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PREFACE

The twentieth century has witnessed a striking transformation in the un-
derstanding of the theories of mathematical physics. There has emerged
clearly the idea that physical theories are significantly characterized by
their abstract mathematical structure. This is in opposition to the tradi-
tional opinion that one should look to the specific applications of a
theory in order to understand it. One might with reason now espouse
the view that to understand the deeper character of a theory one must
know its abstract structure and understand the significance of that struc-
ture, while to understand how a theory might be modified in light of its
experimental inadequacies one must be intimately acquainted with how
it is applied.

Quantum theory itself has gone through a development this century
which illustrates strikingly the shifting perspective. From a collection of
intuitive physical maneuvers under Bohr, through a formative stage in
which the mathematical framework was bifurcated (between Schrodinger
and Heisenberg) to an elegant culmination in von Neumann’s Hilbert
space formulation the elementary theory moved, flanked even at the later
stage by the ill-understood formalisms for the relativistic version and for
the field-theoretic alternative; after that we have a gradual, but constant,
elaboration of all these quantal theories as abstract mathematical struc-
tures (their point of departure being von Neumann’s formalism) until at
the present time theoretical work is heavily preoccupied with the manip-
ulation of purely abstract structures. (The earlier history is set out in some
detail in e.g. M. Jammer, The Conceptual Development of the Quantum
Theory, McGraw-Hill, 1966 and a subsequent companion volume now in
press.) A similar story holds for the development of relativistic theories,
and of course for the recent attempts to consistently combine them.

Despite this evolution of pure mathematical sophistication and self-
consciousness we are at the present time, so it seems, neither any closer
to an adequate atomic theory nor yet to a satisfactory physical inter-
pretation of even elementary quantum theory. At least in regard to the
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latter problem, in my opinion, the situation stems directly from the fact
that our conceptual understanding of physical theory has been even more
slowly evolving than has our understanding of the mathematical struc-
ture of those theories themselves. In this respect the philosophy of science
has itself undergone its own twentieth century revolution. From the
‘everyday’ intuitions and debates about determinism, mechanism and the
like there has emerged slowly a tradition of conceptual analysis in which
the ideal is to characterize conceptually interesting questions so sharply
that they admit of formally precise answers. (Thus “Is the theory deter-
ministic?” becomes “Does the theory admit such and such mathematical
construction?” and an analysis of the predicate ‘-is deterministic’ be-
comes “-has structure S’.) The examination of physical theory from this
point of view has led to many rich and fruitful insights.

It is precisely the combination of the emerging mathematical sophis-
tication and self-consciousness with the emerging formal sophistication
and insight into the structure of conceptual schemes that is the founda-
tion for the claim that the deep understanding of physical theory lies in
the understanding of its abstract structures.

(In respect of these revolutions we may note: (i) That each had its
origins in preceding centuries, though not there the dominant tradition,
one thinks of Hamilton and Jacobi or of Boole — even so most of the
development lies in the twentieth century, mathematical logic, formal
syntax and semantics, the use in physics of Hilbert space, group theory,
lattice theory and so on all essentially belong to the last 60 years. (ii) In
respect of contributions to the various developments the departmental
origins of salary were not closely correlated with type of contribution — in-
deed the various disciplines involved have never coped with the blurring
of their separateness and are still in the early stages of adjusting to the
changing intellectual perspective.)

The papers in this volume all belong to one strand of this complex
development — the understanding of elementary quantum theory through
examination of its formal, or abstract, structure. Remarkably, this is
the first time (to my knowledge) that anyone has attempted to collect
them together, though the body of literature has been well known to
anyone approaching the subject in the last decade. (This is in itself witness
to the newness of the perspective.) Considering the span of time covered
and the diversity of authorship, the collection is satisfyingly complete — a
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tribute to the eagerness of all concerned to see their work set in the
wider perspective of the emerging field of study. Even casual examination
of the dates of the papers — they are arranged nearly chronologically, not
alphabetically or by theme — reveals an explosion of interest and fruitful
work in the late 1960’s. (Occasionally I have foregone strict chronological
order so that related articles might be grouped together. This is so in the
case of Reichenbach’s 3-valued approach and responses, and the work of
Kochen and Specker, to which should be attached the earlier paper by
Specker.) ,

The present volyme barely reaches the beginnings of the recent ex-
plosion of interest and productivity, some papers with a broader perspec-
tive are included for the reader’s benefit (principally those by Holland,
Piron, Gudder and Greechie and van Fraassen), but by and large this
volume concentrates on the foundational work laid down in the ‘long
period of initial struggle’, 1935-1965. It is my intention to devote a
second volume (to appear shortly) to recent research.

These articles do not belong to a single tradition concerning quantum
theory, nothing like that could have emerged until the 1970°s and the
major points of view are only just now emerging clearly. Nor are they
written from the same perspective — some are written by mathematicians
for mathematicians, others by logicians for philosophers. These articles
represent the ‘raw material’ for study. This volume is designed to be a
basic reference text, not the presentation of a particular doctrine. I have
my own understanding of the significance of these papers, but that
will appear as part of Volume II which will be more devoted to works
that analyse and interpret the mathematical material than is this
volume.

In keeping with this referential role for the volume I shall refrain here
from taking issue with the various interpretive battles now raging and
from any attempt to evaluate the relative significances of the various
mathematical contributions. Where this text is used — senior under-
graduate or graduate course — one assumes a competent leader who will
set the material in some preferred order. Some passing remarks may
be in order for the benefit of the disciplinarily one-sided reader. The
approach of Birkhoff and von Neumann is connected to the structure of
logical systems clearly for the first time in the work of Kochen and
Specker, who also make clear the significance of Gleason’s theorem in
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this context. The connection between this approach and lattice and
POset theory is discussed at length in Holland and reviewed in Piron and
Gudder and Greechie, while its corresponding and close association
with group theory is developed by Poole upon the basis of the funda-
mental paper by Foulis. The important paper by Varadarajan ought to be
read in conjunction with the discussion by Kochen and Specker con-
cerning the probabilistic constraints on acceptable boolean embeddings
(cf. Zieler and Schlessinger) and compared with the discussions by
Suppes. Finally, it is well known to those in philosophy that these
researches have generated a heated discussion concerning the nature
of logic, a debate of great profundity but one barely hinted at here (cf.
Kochen and Specker, Suppes, van Fraassen); rather these papers serve
as the background to the debate, the debate itself being taken up in
Volume II.

As I remarked earlier, the material spreads across the boundaries
between mathematics, physics and philosophy. From a mathematician’s
point of view this volume is designed to offer some of the basic source
material for a study of the kind of axiomatic approach to quantum theory
followed by George Mackey, Josef Jauch, and others, to connect it to
the physical and conceptual (chiefly logical here) issues and to introduce
several areas of mathematical enquiry delightful in their own rights.
From the philosopher’s point of view it is designed as a basic reference
text to educate in the formalism and results he (she!) must know in
order to competently follow the current debates and to contribute
thereto. For the physicist the book offers an introduction to that com-
plex of mathematical and philosophical argument which constitutes a
first example in the new way of studying physical theories.

From the point of view of an adequately complete reference source it
must be admitted that several other entire volumes ought also to be
included! Of course this is not possible. I shall mention now several other
volumes which, if the reader will employ them to complement the present
selection of journal articles, will provide him/her with a well rounded
reference library. Among the more important volumes are:

Bub, J., The Interpretation of Quantum Mechanics, D. Reidel Publishing Co., Dordrecht,
1974.

Hooker, C. A., Contemporary Research in the Foundations and Philosophy of Quantum
Theory, D. Reidel Publishing Co., Dordrecht, 1974.
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Jauch, J., The Foundations of Quantum Mechanics, Addison-Wesley, New York, 1968.

Mackey, G. W., The Mathematical Foundations of Quantum Mechanics, W. A. Benjamin,
New York, 1963.

Varadarajan, V. S., The Geometry of Quantum Mechanics, 2 vols., Van Nostrand, Princeton,
N.J., 1968.

London, Ontario, 1974.
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GARRETT BIRKHOFF AND JOHN VON NEUMANN

THE LOGIC OF QUANTUM MECHANICS

1. Introduction

One of the aspects of quantum theory which has attracted the most gen-
eral attention, is the novelty of the logical notions which it presupposes.
It asserts that even a complete mathematical description of a physical
system & does not in general enable one to predict with certainty the
result of an experiment on €, and that in particular one can never predict
with certainty both the position and the momentum of € (Heisenberg’s
Uncertainty Principle). It further asserts that most pairs of observations
are incompatible, and cannot be made on € simultaneously (Principle
of Non-commutativity of Observations).

The object of the present paper is to discover what logical structure
one may hope to find in physical theories which, like quantum mechan-
ics, do not conform to classical logic. Our main conclusion, based on
admittedly heuristic arguments, is that one can reasonably expect to find
a calculus of propositions which is formally indistinguishable from the
calculus of linear subspaces with respect to set products, linear sums, and
orthogonal complements — and resembles the usual calculus of proposi-
tions with respect to and, or, and not.

In order to avoid being committed to quantum theory in its present
form, we have first (in Sections 2—6) stated the heuristic arguments which
suggest that such a calculus is the proper one in quantum mechanics, and
then (in Sections 7-14) reconstructed this calculus from the axiomatic
standpoint. In both parts an attempt has been made to clarify the dis-
cussion by continual comparison with classical mechanics and its prop-
ositional calculi. The paper ends with a few tentative conclusions which
may be drawn from the material just summarized.

I. PHYSICAL BACKGROUND

2. Observations on Physical Systems

The concept of a physically observable “physical system” is present in
all branches of physics, and we shall assume it.

C. A. Hooker (ed.), The Logico-Algebraic Approach to Quantum Mechanics, 1-26.
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It is clear that an “observation” of a physical system & can be described
generally as a writing down of the readings from various! compatible
measurements. Thus if the measurements are denoted by the symbols
Uis---, Uy, then an observation of & amounts to specifying numbers
Xy, ..., X, corresponding to the different y,.

It follows that the most general form of a prediction concerning & is
that the point (x, ..., x,) determined by actually measuring u,, ..., ,, will
lie in a subset S of (x4, ..., x,)-space. Hence if we call the (x,, ..., x,)-spaces
associated with &, its “observation-spaces,” we may call the subsets of
the observation-spaces associated with any physical system &, the “ex-
perimental propositions” concerning &.

3. Phase-Spaces

There is one concept which quantum theory shares alike with classical
mechanics and classical electrodynamics. This is the concept of a math-
ematical “phase-space.”

According to this concept, any physical system & is at each instant
hypothetically associated with a “point” p in a fixed phase-space X; this
point is supposed to represent mathematically the “state” of &, and the
“state” of S is supposed to be ascertainable by “maximal”? observations.

Furthermore, the point p, associated with & at a time t,, together
with a prescribed mathematical “law of propagation,” fix the point p,
associated with S at any later time ¢; this assumption evidently embodies
the principle of mathematical causation.?

Thus in classical mechanics, each point of X corresponds to a choice
of n position and n conjugate momentum coordinates — and the law of
propagation may be Newton’s inverse-square law of attraction. Hence
in this case X' is a region of ordinary 2n-dimensional space. In electro-
dynamics, the points of Z' can only be specified after certain functions —
such as the electromagnetic and electrostatic potential — are known;
hence X' is a function-space of infinitely many dimensions. Similarly, in
quantum theory the points of X correspond to so-called “wave-functions,”
and hence Z is again a function-space — usually* assumed to be Hilbert
space.

In electrodynamics, the law of propagation is contained in Maxwell’s
equations, and in quantum theory, in equations due to Schrodinger. In
any case, the law of propagation may be imagined as inducing a steady
fluid motion in the phase-space.
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It has proved to be a fruitful observation that in many important cases
of classical dynamics, this flow conserves volumes. It may be noted that
in quantum mechanics, the flow conserves distances (i.e., the equations
are “unitary”).

4. Propositions as Subsets of Phase-Space

Now before a phase-space can become imbued with reality, its elements
and subsets must be correlated in some way with “experimental propo-
sitions” (which are subsets of different observation-spaces). Moreover,
this must be so done that set-theoretical inclusion (which is the analogue
of logical implication) is preserved.

There is an obvious way to do this in dynamical systems of the classical
type.> One can measure position and its first time-derivative velocity —
and hence momentum - explicitly, and so establish a one-one corre-
spondence which preserves inclusion between subsets of phase-space and
subsets of a suitable observation-space.

In the cases of the kinetic theory of gases and of electromagnetic waves
no such simple procedure is possible, but it was imagined for a long time
that “demons” of small enough size could by tracing the motion of each
particle, or by a dynamometer and infinitesimal point-charges and mag-
nets, measure quantities corresponding to every coordinate of the phase-
space involved.

In quantum theory not even this is imagined, and the possibility of
predicting in general the readings from measurements on a physical
system & from a knowledge of its “state” is denied; only statistical pre-
dictions are always possible.

