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Preface 

This book is primarily intended for graduate chemists and chemical physicists. 
Indeed, it is based on a graduate course that I give in the Chemistry Depart
ment of Southampton University. 

Nowadays undergraduate chemistry courses usually include an introduction 
to quantum mechanics with particular reference to molecular properties and 
there are a number of excellent textbooks aimed specifically at undergraduate 
chemists. In valence theory and molecular spectroscopy physical concepts are 
often encountered that are normally taken on trust. For example, electron 
spin and the anomalous magnetic moment of the electron are usually accepted 
as postulates, although they are well understood by physicists. In addition, the 
advent of new techniques has led to experimental situations that can only be 
accounted for adequately by relatively sophisticated physical theory. Relativis
tic corrections to molecular orbital energies are needed to explain X-ray photo
electron spectra, while the use oflasers can give rise to multiphoton transitions, 
which are not easy to understand using the classical theory of radiation. Of 
course, the relevant equations may be extracted from the literature, but, if the 
underlying physics is not understood, this is a practice that is at best dissatisfy
ing and at worst dangerous. One instance where great care must be taken is in 
the use of spectroscopically determined parameters to test the accuracy of elec
tronic wave functions. The practice of employing classical analogies to add 
small terms to the molecular Hamiltonian, as and when they are needed to ex
plain new phenomena, is no longer satisfactory. It is necessary to start with as 
complete a molecular Hamiltonian as possible to make sure that important 
contributions to spectroscopic parameters are not omitted. 

However, the physics literature that deals with such topics as relativistic 

ix 
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quantum mechanics and the quantum theory of electromagnetic radiation 
usually assumes a broad physical background that can only be acquired by 
reading a number of physics texts. In addition, the pertinent knowledge is 
often embedded in a considerable amount of information that is not directly 
relevant to molecular physics. The aim of this book is, therefore, to present 
sufficient theoretical physics that the theory needed to understand some of 
the recent developments in molecular physics may be better appreciated. 

Only the quantum mechanics and mathematics that, in my experience, is 
usually covered in undergraduate chemistry courses is assumed. Even so, the 
relevant parts are summarized in the early chapters, although vector algebra 
is considered in some detail, since there are a number of useful sophistications 
that do not appear to be covered in the usual texts. Classical mechanics and 
special relativity are then introduced with particular reference to a system of 
particles and this theory is used to develop electromagnetic theory in such a 
way that no knowledge of these subjects is necessary beyond that taught in 
schools. With this background the Dirac equation for the electron is considered 
in detail; this theory leads naturally to the concept of electron spin and the 
correct value for the spin magnetic dipole moment of the electron. The exten
sion to many electrons and to molecules is then discussed, the end product 
being a Hamiltonian containing all the terms of (chemical) interest. Finally, 
the classical theory of electromagnetic fields is quantized and it is shown how 
quantum field theory may be used to describe the interaction of radiation with 
matter. This is but a brief review of the topics covered, but reference to the list 
of contents may be made for a more detailed summary. 

I do not pretend that the theory described in this book is entirely adequate 
to account for all molecular properties. There are, for example, radiative cor
rections that can only be discussed satisfactorily in terms of quantum electrody
namics, a subject that is beyond the scope of this book. Nevertheless, an attempt 
is made to give a qualitative description of the processes responsible for such 
phenomena as the Lamb shift and the radiative correction to the g factor of 
the electron. 

In a way the subject matter reflects my own interests, since it represents 
what I have found necessary to learn, since graduating as a chemist, in order 
to pursue my current research interest in high resolution molecular spectros
copy. There is another personal stamp on this book, since I have a dislike for 
appendices and these have been kept to a minimum. The appendix containing a 
summary of the useful vector relations derived in Chapter 2 requires no com
ment. Of the other two, one is a review of the SI system of units, which is 
used throughout the book. For those who, despite international agreement, 
still prefer to use the mixed (or Gaussian) system, the transition to the SI 
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system is not trivial. However, no problems should be encountered here, since 
electromagnetism, where the main difficulties occur, is developed from first 
principles and since tables for the conversion of units and equations are given. 
In the remaining appendix a general bibliography is presented; this comprises 
a list of the books that are referred to most frequently in the bibliographies at 
the ends of the individual chapters. I have made no attempt to provide a com
plete bibliography and indeed this would be an almost impossible task. The 
sources that are cited are those that I have found useful; where appropriate I 
have given a brief description of the material covered by the individual refer
ences. Anyone wishing to consult other sources can always find more refer
ences in the articles anq books that are mentioned in the bibliographies. 

It will be apparent that no problems as such are given, but the reader will 
often find results quoted, the verification of which provides ample material for 
exercises. This is not intended as a textbook, its purpose is to provide suffic
ient background that the more recent research literature may be approached 
with confidence. 

Finally, I must thank a number of people for their part in the realization 
of this book. Professor A. Carrington first turned my attention to relativistic 
effects and Professor A. D. Buckingham suggested the inclusion of the quan
tum theory of radiation. I am also grateful to these and other colleagues, in 
particular Dr J. M. Brown, Dr B. J. Howard, Dr I. J. Ketley and Mr A. J. Perry, 
for reading all or parts of the manuscript and helping to remove inaccuracies. 
Needless to say the remaining errors are my responsibility alone and I will 
appreciate them being pointed out to me. Thanks are also due to Mrs Jean 
Gordon and Mrs Christine Croucher, who between them expertly typed the 
bulk of the manuscript. 

Southampton 
July, 1972 

Richard E. Moss 
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CHAPTER ONE 

Non-relativistic Quantum Mechanics 

This introductory chapter has two purposes. The first is to provide a brief 
resume of the quantum theory that is assumed to be familiar to the reader 
and, in particular, those results that are used later. A deep discussion of the 
foundations of quantum mechanics will not be given and in this chapter the 
results will be quoted without proof; the justification for this policy is that 
there are a number of excellent texts available. Nevertheless, some of the 
mathematics employed in this presentation is discussed in more detail later. 
For example, an acquaintance with vector and matrix algebra is assumed here, 
although Chapter 2 is devoted to this subject. 

The other objective of this chapter is to point out the unsatisfactory fea
tures of non-relativistic quantum mechanics. This theory is based on a number 
of postulates, the justification of which is that the results derived from them 
are in agreement with experiment. However, in a relativistic theory some of 
these postulates are unnecessary and here we are thinking in particular of elec
tron spin and the phenomena associated with it. 

1.1 Formal quantum mechanics 

For convenience just one particle is considered here, but the extension to 
many-particle systems is readily made. Moreover, it should be noted that the 
present section is not intended to be a logical development of quantum theory. 

The state of a one-particle system is described by a wave function 'Ir{r, t), 
which is a function of particle coordinates and time. The probability of the 
particle being found in a small volume dT at position r and time t is given by 
'Ir{r, t)*'Ir(r, t)dT, where the asterisk indicates complex conjugation. Since the 
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2 Advanced Molecular Quantum Mechanics 

particle must be somewhere in space: 

J 'I'(r, t)*'I'(r, t)dT = J 1'I'(r, t) 12dT = (Ll) 

and a wave function satisfying this condition is said to be normalized. Since 
the wave function is to be regarded as a probability amplitude, it must be 
finite, single-valued and continuous; in addition, it must be possible to per
form the integration in Equation 1.1. Subscripts may be used to distinguish 
wave functions representing different states of a system. Two different wave 
functions, 'I'm and 'I' n, are then said to be orthogonal if J 'I'~ 'I' n dT vanishes. 

It is often convenient to use an alternative notation to describe the state of 
a system. This is the <bra I c I ket} notation due to Dirac, in which the ket In} is 
used instead of 'I' n and the bra <n I in place of 'I' ~. In this scheme Equation 1.1 
is written as <n In} = 1 and the orthogonality condition is <m In} = 0 (m =1= n); 

in each case integration over all space is implied by the notation. (It is tempt
ing to say that 'l'n and In) are equal, but this is not strictly accurate. The 'l'n 

are functions of coord ina tes, while the In} are vectors in so-called Hilbert space 
and are independent of the coordinate system used. In addition, in the Dirac 
notation a quantity such as <n In} is a scalar product of vectors rather than an 
integration over space.) 

Observables or measurable properties of a system are represented by oper
ators. If a state, which is characterized by \fin, has a definite value Q'n for the 
observable represented by the operator A, then 'I' n is an eigenfunction of A 
with eigenvalue Q'n and the equation: 

(1.2) 

is satisfied. By multiplying this equation on the left by \fI~, integrating over 
all space and using Equation 1.1 Q'n may be obtained: 

(1.3) 

This is the expectation value of A in the state n and in the Dirac notation is 
written as {niA In}. In general, expressions of the type J'I'~A'I'ndT or 
{m iA In} are referred to as matrix elements of the operator A between states 
m and n. 

In quantum mechanics the operators are all linear so that the result of 
operating on a linear combination of wave functions is: 

A(cm'l'm + cn'l'n) = cmA'I'm + cnA'I'n· (I.4) 

For an operator to represent a physical observable all its eigenvalues must be 
real and this imposes the restriction that the operator be Hermitian. The con
dition for the Hermiticity of A is that the equation: 



Non-relativistic Quantum Mechanics 3 

f"'~"'ndr = f(A*'It:')"'ndr = f("':Avm)*dr (1.5) 

should always hold or, in the alternative notation, (miA In) should always 
equal (n IA Im)*. In addition, the eigenfunctions corresponding to different 
(real) eigenvalues of an Hermitian operator are orthogonal to one another. 

A general normalized function cI» can be written as a combination of a com
plete set of orthogonal functions. This set might be all the eigenfunctions of 
the Hermitian operator A: 

(1.6) 

However, cI» is not necessarily itself an eigenfunction of A, but a determination 
of the physical property associated with A will always give one of the an as 
the result; the probability that a particular result am is obtained being c:.cm • 

The expectation value of A in the state represented by I{) may still be deter
mined, but it will be a weighted ayerage of all the eigenvalues an of A. 

A rule is still needed to construct the operator for a particular observable. 
It is usual to take the classical expression for the observable and to replace 
the position r and linear momentum p by the operators rand p = - iFJ(a/ar), 
respectively, where the symbol i represents ..j- 1 and Ii is related to Planck's 
constant h by Ii = "h/21r; the vector operator (a/ar) has components (a/ax), 
(a/ay) and (a/az). If both rand p appear in the classical expression then care 
must be taken that the resulting operator is Hermitian. In addition, the total 
energy E of a system may also be replaced by the operator i1i(a/at). 

1.2 The SchrOdingel" equation 

Classically the energy of a system is the sum of its kinetic and potential ener
gies. For a particle of mass m the former is p2/2m and the latter is a function 
of position and time: 

E = p2/2m + VCr, t). (1.7) 

On quantization the right-hand side of this equation becomes the Hamiltonian 
operator: 

where x, y, z are the components of the position vector r. When this operates 
on a wave function it must give the same result as the energy operator ili(a/at) , 
so that 

(1.9) 
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this is the time-dependent Schrodinger equation. 
If the potential energy of the particle is time independent, the Hamiltonian 

is also and the space and time variables in Equation 1.9 may be separated. The 
solution may then be written: 

'I1(r, t) = exp (- iEt/h) I/I(r), (1.10) 

where E and 1/1 are given by the time-independent Schrodinger equation: 

XI/I = EI/I; (1.11) 

E is now the energy of the system and is independent of time. In addition, 
Equation 1.10 shows that 1 'I1(r, t) 12 = 1 I/I(r) 12, so that these wave functions 
describe a stationary state of the system. 

Only in very simple cases is it possible to solve the time-independent Schro
dinger equation 1.11 exactly. In general, approximate methods must be em
ployed and two approaches are commonly used. 

In the first use is made of the variation principle, which states that, if Eo is 
the lowest eigenvalue of the particular Hamiltonian, then for any normalized 
trial solution 1/1' of Equation 1.11: 

f I/I'*XI/I'dr ~ Eo. (1.12) 

Using this fact a particular form for 1/1' may be optimized by varying adjust
able parameters to minimize f I/I'*XI/I' dr_ In particular, 1/1' may be taken as a 
linear combination of known normalized functions ct>n: 

(1.13) 

and the best approximation of this form to the true lowest eigenvalue of X is 
obtained by the variation of the coefficients en. This leads to a set of coupled 
equations: 

(1.14) 

where Xmn is the matrix element of X between ct>m and ct>n and Smn is the 
overlap integral f ct>::act>ndr, which is unity for m = n but is only zero for m '* n 
if the ct>n are orthogonal to one another. 

The other method involves perturbation theory, in which the Hamiltonian 
is split into two parts: 

X = 'JCo + X'. (1.15) 

It is assumed that the eigenfunctions of Xo are known: 

Xol/I~ = E~I/J~ (1.16) 
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and that the eigenfunctions 1/Jn of the total Hamiltonian may be written as a 
linear combination of them. We then have: 

(1.17) 
and 

(I.18) 

provided J(' is a relatively small perturbation these series converge. 

1.3 Heisenberg's uncertainty principle and related topics 

For the wave function describing a state to be a simultaneous eigenfunction of 
two operators, A and B, then these operators must commute. That is, AB 

must equalBA and this condition is usually expressed as: 

[A,B] = AB-BA = O. (1.19) 

If A and B do commute, the observables they represent can in principle be 
measured simultaneously and precisely. However, if they do not, there is an 
uncertainty in the determined values of the observables and this is expressed 
by Heisenberg's uncertainty principle: 

(M)(M) ;;;. I <lA, BJ>/2il; (1.20) 

this relates the uncertainties, M and M, to the expectation value of the com
mutator of the operators A and B. In particular, the x components of the 
position and momentum operator for a particle do not commute and 
(~x)(~px) ;;;'1i/2. Similarly, the energy operator i1i(a/at) does not commute 
with t, so that (LlE)(~t) ;;;'1i/2 and the precision with which the energy of a 
state may be determined depends upon its lifetime. 

In this connection we may note that we are using the Schrodinger picture 
in which operators such as p and r are time independent and any time depen
d\!nce of the system is contained in the wave functions, which may evolve 
with time. In an alternative formulation of quantum mechanics it is the oper
ators that are time dependent and the wavefunctions that are independent of 
time; this is the Heisenberg picture. It is occasionally useful to know about 
the way in which an operator, or one of its expectation values, varies with 
time. This section is concluded with a derivation of Heisenberg's equation of 
motion, which can provide this information. 

The Heisenberg and SchrOdinger pictures of quantum mechanics may be re
lated to one another by insisting that matrix elements of an operator be the 
same in the two pictures: 
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J'I1*(t)A(O)'I1'(t)dr = J'I1*(O)A(t)'I1'(O)dr. (1.21 ) 

Now, an alternative way of writing Equation 1.10 is: 

'I1(t) = exp (- fJCt/h)'I1 (0) (1.22) 

and substitution of this and a similar expression for 'I1'(t) into Equation 1.21 
shows that: 

A(t) = exp (tJCt/h)A(O) exp (- fJet!ft). (1.23) 

Since A(O) is time independent, the derivative of this equation with respect 
to time gives: 

dA !dt = (i Ift)(JfA - AX) = (i Iii) pc, A], (l.24) 

which is Heisenberg's equation of motion. 
As an example of the use of this equation, the velocity operator for a par

ticle may be determined by setting A equal to r. The appropriate Hamiltonian 
is given in Equation 1.8, so that dr/dt = p/m which is what one would expect 
by analogy with classical mechanics. 

Finally, it may be noted that for any operator A that commutes with the 
Hamiltonian its time derivative dAldt, and the expectation value of this, must 
vanish, so that A is a constant of motion. Consequently, the energy and the 
observable corresponding to A may be determined precisely and this is in 
agreement with the earlier discussion. 

1.4 Angular momentum 

Classically the angular momentum of a particle is given by r " p, the vector 
product of its position and its linear momentum. The corresponding operator 
in quantum mechanics is given by the same expression and may be written as: 

ftI = r" p = - iftr" (alar), (1.25) 

so that I is a dimensionless operator. The x component is given by: 

lilx = - ift(y a!az - z a/ay) (1.26) 

and the other components may be obtained by a cyclic permutation of x, y 
and z. 

The components of the operator I do not commute: 

(I.27) 

so that a wave function cannot be a simultaneous eigenfunction of Ix. Iy and Iz. 
However, the operator f2 = (fx + fy + t:) does commute with these components 
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and it is usual to employ wave functions that are eigenfunctions of f2 and [z. 

Their explicit form may be determined by taking f2 and [z to be operators in
volving partial derivatives with respect to spatial coordinates as in Equation 
1.26 and solving the resulting partial differential equations. The resulting 
eigenfunctions are angular functions, or spherical harmonics, and are charac
terized by two quantum numbers [and mI' The equations they satisfy are: 

(1.28) 

where [ = 0, 1, 2, ... and ml = [, [- 1, ... , -I. 
Thus an atomic electron is said to possess an orbital angular momentum 

which is an integer in units of fl. This is in agreement with observations made 
in atomic spectroscopy. In addition, experiment shows that associated with 
the orbital motion of an electron is a magnetic moment - em/2m, where - e 
and m are the charge and mass of the electron, respectively. (In this book SI 
units are employed and these are rlummarized in Appendix A; in addition, those 
units associated with electromagnetic phenomena are discussed in more detail 
in Chapter S.) This orbital magnetic moment of an electron arises quite natur
ally in non-relativistic quantum theory when the interaction with electromag
netic fields is introduced and this is demonstrated in Chapter 7. 

Of particular interest is the so-called g factor which is the magnitude of the 
ratio of an angular momentum and its associated magnetic moment, the ratio 
being measured in units of e/2m. Thus the orbitalg factor is just 1 and this is 
not surprising, since classical theory gives the same result. For an electron 
m"oving with speed v in a circle of radius r the angular momentum is mvr. The 
associated magnetic moment is - evr/2, which is just the product of the cur
rent (..,- ev/2trr) flowing round the circle and its area (1I"r2). The ratio of interest 
is - e/2m, so that claSSically the orbital g factor is unity. 

Equations 1.28 are obtained by taking the eigenfunctions of /2 and /z to be 
functions of the electron's coordinates. However, a general angular momen
tum lij may be defined, the components of which satisfy similar commu
tation relations (Equations 1.27) to m: 

(1.29) 

Without making any assumptions about the form of the simultaneous eigen
functions l/Ijmj of the operatorsp andjz, these commutation relations may be 
used to show that: 

j2l/1jmj = j(j + 1)t/ljmj; jzl/ljmj = mjl/ljmr (1.30) 

These results are analogous to those for f2 and /z except that in this case the 
values that the quantum numbers may adopt are j = 0, 1/2, 1,3/2, ... and 
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mj = j,j - 1, ... , - j. Thus half-it. ral angular momentum is possible. For 
integer values of j the eigenfunctions . ~y be written as spherical harmonics, 
but it is not possible to give the eigenfunction an analytic form when j is a 
half integer. 

1.S Electron spin 

The existence of orbital angular momentum and its associated magt;letic mo
ment does not explain all the features of the fine structure of atomic spectra 
and, in particular, Zeeman splittings. In non·relativistic quantum mechanics it 
is necessary to postulate that in addition the electron possesses an intrinsic 
angular momentum or 'spin' of ~ in units of Ii together with a spin magnetic 
moment of magnitude eli/2m. 

The spin angular momentum corresponds to the case j = ~ mentioned at 
the end of the previous section and by combining spin and orbital angular mo
mentum the other half-integer values for j may be obtained. The spin angular 
momentum operator is usually deignasted lis and the quantum numbers corre
sponding to j and mj are s(=~) and ms = ± ~. The eigenfunctions of the 
operators S2 and Sz may then be written as 1 s, rns) or just 1 ms), since s is always 
t in addition, the notation 10:) and lin is often used in place of I+~) and 
1- ~), respectively. 

In what follows it is often more convenient to use the operator (1 = 2s 
instead of s itself. The commutation relations for the components of (1 are 
then: 

(1.31) 

and the way in which these operators act on the spin eigenfunctions 10:) and 
lin is given by: 

Ox 10:) = 113); Ox 1(3) = 10:); 

Oy 10:) = i 1(3); Oy 1(3) = -ila); (1.32) 

Oz 10:) = 10:); Oz 1(3) = -113). 

From these relations the effect of operators constructed from the components 
of (1 may readily be determined. In particular, it may be shown that 10:) and 
113) are both eigenfunctions of the operators o~, o~ and o~ with the same eigen
value 1. Thus we may write: 

0; = o~ = o~ = 1. (1.33) 

As we know the commutator of two operators A and B is [A, B] = 
(AB - BA). The anticommutator of these operators may also be defined; this 
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is just (AB + BA) and is written in the abbreviated form [A ,B]+. The anti
commutation properties of the components of fI may now be found and as an 
illustration we evaluate [ax, ay]+ by using Equations 1.31: 

(1.34) 

Now, since a; can be replaced by unity (Equation 1.33), it must commute 
with az and [ax, ay]+ vanishes. Similarly, the other pairs of components offl 
may be shown to anticommute so that: 

(1.35) 

It should be noted that in general the components of the angular momentum 
operator j do not satisfy the relations of Equations 1.33 and 1.35 and that 
these properties are peculiar to the case when j = ~. 

It is possible to construct a matrix representation of the components of fI , 
that is, a set of three matrices which have the same commutation (Equations 
1.31) and anticommutation (Equations 1.35) properties and thus mimic the 
behaviour of ax , ay and az. This may be done using two-by-two matrices 
one such representation being the so-called Pauli spin matrices: 

ay = (~ -i); az = (1 0). (1.36) 
1 0 0-1 

These matrices also have the property that the square of each is equal to the 
two-by-two unit matrix in agreement with Equation 1.33. 

With this formalism the spin functions la) and 1(3) are written as two
component column vectors: 

la} = G); 1(3) = e), (1.37) 

the complex conjugates of these being the corresponding row vectors. Using 
these with Equations 1.36, the relationships of Equations 1.32 may be re
covered and indeed the elements of the matrices in Equations 1.36 are just the 
matrix elements of the corresponding operators between the spin functions. 

Electron spin can now be incorporated into the quantum mechanical de
scription of the electron by using classical analogies to add appropriate spin-
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dependent terms to the Hamiltonian and using wave functions which are pro
ducts of spatial and spin functions. The resulting SchrOdinger equation can 
then be expressed as one equation using the formalism employed in Equations 
1.32 or as a pair of coupled equations using the matrix representation of the 
spin operators (Equations 1.36) and spin functions (Equations 1.37) 

It must be emphasized that although this theory is largely successful it is 
based on the postulate of a 'spinning' electron with angular momentum lis and 
associated magnetic moment - elis/m. The electron spin g factor, which is the 
magnitude of the ratio of these two quantities measured in units of e/2m, is 
thus 2. This result is contrasted by the orbital g factor of 1 and consequently 
the sping factor and the spin magnetic moment are often said to be anomalous. 
The reason for this is that, unlike an orbiting electron, it is not possible to con
struct a satisfactory classical model for a spinning electron. 

Any model in which the electron has its mass and charge distributed over a 
fmite volume explains the existence of both the angular momentum and the 
magnetic moment when the electron spins about an axis. However, the g 

factor cannot be explained so easily. The simplest model consists of a sphere 
with uniform mass and charge densities, but any model in which the mass and 
charge are distributed in the same way leads to a spin g factor of 1 just as it 
does for the orbital motion of an electron. Of course, if the electron consists 
of conducting material the charge might be expected to reside on the surface 
of the sphere and this modification of the model leads to a spin g factor of 
5/3. Although this is not the required result, it does suggest that models may 
be devised with g = 2 and indeed this is so; for illustration we quote just one 
such model. In this the electron is a solid cylinder of uniform density and all 
the charge resides on the curved surface. The angular momentum is mr2w/2, 
where m is the mass, r the radius and w the angular velocity of the cylinder, 
and the magnitude of the associated magnetic moment is e~w/2, so that 
g = 2 as required. 

Nevertheless, this model, and others like it that give a classical g factor of 2, 
are rather far-fetched and cannot be taken as a justification for the introduc
tion of the concept of electron spin. In non-relativistic quantum mechanics 
the existence of electron spin angular momentum and its associated magnetic 
moment must be regarded as postulates. 

All these remarks apply specifically to the electron, but nuclei may be de
scribed in a similar fashion. They too possess spin angular momenta and mag
netic moments, although the spin is not restricted to ~ as it is for the electron, 
and these properties must also be incorporated in the theory in a phenomeno
logical manner. 

Finally, we might mention a further postulate that is necessary when deal-
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ing with systems of many identical particles. This is the Pauli exclusion 
principle, which states that wave functions must be antisymmetric with respect 
to the interchange of like particles with half-integer spin and symmetric with 
respect to interchange of like particles with zero or integer spin. The former 
category of particles, which includes the electron, are called ferrnions and obey 
Fermi-Dirac statistics, while the latter are bosons and are subject to Bose
Einstein statistics. 

1.6 The need for a relatbistic theory 

The velocity of the electron in the first Bohr orbit of a one-electron atom is 
Zetc, where Z is the atomic number, a{ 0< 1/137) is the fine structure constant 
and c is the velocity of light. In the hydrogen atom the relativistic corrections 
expected are small although they are observable. However, in heavier atoms 
these corrections can become quite large for inner electrons despite the shield
ing of the nuclear charge by other electrons. For this reason alone a relativistic 
theory is needed particularly as techniques such as X-ray photoelectron spec
troscopy are now being used to study the inner electrons in atoms and mole
cules. 

At this point it might be mentioned that we will only be interested in special 
relativity. The effects of general relativity, which is concerned with gravitation, 
are negligible in atoms and molecules. This may be seen by considering the 
hydrogen atom. In the fIrst Bohr orbit the total energy of the electron is 
approximately 2 X 10-18 J, whereas the potential energy due to the gravi
tational attraction of the electron by the proton is of the order of 2 X 10-57 J. 

As it happens the incorporation of special relativity in quantum mechanics 
gives rise to far greater benefits than might be expected. In particular, it leads 
quite naturally to the concept of electron spin, so that this need no longer be 
regarded as a postulate. Indeed, both the spin angular momentum and the spin 
magnetic moment are predicted by the theory and the spin g factor is found 
to be exactly 2. (In fact the spin g factor of the electron differs slightly from 
2 and this discrepancy can only be explained by quantum electrodynamics, 
which is beyond the scope of this book, although an indication of its origin is 
given in Chapter 9). 

Morevoer, the spin-dependent terms in the Hamiltonian arise directly from 
a relativistic theory and it is not necessary to use dubious classical analogies 
to construct them as in the non-relativistic approach. Here we might cite the 
spin-orbit interaction, for which classical analogy actually leads to a term 
in the Hamiltonian that is twice as large as is needed to explain experimental 
observations. It is possible to explain the necessary correction factor classically, 
but only if special relativity is included. A section in Chapter 5 is devoted to 
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this topic, but no problems arise if relativistic quantum mechanics is used from 
the outset. 

Not only are terms in the Hamiltonian with classical analogues explained 
readily in the relativistic theory, but also there are some terms that have no 
classical analogues and only appear if special relativity is allowed for. 

The theory to be developed in this book applies specifically to particles of 
spin i, and in particular to the electron. However, it turns out that nuclei may 
be included adequately in atomic and molecular Hamiltonians by treating them 
as electrons but with anomalous masses, charges, spins and magnetic moments. 

Finally we note that the Pauli exclusion principle is derivable from relativ
istic theory, but only by using quantum field theory and as far as electrons are 

concerned this is too advanced a topic to be covered in this text, although a 
qualitative discussion is given in Chapter 12. 

Having made all these assertions about the results that may be obtained by 
using relativistic quantum theory, we have now to demonstrate them. However, 
before this may be done a certain amount of background theory must be de
veloped and the next few chapters are devoted to this aim. 
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CHAPTER TWO 

Vector and Matrix Algebra 

It has already been remarked that the reader is assumed to be acquainted with 
vectors and matrices, indeed it is unlikely that he will have survived the first 
chapter without a rudimentary knowledge of these subjects. However, the 
techniques of vector and matrix algebra are used widely in this book and a 
summary of these subjects is desirable. This summary could have been rele
gated to an appendix, but there are a number of sophistications that may well 
be unfamiliar, since they do not appear to be covered in elementary mathe
matical textbooks. The advantages of these sophisticated techniques are that 
they provide us with an abbreviated notation and can considerably reduce the 
manipulations involved particularly in vector theory. 

We start by recalling the elementary theory of three-dimensional vectors. 
With this background, the repeated subscript summation convention can be 
introduced together with the Kronecker delta, 5ij, and the €jjk notation; it is 
the introduction of the latter that leads to the greatest economies. These tech
niques are used to review the multiplication and differentiation of vectors. The 
properties of matrices and determinants are then summarized using the new 
notation where appropriate. Finally the possibility of having vectors with four 
or more components is mentioned. 

2.1 Vectors and vector multiplication 

A vector is a quantity that has two properties, magnitude and direction. In 
three-dimensional space a vector A may be specified completely by its three 
components, Ax. Ay and A z, in three orthogonal directions x, y and z. If unit 
vectors in these directions are denoted by ex, ey and ez , then A may be 

13 
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expressed as 
(2.1) 

Situations arise where it is expedient to change the axis system by rotating 
the axes to a new orientation; the vector is unchanged by this rotation, but of 
course its components in the new axis system will in general differ from those 
in the original axis system. 

Two types of vector multiplication will be considered, the scalar product 
and the vector product. As their names imply the first results in a scalar quan
tity, while the second gives a new vector. 

The scalar (or dot) product of two vectors A and B is written as A.B and is 
dermed by: 

(2.2) 

If A denotes the length of vector A, then the scalar product of A with itself 
givesA2: 

A.A = A!+A~+A; = A2. (2.3) 

An equivalent way of expressing a scalar product is: 

A.B = AB cos 8, (2.4) 

where 8 is the angle between the two vectors. This angle is clearly unchang~d 
by a rotation of the axis system, so that the scalar product of two vectors has 
the important property of being invariant to rotation. From Equation 2.4 we 
note that the scalar product of two perpendicular vectors is zero; two such 
vectors are said to be orthogonal. The scalar products of the unit orthogonal 
vectors among themselves are thus: 

ex.ex ey.ey = ez .ez = 1; 

ex.ey = ey.ez = ez.ex = O. 

(2.5a) 

(2.5b) 

The vector (or cross) product of A and B is written as A A B. It gives a new 
vector C, which is orthogonal to both A and B (C.A = C.B = O) and whose 
components are given by: 

ex = (A A B}x = AyBz - A,;o:By 

Cy = (A A B)l' = A:Jl" - AxBz 

This definition may be expressed more compactly using a determinant: 

(2.6) 
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C = AAB = Ax (2.7) 

Bx 

on expansion this gives: 

C = ex{AyBz - AzRy) - ey(AxBz - AzRx) + e,,(AxBy - AyBx), (2.8) 

which is equivalent to Equation 2.6. We note that, unlike the scalar product, 
the order in which the vectors appear in a vector product is important, since: 

(2.9) 

Anyone of the four preceding equations shows immediately that the vector 
product of a vector with itself vanishes, while in general the magnitude of the 
vector A A B is given by AB sin 0, where again 0 is the angle between A and B. 
The vector products of the unit orthogonal vectors among themselves are thus: 

(2.10) 

2.2 The repeated subscript convention for summation 

Equation 2.2, which defines the scalar product of two vectors, may be written 
in the alternative form: 

A.B = ~A;Bj, (2.11) 
I 

where the summation is over i = x, y, z. This equation can be abbreviated still 
further: 

(2.12) 

where the sign indicating summation over i has been omitted. The question 
arises as to when summation over a subscript is intended and when it is not. 
This problem may be solved by introducing the convention that, if a subscript 
is repeated, that is, if it occurs twice in an expression, then summation over 
all the poSsible values of the subscript is implied; if a subscript appears only 
once in the expression, then we do not sum over its possible values. This is the 
repeated subscript convention for summation. It will be seen in the examples 
in the remainder of this chapter that it is not possible for a subscript to appear 
more than twice; if it did the meaning of the expression would be ambiguous 
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and in fact a mistake would have been made. Other checks can be applied to 
equations, since a subscript that appears once in one expression must appear 
once and only once in all the other expressions in the equation. In addition, a 
subscript that appears twice in one expression must appear twice or not at all 
in the other terms of the equation. All this should become clearer as examples 
are met in the rest of this chapter. 

This section will be concluded by using the convention to abbreviate some 
of the equations that have been encountered already; in doing this a number 
of dangers associated with the convention will be met. For example Equation 
2.1 may be written as: 

A = A~i (2.13) 
and Equation 2.3 appears as: 

A.A = AiAi. (2.14) 

The first example presents no problems, but in the second the right-hand side 
could have been written as A{, which obscures the fact that the subscript i is 
repeated; it is wise to leave it in the expanded form used in Equation 2.14. 
Finally, it is tempting to rewrite Equation 2.5a as ei.ei = 1, but this is not cor
rect, since the subscript i is repeated and summation over the possible values 
of i must be performed: 

(2.15) 

2.3 The Kronecker delta ~ij 

We cannot write Equation 2.5a using the general subscript i for x, y and z, 
because repeating the subscript i automatically implies summation. However, 
Equation 2.5a could be written as: 

ei.ej = 1 for i = j; (2.16a) 

Equation 2.5b would then appear as: 

e,.ej = 0 for i =F j. (2.16b) 

These two equations could be written as just one equation: 

(2.17) 

if the new symbol, the Kronecker delta, is defined in the follOwing way: 

for i = j; 
(2.18) 

~ij = 0 for i -=1= j. 
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The Kronecker delta can appear in expressions in a number of different 
ways. For example: 

(2.19) 

since summation over j is implied. Alternatively, we could encounter the prod
uct of two Kronecker deltas having a subscript in common: 

(2.20) 

this sort of relationship may be referred to as a sum rule. However, once again 
a note of caution should be sounded, since l)ii is not equal to unity, but 
instead: 

(2.21) 

since we are now committed to the repeated subscript convention. 
Another example of the use of the Kronecker delta is in writing the anti

commutation relations for the components of the spin vector fI, which were 
encountered in the first chapter; Equations 1.33 and 1.35 can now be written 
with economy as: 

(2.22) 

However, the great utility of the Kronecker delta in vector algebra will only 
be appreciated when one more symbol has been introduced and this is done in 
the next section. 

2.4 The €ijk notation 

The definition of €ijk , which is known as the permutation symbol or the unit 
antisymmetric tensor in three dimensions, is introduced immediately; it will 
then be seen how it can be used to simplify equations that have been met al
ready. If ijk is an even permutation of xyz, then €i}k takes on the value one, 
while an odd permutation gives €ijk the value minus one: 

1· , 
(2.23a) 

€xz), = €yxz = €Zyx = -1. 

There is still the possibility that a pair of the subscripts may be identical, in 
which case €ijk has the value zero: 

€ijk = 0 if any pair of i, j, k are identical. (2.23b) 

It can now be seen that Equation 2.6 for the vector product of two vectors 
may be written as: 

(2.24) 
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This is because the subscripts j and k are both repeated on the right-hand side 
of the equation so that, for example: 

ex = €xxxAxBx + €xx0x B y + €xxzAxBz 

+ €xyxAyBx + €xyyAyBy + €xyzAyB z 

+ €xzxAzBx + €xzyAzBy + €xzzAzBz 

€xyzAyB z + €xz0z B y 

= AyBz -AzBy 

by Equations 2.23. Alternatively, Equation 2.7 could be rewritten: 

C = (A A B) = ej€jjkAjBk, 

where summation over i must be performed as well. 

(2.25) 

(2.26) 

The anticommutation of two vectors under the operation of taking a vector 
product (Equation 2.9) may easily be demonstrated using this new notation: 

(2.27) 

since interchange of any pair of subscripts in €jjk must change its sign. In ad
dition, Equations 2.10, which state the result of taking the vector product of 
a pair of unit orthogonal vectors, can now be written as one simple equation: 

(2.28) 

So far we have only met products involving two vectors. The triple scalar 
product, which is written as A.(B 1\ C), can be expanded using the new notation: 

(2.29) 

From its definition cyclic permutation of the subscripts i,j, k does not alter 
the value of €jjk, so that cyclic permutation of the vectors A, Band C does 
not alter their triple scalar product: 

A.(B 1\ C) = B.(C 1\ A) = C.(A 1\ B). (2.30) 

The other important type of product involving three vectors is the triple 
vector product A A (B A C). This too can be expressed in the new notation: 

(2.31 ) 

The combination of two permutation symbols in one expression has not been 
encountered before. In addition, the subscript k is repeated in the product 
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eijkeklm (= €kijeklm), so that the sum rules involving the permutation symbols 
must be considered before Equation 2.31 may be simplified. 

2.S The eijk sum rules 

The permutation symbol eijk has been used to express the vector product of 
two vectors in terms of their components (Equation 2.26). This was also ac
complished in Equation 2.7 using a determinant. It would not be surprising if 
e'jk could be expressed as a determinant and indeed it is possible, one way 
being: 

~'z 

£Jlz (2.32) 

~kz 

This may easily be checked. From the rules relating to the interchange of rows 
in determinants, it can be seen that a cyclic permutation of the subscripts ij.k 
does not alter the value of the determinant, but a non-cyclic one changes its 
sign; thus explicit consideration of, say, €xYIll shows that this defmition is con
sistent with Equation 2.23a. Agreement with Equation 2.23b may be demon
strated by noting that if any pair of subscripts are identical, then the determi
nant will be zero, since two rows are identical. (Any reader unfamiliar with 
the manipulations of determinants is reminded that these are summarized in 
the section on matrices later in this chapter). 

Using the rule for multiplying two determinants together (similar to that 
for matrices), the general product of two permutation symbols may be express
ed as one determinant: 

£J ix £J iy £J iz £J,x £J,y £J,z 

€ijk€'mn = ~/x £Jjy £Jjz ~mx £J my ~mll 

£Jkx £Jky £Jkz ~nx £Jny ~nz 

~il £Jim ~in 

= £Jj , £Jjm ~jn (2.33) 

£Jk1 £Jkm ~kn 

this result is best obtained by transposing the second determinant before multi
plication. Although each subscript appears three times in theabove determinant, 
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expansion leads to a sum of six terms, each of which contains a particular sub
script once and only once, so there is no inconsistency with the repeated sub
script convention. 

However, if the product €ijk€imn is under consideration, summation over 
i is implied and we have: 

I)u 

€ijk€imn = I)ji 

I)ki 

l)ii(l)jml)1en -I)jnl)km) 

- l)im(l)jil)kn - I)jnl)ki) 

+ l)in(l)jil)"m - I)jml)ki)' (2.34) 

In evaluating this expression we recall that 5ii = 3 (Equation 2.21) and note 
that the Kronecker delta sum rule (Equation 2.20) gives, for example, l)im8ji 

= 8m). Substitution leads to the first sum rule: 

(2.35) 

Before using this result on the vector triple product, the problem that initi
ated this discussion of sum rules, two other sum rules will be established. The 
first arises when there are two pairs of identical subscripts in the product of 
two permutation symbols, for example €ijk€ijn' Equation 2.35 gives immedi
ately: 

Finally, for three pairs of identical subscripts: 

€ij1e€i/k = 28kk = 6. 

(2.36) 

(2.37) 

Returning to the problem of the triple vector product in Equation 2.31, use 
of Equations 2.35, 2.19 and 2.12 gives: 

A A (B A C) = e,e1eU€1elm AJB1C m 

= ei(8i/8/m - 6im8jl)AjDlCm 

= e,A/(B,y - BiC;) 

= (A.C)B - (A.B)e. (2.38) 
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2.6 Examples I 

In this section we consider a number of examples of the use of the notation 
that has been introduced. The reader is advised to attempt these problems as 
exercises before looking at the solutions. 

(a) Show that the quadruple vector product (A 1\ B).(C 1\ D) may be expanded 
as: 

Solution: 

(A 1\ B).(C 1\ D) = (A.C)(B.D) - (A.DXB.C). 

(A 1\ B).(C II D) = €iJ"AJB,,€imnC,,/Jn 

= (6Jm6kn - 6jn6"m)A/l"C,,/Jn 

= AJB"GD" - AIJ"C"Dj 

= (A.C)(B.D) - (A.D)(D.C). 

(2.39) 

(2.40) 

(b) Express as one equation the commutation relations in Equations 1.31 for 
the components of the spin vector a : 

[ax, ay] = 2iaz ; ray, az] = 2iax ; [az , ax] = 2iay. 

Solution: 
(2.41) 

or multiplying by ~€ijnen, expanding the commutator and using Equations 
2.26 and 2.36: 

a II a = 2ia. (2.42) 

(c) Prove the following identity for any two vectors, A and D, that commute 
with the spin vector a, but not necessarily with each other: 

(a.A)(a.B) = (A.B) + ia.(A II D). (2.43) 

Solution: 

In many of the previous examples, it has been assumed without comment 
that all the components of all the vectors commute with one another. In most 
of the situations that will be encountered in this book, and in the present ex
ample in particular, this assumption is not justified and we must keep track of 
the order of the vector components. The commutation and anticommutation 
relations for the components of a are: 

(2.42) 
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and 
(2.22) 

To prove Equation 2.43 we note that, since fI commutes with A and B, the 
term (fI.A)(fI.B) is identical to the first term on the right-hand side of Equa
tion 2.39, provided C and D are both set equal to fl. Equation 2.39 cannot be 
used directly, since the order of vector components was not preserved in its 
proof, but we can start with the third line of Equation 2.40: 

(A A B).(fI AfI) = A/JkO,Ok - A/JkOkO,. 

Substitution of Equations 2.42 and 2.22 gives: 

2ifl.(A A B) O/OkA/Jk - (- 0/012 + 2li/k )Aj Bk 

20jok A/Jk - 2AjDj. 

On rearrangement and division by 2: 

(fI.A)(fI.B) = (A.B) + ifl.(A A B); 

this is an important relationship and will be used a number of times in Chapter 
8 onwards. 

2.7 The vector Openttor V 

So far two types of quantity have been encountered, scalars and vectors. Both 
scalars and vectors can be functions of time and space coordinates or other 
variables. (These two types of functions are usually called scalar fields and 
vector fields. An example often given for a scalar field is the temperature, 
since this can vary in space and time, but is represented by a scalar quantity 
at each point, while an example of a vector field is heat flow, which needs a 
vector at each point in space and time to specify it.) Situations frequently arise 
where it is necessary to differentiate a scalar or a vector. Differentiation with 
respect to time presents no problems and will not be considered here, but 
differentiation with respect to spatial coordinates leads to the vector operator 
V. 

Let us consider a scalar function cf>(x, y, z). For infinitesimal increases in 
x, y and z the corresponding change in cf> is given by: 

dcf> = (3cf>/3x)dx + (3cf>/3y)dy + (3cf>/3z)dz. (2.44) 

This expression can be thought of as the scalar product of two vectors with 
components ((3cf>/3x), (3cf>/3y), (3cf>/3z)) and (dx, dy, dz). If the point x,y. z 
is specified by the vector r then the second vector may be thought of as dr, 
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while the first vector consists of the scalar cp being operated on by a vector 
operator with components ((a/ax), (a/ay), (a/az». This operator is called 
'del' and has the symbol V: 

V = e"a/ax + eya/ay + eza/az 

(2.45) 

where the repeated subscript convention has again been introduced. 
When the operator V operates on a scalar function ~, there is only one 

possible result, a vector Vcp, which is called the gradient of cpo However, two 
possibilities arise when V is allowed to operate on a vector A, since either the 
scalar product or the vector product between V and A may be taken. The first 
possibility, V.A, is a scalar quantity and is known as the divergence of A, while 
the second, V 1\ A, is a vector called the curl of A. The reason for the names, 
gradient, divergence and curl, will become clearer when their physical signifi
cance is considered in the following sections. 

