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Preface

Information Retrieval (IR) is the complex of activities performed by a computer
system so as to retrieve from a collection of documents all and only the documents
which contain information relevant to the user’s information need. The peculiar
difficulty of IR is the fact that relevance cannot be precisely and exhaustively
described using data; for example, a relevant document cannot be precisely and
exhaustively described using text even if this text includes or considers all elements
or aspects of a topic; a user’s information need cannot be precisely and exhaustively
described using a query even if this query is a fully comprehensive description
of the need. An unbridgeable gap between relevance and document content and
between information need and user’s request exists, such that what can be said about
the document’s relevance or the user’s information need can only be inferred by
the document content and the user’s request (or all the other sources of evidence
available to an IR system).

Information retrieval researchers are constantly searching for theoretical frame-
works which help them make a major breakthrough in the overall effectiveness of
retrieval systems. Since its advent, information retrieval has been marked by a series
of significant theoretical advances. It is customary to correspond these advances
with the logical models, the vector space models, and the probabilistic models. More
recently, the machine learning models were added to this series of advances. All
these models are now not only the main pillars of modern systems and applications,
they are also the building blocks of the formulation of new models and techniques,
thanks to the mathematical frameworks of logic, geometry, and probability on which
they rely. Recently, a new perspective from theoretical physics was added to this
series of advances.

Newton’s laws provide a correct description of physical systems and in particular
macroscopic systems (e.g., sand grains, balls, and planets) in terms of, for example,
position, size, or distance. However, these laws must be revised when position,
size, or distance is observed at the microscopic level, thus making the prediction
provided by these laws uncertain. In the nineteenth century, the gap between
observation and prediction gave rise to Quantum Mechanics (QM), which deals with
the mathematical description of the motion and interaction of subatomic particles.
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QM established the impossibility of measuring physical systems at the microscopic
level with arbitrary precision, thus legitimizing the axiom that physical systems
at the microscopic level cannot be precisely and exhaustively observed using any
device and that any observation can always be subjected to a probability measure of
the degree to which the observed value is real. Therefore, there is an unbridgeable
gap other than the gap mentioned as regards IR; it lies between the unknowable
world of subatomic particles and the outcomes produced by the devices used for
describing this world.

The similarity between the barrier across the space separating relevance from
content, or information need from request, and the barrier across the space separat-
ing the values observed through a device from the reality of subatomic particle was
the reason why some researchers investigated the utilization in IR of the quantum
mechanical framework. The fundamental idea underlying this utilization was the
potential offered by the quantum mechanical framework to predict the values which
can only be observed in conditions of uncertainty. However, this uncertainty is not
only caused by the existence of different observable values (e.g., the number of
spots on a dice), but it is also caused by the ignorance of the internal structure of
the system under observation. The ignorance of the internal structure of the user’s
background, context, and plans of future actions causes an uncertainty different from
the uncertainty caused by the variety of possible values that can be observed from
the user. The first uncertainty is caused by the interaction between the measurement
of the observable variables that describe the user’s background, context, and plans
and the user’s background, context, and plans themselves. When these aspects are
measured, not only some variable values are observed, but these values come to
existence and evolve because of the measurement devices. The second uncertainty
is “only” caused by the fact that there is more than one possible value that can be
observed, and the actual outcome of a measurement depends on the randomness
intrinsic in the measurement device; for example, the outcome of the draw of a
dice depends on the randomness of the draw, and the uncertainty is caused by the
existence of six distinct values.

In the first decade of this century, some studies investigated whether the quantum
mechanical framework could be applied to research areas such as human cogni-
tion, natural language processing, and information retrieval other than theoretical
physics. These studies and the results thereof can be regarded as an approach to
investigating these research areas that might be named as “quantum inspired” or
“quantum like.” The idea behind the quantum-like approach to disciplines other
than physics is that, although the quantum properties exhibited by particles such
as photons cannot be exhibited by macroscopic objects, some phenomena can be
described by the language or have some characteristics of the phenomena (e.g.,
superposition or entanglement) described by the quantum mechanical framework
in physics. The other idea is that because modeling information processing may be
a very daunting task, the designer of an information system such as an information
retrieval system needs to be provided with theoretical frameworks that go beyond
the traditional logic, geometric, or probabilistic frameworks.
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The main thrust of this book is to illustrate how the quantum mechanical
framework has been and may be applied to IR. The book is placed at the intersection
between IR and QM which leverages the similarity between the barrier across
the space separating relevance from content, or information need from request,
and the barrier across the space separating the values observed through a device
from the reality of subatomic particles. The book is not another proposal of
retrieval model; in contrast, it aims to highlight the correspondences between the
physical phenomena observed through the quantum mechanical framework (e.g.,
entanglement, superposition, and interference) and the phenomena which might be
encountered during the retrieval process. The book is not about quantum phenomena
in IR; in contrast, it aims to propose the use of the mathematical language of the
quantum mechanical framework for describing the mode of operation of a retrieval
system. The book cannot be an exhaustive description of the potential offered by
the quantum mechanical framework; however, it aims to motivate researchers to
delve into this framework and find further correspondences between IR and QM
and design effective retrieval and indexing procedures which leverage the potential
of the framework. To this end, the book is organized in four chapters.

Chapter 1 illustrates the main modeling approaches to information retrieval.
This chapter is not an exhaustive illustration of the retrieval models proposed in
decades of research; in contrast, it aims to highlight the main concepts which will
be further addressed in the other two chapters of the book. In particular, the chapter
illustrates Boolean logic, vector spaces, and two probabilistic models because these
three concepts occur and are integrated in the quantum mechanical framework; it
also briefly describes the machine learning-based approach to information retrieval
since it has been a significant approach and may open further research directions
within the intersection with the quantum mechanical framework. Although the
first chapter is about information retrieval, it also introduces some notions of the
quantum mechanical framework to build the bridge between the two fields.

Chapter 2 briefly explains the main concepts of the quantum mechanical
framework; the literature is immense both because of the intrinsic complexity and
the long time that has passed since the advent of the subject; therefore, we selected
the concepts that may be linked to information retrieval; for example, superposition
is explained in this chapter because it was investigated in some research reported
in the third chapter. Some topics—entanglement is a glaring example—may appear
rather difficult and sometimes really arduous. The book introduces them as gently
as possible and suggests some further and more technical readings.

Chapter 3 surveys the research conducted in the intersection between information
retrieval and the quantum mechanical framework. The chapter is organized in topics,
and each topic is often ascribable to one research group or a few research groups.
The literature on the intersection between information retrieval and the quantum
mechanical framework has often been reported in journal or conference papers; only
a small part has been reported as a book. Each chapter ends with a section suggesting
the most relevant and interesting readings and listing the books and papers by which
this book has been inspired and prepared.
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Chapter 4 concludes with some suggestions for future research. Some research
directions that are considered essential topics are briefly outlined in the hope that
the quantum mechanical framework will be fully leveraged to achieve effective and
efficient information retrieval systems.

The approach taken by this book is to organize the presentation of the main
notions of the quantum mechanical framework (e.g., incompatibility, interference,
superposition, and entanglement) in terms of observables and probability as it is
customarily done in information retrieval in order to explain how they can inspire
a new view and give rise to a new potential of information retrieval. Indeed,
information retrieval systems are based on probability and observables in a similar
way as incompatibility, interference, superposition, and entanglement are. The
illustration based on probability and observables is not constrictive, since a large
part of the literature of the quantum mechanical framework has this emphasis. On
the contrary, this illustration leverages the long tradition in probability and statistics
and naturally fits with many foundational problems of information retrieval.

This book is intended to be accessible to computer scientists in general and in
particular to researchers working in information retrieval, database systems, and
machine learning. The reader is expected to be a postgraduate, a PhD student, or a
researcher who wants to have a clear picture in a short time of the potential of the
quantum mechanical framework to pursue his own research interests. The mention
of some crucial topics of information retrieval, the introduction to the main notions
of the quantum mechanical framework, and the illustration of the way the quantum
mechanical framework has inspired information retrieval are indeed intended to link
the reader’s background in information retrieval with the new notions he is acquiring
while reading this book. The introduction of some crucial topics of information
retrieval also aims to make this book accessible to computer scientists without a
strong background in information retrieval and willing to address the use of the
quantum mechanical framework in fields other than physics from the standpoint
of an information scientist. Finally, the book may be of interest to noncomputer
scientists who have utilized the quantum mechanical framework as an inspiration
for their research carried out in domains other than physics.

The introduction of the quantum mechanical framework inevitably utilizes
mathematical instruments; these instruments are based on the complex vector spaces
which are the theoretical infrastructure that support the probability measures of
the uncertainty occurring in QM and the logic underlying the observables applied
to the physical world. The use of mathematical instruments may be problematic
since they make the comprehension of the quantum mechanical framework harder,
and, importantly, they might be used to build theoretical descriptions with no
correspondence to the physical world; indeed, Polkinghorne (2002) and Zeilinger
(2010) highlighted that some mathematical dissertations can lead to misleading or
erroneous descriptions of the physical world. Such a mistake can be avoided only if
the real world of IR is carefully examined.

As the topic described in this book has a relatively short history, the notation and
the definitions used in the publications surveyed in this book may be inconsistent.
Therefore, a common notation and glossary for notations and definitions are used



Preface xi

in this book to make the understanding of the notions of the quantum mechanical
framework less demanding than would otherwise be the case if these notions were
studied using different publications.

Although almost every researcher acknowledges the importance of theory in
information retrieval, they are reluctant to adopt further mathematical formalisms
without clear evidence that this adoption brings about some actual experimental
improvements. Because the use of the quantum mechanical framework in infor-
mation retrieval is based on the mathematical formalism of the Hilbert spaces and
has been debated for some years without reaching a consensus, the main expected
benefit gained from this book is the clarification of whether, why, and when the
use of the mathematical formalism and of the notions of the quantum mechanical
framework can effectively be adopted for addressing some foundational issues of
information retrieval.

Padova, Italy Massimo Melucci
June 2015
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Chapter 1
Elements of Information Retrieval

As the main aim of the book is to illustrate the intersection between information
retrieval and the quantum mechanical framework, this chapter illustrates those
concepts of information retrieval which can be intersected with the framework. In
particular, the main notions of the most important modeling approaches to designing
and implementing information retrieval systems are explained in this chapter before
they are revisited, generalized, and extended within the quantum mechanical frame-
work in the following chapters. After introducing the core concepts of information
retrieval, we introduce the Boolean model and logic, the vector space model, the
main probabilistic models, and briefly the machine learning approach to ranking
documents. The chapter ends with some suggestions for further reading.

1.1 Introduction

IR is nowadays a key technology for collecting, organizing, and providing access to
information. It is therefore not surprising that the basic concepts of this technology
involve the notion of information. However, as this is a technology at the user’s
service, the notions of information need and relevance also play a crucial role. Given
the abstract nature of information, need and relevance, an IR system has to utilize
data to implement and make these abstract notions usable and, from a computer
science point of view, both effective and efficient. In this section, we briefly illustrate
these notions.

In the most essential respects, IR is about information. Although its origin may
be simply explained by the Latin words in (into) and forma (shape), thus suggesting
that information shapes the internals of an organization, information is a very
complex notion of which many definitions have been provided in different research
and disciplinary fields. Despite this complexity, the notion of information may be
simplified when it is viewed from the point of view of a user of a computer system.
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2 1 Elements of Information Retrieval

For the aims of an IR system, information is intended as whatever changes the user’s
knowledge.

The role played by information in forming the user’s knowledge will be
insufficient unless it is provided with an effective means to make information
processing possible. To be effective, information needs to be represented by symbols
or signals to be conveyed to the users; these symbols and signals are called “data.”
The most important data managed by an IR system are documents and queries.

Documents are the basic artifacts managed by an IR system. A document is
a data container provided with an identifier that is independent of the content.
Although a document can be rendered in a way appropriate to make information
usable or more simply agreeable, the data contained in a document are supposed to
be unstructured or “flat.” Therefore, no structured model can be applied to the data of
a document in the same way as the relational model is used to describe a database.
The absence of any data structure makes the management of these data difficult
and a source of problems for any system. The other artifact managed by a system
is the collection, that is, a container of documents gathered through an algorithm
which can be manually, semiautomatically, or fully automatically performed, the
latter being the most common mechanism used by the search engines of the World
Wide Web (WWW).

In most cases, documents contain only written text. Although this type of data
is less problematic than other media such as image, video, and sound, text is still
affected by the ambiguity of natural language, thus making textual IR difficult. The
most common causes of ambiguity are polysemy and synonymy: the former is the
property of words that have more than one meaning; the latter is the property of
pairs of words that have the same meaning. These two main causes of ambiguity can
be exacerbated by multilingualism when collections, documents, or queries contain
words from different natural languages.

Queries are the most utilized data that represent the user’s information needs. A
query is essentially a sentence expressed in a natural language; it may be very short
(e.g., one word) or much longer (e.g., a text paragraph). Despite being a widespread
means to represent information needs, it is not the only means; other means can
be, for example, the data observed during the interaction between the user and the
system or the data about preferences collected through a social network.

Suppose a user has an information need originated from a problem and repre-
sented by queries or other data—a user has a problem to solve and needs information
to find the solution. Not all the information available in the data is useful or
necessary; on the contrary, in a small amount, data represent useful or necessary
information to solve the user’s problem. The property of information that meets
a user’s information need is called “relevance.” As both users and problems vary
according to context, relevance is context dependent, and therefore, what is deemed
relevant to one user and his problem may no longer be relevant to another user or
for solving another problem.
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To be effective and make prediction feasible, current IR technology requires that
a retrieval model be defined and tested before any scientific evaluation. An IR model
is a set of algebraic structures that describes documents and queries. A model defines
an operation called retrieval function that maps these information structures to the
numeric real field. The most effective models are based on Boolean logic (Sect. 1.2),
vector spaces (Sect. 1.3), and probability theory from which the relevance model and
the language models have been derived (Sect. 1.4). The machine learning approach
to IR (Sect. 1.5) aims to find the retrieval function looking at the data collected
during the interaction between the users and the system.

Therefore, IR is the complex of activities that represents information as data and
retrieves data that represents information relevant to the user’s information needs.

From an architectural point of view, an IR system is a computer system
performing IR activities. The main activities are indexing and retrieval. Indexing is
concerned with extracting and organizing document content descriptors, that is, data
about data and sometimes called metadata; in the event of text, a content descriptor
is a term (e.g., a keyword). Content descriptors are organized in one or more indexes,
that is, data structures consisting of lists of postings where a posting is a data
structure that relates a term with a document, and therefore, a posting list is a data
structure that relates a term with documents. Retrieval consists of processing the
user’s query (or other data that represent an information need) and of matching the
user’s query with the documents stored in the indexes. The result of matching query
and documents can be ranked according to some retrieval function implementing a
retrieval model based on a modeling approach.

By its nature, IR is inherently an interactive activity performed by a user
accessing the collections managed by a system. Through such an interaction,
the user aims to refine his query, to provide additional evidence describing his
information need, or to indirectly tell his needs to the system. Although the literature
offers a myriad of options for implementing user interaction, the best known
methodology that supports this interaction is Relevance Feedback (RF).

RF is the process that updates information need descriptions using additional data
observed during the user interaction with the system. RF may be explicit when the
additional data are explicitly provided by the user as depicted in Fig. 1.1a; the user’s
data are usually scores, comments, or marks given to the retrieved documents and
stored in the system for further processing also of queries other than the query with
respect to which the assessments are provided. RF may also be pseudo when the
additional data are collected from the documents deemed relevant by the system as
depicted in Fig. 1.1b. “Pseudo” originates from Greek and means “falsehood”; when
applied to feedback, “pseudo” means that relevance is not the true, real relevance
provided by a user, it is on the contrary a relevance provided by a surrogate for
the user, i.e., the system. Finally, RF may be implicit when the additional data are
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Fig. 1.1 Relevance Feedback. (a) Explicit. (b) Pseudo. (c) Implicit

collected from the user’s behavior as depicted in Fig. 1.1c. “Implicit” means that
relevance is implied by data other than the true, real relevance provided by a user
who explicitly tells the system what are the relevant documents.

RF is illustrated in Fig. 1.2 which depicts a system consisting of a user, a RF
module, and a retrieval function. Initially, there is a system in which the user
participates, a retrieval function and a feedback function (Fig. 1.2a). Then, the user
sends a query to the retrieval function which returns a list of retrieved documents
(Fig. 1.2b). Afterward, the user or the system assesses the relevance of the retrieved
documents and sends the assessments to the feedback function (Fig. 1.2c). Finally,
the feedback function sends the feedback data (e.g., a new query) to the retrieval
function which returns a new list of documents to the user (Fig. 1.2d).
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Fig. 1.2 Steps of Relevance Feedback

1.2 Boolean Logic

In this section, we briefly introduce Boolean logic in IR, because it is the
main bridge between the complex of notions of IR and the quantum mechanical
framework. Indeed, these two fields share the use of some basic logical notions such
as event, proposition, and operator for expressing more complicated concepts. What
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distinguishes the quantum mechanical framework from the framework in which IR
is defined is given by some generalizations of the properties of the mathematical
objects used to represent those basic logical notions.

Although its development dates back to the early days of IR systems and may
appear to be an old-fashioned technology, nowadays Boolean logic is also frequently
used by those modern systems that rank the documents retrieved to answer the
user’s queries using complex scoring functions; for example, the search engines
of the WWW utilize this logic to filter the pages before they are ranked using many
different statistical sources of evidence as described in Sect. 1.5.

1.2.1 Sets and Operators

The success of the application of Boolean logic in IR derives from the fact that
it relies on the naïve set theory. This theory views a content descriptor as a set
of documents and then a document as an element of a set. The effectiveness of
Boolean logic is due to the very natural view of a document collection as a set of
documents held by the end users. Thanks to this view, a user expects to receive a set
of documents as the answer to his query.

Although the user’s query may be very complex, the power of Boolean logic in
modeling the user’s queries stems from the very important equivalence between the
Boolean operators and the operators of set theory. The operation of union of two
sets corresponds to the disjunction operator, the operator of intersection of two sets
corresponds to the conjunction operator, and the operation of difference between
two sets corresponds to the negation operator. According to this correspondence,
the user can formulate queries with varying complexity knowing that the use of
an operator induces a specific set operation; for example, he knows that the set of
documents returned by a query including a conjunction operator is not greater than
the set returned by a query including a disjunction operator.

Not only the user’s queries are Boolean expressions where the operands are
content descriptors and the query operators are the logical operators. Complex
content descriptors can be defined as Boolean expressions too, thus making indexing
algorithms able to build “intelligent” descriptions of the informative content of the
documents; for example, an expression like “apple AND banana AND NOT cherry”
can describe the informative content of a document that is about both apples and
bananas but not about cherries in a more informative way than three single and
independent content descriptors like “apple,” “banana,” and “cherry.” An example
is depicted in Fig. 1.3.

Boolean logic has been the most used model in early IR systems, thanks to
its effectiveness in retrieving large proportions of documents relevant to many
information needs and at the same time only small proportions of nonrelevant
documents. Nevertheless, it has been adopted by a few search engines of the WWW
since it is little loved by most end users who are asked to devote much interaction
and to have expertise both in the topic of their information need and in the use
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Fig. 1.3 Documents, queries, and Boolean logic

of the Boolean logic thereof. This logic may cause confusion since the meaning
of the logic operators might be obscure, and there may be more than one Boolean
expression for expressing a query which would more effectively be expressed using
natural language.

Other drawbacks may be caused by the retrieved document set which may be
very large or very small up to two extreme cases: null output when the Boolean
expression of the query is too specific or output overload when the Boolean
expression of the query is too generic. An approach to overcoming the drawbacks
of Boolean modeling has been the coordination level, which lets propositions
(such as queries) made of atomic propositions have nonbinary values, thus ranking
documents over the real line, whereas the binary values (i.e., 0 and 1) of Boolean
modeling without coordination level cannot permit the ranking of documents.

1.2.2 Coordination Level

To overcome the problems of null output and output overload, the notion of
coordination level was introduced. The coordination level is a measure of the degree
to which each returned document matches the query. In this way, the coordination
level provides a score for ranking the documents. This ranking allows the user to
decide how many documents to inspect and allows the system to cut the bottom-
ranked documents off the list.

The coordination level is calculated as follows. A Boolean query is transcribed
in Conjunctive Normal Form (CNF), namely, as a list of propositions related by
the conjunction operator; each of these propositions are disjunctions of atomic
propositions. The coordination level of a document is the number of propositions
composing a CNF satisfied by the document. Suppose, for example, A;B;C are the
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document subsets associated to three index terms such as “apple,” “banana,” and
“cherry,” respectively; let A D fd1; d2g, B D fd2; d3g, C D fd3g, and A ^ .C _ B/
be the query. It follows that the coordination level of d1 is 1 because only the first
proposition is satisfied by d1, that is, d1 only belongs to A; the coordination level of
d2 is 2 because d2 belongs to both A and C _ B; the coordination level of d3 is 1
because it only belongs to C _ B. Note that d1; d3 would not have been retrieved if
the coordination level had not been calculated because they do not satisfy the query;
d1 does not belong to C _ B nor d3 belongs to A.

A variation of the coordination level was introduced to take the variable size of
document subsets into account; indeed, the document subsets are of arbitrary size,
and therefore, a small subset may be treated as a large subset. This variation has been
called weighted coordination level: instead of assigning a constant weight to each
proposition made true by a document, a different weight is assigned depending on
the proposition; for example, an Inverse Document Frequency (IDF) may be used.
The weighted coordination level is then the sum of the weights assigned to each
proposition.

At the query processing, an IR system leverages the CNF of a query. The
disjunctions are processed to build k posting lists. For each disjunction Tj;1 _ � � � _
Tj;nj , the nj posting lists that correspond to Tj;1; : : : ;Tj;nj are retrieved and merged.
The k posting lists that result from these merging operations are then processed; each
of these posting lists corresponds to a disjunction and is conjoined by a series of k
conjunction operators (i.e., ^ or AND). CNF query processing is efficient because
(i) a document must occur in every posting list built after merging the posting lists
of the disjunctions and (ii) the IR system processes the k posting lists in ascending
order of size, that is, from the least frequent term to the most frequent term. In this
way, the system can skip over the posting list of frequent terms to find the documents
that also contain the infrequent terms.

1.2.3 Weight Functions

The weight functions of the Boolean logic are introduced in this section since they
play an important role in the link between this logic and the projectors of the vector
spaces introduced in the following section. Algebraically, the Boolean logic consists
of weight functions mapping an element (e.g., a document) to a numeric value which
is usually chosen from the set f0; 1g. A weight function can be defined as

wA W S ! f0; 1g

where S is the set of elements (e.g., a collection of documents) and A � S is a
subset of elements corresponding to, for example, a term; for example, A may be
the subset of documents indexed by a term A. Let x be a document and A be a term.
The proposition that x is indexed by the term, that is, x 2 A, is either true or false.
This formulation is equivalent to wA.x/ D 1 if and only if x 2 A. We have a binary
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Fig. 1.4 Function mapping set elements to a real number

function when wA.x/ 2 f0; 1g, yet it may be a nonbinary function when wA.x/ 2 R.
The function w can also be called a weight function for terms because it provides
the weight of A in x; an example is depicted in Fig. 1.4. For each Boolean operator
(i.e., negation, conjunction, and disjunction), a weight function can be defined as
follows.

1.2.3.1 Weight Function of the Negation Operator

The weight function for the negation operator can be defined as follows. Let x be a
document and NA be the subset of documents that make a negation of A true. A binary
weight function for the negation operator is

w NA.x/ D 1 � wA.x/

as depicted in Fig. 1.4.

1.2.3.2 Weight Function of the Conjunction Operator

Consider the weight function for the conjunction operator (i.e., AND). To this end,
let x be a document and C D A ^ B be a conjunction of two subsets. It follows that
wC.x/ is either 1 or 0, i.e., x 2 C is either true or false. In particular,

wC.x/ D 1 if and only if wA.x/ D 1 and wB.x/ D 1

as depicted in Fig. 1.5. A weight function that follows the definition of the
conjunction above is

wC.x/ D wA.x/wB.x/
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Fig. 1.5 Weight function of a conjunction

Fig. 1.6 Weight function of a disjunction

1.2.3.3 Weight Function of the Disjunction Operator

Consider the weight function for the disjunction operator (OR). Let x be a document
and D D A _ B be a disjunction. The proposition x 2 D is either true or false in
correspondence with the fact that wD.x/ is either 1 or 0. In particular,

wD.x/ D 1 if and only if wA.x/ D 1 or wB.x/ D 1

A weight function that follows the definition of the disjunction above is

wD.x/ D wA.x/C wB.x/ � wA.x/wB.x/

as depicted in Fig. 1.6.

1.2.4 Dirac Notation and Projectors

At this point of the explanation of the use of Boolean logic in IR, it is necessary to
introduce the formulation of the weight function using the mathematical concepts
of the quantum mechanical framework, i.e., vectors, spaces, and operators thereof.
The notation used to represent the quantum mechanical framework is different from
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that usually adopted in the IR literature and was introduced by Dirac (1935); before
proceeding with the explanation, a digression on this notation is therefore necessary.

1.2.4.1 Dirac Notation

According to the Dirac notation, a vector x of the d-dimensional complex vector
space H is written as

jxi D

0
BBB@

x1
x2
:::

xd

1
CCCA

and is called “ket.” The conjugate transpose of jxi is represented as

hxj D �
x�
1 ; x

�
2 ; : : : ; x

�
d

�

and is called “bra”1 where x�
i is the conjugate of the complex number xi. The inner

product between x and y is represented as hxjyi, which is a complex number since
the vectors are defined over the complex vector space H. In particular, suppose

jxi D

0
BBB@

x1
x2
:::

xd

1
CCCA jyi D

0
BBB@

y1
y2
:::

yd

1
CCCA

The inner product is defined as

hxjyi D
dX

iD1
x�

i yi

The outer product (or dyad) is written as

jxihyj D

0
B@

x1y�
1 � � � x1y�

d
: : :

xdy�
1 � � � xdy�

d

1
CA

1This is the reason why the Dirac notation is also called the bra(c)ket notation.
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If A is a matrix (or an operator), then Ajxi is the vector resulting from the linear
transformation represented by A. In particular, suppose

jxi D

0
BBB@

x1
x2
:::

xd

1
CCCA A D

0
B@

a1;1 � � � a1;d
: : :

ad;1 � � � ad;d

1
CA

The result of the application of the operator on the vector can be written as

Ajxi D

0
BBB@

Pd
iD1 a1;ixiPd
iD1 a2;ixi
:::Pd

iD1 ad;ixi

1
CCCA

1.2.4.2 Projectors

A projector A is an operator (i.e., a function) that maps a vector to itself; this is
the reason why one speaks of projection. Suppose A is a subset of documents which
corresponds to a term. In mathematical terms, a projection can be written as follows:

Ajxi D jxi if and only if hxjAjxi D 1 if and only if jxi 2 A

Therefore, the projector is a function that tests whether a document x belongs to A,
that is, the document is indexed by the term. It can be shown that a projector has the
following property:

AA D A

Note that a projector can be represented as a matrix. A pictorial description of
projection is provided in Fig. 1.7.

A special case of a projector is provided by a vector of unitary length. Each vector
corresponds to one projector defined as the outer product between the (column)
vector and its conjugate transpose (i.e., the row vector). To explain this, suppose
jxi is a vector; the projector corresponding to this vector is a special dyad or outer
product written as

jxihxj
To check that it is indeed a projector, it is necessary and sufficient to compute the
square of the projector and find that it results in the projector itself, as follows:

.jxihxj/.jxihxj/ D jxi.hxjxi/hxj D .hxjxi/jxihxj D jxihxj

since hxjxi D 1.
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Fig. 1.7 Projector of a subspace

A projector determines a vector subspace including all the vectors that are
mapped to itself when the projector is applied to them. Thanks to this correspon-
dence between projector and subspace, a subspace of H can be viewed as a subset
of vectors where the projector plays the role of the mechanism that checks whether
a vector belongs to the subspace.

The other correspondence is between subspace and subset; from an IR point
of view, a mathematical correspondence is not actually of interest, although a
conceptual one is. The conceptual correspondence is given by the possibility of
expressing a proposition like “this element belongs to this subset” in terms of
projection, that is, it is possible to say that “this element belongs to this subset”
when the vector corresponding to the element is mapped on itself.

The crucial fact is that there exists one projector for each subspace. Given the
correspondences between subspace, projector, and proposition, we can say that the
mathematical object used to represent propositions is the projector.

The correspondence between the quantum mechanical framework and the weight
functions can be summarized by the following table:

Set S Complex vector space H
Subset A Subspace A

Set element x Vector jxi
Weight function wA Projector A

Membership wA.x/ D 1 Projection Ajxi D jxi
Proposition x 2 A Projection Ajxi D jxi

1.2.4.3 Negation, Mutual Exclusiveness, and Resolution to Unity

After having explained how projectors can represent propositions, this section
explains how the Boolean operators (i.e., conjunction, disjunction, and negation)
can be expressed using functions of projectors, these functions essentially being
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matrix products and sums. Using projectors, negation can be represented by

NA D 1 � A

where 1 is the identity projector such that

1jxi D jxi for all jxi 2 H

that is, the d � d identity matrix

1 D
0
@
1 � � � 0
: : :

0 � � � 1

1
A

The identity projector corresponds to the proposition jxi 2 S, which is always true
for all elements x or equivalently for all vectors jxi of H. The operator NA is still a
projector since

NA NA D NA.1 � A/ D NA � .1 � A/A D NA � .A � A/ D NA

An example of projector that corresponds to a negation (i.e., complement of a
subset) is depicted in Fig. 1.7.

Consider, for example, the projectors of two mutually exclusive events A; NA,
say “relevant” and “not relevant.” As this event space is binary, the projectors
corresponding to the propositions are defined in the bidimensional space and can
be written as follows:

A D 1

2

�
1 1

1 1

�
NA D 1

2

�
1 �1

�1 1

�

The quantum mechanical formulation of the mutual exclusiveness of the events A; NA
can be represented by the orthogonality between the projectors, that is,

A NA D 0

where 0 represents the impossible event.
In a similar way, the property that these events (or propositions) are all the

possible propositions about an event is represented by the resolution to unity of
the projectors, that is,

A C NA D 1

where 1 is the identity projector.
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Fig. 1.8 Elements and sets in a vector space

When the quantum mechanical framework is applied to IR, a document x is
viewed as a unit vector, that is, hxjxi D 1; the set S of elements is viewed as a
complex vector space, and the subset of documents A is viewed as a subspace.
Figure 1.8 depicts an element which corresponds to a vector in a subspace and
a subset which corresponds to a subspace; the subspaces are named after their
projectors as the subspaces are in one-to-one correspondence with the projectors,
that is, only one projector A can be defined for this subspace.

1.2.4.4 Conjunction and Commutativity

To represent conjunction using vectors and projectors, we have to use three
projectors A, B, and C corresponding to three events A, B, and C, respectively,
where

C D A ^ B

Suppose A and B commute with respect to the matrix product, that is, the following
equivalence holds:

C D AB D BA

If jxi 2 C, then

hxjCjxi D hxjABjxi D 1

only if Ajxi and Bjxi are the same vector jxi, that is, if and only if

Ajxi D jxi Bjxi D jxi

On the other hand, when these two conditions hold, we have that

Ajxi D ABjxi D jxi Bjxi D BAjxi D jxi
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Fig. 1.9 Projectors and conjunction

and

AB D BA D C

The operator C is still a projector since

CC D .AB/.AB/ D A.BA/B D A.AB/B D .AA/.BB/ D AB D C

An example is depicted in Fig. 1.9; the subspace in common to the subspaces
corresponding to the projectors A and B corresponds to a projector C and is a line.
In the event that A does not commute with B, one speaks about incompatibility
between observables or propositions. Incompatibility is a point of radical departure
of the quantum mechanical framework from the classical framework upon which IR
relies. Incompatibility is introduced in Sect. 2.2.2.

1.2.4.5 Disjunction and Span

To represent disjunction using vectors and projectors, we have two projectors A and
B and a third projector D corresponding to A, B, and D, respectively, where

D D .A _ B/ n C

Suppose

D D A C B � C
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If jxi 2 A or jxi 2 B, then

hxjDjxi D hxjA C B � Cjxi D 1

The operator D is still a projector since

DD D AD C BD � CD

D A.A C B � C/C B.A C B � C/ � C.A C B � C/

D AA C AB � AC C BA C BB � BC � CA � CB C CC

D A C AB � AAB C AB C B � BBA � BAA � ABB C AB

D A C AB � AB C AB C B � AB � AB � AB C AB

D A C B � AB

D A C B � C

D D

Figure 1.10 depicts an example of how disjunction is implemented by two projectors
corresponding to two orthogonal rays. The resulting subspace is a plane. It can be
noted that D mirrors a vector jx0i on itself if this vector mirrors on B and mirrors
a vector jx00i on itself if this vector mirrors on A as expected. Indeed, x0 belongs to
B and x00 belongs to A. It follows that both x0 and x00 belong to A [ B. Consider a
document x000 other than x0 and x00 which does not belong to A nor to B. Following
the guidelines, x000 corresponds to a vector jx000i in the vector space. This vector can
arbitrarily be chosen; we place it in the subspace of D.

What is not expected is that D mirrors a vector jx000i on itself although this vector
is not mirrored on A or B. Suppose a vector jx000i belongs to the subspace spanned
by jx0i and jx00i, that is,

jx000i D a0jx0i C a00jx00i ja0j2 C ja00j2 D 1

Fig. 1.10 Projectors and disjunction
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This vector does not belong to the subspace determined by A nor does it belong to
the subspace determined by B since

Ajx000i D a0Ajx0i C a00Ajx00i D a0Ajx0i D a0jx0i ¤ jx000i

and

Bjx000i D a0Bjx0i C a00Bjx00i D a00Bjx00i D a00jx00i ¤ jx000i

However, jx000i belongs to the subspace determined by D since

Djx000i D .A C B � AB/.a0Ajx0i C a00Ajx00i/
D a0Ajx0i C a0Bjx0i � a0ABjx0i C a00Ajx00i C a00Bjx00i � a00ABjx00i
D a0jx0i C a00jx00i
D jx000i

Therefore, jx000i belongs to the disjunction of two subspaces although it does not
belong to either subspace. This is a signal that the logic induced by the vector spaces
is more general than the logic induced by sets. This generalization happens because
jx0i and jx00i span a subspace larger than the simple union of the subspaces spanned
by jx0i and jx00i.

1.3 Vector Space Model

The early formulation of the Vector Space Model (VSM) was by Salton (1963) who
further developed the model in the 1970s. The VSM was then experimented and
applied to several tasks in the 1980s until its deployment in actual systems (e.g., the
search engines of the WWW) in the 1990s.

In this section, the VSM is introduced because it is hinged on some concepts of
the theory of the vector spaces in common with the quantum mechanical framework
and the Boolean logic introduced in Sect. 1.2. It is therefore worth highlighting
that the VSM can be integrated with Boolean logic by leveraging the common
concepts of the quantum mechanical framework. Moreover, in this way, the quantum
mechanical framework can be applied to IR and there generalized since these
concepts are already utilized by the VSM and Boolean logic.
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Fig. 1.11 Intuition of the Vector Space Model

1.3.1 Basis and Indexing

The conceptual idea underlying the VSM is that a content descriptor is a basis vector.
It follows that an index managed by a system corresponds to the basis of a vector
space over the real field. The number of distinct descriptors and then the size of the
index are equal to the dimension of the vector space. On the other hand, documents
are vectors spanned by the basis vectors, that is, each document vector is a weighted
linear combination of the vector of the basis corresponding to an index. Similarly,
queries are vectors spanned by the same basis. In general, any data contained in
information objects managed by a system can be represented as a vector.

The intuition behind this model is illustrated in Fig. 1.11a. A user starts
interacting with the system without any terms in mind; this point corresponds to the
origin .0; 0/ of a coordinate system. Once the user selects a term t1, the point moves
to jt1i with weight or coordinate c1, and the information object can be represented
by c1jt1i. When the user chooses jt2i with weight or coordinate c2, the vector of the
information object is c1jt1i C c2jt2i. When three terms are selected, the final result
is given by

jxi D c1jt1i C c2jt2i C c3jt3i

The weights or coordinates measure the importance of a term in the information
object or in the collection of objects. The same applies to multimedia objects where
the content descriptors can be video genre, music timbre, or color as depicted in
Fig. 1.11b.

The VSM is based on a few notions of the theory of vector spaces. The first
notion is that of linear independence. Let

fjt1i; : : : ; jtkig
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be a set of vectors of the real d-dimensional vector space R
d where k � d. The set

fjt1i; : : : ; jtkig is linearly independent when

jxi D
kX

iD1
cijtii D

kX
iD1

bijtii

implies

ci D bi i D 1; : : : ; k

This means that no vector in fjt1i; : : : ; jtkig can be a linear combination of the
remaining vectors. When it is linearly independent, the set fjt1i; : : : ; jtkig is a basis
of dimension k of the vector space defined over Rd.

From an IR point of view, independence provides an important feature of the
VSM. Independence means that the set of terms included in an index managed by a
system are all useful for defining the vectors representing the information objects in
a collection. Term dependence will be exploited by Latent Semantic Analysis (LSA)
to compute the hidden factors that determine how terms are used in a document
collection as explained in Sect. 1.3.5.

For any vector jxi of the k-dimensional space spanned by fjt1i; : : : ; jtkig,

jxi D
kX

iD1
cijtii xj D

kX
iD1

citij j D 1; : : : ; d

where tij is the j-th component of jtii and k � d.
In general, a basis is not necessarily canonical nor orthogonal; it is only an

independent set of vectors. A basis is orthogonal when htijtji D 0 for each i ¤ j. It
follows that when

jxi D c1jt1i C � � � C ckjtki

then

ci D htijxi

An instance of an orthogonal basis is the canonical basis, that is,

jt1i D

0
BBB@

1

0
:::

0

1
CCCA jt2i D

0
BBB@

0

1
:::

0

1
CCCA � � � jtki D

0
BBB@

0

0
:::

1

1
CCCA

where jtii has null elements except for the i-th element which is 1.
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1.3.2 Inner Product and Retrieval

The retrieval function of the VSM maps a pair document-query to a real number. As
documents and queries are vectors, the most used retrieval function is based on the
inner product between vectors (Fig. 1.12).

The retrieval function of the VSM is based on the inner product between two
vectors. In the VSM, the vector space is defined over the real field; therefore, the
conjugate of a scalar is the scalar itself, and the conjugate transpose of a vector is
the transpose vector. It follows that

hxjyi D
dX

jD1
xjyj

where hxj is a row vector; an example of inner product is depicted in Fig. 1.11 which
explains that hxjyi D 2 � .�2/C 1 � .�2/ D �6 is the size of the projection of jyi
on the ray spanned by jxi multiplied by the cosine of the angle between the vectors
and by the size of jxi, that is,

hxjyi D kxkkyk cos �

When the vectors are unit vectors, the inner product is just the cosine of the angle;
otherwise, the vector sizes measure some properties of the information objects such
as document length. Note that the cosine may be negative, while most applications
of the VSM do not consider this possibility. Moreover, it is assumed that the model
is defined over the real field—in contrast, the quantum mechanical framework is

Fig. 1.12 Inner product in the real bidimensional space
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defined over the complex field, and therefore, notions like “cosine of the angle” do
not make much sense.

1.3.3 Connections with Boolean Logic

It is possible now to make a connection with the description of Boolean logic given
in terms of projectors in Sect. 1.2 and therefore with the quantum mechanical
framework. This connection consists of corresponding an orthogonal basis to a
collection of projectors such that

Ai D jtiihtij i D 1; : : : ; k

where Ai is a projector. It can be easily checked that the projectors are mutually
orthogonal. Using the resolution to unity, it can be seen that

A1 C � � � C Ak D 1

where 1 is the projector of the k-dimensional vector space spanned by the basis. It
follows that a vector defined according to the VSM such as

jxi D c1jt1i C � � � C ckjtki (1.1)

can be viewed as the result of the linear combination of k propositions since a
projector corresponds to a proposition and a basis vector corresponds to a projector.
In particular, the projector Ai can multiply both sides of (1.1) to obtain

Aijxi D c1Aijt1i C � � � C ckAijtki

As the basis vectors are mutually orthogonal,

Aijtji D
�

0 i ¤ j
jtji i D j

It follows that

Aijxi D ciAijtii D cijtii

and that

htijAijxi D htijxi D ci

Therefore, a coefficient ci can be viewed as the “answer” to the question, for
example, whether a document represented by jxi is about the term represented
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by jtii. This coefficient calculated as

ci D hxjtii

may in principle be any real number. If ci were binary, the answer to the question on
the aboutness of the document would be either “yes” or “no,” that is, ci D 1 if and
only if the document is about the term; otherwise, ci D 0.

It may be that more than one coefficient can be different from 0, thus obtaining a
document vector jxi which represents a document about more than one term at the
same time; for example,

jxi D c1jt1i C c2jt2i

represents a document about t1 and t2. Orthogonality plays a significant role since,
were the basis vectors not orthogonal, the question whether the document is about,
say, t1 would produce a number different from c1, in particular

ht1jxi D c1 C c2ht1jt2i

thus representing a situation where the aboutness of the document to t1 depends
on the aboutness to t2 and to a measure of the relationship between t1 and t2, this
measure being given by ht1jt2i.

We have highlighted above some connections between the sets of Boolean logic
and the vector spaces of the VSM, in particular, how a weight function wA can be
expressed as a projector A to test the membership of an element to set A. As a
projector is an operator acting on vector spaces, it is natural to see connections with
the VSM. There are some differences, however.

Using Boolean logic, a query A, A ^ B, or A _ B can be expressed as a projector
A, AB, or A C B � AB, respectively. A document vector jxi either belongs to the
subspace of the query projector or does not.

Using the VSM, although a query y is represented as a vector jyi, it can
correspond to a projector jyihyj, but it cannot be easily expressed as a Boolean
expression such as A, AB, or A C B � AB.

In general, the projector jyihyj describes a subspace placed obliquely to the
subspaces described by the projectors of the single terms. In particular, when the
basis is orthogonal, a query vector can be written as

jyi D ht1jyijt1i C � � � C htkjyijtki

where htijyi is the size of the projection of jyi on jtii. When a projector jtiihtij is
assigned to the basis vector jtii, it is obtained that

hyjtiihtijyi D jhtijyij2



24 1 Elements of Information Retrieval

As jtiihtij corresponds to a term according to the use of the Boolean logic, we
have that jyi is a weighted linear combination of term vectors where the weights
of this combination measure the degree to which the i-th term describes the query.
Moreover, the inner product used in the VSM becomes

hxjyi D ht1jyihxjt1i C � � � C htkjyihxjtki

thus highlighting that it is a weighted sum of measures of the degree to which the
document is described by a term.

One issue is how to implement the coefficients htijyi and hxjtii since the meaning
of any real number is less clear than the meaning of a binary value, which denotes
either “yes” or “no.” Some direction has been provided by the coordination level
which measures the membership of an element to a subset, yet it is rather heuristic,
and a more principled mechanism would allow the assignment of these coefficients
to be governed. Although a mechanism that provides a value to these coefficients is
described in Sect. 1.3.4, a meaning can only be provided when probability comes
into play as illustrated in Sect. 1.4.

1.3.4 Weighting Schemes

The coefficients of the linear combinations of the document vectors and query are
defined by means of formulas called “weighting schemes.” The main schemes are
known as binary, Term Frequency (TF), IDF, and TF � IDF (TFIDF).

The binary scheme of the weight of descriptor j in object (e.g., document) i is
very simple:

cij D
�
1 if tj occurs in i
0 otherwise

As the binary scheme equally treats the objects independently of descriptor, the
TF scheme can be defined as follows. Let fij be the frequency of term j in document i:

cij D fij

However, the TF scheme equally treats the objects independently of whether the
descriptors are common or rare, the latter being a feature helping to identify the
relevant documents.

To this end, the IDF scheme is defined as follows. Let nj > 0 be the number of
documents indexed by term j and let N be the total number of documents:

cij D log N=nj

The TFIDF combines the previous two schemes as follows. Let fij be the
frequency of term j in document i, let nj be the number of documents indexed by
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term j, and let N be the total number of documents:

cij D fij log
N

nj

1.3.5 Latent Semantic Analysis

LSA has been one of the most significant contributions in understanding the
potential of the vector spaces in IR. Initially proposed to cope with the problem
of synonymy and polysemy, it has been further studied and applied in other tasks
and problems as an alternative approach to the use of thesauri and dictionaries.

Based on the well-known Singular Value Decomposition (SVD) theorem, LSA
allows for simultaneously modeling term and document relationships. It does
not need very special input; it needs only a term-document occurrence matrix.
To start, consider, for example, two terms and one document represented in the
bidimensional space as follows:

jx1i D
 

1p
2
1p
2

!

using the canonical basis

jt1i D
�
1

0

�
jt2i D

�
0

1

�

This example means that whenever jt1i is used with weight c1, jt2i is used with the
same weight; this situation is depicted in Fig. 1.13. Recall that

jx1i D 1p
2

�
1

0

�
C 1p

2

�
0

1

�
D c11

�
1

0

�
C c12

�
0

1

�

Fig. 1.13 Document vector spanned by the canonical basis



26 1 Elements of Information Retrieval

Fig. 1.14 Document vector spanned by an alternative basis

and that the canonical basis vectors are orthonormal, that is, the terms are uncor-
related since vector orthogonality corresponds to incorrelation, and the occurrence
of a term does not influence the occurrence of the other term. As jt1i are jt2i are
used with the same constant weight, their use is perfectly correlated. Since there is
perfect correlation, it would be possible to use one term only and predict the other
term with certainty; these equal weights indeed mean that it is certain that the use
of jt1i within jx1i with weight c1 implies that jt2i is used within jx1i with the same
weight; note that this correlation is between the terms within a given document. If
we replace jt1i; jt2i with jv1i, we obtain Fig. 1.14. Now let us define the “negation”
of jv1i and name it jv2i, thus obtaining the following vector basis:

jv1i D
 C 1p

2

C 1p
2

!
jv2i D

 C 1p
2

� 1p
2

!

The basis vectors jv1i; jv2i represent terms more complex than the “canonical”
terms jt1i; jt2i and are given by the co-occurrence in the same document jx1i. The
orthogonality of jv1i; jv2i may represent some term relationships; jv2i is a term
opposite to jv1i since hv1jv2i D 0. Moreover, note that jv1i; jv2i is an orthogonal
basis alternative to jt1i; jt2i. Therefore, the document vector can be expressed using
this alternative basis as follows:

jx1i D 1jv1i C 0jv2i D jv1i
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A similar result can be obtained when there are two documents. Suppose

jx2i D
 

2p
13
3p
13

!
D 2p

13
jt1i C 3p

13
jt2i

The alternative basis can still be used to express this document as follows:

jx2i D
 C 5p

26

� 1p
26

!
D 5p

26
jv1i � 1p

26
jv2i (1.2)

The coefficients of the latter expression are the sizes of the projection of jx2i on the
lines spanned by jv1i and jv2i and the projection is

jz2i D hv1jx2ijv1i D 5p
26

jv1i

where hv1jx2i is the size of the projection of jx2i on jv1i and is obtained by
multiplying (1.2) by hv1j.