This has been interpreted as a renunciation of the doctrine of pre-
determination; a thoughtful analysis shows that another and more subtle
idea is involved. The central idea is that physical quantities are related,
but are not all computable from a number of independent basic quantities
(such as position and velocity).6

We shall show in Section 12 that this situation has an exact algebraic
analogue in the calculus of propositions.

5. Propositional Calculi in Classical Dynamics

Thus we see that an uncritical acceptance of the ideas of classical dy-
namics (particularly as they involve n-body problems) leads one to



4 GARRETT BIRKHOFF AND JOHN VON NEUMANN

identify each subset of phase-space with an experimental proposition
(the proposition that the system considered has position and momentum
coordinates satisfying certain conditions) and conversely.

This is easily seen to be unrealistic; for example, how absurd it would
be to call an “experimental proposition,” the assertion that the angular
momentum (in radians per second) of the earth around the sun was at
a particular instant a rational number !

Actually, at least in statistics, it seems best to assume that it is the
Lebesgue-measurable subsets of a phase-space which correspond to ex-
perimental propositions, two subsets being identified, if their difference
has Lebesgue-measure 0.”

But in either case, the set-theoretical sum and product of any two
subsets, and the complement of any one subset of phase-space corre-
sponding to experimental propositions, has the same property. That is,
by definition®

The experimental propositions concerning any system in classical me-
chanics, correspond to a ‘field” of subsets of its phase-space. More pre-
cisely: To the “quotient” of such a field by an ideal in it. At any rate they
form a “Boolean Algebra.”®

In the axiomatic discussion of propositional calculi which follows, it
will be shown that this is inevitable when one is dealing with exclusively
compatible measurements, and also that it is logically immaterial which
particular field of sets is used.

6. A Propositional Calculus for Quantum Mechanics

The question of the connection in quantum mechanics between subsets
of observation-spaces (or “experimental propositions”) and subsets of
the phase-space of a system &, has not been touched. The present section
will be devoted to defining such a connection, proving some facts about
it, and obtaining from it heuristically by introducing a plausible postulate,
a propositional calculus for quantum mechanics.

Accordingly, let us observe that if «,, ..., &, are any compatible observ-
ations on a quantum-mechanical system & with phase-space X, then!©
there exists a set of mutually orthogonal closed linear subspaces Q; of
Z (which correspond to the families of proper functions satisfying o, f'=
Ai1fy o 0 f =2 .f) such that every point (or function) feX can be
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uniquely written in the form

f=cifitefotesfs+--[fie]

Hence if we state the

DEFINITION. By the “mathematical representative” of a subset .S of any
observation-space (determined by compatible observations a, ..., a,) for
a quantum-mechanical system &, will be meant the set of all points f of
the phase-space of &, which are linearly determined by proper functions
Je satisfying o, =24, £, ..., a.fi = A k> Where (4,,..., 4,)€S.

Then it follows immediately: (1) that the mathematical representative
of any experimental proposition is a closed linear subspace of Hilbert
space (2) since all operators of quantum mechanics are Hermitian, that
the mathematical representative of the negative'! of any experimental
proposition is the orthogonal complement of the mathematical represen-
tative of the proposition itself (3) the following three conditions on two
experimental propositions P and Q concerning a given type of physical
system are equivalent:

(3a) The mathematical representative of P is a subset of the mathe-.
matical representative of Q.

(3b) P implies Q — that is, whenever one can predict P with certainty,
one can predict Q with certainty.

(3c) For any statistical ensemble of systems, the probability of P is at
most the probability of Q.

The equivalence of (3a)3c) leads one to regard the aggregate of the
mathematical representatives of the experimental propositions con-
cerning any physical system &, as representing mathematically the
propositional calculus for €.

We now introduce the
POSTULATE. The set-theoretical product of any two mathematical rep-
resentatives of experimental propositions concerning a quantum-mechan-
ical system, is itself the mathematical representative of an experimental
proposition.

Remarks. This postulate would clearly be implied by the not unnatural
conjecture that all Hermitian-symmetric operators in Hilbert space
(phase-space) correspond to observables;*? it would even be implied by
the conjecture that those operators which correspond to observables co-
incide with the Hermitian-symmetric elements of a suitable operator-
ring M. 13
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Now the closed linear sum Q,+Q, of any two closed linear sub-
spaces €; of Hilbert space, is the orthogonal complement of the set-
product Q;-Q) of the orthogonal complements Q; of the Q;; hence if
one adds the above postulate to the usual postulates of quantum the-
ory, then one can deduce that

The set-product and closed linear sum of any two, and the orthogonal
complement of any one closed linear subspace of Hilbert space represent-
ing mathematically an experimental proposition concerning a quantum-
mechanical system S, itself represents an experimental proposition con-
cerning S.

This defines the calculus of experimental propositions concerning S,
as a calculus with three operations and a relation of implication, which
closely resembles the systems defined in Section 5. We shall now turn
to the analysis and comparison of all three calculi from an axiomatic-
algebraic standpoint.

II. ALGEBRAIC ANALYSIS

7. Implication as Partial Ordering

It was suggested above that in any physical theory involving a phase-
space, the experimental propositions concerning a system & correspond
to a family of subsets of its phase-space X, in such a way that “x implies
y” (x and y being any two experimental propositions) means that the
subset of 2 corresponding to x is contained set-theoretically in the subset
corresponding to y. This hypothesis clearly is important in proportion
as relationships of implication exist between experimental propositions
corresponding to subsets of different observation-spaces.

The present section will be devoted to corroborating this hypothesis
by identifying the algebraic-axiomatic properties of logical implication
with those of set-inclusion.

It is customary to admit as relations of “implication,” only relations
satisfying

Si: x implies x.
S2: If x implies y and y implies z, then x implies z.
S3: If x implies y and y implies x, then x and y are logically

equivalent.



THE LOGIC OF QUANTUM MECHANICS 7

In fact, S3 need not be stated as a postulate at all, but can be regarded
as a definition of logical equivalence. Pursuing this line of thought, one
can interpret as a “physical quality,” the set of all experimental proposi-
tions logically equivalent to a given experimental proposition,!+

Now if one regards the set S, of propositions implying a given prop-
osition x as a “mathematical representative” of x, then by S3 the corre-
spondence between the x and the S, is one-one, and x implies y if and
only if §, =§,. While conversely, if L is any system of subsets X of a fixed
class I', then there is an isomorphism which carries inclusion into logical
implication between L and the system L* of propositions “x is a point
of X,” XelL.

Thus we see that the properties of logical implication are indistin-
guishable from those of set-inclusion, and that therefore it is algebraically
reasonable to try to correlate physical qualities with subsets of phase-
space.

A system satisfying S1-S3, and in which the relation “x implies y” is
written xc< y, is usually '3 called a “partially ordered system,” and thus
our first postulate concerning propositional calculi is that the physical
qualities attributable to any physical system form a partially ordered system.

It does not seem excessive to require that in addition any such calculus
contain two special propositions: the proposition [J that the system con-
sidered exists, and the proposition © that it does not exist. Clearly

S4: © c=xc[] for any x.

© is, from a logical standpoint, the “identically false” or “absurd”
proposition; [] is the “identically true” or “self-evident” proposition.

8. Lattices

In any calculus of propositions, it is natural to imagine that there is a
weakest proposition implying, and a strongest proposition implied by,
a given pair of propositions. In fact, investigations of partially ordered
systems from different angles all indicate that the first property which
they are likely to possess, is the existence of greatest lower bounds and
least upper bounds to subsets of their elements. Accordingly, we state

DEFINITION. A partially ordered system L will be called a “lattice”
if and only if to any pair x and y of its elements there correspond



8 GARRETT BIRKHOFF AND JOHN VON NEUMANN

S5: A “meet” or “greatest lower bound” xny such that (5a)
xnycx, (5b) xnycy, (5¢) zex and zcy imply zexn y.
S6: A “join” or “least upper bound” x U y satisfying (6a) x U y o x,

(6b) xUy>y, (6c) wox and woy imply wox U y.

The relation between meets and joins and abstract inclusion can be
summarized as follows,!®
(8.1) In any lattice L, the following formal identities are true,

L1: ana=aandava=a.
L2: anb=bnaandaub=bua
L3: an(bnc)=(anb)ncandau(buc)=(aub)uc.

L4: av(anb)=an(aub)=a.

Moreover, the relations a>b, anb=>b, and aub=a are equivalent —
each implies both of the others.

(8.2) Conversely, in any set of elements satisfying L2—-L4 (L1 is redun-
dant), anb=>b and au b=a are equivalent. And if one defines them to
mean a> b, then one reveals L as a lattice.

Clearly L1-L4 are well-known formal properties of and and or in or-
dinary logic. This gives an algebraic reason for admitting as a postulate
(if necessary) the statement that a given calculus of propositions is a
lattice. There are other reasons'’ which impel one to admit as a pos-
tulate the stronger statement that the set-product of any two subsets of
a phase-space which correspond to physical qualities, itself represents
a physical quality — this is, of course, the Postulate of Section 6.

It is worth remarking that in classical mechanics, one can easily define
the meet or join of any two experimental propositions as an experimental
proposition — simply by having independent observers read off the mea-
surements which either proposition involves, and combining the results
logically. This is true in quantum mechanics only exceptionally — only
when all the measurements involved commute (are compatible); in gen-
eral, one can only express the join or meet of two given experimental
propositions as a class of logically equivalent experimental propositions
—ie., as a physical quality.*8

9. Complemented Lattices

Besides the (binary) operations of meet- and join-formation, there is a
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third (unary) operation which may be defined in partially ordered systems.
This is the operation of complementation.

In the case of lattices isomorphic with “fields” of sets, complementa-
tion corresponds to passage to the set-complement. In the case of closed
linear subspaces of Hilbert space (or of Cartesian n-space), it corresponds
to passage to the orthogonal complement. In either case, denoting the
“complement” of an element a by a/, one has the formal identities,

L71: (d)=a
L72: and=0 and aud =[].
L73: acb implies a’'>b'.

By definition, L71 and L73 amount to asserting that complementation
is a “dual automorphism” of period two. It is an immediate corollary of
this and the duality between the definitions (in terms of inclusion) of
meet and join, that

L74: (anb)=dub and(aub)=a' nb

and another corollary that the second half of L72 is redundant. [ Proof:
by L71 and the first half of L74, (au d')=(a" v a’)=(a' na)=©’, while
under inversion of inclusion © evidently becomes [J.] This permits one
to deduce L72 from the even weaker assumption that ac—a’ implies
a=0. Proof: for any x, (x " x'y =(x UX")=XUxDxNX.

Hence if one admits as a postulate the assertion that passage from an
experimental proposition a to its complement a' is a dual automorphism of
period two, and a implies a' is absurd, one has in effect admitted L71-L74.

This postulate is independently suggested (and L71 proved) by the
fact the “complement” of the proposition that the readings x,..., x,
from a series of compatible observations y,,..., i, lie in a subset S of
(x4, .-, x,)-space, is by definition the proposition that the readings lie in
the set-complement of S.

10. The Distributive Identity

Up to now, we have only discussed formal features of logical structure
which seem to be common to classical dynamics and the quantum theory.
We now turn to the central difference between them — the distributive
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identity of the propositional calculus:
Lé6: au(bnc)=(aub)n(auc)and an(buc)=(anb)u(anc)

which is a law in classical, but not in quantum mechanics.

From an axiomatic viewpoint, each half of L6 implies the other.!®
Further, either half of L6, taken with L72, implies L71 and L73, and to
assume L6 and L72 amounts to assuming the usual definition of a Boolean
algebra.2®

From a deeper mathematical viewpoint, L6 is the characteristic prop-
erty of set-combination. More precisely, every “field” of sets is isomorphic
with a Boolean algebra, and conversely.2! This throws new light on the
well-known fact that the propositional calculi of classical mechanics are
Boolean algebras.

It is interesting that L6 is also a logical consequence of the compati-
bility of the observables occurring in a, b, and c. That is, if observations
are made by independent observers, and combined according to the usual
rules of logic, one can prove L1-L4, L6, and L71-74.

These facts suggest that the distributive law may break down in quan-
tum mechanics. That it does break down is shown by the fact that if a
denotes the experimental observation of a wave-packet ¥ on one side of
a plane in ordinary space, a’ correspondingly the observation of ¥ on
the other side, and b the observation of ¥ in a state symmetric about the
plane, then (as one can readily check):

bn(aud)=bnl=b>0=(bna)=(bnd)
=(bna)u(bna).

Remark. In connection with this, it is a salient fact that the generalized
distributive law of logic:

L6*: i]f[l '[il a;, j>= ,% <,1:m[1 az;j(i))

breaks down in the quotient algebra of the field of Lebesgue measurable
sets by the ideal of sets of Lebesgue measure 0, which is so fundamental
in statistics and the formulation of the ergodic principle.22

11. The Modular Identity

Although closed linear subspaces of Hilbert space and Cartesian n-space
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need not satisfy L6 relative to set-products and closed linear sums, the
formal properties of these operations are not confined to L1-L4 and
L71-L73.

In particular, set-products and straight linear sums are known?? to
satisfy the so-called “modular identity.”