2.8 The gradient 

The gradient of a scalar function cp(x, y, z) is a vector and from Equation 2.45 
may be written: 

(2.46) 

F or a small change dr in the position vectorr of the point (x, y, z) the corre
sponding change in cp is, from Equation 2.44: 

dcp = (VCP).dr. (2.47) 

To see what Vcp means physically we note that, if k is a constant, the equation 
cp(x,y,z) = k represents a surface. If dr is taken to be tangential to the surface, 
that is the change in position dr takes us to a new point in the same surface, 
then dcp = 0 and 

{VCP).dr = O. (2.48) 

Since dr is tangential to the surface and can be in any arbitrary direction in the 
surface, Vcp must be perpendicular to the surface. Then again, if dr were not 
tangential to the surface, but were to take us to some new surface, cp = k', 
Equation 2.47 indicates that the increase in cp will be greatest when dr is parallel 
to Vcp, that is perpendicular to the surface. Thus Vcp represents in magnitude 
and direction, the maximum rate of increase of the scalar function cpo 

Suppose Equation 2.47 were to be integrated between two points I and 2 
along some line joining the points. That is f.:ir each infinitesimal element dr on 
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the line, we calculate (Vcf».dr and then add the contributions from all the ele
ments of the line. The result would be: 

2 
cp" - cf>1 = f (Vif».dr. 

1 
(2.49) 

The left-hand side of this equation depends only on the location of the two 
points and is independent of the line along which the integral is performed. It 
follows that the line integral on the right-hand side of the equation must also 
be independent of the path taken. In the special case where the integration is 
over a closed path and point 2 is coincident with point I: 

1 
f 1 (Vcf».dr = i (Vcf».dr = o. (2.50) 

2.9 The divergence 

The divergence of the vector A has already been defined as the scalar V.A; in 
terms of components: 

V.A = (Milari) = V,Ai. (2.SI) 

Let us consider the way in which electric charge (or heat etc.) flows out of a 
volume element dT = dxdydz centred on the point x, y, z (Fig. 2.1). If the 

Foce2-
r.:z;Y,z) Face I 

dx 

Fig. 2.1. The volume element dxdydz used to demonstrate the significance of 
the divergence of a vector. 

vector j = j(x, y, z) represents the current density (flow of charge, or current, 
per unit area perpendicular to the direction of j), then the charge loss per unit 
time from the volume element through face 1 is: 

i,,(x + ~dx,y, z)dydz ~ [i" + ~(ai,,/ax)dx]dydz, 

while for face 2 the rate of gain of charge is: 

i,,(x -~dx,y,z)dydz "" [i" -kai,,/ax)dx]dydz. 

(2.52) 

(2.53) 
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The combined charge loss rate through the two faces is thus (ajx/ax)dxdydz. 
The charge flow across the other faces of the volume element may be found 
in the same way giving for the total charge loss rate from the volume element: 

(2.54) 

or a loss rate per unit volume ofV.j. Thus, sincej is itself a rate, the divergence 
of a vector represents a loss per unit volume. 

If the charge density associated with the volume element under consider· 
ation is p(x, y, z), this loss rate per unit volume could also be expressed as 
- (aplat) so that the equation: 

V.j + (aplat) = 0 (2.55) 

expresses mathematically the law of conservation of charge, that is charge can 
be neither created nor destroyed and any charge lost by a volume element 
must go through the surface of tht element. 

The rate of loss of charge can also be thought of as an integral over the 
surface of the volume element. An infmitesimal surface element may be re
presented by ds, which is a vector normal to the surface element and with 
magnitude equal to the area of the element. Thus the total loss rate from the 
volume element is J j.ds, so that from Equation 2.54: 

J j.ds = V.j dr. (2.56) 

This equation applies to an infmitesimal volume element dr, but it may be 
extended to a finite irregularly shaped volume by dividing this volume into 
infmitesimal volume elements and integrating. Except at the boundaries of the 
volume under consideration any face of a volume element is shared with 
another. The loss from one volume element through a shared face is the gain 
of the other volume element through the same face and the two cancel on 
integration, so that Equation 2.56 generalizes to: 

Jj.ds = JV.j dr (2.57) 

for an extended region of space; the integral on the left is a surface integral, 
while that on the right is a volume integral, the whole equation being known 
as Gauss' theorem. 

2.10 The curl 

The curl of a vector A, written as V "A, is itself a vector and from Equation 
2.26 may be expanded in terms of the components: 
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(2.58) 

Its physical significance is not as easy to see as in the case of the gradient or 
the divergence, but consideration of an area element is instructive. For con
venience it is assumed to be parallel to the xy plane (Fig. 2.2), bu t generaliz
ation to other orientations is possible. The circulation of the vector A round 

3 

4 (x'y'l'l 
2 dy 

dx 

Fig. 2.2. The surface element dxdy used to demonstrate the significance of the 
curl of a vector. 

the boundary of the surface element is the line integral round this closed loop 
of the component A along the line element, that is # A.dr. This integral may 
be broken down into contributions from the sides of the area element, in the 
same way that the contributions from each face of a volume element were 
considered when the divergence of a vector was discussed. If the integration 
round the boundary of the area element is carried out in the direction of the 
arrows in the figure, the contribution from side 1 is: 

(2.59) 

while that from side 3 is: 

(2.60) 

The combined contribution from these two sides is - (aAx/ay)dxdy. The 
sides 2 and 4 may be treated in the same manner to give for the total line inte
gral around the boundary of the area element: 

(2.61) 

The term in square parentheses is just the z component of V 1\ A, while dxdy 
is the magnitude of the area element. If as before the area element is repre
sented by a vector ds normal to it, Equation 2.61 may be generalized to: 

# A.dr = (V 1\ A).ds. (2.62) 
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Thus the circulation of a vector round the boundary of an infmitesimal surface 
element is the component of the curl of the vector perpendicular to the ele
ment times the area of the element. 

Equation 2.62 may be extended to a general closed loop by taking any sur
face bounded by the loop and splitting the surface up into infinitesimal surface 
elements. Except at the boundary of the surface each edge of a surface element 
is shared and the contributions to the line integral from two neighbouring ele
ments cancel, since the direction of circulation is taken to be anticlockwise in 
all elements. Thus: 

I A.dr = f (Y A A).ds; (2.63) 

the left-hand side is a line integral round a closed loop while the right-hand 
side is a surface integral over any surface bounded by the loop. Equation 2.63 
is known as Stokes' theorem. 

2.11 Examples n 

In this section are given a number of useful relationships involving the vector 
differentiation of products; these are also listed in Appendix B for convenience. 
If A and B are vectors and I/J is a scalar, then: 

V.(I/JA) = (YI/J).A + q,(Y.A); 

V A (I/JA) = (YI/J) A A + q,(Y A A); 

(2.64) 

(2.65) 

V(A.B) = (B.V)A + (A.V)B + B A (Y A A) + A A (Y A B); (2.66) 

V.(A A B) = (Y A A).B - A.(Y A B); (2.67) 

V A (A A B) = A(Y.B) - (A.V)B + (B.V)A - (Y .A)B. (2.68) 

In these relationships it has been assumed that I/J and the components of B all 
commute with A so that their order has not been preserved when a simpler ex
pression results from rearrangement. Consequently care must be used in ap
plying Equations 2.66 and 2.68 in some situations. 

The proofs of these relationships should be regarded as exercises. However, 
the proofs of Equations 2.64 and 2.67 will be given here as examples. 

(a) Proof of Equation 2.64: 

V.(I/JA) = V,(f!l.4i) = (V,I/J)Ai + l/J(ViAJ 

= (VI/J).A + I/J(Y .A). (2.64) 
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(b) Proof of Equation 2.67: 

V.(A "B) = Vi(€ijkA~k) = €ijk [(V;Aj)Bk + AiVl1k)] 

= €,dj(V;Aj)Bk - €jik Ai Vl1k) 

= (V "A).B - A.(V "B). 

2.12 Second derivatives in vector calculus 

(2.67) 

There are six possible ways in which V can operate twice on a scalar cp or a 
vector A: V.(Vcp); (V.V)A; V(V.A); V " (Vcp); V.(V "A); V ,,(V "A). There 
are no meaningful combinations of the symbols, that are not included in this 
list. 

The first case, V.(Vcp), may also be written without ambiguity as (V.V)cp or 
even Vlcp and the scalar operator Vl expanded in terms of components: 

(2.69) 

it occurs frequently in physics and is known as the Laplacian. Since it is a 
scalar, the Laplacian can also operate on a vector and an example of this possi
bility appears second in the original list; however, this possibility is of little 
interest as is the third possibility, V(V.A). 

The next two cases both vanish as can be seen by rewriting them in alterna
tive but equivalent ways: 

and 
V ,,(Vcp) = (V " V)cp = 0 

V.(V "A) = (V " V).A = 0; 

(2.70) 

(2.71) 

in each case the operator (V " V) vanishes. These two identities have an inter
esting use. Suppose that the curl of some vector B vanishes, that is (V " B) = O. 
Then Equation 2.70 tells us that, if B is expressed as the gradient of an appro
priate scalar, the condition that its curl is zero is automatically satisfied. Simi
larly, from Equation 2.71 it can be seen that, if a divergenceless vector is 
written as the curl of another vector, its divergence is guaranteed to be zero. 

Finally, we note that the remaining possibility, V 1\ (V "A), may be expand
ed using Equation 2.68 provided it is remembered that V and A do not com
mute and their order must be preserved: 

v " (V "A) = V(V.A) - VlA. (2.72) 
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2.13 The Dirac delta function 

So far we have been referring to general vectors A, B etc. In the remainder of 
this book the position vector r: 

(2.73) 

will often be encountered. In general the result of operating on a component 
ofr with a component of V is given by: 

(2.74) 

This equation, together with Equation 2.21, immediately tells us that the di
vergence of r is equal to three: 

V.r = 'iljrj = Ojj 3. 

On the other hand the curl of r vanishes: 

Another simple result that is occasionally useful is: 

(A.V)r = Aj'iljejrj = ejAjojj = ejAj 

where A is any vector. 

(2.75) 

(2.76) 

A, (2.77) 

A more complicated example, that will be encountered later, is V(I/r), ,-
where r (=(rjrj)2) is the magnitude of the position vector r: 

V(I/r) eSj [(rjrjr 4] = ej [- r-3/2]('illj rj) 

- ej [r- 3/2] [2rjoij] = - ejr-3yj 

- r/r3. (2.78) 

We could proceed in the same way to evaluate V2(l/r), which will also be met 
later. From Equation 2.78 this is: 

V2(l/r) 

= - r-3 (V;rj) - rj('iljr-3 ) 

- r- 30jj - r.{- 3r-Srj) 

= - 3r-3 + 3r-3 = o. (2.79) 

This suggests that V2(l/r) vanishes everywhere, but is this true when r = 0 and 
(1/r) is infinite? Equation 2.78 shows that V(1/r), which is expected to vary 
roughly as r-2 , also becomes infinite at r = 0 and thus poses no problems. But 
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V2(llr) is expected to behave roughly as r-3, so that it should also be infinite 
at r = O. In fact, Equation 2.79 is incomplete, since it is not true when r van· 
ishes, although it is correct for non-zero r. 

To demonstrate how Equation 2.79 needs to be modified, the correct result 
will first be quoted, since a new symbol needs to be introduced. Equation 2.79 
should read: 

V2(llr) = - V.(r/r; = - 4m5(r), (2.80) 

where 5(r) is the Dirac delta function (not to be confused with the Kronecker 
delta), which is zero everywhere except when r is zero. Now 5(r) is a three
dimensional delta function and can be factorized into a product of one-dimen· 
sional delta functions: 

(2.81) 

since r is only zero when x, y and z all vanish. We will concentrate for the mo· 
ment on the one-dimensional Dirac delta function 5(x), since we can easily 
generalize to the three-dimensional case using Equation 2.81. 

The function 5(x) is zero everywhere except when x vanishes, but what 
happens to 5(x) when x = O? From what has been said already one might ex· 
pect 5(x = 0) to be infinite and indeed it is, but it is defined so that it is infi· 
nite in a special way. If [(x) is any function of x then 5(x) must satisfy: 

J:flx)5(x)dx = flO). (2.82) 

In particular if flx) = 1 then: 

(2.83) 

so that 5(x) is zero everywhere except at the origin where it is infinite in such 
a way that the area under it is unity. 

Thus 5(x) has very strange properties compared with the mathematical 
functions usually encountered. However, it can be related to the usual type of 
functions in the following way. The function: 

(nl1r)~ exp (- nx~, (2.84) 

is plotted in Fig. 2.3 for a number of positive values of n. If this function is 
integrated with respect to x between ± 00, then no matter what the value of n 
is, the result is unity because there is a standard integral: 

(2.85) 

From the figure it can be seen that as n increases the function (Equation 2.84) 
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gets spikier at x = 0, and in the limit when n becomes infinite the function 
has the same properties as the Dirac delta function 6(x) in that it is zero every
where except at x = 0, where it is infinite in such a way that the area under it 
is unity and Equations 2.82 and 2.83 are satisfied. Thus an alternative defi
nition of 6 (x) is: 

(2.86) 

Other limits may be used to represent 6(x) and one of these will be encoun
tered in Chapter 13. 

n=4 

x 

Fig. 2.3. A plot of y = (n/1T)~ exp (- nx 2) for n = 1,4 and 16. 

It should be noted that because of its definition the Dirac delta function 
can only be used in integrals as in Equation 2.82; however, in this book the 
delta function usually arises in quantum mechanical operators, the matrix ele
ments of which involve integration. Consequently, an operator expression such 
as xo(x) may be replaced by zero: 

x6(x) = 0, (2.87) 

since Equation 2.82 tells us that an integration involving it will vanish. In ad
dition, Equation 2.82 may be used to show that: 

6(cx) = 6 (x)/c, (2.88) 

where c is a constant. 
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It is now possible to demonstrate the validity of Equation 2.80. To do this 
some of the results of Chapter 5 are anticipated, but the pertinent ones should 
be familiar. It will be recalled that Gauss' law, which is one of Maxwell's equa
tions, may be written in SI units as: 

V.E = p/eo, (2.89) 

where E is the electric field, p the charge density and eo the permittivity in a 
vacuum. Now in electrostatics the electric field may be expressed as -VI/>, 
where I/> is a scalar potential, so that: 

(2.90) 

In the special case of a point charge q at the origin, the scalar potential at a 
point r is given by: 

I/> = q/41feor. (2.91) 

Substitution into Equation 2.90 then gives: 

'IifZ(1/r) = - 41fp/q. (2.92) 

The left-hand side of this equation is the quantity we wish to evaluate; it only 
remains to interpret p, the charge density due to a point charge at the origin. 
This is zero everywhere except at r = 0 where it is infinite; in addition the 
total charge in space f pdT, must be just q so that: 

p = qli(r) (2.93) 

is an appropriate description. Substitution into Equation 2.92 gives Equation 
2.80, which is the desired result. 

In a later chapter the expression Vj(rJ /r~ will be met. If i =1= j, reference to 
Equation 2.79 shows that it may be expressed as: 

Vj(rj/r~ = - 3rjrJ/rs 

but if i = j Equation 2.80 shows that 

Vj(rdr~ = 41fli(r), 

(i =1= J), (2.94) 

(2.95) 

where summation over i is of course implied. These two equations may be 
written as one: 

(2.96) 

since li jj = 3 (Equation 2.21) and by symmetry the contributions from each 
of the three terms in the summation on the left-hand side of Equation 2.95 are 
equal. 
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2.14 Matrices and determinants: a summary 

Although a knowledge of matrices is assumed, it will be useful to summarize 
some of the more pertinent properties of matrices using where possible the re
peated subscript convention, the Kronecker delta and the permutation symbol. 

A matrix is merely a rectangular array of numbers. An m X n matrix A has 
m rows and n columns, a typical element beingAji (i = I, ... m;j = 1, ... n). 
Provided the dimensions are the same, two matrices may be added or subtract
ed by adding or subtracting corresponding elements; these operations are as
sociative and commutative. However, the more important operation of matrix 
multiplication is in general non-commutative, although it is associative. Again 
the sizes of the matrices must be compatible in that an m X n matrix A can 
only be multiplied by an n X p matrix B to give an m X p matrix C(= AB) as 
the product. The elements of these matrices are related by: 

(2.97) 

where summation over j(= 1, ... n) is implied by the repeated subscript nota· 
tion. 

The transpose A of an m X n matrix A is defined as the n X m matrix with 
the elements: 

(2.98) 

It may be shown by a simple application of Equation 2.97 that the transpose 
of the product of two matrices is the product of the transposes of the two 
matrices but taken in reverse order: 

(AD) = SA. (2.99) 

There are a number of specific types of n X n or square matrices. A diagonal 
matrix is a square matrix in which only the elements on the major diagonal 
are non-zero; a special case of a diagonal matrix is the unit matrix I, in which 
all the diagonal elements are equal to unity: 

(2.100) 

The adjoint A+ of the matrix A is obtained by transposing the elements and 
taking the complex conjugate: 

(2.101) 

A matrix is said to be Hermitian if it is self-adjoint: 

A+ = A. (2.102) 
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A square matrix A has an inverse if there exists a matrix A -I such that: 

AA-I = A-IA = I, (2.103) 

and is said to be orthogonal if this inverse is equal to its transpose: 

KI = A; (2.104) 

on the other hand A is unitary if its inverse is the same as its adjoint: 

A-I = A+. (2.105) 

As for the transpose the inverse of the product of two square matrices is the 
product of the inverses taken in reverse order: 

(2.106) 

as may be checked by substitution into Equation 2.103. 
Tr(A) is the notation used for the trace of a square matrix, that is the sum 

of its diagonal elements: 
Tr(A) = A jj • (2.107) 

It is easy to show that the trace of the product of two matrices Tr(AB) is un
changed by reversing the order of multiplication of the matrices: 

Tr(AB) = (AB)jj = Ail1ji = Bj;Aij = (BA)jj = Tr(BA). (2.108) 

Each n X n matrix A has associated with it a number, the determinant IA I, 
which is a sum of products of the elements: 

(2.109) 

where the summation is over all permutations of i,j, ... ,k and h is the num
ber of interchanges of pairs of these subscripts necessary to restore the natural 
order 1, 2, ... ,n. Recalling the definition of Eiik we note that a 3 X 3 deter
minant can be written as: 

(2.110) 

if i,j, k are interpreted as 1,2,3 rather than x, y, z. The connection between 
the determinental defmition (Equation 2.7) of the vector product of two 
vectors and the defmition (Equation 2.26) using Eijk should now be apparent. 
From the definition (Equation 2.109) of a determinant a number of useful 
properties may be proved: interchange of two rows (or columns) will change 
its sign; if two rows (or columns) are identical its value is zero; adding one 
row (or column) to another row (or column) does not alter its value etc. 
Finally, it may be noted that determinants may be multiplied in the same 
way as square matrices and that the determinant of the product of two 
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matrices is the product of the detenninants of the individual matrices. 
A set of n simultaneous equations: 

AiJxI = Yi 

can be written in matrix fonn as: 

(i,j= I, ... n) 

Ax = y, 

(2.111) 

(2.112) 

where A is an n X n matrix and both x and yare n X I matrices or column 
vectors, for example: 

, XI \ 

X2 

X = (2.113) 

I 

i 
xn! 

their transposes being 1 X n matrices or row vectors. In fact, a vector in three
dimensional space can be thought of as a 3 X I matrix, and for this reason no 
confusion should arise from using heavy type for both vectors and matrices. 
The only way in which difficulties might arise is in knowing what size matrix 
is intended by a particular symbol. Since the elimination of this problem would 
necessitate a clumsy notation, it must always be remembered what size matrix 
is denoted by a particular symbol in a particular context. 

The formal solution of Equation 2.112 is: 

(2.114) 

and we recall that the inverse of a matrix is found by f"mding for each element 
Aij its cofactor, which is (- l)i+1 times the determinant obtained by removing 
row i and column j, transposing the resulting matrix and dividing each element 
by the determinant of A. That is 

(2.115) 

where iii is the cofactor of element Ail. If the detenninant of the matrix A 
vanishes, A is said to be singular and can possess no inverse. 

If y = ).X were substituted into Equation 2.112, it would read: 

{A - ).I)x = 0, (2.116) 

which is the general fonn of the eigenvalue equation found in quantum mech
anics; the non-trivial solutions of this set of n equations consists of n values of 
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the eigenvalue A each with its corresponding eigenvector x. The possible eigen
values are found by solving the polynomial equation: 

lA-AIl = 0 (2.117) 

and the eigenvectors Xr corresponding to each eigenvalue Ar are determined 
by back-substitution into Equation 2.116 followed by solution of the result
ing simultaneous equations. The eigenvectors xr are column vectors, which can 
be written side by side as a square matrix X. This matrix X is such that: 

(2.118) 

where 1\ is the diagonal matrix with the eigenvalues Ar as the diagonal elements. 
Equation 2.118 represents a similarity transformation and in this case it diag
onalizes the matrix A. 

2.1S Vectors in four dimensions 

Most of this chapter has been devoted to three-dimensional vectors, each com
ponent of which corresponds to one of the three spatial dimensions. In the 
last section it was. seen that these vectors can be thought of as 3 X 1 matrices 
and be manipulated accordingly. However, a 3 X 1 matrix is just a special C::1se 
of an n X I matrix, and such properties as scalar and vector products can be 
generalized from three to many dimensions, although it is hard to see the sig
nificance of say a vector product in n dimensions. But is there any point in 
doing this? It is merely noted here that when special relativity is considered in 
Chapter 4, it will be convenient to think of time as a fourth dimension, and 
that the theory may be developed in terms of four-dimensional vectors or four
vectors. Further discussion of this topic is postponed till then. 
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CHAPTER THREE 

Classical Mechanics 

Before considering special relativity, and in particular relativistic mechanics, a 
brief review of classical mechanics will prove useful. This serves two purposes, 
to prepare the ground for contrasting special relativity with classical theory 
and to review such topics as Lagrangians and Hamiltonians. 

3.1 Inertial frames and Galileo's relativity principle 

In this book it is assumed that the motion of electrons and nuclei is indepen
dellt of their dimensions, that is, they may be regarded as point masses or 
particles. The justification for this assumption is that electrons and nuclei are 
very small compared with the atoms and molecules in which they are found; 
the radii of electrons, nuclei and atoms are of the order of 10-15, 10-14 and 
10-10 m, respectively. The position of an electron or a nucleus at a particular 
time can thus be specified by its vector position r, that is by three cartesian 
coordinates. In general a system of N particles requires 3N coordinates to 
specify its instantaneous configuration and the system is said to have 3N de
grees of freedom. 

Although a system can be characterized instantaneously by 3N cartesian 
coordinates, other coordinates may be used. Any set of 3N coordinates qn 
(n = I, ... , 3N), that completely specify the system, is acceptable, and these 
are called generalized coordinates; for example, one of these generalized co
ordinates could be the separation between two particles. However, to be able 
to measure coordinates at all, we must have a frame of reference, that is a sys
tem of coordinate axes and, since the evolution of a system with time is of 
interest, a clock fixed in this frame of reference. 

37 
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There are an infinite number of possible frames of reference, but the only 
ones of interest in classical mechanics are those in which space is homogeneous 
and isotropic and time is homogeneous, in agreement with experience. These 
frames are called inertial frames and in particular a freely moving particle (one 
that experiences no external forces) has a constant velocity in such a frame. 
There are still an arbitrarily large number of inertial frames, but these move 
uniformly with respect to one another. 

Now experiment shows that the laws of physics are the same no matter 
what inertial frame is used; this is Galileo's principle of relativity. Thus, the 
same phenomena will be described by similar equations in two different inertial 
frames. Suppose that the position of a particle is r in a frame K and r' in 
another frame K', that is moving uniformly with a velocity v relative to the 
first frame K. If the two frames are coincident at time t = 0, then rand r' are 
related by the Galilean transformation: 

r = r' + vt. (3.1) 

It will be noted that time is here assumed to be the same in the two frames, 
t = t'. It is this assumption that time is absolute that distinguishes a classical 
theory from a relativistic one; special relativity will be considered in the next 
chapter, and for the remainder of this chapter it will be assumed that time is 

indeed independent of the inertial frame used. With this assumption an equa
tion expressing a physical law must be invariant to the transformation (Equa
tion 3.1); that is, the equation must have the same form in different inertial 
frames. 

3.2 The principle of least action 

The state of a mechanical system is completely specified at an instant of time, 
if all the generalized coordinates qn are known. If all the generalized velocities 
qn (= dqn/dt)are also known at the same instant of time, then in principle the 
subsequent motion may be calculated. This is achieved by setting up equations 
of motion relating the coordinates qn, the velocities qn and the accelerations 
lin. Solution of these equations for the qn as functions of time, enables the 
evolution of the system to be followed. 

One way of obtaining the equations of motion would be to use Newton's 
laws. However, there are other formulations of classical mechanics and the one 
given here, the principle of least action or Hamilton's principle, is the most 
important. This principle may be shown to be consistent with Newton's laws, 
but neither should be regarded as a consequence of the other; they are alterna
tive fundamental postulates. 
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The principle of least action states that a system may be characterized by 
the Lagrangian £(qn, Qn, t), which is a function of the generalized coordinates, 
the generalized velocities and also the time. The motion of the system between 
two times, ta and tb, at which the coordinates are known, is such that the 
action S, which is defined by: 

- Jtb ')d S - t £(qn, qn, t t, a 
(3.2) 

takes the least possible value. Thus, the action is a line integral along the path 
taken by the system between ta and tb and the path actually followed is such 
that the action is least. (Strictly speaking this is only true for an infinitesimally 
short path and the condition for a finite path is that the action should have a 
stationary value; however, it will be seen that in deriving the equations of mo
tion from the principle this point is of no consequence.) 

It is not easy to visualize the Pfysical meaning of the least action principle. 
However, there are other minimum principles in physics, the most transparent 
being Fermat's principle of least time, which states that light travels between 
two points in such a way that the time taken is a minimum. Use of this princi
ple leads immediately to the rectilinear propagation of light in a uniform 
medium, the laws of reflection at a surface and the laws of refraction for light 
crossing the boundary between two different media. For detailed discussions 
of this principle the reader is referred to the bibliography at the end of the 
chapter. 

3.3 Lagrange's equations of motion 

By minimizing the action (Equation 3.2) equations of motion may be obtain
ed. For simplicity this will be done initially for a system characterized by only 
one coordinate q, the extension to many degrees of freedom being made later. 
The fixed values of q at times ta and tb are taken to be qa and qb(see Fig. 3.1). 
Let us suppose that the function of time q(t) represents the path along which 
the action integral is minimized (or in general has a stationary value). A slight 
displacement from this optimum path to a new path, q(t) + 6q(t), can have no 
first-order effect on the action, that is the corresponding change 5S in the ac
tion integral is zero: 

6S = 6 J;b £(q, q, t)dt = O. 
a 

(3.3) 

This may be expanded as follows: 
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(3.4) 

It might be thought that, since the Lagrangian is a function of time, a term 
involving cat/at) should appear. However, in varying the path we are interested 
in the change in the Lagrangian for each line segment of the action integral, 
that is each change is considered at a fixed time. Since oq dt is the' same as 
d(oq), the second term in Equation 3.4 may be integrated by parts: 

Now the first term in this equation vanishes, since q is required to have the 
fixed values qa and qb at times ta and tb, so that oq(ta) and Oq(tb) are both 

tf. ----------------

tfa ---

I 

Fi~. 3.1. The path taken by a one-coordinate system between (qa. ta ) and 
(qb. tb); q(t) is the path along which the action is assumed to be least and q(t) 
+ oq(t) is a slightly displaced path. 

zero. Thus, the integral in Equation 3.5 must vanish and this must be true for 
any arbitrary infinitesimal change in path oq. ':'he only way that this can hap
pen is for the integrand to vanish also: 

~(a:) _ a£ = O. 
dt aq aq (3.6) 
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This result may be generalized to a system with many degrees of freedom. 
Corresponding to each generalized coordinate qn there can be an arbitrary in
flOitesimal change in the line integral, so that there will be an equation similar 
to Equation 3.6 for each coordinate: 

:t (::) - (::J = 0 (n = 1, ... ,3N). (3.7) 

These equations are known as Lagrange's equations of motion (or Euler's equa
tions in the general context of the calculus of variations, which is the mathe
matical technique that has been used here). These partial differential equations 
may be solved for the particular system under consideration to give the qn ex
plicitly as functions of time; in general, there will be 6N arbitrary constants, 
which may be fixed by initial conditions. 

Of course , the form of the Lagrangian must be known before the equations 
of motion may be solved. Before considering this in the next section, it is 
noted that the equations of motion are unaltered by multiplication of the 
Lagrangian by an arbitrary constant; however, the same constant must be used 
for all Lagrangians, if isolated systems are to be brought together and treated 
as one with a combined Lagrangian. In addition, a Lagrangian is undetermined 
to the extent that addition of a total time derivative of a function f(qn. t) of 
coordinates and time will not affect the equations of motion. This may be 
seen by noting that addition of (df/dt) to the Lagrangian adds to the action 
integral (Equation 3.2) a term: 

(3.8) 

since the qn are assumed fixed at ta and tb. Consequently such a term can have 
no influence in the variation procedure used in developing the equations of 
motion. 

3.4 The Lagrangian for a system of particles 

It has already been stated that the principle of least action is consistent with 
Newton's laws and indeed they may be derived from the principle via Lagrange's 
equations of motion. The derivation given here is not completely rigorous, but 
the consistency of the two approaches should be apparent. It is first necessary 
to obtain an appropriate Lagrangian and this is done for a free particle before 
considering a collection of particles. 

The Lagrangian of a free particle in an inertial frame cannot depend on the 
vector position r of the particle, since this would imply that space was not 
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homogeneous, nor can it depend on the time explicitly, if the homogeneity of 
time is to be preserved. This means that the Lagrangian can only involve the 
velocity i of the particle. However, the isotropy of space demands that it must 
be independent of the direction of the velocity so that it must be concluded 
that the Lagrangian of a free particle can only be a function of ;2, that is 
£(p). Substitution of this result into Lagrange's equations of motion (Equa
tion 3.7) gives immediately: 

~(a:) = 0 
dt ar or 

a£ 
ai = constant. (3.9) 

(When the derivative of a scalar with respect to a vector is written, we mean 
the vector whose components are the derivatives of the scalar with respect to 
the corresponding component of the vector. Thus the second of Equations 
3.9 represents three equations, a typical one being (a£tarx ) = constant). 
Since the Lagrangian is a non-linear function of the velocity, the velocity 
itself must be constant. This gives the first of Newton's laws, that in an 
inertial frame a free particle moves with constant velocity. 

The precise form of the Lagrangian may be determined by appealing to the 
law of relativity, since on performing a Galilean transformation (Equation 3.1) 
between two inertial frames the equations of motion must be unchanged so 
that the Lagrangian can only be changed by at most the addition of a total 
time derivative of a function of coordinates and time. This can be shown to be 
pOSSible only if the Lagrangian is directly proportional to P; to agree with 
other approaches to classical mechanics the proportionality constant is taken 
to be ~ m, where m is the mass of the particle: 

£ 1 °2 =;Zmr. (3.1O) 

The Lagrangian in the K' inertial frame of Section 3.1, which is related to the 
present frame by the transformation of Equation 3.1, is then given by: 

£' = ~m(rY = ~m(i - V)2 

1 °2 ° + 1 2 = ;zmr - mr.v ;zmv 

(3.11) 

This separation of £' into £ and a total time derivative would not be possible 
if the Lagrangian were a more complicated function of P than Equation 3.10. 

For a system of particles the Lagrangian is the sum ofthe Lagrangians for 
the individual particles together with a term representing the interaction be
tween the particles and this can only be a function of the positions of the par-
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ticles. If the particles are distinguished by the subscript i, the total Lagrangian 
may be written: 

(> 1·2 ) • ) 
.L. = ~ "miTi - V(ri = T(ri) - V(ri . 

I 
(3.12) 

The first term is the kinetic energy T while V is the potential energy; the reason 
for these names and the presence of the minus sign will become apparent in 
the next section. The repeated subscript summation convention is not appro
priate for the first term, since the subscript i differentiates particles and not 
vector components. Substitution of Equation 3.12 into lagrange's equations 
of motion (Equation 3.7) gives three equations for each particle: 

mi(di;/dt) = -(av/ar,) = F" (3.13) 

By interpreting - (a vlari) as the vector F;, the force on particle i, Newton's 
second law is obtained, the Equations 3.13 being Newton's equations of mo
tion which equate forces with mass accelerations. 

Up till now the discussion has been in terms of cartesian coordinates, but a 
transformation may be made to any appropriate generalized coordinates. The 
kinetic energy is in general a quadratic function of generalized velocities, but 
cross terms can appear and the coefficients may be functions of the coordi
nates. However, the Lagrangian may still be written in terms of the kinetic 
energy T and the potential energy V: 

(3.14) 

Since the kinetic energy can also be a function of the generalized coordinates, 
the generalized force Fn must be deimed as: 

(3.15) 

Earlier it was stated that the Lagrangian can also be a function of time, and 
this occurs if the particles are subject to some sort of time-dependent external 
potential; this possibility will be encountered later. 

3.S Constants of motion 

For a closed system, that is one that is not subject to an external potential, 
there are a number of functions of the coordinates and velocities that remain 
constant throughout the motion. Of these constants of motion the most im
portant are those that are a direct consequence of the homogeneity and isotropy 
of time and space. Here they will be derived using cartesian coordinates, al
though the extension to generalized coordinates will be discussed. 
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The homogeneity of time implies that for a closed system the Lagrangian 
does not depend explicitly on time. Thus: 

(3.16) 

Substitution for (a£/ari) using Lagrange's equations of motion (Equation 3.7) 
gives: 

d£ ~ [. d (at) (0£) .. ] 
dt = ~ rio dt ,ali + ari .ri 

(3.17) 

Rearrangement of this equation shows that: 

(3.18) 

does not vary with time and is a constant of motion. Substitution of the ex
plicit Lagrangian (Equation 3.12) for a system of particles now gives: 

(3.19) 

E is the total energy of the system, and is composed of two parts, the kinetic 
energy T, which is a function of the velocities, and the potential energy V, 
which is a function of the coordinates only. When generalized coordinates are 
being used, the equations analogous to Equations 3.18 and 3.19 are: 

(3.20) 

Since space is homogeneous an arbitrary infinitesimal displacement 8 of a 
system of particles must leave the Lagrangian unaltered: 

8£ = ~ (a£/ari).8 = 8.~ (O£/ari) = O. (3.21 ) 
I I 

Since 8 is arbitrary, this can only be interpreted as showing that: 

~ ca£/ari) = 0, (3.22) 
I 

or using Lagrange's equation of motion (Equation 3.7): 

~ :t(:~) = :t~(:~) = o. (3.23) 
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Thus ~ (o£/orj) is a constant of motion and is called the total momentum of 
I 

the system. It is clear that, unlike the energy, momentum is additive and each 
particle has associated with it a momentum: 

(3.24) 

substitution of the Lagrangian (Equation 3.12) shows that this is equal to mjrj. 
In addition, substitution of Equation 3.24 into Lagrange's equations of motion 
and use of Equation 3.13 shows that: 

(3.25) 

where F j is the force on particle i. From this equation it is apparent that Equa
tion 3.22 shows that ~ F j = 0 and in particular for a system of just two par-

I 

ticles we may recover Newton's third law, that to every action there is an equal 
and opposite reaction. 

Equations 3.24 and 3.25 may be generalized: 

(3.26) 

where Pn is a generalized momentum and is said to be conjugate to the coordi
nate qn. The energy (Equation 3.20) can now be written in the simpler form: 

E = ~ qnPn-£. 
n 

(3.27) 

Finally, the isotropy of space implies that the Lagrangian is invariant to in
finitesimal rotations of the axis system. Use of this condition leads to a third 
constant of motion, the angular momentum. The rotation of a system of par
ticles through an angle lHJ may be represented by a vector 68 directed along 
the axis of rotation, the sense of the rotation being given by the right-hand 
screw rule. If the axis passes through the origin of the coordinates, the ro
tation changes a position vector r by an amount 6r = 68" r and the change 
in the time derivative of r is given by 6l = 68" r. The corresponding change 
in the Lagrangian is thus: 

6£ = ~ [(o£/orj).6rj + (o£/orj).6rd 
I 

68. [d(~ rj A pj)/dt] , (3.28) 
I 

where Equations 3.7 and 3.24 have been used for (o£/orj) and (o£/orj). Since 
£ is invariant to rotation, 6£ must vanish and, beca11se 68 is arbitrary, Equation 
3.28 shows that: 

(3.29) 
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is a constant of motion. This is the angular momentum and as for the linear 
momentum it is an additive property of a system of particles. 

3.6 The Hamiltonian 

The Lagrangian is a function of coordinates and velocities, but it is often more 
appropriate to describe a mechanical system in terms of coordinates and mo
menta; for example, quantum mechanics is usually formulated in terms of 
momenta rather than velocities, although in that case the momenta are, of 
course, operators. The equations of motion may be rewritten in terms of mo
menta in the following way. The total differential of the Lagrangian expressed 
in terms of generalized coordinates is: 

(3.30) 

where again a closed system is assumed so that the Lagrangian does not depend 
explicitly on time. Substitution of Equations 3.26 into Equation 3.30 gives: 

de = ~ Wndqn + Pndtln) 
n 

~ lPndqn + d(qnPn) -qndpn). (3.31) 
n 

or on rearrangement: 

(3.32) 

The new symbol Jf represents the Hamiltonian: 

Jf(qn,Pn) = ~qnPn-£' (3.33) 
n 

and reference to Equation 3.27 shows that it is just the energy of the system. 
Hamilton's equations of motion may now be obtained directly from Equation 
3.32: 

(3.34) 

If the Lagrangian of a system is known as a function of coordinates and 
velocities, the corresponding Hamiltonian may be found as a function of co
ordinates, velocities and momenta from Equation 3.33. However, the Hamil
tonian is a function of coordinates and momenta alone and the dependence on 
velocities must be removed for it to be useful. This may be done by using the 
first of Equations 3.26 to obtain the momenta as functions of the velocities 
and coordinates, solving this set of 3N simultaneous equations for the velocities 
as a function of coordinates and momenta and substituting in Equation 3.33. 
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As developed here, the Hamiltonian is a function of coordinates and mo
menta, but like the Lagrangian it may also depend explicitly on time if the 
system is not closed. However, it will be seen in Chapter 5 that external poten
tials may be included without modification of the above equations. 
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CHAPTER FOUR 

Special Relativity 

The theory of classical mechanics, which was discussed briefly in the previous 
chapter, is classical in two senses. First, it is not a quantum mechanical theory 
and is thus not appropriate on a molecular scale. Secondly, it takes no account 
of special relativity. The use of the word 'classical' is thus ambiguous, since in 
different contexts it may mean non-quantal or non-relativistic or both. It is the 
purpose of this chapter to remove one of the restrictions and develop a rela
tivistic but non-quantum-mechanical theory for a free particle. 

4.1 Einstein's principle of relativity 

The relativity principle, that the laws of physics are the same in all inertial 
frames, has been met already in Section 3.1. However, the Galilean transform
ation (Equation 3.1) used there to relate inertial frames, is based on the as
sumption that time is absolute, that is the time interval between two events 
will be the same no matter what inertial frame is being used. We will see that 
this assumption is not in fact correct. 

Experiment shows that, if two particles interact in some way, a change in 
one does not have an instantaneous effect on the other, but that there is a 
finite time lapse between the cause and the effect. This in itself points out a 
difficulty with classical (non-relativistic) mechanics, since the interaction is de
scribed by a potential energy that is taken to be a function of the particle 
positions alone, an assumption that implies the instantaneous propagation of 
interactions. If there is a finite delay between cause and effect, there must be 
a maximum velocity of propagation of interaction that determines the mini
mum delay before a change in one part of a system begins to affect another 

48 
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part. The existence of a maximum velocity of propagation means that a par
ticle cannot move faster than this velocity. In addition, the principle of rela
tivity tells us that this maximum velocity of propagation must be the same in 
all inertial frames and is thus a universal constant. In fact it is the velocity of 
light in a vac<lum, C = 2.997925 X 1011 m S-I. By linking the principle of rela
tivitywith a finite maximum velocity of propagation of interaction, Einstein's 
special prinCiple of relativity is obtained and the theory based on it is said to 
be relativistic in contrast to the non-relativistic theory based on an infinite 
velocity of propagation. 

The non-relativistic theory of Chapter 3, and in particular the Galilean trans
formation (Equation 3.1), may now be seen to be inconsistent with Einstein's 
theory of relativity. Differentiation of Equation 3.1 with respect to time shows 
that in non-relativistic theory velocity vectors may be summed and in particu
lar the velocity of light will be different in different inertial frames in contra
diction to the principle of relativity. These assertions are in agreement with 
the experiments of Michelson and Morley, who showed that the velocity of 
light does not depend on its direction of propagation, despite the fact that the 
earth is moving. Of course, the fact that non-relativistic mechanics is wrong 
does not invalidate Newton's laws and the mechanics associated with them. 
Because the velocity of light is so large, deviations from a non-relativistic theory 
are usually negligible and the classical theory is a very good approximation in 
most cases. The relativistic equations that are derived in this chapter may be 
used to calculate the discrepancies between the two theories and, if we pretend 
that the velocity of light is infinite, that is if we revert to a non-relativistic 
theory, these discrepancies vanish. 

If the Galilean transformation (Equation 3.1) is not correct, time cannot be 
absolute and must evolve differently in different inertial frames. The time 
lapse between two events will depend on the inertial frame used and this must 
be specified. In addition, two events occuring in different parts of space may 
be simultaneous when observed from one inertial frame, but they will not be 
simultaneous in other frames. The fact that it must now be thought of as being 
relative, puts time on the same footing as spatial coordinates and it is often 
convenient to think of a four-dimensional space in which an event is described 
by three space coordinates and one time coordinate. Points in this space are 
called world points to distinguish them from points in three-dimensional space 
and the history of a particle is described by a world line. For a particle that is 
moving with a constant velocity in a straight line the corresponding world line 
is straight. 
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4.2 The interval 

Although time is not absolute and the time lapse between two events depends 
on the inertial frame used, there is another quantity, the interval, that is inde
pendent of the inertial frame. 

To demonstrate this the in variance of the velocity of light is first expressed 
mathematically. Suppose that in an inertial frame K a signal leaves the point 
XhYhZI at time tl with velocity c and arrives at another point X2,Y2,Z2 at 
time t2. The distance between the two points may be related to the time taken 
by the signal to travel between them: 

[(X2-XI)2+(Y2-YI)2+(Z2-ZI)2]!-C(t2-tl) = O. (4.1) 

In another frame K' the same signal travels between the world points x~, y' .. 
z~, t'l and x~, Y;, z~, t; and a similar equation may be written: 

(4.2) 

This suggests that for any two events with world points x .. Y .. z .. t 1 and X2, Yl, 
Z2, t2 in K the quantity: 

S12 = [C2(t2-tli-(X2-XI)2_(y2-YI)2_(Z2-ZI)2]~ (4.3) 

is of importance; Sl2 is called the interval between the two events. Since the 
velocity of light is the same in all inertial frames, Equations 4.1 and 4.2 show 
that, if the interval SI2 between two events in K is zero, the interval S~2 in K' for 
the same two events also vanishes. 