When the number of documents increases, the sum of the sizes of the projections
of the document vectors on the basis vectors should be kept as large as possible for
a given basis. Given n documents (or objects) represented by jx1i; : : : ; jxni in R

d,
the d � n occurrence matrix X can be prepared. Suppose jzii is the projection of jxii
on the q-dimensional subspace spanned by the basis jv1i; : : : ; jvqi where (q < d).
As the projection is a vector expressed in terms of jvii,

jzii D hv1jxiijv1i C � � � C hvqjxiijvqi

where hvjjxii is the size of the projection of jxii on jvji. When q D 1, one basis
vector is sought to obtain

hv1jX D �hv1jx1i � � � hv1jxni
�

This alternative vector jv1i is chosen to maximize the overall projection of the jxii
on jv1i, that is,

jv1i D arg max
jvi

khvjXk2 � �.hvjvi � 1/

It can be shown that jv1i is the main eigenvector of the term correlation matrix XX�;
for example, consider the following matrix:

X D
 

1p
2

2p
13

1p
2

3p
13

!
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The correlation matrix is as follows:

XX� D
 
21
26

25
26

25
26

31
26

!
�
�
0:808 0:962

0:962 1:192

�

The following eigenvectors can be computed:

V D
�
0:634 0:773

0:773 �0:634
�

D .jv1i jv2i/

to obtain the projections:

hv1jx1i D 0:99 hv1jx2i D 0:99 hv2jx1i D 0:01 hv2jx2i D 0:01

Thus, we have seen that

XX�jvii D �ijvii i D 1; : : : ; r

where r is the rank. Similarly, the eigenvectors of X�X are

X�Xjuii D �ijuii i D 1; : : : ; r

In general, the SVD can be computed:

X D V ˙ U�
d � n d � d d � n n � n

that can be written as follows:

X D �1ju1ihv1j C � � � C �rjurihvrj

When applied to the context of IR, the truncated SVD is often used since it allows
us to obtain a reduced vector space preserving the correlations between terms:

Xq D �1ju1ihv1j C � � � C �qjuqihvqj

where q < r or even q � r when r is very large as is customary in IR. SVD aims at
minimizing the Frobenius norm defined as follows:

jjAjjF D
0
@X

i;j

jai;jj2
1
A

1
2
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Therefore, the optimal truncated SVD minimizes:

jjX � XqjjF D p
�qC1 C � � ��k

As a consequence, occurrence, co-occurrence, and correlation matrices are approx-
imated by Xq.

An early application of LSA was for document retrieval. An example of the use
of LSA in finding relevant documents begins with the following occurrence matrix:

X D
�C1 C2 C1 C2

C1 C3 �2 �1
�

Each column refers to a document and each row refers to a term; it follows that four
document vectors are depicted in the bidimensional space spanned by the canonical
basis (Fig. 1.15). The four documents (the column vectors of the occurrence matrix)
are assigned the following relevance assessments:

�
1 1 0 0

�

so that the document vectors in the first quadrant of Fig. 1.15 are relevant and
the document vectors in the fourth quadrant are nonrelevant. Consider a query
represented by the following vector:

jyi D
�
1

0

�

Fig. 1.15 Four document vectors in the bidimensional space
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The vector jyi represents an ambiguous query because it is between the cluster of
relevant documents in the first quadrant and the cluster of nonrelevant documents in
the fourth quadrant. Indeed, it provides the following document ranking:

hyjX D �
1 2 1 2

�

A loss of precision and loss of recall can be observed because the first term is
ambiguous. Suppose we compute the SVD of X�:

X� D V˙U�

thus obtaining the following decomposition:

V D
�
0:42 0:91

0:91 �0:42
�

˙ D
�
4:1 0 0 0

0 2:9 0 0

�

U D

0
BB@

0:328 0:164 �0:930 0:032

0:880 0:184 0:334 �0:283
�0:342 0:598 �0:040 �0:723
�0:014 0:762 0:151 0:629

1
CCA

Note that jv1i spans a ray passing close to the relevant documents, whereas jv2i
spans a ray passing close to the nonrelevant documents. One expects that the
inner product between relevant document vectors (i.e., jx1i and jx2i) and the first
eigenvector jv1i will be high and positive, whereas the inner product between
nonrelevant document vectors (i.e., jx3i and jx4i) and the second eigenvector jv2i
will be high and negative. The document vectors can be projected on the subspace
spanned by jv1i to obtain

hv1jX D �
1:330 3:565 �1:387 �0:057�

Since the relevant documents have the highest scores, both recall and precision can
be maximized.

1.3.6 Relevance Feedback

According to the cluster hypothesis, the relevant documents tend to resemble
relevant documents more than nonrelevant documents. If the documents were
depicted in a bidimensional space, it may be possible to see when the cluster
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Fig. 1.16 When the cluster hypothesis holds and when it does not

hypothesis holds (see Fig. 1.16a where the relevant documents, which are depicted
as black circles, are next to each other), when it does not (see Fig. 1.16b where the
nonrelevant documents are dispersed among the relevant documents), and how the
retrieval performed to answer a query (represented by a triangle) is affected.

The cluster hypothesis is important both because of efficiency reasons and
effectiveness reasons. When the cluster hypothesis holds, the relevant documents
can be stored together and retrieved with less access operations than those necessary
when the relevant documents are not clustered; the number of access operations
would be proportional to the number of clusters. Moreover, the retrieved clusters
would be dense with relevant documents.

RF leverages the cluster hypothesis. Suppose a query is represented as follows:

jyi D
kX

iD1
bijtii

Given r relevant documents, d1; : : : ; dr, and n � r nonrelevant documents,
drC1; : : : ; dn, the modified query would be represented as follows:

jyi0 D jyi C
rX

jD1
˛jjdji C

nX
hDrC1

ˇhjdhi ˛j 	 0 ˇh � 0

The first summation of the right-hand side is called positive RF, whereas the second
summation is called negative RF. How these two mechanisms operate is depicted in
Fig. 1.17. Suppose there are five relevant documents in a collection of 25 documents
(top-left of the figure). When a query is sent to the IR system, the VSM puts the
query close to both nonrelevant and relevant documents (top-right). After positive
RF, the query moves closer to the relevant documents (bottom-left) and further
moves closer after negative RF (bottom-right).
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Fig. 1.17 Positive and negative Relevance Feedback

1.4 Probabilistic Models

The probabilistic models of IR have in common the presence of a universe of ele-
mentary events where an event is a single occurrence of a process or phenomenon;
it is called “elementary” since it cannot be decomposed into simpler occurrences. In
the literature of probability theory, the notion of elementary event is distinguished
from that of event; the latter is a subset of elementary events. The notion of event is
crucial because a probability measure that maps an event to the unit range Œ0; 1� is
applied to obtain the degree of belief that an elementary event belongs to the event.

The role played by the probabilistic models has become important since the
Boolean model has been difficult to apply in IR tasks; the researcher has to cope with
the lack of ranking, and the end user has to face null output and output overload. The
VSM succeeded in improving the user’s experience since it provides some ranking,
but it leaves the problem of finding the coefficients of the linear combinations open.

The probabilistic models provide an answer to this problem yet at a principled
level, that is, it explains how to provide the weights of coordination level used when
Boolean logic is applied to IR and also provides an explanation of why the TFIDF
of the VSM has been so effective. However, its impact is not only at a principled
level—at present, the probabilistic models are also well accepted at the industrial



1.4 Probabilistic Models 33

level. In this section, we survey two important probabilistic models for IR: the
relevance model and the language models.

1.4.1 Relevance Model

We call this model “relevance model” because it explicitly represents relevance. The
most known implementation, which is illustrated in this section, is also known as
“BM25” or “Okapi” or “Robertson-Sparck Jones” model. According to this model,
the document collection is viewed as a universe of elementary events. The terms or
in general the content descriptors resulting from indexing the collection determine
document subsets and therefore implement the events of the probability space. The
key notion of this model is that relevance is a document set A, and therefore, it is
modeled as an event.

As these events are subsets of a probability space, a probability measure can
be applied, and each event (i.e., terms, relevance and their subsets, and logical
combinations) is assigned a probability; see also Fig. 1.18 which depicts the event
“relevance” as the subset A and the event “a term occurs” as the subset B. To each
event, a probability measure P assigns a real number in the unit range in the same
way the coordination level assigns a weight to the document and the term.

An algebraic illustration of the relevance model is provided in the following.
Suppose a universe of events (i.e., event space)˝ can be split into A and NA such that

A [ NA D ˝ A \ NA D ;

Similarly, the space is split according to the terms resulting from indexing the
collection as follows:

Bi [ NBi D ˝ Bi \ NBi D ; i D 1; : : :

Note that the same procedure can be applied for Boolean combinations of the terms.

Fig. 1.18 Relevance model
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Fig. 1.19 Retrieval as a detection problem

1.4.1.1 Detection and Risk

The main problem with the relevance model is that A is not only unknown, it also
changes for each information need. It follows that an IR system based on such a
model has to detect whether a document is relevant although context continuously
evolves and nothing is known if not for some content descriptors. As a system has
to decide whether a document is relevant on the basis of a “signal” given by content
descriptors, retrieval is viewed as a detection problem, as depicted in Fig. 1.19.

The dependency of A on the user’s information need and ultimately on the
context affecting the need is the reason why retrieval is affected by uncertainty, and
therefore, the detection performed by the system is inevitably a statistical detection.

When performing such a detection, the system often (always) makes two errors:
one error is to retrieve nonrelevant documents and the other error is to miss relevant
documents. When making these errors, two costs arise: false alarm is the cost of
retrieving (i.e., detecting) documents that are not relevant and loss of recall is the
cost of not retrieving documents that are relevant. The detection costs are often
encoded as follows:

• c.A; NA/ is the cost of retrieving a document because it is decided that it is relevant
(first A) when it actually is not relevant (second A); this is the cost of false alarm.

• c. NA;A/ is the cost of not retrieving a document because it is decided that it is not
relevant when it actually is relevant; this is the cost of loss of recall.

It is defined c.A;A/ and c. NA; NA/ although these costs are very often set to zero.
Although perfect retrieval, retrieval of all and only relevant documents, is

impossible to obtain, optimal retrieval, retrieval of the largest number of relevant
documents provided the maximum number of nonrelevant documents, can be
obtained. To this end, risk is introduced. When the probability measure of the events
and the costs is available, the risk of a detection can be computed for each event and
can be defined as follows:

R.AjB/ D c.A;A/P.A j B/C c.A; NA/P. NA j B/

R. NAjB/ D c. NA;A/P.A j B/C c. NA; NA/P. NA j B/
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An IR system decides to retrieve the documents in B when

R.A j B/ < R. NA j B/

and this happens if and only if

P.A j B/ >
c.A; NA/ � c. NA; NA/

c. NA;A/C c.A; NA/� c.A;A/� c. NA; NA/
The latter equation shows that the costs are like knobs operating on a device that
emits documents. When the cost of loss of recall that can be accepted by the system
or the end user increases, the number of retrieved documents increases since the
threshold decreases; this can be explained by the fact that when c. NA;A/ increases,
the miss of relevant documents is less tolerated, and therefore, the system accepts to
retrieve further documents. How the costs of loss of recall and false alarm explain
the threshold is depicted in Fig. 1.20 when the costs of correct decision are null.

1.4.1.2 Probability Ranking Principle

The effectiveness of the relevance model rests on the PRP:

If a reference retrieval system’s response to each request is a ranking of the documents in
the collection in order of decreasing probability of relevance to the user who submitted
the request, where the probabilities are estimated as accurately as possible on the basis
of whatever data have been made available to the system for this purpose, the overall
effectiveness of the system to its user will be the best that is obtainable on the basis of
those data.

Fig. 1.20 Probability of relevance threshold as function of loss of recall and false alarm
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The PRP was first introduced by Maron and Kuhns (1960), and a discussion is
reported by Robertson (1977). The reason why the PRP is significant in IR is the
link between the principled approach to ranking and the effectiveness measures.
The risks defined within the PRP are actually probabilistic definitions of recall
and fallout. Thanks to this probabilistic view, the maximization of the probability
of relevance determines the maximization of recall at a given maximum tolerated
fallout. In this way, the PRP states that the retrieval effectiveness is optimized when
recall is maximum for each fixed cost of fallout. In practice, the principle tells to
determine the Bs such that the fallout is less than a given threshold and to choose
the B that maximizes the recall among the previously determined Bs.

1.4.1.3 Model Estimation

Corresponding to the events of the probability space, two main random variables
can be defined:

Xj.!/ D 1 tj occurs in !

XA.!/ D 1 ! is relevant

For example, suppose the following four documents !1 D “apple banana”; !2 D
“apple banana cherry”; !3 D “banana apple”; and !4 D “banana” are indexed and
three terms are extracted from the documents. We have that

Xapple.!1/ D 1 Xbanana.!1/ D 1 Xcherry.!1/ D 0

Xapple.!2/ D 1 Xbanana.!2/ D 1 Xcherry.!2/ D 1

Xapple.!3/ D 1 Xbanana.!3/ D 1 Xcherry.!3/ D 0

Xapple.!4/ D 0 Xbanana.!4/ D 1 Xcherry.!4/ D 0

In general, when k terms are extracted, the multidimensional random variable

X D .X1; : : : ;Xk/

can be defined, thus yielding up to 2k possible outcomes. Let B be a subset of
the set of elementary events mapped to a given outcome of X; for example, when
X D .0; 1; 0/, we have that B D f!2; !4g. These subsets can be restricted to the
subset A of relevant documents, thus obtaining the outcomes of X conditioned to
relevance. When the elementary events ! are assigned a probability measure P.!/,
the following probabilities can be computed:

P.B j A/ P.B j NA/
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The actual use of the relevance model requires the estimation of P.BjA/ and
P.Bj NA/. The documents in B are described by k properties which are in turn
described by a random variable X. The simplest approach is binary:

Xj.!/ D 1 term j occurs in ! ! 2 B

Suppose B can be mapped to X. It follows that

P.BjA/ D P.X D xjXA D 1/ P.Bj NA/ D P.X D xjXA D 0/

When X D x is X1 D x1; : : : ;Xk D xk,

P.X D xjXA D 1/ D P.X1 D x1; : : : ;Xk D xkjXA D 1/

Since there are 2k possible outcomes, the number of estimations is exponential,
and its estimation is in practice infeasible although k might be small; this problem is
known as the curse of dimensionality and may be addressed by assuming conditional
stochastic independence between the Xjs defined as follows2:

P.X1 D x1; : : : ;Xk D xkjXA D 1/ D
kY

jD1
P.Xj D xjjXA D 1/

and

P.X1 D x1; : : : ;Xk D xkjXA D 0/ D
kY

jD1
P.Xj D xjjXA D 0/

Suppose

pj D P.Xj D 1 j XA D 1/ qj D P.Xj D 1 j XA D 0/

It follows that

P.X D x j XA D 1/ D
kY

jD1
p

xj

j .1 � pj/
1�xj

P.X D x j XA D 0/ D
kY

jD1
q

xj

j .1 � qj/
1�xj

2Cooper (1995) showed that this assumption can be weakened.
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The application to IR gives the likelihood ratio of the Binary Independence Retrieval
(BIR) model where the likelihood ratio is

L.x/ D P.X D x j XA D 1/

P.X D x j XA D 0/
D
Qk

jD1 p
xj

j .1 � pj/
1�xj

Qk
jD1 q

xj

j .1 � qj/
1�xj

and the log-likelihood ratio is

`.x/ D log L.x/

that is,

`.x/ D
kX

jD1
xjwj C

kX
jD1

log
1 � pj

1 � qj

where wj D log pj.1�qj/

qj.1�pj/
is called Term Relevance Weight (TRW).

In the relevance model, the query is directly not modeled, whereas relevance is
modeled since it is represented as a subset of documents. However, the BIR model
requires query modeling due to efficiency reasons since the calculation of the log-
likelihood would require k additions. To reduce the computational cost, which might
be large when k is large, it is supposed that a query is given as input so that the
summation is limited to the TRWs of the query terms.

The estimation of the TRWs is based on the maximum livelihood estimators
(MLEs) of the pjs and qjs. Provided a training subset of documents, the following
Maximum Likelihood Estimators (MLEs) are used:

Opj D rj C 1
2

R C 1
Oqj D nj � rj C 1

2

N � R C 1

where R is the number of relevant documents in the training set, rj � R is the number
of relevant documents indexed by term j, N is the number of documents, and nj is
the number of documents indexed by term j; the constants are commonly utilized to
smooth the estimators.

1.4.1.4 Best Match N. 25

Robertson and Walker (1994) proposed a variation of the TRW which became
one of the most effective weighting schemes. Best Match N. 25 (BM25) basically
multiplies the TRW by a saturation component, thus obtaining the following weight:

wij D TRWjSATURATIONij
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where the first component is the TRW also known as Robertson and Sparck Jones
(1976)’s weighting scheme defined as

TRWj D log
rj C 0:5

R � rj C 0:5
� log

nj � rj C 0:5

N � nj � R C rj C 0:5

The TRW is multiplied by a saturation component

SATURATIONij D .k1 C 1/fij.k3 C 1/gj

.k C fij/.k3 C gj/

of term j in document i. For each document, the saturation component is a
monotonically increasing function of the frequency, fij, of j in i. The shape of this
function is tuned by a number of parameters and variables; k D k1..1 � b/C b li

l /,
l is the average document length, li is the length of document i, b is a parameter
(usually 0:75), k1 and k3 are parameters (usually, 1:2 and something between 7 and
1000, respectively), and gj is the frequency of term j in the query.

1.4.1.5 Relevance Feedback

RF in the relevance model consists of modifying the TRWs. The iterative process of
RF begins with the situation in which no relevance data are available, that is, R D 0.
It follows that at the beginning, ranking is computed by the following function:

g.0/.z/ D
kX

jD1
zjw

.0/
j

where

w.0/j D log
N � nj C 1

2

nj C 1
2

At step t D 1; 2; : : : of RF, the following function is used instead:

g.t/.z/ D
kX

jD1
zjw

.t/
j

where

w.t/j D log Op.t/j C log 1 � Oq.t/j � log Oq.t/j � log 1 � Op.t/j

Op.t/j D r.t/j C a.t/

R.t/ C b.t/
Oq.t/j D nj � r.t/j C c.t/

N � R.t/ C d.t/
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It is usually assumed that

a.t/ D c.t/ D 1

2
b.t/ D d.t/ D 1

but the theory of Bayesian statistics may provide additional hints.

1.4.2 Language Models

This model is named after the fact that it explicitly represents language, while
relevance is not explicitly represented; in the literature, both terms “language
model (LM)” and “language models (LMs)” are utilized depending on whether
one is referring to the class of probabilistic retrieval models sharing the properties
described in this section or to the specific probabilistic space describing how
language can statistically be described. In the following, the term is meant to
indicate the class of probabilistic retrieval models.

According to a LM, there is an author of a document thinking about the queries a
possible end user would formulate to retrieve the document; for example, an author
may write the sentences of the document in a way that they contain the answers to
the users’ questions. In doing that, the author writes the document using queries and
variations of them, although he is assumed to have a good idea of the user’s need.
On the other end, there is a user assumed to have a good idea of what he is searching
for.

So that documents and queries can be matched, the author and the user are
assumed to use an effective language and the same language. Most importantly, it is
also assumed that the documents generated by the authors are relevant to the user’s
information need. The LM is indeed known as a generative model since it describes
how language is generated; in particular, the Language Model (LM) describes how
documents and queries are generated and how a query can be viewed as the outcome
of the generation fueled by a document. Figure 1.21 gives a pictorial description of

Fig. 1.21 Metaphor of the Language Model
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how the LM is used in IR. On the left-hand side of the figure, an author is thinking
about “app search and app search engines” and is writing a document pertinent to
this topic. On the right-hand side of the figure, a user is thinking about his own
information need and formulates a series of queries describing the aspects of the
information need. At the center of the figure, an IR based on the LM matches the
author’s document and the user’s queries and decides whether the document and the
queries derive from the same language. The basic assumption of the LM is that a
document contains information relevant to the user’s information need when it is of
the same language as the user’s queries.

1.4.2.1 Documents and Queries as Languages

Algebraically, the LM consists of symbols, strings of symbols (i.e., n-grams), and
a probability function defined on these strings. Let s be a symbol. A language is
defined as a set of symbols:

fs1; : : : ; sNg

Given a language, an n-gram is a sequence of n symbols drawn from the language
expressed as

s.1/ : : : s.n/ n > 0

When n D 1, the n-gram is called unigram; if n D 2, it is called bigram; if n D 3, it
is called trigram. A language can be viewed as an urn like the one in Fig. 1.22 from
which symbols are drawn to form n-grams. Whenever a document or a query is
formed, a series of symbols are drawn from the urn, and the outcome of this process
is an abstract representation of the document or the query. Probabilistically, an n-
gram is an experimental outcome; for example, suppose L D fs1; s2; s3g and n D 2.
Sampling two symbols with replacement yields the following sampling space (i.e.,
the space of all the possible outcomes):

s1s1; s1s2; s1s3; s2s1; s2s2; s2s3; s3s1; s3s2; s3s3

Fig. 1.22 Language as an urn
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“With replacement” means that using the same symbol in an n-gram is possible;
indeed, natural languages work with replacement. A sampling space contains Nn n-
grams when order matters and contains

�N
n

�
n-grams when order does not matter; the

space is therefore very large, thus explaining the high variety of a natural language
in which the words are symbols, whereas documents and queries are n-grams.

The LM is a language provided with a probability function; for example, the
language in Fig. 1.22 is an instance of the LM where P.sj/ D j=6. In IR, a
language model is often built from a document or a group of documents. Consider
the following document:

upon the bench the goat lives, under the bench the goat dies

After removing stop words and stemming words, the resulting language is

L D fbench; goat; live; dieg

Suppose n D 2; the LM is given by a language and by the probability function

P.s1; s2/ D P.s1js2/P.s2/

where

fs1; s2g 2 ffbench, goatg; fgoat, liveg; flive,benchg; fgoat,diegg

1.4.2.2 Query Language Model

Among the various instances of LM, the Query Language Model (QLM) is the one
mostly used in IR. According to the QLM, documents are samples of a language
and queries are LMs. The IR system designed according to the QLM looks for the
most likely document given a query:

B� D argB max P.B j Q/

where Q is a query event and B is a document event. Documents are ranked by
P.B j Q/. However, Q is not completely known: the language is known but the
probability is unknown. Therefore, the Bayes theorem is applied to obtain

P.B j Q/ D P.Q j B/P.B/

P.Q/

thus swapping the roles played by query and document. Given a query, P.Q/ is
constant and therefore, the ranking of the documents is not affected. P.B/ is assumed
to be either uniform and then not affecting the document ranking or estimated
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by external sources such as PageRank or other query-independent measures of
document qualities. With regard to probability estimation, as Q is regarded as an
n-gram, we have

P.Q j B/ D pB.s.1/ : : : s.n// D pB.s.1//pB.s.2/js.1// � � � pB.s.n/ j s.n�1/ � � � s.1//

1.4.2.3 Mixture and Smoothing

Due to the curse of dimensionality encountered when the relevance model was
described, stochastic independence has to be assumed, thus obtaining

P.QjB/ D pB.s.1// � � � pB.s.n//

where

pB.s.j// D f .s.j/;B/Pn
jD1 f .s.j/;B/

and f .s;B/ is the frequency of s in B. The problem that f might be 0 is solved either
by a mixture as follows:

OpB.s.j// D .1 � �/
f .s.j/;B/Pn

jD1 f .s.j/;B/
C �

f .s.j/;L/Pn
jD1 f .s.j/;L/

(1.3)

or by smoothing as follows:

OpB.s.j// D f .s.j/;B/C aP
w2B f .s.j/;B/C a C b

(1.4)

Mixture and smoothing are depicted in Fig. 1.23; mixture (Fig. 1.23a) consists
of repeatedly sampling from an urn chosen with a given probability, whereas
smoothing (Fig. 1.23b) consists of virtually modifying the urn before sampling.
With mixture, first an urn is drawn with a given probability of the urn, and then
the symbols are drawn from the selected urn. After collecting a sufficiently large
set of outcomes together, a histogram of the frequencies of the symbols can be
drawn. With smoothing, the process is like injecting additional symbols into each
urn to avoid that an urn does not contain a symbol. After injecting these additional
symbols, it is possible to proceed as with a mixture.
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Fig. 1.23 (a) Mixture and (b) smoothing

1.5 Machine Learning

The use of Machine Learning (ML) models in IR may be explained by the difficulty
in designing a single retrieval function that encompasses all the sources of evidence
of a modern system (e.g., a search engine of the WWW or an “intelligent” system
called to solve complex tasks). The difficulty in combining these sources is caused
by the interaction between the user and system and the variety of context. ML
provides an alternative approach to the problem of designing a system (i.e., a
“machine”) that can retrieve and rank documents in the best possible way for each
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Fig. 1.24 Machine Learning as relation between spaces

query, and it gives the methods for learning a system to rank documents starting
from training sets, i.e., from experience.

In ML, the reality of interest is viewed as a relation between points of the
multidimensional real space. ML is concerned with the design and evaluation of
algorithms and data structures for the estimation and prediction of relations between
variables. In particular, ML aims at relating a point of one multidimensional space
that represents the features of objects to a point of another multidimensional space
that represents the patterns of the objects; for example, ML algorithms are designed
to recognize handwritten text or elements depicted in images; to this end, the images
are represented as feature vectors summarizing the properties of the images; a
method (the machine) is then trained on training text manuscripts to relate each
training vector to a label that summarizes a class of images; finally, it is evaluated
on test data prepared to evaluate the effectiveness.

In mathematical terms, a method of ML assigns a point jxi 2 R
d to a point jyi 2

R
h as depicted in Fig. 1.24. The vector jxi is called “feature” (or feature vector) and

jyi is called “pattern.” While the feature vectors are in the multidimensional real
space, the patterns may be qualitative labels (e.g., “high” or “low,” “relevant” or
“irrelevant”) represented by basis vectors jyi 2 R

h. During the training phase, pairs
of feature vectors and patterns .jxi; jyi/ are observed and utilized to train a method;
during the test phase, the trained method separates and assigns new feature vectors
to the patterns with the aim of minimizing the risk of error.

1.5.1 Risk

In ML, we have the problem of finding an algorithm that relates some values (i.e.,
relevance labels or degrees) represented by jyi to some input values (i.e., documents)
represented by jxi. In general, there is a generator G of data jxi 2 R

d (i.e., a
collection of documents) observed from an unknown probability distribution p.x/.
There is also a supervisor S (i.e., a user of an IR system) who returns an output
value represented by the jyis (i.e., an assessment about the relevance of a document)
according to an unknown probability distribution p.yjx/. Therefore, the probability
distribution p.x; y/ D p.yjx/p.x/ is also unknown. There is finally an algorithm
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Fig. 1.25 Machine Learning setting

f .jxi; ˛/ depending on a set of parameters ˛ and capable of associating an input
value jxi to an output value jOyi which is often different from the point jyi that
should be related to. This setting, which is inspired by Vapnik (1999), is depicted in
Fig. 1.25.

In IR, f is indeed the retrieval function used to retrieve and rank documents in
answer to the user’s queries; for example, ˛ represents a query, and an IR system has
to learn ˛ for retrieving and ranking documents to answer the query; alternatively,
˛ may be the parameters of the Best Match N. 25 (BM25) weight function; in the
event of learning to rank (Sect. 1.5.3), f is a method that reranks the documents
retrieved by another retrieval function.

When applied to IR, ML aims at finding the best ˛ where “best” means that a
measure of utility is maximized or a measure of loss is minimized, these measures
being related to the measures of effectiveness (e.g., Mean Average Precision (AP)
(MAP)) utilized in IR. The common measure is based on risk, that is, the expected
loss between the decision f .jxi; ˛/ and the true output value jyi. Suppose loss is
a function L.jyi; f .jxi; ˛// between the relevance label provided by a user and the
label provided by f . Risk (or the risk function) is defined as

R.˛/ D
X

jxi2Rd ;jyi2Rh

L.jyi; f .jxi; ˛//p.x; y/

The Empirical Risk Minimization (ERM) framework is adopted in ML to find the
value of ˛ which minimizes the risk function. The main problem of minimizing R
is that p.x; y/ is unknown. However, a sample or training set

f.jx1i; jy1i/; : : : ; .jxni; jyni/g

is available for estimating p. The ERM framework dictates that when the sample
data are independently and identically distributed (i.i.d.), both R and the empirical
risk function

Rn.˛/ D 1

n

nX
iD1

L.jyii; f .jxii; ˛//
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converge to the same minimum, that is, when ˛n minimizes Rn, it also minimizes R.
Therefore, the empirical risk function can be utilized to find the desired minimum
risk.

1.5.2 Separability

A significant pattern is the class. When the task of ML is classification, the input
points have to be related to classes, and a class is represented by a point jyi. Within
classification, separability plays an important role. Suppose n points (i.e., feature
vectors) are observed and placed in R

d. Some of these points should belong to
one class, whereas the other points should belong to other classes. Therefore, a
method that separates the observed points into classes with the minimum risk of
error is necessary; such a method is often called “classifier” and is mathematically
represented by a subspace of Rd (also known as “iperplane”).

The search for the subspace with the minimum risk of error should deal with two
problems, that is, the points may be so close to each other that classification can be
difficult if not even impossible, and they may also be collocated in a nonlinear way
to make the task of a linear classifier (e.g., an iperplane) impossible. To illustrate
separability and these two problems, consider three situations in which n points can
be placed in R

d. These points may be placed in R along a one-dimensional line
(Fig. 1.26a), they may be placed in R

2 in a bidimensional plane (Fig. 1.26b), or
they may be placed in R

3 in a tridimensional space (Fig. 1.26b). In each space of
dimension d, a subspace of dimension d � 1 can be defined to separate the points
in two subsets; these two subsets correspond to two patterns or to one pattern and
the other patterns. The separating subspace is a point in a line, it is a line in a plane,
or it is a plane in a space. The separating subspace is moved to a position to have
the largest possible number of points of a pattern (e.g., black points) in a subset of
points; for example, the separating point of Fig. 1.26a is placed to have the largest
possible number of points of a pattern on one side and the points of the other pattern
on the other side.

Separability is difficult because the points are very often scattered and the number
of dimensions is often too small. While the various random directions along which
the points are thrown cannot be controlled, the dimensionality of the space in which
the points are placed can be varied. If an additional dimension were available,
the separation of the set of points would be easier; for example, the points in the
bidimensional space of Fig. 1.26b can be projected to the tridimensional space of
Fig. 1.26c to allow us to separate them by a plane. The new dimension is added
by a function  that projects one point of the d-dimensional space to the point
of the d C j-dimensional space. In IR, the addition of a new dimension is often
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Fig. 1.26 Separability of a set of points. (a) Separating point. (b) Separating line. (c) Separating
plane

implemented by the computation of weights; for example, if hxj D .x1; : : : ; xd/ is a
vector of term frequencies in a document x, the additional dimensions may be IDFs,
thus obtaining

 .jxi/ D

0
BBBBBBBBB@

x1
:::

xd

log N
x1
:::

log N
xd

1
CCCCCCCCCA
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Fig. 1.27 Transforming a training set. (a) Not separable points. (b) Separable transformed points

After the transformation made by  , the training set becomes

f. .x1/; y1/; : : : ; . .xn/; yn/g

The function  can also be utilized to better distribute the points in another space
with the same dimensionality; for example, the training set depicted in Fig. 1.27a
can be transformed by the arcsin function which transforms each coordinate in its
arcsin to obtain the training set of Fig. 1.27b, which can be separated by a line more
easily.

1.5.3 Learning to Rank

When applied to IR, the formulation of an ML model is in practice more elaborate.
The basic idea is that an IR system that utilizes an ML model has to learn to rank a
set of m documents to answer a representation of the user’s information need (e.g.,
a query) given as input. The overall framework of learning to rank is depicted in
Fig. 1.28 which is derived from Liu (2011)’s book. Suppose n queries q1; : : : ; qn

are given for training purposes. For each query qi, an IR system retrieves a ranked
list of m.i/ documents. These n ranked lists are used by the ML system to learn the
best parameters and eventually the best function f which is passed to the reranking
system. The patterns represented by the points (vectors) jyi can have different forms
depending on whether f has to relate an input point to a relevance degree, an order
pair, or a ranked list; the details are addressed by Liu (2011).
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Fig. 1.28 Learning-to-rank framework

1.6 Suggested Readings

Mooers (1950) coined the term IR. Some years later, the works by Luhn (1958)
and Luhn (1960) on automatic abstracting were published. Maron and Kuhns
(1960) wrote one of the early papers on probabilistic IR. Later, Cleverdon and
Mills (1963) reported on the experiments on automatic indexing. In the same year,
Salton (1963) wrote a paper describing the statistical methods to measure semantic
relationships between words such as synonymy and polysemy and to build networks
of terms and documents. In 1966, Cleverdon et al. introduced the modern evaluation
methodology based on test collections. Lovins (1968) described one of the early
stemming algorithms, while Salton (1968) published his first textbook.

The use of statistical methods was established in the 1970s. In particular, Sparck
Jones (1971) and Jardine and van Rijsbergen (1971) published the first results on
automatic text classification, while Salton (1971) published the results of the first
IR system based on vector spaces. In the same volume, Rocchio (1971) illustrated
the RF method based on vector spaces. Sparck Jones and van Rijsbergen (1976)
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described the current evaluation methodology. Meanwhile, other textbooks were
published by Salton and McGill (1983), Salton (1989), and van Rijsbergen (1979).

Thanks to the advent of the WWW, up-to-date textbooks were published in the
1990s and 2000s such as the books of Sparck Jones and Willett (1997), Manning and
Schütze (1999), Frakes and Baeza-Yates (1992), Manning et al. (2008), and Croft
et al. (2009) as for the algorithmic and modeling aspects. By contrast, the issues of
user interaction and cognition were addressed by Ingwersen (1992) and Ingwersen
and Järvelin (2005).

Boolean logic was of course introduced by Boole (1854), while one analysis
of this logic in IR was provided by Cooper (1988). Nonclassical variants were
presented in van Rijsbergen (1986), for example. The first elements of what was
later named VSM were reported by Salton (1968) and later in Salton et al. (1975),
while Salton (1979) reported on some mathematical aspects. Wong and Raghavan
(1984) revisited the VSM, while Dubin (2004) revisited Salton’s contribution to the
field.

The basics of classical probability were established by Kolmogorov (1956).
Probabilistic IR was introduced by Maron and Kuhns (1960) and Robertson and
Sparck Jones (1976). The PRP was introduced by Maron and Kuhns (1960) and
further investigated by Robertson (1977). The concept of TRW was addressed by
Croft and Harper (1979), Robertson and Walker (1994), and Sparck Jones and
van Rijsbergen (1976). Cooper (1995) relaxed some constraints on probability
estimation. BM25 was proposed by Robertson and Walker (1994) and was later
explained by Robertson and Zaragoza (2009).

The first approach to probabilistic IR based on LMs was proposed by Ponte
and Croft (1998) and then by Zhai and Lafferty (2001) and Lavrenko and Croft
(2001). Two surveys of this approach to probabilistic IR were published by Croft
and Lafferty (2002), Lafferty and Zhai (2002), and Zhai (2008).

The classical reference of ML is by Vapnik (1999); that book is the condensed
version of the book written by Vapnik in 1998. A survey of the methods to learn a
system to rank documents was written by Liu (2011).



Chapter 2
Elements of Quantum Mechanics

After introducing the basic concepts of information retrieval in Chap. 1, this chapter
briefly explains the main concepts of the quantum mechanical framework. In the
introduction, we already noted that we selected the main concepts that may be
linked to information retrieval. We first introduce observables and superposition;
the former is usually known as random variable, while the latter is unknown in
information retrieval. Probability has been introduced after superposition because
quantum probability can be viewed as a generalization of probability, and this
generalization is due to superposition. Interference and entanglement are two core
concepts of the quantum mechanical framework and do not have any counterpart
in information retrieval. Besides the core concepts of the quantum mechanical
framework, we introduce detection since it is naturally linked to document retrieval
and ranking. Finally, the chapter suggests some further readings.

2.1 Introduction

QM deals with the mathematical description of the motion and interaction of sub-
atomic particles. QM established the impossibility of measuring physical systems
at the microscopic level with arbitrary precision, thus legitimizing the axiom that
physical systems at the microscopic level cannot be precisely and exhaustively
observed using any device and that any observation can always be subjected to a
probability measure of the degree to which the observed value is real. This chapter
briefly explains the main concepts of the quantum mechanical framework. We
selected the concepts of the quantum mechanical framework that may be linked
to IR; an exhaustive survey of the subject would be infeasible since the literature is
immense and covers a very complex network of topics.

A macroscopic object such as a ball obeys the laws of classical physics, that is,
the physics before the advent of QM. In classical physics, the knowledge of the
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current state (e.g., the position) of an object (e.g., a ball) is sufficient to predict the
future state of the object when the object is subjected to forces given that the initial
conditions are perfectly known.

When many copies of the ball are put in an urn, one obtains a more complex
object consisting of the container and of the copies of the ball. The urn still obeys
the laws of physics; these laws are more complex since the urn is more complex than
the individual balls. Although these laws are more complex than those governing an
individual ball, it is still possible to apply the principles of classical physics and
predict the future of the urn.

A macroscopic object such as a ball consists of a huge number of microscopic
objects, i.e., atoms. Nineteenth-century scientists found that the law of physics
applied to macroscopic objects such as balls and skyscrapers could not be applied
to the microscopic world made of atoms and photons. What was found is that the
law of motion, for instance, that characterizes the ball cannot be applied to each
individual atom, nor can these laws be derived from other laws of physics in the
same way as the classical laws can be applied to the urn which contains the balls.

Another discovery stemming from the physics of the last century has been that
the measurement of microscopic objects is far different from the measurement of
macroscopic objects. When measuring the speed of a moving ball, one puts a sensor
at the beginning of a path, puts another sensor at the end of the path, and counts the
number of time units necessary for the ball to move along the path. The apparatus of
measurement consisting of sensors, path, and clock does not disturb the movement
of the ball; actually, the forces, e.g., gravity generated from the apparatus, are not
strong enough to disturb the movement of the ball.

In contrast, when measuring the speed of a moving microscopic object like a
photon, one might put a sensor at the beginning of a path and another sensor at the
end of the path and then count the number of time units necessary for the photon to
move along the path. The apparatus of measurement disturbs the movement of the
photon because the particles of the (macroscopic) measurement apparatus are of the
same kind as the microscopic object, and the energy produced by the sensors is very
strong relative to the energy produced by the moving photon.

Something similar to the measurement of the speed of a photon can be imagined
in the macroscopic world. Consider, for instance, the measurement of the exact
amount of asbestos of a skyscraper. Since searching for every fiber of asbestos would
be very expensive and tedious, a demolition apparatus and a device filtering out
the fibers might be utilized (see also the description of Meglicki (2008)). However,
the demolition of the skyscraper would produce an amount of pulverized debris
which would give us only an approximation of the exact amount of the asbestos
and of other chemical elements in the original building. If the skyscraper could be
replicated in exactly the same way and the demolition could be repeated in exactly
the same way, it would be possible to calculate some distributions of the frequencies
of the measured quantities of asbestos associated with these experiments, and an
expected quantity of asbestos might be estimated. However, the measurement of
other properties would become impossible since the demolition of the skyscraper
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destroys many other properties that would be observable when the skyscraper was
intact, for example, height.

The measurement of microscopic objects is similar to the measurement of the
volume of asbestos in the demolished skyscraper. Even if it were possible, the
repetition of the measurement in exactly the same way would be very difficult and
prone to error. In contrast, the measurement in classical physics does not destroy
the object of measurement, and the uncertainty of measurement is only due to the
possibly large number of objects and to the errors of measurement which can be
bound within predefined limits by repeating the measurement many times.

This is the essence of uncertainty in QM: the empirical evidence that can be
collected to estimate a quantity (e.g., of asbestos) is about one individual (e.g.,
skyscraper) having a particular quantity and not about an ensemble of individuals
having that quantity. As measuring a property would destroy or at least alter the
object under measurement, any other property that interferes (i.e., does not com-
mute) with it could not be measured, and thus counting the number of individuals
having a given quantity is simply not possible or does not make any sense. The
latter consequence is known as incompatibility between two observables that cannot
commute; the measurement of property A interferes with the measurement of
property B, and the outcome of the measurement of B would have been different
were it obtained before the outcome of the measurement of A.

The chapter is organized in the following sections. Section 2.2 is devoted
to observables; this term is rather a noun than an adjective for drawing special
attention to the devices and to the corresponding mathematical objects used to
measure physical systems. Section 2.3 is devoted to a special feature of QM,
i.e., superposition; it refers to the states of a system and to the possibility that
a system can “at the same time” be in many different states; this is one of the
least understood phenomena of physics. Section 2.4 introduces probability in the
quantum mechanical framework; quantum probability departs from the classical
probability because of superposition. Section 2.5 illustrates interference, which
is another consequence of superposition and causes the invalidity of the laws of
classical probability in the quantum mechanical framework. Section 2.6 is devoted
to another mysterious phenomenon studied by QM, i.e., entanglement; it is built
when a pair of photons is generated in a way to constrain the description of one
photon dependently on the description of the other photon. Section 2.7 situates
signal detection in the quantum mechanical framework. Section 2.8 concludes the
chapter with some suggested readings.

2.2 Observables

The real world in which everybody lives can usually be observed, and what can
be known to humans must be observed. Observation produces data, thus providing
a representation of objects such that whatever the object’s size, the degree of
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Fig. 2.1 State vector in the real bidimensional space

precision, and completeness of what we know about the real-world objects can be
basically only given by the observed data.

The data resulting from an observation may be qualitative such as assessments
about size (e.g., the tags “large” or “tall” given to a tree) or ability to support
somebody in performing a task (e.g., the tag “relevant” given to a document when
retrieved to meet an information need). Alternatively, the data used to represent the
real world are quantitative, such as frequency (e.g., the number of occurrences of a
term in a textual document or the number of red pixels in an image document) or
polarization (e.g., the direction of oscillation of light photons).

The data are variables since they vary according to the observed objects; in
statistics, the data observed in the real-world objects are modeled by random
variables since the way the data vary can be described by some random law or
probability measure. How these data vary and how they are correlated provide
information about the real world.

The data observed in the real-world objects are in summary an abstraction of the
objects, and the quantitative nature of the data makes the calculation of further data,
and in this way the extrapolation of further information about the objects, possible.

In classical physics, the set of data collected during the observation of an object
is called “state,” and it is usually represented as a vector; if d distinct data are
observed, the state vector has dimension d. The state vector is defined over the real
field since the physical properties measured in an object need to correspond to the
human perception of these properties; for example, the velocity of a ball is a real
number since it is the ratio between two physical properties (Fig. 2.1).

In QM, the state vector is defined in the complex field because the solution of
the equations that form the models explaining the microscopic world often can only
be found in the complex field. Moreover, a state is not only a vector; it is on the
contrary an operator often represented by a matrix over the complex field and used
to compute probabilities. In QM, the variables used to describe real-world objects
are called observables, thus emphasizing the fact that the information that can be
achieved from a microscopic object can only be the outcome of an observation.
Therefore, a real-world object can be observed using one or more observables. Each
observable produces some data which are collected together with the data produced
by other observables to provide a representation of the object; for example, the
photon of a light beam can be described by an observable that yields the orientation
of the photon with respect to a polarization.
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Fig. 2.2 Coin tossing in the vector space

2.2.1 Vector Space Basis and Projector

In QM, an observable is mathematically represented by the basis of a vector space
over the multidimensional complex field. The dimensionality d of the vector space
is the number of distinct values taken by the observable; for example, the observable
that describes the outcome of coin tossing takes d D 2 values (i.e., head or 1 and tail
or 0) and the vector space, and then the basis is bidimensional. It follows that the
number of basis vectors is the number of distinct values taken by the observable; for
example, coin tossing corresponds to a basis of two vectors as depicted in Fig. 2.2
and formalized as follows:

Outcome Value Ket

head 1 j1i D
�
1

0

�

tail 0 j0i D
�
0

1

�

The second column of the table includes the values taken by a variable used in coin
tossing to represent the possible outcomes. These values are often reused to label
the kets, e.g., j0i, yet other symbols may be used.

Note that the basis vectors of an observable are mutually orthogonal, thus
meaning that the events (e.g., “head” and “tail”) are mutually exclusive; for example,
two orthogonal basis vectors corresponding to two mutually exclusive events may be

j1i D
�
1

0

�
j0i D

�
0

1

�

but the following orthogonal vectors

 
1p
2
1p
2

!  
1p
2

� 1p
2

!

are also representing mutually exclusive events.
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An alternative way to describe observables is using projectors by leveraging
the connections with the Boolean logic introduced in Sect. 1.2. To explain the
relationship between observables and projectors and why projectors may eventually
be preferred to vectors, consider the vector space basis of Fig. 2.2. A basis vector
represents a proposition such as “head,” whereas the other basis vector represents
the opposite proposition such as “tail.”

Given a basis vector, a mathematical function is needed to assign the truth
value to the proposition represented by a basis vector. Consider the event “head”
represented by the monodimensional vector space (i.e., a line) spanned by j1i; this
vector spans all the vectors of this space. This monodimensional vector space and
the corresponding vector j1i answer the question about coin tossing. The same
vector can be used to ask the same question; it is expected that the answer is 1
if and only if a head was observed, 0 otherwise.

The only function that can provide these answers is the inner product since the
basis vectors are unit and mutually orthogonal vectors, that is, h1j1i D 1 and
h1j0i D 0. If a vector were not a unit and on the contrary was cj1i D jci, the
inner product would yield many results such as the number of distinct values of c.

The proposition opposite to “head” is not necessarily represented only by j0i
since h1j0i D h1jc0i D ch1j0i D c0 D 0 for all c. It can instead be represented by
the subspace spanned by j0i, which is indeed the set of vectors cj0i indexed by c,1

or in general, it is represented by the subspace orthogonal to the subspace spanned
by j1i; if the space is bidimensional, the orthogonal subspace is spanned by j0i,
and it is then monodimensional; otherwise, the subspace orthogonal to the subspace
spanned by j1i has d � 1 dimensions.

