 2.2
%@ = G\ po © = TP

with momentum eigenvalue +p (for » = 1) or —p (for » = 2). These
solutions are normalized such that

. (") (r)*
lh )% 6¢) / 6¢ r’
2moc? /dgm ¢£7) 81175 - ( (,;; > d);/ ' = frarr/é(p - p,) c

1.1.2 Hamilton Formulation of the Klein-Gordon Equation

The Klein-Gordon equation from Theorem 1.2 is a differential equation of
second order in time. For our subsequent discussion, it is useful to convert it
into a system of coupled differential equations of first temporal order. In this
way, it acquires a Schrodinger-like form, in which a Hamilton operator can
be identified just as in the nonrelativistic theory. Introducing two new fields
via

L0
o=vtx. (ing - ea) o =mact(e — ) (1.14)
p = ! 5 moc? + ih2 —eA% ) o
2mygc ot
— | 5 (1.15)
_ 2 3 0 0
X 2moc? (moc lhat ted > ¢

(1.11) can be rewritten as
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., 0 0 2
ihgy —eA” ) (p+x) = moc™(p = x)

(iﬁgt - BAO) (p—x) = [1 (p - EA)Q + mocz’} (P+x) -

Addition and subtraction of these two equations lead to the system of coupled
differential equations of first order in time,

L0p 1 e \? 9 o
har = o (p— CA> (@ +x) + (moc™ 4+ eA%)p

L Ox 1 e \? 9 0
1ha = o, (P—CA) (¢ +x) = (moc™ —eA”)x

which is equivalent to (1.11). Finally pooling ¢ and x into

()

leads to the Klein-Gordon equation in Hamilton form

. 8w T3 + iTQ
h—=H H=
! ot w ’ QTTL(]

Here 7; denote the Pauli matrices

/01 (0 i (10
T1 = 10 , T2 = i 0 , T3 = 0 -1 ;

which satisfy the following algebra:

2
(p — gA) + m3moc® + eAY .
c

TiT; = ieijka + (51‘]‘ 5 [Ti,Tj] = 2i6ijka 5 {Ti,Tj} = 2(5ij .
The solutions to the free Klein-Gordon equation

0 iT)p°
iha—qf =Hy , HO = % + T3moc? (1.16)

are given by (see Exercise 1)

e (x) = (moc + DPo ) o—ipuat /h

p

moC — Po
(2) _ moeC — Po +ippazt /h
vy (@) <moc+po>e ‘

To calculate p and j in the Hamilton formulation, we insert (1.14) and (1.15)
into (1.13) and obtain

plx) = ¢ (@)msi(x) = "0 = XX
](l’) = 71 [Q/JTTg(Tg + 17'2)V1/) - (V?/JT)Tg(Tg + 17'2)1[)]

2m0

—iAi/)TTg,(T:; +im)Y .
moc
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Overall, we arrive at the following theorem equivalent to Theorem 1.2:

Theorem 1.3: Klein-Gordon equation in Hamilton form

With the replacements

¢>:S0+Xa (ih%—6A0>¢:m0C2(§O—X) ) ,(/}: <§>

in (1.11), the Klein-Gordon equation in Hamilton form follows as

oY T3 + i1
ih— =Hvy , H=
ot w ’ 27’710
where 7; denote the Pauli matrices. The corresponding expressions for p

and j are

e \2
(p— —A) + m3moc? + eA? (1.17)
c

p(z) = P(z)m9() = ™ — XX

_2i_7ZO [0T73(73 + i) Vo — (V1) 73(73 + im2)0)]

—%A’l/)TTg(Tg + imp)Y

i(z) =

Q= /:zxp@) - / Pz (@)ms(a)

In the Hamilton formulation, the solutions to the free Klein-Gordon equa-
tions are

(r) _ 1 (r) —ie,puzt /R
vple) = (27rh)3/2w Pl (1.18)
v (p) = —— <m00+€rp0) '
2/mocpy \ MoC — €po )

with momentum eigenvalue +p (for » = 1) or —p (for » = 2). These
solutions are normalized such that

/ ol (2) sl (2) = er8nd(p — P)

T (p)r @) (p) = €., , ¥ (p) = ¥ (—p) . (1.19)

It is important to note that in (1.17) the Hamilton operator H is not Her-
mitean (since ity is not Hermitean). From this it immediately becomes appar-
ent, why it is impossible to find a positive definite probability density (includ-
ing total probability conservation): using the nonrelativistic scalar product

Wlo)= [ @evlo, (v]0fo) = [ davios (1.20)
and the adjunction relation

(| O|p) = (¢| OF \1/)>* (O linear operator) , (1.21)
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we have
B 9 oy
iha—‘f = H)p = ihwa—qf =yTHy —iha% = (Hy)" = (WTHyp)*

:”h%ww»=<w|H\w>—<w|H|w>*=<le—HTI¢>#0-

Furthermore, the non-Hermitecity of H is the reason that its eigenstates are
generally not orthogonal with respect to (1.20).

Another important consequence of the non-Hermitecity of H is that e'¥ is
not unitary. This is one indication that in the Klein-Gordon theory the usage
of the scalar product (1.20) seems to be unsuitable as it leads to different
results in different pictures (for example, the Schrédinger picture used here,
or the Heisenberg picture). We will tackle this problem in Subsection 1.3.1.

1.1.3 Interpretation of Negative Solutions, Antiparticles

So far, we have written down the Klein-Gordon equation in canonical,
Lorentz-covariant, and Hamilton forms and looked at some of its formal prop-
erties. Now we turn to the negative Klein-Gordon solutions which we have
so far ignored. Our aim is to find a physically meaningful interpretation for
them as well as for the quantities @, p, and j.

Charge conjugation C. We again consider the canonical Klein-Gordon
equation

2
[(ﬁzgt - eA0> —c? (p - SA)2 — m%c‘l] o (z)=0, (1.22)

where ¢(~) denotes a solution with negative energy. Transforming this equa-
tion by taking its complex conjugate, one obtains the mathematically equiv-
alent relation

2 2
[(ihgt + eA°> —c? (p + EA) - m%c‘l} o) =0, (1.23)
with
¢ (@) = o) (x) .

The consequences of this become even clearer if we start from the eigenvalue
equation of a negative eigenstate ¥(~) in Hamilton form,

T3 + iTQ
2m0

e 2
(p — —A) + T3moc? + eAO} 7 (x) = —|Ew T (x) , (1.24)
C

and apply complex conjugation to it. This yields

[73 +imy

€4\’ 2 of g(=) -)
e (p—i—EA) +rymoc® — A | W) (z) = +| B[S (x) | (1.25)
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with
v () = ()

All in all, if (=) or ¥/(=) describes a negative Klein-Gordon state with charge
+e within the potential A*, then QS(C_) = ¢()* or w(c_) = 1(7)* describes
a positive Klein-Gordon state with charge —e within the same potential A*.
Correspondingly, the above transformation is called charge conjugation. Ob-
viously, it is a reciprocal transformation since its twofold application leads
back to the original equation. Furthermore, it is antilinear 4, since, going from
(1.22) to (1.23), the relative sign between the differential and potential terms
is changed. Therefore, charge conjugation opens us a way to a physical inter-
pretation of negative Klein-Gordon solutions whose charge conjugates are to
be regarded as the quantum mechanical wave functions of antiparticles with
charge —e.
As regards the free Klein-Gordon solutions, charge conjugation yields

o0 2 (2) = o2V (x) , U3 () = pPV () .

In this case the original as well as the charge conjugated wave functions are
solutions to the same equation, because the distinction between free states
with different charges is not possible.

Charge density, charge current density. We are now in a position to
give the quantities @, p, and j physically meaningful interpretations. As we
have seen above, the quantity

p=1Im = 0 — XX, /d%p(m) = () = const

cannot generally be taken as a probability density, since it is not positive defi-
nite. However, if we restrict ourselves to the validity range of the one-particle
interpretation (to be more accurately defined later), i.e. to the nonrelativistic
approximation mentioned at the beginning of this chapter, p becomes posi-
tive definite for positive Klein-Gordon solutions, |¢| > |x|, and negative for
negative solutions, |p| < |x| (see Subsection 1.4.1). Since positive solutions
belong to particles with charge 4+e and the charge conjugates of negative
solutions belong to antiparticles with charge —e, we can interpret the expres-
sions p(&) (built by 1/)&)) as electric charge density and §&) as electric charge
current density of a particle or an antiparticle. Consequently, Q*) = +1 is
the (conserved) total charge of the particle or antiparticle (charge interpre-
tation).5

4 An operator O is called antilinear if O(a11 + asth2) = af OYr + a5 0.

® This interpretation can also be maintained outside the validity range of the one-
particle picture. In this case @ denotes the conserved total charge of all particles
and antiparticles. Consequently, the charge density p may take on different signs
at different space-time points.
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Theorem 1.4: Charge conjugation C and charge interpretation
in the Klein-Gordon theory

e In the Klein-Gordon theory the charge conjugation C' is defined by the
transformation

d(x) — ¢c(x) = ¢*(x) (canonical form)
Y(x) — Yo(x) = 1*(x) (Hamilton form).

It turns a positive [negative] Klein-Gordon solution of charge +e [—e]
into a negative [positive] Klein-Gordon solution of charge —e [+e].

e A positive Klein-Gordon solution ¢(*) or 1)(+) represents a physical spin-
0 particle of charge +e within the potential A¥, while the charge con-
jugate of the negative solution d)(c_) or wé_) (and not the original nega-
tive solution) describes the physical antiparticle with opposite charge —e
within the same potential A*.

e The quantities @, p, and j that are composed of ¢(*) or () [(b(_) or
1/1(_)] can be interpreted as the electric charge, charge density, and charge
current density of the physical particle [antiparticle] (charge interpreta-
tion).

While the wave function of an antiparticle is described by the charge conju-
gated negative solution, one obtains its charge quantities @, p, and j using
the original negative solutions. In Section 1.3, we extend this principle to the
definition of picture-independent scalar products and expectation values.

Now it becomes clear why we have assigned the negative free Klein-
Gordon solution qﬁg) [ g)] the index p, although it possesses the momentum
eigenvalue —p. This is because this solution should be associated with the
corresponding antiparticle (with opposite momentum and energy eigenvalue).

That the statements of Theorem 1.4 do in fact agree with nature is con-
firmed, on the one hand, by the experimental fact that, for each known spin-0
particle, a corresponding antiparticle has been found. On the other hand, as
we see in Chapter 3, they are in accordance with experimentally verifiable
predictions from scattering theory.

Overall, we see that the relativistic generalization of Schrédinger’s theory
to the Klein-Gordon theory leads to a new degree of freedom, the electric
charge, whereas the nonrelativistic theory describes states with only one
charge sign.® In this context it is also important to note that in our con-
siderations we could have equally started with the Klein-Gordon equation
for states of charge —e, since the sign of the charge does not play a decisive
role at any stage. Consequently, particles would carry the charge —e described

6 This is a characteristic of all relativistic enhancements.
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by positive solutions, and antiparticles would have the charge +e described
by the charge conjugated negative solutions.

Interpretation of the negative solutions. Although we were able to give
the charge conjugated negative Klein-Gordon solutions a physically meaning-
ful interpretation, there are still two serious points open, namely:

e the physical implications stemming from the mere existence of negative
solutions and

e the physical interpretation of the negative solutions.

In our previous considerations the existence of solutions with negative energy
leads to problems and physical nonsense. Think, for example, of a pion atom
consisting of a positively charged nucleus and a circuiting negatively charged
pion (spin-0 particle). The corresponding energy spectrum can be calculated,
for example, by incorporating the Coulomb potential into the Klein-Gordon
equation (see Subsection 1.5.4). It is depicted qualitatively in Figure 1.1.
The bound states directly below the positive energy continuum with
E < moc? generally agree with experimental results. So there is no doubt
that these are the true bound states of the pion atom. On the other hand,
the existence of the negative energy continuum implies that a ground state
pion could fall deeper and deeper through continuous radiation transitions.

E

positive
energy continuum

+moc? — —
0—4 bound
states
—m002 B
negative

energy continuum

Fig. 1.1. Qualitative energy spectrum of a pion atom. Due to the existence of
negative energy states, the pion could fall deeper and deeper through continuous
radiation transitions.
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Accordingly, the atom would be unstable and a radiation catastrophe would
occur due to the continuous emission of light.” Nevertheless, it is clear that
none of these effects are observed; our world could not exist if this decay was
present.

As we see later, the same problem exists in the Dirac theory for describing
spin-1/2 particles. But there Dirac introduced a trick known as the hole theory
in order to avoid the radiation catastrophe. According to this model, the
vacuum is regarded as a “sea” completely occupied by spin-1/2 particles with
negative energies, which, due to Pauli’s exclusion principle, cannot be filled
by any further particles. Apart from the fact that the radiation catastrophe
is now avoided, the negative states acquire a direct physical meaning with
physical consequences, for example, the creation and annihilation of particle-
antiparticle pairs or the vacuum polarization.

It is clear that the hole theory cannot be transferred to the spin-0 case in
hand, since the Pauli principle does not apply here. However, even if the hole
theory could be applied here in some way, it is to be kept in mind that, in
any case, it would mean turning away from the one-particle concept toward
a many-particle theory (with infinitely many degrees of freedom). Therefore,
within the framework of the targeted one-particle interpretation, we have to
leave the physical interpretation of the negative solutions open.

Résumé. All in all, it can be ascertained that using the concepts of charge
conjugation and charge interpretation, we can give the positive and the charge
conjugated negative energy solutions as well as @, p, and 7 physically mean-
ingful interpretations as particle, antiparticle, charge, charge density, and
charge current density. However, with a view to a consistent one-particle
interpretation in the usual nonrelativistic quantum mechanical sense, three
points are still open:

[1] The one-particle interpretation requires that positive and negative solu-
tions can be completely decoupled from one another, i.e. that each charged
Klein-Gordon state can be represented by a superposition of pure negative
or pure positive solutions. However, in general, a Klein-Gordon state is
composed of the complete system of positive and negative solutions. We
therefore have to clarify under which conditions or within which limits a
complete decoupling of positive and negative solutions is possible. Such
a splitting leads simultaneously to a positive or negative definite charge
density so that a quantum mechanical statistical interpretation becomes
possible.

[2] A complete decoupling of positive and negative solutions also implies that
not all relativistic operators are applicable with respect to the one-particle
concept since they generally mix positive and negative solutions. Hence,

7 Strictly speaking, the pion atom is unstable due to other effects. However, these
effects happen much more slowly than the atom’s life time as predicted according
to the radiation transitions into negative energy levels.
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the question arises: what are meaningful one-particle operators and how
can they be constructed?

[3] In order to be able to make quantum mechanical probability statements
about the state of spin-0 particles, we need a physically meaningful defini-
tion of scalar products and expectation values that are independent from
the used picture, for example the Schrodinger or the Dirac picture etc.
(see the remarks after Theorem 1.3).

As we see in the following pages, these (and other) points can be resolved, so
that we finally get a reasonably consistent one-particle picture within certain
limits.

At the end of this section we point out that the charge through which a
boson distinguishes itself from its antiboson does not necessarily need to be
electric. Whereas the pion 7~ and antipion 7T differ indeed in the sign of the
electric charge, there also exist bosons such as the kaon K, and antikaon K
that are both electrically neutral but possess different signs of the so-called
strangeness charge. Furthermore, a boson may also carry no charge at all. In
this case the corresponding wave function must obey

¢=¢clp =tbc]=Q=0,p=0,5=0.

However, within a consistent one-particle interpretation, considering such
neutral particles is problematic, since in this case a complete decoupling of
positive and negative solutions is not possible (see [1]).

Summary

e The Klein-Gordon theory is the relativistic generalization of non-
relativistic quantum mechanics for the description of spin-0 particles.
Starting from the canonical or Lorentz-covariant representation, this
theory can be transferred into Hamilton form.

e The Klein-Gordon theory differs from the nonrelativistic theory in two
important points: firstly, the Klein-Gordon equation leads to solutions
with positive and negative energy. Secondly, due to the non-Hermitecity
of the Klein-Gordon-Hamilton operator, j° is not positive definite and
can therefore not be interpreted as a probability density.

e With the help of the charge conjugation and the charge interpreta-
tion, these two phenomena can be interpreted in a physically meaningful
way: particles of charge +e are described by positive Klein-Gordon so-
lutions and antiparticles of charge —e by the charge conjugates of
negative solutions. j¥ is the electric charge density of the particle and
7 the corresponding charge current density.
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e The problems associated with negative solutions (interpretation, radia-
tion catastrophe) cannot be solved within the one-particle concept.

e With a view to the most consistent probabilistic one-particle interpreta-
tion of the Klein-Gordon theory, two issues are still open: to what extent
is a complete decoupling of positive and negative solutions possible, and
how can we define a physically sensible as well as picture-independent
scalar product?

Exercises

1. Solutions of the free Klein-Gordon equation. Show that the solu-
tions to the free Klein-Gordon equation (1.16) with sharp momentum are
given by (1.18).

Solution. To solve (1.16) we make the ansatz
w(x) _ <§00) ei(pa:fEt)/h ,
X0
leading to the equation system

2 2

D p

E————mo® ) po—Z—x0 =0
2m0 2m0

) (1.26)

p

0.
2m0

p?
Yo + <E + Yy + moc2> X0
mo

It is a necessary condition for the existence of nontrivial solutions that the
coefficient determinant vanishes:

P’ 5 P’
2 e _P
2m0 277?,0
2 2 =0
p

p 2
— E+ — +mgpc
2m0 2m0 0

2 2 2 2
— E?— P +moc? | + p =0
2m0 2m0
As expected, this again leads to the relativistic energy-momentum relation
for free particles:

E®) = 4¢y/p? + m2c = +cpo
EC) = —¢\/p?2 + mic2 = —cpy .

The (unnormalized) solutions corresponding to E®) and E() are finally
calculated from (1.26) as

E? = p*c + m3ct
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B ) () = (moc +P0> e iero P 1))

mopC — Po
- . (=) _ moc — Po +i(cpo+px)/ (2)
O (@) (moc+p0)e ~ (@) .

2. Lagrange density and energy-momentum tensor of the free Klein-
Gordon field. Determine the Lagrange density of the free Klein-Gordon
field in the Hamilton formulation. Using the energy-momentum tensor, show
that the energy is given by

2

E = /d3x¢TTgH o, HO = P —— (73 + i72) + T3M0C? .
2m0

Solution. In the Hamilton formulation the equation of motion of the free
Klein-Gordon field is

oy
ot

1 is a two-component complex field and can be expressed as

Y =1 +ihg,

where 11 5 denote two real fields. Therefore, the Lagrange density can be
presented as a function of these two fields and their derivatives. Equivalently,
the Lagrange density can also be formulated as a function of ¢, ¢ = i3,
and their derivatives, leading to
o) h’
L= mpﬁ’ — (V) (73 + i) V) — moc?drst) .

2m0

ih— = HOy . (1.27)

In order to see this, we look at the Lagrange equations of the action functional
= /d4x£ . (1.28)

Its variation with respect to the components of v leads directly to (1.27),
since we have (a =1, 2)

ol oL oL

— =0 = — -0 — =0 (Lagrange equation
Db 0o " 0(Optha) ( )
oL o oL v oc 0
o Ot O(00a/0t) AVia)
oL . O oL

= —mgoc? [T39]a + iR

O ot 900 /0t)
oL AV )
Va(qua) = 2m0 [(T3 + 17'2)¢]O¢

and therefore
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2v2 free
ihawCY _ v (13 + iT9)1b]a + moc?[m3¢] | Klein-Gordon |. (1.29)
ot 2m0 .
equation

Varying (1.28) with respect to the components of ¢, one obtains the corres-
ponding equation of motion for :

ol oL oL
=0 = -0 =0 (Lagrange equation
awa awa H a(aﬂwa) ( g g q )
oL - g oL v oc 0
Do OLO(0%a/Ot)  ~ O(Via)
oc 907 oL T
EN = —moc”[YT3]a , m = iMq
oL 5 v _
Va(v,(/)a) - 2m0 [1/}(73 + 17—2)]04
) free
Oy h°v? . - adjoint
— —ih at 2my [ (7 +im)la + moc* [75]o Kljein—Gordon
equation
Next we use the energy-momentum tensor
oL oL -
T/LV — 3"?% + ~ 8"?% _ gp,yﬁ
0pta) (Ourha)
to calculate the energy density 7°°:
700 _ oL Oq + oL Mo
OO, /0t) Ot 0(0vY,/0t) Ot
52

= — (V) (13 + i) Vip + moc®Prs1) .

2m0

This finally leads to the energy

B [dtar®

2
= /d‘?’x [R(V&)(Tg + iTQ)V?/J + m0621/_)T31,ZJ:|

2m0
(partial integration)

2
- /d3x1ﬁ {—h v (13 +im2) + m062T3:| P

2m0
= / BapHOy = / Baptrs HOy

which is positive for positive as well as for negative Klein-Gordon fields. The
interpretation of this result becomes apparent in Subsection 1.3.1, where
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we define a generalized scalar product for spin-0 particles and antiparticles
consistent with the one-particle concept.

Note: if we had formulated the Lagrange density £ with 1t instead of 1,
we would have arrived at the same equation of motion (1.29). However, we
require the action I to be real which, in the case of 1, leads to the condition

. -0 5 - . -
I = /d?’xdt |:1fl aittb — Tm(vw)(Tg + 17'2)V’l/1 — moc2f¢)7'3'l/1:|
(partial integration)
V2
/d3xdt¢ [17’1 — (13 +im) — m082T3:| )
2my

:/d3xdt1/JT73[h§—H }z/} Re(T) .

As one can easily show, this is indeed the case, since ifiT30/0t as well as
73H©) are Hermitean. By contrast, the integral I will not be real if £ is
constructed using the field " instead of .

1.2 Symmetry Transformations

In this section we initially postpone our efforts for a physically consistent
one-particle interpretation of the Klein-Gordon theory and, instead, begin
by considering some further formal properties of the Klein-Gordon equation,
namely its symmetry properties. We first define more precisely the terms
“transformation” and “symmetry transformation”. Then we consider the con-
tinuous and discrete symmetries of the Klein-Gordon equation. In doing so,
the latter, along with the charge conjugation C' from Subsection 1.1.3, will
lead us to a better understanding of the negative solutions, especially with a
view to the aspired one-particle interpretation.

1.2.1 Active and Passive Transformations

In principle, one distinguishes between two classes of transformations. The
first class consists of active transformations where the physical state is trans-
formed, while the original and the transformed states are observed from the
same reference frame. An example of this kind are the gauge transformations
of the electromagnetic field [see (1.6) and (1.7)], which we have already iden-
tified as symmetry transformations of the Klein-Gordon theory, as they leave
the form of the Klein-Gordon equation unchanged.

The second class is passive transformations. Here, not the physical state
but the reference frame (or the basis system) is transformed, so that only
the perspective changes, from which the same state is observed. These trans-
formations are also called coordinate transformations as they always imply a
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change in the space-time coordinates. In this book we are dealing with rel-
ativistic theories, therefore the interesting transformations are the Lorentz
transformations.

It is clear that to each passive transformation we can assign an active
transformation leading to the same consequences with respect to the appear-
ance or the description of a physical state. In other words, transforming the
observer’s reference frame or, instead, the physical state in the “opposite
direction” leads to the same appearance of a physical state.

In order to clarify the general relationship between a passive and the cor-
responding active transformation, consider an observer linked to his reference
frame and looking at a space point, whose position he denotes by x. There he
sees a physical state (e.g. spin-0 particle, electromagnetic field) and calls it
z(x). We initially imagine that a transformation (translation or rotation) of
the reference frame is performed and that the observer is told the correspon-
ding transformation law.® From this he derives the coordinate vector =’ of
his original observation point in the transformed system, looks at the original
state from the new perspective and denotes its pattern by z'(x’). Obviously,
this procedure is equivalent to the passive transformation (see Figure 1.2 top)

passive
transformation

[ . active
transformation

Fig. 1.2. Passive and active transformations. Upper picture: from the passive view
point the reference frame is shifted to the right and down. Lower picture: from the
active view point the physical state is shifted in the opposite direction.

8 Without restricting generality, it is assumed that the physical state is time-
independent and the transformation purely spatial.
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2(x) — 2/ (x') .

Now we assume instead that the observer closes his eyes and does not notice
the change in the reference frame. Once he opens his eyes again, he sees a
pattern different from z(x), which he denotes by z'(x), because he thinks
that he is still looking in the same direction at the same point. Obviously,
from the observer’s view point, the active transformation

2(x) — ()

has taken place, and he concludes that the physical state itself has been
transformed (see Figure 1.2 bottom).
Once the transformation law of a passive transformation, e.g. of the form

Z(a') = fr(z(2)], @' = K(z) , o= K '(a") (1.30)
is known, the corresponding active transformation follows as

Z(x) =2 [K' ()] = fx (2 [K ' (z)]) . (1.31)

The mapping passive transformation — active transformation is in principle
always possible, whereas the mapping in the opposite direction is generally
not possible. This means that there exist active transformations that can-
not (or can only partially) be connected to passive transformations. This is
particularly apparent, for example, in the charge conjugation transformation
(see Theorem 1.4).

With this background, the term “symmetry transformation” can now be
specified as follows: a symmetry transformation leads to formally identical
equations of motion and, therefore, to physically equivalent situations, either
at the transition from the original to the transformed reference frame (passive
case) or at the transition from the original to the transformed physical state
(active case).

Keeping these considerations in mind, we now turn to the symmetry op-
erations of the Klein-Gordon theory.

1.2.2 Lorentz Transformations

The fundamental motivation for the Klein-Gordon equation was that it
should obey the principles of special relativity. This implies the form in-
variance of the Klein-Gordon equation (1.12) under Lorentz transformations
(see Appendix A.1) or, rather, under proper Lorentz transformations. How-
ever, it is easy to show that the Klein-Gordon equation is form invariant even
under general transformations of the kind

at — 't = AF Y+ a . (1.32)

On the one hand, this is because the scalar character of the Klein-Gordon
wave function implies that under (1.32) it is changed at most by a phase,
which means in the passive case:
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¢(x) — ¢'(z') = Ad(z) , [A[=1.
On the other hand, in (1.12) the operator acting on ¢ is a Lorentz scalar due
to

pt— p't = At pY | AF(x) — AM(2') = AP, AY () .

From this immediately follows the form invariance of the Klein-Gordon equa-
tion under the whole Poincaré group. If we consider only proper Lorentz
transformations, i.e. boosts and rotations, A*, depends on continuous param-
eters whose possible values include the identity transformation. Therefore, in
this case, the phase must be A = 1.7

1.2.3 Discrete Transformations

Parity transformation P. As an example of improper (discrete) Lorentz-
like symmetry transformations, we consider the orthochronous transforma-
tion of space reflection, also called parity transformation, which is defined
via

(A*) = , A% >0, det(A",) = —1.

It reverses the sign of the spatial coordinates and leaves the temporal compo-
nent unchanged. Obviously, it must hold that A? = 1, since a twofold appli-
cation of the parity transformation is the identity transformation (A2 = 1).
Thus, in the passive case we have

r—x'=—xz,t—1t=t
o(x,t) — op(@',t") = Apd(x,t) , Ap = =1 | passive space
Az, t) — A%(x',t') = Az, 1) reversal P,

A(z,t) — Ap(a',t') = —A(x,t)
where P stands for the parity transformation. This means that, under the
parity transformation, ¢ behaves either as a scalar (4+) or as a pseudo-scalar
(—). Using the general scheme from (1.30) and (1.31), the corresponding
active transformation is obtained as

¢($,t) - ¢p($,t) = )‘Pd)(7$7t)
Az, t) — AY(z,t) = AY(—=x,1)
A(x,t) — Ap(x,t) = —A(—a,t)

active space

reversal P. (1.33)

9 Wave functions that are not changed under spatial rotations describe, by defini-
tion, particles with spin 0. Thus, we have a group or transformation theoretical
argument, that the Klein-Gordon equation describes spin-0 particles. In Subsec-
tion 2.2.2 we give a transformation theoretical argument for the fact that the
Dirac equation describes spin-1/2 particles.
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The invariance of the Klein-Gordon equation under this transformation
means that the mirror image of a physical Klein-Gordon process also rep-
resents a process that can be described by the Klein-Gordon equation.'”
Applying the active parity transformation to the free Klein-Gordon states
gbg’Q) (z,t) yields

00 (@, 1) — Apdl? (~2,1) = Apo D (@.1) .

On the particle level, this is in accordance with our expectation: the parity
transformation reverses the momentum of a spin-0 particle.

Time reversal transformation T'. Apart from Lorentz-like transforma-
tions there also exist non-Lorentz-like discrete symmetry operations, for ex-
ample the time reversal transformation. The physical content of the time
reversal can be explained best using the idea of a film. If a physical Klein-
Gordon process is recorded by a camera, time reversal means that the film
played backward also represents a series of physically realizable events.

The time reversal transformation, which should be better termed “motion
reversal transformation”, reverses all directions of motions and that of time,
and therefore all spatial components of the four-momentum. In contrast,
its Oth component remains unchanged due to pg = po(p?). The same holds
for the four-potential, since A is generated by moving currents and A° by
charges. Thus, from the passive point of view, time reversal'! (indicated by
the symbol T') means

r—x=x,t—t=—t

A% (@, t) — AQ(2/ ') = A%(x,t) passive time

reversal T’ (1.34)

Az, t) — Ap(a/,t') = —A(z,t)
and
ihd? — ihd° = —ihd° |, ihd' — iK' = ihd" .

In order to see how the wave function ¢ is transformed under time reversal,
we start with the Klein-Gordon equation in the transformed (primed) system,

[(ma; - %AT,#) (iha’“ - ZA;) - mgcﬂ or(z') =0, (1.35)

and express the differential and potential terms by the original quantities

10 This analogy is not yet complete since a mirror merely reverses the component
perpendicular to its plane. Only after an additional rotation by m around this
vertical line one arrives at the parity transformation. However, the rotation is a
proper Lorentz transformation and was already discussed above.

"1 We emphasize again that time reversal is not a Lorentz-like transformation.
Strictly speaking, it is therefore not justified to call it a “passive transforma-
tion”. The time reversal is not to be confused with the nonorthochronous Lorentz
transformation of time refiection, to which we return in Exercise 3.
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0 = [(=indo - Say) (-ind" = Sa%) + (in; + S 4;) (in0' + Sa7)
c c c c

- mgcz} or() .
As can easily be seen, this relationship leads to the Klein-Gordon equation
in the unprimed system, formally identical to (1.35), if ¢ is transformed as

o(@,1) — (V) = A" (@,) , [Ar| =1 }

Here the condition for Ar reflects the fact that the twofold application of
time reversal leads back to the original state. The active time reversal trans-
formation follows from (1.34) and (1.36) as

¢(x,t) — or(@,t) = Ard*(z, —t)
A%z, t) — AY(z,t) = A%z, —t)
A(x,t) — Ar(x,t) = —A(x, 1)
Applied to the free Klein-Gordon solutions, active time reversal yields
02 (@, 1) — Argfl D" (@, 1) = Mol (1) .

Like the parity transformation, the time reversal reverses the momentum of
a spin-0 particle.

passive time

reversal 7. (1.36)

active time

reversal 7. (1.37)

PCT-transformation (no symmetry transformation). We now come
to a central point, which is particularly important for the further development
of both the one-particle interpretation in the next section as well as the rela-
tivistic scattering theory in Chapter 3. On the basis of the charge conjugation
discussed in Subsection 1.1.3, the wave function of a physical spin-0 particle
of charge —e is obtained by starting with the negative Klein-Gordon solution
#—) with charge +e and taking the charge conjugate ¢(C_) of it. However,
since space reversal P and time reversal T are symmetry transformations,
we can equally use them for the construction of antiparticle wave functions.
Thus, following Theorem 1.4 as well as (1.33) and (1.37), the combination of
the three transformations P, T', and C', and their application to the negative
solution ¢() yields in the active case (ignoring any phases)

o) () — dpor(x) = 6 () .
Since QS;_C)VT must be the wave function of an antiparticle because of the

C-operation, an important statement, known as Feynman-Stiickelberg inter-
pretation, follows:

Theorem 1.5: Feynman-Stiickelberg interpretation
in the Klein-Gordon theory

Due to the PCT-transformation, the wave function of a physical spin-0
antiparticle of charge —e can be interpreted as a negative Klein-Gordon
solution of charge +e moving backward in space and time.
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We can easily prove the correctness of this interpretation by taking the eigen-
value equation for a negative Klein-Gordon state of charge +e in the Hamilton
formulation,

T3+ imy (h e

2
_ —_—A 2 AO
e -V . (m)) + m3moc” + eA”(x)

. v ()

= —|Eg)(x)
and applying the passive PCT-transformation to it. Taking into account
't =—at | Vg =-Vyu, Uper(d) =n¥(z), Apop(a') = A(z) ,

this yields

T3+ im0 (R e 2 _
7327% 2 (in/ + CAPCT(x’)> + m3moc? — eAbor(2) Q’I(DC)T(JU’)
0

= +EWSdr ()

which is the eigenvalue equation for a positive Klein-Gordon state of charge
—e with reversed direction of motion in space and time.

The Feynman-Stiickelberg interpretation has two important consequences.
First, it offers a way to describe antiparticles and particularly their most likely
quantum states by the original negative solutions (and not only by their
charge conjugates). This fact is utilized in the next section for the definition
of physically meaningful expectation values in the sense of the one-particle
interpretation. The other consequence is that its application gives a great ad-
vantage in describing relativistic scattering processes (Chapter 3) and leads
to experimentally verifiable results.

Extended charge conjugation C. The charge conjugation C is a math-
ematical equivalence operation but not a symmetry transformation as it
changes the formal shape of the Klein-Gordon equation [compare (1.22) with
(1.23) and (1.24) with (1.25)]. However, we can extend it to a non-Lorentz-like
symmetry transformation, if we additionally change the sign of the electro-
magnetic potentials:

¢($,t) - QSc(ib,t) >‘C¢*(x7t) ) |>‘C| =1
A%z, t) — Ad(x,t) = —A%(z,t)
A(x,t) — Ac(x,t) = —A(x, 1)

active charge

conjugation C. (1.38)

We also call this extended transformation charge conjugation and introduce
the new symbol C to distinguish it from the former C-transformation. As
before, the constraint of A\¢ honors the fact that twofold application of C
leads back to the original state.

On the level of wave functions the effect of C is, for example, that the
Klein-Gordon equation for a positive solution ¢(*) of charge +e within the
potential +A#,
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2 2
[(ihgt - €A0> —c? (p - EA) — m(2)64] dH(x)=0,

is transformed into the Klein-Gordon equation for a negative solution qb(cﬂ =
#F)* with the same charge +e within the potential Al = —AF e

L0 ’ 2
[(mat - 6A8> —c? (p - SAC> - mgcﬂ éﬂ(a:) =0.

However, due to the original C' transformation, the latter can be identified
with the Klein-Gordon equation for a positive solution q’)(CJg of charge —e
within the potential —A* having the same quantum numbers as the original
solution ¢+,

Therefore, on the physical particle level, the charge conjugation C means
the conversion of a boson into an antiboson with opposite charge and other-
wise identical quantum numbers. Consequently, the physical content of the
symmetry transformation C can be described by the classically comprehen-
sible fact that the dynamics of a boson with charge +e within the potential
+A# is exactly the same as that of the corresponding antiboson of charge —e
within the potential —A*.

Further symmetry considerations. We have now discussed all fundamen-
tal symmetry transformations of the Klein-Gordon equation. They all mean
that the original and the corresponding transformed situations are equivalent.
Therefore, arbitrary combinations of symmetry transformations always lead
to physically equivalent constellations provided, of course, that the underly-
ing theory yields a correct description of the physics under consideration.

As experiments have shown, the discrete symmetries P, C, and T are
indeed realized in nature, both with respect to electromagnetic and strong
interaction phenomena which supports the correctness of the Klein-Gordon
theory for the description of spin-0 particles. However, this is no longer true
for physical processes containing weak interactions where each of the three
symmetries is violated. On the other hand, within modern quantum field
theories (with any type of interaction), there follows from Lorentz invariance
and the usual relationship between spin and statistics the so-called PCT'-
theorem. It states that the three-way combination of P, C, and T is always a
symmetry transformation (see Exercise 3). The PCT-theorem implies (among
other things) that particle and antiparticle have the same life time.

Summary

e Transformations can be classified into active and passive transfor-
mations. At active transformations the physical state, and at passive
transformations the underlying basis system is transformed.
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e Symmetry transformations lead to formally equivalent equations of
motions and thus to physically equivalent situations.

e The Klein-Gordon theory is invariant under the full Poincaré group. Dis-
crete symmetry transformations of the theory are the improper Lorentz
transformations of space reflection P, the non-Lorentz-like transfor-
mations of time reversal T, and the extended charge conjugation

C.

e The wave function of a spin-0 antiparticle of charge —e can be interpreted
as a negative Klein-Gordon solution of charge +e, moving backward in
space and time (Feynman-Stiickelberg interpretation).

Exercises

3. Lorentz behavior of the PCT-symmetry transformation (I). Show
that the PCT-transformation'? is a Lorentz-like symmetry operation by con-
sidering the improper and nonorthochronous Lorentz transformation of time
reflection. The latter is also called Racah time reflection and is defined via

~1000
(A)) = 8(1)(1)8 , A% <0, det(A*) = —1 .

0001

Solution. For the passive and active transformation laws of the Racah time
reflection (denoted by the symbol R), one obtains

T—x=x,t—t =—t
oz, t) — op(a’,t') = Ago(x,t) , A\g = +1 passive
time
Ao(f’:zt) — A%(m’7t’) = —Ao(m,t) reflection R

A(z,t) — Ag(a/,t') = A(x, 1)

and
t) — £) = \ 4
¢($7 ) Pr(, ) R¢(wa ) active
Az, t) — AR(z,t) = —A%(z, 1) time
flecti .
A(xvt) — AR(w,t) — A(:c,—t) reflection R

Comparing the last relations with (1.37) and (1.38), i.e. the active transfor-
mation laws of time reversal T" and charge conjugation C, it becomes apparent
that the combination of C and T is identical to the Racah time reflection:

12 Not to be confused with the PCT-transformation.
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C(T=R=— PCT =PR.

Since P and R are Lorentz-like, it follows that the PCT-transformation is
Lorentz-like, too.

1.3 One-Particle Interpretation of the
Klein-Gordon Theory

Based on the preceding results, particularly those in Subsections 1.1.3 and
1.2.3, we are now in a position to complete the one-particle interpretation of
the Klein-Gordon theory. The essential points that need to be clarified have
already been mentioned in Subsection 1.1.3, namely,

[1] under which conditions is a decoupling of the Klein-Gordon theory into
two one-particle theories possible,

[2] which operators are appropriate for the one-particle concept and how can
they be constructed,

[3] how can physically meaningful and picture- as well as representation-
independent one-particle expectation values be defined?

In our subsequent discussion, we first concentrate on point [3] and define a
generalized scalar product that complies with the findings in Theorem 1.5.
This definition also requires a generalization of the terms “Hermitecity” and
“unitarity” in order to ensure the picture-independence of the generalized
scalar product. Based on this formalism, we then turn to question [2]. Finally,
we carry out a thorough discussion of point [1], trace out the range of validity
of the one-particle concept and outline inconsistencies outside this range.

For clarity and simplicity and particularly on account of the close affinity
to nonrelativistic quantum mechanics, we preferentially use the Hamilton
formulation of the Klein-Gordon theory.

1.3.1 Generalized Scalar Product

As already pointed out in Subsection 1.1.3, in the nonrelativistic approxima-
tion we have for positive Klein-Gordon solutions || > |x| (and for negative
solutions |¢| < |x|; see Subsection 1.4.1). At least in this validity range of the
one-particle concept (to be defined later in more detail) the charge density
for positive solutions is positive definite and can therefore be interpreted as
a probability density:

p =iy PR yty /dgwp(w) =+1.

From this follows that the most likely quantum state of a spin-0 (anti)particle
with respect to an observable O can be described by the usual expectation
value of the nonrelativistic theory. For particles with charge +e, we have
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(P[0 = /d3m¢(+)f(z)ow(+)(x)
<¢(+)‘ ¢(+)> = 41.

In the case of antiparticles of charge —e, it follows, due to the charge conju-
gation C' and Theorem 1.5, that

([0[u6) = [ e @ou @) (v 46) =+
= [ @ 0)0u ) (-a)

(1.39)

_ / P (2)0p O ()
_<¢(—))@‘¢(—)> , <¢(—)‘¢(—)> =—1. (1.40)

The third relation reflects the fact that the reversal of all space and time
directions (PCT-transformation) causes the reversal of all eigenvalues and
consequently of all expectation values of a wave function. Combining (1.39)
and (1.40) finally leads to the generalized expectation value

<w0wm=/¥W@mwwm (1.41)

where, in the case of particles with charge +e, positive solutions () with
<¢(+)| ¢(+)>G = Q) = 41 and, in the case of antiparticles with charge —e,
negative solutions ¢/(~) with <1/J(_)| ¢(_)>G = Q) = —1 are to be inserted.

Obviously, this result explains and generalizes the third point from The-
orem 1.4, namely, that quantum states of antiparticles can be described by
negative Klein-Gordon solutions and not only by their charge conjugates. In
this way, we arrive at a desirable symmetry in the description of particles and
antiparticles enabling us to regard — with certain reservations — the negative
solutions 1/(~) as antiparticle wave functions.'?

Allin all, (1.41) leads to a novel definition of the scalar product that fol-
lows, like in the Schrodinger theory, the form of p and which has already been
anticipated in Theorems 1.2 and 1.3 for the case of free particles (compare
to Exercise 2).

13 However, from this another asymmetry follows. For a positive eigensolution of an
operator its eigenvalues and expectation values are identical, whereas for a neg-
ative eigensolution these quantities are opposites. Therefore, when using (1.41),
the third principle of Theorem 1.1 can no longer be sustained. This weak point
can be circumvented by adhering to the definition of the nonrelativistic expec-
tation value for both positive and negative solutions and, in return, redefining
physical observables in an appropriate way. We do not address this possibility in
the following.
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Definition: Generalized scalar product

The generalized scalar product (G-scalar product) of the Klein-Gordon
theory is defined as

(B )a / Lopt(@)rso (@)

Two states ¢ and ¢ are called generalized orthogonal (G-orthogonal) if
(| #) = 0. The expression

(O)g = (¥|OY)g /d%w D (2)rs00(x) , Q = (P h)g = £1

is the generalized expectation value (G-expectation value) of the observable
O denoting the statistical average of many similar measurements of O on
identical spin-0-[anti]particle systems of charge +e [—¢|. Positive Klein-
Gordon solutions ¥(*) with Q*) = 41 are inserted for particles, and neg-
ative solutions 1(~) with Q(~) = —1 for antiparticles.

As can easily be shown, (9| ¢). has the same properties as (1| ¢) except for
positive definiteness, namely

o (Y|d+x)g=(Vd)g+ (¥IX)a
b <¢|a¢>(}:a<w|¢>(}
o (V| 9)g = (dl¥)g

Relating (1| O |¢) back to (| O|¢) gives the following adjunction relation
corresponding to (1.21):

(¥]|0|¢)g = (¥ 130(8) = (¢| Ol |v)" = (8| 30773 1),

From this follows immediately that an operator @ with O = 73013 has real
G-expectation values. In Exercise 4 we show that such an operator also has
the following properties:

e The eigenvalues of charged eigenstates ¢ (with (1|1)), # 0) are real.
e Charged eigenstates corresponding to different eigenvalues are G-orthogonal.

Thus, with a view to the Hermitean operators in nonrelativistic quantum
mechanics, we can formulate the following:

Definition: Generalized Hermitean operator
A linear operator O is called generalized Hermitean (G-Hermitean) if
O = T3OTT3 —_— 7'30 = (T3O)T

i.e. if 730 is an Hermitean operator. Such an operator has real G-
expectation values.
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With respect to the one-particle interpretation, only those G-Hermitean
operators represent physically meaningful quantities whose eigenstates form
a complete system, i.e. in which each Klein-Gordon state with a finite G-
norm can be expanded (one-particle operators).

From this follows generally (not only for the free case) that charged eigen-
states of H and p are G-orthogonal since H and p are G-Hermitean operators.

Apart from G-Hermitean operators, the G-scalar product leads to another
important class of operators, namely the transformation operators which
leave the scalar product invariant. To this we consider the operator U as
well as the transformation

V' =Uy, ¢'=U¢

and require that

(V¢ = (Wm3]d") = (VIURU |¢) = (Y U1V |9), = (¥ 9 -
Therefore, we define:
Definition: Generalized unitary operator
A linear transformation operator U is called generalized unitary (G-unitary)
if
TgUTTg = U_l .

Such an operator leaves the G-scalar product invariant.

G-unitary operators also possess the following properties analogous to those
of unitary operators (see Exercise 4):

e The product of two G-unitary operators is also a G-unitary operator.

e If U describes an infinitesimal G-unitary transformation U = 1 4 ieO with
le| < 1, then, O is G-Hermitean.

o If O is G-Hermitean, then, ¢'© is G-unitary.

Because of the last property, e is a G-unitary operator, since H is G-
Hermitean. This means that the chosen definition of the G-scalar product
also ensures its picture-independence; using e (or e'1*/") we can, as usual,
switch between different pictures (Schrodinger picture, Heisenberg picture
etc.), all of them giving equivalent descriptions of the Klein-Gordon theory
with respect to the generalizations discussed.

1.3.2 One-particle Operators and Feshbach-Villars Representation

Having solved problem [3] through the definition of the G-scalar product, we
now turn to the generalized form of the Ehrenfest theorem in order to tackle
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the question which G-Hermitean operators represent physically meaningful
one-particle operators in the sense of the definition of page 32 and how they
can be constructed (point [2]).

Generalized Ehrenfest theorem. Our starting point is the Heisenberg
equation known from nonrelativistic quantum mechanics and clearly also
valid in the relativistic case:

It represents an operator equation in the Heisenberg picture which corre-
sponds to the Hamiltonian Klein-Gordon equation. The states and operators
in the Schrédinger picture (without index) and in the Heisenberg picture
(with index H) are connected via the representation-independent relations

‘7/1H> _ efiﬁH(tfto) |1/J(t)> _ |¢(t0)> , Oy = efihH(tfto)OeiﬁH(tfto) )

Multiplying the Heisenberg equation by 73 from the left and taking into ac-
count d |t) /dt = 0, we obtain the (picture- and representation-independent)
Heisenberg equation for G-expectation values

d(0), 1 00
o = o+ (57)

as well as — for explicitly time-independent operators (00/dt = 0) — the
generalized Ehrenfest theorem
d(0)q 1

@ (0, H])¢ - (1.42)
Without the index G, both relations are also valid in the nonrelativistic
theory. There the Ehrenfest theorem also implies the formal equivalence
with the Hamilton equations of classical mechanics where the classical quan-
tities are replaced by their mean values. Examples of this kind are [with
H = p?/2mg + V(z)]

d{p) _ 1 _ dp  0H
T—ﬁ<[P,H]>——<VV> — a——%——vv

d{(z) 1 P de O0H p
N H — — N

o e = (2 —
In the relativistic Klein-Gordon theory this correspondence principle does not
hold generally. For example, in the free case, we have the operator equation

diz)g _ 1 <[w,H(0)]> _ <(T3+”2)p> , HO from (1.16) ,
G G

mo

At op omy

dt o ih mo

whereas the classical relationship is given by

d
w*B:?,m:mo/\/lfﬁ/cQ. (1.43)

dt  m Po
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As one can see, the right hand sides of both equations are different. An-

other important difference to the nonrelativistic theory is that the “velocity
operator”
i
o= (m3 +im)p (1.44)
mo

is G-Hermitean but does not represent an observable or a one-particle opera-
tor in the sense of the definition of page 32 since the eigenvalues of the matrix
T3 + iT9 are zero. Furthermore and against our expectation, the operator v is
not constant for free particles , due to [v, H(®] # 0. From all of this we must
conclude that, in the Klein-Gordon theory, not all operators (e.g. constructed
via the generalized Ehrenfest theorem) are physically sensible.

The reason for this phenomenon lies in the one-particle concept: according
to the definition of one-particle operators, only even operators are allowed
that do not mix positive and negative states since only these may possess a
complete basis system.'* Since each operator O is divisible into an even and
an odd operator,

0=10]+{0}, [0] =even, {O} =odd ,

its even part, i.e. the sought one-particle operator, can be separated.
Obviously, the free Hamilton operator H(®) and the momentum operator
p are one-particle operators, since they possess the positive and negative
states (1.18) as a (common) eigenbasis. In contrast, the position operator x
is not an even operator, as [z, H (0)] is not even. As discussed in the next
section, the full Hamilton operator H from (1.17) is not even, either.

Feshbach-Villars representation. The general investigation of even and
odd operators becomes much simplified in a specific representation (in a
specific basis system), where the positive and negative states are of the form

1 (0
‘W)N(o) o >N<1> ,

This is because here the even operator [O] of an operator O is its diagonal
part:

011 012 011 0 0 012
0= , O] = , {0} = .
< 021 O ) ©] ( 0 Oa ) {0} ( 021 0 )
The transition to such a representation is equivalent to the diagonalization of

the Hamilton operator which, in general, is only possible approximately (see
the next section). However, in the free case the diagonalization can be carried

4 An operator O is called even if Oy = ') where *) and '@ denote
arbitrary positive (+) and negative (—) states. If, on the other hand, Oy =
') the operator O is called odd.
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out exactly and leads to the so-called Feshbach-Villars representation (FV-
representation). The transition from the Schrédinger momentum representa-
tion (in which p and po are G-numbers) to the corresponding Feshbach-Villars
representation is facilitated by the G-unitary transformation operator

(moc + po) — T1(moc — po) U-l— (moc =+ po) + T1(moc — po)

U P—
2./MoCPo 2./MocPo ’

since we have
~ 1 ~ 0
v = yw®(p) = (0) I = U@ (p) = (1)

and (see Exercise 5)

HO =UHOU = epors , HOWD2) = tcpop?) (1.45)
as well as

p=UpU'=UU'p=p.

The last relations show, once again, that H®) and p are even operators, i.e.
H©) = [H©®)], p = [p]. Furthermore, contrary to H(®), the operator H(® is
Hermitean.

One-particle operators for position and velocity. With the help of the
Feshbach-Villars representation and the transformation operator U, we are
now able to determine the one-particle position operator from x as well as
the one-particle velocity operator from (1.44) for the free case. To this end,
it is useful to distinguish explicitly between the following representations (in
the Schrédinger picture):

e Position representation: in this representation (which we have mostly been
working in so far), the position operator x is given by the Gnumber x,
the momentum operator p by —ifV, and the Hamilton operator H(® by
(1.16).

e Momentum representation: here x is given by AV}, and p by the Gnumber
p.
e FV-momentum representation: this is obtained by diagonalizing H(®) in
momentum representation as shown in (1.45).15
Let us now consider the position operator in momentum representation,
T =iV, .
In FV-momentum representation, it becomes (see Exercise 5)

15 Note that we are dealing with two different categories of representations that
are combined. In the first category x or p are diagonal (position or momentum

representation). In the second one the Hamilton operator HO s diagonal and
results essentially from a rotation in 7-space (Feshbach-Villars representation).
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& =ihUV,U ! =ihV, — ih D (1.46)
2p5
Since 7y is nondiagonal, the one-particle position operator follows as
[Z] = ihV, . (1.47)

It is the canonical conjugate to the momentum operator since we have
)] = in |

as in nonrelativistic quantum mechanics. Inverting the transformation U, one
obtains from (1.47) the one-particle position operator in momentum repre-
sentation (see Exercise 5):

0 .
ap/pg} =ihd;; ,

] = iU~V U = ihV,, + ih;—;; , p = Gnumber , (1.48)
0

and from this the one-particle position operator in position representation:

[m]:m+ih;—1—;§ , p=—ihV .

To determine the one-particle velocity operator [9] in FV-momentum rep-
resentation, we use the generalized Ehrenfest theorem (1.42) with [Z] from
(1.47) and [HO] = H©® = ¢pyr3 to find

e =<5 = g [ A]), = (vir )

= [0] = P , p = Gunumber .
2]

Thus, in FV-momentum representation and in the case of positive states,
we have the same relations between the one-particle velocity and momentum
operators as in classical relativistic mechanics. For negative states, this is
only true with respect to the absolute amounts. The one-particle velocity
operator in momentum representation is calculated from the last relation as
(see Exercise 5)

cpT3 U_ (13 + iTg)p+ (73 — iT9)moc?p

v]=U"!
g Do 2mg 2p3

, p = Gnumber .(1.49)

In position representation this finally yields

T3 + iT: s — iT9)moc? .
[v]:(3 2)p+(3 2)20p,p:—1hV.
2my 2p5

This operator has a common eigenbasis with H(®) and p, namely, the positive
and negative Klein-Gordon solutions wg) from (1.18) with the energy eigen-
values €,.cpg, the momentum eigenvalues €,p, and the one-particle velocity

eigenvalue cp/po.
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Theorem 1.6: One-particle operators and FV-representation
in the Klein-Gordon theory

In the one-particle interpretation of the Klein-Gordon theory only those G-
Hermitean operators that do not mix positive and negative states (compare
to the definition of page 32) are sensible descriptions of physical quanti-
ties. In the free case the corresponding Hamilton operator H(®) can be
diagonalized using the G-unitary Feshbach-Villars transformation

(moc + po) — T1(moc — po)
2/mocpo 7

which leads to the Feshbach-Villars representation. Here the even part of an
operator can be determined very easily as it is simply given by its diagonal
part.

Contrary to H® and p, the position operator « and the velocity operator v
are not even. Transforming them into the Feshbach-Villars representation,
separating their diagonal parts, and subsequently transforming the latter
back, one finds the one-particle position operator [z] and the one-particle

velocity operator [v] in the usual position or momentum representation to
be

U =

.. T1P
[w]=w+1hj%, [v] =

(13 +im)p (13 — iT2)moc?p
+ 2
2my 2p§

In this context note the following: although the operator [v] seems to be ac-
ceptable within the one-particle interpretation, it contains a flaw, since in
position representation, we have:

[plvg 2 (2) = £peg 2 (@), vy (x) = +;£¢§1’2)(x) :
0

This means that, for negative solutions 1/1,(,2), the eigenvalue (or G-expectation
value) of [v] is opposed to the eigenvalue (or G-expectation value) of [p]. The
reason for this unphysical behavior is related to the fact that according to
Theorem 1.5, negative solutions are propagating backward in time.

Smearing of position wave functions. We now come to an important
consequence resulting from the difference between the usual position operator
@ and the one-particle position operator [z] or, equally, from the noncommu-
tativity of & and the Feshbach-Villars transformation U. In FV-momentum
representation the common eigenstates of the charge operator 73 and the
one-particle position operator [Z] are given by

Z(1) _ 1 1 —ipx’ 7(2) — 1 0 —ipx’
¢:13’ (p) - (27Th)3/2 <0) € ’ ¢:7:’ (p) - (27Th)3/2 1 € ’
with

&6 (p) = ih V80 () = /30 (D) , 7505 (D) = €0 (p) .
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The corresponding eigenstates of the one-particle position operator [z] in
momentum representation follow from this as

M) — U130 (p) — L 1 moc+ €00\ —ipa’/n
’ - ’ - e :
¢w (p) ¢a: (p) (27Th)3/2 9 ,7m00p0 moc — €-Po
As known from nonrelativistic quantum mechanics, the transition from mo-
mentum to position representation is carried out via

r 1 3, ipz/h (7
v (@) = W/ddpep M) (p) -

After some lengthy calculations which we do not present here, one finally
finds

—7/4 —9/4 —7/4 _ ,—9/4
1 2>1 [ 2 + z _ 2 z>1 [ Z z _
1/};') (z) "~ <z7/4 _ 29/4) e 7, 1/};')(7‘”) ~ <z7/4 + 29/4) e’

with z = moc|x — '| /. Hence, in position representation, the eigenfunctions
of the one-particle position operator [x] are not strict é(x — x’)-functions,
but exhibit a certain smearing over an area of magnitude

h

zvl= |z —a|~ — .
mopc

These considerations lead us to the following conclusions: due to [z, U] # 0,
the Feshbach-Villars transformation U is a nonlocal transformation. The
transformed wave function 1(z) is obtained from the original wave func-
tion ¥ (x) by averaging its position argument x over an area whose linear
extent is comparable to the Compton wave length of the particle. As already
mentioned in the introduction of this chapter, with respect to the one-particle
interpretation, only those Klein-Gordon wave packets are physically sensible
whose extent is large compared to the corresponding Compton wave length.
Therefore, averaging effects stemming from nonlocal changes of representa-
tions can essentially be ignored.

1.3.3 Validity Range of the One-particle Concept

Using the Hamilton form of the Klein-Gordon equation and introducing the
G-scalar product, we have so far developed a formalism which references non-
relativistic quantum mechanics in many respects. Within it the positive and
(charge conjugated) negative solutions can be interpreted as two different
one-particle systems with opposite charge signs and positive G-expectation
values. In order to complete the one-particle concept, we still have to investi-
gate the conditions of its physical consistency and thus clarify the still open
point [1].

First of all, from the introductory remarks of this chapter, it is clear
that the one-particle interpretation of the Klein-Gordon theory can only be
applied to physical situations where processes changing the particle number
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(particle creation and annihilation) do not play any role. This is the case
only for particle energies, particle momenta, and electromagnetic potentials
for which

‘E_mOCQ‘ < m002 ) |p‘7

e
fA”" < mgc, Ap < moc .
c
This, in turn, implies, due to Heisenberg’s uncertainty relation, a necessary
position uncertainty of
h
Az > A\ = — (1.50)

mopc

for the wave packet of the considered particle. Now we examine what addi-
tional constraints need to be satisfied for the decoupling of the Klein-Gordon
theory into two one-particle theories with pure positive or negative solutions
(point [1]) so that

e charged particles and antiparticles can be reasonably described

e the charge density is either positive or negative allowing a quantum me-
chanical statistical interpretation of G-expectation values.

To this end, we consider a free Klein-Gordon wave packet of charge +e located
around the origin at t = 0 according to

Yla,t = 0) = (rA?) 7o/ (é) » Q= (¥¢Y)g =+1

and ask, in which circumstances negative parts with significant amplitude are
to be expected? To do this, we decompose the wave packet into its Fourier
components716

A? 3/4 d3p/ 12 A2 2y s 1
= = — v —ptAT/(2h7) ip'x/h
P(x,t=0) (W#) / (27rh)3/2€ e (O) ,  (1.51)
and compare this expression with the general solution for ¢ = 0,
2
1/}(;[:7t = O) = /d3p/ Za(r) (P/)ll)g)(w’t _ O) )
r=1

This yields
AQ 3/4 12 A2 2 1
= —p'"A%/(2h7) — aW (Yo (p @) (g2 (_p!
(%) < () =@ @) + a2 )
Multiplying this equation by @) (p')r3 from the left and using (1.19) we
obtain the series coefficients a(") (p') as

16 To avoid confusion, we denote the Fourier momentum by p’. The group momen-
tum of the wave packet is p = 0.
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3/4
a0 (pl) = (A2> moc + Py —pa2)en2)

7h? 2y/mocp

3/4
o (—pl) = (AQ> MOC — Py —pa%/(en?)

-\ nh? 2\/mocp;
We see that the amplitudes a(? (p’) of the negative solution ¢1(32,) (z) in the
wave packet are nonzero, which reflects the fact that only the positive and
negative solutions together form a complete system. The ratio of the ampli-
tudes of positive and negative solutions is

a@(=p')  moc—p  moc—/mc?+ p”?

aD(p)  moc+ph  mge+ m2c2 + p? :

From this follows that only the amplitudes of negative solutions with Fourier
momenta |p’'| 2mpc contribute significantly to the wave packet. On the
other hand, the Fourier transformation (1.51) shows that only momenta with
|p'| £%/A are predominantly present in the wave packet. We therefore con-
clude that for a significant contribution of negative solutions, the wave packet
must be localized within an area whose extent is comparable to the Compton
wave length of the spin-0 particle: A <h/mge. Put differently: demanding
the Klein-Gordon theory to be completely decoupleable into two one-particle
theories leads again to the constraint (1.50), i.e. to Klein-Gordon wave packets
whose extent is large compared to the corresponding Compton wave length.

For the sake of clarity, we summarize the limits of the one-particle inter-
pretation of the Klein-Gordon theory as follows:

Theorem 1.7: Validity range of the one-particle concept

A consistent one-particle interpretation of the Klein-Gordon theory is pos-
sible only in those cases where

e the particle’s energy and momentum as well as the electromagnetic po-
tentials obey the conditions

e
|E — moc?| < moc? , |p|,’EA“‘ <mge, AE < moc® , Ap < moc ,

e the particle’s wave packet has a spatial extent A, which is large compared
to the corresponding wave length:

h
A> A= — .
mopcC
The second condition follows, on the one hand, from the first condition in
conjunction with Heisenberg’s uncertainty relation and, on the other hand,

from the requirement that the charged spin-0 particle or antiparticle must

be representable by sole positive or negative Klein-Gordon solutions. With >
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these prerequisites, the Klein-Gordon theory decouples into two one-
particle theories with positive and negative definite charge densities, al-
lowing a statistical one-particle interpretation. Beyond these limits, the
one-particle concept leads to contradictions that can be solved satisfacto-
rily only within quantum field theoretical considerations.

Such contradictions appear, for example, in the shaky movement (see Exercise
7) and in the Klein paradoz, to which we now turn.

1.3.4 Klein Paradox
We consider a onedimensional spin-0 particle, that, coming from the left, is
scattered against a potential step of the form (see Figure 1.3)

{ 0 for z <0 (area I)

eA(2) =V(z) =
Vo for z > 0 (area II)

} , Vo >0, A=0.
The corresponding canonical Klein-Gordon equation is

9 ? d?
(ihﬁt - V(z)) d(z,t) + (02h2d,22 - m(2)04> o(z,t)=0.
Separating the time-dependent part via
P(z,t) = B(z)e BV
we obtain the stationary equation

dii(j) = 621# {m2c* — [E-V(2)]} &(2) . (1.52)
For its general solution in the areas I (z < 0) and II (z > 0), we set

P1(2) = Din(2) + Prer(2) , Pr1(2) = Porans(2)
with

Din(z) = Ae'Frz Dre(z) = Be k1% Dirans(2) = Celk2?

V(z)

Vobroo

MNANMAN -
VYTV

Fig. 1.3. Onedimensional potential step.

II
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4 2.4
—m3c ey = (E—Vp)? —mge
- )
c2h2 c2h?

where @iy, Pref, Pirans denote the incoming, reflected, and transmitted parts,
respectively. The integration constants A, B, and C follow from the continuity
conditions of ®(z) and &'(z) at z = 0 as'”

1—r - 2A - kQ

A, C= = —=.
147 1-‘1-7"’7' kq

Depending on the choice of V or E, we initially distinguish three cases:

B =

1. case: E > Vj + moc?. In this case, the wave number ks, is real implying
that the transmitted wave in area II is oscillating, and we have r > 0. The
current densities of the incoming, reflected, and transmitted parts in the
z-direction are calculated as

T:jt%ans: 4r R* ]ref: (1*70)2 —1_T7.
Jin (1 +7)2 Jin (1 +T)
For each value r > 0, the reflection and transmission coefficients obey 0 <
R,T < 1, in accordance with our expectations.

2. case: Vo —moc® < E < Vo+moc®, E > moc?. Here ks is imaginary, and
the transmitted wave is exponentially damped down.

3. case: moc® < E < Vo —moc? = V > 2moc?. As in the first case, the
wave number ks is real yielding an oscillating transmitted wave in area II.

Obviously, in the first two cases, the Klein-Gordon solutions behave sim-
ilarly to those of nonrelativistic quantum mechanics and can be interpreted
as the scattering of a particle of charge +e at the (from its view) repulsive
potential barrier. However, the third case is starkly contradictory to our ex-
pectations with respect to the one-particle interpretation, since the potential
step should be inpenetrable for a quantum mechanical particle with E < Vj.
Another contradiction — in the second case in parts and in the whole third
case — is the different current density signs of the incoming and transmitted
waves for £ — V <0,

E 2
pin(2) = v |Pin(2)]* >0 , 2<0
E -V
Ptrans(2) = WCQ(”@trans(z)‘Z <0 ,2z>0.

17 The continuity of &(z) at z = 0 is a consequence of charge current conservation.
Moreover, for potentials V(z) with a finite step at z = 0, we have

+3 +6
@' (+9) — (=9 :/dZ%qﬁ’(z) /dz [m3c" — (B - V(2)?] #(2) =20

-6 -4
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According to this, the transmitted part must be regarded as a negative Klein-
Gordon solution whose energy E — Vj relative to the potential Vj is indeed
less than zero (see Figure 1.4).

ko imaginary, p > 0

k2 imaginary, p < 0

Fig. 1.4. Energy intervals of the onedimensional potential step. In area I the pos-
itive solutions lie within the interval £ > moc® and the negative solutions within
the interval E < —moc®. In area II the positive solutions (with energy E — Vp
relative to the potential V) lie within the interval E > Vp +moc? and the negative
ones within the interval E < Vo — moc?®. In between there are the solutions of the
“forbidden” energy intervals.

The reasons for these circumstances are rooted in the fact that the increase
of Vi up to a value around E corresponds to a decrease of the wave packet’s
penetration depth in area IT down to 1/ky & hi/mgc, i.e. down to the Compton
wave length of the incoming particle. Choosing, instead, a potential with an
increase less than mgyc? per Compton wave length, one can show that the
paradoxes tend to vanish. In other words: the above mentioned difficulties
result from too-strong a localization of the particle (see Theorem 1.7).

It is interesting that, when leaving the level of the one-particle interpre-
tation, the third case allows a physically sensible (but at best qualitatively
acceptable) interpretation in terms of pair creation. Here we have to keep
in mind that the negative wave function @y, with momentum eigenvalue
+hks and energy E — Vi < —mgoc? corresponds to an antiparticle of charge
—e flying with momentum —hky from the right toward the potential step.
However, since we are assuming incoming movements from the left to the
right, an incoming antiparticle from the right does not make any sense. On
the other hand, we have the freedom to choose the sign of k3. So, replacing
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ko by —ko, the transmitted wave @,.ns Now corresponds to an antiparticle
moving to the right with charge —e and momentum +#|ks|. Moreover, we
then have

r<0=R>1,T<0.

These relations can finally be interpreted as particle-antiparticle creation in
the following way: all particles, coming from the left are totally reflected at
the potential step. Additionally, particle-antiparticle pairs are created with
the particles moving to the left (R > 1) and the antiparticles to the right
(T <0).

Let us, for completeness, also consider the remaining two energy intervals:
4. case: —mgc? < E < mgc?. In this case, a solution does not exist as long
as we adhere to a rightward directed incoming movement.
5. case: £ < —moc?. ko is real, and we have again an oscillating wave in
area II. Replacing ky and ko by k1 = —|k1| and kg = —|k2|, this can be inter-
preted within the one-particle picture, similarly to the above considerations,
as follows: a rightward incoming antiparticle with charge —e is scattered at
the (from its point of view) attractive potential barrier. Compared to the first
case, the charge current densities jin, Jref, and jirans have opposite signs, and
we again obtain r > 0= 0< R, T < 1.

Summary

e With the help of the G-scalar product and the G-expectation value,
statistical mean measurement values of spin-0 [anti]particle systems can
be described symmetrically using positive [negative] Klein-Gordon solu-
tions.

e The G-scalar product leads to the definition of G-Hermitean and G-
unitary operators that correspond to Hermitean and unitary operators
of nonrelativistic quantum mechanics.

e The G-Hermitecity of the Klein-Gordon-Hamilton operator ensures the
picture-independence of the G-scalar product.

e Within the one-particle interpretation, only those G-Hermitean opera-
tors can be regarded as observables that are even operators, i.e. that
do not mix positive and negative Klein-Gordon solutions (one-particle
interpretation). The even part of an operator can be determined best
in a representation where the Hamilton operator is diagonal. In the free
case this is given by the Feshbach-Villars representation.

e The Feshbach-Villars transformation is a nonlocal transformation.
The position argument x of a wave function ¥ (x) is averaged or smeared
over a region whose extent is equal to the Compton wave length of the
particle.
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e The validity range of the one-particle probabilistic interpretation is re-
stricted, on the one hand, to small energies where particle creation pro-
cesses can be ignored and, on the other hand, to Klein-Gordon wave
packets whose extent is large compared to the corresponding wave length.

e The Klein paradox is a simple example of interpretational difficulties
of the one-particle concept stemming from too-strong a localization of
Klein-Gordon wave packets. Beyond the one-particle concept, this phe-
nomenon can be qualitatively interpreted as pair creation.

Exercises

4. Properties of G-Hermitean and G-unitary operators. Verify the
following properties of G-Hermitean and G-unitary operators:

a) For charged eigenstates the eigenvalues of a G-Hermitean operator are real.

b)Charged eigenstates of a G-Hermitean operator to different eigenvalues are
G-orthogonal.

¢) The product of two G-unitary operators is a G-unitary operator, too.

d)If U describes the infinitesimal G-unitary transformation U = 1 + ieO,
le] < 1, then O is G-Hermitean.

e)If O is G-Hermitean, then e!© is G-unitary.
Solution.

To a) Let O be a G-Hermitean operator and

Oly) =ald) , (PlP)g #0.
Then

a({P|Y)g = (Y[O)g = (Y|O)g =a” (Y|)g = a=a".
To b) Let at least |¢) be charged and

Ol) =aly) , Ol¢g) =blg) , a#b, b=0b".
Then, we have

(0]O)g =a(dl¥)q (1.53)
and

(P101¢)g =b(Pld)a = (8O ) =b(dl¥)g

= (| OW)e =b(dY)q - (1.54)

The difference between (1.53) and (1.54) leads to

0=(a=0)(dl¢)c = (d|P)e=0.
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To c) Let
Ui =U""1, Vi =v-1.
Then
wUV]InUV = nVIUTRUV = VinnUingUV = VUV =1
= n[UV]irs = [UV]7! .
To d)
1 =731 —ieON)73(1 +i€0) = 1 — ier30' 3 + 1O + O (€?)
— Ol =0 .
To e) Due to
T3 (OT)H 3 = 130101 ... Oy = 3O 330 75 ... 730 1 = O™,
it follows that

T3 (eiO)T T3 = 736_1@7'3 = Z 7(_7;')71 T3 (OT)nT;; = Z (—ni')"on

— o0 _ (eiO)*l '

5. Feshbach-Villars transformation (I). Prove the relations (1.45), (1.46),
(1.48), (1.49).

Solution.
To (1.45) and (1.49). Taking into account
(1 + T1)(T3 + iTQ) =0 s (1 :|:’7'1)(’7’3 F i’TQ) = 2(7‘3 + iTQ)

and
U2 — (1 +Tl)p0 + (1 — Tl)moc
2mgpce 2p0
g _ Ttimpg (73 —ira)moc® |
2m0 2

it follows for H® in the FV-momentum and coordinate representation that

HO — pgOu-1 — 2g© — (73 +1272)CP0 n (m3 —iT2)cpo — epors

2
and for the one-particle velocity operator [v] in the momentum and coordi-
nate representation that

] = UflcpTgU _ P73 U2 (13 +im2)p N (73 — iT9)moc?p .

Po Do 2my 2p2

Of course, the last relationship is also obtained using the generalized Ehren-
fest theorem
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22’

where the expression on the left hand side of the commutator is the one-
particle position operator in the momentum representation.

v] = [V,,+ op H(O)] ,

To (1.46) and (1.48). In the FV-momentum representation the position
operator obeys

& =1UV,U ™ =iV, +ihU (VU Y)
and in the momentum representation the one-particle position operator fulfills
[x] = iU 'V ,U =iV, + iU (V,U) .

Moreover, we have

4
_ 2 2 _ P
Vppo = p\/p +mge ﬁﬂn =~
Po Ppo
v = Voo = —
p2\/mocp0 2\/moc 4m 4\/mocp8
moc moc 1 moc mocp
v = v =- Vppo = ——F— .
Pamocpe  2y/moc P \/bo 4+/mocp} P 4/mocp}

From this follows

(po — moc) — 11(po + moc)

V,U™ Y =
(VU7 4\/mocp]
— moc) + T + mgc
(V,,U) _ (po 0 ) 1(170 0 )p

4\/mgcp8

and, therefore,
— vy -1 vy
U(VpU =25, U NVU)=+— .
( P ) 22 P 22
6. Construction of one-particle operators using the sign operator
. Construct the one-particle operators [x] and [v] using the G-Hermitean
I). Construct th ticl t d ing the G-H it
stgn operator
p>
F(0) %(Ts + i) + moc®Ts

A p— f— O
H(0)2 CPo

Solution. Evidently, the operator A possesses the eigenfunctions ¢§,1’2) (x)
with the eigenvalues (energy signs) +1. We can use this property for the
construction of one-particle operators in the following way: let [O] and {O}
be the even and odd parts of the operator

=[0]+{0} .
Then, for arbitrary wave packets w(i)(x) built by pure positive or negative
free Klein-Gordon solutions, we have
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Oy = 0]y + {0}y

Oyt~ = [OJp'™) + {0y~
A(’)Aw(” — AO¢(+) — [O}w(“ _ {@}¢(+)
AOAPT) = — A0y = (O] — {O} ) .

Adding the first and the third, and subtracting the second and the fourth
relation, it follows that

0] = %(O+AOA) {0} = %(o —A04) |

Clearly, if O is a G-Hermitean operator, the operators [O], {O}, and A0A
are G-Hermitean, too:
(3A0A)T = ATOTAT 73 = ATOT(3A)T = ATOT A = AT(130)74
= AT0A = (34)10A = 3A0A .

To determine the one-particle position operator, we change to the momentum
representation (& = iiV,, p = Gnumber) and calculate as follows:

. (0) .
(wa) = POt pHO G gy P tin) P nip

mocCpo CP% p% P% p%
ih
— AwA = ihVp +ihA(VpA) = ihV, + —22
Do
From this we obtain in the momentum and coordinate representation
1 ithp
[x] = i(m + AzxA) =z + 22

in accordance with Theorem 1.6. For the one-particle velocity operator, a
similar calculation yields

. . 2
T3 + 179 )T T3 — 1T2 )MoC
,UA:P(?) 22)37/1”/1:(3 22)017
Po Po
(r3+im)p (13 — im2)mocp
+ 2
2my 2p5

i

= [v] = %(v + AvA) =

again complying with Theorem 1.6.

7. Shaky movement (I). Show that the mean current (j) of an arbitrary
Klein-Gordon wave packet includes a temporally oscillating movement, if it
is composed of positive and negative components. What is the interpretation
of this fact?
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Solution. In the canonical formulation the wave packet may be
6(0) = 90(@) + 6 (@), 99(0) = [ ApaD (P 0)
Using the adjunction relation (¢| A [¢) = (| At |¢>*, it follows that
i 1
(J) = %

= 5 [(61p16) + (61 pI6)]

[(dlplo) — (" |pl¢")]

— - (6lplo)
_ mio <¢<+> + ¢<7>}p ‘¢<+> + ¢(7>>
_ mio {<¢<+>’p‘¢<+>>+ <¢<7>’p‘¢,(7>>

+ <¢<+>‘p’¢<f>>+ <¢<7>‘p‘¢<+> >}
S (O M M)

comte (3]s )]

2 2
= /d‘”’pg ‘a(”(p)‘ —/d3p;£ ‘\a(z)(p)‘
0

Po
() (5"
+2Re </ d3p;€e2ip0wo/ha(l)*(p)a(2)(—p)) .

Besides the time-independent mean currents of the positive and negative
parts, there are also mixed terms oscillating very fast in time. The frequency
of this shaky movement (German: Zitterbewegung) is of order of 2mgc?/h.
Interpreting this phenomenon within the enforced one-particle picture, we
must conclude that the “particle” described by ¢ performs a periodic oscil-
latory movement around its (classical) trajectory. This example shows, once
again, that the description of neutral spin-0 particles by real Klein-Gordon
wave packets

¢(0)(x) — (/)(+)(:13) + gzﬁ(_)(x) , ¢(—)* — ¢(+)

is problematic with respect to the one-particle interpretation, since it in-
evitably involves a shaky movement.



1.4 Nonrelativistic Approximation of the Klein-Gordon Theory 51

1.4 Nonrelativistic Approximation of the
Klein-Gordon Theory

It is a necessary condition for the correctness of the Klein-Gordon theory
that, in the nonrelativistic limit, it passes over to the laws of nonrelativistic
quantum mechanics. This limiting process is the subject of this section. First,
we discuss the nonrelativistic approximation to leading order of v/c that
will lead us to the well-known nonrelativistic Schrodinger equation for spin-
0 particles. Afterward, we include relativistic corrections of higher orders.
For this we use the Fouldy- Wouthuysen transformation by which the Klein-
Gordon-Hamilton operator cannot be diagonalized exactly but (in principle)
to every required finite order of v/c.

1.4.1 Nonrelativistic Limit

Dealing with the nonrelativistic limit of the Klein-Gordon theory, the substi-
tutions (1.15) prove to be very useful as, in this limit, we have for a positive
Klein-Gordon solution!®

eo(D)] v-o(Z)o

and for a negative solution

r-o(3)67 1< fro(Z)] o

This means that for positive solutions, the lower component of v is suppressed
by a factor of v?/c? compared to the upper one, whereas for negative solutions
the reverse is true. Consequently, the term (p — eA/c)?x/2mg in the upper
part of the Klein-Gordon equation (1.17) can be ignored up to order O (v2/02)
for positive solutions leading to

v (0 (vé/CQ) > 7 (1.55)

dp [ 1 9 0 v
lhat = {Qmo (p— A) + moc” +eA” + 0O )P

8 Tn the nonrelativistic limit we can assume that the fields eA° and eA/c have
at most a magnitude in the range of the particle’s energy and momentum, i.e.
leA®| = mov? /2 < moc? and |eA/c| = mov < moc. Thus, it follows that

(p— eA/c)6'™) [2mo = moc®O (v /) ¢F)
and

(ihd/ot — eA%) ) = moc? [Jrl +0 (v2

(ihd /0t — eA®)p' ™) = moc? [—1 +0 (v2

/cz)} &) for positive states
/

02)} <Z><7) for negative states.
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Up to the rest energy term mgoc?, this equation coincides with the well-known
nonrelativistic Schrodinger equation for spinless particles within an electro-
magnetic field. Correspondingly, in the case of negative solutions we obtain
from (1.17) the equation

o= (0,

1 2 4
iha—x = [— (p—EA) —m002+eA0+(’)<v4>}X.
C C

2m0

(1.56)

Combining equations (1.55) and (1.56) finally yields the Hamiltonian Klein-
Gordon equation
N

in 2V _ o
ot ¥

1 e N2 i (1.57)
H™ = 13 |mgc? + — (p— *A) +eAd’+0 (),
2my c ct
correct up to order O (v?/c?) with the diagonal, G-Hermitean, and Hermitean
Hamilton operator H™. Multiplying (1.57) from the left by 73 and subse-
quently subtracting the adjoint equation leads to the continuity equation
Ip(x)

WJFVJ(I):O»

with the positive or negative definite charge density

*p > 0 for positive states
p=vinyny TP T
—x"x < 0 for negative states ,
correct up to order O (112 / 02), and the charge current density
. h 2ie
j=5— [0V = (Ve - ——AyTy| .
2im hc

The last expression is formally identical to the probability current of nonrel-
ativistic quantum mechanics.”

