€@l B BUC A0 G N

THE FRONTIERS

L2

HH E

s

EHEHTE

=5




THE FRONTIERS COLLECTION

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Paris

Tokyo

Physics and Astronomym[w

springeronline.com




THE FRONTIERS COLLECTION

Series Editors:
D. Dragoman M. Dragoman A.C. Elitzur M.P. Silverman J. Tuszynski H.D. Zeh

The books in this collection are devoted to challenging and open problems at the forefront
of modern physics and related disciplines, including philosophical debates. In contrast
to typical research monographs, however, they strive to present their topics in a manner
accessible also to scientifically literate non-specialists wishing to gain insight into the deeper
implications and fascinating questions involved. Taken as a whole, the series reflects the
need for a fundamental and interdisciplinary approach to modern science. It is intended to
encourage scientists in all areas to ponder over important and perhaps controversial issues
beyond their own speciality. Extending from quantum physics and relativity to entropy,
time and consciousness — the Frontiers Collection will inspire readers to push back the
frontiers of their own knowledge.

Quantum Mechanics and Gravity
By M. Sachs

Mind, Matter and Quanium Mechanics
By H. Stapp

Quantum-Classical Correspondence
By A.O. Bolivar

Quantum-Classical Analogies
By D. Dragoman and M. Dragoman

Quo Vadis Quantum Mechanics?
Edited by A. C. Elitzur, S. Dolev, N. Kolenda

Series homepage - springeronline.com




Mendel Sachs
QUANTUM

- MECHANICS
AND GRAVITY




Prof. Mendel Sachs (Prof. em.)

University at Buffalo, State University of New York, Department of Physics,
Buffalo, New York 14260, USA  email: msachs@buffalo.edu

Series Editors:

Prof. Daniela Dragoman
University of Bucharest, Physics Faculty, Solid State Chair, PO Box MG-11,
76900 Bucharest, Romania email: danieladragoman@yahoo.com

Prof. Mircea Dragoman

National Research and Development Institute in Microtechnology, PO Box 38-160,
023573 Bucharest, Romania email: mircead@imt.ro

Prof. Avshalom C. Elitzur
Bar-Ilan University, Unit of Interdisciplinary Studies,
52900 Ramat-Gan, Israel email: avshalom.elitzur@weizmann.ac.il

Prof. Mark P. Silverman
Department of Physics, Trinity College,
Hartford, CT 06106, USA  email: mark.silverman@trincoll.edu

Prof. Jack Tuszynski
University of Alberta, Department of Physics, Edmonton, AB,
T6G 2J1, Canada email: jtus@phys.ualberta.ca

Prof. H. Dieter Zeh

University of Heidelberg, Institute of Theoretical Physics, Philosophenweg 19,
69120 Heidelberg, Germany email: zeh@urz.uni-heidelberg.de

Cover figure: Detail from a real image of the barth sextic, a degree six algebraic surface in threespace admitting
the maximum number of nodes (65). Courtesy of Stephan Endrass, Micronas GmbH

ISSN 1612-3018
ISBN 3-540-00800-4 Springer-Verlag Berlin Heidelberg New York

Library of Congress Cataloging-in-Publication Data.

Sachs, Mendel. Quantum mechanics and gravity/Mendel Sachs. p.cm. - (The frontiers collection, ISSN 1612-
3018) Includes bibliographical references and index. ISBN 3-540-00800-4 (acid-free paper) 1. Quantum theory.
2. General relativity (Physics) I. Title. II. Series. QC174.12.52246 2003 530.12-dc22 2003059074

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable
for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH
springeronline.com

® Springer-Verlag Berlin Heidelberg 2004  Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Typesetting by Stephen Lyle using a Springer TgX macro package
Final processing by Frank Herweg, Leutershausen
Cover design by KiinkelLopka, Werbeagentur GmbH, Heidelberg

Printed on acid-free paper SPIN: 10885648 57/3141/tr -543210



To My Grandchildren
Ariana, Yoni, Tali, Noah, Sam, Jonah and Alexandra

and to our proposition
There is More to the Real World than Meets the Eye






Preface

Theoretical physics is presently at a very exciting time in the history
of scientific discovery. For we are at a precipice facing two conflicting
20th century revolutionary movements in physics, each purporting to
be basic truths of nature — the quantum theory and the theory of
relativity.

In the 20th century the mathematical expression of the quantum
theory yielded correct predictions of a great deal of the data on the
behavior of the molecular, atomic, nuclear and elementary particle
domains of matter. In the same period, the theory of relativity suc-
cessfully described new features of material systems. In special rela-
tivity, the relativistic Doppler effects (transverse and longitudinal) of
electromagnetic radiation, and the mechanics of matter that moves
at speeds close to the speed of light, revealing, for example, the en-
ergy mass relation, £ = mc?, revolutionized our thinking. In its form
of general relativity, it has yielded a formalism that successfully pre-
dicted features of the phenomenon of gravity, also predicted by the
classical Newtonian theory, but in addition, features not predicted by
the classical theory, thereby superceding Newton’s theory of universal
gravitation.

The problemn we are now faced with, in these early decades of the
21st century, is that in their precise mathematical forms and their
conceptual bases, the theory of relativity and the quantum theory
are both logically and mathematically incompatible. They each entail
opposing paradigms on the true nature of matter and radiation, as well
as opposing epistemologies. For the purpose of description of particular
phenomena, and so long as the physical conditions that require the use
of the quantum theory and the theory of relativity do not overlap, these
theories may be expressed separately. But in general, for the purpose
of explanation, we must consider the conditions where both theories
would be required simultaneously to correctly represent the laws of
nature.
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Examples of such attempts are high energy particle physics, called
relativistic quantum field theory, and the theory of general relativity,
to represent the gravitational manifestations of matter.

Further, even in those cases where the empirical conditions for each
of these theories do not overlap, as an explanation of the behavior of
matter we cannot accept both simultaneously, if they are in principle
both logically and mathematically incompatible. This would yield a
logically inconsistent understanding of the nature of matter. Thus we
are at a precarious precipice where we must choose one of these theories
or the other, but not both, lest we fall into the mire of conceptual
inconsistencies, below the edge of the cliff!

My research program, as it has developed over the past 40 years in
the literature, started with the attempt to answer the following ques-
tion: is it possible that the formal structure of quantum mechanics is
not more than a linear approximation for a theory of matter that is
based on the foundations of Einstein’s theory of general relativity, as
a general theory of matter? For if this were the case it would signify
a genuine paradigm change in physics, from linearity, indeterminism
and the fundamental role of probability and measurement, to views of
holism, continuity, nonlinearity and determinism, where measurement
and probability play no fundamental role. It would be a change from
an atomistic model based on the epistemology of logical positivism, to
a holistic view of the universe, based on the epistemology of realism. In
the latter holistic ontology, the ‘things’ that we identify, for example,
with electron, proton, DNA molecule, people, planets, galaxies, etc.,
are not separable, singular entities; rather, each is of the infinite distri-
bution of real, distinguishable manifestations of the single continuous
universe — of its correlated, though inseparable modes.

The basic attempt, then, in this book, is to initiate a study of
a single, coherent theory of matter applicable to all domains — from
elementary particle physics to cosmology. The approach taken is that
of a fully exploited theory of general relativity, from its mathematical
and conceptual bases.

The reader should not assume that the claim is made of full ac-
complishment of this goal, nor that such a total theory could ever be
accomplished. It is, rather, that it is the belief of the author that the
attitude toward such a coherent theory should be conducive toward
real progress in our understanding of physics in all domains.

I am most grateful to my loving wife, Yetty, for her encouragement
and her indispensable role as a ‘sounding board’ for ideas, during the
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entire development of the research that led to the final fruition of this
presentation.

Buffalo, New York Mendel Sachs
August 2003
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1. Introduction

In this chapter, I will spell out as clearly as possible what are the
foundational ideas that underlie the quantum theory, and the theory
of gravity according to the theory of general relativity, and how these
theories of matter differ from the classical views.

On the quantum theory, we will first discuss how it appeared on
the scene in physics in the 1920s, including the ensuing philosophical
basis of this theory, and then move on to some of the differing inter-
pretations — of Schrodinger, Bohr/Heisenberg, Born, de Broglie, Bohm
and Einstein.

The next section will focus on the history and philosophy of the
theories of gravity. This section starts with ideas of Aristotle, of the
ancient times, to ideas of Galileo and Newton, of the Renaissance pe-
riod, and then to Einstein, of the contemporary period. Conceptual
differences will be discussed between the classical views of Newton
(action at a distance and atomism) and the theory of general rela-
tivity (holism, continuity, and forces propagating between interacting
bodies at a finite speed).

Comments will then be directed to the possibility of a quantum
theory of gravity. There has been a great deal of discussion on this
topic in the current literature. Nevertheless, I will argue that because
of the incompatible underlying concepts and mathematical expressions
of the quantum and general relativity theories, it is not possible, in
principle, to unify them into a quantum theory of gravity.

The approach of my research program will then be spelled out,
which starts at the outset with the most general expression of the the-
ory of general relativity, as foundational, while discarding the formal
expression of the quantum theory. It is found that the formal (Hilbert
space) expression of the quantum theory appears as a linear approxi-
mation for a generally covariant field theory of the inertia of matter in
general relativity, which originates in a unified field theory. The origin
of the field unification of the inertial manifestation of matter and its
gravitational and electromagnetic force manifestations are shown to
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follow from fully exploiting the algebraic as well as the geometrical
implications of the principle of covariance — the underlying axiom of
the theory of general (and special) relativity. The Mach principle, in
a generalized form, and gauge covariance also will be shown to play
essential roles in the structuring of this unified field theory.

1.1 History and Philosophy of the Quantum Theory

1.1.1 Blackbody Radiation

Near the turn of the 20th century it was discovered by Max Planck
that the spectral distribution of blackbody radiation could be fitted
to a model whereby the energy in each of the modes of the frequency
components of radiation enclosed in a cavity is linearly proportional
to its frequency.

The experiment is as follows: a cavity with a small window in its
side is maintained in a heat bath at a constant temperature. The walls
of the cavity are in thermodynamic equilibrium with the radiation
that is emitted and reabsorbed at the same rate by these walls. This
is called blackbody radiation. A filter is placed in the window of the
cavity that will only transmit a single frequency radiation component.
The intensity of this radiation is then measured. The observation is
then continued for the visible spectrum of frequencies, by placing the
appropriate filters in the window of the cavity. One then plots the in-
tensity of the radiation field in the cavity as a function of frequency.
This is the spectral curve for blackbody radiation. Plotting the inten-
sity as a function of frequency v, it is found to have a characteristic
shape with a maximum, and then go to zero at zero frequency and
at infinite frequency. Repeating the experiment at different tempera-
tures yields the same general shape for the spectral curve of blackbody
radiation.

The blackbody radiation curves were not the expected ones, accord-
ing to the analysis using classical statistics (Rayleigh-Jeans). Their
result depended on the assumption that the energy in each radiation
mode in the cavity depends on the square of its frequency. Their pre-
diction was that, as the wavelength A = ¢/v — 0, where ¢ is the speed
of light, the intensity of the radiation diverges to infinity. This is the
so-called ultraviolet catastrophe. In contrast with this prediction, the
empirical result is that as the wavelength decreases, the intensity goes
through a maximum and then decreases to approach zero (in the ul-
traviolet region) as the wavelength approaches zero.



1.1 History and Philosophy of the Quantum Theory 3

Planck analyzed this problem with the assumption that the en-
ergy of a mode of the enclosed radiation field in the cavity is linearly
proportional to its frequency, F, = hv = he/A. The constant of pro-
portionality h is Planck’s constant. It was found to be a universal con-
stant of nature. With this assumption, an analysis by Planck, based on
Maxwell-Boltzmann classical statistics for the ‘gas’ of radiation modes
in the cavity (where each mode is distinguishable, i.e., ‘tagged’), he cor-
rectly predicted the curve that was observed for blackbody radiation.

Planck’s discovery of the linear relation £, = hv between the en-
ergy and the frequency of a radiation mode in the cavity led to the
idea of the ‘quantization’ of electromagnetic radiation, and the idea of
a particle of light, called a photon. This theory is referred to as the
old quantum theory.

It is important to note at this stage of the discussion that the
‘photon’ is not the same sort of particle as the ‘electron’. The electron
has inertial mass. It can thus be slowed down or speeded up by an
external electric force. But, as we will see later on in our discussion of
relativity theory, the ‘photon’ can only propagate at a constant speed
¢, the speed of light. Since it has no inertial mass, it cannot be slowed
down or speeded up from the constant speed c. All that can happen
to a photon (after it as been created with energy E. and speed ¢) is
that it can be annihilated when it is absorbed by matter, which in
turn elevates the energy of the matter by F; — F; = I, = hv units of
energy.

1.1.2 Photoelectric Effect

A beam of monochromatic light (single frequency) impinges on a piece
of metal that in turn is in an electrical circuit, with a battery, a resistor
and an ammeter. The ammeter reads the current in the circuit, =
V/R, where V is the voltage across the resistance R. At first, the
current 1s constant. When the frequency of the light is increased to
some threshold value vy, the current reading increases. Continuously
increasing the light frequency from that threshold value increases the
current reading linearly. This is the photoelectric effect.

The voltage change AV across the resistor corresponding to the
frequency change Ar, multiplied by the electron charge e is

AE = eAV = eRAI = hAv .

Thus, Planck’s constant h appears again in the photoelectric effect,
the same constant that appeared in the fit to the blackbody radiation
spectral curve.
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There is much more to say about the photoelectric effect, but this is
the essence of it. It was a further substantiation of the quantization of
monochromatic light in terms of its energy hv. In spite of these results
from blackbody radiation, analyzed by Planck, and the photoelectric
effect, analyzed by Einstein, neither Einstein nor Planck accepted the
concept of the ‘photon’ as an elementary particle of light. In a letter
to Einstein (6 July, 1907), Planck said: “For I do not seek the meaning
of the quantum of action (light quantum) in the vacuum, but at its
site of absorption and emission.” In a letter to Laub (4 November,
1910), Einstein said: “I am very hopeful that I will solve the radiation
problem and I will do it without light quanta.”!

In the theory developed by Einstein, the photon plays the role of a
virtual field that propagates as a signal between interacting electrically
charged matter, to affect their mutual interaction. But the ‘photon’ is
not a thing on its own, in this view. Similarly, the view of Planck
was that what is ‘quantized’ is a gas of radiation in the cavity — a set
of modes of radiation that couple charged matter of the walls of the
cavity and the matter that constitutes the measuring apparatus that
‘looks into’ the cavity to measure the frequencies of these modes.

1.1.3 Compton Effect

Another important experiment that ushered in the ‘old quantum the-
ory’ was the Compton effect. Here, a photon scatters from an electron,
thereby changing its energy (and therefore its frequency) to a lower
value, while the electron increases its energy by the same amount. It
was found that the scattering angle of the electron was dependent on
the same constant h determined in the blackbody radiation spectrum
and the photoelectric effect, thereby verifying the assumption of the
quantization of light.

1.1.4 Atomic Spectra and the Bohr Atom

A seminal observation in the early days of the ‘old quantum theory’
related to the measurement of the emission spectrum of excited atoms.
The Ritz combination rule said that the frequencies of any of the var-
ious lines of the emission spectrum of hydrogen added as follows:

V=1 t+uv3=U+rvs+vg=...,

! Both quotations are from Anna Beck, The Collected Papers of Albert Einstein,
Vol. 5: The Swiss Years Writings, 1902-1914, English translation, Princeton,
1994,
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where v; is the frequency of any line in the observed spectrum. Niels
Bohr explained this rule with his model of the atom, whereby the
orbital electrons are in ‘quantized orbits’, with respective energies
E\, Es, ..., Eg, relative to the positively charged nucleus of the atom.
The idea is the following. When the orbital electron drops in energy
from the jth state to the ith state, it loses energy E; — E;, which
then transforms into the energy of a created photon E., = hu;;. It then
follows that for a series of de-excitations between the different states
of the atom, the energy losses (its emissions) are:

Ey — By = (B — Fy) + (B — Ey)
= (B¢ — E3)+ (B3 — E5) + (E5 — ),

and so on. Dividing this equation by Planck’s constant h, and using
the relation

E; — Ey
h

= Vg,

we have the empirically verified Ritz combination rule for the frequen-
cies in the emission spectrum:

Vg = TV =V + U35+ Vs,

and so on.
Questions that arise in regard to the Bohr model are as follows:

e What is the physical cause for the de-excitation of the atomic elec-
tron from the higher to the lower energy levels?

e What is the physical cause for the creation of a photon when the
atom de-excites? Of course, the latter process conserves energy in
that the energy lost by the atomic electron is given to the created
photon. But it does not explain how the photon was created from a
vacuum (i.e., from no photous).

e When the electron loses energy by dropping from one energy level
to a lower one, but before it reaches the lower energy level, it would
have lost energy while the photon is not created until the electron
does reach the lower energy level. Thus it seems that energy is con-
served only when one sees the electron in one energy state or another,
but not when it is in transition between energy levels. How is this
explained in the context of an energy-conserving system? That is,
does the law of conservation of energy apply only when one is look-
ing at the atom in one state or another, but not when the electron
is in transition between the states of the atom? The idea of the
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Copenhagen school is that the conservation laws apply only when a
macro-observer is observing the atom in one state or another, but
not when the atomic system is in transition between its states. The
physical properties of a microsystem of matter that is measured by
a macro-observer then defines the micromatter. This is a crucial as-
pect in the theory of matter according to the new quantum view
that was to emerge with the Copenhagen school.

Summing up, the experiments of the ‘old quantum theory’ at the
turn of the 20th century, on blackbhody radiation, the Compton effect,
the photoelectric effect, atomic spectra, were all explained in terms
of the ‘photon’, and the new universal constant, Planck’s constant
h, that entailed the quantum of radiation hr. This evolved into the
new quantum theory, called quantum mechanics, in the 1920s. This
development will now be outlined in an historical context.

1.1.5 The Seminal Experiment: Electron Diffraction

The seminal experiment that led to the ideas of the Copenhagen School
was the set of observations in 1927, by C.J. Davisson and L.N. Germer
in the US and by G.P. Thomson, in the UK, that electrons can scat-
ter from a crystal lattice as though they are continuous waves. These
experiments were preceded three years earlier by the theoretical spec-
ulation of Louis de Broglie on the possibility that an electron (or any
other elementary particle with mass) has a wave nature. According to
de Broglie’s hypothesis, its particle-like nature — its momentum p —
relates to its wave-like nature — its wavelength A — according to the
reciprocal relation p = h/A.

The experiments on electron diffraction verified de Broglie’s specu-
lation about the ‘matter wave’. A question then arises. If the electron
is indeed a massive particle, then one should expect that its scattering
from a crystal lattice would reveal, on an absorbing screen, a geometri-
cal mapping of the atoms of the crystal lattice. Instead, what was seen
was that, when the lattice spacing is the same order of magnitude
as the de Broglie wavelength of the electron A = h/p, the distribu-
tion of scattered electrons on the absorbing screen was not unlike the
pattern of X-rays that have been scattered by a crystal lattice. That
18, there are regions of constructive interference, where the electrons
bunch together, and there are regions of destructive interference where
no electrons are seen to land. Of course, one expects scattered X-rays
to land this way on the absorbing screen (as had been seen earlier
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by Bragg) because we know at the outset that X-rays are electromag-
netic waves, whose wavelength is the order of magnitude of the lattice
spacing of the crystal. It is the expected diffraction pattern for the
scattering of waves from a crystal lattice.

But why should electrons diffract in this way if indeed they are
discrete particles of matter? One answer is that it may be an illu-
sion that electrons are truly point particles; rather, they may be, most
fundamentally, (matter) waves at the outset. This is a difficult expla-
nation because there are experimental circumstances wherein electrons
appear to be point particles of matter, such as the cathode ray exper-
iment of J.J. Thomson.

With these two empirical facts in mind, Niels Bohr and the Copen-
hagen school proposed a resolution to extend Einstein’s idea of wave—
particle dualism from the (massless) photons of electromagnetic ra-
diation to material particles with finite mass, such as electrons. The
idea was then that, when one does an experiment to view the electron
as a discrete particle, it is such a particle at that time. But when an
experiment is carried out to view the electron as a wave, it is a wave at
that time. Both statements — that the electron can be a particle and
that it can be a wave — are taken to be true, so long as the observa-
tions of these states of the electron are not seen by the macro-observer
simultaneously.

This assertion fits in with the epistemological stand of logical pos-
itivism. It is a philosophical approach, first proposed by Ernst Mach
and the Vienna Circle, around 1900. It is the idea that in principle
the only meaningful statements about nature must be verifiable with
the human senses or their measuring instruments. This is called ‘the
principle of verifiability’. It was claimed by Bohr and Heisenberg to be
a natural epistemological basis of knowledge about the natural world.
In his initial paper on quantum mechanics, W. Heisenberg said: “The
present paper seeks to establish a basis of theoretical quantum mechan-
ics founded exclusively upon relationships between quantities which in
principle are observable.”? This is the view of logical positivism, based
on the principle of verifiability. Bertrand Russell gave a well-known
refutation of the principle of verifiability: “This principle is not, in it-
self, verifiable by the human senses or instruments. Thus, if it is true,
it must be false. Therefore it is false”.

According to Bohr’s and Heisenberg’s positivistic view, then, the
observer must be involved in the definition of what an electron is,
rather than an outside experimenter who probes the nature of the ob-

2 W. Heisenberg, Zeits f. Physik 33, 879 (1925).
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Jective thing, called ‘electron’, independent of himself (or herself). The
Copenhagen view then defines the elements of matter in an irreducibly
subjective manner.

An epistemological view different than this one is the idea of real-
ism, wherein the elements of matter are what they are, independent of
who or what may be probing their properties. In this approach, what
we see in experimentation must then be rationally interpreted to arrive
at assertions about what the nature of this matter is, independent of
ourselves as observers and our mode of measurement.

Niels Bohr and Werner Heisenberg led the philosophical view of
positivism in physics. Most of the physics community has followed
this approach from the 1920s until this time. But there were some very
notable physicists in the 20th century who took the stand of realism in
physics, such as Einstein, Planck, Schrédinger, de Broglie and Bohm.
The former positivistic philosophy is that of the quantum theory. The
latter realist philosophy is that of the theory of general relativity. It is
the realist philosophy that I believe is the one where the truth lies in
science, and will flourish in 21st century physics.

Not too long after the experimental discoveries of the wave nature of
matter, in the 1920s, Erwin Schrédinger discovered the equation whose
solutions are the matter waves. This is the so-called Schrédinger wave
equation. His formalism correctly predicted the energy levels of atoms
and the transitions between its states. Around the same time Werner
Heisenberg discovered an equation in terms of matrices of numbers,
representing the discrete observables such as energy values, in partic-
- ular states of an atom, as well as predicting correctly the transitions
between the states of the system. This formalism is called Heisen-
berg’s matrix mechanics. Thus both the continuous wave theory of
Schridinger and the discrete matrix theory of Heisenberg made iden-
tical predictions for the atomic states of matter.

Not long afterward, it was shown by C. Lanczos, and independently
by Schrodinger, that the Schriodinger representation of the quantum
theory and the Heisenberg representation could be mathematically
transformed into one another. Lanczos showed this equivalence by
transforming the differential equation of Schrédinger into an integral
equation. From there, he was able to demonstrate the Heisenberg form
of matrix mechanics. Thus the Schrodinger equation and the Heisen-
berg equation are equivalent formalisms; this is the reason that they
gave identical predictions, though this was not obvious to the physi-
cists at first glance! They called these mathematical expressions, which
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correctly gave predictions of the physical properties of atomic matter,
quantum mechanics.

1.1.6 Interpretations of Quantum Mechanics

Soon after the discovery of quantum mechanics, Max Born found that
one could express the formalism in terms of a probability calculus.
Thus, Born, Bohr and Heisenberg interpreted Schrodinger’s matter
waves as waves of probability. This was to be the (complex number)
amplitude whose absolute square is the probability that the particle
of matter whose properties are being measured is at a particular point
of space. The probability was then tied to quantum mechanics as a
theory of measurement — made by a macro-observer on micro-matter.
This view was then in line with the positivistic philosophy, whereby
the elements of matter are defined subjectively in terms of the mea-
surements of their properties, expressed with a probability calculus.
These ideas will be discussed in more detail in Chap. 4. Proponents of
these ideas are said to belong to the ‘Copenhagen school’.

While the majority of physicists have accepted the truth of the
ideas of the Copenhagen school, there have been other interpretations
of the empirically successful equations of quantum mechanics. I will
now briefly describe some of these.

Schridinger’s View. E. Schrédinger did not accept the probability in-
terpretation of his wave equation at the outset. He thought of his wave
solutions — the matter waves — as real waves, just like ocean waves or
waves of electromagnetic radiation. His idea, after seeing the results
of the electron diffraction experiments, was to complete the Maxwell
formulation of electromagnetic field theory by properly expressing the
real-number-valued source terms (on their right-hand side) in terms of
complex functions that are the de Broglie matter waves 1) — the solu-
tions of Schrodinger’s wave equation. He found that these source terms
might be factorized into a product of ¢ — a complex function — and its
complex conjugate . Thus the charge density becomes p = ey) and
the current density becomes j o< Re(y V), where the overline denotes
(henceforth) the complex conjugate, e is the electron charge and V is
the gradient operator.

Thus Schrodinger believed that the wave nature of electrons (and
any other electrically charged elementary matter) is implicit in the real
number-valued source terms of Maxwell’s field equations for electro-
magnetism. It is not ‘unfolded’, that is, available to be observed, until
experiments such as electron diffraction are carried out.
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De Broglie, Bohm and the Hidden Variable View. Not long after the
successes of quantum mechanics, Louis de Broglie suggested his ‘dou-
ble solution’ interpretation of the quantum formalism. This was an
" approach, like Schrodinger’s, that attempts to restore determinism to
physics. His idea was that, in addition to the probability calculus of
quantum mechanics, there must be variables that relate to the objec-
tive electron, independent of anyone’s observation of it. He saw the
Schrédinger wave equation as a subjective part of the theory of the
electron, relating only to the measurements of its properties. But he
believed that, buried inside of the probability wave there must be a
singular function ¢ representing the real electron, independent of any
measurements on its properties. Thus, to complete the description of
the electron, there must be another mathematical equation in ¢ de-
pending on the space and time variables. It is this equation that entails
the actual dynamics of the real electron.

De Broglie argued that this added function must be a point singu-
larity, coupled to the Schrodinger wave 1. The latter complex function,
in turn, must influence the function ¢, because, he felt, the probability
wave must in some way guide the point singularity wave of the elec-
tron. He then concluded that both of these functions must influence
each other, and that the equation in ¢ must be nonlinear, while the
equation in ¢ must remain linear, since it is to represent a solution
for a probability calculus. The added function ¢ is then not directly
observed — it is a hidden variable that relates to the deterministic elec-
tron. This view is called de Broglie’s double-solution interpretation of
quantum mechanics. The analysis has yet to be further analyzed and
taken to completion.

In the 1950s, in trying also to restore determinism to physics, David
Bohm took a different view of hidden variables to de Broglie. What
he did was to add to the independent variables, additional hidden
parameters that the matter field depends on:

Pir, 1) — p(r,t, ),

where (r,t) are the ordinary space and time independent variables
and {A} are the additional hidden parameters. Then, the change of A
with time is to denote the actual velocity of the particle’s trajectory.
The matter wave is viewed as the dependent variable w('r, A(t)). The
equation in the matter field must then also entail a dependence on
the changes of the hidden parameter A, to restore determinism in the
description of the particle. What appears in this regard is an extra
‘potential’ in the equation for the matter field.
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Proceeding from the single-particle description in this way to a |
many-particle system, the matter field becomes the dependent variable

1/}(7",/11(1}), Aa(t), .. ) .

The current density for the velocity of any of these trajectories A;(t)
then depends on the rate of change of the matter field ¢ with respect to
the hidden variable A;(¢). This implies that the fundamental descrip-
tion of a single particle, say an electron, depends on the trajectories of
all of the other particles of the system, in other places in space. Thus
the given electron has a nonlocal description.

The question that then arises is: can there be a hidden variable

formalism that is local? There is reason to believe that one cannot
indeed maintain the Hilbert space formalism, required of quantum
mechanics, within the hidden variable theory. This is based on the
so-called von Neumann theorem.?
FEinstein’s View. The application of Einstein’s theory of general rel-
ativity is that this problem of the quantum theory may be resolved
by abandoning the model of matter in terms of discrete particles al-
together. Instead, one has a single, holistic continuum, wherein what
were formerly called discrete, separable particles of matter are instead
the infinite number of distinguishable, though correlated manifesta-
tions of this continuum, that in principle is the universe. Hence, wave—
particle dualism, which is foundational for the quantum theory, is re-
placed by wave (continuous field) monism.

In my research program, based on general relativity theory, it will be
shown (Chap. 4) that the formal (Hilbert space) expression of quan-
tum mechanics is a linear approximation for a generally covariant,
nonlinear field theory of the inertia of matter. Thus, as Einstein origi-
nally anticipated, quantum mechanics is a derivative feature of matter
in the local domain, where the curved spacetime approaches the flat
spacetime representation, as an approximation. Instead of hidden vari-
ables, one now has a theory in terms of ‘exposed variables’ — the field
variables that solve the equations for matter in general relativity.

1.2 History and Philosophy of Theories of Gravity
Leading to the Theory of General Relativity

In the period of ancient Greece, about 2300 years ago, Aristotle claimed
that the reason why a material body above the ground (say an apple

3 J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton,
1955).
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on a tree) falls to the ground, is that Earth is down and the apple is
up, down being the natural place for matter to be. Aristotle learned
from his teacher Plato as well as earlier Greek philosophers, that there
are four material constituents in the world: air, fire, earth and water.
The natural place for air and fire is up. He considered the stars of
the night sky to consist of fire, the natural place for fire is then in
the heavens. Several centuries before Aristotle, the Greek philosopher
Thales considered water to be the ultimate stuff of all matter, asserting
that all matter comes out of water and returns to it.

Aristotle’s law of gravity is a statement that any material body
falls from above to below because it seeks its correct place in space.
This place is at the bottom. That is, to Aristotle, the bottom, which
is the center of space, is where the Earth sits at rest in the universe,
and it is the natural place for matter to be.

Claiming to see that the quantity of matter in the universe is finite,
Aristotle concluded that the space of the universe must also be finite
in extent, since the logical basis of space is that it exists to be occupied
by matter.

One of the features of gravity perceived since the ancient times is
that it is a force that is only attractive, i.e., matter is drawn to other
matter. For example, the freely falling apple is drawn to the Earth.
An important question in physics is then: why does matter never repel
other matter? We will see in our discussion of the theory of general rel-
ativity in this book that there are indeed instances in nature whereby
the gravitational force can be repulsive, side by side with the attractive
aspect of the gravitational force. Which one of these aspects of gravity
predominates depends on the physical conditions. This problem arises
in discussions of cosmology — the laws of the universe as a whole. At
the present stage in the evolution of the universe, it is observed that,
rather than moving toward each other, the galaxies are moving away
from each other. This is called the expanding universe. It is indeed an
example of repulsive gravitational forces.

Aristotle in ancient Greece not only theorized. He also depended on
empirical verification to verify his speculations. A great scientist, in the
Renaissance period, seventeen centuries after Aristotle, who studied
the laws of gravity from the experimental as well as the theoretical
side, was Galileo Galilei. He insisted that the experimental verification
of a theoretical speculation was essential in order to claim a scientific
truth.

Galileo’s law of gravity for a body in ‘free fall’ was g = constant,
where g is the acceleration of a body in its fall. Galileo discovered that
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g is independent of the weight or size of the body and that, numerically,
g =98 m/s%.

At first sight, this seems to be a false statement, since we do see
heavier bodies falling more rapidly to the ground than lighter bodies.
For example, a lead weight reaches the ground before a feather, being
dropped from the same height. Galileo argued that the reason for this is
that the air resistance to the lead weight in its fall is less than it would
be for the feather. To prove his claim, Galileo constructed a device
that excluded the air — an evacuated jar. Triggering both bodies, of
different weights, to fall at the same time in the jar, Galileo saw that
they landed at the bottom at the same time, both falling with the
acceleration g, thus proving his law of gravity.

Galileo used the experimental method to make an accurate mea-
surement of g. He deduced that if a body at the top of an (almost)
frictionless inclined plane is released at time ¢ = 0, the distance it
would move down the plane in the time ¢ would be

1
§ = Egsin@)‘ﬁ2 m,

where 0 is the angle of inclination of the plane and ¢ is the time trav-
eled. Experimentally verifying that the ratio of two distances traveled
is equal to the ratio of the square of the times taken, s1/s9 = (t1/t2),
he could then determine the numerical value of g for a given run as

2s 9
9= 3emd = 9.8 m/s” .

Newton was born in 1642, the same year that Galileo died. He was
the next great physicist to explore the phenomenon of gravity. He was
greatly influenced by Galileo, and also by J. Kepler. Newton said that,
had he not been standing on the shoulders of two giants, Kepler and
Galileo, he would not have been able to see as far as he did.

Kepler was a contemporary of Galileo. He insisted on the existence
of general laws of nature. Thus when he determined that the orbit of
Mars is elliptical with reference to the Sun’s position at one of the foci
of its elliptical orbit, he said that the orbits of all of the planets should
also be elliptical, with the Sun at one of the foci of their elliptical
orbits.

This was indeed a revolutionary statement to be made in the 17th
century. All scientists since Plato and Aristotle, as well as Galileo, in
Kepler’s time, believed that all orbits in the heavens were circular.

Plato argued that the circle is the most perfect of all shapes, since
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viewed from its center the circle looks the same from all angles. He
argued that since the Heavens must be perfect, so must the orbits of the
planets be perfect, and therefore circular. However, Kepler saw that the
orbit of Mars was not circular, but instead elliptical. He then concluded
that all of the orbits of the planets are elliptical. So convinced was he
of Plato’s argument, Galileo would not accept Kepler’s finding in his
lifetime!*

Newton set about finding the explicit law of gravity that would ex-
plain Kepler’s discoveries about planetary motion, as well as Galileo’s
discovery of the constancy of g near the Earth’s surface.

First, Newton described Galileo’s principle of inertia by Newton’s
first law of motion. This law states that if a body were at rest, or in
motion at a constant speed in a straight line, it would remain this
way forever, unless compelled to change this state by some externatl
influence. (This was contrary to Aristotle’s law that said that it is
only the state of rest that is natural for bodies, while any type of
motion requires some external influence.) Galileo’s principle was then
incorporated into Newton’s second law of motion, F = ma. Here, F
is a ‘force’ — the outside influence — that causes the body to change
its velocity by accelerating at the rate a@. Thus if F = 0, then a = 0,
leading us back to Galileo’s law of inertia and Newton’s first law of
motion — if there is no outside influence on the body, then v = constant,
i.e., it will be at rest (v = 0) or it will be moving at a constant, non-
zero velocity v. It should be noted that bold face symbols are used for
the force, acceleration and velocity to signify that they are vectors —
numbers that have magnitude as well as direction in space. The law,
F' = ma, is a compact way of signifying three laws of motion in three-
dimensional space, one for each of the three coordinate directions, x,
y and z. It might be that F, = 0 while F;, # 0. This is the case of
gravity, where F, = 0 and F, = —mg, if y denotes the downward
vertical direction (toward the center of the earth). This combination
of forces in the z and y directions led Galileo to the prediction of
projectile motion. Indeed it was Galileo who recognized the vectorial
nature of force, acceleration and velocity.

If the force on a body is not zero, then Newton’s second law of
motion, ' = ma, asserts that in all cases the relation between the
force that acts on a body and the acceleration it causes is a linear one.
This is not only with regard to gravity, but also for all other possible
types of force. It was found in the 20th century that the force laws of
general relativity theory refute this linear law, although it is a good

4 See A. Koestler, The Sleepwalkers (Macmillan, New York 1968).
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approximation in those cases that Newton was considering in classical
physics.

Thus Newton saw that the magnitude of the force of the Earth
on a body near its surface, to give it ‘weight’, is /' = W = mg. It
should be noted that if a body is at rest on a platform on the Earth’s
surface, its weight is then the force —mgg, where my is called the grav-
itational mass of the body. What this means is that if the platform
should suddenly disappear, the body would fall freely at the accelera-
tion —g m/s%. When it is in motion, the mass of the body is its inertial
mass m;. The empirical evidence is that m; = myg. This equality has
been puzzling to physicists since the early days of attempts to under-
stand gravity. But with Einstein’s theory of general relativity, which
superseded Newton’s law of gravity, the equality can be explained, as
we will discuss in Chap. 4. It asserts that there is only one kind of
mass, and that it is the inertial mass, which we will signify by m. This
mass is, by definition, a measure of the resistance of a body that is
in a state of rest or in a state of constant motion to a change of this
state. It will be discussed in detail in Chap. 4.

1.2.1 Newton’s Third Law of Motion

Newton’s third law of motion did not come from Galileo, as his first two
laws did. Tt was a new concept in Newton’s investigation of mechanics
that indeed had a great deal of influence on Einstein’s theory of general
relativity, that was to come three centuries later.

Newton’s third law of motion is the assertion that for every force
exerted by one body A on another B, there is an equal magnitude, but
oppositely directed force of the body B exerted on body A. This implies
that, rather than an open system, we must always consider the material
system to be closed. Further, the existence of the closed system implies
that the laws of motion are necessarily nonlinear, rather than linear.
This may be seen as follows. If a force acting on B, spatially separated
from A but due to A, is F'g(A), then B would accelerate at the rate
ap, according to Newton’s second law of motion, Fg(A) = mpag.
This force, according to Newton, depends on the distance rap from
A to B. The reacting force exerted on A by B, Fa(B) = —Fg(A),
according to Newton’s third law, then causes A to accelerate from the
position it was at, initially, thereby changing the magnitude of the
force exerted by A on B from Fg(A) to F(A'), because the distance
from A to B has then changed. Thus, the acceleration aa of A before
it acted on B changes to aas by virtue of its acting on B. We see, then,
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that the force exerted by B on A depends on the parameters of A
itself; that is to say, the force Fg(A) on the left-hand side of the force
law is F'g (A(aA)) = map is itself a function of a. This equation is
not linear in the parameters of the body A. Nonlinearity is a general
feature of the laws of a material system, such as this, which is closed.
This is the case for the laws of motion in general relativity theory, as
a theory of gravity, for this automatically applies to a closed system,
as we will discuss in the next chapter.

Finally, from his observations of the motion of the Moon relative
to the Earth, Newton discovered that the force of gravity generally
depends inversely on the square of the distance between the interact-
ing bodies, and directly on the masses of the interacting bodies, i.e.,
Fg = —Gmamg/ 7}2&}3: directed only along the line joining the centers
of the interacting bodies. The constant (i, called Newton’s gravita-
tional constant, is the constant of proportionality between the force
between A and B, and their masses and the separation between them.
The minus sign signifies that the force of gravity is always attractive.
Further, with Newton’s discovery of calculus, he was able to write the
acceleration as a second derivative, viz., @ = ¢ = d?r/dt%. Here we
drop the vectorial denotation since the force is directed only along the
line of centers of the interacting bodies, of length r. Thus, for the case
of the gravitational force between bodies A and B, Newton’s second
law of motion, for B acted upon by A, becomes

d?r Gmpma

FB(A) = mB-&%—Z— = _——_7"2
This is a differential equation in the variable r that is the separation
between the gravitationally interacting bodies A and B. The function
r(t) is the dependent variable that is to be determined. The time mea-
sure t is the independent variable. The equation of motion is then a
second order differential equation, implying that its solution r(¢) is
unique when two boundary conditions are specified, such as the loca-
tion (in space) and the speed of one of the bodies relative to the other,
at some initial time .