Therefore, a proposition is represented by a subspace and not by a vector.
Suppose there are three possible observable values, each value corresponding to
a basis vector as follows:

win j2i D
0
@
1

0

0

1
A

tie j1i D
0
@
0

1

0

1
A

loss j0i D
0
@
0

0

1

1
A

The proposition opposite to “win” is of course “tie or loss”; therefore, the subspace
including all the vectors of the matches that ended with ties or losses (i.e., j0i or j1i)

1Recall that j0i ¤ 0 since it is a vector and not a scalar.
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Fig. 2.3 Observable in the tridimensional space

is necessarily based on both j0i and j1i, thus making it a bidimensional space (i.e.,
a plane); indeed, the plane spanned by j0i and j1i is orthogonal to the line spanned
by j2i. The latter fact can be viewed in Fig. 2.3.

If an observable has two values as depicted in Fig. 2.2, there are two projectors
(i.e., two basis vectors) which have to be mutually orthogonal since each observable
value excludes any other value. The projectors can be defined as follows:

j0ih0j D
�
0 0

0 1

�
j1ih1j D

�
1 0

0 0

�

and it can be checked that these projectors are mutually orthogonal, that is,

jiihijjihjj D hijjijiihjj D 0 i ¤ j

since hijji D 0 for all i ¤ j.
Adding j0ih0j and j1ih1j is expressing that the observable has value 0 or value 1,

that is,

1 D j0ih0j C j1ih1j

while

1 � j1ih1j

corresponds to observing all the observable values except 1.
In general, adding projectors corresponds to disjoining propositions as illustrated

in Sect. 1.2; for example, if an observable has three values as depicted in Fig. 2.3,
there are three projectors (i.e., three basis vectors) which have to be mutually
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orthogonal since each observable value excludes any other value. The projectors
can be defined as follows:

j0ih0j D
0
@
0 0 0

0 0 0

0 0 1

1
A j1ih1j D

0
@
0 0 0

0 1 0

0 0 0

1
A j2ih2j D

0
@
1 0 0

0 0 0

0 0 0

1
A

Similarly to the case of two projectors, it can be checked that these projectors are
mutually orthogonal, that is,

jiihijjihjj D hijjijiihjj D 0 i ¤ j i D 0; 1; 2 j D 0; 1; 2

since hijji D 0 for all i ¤ j. Adding j0ih0j and j1ih1j is expressing that the
observable has value 0 or value 1, while

1 � j1ih1j

corresponds to observing 0 or 2.
Projectors are used to check whether the propositions they implement are true

or false. To this end, the product between a projector and a vector that represents
an element is calculated. Consider a projector P and a vector jvi representing
an element which can make the proposition either true or false. The proposition
implemented by P is true if

Pjvi D jvi

that is, if jvi belongs to the subspace represented by the projector; for example,
suppose jvi represents “head,” then we have that

�
1 0

0 0

�
j1i D j1ih1j1i D j1i1 D j1i

�
0 0

0 1

�
j1i D j0i0 D 0

and that

h1j
�
1 0

0 0

�
j1i D 1 h1j

�
0 0

0 1

�
j1i D 0

where 1 means “true” and 0 means “false.” It can be checked that

hvj1jvi D hvjvi D 1 for all jvi

However, note that a vector jui is contained by the plane spanned by j0i and j1i of
Fig. 2.3. It follows that

huj.j0ih0j C j1ih1j/jui D huj0ih0jui C huj1ih1jui D jhuj0ij2 C jhuj1ij2 D 1
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that is, jui makes the proposition represented by 1 true, but it does not make the
individual propositions represented by j0i and j1i true. Therefore, the subspace
spanned by j0i and j1i contains infinitely many more vectors which make the
proposition implemented by the projector true than the individual subspace spanned
by j0i and the individual subspace spanned by j1i. This situation is the same case
observed in Sect. 1.2.4.5 and will be addressed in Sect. 2.2.2.

The extension of the algebraic way based on projectors to represent the events
and propositions defined from one observable to the case of two or more observables
is quite straightforward; however, the pictorial illustration is impossible since the
number of dimensions would be greater than three.

Consider a pair of observables. Suppose that the values of both observables
are f0; 1g. When an observable is considered in combination (or product) with
the other, there are four possibilities: 00, 01, 10, and 11 where the first value
refers to the first observable and the second value refers to the second observable.
When a combination (or product) of three observables is considered, there are eight
possibilities: 000, 001, 010, 011, 100, 101, 110, and 111 where the first value refers
to the first observable, the second value refers to the second observable, and the third
value refers to the third one. In general, the product of n binary observables is an
observable whose values are in a space of dimensionality 2n; when n is quite large,
the string of bits is replaced by the corresponding number expressed in the decimal
base (e.g., 0; 1; 2; 3; 4; 5; 6; 7 when n D 3); for example, if tossing two coins is
considered, the basis vector corresponding to the event that two tails occur is

j00i D

0
BB@

0

0

0

1

1
CCA

This vector is obtained by the tensor product of the basis vectors corresponding
to the single events of each observable; for example, tail is expressed by the basis
vector

j0i D
�
0

1

�

for both coins, and the tensor product of these two basis vectors is

j0i ˝ j0i D
�
0j0i
1j0i

�
D

0
BB@
0

�
0

1

�

1

�
0

1

�

1
CCA D

0
BB@

0 � 0
0 � 1
1 � 0
1 � 1

1
CCA D

0
BB@

0

0

0

1

1
CCA
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Using the tensor product, the basis vectors of the observable values 01; 10; and11
are, respectively,

j01i D

0
BB@

0

0

1

0

1
CCA j10i D

0
BB@

0

1

0

0

1
CCA j11i D

0
BB@

1

0

0

0

1
CCA

Using the products jijihijj, the projectors are

j00ih00j D

0
BB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1
CCA j01ih01j D

0
BB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1
CCA

j10ih10j D

0
BB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1
CCA j11ih11j D

0
BB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCA

It is then possible to compute the projector j1‹ih1‹j of the event that head is tossed
from the first coin independently of the second coin. The first head is tossed when
either it is tossed and the second one is not or it is tossed and the second one is also
tossed. Using projectors, we have that

j1‹ih1‹j D j10ih10j C j11ih11j D

0
BB@

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1
CCA

2.2.2 Incompatibility

Two measurements are compatible when they are able to occur together without
problems nor conflicts. In contrast, two measurements are incompatible when they
cannot occur together without disturbing each other. Incompatibility is difficult to
visualize, but an example from music may help; it is impossible to simultaneously
come to knowledge of the instant of time and of the height of a note. This happens
since the calculation of the height of a note needs the frequency analysis of sound,
and this frequency can be estimated only if the sound is processed for a long enough
time. Therefore, the height of a note results from a time interval which cannot
correspond to a single instant of time.
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In physics, the measurement of a quantity of a microscopic particle (e.g., photon)
may be incompatible with the measurement of another quantity. If the position is
measured first and the quantity of motion2 is measured second, the state of the
particle is different than the state obtained if the quantity of motion is measured
first and the position is measured second. This lack of “commutativity” is called
incompatibility. According to most interpretations of QM, incompatibility is caused
by collapse. After the measurement of an observable, a particle is said to be
collapsed when its state coincides with the observed value of the observable.

In contrast, classical physics lies in a compatible world. Suppose, for example,
the velocity and position of a particle have to be measured; such a particle might
be very large (e.g., the Earth) or very small (e.g., a grain of sand). Whatever the
size, a particle can be idealized as a point in space; for example, although the Earth
is obviously not a point, the size of the Earth can be ignored when calculating the
position and the velocity of the planet around the Sun. Velocity and position are
tied together by a system of equations relating the three spatial coordinates with
time; in particular, velocity is the first derivative of position with respect to the
time, and acceleration is the first derivative of velocity with respect to the time.
These equations are exact in the sense that they provide exact values of velocity and
acceleration provided position and time.

Consider two projectors A and B. When the commutativity between A and
B holds, the observables of these projectors are called compatible. The cases
considered in Sect. 1.2 assumed the commutativity between the projectors and then
the compatibility between the observables; this is the foundation of the Boolean
logic adopted in IR that makes the conjoint observation of, say, relevance and term
occurrence possible.

Incompatibility is a key feature of the logic induced by the quantum mechanical
framework (i.e., the so-called quantum logic), while the classical logic always has
compatible propositions due to the commutativity of the conjunction operator; for
example, when

A D
�
1 0

0 0

�
B D 1

2

�
1 1

1 1

�

compatibility is violated since

AB ¤ BA

This example is depicted in Fig. 2.4, thus showing that the final result depends on
the order of application of the projectors.

2This is the product of the velocity times the mass, and it is called momentum.
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Fig. 2.4 Incompatible projectors in the bidimensional space. (a) jxi is outside both subspaces.
(b) jxi is projected on B. (c) Bjxi is projected on A. (d) jxi is projected on A. (e) Ajxi is projected
on B

Incompatibility causes the violation of the distributive law which is in contrast
validated when the projectors are compatible, that is, when the classical Boolean
logic is used; an example is depicted in Fig. 2.5. The figure shows a tridimensional
vector space spanned by j0i; j1i, and j2i; each of these vectors jji originates a
projector jjihjj and spans a subspace L.j/. In that space, the projector j�0ih�0j
corresponding to the monodimensional subspace L.�0/ is spanned by j�0i, and the
projector j�0ih�0j C j�1ih�1j corresponds to a bidimensional subspace L.�0; �1/
spanned by j�0i and j�1i. Note that the subspace L.�0; �1/ is also spanned by j0i
and j1i, that is,

L.�0; �1/ D L.0; 1/



2.2 Observables 65

Fig. 2.5 Incompatible projectors in the tridimensional space

Following the explanation of Hughes (1989), consider the subspace

L.1/ ^ .L.�0/ _ L.�1//

provided that ^ means “intersection” and _ means “union.” As

L.�0/ _ L.�1/ D L.0; 1/

we have that

L.1/ ^ .L.�0/ _ L.�1// D L.1/ ^ L.0; 1/ D L.1/

However,

.L.1/ ^ L.�1// _ .L.1/ ^ L.�0// D ;

because

L.1/ ^ L.�1/ D ; L.1/ ^ L.�0/ D ;

therefore,

L.1/ D L.1/ ^ .L.�0/ _ L.�1// ¤ .L.1/ ^ L.�0// _ .L.1/ ^ L.�1// D ;

thus meaning that the distributive law does not hold; hence, set operations cannot be
applied to subspaces; the reader may want to look at (van Rijsbergen, 2004, pages
38–39) for a similar example.
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2.3 Superposition

We introduce superposition by resorting to the notion of bit and then to the notion of
qubit, which is the generalization of the bit in the quantum mechanical framework.
Resorting to the qubit can be explained by the fact that it is the simplest form
of quantum mechanical device, it can be directly implemented using atomic or
subatomic particles, and it is essential in quantum computing, the latter being a
“generalization” of computer science, IR included.

2.3.1 Bits

Flip-flop is one of the simplest devices used to implement bits. The description
of the architecture of a flip-flop is outside the scope of this section; however, we
would like to stress one characteristic of a flip-flop: the presence or the absence of
an electric charge on the flip-flop determines the value stored in it. If there is no
electric charge on the flip-flop, the value resulting from reading the device is zero.
If there is an electric charge on the flip-flop, the value resulting from reading the
device is one. This mechanism implies that a flip-flop has to store the value, that is,
to keep the electric charge without destroying it over time or changing it through
reading operations (Meglicki, 2008).

Algebraically, bits can be described by vectors, that is, the state of a bit is a
vector. Recall that “bit” refers to two values at which the device can be found after
a measurement. These two values correspond to two vectors called basis vectors
named as j0i and j1i and expressed as

j1i D
�
1

0

�
j0i D

�
0

1

�

The basis vectors are unit vectors so that

jh0j0ij2 D 1 jh1j1ij2 D 1

Moreover, the basis vectors are mutually orthogonal, that is,

h0j1i D h1j0i D 0

One bit can store one of two possible values, e.g., either 0 or 1 corresponding to two
basis vectors, i.e., j0i and j1i.
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The basis vectors are defined over the complex field; therefore, j0i and j1i are
vectors over the multidimensional complex vector space; for example, the following
two basis vectors can also represent the binary state of a bit since they are unit and
orthogonal vectors:

�p
2

i

� �
i

�p
2

�

When two bits are combined, this pair of bits can store one of four possible
values, e.g., either 00, 01, 10, or 11 corresponding to four basis vectors, i.e., j00i,
j01i, j10i, and j11i, and can be expressed as

j11i D

0
BB@

1

0

0

0

1
CCA j10i D

0
BB@

0

1

0

0

1
CCA j01i D

0
BB@

0

0

1

0

1
CCA j00i D

0
BB@

0

0

0

1

1
CCA

The combination of two bits expressed as four basis vectors can algebraically be
expressed as the tensor product of two basis vectors as follows:

j11i D
�
1

0

�
˝
�
1

0

�
j10i D

�
1

0

�
˝
�
0

1

�
(2.1)

j01i D
�
0

1

�
˝
�
1

0

�
j00i D

�
0

1

�
˝
�
0

1

�
(2.2)

where

jxyi D
�

x1
x2

�
˝
�

y1
y2

�
D

0
BB@

x1

�
y1
y2

�

x2

�
y1
y2

�

1
CCA D

0
BB@

x1y1
x1y2
x2y1
x2y2

1
CCA xi 2 f0; 1g yj 2 f0; 1g

2.3.2 Qubits

Similar to a bit, a qubit is a device which is able to keep two states; indeed, the
affix “bit” of “qubit” refers to the ability of keeping two states, whereas the prefix
“qu” refers to implementing this device according to the laws of QM as depicted in
Fig. 2.6. Unlike a bit (Fig. 2.6a), a qubit can store a myriad of intermediate values
for a while as depicted (Fig. 2.6b). In contrast, a bit is designed not to allow this,
since it is on the contrary designed to store just two values, and no intermediate
values can be stored.



68 2 Elements of Quantum Mechanics

Fig. 2.6 Difference between bit and qubit. (a) Bit. (b) Qubit

The most popular implementation of a qubit is based on atoms. An atom can be
in two mutually exclusive states: either the excited state or the ground state. The
difference between the excited state and the ground state is due to energy. If an
atom is pumped with energy and the atom is in the ground state, it will be raised
to the excited state. Energy is pumped into the atom as photons (i.e., light) through
a laser. When photons hit the atom, some electrons go farther from the nucleus,
thus exciting the atom, that is, the atom absorbs energy. Later, this energy can be
released, thus lowering the atom back down to the ground state. When an atom is
neither in the excited state nor the ground state, it is in a superposed state.

Superposition can be induced by tuning the quantity of energy released from
or pumped into an atom or the polarization of a photon. When an atom is hit
by a moderate quantity of energy, it can be pushed into a superposed state for a
non-negligible time span; a photon may also superposed between its ground state
and its excited state. The state can be determined by waiting to see if it releases
energy or not. If it releases energy, it goes to the ground state and a photon is
emitted. If it does not release any energy, it goes to the excited state (and keeps
the photon). Technically speaking, an atom with altered electrons is called an “ion.”
Ions can be managed by lasers when placed in isolated areas called an “ion trap.”
The phenomenon that energy is pumped and released through lasers hitting atoms
is called “photoelectric effect.”

Although qubits can physically be implemented in different ways (e.g., atoms or
photons), the algebraic definition is common to every implementation of qubits, and
this commonality helps reasoning about qubits without too much worrying about
physical devices and properties.

Algebraically, qubits are described by vectors like bits are, that is, the state of
a qubit is a vector of a multidimensional space. Recall that the affix “bit” of qubit
refers to two values at which the qubit can be found after a measurement. These
two values correspond to two vectors called basis vectors. Since these two values
correspond to the classical bits, these two basis vectors are named as j0i and j1i.

Superposition can be implemented whenever a state of a qubit that is not
necessarily described by a basis vector can be represented as a linear combination
of the basis vectors. A state of a qubit is therefore a vector j�i such that

j�i D ˛0j0i C ˛1j1i
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Fig. 2.7 Qubit as a vector in the real bidimensional space

where

0 � j˛0j2 � 1 0 � j˛1j2 � 1 j˛0j2 C j˛1j2 D 1

Vectors and scalars are defined over the complex field; therefore, the ˛s are
complex scalars, and j0i and j1i are vectors over the multidimensional complex
vector space (Sect. A.4 explains why the complex field is necessary). It follows that
j�i is defined over the complex field. The state j�i is said to be a superposition of
the states j0i and j1i, and the scalars ˛0 and ˛1 are said to be the amplitudes of the
superposition. Figure 2.7 depicts an example of vectorial representation of a qubit
in the real space.

When either j˛0j2 or j˛1j2 is 1, the qubit corresponds to a classical bit; when
j˛0j2 D 1, then j˛1j2 D 0 and j�i D j0i; when j˛0j2 D 0, then j˛1j2 D 1 and
j�i D j1i. It can be shown that the general qubit state vector is normalized.

The normalization of a state vector and of the amplitudes derives from the
assumption that the superposition of a state with itself must result in the same state,
and therefore, the sum of a state vector with itself must correspond to the same state,
that is,

˛0j�i C ˛1j�i D .˛0 C ˛1/j�i

corresponds to the same state described by j�i. Thus, a state is described by the
direction of the state vector, and any length of the state vector or global phase is
irrelevant.

The state of two qubits combined together is the superposition of the four states
corresponding to the combination of two bits. (See Sect. 2.3.1 where the four states
corresponding to the combination of two bits are defined by (2.1).) The state of
two qubits combined together can be generalized to the state of n qubits combined
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together. In this case, the state is the superposition of the 2n states corresponding to
the combination of n bits. Suppose n D 2. The superposition of these basis vectors
is as follows:

j˚i D ˛00j00i C ˛01j01i C ˛10j10i C ˛11j11i

where the ˛s are amplitudes and

0 � j˛ijj2 � 1 j˛00j2 C j˛01j2 C j˛10j2 C j˛11j2 D 1

2.4 Probability

Many IR researchers have faced the problem of defining event sets, estimating
probabilities, and making predictions. For this reason, probability cannot be avoided
in a book about IR. At the same time, probability is a founding topic of QM and
cannot be avoided in this case too. It is therefore a little surprising that a book on
the intersection between these two subjects devotes some pages to how probability
is viewed from within the quantum mechanical framework applied to IR.

In this book, in particular, a special view of probability is introduced. This
view derives from the quantum mechanical framework used in other scientific
domains such as physics. At the level of the Dirac notation, the quantum mechanical
framework may still obey the Kolmogorov axioms obeyed by classical probability,
but the notation helps introduce a nonclassical probability theory when some
features of QM are introduced.

2.4.1 Probability Space

A probability space is given by some observables and by a probability function of
these observables. The probability function assigns a real number between 0 and
1 to each combination of observable values; for example, when an observable can
be defined for the outcomes of drawing a dice, a combination of observable values
contains one value only; when the dice is unbiased, the probability distribution is
uniform as depicted in Fig. 2.8.

When the values of every observable are finite, the combinations of observable
values are finite; for example, in IR, when two observables are defined to measure
term occurrence and relevance, there are four outcomes represented by a pair of
binary digits, the first digit being the outcome of the term occurrence observable
and the second digit being the outcome of the relevance observable as depicted in
Fig. 2.9.



2.4 Probability 71

Fig. 2.8 Drawing a dice

Fig. 2.9 Probability distribution of two observables

The case of observables with two values (e.g., 0 and 1) is very common in IR;
term occurrence and binary relevance are two famous examples: a term either occurs
(B1) or does not (B0) in a document, whereas a document is either relevant (A1) or
not relevant (A0) to an information need. A term occurs in a document with a certain
probability, whereas a document contains information relevant to an information
need with a certain probability. A combination of two observable values i and j
can be assigned a certain probability pij; for example, the probability that a relevant
document contains a term can be assigned to the probability p11.

More elaborate observables can be defined in IR; examples are term frequency
computed at textual passage level, melodic surfaces in music documents, or
pixel colors detected in images. Regardless of the degree of complexity of the
observables, the conceptual structure of a probability space can still be valid.

A probability space can be represented as vectors, matrices, and operators
between them. Consider an observable taking k mutually exclusive values labeled
by the natural numbers 0; 1; : : : ; k � 1; for example, this observable may be the
frequency of a term within a document, the number of documents indexed in a
collection, or the binary outcome of term occurrence when k D 2.

To each observable value, it is possible to correspond a basis vector of the
k-dimensional space. Moreover, when a probability function is provided, each
observable value and then each basis vector correspond to a probability measure
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given by the function, thus obtaining a probability distribution. We have then the
following organization:

Observable values 0 1 � � � i � � � k � 1

Basis vectors

0
BBBBBBBBB@

1

0
:::

0
:::

0

1
CCCCCCCCCA

0
BBBBBBBBB@

0

1
:::

0
:::

0

1
CCCCCCCCCA

� � �

0
BBBBBBBBB@

0

0
:::

1
:::

0

1
CCCCCCCCCA

� � �

0
BBBBBBBBB@

0

0
:::

0
:::

1

1
CCCCCCCCCA

Probability values p0 p1 � � � pi � � � pk�1

2.4.2 Density Matrix

The probability distribution can be arranged along the diagonal of a k-dimensional
matrix called density matrix; the off-diagonal matrix elements are zeros.

0
BBB@

p0 0 � � � 0

0 p1 � � � 0
: : :

0 0 � � � pk�1

1
CCCA

A density matrix is a Hermitian matrix and has trace 1. It is Hermitian because
the conjugate transpose of the matrix is the matrix itself. It has unit trace because
the diagonal elements are probability values of the same distribution and the sum of
the diagonal elements is one.

The density matrix corresponding to a classical probability distribution is always
diagonal and has unit trace because the sum of the diagonal elements is 1; for
example, the matrix corresponding to the probability distribution of two equally
probable events is

�
1
2
0

0 1
2

�

Note, however, we are exemplifying the notion of density matrix using finite
and discrete probability distributions; when infinite or continuous distributions are
considered, the explanation becomes more general and complex, but the meaning
is essentially unaltered. Moreover, note that in QM, “density operator” is often
used instead of “density matrix”; however, in this book, “matrix” is used instead
of “operator.”
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It should be noted that not all the density matrices corresponding to a distribution
need to be diagonal matrices and that the diagonal elements do not necessarily
correspond to probability values, although they do have to sum up to 1; for example,
the density matrix can be

1

2

�
1 1

1 1

�

This means that the space of the density matrices is much larger than the space of the
classical probability distributions. To explain why there are more density matrices
than probability distributions, first the difference between mixed distributions (or
mixtures) and pure distributions needs to be introduced and then the trace rule.

A pure probability distribution is a special case of distribution. A distribution is
pure when the probability is concentrated on a single event which is the certain event
and has probability 1. When a distribution is not pure, it is mixed; for example, the
matrix corresponding to a pure distribution of two mutually exclusive events is

�
1 0

0 0

�

These distributions are named as “pure” to indicate the states of those objects not
(yet) affected by some noise; for example, the initial state of a photon at a given
polarization is pure until noise changes the polarization and the probability that the
photon is at the initial state is no longer 1.

The use of “state” to mean both the particular condition that a qubit is in at a
specific time and at the same time a probability distribution as described in Sect. 2.3
is not accidental. Indeed, the state of a qubit determines the probability that a given
observable yields a certain value. When an atom is in a superposed state, this state
is unknown but can be measured during the time span in which the atom is at a
superposed state, and the probability distribution of the pure states can be estimated.

The density matrix corresponding to a pure distribution is always a projector, that
is, a matrix such that the product by itself is the same matrix; for example, the pure
distribution above is a projector since

�
1 0

0 0

��
1 0

0 0

�
D
�
1 0

0 0

�

This means that the notion of the projector is equivalent to the one of pure
distribution because the former corresponds to an event that is true if and only
if its probability measure is given by the pure distribution. Since a projector can
correspond to one vector, the latter is called state vector.

The equivalence between pure distributions and projectors means that there are
three ways to express a proposition or an event: it is possible to utilize the pure
distribution corresponding to the event such that it is certain that the event occurs,
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to utilize the projector or to utilize the state vector; for example, suppose a photon
is in its initial state x represented by a vector

�
1

0

�

and equivalently by the projector

�
1 0

0 0

�

Note that the vector can be viewed as a state vector (i.e., a pure density matrix)
implementing a probability distribution or as a basis vector (i.e., a projector of an
observable). This projector is also a pure density matrix such that whenever it is
asked whether the photon is in state x, the probability will be 1 if and only if the
state is precisely x. However, when x is represented by

1p
2

�
1

1

�

and equivalently by the projector

1

2

�
1 1

1 1

�

this density matrix will be the same as the projector, and it represents the state in
which the photon is certainly in state x; it is called pure state. When a density is not
pure, it is called mixed and represents a mixed state.

Pure and mixed distributions are related through a mathematical result called
spectral theorem and stated below by Halmos (1987).

Theorem 2.1 (Spectral Theorem) To every Hermitian matrix � on a finite-
dimensional complex, inner product space corresponds real numbers p0, : : :, pk�1
and projectors A0, : : :, Ak�1 so that:

• The pjs are pairwise distinct.
• The Ajs are mutually orthogonal.
•
Pk�1

jD0 Aj D 1.

•
Pk�1

jD0 pjAj D �.

The spectral theorem says that any density matrix corresponding to a distribution
can be decomposed as a linear combination of projectors (i.e., pure distributions)
where the eigenvalues are the probability values associated with the events repre-
sented by the projectors. Therefore, the eigenvalues are real and nonnegative and
sum to 1; for example, when the matrix corresponding to the distribution of two



2.4 Probability 75

equally probable events is considered, the spectral theorem says that

� D
�
1
2
0

0 1
2

�
D 1

2

�
1 0

0 0

�
C 1

2

�
0 0

0 1

�

For this reason, one speaks of mixture or mixed distribution in contrast with pure
distribution—a distribution is pure when the spectral decomposition is the distribu-
tion itself or equivalently when there is a single unit eigenvalue. In contrast, when
the distribution is mixed, the corresponding matrix has two or more eigenvalues
which sum to 1.

The spectral theorem plays an important role in this context since it provides
a probability space starting from a density matrix. That is, the spectral theorem
provides an assignment to the events, which are the eigenvectors or equivalently
the rank-one projectors of a density matrix, of a set of eigenvalues, which are the
corresponding probabilities.

Although in classical probability every pure distribution represented by a diag-
onal density matrix corresponds to a projector, in general, a density matrix is not
necessarily diagonal, yet it is necessarily Hermitian (i.e., symmetric in the real field);
for example, consider the following density matrix:

1

2

�
1 1

1 1

�

It can be noted that this is a projector and has trace 1. Indeed

1

2

�
1 1

1 1

�
D 1

2

�
1 1

1 1

�
1

2

�
1 1

1 1

�

Since it is a projector, it corresponds to a pure distribution. However, it is not
diagonal. Since this projector corresponds to a pure distribution, there is a certain
event (with probability 1) and an impossible event (with probability 0, of course)
corresponding to the distribution. What is the representation of these two events?
Spectral theorem provides the answer. The two events are, respectively, represented
by the projectors

1

2

�
1 1

1 1

�
1

2

�
1 �1

�1 1

�

with eigenvalues 1 and 0, respectively, or equivalently by the basis vectors

1p
2

�
1

1

�
1p
2

�
1

�1
�
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This means that the first projector (i.e., basis vector) represents the certain event and
the latter the impossible event in that probability space. It follows that the density
matrix is

1

2

�
1 1

1 1

�
D 1 � 1

2

�
1 1

1 1

�
C 0 � 1

2

�
1 �1

�1 1

�

Although the spectral theorem provides a decomposition of a mixed distribution in
a linear combination of pure distributions weighted by probabilities, this decompo-
sition is not necessarily unique; for example,

�
3
4
0

0 1
4

�
D 3

4

�
1 0

0 0

�
C 1

4

�
0 0

0 1

�
D 1

4

�
3
2

p
3p

3 1
2

�
C 1

4

�
3
2

�p
3

�p
3 1

2

�

The presence of two types of distribution (i.e., mixed and pure) is due to the presence
of two types of uncertainty. One uncertainty is due to the composition of an urn of
elements (e.g., balls) in terms of some observables (e.g., the composition of an urn
containing red balls and non-red balls); it follows that it is uncertain that an element
drawn from the urn has a certain property (e.g., a ball is red) since the urn contains
elements with different values of the observable.

Another uncertainty is due to the superposition, which was illustrated in Sect. 2.3,
of the state describing each single element of the urn (e.g., the superposition of 0
and 1 in qubits); it follows that it is uncertain that an element drawn from the urn has
a certain property (e.g., a ball is red) since the element “contains” different values
of the observable.

While urn composition is the unique cause of uncertainty of classical probability,
superposition is the other cause of uncertainty in quantum probability. Therefore, an
urn may only contain balls (even only one) in a certain superposed state and then be
described by a pure distribution, but the observation of color may still be uncertain.

The mathematical description of superposition may further explain the difference
between pure distributions and mixed distributions. Consider an imaginary urn of
balls. Each ball may be either red or not red. If the urn is filled with colored balls, a
red ball can be drawn with a certain probability a2. This experiment can be modeled
by a mixed distribution:

a2
�
1 0

0 0

�
C .1 � a2/

�
0 0

0 1

�
(2.3)

where the projectors represent the events “red ball” and “not-red ball,” respectively.
Such an urn is also called “ensemble” in QM.

Alternatively, the urn may be filled with uncolored balls which become colored
only when drawn from the urn. Each ball is then in a superposed state

j�i D a

�
1

0

�
C

p
1 � a2

�
0

1

�
(2.4)
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and becomes red with probability a2. Therefore, there are two ways to be red: (i) a
ball is (already) red when it is put into the urn and is still red when it is drawn or (ii)
the ball is uncolored when it remains in the urn, and it becomes red when color is
measured (i.e., the ball is drawn).

An ensemble (i.e., an urn) of uncolored balls can thus be prepared, but “redness”
is a property “generated” when it is measured. Since the balls are uncolored, they
may acquire a color other than red or not red if this color (e.g., black) is measured,
but “blackness” is represented by another pair of projectors in the way described by
the example of nonunique decomposition. Suppose a ball can be in state (2.4) with
probability 1

2
and in state

j�0i D a

�
1

0

�
�

p
1 � a2

�
0

1

�

with probability 1
2
; note that these two state vectors represent two mutually exclusive

events. The mixed distribution resulting from them is

1

2

 
a2 a

p
1 � a2

a
p
1 � a2 1 � a2

!
C 1

2

 
a2 �a

p
1 � a2

�a
p
1 � a2 1 � a2

!
D
�

a2 0

0 1 � a2

�

which is the mixed distribution when the balls are already red or not before
measurement.

The basic difference between the notion of pure distribution and the notion of
mixed distribution is that a pure distribution models the uncertainty of an individual
element of a set, whereas a mixed distribution models the uncertainty of the whole
set, that is, it models the frequency of the values of an observable when it is
measured in the elements of the set. In contrast, when an individual element is
measured, the uncertainty of the measurement of an observable in the element can
be modeled by a pure distribution, which is referred to the element and not to the set.

Mixed and pure distributions can be combined in one single state. Suppose an urn
of uncolored balls is prepared. The balls can be prepared in two different superposed
states, say, j�1i and j�2i. A mixture of balls is then present in the urn and can be
represented by the following mixed density matrix:

q1j�1ih�1j C q2j�2ih�2j

where qi is the probability that a ball is in state j�ii. Consider the observable of a
color (e.g., red) of a ball represented by the projectors (2.3). The probability that a
ball drawn from the urn is red is then

q1jh1j�1ij2 C q2jh1j�2ij2
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If the urn is filled with some uncolored balls in state j�i and some red balls in state
j1i, the uncertainty of drawing a red ball can be represented by the following mixed
density matrix:

q1j�ih�j C q2j1ih1j

The extension of the algebraic form to the case of a bidimensional probabilistic
space (d D 2) is quite straightforward. In general, any pair of event sets can be
considered; an event is an observable value or a given combination of observable
values. Suppose that both event sets are written using f0; 1g. When an event is
observed from each set, there are four possibilities: 00, 01, 10, and 11 where the
first bit refers to the first event set and the second bit refers to the second event set.

In general, the product of d binary sets is an event set of size 2d. Hence, the
probability distribution has four values p00; p01; p10; and p11 which can be arranged
along the diagonal of a density matrix (0 elsewhere) such that pij is the probability
that the outcome from the first event set is i and that from the second event set is j.
Consider, for example, two terms such that either they co-occur or do not with equal
probability. The matrix corresponding to this distribution is

1

2

0
BB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1
CCA (2.5)

where the top-left element, p00 D 1
2
, is the probability that neither term occurs

and the bottom-right element, p11 D 1
2
, is the probability that both terms occur.

In general, any pair of events can have the probability distribution arranged along
the diagonal of (2.5); other examples of pairs of events are term occurrence and
relevance, aboutness and relevance, and document retention and term occurrence.

The marginal distributions can be computed using the usual rules, that is,

f0 D p00 C p01 f1 D p10 C p11

g0 D p00 C p10 g1 D p01 C p11

where f is the marginal distribution of the first event set and g is the marginal
distribution of the second event set. Both marginal distributions can be arranged
along a diagonal density matrix as follows:

�
f0 0
0 f1

� �
g0 0
0 g1

�
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Suppose that the distribution of the product of two event sets is uncorrelated (i.e.,
the events are independent). It follows that

pij D figj i; j D 0; 1

A distribution p is uncorrelated when it can be written as a tensor product of f
and g. If f and g can be written as diagonal matrices, the tensor product is

0
BB@

p00 0 0 0

0 p01 0 0

0 0 p10 0

0 0 0 p11

1
CCA D

�
f0 0
0 f1

�
˝
�

g0 0
0 g1

�

A correlated distribution cannot be written as a tensor product, that is, the
event sets are not independent; for example, . 1

2
; 0; 0; 1

2
/ is correlated; indeed, both

marginals are . 1
2
; 1
2
/, and one can see that their tensor product is

1

2

�
1 0

0 1

�
˝ 1

2

�
1 0

0 1

�
D 1

4

0
BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA ¤ 1

2

0
BB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1
CCA

A pure distribution is uncorrelated. Indeed, there exists only one pair i; j such
that pij D 1. It follows that fi D 1 and gj D 1 which are the only values such that
pij D figj for every i; j. This can be seen using tensor products, for example:

0
BB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCA D

�
1 0
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2.4.3 Trace Rule

It may have been noted that the basis vectors of an observable have length 1. This
constraint is required due to the way the probability of an event is computed. When
using this algebraic form to represent probability spaces, the function for computing
a probability is the trace of the matrix obtained by multiplying the density matrix
with the projector corresponding to the event. The usual notation for the probability
of the event represented by projector A when the distribution is represented by
density matrix � is

tr.�A/
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For example, when

� D 1

2

�
1 0

0 1

�
and A D

�
1 0

0 0

�

the probability of the event represented by A is

tr.�A/ D tr

��
1
2
0

0 1
2

��
1 0

0 0

��
D tr

�
1
2
0

0 0

�
D 1

2

When A D jxihxj is a projector, the trace-based probability function can be
written as

tr.�A/ D hxj�jxi

When � is a projector jyihyj, then

tr.�A/ D jhxjyij2 (2.6)

where hxjyi is called probability amplitude or amplitude in short; an explanation of
why amplitudes are squared instead of, say, cubed or raised to an arbitrary power
will be given in Sect. A.2; Fig. 2.10 depicts the (simple) case of (2.6) in the real
space where the amplitude is just a coordinate in a vector space.

In general, an amplitude is a complex number, whereas the squared modulus of
the amplitude is a real number, the latter being a necessary condition that the trace
rule yields probabilities.

Using the spectral theorem, it is possible to express the probability of the event
(or observable value) represented by a projector A as a function of a given density
matrix. Suppose � is a density matrix. According to the spectral theorem, we have
that

� D p0A0 C � � � C pk�1Ak�1

Fig. 2.10 Trace rule
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Suppose A D jxihxj is a projector that represents an observable value. The
probability of this event is provided by the trace rule

tr.�A/

As the trace is a linear function, we have that

tr.�A/ D tr..p0A0 C � � � pk�1Ak�1/A/

D tr.p0A0A C � � � pk�1Ak�1A/

D tr.p0A0A/C � � � tr.pk�1Ak�1A/

D p0tr.A0A/C � � � pk�1tr.Ak�1A/

D p0tr.jy0ihy0jxihxj/C � � � pk�1tr.jyk�1ihyk�1jxijxi/
D p0hxjy0ihxjy0i C � � � pk�1hxjyk�1ihxjyk�1i/
D p0jhy0jxij2 C � � � C pk�1jhyk�1jxij2

The last line tells us that the probability of the event represented by the projector A
is a linear combination of probabilities expressed as

pjjhyjjxij2 j D 0; : : : ; k � 1

where pj is the probability of the event represented by Aj and jhyjjxij2 is the
probability of the event represented by A conditioned to the event represented by
the pure distribution (or projector) Aj.

This is the reason why a density matrix is called state. The density matrix of a
pure distribution is the state of the object on which observables are applied; when
an object is a given state, its pure distribution is given by a density matrix which is
also a projector, i.e., the projector of the event that the object is in that state. When
the distribution is pure, the state is pure too. In general, the state of an object is not
pure; it is represented by a density matrix which is a mixture of pure distributions
weighted by p0; : : : ; pk�1.

The expression tr.�A/ of the probability of the event represented by A when the
object is in the state given by the density matrix � in terms of the weighted sum of
probabilities, that is,

p0jhy0jxij2 C � � � pk�1jhyk�1jxij2

is based on the square rule, that is, the rule for which the probability that x is
observed when the state is y is jhyjxij2. The square rule is a specific case of the
trace rule; the former holds for general density matrices and the latter holds when
the density matrix corresponds to a state vector; see also Sect. A.2.
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2.5 Interference

The best way to introduce interference is to refer to the lectures of Feynman et al.
(1965) who explain this concept by blending mathematical abstraction and physical
implementation without exceeding in either of these two extremes.

2.5.1 Double-Slit Experiment

Feynman et al. (1965) introduced an example which is currently the most used
example in the relevant literature; this example is based on a system composed of
three main components (Fig. 2.11a), that is, a source of particles (e.g., electrons)
and a wall with two slits placed between the source and a shield equipped with a
series of detectors of particles.

The source emits particles which are supposed to travel in the space from the
source toward the wall. When a particle arrives at the wall, it might pass or not pass
through a slit in the wall; the slits are supposed to be small enough to allow only
one single particle to pass through the slit at a time. Although not all the particles
sent from the source pass through a slit in the wall, the number of particles passed
through a slit will be high enough to calculate a distribution of the frequencies of

Fig. 2.11 Double-slit experiment
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the particles arriving at the detector; if a large number of particles are sent to the
wall, the number of particles that pass through a slit in the wall is not negligible.

It is common to suppose that the source that emits the particles is a sort of gun
firing particles in all directions. When the particles are emitted in all directions,
they can arrive at a slit from a variety of directions which are therefore not all
perpendicular to the slit. In this situation, the particles that pass through a slit can
take any possible direction which are not all perpendicular to the slit. Moreover, the
particles that do not pass exactly through the center of a slit may touch an edge of the
slit and change their own direction toward a point of the detector not perpendicular
to the center of the slit.

The shield can be equipped with a series of detectors of particles which can
count the particles arriving from a slit. In the shield, there are some detectors in
front of and close to the slits, and there are some other detectors far from the slit;
the detectors can be uniformly distributed in the shield, that is, they can be placed
at an equal distance from each other.

Suppose one slit is closed and the other is open. Experiments have shown that the
distribution of the frequencies of the particles arriving at the shield and counted by
the detectors of the shield are bell shaped because the detector placed in front of the
slit counts most of the particles passing through the slit, the detectors closest to the
detector placed in front of the slit count many other particles, and the frequency of
particles counted decreases the further the detectors that counted them are far from
the detector placed in front of the slit (Fig. 2.11b).

When the slit that is currently open is closed and the closed slit is opened, the
distribution of frequency of the particles arriving at the shield and counted by the
detectors of the shield is again bell shaped, but the curve will be translated to the
open slit (Fig. 2.11c).

It is possible to give the algebraic description of the events just described and of
the related probabilities of the system consisting of the source of particles, the wall,
and the shield. Suppose s is the state of the particle when leaving the source, s1 is
the state of the particle when it is passing through slit 1, and s2 is the state of the
particle when it is passing through slit 2.

In QM, states and events are described by vectors defined over the complex field.
Suppose d is the event that a detector detects (and counts) a particle passing through
an open slit. The inner product between a state vector and a vector of an event yields
a complex number which is a probability amplitude; for example, when the state is
s1, the probability amplitude of the event that a particle is detected by d is hdjs1i.

In QM, the probability that a particle is detected by d when the state is s1 is the
squared probability amplitude, that is,

P.a particle is detected by d when the state is s1/ D jhdjs1ij2

This probability can be estimated using the classical rules of statistics, that is, the
empirical probability that a particle is detected by d when the state is s1 can be
estimated by the relative frequency of the number of particles detected by d which
passed through s1.
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Suppose the slits are continuously opened and closed in such a way that when
a slit is open, the other is closed. We can easily imagine a device which opens and
closes the slits at regular time intervals while guaranteeing the mutual exclusiveness
of the opening. If this device operates for a long enough time, the fraction of instants
a slit is open is about 1

2
, which is also the probability that a slit is open. When this

device is in operation and the source is emitting the particles as if it were a gun
shooting in all directions, the particles can pass through the open slit and cannot of
course pass through the closed slit. In this situation, the probability that a particle
is detected by d is simply the weighted sum of the probability that the particle is
detected by d when s1 is open and of the probability that the particle is detected by
d when s2 is open; the weights of this sum are given by the fraction of instants a slit
is open. We can therefore write that

P.a particle is detected by d/ D 1

2
jhdjs1ij2 C 1

2
jhdjs2ij2 (2.7)

Note that the formulation given by (2.7) implies that the state that a particle has
passed through a slit sj can be represented by the pure density matrix jsjihsjj, thus
stating that (2.7) can be written as

1

2
tr.js1ihs1jdihdj/C 1

2
tr.js2ihs2jdihdj/

where jdihdj is the projector of the event observed.
This result is nothing but the consequence of the distributive law applied to the

event d when the states s1 and s2 are viewed as events. When observing the event d,
one is detecting a particle under the condition that either slit 1 or slit 2 is open, that
is, one is evaluating the event d. This event can be intersected with the event that is
always true, i.e., the event that a slit is open; indeed, the device that is opening and
closing the slits guarantees that a slit is always open. It follows that we can write

d D d ^ .s1 _ s2/

where s1 _ s2 is always true although only, and because certainly, one slit is open.
The distributive law applied to d allows us to “distribute” d across the events written
between the parentheses and to obtain

d D .d ^ s1/ _ .d ^ s2/ (2.8)

As we have assumed that either s1 or s2 is open and that both slits cannot
simultaneously open, that is, s1 and s2 are mutually exclusive events, the particle
detected by d arrived either from s1 or s2. Therefore, it is possible to calculate the
probability that a particle is detected by d as follows:

P.a particle is detected by d/ D P.d ^ s1/C P.d ^ s2/ (2.9)
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Fig. 2.12 Mixed distribution of the double-slit experiment

The probabilities on the right-hand side of the latter expression can be written using
the Bayes postulate to obtain

P.a particle is detected by d/ D P.djs1/P.s1/C P.djs2/P.s2/

As we have stated that P.s1/ D P.s2/ D 1
2

provided the mode of operation of
the device controlling the slits, the latter expression becomes (2.7) since P.djs1/ D
jhdjs1ij2 and P.djs2/ D jhdjs2ij2. If the distribution of the frequencies of the particle
were calculated, something like the plot in Fig. 2.12 would be observed.

2.5.2 Interference Term

So far we have assumed that either s1 or s2 is open and that both slits cannot
simultaneously be open. This assumption implies that the particle that is detected
by d arrived either from s1 or s2. The question is, what happens when both slits
are simultaneously open? Intuition suggests that a particle that is detected by d still
arrives from either s1 or s2 since it is unnatural that a particle passes through bits
s1 and s2 at the same time. If this intuition were correct and is supported by the
experiments, the distributive law should still be applied, (2.7) would still be valid,
and the plot in Fig. 2.12 would be observed.

However, experiments showed that this is not the case and that (2.7) is on the
contrary invalid; in contrast, the probability that a particle is detected by d when
both slits are open is described by another law, and a pattern like the plot in Fig. 2.13
will be observed.

In QM, the event that a particle is detected by d when both slits are open is still
described by the projector jdihdj as it is done when either s1 or s2 is open, but the
state vector jsi is a superposition of the state vectors js1i and js2i, that is, the state
that both slits are open translates into a superposition of states.
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Fig. 2.13 Superposed distribution of the double-slit experiment

To understand how this superposition can be built, it is necessary to introduce the
notation of the path along which a particle travels from the source through the slits
and to the detectors. To this end, consider for a while the path described by (2.8)
and measured by (2.9). When a particle can reach a detector by two possible slits,
the total probability for this process is the sum of the probabilities for the two paths
considered separately; this is a consequence of the mutual exclusiveness of the paths
passing through the slits.

Consider the quantum mechanical framework instead. In this framework, we
have to reason using probability amplitudes and not probabilities. When a particle
can reach a detector by two possible slits, the total probability amplitude for this
process is the sum of the probability amplitudes for the two paths considered
separately, that is,

hdjsi D hdjsthrough slit 1i C hdjsthrough slit 2i

Consider the first term on the right-hand side. This term is the amplitude of the
path traveled by a particle leaving the source, passing through slit s1, and arriving
at the detector d. When a particle goes by some particular path, the probability
amplitude of that path can be written as the product between the probability
amplitude of going from the beginning of the path up to a given point and the
probability amplitude of going from that point to the end of the path. If that point
is slit s1, we have that the probability amplitude of the path from the source to the
detector can be written as the product of the probability amplitude of going from the
source to s1 and of the probability amplitude of going from s1 to the detector:

hdjsthrough slit 1i D hdjs1ihs1jsi

Using the same reasoning for the path passing through the other slit, we have that

hdjsthrough slit 2i D hdjs2ihs2jsi
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Note the similarity with the classical probability rule chain, that is,

P.djstart from s through slit i/ D P.djsi/P.sijs/

The probability amplitude of the path traveled by a particle leaving the source,
passing through slit 1, and arriving at the detector d is therefore

hdjsi D hdjs1ihs1jsi C hdjs2ihs2jsi

The passage from probability amplitude to probability is dictated by the trace rule.
According to this rule, the probability of the path traveled by a particle leaving the
source, passing through slit 1, and arriving at the detector d is

jhdjsij2

that is,

jhdjs1ihs1jsi C hdjs2ihs2jsij2

The latter is the squared modulus of a complex number resulting from the sum of
two complex numbers. It is known that if z is a complex number, then jzj2 D zz�.
Moreover, if z1; z2 are two complex numbers, then

jz1 C z2j2 D .z1 C z2/.z1 C z2/
�

D .z1 C z2/.z
�
1 C z�

2 /

D z1z
�
1 C z1z

�
2 C z2z

�
1 C z2z

�
2

D jz1j2 C 2jz1jjz2j C jz2j2

Let

z1 D hdjs1ihs1jsi z2 D hdjs2ihs2jsi

We have that

jz1j2 D jhdjs1ij2jhs1jsij2

and

jz2j2 D jhdjs2ij2jhs2jsij2

It follows that

jhdjsij2 D ja1j2jhdjs1ij2 C ja2j2jhdjs2ij2 C I (2.10)
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where

a1 D hs1jsi a2 D hs2jsi

are amplitudes and

I D 2jhdjs1ihs1jsihsjs2ihs2jdij cos�

where � is the angle of the complex number hdjs1ihs1jsihsjs2ihs2jdi. Equation (2.10)
shows that jsi is indeed a superposition of two state vectors js1i and js2i, i.e., a sum
of two vectors weighted by two probability amplitudes, that is,

jsi D a1js1i C a2js2i

where a1 D hs1jsi and a2 D hs2jsi.
An immediate consequence of the fact that the probability amplitude that a

particle is detected by d when the state is s becomes the sum of two probability
amplitudes is the inapplicability of the distributive law to the events described by
js1i, js2i, and jdi. More precisely, the vector jdi can still be distributed in the sum of
js1i C js2i, but this distribution of probability amplitudes does not correspond to a
distribution of probabilities. The inapplicability of the distributive law is one of the
most striking facts of QM.