If the two events occur at two world points that are infmitesimally close to 
one another and whose coordinates are separated by dx, dy, dz, dt in K, then 
the interval ds is given by: 

(4.4) 

the corresponding interval ds' in K' is given by a similar equation and as before 
if ds = 0 then so does ds'. In addition, the principle of relativity requires that 
the laws of physics are the same in the two frames so that the transformation 
from dx', dy', dz', dt' to dx, dy, dz, dt must be linear and homogeneous (no 
additive constants). Consequently, ds'2 must be a homogeneous quadratic func
tion of dx, dy, dz, dt just as ds2 is. It can now be seen that, since ds' vanishes 
whenever ds does, no matter what the values dx, dy, dz and dt take, ds'2 can 
differ from ds2 by at most a multiplicative factor k: 

(4.5) 

The coefficient k cannot depend on space or time coordinates, since this would 
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imply that different points in space and time are not equivalent, in contradic
tion to the homogeneity of space and time. Thus it can only depend on the 
relative velocity v of the two inertial frames K and K'. However, the isotropy 
of space demands that k cannot depend on the direction of the relative motion 
of the two frames and k can only be a function of the magnitude of v. If ds2 

had been expressed in terms of ds'2 the corresponding equation to Equation 
4.5 would have been: 

(4.6) 

where k' is the same function of the magnitude of - v as k is of the magnitude 
of + v. Consequently k = k' and comparison of Equations 4.5 and 4.6 shows 
that k must be ± 1. The negative solutiori can be dismissed immediately, since 
ds'2 must tend to ds2 as the relative velocities of the two frames tends to zero, 
so that: 

(4.7) 

Similarly ds' must tend to ds as v tends to zero and ds = ds'. Integration to 
give finite intervals then gives the final result that the interval between two 
events is invariant to the inertial frame used: 

, 
S12 = S12, (4.8) 

and this invariance may be attributed to the fact that the velocity of light is 
the same in all inertial frames. 

4.3 The Lorentz transformation 

Now that the interval between two events has been shown to be invariant to 
the inertial frame used, the explicit transformation between space and time 
coordinates in different frames can be found. Two inertial frames K and K' are 
again considered and for simplicity it is assumed that the x and x' axes coin
cide, and the y and z axes are parallel to the y' and z' axes, respectively; the 
velocity of the frame K' relative to K is v along the x axis (see Fig_ 4.1). 

It has already been noted that time is not absolute and that it is convenient 
to think of a four-dimensional space in which one of the coordinates is related 
to time. The time and space coordinates may be made equivalent by introduc
ing the new time coordinate: 

T = ict, (4.9) 

since the interval (Equation 4.3) between two events is then given by: 

s12 = - [(T2 - Tl)2 + (X2 - Xl)2 + 0'2 - Yl)2 + (Z2 - Zl)2], (4.10) 
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so that, if T is the coordinate associated with the fourth dimension, the inter
val is related to the distance between two points in four-dimensional space. 
The transformation from one inertial frame K with coordinates x, y, Z, T to 
another K' with coordinates x', y', z', r' can thus be thought of as a transform
ation in four-dimensional space. Since the intervalis independent of the inertial 
frame, the length of a line must be preserved in such a transformation, that is 
only orthogonal transformations are of interest. 

y y' 

x' 

_v 

I( 1(' 

Fig. 4.1. The relationship between the inertial frames K and K'. 

All orthogonal transformations may be broken down into rotations and 
parallel displacements of the coordinate system. The latter are of no interest 
since they only change the origins of the space and time coordinates and a 
'mixing' of space and time is required. Any rotation can be resolved into six 
rotations parallel to the six orthogonal planesxy, yz, ZX, XT,YT, ZT in the four
dimensional space. The first three of these account for the usual space rotations 
and of the last three, which mix space and time, a rotation parallel to the XT 

plane is chosen for specific consideration, since the y and Z coordinates will 
not change, as in the-model that has been chosen for consideration (Fig. 4.1). 

For an orthogonal rotation through an angle () in the XT plane: 

x = x' cos () - T' sin (); 

T = x' sin () + T' cos (). 
(4.11) 

To relate () to the relative velocity v of K and K', the motion of the origin of 
the K' frame is considered, that is x' is set equal to zero. Substitution in Equa
tions 4.11 gives: 

x = -T' sin (); T = r' cos(), (4.12) 
or combining these: 

tan () = - X/To (4.13) 
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Now, if the origins of the two frames are assumed to coincide at T = t = 0, the 
origin of the K' frame has the coordinate x = vt = - ivr/e in the K frame, 
where Equation 4.9 has been used to relate t and T. Substitution in Equation 
4.13 now gives: 

tan 0 = iv/c. (4.14) 

Using familiar trigonometric relations, sin 0 and cos 0 may now be recovered: 

sin 0 

cos 0 

where r is defined as: 

tan 0 (1 + tan 2 Orr = iv-ric; 

(1 + tan2 orr = r, 

r = (1 - v2/e~-r. 

The transformation (Equations 4.11) now become: 

x = r(x' - iVT' /c); 

T = r(ivx' /e + r'). 

(4.15) 

(4.16) 

(4.17) 

Finally the time coordinate t may be reintroduced using Equation 4.9 to give: 

x - r(x' + vt'); 
, 

y = y; 
, 

z - z; t = r(vx' /e2 + t'), 
(4.18) 

as the Lorentz transformation for the model under discussion, in which K' 
moves with velocity v along the x axis relative to K, 

The transformation (Equations 4.18) may be inverted: 
, 

x 
, 

z 

r(x - vt); 
, 

y = y; 

z· , t' = r(- vx/e2 + t), 
(4.19) 

where the definition (Equation 4.16) of r is unaltered. This inversion is most 
easily performed by noting that, if the primed and unprimed coordinates are 
interchanged in Equations 4.18, the roles of the two frames are also reversed 
and v must be replaced by the velocity of K relative to K', that is by - v. 

One of the checks that can be applied to relativistic equations is that, if the 
velocity of light c is permitted to become infinite, the correct non-relativistic 
equations should be recovered. In this case Equations 4.18 become: 

x = x' + vt'; y = y'; z = z'; t = t', (4.20) 

which are appropriate Galilean transformation equations for the situation under 
consideration (cf. Equation 3.1). 
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Of course, the Lorentz transformation of Equations 4.18 applies to the 
special case when the space axes of the two frames are parallel and their rela
tive motion is along the x axis. Any problem may be reduced to this situation 
by an appropriate transformation of the space coordinates in the two frames. 
However, in the more general case where the spatial axes of the two frames 
are parallel, but the relative motion is characterized by a general vector v, the 
transformation may be written as: 

r = r' + V[(V.r/)('y - 1)/v2 + 'Yt']; 

t = 'Y [(V.r/)/C2 + t']; 
the proof is left as an exercise. 

(4.21) 

Finally, we note that all relativistic equations expressing physical laws must 
be invariant to the Lorentz transformation,just as all non-relativistic equations 
must be invariant to the Galilean transformation (Equation 3.1); this is the 
principle of relativity. Indeed, the reason that Lorentz's name rather than 
Einstein's is linked with the transformation is that Lorentz had found earlier 
that Maxwell's equations of electromagnetism are invariant to this transform
ation rather than the Galilean transformation. It is for this reason that it is 
appropriate that electromagnetic theory is developed relativistically as in 
the next chapter. Invariance to transformations is generally expressed in the 
theory of groups and Lorentz transformations can be shown to constitute 
a group, though this fact is not pursued here. 

4.4 Contraction, dilation and paradoxes 

In this section some of the more entertaining of the consequences of relativity 
are briefly discussed, although a result which will be used later is obtained in 
the process. 

The length of a rod, which is at rest in the inertial frame K and lies parallel 
to the x axis, is Ax = X2 - Xh where X2 and Xl are the coordinates of the ends 
of the rod. In the frame K', which is moving along the X axis with velocity v 
relative toK, the length of the rod, Ax' = x; - x~, will be different. This length 
may be calculated by using the first of Equations 4.18 to determine x~ and x; 
at time t ' in terms of x I and X2: 

Xl = 'Y(x~ + vt'); (4.22) 

Elimination of t ' and use of Equation 4.16 gives: 

Ax' = Ax/'Y = .6x(1 - v2/c~l. (4.23) 

If the first of Equations 4.19 had been used instead, the positions x~ and 
x; would have been determined at two different times t~ and t;, as can be seen 
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from the last of Equations 4.19. In the method used here the times at which 
Xl and X2 are determined is not important, since the rod is at rest in K. From 
Equation 4.23 it can now be seen that the length of the rod in K', the frame 
in which it is moving, is less than the length in its rest frame K. This shortening 
is known as the Lorefttz (or Fitzgerald) contraction. 

A similar phenomenon occurs when time lapses are considered. For a clock 
that is at rest in the K frame and is consequently moving at velocity -v in the 
K' frame, the time between two events that occur at x. Y. z at tl and t2 is 
tl.t = t2 - tl' The corresponding time interval, tl.t' = t; - t~, in K' may be ob· 
tained from Equations 4.19: 

(4.24) 
from which: 

(4.25) 

Here the fact that X has the same value for each event has been used; if Equa
tions 4.18 were used, allowance would have to be made for the fact that the 
value of x' is different for the two events. Equation 4.25 shows that the time 
(tl.t) measured by a moving clock is always less than the time (tl.t') measured 
in the rest frame. This phenomenon is known as time dilation. 

The infinitesimal interval cis is given by Equation 4.4. Now a clock measures 
the time in its own rest frame so that the infinitesimals dx, dy and dz are all 
zero and edt = ds. Thus the time lapse measured by a clock is: 

(4.26) 

where the second integral is a line integral along the world line of the clock. If 
the clock is at rest, its world line will be straight and parallel to the t axis and, 

" as we have seen, it will indicate a greater time than if it had been subjected to a 
journey which returned t~ its starting point. Thus the line integral J! ds is a 
maximum for a straight world line joining the world points a and b.Although 
this fact has been established for a world line parallel to the t axis, that is for a 
clock at rest, the integral will be a maximum for any straight world line, since the 
interval s is independent of the inertial frame used and a straight world line in 
one frame will be straight in all other inertial frames. This result may be inter
preted as showing that the length of a line between two world points is great
est when the line is straight! However, this is not as ridiculous as it seems, since 
one of the coordinates, T = iet, in the four-dimensional space is really imagin
ary. The fact that f! ds is a maximum for a straight world line will be used in 
the next section. 
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Both the Lorentz contraction and time dilation are real phenomena, though 
after more than half a century the paradoxes associated with them are still 
discussed frequently and there are those who remain unconvinced. We will 
confine our discussion to one experimental manifestation of time dilation and 
one of the paradoxes associated with it. 

Mu-mesons, which are created by cosmic rays in the upper atmosphere at a 
height of approximately lO4 m, are observed on the ground. Their observed 
lifetime in the laboratory is only 2 X 10-6 s suggesting that those reaching the 
ground must travel at velocities of the order of lOe! However, the lifetime 
measured in the laboratory is appropriate for the rest frame of a mu-meson 
and, as a result of time dilation, the lifetime will be greater by a factor of 
(1 - v2/e2r! in a frame in which the mu-meson is moving with velocity v. Mu
mesons with velocities close to that of light can thus reach the ground before 
they decay. 

One of the more famous paradoxes is the so-called clock paradox. If two 
clocks are synchronized in the rest frame and one then undergoes a round-trip 
at high velocity, on its return the travelled clock will be found to be running 
slow relative to the other as a result of time dilation. The paradox arises when 
it is argued that the two clocks should run at the same rate, since there is a 
symmetry between them in that their roles could be reversed by choosing a 
different rest frame. However, although this symmetry between the clocks 
exists when they are moving uniformly with respect to one another, it is not 
present during the acceleration and deceleration that the travelling clock must 
experience during its journey. 

4.5 The transformation of velocities 

In a relativistic theory velocities cannot be added vectorially, since it would be 
possible to have a resultant velocity greater than that of light. To see how 
velocities should be combined, the way in which velocities transform from one 
inertial frame to another must be considered. 

The two inertial frames K and K', that are illustrated in Fig. 4.1, are used 
again. The Lorentz transformation, Equations 4. 18, may be written in terms of 
infini tesimals: 

dx 

dz 

'Y(dx' + vdt'); dy = dy'; 

dz'; dt = 'Y(vdx' /e2 + dt'). 
(4.27) 

Division of the first of these equations by the fourth gives the x component of 
a velocity u in the K frame in terms of the corresponding component of u' the 
velocity in the K' frame: 
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dx 
Ux = dt -

dx' + vdt' 
= 

vdx' /e2 + dt' 

, 
Ux + v . 

1 + u~v/e2' (4.28) 

similarly: 
Uz = U~/'y(1 + u~v/e~. (4.29) 

Unlike the y and z components of a position vector the corresponding com
ponents of a velocity are changed in this transformation, since time intervals 
are changed. Equations 4.28 and 4.29 both give the classical equations, if e is 
made infinite. 

For a particle moving with velocity u' parallel to the x' axis in the frame 
K', Equations 4.28 and 4.29 show that in the K frame it moves parallel to the 
x axis with a velocity u given by: 

u = (u' + v)/(l + u'v/e2). (4.30) 

This equation expresses the result of adding two velocities, and can be seen to 
reduce to the classical result, u :::: U' + v, for low velocities. In addition, it is a 
simple exercise to show from Equation 4.30 that the relativistic sum of two 
velocities can never exceed the velocity of light. 

4.6 The relativistic mechanics of a free particle 

In the classical (non-relativistic) mechanics ofthe last chapter, Newton's second 
law implies that a particle can be accelerated to any velocity by the continued 
aI?plication of a force. This is relativistically impOSSible, and there must be an 
increased resistance to acceleration as the particle's velocity approaches the 
velocity of light; indeed, this resistance must become infinite in the limit that 
the particle has velocity e. The reason that the classical theory is unsatisfactory 
is that the equations of motion are not invariant to a Lorentz transformation, 
which is necessary for relativistic validity. Of course, this does not mean that 
Newton's laws are wrong; they work very well when low velocities are involved 
and the corresponding relativistic equations approximate to them for such 
situations. However, the theory of Chapter 3 needs modification when high 
velocities are considered. In fact, the only change necessary is in the Lagrangian 
used, since invariance to a Galilean transformation was only invoked to deter
mine the explicit form of the non-relativistic Lagrangian of a. free particle 
(Section 3.4). 

The principle ofleast action (Section 3.2) requires that the action integral S 
has a minimum for actual motion between two situations, a and b, specified 
by coordinates and times. Thus S can be thought of as an integral along a world 
line between two world points. Now S must be independent of the inertial 
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frame used and must therefore be a scalar, since Lorentz transformations do 
not preserve the magnitudes or directions of vectors. This means that the inte
grand of the action integral must be a scalar as well as being a first-order differ
ential. The only scalar that satisfies these conditions is the infinitesimal interval 
ds, which is defined in Equation 4.4. Thus: 

s = k J! ds, (4.31) 

where k is a constant and a and b are two world points. The sign of k is nega
tive, since the action is required to be a minimum for actual motion and it was 

seen in Section 4.4 that f! ds is maximum for a straight world line and could 

be made arbitrarily small by a suitable choice of a curved world line. 
From Equation 4.4 ds is given by: 

ds = (e2dt2 - dx2 - dy2 - dz2)l 

edt(l - u2/e~l, (4.32) 

where u is the velocity of the particle. Substitution in Equation 4.31 gives: 

(4.33) 

which may be compared with the definition (Equation 3.2) of the action inte
gral in terms of the Lagrangian: 

S = /b £ dt (4.34) 
ta ' 

showing that relativistically: 
1 

£ = kc(l - U2/C~2. (4.35) 

The constant k characterizes the particle and may be determined by compar
ing this Lagrangian in the classical limit with the non-relativistic Lagrangian of 
Chapter 3, which in the current notation is just ~mu2. Expansion of Equation 
4.35 as a power series in (u/e) gives: 

£ = ke - !ke(u/c)2 + ... ; (4.36) 

the first term may be ignored, since it is a constant and makes a contribution 
to the action integral (Equation 4.34) that is independent of the path of the 
integral. If k is taken to be - me the second term reduces to !mu2 and the 
remaining terms all vanish in the classical limit. The relativistic Lagrangian for 
a free particle is thus: 

(4.37) 
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From this Lagrangian the momentum and Hamiltonian of the particle may 
be determined from the definitions of the previous chapter. Using Equation 
3.24 the momentum of the particle is: 

(4.38) 

The Hamiltonian is given by Equation 3.33 to be: 

j( = p.u - £ = me2(1 - u2/e1-~. (4.39) 

Of course, to be useful the Hamiltonian must be expressed in terms of the mo
mentum rather than the velocity, but Equation 4.38 may be used to eliminate 
u from Equation 4.39. This is achieved most easily by noting that: 

Jf2 = m 2e4/(I - u2/e1 = m 2e4 + [m 2e2u2/(l - u2/e11 

(4.40) 

The required result is thus: 
(4.41) 

where the positive square root has been taken to agree with the non-relativistic 
limit. 

When e is allowed to become infinite, the momentum (Equation 4.38) goes 
over to the classical expression mu as expected, but the Hamiltonian (Equa
tion 4.39) becomes infinite! This difficulty may be avoided by expanding j( 
as a power series in (u/e) and then neglecting terms in (u/e)4 and higher. This 
giv.es: 

similarly, in the non-relativistic limit Equation 4.41 reduces to: 

j( = me2 + p2/2m. 

(4.42) 

(4.43) 

Both of these expressions are the same as the non-relativistic ones except for 
the presence of an extra term me2 • This term is present even when the particle 
is at rest and is called the rest energy. 

In this book the mass m of a particle is taken to be a constant independent 
of velOCity, but an equation such as 4.39 may be viewed in a different way by 
rewriting it as j( = Me2, where M, which is still thought of as the mass, varies 
with velocity and is related to the rest mass m by M = m(l - u2/e2r!. Thus, 
when a particle is accelerated the energy it gains may be associated with its extra 
mass, suggesting that all mass is a manifestation of energy, even the rest mass. 
These ideas led to the famous equation E = Me2 and are supported by experi
ments involving nuclei and fundamental particles in which mass and energy are 
interconverted. 
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4.7 Four-vectors 

It has already been noted that time may be thought of as a fourth dimension 
and that the location and time of an event may be represented by a world 
point in four-dimensional space. The position of this world point may be speci
fied by a vector with four components rO/. (a = 1,2,3,4), where rio r2 and 
r3 are the spatial coordinates x, y and z respectively and r4 is related to the 
time coordinate. To distinguish this type of vector from those in three-dimen
sional space, they are called four-vectors and here Greek subscripts are used to 
label their components. 

By analogy with three-dimensional vectors the scalar product of the position 
four-vector with itself is defined as: 

(4.44) 

where the repeated subscript convention is again used, but since a four-vector 
is involved, the summation is over the four possible values of the subscript a. 
If r4 is to chosen to be T = iet (Equation 4.9), then Equation 4.44 becomes: 

(4.45) 

and the scalar product r O/.r 0/. is invariant to Lorentz transformations, since it is 
then directly proportional to the square of the interval s (see Section 4.2). 
With this choice of r4 the Lorentz transformation (Equations 4.18) is: 

rl = 'Y(r~ - ivr't./e); 

r4 = 'Y(ivr~/e + r~), 

where 'Y retains its original meaning (Equation 4.16). 

(4.46) 

A general four-vector may now be defined as one having components that 
transform in precisely the same way as the rO/. under a Lorentz transformation. 
With this definition the scalar product of any two four-vectors, for example 
AaBO/., is invariant to such transformations and is independent of the inertial 
frame used, as can be seen by expansion of the product. 

Although it was not at all obvious, there were four quantities in the pre
vious section that constitute the components of a four-vector. The way in 
which the components of the momentum p (Equation 4.38) of a particle be
have under a Lorentz transformation may be established using Equations 4.28 
and 4.29, which describe the transformation of velocities. The algebra is simple 
but tedious, and will not be given here, the result being that the components 
of p are the spatial components, Ph P2 and P3, of a four-vector the correspond
ing time component being P4 = i'JC/e, where 'JC is the particle's Hamiltonian or 
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energy (Equation 4.39). It follows from the invariance of the scalar product 
of two four-vectors that POiPOi should be invariant: 

(4.47) 

from Equation 4.41 this is just equal to - m2c2, where m is the rest mass of 
the particle, confirming that it is indeed invariant. 

The Lorentz transformation can be thought of as an orthogonal transform
ation in four-dimensional space. This means that, in addition to scalar products 
being invariant, any expression or equation that can be written entirely in 
terms of four-vectors will be unchanged by a Lorentz transformation. Of course 
the components of the four-vector will be changed, but in the new frame the 
expression or equation will have the same form as in the old and the physical 
content will be unaltered. This behaviour is analagous to the three-dimensional 
situation, where the meaning of a vector equation is independent of the ortho
gonal axis system used. Thus, by writing an equation in a four-vector notation 
its Lorentz invariance is automatically ensured. 

The Lorentz transformation of the position four-vector can be written gen
erallyas: 

(4.48) 

The aatP are the components of a four-by-four matrix, and, since the trans
formation is orthogonal, this matrix is orthogonal and the components satisfy 
the relations (cf. Equation 2.1 04): 

aatPaOl"f = o(3'Y; 

the inverse relation to Equation 4.48 is thus: 
, 

r (3 = aatPr Oi· 

Now under the transformation the operator (a/arOi ) transforms as: 

(a/arOi ) = (ar~/arOi)(a/ar~) 

= aatP(a/ar~), 

(4.49) 

(4.50) 

(4.51) 

so that (a/ar Oi) is the component of a four-vector operator. Other four-vectors 
will be encountered in the next chapter. 

The concept of four-vectors, the components of which transform in the 
same way as the r Oi' can be extended to four-tensors, the components of a four
tensor of rank n transforming in the same way as products of n components of 
the position four-vector. Thus a four-tensor of rank one is just a four-vector, 
while a four-tensor of rank two has sixteen components F 0i(3 (a, (j = 1, 2, 3, 4) 
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which transform in the same way as the sixteen quadratic products r Oir[3, that 
is: 

(4.52) 

Four-tensors of higher rank are defined in an analogous fashion and examples 
of four·tensors will be encountered in the next chapter. The advantage of 
using a four-tensor notation is that any equation that can be written entirely 
in terms of four-tensors will automatically be Lorentz invariant. 

The theory of four-vectors may be developed further along the same lines 
as for three-vectors; for example the permutation symbol €0i[3-y1) can be intro
duced. However, any further discussion will be postponed till it is needed. 
Finally, it should be noted that many texts use superscripts as well as subscripts 
to distinguish the covariant and contravariant components of vectors. This dis
tinction is not necessary in the special theory of relativity; indeed, we would 
gain nothing from this sophistication and the price would be greater com
plexity. 
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CHAPTER FIVE 

The Interaction of Charged Particles 
with Electromagnetic Fields 

So far we have been concerned with the mechanics of a free particle, and the 
possibility of a particle interacting with an electromagnetic field must now be 
considered. This will lead naturally to a discussion of the electromagnetic field 
itself. It has already been noted that Maxwell's equations, which describe elec
tromagnetic fields, were found to be invariant to Lorentz transformations 
rather than Galilean transformations and that this discovery preceded Einstein's 
theory of special relativity. Consequently it is appropriate that electromagnetic 
theory should be developed from a relativistic stand point, although this was 
not the case historically. The approach used here is a logical one, but of course 
the final justification of the theory is that it agrees with experiment. 

5.1 Units 

It is at this point that a decision must be made about units. In mechanics the 
transition between different systems :Jf units is trivial and usually involves 
only factors of 10. However, in electromagnetic theory the appearance or non
appearance of the factors 41T, c, Eo and f.1o depends on the system of units 
adopted. 

In the past the system of units used by chemists and chemical physicists 
has usually been the mixed or Gaussian system, which is based on centimetre
gramme-second (CGS) units, but in which magnetic quantities are measured in 
electromagnetic units (e.m.u.) and electrostatic quantities in electrostatic 
units (e.s.u.). Because ofthe way these units are defined, equations connecting 
the two sorts of quantity contain factors of c. This appearance of c is not a 
consequence of special relativity, but merely reflects the separate initial 
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development of electrostatics and magnetostatics; in a relativistic theory these 
scaling factors involving c are confusing. In addition, since there is no separate 
dimension for electromagnetic properties in the CGS system, the dimensions 
of electromagnetic quantities involve square roots. Finally, in equations using 
the mixed system of units factors of 47T appear when they are not expected 
geometrically, and do not appear when they are. 

It has now been agreed internationally that the Systeme International (SI) 
should be used for units. Although the transition from the old system to the 
SI system is not trivial, it will be adopted here, since it has definite advantages. 
First, the ampere is employed as a fundamental unit in addition to the metre, 
kilogramme and second, that is the units are based on an MKSA system. This 
means that square roots no longer appear in dimension expressions. Secondly, 
all electromagnetic quantities are expressed in units coherent with these four, 
so that the scaling factors involving c no longer appear; when c does appear in 
an equation it is usually a consequence of special relativity. Thirdly, the sys
tem is rationalized in that factors of 47T only appear where they are expected 
on geometrical grounds. 

There are other consequences of the adoption of SI units. In the mixed sys
tem the permeability and permittivity of free space, /10 and Eo, are dimension
less constants and are frequently omitted from equations, since they are both 
equal to unity. However, in the SI system they have dimensions, are not equal 
to unity and must be included in equations. In addition, the magnetic field 
strength H is often used instead of the magnetic flux density B in the mixed 
system, since they are equal in free space, although observable physical proper
ties depend on B. In the SI system Band H differ by a factor of /10 = 47T X 10-7 

kg m s -2 A-2 and equations must be written in terms of B. 
The details of the SI system as far as electromagnetic phenomena are con

cerned will appear at appropriate points in the text. These details are summar
ized in Appendix A together with a few comments on the conversion from the 
mixed CGS system to the SI system. 

S.2 The electromagnetic potentials 

The relativistic mechanics of a particle was developed in the last chapter by 
using the principle of least action. The appropriate action integral was seen to 
be (Section 4.6): 

S = f;(-mcds), (5.1) 

where s is the interval and the integration is performed between the world 
points a and b. If the particle interacts with an electromagnetic field, further 
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terms have to be added to this action integral, and these terms will involve 
quantities characteristic of the particle and the field. The extra terms must, of 
course, be Lorentz invariant, but beyond that little can be said about them 
and an appeal to experiment is necessary. That is, the justification of the terms 
that will be added is that the equations that they lead to are in agreement with 
experimental observations. 

Experiments indicate that only one new parameter, the charge q, is needed 
to characterize a particle as far as its interaction with an electromagnetic field 
is concerned, but that four quantitiesA", (a = 1,2,3,4), which are functions 
of time and the position of the particle, are needed for the field. The A", are 
the components of a four-vector and thus under a Lorentz transformation they 
behave in a similar manner to the r"" the components of the position four-vec
tor. The spatial components, At. A2 and A 3, are the components of a three
dimensional vector A, which is called the (magnetic) vector potential, while 
the time component A 4 is related to the electric or scalar potential cj> by: 

(5.2) 

A theory that agrees with experiment may be developed by taking the inter
action terms in the action integral to be: 

(5.3) 

the integrand is proportional to the invariant formed by the scalar product of 
the potential four-vector and the infinitesimal position four-vector, which has 
components dr ",. 

The total action integral thus appears as: 

S = f! (- mcds + q A.dr - qcj>dt), (5.4) 

where the scalar product in Equation 5.3 has been expanded in terms of scalars 
and three-dimensional vectors. The corresponding Lagrangian rna y be extracted 
from the action by recalling that (Equation 4.32): 

ds = c(1 - u2/c~4dt, (5.5) 

where u is the velocity of the particle: 

u = dr/dt. (5.6) 

Substitution for dr and ds in Equation 5.4 gives: 

S = f;b [- mc\1-u2/c~t + qA.u-q</>]dt, 
a 

(5.7) 
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and comparison with the definition (Equation 4.34) of the action integral in 
terms of the Lagrangian £ shows that: 

(5.8) 

The introduction of an electromagnetic field can thus be accounted for by the 
addition of two terms to the Lagrangian. 

The momentum of the particle is given by Equation 3.24: 

p = at/au = mu(1 - u2/c'1-! + qA 

= ". + qA, (5.9) 

where". is called the mechanical momentum, that is the momentum in the ab
sence of the field; p is the total momentum conjugate to the velocity u and is 
distinguished from". by being referred to as the canonical momentum. The 
momentum of a particle is thus modified by the addition of a term involving 
the vector potential A. 

Equation 3.33 gives the Hamiltonian of the particle: 

j( = p.u-£ = mc2(1-u2/c2r!+qCP. (5.10) 

This may be expressed more appropriately in terms of the canonical momen
tum p in the same way that Equation 4.41 was obtained for the case of no 
field: 

(5.11 ) 

Comparison of Equations 5.9 and 5.11 with Equations 4.38 and 4.4] shows 
that to generalize from a free particle to a particle in a field, all that is necessary 
is to replace p by". = (p - qA) and j( by (j( - qcp). For example, the non
relativistic limit of the Hamiltonian (Equation 5.11) is, by comparison with 
the non-relativistic field-free Hamiltonian (Equation 4.43): 

(5.12) 

In the SI system of units the charge q has dimensions TA, while the vector 
and scalar potentials, A and cp, have dimensions MLT-2A -1 and ML 2T-3A -1, res
pectively. For the mixed system of units Equations 5.9 to 5.12 are only modi
fied in that the mechanical momentum must be rewritten as: 

". = P - (q/c)A, (5.13) 

where the factor c- 1 has no relativistic Significance; however, there are other 
hidden differences, since the dimensions of q are modified to M1!2 L 3!2T- 1 and 
A and cP have the same dimensions M1!2 L l!2T- 1. 
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5.3 The field vectors 

Now that the Lagrangian for a charged particle in an electromagnetic field is 
known, the particle's equations of motion may be determined from the Lag
range equations 3.7, which for a single particle may be written as: 

~(a£) _ (a£) = o. 
dt au ar 

(5.14) 

It is first noted that (a£/au) is by definition the canonical momentum p = 
('11'+ qA), while the operator (a/ar) is just the operator V, so that Equation 
5.14 can be rewritten as: 

(d'll'/dt) + q(dA/dt) - V£ = o. 
Now, since A is a function of space and time coordinates: 

(dA/dt) = (aA/at) + (dr;/dt)(aA/a'i) 

= (aA/at) + (u.V)A. 

In addition, the gradient of the Lagrangian (Equation 5.8) is: 

V£ = qV(A.u)-qVet> 

= q [(u.V)A + u A (V A A)] - qVet>, 

(5.15) 

(5.16) 

(5.17) 

where use has been made of the vector relation, Equation 2.66, and the fact 
that u does not depend expliCitly on r. Substitution of Equations 5.16 and 
5.17 into Equation 5.15 followed by rearrangement gives finally: 

(d'll'/dt) = qu 1\ (V 1\ A) + q [- Vet> - (aA/at)]. (5.18) 

The term (d'll'/dt) is just the force on the particle, since in the classicallirnit 
this reduces to m(du/dt). 

The right-hand side of Equation 5.18 has been separated into a velocity de
pendent part and a velocity independent part, so that this equation may be 
rewritten as: 

(dTr/dt) = qu A B + qE; (5.19) 

in this form it is known as Lorentz's equation. The vector B is called the mag
netic flux density and is defined by: 

B = V I\A, 

while the electric field strength E is given by: 

E = - Vet> - (aA/at). 

(5.20) 

(5.21) 
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In a vacuum Band E together completely specify the electromagnetic field, 
but in media other than free space two additional vectors are needed, the mag
netic field strength H and the electric displacement D. In the mixed system of 
units Band E are respectively the same as Hand D for the special case of a 
vacuum and in particular H is frequently used (incorrectly) in place of B. How
ever, this equality does not occur when the SI system is used and it is necessary 
to distinguish Band H. From now on we will only be concerned with Band E, 
and when we refer (loosely) to a magnetic or electric field, it is to be under
stood that these are characterized by the magnetic flux density B and the elec
tric field strength E. 

From Equations 5.20 and 5.21 Band E may be seen to have the dimensions 
MT-2A-1 and MLT-3A -I, respectively, in the SI system. In the mixed unit sys
tem Equation 5.20 is unaltered, but the term involving A in Equation 5.21 is 
modified by a factor of c- I ; again the dimensions in the mixed unit system are 
more complicated than this implies. 

5.4 The Lorentz transformation of electric and magnetic fields 

The components of the magnetic flux density B and the electric field strength 
E are related to the components of the four-potential Aa and the position 
four-vector ra by Equations 5.20 and 5.21. We might enquire how these com
ponents behave under a Lorentz transformation. It will be seen that they trans
form in the same way as quadratic products of the components of two four
vectors, that is as the components of a four-tensor of second rank. 

The sixteen quantities Fap {a, (J = 1, 2,3,4), which are defined as: 

(5.22) 

are components of a second rank four-tensor. Since the Aa are components of 
the four-potential, they behave in the same way as the components of the 
position four-vector (Equation 4.48) under a Lorentz transformation, that is: 

(5.23) 

In addition the operators {a/or oJ were shown to be the components of a four
vector (Equation 4.51): 

(5.24) 
so that: 

(5.25) 

comparison with Equation 4.52 shows that the Fap are indeed the components 
of a four-tensor. However, explicit consideration of these components {Equa-
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tion 5.22), and use of Equations 5.20 and 5.21 shows that they are related to 
the components of Band E; this relationship may be indicated by a matrix
like array: 

0 Bz -By 

-Bz 0 Bx 
(FOI.{3) (5.26) 

By -Bx 0 -iEz/c 

iEx/c iEy/c iEz/c 0 

Thus the components of Band E are related to the components of a four-tensor, 
which is called the electromagnetic field tensor and which is antisymmetric, 
since FOI.{3 = - F{301.' 

The transformation properties of the FOI.{3 and hence the components of B 
and E may now be determined. As usual the special case depicted in Fig. 4.1 is 
considered, that is the Q = 2 anctl3 components of a four-vector are unaltered 
by the transformation. Thus F~2' F~3 and F~ are unchanged, while F;2 and 
F~2 transform as the Q = 1 and Q = 4 components of the same four-vector; the 
same remark applies to F;3 and F~3' The remaining components are related to 
these because of their antisymmetry, except for F; 1, F; 4 and F~4 , which can 
easily be shown to be unchanged for an antisymmetric four-tensor. We con
clude that FOI.{3 = F~{3 except for: 

F12 = 'Y(F;2 - ivF~2/C); 

F13 = 'Y(F;3 - ivF~3/C); 

F42 = 'Y(ivF;2/C + F~2); 

F43 = 'Y(ivF;3/C + F~3)' 
(5.27) 

By identifying the FOI.(3 with the components of Band E (Equation 5.26), we 
obtain: 

Bx = B~; By 

Ex = E~; Ey 

'Y(B~ - vE;/c2); Bz = 'Y(B~ + VE~/C2); 

'Y(E~ + vB:); Ez = 'Y(E; - vB~). 
(5.28) 

Finally, these equations may be generalized to the case where the primed frame 
moves with a general velocity v relative to the unprimed frame; for the non
relativistic limit v ~ c, they take the particularly simple form: 

E = E' -v AB'. (5.29) 

The magnetic flux density and the electric field strength are thus interrelated, 
so that if one vanishes in one frame of reference it will not necessarily be zero 
in another. For example, a particle that is moving in an inertial frame in which 
there is a magnetic field, but no electric field, will nevertheless experience an 
electric field in its own rest frame. 
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For a four-vector, with components Fa say, one can construct a quantity 
that is invariant to Lorentz transformations; this quantity is just the scalar 
product FaFa. One would expect to be able to construct invariants from the 
components Fa(J of the electromagnetic field tensor. Since theFa(J transform 
as products of pairs of components of four-vectors, one such invariant will be 
Fa(JFa(J, where summation over both a and {3 is implied. Expanding this in 
terms of Band E gives: 

(5.30) 

this may be checked by explicit use of Equations 5.28. 
There is another invariant of second degree this being E.B. However, it is 

not a true scalar in that it changes sign on inversion of the coordinate system, 
that is when r is replaced by - r. This may be seen by noting that ordinary 
vectors such as A and V also change sign and are called polar vectors; Equation 
5.21 shows that E is also a polar vector, but a vector such as B, which may be 
written as the product of two polar vectors, is unchanged on inversion and is 
called an axial vector. Thus the scalar product E.B is antisymmetric with re
spect to inversion and is called a pseudoscalar. The expression 5.30 is a true 
scalar and will be employed in Chapter 6, where the electromagnetic field is 
considered in more detail. 

s.s Gauge transformations 

The electromagnetic field vectors Band E may be determined from the poten
tials A and cp by Equations 5.20 and 5.21. However, since it is Band E that de
termine physically observable phenomena such as the force on a charged 
particle (Equations 5.19), it is pertinent to ask to what extent A and cp are 
determined by Band E. It will be seen that there is some freedom in the choice 
of these potentials and this may be attributed to the fact that integration of 
Equation 5.20 or Equation 5.21 introduces an arbitrary integration constant. 

Let A and cp be replaced by some new potentials given by: 

A' = A-VI; (5.31) 

where I is any scalar function of position and time coordinates. Substitution 
into Equation 5.20 gives the magnetic field associated with A': 

B' = V"A' = V "A -V ,,(VI) = V"A = B, (5.32) 

where the fact (Equation 2.70) that the curl of a gradient vanishes has been 
used. The electric field corresponding to cp' and A' may be obtained from 
Equation 5.21: 
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E' = - Vif>' - (aA' fat) 

= - Vif> - V(al/at) - (aA/at) + (avl/at) = E. (5.33) 

Thus the potentials are not uniquely defined, since the electric and magnetic 
fi~lds are unaltered by the transformation of the potentials described by Equa
tions 5.31; such a transformation is called a gauge transformation. 

It is clear that a change of gauge must not affect the equations describing 
physical phenomena and that these must be gauge invariant. For instance, we 
might enquire what happens to the Lagrangian (Equation 5.8) under the gauge 
transformation (Equations 5.31). Substitution shows immediately that the 
Lagrangian is modified by the addition of: 

- qu.(Vf) - q(al/at) = - q( dl/dt) , (5.34) 

since I is a function of rand t. However, these extra terms do not affect the 
predictions made using the Lagrargian, since it was seen in Section 3.3 that 
the equations of motion are unaltered by the addition of a total time deriva
tive to the Lagrangian. 

The choice of the potentials is arbitrary to the extent that the scalar lin 
Equations 5.31 may be chosen, and this freedom can be used to simplify the 
equations that arise. Two different gauges are commonly used, the first being 
the Coulomb or radiation gauge in which I is chosen so that the divergence of 
the vector potential vanishes: 

V.A = o. (5.35) 

In the Lorentz gauge, however, the condition imposed is that: 

V.A + (aif>/at)/c2 = o. (5.36) 

The latter has the advantage of being a relativistically invariant condition, as 
can be seen by noting that the left-hand side of Equation 5.36 is the scalar 
product of two four-vectors with components (a/arO/.) andAa . In steady state 
problems the two gauges are identical and, in addition, there is no advantage 
in using the Lorentz condition, if a non-relativistic approximation is being con
sidered. Even the application of a condition such as Equation 5.35 or Equation 
5.36 does not remove the arbitrariness of I completely, but we would gain 
nothing by restricting it further at present. 

In the special case of uniform fields, that is fields that are the same at all 
points in space and time, particularly simple expressions for the potentials may 
be used. If they are written as: 

if> = -E.r, (5.37) 
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where Band E are both constant vectors, substitution in Equations 5.20 and 
5.21 and the use of vector relations from Chapter 2 shows that the correspond
ing fields are just Band E: 

-VI/>-(3A/3t) = V(E.r) = E (5.38) 
and 

(5.39) 

These potentials satisfy both the Coulomb and the Lorentz conditions. 
Equation 5.12 gives the energy of a slow-moving charged particle in an 

electromagnetic field. However, it is expressed in terms of the potentials rather 
than the fields. For uniform fields the potentials (Equations 5.37) may be sub
stituted. Here we confine our attention to the term involving the magnetic 
potential which may be expanded as follows: 

(p -qAi/2m = (p2_ 2qp.A + q2,A2)/2m 

(5.40) 

The second term in parentheses may be written as: 

- (q/2m)B.r A p = - (q/2m)B.1 = -I.I.B, (5.41) 

where I is the angular momentum of the particle and II is the associated mag
netic moment. This term represents the energy of the interaction between 
the magnetic field and a magnetic moment II = (q/2m)1. 

5.6 Maxwell's equations 

Equations 5.20 and 5.21 relate the electromagnetic fields to the potentials: 

E = - VI/> - (3A/3t). (5.42) 

However, the potentials may readily be eliminated from these expressions to 
give equations involving only the fields. 

If we operate on both sides of the first of Equations 5.42 with the diver
gence operator and use the fact (Equation 2.71) that the divergence of a curl 
vanishes, the result is: 

V.B = V.(V AA) = O. (5.43) 

In Section 2.9 it was seen that the divergence of a vector represents a loss per 
unit volume. Indeed, if V.B is integrated over a finite volume, we have from 
Equation 5.43 and Gauss' theorem (Equation 2.57): 

f V.BdT = f B.ds = 0, (5.44) 
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where the second integral is over the surface bounding the volume. Thus the 
flux of the vector B through a closed surface must vanish. This result is related 
to the non-existence of magnetic monopoles; the divergence of the electric 
vector E will be seen to be non-zero, since isolated electric charges do exist. 

The potentials are eliminated from the second of Equations 5.42 by taking 
the curl of both sides, noting that the curl of a gradient is zero (Equation 2.70) 
and using the fact that the operators V and (a/at) commute: 

(5.45) 

Integrating over a surface gives: 

fV A E.ds = 'E.dr = - a(f B.ds)/at, (5.46) 

where Stokes' theorem (Equation 2.63) has been used. This equation shows 
that the circulation of the electric vector E round a closed contour is minus 
the partial time derivative of the magnetic flux through the contour. Equation 
5.45 is thus the induction law that relates the electromotive force in a circuit 
to the change in the magnetic flux through the circuit. 

The equations: 
V.B = 0 (5.47) 

and 
V AE = - aB/at (5.48) 

may be written as one equation by using four-tensor notation: 

aFOt@ + aF@1 + aF10t = 0 
ar~ arOt arp , 

(5.49) 

where the FOtP are components of the electromagnetic field tensor (Equation 
5.26) and rOt is a component of the position four-vector. Since the four-tensor 
is antisymmetric, the left-hand side of Equation 5.49 vanishes if any pair of 
the subscripts afj'Y are the same. When ct/h correspond to the three space com
ponents, Equation 5.49 reduces to Equation 5.47, while Equation 5.48 arises 
when one of the ~'Y corresponds to the time component. Writing Equations 
5.47 and 5.48 in terms of a four-tensor FOtP and a four-vector (a/arOt) demon
strates immediately that they are both Lorentz invariant, since the left-hand 
side of Equation 5.49 is just a third rank four-tensor. This can be checked ex
plicitly for the transformation between the frames illustrated in Fig. 4.1 by 
using Equations 4.46 and 5.27; each of Equations 5.47 and 5.48 transforms 
into a different linear combination of the corresponding equations in the new 
frame. 

Equations 5.47 and 5.48 cannot completely specify an electromagnetic field, 



74 Advanced Molecular Quantum Mechanics 

since for example they do not indicate how E depends on time. In fact, these 
are just two of the four Maxwell's equations, which are required for complete 
specification of a field. The other pair of equations cannot be derived from the 
theory that has been developed so far and it is necessary to go back to the ac
tion integral and add terms for the field itself; up till now the action integral 
has only included terms for a charged particle and for its interaction with an 
electromagnetic field. To avoid a major diversion, the derivation of these equa
tions is postponed until the next chapter, but they are quoted here for the 
sake of completeness, and because one of the equations is needed in the next 
section. 

The second pair of Maxwell's equations is: 

V.E = p/EO, (5.50) 
and 

(5.51) 

where Eo is the permittivity of free space and has the dimensions M-IL-3J'~2 in 
the SI system. The other new symbols p, the charge density, and j, the current 
density, are functions of space and time, and have dimensions r 3TA and L-2A, 
respectively. Since p is the charge per unit volume and j is the flow of charge 
per unit time per unit area across a surface, it is not surprising that a four-vector 
can be constructed with the components of j as the spatial components and 
icp as the time component; this current four-vector with components jOt is dis
cussed in more detail in Chapter 6. The pair of equations can thus be written 
as one using four-tensor notation: 

(5.52) 

as may easily be checked by substitution of Equation 5.26. Again we note that 
Equation 5.52 must be invariant to Lorentz transformations, since it is written 
in terms of four-tensors alone. 