L5: If acc, then au(bnc)=(aub)nec.

Therefore (since the linear sum of any two finite-dimensional linear sub-
spaces of Hilbert space is itself finite-dimensional and consequently
closed) set-products and closed linear sums of the finite dimensional sub-
spaces of any topological linear space such as Cartesian n-space or Hilbert
space satisfy LS, too.

One can interpret LS directly in various ways. First, it is evidently a
restricted associative law on mixed joins and meets. It can equally well
be regarded as a weakened distributive law, since ifac ¢, thenau (bnc)=
(@anc)u(bnc)and (aub)nc=(aub)n(auc) And it is self-dual: re-
placing =, n, U by >, U, N merely replaces a, b, c, by ¢, b, a.

Also, speaking graphically, the assumption that a lattice L is “modular”
(ie., satisfies L5) is equivalent to?* saying that L contains no sublattice
isomorphic with the lattice graphed in Figure 1:

@

©®

O
Fig. 1.

Thus in Hilbert space, one can find a counterexample to L5 of this
type. Denote by &, &,, &, ... a basis of orthonormal vectors of the space,
and by a, b, and c respectively the closed linear subspaces generated by
the vectors (£,,+107"¢, +1072%¢,, . ;), by the vectors &,,, and by a and
the vector £;. Then a, b, and ¢ generate the lattice of Figure 1.

Finally, the modular identity can be proved to be a consequence of
the assumption that there exists a numerical dimension-function d(a),
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with the properties

D1: If a> b, then d(a)>d(b).
D2: d(a)+d(b)=d(anb)+d(aub).

This theorem has a converse under the restriction to lattices in which
there is a finite upper bound to the length n of chains2* @ <a; <a, <---
<a,<[ of elements.

Since conditions D1-D2 partially describe the formal properties of
probability, the presence of condition L5 is closely related to the exist-
ence of an “a priori thermo-dynamic weight of states.” But it would be
desirable to interpret L5 by simpler phenomenological properties of
quantum physics.

12. Relation to Abstract Projective Geometries

We shall next investigate how the assumption of postulates asserting
that the physical qualities attributable to any quantum-mechanical sys-
tem & are a lattice satisfying L5 and L71-L73 characterizes the resulting
propositional calculus. This question is evidently purely algebraic.

We believe that the best way to find this out is to introduce an as-
sumption limiting the length of chains of elements (assumption of finite
dimensions) of the lattice, admitting frankly that the assumption is purely
heuristic.

It is known 26 that any lattice of finite dimensions satisfying L5 and
L72 is the direct product of a finite number of abstract projective geom-
etries (in the sense of Veblen and Young), and a finite Boolean algebra,
and conversely.

Remark. It is a corollary that a lattice satisfying L5 and L71-L73
possesses independent basic elements of which any element is a union,
if and only if it is a Boolean algebra.

Again, such a lattice is a single projective geometry if and only if it is
irreducible — that is, if and only if it contains no “neutral” elements.?’
x#©, [ such that a=(an x) U (an x') for all a. In actual quantum mech-
anics such an element would have a projection-operator, which com-
mutes with all projection-operators of observables, and so with all oper-
ators of observables in general This would violate the requirement of
“irreducibility” in quantum mechanics.?® Hence we conclude that the
propositional calculus of quantum mechanics has the same structure as an
abstract projective geometry.
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Moreover, this conclusion has been obtained purely by analyzing in-
ternal properties of the calculus, in a way which involves Hilbert space
only indirectly.

13. Abstract Projective Geometries and Skew-Fields

We shall now try to get a fresh picture of the propositional calculus of
quantum mechanics, by recalling the well-known two-way correspon-
dence between abstract projective geometries and (not necessarily com-
mutative) fields.

Namely, let F be any such field, and consider the following definitions
and constructions: n elements x4, ..., x, of F, not all =0, form a right-

only if a z in F with n;,=zy,, i=1,..., n, exists.
Now define an n— 1-dimensional projective geometry P,_, (F) as fol-

subspaces” of P, _,(F) are those sets of points, which are defined by
systems of equations

01 Xg + -+ + 0y, X, =0, k=1,...,m.

(m=1,2,..., the a; are fixed, but arbitrary elements of F). The proof, that
this is an abstract projective geometry, amounts simply to restating the
basic properties of linear dependence.?®

The same considerations show, that the (n— 2-dimensional) hyper-
planes in P,,_,(F) correspond to m=1, not all ;=0. Put ay;=3y;, then
we have

(* yiX1+--+y,x,=0,  not all y;=0.

This proves, that the (n— 2-dimensional) hyperplanes in P, _,(F) are in
a one-to-one correspondence with the left-ratios [y,:...: y, ],

So we can identify them with the left-ratios, as points are already
identical with the right-ratios, and (*) becomes the definition of “inci-
dence” (point = hyperplane).

Reciprocally, any abstract n — 1-dimensional projective geometry Q,_,
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with n=4, 5,... belongs in this way to some (not necessarily commuta-
tive field F(Q,_,), and Q,_, is isomorphic with P,_, (F(Q,-,)).*°

14. Relation of Abstract Complementarity to Involutory Anti-Isomorph-
isms in Skew-Fields

We have seen that the family of irreducible lattices satisfying L5 and L72
is precisely the family of projective geometries, provided we exclude the
two-dimensional case. But what about L71 and L73? In other words,
for which P,_,(F) can one define complements possessing all the known
formal properties of orthogonal complements? The present section will
be spent in answering this question.3*

First, we shall show that it is sufficient that F admit an involutory anti-
somorphism W:%=W|(x), that is:

QL w(w(u)=u,
Q2. w(u+v)=w(u)+w(v),
Qs. w(uv)=w(v) w(u),
with a definite diagonal Hermitian form w(x,) y, &, +--- + w(x,) y,&,, Where
Q4. w(xy)y1x, + - +w(x,) y,x,=0 implies x; =--- =x,=0,

the y; being fixed elements of F, satisfying w(y;)=7;.
Proof: Consider ennuples (not right- or left-ratios!) x:(xy,..., x,),
E:(éy,..., &,) of elements of F. Define for them the vector-operations
xz:(x,2,...,%,z)  (zin F),
x+é:(x1 +§1""’ X”+£n),

and an “inner product”

(&ix)=w(&;) y1xs + - +W(E,) VXne

Then the following formulas are corollaries of Q1-Q4.

IP1 (x,&)=w((¢ x))

P2 (& xu)=(¢ x) u, (Su, x)=w(u) ¢, x),

IP3 (& x'+x")=(& x)+( x"), (&' +¢&", x)=(&, x)+(¢", x),
IP4 (%, x)=w((x, x))=[x] is #0 if x5£0 (that is, if any x,#0).

We can define x L ¢ (in words: “x is orthogonal to ¢”) to mean that
(¢, x)=0. This is evidently symmetric in x, £, and depends on the right-
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subspace of points of P,_,(F), which by Q4 does not contain b itself,
and yet with b generates whole projective space P,_,(F), since for any
ennuple x:(x,,..., X,) .

x=x+&[E]7 (¢ x)

where by Q4, [£]+#0, and by IP (£, x')=0. This linear subspace is, there-
fore, an n— 2-dimensional hyperplane.

Hence if ¢ is any k-dimensional element of P,_,(F), one can set up
inductively k mutually polar points b ..., b® in c. Then it is easy to
show that the set ¢’ of points polar to every b, ..., b® — or equivalently
to every point in ¢ - constitute an n—k— 1-dimensional element, satis-
fying cn¢'=0© and cu ¢ =[]. Moreover, by symmetry (c') ¢, whence
by dimensional considerations ¢” =c. Finally, c >d implies ¢’ =d’, and so
the correspondence ¢c—c¢’ defines an involutory dual automorphism of
P,_,(F) completing the proof.

In the Appendix it will be shown that this condition is also necessary.
Thus the above class of systems is exactly the class of irreducible lattices
of finite dimensions > 3 satisfying LS and L71-L73.

III. CONCLUSIONS

15. Mathematical Models for Propositional Calculi

One conclusion which can be drawn from the preceding algebraic con-
siderations, is that one can construct many different models for a prop-
ositional calculus in quantum mechanics, which cannot be differentiated
by known criteria. More precisely, one can take any field F having an
involutory anti-isomorphism satisfying Q4 (such fields include the real,
complex, and quaternion number systems *!), introduce suitable notions
of linear dependence and complementarity, and then construct for every
dimension-number n a model P,(F), having all of the properties of the
propositional calculus suggested by quantum-mechanics.
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One can also construct infinite-dimensional models P, (F) whose ele-
ments consist of all closed linear subspaces of normed infinite-dimen-
sional spaces. But philosophically, Hankel’s principle of the “persever-
ance of formal laws” (which leads one to try to preserve L5)3? and math-
ematically, technical analysis of spectral theory in Hilbert space, lead one
to prefer a continuous-dimensional model P,(F), which will be described
by one of us in another paper.33

P.(F) is very analogous with the model furnished by the measurable
subsets of phase-space in classical dynamics.34

16. The Logical Coherence of Quantum Mechanics

The above heuristic considerations suggest in particular that the phys-
ically significant statements in quantum mechanics actually constitute a
sort of projective geometry, while the physically significant statements
concerning a given system in classical dynamics constitute a Boolean
algebra.

They suggest even more strongly that whereas in classical mechanics
any propositional calculus involving more than two propositions can be
decomposed into independent constituents (direct sums in the sense of
modern algebra), quantum theory involves irreducible propositional cal-
culi of unbounded complexity. This indicates that quantum mechanics
has a greater logical coherence than classical mechanics — a conclusion
corroborated by the impossibility in general of measuring different quan-
tities independently.

17. Relation to Pure Logic

The models for propositional calculi which have been considered in the
preceding sections are also interesting from the standpoint of pure logic.
Their nature is determined by quasi-physical and technical reasoning,
different from the introspective and philosophical considerations which
have had to guide logicians hitherto. Hence it is interesting to compare
the modifications which they introduce into Boolean algebra, with those
which logicians on “intuitionist” and related grounds have tried intro-
ducing.

The main difference seems to be that whereas logicians have usually
assumed that properties L71-L73 of negation were the ones least able
to withstand a critical analysis, the study of mechanics points to the
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distributive identities L6 as the weakest link in the algebra of logic. Cf.
the last two paragraphs of Section 10.

Our conclusion agrees perhaps more with those critiques of logic,
which find most objectionable the assumption that a’'wb=[ implies
acb (or dually, the assumption that anb’'=© implies boa — the as-
sumption that to deduce an absurdity from the conjunction of ¢ and not
b, justifies one in inferring that a implies b).3%

18. Suggested Questions

The same heuristic reasoning suggests the following as fruitful questions.
What experimental meaning can one attach to the meet and join of
two given experimental propositions?
What simple and plausible physical motivation is there for condition
L5?
APPENDIX

1. Consider a projective geometry Q,_, as described in Section 13. F is
a (not necessarily commutative, but associative) field, n=4,5,...,0Q,_; =

are the points of @, _,. The (n — 2-dimensional) hyperplanes are represented
by the left-ratios [y,:...: y,];, incidence of a point [x,:...: x,], and of a

(1) '=il yix;=0

All linear subspaces of Q, _, form the lattice L, with the elements g, b, ,. ...
Assume now that an operation a’ with the properties L71-173 in Section
9 exists:

L71 (@)=a

L72 and=0 and aud =[],

L73 acbh implies a' ob'.
They imply (cf. Section 9)

L74 (@anby=d'ub’' and (aub)=da nb.

Observe, that the relation a< b’ is symmetric in q, b, owing to L73 and
L71.
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2 Ifa:[x,:...:x,],isa point, thena’isan [y, :...: y,];. So we may write:

2 Dxyiecrx,o=[y1:e--: Madis

and define an operation which connects right- and left-ratios. We
know from Section 14, that a general characterization of a’ (a any ele-
ment of L) is obtained, as soon as we derive an algebraic characteriza-
tion of the above [x,:...: x,],. We will now find such a characterization

tion 14,
In order to do this, we will have to make a rather free use of colline-
ations in Q,,_;. A collineation is, by definition, a coordinate-transforma-
tion, which replaces [x;:...: x,], by [%;:...: X,],,
) Xj=

WX, for j=1,...,n.

i

13

Here the w;; are fixed elements of F, and such, that (3) has an inverse.