I is called interference term, and it is not only an algebraic accident; it is
a necessary component of the probabilistic model describing the distribution of
frequency of the particles detected by the detectors of the shield when both slits
are open.

In other words, the experiments confirmed that (2.10) is indeed the probability
that a particle is detected by d when both slits are open. To understand why this
term describes a sort of interference, consider the expression of I. This is a product
of probability amplitudes. A product of probability amplitudes is used to give the
probability amplitude of the path traveled by a particle which in this case goes from
s to d. Consider the center of the expression of I. From s, a particle travels to slit
1 and to slit 2. The meaning of the product hsjs1i of jsi by hs1j and of the product
hsjs2i between jsi and hs2j is indeed the fact that the particle goes to both slits as if
it were traveling two paths at the same time. The remainder of the expression of I,
which ends in jdi, is still based on the simultaneity of the trajectories of the particle.
The cosine of the angle � ranges from �1 to C1, and therefore, I ranges from �2 to
C2. Therefore, jhdjsij2 might be less or greater than ja1j2jhdjs1ij2 C ja2j2jhdjs2ij2,
and I gives the sinusoidal shape to the plot in Fig. 2.13.
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2.6 Entanglement

Entanglement refers to the state of a pair of particles (e.g., photons) twisted together
in such a way that the value of an observable of a particle is at every instant of
time equal to the value of the observable of the other particle; for example, the
polarization of a particle is always equal to the polarization of the other particle
when the polarization changes; a full account is reported by Zeilinger (2010).

2.6.1 Alice and Bob

Alice and Bob are two imaginary characters. They have been often utilized to
introduce entanglement in the textbooks about QM. Their names were chosen
because the initials are, respectively, A and B, the latter being the labels used to
name variables; actually, other characters such as Charlie and Eve enter into play
when other variables are needed to describe other mechanisms of QM. Alice and
Bob live in two distant places; actually, the distance between them is not really
crucial from a narrative point of view; however, it will be important when explaining
the strangeness of entanglement.

Somebody else prepares a sequence of pairs of photons in a special way using a
generator of pairs of entangled photons, and for each pair of photons, it sends one
photon of the pair to Alice and the other photon of the pair to Bob. The state of each
pair of photons is entangled in the sense that both photons have the same oscillation,
e.g., either they have an “up” orientation or they have a “down” orientation.

Then, Alice receives one photon of the pair and Bob receives the other photon;
since we need to name the photons, let �A be the photon received by Alice and �B be
the photon received by Bob. Alice and Bob cannot exchange any information when
they will be called to operate on the photons which have been given to each of them.
Therefore, the two characters operate in an isolated environment, and the only tie
between them is constituted by the entanglement of the photons.

Finally, Alice and Bob are provided with one Polarizing Beam Splitter (PBS)
each; they use their own splitter to measure the photon sent to them. Before
performing the measurement, they set the PBS to an oscillation so that the splitter
can measure the oscillation and output one orientation; for example, the splitter is
set to measure the vertical oscillation and output either “up” (i.e., C1) or “down”
(i.e., �1).

If Alice measures the vertical oscillation of �A and obtains C1, then the state
of the photon becomes “up,” and the state of Bob’s photon is also “up” since the
photons are entangled. So the state of the pair of photons will be “up-up.” If Bob
measures his photon, he will observe “up.” In a similar way, if Alice measures
“down,” Bob will measure the same. When measuring in the vertical oscillation,
Alice and Bob will always observe the same outcomes.
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Alice and Bob are located in distant places and cannot communicate. Moreover,
the outcome of the measurement of one photon of a pair is random; indeed, Alice
sees a random sequence of �1s and C1s, and Bob sees the same; however, he cannot
know in advance the outcome observed by Alice. Therefore, the only explanation
of the perfect agreement between the two measurements can be entanglement.
Nevertheless, entanglement is a characteristic of the photons and not of the observed
oscillations. The fact that the photons are entangled does not imply that they are also
interacting, that is, that they are acting between them exchanging information or that
the PBSs are operating by exchanging input and output.

The experiments performed with entangled photons also showed other interesting
statistical outcomes. When Alice and Bob prepare their PBSs at different settings,
the distribution of the frequencies of the outcome follows a certain probability
function which depends on the difference between the settings. When Alice prepares
her PBS to measure vertical oscillation and Bob prepares his PBS to measure an
oblique oscillation such that the difference between the oscillations is 30ı, the
proportion of pairs of photons such that the outcomes of the measurements coincide
is about 75%, and the proportion of pairs of photons such that the outcomes of
the measurements do not coincide is about 25%. When the difference between the
oscillations is 60ı, the proportion of pairs of photons such that the outcomes of the
measurements coincide is about 25%, and the proportion of pairs of photons such
that the outcomes of the measurements do not coincide is about 75%. In general,
when the difference is �ı, the proportion of pairs of photons such that the outcomes
of the measurements coincide is about cos2 � � 100%, and the proportion of pairs
of photons such that the outcomes of the measurements do not coincide is about
1 � cos2 � � 100%.

2.6.2 Local Hidden Variables and Bell’s Inequality

The question is why we should be certain that neither photons nor PBSs interact.
The answer has been provided by different experiments which placed the photons at
large distances between them and prepared the PBSs in a way that the measurement
of a property (e.g., oscillation) took place at the same instant. The difference
between the instants was so small, and the distance was so large that the speed
which would have been needed to transmit some information from a photon or PBS
to another photon or PBS should have been greater than the speed of light, the latter
being an impossible condition.

The only possibility that the photons can exchange information might be the
presence of local-hidden variables of the photons other than those measured by the
PBSs in the photons themselves. These variables would be “onboard” on photons
and would instruct the PBSs to output the same outcome whenever they measure the
same oscillation in both photons. These variables are labeled as “local and hidden”
since they cannot be directly observed (i.e., they are hidden) and they are internal
(i.e., local) to each of the photons and do not depend on measurements performed
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by faraway devices; they act as the genetic attributes inherited by twins who may
manifest the same characteristics over time. Although the local-hidden variables
cannot be observed, they might actually exist and determine what the PBSs outputs.
Therefore, the random sequence of orientations observed by Alice and Bob might
be caused by the random behavior of the local-hidden variables.

However, it is not possible to construct a theory based on local-hidden variables
that agrees with the experimental results. Bell (1964) explained that any theory
based on local-hidden variables must produce experimental results which satisfy
a statistical inequality called Bell’s inequality. When the experimental results
observed in entangled photos are used to estimate the quantities involved in
Bell’s inequality, the latter is violated, thus concluding that a theory based on
local-hidden variables is incompatible with entanglement. Then, Bell proved that
the experimental results based on the measurements of photon oscillations are
incompatible with a theory based on local-hidden variables when performed on
entangled photons.

2.7 Detection

Detection consists of identifying the information concealed in the data transmitted
by the source placed on one side to the detector placed on the other side. The
key problem of detection is that the data transmitted through a channel are only
an approximation of the “true” information that one side wants to transmit; for
example, in IR, the information that is relevant to the user’s information need is
transmitted by a system to the user by means of a document which is only an
approximation of the information fulfilling the user’s need.

The standard configuration of a communication system consists of a source, a
channel, and a detector as depicted in Fig. 2.14. The source emits digital signals a
(“true” information) chosen from a fixed alphabet; for example, the alphabet can
be binary, and the signal emitted is either 0 or 1. The signals are sent to a receiver
through a channel, and the receiver measures the symbol x which may differ from
the original signal a because of noise or distortion.

In quantum detection, there is a coder between the source and the channel as
depicted in Fig. 2.15. The coder encodes the signal into a particle and assigns to
the particle a pure state �; the particle is thus described by its pure state vector j�i.
As each signal of a fixed finite alphabet is assigned a prior probability of emission

Fig. 2.14 Standard communication system
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Fig. 2.15 Quantum communication system

Fig. 2.16 Detection as a decision problem

Fig. 2.17 Two symbols sent through a quantum channel

and the coder does not intervene on the source, each pure state has its own prior
probability equal to the prior probability of the signal.

Once the particle is received on the other side, the receiver performs a mea-
surement on the particle transmitted through the channel. This measurement is
accomplished by an observable which usually yields as many values as the number
of distinct pure states; for example, if there are two possible pure states, the detector
may detect two values. However, in general, the number of values may be different
than the number of pure states; for example, there might be two pure states and four
observable values.

The values observed can serve to decide about the original signal and then about
the pure state of the signal given by the coder. The decision taken depends on the
region of values to which an observed value belongs. If the observed value x belongs
to a certain region of acceptance, the overall system decides that the original signal
was, say, a0; otherwise, it was a1 as depicted in Fig. 2.16; for example, if x D 0 is
detected, the system decides a0; otherwise, it decides a1.

2.7.1 Detection, Projectors, and Probability

Algebraically, the setting above can be described using state vectors, density
matrices, and projectors. It is known that the pure state of a signal can be represented
as a state vector which belongs to a vector basis together with the other basis vectors
corresponding to the possible signals and pure states. Suppose the alphabet is binary
and consists of only two signals. These signals are assigned to the pure state vectors
j�0i and j�1i as depicted in Fig. 2.17. Using the trace rule to compute probabilities,
it is possible to compute the probability that the detector receives a symbol given a
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Fig. 2.18 Communication channel with probabilities

state, that is,

P.x is received when the state is �j/ D jhxj�jij2

where jxi is the basis vector of the symbol x measured by the detector. Figure 2.18
depicts the network of signals, probabilities, and symbols of the channel where the
qis are the prior probability that ai is sent by the source.

The construction of the observable used to detect the state of the particle sent
through the channel is a crucial step since the correctness of the decision and
the related probability of error of decision depend on the effectiveness of the
observable values in supporting the decision. As an observable consists of values,
it is necessary to define the values to be observed. The decision about the state of
the particle consists of partitioning the set of observable values so that each part
of this set corresponds to a state. Once the set of observable values is partitioned,
the probability that a state is decided when a given state was originally set and the
particle has been sent can be computed as follows:

p.�ij�j/ D P.the final decision is �i when the original state is �j/

For example, in the event of a set of binary observable values and of two pure states,
the value x D 0 may correspond to �0 and the value x D 1 may correspond to �1;
in the event of a set of four observable values, the values x 2 f0; 1g may correspond
to �0 and the value x 2 f2; 3g may correspond to �1 as depicted in Fig. 2.19. The
channel is associated with a probability network measuring the degree to which
the signals are observed; when measuring the channel, a symbol x 2 f0; 1; 2; 3g
is observed and used to decide whether the symbol emitted was a0 or a1; to this
end, the set of observable values is split in two distinct regions; one region f0; 1g is
associated with a0, and the other region f2; 3g is associated with a1 as depicted in
Fig. 2.19.

The final decision �i passes through the observed values x which are in turn
generated in a given state �j with the probability jhxj�jij2. Suppose Ai is the region
of observable values leading to decide for �i. When the set of observable values is
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Fig. 2.19 Communication channel with probabilities and decision

finite and discrete, we have that

p.�ij�j/ D P.x 2 Ai when the original state is �j/ D
X
x2Ai

jhxj�jij2

As each x corresponds to a basis vector jxi and then to a projector jxihxj mutually
orthogonal to the other projectors of the observable values, it is possible to write as
follows:

X
x2Ai

jhxj�jij2 D
X
x2Ai

tr.jxihxj�jih�jj/

D tr

0
@
0
@X

x2Ai

jxihxj
1
A j�jih�jj

1
A

D tr.Aij�jih�jj/

where

Ai D
X
x2Ai

jxihxj

is the projector of the event x 2 Ai. In general, the pure state vectors can equivalently
be written using the density matrices

�0 D j�0ih�0j �1 D j�1ih�1j

When the states are density matrices which might be mixed, we have that

p.�ij�j/ D tr.Ai�j/
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The probability of a correct decision is then obtained when �i D �j and weighting
the original states by the prior probabilities qis as follows:

Qd D
X

i

qitr.Ai�i/

where the sum is computed over all the states and
P

i qi D 1. The probability of
error is defined as

Qe D 1 � Qd

When there are two states, p.�1j�1/ is called probability of detection, and p.�1j�0/
is called probability of false alarm or fallout.

2.7.2 Optimal Detection

The general problem of detection is to define the subsets of observable values
corresponding to the states in which the signal can be sent through the channel and
to minimize the probability of error or maximize the probability of correct decision.
In particular, given two states �0 and �1, the problem is to define one subset of
observable values corresponding to, say, �1; the other subset of observable values is
the complement; these subsets are often called “regions,” the subset corresponding
to �1 is called “region of acceptance,” and the subset corresponding to �0 is called
“region of rejection.”

Using an algebraic description, the problem is to define the projectors of a vector
space corresponding to the states. As the subset of observable values form a partition
of the set of values, the collection of projectors form a resolution to unity of the
vector space; for example, if two subsets of observable values have to be defined,
two projectors Q0 and Q1 such that

Q0 C Q1 D 1 Q0Q1 D 0

have to be defined for �0 and �1, respectively. Suppose the states are represented by
two density matrices �0 and �1, respectively. The probability of correct decision is

Qd D q0tr.Q0�0/C q1tr.Q1�1/

D q0tr..1 � Q1/�0/C q1tr.Q1�1/

D q0tr.1�0 � Q1�0/C q1tr.Q1�1/

D q0.tr.1�0/� tr.Q1�0//C q1tr.Q1�1/

D q0tr.1�0/ � q0tr.Q1�0/C q1tr.Q1�1/
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D q0tr.�0/� q0tr.Q1�0/C q1tr.Q1�1/

D q0 � q0tr.Q1�0/C q1tr.Q1�1/

D q0 C tr..q1�1 � q0�0/Q1/

Using the same procedure, it is found that

Qe D 1 � Qd

It follows that the projectors being sought have to solve the following maximization
problem:

max
Q1

tr..q1�1 � q0�0/Q1/

To this end, consider the SVD of q1�1 � q0�0, that is,

q1�1 � q0�0 D
X

k

�kj�kih�kj

where the �ks are the eigenvalues associated with the eigenvectors j�ki, and consider
the probability of a correct decision expressed using the eigenvectors and the
eigenvalues found by this decomposition:

Qd D q0 C tr..q1�1 � q0�0/Q1/

D q0 C tr

 X
k

�kj�kih�kjQ1

!

D q0 C
X

k

tr.�kj�kih�kjQ1/

D q0 C
X

k

�ktr.j�kih�kjQ1/

D q0 C
X

k

�kh�kjQ1j�ki (2.11)

The crucial argument to find the optimal projectors that are the solution to this
maximization problem is that

0 � h�kjQ1j�ki � 1 for all k
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since the eigenvectors are unit vectors and Q1 is Hermitian and with trace 1. Under
these constraints, the maximum of (2.11) is obtained when

�k > 0 h�kjQ1j�ki D 1

The second term of the maximizing argument is obtained if and only if

Q1 D j�kih�kj

It follows that the solution to the maximization problem is

Q1 D
X
�k>0

j�kih�kj

When the latter equality holds, we have that

Qd D q0 C
X
�k>0

�k

2.7.3 Detection of Pure States

Consider two states described by two pure state vectors j�0i and j�1i. It follows that

�0 D j�0ih�0j �1 D j�1ih�1j

It can be shown that the optimal projectors are the eigenvectors �0 and �1 of

q1�1 � q0�0 (2.12)

and that the probabilities of correct decision and of error are

Qd D 1

2

	
1C

p
1 � 4q0q1jh�0j�1ij2



Qe D 1

2

	
1 �

p
1 � 4q0q1jh�0j�1ij2




where j	 j2 D jh�0j�1ij2 is a measure of the distance between the pure state vectors;
as for the details, see Helstrom (1976) and Cariolaro (2015).

The optimal projectors are what a detector has to observe in a particle in order
to maximize the probability of correct decision. The optimal projectors are different
from the pure state vectors; they are indeed a combination. Indeed, it can be shown
that the optimal eigenvectors j�0i and j�1i are a linear combination of j�0i and j�1i.
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Fig. 2.20 Geometry of decision and eigenvectors. (a) Non-eigenvectors are mutually orthogonal
but asymmetrically placed around j�0i and j�1i. (b) The eigenvectors are mutually orthogonal and
symmetrically placed around j�0i and j�1i

If the pure state vectors represent the superposition state of a qubit, the optimal
eigenvectors represent how a device should be set in order to optimally detect the
state of the qubits; for example, if the pure state vectors represent a polarized
direction (e.g., vertical), the optimal eigenvectors represent how a PBS has to be
angled, the angle being that between the eigenvectors and the state vectors.

As a result, using j�0i and j�1i is like “cutting” the space of observable values in
an “oblique” way to the way in which the space is cut by using classical observable
vectors like j0i and j1i. The probability of detection and the probability of false
alarm are given by the angle between the pure state vectors j�0i; j�1i and by the
angles between the eigenvectors and j�0i; j�1i. Therefore, jh�0j�1ij2 determines
the geometry of the decision between the two states. Figure 2.20a illustrates the
geometric interpretation. If one looks for the eigenvectors, one can see that

� D


2

� 	

2

so that the eigenvectors are “symmetrically” located around the state vectors. The
replacement of �0 and �1 with � yields the minimal probability of error.

To obtain this minimum, a detection device should be set as follows. The region
of acceptance is defined, assuming that the density matrices are mixed. Defining the
region of acceptance means that the knob of the detection device is set to a value of
x, say, 1, as depicted in Fig. 2.21a; if the device measures 1, it decides a1; otherwise,
it decides a0. Then, the angles are calculated and the knob is rotated by the angle
between j1i and j�1i as depicted in Fig. 2.21b; if the device measures �1, it decides
a1; otherwise, it decides a0.
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Fig. 2.21 Optimal detection and knob rotation

2.8 Suggested Readings

Kumar (2008) wrote an introduction to the history of QM; another historical
introduction was written by Renn (2006).3 Zeilinger (2010) is an enlightening
introduction to superposition, interference, and entanglement. Another book of
the same kind was published by Lederman and Hill (2011) as an introduction to
quantum physics. Nielsen and Chuang (2000) is one of the most exhaustive books of
quantum computing, while Rieffel and Polak (2011) provides a clean mathematical
explanation.

The book written by Hughes (1989) and the first part of the book of Griffiths
(2002) give an exhaustive illustration of QM where the notion of observable is
specifically addressed together with the issues of incompatibility. The latter was
addressed by van Rijsbergen (2004) by an example of incompatibility between
relevance and aboutness. Peres (2002) is an introduction to quantum physics.

The first introduction to superposition was provided by Dirac (1935) who
also introduced the bra(c)ket or Dirac notation. Albert (1994) is another clear
introduction to superposition and other concepts of QM. Jauch (1968) provides a
perspective from the logic’s point of view. Qubits are, for example, explained by
Mermin (2007), Nielsen and Chuang (2000), and Yanofsky and Mannucci (2008),
while Aaronson (2013) provides, among other things, the intuition based on the
additional dimension for explaining the need of complex numbers. Meglicki (2008)
illustrates a concrete description of qubit and quantum gate implementation, which

3I read the translation in Italian.
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is also described by Yanofsky and Mannucci (2008) for computer scientists; the
latter also gives an explanation of the Bloch sphere.

A full account of Gleason (1957)’s theorem is provided by Hughes (1989), while
its importance in IR was pointed out by van Rijsbergen (2004). Wootters (1981)
introduced the statistical distance as the reason that the squared cosine of angle
is the probability function of a Bernoulli trial and has inspired the explanation
of the square rule or in general the trace rule. The reason that transformations
of probability are linear has been inspired by Hardy (2001). The proof of the
no-cloning theorem is provided by Rieffel and Polak (2011). The illustration of
conditional probability in the quantum mechanical framework and an explanation of
why the trace rule is the rule for computing probabilities are derived from Aaronson
(2013)’s book, which is also worth reading for an unconventional view of QM.

Interference and the double-slit experiment were illustrated by Feynman et al.
(1965); many other authors explain these concepts such as Hughes (1989). Accardi
(1984) and Accardi (1997) suggested some complementary considerations on
the validity of Feynman’s explanations of the “strange” probability distributions.
Another illustration was given by Fine (1973).

Entanglement has been illustrated by, for example, Zeilinger (2010) who gives
a detailed account of the experiments permitting to observe entanglement and by
Nielsen and Chuang (2000) and Rieffel and Polak (2011) who give a mathematical
and computational account of this phenomenon and explain how Bell’s inequality
can be obtained and the conditions in which it might be violated. The complete
description of the Bell inequalities was provided by Bell (1964, 1987) by replying
to the comments by Einstein et al. (1935). Other inequalities were proposed and
investigated by Accardi and Fedullo (1982) as for the role played by the Hilbert
spaces and by Pitowsky (1989) with an emphasis on logic and statistics.

The main source for quantum detection theory was written by Helstrom (1976).
Cariolaro (2015) is a beautiful book on quantum communications from a signal
and communication theory perspective; it provides a clear introduction to QM and
other related topics. An illustration of the statistical science behind detection and
in general quantum statistics was provided by Barndorff-Nielsen et al. (2003) and
Malley and Hornstein (1993).



Chapter 3
Quantum Mechanics and Information Retrieval

The first two chapters have introduced the elements of IR and QM with the aim of
describing the notions intersected by both disciplines. In this chapter, we describe
how this intersection has been implemented. We selected and presented in no
predefined order the most significant contributions to the implementation of this
intersection; some contributions appear to be less mature than others; however, we
decided to include them since they are sources of future work. Other contributions
might appear less “quantum inspired” than others; however, each research work
contains concepts and tools that are somehow linked to the quantum mechanical
framework illustrated in the book. In the end, the contributions reported in this
chapter cover a wide range of issues, from modeling issues to user interaction issues.
The chapter ends with suggestions of further reading.

3.1 Introduction

The implementation of the intersection between QM and IR illustrated in this
chapter has been based on the connections between the mathematical framework
used both in QM and IR; a glaring example of these connections is given by
the connection between VSM and the Hilbert spaces where the former can be
viewed as a simple application of the latter. This implementation allowed the
researchers in IR to adopt powerful means of expression and generalization of
their models in an attempt to achieve better retrieval performance. Moreover, the
connections between the mathematical framework used both in QM and IR aimed at
investigating the existence of quantum phenomena (e.g., superposition, interference,
entanglement) which may be at the basis of the problems addressed in IR, such as
the difficulty caused by incompatibility in capturing relevance through the aboutness
of a document given a query.

© Springer-Verlag Berlin Heidelberg 2015
M. Melucci, Introduction to Information Retrieval and Quantum Mechanics,
The Information Retrieval Series 35, DOI 10.1007/978-3-662-48313-8_3
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This chapter illustrates different implementations of the intersection between QM
and IR. These implementations have been illustrated in this chapter in no preferred
order if not the chronological order suggested by the relevant literature published
since the first decade of this century. This chapter is organized in the following
sections. Section 3.2 briefly presents the motivations and the applications of the
use of the formalism of the quantum mechanical framework in IR. Section 3.3
concentrates on kinds which are the logical construct used for introducing a
logic following quantum principles. Section 3.4 reviews some contributions to the
research in concept combination based on superposition and entanglement. Sec-
tion 3.5 describes the research on word disambiguation and vector negation which
are based on the theory of vector spaces. Section 3.6 reviews some contributions to
the research on semantic spaces based on entanglement. Section 3.7 describes how
context can be modeled using the theory of vector spaces. Section 3.8 illustrates a
PRP based on the idea that documents are not inspected by the user one at a time, but
that the user can find himself in a superposition state. Section 3.9 briefly describes
how implicit feedback, polyrepresentation, and information need representation
were addressed using the quantum mechanical framework. Section 3.10 describes
an application of quantum detection to IR and in particular how an alternative PRP
can be defined. Section 3.11 reports on some experimental investigations. Finally,
Sect. 3.12 concludes with some suggestions for further reading.

3.2 Quantum Formalism

The book The Geometry of IR (GIR) by van Rijsbergen (2004) was the first
contribution to the intersection between IR and QM. The main aim of the book
was to give insights into how probability, logic, and vector spaces can be combined
into the formalism of QM. This combination was driven by the need to describe in
a formal way how users interact with a system. The need of a formal way can be
explained by two main yet related motivations, that is, that without a formal way, the
derivation of methods computable by systems is impossible or at least very difficult
and it is also impossible or at least very difficult to make predictions about the
systems. The author of GIR paralleled von Neumann (1955) who described quantum
physics using the mathematical concepts of logics, geometry, and probability in a
consistent way but without an explicit reference to the physical world to which QM
was referred by physicists. The connection between the GIR and the theoretical
approach to QM of von Neumann was not only at the descriptive level though.
This connection was also motivated by the analogy between what happens when
subatomic particles are observed and what happens when a user interacts with a
document. When a user interacts with a document, she is ignoring that the document
has been indexed and that a document representation has been stored by the system.
From this point of view, a document might not have any representation implemented
within the indexes of a system.
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Fig. 3.1 Term occurrence, observables, and vector space basis

3.2.1 Observables and Projectors

Section 2.2 introduces the dimensionality d of the vector space as the number of
distinct values taken by the observable; for example, the observable that describes
the relevance of the information contained in a document with respect to an
information need often takes d D 2 values (i.e., relevant or 1 and nonrelevant
or 0) and the vector space, and then the basis is bidimensional. It follows that
term occurrence corresponds to a basis of two vectors as depicted in Fig. 3.1 and
formalized as follows:

Observable outcome Value Ket

term occurs 1 j1i D
�
1

0

�

term does not occur 0 j0i D
�
0

1

�

The second column of the table includes the values taken by a variable used in IR
to represent term occurrence. Other labels would be used to define other events; for
example, the basis vector denoting the event that positive numbers are observed can
be written as jCi, whereas the one denoting the event that negative numbers are
observed can be written as j�i.

Note that the basis vectors of this observable are mutually orthogonal, thus
meaning that the events (e.g., “term occurs” and “term does not occur”) are mutually
exclusive; for example, two orthogonal basis vectors corresponding to two mutually
exclusive events may be

j1i D
�
1

0

�
j0i D

�
0

1

�

and they can exist in the same vector space of

jCi D
 

1p
2
1p
2

!
j�i D

 
1p
2

� 1p
2

!
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The extension to two or more dimensions follows the route followed in Sect. 2.2.
Consider, for example, the following pairs of observables: the occurrence of two
terms, term occurrence and relevance, aboutness and relevance, and document
retention and term occurrence. If the occurrence of two terms is considered, the
basis vector corresponding to the event that neither term occurs is

j00i D

0
BB@

0

0

0

1

1
CCA

This vector is obtained by the tensor product of

j0i D
�
0

1

�

for both observables.

3.2.2 Indexing and Retrieval as Measurement

Following the quantum mechanical framework, describing document indexing and
retrieval in terms of measurement is possible, that is, the representation of the
document is the result of the measurement performed when the user is interacting
with the document. Along such a parallel, what is observed during the interaction
between the user and the document is the outcome of a measurement, and it is
considered as a representation of the document; for example, the click-through
data that result from the interaction between the user and a search engine result
page (serp) may be viewed as the outcome of a measurement, and it is considered as
a representation of the document; these data may be the click itself, the portion of
serp looked at by the user’s eyes, and the portion of page on which the user clicked;
in other words, it is not necessarily the bag of words extracted for representing the
document informative content.

Moreover, the document that is subjected to the interaction with the user can sim-
ply be represented as a vector or more precisely by a state vector; it is labeled “state”
because it is representing the state of the object (e.g., the document) subjected to
measurement. However, a state vector is more than a simple vector: it is indeed a
“container” of all the possible outcomes of all the possible measurements. This is to
say that whatever the measurement is, there exists one state vector which provides
the distribution of probability of the outcomes of every possible measurement. In
IR terms, whatever the query or any other interaction with the document is, there
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exists one state vector which provides the distribution of probability of relevance,
aboutness, or any other measurement. Therefore, the distribution of probability of,
say, relevance of a document is not provided by an index but by the state vector of
the document.

3.2.3 State Vector and Vector Space Model

A state vector is not exactly a vector of the VSM. In the VSM, a document is a
vector because it is a linear combination of basis vectors which correspond to the
index terms (see Sect. 1.3). As the index terms are finite, the dimensionality of the
vector space is finite. Moreover, there is no notion of distribution of probability in
the VSM. Finally, the vectors of the VSM are defined over the real field. In contrast,
the state vector that represents a document in the GIR is not necessarily a linear
combination of other vectors corresponding to something else. A state vector may
lie in an infinite vector space since it is “only” an abstract mathematical object.
Moreover, a state vector induces a number of distributions of probability stemming
from a number of possible measurements to which the document may be subjected.
Finally, the state vector of QM is defined over the complex field; the reasons are not
only confined to the will of enlarging the representational power of the state vector
or to examples such as the TFIDF weighting scheme, which is composed of two
real numbers as a complex number is. The complex field is necessary because the
quantum mechanical framework requires the use of the complex field for finding the
solutions to the mathematical problems of the framework as explained in Sect. A.4.

A state vector is an abstract mathematical object defined over an infinite space,
thus meaning that it incorporates infinite outcomes of a measurement. This infinite-
ness may not be realistic in IR where measurements are usually finite (e.g., term
frequency or relevance). However, there is another infiniteness which is significant
to the purposes of using a state vector to represent a document. A state vector can
simultaneously be the linear combination of infinite possible measurements in the
same way a vector can simultaneously be the linear combination of infinite possible
bases, the latter being a fact of linear algebra stating that a vector can be expressed in
many different ways by using different bases and different coordinates; for example:

1p
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�
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where (3.1) may refer to the occurrence of a query term and (3.2) may refer to
relevance. In particular, the basis vectors

�
1

0

� �
0

1

�

implement the observable of query term occurrence, and the basis vectors

 
1p
2
1p
2

!  
1p
2

� 1p
2

!

implement the observable of relevance. Both (3.1) and (3.2) define a subspace of the
vector space spanned by the document state vector. Therefore, the subspace spanned
by a basis vector is contained by the subspace spanned by the document state vector,
but the subspace spanned by basis vector of (3.1) is not contained by any subspace
spanned by the basis vectors of (3.2).

As a state vector is in general defined over the complex field, the coordinates of
(3.1) and (3.2) may in general be complex, thus distinguishing the notion of state
vector from the notion of document vector of the VSM. These coordinates are the
result of the projection of state vector on the subspace spanned by the respective
basis vector, but the result of a projection is not necessarily measuring a size, and
then it is not a real number. The trace rule, which becomes the square rule when
only vectors are used, dictates that the modulus of a coordinate is between 0 and 1,
and the squared modulus is the probability that the measurement of an observable
(e.g., query term occurrence) on the document state vector yields true, that is, the
probability that the query term occurs in the document represented by the state
vector.

3.2.4 Probability, Logic and Geometry

Suppose that the projectors

�
1 0

0 0

� �
0 0

0 1

�

represent the answers to a two-valued question such as “does a query term occur?”.
The geometry of the space is exploited for calculating the probability of a particular
answer. The document state vector has to be projected orthogonally down onto the
subspace of the answer (i.e., the subspace spanned by the projector of the answer),
and the size of that projection has to be measured using the trace rule for obtaining
the probability. Probability measures have to sum to 1 since the subspaces are
mutually orthogonal. As the projectors of the answers are one dimensional, they



3.2 Quantum Formalism 107

Fig. 3.2 Pythagoras’ theorem

span a ray, and therefore, they correspond to a vector (i.e., the vector which spans
the ray). As these projectors are mutually orthogonal, the corresponding vectors are
mutually orthogonal too. It follows that the square rule corresponds to Pythagoras’
theorem as depicted in Fig. 3.2. In this way, the geometry of the space provides
the rules for calculating the probabilities, thus establishing the connection between
geometry and probability. The reasons that the square rule and in general the trace
rule are used for calculating the probability of a particular answer are illustrated in
Sect. A.2.

3.2.5 Gleason’s Theorem

The use of subspaces, trace rule, and operators on projectors is however insufficient
for explaining why they are different sides of the same coin. Thus, the question is
therefore how to connect geometry (subspaces), probability (trace rule), and logic
(projectors) in a way that they have to “live” together. van Rijsbergen (2004) refers
to the answer contained in the Gleason theorem which states that if we have an
observable, the possible answers represented as projectors, and the probabilities of
these answers provided by some external sources, then the density matrix resulting
from the linear combination of these projectors is the one that can reproduce these
probabilities (see also Sect. A.2). This theorem is a sort of “comfort theorem”
ensuring that if a state assigns to some projectors the corresponding probability
values, then we can represent those values through an algebraic calculation, i.e., the
trace rule applied on the density matrix given by the theorem.

The Gleason theorem integrates three main modeling approaches in IR (i.e.,
Boolean, vector space, and probabilistic) within a common framework provided by
the theory of complex vector spaces and the probability theory thereof as depicted
in Fig. 3.3.

The Boolean modeling refers to the use of the set theory and classical logic to
represent how the informative content of documents is represented and how a system
decides whether to retrieve a document for answering a user’s query (Sect. 1.2).
The basic idea of the Boolean modeling is that a term (e.g., a keyword) is a set
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Fig. 3.3 Gleason’s theorem in Information Retrieval

Fig. 3.4 Boolean lattice

of documents (i.e., the documents indexed by that term) and that a query is a
proposition which is either true or false according to the document to which the
query is applied. The subsets of documents induced by a vocabulary of terms can be
organized through inclusion relationships in order to create a conceptual structure
called Boolean lattice; an example is depicted in Fig. 3.4 where each node of the
lattice corresponds to a subset and each oriented edge corresponds to an inclusion
relationship (e.g., f1; 3g is a subset of f1; 2; 3g and f1; 3; 4g). Each subset of the
lattice is a one-to-one correspondence with a projector and therefore a subspace of a
complex vector space; for example, the subset of documents indexed by keyword 1
but not by keyword 2 can correspond to the basis vector j10i and then to the rank-one
projector j10ih10j. These projectors are those mentioned in the Gleason theorem.

The VSM provides that the terms of a document collection are represented by
basis vectors, documents are represented as vectors, and queries are represented as
state vectors. An IR system decides whether to retrieve a document according to
the value of the inner product between a query vector and the document vector (see
also Sect. 1.3). When both vectors are unit vectors (i.e., they have length or norm
1), the inner product can become a special case of the trace rule; for example, a
query y may be represented by jyi, a document x may be represented by jxi such
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that jhyjyij2 D jhxjxij2 D 1, and a system can rank the documents by jhyjxij2. It
follows that the inner product used in the VSM is a special case of the trace rule, a
query vector is a special case of state, and a document is an example of projector
mentioned in the Gleason theorem.

Probabilistic modeling can fit in the Gleason theorem because it is based on
events and probability measures where the events can be represented by projectors
and the probability values assigned to the projectors come from the probability
function used in the given probabilistic model; for example, the probability values
are provided by the Bernoullian function of the BIR model and are assigned to the
projectors corresponding to the string of binary digits representing term occurrence;
the Gleason theorem assures that the probability function of the BIR model is a state
and that this state can only be implemented as a density matrix.

3.2.6 Incompatibility and Relevance

Incompatibility arises when two observables cannot be simultaneously measured;
otherwise, the outcome of one observable would disturb the other observable which
could not be measured with arbitrary precision. The notion of incompatibility can
hardly be translated into an IR situation; for example, when measuring the relevance
of a document, the mind of a user should be viewed as a particle able to store the
state resulting from the assessment of the relevance of two documents as depicted
in Fig. 3.5. At the beginning, a user is presented with two documents A and B
and is asked to assess the relevance of A. After this assessment, the user stores
the assessment in his mind as in Fig. 3.5a. He is then presented with document B
and asked to assess the relevance of B. The informative content of B can however

Fig. 3.5 Incompatibility of the measurement of relevance
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influence the assessment of the relevance of A stored in the user’s mind, thus
changing the latter as depicted in Fig. 3.5c; indeed, the content of B might be
more authoritative than the content of A, and the user might prefer B and no longer
prefer A when, for example, he has time enough to read one document only. If the
user is again presented with A, he may change or confirm the assessment of the
relevance of A, but the assessment of the relevance of B might be disturbed as in
Fig. 3.5d. However, incompatible observables are not the only means to represent
the dependency between two document relevant assessments. Using conditional
probability is another means: suppose A is relevant, i.e., P.A is relevant/ D 1;
suppose B is also relevant; it follows that P.A is relevantjB is relevant/ may be
different from P.A is relevant/.

The difference between incompatibility and conditionality is that the former
operates on observables, whereas the latter operates on probability, that is, incom-
patibility changes the range of observable values, whereas conditionality changes
the probability of observable values that cannot change. Suppose, for example,
a document is a priori relevant with a certain probability. After observing an
index term in the document, the probability of relevance of the document can a
posteriori be changed by the likelihood and Bayes’ rule. Although the distribution
of probability has changed, the observable values are the same. In contrast, suppose
the observation of the index term changes the value of the “relevance” observable
and moves the state of the document to a superposition state corresponding to a
relevance degree not previously observed. The probability of the latter relevance
degree can only be computed by the rules of the quantum mechanical framework,
and not only the distribution of probability has changed, the range of observable
values has also changed.

van Rijsbergen (2004) illustrated an example of incompatibility between two
observables using relevance and aboutness, the latter often being considered distinct
from the former since relevance refers to a user’s information need, whereas
aboutness refers to a topic. Aboutness answers the question “is this document about
this topic?”, whereas relevance answers the question “is this document relevant
for this information need?”. He assumes an incompatibility between relevance and
aboutness such that when relevance is observed and a relevance value (e.g., “this
document is relevant”) is obtained, the outcome of the measurement of aboutness
is inevitably imprecise, and this outcome might be different from the outcome that
would be observed if aboutness were measured before measuring relevance.

It should be noted that the decision of representing the conjoint measurement of
two observables using operators acting on vector spaces derives from the assumption
that incompatibility is actually observed in the physical world and that it can be
modeled using vector spaces. Indeed, if incompatibility were not observed, the
conjoint measurement of two observables could be represented by a collection of
four projectors defined in the quadridimensional space as explained in Sect. 2.2. It
is the occurrence of incompatibility that induces the definition of two appropriate
noncommutative operators and of an appropriate state vector. This is to say that the
algebra of projectors and density matrix is only a language for describing what is
observed in the real world, and it is not the real world.



3.2 Quantum Formalism 111

3.2.7 Entanglement and Correlation

In Sect. 2.4, it was explained that the classical uncertainty addressed in probability
and statistics is about the observables measured in ensembles such as collections of
documents indexed by terms; the occurrence of a term in a document drawn from a
collection is an uncertain event because the collection may contain both documents
indexed by the term and documents not indexed by the term.

In the quantum mechanical framework, uncertainty may occur not only when the
elements are collected in an ensemble but also when each of them is in a superposed
state (e.g., the uncolored balls mentioned in Sect. 2.4) since the color is observed
when it is measured and the state of the ball randomly collapses to the color asked
by the measurement with probability given by the probability amplitudes of the
superposition.

Corresponding to these two types of uncertainty, there are two main types of
density matrix, i.e., pure distributions which represent the uncertainty of superposed
states and mixed distributions which represent the uncertainty of ensembles. Math-
ematically, pure distributions correspond to rank-one projectors (i.e., pure density
matrices), and mixed distributions correspond to mixtures of projectors such that
the mixture weights are the probabilities of the events represented by the projectors.
A density matrix associated with two mutually exclusive binary events is a mixed
distribution when it is a mixture of four orthogonal projectors in a four-dimensional
Hilbert space.

In IR, correlation has been often utilized to implement various methods; for
example, query expansion and relevance feedback are somehow based on term
correlation, whereas document clustering is based on document correlation. The
basic idea of correlation is that an observable can help predict another observable;
for example, the occurrence of a term can help predict the relevance of a document
containing the term, the latter correlation being at the basis of the cluster hypothesis
in IR.

In QM, correlation has been also an important topic; it is at the basis of crucial
applications such as cryptography and of visionary uses such as teleportation as
explained by Nielsen and Chuang (2000). Quantum correlation presents some
peculiarities which led to the use of the word “entanglement.” Entanglement is a
sort of correlation between the observables measured in atomic-size particles such
as photons when these particles are not necessarily collected in ensembles.

In IR, the situation that might be similar to that encountered in physics might
consist of a single document in which two observables (e.g., relevance and
aboutness) are measured without counting on an ensemble of documents already
labeled in terms of these two observables. Despite entanglement being a kind of
correlation, there are some basic differences between entanglement and the classical
correlation encountered in the macroscopic world such as the world of IR.

Suppose the elements of an ensemble are described by two observables with
binary outcome (e.g., either 0 or 1) so that each element can be in one state given
by the possible combination of the binary outcomes (e.g., j00i, j01i, j10i, j11i); for
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example, the document of a collection can be described by the occurrence of two
terms. It follows that

Cij D jijihijj i D 0; 1 j D 0; 1

In general, a mixed distribution combines distributions. When there are four possible
states of the elements of an ensemble, the mixed distribution can be as follows:

� D p00C00 C p01C01 C p10C10 C p11C11 (3.3)

The basic idea underlying � is based on the following correspondence: C represents
a state, while p represents the probability that an element of the ensemble is in that
state. The density matrix (3.3) is called “separable” since the states can be written
as two separated states tensored together as follows:

jijihijj D jiihij ˝ jjihjj i D 0; 1 j D 0; 1

Separability enables the expression of the event represented by Cij as the product of
two distinct events; thus, it allows us to express the fact that a four-event set is the
product of two binary event sets, that is, f00; 01; 10; 11g where the first bit refers
to the first event set and the second bit refers to the second event set; for example,
j11ih11j represents the event that two terms occur in a document.

When (3.3) represents a separable state, all the correlation comes from the
correlation between the two observables (e.g., the occurrence of one term and the
occurrence of the other term) and can be measured in the probability distribution
p00; p01; p10; p11 estimated from sampling an ensemble (e.g., a document collection).
When this distribution is uncorrelated, the density matrix (3.3) is called “uncorre-
lated” and can be written as

�A ˝ �B

where �A is the density matrix of the distribution of, say, the occurrence of one term
and �B is the density matrix of the distribution of the occurrence of the other term.
In this way, the probability that the occurrence is ij is the product of the marginal
probability that the occurrence of the first term is i and the marginal probability
that the occurrence of the second term is j, that is, the occurrences are statistically
independent.

Consider the source of correlation stemmed when an element is in a superposed
state. As all the uncertainty about an observable comes from it being in a superposed
state, all the correlation between two observables measured in this element comes
from it being in a superposed state. As the outcome of one observable is uncertain
because the state of the element collapses to an observable value in a random
manner, the correlation between two observables comes from the random behavior
of the pairs of collapses to the possible outcomes of the measurement in the element.
Considering an ensemble is unnecessary since a single element in a superposed
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state is sufficient to measure the correlation between two observables as described
in Sect. 2.6 with regard to pairs of entangled photons. Note that when an element
is not in a superposed state and it is on the contrary in a ground state (e.g., either a
document contains a term or not), the measurement of two observables (e.g., term
occurrences) can result in the ground state or not since such a state behaves like an
event which can be either true or false; in this case, no uncertainty nor correlation
can be observed. Consider (3.3) and suppose the state � of an element is not mixed
so that all the uncertainty comes from it being a superposition j�i. It follows that

� D j�ih�j

This state is separable when the superposed state can be expressed as tensor product
between the states corresponding to what is measured by two observables. Similarly
to jiji, j�i is separable when

j�i D j�Ai ˝ j�Bi

which implies that � D j�Aih�Aj˝j�Bih�Bj. When � is not separable, it is entangled,
and all the correlation between two observables comes from it being entangled even
if it is the state of the only element of an ensemble.

While the measure of correlation is provided by the mixture weights (i.e.,
probabilities), a measure of entanglement can only be provided by the projectors
of the mixture. A measure of entanglement, i.e., how much entanglement occurs in
a density matrix, can be provided by the Schmidt number, that is, the number of
nonzero eigenvalues of the Schmidt decomposition (see Sect. A.8).

3.3 Using Kinds

The GIR introduced in Sect. 3.2 is not only about probability and vector spaces,
it is also about logic. The emphasis on logic was due to the aim of finding an
alternative retrieval language to the retrieval languages based on subsets, that is,
the classical Boolean logic, and of “investigating a semantics based on subspaces
in a Hilbert space and see what kind of retrieval language corresponds to it” as
argued by van Rijsbergen (2004). A possible implementation of the logic induced
by subspaces might be based on kinds.

3.3.1 Definition of Kind

A concept may be described by its intension (i.e., the set of traits that characterize
the concept) or by its extension (i.e., the set of individuals of the concept). A kind
is the twofold representation of a concept—the set of individuals of the concept on
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the one hand and its traits (or attributes) on the other; for example, two kinds might
be K1 D .fa; b; cg; fx; yg/ and K2 D .fc; dg; fy; zg/ where a; b; c are individuals
described by the traits x and y and both traits y and z describe both individuals c and
d; examples of individuals are documents and examples of traits are index terms.

More formally, suppose T� is a set of traits used for describing the individuals
collected in A�. Consider traits that represent individuals. A kind K is a pair .A;T/
where A is a subset of individuals and T is a subset of traits; for example, if A� D
fa1; : : : ; ang is a set of n individuals (e.g., documents) and T� D ft1; : : : ; tkg is a set
of k traits (e.g., index terms), a legitimate kind may be K D .fa1; a2; a3g; ft2; t4g/.

Two functions are defined on a kind given a set A of individuals and a set T of
traits:

• For every A, the function tr.A/ returns the subset of traits that describes every
individual of A; for example,

tr.fa; b; cg/ D fx; yg tr.fc; dg/ D fy; zg

• For every T, the function in.T/ returns the subset of individuals described by all
the traits of T; for example,

in.fx; yg/ D fa; b; cg in.fy; zg/ D fc; dg

The definition and the examples of these two functions highlight that a kind is
characterized by the fact that every individual in A instantiates every trait in T and
no individual not in A instantiates every trait in T. It is possible to write that

A D in.T/ T D tr.A/

A pictorial illustration is shown in Fig. 3.6 where the individuals correspond to the
rows of the matrix and the traits correspond to the columns. When the element of
row i and column j is 1, the individual i is described by the trait j. In this way, a kind
is shaped as a rectangle of 1s.