The integral form of Equation 5.50 may be obtained using Gauss' theorem 
(Equation 2.57): 

f E.ds = f(p/Eo}dT. (5.53) 

This equation is called Gauss' law and shows that the flux of E through a closed 
surface is proportional to the total charge enclosed by the surface; unlike the 
divergence of B, the divergence of E does not vanish, since isolated electric 
charges do exist. 

By using Stokes' theorem (Equation 2.62) the integral form of Equation 
5.51 is: 

(5.54) 
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showing that the circulation of B round a closed contour is related to a current 
through any surface bounded by the contour, this current being made up of 
the true current and the so-called displacement current, which involves «()E/()t) 
and which must be included when time-dependent fields are considered. 

The four Maxwell's equations are thus: 

00 + +~ = 0; 
V.B = 0 } ()F (3 aFpy aF 

V A E = - (aB/at) ar'Y aroo arfj 
(5.55) 

V.E = pleo ) aFoot! _ joo 

V A B = c-2 [j/eo + «()E/at)] arfj - eoc2 ' 

In the mixed system of units these equations are modified by the replacement 
of B by BI c and eo by 1/41f, but of course the dimensions of all the quantities 
involved are also altered. 

Finally, we should note that the permeability of free space Po often appears 
in electromagnetic equations, but it is related to the permittivity of free space 
eo by lJ.o€o = c-2 , so that equations may be written in terms of Po, eo or both. 
The quantity Po has the fixed value of 41f X 10-7 kg m s -2 K2 in the SI system, 
so that eo is uncertain to the extent that there is an experimental uncertainty 
associated with the value of the velocity of light c. Of course use of Po instead 
of eo or vice versa can introduce factors of c, for which special relativity is not 
responsible. 

S.7 The potentials and fields due to a stationary charge 

The space surrounding an isolated point charge q has spherical symmetry. This 
means that at a point r relative to the charge as origin the vectors B and E must 
be along the radius vector r. In addition, the magnitude of the fields can only 
depend on the distance from the charge. 

Although Gauss' law (Equation 5.50) has not yet been derived, it should be 
familiar to the reader and may be used in its integral form (Equation 5.53) to 
obtain the magnitude E of the electric field at a distance r from the charge. 
By considering a sphere of radius r centred at the charge, the surface integral 
on the left-hand side of Equation 5.53 becomes: 

(5.56) 

since E is everywhele perpendicular to the surface of the sphere; the volume 
integral on the right-hand side of Equation 5.53 is just: 

f (Pleo)dT = qleo. (5.57) 
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Equating these two expressions gives: 

E = ql4rrEo,2, 

and, since the direction of the field is along r: 

E = qr/4rrEor3. 

(5.58) 

(5.59) 

The electric field is given in terms of the potentials by Equation 5.21 : 

E = - Vq, - (aA/iJt) = - Vq" (5.60) 

sin~e the charge is stationary and the magnetic vector potential A must be 
independent of time. When it is recalled that V(1lr) is equal to - r/r3 (Equa
tion 2.78), it is seen that an appropriate scalar potential is: 

q, = q 14rrEor. (5.61) 

To obtain the magnetic field B the same arguments may be employed ex
cept that Equation 5.47 is used instead of Gauss' law. It is immediately appar
ent that the magnetic field is zero, and that the magnetic vector potential A 
ma y be taken to be zero also. 

5.8 The potentials due to a moving charge 

From the previous section we know that, in the rest frame K'· of a charge q, 
the potentials at a distance r' from the charge are given by: 

A' = 0; q,' = qI4rrEor'. (5.62) 

The potentials in a frame K, in which the charge is moving, may be obtained 
by performing a Lorentz transformation, since A ~, A ~ , A ~ and iq,' I c are the 
components of the potential four-vector. If the velocity of the particle in K is 
u in the x direction, Equation 4.46 gives: 

q, = 'Y(uA~ + q,,), 
(5.63) 

where 'Y = (1 - u2lc2rt, or substituting Equations 5.62 and generalizing to it 
particle moving with velocity u: 

q, = 'YqI4rrEol". (5.64) 

In their present form these expressions are unacceptable, since they involve r', 
the distance between the charge and the observer in the K' frame. Two methods 
will be given to express the potentials in terms of quantities measured in the 
Kframe. 
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For a potential to be experienced by an observer a signal must be emitted 
by the charge at some earlier time and this signal is propagated with velocity c. 
Let us assume that the frames coincide at t = t' = 0 and that the observer is 
situated at the origin of the K frame. The charge is taken to be at position r' in 
its own rest frame and at r in the K frame; r is clearly time dependent. If the 
potentials are observed at t = t' = 0, the signal must have left the charge at 
times: 

t = -r/e; t' = -r'ie, (5.65) 

where r is measured at the time the signal is emitted. Now, for the emission of 
the signal, t' may be related to r and t by the inverse of the Lorentz transform
ation (Equations 4.21): 

t' = 'Y [t - (u.r)/e2], (5.66) 
so that: 

r' = 'Y[r+(u.r)/e). (5.67) 

Finally, substitution in Equations 5.64 gives: 

cf> = q/41r€o[r+(u.r)/e). (5.68) 

Although these potentials have been established for a specific situation, they 
apply generally if r is interpreted as the position of the charge relative to the 
observer (in the previous section r was the position of the observer relative to 
the charge). The important thing to note is that the expressions 5.68, which 
are known as the Lienard-Wiechert potentials, must be evaluated at the time 
the signal leaves the charge. The potentials are thus expressed in terms of the 
so-called retarded values of rand u. Clearly the observed potentials only de
pend on the instantaneous velocity and position of the particle at the retarded 
time, the time at which the signal is emitted by the charge, so that Equations 
5.68 apply to a charge moving in an arbitrary manner. The retarded potentials 
may be expressed in terms of non-retarded quantities provided that there is 
sufficient info~tion about the motion of the particle. This is fairly simple 
for a uniformly moving charge, but rather than do this here another method 
is presented, in which the retardation effect is automatically accounted for. 

Retarded potentials arose because the event to which the Lorentz trans
formation 5.66 applies is the emission of the signal from the charge and the 
relative velocity of the two frames must be taken as the charge's velocity at 
this event. However, if the charge is moving with constant velocity, the same 
rest frame K' for the charge is appropriate at both the emission of the signal 
and the observation of the potentials. The position r' of the charge in K' may 
be evaluated in terms of r at any time, and here the time of observation t = 
t' = 0 is chosen. The inverse of the transformation (Equations 4.21) then gives: 
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r' = r + ('y - 1)(u.r)u/u2, 

from which it is easy to show that: 

r' = r [1 + (u.r)2-y2/c2r2]!. 

Substitution in Equations 5.64 gives fmally: 

A = ucf>/c2 ; cf> = (-yq/47T€or)[1 + (u.r)2-y2/c2r2r!. 

(5.69) 

(5.70) 

(5.71) 

Again these are general expressions if r is taken to be the position of the charge 
relative to the observer. It must be emphasized that Equations 5.71 only apply 
to a charged particle moving at constant velocity and that the potentials are to 
be evaluated at the time of observation, since the Lorentz transformation 5.69 
applies to the event of observation. 

For charges moving with velocities much less than the speed of light it is 
convenient to expand the potentials (Equations 5.71) as power series in (u/e) 
and to neglect terms of order higher than quadratic. When this is done, we 
obtain: 

A (q/47T€ocr)[u/e + O«U/C)3)]; 
(5.72) 

In their present form these potentials satisfy the Lorentz gauge condition 
(Equation 5.36) to the required order. (In working out the divergence of A it 
should be remembered that r is the position of the charge relative to the ob
server and that it is the divergence at the observer that is required; in addition, 
the position of the observer is fixed and only the charge's position depends 
explicitly on time.) However, when a non-relativistic approximation is being 
considered, it is more convenient to work in the Coulomb gauge, in which the 
divergence of A vanishes (Equation 5.35). This may be achieved by perform
ing a gauge transformation (Equations 5.31) with q(u.r)/2c2r as the scalar f 
The transformed potentials are then: 

A (q/87T€Ocr)[U/C + (u.r)r/r2c + O«U/C)3)]; 

(q/47T€or)[1 + O«u/ct)], 
(5.73) 

and these may readily be shown to satisfy the Coulomb gauge condition. 
These potentials are used in the next section, where the Hamiltonian for 

two charged particles is obtained. Since we will eventually be considering the 
motion of electrons in molecules, it might be thought that the result, Equations 
5.73, is not appropriate, since the charge is assumed to have constant velocity. 
However, to order (U/C)2 the same result is obtained if the Lienard-Wiechert 
potentials for an arbitrarily moving charge are used and these retarded expres-
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sions are rewritten in terms of quantities measured at the time of observation. 
To do this a knowledge of the particle's acceleration is necessary, but as first 
shown by Darwin the acceleration does not make a contribution to the poten
tials in the order considered here. 

5.9 The interaction of two charged particles 

The Lagrangian for an isolated particle with charge qlo mass ml and velocity 
UI in the presence of electromagnetic potentials A and I/> is given by Equation 
5.8 as: 

(5.74) 

For the remainder of this section it will be assumed that UI ~ c. If the poten
tials at rlo the position ofthis particle, are entirely due to a second slow-moving 
particle distinguished from the first by the subscript 2, then they are given by 
Equations 5.73: 

A = (q2/87T€ocr)[u2/c + (u2.r)r/r2c + O«U2/C)3)]; 
(5.75) 

where r = (r2 - rl) is the position of electron 2 relative to electron I. Substi
tution in Equation 5.74 gives: 

,£ = - mlc2(1 - ui/c2)i + (qlq2/87T€or)[(ul.u2)/C2 

(5.76) 

as the Lagrangian for particle I. 
Now addition of a term such as - m2c2(l - U~/C2)} to this Lagrangian can· 

not affect the equations of motion for particle I, since it is independent of 
rl and Ul. The Lagrangian for particle 1 subject to potentials due to particle 2, 
the motion of which is assumed to be known, can thus be written: 

,£ = - mlc2(l - ui/c~} - m2c2(l - uVc2)! 

+ (qlq2/87T€or)[(ul.u2)/C2 + (uI.r)(U2.r)/c2r2 

- 2 + O«U/C)4)]. (5.77) 

However, this Lagrangian is symmetric to interchange of the subscripts 1 and 
2, so it must also be an appropriate Lagrangian for particle 2 moving under 
the influence of potentials due to particle I. It must be concluded that Equa
tion 5.77 is the Lagrangian for the whole system, particle 1 plus particle 2. For 
consistency the first two terms should also be expanded as power series in 
(u/c), but it is appropriate to retain terms of order mc2(u/c)4; this is because 
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these results are to be applied to molecular problems and in the ground state 
of the hydrogen atom, for example, (qlq2/81r€Or) is of the order of mc2(u/c)2 

(see Section 8.7). Thus: 

£ = .l; [- mjc2 + tmjul + mjui/8c2] + (qlq2/81r€Or)[(ul.u2)/C2 
1=1,2 

+ (Ul.r)(U2.r)/C2r2 - 2] +O(mc2(u/c)6). (5.78) 

Now that we have a Lagrangian for the system the corresponding Hamil
tonian may be found by the usual prescription. From Equation 3.24 the mo
mentum of particle 1 is: 

PI = a£/aUI = mlu l + miuluV2c2 + (qlq2/81r€Ocr) [U2/C 

(5.79) 

with a similar expression for P2, the momentum of particle 2. These equations 
may be inverted to give the velocities of the particles in terms of their mo
menta; for particle I successive approximation gives: 

Ul = Pl/ml - ptPV2mfc2 - (qlq2/81r€Omlm2c2)[pl/r 

(5.80) 

and there is a similar equation for U2. Finally, su bstitution of these and Equation 
5.78 into Equation 3.31 for 'the Hamiltonian gives: 

'JC = .l; Uj.Pj-£ 
1=1,2 

= .l; [mic2 + pl!2mj - pU8mlc2] + qlq2/41r€Or 
1=1,2 

- (qlq2/81r€omlm2c~[(pl.r)/r + (Pl.r)(r.P2)/r3] 

+ O(mc2(p/mc)6). (5.81) 

This then is the Hamiltonian for two charged particles and, as we saw in Sec
tion 5.2, it may be generalized to include external electromagnetic fields by the 
following replacements: 

(5.82) 
'JC -- 'JC -.l; ,q jrPi, 

1=1,2 

where Ai and rPi are the external potentials at particle i. This result will be used 
in Chapter 9 when the quantum mechanical theory for two electrons is con
sidered. 
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5.10 The Thomas precession 

The concept of electron spin was first introduced to account for rme structure 
in atomic spectra. It was postulated that the electron has an intrinsic angular 
momentum Fis and an associated magnetic moment 1.1 = - (eFi/m}s, where - e 
and m are the charge and mass of the electron; in a magnetic field the energy 
associated with this moment is -I.I.B. However, a discrepancy soon became 
apparent, since an electron moving with velocity u (~c) under the influence 
of an electric field E, should according to Equations 5.29 experience a mag
netic field: 

B = (E /\ u}/c2 (5.83) 

in its own rest frame. The energy of interaction between the spin magnetic 
moment of the electron and this magnetic field should thus be -I.I.(E 1\ u}/c2 , 

but in atoms where the electric field is provided by the nucleus experiment 
showed that this expression was a factor of two too large. This discrepancy 
can be explained in terms of a relativistic effect, if the concept of spin is ac
cepted, and this may be done without considering quantum mechanics. 

To do this the concept of precession must be introduced. In a magnetic 
field B an electron experiences a torque 1.1/\ B by virtue of its intrinsic magnetic 
moment 1.1. Now this torque will change the angular momentum of the electron 
and the rate of change of the angular momentum is just equal to the torque: 

d(Fis}/dt = 1.1 /\ B = - (eFi/mXs /\ B). (5.84) 

Thus the change in the angular momentum is perpendicular to itself and the 
magnetic field, so that the magnitude of the angular momentum vector and 
the angle e that it makes with the magnetic field vector do not change, but 
instead the angular momentum precesses about the direction of B (Fig. 5.1). 
The angular velocity WL of this so-called larmor precession is in the same di
rection as B and its magnitude may be found by considering a short time dt, 
in which the precession angle d¢ is wLdt. This angle is given also by: 

d¢ = d(Fis}/Fis sin e = eBdt/m. (5.85) 

where Equation 5.84 has been used, so that: 

WL = eB/m. (5.86) 

All this is analogous to the precession of a gyroscope in a gravitational field. 
The important thing to note is that the larmor frequency wL/2rr is directly 
proportional to the energy of the interaction of the electron's spin magnetic 
moment with the magnetic field and that the two may be thought to be inter
related. 
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8 

Fig. 5.1. The precession of the angular momentum of the electron about the 
direction of the magnetic field. 

Let us now consider an electron moving with velocity u along the x axis of 
an inertial frame K in which there is an electric field E directed along the y 
axis. In the rest frame of the electron the precession will have an angular vel
ocity about the z axis of: 

(5.87) 

where Equations 5.83 and 5.86 have been used. Now by virtue of its charge 
the electron will experience a force due to the electric field and will suffer a 
resulting acceleration: 

a = -eE/m, (5.88) 

in the y direction . It will be seen that as a result of this acceleration the axes 
of the rest frame of the electron appear to be themselves precessing when 
viewed from the frame K . 

After a short time dt the situation will be as in Fig. 5.2. The rest frame K" 
of the electron is moving with velocity u' = adt in the y' direction relative to 
a frame K', which is itself moving with velocity u in the x direction relative to 
the K frame; the frames are assumed to be coincident at t = 0 and u' ~ u ~ c. 
Use of Equations 4.28 and 4.29 shows that the velocity v of the K" frame rela
tive to the K frame has components: 

Vx = u; Vy = u'f'y(u) , (5.89) 

where -y(u) = (I - U2/C~-~. On the other hand the velocity v" of the K frame 
relative to the rest frame of the electron has components : 
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:;c " 
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u 

Fig. 5.2. The relationship between the inertial frames K, K' and K". 

v~ = - u/'y(u'); " , 
Vy = -u . (5.90) 

Now the principle of relativity tells us that v should be equal and opposite to 
v". Equations 5.89 and 5.90 show that their magnitudes are equal but that 
their directions are not, since : 

o "" tan 0 = vylvx = u'luy(u) ; 
(5.91 ) 

0" "" 0" "1 " , ( ')1 tan = Vy Vx = u'Y u u. 

This means that for the principle of relativity to be obeyed the K" axis system 
must be rotated through an angle: 

dO = 0-0" ~ (u'lu)[I/'y(u)-'Y(u')] "" -uu'/2c2 , (5.92) 

where the assumption that u' ~ u ~ c has been used. Substitution of u' = adt 
and Equation 5.88 shows that the K" axes precess with angular velocity: 

(5.93) 

when observed from the K frame; this is the Thomas precession. Thus the pre
cession rate of the spin angular momentum in the K frame is: 

(5.94) 

just half its magnitude in the rest frame of the electron (Equation 5.87). 
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Since the energy of interaction between a magnetic field and the spin mag
netic moment of the electron is directly proportional to the angular velocity 
of precession, we conclude that, when the magnetic field is due to the motion 
of an electron relative to a frame in which there is an electric field, special 
relativity introduces a correction factor of~; the energy of interaction is thus 
- ~_(E A u)/2c2 and this is just the spin-orbit interaction term when the elec
tric field arises from a nucleus. Later it will be seen that this correction factor 
arises naturally from the Dirac equation, which is a relativistic quantum mech
anical equation for the electron. 
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CHAPTER SIX 

The Classical Theory of Electromagnetic 
Fields 

The classical field theory that is developed here is not used until Chapter 12, 
where its quantization is considered. Consequently, a reading of this chapter 
may be delayed until then, provided that the validity of Gauss' law (Equation 
5.50) is accepted; it is recalled that the proof of this equation, which is used 
in Section 5.7, was postponed until this chapter, together with the proof of 
Equation 5.51. 

The reason for this postponement was that, although the Lagrangian for a 
charged particle subject to an electromagnetic field had been obtained, the 
Lagrangian for the field itself had not. There is clearly a fundamental differ
ence between a particle, which is concentrated at a point, and a field, which 
is spread out through space. The Lagrangian for a particle is a function of its 
position and velocity, while for the Lagrangian of a field some new variables, 
which are themselves functions of position r and time t, are necessary. This 
means that our ideas about Lagrangians, Hamiltonians and equations of motion 
will need some modification, when a continuous, rather than a discrete, system 
is under consideration. To see how the theory needs to be modified we first 
discuss the mechanics of a continuous system. 

6.1 Continuous mechanical systems 

Let us consider a one-dimensional system consisting of an infinite chain of 
identical particles. A continuous system may be obtained by making the separ
ation between neighbouring particles infinitesimally small; the generalization 
to a three-dimensional system is trivial. 

It is assumed that the particles are of mass m and are joined to their 

85 
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neighbours by 'springs' of equal length a and with equal 'force constants' k. 
The Lagrangian for the system is the difference of the total kinetic energy and 
the total potential energy (Section 3.4): 

(6.1) 

where 11i is the displacement of the ith particle from its equilibrium position, 
l1i is its velocity and end effects have been neglected. This is just the Lagrangian 
for coupled oscillators and may be rewritten as: 

(6.2) 

To go from this discrete situation to a continuous system the separation a 

between the particles is replaced by the infinitesimal dx and the summation 
becomes an integration. At the same time (m/a) becomes the linear mass den
sity 11, ka is replaced by the Young's modulus Yand (11i+1 -11i)/a is interpreted 
as (011/0X). The Lagrangian for the continuous system is thus: 

(6.3) 

where L is the Lagrangian density, which in the present example is: 

L = HI1172 - Y(011/3x)2] . (6.4) 

The variable 11(x, t) may be thought of as a generalized coordinate similar to 
q in Chapter 3, except that it is a function of position as well as time. The 
quantity 11 is just the partial derivative of 11 with respect to time. 

To obtain the equation of motion from this Lagrangian the method of Sec
tion 3.3 is used, that is 11 is varied so that the action integral between times 
ta and tb is minimized: 

(6.5) 

Here it is assumed that the Lagrangian does not depend explicitly on time, 
and that 011, the change in 11, is zero at ta and tb and also at the limits of the 
space integration in Equation 6.3. Substitution of Equation 6.3 in Equation 
6.5, expansion and integration by parts gives: 

tb 

oS = 0 f S L(11, n. 311/3x)dxdt 
ta 
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(6.6) 

where the integrated parts have been omitted, since they vanish as a result of 
the assumed boundary conditions. Now fJS must vanish for an arbitrary choice 
of fJ1/, so that: 

(6.7) 

This is the equation of motion, which is to be compared with Equation 3.6 for 
a discrete system. 

For the example used here, substitution of the Lagrangian density (Equa
tion 6.4) in Equation 6.7 gives: 

(6.8) 

which is just the one-dimensional wave equation for compressional waves 
1 

travelling with velocity (Y/J1.1. 
The definitions of the momentum (Equation 3.24) and the Hamiltonian 

(Equation 3.33) for a discrete system may readily be extended to the continu
ous case. The canonical momentum density conjugate to 1/ is thus: 

(6.9) 

while the Hamiltonian density is: 

H = hp-L. (6.10) 

In our example the momentum density is just J1.h and the Hamiltonian density, 
which is given by: 

(6.11) 

is clearly the sum of kinetic energy and potential energy densities. 
So far attention has been confined to a one-dimensional system, but the 

extension to three dimensions is trivial. Remembering that the subscript i can 
be x, y or z and that the repeated subscript summation convention is being 
used, Equation 6.7 generalizes to: 

aL _ ~ (aL) _ ~ ( aL \ = 0 
a1/ at ah arj a(a1//arj)} , (6.12) 

where 1/ is now a function of the position vector r and the time t; by using 
four-vector notation this equation may be written in a more abbreviated form: 
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(6.13) 

This equation is Lorentz invariant provided L is a scalar density, that is if Lis 

itself Lorentz invariant; this restriction is quite severe and is useful in choosing 
Lagrangian densities. The definitions of the momentum and Hamiltonian den
sities are unaltered in the three-dimensional case. 

In Section 3.5 constants of motion were found for a system of particles by 
considering the derivative of the Lagrangian with respect to space and time 
coordinates. A similar approach is possible for continuous systems. Here we 
consider aL/arol' the derivative of the Lagrangian density with respect to a 
component of the position four-vector. Since L is a function of T} and its 
derivatives aT}/ar 01' we may write: 

:~ = (:~) (:r:) + (a(a~~ar~») (a(aa~arp»). (6.14) 

Use of the equation of motion (Equation 6.13) and the fact that a(aT}/ar(3)/ar a 
is the same as acaT}/ara)/ar(3 now shows that: 

aL a ( aL \ (aT}) ( aL \ (a(aT}/ar a») 
ar(3 a(aT}/ar(3)} ar a + a(aT}/ar(3)J ar(3 

= a~(3 [(:~) (a(a~~arJ] . (6.15) 

Since (aL/ar a) can be expressed as oa(3(aL/ar(3)' this equation may be rewritten 
as: 

(6.16) 

where the components of the four-tensor are given by: 

Ta(3 = oa(3L - (:r:) (a(a~~ar(3») (6.17) 

It should be noted that the Ta (3 are not uniquely determined by Equation 6.16, 
since its validity is unaffected if aUOi(3'Y/ar'Y is added to Ta(3, where Ua(3"( is any 
tensor antisymmetric in the subscripts {3 and 'Y. 

Equation 6.16 may be put in a more useful form by interpreting the left
hand side as the four-divergence of a four-vector Ta with components Ta(3. It 
can then be rewritten as: 

(6.18) 
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so that the time derivative of the integral of TOt4 over all space is: 

a 
atI Tcr4 dr = I (aTOt4 /at)dr 

= - ic I V.Tcrdr 

= - ic I TOt.ds, (6.19) 

where Gauss' theorem (Equation 2.57) has been used. If it is assumed that 1/ 

and its derivatives vanish at infinity, then so do the components of Tcr and the 
surface integral on the right-hand side of Equation 6.19 vanishes. Thus I Tcr4 dr, 
the integral of Tcr4 over all space, is a constant in time and we may define the 
four-vector: 

(6.20) 

k being an arbitrary constant. 
The time component of the f~lf-vector (Equation 6.20) may be expanded 

using Equation 6.17: 

G4 = kIT 44dr = k I [L - (al1/at)(aL/a(al1/at))] dr. (6.21) 

Equations 6.9 and 6.10 now show that, if k has the value - i/c: 

G4 = (i/c) I Hdr = (i/c)JC, (6.22) 

where ;JC is the Hamiltonian. Thus G4 is just the time component of the 4-
momentum, as may be seen by reference to Section 4.7. Consequently the 
foUr-vector: 

(6.23) 

may be interpreted as the four-momentum of the continuous system; the spatial 
components represent the momentum and describe the wayin which the energy 
moves about in the system. The total energy and momentum in all space are 
thus conserved, since we have just seen that the four-vector GOt is a constant 
of motion. These conclusions are not affected by the fact that the Tcr(3 are not 
uniquely defined by Equation 6.17, since the integral of aUOt4 -y/3r-y over all 
space vanishes as may easily be demonstrated using Gauss'theorem (Equation 
2.57). 

Finally, it should be noted that, although the example considered here is 
for a continuous mechanical system, the theory applies to any continuous sys
tem, and in particular it is appropriate to fields. The Equations 6.9, 6.10 and 
6.13 are appropriate to a field that is characterized by a scalar variable 11, which 
is, of course, a function of space and time coordinates; such a field is referred 
to as a scalar field. However, there is no reason why a field should not be 
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characterized by more than one variable and, for example, these could be the 
components of a vector. For such a vector field there is an equation of motion 
similar to Equation 6.13 for each component of the vector. In addition, there 
is a momentum density conjugate to each field variable and the Hamiltonian 
density generalizes to: 

(6.24) 

where the subscript n distinguishes the field variables. Similar remarks apply 
to the tensor TOI.(3 and the four-momentum GO/.. 

6.2 The Lagrangian density for an electromagnetic field 

In the last chapter it was seen that an electromagnetic field may be character· 
ized by the components AOI. of the potential four-vector. These four com
ponents are functions of position r and time t, and they might be expected to 
be appropriate field variables, so that there are four equations of motion (Equa
tion 6.13) for the field. However, before we can proceed any further an appro
priate Lagrangian must be found and to do this the action integral is again 
considered. 

For a system consisting of charged particles and an electromagnetic field 
the action integral consists of three parts, one for the particles, one for the 
field and one for the interaction between the two. When the equations of mo
tion of a particle were obtained, only those terms in the Lagrangian which 
depend on the position and velocity of the particle were needed; that is the 
electromagnetic potentials were regarded as known and an explicit term for 
the field was unnecessary. However, in finding the equations of motion for a 
field, the potentials are the variables and the motion of the charged particles 
is assumed to be known. In this case the action for the particles alone is un
important, since it is not a function of the field variables. The action due 
to the field itself has yet to be derived, but the interaction term is already 
known (Equation 5.3), although it will be necessary to devote the next sec
tion to rewriting it in terms of the current four-vector. 

A number of restrictions may be made on the action integral for the field. 
In the last section it was seen that the Lagrangian density is a function of the 
field variables and their partial derivatives with respect to space and time co
ordinates (if it were to depend explicitly on time, this would imply that time 
is not homogeneous). However, explicit dependence on the potentials them
selves is not possible, since they are not uniquely determined and the Lagrangian 
density must be invariant to gauge transformations. Thus, only quantities of 
the type (aA",/ar(3) are involved, and these are related to the F",(3' the com
ponents of the electromagnetic field tensor (Equation 5 .22). 
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It has also been noted that the Lagrangian density must be an invariant, if 
the Lorentz invariance of the equations of motion is to be ensured. An invariant 
(Equation 5.30) has already been constructed from the Fall and this suggests 
that for an electromagnetic field alone an appropriate action integral is: 

(6.25) 

Before considering the value of the constant a two comments need to be made 
about this choice of action integral. 

First, the invariant has been chosen to be quadratic in the A a , although it is 
clearly possible to construct invariants that are say quartic in the Aa. The justi· 
fication for this choice depends on the experimental fact that electromagnetic 
fields may be superimposed, so that the field due to a collection of charges is 
just the sum of the fields produced by the charges individually. Thus, for an 
equation of motion for the field to be valid it must be possible to construct 
new solutions by adding together other solutions. This is only possible if the 
equation of motion for the field is a differential equation that is linear in the 
field variables Aa. Reference to the equation of motion (Equation 6.13) indi
cates that for this to be true the Lagrangian density must be quadratic in the 
field variables. 

Secondly, it was noted in Section 5.4 that E.B is also an invariant quadratic 
in the Aa. However, it was pointed out that this is not a true scalar, since it 
changes sign on inversion of the coordinate system. In addition, a term pro
por-tional to E.B in the Lagrangian does not, in fact, affect the equations of 
motion. In Section 3.3 it was seen that the addition of a total time derivative 
to a Lagrangian does not affect the equations of motion. The corresponding 
result for a Lagrangian density, for which the action is an integral over space 
as well as time coordinates, is that the equations of motion are unaffected by 
the addition of a term aFa/ara , where Fa is a four-vector. It maybe shown 
that E.B is a term of this type, since it may be written as: 

(6.26) 

where €all-y6 is the unit antisyrnmetric tensor of rank four analogous to €jjk for 
three dimensions; the details are left to the reader. 

It remains to choose a value for the constant a in Equation 6.25 and clearly 
this will depend on the system of units employed. For the SI system agree
ment with experiment is obtained by taking a to be - c2€o/4 (= - 1/4Pc), 
where €o and Pc are respectively the permittivity and permeability of free 
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space; it may easily be checked that this choice makes the action integral 
dimensionally correct. That a must be negative is due to the fact that the 
quantity (a 2A/at2 ) appears with a negative sign in FapFap. However, it must 
appear with a positive sign in the action, since it may be made arbitrarily large 
by varying the potentials sufficiently rapidly, and if it had a negative sign the 
action could not be minimized as required by the principle of least action. The 
Lagrangian density for a field is thus: 

(6.27) 

By substitution of Equation 6.27 in the equations of motion (Equation 
6.13) the field equations for free space could now be obtained, but the more 
general situation in which electric charges are present is considered after the 
Lagrangian density for the interaction of charges with a field has been deter· 
mined. 

6.3 The current four-vector 

The action integral for the interaction of a point charge q with an electromag
netic field is (Equations 5.3): 

(6.28) 

Now that the field itself is under consideration, it is desirable to be able to 
treat any distribution of charge and not just a single point charge. To do this 
the charge density p is introduced. The total charge in a region of space is then 
the appropriate volume integral of p, that is f pdT. A point charge q may be 
included in this description, since its contribution to the charge density may 
be written in terms of a Dirac delta function, q6(r - rq), where rq is the vector 
position of the charge. 

For an infinitesimal region of space dT the included charge is dq = pdT. 

Thus we can write: 

(6.29) 

Now dq is a scalar- so that the left-hand side of this equation is the component 
of a four-vector. The same must be true of the right-hand side and, since dTdt 

is a scalar and unaltered by a Lorentz transformation: 

ja = p(dra/dt), (6.30) 

is a component of the so-called current four-vector. The spatial components 
of this four-vector can be written as j = pu, where u is the charge velocity at a 
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particular point, so that j is the flow of charge per unit time per unit area 
across a surface; the time component icp is proportional to the charge density. 

If the charge q is replaced by the volume integral of the charge density, the 
action (Equation 6.28) becomes: 

(6.31) 

where Equation 6.29 has been used. The Lagrangian density for the interaction 
between a charge distribution and an electromagnetic field is thus icAOI.. 

6.4 The second pair of Maxwell's equations 

The results of the two preceding sections show that the Lagrangian density for 
an electromagnetic field in the presence of a charge distribution is: 

(6.32) 

where the components of the electromagnetic field tensor are given by: 

(6.33) 

Strictly speaking there should also be a term for the charges themselves, but 
this is independent of the field variables A 01.' and does not affect the field 
equations to be derived. 

There are four equations of motion for the field, one for each of the com
ponents A 01. , and reference to Equation 6.13 shows them to be given by: 

oL 0 ( oL ) = o. 
oAOI. or(3 o(oAOI./or(3) 

(6.34) 

Substitution of Equations 6.32 and 6.33 gives: 

i + (c2e /4)~ { 0 [(OAt; _~) (OAt; _ ~)]} 
01. 0 or(3 o(oAOI./or(3) or'Y ort; or'Y ort; 

_ i + !c2e ~ { 0 [OAt; oAt; _ oAt; My]} 
- 01. 2 °or(3 o(oAOI./or(3) or'Y or'Y or'Y ort; 

2 0 [OAOI. OA(3] 2 OF(301. = iOi. + c eo- - - = iOi. + c eo = O. 
or(3 or(3 or 01. orll 

(6.35) 

Finally, we note that FOI.(3 = - F(301.' so that: 

(oFOI.(3/or(3) = iOl./c2eo. (6.36) 
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This is just the second pair of Maxwell's equations written in four-tensor nota
tion; it was quoted (Equation 5.52) and interpreted in the last chapter. 

For convenience Maxwell's equations are repeated here in full and abbrevi
ated form: 

V_B = 0 } 

V AE = -(im/at) 
aFap + aFpy + aF'Ya = 0; 
ar'Y ara arp 

V.E = p/eo } 

V A B = U/eo + (aE/at)]/c2 
aFap = ia 
arp eoc2' 

(6.37a) 

(6.37b) 

(6.37c) 

(6.37d) 

It is recalled that the first pair of eq~ations arise from the expressions 5.42 for 
the fields in terms of the potentials: 

(6.38) 

It can be shown immediately that the second pair of Maxwell's equations is 
consistent with charge conservation by taking the divergence of Equation 
6.37d and substituting Equation 6.37c: 

V.V A B = V.j /c2eo + [a(V.E)/at]/c2 

= (V.j + ap/at)/c2eo. (6.39) 

Now the left-hand side of this equation vanishes, since it is the divergence of a 
curl (Equation 2.71), so that: 

V.j + ap/at = 0; (6.40) 

this is just the charge conservation equation 2.55. This result could have been 
obtained using four-tensor notation by operating on the combined equation 
for Equations 6.37c and 6.37d with the operator a/ara and summing over the 
subscript Q (that is taking the four-divergence of Equation 6.36): 

(6.41) 

the right-hand side of this equation vanishes, since the components F aP of the 
electromagnetic field tensor are antisymmetric, giving: 

(6.42) 

which is just Equation 6.40 written in terms of four-vectors. 
We started this section with the Lagrangian density (Equation 6.32) for an 

electromagnetic field in the presence of a charge distribution. The results of 
Section 6.1 can be used to obtain the momentum and Hamiltonian of the 
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field, and for this it is assumed that no charges are present, that is ia = O. 
The Lagrangian density is then - c2eoF a(3F 01.(3/4 and its derivative with re
spect to aA y/ar(3 is: 

aL/a(aA y /ar(3) = - !c2eo (F(3y - Fy(3) = - c2eoF(3y, (6.43) 

where Equation 6.33 has been used. Thus, the components of the tensor 
Ta (3 (Equation 6.17) may be written: 

Ta(3 oa(3L - (aA y/ara)(aL/a(aA y/ar{3» 

- c2eo [oa{3F yoF ys/4 - (aAy/ara).f{3yl . (6.44) 

This expression may be made symmetric in the subscripts ex and {3 by adding 
- c2eo(aAa/ar -y )F(3-y to the right-hand side of this equation: 

(6.45) 

This ruse is permissible, since we saw in Section 6.1 that Ta{3 is undetermined 
to the extent that a term aUa(3-y/ar-y may be added to it, where Ua(3y is anti
symmetric in {3 and 1; furthermore, this modification of TOl (3 does not affect 
the total Hamiltonian or momentum of the field. 

The Hamiltonian of the field may now be obtained from Equations 6.22 
and 6.23: 

J( - J T.wiT = c2eo J(F -yoF -yo /4 - F4-yF4-Y )dT 

&eo J (c 2B2 + E2)dT, (6.46) 

where explicit substitution for the electromagnetic field tensor (Equation 5.26) 
has been made. The components of the momentum G are (Equation 6.23): 

(6.47) 

where explicit substitution for the electromagnetic field tensor (Equation 5.26) 
B to give: 

G = eo J E "BdT = c-2 J 8dT, 

where 8 = eoc2E " B is the so-called Poynting vector. 

6.5 Electromagnetic waves 

(6.48) 

Maxwell's equations may easily be shown to be consistent with the existence 
of electromagnetic waves, and to do this Band E are each separately elimi
nated from them. 

Taking the curl of Equation 6.37d gives: 

(6.49) 



96 Advanced Molecular Quantum Mechanics 

Now the left-hand side is just equal to - V2 B from Equation 2.72 and the fact 
that V.B vanishes (Equation 6.37a). Substitution of Equation 6.37b for V /\ E 
followed by rearrangement then gives: 

(6.50) 

An equation in which only E appears may be obtained in a similar fashion by 
starting with Equation 6.37b: 

(6.51) 

In the special case of a vacuum j and p both vanish and Equations 6.50 and 
6.51 reduce to: 

(6.52) 

These represent six wave equations, one for each of the components of Band 
E. In each case the velocity of the wave is just c, the velocity of light. When 
charges are present, Equations 6.50 and 6.51 hold and the terms in j and p on 
the right-hand sides of these equations are damping terms which represent 
energy dissipation. 

The wave equations may also be derived using the electromagnetic poten
tials; for simplicity we confine ourselves to the case of a field in free space. In 
Section 5.5 it was seen that there is some freedom in the choice of potentials, 
and a gauge transformation (Equation 5.31) can always be applied. Here it is 
supposed that the transformation has been chosen so that the scalar potential 
cp vanishes everywhere. The electromagnetic fields (Equation 6.38) are then 
given by: 

B = V"A; E = - (aA/at). (6.53) 

When these expressions are substituted into Equation 6.37d with j set equal to 
zero, we obtain: 

V /\ (V "A) = - (a 2A/at2)/c2, 

and after use of Equation 2.72 and rearrangement, this becomes 

V2A - V(V.A) - (a 2A/at2 )/c2 = o. 

(6.54) 

(6.55) 

Now, although one condition has already been imposed on the potentials 
by insisting that cp is zero everywhere, the vector potential A is not completely 
determined and a further condition may be imposed. It is recalled that under 
a gauge transformation (Equation 5.31): 

A' = A-VI; cp' = cp + (aI/at), (6.56) 

so that if the scalar I is chosen to be time-independent the scalar potential 
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remains zero. Consequently, the gradient of any function of position may be 
subtracted from the vector potential and, by choosing f so that V2f= V.A 
everywhere, the vector potential may be chosen to satisfy the Coulomb gauge 
condition (Equation 5.35), V.A' = O. Of course,fmust be time-independent, 
so that V.A must be also for this choice to be possible. However, Equations 
6.37c and 6.53 show that in free space (p = 0): 

V.E = 0 = - a(V.A)/at, (6.57) 

shOwing tha t V.A is indeed time-independent. Now that the potentials are fixed 
the primes may be dropped, so that the conditions satisfied by the potentials 
are: 

V.A = 0; I/> = O. (6.58) 

It is noted that these potentials also satisfy the Lorentz gauge condition (Equa
tion 5.36). 

Since the vector potential has been chosen to be divergenceless, Equation 
6.55 reduces to: 

(6.59) 

Again we have a wave equation, this time with the vector potential as variable. 
The wave equations 6.52 for Band E in free space may be recovered from 
Equation 6.59 by operating on it with V A and a/at, respectively, and using 
Equations 6.53. However, it is the wave equation for A that is used in the next 
section. 

6.6 Solution of the wave equation for free space 

The wave equation 6.59 represents three equations, one for each component 
of the vector potential A. The general solution of one of these equations is: 

Ai = f(k.r -wt), (6.60) 

where f is any function of (k_r - wt) and w is an arbitrary constant, while the 
arbitrary wave vector k is restricted in that its magnitude has the value w/c; 
these assertions may be checked by direct substitution of Equation 6.60 in 
Equation 6.59. Of course, boundary and other conditions may be used to re
strict the solution 6.60, but first it is convenient to write it in an alternative 
form and this is done by solving Equation 6.59 by a different method. 

Equation 6.59 is solved by the separation of variables method by substitut
ing: 

A(r, t) = q(t)A(r), (6.61) 
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to give two differential equations, one for q(t) and one for the components of 
A(r): 

(6.62) 

where w is a constant. The solutions of these equations are: 

q(t) = q(O) exp (- iwt); A(r) = A I exp (ik.r), (6.63) 

where q(O) , A, wand k are arbitrary except that the magnitude of k is restrict
ed to w/c; in addition, if A(r, t) is to be finite for all values of rand t, both k 
and w must be real. 

In Equations 6.63 I is a unit vector, which is called the polarization vector 
and which can only be perpendicular to the wave vector k. This restriction 
arises because A(r, t) is to satisfy the Coulomb gauge condition (Equation 
6.58), so that A(r) must be divergenceless. Application of this condition then 
gives: 

I.k = 0, (6.64) 

which shows that I and k must be orthogonal. For a given I and k there is 
another unit vector that is orthogonal to both, so that there are two linearly 
independent choices of I and these are distinguished by the subscript ~ = 1, 2; 
the vectors 11, I 2 and k are mutually orthogonal. 

Clearly any pair of functions of the form 6.63 is also a solution of the 
wave equation 6.59, so that the general solution is a sum over all possible 
values for k and all polarizations ~. However, in writing down this general 
solution we insist that A(r, t) be real, since the fields Band E derived from it 
must be real. This may be accomplished by taking: 

where the asterisks indicate complex conjugation, 

and 
qu.<t) = qH(O) exp (- iWkt) 

AH(r) = AHlkA exp (ik.r). 

(6.65) 

(6.66) 

(6.67) 

The general solution (Equation 6.60) can be written in this form by a suitable 
choice of the coefficients and the wave vectors k; Equation 6.65 is just a 
Fourier transform of Equation 6.60. 

We will shortly need an orthonormalization condition for the vectors AkA (r), 
but they cannot be normalized, since they are defined for all space. This prob
lem may be circumvented by conSidering the special case of a large cubical 
volume V of side L centred on the origin. In calculations V can be made arbi
trarily large and in the case of observable properties it will be seen that V dis-
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appearsbycancellation.lnaddition,aperiodicboundary condition is imposed by 
requiring that Au.(- kL, y, z) = Au.(+ ~L, y, z) with similar conditions for 
the other pairs of faces of the cube. The solutions of the second of Equations 
6.62 are still given by Equation 6.67, but with the additional restriction that: 

(6.68) 

where nkx, nky and nkz are integers; these solutions are similar to the wave 
functions for a particle in a box. 

It may now be demonstrated that the Ak" are orthogonal to oije another: 

J A:".Ak,,,'dr = (Ek".Ek'"')A:"A k,,,' J exp [i(k - k').r]dr 

(6.69) 

where the periodic boundary conditions have been used to evaluate the volume 
integral over the cube; use has also been made of the fact that the two possible 
polarization vectors for a given k are orthogonal to one another. It will be seen 
later that it is convenient to normalize the Ak" to €c/, so that the choice: 

(6.70) 

is appropriate and the orthonormalization condition (Equation 6.69) becomes: 

(6.71) 

Although k can only take on discrete values (Equation 6.68), the side of 
the cube may be made arbitrarily large and a sum over k may be replaced by 
an integral: 

~ f(k) -----+ J f(k)p(k)dk. 
k 

(6.72) 

The function p(k) is a number density and is defined so that p(k)dk is the 
number of discrete values that k may adopt between k and k + dk. From Equa
tion 6.68 it is apparent that: 

(6.73) 

Alternatively, it may be convenient to replace k by the polar coordinates k, 8, 
cp. Since all directions of k are equally likely, we have: 

(6.74) 

where dQ = sin 8d8dcp is an element of solid angle. Finally, it is noted that 
w(= kc) could be used as a variable instead of k, so that: 

p(k)dk = p(w)dwdQ = (Vw 2/(21Tc)3)dwdQ. (6.75) 

This result will not be used until Chapter 12. 
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6.7 The characteristic vibrations of an electromagnetic field 

The Hamiltonian for an electromagnetic field is given by Equation 6.46: 

(6.76) 

If the discussion is again confined to a cubical volume V, this may be evaluated 
using the solutions of the wave equation that have just been found, since from 
Equations 6.53 and 6.65 to 6.67: 

(6.77) 

and 
(6.78) 

it may easily be seen that a given wave vector and its contributions to Band E 
are mutually orthogonal. From now on the dependence of the qkA on time 
will be omitted for brevity. 