Newton showed that, assuming the Earth to be spherically sym-
metric in shape, with a homogeneous matter distribution, then in its
interaction with another body with mass m, one may consider all of
the mass M of the Earth to be at its center of mass, which is the center
of the spherical Earth. If R is the radius of the Earth, then the force
of weight acting on a given body with mass m on the surface of the
Earth is W = GMm/R?. Since this weight is equal to mg, Newton
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discovered that Galileo’s g = GM/R?. With the determination of the
gravitational constant G from a test case, and the mass M and radius
R of the Earth, g was then found to match Galileo’s value of 9.8 m/s?.

This is the value of g at the surface of the Earth. If someone
were to stand on the Moon, his/her weight would be W(Moon) =
GmM (Moon)/R(Moon)2. With the mass of the Moon and its radius
in this formula, it turns out that the weight of the person on the
Moon would be 1/6 of his/her weight on the earth. The acceleration
of a falling body near the surface of the Moon would be one sixth of
9.8 m/s?, which is 1.6 m/s?. The weight of a body and its acceleration
toward the surface of other massive bodies such as the other planets
of the solar system would then vary according to Newton’s formula for
W and g.

Newton’s theory of universal gravitation predicted many gravita-
tional phenomena in addition to the weight of a body. For example,
it correctly predicted the planetary orbits, the rotational motion of
the Moon relative to the Earth, as well as the ocean tides due to the
gravitational interaction between the Moon and our oceans. It was
therefore natural for the scientist of Newton’s day to extend his the-
ory of gravitation to regions beyond the solar system — to the universe
as a whole. With this view, the theory predicts that all stellar systems
of the universe must rotate about each other in stationary orbits, just
as the Moon was considered, from the data, to rotate about the Earth
in a stationary orbit and the planets were believed, from the data, to
rotate about the Sun in stationary orbits.

The stationary orbit comes from a description in which the spatial
coordinates of a body are independent of its time coordinate. We will
see later on that the theory of relativity predicts that the space and
time coordinates of a body must unify into a single spacetime coor-
dinate system. In the latter description, the space and time measures
are not totally independent, in the sense that they transform into each
other, in changing reference frames that describe a material body. That
is, the statement of ‘where’ and ‘when’ in relativity theory depends on
the reference frame in which the body is described. One may not gen-
erally refer to the location of a body without also saying when it is
there. This theory then implies that there cannot be stationary orbits
of bodies, in general. That is to say, what appears to be a stationary
orbit in one frame of reference (i.e., independent of the time measure)
would not be a stationary orbit in other frames of reference. Since the
frame of reference is not an absolute feature of the physical system,
i.e., it is a subjective aspect in the description of the body, it must be
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concluded that, independently of reference frames, there are generally
no stationary orbits (according to the theory of relativity) and that
the observation of a stationary orbit by Newton was only an illusion,
though it may have been a good approximation for a non-stationary
orbit.

1.2.2 Predictions of Einstein’s Theory of General Relativity

The conclusion of relativity theory that there are no stationary orbits
for the objects in the sky was empirically verified by the observation,
in the 1920s, of an expanding universe. . Hubble observed that each
of the constituent galaxies of the universe is continually moving away
from the others. The latter observation was predicted successfully by
Einstein’s theory of general relativity, 300 years after Newton’s discov-
ery of the theory of universal gravitation. Thus, it took 300 years to
supersede Newton’s theory and to explain the phenomenon of gravity
in a more scientifically satisfactory way.

In the 19th century, an important experimental observation that
was not in agreement with Newton’s theory of gravitation was that of
the astronomer U. Leverrier. He saw that Mercury’s orbit about the
Sun is not stationary. He observed that it took extra time in each of
Mercury’s years in its orbit to reach the same place relative to the Sun’s
position. Thus Leverrier saw that Mercury — the smallest planet of our
solar system - does not trace out a stationary orbit. This advance of
the perihelion is called the perihelion precession of a planetary orbit.
The perihelion is the point of closest approach to the elliptical focal
point — which is the position of the center of the Sun — on the planetary
orbit. The effect was predicted correctly by Einstein’s theory of general
relativity, both qualitatively and quantitatively.

At first, it was thought that Newton’s theory was not refuted, but
rather that account was not yet taken of the other planets’ gravita-
tional effects on Mercury. That is, the prediction of the stationary orbit
was based on the idea that only the Sun influences Mercury’s motion.
The Sun’s gravity is, of course, the largest effect on Mercury’s motion,
but the other planets do have a smaller gravitational perturbing ef-
fect on Mercury that would throw it off of its cyclic, stationary path.
The astronomers knew the exact positions of the other planets of our
solar system, relative to Mercury’s position, at all times. Thus they
were able to compute the perturbing effect that they thought would
explain Mercury’s observed anomalous behavior. Nevertheless, these
calculations of the perturbations on Mercury’s orbit by its sister plan-
ets in the solar system were not enough to explain its deviation from a
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cyclic path. The precise orbit of Mercury was not explained until the
appearance of the theory of general relativity, in the early part of the
20th century, which gave the empirical result, both qualitatively and
quantitatively.

Another anomalous gravitational effect, not predicted by Newton’s
theory, was a bending of the path of starlight as it passes the rim of
the Sun. The observation, made by Arthur Eddington and his group at
Cambridge University around 1918, agreed precisely with the (qualita-
tive and quantitative) prediction of general relativity theory. Here, it
was a consequence of the curvature of spacetime in the vicinity of the
Sun, as predicted by Einstein’s theory. That is, according to general
relativity theory, the starlight must move along a geodesic path which,
due to the Sun’s presence, is a curved path.

A third anomalous prediction of Einstein’s theory of general rela-
tivity, not predicted by Newton’s theory of universal gravitation, was
that the spectral lines of a radiating atomic or nuclear system would be
shifted toward the red end of the spectrum, increasingly as the gravi-
tational potential at the radiating system increases. This is called the
gravitational redshift. It was not actually observed conclusively until
the 19508, when R. Pound and his collaborators at Harvard Univer-
sity saw the effect. What they measured was the gamma spectrum of
radioactive cobalt, in one gravitational potential — in the basement of
their building — compared with the measurement in a different grav-
itational potential — on the roof of the building! They were able to
use a diagnostic technique with the newly discovered Mossbauer ef-
fect. It had sufficient resolution to see the difference in the gamma
ray frequencies on the roof and in the basement of the building, to one
part in 10'°. The observation agreed quantitatively with the numerical
prediction of the gravitational redshift of Einstein’s theory.

It is only in a mathematical approximation that Einstein’s equa-
tions for the theory of general relativity yield the formal expression
of Newton’s theory of gravity. Thus, Einstein’s theory predicts every-
thing that Newton’s theory had predicted successfully, but in addition,
other gravitational effects not predicted at all by the classical theory.
Thus, in the early years of the 20th century, Einstein’s theory of gen-
eral relativity and its prediction of gravity met all of the conditions to
supersede Newton’s theory of universal gravitation.

It is important to note at this stage of the discussion, several impor-
tant conceptual differences between Einstein’s theory of gravity and
that of Newton. First, Newton’s theory is based on a model of matter
in terms of atomism. It is also based on ‘action-at-a-distance’. That is,
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bodies are fundamentally discrete entities, representing an open sys-
tem, and they act on each other with a force that depends only on
their mutual separation, but not on the time. Thus, if one body is 100
million miles from another, their interaction would be spontaneous,
depending only on their mutual separation in space. If one of these
bodies should move to a different location relative to the other, or if
it should suddenly extinguish, the second body would respond to this
change instantaneously (irrespective of how far apart they may be!).
Newton was not satisfied with this situation — which seemed like mys-
ticism to him! But he said that he did not form hypotheses, and since
the formulas worked, the action-at-a-distance concept must be true
scientifically.

Fully exploiting Einstein’s theory of general relativity, there is no
action-at-a-distance. Instead, all forces, including those of gravity,
propagate at a finite speed between the interacting bodies. The maxi-
mum value of this speed is the same as the speed of light in a vacuum
¢ = 3 x 10® m/s. We will discuss the reasons for this conclusion in
more depth in the following chapter. Thus, we see that Newton'’s view
of action-at-a-distance as fundamental in the description of interacting
bodies was an illusion. The speed with which these forces propagate is
so great that, in his day, Newton would not have been able to detect
that there is a finite speed of propagation of the gravitational interac-
tion between massive bodies, such as the Earth and the Sun. Indeed,
propagating at the speed ¢, it takes the gravitational force exerted by
the Sun on the Earth about 8 minutes to arrive here. Thus, if the Sun
should extinguish, it would take 8 minutes for the Farth to become
aware of this, and fly off on a tangent into outer space! That is, the
inhabitants of Earth would have 8 minutes to live from the time that
the Sun disappears! This force of gravity, as well as all other types of
force, according to relativity theory, propagates as a continuous field,
analogous to the ocean breakers moving against the seashore.

An important difference between the classical theory and Einstein’s
theory of gravity is the contrast between atomism and continuous
holism. In general relativity theory, the basic variables of matter are
continuous fields, rather than discrete particles. Instead of the latter,
general relativity implies the continuous field concept as foundational.
Rather than separable, singular bits of matter, the universe in rel-
ativity theory is one continuous whole, with an infinite number of
distinguishable manifestations or modes. The latter are the ‘things’
that one interprets as atoms, people, stars, etc., in the Newtonian or
quantum mechanical atomistic theories. But according to the theory
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of general relativity, they are not in reality separable things. They are
instead correlated modes of the single continuum that is the universe.
The continuum ontology is then one of holism.

The debate between these two ontologies — one of atomism versus
one of holism — has been ongoing throughout our history since an-
cient times. The atomistic view has been the one that has normally
been accepted since it meets the intuition of humans more readily than
the holistic view, because of the reactions of our human senses. But
we must recognize that our senses do not directly reveal the truths
that underlie the laws of nature. Epistemologically, the attitude that
our senses tell us all that underlies nature is one of naive realism and
positivism, while the ontology of holism takes the view of abstract
realism. My use of the adjective ‘abstract’ refers to the fact that as-
pects of the real world are not directly revealed to our senses or our
invented instruments. Rather, we must come to these truths by means
of the process of rational deductions, starting from the premises that
we intuitively propose to test the truths of the natural world and then
logically deducing its conclusions to be compared with the empirical
facts of nature. This is an approach akin to Plato’s cave analogy in
his Republic. Plato envisions slaves chained to the floor, facing the
shadows on the cave wall. Most of them deduce that the shadows are
all that there is to the real world. But one slave manages to break his
chains and he looks at the opening of the cave, where he sees that the
Sun is reflecting from objects that are the cause of the shadows on the
wall.

We see, then, that Einstein’s theory of general relativity explained
all gravitational effects known to the scientific world until the middle
of the 20th century, including effects that were not predicted at all by
Newton’s theory of universal gravitation. In superseding Newton'’s the-
ory, Einstein’s theory of gravitation changed the concepts of Newton'’s
view [rom atomism and action-at-a-distance, to holism, continuity and
no action-at-a-distance, where all forces propagate at a finite speed.

1.3 A Quantum Theory of Gravity

In the contemporary period of theoretical physics, at the beginning of
the 21st century, a great deal of effort is being expended on attempts
to formulate a quantum theory of gravity. I will argue that, however
brilliant and innovative these attempts have been, such a unification
is impossible to achieve. This is because the quantum theory and the



22 1. Imtroduction

theory of general relativity (our current explanation of the force of
gravity) are incompatible, both mathematically and conceptually.

For example, from the mathematical side, and independently of any
approximations, the quantum theory is necessarily a linear formalism
in terms of a Hilbert space with an eigenvalue/eigenfunction form. The
reason for this is that quantum mechanics is, by definition, a theory of
measurement in terms of a probability calculus, and probability theory
must be expressed with a linear formalism. That is, any arbitrary sum
of solutions of the equations of the quantum theory must also be a
solution of the same equations.

On the other hand, the theory of general relativity is necessarily
a nonlinear mathematical formalism. There are two main reasons for
this:

e the mathematics of the field equations is to represent a closed sys-
tem,

e this is a field theory — a continuum with correlated modes — that
must be represented in a curved spacetime.

These features of general relativity theory will be discussed in more
detail in the next chapter.

Conceptually, there are several points where the quantum theory
and general relativity differ:

¢ indeterminism versus determinisim,

e the ontology of separable, discrete atoms of matter versus the ontol-
ogy of holism, implying no separability, where the ‘things’ of matter
are correlated, distinguishable modes of a single continuum,

e wave particle dualism and positivism versus wave (continuum)
monism and realism,

e a subjective view of the world wherein the nature of matter de-
pends on the observation versus a fully objective model, wherein an
‘observer’ plays no fundamental role in the definition of elementary
matter.

With the quantum view, the quantitative values of the physical prop-
erties of elementary matter are not predetermined; they depend on
the nature of the observation (by a macro-observer). Thus this is a
‘nondeterministic’ theory of matter. In this theory, there are two dis-
tinct types of variable: the classical variables — to represent the macro-
observer — and the quantum variables — to represent the ‘observed
matter’. Once it is decided, subjectively, which is the ‘observed’ and
which is the ‘observer’ of the interacting, measured system, these two
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types of variable are not interchangeable, thus resulting in a basic
subjectivity of the theory. w

In the theory of relativity (whether in the special or the general
form) all variables are interchangeable, and predetermined by objec-
tive laws of matter. The theory is fully deterministic. This refers not
only to the ordering parameter that is the time measure, but to all
other parameters — the independent variables — that indicate the logi-
cal connections between elements of the closed system.

Summing up, from the view of both logical and mathematical con-
sistency, it is not possible to unify the quantum theory and the theory
of general relativity. In the language of quantum mechanics, the latter
attempt requires the ‘quantization’ of the field equations of Einstein’s
theory of general relativity, with the emergence of a new particle — the
quantum of the Einstein field called the graviton. But such unification
has never been accomplished, for the reasons of inconsistency spelled
out above, and there is no reason to believe in the existence of the
graviton.

- My research program, which will be developed in this book, resolves
the problem of the incompatibility of the quantum and general rela-
tivity theories by basing an explanation of the behavior of matter, in
any domain from the microscopic to the cosmological, solely in terms
of the theory of general relativity. It abandons the concepts and the
mathematical formalism of the quantum theory, as fundamental, re-
placing it with a covariant field theory of matter in general relativity.
But this field theory does recover the Hilbert space form of the quan-
tum theory in a linear approximation, as we will see in Chap. 4, for a
generally covariant field theory of the inertia of matter. The natural
incorporation of the inertial manifestation of matter is found to be a
key ingredient in the formulation of a truly unified field theory.

It is shown that the origin of the formulation of a unified field the-
ory that incorporates the inertia of matter and its electromagnetic and
gravitational force manifestations is the principle of covariance — the
underlying axiom of the theory of general relativity. Also necessarily
incorporated in this formulation is the generalized Mach principle — as-
serting that not only the inertia of matter, but all of its other claimed
intrinsic properties in the particle theories are instead measures of cou-
pling within a closed system of matter — in principle the universe. In
this way, atomism is totally exorcised from this explanation of matter.
A further necessary ingredient in the unified field theory is the imposi-
tion of gauge invariance. It is the necessary and sufficient condition for
the inclusion in the field theory of relations in the curved spacetime
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whose local limits, in a flat spacetime, are the laws of conservation of
energy and of linear and angular momentum.



2. The Theory of General Relativity:
Einstein’s Formulation

We introduce the idea in this chapter that Einstein’s theory of general
relativity is a general theory of matter in all domains, and not only
a theory of gravity in the large domain. This theory is based on a
single idea — the principle of covariance. It is the assertion that all
of the laws of nature must be fully objective. This means that their
expressions are independent of any reference frame in which they may
be described, that is, from the view of any particular reference frame.

One of the first implications of this restraint on the laws of nature
is that the space and time measures in the language of these laws
must merge in a single, fused spacetime language. This implies that
a purely spatial (or purely temporal) measure in one reference frame
would have to be expressed as a particular combination of spatial and
temporal measures in other (relatively moving) reference frames, if
the expressions of the laws of nature are to remain objective, i.e.,
independent of the reference frame.

A logical implication of this fusion of the space and time measures
is that there must be a universal constant with the dimension of speed,
independent of any reference frame. This turns out to be the speed of
light in a vacuum. In the theory of relativity, this is the maximum
speed of propagation of any type of force between interacting matter.

Einstein found that the geometrical logic of the four-dimensional
spacetime expressed with the rules of Fuclidean geometry is not ade-
quate for the language of the laws of matter. Thus he generalized the
geometry of the spacetime language to the non-Euclidean Riemannian
geometry. With this new language for the laws of matter, the natural
(unobstructed) paths of bodies are curves rather than straight lines.

An implication of general relativity is that the (continuous) geo-
metrical properties of spacetime correspond with the existence of con-
tinuously distributed matter. The Einstein field equations then yield
the geometrical variables (on the left-hand side of these equations)
given the matter fields (on the right), or vice versa. Thus these equa-
tions are interpreted here as identities — the geometrical fields on the



26 2. The Theory of General Relativity: Einstein’s Formulation

left-hand sides of these equations are another way of talking about the
matter source fields on the right, and vice versa. We therefore reject
the source-free solutions of these equations (representing the ‘vacuumn’,
everywhere) as unphysical, in the context of this interpretation.

The equation of motion of a test body in this theory is the so-called
geodesic equation in the curved spacetime. This is the path of minimal
separation between any of its points. In a Euclidean space, such a path
is a straight line. In the Riemannian space, it is a curve. Such equations
of motion in general relativity have yielded several predictions, to be
discussed in this chapter, of physical effects that are not predicted by
the classical Newtonian theory of gravity, as well as predicting all of
the successful results of Newton’s theory. Thus 1t is seen that Einstein’s
theory of general relativity superseded Newton’s theory as a correct
explanation for the phenomenon of gravity.

2.1 The Spacetime Language

Initially in the analysis of the theory of special relativity, wherein the
reference frames are inertial, that is, moving in a straight line at a
constant speed relative to each other, it was found that the spatial
and temporal measures that express the ‘words’ of the language of
the laws, must be unified in a single spacetime measure, rather than
expressing them separately.

That is to say, a purely spatial measure in the expression of a law
of nature in one reference frame must be represented as a particular
combination of spatial and temporal measures in other reference frames
that are in motion relative to this one, if this law is to be covariant
_if the form of this law is to be independent of the reference frame.
Similarly, a purely temporal measure in one reference frame must be
expressed as a combination of temporal and spatial measures in the
language of the same law of nature in other reference frames. It is only
such a unified spacetime that has objective connotation.

This is in the same sense that the words of a verbal language we use
to express meanings with sentences, must transform in other languages
to changed words and syntax such that the meanings of the sentences
of the original language are preserved in all other languages. If, in
English, one says: ‘the sky is blue’, and in French one says: ‘le ciel
est blew’, the words have changed, but the meaning in the sentence is
preserved. This is the idea of covariance. In the changed ‘mathematical
language’ of laws of nature, the ‘words’ that denote spatial measure
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and those that denote temporal measure must fuse into words that fuse
the two measures, according to the covariance requirement of relativity
theory.

The unification of space and time measures in special relativity
carries over to general relativity, where the different reference frames
in which one compares the forms of the laws of nature are in arbitrary
kinds of relative motion.

2.2 On Invariance of the Speed of Light

The unification of the space and time measures in the languages of the
laws of nature implies that they must be expressed in the same units.
Thus instead of referring to ¢, ¢/, ¢/, and so on, seconds as temporal
measures in the different reference frames, we must refer to ct, ct/,
ct”, and so on, centimeters, as the temporal measures. At this stage,
¢ is a conversion factor — a constant with the dimension of centime-
ters/second — a speed. It must be a universal constant, independent
of reference frame, if we are to distinguish physically between spatial
and temporal measures. For example, the law in physics of conserva-
tion of energy refers to the constancy of energy in time, distinguishing
thereby the temporal measure from a spatial measure. Thus, the uni-
versal speed ¢ must be a part of the spacetime language that enters
into the expressions of all of the laws of nature.

The first law examined by Einstein, wherein he discovered special
relativity theory, was the Maxwell formulation of electromagnetism.
The constant ¢ appears in this law as the speed of light in a vac-
uum. The further examination of the theory of relativity reveals that
¢ is the maximum speed of propagation of (any type of) force be-
tween interacting bodies. Thus, contrary to Newton’s theory, wherein
we have action-at-a-distance — that is, bodies interact with each other
spontaneously, independently of their mutual separation — all forces,
according to the theory of relativity, propagate at a finite speed, whose
maximum value is the speed of light in a vacuum, ¢, so that it takes
a finite amount of time for one body to respond to another body that
it interacts with. We see here, then, that it is not necessary to axiom-
atize the invariance of the speed of light in a vacuum. The invariance
of ¢ is indeed a logical consequence of the fusion of space and time
into spacetime, following in turn from the principle of covariance, in
the languages of the laws of nature. The only underlying axiom of the
theory of relativity (of the special and general forms) is then the prin-
ciple of covariance — the assertion of the independence of the forms
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of the laws of nature with respect to transformations of the language
elements between all possible reference frames. This is the idea that
the laws of nature must be fully objective.

The usual language of the laws of nature is in terms of continuously
varying parameters called space and time measures, as the words of
this language. The logic of this language, analogous to the syntax of
ordinary verbal language, is in two parts — geometry and algebra. The
geometrical logic refers to the relations of points to points in the sense
of relative congruence, mapping, angle preserving transformations, etc.
The algebraic logic is in the sense of rules of combination of the space-
time points, commutativity /anticommutativity, associativity, etc. The
algebra of spacetime is expressed most compactly in terms of a sym-
metry group. The group of special relativity is the Poincaré group,
that of general relativity is the Einstein group.

2.3 The Riemannian Metric

Because the metric relations between the points of space and time
must relate to the matter distribution whose laws are to be expressed
with the spacetime parameters, and because the matter distribution
is generally variable and the metric relations of a Euclidean space and
time are constant everywhere, Euclidean geometry is inadequate as
the correct geometry for laws of nature in general relativity. Thus it
is necessary to change the geometrical logic of relativity theory from
Euclidean geometry to a non-Euclidean geometry. Einstein chose the
differential geometry of Riemann for the spacetime language of the laws
of nature. The differential metric of Riemann has the feature that it
approaches the flat (Euclidean) spacetime metric asymptotically in the
limit as the mutual interaction between matter becomes vanishingly
small. That is, as the mutual interaction between matter components
of a closed system becomes vanishingly small, the limits on the squared
differential metric become:

ds?(Riemann) = ¢"” (z)dz dr, — ds? (Euclid) = dz? — dr®. (2.1)

The usual convention is used where the symbols p,v = 0 (tempo-
ral measure), 1, 2, 3 (spatial measures) are summed over, dr is the
3-dimensional spatial differential, and z stands for the functional de-
pendence on all four space and time coordinates. gM¥(x) is a second-
rank tensor, called the metric tensor. Thus we see that the limits on
the metric tensor components, as the mutual interactions of matter
become vanishingly small, are those of the flat spacetime metric:
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¢z — 1, HMFa)— -1 (k=1,2,3),
9 (z) —0 (p#v). (2.2)

Clearly the metric tensor is symmetric, i.e., g"¥ = g”#. This follows
because of the following equality of sums: ¢"*dz,dz, = g"*dz,dz, =
g“*dz,dz,, since dz, and dz, commute under multiplication. It then
follows that the symmetric second-rank metric tensor has ten inde-
pendent components: gGO,gn,922,933,901,902,g03,912,913,923. These
are ten continuous functions that must be determined to prescribe the
spacetime. They play the role of a ten-component potential in Ein-
stein’s theory, applied to the phenomenon of gravity, analogous to the
one-component potential in Newton’s theory of universal gravitation.
The metric tensor solutions follow as the solutions of Einstein’s field
equations, which relate the matter distribution of a closed system to
its geometry.

It will be shown in this chapter that FEinstein’s field equations have
the form

1
Ry — §g#VR = kT . (2.3)

The left-hand side is a complicated, nonlinear functional form in g#*.
THY is the symmetric second-rank tensor which, in the flat spacetime
limit, is the energy-momentum tensor of the matter distribution of
the closed system. The field equation (2.3) is a system of 10 nonlinear
differential equations.! The other tensors in (2.3) are as follows:

Ruy = 0T ,3 — 6L + Do T8 — L1, (2.4)
This is called the Ricci tensor of the spacetime.

1 As identities, Einstein’s field equations (2.3) are 10 unique nonlinear differential
equations in 10 unknowns, without ambiguity. Thus there are 10 independent
relations that yield the solutions of (2.3), the 10 components of the metric ten-
SOT guv, given the non-zero energy-momentum matter source, the 10-component
symmetric tensor T,,. If the covariant divergence of (2.3) should be taken, it
would yield the identity 0 = . In the standard interpretation of the field equa-
tions (2.3), wherein they are not identities, one may have physical meaning for
the vacuum situation, the right-hand side being identically zero, everywhere. In
this case, the vanishing of the four-divergence of the left-hand side of (2.3) in-
troduces 4 extra constraints, reducing the number of independent components
of g, from 10 to 6. But this is not the physical interpretation here. Indeed,
because the Einstein group for general relativity is a 16-parameter Lie group,
the number of independent components one expects for the metrical field should
be 16, rather than 10, as we will see later on in the quaternion development of
this field theory.
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The affline connection is

1
F,u,g = igp)\ (a,ug/\a + aag,u)\ = a)\gau) - (25)

It is defined as the function that must be added to the ordinary deriva-
tive of a vector field in order to make it integrable, as follows:

Aur = OaAu — T3P A, (2.6)

where the left-hand side of this equation is called the covariant deriva-
tive of the covariant vector field A,,.

Finally, R in Einstein’s equations (2.3}, is the Riemann scalar cur-
vature field,

R = QMDR;W )

and it derives from Ruv /\p — the Riemann curvature tensor, as discussed
below.

It should be noted at the outset that, in view of the interpretation
of Einstein’s field equations (2.3) as a way of expressing the matter of a
closed system in terms of geometrical variables or vice versa, then given
the tensor of the matter distribution 7},, to derive the geometrical field
gM"” from (2.3), it is equally valid to invert these equations as a way of
deriving the matter tensor 7, given the geometrical field g"”.

2.4 Expression of Einstein’s Field Equations

Einstein’s derivation of his field equations (2.3) starts from the curva-
ture of spacetime, which is to represent the existence of matter. The
Riemann curvature tensor R‘W)\p is defined as follows: transporting a
covariant vector A, on a closed path encircling the surface area AS,
we have
. AA, 1 A

A¥Dy Agve = g e - (27
In a flat spacetime, the difference AA,,, for a covariant vector trans-
ported around a closed path, is automatically zero, since it is a par-
allel transport. Thus, the Riemann curvature tensor is a measure of
the curvature of the spacetime, i.e., a departure from ‘flatness’ of the
spacetime.

This definition of the curvature tensor is equivalent to the expres-
sion of the difference of second covariant derivatives of the vector field,
as follows:
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A
AMV;P - AH;P;V = R/.wp Ay, (2'8)

where the covariant derivative of the vector field is given in (2.6).
The added term that entails the affine connection term I,% in (2.5), is
required to make the vector field A,, integrable in the curved spacetime
as indicated in (2.6).

It follows from (2.6) and (2.8) that the form of the Riemann cur-
vature tensor is

A_ A A AP o A
Ry, =000 =0 0 + il — Toplyy - (2.9)

The Ricci tensor in the field equation (2.3) is a contraction of the cur-
vature tensor with the metric tensor, viz., R, = gAO‘RaW N = RWA)‘.

It is readily verified that R, = R,,, i.e., that it is a symmetric
second-rank tensor. This is seen as follows:

A A A
R,u,u = Ruy,\ =g aRa,uu/\ =g aRuAa,u

A A
= —g aR)\ua,u =g OdR)\J/,u,cy = Ryuaa = Rt/u .

Thus, R, like g, has 10 independent components. The Einstein field
equations (2.3) thus constitute a symmetric second-rank tensor equa-
tion corresponding to 10 independent equations in the curved space-
time.

2.5 Einstein’s Equations from the Variational Principle

The Einstein field equations follow from Hamilton’s principle of least
action applied to the field formalism. It is based on the vanishing of
the variation 8(Sq + Sym) = 0, where Sg = [ Lg+/—gd*z is the action
function and Lg = R is the Lagrangian density for the metrical field,
leading to the laws of gravitation. Sy = [ Lyy/—gd*z is the action
function for the matter part of the field formalism and Ly is the
corresponding matter field Lagrangian density, leading to the source

term x7),,.

Thus, the variational problem is

65 = 6(Sg +Sm) =0, (2.10)
where

8Sqg =6 / Ry/—gdiz =6 / g*’ R/—gd*z . (2.11)

The invariant volume element in the spacetime is
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Vs = =gty

where —g = |g.v| is the metric density, and the vertical bars denote
the determinant. Thus,

ESSG-——f(Rﬂy\/—gég“V+Rqu“”6\/—g+g“”\/—g(SRW)dA‘:c .
(2.12)

The second term in this integrand contains the term

1 1
8/ —g = ——=8(—g) = —=/—gg,,09"" .
N (=9) = =5V~ 99udg
The latter equation comes from the following:
5(—9)
G

= cofactor g, = (—g)g" ,

where the cofactor of g, is the 3 x 3 determinant of the matrix of g,
with the pth row and the v th column removed.
It then follows that the first two terms in the integrand above are

1 I v
(R;u/ - ig,uuR) '_gég'u :

To show that the third term in the integrand in (2.12) vanishes, we
will use the technique of assuming the flat spacetime limit, and then
take the global extension of the result in the curved spacetime. In the
flat spacetime, dxg,, = 0, I',Y = 0. In this limit, the third term in the
integrand of (2.12) is

0B Ry = —g" [5(8,T ) — 8D, T,0)]

=~ [8,(8T,£) - 0.(8T,,0)]
= —g"0,(81,5) + g 9,81 1,)) -

The indices v, p have been interchanged in the last term above (since
these are summed over all four of their values).

As we have discussed earlier, the term I,JA,dz” denotes the ad-
dition to the ordinary derivative of a vector under parallel transfer
through a displacement dz¥. Thus, the term entailing the variation
of the affine connection, 611“5 A,dz” denotes a difference between two
vectors for the result of two parallel displacements, one with the affine
connection I” and the other with the affine connection I" + 31"
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A+ (I'+6IMAdz — (A+ I'Adz) = 61" Adz .

This entails a variation 81" at the same point in spacetime. Thus,
6F,ﬂf A,dz¥ is a covariant entity — it is a four-vector. 1t then follows
that, while the affine connection I,} is not a tensor, the variation of
the afline connection 6F‘uf does transform as a third rank tensor. Thus,

wh = g*8I,L — g'PsT,! (2.13)

is a four-vector.
It then follows that in the limit of a flat spacetime, where d,*" = 0
and 1,0 =0,

G SR, = Opw” = " B,0T L — gMP0,01 % .

Since d,w? = wf,, because this is a scalar, and with

1
——0p(v/—gu”)
V=g’ |
it follows that in its global extension of the ordinary divergence to the
covariant divergence (from the flat spacetime to the curved spacetime),

f g SR/ —gdis = — / 8,(v/—gwP)d*z . (2.14)

The details of the Riemannian calculus are spelled out in [117], Chaps.
2 and 6.

Using Gauss’ theorem, the integral on the right-hand side of (2.14)
in 4-space, over the four-dimensional volume V, is equal to the surface
integral over the 3-dimensional surface S that contains V:

[ v=guringas =0,

f
Wep =

where n, is the unit normal vector to the surface element d.S. The rea-
son that the latter surface integral vanishes is that w? (2.13) depends
on the variation 81" on the surface S that encloses the volume V', and
according to the variational calculus, 61" =0on 5.

It then follows that the third term in the integral in (2.12) vanishes
identically. Thus we are left with the variation

1
6Sq = f (RW — 5g,WR) St /—gdix

= -85y = /&Tuyég“”\/?gd[lm :
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Equating the integrands in all spacetime, we arrive at the Einstein
field equation (2.3), viz.,

R, — %QWR = sl . (2.15)
as indicated earlier in the text.

Since the field equation (2.15) has the form of a second-rank sym-
metric tensor equation, it corresponds to 10 independent (component)
equations in the curved spacetime, with the Riemannian curvature
tensor defined in (2.9). It is noted here that the underlying group of
general relativity is a 16 parameter Lie group. Thus one should expect
to have 16 relations at each spacetime point to define the spacetime.
The second-rank tensor formalism of general relativity (2.15), which
entails only 10 relations, is then not a complete expression of the the-
ory. We will see in the next chapter that the reason for this is that
the formalism (2.15) is reducible — that it is symmetric under the
discrete reflections in space and time, which is not required by the
group of general relativity, as well as the continuous transformations,
which is the only requirement of the principle of general covariance.
The procedure in the next chapter will then be to remove the discrete
transformations, leading to a factorization of Einstein’s tensor equa-
tions to a quaternion form, wherein there are indeed 16 independent
relations at each spacetime point, to define the spacetime. The extra
degrees of freedom in the metrical field will then be shown to lead to a
natural incorporation of the field equations of electromagnetism with
those of gravity in the quaternion formalism for the theory of general
relativity.

2.6 The Vacuum Equation

In a matterless universe, the energy-momentum tensor 7),, = 0 every-
where. This corresponds to a reduction of the Einstein field equation
(2.15) to the vacuum equation

Ry, =0 - (2.16)

everywhere. In view of the meaning of the Einstein field equations
as a way of interpreting the geometry of spacetime in terms of the
matter content of a closed system, and vice versa, it follows that the
only exact, valid solution of the vacuum equation (2.16) is the flat
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spacetime constant solution, ¢%¢ = 1, ¢** = —1 for £ = 1,2,3 the
three spatial directions, and ¢ = 0 for p # v.

Yet, there is a solution of the vacuum equation (2.16) — the
Schwarzschild solution — that does not correspond with the flat space-
time and leads to predictions of this equation that are in agreement
with empirical facts about gravitation. These are the crucial tests of
general relativity referred to earlier: the perihelion precession of Mer-
cury’s orbit, the gravitational redshift and the bending of a beam of
starlight as it glances the rim of the Sun. In view of the success of
the Schwarzschild solution to predict these empirical facts, one must
look upon these exact solutions of the vacuum equation (2.16) as an
approximation for the actual solutions of the Einstein equation (2.15),
rather than an exact solution of Einstein’s theory itself.

These conclusions are due, in part, to the nonlinear nature of the
field equations. According to this field theory of matter, there is no
actual ‘outside’ separated from an ‘inside’ of a matter distribution,
such as a star. There is simply a single continuum, which ‘peaks’ in
particular spatial regions of the universe — exhibiting the distinguish-
able modes of the single continuum that is, in principle, the universe.
This is unlike a linear theory, such as Newton’s theory of gravitation,
where the solutions of the vacuum, outside of a star (represented by
Laplace’s equation V2¢ = 0), and inside of the star (represented by
Poisson’s equation V¢ = 4mp, where p is the matter density of the
star). What is then done is to equate the inside solution to the outside
solution at the boundary of the star, to determine the integration con-
stants in the problem. This is based on the feature of linear differential
equations that the solutions of the equation with sources are a linear
superposition of the solutions of the equation without sources. But this
is not the case with nonlinear equations, where there is no ‘inside’ and
‘outside’ in an exact form! An example of an explicitly linear formal-
ism is Maxwell’s equations for electromagnetism. Here the source-free
radiation solutions are used to make up a linear superposition of so-
lutions to express the solutions of the field equations with sources —
as in quantum electrodynamics — where one expresses the solutions of
the equation with sources as a perturbation expansion in terms of the
radiation solutions of the source-free equations.

A nonlinear field theory does not allow this procedure because a .
solution of one nonlinear equation (say with sources) is not a linear
superposition of the solutions of another nonlinear equation (say one
without sources).
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Nevertheless, at times it could be useful to regard the solutions
of one nonlinear differential equation, such as one without sources,
as an approximation for the solutions of another, different nonlinear
differential equation, such as one with sources. This is a good exam-
ple to demonstrate the correspondence between Newton’s equations
of gravitation and the solutions of the vacuum equation as a linear
approximation for Einstein’s equations. This will be shown in the next
section in our discussion of the geodesic equation in general relativ-
ity, and the use of the Schwarzschild solution for the vacuum equation
(2.16) and its comparison with Newton’s equation for gravitation.

2.7 The Geodesic Equation

The solutions of the geodesic equation determine the paths of mini-
mal separation between any points of spacetime. A feature of general
relativity theory is that a ‘free body’ must move along such a path.
That is, it would take external energy to do the work to remove the
body from the geodesic path. The geodesics of Euclidean geometry
are straight lines, those of Riemannian geometry are curves. Thus, the
idea that the ‘natural path’ of a free body in a Riemannian spacetime
is a particular curve is a generalization of Galileo’s principle of iner-
tia, prescribing the path of the free body to be a straight line — the
geodesic of a Euclidean spacetime. Of course, in his day, Galileo had
no idea that there could be any geometry other than that of Euclid!

The family of geodesic curves of a Riemannian spacetime defines a
‘curved spacetime’. The minimal path in this spacetime is determined
by the vanishing of the variation of an arbitrary line integral:

6/d8:(),

where the arbitrary limits of the line integral are s, and sy,. The argu-
ment is that, since

6/ds=0=>5/d32:(),

it follows from ds?(Riemann) in (2.1) that

0= 6/ng33“’d:E'/ = ](6gm,)dx“d:1:” + 2/gwjdx“‘6(daz”) .
(2.17)
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The factor of 2 appears above because both 1 and v are summed over
while the variation of the differentials dz* and dz” each yield the same
result.

Using the fact that the differential and the variation operations
commute, viz.,

o(dx?) = d(z* + dz*) — da* = d(62*) ,

and the definition of the variation of g, with respect to the coordinate

513)\ as

O = (8Aguy)6x)‘

equation {2.17) may be expressed in the form

1 dz# da” d{dx”

2 ds ds ds  ds

(Henceforth all line integrals will assume arbitrary limits s, and Sb-)
The second part of the left-hand side of (2.18) may be integrated by
parts to give

H d do”
guyddiséxy(between endpoints s, and Sb) —/ds (g,uy dx ) Sr¥ds

d?z? dx# dzv
=0— —_ Q) ——— dx¥ds . 2.1
0 /(g,,)\ 1s2 + 0ugun P ds) zVds (2.19)

The first term on the left-hand side becomes zero on the right-hand
side because, by definition, the variation of the global coordinates 6z
vanishes at the endpoints. Substituting (2.19) into (2.17) and express-
ing the last term in (2.19) in the equivalent form

1 dzt dz¥
5 (8ugp,/\ + 8;191/)\) ds ds '’

the vanishing of the variation of the line integral over ds® implies the
vanishing of the integrand. Since 8% # () and with the second kind of
alfine connection defined by Iy ,, = g,xI ¥, we have

d?z? dz# da¥
Jurx—75 ds2 +F)\,,uy ds ds =0. (220)

This is one form of the geodesic equation. The second form is obtained
by multiplying (2.20) by the reciprocal of the metric tensor, that is,
g, and sumining over A to give

d?z? dz* dx¥

rs =0. 2.21
ds? Tl ds ds (2:21)
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The solutions of the geodesic equation (2.21) are a mapping of a family
of paths of minimal separation between any two points of spacetime. It
defines the curved spacetime. This equation is a generalization of New-
ton’s first law of motion. Expressed with Euclidean geometry, Newton’s
first law of motion states that, when there is no external influence (i.e.,
‘force’) on a material body then its acceleration in space is zero:

d2r

a2 =V

The solution of this second order, ordinary differential equation is the
(vector) displacement

r(t) =vt+7rp,

where v is the body’s constant velocity (a special case is rest, v = Q)
and rp is the body’s position at the time ¢t = 0. The latter are the
two required boundary conditions to specify a unique trajectory for
the body.

In the tensor form of general relativity, should we attach a clock
to the origin (the location of the moving body), then the differential
metric ds entails no spatial part. Its square is ds? = gggc?dt.