Fig. 3.6 Some kinds
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Fig. 3.7 Disjunction and conjunction of kinds

3.3.2 Operations on Kinds

Similarly to subsets which can be provided with disjunction and conjunction
(i.e., intersection), the kinds can be provided with meet (disjunction) and join
(conjunction) operations which are defined as follows and depicted in Fig. 3.7:

• Meet is defined as K1 _ K2 D .in.T1 \ T2/;T1 \ T2/:
• Join is defined as K1 ^ K2 D .A1 \ A2; tr.A1 \ A2//:

It is possible to show that the meet and join of any pair of kinds are kinds themselves,
thus allowing us to write expressions using kinds in a closed form. Indeed

tr.in.T1 \ T2// D T1 \ T2 in.tr.A1 \ A2// D A1 \ A2

A containment relation is defined as

K1 � K2

if and only if

K1 D K1 ^ K2

Similarly to subsets, there exists a minimum kind 0 and maximum kind 1 defined as
follows:

1 D .A�;;/ 0 D .;;T�/

Moreover, it can be shown that

1 	 K 0 � K

for every kind K.
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The operators used to define the minimum (or null) kind 0 and the maximum (or
identity) kind 1 cannot be the same as those used for defining the empty set and its
complement of a collection of subsets. The correctness of the definition of minimum
kind 0 and maximum kind 1 can be seen as follows:

• Joining a kind and the empty kind results in the empty kind similarly to the
intersection between a set and the empty set. Indeed

K ^ 0 D .A \ ;; tr.A \ ;// D .;; tr.;// D .;;T�/ D 0

• Joining a kind and the identity kind results in the kind similarly to the intersection
between a set and the identity set. Indeed

K ^ 1 D .A \ A�; tr.A \ A�// D .A; tr.A// D K

• Meeting a kind with the empty kind results in the kind similarly to the union
between a set and the empty set. Indeed

K _ 0 D .in.T \ T�/;T \ T�/ D .in.T/;T/ D .A;T/ D K

• Meeting a kind with the identity kind results in the identity kind similarly to the
union between a set and the identity set. Indeed

K _ 1 D .in.T \ ;/;T \ ;/ D .in.;/;;/ D .A�;;/ D 1

In particular, it follows that

0 _ 0 D .in.T� \ T�/;T� \ T�/ D .in.T�/;T�/ D .;;T�/ D 0

1 _ 1 D .in.; \ ;/;; \ ;/ D .in.;/;;/ D .A�;;/ D 1

0 ^ 0 D .; \ ;; tr.; \ ;// D .;; tr.;// D .;;T�/ D 0

1 ^ 1 D .A� \ A�; tr.A� \ A�// D .A�; tr.A�// D .A�;;/ D 1

All this mathematical formulation lies in the interest in kinds explained by the fact
that the distributive law does not hold for them and their operators for disjunction
and conjunction. To show that the distributive law does not hold when meeting and
joining kinds, suppose three kinds K1;K2;K3 can be chosen so that

K1 ^ .K2 _ K3/ ¤ 0

and

.K1 ^ K2/ _ .K1 ^ K3/ D 0
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Moreover, suppose that

A1 \ A2 D ;

and

A1 \ A3 D ;

for example, A1 D fa; bg, A2 D fc; dg, and A3 D fc; eg. As A1 \ A2 D ; and
A1 \ A3 D ;, we have that

tr.A1 \ A2/ D T�

and

tr.A1 \ A3/ D T�

and therefore

K1 ^ K2 D 0

and

K1 ^ K3 D 0

by the definitions of minimum kind and maximum kind. It follows that

.K1 ^ K2/ _ .K1 ^ K3/ D 0

since

0 _ 0 D 0

On the other hand, suppose

T2 \ T3 D T5

It follows that

in.T2 \ T3/ D in.T5/

and thus

K1 D K1 ^ .K2 _ K3/
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Therefore,

K1 ^ .K2 _ K3/ ¤ .K1 ^ K2/ _ .K1 ^ K3/

One can also check that

.K1 ^ K2/ _ .K1 ^ K3/ � K1 � K1 ^ .K2 _ K3/

3.3.3 Probability of Kinds

When using index terms extracted from texts, retrieval can seamlessly utilize
intersection or union of the posting lists, thus implementing classical retrieval. This
set-based approach to retrieval fits quite well with textual documents since the
index terms are easily recognized and extracted from documents and an index term
corresponds to a set of document identifiers stored in a posting list after indexing
a document collection. The main assumption underlying a set-based approach to
indexing, retrieval, and relevance detection is that an index term has a semantics,
and its occurrence in a document is meaningful to the end users. When authors
are writing their own documents, say, a1; a2; a3; a4 using, say, four index terms,
namely, t1; t2; t3; t4, they assume that aboutness of documents to index terms can
be expressed through the classical logical operators. Suppose, for example, that
a1; a2; a3; a4 are about ft1; t2g, ft2; t3g, ft2; t3; t4g, ft3; t4g, respectively. According
to the set-based approach to IR, the posting lists t1 D fa1g, t2 D fa1; a2; a3g,
t3 D fa2; a3; a4g, and t4 D fa3; a4g are obtained. However, the end user can utilize
the operators for expressing new concepts not explicitly thought of by the document
authors; for example, t2 \ t3.

The use of kinds in IR can be explained by the need of providing the end user
with a means to access information which is alternative to the traditional keyword-
based means. Using kinds would help the user to express his information need using
the intension or the extension of a concept.

As the retrieval of information requires ranking, in IR, kinds should be equipped
with a probability distribution for ranking them against a representation of the user’s
information needs. Therefore, a probability function for kinds P should map a kind
to the real interval Œ0; 1�. As P is a probability function, it should meet the following
properties:

• P is a function of both A and T in order to exploit all the information provided
by K.

• P.K1/ � P.K2/ when K1 � K2 since K1 is “smaller” than or is contained in K2;
this property is similar to the property of the probability functions applied to sets,
according to which the probability of the event represented by one set is smaller
than the probability of the event represented by the supersets.

• As a consequence, P.0/ � P.K/ � P.1/, since 0 � K � 1.
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• P.0/ D 0 and P.1/ D 1.
• It follows that when an arbitrarily large number of kinds are met, the probability

of this meeting tends to 1, that is,

lim
n!1 P.K1 _ � � � _ Kn/ D 1

• Similarly, when an arbitrarily large number of kinds are joined, the probability
of this joining tends to 0, that is,

lim
n!1 P.K1 ^ � � � ^ Kn/ D 0

In IR, the probabilities are usually estimated using the information provided by the
posting lists of a collection index which stores information about both documents
(individuals) and index terms (traits). Moreover, a probability of an index term
can be a function of the number of documents indexed, while a probability of
a document can be a function of the index terms stored; indeed, these statistics
are exploited by the most effective weighting schemes implemented by the search
engines. Something similar would be utilized to estimate the probability of kinds.

The visual description of the kinds provided by the previous figures would
suggest that the areas of the rectangles could be a source to estimate the probability
of kinds. If one was induced to consider the area of the rectangles drawn in Fig. 3.7
as a measure of probability,

P
a2A

P
t2T w.a; t/ would be used where w is the weight

function given to each occurrence of a trait t in an individual a; when w D 1, the
function is the “volume” or “area” of the kind, that is, jA � Tj D jAjjTj where j � j
is the “volume” such as the cardinality of the set. However, this function does not
meet the requirement that P.1/ > P.0/. An alternative probability function is then
needed.

Consider a kind K D .A;T/ and let s.T/ > 0 be a function of T such that
s.T1/ � s.T2/ when T1 � T2; for example, s.T/ D jTj. The probability of kind
K D .A;K/ is defined as

P.K/ D P.A/s.T/ 0 � P.A/ � 1 0 � s.T/ 2 R (3.4)

The observation of a kind .A;T/ corresponds to the observation of the individuals of
A repeated s.T/ times. The join and the meet of two kinds are then the conjunction
and the disjunction of the outcomes of two experiments on the urn of individuals.
This probability function is relevant to our purposes because:

• P is clearly a function of both A and T.
• 0 � P.K/ � 1 by the definition given by (3.4).
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• When K1 � K2, we have that K1 D K1 ^ K2; it follows that

P.K1/ D P.K1 ^ K2/ D P.A1 \ A2/
s.tr.A1\A2//

since

P.A1 \ A2/ D P.A1/ � P.A2/ s.tr.A1 \ A2// D s.tr.A1// 	 s.tr.A2//

we have that

P.K1/ D P.A1/s.T1/ � P.A2/s.T2/ D P.K2/

• It can be noted that P.1/ D P.A�/s.;/ D P.A�/0 D 1 and that P.0/ D P.;/s.T�/ D
0s.T�/ D 0.

• In the limit, meeting an arbitrarily large number of kinds yields the identity kind,
thus obtaining probability 1, that is,

lim
n!1 P.K1 _ � � � _ Kn/ D P.in.T1 \ � � � \ Tn//

s.T1\���\Tn/ D 1

since T1 \ � � � \ Tn tends to the empty set and in.T1 \ � � � \ Tn/ tends to A�.
• Moreover, in the limit, joining an arbitrarily large number of kinds yields the

empty kind, thus obtaining probability 0, that is,

lim
n!1 P.K1 ^ � � � ^ Kn/ D P.A1 \ � � � \ An/

s.tr.A1\���\An// D 0

since A1 \ � � � \ An tends to the empty set and tr.A1 \ � � � \ An/ tends to T�.

As regards probabilistic IR, the difference between this probability function
and the probability function adopted by the BIR model is that K denotes the
individuals described by all traits in T, whereas the BIR describes the individuals
as both the traits occurring and those not occurring; for example, when there are
three individuals and four traits and the following table of 0=1 elements denoting
nonoccurrence/occurrence of traits,

t1 t2 t3 t4
a1 1 1 1 0
a2 1 1 0 1
a3 1 1 0 1

.fa1; a2; a3g; ft1; t2g/ is a kind, whereas fa1g and fa2; a3g denote two distinct events.
The probability of the kind is P.fa1; a2; a3g/s.ft1;t2g/, whereas the probability of the
two events are p1p2p3.1 � p4/ and p1p2.1 � p3/p4, respectively.
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Fig. 3.8 Probability and
interference

Following the postulates presented in Kolmogorov (1956), P should be such
that the probability of the conjunction of two orthogonal kinds is the sum of the
probabilities of the kinds. Considering K and K?, we have that

P.K _ K?/ D P.1/C P.0/ D 1C 0 D 1

However, this property does not hold for any pair of disjoint kinds; indeed, for K1 ^
K2 D 0, we have that

P.K1 _ K2/ ¤ P.K1/C P.K2/

The difference between P.K1 _ K2/ and P.K1/C P.K2/ is due to the superposition
of T1 and T2 which produces the interference term

I D P.K1 _ K2/� P.K1/� P.K2/

which also exists when the kinds are disjoint and not orthogonal. Figure 3.8
summarizes the probabilities and the cases of null interference.

3.3.4 Ranking and Feedback

In this section, we introduce a method to compute kinds and two applications
of kinds in IR: ranking by probability of relevance and query expansion through
feedback.

3.3.4.1 Computing Kinds

The aim of a method to compute kinds is to mine all the pairs .A;T/ such that
each individual of A is described by all traits of T and each trait of T describes
all individuals of A. The computation of the kinds of a document collection starts
from the posting lists stored in the index. The problem of mining the kinds from a
document collection can correspond to the problem addressed in itemset mining and
illustrated by Agrawal et al. (1996), for example. If the documents of a collection
(i.e., individuals) are viewed as transactions and the terms (i.e., traits) are viewed as
the items, the frequent itemsets that can be mined from the collection are the subsets
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Fig. 3.9 Itemsets (with support) mined from the CACM test collection

of terms which frequently occur in the documents. The literature of itemset mining
reports the two mostly used algorithms, i.e., Apriori by Agrawal et al. (1996) and
FPgrowth by Han et al. (2000); for example, when FPgrowth is performed using the
CACM test collection, the itemsets of Fig. 3.9 are mined.1

3.3.4.2 Ranking Kinds According to the PRP

In this section, we briefly describe how to apply the PRP to kinds instead of to
documents. Suppose a collection of kinds has been generated from a A� and T�.
The collection of kinds has to be split in the subcollection of kinds returned to the
user because they carry relevant information and in the subcollection of kinds that
are deemed nonrelevant. The Neyman and Pearson (1933) lemma can be exploited
to state that retrieving the kind K is a better decision than K? when

K D argK;K? max P1.K/� �P0.K/ where P0.K/ < ˛

provided that ˛ is the maximum probability of false alarm. The split of the collection
of kinds is optimal when the distance between expected recall and false alarm is
maximum. The optimal split is also called “region of acceptance” using the wording
of the Neyman-Pearson lemma. Following the PRP, which is derived from the
lemma, the expected recall is maximum when the kinds are listed in order of P1.K/
and a cutoff ˛ is applied when the given probability of false alarm is reached.

1Minimum support was 1:5% (48 documents) and the minimum itemset size was 3.
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Consider the difference between BIR and kinds mentioned in this section.
According to the PRP and the Neyman-Pearson lemma, the optimal ranking
criterion operates upon sets in the case of the BIR model and upon kinds in the case
of this section. Therefore, the ranking criterion is always the same though the objects
ranked might change from sets to kinds. The crucial difference is that sets commute
when intersection, union, and complement are applied to them, whereas kinds do
not when join, meet, and complement are applied to them; this is the difference that
in principle helps find splits of the collection of kinds more effective than the splits
of the collection of documents.

When ˛ varies from 0 to 1 at given intervals, and a collection of kinds has to
be ranked, the criterion of the Neyman-Pearson lemma arranges the kinds in order
of expected recall; the kinds K1; : : : ;Kr selected up to rank r D r.˛/ give the
maximum expected recall P1.K1 _ � � � _ Kr/ provided that P0.K1 _ � � � _ Kr/ < ˛.
Note that the Kis do not necessarily commute as the events of classical IR do.

3.3.4.3 Using Kinds in Query Expansion

Consider two states of a kind, i.e., relevance and nonrelevance. Let Pi.K/ be the
probability of K in state i where i D 0; 1 means nonrelevance and relevance,
respectively. In particular, Pi.K/ D Pi.A/si.T/. The optimal region of acceptance
in the case of mixed density matrices can be rewritten as the kind K D .A;T/,
whereas the optimal region of acceptance in the case of pure density matrices can
be rewritten as a new kind H. The problem is to compute H.

An approach to the problem of computing H is to take inspiration from the query
expansion techniques used in IR. Suppose K has been computed by an IR system
according to the PRP. From K, a series of “stretches” is performed as exemplified
in Fig. 3.10; A is first withdrawn to obtain A0, which is actually a subset of A; the

Fig. 3.10 Stretching kinds
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Fig. 3.11 Algorithm for stretching kinds

resulting T 0 is a stretch of T; T 0 is then withdrawn to T 00, thus stretching A0 to obtain
A00; at each step, the kinds evolve.

Stretching kinds is formalized by the algorithm of Fig. 3.11. A subset A0 of
individuals is distilled from A (step 3). Document distillation can be implemented
by any feedback technique used in IR; for instance, pseudo-relevance feedback
techniques have been designed for distilling the candidate documents which store
index terms useful for expanding the user’s original query. In the case of the kinds,
the index terms are given by T 0 D tr.A0/ (step 4). The probabilities of correct
detection and of false alarms of the new kind .A0;T 0/ are then computed at steps
5–6. Similarly to document distillation, term distillation can be implemented by
any term selection used when indexing documents (step 7); for example, document
parsing, structure and markup processing, link analysis, and information extraction
techniques have been designed for distilling the candidate index terms useful for
retrieving documents. In the case of the kinds, the documents are given by A00 D
tr.T 00/ (step 8). The probabilities of correct detection and of false alarms of the new
kind .A00;T 00/ are then computed at steps 9–10 and compared with the probabilities
of .A0;T 0/ for testing convergence; in the case of no convergence, steps 3–10 are
iterated after replacing K with .A00;T 00/ at steps 14–15.

3.4 Concept Combination

The mathematical formalism of QM was examined and reported in the literature
relevant to IR to search for the way in which words and their associations and
their combinations as terms can describe meaning and what this implies for IR at
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the user’s cognition level. The emphasis on the user’s cognition level given in the
literature about concept combination has been crucial since at this level, one might
imagine that some quantum-like phenomena can take place, these phenomena being
hardly encountered in contexts where the observables follow the classical logic and
statistical behavior such as index term occurrence or other realistic properties of
documents and queries.

3.4.1 Word Association

Concept combination may be acquired through free word association, and the
nonrandom nature of these associations ensures that words within a vocabulary can
be interconnected through special graphs which often exhibit “small worlds” within
large sparse networks. The presence of “small worlds” that are small subsets of
words intensely interconnected is not new in IR; it was on the contrary extensively
investigated by Salton (1968), for example.

What has instead been investigated using the quantum mechanical framework
is how words are represented in the user’s memory as part of a network of
related words since this network is crucial for allowing the user to recall a word
given another word. A well-known example is given by free association. In free
association, a user is presented some words, and she selects the most immediate
word that comes to mind. The size of the set of associates (i.e., the world) determines
the chance that a word is recalled by the user who memorized the words. Some
experiments showed that the larger the set of associates, the lower the probability
that an associate of the set is recalled through free association.

An interesting result stemming from these experiments was the positive correla-
tion and the negative correlation between recall and, respectively, network density
and the number of associates that occurred, although the user’s attention was never
drawn to the associates at any time. These experiments also showed that the denser
the network linking the associated words, the higher the probability that an associate
of the set is recalled through free association, the latter probability being known as
recall. In other words, the user recalled the associates even though she was never
stimulated to recall them after she viewed them earlier during training. It seems that
the user was hearing a sort of resonance of the associates to a word when she was
retrieving this word from memory.

In the literature relevant to this subject, it has been suggested that some
phenomena resembling entanglement, superposition, and interference might explain
the effects of word association and combination to the user’s cognition; these
phenomena were named “spooky activation at distance,” “guppy effect,” “overex-
tension,” and “underextension”; for example, the resonance of words interconnected
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by “small world” resembles the measurement effects on entangled pairs of photons
introduced in Sect. 2.6, according to which when a measurement is performed upon
a particle, other measurements performed upon that same particle at a different
and very distant location are affected. The explanation provided by QM of these
phenomena was implemented in terms of statistical models estimated from sets of
experimental data collected through user studies.

The literature on the word combination and association based on the quantum
mechanical properties of these statistical models reports that no classical statistical
model can model these experimental data and that a statistical model that originated
from QM is necessary. In those papers, it was attempted to link the presence of these
properties to the process of concept formation, i.e., to the user’s cognition level, thus
leading to hypothesize that this cognition level is governed by laws similar to the
laws governing atomic particles in many aspects.

According to the hypothesis that cognition level is governed by laws similar to
the laws of QM, it was possible to give a formal description of other phenomena
such as the disjunction effect and the conjunction fallacy in decision theory,
violations of the sure-thing principle,2 and the Allais and Ellsberg paradoxes in
economics,3 which, although not directly relevant to IR, may give some hints about
possible, less traditional views of the information access processes.

The key notion of the idea of using the quantum mechanical framework in
explaining the genesis and the impact of word combination and association was the
notion of context, which is constantly occurring in IR. The words to be combined
and associated are continuously changed by context. The change or evolution of
concepts can be paralleled to the change or evolution of the state of an atomic
particle subjected to a measurement. The connection to the physics of atomic
particles is also explained by the fact that this physics is essentially under the
influence of the physical context which continuously affects the measurement
instruments and then the measures observed in an atomic particle. In physics, the
presence of the quantum mechanical nature of a phenomenon can be proved by
looking at experimental data.

The main assumption made by the researchers who investigated the quantum
mechanical nature of the user’s cognition level was that it is irrelevant to the validity
of this investigation whether the data are the result of experiments in physics or
in any other domain of science, that is, what happens to the user’s cognition level
can straightforwardly be put in correspondence with what happens in the physical
atomic world.

2A posteriori, an agent would have made the same choice regardless of the events which could
have occurred in the meantime.
3An agent prefers taking on risks where he knows the associated probabilities and costs rather than
risks where it is impossible to estimate the associated probabilities or costs.
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3.4.2 State, Context and Property

Aerts and Czachor (2004) and Aerts and Gabora (2004a) introduced the State,
Context and Property (SCOP) formalism to define concepts using the following
definitions:

• An exemplar was any entity with distinct and independent existence serving as a
typical example of a class or a concept; for example, “apple” and “guppy” were
exemplars.

• A concept was a class of exemplars gathered together because they have some
predefined characteristic in common and differentiated from others by other
characteristics; for example, fruit was a class and “apple” was an exemplar of
this class; pet was a class and “guppy” was an exemplar of this class.

• A context was a sentence written in natural language providing a meaning to an
exemplar depending on the concept of the exemplar and on the context thereof;
for example, “the pet is chewing a bone” is a context and “the fruit gets squeezed
for a fresh drink of juice” is another context. The special ground context “the pet
is a pet” was also given.

• A property is a proposition which is either true or false depending both on the
context and on the concept (not on the exemplar); for example, the property “it is
feathered” is true when it is applied to pet in the context “the pet is being taught
to talk.”

The quantum formalism was utilized to describe the notions above listed. In
particular:

• A concept was corresponded to a state and therefore was described as a
density matrix. Concepts can be combined; for example, pet and fish can be
combined to obtain pet fish which is in a different state from the states of the
constituent concepts. These combinations are viewed as entangled photons since
the outcomes of the measurement of an observable in each constituent concepts
are correlated, thus giving rise to the “guppy effect.”

• A context was corresponded to an observable and therefore was described as a set
of projectors and specifically yes/no projectors. These observables were named
“context” to stress the dynamic nature of the state of a concept. A concept is an
entity that can be in different states because a context (i.e., an observable) causes
a change of state of the concept; for example, the concept pet is in a state in the
context “the pet is chewing a bone” and it is in another state in the context “did
you see the type of pet he has? This explains that he is a weird person.”4

4These examples are in Aerts and Czachor (2004) and Aerts and Gabora (2004a)’s papers.
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3.4.3 Using Superposition to Define Concepts

Experiments that suggested the use of the statistical models commonly used in QM
were carried out in the 1980s and resulted in the so-called guppy effect in concept
combination. In these experiments, the concepts (or classes) pet, fish, and pet fish
were defined, and some words were observed. It was found that words such as
“guppy” were a very typical example of pet fish, but it was neither an example
of pet nor of fish.

In IR, the difference between terms like pet fish and terms built by conjunction
like pet AND fish, the latter referring to the intersection between the classes pet and
fish, was often found. A guppy is not a typical pet, nor is a guppy a typical fish, but
a guppy is a typical pet fish. As another example, when combining concepts, e.g.,
stone and lion to produce stone lion, however, the only aspect of the object that is
lionlike is its shape. One cannot conclude that a stone lion is alive; this effect is
called non-monotonicity of the combined concept.

Besides the “guppy effect,” other experiments found two other phenomena, i.e.,
overextension and underextension. The following is an example of overextension.
The subjects who participated in some experiments were asked to decide the
membership of some words to the classes bird and pet. The subjects were allowed
and asked to use measures of fuzzy membership ranging between 0 and 1. The
experiments reported that “cuckoo” was a member of bird with weight 1 and was
a member of pet with weight 0:575. The surprising result was that the subjects
weighted 0:875 the membership of “cuckoo” to the intersection pet AND bird, that
is, it was more probable that “cuckoo” is a member of the intersection than the
individual classes.

However, if the strength of the membership of a member to a class is measured
using probability, the Kolmogorov axioms will dictate that

P.pet ^ bird/ � minfP.pet/;P.bird/g (3.5)

As for underextension, the classes home furnishings and furniture and the
disjunction home furnishings OR furniture were proposed to the subjects who
were asked to place the word “ashtray.” Subjects rated the membership weight of
“ashtray” for the classes home furnishings and furniture as 0:7 and 0:3, respectively,
but the membership weight for the disjunction was rated 0:25. The probability that
“ashtray” was a member of a disjunction was less than the minimum between the
probabilities that it was a member of a class, that is, there was a violation of the
inequality that

P.home furnishings _ furniture/ 	 maxfP.home furnishings/;P.furniture/g
(3.6)
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The phenomena that are known as “guppy effect,” overextension, and under-
extension can be described using the algebraic quantum mathematical framework.
Consider the classes pet and bird which are both described as the states jpeti and
jbirdi of a vector space. Their disjunction can be represented as the superposition of
the states which represent the classes and can be written as

1p
2

jpeti C 1p
2

jbirdi

Consider the observable such that a word belongs to a class. Following the axioms
explained in Sect. 2.4, the probability that a word belongs to the class represented
by jpeti is

tr.jpetihpetjwihwj/ D hpetjwihwjpeti D jhwjpetij2

where jwihwj is the projector corresponding to the event that a word belongs to the
class. It follows that

1

2
jhwjpetij2 C 1

2
jhwjbirdij2 C I

is the probability that a word belongs to the superposition of the classes where I is
the interference term (Sect. 2.5), which ranges between �2 and C2. The interference
term allows us to violate the inequalities (3.5) and (3.6) imposed on probabilities.

As the experimental data reported in the literature violates the inequalities (see
the readings suggested in Sect. 3.12), it is argued that these data cannot result from a
classical space, but can only result from a quantum mechanical space. This argument
suggests that qubits may be a useful device for representing the user’s cognition
level. Therefore, suppose that the user’s cognition level can be represented using
qubits where one qubit represents the state of a word in the cognition level of the
user; for example, these words may be query words to be submitted to an IR system.
The ground states of a qubit can in this case correspond to the event that a word has
been chosen by the user or that it has not been chosen. Thus, if we represent the
words using the standard superpositions

jvi D a0j0i C a1j1i jwi D b0j0i C b1j1i

it is possible to denote the state of the combined concept using the tensor product

jvi ˝ jwi D a0b0j00i C a1b0j10i C a0b1j01i C a1b1j11i

where ja0b0j2 C ja1b0j2 C ja0b1j2 C ja1b1j2 D 1 or using entangled states which
cannot be decomposed as explained in the next section.
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3.4.4 Using Entanglement to Define Concepts

Concept combination can also be modeled by entanglement. A concept is a
combination of two entangled words (or concepts) when it cannot be separated,
that is, the meaning of the concept cannot be reconstructed from the meaning of
the individual component words. As an example of an entangled state, we might
consider the state

1p
2

j00i C 1p
2

j11i

where the words are either both chosen or both not chosen by the user. If the state of
a concept is entangled, it cannot be separated and one cannot express it saying that,
for example, one word has been chosen and the other has not.

In QM, the criteria used to test entanglement are given by the Bell inequalities.
A possible way to proceed is to define four observables. Each observable is binary
and thus gives two mutually exclusive outcomes; for example, an observable can
tell whether a word has been chosen or not. Each pair of observables is applied to
an instance (e.g., “guppy”) of a combined concept (e.g., pet fish): C1 is recorded
when the observables give concordant outcomes (i.e., either two ones or two zeros)
or �1 is recorded when the observables give discordant outcomes. When each pair
of observables i; j is applied several times, it is possible to estimate the following
expectation:

E.i; j/ D C1P.i; j concordant/C .�1/P.i; j discordant/

If the concept under observation is separable, the following inequality holds:

jE.1; 2/� E.1; 4/j C jE.2; 3/C E.2; 4/j � 2 (3.7)

The violation of (3.7) is a signal of entanglement.
The possibility of expressing concept combination using quantum entanglement

prompts the question whether entanglement is applicable to the cognition level of
a user of an IR system. If this was possible, that is, if a large series of experiments
confirmed the existence of entanglement during the interaction between users and
IR systems, it would be possible to design systems which can take into account the
fact that there are combined concepts that cannot be easily expressed by saying that
a word can be chosen by the user. Testing for entanglement at the user’s cognition
level requires the use of some testable criteria which can be summarized as follows:
if the concept is separable (i.e., not entangled), then it will satisfy the criteria, that
is, if the criteria are not satisfied, the concept is entangled. However, it seems very
hard to design experiments that put the user’s cognition level in an entangled state.
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3.4.5 Adding Superposition to Language Modeling

Suppose a concept can be implemented by a document or a collection of documents.
In particular, suppose a document B implements a concept. The distribution of the
probability of occurrence of a word s is assigned to this concept in the sense that the
word s occurs with probability provided by the distribution estimated by the data
extracted from the document. The occurrence of a word is an observable, and the
distribution of probability can be described by a density matrix �B, that is,

P.s occurs in B/ D tr.�Bjsihsj/ D hsj�Bjsi
If the probability distribution is in particular given by the state vector j i, we have
that

P.s occurs in B/ D jhsj Bij2

For example, consider document FBIS4-7688 of the TIPSTER test collection and
the query word “organized” of topic 301; the query built from the title and the
description of this topic includes other words and the total query word frequency in
the document, that is, the sum of the single query word frequencies in the document
is 31. As “organized” occurs five times, the probability of occurrence of this word
can be estimated to be 5=31. We may then write

j Bi D
0
@
q

5
31q
26
31

1
A �B D

 
5
31

p
130
31p

130
31

26
31

!

The document used to implement a concept usually belongs to a collection or in
general to some groups of documents, each group being created according to some
predefined criteria (e.g., the same topic). A question frequently asked in IR is how
probable is the generation of a word by a document. This is indeed the question
asked within the LM approach described in Sect. 1.4.2; the answer to this question
is the measure used to rank a document returned to the end user who submitted
a query containing the word. The idea that underlies the LM approach is that the
word may occur either in the document B or in the group L of documents including
B. This idea can be seen from the formula (1.3) used to calculate the probability of
occurrence of s using the LM approach and derived from the idea that s is generated
either by B (with probability 1 � �) or by L (with probability �). Indeed, we have
that

P.w occurs in B/ D f .s.j/;B/Pn
jD1 f .s.j/;B/

P.w occurs in L/ D f .s.j/;L/Pn
jD1 f .s.j/;L/
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P.B/ D 1 � �

P.L/ D �

thus obtaining that

OpB.s.j// D P.w occurs/

D P.w occurs in B or w occurs in L/

D P.w occurs in B/P.B/C P.w occurs in L/P.L/

which is equal to expression (1.3). This formulation means that B and L are two
mutually exclusive urns (i.e., language models) in the sense that s can be observed
from either B or L. Using the quantum mechanical framework, (1.3) can be written
as a mixture as follows:

.1 � �/tr.�Bjsihsj/C �tr.�Ljsihsj/

However, using this framework, the probability of occurrence of s can also be
calculated by a superposition between B and L. Conceptually speaking, such a
superposition is different from the mixture used within the LM approach. While the
mixture within the LM approach indicates that the occurrence of s in B is somehow
“separated” from the occurrence of s in L, a superposition would indicate that B may
be placed above L or vice versa and that the occurrence of s in B can also be viewed
as an occurrence in L or vice versa, thus suggesting a sort of interference between
the two occurrences.

Using the quantum mechanical framework, the distribution of probability of the
occurrence of s can be expressed using a density matrix � corresponding to a state
vector j i which is a superposition of the state vectors j Bi and j Li, the former
being the representation of the distribution of probability of the occurrence of s in
B and the latter being the representation of the distribution of probability of the
occurrence of s in L. This superposition can be written as follows:

j i D
p
1 � �j Bi C

p
�j Li

Note that the probability of B is again the same calculated using the mixture, that is,

1 � � D P.B/ D tr.�j Bih Bj/ D jh j Bij2

but the probability of the occurrence of s differs from the probability calculated
using the mixture because

P.s occurs/ D tr.�jsihsj/
D hsj�jsi
D hsj ih jsi
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D hsj.
p
1 � �j Bi C

p
�j Li/.

p
1 � �h Bj C

p
�h Lj/jsi

D .
p
1 � �hsj Bi C

p
�hsj Li/.

p
1 � �h Bjsi C

p
�h Ljsi/

D .1 � �/jhsj Bij2 C �jh Ljsij2 C 2I

D .1 � �/P.s occurs in B/C �P.s occurs in L/C 2I

where

I D
p
�

p
1 � �hsj Lih Bjsi cos �

is the interference term and cos � (i.e., �) is an additional parameter to be estimated.
The estimation of cos � raises issues similar to those raised by the estimation of �
and of the .a; b/s in the event that smoothing is used within the LM approach as
described by (1.4). Similar to the strategies used to estimate � and of the .a; b/s, a
strategy to estimate cos � can be a search of a number of the possible values of cos �
in the range Œ�1;C1� and then the selection of the value which maximizes a certain
retrieval effectiveness measure. However, such a search should be performed for
each word, thus making this strategy little practical. An alternative strategy would
consider the following calculation:

.1 � �/P.QjB/C �P.QjL/C 2I

where

P.QjB/ D tr.�BjQihQj/

is the probability of Q using the QLM estimated by B and

P.QjL/ D tr.�LjQihQj/

is the probability of Q using the QLM estimated by L. When cos � is different
from zero, the probability of Q calculated by the superposition between B and L
is different from the probability of Q calculated by the (classical) mixture of B and
L determined by the QLM.

According to the QLM, the event that Q is generated by a mixture of B
and L is a signal that B is relevant to the information need represented by Q.
When superposition is utilized as described in this section, the estimation of the
interference term is needed. The estimation of cos � should consider the meaning
of the interference term in the context of the LM approach to IR. If we borrow
the metaphor of the double-slit experiments illustrated in Sect. 2.5, it is possible to
describe the document B and the group of documents L as slits, and the interference
between slits can be used to describe the interference between B and L. When
the interference is positive (cos � > 0), the probability of the arrival of the
particle at the shield is higher than the probability provided by the mixture of
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the probabilities of passage through each slit; it is like an “amplification” caused
by the fact that both slits are open impacts on the event that the particles arrive
at the shield. Therefore, cos � should be positive when some additional evidence
about the relevance of B will be available other than the evidence utilized in the
estimation of the probabilities. In a similar way, when the interference is negative
(cos � < 0), the probability of Q is smaller than the probability provided by the
mixture of the probabilities of Q in B and of Q in L; cos � should be negative when
some additional evidence about the irrelevance of B will be available. Examples of
additional evidence that may make the document preferable to the documents of
the group are click-through data (the more the document is clicked, the higher the
probability of relevance), data quality (the more the document is written and orderly
organized, the more the document can be appreciated by the user), and user’s task
(the more the document meets the user’s task, the more the document will be deemed
useful).

3.5 Word Ambiguity

Ambiguity is a key problem in IR both when a word can have more than one
meaning (polysemy) and when a word can convey meaning better than another word
in a certain context (synonymy). In particular, ambiguity affects textual document
retrieval systems (e.g., commercial search engines and speech retrieval systems) and
in general the systems dealing with text representations. In this section, we explain
how the problem can be described by some structures of the theory of QM.

3.5.1 Ambiguity and Superposition

The connection between word ambiguity and the superposition of atomic particle
states is based on the linear combination of basis vectors. Superposition can indeed
be represented by a linear combination of the vectors representing the pure (or
ground) states. The vector that results from a linear combination represents a state
of the particle which is a superposition of pure states, i.e., that the particle is not in
any state out of the pure states since it is on the contrary in a state which cannot
be included in the basis of pure states. It is only when the particle can be measured
that its state collapses to one of the pure states, and the state vector collapses to the
corresponding basis vector. The probability that the particle state collapses to one of
the pure states is the squared modulus of the coefficient used for linearly combining
the resulting basis vectors with the other basis vectors.
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Word ambiguity is represented in a way similar to the way superposition is
represented. The ambiguity of a word can indeed be represented by a linear
combination of the vectors representing the distinct known meanings of the word.
The vector that results from a linear combination represents an ambiguous word
which is a superposition of known meanings, thus meaning that the word does not
possess any meaning out of the known ones since it is on the contrary in a state
which cannot be included in the basis of known meanings. It is only when the
word can be observed within a certain context that its ambiguous meaning collapses
to one of the known meanings and the word vector collapses to the basis vector
corresponding to the known meaning.

The probability that the ambiguous word collapses to one of the known meanings
is the squared modulus of the coefficient used for linearly combining the resulting
basis vectors with the other basis vectors; for example, suppose the ambiguous
word “java” is represented by the vector jjavai. The ambiguity of “java” can be
represented by

jjavai D ajapii C bjislandi C cjcoffeei (3.8)

where

jaj2 D P.java has the meaning api/

jbj2 D P.java has the meaning island/

jcj2 D P.java has the meaning coffee/

and

jaj2 C jbj2 C jcj2 D 1

The three vectors japii; jislandi; and jcoffeei may refer, for example, to three
documents, respectively, about the Java Application Programming Language (API),
the Java island bay, and the Java coffee. These three document vectors must
be orthogonal to make probability computation possible and to describe the fact
that when measured, the meaning gives only one value chosen from API, island,
and coffee. The amplitudes a; b; c can be estimated by the number of times the
ambiguous word is used with each of its possible meanings in a reference corpus
of documents. It should be noted however that these frequencies provide real
numbers, which are indeed the modula of the amplitudes, whereas the amplitudes
are actually complex numbers; however, the complex field to which a; b; c belong
has not been investigated in the literature of this subject. Figure 3.12 provides a
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Fig. 3.12 Ambiguity and superposition

pictorial description of the correspondence between ambiguity and superposition;
jjavai is represented by a vector spanned by the three basis vectors according to
a; b; c; the closer the vector jjavai is to a basis vector, the higher the corresponding
coefficient. As the coefficients a; b; c vary, the vector jjavai spans a unit-radius
sphere in the three-dimensional space. It should be noted that the vector jjavai
always has unitary length since the coordinates are amplitudes. As the three meaning
vectors are mutually orthogonal, that is,

hapijislandi D 0

hapijcoffeei D 0

and

hcoffeejislandi D 0

and are unitary, the squared amplitudes are probabilities which sum to one.
Word disambiguation might therefore be modeled using the orthogonality

between the basis vector. To obtain the meaning given by API, jjavai can be
projected to the subspace spanned by japii, and the projection is actually this basis
vector. To obtain the representation of the meaning of java without the meaning
given by API, jjavai can be projected to the subspace spanned by jislandi and
jcoffeei implemented by the projector jislandihislandj C jcoffeeihcoffeej, thus
obtaining

bjislandi C cjcoffeei

which belongs to the bidimensional subspace spanned by jislandi and jcoffeei and
orthogonal to the subspace spanned by japii.
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3.5.2 Vector Negation and Negative Relevance Feedback

An alternate approach to disambiguation is through vector negation. This technique
was proposed by Widdows and Peters (2003) and later explained in the book
of Widdows (2004) together with other concepts of the quantum mechanical
framework. In the following, vector negation is first introduced in the context of
negative RF, and then the commutativity of vector negation will be discussed.

In Sect. 1.3, RF was introduced for the VSM, and two types of feedback were
introduced, positive feedback and negative feedback. The effectiveness of RF lies on
the hypothesis that the relevant document vectors tend to be closer to each other than
to the nonrelevant document vectors; this hypothesis is known as cluster hypothesis.

Negative RF is problematic because the cluster hypothesis does not hold for
nonrelevant documents, that is, it cannot be argued that the nonrelevant document
vectors tend to be closer to each other than to the relevant document vectors. If it
did, it would be possible to split the space of the document vectors into two clusters,
a cluster of relevant documents and a cluster of nonrelevant documents.

Negative RF might be addressed in a more principled way to attempt to overcome
the problems due to the invalidity of the cluster hypothesis. Such an approach
is based on vector negation. Vector negation models logical negation using the
orthogonality between vectors. Consider the vector jarrayi; jbanki; and jcrediti,
respectively, for the three terms “array”, “bank,” and “credit”:

jarrayi D
0
@
1

0

0

1
A jbanki D

0
@
0

1

0

1
A jcrediti D

0
@
0

0

1

1
A

The term “bank” is ambiguous since it has many different meanings in a natural
language. One meaning of “bank” might be an array of similar things, especially
electrical or electronic devices, grouped together in rows. Another meaning might be
that of a financial establishment that uses money deposited by customers for credit,
investment, and currency exchange. Suppose there are two documents. Document
d1 is about bank as array and document d2 is about bank as credit. The document
about bank as array can be represented by the following ket:

jd1i D jarrayi C 2jbanki D
0
@
1

2

0

1
A

whereas the document about bank as credit can be represented by the following ket:

jd2i D jbanki C jcrediti D
0
@
0

1

1

1
A
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Note that d1 is about bank but not about credit since

hd1jcrediti D 0

and d2 is about bank but not about array since

hd2jarrayi D 0

Suppose the query “bank as an array” is submitted by an end user to an IR system.
Such a query can be represented by the following vector:

jqi D jarrayi C jbanki D
0
@
1

1

0

1
A

The system will rank the documents by the inner products between the query vector
and the document vectors calculated as follows:

hd1jqi D 3 hd2jqi D 1

Suppose instead the user wants to submit the query “bank” but he is actually
thinking about bank as array; this is indeed an ambiguous query. The vectorial
representation of the query would then be

jq0i D jarrayi D
0
@
0

1

0

1
A

and the system will compute the following inner products:

hd1jq0i D 1 hd2jq0i D 1

The document d2 is about credit and should be removed from the list of the retrieved
documents. To this end, the user should be able to express the query “bank” AND
NOT “credit”; however, the system is working according to the VSM which does
not provide Boolean operators.

To address this lack of operators, it is possible to leverage the RF of the VSM
and to refine it to the query vector in order to remove the unwanted documents from
the list of the retrieved documents. Consider the way the VSM works. When a user
adds terms to describe his information need, the system based on the VSM adds
term vectors to the query vector. Suppose two query terms t1; t2 describe the need
and the user wants all and only the documents indexed by both terms. To this end, he
will submit a query like t1 AND t2. Suppose the user no longer wants the documents
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Fig. 3.13 Vector negation and negative RF

about t2. To this end, if t2 were no longer describing the need, then t1 AND NOT t2
would be the right query.

According to the VSM, the term vectors should be subtracted from the query
vector. This subtraction is actually negative RF; however, the negative RF of the
VSM requires that the ˇ parameters have to be defined precisely. Although the VSM
tells what to do with the vectors to implement negative feedback, it does not provide
insights on how to define the parameters.

A possible approach to defining the parameters of the vectors subtracted by
negative feedback is algebraic and depicted in Fig. 3.13. The new query vector
should be

jq00i D jq0i � ˇjd2i (3.9)

with the constraint that

hd2jq00i D 0

since the document d2 is nonrelevant to q00. To obtain ˇ, (3.9) is multiplied by hd2j
and set to zero so that

hd2jq00i D 0 if and only if ˇ D hd2jq0i
hd2jd2i

Indeed, it can be checked that

hd2jq00i D hd2j.jq0i � ˇjd2i/
D hd2jq0i � ˇhd2jd2i
D hd2jq0i � hd2jq0i
D 0
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and that

hd1jq00i D hd1j.jq0i � ˇjd2i/ D hd1jq0i � ˇhd1jd2i

Consider the example above, that is,

jq00i D
0
@
0

1

0

1
A � ˇ

0
@
0

1

1

1
A

We have that ˇ D 1
2
; therefore,

jq00i D
0
@
0
1
2

� 1
2

1
A

Indeed

hd2jq00i D 0

as requested.
Vector negation is applied to the case that the word vectors (e.g., jjavai) are

spanned by basis document vectors which provide the possible meanings of the
word. Suppose java is represented by the superposed state vector (3.8) and suppose
it is stripped of both the meanings represented by japii and jislandi. Using vector
negation, the vector of the word stripped of both the meaning given by japii and the
meaning given by jislandi is obtained as follows. First, the vector depurated of the
meaning of API is calculated:

jjava_no_apii D jjavai � hapijjavai
hapijapii japii

For the sake of clarity, suppose the vectors have unitary length:

jjava_no_apii D jjavai � hapijjavaijapii

Then, the vector depurated of the meaning of “island” is calculated from the vector
depurated of the meaning of API:

jjava_no_apii � hislandjjava_no_apiijislandi

If the right-hand side of the latter replaces jjava_no_apii in the earlier subtraction,
we have that

jjavai � hapijjavaijapii � .hislandjjavai � hapijjavaihislandjapii/ jislandi
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Suppose jislandi is subtracted first and japii is subtracted second. The resulting
vector is

jjavai � hislandjjavaijislandi � .hapijjavai � hislandjjavaihapijislandi/ japii

The representations of the words stripped of two meanings subsequently removed
are equivalent only under some simplifying assumptions. If these assumptions
between the three basis vectors cannot be made, the subtractions interfere with each
other, thus meaning that two successive negations represented in vector spaces are
different from two successive negations represented by sets.

The invalidity of these assumptions about the vectors that represent word
meaning gives an additional degree of freedom to the design of IR systems since it
allows the designer to tailor the document ranking resulting from a subtracted word
(e.g., from a query) according to the order of subtraction. However, this causes an
additional degree of complexity to the designer of experiments who has to consider
the possible orders of subtraction when testing whether vector negation is effective
and what order of subtraction is the most effective.

3.6 Semantic Spaces

The use of the QM notions in some contexts of artificial intelligence has been
based on conceptual spaces and reported since Bruza and Cole (2005)’s work.
A conceptual space can be defined as a space where objects are categorized; for
example, a document is about a topic or a term is an instance of a concept. A
conceptual space is thus a space where objects and classes are related together. A
semantic space is a computational approximation of a conceptual space.

3.6.1 Hyperspace Analogue to Language

A common implementation of a semantic space is provided by an algorithm called
Hyperspace Analogue to Language (HAL) which resembles many algorithms used
in IR to compute similarities between words or documents. Given a set of textual
documents and the vocabulary of k distinct words occurring in the documents, HAL
calculates a k � k matrix where an element of the matrix is a measure of word
similarity. A word similarity measure is based on proximity.

The matrix can be constructed by moving a window of a given length over the
set of textual documents, document by document, by one word increment. All words
within the window of the given length are considered as co-occurring with the last
word or the central word in the window with a strength inversely proportional to
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Fig. 3.14 Hyperspace Analogue to Language

the distance between the words. The algorithm of HAL is reported in Fig. 3.14. D
is a subset of documents, w is the window size, and H is the matrix computed by
HAL. Suppose a closeness function is defined to compute the closeness between two
words di; dj of a document d; for example, closeness.di; dj/ D w C 1 � .i � j/; the
algorithm returns a matrix which is symmetric because it needs to be a Hermitian
matrix over the real field for implementing a density matrix; for example, when
the document s is “Extraction of Roots by Repeated Subtractions for Digital
Computers”, the closeness function is w C 1 � .i � j/ and w D 2; we have that

H D 1

18

0
BBBBBBB@

3 2 1 0 0 0

2 3 2 1 0 0

1 2 3 2 1 0

0 1 2 3 2 1

0 0 1 2 3 2

0 0 0 1 2 3

1
CCCCCCCA

extract
root
repeat
subtraction
digital
computer

The highest closenesses are between each word and itself and decrease when the
distance between two words increases until it becomes null because a word is “out
of window.”