()] xX;= ) 6;%; fori=1,...,n,

L3

-

J

the 6,; being fixed elements of F, too. (3), (4) clearly mean

5_1 if k=1‘.
7l0 if k1|

n
9,-1(0”=5,-k, Z wije,-k=5jk.
i=1

(5)

-

J

Considering (1) and (5) they imply the contravariant coordinate-trans-
formation for hyperplanes: [y,:...: y,], becomes [7,:...: ,};, where

(6) yi= Z yioij’ for j=1,...,n,
i=1

(7) yi= Y, Joi, fori=1,...,n.
j=1

(Observe, that the position of the coefficients on the left side of the vari-
ables in (4), (5), and on their right side in (6), (7), is essential!)
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3. We will bring about
(8) [5“:...:5,-,,]',=[5“:...:5,-,,], for i=1,...,n,

by choosing a suitable system of coordinates, that is, by applying suitable
collineations. We proceed by induction: Assume that (8) holds for i=
1,...,m—1(m=1,.., n), then we shall find a collineation which makes
(8) true for i=1,...,m.

h¥* means (use (1)) x;=0, and p¥ <d means (use (8)) y;=0. But these
two statements are equivalent. So we see: If i=1,...,m—1, then x;,=0
and y;=0 are equivalent.

i=1,...m—1, so we have y*=0 for i=1,...,m—1. Furthermore,
pEnp¥ =0, px+#0, so p% not <p¥. By (1) this means y* #0.
Form the collineation (3), (4), (6), (7), with

Oii=a),-,-=l, Bmi=co,-m= :_ly? for i=m+l,...,n,

all Other 0,-j, wij=0.
One verifies immediately, that this collineation leaves the coordinates

So after this collineation (8) holds for i=1,...,m.
Thus we may assume, by induction over m=1,..., n, that (8) holds for
all i=1,..., n. This we will do.

9) x;=0 is equivalent to y;=0, fori=1,...,n.

Assume first n; =1, n,=n, n3=---=1,=0. Then (9) gives £, #0, so we
can normalize ¢, =1, and &3=---=¢,=0. £, can depend on n,=n only,

s0 &, =f1(n).
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Assume further x; = 1. Then (9) gives y, #0, so we can normalize y, = 1.
Now a<b’ means by (i) 1+#x,=0, and b<a' means 1+y,f,(n)=0.
These two statements must, therefore, be equivalent. So if x, #0, we may
put n=—x; !, and obtain y,= —(f,(n) "' = —(fo(=xz "))~ " If x,=0,
then y,=0 by (9). Thus, x, determines at any rate y, (independently of
X3, .- Xn): Y2 =@ (x,). Permuting the i=2,..., n gives, therefore:

There exists for each i=2,...,n a function @;(x), such that y,=¢;(x,).
Or:

(10) If a:[1:x,:...:x,],,  then a':[1:9,(xy):...: @, (x.)]i-
a<c and c=<d are equivalent, so

(11) Y. @i(u) x;= —1isequivalent to ) @(x)u;=—1.
i=2 i=2

-

Observe, that (9) becomes:
(12) ®;i(x)=0 if and only if x=0.

5. (1) with x3=+--=x,=uy=--- =u,=0 shows: ¢, (4,) x,= — 1 is equiv-
alent to @,(x;)u,=—1. If x,#0, uy;=(—@,(x,))" !, then the second
equation holds, and so both do.

Choose x,, u, in this way, but leave x, ..., X,, U3, ..., 4, arbitrary. Then
(11) becomes:

(13) Y. @i(u;) x;=0 is equivalent to ) @;(x;)u;=0.
i=3 i=3

Now put x5="---=x,=us="---=u,=0. Then (13) becomes:
©3(u3) x3+ ¢4 (us) x4 =0 is equivalent to
@3(x3) s+ @4 (xs) us =0,
that is (for x,, u, #0):
(@) x3x3 ' =4 (us) " @3 (u3)
(14) is equivalent to
(b) usuy =g, (x4)~ o, (x3).

Let x4, x5 be given. Choose u;, u, so as to satisfy (b). Then (a) is true,
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too. Now (a) remains true, if we leave us, u, unchanged, but change x;,
x, without changing x;x; !. So (b) remains too true under these condi-
tions, that is, the value of ¢, (x,) ~* @3(x3) does not change. In other words:
®4(xs) '@3(x;) depends on x3x;' only. That is: @, (xa) " p3(xs)=
©34(x3x5 ). Put x3=xz, x,=x, then we obtain:

(15) @3 (x2)=04(x) Y34(2)-
This was derived for x, z#0, but it will hold for x or z=0, too, if we
define ¥34(0)=0. (Use (12).)

(15), with z=1 gives @3(x)=@4(X) 34, Where a3, =1/3,(1)#0, owing to
(12) for x#0. Permuting the i=2,..., n gives, therefore:

(16) 0:(x)=0;(x)a;;, where a;;%0.

(For i=j put a;;=1.)
Now (15) becomes

@2(2x)= @2 (x) w(2)
w(2)=042034(2) o23.

Put x=1 in (17), write x for z, and use (16) with j=2:

(pi(x)=ﬁw(z) Yis where ﬂ’ ’))15\‘:0
(B=02(1), vi=03)).

6. Compare (17) for x=1, z=u; x=u, z=v; and x=1, z=vu
Then

(19) w(vu) =w(u) w(v)
results (12) and (18) give
(20) w(u)=0 if and only if u=0.

Now write w(z), y; for fw(z) B~ *, By;. Then (18), (19), (20) remain true,
(18) is simplified in so far, as we have f=1 there. So (11) becomes

(21) > wlu)yix=—1
i=2
(21) is equivalent to

2 wlx)ya=—1

i=2

(17)

(18)
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X, =X, U, =u and all other x;=u;=0 give: w(u) y,x= —1 is equivalent to
w(x) yu=—1.If x#0, u= —y; *w(x) ™!, then the second equation holds,
and so the first one gives: x=—7; 'w(w) "= —y; ' (w(—y; 'w(x)")) "L

But (19), (20) imply w(1)=1, w(w™)=w(w) 1, so the above relation be-
comes:

x=—y3 '(w(=yz 'wler )~ ==z 'w((—73 'w(x)" 1))
= =93 'w(w(x) (—72) = —yz 'w(=72) w(w(x)).

Put herein x=1,as w(w(1))=w(1)=1,50 —y; 'w(—y;)=1,w(—75)=—7,
results. Thus the above equation becomes

(22) w(w(x))=x,
and w(—y,)=—7, gives, if we permute the i=2,...,n,
23)  wl=r)=-n

Put u;= —y; ! in (21). Then considering (22) and (19)

(24) Y. x;=1is equivalent to Y w(x;)=1
i=2 =2
obtains. Put x, =x, x3=y, x,=1—x—y, xs=---=x,=0. Then (24) gives

w(x)+w(y)=1—w(l —x—y). So w(x)+w(y) depends on x+y only. Re-
placing x, y by x+ y, 0 shows, that it is equal to w(x + y)+w(0)=w(x+y)
(use 20). So we have:

25 wx)+w)=w(x+y)
(25), (19) and (22) give together:
w(x) is an involutory antisomorphism of F.
Observe, that (25) implies w(— 1)= —w(1)= —1, and so (23) becomes
(26) w(y) =7

a:[Lixxy b ix,x7 ], and so a:[L:w(xoxi ) ya:...: w(x,x1 ) vali
But

w(xxy 1) yi=w(xg ) wix) yi=w(x,)~ 'wix;) v,
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and so we can write

too. So we have
(27) yi=w(x;) ; fori=1,...,n,

where the y; for i=2,..., n are those from 6., and y; =1. And w(1)=1, so
(26) holds for all i=1,...,n. So we have the representation (27) with
obeying (26), if x;#0.

Permutation of the i=1,..., n shows, that a similar relation holds if
x,#0:

27%)  yi=wr )y,

(26%)  wr (i )=v",
w™ (x) being an involutory antisomorphism of F. (w* (x), y;" may differ

from w(x), y;!) Instead of y, =1 we have now y; =1, but we will not use
this.

(27) and (27*). As w(x),w* (x) are both antisomorphism. so w(1)=
w*(1)=1, and therefore [y;:...:y.Ji=[71:---:vadi=[7 - t94 ]; Ob-
tains. Thus (y{) ™'y =(y)) " 'vi=v, v =yiyifori=1,...,n

Assume now x,#0 only. Then (27%) gives y;=w™* (x;) y;', but as we
are dealing with left ratios, we may as well put

yi=() "W () vt =) W () v v
Put B* =y #0, then we have:
Q7)) yi=B""wr(x) By,

be expressed by both formulae (27) and (27**), again w(l)=w™*(1).
Therefore
[y12y2:y32y41...1yn]1=['y12’y22w(x) 'y3:0:"':0]l
=[y1:y2:B* "'w* (x) B7y5:0:...:0],
obtains. This implies w(x)=8""'w(x) B* for all x, and so (27**) coin-
cides with (27).
In other words: (27) holds for x,#0 too.
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Permuting i=2,...,n (only i=1 has an exceptional réle in (27)), we
see: (27) holds if x;#0 for i=2,...,n. For x,#0 (27) held anyhow, and
for some i=1,...,n we must have x;#0. Therefore:

(27) holds for all points a:[x,:...: X,],

(28) Z w(x;) :£:=0.

i=1

a<d can never hold (@ana’'=0, a#0), so (28) can only hold for x;=¢,,
if all x;=0. Thus,

(29) w(x;) y;x;=0 implies x, =---=x,=0.

VP

1

1]

Summing up the last result of 6., and formulae (26), (29) and (28), we
obtain:

There exists an involutory antisomorphism w(x) of F (cf. (22), (25), (19))
and a definite diagonal Hermitian form Y 7_, w(x;) y.£; in F (cf. (26), (29)),
such that for a:[x,:...:x,],, b:[£;:...:&,], b=d is defined by polarity
with respect to it:

M=

(28) w(x) 7:£:=0.

1

i

This is exactly the result of Section 14, which is thus justified.

The Society of Fellows, Harvard University,
The Institute for Advanced Study

NOTES

! If one prefers, one may regard a set of compatible measurements as a single composite
“measurement’ — and also admit non-numerical readings — without interfering with subse-
quent arguments.

Among conspicuous observables in quantum theory are position, momentum, energy,
and (non-numerical) symmetry.
2 L. Pauling and E. B. Wilson, An Introduction to Quantum Mechanics, McGraw-Hill,
1935, p. 422. Dirac, Quantum Mechanics, Oxford, 1930, §4.
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3 For the existence of mathematical causation, cf. also p. 65 of Heisenberg’s The Physical
Principles of the Quantum Theory, Chicago, 1929.

4 Cf. J. von Neumann, Mathematische Grundlagen der Quanten-mechanik, Berlin, 1931,
p. 18.

5 Like systems idealizing the solar system or projectile motion.

6 A similar situation arises when one tries to correlate polarizations in different planes of
electromagnetic waves.

7 Cf. J. von Neumann, ‘Operatorenmethoden in der klassischen Mechanik,” Annals of
Math. 33 (1932), 595-8. The difference of two sets S;, S, is the set (S; +S,) ~ S-S, of
those points, which belong to one of them, but not to both.

8 F. Hausdorff, Mengenlehre, Berlin, 1927, p. 78.

9 M. H. Stone, ‘Boolean Algebras and Their Application to Topology’, Proc. Nat. Acad. 20
(1934), 197.

10 Cf. von Neumann, op. cit., pp. 121, 90, or Dirac, op. cit., 17. We disregard complica-
tions due to the possibility of a continuous spectrum. They are inessential in the pres-
ent case.

11 By the “negative” of an experimental proposition (or subset S of an observation-
space) is meant the experimental proposition corresponding to the set-complement of S in
the same observation-space.

12 Je., that given such an operator o, one “could” find an observable for which the
proper states were the proper functions of a.

13 E J. Murray and J. v. Neumann, ‘On Rings of Operators’, Annals of Math., 37 (1936),
120. It is shown on p. 141, loc. cit. (Definition 4.2.1 and Lemma 4.2.1), that the closed
linear sets of a ring M — that is those, the “projection operators” of which belong to M —
coincide with the closed linear sets which are invariant under a certain group of rotations of
Hilbert space. And the latter property is obviously conserved when a set-theoretical inter-
section is formed.

14 Thus in Section 6, closed linear subspaces of Hilbert space correspond one-many to
experimental propositions, but one-one to physical qualities in this sense.

15 F. Hausdorff, Grundziige der Mengenlehre, Leipzig, 1914, Chap. VI, §1.

16 The final result was found independently by O. Ore, ‘The Foundations of Abstract
Algebra. 1, Annals of Math. 36 (1935), 406-37, and by H. MacNeille in his Harvard Doc-
toral Thesis, 1935.

17 The first reason is that this implies no restriction on the abstract nature of a lattice —
any lattice can be realized as a system of its own subsets, in such a way that anb is the set-
product of @ and b. The second reason is that if one regards a subset S of the phase-space of
a system & as corresponding to the certainty of observing G in S, then it is natural to assume
that the combined certainty of observing & in S and T is the certainty of observing & in
S T=SnT, - and assumes quantum theory.

18 The following point should be mentioned in order to avoid misunderstanding: If a, b
are two physical qualities, then au b, an b and &’ (cf. below) are physical qualities too (and
so are © and J+). But acb is not a physical quality; it is a relation between physical
qualities.