The interval ds is called the proper time of the body. The geodesic
equation in the spatial sector is then

d2z® p dzt dx”

d32 == _FMV—(g dS (k _ 1, 2, 3) . (222)

Note that both equations of motion of a body — Newton’s law and
the geodesic equation in general relativity — are independent of the
inertial mass of the body, as Galileo anticipated in his derivation of
g = constant for the acceleration of a body in free fall.

The equation of motion (2.22) in general relativity is along a nat-
ural curved path, by virtue of Fw’f = 0 (anywhere}. Thus it predicts
that the curved path of starlight, as its trajectory glances the edge of
the Sun, has a particular shape. Eddington and his group observed it,
in agreement with the theory, in 1918 (both qualitatively and quanti-
tatively). This equation also predicts two of the other crucial tests of
general relativity — the perihelion precession of a planetary orbit and
the gravitational redshift, as discussed earlier.

All three of these tests of general relativity used the geodesic equa-
tion combined with the Schwarzschild solution of the vacuum equation.
The details of the three predictions are spelled out in [117].
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2.8 The Schwarzschild Solution
and the Newtonian Limit

Assuming that the solutions of the vacuum equation (2.16) are spa-
tially spherically symmetric, the time dependence of these solutions au-
tomatically transforms away (Birkhoff’s theorem). Schwarzschild then
found that a solution of the vacuum equation (2.16) yields the Rie-
mannian (squared) metric as

2
ds? = (1 — 2—0‘) (dz®)? — A g2 : (2.23)

T

where « is a constant of integration with the dimension of length.
We see here that, when a/r = 0, this solution reduces to the flat
spacetime metric. The coordinates here are 20 = ¢f, the time measure,
and spatial coordinates expressed in the spherical coordinate system [r
is the radial coordinate, 6 bounded by (0, )} is the polar angle, and ¢
bounded by (0, 27) is the azimuthal angle]. The solid differential angle
is df2 = sin® 0 df do.

In the co-moving coordinate system, where the test body is at the
spatial origin, this metric reduces to

1/2
ds = (1 — 2_04) cdt .

r

The quantity ds/c is the proper time measure of the body. The flat
space limit corresponds to being at an infinite distance from the center
of the force, such as the effect of the Sun on a test body, as r — oo,
and ds — cdt.

In the next approximation, we assume that the ratio 2a/r < 1,
where it follows from the binomial expansion that

ds 18"
— =~ ({1——]Jc.
dt ( ?“)C
In this case,
et detdi_ddet oy
ds  dt ds ¢ dt '

The individual terms are then

‘% (1 Q)_l, d—:”’}c:%(}—g)_l (k=1,2,3). (2.24)

7
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When v*/c < 1, then dz°/ds > dz*/ds and it follows that
,det 4o
H” ds ds
Also, with o/r < 1, ds/dt = ¢ and
Par A derdt 4 (@rde) 1
ds? ~ ds dt ds  dt \ dt ds/) % dt?

] P
r"”lﬁOO :

In this case, the geodesic equation (2.21) becomes

2
az el
With the approximation a/r < 1, it follows that
(1%, [f =g = —gP (1)D
goo = )0 00 — 9 LA00— 29 (L)ox(a/r) ,

where g?*(L) is the flat space (Lorentz) limit (2.1) of the metric tensor.
With p = 0, and r being independent of the time measure, g"°(L) = 1,
do(a/r) = 0, so that I'd = 0.

Thus, with these conclusions in this approximation, dz¥/dt = 0 =
1% = Kt + K5. The integration constants here are K; = ¢, Ky = 0,
and thus z¥ = ct.

With k = 1,2,3, ¢"*(L) = —1, dx(a/7) = 8,(a/7) = —ar/r?. It then
follows that

o

8%
Fool = §8T(1/T) = _ﬁ .

The geodesic equation (2.22) in the radial coordinate r is then

d2r Ao

a2~ 2
With Einstein’s interpretation of the geodesic equation as the equa-
tion of motion of a test body in the curved space, a comparison with
Newton’s theory for the acceleration produced by an external force
yields
d?r F GM
s T N = — r 2.26
dez2 m 3 ' (2.26)
where & is Newton’s gravitational potential and M is the mass of
the body that influences the test body with mass m. GG is Newton’s
universal gravitational constant.

(2.25)
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It then follows, in this approximation, that —c?a/r? = —GM/r2.
Thus, the integration constant in the Schwarzschild solution is GM /c2.
Inserting this into the Schwarzschild metric, we have

’ —1
ds? = (1 — 2GM) (da:o)2 — (1 — QGM) dr? — r2d0? . (2.27)

c2r c2r

Thus, when v/¢ < 1 and a/r < 1, the form of the geodesic equation
(2.25) matches Newton’s equation of motion (2.26). This is a New-
tonian approximation for the result of general relativity, under the
conditions that lead to the Schwarzschild solution.

The integration constant « is called the Schwarzschild radius. Sub-
stituting the universal constant of Newton, G = 6.67x1078 dyn cm?g—2
and the value of M for the Sun, « has a value that is a few kilometers.
Thus the assumption used above, that « is much less than the radius r
of the Sun, is valid. It is in this limit that we see that Newton’s theory
of universal gravitation corresponds with Einstein’s theory when it is
applied to the vacuum equation R, (r) = 0.

The reader should take note again that the vacuum equation for
general relativity is not an exact equation for the spacetime associated
with, say, the existence of the Sun; it is only an approximation for the
full expression of Einstein’s equations (2.3). Thus, it cannot be said
that the Schwarzschild metric (2.27) is based on an exact solution of
Einstein’s field equations. As discussed earlier, this is because a massive
body, such as the Sun, is in reality represented by a continuous field
everywhere, without actual boundaries — there is no absolute ‘inside’
or absolute ‘outside’ of the Sun, or of any mass distribution. Of course,
we have the illusion that it is a discrete entity because the mass field
of the Sun ‘peaks’ in a particular region of the space of our vision. But
in this theory there is no actual ‘vacuum’, as there is in the model of
Newton’s theory of gravitation.

In the latter case, one obtains the gravitational potential that would
act on a test body by solving the vacuum equation, Laplace’s equation
V2¢ = 0, and the equation for the inside of the star, Poisson’s equation
V2¢ = 4mp, where p is the mass density of the star, and then equating
these solutions at the boundary of the star to evaluate the integration
constants — to give a unique solution for the gravitational potential of
the star. But in the continuous field theory of general relativity, there
is no sharp boundary of the star, and therefore no inside and outside
of the star, in objective terms!

The Schwarzschild solution has been used in astrophysics to de-
scribe a black hole — a star with such a great density that the bound-
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ary of the star is at the Schwarzschild radius r = rg = 2a = 2GM/c?,
where M is the mass of this black hole and rg is its radius. We see in
the solution (2.27) that this corresponds to a singularity in space. But
in general relativity theory, as we will discuss in Chap. 8, the solutions
must be regular — without singularities anywhere. The problem of the
black hole will be discussed further in Chap. 8, as well as other prob-
lems from astrophysics that relate to the topic of this book, quantum
mechanics and gravity.

In the next chapter, we will show that a unified theory develops
when one fully exploits the algebraic logic of general relativity theory,
giving rise to a factorization of the tensor field equations (10 rela-
tions) into a quaternion field representation (16 relations), thereby
demonstrating a unification of the gravitational and the electromag-
netic manifestations of matter.



3. A Unified Field Theory

A ‘unified field theory’ refers to the explanation of all possible forms
of force exerted by matter on matter as well ‘as the inertial response
of the matter that is acted upon, based on a single continuous field
formalism. The appearance in nature of one type of force or another
and the inertia of matter depend on the type of physical circumstances
experienced by matter.

The principle of covariance — the underlying idea of the theory of
general relativity — asserts that the symmetry that specifies the objec-
tivity of all of the laws of nature entails a continuous set of changes
of the space and time measures that leave the laws covariant, i.e., un-
changed in form. This is summarized explicitly in terms of the underly-
ing differential metric of spacetime, denoted ds, which stays unchanged
(invariant) under the same space and time transformations that leave
the forms of the laws unchanged.

The logic of the spacetime language has both geometrical and al-
gebraic features. As we go from classical physics to general relativity
physics, the type of geometry changes from Euclidean geometry to Rie-
mannian geometry. The latter is a change from the flat spacetime to
a curved spacetime. The algebra that underlies the logic of relativity
theory is expressed in terms of a symmetry group, the Einstein group
in general relativity and the Poincaré group in special relativity. This
is a set of continuous, analytic transformations (without reflections)
that preserve the forms of the laws of nature. This requirement leads to
the basis of the laws in terms of spinor and quaternion field variables.

The rejection of reflections in the space and time symmetry of
the physical laws leads to a factorization of the 10-component Ein-
stein tensor equations to a 16-component quaternion field equation,
wherein 10 components prescribe the laws of gravity and 6 compo-
nents prescribe the laws of electromagnetism. The basic field in this
generalization is the four-vector ¢#{x), wherein each of the four com-
ponents (= 0,1,2,3) is a 4-element quaternion, rather than a single-
component real number.
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The geodesic equation in quaternion form then implies a general-
ization of the time measure of a body that moves along a trajectory
in space. In the standard description of motion, the ‘time’ is a single
parameter ¢, whose continuous change specifies the motion of a body
in space from point to point. The quaternion generalization of the time
measure requires the specification of four numbers at each point of a
spatial trajectory to four other numbers, in continuously extending the
body along the spatial trajectory. Thus this is a generalization of the
use of the time measure in the description of the motion of a body in
space.

3.1 Einstein’s Field Theory in Quaternion Form

The underlying axiom of Einstein’s theory of general relativity is the
principle of covariance, also called the principle of relativity. It is the
assertion that all of the laws of nature must preserve their forms under
transformations between any frames of reference in which the laws
are expressed, from the view of any one of them. The forms of the
laws, in turn, are expressed in terms of a language of space and time
parameters. Although not the only possible language, it must be in
one-to-one correspondence with any other language that is used. The
space and time (or other language) parameters are a continuous set.
The functions of the spacetime parameters that are the field variables
— the solutions of the laws of nature — are a continuous set of functions
of the space and time parameters.

A further restriction on the field solutions is that they must be
analytic. This follows from Noether’s theorem — asserting that a nec-
essary and sufficient condition for the existence of laws of conservation
of energy and linear and angular momentum is that the spacetime pa-
rameters and the fields that solve the laws of nature are analytic — that
they are differentiable to all orders. Such functions are called regular.

In a letter to D. Bohm in 1953, Einstein said the following: “When
one is not starting from the correct elementary concepts, if, for exam-
ple, it is not correct that reality can be described as a continuous field,
then all my efforts are futile, even though the constructed laws are
the greatest simplicity thinkable. The fact that logically simple field
equations are necessarily nonlinear, and that a consistent field theory
cannot permit singularities, makes it impossible, for the time being,
to draw from the theory any conclusions which would allow it to be
tested empirically. This does not, however, convince me of the incor-
rectness of the theory. It only shows our present mathematical methods
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are insufficient.” (Einstein Archives, Jewish National and University
Library, Jerusalem, Call No. 4 1576:8-053.)

Einstein’s requirement is that the field solutions of the laws of na-
ture are regular functions — that is, singularity-free — everywhere. A
strong reason for this requirement is the insistence on the inclusion of
the laws of the global extension of the conservation of energy, linear
and angular momentum, such as 7}, = 0. These equations take the
form of the conventional conservation equation 9“7}, = 0 in the flat
spacetime limit.

The set of continuous, analytic transformations that underlie the
covariance of the theory of special relativity is the 10-parameter Lie
group, called the Poincaré group. The transformation group of the
theory of general relativity is the 16-parameter Lie group called the
Einstein group. A Lie group is a set of continuous, analytic transfor-
mations obeying the algebra of a group. The 16 essential parameters of
the Einstein group are the 16 derivatives 9z /9z" in the curved space-
time, where i, v = 0 denotes the time coordinate and p,v = 1,2, 3 are
the spatial coordinates. The Einstein field equations (2.3) are covariant
under the transformations of this Lie group, which is a requirement of
the theory. But they are also covariant under extra transformations —
the discrete reflections in space and time — which is not required of the
theory. Thus, the covariance group of Einstein’s tensor equations (2.3)
is reducible. When the reflections are removed from the underlying
group, we arrive at the irreducible form of the theory. To fully exploit
the irreducible representations of the Einstein group, one must have
the same number of relations at each spacetime point as the number
of essential parameters of the Lie group. We see, then, that since Ein-
stein’s tensor field equations (2.3) entail 10, rather than 16 relations
at each spacetime point, they must be ‘degenerate’, thus factorizable
to 16 equations — the correct number of relations consistent with a
16-parameter Lie group.

It will be shown that it is this generalization to the irreducible
symmetry group underlying general relativity theory that leads to a
unified field theory, wherein the 16-component (factorized) field entails
10 components that correspond with gravity, according to Einstein’s
formulation, and the remaining 6 components correspond with the 3
components of the electric field and 3 components of the magnetic field,
in accordance with Maxwell’s field equations. Thus fully exploiting the
Lie group that underlies the theory of general relativity yields a genuine
unified field theory.



46 3. A Unified Field Theory

In his researches on a unified field theory, Einstein said [3]: “Not
for a moment, of course, did I doubt that this formulation f[his field
equation (2.3)] was merely a makeshift in order to give the general
principle of relativity a preliminary closed expression. For it was noth-
ing more than a theory of the gravitational field, which was somewhat
artificially isolated from a total field of as yet unknown structure.”
He also said: “To remain with the narrower group and at the same
time to have the relativity theory of gravitation based upon the more
complicated tensor structure implies a naive consequence.”

Indeed, if the (unwanted) reflection symmetry elements should be
removed from the reducible group of symmetry of his equations (2.3),
these equations do factorize to an irreducible form in terms of 16 rela-
tions at each spacetime point. The resulting irreducible representation
of the Einstein group obeys the algebra of quaternions and their basis
functions are spinors in a curved spactime.

We may exploit these ideas of generalizing Einstein’s tensor formal-
ism by starting out with the invariant differential metric in a Rieman-
nian spacetime:

ds = ¢"(z)dz,, , (3.1)

where ¢* is a four-vector field (dependent on all of the coordinates x
of the spacetime) in which all four vector components are quaternion-
valued, rather than being real-number-valued. Thus the generalized
metrical field ¢* is a 16-component variable. The invariant metric ds
of (3.1) is a factorization of the Riemannian metric,

ds? = g"dx,dz, = dsds*, (3.2)

where the asterisk denotes the quaternion conjugate of ds (correspond-
ing to time reversal or space reflection).

The correspondence between the metric tensor and the quaternion
metric is then, from (3.1) and (3.2),

1 *1/ V%
g“”@—i(q“q +q7q™*) (3.3)

where the minus sign is chosen because of normalization.

Note that (3.3) is not a definition of the metric tensor g". Rather,
it is an identification between the more fundamental quaternion metric
and the tensor metric of the older formulation. In this generalization of
the Riemannian metric, the metric tensor is replaced by the quaternion
metrical field, as the more fundamental expression of the geometry of
the spacetime. |
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An important feature of the quaternion-valued variable, as distin-
guished from the real-number-valued variable, is that the quaternions
form a nonabelian algebra, i.e., wherein the variables do not commute
under multiplication. This feature plays an important role in the for-
mulation of quantum mechanics from a generally covariant field theory
of the inertia of matter, to be demonstrated in Chap. 4.

The flat spacetime limit of the metric tensor (2.2) corresponds to
the following limits on the quaternion components

¢z) — ot = (60" (k=1,2,3), (3.4)

where o is the unit 2-dimensional matrix and o* are the three Pauli
magtrices:

o_ (10 L (01 2 (0-i s (10
"_(01)’ "_(10 TR0 7 T o)

This quaternion basis, in terms of the four elements, the unit two-
dimensional matrix and the three Pauli matrices, is a four-dimensional
generalization of the two-dimensional complex number system, with
the basis elements (1, i = v/—1). The algebra of quaternions follows
from the commutation rules

0.k k0 k

olo* = g*g? | ofel = —olot

— €k2nO'm ,

where k #£ j # m = 1,2,3, and the Levi—Civita symbol is M= +1
for k =1, 7 =2, m = 3, and any even permutation of these indices,
otherwise it is equal to —1.

3.2 Spin Affine Connection

Just as a vector field is not integrable in a curved spacetime without the
addition to its ordinary derivative of an affine connection term, as in
(2.6), so the spinor field is not integrable in a curved spacetime without
the addition to its ordinary derivative of a spin affine connection term.
The covariant derivative of a spinor variable in the curved spacetime
is

N = OuN) + 9#77 ) (3.5)

where the spin affine connection is
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1 1
= 10u” + I, 07 )ay = 7% 0ud” + I 0q™7) . (3.6)
This is derived in [117], Chap. 3.

The two-dimensional matrix field {2, is covariant as a four-vector,
but it is not covariant in spinor space. Instead, it transforms in spinor
space as

Tp = @, = (2, — 2, = 502,85~ (9,587, (3.7)

where {S(x)} are the spinor transformations of the Einstein group:

n

S(0,(z)) = exp %ﬁﬂ_) , (3.8)
and 6,/ are the z-dependent parameters that define the 16 continuous
transformations of the Einstein group of general relativity [not summed
in (3.8)]. Equation (3.8) is a global extension in the curved spacetime of
the representations of the Poincaré group of special relativity, wherein
the parameters 6,/ are constants, rather than the continuous, analytic
functions of the space and time parameters z.

3.3 The Quaternion Variables
in a Riemannian Spacetime

Within the quaternion formalism, we have the normalization
¢"q;, = invariant = 4o . (3.9)

It follows from this invariance that the covariant derivatives of the
quaternion metrical fields must vanish identically. (This is analogous
to the condition of the vanishing of the covariant derivatives of the
metrical field g,, of Einstein’s tensor formulation.) The quaternion
metrical field itself is a second-rank spinor of the type

¢ ~menr, (3.10)

where the overline above denotes the complex conjugate of the spinor
variable 7.

It then follows that the difference between the second covariant
derivatives of the quaternion fields must also vanish. Expressing these
as the sum of changes in ‘spinor space’ and in ‘configuration space’,
we have
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0= Guipix — Quixip (3.11)

= [(na;p;A “ na;)\;p)ﬁﬁ + na(ﬁﬁ;p;)\ - ﬁﬁ;)\;p)} + ([Qu;p;,\} - [qu;/\;P]) .

The first (bracketed) term above refers to the second-rank spinor be-
havior of the quaternion field, where «, 8 = 1,2 are the components
of the first-rank spinor field 7. The last (bracketed) term above entails

the behavior of g, as a four-vector in configuration space. The latter
difference is

[QIJ;P;A] - [Q,u;)\;p] = Rfiy,p/\qfs ; (3.12)

by definition of the Riemann curvature tensor R,».
With the definition (3.6) of the spin affine connection, the spin
curvature tensor K,y is defined by

o — Tiap = Kpan = (8>\“QP + Q/\“QP - aP“Q/\ o QP‘Q)\)77
= (Q)\;p — Q,O;)\)n . (313)

Substituting (3.12) and (3.13) into (3.11), we have the following rela-
tion (suppressing the spinor indices a, 3):

sz\@'u + QMK;)\ = _Rnup)\qﬁl s (3'14)

where the symbol 1 denotes the Hermitian adjoint of the function.

In a similar fashion, the vanishing of the covariant derivatives of
the conjugated quaternion variables yields the following relation that
accompanies (3.14):

K@ + @ Epy = Rupprd™ . (3.15)

Multiplying (3.14) on the right with the conjugated quaternion g%, and
(3.15) on the left with ¢, adding the resulting equations and using the
orthogonality identity,

&g "+ 4% = —2006,"

the correspondence with the Riemann curvature tensor is as follows:

1 * * * *
TR = §(prquqﬁ — @G, Kpr + quK ,I,\qn - qﬂKgAq,J) . (3.16)

The correspondence with the Ricei tensor is obtained by contracting
the Riemann curvature tensor (3.16) with the metric tensor as follows:

006" Rypn = 00 Ry (3.17)
1

= S(End* @ — aua™ Kon + " K\a% — auK )07
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Finally, the scalar curvature field follows from a further contraction of
the Ricci tensor (3.17) with the metric tensor, ¢"° R,, = R, giving

1 % * * *
T0R = 5 (Kpnaq" = ¢ Kor + O KJLq" — K07 . (3.18)

3.4 Derivation of the Quaternion Metrical Field
Equations from the Principle of Least Action

The Lagrangian density that leads to the metrical field equation is
taken to be the trace of the scalar curvature (3.18) (with respect to
the spinor indices) as follows:

1 *
Lg = Tr(R)y/=g = 5 Tr(q PKong* +h.c.)v/=g, (3.19)

where h.c. stands for the hermitian conjugate of the preceding term.

To derive the quaternion form of the metrical field equations, we
take the Lagrangian density Lg (3.19) to be dependent on the varia-
tional parameters that are the quaternion and conjugated quaternion
variables, as well as the components of the spin affine connection and
their covariant derivatives. The subsequent minimization of the action
functional with respect to these variables then yields two field equa-
tions — one that transforms as the quaternion ¢# and the other as its
quaternion conjugate ¢*#, along with the correct relation (3.6) between
the quaternion metrical ficld variables and the spin affine connection.
Such a separation into conjugated field equations appears because of
the lack of reflection symmetry in the underlying Einstein group.

The variational calculation is then based on the extremum condi-
tion

5/{Tr [R(g*, &™), 2, L, Qip,s QZ;A] + LM}V —gd'z =0. (3.20)

Recalling that /—g = /—detg,,, it follows that the quaternion
derivatives of the metric density are

Ov—g Ov—g OTrgP?

aq*)\ o agp)\ aq*/\

= —3V99n 55 [—ZTr(q”q g p)} : (3.21)

Since these derivatives refer to matrices, they are a matrix of deriva-
tives with respect to the components of the quaternion variables.
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It A and B are any two matrix fields, then,

OTr(AB) OTr(AB)

aB, i dB

— Atr
—A,

where A denotes the transposed matrix. Inserting these relations into
(3.21), we have

V=g _ {q—/\\/—_g}* . (3.22)

Og* 8
Finally, with (3.19) and (3.22), and the antisymmetric feature of the
spin curvature tensor K, = —K Aps the following relation is obtained:
OLg _ 1

1 T %) *A
—{_Z(KP,\Q +4q Kp)\)"'g

Rq;J NET (3.23)

Erg

The conjugated relation that accompanies (3.23) is

OLg
Ag*r

1 1
= {Z(qAKg)‘ + Kpnq?) + gRqP] V=9, (3.24)
where the overline above denotes the complex conjugate.

Since the Lagrangian density Lg does not have any explicit de-
pendence on the derivatives of the guaternion variables, substitution
of (3.23) and (3.24) into the Lagrange-Euler equation for any field
variables A, viz.,

oL [ oL |*

oA 04, ’
where L = Ly + Ly is the total Lagrangian density, we have the
following field equations:

1 1
T Fpnd® + K + < Ragp = KT, (3.25a)

1 * * 1 * *
—(KLa 4¢P K ) + SRy = kT, (3.25)

where the asterisk here denotes the quaternion conjugate. The field
equations (3.25a) and (3.25b) — a factorization of Einstein’s tensor
equations (2.3) — are the expression of the unified field theory. These
are 16 relations at each spacetime point, rather than 10 — a number
that is compatible with the 16 essential parameters of the underly-
ing Lie group, the Einstein group of general relativity theory. All that
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remains to be done is to demonstrate the relation between the quater-
nion fields, treated so far as variational parameters, and the spin affine
connection, also treated as variational parameters. This will now be
shown.

The right-hand side of (3.25a) — the source term for this metrical
field equation - is the (complex conjugate of ) the field that follows an
extremum of the matter part of the action function Sy;. The corre-
sponding Lagrangian density Ly relates to the matter field equations,
to be discussed in Chap. 4 and the electromagnetic field equations, to
be discussed in Chap. 6, when varied with respect to the quaternion
variables.

Finally, following Palatini’s method, we can determine the rela-
tionship between the spin affine connection matrix field {2, and the
quaternion variables g, — by varying Lg with respect to the variational
parameters {2, and £2,,.,. We assume that the matter Lagrangian Ly
is independent of £2,,. A relaxation of this assumption would lead to an
even more general expression for the affine connection §2,,, indicating
derivative coupling in the matter ficld Lagrangian. This is something
that may be explored in the future.

Since the Lagrangian density Ly depends on (2, through the spin
curvature tensor K, which in turn depends on §2,,,, (3.13), the vari-
ational procedure yields the following result (using the chain rule):

OLr 0K
—ad? = Ll —ad? =
SfLE\/ gd*z /[BKW 890;7]75!201/ gd*z =0

— ( aaf?E ) = ("¢ — ¢"q*")., = 0 . (3.26)
A"

The only generally valid solution of (3.26) corresponds to g, = 0.

This result in turn yields the connection (3.6) between the quaternion

variables ¢/ and the spin affine connection matrix field {2, which was

to be shown.

Thus the combination of the field equations (3.25a) and (3.25b)
and the restriction on {2, (3.6) forms the field relationship between
the metrical quaternion fields and the matter field variables - in its
irreducible form, according to the underlying Einstein group of the
theory of general relativity. It is the factorization of Einstein’s tensor
field equations (2.3) that we sought.

It will be shown next, by iteration, that one may recover from the
equations (3.25a) and (3.25b) the equivalent of Einstein’s tensor field
equations for gravity (10 relations) and the remaining 6 field equations
which lead, by taking its covariant divergence, to Maxwell’s equations
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for electromagnetism. Thus we see that the factorization (3.25a) and
(3.25b) of the Einstein field equations (2.3) is indeed a unified field
theory in the sense that Einstein and Schrédinger sought. It is a theory
that unifies the phenomena of gravity and electromagnetism in a single,
covariant metrical field — the 16-component quaternion variable g*(x).
It is interesting to note at this juncture that the factorization (3.25a)
and (3.25b) of Einstein’s field equations (2.3} follows for the same
reason that the Klein—Gordon equation in special relativity factorizes
into the space and time reflected spinor equations:

O = m2y (3.27)
— oud'n=-mx and o,0'x=-mn, (3.28)

where O = (0%)2 — V2 is the d’Alembertian operator, and x = &7 is
the time reversal (or space reflection) (sometimes called the Wigner
time reversal) of the two-component spinor 7. It follows by removing
the time and space reflection elements from the underlying covariance
group of special relativity, to yield the Poincaré group — the irreducible,
continuous group of special relativity theory. The spinors 77 and x are
the reflections of each other, just as the quaternion solutions ¢ and
g** are the reflections of each other. Note again that the overline on the
spinor fields above denotes the complex conjugate while the asterisk
on the quaternions is the quaternion conjugate — denoting the time (or
space) reflection directly.

Because of the extra degrees of freedom, the factorized spinor equa-
tions (3.28) give a more general solution and extra predictions (e.g., the
anomalous Zeeman effect) than (3.27), just as the factorized quater-
nion equations (3.25a) and (3.25b) give a more general solution and
extra predictions, compared with the Einstein equations (2.3).

3.5 A Symmetric Tensor—Antisymmetric Tensor
Representation of General Relativity

The factorized form of the field equations (3.25a) [or (3.25b)] trans-
form in the curved spacetime as the quaternion vector field ¢*(z).
They therefore constitute 16 independent relations at each spacetime
point, in accordance with the irreducible representations of the Ein-
stein group.

The reason that there are more equations here — 16 relations —
than in Einstein’s tensor formulation (2.3) — 10 relations — is that the
tensor formulation is reducible, since its covariance includes reflections
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in space and time, while the quaternion formulation — 16 relations —
is based on an irreducible representation of the symmetry group of
general relativity. The latter are covariant only under the continuous
transformations in space and time that leave the form of the laws
unchanged, which is all that is required by general relativity theory.

Let us now extract from the non-reflection-symmetric quaternion
formalism the part that is even and the part that is odd under space
and time reflections. We will see that the even part is in one-to-one
correspondence with Einstein’s symmetric tensor field equations (2.3).
These correspond to 10 out of the 16 relations of the quaternion metric
field equations. The remaining 6 equations, which are odd under spa-
tial and temporal reflections, transform as an antisymmetric second-
rank tensor formalism. Taking the covariant divergence of the latter
then yields a formalism that is in one-to-one correspondence with the
Maxwell field formalism for electromagnetism.

To carry out this program, we iterate (3.25a) and (3.25b). Multi-
plying (3.25a) on the right with the conjugated quaternion solution
q; and (3.25b) on the left with the quaternion solution ¢, and then
adding and subtracting the two resulting equations (a procedure that
is unique up to the constant k or k¥’ on the right), the following relations
are obtained:

1 * * * *
5 End'dy — (£)ay0" Koy + K T = (B K g™
1 * * * *
Ly (0,0 + gyq3) R =2(k or ') (Tpgs + ¢, T} . (3.29+)

Since both equations (3.29+) come from a single quaternion field equa-
tion (3.25a) [or (3.25b)], it follows that the constant k" does not entail
any new universal constants, other than those associated with the mat-
ter field (A, ¢, m) and the gravitational field G. The latter is identified
with the asymptotic limit of the theory where Newton’s formalism for
universal gravitation emerges as an approximation.

3.5.1 Einstein’s Field Equation
from the Symmetric Tensor Part

Comparing terms on the left hand side of (3.29+) and the correspon-
dences (3.17) and (3.3) for the respective Ricci tensor, scalar curvature
and metric tensor, we see that the left-hand side of (3.294) corresponds
precisely with the Einstein tensor, viz., Ry, — (1/2)g,,R. Thus, the
right-hand side of (3.29+) corresponds with the symmetric tensor of
the source field T}, of Einstein’s equations (2.3).
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To demonstrate that the left-hand side of (3.29+4) transforms as a
symmetric, second-rank tensor, let us take the trace of both sides of
this equation, with respect to the spinor indices:

1 * * 1 * *
ZTI[KP/\(QA% —¢,q) +he] + gTr(qPq'y +ay4,) R

= kTe(T,q + ¢, T}) - (3.30)

Since, according to (3.13), K, = —K),, it follows from the definition
of the Riemann curvature tensor (3.16) that

Rupyx = = Bppyn = —Bupay = Rynpp -
The proof that the Ricci tensor is symmetric then follows:

_ A
RP’Y = Rp’y)\)\ = —Rfyp)\A =g aR'yp)\a

- ga)\R’Yﬂa)\ - R'ypaa = Ryp .
At this stage of the analysis, the right hand side of (3.29+) could,
in itself, be either symmetric or antisymmetric in its tensor indices.
However, a second-rank tensor may always be expressed as a sum of a
symmetric part and an antisymmetric part. Since the left-hand side of
this equation has now been shown to be symmetric, only the symmetric
part of the source term on the right could play a role.

It is noted further that the matter source field on the right-hand side
of (3.294) is even with respect to reflections in space and time. This
follows from the property of a product of quaternions when conjugated,
that it is equal to the conjugated quaternions separately, multiplied in
the reverse order. Thus, the right-hand side of (3.29+) is the sum of
a quaternion and its time reversal (or space reflection) quaternion —
that is, it is invariant (even with respect to reflections) in space and
time.

Einstein’s field equations (2.3) are then in one-to-one correspon-
dence with the quaternion field equation (3.29+). These are 10 out of
the 16 equations of the quaternion factorization of the Einstein for-
malism.

3.5.2 The Maxwell Field Equations
from the Antisymmetric Part

The remaining 6 equations (3.29-) will now be seen to correspond to
an antisymmetric tensor formalism of the second rank. Let us proceed
by taking the trace (in spinor indices) of both sides of (3.29-), as
follows:
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R, + gTr(qpq7 — gy ) R = E'Te(T,q; — q,T,) , (3.31)
where, by definition, the anti-Ricci tensor is
— A A 1 * %
Rfm = Riw\ =g QR%AQ — ZQMTT [K‘Q)\(qaq7 + qyq,) + h.c.] .

Since the spin curvature tensor K, is an antisymmetric tensor, it
follows that the Riemann curvature tensor in (3.16) is now altered to
the anti-Riemann curvature tensor by replacing the minus signs with
plus sigus, giving
I _ _pt _ pi
Rw\.up - R/\ww o R’Mpu '
Thus, the corresponding anti-Ricci tensor is antisymmetric, as follows:

I —pl A pl A Dapi
Rm _RmA - Rvpk I Rw/\a

_ _apt __pl o a_ _pi
=9 aRfypa/\_ R’Ypa o R’Yﬂ'

Since the trace of (3.29—) transforms as an antisymmetric tensor in
spacetime, so must the full equation (3.29—) transform in this way.

Because the left-hand side of (3.31) transforms as a second-rank
antisymmetric tensor in spacetime, it follows that the only part of the
right-hand side (the source term) that contributes to the field equation
(3.29-) is 2k'(T)q; — ¢4T7), its antisymmetric tensor part.

The foregoing results of the analysis lead to the exact form of the
Maxwell field equations for electromagnetism. This is accomplished
by converting (3.29—) into a vector field equation, consistent with
Maxwell’s equations. To do this, we take the covariant divergence of
both sides of (3.29—) to obtain the formal expression of the four of
Maxwell’s equations with sources:

Fp = —jy, (3.32)

where the electromagnetic field intensity solutions correspond with the
geometrical fields:

1 *® ES * ES
Fpr <= Q| 7K@ + 0,0 Koy + ¢ KJ,05 + 0,5 ),07) (3.33)

1 * *
+3(08 — )R

where (2 is a constant of proportionality with the dimension of electric
charge, applied to both sides of the equation. The current density
source term is
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cQk

ey >
Ty 47

(T,°qy — ¢y T,") - (3.34)
The four of Maxwell’s equations without sources,
=0, (3.35)

where the brackets denote a cyclic sum, then follow from the definition
(3.33) of the electromagnetic field tensor in terms of the antisymmetric
spin curvature tensor K, in both parts of the right-hand side of (3.33).
That is, F,.\ o< K}y But since K, = §2,,, — {2, according to
(3.13), and the spin affine connection 2, is a four-vector in configu-
ration space, it follows that the cyclic sum KJ,,.)) = 0, automatically,
and therefore that Fj,,.5) = 0. This shows that magnetic monopoles
are not predicted by this generalized theory of electromagnetism, in
the quaternion formalism, in agreement with the empirical facts. This
is similar to the conclusion that in the standard formalism the four of
Maxwell’s equations without sources, Fj,,.,; = 0, because of the fact
that the antisymmetric tensor F),, is equivalent to a four dimensional
curl of a four-vector, 0,4, — 9, A,.

In deriving the source term j, above, use was made of the fact that
the covariant derivatives of the quaternion fields ¢, vanish identically.

Since F}, is an antisymmetric tensor in spacetime, it follows that
the four-divergence of the current density four-vector vanishes:

‘ cl .
y a’y _— 7 VY
= F,, =0. (3.36)
With the assumption of a flat spacetime limit, this global conservation
equation reduces to the law of conservation of electric charge, from the
equation of continuity:

875, =0.

Using Gauss’ theorem, this leads to the conservation of electric charge
Q = [j%3z = constant, coming from the integral expression of the
continuity equation:

80/j0d3a:: f@kjkd%: /]knde:O,

where 1nF is the normal vector to the surface S bounding the charge @,
contained in the volume V. The last integral vanishes because of the
boundary condition that the current density in space ji(S) vanishes on
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the spatial boundary S. Thus, the total charge Q@ = [ jod3z contained
in an arbitrary volume is conserved in time.

Summing up, we have seen that the antisymmetric, second-rank
tensor equation (3.29—), derived from the quaternion formulation of
general relativity theory (3.25a) and (3.25b), leads to the precise struc-
ture of Maxwell’s field equations for electromagnetism. The solutions
F,, of Maxwell’s equations are given in the correspondence (3.33),
whilst the current density source terms are given in the correspondence
(3.34). The conclusion is that, by going to the irreducible representa-
tions of the Einstein group of general relativity theory, we arrive at
a totally unified field theory, in terms of the 16-component metrical
field equation (3.25a) or its conjugate (3.25b), expressing the laws of
gravitation and electromagnetism in terms of a single covariant field.

This means of reaching a unified field theory of gravity and electro-
magnetism was originally suggested by Einstein, in general terms. He
advised that the most general symmetry group of general relativity —
the Einstein group — must be a set of continuous (and I have argued
analytic) transformations — a Lie group — at each spacetime point,
that leave the laws of nature covariant. In his article |5], Einstein said:
“Every attempt to establish a unified field theory must start, in my
opinion, from the group of transformations which is no less general
than that of the continuous transformations of the four coordinates.
[...] It is further reasonable to attempt the establishment of a unified
theory by the generalization of the relativistic theory of gravitation.”

3.6 The Geodesic Equation in Quaternion Form

The 16 equations (3.29) that are the symmetric tensor-antisymmetric
tensor expression of the basic quaternion field equations (3.25a) and
(3.25b) are another way of expressing the latter. The question then
arises: does the geodesic equation that follows from a minimization
of the line integral over the quaternion differential metric 6 [ds =
§ [ gtdz, = 0 differ from the geodesic equation (2.22) of Einstein’s
tensor formulation? We will see in this section that the geodesic equa-
tion in the quaternion formulation of general relativity has the same
functional form as it does in the tensor formulation. But indeed there
is a difference when they are expressed in terms of rates of change of
the global coordinates, with respect to the proper time of a moving
body.

We will see that indeed, in this natural generalization the quaternion-
valued time parameter entails a geodesic equation that is a set of four
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simultaneous differential equations while the standard formulation en-
tails a real-number-valued time parameter, determined by a single dif-
ferential equation. Thus, the ‘time measure’ in the quaternion formu-
lation is more general than it is in the tensor formulation of general
relativity.

It is interesting to note what William Hamilton said in the 19th
century, after his discovery of quaternion algebra [12]: “It appeared to
me to regard algebra as being no mere art, nor language, nor primarily
as Science of Quality; but rather as the Science of Order in Progres-
sion. It was, however, a part of this conception, that the progression
here spoken of was understood to be continuous and unidimensional:
extending indefinitely forward and backward, but not in any lateral di-
rection. And although the successive states of such progression might
(no doubt) be represented by a point upon a line, yet I thought that
their simple successiveness was better conceived by comparing them
with moments of time, divested, however, of all reference to cause and
effect; so that “time’ here considered might be said to be abstract, ideal
or pure, like the ‘space’ which is the ob ject of geomeiry. In this manner
[ would regard algebra as the Science of Pure Time. [...] And with
respect to anything unusual in the Interpretation thus proposed, it is
my wish to be as preparatory to the study of quaternions.”

In order to predict the motion of a test body in the field of influence
of the other mass of a closed system, it is assumed, as in Einstein and
Galileo, that the test body moves along a geodesic — the extremum
path in space and time. This follows from the correspondence of this
path with the minimal energy of the body. That is to say, 1t would take
external energy to do the work to move the body off of this geodesic
path.

In the quaternion calculus, the extremum trajectory is determined
from the vanishing of the variation of the line integral over the invariant
differential ds, leading to the geodesic equation (2.19) in the standard
formulation. However, the differential ‘proper time’ ds is in this case
quaternion-valued. Thus it entails four real-number-valued parameters
rather than one. That is, the geodesic equation may be expressed in
the form:

[d%“ pda? dz? }
ﬁ 3

ds2 YA ds ds (3.37)

where o, 0 = (1,1), (1,2), (2,1), (2,2) refer to the four equations of
motion that must be solved simultaneously here in order to predict
the trajectory of the test body.



60 3. A Unified Field Theory

It is interesting then that the theory of general relativity, in its ir-
reducible form, entails a ‘proper time’ of a moving body that is more
general than it is in the mechanics of the classical Newtonian theory,
or in Einstein’s tensor formalism. For, here, one needs four numbers,
rather than one, to signify the time parameter at each spatial coor-
dinate on the trajectory, before proceeding to the other (continuously
connected) coordinates of the trajectory, to describe the motion of any
massive body — an electron, a planet or a galaxy.