Another way to compute a semantic space is to calculate the word similarity
matrix from a document collection after filtering the documents using a query; in
this way, the filtered document subset will be rich of relevant documents. Consider,
for example, the CACM test collection designed and implemented by Fox (1983).
Suppose the documents are filtered by the following query:

What articles exist which deal with TSS Time Sharing System, an operating system for IBM
computers?

in a way that only the documents of the collection that are indexed by at least one
query word are selected. Word similarity has then been computed as the cosine
between the word vectors expressed as vectors of the frequency of a word relative
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to the document lengths. The cosines of the word pairs are reported in the following
matrix:

articles computers deal exist ibm operating sharing system time tss

articles 1:000 0:000 0:000 0:000 0:004 0:000 0:000 0:002 0:000 0:000

computers 0:000 1:000 0:001 0:001 0:001 0:001 0:001 0:001 0:001 0:000

deal 0:000 0:001 1:000 0:006 0:000 0:003 0:001 0:002 0:001 0:000

exist 0:000 0:001 0:006 1:000 0:000 0:003 0:000 0:001 0:000 0:000

ibm 0:004 0:001 0:000 0:000 1:000 0:001 0:001 0:003 0:000 0:000

operating 0:000 0:001 0:003 0:003 0:001 1:000 0:003 0:005 0:001 0:000

sharing 0:000 0:001 0:001 0:000 0:001 0:003 1:000 0:004 0:004 0:012

system 0:002 0:001 0:002 0:001 0:003 0:005 0:004 1:000 0:002 0:003

time 0:000 0:001 0:001 0:000 0:000 0:001 0:004 0:002 1:000 0:006

tss 0:000 0:000 0:000 0:000 0:000 0:000 0:012 0:003 0:000 0:006

This matrix is an implementation of a semantic space whereby the dimensions of
the space correspond to words. Each dimension represents the “state” of the word in
the context of the CACM text collection and of the query from which the semantic
space was computed. As the “state” of the word is implemented by a column vector,
it might be viewed as a state vector as the vector used in QM to describe the state of
a particle.

Similar to the changes of a state vector when the context changes, if the collection
or the query changes, the state vector of the word may also change. In this case,
the state of a word in a semantic space is related to meaning, and this meaning
is a dimension of context. Therefore, the changes to the collection or to the query
influence the meaning of the word and therefore its context.

The dimensions that can be derived from the context given by the collection
and the query can be calculated by the SVD of the word similarity matrix. The
eigenvalues are as follows:

1:013 1:005 1:003 0:999 0:998 0:995 0:995 0:994 0:993 0:006

The eigenvectors are as follows:

articles C0:16 C0:43 �0:49 C0:14 �0:24 C0:52 �0:35 C0:06 �0:26 C0:00
computers C0:16 C0:06 C0:02 �0:97 C0:07 C0:07 �0:16 C0:02 �0:05 C0:00

deal C0:35 �0:49 �0:21 �0:02 �0:24 C0:09 C0:09 �0:71 �0:07 C0:00
exist C0:30 �0:52 �0:28 �0:02 �0:26 C0:03 C0:13 C0:68 C0:13 C0:00
ibm C0:23 C0:44 �0:43 �0:07 �0:11 �0:57 C0:47 �0:04 �0:03 C0:00

operating C0:46 �0:12 C0:04 C0:17 C0:52 �0:30 �0:32 C0:09 �0:52 C0:00
sharing C0:38 C0:18 C0:48 C0:04 �0:04 C0:41 C0:58 C0:08 �0:28 C0:01
system C0:52 C0:20 C0:03 C0:11 C0:31 C0:12 �0:13 �0:07 C0:74 C0:00
time C0:26 C0:14 C0:46 C0:05 �0:66 �0:34 �0:39 C0:02 C0:03 C0:00
tss C0:01 C0:00 C0:01 C0:00 C0:00 C0:01 C0:01 C0:00 �0:00 C1:00
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Fig. 3.15 Semantic space in a coordinate system

Each column is a description of the possible dimensions in which the context is
given by the test collection and the query. The sign of the real number in an
eigenvector indicates whether the corresponding word plays a positive role or a
negative role; for example, the first column corresponds to the first eigenvector
and tells us that every word plays a positive role in the dimension characterized
by the term “operating system” since the top-weighted words are “operating” and
“system.” The second column refers to a dimension characterized by “articles”
and “ibm,” whereas two verbs (“deal” and “exist”) are not participating in the
implementation of this dimension since their sign is negative. If the first two
columns are axes of a coordinate system, Fig. 3.15 shows the contextual dimensions
from a different point of view; the words are placed as points, and the closer two
words are to each other, the more these words describe a context.

Since the column vectors have length 1, they are suited to implementing both
state vectors and projectors. If a column vector on the contrary implements a
projector of an outcome of an observable, it may be used to measure the probability
of the outcome. If a column vector implements a state vector, it defines a distribution
of probability of the outcome of observables measured on the semantic space given
by the test collection and the query. The column vectors can be combined to define
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either superposed states or mixed states; for example, the following vector:

a1

0
BBBBBBBBBBBBBBB@

0:163

0:159

0:349

0:299

0:225

0:460

0:378

0:516

0:256

0:006

1
CCCCCCCCCCCCCCCA

C a2

0
BBBBBBBBBBBBBBB@

0:429

0:061

�0:49
�0:51
0:444

�0:12
0:183

0:195

0:135

0:003

1
CCCCCCCCCCCCCCCA

is a superposed state vector where the ais are amplitude. In contrast, a mixed state is

ja1j2jv1ihv1j C ja2j2jv2ihv2j

where the vis refer to the first two column vectors.

3.6.2 Entanglement in Semantic Spaces

Hou and Song (2009) and Hou et al. (2013) started from HAL to model word
correlation using entanglement. Suppose a semantic space is defined over a vector
space of which a basis includes a vector for each possible combination of the words;
for example, if the semantic space consists of “apple,” “banana,” and “cherry,” the
basis includes eight vectors indexed by a triple of bits such that the first bit refers
to “apple,” the second bit refers to “banana,” and the third bit refers to “cherry”; it
follows that j000i is the basis vector of the event that no word is occurring, j001i
means that only “cherry” is occurring, the occurrence of “apple” and “banana” and
the absence of “cherry” are represented by j110i, and so on.

Suppose a pure state vector is defined over the observable values, these values
being the triples of bits corresponding to the presence/absence patterns of the words.
When three words are considered (e.g., “apple,” “banana,” and “cherry”), the pure
state vector can be written as

j�i D a000j000i C a001j001i C a010j010i C a011j011i C
a100j100i C a101j101i C a110j110i C a111j111i

where

ja000j2 C ja001j2 C ja010j2 C ja011j2 C ja100j2 C ja101j2 C ja110j2 C ja111j2 D 1
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When the vector space of the basis vectors forming the pure state vector is
bidimensional, entanglement means that the pure state vector cannot be expressed as
a tensor product of two one-dimensional basis vectors. Algebraically, entanglement
of a bidimensional pure state vector means that

a00j00i C a01j01i C a10j10i C a11j11i ¤ .a0
0j00i C a0

1j10i/˝ .a00
0 j000i C a00

1 j100i/

where the superscripts of the right-hand side refers to the position of the bit in the
string of the basis vectors of the left-hand side. When the vector space of the state
vector is more than bidimensional, the number of components of a tensor product is
higher. In particular, when j�i is the state vector, a tensor product may be between
two entangled state vectors as follows:

j�i D .a0j0i C a1j1i/˝ .b10j10i C b11j11i/

but

b00j00i C b01j01i ¤ .b0
0j00i C b0

1j10i/˝ .b00
0 j000i C b00

1 j100i/

or another tensor product may be between three state vectors as follows:

j�i D .a0j0i C a1j1i/˝ .b0j0i C b1j1i/˝ .c0j0i C c1j1i/

As explained in Sect. 2.6, an entangled pure state vector can be prepared so that
it cannot be rewritten as a tensor product. However, it is possible that j�i cannot be
written as a tensor product of three bidimensional state vectors, but it can be written
as a tensor product between a bidimensional state vector and a four-dimensional
state vector; for example, j�i D 1p

2
j000i C 1p

2
j111i.

3.7 Contextual Search

IR is intrinsically context dependent since what is relevant to one user in one place
at one time can no longer be relevant to another user in another place or at another
time. It follows that an IR system should be context aware. Search engines have been
capturing some search environment features exploited at retrieval time; examples
are location or search history as surveyed by Melucci (2012b) who earlier explained
in 2008a how context can be viewed as a space of contextual dimensions which
correspond to observables in QM. Consider two contextual dimensions, the user and
the meaning of the term “bank” as depicted in Fig. 3.16. An observable measures
the meaning of “bank” and has two basis vectors jb1i and jb2i; another observable
measures the user and has two basis vectors ju1i and ju2i. The vectors jb1i and jb2i
are mutually orthogonal as they refer to mutually exclusive contextual dimensions;
the same applies to ju1i and ju2i.
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Fig. 3.16 Modeling context using subspaces

A context can be represented by a subspace spanned by basis vectors of the
observable; for example, a context can be represented by the subspace spanned by
jb1i and ju1i, while another context can be represented by the subspace spanned by
jb2i and ju2i. Therefore, a context is represented by a subspace. The vectors jb1i
and ju1i are mutually independent and form a basis of the subspace spanned by
them; they are not necessarily orthogonal to each other since they refer to distinct
observables. The same applies to the context represented by the subspace spanned
by jb2i and ju2i. A subspace includes all the vectors generated by a basis of that
subspace; for example, the vector jxi in Fig. 3.16 belongs to the subspace spanned
by ju2i and jb2i. In general, the subspaces generated by the linear combination of
basis vectors can also describe documents, queries, or other information objects.

To decide whether a dimension exists in an object, a measure of probability is
needed. Therefore, the question is what is the probability that a contextual dimen-
sion is observed given an object represented by the state vector j�i? For example,
if j�i describes a document, what is the probability that the said document has been
generated in the context corresponding to jb1i and ju1i? The solution to this question
would enable documents to be ranked with respect to a query by taking context
into account. Thanks to the Gleason theorem, a state vector j�i simultaneously
assigns probabilities to all questions involving contextual dimensions. The way the
probabilities are assigned causes these probabilities to vary when object y varies,
that is, the distribution of probability is dependent on the object y. As a consequence,
two objects give different probabilities to one question involving some contextual
dimensions. These two objects can then be ranked, thus answering questions like
“In which object is a dimension i more likely to occur?” with the most probable
object being presented first.

The use of vector bases to represent the context that has been exemplified above
can be viewed as a departure from the VSM. The VSM assumes that there is a
unique basis and that every vector is generated by that basis. Moreover, that basis
spans the whole space or the number of basis vectors is the number of dimensions
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of the vector space. In particular, the canonical basis is often assumed as the unique
basis according to the VSM, and then a document or query vector is given by the set
of weights. This view is consistent with the fact that an IR system based on the VSM
cannot take advantage of any context clues since the input of indexing is a document
or a query produced out of context. Therefore, vectors are indifferent to context in
the VSM, i.e., they are generated and ranked in the same way independently of the
context in which the objects are found.

In contrast, a vector basis may be the construct for representing context. The
basic idea is that, first, a vector is generated by a basis just as documents or queries
are generated within a context. Second, every vector can be generated by different
bases, and they belong to infinite subspaces; this is consistent with the fact that every
information object is generated within different contexts. Finally, and as a corollary,
the subspace spanned by a basis contains all the vectors that describe documents or
queries in the same context; in that subspace, the vectors are related to each other
by a linear combination.

3.7.1 Context and Projectors

Suppose fjb1i; : : : ; jbkig is a basis of a k-dimension subspace defined over the
complex field. The way the basis generates an information object vector is given by

j�i D
kX

iD1
pijbii (3.10)

Looking at Eq. (3.10), the linear combination of some basis vectors well reflects the
idea that context influences the materialization of information objects by combining
different factors; for example, a document may be materialized by combining
different meanings or aspects, such as informative content, space, time, or search
history; alternatively, the basis vectors can describe different meanings given to
terms, where each basis vector corresponds to a different meaning. In this way, two
physically equivalent documents or queries can have a different meaning because
their constituent terms correspond to different basis vectors. In this context, the pis
are a measure of the degree to which the respective basis vector jbiis are chosen to
generate j�i; a different choice of the basis yields numerically different vectors.

The basis vectors describing the contextual factors may be mutually oblique, thus
describing some dependence among factors. In contrast, orthogonal basis vectors
cannot describe any dependence. The choice between orthogonal and oblique
basis vectors in general depends on the domain and on design considerations.
If orthonormal vectors represent term meanings, they may not be an appropriate
encoding of the relationships between word senses, which do not need to be
mutually unrelated. The appropriateness of the use of orthonormal or oblique
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vectors depends on the interpretation given to these vectors; for example, an
eigenvector that results from the SVD of a term correlation matrix may be viewed
as “primitive concept,” and therefore, orthogonality may be quite appropriate; if, on
the other hand, the basis vectors are interpreted as overlapped “clusters” of words,
then oblique vectors would be a better choice and another decomposition, such as
Cholesky’s decomposition, would be preferred.

3.7.2 Probability of Context

Modeling documents or queries as random events is common in IR. The presence of
context does not eliminate uncertainty, but rather raises the problem of measuring
the degree to which some contextual factors occur in a document or query vector.
The lack of knowledge about context means that a contextual factor, which is
represented as a subspace, is a random event; for example, it is unknown whether
a query should match an object in a mathematical context or whether a document
can answer a query issued in a touristic context. Therefore, what one needs is a
probability measure associated with the event that some contextual factors occur
in an object. Such a probability measure would provide a measure of the degree
to which the object represented by, say, j�i has been generated in the context
represented by the subspace spanned by a basis B. Such a probability can be
computed following the dictates of QM, that is,

P.y is generated by B/ D tr.Bj�ih�j/ D h�jBj�i

where B is the projector of the subspace spanned by B; note that when j�i is a linear
combination of B, the probability is 1 and when j�i is orthogonal to all the vectors
of B, the probability is 0 and that

P.y is not generated by B/ D 1 � tr.Bj�ih�j/ D tr..1 � B/j�ih�j/

where 1 � B is the projector of the subspace orthogonal to the subspace represented
by B.

The use of the trace rule above to compute the probability of context is explained
by the Gleason theorem illustrated in Sect. A.2.2. This model can help design
interactive and iterative functions starting from a given context represented by B
and then by B, collecting some additional input in terms of basis vectors which are
then added to B for obtaining a new basis B0 and computing a new projector B0
which can finally be used to update the probability of context of information objects
represented by j�i.
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A special case is given by the subspace spanned by a set of relevant document
vectors. In this case, one speaks about probability of relevance which may be viewed
as a special case of the probability of context. The probability that a document
represented by j�i is relevant is given by

tr.Rj�ih�j/ D h�jRj�i

where R is the projector of the subspace spanned by a set of relevant documents.
A connection with LSA introduced by Deerwester et al. (1990) exists here.

LSA decomposes a document-term matrix into three matrices by SVD and aims
at extracting the most “meaningful” factors along which document content is
described. Intuitively, the factors would correspond to concepts or term groups.
The most “meaningful” factors along which the term meaning is described are also
extracted by using the same decomposition. The term co-occurrence matrix usually
built by LSA is Hermitian and can be built so as to have unitary trace. In this way,
the term co-occurrence matrix can be seen as a density matrix. Once a density matrix
is available, a probability distribution of the subspaces, e.g., an information object
vector, can be assigned. In particular, the probability of the context described by a
subspace can be computed by using that density matrix. Since a density matrix is
Hermitian, it can be decomposed as

� D 	21B1 C � � � C 	2k Bk

where 0 � 	2i � 1 and the Bis are projectors to the subspace spanned by the
document vectors.

As explained in Sect. 1.2, a projector is like the sentence “Is this contextual factor
occurring in this object?” which is either true (eigenvalue 1) or false (eigenvalue 0).
A density matrix, therefore, is a linear combination of as many yes/no questions as
the distinct eigenvalues, and the probability that the answer is “yes” is provided by
the geometry of the subspaces. In other words, a density matrix incorporates the
information about the occurrence of some contextual factors in terms of questions
whose answers are subject to probability measures. Moreover, the eigenvectors of �
provide the maximum likelihood estimators of the projector of the subspace. In other
words, a basis can be seen as the parameter of a probability distribution attached
to a random variable. In statistics, sample data are drawn in order to estimate the
unknown parameter. Similarly, a term co-occurrence matrix can be seen as the
sample being drawn to estimate the basis and the projector to the subspace. If the
sample is assumed to be drawn from a context, the eigenvectors of � are the most
likely factors of that context, and the 	2i s are the probabilities that the corresponding
projectors contribute to the construction of the context represented by �.
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3.8 Ranking Principle

A quantum PRP was proposed by Zuccon et al. (2009). This principle is based on the
analogy between the double-slit experiment illustrated in Sect. 2.5 and the scenario
in which a user has to decide whether to stop searching or to continue browsing
the next document of a ranked document list after browsing until the last visited
document.

Following the analogy with the double-slit experiment, the photon corresponds
to the user and a slit represents a document, the event of passing from a slit
is viewed as the action of examining the list of retrieved documents, and the
measurement performed on the photon when it passed through a slit corresponds to
the measurement of the action performed by the user, i.e., either continue searching
or stop searching as depicted in Fig. 3.17 which should be compared with Fig. 2.11.

3.8.1 Probability Ranking Principle

Although the process of visiting a retrieved document list is quite complex, an IR
system usually utilizes a much simpler model and applies the PRP to decide the n-th
document in the list.

The PRP dictates that the best retrieval performance measured in terms of
expected recall is achieved when the n documents with the highest probability of
relevance are inserted in a list of n retrieved documents. This selection is performed
one document at a time, and the decision about one document is taken independently
of the decisions taken about other documents. The underlying assumption is that a
user would view one document at a time, and viewing a document is an action
independent of viewing other documents as if the user were receiving one document
at a time in a sequential manner.

Fig. 3.17 The idea of the quantum PRP
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According to the PRP, the expected recall of this strategy is the sum of the
probability of relevance calculated for each retrieved document in the list, that is,

p1P.X D 1j�1/C � � � C pnP.X D 1j�n/

where �i is the event that the user is viewing the i-th document in the list with
probability pi and X D 1 is the event that the document is relevant (and the user
may stop searching). Using the trace rule, we have that

P.X D 1j�i/ D pitr.j1ih1j�i/ D pih1j�ij1i

where j1ih1j is the projector of the event of relevance and �i is the density matrix
of the state of the interaction step when the user is viewing the i-th document in the
list. The expected recall is then based on the following mixture of density matrices:

p1�i C � � � C pn�n

This situation is similar to the one of the double-slit experiment where one slit
is closed while the other slit is open. Similarly to when a photon passes through
only one slit, the user decides to stop browsing, views only the n-th document, and
ignores the others.

According to the PRP, the best decision taken by the IR system is proposing the
n-th document with the highest probability of relevance to the user. The decision is
independent of the documents already ranked and browsed by the user. Actually, the
process of visiting a retrieved document list is much more complex than a straight
list of links to the documents; a user may want to stop visiting, to go back to the
previously visited documents, to skip the next retrieved documents or even pages
of retrieved documents to arrive at a “random” document, or to type a Uniform
Resource Locator (URL) directly in the toolbar; such a complexity was modeled
partially by Brin and Page (1998) and further developed in the huge literature
devoted to PageRank or devoted to other ranking principles such as Fuhr’s (2008).

3.8.2 Quantum Probability Ranking Principle

In addition to the range of operations performed when visiting a list of retrieved
documents, there is the situation in which a user is not only viewing the next doc-
ument (or snippet), but he is also considering although unwillingly the documents
thereafter. Suppose a user is browsing a ranked document list; this situation also
comprises the event that the user just started to browse the list and no document has
been visited yet. When the user has just viewed the n � 1-th document, he is going
to view the n-th and decide whether to stop searching because the n-th document is
deemed relevant.
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The quantum PRP assumes that the user is viewing both documents and that the
state of the interaction is a superposition; in particular, the state of viewing the n-th
document is superposed on the state of viewing the n � 1-th document. The state of
the interaction is then described by the following state vector:

j�i D aj�ni C bj�n�1i jaj2 C jbj2 D 1 h�nj�n�1i D 0

where �n is the state vector of the interaction when the user is viewing the n-th
document and a the amplitude of the probability that the user is viewing the n-
th document. Therefore, instead of viewing only the n-th document, the user is
simultaneously viewing two documents, i.e., both the n-th document and the n�1-th
document. This situation is similar to the one of the double-slit experiment where
both slits are open.

The probability that the user considers the n-th document relevant and stops
searching can be computed for the superposed state. Suppose the user’s action is
described by an observable with the basis vectors j0i (to continue searching) and
j1i (to stop searching at the current document). It follows that the probability of this
event for the superposed state is

jh1j�ij2 D jaj2jh1j�nij2 C jbj2jh1j�n�1ij2 C I.�n; �n�1/

where I.�n; �n�1/ is the interference term between �n and �n�1. As the n � 1-th
document has already been viewed by the user, it is fixed for all the documents that
remain to be ranked, and the principle states that the best decision is to select the
document n that maximizes

jaj2jh1j�nij2 C I.�n; �n�1/

The estimation of this quantity is not straightforward except for the first term.
Indeed, jaj2 can be estimated by some function decreasing with n as the Normalized
Discounted Cumulative Gain (NDCG) function, for example. The probability
jh1j�nij2 can be estimated by the classical probabilistic models since it is the
probability of relevance of the n-th document in the list. The problematic situation
is given by the interference term. This term can be written as

2jajjbjjh1j�nijjh�n�1j1ij cos�

where � is the angle of the complex number

z D ab�h1j�nih�n�1j1i

At first sight, the interference term is a real number which might be estimated
after estimating the numbers multiplied in it. However, this is not the only solution
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since z is a complex number and there is an infinity of complex numbers z with a
given jzj. As an alternative, the algebraic structure of z suggests that it describes
some relationships between the observable of relevance and the state vectors of the
documents viewed by the documents and between the documents thereof. However,
it is still unclear, and open to further research, what these relationships are since the
nature and the role played by the complex numbers need further investigation.

An approach to estimating the interference term may be based on estimating
the moduli and then � under the assumption that this angle may be like the angles
encountered in the VSM (e.g., the angle between a query vector and a document
vector). However, � is part of z D cos � C i sin � . This is the reason why � cannot
be considered as the angle between two vectors as it might be suggested by the VSM
because this � is not referring to any angle, and the angles suggested by the VSM
are defined within a vector space over the real field, whereas QM is defined within
a vector space over the complex field.

3.9 User Interaction

The issues of user interaction in IR regard many aspects ranging from those
extremely related to the cognitive level of the interaction to those related to the
practical formulation and expansion of the user’s queries. The application of the
QM notions and formalism to the aspects of user interaction in IR has mainly
concentrated on the algebraic representation of the notion of user’s information
need, information space, query, and other interaction features; the connections and
the similarities with the research contributions to concept combination (Sect. 3.4),
word ambiguity (Sect. 3.5), semantic spaces (Sect. 3.6), and contextual search
(Sect. 3.7) should not come as a surprise.

There are three main streams of research on the application of the QM notions
and formalism to the aspects of user interaction in IR: the combination of different
contextual variables (e.g., interaction features and informative content features)
within a common complex vector space to implement implicit feedback algorithms
initiated by Melucci and White (2007), Melucci (2008b), and Melucci (2008a);
the representation of information needs in a complex vector space and the use of
the quantum mechanical operators to calculate the probability of relevance and the
information need evolution initiated by Piwowarski and Lalmas (2009); and the
representation of polyrepresentation in a complex vector space and the use of the
quantum mechanical operators to describe complex information spaces initiated by
Frommholz et al. (2010).
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3.9.1 Implicit Relevance Feedback

The framework based on complex vector spaces illustrated in Sect. 3.7 is able to
capture multiple aspects of user interaction using some notions of QM. The model
uses display time, document retention, and interaction events to build a multifaceted
user interest profile. Each facet of a profile can be represented by a vector which is
usually an eigenvector. The set of the vectors representing the profile facets forms
a basis of a vector space. Documents are matched against a user interest profile by
computing a function of the distance between the document vector and the subspace
spanned by the basis representing the user interest profile such that the closer the
vector is to the subspace, the more the object is relevant to the profile.

To implement these vector spaces, the vectors that represent a user interest profile
are computed by the SVD of the correlation matrix between the variables observed
from a set of documents viewed by the user during the course of his search. The
function of the distance between the document vector and the subspace spanned by
the eigenvector is then used as a measure of the distance between the document and
the profile. In the framework, the vectors that represent the profile are computed
by the SVD of the correlation matrix between the variables observed from a set
of documents seen by the user during the course of his search. As an example,
suppose the following six variable (column) vectors have been observed after seeing
six (row) documents:

A D

0
BBBBBBBBB@

display time scrolling saving bookmarking access frequency webpage depth

1 0 3 7 6 7

2 0 9 7 5 6

2 0 7 6 4 5

3 4 8 6 7 7

4 1 3 6 5 5

1 28 7 7 5 4

1
CCCCCCCCCA

where the depth of a webpage is the number of links from the root of the website to
the webpage itself. The following variable correlation matrix is then computed:

S D

0
BBBBBBB@

C1:00 �0:42 �0:14 �0:78 C0:11 C0:05
�0:42 C1:00 C0:19 C0:38 �0:05 �0:62
�0:14 C0:19 C1:00 C0:07 �0:03 �0:04
�0:78 C0:38 C0:07 C1:00 C0:00 C0:00
C0:11 �0:05 �0:03 C0:00 C1:00 C0:75
C0:05 �0:62 �0:04 C0:00 C0:75 C1:00

1
CCCCCCCA

The values of an eigenvector of S are scalars between �1 and C1; the further a value
is from 0, the more the corresponding value is a significant descriptor of the profile
facet represented by the eigenvector. The value can be likened to an index term
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weight. The sign can express the contrast between variables and then the presence
of subgroups of variables in the same facet; for example, the first eigenvector is

jb1i D

0
BBBBBBB@

�0:479
C0:516
C0:170
C0:436
�0:308
�0:436

1
CCCCCCCA

and it tells us that saving is of little importance, since jb13j D 0:170 is relatively
close to zero, while the most important variables tend to cluster: scrolling and
bookmarking tend to be performed together (b12 D 0:516; b14 D 0:436) and tend
not to be performed when display time, access frequency, and browsing (b11 D
�0:479; b14 D �0:308; b16 D �0:436/ increase. Let jyi be an unseen document.
The function of the distance between the document vector and the subspace spanned
by the eigenvector is then used as a measure of the distance between the document
and the profile facet. Therefore, the probability that y is pertinent to the facet
represented by jb1i is jhyjb1ij2; for example, if the unseen document vector is, say,

jyi D

0
BBBBBBB@

C0:71
0

0

0

C0:71
0

1
CCCCCCCA

then the probability is about 0:09.

3.9.2 Entangling Relevance and Behavior

The interaction involving a user which accesses a document for assessing the
relevance for the task he is performing can be depicted in Fig. 3.18. The whole user-
document interaction can be modeled as a composite system made of one document
and one user. The system that results from the composition of one document and
one user can fully be described by the state vector j�i. It is of course a reduction
of the representation that one should define if the real interaction setting were taken
into account. However, the mathematical modeling of the user-system interaction is
a very complex, if not prohibitive, task. The decision of modeling the interaction as
a quantum composite system, which is in turn described as a state of the product
space, comes from the objective of modeling Implicit Relevance Feedback (IRF) by
using the quantum mechanical framework.
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Fig. 3.18 Illustration of the interaction between a user and a document

The overall interaction system represented by the state vector j�i consists of two
subsystems A and B. The system A refers to the visited document, whereas B refers
to the user. A document is subjected to some observables such as the data about
the visits paid to the document. Similarly, a user is subjected to some observables
such as the relevance assessments made by him about the document. The document
A and the user B are described by their respective state vectors j�Ai and j�Bi. The
system A and, consequently, the state j�Ai are of course an abstraction of the visited
document under the assumption that the visit of a document can be reduced to a state
vector. Similarly, the system B and, consequently, the state j�Bi are an abstraction
of the user who visited the document.

The state vector j�i is an abstraction of the interaction between the user and the
document. When separable, j�i is the tensor product j�Ai˝j�Bi. Separability means
that the observation of one variable in A is uncorrelated with the observation of
another variable in B. However, j�i may be entangled, thus witnessing a relationship
between A and B. Under the hypothesis of entanglement, if one looks this interaction
within the quantum mechanical framework, this hypothesis means that the states
of the interaction between the user and document exist without being decomposed
into distinct states j�Ai and j�Bi. This means that the interaction may in principle
be described by an entangled state j�i that cannot be explained in terms of j�Ai
and j�Bi.

The theory of entanglement and of density matrices suggests that the relationship
between the behavior of the user when assessing document relevance and the
way the document is visited can also be explained by the uncertainty about the
preparation of the states of A and B. Although the connection might be exploited
for IR purposes in further investigation, it seems that the behavior of the user when
assessing the document relevance can be related to the style of interaction with
the visited document; here, the style of interaction is condensed in a vector of
values which measure the quantity of each feature, e.g., display, observed during
interaction; the style is not therefore referred to the user, but rather to what one can
observe about the visit of a document.
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The formalism adopted in this section and the hypothesis that entanglement
occurs in the user-document interaction recall the notion of collapse. When a user
is visiting a document, the state of the system collapses to the pure state jiAi of
the observable that describes the measurement of the style of interaction. This
happens because the user actually adopts a style of interaction when he accesses
the document. When, for example, the user frequently clicks on the vertical scroll
bar, the superposition of the basis states jiAis collapses onto one of these basis states.
After the state has collapsed, the coordinates of the other features take the values of
the pure state onto which the original state collapsed. If the style of interaction is an
observable, the collapse happens when this observable is measured. Similarly, when
a user is assessing the relevance of a document, the state of the respective system
B collapses to the pure state jiBi of the observable that describes the measurement
of relevance. This happens because the user actually decides that the document is
relevant or not. What if the composite state of A ˝ B is entangled? How does the
state of B behave? What pure state of B does it collapse to?

The latter question is of interest in the domain of IR and in particular of IRF.
Collapse of an entangled state means that the measurement of, say, A also induces
a collapse of the state of B and vice versa. When the state of A ˝ B is separable
into two distinct states, the measurement of a property does not influence the state
of the other observable. In other words, when a hypothetical IR system equipped
with an IRF device wonders if a document is relevant, the state of the observable
corresponding to the style of interaction collapses; for example, if

j�i D 1p
2

j1Ai ˝ j1Bi C 1p
2

j2Ai ˝ j2Bi

is the state before the measurement of the style of interaction, which yields 1A, then
the state is j1Ai ˝ j1Bi after the measurement, that is, the state of B collapses to
j1Bi. What is unclear is when the collapse occurs, given that it occurs. This is a
fundamental question, and were these questions to be answered, the representation
of the user and the visited document provided in this section would be a useful
language for understanding how the interaction between user and system can be
leveraged for improving retrieval effectiveness.

3.9.3 Information Need Representation

In this framework, the user’s Information Need (IN) can be represented as a particle
(e.g., a photon) subject to measurement through a suite of observables such as
document relevance. It is also assumed that the user’s IN is described by a pure
state vector, i.e., as a unit vector in a complex vector space and that this state
evolves while the user is interacting with the IR system. According to the QM
framework, this pure state vector determines a probability distribution over the
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different observables; for example, there might be a relevance observable that
provides the probability of relevance given a pure state vector representing an IN.

However, at the very beginning of a search process, an IN is not pure because
it cannot be described precisely; if it were, it would be possible to meet the need
retrieving all and only the relevant documents; the state is rather a mixture of all
possible pure needs; therefore, it should be described by a mixed density matrix,
and one can only know that the user is in one of all the possible pure vector states
with a given probability.

The notion of superposition is crucial in describing how the INs are represented
within the quantum mechanical framework. Suppose the vector space in which the
pure state vector of an IN lies is spanned by a basis of two vectors. In particular,
suppose that were the user asked to express the building blocks of his needs, he
would list two words, i.e., “coffee” and “island.” To these two words, two basis
vectors can be defined, that is,

jcoffeei D
�
1

0

�
jislandi D

�
0

1

�

These two vectors are mutually orthogonal5 since they express two mutually
occurring events, that is, were the user asked to express a word, he would express
one word at a time, either “coffee” or “island.” In order to represent a user looking
for “java,” it is assumed that this can be represented by (the projector associated to)
the pure state vector

jjavai D 1p
2

jcoffeei C 1p
2

jislandi D 1p
2

�
1

1

�
(3.11)

which is a superposition representing an IN different from the need represented by
the vectors jcoffeei and jislandi.

Alternatively, a mixture can be used to say that the user is interested in either
“coffee” or “island” and that “java” should be intended as either the informal way
to mean “coffee” or the large island in the Malay Archipelago. When a mixture is
used, we have a mixed density matrix as follows:

� D 1

2

�
1 0

0 0

�
C 1

2

�
0 0

0 1

�
(3.12)

which is to be interpreted by saying that with the probability that one half of the IN
is about coffee and with the probability that one half is about the island.

5It should be recalled that the vectors of a basis might not be orthogonal since independence is the
only requirement for a basis.
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Fig. 3.19 Polyrepresentation, superposition, and mixture

Suppose there are three observables; each observable gives two mutually exclu-
sive outcomes, that is, a document either is or is not about a topic. These three
observables refer to “coffee,” “island,” and “java” and consist of the basis vectors
jcoffeei, jislandi, and jjavai and the corresponding orthogonal vectors. Therefore,
there are the following three pairs of basis vectors where a row refers to an
observable as depicted in Fig. 3.19:

jcoffeei D
�
1

0

�
jnot coffeei D

�
0

1

�

jislandi D
�
0

1

�
jnot islandi D

�
1

0

�

jjavai D 1p
2

�
1

1

�
jnot javai D 1p

2

�
1

�1
�

When the user’s IN is described by the mixed state (3.12), the probability that a
document is about “coffee” is

tr.�jcoffeihcoffeej/ D hcoffeej�jcoffeei D 1

2

as expected since the IN is either “coffee” or “island” with uniform probability;
therefore, the probability that a document is about “island” is again 1

2
. The

probability that a document is about “java” is still 1
2
, that is, being

tr.�jjavaihjavaj/ D hjavaj�jjavai D 1

2

Since the superposition (3.11) is not representing a disjunction between “coffee”
and “island,” it is representing a new concept stemming from the superposition of
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two distinct concepts represented by jcoffeei and jislandi. The calculation of the
latter probability can indeed be stepped as follows:

hjavaj�jjavai D
�
1p
2

hcoffeej C 1p
2

hislandj
�
�

�
1p
2

jcoffeei C 1p
2

jislandi
�

D
�
1p
2

hcoffeej�C 1p
2

hislandj�
��

1p
2

jcoffeei C 1p
2

jislandi
�

Since

� D 1

2
jcoffeeihcoffeej C 1

2
jislandihislandj

we have that

1p
2

hcoffeej� D 1

2

1p
2

hcoffeejcoffeeihcoffeej C 1

2

1p
2

hcoffeejislandihislandj

that is,

1p
2

hcoffeej� D 1

2

1p
2

hcoffeej

and

1p
2

hislandj� D 1

2

1p
2

hislandj

It follows that

hjavaj�jjavai D
�
1

2

1p
2

hcoffeej C 1

2

1p
2

hislandj
��

1p
2

jcoffeei C 1p
2

jislandi
�

D 1

4
hcoffeejcoffeei C 1

4
hislandjislandi

D 1

4
C 1

4

D 1

2

When the user’s IN is described by the pure state (3.11), the probability that a
document is about “coffee” is still

tr.jjavaihjavajcoffeeihcoffeej/ D jhjavajcoffeeij2 D 1

2
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which is equal to the probability that a document is about “island,” but not to the
probability that a document is about “java,” the latter being

tr.jjavaihjavajjavaihjavaj/ D jhjavajjavaij2 D 1

Therefore, as explained by Hughes (1989), the superposition (3.11) is distin-
guished from the mixture (3.12) not by the probabilities it assigns to the “coffee”
and “island” observables but by those assigned to the “java” observable. It is
the impossibility of expressing the “java” observable in terms of the “coffee”
and “island” observables that enables us to distinguish between superposition and
mixture. The graphical illustration of these vectors in a bidimensional plane shown
in Fig. 3.19 highlights that the fact that different probabilities are assigned to the
“java” observable is associated with the fact that the subspaces representing that
observable are obliquely inclined to those representing the “coffee” and “island”
observables.

So far, the difference between this model of INs and what the VSM provides is
not apparent. An IN like the one symbolized by “java” and its superposition jjavai
might be managed by an IR system based on the VSM by a query vector spanned
by two basis vectors jcoffeei and jislandi (see also Sect. 1.3); therefore, if both the
query vector and the document vector are (3.11), the score given by the system to
the document is maximal. Actually, the difference is due to interference. Suppose a
document is represented by

jxi D ajcoffeei C bjislandi jaj2 C jbj2 D 1

If the inner product function between this vector and (3.11) of the VSM were
utilized, the score assigned to the document would be aCbp

2
. Besides, this is a complex

number, which would make ranking impossible; the other difference is that the trace
rule of the quantum mechanical frameworks would give

jhxjjavaij2 D jaj2 C jbj2
2

C I

where the last term of the right side is an interference term.

3.9.4 Document Polyrepresentation

Polyrepresentation consists of representing document content using different, possi-
bly overlapping sources of evidence under the assumption that the documents that lie
in this overlap are assumed to be relevant given a user’s information need as reported
by Ingwersen and Järvelin (2005). The principle that underlies polyrepresentation
is that two documents that are similar to each other with respect to different
representations tend to be relevant to the same information need.
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The rationale of polyrepresentation is that when users seek information, the
relevance assessment about a document depends on different dimensions and in
general on more dimensions than the usual topical relevance used by IR systems. It
is therefore not only a matter of how many query terms are contained in a document
but also of the appropriateness of a document to the user’s context as addressed in
Sect. 3.7. Indeed, besides document topical content, the user’s relevance assessment
about a document involves different contextual aspects of a document such as
query intent, personal interests, and document quality which interplay to determine
whether a document contains information relevant to the user’s information need,
according to Melucci (2012b).

Polyrepresentation was not developed in a mathematical framework encompass-
ing it completely and precisely for some years until it was described within the
framework of QM. Such a framework should describe various aspects of document
representation: fusion of document content representations, temporal aspects and
dynamic changes, document structure and layout, and the relationships between
these aspects according to Frommholz et al. (2010).

The quantum mechanical framework appears to provide such a mathematical
language of polyrepresentation. The key idea is to define a series of bases of
a complex vector space where each basis refers to an observable applicable to
documents and INs; for example, a set of textual passages can be in correspondence
with a vector basis, the list of authors of a library can be in correspondence with
another vector basis, and so on for other observables other than index terms, ratings,
reviews, etc. If these bases lie in the same vector space, they can be combined by
linear combination so that each vector of a basis can be a liner combination of the
vectors of another basis. If these bases lie in different spaces, they can be combined
by tensor products so that additional larger bases can be constructed by tensoring
smaller bases together; for example, given a basis about authors (e.g., jsmithi and
jmilleri) and a basis about terms (e.g., japplei, jbananai, and jcherryi), an additional
larger basis can be constructed by tensoring the smaller ones together, thus obtaining
japple; smithi, jbanana; smithi, jcherry; smithi, japple;milleri, jbanana;milleri, and
jcherry;milleri. Documents and INs can then be expressed using these larger bases,
and the trace rule can be applied accordingly.

3.10 Relevance Detection

Chapter 1 explained that the probabilistic models used to design and implement
current systems are basically based on the theory for which events and probability
distributions are represented, respectively, as sets and set measures which are in
accord with Kolmogorov (1956)’s axioms; for example, the retrieval results are
subsets of documents indexed by a term, indexed by a term and another term,
not indexed by the term, and so on. Some measures of probability of relevance
are applied to the document subsets. Hence, given some terms, the quest is how to
optimally rank subsets of documents by some measure of relevance. Given that the
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probabilities of relevance of each document are as accurately estimated as possible,
document ranking is optimized with respect to recall if the documents with the
highest precision and fallout not greater than a given level are retrieved—the latter
is the PRP stated in the paper by Robertson (1977).

3.10.1 Ranking Using Subsets

In Sect. 2.7, we introduced how detection can be viewed in QM. In this section, we
utilize detection as an approach to modeling relevance detection and document rank-
ing. Consider the subset of the documents indexed by a given term. Algebraically,
this subset corresponds to, for example, j1i and j1ih1j which are, respectively, the
vector spanning and the projector of the subspace corresponding to the subset of the
documents indexed by the term; the complement subset can be represented by j0i
and j0ih0j.

Consider a situation in which documents are emitted by a source and set to a
given pure state of relevance (i.e., relevant or not relevant), transmitted through
a channel, and received by a detector which has to decide whether the state of
the document (i.e., relevant or nonrelevant) is using symbols such as index terms;
Fig. 3.20 depicts this setting.

The index term frequencies observed can serve to decide about relevance. The
decision taken depends on the range of frequencies to which an observed frequency
belongs. If the observed frequency belongs to a certain region of acceptance, the
retrieval system decides that a document was, say, relevant; otherwise, it was not
relevant. If more index terms are used to decide about relevance as is customary
when a query is submitted by a user, the IR system computes a score for each
document according to a model; the score is then matched against a region of
acceptance used to retrieve or rank the documents.

In IR, the pure state vectors j�0i and j�1i might, respectively, correspond to
“nonrelevance” and “relevance,” whereas x refers to the outcome of a binary variable
describing the occurrence of a given index term; one can conceive other states such
as aboutness, authoritativeness, or other similar properties. Usually, the symbols
used to encode the occurrence of a term are 0 and 1, thus obtaining

P.term occurs in a relevant document/ D jh1j�1ij2

Fig. 3.20 IR as a detection problem
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and

P.term occurs in a nonrelevant document/ D jh1j�0ij2

In IR, the following simple setting can be prepared. Each document is indexed by
only one term x such that the observable can yield either 0 or 1. A document may
be either relevant (i.e., in state �1) or nonrelevant (i.e., in state �0). Suppose it is
decided to retrieve a document when the term occurs; otherwise, the document is
not retrieved; retrieving a document means that the decision is that the document is
relevant. Algebraically, we have that A0 D f0g;A1 D f1g and then that

A0 D j0ih0j A1 D j1ih1j

Suppose that relevance is described by two pure state vectors j�0i and j�1i. It
follows that

Qd D q0jh0j�0ij2 C q1jh1j�1ij2

As another example, suppose an IR decides to always retrieve the document, that is,
A0 D ;;A1 D f0; 1g. It follows that

A0 D 0 A1 D j0ih0j C j1ih1j D 1

and that

Qd D q0tr.0j�0ih�0j/C q1tr.1j�1ih�1j/ D q1tr.j�1ih�1j/ D q1

that is, the decision is the probability of correct when the document is relevant a
priori.

When the density matrices representing the states of a particle are mixtures
of pure density matrices, the optimal projectors have a special form. Suppose a
collection of documents can be partitioned in k D 2d subsets corresponding to
the possible combination of the occurrence of d index terms; for example, when
d D 2 index terms are considered, k D 4 document subsets can be built, i.e., the
subset of documents not indexed by either term represented by the basis vector
j00i; the subset of documents indexed by the first term, not by the second term, and
represented by the basis vector j10i; the subset of documents indexed by the second
term, not by the first term, and represented by the basis vector j01i; and the subset
of documents indexed by both terms and represented by the basis vector j11i.

Each basis vector corresponds to a projector; when d D 2, we have four
projectors:

C0 D j00ih00j C1 D j01ih01j C2 D j10ih10j C3 D j11ih11j
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where

C0 C C1 C C2 C C3 D 1 CiCj D 0 i ¤ j

Consider the following mixed density matrices:

�0 D p0;0C0 C � � � C p0;k�1Ck�1
�1 D p1;0C0 C � � � C p1;k�1Ck�1

where pj;s is the probability that a document contains the terms according to jsi, s
being a string of 0s and 1s (e.g., s D 10) when the state is �j; for example, when
k D 22 D 4, we have that

�0 D p0;0C0 C p0;1C1 C p0;2C2 C p0;3C3

�1 D p1;0C0 C p1;1C1 C p1;2C2 C p1;3C3

In general, it follows that the optimal projector of

q1�1 � q0�0 D .q1p1;0 � q0p0;0/C0 C � � � .q1p1;k�1 � q0p0;k�1/Ck�1

can be defined as

Q1 D
X

q1p1;s>q0p0;s

Cs

In IR, this means that the documents represented by the string s such that the
likelihood of relevance (p1;s) is greater than the likelihood of nonrelevance (p0;s) are
retrieved. In actual application, an IR system not only decides whether to retrieve
the documents represented by s on the basis of the likelihood of relevance; it also
ranks the documents by the ratio between the likelihoods (i.e., the likelihood ratios)
or by the difference between the likelihoods. Consider the following example. A
document collection is indexed by one index term only. This term can occur in a
relevant document with probability p1 and can occur in a nonrelevant document
with probability p0. Occurrence can be represented by the pair of projectors

j0ih0j D
�
0 0

0 1

�
j1ih1j D

�
1 0

0 0

�

and the relevance states are represented by the density matrices

�0 D
�

p0 0

0 1 � p0

�
�1 D

�
p1 0

0 1 � p1

�
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It can easily be checked that

p0 D tr.�0j1ih1j/ p1 D tr.�1j1ih1j/

The problem is to find a partition of the set of observable values f0; 1g such that
the probability of correct decision is maximum. Consider the SVD of the matrix
q1�1 � q0�0 which yields the following decomposition:

.p1q1 � p0q0/

�
1 0

0 0

�
C ..1 � p1/q1 � .1 � p0/q0/

�
0 0

0 1

�

The solution depends on the eigenvalues and ultimately on p0; p1. The region of
acceptance is given by the projectors whose eigenvalues are positive. Suppose q0 D
q1 D 1

2
; we have that

p1q1 � p0q0 > 0 if and only if p1 > p0

and that

.1 � p1/q1 � .1 � p0/q0 > 0 if and only if p1 < p0

The eigenvalues cannot both be positive, and therefore, �1 cannot be accepted
regardless of the value that is observed. Therefore,�1 is accepted when 1 is observed
(i.e., the index term occurs) and p1 > p0. Note that this result is the same as the
result of the classical BIR model illustrated, for example, by van Rijsbergen (1979).
This example suggests that the projectors providing a solution to the maximization
problem are a combination of the projectors of the observable corresponding to
the terms used to encode the documents. However, this is not always the case as
illustrated in the next section since there are more subspaces than subsets.