19 Since H™ in (1.57) is Hermitean, one could define a positive definite probability
density p = 1) for particle and antiparticle (associated with a conserved total
probability) that is connected to the corresponding probability current density
j via 9p/0t+ V3 = 0. However, this relationship would hold only in the present
representation. It would get lost if we changed the representation through a
G-unitary transformation, because then the Hamilton operator would still be
G-Hermitean but not Hermitean any more. The same argument holds for the
diagonalization of the free canonical Klein-Gordon equation (Subsection 1.3.2)
as well as for the general equation (next subsection).
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1.4.2 Relativistic Corrections

In the nonrelativistic Klein-Gordon equation (1.57), the positive and negative
solutions are completely decoupled, which is reflected by the diagonal form
of the Hamilton operator H"*. Here we can restrict ourselves to the upper or
lower component to obtain a theory for particles or antiparticles that can be
interpreted with respect to our generalized quantum mechanical formalism.

From Subsection 1.3.2 we know that, in the free case, the Hamilto-
nian Klein-Gordon equation can be exactly diagonalized by resorting to
the Feshbach-Villars representation. Therefore, the question naturally arises
whether there exists a method for the exact diagonalization of the general
Klein-Gordon equation where positive and negative solutions are explicitly
decoupled in all orders of v/c. As it turns out, this is not possible (see Exercise
8) due to a quantum field theoretical effect, the so-called vacuum polariza-
tion.20

On the other hand, with the help of the Fouldy- Wouthuysen transforma-
tion, it is always possible to diagonalize the Klein-Gordon-Hamilton operator
to any desired order of v/c. Using this method, wave functions and operators
are successively transformed (carried over into a new representation) in such a
way that, in the new representation, the Hamilton operator is even (diagonal)
up to the respective order of v/c. By disregarding its odd (antidiagonal) part,
we again obtain two explicitly decoupled one-particle theories for particle and
antiparticle that can be interpreted, as before, up to this order. Hence, this
method can be regarded as a generalization of the Feshbach-Villars transfor-
mation for the free case discussed in Subsection 1.3.2.

In order to illustrate the use of the Fouldy-Wouthuysen transformation,
we consider the Klein-Gordon equation (1.17) in the form?!

mo?Kip =0, K=73+e+w,

where
-~ 1 (.0 0 T3 e N2 v?
= (lhat —eA )+2m%c2 (p - EA) —01)+0 <02 (1.58)
or
2
3+e=0 <v2>
c
is an even (diagonal) operator and
_im e \? v?
@ gaam (P gA) =0 () (1.59)

20 Vacuum polarization denotes the creation of charged particle-antiparticle pairs
in strong electromagnetic fields, for example, in the close vicinity of the sources.
These virtual particles interact with the considered particle — in addition to the
external field — thus leading to a polarization of the vacuum (see Section 3.4).

21 Here we introduce dimensionless operators to facilitate the treatment of orders
inv/e.
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is odd (antidiagonal). Passing over to a new representation via the transfor-
mation

U=¢e",
the Klein-Gordon equation becomes
mo? K'Y =0, ¢ =Uy¢ , K' =UKU™!.

The Fouldy-Wouthuysen transformation is now characterized by the fact that
the transformation U or S is chosen in such a way that K’ can also be split
into an even and an odd operator according to

2 4
K/=T3—|-€/+w/, 7'3—1-6/:0(1}2) , w/:(’)<v4) (or higher),
C (&

where ' is suppressed (at least) by a factor of v?/c? compared to w and
hence is (at least) two orders higher than 73 4+ ¢’ or 73 4+ €. Coming from
this representation, we can again seek a transformation U’ so that, in the
corresponding new representation, we have

mOCZK//wll =0 , w// _ U/wl , KI/ _ U/K/Ulfl =73 + 6// +(JJ,/ ,
with

" UQ " ,UG :
T3+¢ =0 2w =0 % (or higher) .

This method can be iterated infinitely so that the order of the odd opera-
tor can be raised arbitrarily. Once the desired order of the odd operator is
reached, the corresponding even operator yields the relativistic corrections to
both one-particle theories with an error of this order.??

Starting from

K=m+e+w, €from (1.58) , w from (1.59) ,

we now concretize our considerations and show how to obtain the diagonal
Klein-Gordon-Hamilton operator, correct up to order O (U4 / c4). To this end,
we need the Baker-Hausdorff expansion®?

22 As each power of v/c corresponds to a factor of v/c ~ p/moc, the Fouldy-
Wouthuysen transformation can also be regarded as a series expansion in powers
of 1/mo.

23 This is easy to verify when considering the operator function

[e'e]

NS - —iAS AT dTF
F()\) = e Ke ’ZH T

n=0

A=0
with
d"F

_.n iAS co e iAS
dam™ =1e [Sa [S7 7[SvKH }e :
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Kl — eiSKefiS
i? i
— K (S, K]+ 5 [S,[S, K]} + 51, [S, 1S, K] + .. (1.60)

Since the transformed operator K’ contains the original operator K, we must
choose S so that w is eliminated in K’. As we see shortly, this can be achieved
by the choice

U=e¢e?, S=-—-. (1.61)
Taking into account 3w = —w73 and T3¢ = €73, we now calculate as follows:
1 s
i[S, K] = 5 [T3w, T3 + € + w] = —w + T3w? + %[w,e]
i 17 T
SIS 18K = 7 [raw, —w + 73 + 2w, ]
mw? w1
= - 32 - ? - g[wa [W,GH (162)
i3 1T Tsw? w3
g[sa [57 [SaK]]] = 6 -7-3(4),_72 —7—7[% [w,e]]}
w3 7'3(4)4 T3
= E - 6 478[("}’ [wv [wv 6]]]

Inserting these expressions into (1.60) yields

K =mn+d+ud,

with?4
2\ o () o L
o(x)o(x) o(x) ofx)
! , | . ! 2
T3w T3W 1 Y
s4€ = 75+ 2 8 S[W’ e} +... =0 <02>
and
w3 T3 T3 ’U4

As desired, w is eliminated from K’ due to the first row of (1.62), and w’ is
raised up by two orders.2? It should be clear that all subsequent transforma-
tions have the same structure. Applying the transformation

3 /
g iT3w
Z}IZQIS’S/:— z
21 As long as the operator ¢ appears in commutators of the form [...,[w,€].. ], it

holds that e = O (U2/cz).

25 Note that the last equation leads to the even operator K’ = 73 + ¢, correct up
to order O (v2/c2), as well as to the equation moc?(73 4 €)y’ = 0, in accordance
with (1.57).



56 1. Relativistic Description of Spin-0 Particles

to K', we find for K"

K'=m+e +d", (1.63)

with
o(2) 0() 0(5) o)
l l 12 l 14 l 2
1

3+ = 3+¢€ Tg;d *ng *g[wl, W€l +...=0 (22)
and

W= Wt + E[w’ €l+ E[w' W[, €+...=0 v

3 2 b 48 ) ) ) e CG *

Ignoring all terms of order O (’UG /06) (and higher), K" becomes an even
operator and is given by

7'3w2

K" :Ts+€I:T3+6+?

1 e \? 1 e \*
) 2
7 { * 2mic? Ps 8mgct L

1 (.0

The Hamiltonian Klein-Gordon equation follows from this as
8,1/}//
ot
with the diagonal, G-Hermitean, and Hermitean Hamilton operator

1 e \? 1 e \*
H' =73 |moc? + 5— (p=SA) = s (p—SA) | + e
7 [moc * 2my Pz ) 8mgc? L e

ih

— H//w/l ,

and the wave function
w//(x) _ e—iT3w1/2e—iT3w/2w(x) )

As desired, we now have two explicitly decoupled O (v4 / 04)—0ne—particle theo-
ries, whose relativistic corrections result solely from the expansion of the
relativistic kinetic energy

2 €4’ 2.4
c (p—EA) +mget .

As we show in Exercise 9, electric interaction corrections do not come into
play until a precision of order O (v°/c®).

Keep in mind that the Fouldy-Wouthuysen transformation U in (1.61)
and all subsequent transformations U’, ... are G-unitary operators since S,
S’, ... are G-Hermitean. From this follows the invariance of G-expectation
values for operators transforming as U[-]JU 1. Thus, it is indeed justified to
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speak of “Fouldy-Wouthuysen representations”. However, there is an impor-
tant restriction for the Hamilton operator itself, because the transition

Kyp=0— K'Y/ =0, K=UKU', ¢/ =Uy
implies the transformation

/
iha—d} =Hy — ihaati =H"Y , H =U (H - iha> Ut

ot ot
of the Klein-Gordon equation. This means that the G-expectation values of

the original and transformed Hamilton operators coincide only if 0A/0t = 0.

Theorem 1.8: Fouldy-Wouthuysen transformation
in the Klein-Gordon theory

The Fouldy-Wouthuysen transformation provides a systematic procedure
for the diagonalization of the Klein-Gordon-Hamilton operator up to any
(finite) order of v/c. Writing the Klein-Gordon equation (1.17) in the form

mocPKOyp® =0, KO =75 + 0 4,0
with the dimensionless even operators €(©), 75 + ¢ = O (v2 / 62) and the
odd operator w(® = O (1)2 / 02), and iterating the relations according to
K® = 75 4 ™ 4, — y-1 -1~
P (@) = U Ny ()

iTaw (™)
U™ = exp (—17-3; > (G-unitary) ,

one obtains new representations of the Klein-Gordon theory where

) 1)2 (n) ,U2n+2
T3+€ :(’)<C—2>,w :O<m>

Ignoring the odd operator, the even part of K (" leads to two explicitly
decoupled one-particle theories for particle and antiparticle, correct up to
order O (1)2" / 02"). They can be interpreted with respect to our generalized
quantum mechanical formalism.

As in the Feshbach-Villars representation, the one-particle operators of the
Fouldy-Wouthuysen representations can be constructed by transforming the
original (relativistic) operators appropriately, and subsequently separating its
even (diagonal) part. Here the one-particle position operator exhibits similar
properties as in the case of the Feshbach-Villars transformation. This means
that, due to [z,U] # 0, the Fouldy-Wouthuysen transformation is nonlo-
cal, too, and leads to a smearing of the coordinate wave function or, rather,
the position argument, with a magnitude comparable to the Compton wave
length of the particle (see Exercise 9).
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At the end of this section, it should be emphasized, once again, that the
Fouldy-Wouthuysen method makes sense only in those cases where, firstly,
the one-particle interpretation is applicable in the sense of Theorem 1.7 and,
secondly, the Fouldy-Wouthuysen expansion converges. It is particularly not
applicable to physical problems with strong or rapidly changing fields where
particle creation and annihilation processes need to be taken into account.

Summary

e To lowest order, the nonrelativistic approximation of the Klein-Gordon
theory leads to a diagonal, G-Hermitean, and Hermitean Hamilton oper-
ator (nonrelativistic limit). From this follow two explicitly decoupled
one-particle theories for particle and antiparticle, the former coinciding
with the laws of the nonrelativistic Schrodinger theory.

e In the general case, as opposed to the field-free case, the Klein-Gordon-
Hamilton operator cannot be diagonalized exactly but only approxi-
mately. For this the Fouldy-Wouthuysen method can be used, where
the Hamilton operator is successively diagonalized to increasing orders
of v/c. Ignoring the odd part, one obtains a diagonal, G-Hermitean, and
Hermitean Hamilton operator, correct up to the considered order of v/c,
from which two explicitly decoupled one-particle theories can be derived.

e Like the Feshbach-Villars transformation, the Fouldy-Wouthuysen
transformation is also nonlocal, leading to a smearing of the position
argument over a range comparable to the Compton wave length of the
particle.

e The Fouldy-Wouthuysen method is physically sensible only in those cases
where the v/c-expansion converges and the one-particle interpretation is
applicable.

Exercises

8. Diagonalizability of the Hamiltonian Klein-Gordon equation.

a) Show that only in the free case do the two components ¢ and x of 1) each
obey the canonical Klein-Gordon equation.

b)Evaluate the commutator

{(p — SA)2 ,ih% — eAO]
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Solution.

To a) Our starting point is the Hamiltonian Klein-Gordon equation (1.17)
in the form

0 T3 +im2 e \2
— —eA’ | - =——Z(p-—-A) — 2l =0.
(g7 —ea) =T (o= ta)" = momae v =0
Multiplying this from the left by
. 0 0 Ty + 179 e \2 9
{(lhf)t —eA ) + ST (p — EA) + Tamoc
yields
0 2 T3 + 1T 0 e \2
= 1h— — AO P — AO 7A
0 l(lhat ¢ ) 2my (hat ‘ ) ( c )
0 T3 + i e 0
B 2 (Y 0 3 2 ¢ v 0
T3MC <lh6t eA ) + 5o (p CA) (17’1(,% eA >

’7'362

e \2 L0
TR

2

’7'302

3 —— (73 + i) (p — %A) — mgc‘l] )
= ihg —eAY i - (p — EA) —m2ct|
ot c 0
T3 +im9 e 2 /. g 0
+ T [(p— cA> , <1T“Lat eA )] Y.

From this follows that each component of v fulfills the Klein-Gordon equation
only for the free case, since only then the commutator term vanishes exactly.
Put differently, only in the free case is the Hamiltonian Klein-Gordon equa-
tion exactly diagonalizable. However, at weak or weakly varying fields, the
commutator term is small compared to the others so that the canonical equa-
tion is solved by ¢ and y at least approximately. In this case, an approximate
diagonalization of the Hamiltonian equation seems possible.

To b) Taking into account

e \2 e 2e e2
(pf fA) =p’ - —(pA) - —Ap+ 5 A*,
c c c

(o2 0y ct] 12 o ]

2leh e?
—[Ap, A°
[Ap, 8t} ~[Ap. A7)

162h 5 0
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The commutators on the right hand side are calculated as

[p*, A% = (p*A°) + 2(pA")p , [(pA) a] <p3A>

ot ot
0]_ o4 0w [az @] _ 404
[Ap, at} —5, P [Ap. A7) = A(pA?) {A at] 24—~
Thus, it follows that
e 9 a0 = oy _1hoAL ) e
{(p CA) lhat eA} = —2¢ {( A”) 5t (p A)

Do 2]
— _9ichE <p - §A> —ieh(pE),  (1.64)

with the electric field E = —(V A%) — edA/cot.

9. Diagonal Hamiltonian Klein-Gordon equation up to O (1)6/06).
Diagonalize the Hamiltonian Klein-Gordon equation (1.17) up to order

O (v8/c5).
Solution. If we apply the Fouldy-Wouthuysen transformation
iTsw”
2
to K" from (1.63), we obtain the expression

KIII =73 _"_ 6lI/ +w//l ,

U’ — eiS” S
= , =

with
o(z)o(m)o(=) ofx)
! ! , ! ., 1 ,
12 1 1
T3+ = 13+ ¢ % _T3: _g[w”, W e +...=0 (10}2>
and
"3 ]
m_ W T3¢ n T30 7 g, gt 1t _ v
== B W W W O<cs) |
Ignoring all terms of order O (118 /c ) (and higher) leads to the even operator
1
K" =7 +¢ —T3+6—Tg+6+73;d 8[w,[w,e]].

Because of (1.64), the last term is simplified to

iy e 0 0 i e \4
= 1 (p_fA) il —ea _a
s 2mgct [(p c ) hat ¢ ] 4mict (p c ) [72,73]

ehty e ehty sl e \4
B a) e -
m3ct poca)t 2mgct (PE) 2mct P-s
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ieh e \?2 e
— oo = g | (- £4) B (p - 4)]
0
ieh e \?2 T3 e \6
e ) ] - T (pCa)
+4m806 {(p c (P )] 2mfcb L

All in all, the Hamiltonian Klein-Gordon equation
a,l)bl//

ih

T

follows, correct up to order O (v6 / 06), with the diagonal, G-Hermitean, and
Hermitean Hamilton operator

— Hl//w/l/ ;

H/// = 73 |: m002

1 e \2 1 e \4 1 e \6
R ey
* 2my (p c 8mc? P—s T 16mgct L

e - 1617(:;(:5 [(p_ ZA)Q B (p_ iA)]

el [(p -ca), (pE)} (1.65)

B 32mgcd
and the wave function
w///(x) _ efi‘rgw”/Qefirgw'/2efi‘rgw/2w(x) )

The appearance of the relativistic corrections in (1.65) can be understood as
a consequence of the nonlocality of the Fouldy-Wouthuysen transformation
and the accompanying smearing of the position argument x: the effective
potential acting on the wave function at x in a certain Fouldy-Wouthuysen
representation is composed of the contributions of the original potential av-
eraged over an area around x. Therefore, the whole potential has the form
of a multipole expansion of the original potential.

1.5 Simple One-Particle Systems

The last section of this chapter deals with some simple Klein-Gordon one-
particle systems where the canonical representation is used throughout. As
an extension of the Klein paradox from Subsection 1.3.4, we initially con-
sider the onedimensional potential well and discuss its types of solutions
particularly with respect to their one-particle interpretation. Then we turn
to the problem of spherically symmetric potentials that can be, analogously
to the nonrelativistic case, related back to a radial equation by separating the
angular-dependent part. Examples of this radial Klein-Gordon equation are
the free particle, the spherically symmetric potential well, and the Coulomb
potential, the last providing a simple description of pion atoms. At the end
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we modify the Coulomb potential by an oscillator-like potential term in or-
der to take into account the finite extent of atomic nuclei. In so doing, the
fundamental limits of the one-particle concept will become apparent once
again.

1.5.1 Potential Well

We start our investigation of simple one-particle systems with a spin-0 parti-
cle bound within or coming from the left and scattering against a onedimen-
sional potential well of the form

{ 0 for —a < z < a (area II)

eAD(2) =V (z) = ) } Vo>0. (1.66)

Vo else (area I, IIT

To solve the corresponding Klein-Gordon equation, we initially separate the
time-dependent part, as in the case of the potential step in Subsection 1.3.4:

d(z,t) = D(z)e /M

This leads us to the stationary equation (1.52) with V(z) from (1.66). Before
tackling this equation in detail, we can try, as in the case of the Klein paradox,
to get a qualitative overview of all possible configurations (see Figure 1.5).

/

N\

Fig. 1.5. Energy intervals of the onedimensional potential well.
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1. case: E > Vy + mgc?. In all three areas I (z < —a), II (—a < z < a),
and IIT (z > a), we expect to have oscillating Klein-Gordon solutions with
a positive charge density. This can be interpreted as a normal scattering
of a particle with charge +e against the (from its point of view) attractive
potential barrier, since at the area borders, only “allowed” positive energy
regimes are in contact.

2. case: Vo —moc? < E < Vo +moc® , E > moc?. In this case, the solu-
tions of the “allowed” positive energy regime of II dive into the “forbidden”
positive (0 < E — Vi < mgoc?) or negative (—moc? < E — Vy < 0) energy
regimes of I and III. Thus, the solutions in I and IIT are expected to fall off
exponentially with positive or negative charge density, while the solutions in
IT are oscillating with positive charge density. This situation corresponds to
a bound particle of charge +e.

3. case: moc? < E < Vy—moc® = V) > 2moc?. Here the “allowed” positive
energy regime of II turns into the “allowed” negative energy regimes of I and
III. The solutions should therefore oscillate in all three areas with positive
charge density in II and negative charge densities in I and III. Beyond the
one-particle picture, this can be viewed as the scattering of an antiparticle
of charge —e against the (from its point of view) repulsive potential barrier,
whereas quasi-bound particle resonances appear in area II.

4. case: —moc? < E < mgc?. This energy interval encompasses the “forbid-
den” positive (0 < E < moc?) and negative (—mgc? < E < 0) energy regimes
in IT that turn into the “allowed” negative energy regimes of I and III. We
therefore expect exponentially decreasing solutions with positive and nega-
tive charge density in area II and oscillating solutions with negative charge
density in I and III. This case corresponds to the tunneling of an antiparticle
of charge —e through the (from its point of view) repulsive potential barrier.

5. case: E < —mgc?. Only “allowed” negative energies are involved here
implying oscillating solutions with negative charge densities in all three areas.
This is the case of a normal scattering of an antiparticle of charge —e at the
(from its point of view) repulsive potential barrier.

Let us now consider the above cases in detail:

1., 3., and 5. case in detail. In these three scattering cases, we assume a
particle or an antiparticle coming from the left. For the solution of (1.52) in
the areas I, II, and III, we make the ansatz

¢I(Z) = ¢in(z) + @ref(2>
Pin(2) = Ae'¥1? | @ ¢(2) = Be k12
) ) (1.67)
o11(2) = Ce*2# 4 De~ike?

QSIII(Z) = thrans(z) = Eeiklz 5
with
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klzi\/(E—Vb)Q—m%c“ R E2 —m3ct

c2h? c2h?
and ki = +|k1|, k2 = +|ke| in the 1. case, ky = —|k1|, k2 = +|kz| in the 3.
case, and k; = —|ky|, ko = —|ko| in the 5. case. The continuity conditions of

&(z) and P'(z) at the area borders z = +a lead to the following conditional
equations for the integration constants A, B, C, D, and E:

Ae—ik1a +Beik1a — (e~ ik1a +Deik1a
kl (Aefilma _ Bikla) — k2 (Cefikga _ DeikQG)
. . , (1.68)
Celk2a+De—1k2a _ Eelkla

ko (C’eikw — De_ikw) = ki Eelkra

After some calculations, one finds from this the reflection and transmission
coefficients

R _Jref _ (k3 — k2)?sin® 2kqa
Jin  4k?EkZ + (k? — k2)2sin? 2kqa
. (1.69)
Jtrans 4](5%]{3%
= = =1-R.

Jin  AK2k2 4+ (k2 — k2)2 sin® 2kqa
Both coefficients oscillate between zero and one depending on ky or E. An
interesting special case is sin 2ksa = 0, i.e.

242 2

ch™m
2 2 4 _

102 +mge” , n=1,2,...,

where the reflection coefficient vanishes exactly.

E’=n

4. case in detail. In this tunneling case, we also assume an antiparticle
coming from the left. For the Klein-Gordon solution, we can therefore apply
ansatz (1.67), where k1 and ko are chosen as

(E = V)% —m3ct , m3ct — E?
’“:‘\/ arr R = [P

Taking into account k3 = —«3 and sin? 2kya = — sinh? 2kaa, the reflection
and transmission coefficients follow immediately from (1.69) as
B (k? + k3)?sinh? 2k2a
 4K2k3 4 (K2 + 3)2 sinh? 200
_ 4k} K3
 4k2k2 4 (k2 4 k2)2 sinh? 2kza
As before, both coefficients range between zero and one. However, the tran-

sition coefficient and, with it, the penetration probability of the potential
barrier decreases exponentially with a and increases exponentially with F.

=1-R.
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2. case in detail. Contrary to all the other cases, we expect bound states
here. Therefore, our solution ansatz for (1.52) in the areas I, II, and III is

D1(z) = Ae™”
P11(z) = Beoskaz + Csinkyz
@IH(Z) = De 1%
m3ct — (E —Vp)? E?2 —m3ct
R1 = 272 ) k? = T 272
c*h c’h

where @1 is written in trigonometric form for convenience. The continuity
conditions at the area borders yield the equations

Ae™ ™% = Bcoskya — Csinkqa
k1 Ae™™?% = ko Bsin kaa + koC cos kaa
De "% = Bcoskoa + Csin kaa
—k1De™ "% = —koBsinksa + koC cos kaa .

Combining the first two and the last two equations leads to

i Bsin koa + C cos kaa Bsin koa — C cos kaa
K1 = = ’
! 2Bcosk2a70sink2a 2BCOSk2Q+CSin’2a
that, in turn, implies BC' = 0. This means that we have to distinguish be-
tween two cases from which follow two different quantization conditions for
the energy E:%0
2.a: C=0= A=D.
R1
tan kea = — .
2 oo

2.b: B=0= A=-D.
s K1
—cotkya =t (k 7) _
cot ko an | kea + 5 o
By (numerically) solving these two equations, we finally obtain the possible
energy values of the bound states in area II.
The transmission coefficient of the 1., 3., 4., and 5. case is depicted as
a function of the energy E/mgc? in Figure 1.6. A potential well of width
a = 6h/mgc and of height Vy = 3mgc? is chosen here (so that the condition
Vo > 2moc? for the occurrence of the 3. case is fulfilled). For the “proper”

26 Note that the Klein-Gordon equation (1.52) is parity invariant due to the sym-
metric form of the potential (1.66). This means that it is invariant under the
replacement z — —z. From this follows that, with ®(z), the wave function ¢(—z)
is a Klein-Gordon solution to the same energy E. Due to the linearity of (1.52),
these solutions can be combined to give the new solutions

Dy(2) =D(2) £ P(—2) , Pi(z) = £P1(—2)

with a defined parity. The case 2.a corresponds to solutions with positive and
the case 2.b to solutions with negative parity.
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T

3

T1

2! case 1. case

5. case 4. case 3. case\
I

-1 0 1 2 4 E/moc?
Fig. 1.6. Transmission coefficient of a onedimensional potential well of height Vo =
3moc? and width a = 6h/moc as a function of E. The dashed lines indicate the
energy values of the bound states.

scattering cases (1. and 5. case), T shows the typical oscillatory behavior ap-
proaching one with decreasing amplitude at the outskirts of the energy range.
Since the transmission coefficient increases exponentially with the width a in
the 4. case (tunneling case), it is practically zero there. Between the tunnel-
ing case and the 2. case lies the resonance case 3, where T is oscillating, too,
and which cannot be interpreted within the one-particle picture in the strict
sense; in the vicinity of the transmission maxima, an incoming antiparticle
hits against a quasi-bound state appearing as particle resonance so that the
antiparticle can penetrate the (from its point of view) repulsive potential
barrier almost without resistance.

1.5.2 Radial Klein-Gordon Equation

If the Klein-Gordon equation contains a centrally symmetric potential
eA%(z) = V(x) = V(|z|), A = 0, it possesses a central symmetry. As in non-
relativistic quantum mechanics, it is then appropriate to rewrite the Klein-
Gordon equation in terms of spherical coordinates,

x=rcospsing , y=rsinpsing , z=rcosb , r = x|,

in order to separate the angular and radial parts. Our starting point is the
Klein-Gordon equation

2
(ihaat - v) o(z) + (PR*V? —mict) ¢(z) =0 ,

which can be immediately cast into the time-independent Klein-Gordon equa-
tion
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[(E—-V)?+ 1PV —mict]| d(z) =0, ¢(z) = d(z)e /M (1.70)
Next we write the momentum term as

L2
h2v2 = _pg - 7‘72 )

where

ffih 24,1 2fi2+22
Pr= or T r) P T 52 T i ar

denotes the radial momentum and L = x x p the angular momentum whose

eigenfunctions are given by the spherical harmonics Y} ,,, (6, ¢) (see Appendix
A.3):

L%, = Bl +1)Yim , 1=0,1,2,...
L.Yim = hmYim, m=—1l,...,1.

With this (1.70) turns into
9% 2 8) o 54

2y 2329 29 _ =
(E-V) +ch <8r2 o 2 mgc | P(x) =0 .

Using the ansatz

¢(m) = gl(r)}/l,m,(aa 90) )
the angular-dependent part can now be separated so that we are finally led
to
Theorem 1.9: Radial Klein-Gordon equation

for centrally symmetric potentials

The solutions to the time-independent Klein-Gordon equation with a cen-
trally symmetric potential,

{[E-V()]*+ Ah*v? — m§c4} &(x)=0,
can be written in the spherical representation as
Bim(r,0,6) = 51 (7)Yim (6, )
The functions g; obey the radial Klein-Gordon equation
[d2 2d  I(l+1) (E—-V)2 —m3ct

| dr? + rdr 72 T ]gl(r) 0,k 212

(1.71)

or, using g;(r) = w(r)/r,

[d? I(+1
F_%M?} w(r) =0. (1.72)
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These solutions also satisfy the relations
L@, (r,0,0) = B2+ 1)@y (r,0,0) , 1 =0,1,2,...
LDy (1,0, 0) = hm®Py (r,0,0) , m=—1,...,1
[@1m)p (7,60,0) = (1) Pim(r, 6, ) -

The last equation follows from Yin (7 — 0,0 + ) = (=1)'¥im(6, )
[P=active parity transformation].

Note that (1.71) and (1.72) are formally identical to the corresponding radial
equations of the Schrodinger theory, with k> = 2mq(E —V)/h*. Furthermore,
the following points should be kept in mind:

e Of the solutions g; and u;, only those are physically sensible that are inte-
grable with respect to the G-scalar product. Contrary to the nonrelativistic
case, these integrability conditions depend on the potential, and the fol-
lowing integrals must exist:

/Oodrrzgf(r) , ]odrrzglz(r)V(r) or 7dru12(r) ) 7dru12(r)V(r) .
0 0 0 0

e If the potential diverges more slowly than 1/7? at the origin: lir% r2V(r) =
T

0, the equation

d?u; (1 +1)

dr2 72

holds around the origin whose solutions are u;(r) ~ r!*1 (regular solution)

and u(r) ~r~

ul:O

o If, for r — oo, the potential falls off faster than 1/r: lim rV(r) = 0, we

r—00

have for large r
d*u  E? —mict
R + - @@z
dr2 2 h2
The solutions to this equation behave asymptotically as

|E| < moc®: u(r) ~ e k"
‘ ‘ E2 — m2ct
|E| > moc?: u(r) ~ e e k2 = ‘moc

2h?

1.5.3 Free Particle and Spherically Symmetric Potential Well

As an application of centrally symmetric potential problems, we first consider
the easiest case of a free spin-0 particle (V' = 0). The discussion can be carried
out analogously to the nonrelativistic case. Using the substitutions
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E? —m3ct
2h?
the radial Klein-Gordon equation (1.71) becomes the spherical Bessel equa-
tion (see Appendix A.2)

2
[d 2£+1 (l+1)

p="kr. g(r)=alp), k*=

)

— + - g =0.
ap2 " pdp 02 } a(p)

Its solutions are the spherical Bessel functions whose form and asymptotic
behavior are given by

(1.73)

!

o
U . —_— for p—0
i) = o (535) g BADL
S T2 for p— 0
(20 —1)N
1d lcosp 7/)['*'1 for p— 0
m(p) = (~p) pdp - cos(p —Im/2)
. d ——~ for p— 0.

Special combinations of these functions called Hankel functions are of partic-
ular interest:

i(p—1m/2)
. . — e
n o) = milp) +iilp) =T
—i(p—lm/2)
— .. — (&
) = milp) i) "=

Their asymptotic behavior for k? > 0 corresponds to outgoing and incoming
spherical waves, respectively. Depending on E, we now have to distinguish
between two cases:

o |E| < moc?: here gi(p) = hl(+)(p) is the only bounded solution to (1.73).
However, it has a pole of order [+ 1 at the origin. Therefore, the eigenvalue
problem has no solution; in accordance with our expectations, there are
no free (anti)particles with an energy E within the “forbidden” interval
—mpc® < E < moc?.

e |E| > moc?: in this case the equation (1.73) has exactly one solution
bounded everywhere, namely, §;(p) = ji(p). The physically possible so-
lution to the Klein-Gordon equation (1.71) is, therefore,

qi(r) = ji(kr) .

Note that the above considerations can easily be carried over to the case of a
potential V' (r) that can be split into regions of constant potential values V.
In this case F needs to be replaced by E — V; in each region.
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Spherically symmetric potential well. Keeping the above results in
mind, we now turn to the problem of a spin-0 particle within a spherically
symmetric potential well of the form

—Vp for r < a (area I)
, Vo> 0.
0 for r > a (area II)

eA'(r) =V (r) = {

We first find the possible solutions to (1.71) within the areas I and II. In the
inner area I, the regular solution at the origin is

wE+%>mmem:Am%w7m=¢

(E+Vp)? — m%c4

c2h?
or
2t —(E+W)?
o |B+ Vol < moc®: g" (r) = Aji(imar) , 51 = \/moc 2(h2 oA
C

In the outer area II, two cases must be distinguished:

e |E| < moc? (bound states): here

_ mact — E?
i) = B inar) o = [T

is the only solution bounded at infinity. The continuity conditions at r = a,

(1) (11) d
9, (a):!h (a), 591 (r) r:ai d?“gl

determine the ratio of the integration constants A; and B;. Both condi-
tions can be satisfied simultaneously only for certain discrete values of F;
they determine the energy levels of the bound states. For [=0 states and
additionally assuming E + Vi > moc® (2. case, see below), follows the
condition

_ i (H)(T)

i

r=a

k
tan kja = —— . (1.74)
K2

e |E| > moc? (unbound states): the general solution is a linear combination
of the spherical Bessel functions that can be written as

E2 —m3ct
2h? ’

For [ = 0 states the corresponding continuity condition yields for the phase
do

gl(H)(r) = By [ji(kar) cos 0y + ny(ker) sindy] , ko =

k
tan(kqa + o) = k—Q tankia , (1.75)
1
if |[E + Vg| > moc? (1., 3., and 5. case, see below), or
k
tan(koa + 89) = — tanh k1a (1.76)
K1

if |E + Vg| < moc? (4. case, see below).
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As in Subsection 1.5.1, these solutions can be classified and interpreted as
follows (see Figure 1.7):

r

Fig. 1.7. Energy intervals of the spherically symmetric potential well.

1. case: E > moc?. In both areas I and II only “allowed” positive energies
are involved. This corresponds to a normal scattering of a particle with charge
+e against the (from its point of view) attractive potential well (compare to
1. case from Subsection 1.5.1).

2. case: —moc® < E < mgc? , E+Vy > moc?. At this energy interval the
“allowed” positive energies of I adjoin the “forbidden” positive and nega-
tive energy regimes of II. We therefore have a bound particle of charge +e
(compare to 2. case in Subsection 1.5.1).

3. case: —Vy +moc? < E < —mpc® = Vj > 2moc?. Here the “allowed”
positive energy regime of I touches the “allowed” negative energy regime of
II. Beyond the one-particle picture, this can be interpreted as the scattering
of an antiparticle with charge —e against the (from its point of view) repulsive
potential well in the presence of particle resonances (compare to 3. case in
Subsection 1.5.1).

4. case: —Vy — moc® < E < =V + mgc?. The “allowed” negative energy
regime of II adjoins the “forbidden” positive and negative energy regimes
of I. This corresponds to a normal scattering of an antiparticle with charge
—e against the (from its point of view) repulsive potential well while the
penetration depth in area I decreases exponentially (compare to 4. case in
Subsection 1.5.1).

2
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5. case: B < —Vy —moc?. Only “allowed” negative energies are present in I
and II. Thus, we have a normal scattering of an antiparticle with charge —e
against the (from its point of view) repulsive potential well (compare to 5.
case in Subsection 1.5.1).

2. case in detail. Let us now consider the bound case in more detail. We set
Vo = Ze?/a and take the potential well as a naive model for the electrostatic
binding of a pion atom consisting of a nucleus with charge —Ze = +Z|e| and
an orbiting pion of charge +e = —|e|. Figure 1.8 shows the corresponding
energies for 1s-states as a function of the “nucleus charge number” Z and
the “nucleus radius” a following from (1.74). As we can see, for each a-value
there exists a Z-interval, only in which bound 1s-states are possible. At the
lower Z-border the solutions of the upper energy continuum dive into the
bound region and approach the lower energy continuum with increasing Z.
However, we have to bear in mind that, below the zero-energy, the one-

]:7/m7rc2
A

o \N 7
10000
a/fm =05/ 1] 2 4 8 32

-1
E'/m,rc2
300 350 400 450 500
—0.71 } } } } — Z
a/fm :‘fo.5 ‘;‘ 1 12
1 “ c -

Fig. 1.8. Above: energy values of pionic 1s-states (mwc2 = 139.577 MeV, A\ =
1.414 fm) within a spherically symmetric potential well with width @ and depth
~Vo = —Ze?/a as a function of Z for different a in a semilogarithmic depiction.
Below: magnified nonlogarithmic depiction in the lower energy regime.
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particle interpretation breaks down more and more due to the high binding
energy |Eg| = |E — m,c?| > mqc?.

It is also striking that for small a values (small potential reach and large
potential depth), i.e. far beyond the validity range of the one-particle concept,
the energy curves exhibit a strong left bend in the lower energy regime (two
solutions for a given Z). This left bend results from the antiparticle states
entering the bound region from the lower energy continuum and joining the
particle states at the points of infinite slope. Remarkably, this potential can

therefore bind particles and antiparticles simultaneously (Schiff-Snyder ef-

fect).

1.5.4 Coulomb Potential

We now refine our description of pion atoms and consider the problem of a
spin-0 particle within a Coulomb potential of the form
Ze? Zheo, e2

eA(r) = V(r) = === = === 0. = 5 = 1/137.03602,

where «, denotes the fine structure constant. In this case the radial Klein-
Gordon equation (1.72) is

2 I(l+1) - (Za.)? 2EZa. mict — E?

2 2 + her 122 ] u(r)=0. (1.77)

Since we wish to restrict our discussion to bound states, i.e. to the energy
interval —mgc? < E < mgc?, we can introduce the quantities

2.4 2
B . B mge* — FE B 2FE 7,
p=p0r, w(r)="1dlp), =2 T2 00T Bhe
in order to rewrite (1.77) as
2 r'+1) X 1
- _ 24 = 1.
|:dp2 2 + P 4] w(p) =0, (1.78)

with
Pl +1)=11+1) = (Za.)?

2
:z’z—;i\/<l+;> — (Zae)? . (1.79)

Obviously, the equation (1.78) is formally identical to the radial Schrodinger
equation of the nonrelativistic Coulomb problem. We can therefore follow the
way of solving the nonrelativistic problem by first considering (1.78) for the
asymptotic regions p — 0, co.
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p — 0: in this case (1.78) reduces to the equation
2 I+
|:dp2 - 4p2 :| Ul(p) =0, (180)
having the two solutions @;(p) = p' 1 and p~'". Due to (1.79), they can be

summarized in the one solution ;(p) = p' 1, whereas the sign in (1.79) re-
mains to be clarified. Now the following points have to be taken into account:

e Physical solutions to our problem exist only for

1
l+=->Za, .
+ 5 «
Otherwise, the quantity I’ = —1/2+i0 , 0 = \/(Za,)? — (I + 1/2)2 would
be complex so that, near the origin, we would obtain wave functions of the
form 4 (p) ~ p'/? exp(4io In p) that oscillate infinitely often for p — 0 and
hence yield divergent expectation values of the kinetic energy.

e Because of the 1/r-behavior of the Coulomb potential, the integrability of
the wave function near the origin implies the constraint

'+1>0,

which is always true for the positive sign in (1.79). If, on the other hand,
Z is sufficiently large for a given [, this constraint is also fulfilled by the
negative sign in (1.79). However, in this case we can find another constraint
that finally rules out the negative sign, for example, that the expectation
value of the kinetic energy must exist.

All in all, the expression

2
, 1 1
(p) = V=L, s:\/(z+2) ~ (Za,)?

remains as the only physically sensible solution to (1.80).

p — oo: here (1.78) turns into the equation

(&Yoo

Its bounded solution at infinity is
a(p) = e P2 .

Putting both asymptotic regions together we are led to the ansatz
w(p) = p" e 2 f(p)

for the solution of (1.78), from which the differential equation
pf"(p)+ @ +2=p)f'(p)+ A =T"=1)f(p) =0

follows. Inserting the power expansion
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flp) = axp"
k=0

yields

S Mk +1)(k+20 +2)app + (A =1 —1—k)ag] p* =0,
k=0

giving the following recursion formula for the expansion coefficients a;:
E+U+1-X
a = agk .
T kD (k+ 20 +2) "

For the wave function u; to obey the integrability condition, i.e. to converge
at infinity, the power expansion must break at some k = n/, i.e.

A=n'+0'+1,7n"=0,1,2,... .

This is the quantization condition for A and thus for the energy levels of the
bound spin-0 states. From this it follows that

E2(Zae)? L1 1\°
T \aGe) - I+>) —(Za,)?
mie—g [Tt itg) —(Zad)

mo 62

1+ (Zae) ,
(n'+§+ (l+%)2—(Zae)2)

As we can see, the above constraint [ + 1/2 > Za, is also necessary for the
existence of real (i.e. physical) energy eigenvalues. It is most restrictive for
[=0-states and implies: | = 0 = Z < 68.5,l =1 = Z < 205.5, and so
on. Bound states do not exist for larger Z-values. For a comparison with the
nonrelativistic spectroscopic notation, we introduce the principal quantum
number

2

— En’,l =

n=n+1+1

and finally obtain (see Figure 1.9)

m002 n =

L

1+ (Zae)? Tl =0,
2
(=) (8= Z0?)

Obviously, the degeneracy with respect to the angular momentum, which we
encounter in nonrelativistic quantum mechanics, is now removed. Expanding
(1.81) in powers of Za, yields

Za)?  (Za)t [ n 3
E,; = 2 1—( e - - = . 1.82
e { 2n? ot \ip1 1)7 (1.82)

En,l =
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Fig. 1.9. Energy values of bound spin-0 states within a Coulomb potential of the
form V(r) = —Ze?/r as a function of Z. Each curve ends at a certain maximal

Z-value. For larger Z we get complex (unphysical) energies.

The first term is the rest energy. The second term is the binding energy of the
nonrelativistic Coulomb problem, and the third one is a relativistic correction
where the removal of the angular momentum degeneracy is manifest. It is
identical to the correction stemming from the inclusion of the perturbation
operator H' = —(p?)?/(8m¢c?) in the Schrédinger equation.

The following items have to be kept in mind for a better understanding
of the above findings:

e In our calculations we have assumed an infinitely heavy atomic nucleus.
However, since it has de facto a finite mass, the nucleus and the pion
move around a common center of gravity that does not coincide with the
nucleus’s center. In Newtonian mechanics as well as in nonrelativistic quan-
tum mechanics this center of gravity motion can easily be separated from
the relative motion, whereas the latter is related back to an effective one-
particle problem with the reduced mass
moM

mo+ M

However, this division is problematic in relativistic quantum mechanics.

Firstly, there does not exist a satisfactory relativistic two-center equation

and, secondly, the center of gravity system can no longer be defined geo-

metrically but only dynamically. In order to take into account the mutual
repulsion of the particles, one usually proceeds, as in the nonrelativistic

Iu:
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case, by adhering to the original one-center equation and assigning the
pion the above reduced mass p. Contrary to the hydrogen atom, this cor-
rection is fairly large for the pion atom, since the pion is about 273 times
heavier than the electron (m,c? = 139.577 MeV, m.c?> = 0.511 MeV).

e The description of the interaction between nucleus and pion using an ex-
ternal static Coulomb field disregards the finite propagational velocity of
the force between these two constituents. We therefore expect significant
impacts of those retardation effects particularly in the inner shells of the
pion atom where the pion’s velocity is comparable to the velocity of light.
Here the external field approximation and the above mentioned reduced
mass approrimation are expected to become poor.

e As we have seen, there seem to exist no bound [=0-states for Z > 68.5.
On the other hand, we know that there definitely exist nuclei with larger
nucleus numbers so that, also for those cases, the Klein-Gordon equation
should yield an acceptable explanation. The reason for this discrepancy lies
in disregarding the nucleus’s finite extent. For example, if we compare the
Bohr radius of a pion, Ry = 1/(mrcZa.) =~ 200 fm/Z, with the nucleus
radius Rx ~ 1.5 - AY/? fm (A = nucleus number), we expect, particularly
for large Z, a considerable overlap of the pion wave function with the
nucleus. In the next subsection, we use a modified Coulomb potential in
order to take the nucleus’s finite extent into account, and we will see that,
in this case, bound states do exist even for large Z and small /.

e Since the probability of finding the pion near the nucleus is considerably
large, we have to include strong interaction corrections whose effects can
be significant.

e Finally, we must also take vacuum polarization effects into account leading
to a screening of the nucleus charge near the nucleus and hence to a further
modification of the Coulomb potential.

1.5.5 Oscillator-Coulomb Potential

All the influences mentioned above have to be taken into account for a more
realistic description of pion atoms. We now single out the finite extent of the
nucleus and (naively) consider it to be a homogeneous charged sphere. The
corresponding potential is (R = nucleus radius)

2 2
f% (3 - ;2> for r < R (areaI)
eA’(r) =V (r) = o2

. for r > R (area II) .

It is composed of an oscillator-like potential in the inner area I and the
Coulomb potential of the preceding subsection in area II. In area I the radial
Klein-Gordon equation is
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2
ze? (g r2\"| _ 2.4
2 Ui+ [EJF G (3 1) } moc

2 2 + 22 ul(r) =0.

Introducing the quantities

E m2c? Za
A=— B=A>- -2 =—
he '’ K2 ¢ 2R3’
it can be simplified to
2 I(l+1
[er_ ( :; ) + B —2ACT* + C%*r* | wy(r) =0 .

To solve this equation we make the power series expansion ansatz
o0
I
ul( )(r) = pltt g cpr?t
k=0

leading to the following conditional equation for the coefficients cg:

0= cr(@k+1+1)(2k+ Dr** 1 =301+ 1)epr T
k=0 k=0
oo o (o9}
+B Z ckr2k+l+1 _ QAC«Z ckr2k+l+3 +C? Z Ckr2k+l+5 ]
k=0 k=0 k=0

Comparing the coefficients for each single order in r finally yields

BCO B6172ACCO
cCl=————-— cH———m—m78——————
YT 20043) 0 7P 421+ 5)

Bey_1 —2AC¢;,— 2Ch—
o = — Cr_1 Cey, 2+CCk3,k23.

2k(20 + 2k + 1)

In area II the radial equations (1.77) and (1.78) hold. Their general solution
is given by

ul(H)(r) _ ﬁz(H) (p) = &P/ Z appl /2T g ol Zbkp1/2—s+k ,(1.83)
k=0 k=0
with
s = E+1/2+s—A
(E+1)(k+1+2s

E+1/2—s—A
k+1)(k+1-—2s)
and

[m2ct — E2 2EZ . 1\?
p:ﬁraﬂ:2 OBT,)\: ﬁhc 782\/(14-2) —(ZOée)2.

Up to the irrelevant coefficient ¢y, our problem involves three quantities to be
determined, namely the coefficients ag and by, as well as A\ or the energy E.

2k b1 = ( by (1.84)
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On the other side we have the same number of conditions, the two continuity
conditions at r = R and the required correct asymptotic behavior of the wave
function for r — oo.

Extracting ap and by from the sums in (1.84), the expression (1.83) can
be rewritten as

u"(r) = agQ(s, p) + bo2(~s,p) ,
with

_ E+1/24+s—X
N — p/2§ : 1 1/24s+k I — I r_ .
(57p> e kzoa’k:p » Ay (k + 1)(k' 1 25) A 5 Qg

Now we are able to express both continuity conditions by the compact equa-
tion system

u(R) = uf"(R)  =aos,BR)  +by2(—s,BR)
d' )] _ @) dQGsp)| , dR(sp)
dr n dr e O ar R 0 dr —r

which, for given values of mg, Z, R,1, and E, can be uniquely solved.?” The
sought energy eigenvalues F are determined via the required asymptotic be-
havior of the radial wave function at infinity.?® Depending on the number of
zeros, the found energies and states can be classified using the usual spectro-
scopic notation (one zero = n = 1, two zeros = n = 2, and so on).

In Figure 1.10 the energy eigenvalues of bound pionic 1s-, 2s-, and 2p-
states are depicted against the nucleus charge number Z, where a nucleus
radius of R = 10 fm is chosen. As we can see, there is an almost linear relation-
ship between the state energies and the nucleus charge number. Furthermore,
we perceive that, compared to the pure Coulomb problem, there also exist
bound states for large Z and small [ values (compare to Figure 1.9). At
Z = 760 [935, 1025] the energy value for 1s-[2s-, 2p-|pions reaches £ = 0. For
larger Z it becomes negative (compare to Figure 1.8). At Z ~ 1450 [1670,
1785], we finally find the energy E = —mc?.

At the end of this subsection, we draw on the results of our last example
to highlight again the basic interpretational difficulties of the Klein-Gordon
theory in relation to the one-particle picture. Table 1.1 shows for two different
nucleus charge numbers Z the G-expectation value of the 1s-pion radius,
(1), the electrostatic oscillator-Coulomb potential V' at the point (r), the
binding energy Fp = E;3 — m,c?, as well as the mean quadratic deviation

Ar = /(1) — <r>é Comparing these values with the pion’s rest energy

2" For real s both quantities ap and by are real, too. If s is imaginary, we have
2(—s,p) = 27(s,p) and therefore by = ag so that, also in this case, only two
quantities remain, namely Re(ao) and Im(ao).

28 To do this, one solves the equation system for different energies within the range
—moc® < E < moc® and checks the asymptotic behavior of the corresponding
solutions.
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Fig. 1.10. Energy values of bound 1s-, 2s-, and 2p-pion states in the field of a
homogeneously charged sphere (oscillator-Coulomb potential) as a function of Z.
The sphere’s radius (nucleus radius) is R = 10 fm.

Z=2 Z = 1450
(Mg 146.4 fm 3.7 fm
V((r)g) —0.02MeV —298.9 MeV
Ep —0.05 MeV ~ —278.8 MeV
Ar 84.3 fm 1.6 fm

Tab. 1.1. Characteristic values of the bound 1s-pion state in the oscillator-Coulomb
potential for the weak (Z = 2) and the strong (Z = 1450) binding cases.

mxc? = 139.577 MeV and its Compton wave length A\, = 1.414 fm, we have
for the weak binding case

Z=2: |Egl,|V((rg) <mc*, Ar> A\, .

Here all prerequisites of Theorem 1.7 are fulfilled so that the interpretation
of our results within the one-particle concept seems to be justified. However,
in the strong binding case we have

Z=1450: |Eg|,|V ((r)g)| = 2m.c®, Ar =\, .

These relations clearly contradict the assumptions in Theorem 1.7, thus show-
ing the impossibility of the one-particle interpretation. A direct confirmation
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of these conclusions is obtained by considering the radial charge density of
the 1s-pion state,
E—-V(r
2ot = i)

In the weak binding case (Z = 2) E is positive, and the radial charge den-
sity is positive definite. By contrast, in the strong binding case (Z = 1450)
E is negative so that the radial charge density does not show a uniform
course and turns into negative values at r ~ 15 fm (see Figure 1.11). This
is clearly incompatible with the one-particle concept. The physical meaning
of this change of sign for strong fields (as for the onedimensional and sphe-
rically symmetric potential wells) can ultimately be understood only within
quantum field theories where the number of particles is variable.

r“p(r) - fm
10-7 + rp(r) - fm
0.25 T
0 } 1 } } } r/fm
005 L 5 10 15 20 25
0 ; i ; t } r/fm
16 18 20 22 24
—4-107% 1

Fig. 1.11. G-normalized radial charge density of the 1s-pion state in the oscillator-
Coulomb potential with Z = 1450 and R = 10 fm. The large picture shows a
magnified extract of the small one. At r ~ 15 fm the charge density changes its
sign.
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Summary

e Studying the onedimensional potential well, we encounter different

classes of solutions depending on the particle’s energy that can be in-
terpreted more or less consistently within the one-particle concept as
scattering or binding of an (anti)particle.

For centrally symmetric potentials we can separate the angular-
dependent part to obtain the radial Klein-Gordon equation, which
is formally identical to the nonrelativistic radial Schrodinger equation.

For the free case (and that of a potential with constant regions) this
equation turns into the spherical Bessel differential equation, whose
solutions are given by the spherical Bessel functions.

Exactly like nonrelativistic electron atoms, pion atoms can be described
approximately using the Coulomb potential. Contrary to the nonrela-
tivistic case, the angular momentum degeneracy is removed. At small
angular momentum values [ we find bound pion states only for corre-
spondingly small nucleus charge numbers Z. This results from disregard-
ing the finite extent of the nucleus.

Taking the nucleus’s finite extent into account by using an oscillator-
Coulomb potential, we also find bound pion states for large Z-values.

The basic difficulties of the one-particle interpretation in the presence of
strong fields can be clearly demonstrated by means of the solutions to
the oscillator-Coulomb problem.

Exercises

10. Exponential potential. Calculate the bound [=0-states of spin-0 par-
ticles in an exponential potential of the form

eA'(r) =V (r) = —Zae™"" | o = mocPa, |

where Z denotes the nucleus charge number, « the coupling constant, and a

the decline constant.

Solution. Since we consider only s-states, the centrifugal term vanishes and

the radial Klein-Gordon equation (1.72) acquires a very simple form:

(B = V()] = mict

u’(r) + k*u(r) =0, k* = 1202

For its solution we make the separation and substitution ansatz

—o"/2(t) |t =2iZa—te T/
u(r) = e %w(t) , iZay—e
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From this and taking into account

At 270 e bt e h?c2t?
dr he ’ 2Zaa’ 47202a?
as well as
k2 — E2_m804_i'E7t_i
h2c2 hea  4a?
1 2i7
u'(r) = %e’"/zaw(t) - %_lcae_r/%w'(t)
1, 47202 -
u”(r) _ @e /Qaw(t) _ s o3 /2aw//(t) 7
we obtain the differential equation
1/4 —p*a® iFa 1 m3ct — B2
" (t _— — — — = =0, p*=—"2" " 1.85
o)+ (PG D=0, =TSR )
which is formally identical to (1.78), if in the latter
iFa 1
A=——r—,I'=—2
he ' 2 +pa

is chosen. The regular solution to (1.85) at  — oo (i.e. t = 0) is therefore

kE+1/2+pa—A

wit) = Ty ath ) ani = (k+1)(k + 2pa + 1)

k=0

ag .

The discrete energy values follow from the constraint that w(r) [or w(t)] must
vanish at the origin [or at to = t(r = 0)]:

oo .

PAVA )
D apth =0, tg= .
k=0

he

From this implicit conditional equation the energy values E for s-states can
be determined numerically.

Figure 1.12 shows the energy values of pionic 1s-, 2s-, and 3s-states
depending on the nucleus charge number Z, where a decline constant of
a = Ay = 1.414 fm is chosen. Similarly to the spherically symmetric poten-
tial well (Figure 1.8) and the oscillator-Coulomb potential (Figure 1.10), we
also find here certain Z intervals for the bound states, where the energy val-
ues coming from the upper energy continuum decrease with increasing Z and
eventually border on the lower energy continuum at Z = 778 (1s), Z = 1278
(2s), and Z = 1754 (3s).

If we now reduce the decline constant to a = 0.2 - A, the lower border
point for the 1ls-state is increased to Z = 2158, as can be seen from Figure
1.13. Additionally and similarly to the spherically symmetric potential well,
we see a strong left bend in the lower energy regime stemming again from
the antiparticle states entering the bound region from the lower energy con-
tinuum. The existence of these antiparticle states is again connected to the
very short reach and the very large depth of the potential.
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Fig. 1.12. Energy values of bound 1s-, 2s-, and 3s-pion states within an exponential

potential with a decline constant a = A as a function of Z.
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Fig. 1.13. Energy values of bound 1s-pion states within an exponential potential
with a decline constant of a = 0.2 - A\ as a function of Z. The small picture shows

a magnified extract in the lower energy regime.



2. Relativistic Description of Spin-1/2
Particles

In the preceding chapter we discussed the Klein-Gordon theory for the de-
scription of spin-0 particles as well as its interpretation in relation to the
quantum mechanical one-particle concept. There, for didactic reasons, we
disregarded the chronological order where a sensible one-particle interpre-
tation of the Klein-Gordon theory was not seriously considered until Dirac
established a relativistic quantum mechanics for electrons (more generally:
spin-1/2 particles).

In this chapter we turn to the Dirac theory and also pay specific attention
to a physically consistent one-particle interpretation and its limits (relativistic
quantum mechanics “in the narrow sense”). In practice, this means that we
are again guided by the basic principles presented in the introduction of
Chapter 1, namely

e the principles of nonrelativistic quantum mechanics (Theorem 1.1),

e the limitation of the one-particle interpretation to small interaction ener-
gies compared to the rest energy of the particle as well as to a large position
uncertainty of the wave function compared to the Compton wave length.

In order to make the similarities and differences in the Klein-Gordon and
Dirac theories as transparent as possible, the following sections — except for
Dirac-specific topics — are structured similarly to those of the first chapter.
The first section deals with the foundations of the Dirac theory for the
description of spin-1/2 particles, which, as we will see, exhibit similar features
as the Klein-Gordon theory. In the second section we look at the continuous
and discrete symmetries of the Dirac theory. The third section is dedicated
to the extension, completion, and delimitation of its one-particle interpre-
tation. The nonrelativistic approximation of the Dirac theory to different
orders of v/c is the subject of the fourth section, where we will also resort
to the Fouldy-Wouthuysen method to systematically diagonalize the Dirac-
Hamilton operator. As in the Klein-Gordon case, this chapter ends with some
detailed considerations of simple one-particle systems in the fifth section.

A. Wachter, Relativistic Description of Spin-1/2 Particles. In: A. Wachter, Relativistic
Quantum Mechanics, Theoretical and Mathematical Physics, pp. 85-176 (2011)
DOI 10.1007/978-90-481-3645-2_2 (© Springer Science+Business Media B.V. 2011
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2.1 Dirac Equation

As we saw in Subsection 1.1.1, the relativistic energy momentum relation for
free particles,

E? = p?® + m2ct (2.1)

leads through the operator replacement

E—>ih%,p—>—ihv

to a scalar wave equation namely the Klein-Gordon equation. This equation
does not allow a positive definite probability density in the sense of non-
relativistic quantum mechanics due to the presence of the second temporal
derivative. Additionally, as a consequence of the quadratic energy momen-
tum dependence, there exist solutions with negative energy that need to be
interpreted adequately.

In his efforts to adhere to a positive definite probability density, Paul Dirac
sought a relativistic generalization of Schrédinger’s equation of first order in
time. Indeed he found this equation in 1928, which describes, contrary to the
Klein-Gordon equation, spin-1/2 particles. However, as every relativistic wave
equation, it also encompasses solutions with negative energy whose physical
meaning is a priori not clear.

In this section we derive the Dirac equation and other basic relationships
of the Dirac theory in the canonical as well as in the Lorentz-covariant formu-
lation. As it turns out, the solutions to the Dirac equation exhibit an inner
degree of freedom which is to be interpreted as a quantum mechanical spin
with the quantum number s = 1/2. Furthermore, we discuss formal proper-
ties of the spin operator, cast it into a Lorentz-covariant form, and utilize it
for the construction of projection operators. At the end we turn to the neg-
ative solutions and their interpretation where, again, the charge conjugation
transformation and, additionally, the hole theory will play an important role.

2.1.1 Canonical Formulation of the Dirac Equation

The starting point of Dirac’s considerations was a relativistic generalization
of the Schrodinger equation for free particles of the form
0
ih% = HO%(z) , = (z"), H® Hermitean , (2.2)

to which he initially assigned three constraints:

e Equation (2.2) must be Lorentz-covariant. Since its temporal derivative is
of first order, the spatial derivatives must be of first order, too.

e Equation (2.2) must yield the relativistic energy momentum relation (2.1)
in operator form.
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e The quantity p = ¥*Y must be the temporal component of a conserved
four-vector j* (i.e. there must exist a Lorentz-covariant continuity equa-
tion) so that its integral over the whole space is invariant.

Due to the first two constraints, the following ansatz seems to be reasonable
for the Hamilton operator in (2.2):

HO = cap + Bmoc? , p= —ihV , mg = rest mass , (2.3)
with the secondary condition

H(O)2 =cp? + mgc4 (2.4)
or

_p2 32;/;290) = (*p* + macHy(x) (Klein-Gordon equation) .

Obviously, condition (2.4) implies that «; and 8 cannot be ordinary numbers
as there are no mixed terms in ap and 3. In order to find out what algebraic
structure a; and [ possess, we write (2.2) and (2.3) in the form

lhafw = (FLIC Zaiﬁi + ﬂm002> P (25)

and iterate this relation:

02 L, 0 [h
77/12877;1) = 1ha (lc Zaiaﬂﬁ +5m002¢>

h h
= TC ;0; (iCZaiaiw—i-ﬁmocQw)

J
+Bmoc? <hlc Z ;09 + 5m002¢>

- 2y W@ajw
()
> (@B + Bai) i+ FPmicty .

%

hmc?

From this we perceive that the secondary condition (2.4) can be fulfilled only
if a; and [ are matrices obeying the algebra

{Oéi,Oéj} = 2(5”‘ 5 {ai,ﬂ} =0 5 Oéi2 = ﬁQ =1. (26)

Additionally, these matrices must be Hermitean in order for the Hamilton
operator itself to be Hermitean:

a=al , p=p".
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From the last relation in (2.6) it follows further that the eigenvalues of the
matrices are confined to the values £1. On the other hand, the anticommu-
tators along with the cyclic permutability of the trace, tr(ab) = tr(ba), imply
that the trace of the matrices vanishes, as we have, for example,

tr(a;) = +tr(32a;) = +tr(BaiB) = —tr(e;) =0 .
However, since the trace is just the sum of the eigenvalues, the number of pos-
itive and negative eigenvalues must be equal. From this follows that the ma-
trices must be of an even-numbered dimension. The smallest even-numbered
dimension N = 2 is excluded because here, we are only able to find three an-
ticommuting matrices, namely the Pauli matrices. The smallest dimension,
for which the condition (2.6) for «; and /3 can be satisfied, is N = 4. We will
be concentrating exclusively on this in the following.

One of the most common explicit representations of the algebra (2.6) is
the Dirac representation

0 o 1 0
=0 5) o= (o)

Here o; denote the Pauli matrices known from Subsection 1.1.2, for which we
will use constantly the symbol ¢ instead of 7 in the context of the Dirac equa-
tion. Another useful representation is the Weyl representation. It is defined

Via
ag; 0 _ O*].
C””‘(0 —ai) ’B_<—1 0) :

Due to N = 4, (2.2) and (2.5) now become a fourdimensional matrix equation,

4
ih w&(f ) = Z [c(ap)ij + Biymoc?] vi(x) , i =1,2,3,4, (2.7)
j=1
and the wave function ¢ becomes a fourdimensional column vector,
Y1 ()

_ | ¥e(2)
1/J(35) - ¢3 (JZ) ’
Ya(x)
which is usually called bispinor. Equation (2.7) denotes the so-called free
Dirac equation in canonical or Hamilton form, for which we will mostly use
the abridging vectorial notation

ih%—f =HOy , HO = cap + Bmoc® . (2.8)
Before we study this equation in more detail, we notice that, as desired, it is
a partial differential equation of first order in space and time. Furthermore,
its Hamilton operator is Hermitean so that we can hope to find a positive
definite probability density. However, whether the Dirac equation is Lorentz-
covariant and thus the rest of the above conditions are also fulfilled is not

obvious at this stage and remains to be verified.
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Solutions of the free Dirac equation. The solutions to the free Dirac
equation (2.8) with defined momentum can be found as easily as those of
the free Klein-Gordon equation. In the Dirac representation they are (see
Exercise 11)

e I L
Do + moc
) (2.9)
apx Y
1/)1()374)(32) — | po+mgc | etilero—pz)/h ;
34

with

po = +y/p*+mic2 >0,

where x(12) and x(®*4 respectively denote two linearly independent constant
two-column spinors. As in the Klein-Gordon case, we are again confronted
with two types of solutions: the ones with positive energy £ = +cpg that can
be interpreted as particle wave functions and the others with negative energy
E = —cpp, between whom lies the “forbidden” energy interval | — moc? :
moc?[ (compare to Subsection 1.1.1). For the same reasons as in the Klein-
Gordon case, it is clear that the mere existence of the negative Dirac solutions
seems initially incomprehensible so that we must seek a physically sensible
interpretation of them. As we see in Subsection 2.1.6 (and as the reader
might already suspect), there exists again a relationship between the negative
solutions and antiparticles explaining the reversed assignment of momentum
eigenvalue and index.

Due to the freedom in choosing the spinors x(2) and x(34), the positive
and negative Dirac solutions in (2.9) are not yet uniquely specified. Besides
the Hamilton operator H(®) and the momentum operator p, we therefore ex-
pect there to exist another operator acting only on the wave functions’ inner
degrees of freedom and composing a complete set of commuting observables
together with H(® and p. In Subsection 2.1.4 we see that this operator is
closely connected to the spin whose quantum number is fixed to 1/2. From
this we deduce that the Dirac equation seems to be appropriate for the de-
scription of spin-1/2 particles (spin-1/2 fermions).

Interaction with electromagnetic fields, gauge invariance. In the
Dirac theory (as in all quantum mechanical theories) the interaction of a
relativistic spin-1/2 particle with an electromagnetic field can be taken into
account by the operator replacement (minimal coupling)!

! This replacement is valid only for structureless point particles. See Exercises 15
and 27.
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ihg—>ihg—er,p—>p—EA
c

ot ot
within the free Dirac equation (2.8). This yields the equation
ihav’gsfx) =Hy , H=ca (p — EA) +eA® + Bmoc? | (2.10)
c

with the Hermitean Hamilton operator H and the electric particle charge
e. Performing a calculation similar to the Klein-Gordon case, we can easily
confirm that this equation is invariant under the local gauge transformations
10x
cot’
of the electric field, if the wave function 1 is simultaneously multiplied by an
appropriate phase:

b — =g Aw) = (@)

Continuity equation. Due to the Hermitecity of the Hamilton operator,
we expect that, contrary to the Klein-Gordon equation, the Dirac equation
allows the definition of a positive definite probability density in the sense
of nonrelativistic quantum mechanics. To show this, we calculate as follows:
multiplication of (2.10) from the left with o = (7,935,035, ¢}) yields

20 _he
ot i
Taking the adjoint of (2.10) (while taking into account a = af, 8 = ') and
subsequently multiplying this from the right by v, we get

A — A0 = A0 A— A'=A+Vyx

ihy! Pravy — epTaAy + eA%YTY + moPYtpy . (2.11)

t h
- ihaéitw — (Vo — eptady + AW + moc?yl By . (2.12)
i
Subtracting the last two equations leads to a continuity equation of the form
0
pa(:) +Vji(z)=0, mit p=vofy, j=1vTcarp. (2.13)

Applying Gauss’s law finally yields

9 3 3 . .
_ = — = — F == .
7j/d zp /d xzVj j{d 7=0

Together with
Pl = " = [hil* >0,

this indeed justifies the interpretation of p as a positive definite probability
density and, correspondingly, 7 as a probability current density. Furthermore,
it follows that we can carry over the scalar product from nonrelativistic quan-
tum mechanics (in coordinate representation)
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(9] ¢) = / Byt (2)p(x)

including all consequences. In addition to the items of Theorem 1.1, these
consequences are

e the orthogonality of eigenstates of Hermitean operators with different
eigenvalues,

e the picture- and representation-independence of the scalar product under
unitary transformations.

So, in the Hermitean Dirac case and contrary to the non-Hermitean Klein-
Gordon case, we do not need to modify the nonrelativistic quantum mechan-
ical terms “scalar product”, “Hermitecity”, and “unitarity” due to physical
or representational reasons. In the more detailed discussion of particles and
antiparticles in Subsection 2.1.6, we see how the nonrelativistic expectation
value as well as its physical interpretation [see 3) in Theorem 1.1] can be
transferred to the Dirac case.

Theorem 2.1: Dirac equation in canonical form

The Dirac equation is the relativistic generalization of Schrodinger’s equa-
tion for spin-1/2 particles. For a minimal coupled electromagnetic field its
canonical form is

ih—&g(tx) = Hy(z) , H = ca (p - ZA) +eA® + Bmoc? (2.14)

where m denotes the rest mass and e the electric charge of the particle. 1 is
a fourdimensional column vector (bispinor), and «;, 8 are fourdimensional
Hermitean matrices obeying the algebra

{aj,ak}z%jk y {Oéj,ﬂ}zo, a?:ﬂQ:l.

In the Dirac representation they are

OJi 1 0
ai:(mO)’ﬁ:(O—l)'

The Dirac equation is invariant under local gauge transformations of the
electromagnetic field. Furthermore, it allows the definition of a positive
definite probability density

pla) =l (@)0(a) , [ dap(e) = const
as well as a probability current density

j(@) = ¢i(x)cay(z)
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that are connected via the continuity equation

op .
aﬁ-v_j—o.

As in Schrédinger’s theory and contrary to the Klein-Gordon theory, the
scalar product is defined by (compare the definition of the G-scalar product,
Subsection 1.3.1)

(9] 8) = / Byt (2)p(z) -

In the Dirac representation the solutions to the free Dirac equation are

1 moc _; n +1 forr=1,2
() — = [I0% —ieqpuzt/n (1) _ )
b (?) @2\ o ¢ ¥ (P), & {—1 for 7 = 3,4

Po = +/p* + mjc?

with
(1.2) () — , [P0t MoC @Dty G) — 5.
w (p) 2moc agp X(Lz) y X0 X ij
Do + moc
_9P Gy
W@ (p) = /PO [ pg + moc AT = 5,
2moc ’ !
(momentum eigenvalue +p for » = 1,2 and —p for r = 3,4), and are

normalized such that
T (rH\ _ 7 ! _ Do
(69 45") = brbp =B , (Pl erp) = 25,0 (215)

Due to the freedom in the choice of ("), these solutions are not yet uniquely
specified.

Besides (2.15) there also exist the following useful completeness and orthog-
onality relations, which are all proven in Exercise 18 (Section 2.2):

@(T) (p)w(r’) (p) = 67“67'7“’

L =)
; ewa’ (P)wy” (P) = dap (2.16)
4
(r) Q) _ Pos
Tgl We (Erp)wg (Grp) moc af -
Here

denotes the Dirac-adjoint or simply adjoint bispinor in relation to .
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2.1.2 Dirac Equation in Lorentz-Covariant Form

Having found a relativistic generalization of the Schrodinger equation of first
order in space and time possessing a positive definite probability density, we
are left to show that, with respect to Dirac’s three constraints presented on
page 86, this equation has the same form in all inertial systems, in accordance
with the relativity principle. Because of the symmetry between ct = 20 and
2%, it is advantageous to introduce the y-matrices

=8, 9" =Ba;,
which, due to (2.6), obey the Clifford algebra
Ay =20", ()7 =g (2.18)

Furthermore, following from the Hermitecity of o; and 3, we have the rela-
tions

At = ghBab s it = A0 a0 (2.19)
Using these matrices as well as the four-notation for the momentum and the
electromagnetic field,

@y =inon) =in (V) = () |

the canonical Dirac equation (2.14) can be reformulated as

[fy” (pu - SAM(x)) — moc} Y(x) =0, (2.20)

clearly with the same free solutions as in Theorem 2.1. In the Dirac repre-
sentation the ~-matrices are given by

0 __ 1 0 i 001‘
,-y_ 0_1 77_ —O'io )

and in the Weyl representation they are

0 __ 0—1 i 0 ag;
7_(1 0)>7 "\ -0 0)"

For the Dirac equation to be Lorentz-covariant (form invariant), the following
needs to be shown: given a physical state 1(z) in the inertial system K,
there must exist an explicit description that allows the calculation of the
corresponding 9'(z’) in the inertial system K’ describing the same physical
state (passive transformation, see Subsection 1.2.1). Additionally, ¢’(z’) must
be a solution to the primed equation

[y'u (pL - SA;(Q;’)) — moC} W) =0,

where the primed matrices also obey the relations (2.18) and (2.19). However,
one can show that two sets of matrices being in accordance with (2.18) differ
only by a unitary transformation:



94 2. Relativistic Description of Spin-1/2 Particles

YrH=UU, Ut =0T

This means that we have just another representation of the ~-matrices in
the primed system. Without restricting generality, we therefore assume that
the y-matrices have the same form in both systems so that the primed Dirac
equation can be rewritten as

7 (Pl = S40@") = moc] v/(@) = 0. (2:21)

The bispinor transformation D(A) which transfers ¢ (x) into ¢’'(z’) must be
linear since the Lorentz transformation A of the coordinates is linear, too.
This means?

V' () = ¢ (Ax) = D(A)y(a) = D(A)p(A™ ')
or, equivalently,
U(x) = DTHAY (¢') = DTHA)W (Ax)
and
U(x) = DA™Y () .
The last two relations imply the equalization
DY A) =D(A™Y) .

In order to obtain a conditional equation for D, we express the primed quan-
tities in (2.21) by the unprimed ones:

€ —1v _
7 (o = S44(@)) 14717, = moc| D(A)p() = 0.
Multiplying this equation from the left by D~1(A) yields
e
(D71 " (po = S44(2)) 147117, D(A) = moc] () = 0.

From this we perceive that the Dirac equation is Lorentz-covariant if, and
only if, to each Lorentz transformation A there exists a matrix D(A) for
which?

DTHANWH AT D(A) =" <= DTHANW'D(A) = A"y" . (2.22)

It should be mentioned in advance that the matrix D(A) is generally not
unitary. In Exercise 12 it is shown that most generally the relation

2 Of all the transformations z# — a'* = A*,z” + a* of the full Poincaré group,
we only consider the homogeneous Lorentz transformations (a* = 0) since the
invariance of the Dirac equation under space-time translations is obvious:

ot — 2 =2t + o = A (2)) = A¥(z) , pH =p' = ' (2") = Y(z) .

3 Since we are assuming the same ~-matrices in the unprimed and primed systems,
it is not justified to consider v* to be four-vectors as suggested by the u-indices.
However, in the next subsection we see that, with respect to Lorentz transfor-
mations, bilinear forms of the kind % - - - 1) behave as if v was a four-vector.
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A% _
| A%

holds if det(D) = 1 is presupposed.

So far we have found the conditional equation (2.22) for the bispinor
transformation D(A). To some extent, it represents a necessary criterion for
the Lorentz covariance of the Dirac equation. In order to complete our line
of argument, we are left to show that such bispinor transformations indeed
exist by, for example, explicitly constructing them. We will return to this
issue in Section 2.2. However, it should be mentioned here that it is indeed
possible to write down the corresponding bispinor transformation not only
for proper Lorentz transformations (which would be sufficient) but also for
all transformations of the Poincaré group.

DI (A) =" D (A0 | b= +1 (2.23)

Adjoint bispinor, adjoint Dirac equation. In (2.17) we already intro-
duced the adjoint bispinor

b=y =y,
whose explicit forms in the Dirac and Weyl representations are given by
f&:(wrawgafw;a*dq) and 7/_):(71:[);)71#27711);371/};) .

A big advantage of its use is that, under Lorentz transformations, it behaves
inversely to 1 since, taking (2.23) into account, we find

V(@) = 12" = [De(2)]'7° = 1 (@) DI’ = byl (2)7° D~
= bp(x)Dt . (2.24)
This means that we can combine ¢ and v to form covariant bilinear forms
with a defined transformational behavior under Lorentz transformations (see

below as well as Subsection 2.1.3).
Using the relation

f f
(ihy"d,)" = (imﬂ Oy > = —ih%y” = —ihd,YiyHt

ozt
one obtains

) e
<717L5‘u - EA#) DI —moept =0,

which is the Hermitean conjugate to the Dirac equation (2.20). Multiplying
this relation by 7° from the right and exploiting (2.19) finally yields the
adjoint Dirac equation

(fpu - SA/L) "Z"YH - mocﬁj =0,

which is equivalent to the Dirac equation.
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Lorentz covariance of the continuity equation. With the help of the
adjoint bispinor, it is now easy to show that the quantity

i =ty = eyt () = (?)

is a contravariant four-vector under orthochronous Lorentz transformations
and hence that the continuity equation can be written in the manifestly
covariant fashion

B =0.

This is because, taking into account (2.22) and (2.24) with b = +1, it follows
that
JM(@') = e (2" )y"Y' () = e (x) D™ (A" D(A)(x)

cp(z) A"y () = Ay jH ()

Theorem 2.2: Dirac equation in Lorentz-covariant form
Using the vy-matrices
=8, =Bay,
the Dirac equation for a minimal coupled electromagnetic field is
[7” (pu — zAu(x)> — moc] P(x)=0. (2.25)
It is Lorentz-covariant if, for each Lorentz transformation
Azt — = AP 2

one can find a bispinor transformation

D(A): (z) — ¢¥'(a) = D(A)y(z)
with

D™HA)y#D(A) = A* )y (2.26)
With this constraint, the four-current density

j* = ety Oyt = ety

transforms as a contravariant four-vector under orthochronous Lorentz
transformations, and the Lorentz-covariant continuity equation

Ouj" =
holds. The adjoint bispinor
b =piy°
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obeys the adjoint Dirac equation
e _ _
(_pu - EA;L> Py —moch =0 .
Using
[4%] ~
the transformational behavior of the adjoint bispinor follows as

¥(z) — ¢P'(a") = byp(2) D71 (4) .

DI (A) =°D71(A)° , b= +1, det(D) =1,

2.1.3 Properties of v-Matrices and Covariant Bilinear Forms

Before continuing the discussion of Dirac’s equation with respect to its solu-
tions, we present some intermediate considerations about formal properties of
the v-matrices and their use for the composition of covariant bilinear forms.

Complete basis system. The four matrices y* are linearly independent,
but they do not compose a complete basis within the 16-dimensional space
of 4x4-matrices. However, by simple matrix multiplications of the *, it is
possible to find 16 linearly independent basis elements of this space. They
are listed in Tab. 2.1.

explicit form

Notation Number (F(”))2 =41 (F(”))2 =-1
ré®:1 1 1

v 4 7° LGNS
Mgy p<v 6 A A N G I S AN AR A G
[yt O e A o G o R o e
r®). 45 1 i70~14243

Tab. 2.1. Basis elements of the 4x4-matrix space.

As for the «-matrices themselves, the square of the matrices summarized
by the five types I'™ is +1 or —1. The upper indices stand for scalar (S), vec-
tor (V), tensor (T), pseudo-scalar (P), and pseudo- or axial vector (A). They
refer to the respective transformational behavior of the corresponding matri-
ces in combination with ¢ and v under Lorentz transformations (see below).
The unity matrix alone commutes with all the other matrices. Every other
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matrix commutes with exactly 8 of the 16 matrices and anticommutes with
the remaining 8. It is clear that each product of more than four y-matrices
necessarily contains matrices with a same index so that such a product can be
related back to one of the 16 elements by using the anticommutator relation
(2.18).

Now, by the following line of argument, we can show that the above listed
matrices indeed compose a complete basis within the space of 4x4-matrices:

e For each matrix I'™ # ') there exists a matrix '™ so that
@ pim) — _ p(m) p(n)

This implies a vanishing trace of I'("™,

+ tr [ﬂ")} — tr [F(") (FW))Z} — —tr [F(m) () [‘(m)}

2
—tr [F(") (ﬂm)) ] =0, (2.27)
where, in the second last relation, the cyclic permutability of the trace has
been used.
e For each I'® and I'® £ (@) there exists an ') # ') so that
r@p® — pm (2.28)

e Now we assume the existence of numbers a,, with

> a, =0, (2.29)

Multiplying this relation by I"™) and subsequently taking the trace yields
Zantr[ rmpo m)} =0.