Let us now parameterize the variation with respect to the quater-
nionic line element. In the conventional real number theory, one has
the differential operator:

d A d

A P =
ds  AzeAmd 0 A(gapz®zP)1/2  (gapdzodzh)l/2’

where, by definition of the derivatives, g,g is evaluated where the
derivatives are taken.
In the present quaternion formulation, we must instead utilize the
differential operator
d A  d

= lim

— e 3.38
ds  Aze—0 A(gez®) Yo Qo (3:38)

where ¢! is the inverse of g, evaluated at the spacetime point where
the derivative is taken. According to the algebra of quaternions, the
inverse of a quaternion is the ratio of the quaternion conjugate to its
norm:

—1 .
q, = ——. 3.39
The second order derivative of the quaternion variable is then
d? ; d ; d
— =gt g | . 3.4
d82 qO[ dea l:QCM dl‘a:| ( 0)

The vanishing variation § [ ds = § [ godz® = 0 then gives rise, in the
same manner as in the derivation of the geodesic equation (2.19), to
the same fundamental form of the geodesic equation (3.37).

The particular problem of determining the path of a test body
need not entail the noncommutative feature of the quaternions, e.g.,
when polarization does not play a role in the application at hand.
Since the determinant of the product of matrices is the product of the
determinants of the factor matrices, the determinant with respect to
the quaternion differential is
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1 dz® dz? dz® d(8z”)
—ONGoi— ——— 8T + gap— — ,
f[z MedTqg a5 O T gg T s st 0, (341)
where
d d d
ds = o o . _ —1
§ = laaldz® 5 = o ga| = 9l g

and the vertical bars denote the determinant with respect to the spinor
indices.

Integrating the second term on the left-hand side of (3.41) by parts,
using the fact that the variation 6(dz?) vanishes at the endpoints of
the line of integration, and the relation between the components of the
affine connection and the metric tensor, it follows that

d’z? | pda” dz®

a5z Tlefqg as
This equation is the determinant of the geodesic equation (3.37). This
real number form of the geodesic equation then has the conventional
form as in Einstein’s tensor formalism. Nevertheless, they are different
because the latter is in terms of derivatives with respect to the differ-
ential ds = (gapdz®dz? )1/2 while the former is in terms of derivatives
with respect to dS = |¢o|dz®. The geodesic equation (3.42), applied to
stationary state problems (such as orbital motion), is not the same as
the conventional one because of the time-dependence that is implicit
in ¢, as compared with the time-independence of g, in the planetary
motion problem, as we will discuss in Chap. 8.

(3.42)

3.7 Summary

It has been shown in this chapter that as soon as one removes the space
and time reflection elements from the underlying covariance group of
Einstein’s tensor field equations (2.3), one takes the reducible repre-
sentations that describe the symmetry of that formalism in general
relativity to the irreducible representations of the theory of general
relativity. This leads to a factorization of the 10-component tensor
formalism to a 16-component quaternion formalism. This is consistent
with the fact that the underlying symmetry group of general relativity
— the Einstein group — is a 16-parameter Lie group, that is, it entails
16 essential parameters.

These 16 equations of the quaternion formalism, that is a vector for-
malism in which each of the vector components is quaternion-valued,
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were then shown, by iteration to a second-rank tensor form, to break
up into 10 symmmetric tensor equations and 6 antisymmetric tensor
equations. The 10 equations are in one-to-one correspondence with the
original form of Finstein’s symmetric tensor field equations, thus ex-
plaining gravity. The remaining 6 equations are re-expressed in a form
that is in one-to-one correspondence with the Maxwell field equations
in terms of its antisymmetric tensor solutions, ¥, — the components of
the electric and the magnetic fields of charged matter — thus explaining
electromagnetism.

We have seen, then, that the use of the irreducible Einstein group
to underlie the symmetry of the laws of nature leads in a natural way
to the unification of gravitational and electromagnetic phenomena,
in terms of a single, covariant (16 component) quaternion metrical
field ¢”(x) — a four-vector wherein each of the four components is
quaternion-valued.

A second new feature of this analysis is that the geodesic equation,
which serves as the equation of motion of a test body, entails a gen-
eralization of the time parameter for its trajectory. The proper time
of a ‘freely moving’ body in a curved spacetime is now a generaliza-
tion whereby the time measure entails four parameters at each point
along the body’s trajectory — its geodesic — rather than one, as in
the real-number-valued theories in mechanics. This conclusion corrob-
orates the intuition of the discoverer of quaternion algebra, William
Hamilton, who, in the 19th century, believed that the quaternion vari-
ables would be essential to our understanding of the time measure in
physics. These features of the quaternion geodesic will be elaborated
and applied to physical problems in astrophysics in Chap. 8. It is also
interesting to note, at this point of the discussion, that in the 19th
century, Maxwell had the following to say about the use of the quater-
nions in physics: “... the virtue of the quaternions lies not so much
as yet in solving hard questions as in enabling us to see the meaning
of the question and its solution.” (Extract of a letter from Maxwell to
P.G. Tait, Archives, Cavendish Laboratory, University of Cambridge.)



4. Quantum Mechanics
from a Theory of Inertial Mass in Relativity

Quantum mechanics has been eminently successful in twentieth cen-
tury physics in describing the properties of matter in the atomic do-
main. It demonstrates that, under some physical circumstances of ex-
perimentation, particles of matter behave like continuous waves, while
under other conditions of experimentation they behave like discrete
particles. The doctrine of this theory is then that of ‘wave-particle
dualism’, specifying that the nature of the particle of matter is not
‘predetermined’ — it depends on the way in which it is measured.

Quantum mechanics is conventionally interpreted as a theory of
matter that is rooted, foundationally, in probability, thus indicating
that the basic variables of matter are the probabilities of locating the
particle at one place or another. But the question arises: where does
this probabilistic theory of matter originate? It was Einstein’s idea
that the formal expression of the probability calculus that is called
quantum mechanics is an incomplete theory of matter that originates
in a complete continuous field theory in general relativity. The latter
would be a theory of matter wherein all of the variables of matter are
‘predetermined’, without the possibility of any probability interpreta-
tion.

In this chapter, it is shown that a field theory of the inertia of matter
— not derived before in physics — based on general relativity, yields as
an approximation the entire formal expression of quantum mechanics.
Thus the incomplete probability theory that correctly describes atomic
matter at low energies is only a mathematical approximation for a
complete field theory of the inertia of matter. In the latter, a local
quantity of matter is a mode of a continuous field, rather than the
discrete singularity of the particle view.

The concept of the elementarity of the interaction replaces the con-
cept of the elementarity of the particle of matter. This implies that the
fundamental theory of matter in general relativity is holistic, wherein
there are no separable, singular things of matter. Rather, we have a
continuum with an infinite distribution of correlated modes, analogous
to the multiple ripples of a continuous, though disturbed pond.
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The theory proves that in the Newtonian limit of general relativity,
the force of gravity can only be attractive (an empirical fact). But
when we are not in this approximation, the force of gravity can be
either attractive or repulsive, thereby leading to the dynamics of the
oscillating universe cosmology.

4.1 Introduction

The aim of this treatise is to formulate a unified field theory wherein
all fields of force originate in a single covering field of force. The term
‘force’” per se then represents the effect of matter on ‘other matter’, in
terms of a single, continuous, nonsingular field theory in general rela-
tivity. But one must ‘close the circle’ for a closed system, by including
the reaction of the ‘other matter’ that is acted upon by the unified
force field. This is in accordance with the spirit of Newton’s third law
of motion — for every action (force exerted) by one body A on another
body B there must be an equal and oppositely directed reaction (force
exerted) by B on A.

To determine the reaction of matter that is acted upon we must
incorporate in the total closed system the inertial mass of this matter.
The inertial mass is, by definition, the resistance of matter to a change
of its inertial state of motion of rest or constant speed in a straight line,
relative to the force-exerting matter. Newton introduced this concept
and quantified the inertial mass with the parameter m, as it appears
in his second law of motion: F' = ma. We must, however, continually
keep in mind that in general relativity, there are no discrete particles
of matter — there are only correlated matter fields. In limits, however,
these appear as discrete particles with their own intrinsic masses. But
these, according to the field theory of general relativity are, in reality,
distributed peaks of a continuous mass distribution.

The question then arises: with the continuous field model posed in
general relativity, what is the origin of the manifestations of matter
that is its inertial mass? In the 17th century, Newton assumed the
atomistic model wherein the inertial mass is one of the intrinsic qual-
ities of a bit of matter, quantified by the parameter m. In the 19th
century, Mach took the view that a body’s mass is a measure of its
coupling to all of the other matter of a closed system — in principle
the universe. Einstein called this view the Mach principle. It is a view
that, like Newton’s third law of motion, implies a closed system at the
outset. This is in contrast with the open system of interacting ‘things’,



4.1 Introduction 65

as assumed in Newton’s classical view and in the quantum mechanical
‘atomistic’ model of matter.

I have argued that in the continuum field theory of matter accord-
ing to the theory of general relativity, the Mach principle necessarily
follows in a generalized form. Here, not only the inertial property of
matter, but all of its other (earlier claimed) intrinsic qualities, such as
electric charge and magnetic moment, are also measures of coupling
between observed matter and the rest of the closed system of which it
is a constituent. I have called this idea the generalized Mach princi-
ple. It is a view that exorcises all remnants of the atomistic model of
matter.

According to Newton’s theory, for a constant mass m, the effect of
this body, that is the acceleration a, is caused by an external force F.
This follows from the empirical fact that, at low energy, the ratio of
the magnitudes of two external forces exerted on a single body with
mass m is the corresponding ratio of the magnitudes of the caused
accelerations: F /Fy = a;/ag. Thus, the parameter m is the constant of
proportionality between the external (vector) force exerted on a body
and its caused (vector) acceleration, F' = ma. In the ratio Fy/F, for a
single body, the mass cancels. This lincar ‘law’ of motion implies that
an ‘atom of matter’, with intrinsic mass m, is an individual, separable
entity.

In Mach’s approach, on the other hand, one may say that (still con-
sistent with Newton’s second law of motion), for constant acceleration
of two different bodies, the ratio of their masses is equal to the ratio
of the forces exerted to produce their constant acceleration.

An example is the free fall of two different massive bodies to earth,
at the same constant acceleration of gravity g. One may express this
empirical fact, discovered by Galileo, with the law F/Fy = mq/ms.
This is equivalent to the linear law F' = km, where k = Fp/myg is the
constant of proportionality, and (Fy and myg) are the external force
and mass of a test body, chosen as a standard. This formula implies
that the entire external force that acts on this body is the cause of
the inertial mass of the given body. That is to say, it assumes a closed
system at the outset, rather than individual, separable bodies. This
closed system is, in principle, the entire universe. Nevertheless, the
far-away contribution of, say, the distant stars, to the mass of a local
electron is likely much less significant than its coupling to other nearby
massive bodies, such as the particle-antiparticle pairs of the ‘physical
vacuum’ in its vicinity.
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The theory of general relativity, which implies a holistic, nonsingu-
lar, continuum field theory, is compatible with the generalized Mach
principle. In this chapter, we will see how the formal expression of gen-
eral relativity theory, in its irreducible form, gives rise to a derivation
of a field theory of the inertial mass of matter, including empirical fea-
tures not derived previously. Examples of the latter, to be discussed
in Chap. 7, are

e mass doublets,
e a mass spectrum in the linear limit of the theory,

and in this chapter we will discuss

o the predicted attractive feature of the gravitational force in the New-
tonian limit of the theory.

A generally covariant field theory of the inertia of matter so-derived
will be shown in a linear limit, i.e., in the asymptotically flat spacetime
to have the formal (Hilbert space) structure of quantum mechanics.
Thus, in accordance with Einstein’s expectations, we will find that
quantum mechanics is formalizable in terms of a probability calcu-
lus because it is an incomplete representation for the matter of the
microdomain. It is incomplete because it is a linear approximation,
in special relativity, and in nonrelativistic quantum mechanics, for a
complete, generally covariant, nonlinear field theory of the inertia of
matter. The nonlinearity of the formalism in general relativity in itself
prohibits the interpretation in terms of a probability calculus as foun-
dational, because the latter is necessarily a linear theory. The proba-
bility interpretation is a cornerstone of quantum mechanics — it is the
reason for the claim that a fundamental law of nature is the principle
of linear superposition.

The quantum theory and the theory of general relativity are funda-
mentally incompatible, in terms of their respective foundations. Some
of the basic conflicts are:

o the particle model of matter in quantum mechanics, versus the holis-
tic, continuum view in general relativity,

e the linear nature of the quantum mechanical formalism versus the
nonlinearity of the theory in general relativity,

even though one of these formalisms may be an accurate approximation
for the other, under the appropriate circumstances. But if, in principle,
one of these theories of matter is scientifically true, the other must be
scientifically false!
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Thus we see that there can be no ‘quantization’ of Einstein’s field
theory of gravitation. The particles called gravitons — the quanta of
the Einstein field — cannot then exist in reality. N evertheless, in accor-
dance with the field theory in general relativity, forces between mat-
ter do propagate at a finite speed, though they cannot be identified
with gravitons. The latter view is a topic of contemporary research in
quantum field theory, to see if one can incorporate gravitation with the
other forces in nature in the context of a quantum field theory. What
I have argued here is that this goal is unachievable because of the nat-
ural (mathematical and conceptual) incompatibility of the quantum
and relativity theories. The opposite view, pursued in this book, is
that it is the context of general relativity that leads to the unified field
theory that is sought.

4.2 Discovery of Quantum Mechanics

After the experimental discovery of the wave nature of matter, in the
electron diffraction studies in the 1920s (Davisson and Germer in the
US and G.P. Thomson in the UK), Erwin Schrédinger set about to
find the wave equation whose solutions are the matter waves.

Schrodinger’s original intention was to demonstrate a relativistic
wave equation, whose solutions are the (scalar) complex functions that
would successfully describe the matter waves in a relativistically covari-
ant fashion. He was not successful because his relativistic wave equa-
tion did not incorporate an equation of continuity that, in turn, would
yield a law of conservation of electric charge. It was Schrodinger’s idea
that the discovered nature of electrons, described as (complex func-
tion) matter waves, must be ‘buried in’ the real number expression
of charge density and current density sources of Maxwell’s equations
for electromagnetism. The natural relativistic covariance of Maxwell’s
equations very likely led Schrédinger to require a relativistically co-
variant expression of his wave equation, leading to the source terms of
the Maxwell equations.

Although he intended eventually to find a relativistic expression
for his wave equation, for these reasons, he did initially find a non-
relativistic form of the wave equation that incorporated a continuity
equation, thus leading (in the nonrelativistic limit) to an equation of
continuity and the required conservation of electric charge.

Nevertheless, the rest of the physics community, led by Niels Bohr,
Werner Heisenberg and Max Born, interpreted Schrédinger’s nonrela-
tivistic wave equation of continuity that accompanied the Schrodinger
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wave equation as a law of conservation of probability. The interpreta-
tion of quantum mechanics then came to the positivistic view of the
Copenhagen school, wherein the matter wave — the complex function
probability amplitude (the solution of the Schrédinger wave equation)
became central. It was to be tied to the macro-observer’s measure-
ment of the properties of matter, in the context of a probability cal-
culus. Thus, contrary to Schrédinger’s own interpretation, quantum
mechanics became a theory of measurement — asserting it to be the
foundational feature of the laws of elementary matter.

Schrodinger and Einstein, as well as Planck and de Broglie, were
unwilling to accept the ‘new physics’ — a positivistic view wherein the
laws of nature are laws of chance, and where the only reality about the
electrical properties of elementary matter is the subjective measure-
ment of its properties by macro-observers, expressed in the context of
a probability calculus.

Not long after the experimental and theoretical discoveries of the
wave nature of matter, Paul Dirac discovered a way to express the
Schrodinger wave equation that was compatible with the symmetry
requirements of special relativity theory. This required going from the
(single component, complex) scalar form of the wave equation to the
(two or four component complex) spinor form of the wave equation.
The Dirac spinor wave equation was then covariant under the Poincaré
group of special relativity, in addition to incorporating an equation of
continuity to accompany his wave equation.

As we discussed in the preceding chapter, when the reflection sym-
metry transformations are removed from the covariance group of the
Klein—Gordon equation (3.27) (which is in turn constructed by using
Schrodinger’s operator equivalents of energy and momentum in the
‘classical’ relativistic equation E? = p?c® + m204), it factorizes into
the following pair of two-component spinor equations:

(690, + I)n = —my (4.1a)
(6™0, + I")x = —mn, (4.1b)

where x = &7 (henceforth the overline stands for the complex conjugate
of the function) is the time-reversed spinor variable, or in a different
convention, the space reflection, where one multiplies the right-hand
sides of (4.1a) and (4.1b) by i. Units are chosen so that h/27 = 1 and
¢ = 1, and m is the inertial mass of the particle described by the spinor
field (n, x). Conventionally, the value of the mass term is determined
by solving the equations (4.1a) and (4.1b) and then fitting a term
dependent on mass, such as mc?, with the data. One then inserts this
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mass value in the spinor wave equations (4.1a) and {(4.1b). This is in
contrast with deriving the value of m from first principles. The function
I in the wave equations (4.1a) and (4.1b) is the ‘interaction’ term that
is due to all of the ‘other matter’ of the closed system that couples to
the matter represented by the solution (7, x). If the latter spinor field
is labeled by the superscript (i), as in (7%, ), then

Ii 21(77(1)7 X(l): 77(2)7 X(Z)a 77(3)7 X(S)a Ty 77(7;71)7 X(i_1)7 W(H_l)? X(H_l)a T ) :

This symbolizes the dependence of the given matter field on all of the
other matter fields of the closed system, in accordance with the Mach
principle.

What Dirac did next was to bring back reflection symmetry by
combining the two-component spinor equations (4.1a) and (4.1b) into
a single four-component (bispinor) wave equation

OHou+ 1Dy =—my, (4.2)

where v* (the Dirac matrices) are 4 x 4 matrices that are particu-
lar combinations of the Pauli matrices o % (k = 1,2,3). But the
bispinor Dirac equation (4.2) is again based on the reducible repre-
sentation of the Poincaré group, since it entails reflection symmetry,
which is not required of the symmetry of special relativistic covari-
ance, as exhibited in the Lie group that is the Poincaré group in terms
of its irreducible representations. Indeed, the most general irreducible
expression of relativistic quantum mechanics, in special relativity, is
obtained by removing the reflection elements once again, thus return-
ing to the irreducible form (4.1a) and (4.1b) of wave mechanics, which
is called the Majorana equation. More of the details of this discussion
can be found in [117].

Thus, (4.2) — the Dirac equation — is a reducible form of relativistic
quantum mechanics. The two-component spinor field equations (4.1a)
and (4.1b) are the irreducible form of relativistic wave mechanics. As
such, it is the form (4.1a) and (4.1b) of the wave equation that contains
the maximum predictions of this field theory. In reducible forms such
as (4.2), some of the predictions of the theory are masked, such as
parity violating interactions in the microscopic domain.

Since this is a linear formalism, the principle of linear superpo-
sition applies, implying that any sum of solutions of the equations
is another possible solution. This feature is conducive to the formu-
lation of a probability calculus, since this is a required feature of
probabilities. It was then Max Born’s prime motivation to interpret

e
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Schrodinger’s nonrelativistic wave mechanics or relativistic wave me-
chanics of Dirac/Majorana as a probability calculus. He found that as
such, quantum mechanics could be couched in the formal expression
of a linear Hilbert function space as soon as one assumed that the
solutions are square integrable, with the square being the product of
a probability amplitude (a complex function) and its complex conju-
gate, thus having only positive values. Then, with normalization of
these squares for each state of the microsystem, they could be repre-
sented in terms of combinations of probabilities, whose sum must be
equal to unity.

It was then Bohr and Heisenberg who interpreted quantum mechan-
ics as a subjective theory of measurement, in the context of probabil-
ities, taken as the final form of a fundamental explanation of matter
in the microscopic domain.

From a topological point of view of the most primitive (irreducible)
formulation of quantum mechanics (4.1a) and (4.1b) in special rela-
tivity, one may interpret these two-component spinor equations as a
mapping of one type of spinor 77 onto its time-reversed spinor x. The
mass parameter m is then taken to be a measure of this mapping.
The aim now is to derive (rather than insert) the mass associated with
the matter wave by re-expressing the relativistic wave equations (4.1a)
and (4.1b) in general relativity, without the insertion of the parameter
m. That is, the plan is to identify the most primitive expression of
the inertial mass of matter with a mapping between the time-reflected
spinor fields in a curved spacetime and thereby to recover a field that
plays the role of the inertial mass m.

When this is done, it will be seen that the mass field, so derived,
is a positive definite function of the space and time coordinates, since
it is the modulus of a complex variable. This result implies that in
the Newtonian limit of the theory, in the flat spacetime, the gravita-
tional force can only be attractive. This is an empirically correct result
that has never been predicted from first principles, either in Newton’s
theory of universal gravitation or in Einstein’s tensor formulation of
gravitation in the reducible form of general relativity. It will also be
seen that, in accordance with the Mach principle, the inertial mass of
observed matter vanishes as the total environment of this matter cor-
respondingly vanishes. This follows as a consequence of the approach
of the curvature of spacetime (in representing the existence of matter)
to a flat spacetime (representing, in principle, an empty spacetime — a
perfect vacuum, everywhere).
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4.3 Inertial Mass from General Relativity

To carry out the program of deriving the inertial mass of matter from
general relativity, we set m = 0 on the right-hand sides of (4.1a) and
(4.1b) and express the left-hand sides of these equations in terms of
operators in a curved spacetime. Thus, the global extension is

Uﬂauﬁ — ¢'n., = Q‘u(ap + Q,u)ﬁ .

This extension of the spinor equations (4.1a) and (4.1b) to the curved
spacetime, with m = 0, then yields the spinor wave equation and its
time-reversed equation

"8, + 92,) +I|n=0, (4.3a)
" (Ou+ )+ I]x =0, (4.3b)

respectively. If we are to derive the mass field that plays the role of
m in the special relativistic equations (4.1a) and (4.1b), it must then
reside in the spin affine connection field {2,,.

Consider the following Hermitian and anti-Hermitian matrix fields,
that are the contraction of the quaternion ¢* and the spin affine con-
nection fields in a Riemannian spacetime:

Ay =q¢"2, +he.. (4.4)
It follows from the time-reversal T of the quaternion fields

7' = gV = eqt'e (4.5)
that the time reversal of the spin affine connection is

T = -1, . (4.6)
It then follows that

TAy = +elye (4.7)
and

(TAL) Ay = %|det Ay |exp(id)o? (4.8)
where the vertical bars denote the absolute value and

6=0 if detA. <0, d=m if detAL>0.

Let us now set up (4.8) in terms of the matrix equation

=

. EE
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[(TAL)As]n = £(204)*nexp(id) . (4.9)
This matrix equation may now be factorized as follows:
Ay [nexp(—id/2)] = 2ay [x exp(id} )] , (4.10a)
TAy [xexp(i64)] = 204 [nexp(id/2)] , (4.10b)
and
A_{nexp(—id/2)] = 2ia_ [xexp(id_)] , (4.11a)
TA_[xexp(id_)| = 2ia_[nexp(i§/2)] , (4.11b)
where
(204)% = | det A4 | . (4.12)

The factorization (4.10a), (4.10b), (4.11a) and (4.11b) is unique only
up to the arbitrary relative phase between the spinors 5 and x. Thus,
this factorization is independent of the arbitrary phase factors above,
exp(idy) and exp(id_) that are incorporated in y. Since these phases
may be adjusted continuously without altering the forms (4.10a),
(4.10b), (4.11a) and {4.11b), the latter equations may be grouped so
that the relative phase between the time-reversed spinors in (4.10a)
and (4.10b) are the same as in (4.11a) and (4.11b). In this way, (4.10a)
[or (4.10b)] may be added to (4.11a) [or (4.11b)] without the need to
explicitly specify their relative phases.

Combining the definition of the matrix fields Ay shown in (4.4)
with the sum of (4.10a) and (4.11a), we obtain the following relation
between the time-reversed spinor variables:

¢"f2um = (ay +io)x = Aexp(iv)x , (4.13)
where [with (4.12)],

A =mod({ay +ie_) = %(|det/1+}+{det/1_|)1/2 (4.14)

is the modulus of a complex variable. A plays the role of the iner-
tial mass in the quantum mechanical equations. The argument of the
complex variable (a4 + ic_) is the function

L a 1 (| det A_] 1/2
=tan ! == = tan L [ T .
p(@) = tan = ! ()

The geometrical mapping between the time-reversed spinors 7 and y
that we sought is then given in (4.13).
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Finally, the time-reversed equation that accompanies (4.13) is ob-
tained by taking the complex conjugate of the latter equation and
applying the Levi-Civita symbol from the left and the right, to give

eq'eel2jeen = Aexp(—iy)exX .

Combining this with (4.5), (3.6) and (4.6), and the time-reversed spinor
X = €7, it follows that

—q“*QLX = exp(—iv)n . (4.15)

4.4 The Matter Field Equations in General Relativity

The generally covariant extension for the matter field is given in (4.3a)
and (4.3b). With (4.13) these equations take the form

¢"ny = " Oun + Aexp(iv)x = —In . (4.16)

With (4.15), the time-reversal of the spinor equation (4.16) is

" xp = ¢ 0ux + Aexp(—iy)n = —I"x . (4.17)

We see, then, that if the phase factors exp(+iy) could be ‘transformed
away’ from (4.16) and (4.17), they would become, precisely the gener-
ally covariant form of the two-component spinor Dirac equation (the
Majorana form} for quantum mechanics in a curved spacetime. We
will find in the next section that this does happen when we add gauge
covariance to the underlying symmetry of the theory.

4.5 Gauge Covariance

It was discovered at an early stage of field theories that the incorpo-
ration of a continuity equation with the rest of the laws of nature is a
necessary and sufficient consequence of the addition of gauge covari-
ance to the relativistic spacetime covariance. The gauge symmetry, to
be defined below, is then equivalent to the incorporation with the laws
of nature of the continuity equation in special relativity, and its global
extension in general relativity:

Bu(nfan) = 0 — (nq"n), = 0. (4.18)
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"The explicit gauge transformations follow from this analysis: using the
product rule for covariant differentiation as well as ordinary differen-
tiation, we have

[exp(—iv/2)], =ny.exp(~i7/2) — snyuexp(—iv/2),  (419a)

; 2
Oy [ exp(—iv/2)] = (Bun)exp(—iv/2)~ -;-n(aw)exp(—iv/ 2). (4.19b)

Multiplying (4.16) on the left with exp(—ivy/2), using (4.19a) and
(4.19b) and subtracting the term

1. .
51¢" (Dum)nexp(—iv/2)

from both sides of the equation, it follows that
. 1, .
¢*[exp(—1v/2)],, + Fig"nexp(—iv/2) (v — Bu)
= ¢*0y [nexp(—iv/2)] + Aexp(—iv/2)x
. 1, )
= — | Inexp(~iv/2) + 5ig"(8uy)nexp(~iv/2)| .

Since the phase y(z) is a scalar field, ., = 9,7. Thus the preceding
equation takes a form without the explicit appearance of the phase
factor as follows:

a1, = "0’ + A = —I'1) (4.20)
where

n' =nexp(—iv/2), x = xexp(iv/2), (4.21a)

I'=1+ %iq”@u'y . (4.21h)

The invariance of the formalism with respect to the transformations
(4.21a) and (4.21b) is called gauge covariance. Equation (4.21a) is
called a gauge transformation of the first kind, and (4.21b) is called
a gauge transformation of the second kind. The latter corresponds to
the gauge invariance of classical electromagnetic theory. The former
transformation under phase change (4.21a) corresponds to the nec-
essary incorporation of the equation of continuity (4.18) in the field
theory in accordance with Noether’s theorem.

A similar result to (4.20) is obtained for the time-reversed equation.
Thus we have the following set of two coupled two-component spinor
equations in the curved spacetime:
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(¢"0u +1I)n=—Xx, (4.22a)
(@ 0u+I")x = = . (4.22b)

Thus we have derived from general relativity the fundamental struc-
ture of the equations of quantum mechanics (4.22a) and (4.22b). In the
special relativistic limit of these equations we arrive at equations (4.1a)
and (4.1b) in the flat spacetime — corresponding to the Majorana two-
component spinor equations or Dirac’s four-component bispinor equa-
tion (4.2). As v/c — 0, these equations, in turn, take the Schréodinger
form of nonrelativistic quantum mechanics, as we have discussed pre-
viously. Thus we have accomplished our task — showing that the formal
expression of a covariant field theory of the inertia of matter takes the
form of quantum mechanics in the curved spacetime, and then in ap-
proximation, in the linear limit of special relativity, the Dirac equation,
and in the nonrelativistic approximation, Schrédinger’s wave equation.

In the limit, wherein there is a very weak coupling to the ¢ th com-
ponent matter field, n{® of a closed system of matter, the interaction
functional I(n, x) ‘loses sight’ of its matter field dependence and may
be approximated with the (‘smeared’) function in the space and time
coordinates, I(z). In the final (in principle unachievable) limit, where
the interaction of the 7th matter field and the rest of the matter of
the closed system vanishes, i.e., I(z) — 0, one is left with the vacuum
equation for the 7 th matter field.

In both of the above limits, I(n) — I(z) and I — 0, the nonlinear
spinor matter field equations (4.22a) and (4.22b) take on the linear
approximation, as in ordinary quantum mechanics. In this limit only
1s the principle of linear superposition applicable. It is here that one
may use the Hilbert function space, as we discussed earlier in terms
of a probability calculus, as a linear approximation for the function
space of nonlinear fields of general relativity.

4.6 The Elementary Interaction

The physical reason for the necessary incorporation of the equation of
continuity in the generally covariant field theory of matter, and thus
the requirement of gauge symmetry, is the interpretation of the spinor
matter field 7 as a weighting amplitude for the interaction within
the closed system of matter. The elementarity of ‘interaction’ here
replaces the elementarity of ‘particle’ in the atomistic theories, such
as the quantum theory. The conservation of interaction then replaces
the conservation of particle in the holistic view of the field theory of
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matter in general relativity. This feature will be stressed in Chap. 5,
where we will concentrate on the many-body matter system and how
this nonlinear field theory, even in the special relativity limit, differs
from the linear quantum theory for many body systems. A particular
derivation in Chap. 5 will focus on the origin of the Pauli exclusion
principle.

4.7 Proof of the Attractive Gravitational Force
in the Newtonian Limit
and the Oscillating Universe Cosmology

The geometrical relationship between the spinor matter fields (n, x)
is in terms of the continuous field variable A(x) — the modulus of a
complex function (4.14). Thus the variable A, which plays the role in
this theory of the inertial mass of matter m, is positive definite — it
can only be positive under all circumstances.

In the Newtonian limit of this theory applied to gravitation, the
force of gravity between the ith and jth matter components of a
closed system is proportional to the product of ‘mass’ components A;
and A;. Since they each have positive value, the Newtonian force of
gravity, Fq = GA\iA;/ 7’2-23- can have only one polarity. As we structure a
macro-quantity of matter, such as the Sun, its mass must be the sum
of micromasses: mg = > . A\;, and the mass of an interacting body,
such as the Earth, is the sum over its micromasses: mg = > . A;. The
magnitude of the gravitational force between the Sun and the Earth
is Gmsmg /r%E, where rqp is the separation between the centers of
mass of the Sun and the Earth. G entails the sign of the gravitational
force: attractive if it is negative and repulsive if it is positive. Because
the micromasses that make up the mass of the Sun and those that
make up the mass of the Earth are always positive, macromasses of
the Sun and the Earth, mg and mg, can only be positive. Thus, the
sign of G determines the sign of the gravitational force. If it is seen to
be negative (attractive force) in one case it must be attractive in all
cases. Because of the empirical observation of the attractive nature of
the Newtonian gravitational force in, say, the interaction between the
Sun and the Earth, it must be attractive in all cases.

This is a proof of the attractiveness of the Newtonian gravitational
force, as a limit of the gravitational force in general relativity. This re-
sult has never been proven before, either in Newton’s theory of univer-
sal gravitation or in Einstein’s tensor formulation of general relativity.
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Nevertheless, when we are not in the Newtonian approximation, the
gravitational force in general relativity relates to the affine connection
field 1,7, as it appears in the geodesic equation (2.21), interpreted
as an equation of motion of a material body. Since the affine connec-
tion is not a positive-definite function, it could be positive (denoting
a repulsive force) under one set of physical conditions, and negative
(denoting an attractive force) under other physical conditions

If the matter of the closed system is sufficiently dense and the rel-
ative speeds of interacting matter are close to the speed of light, the
dominant force between massive bodies would be repulsive. This could
explain the ‘expanding universe’ — the galaxies of the universe are seen
to be moving away from each other — in a state of ‘explosion’. Then,
as the matter of the universe becomes sufficiently rarefied, an inflec-
tion point is reached where the dominant repulsive force changes to
a dominant attractive force. The matter of the universe would then
implode until matter has become sufficiently dense, when there would
be another inflection point, where the implosion changes to an explo-
sion — the universe then expands once again, and so on ad infinitum.
This is the oscillating universe cosmology. These ideas will be gone
into further in Chap. 8, where we will discuss ideas of cosmology in
the context of this field theory.

4.8 From the Mach Principle
to the Generalized Mach Principle

As remarked earlier, the results of this analysis are in accordance with
the requirement of the Mach principle. For as the environment of any
‘observed matter’ should be depleted toward a vanishing quantity of
matter, the curvature of spacetime, representing the existence of the
matter in the environment of the ‘observed body’ would correspond-
ingly vanish. In accordance with the relationship (4.14), the matrix
fields (2, and A+ would both vanish and the mass of the ‘observed
matter’ vanishes, A — 0.

Of course, one cannot observe any manifestations of the mass of a
single particle in a vacuous universe. But in principle one can observe
the effect of depleting a material medium toward the vacuum state, to
see if this causes a corresponding diminishing of the inertial mass of
some observed matter — say an elementary particle in a high energy
collision event.

in Chap. 3, on electromagnetic phenomena in general relativity, we
saw that the electromagnetic field of an isolated charged body simi-
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larly vanishes. This result supports the generalized Mach principle —
the assertion that all previously considered ‘intrinsic’ properties of el-
ementary matter are instead measures of coupling of this matter to its
total environment. Thus if the environment of an observed element of
matter vanishes, the coupling vanishes and the previously considered
‘intrinsic” qualities of this matter correspondingly vanish. With this
view, then, the atomistic model is rejected — all intrinsic properties of
the atom of matter, such as inertial mass, electric charge, magnetic mo-
ment, etc., are ‘exorcised’, thereby supporting the continuum, holistic
model of matter, according to the theory of general relativity.



5. Electromagnetism

After the eighteenth and nineteenth century discoveries of the relation
between the electric charge and its motion on the one hand, and the
electric and magnetic fields of force on the other, Faraday interpreted
the fields of force, rather than singular sources of these fields, as the ba-
sic way of representing charged matter. Maxwell then formulated these
relations between charged matter sources and the associated fields of
force in terms of partial differential equations, now called Maxwell’s
equations. These were then discovered to be the laws of electromag-
netism, including the phenomenon of optics.

As in the case of Einstein’s field equations, Maxwell’s equations
are interpreted in the theory proposed in this monograph as identi-
ties — the changes in field intensities on the left-hand sides of these
equations are another way of talking about the charge and its motion
on the right-hand side, and vice versa. The source-free solutions of
these equations (free radiation and the ‘photon’) are then rejected in
this view as unphysical. They are replaced here with the solutions for
charged matter, very far from their locations.

It is argued that the symmetry of the theory of relativity requires
that when charged matter (an emitter) sends a signal to other charged
matter (the absorber), R cm away, the absorber must simultane-
ously send a signal to the emitter. (This is called delayed-action-at-a-
distance.) Both signals must then arrive simultaneously at the matter
called the emitter and that called the absorber.

The underlying symmetry of relativity theory — without the re-
flections in space and time — implies that the expressions of the elec-
tromagnetic field equations must be in terms of spinor variables and
quaternion operators, as in the case of gravity, discussed in the previ-
ous chapter. Thus, the factorization of Maxwell’s equations from the
standard vector form to a spinor form is demonstrated as the most
general expression of the laws of electricity and magnetism in accor-
dance with the symmetry group of relativity theory. Generalizations
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then appear that reveal features of the weak interaction along with the
standard electromagnetic interaction.

At this stage, we have demonstrated that a unification of the grav-
itational, inertial and electromagnetic manifestations of matter is in
terms of a spinor/quaternion formalism that is prescribed by the sym-
metry group of the theory of relativity. Such unification implies that
this is a single field for a closed system in which the gravitational
and electromagnetic forces of matter on matter are implicit, as is the
inertial manifestation of matter that is acted upon. There are also fur-
ther hints of the implicit inclusion of the short-range weak and strong
(nuclear) interactions in the nuclear domain.

5.1 Introduction

In the preceding chapters we have shown that the inertial, electro-
magnetic and gravitational features of matter emerge from the theory
of general relativity as a truly unified field theory. We saw that the
inertial feature of matter in particular underlies all of the force man-
ifestations, including gravitation and electromagnetism as well as, in
principle, other forces not yet explored in detail, such as the short range
forces called weak and strong forces in the nuclear domain. In addition,
as a bonus, the generally covariant field theory of inertia leads, in a
linear approximation, to the Hilbert space structure of quantum me-
chanics. In this chapter, we will explore in detail the electromagnetic
force manifestation of matter, exploiting the ideas discussed thus far:

e the generalized Mach principle,
e the implications of the irreducible symmetry group of the theory of
relativity.

It was discovered by Michael Faraday and James Clerk Maxwell,
in the 19th century, that a general expression for the laws of electro-
magnetism that incorporates all of the discovered empirical relations
between the electric and the magnetic field intensities and the charge
density and current density sources of these fields, has the form of
Maxwell’s field equations in special relativity:

ol =4rj, , (5.1a)
0PF, =0, (5.1b)

where the square bracket in (5.1b) denotes the cyclic sum over the
indices, from 0 to 3. The zero on the right hand side of (5.1b) denotes
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the absence of magnetic monopoles in this field theory, as we have

shown in Sect. 3.5.2.
The global extension of the Maxwell equations (5.1a) and (5.1b) to

the curved spacetime is as follows:

F, " =d4rj,, F, #—gq,

H [

where the covariant derivative of the second-rank tensor is

F B;'Y — afyFaﬁ + FangB + FB»};Fap ,

&

and I'.Y are the ordinary affine connection coefficients.
The electromagnetic (antisymmetric) tensor in (5.1a) and (5.1b) is
the following combination of electric and magnetic field components:

Fio=—Fn=1IH3, Fg=-Fy=-Hy, Foy=—Fyp=1I,
Plo=—Fn=FE, Fy=-Fp=FE, Fy=—Fp3=EF;,
£, =0. (5.2)
Thus, in terms of the electric and magnetic variables E and H ,
Maxwell’s equations (5.1a) and (5.1b) take the vector form
VXxH-3E=4rj, V-E=dnp, (5.3a) |
VXE+H=0, V-H=0. (5.3b)

A manipulation of (5.3a) and (5.3b) yields the equations of conserva-
tion of energy (E% + H?) called Poynting’s equation:

1 1
—(F*+H)+ —V-(ExH)=—-E-j, (5.4)
8w 4
and the conservation of momentum (E x H) equation:
1
IaO(E XH)=pE+jx H. (5.5)
s

The right hand side of (5.5) is the Lorentz force density. It predicts
how the charge density p and the current density 7 couple to the
electric and magnetic fields. Tt is interesting that this equation had
to be added to Maxwell’s equations to predict the equation of motion
of charged matter in an electromagnetic field. On the other hand, the
equation of motion of matter in general relativity theory, under the
influence of the gravitational field is inherent in the Einstein metrical
field equations for gravity, i.e., no extra equations of motion need be
added. The main reason for this is the nonlinearity of Einstein’s field
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equations in contrast with the linearity of Maxwell’s field equations
for electromagnetism.