The contribution of the electric field (Equation 6.78) to the energy (Equa
tion 6.76) is: 

J ~EoE2d7 = - ~Eo k k Wkwk' [qkAqk'A' J AkA.Ak'A'd7 
k.A k'.A' 

- q:Aqk'A' J AtA·Ak'A'd7 - qkAq:'A' J AkA·At'A'd7 

+ q:A,q:'A' J Atl\·At'A'd7] 

~ !.A wi[- qkAq-kl\ + q:l\qkl\ + qkAq:l\ - q:Aq~kA], (6.79) 

where the orthonormalization condition (Equation 6.71) has been used; the 
reason for normalizing the AkA to Eo! should now be apparent. (It will be 
noticed that the order of qkA and q:l\ has been preserved in Equation 6.79, 
although this order has no significance in a classical theory. However, in the 
quantum theory of Chapter 12 the order is important and for this reason it is 
maintained in Equation 6.79 and subsequent equations.) 

Using a modified form of the normalization condition (Equation 6.71) the 
contribution of the magnetic field B (Equation 6.77) to the Hamiltonian is 
found to be: 

J~Eoc2B2d7 = ~C2 k ,Ck"Ekl\).(k"EkA')[qkAq-kA'+q:Aqkl\' 
k.l\.l\ 

+ qkAq:l\' + q:Aq~kA']· (6.80) 

The quadruple vector product may be expanded using Equation 2.39: 
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(k AI k1l.).(k A IU.') = k2(l kA.lk1l.') - (k.lk1l.,)(k.lk1l.) 

= k2fJAX = (w'i/C2)fJ 1I.1I.', 
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(6.81) 

where we have used the orthogonality of k and the two polarization vectors 
associated with it. Thus: 

f !€oc 2B2dr = !}; W'i(qk1l.q-k1l. + q:1I.qk1l. + Qk1l.q:1I. + q:1I.Q~k1l.). (6.82) 
k,1I. 

Addition of Equations 6.79 and 6.82 now gives the Hamiltonian for the 
electromagnetic field: 

(6.83) 

It is important to note that the total energy for the field is the sum of the 
energies of the fields associated with each wave vector k and polarization X. In 
addition, the Hamiltonian is eXl1ressed entirely in terms of the Qk1l.(t) , which 
are the solutions of the first of the differential equations 6.62. 

Using the same techniques the total momentum of the field G (Equation 
6.48) may also be evaluated: 

(6.84) 

Since the summation is over all k, both positive and negative, the first and last 
terms in the parentheses make no contribution to the total sum. (This depends 
on the order of Qk1l. and Q-k1l. as well as that of Q:1I. and q!k1l. being unimpor
tant; this is of course true classically and it will be seen to be true also in the 
quantized theory of Chapter 12.) Thus: 

(6.85) 

and as for the energy the total momentum may be thought of as the sum of 
contributions from the individual wave vectors and polarizations. 

It is now convenient to define the new real functions of time: 

(6.86) 

Reference to Equations 6.62 shows that the Qk1l. are just the real solutions of 
the differential equation: 

(6.87) 

while from Equations 6.63 it is seen that the PkA are the time derivatives of the 

QkA: . 
Pk1l. = (dQkA/dt) = Qk1l.· (6.88) 
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The inverse of the transformation (Equations 6.86) is: 

qu. = (WkQU. + iPk"...)j2wk, (6.89) 

so that in terms of the Qu. and Pu. the field Hamiltonian (Equation 6.83) is: 

(6.90) 

The advantage of these new variables is that PkA may be interpreted as the 
momentum conjugate to QkA, since Equations 6.87 and 6.88 are then consis
tent with Hamilton's equations of motion 3.34. In the first place the partial 
derivative of the Hamiltonian (Equation 6.90) with respect to Pu. is just PkA, 
which by Equations 3.34 must be equal to QkA, in accord with Equation 6.88: 

(a'Jfjapu.) = pu. = Qu .. 
Secondly, Hamilton's other equation requires that: 

(a'JfjaQkX) = WiQkX = -'Ax; 

substitution of Equation 6.91 in Equation 6.92 now gives: 

Qu. + WiQkX = 0, 

which is just Equation 6.87 written in a different notation. 

(6.91) 

(6.92) 

(6.93) 

Again we note that the total Hamiltonian for the field may be written as a 
sum of independent Hamiltonians, one for each wave vector and polarization: 

(6.94) 

Now JCkX can be seen to be the Hamiltonian for a classical one-dimensional 
harmonic oscillator, so that the field may be thought of as a collection of inde
pendent vibrations or radiation oscillators. In addition, 'JfkA is expressed in 
terms of a coordinate QkX and its conjugate momentum PkX ; this is the start
ing point for the quantization of the electromagnetic field, which is discussed 
in Chapter 12. 

Finally, we may note that the field momentum can also be expressed in 
terms of the QkA and PkX and that the total momentum (Equation 6.85) is 
the sum of the contributions from the individual radiation osciallators: 

where 

G = ~ ~x, 
k.X 

GIlA. i(k/WkXpiA + wiQiA) 

= (k/wk)'JfkX' 

(6.95) 

(6.96) 
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CHAPTER SEVEN 

Relativistic Wave Equations 

We are now in a position to discuss the quantization of the classical relativistic 
theory that has been developed in the preceding chapters. In a sense this chap
ter is abortive, since it will become apparent that, although the wave equations 
considered here may be appropriate to some particles, they do not describe 
the electron; their major deficiency is that they cannot account for any of the 
properties associated with the spin of the electron. However, this discussion 
outlines the situation that faced Dirac and led him to propose the equation 
that now bears his name; the Dirac equation is the subject of the next chapter. 
In addition, the opportunity is taken to consider such topics as the gauge in
variance of quantum mechanical equations. 

7.1 Quantization of classical equations 

The classical expression for the energy (or Hamiltonian) of a particle with mass 
m and charge q moving under the influence of electromagnetic potentials A 
and cf> is (Equation 5.11): 

(7.1) 

whereTris the mechanical momentum: 

Tr = p-qA. (7.2) 

The usual prescription for the transition from a classical equation to a quan
tum mechanical equation is to interpret the energy and the canonical momen
tum as operators: 

E = ili(a/at); p = - iliV, (7.3) 
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Relativistic Wave Equations 105 

and to allow these to operate on a wave function 1/1: 

i Ii(al/l fat) = {c[ m2e2 + (p - qA)2] ~ + q¢}I/1. (7.4) 

This wave equation is unsatisfactory for two reasons. First, time and space 
coordinates do not appear symmetrically, so that it is not clear whether it is 
Lorentz invariant. Secondly, the presence of a square root term makes the 
equation practically unusable, except when A vanishes or the particle is un
charged; this problem is due to the fact that now p is an operator, p and A do 
not commute and the meaning of the square root term is ambiguous. The re
striction to a chargeless particle or to field-free situations is not acceptable, if 
a wave equation for an electron is being sought. 

Of course, if we are interested in a slow-moving particle, a non-relativistic 
approximation may be obtained by expanding the square root term in Equa
tion 7.1 as a power series in (rr/me): 

E = me2 + q¢ + 1T2/2m - 1T4/8m 3e2 + O(me2(rr/me)6). (7.5) 

Neglect of terms of order me2(1T/me)4 and above and use of Equations 7.3 gives 
for the quantum-mechanical version of this equation: 

(7.6) 

Except for the me2 term this is just the usual time-dependent Schrodinger 
equation for a charged particle in an electromagnetic field. 

The presence of me2 is merely due to the use of a different origin for the 
energy scale. It may be removed formally by introducing a phase factor into 
the wave function: 

1/1 ~ 1/1' = 1/1 exp (- ime2t/Ii). 

The left-hand side of Equation 7.6 then becomes: 

a 
ili(al/l'/at) = iii -[1/1 exp (- ime2t/n)] at 

(7.7) 

exp (- ime2t/li)[inal/l fat + mc21/1] • (7.8) 

The exponential commutes with the operators on the right·hand side of Equa
tion 7.6, which after rearrangement and premultiplication throughout by 
exp (ime2t/Fi) becomes: 

iFi(al/l/at) = (q¢ + 1T2/2m)l/I. (7.9) 

Thus the energy origin has been shifted by changing the phase factor of the 
wave function; clearly this can have no effect on the physical properties calcu
lated from the wave function. 
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Equation 7.9 is a time-dependent Schrodinger equation with the Hamil
tonian operator: 

(7.10) 

and this may be expanded by substituting for the mechanical momentum 'If 
(Equation 7.2): 

3C = qcf> + p2/2m - q(p.A + A.p)/2m + q2A 2/2m. (7.11) 

The cross terms may be simplified by noting that: 

p.A = A.p - iFiCV.A). (7.12) 

In obtaining this result it must be remembered that we are now dealing with 
operators and that they must always be thought of as operating on a wave 
function: 

p.At/! -iFiV.At/! = -iFi[A.(Vt/!)+(V.A)t/!] 

[A.p -iFi(V.A)] t/!, (7.13) 

where the vector relation 2.64 has been used. If the Coulomb gauge (Equation 
5.35) is being employed, the divergence of A vanishes and the Hamiltonian 
(Equation 7.11) becomes: 

(7.14) 

The first two terms in this Hamiltonian represent respectively the energy of 
interaction of the charge with the electric field and the kinetic energy of the 
particle. For a steady magnetic field B the vector potential may be written as 
A = ~B 1\ r (Equations 5.37), so that the third term: 

- (q/m)(A.p) = - (q/2m)B.(r 1\ p) (7.15) 

represents the interaction of the magnetic field with the magnetic moment 
(q/2m)(r 1\ p) associated with the orbital angular momentum of the particle. 
The final term represents the diamagnetic interaction; this arises because the 
magnetic field induces some orbital angular momentum and the associated 
magnetic moment then interacts with the magnetic field. 

It is clear that there is nothing in the Hamiltonian (Equation 7.14) that can 
be interpreted as either a magnetic moment or an angular momentum due to 
the spin of the particle. If higher terms, such as - 1f4/8m3c2 , were retained in 
the power series expansion (Equation 7.5) all the additional terms in the re
sulting quantum mechanical Hamiltonian could be described as relativistic cor
rections to the kinetic energy or the magnetic interactions in Equation 7.14. 
It must be concluded that a wave equation based on Equation 7.5 does not 
include anything attributable to spin. 
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7.2 Gauge invariance of quantum mechanical equations 

In the last section it was assumed that the gauge of the electromagnetic 
potentials can be chosen in quantum mechanical equations just as it can be in 
classical equations. This assumption is now justified. 

It is recalled that in a gauge transformation new potentials: 

A' = A-Vf; </>' = </> + (af/at), (7.16) 

are introduced (Equations 5.31), where f is any scalar function of position and 
time. This transformation does not alter the corresponding magnetic flux den
sity and electric field strength. It will now be shown that, provided we also 
introduce a phase factor into the wave function, a quantum mechanical equa
tion is essentially unchanged, as it must be if it is to be gauge invariant. The 
new wave function is chosen to be: 

1/1' = 1/1 exp (- iqf/h); (7.17) 

although the matrix elements of individual operators may be different for 1/1 
and t/J', the physical results calculated from these wave functions are the same. 

The way in which Trt/J behaves under the transformation is considered first: 

Trt/J ---+ (p - qA')1/I' = (p - qA + qVf)t/J exp (- i qf/h) 

exp (- iqf/h)(p - qVf - qA + qVf)t/J 

exp (- iqffh)Trt/J. (7.18) 

ThuSTrt/J is merely multiplied on the left by the phase factor in Equation 7.1 7, 
and the same is true of 1f21/1, 1f41/1 and so on. If (iha/at - q</»t/J is now exam
ined, it will be seen that the effect of the transformation is the same: 

(iha/at - q</»t/J ---+ (iha/at - q</> - qaf/at)t/J exp (- iqf/h) 

exp (- iqffh)(iha/at + qaf/at -q</> -qaf/at)t/J 

exp (- iqffh)(iha/at -q</»t/J. (7.19) 

The wave equation 7.6 can be rearranged so that, besides constants such as 
me2, the only operators that appear are Tr and (iha/at - q</». The combined 
result of the gauge transformation (Equation 7 .16) and the change of phase 
(Equation 7 .17) is to premultiply every term in this equation by exp (- iqf/h), 
so that it is essentially unchanged. This conclusion is unaffected, if higher 
terms in the expansion 7.5 are retained. 

It is clear that any wave equation that, except for constants, can be written 
entirely in terms of the operators Tr and (iha/at - q</» is also gauge invariant. 
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7.3 The Klein-Gordon equation 

The wave equation 7.4 has the disadvantages that it is not obviously Lorentz 
invariant, and that it is difficult to interpret and use. The first attempt to avoid 
these difficulties was to return to the classical Equation 7.1 and rewrite it as: 

(7.20) 

before attempting to quantize it. Equations 7.20 and 7.1 are not exactly 
equivalent, since the possibility that: 

(7.21) 

has been introduced. The leading term in an expansion of Equation 7.21 is 
- me2 so that Equation 7.20 has some solutions with negative energy, that is 
solutions which correspond to particles with negative mass. 

If Equation 7.20 is quantized in the usual manner (Equations 7.3) the 
corresponding wave equation is: 

(7.22) 

this is the Klein-Gordon equation. Since the square root term is no longer 
present, it is unambiguous, and in addition the operators V and ajat both ap
pear to second order so that the space and time coordinates occur symmetri
cally and the Lorentz invariance of the equation is at least credible, if not 
obvious. The invariance may be confirmed by noting that Equation 7.22 may 
be rewritten as: 

where 
(m 2e4 + e21Ta1TaJ1/I = 0, 

1Ta = -iFiajara -qAa , 

(7.23) 

(7.24) 

is the component of a four-vector, since both a jar a (Equation 4.51) and Aa 

(Equation 5.2) are. Of course, the wave function will also be changed by a 
Lorentz transformation, but it will be the same function of position and time 
no matter what inertial frame is used. 

Although the Klein-Gordon equation does not suffer from the disadvantages 
of the wave equation 7.4, there are a number of objections to it which arise 
from the way in which it is constructed. It has already been seen that the Klein
Gordon equation has negative energy solutions; in fact, this is also true of the 
Dirac equation, which is considered in the next chapter, but Dirac was able to 
use this apparent deficiency to advantage. However, there are more serious ob
jections to the Klein-Gordon equation, one being that for its solutions 1/1 *1/1 
cannot be regarded as a probability density, since its integral over all space is 
time dependent. 
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For a time-dependent Schrodinger equation: 

(7.25) 

the time and space variables may be separated by the substitution: 

I/I(r, t) = x(r)O(t). (7.26) 

This leads to two equations, the time-independent Schrodinger equation, 
Xx = EX, and an equation for OCt): 

in(dO/dt) = EO, (7.27) 

the solution of which is: 
o = k exp (- iEt/n), (7.28) 

where k is an arbitrary constant. The probability density '#*1/1 is thus propor
tional to X*X and is time independent. Integration of 1/1 *1/1 over all space shows 
that a particle described by the wave Equation 7.25 has a constant probability 
of being somewhere in space. 

This is no longer true for a wave equation, such as the Klein-Gordon equa
tion, in which the second derivative with respect to time appears. To demon
strate this a simpler example is considered: 

(7.29) 

The variables may again be separated by the substitution of Equation 7.26, but 
the time-dependent part OCt) now satisfies the equation: 

(7.30) 

where a (= .jE/n) is a constant. The general solution of this differential equa
tion is: 

o = kl sin at + k2 cos at, (7.31) 

so that 1/1*1/1 is in general time dependent and so is its integral over all space. 
Consequently, the probability of a particle described by the Klein-Gordon 
equation being somewhere in space varies with time. 

In actuality many of the problems associated with the Klein-Gordon equa
tion can be overcome, and it has been used to describe certain fundamental 
particles, such as mesons, which can decay. In this connecti<m it can also be 
noted that the wave equation 6.59 for the electromagnetic field is just the 
Klein-Gordon equation for a particle with zero mass and charge. Of course, if 
a wave equation is to describe a decaying particle, some of the basic ideas of 
quantum mechanics must be reformulated. For example, although the Klein
Gordon equation is not consistent with the conservation of the number of 
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particles, it has been shown to be consistent with the conservation of electric 
charge, which can be thought of as a more basic requirement; for an electron, 
charge conservation and number conservation are equivalent. 

Perhaps the most serious objection to the Klein-Gordon equation as a wave 
equation for an electron is that it does not lead to anything that can be inter
preted as spin. It must be concluded that, although the Klein-Gordon equation 
may be appropriate to certain spinless particles, it is not a satisfactory equa
tion for the electron and that a wave equation linear in the operator (a/at) is 
necessary for the description of an electron. 
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CHAPTER EIGHT 

The Dirac Equation 

The last chapter was devoted to showing that direct quantization of classical 
equations does not lead to a wave equation for the electron. We will now dis
cuss the Dirac equation for the electron. Although much of this chapter will 
be concerned with its justification, it will be assumed from the outset that it 
is indeed appropriate to the electron to the extent that we will refer to an elec· 
tron with charge - e, where e is positive, rather than a particle with an arbit
rary charge q; in addition, m will now be taken to be the mass of the electron. 

Let us briefly summarize the problem that faced Dirac. For a particle with 
mass m and charge - e in the presence of electromagnetic potentials (A, cf» the 
classical relativistic expression for the energy is: 

where 
'11' = P + eA 

(8.1) 

(8.2) 

is the mechanical momentum. In the previous chapter this was interpreted as 
a quantum mechanical equation by replacing the energy and the canonical 
momentum by operators: 

E = inca/at); p = -inV, (8.3) 

and allowing these to operate on a wave function 1/1. However, such an inter
pretation was seen to be unsatisfactory, since time and space coordinates do 
not appear symmetrically and, except when A vanishes, the equation is un· 
usable. These objections were removed at the expense of introducing solutions 
with negative energy by starting with the classical relation: 

(8.4) 
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the substitutions 8.3 and the introduction of a wave function then gives the 
Klein-Gordon equation. This too has a disadvantage in that the second deriva· 
tive with respect to time appears with the consequence that the probability 
that the particle is somewhere in space is time dependent. In addition, the 
Klein-Gordon equation cannot account for the property of spin, so that, al
though it might be appropriate for other particles, it does not apply to the 
electron. It was this unsatisfactory situation that led Dirac to consider an 
alternative equation. 

8.1 The Dirac equation for a free electron 

In the Klein-Gordon equation the time and space coordinates appear symmetri
cally, but as second derivatives. Dirac argued that it is necessary for the time 
coordinate to appear as a first derivative and, in order to preserve the relativ
istic equivalence of space and time, it is necessary for the space coordinates to 
appear as first derivatives as well. This would also be in contrast to the Schro
dinger equation in which the time derivative is first order, but the space deriva
tives are second order. To simplify the ensuing arguments we consider a free 
electron, that is one in the absence of electromagnetic potentials. In addition, 
the notation can be simplified by introducing the operator Po such that: 

Cpo = in(%t). (8.5) 

(The subscript ° is used rather than 4, because Po is not the time component 
of the four-vector POI = - i1i(O/O'Ol)' although they are related by P4 = ipo)· 
The equation that Dirac proposed has the form: 

[Po - QxPx - Qypy - Qzpz - fjmc] t/I = 0, 

or in vector notation: 
[po-a.p-fjmc]t/I = 0, 

(8.6) 

(8.6) 

where the nature of a and fj needs to be considered more closely. In Equation 
8.6 time and space coordinates do appear symmetrically, and one might expect 
this equathn to be invariant to Lorentz transformations, a necessary require
ment of a relativistic equation; that the equation is indeed Lorentz invariant 
will be confirmed later. 

Since Equation 8.6is to be an equation linear in space and time derivatives, 
a and fj must be independent of p and Po. Also, we are considering the situation 
where there are no electromagnetic fields so that all points in space-time are 
equivalent and the operator [Po - a.p - fjmc] cannot involve x, y, z or t, since 
this would introduce space-time inhomogeneity and anisotropy, although this 
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operator can (and does) contain first derivatives with respect to these coordi
nates; consequently a and 13 are also independent of x, y, z and t. To obtain 
further information about CI and fJ we return to the Klein-Gordon equation, 
which for a free particle can be written in our current notation as: 

(8.7) 

Since this is directly connected with the classical expression for energy, the 
solutions of the Dirac equation 8.6 are also expected to be solutions of the 
Klein-Gordon equation 8.7. This is not the same as requiring that these two 
equations have the same solutions; there will be solutions of the Klein-Gordon 
equation, for which the probability of the existence of the particle will be time 
dependent, and these cannot be solutions of the Dirac equation. 

If we multiply the Dirac equation 8.6 on the left by the operator: 

(8.8) 

we obtain a second-order equation in Po and the components of p, which can 
be compared with the Klein-Gordon equation 8.7. In doing this the fact that 
Po and the components of p each commute with (j and the components of a 
may be used, since we have seen that CI and (j must be independent of x, y, z 
and t. However, we must not assume that 13, ax, ay and az commute with each 
other, since their properties are yet to be determined. The result of multiply
ing the Dirac equation by the operator 8.8 is thus: 

[Po + axpx + aypy + azpz + (jmc] [Po - axpx - aypy - azpz - (jmc] 1/1 

- mc(ax(j + (jax)px - mc(ay(j + {3ay)Py 

- mc(az(j + (jaz)pz -fj2m2c2]1/I = o. (8.9) 

This is identical to the Klein-Gordon equation provided the following relations 
between 13, ax, ay and az hold: 

a2 = a 2 = a 2 = a2 = I' x y z ~ , 

(aXay + ayax) = (ayaZ + aZay) = (azax + axaz) = 0; (8.10) 

(axfj + fjax) = (ayfj + fjay) = (azfj + fjaz) = O. 

If we let ao = 13 (ao is not the coefficient of Po and ao is not a component of a 
four-vector), then these relations may be summarized as one relation: 
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(8.11) 

where oij is the Kronecker delta. This equation shows that the four (Xi anti
commute with one another and the square of each is unity. 

Thus, provided Equation 8.11 is satisfied, multiplication of the Dirac equa
tion by the operator 8.8 gives the Klein-Gordon equation and solutions of the 
Dirac equation are also solutions of the Klein-Gordon equation. Although the 
Dirac equation does not suffer from many of the objections to the Klein
Gordon equation, there is still the possibility that solutions with negative 
energy exist. We will return to this point later, when we consider positrons. 

8-2 The Dirac operators a and (3 

It is clear that {j (= (Xo) and the components of a cannot be numbers, since 
they must satisfy the anticommutation relations in Equation 8.11; they can 
be regarded as operators representing a new degree of freedom intrinsic to the 
electron. It will be recalled that the spin angular momentum operators, ax, a y 

and az , of non-relativistic theory satisfy similar anticommutation relations 
(Equation 2.22): 

(8.12) 

In addition, the properties of these operators can be represented by the three 
two-by-two Pauli spin matrices so that it is reasonable to explore the possibility 
that (Xx, (Xy, (Xz and (3 can also have a matrix representation. However, we will 
see that we have to go to four-by-four matrices to achieve this. 

The three two-by-two Pauli spin matrices: 

a = (0 -i); 
y i 0 az = G ~J (8.13) 

form a matrix representation of three quantities which anticommute with one 
another and whose squares are unity; the square of each of the matrices (Equa
tions 8.13) is unity in the sense that it is equal to the two-by-two unit matrix. 
However, for a representation of the four (Xi we need four matrices, and any 
attempt to find a fourth two-by-two matrix that anticommutes with ax, a y 

and az is doomed to failure. This can be seen merely by noting that any two
by-two matrix can be expressed as a linear combination of ax, a y , a z and the 
two-by-two unit matrix. Consequently there is no two-by-two matrix that anti
commutes with all three components of fl. (There is, of course, the trivial case 
of the null matrix, but its square is not Jnity.) From this fact it can also be 
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seen there are an inftnite number of sets of three anticommuting matrices, 
but that these are just orthogonal linear combinations of the components of fl. 

It might be thought that three-by-three matrices would be able to provide 
us with four matrices with the required properties, but this can be disproved 
by using some results of matrix algebra to show more generally that a matrix 
representation of the a, can only be constructed from matrices of even order. 
Let us consider a matrix representation A, B, .... This can be changed into an 
equivalent representation X, Y, ... , in which X is diagonal, by performing a 
similarity transformation on each of A, B, ... : 

... , (8.14) 

where Q is chosen to be the matrix that brings about diagonalization of A. 
Many of the properties of the matrices are unaltered by similarity transform
ations provided all matrices are subjected to the same transformation. If A and 
B anticommute, then so do X and Y: 

xy + YX = Q-1AQQ-1BQ + Q-1BQ(f1AQ 

= Q-l(AB + BA)Q = O. (8.15) 

Similarly, if A2 equals the unit matrix, then so does X2. This fact, combined 
with the fact that X has been chosen to be diagonal, means that the diagonal 
elements of X must be either + 1 or - 1. 

The next step in our proof is to show that the trace (the sum of the diag
onal elements) of the matrix X vanishes. To do this we use the fact that for 
two matrices R and S the trace of the product matrix RS is the same as the 
trace of the product matrix SR; this can easily be proved by expanding 
these products in terms of the elements of R and S (see Equation 2.108). Thus, 
the product matrix xy2 has the same trace as YXY, and also the same trace as 
X, since y2 is required to be the unit matrix: 

Tr (~) = Tr (YXY) = Tr (X). (8.16) 

However, since X and Y are to anticommute ~ is equal to - YXY, so that: 

(8.17) 

The only way in which Equations 8.16 and 8.17 can be reconciled is for the 
trace of XY2, and hence of X, to be zero. But it has already been shown that 
the diagonal elements of X can only be + 1 or - 1, so that the number of diag
onal elements with value + 1 must be the same as the number with value - 1 
and the order of the matrix must be even. Hence, only even-order matrices can 
satisfy our initial assumption of anticommuting matrices whose squares are 
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the unit matrix. Consequently, we can move on to a consideration of four-by
four matrices. 

As was indicated earlier, there is a set of four-by-four matrices that forms a 
representation of the Qj. To arrive at this set (or one related to it by a similarity 
transformation) in a rigorous fashion is somewhat involved, so that here a more 
intuitive approach is adopted. Since the Qj have properties similar to those of 
the components of fI, it is not unreasonable to use them as our starting point, 
and we construct three four-by-four matrices by taking the direct product of 
each of ux, uy and Uz (Equations 8.13) with the two-by-two unit matrix: 

0 1 0 0 0 -i 0 0 

1 0 0 0 i 0 0 0 
Ux = ; uy 

0 0 0 1 0 0 0 -i 

0 0 1 0 0 0 i 0 
(8.18) 

0 0 0 

0 -1 0 0 
Uz 

0 0 0 

0 0 0 -1 

it is common practice to use the same symbols for both the two-by-two and 
the corresponding four-by-four matrices, since the context should indicate 
which is intended. These four-by-four matrices satisfy the same relations (Equa
tion 8.12) as the corresponding two-by-two matrices, that is they anticommute 
with one another and their squares are the unit (four-by-four) matrix. The 
possibility of constructing the Qj by introducing just two new matrices p and {3 
is now examined. The proposed relations are: 

Q o = {3. (8.19) 

It can easily be shown that for the Qj (Equations 8.19) to satisfy the defining 
relations (Equation 8.11) p and {3 must have the properties that their squares 
are both equal to unity, that they anticommute with one another and that 
they both commute with the components of 0': 

p2 = {32 = 1; 

[p, {3]+ = 0; 

[p,fI] = [{3,0'] 

(8.20) 

o. 
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For example: 

or again: 
(8.22) 

When a matrix representation of the OIt has been found, an equivalent repre
sentation can be produced merely by performing the same similarity transform· 
ation on each of the matrices in our original representation. However, the 
representation can be fixed by stipulating that our representation is such that 
{3 is diagonal. In the consideration of general matrices it was seen that, for 
the square of a diagonal matrix to equal unity, its diagonal elements can only 
be + 1 or - 1 and that, for it to anticommute with other matrices, its trace 
must be zero. Thus, {3 must have the same number of elements equal to + 1 as 
equal to - 1. The fact that {3 commutes with ox, Oy and Uz means that it can 
only be: 

{3= 

1 

o 
o 
o 

o 
1 

o 
o 

o 
o 

o -1 0 

o o -1 

or of course minus this; we choose it to be as shown in Equation 8.23. 

(8.23) 

It remains to find the matrix p, which is to anticomrnute with {3 and to 
commute with ox, Oy and 0z, all of which are now known explicitly. From its 
anticommutation property with {3 it can only have the form: 

p 

o 
o 
e 

g 

o 
o 
f 
h 

a 

c 

o 
o 

b 

d 

o 
o 

(8.24) 

Commutation with Oz demands that b, c, f and g are all zero, while commu
tation with Ox (or Oy) necessitates that d = a and h = e. Finally, for p2 to be 
the unit matrix ae = 1 and making the choice a = e = 1 : 

p = 

o 
o 
1 

o 

o 
o 
o 
1 

1 

o 
o 
o 

o 
1 

o 
o 

(8.25) 
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Substi tuting Equations 8.2S, 8.23 and 8.18 into Equations 8.19 now gives us a 
set of four fo ur-by-four matrices representing the Q( 

a~ = 

o 
o 
o 

o 
o 

o 
o 

o 

o 
o 
o 

o - I 

o 

o 
o 

o 
o 
o 

o 
o - I 

o 
o 

o 
o 

0:,. = 

and as would be expected they are all Hermitian . 

o 
o 
o 
1 

o 
o 
o 

o 
o 
- I 

o 

o 
1 

o 
o 

o o 
o 

o - I 

o 
o 
o 

o o - I 

(8.26) 

Although we do no t prove it here. this is, to within a simi larit y transforma
tion, the o nly four-by-four mat rix representation of the OJ _ The particular 
representa tion chosen here is called the standard representation . However, it 
should be noted that as far as determining eigenvalues is co ncerned it does not 
matte r which representation is used, since, although the ope rator in tbe Dirac 
equation: 

(Po - • . p - /tmc)'-P = 0 (8.27) 

will have different forms in different representations, this is compensated by 
a change in the wave functio n. If a similarity transformation is applied to the 
matrices in the operator part of Equation 8.27: 

• Q- ' Q a l-CII = Il; , (8.28) 

where Q is independent of time and space coordinat es, a new wave function 
l}' , is needed so that : 

[po- a'.p - /f'mc]l}' = O. (8 .29) 

This is the same as Equation 8.27 multiplied on the left by Q - I, if l}' is inter
preted as: 

(8.30) 

Hence, use of a different representation merely transforms the wave runction. 
but certain representations will be more convenient than olhers. and fo r chemi
cal applications the standard representation (Equations 8.26) is most appro. 

priate. as will be seen shortly. 
In the previous paragraph it is implied that the wave func tion l} can be 



The Dirac Equation 119 

multiplied by a four-by-four matrix Q-l. Also the total Dirac operator can be 
expressed as a four-by-four matrix, and this operates on 1/1. This is only mean
ingful if 1/1 is represented by a four-component column vector or spinor: 

1/1 = (8.31) 

and if Po is thought to be multiplied by a four-by-four unit matrix. Thus, 
when expanded fully, the Dirac equation consists of four coupled equations 
in the four components of 1/1: 

(PO-me)l/Il-pzI/l3-(PX-ipy)1/I4 = 0 

(PO-me)1/I2-(px +ipy)1/I3+pzI/l4 = 0 

-Pzl/ll-(Px-ipy)1/I2+(PO+me)1/I3 = 0 

- (Px + ipy)l/Il + pzl/l2 + (Po + me)1/I4 = 0 

(8.32) 

That the wave function 1/1 has four components needs some explanation. In 
the spin theory due to Pauli the wave function of the electron is taken to have 
two components corresponding to the two different spin orientations; thus 
two-component wave functions would be expected in a theory that explained 
electron spin. That twice as many components appear, is due to the fact that 
solutions of the Dirac equation are also solutions of the Klein-Gordon equa
tion, and negative energy solutions are possible. This can easily be seen from 
Equations 8.32, if we consider the time-independent case, where Po is replaced 
by Ele, and 1/1 is a function of space coordinates only. For a slowly moving 
electron the magnitude of the momentum is negligible compared with me, so 
that Equations 8.32 have the approximate eigenvalues + me2 (twice) and - me2 

(twice). It is the small terms involving the components of p that couple these 
so-called positive energy states and negative energy states making the theory a 
relativistic one and adding relatively small energy corrections to ± me2. It is 
now seen that the choice of the standard representation for the Dirac operators 
provides the maximum separation of the positive and negative energy states. 
Although it is the positive energy states that are of interest to chemists, the 
negative energy states will be considered briefly later. 
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8.3 The introduction of an electromagnetic field 

So far we have considered a free electron, that is in the absence of electromag
netic potentials. These can be introduced in the usual manner by allowing the 
replacements: 

Po-Po + (e/c)ifJ; p -- 'If = P + eA, (8.33) 

where allowance has been made for the definition (Equation 8.5) of Po and its 
relation (Equation 8.3) to the energy. The resulting equation is: 

[Po + (e/c)ifJ-a.'If- {jmc)I/I = o. (8.34) 

From the considerations in Section 7.2 it is at once apparent that this equation 
is gauge invariant, since it contains only the operators (p + eA) and (ih(a/at) 
+ eifJ). A change in gauge merely multiplies the wave function by' a phase fac
tor, exp (- ie//h), where / is the scalar function specifying the gauge trans
formation. In the special case of the time-independent problem Equation 8.34 
reduces to: 

(8.35) 

and the operator on the left-hand side of this equation may be referred to as 
the Dirac Hamiltonian. 

The Dirac equation has now been developed, but it has yet to be shown that 
it is appropriate to the electron. It has not been derived rigorously, nor can it 
be; it came about because of an insistence on a linear equation in Po, Px, P y and 
Pz, and a consideration of the consequences. Its justification is the same as 
that for the Schrodinger equation - it works. Later in this chapter the Lorentz 
invariance of the Dirac equation will be demonstrated and the nature of the 
negative energy solutions will be considered. However, we will first show that 
the equation is appropriate to the electron, in that it leads to the concept of 
spin, since any further discussion would be pointless if this were not so. 

8.4 Electron spin 

Later in this chapter the relationship between the Dirac equation and the non
relativistic formulation of quantum mechanics will be considered in detail. 
Here, we will content ourselves with showing that, when the Dirac equation is 
reduced to a non-relativistic form, two new properties arise naturally. These 
properties are the intrinsic magnetic moment and the intrinsic angular momen
tum, that are associated with spin. 

The time-independent Dirac equation 8.35 can be written as: 

3<:1/1 = EI/I, (8.36) 
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where the Dirac Hamiltonian is given by: 

J(' = (3mc2 + CCI.'I1'- el/J; (8.37) 

if a matrix representation is used, then I/J is a four-component vector and J(' is 
a four-by-four matrix. From Equation 8.37: 

(8.38) 

where the properties (Equation 8.11) of the Dirac matrices have been used; in 
particular no cross terms arise on squaring (fjmc + CI.'I1'), since CI and P both 
commute with'l'l', but anticommute with each other. To expand Equation 8.38 
further, we note thatCl = pfI(Equations 8.19), wherep is the four-by-four mat
rix that has the properties (Equations 8.20) that it commutes with both fI and 
'11', and has the unit matrix as its square. Hence: , 

(CI.'I1')2 = (fI.'I1')2 = (fI.'I1')(fI.'I1'). (8.39) 

In Chapter 2 the relationship (Equation 2.43): 

(fI.D)(fI.C) = (D.C) + ifl.(D 1\ C), (8.40) 

was proved, where fI commutes with D and C and the components of fI are the 
two-by-two Pauli spin matrices. Although the fI used in Equation 8.39 are four
by-four matrices, they are constructed (Equations 8.18) from the Pauli matrices 
and satisfy similar commutation and anticommutation properties. Thus, since 
fI and '11' commute, Equation 8.40 can be used to expand Equation 8.39 pro
vided it is remembered that four-by-four matrices are now involved: 

(8.41) 

It is tempting to say that the second term in this equation is zero, since it in
volves the vector product of '11' with itself, but this is not true. In considering 
('11' A '11') the explicit form of '11' (Equations 8.33) must be used: 

'11' A'I1' = (p + eA) A (p 4- eA) 

(8.42) 

Although the first and last terms in this equation do vanish, the middle term 
does not, since p and A do not commute; this term may be simplified further, 
but in doing so it must be remembered that it is an operator and must always 
be thought of as operating on a wave function, even though the wave function 
is not included explicitly. Thus: 
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'" A"'= e[PAA+AAP] 

= e[-AAP-i1i(V "A)+A"p] 

= - i1ie(V"A) = - ilieB, (8.43) 

where B is the magnetic field associated with the potential A (Equation 5.20). 
In going from the first to the second line the vector relation 2.65 has been 
used to expand (V" Al/J): 

(8.44) 

Combining Equations 8.38 to 8.43 gives: 

GJC + ef/»2/e2 = m2e2 + 1T2 + elicr.B. (8.45) 

Since we are interested in comparing the Dirac equation with non-relativis
tic theory, we wish to consider Equation 8.45 in the non-relativistic limit, that 
is when it is applied to a slowly moving electron. The Hamiltonian for a posi
tive energy state can then be written as: 

(8.46) 

where 3(' is small compared with me2 • In expanding the left-hand side of Equa
tion 8.45 it can then be assumed that 3('2/e2 is negligible as are other terms 
involving e -2: 

GJC + ef/»2/e2 "'" m2e2 + 2m'JC' + 2mef/>. (8.47) 

Combining Equations 8.45 and 8.47 gives finally: 

3(' "'" - ef/> + 'Tr2/2m + (eli/2m)cr.B; (8.48) 

this confirms that 3(' is negligible compared with me2• This Hamiltonian is the 
same as the non-relativistic Hamiltonian for an electron except for the term 
(eli/2m)cr.B, which may be interpreted as an additional potential energy due 
to an interaction with the external magnetic field. That is the particle possesses 
a magnetic moment: 

-(eli/2m)cr = -2J.LBS, (8.49) 

where J.LB (= eli/2m) is the Bohr magneton and s = cr /2. This is just what is as
sumed in introducing spin into the non-relativistic Hamiltonian (see Chapter 1). 

Of course, a matrix representation of the Hamiltonian (Equation 8.48) in
volves four-by-four matrices, but consideration of the specific forms of the 
components of cr (Equations 8.18) shows that, when it operates on a four
component wave function, the Hamiltonian factorizes into two identical pairs 
of coupled equations. Hence, Equation 8.48 with a four-by-four matrix repre-
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sentation of fI conveys no more information than the same Hamiltonian with a 
representation involving two-by-two Pauli matrices. This is in accord with the 
two-component formalism of non-relativistic spin theory. 

To obtain the g value appropriate to a particle which satisfies the Dirac 
equation it is necessary to obtain the intrinsic angular momentum associated 
with the intrinsic magnetic moment, since the g value is related to the ratio of 
the magnitude of these quantities. The intrinsic magnetic moment gives rise to 
potential energy, but the intrinsic angular momentum does not and its presence 
must be demonstrated in a different fashion. To do this we consider a free 
electron, that is in the absence of electromagnetic fields. The Dirac Hamiltonian 
now has the simpler form: 

x = fjmc1 + c(a.p). (8.50) 

In the non-relativistic quantum theory of a free particle the Hamiltonian, 
X = pl/2m, and the orbital angular momentum, iii = r "p, commute with one 
another and iii is a constant of motion. To prove this we consider the commu
tation of the component lili with p2 and use the techniques of Chapter 2: 

[€iikriPk, PIPJ 

2ili€iikl)/jPIPk = o. (8.51) 

However, it will be seen that iii does not commute with the Dirac Hamiltonian 
(Equation 8.50) since: 

[lili' X] = lie [li(a.p) - (a.p)l;] 

lica.[/i' p] 

and l; does not commute with p. In fact: 

[Ii, Pi] = i€iikPk, 

so that: 

where a has been replaced by pfl (Equations 8.19). 

(8.52) 

(8.53) 

(8.54) 

The orbital angular momentum iii is no longer a constant of motion. This 
implies that iii is not the total angular momentum associated with a particle 
satisfying the Dirac equation. The appearance of fI in Equation 8.54 suggests 
that a consideration of the commutator of fI with X might be pertinent. Re· 
membering that fj commutes with fI (Equations 8.20): 
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[Uj,JC] c[Uj(a.p)-(a.p)u;] 

= c[Uj,a].p = Cp[Uj,IF].p, (8.55) 

where again Equations 8.19 and the properties of p (Equations 8.20) have 
been used. Now the commutation properties of the components of IF are 
(Equation 2.41): 

(8.56) 

this relationship holds whether a four-by-four or a two-by-two matrix repre
sentation is used for the components of IF. Substitution in Equation 8.55 gives: 

(8.57) 

showing that IF does not commute with the Dirac Hamiltonian either. However, 
comparison of Equations 8.54 and 8.57 shows that (1iI + ~lilF) does commute 
with JC: 

(8.58) 

and is thus a new constant of motion. If we regard this as the total angular mo
mentum, then in addition to the orbital angular momentum 1iI there is an in
trinsic angular momentum ~lilF and by identifying IF with 2s this intrinsic 
angular momentum of lis is just what is assumed in non-relativistic theory (see 
Chapter 1). 

The Dirac equation thus leads to an intrinsic magnetic moment of - 2f.1BS 

and an intrinsic angular momentum of lis. The ratio of these gives a g factor of 
2. These results agree with the assumed electron properties that are introduced 
phenomonologically into the non-relativistic theory of the electron. It would 
appear that the Dirac equation is indeed an appropriate equation for the elec
tron. However, we still have to verify the Lorentz invariance of the equation 
and examine the negative energy solutions more closely before its suitability 
is fully confirmed. 

It is often said that electron spin is a consequence of special relativity, since 
it was first explained by the relativistic theory of Dirac. However, it is only 
fair to say that there is another point of view. The non-relativistic Hamiltonian 
(Equation 7.10) for a particle contains the operator TT2/2m. Replacement of 
this by (IF.wi/2m, where the components of IF are the Pauli spin matrices, also 
leads to an intrinsic magnetic moment of the right magnitude, as may be seen 
from Equations 8.39 to 8.45. The same method may be used to develop a rela
tivistic theory, the result being the Dirac equation; this approach is described 
in, for example, the book by Sakurai (see bibliography). 
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Finally, it should be pointed out that the present section has itself raised a 
problem in that I and s, which commute with the non-relativistic Hamiltonian, 
do not commute with the Dirac Hamiltonian; the reasons for this will be dis
cussed in Section 8.10. 

8.S Lorentz invariance of the Dirac equation 

Although the Dirac equation was constructed so that time and space coordi
nates appeared symmetrically, it is not at all obvious from Equation 8.34 that 
it is in fact Lorentz invariant. It need hardly be said that for the Dirac equation 
to be an acceptable relativistic equation it must be Lorentz invariant. 

In most advanced texts the in variance with respect to a general Lorentz 
transformation is demonstrated. Here we will content ourselves with the 
specific transformation considered in Section 4.3. That is, we consider two 
inertial frames K and K', for which the axes x and x' coincide and the axes 
y and z are parallel to y' and z' respectively; the velocity of the K' frame is v 
relative to the K frame. A general Lorentz transformation can be reduced to 
this specific one merely be redefining the origins and the orientation of the 
axes within the two frames. 