In the case of '™ £ I'®) we have, due to (2.27) and (2.28), a,, = 0. If,
on the other hand, '™ = I'®) | we find ag = 0. Therefore, all coefficients
in (2.29) are zero, which proves the linear independence of rm,

Inverse matrices. As for four-vectors (more generally: Lorentz tensors), we
can define the matrix v, corresponding to v* by lowering the index via
Vu = G’

Based on (2.18) (no summation over x) we have

2

Y% =79y = () gup = 9" gup =1
This means that 7, is the inverse matrix to «y*. Therefore, one generally
obtains the inverse matrix to I'™) by reversing the order of its matrices
«#, replacing them by 7, and adding a sign to each i-factor. Following this
procedure, for example, the inverse matrix of iy!y2y3 reads —iyzy271.
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Covariant bilinear forms. As already mentioned above, we can use the ~-
matrix combinations '™ from Tab. 2.1 to build covariant bilinear forms with
a well-defined transformational behavior under Lorentz transformations. We
now specify such bilinear forms and the corresponding transformational be-
havior in more detail, restricting ourselves to orthochronous transformations
(b = 41) and making use of the relations

b— ' =Dy, — ¢ =¢D, DD = Aty

Scalar bilinear form, I'S). This bilinear form is given by 1t = 1) and
obviously transforms as a Lorentz scalar:

i — GDT DY = i

o Vectorial bilinear form, I''V). Tt is composed of ¥y*1) and represents the
four-current which we already know to transform as a contravariant vector:

Uy — DI DY = YA p = APy

Tensorial bilinear form, I'™. This quantity is ¥y*y*%. Its transforma-
tional behavior is calculated as

"y — $DTIyMy" Dyp = DTN DD D
= Ao A"y

Thus, ¥y*y”1) transforms as a contravariant tensor of rank 2.

Pseudo-scalar bilinear form, I'"). A corresponding calculation for ¢)y%)
yields
Py =iy 'y vy — WD’ DD 'Y DD DD'y* Dy
=140 A g A5 A% 0y Py (2.30)

For further evaluation we have to keep in mind that terms with at least
two equal indices do not contribute, as, for example, we have

A2 A3 iyttt = A2, 0 A3,
that vanishes, due to (A.2) and (A.3) in the Appendix. Furthermore, be-
cause of the anticommutativity of the y-matrices, it follows that
A0 A G A2 A3 0B = @B A0 AT A2 A3 0 1n 203
= det(A)y"y'24%
All in all, (2.30) can therefore be written as
Uy — det(A)gy ) .

Consequently, 1y°1) is a pseudo-scalar whose transformational behavior
differs from that of a scalar by an additional factor of det(A).
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e Pseudo- or azial vector bilinear form, I'™). The last bilinear form is

Yy ~%1p. Here a line of argument similar to the previous point leads to
the following transformation law:

Py — 148, A0 AN g A%5 A3 hy Py PyP e
= 1A%, e PPerytin Oy 2y e
= det(A) A", hy 7" .

Therefore, 1)y"~%1 is a contravariant pseudo-vector. It transforms as a
vector up to an additional factor of det(A).

2.1.4 Spin Operator

In Subsection 2.1.1 we already pointed out that, besides H(®) and p, there
must exist another operator acting solely on the inner degrees of freedom of
the Dirac wave functions and commuting with H(®) and p. In order to find
this operator, we initially consider the free Hamilton operator for resting free
particles in the Dirac or Weyl representation,

HO = Bmoc?
and notice that the operator

h, . o0
S = a’,a-(o a) (2.31)

commutes with H(®). Since S, on the one hand, exhibits a formal similarity
to the spin operator of nonrelativistic quantum mechanics and, on the other
hand, obeys the typical commutator relations

[S’H‘S’j] = ihGijk;Sk; 3 iajak = 15273

for quantum mechanical angular momenta, it can be identified with the spin
operator of the Dirac theory. Its quantum number follows from the attribution

R 3 1
:Z&2zih2:h28(8+1):>t9:§,
indicating that the Dirac solutions describe spin-1/2 particles.* Furthermore,

it follows from the well-known rules of the angular momentum algebra that
the projection of the spin onto an arbitrary spatial direction,

S =n98  n®| =1,

S2

possesses the eigenvalues or quantum numbers
hma, ) y My = ﬁ:l/Q .

Therefore, the sought operator is S,,«). Together with H(®, p (and S?),
it composes a complete set of commuting observables. Consequently, in the

4 A more formal transformation theoretical argument is given in Subsection 2.2.2.



2.1 Dirac Equation 101

rest case, the Dirac solutions in Theorem 2.1 can be uniquely specified by
quoting their eigenvalues of energy, momentum, and the spin projection onto
an arbitrary space direction. If the spin is oriented in or opposite to the
z-direction (m, = +1/2), the corresponding spinors may be chosen as, for
example,

9~ () = 50090 = +5u090)
@Y ~ (?) — S,w®9(0) = Zw(2,4)(0) 7
with
0
S, =80 ,n%=10
1

Let us now turn to the more general case of a moving free particle described
by the Hamilton operator H®) from (2.8). Contrary to the nonrelativistic
theory, in this case, the spin operator S or S, does not, in general, com-
mute with H(©). However, we can easily extend it to a Lorentz-covariant
operator that commutes with H(®) and p in every case. Here we notice the
following according to Subsection 2.1.2: if A, denotes the proper Lorentz
transformation which transforms from the rest system of a spin-1/2 particle
to a reference frame moving with velocity v, it holds that

W (=p) = D(A,)w(0) <= w(p) = D(A_,)w(0)
= w ”(0) D™ (A—y)w (p)
= w(0) = D(AZy)w™ (p)
= w(0) = D(4,)w" (p) ,
where D(A,) is the bispinor transformation belonging to A, = A~ w()(0)
are the bispinors for resting particles, and w(" (p) are the bispinors for free
particles with momentum p. If we now assume that the bispinors x(") are

chosen in a way that the bispinors w(T')(O) of the rest system are eigenstates
of S,0, i.e.
S, 0w (0) = hm,ow™(0) , m,o = :t% ,
it follows that

S0 D(Ay)w ") (p) = himyo D(Ay)w” (p)

= D_l(/lv)Sn(mD(/lv)w(r) (p) = hmn(mw(r)(p) )

In other words, if w(")(0) are eigenstates of S,, ), then w(™ (p) are eigenstates
of the Lorentz-covariant spin operator

S(n,p) = D™ (Ay) S0 D(Ay) (2.32)
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with the same eigenvalues. The desired commutator relations necessarily fol-
low from this:

[S(n,p), HO| = [S(n.p),p] =0

The notation S(n, p) becomes apparent if we cast (2.32) in a slightly different
form and eliminate the bispinor transformation D. To do this, we initially
rewrite S,,(0) in the form

h . v
Spo) = mv"v“nﬂ”v p(yo) )

where

()= () - )= (75°)

respectively denote the four-vector extension of the direction of spin projec-
tion and the four-momentum in the rest system. Using (2.26) the relation
(2.32) turns into

S(n,p) = D™ (A7}) S0 D(AZ,)

= DA ) DA n® D (A7) DA )l
2mgc

hoo.

= Gmee? A nAZy) 7 P
h

= o) 1T nOAZ) AP [A

v

i

h
- Qmocfﬁwnwﬁp[; : (2.33)
with
n = (A, n® gt = (A, p O

v ’ - v
In the second row of (2.33) the relation [D,~5] = 0 is used, which is valid for
proper Lorentz transformations.® All in all, we can therefore record:

Theorem 2.3: Lorentz-covariant spin operator

and four-polarization

The Lorentz-covariant spin operator (more precisely: the Lorentz-covariant
projection of the spin) of the Dirac theory is representation-independently

h
S(n,p) = Imac S, py [S(n,p),H“’) =[S(n,p),p] =0.

(4%, 4"} = 0= [v*, 0] = 0; see Theorem 2.6 in Subsection 2.2.1.
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n = (n*) denotes the four-polarization and p = (p*) the four-momentum
that are connected to the corresponding expressions of the rest system via

P = [l 00 = (")

n = Ao}, 00, (nO4) = (n?m) ~

If the free bispinors w()(0) are eigenstates of S(n(?,p®) = S, (), then
w™ (p) = D(A_,)w")(0) are eigenstates of S(n,p) with the same eigenval-
ues.

A special case of the Lorentz-covariant spin operator is the so-called helicity
operator. It is defined by the projection of the spin S onto the momentum
direction, i.e. n{?) = p/|p|. Taking into account® [S,, D(A,)] = 0 and (2.32),
it can be written as
LN

ipl  2[pl
where the right hand side expression is independent from the chosen repre-
sentation. The corresponding quantum number m,, is called helicity.

S(p,p) = Sp

2.1.5 Projection Operators

For practical calculations it is often helpful to have operators that project
bispinors with a given energy sign and spin orientation out of the general
solutions to the free Dirac equation with momentum index p.

Energy projection operators. The projectors for solutions with defined
energy follow immediately from the free Dirac equation in momentum space:

VP (p) = mocw ™ (p) , Y puw®? (p) = —mocw®(p) . (2.34)
On this basis, we can define the operators

Py + moc —7"Pu + moc
A = - A_ - —
+(p) 2rmoc (p) S

with the properties

A (w3 (p) = w2 (p) . Ay ()™ (p) =0

A-(p)w ) (p) =0 , A= (p)w®H(p) = WY (p) .

Thus, Ay (p) projects onto positive and A_(p) onto negative solutions at
arbitrary spin orientation. This complete and Lorentz-covariant projection
system satisfies the equations

AL(p) = A4(p) , AL(P)A5(p) =0, Ap(p) +A-(p) =1 (235)
that are characteristic for projection operators.

5 See (2.60) in Subsection 2.2.1.
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Spin projection operators. In order to obtain analogous expressions for
the spin, we assume that y(") are chosen so that

S(n, ) (p) = 1 LW (p) (

spin oriented toward )
2

n(® in the rest system
(2.36)

h spin oriented toward
2,4 - L2 p
S(n,p)w®(p) = 2% (p) (n(o) in the rest system) ’

Following Theorem 2.3 and (2.34), we then have

S(n,p)w™? (p) = Yoy n, Y pew™? (p)

2mgc
h 5,1 (1,2)
= 57" w7 (p)
h
= igw(w)(f’)

— 7wt (p) = 0 (p)

S(n, p)w®(p) = Vot pwD (p)

2moc

ho5ou
= _5757/ nuw(3’4) (p)

= igw(“) (p)

= 77" n,0®Y (p) = F®V (p) .

This yields the Lorentz-covariant spin projectors

1 1
E(n) - 5(1 +75’yun#) ) Z(_n) = 5(1 - ’YS’YNTL;L) s

acting on w((p) in the following way:

St (p) = w19 (p) | T(n)wI(p) = 0
2.37
2(=n)wH(p) =0 , 2(=n)w3(p) = w3 (p) . 20

This means that X(n) [X(—n)] projects onto bispinors with positive [negative]
energy whose spin is oriented toward +n(9) in the rest system, and onto
bispinors with negative [positive] energy whose spin is oriented toward —n0
in the rest system. We can easily see that Y(£n) also compose a complete
projection system fulfilling the corresponding characteristic equations similar
to (2.35). Since the projectors for energy and spin both possess w(™)(p) as
a common system of eigenvectors, we further have [AL(p), X(£n)] = 0. We
can therefore immediately write down four additional projection operators,
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Pi(p) = Ay (p)X(n)

Py(p) = A1 (p)X(—n)

Ps(p) = A_(p)X(—n)

Py(p) = A-(p)X(n) ,
acting as

Pr(p)w ™) (p) = 6,0 (p) .

In (2.37) it is apparent that the action of the spin projector for negative en-
ergy states is reverse to what would be expected based on (2.36). We have
already encountered a similar situation in Theorem 2.1 where the solutions
with negative energy and momentum index p are eigenfunctions of the mo-
mentum operator with eigenvalue —p. The physical reason for these seem-
ingly reversed assignments is connected to the interpretation of the negative
solutions addressed in the next subsection.

Theorem 2.4: Projection operators for energy and spin

Introducing for w(™(p) the commonly used notation
w(l)(p) = u<p7 Tl) ’ W(Z)(p) = U(p, _n)

w®(p) = v(p,—n) , w?(p) = v(p,n),

with the secondary condition (2.36), the Dirac eigensolutions [to H®), p,
and S(n,p)] can be specified by their energy sign €, four-momentum index
p = (p*), and four-polarization index n = (n#) as

= ; MoC _iep,atn u(p, n) for e = +1
Vern(@) = 3/2 e %
(27h) Do o) for € = —1

(compare to Theorem 2.1). For negative solutions the four-momentum and
four-polarization indices are opposite to the corresponding eigenvalues.
The Lorentz-covariant energy and spin projectors are

+v*p,, + moc
Ai(p)zu

1
Y(n) = =(1 4+ y°* .
oy , X(n) = (1 + v n,)

2

They act on the bispinors w, v in the following way:
u(p,£n) | _ [ ulp,+n)

o {8} - (o)



106 2. Relativistic Description of Spin-1/2 Particles

S(4n) { u, v(p, +n) } _ {u,v(z:), +n) }

U, U(pa _n)

_oyJ wu,+n) | _ 0

(=) { u,v(p, —n) } a {um(p, —n) } ’

Put differently, from a general free Dirac solution with four-momentum
index p,

e /. (p) projects onto its portions with energy sign ¢ = +

e Y (+£n) projects onto its portions with four-polarization index +n.

2.1.6 Interpretation of Negative Solutions, Antiparticles
and Hole Theory

So far we have disregarded the negative solutions to the Dirac equation and
their interpretation. The problems due to their mere existence are the same as
those addressed within the discussion of the negative Klein-Gordon solutions
in Subsection 1.1.3.

Charge conjugation C. In that subsection we saw that there exists a con-
nection between the negative Klein-Gordon solution ¢(~) of charge +e and
its charge conjugate gb(c_) with charge —e, where the latter was identified with
an antiparticle wave function with positive energy. We therefore conjecture
that a similar relationship can be established in the case in hand. Therefore,
starting from the Dirac equation

[fy” (ih@u - EAH(CL‘)) — moc} P (x) =0 (2.38)

for a negative solution (=) of charge +e in the potential A*, it should be
possible to deduce the Dirac equation

[ (0, + 4 (@) = moc] 0 (@) = 0 (239

for a positive solution z[;é_) of charge —e in the same potential A¥. Obvi-
ously, as in the Klein-Gordon case, this is possible only if the corresponding
transformation of ¢(~) is antilinear since moving from (2.38) to (2.39) the
relative sign between the differential and potential terms changes. Therefore,
we make the following (reciprocal) ansatz:

w(cf)(m) =Cy*(x), C* =1, C linear.

Inserting this expression into (2.39), multiplying from the left by C !, and
subsequently taking the complex conjugate, we finally arrive at (2.38), if C
satisfies the condition
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CINC = —4*H . (2.40)

The solution to this equation can be found easily. In the Dirac or Weyl
representation it is

C=iy?.

That z[;é_) is indeed a solution with positive energy can be seen most easily by

considering the eigenvalue equation of a negative energy state ¥(~) [compare
to (1.24), (1.25)]:

[ca (p - ZA) Fed® ¢ ﬂmocﬂ v () = —|Ew ) () .

Complex conjugation and subsequent multiplication from the left by iy? =
iBag leads, along with (2.6) and a1 3 = aj 3, a2 = —a3, to the eigenvalue
equation

[ca (p + ZA) —eA" + ﬂmocz} Wé_)(w) = +|E|Lpé_)(a:) ,
with
W(_) _ 2@(7)*
o (x) =1y (z) .

All in all, we can therefore state (compare to Theorem 1.4):

Theorem 2.5: Charge conjugation C in the Dirac theory

e In the Dirac and Weyl representations the charge conjugation C' of the
Dirac theory is defined by the transformation

Y(z) — to(z) = iy*y*(z) .

It turns a positive [negative] Dirac solution of charge +e [—¢] into a
negative [positive] Dirac solution of charge —e [+e].

e A positive Dirac solution () represents a physical spin-1 /2 particle
of charge +e in the potential A*, whereas the charge conjugate of the
negative solution 7/’(0_) (and not the original negative solution) describes

the physical antiparticle with opposite charge —e in the same potential
Ar,

With respect to the first two points in both Theorems 1.4 and 2.5, the cir-
cumstances of the Klein-Gordon and Dirac cases are completely identical. In
particular, the Dirac theory, as a relativistic enhancement of Schrodinger’s
theory, also leads to a new degree of freedom and hence to the prediction of
antiparticles which, so far, have been verified experimentally for every known
spin-1/2 particle. However, the third point in Theorem 1.4 (charge interpre-
tation) does not have a counterpart in the above Theorem since here, @, p,
and j are to be interpreted as probability quantities (see Theorem 2.1).
Based on Theorem 2.5 and the annotations before Theorem 2.1, we can
now specify the quantum mechanical expectation value of an observable for
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particles and antiparticles in the Dirac theory (compare to the definition of
the G-expectation value in the Klein-Gordon theory, Subsection 1.3.1):

Definition: Expectation value in the Dirac theory

In the Dirac theory the expectation value of the observable O is defined by

() = (y|Op) = / Byt (2)0v() , ($]9) = +1. (2.41)

It denotes the statistical average of many similar measurements of O at
identical spin-1/2 [anti]particle systems of charge +e [—e]. For particles
positive Dirac solutions ¥(*), and for antiparticles charge conjugated neg-
ative solutions 1/1(0_) are to be inserted.

Before we turn to the interpretation of the negative solutions, let us look at
the charge conjugation C' in more detail. We consider the expectation value
of an operator O in the state )¢ and calculate in the Dirac or Weyl repre-
sentation as follows:

Ole = (vel Olve) = [ ExufOvc = [ dafir?er)iony
— /dgmw*T’YQTO’)?w*:/dgfw*T’707270072’(/)*
— —/d3$¢*T’}/2’YO’YOO’YQ¢* _ _/d31,w*1'720,}/2¢*
- - ( / dgwwow%) — — (Y| POP ) . (2.42)

With these relations, the following can be derived easily (see Exercise 14):

Be =—1(B)

(T)o = (@)

() = (o)

(P)c = —(p) (2.43)
<S>c = _<S>

(L) = =(L) , L=x xp

<J>C =—(Jy,J=L+S

(H(—e))o = — (H(e)) , H(e) = cax (p - %A) +eA® + Bmoc? . (2.44)

Furthermore, we have
po =vhvo =¥ =p, jo=vleao =leap = . (2.45)

According to this, ¥)c and v possess the same probability density and prob-
ability current density in all space-time points. Therefore, the electric charge
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and current densities of ©)¢ and v are opposite to each other. From (2.44) it
becomes apparent once again that the solutions to the Dirac equation with
negative energy correspond to the charge conjugated solutions with positive
energy and vice versa. Finally, (2.43) and (2.44) express the important result
that the charge conjugation C' reverses the charge, energy, momentum, and
spin of a Dirac state.

Applied to free Dirac solutions, the charge conjugation yields, up to a
constant phase factor (see Exercise 13),

Ye,pn (x) e wfe,pm(m) (2.46)

showing that w(p,n) and v(p,n) are the charge conjugates of each other and
that the original and charge conjugated states are described by the same
four-momentum and four-polarization indices. This is clearly a consequence
of the reversed assignment of the eigenvalues and indices for momentum and
spin in the negative solutions which we have introduced analogously to the
Klein-Gordon case, since the negative solutions should refer to antiparticles
described by the charge conjugates of the negative solutions.”

Interpretation of negative solutions, hole theory As in the Klein-
Gordon case, the mere existence of negative Dirac solutions causes difficulties,
namely with respect to their physical consequences and to their interpretation
(compare to the discussion in Subsection 1.1.3). In particular, we are again
confronted with the problem that the theory seems to allow the transition
from positive energy states to deeper and deeper negative energy levels (see
Figure 1.1), although those transitions obviously do not occur in nature (sta-
bility of matter). As we already noted in Subsection 1.1.3, we must postulate
the nonexistence of the radiation catastrophe as long as we restrict ourselves
to the one-particle view. However, beyond the one-particle picture, the Dirac
theory offers an explanation found by Dirac himself known as hole theory.

In this theory the dilemma caused by the negative Dirac solutions is solved
by filling the negative energy levels with electrons (more generally: spin-1/2
particles) in agreement with Pauli’s exclusion principle. Accordingly, the vac-
uum state is the one where all negative energy levels are occupied by electrons
and all positive energy levels are empty. As a consequence, the transition
catastrophe is now eliminated since Pauli’s exclusion principle forbids the
transition of real electrons (with positive energy) into the completely filled
sea of negative energies (see Figure 2.1 left).

This novel assumption of a sea occupied by electrons has many conse-
quences. For example, an electron with negative energy can shift into a state
of positive energy by absorbing radiation. If this occurs, one observes an elec-
tron with charge +e and energy +FE. Additionally, a hole is created in the
sea of negative energies indicating the absence of an electron with charge +e

7 As in the Klein-Gordon case, we note that in the free case the distinction of
charged particles is not possible. Therefore, the original and the charge conju-
gated states are solutions to the same Dirac equation.
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Fig. 2.1. Left: within the hole theory, the vacuum is characterized by the fact that
each negative energy level is occupied by two electrons (spin up and spin down) (e),
whereas all positive energy levels are empty. Right: in the process of pair creation
an electron of negative energy absorbs radiation with energy hw > 2moc? and shifts
into a positive electron state (m). This causes a hole in the sea of negative energies
(o) which appears as an additional antiparticle (positron).

and energy —FE. An observer relative to the vacuum perceives this hole as a
particle of charge —e and energy +F (antiparticle) (Figure 2.1 right). Thus,
the hole theory also provides an explanation for the creation of particle-
antiparticle pairs (pair creation). This new perspective implies that there
must exist a unique relationship between negative Dirac solutions with charge
+e and positive solutions with charge —e which is, as we already know, pro-
vided by the charge conjugation C. Accordingly, within the hole picture, an
occupied electron state with negative energy is described by (=), whereas
its absence, i.e. the corresponding hole, is described by wé:), which is the
wave function of the antielectron, the so-called positron. This interpretation
becomes clear again once we write down the charge, energy, and momentum
balances of the pair creation process:

Qphoton =0= Qelectron pos. energy Qelectron neg. energy

= Qelectron + onsitron

Ephoton =hw = Eelectron pos. energy Eelectron neg. energy
= Lelectron + Epositron
DPphoton = hk = Pelectron pos. energy Delectron neg. energy

= Pelectron + Dpositron -
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The effect opposite to pair creation, the particle-antiparticle annihilation
(pair annihilation), can equally be described within the hole theory. Here
a light emitting electron falls into an electron hole in the sea of negative
energies and hence destroys the positron associated with the hole.

As in the Klein-Gordon case, note that in our discussion of the Dirac
theory, the charge sign does not play any role so that we could also have
interpreted positrons of charge —e as particles (described by positive Dirac
solutions) and electrons of charge —e as antiparticles (described by charge
conjugated negative solutions). Consequently, the Dirac sea would have con-
sisted of positrons with negative energy and its holes would have been elec-
trons.

Further consequences of the hole theory. If one tries to examine the
conclusions of the hole theory in more detail, insufficiencies and contradic-
tions inevitably arise that can ultimately be solved only within quantum
field theoretical considerations. Nevertheless, the hole theory is of great im-
portance since, for the first time, it provided a (naive) model of the vacuum
which is not characterized by the absence of everything but possesses an
internal structure that is subject to modification. For example, external elec-
tromagnetic fields can deform the wave functions of the electrons within the
sea of negative energies thus creating a measurable vacuum polarization (dis-
placement charge of the vacuum) compared to the field-free case. For a real
electron repelling the electrons of the Dirac sea, this deformation implies that
its electric charge is weakened compared to its “bare” charge — an effect which
is observed, for example, in the energy spectrum of the hydrogen atom.

A further consequence of the hole theory in the present form is that the
vacuum obviously possesses an infinite charge and energy that must be renor-
malized to zero by fixing an appropriate charge and energy zero point. This
procedure is principally possible although not very satisfactory (aesthetic).
However, the most serious flaws of the hole theory are, firstly, that it con-
tains an asymmetry in the description of particles and antiparticles. Secondly,
the question remains unanswered how to treat the mutual interaction of the
occupied states within the sea of negative energies.

Finally, we note the following: the hole theory was introduced by Dirac,
among others, to provide an interpretation of the negative Dirac solutions
as well as to give a plausible explanation for the absence of the radiation
catastrophe. However, this theory inevitably exceeds the one-particle concept
since it describes particles with both charge signs simultaneously. As we have
already stated, we have to accept the fact that in the Dirac as well as in the
Klein-Gordon case, the problem of negative energies cannot be solved within
a strict one-particle interpretation.

Résumé. As in the discussion of the Klein-Gordon theory at the end of
Subsection 1.1.3, we now draw an interim summary by gathering the already
clarified as well as still open points relevant to the desired one-particle inter-
pretation.
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With respect to the interpretation of the Dirac and Klein-Gordon so-
lutions, the circumstances are completely equal: positive solutions describe
particles with charge +e, and charge conjugated negative solutions describe
antiparticles with charge —e. Concerning the quantities p and j: in the Klein-
Gordon case they do not come into question as probability quantities due to
the non-Hermitecity of the Hamilton operator. Instead, they can be inter-
preted as charge quantities where positive Klein-Gordon solutions are to be
inserted for particles and negative solutions for antiparticles. In contrast,
the Dirac-Hamilton operator is Hermitean so that p can be interpreted as a
probability density and j as a probability current density. For particles we
have to insert positive Dirac solutions, and for antiparticles the charge con-
jugated negative solutions or — due to pc = p, 3¢ = j — the original negative
solutions.

For the completion and inner consistency of the one-particle interpretation
of the Dirac theory, the following points remain to be clarified that will be
tackled in Section 2.3 (compare to the points [1], [2], and [3] in Subsection
1.1.3):

[1] A necessary condition for the one-particle interpretation is that positive
and negative solutions are completely decoupled since only then particles
and antiparticles can be described sensibly. However, as in the Klein-
Gordon case, only the positive solutions together with the negative ones
compose a complete function system. Therefore, we have to ask to what
extent a complete decoupling is possible.

[2] A complete decoupling also implies that we must strive toward physically
sensible one-particle operators that do not mix positive and negative so-
lutions.

Here we do not need to cite a point equivalent to [3] in Subsection 1.1.3,
since with (2.41), we have already found a physically sensible definition of
quantum mechanical statistical expectation values that are invariant under
unitary transformations (picture-independent).

Parallel to the final remarks at the end of Subsection 1.1.3, we note that,
besides the electric charge, there exist other types of charge by which some
fermions differ from their antifermions. For example, there are quarks carry-
ing a complicated color charge in addition to their electric charge.

Summary

e The Dirac equation is a fourdimensional system of coupled differential
equations of first order in space and time. It represents the relativistic
generalization of Schrédinger’s equation for spin-1/2 particles.
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The Dirac theory differs from the nonrelativistic theory in one impor-
tant point: it encompasses solutions (bispinors) for both positive and
negative energies.

The Hermitecity of the Dirac-Hamilton operator allows the definitions of
a positive definite probability density and a probability current density
that are formally identical to those of nonrelativistic quantum mechanics.
We can therefore carry over the scalar product and expectation value
from the nonrelativistic theory, including the consequences with respect
to Hermitean and unitary operators.

Combining the 16 basis elements of the y-matrix space with ¢ and 1,
one can build covariant bilinear forms with a well-defined transfor-
mational behavior under orthochronous Lorentz transformations.

The free plane Dirac wave functions are not yet uniquely specified as the
eigensolutions to the Hamilton and momentum operators. They possess
an additional degree of freedom leading to a spin operator with quantum
number s = 1/2.

Due to the charge conjugation, the Dirac solutions can be interpreted
in the following way: particles of charge +e are described by positive
Dirac solutions and antiparticles of charge —e by the charge conju-
gated negative solutions.

Within the one-particle concept, the problems connected to negative so-
lutions (interpretation, radiation catastrophe) cannot be solved. Beyond
the one-particle picture, the hole theory provides a qualitatively ac-
ceptable explanation for them. According to it, the vacuum possesses a
modifiable inner structure with physical consequences (pair creation
and annihilation, vacuum polarization).

With a view to the most consistent one-particle probability interpretation
of the Dirac theory, it remains to be clarified to what extent a complete
decoupling of positive and negative solutions is possible.

Exercises

11. Solutions of the free Dirac equation. Show that in the Dirac repre-
sentation the solutions to the free Dirac equation (2.8) with a sharp momen-
tum are given by (2.9).

Solution. To solve this problem, we can proceed similarly to Exercise 1. Our
ansatz is

_ [ o i(pe—FEt)/h
v =(2)e 7
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where py and xg each denote two-component constant spinors. Inserting this
into (2.8) leads to the equation system

(E —moc®)po — copxo = 0 }

(2.47)
—coppy + (E +moc®)xo = 0,

which possesses nontrivial solutions only if the coefficient determinant van-
ishes:

E —moc®> —cop
= E? —moc*c* — 2 (op)(op) =0 .

—cop E+moc?
From this and taking into account the identity
(cA)(cB) = AB +ic(A x B) ,

we obtain the relativistic energy-momentum relation for free particles,

EM) = 4¢/p? +m2c = +cpo
E) = —¢\/p?2 +m2c2 = —cpo

in accordance with our expectations. The solutions to our problem finally

result from the insertion of E(*) and E(-) into (2.47). They can be written
in the (unnormalized) form

E? fmgc‘l —p?P=0=

(1,2)

X
B . ¢(+)(x) _ pr(u) e—i(cpo—pa)h 1/J1(,1’2)(£U)
po +moc
_UPX(3’4)
EC) . 1#(7)(%) = | po+moec | etilcrotpz)/h w(_?’;i) (z) |
39

where x(12) and y(®* respectively denote two linearly independent spinors.
12. Nonunitarity of bispinor transformations (I). Verify (2.23).
Solution. We have the relations [see (2.19) and (2.22)]

AP yY = DTINED = AP 4V = DIy#TDi—L (2.48)
and

P =09k (2.49)
From the second equation of (2.48) and from (2.49) follows that

AP A0 A0 = DtA0ya0 D=1

= 104%,7%77%7° = 72 DI040 DI190 = 40 DI04k (0 D140) T

On the other hand, the first relation of (2.48) can be rewritten as
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Aty = A0 TR0 = 40444 09%9% = DTI44D
Comparing the last two relations leads to

D19D = 10Dy % (;°D11%)
or

7 = Dy° Dy % (1°D19%) T D71 = Dy D10y (D4 D)
Thus, Dy°Dt? commutes with all 4* and is therefore proportional to the
unity matrix:

DDA = b= Dy'DT = 1y°. (2.50)
From this, we obtain the sought relation

D= (D,YO)*l A0 = py0 D140
as well as

(Dy°DN)' = DDt = 0 — b =" .

In order to determine the real constant b, we use that det(D) = 1 was pre-
supposed. The calculation of the determinant of (2.50) then yields

r=1=0b=+1.

Next we consider the equation

3
DID =by"D719°D = b7 A% 7" = bA% + b A% 40 (2.51)
k=1 .

and argue as follows: since det(DT D) is equal to the product of all eigenvalues,
all of them must be nonzero. Furthermore, the operator DD is Hermitean.
For its real eigenvalues, it therefore holds that

DDy = athpy = aplbe = ¥ DDy, = (DY) DYy >0 = a>0.

Since the trace of DT D is equal to the sum of all eigenvalues, it follows from
(2.51) and tr(ay) = 0 that

0 < tr(D'D) = 4bA°, .
So, in total, we have

+1 for orthochronous Lorentz transformations
A9, preserving the time direction

b = —_— =
|A%|

—1 for nonorthochronous Lorentz transformations
changing the time direction.
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13. Charge conjugation of free Dirac states. Verify (2.46).

Solution. Our starting point is a plane free Dirac wave function ., with
energy sign €, four-momentum index p, and four-polarization index n fulfilling
the projection relation

[ eY'pu + moc 1+ ’y5'y“n#
Yepn(T) = < 2mgc ) < B Yepn(T) -

On the basis of (2.40), {C,7°} = 0, 4> = 4°*, and the fact that in the first
bracket term p,, = pj, is a real number (and not an operator), the charge
conjugated wave follows as

* 5 *
(el @) = (DR ) (LETAE0) g )

2mgpc
* 1 5 A %

= o (D Pe M) o (LE M) ootoyr (o)
2mgc 2 P

—ey!p +moc [(1+7°yFn, .
- C
(P2t (0% ) oy, (o)

_ (—WHPN + m00> (1 + ’YZ’YHHM) (Ve pnlo (@)

2mgc
= Ycpm(T) .

14. Expectation values of charge conjugated Dirac states. Show that
the relations (2.43), (2.44), and (2.45) are true.

Solution. We provide the proof with the help of (2.42) and the adjunction
relation (| O[y)* = (4| OT|¢) in the Dirac or Weyl representation.

To show: (8) = — (), with 8 =~°.
Be == (P17 ) = (D[P ¥2 ) == (%[ )"
(v gy =—(8) .

To show: (). = (x).

@ =~ ( [awviere) = ([ dwxw)* = (Wl p)’
— (Yl zl) = ()

To show: (@) = (), with a; = 797"

V2aiy? = 42402

{ 200min? = 4 2~240ni = —0ni for j = 1,3 }
= _ai

2904202 = 4240 = 2042 for =2

= () = — (Y[ W) = (W] [9)" = (Y] [¥) = (as) -
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To show: (p)., = — (p), with p = —ihV.
P)c = — { / dwaW(ihV)v%T =— { / di"w*(iw)w}
—(Wlpl)" =~ (¢|plv)=—(p) .

) h (o0
To show: (S), = —(S), with § = 9 <O U>'
25*2:E 0 o J;O 0 o
2 —02 0 0 0 —02 0
_h
2

= 0-20- 02 = E O',TT O = ST
0907 02 2 0 G*T ¢

¢|Sf|w> = —(YISi ) = —(S:) -
To show: (L), = — (L), with L = x x (-ihV).
(L)o = — [/ Bryiy?e x (ihV)wa} = - [/ dryia x (—ihV)w]
—(¢ILp)" =~ (Y| Ly)=—(L) .

To show: (J), = —(J), with J =L+ S.
(e =({L)c +(8)e=-UL) +({S)] == (J) .

*

To show: (H(—e)), = (H(e)), with H(e) = ca (p - ZA) +eA° + Bmoc?.
We have
Ya'y = —a= (ap)c = —(ap) , (@A), = (aA)

and

To show: pc = p, with p = ¥T).
pc = vhve = (n207) et = 9Ty = —gTyyy
=Ty = (Piy) =¢lp=p.
To show: jo = 7, with j = ¢¥fcanp.
jo = vheaye = ¢ (iV07) aiy?y” = Ty an?y”
= —c" oY = e oy = (Vieaw) = vlean =3 .
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15. Dirac equation for structured particles. The Dirac equation of a
structured particle (e.g. proton or neutron) in an external electromagnetic
field exhibits an additional term which describes the interaction of the par-
ticle’s anomalous magnetic moment with this field:

M _ ¢ _ ho v — =
{'y (pu cA”) 4mocU F., —moc| ¥(z) =0,

with
B 1
2

loind

[7“7711] ) F}Lu = a,uAu - 8VA/L .

a) Show that, with this gauge and Lorentz-invariant term, the Dirac operator
is Hermitean and the probability remains conserved.

b)Express ¢/*F,, in terms of the electromagnetic fields E and B in the
Dirac representation.

Solution.

To a) First of all, we notice that, in the above equation, it is not the bracket
term that must be Hermitean but the Dirac-Hamilton operator which is ob-
tained by rewriting the equation in canonical form:

5] hé
ihaif - {C"‘ (P 2A) +eA’ 4 gm0 Fy ot moc®) | 0 (252)

From this the Hermitecity condition
ot = (,YOO.MVFND)T (2.53)
follows, and (since F},,, is a real tensor field)
NN I
This condition can be immediately verified with the help of (2.19):
(@) = =501 = =300 = 310
— 050

To prove the conservation of probability, we argue similarly to what led to
(2.11) and (2.12), now on the basis of the modified Dirac equation (2.52).
With (2.53) taken into account, the same additional term appears on the
right hand side of both equations (2.11) and (2.12):

ho

4m()C

T Fp

Subtraction of both equations leads again to the continuity equation (2.13)
with the same probability density and probability current density.
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To b) Exploiting the antisymmetry of ¢/ and F),, as well as the explicit
form of F

nz

0 E Ey Ej

“E, 0 —-Bs B, .
(F;w) = —Ey Bs 0 —B; ; F,ul/ = guaguﬁF o y

—FE3 —By B; 0
the term o), can be rewritten as
o, =2 Z o F,, = QZO‘OiEi + 2(—012B3 + 03By — 02331) .
n<v i

Furthermore, we have in the Dirac and Weyl representation

0i __ ij ~ A O 0
o =104 07 = €;jr0 O =
(] t]k k k ( 0 Uk: )

so that
o F,, =2(iaE —-6B) . (2.54)

As we show in the next section, the matrix " is connected to the bispinor
transformations of proper Lorentz transformations.

16. Quadratic form of the Dirac equation. Show that the Dirac equa-
tion (2.25) can be cast into the following representation-independent form:

|:(p“ — %A“) (pu - ZAM) - %UIWF;W - m(2)62:| Yv=0. (2'55)

Solution. Multiplying (2.25) from the left by
o (py - %z‘b) +moc

and respecting the anticommutator relation {y*,~v"} = 2g"" leads to
e

0= :’YV ( v — SAD) + moc} [’y“ (p“ — EA“> - mgc} P
= :7”7“ (pupu + iszA,L> - Sv”v“(Aypu +pyA,) — mgcﬂ 0

1., u e2
= 5{7 , Y } pup,u+c*2AuA;L

e v v
= 5 (" =" A D (Avpu + oAy — m302] Y
[ M 62 122 € 122 M
= P+ A AH—E(A pu+ 0" AL)

€ v " L.V
- %(7 Y = YY) (Avpp + prAu) — mgcz} (0

= :(p“ — ZA“) (pu — ZA“) - i[v”m“](pﬁlu) — mﬁcz} b .
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In the last-but-one term (p,A,,) the operator p, only acts on A, and not on
1. Using p, = ihd, and (all derivatives only act on A, again)

1 . v v
U#VFMV = 5[7#,’}”](3,“4” - &/AM) =i(y"y 3MA1, -7 'YuauAu)

= ih/ufyy}auAV )
we finally arrive at (2.55).

17. Lagrange density and energy-momentum tensor of the free
Dirac field. Determine the Lagrange density of the free Dirac field similarly
to Exercise 2. Subsequently, show with the help of the energy-momentum ten-
sor that the energy is

E = /d3waH(0)¢ . HO = cap + fmoc? .

What is the interpretation of this result?
Solution. The Lagrange density of the free Dirac field is
L = Y(ihey* o, — moc?)a
since the variation of the corresponding action functional I = [d*zL with
respect to the components of ¢ and 1 leads to

oI oL oL
— =0= — —9,————— =0 (Lagrange equation
o oY ”(’9(8@[1) ( :
oL oL
— = (ihey"0, — moc?)Y , ——— =0
81/) ( V" Ou 0 ) 8(aﬂw)
= (ihey"0, — moc?)yy =0 (free Dirac equation)

and
oI oL oL
== — — 90 =0 (Lagrange equation
o0 90~ O, 0 (Lesrnee eduation
oL 9 7 oL T
— = —MnC s = 17’10 w
A CRD R

— ihc@uz/}y” +moc® =0 (free adjoint Dirac equation) .

The energy density 7% follows from the energy-momentum tensor

oL oL _
T = o G — gL
50,0° " Yo VY
as
oL oL _
700 _ _ .
3000) " T B Y T E
= iheypy o) — ¢ (ihey" 0y — moc®)p
= —ihepy 9 + moc* P

= i (cap + Bmoc®)p = pTHOy .
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Therefore, the energy is
E— /d3:cTOO - /d?’waH(O)w - <¢ ‘H<O>W> .

Comparing this result with the corresponding result of the Klein-Gordon case
in Exercise 2, we find that in both cases the field energy coincides with the
(G-)expectation value for positive as well as for negative solutions.

In the Klein-Gordon case we saw that for the description of spin-0 an-
tiparticles we have to use negative solutions and not their charge conjugates
(definition of the G-scalar product, Subsection 1.3.1). From this we concluded
that, with respect to the G-expectation values, it is justified to consider the
original negative solutions to be antiparticle wave functions. This is supported
by the consideration of the field energy that yields positive (physical) values
for both types of solutions. In the case in hand this is no longer true: for
positive solutions we have positive (physical) values of the field energy and
the energy expectation value, whereas for negative solutions we have negative
(unphysical) ones. This implies that the negative Dirac solutions cannot be
the wave functions of spin-1/2 antiparticles. In fact, we have already found
that, for the description of antiparticles, we must insert the charge conjugates
of the negative solutions into the corresponding expectation values (definition
on page 108).

2.2 Symmetry Transformations

As in the symmetry considerations of the Klein-Gordon theory in Section 1.2,
we now turn to the symmetry properties of the Dirac equation. Here we again
resort to the differentiation between active and passive transformations. Our
task consists in explicitly constructing the bispinor transformations D(A)
belonging to the homogeneous (i.e. proper and improper) Lorentz transfor-
mations A, thus completing the proof of the covariance of the Dirac equation
under the full Poincaré group.® The basic prerequisites to be fulfilled are pre-
sented already in Subsection 2.1.2. Moreover, in connection with spatial rota-
tions, we provide a transformation theoretical argument for Dirac’s spin oper-
ator introduced in Subsection 2.1.4. Finally, we also consider non-Lorentz-like
symmetry operations from which the important Feynman-Stiickelberg inter-
pretation is derived once again.

2.2.1 Proper Lorentz Transformations

Proper Lorentz transformations (with A% > 0, det A = +1) are distinguished
by the fact that they can be composed of a series of infinitesimal transfor-
mations; that is why they are also called continuous. We therefore initially

8 In addition to the homogeneous Lorentz transformations, the Poincaré group also
contains space-time translations for which the proof can be carried out easily.
See footnote 2 on page 94.
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consider an infinitesimal proper Lorentz transformation for which we can
generally assume the form

A, = g“y + Aw,, | A}LV = _Az/u . (256)

The last relation follows from (A.2) in the appendix as, up to linear order of
Aw, we have

A 09w’ 5 = gap

= (9" + Awa) g (9”5 + Aw”s) = gap

= 0" 99" 5 + At 099" 5 + 9" 09 AWY 5 = gap
= gap + A" 0 9us + gar Aw” 3 = gap

= g8 A" o + garAw’g =0

= Awga = —Awag -

Since with A the corresponding bispinor transformation D(A) will also devi-
ate only infinitesimally from the unity transformation, we make the following
ansatz:

i i
D=1- ZUWAw“” . D l=1+ EUWAw‘“’ y Ouy = —Oppy - (2.57)

If we now insert (2.56) and (2.57) into the conditional equation (2.26) from
Theorem 2.2 which is valid for Lorentz-like bispinor transformations, we ob-
tain to linear order of Aw

v i «
Awt Y = _ZAW ’Bh“,oag] )

From this and taking into account the antisymmetry of Aw*,,,

1
Awt, = iAwaﬁ(guagvﬂ - g#ﬁgua) )
it follows that

2i(g" v — 9" 5Ya) = [V, 0ap] - (2.58)

Thus, the construction of bispinor transformations for proper Lorentz trans-
formations is reduced to finding an antisymmetric matrix o,g that obeys
(2.58). We can easily see that this matrix is given by (compare to Exercises
15 and 16)

i
Oap = § [’7(1, ’YB]

since, due to (2.18), we have
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i i )
5[7#5 [’7&:75]] = 5 ([’Y’ 7704'7@} - [ryl a’Yﬁa’YQD
i
=35 (", vav8] = 20", gasl + (V"5 Yas 75])
= i[v*, YaV8

=i (77078 — 20" 570 + %a7"75)

= i (""7a78 — 26" 57 + 29" 478 — VVa8)

= 2i (9”078 — 9" pYa) -
We are now in a position to construct finite bispinor transformations by a
repeated application of infinitesimal transformations via

N—o00

. N .
i i
D(A) = lim <1 - 40#,,Aw‘“’> = exp (—4UWA“”)
To do this, it is advantageous to rewrite the infinitesimal quantity Aw*, as
Awt, = Aw(l)",, lim NAw=w,
N—o0
where Aw denotes the infinitesimal “rotation angle” around an axis in n-

direction, w the corresponding finite rotation angle, and I,, the 4 x4-coefficient
matrix (in space and time) of the “unity Lorentz rotation” around this axis.

Theorem 2.6: Bispinor transformations
for proper Lorentz transformations
To the proper Lorentz transformation

A: gt — g = A" 2

around the rotation axis n with the rotation angle w there belongs the
passive bispinor transformation

D(4): (x) — ¢'(2") = D(A)y(z) ,
with

i i
D) = exp g0l ) © = 5]
where [,, denotes the unity Lorentz rotation around the axis n.

This theorem completes the proof for the form invariance of the Dirac equa-
tion under proper Lorentz transformations. The proof for improper Lorentz
transformations as well as for non-Lorentz-like transformations will be carried
out in Subsection 2.2.3.

Lorentz boosts. As a first concrete application of Theorem 2.6, we calculate
the bispinor transformation for a Lorentz boost describing the transition to an
inertial system moving with velocity v relative to the original reference frame.



124 2. Relativistic Description of Spin-1/2 Particles

To do this, we initially determine the corresponding infinitesimal Lorentz
boosts along the three spatial axes,

cosh Aw; sinh Aw; 0 0
sinh Aw;y cosh Awy 0 0

(Lp
(A7) 0 0 10
0 0 01
0100
A<l oy 1000
- (g l/) + Awl 0000
0000
cosh Aws 0 sinh Aws 0
(A(g)u ) = 0 1 0 0
v sinh Aws 0 cosh Aws 0
0 0 0 1
0010
Aws Ll |y 0000
= @)+ Ae g0
0000
cosh Aws 0 0 sinh Aws
3 0 10 0
(A=) 0 01 0
sinh Aws 0 0 cosh Aws
0001
Aws<l [ 0000
- (g l/) + Aw3 O 0 0 O 9
1000
cos 01
to construct the infinitesimal Lorentz boost in the direction of v = v | cos s
cos 03

0 cosf; cosfy cosbs
cost; O 0 0
cosfly 0 0 0
cosfls 0 0 0

A, Aest guy + Awl*, | (qu) =

For the bispinor transformation belonging to the finite Lorentz boost, we
have according to Theorem 2.6

17 14 ,OL’U
O'ALVIH = Ouvg pI,up = -2 E 05 COS@i = 217
w av
— D(Ay) = (7—)
(4v) = exp {5 —

With the help of the representation-independent relations
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2n )2n+1 2

(av) =v°" | (av =v"av ,

the exponential term can be carried out as follows:

w 1w\
e (gav) = 3 (5,) (ew”
oo
1

- Z )l (2%)2” (aw)®"

© 1 W 2n+l _—
+7;)(2n+1)! (21}) ()

e T rmen ()

n=0 n=0
= cosh (%) + % sinh (;) .
Taking into account
1
coshw = —, 0= ¢
V11— 32 c

as well as

1
cosh (%) = yli(coshw—i— 1), sinh (%) = —/cosh® (%) -1,

we finally obtain the result

1 1 av |1 1
DA =,z —m==+1]|—— || —-1] . 2.59
(Av) 2<%1—ﬁ2+> . 2<ﬁ_52 ) (2.59)
If the original reference frame is equal to the rest system of the particle, the

particle possesses the momentum p ~ —wv in the Lorentz transformed system.
In this case, using \/1 — 32 = mgc/po, po > 0, we can rewrite (2.59) as’

po + moc+ ap
2moc(po + moc)

D(p) = (2.60)
In return, D(—p) transforms to the rest system of a particle with momentum
p in the original system.

Spatial rotations. Next we consider the spatial Lorentz rotation around a
unit axis u, |u| = 1 by the rotation angle ¢ and calculate the corresponding
bispinor transformation. We can proceed, as in the boost case, by calculating
the mathematically positive infinitesimal rotations around the three Carte-
sian axes which, in total, lead to the infinitesimal rotation

9 Be aware of the notational difference in (2.59) and (2.60): D(A,) and D(p)

transform the original reference frame in opposite directions.
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0 0

0 0
Apkl " uy_ |0 0 uz —up
= 9 T A(pl vo (I V) - 0 —us 0 (A1

0 U2 —Up 0

A%, (2.61)

For the bispinor transformation belonging to the finite Lorentz rotation there
follows in the Dirac and Weyl representations (but not in every representa-
tion!)

oI = o, 1" 9" = —2(012u3 + 0312 + 02311
A o0
= —2uo , 0'—(0 o’)
= D(A,) = exp (;goué') . (2.62)

With the help of

(we)*™ =1, (u6)* ™ =ué ,

we can carry out the exponential term in (2.62) in a similar way as in the
boost case. This results in

exp (;goué') = ni:();:' (%)n (ue)"
< 2n " S, e+l 1
- HZ:% 2n)! (%)2 +“"T§ @2n 1 1) (%)2 )
=3 G (5)" eme X o (5)

= D(A,) = cos (%) + iud sin (%) .

Note that, after a rotation by 27, the original state is not reached. Instead,
we have

D(Agnz) = (=1)",

which is a general characteristic of half-integer spins. Therefore, physically
observable quantities must always be bilinear in the fields ¢(x) or must con-
tain an even power of them. Only then, physical observations return to their
original states at spatial rotations by 27, in accordance with our experience.

2.2.2 Spin of Dirac Solutions

On the basis of (2.62) and the general relationship between passive and active
transformations, we can now give a transformation theoretical argument for
the spin operator (2.31) introduced in Subsection 2.1.4 and thus for the fact
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that Dirac solutions describe spin-1/2 particles. First we note that each active
rotation of a physical system around a unit axis w by the angle —Ag can be
expressed, with the help of the total angular momentum J = L + S, as

W) = e (228D ) o) 22 (1422580 ) o) (2.63)

h

or, equally, that L, S, and J are defined by this relation. On the other hand,
we know that each active rotation can also be derived from the corresponding
passive transformation of the reference system in the opposite direction [see
(1.30) and (1.31) in Subsection 1.2.1]:

} /(') = D(Anp)(x)

passive rotation
around u by +Ap

}

Active rotation

around u by Agp} () = D(AA¢)¢(AZL@") = D(Aap)P(A-ay7) -

Restricting ourselves to infinitesimal rotation angles, we can rewrite the last
relation with the help of (2.61) and (2.62) as

W (@) Apxl <1 n 1A<,;u0'> D0, ot + Ap(—usz? + usz?),
22 + Ap(uza’
23+ Ap(—ugz’ + up2?)]

iApue oY
= <1 +— > {Q/J(x) + Ay {M(—ug,x? + uga®)
oy
T2

+%(—u2x1 + ule)} }
_ (1 N iAg;ué') (1 N iAg;uL) ()

e )

—u1x3),

(uzx! — uyz®)

h 2
Comparison with (2.63) finally leads to the already known expression for the
Dirac spin operator:

S:g&.

2.2.3 Discrete Transformations

We now come to the case of improper Lorentz transformations (with det A =
—1) as well as to other non-Lorentz-like transformations that cannot be con-
structed by repeated application of infinitesimal operations wherefore they
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are called discrete. Here we proceed similarly to the Klein-Gordon case (Sub-
section 1.2.3). The corresponding physical implications have already been
discussed there and can be completely carried over.

Parity transformation P. The improper orthochronous Lorentz-like par-
ity transformation or space reflection is defined by

1 0 0 O
P S I Y
0 0 0-1

In order to show that Dirac’s equation is form invariant under this opera-
tion, we need to find a bispinor transformation D(A) obeying the conditional
equation (2.26) for Lorentz-like bispinor transformations. Introducing the no-
tation P for D(A), this means

P lylP =AM 4Y = glty* (no summation over 1) . (2.64)

Furthermore and as in spatial rotations by 47, we demand that four space
reflections transform a bispinor back into itself, i.e.

Pi=1. (2.65)

As can be seen easily, this is achieved by the representation-independent
choice P = Apy? with A% = 1. In the passive case we then have

r—x'=—xz,t—t =t

Y(x,t) — Yp(x',t') = Py(z,t) , P=Xpy°, A\p =1 passive
space

A(z,t) — Ap(2', 1) = A(=, 1) reflection P
A(x,t) — Ap(x/,t') = —A(x,t)
and in the active case
Y(x,t) — p(x,t) = PY(—,t)
Az, 1) — A (@, 1) = AO(—a,p) s Active space (2.66)

reflection P.
A(x,t) — Ap(x,t) = —A(—x,t)

Applying the active space reflection to a free plane Dirac solution yields (see

Exercise 20)

ws,p,n(x) 1/15’;0/7”/ (SC)

pz(Z;;)),n:(ff) - pl:<£0p)’n:(»:0> . (2.67)

Hence, a free solution with opposite spatial momentum index is created,
whereas the spatial spin index is unchanged. Since € is unchanged, too, this
relationship can be carried over to the particle level: the space reflection
reverses the momentum of a spin-1/2 particle and leaves its spin orientation
unchanged.
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Time reversal transformation 7. The time reversal or, rather, motion
reversal transformation is a non-Lorentz-like symmetry operation which, from
the passive point of view, is defined by

T—x=x,t—t =—t
passive time

0 0 1 41\ _ A0
Az, t) — Ap(a, 1) = A%, 1) reversal T

(2.68)
Az, t) — Ap(x',t') = —A(x, 1)
so that
ihd? — 1ho'° = —ihd° , ihd' — 1hd" = iho" .

Due to the non-Lorentz-like character of this operation, it is clear that we
cannot make use of the relation (2.26) in order to construct the corresponding
bispinor transformation. We therefore start with the Dirac equation in the
transformed (primed) system,

['y" (ih@:t - EAT#(‘CE/)) - moc} (2" =0, (2.69)
make the (antilinear and reciprocal) ansatz

Y (2)) =Ty*(x) , T* =1, T linear ,
and express (2.69) by the original (unprimed) quantities:

[70 (—ih&o - ng(x)) + oy (ih@i n gAi(x)> . moc} Ty*(z) = 0 .(2.70)
If we now require that

T~ 4MT = gh*4*  (no summation over p) , (2.71)

then multiplying (2.70) from the left by 7-! and subsequently taking the
complex conjugate leads to the equation

[70 (ih@o - ng(ac)) + (ih@i - SAz(x)) - moc} P(x)=0

in the original system. This is formally identical to (2.69). The solution to
(2.71) is not hard to find and is given by T' = iA7y'~3 in the Dirac or Weyl
representation. To complete (2.68), we can therefore write:

_; 1.3
(@, t) — Yr(@,¥) = Ty (2,1) , |1;T_| A }

passive time

reversal T
Accordingly, for the active time reversal, we have
Pl t) — Yr(x,t) = T" (@, —1)
Az, 1) — Al(z,t) = A0(m, —t) § Active time (2.72)

reversal T'.
A(x,t) — Ar(x,t) = —A(x, 1)
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Applied to a free plane Dirac solution, the active time reversal yields (see
Exercise 20)

ws,p,n (x) we,p’,n/ (1')

p=<’;°>,n=(ff) - p’=<_”;,),n:(fgl> . (2.73)

On the level of wave functions the spatial momentum and spin indices are
reversed. On the particle level this implies, due to the unchanged ¢, that the
time reversal reverses the momentum and spin of a spin-1/2 particle.

PCT-transformation (no symmetry transformation). Instead of the
charge conjugation C from Subsection 2.1.6, we can, as in the Klein-Gordon
case, apply a combination of the three transformations C, P, and T to nega-
tive Dirac solutions ¢(~) in order to generate wave functions for antiparticles.
Taking into account Theorem 2.5 as well as (2.66) and (2.72), this yields for
the active case in the Dirac or Weyl representation (possible phases ignored)

¢ (@) — Ypdr(e) = O (-a) .
This, in turn, leads again to the Feynman-Stiickelberg interpretation to which

we will refer particularly at the description of scattering processes in Chapter
3 (compare to Theorem 1.5).

Theorem 2.7: Feynman-Stiickelberg interpretation
in the Dirac theory

Due to the PCT-transformation, the wave function of a physical spin-1/2
antiparticle of charge —e can be interpreted as a negative Dirac solution of
charge 4+e moving backward in space and time.

As in the Klein-Gordon case, this interpretation can be verified by applying
the PCT-transformation to the eigenvalue equation of a negative Dirac state
with charge +e and then observing that the resulting equation corresponds to
the eigenvalue equation for a positive Dirac state of charge —e with opposite
direction of motion in space and time.

Extended charge conjugation C. We can again extend the mathematical
equivalence operation C' to a symmetry operation by also transforming the
electromagnetic fields in an appropriate way:

w(w»t) - ¢C($at) = i)‘CP)’Qw*(wvt) ) |)‘C‘ =1
A%z, t) — Ad(w,t) = —A%(z,t)
A(x,t) — Ac(x,t) = —A(x, 1)

active charge

conjugation C. (2.74)

On the level of wave functions the action of this extended charge conjugation
is, for example, that the Dirac equation for a positive solution ¥(*) with
charge +e within the potential +A*,
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[7” (ih@u - ZA“(Q:)) - moc} Y (z) =0,

is transformed into the Dirac equation for a negative solution z/Jé+) = iy2gp(H)*

with the same charge +e within the potential Ay = —A¥, i.e.

[w (mau + %A“(z)) - moc] Y (@) =0
However, due to the original C-transformation, the last equation can be in-
terpreted as the Dirac equation for a positive solution ’(/Jéz.) with charge —e
within the potential —A* possessing the same quantum numbers as the orig-
inal solution (*)

On the particle level this can be interpreted analogously to the Klein-
Gordon case as follows: the charge conjugation C turns a fermion into an
antifermion with an opposite charge but in all other respects identical quan-
tum numbers. In other words, a fermion of charge 4+e within the potential

+A* behaves exactly as the corresponding antifermion of charge —e within
the potential —A*, in accordance with our expectations.

Further symmetry considerations. Having discussed the most important
symmetry properties of the Dirac theory, which are in principle the same as
those of the Klein-Gordon theory, we supplement the final statements of Sec-
tion 1.2 with the following remarks: generally, the theoretical and experimen-
tal investigation of symmetry principles is a very important instrument for
finding or verifying theoretical descriptions of microscopic physical proces-
ses. For example, we know that all three discrete symmetries C, P, and T are
conserved within electromagnetic interactions, such as the electron-electron
scattering, so that the Dirac-Hamilton operator can only contain terms that
do not disturb these symmetries. This is ensured by the minimal coupling
(for the description of elementary particles) and by certain additional terms
(for the description of nonelementary particles with anomalous magnetic mo-
ment, see Exercise 15), which give additional support for the correctness of
the Dirac theory.

As another example, let us consider the weak process of -decay (neutron
decay),

v+n—p+e,

where n, p, e, and v stand for neutron, proton, electron, and neutrino, re-
spectively. Here one initially assumed that the Lorentz-invariant amplitude
of this process can be expressed by the product of two weak vector currents
as

M ~ G] (weak),n  .(weak)

(p:n) “Jew).u (G=Fermi constant)

(weald), (weald), , (2.75)
wea. wea.

J(p n) %7 Y s J(ew) 1/)@7 Py

in complete analogy to the electromagnetic process of electron-proton scat-
tering which is described to first order perturbation theory by the Lorentz-
invariant amplitude
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e? em .(em g=four-momentum transfer of the
M (em),pt (em)
~2dwn) e virtual -phot h ’
q 1rtual one-pnoton exchange

with the electromagnetic vector currents
Ty = oy s J(e) " = Ter e

(see Subsection 3.3.2).1% However, the choice of the vector operator y* within
the weak currents is very special, and there is a priori no reason for not taking
another y-matrix combination discussed in Subsection 2.1.3 in order to build
covariant bilinear forms (currents). It is true that the amplitude in (2.75) is
capable of describing some properties of the 8-decays, but not others. There-
fore, a vast number of B-decay experiments have been carried out in order
to find the correct form of the weak interaction amplitude. This culminated
in Lee and Yang in 1956 proposing certain experiments which revealed that
the parity is not preserved within weak interaction processes. This implies,
among other things, that only left-handed neutrinos (with negative helicity)
and right-handed antineutrinos (with positive helicity) appear, but no right-
handed neutrinos or left-handed antineutrinos. From this it follows that the
C-invariance must be violated, too, since the C-transformation turns a left-
handed neutrino into a left-handed antineutrino which is never observed.
From all this can be concluded that vector and pseudo-vector interactions
are present (but no scalar, pseudo-scalar or tensor interactions) that must
appear in a certain combination to produce a mixture with no well-defined
parity. Eventually, the amplitude

M ~ Gy (1 = M) n) eI + 7)) , A~ —1.25

proved to be the correct choice for the above (-decay where \ denotes the
mixing ratio of the vector-pseudo-vector coupling (also called vector-axial
vector coupling) in the hadronic current. This example demonstrates, once
again, how helpful symmetry considerations are for finding the correct math-
ematical description of physical processes.

Summary

e The proof of the Lorentz covariance of the Dirac theory is completed
by the explicit construction of bispinor transformations to given Lorentz
transformations.

e The Dirac theory is covariant under the full Poincaré group. Discrete
symmetry transformations of the theory are the improper Lorentz trans-
formation of space reflection P as well as the non-Lorentz-like trans-

10 Here the proton and the neutron are considered approximately to be structureless
(point-like).
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formations of time reversal T and the extended charge conjugation

C.

e Exploiting the relationship between passive and active transformations
and the definition of the total angular momentum via active rotations,
one obtains a transformation theoretical argument for the fact that Dirac
solutions describe spin-1/2 particles.

e The wave function of a spin-1/2 antiparticle of charge —e can be seen
as a negative Dirac solution of charge +e moving backward in space and
time (Feynman-Stiickelberg interpretation).

Exercises

18. Completeness and orthogonality relations of free bispinors. Ver-
ify the completeness and orthogonality relations (2.15) and (2.16) with the
help of the bispinor transformation (2.60) for Lorentz boosts.

Solution. For the proof of (2.15), we turn to the rest system and exploit
D'(p) = D(p):
w1 (e.p)w) (erp) = w1 (0) D (e,p) D(ervp)w” (0)
= w1(0)D(e,p)D(erp)w (0)
(po + moc)? + €€,/ p*
2moc(po + moc)
(po +moc)(er + Er')apw(r’)
2moc(po + moc)

= wi(0) w)(0)

er(r)f(o)

(0) .

Since w1 (0)apw™)(0) is nonzero only for €, # €./, the second term does
not contribute. Therefore, we find

2 2
(")t (") (e rp) = PO MOC)"+P" ¢ o o
w (Erp)w (er p) Zmoc(po—l—moc) rr p——

rr! .

It is sufficient to prove the first equation of (2.16) in the rest system as the
left hand side is a Lorentz scalar.

The second equation can also be easily verified by transforming it to the
rest system where it is certainly true:

Y euwl(P)a (p) = Y eDaw (Pl (005 (0)D5 4 (p)

r ral,p

> 00 Daar (P) Dyl (p) = dap -

aa’

For the third relation there follows similarly
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el (ep)ef () = 3 Daarleplell) (00 (0)D)yg(erp)

r,al 3
= Z 5a/6’5(x/rDa,o/(Erp)D;’ﬁ(erp)
ra B’
- ZDar Erp)Drﬁ(erp)
po
= mocz ar Tﬁ - 760&5 ’
with
_ Po+moc+ fap Ut — -1 Po + moc — fap
2po(po + moc) 2po(po + moc)

19. Nonunitarity of bispinor transformations (II). Show the validity
of (2.23) for proper Lorentz transformations, i.e.

Di(A) =1°D71(A)°,
by using the explicit form of D(A).

Solution. The most simple solution consists in starting from the infinitesi-
mal representation of D(A):

i
=35 7#7’71/] .

D=1- ZJWAw” s Oy 2[

Then, with

vt _ 0 _puv_ 0
ot =000

the corresponding adjoint transformation immediately follows as
Dt =1+ 402LWAw’“’ =1+ i’yoaw'yko“” =70 (1 + iam,Aw’“’> 40
=1"D71y°
20. Free Dirac states under space reflection and time reversal. Verify
the relations (2.67) and (2.73).

Solution. For a plane free Dirac wave function with energy sign ¢, four-
momentum index p, and four-polarization index n,

evHp, + moc 1+ 757*‘71“
epla) = (RIS ) (LI ) o)
and with (2.64) as well as {P,7°} = 0, we have

Yo +moc oy, (17 o0
. 4NW=P|—\—|P "P|——|P
epalp (@,t) = P (TR poip (157

XPthe pn(—2,1)
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gty p, +moc (1=~ gttytn,
P —xt
< QmOC 2 wfﬂﬁ”( w’ )

ey'p), +moc\ (14 75y"n,
= ! ! W}e,p,n]P (:c,t) s
2mgc 2

where
N ] o — R B
pr=g9g"p ,n" =—g"n .

On the other hand, using (2.71) and [T,~°] = 0, it follows that

ey*Pp, + moc 3 1+75'y*“n B

XTwe D, n( _t)

eghiatp, +moc (1 +°gHHyin, )
( 2mypc 2 Tlp&p,n(w’ _t)

() (1
2 e,pnlm ) )

2moc

with

— M — gHtHp P
= gMp" f =g

21. Expectation values of time-reversed Dirac states. Show the fol-
lowing relations between time-reversed Dirac states:

ir(@) = ju(z) , (@) = () , (P)p=—(P) -

Solution. First we note that, due to the properties of the y-matrices, we
have in the Dirac and Weyl representations

T=iyy3 =TT =171 ¢p(t') = TY*(t) , T/J;rr(tl) =T (t)T!

where the spatial argument is suppressed. From this and [T,~"] = 0 as well
as T—IyHT = 7, the current density follows as

j?ﬁ(t’) = %( (') = T ()T A Ty (t)
DTN T ATy (1) = T ()7 " (1)
= wa( )’ m]amﬂé(t) = 5N Vi bata(t) = ¥* (YA 0 (1)
()79, (1) = ()9 () = Gu(t) -

For the position expectation value we obtain ([T, 2] = 0)
@)y = / B () (t') = / a7 ()T Ty (1)
= [@ayt @z = [ @tz - (@

%,_/
real
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and for the momentum expectation value ([T, p] = 0)
By = [ @1 100 = [ dan Ope (0
— —in [ &a(vui ol

—ih / BV [T (t)y(t)] +ih / Bt (t)Vab(t)
—ih / AFyT () (t) — / eyt (t)py(t) = — (p) .

oV
—_——
0

22. Lorentz behavior of the PCT-symmetry transformation (II).
Similarly to Exercise 3, show the Lorentz-like behavior of the PCT-transformation
in the Dirac case by considering the improper and nonorthochronous Lorentz
transformation of the Racah time reflection.

Solution. To determine the bispinor transformation belonging to the Racah
time reflection, we can use the relation (2.26), i.e.

-1000
0100
0010
0001

RTGR= A7 (A7) =

As can easily be proven, its solution is
R:717273:R_1:_73727 :_,YORT,YO .

For the passive and active transformation laws of the Racah time reflection
we therefore obtain

x—a'=x,t—1t =—t
R = \p~yin2q3
Y(z,t) — Yr(@,t) = RY(z,1) , AR = fly o passive time
Az, t) — A%z, t') = —A%(x,t) reflection R

Az, t) — Ag(x',t') = A(z,t)
and
Y(,t) — Yr(z,t) = Rz, —t)
Az, t) — A%(z,t) = —A%(z, —1)
A(x,t) — Agz,t) = A(x, —t)

active time
reflection R.

As in Exercise 3, a comparison of the last relations with the active transfor-
mation laws of the time reversal T and the charge conjugation C, i.e. (2.72)
and (2.74), shows that the Racah time reflection is identical to the combina-
tion of C and T
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C(T=R=— PCT =PR.

This in turn means that the PCT-transformation is Lorentz-like.
Note that the adjoint bispinor 1 transforms under the Racah time reflec-
tion as

Y —p =P RN = 41" R71400 = R
in accordance with our general result (2.24) for nonorthochronous Lorentz

transformations (b = —1). Therefore, the current density transforms as a
pseudo-vector:

Ik = YRV PR = =AM
However, since A* transforms as a four-vector, the field equation for the radi-

ation field, 0,0 A* = 4mej#, is not invariant under the Racah time reflection
(see Subsection 3.3.2).

2.3 One-Particle Interpretation of the Dirac Theory

As in the Klein-Gordon case in Section 1.3, we now turn back to the one-
particle interpretation of the Dirac theory and deal with the clarification of
the still open questions from Subsection 2.1.6, namely

[1] what prerequisites are required for the complete decoupling of the Dirac
theory into two one-particle theories and

[2] how can physically sensible one-particle operators be constructed, i.e. op-
erators that do not mix positive and negative solutions.

To this end, we first address the second point and then the first one. At the
end we discuss the Klein paradox in order to highlight some contradictions
— in principle the same as in the Klein-Gordon case — arising outside the
validity range of the one-particle concept.

2.3.1 One-Particle Operators and Feshbach-Villars Representation

Based on our considerations in Subsection 1.3.2, we may assume that in the
Dirac case, too, not every relativistic operator is physically sensible in relation
to the one-particle picture. To see this, we go back to the Ehrenfest theorem
(1.42), now, of course, without the index G:

ot dt i
In the free case [H = H(®) from (2.8)] this leads to the “velocity operator”

((0,H]) . (2.76)

(v) = %:%Om,H(O)D = (ca) = v =ca .
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Obviously, this operator has no formal similarity with the corresponding clas-
sical relation v = ¢p/po as one would expect from the correspondence prin-
ciple. Furthermore, we have [a, H(®)] # 0 so that, for free particles, v is
not constant. Finally, due to [y, a;z;] # 0, the components v; cannot be
simultaneously measured, which seems to be unphysical, too.

The reason for these unsatisfactory findings is related, as in the Klein-
Gordon case, to the fact that a turns positive Dirac solutions into negative
ones and vice versa, i.e. that a is an odd operator.'’ However, it is clear
that, with respect to the one-particle concept, only even operators can be
accepted, i.e. one-particle operators that do not mix positive and negative
states. From a relativistic operator

O =[0]+{0}, [O] =even, {O} =odd
we therefore have to isolate its even part [O].

Feshbach-Villars representation. For the explicit construction of one-
particle operators, we can completely resort to the corresponding discussion in
Subsection 1.3.2. This means that we first diagonalize the Hamilton operator
in the a-matrix space to move to a representation where [O] is the diagonal
part of O. As in the Klein-Gordon case, it also holds here that an exact
diagonalization is possible only for the free case. As before, the corresponding
representation is called Feshbach-Villars representation. To get to it we need
an appropriate transformation that can be obtained by the following line
of argument: in the Schréodinger momentum representation the eigenbasis of
the free Dirac-Hamilton operator is {w(")(e,p)} (see Theorem 2.1) with the
energy eigenvalues €,.cpg. They compose an orthogonal system due to (2.15).
The inverse of the unitary transformation U mediating between the lastly
mentioned and the canonical basis is therefore given by

mopc
Ut = [T [ ), o (p), o (), Y ()

_ po+moc— Pap
V200 (po + moc)
From this follows that
U=yU-1f— po + moc + Bap .
2po(po + moc)

With the help of U, we can now perform the transition from the Schrédinger
momentum representation to the corresponding Feshbach-Villars representa-
tion to find

1 An even operator O is defined by the relation Oyp®) = ¢'*) where ¥ and
¥"®) denote arbitrary positive (+) and negative (—) Dirac solutions respectively.
The operator O is called odd, if Oy = /(P
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1 0
- — 7,y — | O -2 _17,@my — | 1
G =Uw(p)=| | » @7 =0 (p) = |
0 0
0 0
-(3) _ 77,,(3) _ |0 ~(4) _ 17,,(4) _ |0
w - UUJ (_p) - 1 , W - UUJ (_p) - 0
0 1
and (see Exercise 23)
HO =yHOU = ¢poB, HOG™ = ¢,cpo™ (2.77)

as well as
p=UpU '=UU'p=p.

As in the Klein-Gordon case, the operators H®) and p are even: H(® =
[H(O)]7 b= [p]

One-particle operators for position and velocity. We now determine
the one-particle position operator [z] and the one-particle velocity operator
[v] using the well-known transformation and separation scheme

coordinate repres. — momentum repres. — FV-momentum repres. —

— isolation of the diag. part — momentum repres. — coordinate repres..
The corresponding detailed calculations are presented in Exercise 23.

Position operator in coordinate representation:
x = Gunumber (p=—ihV) .

Position operator in momentum representation:
x =iV, (p = Gunumber) .

Position operator in FV-momentum representation:

& = UzUt = ihV, + ik ( ioxp _ blaplp 50‘).(2.78)

2po(po +moc) — 2p¢(po +moc)  2po

One-particle position operator in FV-momentum representation:
e . 0
(@] =in | 5

One-particle position operator in momentum representation:

i Xp

z|=ihV,+ih——mMmMmM——
@] P 2po (po + moc)

4

(2.80)

[z] = Ul[&|U = ihV,, + ik <i& xp mocﬁa>

ng 2p(2)

One-particle position operator in coordinate representation:
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2] in (i&xp+mocﬁa) (2.81)
x|=x+1i . .
2p8 Qp%

Velocity operator in coordinate or momentum representation:

v =ca .
Velocity operator in FV-momentum representation:

b — UoUt = cat P __Plap) (2.82)
po  po(po + moc)
One-particle velocity operator in FV-momentum representation:
. cfBp
[v] = —
Po

or, via Ehrenfest’s theorem (2.76):

(5h = ([121.589)) = () — 151 = 22

with [&] from (2.79) and H© = [H©)] = ¢pyp.

One-particle velocity operator in momentum or coordinate representation:

2
20 Po

As in the Klein-Gordon case, the following items must be kept in mind:

, (2.83)

e The Feshbach-Villars transformation U is a nonlocal transformation where
the transformed wave function 1 (x) results from the original wave function
¥ (x) by smearing the position argument @ over a region comparable to the
Compton wave length of the particle. This can be seen, for example, in the
eigenfunctions of the one-particle position operator [x] from (2.81) that are
not pure d-functions any more but possess an extent of size ~ hi/mgc.

e In terms of the one-particle concept, the one-particle velocity operator
now seems to be acceptable as the “true velocity operator”. In the FV-
momentum representation we find for positive Dirac solutions the same
relation between [9] and [p] as in relativistic mechanics. For negative solu-
tions this is true only for the absolute values.

e Together with H©) and p, the one-particle velocity operator possesses a
common eigenbasis which, in coordinate representation, is given by g[},(f) (z),
with the energy eigenvalues €,.cpg, momentum eigenvalues €,.p, and the one-
particle velocity eigenvalue ¢p/po. Accordingly, for negative eigensolutions
the eigenvalue (or expectation value) of v is opposite to the eigenvalue (or
expectation value) of p. This seemingly contradictory behavior is again a
consequence of the propagation of negative solutions backward in time (See
Theorem 2.7).
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Theorem 2.8: One-particle operators and FV-representation
in the Dirac theory

With respect to the one-particle interpretation of the Dirac theory, only
even Hermitean operators are sensible for the description of physical quan-
tities that do not mix positive and negative Dirac states. In the case of
free spin-1/2 particles the corresponding Hamilton operator H ©) can be
diagonalized by applying the unitary Feshbach-Villars transformation

[ Po + moc + fap
2po(po + moc)

leading to the Feshbach-Villars representation. In this representation the
even part of an operator can be determined most easily since it is simply
given by its diagonal part.

Contrary to H© and p, the position operator = and the velocity opera-
tor v are not even operators. Transforming them into the Feshbach-Villars
representation, separating the diagonal parts, and subsequently transform-
ing the latter back to the original representation, one finds the one-particle
position operator [x] and the one-particle velocity operator [v] in the usual
coordinate or momentum representation to be

L [i6xp  mocha moc®Bp  cp(ap)
[m]:m+lh< 502 52 ) , [v] = I 5

2.3.2 Validity Range of the One-Particle Concept

So far we have progressed well on our way to a consistent one-particle in-
terpretation of the Dirac theory by giving the positive and the (charge-
conjugated) negative Dirac solutions a physically meaningful interpretation
and by setting up a formal framework which, with respect to expectation val-
ues, is aligned even more closely to the nonrelativistic quantum mechanical
formalism as in in the Klein-Gordon case. However, point [1] remains to be
clarified, i.e. under which circumstances a complete decoupling of the Dirac
theory is possible and, therefore, a meaningful separation of particles and
antiparticles in terms of the one-particle concept is feasible.

First of all, the general plausibility arguments in the introduction to Chap-
ter 1 hold, namely that, within the considered physical process, the involved
energies must be sufficiently small so that particle changing processes can be
ignored. In order to see what additional constraints arise for a complete de-
coupling of the Dirac theory into two one-particle theories with pure positive
or pure negative solutions, we proceed analogously to the Klein-Gordon case
in Subsection 1.3.3. This means that we ask again, under which conditions a
Dirac wave packet contains (almost) pure positive or negative solutions.
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It is clear that a free wave packet which was originally built by solely
positive solutions will not develop components with negative energies in the
absence of external forces. On the other hand, a wave packet originally lo-
calized to a finite area generally encompasses solutions of both energy signs,
whereas their ratio will presumably depend on the wave packet’s initial lo-
calization. For this we consider a resting spin-1/2 particle whose wave packet
has the following Gaussian distribution at time ¢t = 0:

Y@ t = 0) = (A%) /4= /CAN L0 0) | (yly) =1.

A Fourier decomposition of this expression yields

AQ 3/4 d3p 2 A2 22) ipx
(e, t=0) = (ﬁﬂ) /We P AT/ @R gip2/h (1) . (2.84)

Comparing this with the general solution for ¢t = 0,

4
—0) = / &pY 0 (p)i) (@ t = 0)
r=1

it follows that

2\ 3/4
/ Oczau (ep)0™ (erp) = (ArF) e~ A%/, (1) (g) |
m

With the help of (2.15), this becomes

mopc A2 3/4 2 A2 2
a(r)(erp) I () e~ P A%/(2n )w(T”(eT.p)w(l)(O)

po \7h?
so that
a(?”‘“(—p)’ _ w(3’4”(—p)w(1)(0)‘ __Inl
all-?)(p) w2t (p)w(0) | po+moc

Similarly to the Klein-Gordon case, we find that negative solutions contribute
significantly to the wave packet for Fourier momenta |p| 2 mgc. According to
(2.84), they are suppressed only if

A>>£:>A>>i:)\c

p| moc

Hence we see that the requirement of a complete decoupling of the Dirac
theory leads again to the well-known constraint, namely to wave packets
with a large extent compared to the corresponding Compton wave length.

All in all we find that the statements concerning the validity range of
the one-particle concept within the Klein-Gordon and Dirac theories (up to
the necessity of a positive or a negative definite charge density in the Klein-
Gordon case) are identical so that we can dispense here with a theorem
corresponding to Theorem 1.7.
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2.3.3 Klein Paradox

In the Dirac case, as in the Klein-Gordon case, the Klein paradox is a prime
example for highlighting interpretational difficulties of the one-particle con-
cept beyond its range of validity. To illustrate this we consider, analogously to
the discussion in Subsection 1.3.4, a onedimensional electron (more generally:
spin-1/2 particle) which, coming from the left along the z-axis, is scattered
against a potential step of the form

4°(2) = V( )_{ 0 for z <0 (areal)

, Vo >0, A=0
Vo for z > 0 (area II)

(see Figure 1.3). The stationary energy solutions in area I (z < 0) are com-
posed of free incoming and reflected waves for which we choose the ansatz
(see Theorem 2.1)

Yr(z,t) = e EW(2) | W(2) = Uein(2) + Yret(2)

1
Ton(z) = A= |0 by = | B2 mget rest spin
o Efjsécz P c2h? in z-direction
0
1 0
—i 0 i 1
Ve(z) = Be o= | gy |+cems[ DL
E-+mgc?
0 —chky
E+moc?

where the time-independent expressions fulfill the free time-independent
Dirac equation

d
HY = BV, H=—ihcaz— + V(z) + Bmoc? (2.85)
z

with V(z) = 0. Note that for ¥, a potentially contributing term with oppo-
site spin is taken into account.