Another form of Maxwell’s equations (5.1a) and (5.1b) is in terms
of the electromagnetic four-potential, as follows:

DA, =4mj, , (5.6)

where O = (8")% — V2 is the d’Alembertian (wave) operator. Equation
(5.6) is subject to the Lorentz gauge:

O“A, =0, (5.7)

In terms of this formulation, the electromagnetic tensor F),, is, by
definition, the four-dimensional curl of the vector potential:

F = 8,4, — 8,4, . (5.8)

It is the left-hand side of (5.8) that normally relates to the observable
electric and magnetic fields, rather than the four potential. However,
researches of Bohm and Aharanov! indicate an experimental situation
in the quantum domain whereby there are non-zero observable compo-
nents of the four-potential at locations where the electric and magnetic
field intensities are zero.

The standard field equations for electromagnetism (5.1a) and (5.1b)
constitute a vector representation of the theory because these equa-
tions transform as a four-vector representation of the symmetry group
of relativity theory. These equations are covariant under the continu-
ous transformations of space and time (the Poincaré group in special
relativity) — which is the requirement of the theory of relativity — as
well as reflections in space and time — which is not a requirement of
the theory. Because of the latter inclusion of discrete transformations
in the symmetry of the field equations (5.1a) and (5.1b), the symme-
try group of these equations is reducible, with respect to the Poincaré
group of special relativity theory. We will see later on that the irre-
ducible group, without the reflections, leads to a factorization of the
field equations (5.1a) and (5.1b) to a two-component spinor formalism
for the laws of electromagnetism.

The invariants of the vector formalism for the Maxwell theory are

I(scalar) = F,, F* < E? — H? (5.9a)
I>(pseudoscalar) = 5WAPF"‘”F’\" «— FE -H, (5.9b)
I = 4, <= p* — 57, (5.9¢)

IL=j"A, <= pAy—7- A, (5.9d)

''Y. Aharanov and D. Bohm, Phys. Rev. 115, 485 (1959). Also see: C.A. Mead,
Collective FElectrodynamics (MIT, 2000).



5.2 Interpretation of Maxwell’s Equations in the Holistic Field Theory 83

where the latter relates to the structure of I3 since the solution A,
transforms in the same way as the current density Ju- That is to say,
the particular solution of (5.6) is

A, (z) = /jﬂ(:v’)G(x — 2)ds’ | (5.10)

where G(z — z') is the Green’s function for d’Alembert’s equation
(5.6). This solution will be discussed further in the context of delayed
action-at-a-distance in the concluding section of this chapter.

5.2 Interpretation of Maxwell’s Equations
in the Holistic Field Theory

This brings us to the interpretation of Maxwell’s equations in the con-
text of the holistic field theory for the closed system. Their logical
meaning is that the field intensity solutions on the left-hand side of
the equations (5.1a) and (5.1b) [or (5.3a) and (5.3b)] is another way of
talking about the source fields, on the right-hand sides of these equa-
tions. That is to say, these equations are interpreted as identities. Thus,
in the limiting case of the vacuum, where there are no sources any-
where, there could not be any meaningful electric and magnetic field
solutions anywhere. The radiation solutions of Maxwell’s equations —
the homogeneous solutions — are then excluded as not being physically
pertinent in this holistic field theory of a closed system. The logical
implication is that the quantum of the source-free radiation field — the
photon — is also excluded as a bona fide elementary particle in nature.

1t follows, then, that in this model, the only meaningful solutions of
Maxwell’s equations for electromagnetism are the particular solutions.
In terms of the vector potential form of these equations (5.6), the par-
ticular solutions are given in (5.10). The invariant (scalar) interaction
— the interaction Lagrangian density — that leads to the Lorentz force
density, has the structure:

s = Lun(@) = (@) A(0) = 1(2) [ ua)Glo — #)a%! . (5.1)

The total interaction Lagrangian then takes the form of a current—
current coupling term:

Lo = f Logdts = f (@) ju(2)G(z — 2 )d ' de . (5.12)
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This portion of the electromagnetic interaction Lagrangian is then
proportional to the universal constant e?, since each of the current
density factors is proportional to the charge of the electron e. With
the units we have chosen, h/2m = 1 = ¢, the universal electromagnetic
coupling constant is the fine structure constant 2me?/he &~ 1/137.

5.3 The Elementary Interaction Formulation

In accordance with our preceding discussion wherein we interpret
Maxwell’s equations as identities, it follows that for each interact-
ing component of the closed system, there must be a separate set
of Maxwell equations. That is, in the form (5.3a) and (5.3b), we must
insert a superscript on each of the fields of the interacting components,
as follows:

V x H® — °B® = 47 v .E™ = 47p
Vx E®4'H® =0, V.HW=0. (5.13)
The conservation laws (5.4) and (5.5) then take the form

8%80 SN EWxHO =3 "N M EY 4§ H Y, (5.14a)

v uFv v uFv
-3 Y B0 - 1 a0 SN [EW@-E) 1+ HW.H))
v uFv e CRRITSY
+$ v. SN E@xH® (5.14b)
v uFu

The restriction above that u # v indicates that a field cannot interact
with itself, i.e., there is no self-energy defined in this theory. This view,
originally attributed to Faraday, eliminates the problem of the infinite
self-energy of the electron, as Lorentz explored it in the context of the
model of the discrete, singular electron.

Because of the linearity of the Maxwell field formalism, the net
electromagnetic fields for the n-component closed system of charged
matter, are the vector sums

E=Y E®, H=Y HY (u=1,...,n). (5.15)
u U
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5.4 A Spinor Formulation of Electromagnetic Theory
in Special Relativity

As we discussed earlier, the underlying symmetry group of the theory
of special relativity is the 10-parameter Lie group — the Poincaré group.
The Maxwell field formalism (5.1a) and (5.1b) [or equivalently (5.3a),
(5.3b) and (5.6)], is a reducible representation of the group because it
includes the discrete transformations in space and time — which is not
a requirement of the theory — as well as the continuous transformations
in space and time — which is a requirement of the theory.

Just as in Chap. 3, where we factorized Einstein’s tensor formula-
tion of general relativity (10 relations) by dropping the discrete reflec-
tions in space and time, to achieve the irreducible quaternion structure
of the theory (16 relations), so we may factorize the vector representa-
tion of the Maxwell field theory (5.1a) and (5.1b) to achieve the spinor
representation of electromagnetic theory. In relativistic quantum me-
chanics, this occurs for the same reason, wherein the Klein—CGordon
equation factorizes to a pair of two-component spinor equations, as we
saw in Chap. 4, revealing the (relativistic) Dirac electron equation, in
the Majorana form of two coupled two-component spinor equations.

Consider the following structure of the electromagnetic field inten-
sity in terms of the complex components

Gk:(H—I—iE)k, Gop=0 (k=1,2,3),

where H is the magnetic field intensity and E is the electric field
intensity of charged matter.

Let us now structure the two-component spinor variables as fol-
lows, in accordance with the columns of a quaternion ¢ whose zeroth
component is zero:

3 1_:.2
0 1,2 .3 z - —

Q(x :0’$’m’$)=<az1+ix2 _ 3 ):0-1“. (5.16)
We will consider the identification between the vector G and the two-
component spinor fields ¢; and ¢o, and the identification between the
current density four-vector j, and the two-component spinor fields 73
and 75 as follows:

_ G _ 4Pt
¢1“(G1+1G2)’ h= 4m(j1+ij2 ’

(5.17)
. G1 — iG2 At jl - ij2
¢2—( —G3 ) 5 TQ— 47T1(p_j3 .

85

S—=a ==
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1t is readily shown that the two-component spinor field equations
#,uba(r) = Talz) | (5.18)

where o = 1, 2 are two independent two-component spinor equations,
are in one-to-one correspondence with the Maxwell field equations
(5.3a) and (5.3b), where the first order quaternion differential oper-
ator is

oo, =ad -0 - V. (5.19)

o is the unit two-dimensional matrix and &% (k = 1,2, 3) are the three
Pauli matrices. These are the four basis elements of a quaternion, as
we saw in Chap. 3.

It is important to note at this juncture that the identification (5.17)
between the two-component variables (¢4, 1) of the spinor represen-
tation of electromagnetism and the variables (E, H, p, ) of the vector
representation are not form-invariant under the transformations of the
Poincaré group. That is to say,

z— 1 = galz) — @) # (B H),

where (1, H') = F},, = ol F), are the transformations of a second-

rank (covariant) tensor and aﬁ are the vector transformations under
the Poincaré group. This lack of form-invariance is, of course, due to
the fact that the latter are transformations under the vector represen-
tations of the group and the former are inequivalent to these — they
are the transformations under the spinor representations of the group,
as we discussed in more detail in Chap. 3.

This does not raise any difficulties because the physical requirement
is that it is the observables, in terms of the conservation laws and the
invariants of the field theories, that must be duplicated in the different
reference frames, but not the field equations themselves. This will be
illustrated below.

5.5 Invariants and Conservation Equations
in the Spinor Formalism

The spinor formulation of the field equations for electromagnetism
(5.18) in special relativity is a nonabelian theory, since it entails non-
commuting variables. It contains all of the physical predictions of the
standard vector formulation. However, the spinor formulation (5.18)
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entails additional conservation laws and invariants that have no coun-
terpart in the usual (abelian) vector expression of electromagnetism.
Thus this spinor formulation is a true generalization of the usual
vector—tensor field theory of Maxwell.

In special relativity, covariance of the spinor field equations is main-
tained if and only if ¢, transforms under the Poincaré group as the
matter spinor field  (Chap. 4) and the source field T, transforms as
its time-reversal y. That is,

, { bal(r) — O4(3') = S¢ala) |
r—r —

(5.20)
Yo(z) — Yi(a) = (ST) "' Tula)

where the spin-1/2 representations {S} of the Poincaré group are re-
lated to the Lorentz transformations {a};} according to the (two-to-
one) relation

STotS = atoV | (5.21)

with the (double-valued) solutions
1
S(6,,) = exp [ia“ayé’w} : (5.22)

In (5.22), the indices (u, v) are not summed and 8,,,, are the parameters
that characterize the continuous transformations of the group.

It follows from the algebra of spinors that the following forms are
invariants:

J1 = gregzﬁl and JQ = Tr}r&‘Tl y (523)

where ¢ is the two-dimensional Levi—Civita symbol. Substitution of
(5.17) into (5.23) gives the following identification:

S =FE*+H*+%E-H, Jy=j>—p>. (5.24)

These terms correspond with the standard invariants of electromag-
netic theory — the real part of J; is the scalar invariant and the imagi-
nary part is the pseudoscalar invariant of the conventional formalism.
They appear here as a single complex invariant because of the rejec-
tion of reflection symmetry in this formalism. The second invariant
Ja is the modulus of the current density four-vector of the standard
Maxwell formalism.

In addition to the invariants J; and .Jo, the transformations (5.20)
indicate the following four complex number (eight real number) invari-
ants:
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Iaﬁ = ¢LT5 (a?lg = 1: 2) . (525)

These have no counterpart in the standard Maxwell formalism.
Let us now investigate the conservation equations that emerge from
these invariants. Multiplying (5.18) on the left with the Hermitian

adjoint spinor ng, we have the scalar equation
B

$horBupa = 65T . (5.26)

Taking the Hermitian adjoint of this equation, interchanging the labels
« and § and then adding the resulting equations yields the following
four complex-number-valued conservation equations:

Ou(bh0" ba) = b + Tl . (5.27)

The right-hand side of (5.27) (eight real number conservation equa-
tions) has the dimension of a force density. This should be compared
with the single force density term — the four-vector source — on the
right-hand side of (5.4) and (5.5) in the standard formulation.

To exhibit the numerical correspondence between the conservation
equations (5.27) and (5.4) and (5.5), consider the sum of equations
(5.27) with @ = 8 = 1 and with a = [ = 2. It is readily verified that
this sum yields the energy conservation equation (5.4). Other linear
combinations yield the momentum conservation equation (5.5).

It should be re-emphasized that the eight real number force density
equations on the right-hand side of (5.27) are separately scalars. That
is, they have the same form, individually, in all Lorentz frames, rather
than transforming together, as in the standard vector formalism, as a
four-vector.

The generalization from the vector formalism of the Maxwell theory
to the spinor formalism will lead to extra predictions of the theory.
These will be discussed further in Chap. 7, in regard to atomic and
elementary particle physics applications.

5.6 Lagrangian for the Spinor Formulation
of Electromagnetism

The principle of least action for the electromagnetic laws is as follows:

O(Sem + Sm) =0,
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where Sy, is the matter part of the action function, depending on the
gravitational and inertial variables, and S.y is the electromagnetic
part of the action, with the form

Sem—/Lemda:—lgM/Z 1)L (0 0upa — 20,) + hoc.]d*z
(5.28)

where the sum is taken over the two terms o = 1, 2.

The variation of L.y, with respect to the spinor variables ¢, gbL and
their derivatives, as the variational parameters, then yields the spinor
field equations (5.18) for electromagnetism.

The fundamental constant gy does not appear explicitly in the
latter equations since it occurs on both sides of the equation (5.18) so
derived. But this constant does appear in the matter field equations
in terms that have no counterpart in the standard unification of the
matter field equations and those of electromagnetism. When the total
Lagrangian containing the part in (5.18) is varied so as to yield the
matter field equations (4.22a) and (4.22b), by variation with respect
to the matter variables (7, x¥) and their derivatives as the variational
parameters, these variables implicit in the electromagnetic source fields
7., that is, in the part of the Lagrangian

2igm Z D%l T, + hee. (5.29)

contribute a term in the matter field equations depending on gy that
we will explore in detail later on. It is shown in Chap. 7 to predict
the Lamb shift in hydrogenic atoms, in numerical agreement with the
experimental data, as well as other physical implications.

The field in (5.29) to the right of the summation sign has the di-
mension of energy density/length. Thus, to give this term the correct
dimension of energy density, the universal constant gy must have the
dimension of length. We will see in Chap. 7 that its numerical value is

gv = (2.087 £0.001) x 107 em . | (5.30)

Thus, a fundamental length appears in the theory as a consequence of
the factorization of the vector—tensor formalism of the Maxwell theory
to the spinor-quaternion formalism. This is a generalization that is
indicated by the irreducible representations of the symmetry group of
the theory of relativity. This is not an ad hoc generalization. It is a
feature that was present at the outset in the irreducible form of the
algebraic structure of the theory of relativity.

e o5TVA
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5.7 Faraday’s Approach and the Mach Principle

According to Faraday’s interpretation of the field as primary for each
constituent of a closed system of charged matter, as well as Mach’s
rejection of any implicit qualities of the ‘things’ of matter, each of
the electromagnetic field equations must have its own ‘label’. Thus
the spinor field equations (5.18), for the uth component of the closed
system must be expressed as

ch9,p =T (u=1,2,...,n). (5.31)

The conservation equations that accompany this spinor field equation
are

0,33 95l = S5 6 +1{Te®] . (5.32)

v uFv UV uftv

It is interesting to note that four of the eight real-number-valued con-
servation equations (5.27) — without the indexing (u,v) — reduce to

= (. This is because of the particular representation chosen, where
the imaginary part of the four complex equations [with «, 8 = (1,1),
(1,2), (2,1), (2,2)] are all identically zero. However, invoking the Fara-
day interpretation with the (u,v) indexing, as in (5.31), the full set of
eight real-mumber-valued conservation equations is recovered. This is
discussed further in [117], Sect. 5.7.

5.8 Spinor Formulation of Electromagnetism
in General Relativity

One may globally extend the preceding spinor formulation in special
relativity to the global domain of general relativity by:

e replacing the constant quaternion basis elements — the unit two-
dimensional matrix and the three Pauli matrices — by the quaternion
fields {¢°(z), ¢"()} (k =1,2,3),

e replacing the ordinary derivatives in the flat spacetime by covariant
derivatives in the curved spacetime.

That is, in the global extension from the flat spacetime,
ol 0uda — qﬂ(x)ﬁba;,u = ¢"(x)(Ou + Qﬂ)¢a =Ty - (5.33)

The covariance of these field equations is prescribed by the spin-1/2
representations {S(x)} of the Einstein group, as follows:
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s —— {¢a($) — ¢ (2") = S(z)palz) , (5.34)
Yalz) — Ti(a) = [S(2)T]ala)

where S(z) is a solution of the global equation in the curved spacetime:

S@)lq” (') 00 5(x) = ¢#(x) (5.35)

The solutions S(z) are the global extension of the spin-1/2 represen-
tations of the Poincaré group (5.22), as follows:

Sy = exp %q“(m)q”(m)ﬁw(x) . (5.36)

In this equation, pu, v = 0,1,2,3 are not summed.

The 16-parameters of these spin-1/2 representations of the Finstein
group ,,,(x) are spacetime dependent, whereas in the flat spacetime
limit (special relativity), they are constants, 2, — 0 and ¢#(z) — o

We will see in Chap. 7 that the expansion of the irreducible rep-
resentations S(z), (5.36), about those of the Poincaré group, (5.22),
as the zeroth approximation, leads in the first approximation to the
‘quantization’ of electric charge.

5.9 Extension of the Spinor Conservation Laws
of Electromagnetism in General Relativity

Consider the linear combinations of the four complex invariants I,z =
$h T3, with

LSS (ol 4 o1). 5.372)
v uto
P(1) = _—ZZ [p5 () 4 glty ] (5.37b)
v uFv
B(2) = ZZ (o) — (W) | (5.37¢)
v uFv
P(3) = ZZ i i) — i) (5.37d)
vV uFv

We can now make up the following four scalar complex invariants:

O() = 5 {@(m) + 2()! +i€[0() — 2] } (5.38)
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where £ is a coefficient to be determined by experiment. It measures
the relative strength of the real (scalar) and imaginary (pseudoscalar)
components of the complex force invariants.

The generalized conservation equation in general relativity then has
the form

(v, p) + I (p) +165(p) — O(p) =0, (5.39)

where (, /I, = are functions of the electromagnetic spinor and quater-
nion metrical field variables. These terms are spelled out in detail in

[117], Sect. 5.12.
A typical set of terms in (5 38) is for g = 0, as follows:

v u;é'v
=T Z Z Z s (W)t 4 Lol (5.40b)
v ouFy o

=(0) = WZZZW” Bl 8]+ 46|, (5.40c)

qua

where A4 = ¢"{2, = h.c. relates to the inertial mass field (Chap. 4)
and

[6810,1¢#657] = 6814 8,05 - B0 q4ey) |

where o, = 1,2 and u,v = 0,1,2,3 refer to the spacetime coordi-
nates.

Under the conditions whereby £ <« 1, so that we may neglect the
(pscudoscalar) = term in (5.39), this equation reduces to the following
conservation equation:

S]], - %[‘9(#) +0(w)'] =0. (5.41)

This is to be compared with the standard electromagnetic conservation
equation in special relativity, in the tensor formulation:

8,T* —FP =0, (5.42)

[SOF

where T is the energy—momentum tensor and is the four-Lorentz

force density, with

Fo=j-E, Fy=pE+ (G xH), (k=1,2,3). (5.43)
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Substituting the identification (5.17) between the spinor and vector
variables into (5.41), it is found that

= [00n) + 0()1] = F{D |

although of course the left-hand side of this correspondence is a scalar,
for each of the four values of y, while the right-hand side — the standard
Lorentz force density — is a four-vector. The spatial part of this four-
vector is a polar vector.

Substituting (5.17) into the imaginary part of the complex function
6, (5.38), it is found that

SE[60n) — B()T] = F{), (5.44)

where

Fy)'=—j H, F7=—pHi+({xE)y (h=1,2,3).
(5.45)

This is the anti-Lorentz force density. The spatial part of this four-
vector is an axial vector. The four-vector densities F(*) and F(=) have
opposite reflection properties in space and time. An experimental con-
firmation of the axial vector part of the total Lorentz force density
(5.44) would mean that the electromagnetic interactions are not sym-
metric with respect to spatial and temporal reflections, i.e., parity and
time reversal symmetries in electromagnetic interactions would be vi-
olated. This is in complete conformity with the underlying group of
relativity theory, that it is a continuous group, without any reflection
symmetry elements.

Note that the anti-Lorentz force replaces the electric field E in
F&) with H and the magnetic field H in F™) with —E. Tt predicts,
for example, that charged matter would move along the lines of the
magnetic field intensity and that an atom with a magnetic moment p
would align with an external electric field with the interaction u - E.
The latter predicts that, in nuclear physics, the neutron would have
an electric dipole moment, appearing in the Hamiltonian as the term
proportional to o - E. However, experiment reveals that these terms
are too small to see (i.e., £ < 1).2

? N.F. Ramsey, Phys. Rep. 43, 409 (1978).

i 2R <Y
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5.10 The Electromagnetic Interaction Functional
in the Matter Field Equations

To identify the electromagnetic source field Té“) in the Lagrangian den-
sity (5.28) with the matter field spinor variables (%), we start with the
identification of the current density 7# and the matter field variables.
Since, in special relativity, the current density satisfies the continuity
equation d,j* = 0, and the bilinear form nWightn() satisfies the same
equation, the identification sought is as follows:

ju(u) — e (W(U)Tq“n(u)) , (5.46)

as it is done in the Dirac theory. In the (more usual) Dirac bispinor
form,

) ey g (w(“”v“v#w@) 7 (5.47)

where, as discussed earlier, ¢ is the four-component bispinor whose
top two components are 77 4+ x and whose bottom two components are
7= X-

Using the identification (5.17) between the spinor and vector vari-
ables of electromagnetism and substituting the components of the four-
current density (5.46) into the Lagrangian density,

L =igu > ) ) (1%, + hee. . (5.48)

vV uFv @

The variation of the latter with respect to the matter variables n(®1
yields the following contribution to the matter field equation for the
field 77(“) in general relativity:

1] = 3" 82rgue | (1) (—" + ¢*) + 61 (2)"(¢" +ig?)
VFU
657 (1)" (~¢" +i¢®) — 81" (@ + ¢)| + b, (5.49)

where ¢ (1) and ¢4 (2) are the separate two-components of the spinors.
To determine the special relativistic limit of this functional, we
replace g#(x) with o#. Note that I’ depends on the constant e?gy,
since the electromagnetic field intensity spinor ¢,, is proportional to the
electric charge e. It is this functional that we will see (in Chap. 7) leads
to the correct prediction of the Lamb shift in the states of hydrogen.
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The most influential part of the electromagnetic interaction func-
tional in the matter field equations comes from the contribution of
the vector potential A,. The part of the Lagrangian that leads to the
Lorentz force (5.43) is the vector coupling term

L = Z G AL (5.50)
UF£V

As discussed in Chap. 4, the imposition of gauge invariance necessitates
the inclusion of this part of the Lagrangian.

The four-vector potential AL“) of the electromagnetic field equations
(5.6) is (5.10). As remarked earlier, these are the particular solutions
for the Maxwell theory. The homogeneous solutions (the radiation so-
lutions) are excluded in accordance with the interpretation of the elec-
tromagnetic field equations as identities for a closed system of charged
matter, and the requirement of the generalized Mach principle.

With the vector potential in the Lagrangian density (5.50), and the
identification of the current density with the matter fields according

o (5.46) or (5.47), it follows that the variation of L. with respect
to the matter spinor variables yields the interaction terms in the two-
component spinor matter field equations as follows:

Iy (g) = ¢2 qujfjizﬂ@ng 1@ )G — o )iz’ | n® () .
vFU

(5.51)

In the bispinor form for the matter field, it has the form

L @) = & [yt [ 5wt (@16 - )%’ | 60 (a)

vFU
(5.52)
5.11 Delayed Action at a Distance
The symmetric Green’s function in the solution (5.10)
Gm—xqziw—wHQmW— —fr =] (5.53)

+ﬂu0—x)+w—ru}
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where ¢ is the Dirac delta function, is an average of two Green’s func-
tions — one that yields the retarded potential and one that yields
the advanced potential. In classical radiation theory, one only selects
the retarded potential. This would be consistent with the mechanism
whereby an emitter sends a signal at the time ¢, and it is received by
the absorber R = |r — #/| cm away at the later time R/c + t. The
argument is that, although the advanced potential is a solution of the
field equations, it must be rejected because (in the particle model of
emitter and absorber) it would describe an emitter responding to the
absorber at the earlier time /¢ — ¢, thus implying that the ‘future’
can affect the ‘past’. On the other hand, the field theory represented
in the theory of relativity entails a closed system where there are only
coupled fields, all mapped in the same space and time. With this view,
there are not separate times for the emission and absorption of signals
between them, as is the case in the discrete particle model theories.

The reason for selecting the averaged Green’s function above, as
the unique solution for this problem, is the requirement of relativistic
covariance. That is, the theory must be invariant under the interchange
of the variables of the emitter and the absorber, each being mapped
in a single space and time.

Summing up, the electromagnetic interaction functional I, in the
uth spinor matter field equation is the sum of two parts:

IL,=1,+1, (5.54)

where I}, is given in (5.51) and I is given in (5.49). The former is
equivalent to the standard term —ieo* A, in the Dirac theory, except
that in the present approach there is no self-energy present. We will
see in Chap. 7 that the interaction functional [, predicts the entire
hydrogen spectrum, including the Lamb shift. The latter contribution
to the interaction functional, I/, which has no counterpart in the stan-

dard Dirac theory, is responsible for this result, as well as other new
results in this formulation of electrodynamics.



6. The Pauli Principle
and Pair Creation/Annihilation

The field variable representing a single body in quantum mechan-
ics is the wave function ¥(x), whose absolute square is interpreted
as the probability density for locating a particle at the place z. The
extension to many particles of matter leads to the many-body wave
function ¥, depending on the wave functions of the individual bodies,
P1(z1), Yo(xa), ..., ¥n(xzy), for an n-body system of matter, where z,,
denotes the location of the nth body.

The generalization of the many-body wave function in this field the-
ory of matter is the interaction field, a relational function of all of the
matter fields of a closed system, each defined at the same spacetime
point z. This is a solution of an equation interpreted as the conser-
vation of interaction. It replaces the law of conservation of probabil-
ity and conservation of particles of the standard quantum mechanical
view. But the linear limit of the interaction field of this theory is the
totally antisymmetrized many-body wave function of quantum me-
chanics.

It is proven rigorously in this chapter, without approximation, that
the interaction field for the closed system vanishes identically if any
two of the (spinor matter field) components are:

e in the same state of motion,
e have equal masses,

and

e have equal charges.

This is equivalent to the statement of the Pauli exclusion principle.
It leads to the correct ordering of the Mendeleyef Periodic Table, the
properties of metals, scattering phenomena, etc.

In the second part of this chapter, we pursue the implication of the
conservation of interaction that matter cannot annihilate into a vac-
uum or be created out of a vacuum, at any time. Instead, a solution
is demonstrated, corresponding to the data interpreted as pair annihi-
lation, whereby the particle and antiparticle go into their true ground
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state of maximum binding, but they do not annihilate. This predicted
state is at zero energy - the ground state of the pair — relative to the
unbound state that is at 2mc? above this ground state. That is, in the
‘annihilation state’ the pair of particles does indeed exist, but they are
invisible to an observer because they are so tightly bound that they
do not impart energy and momentum to their surroundings, so as to
create tracks, say in a cloud chamber. Delivering 2mc? units of energy
to this pair should ionize it. The particle and antiparticle would then
be (almost) free of each other and could separately interact with their
surroundings, creating tracks in the cloud chamber and giving rise to
the data interpreted as pair creation. But matter here is not truly an-
nihilated into a vacuum, or created out of a vacuum. These dynamical
processes are fully deterministic.

The conclusion is then reached that the actual physical vacuum is
a dense sea of such pairs in their ground states of null energy (and null
linear and angular momentum). Such a background matter field was
found to be responsible for the data on

e blackbody radiation,
e the inertial masses of observed matter,
e spontaneous decay of excited states of atoms and molecules.

6.1 Introduction

In the preceding chapters we have studied the implications of the
curved spacetime of general relativity for the laws of matter — the uni-
fication of the gravitational and electromagnetic force manifestations
of matter and its inertial manifestation. We saw that the naturally
incorporated generally covariant field theory of the inertia of matter
yields the quantum mechanical formalism in the linear limit.

As we asymptotically approach the linear limit of this field theory
in special relativity, there are still features of the theory that remain
incompatible with the formal expression and interpretation of quan-
tum mechanics. A major difference is the natural nonlinear structure of
the mathematical expression in relativity theory (special or general),
compared with the natural linear structure of quantum mechanics.
This field theory is nonlinear because it represents a closed system in
terms of many correlated matter fields, all mapped in a single space-
time z. On the other hand, quantum mechanics is based on a linear
model of an open system of n discrete particles of matter. The linearity
1s essential because of the interpretation of this theory in terms of a
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probability calculus. The latter then entails a 4n-dimensional space in
special relativity for the n coupled particle fields, rather than a single
4-dimensional spacetime in the approach of relativity theory, wherein
the n matter fields are mapped. It is, generally, a holistic model in the
theory of relativity (whether in its special or general form).

In the particle view, in quantum mechanics, as soon as one con-
siders the interactions of the n coupled particle fields, each in its own
4-dimensional spacetime, one has the problem of ‘entanglement’ of the
total 4n-dimensional system. However, with the holistic model of mat-
ter in special relativity, there is no ‘entanglement’ problem, since all
matter fields are mapped in the same 4-dimensional spacetime z.

As we saw in Chap. 4, the two-component spinor matter fields
(77(“), X(“)) for the u th constituent of the closed material system solve
the following coupled two-component spinor equations (the Dirac/
Majorana form) in the special relativity limit:

"9, (z) + XN () = —1,n™W(z) (w=1,2,...,n), (6.1)

where o# = {a% 0%}, o are the Pauli matrices, and o is the unit
two-dimensional matrix.
Its time-reversed (or space-reflected) equation is

" d,x" (@) + N = —[2x®(z) | (6.2)
where 0*0 = —¢Y and o** = o*.

Equation (6.1) [or its time reversed form (6.2)] is the irreducible
form of the « th matter field equation (since it is not reflection symmet-
ric) out of the n coupled matter field equations of the closed system.
The interaction field functional

I, = Iu(n(”,n@),--- e plutd) 777(n))

is the essential interaction coupling to the u th matter field, depending
on all other matter fields of the closed system, in accordance with the
generalized Mach principle. I;; is the time reversal (or space reflection)
of I,,.

If the matter field equations are space and time reflection symmet-
ric, they can be expressed with the Dirac bispinor notation:

[0, + AW (z) = —Ly™(2) (u=1,2,...,n), (6.3)

where " are the four-dimensional Dirac matrices (discussed in Chap. 4)
and the bispinor solutions %(* have the upper two components equal
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to (n+ x) and the bottom two components equal to (n — x). We will
use this notation for the matter field equations in the remainder of
this chapter.

The uth matter field equation (6.3) is fundamentally nonlinear
because of the necessary appearance of the interaction functional I,
which in turn depends on the other matter fields ¥("#*) (z) of the closed
system. These solve equations that depend on ¥ (z) through the in-

teraction terms I, .,. Thus, the field operator acting on @) depends

on (%) itself. These equations are then nonlinear, by virtue of their
being a part of a complete set of equations for the closed system. This
is in contrast with the quantum mechanical equations that are funda-
mentally linear — so as to admit the principle of linear superposition
as a basic rule to interpret this formalism as a probability calculus.

6.2 The Individual Particle Model

In particular limits, one may accurately approximate the nonlinear
matter field equations (6.3) by linear differential equations. This is
analogous to approximating Einstein’s gravitational equations in gen-
eral relativity by Newton’s equations for his law of universal grav-
itation. The limit occurs when there is sufficiently small energy—
momentum transfer between the interacting components of the closed
material system. In this limit, one loses sight of the dependence of
the interaction functional on the individual matter field components,
wherein

L[pW(),. .., 0@ (), D (), .. ™ ()] 9™ — I, ()™
In nuclear theory, this is called the individual particle model, wherein
one views the constituent nucleons of a nucleus, one at a time, with
the average background field I,(x) determining its behavior. In this
limit, then, the matter field equations in () linearize.

6.3 The Free Field Limit

In the asymptotic limit, when one may ignore the influence of the
background field I, altogether, i.e., when I, — 0, we have the free
field approximation. In this case, there is a total uncoupling of the
underlying matter fields of the closed system. The Dirac matter field
equation then has the form

l:,},pa;gu) n )\(u)}@b(u)(fﬂu) =0, (6.4)
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where 8{,,“) = 0/0z*%) are the derivatives with respect to the four-
vector components of the spacetime coordinates of each of the 4 matter
components separately.

Since each of the n spinor equations in the approximation (6.4) is a
linear differential equation, the sum of all of these n equations is also
a solution, and we then have the single differential equation

The solution of (6.5) is a limiting form of a functional that is generally
a connective relation between the elements of the set of solutions for
the closed system {w(n)} of the coupled, nonlinear equations (6.3). In
this linear limit, one solution is the product function

V= Hz/)(“)(:cu) (u=1,...,n). (6.6)

Other solutions are the n!—1 other equivalent product functions, since
the product is independent of the order of the factors, and there are
n! permutations of this order.

6.4 Conservation of Interaction

The generalized Mach principle and the holistic ontology of this field
theory of matter in general relativity imply the idea of the conservation
of interaction. This is a conceptual replacement of the conservation
of particles of the classical Newtonian and the quantum theories of
matter. The explicit function that solves the law of conservation of
interaction is to represent a connective relation between the component
spinor matter fields {4()} of the closed material system.

Taking the interaction field amplitude ¥ (¢, ... ™) for an n-
fold holistic material system also to transform as a spinor variable,
the differential form of the law of conservation of interaction is the
following equation of continuity (in the Dirac bispinor notation):

o+ (LT/T’yOw![/) =0. (6.7)

This equation of continuity implies that, within the observer’s frame
of reference,

/!PT'I/dr = constant in time . (6.8)
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With the normalization of the interaction field amplitude ¥, the
positive-definite function ¥'¥ may then be interpreted as a weighting
function. It is to weight the total interaction within the closed material
system at all points of space, in any given observer’s reference frame.

An important empirical implication of the law of conservation of in-
teraction is that matter and antimatter (such as electron and positron
or proton and antiproton) cannot mutually annihilate into a vacuum,
or be created out of a vacuum. This problem will be studied further in
this chapter, where it will be shown that there is an exact solution for
the coupled matter field equations, for the bound particle and antipar-
ticle pair, wherein they are in a state that exhibits all of the physical
characteristics that are normally attributed to pair annihilation. But
they are not annihilated into a vacuum (or created out of a vacuum).
In the ground state of this pair, which has an energy value at 2mc?
below the state where they would be ‘free’ of each other, they sim-
ply do not interact with their surroundings as two oppositely charged
particles would.

Because in the limit of no internal interaction, the n coupled differ-
ential equations uncouple into n independent equations (6.4), which
are each identical, the complete set of solutions for each of these equa-
tions must cover the same function space. Further, the requirement
of square integrability implied by the conservation of interaction (6.7)
implies that the individual matter field solutions must have the same
eigenfunction character as the solutions of ordinary quantum mechan-
ics. Thus, the condition of square integrability applies to the individual
matter fields themselves, so that

[w(“”zb(“)dr = finite number . (6.9)

Taking account of the fact that the order of products in the so-
lution (6.6) does not affect the predicted properties (when this is a
good approximation for the actual nonlinear field theory solutions),
we may take the linear combination of all permutations of such prod-
uct functions, assuming that each of the terms has equal weighting,
in representing the total interaction of the closed system. The general
solution of (6.3) would then take the form

1/2
= (%) ;exp(iap)ﬂzp(“)(:cu) , (6.10)
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where ap is the phase associated with the P th permutation. Its value
will be determined below from the exact form of the function that fully
exploits the nonlinear structure of the unapproximated equations.

6.5 The Pauli Exclusion Principle

The Pauli exclusion principle is an empirical rule in the quantum the-
ory of a many-body system. It is the assertion that out of an entire
ensemble of particles, no two spin-1/2 particles may have the same
equation of motion (be in the same place at the same time, with the
same constants of the motion) if they have the same mass and charge.
This rule accounts for the classification of atoms in Mendeleyev’s Peri-
odic Table, the properties of metals, the proper scattering amplitudes
of spin-1/2 particles, etc.

The following question then arises in the context of the field theory
advocated in this book: how, within the framework of a holistic field
representation of a closed material system, where there are in principle
no discrete particles at all, can one interpret the Pauli exclusion prin-
ciple, which appears to entail a system of discrete particles of matter?
That is, in the holistic field theory the set of matter fields of the closed
system {9 ()} are all mapped in the same spacetime x, while in the
discrete particle theory of quantum mechanics, the context of the Pauli
exclusion principle entails the set of matter fields {¢(*/(x,)} that are
each mapped in their own spacetime.

It will now be shown that, if any two components of a physically
closed system, identified with the indices (u) and (v), out of an n-
component closed system, should have general electrodynamic cou-
pling (discussed in detail in Chap. 5), and if they have:

e a repulsive interaction, i.e., eWel®) = 12
e the same inertial mass, i.e., A# = \(¥),
e the same state of motion everywhere, i.c.,

T ()09 (z) = O (@) 94 ()
for all x,

then the interaction weighting for the entire system of matter is iden-
tically equal to zero. In the particle theory in quantum mechanics,
this corresponds to asserting that no two spin-1/2 particles out of an
ensemble of particles can exist under the conditions above. This con-
clusion is physically equivalent to the assertion of the Pauli exclusion
principle.
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It will next be shown that when this exact feature of the theory is in-
corporated with the nonrelativistic approximation for the many-body
interaction field amplitude, the latter function vanishes identically in
the 4n-dimensional spacetime of the many-body particle description.
The latter asymptotic form of the interaction field amplitude will be
seen to be the totally antisymmetrized Slater determinant wave func-
tion for the many-body system of ordinary quantum mechanics. The
latter is the form that underlies the description of the many-fermion
system in terms of Fermi-Dirac statistics. Thus it will be seen that
Fermi-Dirac statistics is only a linear approximation for the holistic,
field theory of the many modes of a matter continuum, when it may
be viewed as a system of discrete particles of matter.

To proceed, let ¥, be the interaction weighting amplitude for a
system with coupled spin-1/2 fields, excluding the «th and v th com-
ponents of this system. The remaining amplitude will be denoted by
Yy, 1.€., ¥ = W+, To clarify the notation further, ¥,,,, can depend
on 1 and () separately, but only with regard to their separate cou-
pling to the other matter fields of the closed system. The amplitude
U, then omits the contribution of the mutual coupling of (u) and (v).
If one then finds a field amplitude 1, that vanishes identically under
the three conditions posed above, one must conclude that the total
interaction weighting amplitude ¥ = ¥,,,,. The physical consequences
of the Pauli exclusion principle must then follow.

The preceding discussion assumed that for the entire closed sys-
tem, the two-field amplitude v, exists. If this were not the case, then
the total weighting amplitude ¥ could not be separated into the two
additive parts, ¥, and 1. However, it will be shown now that 1,
does indeed exist as a feature of the exact form of the coupled spinor
matter field equations.

Note that if wivd}uv is an additive contribution to the weighting
function for the closed system, then by itself it must satisfy the conti-
nuity equation

(’9# (T,ZJ;FLU'YO’Ykuv) =0. (6.11)

We must then seek a solution )y, of the continuity equation (6.11) that
depends on the two matter fields ¢/ and () of the coupled nonlinear
matter field equations (6.3) and satisfies the continuity equation (6.11).

Multiplying the uth equation in the set (6.3) on the left by (@140
and the Hermitian conjugate of the vwth equation on the right by
794 | subtracting the two equations and repeating the operation with
(u) and (v) interchanged, the sum of the resulting equations is:
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a, [w(v)T Vw(U) + U)T 0 ”w(”)}
- R, [w(U)’W 7V¢(U) - w(“)’W y ¢(u)]

—mM{X}%wMWme@—wWH%mWW—ho}

+[)\(v) _ )\(u)] [w(’u)*r,yow(U) _ w(u)f70¢(”)} ) (6.12)

According to the development in Chap. 5, the symbols in (6.12) are
as follows:

R, —e(We®) / ()10 _ qp(“)TfyO%@b(“)] G(x — 2/ )d*’

e — () f DO b G — 2)a!, (6.13)

w;éu v

where G(z — 2’) is the symmetric Green’s function for d’Alembert’s
equation, shown in (5.53).