It will be recalled that the coordinates, x, y, z and t, in the K frame are re
lated to x', y', z' and t', the coordinates in theK' frame, by Equations 4.18: 

x = 1(x' + vt'); 
, 

y = y; 
, 

z = z; t = 1[t' + (vle2)x'], (8.59) 

where 1 = (1 - ~/e2r!. For the present purposes it is convenient to rewrite 
Equations 8.59 using Equations 4.9 and 4.11: 

x = x' cos 8 - iet' sin 8; y = y'; 

z = z'; t = t' cos 8 - i(x'le) sin 8, 
(8.60) 

where (Equation 4.14): 
tan 8 = ivle; (8.61) 

8 is the parameter used in Chapter 4 and can be seen to be independent of the 
space and time coordinates. In Chapter 5 it was noted that the electromagnetic 
potentials,Ax,Ay,Az and ,ple2 , transform in a similar fashion: 

Ax = A~ cosO -i(,p'le) sin 8; 

,p = ,p' cos 8 - icA~ sin O. 
(8.62) 

The operators a/ara have also been shown to transform as the components of 
a four-vector (Equation 4.51), so that, recalling the defmition of Po (Equation 
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8.5), the operators Px, PY ' pz and Po transform as: 

Px = p~ cos 0 - ip~ sin 0; 

pz = p~; Po = p~ cos 0 - ip~ sin O • 
(8.63) 

. 
By substituting Equations 8.62 and 8.63 into the Dirac Equation 8.34, we 

obtain, after some rearrangement: 

[(cos 0 + iOtx sin O)(P~ + (e/c)i/>J -Otx(cos 0 + iOtx sin O)1T~ 

-Oty1T~ -Otz1T~ -tmzc]1/I = 0, (8.64) 

where 1/1 is still the wave function in the unprimed frame of reference. To show 
that the Dirac equation is Lorentz invariant it is necessary to demonstrate that 
it has the same form in both the primed and the unprimed frames. That is, we 
must show that Equation 8.64 is equivalent to: 

[p~ + (e/c)q/ -a :rI- {jmc]l/I' = 0, (8.65) 

where 1/1' is the wave function appropriate to the primed frame of reference. 
This can be achieved in the following way. The first thing to note is that ex
pressions such as sine and cosine can always be interpreted as power series in 
their arguments and thus there is no objection to their arguments involving 
matrices. Since sine and cosine are, respectively, odd and even functions of 
theri-arguments and the square of Otx is the unit matrix we can write: 

cos 0 + iOtx sin 0 = cos (OOtx) + i sin (OOtx) = exp (iOOtx)' (8.66) 

No problems arise about the order of 0 and Otx in these expressions, since 0 is 
a constant and commutes with Otx , and the interpretation of Equation 8.66 is 
unambiguous. Also, a term of the type exp (iOOtx) commutes with Otx and the 
operators(p~+ (e/c)cf>'), 1T~, 1T~ and 1T~, but it does not commute with OtY ' Otz or 
(j. By expanding the exponential as a power series and using the anticommuta
tion properties (Equation 8.11) of Otx with OtY ' Otz and (j, it can be seen that: 

exp (iOOtxpy = Oty exp (- iOOtx ); (8.67) 

similar expressions hold for Otz and (j. Thus, by multiplying Equation 8.64 on 
the left by exp (- iOOtx /2) and altering the order of the terms using relations 
of the type in Equation 8.67, the transformed Dirac equation becomes: 

[p~ + (e/c)cf>' - a.'II" - (jmc] exp (iOOtx /2)1/I = 0, (8.68) 

which is identical to Equation 8.65 provided that 1/1' is interpreted as 
exp (iOOtx /2)1/I. Hence, the Dirac equation in the K frame transforms into a 
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similar equation in the K' frame, the wave function transforming as: 

(8.69) 

Although the Dirac equation itself is invariant to the transformation, it is 
still necessary to show that the physical interpretation of its solutions is also 
independent of the frame of reference used. For example Vi+1/I is the proba
bility density in theK frame, so that 1/11+1/1' should be the probability density in 
the K' frame. (The expression 1/1+1/1 is the scalar product of 1/1, the four-compo
nent column vector (Equation 8.31), and its Hermitian conjugate 1/1+. The 
Hermitian conjugate of a matrix is obtained by taking its complex conjugate 
followed by transposition, so that 1/1+ is the four-component row vector (1/1! , 
1/It 1/It 1/1:); in general the Hermitian conjugate of a matrix with elements R jj 

is the matrix with elements Rj~. For future use we note that Hermitian conju
gation of a product matrix results in a change of order of the factors, that is 
(ABr = B+A +, as may be confirmed by expanding the matrices in terms of their 
elements.) The two quantities, 1/1+1/1 and Vi'+1/I', are not expected to be the 
same in the two frames, since 1/1+1/1 is the probability of finding the electron at 
a point in space in the K frame and the Lorentz transformation mixes the 
space and time coordinates. Thus, the specific Lorentz transformation under 
discussion would change a volume element dxdydz in the K frame to a mixture 
of dx'dy'dz' and dt'dy'dz' in the K' frame. That is, the probability density in 
the unprimed frame transforms into a mixture of the probability density and 
the x' component of the probability current density in the primed frame; the 
probability current density is just the probability of the electron crossing unit 
area in unit time. Thus, we have to show that 1/1+1/1 transforms like the time 
coordinate t, when subjected to a Lorentz transformation. Under the trans
formation: 

1/1+ exp (iOax /2) exp (iOax /2)1/I, (8.70) 
since ax is real (Equations 8.26) and Equation 8.61 shows that 0 is pure 
imaginary. Hence: 

1/1+1/1 - Vexp (iOa x )1/I = 1/1+1/1 cos e + i1/l+aA sin e, (8.71) 

and 1/1+1/1 does indeed transform like the coordinate t, while comparison with 
Equations 8.60 shows that it is 1/1+ cax 1/1 that transforms like the space coordi
nate x; it will be seen in Section 8.10 that ccxis the electron's velocity operator, 
so that IVccxVi is indeed the probability current density. 

Finally, it must be demonstrated that the electron's charge is conserved, 
that is the change in the charge density in an infinitesimal volume element 
must be compensated by a flow of charge across the faces of the volume 
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element. This conservation condition may be expressed as (Equation 2.55): 

(ap/at) + V.j = o. (8.72) 

In the present connection the charge density p and the current density j both 
differ by a factor - e from the probability density I/J+I/J and the probability 
current density I/J+ eal/J, respectively, so that Equation 8.72 may be rewritten as: 

(8.73) 

That the relationship is obeyed may be demonstrated by multiplying the Dirac 
equation 8.34 on the left by I/J+: 

1/J+[(i1i/e)(al/J fat) + (e/e)</JI/J] - Va.[- iliVt/I + eAI/JJ - (3meVI/J = o. (8.74) 

The Hermitian conjugate of this equation is: 

[- (i1i/e)(aV/at) + V(e/e)</J]I/J - [ili(VI/J+) + l/J+eA].al/J - (3mel/J+1/J = 0, 

(8.75) 

where use has been made of the fact that the components of a are Hermitian 
so that (I/J+ar =al/J. By subtracting Equation 8.75 from Equation 8.74 and 
dividing by (iii/c): 

(8.76) 

which is merely an expanded form of Equation 8.7.3. Thus, the Dirac equation 
is consistent with the conservation of charge. 

8.6 The negative energy solutions - positrons 

We have already seen that the Dirac equation for a free electron has four solu
tions, which is twice as many as is needed to explain spin. This multiplicity of 
solutions arose because half the solutions have negative energies. In fact, this 
happens in any relativistic theory, even classical ones, since the energy always 
involves a square root (see for example Equation 8.1), which can have both 
positive and negative values. Classically the positive square root is taken, the 
presence of negative solutions causing no embarrassment. This is because classi
cally the energy must vary continuously, and energies between + me2 and 
- me2 are not permitted, so that, if the energy is positive at one time it cannot 
become negative at a later time. However, quantum mechanically discontinuous 
transitions can occur so that the negative energy solutions cannot be ignored. 

The solutions of the Dirac equation are represented by a wave function 
which is a four-component vector or spinor: 
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1/1 = 

Since the dominant term in the equation is (jmc2 and (j is given by: 

(j= 

1 

o 
o 
o 

o o 
o 

o -1 

o 
o 
o 

o o -1 
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(8.77) 

(8.78) 

in the matrix representation that we are using, 1/1 1 and 1/12 may be thought of 
as positive energy components and 1/1 3 and 1/1 4 as negative energy components. 
For solutions with positive energy the main components will be 1/1 1 and 1/12, but 
small amounts of 1/1 3 and 1/1 4 will be mixed in by the terms a. 'IT which couple 
positive and negative energy components. In this section the relationship be
tween the positive energy solutions and the negative energy solutions will be 
examined, and it will be shown that if the positive energy solutions correspond 
to a particle with electric charge - e, then the negative energy solutions may 
be thought of as being for a particle with the same mass, but with charge + e. 

The Dirac equation for a particle with charge - e: 

[Po + (e/c)cf> - a.(p + eA) - (jmc] 1/1 = 0 (8.79) 

has as its complex conjugate: 

[-Po + (e/c)cf>-a*.(-p + eA)-(jmc]l/I* = 0; (8.80) 

although (j, ax and a z are real, a y is imaginary (Equations 8.26) so that the 
complex conjugate of a must be written as a*. A new real matrix 1 (not to be 
confused with the number 1 in Equations 8.59) is now introduced: 

(8.81) 

Using the anticommutation relations (Equation 8.11) of (j and the compo
nents of a, together with the fact that a; = - a y , the following properties of 
1 may be demonstrated: 

1a* = a 1· (8.82) 

Multiplication of Equation 8.80 on the left by - 1 followed by the use of 
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these relations leads to: 

[po-(e/c}cp-a.(p-eA}-(jmcJ'y1/l* = o. (8.83) 

Comparison of this equation with Equation 8.79 shows that, if 1/1 is a solution 
of the Dirac equation, then 'Y1/I* is a solution of the same equation, except 
that the sign of the charge has been reversed. That is, if 1/1 is a solution of the 
Dirac equation for a particle with charge - e subject to electromagnetic poten
tials, then 'Y1/I* is a solution of the Dirac equation for a particle of charge + e 
subject to the same electromagnetic potentials. For this reason 'Y is referred to 
as the charge conjugation operator. 

It can easily be shown that if 1/1 is a positive energy solution then 'Y1/I* is 
a negative energy solution, since from Equations 8.26, 8.77 and 8.81: 

o 0 

o -1 

-1 0 

o 0 

o 
o 
o 

= . (8.84) 

1/1 being a positive energy solution, 1/1) and 1/12 are the main components, so 
that for 'Y1/I* it is the negative energy components that predominate and 'Y1/I* is 
a negative energy solution. 

This demonstrates that the negative energy solutions of the Dirac equation 
may be thought of as corresponding to a new particle having the same mass as 
the electron, but opposite charge. These particles are given the name positrons 
and were first suggested by Dirac in 1930. Their discovery in 1933 by Ander
son can be regarded as a triumph of the Dirac theory. Since then a number of 
other so-called antiparticles have been recognised. 

However, there are still a number of problems associated with the concept 
of positrons and the situation cannot be as simple as it has been described 
above, since the theory so far implies that a positron has a negative kinetic 
energy. Dirac avoided this difficulty by supposing that nearly all the negative 
energy states are occupied with one electron in each state, in accordance with 
the Pauli exclusion principle. An unoccupied negative energy state then appears 
as having positive energy, since to remove it an electron with negative energy 
must be introduced. Dirac suggested that these unoccupied negative energy 
states or holes are, in fact, positrons. This picture suggests that, if an electron 
makes a transition from a positive energy state to a negative energy state, as
suming that there is one unoccupied, then this would be interpreted as the 
simultaneous disappearance of both an electron and a positron with the release 
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of an enormous amount of energy as electromagnetic radiation. The reverse 
process would involve the creation of an electron and a positron out of electro
magnetic radiation. It can be seen that this theory is symmetrical between 
electrons and positrons, and that a theory using the positron as the basic par
ticle could be developed. These ideas lead to the concept of antimatter uni
verses. 

Although this assumption of occupied negative energy states solves some 
problems, it introduces further difficulties, since it implies that there is an in
finitely dense distribution of electrons everywhere, and that for a perfect vac
uum all the negative energy states are filled while all the positive energy states 
are unoccupied. For Maxwell's equations to hold it is necessary to assume that 
this infinitely dense distribution of electrons does not contribute to electro
magnetic fields, and that Maxwell's equations only apply to departures from 
the vacuum state. 

It can thus be seen that this theory is by no means satisfactory, but all the 
difficulties can be avoided by using quantum electrodynamics. However, chem
istry is concerned with positive energy states and this topic will be pursued no 
further. 

8.7 The non-relativistic approximation of the Dirac equation 

The Dirac equation is an appropriate relativistic quantum mechanical equation 
for the electron. However, it suffers from the disadvantage of being a four
component equation; that is, it involves four-by-four matrices and the wave 
function is a four-component vector. In this it differs from non-relativistic 
equations, whose wave functions have two components corresponding to the 
two possible orientations of the electron's spin. The Dirac equation has, in 
addition, two negative energy components, which are coupled to the positive 
energy components. Since chemistry is concerned only with the positive energy 
solutions it would be advantageous to decouple the positive and negative energy 
components to give a two-component equation for the positive energy solu
tions which would be similar to the non-relativistic equations and could be 
used in the same way; by decoupling the positive and negative energy compo
nents the Dirac equation would in effect be reduced to a non-relativistic form. 
Two methods of performing this decoupling will be examined. In the next 
section the method of small components is briefly considered, since this is the 
method normally used in the few places that the Dirac equation is discussed in 
the chemical literature, and a number of texts do not appreciate an important 
point. The Foldy-Wouthuysen approach is described in detail in Section 8.9. 

In principle both the methods may be used to decouple the positive and 
negative energy solutions completely, but in practice this is only possible in 
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special cases (see Section 8.10). In both methods the Hamiltonian is obtained 
as a power series, which converges for electrons moving with velocities much 
less than the speed of light. Thus there are a number of problems shared by 
the two methods, the choice of expansion parameter for the power series, the 
estimation of the size of the various terms in the series and the decision on 
how far to take the expansion. The remainder of this section will be devoted 
to these questions. 

A number of quantities have been used as the power series expansion par
ameter, c-1, (u/c) and a, where u is the speed of the electron and a is the 
fine structure constant (not to be confused with the Dirac operator a or its 
components). The quantity c- 1 is frequently used, but it is not really suitable, 
since it is not dimensionless and consequently its value depends on the system 
of units employed. Both (u/c) and a are dimensionless and we will shortly see 
tha t they are in a sense equivalen t. However, we will make the more professional 
choice of the fine structure constant a, which is defined by: 

it is a fundamental constant of importance in atomic spectroscopy and, since 
it is dimensionless, its value is independent of the units used. 

Now the largest term in the Dirac Hamiltonian (Equation 8.37) is mc2, so 
that it is appropriate to estimate the magnitude of other terms relative to this. 
It will be seen that the order of magnitude of each of the other terms in the 
Hamiltonian, erp, ca.p and cea.A, can be expressed as mc2an . Since chemi"ts 
are concerned with atoms and molecules, it is appropriate to consider their 
magnitude in an atomic or molecular environment and for this purpose we 
choose the simplest possible situation for an electron, the hydrogen atom. 

In the first Bohr orbit the electron's speed is u = e2/2Eoh = ca, and it is 
now seen that a and (u/c) are comparable expansion parameters; in addition 
the radius of the first Bohr orbit is ao = 41TEofl2/me2. Thus, classically: 

(8.86) 

while from Equation 5.61: 

erp - e2/41TEoao = mc2a2. (8.87) 

The magnitude of the electric field encountered by an electron in the first 
Bohr orbit is, from Equation 5.60, e/41TEoa~'" 5 X 101lVm-I, which is con
siderably larger than electric fields found in the laboratory; consequently, ex
ternal electric fields do not affect this estimate that erp is of order mc2a2. 

To find the order of magnitude of the term cea.A, we use the magnitude 
eu/41TEoc2ao (Equations 5.72) of the magnetic potential at the proton due to 
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the motion of an electron in the first Bohr orbit. Hence: 

(8.88) 

The contribution to eea.A from the electron spin magnetic moment is of the 
same magnitude, while nuclear contributions are smaller than this by a factor 
of the order of (m/M), where M is the mass of the proton. In addition, the 
internal magnetic field in the hydrogen atom is of the order of eu/41f€oc2a~ '" 
1 OT (1 OSG), which is an order of magnitude larger than ex temal magnetic fields 
normally realizable in the laboratory. It is concluded that cea.A is of the order 
of mc2(X3. 

The two parts of ea.'II" = ea.(p + eA) are thus of different orders of magni
tude and could be treated separately, but it is advantageous to keep them to
gether so that any resulting Hamiltonian is gauge invariant (Section 7.2). In 
any application of the Hamiltonian negligible terms in A may be omitted after 
the gauge has been chosen and the magnitude of these terms has been esti
mated. 

It will be seen that the magnitude of any term that arises in the expansion 
of the Dirac Hamiltonian in a non-relativistic form can be estimated from these 
results. It has been noted that in principle the positive and negative energy 
solutions can be completely decoupled, but in practice the manipulations in
volved become tedious in going beyond an approximation correct to order 
me2(X4. However, this is not a serious disadvantage, since higher order correc
tions are in general not at present observable and, in addition, at this order 
radiative corrections become important and a quantum electrodynamic treat
ment becomes essential. The positive and negative energy states can be com
pletely separated in some specific situations; the free electron is one of these 
special cases and is treated in detail in Section 8.10, since it gives an insight 
into the connection between the Dirac equation and its non-relativistic approxi
mation. 

8.8 The method of small components 

In the method of small components the starting point is the time-dependent 
Dirac equation 8.34. Since it is an electron with positive energy that is of 
interest, we remove the rest mass energy for positive energy states (+ me2 ) by 
introducing an appropriate phase factor into the wave function: 

(8.89) 

Substituting in Equation 8.34 the Dirac equation then becomes: 

[Po + (e/c)t/J-(a.'II")-((j-l)me]1/I = O. (8.90) 
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The wave function 1/1 is still a four-component vector (Equation 8.31), but it 
can be rewritten as: 

1/1 = (~:), (8.91) 

where 1/1+ and 1/1 _ are two-component vectors: 

1/1- = (~:) ; (8.92) 

1/1+ has as its components the positive energy components, 1/1 1 and 1/12, while 
1/1- has 1/13 and 1/14, the negative energy components. The solutions ofinterest 
are those in which the positive energy components 1/1+ predominate, and con
sequently the two components of 1/1+ are called the large components while 
those of 1/1_ are the small components; it is the latter that are to be eliminated. 
Using the substitution (Equation 8.91) and the explicit form of the Dirac 
matrices (Equations 8.26), Equation 8.90 can be rewritten in terms of the 
two-by-two Pauli spin matrices (Equations 8.13): 

[Po + (e/c)cpJI/I+ - (fI.~I/I- = 0 } 

[Po + (e/c)cpJI/I- - (fI.'rr)I/I+ + 2mcl/l_ = 0 . 
(8.93) 

These equations are coupled and each involves two-by-two matrices and two
component wave functions. 

The second of these coupled equations can be used to express the small 
components 1/1- in terms of the large components 1/1 +: 

(8.94) 

The presence of 2mc in the denominator justifies the description of 1/1- as the 
small components. Substitution of Equation 8.94 into the first of the Equa
tions 8.93 gives an equation involving only 1/1 +: 

[Po + (e/c)cp-(1/2mc){fI:rr)K{fI.'rr))I/I+ = 0, (8.95) 

where the Hermitian operator K is given by: 

(8.96) 

Identifying Cpo with in(a/at) (Equation 8.5), Equation 8.95 can be written as: 

(8.97) 

with the Hamiltonian given by: 

3C = - ecp + (1/2m){fI.Tr)K(fI:rf). (8.98) 
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For the case of a slowly moving electron K can be approximated by unity 
and the Hamiltonian becomes: 

3{ ~ - e~ + (1 /2m~' + (<1'/2m)( •. B), (S.99) 

where we have employed manipulations similar to those used in obtaining 
Equation 8.45 from Equation 8.38. Again we note that the Dirac equation 
leads to a term in the Hamiltonian that demonstrates that the electron has an 
intrinsic magnetic moment. The non-relativistic Hamiltonian (Equation 8.99) 
has already been obtained in Section 8.4, but the present method can be used 
to obtain further relativistic correction terms by expandingK as a power series. 
However, the manipulations involved may be facilitated by two results , which 
will first be derived. 

For any operator G, we may write: 

[G , K] ~ K[K-'. GJK ~ K[p. + (e/c)~, GJK/2mc, (S.IOO) 

where Equation 8.96 has been substituted for K- I
• This relationship may be 

used to move the operator K to the right in any operator expression, and this 
is done at the expense of introducing the additional but smaller term given in 
Equation 8.100; in practice the new terms are two orders of magnitude smaller 
in Q and the convergence is quite dramatic, as will be seen. 

When K has been moved to the right-hand end of an operator expression, 
some sort of substitution is needed for it. This may be found by noting that 
in ~his problem the Hamiltonian (Equation 8.98) only operates on til. so that 
an approximation for KtII. is needed. From Equation 8 .96: 

Po + (e/c)(/> = 2mc(K- l 
- I), (S.IOI) 

and substitution of this into Equation 8.95 followed by premuitiplication 
throughout by K gives , after rearrangement: 

K". ~ [I -K( .... )K( .... )/4m'c'J" •. (S.102) 

This may be expanded by using Equation 8.100 and Equation 8.102 itself, 
together with the identity: 

[Po + (e/c)(/>, cr.~ = - (iFre/c)(cr.E), (S.103) 

which is obtained with the help of Equation 5.21. To the order of accuracy 
that we require the result is: 

(S.104) 

Equations 8.100, 8.103 and 8.104 may now be used to expand the Hamil-
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tonian (Equation 8.98), which becomes after some manipulation: 

'Je = - ecf> + (fI:rr)2/2m - (fI.'rr)4/8m 3c2 

+ (ine/4m2c2)(fI.'I1')(fI.E) + O(mc2a6 ); (8.105) 

the order of magnitude of the terms has been estimated using the information 
given in the previous section. This Hamiltonian cannot be correct, since the 
last term is not Hermitian. However, this defect may be remedied by noting 
that 1/1+, the wave function associated with Equation 8.105, is not normalized; 
for the Dirac equation it is 1/1 (Equation 8.91) that is normalized. To obtain a 
Hermitian Hamiltonian, renormalization is essential and it is this necessity that 
is not appreciated in some texts. 

Renormalization may be accomplished by introducing a new normalized 
two-component wave function x+: 

(8.106) 

The operator N may be determined by requiring the probability density associ
ated with x+ to be the same as that for the four-component wave function 1/1 
(Equation 8.91): 

(8.107) 

Substitution for 1/1- (Equation 8.94), x+ (Equation 8.106) and use of Equation 
8.96 gives: 

so that N is the Hermitian operator: 

N = [1 + (fI:I1')K2(fI:II')/4m2c2]~ 

1 + (fI.",,2/8m2c2 + O(a4). 

(8.108) 

(8.109) 

The wave function 1/1+ satisfies the time-dependent Schrodinger equation 
8.97, but as we have seen the Hamiltonian 'Je is not Hermitian. The new norma
lized wave function x+ satisfies a similar equation: 

(8.110) 

but the transformed Hamiltonian 'Je' is expected to be Hermitian. The Hamil
tonian 'Je' can be related to'Je by substituting the inverse of Equation 8.106, 
1/1+ = N-1X+, into Equation 8.97: 

'JeN-1X+ = in(3(N-1X+)/3t) 

= inN-l (3X+/3t) + i1i[3/3t, N-1Jx+. (8.111) 
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Premultiplication by the operator N followed by rearrangement now gives 
Equation 8.110 with JC' given by: 

(8.112) 

To obtain the final Hamiltonian for the positive energy states it only re
mains to substitute for N (Equation 8.109) and;]C (Equation 8.105) in Equa
tion 8.112 and to perform some manipulations. Since N commutes with (O':rr) 
and the result is only required to be accurate to order mc2cx.\ we may write: 

;]C' = ;]C + N[- ecp, N- 1] - i1iN[%t, N- 1] + O(mc2cx.6 ) 

;]C - cN[po + (e/c)cp, N- 1] + O(mc2cx.6 ) 

;]C + N[po + (e/c)cp, (0'.'11')2] /8m2c + OCmc2cx.6 ). 

Now the commutator involved can be evaluated by noting that: 

[Po + (e/c)cp, (0'.".)2] = [Po + (e/c)cp, (0'."')](0'.11) 

+ (0'.".) [Po + (e/c)l/J, (0'.".)] 

and using Equation 8.103, so that: 

(8.113) 

(8.114) 

The Hamiltonian appropriate to the normalized two-component wave function 
x+ is thus: 

;]C' = - ecp + (O'.".)2/2m - (0'.rr)4/8m3c2 

- (ilie/8m 2c2 )[(0'.E), (0'.".)] + O(mc2cx.6 ). (8.116) 

As anticipated this Hamiltonian is Hermitian. It could now be expanded 
further to give a Hamiltonian that may be compared directly with the usual 
non-relativistic Hamiltonian, but this is postponed until the Foldy-Wouthuysen 
method has been discussed in the next section; in addition the physical inter
pretation of the individual terms is not given till then. 

8.9 The Foldy-Wouthuysen transformation 

In this section the positive and negative energy states are decoupled using a 
method due to Foldy and Wouthuysen. The non-relativistic Hamiltonian is ob
tained by a series of unitary transformations, by which the coupling terms are 
progressively eliminated. However, before the details of the transformation 
are considered it is necessary to look more closely at the properties of the 
coupling terms. 



138 Advanced Molecular Quantum Mechanics 

The Dirac equation may be written as 'Jel/J = in(al/l fat), where l/J is a four
component vector and 'Je is the Dirac Hamiltonian: 

'Je = {3mc2 - ecf> + ccx.1I' 

(8.117) 

The symbol 8, (= - ecf» represents an even operator, that is one that has no 
matrix elements between positive and negative energy components, while (9 

(= ccx.1I') is an odd operator having only matrix elements between positive and 
negative energy components. The term {3mc2 is an even operator, but it is ex
pedient to keep it separate from the other even operator (- ecf», since they are 
of different orders of magnitude. This is also true of the two parts of ccx.1I', but 
keeping them together ensures the gauge in variance of any resulting Hamil
tonian. 

Whether an operator is even or odd is determined by the matrix involved in 
its representation. Operators involving (3 or the unit matrix, which are both 
diagonal, are even (8,), while those involving ax , Q y or Qz (Equations 8.26) are 
odd ((9). Other matrices encountered in this chapter can also be classified as 
even or odd, ax, ay and az being even and p being odd. The conditions for an 
operator to be even or odd can be expressed more formally; an even operator 
must commute with {3: 

[8,,{3] = 0, (8.118) 

while an odd operator must anticommute with {3: 

[0, {3]+ = O. (8.119) 

From these conditions it is easy to show that the product of two even opera
tors or two odd operators must be even, but that the product of an even opera
tor with an odd operator is odd. These facts will be used later. Finally, it may 
be shown that any operator G can always be broken down into the sum of an 
even and an odd operator: 

G = kG + (3G(3) + kG - (3G(3); (8.120) 

conditions 8.118 and 8.119 show that, since {32 = 1, the first part of Equation 
8.120 is even, while the second part is odd. 

In the Foldy-Wouthuysen transformation the odd operator (9 in the Dirac 
Hamiltonian (Equation 8.117) is removed by a unitary transformation. Other 
odd operators will be introduced by the transformation, but provided it is 
chosen correctly, they will be of higher order in Q. This process can be re
peated to eliminate the new odd operators until the Hamiltonian contains no 
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odd operators to the desired order in a; the following discussion is aimed at 
a Hamiltonian correct to order mc2a4• 

A unitary transformation may be applied to the wave fWlction t/I to give a 
new wave function t/I': 

t/I' = exp (is)I/I, (8.121) 

where S is a Hermitian operator and by exp (is) is meant the power series ex-
pansion: 

exp (is) = 1 + is + (e/2!)S2 + .... ; (8.122) 

the inverse of Equation 8.121 is just 1/1 = exp (- is)I/I '. The Hamiltonian must 
also be transformed and reference to the preceding section and Equations 8.106 
and 8.112 in particular shows that the new Hamiltonian is: 

Xl = exp(iS)JCexp(-iS)-iliexp(iS)[3/3t,exp(-iS)]. (8.123) 

This may be expanded as a series by substituting Equation 8.122: 

Xl = (1 + is + (;2/2!)s2+ .... )1((1 - is + (;2/2!)S2 + .... ) 

- ili(1 + is + (i2/2!)S2 + ... . )[3/3t, (1 - is + (i2/2!)S2 + .... )] 

= 'JC + i(SX - 'JCS) + (i2/2!)(S"Jc - 2SJfS + 'JCS2) + .... 

-li{[3/3t, S] + (i/2)(S[3/3t, S] - [3/3t, S]S) 

+ (i2/2 !)(S2 [3/3t, S] - 2S[3/3t, S]S + [3/3t, S]S2)/3 + ., .. } 

= X -li[3/3t, S] + i [S, X - iii [3/3t, S]] 

+ (i2/2!)[S, [S, X - (1i/3)[3/3t, S]]] + .... ; (8.124) 

a developing pattern of nested commutators is easily detected if further terms 
in this expansion are needed. In the above manipulations it must always be 
remembered that S is an operator yet to be specified and must not be assumed 
to commute with anything. 

If S has the specific form: 

the first commutator in Equation 8.124 contributes a term: 

i [S, 13mc2 ] = i [13~, (3] 

= koo13 - 132~) 

= k(_{32~_{3~) 

= -~, 

(8.125) 

(8.126) 
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where the facts that (9 anticomrnutes with {j (Equation 8.119) and {j2 = 1 have 
been used. Thus, with this choice of S part of the first commutator cancels the 
odd operator appearing in JC, the first term of Equation 8.124. Complete sub
stitution for Sand JC in Equation 8.124 now gives the transformed Hamiltonian; 
in doing this the expressions can be simplified so that {j only appears linearly 
and only terms up to order mc201.4 are retained, the order being determined on 
the basis & '" mc201.2 and (9,.., mc201.. The result may be written as: 

where 

and 

&1 = & + {jfJ/2mc2 - [(9, [ilia/at - &,(9] /8m2c4 

- (j(94/8m3c6 + O(mc201.6) 

(8.127) 

(8.128) 

(91 = {j[ilia/at - &,(9] /2mc2 -(J3/3m2c4 + O(mc201.5 ). (8.129) 

It can be seen that the explicit operators in (910 the odd part of the transformed 
Hamiltonian, are both of order mc201.3• Thus, the odd operator (9 in the Dirac 
equation, which is of order mc201., has been removed by the transformation at 
the expense of introducing odd operators of order mc201.3 and higher. 

This process may be repeated to remove the new odd operators. That is by 
using: 

(8.130) 

another transformation may be performed on Equation 8.127 to remove the 
odd operator (9 l' The resulting Hamiltonian is: 

where 

and 

&2 = & + {j(92/2mc2 - [(9, [ilia/at - &,(9]/8m2c4 

- ~/8m3c6 + O(mc201.6) 

(8.131) 

(8.132) 

(8.133) 

Only two applications of a unitary transformation have been necessary to re
duce the Hamiltonian to one in which the largest odd terms are of order mc201.5 , 

and these may be removed by a further unitary transformation to give the 
Hamiltonian JC 3, which is correct to order mc201.5. This reduced Hamiltonian 
JC3 operates on the transformed wave function 1/1"'. In the subsequent dis
cussion, the primes and subscripts will be dropped, since it will always be ob
vious when the Hamiltonian is a non-relativistic approximation to the Dirac 
Hamiltonian. However, it should be noted that the wave function appropriate 
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to a non-relativistic approximation is not the same as that corresponding to 
the Dirac Hamiltonian; they differ by a unitary transformation. Thus, the 
transformed Dirac equation is: 

where 
JC = f3mc2 + 8. + (3fP/2mc2 - [(9, [ilia/at - 8.,<:)]]/8m2c4 

- (3<:)4/8m 3c6 + O(mc2a6 ). 

(8.134) 

(8.135) 

It is now necessary to substitute 8. = - et/> and <:) = c(a.n) into Equation 
8.135. The first term for which the substitution is not trivial contains <:) 2, but 
we saw earlier (Equations 8.39 to 8.45) that: 

(a.ni = (cr .n)2 = 1T2 + elicr.B. (8.136) 
Thus 

(3fP/2mc2 = (31T2/2m + (eli/2m)(3(cr.B). (8.137) 

From this result the term involving <:)4 is easily seen to be: 

- (3<:)4/8m 3c6 = - (31T4/8m3c2 - eli(3(cr.B)1T2/4m3c2 + OCmc2a 8 ); (8.138) 

although the second term in this equation is formally of order mc2a6 , its con
sequences have been observed experimentally and we choose to retain it. For 
the remaining term in Equation 8.135, we need: 

[ilia/at - 8.,<:)] [ilia/at + et/>, ca.n] 

= ilieca.(Vt/> + aA/at) 

= - ilieca.E, (8.139) 

where the electric field E is given by Equation 5.21; this result is similar to 
that quoted in the last section (Equation 8.103). Finally: 

W, (ilia/at - 8.,<:)]] = - iJiec2[(a.n), (a.E)] = - iliec2[(cr.n), (cr.E)] 

= - iJiec2 [n.E - E.n+ icr.(n A E - E An)] 

(8.140) 

where the commutator has been expanded in a similar way to (a.n)2 using 
Equations 8.39 and 8.40. Substitution of Equations 8.137, 8.138 and 8.140 
into Equation 8.135 now gives: 
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'J( = (jme2 - ecf> + (j1f2/2m + (eli/2m)(j(a.B) 

+ n2e(y £)/8m2e2 - nea.(n A E - E An )/8m2e2 

- (j1f4/8m3e2 - en(j(a.B)1f2/4m3e2 + O(me2a6). (8.141) 

This Hamiltonian still involves four-by-four matrices and operates on a four
component wave function, but to order me2aS there are no operators connect
ing positive and negative energy components. Thus, if Equation 8.141 and the 
explicit fonn of the matrix (j (Equation 8.23) are substituted in Equation 
8.134, we obtain two pairs of coupled equations, one for the positive energy 
states and one for the negative energy states. The Hamiltonian for the positive 
energy states may be obtained from Equation 8.141 simply by replacing (j by 
+ 1, interpreting the components of a as two-by-two matrices and remember
ing that it now operates on a two-component wave function. If, in addition, 
a is replaced by 2s, the notation of non-relativistic quantum mechanics, the 
fmal Hamiltonian is: 

'J(= me2 - ecf> + 1f2/2m (a) 

+ (eh/m)(s.B) (b) 

- (en/4m2e2)s.(n A E - E An) (c) 

- (1/8m3~)1f4 - (eh/2m3e2Xs.B)1f2 
(8.142) 

(d) 

+ (en2/8m2e2)(y.E) (e) 

+ O(me2a6 ). 

The appropriate Hamiltonian for the negative energy states may be obtained 
from Equation 8.141 by replacing (j by - 1. 

The Hamiltonian 8.142 for the positive energy states could have been de
rived using the method of small components. Indeed, the Hamiltonian obtained 
by substitution of Equations 8.136 and 8.140 into Equation 8.116 of the 
previous section only differs from Equation 8.142 by the rest energy 

me2, but it will be recalled that in the method of small components only the 
positive energy states were considered and the energy zero was adjusted. In 
fact, the method of small components can also be used to obtain the non
relativistic Hamiltonian for the negative energy states and there is no reason 
to suppose that this method does not give the same results as the Foldy
Wouthuysen transformation to any order of accuracy; this has been demon
strated explicitly for the special case of the free electron, for which the posi
tive and negative energy states can be completely decoupled. 
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The different terms in the non-relativistic approximation (Equation 8.142) 
of the Dirac Hamiltonian for the positive energy states may now be identified. 
The terms in (a) are, respectively, the rest energy of the electron, the energy 
due to the interaction of the charge of the electron with an electric field and 
the kinetic energy of the electron. The energy of the interaction of the spin 
magnetic moment of the electron with a magnetic field is represented by (b); 
this term, which has been encountered already in Section 8.4, is often referred 
to as the spin Zeeman term. 

The next term (c) is responsible for the interaction of the spin magnetic 
moment of the electron with an electric field. This arises because, as we saw in 
Section 5.4, an electron which is movin,g in an inertial frame in which there is 
an electric field but no magnetic field, will nevertheless experience a magnetic 
field in its own rest frame, and that this magnetic field is perpendicular to the 
electric field and the direction of motion of the electron. When the electric 
field originates at a nucleus, it is this term that is responsible for spin-orbit 
coupling. The classical expression for this term was found in Section 5.10, but 
it will be recalled that a simple calculation gives a result that is a factor of two 
too large for agreement with experiment, and that the Thomas precession had 
to be taken into account; the Dirac equation accounts automatically for the 
Thomas correction factor of t. 

The term (d) gives relativistic corrections to the kinetic energy in (a) and 
the Zeeman term in (b); the first of these appears in classical relativistic ex
pressions for the energy. Finally, (e) is the so-called Darwin term which is 
peculiar to relativistic quantum mechanics and has no classical analogue; its 
origin will become clear when the case of the free electron is considered in de
tail in the next section. 

8.10 The free electron 

Although of no chemical interest, a consideration of the free electron provides 
an insight into the nature of electron spin and the connection between the 
Dirac equation and its non-relativistic approximation. The Foldy-Wouthuysen 
transformation is used, since we wish to work with both positive and negative 
energy states, although the method of small components could be employed. 
However, before doing this we will solve the Dirac equation itself: 

JCt/I = ih(al/J/at), (8.143) 
where 

(8.144) 

Since JC and p commute, the Hamiltonian and the momentum operator 
have common eigenfunctions, which may be written: 
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1/1 = u(k) exp [i(k.r - Et/Ii») , (8.145) 

where 1ik and E are the eigenvalues of p and 'JC (= ilia/at), respectively, and 
u(k) is a four-component vector, which is independent of the position r. Sub
stitution in Equation 8.143 gives: 

[/jme2 + lie(cr.k) - E]u(k) = 0, (8.146) 

which is a set of four coupled equations for the components of u(k). Since E 
and the components of k are numbers, Equation 8.146 represents an ordinary 
eigenvalue problem; by expanding the determinant of the four-by-four matrix 
the eigenvalues are found to be: 

(8.147) 

where each solution occurs twice. This result may be obtained more easily by 
multiplying Equation 8.146 on the left by the matrix (/jmc2 + lie(cr.k) + E), 
the resulting matrix being diagonal with all four elements equal to (m2e4 + 
li2e2k 2 - E2). The coefficients u(k) may be found by substituting E ± back 
into Equation 8.146 and as expected the positive energy components predomi
nate in the positive energy solutions with a small amount of the negative energy 
components mixed in, while the reverse is true for the negative energy solutions. 

Thus, even if both the ~nergy and momentum eigenvalues are specified, a 
double degeneracy remains and some other operator is necessary to distinguish 
between two degenerate solutions. It will be recalled from Section 8.4 that, in 
contrast to non-relativistic quantum mechanics, the orbital angular momentum 
(r A p) does not commute with the Dirac Hamiltonian, but that the operator 
[(r A p) + !licr) does. This implies that the electron has an intrinsic angular mo
mentum of ~ in units of Ii. Although cr does not commute with the Hamiltonian, 
its projection on the momentum, (cr .p/p), does and can be used to distinguish 
between two solutions with the same energy. The square of this operator is 
just unity by Equation 8.40 and hence its eigenvalues are ± 1. The two posi
tive energy solutions of the Dirac equation can then be chosen so that they are 
eigenfunctions of (cr.p/p), one with eigenvalue + 1 and the other with eigen
value - 1; the negative energy solutions can be chosen in a similar fashion. To 
obtain the components of u(k) corresponding to these solutions requires some 
algebraic manipulation, the inclusion of which here would serve little purpose. 

Some peculiarities of the solution of the Dirac equation have already been 
noted, in particular the existence of negative energy states and the intrinsic 
angular momentum of the electron. However, a still stranger result is obtained, 
if the velocity operator is determined. From Equation 1.24 this is given by: 

i = (dr/dt) = (i /1i)[J{', r] = ecr; (8.148) 
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this fact was referred to in Section 8.5. Thus the operator appropriate to a 
component of the velocity i is proportional to the corresponding component 
of ex. Now the square of a component of ex is equal to unity, so that the eigen
values of a component of ex can only be ± 1. This suggests that any determi
nation of the component of velocity of an electron must give ± e, in contrast 
to the non-relativistic result that the velocity operator is p/m. This result fur
ther suggests that the instantaneous speed of the electron can only be ..j3e, but 
the components of ex do not commute with one another, so that two compo
nents of the velocity cannot be precisely measured simultaneously. In addition, 
it might be thought that the result that an instantaneous component of velocity 
can only be ± e is in contradiction tO,reality, but it should be remembered 
that any experimental determination must involve an average over an appreci
able time interval. Thus, if the electron's velocity is oscillating very rapidly 
about a mean corresponding to the observed value, an instantaneous component 
of velocity can still be ± c. 

This suggestion can be substantiated by considering how the velocity oper
ator varies with time: 

ci = (dex/dt) = (i/Ii)[JC,ex] = (2i/Ii)(cp -exJC), (8.149) 

where the anticommutation properties (Equation 8.11) have been used. Now 
for a free particle JC and p are independent of time, so that Equation 8.149 
maybe treated as a differential equation in ex and solved provided the order of 
JC and ex are not changed. Solution of this equation gives: 

ex (t) = cpJC-1 + epJC-1b exp (- 2iJCtlfl), (8.150) 

as can be verified by back substitution; b is a dimensionless integration con
stant. When it is remembered that the velocity operator is CCI, use of Equations 
4.38 and 4.39 shows that the first term in Equation 8.150 has the same form 
as a classical relativistic expression for velocity. However, the second term is 
oscillatory with a frequency of (TJC/h); the magnitude of the energy must be 
at least me2 so this frequency is at least (2me2/h), which is of the order of 
2 X 1020 S-1! Thus, the electron has a highly oscillatory motion about a mean 
position. An experimental determination of the velocity taking much longer 
than (hI2me2 ) ,.., 5 X 10-21 s gives a measure of the motion of the mean pos
ition, but an instantaneous velocity component can still be ± e, because of the 
presence of the oscillatory term. 

Equation 8.150 may be integrated once more to give for the position oper-
ator: 

(8.151) 
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where a is an integration constant and b is the same constant as before. As well 
as the constant and a term with the classical relativistic form, there is again an 
oscillatory term with a frequency of at least (2me2/h). The amplitude of this 
oscillation may be estimated by expressing it as: 

(8.152) 

where Equation 8.150 has been used to eliminate b and the exponential term. 
In Equation 8.152 the term in parenthesis has a magnitude of about e, since 
ea is the instantaneous velocity operator whose components have eigenvalues 
± e, whereas (e2JC-lp) corresponds to the velocity that is determined experi
mentally. Thus, the amplitude (Equation 8.152) of the oscillatory motion is 
of the order of (h/me) = exao ~ 4 X 1O-13 m, where ex is the fine structure con
stant (Equation 8.85). 

We are thus led to the conclusion that the motion of a free electron con
sists of two parts. The first part is an average motion that can be observed ex
peri mentally. The other part is a highly oscillatory motion that has a frequency 
of order (2me2/h) and an amplitude of order (1'l/mc). This rapidly varying 
motion was given the name Zitterbewegung (literally, trembling motion) by 
Schrodinger. 