3.10.2 Ranking Using Subspaces

There are projectors for which a subset of documents does not exist since they are
in between and oblique to the subspaces; an example is provided in Fig. 2.5 where
both j�0i and j�1i span rays oblique to those spanned by j0i and j1i. The calculation
of j�0i and j�1i is provided in Sect. 2.7. Suppose that the subspaces that correspond
to the subsets (i.e., ;, L.0/, L.1/, or L.0/ _ L.1/ using the notation of Sect. 2.2)
yielded by dint of the PRP are rotated to get j�0i and j�1i. Computing these oblique
eigenvectors is like rotating the observable vectors j0i; j1i of Fig. 2.5 by a given
angle. When the rotation angle is a multiple of 
=2, the resulting vectors are
orthogonal to the observable vectors. In this event, the resulting vectors correspond
to projectors orthogonal to the projectors defined from the observable vectors. Since
they are orthogonal, they represent compatible observables. When the observables
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are compatible, subspaces turn out to be equivalent to subsets and can then be
subject to set operations (see Sect. 1.2 and also the book of Griffiths (2002)), and
the rotation does nothing other than define alternative subsets of the space of the
observable values and therefore define alternative regions of acceptance.

As the PRP states the best region of acceptance in terms of recall and fallout, the
rotation to orthogonal subspaces only defines worse regions of acceptance than that
stated by the PRP. This means that when the subspaces are equivalent to subsets,
the sets that would correspond to the eigenvectors j�0i and j�1i can classically be
reformulated in terms of the sets of documents corresponding to j0i and j1i, and
thus, the eigenvectors represent something different from the observable vectors, yet
they can be interpreted as Boolean expressions of the propositions corresponding
to the observable vectors. It may turn out that after a rotation by a multiple of

=2, the eigenvectors j�0i and j�1i that result from the rotation are the negation
of the observable vectors j0i and j1i, and therefore, the physical interpretation of
the eigenvectors is straightforward; for example, after a rotation by exactly 
=2, the
eigenvectors j�0i and j�1i that result from the rotation are such that j�0i D j0i and
j�1i D j1i, and therefore, the physical interpretation of the eigenvectors is the same
interpretation as the observable vectors.

When the angle is different from a multiple of 
=2, j�0i and j�1i of the figure
are obtained, and the subspaces are not equivalent to subsets. When the subspaces
are not equivalent to subsets, the sets that would correspond to the property that
corresponds to an observable vector cannot be observed. Although the PRP states
the best region of acceptance in terms of recall and fallout when the density matrices
are mixtures (see Sect. 2.7), the rotation to orthogonal subspaces defines a region
of acceptance which is different from that stated by the PRP. This means that
when the subspaces are not equivalent to subsets, the sets that would correspond
to the eigenvectors j�0i and j�1i cannot classically be reformulated in terms of
the sets of documents corresponding to j0i and j1i, and thus, the eigenvectors
cannot be interpreted as Boolean expressions of the propositions corresponding to
the observable vectors. In general, the eigenvectors j�0i and j�1i cannot classically
be reformulated in terms of j0i and j1i, and thus, the eigenvectors cannot be easily
interpreted. The fact that optimal projectors of “oblique” subspaces can be found is
discussed in the next section.

3.10.3 Optimal Ranking

From a detection point of view, the question is whether the subspaces spanned by
j�0i and j�1i can be more powerful than the subsets dictated by dint of the PRP. To
answer this question, Melucci (2012a) wondered what would happen to ranking and
then to the PRP if a document collection were represented using vector subspaces.
It was found that oblique subspaces that can be more effective than the classical
subsets of the PRP can be found if the probability distributions are provided by pure
state vectors. Suppose j�0i; j�1i are two pure state vectors. The region of acceptance
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that has a higher probability of detection at every probability of false alarm than the
region of acceptance given by the PRP applied on sets is given by the eigenvectors
j�0i; j�1i of (2.12) which are depicted in the tridimensional space in Fig. 2.5. The
probability of the correct decision Qd calculated using �0 and �1 is never less than
the probability of the correct decision Pc calculated when the region of acceptance
is given by document subsets at every probability of false alarm. Therefore, ranking
by document subspaces is in principle more effective than ranking by document
subsets, and a new ranking principle can be stated to make retrieval more general
than the PRP. These results raise some issues though.

The rotation that moves j0i and j1i to j�0i; j�1i unfortunately does not corre-
spond to a physical transformation of terms and document subsets to other sets. For
now, we have to accept it as adequate despite wanting something more concrete
and think about this transformation on quite an abstract level. This situation is
known as incompatibility between observables in QM since j�0i; j�1i are only two
superpositions of the observable given by j0i and j1i.

The impossibility of expressing j�0i and j�1i using “classical” document subsets
points out the issue of the measurement of the observable vectors. Measurement
means the actual finding of the presence/ absence of an observable via an instrument
or device. The measurement of term occurrence is straightforward because occur-
rence is a physical property measured through an instrument or device (a program
that reads texts and writes frequencies is sufficient). Using the classical probability
theory, if we observe a word, we measure the probability that every document
described by the word is either relevant or not relevant. This view promptly links
to the view of the document collection as an ensemble in which the uncertainly is
given by the distribution of the observable values in the ensemble.

In contrast, the measurement of what corresponds to j�0i and j�1i is much more
difficult because no physical property corresponds to them and cannot be expressed
in terms of word occurrence as outlined by Griffiths (2002, pages 54–64). Thus,
the question is: what should we observe from a document so that the outcome
corresponds to the eigenvector? Indeed, Qe and Qd can be achieved only if an IR
system is capable of observing the eigenvectors j�0i and j�1i. If an IR system
observed j�0i or j�1i in a document, the system would decide whether the document
is relevant with probability of error Qe. In particular, if we were able to give an
interpretation to the eigenvectors, retrieval and indexing algorithms could measure
those vectors. The problem is that the view given by j�0i and j�1i links to the view
of a document as a particle in a superposed state in which the uncertainty is given
by the random collapse of the superposed state to one of the observable values.

Three interpretations of the eigenvectors j�0i; j�1i can be provided. An inter-
pretation is geometric because it is in terms of vectors. Another interpretation
is probabilistic. Yet another interpretation is logical since the eigenvectors are
expressions of propositions.

From a geometric point of view, each vector is a superposition of another
two independent vectors. Figure 2.5 depicts the way the vectors interact in the
tridimensional space, whereas Fig. 2.20a is a pictorial description in the bidimen-
sional space. These figures show that the observation of a binary feature places the
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observer upon either j0i or j1i whenever he measures j0i or j1i, respectively. The
measurement of the observable corresponding to j�0i and j�1i should be performed
by a device which is at angle with the device performing the measurement of the
observable corresponding to the basis fj0i; j1ig as depicted in Fig. 2.21b. However,
superposition cannot correspond to an easy transformation in IR, and there is no
way to move upon j�0i or j�1i because no measurement device behaving like the
one in Fig. 2.21b is available yet.

From a probabilistic point of view, the eigenvectors and the state vectors are
related by the trace rule. As these eigenvectors are mutually orthonormal by
definition, they induce a valid probability distribution. Indeed they implement
an observable, and the state vectors provide the probability distribution of this
observable. The probability distribution may provide some constraint which must
be held by j�0i and j�1i so that they represent the optimal observable dictated
by the decomposition of (2.12); for example, the observable must be defined so
that Qd D 1 � Qe. However, a probability distribution cannot provide us with a
deterministic way to observe the features which correspond to the eigenvectors.

From a logical point of view, the eigenvectors are assertions like the observable
vectors are, e.g., X D x corresponds to jxi. According to this view, the optimal
eigenvectors j�0i and j�1i are assertions about the documents. As they are superpo-
sitions of j0i and j1i, it is difficult to express them using the classical logic. Indeed,
the logic used to combine subspaces is more general than the logic used to combine
subsets, and what we express using subspaces might not be expressed using subsets
because the distributive law fails.

3.10.4 Using Quantum Detection in Relevance Feedback

In this section, we illustrate how the RF algorithms may be inspired by the principles
of quantum detection. In summary, these algorithms may build query vectors as the
optimal detectors of a quantum signal detection system. These optimal detectors
will have to decide the (unknown) relevance state of a document on the basis of the
available data, e.g., query term frequency. Technically speaking, these algorithms
project the original query vector on a special subspace which is given by the
principles of quantum detection. The vector that results from the projection will
be matched against the vectors of the documents by the inner product function
described in Sect. 1.3.2.

More precisely, let j�1i be the vector spanning the subspace given by the
principles of quantum detection. The projection of the original query vector can
be expressed as

j�1ih�1jyi
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Fig. 3.21 General Relevance Feedback algorithm inspired by the principles of quantum detection

and it is essentially the query term re-weighting scheme proposed in this section. If
jxi is a document vector, ranking is computed by

hxj�1ih�1jyi (3.13)

The general RF algorithm inspired by the principles of quantum detection is
depicted in Fig. 3.21. The initial query represented as a vector y 2 R

d is input to the
search engine of the IR system. The engine outputs a ranked list of N documents
represented by the vectors x. The engine makes use of these document vectors for
generating a N�d feature matrix to be used to estimate the state vectors j�0i and j�1i
according to the relevance assessments r. Then, the matrices j�0ih�0j and j�1ih�1j
are calculated, and the eigenvectors j�0i and j�1i are extracted. After the projection
of the query vector on j�1i, the document vectors are reranked.

3.11 Evaluation Studies

In IR, the main object of evaluation is a system since it is of interest to the
researchers to know whether the system under investigation is better than others.
To evaluate a system, it is crucial to recognize the components of the system thereof
because evaluation often concentrates on a few components, and in many cases, it
does so on one component alone. If a system is regarded as a set (or something
more structured than a set) of components, one speaks about system configuration,
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and what is subjected to evaluation is a configuration. Researchers therefore often
compare configurations and struggle to obtain the best configuration in the field; for
example, a configuration might be given by the most effective tuple of parameters
of the BM25 weighting scheme. Although a component may be either hardware
or software, evaluation is concerned with software components since these are the
artifacts designed and implemented by the researchers in IR. Efficiency is extremely
important in industrial search engines, but academic research is mostly concerned
with effectiveness and therefore with the proportion of documents that are relevant
to an information need and retrieved against a query representing this need. Despite
the long history of experiments, the perfect IR system is still a chimera especially
due to the intrinsic difficulty in ascertaining relevance in a very dynamic context.

Evaluation is carried out through a series of studies, i.e., a detailed investigation
and analysis of a system configuration. According to the aims, a study can be
descriptive to describe how the configuration works, explicative to explain how a
variable interacts with other variables, or explorative to understand in depth how
a specific configuration works. According to the environment where a study is
performed, there are laboratory studies when the study is performed in controlled
spaces and time spans relatively isolated from the external noise, and there are
naturalistic studies when derived from or closely imitating real environments where
the configuration is actually utilized by the end users. A study can also be a user
study when it is performed, thanks to the participation of humans or when the main
object of the evaluation is the user. When the same group of users is observed over
a period of time, the study is called longitudinal. A study is a case study when
it concentrates on a particular user, configuration, user group, or situation over a
period of time.

In IR, studies are often based in a laboratory and utilize samples of the document
collection to which the system configuration under investigation should be devoted.
The main instrument used in the laboratory studies is the test collection obtained
when the sample documents are combined with artificial representations of the
users and of the relevance assessments. A test collection consists of three sets: a
test document set, a test topic set, and a relevance assessment set. A test topic is
a relatively short textual document about a subject used to formulate the queries
given as input to the system configuration. A relevance assessment is basically a
pair document-topic mapping to a relevance degree, e.g., a document is relevant to
a topic or not.

The comparison between the system configurations under investigation requires
the computation of measures and in particular of effectiveness measures; efficiency
measures are mostly concerned with the hardware components or with the data
structures and the algorithms employed to implement a configuration. Historically,
the main measures are precision and recall. Recall is the proportion of relevant
documents that are retrieved against a query. However, it is by now disused since it
requires the knowledge of the complete set of relevant documents for each topic,
although this knowledge would be crucial to understand the upper bound of an
effectiveness measure. Precision is the proportion of retrieved documents that are
relevant.
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This section reports the main experimental results obtained since the quantum
mechanical framework was proposed to design indexing and retrieval methods.
Most evaluation studies carried out in this field were concerned with comparing
some indexing or retrieval methods inspired by QM with the classical methods
utilized within the current IR technology. The methods inspired by QM and exper-
imented by the researchers of this field indeed utilized some quantum mechanical
concepts (e.g., superposition and projectors) to represent the state or the observables
of an IR object (e.g., a document or a query); these methods exploited this
representation within an indexing or retrieval algorithm and were compared with
the classical methods using test collections or user studies. Most of the studies are
empirical investigation which suggested the potential of the quantum mechanical
framework applied to IR.

3.11.1 Vector Negation and Ambiguity

Widdows (2003) performed the early experiments to assess the effectiveness
of vector negation using some notions of the quantum mechanical framework
illustrated in Sect. 3.5. The experiments aimed at measuring the capability of
word negation in removing the documents containing the negated words from the
retrieved document set without removing the documents containing the positive
words. The word negation methods tested in the experiments were compared with
the baseline alternative of no negation at all.

Note that the notion of effectiveness on which experiments on word negation
and ambiguity were carried out was quite different from the notion usually utilized
in IR. Indeed, no traditional test collection was employed and no document was
labeled as relevant to an information need as it happens when test collection are
employed in IR experimentation. The experiments carried out by Widdows were
actually counting the number of occurrences of positive words and the number of
occurrences of negative words under the assumption that a document was relevant
to the meaning of an expression like “positive term AND NOT negative term” when
it contained as many references to the positive term and as few references to the
negative term as possible.

Given the assumption about relevance, with the purpose of obtaining reasonable
results, the experiments were performed using document corpora which are quite
homogeneous in content, written in one language (i.e., English) and presumably
based on a relatively limited vocabulary. In particular, the British National Corpus
by Oxford University, the New York Times News Syndicate by the Linguistic
Data Consortium, and the Ohsumed corpus of medical documents of Hersh et al.
(1994) were utilized. The measures reported in the evaluation study are the relative
frequencies of a term in a set of documents; in particular, for each set of retrieved
documents, the relative frequency of the positive term and the relative frequency of
the negated term were reported. These measures aimed to give a degree to which a
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method of word negation was able to differentiate between documents indexed by a
positive term and documents indexed by a negative term.

As a general comment, the assumption under which a document was considered
relevant when it contained as many occurrences of the positive term and as few
occurrences of the negative term as possible can undermine the correct interpretation
of the experimental results from the perspective of IR effectiveness. When retrieval
effectiveness is the focus of evaluation, it is crucial that the test collections that
are utilized in the experiments incorporate the “true” relevant documents and that
relevance is assessed with respect to the real user’s information need. Indeed, when
negative RF, which is the retrieval method closest to vector negation, was evaluated
in IR, the experiments gave inconsistent results; some results were encouraging,
while others testified that removing evidence from a query had often a detrimental
effect on retrieval effectiveness as reported, for example, by Harman (1992). Further
experiments would be useful by exploiting, for example, the narrative of the topics
which indicate the characteristics of nonrelevant documents to implement the vector
to be subtracted from the query vector.

3.11.2 Contextual Search

The experiments in contextual search reported by Melucci (2008a) were based on
the estimation of a density matrix using some documents under the assumption that
this set can be a source of evidence to estimate a context; a density matrix was used
to mathematically describe a context.

A subspace describing a set of relevant documents and a subspace built from
nonrelevant documents were described by one density matrix each. The probability
that a document represented by jyi is relevant is given by tr.�Rjyihyj/where �R is the
density matrix estimated by the set of relevant documents. Similarly, the probability
that a document represented by jyi is not relevant is given by tr.� NRjyihyj/ where � NR
is the density matrix estimated by the set of nonrelevant documents.

Starting from a test collection, a topic was assigned a set of relevant documents
and a set of nonrelevant documents explicitly assessed by the assessors or implicitly
indicated by the system by Pseudo Relevance Feedback (PRF) or by the end
user while interacting with the system. After removing stop words and stemming
keywords, the two sets of documents, either relevant or nonrelevant, were processed
to build up a number for each word which measures how often that word appeared
within a window of text centered around the word. Windows are used for putting
words into their own context—in the experiments, context is meant as the window
around a word—and for relating the words to the others in the same context. In this
way, the resulting co-occurrence matrix represents the data collected, its columns
and rows refer to content bearing words, and each matrix element stores a similarity
values.

The eigenvectors j�1i and j�2i of a co-occurrence matrix can be used as state
vectors such that one state vector defines a density matrix. Each eigenvector can
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be viewed a dimension of relevance, i.e., a possible way the selected keywords
interact when occurring in a set of relevant documents; the same can be applied to a
co-occurrence matrix calculated from a set of nonrelevant documents. The density
matrices can be linearly combined to obtain a mixed distribution as follows:

�R D �1j�1ih�1j C �2j�2ih�2j

where the �s are the two largest eigenvalues yet might be replaced with two
probabilities that measure the importance of each dimension of relevance repre-
sented by an eigenvector. The same procedure can be applied to obtain a mixed
density matrix from nonrelevant documents. The probability that a document has
been generated by the context of relevance can be computed using the mixed
density matrix estimated from relevant documents; similarly, the probability that a
document has been generated by the context of nonrelevance can be computed using
the mixed density matrix estimated from nonrelevant documents. The probabilities
computed in this way can be utilized to rank the documents. Figure 3.22 depicts the
two principal eigenvectors estimated from the set of AP88 relevant documents of
topic 255.

Fig. 3.22 Principal eigenvectors of a co-occurrence matrix estimated from relevant documents
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3.11.3 Implicit Relevance Feedback

While Melucci (2008a) addressed contextual search using the quantum mechanical
framework to model PRF, Melucci and White (2007) modeled the context observed
and measured during the interaction between a user and a set of webpages. In
particular, the context was given by the information about the documents seen by the
user and by the features of the interaction. This information was then processed for
extracting eigenvectors from which density matrices were computed to represent the
contextual factors used to rerank documents through an IRF algorithm. The aim of
the experiment was to compare the retrieval effectiveness of multiple IRF algorithms
that used different sources of implicit feedback and translate this feedback into
document rankings. To evaluate the performance, the interaction logs of real subjects
were used to simulate a user who accesses a series of documents and performs some
actions such as reading, scrolling, bookmarking, and saving. The IRF algorithms
under investigation were assumed to be part of a system monitoring subject behavior
and using these interaction data as a source of IRF to retrieve and order the unseen
documents. When the task or the subject is known, the system records the data
by subject/task and then retrieves and ranks the unseen documents for the given
subject/task.

As regards to the model described in Sect. 3.9.1, the experiments aimed to
test whether the density matrices computed from a set of features observed from
a sample of seen document set enable the retrieval of useful/useless unseen
documents. In particular, it was of interest to test if a subset of density matrices
may enable the retrieval of a subset of useful documents different from the subset
of useful documents retrieved by other density matrices. If this would have been
the case, different density matrices could represent different contextual factors.
Moreover, when the analysis was conducted by task and/or subject, the event that
the density matrices computed from the subset of data referring to a pair task/subject
enable the retrieval depending on the pair could be tested. While the interest was
mainly in testing whether a density matrix can enhance IRF, it was possible to know
the optimal combination of features to find novel relevant information using density
matrices specifically implemented in a personalized way for, say, user 1 and task 2.

3.11.4 Entanglement of User Behavior and Document Content

In Sect. 3.9.2, the quantum mechanical framework was applied to modeling the
combination of the user’s behavior with the content of the documents visited by the
user. It was hypothesized that the user’s behavior and the visited document content
were entangled. In the following, a methodology for investigating this entanglement
is illustrated. The methodology is in the following steps:

• Preparation of the interaction data
• Computation of a contingency matrix
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• Decomposition of the contingency matrix
• Analysis of entanglement

3.11.4.1 Preparation of the Interaction Data

The log files of real subjects who interacted with a WWW browser were used to
simulate a user who accesses a series of WWW pages and performs some actions
such as reading, scrolling, bookmarking, and saving. The product space A ˝ B
can be an abstraction of a system that monitors subject behavior and utilizes these
interaction data as a source of IRF to retrieve and order the unseen documents. The
dataset used in this example was gathered during a longitudinal user study reported
by Kelly (2004).6 The dataset collects the data observed from seven subjects over
14 weeks and has information about the tasks performed by the subjects, the topics
for which the subjects searched the collection, and the actions performed by the
subject when interacting with the system. The dataset consists of a set of tuples with
each referring to the access performed by a subject when visiting a webpage. The
following document features of the dataset were used:

• The unique identifier of the subject who performed the access
• The unique identifier of the attempted task, as identified by the subject
• The display time, that is, the length of time that a document was displayed in the

subject’s active Web browser window (“display”)
• A binary variable indicating whether the subject added a bookmark for the

webpage to the bookmark list of the browser (“bookm”)
• A binary variable indicating whether the subject saved a local, complete copy of

the webpage on disk (“save”)
• The frequency of access, namely, the number of times a subject expected to

conduct online information-seeking activities related to the task (“accessfr”)
• The number of keystrokes for scrolling a webpage (“scroll”)

In addition to these features, relevance scores assigned to each document based
on how relevant it was for a given task for each subject have been used. These
scores were assigned by the participants in the study based on their own assessment
of the relevance of the document for the task. The features were selected on the
basis of their relevance to the task of IRF. In particular, “subject” and “task” allow
the researchers to analyze IRF by user and by task. The other features referred to
the interaction between the system and the user. In particular, “relevant” was the
assessment provided by the user as regards the visited webpage, while the other
features were what the system recorded about the interaction.

6I thank Dr. Diane Kelly for granting her permission to use the data.
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3.11.4.2 Computation of the Contingency Matrix

The contingency matrix C has been computed as follows. The dataset was normal-
ized so as to provide every feature with zero mean and standard deviation; in this
way, the features were considered independently of the order of magnitude of the
observed values. After this normalization, a subset of subject identifiers and a subset
of task identifiers were chosen; all the subject identifiers and all the task identifiers
were also used in the investigation. The five features were selected for each subject,
and then the average value of every feature was computed from the tuples of the
chosen subject and task identifiers. The average values were grouped by relevance
score into a binary scale as follows: the documents of the tuples which recorded
a relevance score between one (i.e., the minimum relevance score) and five were
assessed as useless, whereas the documents of the tuples which recorded a relevance
score between six and seven (i.e., the maximum relevance score) were assessed as
relevant; these ranges were decided upon by the distribution of the tuples across the
seven levels of relevance, about half of the tuples were distributed across the two
highest scores. Finally, the 2�5matrix was normalized so that the sum of the squares
of the elements is one where 2 refers to the number of distinct relevance values and 5
refers to the number of features selected for this analysis. As an example, the matrix
C when all the subjects and all the tasks have been selected was

C D
��0:162 �0:066 0:020 �0:037 0:004

0:201 0:082 �0:025 0:043 �0:005
�

where the column vectors correspond, respectively, to “display,” “bookm,” “save,”
“accessfr,” and “scroll.” The matrix C has then been normalized so that

X
i;j

c2ij D 1 :

The first row refers to useless documents, whereas the second row refers to the
relevant documents. Of course, other groupings of the relevance scores or other
features could have been used.

3.11.4.3 Decomposition of the Contingency Matrix

The contingency matrix C has been used for defining j�i after assuming the
canonical bases jji and jki for A;B, respectively. The canonical basis vector jji for A
is the vector with 1 in the j-th coordinate and zero elsewhere; if nB D 2 and nA D 5,
j3i for space A is .0; 0; 1; 0; 0/, where j1i ˝ j3i of A ˝ B is .0; 0; 1; 0; 0; : : : ; 0/.
Therefore, jiAi is the i-th column of matrix A and jiBi is the i-th column of matrix B.
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After computing the SVD of the above exemplified matrix C, the following matrices
are obtained:

A D

0
BBBBB@

0:902 0:182 0:108 �0:375 0:023

0:367 0:074 0:033 0:927 0:007

�0:110 �0:022 0:994 0:010 �0:001
0:198 �0:980 0:000 0:000 �0:000

�0:023 �0:005 �0:001 0:002 1:000

1
CCCCCA

where the column vectors, respectively, correspond to j1Ai; j2Ai; j3Ai; j4Ai; j5Ai,

B D
��0:629 0:777
0:777 0:629

�

where the column vectors, respectively, correspond to j1Bi; j2Bi, and

� D
�
0:9999 0:0000 0:0000 0:0000 0:0000

0:0000 0:0059 0:0000 0:0000 0:0000

�

Thanks to orthonormality provided by the SVD, the columns of A and B are a
basis of space A and B, respectively. The columns of the three matrices are ordered
by decreasing “importance” where the importance of the columns is measured by
the corresponding singular value in the diagonal of �. The importance is given
by the fact that the top k singular values and the corresponding columns of A and
B provide an approximation of C; this notion is similar to the one exploited in
the spectral theorem and was previously exploited in IR when LSA was proposed
by Deerwester et al. (1990) for computing a reduced representation of a document
collection. Indeed,

j�.k/i D
kX

iD1
�i;ijiAi ˝ jiBi

is as close to j�i as k is close to the number of nonzero singular values. As the
columns of the three matrices are ordered by the singular values, the contribution of
jiAi ˝ jiBi decreases as k increases, that is, the first columns of A and B gives the
greatest contribution to the approximation of C.

The pattern of the values in every column vector provides an interpretation of
the role played by the vector in the context of the implicit feedback framework
illustrated above. The column vectors of A explain the various ways in which
the documents were visited by the subjects; let us name it “behavioral factor.” In
particular, j1Ai states that “display” was the most influential feature of the first
behavioral factor, while “bookm” was the second most influential. Indeed, the
weight of “display” is close to 1. If j1Ai was a state of a system, and the canonical
basis vector j1i of A was used to compute a projector, then the square of the first
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coordinate of j1Ai would be the probability that “display” was determining user
behavior.

Similarly, the column vectors of B explain the various ways in which the subjects
assessed the relevance of the visited documents; let us name it “relevance factor.”
In particular, j1Bi states that the relevance scores were slightly predominant since
j0:777j > j � 0:629j in the first relevance factor. The other information carried by
this relevance factor is that the tendency of assessing documents as relevant was
negatively correlated with the tendency of assessing documents as useless. This
information should really not be surprising; however, the examples illustrated in
the following show that this correlation is not always the case.

3.11.4.4 Analysis of the Entanglement

Using the Schmidt number (Sect. A.8), the previous example shows �1;1 � 1. As a
consequence,

j�i � j1Ai ˝ j1Bi

thus showing that entanglement is virtually absent in the example. From an implicit
feedback point of view, the example states that when all the subjects and the tasks
are considered in computing the contingency matrix, the resulting state vector of
A ˝ B is a product state vector, i.e., it is separable into j1Ai and j1Bi. This means
that the way in which the documents are visited is in practice independent of the
way in which the documents are assessed, when the systems are observed without
reference to the subject and to the task actually performed.

The hypothesis that may in general be stated is that entanglement is somehow
related to the subject or to the task, that is, the way a document is visited by this
subject who is performing this task is entangled with the way the subject assesses
the relevance of the document. With the aim of checking whether entanglement is
related to the subject or to the task, the contingency matrix only for subject 1 and
task 1 has been computed:

C D
��0:158 �0:094 �0:052 �0:110 0:835
0:014 0:128 �0:052 0:256 0:411

�

After decomposition, the following three matrices for subject 1/task 1 are provided:

A D

0
BBBBB@

0:145 0:243 �0:053 �0:188 0:939

0:031 0:473 0:092 �0:827 �0:288
0:074 �0:074 0:991 0:045 0:073

�0:011 0:843 0:048 0:525 �0:109
�0:986 0:035 0:069 �0:057 0:135

1
CCCCCA
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B D
�
0:90 �0:43
0:43 0:90

�

� D
�
0:94 0:00 0:00 0:00 0:00

0:00 0:33 0:00 0:00 0:00

�

These three matrices are rather different from the respective matrices computed
when all the subjects and all the tasks have been selected. First, the most important
column states that the behavior of subject 1 when visiting the documents and
performing task 1 is very different from the average behavior since scrolling appears
to be the most important feature. Moreover, this subject does not tend to assess
the documents either as relevant or irrelevant; in fact, he has a more “balanced”
assessment than the average subject. The most interesting outcome of this example
is that the Schmidt number is significantly greater than 1 because the second singular
value is significantly greater than 0. This outcome implies that j�i is entangled, that
is, cannot be separated into one state about the document and one about the user.

In general, there are many subject/task pairs for which the computed contingency
matrix yields an entangled state j�i. This outcome suggests that in an implicit
feedback environment, the behavior of the user when assessing the relevance of a
document is entangled with the way the document is visited. This outcome has been
confirmed in previous, independent experiments, thus suggesting that the context
in which the interaction takes place should be considered when the information
retrieval system has to rank and present the documents to the end user.

3.11.5 Concept Combination

Aerts and Gabora (2004a) reported an emblematic study of the quantum mechanical
framework in the field of Natural Language Processing (NLP), the latter being a
topic relevant to and overlapping with IR; another empirical study was reported by
Bruza et al. (2012).

The study reported by Aerts and Gabora (2004a) was performed with the col-
laboration of 81 human subjects who were asked to answer a written questionnaire.
In this questionnaire, the notions underlying SCOP (Sect. 3.4.2) were utilized. The
subjects were given a list of exemplars. For each exemplar and for each context,
a subject provided a subjective frequency with which the exemplar would fit the
context. After collecting the assessments by the subjects, it was possible to estimate
the probability that an exemplar of a concept is assigned to a context; for example,
the probability that an exemplar (e.g., “dog”) of pet is assigned to the ground context
could be estimated (e.g., the probability that “dog” is a exemplar of pet was 0:12).
Varying the context, different probabilities of the same exemplar could be estimated;
for example, the probability that “dog is chewing a bone” was much higher than
“canary is chewing a bone” and higher than “dog is being taught” since overall the
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subjects thought that a dog chews a bone more frequently than a canary and more
frequently than being taught. Moreover, varying the context, different probability
distributions could be obtained—each distribution was conditioned by a context—
without any relationship with the conditional probability distribution obtained when
the ground context is considered, that is, the probability that an exemplar is in
the ground context is not the sum of the probabilities that the exemplar is in the
individual contexts. Therefore, the ground context is the linguistic union of the
individual contexts, but this union is neither algebraic nor mathematical; given that
e1; : : : ; e6 were six contexts such that P.e1/C� � �CP.e6/ D 1 and x was an exemplar,

P.x 2 e1/P.e1/C � � � C P.x 2 e6/P.e6/ ¤ P.x 2 ground context/

where x 2 e means that x is pertinent to context e, but the ground context cannot be
partitioned in e1; : : : ; e6.

To observe the “guppy effect” described in Sect. 3.4, the experimental study
had to provide the necessary data. To this end, Aerts and Czachor carried on the
experiment using the same subjects and the data acquisition methods based on
concepts, exemplars, and contexts. In particular, the subjects were asked to assess
the pertinence of the exemplars provided in a list to the context “the fish is a
pet” where fish plays the role of concept and “pet” contextualizes the concept; for
example, it was found that “guppy” was an exemplar pertinent to the context (i.e.,
“guppy is a pet”) with relative frequency 0:40 and that “goldfish is a pet” with
relative frequency 0:39. Note that the frequencies of membership to the context “the
fish is a pet” would be different from the frequencies of membership to the context
“the pet is a fish” where the roles of “pet” and “fish” are swapped. Moreover, other
contexts in which pet and fish appear to be entangled were defined and submitted
to the subjects; for example, “The pet swims around the little pool where the fish
is being fed by the girl” was such a context. It is in this context that the probability
that “guppy” was pertinent to the context was higher than the probability that it
was pertinent to the contexts involving pet or fish, thus suggesting that concepts can
be combined in a way that the quantum mechanical framework and in particular
entanglement can model this combination.

3.11.6 Semantic Spaces

Bruza and Cole (2005) used semantic spaces to experimentally investigate collapse.
A particle is usually not in a pure state of whatever observable (e.g., momentum) is
intended to be measured. When the observable is measured, the state of the system
will immediately become a pure state of that observable. This process is known as
collapse (see also Sect. 2.2). The empirical investigation reported in that paper may
be reproduced according to the guidelines utilized when LSA was experimented in
the 1990s since collapse resembles what happens when eigenvectors are used to
retrieve documents.
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Collapse can be investigated in semantic spaces because when a word is viewed
in its context, it is represented by a mixed state and a measurement of the word’s
sense is made on this word; the mixed state of the word collapses onto one of
its senses which is given by the word’s context. The senses of a word are the
observables. For example, when word w is seen in the context of sense t, the
state vector jwi collapses onto the pure state representing the sense dealing with
t. After collapse, weights of associations to words related to w will be high,
whereas before collapse, the weights of such associations may have been weak.
The associations may become more intense and approach the point of being
expressed. The description above of the relationships between context and collapse
is essentially the same as that of Aerts and Gabora (2004b).

Suppose a word w is given and a HAL matrix can be computed with respect to
a word as illustrated in Sect. 3.6. This matrix can be computed considering all and
only the words around the word that occur in a long document or in a collection
of documents; the words around the word would represent the various contexts
of the word. This matrix is therefore a numerical summary of the contexts of the
word in the collection of documents. In the experiments, the word was “Reagan”
and the document collection was Reuters-21578. The corpus was scanned by text
windows of fixed length which are centered around “Reagan.” For each window, it
is possible to construct a matrix similar to the matrix illustrated in Sect. 3.6; each
entry reports the distance between a word of the window and “Reagan.” It is crucial
that the dimensions of the matrix are fixed to a value which is the number of words
considered; these words may be included in a predefined vocabulary, for example,
the vocabulary built from the ranked list of documents retrieved against the one-
word query “Reagan” depicted in Fig. 3.23. All these matrices are summed to obtain
a matrix of the same dimensionality that represent the semantic space of “Reagan.”
The matrix embeds the different senses of the word “Reagan.”

To extract the different senses of the word “Reagan” from the matrix, SVD is
utilized. The eigenvectors are a representation of these senses, and the eigenvalues
measure the significance of each sense. To obtain sensible eigenvectors, a great
deal of attention should be paid to the selection of the vocabulary words; for
example, those displayed along with “Reagan” in Fig. 3.23 might not be very
meaningful as those used by Bruza and Cole (2005) who reported the eigenvectors
of Fig. 3.24. The values associated to a word of an eigenvector measure the closeness
between “Reagan” and the word. The first eigenvector is a sort of summary of the
words occurring with “Reagan.” The other three eigenvectors represent alternative
(i.e., orthogonal) senses; for example, the second eigenvector represents the sense
of government, while the third eigenvector represents the sense of export. The
interpretation is left to the humans using these eigenvectors.

Consider collapse. Suppose the word “Iran” can be described as a state vector;
the actual implementation of this state vector can begin from the semantic space of
“Iran” built using the same procedure used for “Reagan.” The first eigenvector of the
matrix that represents the semantic space of “Iran” can provide the state vector. On
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Fig. 3.23 Reuters-21758 documents about Reagan

Fig. 3.24 Senses of “Reagan”

the other hand, the eigenvectors of the matrix that represents the semantic space of
“Reagan” can correspond to the outcome of the observable used to measure sense;
whenever sense is measured, the outcome is one of the eigenvectors of the matrix
that represents the semantic space of “Reagan.” Therefore, the probability that the
sense “Reagan” can be observed is given by the trace rule applied to the eigenvector
of the matrix that represents the semantic space of “Reagan” and the state vector of
“Iran.” The former will be the result of the collapse of the latter. The probability that
is given by the trace rule is then the probability of collapse on the observed sense.
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3.11.7 Quantum Probability Ranking Principle

The quantum PRP has been introduced in Sect. 3.8, formerly proposed by Zuccon
et al. (2009) who performed an evaluation in 2010. The evaluation of the quantum
PRP requires the estimation of the interference term. Zuccon and Azzopardi (2010)
estimated the interference for the task of subtopic retrieval with the aim of capturing
the document interdependence through the interference term. The basic idea of
those authors is to encode document interdependence using the cosine of the angle
that appears in the interference term, whereas the real part acts as an additional
weight and is estimated by the probabilities of relevance. As these probabilities are
multiplied when the interference term is calculated, the latter is a monotonically
increasing function of the two probabilities.

However, the interference also depends from the cosine of the angle of a
complex number. As the estimation of this angle is quite complex because it
is still unclear what it can represent, the authors estimated it to measure the
interaction between documents covering different facets of the topic in the subtopic
retrieval task; in particular, the authors assumed that redundant relevant documents
negatively interfere, while documents conveying relevant but novel information
generate positive interference. They implemented the quantum PRP by means of
an approximation of the cosine of the angle by using the Pearson correlation
index computed between the document vectors. The experimental results, which
are reported in the paper, were encouraging.

3.12 Suggested Readings

van Rijsbergen (2004) proposed to utilize the quantum mechanical framework
for integrating the logical, the probabilistic, and the vectorial approaches to IR.
Although the mathematical framework utilized is the same as the framework of QM,
the main aim of that book is to show how the logical, probabilistic, and vector space
views can be combined in one mathematical framework. In particular, he proposed
kinds for an alternative, nonclassical logic and pointed out the Gleason theorem to
explain that the logical, probabilistic, and vector space views can be combined in
one mathematical framework.

Khrennikov (2010) addressed the problem of mapping a probability space to a
state vector and proposed the Quantum-Like Representation Algorithm (QLRA) to
this end. Suppose two binary observables A;B, the conditional probabilities P.A D
ajB D b/;P.B D bjA D a/ and the marginal probabilities P.A D a/;P.B D b/ are
given. The problem is to find one state vector � and the projectors jaihaj; jbihbj over
the complex field such that

P.A D a/ D jh�jaij2 P.B D b/ D jh�jbij2

The QLRA provides a solution to this problem.
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Kinds were introduced by Hardegree (1982). To this end, he defined natural
classes as follows: a class is a natural class if and only if there are traits that
all, and only, the class elements share. After this, Hardegree made a connection
between the functions tr.:/ and in.:/ and a Galois connection and then to logic.
Finally, he introduced the logic of kinds. Kinds might be implemented by the itemset
mining algorithms proposed by Agrawal et al. (1996) and Han et al. (2000). The
implementation of kinds can be based on techniques other than itemset mining; for
example, bi-clustering and co-clustering are relevant.

The literature on concept combination is mainly formed by the publications by
Aerts and Gabora (2004a,b), Aerts (2009), Bruza et al. (2010), Bruza et al. (2012),
and Busemeyer and Bruza (2012). Aerts and Gabora (2004a) proposed the concept
theory called state-context-property theory (SCOP), which is an application of the
quantum mechanical framework to the context and property of natural language;
for example, the notion of state of a concept is introduced in this paper. Aerts
and Gabora (2004b) explained how to use SCOP to model context and to explain
how context influences the state of a concept by means of the pet-fish problem.
Bruza et al. (2010) investigated the hypothesis that word associations can display
“spooky action at a distance behavior.” They suggested to use this action, which
was investigated in the quantum mechanical framework, for modeling the human
mental lexicon and for comparing spreading activation with the results obtained
from experiments on associations between words to be recalled before reading
other words. Bruza et al. (2012) investigated how human subjects produce associate
words (e.g., “slave”) in relation to combinations (e.g., “pet human”) although these
associate words cannot be produced as associate words of the words (e.g., “pet”
or “human”) in isolation. They argued that these associations are formed below
the symbolic level of cognition, and to this end, they proposed to utilize the
quantum mechanical framework; in particular, the authors showed and empirically
tested how concept combinations may behave like entanglement. Busemeyer and
Bruza (2012) highlighted how the understanding of human thinking is based
on probabilistic models and argued that the underlying quantum mathematical
framework provides an account of human thinking. They introduced “contextuality,”
as a way to understand interference effects found with inferences and decisions
under conditions of uncertainty. They also proposed to use entanglement to model
cognitive phenomena.

The use of the quantum mechanical framework to model word ambiguity and to
introduce vector negation was proposed in a series of papers authored by Widdows
and Peters (2003), Widdows (2004), Widdows and Cohen (2010). Widdows and
Peters (2003) combined the geometric structure of vector models with Boolean logic
for modeling natural language. The authors formulated logical connectives in vector
spaces based on standard linear algebra; in particular, they explained vector negation
to disambiguate words. It is this work that replaced sets by subspaces of a vector
space and set unions, intersections, and complements by vector sum, intersection,
and orthogonal complements of subspaces. The book by Widdows (2004) gathers
the results of the previous papers and some chapters on logic, NLP, and QM
together. Widdows and Cohen (2010) illustrated the application of the semantic
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vector package to understanding the informative content of a textual document
collection from the distribution and usage of words in a corpus of text.

Semantic spaces were proposed by Bruza and Cole (2005). Bruza and Cole
highlighted the scarcity of large-scale experiments and scalable computer systems
for intelligent NLP. Starting from Gärdenfors (2000), they leveraged his idea that at
the conceptual level, “properties and concepts have a geometric representation in a
dimensional space. For example, the property of ‘redness’ is represented as a convex
region in a tri-dimensional space determined by the dimensions hue, chromaticity
and brightness.” They conjectured that the theory of vector spaces can implement the
low level below the conceptual level at which concept formation and combination
take place. It is within this context that HAL was utilized as described in Sect. 3.6.

A principled way to address contextual IR has been proposed by Melucci
(2008a). That paper utilizes the quantum mechanical framework to present a
principled approach to modeling context and its role in ranking information objects
using vector spaces. First, he outlined how a basis of a vector space naturally
represents context, both its properties and factors. Second, a ranking function
computes the probability of context of the objects represented in a vector space,
namely, the probability that a contextual factor has affected the preparation of an
object.

The quantum version of the PRP was illustrated by Zuccon et al. (2009) and fur-
ther developed by Zuccon and Azzopardi (2010). Zuccon et al. (2009) reformulated
the PRP based on the quantum mechanical framework, which explicitly models
interference between observables, in particular, between relevance assessments.
The outcome is the quantum PRP. Later, Zuccon and Azzopardi (2010) explored
whether the quantum PRP leads to improved performance for subtopic retrieval,
where novelty and diversity are required.

The use of vector spaces for modeling user interaction was proposed by Melucci
and White (2007), while Piwowarski et al. (2010) proposed these spaces for mod-
eling information needs, and Frommholz et al. (2010) proposed them for modeling
polyrepresentation. Melucci and White (2007) presented a geometric framework
that utilizes multiple sources of evidence present in this interaction context (e.g.,
display time, document retention) to develop enhanced implicit feedback models
personalized for each user and tailored for each search task. They used rich
interaction logs (and associated metadata such as relevance judgments), gathered
during a longitudinal user study, as relevance stimuli to compare an implicit
feedback algorithm developed using the framework with alternative algorithms.
Piwowarski et al. (2010) presented an approach based on the quantum mechanical
framework to addressing different issues of IR. They described some of the
properties of this framework when representing queries and documents. Then, they
investigated and experimented tensor products with different parameters using Text
REtrieval Conference (TREC) collections. Frommholz et al. (2010) discussed how
the quantum mechanical framework can be extended to support polyrepresentation.
They also illustrated how polyrepresentation can be implemented by means of tensor
products.
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The use of quantum detection theory for finding optimal subspaces and defining
optimal ranking was proposed by Melucci (2012a). As indexing cannot be exhaus-
tive nor precise, the decision taken by an IR system about the relevance of the
content of a document to an information need is subject to uncertainty. He stated the
hypothesis that the system is unable to optimally respond to every query because
the document collections and the posting lists are modeled as sets of documents and
proposed to replace sets by vector spaces. Using the connection between Neyman-
Pearson Lemma (NPL) and PRP, he defined a Quantum Information Retrieval
Basis (QIRB) that at least in principle yields more effective document ranking than
the ranking yielded by the current principles, with effectiveness being measured in
terms of recall at every level of fallout.

An exhaustive and detailed introduction to evaluation of interactive IR systems
utilized by real users was written by Kelly (2009). She provided a historical
background on the development of user-centered approaches to and the major
components of the evaluation of interactive IR systems. She also described different
experimental designs and sampling strategies, presented core instruments and data
collection techniques and measures, explained basic data analysis techniques, and
discussed validity and reliability issues with respect to both measures and methods.



Chapter 4
Future Work

This book aims to illustrate how the quantum mechanical framework has been
applied to IR. To this end, we placed the book in the intersection between IR and
QM. Then, we tried to draw a comparison between the way QM is used to bridge the
gap between the values observed by means of a device and the reality of subatomic
particles on the one hand and the way in which it might be used in IR to bridge the
gap between relevance and content or between information need and request on the
other. In this concluding chapter, some research directions are briefly outlined, thus
hoping that the quantum mechanical framework will be fully leveraged to achieve
effective and efficient IR systems.

4.1 Incompatibility Between Observables

Things are incompatible when they are so different in nature as to be incapable of
coexisting. In QM, incompatibility is applied to observables, and thus two observ-
ables are incompatible when they are so strong in measurement or the object under
measurement is so weak as to be incapable of emitting values without disturbing
each other. Examples are momentum and position measured in a particle; when the
particle is macroscopic (e.g., Earth), incompatibility cannot be observed and the
measurement of momentum cannot interfere with the measurement of position; in
contrast, incompatibility can be observed when the particle is microscopic.

In IR, incompatibility is less obvious since the particles are macroscopic; for
example, a user or a document are macroscopic objects and the measurement of
an observable about a physical property of the user or of the document cannot
interfere with another observable. However, incompatibility might be observed at
the level of user cognition and in particular of the user’s information need. In
principle, the user’s information need can be represented by a state vector or in
general by a density matrix expressing the probability distribution of the observables
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applied to the need. The user’s information need might be considered a fragile entity
which can be changed by an observable to an extent that another observable can be
disturbed. Examples are relevance, aboutness, authority, quality, or other properties
of a document examined by the user; if two observables, say relevance and quality
of a document, were found incompatible, it would be impossible to measure one
observable without measuring the other observable with intrinsic imprecision, and
the measurement of one observable would not commute with the measurement of
the other observable.

The discovery of incompatibility in IR would require the utilization of the logic
represented by abstract vector spaces instead of the logic represented by subsets.
Indeed, the logic represented by abstract vector spaces is not commutative, and the
distributive law does not hold. Such a logic would therefore be necessary to model
the commutativity of the observables applied to the level of the user’s cognition.
If incompatibility were proved and the abstract vector spaces were necessary, the
use of probability would differ from the use of probability in the classical IR
since the latter relies on the Kolmogorovian theory of probability described by
Kolmogorov (1956). It follows that the traditional ranking principles should be
replaced by principles based on non-Kolmogorovian theories such as those requiring
the interference term. A new retrieval model would then be formulated.

The discovery of incompatibility in IR would require careful experimentation.
In particular, the involvement of human subjects as users should be necessary.
In this situation, the control of the experiments has to guarantee that the values
observed from the user’s interaction are effectively an expression of the occurrence
of incompatibility. How this control can be achieved was explained by Ingwersen
and Järvelin (2005) and Kelly (2009). When the experiments operate at the level
of the user’s cognition (e.g., the user’s information need), some attention should be
paid to the psychological issues of user interaction.