For the transmitted wave we need the solutions to (2.85) in the presence
of a constant potential V(z) = Vj. They differ from the free solutions only
by the substitution E — E — Vj so that we can write for area II (z > 0)

IZJH(ZJ) = eiiEt/hwtrans(z)

1 0
Wtrans(z) == DeleZ chkso + Eelkzz 0 )
E=Vi+tmnc2
E—Vo+moc —chks
E—Vy+mgc?

with

ko = \/(E_VO)2 —m%c4 .

2h?
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The amplitudes follow from the continuity constraint of the solutions at z = 0
due to current conservation. We obtain for them

C=E=0
(no spin flip on the level of wave functions) and
p-U=nA 24 kErmd)
1+7r 1+7r kl(E—Vo-i-m()CQ)

Depending on the choice of Vj or E, we consider the following cases (compare
to the cases in Subsection 1.3.4 and to Figure 1.4):

1. case: E > Vi + mgc?. The wave number ks is real so that in area II the
transmitted wave oscillates and r > 0 holds. Furthermore, for the current
densities of the incoming, reflected, and transmitted parts in z-direction, we
have
T:jt%ans: 4r 7R:_j.ref:(]-_71)2:1_,1—,
o (07 AR

and thus, in accordance with our expectation, r >0 = 0< R,T < 1.

2. case: Vo —moc® < E < Vo+moc®, E > moc?. Since ks is imaginary, the
transmitted wave is exponentially damped.

3. case: moc® < E < Vo — moc® = V > 2mpc?®. As in the 1. case, ks
is real. On the other hand, we now have r < 0, i.e. we obtain a negative
transmission current as well as a reflection current whose absolute value is
even larger than that of the incoming current.

Similarly to the Klein-Gordon case, the first two cases can be sensibly
interpreted within the framework of the one-particle picture as scattering of
a particle with charge +e against (from its point of view) repulsive potential
barrier. In contrast, the 3. case again seems to be incomprehensible due to
the oscillating transmission wave since, for the considered energy interval, the
potential step should be inpenetrable. As before, this is caused essentially by
too-strong a localization of the particle since a potential step of height V[ ~
E delimits the penetration depth in area II to an extent of the magnitude
]./k2 ~ h/moc.

However, even outside the strict one-particle view, the 3. case holds some
puzzles. Here we first note that the transmitted wave has a negative energy
relative to the potential V. Therefore, as in the Klein-Gordon case, it is
reasonable to replace ko by —ko so that ti,ans corresponds to an antiparticle
of charge —e moving to the right with momentum -+%|ks| which, for its part,
is described by 7297, . This leads to the following consequences: for the
reflection and transmission coefficients we now have 0 < R,T < 1. This means
that, contrary to the Klein-Gordon case, the conception of pair production at
the border z = 0 where particles move to the left and antiparticles move to
the right cannot be sustained here. In fact, some of the particles coming from
the left are transformed into antiparticles moving to the right. Obviously, this
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particle transformation leads to a violation of charge conservation, whereas, in
the Klein-Gordon case, the total charge is explicitly conserved. Furthermore,
the transformation implies a spin flip on the particle level. Due to these facts,
we often speak of the Klein super paradox.

As in Subsection 1.3.4, we now give the remaining energy intervals, in-
cluding their interpretation:

4. case: —moc? < E < moc?. A solution for a particle movement from the
left to the right does not exist here.

5. case: E < —mgoc?. If we choose k1 = —|k;| and kg = —|ko|, this case can
again be interpreted within the one-particle picture as an antiparticle with
charge —e moving to the right and scattering against the (from its point of
view) attractive potential barrier, with r > 0= 0< R, T < 1.

Summary

e In terms of the one-particle interpretation, only those Hermitean opera-
tors that are even operators can be regarded as observables, i.e. those
that do not mix positive and negative Dirac solutions (one-particle op-
erators). The even part of an operator is determined most easily within
a representation where the Hamilton operator is diagonal. In the free
case, this is given by the Feshbach-Villars representation.

e The Feshbach-Villars transformation is a nonlocal transformation.
Here the position argument @ of a wave function ¢ (z) is averaged over
a region whose extent is comparable to the Compton wave length of the
particle.

e The validity range of the one-particle probabilistic interpretation is lim-
ited, on the one hand, to small energies where particle creation processes
can be ignored and, on the other hand, to Dirac wave packets whose
extent is large compared to the corresponding wave length.

e The Klein paradox is a simple example of interpretational difficulties
of the one-particle concept stemming from too-strong a localization of
Dirac wave packets. Even outside the one-particle picture one encounters
contradictions, for example the nonconservation of the total charge or the
spin flip on the particle level.

Exercises

23. Feshbach-Villars transformation (II). Verify the relationships (2.77),
(2.78), (2.80), (2.82), and (2.83).



146 2. Relativistic Description of Spin-1/2 Particles

Solution. For the subsequent calculations we need:
(ap)a=is xp+p, {a,ap}=2p, (ap)(ap) =p’
(ap)a(ap) = 2p(ap) — ap’
(6,081 =0, [6i,0;] = 2iegpe , [6 % p,ap] = 2i[ap® — (ap)p]
(ap)6 x p(ap) = —p°6 x p .

To (2.77).

HO — ygOt
(o + moc + Bap)(cap + Bmoc?) (po + moc — Bap)
2po(po + moc)
[cpoap + B(pomoc® +mic® + ep?)](po + moc — Bap)
2po(po + moc)
[cap + cB(po + moc)](po + moc — Bap)
2(po + moc)
(po + moc)? + p*
2(po + moc)

1/2

=i = cpoS = B (mic* + *p?)

To (2.78).

Po + moc — Bap
i v/ 2po(po + moc)
p/po—Po i (2po + moc)p

2po(po + moc) 2p3(po + moc)

U(VPUT) _ (po + moc+ Bap)(p/po — fa) (2po + moc)p

(VoU) =V

2po(po + moc) 22 (po + moc)
(ap)a Blap)p  Po p
~ 2po(po +moc)  2p3(po +moc)  2po  2po(po + moc)
ioc xp Blap)p  Pa

2po(po +moc)  2pi(po + moc)  2po

— & = UzU' =ihV, +ihU(V,U")
i6xp Blap)p  Pa >
2po(po +moc) — 2pg(po +moc)  2po

= ith+ih<

To (2.80).
i xp
2po(po + moc)
icxp  PBlap)p n 6a>
2po(po + moc)  2p3(po + moc)  2po

[z] = UT[z|U = UTzU +inUT

UlzU = ihV, +ih (
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Ut i X p U— (po + moc — Bap)io x p(po + moc + Bap)
2po(po + moc) 4pg(po + moc)?
(po + moc)*G X p + (po +moc)Blo x p, ap]
4pg(po + moc)?
(ap)d x p(ap)
4p3(po + moc)?
imgcd xp  p*Pa B(ap)p
2p3(po +moc)  2pg(po +moc)  2p3(po + moc)
i x p mocﬁa>
2p(2) Zp% '

= [z] :ith+ih<

To (2.82).

(po +moc + Bap)ca(po + moc — fap)
2po(po + moc)
— c(ap)a(ap) + cBf{a, ap}(po + moc)
2po(po + moc)
cbp _ cplap)
po po(po+moc)

v = UvU =

ca(po + moc)?

co +

To (2.83).

(po + moc — Bap)cBp(po + moc + Bap)

v] = Ul[o|U =
vl = UTelU 2p%(po + moc)

_ mo®fp  cp(ap)
I I
24. Construction of one-particle operators using the sign operator
(IT). Instead of using the Feshbach-Villars representation, Dirac one-particle
operators can be constructed with less effort by taking into account that the
Hermitean sign operator

H®O _ap+mocf

(0)2 Po

possesses the eigenfunctions wl(,r) (z) with the eigenvalues (energy signs) e,
(compare to Exercise 6). Construct the one-particle operators for position
and velocity, [x] and [v], by exploiting this fact.
Solution. Based on the same argument as in Exercise 6, the even part [O)]
and odd part {O} of an operator O are given by

0] = (0 + 404) , {0} = L0~ 404)

where AOA and, therefore, [O] and {O} are Hermitean, if O is Hermitean.
Now we calculate in the momentum representation (x = ihV,, p =
Gnumber) as follows:
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ap +mocf « p
(Vpd) = Vp—— = — — A
Po Po Po
(ap+mocBla p i xp  mocha
A(Vpd) = 2 T 9= 7+ 2
Po Po Po Po

i x mocfBo
— AzA = WV, + hA(VpA) = ihV, + —— 2 4 0 f :
Y24 Py
In momentum or position representation the one-particle position operator
follows as (compare to Theorem 2.8 )
i6Xp mocfa

203 5 )
For the one-particle velocity operator we obtain from a similar calculation
(compare to Theorem 2.8)

(ap + mocf)ca(ap + moch)

[az]:;(w—i—/lac/l):w—i-ih(

AvA = -
_ clap)a(ap) + moc?f{a, ap} — micPa
B %
~ 2moc®Bp | 2cp(ap)
I P
= [v] = 1(v + AvAd) = moczﬁp + cp(o;p) .
2 Po Do

25. Gordon decomposition. Show that for two arbitrary solutions v, and
1o to the free Dirac equation the following holds:

Yoy = ﬁ [apHthy — (pFab2)tr] — ﬁocpy(%o’“’wl) : (2.86)

oC
Solution. For two arbitrary four-vectors a” and b* we have

174 1 174 174 1 v v
Ya, b, = aub, [2(7’”7 +97H) + 5(7“7 - 7")]

1 1
LbD a #a v o ;U" v
b, (302} + 5 1)
= a"b, —iaub,0" .

This and using the free Dirac equation as well as its adjoint (EL acts to the
left) yield

0= '&2(_7# Et _mOC)'YVauwl + 1;2,}/1/&”(7#1)” - m00)7/)1
and

2mocthay” avthr = —hoy" pu v avibr + oy’ auy puih

= —1)y (p“ a, +1i Dy a,p‘“’) 1 + 1o (p"a, —ipyau,ch).
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With a,, = §,, there follows (2.86). Physically, the Gordon decomposition
separates the Dirac probability current density j# = cyy*1 into a convection
current density

1 .- _
Jk = Ima [ty — (p")y] (2.87)

(similar to the nonrelativistic probability current density or the Klein-Gordon
charge current density) and a spin current density

= - (oY) | (2.88)

2my

26. Shaky movement (II). Calculate the mean current of an arbitrary free
Dirac wave packet similarly to Exercise 7. Show that the interference terms
of positive and negative solutions contain a temporally oscillating movement.

Solution. Our starting point is the wave packet

V() = (@) + 9 ()

b (@) /d?’pza
V) (z /d?’pza

To calculate the mean spatial convection current (2.87) we use the identity

(pU) = —(py) 17 = ="  (py)* = — (T4 py)* = —(Vpy)*

from which follows that
. 1 -
Jjk = —Re (Ypy) .
mo

Exploiting the adjunction relation (¢| A [¢) = (1] A |¢)", we further have

(4)x ;<w|w°p\w>

:mio<¢(+>+w hp’d,mﬂw )
Rl (o )

(o )+ (5ol

=mio (6] |6 + (9O °p )]

2 (4] )
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:/dngi'am o [ Z\ N
r=1

) ()i’
+2Re [/ d‘n’p@em’ozo/h
Po
» Z A @) (P Pl (-p)] (2:89)
=1,2
= 3 4

For the evaluation of the mean spatial spin current

<jk>s _ _2.#0 /dgxpl, (1/;(+) + QZ(_)) ok (7/1(+) + w(—))

[see (2.88)], we have to take into account that the individual terms
Ik d3zp, (w(i)ok”w(i)) lead to integrals of the form

/dsp/dsp'(p’y*pu)5(p’fp)...

and hence do not contribute. On the other hand, the interference terms
[ Bzp, (P F*p(F)) yield the integrals

#0 forv=0
/dSp/d3p'(p’y +pu)5(P'+p)~-~{

=0 else.
Therefore, it remains that

(M) = = [ e o (590096 (5I0190)]
Finally, this expression can be further simplified using
" (15(_)0’“01/1(”) - 10 (w(—)wogko?pm) — 1o (¢(+)T0ko,T,yo,T¢(_)*>
— o (¢<+>fakowo¢<—>)* = (&(“voa’“%ow(‘))*
= po (@(ﬂgkou,m)* __ {po (@(HUJ@OQ/,(*))T

to become

e )

2Im [c/d?’pezimzo/ﬁ

Z A () P @) p) (290

7
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With (2.89) and (2.90), one realizes that the movement of a Dirac wave packet
contains a temporally oscillating movement (shaky movement) if and only if
it encompasses positive and negative components. This fact is already known
from the corresponding considerations of the Klein-Gordon case (Exercise 7).

2.4 Nonrelativistic Approximation of the Dirac Theory

In our previous discussion of the Dirac theory we have not yet addressed
one important question, namely whether it is possible to derive the correct
equations of nonrelativistic quantum mechanics from it. Of course, this should
be the case for the Dirac theory to be an acceptable relativistic enhancement.
In this section we focus on this issue closely following the discussion of the
Klein-Gordon case in Section 1.4. First we consider the nonrelativistic limit
to leading order of v/c which will lead us to the nonrelativistic Pauli equation
for spin-1/2 particles. Subsequently, we make use of the Fouldy-Wouthuysen
transformation to include higher relativistic corrections, i.e. to diagonalize the
Hamilton operator in higher orders of v/c. All considerations in this section
refer to the Dirac representation.

2.4.1 Nonrelativistic Limit

The starting point for our discussion is the Dirac equation (2.14) in canonical
form,

&’g(t 2) [ (p— fA) +eA + Bmge } P(z) . (2.91)

In order to study its nonrelativistic limit, it is advantageous to introduce the
two-component spinors

() =) - ()

so that (2.91) can be transformed into the equation system

aI/Ju = co (p - EA) a + (eA® + moc? )y
a?; Z : (2.92)
6td = co (p - EA) Py + (eA® —moc?)pq

where the index u stands for “up” (the two upper components) and d for
“down” (the two lower components). Taking into account

(ihﬁat —eA0> q/)ud = mgc? [:l:l—i—(')( )} 1/11(1jfi) ;

the second equation of (2.92) yields for positive solutions (+)
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2
+__“ _ ¢ (+) v
52 oA (2) -
whereas for negative solutions (—), the first equation leads to
2
(- ___9 —EA) (=) o v 2.94
Yu 2mgc (p c Ya  F ) (2:94)

This means that in the case of positive solutions the spinor ¥4 relative to
1y, and in the case of negative solutions, the spinor v, relative to g is
suppressed by a factor of v/c. Inserting (2.93) or (2.94) into the remaining
equation of (2.92), we have for positive solutions

v (cf)(i/c))“’“

ihﬁgiu _ {2;0 [a <p_ §A>r+moc2+eA0+O (?)}wu

and for negative solutions
@)
. ( (/) ) .
3

171% = {—2;0 {o’ (p— ZA)F —moc® +eA’ + O (Z?’)}wd .

With the help of the identities

) e e eh
(cA)(ocB)=(AB)+ioc(A x B) , (p - EA) X (p - EA) ——B
these relations can finally be summarized in the Dirac equation
N
ﬁ HI]I‘

ot v

H™ = 3 |moc? + 53— ( EA)Q— h 58| +ea0 2.95
c 2mgc (2.95)

() (7).

correct up to order (’)( 2/c ), with the diagonal and Hermitean Hamilton
operator H™ [compare to the nonrelativistic Klein-Gordon equation (1.57)].
If we restrict ourselves to positive solutions, i.e. to the two upper components,
this equation is — up to the rest energy mgc? — identical to the nonrelativistic
Pauli equation for spin-1/2 particles within an electromagnetic field. Espe-
cially noteworthy is the fact that the nonrelativistic limiting process of the
Dirac equation automatically leads to an interaction term —M B between
the magnetic moment (or spin) of the particle and the external magnetic
field which, in the case of the elementary electron, has the correct magnetic
moment or, rather, the correct gyromagnetic ratio
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h
Mo - o Y g , g =2 (Landé factor) .
2mgc 2mgce

By contrast, in the Pauli equation this term has to be introduced by hand.
Historically it was this feature that gave an important impetus for the con-
fidence in the Dirac theory.

For nonelementary particles, such as protons or neutrons, the above lim-
iting process leads to the wrong results M) = —eS/(m,c) (proton) and
M®™ =0 (neutron). Obviously, in those cases the minimal coupling is not
sufficient for taking external electromagnetic fields into account. However,
even for those particles, we can obtain the corresponding nonrelativistic equa-
tions with the correct magnetic moments by adding phenomenologically mo-
tivated terms (see Exercises 15 and 27).

For the sake of completeness, we also note the expressions of the prob-
ability density and the probability current density belonging to (2.95) and
correct up to order O (112 / 02):

_ote = t Ae yut
p=yl, =g (WIBVY — (VY)Y — -~ AYIFY |
im he
They are connected via the continuity equation dp/dt + V3 = 0 and, in the
case of positive solutions, coincide with the corresponding formulae of the
nonrelativistic theory.

2.4.2 Relativistic Corrections

In the previous subsection the reduction of the Dirac theory to the nonrel-
ativistic Pauli theory is correct up to order O (v2 / 02), and the error of the
Hamilton operator in (2.95) is of order O (v®/c?). In this limit H™ is diag-
onal, and the positive and negative solutions are completely decoupled. In
order to diagonalize the Hamilton operator in higher orders systematically,
i.e. to take higher relativistic corrections into account, we can, as in the Klein-
Gordon case, utilize the Fouldy-Wouthuysen method which we now apply to
the general Dirac equation (2.91). Here the same considerations hold as in
Subsection 1.4.2, especially that an exact diagonalization of the Dirac theory
is not possible due to vacuum polarization effects.

In order to simplify the treatment of orders in v /¢, we start our discussion
by rewriting the Dirac equation (2.91) in the form

mo’Kip =0, K=0F+e+w,
with

B 1 ., 0 o) v? B v?
EiimOCQ (1hateA>(9(1)+O(62> ,ﬁ+60(c2)

and
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where € and [ + € are even (diagonal) and w odd (antidiagonal) operators.
With the help of appropriately chosen Fouldy-Wouthuysen transformations
U=¢%, U = eis’ ,... we aim to change to new representations where
w is of higher and higher order of v/c so that disregarding it leads to a
diagonal K operator correct up to the respective order of v/c. So, after the
first transformation, we should have

moc?K'Y' =0, ¢ =U¢ , K' =UKU™!
v? v3

K =0+€¢+u,08+=0 <c2> ,w =0 <03> (or higher) ,
and after the second one

m002K”1/)N =0 , ’lp// — U/w , K// — U/K,U/71

v? v°

K'=p+e"+u", g+"=0 <c2> ,Ww'=0 (05) (or higher) ,
and so forth. As in (1.61), a good choice for the first transformation is

U=e, §=-"2" (2.96)

We can again make use of the Baker-Hausdorff expansion (1.60) as well as of
the formulae (1.62) with the replacement 73 — (3 to calculate the resulting
K’. This yields

K =p3+¢é+u,

with
o(z)o(a)o(x) ofx)
| Lo l .
_ pw” pwt 1 _olv
€ = ¢ + 5 3 S[w,[w,e}] + _0<02>
and
3 3
S ==L d s Lo lod] + =0 ()

As one can see, w’ is now raised by two orders of v/c. From this we obtain

the even operator K’ = 3 + € correct up to order O (v2 / 02) resulting in the
Pauli equation (2.95).
In order to suppress the odd part of the K-operators even further, we
perform a second Fouldy-Wouthuysen transformation on K’ with
18w’
5 -

U'=e¥ 8§ =
From this follows that
KI/ — /8+ 6// +w//
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with
o(z)o(x)of=) ofx)
l l/2 l/4 l 2
= ¢ +ﬁu2) —ﬁ(g —é[w’,[w’,e’]] +...:(’)<22>
and
" w/?’ ﬂ ! ! /8 / ! ! ! /05
w :—?—1—5[ ,e]+4—8[w7[w7[w,e]]]+...= <c5>'

Disregarding all terms of order O (v5 / 05) (and higher), we obtain the even
operator

Bw?  Buwt 1 v°
K" = —_——— == — 2.
B+e+ 5 3 8[w,[w,e]]—|—(’) = (2.97)
finally leading to the Dirac equation
a,l/}//
'h — H// 1
ot v

correct up to order O (v4 / 04), with the diagonal and Hermitean Hamilton
operator (see Exercise 28)

1 e \2 eh .
H” = ﬁ |:m002 + m (p— EA) — QmOCGB:| —|—€AO

1 e N\ e*n?
By (p-24) B
b [SmgcQ (p - 8mct

c
eh e \2
s 1B (P 04)
Smic3 {" Poe H
M om T v wm - T sm )
8mic? 8mic? 4mic? P

‘o (Z:) (2.98)

and the wave function
w//(x) _ e—iﬁw//2e—iﬁw/2¢(x) )

All in all, we see that the successive diagonalization of the Dirac-Hamilton
operator to higher orders of v/c can be performed quite similarly to the Klein-
Gordon case in Subsection 1.4.2. However, as before, we should bear in mind
the following;:

e Since S, S, ... are Hermitean, all Fouldy-Wouthuysen transformations U,
U’, ... of the form (2.96) are unitary transformations. This implies the
invariance of expectation values that transform as U[-]JU L.



156 2. Relativistic Description of Spin-1/2 Particles

e For the Dirac-Hamilton operator, this is only true if A /9t = 0, since the
transition

Kp=0— K4 =0, K'=UKU ' =UKU', ¢/ =U%

is equivalent to

: (% awl ! ’r_ : 9 T

lhﬁt Hy — =HvY , H= U(H lh(?t)U'

e One-particle operators are obtained within a Fouldy-Wouthuysen repre-
sentation by accordingly transforming the original (relativistic) operators
and subsequently separating their diagonal parts. As in the Klein-Gordon
case, [, U] # 0, i.e. the Fouldy-Wouthuysen method is nonlocal and causes
a smearing of the coordinate wave function with an extent comparable to
the Compton wave length of the particle.

e The Fouldy-Wouthuysen method is only applicable to physical problems
within the validity range of the one-particle picture where the Fouldy-
Wouthuysen expansion converges.

Theorem 2.9: Fouldy-Wouthuysen transformation
in the Dirac Theory

The Fouldy-Wouthuysen transformation provides a systematic procedure
for diagonalizing the Dirac-Hamilton operator up to any (finite) order of
v/c. Writing the Dirac equation (2.91) in the form

mo2 KOy =0, KO =340 4 O

with the dimensionless even operators €9, 3+ €©) = ( 2/c? ) the odd
operator w(® = O (v/c), and iterating the relatlons according to

KM = g4 4 o0 = gD gDyt
Y™ (z) = UC Dy (g)
iBw(™)
U™ = exp (_1,6w > (unitary) ,

2

we obtain new representations of the Dirac theory where

" ,1)2 . ,U2n+1

Disregarding the odd operator, the even part of K™ leads to two explicitly
decoupled one-particle theories for particle and antiparticle, correct up to
order O (v?"~1/c?n—1).
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Electron in an electrostatic central potential. Let us, at the end of this
section, turn back to (2.98). This equation can be cast into a well-established
form by considering the case of an electron within a centrally symmetric
potential:

eA =V(|z|) =V(r), A=0.

In this case we have

B-o.E—-vA' -2 G E_o.
er Or

Restricting ourselves to the upper two components, the corresponding Hamil-
ton operator is
2 4 h? v ho 19V

H! = moc® + P V(r) P

P 2%,
2myg 8mgc?  8mic? 4mic? r or

The fourth term on the right hand side is a relativistic correction to the
kinetic energy. The fifth term is a relativistic correction to the central po-
tential known as Darwin term and can be accredited to the shaky move-
ment of the electron. The last term contains the interaction energy between
the electron’s spin (or magnetic moment) and its orbital angular momentum
(spin-orbit coupling). Note that, in this term, the Thomas precession is taken
into account correctly by a factor of 4 in the denominator.'? In the case of a

Coulomb potential V(r) = —Ze?/r, the last two terms are
nZe*h? Ze?h
i o(r) and 74m3c2r30- .

Here the Darwin term only influences the s-states.

Summary

e To lowest order (nonrelativistic limit) the nonrelativistic approxima-
tion of the Dirac theory leads to a diagonal and Hermitean Hamilton
operator. From this follow two explicitly decoupled one-particle theories
for particle and antiparticle, the former being identical to the nonrela-
tivistic Pauli equation for spin-1/2 particles.

e Generally and contrary to the field-free case, the Dirac-Hamilton opera-
tor is diagonalizable only approximately. This can be achieved by using
the Fouldy-Wouthuysen method where the Hamilton operator is dia-

12 Tn nonrelativistic quantum mechanics this term is explained classically as follows:
in the rest system of the electron the force center produces a magnetic field at
the electron’s position that interacts with its spin. However, since this argument
disregards (among other things) the nonuniform motion of the electron, the term
turns out to be too large by a factor of 2.
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gonalized successively to higher and higher orders of v/c. The respective
even part yields a diagonal and Hermitean Hamilton operator correct
up to the considered order of v/¢, from which two explicitly decoupled
one-particle theories for particle and antiparticle can be derived.

e The Fouldy-Wouthuysen transformation is, like the Feshbach-
Villars transformation, a nonlocal transformation and leads to a smearing
of the position argument comparable to the Compton wave length.

e The Fouldy-Wouthuysen method is reasonable only for those cases where,
on the one hand, the v/c-expansion converges and, on the other hand,
the one-particle interpretation is applicable.

Exercises

27. Anomalous magnetic moment of structured particles. Show that
adding the term

ho
JUW,F”V , PR =0rAY — oV AF
dmge
to (2.91) yields an equation in the nonrelativistic limit that describes a par-
ticle with the magnetic moment
2m;c ’
where e; and m; denote the particle’s charge and rest mass respectively.

Solution. Starting with (2.91), incorporating the above term, and repeat-
ing the line of argument resulting in (2.95), one obtains the modified Pauli
equation

i %f = {ﬁ [micz—i—

(p- %A)Q _ Gl spy M0

2m; 2m;c 4dm;c

+ ¢;A° }1/; : (2.99)
The second last term of this equation was already calculated in Exercise 15
and is
ouwF" =2(iaE - 6B) .

Thus, the third and second last terms in (2.99) lead to the above mentioned
magnetic moment (plus electric terms suppressed by a factor of v/c).

For the elementary electron as well as for the composed proton and neu-
tron experiments determine the following values of § (e =electron charge):
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h
electron: 6 =0 = M© = ¢ o
2mec
h(— . 2.79¢h
proton: &~ 3.79¢ =— M® ~ ( e+3796)o- = e o
2myc 2myce
neutron : § &~ —1.91e = M™ ~ h(0 - 1.916)0' = _1'916h0
2myc 2m,c

28. Fouldy-Wouthuysen transformation. Show the transition from (2.97)

0 (2.98).

Solution.

3
ON| =
[+
—
kS
|
I
>
I SN—
I —
>
—
b
|
olo
BN
~—

4,5,
i 1 e \2
— 5 A —-A
mco-(p>< )er%cQ(p c )
eh . 1 e 2
m%c?’g m3c? (pi EA>
1 e 0 0
m3c? [ (p— EA) ,1h(,7 —ed }

1eh
Z{aza] {229 [ai?aj]Ejpi}

Z (i€ijeok + 6i5) (i Ej) + Z 2i€ijk0k Ejpi
4,5,k 2%
ieh? eh? 2eh

V x E VE 5(E x p) .
mict 5 )+ m3ct * mgc“a( P)
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Here it was made use of the identities

Qo = ieijk&k + (Sij s [Oéi,Oéj] = 2i€ijk&k .

2.5 Simple One-Particle Systems

In order to complete the parallelism of the discussions of the Klein-Gordon
and Dirac cases, we finish this chapter with some simple examples of Dirac
one-particle systems proceeding in analogy to the Klein-Gordon case, Section
1.5. First we extend our considerations of the Klein paradox from Subsec-
tion 2.3.3 to the case of a onedimensional potential well. Subsequently we
turn to the problem of centrally symmetric potentials that, as in the Klein-
Gordon theory, can be transformed into a radial problem by separating the
angular-dependent part. Concrete examples are the free particle, the centrally
symmetric potential well, and, finally, the Coulomb potential. As before, all
considerations refer to the Dirac representation.

2.5.1 Potential Well

To start, we consider a spin-1/2 particle in the presence of a onedimensional
potential well of the form

{ 0 for —a < z < a (area II)

eAO(2) =V (z) =
Vo else (area LIII)

}, Vo > 0. (2.100)
With respect to the qualitative discussion of the possible solutions, we can
completely carry over the statements from Subsection 1.5.1 as well as Figure
1.5. For a more detailed analysis, we first separate the time-dependent part
of the Dirac wave function via

P(z,t) = LP(z)e_iEt/h

so that ¥(z) fulfills the stationary equation (2.85) with V(z) from (2.100).
Next we concentrate on the scattering cases (1., 3., and 5. case), then the
tunneling case (4. case), and, finally, the bound case (2. case).

1., 3., and 5. case in detail. For these scattering cases we assume a
(anti)particle coming from the left along the z axis and scattering against
the potential well. Therefore, our ansatz for the solution of (2.85) within the
areas I (z < —a), Il (—a < z < a), and IIT (z > a) is (rest spin in z-direction)

EpI(Z) = !I/in(z) + Wref(z)

1 1
Win(2) = Ae'*1? fl , Wret(2) = Be 12 _(;1
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! 1
i 0 . 0
= ikoz —ikoz
U1(z) = Ce M | T De Y
0 0
1
ik1z 0
WIH(Z) = Wtrans(z) = Fe'™t ,
A1
0
with
E — V)2 — m2ct FZ _ 2A
k‘1=i\/( 0) Mo g, =y [
h=c? K22
chky chkq
N =t VL
E_V()"‘rm()02 E—|—m0c2
and k1 = +|k1|, k2 = +|k2| in the 1. case, ky = —|k1|, k2 = +|kz| in the 3. case,
and k1 = —|ki1|, k2 = —|k2| in the 5. case. This approach takes into account

our findings in Subsection 2.3.3, namely that, at the area borders z = +a,
there is no spin flip on the level of wave functions. The continuity conditions
Ui(—a) = ¥i(—a) and ¥ir(a) = ¥p(a) lead to the following conditional
equations for the integration constants A to E:

Ae—ikla +Beik1a _ Ce—ikla +Deik1a

)\1 (Ae—ikzla o Bikla) _ )\2 (Ce—ikga o Deikza)
Ceik2a +Defik2a — Eeik‘la
Ap (Ce*2e — De7h20) =\ Eetf1e

They are formally identical to the corresponding equations (1.68) of the Klein-
Gordon case with the prefactor replacement k; — A;. Therefore, the same

replacement in (1.69) immediately leads to the reflection and transmission
coefficients

R -  Jref _ (A2 — 2\3)?sin? 2kya
T Jm 4AX2A2 4 (A2 — A2)?sin® 2kaa
. o (2.101)
T _ rans 1712 o R .

Gin ANIAZ+ (N2 — X2)2sin? 2ksa
As in the Klein-Gordon case, both coefficients oscillate between 0 and 1 de-
pending on ko or E. For sin2ksa = 0, i.e. for

242 2
chm
E? = p2 102 +mgc4
a

the reflection coefficient vanishes exactly.

,n=1,2,...,
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4. case in detail. For this tunneling case the above ansatz can be adopted,
whereas k1, ko, A1, and Ay should be chosen as

(E— V)7 —mie! | 2
b= o B i

chky chro

L vAr— , A2 =18, & o mod

The corresponding reflection and transmission coefficients follow from (2.101)
as

(k2 + €2)2 sinh? 2k9a
4R2€2 + (K2 + £2)2sinh? 2k0a
_ 4r7€3
4R2€2 + (K2 + £2)2sinh? 2k0a
As before, both coefficients lie between 0 and 1, whereas the transmission co-

efficient is now decreasing exponentially with a and increasing exponentially
with F.

2. case in detail. As in the corresponding 2. Klein-Gordon case, we choose
the bound wave functions to be

=1-R.

1
0
' = Ae™”* .
I(Z) ¢ —i&
0
Bcoskoz + Csinksz
0
Un(z) = iXg(Bsinkez — C coskaz)
0
1
Uni(z) = De ™7 0
11 ie |
0
with
\/moc — (B —Vp)? E? —m3ct
= ; L= T
h*c? h*c2
chkq chks
= =
E — Vi + mgc E + mgc

In this case the continuity conditions at the area borders lead to
Ae™ ™% = Bcoskya — Csinksa
& Ae™ Y = Ao Bsin koa + AoC cos kaa
De™ ™% = Bcos kya + C'sin kaa
&1 De”™ ™% = \gBsinkoa — AoC cos kaa .
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Combining the first two and the last two equations, one obtains
Bsin koa + C cos kaa Bsin koa — C cos kaa
§1=A =

- 2Bcosk:ga—CsinkgoL 2Bcosk2a+Csink2a ’

from which the condition BC' = 0 follows. Thus, we have to distinguish again
the following two cases leading to different quantization conditions for the
energy I

2.a: C=0= A= D.

&

tan koa =
2

2.b: B=0=— A=-D.

— cot koa = tan (kga + g) = % .
Analogously to footnote 26 on page 65, we point out that, due to the form of
V(z), the Hamilton operator in (2.85) commutes with the parity transforma-
tion of Subsection 2.2.3. Up to an irrelevant constant, we have in the active
case

[H(2)¥(2)]p =1 H(=2)¥(~2) = H(z)7"¥(~2) = H(2)¥p(2) .
Thus, the wave function ¥(z) as well as its parity transformed ¥p(z) are both
solutions to (2.85) with the same energy eigenvalue:

EV(z) = H(2)¥(z) = E¥p(z) = [H(2)¥(z)]p = H(2)¥p(z) .

Due to the linearity of the Dirac equation, both solutions can be combined
to give new solutions with defined parity,

U (2) = W(2) £ Wp(2) , W5 (2) = 20H)(2) .

Case 2.a corresponds to even solutions (+) and case 2.b to odd solutions (—).

2.5.2 Radial Form of the Dirac Equation

Now we turn to the case of a spin-1/2 particle in a centrally symmetric
potential of the form eA%(x) = V(z) = V(|z|), A = 0. Due to the rotational
symmetry of the corresponding Dirac-Hamilton operator, it is useful to pass
over to spherical coordinates,

x=rcospsinfd , y=rsingsinf , z =rcosf ,

in order to isolate the angular-dependent and radial parts. To this end, we
start with the Dirac equation
()

ihT = [cap + Bmoc® + V(r)} Y(x), r=|x|

and rewrite it as the time-independent (stationary) equation
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HU(x) = E¥(x), H = cap+fmoc®+V (r), ¥(x) = ¢(x)e T/ (2.102)

To separate the radial and angular-dependent parts in the momentum term
ap, we introduce the radial momentum

10 o 1
= —ih——r=—ih | — + —
b Nrar” ' (87" * r>
and the radial velocity
ar
Q= — .
r

From this and taking into account
(cdA)(cB)=AB +ic(Ax B), V =rd/or
it follows that

2SL
(ax)(ap) =xp+i6L =rp, +1 (Tz + h> . (2.103)
Multiplying this expression from the left by «,./r finally yields
: J2 _ 52 o L2
apzoz,«{r—Fl(h—!—)} , (2.104)
r h
where J = L + S denotes the total angular momentum of the particle.

As one can easily show, the operators {H,J?,.J,} together with the parity
transformation P form a complete set of commuting observables. Therefore,
we construct the solutions to (2.102) in such a way that they are eigenvectors
of these four operators. If we restrict ourselves to two solutional components,
we can immediately quote the eigenfunctions of J? and J, (and L2, S?) by
resorting to the corresponding results of nonrelativistic quantum mechanics:

1
y‘(lg\/[(ev@): Z <l7ml;27ms

m+ms=M

1
S Vi (6, 9)x(m.) L 1= T

with
IV = 10T+ )Y LY = MYy, M=, T

These spinor spherical harmonics are composed of the spherical harmonics
Yim (0, ¢), with

LY, = P2+ V)Y, LYo = hmYim , m=—l,...,1,
and the spinors x(my), with

) 3n* h 1
§5x(ms) = = x(ma) , Sex(ms) = hmax(ma) , § = g0, me ==+ .
(...]...) denote the usual Clebsch-Gordan coefficients. Next we have to com-

bine two spinor spherical harmonics with the same J and M so that the
resulting bispinor has a defined parity. Note that the behavior of the spheri-
cal harmonics under space reflection,
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)/l,m(ﬂ. - 07 ®w + ﬂ-) = (71)l)/l77n(97 SO) ’

imply for the spinor spherical harmonics that

yJ M(ﬂ' —0,p+T) = (_1)IYJ(7IJ)\/[(97 ®) .

On the other hand, applying the active parity transformation to a bispinor
yields up to an irrelevant phase

(32)~ (38), - (42)
Wy () a(x) ) —Va(-z)
From this it follows that we have to combine two JJ whose [-values differ by

1 in order to get states with defined parity. Includmg the radial dependence,
the two possible combinations can be written as

o Erppa ()52 (0.0)
EZV/J,M(T‘?G?SD):* ) (J—w/2) ) w==l1 )
1GJ—w/2(r)yJ,M (0’ SD)

—_

with

5] (0.0 = (<120 0.0)

Here Fi(r) and G;(r) denote two yet unspecified, solely r-dependent scalar
functions and w the parity quantum number. Due to

L2, = 120+ 1)), = [J(J +1)+ i + %B(ZJ + 1| el
the bracket term in (2.104) can be cast as

(h + JQ_S;_LZ> v = —%‘"(w +1)B05,
so that, in total, (2.102) becomes

. 1
lcaT (pr — Wﬁ) + Bmoc® +V (r)

Using the identities (see Exercise 29)

Wﬁ“’z@; =E Wﬁ“’z& :

)

y(J:I:w/Z y§{;w/2) (2.105)
and
o (12) -l
r rdr’

we finally arrive at
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Theorem 2.10: Radial Dirac equations
for centrally symmetric potentials

The solutions to the time-independent Dirac equation with a centrally sym-
metric potential

HU(x) = E¥(x) , H = cap + fmoc® + V(r) ,
can be written in spherical coordinates as

1 [ Friwp(r )y(Jer/Q)( 8, )

Ti(r8,0) =~ | )
IGwa/2( )y ( 730)

where the functions F; and G fulfill the radial Dirac equations

d w(J+3 E—myc® -V
[——-F—( - z) Gywy2(r) = —C(;,l Fyiuya(r)

dr
(2.106)
d w(J—l—l) E+my® -V
[5 I+ Tz Fiiu(r) = TGwa/z(ﬂ-

Furthermore, these solutions obey the relationships

P

1
TG (r,0,9) = BT+ DE (r.60,0) , T = 3,

N | w

TS (r,0,0) = RMES) (r,8,0) , M=—J,...,J
[d’f}f&]P (r,0,0) = (_1)J+w/2w§j’1\)4(r,e,¢) el

2.5.3 Free Particle and Centrally Symmetric Potential Well

The simplest application of Theorem 2.10 is a free spin-1/2 particle (V = 0).
If, in this case, the second radial equation is solved for G,

i w (J + %)
dr

ch

Crmet1) = Fimec

FJ+w/2(T) ) (2107)

and subsequently inserted into the first, one obtains
d2 +(J+%)(J+%+w) E2—m%c4
c2h?

FJ—FUJ/Q(T.) = FJ+w/2(r) .

S dr? 72

Taking into account
1 1
l=J+%:> <J+2> <J+2+w> =ll+1),

it follows that
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2 i+, 5  E?2—mact
@ TR RS0 =

Obviously, this equation is formally identical to the radial Klein-Gordon equa-
tion (1.72) in Theorem 1.9. For further evaluation, we can therefore resort to
the corresponding calculations of the Klein-Gordon case. Making the substi-
tutions

p=rkr, Fi(r)=pFip) , Gi(r) = pGilp) ,
(2.107) and (2.108) pass over to the equation system

(2.108)

d? 2d I(I+1) .
— + —— - 1| F; =0
dp? - pdp p? " } )
(J 1) (2.109)
A chk d w(J+3)]| -
Gwa/z(P) = m dip + T FJ+w/2(p) .

The first equation is the spherical Bessel differential equation which was
already discussed in Subsection 1.5.3 and whose solutions are given by the
spherical Bessel functions j;, ny, hl(i). The following recursion formulae hold

for them (Fl = jl,nl,hl(i)):

. d -~ l+1 . R d - [~
F_ = —F F F =——F, - F .
1-1(p) i 1(p) + ; 1(p) s Fryalp) a0 1(p) + ) 1(p)
Thus, the second equation of (2.109) yields for G;:
A chkw
o =——-F;_ .
Gy_w/2(p) Etme” w/2(p)

With respect to the physical content of these solutions, we again have to
distinguish the following cases:

e |E| < moc?: in this energy range, there is no solution to the spherical Bessel
differential equation that is bounded at infinity and regular at the origin.
As in the Klein-Gordon case, a free (anti)particle with energy F within the
“forbidden range“ —mqgc? < E < mgoc? is not possible.

e |E| > mgc?: here we have exactly one solution to the Bessel equation
bounded everywhere, namely F;(p) = j5i(p). Returning to the original quan-
tities, the physical solution to (2.106) is therefore

E? —m3ct

FJ+w/2(T) = AJ+w/2er+w/2(kr) ; k= 572
cth (2.110)

chkw .
GJ—w/Q(T) = AJ-s-w/QWT]J—w/Q(kT) )

with the normalization constant A, /. Thus, to each energy value |E| >

moc?, we obtain a free spherical wave with angular momentum J, M, and

parity (—1)7+%/2,
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Spherically symmetric potential well. It is easy to extend our consid-
erations to the case of a spherically symmetric potential well given by

—Vp for r < a (area I)
, Vo> 0
0 for r > a (areaII) .

(see Figure 1.7). Concerning the upper radial function Fj, the same line of
argument hold as for the Klein-Gordon case in Subsection 1.5.3. Thus, using
the abbreviations | = J 4+ w/2, I' = J — w/2, the regular solution to (2.106)
in area I is

eA'(r) =V (r) = {

(E+Vp)* —mict
c2h?

Fz(I)(T) = Airji(kar) , ki = \/

chkiw
E 4+ Vo + moc?

L] |E + VE)‘ > m()C2Z

Gl(})(r) = Al le/(kl’l")

or

5t — (B4 V)?
c2h?

. m,
Fl(I)(r) = Aprji(ikar) , k1 = \/
ichkiw
E 4 Vo + moc?

o |E+Vy| < moc*:

al ) = 4 v (k1)

which is obtained from the free solution (2.110) with the replacement E —
E + Vj. The following two cases must be distinguished in the outer area II:

e |E| < moc? (bound states): in this case the only solution to (2.106) bounded
at infinity is given by

204 _ E2
FZ(H) (r) = Bﬂ“hl(Jr)(iIig?“) , Ko = Mot — =7 5
2h
11 ichngw +) /.
Gl(’ )(’r) = Blmrhl(’ (1/{,27‘) .

The continuity conditions at the area border r = a,

@ _ %) 4 BP0 _d BP0

T dr r

)

a a dr r

r=a r=a

can be simultaneously satisfied only for discrete energy values E, the energy
levels of the bound states. For [=0-states (with respect to the F-function,

ie. J=1/2, w=—1)and E + V, > moc?, one obtains the quantization
condition
k
tankia = - ,
K2

which is formally identical to the Klein-Gordon condition [see (1.74)]



2.5 Simple One-Particle Systems 169

e |E| > moc? (unbound states): here a linear combination of the spherical
Bessel functions seems to be feasible. We therefore write for the solution
of (2.106):

1I X . E2 — m204
Fz( )(7”) = Byr[ji(kar) cos & + ny(ker) sindy] , ke = TQO
chkow
"Bt moc2
If we focus on [=0-states (with respect to the F-function), the correspon-

ding continuity conditions determine the phase gy to be

GZ(IH) (r) =B rji (kor) cos &, + ny (kor) sin §;] .

k
tan(kaa + dp) = kj tankia for |E + Vp| > moc?
1
or

k
tan(koa + 89) = — tanh kia  for |E + Vo| < moc? .
K1

These relations are also formally identical to the Klein-Gordon relations [com-
pare to (1.75), (1.76)].

At this stage, we leave out a more detailed division and interpretation
of these solutions since they result in the five cases discussed in Subsection
1.5.3.

2.5.4 Coulomb Potential

As the last example of centrally symmetric problems, we now turn to a bound
spin-1/2 particle in a Coulomb potential of the form (hydrogen-like atom)
0 Ze? Zhcae e?
eA’(r)=V(r) = = o Qe = o= 1/137.03602 .

As in the corresponding Klein-Gordon problem (Subsection 1.5.4), we first
investigate the asymptotic regions of the radial Dirac equations for small and
large distances in order to find an appropriate power series expansion to solve
these equations.

r — oo: in the limit of large r the radial Dirac equations (2.106) become
dG E—moczF ar E + moc?
dr ch T odr ch

whereas here and in the following the indices J + w/2 are suppressed. Com-

bining these two equations yields the relation
d*F  E?* —mjc
dr2 B c2h?

Its normalizable solution (descending at infinity) is given by

[n204 _ 2
F(r —oo)~e k= mye” — B .
c2h?

G,
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r — 0: in this case (2.106) passes over to the equations

1
[_d+w(J+2) G:ZQCF
dr T r
1
[d_i_w(J—i—Q) F:ZQGG
dr r r

that can be combined to give
2 d 1 1\?
— 4 — Zae)? — - F=0.
{ dr2+dr+ (Zae) <J+2> } 0
Its regular solution!? is

-ﬂrﬁO%vW7s=+¢<J+;>{wz%y

In order to facilitate the following calculations, we introduce the substitutions

p:m,ﬂmzﬁw,GMZG@%k=¢%Z%fj

moc® — E
V=4 ———r
’ moc?2 + FE

(2.111)
T:w(J+

so that the original radial equations (2.106) become
~ 7 .
(&g (s
dp p p
. 1 7 ~
<d+T)F:<+ %>G.
dpp vooop

To solve them we choose, due to the above considerations, the ansatz
F(p) = pe Saph . s = /72— (Za.)?
i

Clp) = e Ship'

(2.112)

which leads to the following recursive conditional equations for the expansion
coefficients a; and b;:
(1= 8)by = Zaeag
(T4 8)ag = Zaebg
bii1+ (r—s—0)b;, = —vaj_1+ Zaea; , i > 1
bi—1

—az‘,l—‘r(T-i-S—‘ri)CLi: b; ,i1>1.

13 Here we assume that Zae < J + 1/2. Fortunately, this is the case for Z < 137,
i.e. for all nuclei that can be found in nature (otherwise, the discussion of the
regularity conditions at the origin would be more extensive).
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From the first two equations we obtain again s = /72 — (Z«, )2, while the
last two equations yield
Zoe —v(T+s+1)

b; = .
T—8—1—vZo,

i
and

(Za)? + (T+s+i+1)(-T+s+i+1)
T—s—i—1—-vZa,

i1

‘ZozeVQ +2(s+1i)— Zae

3

2.11
v(itT—s—i—vZae) (2.113)

For F(p) and G(p) to have the desired (descending) behavior at infinity, the

power series in (2.112) needs to terminate at some 7 = n’. This means that
Za, —2v(n' +s) — 12 Za. =0 .

From this we get the quantization condition

n + s n +s\°
= — 1
v Zag * (Zoze ) *

and, together with (2.111), the possible energy levels of the hydrogen atom
for bound states,

m002

1+ (Zoe ;
(n’—‘rw/(J—i—%)Q—(Zae)?)

Introducing the principal quantum number

En/,J =

1
=n+J+=,
n=n -+ +2

the final result is

m062

1+ (Zoe)” 3
(v (+3)+ /(3 (207

where n and J can take on the values

13 1

315 T g

Equation (2.114) is formally identical to the corresponding relation (1.81) of
the Klein-Gordon case, if, in the latter, [ is replaced by J. Consequently, the
series expansion of (2.114) in powers of Za, can be immediately read off from
(1.82):

Zae)?  (Zae)* n 3
E, ;= 21— (Zae)” = - = ] 2.11
,J — ToC N2 oIt J+ % 4 + ( 5)

En ;= , (2.114)

n=12,...,00, J=
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The first term is the mass term. The second one complies with the quantity
predicted from nonrelativistic quantum mechanics. All subsequent terms are
relativistic corrections. Their effect is that the nonrelativistic degeneracy of
all levels with the same n is removed. Instead, we now encounter a degeneracy
of levels with the same n and J. At fixed n the energy of each level is slightly
raised depending on J.

For an easier distinction between the various solutions, one usually adopts
the nonrelativistic spectroscopic notation nl y, whereas the l-value convention-
ally refers to the two upper components of the Dirac bispinor, i.e. | = J+w/2.
Table 2.2 provides an overview of the electron energies of hydrogen-like atoms
for the ground state as well as for the first excited states together with their
spectroscopic labels and the corresponding quantum numbers. To each J

n J w nly B,y /moc?
1 1/2 -1 0 lsip 1— (Zaw)?

2 12 -1 0 2y o VIEeR

2 1/2 41 1 2p ”
203/2 —1 1 2py,  MAZeS
24/1—(Zao)?
31/2 —1 0 35y, oIl
/ 1/2 54dy/1—(Zae)?
3 1/2 +1 1 3pie s
1++y/4—(Za. )2

3 3/2 -1 1 3 VA e
/ P32 542¢/4—(Za,)?
3 3/2 41 2 3ds .

305/2 —1 2 3dy, oS

Tab. 2.2. Energy levels of hydrogen-like atoms.

there belong two series of 2J + 1 solutional functions with opposite parities,
except for J = n — 1/2 for which only one series of 2J + 1 solutions with
parity (—1)"~! exists. The latter is a consequence of the fact that the right
hand side of (2.113) becomes singular for n’ = 0 and w = +1 (and only for
this combination).

Until 1947 the spectroscopic observations of the hydrogen atom (and
hydrogen-like atoms, particularly He™) agreed well with the above results
after they had been complemented by the interaction effects between the
spins of the electron and the nucleus (hyperfine structure splitting). However,
in 1947 Lamb and Retherford observed a small shift of the hydrogen level
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2515 upward, which amounts to roughly one tenth of the distance between
the 2ps3/9- and 2p; j9-levels (see Figure 2.2). This effect, known as Lamb shift,

n=2
2p3)2 QZ)L
281/2
“‘\\.231/272]71/2
T 2page R
Schrédinger theory Dirac theory Lamb shift hyperfine

structure

Fig. 2.2. Line splittings of the nonrelativistic n=2-hydrogen level including rela-
tivistic effects (Dirac theory, main part: fine structure splitting), the Lamb shift, as
well as the hyperfine structure splitting.

is today seen as a consequence of the interaction between the electron and
the fluctuations of the quantized radiation field and can fully be understood
only within the framework of quantum electrodynamics (see Section 3.4, par-
ticularly Subsection 3.4.4). The Dirac theory deals with the major part of
this interaction, i.e. the Coulomb potential, and the Lamb shift represents
the radiation corrections within this approximation.

We now quote the Dirac wave functions for the ground state of the hy-
drogen atom. In this case, we have

1 1
n b) 2 b 2 ) w
and
AR 1-
so that
1
W(wzfl) 0 = N(2k s—1,—kr . 0
J:1/2,M:+1/2(T’ @) = N(2kr)* e l(é;‘g) cosf
i%;S) sin fe'?
0
(w=-1) s—1_ —kr . 1
WJ:l/z,M=—1/2(T’9"p) = N(2kr)*"e ‘%;S)sinﬂe ol
—12;:) cosf
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with
_(2k)3/2 1+s
Var |\ 2r(1 + 2s)

and the Gamma-function I'(z). The normalization constant N is chosen so
that

3, . pylw=—1t glw=-1) _
/d J= 1/2M il/Q(T 0,0)¥;Z 1/2,M:i1/2(7"797‘?)—1-

In the nonrelativistic limit s — 1 and (s — 1)/Za. — 0, the two upper com-
ponents pass over to the Schrédinger wave functions multiplied by the Pauli

. 1 . o
spinors ( 0) and (?) respectively. Contrary to the nonrelativistic expres-

sions, the relativistic wave functions exhibit a weak but square-integrable
singularity 7°~'. For Za. > 1, s becomes imaginary and the solutions start
to oscillate. At Za, =1 the “slope® of the energy F ;o is

dE 12
dz

B moc?Za?
Zae.=1 1-— (Zae)2

At the end, we point out that the Dirac equation with an external Coulomb
potential is just a rough approximation for the description of hydrogen-like
bound states. With respect to the accompanying exclusions, similar state-
ments hold as in the Klein-Gordon case, Subsection 1.5.4.

Zae=1

Summary

e Depending on the particle energy, the discussion of the onedimensional
potential well leads to different Dirac solutions which can be interpreted
within the one-particle picture more or less consistently as scattering
or binding of particles or antiparticles.

e Within the Dirac equation with a centrally symmetric potential the radial
and angular-dependent parts can be separated, the latter being solved
by the spinor spherical harmonics, i.e. the eigenfunctions of J?, J,,
and of the parity transformation P. For the solution of the radial part
there remain two radial Dirac equations.

e For the free case (as well as that of constant potential sections), the radial
Dirac equations lead to the spherical Bessel differential equation
whose solutions are given by the spherical Bessel functions.

e Similar to pion atoms in the Klein-Gordon case, hydrogen-like atoms can
be described approximately using the Coulomb potential. Here bound en-
ergy levels with the same principal and total angular momentum quan-
tum numbers turn out be degenerate.
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Exercises

29. Properties of spinor spherical harmonics. Prove the identity [see
(2.105)}

y(l_lﬂ:l/2 _ yz JF1/2)

Tip: exploit the fact that yf,f}w are eigenfunctions of oL and calculate the
commutator [ocx/r, o L].

Solution. To calculate the first half of the commutator, we use (2.103) to
obtain

(02)(op) = (wp) +ioL .
Multiplying this equation by (ox) yields
r?(op) = (oz)(zp) +i(oz) (o L)

and finally

ox (ox)(xp) .

TO'L = —ir(op) +1i (2.116)

Written down explicitly, the other half of the commutator is

ox 0 xl
oL— = —ih E €ikO; L5 —
r IETE By
i,7,k,l
. o xmwp w0
= —ih g ookt | — ——5 +—5— | -
“ ' r r r Oz,
1,5,k,1

Here the first term yields
Okt
—ih Z azalemkxj LI —QE—
i,7,k,l

The second term does not contribute whereas the third term is calculated as

0 h
—ih Z Ulale”kxfl o ;(a: x o)(x x V)
1,5,k,1

= L@ x o) xp)

(ow)(@p)

— ir(op) i 7

Thus, we have
L% — 9y 2% | ir(op) — ii(aw)(wp)
r r r

and, together with (2.116), it follows that
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oxr ox oxr
oL— =——0L —2h— .
r r r
Now we make use of the fact that y%w are eigenfunctions of oL and write

oL = h{J(JJrl)l(lJrl)ﬂ

o'LUTx = -n [J(J+1)—l(l+1)+i] e

Applying this to y(’ JEw/2)

O_Ly(z:J+w/2) _ (wJ+ uzJ n 1) y(z J+w/2)

o-L yl‘]wﬂ):—h(wJ—i-%—i-l) y(le/z)_

yields

The function ”yl J=w/2)

y(z Jtw/2)

is an eigenfunction of oL with the same eigen-

value as , meaning that

yyMJ w/2) _ y(l THw/2) (2.117)

Due to (ox/r)? = 1, the constant of proportionality ¢; is restricted to |¢;| = 1.
Furthermore, if we take into account the parities of both sides of (2.117) as
well as the fact that ox/r is a pseudo-vector (and does not change under
space reflection), we finally arrive at ¢; = ¢ = —1.



3. Relativistic Scattering Theory

Having laid down the framework for the relativistic quantum mechanical
description of spin-0 and spin-1/2 particles with a special regard for the one-
particle interpretation, we will now deal with the scattering of those particles.

The study of scattering processes is an important instrument, particularly
for the exploration of microscopic interaction effects as, due to their narrow-
ness, they are not directly accessible to the human senses and therefore need
to be magnified appropriately. In practice, this is achieved by, for example,
directing a collimated particle beam toward a fixed target and comparing
the measured angular distribution of the scattering products with theoretical
calculations. In this way, a large number of new particles have been discov-
ered. Many of them are not only subject to the electromagnetic force but
also to two other very short-ranged forces, namely the strong and the weak
interaction. Today it is assumed that all three types of interactions can be
described by quantum field theories: the electromagnetic interaction by quan-
tum electrodynamics, the strong one by quantum chromodynamics, and the
weak one by quantum flavordynamics.

Of these three elementary types of interactions, as in the preceding two
chapters, we restrict ourselves to the electromagnetic interaction. Since the
theoretical description of relativistic scattering processes at not too small
energies must inevitably take into account particle creation and annihilation
processes, one may suspect that, at this stage, we have to give up our for-
malism with focus on the one-particle interpretation developed so far and,
instead, have to consider the above mentioned quantum electrodynamics, as
a many-particle theory (with infinitely many degrees of freedom). However,
as Feynman and Stiickelberg have shown, relativistic scattering processes
can, similarly to nonrelativistic scattering processes, also be described us-
ing propagator techniques that directly tie in with the level of knowledge in
the preceding chapters, particularly with the interpretation of solutions with
negative energy (Feynman-Stiickelberg interpretation). Apart from the fact
that propagator techniques seem to be more appropriate for our intention
to suppress quantum field theoretical aspects as much as possible (relativis-
tic quantum mechanics “in the narrow sense®), they provide the following
advantages:

A. Wachter, Relativistic Scattering Theory. In: A. Wachter, Relativistic Quantum
Mechanics, Theoretical and Mathematical Physics, pp. 177-348 (2011)
DOI 10.1007/978-90-481-3645-2_3 (© Springer Science+Business Media B.V. 2011
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e Contrary to quantum electrodynamics, propagator techniques provide a
less deductive but intuitively more comprehensible approach to the de-
scription of relativistic processes, which seems to be particularly suited for
the non-expert.

e Via propagator methods one arrives relatively fast to the mathematical
techniques necessary for the calculation of concrete scattering processes.

For these reasons, the following pages will center on propagator methods,
while we emphasize that the deeper grounds for the formalisms developed
here, particularly the radiation corrections at higher orders, can only be fully
understood within quantum electrodynamics.

The first section of this chapter restates the formalism of nonrelativis-
tic scattering theory and introduces the necessary mathematical concepts of
propagator, scattering matriz, and cross section. In the second section these
concepts are transferred and adequately extended to the relativistic case of
Dirac’s theory. The third section deals with the concrete calculation of rel-
ativistic spin-1/2 scattering processes to the lowest orders of the scattering
theory as well as with the development of the Feynman rules. With their
help, arbitrarily complex scattering processes can be formulated mathemat-
ically. The fourth section discusses quantum field theoretical corrections in
higher orders. As we will see, certain divergences stemming from radiation
corrections appear, which, however, can be eliminated using the program of
renormalization. At the end we transfer the developed formalisms to the scat-
tering processes of spin-0 particles and extend the Feynman rules in such a
way that they also cover the spin-0 case.

Note. In this chapter we diverge from the order used so far, in that we ad-
dress the scattering of spin-0 particles at the end and a little more succinctly.
This is because all known spin-0 particles are not elementary but composed
of quarks. They, in turn, are subject to strong and weak interactions that
usually overlap electromagnetic effects. By contrast, electrons and positrons
that we discuss predominantly in the context of spin-1/2 particle scatter-
ings are, indeed, to be regarded as elementary (structureless) so that, in this
case, electromagnetic interactions can be studied theoretically and experi-
mentally in the purest form. It is exactly in this domain where all predictions
of quantum electrodynamics turn out to be very precise. That is why quan-
tum electrodynamics is regarded as one of the most successful theories in
physics.

3.1 Review: Nonrelativistic Scattering Theory
In this section we recall the nonrelativistic treatment of scattering processes

using propagator techniques and prepare the accompanying concepts with a
view to a subsequent relativistic generalization. First we turn our attention
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to the solution of the general Schrodinger equation using the Green function
calculus. From this we derive the retarded and advanced propagators. They
can be used to describe and calculate, at least approximately, the propaga-
tion of Schrédinger solutions in temporally forward and backward directions.
After some intermediate considerations on propagators, we come to the ac-
tual scattering of particles and utilize the propagators to cast the scattering
amplitudes into a calculable form. In this context, we also derive the rela-
tionship between scattering amplitudes and the experimentally interesting
quantity, the differential cross section. At the end, the developed formalisms
are applied to the concrete problem of Coulomb scattering.

3.1.1 Solution of the General Schrédinger Equation

The starting point of our considerations is the time-dependent Schrédinger
equation’
ih 0 H/ JATANE H/ _ H/(O) v 1ol H/(O) _ p/2 1

(g = ') vl t) =0 B = O 4 Vi) 1O = P )
for whose solution we wish to develop a general formalism using the Green
function calculus.

First of all, we can assert that (3.1) is a differential equation of first order
in time. This means that the temporal evolution of a wave function ¥ (x,t)
known at a specific time ¢ is uniquely determined for all future times ¢ > ¢
as well as for all past times ¢’ < ¢. Furthermore, (3.1) is linear so that, firstly,
solutions are superposable, and, secondly, the relation between solutions at
different times must be linear. From this follows that the wave function

must obey a linear integral equation of the form

(' ) = i/dgmG(m’,t’,w,t)w(a:,t)

P(z') = i/d?’xG(x',x)w(x) , x = (z,t), (3.2)

where the integration is carried out over the whole space. G(z’, ) denotes
the Green function containing the entire information with respect to the
evolution from % (z) to ¥ (2’') during the time from ¢ to t'. Obviously, the
relation (3.2) does not distinguish between the two temporal directions of
evolution, ¢ > t and ¢’ < t. However, with a view to our actual intention,
namely the description of quantum mechanical scattering processes, such a
distinction would be preferable. This can be achieved by splitting up (3.2)
according to both temporal directions of evolution as follows:?

! Note that, in the following, the free position and time arguments are often de-
noted by @’ und ¢’ (instead of & and ¢).

2 The positive sign holds for the upper equation, the negative sign for the lower
one.
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{ SEE’: f; }W’) =+ / PG (' 2)u(x) (3.3)

where O(t) denotes the step function defined by

0 for t <0
o(t) =
1fort>0.

As can be easily perceived from (3.3), now the Green functions G (z', z)
allow a propagation from t(x) to t(z’) only in a positive or a negative
temporal direction. Due to this causal behavior, one calls Gt the retarded
propagator and G(=) the advanced propagator.

Differential equation for G(). In order to obtain a conditional equation
for the propagators G*), we apply the operator in (3.1) to the upper equation
of (3.3) to get

(iha - H’> Ot —t)y(z") = ihd(t' — t)y(a’)

ot
_ 3 : 0 / (+) (!

— 0= /d3x Kihaat, - H) G (! x) — ho(t' —t)d(x’ — w)} U(x)
— (ihaat/ - H> G (2! x) = hé(a' — x) ,
with
o' —x)=0(t' —t)é(z' —x) .

Applying (ih0/0t' — H') to the lower equation of (3.3) leads to the exactly

same differential equation for G(=) so that both cases can finally be combined

in3

(ihaat’ — H’) GH) (2! x) = hé(z' — ) . (3.4)

This equation along with the boundary conditions of the temporal direction
of evolution,

G x)y=0fort' <t and G (2 z)=0fort' >t, (3.5)

determines the propagators G*) uniquely.

3 This is the reason why the relative sign between the two equations was introduced
in (3.3).
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Integral equation for G*) and . At first sight, the introduction of
the propagators G*) does not seem to be advantageous for solving the
Schrodinger equation (3.1), since, for the propagators, we also have to solve
a Schrodinger-like differential equation (3.4) [with a space-time point source
of “unity strength® fid(z’ — x)]. However, as we see shortly, the advantage of
using propagators is that they lead to integral equations that, in general, can
also not be solved exactly but at least approximately.

Writing the differential equation (3.4) in the form

(ih;’t, — H’(O)> GHE (2! x) = hé(a' —z) + V("G (' ) | (3.6)
one can show that it is most generally solved by
GH (' x) = GOP (2 x)
1
+ﬁ/d4x1G(0’i)(x',xl)V(xl)G(i)(xl,x) ) (3.7)

where G(%%) denote the free retarded and advanced propagators that, in
turn, fulfill the differential equation

(mg,iy@>a@ﬂ@um:n&f—xy (3.8)

This is because inserting (3.7) into (3.6) together with (3.8) yields

<iha — H’(O)) GH) (2!, x)

at’
= ho(2' — x)
1
+= /d4ac1 (17182, — H’(O)> GO (2! 2V (21)GF) (21, )

ho(z' — x) +/d4x15(x’ — )V (21)GH) (21, z)
= (2 — ) + V(2 )GHP) (2, z) .
Combining (3.7) with (3.3), we obtain an integral equation for 1),

Y(a') = 4i lim | dPzGF (2 x)(x)

t—Foo

+i lim [/d‘?’mG(O’i)(m’x)w(m)

t—Foo

+ %/d%/d4x1G(°’i)(w’,xl)V(xl)G(i)(whw)zb(x)

= wfree(x/) + % /d4$1G(O’i)('xl7xl)V(xl)w(xl) ; (39)

where
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Ve (') = £i lim [ d®2GOF) (2!, z)1p(x)
t—F oo

solves the free Schrodinger equation. Thus, once the explicit form of the free
propagators G(®%) is known, the full propagators G*) as well as 1 can
be approximately determined for all times by iterating the relation (3.7) or
(3.9)*, whereas the causality principle (3.5) is automatically carried over from
GOH) to G,

Theorem 3.1: Solution of the general Schrodinger equation
in the propagator formalism

The solution to the general Schrodinger equation

/2

0 p
h— _ H/ / — Hl — HI(O) / HI(O) =
(ingy - ") (e =0, +VE), HO = 2

with the constraint ¢ (z) at time ¢ is given for a later or sooner time t' by
ot —t .
{ GE i t’i }wx') _ / BrGE (2, 2)i(z) . (3.10)

G and G) are called retarded and advanced propagators. They con-
tain the entire temporally forward or backward directed dynamics of the
problem and obey the differential equations

(ih% — H') GH (' x) = hé(z' — z) (3.11)

as well as the integral equations
GH (@' z) = GOP (/)
1
+£/d4x1G(O’i)(a?’,ml)V(:z:l)G(i)(xl,:z:) : (3.12)

G%) denote the free retarded and free advanced propagators whose
Fourier decomposition is given by

GO (2 z) = GOH) (2’ — 1)

3
_ / d3p / 9E (' —a) /=B~ /B GOD) (F p) (3.13)

(2wh)3 ) 27h
~ I
GOH)(E, p) = .
(&.p) E—F-tie

(see Exercise 31). For 1) we have the integral equation

4 The correctness of (3.9) can be proven immediately by inserting it into the
Schrédinger equation (ih@/@t' - H(O)) W' = V(z")yp(x').
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V&) = Yree(@) + 5 [A0GODE o)V )pla) . (314)
In Subsection 3.1.2 we show that, besides (3.10), the relations
ot —t o . o
{ @Et, B t; }¢ (@) = +i / B ()G (2, 2) (3.15)

also hold. They describe the temporally backward and forward propaga-
tions of the complex conjugated wave function ©*, respectively.

3.1.2 Propagator Decomposition by Schrodinger Solutions

Before we combine Theorem 3.1 with quantum mechanical scattering proces-
ses, we first consider more concretely the form of the propagators and then
show the validity of (3.15). We assume that a complete set of orthonormal
solutions {1, } to the general Schrodinger equation is known, i.e.

(ihaatl — H’) (') =0, zn:wn(ac',t’)wfb(ac,t’) =0z’ —x),

where the sum ) is meant to be the generalized sum or integral over the

spectrum of the auantum numbers n. It then follows that
G (2! z) = —i0(t' — 1) X ¥a(a")t;, (2)

" 3.16

GO 2) = +HO(t — ) ()5 (0) 210

solve the differential equation

ot!

because

: i / (£) (.1
<1h€)t’ H)G (2, x)

(iha - H’) GH) (2 x) =hé(z' —z) ,

= 16 — )3 a5 ()

7i{ gg’—n;; b5 | (ingy 1) vt i
= ho(t' —t)o(x’ — :cT; =hé(z' —x) .

Since, in addition, the expressions (3.16) obey explicitly the causality princi-
ple, they are indeed the retarded and advanced propagators. With the help
of (3.16) and the well-known solutions to the free Schrédinger equation,
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1 ; ; .
-  ipz/h_—iEt/h 3, .00% _ o
S e[ g @) = 6! - p)
we are now in a position to derive explicit expressions for the free propagators
GO, Using FE = p2/2m0 and quadratic completion, we have

S n(@io) = [ dpigla)iyla)

Yp(z) =

_ 1 /d3pe—iE(t’—t)/heip(m’—m)/h

(27h)3
1 ip?(t' —t) ip(z’ —x)
= (2rh)3 / d’pexp (_ ohme T & )

- <27r1h>3 o (W;rfz - ?)
X /dgpexp [—lg;w_not) (p— mo(;”’_—tm)Q)T

() o (M)

Thus, in total, it follows that
GO (2 x) = —iOF —t)

% mo 3/2 < imo ((BI — 213)2
omih(t — 1)) TP\ 2n( — o)
GO (2 x) = +iO(t —t')

% mo 3/2 ox imo (213/ — 58)2
omih(t —t) P\ on — 1)
and

GOP (' z)=GOP (2 —2) .

(3.17)

The latter is a consequence of the homogeneity of space and time and is gen-
erally true only for the free propagators. The relations (3.17) can be derived
alternatively by passing over from the time-space to the energy-momentum
representation and solving the differential equation (3.11) directly. In doing
50, one obtains a complex energy integral for G(©%) with one singularity at
E = p?/2my, whose shift into the lower or upper half plane is equivalent to
incorporating the causality principle belonging to G(*%) or G(*:~) [see (3.13)].
In Exercise 31 we show the corresponding calculation, and we encounter some
more of the same type in the following.

Relationship between temporally forward and backward directed
evolutions. In order to show the validity of relation (3.15) stated at the
end of Theorem 3.1, we first focus on the retarded case, multiply the first
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equation of (3.16) by ¢ (z') and then perform an integration over @’. This,
in conjunction with the orthonormality of the v,,, leads to the relation

[ a6 = 0 -0 Y [ v ) v

Omn
= O — )y (a) .

A similar relation holds for the advanced case so that, finally, both cases can
be combined to give (3.15). Hence, the same propagators GF) that describe
the temporally forward and backward directed evolutions of a Schrédinger
wave function according to (3.10) also determine the temporally backward
and forward directed evolutions of the complex conjugated wave function ¥*.

3.1.3 Scattering Formalism

We are now able to connect the propagator formalism developed in the pre-
ceding two subsections with nonrelativistic quantum mechanical scattering
processes. To do this, we concentrate on the scattering of particles against a
fixed scattering center.

A typical scattering experiment is depicted in Figure 3.1. A homoenergetic
collimated particle beam is directed toward a fixed target. At a sufficiently
large distance, the particles scattered by a certain angle 6 relative to the
incoming beam are registered by a detector.” This means that the detector
essentially counts all scattered particles with a momentum directed toward
the spherical surface element df2. Usually the setting of such experiments is
chosen in a way so that the following prerequisites are fulfilled:

Fig. 3.1. Experimental arrangement of particle scattering against a fixed target.

5 For rotationally symmetric potentials the measurements are independent from
the azimuth angle .
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1. The interaction potential of the target is spatially confined:
lim V(x,t)=0.

|| — o0

2. The particle beam is created at a sufficiently large distance from the target
so that the incoming particles can be regarded as initially free.

3. The detector is located at a sufficiently large distance from the target so
that the registered scattered particles can also be treated as free particles.

With a view to a quantum mechanical description of such scattering proces-
ses, we need to tackle the following question: given a free wave packet with
mean momentum p; (i=incident) moving toward the target. What shape does
the wave packet possess “long after the scattering where it can be regarded
as free or, putting it differently, what is the probability for the wave packet
to have the sharp momentum py (f=final) long after the scattering? Once we
have answered this question, we can sum over the individual probabilities for
scattering momenta directed toward df2 and relate them to experimentally
detected particle numbers.

For the mathematical realization of this program, it is much easier to de-
scribe the initially created particles propagating toward the target by plane
waves instead of wave packets, which we do in the following. However, this
implies that the actual scattering process is no longer confined in space and
time since incoming and scattered waves now coexist (see Figure 3.2). Con-
sequently, the above 2. and 3. prerequisites are violated. A way out of this is
provided by the adiabatic approximation. Here it is assumed that the inter-
action potential V is temporally localized according to

lim V(e,t) —0
t—*too

K(Betector

incident
wave

scattered wave

Fig. 3.2. Idealized description of a quantum mechanical scattering process where
incoming particles are represented as initially free plane waves. Due to the infinite
extent of plane waves, the space-time confinement of the actual scattering is lost.
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in such a way that it is adiabatically switched on in the far past t — —oo
and adiabatically switched off in the far future t — +00.% To some extent,
this approximation turns the space-time confinement of scattering processes
given automatically for wave packets into a pure temporal confinement for
plane waves. Similarly to the above 2. and 3. prerequisites, this allows us to
regard incoming and scattering waves as being free in the far past and the
far future and, particularly,

e to represent the incoming wave function as a plane wave with momentum
p; in the limit ¢ — —o0,

e to study the projection of the scattered wave onto plane waves with scat-
tering momenta p; in the direction of df2 in the limit ¢ — +oo.

Clearly, interference effects between the incoming and scattering waves have
to be excluded when doing so.

Scattering amplitude, scattering matrix. Let us now assume that”

1 ip;xe/h_—iE;t/h
i) = e e

is the incoming plane wave with momentum p;, v; is the temporally forward
moving scattered wave,

. lim o;(2) = ¥(z) ,
and

1 ipra/h —iEst/h
Wf(x):wem /ho—iEyt/

is a plane wave with momentum p;. According to the above, we are interested
in the projection of 1; onto ¥; in the far future, i.e.

Spi = tlgrfoo/d3x'!l7}‘(x’)wi(x') . (3.18)

This expression is called scattering amplitude, transition amplitude or proba-
bility amplitude for the transition ¥; — . The totality of all the scattering

5 In this context, adiabatic means that the solutions to the Schrodinger equation
are approximated by the stationary eigensolutions to the instantaneous Hamilton
operator so that, at a given time, a certain eigenfunction passes over continu-
ously to the corresponding eigenfunction at a later time. The justification of the
adiabatic approximation becomes apparent in calculations of concrete scattering
processes where the wave function is initially normalized to a finite volume V so
that the actual scattering process is confined to the time range [—7/2: T/2]. It
is then easy to imagine that the potential is adiabatically switched on in the time
interval [—oo : —T'/2] and adiabatically switched off in the interval [T/2 : ool;
not until the end of the calculations is the limiting process V,T — oo performed.
Here and in the following the plane solutions to the free Schrédinger equation
are denoted by the capital symbol ¥.

4
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amplitudes are the elements of the Heisenberg scattering matriz, also called
the S-matriz. For further evaluation of (3.18), we can make use of Theorem
3.1. Taking into account [see (3.14)]®

wi@) = () + 5 [ RGO )V (i)
and

Ui(r1) = lim i / 2" ()G O (2! — 21)

i
t/—4o00
[ i@ = op; - pi)
it follows from (3.18) that?

Sy = lim {/ 2’7 ()W ()

t'—+o00

tr / d'zy / o'W (2)GOD (@' — a0)V ()i (2)

1

3o~ p) 5 [ A @)V ()it
Tterating 1; in the way

Yi(x1) = Wi(1)
+% /d“xQG(O’“(axl — 29)V(22)¥(x2)

1
+?/d4$2/d41‘3G(0’+)(1‘1 —$2)V($2)

XG(O’+) (.1'2 — .Z’g)V(CCg)!p(.’Eg)
+...,

we finally obtain

Theorem 3.2: Scattering matrix in the Schrodinger theory

With respect to the quantum mechanical scattering of a particle against
a target, the scattering matrix element Sy; is defined as the probability
amplitude for the transition ¥; — Wy, where ¥; denotes the free initial
state long before and ¥y the free final state long after the scattering. In
other terms, Sy; is the projection of v; onto ¥y, where v; is the evolutionary
state during the scattering process originating from ¥;: >

8 Since we wish to study the scattering process in temporally forward direction,
the retarded case has to be chosen.

9 In concrete calculations of scattering amplitudes we will use wave functions nor-
malized to a box volume V instead of the continuum normalization. This implies
the replacement 6(py — pi) — Jfs.
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Spi= lim [ &*¢'Wf(2")i(2') , Jim () = @i(z) - (3.19)

t'——4oo

Using the propagator formalism, S¢; can be expanded in the following way:

Sti = 0(pr —pi) — %/d%lw}‘(ml)v(ml)wi(xl)
= 5(pf —pi)
_%/d4m1!l7}<(x1)‘/($1)¢i(xl)

[t / 4203 (@)V (22) GO (2 — 1)V (1) (1)

_%/d4xl/d4x2/d4mgwf x3) (.’Eg)G( ’+)($3 — Z9)
XV (29) GO (2 — 1)V (21)T;(21)
. (3.20)

V denotes the interaction potential of the target and G(©1) the free re-
tarded propagator.

Due to the adiabatic approximation, it is justified to consider ¥; to be a
free plane wave in the limit ¢ — —oo and to study the projection of v; onto
plane waves in the limit ¢ — +o0.

As one can see, at the transition from (3.19) to (3.20), the unknown wave
function v¥; has completely disappeared. Instead, the known free propagator
GOF) appears in a series of multiple scatterings which encompasses the en-
tire dynamics of the scattering process. For a better understanding of this
theorem, the following items have to be kept in mind:

e A general property of the scattering matrix S, following from the Her-
mitecity of the Schrodinger-Hamilton operator, is its unitarity (see Exer-
cise 33) expressing, once again, the conservation of the total probability.
Furthermore, it is easy to realize that the S matrix shares all the properties
of the Hamilton operator.

e From the Hermitecity of the Hamilton operator follows that the S matrix
can be defined equivalently via

Spi= dim_ [ dovj@li(e), lin @) = ()

t'—+o00

where ¢ denotes the wave that, originating from ¥y in the far future, is
moving backward in time and is scattered against V. This is because, using

Pi(x') = hm 1/d3xG (2, 2)¥;(z)

i) = lim i [ &*2'PF(2")G P (2 2) ,

t'—4o00
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we have

Sti t_lér_noo/d3xz/);(x)%(x)

= lim i/dg’x/dgac’gff(x’)GH)(x"x)%(x)
t' — 400

= d3 I!p* / o )
m [ 72 (a)gi(a)
Consequently, it makes no difference whether we let the initial state ¥;
propagate in temporally forward direction or the final state ¥, in tempo-
rally backward direction.

e Equation (3.20) essentially represents an expansion in powers of the inter-
action potential. In practice, only the first few terms need to be calculated
depending on how fast the expansion converges.

e Taking into account
Ui(x1) = hm 1/d3xG(0+ (1 — 2)¥;(x)

i(zn) = t’ETooi dgx’![/}‘(x’)G(O’Jr) (@' — ),

the individual terms in (3.20) can be interpreted as follows: during its tem-
poral evolution between the space-time points z = (x,t) and =’ = (2, '),
the particle is scattered at different intermediate points x; with the prob-
ability amplitude V (z;) per space-time volume unit into a particle moving
undisturbed with the probability amplitude G(O’+)(xi+1 — x;) toward the
next interaction point x;41. Thereby, the integration is carried out over all
possible intermediate points. Another way of putting it is: at the vortez
x;, the potential V' (z;) destroys a particle that has moved freely to z; and
creates a particle that will move freely to x;41. Here it is of vital impor-
tance that the propagators G(%+) allow only chronological scatterings (in
the temporally forward direction). This implies that there cannot exist any
terms leading to V- or A-like diagrams (see Figure 3.3). As we will see later,
this is different in relativistic scattering theories.