To see how the Zitterbewegung manifests itself in the non-relativistic ap
proximation of the Dirac equation, the Foldy-Wouthuysen transformation for 
a free electron is now considered. It has already been stated that the positive 
and negative energy states can be completely decoupled in the special case of 
a free electron. This is due to the even operator (& = - erj» being zero when 
electromagnetic potentials are absent. In addition, the absence of an external 
magnetic potential means that the odd operator ((9 = ea:rr) has no specific 
time dependence so that the operator S in the unitary transformation: 

1/; I = exp (is)1/; (8.153) 

may also be chosen to be specifically time independent; this is still true if there 
is a constant magnetic field present and complete separation can also be 
achieved in this case. The transformed Hamiltonian (Equation 8.123) now 
takes the simpler form: 

X' = exp (is)X exp (- is). (8.154) 

Reference to the previous section now shows that removal of an odd operator 
of order me2exn by a unitary transformation leads to a transformed Hamil
tonian in which the largest odd operator is of order me2exn +2. The important 
thing is that there is only one odd operator of this order, in contrast to the 

case of the electron in an electromagnetic field where the number of odd 



The Dirac Equation 147 

operators increases rapidly with each transformation. Specifically: 

e = c{ex.p); 

e 1 = - e3/3m 2c4 + O(mc2Q S) = - (ex.p)p2/3m2c + O{mc2~); 

e2 = + eS/5m4c8 + O(mc2Q 7) = + (ex.p)p4/5m4c3 + O(mc2Q 7), 

(8.155) 
where use has been made of the result: 

{ex.p)2 = p2, (8.156) 

which follows from Equations 839 and 8.40. 
The largest odd operator after n applications of the unitary transformation 

is thus: 
(8.157) 

and the Hermitian operator Sn for the (n + l)th unitary transformation may 
be written as: 

Sn = - kij3(ex.p)p-l(_l)n{2n + l)-l(p/mc)2n+1 (8.158) 

from Equation 8.125. The presence of the operator p-l should not cause con
cern, since it will only appear in expressions where it is multiplied by positive 
odd powers of p; it is introduced so that abbreviated notation may be used for 
power series in the following manipulations. It is now apparent that the unitary 
transformations may be "summed" and applied all at once, the total unitary 
operator being: 

ii [exp (iSn ») = exp [ f iSn ). 
n-o n=O 

(8.159) 

This equality is only true because the operators Sn commute with one another; 
if they did not, ambiguities would arise about the order of the operators when 
the exponential term was expanded as a power series, and this is one of the 
reasons why this technique cannot be used for the case of an electron in a 
general electromagnetic field. Thus, the complete removal of odd operators 
may be accomplished with one unitary transformation defmed by the operator: 

S' = f Sn = - kij3(ex.p)p-l f (_l)n(2n +l)-l(p/mc)2n+l 
n=O n=O 

= - kil~(ex.p)p-lf, (8.160) 
where 

f = tan-1(p/mc) = f (-l)n(2n + l)-l{p/mc)2n+1 
n=O 

(8.161) 

is a function of p only and commutes with ex and f3. 
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Now s' can easily be shown to anticommute with the Hamiltonian (Equa
tion 8.144), so that the transformed Hamiltonian is: 

'JC' = exp (is')'JC exp (- is') = exp (i2S')'JC = (cos (2S") + i sin (2S'»)JC, 

(8.162) 

as can be confirmed by expanding the exponentials as power series. In addition 
(2S')2 is equal to f2, since use of the anticommutation properties of {3 and the 
components of a (Equation 8.11), together with Equations 8.160 and 8.156 
shows that: 

(2S'')2 = - p-2r[{3(a.p)]2 

= + p-2r(a.p)2 

=r. 
Since cosine is an even function of its argument: 

cos (2S") = cos f, 

while for the odd function sine: 

sin (2S') = -i{3(a.p)p-1sinf. 

(8.163) 

(8.164) 

(8.165) 

The transformed Hamiltonian (Equation 8.162) can now be written as: 

'JC' = (cosf+ (3(a.p)p-l sin!)({3mc2 + c(a.p» 

= (3(mc2 cosf+ cp sin!) + mc2(a.p)p-l«(p/mc) cosf- sin!). 
(8.166) 

It only remains to express sin f and cos fin terms of (p/mc). From Equation 
8.161, tanf= (p/mc) so that, using trigonometric relations: 

cosf = (mc/p) sinf = [1 + (p/mcir!, (8.167) 

and the second term in Equation 8.166, the one involving odd operators, 
vanishes. The remaining term involves only even operators so that the com
pletely decoupled Hamiltonian is: 

'JC' = f3mc2 [1 + (p/mc)2] cosf 

= f3mc2[I + (p/mc)2]!, (8.168) 

from Equation 8.167. The Hamiltonian for the positive energy states is ob
tained by setting f3 equal to + 1, while substitution of f3 equals - 1 gives the 
Hamiltonian for the negative energy states. Consequently Equation 8.168 con
firms our previous result (Equation 8.147). 
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All this manipulation to obtain a result we already had may seem rather 
unnecessary. However, the important thing to note is that when the positive 
energy states are decoupled by a unitary transformation (Equation 8.153), all 
operators must be subjected to the same transformation, not just the Hamil
tonian. By determining how operators transform, we will be able to see how 
operators before and after the transformation are related to one another; the 
description of the electron before the transformation may be referred to as 
the Dirac representation, and that after the transformation as the Foldy
Wouthuysen representation. For example, the momentum operator p is the 
same in both representations, since it commutes with s', but the position 
operator r in the Dirac representation has for its operator in the Foldy-Wouthuy
sen representation r', which is given by: 

r' exp (is')r exp (- is') 

r + i [S', r] + (i 2/2!)[S', [S', r)) + ... , (8.169) 

where S' is given by Equation 8.160. This expression may be expanded, but, 
since it involves considerable though straightforward manipulation, only an 
outline will be given here. The commutator of S' and r is first established to be: 

[S', r1 = - ~limc'E+pr2(3(a.p)p + ~1ip-3ffi[(a.p)p - p 2a1, (8.170) 

where 
(8.171) 

Substitution of Equation 8.170 into Equation 8.169 and evaluation of the 
commutators leads to an expression, which may be split up into a number of 
summable power series, giving: 

r' = r - ~i1ip-l (3a sin[- ~ilip-2[E;2mc3- p-l sin Jlf3(a.p)p 

+ ~1i(cos[-IXa AP)/p2. (8.172) 

Finally, substitution for the functions of [(Equation 8.167) gives: 

r' = r - tilicE; 1(3 a + ii1ic3E;2(E+ + mc2r 1j3(a.p)p 

- ilic2E;I(E+ + mc2rl(a A p). (8.173) 

Once again the appearance of reciprocal operators causes no problems, since 
they are merely a shorthand notation for the corresponding power series. 
Equation 8.173 shows that the position operator r in the Dirac representation 
has, as its operator in the Foldy-Wouthuysen representation, r plus three other 
terms, which depend on the momentum operator, thus indicating that the 
transformation is a non-local one; that is a point in the Dirac representation 
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is not transformed into a point in the Foldy·Wouthuysen representation, but 
into an extended region of space. 

In the Foldy-Wouthuysen representation rmust represent some new physi
cal observable which is called the mean position for reasons to become apparent 
shortly. In the Dirac representation the mean position has as its operator R, 
which is given by: 

r = exp (is')R exp (- is') (8.174) 
or 

R = exp (- is')r exp (is'). (8.175) 

By reference to Equations 8.169 and 8.173 this can be expanded immediately: 

R = r + ~ilicE;l(ja- ~ilic3E;2(E+ + mc2r ll3(a.p)p 

(8.176) 

The determination of the time derivative of R in the Dirac representation 
enables this new position operator to be interpreted. From Equation 1.24: 

(dR/dt) = (i/Ii)[3C, R1 = (i/Ii) [(jmc2 + c(a.p), R], (8.177) 

where R is given in Equation 8.176. This can be shown, after some manipu
lation, to be: 

(8.178) 

where use is made of the fact that KE;l has the eigenvalue + 1 or - 1, respec
tively, for positive and negative energy states. Reference to Equation 4.38 
now shows that it is it, the mean velocity, which has the classical relativis~c 
rela tion to the momentum. Finally, it can be noted that the components of R 
commute unlike the components of ca, the operator corresponding to the 
time derivative of the position in the Dirac representation. 

Thus, there are two important position operators, the Dirac position and 
the mean position. It is the latter which is to be identified with the position 
operator in non-relativistic theory and is separately defined for positive energy 
states. The Dirac position has no classical analogue, since it requires both posi
tive and negative energy states for its definition. All this agrees with the re
sults ofthe earlier part of this section. Equation 8.176 shows that the position 
operator r in the Dirac representation consists of two parts, a mean position 
R, which is related to the classical concept of position and the motion of which 
is experimentally observable, and another part, r - R, which corresponds to 
the Zitterbewegung encountered earlier. 

The peculiarities involving the angular momentum can also be explained. It 
will be recalled from Section 8.3 that the orbital and spin angular momenta 
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do not commute separately with the Dirac Hamiltonian; that is, they are not 
physical observables, although they are in the non-relativistic Schrodinger 
treatment. However, the operators (R " p) and 1: which are given by: 

(8.179) 
and 

1: = exp (- is'),,exp (is') 

= ,,- icE;l~(a" p) - c2E;1(E+ + mc2rlp A ("" p) (8.180) 

and whose analogues in the Foldy-Wouthuysen representation are (r "p) and 
", do commute with the Dirac Hamiltonian and may be thought of as the 
mean orbital angular momentum and the mean spin angular momentum (in 
units of ~1i). It is, of course, these quantities that are thought of as the orbital 
and spin angular momenta in the non-relativistic theory. Finally, we recall 
that the total angular momentum, [(r" p) + ~1i"], does commute with the 
Dirac Hamiltonian and, as might be expected, combination of Equations 8.173 
and: 

,,' = exp (is'),,exp (-is') 

= " + icE;lfj(a lIP) - c2E;1(E+ + mc2)p "(,, lIP), (8.181) 

readily shows that it has the same operator form in both the Dirac and Foldy
Wouthuysen representations. 

In the previous section the Foldy-Wouthuysen transformation was applied 
to an electron in the presence of external electromagnetic potentials. The 
resulting non-relativistic approximation of the Dirac Hamiltonian is correct to 
order mc2aS, and contains a number of terms whose presence can now be ex
plained in the light of the foregoing discussion for the free electron. In the 
Dirac representation the electron interacts with the electromagnetic field at its 
position. However, in the Foldy-Wouthuysen representation the electron pos
ition becomes spread out over a small region around the mean position, and 
the electron oscillates very rapidly about this mean position. As we have seen, 
the interaction of the electron with the electromagnetic field in the Foldy
Wouthuysen representation is expressed in terms ofr, the mean position, and 
consequently correction terms will appear in the non-relativistic approxima
tion of the Dirac Hamiltonian to allow for the superimposed Zitterbewegung. 

The circulation of the electron about its mean position gives rise to both 
the intrinsic angular momentum and the intrinsic magnetic moment associated 
with the spin of the electron. Indeed a classical model for the Zitterbewegung 
may be constructed that gives the correct spin angular momentum for the elec
tron. At the beginning of this section it was seen that the Zitterbewegung is a 
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highly oScillatory motion that has a frequency of order 2mc2/h and an ampli
tude of order ",mc. If we consider an electron moving in a circle of radius 
"'2mc with a frequency of 2mc2/h, its velocity must be just c in agreement 
with the earlier assertions that the instantaneous value of a component of the 
electron's velocity can only be ± c. The angular momentum associated with 
this motion is just the product of the linear momentum mc and the radius of 
the circle ",2mc, so that the intrinsic or spin angular momentum of the 
electron is "'2 in agreement with experiment. Unfortunately this model cannot 
be correct, since, although the electric current associated with this motion 
gives rise to an intrinsic magnetic moment, the predicted g factor is unity as 
in most classical models. 

Except for the Darwin term (Equation 8.142e) all the terms in the non
relativistic approximation to the Dirac Hamiltonian (Equation 8.142) can now 
be understood, since they are related to electron spin or have classical relativ
istic counterparts. However, the Darwin term may be understood in terms of 
the Zitterbewegung, since it is just a correction to the electrostatic interaction 
between the electron and the electric potential to allow for the smearing out 
of the electron's charge by the Zitterbewegung. 

The position operator r in the Dirac representation has as its operator in the 
Foldy-Wouthuysen representation the mean position r plus the oscillatory 
term, which will be given the symbol 6. Corresponding to the electrostatic 
interaction term - eq,(r) in the Dirac representation is the term - eq,(r +6) in 
the Foldy-Wouthuysen representation, and this must be averaged over the 
Zitterbewegung. Now ¢(r +6) may be expanded as a Taylor series in 6 about r: 

¢(r +6) = [1 + (6.V) + ~(6.V)2 + ... ]¢(r), (8.182) 

and the time average of this is: 

(¢(r +6» = ¢(r) + ~«6.V)2)¢(r) + ... , (8.183) 

since (6) vanishes. The expression «6.V)2) may be evaluated by expanding it 
in terms of vector components and noting that (6 j 6j ) = 6ij(6 2 )/3, so that: 

«6.V)2) = (68j 6j 'Vj) = (6j 6J )V8j 

= (6 2 )6iJVi 'Vj/3 = (62)V2/3. (8.184) 

Thus, the electrostatic interaction energy in the Dirac representation is given 
in the Foldy-Wouthuysen representation by: 

(8.185) 

Now in the absence of magnetic potentials E = - Vlj> (Equation 5.21), so 
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that the energy correction due to the Zitterbewegung is just + e([j2>V.E/6; 
this agrees with the Darwin term (Equation 8.142e) provided that: 

(8.186) 

which is of the order of magnitude one would expect. The agreement is more 
striking, if a slowly moving electron (p = 0, E+ = mc2 ) is considered. Equation 
8.173 then gives: 

8 = - (ifl/2mc){3a, 

which on squaring becomes: 

[j2 - (1i/2mc)2({3a).({3a) 

(1i/2mc)2{320i2 = 3(1i/2mc)2, 

since {32 = 1 and 0i2 = 3 from Equations 8.10. 
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CHAPTER NINE 

The Wave Equation/or Many Electrons 

Although we now have a suitable wave equation for one electron in the 
presence of external electromagnetic fields, we are not yet in a position to 
write down the Hamiltonian for a general molecule. In this chapter we move 
towards this goal by first considering the problem of just two electrons before 
generalizing the theory to the case of many electrons. 

In fact, a correct relativistic wave equation for two electrons cannot be 
written down in closed form, but it is possible to obtain an approximate Hamil
tonian provided the kinetic energy of the electrons is very much less than their 
rest energy, me2 ; this is just the situation that pertains in molecules. 

There are a number of possible approaches to this problem of two electrons. 
One way is to start with the non-relativistic approximation of the Dirac Hamil
tonian for each electron. The interaction between the two electrons then arises, 
since each contributes to the electromagnetic potentials experienced by the 
other. Although this method has a number of associated difficulties, it does 
give a physical picture of the origin of the individual terms in the fmal Hamil
tonian. A more sophisticated approach is to seek an approximate wave equation 
for two electrons, which is the counterpart of the Dirac equation for one elec
tron. Such an equation is the Breit equation, but to be useful it has to be re
duced to a non-relativistic form. 

Both these approaches give the same non-relativistic approximation to the 
Hamiltonian for two electrons, although the policies adopted to circumvent 
problems in the first method are chosen to ensure this agreement. Of course, 
the most satisfactory approach is to use quantum electrodynamics, but we 
content ourselves with noting that the Hamiltonian derived here is the same 
as that obtained by Itoh. Even so, it is necessary to include certain radiative 
corrections in a phenomenological manner. 

155 
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9.1 The electromagnetic potentials due to a moving electron 

If the problem of two electrons is approached from the non-relativistic approxi
mation (Equation 8.142) of the Dirac equation, the electromagnetic potentials 
at one electron due to the other are needed. It is the purpose of this section to 
obtain them in a suitable form. Before considering their explicit forms it is 
necessary to decide how accurately they need to be known in the context of 
a molecular environment. This may be done by considering the individual terms 
in Equation 8.142, using the results of Section 8.7 and recalling that the pres
ent aim is to obtain a Hamiltonian, which is correct to ~rder mc2a4 • 

The electrostatic potential tP appears as -etP in 8. 142a, so that tP is required 
to be correct to order mc2a4/e. The terms 8.142c and 8.142e also involve tP 
through the electric field E, but as they are already small, the scalar potential 
only needs to be correct to order mc2a2/e for these terms to be correct to 
order mc2a4• 

The largest contribution made by the vector potential is through the terms 
8.l42b and 1r2/2m in 8. 142a, and in both cases it must be known to an ac
curacy of mca3/e. In Section 8.7 we saw that in any case the order ofmagni
tude of the vector potentials in a molecule is only mca3/e, so that only the 
leading term of any power series expansion of A will be needed. There are 
other smaller terms in Equation 8.142, but these are too small for the vector 
potential to make a significant contribution to them. 

Now, if the Coulomb gauge is chosen, the potentials due to a charge - e 
moving with velocity u are given by Equations 5.73 as: 

A = - (e/81r€oc 2)[u/r + (u.r)r/r3] + O(mCOl.s/e); 

tP = - e/41r€or + O(mc2a6/e), 
(9.1) 

where r is the position of the electron relative to the observer; these potentials 
are corrected for retardation effects. The expressions 9.1 are not yet in a 
suitable form, since they are to be used in a quantum mechanical theory and 
should be expressed in terms of momenta rather than velocities. This may be 
remedied by replacing u by p/m, since, although they are not strictly equal 
(Equation 4.38), the correction terms do not contribute Significantly to the 
potentials: 

A = - (e/81r€omc 2)[p/r + (p.r)r/r3] + O(mCOl.s/e); 

tP = - e/41r€or + O(m~a6/e). 
(9.2) 

These potentials cannot be used straightforwardly in a quantum mechanical 
theory for two electrons, since p and r, which must be interpreted as operators, 
do not commute. Thus, the order in which the various factors appear in the 
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expression for the vector potential is important. The choice may be guided by 
insisting that the resulting Hamiltonian for two electrons be Hermitian and 
symmetric in the two electrons. By using the order given above these conditions 
will be satisfied, but the real justification is that the final Hamiltonian is the 
same as that obtained by more sophisticated methods. 

The charge of the electron is responsible for the potentials (Equations 9.2), 
but the spin magnetic moment of the electron also provides a contribution to 
the vector potential and this is found by considering a point magnetic moment, 
although it is not clear that this is permissible. As our model we take a slowly 
moving particle of charge q and mass m moving in a circle about the origin; 
the associated magnetic moment is (see Section 7.1): 

~ = (q/2mXa 1\ p) ~ kq(a 1\ u), (9.3) 

where a, p and u are the position, canonical momentum and velocity of the 
particle. The average vector potential at position r, where r is very much larger 
than a, may be expressed in terms of ~. The vector potential due to a point 
magnetic moment is then obtained in the limit that a vanishes. 

For simplicity Equations 5.72 rather than Equations 5.73 are used for the 
vector potential in this model, since the gauge may always be adjusted later if 
desired. Now for a slowly moving particle: 

A = q u/41r€oc2 1 r - ai, (9.4) 

and this may be expanded as a power series in a about r by noting that for any 
function f(r - a): 

f(r - a) = f(r) - a.Vf(r) + ... , 

so that using Equation 2.78: 

l/1r-al l/r-a.V(1/r) + ... 

= l/r + (8.r)/,3 + .... 

Substitution in Equation 9.4 followed by rearrangement now gives: 

A (q/41r€oc 2 )[u/r + u(a.r)/r3 + ... ] 

(q/41r€oc 2 )[(d/dt)(a/r + a(a.r)/2r3) 

+ k(u(a.r) - a(u.r))/r3 + ... ], 

(9.5) 

(9.6) 

(9.7) 

where use has been made of the facts that u = da/dt and r is a constant vector. 
Equation 9.7 gives the instantaneous potential at position r. When the aver

age is taken the first term vanishes, since it is the time derivative of a periodic 
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function; this may easily be checked explicitly for the model employed here. 
The remainder of Equation 9.7 may be written in terms of Iol by noting that 
from Equation 2.38: 

(a" u) "r = u(a.r) - a(u.r), (9.8) 

so that the average vector potential is: 

- 2 - 3 A = (l/41T€oC )(Iol" r)/r + ... (9.9) 

When a is allowed to tend to zero, the vector potential at a position r relative 
to a constant magnetic moment Iol is obtained: 

(9.10) 

In the case of the electron the spin magnetic moment is (Equation 8.49) 
Iol = - (eli/m )s, so that the associated vector potential is: 

(9.11) 

This potential satisfies the Coulomb gauge condition (Equation 5.35), since 
it is divergenceless. In a molecular environment it is of order mea3/e, confirm
ing the assertion made in Section 8.7. 

The vector potential due to a spin magnetic moment is taken to have the 
form of Equation 9.11. However, one might expect that in a frame in which 
the electron is moving the observed vector potential will not quite be as given 
in Equation 9.11 and, in addition, a small scalar potential will be experienced. 
The correction to the vector potential is of order mcoNe and may safely be 
ignored as may retardation effects, but the associated electric potential, which 
is given approximately by u.A, is of order mc2a.4 /e and cannot be neglected. 
This contribution to the total scalar potential is: 

(9.12) 

It will be seen later that, if this contribution is included, agreement is not ob
tained with the Hamiltonian derived from the Breit equation later in this chap
rer. It is necessary to argue that a classical model for the spin magnetic moment 
is not quite appropriate and that this refmement should be ignored. This is a 
further difficulty associated with the present approach to the problem of two 
electrons. 

The total potentials, Aj and c/Jj, at an electron i in the presence of a second 
electron j may now be written down to the desired accuracy (subject to the 
remarks of the previous paragraph). In doing this the vector: 

(9.13) 
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is introduced; it is noted that r in Equation 9.11 is just rl) . but that r in Equa
tions 9.2 is - ro. In addition, the subscripts are added to the charges and 
masses of the electrons. so that the origin of the terms in the final Hamiltonian 
may be seen more easily. If A and ¢ are now the ex ternal potentials: 

AI = A - (e,/87reOmic2)[pi/rlJ + (Pi.rij)ril M}) 

(9.14) 

and 
(9.15) 

these potentials satisfy the Coulomb gauge. Although the highest neglected 
terms in the expression for the vector potential are formally of order mc<xs/e. 
we have on ly taken Equation 9.14 to be correct to the required accuracy of 
mea3/e, because of the uncertainties involved in this derivation of the Hamil· 
tonian. Similarly the scalar potential (Equation 9.15) hasunly been assumed 
to be correct to order mc2o.4/e. 

9.2 The Hamiltonian for two electrons 

The non-relativistic approximation to the Dirac equation for an electron i is 
Je/W = iFrdw /3t, where (Equation 8.142): 

(a) 

(b) 

- (eiIl/4mfc2)Si.('fTi A E 1- E/ A 'fTi) (c) 

- (l/Bm;c2)rrt - (eili /2mfc2Xs;.BiPr1 (d) 

+ (e/1l 2fBmk1)(V.E/) 

+ O(mc2o.') 

and the wave function W has two components. 
For two electrons the Hamiltonian can be written as : 

JC = JC1 +JC2 = ~ 3(/, 
i_1,2 

(e) 

(9.16) 

(9.17) 

where each electron contributes to the potentials experienced by the other, 
that is the potentials ex perienced by electron i are given by Equations 9. 14 and 
9.15. The wave function associated with this Hamiltonian has four com
ponents, since each electron has two possible spin orientations. 

All that is necessary is to substitute for the potentials, and simplify the 
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resulting terms, so that in the final Hamiltonian any potentials that appear are 
just the external potentials. However, at this stage a further difficulty appears, 
since for any effect that one electron has on the other there will be a recipro
cal effect, and a decision has to be made as to which interactions should be 
counted twice and which should not. That some interactions should only be 
counted once, may be seen by referring to Section 5.9. There the Lagrangian 
(Equation 5.76) for one charged particle contains terms arising from the inter
action of its charge with the potentials due to the charge of another particle. 
However, in the Lagrangian (Equation 5.77) for both particles together these 
same terms appear once, not twice, since the interaction is symmetric between 
the two particles. If the Lagrangians for the individual particles had been added 
together a correction factor of t would have been needed in these interaction 
terms. Similar remarks apply to the corresponding Hamiltonians. In deciding 
which interaction terms should only be counted once (or which should have 
correction factors of 4), we may be guided by their symmetry with respect to 
interchange of the two particles, but the ultimate decision will be made so that 
agreement with other methods is achieved. 

For simplicity it is supposed that the external potentials, A and tP, vanish, 
since they can be reintroduced later by the usual replacement: 

(9.18) 

The influence of the scalar potentials due to the electrons is discussed first. 
The term - ejtPj in 9.16a makes a contribution: 

(9.19) 

for each of the electrons. This is the usual Coulomb interaction term, and 
being symmetric between the two electrons should only be counted once, as 
is confirmed by the non-quantum-mechanical theory in Section 5.9. 

This scalar potential also makes a Significant contribution through the elec
tric field E j in the terms 9.16c and 9.16e. Of course the electric field also de
pends on the vector potential (Equation 5.21), but this contribution is 
negligible, so that: 

Ej = - VtPj - 3Ad3t = V(ej/41r€orjj). (9.20) 

Now, since V operates on the position of electron i only, Equation 2.78 shows 
that: 

(9.21) 

In the term 9.16c the vector potential also appears by virtue of the presence 
of Trj, but again the contribution is negligible. 
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Hence the contribution of the term 9.16c to Xl due to the presence of 
electron 2 is: 

(el e21i!161T€omk 2)sl.[PIJ\(rI2M2)- (rI2M2) A p.] + O(mc2(l!s). (9.22) 

This may be simplified by noting that PI" (rnld2) is just equal to 
- (rI2M2) "PI> as may easily be shown using the techniques of Chapter 2 and 
in particular Equation 2.96. There is a similar contribution to X 2 due to the 
presence of electron I and, since each of these terms is not symmetric between 
the two electrons, they must both be counted. The total contribution of the 
term 9.16c to the Hamiltonian for two electrons is thus: 

- (ele21i/81T€oc2y~2)[s..(rI2 A Pl)/mj - 82 .(rI2 "p2)/m~] + O(mc2(l!S), (9.23) 

since r21 = - r12 (Equation 9.13). This expression represents the spin-orbit 
interaction, which is the interaction between the spin and orbital motion of 
the same electron. It arises from the electric field produced by the other elec
tron, since by virtue of its motion the electron experiences a magnetic field 
which interacts with its spin magnetic moment. 

The term 9.16e may be dealt with more easily, since from Equations 
9.21 and 2.95: 

(9.24) 

Again it is clear that each of the two possible contributions to the Hamiltonian 
is not symmetric between the two electrons and that both must be counted, 
so that the term 9.16e is responsible for: 

(9.25) 

This term is similar to the Darwin term (8. 142e), which is a correction to the 
interaction of the charge of an electron with an electric field due to the Zitter
bewegung; in this case the other electron is responsible for the electric field. 

All the significant terms that arise from the scalar potentials of the electrons 
have now been considered. It has already been noted that the vector potentials 
of the electrons only contribute significantly to the final Hamiltonian through 
the term 9.16b and the term 1TU2m; in 9.16a. For potentials that satisfy the 
Coulomb gauge condition this latter term can be expanded (Equation 7.14): 

(9.26) 

the last term is negligible and only the middle term need be considered further. 
The orbital parts of the vector potentials due to electrons 2 and 1 give rise to 
similar terms when substituted in Jf 1 and Jf 2, respectively. Hence, as is indicated 
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by the non-quantal theory of Section 5.9, this contribution to the Hamil
tonian should only be counted once: 

(9.27) 

In the present approach there is no way of determining the correct order of 
operators in this expression, although it can be required to be Hermitian and 
symmetric to interchange of the two electrons. Both these conditions are satis
fied by the term 9.27 and it will be seen later that the order of the operators 
as written here is in fact correct. The interpretation of the term 9.27 is that it 
represents the interaction of one electron with the magnetic field produced by 
the orbital motion of the other and vice versa; it is referred to as the orbit
orbit interaction and includes a correction for retardation. 

The vector potential due to the spin of electron j provides, through the 
second term in Equation 9.26, a contribution: 

(9.28) 

Since it is the spin of j but the momentum of i that appears in this term, it is 
not symmetric between the two electrons, so that the total contribution to the 
Hamiltonian is: 

(9.29) 

This represents a spin-other-orbit interaction, since one electron interacts with 
the magnetic field produced by the spin of the other. 

Finally the term 9.l6b must be considered and for this the magnetic field 
at electron i due to electron j is needed; from Equation 5.20 it is given by 
Bj = V "A j • Direct use of the orbital part of Equation 9.14 together with 
liberal use of the techniques of Chapter 2 shows that the orbital contribution 
to this magnetic field is: 

(9.30) 

This result may be obtained more easily by using Equations 5.72 instead of 
Equations 5.73, since these are related by a gauge transformation and only 
differ by the gradient of a scalar, the contribution of which to the field 
vanishes because the curl of a gradient is zero (Equation 2.70). 

The spin contribution to Bj is: 

(9.31) 

where V operates on the position of electron i. Use of Equation 2.68 shows 
that: 

(9.32) 
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since Sj and V commute. The first term is just 41T6(r/j)Sj from Equation 2.95, 
while the second term may be evaluated using Equation 296: 

(9.33) 

where it should be remembered that in the present context the subscripts i and 
j refer to electrons not vector components. The contribution of the spin mag
netic moment of electron j to the magnetic field at electron i is thus: 

- (eli/41TEOmjC') [(81r/3)6(rij)sj - sj/r~ + 3(Sj.rij)ri/M/). (9.34) 

When the orbital part (9.30) of Bj is substituted into 9. 16b, two different 
terms arise, one for each electron, so that the contribution to the Hamiltonian 
is: 

(9.35) 

This term is the same as 9.29 and provides another contribution to the spin
other-orbit interaction. In this case the spin of each electron interacts with the 
magnetic field produced by the orbital motion of the other, whereas the 
term 9.29 is interpreted as being due to the motion of each electron in the 
presence of the magnetic field due to the spin of the other. It may be argued 
that these two interactions are really one and the same and that only one of 
the terms, 9.29 and 9.35, should be counted. This is in fact necessary if agree
ment is to be obtained with the Hamiltonian obtained from the Breit equation. 

Finally, the spin part (9.34) of Bi must be substituted into 9.16b and for 
each electron an identical term arises, which is consequently only included 
once in the fmal Hamiltonian: 

+ (ete,1i'/41rEOmtm,c')[(St.S,)!d2 - 3(St.rt2Xr12.S,)/t12 

(9.36) 

This arises from the interaction of the spin magnetic moment of each electron 
with the magnetic field of the spin magnetic moment of the other. It thus 
represents the spin-spin interaction, the first two terms in 9.36 being ana
logous to the classical dipole-dipole interaction, while the term involving the 
Dirac delta function represents a Ferrni-contact-type interaction for which the 
two electrons must coincide. 

All the significant interaction terms in the two-electron Hamiltonian have 
now been derived. They represent the Coulomb (9.19), the orbit-orbit (9.27), 
the spin-orbit (9.23), the spin-other-orbit (9.29 and 9.35) and the spin-spin 
(9.36) interactions; in addition there is a term (9.25) that is analogous to the 
Darwin term in the one-electron Hamiltonian. If external electromagnetic 
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fields are reintroduced by the replacements 9.18, the total Hamiltonian for 
two electrons is given by: 

- (e/I/4mlc2)si.(wi "Ei - Ei ,,'rTi) - (1/8m;c2)1T~ 

- (e;Fi/2m;c2Xsi.Bi)rr; + (e;Fi2 /8mfc2)(V.ED] 

+ (ete2/4rreOrt2) 

- (ete2/8rreOmtm2c2)[wdrllw2) + (Wt.r t2)rli'(r12.w2)] 

- (ete21i/8rreoc2d2)[St.(r12 " wt)/mf - ~ .(r12 " w2)/mi] 

+ (ete21i/4rreOmtm2C2d2)[St.(rt2 "W2) - ~ .(rt2" Wt)] 

+ (ete21i2/4rreOmtm2c2)[(st.s2)/r~2 - 3(St.rt2Xr12.~)/r12 

- (8rr/3)o(rt2)(St.S2)] 

- (ete21i2/8eoc2)o(r12Xl/mi + limn + O(mc2a:S). (9.37) 

The potentials ¢i and Ai and the fields Ei and Bi at electron i are now due en
tirely to external sources and not to the other electron. 

In Equation 9.37 only one of the two contributions (9.29 and 9.35) to the 
spin-other-orbit interaction has been included. I t is recalled that another diffi
culty associated with this method involves the order of the operators in the 
orbit-orbit interaction. In addition, the contribution (Equation 9.12) of the 
spin magnetic moment of one electron to the scalar potential at another has 
been omitted; if it had been retained there would have been an additional term 
in Equation 9.37 equal to twice the spin-orbit term (9.23). For these reasons 
this approach is not entirely satisfactory, but it does have the advantage that 
it exhibits the origin of each term in the Hamiltonian and allows a physical 
interpretation to be given to each. 

9.3 The Breit equation 

In the previous section a non-relativistic approximation to the Hamiltonian 
for two electrons was sought by starting with the non-relativistic approxima
tion to the Dirac Hamiltonian. We now enquire whether it is possible to write 
down a relativistic Hamiltonian for two electrons. 

Such a Hamiltonian would be expected to have the form: 



The Wave Equation for Many Electrons 

3f = 3f1 +3f2 +3f 12 , 

where 3fi is the Dirac Hamiltonian for electron i: 

3f, = (3imic2 + cai·w, - eicfJ, 
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(9.38) 

(9.39) 

and 3f 12 is an appropriate interaction term. The corresponding wave function 
has sixteen components, since the wave function for a single electron has four 
components. This means that the operators in the Hamiltonian (Equation 9.38) 
are represented by matrices of order sixteen and, for example, the Dirac oper
ators (3i and a I in Equation 9.39 are now to be thought of as an appropriate 
direct product of (3 and a with the unit matrix (see the next section). Conse
quently a relativistic wave equation for two electrons is rather complicated 
but one might expect it to be reducible to a non-relativistic form appropriate 
to two electrons that are both in positive energy states; the associated wave 
function would then have four ctlmponents, since there are two spin orienta
tions for each electron. 

The form of the interaction term 3f 12 in the Hamiltonian (Equation 9.38) 
must now be considered. As a leading term one would expect the Coulomb 
interaction, but a Hamiltonian: 

(9.4O) 

cannot be correct, since the wave equation with this Hamiltonian is not even 
apprOximately Lorentz invariant. The correction terms can only be obtained 
rigorously by using quantum electrodynamics. In principle they may be ob
tained to any order of accuracy, but in practice they can only be obtained ap
proximately. It is beyond the scope of this book to go into the details, but 
essentially second-order perturbation theory is used to describe the emission 
of a virtual photon by one electron and its absorption by the other and vice 
versa; to do this the eigenvalues and eigenfunctions of the approximate Hamil
tonian (Equation 9.40) are used. The result is an additional interaction term: 

(9.41) 

which is known as the Breit operator. Because perturbation theory is used and 
because of the approximations involved in its derivation, this operator must 
only be used for slowly moving electrons and then only in first order. The mat
rix representation of the operator (Equation 9.41) also involves matrices of 
order 16; in this case they are related to direct products of the matrix repre
sentations of the components of the Dirac operators al anda2. 

Although we are not in a position to derive the Breit operator, it can be seen 
that it is approximately correct by referring to the classical {non-quantum-
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mechanical) Hamiltonian for two electrons, that was derived in Section 5.9. 
Equation 5.81 shows that the classical interaction Hamiltonian consists of the 
Coulomb term together with: 

(9.42) 

or in terms of the electrons' velocities, Ul and U2: 

(9.43) 

This is a classical expression and in going over to a relativistic quantum mech
anical theory it is appropriate to replace the velocity u; of electron i by its 
Dirac velocity operator cai (Equation 8.148). With this replacement, 9.43 
becomes identical to the operator 9.41. 

The Breit equation is thus Xt/I = in(at/l/at) with the Breit Hamiltonian 
given by: 

JC = JC1+X2+(ele2/47T€or12) 

- (ele2/87T€ord[(al.a2) + (al.rl:z)(cx2.r12)/t12] + O(mc2aS ), (9.44) 

where Xi is the Dirac Hamiltonian for electron i (Equation 9.39). It is clear 
that like the Dirac equation the Breit equation is gauge invariant, since it can 
be written in terms of the operators Wi and (ina/at + ~ ei<Pi) (see Section 7.2). 

. I 
Although both the Coulomb term and the BreIt operator are formally of 

order mc2a2 in a molecular environment, the Breit Hamiltonian (Equation 
9.44) is in fact correct to order mc2a4• It must be emphasized that it is an ap
proximate Hamiltonian, since it is not Lorentz invariant and the effects of 
quantum electrodynamics have been introduced using perturbation theory. 
Again we note that because of this the Breit operator should only be used to 
iIrst order in any application. In addition, the Breit equation should only be 
used for electrons moving with velocities much less than the speed of light. 

9.4 Reduction of the Breit equation to non-relativistic form 

It is appropriate to reduce the Breit equation to a non-relativistic form, since 
it is only valid for electrons with low velocities. In addition, a four-component 
equation is more convt.nient than one with sixteen components and the result
ing Hamiltonian can be treated with well-established techniques. Both the 
method of small components (Section 8.8) and a Foldy-Wouthuysen-type re
duction may be used, but the latter has attracted more attention and, being 
more straightforward, it is this approach that is presented here. 

As might be imagined the labour involved is conSiderably greater than that 
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needed for the reduction of the Dirac equation and only an outline of the 
method is given. For simplicity the time-independent problem is discussed, 
but there is no reason to suppose that the time-dependent Hamiltonian does 
not have the same form. 

In the Foldy-Wouthuysen reduction (Section 8.9) of the Dirac equation 
the operators in the Dirac Hamiltonian are classified as even (&) or odd (l9) 
depending on whether they have no matrix elements or only matrix elements 
between the positive and negative energy components of the wave function. 
More formally even operators commute and odd operators anticommute with 
the Dirac operator ~. The odd operators are removed progressively by the ap
plication of a sequence of unitary transformations. 

A more complicated classification of operators must be used for two elec
trons, since the wave function has sixteen components, which cannot be 
labelled simply as positive or negative energy components. However, the wave 
function can be written as: 

(9.45) 

where, for example, tII++ has four components for which both electrons have 
positive energy, while for tII+- electron 1 has positive energy but electron 2 
has negative energy. We are interested in decoupling tII++ from tII+-, tII-+ and 
tII-- to obtain a four-component Hamiltonian for two electrons, which both 
have positive energy; this Hamiltonian is required to be correct to order mc2a4. 

It will be seen that the Breit Hamiltonian (Equation 9.44) can now be 
written: 

j( = ~lmlc2 + ~2m2c2 + (&&) + (&~) + (l9&) + (~~). (9.46) 

by analogy with Equation 8.117. This is just an extension of the Foldy
Wouthuysen notation, so that, for example, an even-even operator (&&) such 
as ~l or (32 is even with respect to both electrons 1 and 2. On the other hand 
the components ofa2 are even-odd operators (&~) and are even and odd with 
respect to electrons 1 and 2, respectively. As a further illustration, tII++ is only 
connected with tII-+ by an odd-even operator (~&). 

These operators may be defmed more formally. For an operator to be even 
with respect to electron 1 it must commute with ~h but if it anticommutes 
with ~1 it is odd with respect to electron 1. Thus: 
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It is now easy to show that the product of sayan odd-even operator with an 
odd-odd operator gives an even-odd operator: 

(9.48) 

and so on. With these definitions the various Dirac operators can now be classi
fied: 

131, 132, the 16 X 16 unit matrix; 

(9.49) 

(&&): 

(&~): 

~&): 

(~~): any product of a component of ex 1 with a component of Cl2. 

All these assertions may be checked explicitly. With the choice of wave 
function (Equation 9.45) the matrix representation of the Dirac operators for 
electron I are: 

o 

o 
o 

o o 
o 

o -1 

o 
o 
o 

o o -1 

0 

0 
Cl 1 = 

0'1 
(9.50) 

0 

where each element is itself a four-by-four matrix and in particular, if ex, ey 
and ez are unit orthogonal vectors: 

ez 0 (ex - iey) 0 

0 ez 0 (ex - iey) 
CJ1 = 

(ex + iey) 
. (9.51) 

0 -ez 0 

0 (ex + iey) 0 -ez 

The corresponding matrices for electron 2 are: 

1 0 0 0 0 CJ2 0 0 

0 -1 0 0 0'2 0 0 0 
132 = Cl2 = , (9.52) 

0 0 0 0 0 0 CJ2 

0 0 0 -1 0 0 CJ2 0 
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where 

ez (ex - iey) 0 0 

(ex + iey) -ez 0 0 
CJ2 = (9.53) 

0 0 ez (ex -iey) 

0 0 (ex + iey) -ez 

These matrix representations satisfy all the relationships they are expected to. 
The operators (3i and the components of a i all anticommute with one another 
and the square of each is the unit matrix of order sixteen. In addition, (31 and 
the components of a 1 all commute with (32 and the components of a2, as they 
must, since they operate on different electrons. 

We are now in a position to identify the operators in Equation 9.46: 

(8.8.) = - elrpl - e2~ + ele2/41r€oTI2 - mc2a 2; 

(8.<9) = ca2.Tl'2 - mc2a; 

(<98.) = cal.Tl'I-mc2a; 
(9.54) 

(<9<9) = - (ele2/81r€OrI2)[(al.a2) + (a l.rl2Xa2.rI2)fT~2] - mc2a2. 

From this identification it is clear that: 

[(8.8.), «9<9)] = 0, (9.55) 

commutation relations that are useful in the subsequent development. 
With these preliminaries settled, we may return to the original problem of 

reducing to non-relativistic form the Hamiltonian (Equation 9.46), which oper
ates on the wave function (Equation 9.45). To achieve this, unwanted operators 
are removed by the Foldy-Wouthuysen method of subjecting the wave function 
to a unitary transformation: 

1/1' = exp (is)l/I. (9.56) 

At the same time the Hamiltonian is modified and for the time-independent 
problem the transformed Hamiltonian is, from Equations 8.123 and 8.124: 

JC 1 = exp (is)JC exp (- is) 

= JC + irS, JC] + (i2/2!)[S, [S, JC]] + ... (9.57) 

This transformation introduces new undesirable operators into the Hamil
tonian, but, if the Hermitian operator S is correctly chosen, these are formally 
smaller than the operators removed. This procedure is repeated until the 
Hamiltonian is correct to the desired accuracy, in this case mc2a4 • 
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It might be thought that it is necessary to remove all even-odd, odd-even 
and odd-odd operators from the Hamiltonian so that 1/1++, 1/1+-, 1/1-+ and 1/1-- are 
completely decoupled from one another. To do this the operator S must be: 

S = - i/31(e8.)/2mlc2 - i/32(8.e)/2m2c2 

(9.58) 

the first two terms arise by analogy to the one electron case (Equation 8.125) 
while the effectiveness of the third term in removing (ee) can easily be 
checked. This operator has the disadvantage that for two electrons ml = m2 

and the third term in Equation 9.58 has a zero denominator. This problem 
may be circumvented by pretending that the electrons have different masses 
until after /31 and /32 have been set equal to the unit four-by-four matrix to 
obtain a Hamiltonian appropriate to both electrons having positive energy. Al
though the resulting Hamiltonian does not contain infinities and in fact it is 
the same as the one to be derived shortly, it is not very satisfying to ignore 
this difficulty; in addition, the problem is not avoided if, for example, /31 is set 
equal to + 1 and /32 to - 1 in an attempt to obtain the Hamiltonian for two 
electrons, one with positive energy and the other with negative energy. 

However, to obtain a Hamiltonian appropriate to two electrons, which both 
have positive energy, it is not necessary to seek a reduced Hamiltonian con
taining only even-even operators. This completely decouples 1/1++, 1/1+-, 1/1-+ 
and 1/1-- from each other, but to achieve our objective it is only necessary to 
decouple 1/1++ from the other three; it does not matter if 1/1+-, 1/1-+ and 1/1-
are not uncoupled from each other. In fact Equation 9.58 is just one of a 
family of operators :hat achieve this more limited aim, it just happens to go 
further than is necessary and in so doing introduces the problem associated 
with the zero denominator in Equation 9.58. 