19 R. Dedekind, Werke, Braunschweig, 1931, vol. 2, p. 110.

20 @G. Birkhoff, ‘On the Combination of Subalgebras’, Proc. Camb. Phil. Soc. 29 (1933),
441-64, §23-4. Also, in any lattice satisfying L6, isomorphism with respect to inclusion
implies isomorphism with respect to complementation; this need not be true if L6 is not
assumed, as the lattice of linear subspaces through the origin of Cartesian n-space shows.
21 M. H. Stone, ‘Boolean Algebras and Their Application to Topology’, Proc. Nat. Acad.
20 (1934), 197-202.
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22 A detailed explanation will be omitted, for brevity; one could refer to work of G. D.
Birkhoff, J. von Neumann, and A. Tarski.
23 G. Birkhoff, op. cit., §28. The proof is easy. One first notes that since ac(@ub)nc
if acc, and bncc(@aub)nc in any case, au(bnc)c(@ub)nc. Then one notes that
any vector in (@ub)nc can be written E=a+B[aea, feb, £ec]. But f=¢—a is in
¢ (since £ec and aeacc); hence E=a+peau(bnc), and au(bnc)o(aub)ne, com-
pleting the proof.
24 R. Dedekind, Werke, vol. 2, p. 255.
25 The statements of this paragraph are corollaries of Theorem 10.2 of G. Birkhoff, op. cit.
26 G. Birkhoff ‘Combinatorial Relations in Projective Geometries’, Annals of Math. 30
(1935), 743-8.
27 0. Ore, op. cit., p. 419.
28 Using the terminology of footnote,!? and of loc. cit. there: The ring MM’ should con-
tain no other projection-operators than 0, 1, or: the ring M must be a “factor.” Cf. loc.
cit.!3, p. 120.
29 Cf. §103-105 of B. L. Van der Waerden’s Moderne Algebra, Berlin, 1931, Vol. 2.
30 =4, 5,... means of course n— 13, that is, that Q,_, is necessarily a “Desarguesian”
geometry. (Cf. O. Veblen and J. W. Young, Projective Geometry, New York, 1910,
Vol. 1, page 41). Then F=F(Q,_,) can be constructed in the classical way. (Cf. Veblen and
Young, Vol. 1, pages 141-150). The proof of the isomorphism between Q,_, and the
P,_, (F)as constructed above, amounts to this: Introducing (not necessarily commutative)
homogeneous codrdinates x4, ..., x, from Fin Q, _ , and expressing the equations of hyper-
planes with their help. This can be done in the manner which is familiar in projective
geometry, although most books consider the commutative (‘‘Pascalian”) case only. D.
Hilbert, Grundlagen der Geometrie, 7th edition, 1930, pages 96-103, considers the non-
commutative case, but for affine geometry, and n—1=2, 3 only.

Considering the lengthy although elementary character of the complete proof, we pro-
pose to publish it elsewhere.
302 R, Brauer, ‘A Characterization of Null Systems in Projective Space’, Bull. Am. Math.
Soc. 42 (1936), 247-54, treats the analogous question in the opposite case that XnX'#©
is postulated.
3! In the real case, w(x)=x; in the complex case, w(x +iy)=x—iy; in the quaternionic
case, w(u+ix+jy+kz)=u—ix—jy—kz; in all cases, the A, are 1. Conversely, A.
Kolmogoroff, ‘Zur Begriindung der projektiven Geometrie’, Annals of Math. 33 (1932),
175-6 has shown that any projective geometry whose k-dimensional elements have a locally
compact topology relative to which the lattice operations are continuous, must be over the
real, the complex, or the quaternion field.
32 L5 can also be preserved by the artifice of considering in P, (F) only elements which
either are or have complements which are of finite dimensions.
33 3. von Neumann, ‘Continuous Geometries’, Proc. Nat. Acad. 22 (1936), 92-100 and
101-109. These may be a more suitable frame for quantum theory, than Hilbert space.
34 In quantum mechanics, dimensions but not complements are uniquely determined by
the inclusion relation; in classical mechanics, the reverse is true!
35 1t is not difficult to show, that assuming our axioms L1-5 and 7, the distributive law
L6 is equivalent to this postulate: a’ U b=[] implies acb.



MARTIN STRAUSS

THE LOGIC OF COMPLEMENTARITY
AND THE FOUNDATION OF QUANTUM THEORY*

INTRODUCTION

Several attempts have been made to provide an axiomatic basis for the
statistical transformation theory in quantum physics in the form of
simple general principles. Thus, in his well-known book on Quantum
Mechanics Dirac uses the superposition principle as a fundamental
principle. This principle permits indeed to determine many characteristic
features of the mathematical formalism. It does not, however, suffice to
determine even the algebra of the state calculus, as Dirac has noticed
himself. From the present point of view the superposition principle may
be looked upon as an ingenious but rather artificial formulation of
complementarity.

A complete axiomatic foundation of the statistical transformation
theory is due to voN NEUMANN . The present work is closely related to it;
its critical discussion is a natural starting-point.

Von Neumann's postulates demand essentially two things: (A) a one-
one correlation between physical quantities and hypermaximal Hermi-
tean operators in Hilbert space, and (B) linearity of the mean value
operator for these quantities.

This deduction of the statistical formulae of quantum mechanics
appears to be remarkable and satisfactory in so far as it makes no use
of hypotheses concerning equal or numerical probabilities — in contrast
to other statistical theories, in particular classical statistical mechanics.
From the point of view of the Correspondence Principle this had to be
expected since numerical probabilities would have no analogues, in
the sense of that Principle, in classical mechanics.

However, from a physical point of view it can hardly be called satis-
factory to base the theory on a postulate whose connection with experi-
mental facts is as little intelligible as is the case with postulate (A).
Instead, one would like to see a principle directly suggested by experience,

C. A. Hooker (ed.), The Logico-Algebraic Approach to Quantum Mechanics, 27-44
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as in Thermodynamics or Relativity Theory, such as the principle of
indeterminacy or complementarity.

Even when adopting the formal point of view one is struck by the
circumstance that the Principle of Complementarity, so closely connect-
ed? with that of Correspondence, is merely implicitly contained in
postulate (A) but is not at all involved in the postulates concerning
quantum mechanical probabilities. This would not be surprising if
complementarity had no bearing on the mathematical theory of prob-
ability —a condition that is not satisfied. In fact, complementarity restricts
the validity or applicability of the ordinary theory of probability in a quite
definite manner. This may be seen even without the use of the formalism
from the following examples.

Consider a statistical ensemble of hydrogen atoms all in the same
energy state E,. Then there exist the probabilities prob(E,; /,,) and
prob(E,; I,,) to find the value of Q within the interval I,,=(g, g+ 44) or
the value of P within I,,=(p, p+ 4p), respectively. According to the
ordinary theory of probability there would then also exist the prob-
ability prob(E,; I,, and I,,) for finding both the value of Q within I,
and the value of P within 1,,. In view of the complete > complementarity
between P and Q this probability could not be tested. The formalism
yields for it a two-valued complex expression — it gives a nonsensical
answer to a senseless question. This violation of the ordinary calculus of
probability (or rather: its rules of existence) does not destroy the internal
consistency of the calculus. This consistency would be destroyed only
if either the probability prob(E, and I,,; I,,) or prob(E, and I,,; I,,)
would exist (which is not the case, due to the complementarity between
H and Q or H and P, respectively) because then prob (E,; I,, and I,,)
would be numerically determined by the general multiplication theorem:

prob (14,5 145 and 1) = prob(l,; 1) prob(I,, and 1,5 1)
= prob (I 4; I4) prob (I, and I, 14)

Cases where two (or all three) prob expressions with a logical conjunction
exist do occur in quantum mechanics, e.g. in the case 4=M,, B=(Q,,
C=P, (x-components of angular momentum, position and linear
momentum vector, respectively). In this case, where 4 commutes with
both B and C, the probabilities on the two right-hand sides exist while
that on the left-hand side does not. [Hence the formalism should give
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a real one-valued expression for these probabilities, as indeed it does,
but it can be interpreted only in the sense of the two right-hand sides.]
(Of course, one may measure B in one half of an ensemble and C in the
other half and multiply the relative frequencies corresponding to
prob(/,,; I,,) and prob(l,,; I,); but this is something quite different
from a proper application of the general multiplication theorem.)

These simple examples demonstrating the limited applicability of the
ordinary calculus of probability should make it clear that the mean
value postulate [used by von Neumann)] is not an equivalent substitute
for the rules of the calculus of probability, and, hence, that it does not
suffice to clarify the relation between that calculus and quantum mecha-
nics which has been the original aim of von Neumann’s work. (To be
sure, this inequivalence has nothing to do with the question whether mean
values are an equivalent substitute for a probability distribution: the
latter is indeed determined by the mean values of all ‘momenta’ of the
quantity in question.) The point is that the logical operations of the cal-
culus of probability cannot be immitated by the averaging operation.
The relation between the calculus of probability and the calculus of
mean values is not one-one: only the former determines the latter.

Now it could happen that a physical theory permits only mean values
to be measured. In that case a trunkated theory of probability,
characterized by the postulate of the linearity of the mean value opera-
tion, would suffice. Contrary to a previous stage in the physical inter-
pretation, quantum mechanics is not such a theory. True, the ordinary
calculus of probability demands too much, but the mean value postulate
[of von Neumann] demands too little; the ordinary calculus of prob-
ability is still needed if all quantities concerned commute.

It may seem paradoxical in view of all this that the mean value
postulate suffices for deducing the correct formulae. In this connection
it must be pointed out that in von Neumann’s deduction essential use is
made of an extension of the mean value postulate to ‘quantities’ that are
represented by projection operators; as shown by von Neumann, these
projection operators represent statements on the measured values of these
quantities rather than the quantities themselves — (to the eigenvalues
1 and 0 of the projection operators correspond the truth values ‘true’
and ‘false’, respectively); thus, the calculus of the projection operators
represents a kind of sentential calculus. Now it emerges from recent
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investigations concerning the axiomatics of probability theory that the
algebra of the ordinary sentential calculus can be used as a substitute for
certain axioms in the theory of probability; thus, given that all prob-
abilities concerned exist, addition and multiplication theorem may be
deduced from one another by employing the distributive laws of the
sentential calculus. [[...]]. Although the state of affairs is somewhat
different when we turn to quantum mechanical measurement statements
and the projection operators representing them — the logical meaning
of complementarity resides in just this difference — the difference, when
properly formulated, does not concern the algebraic formulae as such but
merely their range of applicability, viz., questions of existence. In this
way it becomes intelligible that the mean value postulate, extended to
projection operators, does suffice for deducing the statistical formulae
and that, on the other hand, the anomalies mentioned above do remain.
These anomalies present a violation of the axioms of probability theory
only if the existential axioms corresponding to the ordinary sentential
calculus are included (REICHENBACH *) or — what amounts to the same — if
the region of definition of the probability function is supposed to be
a set system [viz., the set of all subsets of a given set] (KOLMOGOROFF °).
In other words: the restricted applicability of the ordinary theory of
probability is due solely to the invalidity of the ordinary sentential cal-
culus for quantum mechanical measurement statements. [[...]]

Since for clarifying the relation between probability theory and
quantum mechanics it suffices to heed complementarity, the combination
of complementarity and probability theory may be expected to be suf-
ficient for building up the general formalism of the statistical transforma-
tion theory so that von Neumann’s postulate (A) may be replaced by the
Principle of Complementarity.

How far this expectation is justified will emerge from the following.

I. THE LOGICAL FORMULATION OF COMPLEMENTARITY

(1) If complementarity is to be used for an axiomatic reconstruction
of quantum theory it has to be formulated in a way suitable for formal
operation. As long as complementarity is conceived primarily as a rela-
tion between physical quantities it is difficult to see how this should be
done; there is no obvious reason why quantities that cannot be measured
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simultaneously should be represented by operators in Hilbert space.

The statement that two quantities cannot be measured simultaneously
may be expressed thus: two statements concerning the results of
measurement of the two quantities cannot be decided both, or: deciding
the one makes it impossible to decide the other, or: decidability of one
implies undecidability of the other. In this way complementarity becomes
primarily a [semantic] relation between statements. This makes it possible
to formulate complementarity in a formal way {viz., to formulate a non-
classical sentential or predicate calculus to be called complementarity
logicl.

(2) What we need is not an axiomatic system for the sentential calculus
but its algebra which can easily be recognized as rules of ordinary
language; the semantic definition of complementarity as given under
(i) then leads to a modified sentential calculus, this modification being
the formal [syntactic] expression of complementarity.

As sentential variables we use the letters

R, ST, ..

and for the negation and the sentential connectives we use Russell’s
symbols:

(a) ~ for ‘not’ (negation)

(b) - for ‘and’ (conjunction, logical product)
(c) v for ‘or’ (disjunction, logical sum)

(d) = for ‘if and only if” (equivalence)

but, following Hilbert, we shall put the negation sign above the sentential
symbol.

We then have the following equivalences [characteristic of Boolean
algebra]:

nl. R=R
1) R-R=R
@) Rv R=R
(k1) R-S=SR

(k2) RvS=SvR
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(al) R-(S'T)=(R-S) T
(@2) Rv(SvT)=(RvS)vT L
(d1) Rv(ST)y=(RvS)(RvVT)
(d2) R(Sv T)=(R-S) v (R-T).