Total cross section, differential cross section. Having found a reliable
formalism for the description of nonrelativistic quantum mechanical transi-
tions in terms of the scattering amplitudes Sy;, we now have to relate it to
the particle numbers detected in scattering experiments. To this end, we ini-
tially ask for the transition rate R, i.e. the number of particles scattered in
any direction (except for the direction of incidence) within the time T

number of scattered particles

R =
T
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vy vy

T2

T1

Fig. 3.3. Pictorial representations (Feynman diagrams) of the series expansion
given by (3.20). a represents the first §-term (zeroth order), i.e. the free propagation
of a particle. b symbolizes the second term (first order). At the intermediate point
x1 = (x1,t1) the particle suffers one scattering at the potential V. ¢ depicts the third
term (second order) where the particle is scattered at two intermediate points z1 =
(z1,t1) and z2 = (@2,t2). In principle, only those space-time paths are possible
that are directed temporally forward.

If we know the number NN of particles moving through the cross sectional area
A of the incident particle beam per time interval T, as well as the total cross
section o of the target, i.e. the area which has to be crossed perpendicularly
by the incident particles to be deflected at all, we have for R:

No . N

p denotes the particle density, v the particle velocity and |j;| the particle
current density of the incident particle beam (see Figure 3.4).1° On the other

Fig. 3.4. Scattering of a particle beam with particle current density |j;| = pv and
cross sectional area A against a fixed scattering center with total cross section o.

10 Strictly speaking, this is the transition rate per target particle since, in real
scattering experiments, the target consists of many particles. However, there
mutual distances can be assumed to be large compared to o.
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hand, the transition rate R can also be expressed using the scattering ampli-
tude Sy; since, in the wave picture, it denotes the probability for the transi-
tion ¥; — W;. Consequently, in the experimentally relevant particle picture,
it gives the statistical fraction of the incident particles with momentum p;
scattered into states with momentum py so that

N N
- Z 1Sp? = ?/|sﬁ\2djvf , (3.22)

where d/N¢ denotes the state density or the number of all possible states in
the momentum interval [ps : pf+d3ps]. Combining the equations (3.21) and
(3.22) leads to the total cross section

N / 9
i |Syil"dNy (3.23)

with the expected dimension of an area. For further evaluation of this expres-
sion, we have to keep in mind that we aim to describe the entire quantum
mechanical scattering process with the help of plane waves, instead of local-
ized wave packets. This means that, due to the plane waves’ normalization
to the whole space, the state density dN; becomes arbitrarily large and the
particle number in any considered volume vT A arbitrarily small. However,
we can circumvent these ill-defined mathematical infinities by initially nor-
malizing the plane waves to a finite volume V' and performing the limiting
process V,T — oo at the end. As a result we have N = 1 (there is exactly
one particle in the volume V). Furthermore, the state density becomes finite
due to the requirement of standing waves within the volume V' (i.e. periodical
boundary conditions at the volume’s border). Therefore, we can write

. Ly
V:HLk , e‘pkak/hzlzpkak/h:%mk:>dnk— —dpy,
27h
d3
= dN; = Hdnk = 2; h];]‘:’ (phase space factor) .
™

k

Thus, taking into account d’p; = p}d|py|d2 (compare to Figure 3.1), (3.23)
turns into

V 213 V 2 2
= m/\sfﬂ d°py = m/d@f\?f/dmsm - (3.24)

With regard to the experimental situation, this expression can be interpreted
as

number of scattered particles/T

incident particle current density

Differentiating (3.24) with respect to (2 and suppressing the remaining py-
integral sign, we obtain the dimensionless differential cross section
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do |Syi? Vpidipy]

A2~ Tlj| (2rh)?

with the experimental interpretation

do  number of particles scattered toward d2/T

an = incident particle current density-d{2
This is exactly the quantity measured in scattering experiments if df? is
replaced by the small but finite detector surface.

Theorem 3.3: Cross section

The differential cross section of a quantum mechanical scattering is given
by

number of particles scattered T
_ 1S5l vy | toward [py : ps + d®py]
Tl (2mh)3 incident particle current density

do

or (ps-integral sign suppressed)

do  |Spil? Vpidlps| /number of particles scattered toward d§2/T'
dQ Tl (2nh)3 ( )
S; denotes the scattering amplitude for the transition ¥; — Wy, V the
normalization volume of ¥; ¢, j, the particle current density of ¥; (toward
the target), T' the duration of the scattering process, and df?2 the considered
spherical surface element. Within concrete calculations and in the limit
V,T — oo, the quantities V' and T are removed.
Integrating the last expression over {2 yields the total cross section o. In the
particle picture it represents the effective area of the target that incident
particles have to cross to be deflected at all.

incident particle current density-d{2

Note that this theorem does not rely on specifically nonrelativistic relation-
ships. Therefore, it is also valid for relativistic scattering theories. All in all, it
can be ascertained that with the last three Theorems 3.1 to 3.3 we have found
a viable formalism for the description of nonrelativistic quantum mechanical
scattering processes that particularly allows a direct comparison with experi-
mental measurements. In the following our task will be an adequate extension
of this formalism to relativistic scattering processes within the scope of the
Dirac and Klein-Gordon theories.

3.1.4 Coulomb Scattering

At the end of our review of nonrelativistic scattering theory we demonstrate
its application by considering the concrete problem of Coulomb scattering
(Rutherford scattering). We assume an interaction potential of the form
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V(z) = o= —Ze?

)

||

that is hit by a particle beam directed along the z-axis, and we restrict our-
selves to the calculation of the scattering amplitude as well as the differential
cross section to leading order. First we need the plane solutions ¥; and ¥y to
the free Schrodinger equation normalized to a volume V:

J/Z(x) = Leipim/he—iEit/ﬁ , g/f({L') _ Leipfac/he—iEft/h .

Following Theorem 3.2, the scattering amplitude can then be written as (f #
i):
i *
Spi= / A 2T (2)V (2) ()
T2

_% dtel(Br—Et/n / dsxefiqw/n% L a=ps—p;,

—T/2

with the momentum transfer q. Note that the temporal confinement of the
scattering in the interval [—T'/2 : T//2] is accomplished by the spatial con-
finement of ¥; r to the volume V. For the time and space integrals follows
that

T/2
/ dtelBs=Et/n T2 9nps(B, — E;) (3.25)
—T/2
—igqx/h 2
/dgl‘e qz/ _ _%/dgmiVQG_iqm/h
J || q ||
2
_ 72/(13:17 V2i efiqcc/h
q’ ||
\%
h? . 47h*
= = [ Baf-and(@)e i = 2 (3.26)
) q

so that the scattering amplitude finally turns into
_i4ﬂha[27rh5(Ef - E))]
Vg2 ’
Now we need to supply the particle current density in z-direction to calculate
the differential cross section:

Spi =

: h Pl
il = =— 'V, -, VI | = — .
i 21m0| ’ | moV

Hence, according to Theorem 3.3, we obtain
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do 202mo[2mhé (B — Ei)]2p§d|pf|

de nhT|pi|q* ’
where the integration has to be carried out over all scattering momenta py.
Obviously, this formula contains the mathematically ill-defined expression
§?(Ef — E;) resulting from the fact that we have performed the limiting
process T'— oo in (3.25) too early. In Exercise 34 we show that for a finite
scattering time 7T, it is justified to make the replacement

27hé(Ey — E;)|* — 2rnThé(Ey — E;) (3.28)

in (3.27) so that the scattering amplitude becomes

(3.27)

do 7 ‘ ‘4a2m05(Ef — Ei)p?
e ! pilg*

This equation is well-defined and the normalization volume V' as well as the
scattering time T have disappeared. Furthermore, the remaining é-function
expresses explicitly the energy conservation of the scattering process. Using
the identities

2
p',f modEf
Ei,f = 2’:7’10 ’ d‘pf‘ = Tfl s plpf|‘1’f|:‘?z‘ :I)Z2 cos @

2

20 50
q\QP.flz\pi\ = 4p7 sin 5= 8mo B sin® 3

do/df2 can be further simplified to give the famous Rutherford scattering
formula

dg’ do’ i 4a2m(2)(5(Ef — Ez)p?
— = (= = [ dE; .
A2 \d2 ) gum pillprla

4a’m3

2
@]
() (3.29)
a' ipsi=ip.| <4Eism23>

Note that this equation is true exactly and not only in the demonstrated
approximation.

Summary

e The solution of the general Schrodinger equation can be related back
to an integral equation for the retarded and advanced propagators
as well as for the wave function itself which is solvable approximately
through iteration.

e The retarded propagator describes the temporally forward evolution of
a wave function known at a fixed time, while the advanced propagator
describes its temporally backward evolution.
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e Quantum mechanical scattering processes are described by the scatter-
ing matrix. With the help of the propagator formalism, the scattering
amplitudes can be expanded in powers of the interaction potential (se-
ries of multiple scatterings).

e Due to the adiabatic approximation, incident wave functions can be
regarded as free plane waves in the limit ¢ — —oo. In the limit ¢ — +o0
the scattered wave can also be regarded as free (but in general not as
plane).

e In scattering experiments one usually directs a collimated particle beam
toward a target and measures the differential cross section, i.e. the
number of particles scattered toward different spherical surface elements.
The scattering amplitudes are of vital importance for a theoretical de-
scription of these measures.

e Integrating the differential cross section over all spherical surface ele-
ments, one obtains the total cross section. It is equal to the (fictitious)
area of the target that incident particles have to cross to be deflected at
all.

Exercises

30. Integral representation of the @-function. Show that the step func-

tion
1forT>0
o(r) =
0 for 7<0

can be expressed by
1 . 7
O(r)=——lim [ dw

271 e—0 w + i€
— 00

—iwT

e

,e>0. (3.30)

Solution. To calculate this expression we perform the integration in the
complex w-plane along a closed integration path K depending on 7.

T < 0: in this case the upper semicircle H(0, R, +) shown in Figure 3.5 seems
to be appropriate in the limit R — oo since then the integration along the
circular arc B(0, R, +) vanishes so that we are left with the integration along
the real w-axis. This is because, using the parametrization

B(O,R,+): t —»w(t)=ef" tec[0:n],

we can make the following estimation:
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Im w

H(0,R,+), 7 <0

Re w

Y|

—-), 7>0

Fig. 3.5. Integration paths in the complex w-plane. The upper closed semicircle
H(0, R, +) in the mathematically positive direction is to be chosen for 7 < 0 and
the lower closed semicircle H(0, R, —) in the mathematically negative direction for
7> 0.

K

e—iw‘r e—iTR(Cost+isint) )
/ dw = / At iRe"

(0,R,+) 0
T

— i/dtefl'chosteTRsmt
0

T

< i/dte"T‘RSint iz,
0

Now the only singularity ws = —ie of the integrand lies outside the region
enclosed by H(0, R, +) so that, according to Cauchy’s integral theorem, we
have!!

O(r) =— lim 7{ dws—— = “lim 7{ dws— =0.
e— 0 w + 1€ e—0 w + 1€
R — 0 H(0,R,+) H(0,R,+)

7 > 0: here we choose the lower semicircle H(0, R, —) shown in Figure 3.5 in
the limit R — oo so that, due to the same reasoning as above, the integration
along the circular arc B(0, R, —) vanishes. Hence, it follows that

-1 efiw‘r
—— 1 d .
o) 27 P % ww + ie
H(0,R,—)

1 Note that in the following the limiting process R — oo will not be considered any
more. As long as the integrand is regular up to its singularities, we can shrink
the integration path to an arbitrary contour enclosing all singularities.
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The additional sign on the right hand side results from the mathematically
negative direction of H(0, R, —). For further evaluation of this expression, we
have to take into account that now the singularity ws = —ie lies inside the
area enclosed by H(0,R, —) so that the residue theorem must be applied:

flw)= 7{ f(w)dw = 27T1 Reb f=2mie™ " .

w—|—1e = —ie
H(0,R,—)

We therefore obtain
Q(T) 271'1 e—>0 f f
H(0,R,—)

This completes the proof of the above proposition.
With a view to Exercise 31, we point out that the complex conjugate of
(3.30) leads to the representation

271 e—0 w — i€

O(-1) —hm/dw _ ,€>0. (3.31)

Here the singularity lies above the real axis.
31. Fourier decomposition of G(%%). Show the validity of (3.13).

Solution. Our starting point is the differential equation

( h aat/ H’<0>> GOB) (2 — z) = hé(z' — ) (3.32)

for the free retarded and advanced propagators. We use the fourdimensional
Fourier representation of G(%%)(z/ — ) and §(x’ — z) for its solution:

d3p dFE
O) (0 _ 2y — dE
¢ (@' = =) /(27rh)3/27rh

Xeip(m/7m)/he7iE(tLt)/hG(0,ﬁ:)(p’ E) (3.33)
dp dE Bt
S’ — z) = / oiP(@ ) /R B ~1)/h
(2nh)® ) 27h

Inserting these expressions into (3.32) yields a corresponding equation for
GO (p,B):

dp dE P’ ip('—a)/h —iB(E 1) /R (0.4
/(2m)3/2m(E_2m0 (P& —2) /B -0 /M GO.2) ()

3
_ h/ d’p / dE ip(a'—a)/hy—iBE~t)/h
(2m)n® ) 2xh

The solution to this equation can be easily obtained. For E # p?/2my it is
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G0N (p, B) = —

Thus, (3.33) turns into

d3p o, dE e—iE(t’—t)/h

(0,£) (. _ — ip(z'—x)/h 4

GOB (' — ) / e / Pl (3.34)
mo

Next we have to carry out the E- and p-integrations bearing in mind the
singularity at B, = p?/2mg. We first consider the integration over E,

dE e~ 1B =t)/h ( ip2(t’ _ t)> dw e—iw®'—t)
—_— = exp _—_ _—

I =
ot g P 2hmg
2m0

o (3:39)

where, on the right hand side, the substitution w = (E — p?/2mg)/h has
been made. Clearly, the w-integral can be related back to the integrals (3.30)
and (3.31) discussed in Exercise 30, if the singularity in the denominator is
shifted by adding or subtracting an imaginary part ie. If we decide in favor

of the addition, comparison with (3.30) yields
—iw(t' —t) _ dw e—iw' —t) ) .
o i S = e ). (3.30)

dwe

This clearly corresponds to a temporally forward directed movement (re-
tarded case). If, on the other hand, we choose to subtract ie in (3.35), com-

parison with (3.31) leads to
—iw(t —t) dw efiw(t’ft)

et li - — 4Ot -t .
2 w A 2r w —ie +HO( ) (3:37)

dwe

expressing a temporally backward movement (advanced case). Hence, the
correct Fourier decomposition of G(%%) is indeed given by (3.13).

Combining the equations (3.34), (3.35), (3.36), and (3.37), we obtain for
the retarded case the explicit form

d3p ip?(t' —t)  ip(x’ —x)
O (o — 2) = —_i0(¢ — —
G (' —x) iO(t t)/ rh)? exp( e + - >

and, for the advanced case
d3p ip?(t' —t) ip(z’ — )
0,=) () _ ) — 43 _ _
GV (2 — ) =+iO(t t)/ @) exp( Sl + - .

As expected, these results coincide with the equations that were derived
differently in Subsection 3.1.2; the further evaluation of the p-integral is the
same as there.
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32. General properties of G(£). Show that the following relations hold:

G (2, 2) = G (x,2') (3.38)

GO (2l 2) = i / B G (0GP (,2) HE St >t (3.39)
G x) = fi/dgzlG(f)(z’,xl)G(f)(zl,x) ift <ty <t (3.40)
S —x) = /d?’le(”(x’,m @1, 0)G ) (@, by, @, t) ift >t (3.41)

5(90’—90):/d3x1G(_)(w’,t,ml,tl)G(+)(w1,tl,m,t) ift <ty (3.42)

Solution.

To (3.38). This can be proven quickly by complex conjugation of (3.15) and
subsequently comparing it with (3.10).

To (3.39) and (3.40). Here we start from the defining equation (3.10) of
the retarded propagator,

Y(a') =1 / B x)p(x) ift >t (3.43)

where we are free to consider also ¥ (z) to be the result of a propagation from
the earlier time t; to t, i.e.

P(a') = — /d3x/d3a:1G(+) (2, )G (@, 1) (x1) ift! >t >t
or, after exchanging the variables z < x1,
P(a') = —/d?’x/d3x1G(+)(x’7xl)G(+)(x1,x)1/)(m) ift' >t >t.

Comparing this relation with (3.43) finally leads to (3.39). The proof of (3.40)
proceeds analogously.

To (3.41) and (3.42). At a constant time ¢ ¢ can be represented as
(' t) = /d3x§(:c’ —x)(z,t) . (3.44)
On the other hand, we have
Y(x' 1) = i/d3x1G(+)(m',t,:cl,tl)z/;(:cl,tl) if t >t
and
Yz, 1) = —i/d?’:cG(*)(a:l,tl,m,t)z/;(a:,t) ift >t

as well as their combination
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(' t) = /dgil?/d3$10(+)($/,t7wl,tl)G(f)(ml,tl,ZCJW’(JJJ)
ift >t .

Comparing this relation with (3.44) yields (3.41). The proof of (3.42) can be
carried out similarly.

33. Unitarity of the scattering matrix. Show that the scattering matrix
S is unitary.

Solution. As long as we focus on wave functions normalized to a finite vol-
ume, we need to show that

a) Y SpSL =3 SprSh = 0pi
k k

b) 32 8% Ski =2 S;Ski = 0y
k k

[in the case of normalization to the whole space, the replacements
> — [d3py and &; — d(py — p;) have to be made].
k

To a) It holds that

Ser =1 hnioo d3x'/dng;(wl,t')G(+)(w/,t/,:mt)!lfk(x,t)

t—> —00

and, due to (3.38),

i = 1, lim dgy'/d3y¢’i(y’,t’)G(“*(y’,t’,y,t)%;*(y,t)
t — —oo

— it [ @ [ w06 ey )
t — —oo

{W(x,t)} is a complete orthonormal solution system to the free Schrédinger
equation with

/d%w,:(m,t)wj(m,t) bk s S (e 0 (g t) = Bz —y) Vi
k

Therefore, along with (3.41), it follows that
. 3.0 [ 43 3,0 [ 3
%:kas,.k_tgnin/d /d /d /d

xWi (2 )G (@t 2, t) W (, 1)
XU (y, )G (y, b,y )Wy, )

= lim /dd'/d3 /d‘“
t" — +oo

t — —o0
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<@ (@', )G (@ ¢ 2, )G (@, t, 4 1) (y 1)
= Jim_ ' i (' ) (2! 1) = g5 .

The proof of b) proceeds analogously.

34. Square of the d-function. Show by considering (3.25) for large but
finite 7' that in (3.27) the expression [27hdé(E; — E;)]? can be replaced by
2nThé(Ey — E).

Solution. In (3.25) we have equated

21hé(Ey — E;) = / dtel(Es=Et/h

which is surely justified for an infinitely long scattering period T'. Unfortu-
nately, this leads to the badly defined expression [2nhd(E; — E;)]*. However,
according to our scattering formalism, we have to bear in mind that we ini-
tially presume a finite scattering period 1" and do not perform the limiting
process T' — oo until the end. Thus, we have

T/2
_ 5 7/2
2nhS(Ey — i) — / Qi Er—Etn _ P memun
T/2 i(Ey — B) -T/2

2hsin[(Ey — E;)T/2h)
Ey — E;

and
4n?sin®[(E — E;)T/2h]

[27hd(Ey — Ez)P - (E; — E;)?

On the other hand,

% sin? (Ef - )T/QFL] / 51n2 x
dE =2Th [ dx = 27hT (3.45

is valid. Therefore, we can conclude that
27hd(E; — E;))* = 27hé(0)27h(Ef — E;) — 2nhTS(Ef — E;) |

and hence 27h6(0) — T so that, according to (3.45), the integration over Ey
adds up to 2whT.

3.2 Scattering of Spin-1/2 Particles

Building on the results of the preceding section, we now turn to the descrip-
tion of relativistic scattering processes of spin-1/2 particles. Analogously to
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the preceding section, we first develop an appropriate propagator formalism
for solving the general Dirac equation in which, however, we need to imple-
ment a modified causality principle for the so-called Feynman propagator from
the start in order to meet the Feynman-Stiickelberg interpretation of posi-
tive and negative Dirac solutions. After the derivation of the free Feynman
propagator in momentum space, we turn to the actual scattering formalism
and look particularly at its specific relativistic aspects. At the end we discuss
some identities related to the traces of «-matrices. This will turn out to be
very useful for the concrete calculation of scattering processes.

Note. Since in the following we will often encounter equations with numer-
ous v-matrix operations, we introduce the convenient “slash notation“

= auy"

at this stage. Likewise, for convenience, we will often denote (elementary)
spin-1/2 particles by “electron® and spin-1/2 antiparticles by “positron®.

3.2.1 Solution of the General Dirac Equation

As in Subsection 3.1.1, we start with the time-dependent Dirac equation

¥ =A@ = moc] v(@') = 0., (3.46)

For the same reasons as in the Schrédinger case, the solutions to this equation
should be expressible by a linear homogeneous integral equation of the form

(') = i/dsxS(a:’,z)fyOw(x) , o= (2" ) = (ct, ) .

Here and further on we denote the corresponding Green function by S. The
factor 70 results from the covariant Dirac equation which is derived from the
canonical equation by multiplying the latter by 7°/c. Apparently, it is again
appropriate to introduce a causality principle via

{ 2§§;°_‘§3§ }w(x') = i / BrSH (@' )7 % (z) , (3.47)

guaranteeing the temporally forward or backward evolution of ¢ () to ¥ (z’)
independently of the positive and negative energy contributions built up in
the course of time. However, with respect to the description of relativistic
scattering processes of electrons and positrons, it is more sensible to ad-
just the temporal evolutionary direction of v according to its positive and
negative parts in such a way that the positive parts (f) can propagate
only in the temporally forward direction and the negative parts (=) only
in the temporally negative direction. In this way, the proportionate tempo-
rally forward evolution of 1 can be interpreted as forward directed particle
propagation (electron) and, likewise, due to the Feynman-Stiickelberg inter-
pretation (Theorem 2.7), the proportionate temporally backward evolution of
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1 as forward directed antiparticle propagation (positron). We return to this
point later on. Based on the above reasoning, we now introduce the following
modified causal relationship!? instead of (3.47):

{ ggzs:;g; }¢(i)(x’) = ii/deSF(x’,q;)yow(i)(x) . (3.48)

This is the defining equation of the Feynman fermion propagator.

Differential equation for Sg. The following procedure is similar to that
in Subsection 3.1.1 in that we first determine the differential equation for Sg
and then derive iteratively solvable integral equations for Sg and ¥. Applying
the operator in (3.46) to (3.48) yields

¥ — S - mac] { G150 20} o)
= +ihy 08 (2"0 — 20)p™®) (2')
- ii/d% [pf’ - %A(x’) - moc] Sp (@', 2)7 ) (x)

= /d3x { {;ﬂ’ — %A(l’/) — moc] Sk (', x)
~ R0 — 2°)d(x — m)} O (z) = 0

= [ﬁ’ — SA(sc') — moc} Sp(2',xz) = hé(x' — x) .
Integral equation for Sg and 1. Rewriting the last equation as

(# — moc) Sp(2',x) = hé(a’ — x) + ZA(Z‘/)SF(.%‘I,I‘) , (3.49)
we see that its solution is given by

Se(a',2) = SO ) + / Ay SO (@ 2 A Se(a1,2) s (3.50)

with the free fermion propagator Sl(?o) that, in turn, must obey the differential
equation

(# — moc) Séo) (2',x) = hé(z' — z) .

The corresponding integral equation for ¢ = 1) + (=) follows from (3.48)
and (3.50) as

12° As before, the plus sign holds for the upper equation and the minus sign for the
lower one.
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pH(2)) = +i lim [ dB2Sp(r, 2)7 %) (2)

t—F oo

t—Foo

i [t
+ %/dgx/d4w153£0)(33/7xl)A(xl)SF(l'h:C)’}/O'L/)(i)(x)

= vl + g [ eSO )y )

e

— Ua") = Yol + 1 [ SO )

Analogously to the equations (3.12) and (3.14) of the nonrelativistic case,
we arrive at integral equations for the fermion propagator Sg and the wave

function 1 that can be solved approximately once the free propagator SI(;O) is
known. However, the fundamental difference to the nonrelativistic case is that
there the integrands contribute either only for past times (/0 > 20 > 29,
retarded case) or only for future times (20 < 2§ < 2% advanced case),
whereas here both temporal directions, past and future, play a role.

Theorem 3.4: Solution of the general Dirac equation
in the propagator formalism in consideration of
the Feynman-Stiickelberg interpretation

Given that the solution to the general Dirac equation
¥ = SAG) = moc] (@) =0, w(@!) = $ P @) + O (@)

is subject to the boundary condition 1 (z) at time ¢, the Feynman fermion
propagator Sy describes the temporal evolution of the positive parts t)(*+)
in forward direction and of the negative parts ¢/(7) in backward direction
according to

O(z® — z° .
{ G0~ 2] o) = #1 [ Saseteap®s®i@) . a1
For Sg we have the differential equation

[Zﬁl — EA(JC') = moc] Sp(z',z) = hé(z' — z)

as well as the integral equation
e
Sl @) = Séo)(m',x) + 7 /d4x15§0) (@', 21)A(21)SF (71, ) .

Sb(ﬂo) denotes the free fermion propagator given by the Fourier decomposition >
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d4 : I =
Séo)(m',x) _ Séo)(x’ — ) :/ p o 1Pu(a —x )/hSI(:O)(p)

(2wh)*
R + moc)
pup* — mic? + ie

(3.52)
S () =

(see next subsection). For ¢ the integral equation follows as

V(&) = Yiel@) + 1 [ A SO mh@)o(@)

In Exercise 36 we show (at least for the free case) that, besides (3.51), the
causality relations

6(z° — z'0) (£) +i 300 (2170 S (. "
{9( 0 _ )}¢ () = /d @ (2)7°Se (, ') (3.53)

also hold. They describe the temporally backward and forward evolutions
of () and ¥(~)| respectively.

3.2.2 Fourier Decomposition of the Free Fermion Propagator

In order to show the validity of (3.51) and (3.52), we proceed as in Exercise
31 and consider the differential equation

@ — moc) SO (!, x) = hé(2' — ) (3.54)

for the free fermion propagator by passing from the time-space representation
to the energy-momentum representation. Using

S’g))(ac’, x) = SI(DO) (' —x) (homogeneity of space and time)

d4p i P~ ~
5@~ ) :/(27rh)4e P =S (p)
d4p i M —rHhY /R
o —) = / (27T7L)4e " -

(3.54) becomes

(ﬁ ) _ip“(w’u_wu)hg(o)( ) —h d4p —ipu(z'*—2*)/h
(27rh) s r P (2rh)t© :

From this follows that
#—moc) S (p) = i = (F+ moc) (F — moc) S (p) = 1 (§ + moc)
(pup — moc )S(O (p) =k (P + moc)

&(0) $+ moc
:>SF (p): w_ 2 .92
Dup mgc

pup" # mg c?

and finally
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d'p P+ moc el
GO (4 _ 2y — h/ —ipy (&/F —ah) /R
P (2" —x) (21h)* ppt — m%cZe

3
_ / Ep_ ip'—a)/m / dpo_#H1M0C_ —ipy(a~a)/n (355)

(27h)3 27 pupt — mic?
The evaluation of the energy integral
I = %Me*im(r’o*mo)/h (3.56)
21 pupt — mic? ’

can again be best carried out by choosing an appropriate closed path
within the complex pg-plane with special regard for the singularities at
+/p? + mic?:

e For /0 > 29: a semicircle in the lower complex half plane and
e For 2/° < 29: a semicircle in the upper complex half plane.

The effect of this choice is that in the limit R — oo the integration along the
respective angular arc vanishes so that we are left with the integration along
the real pg-axis.

Next we need to clarify how the integration path along the real py-axis
is to be passed around the singularities or, put differently, how the singular-
ities are to be shifted into the complex half planes by adding or subtracting
an imaginary part ie. Obviously, we have more options here than in the en-
ergy integral (3.35) of the nonrelativistic propagator due to the quadratic
energy-momentum dependence. They are all depicted in Figure 3.6 and lead
to different causal relationships. As we see shortly, the case d of Figure 3.6
turns out to be the right choice and leads to the desired causal behavior
(3.51). Clearly, this case is equivalent to shifting the pole —/p? + méc? into

a b

Y

Y

— ...

Fig. 3.6. Possible integration paths around the two singularities at +/p2? + m3c?
along the real po-axis. They all enforce different causal relationships. a corresponds
to the first equation of (3.47)and b to the second equation (retarded or advanced
propagator). c reflects (3.51) but with reversed temporal order. This means that
here positive parts would propagate temporally backward and negative parts tem-
porally forward. d finally yields the desired causality principle as defined in (3.51).
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the upper and the pole ++/p? + m3c? into the lower complex half plane so
that (3.56) can be rewritten as

I ]{ dpo (1°po — P + mgc)e 0@ ~a)/h

= lim —

CHOH(O - i)w (po + Vp? +mic? — ie) (po —V/P? +mge? + ie)
where H(0, R,+) denotes the semicircles with radius R in the upper and

lower half planes, respectively. This equation can now be evaluated easily
using the residue theorem.

x’® > x°: in this case only the pole at ++/p? + m3c? lies inside the region
enclosed by H(0,R,—). Taking into account the mathematically negative
direction of circulation of H(0, R, —), we therefore obtain

0, _ ~ipo(a’—a%)/n
R WHZZC)Q . Po = +1/p? + m3e?
0

with po as the positive free energy (instead of the integration variable as
before). Inserting this expression into (3.55) leads to

)

3 0
SI(Z‘O) (Jfl _ .TZ‘) _ _1/ d p eip(m’7m)/he7ipo(:c'07:vo)/h7 Do — YP + moc

(27h)? 20
= _1/dgpeip(a:’—:c)/he—ipo(x’O_zO)/h;{HmoC
(271’71)3 2p0
d3p i /e W mopc
— 3 —ip, (2" —x )/hio/l
/ @t oA )

with the energy projectors Ay (p) = (£ + moc)/2moc from Theorem 2.4.

x’® < x%: here we have to consider the pole at —\/p? + méc? enclosed by
H(0, R,+) so that

VI ipo (20 —a%)/h
- (=" 7p+27;oc)e Cpo = + /p2+mgcz.
0

With this (3.55) turns into

3 0
Sfmo) (2 —z) = —i/‘dfp oiP(& —) /R gipo ("0 —2®)/h ZY PO = YP F MoC

(2mh)3 o
- _i/ ( dgrf)Be_ip(”"w>/ﬁeipo<w’°—w°>/h—Vopo +p + moc
2w 00
3
N _i/ D —ine’ ) /ngino(a~a%)/n P+ MoC
(27h)3 300

By mocC
_ ip, (z'*—z*) /R 100 A
1/ (2’/TFL)3€ pO *(p> )
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where the replacement p — —p was made in the second row. Both cases can
finally by summarized in'?

a3 o
8@ =) = 10" - x%/ e T A )

Bp s moc
—i0(20 — 20 ipp (a' —zt)/h 10T 4
iO(x” —x )/(27rh)3e . —_(p) . (3.57)

As shown in Exercise 35, this expression can be rewritten, analogously to the
nonrelativistic case, as

2
SE‘O)(QJI B x) _ _19(:6/0 - .’I,'O) /d?’pzd}g")(‘rl)&z(j) (1.)
r=1

4
+i0(2? — 2'%) /dspzwg)(m')zzg) (x) . (3.58)
r=3

With it the validity of the second causal relationship (3.53) for the free case
is proven easily (Exercise 36).

All in all, we arrive at the result that the correct free fermion propagator
in momentum space is given by

h(y"pu + moc)
(po + /P2 + mic2 — ie) (po —V/Pp?+mic®+ ie)
h(~v*p, + moc)
pupt —mac? + 216\/1W + €2
h(ﬁyﬂpu + mOC)
pupt — mic? + i€’

S (p) =

in accordance with (3.52).

At the end, we point out that the choice of the propagator depends de-
cisively on the vacuum or on the states that are interpreted as electrons or
positrons. In our preceding calculations we have tacitly assumed that the
states of the negative energy continuum are occupied and that holes in it are
to be regarded as positrons. However, one can also imagine situations (e.g.
in the presence of strong fields) where certain states of the negative energy
continuum need to be interpreted as electrons with a temporally forward di-
rection of evolution. In such cases the integration path for Sl(;o) in the complex
po-plane must be adjusted appropriately.

13 1t is easy to see from this that in the nonrelativistic limit po &~ moc+ E/c, E ~

p?/2my the free fermion propagator SI(TO) turns into the free retarded propagator
G%F) from (3.16).
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3.2.3 Scattering Formalism

With Theorem 3.4 we have a relativistic propagator formalism for the prop-
agation of electrons and positrons on which we now build the corresponding
scattering theory. We can carry over many of the prerequisites from Subsec-
tion 3.1.3, namely

e that we assume particle scatterings against a fixed target with a locally
confined interaction potential,
lim V(z)=0,

|| — o0

e that, for the sake of simplicity, we describe the initially free incoming par-
ticles by plane waves instead of localized wave packets,

e which is justified because of the adiabatic approximation according to
which the asymptotic freedom of localized wave packets in the limit
|| — oo can be replaced by the asymptotic freedom of an incident plane
wave as well as of the resulting scattered wave in the limit t — +oo:

lim V(z)=0.
t—+oo

Scattering amplitude, scattering matrix. As in the nonrelativistic case,

we define the scattering amplitude Sy; by the projection of ¢; onto the free

plane wave ¥, long after the scattering, where v; denotes the scattered wave
evolving from the free plane wave ¥;:

Spi= lim_ / &0} (' () (3.59)

The main difference to the nonrelativistic case is that we now have to con-
sider one of two limits, ¢’ — 400 or # — —o0o, depending on the particle
types involved in the scattering process. If we are interested in electronic
scattering states ¥y is an electron wave with positive energy propagating for-
ward in time so that the limit ¢ — +oco is to be chosen. If, on the other
hand, we wish to study scatterings into positron states then, according to
the Feynman-Stiickelberg interpretation, ¥y is an electron wave with nega-
tive energy propagating backward in time. In this case the limit ¢’ — —oo is
relevant. Corresponding considerations hold for the incident particles: if they
are electrons, we have tii{rloo ;i (x) = ¥;(x), where ¥; is an electron wave with

positive energy. In the case of positrons . ligl Y;(x) = ¥;(z) follows with ¥;
— 100

as an electron wave with negative energy.

With the help of Theorem 3.4, we can now conclusively derive further
expressions for the scattering amplitude (3.59) with respect to the four scat-
tering scenarios

electron or positron — electron or positron
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in the following way, where the upper limit is to be chosen for electrons
(ry =1,2; 5 = +1) and the lower limit for positrons (ry = 3,4; ey = —1) in
their final states: due to

0i(e) = () + - [ SO — )i
and!*

U(z1) = lim 1ef/d3 "By ()0 S (2 — ay)

t'—+oo

[ @ @) = by - 9,
(3.59) turns into

S = lim {/ d3xlkp}(:v’)1/)i(a:’)

t'—+oo

+ —/d3 ’/d4:z: T ()08 (2 — a1 A ) (1)

l€6f

= 0(py = Pi)orr — 7= | d'wap(z)A(21)ti(en)

Iterating ; in the way
Yi(x1) = ¥i(x1)
e
+%/d4x25é (.’171 —xg)A(JTQ) (1]2)

%)2/(14332 /d%?’séo)(l‘l — z9)(22)
xSV (22 — 23)A(x3) Wi (x3)
+.o.,

we finally obtain, analogously to Theorem 3.2:

Theorem 3.5: Scattering matrix in the Dirac theory

The scattering amplitude Sy; is defined by the projection of 1; onto ¥y
long after the scattering against a target, where 1; is the scattered wave
evolving from the free plane wave ¥;:

Sf; = lim d3ac’¢}(m')¢i(x'), lim 9 (x) = ¥;(z) . (3.60)

' —+oo t—Foo

In the case of scattered electron [positron| states, ¥y is a plane electron wave
with positive [negative] energy propagating forward [backward] in time so >

14 See footnote 9 on page 188.
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that, on the left hand side of (3.60), the limit ¢ — +oo [t' — —oc] has to
be considered. If the incident particles are given by electrons [positrons]
then ¥; is a plane electron wave with positive [negative| energy and, on the
right hand side of (3.60), the limit ¢t — —oo [t — +00] is relevant.

With the help of the Feynman propagator formalism, the scattering ampli-
tude Sy; can be expanded in a series of multiple scatterings:

16
Sfi: 6<pf _pi)(STfTi _ /d4.’11‘1!l7f xl)‘ﬂ(wl)"pz(xl)
= 6(pf _p’i)(ST‘fT‘,‘
—iefi / A4y T (21 )A (1 )P (1)

—1ef /d4:v1/d xgwf mg)A(xg) ( 2o — 21 )A(21) i (21)

—ief (%) /d4x1/d4sc2/d4x3117f(x3)44(m3)51§0)(13 — Z3)

A(@2)SY (w3 — 21 A (1) Wi (21)
— (3.61)

AH denotes the four-potential of the target, S}(TO) the free fermion propaga-
tor, and €f the energy sign of ¥y.

This theorem is based on the adiabatic approximation and the Feynman-
Stiickelberg interpretation.

As in the remarks after Theorem 3.2, we note the following:

e The unitarity of the scattering matrix S follows again from the Hermitecity
of the Dirac-Hamilton operator along with the resulting conservation of
the total probability. However, the direct proof is a little more intricate
than in the nonrelativistic case as here the sum of the unitarity condition
ES,:fSki = 0y; needs to be taken over all states into which a given ini-
k

tial state can scatter. Therefore, the proof is best carried out within the
framework of quantum electrodynamics.

e Similarly to the nonrelativistic case, we may consider the evolution of ¥y
starting from ¥ (instead of v; starting from ¥;) in the opposite temporal
direction. In this case the scattering matrix is defined via

Spi=lm_ [ Pagf(a)i(x) , lim () = ¥yp(a’)

t—Foo

which, up to a phase, is identical to (3.60). This is because from
Pi(x') = lim iei/d?’xSF(x’,x)’yO%(x)
—F o0

Pp(r) = lim ief/d3:c'77/;f(x')'yoSF(x',x)

t'— oo
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follows that

S = Jim_ [ @oul@Wi@) = lm_ [ &b a0 w)

t—Foo

= lim ief/d3w/d3az’z/;f(m’)'yosp(ac’,m)fyowi(x)
t Ti:oo

= t/hm € ef/d3 /WT "Ypi(z') .

e As one can see, the scattering series (3.61) is essentially an expansion in the
fine structure constant in o, = e?/he a2 1/137 (in practice, A itself contains
the electric charge e). It is exactly the smallness of a, that guarantees a
fast convergence of (3.61) so that, in most cases, only the first few terms
need to be taken into account.

Let us now consider the physical implications of Theorem 3.5 in more detail.
First, along with

U;(x1) = hm 161/(13]}5( (z1 — )7 ()

r(z,) = t’EIj:loo ief/dga:’z/;f(:z:n)’yOSF (' —xp)

the individual expansion terms of (3.61) can be interpreted, analogously to
the nonrelativistic case, in such a way that a particle moves freely between
the space-time points x and z’ passing various intermediate points or vortices
x; with the probability amplitude Séo) (zi41 — ;) where it suffers a scatter-
ing through the interaction potential A¥. The total amplitude results from
integration over all possible vortices. Contrary to the nonrelativistic case,
the scatterings do not necessarily proceed in chronological order, which is
a consequence of the construction of the fermion propagator or, rather, the
causality principle (3.51) connected to it.

Electron scattering. If we are interested in the process of electron scatter-
ing

€; = +1, ¥; in the limit ¢ — —o0
(3.62)

ef =41, ¥y in the limit ¢’ — +oo

the relevant terms of Sy; to zeroth, first, and second order can again be
represented by the Feynman diagrams a, b, and ¢ in Figure 3.3 (with the re-
placement ¥* — ¥). Additionally, in second order the “achronological “ zigzag
diagram in Figure 3.7 contributes, which, following the Feynman-Stiickelberg
interpretation, we can interpret on the particle level as follows: an electron-
positron pair is created at xo. While the electron is moving out of the region
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t -

v

T

Fig. 3.7. Besides Figure 3.3c, this jagged Feynman diagram also contributes to the
scattering amplitude for electron scattering to second order.

of interaction, the positron is moving toward 1, where it is annihilated to-
gether with the incident electron.'® Note that all particle movements proceed
in temporal forward direction as physically required.

Within the hole theory, Figure 3.7 can also be interpreted in a way where,
at xo, an electron with negative energy is scattered into an electron with
positive energy, leaving a hole in the Dirac sea. While the latter electron is
moving out, the hole is propagating toward z; where it is finally filled (or
destroyed) by the scattering of the incident electron.

Positron scattering. As one can easily see, for the positron scattering

€; = —1, ¥; in the limit ¢ — +o0 }
(3.63)
€f =—1, ¥y in the limit ¢ — —o0 ,
the corresponding terms of Sy; lead to the same Feynman diagrams as those
of the electron scattering rotated by 180°. They can also be interpreted con-
sistently with the help of the Feynman-Stiickelberg interpretation as well as
with respect to the hole theory.

Pair creation. Apart from (3.62) and (3.63), we may also consider the com-
bination

€; = —1, ¥; in the limit t — +o00

€f =41, ¥y in the limit ¢ — +oo ,

which clearly corresponds to a positron and an electron both moving out of
the region of interaction, i.e. the process of real electron-positron creation.
Here, to first and second order, Sy; is represented by the Feynman diagrams
of Figure 3.8a-c, where in b and c the second order is split up according to
the different temporal orders of the two scatterings: in b the positron, and
in c the electron suffers an additional scattering after its creation.

15 Since the positron exists only for a very short time, it is also called wirtual. In
general, one distinguishes between real particles whose Feynman diagrams are
open on one side (open or external lines) and virtual particles whose Feynman
diagrams have a start and an end point (closed or internal lines).
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t t t

LUi v f 'Il- 14 f WZ‘ 14 f

a b c

xT x x

Fig. 3.8. Feynman diagrams of the scattering amplitude for the electron-positron
creation to first and second order. In b and ¢ the contribution to second order is
split up according to the different temporal orders of both scatterings.

Pair annihilation. Finally, if one rotates the diagrams of Figure 3.8 by 180°
one obtains the diagrams of Sy; to first and second order for the remaining
combination

€; = 41, ¥; in the limit ¢ - —o0
ef =—1, ¥y in the limit ¢ — —oo .

This corresponds to a situation where both electron and positron are entering
the region of interaction thus destroying one another.

By these simple examples the physical meaning and necessity of the mod-
ified causality principle (3.51) that we have incorporated into the fermion
propagator become very clear. Only using this, together with the Feynman-
Stiickelberg interpretation, is it possible to interpret the various expressions
in S¢; as electron and positron scattering, pair creation and annihilation, i.e.
as those phenomena that are indeed observed in nature.

To summarize, we can ascertain that Theorems 3.4 and 3.5 in conjunction
with Theorem 3.3 provide a meaningful description of relativistic scattering
processes of Dirac particles. In the following we will apply this formalism
to several concrete problems and extend it to more complicated scattering
situations. In so doing, we will encounter many complex but structurally
similar bispinor-y-matrix combinations. Therefore, we first investigate some
properties of such combinations in more detail.

3.2.4 Trace Evaluations with v-Matrices

For concrete scattering problems the calculation of |S¢;|? often leads to double
spin sums of the form

> lalpg, sp)ulpi, s:))[w(pi, s:) Daulpy, s¢)]

with u(p,s) or v(p,s) from Theorem 2.4 and I as operators containing
certain y-matrix combinations. Such expressions can generally be put down
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to traces and subsequently calculated further using some y-matrix trace rules
so that the explicit form of the bispinors does not need to be considered any
more. In the following we summarize some relevant relationships concerning

this matter and prove them directly afterward.

Theorem 3.6: Trace evaluations with y-matrices

The following relations hold:

2 [ENNu@IE@ L] = tr {40144 (i) ]
S B OEO ()] = A= ()T A= ()T
5 @I o L)) = ~tr (A4 (o) [iA- (o)
S BRG] = A @ATA GO

(3.64)

with the abbreviatory notation u(i) = u(p;, s;) and so on. Depending on
the concrete form of the operators I 2, the traces can be calculated further

with the help of the following identities:

tr(df) = 4a-b

tr(dy -
tr (1o -
tr(dy - -

+...+(=1)
tr(7°) = 0
tr(y5¢y -+ - fhn) = 0 if n is odd
tr(y>#p) = 0
tr(vPhid) = —4ie*P%a,bge,ds
Yyt =4
Vud" = =24
Tty = da-b

VudPr*
VudPidrt

“¢y) = 0if n is odd
¢i2n)
) =

— 24
2d64¢ + 2¢id

tr(don - - ft1)
ai - agtr(ﬁg ©coo
—aq - agtr(ﬁ2ﬁ4 500 ﬁn)

"ay - aptr(do - -

fin)

Vin—l)

(3.65)

(3.66)

Note the index saving notation a - b for a*b,, which will be used often in the

following.



3.2 Scattering of Spin-1/2 Particles 217

To (3.64). Due to the projection relations (see Theorem 2.4)

01 (p) A (p) =0 (p) , B (p)AL(p) =0
() A_(p) =V (p) , 0" (P)A-(p) =0

and the second equation of (2.16), we have
2
> ualius(i) = Z $p pi)

Z D)ol () [+ (005
— A (P (3.67)

ZU“ i)0s(i Zw(r) Di)

Y el 0ad () A 0l

e,r=1
—[A+(Pi)lap - (3.68)
Concerning the first equation of (3.64), it follows that

> () u(@)]a@) u(f)) = to () apus(i)us(0) [T a]seuc(f)

SfySi @

a(H)[]aplAs (pi)] s T2]scue(f)

I
I

= 3w (HIiaslAs (9)] 55 else

=3 A op)ealasl At (p2)] g5 2]

Putting the matrix multiplications into one single matrix finally yields the
proposition. The proof of the remaining equations of (3.64) proceeds analo-
gously.

To prove (3.65) we particularly need the anticommutator relations
{47} = 29" and {7°,4*} = 0 as well as the cyclic permutability of
the trace: tr(AB) = tr(BA). In the following the use of these relations is
marked by the symbols a and ¢ over the corresponding equal sign.
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To 1. equation of (3.65).

() < () = S+ ) = Saubotr(r7” +77)
2 a,bytr(g") = abygtr(l) =4da - b .

To 2. equation of (3.65).

(s ) = tr(dy - finy*y”) = 60V i)
(=1)"tr(dhy - dnyy) = (=1)"r(ds - fin) -

To 3. equation of (3.65). Here we make use of the charge conjuga-

tion transformation C' from Subsection 2.1.6 with the property C~'4*C =

—y*# = —4041T~0 [see (2.40)] and calculate as follows:
tr(dy -+ fion)

tr(CC™ L CC iy - - CC ™ i)
tr(C’_lyilCC’_l;zig s Cc_lﬂignC)

(=1)*"tr (7017 37" -7 i3,7°)

tr (@1 - da,) = tr(gian -~ 1) = tr(don - dha) -

To 4. equation of (3.65).

tr(fagy - - dhn) = tr[(—dodn + 201 - ag)fhs - - fha]
= 2aq - a2tr(¢i3 . ﬁn) _ tr(¢22¢21¢i3 - ¢gn) )

Further continuation of this procedure leads to

tr(dy -« dyn) = 2aq - aotr(ds - - dn) — 2a; - agtr(dody - dn) + . ..
F(=1)"tr(gho - - fhinghy) -
From this, along with tr(do--- 1) = tr(di---dy,), follows the asserted
equation. This relation is exceedingly useful for calculating complex traces of
~vy-matrices. However, even for moderate n, the number of the arising individ-

ual terms can be considerably large. For example, in the case of n = 4, the
4. and 1. equations of (3.65) yield

tr(apgd) = 4 [(a1 - az)(as - as) + (a1 - as)(az - az) — (a1 - az)(az - aq)] .
To 5. equation of (3.65).

=1l

[lo I

[lo

tr ('ys) =tr (757070) = —tr (707570) = —tr (757070) =0.

To 6. equation of (3.65).
(77 - ) = ey dny®) = (1) (Y ) -
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To 7. equation of (3.65). The proof is adduced if we can show that
tr (’ys’y“’yV):O. We only need to consider the case u # v due to the 5. equa-
tion of (3.65). For A # p, v follows that

tr ('ysv“'y”) = tr [’YS’Y”’YV (’Y)\)71 ’YA] = tr [’Y’\’Y57”’YV (’Y)\)il}
L (1P [t ()] = (<P (7)< 0.

To 8. equation of (3.65). Here we consider the expression tr (757“757775).
This trace vanishes if two indices take on the same value. This is because if,
for example, the first and the third indices are equal, we have

tr (17779%979°) = tr [y77 (29077 = 1%07) 4]
= 2g°‘ﬁtr (7570‘75) — g“%tr (757/375) 6.cq- 0.
Thus, only the trace
tr (7570717273) —tr (_175,},5) — 4 — —4je0123
contributes, as well as those with permuted indices. However, due to the
above anticommutator relations, the result remains unchanged for even per-

mutations, while for odd permutations there appears an additional sign, in
accordance with e®#79,

To 1. equation of (3.66).
W = GV = G (26" = AY) = 209" — " = 8 — Yt
To 2. equation of (3.66).

l.eq.
V" = YV E ua, (29" —A1Y) = 20— A = 24
To 3. equation of (3.66).

v a v vy 2.eq.
Vulr" = Vb,V A E by (29 — A1) T 2 + 24
= da-b—24f+ 246 = 4a - b .
To 4. equation of (3.66).
v a v vy 3-eq.
VufBdr" = Vudbey v E vudbe, (29" — M) T=" 2440 — da - be
£ dda - b— 2¢Pd — 4da - b¢ = —24Bd. .
To 5. equation of (3.66).

VB = g,y V2 bid, ) (294 — ") T 2 + 24P,
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Summary

Similarly to the nonrelativistic case, the Dirac equation can be rewritten
as an integral equation for the propagator and for the wave function itself
that is solvable approximately.

Due to the quadratic energy-momentum relation, there exist four pos-
sible boundary conditions (instead of two as in the nonrelativistic case)
to determine the propagator uniquely. They all lead to different causal
relationships.

The Feynman fermion propagator describes the temporally forward
[backward] evolution of a positive [negative] wave function. Through this
and the Feynman-Stiickelberg interpretation, the positive [negative] parts
can be interpreted as temporally forward directed particle [antiparticle]
propagation.

Relativistic scattering processes are described by scattering amplitudes.
Using the Feynman propagator formalism, they can be expanded in a
series of multiple scatterings. Compared to the nonrelativistic case, the
graphical representations of the individual expansion terms (Feynman
diagrams) are more complicated reflecting the more versatile scattering
constellations, particularly the possibility of particle creation and anni-
hilation processes.

The concrete calculation of scattering processes is based on the same
considerations as in the nonrelativistic case (plane waves, adiabatic ap-
proximation and cross section).

Exercises

35.

Decomposition of Sl(;o) by plane waves. Show the transition from

(3.57) to (3.58).

Solution. For plane Dirac wave functions (see Theorem 2.4)

wz()LQ) (x) - 27Th 3/2 \ / _lp“I /h p7 :I:S)
[P0 mo +ip,x
¢(3 4)( ) - 27Th 3/2 Pu /h pa :FS)

we have the relations [see (3. 67)a (3.68)]

> ulp,s)ulp,s) = Ap(p) , Y _v(p,s)o(p,s) = —A_(p) ,

S S

from which follows that




2
(2rh)? 3" D (@ )0 (@) = e == MIOENR 4 sya(p, s)

r=1

Exercises

Po

—i [T~ mopcC
= eI )
Po

4
@2rh)® S ol (@)Y (@) = @@ TIN5 (p,s)

r=3

Po

= _eipu(w/“—w“)/ﬁw/li(p) '
Po

Comparison with (3.57) yields (3.58).
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36. Causality principle of Séo). Show the validity of both causal relation-
ships (3.51) and (3.53) for the free case by exploiting (3.58).

Solution. Let

()

:w(+( _HJJ(

/d3 ’Z a(r W(r,) ()

r’'=1

be an arbitrary free Dirac wave packet. Then it holds that

/deSI(?O) (2

—i0(x

+i0(2° — 2’
1 4

)7 (x)

oo fon o

O (@) @)yl (2)a (p)

0 / e / . / 5y

SN 9P @l @)l (2)a") (p)

~a) [ /dS’ZZcSMp P (@)a (p')

r=3r'=1

+1@x —

—i6(x

+i0(2° — 2’

r=1r'=1

) [ & /d“ZZawap Py (@) (p)

r=3r'=1

-2 [ d3pZ 6 (@) (p)

0) / d%Zw;:)(x')a“) (p)

—i0(a" - 2%)p ) ( )+1@(x —2)p ) (') .
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Similarly, we have

[ Eai@ns? @)

= —i0(2° —x'o)/d?’x/d3p'/d3p

X Z Za“ ()05 (@) ()0 (')

r'=1r=1

+iO(x /d3/d3'/d3

4 4
Z > a0 (@) (@)l ()08 (2)
'=1r=3

= —iO(z® — o’ /d3 //dspZZa(r *( Z/J(r)( "6, 8(p — p')

r'=1r=1

+O(x /d‘3 ’/d3p2 Za“ ()0 (2)6,08(p — p)

r’'=1r=3

2
— Li0(0 — o) / Y )i @)
+iO(x / dp Z O (p)dy) (@)

= —i0(2® — 2’ )w(+)(a: ) +1@(w — 2 (@) .

3.3 Spin-1/2 Scattering Processes

After the preparatory considerations of the preceding two sections, we now
carry out concrete calculations of spin-1/2 scattering processes to the lowest
orders of the scattering theory. As the simplest example, we first consider
the Coulomb scattering of electrons. Thereafter, we discuss the more realistic
case of electron scattering against freely moving protons. Here we encounter
a close correspondence between scattering processes, Feynman diagrams, and
scattering amplitudes that can be cast into a simple set of rules, the so-called
Feynman rules. Furthermore, we address the processes of electron-electron
and electron-positron scattering as well as Compton scattering against elec-
trons, electron-positron creation by two photons, and electron-positron an-
nihilation into two photons. The first two and the last three processes are
interconnected via the principle of crossing symmetry. This section ends with
a complete compilation of the Feynman rules.
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Before we start, we highlight some points that are essential for the correct
understanding of the whole third chapter.

e The Dirac equation deals with the movement of (anti)fermions within an
external classical background potential. The same is true for the propa-
gator formalism (Theorem 3.5) as it is merely based upon a perturbation
theoretical expansion of the Dirac equation.

e In this respect, the scattering of an electron against an external classical
Coulomb potential is a concrete and totally legitimate application of this
formalism.

e Strictly speaking, the electron-proton scattering lies outside the range of
our formalism. However, it can be integrated into it by a plausible exten-
sion, namely that the external potential is considered to be created by the
proton or electron current. In this way, any two-particle scatterings can
generally be described as current-current interactions within this formal-
ism, whereas the interactions themselves, i.e. the A*-fields in the scattering
series (3.61), can be interpreted as the exchange of n virtual photons be-
tween both particles to n-th order.

e The other processes, Compton scattering, electron-positron annihilation,
and electron-positron creation, clearly go beyond the scope of our formal-
ism since they involve photonic initial and final states. Fortunately, even
here one can find a reasonable way of integration by considering the A*-
fields in the term of the lowest (here: second) order of (3.61) as the incoming
and outgoing photons. However, in this case the question naturally arises
how the A¥-fields of higher-order terms are to be interpreted.

e As we will see, the scattering amplitudes of all of these processes can be
graphically depicted and calculated using the Feynman rules. However,
the Feynman rules are much more general than what follows from our
scattering formalism. Besides tree diagrams, they also allow the presence
of loop diagrams corresponding to the creation and subsequent annihilation
of virtual particles. Strictly speaking, those effects (radiation corrections)
cannot be explained by our formalism and are purely of quantum field
theoretical nature.

e In other words, the Feynman rules are the quantum electrodynamical di-
rectives for the construction of scattering amplitudes. They can be de-
duced from the propagator scattering formalism with some additional, not
necessarily obvious generalizations. In the narrow sense, the propagator
scattering formalism only provides their tree level part.

e Apart from the presentation of the complete Feynman rules, this section
deals exclusively with scattering processes on tree level. Quantum electro-
dynamical corrections (loop level) are the subject of Section 3.4.
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Further notes. From now on we use the natural unit system throughout in
order to keep our calculations as clear as possible. In this system we have

h=c=1.

Consequently, there is only one energy or mass unit left which is typically
measured in electron volt (eV). Furthermore, length and time are propor-
tional to each other and possess the unit 1/eV. The conversion from the
MKS to the natural system is

1.519 - 10%° 5.068 - 108
1s = Y , Im = v . (3.69)
Finally, note that we will use two different notions of order in the following.
Firstly, “order” refers to the number of the term within the series of multiple
scatterings from Theorem 3.5 starting from zero. Secondly, it means the order

in the coupling constant e.

3.3.1 Coulomb Scattering of Electrons

First, we consider the scattering of electrons against a Coulomb potential of
the form

eA%(z) = V(z) = —

B
where we proceed similarly to the nonrelativistic calculation in Subsection
3.1.4. Since incoming and scattered particles are electrons, we choose for ¥; ¢
positive plane Dirac waves normalized to the volume V with electron mass
myg, energies E; ¢, four-momentum indices p; r, and four-polarization indices
si,f [compare to (3.62)]:

Vi(z) = m u(p;, s;)e"FitelPi®  (in the limit ¢ — —o0)

Up(x) = /Ein(‘)/ (pf,sp)e ErtelPi® (in the limit t — +o00) .

According to Theorem 3.5, the corresponding scattering amplitude to first
order (e =41, f # 1) is

Sy = —ie/d4x@f(m)7“A#(ac)LT/i(x)

2
_ _E mgy
= V\EE (py,s)y u(pi, 5:)
T/2
/ dte (By— E)t/dee iqm?’ q=ps—pi
~T/2
218 (Ef — E;)] | m2 Ara .
T |4 EE Myi , Myi = 2 —5-ulpg, sp)y ulpi,si)
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where, in the last step, the relations

T/2 .
) e —iqxe 4

/ dtel(Ps =Bt T 2m0(Ey — E;) , /d3a:e = —Z
T/2 % =l 1

[see (3.25) and (3.26)] have been used. Due to Theorem 3.3, the differential
cross section follows as

do — |Sfi|2 Vdipy mo 2mé(Ef — EZ)]Z‘ 2 mod>py
DTl @n* B TV ™ em3Ey
or, after the replacement [2n8(Ef — E;))> — 2nT6(E; — E;) with finite T,
mo mod®py
|M i |>(2m)6(Ef — B;) e (3.70)
EWAf T ey

To determine the current density |j;| we assume the velocity of the incoming
particle to be oriented toward the z-direction. It then follows that

. m
|9il = 7E4€/ ’UT(pia5i>a3U(pi>5i)|
K2

and, in the Dirac representation,

Xsi
L g) = Ei +mo ’ T -1
u(pi, si) = W o3|p; » Xs; Xsi = 1
Ei + myg

where the concrete form of the spinors s, depends on the direction of po-
larization s;. From this follows the polarization-independent and intuitively
expected relation

OBV
Inserting this into (3.70), the differential cross section becomes
mod®p;
d My, 6(Ef — E;
o= |l|| pil*(2m)é(Ey )(27r)dEf

where, as desired, all dependencies of T' and V' are removed. Taking into
account

E(dFE
d*py = pidlps|d2 , E} = pj +m§ = dps| = |fpf|f :
we finally get
= s [ aBlpsllngo(Ey - B
a0 ( ) | | fIPf fi f

2
n)? ) 3 1 Myilf, =i,

4oy
T O‘ (s, 5£)7 u(pi, ;)

(3.71)

|2
lpsl=Ipil
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As expected, in the nonrelativistic limit this expression turns into Ruther-
ford’s scattering formula (3.29):

(s, 5107 u(pi, 5:)|” = ‘(1’0) ((1) (1)> ((1))

Unpolarized cross section. To calculate (3.71) further, we initially assume
that in the scattering experiment neither the polarization of the incoming
particle beam is prepared nor the polarization of the scattered particles is
measured — quite a typical practical situation. This implies that in (3.71) the
average over all possible initial polarizations s; and the sum over all possible
final polarizations sy must be taken (every possible s; occurs with the same
probability and every possible s; is measured):

2
=1.

do 4a mo
A 5 2 [1pr 57 ulpi, i i1t - (3.72)

Gf 84

The appearance of such double spin sums within cross sections allows a com-
fortable evaluation using Theorem 3.6 where the concrete form of the involved
bispinors does not matter. Therefore, here and in all subsequent scattering
problems, we will strive to cast the corresponding cross section into a form
similar to (3.72). In the case of (3.72), it follows from (3.64) and the second
equation of (3.65) that

OU(PmSi)] [U(vasf)’You(pi,Si)]T

u(pi, s:)] [a(pi, i)y u(py, sp)]

!ﬁ(Pfan)WOU(Pivsi)f = [a(pys,ss)y

= [a(pys, 577"
= > |alps, s ulpi,s:)|” = tr [A ()7 ° As (pi)r°]

SfiSi
(Pt movoﬁi + Mo o
2m0 2m0

= 41 2tr(¢f70;¢ ¥ ) + rtl‘(ﬁf)

1
+4m tr(ﬁl) + 4tr( )

1
= I ztr(ﬁffworfv )+

Introducing the four-vector (a*) = (1, 0,070) and using the fourth and first
equations of (3.65), the remaining trace becomes

tr (B7"$n°) = tr @y dipist)

2(py - a)tr(pid) — (ps - pi)tr(did)

8(ps - a)(pi - a) — 4py - pi)(a- a)

= 8E;Ey —4(E;Ef — pipy)

= 4E;E; + 4p;py . (3.73)
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All in all, (3.72) turns into Mott’s scattering formula

do <da> ZQQm% (1 n EE; + pipf)
—_— = _— = 1 5
a2 \de) . 9 Mo pyl=lpl

20) B (1—1)2511123) (3.74)
- 4 0 4 :
2 4U§Ei2 sin” g

4a
q!

90
<E2 cos? 3 + mg sin

where, in the last row, the identities

0 0
A _ 2 2?2l
plpfl‘Pf|=|Pi| = pj cosB , cosf = cos 5 ST

0
L b =olE

. 2
= 41%2 sin 5

’|
9 lips|=lpi|
have been used.

Partially polarized cross section. Next we suppose that the polarization
sy of the scattered particles is measured while the incoming particle beam is
still unpolarized. Instead of (3.72), we now have to consider

do 402 m 1
W= Zlu (pss 57w is 50|, i (3.75)

resulting from (3.71) by averaging over all possible initial polarizations s;.
Obviously, this expression does not possess the desired form of a double
spin sum. However, using the spin projectors X(s) of Theorem 2.4, we can
transform the single spin sum in (3.75) into a double spin sum which, as
before, can be easily evaluated further with the help of Theorem 3.6. Taking
into account

E(s)u(p, 5) = U(p, 5) ) E(s)u(p, *5) =0,

we have

> aps, sy ulpi, si)|”

S

= Z a(pg. 507 u(pi, 50)] [a(ps, sp)7 ulpr, s:))'

= Z [@(pg, s5)y ulps, si)] [w(pi, )7y ulpy, s5)]

Si

> s, )7 ulpi, s0)] [wpi, 57" S(sp)ulpy, s5)]

tr [A4 (p)7° Ay (pi)7° S(sp)]

1(2)tr (@ +mo)V (i + mo)y (1 +7°45)]

ZSm
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tr (B ") + %

8m}
1 E;Ef + p;

_— (1 + fJ;“”) . (3.76)
2 mg

The last-but-one step results from the fact that traces consisting of an odd
number of ¢-multiplications (with or without an additional 4°) vanish and
that terms with an even number of g-multiplications and one additional ~°
can be related back to terms of the form tr(y°¢§) = 0 by anticommuting with
/9. The last step follows from (3.73). Inserting the last relation into (3.75)
and comparing this with (3.74) we obtain the final result

do a?m? E;Ey + pipys 1 (do
—(Sf) _ 0 <1 + 2) = _ | = . (3.77)
dn q* my lps|=lpil 2 \de2 Mott

Accordingly, do(sy)/df? is independent from the measured spin of the scat-
tered particles — an effect which is only true in the lowest order of the scat-
tering theory.

The cross section of the complementary situation where the incoming
particle beam is polarized while the polarization of the scattered particles is
not measured can be obtained analogously. To do this, one has to consider
the equation [see (3.71)]

do B 402

2
o datmg o Ou(p;, 5:) |2
a0 ) = =g 2 A s ulpe sl iy
Sf

in which all possible final polarizations are summed up. Performing a calcu-
lation similar to (3.76) where the spin projector X'(s;) [instead of X(sy)] is
inserted appropriately, one finds

_ 2 1 E;Es + pip

E |[u(ps, sp)7 ulps, si)|” = 3 (1 + 7fm2 !
0

Sf

and hence

do 2a2m? LBy + pipy do
(i) = g (1 + 2> “\an) - ©G®
ds? q my lpsl=|p:l e Mott

Totally polarized cross section. Let us now consider the remaining case
where the incoming particle beam is polarized and the polarization of the
scattered particles is measured. Here we have [see (3.71)]

do 40®m?
7(57;78 = 0 a(p ;S ’YOU Di,y Si
a0 (50 5¢) o a(ps, 557 u(

2
)’\pflz\pi\ '

Similarly to the earlier cases, this expression can also be written as a double
spin sum by inserting the spin projectors X(s;) and X'(sy) and subsequently
simplifying the result using Theorem 3.6:
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’ﬂ(Pfan)WOU(Pi,SiHQ

= [a(pg, sp)7 ulpi, s:)] [w(pi, )7 ulpy, s5)]

= Y [alps: 7 Slsi)ulpi, )] [alpi, s)7° 2 (s)ulpy, )]
tr [Ay (pr)y° Z(s0) Ar (i) 2 (s5)]

Prtmo ol +24idh +mo o1+
tr Y v
2m0 2 Qmo 2

= {tr (@ + mo)?° B + mo)y’]

+tr Wf +m0)7°7° $i (i + mo)?°]
+tr (@7 + mo)y° @ + m0)7° 7]
+tr [ +mo)y "y i + mo)r* 4] } -

Here the second and third traces vanish due to the same line of argument as
n (3.76). Therefore, it follows that

T s05) = o {tr [0+ m0)y G + o))

+tr [(Br + mo)y" v i (i + mo)y* By }‘p o (3.79)
rl=Ipi

Contrary to (3.77) and (3.78), the polarization dependencies are still present.
Thus, for further evaluation of this expression, the four-polarizations s; and
sy need to be concretized. For this purpose, consider an electron whose rest
spin is directed toward s(®, |s(0)| = 1. Then, according to Theorem 2.3,
the electron’s four-polarization in a system where it is moving with velocity
v=p/Eis (c=1)

O S(O) 3(0)
(s") = [A_y)", (S(O)) - (pmo s 4 pp) , (3.80)

mo(E + mo)

where A_, denotes the Lorentz transformation for the transition from the
electron’s rest system to a system moving with velocity —w relative to it. If
we now assume that the electron’s rest spin is parallel or antiparallel to its
direction of motion, i.e. that it has positive or negative helicity
RONE
p

then (3.80) turns into

() = A <|” E”) .
mo’ mo |p|

Hence, for the case of incoming and scattered particles each with positive or
negative helicity, (3.79) can be rewritten as

A=41,
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do a? 0
a0 Qo) = gz {1 [0+ mon "G + mo)r']

+XA s tr [ +mo) vy Fi (i + mo)v " 4] }‘pl ol
rl=Ipi

with
(s7) = Nisi» i = <pz|7 LB )
mo " mo |pil
E
m oy _ (lpsl Ef py .
(s%) = sy, sy (mo Vmo Tps]
Taking into account |pys| = |p;|, cosf = p;ps/|pi|?, examination of the re-

maining traces according to Theorem 3.6 yields

0 0
tr [(#r +mo)y° (@ +mo)?°] = 8 (EZ2 cos? 5 + m3 sin® 2)

5 0 0
(6 + moly® 4+ o2 ] = 8 (B oo § — misin? )

Therefore, the totally polarized differential cross section is

do

2 0
d(Z()\“/\f) ; |:E2COb *+mobln2€

2 2
0 0
+ XAy (EZ2 cos? 5~ mé sin? 2)] .

As expected, after averaging over \; and/or summing over Ay, this turns
into the expressions (3.74), (3.77), and (3.78) for the unpolarized and par-
tially polarized cross sections. Thus, even in first order, the counting rates
of the scattered particles with a particular spin orientation depend on the
polarization of the incoming particle beam.

Besides the cross section, the degree of polarization is also of interest in
spin-sensitive scattering experiments. It is defined as the difference between
the counting rates for positive and negative helicity divided by the total
counting rate:

dcr()\f =+1)— da()\f =-1)
do(Af =+1) +do(A\f=—1)

If the initial state is totally polarized, e.g. A\; = +1, the corresponding degree
of polarization is

P(X\) =

22 6
2mi sin” 5

PAN=+1)=1-— .
(A ) E2 cos? g + m? sinzg

In the nonrelativistic limit £ — my, it becomes

0
P\ =+1) = 1—25in2§ =cos#f ,
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which is simply the geometric overlap of the quantization axes of the initial
and final states. This implies that, in this limit and seen from a fixed system,
the spin is not influenced by the scattering at all.

Theorem 3.7: Coulomb scattering of electrons to leading order

The scattering amplitude for the scattering of electrons against a fixed
Coulomb potential of the form

eA%z) = % | A(z) =0
||
is given in leading order by (f # i)

. .27T6(Ef —Ei) 2
Spi = v EEf My s

dma
Mfi: q_u(pﬁsf)’y u(pu z) » 4 =Pf —Pi -

The differential cross section follows as

mo mod®py
do = Me; T)0(Er — E;
o EV|1|| P @mB(Es — B st
modpf
= m)o(Es — E;
do m3

er (2r )2' fz‘|1’f| il

where, in the last equation, all scattering momenta p; directed toward
df2 have been integrated out. From this one obtains the unpolarized cross
section (average over s; and sum over sy, v; = |p;|/E;)

do 202m2 E;Ef + pipy
w) T \TTm
Mott g Mo lpsl=Ip:l

6 6 a? (1 —v?sin* %)
E? cos® = + m?2 sin? —) = ¢ 2
< ! 2 0 4v}E?sin®

40
?

2

the partially polarized cross sections (average over s; or sum over sy)

d_”( )_1 E d_”( )= E
a2 =9\ an C 4V’ T \ae ’
Mott Mott

and the totally polarized cross section (with initial and final helicities A; ) >
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do 202 [ 5, 50 5 o
dQ(A,,Af) vy [EZ cos™ 5 + mysin” 5

+ Nidg (Ef cos? g — m2 sin® g)}

Let us now turn shortly to the Coulomb scattering of positrons to leading
order. In this case we have to describe the outgoing positron (with ps, sf)
by a temporally backward directed negative plane Dirac wave 1; (with —py,
—s7) moving into the scattering area and, accordingly, the incoming positron
(with p;, s;) by a temporally backward directed negative plane Dirac wave
1y (with —p;, —s;) moving out of the scattering area. We therefore have
[compare to (3.63)]

T Q/ (pf,s¢) YetiEsle=iPs® (in the limit ¢ — +00)
f
m ) )

9 v(p;, si)eTiFite=Pi  (in the limit t — —o0) .
EV

Analogously to the electron case, Theorem 3.5 (e = —1, f # i) yields the
scattering amplitude

i2m0(Ef — E;)] | m3 4T

B o (. <.)~0 P
Spi =+ By Vi Mri = 05y 0(pr )

which differs from that of the electron case only by the overall sign (due to
er) and the involved bispinors. Due to the kinematically equal situations, the
calculation of the differential cross section leads again to the formula

do m3
an -~ (277)2| fz|\17f|—\m\'

Depending on the considered situation (unpolarized, partially or totally po-
larized particle beams), we again have to consider different sums of |M ;|2
They all contain traces differing from those of the electron case only by the
replacement A (p) — A_(p). Therefore, due to 3.6, it follows that in the
positron case, we get the same |My;|?-sums and hence the same cross sec-
tions as in the electron case. However, this coincidence is only true in the
lowest order.

3.3.2 Electron-Proton Scattering (I)

The Coulomb scattering of electrons discussed in the preceding subsection is
equivalent to the electron scattering against a fixed, infinitely heavy, spin-
less, and structureless proton. In this and the next subsection we extend
this scenario and deal with the more realistic scattering of electrons against
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freely moving, finitely heavy protons. These protons are now considered to
be spin-1/2 particles, whereas their internal structure is still ignored. Thus,
particularly due to repulsion effects, we expect some differences compared to
the Coulomb scattering.

The starting point of our discussion is the scattering amplitude to first
order (see Theorem 3.5, ey = +1, f # 1)

St = —ie/d4x@f(x)A£Pi(x) . (3.81)

As before, ¥; and ¥y denote positive plane Dirac waves for the initial and
final electron states normalized to the volume V. A* is the four-potential
generated by the proton whose form is a priori not clear and needs to be
determined. We assume that the proton’s electric current (more precisely:
electric current density) J (®)i is known. The corresponding electromagnetic
radiation field A" can then be calculated via the Maxwell equation'®

D FM (x) = 4mJ®P) () | FH = 9FAY — 9 A*
or, using the Lorentz gauge 9, A" = 0, via
DM A” (x) = 4m TP (z) .

For our purposes, it it advantageous to use the Green function calculus and
write the solution to the last equation as

Al (z) = / d*y DO (z — y) TPk (y) . (3.82)
Dl(go) is the free photon propagator which, in turn, has to fulfill the equation

8“8“D1(;0) (x —y) =4mdé(x —y) . (3.83)

For its solution, we proceed similarly to Exercise 31 and Subsection 3.2.2.
Using the fourdimensional Fourier representations

d4q —ig-(z—y) 1
Dy —y) = / P )

d4q —ig-(x—
6(z —y) _/(27T)4e ey

and inserting them into (3.83), it follows that

- 47
Déo)(q) = 2 ¢ =quq" #0

d4 —4r .
0 q —ig-(z—
= D=0 = [ e s

Based on our conclusions in Subsection 3.2.2, we have added a small imagi-

nary part to the denominator from the beginning, which guarantees the de-
sired causal behavior of A¥, namely that only electromagnetic radiation with

6 The factor 47 /c = 47 results from the use of Gaussian units (¢ = 1).
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positive frequency, i.e. positive energy, occurs. Of course, we also have contri-
butions with negative energy moving backward in time. However, since the
photon carries no charge and is therefore its own antiparticle, both processes
are physically identical.

Combining the two equations (3.81) and (3.82), the scattering amplitude
follows as

Spi = —ie/d4x@f(m)7MA“(x)%(x)
—i/d433/d4y[e!I_/f(sc)'yH%(sc)]A”(x)

S / d'z / dty [edp (2)yi(2)] DO (@ — ) TP (), (3.85)

where the proton current J®* is still undetermined. Obviously, the square
bracket can be identified (to first order) with the current of the electrons:

Tu(w) = eWy()y,Pi(x) -

Since the electronic and protonic currents should be physically on equal foot-
ing (electron scattering within the proton field <= proton scattering within
the electron field), it makes sense to choose the protonic current (to first
order) as'”

TP (y) = eu TP ()" (y) . (3.86)

Here e, = —e denotes the proton charge and u'/i{l}’ the proton wave functions
in the initial and final states, i.e. positive plane Dirac waves normalized to the
volume V. Understandably, both currents are also called transition currents.
Inserting the electron and proton wave functions

Vi(z) = g&u(msi)e_”’”
i) = gj?/“(pfvsf)e_i””
o) (y) = \/@u(ﬂ,&)e—iﬂy

E®V
w;p)( ) = Mo u(Py, Sy)e 1y

=
'z
<

7 Strictly speaking, this choice of the proton current along with the resulting sym-
metric current-current interaction is an extension of our scattering formalism,
since now the A"-field is no longer an external background potential that cannot
be influenced by the scattering. A formal justification of this procedure can only
be found within the framework of quantum electrodynamics (compare to the
introductory notes in this section).
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as well as the photon propagator (3.84) and the proton current (3.86), the
scattering amplitude (3.85) now becomes

a [ [ e

—4ree
qu u( Py, Sg)v" UJ(PMSZ)]

x el (Ps—Pi)@o—ia-(2—y) i(Pr—Pi)y

X |:u(pf7 Sf)’)/,u,u(pu Sz)

where My, E;’ f), P; ¢, Si 5 denote the mass, energies, four-momentum, and
four-polarization indices of the proton. The = and y integrations can be car-
ried out immediately,

/d4mei(pf—p1i_q)'m = (277)46(pf —pi—q)
/d4yei(PffP7:+tI)'y = (277)45(Pf - P +q),
and lead to the ¢ integration

—4mee
2m)* [ d*¢8(ps — pi — @)3(Py — P+ q)——=
(W)/q(pfp 9)6(Py Jrq)qQJrie

—4mee
= 2m)%(ps + Pf —p; — Py) ———2— .
(2m)"6(ps + Py —p )(pf—pi)2—|—1€
All in all, we end up with the expression

i[@2m)*o(py + Py —pi = Pi)] | md Mg
V2 ElEf E(p)E(P)

_dree (3.87)
@ +ie (vasf)7 u(P;, Si)

S = —

My = u(py,sg)vuu(pi,si)—5——

q =DPf—Di-
Note that the amplitude My, is manifestly Lorentz-invariant. Furthermore,
it displays a perfect symmetry with respect to the electron and proton vari-
ables, which justifies our choice of (3.86) for the protonic transition current.
Finally, the fourdimensional §-function expresses the fact that, contrary to
the Coulomb scattering, not only energy but also momentum is conserved
(four-momentum conservation).