In the formulas above, e®e(®) = 1¢2 for a repulsive interaction,
—e? for an attractive interaction, and

By, = (—1)* [t GO — MG 4 [et) _ )] > gt (6.14)
WHEU,

The right-hand side of (6.12) has three terms, each of them vanishing
under special conditions. First, if the uth and v th matter fields have
the same state of motion, i.e., when

W T0yig (2) = A0y ) () | v
it follows that
PO L™ (@) = OO () | Ve . (6.15)

The matrices I', above are linear combinations of the Dirac matrices.
They come from the spinor form of the electromagnetic field equations
derived in Chap. 5:

aHd,p) =T, = W0 4(w) (6.16)
According to (5.17), the correspondences are as follows:
T1(1) = p+jzs = V(P + v = 9 (D (6.17a)
71(2) = 51 +ijo <= PV (V' + 1) =4I T2y, (6.17b)
T5(1) = j1 —ije <= V(v =i =y 1)y, (6.17¢)
T2(2) = p—js <= ¢’ (/° = ¥ = ¢T ' [ (2)9 (6.17d)
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It then follows that a form of the electromagnetic field equations (in
special relativity) is

otd, [e(”)qbg‘) —e(“)qbg’)] — el (V) [T,D(U)T’yofa?,b(v) —w(“)T'yOFaw(u)} _
(6.18)

Recall that in the conceptual framework of this field theory, we may
only accept the particular solutions of the electromagnetic equations.
Thus substituting (6.15) into (6.18), the right-hand side of (6.18) van-
ishes, and the only solutions of (6.18) must correspond to the relation:

o®) g8 — oW g(v)

The first part of (6.14) then vanishes. The second part of @, vanishes
as well under the conditions where e(®e(®) = ¢®e®) If the mutual
coupling between the u th and v th matter fields is repulsive, i.e., when
eWe®) — 12 then their separate coupling to the other fields of the
closed system Would have the same sign, i.e., e®e®) = @) 14
this case the total term @&, = 0. Further, if the inertial masses of the
uth and vth matter fields are the same, A(*) = A(¥)_ the last, part of
the right-hand side of (6.12) vanishes as well.
Summarizing, if any two spinor matter fields out of an n-component
closed system of spin-1/2 matter fields of a closed system:

e are in the same state of motion,
e have the same inertial mass,
e have a mutually repulsive electrodynamic interaction,

then R, = 0, o = 0, A\ — AW = 0, the entire right-hand side of
(6.12) vanishes. It then follows that under these three conditions, '

Combining (6.19) with the continuity equation for the separate matter
fields,

8‘“} [’d) u)f 0 Hw(u)] ) [w(U)T,YO,Y,uw(v):] . 0

and the general requirement of the closed system that it must be in-
variant under the interchange,

() +— ) (z)

it follows that
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B, [(¢<u) @) 0t () 4 ¢<v>)] —0.
Thus, the possible solutions ¥, of (6.11) are
Y (£) = ™ £ ) everywhere . (6.20)

The only remaining ambiguity, then, is the choice of the plus or the
minus sign in this solution. Since the wth and the vth interacting
matter fields correspond, in this case, to the same states of motion
(6.11), and they have the same separate interaction with the rest of
the closed system, it follows, because they have the same boundary
conditions, that when the special case (6.20) is valid, each of the matter
fields ¥ and () solve identical differential equations, with identical
boundary conditions. In this case, they must map into each other. That
is to say,

P () = ) (z) everywhere . (6.21)

It is important that there are not different valued constants in front
of each of these functions. This is because they are subject to the
same boundary conditions and solve the same nonlinear differential
equations.

If the plus sign in (6.20) is correct, then we must solve the matter
field equation for the solution t, = 24, In this case, ¥ would be
a solution of the matter field equation with the interaction term

LW, =0 )yl (6.22)

But this would represent the matter field (") acting on itself, as well
as with the other matter of the closed system. The acceptance of this
solution is then unacceptable for the uv interaction field amplitude,
Yy (4), because of the premise of this theory that rules out self-energy.

To be logically consistent, it then follows that the only solution in
(6.20) is

V(=) =™ — ) =0, vz . (6.23)

The zero on the right then follows from the three special conditions
that led to the equality in (6.21) — the same conditions that lead to
the statement of the Pauli exclusion principle.

Summing up, we have seen that under the three conditions imposed
on a closed system of spinor field constituents:
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e two of them, labeled (u) and (v), are in the same state of motion
everywhere,

e they have a mutually repulsive interaction (corresponding in the
particle theory to each matter field having the same electric charge
with the same polarity),

e they have equal mass,

the total interaction field amplitude ¥ for the closed, holistic system
of matter reduces to ¥,,, which excludes the mutual coupling of the
uth and the v th matter field constituents.

What this means is that, within the context of this field theory
in relativity theory, no possible measurement could relate to the mu-
tual coupling of the uth and the vth constituents. This conclusion is
physically equivalent to the statement of the Pauli exclusion principle,
though coming from a theory totally different from the quantum the-
ory. Indeed, features of this theory that were responsible for the result
are incompatible with the basis of the quantum theory! Examples are
linearity versus nonlinearity, particularity versus holism, fundamental
probability versus a deterministic theory with no fundamental proba-
bility in its basis.

6.6 Sufficiency of the Three Conditions
for Proof of the Pauli Principle

What has been shown thus far is that the three conditions specified
above are necessary for the proof of the Pauli principle. We will now
show that these conditions are also sufficient for the proof.

The proof of sufficiency starts with the assumption that if two of
the constituent spinor fields of the n fields of a closed system, ¢ (x)
and 1) (2), for all z, solve the same differential equation (6.3), then
the three special conditions automatically follow. According to this
field theory for a closed system, the field solutions are mapped in
the same spacetime, thus there is no ‘entanglement’ involved. Tt then
follows that they solve the same differential equation with the same
boundary conditions, imposed by the remainder of the matter of the
closed system. Thus,

Yun(—) = [@b(u) — ?ﬁ(v)} () =0, V.

It then follows that the derivatives of Yuy(—) vanish everywhere. Thus,
the continuity equation follows:
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Oy [¢uv (_)T’Yofyuwuv(_)} =0. (6.24)

Combining (6.24) with the separate continuity equations in ¢ and
() it follows that (6.11) must be true. With this result, the left-hand
side of (6.12) automatically vanishes. Because of the independence of
the terms on the right-hand side of this equation, we have

R,=0, ®,=0, A% =)0,

Due to the independence of the separate terms in Ry, it follows from
its vanishing that the matter fields ¥ and ) correspond to the
same state of motion, i.e., it follows that (6.11) must be true and that
the mutual interaction must be repulsive, i.e., that elw) = e(v),

With the latter conclusion and the fact that ¢, = 0, it follows that

e(ﬂ)@(}ﬂ) - 6(@(;5&”) _

Thus, the v th and the v th matter fields are equivalent, since the elec-
tromagnetic spinor fields ¢, are the particular solutions of equations
(6.16), which may then be expressed in the form of (6.18). That is,
with the equivalence of the spinor matter fields, the right-hand side
of (6.16) vanishes, and so the particular solutions of these differential
equations vanish.

Summing up, starting with the equivalence of the spinor matter
solutions (%) = ) for all z, if the contribution to the total inter-
action field amplitude ¥ from the uv coupled, nonlinear matter field
components should vanish, it follows that the crucial three conditions
are derived:

e the mutual uv interaction is repulsive,
e their inertial masses are equal,
e they are in the same state of motion.

Thus it has been demonstrated that the foregoing three conditions
are necessary and sufficient for the physical implications of the Pauli
exclusion principle, thereby completing the proof of this principle in
the context of the field theory explored. It should be noted that this
proof was based on features of relativity theory that are in principle
excluded from the quantum theory — nonlinearity, holism (i.e., non-
particularity) and determinism.
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6.7 Fermi—Dirac Statistics
from the Nonrelativistic Approximation for ¥

Returning to the nonrelativistic approximation (6.10) for the interac-
tion field amplitude ¥, the time coordinate in this formulation becomes
a common parameter in all factors. Any two factors, when correspond-
ing to equivalent states of motion, contribute the product

O =P () (r, = 1) . (6.25)

If (u) and (v) are interaction fields with the same mass and a mutually
repulsive force, then the exact result derived in the preceding section
implies that (6.25) is only an approximation for Yuu(—) = 0. That is to
say, (6.25) is a non-zero amplitude that is an approximation for zero.

Finally, since the product (6.25) is a factor that multiplies the prod-
uct of all other matter field solutions, it follows that the actual van-
ishing of the exact form of this product causes the interaction field
amplitude to vanish identically under the conditions that cause the
product ¢, (—) to vanish.

To incorporate this conclusion into the asymptotic limit for the
system that appears as ‘equivalent spin-1 /2 particles’, we choose the
phase in (6.10) as follows:

ap = 1P — expliap) = (-1)°. (6.26)

In this case, the equivalent way to express the nonrelativistic approx-
imation for the interaction field amplitude ¥ is in terms of the totally
antisymmetrized Slater determinant form for the many-fermion Sys-
tem:

1\ 12
= (E) 2D IJe )
P U
(1) (1)
12 P (ry) .. W ()
- (5) : : :
P () o™ ()
This is the totally antisymmetrized wave function for the many-
fermion system of particles in the quantum theory. It is the basis of
Fermi-Dirac statistics for an ensemble of non-distinguishable spin-1/2

particles. It is the type of statistics that has been empirically success-
tul in various predictions, such asg Mendeleyev’s Periodic Table of the

(6.27)
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atomic species, the properties of metals, the correct scattering ampli-
tudes of charged spin-1/2 particle scattering, etc.

It should be noted at this juncture that, although the interaction
field amplitude (6.27) is identical with the many-body wave function
of quantum mechanics for a system of non-interacting fermions, the
interpretation here is not in terms of an ensemble of discrete particles.
The interaction field amplitude ¥ does not generally have the Slater
determinant structure — it only appeared this way in this theory as
a linear approximation. The derived Pauli exclusion principle, on the
other hand, deals with the system of matter implied by a particular
state of mutual interaction, independent of approximation.

Thus, Fermi-Dirac statistics appears in this holistic, continuum
field theory of matter as a linear approximation, when the constituents
of the matter of the actual closed system appear to be uncoupled. This
approximation is valid only when the amount of energy-momentum
transfer between interacting constituents of the closed system is non-
relativistic in magnitude — it occurs when v/c is close to zero, where
v is the relative speed between the interacting matter.

In Chap. 7, we will apply the formulas of the holistic field theory
in relativity, derived thus far, to problems of atomic and elementary
particle physics. In Chap. 8, we will apply this holistic field theory to
problems in the astrophysical domain.

6.8 Bound Particle-Antiparticle Pairs. Ground State

The coupled equations for the particle-antiparticle pair in the Dirac
bispinor notation are

[v*0, — I(et) + A 9(e7) =0, (6.28a)
[y#0, — I{e™) + A ¢(eT) =0, (6.28b)
where, as before, v* are the Dirac matrices
o’ 0 . 0 oF
70= ( 0 —0'0) 5 fyk:_1<_0.0 0 ) : (629)

The solution ¥(e*) = Cy(e™) is the charge conjugate of ¢¥(e™), re-
versing the sign of the electric charge, e — —e, and C' = ¥?Kj is the
charge conjugate operator, where Ky is the operation of taking the
complex conjugate of the function to its right.

The total electromagnetic interaction functional is I = Iy + I,
where
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L(et)=—e2y” / P(e) Y n(et)Gla — 2)ate (6.30a)
I(e*)=—igu(e” or e*)y (~1)*(gh - T — 0L ¢a),(6-30b)

where G(z — z') is the symmetric Green’s function defined in (5.53),
the matrices I, are defined in (6.17a-~d) and the notation above is

Oh - To = $5(1)Ta(1) + ¢4(2)Tu(2)

where the asterisk here denotes the complex conjugate.

It is rigorously demonstrated in a previous publication ([136],
Chap. 7), that an exact bound state solution, when the particle and
antiparticle states are in the same state of motion, is

exp(—iAt)
P(e®) = —pe”) = 8 , (6.31)

exp(iAt)

in the reference frame of the pair (i.e., its proper Lorentz frame). In
any other Lorentz frame, the argument of the exponential in (6.31)
would generalize to the scalar invariant ik#z, = i(k.r — At), where
the wave vector k takes account of the motion of the pair relative to
the observer.

With this matter field solution for the particle and antiparticle, the
electromagnetic spinor equations have the form

o"Oup1(et) = eyply Moy = —8rie (_ exp1(2i)\t)> :
(6.32)

ot d,pe(et) = ey OTh = Srie (— exp(l—Qi/\t)) .

With this state of the matter fields of the particle and antiparticle, and
the electromagnetic spinor equations with this matter field solution
shown in (6.32), the two independent electromagnetic spinor solutions
of (6.32) have the form [136]

¢1(x) = ? (expéi /\t)) , (6.332)
bo(z) = ? ( P (_121)@) ) . (6.33)

With these solutions, it can be shown [136] that
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(I + I2)p(e) = Iy(e) =

Note at this stage that while the operation of the interaction operator
I on the bound state of the pair ¥’(e) is zero, I itself is not zero. This is
a consequence of the nonlinear features of the coupled field equations
for the pair, under the special circumstances specified in this case.

In summary, the spinor function (6.31) is an exact solution of the
coupled equations for the pair (6.28a) and (6.28b), when the particle
and its bound antiparticle are in the same state of motion.

6.9 Energy and Momentum of the Bound Pair
in its Ground State

It follows from Noether’s theorem that the covariance of a field theory
with respect to continuous transformations in time and space imply,
respectively, the conservation of energy Fy and the components of lin-
ear momentum P, where

Po-_/z

/Z aA(” pAVdr (k=1,2,3), (6.34b)

and the index 7 above is summed over all fields (as the variational
parameters). The index ( denotes the components of the respective
fields. The total Lagrangian density is L = Lp + L.

In the special case of the bound electron—positron pair (or the
proton—antiproton pair), there are 12 such fields as variational pa-
rameters:

f(em), 0, 0(e7), ()1, dale™), daleT), ale), e,

50, A(Z) 80/1(1) L] dr, (6.34a)

(6.35)
where o = 1,2 are the two separate spinor variables.
The first part of the Lagrangian density above is
h
Ly = 2—; 3 {w(“” VO [y# 0, + I (u) + A(w) ] ™ + h.c.} . (6.36)
U

where u = 1, 2 denotes the particle and antiparticle variables. Since the
particle and antiparticle have the same inertial mass, A\(1) = A(2). The
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constant hc/2m is inserted here to demonstrate that this is the place
in the formalism where Planck’s constant h appears, most fundamen-
tally, rather than in commutation relations between the position and
momentum operators, as in the quantum theory. However, we do not
see these constants explicitly, since we use units with h/27r =1 = ¢
throughout.

The second part of the Lagrangian density has the form

Ly=igy Y 3 (~1)%¢{ 018,60 — 2600y ®] 4 hc.

uUFv «

(6.37)

With the fields indicated above and the solution (6.31) for the matter
field of the pair, it is readily shown that the expression for the energy
and the linear momentum in (6.34a) and (6.34b) yield null values for
this bound state:

PB=P=P=P=0.

This is the true ground state of the pair. In units of energy, this bound
state is 2mc? below their energy when the particle and antiparticle
would be (asymptotically) free of each other.

Because all four components of the energy—momentum four-vector
P, are null in the Lorentz frame described above, it must be a null
vector in all other Lorentz frames of reference. That is, the ground
state of the pair so-derived is Lorentz invariant.

6.10 Dynamical Properties of the Pair
in its Ground State

It also follows from the general form of the Lagrangian density above,
due to its invariance with respect to rotations in the spacetime co-
ordinate system, that Noether’s theorem predicts the conservation of
the components of the angular momentum of the pair. With the field
solutions for the ground state of this pair, derived above, it turns out
that the angular momentum of the pair in this ground level is a singlet
16, state.
Noting that the source terms on the right-hand side of (6.32) are

=P+ (71 — ij2)
T =4 . Y To =4 .
! m(]1+132> 2 m( P+ 73 ) ’
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it follows that the ground state of the pair may be expressed as follows
with the usual variables:

a=1: p=2T, j3=0, ji+ijz=2e* exp(2iAt) , (6.38a)
a=2: p=2F, j3=0, ji—ijy=2eTexp(~2i\t).(6.38h)

These are two oppositely polarized currents that are mutually trans-
verse with respect to the x3 direction. Thus, the coincident response
of two equidistant counters, placed on opposite sides of the pair in its
ground state, at the time ¢, would be to two spatially transverse cur-
rents that are 90° out of phase. These responses of the detectors would
be in terms of direct coupling with two distinguishable currents. The
latter assertion will now be demonstrated.

To derive the currents ji+ = j; & ijs associated with the pair at
the origin of our coordinate system, on the two counters equidistant
at £r, it will be necessary to calculate the electric field intensities £
at the locations of the counters. This is because it is the electric field
intensity that determined the motion of a test charge in the detecting
apparatus.

In the Lorentz frame of the detecting device, the vector potential
that corresponds to the oppositely polarized current densities j4 fol-
lows from the particular solutions of d’Alembert’s equation:

DAL(r,¢) = dmjea(r',¥) | (6.39)

where (', ') are the coordinates of the test charge of the apparatus,
while the coordinates of the emitting source, the pair itself, are (r =
0,t). The solution of (6.39) is

Au(r 1) = [ i ()G — ' )dbs (6.40)

where G(z — z') is the symmetric Green’s function (5.53). Although
this corresponds to a symmetry between the retarded and the advanced
potentials, it should be noted that because of the symmetry of the
experimental setup in this particular problem, the result to be derived
regarding the responses of two sets of apparatus, on opposite sides
of the pair, along a common axis and equidistant from the plane of
polarization of the pair currents ji, is insensitive to the appearance
or lack of appearance of the advanced term in the Green’s function.

Since j3 = 0, substitution of the Green’s function (5.53) into (6.40)
(with » = 0) yields the solution
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As(r' t) = /jg(t)G(:J: —2Nd*z =0,

2eT

2r!

AL(r ) = {exp [ £ 2iA({" + 7)) +exp [ £ 26A({ — 1')] }ei ,

(6.41)

where e+ = ey tiep and e; is the unit vector in the jth direction.

It then follows from (6.41) that the electric field intensities E(r', 1)
at the counters, due to the effects of the polarized currents ji of the
particle—antiparticle sources, at the origin, have the form

(6.42)

et
= —ei(i)2 ;\/ {eXP [ & 200 +7)] -+ exp | £ 27 - TJ)]} '

Thus we see that F4+ describes a wave motion of an oscillating charge,
whose angular frequency is w = 2\ = 4mmc?/h with a wave vector
magnitude k = w/c. It then follows that when the phase of the current
density has some fixed value at ¢ = 0, say it is equal to zero then,
the phase of the electric field oscillation at 7/ # 0 that is produced
by this current would not become zero until the later time ¢’ = r'/c
in the retarded solution, and at the time ¢’ = —r'/c¢ in the advanced
solution. Thus, the magnitude of the time taken for the propagation
of the electromagnetic interaction between the pair and each of the
detectors (each a distance 7’ from the pair) is #//¢ seconds.

A salient point is that for the solution E 4 due to the current source
j+, the sign of the propagation vector is positive in the retarded term
and the sign of this vector is negative in the advanced term. The
oppositely polarized current density j_ gives rise to the electric field
intensity E_ with the same functional form as E,, except that the
propagation vector in this case is negative in the retarded term and
positive in the advanced term.

We see, then, that the oppositely polarized currents j4, at the com-
mon spatial location » = 0, give rise to oppositely polarized electric
field vectors that propagate in opposite directions — such that when
each counter is an equal distance r’ on each side of the pair, along
a common axis, they will simultaneously detect oppositely polarized
currents at the time ¢’ = r//c, each absorbing the energy mc?.

This derived result agrees with the experimental facts and with the
law of energy conservation. [See C.S. Wu and I. Shaknov, The An-
gular Correlation of Scattered Annihilotion Radiation, Phys. Rev. 77,
136 (1950).] Tt also agrees with the prediction of the model proposed
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in the quantum theory asserting that two photons, correlated with a
90° phase difference, are simultaneously created when the particle—
antiparticle pair annihilates. However, the present theory does not
require the introduction of photons nor that matter should actually
annihilate into a vacuum. An important difference of the two theories,
beside the fact that here there are no photons involved — they are su-
perfluous — is that this is a deterministic field theory of matter, in all
domains (micro- as well as macro-physics). This is in contrast with the
intrinsically nondeterministic character of the quantum theory, where
the laws of matter are laws of probabilities.

6.11 Pair Creation, the Physical Vacuum,
and Blackbody Radiation

We have seen that the derived ground state of the bound particle-
antiparticle pair is at zero energy, relative to the energy of this matter
when the particle and antiparticle would be (asymptotically) free of
each other, at 2\ = 2mc?, where m is the inertial mass of each of
the particles. If this quantity of energy (approximately 1 Mev for the
electron—positron pair or 2 Gev for the proton—antiproton pair) were
delivered to the pair in its ground state, it would dissociate. Each of the
matter components would then be independently available to interact
with its surroundings. Thus one should see tracks in a cloud chamber,
interpreted as pair creation. But in this interpretation of these data,
particles are not created out of a vacuum! The particle and its antipar-
ticle twin were there all the time. It is only that they were invisible to
the detecting apparatus when they were bound in their ground state.
When this bound pair is dissociated (deterministically), the particle
and antiparticle then make themselves visible by interacting with the
matter of the apparatus to create tracks, which are then identified with
the ‘particle’ and ‘antiparticle’.

A second interesting implication of the derived ground state of the
pair is the assertion that there is no reason why any domain would
not be populated with a very high density of such pairs, as a count-
able set making up a dense gas, that we call the physical vacuum.
(The magnitude of this density will be determined in the next chap-
ter.) But this is not the type of physical vacuum asserted by quantum
field theory. The latter is made up of a non-countable set of parti-
cles, antiparticles and radiation that continually transmute into each
other, non-deterministically. In the field theory of this approach in rel-
ativity theory, the physical vacuum does not contain any radiation:
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it is made up of a countable set of particle—antiparticle pairs in their
ground states of null energy—momentum.

It should be noted here that since all of the constituent pairs of
this physical vacuum have null energy and momentum for their ground
states, the ground state of the physical vacuum itself must be at zero
energy. This result is in contrast with that of quantum field theory,
where there are an infinite number of negative energy values, below
that of positive value energy levels. The reason that the negative energy
levels do not appear in the classical field theory is that the definition
of energy here is in terms of covariance under continuous transforma-
tions from one energy value to the next, yielding the expression (6.34a)
according to Noether’s theorem. One cannot continuously transform
from a positive energy value to a negative one in the classical field
theory, as one may do in the quantum theory, where one has only dis-
crete jumps in energy values. Thus, the minimum energy value must
be at zero in the covariant field theory in relativity, while in the quan-
tum field theory the minimum energy is at minus infinity — unless, as
it is done, one postulates (without derivation) a zero energy for the
vacuum. The derivation of the zero energy of the constituent pairs of
the physical vacuum in the non-quantum relativity theory then proves,
from first principles, that the minimum energy of the physical vacuum
in this theory must be zero.

With this model of the physical vacuum, we may consider the exper-
iment on blackbody radiation in terms of the coupling of the charged
matter of an apparatus to the ensemble of constituent pairs of the
physical vacuum through the windows of a cavity that is maintained
at a constant temperature. From this experimental setup, it is possible
to derive the formula for the spectral distribution of blackbody radia-
tion, assuming with Planck that the energy in each of the pair modes
in the physical vacuum contained in the cavity is linearly proportional
to its frequency. In this way, the correct Planck formula was derived
from this field theory (see [136], Chap. 7, and [66]).

Thus we have explained blackbody radiation without the need for
the photon model of electromagnetic radiation. It followed from a sta-
tistical analysis of the direct coupling of charged matter of a detecting
apparatus to the countable set of particle—antiparticle pairs in their
ground states of null energy—momentum, that make up the physical
vacuum inside of a cavity maintained at a fixed temperature. This re-
sult reinforces the contention of this theory that one may dispose of the
photon as an elementary particle. It only appears as a coupling that
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transmits the electromagnetic interaction between charged matter, but
not as a ‘thing in itself’.

There are several important roles of the physical vacuum of particle
pairs in their ground states of null energy—momentum.

e It is responsible for what is interpreted as spontaneous decay of
excited atomic or molecular systems. In this deterministic theory,
there are only ‘induced’ interactions. The coupling of the excited
atomic or molecular systems to the background of pairs in their
ground state — the physical vacuum — is then the cause of these
events.

o A second important consequence of this physical vacuum is the ob-
servation of blackbody radiation, as we have discussed above. It is
not due to a gas of photons confined in a cavity, in this theory, in
which the photon does not exist as a separate entity. It is rather
due to the coupling of the measuring apparatuses to a dense gas of
particle-antiparticle pairs — the physical vacuum — in a cavity main-
tained at a fixed temperature, in thermodynamic equilibrium with
the walls of the cavity.

¢ A crucial role of the physical vacuum of pairs in their ground states
of null energy and momentum is that it is the cause of the inertial
mass of any observed matter, due to its coupling with this matter
background. The latter is a consequence of the Mach principle, where
the primary matter that gives rise to the inertial mass of observed
matter is not the distant stars of the universe, but rather the nearby
particle-antiparticle pairs of the physical vacuum. It will be seen
(Chap. 7) that the inertial mass of elementary matter appears here
in terms of mass doublets, and that the heavy sister of the electron
of this doublet is the muon. The correct mass and lifetime of the
muon will then be calculated.

e A further possible role of the physical vacuum of pairs is a con-
tribution to the dark matter of the universe, which astrophysicists
see today as essential to explain astrophysical phenomena, e.g., the
rotations of galaxies.






7. Atomic and Elementary Particle Physics

The field theory of matter developed in this book reveals that there
are only correlated spin-1/2 matter field components that comprise
any complex system of matter. The ‘photon’ and the ‘neutrino’ are not
elementary particle fields. Rather, they are virtual fields that couple
matter to effect their mutual interaction. The bound electron—proton
coupled with the long range electromagnetic force (with the virtual
photon) is called hydrogen. The bound electron—proton, coupled with
the short range electromagnetic force (with the virtual neutrino) is
called neutron. These two types of electromagnetic force follow from
the factorization of the electromagnetic field theory into a scalar and a
pseudoscalar part, which may be identified, respectively, with the stan-
dard and the weak electromagnetic interactions. Such a factorization
follows from the rejection of reflection symmetry in the electromagnetic
(and all other) interactions in nature, in accordance with the underly-
ing symmetry groups of the theory of relativity — the Poincaré group
for special relativity and the Einstein group for general relativity.

The extra interaction in the case of hydrogen predicts a lifting of
the accidental degeneracy in the states of hydrogen. Thus this extra
contribution to the total interaction in the Hamiltonian for hydrogen
predicts the Lamb shift. Its calculation yields results that agree (within
experimental error) with the experimental results for the states with
principal quantum numbers 2, 3 and 4.

A phenomenological discussion follows for properties of the neutron,
pion and kaon, as composites of the electron, proton, their antiparticle
fields and the virtual pair field corresponding to the ‘neutrino’. The
composite neutron is shown to lead to the correct order of magnitude
of its binding energy, lifetime and magnetic moment.

Next, it is shown that in general relativity there is a prediction of
mass doublets. The heavy sister of the electron is the muon, created
by the excitation of a background pair that is close to the observed
electron, giving rise to a change in the geometrical field that affects the
mass of the observed electron. The mass of the muon is then found to
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be of the order of (3/2v)me ~ 206m,, where m, is the electron mass
and v = 1/137 is the fine structure constant. The lifetime of the excited
pair in the vicinity of the heavy electron is found, with perturbation
theory, to be the order of 107% seconds. Both of these predictions for
the heavy electron are compatible with the empirical parameters for
the muon. Thus general relativity explains the existence of the muon
in nature. There is a further prediction that the ‘heavy proton’ has a
mass of the order of 193 Gev.

Generally, any number of pairs in the vicinity of an observed elec-
tron can be excited. Thus there is a potentially infinite spectrum of
leptons: e, i, T, T, and so on.

Next, we analyze the charged and neutral pions. This is a particle
that has been evoked to describe the coupling of neutrons and protons
in the nuclear medium, effecting the strong (nuclear) force. Viewing
the pion as a composite in the context of this theory, it is shown that
the ratio of the masses of the neutral to charged pions and the ratio
of their lifetimes is in agreement with the empirical facts. It is then
seenn how the model of the kaon as a composite leads to the correct
CP violation in a decay channel of the long-lived neutral kaon decay,
compared with the CP conserving decay channel.

Finally, it is argued how charge quantization of elementary matter is
predicted in general relativity. It follows from the irreducible represen-
tations of the Einstein symmetry group of general relativity, expressed
as a first order approximation beyond the irreducible representations
of the Poincaré group in special relativity.

7.1 Introduction

In this chapter, we will apply the field theory based on general rel-
ativity theory and its special relativity limit to the atomic and el-
ementary particle domains of matter. The first example will be the
bound electron—proton system, coupled with the (long-range) electro-
magnetic interaction identified with the virtual photon. That is, the
transfer of the virtual photon between them affects the binding force
between the electron and the proton. This bound state of the atom,
electron—proton, is called hydrogen.

The next phase of this analysis will treat the bound electron—proton
system, coupled by the (short-range) electromagnetic interaction, iden-
tified with the virtual neutrino. This bound state of the electron—
proton system, affected by the transfer of the virtual neutrino between
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them, is called the neutron. The long-range clectromagnetic interac-
tion is governed by the scalar electromagnetic coupling discussed in the
preceding chapter. We saw there that the generalized electromagnetic
interaction has a scalar and a pseudoscalar part, because of the lack of
reflection symmetry in the generalized theory. Thus the pseudoscalar
part of the generalized electromagnetic interaction plays the role of
the binding of the electron and proton to form the composite neutron,
while the scalar part plays the role of binding the electron and proton
to form hydrogen.

The successive addition of protons and neutrons (bound by the
short-range nuclear force) to form the nuclei of atoms and the electrons
whose number is equal to the number of protons to neutralize the
charge of the created atoms then yields the atomic species beyond
hydrogen, as they appear in the Periodic Table. The Pauli exclusion
principle determines their classification in this table, as it has been
derived in Chap. 6. At the end of this chapter, we will see how the
group structure of the theory of general relativity yields the empirical
fact of integral electric charge of the units of elementary matter.

Generally, the irreducible group of the theory of general relativity
implies that the fundamental fields that represent elementary matter
are the basis functions of its quaternion representations — they are the
spinor variables. Thus, in fundamental terms, there are no elementary
bosons — the photon is a virtual coupling between real matter fields
of spin-1/2, and the pion, that binds the nuclear particles to affect
the nuclear force field, as well as the kaon, are composites of spin-
1/2 fields. Physical features of these composites will be derived in a
phenomenological fashion.

In the next section, we will develop the theory of hydrogen per se,
including a derivation of the Lamb shift in its spectrum. After this,
we will develop features of the composites, neutron, pion and kaon,
such as the ratios of the masses of charged to neutral pions and their
lifetimes, and the reason for CP violation in neutral kaon decay. We
will see how this theory correctly predicts quantitative features of these
matter fields. It will then be demonstrated how, in general relativity,
this theory predicts the occurrence of mass doublets, and associates the
heavy sister of the electron with the muon, as well as predicting a heavy
proton, whose mass is of the order of 193 GeV. Finally, there will be
a derivation of the integral charge (referred to as charge quantization)
of interacting electric matter, from the irreducible representations of
the symmetry group of the theory of general relativity.
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7.2 Hydrogen

7.2.1 Linearization of the Hydrogen Field Equation

Our determination (in Chap. 6) of the exact solution (6.31) of the
ground state of the bound e™—e™ was facilitated by the symmetry in
the nonlinear field equations for this system — specifically that their
inertial masses were the same and that they were in the same state of
motion.

We will now consider the case where the masses of the bound par-
ticles are very different — the electron with mass m and the proton
with a mass of the order of m;, = 2000m. In this case, the respective
states of motion of the bound electron and proton are quite different
— that of the proton may be assumed to be stationary relative to the
electron, while the electron has orbital motion relative to the proton.

In this problem, there is no exact solution for the hydrogen atom
to be displayed. The solution below follows from an approximation
whereby the coupled electron—proton equations are linearized. It fol-
lows from considering the ratio m/my to be close to zero, so that we
may consider that the transfer of energy and momentum to the pro-
ton field from the electron field is negligible. Thus we will assume that
the proton matter field — the source of binding the electron field — is
stationary relative to the electron.

Starting with the matter field equation (6.3), we now consider the
coupled electron and proton equations:

[0, — eI(p) + A|¥o(e) =0, (7.1a)
[0, + el(e) + AJ4b(p) = 0, (7.1b)

where the mass parameters are A = 2amec/h (= m, the mass of the
electron, with the units chosen h/27 = 1 = ¢) and A = 2aMec/h
(= M, the mass of the proton, with the units chosen). A and A are
explicitly the inverses of the Compton wavelengths of the electron and
the proton, respectively.

Consider now that the proton solution has the form of a stationary
field, which in its proper frame is

PP = exp(—idt) f(r)s, (7.2)

where s is a constant four-component spinor whose only restriction is
that it is normalized, i.e., sfs = 1.
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Dividing (7.1b) by A, we have the equivalent proton equation

200 — o+ Sa(e) +1| 9 = 0. (7.3)
The operator (1/A)y*8; corresponds to the ratio of the proton’s ki-
netic energy to its rest energy. Since the proton’s motion relative to the
electron is negligible compared with its rest energy (around 1 GeV),
we may neglect this term in (7.3). Further, the operator el (e)/A corre-
sponds to the ratio of the electron binding to the proton (around 1 eV)
to the proton’s rest energy. This may also be assumed to be negligible
in the problem at hand. Neglecting the latter two terms in (7.3) and
choosing st = (1000) in the proper Lorentz frame, (7.3) takes the form

[%’yo@g + 1} exp(—iAt) f(r)s=20. (7.4)

Next, it is observed that the space-dependent part f(r) of the proton
solution may be chosen arbitrarily without altering the validity of (7.4).
Appealing once again to the physical argument that led to the proton
field being at rest at the origin, relative to the electron field, we may
take f(r) to be

() =a(r) (7.5)

where §(r) is the three-dimensional Dirac delta function.
Using (7.5) in (7.2), we have

w(P)T,YO,ka(P) —0, @D(p”’yod)(p) = 6(r) (7.6)

where k = 1,2, 3 denote the three spatial coordinates.
According to (5.49) and (5.50), I(p) is in two parts: I(p)1 + I(p)a.
Inserting (7.6) into the first part of this interaction term,

Oe

I(p) = “’7 . (7.7)

Before the interaction I(p)o can be determined, we need to know the
form of the spinor solutions of the electromagnetic field equations for
the proton solution gb&p). These solutions have been derived for the case
where the proton is stationary at the origin ([117], Sect. 5.5) where it
is found that the spinor electromagnetic equations for the proton are

oho, gp) = —4ried(r) ((1)) , aﬂamgp) = 4mied(r) (?) . (7.8)
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The particular solutions of these equations were found to be

(p) __i_e T3 (p) E T — ixe
Lo y3 (331+i$2) ’ 2 _7“3( — s ) . (79)

Finally, with substitution of the solutions (7.9) into the form of /(p)a
according to (5.49) and (5.50), it follows that

. e
I(p)z = 16mign —3(r X )3 . (7.10)

The noncovariant appearance of I{p)s in terms of the third compo-
nent of a vector (the axis of quantization) is a consequence of the
approximation in which the spatial components of the proton’s vector
potential were taken to be zero, leaving Ag — the Coulomb potential
of the proton — to act on the electron.

Adding (7.7) and (7.10) for the total interaction functional of the
proton acting on the electron field, the linearized electron equation
(the wave equation for hydrogen) takes the following form, in terms of
the Dirac a0 and 3 matrices:

Qo 6’2 62
— Q- Py — 176K/\ 4 ? + 167TQMT—3(T' X Od)g o 6)\ + E:l w(e) — 0 .

(7.11)

The following notation is used above:

. [0 1
,8:70, a:lryﬂ,y7 K/\=ﬂ(0'-L-|—1)y pT:_l(EJF_)’

r
& -7

(7.12)

Oy =
7

The definition of the Dirac matrices v is given in (6.29) and L =
—ir X V is the angular momentum operator.

It is convenient at this point to make the following change of vari-
ables: p = &r, with £ = &€, & = A+ E, & = A — E. The electron
equation then takes the Hamiltonian form:

szg%+m¢:4§¢, (7.13)

where

A
R
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is the unperturbed Dirac Hamiltonian for the hydrogenic electron and
v = 2me?/hcis the fine structure constant (= 1/137). The unperturbed
energy eigenvalues of iy are then

EJn _ A 1 72 e
(s +7)?

£ €

The quantum numbers indicated above are

(7.15)

2
1
82:K2~’Yz, K2:(J—|—§) ’
where J is the total angular momentum quantum number and n is a
positive integer or zero. N = n + 1 is called the principle quantum
number.

7.2.2 The Lamb Splitting

Treating V in (7.13) as a perturbation on the eigenfunctions of Hy,
the Dirac eigenvalues then follow for the energy levels of hydrogen.
The extra interaction V in (7.13) comes from the interaction func-
tional I(p)2, which in turn follows from the spinor generalization of
electromagnetic theory, as shown in Chap. 5.

The feature of the predicted energy level spectrum of hydrogen
(7.15) that does not agree with the empirical spectrum is the accidental
degeneracy that appears in the Dirac states of hydrogen, when the
principle quantum numbers N are greater than unity (i.e., when n >
0). The Dirac states for the pair of eigenvalues +K (of the operator
K™) correspond to the same energy value Ej,. For example, when the
total angular momentum is J = 1/2, the states NSy, and NP, are
degenerate — they are at the same energy value. However, Lamb and
his co-workers found that, empirically, the energies of the states 2.5 ;5
and 2P/, are not the same, with F(25),5) > E(2P; /). It was also
found in experimentation that E(3S51/5) > E(3Py/2) and E(4S1/3) >
E(4P;/3). These Lamb splittings (called the Lamb shift in quantum
electrodynamics) are not predicted by the Dirac theory for hydrogen.

In contemporary physics, these energy splittings in the fine struc-
ture of hydrogen were predicted by quantum electrodynamics (QED),
in close agreement with the data, except for the case N = 4. In the
latter case, the observation of the Lamb shift is not in agreement with
the calculations from QED, to the accuracy of the measurements.
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If the Lamb splittings are to be predicted by the theory proposed
in this study, instead of QED, they must come from the perturbing
potential in (7.13):

iV = %M . (7.16)
p P

The lifting of the accidental degeneracy in the Dirac states for hy-

drogen is due to the lower symmetry of this perturbing potential com-

pared with the coulomb term in the unperturbed Hamiltonian Hy. The

strength of this potential is measured by the constant

£ = 16mgure = 167 [(s + n)? ++7] ‘l/zf’\—Mfy? , (7.17)
C
where Ac = h/2mme is the (reduced) Compton wavelength of the
electron.