The algebraic significance of the negation consists in the fact that it
permits to solve the equivalences

XVv(R-S)=R Y(Rv S)=
for X and Y:
X=R-§ Y=RvS.
Thereby the expressions
O=4RR E=4RVR
play the role of zero and unity:
(ml.l) SvO=S (m2.1) S'E =8
(nl2) SO0 =0 (n22) SVE=E.
O is called contradition and E tautology. [[........... 1i

The equivalences L can be handled in the same way as algebraic
equatlons which 1mp11es the following rule of substitution for the
variables R, S, T, .

L Subst. ‘R’ may be replaced by (a) any other sentential symbol such
‘$°, (b) ‘R, (¢) ‘ST, (d) ‘SvT’, (e) ‘S=T", [any such substitution
for ‘R’ to take place everywhere where ‘R’ occurs within a given formula].

The calculus defined by the equivalences L and the rule L Subst.
will be called L-calculus.

(3) Now the L-calculus is just that part of the ordinary sentential
calculus that can be maintained if complementarity is taken into account,
with the following proviso. According to the semantic definition of
complementarity as given under (1) the sentential connection of two
complementary sentences gives an undecidable statement and hence a
meaningless sentence, contrary to what is implied in the ordinary
sentential calculus. Hence the equivalences L must be interpreted thus:
if one (and hence also the other) side of an equivalence is meaningful
the equivalence is logically true; if this condition is not fulfilled the
equivalence is not false but meaningless.
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We now [take the decisive step and] forbid the formation of meaning-
less expressions. The resulting calculus will be called L’. Then the
situation is as follows:

Though the equivalences L can be maintained [they are not violated
semantically], the domain of definition of the sentential connectives is
no longer a ‘field’. Through this change in algebraic structure the
L'-calculus is not isomorphic with the set calculus: while section and
junction of two given sets always exist the corresponding conjunction
and disjunction of two sentences may not exist in the L’-calculus.

(4) The semantic justification for ruling out the formation of a com-
pound sentence as given above breaks down if the two measurement
statements refer to different instances of time: since measurements of
complementary quantities can be performed at different instances of
time, the corresponding statements can be decided both. Let us call such
statements simply complementary to each other in contradistinction to
two complementary statements referring to the same instant of time
which will be called strictly complementary. Is there any reason for
ruling out the sentential connection of simply complementary statements?
The answer to this question is bound up with the following consideration.

The statement of a probability relation between strictly complementary
statements has no obvious or direct meaning; it cannot be decided
because complementary quantities cannot be measured simultaneously.
An [experimental] meaning can be attached to it only by a limiting process
t,—t, when one of the two quantities is measured at ¢, and the other at ¢,.
Hence, if compounds of simply complementary statements were admitted
[we would have a logical discontinuity for ¢,—t,, and] extending the
non-admittance of compounds from strictly to simply complementary
sentences could be justified only [by the wish to remove this discon-
tinuity or] by reference to the calculus of probability, namely by the
obvious demand that the prob expressions be continuous functions
of time. No independent logistic meaning would then attach to simple
complementarity.

‘Now, although the compound ‘position of S at ¢, is within I,, and
momentum of § at ¢, is within /,,” is meaningful in sofar as it can be
decided experimentally, it will not occur in a rationally constructed
language [of quantum mechanics], because the consequences [predic-
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tions) to be drawn from either part separately contradict each other even
when the two parts are true. Hence, only one or the other part can occur
in any correct deduction. This is the formal expression of what is called
Nichtobjektivierbarkeit of measurement results.

(The paradox resulting from handling complementary statements
according to the rules of ordinary logic have lately been exposed by
EINSTEIN ® and SCHROEDINGER ") [[. . . ]]

(5) The sentence ‘The momentum of the particle lies within I,
does not characterize an individual state of affairs but a class [of
particles]. Hence our R, S, T, ... are to be regarded as class [or pre-
dicate] variables. This does not interfere with the equivalences and
the substitution rule: the two calculi are isomorphic. The difference
between the L- and the L’-calculus is of course transfered to the class
[or predicate] calculus so that we have to distinguish between the
ordinary class [or predicate] calculus corresponding to L and the one
corresponding to L’; the latter may be called complementary class [or
predicate] calculus. [[...]]

II. CALCULUS OF PROBABILITY

(6) We now turn to the calculus of probability. We show first why
the (essentially equivalent) axiomatic systems of Reichenbach and
Kolmogoroff cannot be used when complementarity is taken into ac-
count. According to Reichenbach (l.c.) a probability statement is a
general implication between sentences stating class membership of
elements and hence written in the form

R (i) (x;e0=>-y,e P); (R1)

p

here, O and P are class variables, x and y are individual variables,
= is the sign for the prob relation (‘probability implication’), and p
is the numerical value of the probability. A short-hand designation for
(R1D)is

R (0=>-P) or w(0,P)=p. (R2)

14

The multiplication theorem (axiom IV) may then be written in the form

R (0-=>-P):(0-P=>-Q)>(0=-P-Q)(w = pu). (RIV)

p
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Here, a compound of P and Q occurs only on the right-hand side ot the
implication, and this (together with the rule of inference referred to
above) makes it possible to deduce from meaningful expressions an ex-
pression that may be meaningless; in other words: R IV has the
property of transfering existence.

Similarly, the first axiom of Kolmogoroff’s system demands that the
domain of definition of the prob function be a field of sets, i.e., that with
any two sets also their junction (set sum), their difference and their
section belong to it, thus, the algebra of the ordinary sentential [or
predicate] calculus is presupposed here, too. Hence this axiomatic
system cannot be used either if complementarity is taken into account.

(7) For complementarity logic we have used a system of equivalences
from ordinary logic; similarly we must use a system of equations from
ordinary probability theory as basis for complementary probability
theory. Such a system has already been given by Reichenbach (l.c.);
it reads:

L1 w(R,Rv S)=1

12 w(R,S-8) =0

Wi 130<w(R,S)
II. w(R,SvT)=w(R,S)+w(R, T)—w(R,S'T)
. w(R,S'T)=w(R,S)w(RS, T)

Though here (I11), too, one side of the equation may be meaningless
while the other one is not, this does no harm since the equation sign
— contrary to the implication — does not transfer existence; it merely
implies that certain probabilities are equal if they exist. Hence meaning-
less prob statements cannot be deduced from meaningful ones.

In order to compensate for the loss of deductive power in the
transition from the R-system to the W-system one has to postulate in
the ordinary prob calculus that a probability exists if its numerical value
is determined by the equations of the calculus [and other probabilities
known or assumed to exist] (Reichenbach’s rule of existence, Kolmo-
goroff’s 1. axiom). Similarly, we need the following Existential Postulate:
if the numerical value of a prob function w(R; S) is determined accord-
ing to the W-system by other probabilities known to exist, then w(R; S)
exists provided that both R and S exist. [[...]]

Let us look for a moment at the [classical] system LW involving the
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ordinary sentential [or rather predicate] calculus. This system, as is well
known, admits a set theoretical interpretation as follows:

To the tautology E corresponds a basic set E, to the contradiction O
the empty set O, to the sentences [or rather predicates] R, S, ... corre-
spond subsets R, S, ... of E, to the negation R corresponds the comple-
mentary set E— R, to the conjunction R-S corresponds the set section
R-S, and to the disjunction R v S the union R+S=R+S—R:S. Every
additive set function

P(R+$)= P(R)+ P(S) 1)
with

w(R, ) = P(R-S)/P(R) ()

then satisfies the axioms W, so that the system W may be replaced by
(P1), (P2) together with suitable existential postulates (Kolmogoroff,
loc. cit.).

III. QUANTUM THEORY

(8) We are now going to characterize the domain of definition of the
[quantum mechanical] prob function. As can be seen directly from ex-
perimental experience, we are confronted with the following facts:

Q (a) To every measurement propostition R there exist an infinite
number of other measurement propostitions, all noncomplementary to
one another and to R (e.g., all those resulting from R by replacing the
measurement interval refered to in R by a /arger one).

Q (b) To every measurement proposition R there exist an infinite
number of measurement propositions .S; all complementary to R (e.g.,
all those resulting from one such S by replacing the measurement interval
referred to in S by a smaller one.

Q (c) The relation of [sentential or predicational] connectibility (o)
and the relation of inconnectibility (k) are neither transitive nor in-
transitive; (i.e., all four possibilities of the scheme (see top of next page)
arerealized in nature, e.g., by the examples given in the last three columns;
Q. P, M, are components of position, momentum, and angular
momentum, respectively, and for the pertaining intervals any finite
intervals may be choosen.)

Taken together Q(a)}-Q(c) imply that our R, S, 7, ..., form an in-
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RS ST RT R S T
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finite (in fact: continuous) domain, with infinite ‘islands’ in which the
ordinary sentential [or rather predicate] calculus and hence the un-
restricted calculus of probability holds. [The algebraic structure of the
domain is thus that of a partial Boolean algebral).

As the cardinality of the domain is that of a continuum, the following
postulate appears adequate:

Q con. The prob function w is a continuous function of time [or
rather the time interval(s) occurring] and of the measurement intervals.

(9) We are now going to show: the calculus of projection operators
over a linear vector space is isomorphic to the L'-calculus under the
following mapping:

predicates projection operators
l L. R R
2. R I-R
Z 3. R-S RS
4. RvS R+S—RS

(I is the identity operator satisfying IR=R for all R).

(a) The logical equivalences L turn into mathematical identities if the
predicates are replaced by projection operators according to Z; note
that RS and R+ S —RS are projectors only if RS=RS.

(b) If RS#SR, RS is not a projector, (RS) (RS)#RS, and hence the
predicational compounds formed with R and S are not predicates either,
i.e.,, R and § are complementary to one another. If this is taken into ac-
count the mapping Z is one-one.

[Confusion may arise from the fact that there is a one-one relation
between -projectors and closed linear subsets of the linear vector space
concerned: this may suggest to take the calculus of closed linear subsets
— instead of the calculus of projectors — as the mathematical model of
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quantum logic. The following paragraph shows why this is not feasible
and thus refutes the much discussed ‘Logic of Quantum Mechanics’ of
Birkhoftf-von Neumann which likewise appeared in 1936.]

Since there is a one-one mapping between projectors and the [closed]
linear subsets of the vector space R concerned, Z implies a one-one
relation between the predicates R, S, ... of complementarity logic and
the closed linear subsets of R. This corresponds to the isomorphism
between the ordinary sentential calculus and the ordinary set calculus:
instead of arbitrary sets we have now closed linear subsets of a vector
space. However, this analogy is rather limited: the calculus of the closed
linear subsets is not isomorphic to [the calculus of projectors and to]
the calculus L’. True, the junction of two linear subsets is again a linear
subset if and only if the pertaining projectors commute, but the section
of two linear subsets is always a linear subset, even when the pertaining
projectors do not commute, i.e., even when the predicates concerned are
complementary so that the compound predicate does not exist.

Thus, it is not possible to satisfy the system L’ by linear subsets if
isomorphism is to be maintained. This is decisive for the following
treatment: the prob function w cannot be [represented by] a set function.

(10) By virtue of Z the domain of definition of the prob function
w may be taken to be the set of projection operators [or rather the direct
product of this set with itself]. This however does not imply that the
numbers w(R,S) can be determined otherwise than by explicite
coordination [i.e., on a purely empirical basis]. To obtain a [physico-]
mathematical theory we must demand that there exist a general function
W (R, S) depending only on R and S, which satisfies the system W with

w(R,S)= W (R, S);
in other words: the equations W are to be considered as functional
equations for W over the set of projection operators. As the values of W
are to be real numbers, this implies that the vector space concerned is a
metrical space. Though the metric is not uniquely determined by W
alone a simple postulate to be given later will fix it.

We solve the functional equation WIV by

W (R, S) = % (W 1)

which corresponds to (P2).
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Substituting this in W T1I gives, in consideration of Z,
f(RS + RT— RST) = f(RS) + f(RT) — f(RST)
which yields the functional equation
S(R+8)=f(R)+f(5). (W2
Its [general] solution is
f(R)=c Tr R (c = constant independent of R)

since the trace Tr R is the only linear invariant that depends only on R.
Hence

Tr RS

Wik S) = Tr R

(W4)

(W4) is the general expression for the quantum mechanical prob-
abilities. It merely remains to fix metric and number of dimensions of the
underlying vector space R.

(11) It is obvious that the metric of R must be either Euclidean
[i.e., real]® or unitary; otherwise the trace Tr R, defined by R:=R,g",
would depend on the metrical tensor g* for which there would be no
physical interpretation.

For deciding between Euclidean [real} and unitary metric we consider
the expression 7r RST which occurs in the general multiplication
theorem. In the case of Euclidean [real] metric this expression is always
real-valued, even if none of the projectors R, S, T commutes with any of
the other two, i.e., if none of the three expressions of the multiplication
theorem have any physical meaning. In the case of unitary metric the said
expression is complex-valued (and the complex-conjugate of Tr RTS) iff
none of the three projectors commutes with any of the other two.
Thus, only the choice of unitary metric is in accoord with complementarity
logic.