Cross section. Coming from (3.87), we can now use Theorem 3.3 to cal-
culate the cross section for the electron-proton scattering. Here we have to
keep in mind that the integration needs to be carried out over all possible
final states of both electrons and protons. This means that, in Theorem 3.3,
we have to consider not only the number of final electron states within the
momentum interval [py : py +d3p 7] but also the number of final proton states
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within the momentum interval [Py : P+ d3Py], which, in total, leads to the
phase space factor

Vd3pf Vd?’Pf

(2m)? (2m)3
Therefore, the sixfold differential cross section is

1Sy Vd3p,; VA3 Py
T|js| (2m)* (2m)?

2
mo My [(2m)*3(ps + Py — pi — Pi)]
E; E;p) V2|54
mo MO 1 2 4
= 2 | M2 (2m)% Py —p; — P,

B: g0 G Mail"@m) oy + Py = pi = i)
m0d3pf MOdSPf
(2m)°Ey (27)3pl®

In the last step, the mathematically ill-defined §-square has been replaced by
the appropriate generalization of (3.28) for a finite T" and V:

do =

modgpf MgdBPf
(2m)2Ey (2m)2 B

| M|

« (3.88)

[(2m)*3(ps + P; —pi — B)]* — TV (2m)*6(py + P; —p; — P)) .

Next we need the current density |j;| resulting from the relative motion of
the mutually approaching electrons and protons (p,v; = particle density
and velocity of the electrons; p®), V; = particle density and velocity of the

protons):
(») ?
w-vi_ | (E7n-BP)

4 VE,E®

3l = lpvi = PPV =

Since in the following we focus on collinear currents [(7,]] jgp) = (p;P;)? =
p? P?], this equation can be rewritten as

i - Pp)? — mg Mg
3il = Vi P ( G (3.89)
VE,E®
Inserting this into (3.88), the differential cross section follows as
M,
do = o200 |Myi2(27) 5 (ps + Py — pi — Py)

V(i - Pi)? — mg Mg
m0d3pf Mod?’Pf
2m)3E 3pP)
(2m)*Ef (2m)3 B

Note that the last two factors and hence the whole expression are Lorentz-
invariant. This can be seen by considering the identity

(3.90)
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Z Ola = zk) , x = zeros of f | (3.91)
k

d'r
Tr

from which follows that (integration only over pp):

+oo
d3
E dpod(p® — mg)d®p = / d*ps(p® — m§)O(po) -
0 —o0

Since p* is a time-like four-vector in every Lorentz system, it generally holds
that p> = m% = p2 > p? > 0. The Lorentz invariance of the ©-function and
of d3p/E follows from this immediately.

Contrary to do, the quantity do/df?2 is not Lorentz-invariant so that now
we need to specify the reference frame. Since electron-proton scattering ex-
periments are usually performed against a fixed proton target, we choose the
laboratory system where the proton is initially at rest. Taking into account

pi = (Ei,pi) , pf = (Ef,py) , Pi=(My,0), pipy = |pil|ps|cosb

as well as
moMo mo M() mo mo

Vi P)? —m3ME JEIM - mIMZ  JEZ-m}  Ipil

d’py = pidlps|d2 = |py|E;dEyd$2
Py [atpap? - M2e(P
E](cp)_ f(f_ 0)(f)7

(3.90) leads to
do m3 M, 4
— = dE; [ &P My;1%6 Py —p; — P,
a2~ 2n2p; / f/ 1P| [Myil*6(ps + Py —pi )
><5(Pf - MO)Q(Pf)
m MO
— P [ aB M

X0 [(Pi 4 pi — pf)? — M§] ©(My + E; — Ey)

9 Mo+E;
_ mgMo 9
= 22(py AEfps|IMfilp,—pytpi—p,
mo
X8 [(P + pi — pg)® — M{]
2y Mo+E
_ Mmoo 12
Ry / dE¢|p|[Myilpy =Pyt pi—p,
mo

x4 [2m§ — 2Mo(Ey — E;) — 2E;Ey + 2|p;||ps| cos 6] .

The integration limits result from the fact that, on the one hand, Ef > myg
is required (lower limit) and, on the one hand, @ (M, + E; — Ey) yields a
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contribution only for Ef < My + E; (upper limit). The remaining integral
can again be evaluated using the identity (3.91) so that, finally, we get

do_ miMolpy| | Myil2,
g Am?pi| My + E; — % cos (3.92)

|Mf1 30 = |Mfi|§3f=Pi+pi—pf )
with the secondary condition
mg — 2Mo(Ey — E;) — 2E;Ey + 2|pi||py| cos = 0

connecting E or |py| with 8 and E; or |p;|. Note the index co (=conservation)
that was introduced to abbreviate four-momentum conservation.

Amplitude square. With the last equations, we already have a compact
representation of the differential cross section of electron-proton scattering to
first order where, however, the amplitude square | M ;% needs to be evaluated
further. In order to keep the calculations simple, we do not study polarization

effects. Therefore, instead of (3.92), we consider the unpolarized cross section

E _ maMo|py| Wo (3.93)
dn 472 |4 Mo-i-Ei—%COSQ 7

with the amplitude
2

1 _ 4mee,
> U(pf’Sf)’YW(pi,sz)q =u(Pr, Sy u(P, 8i)| - (3.94)

M2 =
‘f‘ 4 + ie

Sf, Si

Sy, S
The latter results from |My;|? in (3.87) by averaging over all incoming and
summing over all outgoing electronic and protonic spin states. Taking into
account that terms of the form @y*u are Gnumbers, we can rewrite (3.94)
as a product of two double spin sums that, in turn, can be calculated further
with the help of Theorem 3.6:

- A)2e2e2
|Mfi|2 - (4()q?)2 Z [ﬂ(pf,Sf)’yMu(pi,si)] [ﬂ(Pf,Sf)’y”u(Pi,Si)]
S8,
x [a(ps, sp)ywulpi, si)] [@(Pr, Sp)v (P, S;)]
dm)“e“e;
- (4()(12)2 Z u(py, sp)yuulpi, si)l [a(pi; si)vulpy, sy)l

x Z a(Py, Sy)vuu(Pr, Si)] [a(Py, Si)vu( Py, Sy))
S 7 ’L

= (4()q)tr (A (D) As- (pi) ] tr [Ag (P )y Ay (Pr)y"] - (3.95)

Next we introduce the auxiliary quantities
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0 0
1 p-th position .

(a) = . ) ) = 1 v-th position
0 0

make the replacements 7, — ¢, 7, — J, and calculate as follows:
tr [/1+ Pf YAt (ps %J

2 0 (7 + mo)( + mo)]

= ng [tr Wy dbi¥) + mitr (45)]

= 47}1(2) [(py - a)tr (Fih) — (py - pi)tr (4P) + (ps - b)tr (i) + mgtr (4h)]

= 4:’110 [(pf) (pi)u - (pf -pi)g;u/ + (pf)l,(pi)u —+ mgglw]
= nllo [()uPi)v + ()u(Pr)y = G (Pf - pi —mG)]

Correspondingly, the second trace yields

tr (A (P A (P)y") = <5 |PYPY + PIPY = g (Py - P = M§)

M2
Hence, after expanding the two traces, (3.95) turns into
| Myif* = Unpee, [(pi - Bi)(ps - Pr) + (pi - Pr)(py - Pi)
2m2ME(q?)?
= (pi-pp)Mg — (Pi - Pr)mg + 2mgMg] . (3.96)

If we now replace the four-momenta by the kinematic quantities p; = (E;, p;),
pr = (Ef,pf), P = (Mo, 0) in the laboratory system and take into account
the four-momentum conservation Py = P; 4+ p; — p¢, we arrive at the final
result

(47)2e2e2

2m2 Mg (q )

— (pi - py) [M§ + Mo(Ef — Ey)] ij()]\/-fo}
(47)2e2e2

= P _JOMZE,E; + Mym2(E; — E;)
QmoMg(qQ) { 0 ! o(Ey

|Myi2,

5 {2MBELE; + 2Mom3(Ey - E;)

2

+ L (047 + Mo(By - B9}

which has to be inserted into (3.93). In the last step, the scalar product p;-py
was expressed by the quadratic four-momentum transfer

¢ = (pr —pi)> =P} +p; — 2pi - py = 2mg — 2p; - py -
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Theorem 3.8: Electron-proton scattering to leading order

The scattering amplitude of the electron-proton scattering to leading order

is (f # i)

i(27T)45(pf +P;—p;—P;) | m?

Spi= - V2 EE;

Mfiu

with the Lorentz-invariant amplitude (¢ = py — p;)

_ —4meey,
Myi = u(py, 5f)7uu(pi, 5i) Z1ic ~u(Py, Sp)y u( Py, i) -

The differential cross section follows as
L) My 1 A | |
do = E E(P) |,7 |V|M | (271-) 5(pf+Pf —pz—PZ)
mod Df MOdSPf
(27T)3Ef (Qﬂ)3E(p)
mOMO
~ Vo P2 - m3Mg |Myif*(2m)*3(ps + Py — pi = P)
m0d3pf MOd Pf

X
@By (2r)2 B

(collinear currents) .

In the laboratory system where the proton is initially at rest, this becomes

do _ mgMolpy| | MyilZ
df 4ﬁMIm+E—%%mw

3.97
|Mfi go = |Mf7;|§3f=Pi+pi_pf ( )

mg — 2Mo(Es — E;) — 2E;Ef + 2|p;||ps| cos0 =0,

where, in do/df2, all electronic scattering momenta p; directed toward
df? and all protonic scattering momenta P, have been integrated out.
Disregarding electronic and protonic polarization effects, the unpolarized
amplitude square is obtained as
. (47)2¢2 2
M52, = o551 2M3 BiBy + Mom (s — Ey)
0M¢(q)?
e

+ 5 [M§ + Mo(Ef — Ez)]} :

Low-energy and ultrarelativistic limits. We can assure ourselves of the
correctness of this theorem, for example, by proving it for the low-energy
limit, which should lead us back to the laws for the Coulomb scattering of
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electrons. In this limit we have E; 7, |pi s| < mo < My, and the secondary
condition in (3.97) reduces to Ey =~ E; <= |py| = |pi| (no repulsion effects,
totally elastic electron scattering). Taking into account

¢~ —q* = —2(E? —m{) +2p;py .

the mean amplitude square now becomes

2,22 2
|Myi 2, =~ M <2E12 _ q)
lpsl=Ip:l

2miq* 2
_ (dm)Pee (1 N E? —l—pipf)
4 2 )
2q Mo/ ipsl=lpl

from which follows the expected Mott scattering formula:

o miMpl,  2mie’e; <1 LB +pl-pf> - <da>
- 2 T g - - £ .
dg? 47 q mg psl=lpil dn -

The other extremum is the ultrarelativistic limit. It is defined by E; /mg >
1. Together with E; ; ~ |p; ¢| and

0
¢* =~ —2E;FE4(1 — cos ) = —4E; E; sin® 3

2 0 0
d ~1—sin? = = cos® =

=1
+ AE;Ey 2 2

as well as the secondary condition
0
My(E; — E;) ~m3 — E;E + E;Ef(1 — cos ) = —2E; E sin® 3

the mean amplitude square becomes

G — (4m)?e*el BBy
° m§(q®)

2 E; — E; 2 B, E
x |14 —L 14 L) Mo 2

4EiEf My 2EiEf Moy

~——
~0

7T2626g N q> q¢> 2E,Ef sin2%

" m2E,Eysin* ¢ AE,E; AEE;  M?

2.2,2
T L Y
m3E;Eysin® 2 2M¢ 2) "’
and we obtain the unpolarized differential cross section as

EN m%Ef |Mfi|%o 2

~ 271, 2E; 20 7 2 qind 0 2E; (in2 0
d?2  4An’E; 1+ i sin” g 4FE7 sin® 5 1+ i sin® 5

e2 612) cos? g -

2
q 20
Mz S 3
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Note that, according to our initial presupposition, this equation disregards
the internal structure of the proton and its anomalous magnetic moment.
In this respect, it does not provide a realistic description of electron-proton
scattering under extremely high energies. A more realistic description is given
by the Rosenbluth formula where the proton’s internal structure is taken
into account by so-called electric and magnetic form factors. Nonetheless,
the above formula describes the scattering of electrons and myons with high
accuracy as both behave like structureless Dirac particles.

Feynman diagrams and characteristic factors. After these many and
sometimes lengthy calculations, it is instructive to highlight their results with
respect to their systematics as well as their relationship to the Feynman
diagrams. Having identified the electronic and protonic transition currents,
we initially found the scattering amplitude of the electron-proton scattering
to be [see (3.85) and (3.86)]

Spi = —1/d4 /d4 ewf )Y (e )] Déo)(x—y)

% [epP () e ()] (3.98)

With reference to our general considerations in Subsection 3.2.3, this expres-
sion can be depicted in a Feynman diagram in coordinate space as shown
in Figure 3.9a. The left-hand thin line with a positive temporal direction
represents the propagation of the electron (electronic transition current).
Correspondingly, the right-hand thick and likewise temporally forward di-
rected line represents the proton’s propagation (protonic transition current).
The influence of the electromagnetic interaction (photon propagator) is visu-
alized as a wavy line. It can be viewed as a virtual photon which is exchanged

ﬂ(pf78f) fL(Pf,Sf)

V() P (y) ulps,si) u(Pi, Si)
Fig. 3.9. Feynman diagram of the scattering amplitude for the electron-proton
scattering to first order [or to order O (62)] in coordinate space (a) and momentum

space (b). Energy and momentum are conserved at each vortex. Therefore, the
four-momentum transfer is ¢ = py — p; = —(Py — P).
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between the electron and proton, and causes a scattering at both vortices =
and y. The correspondence is completed by assigning certain factors to the
four external fermion lines (with one open end), the closed photon line (with
a start and an end point) as well as to the vortices. Later on we see that
these factor assignments are characteristic and remain valid for other scat-
tering processes, too. Thus, after some practice, one should be able to deduce
the scattering amplitude directly from the corresponding Feynman diagram.

After inserting the explicit expressions for the wave functions and the
photon propagator into (3.98) and then integrating out the position and
photon momentum variables, we arrived at

2m)*(pr+ Py —pi — P;) | m
R Mg,
sz 1 V2 E,LEf fi
B —dree, (3.99)
My; = U(Pf>5f)7uu(pi,Si)ﬁu(vasf)wu(PmSi)

where the fourdimensional J-function ensures energy and momentum con-
servation. The Feynman diagram in momentum space belonging to My, is
depicted in Figure 3.9b. It is obviously connected to the diagram in position
space (Figure 3.9a) through the replacements

W (x) — ulpi g, sigp) O (y) — u(Piy, i)
—47

D(O) _ D(O) — — — D
F (I y) — F (q) q2+i6 y 4 pr Di

where the four-momentum transfer ¢ guarantees energy and momentum con-
servation at each vortex. All in all, we see a close correspondence between
scattering processes, Feynman diagrams, and scattering amplitudes, to which
we will often return in the following.

Let us, at the end, consider the formula for the differential cross section

mo MO 1 2 4
do = | =220 ) |Mp2@2m)*s(ps + Py — pi — P

modgpf MOdSPf
(2m)°Ey (27)3plP

which also exhibits some interesting characteristics: apart from the o-function
and the amplitude square |My;|?, there occurs a factor of mg/E for each ex-
ternal fermion line. Furthermore, each outgoing particle yields an additional
phase space factor of d®p/(27)3. In the case of collinear currents the bracket
term can be expressed by the four-momenta of the incoming particles via

moMo/\/(pi - P;) — m3MZ.
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3.3.3 Electron-Proton Scattering (II)

Now, we extend our considerations on the electron-proton scattering even
further and discuss the corrections of second order. First we try to develop the
corresponding Feynman diagrams on the basis of the above correspondences
in order to derive the correct form of the scattering amplitude Sﬁ) . Then we
verify our reasoning by analytical calculations.

Direct scattering amplitude.'® The scattering amplitude of second order
is characterized by the fact that both particles, electron and proton, suffer
two scatterings caused by the exchange of two virtual photons. Between the
scatterings the fermions and photons move undisturbed with a probability
amplitude proportional to the propagator of the respective particle. There-
fore, it is sensible to draw the corresponding Feynman diagram in coordinate
space as shown in Figure 3.10, where the end point of each photon line is

@}p) (X)
X

50 (X —Y)

Vi(y) 7 (Y)
Fig. 3.10. Feynman diagram of the direct scattering amplitude for the electron-
proton scattering to second order [or to order O (64)] in coordinate space. S(FP’0>
denotes the free proton propagator. It differs from the electron propagator Sg))
by the particle mass.

only

assigned the factors ey and eyy*. From this we conclude the scattering
amplitude to be

< [0 (@), 50 @~y
xDI(;O)(x - X)Dy(ﬂo) (y-Y)

18 In addition to the direct scattering amplitude, there exists the so-called exzchange
scattering amplitude that will be discussed later.
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x [ef)![_/}p) (X)y"SP0 (x — qu/}m(m] : (3.100)

with an inserted factor of —i following (3.98). Of course, Figure 3.10 shows
only one representative of all the 4! possible temporal arrangements of the vor-
tices (see Figure 3.11). They are automatically taken into account in (3.100)
by the four time integrations over z°, y°, X9, and Y?.

Fig. 3.11. Three of the 4! possible relative temporal arrangements of the vortices
in Figure 3.10. In a a virtual positron along with the outgoing electron is created
at z. In b a virtual antiproton along with the outgoing proton is created at X.

If we now perform the corresponding replacements in Figure 3.10 we are
led to the Feynman diagram in momentum space shown in Figure 3.12. Here
energy and momentum conservation is postulated at each vortex, and the
circulating four-momentum ¢; remains as a degree of freedom. Together with

u(pf,sf) w(Py, Sy)

\ Pr+d1 + Mo
(P +q1)* — Mg + e

¥r —dh +mo
(ps — q1)? —mg + e

u(pi,si) ’LL(Pi,Si)
Fig. 3.12. Feynman diagram of the direct scattering amplitude for the electron-
proton scattering to second order [or to order O (64)] in momentum space. Energy
and momentum are conserved at each vortex. Therefore, the four-momentum trans-
fer is ¢ = py —p;i = —(Py — P)).
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the energy and momentum conserving d-function as well as the normalization

factors \/mo/E; ¢V and 4/ Mo/Efl})V for the incoming and outgoing fermions
we should finally obtain the integrated scattering amplitude

i(Zﬁ)45(pf+Pf — i 7Pi) m%

() (Jir) —
Sy (dir) = — 0 BB,

/ d*qy —4mee, —4meey
2m)* ¢ +ie (¢—q)* +ie
Pr—fh+m
pr—q1)? —mé —|— i€
Pr+ ¢ + My
(Pr 4 q1)? — Mg +ie
with ¢ = py — p; = —(Py — P;) and an inserted factor of —i as in (3.99).
Let us now compare the heuristically derived expressions (3.100) and

(3.101) with the scattering amplitudes calculated on the basis of Theorem
3.5. Our starting point is (ey = +1, f # 1)

s i) = —ie? [ dte [ atyls @@L @ - )

—/d4x/d4y
% [1€205 (@) S0 (@ — ) tily)| A" @)A%(y) . (3.102)

Similarly to the preceding subsection, we first aim to identify the electronic
and protonic transition currents (to second order) in a way that the scattering
amplitude is symmetric under both of them. For the electronic current, the
square bracket term

T2 () = €T (2)7,58 (& — y) 1 Tily) (3.103)

XN uPys s F)Vu Tu(pi; $i)
ons |

[ty 5y uras)| @y

seems to be a good choice. The entrainment of the factor i ensures that Jﬁ)
can be written as a product of first-order transition currents, because, using
the wave decomposition (3.58) of Séo), we have

I () = €20z — y°* )Ty (z)v, Z Wi ()T (y) 7, Wi (y)
p,r=1
@(y —a° 'Vu Z Lpr) W(T) ) !pz(y)
p,r=3

200 —y") 3 [Tl @) 70 wrtity)
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—e0 - ) 3 [Frlam @] [B5 )
p,r=3

s

= 0(z" — ") Z A @] pr i
4

—00° =2 3" @]y @) gy
p,r=3

Since, according to (3.82), each first-order current causes an electromagnetic
field of the form

Al (z) = / d*X DO (z — X)JPH(X)

it is reasonable to assume that the combination A*A” in (3.102) is connected
to the second-order protonic current J®2m via

Ar(z)AY (y) = / d*x / YD (z — X)D (y — V)T (X V) |
which, in turn, has to be chosen as [see (3.103)]

JED (X V) = 12T (XSO (X — V) e (v) .
Consequently, (3.102) turns into

12 (dir) = /d4 /d4 /d4X/d4
x [62Wf(56)w5§ (x — y)%%(y)}
x D (z — X)DP (y - Y)
X [ef)u'/;p) (X)y" 8P (x — Y)W;W(Y)] . (3.104)

Apart from a factor of —i, this equation does indeed coincide with the heuris-
tically derived expression (3.100). In order to verify (3.101), we now insert
the known expressions for the electron and proton wave functions as well as
the Fourier representations of the electron, proton, and photon propagators.

This leads to
/d4 /d4 /d4X/d4
E(P)E(D)
y / d'g; / d'g, / d'p / ap
(em* ) (2m)* ) (2m)* ) (2m)*
(¥ +mo)

p? —m3 +ie

2
1 mg

() (Ji) —
St (dir) = v\ BE

—4mee, —4meey,
X .
¢ +ie g3 +ie

You(pi, s,-)}

{U(pﬁ )V



248 3. Relativistic Scattering Theory
_ P + M)
X [U(Pf, Sf)W“mV””(Pm S;)
w11 (8=X)  —ig2-(y=Y) yips -z o —ip-(z—y)
W 1PiYpiPrX (—iP-(X=Y) ~iP;-Y

Here we first perform the coordinate integrations,

/d4 /d4 /d4X/d4 e~ la(z—X) =iz (y=Y) gips -z o —ip-(x—y)

e —ip;- yelpf —iP(X— Y —iP;-Y
= (2m)*6(qu +p *pf)(%) 5(Q2 —p+p;)(2m)*6(—q + P — Py)
x(2m)*6(—q — P+ P;) ,

and then the momentum integrations over p, P, and g¢s:

d*qr d*qo d*p d*p
J e | e | e | tampetem o)
x(2m)*5(qa — p + pi)(2m)*0(—q1 + P — Py)(21)*6(—q2 — P + P))

—4mee, —4mee, #+mo
e
qf + i€ q% + ie p2 — m(QJ T ie’YuU(pu z)

{ﬂ(pfa )V

_ + »
X {U(Pﬁsf)’Y ]—&V[MW U(Piasi):|

d*q; —A4mee —4ree
= (2m)%(ps + P —pi—Pi/ P P
(@m)"3(ps + Py ) (2m)* ¢ +ie (py —pi — qu)% + e

Pr— 1 +mo
by - )

_ P+ + My
p v, (P Q.
X |:U(Pf7sf)’7 (Pf +q1)2 _Mg +1€'Y U(Pzasz) .

Note that the four §-functions stemming from the coordinate integrations ex-
press energy and momentum conservation that was postulated at each vortex
in Figure 3.12. For the integrated scattering amplitude we finally obtain

X {U(pf’ Sf)w(

(27T)45(pf+Pf *pifpi) m%
V2 EZ-Ef

S (dir) =

d*qy —4mee,  —4mee,

/ (2m)* ¢ +ie (¢—q1)? +ie
Pr— 1 +mo
pr—q1)? —mé +ie
Pr+ i + My
(Pr 4 q1)? — Mg +ie

You(pi, Sz‘)]

X [U(Pf’ Sf)w(

X [U(Pf,Sf)’YM vyu(Pi,S’i)} , (3.105)
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with ¢ = py —p; = —(Py — P;). Happily this equation also coincides with the
corresponding heuristic expression (3.101) but, again, except for a factor of
—i.

Overall, this example demonstrates very nicely the correspondence be-
tween scattering processes, Feynman diagrams, and scattering amplitudes.
In the next subsection we form this correspondence into some simple rules
that especially remove the observed ambiguities with respect to the i-factors.

Exchange amplitude. Apart from the direct scattering amplitude, there
is another amplitude which contributes to the electron-proton scattering to
second order since the two photons emitted by the proton current cannot be
distinguished.' This means, for example, that the electron which is inter-
acting with a photon at the space-time point x cannot know whether this
photon comes from the vortex X or Y. The complete scattering amplitude is
therefore given by the addition

S}? — S}? (dir) + S}?(ex) .

S g)(ex) denotes the exchange scattering amplitude and is represented by the
Feynman diagram of Figure 3.13. It differs from the direct scattering am-
plitude Sﬁ) (dir) by the fact that the end points of the photon line on one
side (here: on the proton’s side) together with the associated ~-factors are

Py (z) TP(X)  alpy,sy) o u(Py, Sy)

¥r —dh +mo Py — ¢ + My
(Pifq1)2fMg+ie

epy”
—4r
(¢ —q)? +1e
Zi(y) a P (YY) ulps,si) b u(P;, S;)

Fig. 3.13. Feynman diagram of the exchange scattering amplitude for the electron-

proton scattering to second order [or to order O (64)] in coordinate space (a) and

momentum space (b). Energy and momentum are conserved at each vortex. There-
fore, the four-momentum transfer is ¢ = py — p; = —(Py — P;).

19 Additionally, in this order there also exist diagrams that are related to the pro-
duction and absorption of virtual particles. They are not considered here.
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swapped. Therefore, making the corresponding replacements in (3.105), the
integrated expression for the exchange scattering amplitude can be deter-
mined immediately:

Mg

(P) (p)
E;7E;

(2#)45(pf +P;—p,— P) mg

fi

/ diq —4mee,  —4mee,
(2m)* ¢ +ie (¢—q1)? +ie

_ Pr—f +mo
X {U(pf, Sf)'V/t (pf — @) - m% T ie’yy’LL(p“ 5)
Pi — dh + My

X {Q(vaSf)’YV (P —q1)2 = M2 +i€'y“U(Pi,Si)] .

In total, we have

Theorem 3.9: Electron-proton scattering next to leading order

The scattering amplitude for the electron-proton scattering next to leading

order is (f # 1)

(2m)*6(ps + Py —p; — P) | md
V2 E.E,

2)
fio

@ _
52 =

with the Lorentz-invariant amplitude (¢ = py — p;)

/ d*q; —4meey —4meep

M3
(2m)* ¢ +ie (¢—q1)? +ie

fi

_ ]ﬁf—d1+m0
X Lu(pi, 8i) | P
[u(pf,Sf)% 7 —a1)? _m3+167 u(pi, $;)

and the proton tensor
Pr+d + Mo y

(Py +q1)? — Mg + e
Pi — d + My

(Pz — Q1)2 - Mg + ie

P = u(Py, Sy) [’y“

| u(P;, Si) -

+ ~Y

Static limit. Generally, due to the fourdimensional integral, a further eval-
uation of this theorem is difficult and nontrivial. However, the calculation
can be carried out a little further in the limit of an infinitely heavy point-like
proton at rest. In this case, taking into account



3.3 Spin-1/2 Scattering Processes 251
P~ Pf ~ (MO?O)
Mg
My — 0o = { EPEP
J(EW — B + By — E;) ~ §(Ey — E;)
U(Pi,fv Sl,f) ~ U(O, Sz,f)

and

1 1 .
7#u(0,5) = g"%u(0, 5) m - ﬂ = —2mid(q7) ,

the proton tensor is simplified to
My + i+ My,
(Pf + q1)2 — Mg + ie’y
MY’ = + My,
0,5;
(P — ) — Mg +ic | w0, 5)
_ [ Mo(’}/o + 1)
(0, S # —~Y
(0.57) _7 ME + 2Myq? —M§+167
M0(70 + 1) m
v 0,95;
T a0

0 0
_ 7 +1 Y41
= u(0, 8 e AV A ~# 0,.5;
u(0, Sy) {'Y 2‘1(1) 167 7_2(](1) 167}“(’ )

P* =~ u(0,5)) |+

+

%

1 1
= "¢ 1(0.S)u(0.8) | —— — ——
g g u ( 5 f)’Uz( 5 z) q(1)+i€ qgiie

= —2mig"°g"%5s,5,0(q)) -

The scattering amplitude follows from this as

o) o @2m0(Er — B)d(ps + Py —pi = Pi)sys; | mi
fi V2 E,E;

d*q; —4 —4
><27r/ Q14 2we?p wezep ()
(2m)% ¢F +1ie (¢ —q1)? +ie

Pr—dh +mo
— N2 2
PF—q1) mg + ie

X |u(pyss)v0 You(pi, si)| -
romroq |

Now we assume that momentum and polarization effects of the proton are not
measured. This implies that in the last equation we can make the replacement
(2m)*6(py + Py — pi — Pi)ds,5, — V

since in the cross section we have (integration over P, average over S; and
sum over Sy):

1 VP,
P
Sf,Si

[(2m)%0(py + Py — pi — Pi)]2 ds,s;
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V2da3p
a / (2r)3 — 5 (2m)%(ps + Py —pi — P;) = V7,

where, again, [(27)30(py +...)]> — V(2m)36(py + ...) has been used. Thus,
all in all, we obtain

@ o _;2m0(Er — Ei) | mj
fi Vv E,E;

g / o —4mee —4ree
X d 1% p 5 0
[ @ | e @)

[(pfw?f)% ﬁf_gl +m -

B 27r5 Ef— m3 / d3q —47reep —4dmee,
N EiBy Poai (@-a)?

_ Yo +(py — q1) +mo
x |u(py, s5)—— ! 5 1 - u(pi, 53)
p; — (pr—q1)* +ie

i)

As can be shown, this corresponds exactly to the scattering amplitude for the
Coulomb scattering of electrons to second order. The remaining threedimen-
sional integral is divergent, which is due to the long reach of the Coulomb
potential.

3.3.4 Preliminary Feynman Rules in Momentum Space

Before we discuss more scattering processes in the subsequent subsections, we
bring together the correspondences observed so far between scattering pro-
cesses, Feynman diagrams, and scattering amplitudes, and cast them into a
simple set of rules in momentum space that significantly simplifies the calcu-
lation of scattering amplitudes and cross sections. However, these Feynman
rules in their present form are still incomplete and have to be completed
in appropriate places in the following. We will provide the complete set of
Feynman rules in Subsection 3.3.9 after we have discussed other types of
scattering processes, particularly those involving real photons.

1. The scattering amplitude for a scattering process of the kind
I+I' — F+ F' (I=incoming, F=outgoing particle)
is given by

S_:(Qn)45(pf+p’f—pi—p§)\/ﬁ- NNy [NE
fi V2 E;\ Ei\ Ef\ E} a

where Ni(,}') = my, , are the fermion factors. Each incoming antifermion
(outgoing fermion wave function with negative energy) yields an addi-
tional factor of (—1).
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2. In the case of collinear currents the corresponding differential cross sec-
tion is
N;N!
V(i p)? = md
3 7 A3,/
L NydPpy Nyd'py
(2m)3Ef (277)3E}

do = |Myi|*(2m)*8(ps + Py — pi — P})

3. The Lorentz-invariant amplitude My; can be expanded in powers of the
coupling constant e. The expansion terms of order O (e") are obtained
from the Feynman rules in momentum space containing all topological
constellations of fermion lines, photon lines, and n vortices that are con-
sistent with the scattering process.

4. In the Feynman diagrams, all vortices, fermion lines, and photon lines
are assigned the factors given in Figure 3.14.

5. Four-momentum conservation holds at each vortex. All remaining (un-
determined) momenta p are subject to integration with [d*p/(27)* in
the amplitude Mp;.

incoming fermion incoming antifermion
u(pi, si) o(pi, 5:)
outgoing fermion outgoing antifermion
ﬂ(pfﬂsf) U(ﬁﬁgf)
internal fermion line internal photon line vortex
. : the ind i
i§<0)( ) = 71(ﬁ+ mo) iD(O)“”( ) = —4migh” coitlrnac?e(duv;isth
r \P p2 —m2 +ie F q q2 + ie that of the
0 photon line
o————>——o o~ _™_ e

—levy
Fig. 3.14. Feynman diagram elements and characteristic factors in momentum
space.
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To 1. and 2. So far, the validity of these rules has only been shown to first
and partially second order (with respect to the number of the scattering series
term). However, they turn out to be true to any arbitrary order. The factor
(—1) results from ey = —1 in the case of an incoming antifermion.

To 3. (Tree diagrams and loop diagrams). Up to now, we have ex-
clusively studied scattering processes where the electromagnetic potential is
either a classical background field (Coulomb scattering of electrons, Subsec-
tion 3.3.1) or created by the transition currents of mutually scattered particles
(electron-proton scattering, Subsections 3.3.2 and 3.3.3). In the latter case
the electromagnetic interaction can be viewed as an exchange of virtual pho-
tons between both particles. In Feynman diagrams this is reflected by one
internal photon line to first order and two internal photon lines to second
order, each connecting one vortex of the first particle with one vortex of the
second one. If, for example, we calculated the electron-proton scattering in
the same way to higher orders, it would lead graphically to an increasing
number of internal photon lines between the electron and the proton. Those
diagrams are called tree diagrams and are, of course, covered by the 3. rule.

The decisive point is that, due to the combinatory diversity of vortices
and lines, the 3. rule also allows the construction of loop diagrams in higher
orders, as shown, for example, in Figure 3.15. These kinds of diagrams clearly

a Eaveas

Fig. 3.15. Possible loop diagrams resulting from the 3. Feynman rule: vacuum
polarization (a) and self-energy (b).

lie outside of our scattering formalism (with its view of classical background
fields or its modification in terms of current-current interactions) and can
only be justified within quantum field theory. Physically, loop diagrams cor-
respond to radiation corrections caused by quantum fluctuations of the vac-
uum. Those corrections have an impact, for example, on the gyromagnetic
ratio of the electron and the bound spectrum of atomic systems. They will
be the subject of Section 3.4. In the current section we further concentrate
on the tree diagrams of scattering processes in the lowest orders (compare to
the introductory notes in this section).

To 4. Principally, one has to bear in mind that the Feynman diagrams are to
be constructed on the level of wave functions. Therefore, the direction of the
four-momentum arrows of the external antifermion lines follow the Feynman-
Stiickelberg interpretation, according to which a temporally forward incoming
[outgoing] antifermion is described by a temporally backward outgoing [in-
coming] fermionic wave function with negative energy. On the other hand,
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the momenta and spins in the bispinors refer to the particle level; in the
antifermion case they are reversed to the respective arrow directions.

Obviously, the vortices and internal fermion and photon lines are assigned
slightly different factors than the ones used earlier. This removes uncertainties
in the scattering amplitude with respect to i-factors that we encountered
in the preceding subsection. There we defined the electronic and protonic
transition currents for the electron-proton scattering to first order without a
factor of 1 but to second order with i. Putting it differently, to first order we
arrived at (3.85) that can be schematically written as

Spi ~ —idu (@) Dy (x =) TP (y) .
By contrast, to second order we came to (3.104), i.e.
S ~ =2 @)D (@ = X)DP (y - V) I (X,Y)

where an i-factor was included in both transition currents due to reasons of
factorizability. As this factorizability is supposed to hold to every order, we
obtain an unambiguous treatment of i-factors, if we assign each occurring
fermion propagator the factor +i, each occurring field A* the factor —i, and,
in return, drop the inserted factor —i in SJ(ZZ) (1. rule) since we have

n . a0 . .0 .
S~ —AHS) A = (S S - (i) -
As can easily be seen, this corresponds exactly to the factor assignment of
internal fermion and photon lines, and vortices shown in Figure 3.14.

3.3.5 Electron-Electron Scattering

We now turn to the process of electron-electron scattering to leading order,
which we will describe using the rules presented immediately above. The
kinematic situation where the electrons fly past each other is shown in Figure
3.16a. The corresponding Feynman diagram is given in Figure 3.16b and leads
to the Lorentz-invariant amplitude

—47i
q? +1ie

Mp;(dir) = u(py, sy)(—ie)yuulpi, si) u(p}, ) (—ie)y u(p}, s})

q =Dpf—DPi-
Obviously, it has the same structure as the O (62)—amplitude of the electron-
proton scattering in Theorem 3.8, which, of course, is due to the kinematic
similarity of both processes. However, apart from this direct scattering, we
have to consider another type of scattering as well since here, contrary to
the electron-proton scattering, we are dealing with identical particles. This
means that in the scattering experiment we are not able to distinguish the

kinematic situation of Figure 3.16a from that of Figure 3.17a where both
particles reflect each other. In addition to the direct amplitude M;(dir), we
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ﬂ(pf,Sf) ﬂ(pgﬁs})

Py

u(pi, si) u(ps, s7)
Fig. 3.16. Electron-electron scattering. a depicts the kinematic situation of direct
scattering in the center of mass system and b the Feynman diagram of the direct
@ (62)-scattering amplitude in momentum space (compare to Figure 3.9b). En-
ergy and momentum are conserved at each vortex. Therefore, the four-momentum
transfer is ¢ = py — pi = —(py — p})-

a(py,ss) a(p, s)

Py

u(pi, si) u(p;, s7)
Fig. 3.17. Electron-electron scattering. a depicts the kinematic situation of ex-
change scattering in the center of mass system and b the Feynman diagram of
the exchange O (62)—scattering amplitude in momentum space. Energy and mo-
mentum are conserved at each vortex. Therefore, the four-momentum transfer is
¢ =pf—pi=—(ps—pi)

therefore have to bring along the exchange amplitude My;(ex) that results
from My;(dir) after the replacement py < p'f. Thus, overall, we obtain the
scattering amplitude (f # 7)
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2n)*6(ps + 0} —pi =) | m2 | md
Spi = My;
V2 E.E; \| EE]

My = Myi(dir) — Mp;(ex)

. _ 4rie?
Mp;(dir) = U(Pf7Sf)%u(pi7Si)m”(l”}ﬁ}h”“(l”éﬁé) (3.106)
o, 4rie? w1
Myi(ex) = U(ﬁfvSf)’YuU(Piysi)mu(pfasf)’V u(p;, 8;)

q=pr—pi,q =0y —pi.
The relative sign between My;(dir) and My;(ex) accounts for the Fermi-
Dirac statistics according to which, in the case of identical fermions, the
whole scattering amplitude must be symmetric under the exchange of both
fermions in the initial state (p; < p}) or final state (py < p’).

Cross section. For the calculation of the differential cross section
2

m

do = ——0 My, (2m)*5(ps + 0y — pi— p)
(pi - py)? —my

mod3p; mod*pl

>< )
(2n)°E; (2n)°F}

(3.107)

we can proceed similarly to the calculations of the electron-proton case that
lead to (3.92). However, in this case it is more realistic to work in the center
of mass system instead of the laboratory system. In the former we have due

to momentum conservation
W —0 PN pi =D, Pf =D}
pbi+Tp;,=YU=p p
) 7 f f Ez _ E; , Ef — E}

and due to energy conservation
E;=E|=E; = E}
Ei+ E;=FE;+ E; = ) )
ipi| = |pil = |ps| = Pl -
Using these and the identities
m o m o
(pi -2 =mi (B} +p])? —mg  2Eilpil

dSp/
&py = IpslEE2 L =2 [ dlpse} - mdews)
f

(3.107) can be rewritten as (cm=center of mass system)
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dO' mé
= ———— | dE d*p's | My |?6 ' pi—
x6(pf —mp)ery)
4
My
= —5-— [ dE M;;
(22 E,|pi] #lps || Myl

X8 [(pf +pi —ps)? —mg] O +p) — f)

= W/dEﬂprMfz‘p —pttpi—py O(AE (B — Ey)]
xO(2E; —Ef)

p =pi+pi—

- / QLD M1l gy B, — Ep)

_ mg §(Ey — Ej)
~ (27m)2E|pi /dEf‘prMmp =pAPioPs AR,
my
-1 )gEg\Mﬂ\cm- (3.108)

|2, we assume, as in the electron-
proton case, that polarization effects do not play any role and consider the
amplitude square

Amplitude square. To determine |M ;|2

M7 ? = [Mpi(@in)? + [Mi(ex)P — 2Re | My,(din) M} (ex)| |

where the average over all incoming spins s;, s; (a factor of 1/4) and the sum
over all outgoing spins sy, s/f are taken. Comparing (3.106) with (3.94), we
can immediately read off the square of the direct and exchange amplitudes

from (3.95) and (3.96) with the corresponding replacements. This yields
(47T)2 4

[ My;(dir)[? = mtr (AL (pp)vuAs (pi)vw] tr [AL (07" Ay (05)7]
)26
= 2(;;3222 [(pi - D) (05 - Py) + (0 - D) 0y - D))

q
—mg(pi - pr) — mg (0 - Py) + 2mp) (3.109)
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T 2 4
(o (44@)) [ (s ()] [ (07" A (0)7")

N Q(T:)T()(])[(pz pi)(ps - py) + (P - pg) (P - 1Y)

—mg(pi - Py) — mg (0} - py) +2mg) . (3.110)
With the help of > u(p, s)u(p,s) = Ay(p), the interference term can be

related back to a double spin sum and subsequently simplified further using
Theorem 3.6:

9Re {Mﬂ(dir)M}i(eX)} =2 {Mﬂ(dir)M}i(eX)

4rie?
= Z [ U(py, sf)yutt (pi,si)qQU(p},S’f)v“u(pé,SQ)]
ii,i:
o 471'162 f
X U(Pfysf)% (pz»sz) q (pfasf)’y u(pzv z)
(47)2e? _ _
= o > (s, sp)vpulpi, s:)up, 857" ulp), s5)]
zi,zl
x [u (pw s u(py, sp)u(pi, si)vou(ph, )]
(4m)e _ _
= i Z [a@(ps, s )y, s0)] [@(Di, si)nu(P}, 7))
A

X [ﬂ(p/fv s})’y”u(p;, S;)] [ﬂ(pg, S/i)ﬂyyu(pfa Sf)}
(47)%et

= 22q? > [alps, sp)vuAs (pi)vou(p}, )]
Sf,s’f

x [u(py, s )y Ay (D)7 ulpy, sy)]

(47‘(’)2 4 ;
= 2 (A4 () vu s (Pi) 1o A (D) Ay ()]

47)2et
B 2(77142]2(]’2 [=2(pi - P)(ps - Py) + M (i - i+ i - Dy
0
+pi'p/f+pf'p;+pf-p’f+p;~p})—2mé} ) (3.111)

Putting all three amplitude square contributions together and replacing the
scalar products with the corresponding relations in the center of mass system,
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pi-pi = pi-pi=ps-pf=p) -0y =mg
pi-p; = ps-py=2E7 —mj

0
pips = PPy = 2B sin® 5 4 mg cos

0 3.112
Pz"p'fng-prQE,?cos2§—mgcos9 ( )

o0
¢* = (ps — pi)* = —4(E} — mg) sin® 3

0
q% = (P = pi)* = —A(E} — mg) cos® 7,
we arrive, after some algebraic manipulations, at

s (2m)%et [42E? —md)?  4BP(E? + p?) — m}
‘Mf’i 4 4 4 - 4 2
mg p; sin” 6 p; sin” 6

+1

‘2
cm

The fact that this expression contains only trigonometric powers of sin” 6
is plausible since, due to the identity of the particles, the differential cross
section has to be symmetric under § — 7 — 6.

Theorem 3.10: Electron-electron scattering to leading order

The scattering amplitude for the electron-electron scattering (Moller scat-
tering) to leading order is (f # @)

gm0} —pi—p) [ m§ | mp
o V2 E:Ef\| BB,

with the Lorentz-invariant amplitude (¢ = py — pi, ¢ = p’f — i)
Mfi = Mfi (diI‘) — Mfi (ex)

4rie

q% +ie

4mie?

2
Myi(dir) = u(py, s¢)vuu(ps, si) a(py, s )" u(pi, s;)

Myi(ex) = a(pl, s)vuu(pi, si) a(py, sg)yHu(pj, s;) -

The differential cross section follows as

2
m
do = ——— [ Myi[*(27)6(ps + P} — Pi = 1)

Wi p)? —ms !
mod3py mod?’Plf

* @mPE; (2r)3E}

and, particularly in the center of mass system,

do m
) = 0 i
(dg)cm a2m2E2" [em
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Here all electronic scattering momenta p; directed toward df2 as well as
all electronic scattering momenta p} have been integrated out. The unpo-
larized amplitude square is evaluated as

(2m)%e! [4(2E7 —md)®  AED(E] +p}) — mp

4

M, =

+1

4 ;.4 4 302
p; sin™ 0 p; sin” 0

This example demonstrates nicely how effective and time-saving the consis-
tent use of the Feynman rules is. Note that there is no additional factor 1/2
or \/1/72 in the scattering amplitude as may be expected due to the particles’
identity. And also the rules for calculating the differential cross section are
not altered at the presence of identical particles. However, we have to attach
a factor of 1/2 to the total cross section in order to avoid double counting
the identical particles in the final state.

3.3.6 Electron-Positron Scattering

Next we discuss the electron-positron scattering to leading order following
the rules of Subsection 3.3.4. In doing so, we will make an interesting discov-
ery, namely that the corresponding scattering amplitude is directly connected
to that of the electron-electron case — a phenomenon which is generally true
when comparing particle-particle and particle-antiparticle scattering proces-
ses.

Analogously to the electron-electron case, the most obvious kinematic
constellation of the electron-positron scattering is the direct scattering, i.e.
the fly-by of both particles as shown in Figure 3.18a. We have to take into
account at the construction of the corresponding Feynman diagram that the
temporally forward incoming [outgoing] positron is related to a temporally
backward outgoing [incoming] electronic Dirac wave with negative energy.
Therefore, on the right hand (positronic) side of Figure 3.18b the time arrows
are directed backward and the vortex is assigned a factor of —iey* (and not
~+iey* as might be expected due to the positron’s charge sign). By contrast,
the momenta and spins in the v-spinors refer to the particle level, i.e. to the

temporally forward moving positron. Overall, we obtain the amplitude
—4ri
g%+ ie

Myi(dir) = u(py, sp)(—ie)y u(pi, si) 0(pi, 5;)(—ie)y"v(py, 55)

q9=7Pf—DPi-
Another scattering constellation is that the incoming electron and positron
are annihilated during their “collision” and a new outgoing electron-positron
pair is created (see Figure 3.19a). The corresponding annihilation diagram is
shown in Figure 3.19b and leads to the amplitude
—4ri
q'? + ie

Myi(ex) = v(pi, 5:)(—ie)yuu(pi, si) u(pys,sp)(—ie)y v(py, 55)

/

q

pi+Di -
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a(py,sy) v(Py,5)

u(pi, si) v(pi, S:)
Fig. 3.18. Electron-positron scattering. a depicts the kinematic situation of di-
rect scattering in the center of mass system and b the Feynman diagram of the
direct O (62)—scattering amplitude (compare to Figure 3.16). The unbarred quan-
tities refer to the electron, the over-barred quantities to the positron. Energy and
momentum are conserved at each vortex. Therefore the four-momentum transfer is
q=ps —pi = —(Py — Di)-

a(py,sy) v(Py,5r)

Py

y
[ ]
A

S

u(pi, si) v(pi, 51)
Fig. 3.19. Electron-positron scattering. a depicts the kinematic situation of an-
nihilation scattering in the center of mass system and b the Feynman diagram
of the annihilation O (62)—scattering amplitude in momentum space (compare to

Figure 3.17) for which we keep the symbol “ex” due to convenience. Energy and
momentum are conserved at each vortex. Therefore, the four-momentum transfer

is ¢’ = pi + i = py + Py-

Here the peculiarity is that, contrary to all processes considered so far, the

four-momentum transfer ¢’ is time-like, for which reason the photon line is

drawn vertically in Figure 3.19b. This can best be seen in the center of mass

system, where p; = (E;, p), p; = (E;, —p), and hence ¢’ = (2E;,0), ¢* > 0.
Combining the two amplitudes, we finally obtain (f # i)
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g, — 20+ —pi-p) [ mE [ mE
! V2 EE N\ BB

My = Myi(dir) — Mp;(ex)

drie? (3.113)

Mp;(dir) = 'a(pfvSf)’YuU(piySi)mﬁ(ﬁivgi)'w”(ﬁfvgf)

4rie?

Myi(ex) = 17(171‘751‘)7““(2%Si)mﬂ(pfysfﬂ”v(ﬁf,§f)

q=pr—pi,qd =pitDi.
The relative sign between My;(dir) and My;(ex) is, again, a consequence
of the Fermi-Dirac statistics on the level of wave functions. It expresses the
necessary antisymmetry between the incoming electron of positive energy (p;)
and the temporally backward incoming electron with negative energy (—py)
or, equally, between the outgoing electron with positive energy (ps) and the
temporally backward outgoing electron with negative energy (—p;).

Cross section. Since, on the particle level, the electron-positron and electron-
electron scatterings are equal with respect to their energy and momentum
aspects, we can entirely carry over the calculation of the differential cross sec-
tion from the preceding subsection with the replacement p;, ¢ — Di,f- Thus,
in the center of mass, we again obtain

do mg

= = e Ml -

a2/ .. 4(27)2E;
Amplitude square. By contrast, the further calculation of |My;|* proceeds
differently. Disregarding any polarization effects, the amplitude square is

| 2

(M2 = [Mps(din) 2 + [Myi(ex) 2 — 2Re [Mfi(dir)M;i(ex) ,

where the average over all incoming spins s;, §; (a factor of 1/4) and the
sum over all outgoing spins s¢, 57 have been taken. Using Theorem 3.6, the
individual terms are evaluated as

M (@ = (j‘g;)) S [alpg. s )puos, s)][5(5, 507 0(By.55)]
x[a(py, sp)voulpi, s:)][0(pi, 5:)7" v(By, 51)]F
T 284
- (:(q)2)2 sz;i [a(py, s )vuu(pi, si)lla(ps, si)voulpy, sy)l
x[0(pi, 5:)v" v (P, 5)I[0(Df, 57)7 (i, 5i)]
(47)%e*

= e " (A () Vs (i) ] tr [A-(Pi)y* A (Dy)7"]
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| Myi(ex)|* = (111(7;22)62 > [0, si)vuupi, s)l[w(pg, sp)v" v (s, 55)]

SfySi

SfySi

x[@(Bi, 5:)wui, 5:)] [Wlpg, 55)7 0(Bs,59)])!
- (f{;)) > [0 5:)vuupi, s))[a(pi, 5:)700 (B 5:)]

x[a(pg, sp)v' vy, 5p)0(Dr, 57)7 ulpy, syl
(47)%et

= Wtr [A_ (ﬁi)7ﬂA+ (pi)y ) tr [As (pf)VﬂA_ (ﬁf)’)/y]

2Re Mfz(dlr)MT (ex)} =2 {Mfl(dlr)Mfz(ex)

(47)2et _
= 24247 Z [ulpy, sp)vuulpi, si)l[v(ps, 5:)v"v(Dy, 57)]
Sf,ySi
Sf,8:

< [0(pi, $)nw(pi, i) [wlpg, s5)v" v(py, 55)]F

(4m)%et _ i} .
= 242¢"2 E [u(pg, sf)vuulpi, si)][wps, si)vv(Di, $i)]
SfsSi
S¢,8i

x[0(ps, «§i)7“v(15f7 selO(Dr,57)7 ulpy, sy)]

(2(] 2472 Sgl pf?'sf ’Y/LA+(p1)'Yu v(Di, 54)]
x[0(Di, 8:i)v" A= (Df)y u(py, sf)]
(47‘(’)2 4

- 2¢2¢"? tr [A"r(pf)’)/u/l-&-(pz)')/y/l POV AP -

Comparing these expressions with the corresponding relations (3.109), (3.110),
and (3.111) for the electron-electron scattering, we find that the amplitude
squares of both processes emerge from each other if the four-momenta are
replaced as shown in Figure 3.20. Obviously, this is due to the fact that
the scattering amplitude of the electron-positron scattering in (3.113) results
from that of the electron-electron scattering (Theorem 3.10) via exactly these
replacements. This crossing symmetry turns out to be generally true — ex-
actly and to every order of the scattering theory — for S-matrix elements of
processes where incoming particles are replaced by the antiversions of the
respective outgoing particles and vice versa. This means, for example, that
the scattering amplitude of the particle-particle reaction A + B — C + D
follows from that of the particle-antiparticle reaction A + D — C + B by
simply replacing the momentum variables pg — —pp and pp — —ppr. And
even processes with a different grouping of incoming and outgoing particles,
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electron-electron scattering

— / /

e + e — e + e pi pi by Py

e 4+ et — e + ef Di —Di Py —Dy
electron-positron scattering

Fig. 3.20. Crossing symmetry between the electron-electron and electron-positron
scatterings.

for example A — B+ C + D and A+ B — C + D, are interrelated through
the crossing symmetry.

If we now make the replacements p; — —py, p} — —p; in (3.109), (3.110),
and (3.111) and then evaluate the scalar products in the center of mass
system, we finally obtain the result

_(2m)2et | mb + 4pimf cos® § + 2p} (1 4 cos* )

cm 4m3 p;l Sll’l4 g

M2

3mg + 4p?mg + p}(1 + cos? 0)
+ o

3m0 + 8pImg cos® § 9 + 4pf cos g

29
2

E2p?sin
Contrary to the electron-electron case, this formula cannot be expressed by
powers of 1/sin?# since now it is possible to distinguish between forward
scattering (6 < m/2) and backward scattering (6 > 7/2).

Theorem 3.11: Electron-positron scattering to leading order

The scattering amplitude for the electron-positron scattering (Bhabba scat-
tering) to leading order is (f # )

_ Cm)*ps 4P —pi—Dpi) | m3 mg
Spi=— =My ,
V2 E.E; \| BBy

with the Lorentz-invariant amplitude (¢ = py — pi, ¢’ = pi + i)
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. _ 4rie? _
Mfz(dlr) = u(pfvsf)’YHu(puSz)qQ Tie (plv )ry U(pfvsf)
4mie?
q'? +ie

Myi(ex) = 0(ps, 8i)vpu(Di, 85) a(pg,sy)y v(pys, 55) -

The differential cross section follows as
_om
(ps - pi)? — mg
mod®py mod®py
@r B, (2r)°E;

and, particularly in the center of mass system,

do
E = ( )2E2| fl|cm .

Here all electronic scattering momenta py directed toward df2 as well as
all positronic scattering momenta p, have been integrated out. The unpo-
larized amplitude square is evaluated as

_ (2m)%et
~ 4m}

do = =|Mys|*(2m)*6(ps + B — ps — Pi)

mg + 4p?m3 cos? ¢ ¢ +2p} (1 + cos* )

D; sm4 u

+3m3 + 4p?m3 + p}(1 + cos? 9)

|Myil2,,

E}
3m0 + 8p?m3 cos? & + 4pf cos g
E2p? sm2 :

The electron-positron and electron-electron scatterings are connected via
the crossing symmetry.

3.3.7 Compton Scattering against Electrons

Up to now, we have discussed exclusively scattering processes where virtual
photons have mediated the electromagnetic interaction between real fermions.
Accordingly, the photonic four-momenta were space- or time-like and have
been represented in the Feynman diagrams by closed lines with a start and an
end point. However, there also exist processes with real photons whose four-
momenta satisfy the Einstein condition k,k* = 0. Three such processes are
the Compton scattering, the electron-positron annihilation and the electron-
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positron creation, all of which we discuss in this and the next subsection as
well as in Exercises 38 and 39.2°

Description of real photons. For the description of real photons, we start
from the four-potential A* that, in the Lorentz gauge 9, A* = 0, fulfills the
Maxwell equation

90" AV =0 .

Similarly to fermions, we assume for A* a plane wave (h = ¢ = 1),
All(z) = €Ny, (7 &) | kH = (‘*’)  kk=0,

with the normalization constant Vi, the polarization vector ¢”, and the con-
ditions

k-e=0,e-e=-1. (3.114)

The first condition follows from the Lorentz gauge and reflects the transversal
nature of A*. Since further gauge transformations of the kind

AP (z) — AM(z) — y(x) , 0,0"x =0

do not affect the Lorentz gauge, we can turn to the radiation gauge by choos-
ing x(x) = A%(z) so that

A%2)=0= VA(z)=0.
In this particular Lorentz system the polarization vectors are space-like and
there remain two transversal, linearly independent three-polarization vectors:

(") = <€(’2A)> ke(k,\) =0, e(k,Ne(k,\) =1, A=1,2.

The normalization constant Ny can be determined by the constraint that the
mean energy of the wave A%,

T

! 1 2
Ek=87/d3x<Ei+Bi> , <Ei>:<Bi>zf/dtBi,T:U,
v 0

is just the energy w of a single photon. Taking into account

B, =V x A, =iN,k X € (e_”’”” — ei’”) = 2N,k x esink - x

20 This clearly implies that we have to modify our scattering formalism in Theorem
3.5 a second time (the first modification was the current-current interaction, see
footnote 17 on page 234), since now we are dealing with emitted or absorbed
photon quanta that are incompatible with a classical background field. However,
at least to leading order O (62)7 it seems to be plausible to interpret the two A*-
fields of the second scattering series term as incoming and outgoing photons. By
contrast, in higher orders one could not get around a quantum field theoretical
treatment (compare to the introductory notes in this section).
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and
(k x €)? = k?e¢* — (ke)> =k = w? |
it follows that

_ WN? WINEV 2m

E; = /d3x (sin®(wt — kx)) = —r = N =1/— .
T

wV

™
\%4

After these preliminary considerations, we now turn to the Compton scatter-
ing, where a photon is scattered against a free electron as shown in Figure

3.21, and start directly from Theorem 3.5.

Fig. 3.21. Kinematic situation of the Compton scattering in the laboratory system

where the electron is initially at rest.

Direct scattering amplitude. The leading term of the scattering series
for the Compton scattering is number two. Thus, we start with the equation

(the index 2 is suppressed)
Spitdin) = —ie? [ dta [ dtyly oy @S0 (@ - i )EG)
= [ s [atylye)-ioms (o)

x (+1) S (z — y) (—ieMi (y) T (y) |

(3.115)

where it is obvious to identify the four-potentials with the incoming (i) and
outgoing (f) photons. Within our nomenclature, this corresponds to a direct
scattering amplitude. Inserting the known expressions for the electron and

photon wave functions as well as the electron propagator, we obtain

_ ie2 [mg [(2m)2 4 4 dp
Syi(dir) = —7z BE; Tiwf /d x/d y/ )

X [U(pfvsf)¢(kfaAf)Mﬂku&)u(pusi)]

wePF T (e—ikf~x +eikf~x) e—ip-(x—y) (e—iki‘y + eik,lwy) e iPiy

First we carry out the coordinate integration,
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/d4x/d4yeipf~x (efik_f-:r + eikf.z) e~ ip(z—y) (e*iki-y i eiki-y) JR
= /d4z [ei(p,f*pfkf).zJrei(pf,pﬂcf)_w}

% /d4y [efi(perrki)-y +e*i(Pi*P*ki)'yi|

= (2m)* [0(ps —p — ky) + 0(ps —p + ky)]
x[0(pi —p+ ki) + 0(pi —p — ki)
= (2m)%(ps —p+kp)o(pi —p+ ki), (3.116)
where, in the last step, it was taken into account that three of the four §()d()-

combinations correspond to other or not realizable kinematic situations (see
Exercise 37). The momentum integration now yields

d*p s P+ mo
) — L N £ T
/(27r)4( m)%0(py — p+ ky)d(ps p+k1)p2 e

Bi + ki +mo
(pi + ]fi)Q — m% + ie

= (2m)*0(ps + ky — p; — ki)

b

so that we end up with the integrated scattering amplitude

(2m)*o(ps +ky —pi — ki) | m§ [ (2m)?
V2 ElEf WiWy

Myi(dir) = u(pys, sp)(—ie)¢(ky, Ay) (g:lj_(zz;_ fintgn—f-oi)e

x (—ie)¢(ki, Xi)u(ps, si) -

Comparing these expressions as well as the Feynman diagram in Figure 3.22a
belonging to My;(dir) with our Feynman rules in Subsection 3.3.4, we see
that these rules can easily be extended to include processes involving real
photons:

Sfi(dil“) = Mfi (dir)

1’, 2. Each incoming or outgoing photon yields a photon factor (Gaussian
unit system) Nz‘(}') = 27.

4, Within Feynman diagrams in momentum space, incoming and outgo-
ing photons are represented by lines and factors as given in Figure
3.23.

3’, 5. Unchanged compared to 3. and 5.
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(kg Ar) a(py,sy) e (kr,Ar) a(py,sy)

—ieyy —ieyy

+i(s + ks + mo)
(pi + k)2 —mf +ie

HEi — Fr +mo)
(pi — ky)? —mg + e

—ievy, —ieyy

a b
€ (ki, Ai) u(pi, si) €’ (ki, Ai) u(pi, si)
Fig. 3.22. Feynman diagrams of the direct O (62)—scattering amplitude (a) and

the exchange O (62)—scattering amplitude (b) for the Compton scattering against
electrons in momentum space. Energy and momentum are conserved at each vortex.

incoming photon outgoing photon
(kg Ar)

€’ (kiy As)
Fig. 3.23. Supplementary Feynman diagram elements and characteristic factors in
momentum space (see Figure 3.14).

Exchange scattering amplitude. Apart from the direct scattering, we
also have to take into account the constellation where the assignment of
incoming and outgoing or, likewise, absorbed and emitted photons in (3.115)
is reversed. After some calculations, similar to the above ones, this leads to
the integrated exchange scattering amplitude

27T)4(5(pf +kf—pi — ki) m(Q) (2m)?
V2 EiEf Wi f

Myi(ex) = u(py,sy)(—ie)¢(ki, \i) (i:l)(z;); kfr:gnjroi)e

X (_ie)¢(kf7 )‘f)u(pia Si)
together with its graphical representation in Figure 3.22b, both being con-

sistent with our modified rules 1’ to 5’.
All in all, we obtain the scattering amplitude

Spilex) = | Myi(ex)
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S, — (2m)46(ps + ky —pi — ki) | mE [(2m)? .
e V2 EE\ wwy 7
My; = Myi(dir) + My;(ex)

kg, M) Wi + Fi + mo) ¢ ki, M) (3.117)
(pi + ki)? —m3 +ie
¢(ki, Ni) (i — Ky +m0)¢(kf7,\f)} s

(pi — kf)2 — m% + ie

Its invariance under the exchange k; <> —ky is another example of the cross-
ing symmetry that we encountered in the preceding subsection. In this case
it means that the scattering amplitude for the absorption and emission of
photons with momenta k; and ky is equal to the scattering amplitude for the
absorption and emission of antiphotons with momenta k¢ and k;. However,
the differentiation between photon and antiphoton is irrelevant as the photon
is its own antiparticle.

= fieQQ(pf, sf) {

_|_

Cross section. The differential cross section is best evaluated in the labo-
ratory system where the electron is initially at rest, p; = (mqg,0), so that

2mmy 9 4 mod®py 2nd3ky
do = ———|My;|*(2m)%0 ki —pi — ki . - .
o w?m%‘ il (2m)%0(py + Ky —p )(27T)3Ef @m0y
Using
P _ g [ atpss? — m)OG)) . ks = widugd2
E; =2 pro(pF —mp)O(p}) , = wydwyrdds,
we now calculate as follows:
do 2my 4 9
— = d d%ps|Myi|20 kf—pi — ki
0 o /Wfo/ psMyil"o(ps +ky —pi = ki)
x8(p} —m3)O(p})
2m0
= /dwfwf|Mfi|z27f:m+k,;fkf
x8[(pi + ki — kp)* — m3lO(mo + wi — wy)
9 mo+w;
mo
= / dwsws| Myl —p, i1, ,
0
x0[2mo(w; —wy) — 2wws(1 — cos )]
9 mo+w;
mo
T dwfwf|Mfz'|;2)f=pi+ki—kf

§ |wy — i
ws 1+ 2-(1 — cos0)
2mo + 2w; (1 — cos h)
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wi 2
= E‘Mﬂ‘co ) ‘Mfl

K2

2 2
|co = |Mfi|pf:p7¢+k,;—kf 3 (3118)

with the secondary condition
Wi
(1 —cos®)

wf

Wi
mo

As a consequence of energy and momentum conservation, the last equation
interrelates the energies of incoming and outgoing photons. With A = 27 /w,
it can be cast into the Compton formula

1
Ar =X\ —|—27rm—0(1 —cosf) .

Accordingly, the wave length of the scattered photon is raised by an amount
comparable to the electron’s Compton wave length A. = i/mgc.

Amplitude square. If we are interested in the case of unpolarized electrons
but keep the photon polarizations A; ¢, we are led from (3.117) to (average
over the initial and summation over the final polarizations of the electron)

[Mpil?(ANis Af) = — [a@(ps, s ) Diups, s:)] [a(pg, s ) Dulpi, 50)]'
== [a(py,sy)lu(ps,si)] [a(pi, si) Tou(pys, sy)]

64
= St ) DAL (P (3.119)

with the operators

= Fri + Fi+mo)di £ — Ky +mo)éy

i+ K - : 3.120
Iy = 40710 = £i(p +1é‘ +ﬁ®o)¢f i lff +mo)¢ (3.120)
2p; - kz 2p; - klf
= I'(e; < €5)

and the abbreviations €; = e(k; , Ai 5). Due to the many y-matrix combi-
nations, the evaluation of the trace according to Theorem 3.6 is much more
complicated than in all the preceding examples. However, we can initially
simplify the operators Iy o through the following reasoning: commuting p; in
I to the right and in I3 to the left, we obtain

o piceidy + friifi — ¢rdi(i — mo)
! 2p; - ks
_2pi-esfi — fikpfr — fifr (i — mo)
2pi - kg
2pi - €ify + fikids — Wi — mo)dids
2p; - k;

I, =




3.3 Spin-1/2 Scattering Processes 273

2pi - €pfi — frkrdi — (i —mo)frdi
Di kf

Here we can ignore the (J; — mo)-terms because they are orthogonal to the
energy projection operators A4 (p;). Furthermore, we can always find a gauge
where the photon polarizations ¢;  are perpendicular to p;. In the laboratory
system this is the radiation gauge where €” = 0. Thus, overall, we can replace
FLQ with

o frkifi | fiksfy oo fikify ¢fkf¢z
2p; - ki 2pi -k’ 2p; - ki ky
Despite this simplification, the determination of the trace remains quite com-
plicated due to the presence of products with up to eight y-matrices. Having
struggled through these calculations and taking four-momentum conservation
into account, one arrives at

et ik Di - ki
Miil? (Aiy A
M7l (0 Ap) = 4mg{pi,ki+pi.kf

Ale(kiy Ng) - e(k g, Ap)]? — 2} : (3.121)

Incorporating the laboratory conditions k; - p; = w;mo, ks - p; = wrmg leads
to the Klein-Nishina formula

et fwr  w 9
[Mpil2,(Ai, Af) = yrec + of +4le(ki, Ai) ek, Ap)l" =20 .
To determine the totally unpolarized cross section, we now have to average
over the photon’s initial polarizations and sum over its final polarizations:

4

T e

|Myil2, = 5— + > le(ki M) - el Ap))? =25 . (3.122)
2mg | w; 'y

Here the use of the radiation gauge presents itself where, without restricting
generality, we can choose the three-vectors €(k;,1) and e(ky,1) in such a
way that they lie in the plane spanned by k; and k. Consequently, the angle
between e(k;, 1) and €(ky, 1) is equal to the scattering angle 6. Furthermore,
€(k;,2) and €(ky,2) are perpendicular to the plane and therefore identical:

€(ki,)e(ky,1) = cosb , e(k;,2)e(kys,2) =1
€(ki, 1)e(ky,2) = e(ki,2)e(ks, 1) =0

(3.123)
> [elkis Ni) - e(kp Ap)? = 32 [e(ki, Mie(ker, Ap)]?
)\i7Af Xi,)\f
=1+ cos?0 .

With this (3.122) finally turns into

4
—_ (& w Ws
|Myil2, = 5— ( L= —sin29) .
Wi wy
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Theorem 3.12: Compton scattering against electrons
to leading order

The scattering amplitude for the Compton scattering against electrons to
leading order is (f # )

(2n)*o(ps + ks —pi—ki) | m§  [(2m)?
V2 EEf\ wwy 7V

Spi=

with the Lorentz-invariant amplitude
Mfi = Mfi (dlr) 4 Mfi (ex)
k )\ i 7 ki? )\’L
AUk A+ B o)k )
(pi + ki)? —mg + ie
ki, i) @i — Fy +mo)é(ky, Ay)
(pi — kg)? —mi +ic

My;(dir) = —ieQE(pf, sf)

Myi(ex) = —ie*u(py, sy) u(pi, i) -

The differential cross section follows as

27Tm0 2 4 m0d3pf 27Td3kf
do = ——|M#|*(27)%d kr —p; —k;
o o kz)2| fz| (2m) (pf +Rf—Dpi ) (27T)3Ef (27‘(‘)3wa
and, particularly in the laboratory system where the electron is initially at
rest,

do W]zf 2
E = ?lei|co’ |Mfi |Mfl|pf =pitki—ks
K3
Wi
Lc.)f =

1+ 25(1—cosf)

Here all photonic scattering momenta ky directed toward df2 as well as all
electronic scattering momenta p; have been integrated out. Disregarding
electronic polarization effects while keeping the photon polarizations leads
to the Klein-Nishina formula

64 UJf 2
M52, (Ai, Ap) = 4—m(2){wl + w—f + Afe(ki, Ai) - €(kg, Af)] —2} :
The totally unpolarized amplitude square is
4
M2, = — (“’f + 2 sin? 9) .
2m0 w; Wy

3.3.8 Electron-Positron Annihilation

Now we apply the extended set of rules 1’ to 5" from the preceding subsec-
tion to the process of electron-positron annihilation where an electron and
a positron collide and radiate into two photons (see Figure 3.24). The cor-
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Fig. 3.24. Kinematic situation of the electron-positron annihilation in the labora-
tory system where the electron is initially at rest.

responding Feynman diagrams for the direct and exchange scatterings to
leading order in momentum space are depicted in Figure 3.25. They lead to
the scattering amplitude

(2m)*6(ky + Ky —pi—pi) | mZ  [(2n)2
Spi = = My
V2 EE; \| wyw'

My = Myi(dir) + Mg;(ex)
= ie*5(py, ) [’{(k}’ Np) Wi — for + mo)¢(ky, Ar) (3.124)
= Di, Si (pi*kf)Q*m%Jrie

. f(kﬂ)\f)(ﬁi — ]é} + mg)f(k}, )\/f)] u(pi73i) .

(pi — lf})2 —m3 + ie

e"(kf, Ay) e”(k‘},Xf) e’ (kg, Ay) e"(k},Xf)

iy — k} + mo)
(pi — k)% — mi + ie

+Hi@hi — k7 + mo)
(pi — kf)2 — mg + ie

a b
u(pi, 8i) v(pi, 5i) u(pi, si) v(pi, 5i)
Fig. 3.25. Feynman diagrams of the direct O (62)-scattering amplitude (a) and the
exchange or annihilation O (62)-scattering amplitude (b) for the electron-positron

annihilation in momentum space. Energy and momentum are conserved at each
vortex.
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The following points have to be kept in mind:

The leading order of this process is O (e?) since the radiation of a (free!)
electron-positron pair into a single photon is kinematically not possible.
This means that the condition
Kf=(pi +0:)* = (0] +))° = (Pi +P,)* =0

cannot be satisfied, as can easily be seen in the center of mass system where
Pi = —D;.

In accordance with the Bose-Einstein statistics, the scattering amplitude is
symmetric under the exchange of the photons in the final state (ky < k).

Obviously, the Feynman diagrams of electron-positron annihilation and
Compton scattering emerge from each other by 90°-rotations. Furthermore,
comparing the scattering amplitude (3.124) with that in Theorem 3.12, we
encounter, once again, an example of the crossing symmetry according to
which both processes are connected via the substitution rule of Figure 3.26.

Compton scattering

e+ v — e + 7 Di E; Py kg

e+ et - v + v i —pi —ky K}

electron-positron annihilation

Fig. 3.26. Crossing symmetry between the Compton scattering against two elec-
trons and the electron-positron annihilation.

A similar relationship exists between the Compton scattering and the process
v+ — e~ +eT, ie. the electron-positron creation by two photons (see
Exercise 39). Hence, all three processes are interconnected via the crossing
symmetry.

Cross section. In the laboratory system we have p;, = (mg,0) and the

differential cross section is

2rd’ky 2md’k}
(2m)3wy (2m)3w)

2
do = — =0 |M ;[ (27) 6 (ky + K — pi — ;)

272
VmgE; —mg

With the help of

a3k
a*ky = widugd, 7 = 2/d4k;5(k;2)@(k;9) ,
f
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this can be rewritten in a familiar way as

do
10 = | | /dewf/d4ka|Mfl| (5(k5f+k'f pi — pz)(s(ka)@(k/o)

— B |/dewf|Mfz|k =Pit+pi—ky
'L

x6[(pi + pi — ky)*|O(Es +mo — wy)

mo+E;
2my / 2
= — dwrws|Mpilir —5 40
|p; | J PRIk, =pitpi—ky

x8[2m3 + 2moE; — 2wy (mo + E; — |p;| cos 0)]

mo+E;
2my / 2
= — dw w |M | /. o
|pl| ) f f f’L kf Pit+Dpi kf

___mo(mo+Ei)
Y |:wf mo+E;—|p;| cos o

% -
2(mo + E; — |p;| cos )
2

wy 2
= =1 M filco o filco fi
ullm+ B ke » Ml = Ml
i i

where the photon energy wy is related to the energy of the outgoing positron
via

K’ —I)H‘Pz kf ?

mo(mo + E;)
mo + E; — |p;| cos@

quZ

Amplitude square. Similarly to the Compton scattering, we assume to
have unpolarized fermions while keeping the photon polarizations Ay and /\}.
Thus, starting from (3.124), we consider the equation (average over all initial
polarizations of the electrons and positrons)

‘Mfz‘ )‘f7)‘l) = - Z pz;sz Pu z)][@(ﬁiagi)flu(piasi)ﬁ
== Z (P> 5) Dvulpi, 5:)][a(ps, 5:) 120 (pi, 5:)]
6477 i ~ i
= —Ztr[/l,(ﬁi)f‘l/l+(pi)['2] s (3125)

with the operators
2pz . kf
Ak A Wi — B+ mo) (K, N))
2p; - k}
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orto AR A — by + mo)A(K), X))
Iy = —
Qpl . kf

AN W~ B+ mo)flks )

fQZW

A further evaluation of these expressions is easy if we bear in mind that
they are connected with the corresponding equations (3.119) and (3.120) of
the Compton scattering via the substitution rule of the crossing symmetry
in Figure 3.26. The additional factor —1/2 in (3.125) results from the facts
that there the average is taken over both fermion polarizations and that a
v-bispinor is involved in the trace (compare to Theorem 3.6). Overall, we can
therefore carry over (3.121) with the corresponding replacements to obtain

4 .~ .
Di i - k
M52, (A, ) = — { LI R

8mg | pi-ky  pi-k
+ 2 —4le(ksAy) - e(k), )\})}2} (3.126)
and, after inserting the laboratory conditions p; - ky = wymg, p; - k} = w}mo,
M2 12, (A X) i wf/f+f+2— Ale(kprg) - (K, Np)]?
1i P 8mg | wy W) 1 A '

Energy conservation determines the value of w} to be

mo )
mo + E; — |p;| cos6 )

Summing over the photon polarizations finally yields the totally unpolarized
amplitude square

4
e w
| Mg |2, ( L2 4 gin 9) ,
W

w}:m0+Ez—wf:(m0+El) <1—

2m0 wy
where 6 denotes the angle between the photon momenta k; and k:’f (in the
case of the Compton scattering 0 was identical to the scattering angle 6).
Theorem 3.13: Electron-positron annihilation to leading order

The scattering amplitude for the electron-positron annihilation to leading

order is (f # 1)

o (2m)*o(ks + K —pi — i) | md (27r)2M A
Fi V2 E,E; wiw' fio
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with the Lorentz-invariant amplitude
My; = My;(dir) + My;(ex)
£k, Ap) @i — fr +mo)f(ky, M)
(pi — kf)? — md + ie
£lky, Ap) Wi — Ky +mo) (K, )
(pi — k})2 —mi +ie

Mfi(dir) = —i621_)(]5i7§i)

u(p’iu Si)

Mfi(eX) = _162’6(?%751) u(piasi) .

The differential cross section follows as
_om
V(D - i)? —m§
2nd3k, 2md’K}
X —_— =
(2m)3wy (2m)3w)

do = | M| (2m)*6 (ks + K} — ps — Ds)

and, particularly in the laboratory system where the electron is initially at
rest,

do w?‘ 2 2 2

S — V/ Meil2 = | Meili -

an |f71|(m0 +E1,)| f2|co ) | fl|co | f7f|kffpi+l7i—kf
_ mo(mo + E;)

W =

mo + E; — |p;| cos@

Here all photonic scattering momenta k; directed toward df2 as well as all
photonic scattering momenta k:’f have been integrated out. Disregarding
fermionic polarization effects while keeping the photon polarizations yields

|2 ! _i w_} ﬂ _ ! ’\12
[Myil2g (A, Xf) = o + =+ 2 —4le(kphg) - e(ky, Nf)]

8my |wp Wi
/ I mo
= +E;)(1-— = .
wp = (mo+ B) ( mo + E; — |p;| 0059>
The totally unpolarized amplitude square is
o e (Y wr L as) 5 ,
|Mfi|%ozﬁ w_f+w_}+S1n 0|, 9=<):(kf7kf).

The processes of Compton scattering, electron-positron annihilation and
creation are connected via the crossing symmetry.

3.3.9 Conclusion: Feynman Diagrams in Momentum Space

In the preceding subsections we have studied several relativistic spin-1/2
scattering processes. First, we considered pure fermion processes such as
Coulomb, electron-proton, electron-electron, and electron-positron scatter-
ings, where only virtual photons are involved as mediators of the electro-
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magnetic interaction. There it turned out that the corresponding scattering
amplitudes follow particular characteristics that can be formalized in some
simple rules. Subsequently, we discussed the Compton scattering as well as
the electron-positron annihilation and found that also those processes en-
compassing real photons can be described by the discovered rules with a
few extensions. As was pointed out several times in this section, this modus
operandi comprises two important aspects:

e Enhancements to the original scattering formalism in Theorem 3.5. They
allow the description of two-particle scatterings via current-current interac-
tions as well as of processes with real photons and lie beyond the treatment
of A* as a classical background field.

e Derivation of the Feynman rules that can only be fully explained within
quantum field theory. In this section we have only considered their tree
level part to the lowest orders.

In the following section we see that it is the purely quantum field theoreti-
cally motivated loop diagrams in higher orders that raise difficulties for the
construction of scattering amplitudes.

At the end of this section we present, once again, the complete set of Feyn-
man rules in momentum space. Here the extensions, compared to the rules in
Subsections 3.3.4 and 3.3.7, refer mainly to the generalization of scattering
processes with more than two scattering products (1. rule), the incorporation
of the quantum mechanical indistinguishability of identical particles (2. rule)
as well as the Fermi statistics (4. rule).

1. The scattering amplitude of an elastic or inelastic scattering process of
the kind

I+ — F+F +F"+... + Fm) (Iincoming particle)

F=outgoing particle

is given by
K (k
(27)46 <Pi +p; — kzl pgc )> ﬁ N m N](ck)
Spi= SR T —o Myi
4 j=1 Ei(]) k=1 E,(f )

with a fermion factor of N i(,}.) = my for each (anti)fermion and a photon

factor of Ni(’}') = 2r for each photon. Sy; receives an additional sign for
each incoming antifermion (outgoing fermion wave function with negative

energy).