To proceed with the perturbation treatment of the interaction
(7.16) on the Dirac states, we note that the unperturbed states diverge
as p~? at the origin. To ensure that the solutions of the unperturbed
problem lead to a rapidly convergent series solution at the origin, that
depends successively on p~" (n > 2), we will redefine the unperturbed
and the perturbed energy by adding and subtracting the term ika,/ 0.
For the unperturbed Hamiltonian we thus take

iHp =i (Ho = 5‘%) (7.18)
p
and for the perturbing part
v == [M + iap] . (7.19)
p P

The total Hamiltonian remains the same, H = Hy + V = Hi+ V',
The new unperturbed electron equation with the new unperturbed
Hamiltonian,

1
3

can be solved exactly, giving the solution

= X B 7.
v wDep( p), (7.21)
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where 1 are the Dirac eigensolutions of the hydrogen equation (7.14).
Note that the new exact solutions 1 converge at the origin more rapidly
than any polynomial in 1/p would diverge there.

The accidentally degenerate states of the unperturbed Hamiltonian
correspond to the quantum numbers K = £1. It can be shown ([136],
Sect. 8.2) that the Lamb splitting between these states is-

3
An = E[(n + 1)81/2] - E[(n + 1)P1/2:l = ZTnEn
_ 647 9M
3[(8 +n)2 + 2] Ac
where 2 = K2 — 2, E; = 1/3+ 0(y?), B2 = 2/9 + O(¥?) and E5 =
1/6 + O(~?), where O(v?) represents the remainder of the respective
series, starting with terms in v2. Thus, to order +?, the Lamb splitting

in the first excited state of hydrogen, with principle quantum number
N=n+1=2is

YAE (mc?) | (7.22)

A = 16_71'749_Mm62 : (7.23)
9 ' Ac

We then find that the ratio, which is independent of the constant gm
to first order, is

Ao
—= =0.2965 . 7.24
el (7.21)
The experimental value of this ratio is
AD)
— = 0.2976 = 0.0003 . (7.25)
Ay exp

We see, then, that the difference between the theoretical and the ex-
perimental values of this ratio for the Lamb splittings is of the order
of only 0.2%. In view of the approximations that have been made in
the theoretical analysis, it may be concluded that this theory is suc-
cessful in its prediction of the hydrogen spectrum, including the Lamb
splitting for the principle quantum number state N = 2.

Using the experimental value for A;/h = 1057.8514 = 0.0019 MHz
in (7.23), we find that the new constant of this theory has the value

gv = (2.087 +£0.001) x 10 cm . (7.26)

With this value, the experimental Lamb splitting

% = 314.819 £ 0.048 MHz
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1s in agreement with the theoretical value from (7.22), within the ex-
perimental accuracy. The theoretical value for N = 3 is then

Ay E(4515) — E(4Py )
h R

This is to be compared with the experimental value

= 132.22 MHz .

% = 132.53 (4+0.58,—0.78) MHz .

Thus, the theoretical and the experimental value of the Lamb split-
ting Az are in agreement within the experimental accuracy of this
measurement.

The theoretical result calculated with QED for As is 133.084 +
0.001 MHz [R.A. Brown and F.M. Pipkin, Annals of Physics 80, 479
(1973).] The theoretical determination in this book is then in better
agreement with the data than is the calculation from QED.

Aside from these differences, it is interesting to note that, while the
two theories are totally different from each other, both conceptually
and mathematically, they give results that are so close on the matter of
the Lamb shift. It is my speculation that this is not purely coincidental!

Summing up, we have seen that the special relativity limit of a
generally covariant field theory of inertia that is incorporated in a
general unified field theory yields a prediction of the entire hydrogen
spectrum, including the Lamb splittings in the otherwise degenerate
states of hydrogen. The theory, along with the earlier predicted Pauli
exclusion principle, then extends to the spectra of all atomic species,
beyond hydrogen. In the next section, we will examine features of el-
ementary particles. Numerical predictions will be made in regard to
features of the neutron, pion and kaon — all predicted as composites of
more elementary matter physical fields in the context of this field the-
ory. We will see that the only fundamental matter fields are: electron,
positron, proton and antiproton. All other elementary particles fields
are (unstable) composites of these, along with the virtual photon and
virtual neutrino, to affect their coupling.

7.3 The Neutron

The neutron, in this theory, is a composite of an electron and a proton
(e-p) coupled by a virtual neutrino field — a short-range pseudoscalar
coupling. This is the second state of the e—p, the first being its state
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bound by the long-range scalar coupling, represented by the virtual
photon. These two electromagnetic interactions — one scalar and the
other pseudoscalar — are predicted by the factorized spinor formula-
tion of electromagnetic field theory, which does not recognize reflection
symmetry in (any of) the laws of nature. This is in accordance with
the symmetry group of the theory of relativity — the Einstein group —
a 16-parameter Lie group which is a set of continuous, analytic trans-
formations that leave the laws of nature covariant.

In this context, the neutrino field is a special solution of the spinor
formulation of electromagnetism. In special relativity, it is the solution
of the Weyl equation, for the proton pair in its ground state of null
energy-momentum, as derived in the last chapter:

o3, [oPH) + P = 0. (7.27)

When the spinor field of the pair in the ground state, qﬁ((]p o) qﬁc(xp Dy

&p_) couples to the electron and proton fields to bind them, there

is a polarization induced due to the coupling of qﬁ&pﬂ to the electron

)

component and the coupling of gb&p_ to the proton component of e—p.

The composite matter field
n = e . p (7.28)

then forms the neutron. Because all three of these constituent fields
are fermions (spin-1/2 fields), their composite n is also a fermion, as
required empirically.

7.3.1 Binding Energy of the Neutron:
A Phenomenological Determination

The binding of the electron to the proton due to their electromagnetic
coupling to the proton pair field (7.28) of the physical vacuum, is in
the domain of the nuclear force range (of the order of 10713 ¢cm). The
binding energy of this composite is then of the order of 2¢2/{r), where
(r) is the ‘neutron radius’. The latter is of the order of the potential
well width, which is the range of influence (i.e., the nuclear force) of a
neutron on another neutron or proton. This is equivalent to replacing
the Yukawa nuclear potential [exp(—pr)]/r with a square well of width
p~ L. This is the order of magnitude of the deuteron well width, around
4 x 10713 em. According to this phenomenology, then, the neutron
binding energy should be of the order of

2¢2

Bn) = 4x 10713 cm

= 0.72 MeV .
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In terms of this model, the empirical value of the binding energy of
the neutron is ‘

B(n)exp = mn — (mp — me)
= 939.5527 — (938.2592 + 0.5110) = 0.7825 MeV .

These two values of B(n) are close enough, in view of the approxima-
tion used here, to give credence to the composite model of the neutron
considered.

If B(n) units of energy are then delivered to this composite neutron,
it will decay as follows:

n— p+e+ g (7.29)

where ¢£Xpalr) plays the role of the (anti)neutrino that is emitted in
the neutron decay. The mechanism of the decay is the pseudoscalar
part of the electromagnetic interaction that is identified as the weak
interaction. The neutrino energy (the pair) is then absorbed by the sea
of pairs of the physical vacuum in the vicinity of the decayed neutron.

7.3.2 The Neutron Lifetime

The empirical value for the lifetime of the neutron, decaying according
to (7.29), is

7o' = (1.114 £ 0.016) x 1073 571, (7.30)

Using time-dependent perturbation theory, the decay lifetime is

1 Ax? . _

Tn t= _h_|<f|‘[|z>‘2pf S : ) (731)
where we have inserted Planck’s constant h. I is the interaction func-
tional that projects the state of the composite neutron — the initial
state |¢) of n and its surroundings of pairs of the physical vacuum,
that causes the breakup, into the final state (f| of freed breakup prod-

ucts, e, p and the neutrino field ¢((Ipair) . The density of final states is pr
for the three breakup products, electron, proton and (anti)neutrino.
In earlier work [133] it was found to have the form

V2(2x)8 MeMpM-y, 3/2 5 1
pr =5 (me+mp+mv> W* erg™" . (7.32)
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In this formula, V' is the interaction volume defined by Fermi in his
analysis of breakup reactions [E. Fermi, Prog. Theor. Phys. 5, 570
(1950)]. W is the total kinetic energy of the three breakup products.

According to (6.30b), derived in the last chapter, the interaction
functional I has the form

I =iegm Z(_l)a (Q%'I‘oz - 'YOFa'Yo‘éa) 5 (7.33)

where gy, determined from the Lamb shift, is shown in (7.26).

At this stage of the analysis, we see that the electromagnetic field
intensity spinor ¢, is proportional to e/r?. Thus the magnitude of
the matrix element in (7.31) is of the order of gye?(f|1/r2|i). When
evaluating this term, we should note that the matter field of the com-
posite neutron is weighted with the screening factor exp{—r/A), where
A is the proton Compton wavelength. This follows from the screening
action of the proton pairs of the physical vacuum on the interacting
constituents of the composite neutron. It then follows that

” —r r2)rédr
o /0 expl=r/N)(1/s% )

(FlL /i) = =
47T/O exp(—r/N)r=dr

Thus we find, after integration, that

62
(i) ~ S

It then follows that the neutron decay rate is

VRN ( memymy PR,
. m2h7 Me + Mp + My '

(7.34)

At the present stage of experimental elementary particle physics, there
seems to be general agreement that the neutrino has a small but non-
zero inertial mass. In some of my early research, I found that a neu-
trino field must have non-zero inertial mass in a curved spacetime.
But it was found to be very small in the curvature determined by the
Schwarzschild field of a neutron. Still, it was non-zero [81]. If we take
my = 17.1 keV in (7.34), we obtain a result for the neutron decay
rate that is compatible with the observed neutron decay rate. Future
experimentation will be needed to establish the unique theoretical pre-
diction for the neutrino mass in this theory. One feature of this theory
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is that indeed the neutrino has a non-zero inertial mass, which is a
consequence of the curvature of spacetime, according to the theory of
general relativity.

Taking the Fermi interaction volume to be a sphere of radius
107 1% em (the range of the weak interaction) then V = (47 /3)10~% ¢m3.
The Compton wavelength of the proton is the order of 2 x 1071 cm
and

W =my —mp —me = 0.78 MeV .

Assuming the mass of a neutrino to be m~ = 17.1 keV, we find that
the decay rate of the neutron is

7,1 =0497 x 10 3 7L, (7.35)

The empirical value of this decay rate, shown in (7.30), is then only
of the order of two times greater. In view of the assumptions used in
this phenomenological derivation for the neutron decay rate, it gives

enforcement to the model of the neutron as the composite e—cf)&pair)vp.

7.3.3 The Neutron Magnetic Moment

A feature of the neutron that must be addressed is that, while it is
charge-neutral, it has a non-zero magnetic moment. It is negatively
polarized with the same order of magnitude as the positively polarized
magnetic moment of the proton. Empirically,

eh eh

— —1.9103 — 2.7896 :
s drmge’ P 4mype

We saw in the preceding discussion that the binding energy of the com-
posite neutron has the correct order of magnitude. The magnitude of
the negative polarization of the nentron magnetic moment, p,, viewed

as the composite p—qb&p %) _e is sensitive to the mass of the particles
of the mediating proton pair (that is, the mediating ‘neutrino’). If the
predominant contribution to u, is due to the rotation about the ‘ob-
served’ proton of the antiproton component of the proton pair, then
the predicted sign of py, must be negative, and its magnitude must be
proportional to e/my, as is the case, empirically.

We have seen from this phenomenological analysis that the pro-
posed composite model of the neutron is compatible with the neutron’s
binding energy (as measured in its beta decay) and the sign and order
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of magnitude of the neutron magnetic moment. Furthermore, it identi-
fies the breakup products with the electron and the proton, and iden-
tifies the (anti)neutrino as transferring electromagnetic energy from
the neutron to the physical vacuum in terms of the factorized spinor
electromagnetic field for the proton pair in its ground state of null
energy—momentum.

7.4 Mass Doublets: The Electron—Muon

A mystery in elementary particle physics, ever since the cosmic ray
observations in the 1930s, has to do with the existence of the muon.
In the context of physical interactions with other elementary matter,
the muon is a particle that is identical with the electron, except for its
mass and instability. Why does the muon exist?

The mass of the muon is approximately 206 times that of the elec-
tron and its lifetime is the order of 2 x 107 s. It decays in this time
to an electron and two (conjugated) neutrinos.

The field theory of inertia from general relativity, developed in
Chap. 4, leads to a possible answer to this problem. Because of the
spinor structure of the formalism, there is a prediction here of mass
doublets — for every spinor matter field with mass m, there is a heav-
ier matter field with mass m* > m, wherein m and m* are the mass
eigenvalues of a mass operator defined in general relativity.

From the analysis in Chap. 4, combining (4.13) and (4.15) yields
the following eigenvalue equation:

En = (¢"2,)(—g 2 = Nn . (7.36)

Here, = is a two-dimensional mass operator, with two (squared) mass
cigenvalues A} and A3. The two distinct mass eigenvalues are then
Al = —i—\/)? and Ay = +\//\_%. The plus sign only must be taken
because we have seen earlier that the mass field A, being the modulus
of a complex variable, is positive-definite.

In the asymptotic limit that approaches a flat spacetime, the so-
lutions 7 of (7.36) become the set of eigenfunctions {|ns)} of a linear
Hilbert space, where the normalization and integrability of this space
of solutions of (7.36) yields an infinite spectrum of mass eigenvalues:

/\g = <n8|(quﬂy)a(_qw9£)a|778> . (7.37)

The subscript ‘a’ refers to the asymptotic values of the quaternion
fields in the near flat spacetime limit.
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Thus, in addition to the physical prediction of mass doublets, this
theory predicts an infinite mass spectrum of elementary matter. In
the actual limit, whereby all other matter surrounding the ‘observed
matter’ is depleted, the spin affine connection {2, vanishes and the
mass of the observed matter vanishes. This is in accordance with the
Mach principle.

It was found, to a first approximation in the fine structure con-
stant v = 2me? /he = 1/137, that the ratio of mass eigenvalues for the
electron pair and the proton pair, viz., m(u)/m(e} = m(pn)/m(p) =
3/2v = 206, where py, is the predicted ‘heavy proton’. The empirical
discovery in the 1930s that the mass of the muon m(u) = 206m(e) is
then interpreted as meaning that the muon is the heavy member of the
electron mass doublet in general relativity [83]. Thus far, there is no
experimental evidence for the existence of the heavy proton py, whose
mass is 206m(p) ~ 193 GeV [106].

The cause for the generation of the inertial mass of elementary mat-
ter is the coupling of the ‘observed matter’ to the particle-antiparticle
pairs of the physical vacuum, in which it is embedded. The scenario
for the generation of the heavier sister of the stable particle (electron
or proton) is the following. The observed matter excites a pair in its
vicinity, electromagnetically. This then changes the geometrical fields
in the environment of the observed particle, which in turn alters its
mass to the higher value of the mass doublet, e — p or p — pn. The
coupling of the excited pair of the physical vacuum to its environment
of pairs in their ground states of null energy—momentum then causes
the de-excitement of this pair. The higher mass particle, the muon or
pu, then decays back to the ground level mass of the electron or the
proton, with

ph (or p) —p (or e)+v+v", (7.38)

where v = ¢,(p"-p~) and v* = ¢{(pT-p~) are the time-reversed
electromagnetic spinor fields, transferred back to the physical vacuum
in this decay process. A phenomenological calculation was carried out
on muon decay, where it was found to be the same order of magnitude
as the empirical result, around 2 x 107 s [84].

7.5 Infinite Lepton Spectrum

In the nomenclature of elementary particle physics, a lepton is any
particle that does not couple to nuclear particles with the strong in-
teraction — such as the strength of coupling of a neutron to a proton
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in the domain of an atomic nucleus. Examples of such matter fields
are the electron, muon and neutrino.

The generation of the muon from an electron was seen to be the ef-
fect of the observed electron exciting a particle—antiparticle pair of the
physical vacuum to an excited level, thereby altering the geometrical
fields that define the inertial mass of matter. But if the observed elec-
tron excited two or more particle pairs of the physical vacuum, other
heavier sisters - leptons — of the electron could be generated, which
we may call T, 7, 77, etc., and their accompanying neutrinos. That is,
an infinite spectrum of leptons could be generated. This result would
be in contradiction with the prediction of the Standard Model of con-
temporary elementary particle physics, which predicts the existence of
only three leptons, and their accompanying neutrinos. Experimental
physics has thus far verified the existence of the T particle — in this
theory, the first of an infinite spectrum of such particles of matter.

In the analysis of the decay rate of the muon, it was found that
if the breakup is into n particles, the density of final states in (7.31)
depends on the factor W (3n—5)/2 [101], where W is the kinetic energy
of the final state and n is the number of discrete matter fields that the
nitial body breaks into. In (7.32), n = 3. Since the final fields and the
interaction I are the same in channels

€ = 1 e+ do + O + bu+ B (7.39%)
e =T — e+ do+ G + o + B, (7.39b)
and since there are n = 5 breakup fields in both reactions, so that
in both cases Wn-5)/2 — m®, it follows that the ratio of lifetimes

depends inversely on the fifth power of the mass ratio of the tau and
the mu particles:

T My, 5

L N e 4

T, (m'r> (740)
According to the experimental data, m. = 1784 MeV, m,, = 106 MeV,
T =2x10"%s, Tr =3 x 10713 s, This gives

Bl

exp

This indicates the same order of magnitude as the theoretical predic-
tion (7.40), thereby verifying the theoretical structure proposed.

The lifetime T corresponds to the excitation of two proton pairs
of the physical vacuum rather than one, which generates the tao par-
ticle. The electron excitation of three, four or more pairs in its vicinity



138 7. Atomic and Elementary Particle Physics

would correspond to n = 7,9,..., with the corresponding exponents
(3n—5)/2 = 8 for the T’ lepton, (3n—5)/2 = 11 for the 7 lepton, etc.
Thus, the ratio of lifetimes of the higher mass tao particles would be

TT’ mu 8 TTH mp‘ 1

= , = e (7.42)
Tu mq T}i My
The lifetimes of the higher mass tac particles and their masses are yet
to be determined experimentally. But the ratios (7.42) are the pre-

dictions thus far for the infinite spectrum of higher mass tau leptons,
compared with that of the muon.

7.6 The Pion

The pion plays a crucial role in the binding of the nucleus by propa-
gating between the neutron and proton constituents (called nucleons),
to effect the nuclear force field.

The pion is a pseudoscalar field that is a boson, since it has zero
angular momentum. It solves the Klein—-Gordon field equation

(B + A)g(m) = No(m)

where O = 88 —V? is the d’Alembertian operator and A will be defined
below.

The pion decays by means of the weak interaction. There are
charge-neutral and charged pions. In this theory, the neutral pion de-
cays as follows:

=P -p)- — (p" -p ) =2v. (7.43)
The subscripts — and + respectively denote the antisymmetric (pseu-
doscalar) neutral pion and the symmetric (scalar) composites of proton
and antiproton matter fields. The symmetric state is mathematically
equivalent to two photons, as we discovered in the case of the dy-
namics of the null-energy ground state of the electron—positron (or
proton—antiproton) pair.
The charged pions are composites that decay as follows:

= [pt ~ g (pT =) — (D) + dalpt —pT) = uF+v.
(7.44)

In this case, the mass-excited electron — the muon — is created by a
transfer of the proton of the composite pion to the physical vacuum,
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absorbing it in the sea of proton—antiproton pairs that constitute the
physical vacuum. This transfer, in turn, excites an electron—positron
pair, giving rise to an elevation of an electron in this sea, thus yielding
its heavy sister, the muon.

Empirically, we observe that the pion transforms as a pseudoscalar
field in space. The pseudoscalar pion may be expressed as the following
combination of first-rank spinor variables:

T

i) o nlx — xTn,

where (n, x) are the two-component matter field solutions and x = en*
is the space (or time) reflection of 7.

In the linear limit of a Hilbert space, the (squared) pion mass eigen-
values have the expectation values [86]

A2 = (¢(m)|0 + Alg(m)) (7.45)
where
A=ITI"+(I"¢" + "I+ ¢"0,¢"") + ¢"" 0.l ,

and O is the d’Alembertian operator —0”3,,.

7.6.1 Ratio of Neutral and Charged Pion Masses

In the case of the neutral pion, the expectation value of I (representing
the electromagnetic coupling to the proton and electron pairs of the
physical vacuum) is much smaller than the kinetic energy portion of
the expectation value of (00). If we assume that the kinetic energy
terms are the same for the neutral and charged pions, i.e.,

(¢(m)|0jg(n%)) = ((m)|D]p(r5))

it then follows that the (squared) ratio of their respective masses is

m(n®) 13
{m((:i))] —(1+R)", (7.46)
where
(B ]p(mF)

R =

)
(G(m9)|T|p(m0)) (7.47)
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In the paper cited above, it is shown that R ~ 18/27%. Thus, the ratio
of the masses of the neutral to the charged pions is
0 18
mm) {1 +

m(mt) 273

1/2
} = 0.966 . (7.48)

The empirical value for this ratio is

m(70)  134.9645
m(nt) ], 139.5688

= 0.967 . (7.49)

The difference between the theoretical and experimental values above
is of the order of only 0.1%, thus verifying the composite model of the
pion that is shown in (7.43) and (7.44).

7.6.2 Ratio of Neutral and Charged Pion Lifetimes

While the masses of the charged and neutral pions are close, it is
significant that the ratio of their lifetimes is the order of 1078:

M —2y, T(")=0828x%x10""%5, (7.50a)

nt—ut+v, T(rH) =2603x10%s. (7.50b)

To calculate the theoretical ratio of these lifetimes, we use the golden
rule from time-dependent perturbation theory (7.31). With Fermi’s
phenomenological approach for breakup reactions, the matrix element
[{f]1]2}]? is replaced with D?(£2/V)""1, where D is the effective po-
tential well depth for the intrinsic interaction that binds the initial
composite pion, {2 is the interaction volume of the pion’s breakup into
n objects, and V' is an arbitrary volume in which the decay is observed.
For the decay products indicated in (7.43) and (7.44), and the density
of states for n decay products [101],

v 1H 2I; + 1)(27) 3(n—1)/2 Hm3/2W(3n 5)/2

(7.51)

hS(n—UF(B(n — 1)/2) (Z mz)
i
where I'(n) = (n — 1)!, I'(1/2) = /7 is the gamma function, I; is
the spin of the ¢ th product of the breakup and m; is its mass. It then
follows that
T(n%)  (mpmg)¥23 0,
T(r) — (48y/3)8n1h3

(7.52)
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We have assumed here that the interaction volume (2 is the same
for the neutral and charged pions. The latter is the only unknown in
(7.52). From the analysis of the electron—positron pair volume that
determined the electron and muon masses, the interaction volume is
a sphere with a radius of the order of magnitude 10~% cm. Thus, we
take 2 = 107% cm? /pair. The following result is then obtained from
(7.52):

0
T—(:—) —23x107% . (7.53)

The experimental value for this ratio is 0.32 x 10~%. These results are
in agreement within a factor of 10. In view of the assumptions used to
obtain the theoretical result (7.53), I believe that the composite model
of the pion used here [equations (7.43) and (7.44)] is justified.

7.7 CP Violation in Neutral Kaon Decay

An elementary matter field that decays into pions and plays a role in
the nuclear domain of matter is the kaon. As in the case of pions, there
is a charge-neutral kaon and oppositely charged kaons. The neutral
kaon decays into two channels: one is short-lived, K¢, and the other is
long-lived, KIOJ.

In the context of this field theory, which does not recognize reflec-
tion symmetry, Kg is the scalar part of the scalar-pseudoscalar pair of
kaon matter fields. It is seen to decay as follows:

K¢ —nt +n .

The long-lived neutral kaon is more interesting. It is a pseudoscalar
matter field that decays to three pions in one channel whereas, for a
small fraction of the time, it decays to two pions:

Ki(l) — t + 7 +7° 0.998 of the time , (7.54a)
K{(2) — mt + 7 0.002 of the time . (7.54b)

The decay of K? (1) establishes that it is a pseudoscalar matter field,
since it transforms into three pions, each of which is pseudoscalar.
The second decay, K%(Z) violates spatial reflection symmetry (parity
P), since the combination of two pions is scalar while the combination
of three pions is pseudoscalar. The decay (7.54b) also violates charge
conjugation symmetry C (e — —e), since the charge conjugate of n°
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in the first channel (7.54a) should also be the neutral pion, which is
not present in the decay (7.54b). The latter decay then automatically
violates the combination CP.

In the proposed field theory , the long-lived neutral kaon is the
composite

K =[p gad™ —p)][p dalp™ —p)](0"—p")-. (7.55)

Here, as earlier, ¢o(p™ — p ) is the electromagnetic spinor solution for
the proton pair in its (derived) ground state of null energy—momentum.
The decay (7.54b) is to two pions and the (invisible) scalar component
of the proton pair (p™ — p~ ). The latter then blends with the back-
ground sea of similar such pairs of the physical vacuum, thus making
this third component in the decay undetectable. That is, the trans-
formation from (7.54a) to (7.54b) corresponds to the transformation
(et =p7)- = (" —p7)+

With this view, and the equality of the density of final states in the
transitions (7.54a) and (7.54b), the ratio of CP-violating K} decays to
two pions to the (expected) decay of K% to three pions, in accordance
with the golden rule of time-dependent perturbation theory, is the ratio
of squared matrix elements

eI K2
B L KE

(7.56)

where I, and I_ are respectively the scalar and pseudoscalar parts of
the generalized electromagnetic interaction predicted by this theory.
The pseudoscalar part of the interaction is of the order of

(I_) = 32mgme®(1/7%) (7.57)

where, as we learned from the Lamb shift determination, gy = 2.087 x
1071 ¢m. The scalar part of the interaction is the order of the usual
coulomb term:

(I.) =2e%(1/r) . (7.58)

The factor of 2 appears because of the coupling of two charged particle
fields, pt and p~ to the proton or antiproton that constitute the kaon.
The theoretical ratio (7.56) is then

B 167rgM<1/r2))2
R‘) ]
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The expectation values above are

iy = [ SR g

T-?’L

The exponential above is the Yukawa short range nuclear force factor.
The parameter Ao ~ 3.26 x 107! c¢m is the Compton wavelength of
the pion, as it was originally determined in Yukawa’s analysis.

Thus we find that (1/r?)/{1/r) = 1/), giving

2
R= (16#“(;\—1\4) = 0.7 %1073,

€

The experimental value for this ratio [J.W. Cronin, Rev. Mod. Phys.
53, 373 (1981); V.L. Fitch, Rev. Mod. Phys. 53, 367 (1981)] is

Rexp =2 x 1072

The same analysis gave the ratio of lifetimes of the neutral short-lived
to neutral long-lived kaons, in agreement with the data [152]. These
results then reinforce the proposed composite model of the kaon.

7.8 Charge Quantization in General Relativity

A prominent feature of elementary matter is the quantization of elec-
trical charge of interacting matter. This is the empirical fact that all
electrically charged elementary matter interacts in integral units of the
constant e? — the fine structure constant v = 2me?/he = 1/137, which
measures the strength of the electromagnetic interaction. (The only
counter-case in contemporary elementary particle physics in the Stan-
dard Model is based on the elementarity of the fractionally charged
particle called the quark. The fractional charge of the quark, postu-
lated to be a fundamental constituent of the proton and neutron, has
never been detected directly in experimentation to this date.)

The quantization of electric charge of matter follows from the
asymptotic features of the irreducible representations of the Einstein
group, as they approach the representations of the Poincaré group of
special relativity theory. This is the approach toward linearity in the
flat spacetime limit from the curved spacetime of general relativity.

As we discussed in Chap. 4, the representations P of the Poincaré
group of special relativity solve the set of relations
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ozt

PTO-MP:wUV’

(7.59)
where Jz*/0z” are the set of 10 continuous transformations in the
flat spacetime of special relativity that relate the 2’ coordinate system
to the z system in which the laws of nature are compared, depending
on the constants of the transformation 64" .

The double-valued solutions of this equation are the irreducible
representations of the Poincaré group:

(7.60)

The irreducible representations E of the Einstein group are a global
extension of the representations P. The extension of the constant pa-
rameters 6" are the spacetime-dependent parameters 64 (z). The ex-
tension of the Pauli matrices o, are the quaternion fields ¢, (z). Thus,
the global extension of the irreducible representations of the Poincaré
group of special relativity are the irreducible representations of the
Einstein group £ of general relativity:

qu(T)qu (T)0H ()
5 .

P(uv,0) — E(uv, ) = exp (7.61)
In the first approximation for the quaternion metrical fields, we have
the expansion

qu(z) = o + e, (z) + O(?) (7.62)
and the transformation parameters have the expansion
O (x) = 05" + 9™ + O(e?) . (7.63)

The expansion parameter € is a measure of the curvature of spacetime
in the vicinity of the observed ‘particle’. This curvature is in turn
a manifestation of the ‘other matter’ that couples to the observed
madtter.

With the approximations (7.62) and (7.63) in (7.61), the corre-
sponding asymptotic form of the irreducible representations of the
Einstein group are

E(pv, x)y=P(uv, 0) P(uv, s)[l—l—e(aﬂ/ly(m) -1-/1,&(:6)0',,)05”} , (7.64)
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where P(uv,0) is given in (7.60) and

€0 ,0,9% ()
2

P(uv,e) = exp

are the infinitesimally displaced representations of the Poincaré group.
The main focus of attention is the part of the representation F,
that has the product form

Plpw, 0)P(uv, e) o, A, (2) + Ay(z)o,] . (7.65)

It is this term that displays the symmetry of the interaction between
the observed particle and its environment. When the interaction is
purely electromagnetic, the term eA,(z) is proportional to e?, since
Ay, is the first order deviation of the metrical field qu from the flat
spacetime form o, — a deviation due to the electromagnetic coupling
with strength e?.

We see, then, that while the eigenvalues in the first part of E, are
the spin quantum numbers, which may be generated to integral and
half-integral values, in accordance with the Lie algebra of this group, SO
the eigenvalues of the representations (7.65) of the Einstein group are
proportional to a discrete set of numbers that multiply the constant
e2. The form Ayo,, is a second-rank quaternion variable, whose ba-
sis functions transform as those of the direct product representations
DU/2) @ pU/2) = plo} g D, implying that the quantum numbers
multiplying € may be generated only in integral steps. Thus, we have
proved the charge quantization of elementary matter.

Note that it is not the charge e that is quantized in integral steps. 1t
is rather the square of the charge e? that expresses the interaction with
other matter, generally as €2, 2¢?, 3¢2, and so on. This is in accord with
the empirical facts since one never measures e by itself. It is always
measured in terms of its electromagnetic coupling with other charged
matter, in terms of the constant e? — the fine structure constant.

What we have seen here, then, is that the origin of the empirically
confirmed charge quantization is in the features of the symmetry group
of the curved spacetime that prescribes the general covariance of the
laws of nature, according to the theory of general relativity.






8. Astrophysics and Cosmology
in General Relativity

In the context of the theory of gemeral relativity, the universe as a
whole — the subject of cosmology — is not a collection of individual,
separable ‘things’, interacting with each other at distances over vast
domains of space. Rather, the universe is a continuous whole, with an
infinite number of distinguishable manifestations (modes).

From the logic of this theory of matter, we see that the equation
of motion of a test body of the universe, say a constituent galaxy, is
the geodesic equation in quaternion form. We find that the Hubble
law for the ‘expanding universe’ is a first approximation of a covariant
law for a spirally evolving universe, alternating between expansion and
contraction, i.e., an oscillating universe without any singularities.

The principle of equivalence of the theory of general relativity is
discussed in this context, asserting the equivalence between a geomet-
rical path of a test body in the curved spacetime and the exertion of
an external force on a body, causing it to move on the same curved
path.

The Schwarzschild problem in general relativity is discussed and
the effect of the perihelion precession of a planetary orbit is derived in
the quaternion formulation of general relativity. It is compared with
the standard Einstein result for this effect in his tensor formulation
and with the classical formulation for planetary motion.

The spiral structure of the oscillating universe is demonstrated with
the solution from the quaternion field theory in terms of Fresnel inte-
grals.

There is a discussion of black holes and pulsars in the context of
this theory.

Finally, a scenario is proposed to explain the separation of matter
from antimatter in the universe, with a predominance of matter in
our domain. It is proposed to be due to the competition between the
unidirectional spiral motion of matter and antimatter in the early uni-
verse and the effect of the magnetic fields caused by rotating matter
and oppositely charged antimatter in the spiral expansion, induced due
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to the opposite polarizations of the created cosmic magnetic fields. It
is then predicted that in far-away (spacelike) separated regions from
our domain, there are predominantly antimatter galaxies and stars,
planets, molecules and elementary particles of matter, duplicating the
matter distributions in our own sector of the universe.

8.1 Introduction

If there is one set of laws of nature for phenomena in one domain — say
the domain of micro-matter of elementary matter {electrons, protons,
etc.) — and a different set of laws (not compatible with the first set) for
other physical phenomena in another domain — say that of the universe
as a whole — then precisely where, in between these two domains of
the universe, does one turn one set of laws off and turn the other set
on?

If the two sets of laws — such as the quantum theory and the theory
of general relativity — are fundamentally incompatible with each other,
both conceptually and mathematically, one cannot superpose them in
any intermediate domain. The answer to this question, then, is that
there cannot be a precise prescription as to where one law would be
turned off and the other turned on. It then follows that only one of
these laws of nature or the other (or neither!) may be accepted as a
true law of nature.

A pertinent example is the change from Newton’s theory of univer-
sal gravitation, which appears to work well in the terrestrial domain
in the vicinity of the Earth, and its interactions with the Moon and
the Sun, to Einstein’s theory of gravity, represented in general relativ-
ity theory, and superceding Newton’s theory in the interplanetary and
interstellar domains. These two theories of gravity are incompatible,
both conceptually and mathematically. Newton’s theory is based on
the ideas of atomism and action-at-a-distance, and its mathematical
basis is linear and Euclidean. Einstein’s theory of gravity is based on
the continuous field concept and holism, wherein forces propagate at
a finite speed between interacting bodies. Its mathematical basis is
nonlinear and non-FEuclidean. Still, in a particular limit, the formal
expression of the laws of gravity, according to Einstein’s field theory,
asymptotically approaches (but does not exactly incorporate) the for-
mal description of gravity according to Newton’s theory.

But this does not mean that Einstein’s theory of gravity and New-
ton’s theory of gravity are both true in the domain where the expres-
sion of one of these laws mathematically approaches that of the other!
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It is rather that, accepting the truth of Einstein’s theory, it is useful
to use the mathematical expression of Newton’s theory (say, for an en-
gineer who is designing a bridge), as an approximation for Einstein’s
theory, rather than starting from scratch with the formal expression of
Einstein’s field equations. That is to say, Newton’s theory of gravity is
descriptive, where it works, but not explanatory. This is an example
of the well-known principle of correspondence.

It is in this same sense that the formal expression of ‘low energy’
quantum phenomena, using quantum mechanics as their description,
can only be viewed as a mathematical approximation for a generally
relativistic field theory in the micro-domain of matter. The single the-
ory that we examine, then, with physical implications in all domains
of nature, from the microscopic domain of ‘particle physics’ to the
domain of cosmology — that of the universe as a whole — is the the-
ory of general relativity. Its ontological stand is different from that
of the quantum or classical (Newtonian) theories of matter. In this
view, then, the universe is not a collection of separable ‘things’, inter-
acting with each other or not. Instead, the universe that the scientist
investigates is a single holistic continuum, with an infinite variety of
(nonseparable, correlated) modes. Tt is the modes of the universe that
appear to us as its constituent things — such as the galaxies, individual
stars and planets, people, trees, electrons and protons.

In this final chapter, we will examine aspects of problems of as-
trophysics and cosmology, in the context of the generalized theory of
matter that is based on exploiting the theory of general relativity, as
we have developed it thus far.

We will start out with a derivation of the geodesic equation in
quaternion form - a generalization of the geodesic equation of Ein-
stein’s tensor formalism. Viewing this equation as an equation of mo-
tion of a test body in the spacetime whose curvature is determined by
all of the ‘other’ matter of the universe, we will examine specific prob-
lems of planetary motion in the astronomical test of general relativity
in the quaternion formalism, and the implications of the Hubble law
in cosmology, as a first approximation. We will then see how a spiral
configuration of the evolving universe as a, whole, could follow from the
quaternion field equations in general relativity, and how the cosmology
appears to be oscillating between expansion and contraction, without
any singularities, in contrast to the contemporary model of a single big
bang, wherein the entire universe evolves out of a point singularity.

A specific problem in astrophysics that will then be addressed is a
possible pulsar model for a star oscillating in and out of the black hole
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density state. Finally, there will be discussion of the fascinating prob-
lem of the separation of matter and antimatter in the early universe.
We will see how this separation may have come about due to the com-
petition of gravitational and electromagnetic forces at the early stages
when the expansion (at the beginnings of each cycle) of an oscillating,
spiral universe starts to evolve.

8.2 Principle of Equivalence

There has been a great deal of discussion in the literature on the the-
ory of general relativity that pertains to its ‘principle of equivalence’.
Before deriving the geodesic equation in quaternion form, it will be
instructive to discuss the meaning of this principle and its relation to
the geodesic equation as an equation of motion of a test body.

Going back to Newtonian dynamics, his second law of motion is the
equation of motion of a test body with mass m, subject to an external
force F':

r(t)y=F/m . (8.1)

With the boundary conditions that are the initial values of the posi-
tion and velocity, 7(0) and v(0) = #'(0), a unique trajectory in three
dimensions r(t) follows. (Henceforth we will use the prime symbol to
denote the time derivative of a function unless this derivative is ex-
plicitly given.)

If there is no external force acting on the test body, F' = 0, then
the solution of (8.1), »”(t) = 0, is a straight line path, linear in the
time parameter: r(t) = 7(0) +v(0)t. In a two-dimensional plane, elim-
inating the time parameter t in the equations for x(¢) and y(t), the y-
coordinate is linear in terms of the z-coordinate, i.e., y(t) = A+ Bx(t),
where A and B are the integration constants.

The latter straight-line path is a geodesic in the Euclidean space. If
there is no external force acting on the test body, it is then predicted
(with this theory) to move naturally in a straight line at the constant
speed v, forever. This is a statement of Galileo’s principle of inertia,
also known as Newton’s first law of motion. Indeed, it would require
external energy to do the work that is necessary to move the test body
off of this geodesic path.

In the theory of general relativity, the spacetime is non-Euclidean,
and its geodesics are curved paths. A continuous family of such
geodesics characterizes a curved spacetime.
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The extension of Galileo’s principle of inertia is then the assertion
that the natural path of a body, not acted upon by an external force,
is along a curved geodesic. But in a Euclidean spacetime, such a curve
would be a consequence of an external force acting on the body. Thus
there is an equivalence between, on the one hand, a body moving freely
on a curved geodesic of a non-Euclidean spacetime and, on the other
hand, a body in a Euclidean spacetime acted upon by an external
force. This is a general expression of the principle of equivalence.

In the theory of general relativity, the curvature of spacetime cor-
responds to the existence of ‘other matter’ in the universe, apart from
the test body. This correspondence is spelled out in the field equations
that relate the geometrical properties of the spacetime to the mate-
rial content of the system, such as Einstein’s tensor field equations, or
the generalization in terms of the quaternion field equations derived in
this text. The Sun’s existence then corresponds to a particular curved
spacetime. The test body, such as a planet of the solar system, would
then move freely on one of the curved geodesics associated with the
Sun, that is the orbital path of the planet relative to the Sun’s posi-
tion. This is equivalent to postulating that the planet in a Euclidean
space is subject to an external force of the Sun which in turn causes
the planet to move on the orbital path that we observe.

However, the equation of motion of the test body along a geodesic
in a curved spacetime is only the Newtonian trajectory when Einstein’s
field equations for gravitation approximate Newton’s theory of univer-
sal gravitation. As we depart from this approximation, deviations from
the Newtonian trajectory are predicted. That is, the ‘equivalence’ is
not exact. Three important deviations predicted and empirically veri-
fied, which substantiated Einstein’s theory, thereby refuting Newton’s
theory of gravitation, were:

e the aperiodic motion of a planet about a center of force, i.c., the
perihelion precession of a planetary orbit,

e the shift of an emitted radiation spectrum from matter that is in
a correspondingly increasing gravitational potential, toward the red
end of the spectrum, i.e., the gravitational redshift,

e the curving of a path of starlight as it propagates past the rim of
the Sun.