4.2 Entanglement of States

Entanglement refers to the situation in which two things are twisted together. In QM,
the “things” are particles (e.g., photons) or more precisely the “things” are the states
of the particles. If entangled, the particles react in the same way when measured by
the same observable whatever the observable is; for example, two entangled photons
reveal the same polarization although they are placed at a very long distance from
each other, and the polarization of one photon changes at random.

In IR, entanglement is less apparent than in QM since it can be detected only if
a single element (actually, one pair of entangled elements) is measured. In contrast,
correlation can be measured when an ensemble of elements is measured as explained
in Sect. 3.2.7. In IR, it is customary to collect documents, index terms, users, and
other objects in ensembles such as document collections, index term vocabularies,
and user communities. When these ensembles are built, some statistics (e.g., sums,
means, or other distributional properties) can be computed. If one single element of
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an ensemble is available, these statistics are not justifiable. As correlation requires
means and covariances, correlation cannot be computed for one single element
unless one accepts trivial correlations; for example, the measurement of height and
weight of one person will always give perfectly correlated measures.

The discovery of entanglement in some IR processes or objects would open up
into a situation in which the measurement of correlation can be feasible even within
one or a few elements; for example, the measurement of correlation between two
observables might be made on only one user at different instants of time or between
two users who have been in contact at one instant of time and then have been
placed at two far places and observed at future instants. To test whether a pair of
elements is entangled, the statistical test based on Bell’s inequalities can be utilized.
The problem is that entanglement cannot be measured on the basis of a number of
identical elements subjected to the same observables; for example, a pair of users
has to be put in an entangled state, but how this preparation has to be done is an
open problem.

A connection between this situation and Bayesian statistics may be established.
It is accepted that probability is likely to cause an argument since two views are
confronted with the interpretation of the mental experiments envisaged when the
probability space is defined. On the one hand, according to the frequentist view,
probability can only be estimated by repetitions of an experiment; for example,
in coin tossing, the probability of heads might be obtained as the experiment of
flipping a coin can be repeated so as to calculate the limit of the number of heads
that occurred over the number of tosses. On the other hand, in some cases, potential
repetitions of an experiment cannot be envisaged so that the long run of probability
cannot be defined with respect to a potentially infinite repetition of experiments; for
example, based on the assessments made by two users about the relevance of a few
documents, an IR system tries to estimate the probability that the users will think
relevant on each of the documents in the collection. The definition of the correlation
between the users as a limiting case of infinite repetitions of the same experiment
would not make much sense since we cannot repeat the experiment. However, if we
assume that the users behave in a manner consistent with other pairs of users, we
should be able to exploit the large amount of data from other pairs of users to make
a reasonable guess as to what correlation exists. This degree of belief or Bayesian
subjective interpretation of probability avoids non-repeatability issues.

4.3 Relevance Detection

In Sect. 3.10, we explained that the identification of the observables corresponding
to the eigenvectors is a hard task. When vector subspaces are utilized for implement-
ing compatible observables, the projectors must commute. However, in principle,
the definition of projectors that cannot commute is possible, and indeed the optimal
eigenvectors defined in Sect. 3.10 correspond to noncommutative projectors. As
a matter of fact, the physical interpretation of these noncommutative projectors is
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rather difficult—they are a kind of immaterial feature—yet an axiomatic definition
of the optimal projectors is still possible; for example, the optimal projectors must
meet some necessary conditions, for instance, the corresponding events must be
such that the distributive law does not hold when they are combined with the
projectors j0ih0j and j1ih1j of the classical, physical observables such as index term
occurrence. Moreover, the optimal projectors correspond to subspaces oblique to the
subspaces spanned by j0i; j1i at given angles. However, some practical techniques
are necessary other than axiomatic definitions.

One direction is to explore the potential of LSA illustrated in Sect. 1.3 and other
applications of matrix decomposition techniques to check whether the semantic
vectors extracted from a text can implement the eigenvectors; the semantic vectors
have been studied within the research surveyed in Sects. 3.5 and 3.6. The subspaces
spanned by the projectors obtained by matrix decompositions are usually oblique
to the subspaces spanned by the basis vectors used to represent the classical,
physical observables; besides LSA and SVD, it is worth mentioning Non-negative
Matrix Factorization, Principal Component Analysis, and Factor Analysis (see, for
example, the book by Bartholomew et al. (2008)).

It would also be possible to exploit the kinds introduced in Sect. 3.3 to illustrate
how indexing and retrieval can be axiomatized and defined in terms of kinds
instead of the classical content descriptors managed by an IR system. Kinds may
exhibit characteristics useful for meeting the axiomatic requirements to identify
the observables corresponding to the optimal projectors. Indeed, we have shown
that there exist three kinds that cannot meet the distributive law of meet and join
between kinds. The problem is to find an algorithm for mapping projectors with
kinds, obtaining a representation of the optimal projectors as kinds, and defining
projectors applied to subspaces as the application of meet and join to kinds.

4.4 Computing and Ranking Kinds

In Sect. 3.3, kinds have been introduced to provide a logic of representation of the
informative content of documents alternative to classical content descriptors (e.g.,
index terms), which provide a “linear” description of content in the sense that the
list of documents indexed by a descriptor is a “line” of document identifiers and
statistics of the occurrence of the descriptor in the documents. Kinds provide a
“rectangular” description of content in the sense that documents (i.e., individuals)
and index terms (i.e., traits) form a rectangle of pairs of documents and index terms.

From a practical point of view, the collection of kinds ordered by probability
of relevance should be presented to the end user according to the same principle
utilized to rank documents by probability of relevance. However, the user is used to
receiving ordered lists of documents and is not used to receiving kinds; for example,
the current search engines deliver ordered lists of WWW pages. Presenting the kinds
to the end user by presenting the individuals (i.e., the documents) in order of the
P1.K/s would be a convenient option. This stratagem would allow the researcher to
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employ the widely adopted methodologies of laboratory-based experimental studies
such as those based on test collections, which require lists of documents in order
of measures (e.g., probability) of relevance. However, such a stratagem nevertheless
ignores the presentational issues of the ordered collections of kinds which are likely
to require innovative approaches to the general problems encountered within the
research in information access and seeking. The problem of ranking and presenting
kinds to the end user is thus connected to the problem of ranking and presenting
clusters or other conglomerates of data which can be described in terms of graphs.

Another development of the theory of kinds described in Sect. 3.3 would aim to
implement the probability of kind (3.4). The formulation of the probability of kind,
that is,

P.K/ D P.A/s.T/ K D .A;T/

connects with the BM25 weighting scheme. Suppose we are given two hypothesis—
relevance and nonrelevance to an information need—and we would like to test the
hypothesis that a kind contains information relevant to the information need against
the hypothesis that the kind does not. Let P1.A/ be the probability that A is observed
under the hypothesis of relevance and P0.A/ be the probability that A is observed
under the hypothesis of nonrelevance. The log-likelihood will be

log
P1.K/

P0.K/
D s.T/ log

P1.A/

P0.A/

where s.T/ connects with the saturation component and the logarithm connects with
the TRW component of BM25. How to estimate s.T/ and the likelihoods is a matter
of future research.

4.5 Alternative Logics for User Interaction

Usually, users of an IR system submit textual queries implemented as bag of
words, that is, lists of words without Boolean operators; the retrieval system may
automatically add conjunction and disjunction operators to control the quantity of
retrieved documents. The utilization of Boolean operators implies the classical set-
based approach to representing information; words are subsets of documents and the
operators are set operations as explained in Sect. 1.2. This approach might reveal
many limitations when users are experts who perform complex search tasks; for
example, a journalist may want to learn something more about the debate on the use
of nuclear power; after searching the WWW by using some standard search engine,
she may realize that the theme (e.g., topic, concept, subject matter, motif, argument,
thesis) is much more complex than she has expected and strongly dependent on
time, application, and country—in such a situation, searching using themes would
be more effective than finding WWW pages using words.
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Searching using themes may require a logic different from the classical logic
applied when finding documents using words. Indeed, a theme can be made of
words; however, these words may not be associated by set membership but by
subspace membership, thus introducing the need of processing information using
subspaces. In the previous chapters, it was explained that processing information
using subspaces implies a logic different from the classical logic; for example, the
distributive law does not hold. Therefore, novel operators that work with subspaces
are needed.

These operators would aim to provide the end user with a language for expressing
themes, combining themes through operators and evaluating the degree to which a
document is relevant to a theme. In particular, they would aim to allow the end user
to express the fact that a theme can be joined with another theme and that the result
is spanned by both themes. Moreover, these operators would aim to allow the end
user to express the fact that two themes are met together and that the result spans
both themes. The end user would then be provided with join and meet operators
such that, if t1 and t2 indicate themes, the join of two themes can be expressed by
t1 ^ t2 and the meet of two themes can be expressed by t1 _ t2.

If an artificial language has to be defined, the following artificial commands of
this language may give an adequate correspondence so that the join and the meet of
“nuclear power” and “green economy” can be written as “nuclear power JOIN green
economy” and “nuclear power MEET green economy.” Informally, the meet is the
“smallest” theme spanning both themes, and the join is the “largest” theme spanned
by both themes. For example, “java JOIN computing” would be the “largest” theme
spanned by both themes, and, if a name is needed, “java programming language”
may work since it spans “java,” which is an aspect of the Java language, and
“programming language,” which is more general than the Java language; as another
example, “abstract data type MEET inheritance” would be the “smallest” theme
spanning both themes, and “object-oriented programming” may be a name of this
theme since “abstract data type” and “inheritance” are aspects of the object-oriented
paradigm. The analogy between join and meet, from the one hand, and intersection
and union, on the other hand, may be promptly noted—the crucial difference is that
when themes are implemented by constructs other than the sets used to implement
union and intersection, the classical distributive law fails as shown in Sect. 3.2.

4.6 Multimedia and Multimodality

In Sect. 3.3, we mentioned that the use of index terms extracted from texts implies
the utilization of intersection or union of the posting lists, thus implementing
classical retrieval. The naturalness of this set-based approach to text retrieval is
ascribable to the easy recognition of index terms in documents and to the user’s
intuition that an index term corresponds to a set of documents. When terms are
combined by Boolean operators, it is assumed that an index term has a semantics.
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The use of a set-based approach to retrieval with non-textual documents is
far more complex. When image, video, or sound documents are to be indexed,
the content descriptors are not conveniently available as index terms, and the
assumption that the intersection or union of posting lists can express aboutness
does not seem as intuitive as it is for text. Similarly, when click-through and
user interaction data are collected, sets are not the most obvious representation of
informative content. The reason is that the language of non-textual traits is likely
to describe individuals with a logic which will be different from a classical logic.
The use of a set-based approach to retrieving and ranking may be inadequate with
multimedia or multimodal data, since the same reasons that make the retrieval of
non-textual documents more complex than the retrieval of texts still hold when
the criteria of acceptance of the hypothesis of relevance have to be defined. The
complexity of dealing with non-textual documents, on the one hand, and the
different language provided by, for example, the kinds, on the other hand, suggest
that a set-based approach to retrieval should be abandoned when multimedia and
multimodal data are considered.
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Other Topics of Quantum Mechanics

A.1 Representing Qubits

Although complex vectors are a common way to represent qubits, there are
alternative ways to represent qubits defined in the bidimensional space. These
different representations can be more or less convenient ways to represent qubits
according to the context in which qubits are used. Nevertheless, it is crucial to
understand what the differences between these representations are and when they
are equivalent. To this end, it is necessary to understand something more about the
state space in which qubits are represented.

When we consider photons, the state space of the qubit corresponding to the
photon is the set of the possible polarization values. If a photon has two polarization
values in its state space, the state space consists of the possible linear combinations
of the polarization values of the photon. As the polarization values correspond to
the vectors j0i and j1i, the state space is given by the set

f˛0j0i C ˛1j1ig

where ˛0; ˛1 are two complex scalars such that j˛0j2 C j˛1j2 D 1. For each state of
a state space of a qubit, it is possible to make a correspondence between a vector
and a complex number, that is,

˛0j0i C ˛1j1i corresponds to c D ˛1

˛0

and

c 2 C corresponds to
1p

1C jcj2 j0i C cp
1C jcj2 j1i
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Fig. A.1 The Bloch sphere

When ˛0 D 0 and ˛1 D 1, we have that c D 1 by definition. Following this
correspondence rule, we have that j0i corresponds to 0, j1i corresponds to 1, jii
corresponds to i, and 1p

2
j0i C 1p

2
j1i corresponds to 1.

Another alternate qubit representation is provided by the Bloch sphere. This
sphere is a visual representation of the space within which qubits live. Figure A.1
provides an illustration of the Bloch sphere. The basic idea is that every qubit can
be determined by only two angles, that is, � and �, as any geographical coordinate
can be determined by latitude and longitude. This is because any qubit can be a
superposition of j0i and j1i where the amplitudes ˛0; ˛1 are related by

j˛0j2 C j˛1j2 D 1

and therefore, an amplitude is immediately given by the other amplitude. As the
amplitudes are complex numbers, it follows that

˛0 D cos �

and

˛1 D ei� sin �

The north pole of the sphere corresponds to j0i and the south pole corresponds to
j1i, that is, the poles correspond to the values of the classical bit. Using the Bloch
sphere, it is possible to map a complex vector to a complex number as described
above and then the complex number c D .a; b/ to the real coordinates of the sphere
as follows:

c corresponds to

�
2a

1C jcj2 ;
2b

1C jcj2 ;
1 � jcj2
1C jcj2

�
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Fig. A.2 Knob and statistical distance

A.2 Why the Trace Rule

There are a couple of rigorous explanations of the use of this rule. One reason
is provided by the Wootters statistical distance; the other reason is given by the
Gleason theorem.

A.2.1 Wootters’ Statistical Distance

The first explanation derives from some arguments presented by Wootters (1981).
Imagine a knob for adjusting the relevance grade with which a machine emits doc-
uments. When the knob is set to say 0, the machine emits nonrelevant documents;
when the knob is set to �, the machine emits documents with relevance grade �.
Suppose the knob is a round button labeled by a sign pointing to a relevance grade,
thus forming a circle and a tick as depicted in Fig. A.2.

At each �, the tick forms an angle � 2 Œ0; 
� and the machine emits relevant
documents with grade �; at a given �, the machine emits documents including
the term with probability p.�/, which might be different from p.� 0/ corresponding
to a different �0. Therefore, � is assumed to be related to the probability of term
occurrence.

Suppose the occurrences of a given term are counted by observing the documents
emitted by the machine. The relative frequency of occurrence gives an estimation
of p.�/ for each position at which the knob has been set. In particular, the
relative frequency is the maximum likelihood estimator of the unknown probability;
however, there is an estimation error given by the standard deviation of the
normal distribution. Indeed, as the number of observations increases, its probability
distribution is approximated by the normal distribution with the mean being equal
to the relative frequency Op and the standard deviation being equal to

O�.p/ D
r Op.1 � Op/

n



200 Appendix A

Let us replace Op with p.�/ and let

�.�/ D
r

p.�/.1 � p.�//

n

be the standard deviation expressed as a function of � . This function of � allows us
to analyze the uncertainty of � .

The experiment of observing a term from a document is a Bernoulli trial which
is a random variable with two possible outcomes, “term occurs” and “term does
not occur,” with success having a probability of p.�/. As for a series of n Bernoulli
trials, the probability function is

Y
iD1

np.�/xi.1 � p.�//1�xi

Starting from this probability function, the Fisher information

I.�/ D E
��
@2 log f .xI �/��

can be calculated as follows. It can be shown that

I .p.�// D n

p.�/.1� p.�//
D 1

�.�/2
(A.1)

that is, the Fisher information is the reciprocal of the variance. As the Fisher
information measures the amount of information that a random variable carries
about an unknown parameter p, and this parameter depends on � , (A.1) measures the
amount of information that a random variable carries about � . Because the Cramér-
Rao bound

Var. O�/ 	 1

I.�/

establishes a minimum of the variability of p.�/, it is possible to set the reciprocal
of I .p.�// to the smallest variation around p.�/ when � is varying. For each � , this
variation is thus fixed, and as a consequence, the Fisher information is fixed too.
The variations expressed by an analytical function are described by the derivative of
the function. Thus, (A.1) is telling us that the derivative of p.�/ is proportional to
p.�/.1� p.�//, that is,

p0.�/ / p.�/.1 � p.�// (A.2)

The only function of � such that (A.2) holds is

p.�/ D cos2 �
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In other words, whenever the variation of p is explained in terms of a knob which
forms an angle � corresponding to a given relevance grade �, the probability that a
term occurs in a document with grade � is modeled by the squared cosine of � . In
particular, if

j1i D
�
1

0

�

is the basis vector of the event that a term occurs placed at angle � to the state
vector j�i, the probability that the term occurs when the relevance grade is � can be
computed as

jh1j�ij2 D cos2 �

A.2.2 Gleason’s Theorem

The second explanation of the reason why the trace rule is used to compute the
probabilities of events represented by vector spaces is given by the Gleason theorem.
This theorem is of fundamental importance in QM because it basically states that
the density matrix can encapsulate all the information about a probability space,
that is, it provides a probability distribution for any conceivable observable. The
proof of this simple statement is mathematically very difficult and it is not reported
here. What we provide is the statement of the theorem and some comments on its
importance; we refer to Hughes (1989) for these comments and further discussion.

Theorem A.1 (Gleason) A unique density matrix � corresponds to every probabil-
ity distribution on the set of all projectors in a complex vector space with dimension
greater than 2 for which the probability of the event represented by every projector
jxihxj is tr.�jxihxj/.
The Gleason theorem starts from a complex vector space from which a collection of
subspaces can be defined. These subspaces represent propositions, events, answers
to questions, or observable values. Whatever they represent, the subspaces are
mutually orthogonal, that is, the inner products between the projectors representing
these subspaces are null; examples are term occurrence since a term either occurs or
not and document relevance since a document is either relevant or not.

The other element of the Gleason theorem is the notion of state. However, the
notion of state is viewed in the context of the theorem as a function assigning the
value 1 to the whole space, assigning a number in the unit interval to each subspace,
and satisfying a simple additivity property, that is, if the projector of any given
subspace is written as a sum of the projectors of mutually orthogonal subspaces,
then the value of the state on the given “summed” subspace is equal to the sum
of the values of the state on the summands. Suppose, for example, that the vector
space is defined over the four-dimensional complex space and that a subspace is
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represented by the following projector

j0‹ih0‹j D

0
BB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

1
CCA

Since this projector can be a sum of two projectors as follows

j0‹ih0‹j D

0
BB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1
CCAC

0
BB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1
CCA D j00ih00j C j01ih01j

the value of the state, say p on j0‹ih0‹j, is equal to the sum of the values of the state
on j00ih00j and j01ih01j, that is,

p.j0‹ih0‹j/ D p.j00ih00j/C p.j01ih01j/

It is easy to see that we can define a state by associating to each one-dimensional
subspace (e.g., j01ih01j) generated by a unit vector x (e.g., j01i) the inner product
hxj�jxi where � is a Hermitian matrix with trace 1. States of this type are called
regular states.

The key problem addressed by the Gleason theorem was to determine the set of
states on an arbitrary complex vector space, that is, to understand the mathematical
formulation of the functions assigning a value in the unit interval to a subspace.
The problem is not trivial because one expected that a state could possess any
mathematical form and that it does not necessarily possess the form given by the
trace rule; for example, it might have belonged to an exponential family.

The solution to the problem was given by the Gleason theorem which clarified
that every state on a real or complex space of dimension greater than two is
necessarily regular, that is, there is no state on such a space with a mathematical
formulation other than the product like hxj�jxi, and the only rule to calculate the
probabilities is the trace rule, that is,

P.x is observed when state is �/ D tr.�jxihxj/ D hxj�jxi

A.3 Conditional Probability

In the previous sections, we provided the basics of probability in QM and compared
it with classical probability. To this end, we expressed probability distributions,
first, as diagonal matrices in the case of classical probability and then as Hermitian
matrices in the case of the probability defined within the quantum mechanical
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framework. In the following paragraphs, we first introduce conditional probability
in the classical probability, and we then introduce it in the quantum mechanical
framework following the arguments of the book of Aaronson (2013) which can
provide the interested reader with further details.

Suppose a bidimensional probability distribution has been arranged in a diagonal
density matrix. This density matrix can be viewed as an operator mapping a vector
that represents an event to a vector that includes the probability of the event; for
example, when the density matrix is

P D
�

p 0

0 1 � p

�
(A.3)

and the vector that represents an event is

�
0

1

�

the density matrix acts as an operator mapping this vector to

�
0

1 � p

�

meaning that the event represented by the vector

�
0

1

�

occurs with probability 1 � p.
Conditional probability can only be implemented by stochastic matrices, that is,

matrices of nonnegative real numbers where every column adds up to unity; for
example, the following is a stochastic matrix:

�
1
2
1
3

1
2
2
3

�

By “only be implemented,” we mean that a stochastic matrix is the most general
matrix that transforms a probability distribution represented by a density matrix
into a conditional probability distribution represented by a density matrix. Suppose,
for example, the density matrix is (A.3) and

Q D
�

q 0

0 1 � q

�
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is the resulting conditional density matrix. The following matrix

T D
�

t00 t01
t10 t11

�

such that

Q D TP (A.4)

is stochastic. Note that T must be real; if it was complex, Q would be complex
and then would not represent a probability distribution. Moreover, T must be
nonnegative; for example, if t00 were negative and p D 1, the resulting q would
be negative and would then not be a probability distribution. Additionally, the tijs
must be within 0 and 1; indeed, if (A.4) is written as

q D t00p C t10.1 � p/ 1 � q D t01p C t11.1 � p/ (A.5)

the condition 0 � tij � 1 must hold for each i; j because both p and q are
between 0 and 1; if t10 were greater than 1 and p D 0, q would be greater than
1 and the diagonal of Q would not be a probability distribution. After summing the
expressions of (A.5), we have that

1 D .t00 C t01/p C .t10 C t11/.1 � p/

Since we have argued that 0 � tij � 1, it follows that

1 D t00 C t01 1 D t10 C t11

that is, T must be stochastic.
To introduce the way conditional probability is described in the quantum

mechanical framework, the notion of unit vector and of unitary matrix has to be
introduced; actually, the former was already introduced in the preceding sections. A
vector jvi is a unit vector when its norm is one, that is, jhvjvij2 D 1.

Unit vectors are crucial because they represent the simplest states from which
probability distributions can be obtained for a collection of mutually orthogonal
projectors; if a state were not represented as a unitary vector, no probability
distribution could be estimated. However, a state may evolve, and therefore, its
unit vector may be transformed to another unit vector. It is therefore important to
understand what sort of transformation on unit vectors can take place.

A unitary matrix is the most general matrix that transforms a unit vector to
another unit vector. A matrix U is unitary when its transpose equals its inverse,
that is,

U�U D 1
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Suppose U is a matrix that transform a unit vector to another unit vector. In
mathematical terms, we have that

jui D Ujvi jhujuij2 D 1

The latter expression can be written as

jhvUjUvij2 D jhvjU�Ujvij2 D jhvj1jvij2 D jhvjvij2 D 1

To show that U is necessarily unitary, consider the latter expression in terms of
column vectors of the matrix, that is,

jhvjU�Ujvij2 D .v�
1 hu1j C � � � C v�

n hunj/.v1ju1i C � � � C vnjuni/

D jv1j2 C � � � C jvnj2 C 2

dX
iD1

dX
jDiC1

v�
i v

�
j huijuji

D 1C 2

dX
iD1

dX
jDiC1

v�
i v

�
j huijuji (A.6)

The latter expression equals 1 for any jvi only if huijuji D 0 for each i ¤ j, that is, U
is unitary. In other terms, if there were two distinct indexes i; j such that huijuji ¤ 0,
there might be a jvi such that v�

i v
�
j huijuji ¤ 0, thus making (A.6) different from 1.

As jvi can arbitrarily be chosen, there cannot be two distinct indexes i; j such that
huijuji ¤ 0.

A.4 Why Complex Numbers

In IR, it was wondered why QM and then the complex number field are necessary.
All things considered, vector spaces have extensively been utilized to define models
and design retrieval techniques, and the real number field has shown itself to be
sufficient to index and retrieve documents. van Rijsbergen (2004) suggested that
complex numbers may be utilized whenever some significant quantity used when
indexing and retrieving documents occurs as a pair of real numbers; the TFIDF
weighting scheme is an example. However, he also highlighted that it is crucial to
distinguish between the use of the real number field in implementing observable
values and the use of this field in implementing operators; it is the use of the
operators of the quantum mechanical framework that makes the import of QM in
IR interesting.

Complex numbers are needed to implement the transformation of a state into a
superposed state. To explain this need, it is sufficient to show that there exists a
unitary transformation U such that the solution V of U D V2 must be complex. In
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Fig. A.3 Flipping a vector

this case, U is a two-step transformation, that is, a transformation performed in two
identical steps being each step performed by the application of V.

The first step is the transformation represented by the matrix V, and the second
step is again represented by V. Suppose the unitary transformation is

U D
��1 0
0 1

�

and “flips” a vector placed in the one-dimensional line to its opposite located in the
same line as depicted in Fig. A.3. This transformation is unitary (U�U D 1), since
flipping the flipped pure state vector results in the starting vector, i.e.,

U
�

U
�
1

0

��
D U

��1
0

�
D
�
1

0

�

as depicted in Fig. A.3 in which the vector flips to the original position after being
flipped. The figure also shows that flipping might be halted in the middle of the
travel from one position to another; for example, the vector might be halted in the
vertical position oriented toward north in the middle between the two horizontal
positions.

To halt flipping in the middle of the travel, it is necessary that a transformation
moving the vector from a horizontal position to the vertical position oriented to the
north can be defined, that is, something like that moves the vector

�
1

0

�

to the vector

�
0

�i

�



Appendix A 207

and then moves the latter to the vector

��1
0

�

that is, the other horizontal position. However, no real matrix V exists such that
V2 D U. Indeed, we have to solve the following equation:

V2 D U V D
�

u v
x y

�

To this end, we have to solve the following system of equations:

uu C vx D �1
uv C vy D 0

ux C xy D 0

vx C yy D 1

which can be solved only if

x D 0 ^ u D �i ^ y D �1 ^ v D 0 (A.7)

x D 0 ^ u D �i ^ y D C1 ^ v D 0 (A.8)

x D 0 ^ u D Ci ^ y D �1 ^ v D 0

x D 0 ^ u D Ci ^ y D C1 ^ v D 0

which is a set of solutions in the complex field since y must be either �i or i, the
latter being the imaginary number. Consider the solution (A.8), for example. The
“square root” transformation of U, i.e., V becomes

V D
��i 0
0 1

�

The pure state

�
1

0

�

is transformed by this V to

��i
0

�
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If V is applied again, we have

��1
0

�

Visually speaking, this V sends

�
1

0

�

to another dimension provided by the line spanned by i. In this additional, imaginary
dimension, the state is no longer a ground state because it is in a superposed state.
If this V is applied on the superposed state located in the additional dimension, the
other ground state

��1
0

�

is achieved. This movement is depicted in Fig. A.3.

A.5 No-Cloning Theorem

There is a simple, but important, consequence of the unitary condition imposed
on the transformations described in Sect. A.4 when applied to tensored states. The
unknown states cannot be cloned. By contrast, the known states can be cloned
because the values of their vectors are known with certainty and the cloned states
can simply be generated with those values. Consider in the following the proof given
by Rieffel and Polak (2011).

Cloning can mathematically be represented by a unitary transformation U that
takes the state to be cloned and an “empty” state as input and produces the state to
be cloned and the cloned state; Fig. A.4 depicts the action of U. If it were possible to
implement a unitary transformation U as a circuit, cloning an unknown state would
be possible; the idea of the proof is to show that such a transformation cannot be
designed.

As unitary transformations operate on single states, it is necessary to tensor the
input states together so that the input state is a single state. Note that the output states
are tensored together too since these transformations produce one single state. In
mathematical terms, were cloning possible, the transformation should map jai˝j0i

Fig. A.4 Unitary transformation to clone a state



Appendix A 209

to jai ˝ jai, that is,

jai ˝ jai D Ujai ˝ j0i

The unitary matrix acts as a circuit transforming a pair of qubits into another pair of
qubits; the question is whether such a circuit can be constructed for any state even
if it were a superposition of other states (actually, the no-cloning theorem assures it
cannot be). Consider a superposition

j�i D .jai C jbi/=p2

where jai; jbi are mutually orthogonal, and the following unitary transformation:

Uj�i ˝ j0i

As unitary transformations are linear, we have that

Uj�i ˝ j0i D U.jai C jbi/=p2˝ j0i
D U.jai ˝ j0i C jbi ˝ j0i/=p2
D Ujai ˝ j0i=p2C Ujbi ˝ j0i=p2

If cloning were possible, we should have that

Ujai ˝ j0i D jai ˝ jai

and that

Ujbi ˝ j0i D jbi ˝ jbi

and therefore, we should have that

Uj�i ˝ j0i D jai ˝ jai=p2C jbi ˝ jbi=p2

and that

U.j�i ˝ j0i/ D j�i ˝ j�i

However, j�i is a superposition, and therefore,

j�i ˝ j�i D .jai C jbi/=p2.jai C jbi/=p2
D .jai ˝ jai C jbi ˝ jai C jai ˝ jbi C jbi ˝ jbi/=2
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which is different from

jai ˝ jai=p2C jbi ˝ jbi=p2

Therefore, cloning using U is impossible.

A.6 Indeterminacy Principle

The indeterminacy principle is a strange phenomenon of the quantum mechanical
framework; another strange phenomenon is entanglement which is described in
Sect. 2.6. In physics, the indeterminacy principle is known as the principle that
both the momentum and position of a particle cannot be precisely determined at the
same time. As mentioned in Sect. 2.2.2, momentum and position are incompatible
observables since if the position is measured first and the momentum is measured
second, the state of the particle is different from the state obtained if the quantity of
motion is measured first and the position is measured second.

The indeterminacy principle is a consequence of incompatibility and differs from
incompatibility for its statistical feature; indeed, the indeterminacy principle is a
relationship between the variances of two incompatible observables. In particular,
the indeterminacy principle states a lower bound of the variance of the conjoint mea-
surement of two incompatible observables and measures the minimum imprecision
that must be tolerated when two incompatible observables are conjointly measured;
for example, the momentum of a particle can be exactly determined only if the
position of the particle can be approximately determined, and vice versa, and the
product between the variance of momentum and the variance of precision is always
not less than a given lower bound, which is greater than zero when the observables
are incompatible.

A.6.1 Observable Operator

In Sect. 2.2, the use of projectors for representing the observable values was
illustrated. In short, each observable value x corresponds to a projector Ax; this
projector is a mathematical representation of the event that x is observed. The
negation of the event that x is observed is represented by a projector orthogonal
to Ax and such that the resolution to unity holds; for example, if A0 is the projector
of the event x D 0, A1 is the projector of the event x D 1, and these two events are
the only possible events; we have that

A0 C A1 D 1 A0A1 D 0
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A single mathematical representation of an observable can be provided by an
operator. This operator is a linear combination of projectors, that is, a weighted
sum of projectors where the weights of this combination are the observable values.
An operator for an observable can be defined as

A D x1A1 C � � � C xkAk

where x1; : : : ; xk are k observable values referred to the same observable and
A1; : : : ;Ak are k projectors that correspond to the k values. The projectors are
mutually orthogonal and resolve to the unity, that is,

A0 C � � � C Ak D 1 AiAj D 0 i ¤ j AiAi D Ai for all i

This representation is useful since the calculation of the observable value that
corresponds to a projector can be performed as follows. Consider the projector Ai.
The observable value can be extracted by the following expression:

xi D tr.AAi/

since

tr.AAi/ D tr..x1A1 C � � � C xkAk/Ai/

D tr.x1A1Ai C � � � C xkAkAi/

D tr.xiAiAi/

D xitr.Ai/

D xi

Recall that a density matrix can be defined for the observable represented by A; for
example, suppose a pure distribution can be defined and represented by the state
vector j�i or equivalently by the pure density matrix

� D j�ih�j

It follows that

� D p1A1 C � � � C pkAk

where

p1 C � � � C pk D 1 and 0 � pi � 1 i D 1; : : : ; k
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As explained in Sect. 2.4, the probabilities can be computed using the trace rule,
that is,

pi D tr.�Ai/ i D 1; : : : ; k

For example, suppose k D 2 and let A be the operator of the observable defined for
the occurrence of a term in a document. Let x D 0 be the observable value when the
term does not occur, and let x D 1 be the observable value when the term occurs.
With probability p0, the term does not occur, and with probability p1 D 1 � p0, the
term occurs. We have that

A D A1

where A1 is the projector of the event that the term occurs. Note that there are other
operators that can be defined for the same observable; for example, let x D �1 be
the observable value when the term does not occur, and let x D C1 be the observable
value when the term occurs; we have that

A1 � A0

is another operator.

A.6.2 Expectation and Variance

Expectation and variance can be calculated using the observable operator and the
density matrix. The expectation of a random variable that takes the values x1; : : : ; xk

according to the probability distribution p1; : : : ; pk is defined as

E D x1p1 C � � � C xkpk

whereas the variance of the random variable is defined as

V D .x1 � E/2p1 C � � � C .xk � E/2pk

An observable represented by the operator A corresponds to a random variable, and
the expectation of the observable can be defined as

E.A/ D E

The probabilities can be expressed using the trace rule as follows:

E.A/ D x1tr.�A1/C � � � C xktr.�Ak/



Appendix A 213

Using the properties of linear combination, the following expression is obtained:

E.A/ D tr.�A/

Using similar arguments, the variance of the observable can be defined as follows:

V.A/ D tr.�A2/� tr.�A/2

where

A2 D AA

D .x1A1 C � � � C xkAk/.x1A1 C � � � C xkAk/

D x21A1 C � � � C x2kAk

A.6.3 Uncertainty Inequality

Recall that the conjoint measurement of two observables that are represented by two
operators can be expressed as the following matrix product:

AB

where

B D y1B1 C � � � C ymBm

is the operator of another observable, the yjs are the values of this observable, and the
Bjs are the projectors of the event that the yjs are observed. Expectation and variance
can also be computed for this additional observable. In general, two observables are
incompatible, and therefore, their operators do not commute, that is,

AB ¤ BA

It can be shown that two observable operators commute when each pair of projectors
commutes, that is,

AiBj D BjAi i D 1; : : : ; k j D 1; : : : ;m

Therefore, if two observables are not compatible in the real world, their mathe-
matical representation should be provided by two noncommutative operators; for
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example, the following operators do not commute:

x0

�
0 0

0 1

�
C x1

�
1 0

0 0

�

y0
2

�
1 �1

�1 1

�
C y1

2

�
1 1

1 1

�

whereas the following operators commute:

x0

0
@
0 0 0

0 0 0

0 0 1

1
A Cx1

0
@
1 0 0

0 1 0

0 0 0

1
A

y0

0
@
0 0 0

0 0 0

0 0 1

1
A Cy1

0
@
0 0 0

0 1 0

0 0 0

1
A Cy2

0
@
1 0 0

0 0 0

0 0 0

1
A

Consider a special observable called commutator. A commutator does not corre-
spond to a physical measurement device; it is only a function of two observables,
and it is a mathematical expression of the conjoint measurement performed through
two observables. A commutator is defined so as to yield 0 when two observables
are compatible and a value different from 0 when two observables are incompatible.
The operator of the commutator of two observables is defined as

C D AB � BA

In the remainder of this section, we follow the arguments provided by Nielsen and
Chuang (2000). Suppose two observable operators are defined with null expectation;
if the corresponding observables do not exhibit null expectation, it is always possible
to scale the observable values so as to obtain null expectation; for example, the
expectation of the observable that corresponds to the occurrence of a term and that
has values 0 and 1 with uniform probability 1

2
is 1

2
; an observable that has null

expectation can be obtained by subtracting the expectation from each observable
value. The variance of the operator of an observable with null expectation is
defined as

V.A/ D tr.�A2/

Consider the product between the variances of two observables with null expecta-
tion:

V.A/V.B/ D tr.�A2/tr.�B2/ D h�jA2j�ih�jB2j�i
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Define the following vectors

j i D Aj�i j
i D Bj�i

Note that

h�jA2j�i D h�jAAj�i D .h�jA/.Aj�i/ D h j i

and

h�jB2j�i D h�jBBj�i D .h�jB/.Bj�i/ D h
j
i

Consider the Cauchy-Schwartz inequality that states that

h j ih
j
i 	 h j
ih
j i

After replacing j i and j
i, the following inequality is obtained:

V.A/V.B/ 	 jh�jABj�ij2

Note that

h�jABj�i

is a complex number a C ib such that

a D 1

2
h�jAB C BAj�i b D 1

2
h�jAB � BAj�i

It follows that

jh�jABj�ij2 D a2 C b2

which is never negative, and in particular, it is never less than b2. However,

b2 D 1

4
jh�jCj�ij2

thus obtaining the following inequality:

V.A/V.B/ 	 1

4
jh�jCj�ij2 (A.9)
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Fig. A.5 Indeterminacy principle

which quantifies the indeterminacy principle also known as Heisenberg’s uncer-
tainty principle. Figure A.5 depicts an illustration of this principle.1 The tridimen-
sional plot represents the probability of the conjoint measurement of the observables
represented by the operators A and B. The left-hand side of (A.9) is the measure of
the area of the plane cutting the plot. The inequality says that the shape of the plot is
constrained by the right-hand side of (A.9) in a way that the volume below the plot
cannot be reduced and that only the shape can be “squeezed,” thus increasing V.A/
while reducing V.B/ or vice versa. Squeezing the plot is an intuitive description
of what happens to the precision of the measurement of one observable when the
precision of the measurement of the other observable is changed: the reduction of
the latter causes the increase of the former. This inverse relationship between the
precisions and the inequality (A.9) means that there is an amount of indeterminacy
which is represented by the volume below the plot and cannot be eliminated.

Consider the following operators to show how the incompatibility between
relevance and aboutness causes the Heisenberg uncertainty inequality (see also
Sect. 3.2.6). Suppose operator A represents aboutness and operator R represents
relevance. A possible implementation can be based on the following values and
projectors:

A D 0A0 C 1A1 B D 0B0 C 1B1

where

A1 D
�
0 1

1 0

�
B1 D

�
0 �1
1 0

�

1The figure was inspired by Maccone and Salasnich (2008).
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Suppose a document � can be represented by a state vector j�i; this state vector
determines the probability distribution of the observables and, for example, is
defined as follows:

j�i D
�
1

0

�

The commutator of relevance and aboutness is

C D
�
2 0

0 �2
�

Therefore, the right-hand side of (A.9) is

1

4
jh�jCj�ij2 D 1

and we have that

V.A/V.B/ 	 1

Note that the choice of the operators that implement the observables is crucial.
Indeed, if the following matrices were chosen

A1 D
�
1 0

0 0

�
B1 D

�
1
2
1
2

1
2
1
2

�

the right-hand side of (A.9) would always be 0 for all state vectors even if these two
matrices represent incompatible observables. Note also that the choice of the state
vector is crucial. Indeed, if the state vector were

1p
2

�
1

1

�

the right-hand side of (A.9) would be 0 even if the commutator is C.

A.7 Bell’s Inequality

In this section, the origin and the violation of Bell’s inequality mentioned in
Sect. 2.6.2 are briefly explained. We utilize an IR-like language to make the
explanation easier to follow; in Sect. 3.12, some more technical readings are
suggested.



218 Appendix A

Some users are asked to assess some features of documents. The documents are
prepared as pairs, that is, one pair of documents are given to the users at a time. In
particular, the first document of a pair is given to one user, and the second document
is given to the other user. The users are supposed to be faraway so that they cannot
communicate. The users are asked to measure one feature at a time; for example,
one user is asked to measure relevance and the other user has to measure aboutness.
Each user may change the observable at each document; he may measure aboutness
of a document and measure term occurrence of the next document; sometimes,
they measure the same observable, and sometimes they do not. When observing
the sequence of documents sent to a user, two main events occur: the user selects
the observable (i.e., aboutness, relevance, occurrence) and the user measures the
selected observable (e.g., if relevance was selected, the user measures either relevant
or irrelevant).

When the sequence of documents sent to the users ends, three frequency tables
can be prepared, one table for each pair of observables:

occurs does not occur
relevant P.R D 1;X D 1/ P.R D 1;X D 0/

irrelevant P.R D 0;X D 1/ P.R D 0;X D 0/

occurs does not occur
about P.A D 1;X D 1/ P.A D 1;X D 0/

not about P.A D 0;X D 1/ P.A D 0;X D 0/

about not about
relevant P.R D 1;A D 1/ P.R D 1;A D 0/

irrelevant P.R D 0;A D 1/ P.R D 0;A D 0/

where R is the observable (i.e., random variable) of relevance such that R D 1means
“relevant” and R D 0 otherwise, whereas A is the observable of aboutness and X is
the observable of term occurrence. The number P.R D 1;A D 1/ is the probability
(i.e., relative frequency) that the first document of a pair was relevant, and the second
document of the same pair was about a given topic. It can be checked that the sum of
the four probabilities of each table must be one. Moreover, the marginal probabilities
of one table should match with the marginal probabilities of another table within a
“small” statistical error, in particular:

P.R D 1/ D P.R D 1;A D 0/CP.R D 1;A D 1/ D P.R D 1;X D 0/CP.R D 1;X D 1/

Bell (1964) also noted the following inequality:

P.R D 1;X D 0/C P.R D 0;X D 1/C P.R D 1;A D 0/C
P.R D 0;A D 1/C P.X D 1;A D 0/C P.X D 0;A D 1/ � 2 (A.10)
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Fig. A.6 Observable polarization in the vector space

This inequality is valid for all triples of observables. However, it is violated when
entangled photons replace documents and relevance; aboutness and occurrence
are replaced by the measurement of three different polarizations, for example, the
polarization at angle 0, the polarization at angle 30 degrees, and the polarization
at angle 60 degrees. It was found that the mathematical model that explains
the experimental results obtained from entangled photons and polarizations is
superposition as follows:

jR D 1i D cos � jX D 1i C sin � jX D 0i

where

P.R D 1;X D 1/ D jhR D 1jX D 1ij2 D cos2 �

and

P.R D 1;X D 0/ D jhR D 1jX D 0ij2 D sin2 �

and jR D 1i is the state vector of the first document when it is relevant (i.e.,
the event that the first document is relevant), jX D 1i is the event that the term
occurs in the second document, and � is the angle between polarizations; we are
indeed viewing the relationship between relevance, aboutness, and occurrence as
the geometrical relationship between three polarizations placed at angle � ; this
relationship is visualized in Fig. A.6. As relevance and irrelevance are mutually
exclusive, the following vector must be orthogonal to jR D 1i:

jR D 0i D sin � jX D 1i � cos � jX D 0i

Moreover,

jA D 1i D cos � jX D 1i � sin � jX D 0i
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and

jA D 0i D sin � jX D 1i C cos � jX D 0i

The probabilities of the first two tables can then be updated as follows:

occurs does not occur
relevant cos2 � sin2 �

irrelevant sin2 � cos2 �

occurs does not occur
about cos2 � sin2 �

not about sin2 � cos2 �

The probabilities of the third table are computed as follows:

P.R D 1;A D 0/ D jhR D 1jA D 0ij2
D jhR D 1j.sin � jX D 1i C cos � jX D 0i/j2
D j sin �hR D 1jX D 1i C cos �hR D 1jX D 0ij2
D j sin � cos � C cos � sin � j2
D j2 sin � cos � j2
D 4 sin2 � cos2 �

P.R D 0;A D 1/ D jhR D 0jA D 1ij2
D jhR D 0j.cos � jX D 1i � sin � jX D 0i/j2
D j cos �hR D 0jX D 1i � sin �hR D 0jX D 0ij2
D j cos � sin � C sin � cos � j2
D j2 sin � cos � j2
D 4 sin2 cos2 �

The probabilities that are reexpressed as functions of � can be plugged in Bell’s
inequality (A.10) to obtain the following expression:

4.2C cos 2�/ sin2 � � 2 (A.11)

The left-hand side of (A.11) is depicted in Fig. A.7 which shows when the inequality
can be violated.
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Fig. A.7 Bell’s inequality

A.8 The Schmidt Number and Decomposition

This decomposition exploits the SVD and provides an algorithm for expressing a
state vector of a product space as a superposition of pure state vectors, thus assuring
that a basis exists for each component system.

Suppose A;B are two nA-dimensional and nB-dimensional spaces, respectively;
for example, A may refer to the occurrence of one term, and an orthonormal basis of
this space can represent the event that either the term occurs or does not (nA D 2);
similarly, B may refer to the occurrence of another term (nB D 2).

The theorem of the Schmidt decomposition states that for any state j�i of the
product space A ˝ B, there exist orthonormal basis states for A and orthonormal
basis states for B such that j�i is a superposition of the product basis states, that is,2

j�i D
min nA;nBX

iD1
�i;ijiAi ˝ jiBi

X
i

�2i;i D 1

where

�i;i 2 R j�i 2 A ˝ B jiAi 2 A jiBi 2 B

This result can be proved after observing that a state vector j�i 2 A ˝ B can be
expressed as a linear combination of an arbitrary orthonormal basis of the product
space j ji ˝ jki, where j ji and jki are two arbitrary orthonormal bases of A and B,

2The finite-dimensional case is assumed for the sake of simplicity.
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respectively, that is,

j�i D
X
j;k

cj;kjji ˝ jki;

where the cj;k are the coefficients of the linear combination. These coefficients can
be arranged as a nB�nA matrix C, thus establishing a connection to the SVD. Indeed,
this latter result states that there exist three matrices B; �;A such that

C D B�A

where B is nB � nB, � is nB � nA such that �i;j D 0 when i ¤ j, and A is nA � nA,
that is,

cj;k D
X

i

bj;i�i;iai;k :

After substituting,

j�i D
X
j;k;i

bj;i�i;iai;kjji ˝ jki

D
X

i

�i;ijiAi ˝ jiBi

where

jiAi D
X

j

bj;ijji jiBi D
X

k

ai;kjki

Consider, for example,

j�1i D 1p
2

0
BB@

1

0

0

1

1
CCA

which can be rewritten as

C D 1p
2

�
1 0

0 1

�

We have that nA D nB D 2 and that

C D 1p
2

�
1 0

0 1

�
D
�
1 0

0 1

� 1p
2
0

0 1p
2

!�
1 0

0 1

�
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The Schmidt number is 2, and then j�1i is entangled. Moreover, consider the
following state vector:

1

2
.j00i C j01i C j10i C j11i/

We have that nA D nB D 2 and that

C D 1

2

�
1 1

1 1

�
D 1

2

�
1 1

�1 1
��

1 0

0 0

��
1 1

�1 1
�

The Schmidt number is 1, and then this state vector is not entangled.
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