[This result is of fundamental importance in two respects. For one,
it answers the question, first put to the author by Reichenbach, whether
the use of complex-valued state functions in quantum mechanics is a
mathematical trick that could be avoided in principle (as often in clas-
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sical physics), and if not, why not. Second, it shows why all attempts at
interpreting the quantum mechanical formalism in terms of classical
probability or statistics are doomed to failure.] [[...]]

(12) Finally, the number of dimensions [of the linear vector space R]
can be determined by the well-known commutation rules for canonical
quantities or else by the postulate that there exist continuous regions of
measurable values; either postulate leads to an infinite number of dimen-
sions. To the latter postulate correspond our axioms Q(a, b). It is easy
to show that they demand an infinite number of dimensions. (Incidental-
ly, it would be difficult to attach any physical meaning to a finite number
of dimensions). Thus, besides (W4) we have also established the Hilbert
space. [[...]]

(13) In conclusion it should be pointed out that nothing has been said
about the connection between the projectors [which were introduced as a
mathematical model of complementarity logic] on the one hand and the
[hypermaximal Hermitean operators representing] physical quantities
on the other hand: the question which projector corresponds to a given
measurement statement [or predicate] has been left open. Quite naturally,
this question can only be decided by considerations of correspondence.
[It should be noted, however, that from our point of view the projectors
are more fundamental than the hypermaximal Hermitean operators.
This is in line with the fact that the later can be defined in terms of the
former — a fact that would be merely a mathematical curiosity if the
projectors had no fundamental significance.]

The considerations given above confirm and substantiate the often
stressed analogy between the theory of special relativity and quantum
mechanics: just as the world geometry of Einstein-Minkowski merely
expresses the existence of a finite upper limit ¢ of signal velocities, thus
the general formalism of quantum mechanics merely reflects the un-
avoidability of complementarity resulting from the existence of the finite
quantum of action 4. This formalism thus appears as the appropriate
mathematical language for expressing all special quantum mechanical
experience. From this point of view it is rather obvious that the
formalism has stood the test of the many-body problem and of re-
lativistic generalization, and the same point of view may help to decide
the question whether this general formalism is wide enough to encompass
a future theory of elementary particles.
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POSTSCRIPT 1971

The introduction of a non-classical logic in physics raises a number of
philosophical quecstions, and the introduction of two competing logics
for the same physical theory raises some additional questions of a more
technical nature, but not without philosophical import. In the following
notes I shall try to answer some of these questions.

(1) In the first place let me point out that there is no such thing as
‘the logic of quantum mechanics’. A physical theory is not given in the
form of a formalized language but as the union of a mathematical
formalism and its physical interpretation; the formalism does not con-
tain any descriptive predicates (sentential functions) and hence no pre-
dicate connectives either. The connectives become part of a formal
system only if the language of the theory is formalized. It follows that
the logical syntax of a physical theory depends on the way the language
of the theory is beeing formalized. Vice versa, advocating a particular
‘logic’ (viz. logical syntax) for a physical theory means advocating a
particular way of formalizing its language. If different ‘logics’ are
advocated for the same physical theory, it is only by comparing all
consequences of the implied formalizations that a proper judgement
on their relative merits can be given. True, even when we have a complete
list of all relevant differences we may not agree on their relative merits
but at least we are then compelled to state our reasons for any preferential
decision we care to make.

(2) With this in view, I have carried out the two formalizations
corresponding to complementarity logic (partial Boolean algebra) and
‘quantum logic’ (Birkhoff-von Neumann’s nondistributive lattice al-
gebra), respectively, in 1937 (doctor thesis, Prague 1939). Though all
copies of this have been lost, one of its main results is easily established:
the Birkhoff-von Neumann logic leads to a language containing ‘meta-
physical’ sentences, namely the conjunction of sentences that are in-
connectible in complementarity logic.'°

(3) There are other — and perhaps more important — reasons for
preferring complementarity logic to nondistributive lattice logic. Here
are some of them: —

(a) Giving up the distributive law for the sentential connectives implies
giving up the (semantical) two-valuedness: in any two-valued logic the
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two sides of the distributive law have the same truth-value. Now I have
no philosophical objections against multi-valued logics, but none of the
advocates of the Birkhoff-von Neumann logic seems to have noticed
this implication.

(b) If the physical predicates are to be represented by subspaces
(closed linear subsets) rather than by the projectors on these subspaces,
one should expect that the quantum mechanical probabilities are func-
tions of these subsets. However, they are functions of the projectors
(and hence merely functionals of the subspaces).

(¢) Most important of all, the Birkhoff-von Neumann logic does not
lead to the unitary metric, even when combined with the prob calculus:
it is equally well compatible with real (Euclidean) metric. On the other
hand, complementarity logic demands unitary metric (complex valued
state vectors), as shown above. As the unitary metric is one of the most
important characteristics of the quantum mechanical state space, the
Birkhoff-von Neumann logic, whatever it may be, is certainly not charac-
teristic of quantum mechanics.

(4) In view of all this the question arises why the Birkhoff-von
Neumann logic has attracted far more attention than complementarity
logic. My answer: this is not just a case of authority against non-
authority — after all, complementarity logic goes also back to von
Neumann, if only by implication — but rather a case of fashion against
unfashion. Indeed, lattice theory became quite fashionable in the nine-
teenthirties, thanks mainly to the work of Birkhoff, while partial Boolean
algebra, of which the algebra of projectors and complementarity logic
are examples, had to wait for another 30 years to become respectable
among mathematicians. The quantum physicists, of course, have used
complementarity logic all the time, even when not knowing it, and have
paid no attention to ‘the’ ‘quantum logic’ of Birkhoff-von Neumann.

(5) Let me just add that complementarity logic has been rediscovered
in recent years by several authors, among them P. Suppes'!' and
F. W. KAMBER '2.

(6) Does the use of a nonclassical logic in physics imply that logic
is empirical, at least in the sense in which physical geometry is empirical,
as argued, e.g., by H. PuTNAM!3? My answer is ‘no’, as follows from
what I have said above. The analogy with physical geometry breaks
down because geometry belongs to the mathematical substructure of a
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physical theory while logic does not; the question of ‘logic’ (viz., logical
syntax) only arises in connection with an (implied or intended) formali-
zation of physical language. Thus, logic is neither empirical, nor a priori,
nor a matter of convention. Rather, it is a matter of optimal choice among
a limited number of possibilities. It is only the whole set of possibilities
that has some empirical content or significance. Of course, if we prescribe
form and meaning of the (atomic) sentences the logic of the sentential
connectives may only depend on the (semantic) meaning of the latter.
But this is really a question that would require a separate paper, if not
a monograph, for full treatment.

NOTES

*Translated from ‘Zur Begriindung der Statistischen Transformationstheorie der Quan-
tenphysik’, Sitz. Ber. Berl. Akad. Wiss., Phys.-Math. KI. 27 (1936), 90-113.

'), von Neumann, ‘Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik’,
Goett. Nachr. (1928), 245; Mathematische Grundlagen der Quantenmechanik, Berlin 1932,
Kap. 1V. See also M. Born und P. Jordan, Elementare Quantenmechanik, Berlin 1930,
6. Kap.

2 [The true nature of this connection has only emerged much later in the study of the
intertheory relations between quantum mechanics and classical Hamiltonian mechanics.
The upshot is this: the Principle of Correspondence allows us to consider as meaningful
statements of the form ‘The value of a quantity Q of a physical system S lies within the inter-
val (q,. q,)"; statements of this form referring to complementary quantities are then to be
treated as complementary in the sense of complementarity logic, i.e., inconnectible, as
shown in this paper. On the other hand, we may use instead statements of the form ‘The
physical system S is in a state where the quantity Q has a value between ¢, and ¢5’; in this
case statements referring to complementary quantities can be treated as contradictory
(their conjunction would be allowed as meaningful but untrue) and the need for com-
plementarity logic — or any other ‘logic of quantum theory’ - does not arise. The essential
difference between the two statements emerges when their negations are considered: the
negation of the first form would read *“The value of quantity Q of S lies outside the interval
(¢1. q2) — this is indeed the proper negation for classical and the (improper) negation for
quantum mechanics — but this is not equivalent to the (proper) negation of the second form
which includes all states where the quantity Q has no value in any finite interval. The notion
‘proper negation’ as used here is a semantical one. A semantically adequate syntactic charac-
terization of ‘proper negation’ for arbitrary languages has been attempted (e.g. by Carnap,
Logical Syntax of Language, London 1937), but most attempts can be shown to be
inadequate. In the present paper measurement statements are supposed to have the first
form mentioned above.]

3 [[...]) [Two quantities 4 and B are called totally complementary iff there is no state for
which 4 and B have values within any finite intervals.]

4 H. Reichenbach, ‘Axiomatik der Wahrscheinlichkeitsrechnung', Math. Z. 34 (1932),
568: Wahrscheinlichkeitslehre, Leiden 1935.

5 A. Kolmogoroff, ‘Grundbegriffe der Wahrscheinlichkeitsrechnung’, Erg. Math. 11/3
(1933).
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the section: the span of two linear subsets is always again a linear subset (subspace). The
set of subspaces then forms an orthocomplemented lattice in which - contrary to the
Boolean lattice - the distributive laws do not hold. This is the *‘Quantum Logic’ advocated by
Birkhoff and von Neumann. The negation in this logic has the same meaning as in our
complementarity logic, i.e., it too is a nonproper negation, referring as it does to the
orthogonal complement.]

® [To be sure, a Euclidean space is a point space, not a vector space. But we can define
in it a vector space by distinguishing a fixed point as origin, i.e., by abandoning homo-
geneity (group of translations or displacements) while maintaining isotropy (group of
rotations).]

10 To be sure, the metaphysical nature of these compound sentences arises solely from the
logical interpretation of the nondistributive lattice connectives as sentential (or predicate)
connectives, and not by the admission of predicates correlated to the lattice elements
(subspaces). Indeed, if we consider two subspaces X and Y with the (non-commuting)
projectors Py and Py, we have of course the further projector Pygy; but while XOY is
interpreted by Birkhoff-von Neumann as conjunction of two predicates, Pyoy cannot
be so interpreted because Pxqy# Py-Py. Thus, complementarity logic does not omit
any physically meaningful predicates (as is sometimes suggested) but prevents their mis-
interpretation.

11 p_ Suppes, ‘Probability Concepts in Quantum Mechanics’, Phil. of Sc. 28 (1961),
378-389; ‘Logics Appropriate to Empirical Theories’, in The Theory of Models (ed. by
J. W. Addison, L. Henkin and A. Tarski), Amsterdam 1965, p. 364-375; ‘Une logique non-
classique de la méchanique quantique’, Synthese 10 (1966), 74-85.

'2 F. Kamber, 'Die Struktur des Aussagenkalkuels in einer physikalischen Theorie’,
Nachr. Akad. Wiss. Goettingen 10 (1964), 103-124.

13 H. Putnam, ‘Is Logic Empirical?’ in Boston Studies in the Philosophy of Science,
vol. V (ed. by R. S. Cohen and M. W. Wartofsky), Dordrecht 1969, pp. 216-241.



MARTIN STRAUSS

MATHEMATICS AS LOGICAL SYNTAX -
A METHOD TO FORMALIZE THE LANGUAGE OF
A PHYSICAL THEORY

I intend to explain a method how to formalize the language of a given
physical theory. The essential part of this method consists in using the
mathematical formalism of the theory in question in order to get the
logical syntax of the coordinated physical language.

First it must be remarked that the mathematical formalism of a phys-
ical theory is not itself the formalized language of this theory. In order
to prove this it is sufficient to remember that mathematics contains only
logical sentences whereas a physical language must also contain syn-
thetic sentences describing the results of experiments.

On the other hand the mathematical formalism together with its phys-
ical interpretation contains the whole theory just as a formalized lan-
guage of this theory.

In this way it is plausible that the mathematical formalism together
with its physical interpretation determines all essential features of a for-
malized language concerning the content of the physical theory in ques-
tion.

Instead of describing our method in abstract terms we shall illustrate
it by two examples: classical and quantum mechanics. It shall be em-
phasized that by formalizing the language of quantum mechanics we get
a syntactical definition of the quantum mechanical complementarity
concept suggested already in some previous communications (cf. [2],
[3D.

I. CLASSICAL MECHANICS

Using the Hamiltonian form of classical mechanics, every subset M of
the whole phase space E can be interpreted as follows: the phase point
of a certain mechanical system s, lies at a certain moment t, in M. This
fact allows us to introduce sententional functions

Puls, t)

having the indicated meaning, and to establish a one-to-one-correspon-
dence between the subsets M and the predicates ‘p,,’.