All three of these predictions that are not predicted by Newton’s clas-
sical theory were determined theoretically and verified empirically in
the first half of the 20th century. Thus, Einstein’s theory superceded
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Newton’s theory as an explanation of the phenomenon of gravity. In
this chapter, we will analyze the first of these effects in detail.

The ‘equivalence principle’ is often referred to in saying that the
gravitational mass mg that appears in Newton’s equation for gravita-
tional force, and the inertial mass m; that appears in Newton’s second
law of motion, are numerically equal to each other. I do not believe
that this is an accurate definition, since the gravitational mass mg
is only defined in relation to the Newtonian approximation for the
gravitational force while the inertial mass m; is a general feature of a
material system, without approximation.

8.3 The Quaternion Geodesic for a Stationary Orbit

According to Galileo’s principle of inertia (Newton’s first law of mo-
tion) the natural path of a body, that is free of external forces, is a
geodesic of the Euclidean space — a straight-line motion. That is, the
principle asserts that the natural motion of the body is along a straight
line with constant velocity, so long as there are no external forces. The
generalization of this principle in Einstein’s general relativity is that
the natural path of the unobstructed body is a curve in a Riemannian
spacetime. The quantity and character of the curvature of this path
is predicted by the nature of the ‘other matter’ of the closed system,
of which the test body is a constituent. This relationship follows from
Einstein’s field equations. In the context of Einstein’s tensor formal-
ism, there is no rotation of the body predicted here.

The full generalization of the geodesic path in terms of the irre-
ducible form of general relativity must incorporate a natural rota-
tion of the test body, as well as its translation, as it propagates along
the curved geodesic of the Riemannian spacetime. This is in terms of
the quaternion metric derived in Chap. 3. For the general continuous
change in spacetime, prescribed by the Einstein group which under-
lies the intrinsic symmetry of the theory of general relativity, includes
rotation as well as translation.

As discussed in Chap. 3, the first step in deriving the equation
of motion of a test body in the irreducible form is to start with the
geodesic equation in its irreducible quaternion expression. This starts
with the factorization of the Riemannian metric,

ds? = gy dztda” — dsds®, (8.2)

where ds and ds* are the (quaternion) conjugated differential metrics,
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ds = g,da* | (8.3)

and ¢, is the (16-component) generalized metrical field, derived in
Chap. 3, with the correspondence

Juv = Qug, + @), -

It is important to emphasize here that the fundamental metrical field is
the 16-component quaternion ¢, rather than the 10-component sym-
metric tensor field g, of Einstein’s tensor expression of general rela-
tivity.

In the stationary orbit problem in Einstein’s tensor formulation,
the metric tensor g, is time-independent. But the quaternion factor-
ization ds in (8.2) need not be time-independent. It can depend on
the time coordinate in a phase factor ¢, — g, exp[if(t)], so long as the
time reversal is g}, exp[i#(—t)], where the asterisk denotes the quater-
nion conjugate — its time reversal. Note that the phase factor could be a.
complex number, so long as its imaginary part is odd under reflections,
in space or time. Thus, if = 6; +i6; and 6;(—1) = —6;(¢), then under
time reversal g, exp(ify — 8;) — g, exp(—if; +6;), and the combination
gy, + @q), < guv still represents a time-independent metric tensor,
while g, itself is time-dependent in the phase factor. (This is similar to
the situation in quantum mechanics where the wave function 1) might
be time-dependent in a phase factor while the probability density v *v
remains time-independent.)

We saw in Chap. 3 that if the trajectory is parameterized in terms
of the determinant dS = |g,|dz*, then the geodesic equation with this
parameterization is given in (3.42):

d2zr dx* dz”
95z -+ uﬁﬁ a5 =0. (8.4)

This equation is the determinant of the quaternion form of the geodesic
equation (3.36).

8.4 Planetary Motion

Let us now commence by defining the interval dS in the reference
frame wherein the test body is located at the spatial origin. In this
frame,
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d ,d

T D
a5 ~ ol gxo (8.5a)
d? o d? . d ., d

where X? is the time measure in the reference frame that is in motion
with respect to the global coordinate frame. It follows from (8.5a) and
(8.5b) that the geodesic equation (8.4) may be expressed in the form

lgo| 22™ + |go| " (|qol") r2” + me’:t“'a:”' =0. (8.6)

This is equivalent to the equation of motion
1
2 + 0t = —§Q‘1Q'3:p’~, (8.7)
where Q = |go| ™2, and the affine connection has the usual form

1
Fpup - _Q_gp)\ (aug)\u + 81/9;1)\ - a)\gu,u) . (88)

(For a derivation of this relation, see [117], Sect. 2.14.) The prime in
(8.6) and (8.7) denotes differentiation with respect to the time coordi-
nate X?/c.

The equation of motion (8.7) differs from the usual geodesic equa-
tion because of the non-zero term on the right-hand side. But the two
equations merge in the local domain, where the Riemannian spacetime
approaches a Euclidean spacetime. In this limit, the quaternion met-
rical field components approach the constant Pauli matrices so that
Q then vanishes, and hence the right-hand side of (8.7) also vanishes.
The affine connection terms I',5 vanish in this limit. Thus, the geodesic
equation approaches the local equation of motion of classical physics,
il = 0. This describes the free motion of a test body, according to
Newton’s first law of motion.

Since in the case of planetary motion v/c < 1, it follows that to
order v/c the time derivatives of the global coordinates are V¥ = ¢,
% = 0. With p = 0, (8.7) then becomes

1
e = —gcQ_lQ’ . (8.9)

The equation of motion in terms of the spatial coordinates (k = 1,2, 3)
is then

a4 Ful]f:c“'my’ = Fﬁgmu'x”’(xk’/c) : (8.10)
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Thus, the explicit generalization of the geodesic equation (to order
v/c) that follows the quaternionic description of the stationary state
in general relativity entails the introduction of the non-zero term on
the right-hand side of (8.10) — a term that is non-invariant under time
reversal. This result implies that there would be damping in the oscil-
latory harmonics of planetary motion.

8.5 The Schwarzschild Problem

As discussed in Chap. 2, in the tensor form of general relativity, we
assume that, far from a matter distribution such as a single star,
Einstein’s equations may be approximated by the vacuum equation,
R, = 0. Assuming then, with Schwarzschild, that the tensor solutions
are not only stationary but also spherically symmetric, the following
squared differential (2.23) was found:

2
ds? = (1 - 2—“) (dz?)? — 1&— —r2d?, (8.11)
lr’ p—

where « is an integration constant called the Schwarzschild radius and
d2? = sin? AdAd¢ is the (squared) differential solid angle in terms of
the polar angle coordinate 6 (0 < @ < 7) and the azimuthal angle
coordinate ¢ (0 < ¢ < 2m).

It follows from the metric in (8.11) that the corresponding affine
connection components {8.8) are determined. It then follows that the

equation of motion (8.10) takes the form (in terms of the spherical
polar coordinate system)

20 20\ ! a 20\ 71
ﬁ (1 _ T) (’)"’)2 — T” . T_z (1 . ___) (7‘/)2

T

+ (1 — 2—0‘) {Q—CQ — r(#)? — rsin? 9(@’)’)2} , (8.12a)

r r2
20 20\ " 2
1 9" — o' + 2o’y — i N2 )
2 ( — ) T 6" + T@r sin @ cosH(¢')” , (8.12b)
2 20\ 2
-5 (1 - 7‘*) v = ¢ +2c0t8 8¢ + 'y (8.12¢)

In the problem of planetary motion, r is the distance from the center
of mass of the Sun to that of the orbiting planet, ¢ is the azimuthal
angle swept out by the radius vector in the orbital plane, and the polar
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angle # measures the angle of orientation of the orbital plane relative
to the observer’s reference frame.

Choosing the boundary condition so that, at the initial time ¢ =
0, the orbital plane is at g = n/2, it follows that the solution of
(8.12b) is the orbital plane with this fixed orientation, 0(t) = /2,
as in classical mechanics. With this solution for 8, the three coupled
differential equations (8.12a—c) reduce to the following two coupled
differential equations:

0= +—2~(1—270‘)—i—3‘(1—270‘>_1(r’)2 (1—-)@5)2
(8.13a)

d(r’¢) _ 20\ "
T 20 (1 - _r_) r'¢ . (8.13b)

The corresponding equations in the Schwarzschild formulation are the

same as above, except that there is a 1 rather than a 3 in the second

term of (8.13a) and the term on the right-hand side of (8.13b) is zero.
To first order in a/r, (8.13b) becomes

d(r?¢’)
dt
Using the change of variables, y = r2¢/, (8.14) takes the form

= 2ar'¢’ . (8.14)

dy 'Y
¥ 8.15
dt = 2ar r2 ( )

The solution of this equation is

!
yr o Y
y:2a/T—2dt—2a T—2-d’r

Thus,
dy _ 20y
dr 2

The solution of this equation is

y=rip = Kexp( Qf) , (8.16)

where K is an integration constant. For r > 2¢, exp(—2a/r) — 1 and
r2¢/ — K. Thus,
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K =réde = L/m (8.17)

is Kepler’s constant for the planet, where L is its angular momentum
and m is its inertial mass. In the classical theory, the orbital speed of
the planet is

Vorb = TCP = K/7 . (8.18)

In Einstein’s tensor formalism for general relativity, ds = cdt(1 —
2a./r)1/2, s0 that the corresponding Einstein constant is

d¢ ds\' L 20\ "2
_ 299 2, (4S8 _ L . '
Kg=cr % =" @ (dt) — (1 " ) (8.19)

Thus, in Einstein’s tensor formulation of the problem of planetary
motion, in the Schwarzschild approximation, the planet’s angular mo-
mentum and orbital speed are

2y 1/2
L =mKg (1 — —> , (8.20a)
T
1/2
Vorb = % (1 — 270{) . (820]:))

In the quaternionic expression of general relativity, with the approxi-
mations used, the angular momentum and orbital speed of the planet
are

2
L = mK exp (__a) , (8.21a)
T
K 2
Vorb = T‘¢l = ? €xXp (—?a) 5 (821b)

where K is Kepler’s constant.

When the radial distance from the center of mass of the planet to
that of the Sun is sufficiently large, then as r decreases, the orbital
speed increases as 1/r. But in the quaternionic theory, the increase in
Uorb Slows down as r — 2a. According to (8.21b), the orbital speed
approaches zero at the origin, rather than diverging to infinity, as the
classical theory shows according to (8.18).

In Einstein’s formulation, vy, as a real number, must cut off at
r = 2. This is a discontinuity that does not occur in the quaternion
formulation, which instead predicts that vy, — 0 in this limit, since
exp(—2«/r) approaches zero faster than 1/r approaches infinity as r
approaches zero.
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8.6 The Radial Solution and Perihelion Precession

The perihelion precession of a planetary orbit follows from the radial
solution as a function of the azimuthal angle swept out in the orbital
plane. Substituting (8.16) into (8.13a) and expressing the derivatives
with respect to the azimuthal angle ¢ rather than the time, the equa-
tion of motion in the radial variable takes the form

d?r _dr o 2a ac?r? 2ce

LA, e S T Y 1+%) =0, (8

g2 d¢(1+2’r) T(l 7’>+ e (+T) 0 (8.22)
With the change of variables u(¢) = 1/7(¢), (8.22) may be expressed
in the form

%+U=H+2QUZ+QQHU~G{(d—2) , (8.23)

where the constant H = ac?/K?.
Assuming the method of perturbations ({117], Sect. 7.6), the solu-
tion u(¢) of the radial equation (8.23) is

1 1
u(@)= | H+4aH?+—aa |+ ag cos p— —aZa cos 2¢ +3apHapsin @,
270 20
(8.24)

where ay = (1-rpH)/rp, and 7, is the distance from the center of mass
of the planet at the perihelion point (the point of closest approach to
the Sun on the planet’s elliptical orbit) to that of the Sun.

The first two terms in (8.24) are periodic, but the third term is not.
It is the latter that predicts that the planet will take a longer time in
each of its orbits to reach the perihelion point. With the approximation
that for small p,

cos(¢ — pg) = cos ¢ + pésin g ,
equation (8.24) then becomes
1 1
u(¢p)=H+40H*+ 5@%(1— §a%a cos 29+ag cos[(1—-3aH )] . (8.25)
The maximum value of u(¢) occurs at
(1—-3aH)¢, =2mn,

where n is an integer that signifies the orbit of the planet. The peri-
helion shift for each orbit from the preceding orbit is



8.7 The Hubble Law and Cosmology 159
A=tpi1—¢n—2r=21(1-3aH)! - 27 ~ 67Ha .

With « = GM/c?, H = ac?/K? (G is Newton’s universal gravitational
constant), we find the result for the perihelion precession:

6mG2M?
A=—"Grz

This is the same result as Finstein’s. When M is the mass of the
Sun and K = L/m is Kepler’s constant for the planet Mercury, A =
42.86 arcsec per century. The observation for this is Agx, = 42.6 arcsec
per century.

It should be noted that in higher approximations, the quaternion
field prediction and Einstein’s tensor prediction would start to deviate
from each other. This is something that could be pursued in future
astronomical studies, experimentally and theoretically.

(8.26)

8.7 The Hubble Law and Cosmology

Newton’s theory of gravitation predicted that the force of gravitation
between massive bodies depends on their mutual separation, but not
on the time parameter. This led to the prediction that all massive
bodies move in stationary orbits about other massive bodies, such as
the planets of our solar system relative to their mother Sun. However,
Einstein’s theory of general relativity superceded Newton’s theory as
an explanation for gravitation. It predicts that the force of gravity
is a field that depends on the time parameter as well as the spatial
parameters. In principle, then, Einstein’s theory of general relativity
ruled out the dynamics of stationary orbits, as in Newton’s theory of
universal gravitation.

We saw in the preceding section that the planetary orbit is, in Ein-
stein, non-periodic — the anomalous perihelion precession of a plane-
tary orbit was calculated in the case of Mercury’s orbit to be in close
agreement with the empirical data. Applied to stellar systems of the
night sky, the implication of general relativity theory is that individ-
ual stars, galaxies, clusters of galaxies, and so on, do not orbit about
centers of force, in stationary orbits, as Newton’s theory would have
anticipated.

In the 1920s, E. Hubble discovered that Einstein’s prediction was
indeed correct. He saw that each galaxy of the night sky is moving away
from all other galaxies — that the universe is ‘expanding’. Specifically,
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what Hubble discovered was that the speed v of a galaxy relative to
another galaxy, that is r cm away from it, depends linearly on their
separation, i.e.,

v=Hr. (8.27)

This is called the Hubble law and H is Hubble’s constant. The observa-
tion was based on the Doppler effect, whereby the observed wavelength
of radiation from a moving source is displaced toward the red end of
the spectrum (the longer wavelengths) when the emitter of this radia-
tion moves away from the observer. Thus, Hubble saw a predominant
redshift of the radiation emitted by the galaxies of the universe, thus
leading to the conclusion that the universe is expanding, rather than
being a set of stationary orbits of stellar matter relative to other stellar
matter — the cosmic clock that was envisioned by Newtonian theory.

In the context of the theory of general relativity, the Hubble law
(8.27) is not relativistically covariant — it changes its form when trans-
formed to other spacetime reference frames. Thus, the theory of rela-
tivity implies that this empirically correct law (8.27) must be a math-
ematical approximation for a truly covariant law of stellar dynamics
of the constituents of the universe as a whole. Theoretically, then,
we must start with a cosmological model that is compatible with the
theory of general relativity — a theory of relativistic cosmology.

The presently accepted single big bang cosmology assumes a uni-
versal time measure, called cosmological time, which starts at the ini-
tiation of the assumed single expansion of the universe. Thus, all time
measures, in this view, may be with reference to the beginning of this
‘absolute time’. But such a view is incompatible with the relativity of
time measure, according to the basis of the theory of relativity — the
principle of relativity. In the latter view, all time measures depend on
the frame of reference in which they are defined. To counter this as-
sertion by saying that the reference frame of the universe as a whole is
indeed absolute does not refute Einstein’s requirement — that the ex-
pression of the laws of nature cannot depend on any absolute reference
frame, not even that of the universe as a whole! Thus, a feature of the
single big bang cosmology that makes it incompatible with a theory of
relativistic cosmology is its incorporation of an absolute cosmological
time measure.

8.7.1 The Oscillating Universe Cosmology

A way out of this difficulty is to recognize that an oscillating universe
cosmology is indeed compatible with the requirement of relativistic
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covariance. The terms in the tensor form of the geodesic equation that
play the role of force are the affine connection components 5. What
is important here is that these are not positive-definite fields. Under
conditions of sufficiently dense matter and relative velocities compara-
ble with ¢, between interacting matter, the forces between matter can
be repulsive, dominating the intrinsic attractive forces. This would
then give rise to an expansion of the matter of the universe. But when
the matter becomes sufficiently rarefied, an inflection point is reached
when the attractive forces dominate the repulsive forces, thus chang-
ing the global expansion of the universe into a global contraction. The
contraction continues until the matter density and relative speeds of its
components become large enough, when the matter of the universe is
sufficiently dense, to reach another inflection point where the predom-
inant attractive force changes once again to a predominant repulsive
force, starting the expansion once again. This scenario continues ad
infinitum. It is the oscillating universe cosmology. With this cosmol-
ogy, there is no scientific answer to the question: when did the universe
begin?

According to this model, there is no absolute time measure or a,
unique singular ‘big bang’ to start off the expansion of the universe.
The time when the last big bang happened depends on the reference
frame from which it was determined. In our reference frame, here on
Earth, our astronomers say that, according to the Doppler measure-
ments and their fit to the Hubble law (8.27), the determination of the
constant H implies that the ‘big bang’ happened between 10 and 15
billion years ago. But from a different reference frame, say on some
other planet in some other distant galaxy that is moving at a high
speed relative to us, the determination might be 1 billion years ago,
or from another reference frame, it might be 300 billion years ago.

Further, as distinct from the single big bang model, the beginning
of any particular cycle (big bang) is not discrete or mathematically
singular in space and time. The lack of singularities in physics is indeed
a requirement of the theory of general relativity, as a field theory based
entirely on the continuous field concept.

8.7.2 Dynamics of the Expansion and Contraction
of the Universe

With the assumption that the terms I’ W’f:ﬁ“’ z in the equation of mo-
tion (8.10) are time independent (over the time scale of our observa-
tions), this equation may be integrated, yielding the solution
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k 10 it
a*(t) = K1 + Kyexp (¢ ' [, x"2"'t) + mct : (8.28)
v

where k£ = 1, 2, 3 are the three spatial directions and K, K5 are the two
integration constants, to be determined by the boundary conditions.

We will now assume the validity of the oscillating universe cosmol-
ogy, for the reasons of covariance discussed above. Since the velocity
of the test matter in motion changes its direction from the imploding
stage to the exploding stage of the universe as a whole, there is an
inflection point in dz®/dt at the times of alternation of these phases.
Calling t = 0 the time when the presently observed explosion started
in our cycle of the oscillating universe, and locating the test matter at
the origin, the boundary conditions imposed by this cosmology are

dz*

dt
With (8.29) in the solution (8.28), the integration constants are found
to be

(0) =0 =z*(0) . (8.29)

[y

Ki= —Ko=c? | —#~ =
1 2=¢C (I, Jzriz)?

(8.30)

I Faqht oV ]
’

where 0 refers to the value of the ratio in the bracket at the beginning
of a cycle of the oscillating universe.
With the assumption that dz*/dt < ¢, (8.30) becomes

FGOk

and the solution (8.28) takes the form

Ik T kgt pv!
ki _ 00 —1 - O it vt Y
x (t)— {(FOOO)Q]O [1 — eXp(c ijmﬁu ¥ t)] + Wct . (831)

Consider the two terms on the right-hand side of (8.31). The coefficient
that multiplies the first term has the dimension of length:

Lo _ pk
[ ( Fﬂé})?}o R+ (8.32)

This may be interpreted as the radius of the universe when applied to
the furthermost stellar objects of the night sky. When R” is large and
spacelike, compared with ct, the second term on the right-hand side of
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(8.31) may be neglected compared with the first. This approximation
corresponds to the assumption that a distance from the observer to
the faraway galaxy is large compared with the distance traveled by
light from one time that the astronomer observes this galaxy to the
next.

With the latter assumption, the resulting solution predicts that the
speed of a galaxy, in any of the three spatial directions 2, is

dz* —1p O vty k k
5 = L2z (z" — R¥) . (8.33)
Since R* cancels in the comparison of two speeds at the corresponding
times, (8.33) then predicts that dz*/d¢ is linearly proportional to z*.
(This assumes that the term in front of the right-hand side of (8.33)
is a constant in time. The latter term is then the Hubble constant,

1
H=c'Ipe"z” = —EQ_lQ’ . (8.34)

With this result, (8.33) is indeed a derivation of the (empirically cor-
rect) Hubble law. The quaternion factor @ = |go| 2 is defined in (8.7),
dependent on the determinant of the time component of the quater-
nion metrical field gg. With the definition (8.34) of Hubble’s constant
H, we see that it actually is dependent on the time parameter. But
with the approximation used, it appears to be a constant over the time
span that it is observed in our view of the expanding universe. In prin-
ciple, however, and independent of approximation, H must be space
and time dependent, and thus the Hubble law (8.27) must only be
a non-relativistic approximation to describe the expanding universe,
because of the covariance of the laws of nature, including the laws of
cosmology.

8.7.3 Spiral Structure of the Universe

Let us consider further the dynamics developed thus far for the os-
cillatory cosmological model. With the assumption of the boundary
conditions (8.29) applied to the constituent ‘test matter’ of the uni-
verse, subject to the forces exerted on it by the rest of the matter
of the universe, we will assume that the ‘radius’ of the system (8.32)
is the same order of magnitude as the distance ct. Thus we may not
in this case neglect the second term on the right-hand side of (8.31),
compared with the first term.
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In this case, however, we may consider the motion of a test mass
over time intervals that are short compared with the time it would
take light to traverse the entire domain of the universe. Under these
conditions, and assuming that the speed of the test matter relative to
the ‘center of mass’ of the entire universe is small compared with ¢, the
argument of the exponential factor in (8.31) is small compared with
unity, so that

ct
¢ 00 5t m Ty (ct) ~ =<1,

where R is the order of magnitude of the interaction domain radius of
the entire universe, according to (8.32).

With this approximation, the expansion of the exponential in
(8.32), keeping the first two terms, gives the location of the moving
matter as follows:

k k
8 (t) = et { (12008)2 — [(1{;008 QL} Iy (8.35)

With the general expression for the affine connection (8.8), and a Tay-
lor expansion of g,,(t), assuming it to be an analytic function of the
time parameter ¢, it follows that for small ¢ the spatial coordinates of
the test mass are given by the relation

1
z*(t) = §akt2 + bt

where ¢ and b are complicated functions of the first and second
derivatives of the metric tensor g, with respect to the time coordinate.
(For details, see [117], Sect. 7.8.)

With this result, the acceleration of the test body in the k th spatial
direction is

d2z?

2
Substituting the variables d2¢*/dt? = d%z%/dt? — aF, (8.36) takes the
form

(d2C1 d2C2 d2<3

= a® 4 6b°¢ . (8.36)

2
a2 e dtz) =36[(B1)2 + (%) + (%)Y . (8.37)

The quaternion metrical field g, is a spin-one variable, implying that in
addition to translational motion, there is a rotational motion of the test
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body that moves on the quaternionic geodesic. Thus, the entire closed
system (in principle the ‘universe’) must be set into rotational motion
in a plane that is perpendicular to the orientation of the imposed spin
of the system as a whole. Thus if z* is (defined to be) the direction of
the axis of rotation of the closed system, the quaternion field equations
must predict that (b',5%) > b®. We then formulate a (non-isotropic)
two-dimensional displacement of the test mass (a constituent of the
early universe)} in terms of the vector

(" =ex(" +ey”.

This is in reference to the arbitrarily chosen origin x = 0, y = 0 that
defines the initial motion of the test mass. The nonlinear differential
equation in terms of this coordinate is then

d2 r 2 d2 z\ 2 d2cy 2

(d—fz) :(%) +(E’) = 4%, (8.38)
where

A% =36 [(b")2 + (BV)?] . (8.39)

Clearly, the coordinate of the test mass must obey the boundary condi-
tions of the oscillating cosmology, ¢"(0) = (d¢"/d¢)(0) = 0. With these
boundary conditions, the solutions of (8.38) are the Fresnel integrals
that define the Cornu spiral:

*=c {]Ot cos [(A/2¢)7%]dr — t} , (Y= c/Ot sin [(A/2¢)7%]dr .
(8.40)

The total solution for the ‘test body’ in the universe in this ‘early time’
is then

5(t) = C=(t) + %a%@ ) = V() + %aytﬂ | (8.41)
It is readily verified with this solution that z(0) = (dz/dt)(0) = y(0) =
(dy/dt)(0) = 0, in accordance with the boundary conditions of the
oscillating universe cosmology.

The solution (8.41) is a superposition of the spiral motion of a
test body of the universe in a two dimensional plane, characterized by
Fresnel integrals, and a constant acceleration relative to an observer’s
frame of reference. In the rest frame of the test body itself, then, a = 0.
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One then has a purely spiral motion with two inflection points — one
at the beginning of the expansion, when there is a maximum density
of matter and the dominant gravitational force is repulsive, and the
other at minimum matter density, when the dominant gravitational
force is attractive, leading to the beginning of the contraction phase of
the cycle. These oscillations of the matter of the universe then continue
indefinitely, into the past and into the future.

This cosmological model is then in contrast with the ‘single big
bang’ model of present day thinking, wherein there is a singular be-
ginning of all matter in space and time, and then a single expansion
(with the possibility of a subsequent single contraction). With the lat-
ter cosmological model, the matter of the universe at the ‘beginning’
was isotropic and homogeneous, and continues to be so. The observa-
tions of the galaxies and the clustering of galaxies of the night sky are
convincing to me that the latter model is not true to nature, nor is its
assumption of an absolute, cosmological time. These do not conform
with the covariance requirement of the theory of general relativity, as
a basis for cosmology.

One further remark is that the same boundary conditions and ap-
proximations applied to the universe as a whole, as discussed above,
could apply to individual galaxies. The same predictions must then
follow, that a constituent star of a galaxy evolves along a spiral path
in the confines of its mother galaxy, with two inflection points to de-
scribe an oscillating galaxy of stars, that is continually expanding and
contracting. The empirical observation of the spiral structures of most
of the observed galaxies may attest to this theoretical astrophysical
prediction.

8.8 Black Holes and Pulsars

As we have seen earlier in this text, general relativity theory entails
the curvature of spacetime as a representation of the existence of mat-
ter. The denser the matter of a star, the greater is the curvature of
spacetime in its vicinity.

Thus, starlight propagating past the rim of a star, in moving along a
geodesic of spacetime, will trace a curved path in this vicinity. This ef-
fect has been seen as one of the tests of general relativity — the bending
of a beam of starlight as it passes the rim of the Sun. (The qualitative
and quantitative effect is discussed in detail in [117], Sect. 6.11.) The
effect is also seen in contemporary measurements of the lens effect,
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whereby the astronomers view a double image of a star, due to beams
of starlight that pass the opposite edges of a scattering stellar object.
The amount of curvature viewed there depends on the mass density of
the scatterer.

Imagine now a star that is so dense that the geodesics associated
with it are so highly curved that they close on themselves. The family
of such a set of geodesics is similar to the irrotational field of a magnet.
One sees all of the lines of force emanating from the magnetic north
pole bending around so as to arrive at the magnetic south pole, no
matter how closely the north and south poles are located.

If the density of a star is so high that all of the geodesics associated
with it close on themselves, then all signals emitted by such a star must
be re-absorbed by the same star. Thus, all electromagnetic radiation
(and any other signals) leaving this star must be reabsorbed by the
same star. These signals could not arrive at our detectors — the star
would be ‘black’ to us. Such a star is called a black hole. This scenario
is contingent on the stability of such a star, which, in turn, depends
on the existence of stable solutions of the metrical field equations in
general relativity.

According to the foregoing definition of a black hole, all signals
emitted by such a star — all virtual fields that would couple the star to
the outside world, such as ‘photons’, neutrinos, or the field of a prop-
agating gravitational force (which in contemporary physics is called
a graviton) — that make its presence known, would never emerge, be-
cause they propagate along the geodesics associated with the black
hole, and these are a field of lines that close on themselves. All such
emitted signals from a black hole must then be re-absorbed by this
star.

It should be pointed out here that, in this day, there is no empirical,
conclusive evidence for the existence of the black hole, nor is there
any theoretical proof that there are stable solutions of the equations
of general relativity that correspond to the black hole state. But, in
principle, it is still possible that black holes could exist in reality. In this
regard, there has been a great deal in the literature on observational
discoveries of black holes in the night sky. But this cannot yet be a
reality, for the reasons discussed above. There is indeed astronomical
evidence for very dense matter at the centers of galaxies, but there is
no proof that these are indeed black holes as they are defined above!
There is also discussion of the possibility that some observations can
be associated with binary black holes — two of them that rotate about
each other under the force of gravity. But this must also be ruled
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out as a reality since a single black hole cannot couple to any other
matter, including another black hole — since the latter would require
its emitted gravitational force to be absorbed by another body, and
this is not possible because these forces are propagating along closed
geodesics! Barlier claims have been based on observing X-rays emitted
by a visible star and then disappearing from view. The claim is that
they are absorbed by a black hole that is binary to the visible star. But
this is also not possible because the black hole cannot bind to other
matter.

This author also does not believe that it is possible to express
the nature of the black hole with quantum mechanical concepts — the
Heisenberg uncertainty principle, quantum mechanical tunneling, etc.
The reason is that it has never been shown that general relativity
(the theoretical root of the black hole, if it exists) can be unified with
quantum mechanics — it has never been demonstrated that there is
a rigorous quantum theory of gravity! Indeed, there is reason to be-
lieve that such a unification is impossible, for both mathematical and
conceptual reasons.

8.8.1 Possible Model of a Pulsar

'The dynamics of all material systems — the universe as a whole, indi-
vidual galaxies, individual stars, etc. — is oscillatory, according to the
theoretical analysis of this monograph. Thus, the normal life of a star
is one of pulsation between minimum and maximum density.

If a black hole star is a possibility, then while it is in the state of
maximum density, no light (or other signals) may be emitted from it
to the outside world. But if this star pulsates, then when it is in a
density state that is lower than the black hole density, it will emit
radiation to the outside world. Thus, our observations of such a star
would reveal (damped} periodic pulses of radiation, just as it is seen
in the night sky, interpreted as ‘pulsars’. Taking the time-irreversible
equation of motion of the test body, subject to a host star, to be (8.10),
the expression for the affine connection in terms of the metric tensor
(8.8), and spherical symmetry, so that g*” = g*(r, 2%), it follows that
the equation of motion satisfied by the radial coordinate of the test
matter is as follows [115]:

d27“ rr 1 00 dr 00 dr ) C2 T
@ +c (g 8097«7« - 59 60900) a —4g 6TQOO (a;) _59 r§og = 0.
(8.42)
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Assuming now that the speed of the test body in the star is small
compared with the speed of light, i.e., (dr/dt)/c < 1, the third term
in (8.42) may be neglected compared with the second term. The re-
sulting equation describes a damped oscillator. We then define terms
as follows:

W 2
Orgop = —2 (-) TGrr (8.43)
C
1
c (9”63‘0%" - 590030900) =b, (8.44)

where w is the angular frequency of the pulsation of the star and b is
a constant parameter characteristic of the star. Inserting (8.43) and
(8.44) into (8.42), the latter takes the form of the equation of motion
of a damped oscillator:

d?r dr

2. _
@+ba+wr-0. (8.45)

The general form of the solution of this equation is
r(t) = Aexp(—bt/2) cos { [w? — (b/2)?] Y2 alt, (8.46)

where A, a are the two integration constants. They are determined
from the boundary conditions

(0} = Acosa =rq, (8.47)
%(0) = - [(A2 —rg) [w? - (b/2)2]] Y (b/2)ro =0, (8.48)

where 7y is the gravitational radius of the star at the beginning of
its pulsations. The boundary condition (8.48) follows because of the
oscillatory nature of the pulsations of the star — at the inflection points,
the rate of change of the star’s radius with respect to time must vanish.
Applying (8.47) and (8.48) to the solution (8.46), we have
(1) = Tow exp(—biﬁ/lz)2 cos [[w? — (b/2)2]V24 + ol (8.49)
[w? — (b/2)2]"

where

= e

W

& = COS8

(8.50)
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8.8.2 Damped Oscillatory Motion and Pulsars

A solution of (8.43) is

2

goo = —2 (%) /grerT, (8.51)

yielding
W 2

Oogoo — 2 (E) /ﬁggwrdr ) (8.52)

Inserting this into (8.44) we have
4 w2 00
b=rc|q" Oggrr + (E) g OoGrprdr]| . (8.53)

Calling 8pgrr = F(r,z), (8.53) may be expressed as follows:

Fra® 1 [F(@,a%dr b (8.54)

[ F(r,20)dz® 2 [ F(r,20)rdrds0 T c

Assuming that the metrical field of the pulsating star describes a sta-
tionary state with angular frequency w, F is separable as follows:
F(r,z") = f(r) coswt. Equation (8.54) then reduces to

w = 2btanwt . (8.55)

The solutions of (8.55) occur at the times when w/2 crosses the tran-
scendental function tan wt. The first crossing is at

w
Yo vt = 0.1344 .
2p M

This solution is unacceptable because it yields an imaginary frequency
in the cosine function in (8.47), implying that r(¢) is not oscillatory,
in contradiction with our starting assumption.

The next crossing in (8.55) occurs at

w
— = wiy = 4.4932 .
% Wi 93

This gives b = w/8.9864 ~ w/9. In this case, the solution (8.47) has
the form

0.349¢ 2nt
2 )cos " (8.56)

r(t) = roexp (- T T
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where T = 27 /w is the period of the star’s oscillation. According to
this solution, the gravitational radius of the star would decrease to e !
of its original size after the order of three pulsations.

The next crossing in (8.55) occurs at a time much greater than 37
Thus, within this analysis, the solution (8.56) determines the damping
action in the star’s pulsations.

Summing up, the prediction here is that, if there can indeed be a
stable black hole solution of the field equations of general relativity,
its pulsations in and out of the black hole density state would reveal a
‘pulsar’ effect, whereby one would observe pulses of radiation, when-
ever the star is out of the black hole density state. The intensity of the
pulses would then dampen in accordance with the ever-decreasing size
of the star to e ! of its original radius in the order of three pulsations.

This mechanism is not the only possible one to reveal pulsar ac-
tion. But in my view it is a possible candidate to explain (at least a
portion of) the pulsar data. The commonly held model of a pulsar in
contemporary astrophysics is a rotating neutron star.

In the limit that corresponds to damping the oscillations of the
black hole toward the end of its life, the portion of its life corresponding
to closed geodesics (the black hole portion) would change to only open
geodesics. This would lead to a total disintegration of the star.

The evolution of this (very specialized type of) star would be as
follows: supernova (or other violent stellar processes) that could lead to
a maximal density star — black hole — pulsar (= n cycles of pulsation
in and out of the black hole state) — total disintegration of the star.
The time scale for this set of steps would depend on the physical
parameters of the star and its rate of damping (attenuation). Generally,
such a star would be a very rare object in the normal constituency of
the night sky.

8.9 Separation of Matter and Antimatter
in the Early Universe

An interesting question in cosmology and particle physics, that has
persisted since the discovery of antimatter in the early decades of the
20th century, is: why is there a predominance of matter over antimatter
in our domain of the universe? A second question is: is there another
domain of the universe where there is a predominance of antimatter
over matter, where the complex structures such as atoms, molecules,
people, planets, galaxies, etc., are composed of antimatter rather than
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matter? In the latter case, the dominant atoms would be anti-helium,
rather than helium, whose nuclei are two antiprotons bound to two
antineutrons, with two orbiting antielectrons (positrons).

I wish to propose the following scenario that could answer these
questions. We start with the beginning of a spiral expansion, at the
beginning of any particular cycle of the oscillating universe, as dis-
cussed earlier in this chapter. The spiral nature of the matter of the
expanding and contracting universe followed mathematically from so-
lutions in the equations of motion of a test body that is a constituent
of the universe, subject to the forces of the rest of the universe. These
are the Fresnel integrals (8.40) and (8.41). Because of the underly-
ing quaternion structure of the metric of spacetime, the cosmological
dynamics is found to be asymmetric, involving rotation, say in the
clockwise direction relative to a universal cosmic plane.

Note that while we have specified ‘clockwise rotation’, this is tied
to an arbitrarily chosen observer’s view. There is no absolute cosmic
reference frame in the generally covariant theory of relativity. That
is, from a different observer’s frame of reference, the cosmic rotation
could be seen as counterclockwise.

The theory developed thus far reveals that in the background of
all observed matter, there is a sea of electron and proton particle—
antiparticle pairs, e”—e® and p~—p™, each in their ground states of
null energy, null momentum and null angular momentum. In regard to
energy, this means that the pair is at 2mc? below the state where they
would be free of each other, where m is the inertial mass of each of the
members of the pair. The early universe, at the time of an explosion
of its matter into an expansion phase (the phase that we witness at
the present time) is then composed only of such a ‘physical vacuum’
of pairs.

The scenario for the separation of the particles from their bound
antiparticles, at the time of the gravitational explosion, is as follows.
The internal energy of the matter of the universe, at the inflection
point wherein the explosion (‘big bang’) ensues, delivers 2 Gev units
of energy to each of many of the proton pairs, so as to dissociate them,
out of a much greater number of proton pairs of the universe, and about
1 Mev units of energy to each of the electron pairs to dissociate them.

The positively charged protons and positrons then move in the spi-
ral gravitational field, say clockwise, giving rise to a magnetic field
BT, perpendicular and below the cosmic plane of rotation. The disso-
ciated, negatively charged electrons and antiprotons then rotate in the
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opposite direction, counterclockwise, in the magnetic field BT, thus
separating them from the positively charged positrons and protons.

The antiprotons and electrons, rotating in the clockwise direction
in the spiral gravitational field, then give rise to a magnetic field
B, perpendicularly oriented above the plane of cosmic rotation. This
magnetic field, in turn, induces the positively charged protons and
positrons to rotate counterclockwise in the cosmic plane.

However, the gravitational spiral rotation is unidirectional (say
clockwise) and the magnetically induced rotation of the positively
charged protons is also clockwise, while the magnetic effect on the
antiprotons is to make them rotate counterclockwise. Thus, there are
more protons than antiprotons rotating clockwise. But for every proton
that rotates clockwise, there is an antiproton that rotates counterclock-
wise. Thus, there is a separation of the matter from the antimatter due
to the competition between the asymmetrical gravitationally induced
rotations and the symmetrical magnetically induced rotational forces
of the early universe.

In this way, then, the gravitational motion of the ‘matter’ of the
universe superposes a spiral motion (in the same direction of rotation)
of the separated antimatter universe. Of course, there are not two sep-
arated distinct universes. They are merely the spacelike separations
of the matter and antimatter components of a single universe, com-
ponents that are galaxies, planets, people, etc., one set composed of
antimatter and the other of matter.

A prediction that follows, from this scenario, is that galaxies pre-
dominantly composed of antimatter, such as an anti-Milky Way, must
entail the decay of antineutrons (rather than neutrons) to antiprotons,
positrons and virtual neutrinos with positive helicity (rather than to
protons, electrons and virtual neutrinos with negative helicity).

It is interesting in this regard that in the 1987 supernova explo-
sion, neutrinos with positive helicity were detected, correlated with
this event. This observation implies the possibility that the supernova
explosion may have entailed the decay of antineutrons rather than
neutrons. These stellar components of the supernova may then have
been antimatter rather than matter components of the universe — an
antimatter galaxy!
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