2. The corresponding differential cross section for collinear currents is

NN} 20 4 CNe ()
do = | My *(2m)*6 | pi+pi — > DY
/\2 2 12
\/(pi i) — mq Mg, k=1
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m N(k)d?) (k)

<1,
When calculating the total cross section, the additional degeneracy factor
ﬁ 1
k)|
k=19 ®)!

has to be taken into account for ¢(*) identical particles of the kind F(*)
in the final state.

E(k)

3. The Lorentz-invariant amplitude My; can be expanded in powers of the
coupling constant e. The expansion terms of order O (e") are obtained
from the Feynman diagrams in momentum space containing all topolog-
ical constellations of fermion lines, photon lines, and n vortices that are
consistent with the scattering process.

4. All vortices, fermion lines, and photon lines in the Feynman diagrams
are assigned the factors given in Figure 3.27. Furthermore, the following
factors have to be taken into account:

i) a relative sign when two Feynman diagrams differ only by the exchange
of two fermion lines (of the same fermion type).

ii)a factor of (—1) for each closed fermion loop.

5. Four-momentum conservation holds at each vortex. All remaining (un-
determined) momenta p are subject to integration with [d*p/(27)* in
the amplitude Myp;.

To 2. The degeneracy factor takes into account the quantum mechanical
indistinguishability of the trajectories of two identical outgoing particles, for
example, as in the electron-electron scattering (see Subsection 3.3.5).

To 4. The relative sign in i) is a consequence of the necessary antisym-
metrization of the whole scattering amplitude on the level of wave functions
due to the Fermi statistics. Therefore, it takes effect also at the exchange
of one incoming [outgoing] particle line with one outgoing [incoming] an-
tiparticle line (see electron-electron scattering, Subsection 3.3.5 and electron-
positron scattering, Subsection 3.3.6). The rule ii) is nothing more than a
special case of rule i) as can be seen immediately by means of Figure 3.28. If
we exchange the two marked fermion lines in a, we obtain diagram b, which
can equally be drawn as in c¢. Thus, compared to c, diagram a contains a
phase factor of (—1).2!

2L As regards the equivalence of the diagrams b and c, recall that, due to the
integration over all space-time points, a Feynman diagram can be arbitrarily
deformed as long as the order of vortices and lines remains unchanged.
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incoming fermion ... antifermion .. photon
U(phSi) 77(]31751) kly)\
outgoing fermion ... antifermion .. photon
a(py, sy) v(py,5r) (ks,Ar)
internal fermion line internal photon line vortex
: s opv the index p is
igl(?O) (p) = i+ TO) iDéO)“D (q) = —4mig" contracted with
2 _ 3 2 i that of the
p Mg + 1€ @ +ie photon line
—> o o~ _™™_ e
—ieyu

Fig. 3.27. Complete set of Feynman diagram elements and characteristic factors
in momentum space (see Figures 3.14 and 3.23).

) : zﬁf
(PC

a b

Fig. 3.28. Fermion loop (a), exchange of two fermion lines (b), and topologically
equivalent deformation (c).

Summary

e The treatment of relativistic spin-1/2 scattering processes essentially con-

tains the following steps:
— Constructing the scattering amplitude S¢; or My; up to the desired

order of the coupling constant e.
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— Taking the absolute square |S¢;|? or |[My;]? and, if required, averaging
over the initial polarizations and/or summing over the final polariza-
tions.

— Inserting |Sy;|? or |My;|? into the formula for the differential cross
section while taking into account the phase factors of all scattering
products involved.

e The first and third steps can be formalized and simplified in a generally
valid way with the help of the Feynman rules. These rules contain
a tree level and a loop level. The latter is of purely quantum field
theoretical nature and goes beyond relativistic quantum mechanics “in
the narrow sense”.

e The second step is best carried out by relating |My;|?* back to a dou-

ble spin sum (if required by inserting appropriate projection operators)

and subsequently evaluating this expression using the trace rules from

Theorem 3.6.

e Scattering processes with initial and final fermion products are
the Coulomb, electron-proton, electron-electron, and electron-
positron scattering. Exclusively virtual photons occur here as media-
tors of the electromagnetic interaction.

e Furthermore, there also exist scattering processes with initial and final
photonic states such as the Compton scattering, electron-positron
annihilation, and electron-positron creation.

e FElectron-electron and electron-positron scatterings on the one side
and Compton scattering, electron-positron annihilation, and electron-
positron creation on the other side are interconnected via the principle
of crossing symmetry.

Exercises

37. Kinematic constellations at the Compton scattering. Show that
only one of the four 6()d()-combinations in (3.116) yields a contribution to
the considered scattering process.

Solution. Resolving (3.116) yields the following combinations and momen-
tum balances:

A o(pr—p+ks)d(p — p+k:):>pi+ki:pf+kf
B:o(pr—p—ks)o(pi — ki) = pi — ki=py — ks
C:d(py—p—kp)d(pi — p+k):>pi+ki:pf_kf
D:o(pf—p+kys)o(p; — k)= pi—ki=ps+kys.



284 3. Relativistic Scattering Theory

To A. This balance reflects the correct constellation of the Compton scat-
tering as presupposed: an incoming photon with momentum +k; and an
outgoing photon with momentum +ky.

To B. This case describes the Compton scattering, too, but with reversed
photon momenta: an outgoing photon with momentum —k; and an incoming
photon with momentum —ky.

To C and D. Physically these two balances correspond respectively to the
absorption and emission of two photons via a free electron, which is kinemat-
ically forbidden. In case C this can be seen by considering the equation

pr—pi =ki +kys. (3.127)

Taking into account the mass shell conditions pi = m3 kf ¢ =0, its square

is
wiwys + EiEf — mg =p;Py + kikf .

With the inequality
pips + kiky < |pipy + kiks| < |pillps| + [killky|

\/EZ2 —mg\/E]% —mg + wiwy

it follows that (E; ; > my)

BBy —m3 < \[B?2 —m3\[F2 —m3 = (Fi - By)* <0 = Fi = F
and, due to (3.127),

w; = —wy = |ki| = —|ks[ = wi =w; =0
Thus, balance C only possesses the trivial solution of a noninteracting elec-
tron. The impossibility of balance D is shown similarly.

38. Electron-positron annihilation in the center of mass system. Use
the results in Subsection 3.3.8 to calculate the totally unpolarized differential
and total cross section of the electron-positron annihilation to leading order
in the center of mass system.

Tip: due to the gauge invariance of the electromagnetic field, the completeness
relations

> enlk, New(k, A) = —gpu (3.128)

A=1

for the polarization vectors e (perpendicular to k) can be used.
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Solution. Our starting point is the differential cross section

2nd’ky 2md’K]
9 |M P 2m)* 6 (kp + K — pi — Di -7

R A A A A e S o
with My; from (3.124), which has to be evaluated in the center of mass system
(see Figure 3.29). Taking into account

2
m
do = 0

mi om w3
Vo p?mi & ey 2Bl

A3k
Bk = widwd —f=2/d4k’5 E2)O (K
f = wydwy ’w} f(f)(f)v
it follows that
do ma 41T _
- — M |2 L . — D
(df?) i | derer [ AHTIRTks 4y e~ )
cm
xS(K7)0(KY)

1’772
0
= d Mgi)2, _
Eimt ] AR, 0,

x8[(pi + pi — kp)?1O(B) + p) — kY)

2
L /dwfwfwl 5
E;|pi] kl=pi+pi—ky
XO[AE(E; — wy)]O(2E; — wy)

2F
2
mg _ 0wy — E)
= d M2, —_ 7
E’L|pl‘ J wfwf| fz|kf:Pi+P7‘,—k'f 4E7,
m% —_
= 0 TR 3.129
4Ei|pi|| filom (3.129)

/
f

Fig. 3.29. Kinematic situation of the electron-positron annihilation in the center of
mass system. Because of energy and momentum conservation, F; = E; = wy = w}

and p; = —p, , kf = —k}.
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et oKy pik
Myi2 (Mg, X Lyt
[Myi2,(Ap, Nf) = Sz {pi‘kf + b,

+2 — 4fe(ksAy) ~e(k’f,A})]2} , (3.130)

where four-momentum conservation as well as the average over the fermions’
initial polarizations are already taken into account. From that we obtain the
totally unpolarized amplitude square (sum over the photons’ final polariza-
tions)

et ik pi-k
L T 2 D lellp ) ek X))
v

!’
Ap N

M2 —
‘ fl‘co Zm% pzkf

Note that (3.130) was derived under the assumption that the polarization
vectors € f,e’f are perpendicular to p; (see Compton scattering, Subsection
3.3.7). In the laboratory system (p; = 0) this was easily achieved by choosing
the purely space-like photon polarizations € = (0,€). By contrast, in the
more general case in hand it is advantageous to incorporate the conditions
€f " Pi = e} - p; = 0 by using the approach or gauge transformation

!/
/ ~/ ’ €r " Pi,
€ — € =€, — =—k 3.131
A A (3.131)
that does not affect the other orthogonality and transversality conditions
(3.114):

e-k=0,ee=—1=€-k=0,€-e=—-1.

€f — € =

Thus, the polarization sum in [M,]2 can be rewritten as

Sl e = Y ey = B

Ap N Ap Ny
with
pro o ~[L ~1 _ ~ ~
A —Zefef , B = E Er €y
A N,

If we now use the completeness relations (3.128) both tensors can be simplified

to
“w v
v €f - Di €f - Di
AMY = €r — k) (6 — k:)
Z<f kpopi ) T kyopi

Af
i i H
_ Z G#EU pz ak IL apz ozkf +6aeﬁpl,o¢pz,ﬂkfk?
- fEr ffkfp ffkf e (ky-pi)?
B pl”k? +pfk; B mgk?k;

kp-pi (ks - pi)?
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! E.lf pZ / / elf pZ !
Buw = 3 eqnern =D\ =gk ) (&=
N - Di rDi
f " v

’
)\f

G + p"v”k}:u +pivﬂk;‘,v _ mgk}’uk},u

- 1%

g K} - pi (k- pi)?

Contracting A" and B,,, and taking into account the mass shell conditions
k2 = k;? = 0 finally yields

Qm%kf k} mg(kf k})2

=2
D A AR v R
and the totally unpolarized amplitude square follows as
T, = o | B+ 3
mg | pi-ky o pi- K}
2mihy Ky molky - Kp)® . (3.133)

(kp-pi)(Kp-pi)  (kp-pi)? (K - pi)?

In order to get |My;|?,_, which has to be inserted into (3.129), we still have to

cm’

incorporate the center of mass conditions. Taking into account |p;| = v; E;,
we have

pi-ky = E? — |pi||k¢| cos O = E2(1 — v;cosf)
pi - Ky = E} + |pi|lkg| cos 6 = E} (1 + v; cos 6)
k‘f'k;c = E'i2+ ‘kakH :2Ei2 .

Thus, the final result for the differential cross section in the center of mass
system is

do et 1+wv;cos0 1—wv;cosb
(dQ) B 8E?v; |:1—’Ui6059+1+’0i0089
4mi 4my
E2(1 —v?cos?0)  E}1—v?cos?0)?
et 1+ 202(1 —v?) — 202(1 — v?) cos? § — v} cost 0
T 4By, (1 —v2 cos?0)? ’
where m2/E? = 1 — v2 has been used in the last step. The calculation of the

total cross section, particularly the integration over dcos6, can be carried
out easily:

1 do met(1 —v?) 4 1+, 9
_ % 11 . ;
a_—2/< _Q) df? = ———5+ (3—0;) n1 20;(2 —v7)

2 ,
dmgv; —v;

+

The factor 1/2 accounts for the indistinguishability of both photons in the
final state and prevents their double counting.



288 3. Relativistic Scattering Theory

39. Electron-positron creation in the center of mass system. Use the
crossing symmetry between the electron-positron creation and annihilation
to calculate the totally unpolarized differential and total cross section of the
electron-positron creation to leading order in the center of mass system.

Solution. Figure 3.30 depicts the kinematic situation of the electron-positron
creation in the center of mass system. Analogously to the preceding exercise,

by

Fig. 3.30. Kinematic situation of the electron-positron creation in the center of
mass system. Because of energy and momentum conservation, w; = wj = Ef = Ef
and ki = =k} , py = —p;.

we start from the differential cross section

(2m)? 20 4 _  mod®py mod3py
do = ———=|M¢;|7(2m)*0 — ki — k; =
= k£)2| ril=(2m)"0(py + Dy Z)(%)?)Ef @r7E,
and calculate, with the help of
er?  (n? _ (2n)?

(k; - k)2 o 2w;w} wa

d3p = 5 | EdE
-2 / dppo (3 —m)OWY) . *py = |py|EpdEsde

as follows:
(%) = Z?/dEfpf/d4pf|Mfi26(pf + Py — ki — k)
x6(p} —mg)O(p})
2
= 28 [ B, T, s,
x0[(ki + k) — py)* — mg)O(kY + ki° — p})
2
= 20 [aBlp IO,y iy,

3

><5[4wi(wi — Ef)]@(le — Ef)
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2w, _
2
L) P o= T2 6(Ef —wi)
WP dEf‘prMMPf:’WJrké*ﬁf dw;
mo
_ m% w?_m%|M 12
4w? filem -

As expected, this formula makes sense only if the energy of each photon is
at least equal to the rest energy of the created electron or positron. Without
constructing the amplitude My; explicitly we can derive its square directly
from the corresponding expression (3.133) of the electron-positron annihila-
tion by considering the relationship of the crossing symmetry in Figure 3.31.
Making the appropriate replacements in (3.133) leads to

electron-positron annihilation

e” 4+ et — v + 9 i Di ky K’

Yo+ oy e A+ et ki —ki  —p;  —Ds
electron-positron creation

Fig. 3.31. Crossing symmetry between the electron-positron annihilation and cre-
ation.

M2, = ¢ [Bsoki, prok
ileo = omz (58 Ty R
(ki - pp)(ki-pr) (ki pr)?(K; - py)?
|M ;|2 follows from this by evaluating the scalar products in the center of
mass system:

Dy - ki = wiz — |pyl|ki| cos @ zw?(l —wvycost) , |psl=viEr =vsw;
Py - ki = i + |pyllkil cos § = Wi (1 + vy cos )
ky-ky = wf —|kyllkys| =207 .

In total, we obtain for the differential cross section of the electron-positron
creation in the center of mass system:

(do) B etvy {l—kvfcosﬁ_’_l—vfcose

an 8w? |1 —wvpcosf 1+wvpcosb
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n 4m? 4md
wi (1 —vfcos?0)  wi(l—v}cos?0)?

etvp 14 207(1 = v3) = 203(1 — v}) cos® § — v} cos* 0

dw; (1 — v} cos?)? '

For the calculation of the total cross section we can resort to the correspon-
ding integration of the electron-positron annihilation to find

do 7T€4(1—Uj2c) 140
= | | ——=|do="— T2 |3 -0}l L 20p(2 — 02
/(dQ)d 2m (3 Uf)nl—vf vr( Uf)]
cm

Compared to the annihilation case, a factor of 1/2 is missing here, since now
the scattering products can be distinguished.

40. Furry theorem. Prove the Furry theorem which states the following:
two identical Feynman diagrams, each with one n-vortex fermion loop differ-
ing from the other just by the direction of the circulating fermion,

e yield the same contribution if n is even,
e cancel each other if n is odd.
What about the cases where n = 1 and n = 27

Solution. Figure 3.32 shows both n-vortex fermion loops with opposite di-
rections of circulation as parts of otherwise identical Feynman diagrams. The

Fig. 3.32. n-vortex fermion loops with opposite directions of the virtual fermion.

corresponding amplitude can be written in the form
My =1..] [M(“) n M(b)} L],

where M(®) and M® denote the contributions of both parts and are given
by

M@ = tr {(_ie)’YMniSI(J‘O)(‘Tn — 2p1)(—i€) 7, 1Y (Tn1 — Tnoa) -

x (=i€)7u 1Sy (21 — z0)
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= 't |:7Mn51(3‘0)(x7l - xn—l)’YunﬂSb(“O) (Tn—1—Tn—2)
X ’VulSéO) (z1 — xn)}
M® = tr {(fie)fymiSl(;O)(xl — zg)(fie)fyMiS}(vo)(xz —x3)- -
X (—ie)fyuniSéo) (xp — xl)]
= cr {Wlséo)(l“l — 22) % S (w2 — w3) -+ Y SE (@ — 951)} :

The trace results from the cyclic multiplication of the vortex factors and
fermion propagators along the loop. Taking into account the charge conju-
gation transformation C' from Subsection 2.1.6 and using the relations [see
(2.40)]

C'C = = = —"v14°

d* i PHC 1y, C
0 = [ A e e
(2m) p? —mg + ie
d*p "I +mo
= e p
(27)4 p? —mi +ie

= 158" (~2)y°
M® can be transformed into
M® = 'y [C’C*l’ymCC’%SlgO) (x1 — x2)

xCC,,CC S (2y — x3)CC1 - -
x CC~ ', CC180 (x,, — xl)}

= e"tr [CilfymC’C*ISﬁﬂO) (1 — x2)
xCC 1y, CC S (2 — 25)CC -
x CC~ ', CC180 (z,, — xl)C]

= e"(—1)"tr [’y;‘fl SISO)T(mQ — xl)'y;‘fg SISO)T(xg —x9)---
x 8 SO (@1 — )

= (=)t [S1 (@1 = 250, S (@ — 1)
x S (w5 = 22)7, S8 (w2 — 1) Yy

= (-1)"M@,

from which the statement follows. The cyclic permutability of the traces is
used in the second and the last steps.
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n = 1 and n = 2 are the only cases where the Furry theorem cannot be
applied. Here the two corresponding subdiagrams with opposite directions of
circulation are topologically equivalent so that, in fact, only one subdiagram
remains. Because of its specific shape, the n = 1-subdiagram is also called
tadpole diagram. Due to four-momentum conservation, it can only be con-
nected to the rest by a virtual photon (with k& = 0), thus contributing to the
self-energy of the electron (or positron). However, contrary to the self-energy
contribution discussed in the following section, this contribution is not ob-
servable because it can be totally absorbed into a (divergent) renormalization
constant. Therefore, it is justified to omit Feynman diagrams with 1-vortex
fermion loops right from the beginning.

3.4 Higher Order Corrections

In the preceding section we dealt with concrete examples of relativistic spin-
1/2 scattering processes to the lowest orders of the scattering theory and
derived the complete set of Feynman rules for the construction of scattering
amplitudes and cross sections. Principally, this system of rules is valid to all
orders. Apart from the tree diagrams, in higher orders it also contains the
quantum field theoretically motivated loop diagrams. Now we turn to the
Feynman rules in higher orders and discuss the new problems arising con-
nected with them. As we will see, these problems result from the fact that
some particular corrections of higher orders, namely those containing loop
diagrams, lead to infinities that put the reasonableness of the whole formal-
ism into question. Fortunately, this divergence problem can be removed with
the program of renormalization. The decisive argument in this context is that
parameters like the electric charge e or mass mg occurring in the Dirac equa-
tion are to be regarded rather as bookkeeping quantities that do not possess
any physical significance since they do not account for certain experimental
effects. Therefore, those quantities themselves contain divergences that have
to be compensated for by the above mentioned infinities. In other words,
if, instead of the bare quantities e and mgq, the physical ones are used any
divergences are removed from the scattering formalism.

As a prominent example, we consider the O (64)—corrections to the
electron-positron scattering (compare to Subsection 3.3.6) whose Feynman
diagrams — 18 in total — contain all the topological and kinematically possi-
ble constellations with four external fermion lines and four vortices, as shown
in Figure 3.33.

e Diagrams a and b represent the two-photon exchange of the direct and ex-
change scatterings similar to the O (64)—c0rrections of the electron-proton
scattering in Figures 3.12 and 3.13. Diagrams ¢ and d are annihilation
diagrams. Writing down the amplitudes belonging to a to d and counting
the powers of the integration momentum, one realizes that they can be
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Fig. 3.33. All Feynman diagrams of the electron-positron scattering amplitude to
order O (64). a to d are tree diagrams and e to j are loop diagrams.

effortlessly calculated with our existing methods. Therefore, they are not
considered any more.

e In diagram e the electron (positron) emits a photon before the exchange
scattering and absorbs it afterward. Diagram f corresponds to a process
where the pair created by the annihilation photon scatters once again be-
fore reaching its final state. Both diagrams belong to the class of vortex
corrections and yield divergent contributions.

e Contrary to e and f, in diagrams g and h the electron (positron) emits
a photon and absorbs it immediately afterward without interacting other-
wise. These divergent diagrams are called self-energy corrections as they
describe the interaction of the electron (positron) with its own radiation
field.

e In diagrams i and j a virtual electron-positron pair is created by the an-
nihilation photon and destroyed immediately afterward. In view of the
fluctuating dipole moment of the virtual pair that may by polarized by the
electric field, those diagrams are termed vacuum polarization. They also
lead to divergent contributions.

Obviously, in Feynman diagrams only loops cause divergences in the cor-
responding scattering amplitudes. They are called radiation corrections. In
Figure 3.35 these components are depicted, once again, together with another
two that occur, for example, in the O (64)—electron—positron annihilation di-
agrams (see Figure 3.34, compare to Subsection 3.3.8). All of them imply
four-dimensional momentum integrals diverging differently at k — oo (ultra-
violet divergence). While the volume elements behave as k%, the integrands of
the three processes from Figure 3.35 are proportional to k=2, k=3, and £~
respectively. We therefore expect the strongest divergence for the vacuum
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=

Fig. 3.34. Two Feynman diagrams of the scattering amplitude for electron-positron
annihilation to order O (64)2 internal self-energy (a) and external vacuum polar-
ization (b).

polarization, namely a quadratic one, a linear one for the self-energy, and a
logarithmic one for the vortex correction.

In the following three subsections we discuss the radiation corrections in
more detail and show how they can be absorbed into the bare parameters e
and my in a physically sensible way by means of the renormalization program.
The fourth subsection deals with some physical consequences connected with
the radiation corrections.

internal / external vacuum polarization:

s

internal / external self-energy:

B AVVIVE A

vortex correction:

Fig. 3.35. Vacuum polarization, self-energy, and vortex correction as elements
causing divergences in O (64)—Feynman diagrams.

Note. In Figure 3.33, we have defalcated some O (64)—Feynman diagrams,
namely those consisting of unconnected parts. One example of this kind is
shown in Figure 3.36. It represents the electron-positron scattering to low-
est order whereas, independently from it, a virtual electron-positron pair
is created out of the vacuum and immediately destroyed thereafter. In the
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Fig. 3.36. Example of an unconnected O (64)—Feynman diagram of electron-
positron scattering.

scattering amplitudes the impact of those vacuum fluctuations appears as
a multiplicative factor in the part of the connected diagrams with external
lines. However, since we are interested in scattering amplitudes relative to
the omnipresent vacuum fluctuations, we can simply divide this factor out or
disregard all unconnected diagrams right from the beginning.

3.4.1 Vacuum Polarization

We start with the internal vacuum polarization and consider the modification
of the free photon propagator??
—4mgh”
D(O)IW —

by a O (62)—fermion loop. According to Figure 3.37, this leads to the replace-
ment

0)uv v 0)uv 0)pa 0)Bv
D" (g) — D (q) = D (g) + DI (@) Pag(@) D™ (q) , (3.134)
with the polarization tensor

dk k +mo F— ¢+ mo

. (3.135)

Pz/ = —ie? t v
(1) e /(277)4 r{’y“k?—mg—kie’y (k—q)? —m? +ie

Fig. 3.37. Modification of the free photon propagator by the O (62)-vacuum po-
larization. The relative sign results from the fermion loop (fourth rule).

22 The ~-symbol above the propagators in momentum space is suppressed here and
in the following.
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The trace results from the cyclic multiplication of the ~-matrices by the
propagators along the loop. Before we calculate this quadratically ultraviolet-
divergent expression, it is instructive to take a closer look at its general
properties. First, P, is a Lorentz tensor and can therefore be written as

Pouw(q) = Dguw + 9w (%) + 4,0, T (¢*) (3.136)

with the constant D and the scalar functions I7(*2) (¢?). Furthermore, gauge
invariance considerations yield the constraints P,,q” = ¢"P,, = 0 so that
(3.136) is reduced to

Pu(q) = (49w — 4uav) I (¢*) , D=0, (3.137)

where I1(g*) denotes the polarization function. That the constant D must
vanish can also be shown through another reasoning: going beyond the
o (62)—fermion loop and taking higher corrections into account, we obtain
the expansion

Dy = DY + DY PDY + DY PDY PDY + ...
=D+ p{"'P (D" + D PO + ..

= DY + DY PDg

1
= —————— (Dyson equation) . (3.138)

[D;“)Tl By

This corresponds graphically to a series of more and more consecutively linked
fermion loops within the photon line (however, more complicated constella-
tions such as, for example, interleaved fermion loops remain ignored). Thus,
using our general ansatz (3.136), the modified photon propagator in the limit
¢> — 0 and up to order O (62) can be written as

Nz ~ _47‘-9“”
Dr"(a) ~ Z—D+ie’
This is exactly the free propagator for a boson with mass v/D, so that, again,
D = 0 follows.

However, a direct calculation seems to contradict this result since, as al-
ready mentioned, the integral (3.135) is divergent in k and yields an infinite
value particularly for ¢> — 0. There exist different approaches to resolve
this problem. They all enforce the convergence of the integral through regu-
larization, for example by cutting off the k-integration at a particular large
momentum or by introducing a damping factor approaching continuously
zero for large k. In the following we use the Pauli-Villars procedure, where a
function with the same asymptotic behavior is subtracted from the integrand
in (3.135) so that the resulting integral becomes convergent. One advantage
of this method is that the gauge invariance condition (3.137) can be up-
held. In practice, this means that, instead of (3.135), we have to consider the
regqularized polarization tensor
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N

Pu(p) = —'62/ Ok i Z

Xtr k+M k_g+Mi
T M e (k—q)2 — M? +ie

(3.139)

with Cy = 1, My = mg (original integrand). C;~o, M;~o denote appropriately
chosen cut-off parameters that ensure the convergence of the integral. Of
course, at the end of the calculations, we have to take the limit M;~o —
oo. Since this cutting off procedure (as any other) is arbitrary, the physical
observables must not depend on the parameters C;~g and M;~o. As we see
shortly, this can indeed be achieved.

The concrete calculation of (3.139) requires some considerable effort that
we do not present here. It shows that the not gauge invariant terms can be
removed using a particular choice of the cut-off parameters. At the end the
gauge invariant expression [compare to (3.137)]

Pu(9) = (90 8” — auav) (4%
remains with the now only logarithmically divergent regularized polarization
function
(2 62 dp a 2 2
(¢®) = dﬁﬁlf 7ZCexp{1p —M;? + (1= B)¢°]} -
=0

0 0

I

If we now assume®® ¢% < 4m3 < M2, the I-integral can be rewritten as

N N N ®
I=- lirr%)ZCZ- Inn— ZCZ- In [M}? - B(1 - B)¢*] + ZCi/dtlnte_t
n— i=0 =0 =0 0

by deforming the integration contour onto the negative imaginary axis. Ob-
viously, the first and the third infinite terms can be eliminated with the

N
additional parameter condition Y C; = 0 so that
i=0

N
I=- {m [m§ = B(1 = B)¢*] + > Ciln [M7 — B(1 — ﬁ)qQ]}

i=1

N
- {ln [m% - 61 75)(12] + ZCZ' lan}
i=1

23 This ensures a negative imaginary exponent within the S-integration interval
[0 : 1]. Beyond this, i.e. above the threshold energy ¢* = (2mo)?, the production
of real electron-positron pairs becomes possible.
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2

N
= - ln[l—ﬁ(l— q2}+201n —L+ > Cimp
my my

i=0

———
0
2 2
q A
- fuf-m-ng] v
where the abbreviation
N
M? A2
Z Ciln — = —In — (A =cut-off momentum)
‘ mg m§

has been introduced in the last step. Thus, the regularized polarization tensor
finally becomes

Pule) = (9w —aua) (g%
() = 1[;ln:j2)+ﬂ(m(q2)]
1) = -2 [aspa-pm[1-p0- 55 o
0
m? 1 1 ¢
< s ;;0(15+m513+...) .

As one can see, the effect of the regularization is that now the polarization
tensor

e fulfills the gauge invariance condition (3.137),
e shows the correct asymptotic behavior for ¢ — 0,

e possesses no quadratic divergence any more but only a portion that is
independent from ¢ and only logarithmically divergent with the cut-off
momentum A,

e and possesses a well-defined, g-dependent, and finite term I7(®) (¢2).

However, even this result seems unsatisfactory because of the presence of
a divergent A-dependence. This can be understood by turning back to the
modified photon propagator and considering its influence on the electron-
positron scattering. Taking into account (3.134) and (3.140) as well as Figure
3.38, the part of the direct scattering amplitude up to order O (64) originating
from the vacuum polarization is

Myi(dir) = a(py)(—ie)vuu(p:) (Dr"(q)] 0(p:)(—ie) v, v(py)
—47

= —ie?a(ps)yu(pi) DY (q) | 9 + (9" — ¢"q") [ (q )qT
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a(py,sy) v(Py,575)

iDg" (q)

—iey, Ve Va Vsl J\G\/ —ievy,

u(pi, $i) v(pi, 5i)
Fig. 3.38. Feynman diagram of the direct electron-positron scattering up to order
o (64) in momentum space resulting from the vacuum polarization. The momentum

transfer is ¢ = py — pi = —(Py — Pi)-

X@(ﬁi)’)/uv(ﬁf)
= —ie?a(ps)yu(p) DY (q) [1 - 4w I1(q%)] 5(p: )y v(py)
62 2
= —ialpy ) D a) 1= -y — T (g
<0(pi)y"v(py) | (3.141)

with DI(;O)(q) = —47/q?. In the third step, the fact was used that for free(!)
positrons, we have

(ﬁf + mo) v(py) =0, 9(pi) #; +mo) =0
so that the term proportional to ¢*¢” vanishes:
5(55) (#, — #7) v(by) = 5B (5r) = " 0(Fs)0(By) = 0.

Up to an error of order O (66), we can now prefix multiplicatively the log-
arithmically divergent part in (3.141) and finally obtain [compare to the
O (e?)-scattering amplitude My;(dir) in Theorem 3.11]

Myi(dir) = —ie*u(py)yu(p) DY (0)Z [1 = 1™ (q%) + O (¢*)]

xv(p; )y v(py)
= —icka(p)nup) DY (@) [1 = TV (¢ + O (¢*)]
x0(pi )y v(py)
with the renormalized charge
2 AZ
ern=vZs¢, Zs=1——1In"— . (3.142)

3m mg
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At this stage the renormalization argument comes into play. Experimentally,
the charge of a particle is determined by its interaction with another charged
particle. An inseparable part of this interaction is the vacuum polarization
which is not taken into account by using the bare charge e and therefore
causes the divergent factor Z3. Physically, only the renormalized charge eg
is relevant that encompasses the fermion-photon interaction. Its value e ~
1/137 is determined by scattering experiments with small ¢2, i.e. by slight
scatterings of two widely separated charges. With this charge renormalization
one finally ends up with a well-defined scattering amplitude correct up to
order O (64) where the dependence on the cut-off momentum A is completely
absorbed in the electron charge.?* Here the detailed relationship between
bare and renormalized charge and, hence, the regularization procedure are
irrelevant. In order to calculate the influence of the vacuum polarization one
simply uses the renormalized charge er as well as the renormalized photon
propagator

DI () = DY (g) [1 = 1M (?)]

and is only faced with finite quantities. Compared to the free photon propa-
gator DI(;O)“ “(q), the actual, physically observable correction is given by the
momentum-dependent term I7(®) (¢?). Its contribution is finite, independent

of the cut-off momentum A, and vanishes for ¢> — 0.

External vacuum polarization. Having discussed the correction of inter-
nal photon lines by the vacuum polarization, it remains to be clarified how
external photon lines are to be modified in the presence of a fermion loop.
As can easily be seen, the direct calculation leads to an undefined expression.
However, in this case it helps to consider that incoming and outgoing fermions
are not actually free but have been emitted sometime from a source and will
be absorbed sometime by an observer so that an external photon line with
a fermion loop can be viewed as an internal photon line with a fermion loop
whose one end is the distant vortex (reduction of the external to the internal
vacuum polarization). This corresponds to the modified photon propagator

> =~ 0= D (q) = ZsDY" (q)

or the known renormalization eg = v/Zze at both end vortices. Thus, we
obtain the simple rule that in an external photon line the contribution of a

24 Note that Z3 only deviates substantially from one if A 2m063”/262 ~ 10280m0,
which corresponds to a length of Az Sh/A ~ 1072%*cm. However, in practice,
this is completely irrelevant since the presence of other quantum fields delim-
its the range of validity of quantum electrodynamics to much smaller momenta
and much larger distances. Z3 1 means that for a remote observer the phys-
ical (renormalized) charge of a fermion seems to be weakened compared to its
bare charge due to the cloud of virtual particle-antiparticle pairs surrounding it
(screening).
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fermion loop can be omitted if the renormalized charge er instead of e is
used at the photon line’s vortex.

Theorem 3.14: Vacuum polarization

The modification of an internal photon line caused by the vacuum polar-
ization adds a quadratically divergent part to the free photon propagator
D%O)W(q). Using the Pauli-Villars procedure, this part can be regularized
in such a way that, up to order O (62), the modified photon propagator
can be written as

D§*(q) = ZsD{*(g) [1 - A (g

with the g-dependent, finite function

1
(R) (2 2¢? ¢
n™(¢) = —— [dBB(1-B)In|1-B(1~-0F)=
T mg
0
2/m2<1 e2 g2 1 1 ¢
T e g <_+_q_2+...>
m mg \15 140 mg
and the renormalization constant
2 AQ
Zy=1-—In—; .
3m mg

As a result, the former quadratic divergence is weakened to a logarithmic
divergence in the cut-off momentum A which is solely contained in Z3. Due
to the renormalization idea, D4"(¢) can be replaced with the renormalized
photon propagator

R)pv 0)uv
D" (g) = D™ (q) [1 — T™ (%)
if, at the same time, the renormalized charge
ER = de

instead of the bare charge e is used at its end vortices. The contribution of
the vacuum polarization to an external photon line can be omitted if the
renormalized charge eg is used at its vortex, too.

Note that in I7(®) (¢?) up to order O (62) the bare charge can also be replaced
with the renormalized charge. Thus, the bare charge falls completely out of
the calculation of scattering amplitudes.

3.4.2 Self-Energy

Next we investigate the impact of the internal O (e?)-self-energy on the free
fermion propagator
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+ mg
SOy = FTmo
According to Figure 3.39, the transition to the modified fermion propagator
proceeds along

iy (p) sy Sk S (p)
® - o -+ “ - -
—ieyu —levyy
iDO# (k)

Fig. 3.39. Modification of the free fermion propagator by the O (62)-self-energy.

S8 () — Se(p) = S (0) + S5 (1) Z(p) S () (38.143)
with the linearly ultraviolet-divergent self-energy function

d4k‘ 1 zﬁ - ]é + myo
Y(p) = —4rie? # 3.144
(p) = —drie / Qm)A k2 +ie “(p— k)2 —mZ+ie! (3.144)
which, contrary to the polarization tensor P, (p), is a 4x4-matrix in spinor
space. Using the Dyson equation (3.138), we can formally rewrite Sg(p) as

1 1
SF(p) - 1 - P
sPw)] - 2w $—mo = X(p) +ie

(3.145)

This expression is correct up to order O (€?) (and contains additional terms
in higher orders corresponding to more and more consecutively linked self-
energy insertions).

In the following we assume the restriction that Sg(p) is placed between
two free electron (and not positron) states, i.e. 4(p)Sr(p)u(p), that reside
“near the mass shell”: (f — mo)u(p) ~ 0, u(p)(P — mp) =~ 0. In this case a
reasonable ansatz for the energy function is

L(p) = 6m + (Za — 1) — mo) + XM (p)( — mo)* . (3.146)

It corresponds to a Taylor-like expansion around the “point” g = mg. The
quantities dm and Z, — 1 are to be regarded as small constant Cnumbers
of order O (62) that, as we show later on, contain formally the divergence of
the integral (3.144), whereas the scalar O (e?)-“residue function” X® (p) is
finite. Thus, disregarding terms of higher orders, (3.145) turns into

Sw(p) = !
B e —om — (Zs — ) —mo) — ( — mo)2 20 (p) + ie

1
T —mo—dm)[1 = (Zz — D)][1 — ( — mo) Z®) (p)] +ie
Zs
# —mo — om)[1 = (f — mo) X B (p)] +ie ’

%

(3.147)
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where [1 — (Z5 — 1)]7! &~ Z5 has been used in the last step. If we now make
use of the above restriction concerning quasi-free electron bispinors on the
mass shell, the momentum-dependent correction (jf — mg) X ™) (p) in (3.147)
can be ignored, and we obtain

Z2 Z2(¢ —+ mo =+ 5m)

SF(p)%;gf—mo—ém—&—ie:pQ—(mo—i—(Sm)Q—l—ie'

Apart from the multiplicative constant Zs, this corresponds, as expected, to
the free electron propagator, where, however, mg is replaced by the mass
mg -+ dm. Analogously to the charge renormalization in the vacuum polariza-
tion, the divergent self-energy dm can be removed by the argument that the
renormalized mass

mgr = mg + om

is the actual, physically measured electron mass, whereas the bare mass my
has no physical meaning since it does not include the interaction of the elec-
tron with its own radiation field. A formal procedure for the mass renormal-
ization is expressing the Dirac equation through the renormalized mass:

@ —eAd—mgr)p = —omy .

This implies within our scattering formalism that, on the one hand, myg is to
be replaced by mpg everywhere. On the other hand, the additional term or
counter term

=8¢ (w)omsy (p)
arises in (3.143) that eliminates dm in X'(p) and hence also in (3.147). There-
fore, the modified (mass-renormalized) electron propagator takes the form
2y
# —mr)[1 — (¢ —mr) @ (p)] +ie -

The remaining divergent factor Zs can, once again, be absorbed in the bare
charge e by performing the charge renormalization

e — eg = Zse . (3.148)

Sr(p) =

Contrary to (3.142), here is no root present since each vortex is shared by
two electron lines. All in all, the impact of the electronic self-energy can be
determined in a well-defined way, too, by using the renormalized charge ep
as well as the charge- and mass-renormalized electron propagator

1
#—mr)[l — (¢ —mr)E®)(p)] +ie ’

where the actual, physically relevant correction to the free electron propaga-
tor resides solely in the momentum-dependent and finite function X (p).

S (p) =
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External self-energy. Analogously to the vacuum polarization, the effect
of a self-energy insertion in an external electron line can be easily understood
considering that even a free electron was emitted sometime and will be ab-
sorbed sometime. Therefore, it can be regarded as an inner electron on the
mass shell within a larger process sequence (reduction of the external to the
internal self-energy). Consequently, the combination of an external electron
line with or without a self-energy insertion leads to the modified electron
propagator

¥~ mr = Sp(p) = ZS (mg, p) |

which simply corresponds to a factor of \/Z, at both end vortices. Simi-
larly to the external vacuum polarization, we finally obtain the rule that the
self-energy contribution to an external electron line can be omitted if the
renormalized charge ef; instead of e is used at its vortex.

Determination of dm and Z;. We now show how the divergences of the
self-energy function X(p) can be shifted to the renormalization constants
om and Zs. As already mentioned, one ultraviolet divergence of the integral
(3.144) lies at k — oo so that it needs to be regularized. However, due to the
first term in the integrand, the integral also contains an infrared divergence at
k — 0. This can be circumvented by introducing a photon mass u, whereas,
at the end of our calculations, we have to consider the limit u — 0. Let us
therefore start with the regularized self-energy function

) d*k 1 p—F+mo
S(p, p) = —4mie?
(p, 1) Tle /(2@4 [k2—/¢2+ie%‘(p—k)2_m(2)+ie

where the regularizing Pauli-Villars terms are subsumed within “Reg”. After
some intermediate calculations, this becomes

* 4+ Reg| ,

(o) = 5~ [ d5(2ma — )
0

x /% exp {ip [B(1 — B)p* — Bu® — (1 — B)m] } + Reg
0

As one can see, the p-integral is logarithmically divergent at its lower limit.
For its regularization it is sufficient to subtract from the integrand one single
Pauli-Villars term of the form exp(—ip34?)/p with the cut-off momentum A.
With the assumption?® p? < (mg + p)?, the p-integration can, as in the case
of vacuum polarization, be carried out by deforming the integration contour
onto the negative imaginary axis. Finally, one obtains

2% For four-momenta above the threshold energy p* = (mo + u)? the virtual photon
can decay into a real fermion and a real photon (compare to footnote 23 on page
297).
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1
_ e pA?
X(p,p, A) = %0/ p(2mo — ) In (1—B)ymg + Bu2 — B(1 — B)p?

According to our ansatz (3.146), the self-energy contribution dm follows from
calculating X(p, ui, A) on the mass shell. The final result is independent of p
and reads

- 3e*myg A% 1
M=memmw@=4ﬂm@ﬁ%-

However, for Z5 we find the pu-dependent expression

X (p, i, A) 1_62(11 A2 w +9> .

ZQ b aﬂ ]ﬁ:mo,pzzmg 2m \2 mO +1 my
The determination of the residue function X®) (p) is much more complicated
and is not pursued here.

It is noticeable that dm as well as Zs are logarithmically divergent in
A whereas an inspection of (3.144) originally led to the more pessimistic
prediction of a linear divergence. Furthermore, the quantity Zs possesses two
awkward properties: firstly, it is infrared-divergent in the photon mass and
secondly, it is not gauge invariant. However, as we see shortly, this is irrelevant
since Zs is exactly canceled out by the renormalization constant stemming
from the vortex correction.

Theorem 3.15: Self-energy

The modification of an internal fermion line caused by the self-energy adds
a logarithmically ultraviolet- and infrared-divergent part to the free fermion
propagator Séo) (p). Using the Pauli-Villars procedure, this can be regular-
ized in such a way that, up to order O (62), the modified fermion propagator
can be written as
Zs
) = G~ G- m)E )] e

with the p-dependent, finite function X (p) and the renormalization con-
stant

ez (1. A? uw?> 9
Zo=1-— (=1 1 2.
2 27r<2n i 3+4>

Here it is assumed that

e Sr(p) is placed between quasi-free electron bispinors and

e the mass renormalization has already been carried out everywhere, i.e.
the bare mass mg has been replaced by the renormalized (physical) mass
mg.

>
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After this Z5 arises as the only constant from the regularization containing
the above mentioned divergences. Due to the renormalization idea, Sg(p)
can be replaced with the renormalized fermion propagator

(R) () _ L
Sp ' (p) = @ —m)l — —mr)E® (p)] + ¢ ’

if, at the same time, the renormalized charge

er = Zo€

instead of the bare charge e is used at its end vortices. The contribution of
the self-energy to an external fermion line can be omitted if the renormal-
ized charge e is used at its vortex, too.

3.4.3 Vortex Correction

The last radiation correction is the O (62)—v0rtex correction. Here a vortex
is modified by an internal photon line according to

Yu — Tu(p',p) = v + A (', p) (3.149)
(see Figure 3.40) with the logarithmically ultraviolet-divergent vortex func-
tion6
d*k 1
2m)4 k2 — p? 4 ie

P —F+mr y—Fk+mr
X / 2 2 —Tu 2 2 .
(' — k)2 —m7 +ie " (p— k)2 —m{ +ie

A1) = —imie® [ -

v | . (3.150)

—ievyy
iS{” (0 — k)

. iDy” (k)
—leyu

i (p—k)
—iey
Fig. 3.40. Modification of a vortex by the O (62)—v0rtex correction.

Similarly to the self-energy function, it also possesses an infrared divergence
due to the photon propagator term, for which reason the photon mass u
was inserted right from the beginning. As before, our goal is to shift the
present divergences into a multiplicative constant that, in turn, leads to a

26 Remember: mg results from the mass renormalization that has to be performed
everywhere.
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renormalization of the electric charge. For this purpose we split A, (p’, p) into
a part A,(p, p) representing the “forward scattering” (vanishing momentum

transfer: ¢ = p’ — p = 0) and into a “residue” AELR) (', p):

Au(p',p) = Aulp.p) + AT (0 p)
Note that the ultraviolet divergence of the integral (3.150) is solely contained

by A, (p,p), whereas AELR) (p',p) is well-defined and finite in this respect. This
can be seen by expanding the second propagator in (3.150) using the Dyson
equation (3.138):

P —kt+mr 1
(W —k)? —mi e —f —mn +ie
1
T h—F—mrtie—G—p)
1
T F-mrtic
1 1

U
By et O
For large k the p’-independent term behaves like 1/|k| which causes the loga-
rithmic divergence, whereas the p’-dependent terms possess higher k-powers
in the denominator thus leaving the integral convergent.
Surprisingly, we can leave out an explicit regularization when calculating
the divergent part A, (p,p) by using the Ward identity

~0X(p)

Opt
where X(p) is the known self-energy function from (3.144). This identity
follows from the relation®7

Au(p,p) = : (3.151)

0
g S 0= k) = =5 (0 = k) (0 = )

~1
that, in turn, results from the differentiation of SI(,O) (p— k)SI(;O) p—Fk)=1
using the product rule:

9 0o 0)~1 0 0

oS 0= 0] SO =)+ SO ) k=) =0

Due to our ansatz (3.146), the Ward identity yields the simple relationship
Aupp) = —(Z2 =)y + O —mr) .

If we restrict ourselves once again to the case where the modified vortex

I,(p',p) is placed between two quasi-free electron bispinors near the mass

2" It means that differentiating the fermion propagator with respect to the mo-
mentum corresponds graphically to an insertion of a photon with momentum
transfer zero into the fermion line.
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shell, L.e. u(p') [ (p', p)u(p), (F — mr)u(p) = 0, u(p')(p —mo) ~ 0, then, due
to the last relation, we can rewrite (3.149) in the form

(' p) = 1= (Za = D]y, + AP @, p)
(1= (Ze = 1)) [+ AP @)

Zy! [w + A (p’,p)} :

Q

%

which is correct up to an error of order O (64). At this point, our goal is
reached: the ultraviolet divergence of the vortex correction, i.e. its dependence
on the cut-off momentum, is contained solely in the multiplicative factor Z, *
and can, as for the vacuum polarization and the self-energy, be removed from
the scattering formalism by performing the charge renormalization

e — e =272yt (3.152)
if, at the same time, the renormalized vortex

@, p) =y, + A8 (@, p)

instead of 7, is used. As before, the actual, physically observable correction
is given exclusively by the cut-off momentum-independent residue function
ALR) (p',p). In the limit ¢*/m$ — 0 it becomes, after some lengthy calcula-
tions (for free electron bispinors!),?®

2 2 2
e” q mr 3 e‘ 1
ARG Py vyy— = (In— -2 ) + ———0,¢"
w#p) T mZ, © 8) " 2x2mg mt

with ¢ = p' — p and 0., = i[v,,7]/2.

Let us now consider the three fundamental radiation corrections together:
vacuum polarization, self-energy, and vortex correction. In calculations of
scattering amplitudes this leads, in total, to the charge renormalization

e — \/ZngZg_le =\/Z3e

at each vortex correct up to order O (62) where the renormalizations stem-
ming from the self-energy and the vacuum polarization cancel out each other.
This result is satisfactory in many respects. Firstly, contrary to (3.148) and
(3.152), the resulting physical charge depends neither on the artificially intro-
duced photon mass nor on the arbitrarily chosen gauge. Secondly, the renor-
malization of the electric charge is exclusively a consequence of the modified
photon propagator caused by the creation of virtual pairs so that two fermions

2% Note that F;SR) (p', p) still possesses an infrared divergence at vanishing photon
mass. However, this so-called infrared catastrophe turns out to be not existent
if one takes into account that in each calculation of elastic scattering processes
one always has to incorporate a “background noise” of inelastic scatterings (e.g.
braking radiation, German: Bremsstrahlung) that cannot be switched off in real
experiments. Those external radiation corrections exactly compensate for the
photon mass dependence of the internal vortex correction (see Exercise 41).
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with the same bare charge (e, u=, 77, ...) also possess the same physical
charge. Without the above mentioned cancellation or, likewise, without the
Ward identity (3.151) this would not be the case due to the fermion mass
dependence of each renormalization constant.

Theorem 3.16: Vortex correction

The vortex correction adds a logarithmically ultraviolet- and infrared-
divergent part to each vortex factor 7,. Using the Ward Identity, the mod-
ified vortex can be written up to order O (62) as

LG\p) =23 [+ AP 0p)] |
with the momentum-dependent, finite function (¢ = p’ — p)

2/mE—0  e? ¢? mr 3 e i
AR p) T 8P () L N
w (#p) e m¥ 27 2mRUu 2

w8
and the renormalization constant Z, (see Theorem 3.15). Here it is assumed
that I,(p’,p) is placed between two quasi-free electron bispinors. Due to
the renormalization idea, I,(p/,p) can be replaced with the renormalized
vortex

™, p) =y + AP, p)
if, at the same time, the renormalized charge
en = Zyte

instead of the bare charge e is used. In total, vacuum polarization, self-
energy, and vortex correction lead to the charge renormalization

e — \/Zse ,

which is caused solely by the vacuum polarization. This result is a conse-
quence of the Ward identity which is valid in all orders of the scattering
theory.

It is pointed out here, too, that in ALR) the bare charge can also be replaced
by the renormalized charge up to order O (62).

After all three O (62)—radiation corrections have been discussed, one may
ask what new problems will arise if one goes beyond them. With the renormal-
ization methods presented so far, we already have all the instruments that are
necessary to obtain unique, finite, and cut-off parameter-independent physi-
cal results in higher orders of the scattering theory. There, however, we should
prepare ourselves for much more calculational effort due simply to the much
larger diversity of combinations in the construction of Feynman diagrams.
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3.4.4 Physical Consequences

At the end of this section we discuss two physical effects caused by the
@ (62)—radiation corrections that are among the most important touchstones
of quantum electrodynamics. They are the electron anomaly, i.e. the devia-
tion of Landé’s g-factor from 2, and the Lamb shift in the energy spectra of
atomic systems.

Gyromagnetic ratio of the electron. In Subsection 2.4.1 we saw that, in
the presence of an external electromagnetic field, the pure Dirac theory leads
to an interaction term —M B in the Hamilton operator, where

M = gupS (3.153)
denotes the magnetic moment of the electron with
h
g =2 (Landé factor) , pp = c (Bohr magneton) . (3.154)
2mygc

Now we investigate the impact of radiation corrections on the magnetic mo-
ment of the electron. We consider the scattering of an electron against an
external electromagnetic potential A%, to lowest order O (e), include the
o (62)—radiation corrections and ask for the corresponding interaction energy

W= / d*zj, AL, (3.155)
The Feynman diagrams contributing to this process are depicted in Figure
3.41. The self-energy correction is omitted there since, for free particles, it
merely leads to the mass renormalization mg — mpg and, together with the
other corrections, to the charge renormalization e — er. Diagrams a and b
yield the amplitude (see Theorem 3.14)

b _ R .
MY = ert(py, s p)vuulpir $:)) DY ()jvexs + 4 = pr — pi

= enit(py, ) upir 51) DY (@) [1 = T (¢)] st

and diagram c leads to (see Theorem 3.16)

a b (¢
Fig. 3.41. Electron scattering against an external potential to lowest order O (e)
(a), including the O (62)-radiation corrections of vacuum polarization (b), and
vortex correction (c).
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M( = - eRu(pf ) Sf)A(R) (pjvpz) (p7.7 Si)Dé‘O)“V(Q)jv,cxt .
Thus, in total, we obtain the amplitude
a,b,c 0
Mf(l ):JHD( v ( )jvext7
where

Ju = eru(py,sy) {W’M [1 - H(R)(qg)} + AELR)(PfaPi)} u(pi, si)

is the O (62)—radiation corrected electronic transition current in momentum
space, which has to be inserted into (3.155). After this the interaction energy
of the electron with an external electromagnetic field becomes

W = eR/de@f {m {1 —® (qZ)} + ALR) (pf,pi)} v, AL,

Using the explicit expressions of IT®) and AELR) in the limit ¢> — 0 (see
Theorems 3.14 and 3.16), this turns into

_ 3 1
W o~ A3 14 R (R 2 2
eR/”{ [+3m§“u 575

ik v Ly, A (3.156)
47rmR Jp,uq 14 text .
1 _ _
w [ oy [0, - 0,0)0]
1
{1+ R (1 T”R—?)—)]Agxt
3rmZ \ p 8 5

i ez
+eR/d3xm (1 + ;r) Vo, Wiq" Al
where in the last step the Gordon decomposition [see (2.86)]
— i _
Wf’yuLpi = % [Wfauwi (8 Lpf) } + Tg/fgwlpzq

has been used and the O (q3)—terms have been omitted. Transforming the
g-factors into derivatives in coordinate space, we finally obtain

i = .
W~ eR/dSiL” {QmR (710, %; — (0,77) ;]
€2 mr 3
P WY L N ) g
X[ 37rm2R<n o8 5) } ext

2 1 _ y
(1 + 27‘() ﬂ!pfal“,Wia Agxt} .
The first term contains a purely convective current that we do not consider
any further. Using [see (2.54) in Exercise 15]
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v L 1 v L 1 v L v
0" AP = 5(0,“, — 0y,) 0" AP = 5(0,“,(8 AP — OFAY)

1
= _iawFW = —(iaE — 6B) ,

the second term can be rewritten as

2
~ w)_1L 300, (lal. E — 6.
oW = (1 + 271_) S /d ¥ (iaW, E — 6¥;B) .

Obviously, in the case of a purely magnetic field and of slowly moving elec-
trons where the two upper components of ¥ dominate the lower ones, this
expression can be interpreted as magnetic dipole energy since we have

2
214+ R L/d%@SWB
2w ) 2mpg

2
214+ i/di”waWB
2w QmR

- —(M)B.

oW

Q

Q

with the magnetic moment

My =2 (14T ) D gy g (14 R
o 2rhe ) 2mge — 9UB n 9= 2rhe )

Here the physical constants h and ¢ have exceptionally been written down.
Thus, compared to (3.153) and (3.154), the electron’s magnetic moment is
slightly larger when taking into account the O (62)-radiation corrections.
With a, = e} /hic = 1/137.03602, it contains the corrected Landé factor

g=2(1+ g—) — 2(1 + 0.00116141) .
Y3

The deviation of this factor from the original value 2 is called electron
anomaly. It was derived by Julian Schwinger in 1948 for the first time and
subsequently verified experimentally by others. A modern experimental value
is

Goxp = 2[1 + 0.00115965219(1)] .

The remaining difference between g and gexp is explained by the omission
of higher order corrections. Taking into account the corrections up to order
O (€®) yields a theoretical value coinciding with gexp up to a relative deviation
of about 10711,

Qualitatively, the increase in the magnetic moment can be understood
as follows: the electron continually emits and absorbs virtual photons that
carry away parts of the electron’s energy or mass. Therefore, the ratio of
the electron’s charge and effective mass is raised, and this has an impact on
measurements of the magnetic moment in the presence of a magnetic field.
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Lamb shift. Comparing the experimentally measured, highly resolved bind-
ing spectrum of hydrogen atoms with theoretical predictions of the pure Dirac
theory in Subsection 2.5.4, one encounters differences that, once again, result
mainly from radiation corrections. In the presentation of this relationship,
we will leave out some concrete calculations and, instead, concentrate on the
essentials.

As before, we restrict ourselves to the O (62)—radiation corrections and
study their impact on the binding energies of the orbital electron in hydrogen-
like atoms. The relevant contributions can again be depicted with the Feyn-
man diagrams of Figure 3.41. However, now the external and internal fermion
lines represent respectively bound electron solutions and the full electron
propagator of the Dirac equation in the Coulomb field, where the latter en-
compasses all interactions between electron and nucleus to all orders of e. Un-
fortunately, the accompanying calculations are very complicated and lengthy.
However, taking into account that atomic binding energies typically have a
magnitude of Z2egmg [see (2.115)] and are nonrelativistic in the case of light
atoms, the problem can be solved approximately by splitting it up into two
partial problems for high- and low-frequency radiation fields.

High-frequency radiation. For radiation fields with frequencies
W 2 Wmin > ZQ@%{mR )

the effect of the Coulomb field on the radiation corrections can be ignored.
Therefore, it is justified to consider the term

ek q? mr 3 1 ie? 5
ot = exa® g (=3 5) + rmcewa| A

in (3.156) to be a perturbation of the Dirac-Hamilton operator with the
Coulomb potential

Al (@ Ze

Aol = (M) e - -Z

and to determine the resulting energy shift of the unperturbed Coulomb
solutions v, to first order perturbation theory:

SE> = / d3xpl 6 Hp,, .

Here one has to bear in mind that the photon mass p was originally in-
troduced in dH to remove the infrared divergence within the momentum
integration (3.150) of the vortex function. However, due to w > wmin, this
integration is now cut off at the bottom so that u is not needed any more.

As corresponding calculations show, this results in the replacement
5
In R gy IR + -
H 2Wmin 6

in § H. Converting the momentum factors into derivatives in coordinate space,
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we finally obtain

2
| _Cr (MR 53 1Y) a0
eR/w”[?mm%(nzwmerG s ) (Ve
2

i 'y(w&t)} 4

SE>

 Ammg
3
‘R mR 5 3 1 -
- n—— 4o — o - v2A
Sﬂ-m%{ (n 2("‘}Inin + 6 8 5) <V| ( Cxt) |V>
ie3,

(V|7 (VAL Iv) -

The expectation values can be calculated using the nonrelativistic approxi-
mation. This yields

4rmg

4z4 7 3
(V(V2AL) ) = =5
2iZ4eT m2 2(1 —éi)
v A° _ AL My | oy A 0w0)
(VAL Iv) n3 WERIYDRI ]

with the principal quantum number n, the orbital quantum number [, and
the total orbital quantum number J = [+ 1/2 of the Schrédinger-Coulomb
solutions.

Low-frequency radiation. If, on the other hand, we assume that the ra-
diation frequency is

w § Wmax K< MR,

the problem is completely nonrelativistic. In this case we can simply regard
the radiation corrections as emission and reabsorption of a virtual photon and
treat them perturbation theoretically within the framework of Schrodinger’s
theory. The corresponding perturbation operator is now
6H = R Av
mRr

where A denotes the photon potential in the radiation gauge for which we
set, as in Subsection 3.3.7,

With this the energy shift of the electron caused by the emission and reab-
sorption of a photon to second order perturbation theory becomes
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; 2
< Vd‘3k 27 €2R ‘<u’|elk‘”e(k,)\)iV\y>’
O} Z / 30V m E,—FE, —w

w<Wmax
The sum is to be carried out over all electron states and transversal directions
of the photon’s polarization. Using the dipole approximation e*® ~ 1 and
taking into account E,, — F,, < wnax, this becomes

Wmax

2¢2 (Vv |v)|? iv
< R 2: —
OE, 3 / dow ~FE,—E, —w’ Y MR

l

0

262
~ S—WR [wmax<y|02 |V>

+ S0} (B - B2

The first term descmbes the contribution of the low-frequent photons to the
mass renormalization and must be subtracted since my is already the physical
electron mass. After a series of further manipulations, there finally follows

oE; = GRS W (B B

3

e 2Wmax
= 37r7§L2R < [(V Agxt) \V> [lnm; — 21n(Ze%{)

2e% , 2 Z%etmyr /2
+— Vo) (B, — In =R 2
S o) (B - B)ln B
Before combining the energy shifts of the high- and low-frequency do-
mains, we note that we cover the whole frequency range with the equal-
ization wpin = Wmax as long as wpin, can be chosen in such a way that

ZzeﬁmR < wpin <K mg. However, for light atoms, this is always possible.
Following this assumption, the total energy shift is

dE, = 6E; +0E5

_ AZ'efmr 19 ) 3(1 = dio)
SZRMR Sy 12 9z +
303 { et [30 o eR)] Ty Iy

with
n? 2 Z%etmg /2
L= —1 ' E, — E,)In Z-SRMR/2
= g 2010 (B B m AT

The quantity L,; cannot be calculated further analytically and must be de-
termined numerically.

As one can see, compared to the unperturbed binding energies
Z%eymp

Enl ~ = e y
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the Lamb shift is very small and suppressed by the factor Z2e$. Furthermore,
it removes the degeneracy of states with equal principal quantum number n
and total orbital quantum number J following from the Dirac theory (with
a Coulomb potential). The historically most important example of the Lamb
shift is the increase of the difference between the 2s;,5- and 2p; p-levels
measured for the first time by Lamb and Rutherford in 1947 (see Figure 2.2
in Subsection 2.5.4). With

mr = 5.11004 - 10°eV , Loy = —2.81177 , Loy = 0.03002 ,
the theoretical value of this increase is

6E = 6Bs,,, — 6Fsy, ,, =4.298-107° eV +5.328 - 107 % eV
= 1039.3 MHz + 12.9 MHz = 1052.2 MHz .

A modern experimental value is
0Fcxp = 1057.845(9) MHz .

The resulting relative deviation between theory and experiment with respect
to the binding energies is 10~®. Taking into account further corrections, re-
pulsion effects, as well as the finite radius of the nucleus, the deviation can
be reduced further to < 10711,

Summary

e Going beyond the lowest orders of scattering theory, interactions of par-
ticles with themselves become possible. They are called radiation cor-
rections.

e Three fundamental O (62)—radiati0n corrections are vacuum polariza-
tion, self-energy, and vortex correction. Within the vacuum polar-
ization a (virtual/real) photon creates a virtual fermion-antifermion pair
which is destroyed thereafter. In the self-energy and the vortex correction
a (virtual/real) fermion emits a virtual photon and absorbs it afterward.

e All radiation corrections are accompanied by particular ultraviolet di-
vergences in the corresponding momentum integrals that can be re-
moved using the program of renormalization. Here a divergence is
isolated into a multiplicative constant through regularization of the
respective integral and subsequently absorbed in the bare quantities e
and mg. The resulting renormalized quantities er and mg represent
the actual, experimentally relevant and finite parameters.

e Considering the three radiation corrections together, the charge renor-
malization correct up to order O (62) results solely from the vacuum
polarization.
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e Physically, the radiation corrections appear, for example, in the deviation
of the electron’s gyromagnetic ratio from the value 2, as well as in the
Lamb shift of atomic binding energies.

e Besides the ultraviolet divergence, the vortex correction also contains an
infrared divergence. However, this turns out to be fictitious when all
the scattering processes are taken into account that contribute due to the
particular experimental setup which is used for counting the scattering
products.

Exercises

41. Removal of the infrared catastrophe. The process where an elec-
tron is scattered against another charged particle while emitting real photons
is called braking radiation (German: Bremsstrahlung). For the simpler case
of electron scattering against a Coulomb potential the corresponding Feyn-
man diagrams to leading order are shown in Figure 3.42. In the limit of soft
photons with 0 < w < wpax and small electron velocities |v;| = v; < 1
(nonrelativistic limit), the corresponding totally polarized cross section is

do do 86% v? sin? g Wmax
— =|— ' | 3.157
( ds? ) ( ds? ) 3 " I ( )
Brems Mott

containing an infrared divergence at the cut-off frequency p — 0.

What is the meaning of this result for the O (62)—radiation corrected cross
section of the pure Coulomb scattering (without real photon emissions) to
leading order?

Solution. If, for the pure Coulomb case, we consider only the infrared di-
vergence causing vortex correction to leading order we have the amplitude
square (see Theorem 3.7)

e

Fig. 3.42. Lowest-order Feynman diagrams of the braking radiation within a
Coulomb field.
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as well as the totally polarized differential cross section
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Here the dominant infrared divergence at y — 0 is caused by
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20 4v?mp sin® ¢
2 _ 2 i 'R 2
@y, 1oy = Alpil*sin® 5 = 1— 02
and considering the nonrelativistic limit |v;| = v; — 0, the term A can be

rewritten as

Ao E e v? Smgln@.
dg? 3r I
Mott

For the physical interpretation of this fact we have to bear in mind that
the energy resolution AF of every measuring device used for counting the
scattered particles is limited. This means that one cannot distinguish between
elastically (pure Coulomb scattering) and inelastically (braking radiation)
scattered particles in experiments as long as the frequency of the emitted
photons fulfills w < AFE. Therefore, we have to add to the cross section of
the pure Coulomb scattering that of the soft braking radiation (3.157) with
Wmax = AFE. After this the critical Coulomb term A becomes

o (B) ()
us
Mott s H

_ do e v? sin® & n AE
ds? 3m mpR ’
Mott

As one can see, the infrared divergence of the braking radiation neutralizes
exactly the dominant infrared divergence of the Coulomb scattering — a very
satisfying result which also remains valid in higher orders when all relevant
internal and external radiation corrections are taken into account properly.
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3.5 Scattering of Spin-0 Particles

In this last section we deal with the description of relativistic scattering pro-
cesses of spin-0 particles on the basis of an appropriate propagator-scattering
formalism similar to the one for spin-1/2 particles in the preceding sections.
It is not surprising that many of the former concepts can be adopted more
or less unchanged. However, at this point it must be stressed that, compared
to the spin-1/2 case, the application range of the spin-0 scattering formal-
ism will be severely restricted since in nature there do not exist elementary
(point-like) spin-0 particles. Rather, they consist of two spin-1/2 quarks that
are subject to the strong interaction. This, in turn, implies that, due to strong
(quantum chromodynamical) vacuum polarization effects, each spin-0 parti-
cle is inevitably surrounded by a complex cloud of virtual particles that is
totally disregarded due to our restriction to the electromagnetic interaction.
Furthermore, we have to bear in mind that spin-0 particles are not really
stable but decay via the weak interaction. However, with respect to purely
electromagnetic scattering processes, some of them, e.g. pions, can be re-
garded as quasi-stable since their (weak) decay time of 10~% s lies far above
the characteristic time unit i/(mgc?) < 10723 s.

Thus, due to these restrictions, our discussion of relativistic spin-0 scat-
tering processes is rather of academic and didactic nature and mainly meant
to highlight the formal correspondence to the spin-1/2 case. This correspon-
dence is also reflected in the Feynman rules that we derive for the boson case
(exclusively from tree level processes) and present in coherence (including the
quantum electrodynamical loop level) at the end.

Note. Analogously to the spin-1/2 case, we will often equate spin-0 particles
with “pions” and spin-0 antiparticles with “antipions”. Furthermore, we will
use the natural unit system (h = ¢ = 1) throughout the whole section.

3.5.1 Solution of the General Klein-Gordon Equation

As in Subsection 3.2.1, we are initially interested in developing a propaga-
tor formalism to solve the general Klein-Gordon equation. It turns out to
be useful for this purpose to assign the charge current density and the G-
scalar product of the Klein-Gordon theory other prefactors than in Chapter
1 (compare to Theorem 1.2):

= 1[¢70"0 — (9"67)6) — 2eA" ) = §7iDM$ — 2eAPGTS (3.158)

(1] p2) = /d33; (qb’{i@o P2 — 2€A0¢T¢2) . (3.159)
In return, we normalize the free Klein-Gordon solutions as
1 .
¢z(9r) (.’E) _ e ierpw

2E(27)3
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so that they still fulfill the G-continuum normalization condition

(69 65) = erdritp— )

Consequently, in the case of the G-normalization to a box volume V', which
will be important later on, we have (from now on a capital symbol @ stands
for free plane Klein-Gordon waves)

T4 1 —i€;pi-x T T
b3 )(x)z,/QE_Ve pi <¢}f>(q5§ >>G=ef<srf”5ﬁ. (3.160)

All further steps can be carried out quite analogously to the Dirac case in
Subsection 3.2.1:

e casting the solutions to the Klein-Gordon equation into an integral form
using the Green function calculus,

e calling for an appropriate causality principle for the Green function in
accordance with the Feynman-Stiickelberg interpretation,

e deriving a differential equation for the Feynman boson propagator,

e and finally rewriting it as an iteratively solvable integral equation for the
propagator and for the Klein-Gordon wave function itself.

Since these steps are not associated with any new insights, we leave out
their concrete execution and, instead, summarize the relevant results in the
following theorem:

Theorem 3.17: Solution of the general Klein-Gordon equation
in the propagator formalism in consideration of
the Feynman-Stiickelberg interpretation

The Klein-Gordon equation
(pp" —mg)p(z') = V(a")p(a")
with the modified potential
V(') = ep, A*(z') + Au(a")p™] — €2 A, (") A* ()

is equivalent to the integral equation

$(a") = bireo(r') + / d*zAY (2!, 2)V (2)$ ()
as long as A](;O) fulfills the equation

(Fp™ —md) AP (o) = 3(a’ ~ ) .

The quantity A%O) is called free Feynman boson propagator if it also obeys
the causality principles

>



3.5 Scattering of Spin-0 Particles 321
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These principles ensure the temporally forward [backward] propagation of
positive [negative] free Klein-Gordon solutions as well as the respective
reverse propagation of the complex conjugated solutions. The Fourier de-
composition of the free boson propagator is
4
©) _ A Y I b e (1)
AP@.0) = AP o) = [ e A

(3.161)

A0\ _ 1
Ap () = p? —m3 +ie

As can easily be seen by a calculation similar to that in Subsection 3.2.2, the
imaginary part in the denominator of A%O) is again necessary to ensure the
above causality principles. Furthermore, from this calculation follows the de-
composition

AP (@' —z) = ~i0(" ~ 2") / d3ped (2)oD* ()

—u)@ﬁ-mmx/}ﬁp¢gkxq¢gﬂcm (3.162)

into free Klein-Gordon solutions, which is used in Exercise 42 to show the
validity of the causality principles explicitly.

3.5.2 Scattering Formalism

Also with respect to the description of bosonic scattering processes, the same
prerequisites (temporal confinement of the scattering interaction, adiabatic
approximation etc.) and considerations are valid as presented in Subsection
3.2.3 for the fermion case. Here we are again interested in the projection of
the scattered wave ¢; onto the free plane Klein-Gordon wave @ long after
the scattering, where, long before the scattering, ¢; is given by the likewise
free plane wave @;. Accordingly, our ansatz for the scattering amplitude S;
in consideration of the G-scalar product (3.159) is
sﬁzlm,q/&y@@m%@wy (3.163)
t'—4oo
As in the fermion case and according to the Feynman-Stiickelberg interpre-
tation, one of two limits has to be considered depending on the particle type
in the final state. If we have bosons (pions) @ is a boson wave function with
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positive energy propagating forward in time so that the upper limit must be
taken. In the case of antibosonic (antipionic) scattering states @ represents a
temporally backward propagating boson wave function with negative energy
and the lower limit becomes relevant. For the scattered wave ¢;, originating
from @;, we have correspondingly

¢z(m) = tl}?@ (bZ(x) )

with the upper limit for incoming bosons and the lower limit for incoming
antibosons. €y in (3.163) is a pure convention. Now, using the relations

bi(2) = &) +/d4x1A§9>(x' — 21)V(21)5 (1)

Fi(e) = lim iy / B/ E ()i AP (! — 21)

li
t'—+oo

/ a0 (@)ido ) () = €56y, 005 — D)

[with the upper limit for bosons (r; = 1; ¢y = +1) and the lower limit for
antibosons (ry = 2; 5 = —1) in the final state], we obtain from (3.163) the
expression

Spi= lim e [/delé}(x’)ia(’)@i(x’)

t'—+oo
+ / 432/ / A1 @5 (2)i9p AV (2 — 20)V (1) ()

= 3o = P~ [ A )V ()n(an)
which is equally valid for all four possible scattering constellations
boson or antiboson — boson or antiboson.
Iterating ¢; in the way
¢i(x1) = Pi(z1)
- / 2o AV (21 — 22)V (22)Pi(22)

+/d41'2/d4l'3A%0)(1'1 71’2)V(£L’2)A%0)(5L'2 71’3)@1'(1'3)
+...,

we arrive at (compare to Theorem 3.5)

Theorem 3.18: Scattering matrix in the Klein-Gordon theory

The scattering amplitude Sy; is defined by the projection of ¢; onto @
long after the scattering against a target where ¢; is the scattered wave
evolving from the free plane wave @;:
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Spi=,lim ¢ / P/ PGy i), Hm_ i(w) = Bi(w) -
In the case of pionic [antipionic] scattering states @ is a plane pion wave
with positive [negative] energy propagating forward [backward] in time so
that, on the left hand side of this equation, the limit ¢’ — +oc0 [’ — —o0]
has to be considered. If the incident particles are pions [antipions] @; is a
plane pion wave with positive [negative] energy and, on the right hand side,
the limit ¢ — —o0 [t — 400 | is relevant.

With the help of the Feynman propagator formalism, the scattering ampli-
tude Sy; can be expanded in a series of multiple scatterings:

Spi = 8(Df — De)oryre — i / 42, 8% (21)V (21) (1)

= 0(ps — Pi)Orr,
i / A4y 85 (20 )V (1) (21)

—i/d4x1/d4x2¢}(mg)V(x2)A(Fo)(a?2 — 1)V (21)P;(21)

—i/d41'1/d4.’E2/d4$3@}(x3)V(.’E3)A%O)(I3 —162)

XV (22) A (@ — 21)V (a1)P; (21)

V denotes the modified potential of the target (see Theorem 3.17) and A%O)
the free boson propagator.
This theorem is based on the adiabatic approximation and the Feynman-
Stiickelberg interpretation.

All in all, our reasoning leads to a formalism for the relativistic description
of bosonic scattering processes which is very similar to that of the fermion
case with respect to structure and interpretation. This means that, with
an appropriate relabeling of particles and wave functions, we can adopt all
considerations employed after Theorem 3.5 about electron and positron scat-
terings as well as pair creation and annihilation processes, except for the hole
theory. However, the boson case possesses one peculiarity: the terms in the
scattering series in Theorem 3.18 are no longer identical to the expansion
terms of the coupling constant e since the modified potential V' contains one
linear and one quadratic part in e, which both have to be taken into account
adequately.

Analogously to the fermion case, we now apply Theorems 3.17 and 3.18 in
combination with Theorem 3.3 to some concrete spin-0 scattering processes.
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In doing so, we find that, due to the absence of the spin degree of freedom,
some calculations are much simpler than in the fermion case.

3.5.3 Coulomb Scattering of Pions

As the first concrete example we consider the scattering of pions against a
Coulomb potential to lowest order of e. If we initially start with an arbi-
trary background potential A*, the corresponding scattering amplitude fol-
lows from Theorem 3.18 (f # 1) as

Spi = —ie/d4xd5}(x) [0, A" (z) + A" (2)i0,] @i(x)

— —ie / dla [@5(10,8:) A* — (i0,83); A" ]

e / diz (@;15;@) AR (3.164)

where partial integration has been used in the second step. In the case of
pion scattering we have [see (3.160)]

1
20 = Ay

so that (3.164) turns into

e Dp(x) = ——=e" P

V2EV

Spi = <~ d*a(p; + py)u At (x)e!PrP)

—ie

14 \/4EE /
1

= )(pi +pf)uA (Q) y 4 =Pf — Di, (3165)

V. 4E Ey
with the background potential
At(q) = /d4xeiq"’”A“(x)

in momentum space. If, on the other hand, we are interested in the scattering
of antipions we need to choose

1 . 1 .
P;(1) = ———=eTPI" | Pp(x) = ——=eTP7

\/QEfV V2FE;

<

so that

Spi = VQ/4EE

Obviously, both expressions (3.165) and (3.166) suggest the one-photon vor-
tex?® in momentum space shown in Figure 3.43, where the vortex factor con-

—pp)uA*q) , a=pr—pi - (3.166)

2% In the Klein-Gordon case there also exists the two-photon vortez to which we
return in Subsection 3.5.6.
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1@f]
_ v
A*(q)
N\ x/’\,o::j\ie(pi +Pf)u
1tpi]

Fig. 3.43. O (e)-Feynman diagram of pion scattering against a background po-
tential in momentum space [see (3.165) and (3.166)]. Inside the box we have the
one-photon vortex of the bosonic scattering theory. The vortex factor momenta
refer to those of the dashed boson lines on the level of wave functions, whereas the
momenta behind the one-factors of the external boson lines represent the particle
momenta. The latter were introduced in analogy to the fermion case. They do not
occur in matrix elements. The index p of the vortex factor is contracted with that
of the photon line.

tains the momenta of the adjacent boson lines on the level of wave functions,
contrary to the provisionally introduced momenta in the square brackets be-
hind the one-factors of the external boson lines referring to the particle level.

Note that in the construction of scattering amplitudes via Feynman dia-
grams we adopt the i-factor rule of the spin-1/2 scattering theory right from
the beginning: a factor of —i at each one-photon vortex and a factor of +i at
each internal boson line.

Returning to the concrete case of pion scattering against the Coulomb
potential

#0 - 4 iy
eAM(z) = 0‘|g a= —Ze* —s Al (q) = 2m8(¢°) 0 — |
x q
we obtain from (3.165)
—i[2nd(E; — E;)] 1 ey

Spi =

Me; , My = ——(E; + Ef) .
v w5 =g ( f)
Cross section. To determine the differential cross section
o= |Sfi|2 Vdgpf _ L [27T6(Ef — El)Pl ‘|2 dgpf
T Tl (2m)® T 2E; TV P9k (2m)3

we need the current density |j;| of the incoming pion. Following (3.158), it is

_ Pi
2B,V

Together with the known replacements
270(Ey — By = 27 T6(Ey — E;) , &°py = |py|EydEpd2
follows that

il = ]—@;‘iwi
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dO' 1 1
0 = da | AEdRsIMa(Ey — B) = 1 Ml
df? 4(27r)2|p2-|/ f|pr f "o ! ) 4(27r)2| f ‘lpf‘*lpil

(4042Ei2) o?
- 4 T oAdE24int 8
q psl=lpsl 4V Eisin” 3

with
?| = 4|p;|? sin? _ 40?2 E? sin? ~
T lipsi=ipi| = P g — TS g

Comparing this with the Mott cross section in Theorem 3.7, one notices an
additional factor of (1 —v?sin?#/2) in the Dirac case which is ascribed to
the magnetic moment of the electrons. In the limit of small velocities the
corresponding magnetic interaction vanishes and both results coincide.

Theorem 3.19: Coulomb scattering of pions to leading order

To leading order, the scattering amplitude for the scattering of pions against
a Coulomb potential of the form

a
eA%(z) = @’ A(z)=0
is (f # 1)
,27T(5(Ef —E') 1
Spi=— My;
f v 1EE;
with

Ao
Mfz‘:?(Ei+Ef) » d=Pf —Di .

The differential cross section follows as

1 1 d’p
= — — |Mg|? _E)—FF
do = 5, vz, Mril @mo(Es E’>2Ef(27r)3
1 d3pf
= —|My2(2m)0(Ef — Bj) ——21—
2|pz-|| il “(2m)0(Ey )2Ef(27r)3
do 1 a?

70 = 193 Mrillps 1=ipil = TameoaE
dR — 4(2m)2 It IPsIEIPd T g d g2 it g

where all scattering momenta py toward df2 have been integrated out in
the last relation.