C. A. Hooker (ed.), The Logico-Algebraic Approach to Quantum Mechanics, 45-52.
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Now we can define connective symbols called predicational connections
as follows: L
DM =ar Pm
(C I) DM Pm=ar PM m°
PmN Pm=ar PM+M
PM=>Pm =das Py +m
using on the right hand the usual set-theoretical connective symbols.
By these definitions the following displacing rules are valid:

Pr=Pr’
‘Pu PN ='PuV PN
‘Pu NV PN ="Pu'PN
‘PM>PN =Py VPN
Just as in the classical calculus of sentences or predicates.

A term consisting of two or more predicates connected with another
by predicational connections is by definition (C I) a predicate too called
connected predicate.

Now we can give the following FORMATIVE RULE:

(CFR) A term of the C-language shall be a sentence, if it consists of a
predicate of the C-language followed by two individual con-
stants like ‘sy’ and ‘ty’ separated from each other by a comma
and enclosed with another by brackets.

In order to formulate the transformative rules we introduce first the
mediate concept ‘valable predicate’ as follows:

(Cdf 1) A predicate ‘py, is to be said valable, if M, is equal to E by
means of mathematics.

Then we can formulate the TRANSFORMATIVE RULES as follows:

(CTRI) A sentence of the C-language shall be valable if the corre-
sponding predicate is valable.

(CTRII) A sentence ‘py, (o, to) shall be a consequence of the sentence
‘P, (So, to) if the predicate ‘py, > py,’ is valable.

These transformative rules obviously are in accordance with the phys-
ical interpretation of the formalism.
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The language so obtained is an L-language the logical syntax of which
forms a part of the classical calculus of predicates.

The physical laws of classical mechanics, i.e. the equations of
motion.

dH dH

Di=——7—

q,~=3p—i dg;

H being the Hamiltonian, with its physical interpretation, can be for-
mulated in this language as indetermined premisses or as an additional
transformative rule obtaining a P-language instead of an L-language.
Here we shall do the latter.

We use the fact that the equations of motion have an unique solution
coordinating every point of the phase space and every time interval Dt
another point of the phase space. Let V(Dt) be the operator of this trans-
formation and consequently

the subset coordinated to M and to Dt by the equations of motion, and

let ‘p¥’ be new predicates defined by

(Cdf2) pri(so, to)=as Pm(s0, to+Dt).

Then the physical interpretation of the equations of motion can be for-
mulated as the following TRANSFORMATIVE RULE:

(CTRIII) The sentence ‘pyf,(so, to) shall be a consequence of the sen-
tence ‘ppg,(So, to) if the predicate ‘py Dt > py, .’ is valable.

This rule contains obviously the rule (C TR II) as a special case; thus
the P- and the L-rules are here not essentially different. The reason for
this is the use of mathematics, taking into account that M, is defined
by a mathematical operation. Thus, the reduction of the P-rule to L-
concepts given by (C TR III) can be considered as the main result of our
method to formalize the language of a physical theory by means of its
mathematical formalism.

II. QUANTUM MECHANICS

In quantum mechanics we are not dealing with the phase space but — by
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means of the Schrédinger equation — with the set of all quadratic inte-
grable functions f(q,, ..., q;) —(q; being the coordinates) — forming a so-
called Hilbert space $. On account of the linearity of the Schrédinger
equation a physical interpretation can not be given to any subset of §
but only linear subsets of $, and actually not to all linear subsets but
only to those being coordinated to quantum mechanical quantities in a
certain way.

Thus it seems that in order to formalize the quantum mechanical
language by the method used above in the case of classical mechanics
we have to use linear subsets instead of subsets at all. But it is not right
to think so because there is an ambiguity in the choice of mathematical
entities which are to be coordinated to physical predicates, each linear
subset M of H being in a one-to-one-correspondence with a projection
operator Py, defined as coordinating to every element (function) of §) its
projection upon IR. This ambiguity would have no consequences for our
problem only if the calculus of the linear subsets would be isomorphic
to the calculus of the projection operators — a condition not fulfilled.

Thus, we can construct two languages — say the M- and the P-language
— each containing the content of quantum mechanics. But as pointed
out in another paper (4) only the P-language forming a sub-language of
the M-language, is in full accordance with the physical interpretation of
the quantum mechanical formalism, the sentences of the M-language
which are not sentences of the P-language having a metaphysical or at
least a partially metaphysical content. Therefore we shall consider here
only the P-language, called in the following Q-language, being in agree-
ment with Bohr’s complementarity conception. (The M-language pro-
posed indeed by Birkhoff and von Neumann (1) shall be remarked to
disagree too with the classical logic by the lack of the distributive laws).

In order to construct the Q-language we introduce primitive senten-
tional functions

pEAD‘l (S, t)

having the following meaning: the value of the physical quantity A of
a system s lies at a certain moment ¢ in the interval Da, or more pre-
cisely: this quantity has been found or will be found in the interval Da
by a measurement at the moment t. Ej, is a projection operator con-
struction of which is not to be given here. Thus, we coordinate a primitive
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predicate ‘pga_’ to every projection operator E3,, A being a physical
quantity (an ‘observable’ in the terminology of Dirac) and Da a mea-
surement interval.

For the sake of brevity we shall use

pEos pEls pEz, o
as constant predicates, E; being projection operators of the mentioned
kind, and
PE> Pe'> DE»s---
as variable predicates.
Now we can define predicational connections as follows:
Pe=as PE
Pe"Pe =4 PEE
PN Pp=us PE+F if EE=EE

PE=>Pe =4 PE+FE

()

using on the right hand the abbreviations

E+E=y,E+E—EE if EE=EE
E=;I—-E (I being the identity: I =Pg).

By these definitions the rules (CI) are valid also for the Q-language.
But it must be emphasized that the predicational connections of the Q-
language defined by (Q I) are restricted to those argument predicates
for which the coordinated projection operators are commutable with
another: only in this case the connected projection operators form pro-
jection operators again. The use of restricted predicational connections
in the Q-language is the main difference between the classical logic and
the logic of the Q-language.

We call two predicates, connections of which do not form a predicate
again, inconnectable or — following N. Bohr — complementary to each
other.’

Now the FORMATIVE RULE defining the concept ‘sentence’ by means of
the concept ‘predicate’ can be given for the Q-language in the same
manner as for the C-language (cf. [C FR)).

The TRANSFORMATIVE RULEs for the Q-language are to be given anal-



50 MARTIN STRAUSS

ogous to these of the C-language:

(@df) A predicate of the Q-language ‘p;’ is to be said valable if E
is equal to I by means of mathematics.

(Q TRI) A sentence of the Q-language shall be valable if the correspon-
ding predicate is valable.

(Q TRII) The sentence ‘pg, (so, to) shall be a consequence of the sentence
‘Pe,(Sos to) if ‘PE, > PE,’ is a valable predicate.

These transformative rules agree with the physical interpretation of
the formalism as is easily seen.

In order to formulate the physical content of the Schrédinger equation
as a transformative rule we use the fact that the Schrodinger equation

L d
(H +ih a*t) f =0
has the unique solution
f©)=U(2) £(0), U(t)=4s exp(iHt/h)

H being the Hamiltonian operator and k being Planck’s constant divided
by 2z. Thus, U (¢) being an unitarian operator the Schrédinger equation
coordinates to every linear subset M and every time interval Dt another
linear subset M defined by

feM™ equivalent U(Dt)™* feM,

and therefore to every projection operator Py and every time interval
Dt the projection operator

Pgoe=U(Dt) PU (Dt)™ 1.
Thus, using the abbreviation
E™=, U(Dt)EU(Dy)™!
and introducing new predicates
(Q df 2) PR (S0, to)=as PE(S0, to+Dt)

we can formulate the physical content of the Schrédinger equation as
the following TRANSFORMATIVE RULE
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TR III) A sentence ‘pP (so, to) shall be a consequence of the sentence
1
‘PEo(So» o) ¥ ‘Pepe O PE,’ is a valable predicate.

We can also formulate the probability laws of quantum mechanics
as a transformative rule. For this purpose we have to introduce in the
Q-language a probability functor

W (pg, PE')

as suggested by Reichenbach and consequently also the arithmetics; then
we accept the probability axioms given by Reichenbach (1), p. 118, as
additional transformative rules determining equations of which form
between probability terms shall be valid (or more precisely: L-valid).

Then we can formulate the probability laws of quantum mechanics as
follows:

All sentences of the form
(Q TRIV) W(pg,pE)=SpEQ'E,/SpE,
shall be valid.

In this ‘Sp’ means a certain mathematical operation definition of which
cannot be given here.

The meaning of 0 probability sentence (i.e. an equation between a
probability functor with constant arguments and a number laying be-
tween 0 and 1) in the sense of semantics is a problem being not to be
treated here because the formalization of a physical language has nothing
to do with it directly. Only it may be remarked that the frequency inter-
pretation of the probability functor can be given in agreement with the
physical interpretation in a similar manner as given by Reichenbach (1)
notwithstanding the fact that here the argument predicates of the prob-
ability functor are predicates with two arguments; this is pointed out in
another paper (cf. [4]).

Prague
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H. REICHENBACH

THREE-VALUED LOGIC
AND THE INTERPRETATION OF
QUANTUM MECHANICS

The following is an excerpt from Hans Reichenbach’s important Philo-
sophic Foundations of Quantum Mechanics and comprising the bulk of
§§29-37 in which Reichenbach sets forth his own interpretation of
quantum theory. The preceding sections of the book concern themselves
with general considerations concerning the analysis of physical theory
and with a mathematical analysis of the theory. This excerpt is almost
completely self-contained; for the reader’s benefit I reproduce here four
references to the earlier text:

(1) Heisenberg’s Uncertainty Relations (Equation (2) of §3).
p> h
q-p= an
(i) DEFINITION 1, §25: If the value u; of an entity u has been ob-

served in a measurement of u, this value u; means the value
of u immediately before and immediately after the measure-
ment.

(iii) DEFINITION 2, §25: The probability of a combination v,w,, rel-
ative to a physical situation s is given by the product of the
individual probabilities of v, and w,; relative to s.

(iv) DEFINITION 3, §27: The value of an entity u measured in a
situation s means the value u existing after the measurement,
before the measurement, and thus in the situation s, the entity
u has all its possible values simultaneously.

§29. INTERPRETATION BY A RESTRICTED MEANING

The interpretation by a restricted meaning which we shall present here
formulates, on the whole, ideas which have been developed by Bohr and
Heisenberg. We therefore shall call this conception the Bohr-Heisenberg

C. A. Hooker (ed.), The Logico-Algebraic Approach to Quantum Mechanics, 53-97.
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interpretation, without intending to say that every detail of the given
interpretation would be endorsed by Bohr and Heisenberg.

This interpretation does not use our Definitions 1 and 2, §25. For
the values of measured entities it uses the following definition:

DEFINITION 4. The result of a measurement represents the value of the
measured entity immediately after the measurement.

This definition contains only the common part of our Definitions 1,
§25, and 3, §27; a statement concerning the value of the entity before
the measurement is omitted. In this interpretation we therefore can no
longer say that the observed entity remains undisturbed; both the ob-
served and the unobserved entity may be disturbed. On the other hand,
such a disturbance of the measured entity is not asserted; this question
is deliberately left unanswered by Definition 4....

It is an immediate consequence of the restriction to Definition 4 that
simultaneous values cannot be measured. The considerations which we
attached to Definition 1 are no longer applicable, and if we measure
first ¢ and then p, the obtained values of ¢ and p do not represent
simultaneous values; only ¢ represents a value existing between these
two measurements, whereas p represents a value existing after the
second measurement, when the value ¢ is no longer valid....

We said that if ¢ has been measured, we do not know the value of p.
This lack of knowledge is considered in the Bohr-Heisenberg interpre-
tation as making a statement about p meaningless. It is here, therefore,
that this interpretation introduces a rule restricting quantum mechanical
language. This is expressed in the following definition.

DEFINITION 5. In a physical state not preceded by a measurement of
an entity u, any statement about a value of the entity u is meaningless.

In this definition we are using the term “‘statement” in a sense some-
what wider than usual, since a statement is usually defined as having
meaning. Let us use the term “proposition” in this narrower sense as
including meaning. Then, Definition 5 states that not every statement
of the form “the value of the entity is #”, is a proposition, i.e., has
meaning. Because it uses Definition 5, the Bohr-Heisenberg interpreta-
tion can be called an interpretation by a restricted meaning.

We must add a remark concerning the logical form of Definition 5.
Modern logic distinguishes between object language and metalanguage;
the first speaks about physical objects, the second about statements,
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which in turn are referred to objects.! The first part of the metalan-
guage, syntax, concerns only statements, without dealing with physical
objects; this part formulates the structure of statements. The second
part of the metalanguage, semantics, refers to both statements and
physical objects. This part formulates, in particular, the rules con-
cerning truth and meaning of statements, since these rules include a
reference to physical objects. The third part of the metalanguage, prag-
matics, includes a reference to persons who use the object language.?
Applying this terminology to the discussion of Definition 5, we arrive
at the following result: Whereas Definition 4, and likewise Definitions
1-2, §25, and Definition 3, §27, determine terms of the object language,
namely, terms of the form ‘“‘value of the entity «”, Definition 5 deter-
mines a term of the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>