Clearly, the scattering of antipions leads to the same cross section since both
amplitudes (3.165) and (3.166) differ only by a sign (compare to the notes
after Theorem 3.7).
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3.5.4 Pion-Pion Scattering

Similarly to the Dirac case, we are free to consider the background potential
A" to be created by the current of another particle. In this way, we arrive
again at a current-current interaction or at a two-particle scattering. In the
following we discuss the mutual scattering of pions following closely our line
of argument in Subsections 3.3.2 and 3.3.5. If J’#* denotes the current of the
second pion, then, taking into account (3.82), the scattering amplitude to
lowest order in e follows as (f # 1)

. . 0

. 4 4 * .
Spi = —1/d a:/d Yy le!ﬁf(x)laxusﬁ,(x)
with the free boson propagator [see (3.84)]

4
(0) d*q AT e
Dy (x—y)—/‘(zﬂ)z; 2 es vy,

As before, it seems plausible to interpret

DY (x —y)J*(y)

Tu(z) = e@}(az)i%@i(x)

as the transition current of the first pion (to first order) and, correspond-
ingly,*

—

.0
JH(y) = ed} (y)i—P,
() 7 () a9, i(Y)
as the transition current of the second pion (to first order), where &; 5 are
the initial and final wave functions of the second pion. Thus, in total, there

follows the scattering amplitude

Sy = fi/d4x/d4y

. 0
X |ed(y)i=—,
[ 7 () oy, (y)

D
P (a)iz @ () | DY (z —y)

oxH

bl

which is symmetric in both particles. Since both particles are identical, we
have to consider, as for the electron-electron scattering in Subsection 3.3.5,
two contributions corresponding to the experimentally indistinguishable sit-
uations of the mutual fly-by (direct scattering) and the mutual reflection
(exchange scattering). In the case of direct scattering, we have

1

_ e ipiw , b — e ipsw
BEV (@) = ———=

V2EV

P;(x)

30 See footnote 17 on page 234.
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1

.y 1 )
Pl(y) = ———=e PV | P = eV
so that
Sfi(dil‘) =

i 1 1 d*
_% iG,E /d4x/d4y/(2 C)]4
VAEE; | JAE B, i
2
. e Y
><(pz+pf)uq2+i€(pz+pf)
wel(Pr—pi)To—ia-(z—y) Gi(ps—pi)-y

The coordinate and momentum integrations are the same as before (3.87)
and lead finally to

@2m)*o(ps +9f —pi—p;) 1 1
! vz VAEE; [iEE,
—4mri

Myi(dir) = (—ie)(pi +pf)u (—ie)(p; +P})" , ¢ =pr—pi -

g% + ie
The exchange scattering amplitude is simply calculated through the replace-

ment py < p’f. All in all, we obtain the scattering amplitude for the pion-pion
scattering to lowest order as

@2m)*6(ps + 0y —pi— i) 1 1
Sgi = V2 1E.E; —Mri,
VAEE;  [1E/E,

with

My; = Myi(dir) + My;(ex)

Myi(dir) = (—ie) (p, +pf>#q2i<—ie><p; o)

+ ie
4mie? ,
— (. / AYZ . .
= (pz+pf)uq2+i€(pl+pf)  4=pf—Dpi (3.167)
o - . , —47i . , M
ri(ex) = (—ie)(pi +pf)um(*1€)(m +py)
4mie? , ,
= (pz-+p’f)um(pi+pf)" 4 =y —pi,

where the amplitudes M, (dir) and My;(ex) can be represented by the Feyn-
man diagrams of Figure 3.44. Contrary to the electron-electron scattering,
there is no relative sign between My;(dir) and My;(ex) since, according to the
Bose-Einstein statistics, the whole scattering amplitude must be symmetric
under the exchange of both bosons in the initial state (p; <> p}) or the final

state (py < p}).
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1[py] 1[p] 1[py] 1[p]
v .~ g
> 4
—ie(pi + ps)u —ie(p +pp)" —e(pi+pp)u T el 4 py)*
—4ri —4ri \
2 +ie q'? +ie
4 » 4 »
a b
1[pi] 1[p;] 1[pi] 1[pi]

Fig. 3.44. Feynman diagrams of the direct O (ez)-scattering amplitude (a) and the
exchange O (62)-scattering amplitude (b) for pion-pion scattering in momentum
space (compare to Figures 3.16 and 3.17). As in the Spin-1/2 scattering theory,
internal photon lines are represented as wavy lines and assigned the i-fold of the free
photon propagator. Energy and momentum are conserved at each vortex. Therefore,
the four-momentum transfers are ¢ = py — p; = —(py — p}) and ¢’ = py —p; =

—(py — pi)-

Cross section. Next we need to evaluate the sixfold differential cross section

Spl? Vi, Vs

T|j:| (2m)* (2m)?
1 1 1

:777Mi22 45 /_i_/‘

do =

dgpf dgplf
2B (2m)3 2B (2m)3

This is done in the center of mass system (as regards the kinematic situation,
see Figures 3.16a and 3.17a). Restricting ourselves again to collinear particle
currents, we can adopt formula (3.89) from Subsection 3.3.2 for |j;|,

V(pi - pl)? — m3mg?

9il =

VEE! ’
in order to obtain the Lorentz-invariant expression
do = . M (2n) 5 0y + 0y — pi — )
4/ (pi - p})? — mgmgy
d3p I dgp}

2B (2m)? 2B} (21)° (3-168)

Inserting the center of mass relation [mo = my, p; = (E;, pi), pi = (Ei, —p;)]
1 1
4/ (pi - pl)2—m¢  BEilpi

as well as the known identities
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d*p’;
=, — [ i} - miyewy)

dgpf = |pf|Edefd.Q y

(3.168) turns into

do 1
— = [dFE d*ps|Myi|?6 e —pi —
(d“Q)cm 16(27r)2Ei|pi\/ f‘pf‘/ pf‘ f‘ (pf +py—D ;)
x3(pF —mg)Oy) -
Obviously, this equation is formally identical to the first row of (3.108) mul-
tiplied by 1/(16mg). Due to the kinematics being identical to that of the

electron-electron scattering, we can read off the final result directly from the
last row of (3.108) multiplied by this factor:

do 1
49 S ————— Y P
(dQ)Cm 64(27r)2E3| ftlem
Amplitude square. What remains is the explicit determination of |[M;|2,,.
Starting with (3.167), we have
[Myil* = | Myi(dir)|* + [Myi(ex)|” + 2Re [My;(dir) My, (ex)]

where

. 47)2et 2
Mg = ST [+ g0l )
47)2et 2
|Myi(ex)]? = (dn) e ,Z 5 [pi - Pi+ i oy + 0 0h+ )]
(¢”)
9Re [Mfi(dir)M}‘i(ex)} — 2Mi(dir) M, (ex) (3.169)
_ 2(4m)%et

247 (pi - p; +pi- Py +p5 v +pro0})
X(pi - Pi +pi - ps + 0} - P+ 0} - py) -
Using the kinematic relations (3.112) of electron-electron scattering in the
center of mass system, this expression can be simplified to
24 [ARE? —md)?  4C2E? - md)
e

= +1
plsint 0 p?sin® 0

[ Mfilom = 4(4m)

‘ 2
cm

As expected, this result is again symmetric under 8 — 7w — 6 reflecting the
bosons’ indistinguishability.

Theorem 3.20: Pion-pion scattering to leading order
The scattering amplitude for pion-pion scattering to leading order is (f # )
@m0y —pi—0h) 1 1

S i = M )
f V2 VAE;E; /4EZ(E} f

with the Lorentz-invariant amplitude (¢ = py — pi, ¢ = p}y — pi)
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. 4rie
Myi(dir) = (p; +Pf)um(p§ +pp)H
4rie?
Myi(ex) = (Pi+P})um(P§+pf)“ :

The differential cross section follows as
1

dO’ = Mi2 27’(’ 45 + o = i — ;
1 (pi-p§)2—m3| 7il”(2m)°8(ps + Py — pi = i)
d3pf d3p/f

2B, (2m)? 2B (2m)3
and, particularly in the center of mass system,
do 1
=) = s Myl
(d())cm 64(27r)2E§| R

where all pionic scattering momenta p¢ toward df2 and all pionic scattering

momenta p’f have been integrated out in the last relation. The amplitude

square is

42E2 —md)?  4(2E2 —md)
p}sint 0 p?sin” 0

| M2, = 4(4m)2et [ +1

Considering the results of this theorem along with Figure 3.44 in view of the
spinor Feynman rules in Subsection 3.3.9, we see that, with some small ex-
tensions, they also cover the case of bosonic two-particle scatterings. These
extensions (presented in totality at the end of this section) are essentially

e a boson factor of Ni()‘];') = 1/2 for each (anti)boson (1. and 2. rule),

e a one-factor at each external boson line, the one-photon vortex from Figure
3.43 as well as the two-photon vortex (4. rule) that we discuss later on.

Furthermore, due to the Bose-Einstein statistics, the signs in 4.1) and 4.ii) do
not apply here.

Using these extensions, we now calculate the bosonic-fermionic mixed
process of pion-antipion production by electron-positron annihilation. Subse-
quently, we draw on the Compton scattering to discuss the treatment of real
photons as well as the two-photon vortex originating from the term —e?A,, A"
of the modified potential V' in Theorem 3.17.

3.5.5 Pion Production via Electrons

According to our extended Feynman rules, the Feynman diagram for pion-
antipion production via electron-positron annihilation to leading order in
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momentum space is given in Figure 3.45. The scattering amplitude follows
from this as

g,  @m)ps+ps—pi—p) | mi L
fi — 2 = = fi
v E.E;\| 4E,E;

. _ —4ri .
My = —ieps = Pr)u g5 0 i) (He)y"ulpi, 5i) (3.170)
4rie?

21 ic P sy —Pr)upis 5:)
q = pi+Di =ps+Dy,

where mg denotes the electron mass and My the pion mass.

1[?1f] 1[?f]

h '(—ie(pf —Df)n

u(pivsi) T)(ﬁiagi)

Fig. 3.45. O (ez)—Feynman diagram for the pion-antipion production in momen-
tum space. Energy and momentum are conserved at each vortex. Therefore, the
momentum transfer is given by ¢ = p; + p; = py + py.

Cross section. The starting point for the calculation of the differential cross
section is the formula

2
m —_ —
do = ———|Myi|*(27)"0(ps + By — Di — Di)
(pi pz) —my
&Ppy  dpy

X —
2E;(2m)3 2E4(2m)3

which is evaluated in the center of mass system (see Figure 3.46). There we
have

2 2
mg my

(pi - pi)? —mg  2Bilpil

pi = (Ei,pi) , Di = (i, —pi) =
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Fig. 3.46. Kinematic situation of pion-antipion production via electron-positron
annihilation in the center of mass system. Due to energy and momentum conserva-
tion, the relations E; = E; = By = E; and p; = —p, , py = —p; hold.

Thus, along with
By = Ips | ErdBde . 2 [ 44602 — M2)eh
Pf—|Pf| faLf ) 2Ef = by (Pf o) (pf)7

it follows that

do m3 4
= ST ) ) A5 | M4 |26 — i — P
(d9>cm 1(27)2F; Ipzl/ f|pf|/ PrlMypi*6(ps + D — pi — Pi)

xd(p7 — Mg)O(p})
2
7710 )
= oozpi | 4B Mpl? _
4(2m)2 Ey|p;| / slpsl fz|pf—pi+pi—pf
x8[(pi + Bi — py)* — MZOY + Y — 1Y)
- T AEfps| Myl —pi i
4(277)2Ei|pi| PfF=pi+Di—pys
XO4E;(E; — Ef)]@@E. — Ey)

mo
- TR / AL 4| M il =pa ., LB (E: — By
28,
2
my 2 6(Ey — Ey)
=0 [ apspf| M2, o, S
4(277)2Ei|pi| f|pf|| f |pf—;Dz+P1—pf 4F;
0
2
mg|py| 2
= -—_—_—m- M /L .
16(2m2 Elp] e

Amplitude square. The calculation of |M;|? can be carried out quite eas-
ily if we disregard polarization effects and, instead of (3.170), consider the
amplitude square

|My;)? = 5 —Pr)u (pi>8¢)|2

Si,5i
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averaged over the incoming electron spins s;, §;. In this case and taking into
account

ﬁ(ﬁivgi)(ﬂf +ﬁf)u(pi,81) = 0(pi, 5:) (P +351) (piysi) =0

as well as Theorem 3.6, we obtain

7 = 5 (s +Br — 2 ulpiysi)|”
1264 _ 2
_u ql Z 0051, 5 ru(pis i)
(47’1’)264 “1__ - _ = _
D ) LA T )
26t _ -
- _ (4 q)4 tr [Af(ﬁi)ﬁf/hr(pi)ﬁf]
(47)%e? - - vl
— thr [(—#s + mo )i (s + mo)ps]
(47T)2 4

= 2 [tr(pp ppitbs) — mtr(yppy)]

= (injq [2(131 ﬁf)(pz ﬁf) — (pZ pz)(pf ij) _ m(Q)(pf ﬁf)] '

Evaluation of the scalar products in the center of mass system,

pi-Di = E}+p}, pi-by=E} +pips, i Dy = E; — pipy
finally leads to

2(4m)%et

- 27T264p2
| Myil2, = o [E?p} — (pips)?] = !

2 _ 2 2
W (E,L P; cos 9) .

Theorem 3.21: Pion production via electrons to leading order

The scattering amplitude for pion-antipion production via electron—positron
annihilation to leading order is (f # ¢, mo =electron mass)

g, _ 20y +pf —pi —Pi) | md
i E.E; 4EfEf
with the Lorentz-invariant amplitude (¢ = p; + p; = py + D)
4rie?

210 Po 5@ —Bulpi ) -

The differential cross section follows as

My =
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2
m
do = _—O|Mfz| (2m)*8(py + D — pi — Pi)
(pi 'pi) - mo
d®py d®py

2Ef(27r) 2E;(2m)3
and, particularly in the center of mass system,
d 2
do)  ___molpgl e
ds? cm 16(27T>2Ei |pl|
where all pionic scattering momenta p; toward d{2 and all antipionic scat-

tering momenta p; have been integrated out in the last equation. If electron
polarizations are ignored, the unpolarized amplitude square becomes

_ 212etp?
f 2 2 2
|Myi2, = —5=5~ (Bf — picos’0) .
lcm m%Ef i 7

Total cross section. In order to exemplify the limited application range of
the bosonic scattering theory, we now calculate the total cross section of pion
production via electrons and compare it with the experimental result

E; =385 MeV = 04y = 1.4- 10770 em? .

According to the above theorem, we have

2 1

do 4|pf|3 2

il =92 E 29
/d@/dcos0<dg>cm 7T32E6|pz /dcos@ — p; cos®0)
o 4

_ metpy|® 2E-2—2 2) metpsl?
16ES]p,| \~ ¢~ 3P 1265 °

Q
Il

where the approximation p? = E? — mZ ~ E? has been used in the last step
due to E; > My > mg. Thus, at the experimental measurement point, we
obtain in natural units

E; = 385 MeV
My = 139.6 MeV
= c=76-10""

1
Ipf| = \/EZ — M2 = 358.8 MeV MeV?
e? = a, =1/137
or, after translation to MKS units [see (3.69)],
1
MeV

Obviously, this value is smaller by about a factor of 50 than the experimen-
tally measured pion production cross section. This shows very clearly that

=1973- 100 em = 0~ 3-107? cm? .
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the assumption of structureless bosons interacting solely electromagnetically
is not justified. In truth, the virtual photon initially produces other short-
lived mesons that, in turn, decay into pions or take part in other strong
interaction processes.

3.5.6 Compton Scattering against Pions

Now we turn to the description of processes with real photons and discuss the
Compton scattering against pions to lowest order.?! Another process of this
kind, the pion-antipion annihilation, is discussed in Exercise 44. The leading
order of the Compton scattering amplitude is O (e?). Hence, in Theorem
3.18, we have to take into account the terms with number one and two where
the relevant parts of the modified potential V' up to order O (62) are to be
inserted:

S = 84 + 57

(@) _ _+ 214 4 s .0 .0
Sy = —ie? [d'z [ d*yd}(x) |:16$MA“($) —&—A“(a:)laxu]

. , (3.171)
x AV (2 — y) [iayVA”(y) + Ay(y)iay,,} Pi(y)

Spi = ie? [ A%} (2)i(x) Au(w) A4 (z)

S](cz) corresponds to the Dirac Compton scattering amplitude in Subsection
3.3.7 and consists of direct and exchange contributions. By contrast, the

seagull scattering amplitude®? S](p};) is purely boson specific.
Direct and exchange scattering amplitude. Let us first consider the

direct scattering contribution to S](f;). Using partial integration, this can be
transformed into

—

(@yqin i 2 4 4 vy O (0) 7.3 4
Sfi (dir) = —ie /d x/d y{éf(x)laxu [AF (z y)layyél(y)]}

X Al (x) A (y)

where, referencing Subsection 3.3.7, the first A#-field is identified with the
outgoing and the second one with the incoming photon. The correct ansatz
for these fields is

2w 27

A7 (y) = ﬁe”(ki,&)e‘””'yvA’;(w)= wfve“(kf,Af)e“’“f'”” (3.172)

since, due to the same line of argument as in Subsection 3.3.7 and Exercise
37, all other photon contributions lead to different or not realizable kinematic
constellations. Thus, along with

31 See footnote 20 on page 267.
32 For clarification of this term, see Figure 3.48.
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Pi(y) = —z==e ", p(x) = ==~ P (3.173)

V2EV V2E[V

and

dip e P(@-v)
AO (g ) — /
G (2m)4 p2 — m3 + e

the direct scattering amplitude follows as

ez 1 (2m)2 dp
S (gir) = & /d4 /d4 /
po (i) = =9 VAEE; | wiwy ) ) Y]
1

€ (kiy M) (ps +p)v

)(elpf'xe_lp'(x_y)e_lpi'yelkf'xe—lki'y

TN
xet(ky, .f)(p+pf>up2_m%+i€

and, after carrying out the coordinate and momentum integrations,

27)468 kf—pi — ki 1 21)?2
( 7T) (pf + f p ) ( 7T) MJ(CG) (dlr)
V2 VAEE; \| wiwy T ?
+i (3.174)
M (dir) = e (kg, Af)(—ie)(2ps + k
i ( 11") € ( o f)( 16)( Df + f)“(pi+ki)2—m%+i€
XGU(k‘i, /\i)(—ie)(sz- + k‘l)y .
As expected, this expression and its graphical representation in Figure 3.47a
coincide with our extended Feynman rules.

49 (dir) =

(kg Ar) 1_[Pf] e (ky,Ar) 1_[Pf]

« o

y—ie(2ps +kf)u o —ie(2ps — ki)y
+i

: +i
+ (pi — kyg)? —mg + e

P (pi + Ki)? —md + e

A

1\\—16(21% + ki)y —ie(2pi — kf)p

v v

a b
Ey(k‘i,Ai) 1[pi] eu(ki,)\i) 1[])1'}
Fig. 3.47. Feynman diagrams of the direct O (ez)—scattering amplitude (a) and the
exchange O (62)—scattering amplitude (b) for the Compton scattering against pions
in momentum space (compare to Figure 3.22). Analogously to the spin-1/2 scat-
tering theory, internal photon lines are assigned the i-fold of the boson propagator.
Energy and momentum are conserved at each vortex.
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The exchange amplitude is obtained by swapping the photons’ coupling
points or by the replacement k; < —ky in (3.174) as (see Figure 3.47b)

(2m)46(ps + ky — pi — ki) 1 (2m)2

(a) (a)
X — M.

Sty (ex) V2 IE.E, \| wiwy i (ex)
a . -+

MO (ex) = e (kp, A)(—ie) (2p; — kg,

(pi — kf)2 — m% + ie
xe”(ki, )\i)<—i€)(2pf — kz),/ .

Seagull scattering amplitude. In the scattering amplitude S](f;) in (3.171),
the incoming and outgoing photons join at the same point. Accordingly, there
exist two mathematically identical ways of assigning the A#-fields: either the
first field is considered to be the incoming and the second one the outgoing
photon or vice versa. At the insertion of (3.172) and (3.173) in (3.171), we
therefore have to take into account an additional factor of 2 so that, after the
coordinate and momentum integrations have been performed, we obtain

(b') _ (27T)45(pf + kf —Di — k’l) 1 (27T)2M(l?)
fi V2 /4E1Ef wiwf fi

M](f;) = 2ie?e, (kp, Ap)et (i, \i) -

S

The Feynman diagram corresponding to M }f) is shown in Figure 3.48. It obvi-
ously exhibits a particularity that does not exist in the fermion case, namely a

€ (kg, Ar) 1[ps]

/l(/
:,—1—21629,“,

\‘\

€ (ki, Ai) 1[pi]
Fig. 3.48. Feynman diagram of the O (62)—scattering amplitude M}ZZ) for the
Compton scattering against pions in momentum space. Inside the box is the two-

photon vortex of the bosonic scattering theory. The indices p and v of the vortex
factor are contracted with those of the photon lines. Because of its shape, the two-

photon vortex is also called “seagull vortex” and, correspondingly, M ;l;) the “seagull
amplitude”.
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two-photon vortex (seagull vortex) which, as already mentioned, results from
the O ( 2)—contribution of the modified potential V' from Theorem 3.17.

Bringing all three contributions, S(a)(dll‘) S](cj.)(ex), and S)(f;), together,
the scattering amplitude of the Compton scattering against pions to lowest
order follows as

o _ emp ks —pi—k) 1 er?,,
fi V2 /74E1‘Ef wiwy fi
My = M (dir) + M9 (ex) + MY
= —ie%e, (kA T ey (kiy M) (3.175)
v 2P+ k) (2pi + k)" (2pi — k)" (2pf — ki)
i + k)2 —m2 + ie i — k)2 —m?2 +ie
(p 0 p f 0
—2gm

where TH” denotes the Compton tensor. Incidentally, a more formal justifi-
cation for the factor 2 within the two-photon vortex is that it is necessary
to ensure the invariance of My; under gauge transformations of the four-
potential:

ek, N) = €, (k, A) + ey A(k) = T"k, =0, k,T" =0 .

Cross section. In the laboratory system where the pion is initially at rest,
p; = (mo, 0), the differential cross section is (as regards the kinematic situa-
tion, see Figure 3.21)
27 d3pf 27Td3k‘f
do = ———|My; 5 ki —pi — ki ( .
7= =My (2m) 6 (ps + kg —p )QEf(QW)S(%)gwf

’L

Using

dp
Wy = iy, G = [ a'pale - mi)eh)

this turns into

do

1
— = d d*p | My;|%6 ki —pi—k;
0 2mowi/ wfwf/ prlMyilo(py + Ky —p )

xd(pF —mg)O(p}) -

A further evaluation can again be related back to the kinematically equivalent
calculation for the Compton scattering against electrons in Subsection 3.3.7
by noting that the above expression is formally identical to the first row in
(3.118) multiplied by 1/(4m3). Thus, from the same equation it follows for
the case in hand that

do UJ2

i W' sileo s IMyil2, = [Myil?

pr=pitki—ky >
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with the secondary condition
Wi

1+ 2-(1—cos0)

2
wf = <:>>\f:>\i+m77;(17(3089).

Amplitude square. In view of the evaluation of |[M;|? and due to €(k, \) -
k =0, the Compton tensor in (3.175) is initially simplified to
py _ Apypy Api'py
(pi +ki)2—md +ie  (pi—kg)? —md +ie

Moreover, if we move to the radiation gauge [¢"(k, \)] = [0, €(k, A)], the first
two terms of TH” vanish because of p; = (mg, 0) so that

TH = —2gM"

— 29" .

In other words, in the radiation gauge and in the laboratory system, the
Compton cross section is solely determined by the two-photon vortex. Dis-
regarding any photon polarizations (averaging over the initial and summing
over the final polarizations), the amplitude square finally follows as

4
[ e v
1Myilz, = 5 D leulks AT ey (ki M) (3.176)
XiyAf
=2¢" Y [e(ky, Ap)e(ki, \i)]> = 2¢* (1+ cos®6)
iy Af

where 6 denotes the angle between k; and kj [see (3.123)].

Theorem 3.22: Compton scattering against pions to leading order

The scattering amplitude of the Compton scattering against pions to lead-

ing order is (f # 1)

(2m)46(ps + ky —pi — ki) 1 (27‘(’)2M ‘

V2 /4E1Ef wzwf fi
with the Lorentz-invariant amplitude
a g a b
My; = M}i)(dlr) + M}i)(ex) + M( )

(2ps + kg)" (2p; + ki)”
(pZ aF kl)Q — m% + i€
2p; — ke)*(2pr — ki)Y

(2p f)2( pf2 .) e (kis As)
(ps — ky§)? — m§ + ie

2ie%e, (kp, Ap)er (ki, Ni) -

Spi =

M}?(dir) — —ie%e,(ky, Ay) e (ki M)

M{P (ex) = —ie%e, (ks Ay)

(b)
My,

The differential cross section follows as
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s d?p 2rd3k
——————|M|*(2n)%0 kr —p; — k; ! !
v (i - kz)2| 7il*@m)°6(ps + ks —p )2Ef(27r)3 (2m)3wy

and, particularly in the laboratory system where the pion is initially at
rest,

do =

do wj 2 2 2

E = W|Mﬁ|co ) |Mfi|c0 = |Mfi|pf=pi+ki—kf
Wi

Wy =

1+ 25(1—cosf) ’

where all photonic scattering momenta k ¢ toward df2 and all pionic scatter-
ing momenta py have been integrated out in do/df2. Disregarding photon
polarizations, the unpolarized amplitude square becomes

|Myi[2, = 2e* (1 +cos®0) .

3.5.7 Conclusion: Enhanced Feynman Rules in Momentum Space

As we see in the preceding examples, the scattering amplitudes of bosonic
scattering processes can be constructed very similarly to those of the fermion
case. In fact, we only need some further extensions to the spin-1/2 Feynman
rules in Subsection 3.3.9 for them to cover also the spin-0 case. In the following
we recapitulate these extensions (marked by E) once again.

E1. One boson factor Ni(,'f') = 1/2 for each (anti)boson.

E3. If bosons are present, the construction of My; involves Feynman dia-
grams with one-photon and two-photon vortices as well as internal and
external boson lines inasmuch as they lead to topological constellations
that are compatible with the considered scattering process.

E4. All vortices and lines within Feynman diagrams belonging to the bosonic
sector are supplied by the factors in Figure 3.49. Furthermore, there is

i) no relative sign between Feynman diagrams differing only by the ex-
change of two boson lines.

ii)a factor of 1/2 for each closed photon loop.

To E4. Contrary to rule 4.1) of the fermion case, rule E4.i) accommodates the
Bose-Einstein statistics, according to which the whole scattering amplitude
must be symmetric under the exchange of two boson lines (of the same type).
The factor 1/2 in rule E4.ii) compensates for the double counting of alterna-
tives to connect both vortices of a photon loop — actually two-photon vortices
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incoming boson
[

1 [pz}

outgoing boson

1[ps]

incoming antiboson
o

15

outgoing antiboson

1I[ﬁf]

internal boson line one-photon vortex two-photon vortex

@ ------- > L > > )
—ie(pi + ps)" 2ieg"”

Fig. 3.49. Supplementary Feynman diagram elements and characteristic factors

for the bosonic sector in momentum space. The vortex indices are contracted with

those of the photon lines.

each assigned a factor of 2ieg"” — by photon lines. In this context, recall our
discussion of the seagull scattering amplitude in the preceding subsection as
well as the motivation for the factor 2 within the two-photon vortex.

Note that, as in the fermion case, these rules also allow the construc-
tion of loop diagrams in higher orders whose mathematical divergences can
be handled using the renormalization methods discussed in Section 3.4. As
before, those loop diagrams are of pure quantum field theoretical nature.
However, before tackling the concrete calculation of higher order corrections,
one should bear in mind that electromagnetic forces are normally superposed
by the much stronger interactions between bosons themselves as well as with
nucleons that do not play any role in our formalism. To this extent, one should
not necessarily expect a better coincidence with experiments by taking higher
electromagnetic corrections into account.

Summary

e The Klein-Gordon equation can be solved approximately using the same
methods as in the Dirac case.
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e Analogously to the fermion propagator, the Feynman boson propa-
gator is defined in such a way that it describes the temporally forward
[backward] oriented evolution of the positive [negative| parts of a wave
function known at a particular time (including its derivative). With this
and the Feynman-Stiickelberg interpretation, the positive [negative] parts
can be interpreted as temporally forward directed particle [antiparticle]
propagation.

e Using the Feynman propagator formalism, the amplitude of bosonic scat-
tering processes can be expanded in a series of multiple scatterings. Con-
trary to the fermion case, each series term contains two different orders
of e due to the form of the modified potential.

e A practical calculation of spin-0 scattering processes is based on the
same prerequisites (plane waves, adiabatic approximation, etc.) and steps
(constructing Sy;, squaring, inserting in do, and so on) as the spin-1/2
case.

e The corresponding directives can be easily integrated into the spinor
Feynman rules by adding some bosonic extensions.

e With this extended version, Feynman rules allow the study of scattering
processes with an involvement of fermionic, bosonic or photonic initial
or final states. Scattering processes with purely bosonic initial and fi-
nal states are the Coulomb scattering, pion-pion scattering, and
pion-antipion scattering. A fermionic-photonic process is the pion-
antipion production via electrons and photonic-bosonic processes
are the Compton scattering and pion-antipion annihilation.

e Compared to the spin-1/2 scattering theory, the validity range of the
spin-0 scattering formalism is highly restricted since spin-0 particles are
not elementary but consist of quarks that, in turn, are subject to the
strong interaction.

Exercises

42. Causality principle of A%O). Show with the help of (3.162) the causal
relationships mentioned in Theorem 3.17 for the free case.

Solution. The calculation proceeds analogously to that of Exercise 36. Let
2
$(z) = 6P (@) + ¢)(z) = / @S )68 (@)
r=1

be an arbitrary Klein-Gordon wave packet. Then,
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/dsxA%O) (' — 93)150 ¢(x)

XZ¢(1) NG ()idn 65 (x)a™ (p')

—i0 (2 fxlo)/d‘gx/d?’p/d?’p/
2

% 37 02 (a)p2* ()10 6 (x)a) (p')
r=1

= —iO(z /d3 /d“ZeMlép p)oy) (2')al" (')
—i0(2° —x’o)/dsp/d3plz67«5r25(1)—Pl)¢§2)($/)a(r)(p/)
r=1

= 6~ +) [ d*pofl) )V p)
+iO(2° — ) / d*poF) (2')a® (p)

_ 7i@(:L‘/O . x0)¢(+)(x) + i@(xo o x/O)d)(*)(x) .

And, likewise:

/d3m¢* (m)igo A%O) (x —2)

_ —i@(xo—xlo)/d3x/d3p//d3p

XZW )65 ()id0 84 (2) 0" (o)

—iO(z /d3 /d3’/d3

Xza(r)* (b() 18 ¢(2)( )¢(p) (iC/)

2
= —iO(2° —x’o)/d3p’/d3pZa<T)*(p’)¢§,1>*(x’

—i0(z / a>p’ / d3pZa(T)* PP (

)67’67“15(1) - p/)

)67’67“15(1) - p/)
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_ 71@(I0 . x’o)/d‘spa(l)*(p)gbg)*(o:')

HO® —a) [ dpa® (p)o (o)
= —i0(z" — 2P (") +10(2"° — 2°)p ) (2') .

43. Pion-antipion scattering in the center of mass system. Calculate
the differential cross section of pion-antipion scattering to leading order in
the center of mass system using the results from Subsection 3.5.4.

Solution. Similarly to the electron-positron scattering in Subsection 3.3.6,
the scattering amplitude for the pion-antipion scattering to leading order
encompasses a direct and an exchange or annihilation part whose Feynman
diagrams are depicted in Figure 3.50. One obtains from this the scattering

1[py] 1[py] 1[py] 1[py]
\“ ”'4 > »
' —47i ; . L
‘\ £ 1ic —ie(ps — py)"
—ie(pi + ps)u ¥ N8 —ie(—pi — pr)* ami
) - q'? +ie
\ —ie(pi = pi)u g
i " o
/ < «
a _ b _
1[pi] 1[pi] 1[pi] 1[pi]

Fig. 3.50. Feynman diagrams of the direct O (62)—scattering amplitude (a) and

the exchange or annihilation O (62)-scattering amplitude (b) for pion-antipion scat-
tering in momentum space (compare to Figures 3.18 and 3.19). Energy and mo-
mentum are conserved at each vortex. Therefore, the four-momentum transfers are

q=pr —pi=—P; —pi), ¢ =pi +Di =ps + by

amplitude as

_@m)%(ps +pp—pi —pi) 1 1
Sfi = 5 — Mfi
v JAEE; \/1E,E;
Mfi = MfL(dII‘) —|—Mﬁ(ex)
—4rie?
My;(dir) = (p; ——F— @i + o))", a=pr — s
pidir) = (pi +ps)p 21 (i +Pp)" , a=ps —p
4rie?

Myi(ex) = (pi — Pi)p (pr — D))", & =pi+Di -

q'? +ie
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A comparison with the scattering amplitude of pion-pion scattering in The-
orem 3.20 shows that, also within the bosonic scattering theory, there exist
crossing symmetries between processes where an incoming particle is per-
muted with the corresponding antiparticle and vice versa (see Figure 3.51).

pion-pion scattering

™ + w0 — 7® + @ Pi i pr Py

7~ + 7t - 7 + «t i —Di pf —Ds
pion-antipion scattering

Fig. 3.51. Crossing symmetry between pion-pion and pion-antipion scatterings
(compare to Figure 3.20).

Due to the kinematics being equivalent to that of the pion-pion scattering,
we can take the differential cross section in Theorem 3.20 for the process in
hand, i.e.

do 1
- R — VP
(dﬂ)cm 64(27r)2E3| ftlem

If we finally perform the replacements in (3.169) as indicated in Figure 3.51
and subsequently evaluate the scalar products in the center of mass system,
the amplitude square follows as

2
(E2 +p?cos? )" pleos?d

140 1
p;sin® § E;

cos 6 (E? 4 p? cos? g)]

2 in2 0
E¢ sin” 3

| Myilem = (4m)%"

44. Pion-antipion annihilation in the center of mass system. Use the
results from Exercise 38 and Subsection 3.5.6 to calculate the unpolarized
differential cross section of pion-antipion annihilation into two photons to
leading order in the center of mass system.

Solution. As regards the differential cross section, we can resort to the re-
sults of the electron-positron annihilation in Exercise 38 (see also Figure 3.29)
due to the kinematically equivalent situations. Taking into account
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1 o
4/ (pi-pi)2—m§  BEilpi

d*K
Chy = widwpd2 , — = 2/d4k}5(k}2)9(k}o) :
i

we have
1 2rd3k; 2md3k
do = ————|Mpi|22m) 8 (ks + K} — pi — 5i) g o
do 1 -
= | 5 = ——— [d d*K [ My |26(ke + K — pi — Pi
(dQ) 4Ei\pz-|/ Cdfwf/ HMypilPo (ks + K — pi — pi)

cm

xS(KP)O(KY) .

Obviously, this equation is formally identical to the first row of (3.129) mul-
tiplied by 1/(4m2). Thus, for the case in hand, it follows immediately from
the last row of (3.129) that

do 1 ——
— | =——|Mp2. .
(dQ) 16E1|pl|‘ f ‘cm

Exploiting the relationship of the crossing symmetry between Compton scat-
tering in Subsection 3.5.6 and pion-antipion annihilation (see Figure 3.52), we

Compton scattering

™+ 7 — 71 + 7 i ki ps ky

™™+ 1t =y 4+ Di —Di —kys kY
pion-antipion annihilation

Fig. 3.52. Crossing symmetry between Compton scattering and pion-antipion an-
nihilation (compare to Figure 3.26).

obtain from (3.176) with the corresponding replacements for the unpolarized
amplitude square (summation over the photon’s final polarizations)
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M2, = et 37 feully, AT e, (K Xp)|* L T = —2g7

/
Ap N

aet N Jelkr Ap) - ek, NP7
PYBA

Here we have to bear in mind that this equation only holds under the con-
straint € - p; = €} - p; = 0 which was achieved in the laboratory system
by using the radiation gauge. Thus, in the center of mass system, the gauge
transformation (3.131) from Exercise 38 is appropriate as there the polariza-
tion sum turns into (3.132). The remaining evaluation proceeds similarly to
that in Exercise 38 and finally leads to

4m? n 4my
E2(1 —vZcos?0)  E}1—v?cos?6)?
A2 402 (1 —v2) — 4v} cos? 0 + 2v cos* 0
(1 —v2 cos?6)?

|Myi|2, = 4e* |2

=4



A. Appendix

A.1 Theory of Special Relativity

The theory of special relativity is based on the following axioms:

1. Constancy of the velocity of light: the vacuum velocity of light is the same
in all uniformly moving systems, namely ¢ ~ 3-10% m/s. No information
propagates faster than light.

2. Relativity principle: physical laws are equally valid in all inertial systems,
i.e. there is no preferred reference frame.

The relativity principle encompasses the homogeneity of space and time as
well as the isotropy of space according to which there is no preferred point
and direction in space and time.

Due to these axioms, relativistic physical events are described mathemat-
ically within a fourdimensional space where the product of the speed of light
and time, 20 = ct, appears as an additional dimension on an equal footing

with the three space dimensions 2!, 22, z3.

Minkowski space. The Minkowski space is a fourdimensional linear vector
space over the body of real numbers. Its elements x* are represented by
four-component coordinate vectors, also called four-vectors,

2’(t)
' (t) 0
n _ —
[z ()] = 22(t) | zo(t) =ct .
a*(t)
The scalar product of two four-vectors is defined as
(@) - (¥") = 2" gy’ = aMyu = 209" yy = (@) - (o)

with the non-Euclidean metric tensor (1. index=row index, 2. index=column
index)

(gul/) = (guy> = y g'uagow = g“y = 55 .

SO O
o o = O
ODLOCJ
= o oo

A. Wachter, Appendix. In: A. Wachter, Relativistic Quantum Mechanics, Theoretical
and Mathematical Physics, pp. 349-361 (2011)
DOI 10.1007/978-90-481-3645-2 (© Springer Science+Business Media B.V. 2011
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Notation. Additionally, there exist the following conventions:

e Vectors with an upper index are called contravariant, and those with a
lower index are called covariant. This can be transferred to tensors of higher
rank. For example, ", is a twofold contravariant and onefold covariant
tensor of rank 3.

e Two indices, one of which is an upper and the other a lower index, are
summed over so that the summation sign can be dropped (Einstein sum
convention).

e The metric tensor can be used to pull upper indices down and vice versa.
For example:

2, = g, THP = gHOT, P = g“agVﬁTa[ﬂ — g“ag”ﬁg’”Tam ete.

Accordingly, the co- and contravariant vectors x, and z* differ solely by
their spatial components.

Contrary to the threedimensional Euclidean case, the norm of a four-vector
is not positive definite. Instead, the following cases can occur:

> 0 (time-like)
zat =1k —2? = — 22 { =0 (light-like)
< 0 (space-like) ,

where the classification corresponds to the vector’s position relative to the
light cone z 2" = 0.

Lorentz transformations. The axioms of the theory of special relativity
imply that the fourdimensional “distance” between two four-vectors xz* and
y* is preserved in any inertial system:

(=l =yt =@ =y =y .

Lorentz transformations describe the relativistic transition from one inertial
system to another. They are defined by the linear transformational equation

ot — 2 = AP,z +a” | (a") = space-time translation (A1)

of contravariant vectors. Along with the conservation of distance, one obtains
from this the conditional equation

A“agluy/lyﬂ = gaﬁ (A?)
as well as the corresponding transformational behavior of covariant vectors
_leu = gl“jq;/” = gHV (Aya.’lﬁa + a") = .fﬁ[/l_l]ﬁu + GM y
with the inverse transformation

(A7 = guwA”ag®? = A7 A7) A = gAY g P A = 67 .(A.3)

m
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In matrix notation the condition (A.2) reads A7gA = g and corresponds to
the property RT R = 1 of rotational matrices of threedimensional Euclidean
geometry. Lorentz transformations with a* = 0 constitute the homogeneous
Lorentz group. Besides the distance, they also leave the scalar product of two
four-vectors unchanged: z*y,, = z'*'y;. For the general case, (a") # 0, one
obtains the inhomogeneous Lorentz group or Poincaré group which is not
considered here.
The homogeneous Lorentz group can be classified in the following way:

symbol det(A) A% group name
L +1 >0 proper
P-LC -1 >0 orthochronous
R-L -1 <0
homogeneous
P-R-L +1 <0

Contrary to all others, the transformations of the proper Lorentz group £ can
be interpreted as a series of infinitesimal transformations. Noninfinitesimal or
discrete transformations are, for example, the parity transformation (space
reflection)

P: xoﬂx'oizo,xkﬂx’k:ka
and Racah time reflection
R: 2°—20 =20, 2% = 2/F =2k,

The orthochronous group consists of the proper transformations £, the space
reflection P, and their products P - £. The homogeneous group is composed
of the transformations £, P, R, and their products.

Transformational behavior of differential operators. Taking into ac-
count z¥ = [A_l]”#x'“ [see (A.1)], we have
ox” 0 0 OxV 0

_ —1v _ _
ox't [ ) s ozt Oxv dx'r Oz

(A7

-
Therefore,
0
far =
transforms as a covariant vector and, accordingly,

0 _ o
O0x,,
as a contravariant vector. Furthermore, it follows that the d’Alembert oper-
ator
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1 92 )

c2 ot?

is Lorentz-invariant, i.e. a Lorentz scalar.

0,,0" =

Relativistic kinematics. In order to write down the equations of motions
of relativistic mechanics Lorentz-covariantly! (form invariantly), we must
reformulate the Newtonian quantities of velocity, momentum, and force in
such a way that they have a defined transformational behavior under Lorentz
transformations. Contrary to dt, the eigentime differential

1 /dz\’
dr =dty/1— =5 | —
c? < dt >
is a Lorentz scalar since, due to the conservation of the scalar product, we
have
2 2 Lo o 1 2 . .
dr® = dt* — 5 dz” = dt"”" — —dz™” (dr° > 0 for time-like vectors) .
c c

With this, the following quantities can be defined, of which the four-versions
transform as x#:

e Four-velocity u*:

dz*  dt dz* 1 c
= = Yy —
R P e T o ('u>
-
dx
v = — = physical velocity.
dt
e Four-momentum p#:
m
pt = mou” , (p") = (C;n) . m=——2  mg = rest mass

Ji-s

p = muv = physical momentum.

e Four-force F'*:

" " dm
Fu:dL: 1 di) (FM):il (Cdt> (A.4)

dr /1_%22 de _%22

d
F = d—IZ = physical force.

! In this book, as in many other textbooks, the transformational behavior of rela-
tivistic four-quantities is called “Lorentz-covariant” regardless of the subtle dif-
ference between “covariant” and “contravariant”. The same holds for relativistic
equations whose form remains unchanged under Lorentz transformations. Quan-
tities and equations are called “Lorentz-invariant” if their value is unchanged by
Lorentz transformations (Lorentz scalar).
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The first force equation also represents the Lorentz-covariant equation of mo-
tion of relativistic mechanics, whereas the second equation is the threedimen-
sional relativistic analogon of Newton’s equation. In the case of a conservative
force field F = —VV(x), the latter leads to the energy conservation

E=mc* +V(x) = const = E = mc? for V=0

and, together with the definition of p*, the energy-momentum relation for
free particles

pupu:pg_pQZm(Q)cQ E? = p2 + m2ct |
It is not always possible to formulate a given mechanical problem covariantly
via (A.4) since not all types of forces allow a fourdimensional generalization.
One example of this kind is the Coulomb force. As a static long range force, it
requires an infinitely high propagational velocity, thus being in contradiction
to the first axiom of special relativity.

Lorentz-covariant electrodynamics. The basic equations of classical elec-
trodynamics are the four Maxwell equations

VE(x,t) = 4mp(x,t)

19B(z,t)

Vx E(x,t)+ —————=0
c Ot (A.5)

VB(z,t) =0

10E(x,t) 4w .
_E ot - C](:Bat)

(in the Gaussian unit system), the continuity equation

Ip(x,t) : _
o +Vj(x,t)=0

that follows from the first and fourth Maxwell equation, as well as the Lorentz
force

Fﬂ@ﬂ:ﬂE@ﬁ+%xB@ﬁ , (A.6)

V x B(x,t)

describing the force acting on a particle with charge ¢ due to its movement
through the fields E and B.

That these equations can be formulated Lorentz-covariantly, i.e. that they
are in accordance with special relativity, can be shown as follows:

e First, the continuity equation can be immediately brought into the form
. . c
0,00 =0, (= (1)

showing explicitly its Lorentz covariance, provided that j# is a four-vector.
However, this follows from the experimental fact that the charge ¢ is a
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Lorentz scalar: dg = d3zp = d32'p’. Thus, dg transforms as a fourdimen-
sional volume element d?zdz® = d32’d2 and, consequently, p as the 0-th
component of a four-vector.

e Introducing the scalar potential ¢ and the vector potential A,

10A(x,t
Maxwell’s equations can be rewritten as
1
V3 + ngA = —4mp
cot
1 0%2A 10¢ 4
2A- - — | - A+ —-——|=——3
(V 028t2> V<V +cat) ¢’
From here and choosing the gauge
10¢
VA= 5 (Lorentz gauge) ,

one obtains the disentangled inhomogeneous wave equations

, 162 i
V- 5= | ¢=—dnp < 0,0"¢p =4np

c? Ot?
1 92 47 4
2777 _ s o _
<V 028t2>A C]<:>8#6'Afcg

that are symmetric in A and ¢. Since p and j are the components of a
four-vector and 9,,0* is a Lorentz scalar, the last three equations can also
be cast into a manifestly Lorentz-covariant form:

4 10)
0, A" =0, 0,0"AY = ?]” , (AM) = (A) .
e Knowing that j* and A* are four-vectors, the Lorentz covariance of
Maxwell’s equations themselves can be shown in the following way: first,
we rewrite the defining equations (A.7) as

0 —E, —E, —E,
oA —grar ()= | e T )
Yy z x

E.-B, B, 0

where the field strength tensor F'*” must be a twofold contravariant (anti-
symmetric) tensor transforming as

FIM = AF A g FP
With this, the two homogeneous Maxwell equations in (A.5) turn into the

Lorentz-covariant equation

v am v
6NF# = ?] .



A.2 Bessel Functions, Spherical Bessel Functions

Both sides transform as onefold contravariants. With the help of the dual

field strength tensor
1
G = 5ef“faf’}«“oéﬁ =F,.(E—B, B— -E)

+1 if (uraf) even permutation of (0123)
el = ¢ 1 if (uraB) odd permutation of (0123)

0 else ,

the remaining inhomogeneous Maxwell equations (A.5) acquire the covari-

ant form

9,G" =0 .

e Contrary to the Coulomb force, the Lorentz force (A.6) allows a relativistic

generalization to a four-vector F{" which is
dz
Fr=Lpuy, = Tpm v
c c dr

According to (A.4), we therefore have the equations

d o
dp“_Fu uw=0: &mc =qFEv
dr b dp v
p=i: —:q(EJr—xB):FL.
dt ¢

A.2 Bessel Functions, Spherical Bessel Functions

Bessel functions. The Bessel differential equation is

2 1d m?
{M_;_Idx_y-(l—ﬁ)}f(x)—(), meR.

Its solutions are the Bessel functions J,, and J_,, with

T\ e (—1)¢ x\ 2%
= ()5 s ()
() 2 ;Z!F(m—i—z—i—l) 2
If m is an integer, then

@)= (5)" S g () o) = 1)



356 A. Appendix

Spherical Bessel functions. The spherical Bessel differential equation is

2
{d 2d 0+

dz? ' zdx 2

}f(:c)—O, 1=0,1,2,... .

Its solutions are the spherical Bessel functions j;, n; (the latter are also called

Neumann functions) and, therefore, also the Hankel functions hl(i):

Ji(@) = (%)1/2 Jiv1/2(x)

™

mi@) = (0 (£) " i)
W) (2) = m(e) £ iji(z) -

Their explicit forms are

i) = Ri(a) 22 4§ () 907
mi(@) = Rifa) L 5 (@) 20 (A8)
WO = [Rile) £ i8]
with
Ri(z) + i5i(x) :i;;j 87:3: . Ri.S € R.

R; and S; are polynomials in 1/x of order [ with real coefficients and parity
(—1)! and —(—1) respectively. For any linear combination f; = aj; +bn;, a,b
fixed, we have the recursion formulae

21+ Dfle) = @ [fo(@) + fioa(o)
for = (g5 + 50 = i gy )

x

d -1 d /[ fi
fl:(_d:r )fz1——l1dx<xéi),

which imply that

sz[xl( ;di)]fo.

The first spherical functions are obtained from (A.8) as

o(2) sinx . (@) sinx cosx
€Tr) = xr) = —_
Jo T J1 22 -
cosT cosx sinz

no(z) = Tz (@) = x2 x
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e:i:im 1 ie:l:ix
W = @ = (57 1) S

2z x

A.3 Legendre Functions, Legendre Polynomials,
Spherical Harmonics

Legendre functions. The Legendre differential equation is

2 2

dz2 dx
with [ = 0,1,2,..., m = 0,..., %l Its limited solutions within the interval
[—1: 1] are the Legendre functions
(1 o x2)m/2 dl+m
207 dgltm
P, . is the product of (1— x)m/2 with a polynomial of order [ —m and parity
(=1)"=™ and it has [ — m zeros within the interval [—1 : 1]. We have the
following recursion formulae (P_;, . = 0):

(21 + 1)33Pl,m = (l +1- m)lpl+1,m + (l + m)ljl—l,m

Pron(x) = (2® 1) (A.9)

d
(1— J;Q)@le = —lxPy+ (I +m)P1m
I+ 1D)aPym—(1+1—=m)Piim

as well as the orthonormality relations
1

2 (I4+m)

Prom () Py (z) = ——— 5,
/dx b (@) Pl m (%) = 53 (O
—1

Legendre polynomials. In the case of m = 0 the Legendre polynomials
follow from (A.9) as

P _p 1 da 1!
1(z) = l,o(z)*ﬁ@(l’ -1
P, is a polynomial of order [ with parity (—1)" and possesses [ zeros within the

interval [—1 : 1]. The Legendre polynomials can be obtained by expanding
the functions (1 — 2zy + y?)~'/2 in powers of y:

1 =~
S R, <1 (A.10)
V1= 2xy +y? ;
The first five Legendre polynomials are
1

Py(z)=1, Pi(z)=a, Py(x) 5

(32% — 1)

1 1
P3(z) = 5(5353 —3x), Py(x) = g(35954 — 3022 +3) .
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Spherical harmonics. The spherical harmonics Y} ,, are defined as the
eigenfunctions of the quantum mechanical angular momentum operators L?
and L,:

LY, = 82+ 1)Yim , 1=0,1,2,.

LYy, = imYy,, , m=0,...,%l.

Their explicit forms are

(20 +1)! l+m
Yim(0,0) = 2111 V e (20!

xel™¢ gin =™ GL sin? @
d(cos 9)l=m '
They form a complete orthonormal function system on the unit circle. This
means that the following orthonormality and completeness relations hold:

/ Y Yo dQ2 = / dy / 4050 0Y,, (8. 2) Vi s (6. 0) = Sy Byt

0o l

S S V0, @)Vi (0, ) = 2RI Zcost) 5 oy

sin 6
1=0 m=—1

Further properties are:
e Parity:

Yim(m =0, +7) = (=1)Yim(0, ¢) -
e Complex conjugation:

Vim0, 0) = (=1)"Yi (6, ¢) .

e Relationship with Legendre functions:

20+ 1 (1 —m)! -
Yim(0,¢) = 2 Pm(cos0)e™? m >0 .
nl0.9) = [P P (cost)e™ >
e Addition theorem: using
cos psin 6 cos ¢’ sin ¢’
x=r| singsing | , ' =7 | siny’'sin¢’
cos @ cos @’

and
xx' =711’ cosa , cosa = sinfsinf cos(¢p — ¢’) + cosfcos b,

it follows that
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l
4 N
P(cosar) = A+1 Z E,mw/,@/)yl,m(@»@) .
m=—1

We obtain from this, in line with (A.10),

1 1 1
e —a T ()P”OS“)
row r\/l—QT—/cosa—&—(%)

Z Z 2l+1rl+1 (9/780/)Yl’m(9730) :

=0 m=—1

The first spherical harmonics are

YO,O(gv 90) =

—
=
—~
>
G
S~—
Il
|
[
e
CD.—u
)
@,
=]
>

15 o
Y1,0(0,¢) = ECOSG , Yo2(0,¢) S—Wem“@ sin? @

/15 /5
Yo1(0,¢) = — ﬁew sinfcosf , Y (6, 9) = Tom (3cos®0 —1) .

A.4 Dirac Matrices and Bispinors

The Dirac matrices {1, as, a3, 8} and {7°,71,72,73} as well as v° and o*”
are defined representation-independently by

{aiuaj}:2§ij7 {012,5}20, a?:52:17ai:a1‘—7/8:/61-
V=8, =B, Y= gu"

i
7' =iy = —igremye =5, o = S0

This implies the following identities:
{7} = 2g”” (Clifford algebra) , (y*)? = gh*

75 = 4|6#uo¢ﬁ7 ’YV’YO(’YB ’Vg 1
("’ =0
,Y5Uuu _ ieuuuﬁaaﬁ

2

[V, 0] =0
Yy = g —iot”

Yyt =4
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VY = =2y

VA = 497
VAN A = =2y

PNy = 2 (7P = APy
oy, =0
V“Ua[ij%L _ 27/)0@6 )
Traces:
tr(y") = tr(y7) =0
tr(y") = 4g""

tr(o™) =0

tr(y#7"9°) = 0

tr(y"y"y*7) = A(g" g™ — g""g"" + g"7g"*)

tr(yP 1 %y P) = —4ietveP = di€pap -
Hermitean conjugation:
PP =", =", T =4
P90 = A, %50 = 1
Y0790 = ()T
A0 = ghvt
Fourdimensional representations of the ~v-matrices.

Dirac representation:

0 _ ]. O i OO'»L' 5 _ O].
T =\o-1) 7T " \=o;0) 7 T\10

v
; 0 o i or 0
0i _ i o e k — iv?
o _1<0¢0>7U —euk(ogk>,0—ry.

Weyl representation:

0—-1 ; 0 o

0 __ T [ 5

0i _ - ag; 0 ijo_ Ok O

g 1<0 —O'i> , O —E'ij(o Uk) ’
1 1 -1

’y\l;\/cyleTPygiracU7 U:ﬁ (1 1) .

Majorana representation:
0o o3 0 0 —0o
0 _ 2 1_ . 3 2 2
= (%) = (5a) ()
3 _ . —01 0 5 (o) 0 o
c=i(T ) = (T %) e
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1 1 g2
’Yll\t/[ajorana = UT’y]giracU ) U= ﬁ (0’2 —1) ’
Here o; denote the Pauli matrices:

01 0 —i 1 0
(1) e (V3) = ()

Dirac bispinors. The bispinors u(p,s), v(p,s), as well as their adjoints
a(p,s) = ul(p,s)7°, v(p,s) = vi(p,s)y°, fulfill the Dirac equations in mo-
mentum space (b =c=1, py = \/p? + m3):

# —mo)ulp,s) =0, F+mo)v(p,s) =0

u(p, s) —mo) =0, v(p,s)(p +mo) =0.
Normalization:

a(p, s)u(p,s) =1, v(p,s)v(p,s) = —1

a(p, s)v(p, s) = v(p, s)u(p,s) =0 .
Completeness relation:

Zu(x(pa S)ﬂﬁ(p,S) - Ua(p, 5)65(p75) = 60/5 .

Projection operators:

U s)u s) = Zj—’— Mo =
S alpastes) = (Fmt) =140l
— v, S)v s) = _¢+ o =
S ralestr.9) = () =140l
) _(PEmo 1+
wlp s = () = ) S0
—v S)vU s) = _¢+m01+75’é S
R e W G
Gordon decompositions:
A0 ulp.s) = ol ) [0F + )+ 30 = )] ulp )
o(p', s )y u(p, 5) = —ﬁﬂ(p’,#) (0" +p)t +ic" (0 = p)]v(p, s)

_ " 1 _ s v
a(p, s )" o(p, s) = m“(p’ﬁ’) [(p = )" +i0" (0" + p)u] v(p, 5)

o(p', s )y ulp, s) = _ﬁf’(p’ﬁ’) [(p" = p)* +ic" (' + p)]ulp,s) .






Index

action functional, 19, 120

active transformation, 21, 23
adiabatic approximation, 186, 189, 210
adjoint

— bispinor, 92, 95, 96

— Dirac equation, 95, 97, 120

— Klein-Gordon equation, 20
advanced propagator, 180, 182, 198
angular momentum operator, 358
annihilation

— electron-positron, 274, 278, 284
— pion-antipion, 346

— scattering, 262, 275, 345
anomalous magnetic moment, 118, 158
anti

— electron (positron), 110

— kaon, 17

— neutrino, 132

— particle, 6, 89

— photon, 271

— pion, 17

— proton, 245

(spin-0) antiboson, 17, 28

— factor, 331, 341

— wave function, 14, 26, 323
(spin-1/2) antifermion, 112, 131

— factor, 252, 280

— wave function, 107, 130, 211
antilinear transformation, 13, 106
approximation

— adiabatic, 186, 189, 210

— dipole, 315

— external field, 77

— mass shell, 302, 308

— nonrelativistic, 3, 13, 30, 240, 314
— reduced mass, 77

— ultrarelativistic, 240

atom

— hydrogen-like, 169, 172, 313

— nucleus, see nucleus

— pion, 15, 72, 73, 77
axial vector, 100, 132

backward propagation, 26, 130, 182,
205, 211, 321, 323

Baker-Hausdorff expansion, 54

bare

— charge, 111, 292, 300

— mass, 292, 303

Bessel

— differential equation, 69, 167, 355

— function, 69, 167, 355

(B-decay, 131

Bhabba scattering, 265

bilinear form, covariant, 95, 99

bispinor, 88, 91, 133

— adjoint, 92, 95, 96

— charge conjugated, 109

— transformation, 94, 96, 114, 123, 134

Bohr

— magneton, 310

— radius, 77

boost, 24, 123, 133

Bose-Einstein statistics, 276, 328, 341

(spin-0) boson, 5, 17, 28

— factor, 331, 341

— propagator, 320

— wave function, 14, 26, 323

box normalization, 192, 320

braking radiation, 308, 317

Bremsstrahlung, 308, 317

canonical form, 8, 91

Cauchy integral theorem, 197

causality principle, 180, 206, 207, 233,
320, 343

charge

— bare, 111, 292, 300

— color, 112

— conjugated bispinor, 109
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— current conservation, 43

— current density, 13, 14

— electric, 9, 14, 91, 107

— interpretation, 14

— nucleus, 72, 79, 82

— operator, 38

— renormalized, 299, 301, 306, 309

— strangeness, 17

charge conjugation, 14, 107

— extended, 27, 130

charge density, 13, 14, 30

— radial, 81

Clebsch-Gordan coefficient, 164

Clifford algebra, 93, 359

color charge, 112

Compton

— formula, 272

— tensor, 339

— wave length, 3

Compton scattering

— against electrons, 268, 274, 283

— against pions, 336, 340

conservation

— current, 43, 144

— energy, 195, 235, 243

— four-momentum, 235, 253, 281

— momentum, 235, 243

continuity equation, 8, 9, 90, 92, 96,
353

continuum normalization, 9, 11, 92

contravariance, 350, 352

convection current density, 149, 311

correspondence principle, 4, 34

Coulomb

— force, 353

— potential, 15, 73, 169

Coulomb scattering

— nonrelativistic, 193

— of electrons, 224, 231, 317

— of pions, 324, 326

counter term, 303

coupling

— constant, 82, 253, 281, 323

— minimal, 6, 8, 89, 91, 153

— spin-orbit, 157

— spin-spin, 100, 172

— vector-axial vector, 132

covariance (form invariance), 24, 93,
350, 352

covariant

— bilinear form, 95, 99

— form, 8, 96

creation, electron-positron, 288

cross section, 190, 193, 280

— (un)polarized, 226-228

crossing symmetry, 264, 271, 276, 289,
346, 347

current

— conservation, 43, 144

— current interaction, 223, 234, 327

— electron, 234, 242, 246, 311

— transition, 234, 242, 246, 311, 327

current density

— charge, 13, 14

— convection, 149

— probability /particle, 91, 149, 191,
193, 236, 325

— spin, 149

cut-off

— frequency, 317

— parameter, 297, 298, 317

cutting of procedure, 297

damping factor, 296

Darwin term, 157

decay, 3/neutron, 131

decline constant, 82
degeneracy, 75, 172, 316

— factor, 281

é-function, square, 202
detector, 185

diagram

— Feynman, 191, 213, 242

— tadpole, 292

— tree/loop level, 223, 254, 293, 319
differential cross section, 190, 193, 280
dipole

— approximation, 315

— energy, 312

— moment, 293

Dirac

— Hamilton operator, 91, 118
— matrices, 91, 96, 97, 359

— particle, see fermion

— representation, 88, 93, 360
— sea, 16, 109, 111, 214

— solution, free, 89, 92, 113

— wave packet, 141, 149

Dirac equation, 118-120

— adjoint, 95, 97, 120

— radial, 166

— time-independent, 143, 166
— with potential, see potential
direct scattering, 244, 255, 327
divergence

— infrared, 304, 306, 317



— ultraviolet, 293, 296, 302, 306
Dyson equation, 296

Ehrenfest theorem, 137

— generalized, 34

eigentime differential, 352

electric charge, 9, 14, 91, 107

electrodynamics, 353

— quantum, 173, 177, 178

electromagnetic interaction, 6, 28, 89

electron, 109, 152, 158, 203

— (transition) current, 234, 242, 246,
311

— anomaly, 312

— electron scattering, 255, 260

— hole, 109, 214

— positron annihilation, 274, 278, 284

— positron creation, 288

— positron scattering, 261, 265, 292

— propagator, see fermion propagator

— proton scattering, 232, 240, 244, 250

— wave function, see fermion wave
function

energy

— conservation, 195, 235, 243

— continuum, positive/negative, 15, 109

— density, 20, 120

— dipole, 312

— interval, forbidden, 6, 63, 89, 167

— momentum relation, 4, 18, 114, 353

— momentum tensor, 19, 120

— negative, 6, 12, 89, 107

— projector, 103, 105

— rest, 3, 52, 152

— shift (Lamb shift), 172, 173, 313, 316

— threshold, 297, 304

— zero point, 111

even operator, 35, 138

exchange scattering, 249, 256, 327

expectation value, 2, 108

— generalized, 32

exponential potential, 82

extended charge conjugation, 27, 130

external

— background potential, 223, 254, 267

— field approximation, 77

— self-energy, 294, 304

— vacuum polarization, 294, 300

Fermi

— constant, 131

— Dirac statistics, 257, 263, 281
(spin-1/2) fermion, 89, 112, 131

Index 365

— factor, 252, 280

— loop, 281, 290, 295

— wave function, 107, 130, 211, 234

fermion propagator, 204, 205

— renormalized, 303, 306

Feshbach-Villars=FV

— FV-momentum representation, 36,
139

— FV-representation, 35, 38, 138, 141

— FV-transformation, 38, 141

Feynman

— rules, 223, 252, 269, 280, 331, 341

— Stiickelberg interpretation, 26, 130,
203, 205, 213, 320

Feynman diagram, 191, 213, 242

— unconnected, 294

field

— energy, 121

— strength tensor, 354

— theory, quantized, 28, 42, 81, 177,
254

fine structure

— constant, 73

— splitting, 173

forbidden energy interval, 6, 63, 89, 167

form

— canonical, 8, 91

— factor, 242

— Hamilton, 11

— Lorentz-covariant, 8, 96

Fouldy-Wouthuysen transformation,
53, 57, 153, 156

four

— current density, 96

— force, 352

— momentum, 4, 93, 103, 105, 352

— momentum conservation, 235, 253,
281

— momentum transfer, 132, 239, 243

— polarization, 102, 105

— potential, 6, 93, 354

— vector, 349

— velocity, 352

Fourier decomposition

— propagator, 198, 206, 233, 321

— wave packet, 40, 142

Furry theorem, 290

y-matrices, 96, 97, 359

— trace theorems, 216
Gamma-function, 174

gauge

— invariance, local, 6, 89, 296
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— Lorentz, 233, 354

— radiation, 267, 273

— transformation, local, 7, 90

Gauss unit system, 233, 269, 353

generalized=G

— G-Ehrenfest theorem, 34

— G-expectation value, 32

— G-Hermitean operator, 32, 46

— G-orthonormal states, 32

— G-scalar product, 30, 32

— G-unitary operator, 33, 46

Gordon decomposition, 148, 361

Green function calculus, 179, 203, 233,
320

gyromagnetic ratio, 152, 310

Hamilton

— equations, 34

— form, 11

Hamilton operator

— Dirac theory, 91, 118

— Klein Gordon theory, 11

— nonrelativistic, 2

Hankel function, 69, 356

Heisenberg

— picture, 33, 34

— scattering matrix, 187, 188

— uncertainty relation, 3, 40

helicity, 103, 132, 229

— operator, 103

Hermitean operator, 1, 11, 32, 112

Hilbert space, 1

hole, 109, 214

— theory, 16, 109, 214

homogeneity of space and time, 184,
206, 349

hydrogen-like atom, 169, 172, 313

hyperfine structure splitting, 172

identical particles, 255, 280, 328

improper Lorentz transformation, 24,
29, 128, 136

inertial system, 4, 93, 349

infrared

— catastrophe, 308, 317

— divergence, 304, 306, 317

integrability, 68, 74, 75, 174

interaction

— current-current, 223, 234, 327

— electromagnetic, 6, 28, 89

— strong, 28, 177, 319

— weak, 28, 131, 177, 319

inverse matrix, 98

isotropy, 349

kaon, 17

Klein

— Nishina formula, 273

— paradox, 42, 143
Klein-Gordon

— Hamilton operator, 11

— particle, see boson

— solution, free, 9, 11, 18

— wave packet, 40, 49
Klein-Gordon equation, 8, 11, 20, 320
— adjoint, 20

— radial, 67
time-independent, 42, 67

— with potential, see potential

Lagrange

— density, 19, 120

— equation, 19, 120

Lamb shift, 172, 173, 313, 316

Landé factor, 153, 312

left-handed neutrino, 132

Legendre

— differential equation, 357

— function, 357

— polynomial, 357

light cone, 350

light-like four-vector, 266, 350

local

— gauge invariance, 6, 89, 296

— gauge transformation, 7, 90

loop

— diagram/level, 223, 254, 293, 319

— fermion, 281, 290, 295

— photon, 341

Lorentz

— boost, 24, 123, 133

— contravariance, 350, 352

— covariance, 93, 350, 352

— covariant form, 8, 96

— force, 353, 355

— gauge, 233, 354

— group, 351

— invariance, 352

— like symmetry transformation, 24,
29, 128, 136

Lorentz rotation, 123

— spatial, 24, 125, 127

Lorentz transformation, 350

— improper, 24, 29, 128, 136

— proper, 24, 121, 123

Mgller scattering, 260



magnetic moment, 152, 312

— anomalous, 118, 158
magneton, Bohr, 310
Majorana representation, 360
many-particle theory, 16, 177
mass

— bare, 292, 303

reduced, 76

— renormalized, 303, 305

— rest, 9, 91

mass shell

— approximation, 302, 308

— condition, 284

Maxwell equations, 7, 233, 353
meson, 336

metric tensor, 349

minimal coupling, 6, 8, 89, 91, 153
Minkowski space, 349
MKS-unit system, 224, 335
modified potential, 320
momentum

— angular, 358

— conservation, 235, 243

— energy relation, 4, 18, 114, 353
— energy tensor, 19, 120

— index, 6, 14, 89, 105, 109

— operator, 2, 36

— radial, 67, 164

— representation, 36, 39, 252
— transfer, 194, 239

motion reversal transformation, 25, 129
Mott scattering, 227, 231, 326
multiple scatterings, 189
multipole expansion, 61

myon, 242

natural unit system, 224, 335

negative energy, 6, 12, 89, 107

— continuum, 15, 109

Neumann function, 356

neutrino, left/right-handed, 131

neutron, 118, 158

— decay, 131

non-locality, see smearing and position
uncertainty

non-Lorentz-like symmetry transforma-
tion, 25, 129

nonrelativistic

— approximation, 3, 13, 30, 240, 314

— Coulomb scattering, 193

— Hamilton operator, 2

— quantum mechanics, 1, 178

normalization

Index 367

— box, 192, 320

— continuum, 9, 11, 92
nucleon, 342

nucleus, 15, 72, 76

— charge, 72, 79, 82

— number, 77

— radius, 72, 77, 316
— spin, 172

observable, 1, 32

odd operator, 35, 138

one-particle

— concept/interpretation, 3, 16, 30, 41,
43, 79, 112, 137, 141, 143

— operator, 33, 35, 38, 48, 138, 141, 147

one-photon vortex, 324

operator

— angular momentum, 358

— charge, 38

— even/odd, 35, 138

— G-Hermitean, 32, 46

— G-unitary, 33, 46

— Hamilton, 2, 11, 91, 118

— helicity, 103

— Hermitean, 1, 11, 32, 112

— momentum, 2, 36

— one-particle, 33, 35, 38, 48, 138, 141,
147

— position, 2, 36

— projection, 103-105, 361

— sign, 48, 147

— spin, 100, 102, 126

— unitary, 12, 33
— velocity, 35 137

Oscillator-Coulomb potential, 77

pair

— annihilation, 111, 215

— creation, 44, 110, 214

paradox, Klein, 42, 143

parity, 65, 132, 163

— transformation, 24, 128, 351
particle

— annihilation, see pair annihilation
— creation, see pair creation

— current density, 191, 193, 236, 325
— detector, 185

— identical, 255, 280, 328

— real/virtual, 53, 214, 242, 254, 266
— resonance, 63, 66

— spin-0, see boson

— spin-1/2, see fermion

— spin-1, see photon
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— transformation, 145

passive transformation, 21, 23
Pauli

— equation, 152, 158

— matrices, 10, 361

— principle, 16, 109

— spinor, 174

— Villars procedure, 296
PCT-transformation, 26, 130
PCT

— theorem, 28

— transformation, 29, 136
penetration

— depth, 44, 71, 144

— probability, 64

perturbation theory, 76, 223, 313
phase space factor, 192, 236, 243

photon
— factor, 269, 280
— loop, 341

— polarization, 267

— wave function, 267

photon propagator, 233

— renormalized, 300, 301

picture-independent scalar product, 12,
33, 112

pion, 17

— (transition) current, 327

— antipion annihilation, 346

— antipion scattering, 345

— atom, 15, 72, 73, 77

— pion scattering, 327, 330

— production via electrons, 331, 334

— wave function, see boson wave
function

Poincaré group, 24, 121, 351

polarization, 102, 105, 226

— degree, 230

— index, 105, 109

— photon, 267

— vacuum, 53, 111, 293-295, 300, 301

polarization function, 296

— regularized, 297

polarization tensor, 295

— regularized, 296

position

— operator, 2, 36

— representation, 2, 36, 39

— uncertainty, 40, 85

positron, 110, 111, 203

— wave function, see antifermion wave
function

potential

— Coulomb, 15, 73, 169

— exponential, 82

— external background, 223, 254, 267

— modified, 320

— Oscillator-Coulomb, 77

— step, 42, 143

— well, 62, 70, 160, 168

principle

— causality, 180, 206, 207, 233, 320, 343

— correspondence, 4

— Pauli, 16, 109

— relativity, 5, 23, 349

probability

— amplitude, 187, 188

— current density, 91, 149

— density, 11, 30, 91

— penetration, 64

projector

— energy, 103, 105

— spin, 104, 105

propagation, backward, 26, 130, 182,
205, 211, 321, 323

propagator

— advanced, 180, 182, 198

— boson, 320

— fermion, 204, 205

— Fourier decomposition, 198, 206, 233,
321

— photon, 233

— renormalized, see renormalization

— retarded, 180, 182, 198

— scattering formalism, 223, 319

— theory, 182, 203, 205

proper Lorentz transformation, 24, 121,
123

proton, 118, 158

— (transition) current, 234, 242, 246

— tensor, 250

— wave function, see fermion wave
function

pseudo

— scalar, 24, 99

— vector, 100

quantization condition, 65, 75, 163, 171
quantum

— chromodynamics, 177, 319

— electrodynamics, 173, 177, 178

— field theory, 28, 42, 81, 177, 254
flavourdynamics, 177

fluctuation, vacuum, 173, 254, 295



quantum mechanics

— nonrelativistic, 1, 178

— relativistic, in the narrow sense, 1,
85, 177

quark, 112, 319

Racah time reflection, 29, 136, 351
radial

— charge density, 81

— Dirac equation, 166

— Klein-Gordon equation, 67
— momentum, 67, 164

— velocity, 164

radiation

— braking, 308, 317

— catastrophe, 16, 109

— correction, 173, 223, 254, 293
— field, 173, 233, 293, 303

— gauge, 267, 273

— transition, 15

radius, Bohr, 77

reciprocal transformation, 13, 106
reduced mass, 76

— approximation, 77
reflection, 43, 64, 143, 161

— space, 24, 128, 134, 351

— time, Racah, 29, 136, 351

— total, 45

regularization, 296

— polarization function, 297

— polarization tensor, 296

— self-energy, 304

relativity

— principle, 5, 23, 349

— theory, special, 349
renormalization, 111, 292, 300
— charge, 299, 301, 306, 309
constant, 292, 301, 305

— fermion propagator, 303, 306
— mass, 303, 305

— photon propagator, 300, 301
— vortex, 308, 309
representation

— Dirac, 88, 93, 360
Feshbach-Villars, 35, 38, 138, 141
— Majorana, 360

— momentum, 36, 39, 252

— position, 2, 36, 39

— Weyl, 88, 93, 360

repulsion, 76, 233, 316

residue theorem, 198, 208

rest

— energy, 3, 52, 152

Index 369

— mass, 9, 91

retarded propagator, 180, 182, 198
right-handed antineutrino, 132
Rosenbluth formula, 242

rotation, 123

— spatial, 24, 125, 127

Rutherford scattering, 193, 195

scalar, 24, 99, 352
scalar product, 1, 92, 349
— generalized, 30, 32
— picture-independent, 12, 33, 112
scattering, 43, 144, 185
— annihilation, 262, 275, 345
— Bhabba, 265
— Compton, 268, 274, 283, 336, 340
— Coulomb, 193, 224, 231, 317, 324,
326
— direct, 244, 255, 327
— electron-electron, 255, 260
— electron-positron, 261, 265, 292
— electron-proton, 232, 240, 244, 250
— exchange, 249, 256, 327
— formalism, 223, 319
— Mgller, 260
— matrix, Heisenberg, 187, 188
— Mott, 227, 231, 326
— pion-antipion, 345
— pion-pion, 327, 330
— Rutherford, 193, 195
scattering amplitude, 187
— Dirac theory, 211
— Klein-Gordon theory, 322
— Schrédinger theory, 188
Schiff-Snyder effect, 73
Schrédinger
— equation, 2, 4, 182
— picture, 2, 33
screening, 77, 300
sea, Dirac, 16, 109, 111, 214
seagull
— scattering amplitude, 336, 338
— vortex, 338, 339
self-energy, 292, 293, 301, 305
— external, 294, 304
self-energy function, 302
— regularized, 304
series of multiple scatterings, 212, 323
shaky movement, 49, 149, 157
sign operator, 48, 147
slash notation, 203
smearing, 38, 57, 140, 156
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space
— reflection, 24, 128, 134, 351

— time translation, 350
space-like four-vector, 266, 350
spectroscopy, 75, 172

spherical harmonics, 67, 164, 358
— spinor, 164, 175

spin
— current density, 149
— flip, 144, 145

— index, see polarization index
— nucleus, 172

— operator, 100, 102, 126

— orbit coupling, 157

— projector, 104, 105

— spin coupling, 100, 172

— sum, 215, 226

spin-0 particle, see boson
spin-1/2 particle, see fermion
spin-1 particle, see photon
spinor

— Pauli, 174

— spherical harmonics, 164, 175
splitting

— fine structure, 173

— hyperfine structure, 100, 172
stability of matter, 16, 109
state density, 192

statistics

— Bose-Einstein, 276, 328, 341
— Fermi-Dirac, 257, 263, 281
step

— function, 180, 196

— potential, 42, 143
strangeness charge, 17

strong interaction, 28, 177, 319
symmetry transformation, 23
— Lorentz-like, 24, 29, 128, 136
— non-Lorentz-like, 25, 129

tadpole diagram, 292
tensor, 99

— Compton, 339

— energy-momentum, 19, 120
— field strength, 354

— metric, 349

— polarization, 295, 296
— proton, 250

theorem

- PCT, 28

— 7y-matrices, 216

— Cauchy, 197

— Ehrenfest (generalized), 34, 137

— Furry, 290

— residue, 198, 208

O-function, 180, 196

Thomas precession, 157

threshold energy, 297, 304

time

— order, 207, 215, 245

— reflection, Racah, 29, 136, 351

— reversal transformation, 25, 129, 134

time-independent

— Dirac equation, 143, 166

— Klein-Gordon equation, 42, 67

time-like four-vector, 266, 350

total

— cross section, 190, 193, 281

— reflection, 45

trace theorems with y-matrices, 216

transformation

— active, 21, 23

— antilinear, 13, 106

— bispinor, 94, 96, 114, 123, 134

— Feshbach-Villars, 38, 141

— Fouldy-Wouthuysen, 53, 57, 153, 156

— local gauge, 7, 90

— Lorentz, (im)proper, 24, 29, 121, 123,
128, 136

— motion reversal, 25, 129

— parity, 24, 128, 351

— particle, 145

— passive, 21, 23

- PCT, 26, 130

— PCT, 29, 136

— reciprocal, 13, 106

— symmetry, see symmetry transforma-
tion

— time reversal, 25, 129, 134

transition

— amplitude, 187

— current, 234, 242, 246, 311, 327

— radiation, 15

— rate, 190

translation, space-time, 350

transmission, 43, 64, 143, 161

tree diagram/level, 223, 254, 293, 319

tunnel effect, 63, 160

two-photon vortex, 339

ultrarelativistic approximation, 240

ultraviolet divergence, 293, 296, 302,
306

uncertainty

— position, 40, 85

— relation, Heisenberg, 3, 40



unconnected Feynman diagram, 294
unit system

— Gauss, 233, 269, 353

— MKS, 224, 335

— natural, 224, 335

unitary operator, 12, 33

vacuum, 109, 111, 209, 349

— fluctuation, 173, 254, 295

vacuum polarization, 53, 111, 293, 295,
301

— external, 294, 300

vector, 99

— axial, 100, 132

— axial vector coupling, 132

— pseudo, 100

velocity

— operator, 35, 137

— radial, 164

virtual particle, 53, 214, 242, 254, 266

vortex, 190, 213

— correction, 293, 306, 309

Index 371

— function, 306

— one-photon, 324

— renormalized, 308, 309
— seagull, 339

— two-photon, 339

Ward identity, 307, 309

wave function, 2

— photon, 267

— spin-0 (anti)boson, 14, 26, 323
— spin-1/2 (anti)fermion, 107, 130, 211
wave packet

— Dirac, 141, 149

— Fourier decomposition, 40, 142
— Klein-Gordon, 40, 49

weak interaction, 28, 131, 177, 319
well potential, 62, 70, 160, 168
Weyl representation, 88, 93, 360

zero point energy, 111
Zitterbewegung, 50
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