Pictorially, use of Equation 9.58 leads to a transformed Hamiltonian in 
which the operators have only matrix representations with the structure: 

x 
o 
o 
o 

o 
X 

o 
o 

o 
o 
X 

o 

o 
o 
o 
X 

(9.59) 

where the X's indicate any matrix of order four having non-zero elements. It 
is only necessary to obtain a Hamiltonian whose matrix representation has the 
structure: 
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000 

X X X 

X X X 

X X X 
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(9.60) 

As it happens the transformation that achieves this least permissible separation 
is quite complicated and the one given here is the simplest that does not run 
into problems with zero denominators. This simplest transformation gives a 
Hamiltonian with the structure: 

as will be seen shortly. 

X 0 0 0 

o X X 0 

o 
o 

X X 0 

o o x 

For the transformation used here: 

s = - i(jl(fJ8..)/2mlc2 - i(j2(8..fJ)/2m2c2 

- i(fJl + (j2)«(9(9)/4(ml + m2)c2. 

(9.61) 

(9.62) 

The first two terms lead to the removal of the «(98..) and (&(9) operators from 
the Hamiltonian (Equation 9 .46), although this is at the expense of introducing 
smaller operators of the same type. However, the last term, in addition to 
introducing smaller undesirable operators, leaves in the transformed Hamil
tonian a term: 

Although this is an odd-odd operator it has the structure: 

o 
o 
o 
o 

o 
o 

o 0 

X 0 

X 0 o 
o o o 

(9.63) 

(9.64) 

In particular in extracting a Hamiltonian appropriate to two electrons, which 
both have positive energy, (jl and ~ are both set equal to the unit matrix of 
order four and the operator 9.63 vanishes. 
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Although Equation 9.62 is the simplest acceptable choice for S, its substi
tution in Equation 9.57 and the subsequent expansion is quite laborious even 
when the commutation relations 9.55 are used; consequently only the result 
is given here. Two applications of the transformation are necessary to obtain 
a Hamiltonian, which is of the desired type and correct to order mc2a.4• The 
order of magnitude of the terms is estimated on the basis (Equations 9.54) 
that the (&&) and ({9{9) operators in Equation 9.46 are of order mc2a.2 , while 
the (&{9) and ({9&) operators are both of order mc2a.. The result is: 

X 2 = f31mc2 + f32mc2 + (&&) + f31({9&)2/2mlC2 + f32(&{9i/2m2c2 

- f31({9&t/8mk6 - f32(&{9)4/8mlc6 - [({9&), [({9&), (&&)} ]/8mk4 

- [(&{9), [(&{9), (&&)] ]/8mk4 + f31f32 [(&(9), [({9&),({9{9)]+]+/4mlm2c4 

+ @l + (32)({9{9i/4(ml + m2)c2 + (1- f31(32)({9{9)J2 + O(mc2a. S ). 

(9.65) 

All the operators in this transformed Hamiltonian are of the even-even type 
except for the last, which is odd-odd and involves ({9{9)t. the sum of ({9{9) and 
other odd-odd operators introduced by the first unitary transformation. 

The penultimate term in Equation 9.65 contains «9{9)2, but ({9{9) is just 
the Breit operator and it has already been emphasized that it must only be 
used to first order; in fact retention of this term leads to discrepancies between 
theory and experiment for the atomic spectrum of helium. When this term is 
omitted and f31 and f32 are set equal to the four-by-four unit matrix, we obtain 
the four-component Hamiltonian appropriate to two electrons, which both 
have positive energy: 

x = mlc2 + m2c2 + (&&) + ({9&)2/2mlC2 + (&{9)2/2m2c2 

- ({9&)4/8mk6 - (&l')4/8mlc6 - [({9&), [({9&), (&&)] ]/8mk4 

- [(&{9), [(&{9), (&&)] ]/8mk4 + [(&(9), [({9&),({9{9)]+]+/4mlm2c4 

+ O(mc2a. S ), (9.66) 

where the subscript has been dropped from JC. 
Of course the explicit forms of the operators (&&), (&{9), ({9&) and ({9{9) 

given in Equations 9.54 must now be substituted into Equation 9.66. Some of 
the work has already been done, since reference to Equations 8.137 and 8.138 
shows that: 

(9.67) 
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.nd 

(9.68) 

with similar expressions for the terms involving (&(9)2 and (&~t. However. 
the remaining terms are more complicated . but liberal use of the techniques 
ofOtapter2 and relations such as Equation 8.40 shows qwtt straightforwardly 
that : 

- [(~&). [(~&). (&&)11I8m1c" = (eI'1j2/8mk2)(V.E1) 

- (el1i/8m~c2)ol' ('"'I " EI - E 1 " '"'II 
- (ele2Ji/1611'foC2d1)ol.(rI1" '"'I)/m~ 

(9.69) 

with a similar expression for the term involving [(&~). [(&0),(&&)] ] except 
that the subscripts I and 2 are interchanged. With even more labour it may also 
be shown that : 

= (e l e2f811'fom I m2c2) [,",I.(ri1,",2) + (,",I .f l2)ril(rI2;" 2)] 

+ (el e21l/8rrfom Im2c2d2){ ol .(r 11 II ,",2) - od rl2" ,",I)] 

+ (ele1li2/ l6rrfom Im1c2) I( OI.o2)/r~2 - 3( ol .rnXrI2.02) /r12 

The final Hamiltonian may now be assembled by substituting Equations 
9 .54 and 9.67 to 9.70 into Equation 9.66: 

X = .1: (ml~-el¢1 + rrl!2ml + (e1Ji/2mi)(0/.B1) ,·1,2 

- (e j li/8mlc2)0/. tnJ II E, - EI " '"'i] - (1/8mti?)rrt 

- (e/Ii/4mtc2)(0 /. B,)rrl + (e,li2/8mlc2)(V.EJ») 

+ (ele2 f4 '1ffOrl2) 

- (ele2/8rrfom 1m2 c2 ) 1"1.(rii"2) + ("I .rI2)rI1(r 12 '''v1 
- (e le2I1/16'1ffoc2rM lol.(rI2 II " 1)/ml - 02 .(r ll 1I1l' 2)/mll 

+ (e l e2 1i/811'fo m tm2c2d2) [0, .(rI2 ,,1l'2) - 02.(rI2 11"'1)1 
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+ (ele2li2/1611'€Omlm2c2) [(CJ1.CJ2)/rf2 - 3(CJ1.r12XrI2.CJ2)/r~2 

- (811'/3)c5(rI2)(CJ 1.CJ2)] 

(9.71) 

This Hamiltonian is identical to that obtained in Section 9.2, since it is re
called that CJi has been replaced by 2si in Equation 9.37. However, in deriving 
the Hamiltonian (Equation 9.37) certain problems were resolved by insisting 
that there should be eventual agreement with Equation 9.71. The advantage 
of the method of Section 9.2 is that the physical significance of the individual 
terms is quite clear from the way in which they are derived. In the present 
method the origin of some of the terms is not obvious and the amount of 
labour involved is substantial, but it is free of the objections to the method of 
Section 9.2. Finally we again note that the same Hamiltonian has been ob
tained using quantum electrodynamics. 

9.S Radiative corrections 

The Dirac equation for the electron predicts a spin magnetic moment of 
- (eli/2m)CJ and a spin angular momentum of ~liCJ(Section 8.4). The g factor 

of the electron is the ratio of the magnitude of these two quantities measured 
in units of (e/2m). Consequently the Dirac equation leads to ag factor for the 
electron of exactly 2. 

The transition to the notation of non-relativistic quantum theory can be 
made by replacing CJ by 2s. This has been done in Equations 8.142 and 9.37, 
which are the non-relativistic approximations of the Dirac and Breit Hamil
tonians, respectively. Now in these approximate Hamiltonians each of the terms 
involving the spin of an electron arises by virtue of its spin magnetic moment; 
the spin angular momentum does not appear as such in the Hamiltonian. Thus, 
rather than replace CJ by 2s, we could have replaced the spin magnetic moment 
of the electron, - (eli/2m)CJ, by - g(eli/2m)s, where g is exactly 2. Since 
(eli/2m) is just the Bohr magneton IlB' this replacement may be written: 

- (eli/2m)CJ-+ - gIlBS. (9.72) 

When Dirac first put forward his theory, the experimental value of the g 

factor was also 2. However, since then experiment has shown that it differs 
slightly but Significantly from 2. It is now one of the most accurately known 
constants and one of the more recent experimental determinations gives it as: 

g = 2·002319315 (± 7 X 10-9 ). (9.73) 
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The discrepancy between Dirac theory and experiment is attributed to quan
tum electrodynamic effects, one of the latest theoretical estimates being 
2{)()2319312 (± 3 X 10-9) in good agreement with the experimental value 
(Equation 9.73); the error is due to uncertainty in the experimental value of 
the fine structure constant (see later). Since it is not possible to go into the 
details here, the quantum electrodynamic correction to the electron's g fac
tor is included phenomenologically. Thus the replacement 9.72 is used, but 
with the experimental value of Equation 9.73 for g instead of the Dirac value 
of2. 

Although the quantum electrodynamic theory of the correction to the g 

factor cannot be given here, an attempt can be made to indicate its origin. It 
has been stated in Section 9.3 that the Breit interaction between two electrons 
is attributable to the emission of a virtual photon by one electron and its sub
sequent absorption by the other. In the same wayan isolated electron can 
interact with its own virtual radiation field by emitting a virtual photon, which 
it later reabsorbs. In addition, the electron can polarize the surrounding electro
magnetic field creating a virtual electron-positron pair followed by annihilation 
of the pair with emission of a virtual photon which is absorbed by the electron. 
(These concepts are not as obscure as they appear, since this description is 
analogous to the interaction of a ground state configuration with excited con
figurations in the electronic theory of molecules, the complications arising 
because the radiation field is also involved). 

A qualitative picture of how this produces a contribution to the electron's 
spin magnetic moment has been given and is as follows. The spins of the elec
tron and positron in the virtual pair are generally anti parallel and tend to be 
oriented so that one is parallel and one is antiparallel to the spin direction of 
the original electron. However, the case where the spin of the virtual electron 
is parallel to that of the real electron is preferred; that the two situations are 
not equivalent may be seen by noting that annihilation generally takes 
place between an electron and a positron with opposite spins and in the pre
ferred case the virtual positron can annihilate either the real or the virtual 
electron, while in the other case only the virtual electron can be involved in 
such an annihilation. 

The two situations have different magnetic moments, since the electron has 
a negative magnetic moment, but the positron has a positive magnetic moment 
as a result of its positive charge (Section 8.6). The preferred situation with the 
spins of the real and virtual electrons parallel has a negative magnetic moment 
with three times the magnitude of an electron alone; the magnetic moment of 
the other situation is of the same magnitude as an electron but is positive. If 
the two situations were equally probable there would be no correction to the 
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electron's magnetic moment, but since one is preferred there is a small negative 
contribution that accounts for the deviation of the g factor from 2. 

When these quantum electrodynamic arguments are expressed quantita
tively, the correct term is found to be Ol/Tr, where Ol is the familiar fine structure 
constant (Equation 8.85). Higher-order corrections have also been calculated, 
although a large number of interaction terms have to be considered. One of 
the more recent theoretical estimates for the g factor of the electron is: 

g = 2 + (0l/Tr)-O·65696(0l/Tr)2+ 1·49(0l/Tr)3+0((0l/Tr)4). (9.74) 

The coefficient of (0l/Tr)2 is well established, but attention has only recently 
been directed to the (0l/Tr)3 term. Equation 9.74 gives a value for the g factor 
that is in good agreement with the experimental value of Equation 9.73. 

9.6 The many-electron Hamiltonian 

A Hamiltonian for two electrons falls short of our goal of a molecular Hamil
tonian. Here the extension to a many-electron Hamiltonian is considered; the 
inclusion of nuclei is discussed in the next chapter. 

The two-electron Ham.Htonian (Equation 9.71) may readily be extended 
to the case of many electrons provided it may be assumed that there are no 
interactions that involve three or more particles. This assumption cannot be 
correct, since one electron can influence a second by perturbing the motion of 
a third. However, the correction terms necessary may be shown to be of the 
order of mc20l6• In addition; the work of Itoh, who used quantum electrody
namics, confirms that to order mc20l4 there are no three-body terms. 

In writing the many-electron Hamiltonian the subscripts i and j are used to 
distinguish electrons. If the opportunity is taken to introduce the radiative 
corrections discussed in the previous section by making the replacement 9.72, 
the resultant Hamiltonian is: 

j('= ~ [me2 - ecpj + Tr~/2m (a) 
• 

+ g/-LB(sj.B j) (b) 

- (g/-LB /4me2)sj. ['lTj " Ej - E j ,,'lTi] (c) 

+ (en2/8m2e2)(V.Ej) (d) 

- (l/8m 3e2)Tri- (g/-LB/2m2e2)(sj.Bj)Trr (e) 

+ ~ {e2 /8TrEorij 
i*j 

(f) 
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- (e2/161r€om 2c2)["'j.(rijl"'j) + (1rj.rjj)rij3(rij.'II'j)] 

- (egJ.l.B/81r€omc 2rrj)Sj.(rjj A"'j) 

+ (egJ.l.B/41r€omc 2rrj)Sj.(rjj II "'j) 

+ (g2J.l.'JJ/81r€oc 2) [(Sj.Sj)!rrj - 3(sj.rjj)(rjj.Sj)!rfj 

- (81r/3)6(rijXsj.Sj)] 

- (e21i2/8€om2~)6(rjj)}] 

+ O(mc2Q S). 
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(g) (9.75) 

(h) 

(i) 

G) 

(k) 

Since this Hamiltonian involves a summation over j '* i, it has been necessary 
to introduce a factor of ~ into (t), (g) and 0), so that these interactions are not 
counted twice. 

In Equation 9.73 the subscripts have been dropped from the constants m, 
e and g, since the origin of each term may be ascertained by referring back to 
Equations 9.3 7 or 9.71. However, for completeness the identification of each 
term is repeated here; 
(a) an electron's rest energy, its energy of interaction with the external 

electric potential and its kinetic energy, respectively; 
(b) the Zeeman term representing the interaction of an electron's spin mag

netic moment with the external magnetic field; 
( c) the interaction of an electron's spin magnetic moment with the magnetic 

field it experiences by virtue of its motion relative to the external elec
tric field; 

(d) the Darwin term representing the correction to the second term in (a) 
due to an electron's Zitterbewegung; 

(e) relativistic corrections to the kinetic energy in (a) and the Zeeman term 
(b); 

(0 the Coulomb interaction between pairs of electrons; 
(g) the retarded orbit-orbit interaction of one electron with the electromag

netic field due to the relative motion of another; 
(h) the spin-orbit term representing the interaction of the spin magnetic 

moment of an electron with its own orbital motion due to the electric 
field of another electron; 

(i) the spin-other-orbit term representing the interaction of the spin mag
netic moment of one electron with the orbital motion of another; 

G) the spin-spin term comprising a dipole-dipole interaction between the 
spin magnetic moments of two electrons together with a Fermi-contact
type interaction; 
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(k) a correction to the Coulomb term (f) analogous to the Darwin term (d). 

In the Hamiltonian (Equation 9.75) the mechanical momentum 'I1"i = 
(Pi + eAi ) appears in many terms. It is expedient not to expand these terms, 
since this ensures that the Hamiltonian is gauge invariant. However, it should 

be noted that when, for example, 1T1I2m is expanded, an orbital Zeeman term 
appears together with a contribution to the diamagnetism (Section 7.1). 
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CHAPTER TEN 

The Molecular Hamiltonian 

In extending the many-electron Hamiltonian to a molecule, nuclei must be 
introduced. This poses serious problems, since nuclear theory is not in as ad
vanced a state as electron theory; although simple models exist to explain 
nuclear properties, a serious treatment of the topic is beyond the scope of this 
book. Fortunately, many of the nuclear contributions to the Hamiltonian are 
much smaller than the corresponding electronic contributions and nuclei can 
usually be included quite satisfactorily using phenomenological arguments. 

Even when a suitable molecular Hamiltonian has been established, its use is 
by no means trivial and would require another book to deal with it in depth. 
However, there are several excellent texts which essentially start with the 
Hamiltonian and treat its application to specific problems in detail. Neverthe
less the transformation to molecular coordinates and the use of effective 
Hamiltonians is outlined briefly here as a general introduction to the problem 
of spectral analysis. 

10.1 The introduction of nuclei 

To obtain a molecular Hamiltonian nuclei must be introduced and to do this 
it is necessary to assume that nuclei can be treated as Dirac particles, that is 
particles that are described by the Dirac equation and behave in the same 
way as electrons. The non-relativistic approximation (Equation 9.75) to the 
many-electron Hamiltonian can then be extended to a molecule by pretending 
that some of the electrons are nuclei and making appr?priate changes in no
tation. For m, the mass of an electron, we write mOl> the mass of nucleus u. 
Similarly, Sj is replaced by Ia, the spin of nucleus u, and ZO/e is used in place 
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of - e, where ZOI is the atomic number of nucleus a. 
This procedure involves a number of drastic assumptions, but it has been 

shown to be valid provided that only terms involving (nuclear massfl are re
tained. (The arguments used are quantum electrodynamical and cannot be 
given here; the reader is referred to the book of Bethe and Salpeter (pages 
1934) for details.) This means that all terms involving (nuclear massf2 and 
smaller are neglected, but in fact all these terms are formally of order mc2a4 to 
start with and are at least 10-6 times smaller than the corresponding electron 
terms, because the ratio of the proton mass to the electron mass is 1·8631 X 
103• 

It might be thought that only the nuclear and electron-nuclear terms in the 
Hamiltonian are to be regarded with any suspicion. However, a note of caution 
must be sounded about the terms involving just the electrons. It is recalled that 
in reducing the Dirac and Breit equations to non-relativistic form, the order of 
magnitude of the terms was estimated on the basis of an electron in the first 
Bohr orbit of the hydrogen a tom. In general higher nuclear charges are involv
ed and for a one-electron atom in which the nucleus has a charge Ze it is no 
longer appropriate to express the magnitude of the terms in the Hamiltonian 
as mc2an . Instead the terms c(a.p), ecf> and cea.A in the Dirac Hamiltonian are 
of order mc2(Za), mc2(Za)2 and mc2(Za)3, so that Za should be used as the 
expansion parameter rather than the fine structure constant itself. Since a is 
approximately 1/137, these comments only become important for atoms or 
molecules involving nuclei with large atomic numbers, and then only for the 
inner electrons, since the outer electrons are effectively screened from the 
nuclei. It is clear from these remarks that relativistic effects are more impor
tant if inner electrons and nuclei with large Z are involved. In such cases the 
use of an approximate Hamiltonian, which is a power series expansion in Za, 
is not satisfactory. One way of avoiding this problem is to take as the zero
order problem one electron under the influence of a nucleus and then intro
duce as perturbations the electron-electron interactions including the Coulomb 
interactions. The Dirac equation is solved explicitly for a one-electron atom 
in the next chapter, but the general problem of nuclei with large atomic num
bers is too specialized to be considered here. 

By assuming that nuclei behave as Dirac particles, it is also assumed that 
all nuclei have spin t. but this is not true. Some nuclei have no spin angular 
momentum while nuclear spins as high as 9/2 are not uncommon; in addition, 
nuclei with integral spins are bosons and do not obey Fermi-Dirac statistics. 
However, if the policy is adopted of assuming that nuclei are Dirac particles, but 
that some of them have anomalous spins, the resulting theory is not in disagree
ment with experiment; again quantum electrodynamics indicates that this is a 
valid approach, if only terms involving (nuclear massfl are retained. A further 
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complication associated with nuclei which have spins greater than or equal to 
I is that they have quadrupole moments. These are discussed in the next sec
tion, which is concerned with effects associated with the Bnite size of the 
nucleus; for the present nuclear quadrupole contributions to the Hamiltonian 
are merely noted and labelled as 'JCQ • 

Associated with a nuclear spin Ia is a spin magnetic moment: 

(10.1) 

where P-N is the nuclear magnet on and differs from the Bohr magnet on by in
volving the mass of the proton mp instead of the electron mass. If nuclei were 
true Dirac particles (with, if necessary, anomalous nuclear spins), the spin mag
netic moment would be: 

(10.2) 

Even in the case of the proton, where ma = mp and Za = 1, the nuclear g fac
tor ga is not 2 and as for the electron it is anomalous. However, the anomaly 
is much larger than for the electron and the proton g factor is in fact 5·5855 
even though its spin is t. In this connection we might note that the magnetic 
moment ofthe neutron, which is of the same magnitude as that of the proton, 
is completely anomalous, since the neutron is chargeless and would thus be 
expected to have no magnetic moment at all. These anomalous magnetic mo
ments have been explained in terms of the interaction of the proton and neu
tron with their virtual meson charge clouds, although meson theory is not in 
as satisfactory a state as quantum electrodynamics. Larger nuclei also have 
anomalous magnetic moments and some are even negative. Finally, we should 
note that in practice the ratio (Zalma) in 10.2 is absorbed into ga, so that 
nuclear magnetic moments are given by gaP-NIa (Equation 10.1). 

We are now in a position to generalize the many-electron Hamiltonian 
(Equation 9.75) to a molecule by assuming that nuclei are Dirac particles with 
anomalous magnetic moments and spins. In doing this it is helpful to keep in 
mind the interpretation of the terms in Equation 9.75 and to consult Equa
tions 9.37 or 9.71 to see which particle is responsible for quantities such as 
mass and charge in an individual term. The molecular Hamiltonian may then 
be written as: 

(10.3) 

where 'JCe is the many-electron Hamiltonian (Equation 9.75) and 'JCn and 'JCen 

are, respectively, the nuclear Hamiltonian and the electron-nuclear interaction 
Hamiltonian. 

Written explicitly the nuclear Hamiltonian is: 



182 Advanced Molecular Quantum Mechanics 

(10.4) 

where 

1I'a = Pa - Z~Aa· (10.5) 

The terms in Equation 10.4 represent, respectively, nuclear rest energy, the 
energy of interaction between nuclear charge and the external electric potential, 
nuclear kinetic energy, nuclear Zeeman energy and nuclear-nuclear Coulomb 
repulsion. The interaction Hamiltonian appears as: 

- (giJ.BZae/81T€omc2r~a)Si.(ria A 1I'j) 

- (g iJ.BZae/41T€omaC2r1a)Si.(ria A 'Ita) 

+ (gaiJ.Ne/41T€omc 2rYa)Ia .(ria 1\11';) 

- (ggaiJ.BiJ.N/41T€oC 2)[(si.Ia,)/r1a - 3(si·ria)(Ia,.rja)/r~a 

(a) 

(c) 

(d) 

(e) (10.6) 

- (81T/3)8(ria)(Si.Ia)] (0 

+ (Zae2/i2/8€om2c2)8(ria)} (g) 

+ O(mc2(X4(m/mp)2) + 'JCQ • 

In this Hamiltonian (a) is the electron-nuclear Coulomb attraction term, while 
(b) is a retarded orbit-orbit interaction. The electric field due to the nucleus is 
responsible for the spin-orbit interaction term (c). Both (d) and (e) are spin
other-orbit interactions involving the spin magnetic moment of an electron 
and the motion of a nucleus and vice versa. The term (0 represents the inter
action between the spin magnetic moments of an electron and a nucleus; in 
addition to the dipole-dipole interaction, which has a classical analogue, there 
is a term involving a Dirac delta function, which represents the Fermi contact 
interaction and has no classical analogue. Finally, there is a Darwin-type term 
(g) and the nuclear quadrupole interaction term X Q • 

No terms involving (nuclear massf2 have been included in Equations 10.4 
or 10.6, since their presence cannot be rigorously justified, but this does not 
mean that there are no significant terms of this type. Indeed the dipole-dipole 
interaction between two nuclear spin magnetic moments, that is observed in 
broad line nuclear magnetic resonance experiments, is of this type and so is 
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the interaction between molecular rotation and nuclear spin magnetic mo
ments, that is seen in molecular beam studies. Terms like this have analogues 
in the two-electron Hamiltonian and are quite plausible, but their inclusion 
must be based on phenomenological arguments. 

10.2 Finite nuclear size effects 

In this section two additional nuclear effects are mentioned, which may be 
attributed to the fact that nuclei are not point charges but have finite extent; 
of course, both the angular momentum and the magnetic moment associated 
with nuclear spin might also be attributable to this. 

Apparently electrons can penetrate nuclei and move about inside them. In 
atoms only s electrons have a finite probability of being at the nucleus, and 
when such electrons are inside the nucleus the electric potential they experi
ence is not given by Ze/41r€or, but is presumably less than this. Consequently the 
energy of an s electron is shifted upwards because of the finite size of the 
nucleus, but the magnitude of this effect is dependent on the structure of the 
nucleus involved. In particular, different isotopes of the same element have 
different shifts, since the nuclei are different; isotope shifts have been detected 
experimentally, but the effect is small and has only been observed in the spec· 
tra of heavy atoms (Z> 50). A more important consequence of this effect is 
in Mossbauer spectroscopy, where the observed transitions are between differ
ent nuclear energy levels. Since the size of a nucleus alters during these tran
sitions, the exact energy change involved depends on the environment of the 
nuclei and in particular the distribution of the electrons in the molecule. These 
effects must be treated phenomenologically in view of the uncertainty about 
nuclear structure. 

The other consequence of finite nuclear size is that many nuclei have quad
rupole moments. One model that is frequently given takes the nucleus to be a 
collection of (charged) protons and (uncharged) neutrons. If the position of 
proton p in nucleus a relative to the centre of charge of nucleus a is rpO!' 
the electrostatic interaction energy between the nucleus and an electron at 
position reO! is: 

(10.7) 

Normally the electron is well outside the nucleus so that Equation 10.7 may 
be expanded as a power series in rpO! about reO!' This may be accomplished by 
noting that: 

f(r - a) = [1 - (a.V) + ~(a.V)2 + ... Jf(r). (10.8) 
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Use of Equations 2.78 and 2.96 then gives: 

l/l reo< - rpo<l = l/reo< + (rpo<.reo<)/r;o< - r;0</2r;0< + 3(rpo<.reoY/2r~0< + ... ; 

(10.9) 

a term involving o(reo<) has been omitted, since it is assumed that reo< ~ rpo<' 

When Equation 10.9 is substituted into Equation 10.7 the first term that 
arises is - ~ e2/41r€oreo< = - Zo<e2/41r€oreo<, which is the familiar Coulomb 

p 

term. The next contribution involves ~ erpo<' which is the electric dipole 
p 

moment of nucleus a, and vanishes, since rpo< is the position of a proton 
relative to the centre of charge of the nucleus. Although the model used here 
is a simple one, it is a general result, both experimentally and theoretically, 
that nuclei have no electric dipole moments. The theoretical demonstration of 
this fact is based on the assumption that the states of nuclei have definite 
parity, that is they are either symmetric or antisymmetric with respect to the 
inversion of all coordinates. The expectation value of the electric dipole 
moment operator, which is of odd parity, must then vanish. 

The third and fourth terms in Equation 10.9 are both quadratic in the com
ponents of rpo< and may also be factorized into the product of an electronic 
term and a term dependent on nuclear structure: 

- r;0</2r:0< + 3(rpo<"reo<)2/2r~0<=(3rpo1r po<k - &jkr;0<)(3reo<jreo<k -ojkr;0<)/6r~0<' 

(10.10) 

as may easily be verified; the additional subscripts, j and k, distinguish vec
tor components and, since the repeated subscript summation convention is in 
operation, OjkOjk = 3 (Equation 2.21). The contribution of these terms to 
Equation 10.7 is thus a scalar product of two second-rank tensors: 

( 1/6)Q<0<)V~0<) Jk Jk, (10.11) 
where 

QW = e ~ (3rpo<jrpCtk - Ojkr;~ (10.12) 
p 

is a component of the nuclear quadrupole tensor of nucleus a; it has even 
parity so that its expectation value is non-zero and, since it depends on nuclear 
structure, it is treated phenomenologically, although its matrix elements do 
depend on the nuclear spin 10<" The other tensor has components: 

V Jg) = - (e/41r€o~0<)(3reo1reO<k - Ojkr~o<)' (10.13) 

and is known as the electric field gradient tensor, since its components may 
also be written in the form: 

V }~) = VjVk (- e/41r€or eo<)' (10.14) 
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provided the electron is always taken to be outside the nucleus so that the 
delta function contained in the right-hand side of Equation 10.14 may be ig
nored. Equation 10.13 may be extended by summing over all the electrons in 
the molecule and, with a little modification, the contribution of other nuclei 
may be included. The total nuclear quadrupole interaction energy JCQ is then 
:given by a summation of the expression 10.11 over an· the nuclei in the 
molecule. 

The largest of the terms that have been neglected in the expansion (Equa
tion 10.9) are cubic in the components of rpa and are related to the electric 
octupole moment of the nucleus. However, they vanish, since parity arguments 
show that nuclei do not have electric octupole moments. Thus the next non
zero contribution to Equation 10.7 involves the electric hexadecapole moment 
of the nucleus, but at present this is of no experimental significance. In this 
connection we might note that, of the nuclear magnetic moments, the mono
pole and quadrupole moments 3fe zero, but that the dipole and octupole mo
ments do not vanish; the dipole moment has already been considered, but, al
though magnetic octupole moment effects have been detected in iodine, indium 
and gallium atoms, they are at present at the limit of experimental significance. 

10.3 Spectroscopically useful Hamiltonians 

The molecular Hamiltonian that has been derived here is expressed in terms of 
the position vectors of the individual particles. This form has the disadvantage 
that it does not reflect the basic physical features of molecules. A molecule is 
essentially a semi-rigid nuclear framework supporting a distribution of elec
trons which is responsible for the chemical bonds. (In this and the following 
section molecules are considered, but atoms can always be regarded as special 
cases.) Because nuclei are much more massive than electrons, nuclear and elec
tronic motion are largely separated from each other and have very different 
energies; in addition, molecular translation, rotation and vibration also have 
characteristically different energies from each other. Consequently, it is ex
pedient to write the Hamiltonian of a molecule in such a way that translation, 
rotation, vibration and electronic motion are separated as much as possible. 
To do this it is appropriate to change the molecular variables from the position 
vectors of individual particles to translational, rotational, vibrational and elec
tronic coordinates. 

Since the Hamiltonian includes relativistic corrections, it might be thought 
that a Lorentz transformation should be used in transforming to molecular 
coordinates. However, the frame of reference in which physical measurements 
are made is not changed so that the transformation is merely a change of 
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variables within a particular inertial frame. 
The transformation may be thought of as taking place in three stages. First, 

translation is separated by changing the origin of the coordinates from a space
fixed one to the molecular centre of mass keeping the axes parallel to the 
original space-fixed axes. Without moving the origin, but changing to axes ro
tating with the molecule, rotation may be separated off. Finally, the electronic 
motion may be separated most effectively from the vibrations by shifting the 
origin of the coordinates to the centre of mass of the nuclei without altering 
the orientation of the axes. 

The transformation ofthe approximate field-free Hamiltonian: 

3C = !: p~/2ma + ~ pf/2m + V, 
a I 

(10.15) 

where the potential energy V comprises the Coulomb interactions, is perform
ed in a number of texts with the result that: 

3C = p 2/2M + kN.Il.N + k !: P~ + ~ pf/2m + (~Pi)2 /2MN+ V, (10.16) 
r I I 

where Pi is now the momentum of electron i in the molecule, that is it is the 
momentum conjugate to the position ri of electron i relative to the new origin 
at the centre of mass of the nuclei. Other new quantities in Equation 10.16 
are the total mass of the molecule M(= !: mOt + ~ m) and the mass of the 

a I 

nuclei alone MN (= !: ma>. The translational momentum P is the momentum 
a 

conjugate to R, the position of the centre of mass of the molecule; in terms 
of the original space-fixed coordinates this is given by R = (!: mala + ~ mri)/M. 

a I 

The position ra of a nucleus in the molecule may be expressed in terms of 
normal coordinates Qr: 

(10.17) 

where rg is the equilibrium position of nucleus a and the Iar are constant vec
tors chosen so that the normal coordinates are orthogonal to each other and 
to the molecular rotations and translations; the Pr are then the vibrational 
momenta conjugate to the vibrational coordinates Qr. The vector N is the 
rotational angular momentum of the nuclei and differs from the total angu
lar momentum J of the molecule by the electronic and vibrational angular 
momenta, Land G respectively: 

N = J - L-G = J - ~ ri APi -!: CrsQ,Pa, (10.18) 
I r,s 

where the components of Crs are the so-called Coriolis coupling constants: 

(10.19) 
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Finally, ~ is the inverse of the instantaneous inertia tensor I, the elements of 
which are given by: 

(l0.20) 

The main problem associated with the derivation of Equation 10.16 is that 
the rotational momentum N is not conjugate to any coordinates. However, 
the components of the total angular momentum J are conjugate to angles de
fming the orientation of the molecule. Even so Equation 10.16 is not at all 
easy to derive and it is usual to perform the transformation in a round about 
way rather than directly. First, it is easier to transform classical expressions 
rather than quantum mechanical expressions; after the transformation it is 
necessary to write the resulting classical Hamiltonian in a quantum mechanical 
form and this involves choosing the correct order for operators, but techniques 
exist for doing this. Another simplification is to use the classical Lagrangian 
instead of the corresponding Hamiltonian, since the Lagrangian is a function 
of velocities, which are easier to transform than the momenta used in the 
Hamiltonian; the transitions from velocities to momenta and Lagrangians to 
Hamiltonians may be performed using the relations to be found in Chapter 3. 
Finally, we should note that difficulties are encountered in considering linear 
molecules, which have no nuclear moment of inertia about the molecular axis 
in the equilibrium position. Consequently, it is not possible to invert the inertia 
tensor I to get II, but this difficulty can also be circumvented. 

Of course the Hamiltonian that we have derived is much more complicated 
than Equation 10.15, since it includes relativistic corrections and external 
electromagnetic fields. Nevertheless, the full Hamiltonian has been transformed 
to molecular coordinates. The main feature of the result is that, after negligible 
terms have been omitted, the leading terms in the transformed Hamiltonian 
are similar to Equation 10.16 and the correction terms, which were omitted 
from the approximate Hamiltonian (Equation 10.15), are essentially unchanged 
in form by the transformation except that they are expressed in terms of 
molecular coordinates. This is particularly true of the electronic terms, although 
some so-called mass polarization correction terms appear because the positions 
of the electrons are now measured relative to a molecule-fIXed rather than a 
space-fixed origin. However, the parts of the Hamiltonian involving nuclear 
momentum have to be reinterpreted in terms of molecular rotation and vibra
tion. For example, the spin-other-orbit interactions 1O.6d between the spin 
magnetic moments of the electrons and the motion of the nuclei leads to spin
vibration and spin-rotation interaction terms. 

Any further discussion of this topic would take us outside the scope of this 
book and reference must be made to the sources given in the bibliography at 
the end of the chapter. 
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10.4 Effective Hamiltonians 

To use the molecular Hamiltonian it is necessary to solve the corresponding 
Schrodinger equation to obtain the eigenvalues and eigenvectors of the mole
cule under consideration. Exact analytic or numerical solution of the appro
priate Schrodinger equation is of course impossible, but even if it were possible 
such an approach would not be rigorously justifiable. This is because the 
Hamiltonian itself is based on the Breit equation, which is only correct to 
order mc2a4• In addition, the Breit operator is obtained using perturbation 
theory, so that operators derived from it (those based on the terms appearing 
in Equation 9.70) should only be used in first order. This means that only an 
approximate solution of the Schrodinger equation is necessary and the use of 
perturbation theory is quite in order. 

The usual approach is to choose a set of basis functions (approximate 
eigenfunctions of the Hamiltonian), construct the Hamiltonian matrix and 
diagonalize it. However, a complete set of basis functions would be infinite 
and some method of simplification or approximation is necessary. For many 
problems the majority of the terms in our Hamiltonian are too small to be 
Significant and may be omitted, but the influence of these terms may be de
tected by a number of high resolution techniques such as magnetic resonance 
or microwave spectroscopy. The information obtained from these high resol
ution experiments is not in general concerned with the energy separation 
between vibronic (vibrational-electronic) states, but with the rotational and 
spin energy levels associated with a particular vibronic state. 

For the Hamiltonian expressed in molecular coordinates it is appropriate 
to use a separable representation with the basis functions of the form: 

(10.21) 

where 1/Itrans is a translational wave function and depends only on the position 
R of the centre of mass of the molecule, 1/Irot is a rotational wave function 
depending on the angles specifying the orientation of the molecule, 1/Ivib is a 
function of the (vibrational) normal coordinates Qr and the electronic wave 
function 1/1 el depends only on the electronic coordinates rj (and possibly on 
Qr as well); 1/1 elsp and 1/1 nucsp are electron and nuclear spin functions, respec
tively. The translational part of the problem may easily be separated off, 
since at present there appear to be no significant interactions between trans
lation and other types of molecular motion. However, there are important 
interactions between electronic, vibrational and rotational motion and, in ad
dition, external electromagnetic fields may be present. 

In principle the molecular Schrodinger equation could now be solved by 
setting up the Hamiltonian matrix and using appropriate techniques to 
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diagonalize it with sufficient accuracy. However, the state of electronic theory 
is such that suitable electronic basis functions for a molecule are difficult to 
obtain and their energies are not known very accurately; this is particularly 
true for the excited electronic states. The same is true to a lesser extent for the 
vibrational functions, which depend on a knowledge of the vibrational poten
tial function. Consequently, this approach is not suitable for the interpretation 
of high resolution spectra involving the rotational and spin fine structure of a 
specific vibronic state. 

What is needed is an effective Hamiltonian that is only appropriate to the 
vibronic state under consideration. Only spin and rotational operators (and 
perhaps electronic and vibrational angular momentum operators) appear in 
such a Hamiltonian together with a number of parameters specific to the vi
bronic state. These parameters are averages of electronic and vibrationalopera
tors over the vibronic state and in addition contain contributions to allow for 
the mixing ofvibronic states by coupling terms in the Hamiltonian. The numeri
cal values of these parameters are such that the eigenvalues of the effective 
Hamiltonian are exactly the same as those that would be obtained for the par
ticular vibronic state using complete diagonalization of the Hamiltonian, if that 
were possible. Thus an effective Hamiltonian imitates the complete Hamil
tonian so far as one particular vibronic state is concerned. 

The advantage of effective Hamiltonians is that it is easy to choose the 
basis functions to be used for their diagonalization and, in particular, the rigid 
rotor wave functions may be used for the rotational wave functions. Of course 
there are an infinite number of rotational basis functions and in general the 
effective Hamiltonian matrix does not factorize but, since interest usually 
centres on the lower rotational levels of a vibronic state, this Hamil
tonian matrix may usually be truncated at a fairly low rotational level without 
loss of accuracy. In addition, the matrix elements of the operators are well 
known. 

Estimates of the parameters in an effective Hamiltonian may be obtained 
in two ways. First, analysis of a spectrum using the effective Hamiltonian gives 
an experimental determination of their values. Secondly, although diagonaliz
ation of the complete Hamiltonian is not pOSSible, the parameters may also be 
estimated theoretically from vibronic wave functions by using perturbation 
theory. In addition to first-order contributions from the vibronic state under 
consideration, there are second- and higher-order contributions arising from 
the mixing of vibronic states. This calculation of the parameters depends 
largely on the quality of the electronic wave functions used, so that com
parison with the experimental values provides a test of the electronic wave 
functions. 
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To illustrate these statements, we consider the simple example of a rotating 
closed-shell spherical-top molecule in its ground electronic state. If vibrations 
(and translations) are neglected, the approximate Hamiltonian (Equation 
10.16) may be written as: 

(10.22) 

where Jeel is a purely electronic Hamiltonian. For a molecule with spherical 
symmetry the rotational kinetic energy can be written in terms of one inertial 
parameter B and, since vibrations are neglected,B is a function of the masses 
and the equilibrium positions of the nuclei only and commutes with the nu
clear rotational angular momentum operator N, which differs from the total 
angular momentum J by the electronic angular momentum L: 

N = J-L. (ID.23) 

The eigenvectors and eigenvalues of the electronic Hamiltonian ;;eel are 
taken to be 1/1 n and En so that: 

(ID.24) 

In this notation the ground electronic state is 1/10 and it is further assumed 
that this is non-degenerate so that the expectation value of Lover 1/10 vanishes. 
However, the perturbation JCrot introduces some electronic orbital angular 
momentum by mixing 1/10 with excited electronic states. This may be seen by 
expanding Jerot using Equation ID.23: 

(ID.2S) 

The third term is diagonal in the electronic state and may conveniently be 
absorbed in JCel , but the second term has matrix elements between different 
electronic states. The effect of this term may be accounted for by using first
order perturbation theory to obtain an improved wave function I/I~ for the 
ground electronic state: 

(ID.26) 

The expectation value of a component L j of the orbital angular momentum in 
the ground electronic state is then given to first order by: 

<Lj ) = <I/I~ ILj II/I~) 

= 2BJj ~ <I/IoILjll/ln)<I/InILdl/lo)/(En-Eo). 
n*O 

(ID.27) 

This expression for <Lj ) still contains the operator J j , but the introduction of 
orbital angular momentum into the ground state is due to molecular rotation 
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and Equation 10.27 still has to be averaged over the rotational states. 
The total Hamiltonian is from Equations 10.22 and 10.25: 

'JC = Jeel + ~BP - BJ.L, (10.28) 

where the third term in Equation 10.25 has been absorbed in Jeel. This may 
be changed into an effective Hamiltonian operating only within the electronic 
ground state, if the operator L in Equation 10.28 is replaced by its expectation 
value in that state. Thus substitution of Equation 10.27 gives the effective 
Hamiltonian: 

When it is recalled that the molecule under consideration has spherical sym
metry, Equation 10.29 can be Simplified further: 

(10.30) 
whereB'is: 

(10.31) 

Thus to consider the rotational levels of the ground electronic state it is 
only necessary to use an effective Hamiltonian (Equation 10.30) operating 
entirely within this state. The influence of the excited electronic states is ac
counted for by the use of an effective rotational constant B', which differs 
from B, the rotational constant of the nuclei alone, by a term that can be 
interpreted as the contribution of the electrons to the molecular rotational 
constant. 

Another example of the use of effective Hamiltonians concerns the g fac
tors of free radicals. Experimental measurements show that for radicals, which 
contain one unpaired electron and which are in electronic states devoid of 
electronic orbital angular momentum, the g factors often differ significantly 
from the free electron value. This occurs because spin-orbit coupling can mix 
electronic states and consequently introduce some orbital angular momentum 
into the state under consideration. This may be allowed for by using an (effec
tive) spin Hamiltonian in which the unpaired electron g factor is permitted to 
differ from the free electron value. The magnitude of the discrepancy then 
gives information about the way in which spin-orbit coupling operates in the 
particular molecule. 

These are simple examples and in general the situation is more complicated. 
Depending on the problem under consideration there can be many small terms 
in the Hamiltonian that are responsible for significant mixing of vibronic states. 
In addition, second-order perturbation theory is often not accurate enough 
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and higher-order perturbations must be included. This can be rather compli
cated, but the procedure may be simplified by using so-called degenerate 
perturbation theory; until recently the technique of degenerate perturbation 
theory suffered from the disadvantage that high-order terms were not 
Hermitian, but this fault has now been remedied. 

At present, the reduction of the molecular Hamiltonian to an effective 
Hamiltonian operating within a single vibronic state has not been given for a 
general molecule. Indeed such a reduction would probably be much too com
plicated to be of any practical use. Instead each new problem has to be treated 
on its merits, but it must be emphasized that great care must be taken to ensure 
that all possible contributions to a parameter in the effective Hamiltonian have 
been considered. This is particularly important if experimental and calculated 
values of the parameter are being compared as a test of the quality of an 
electronic wave function. 

It is not the purpose of this book to go into the details of spectral analysis, 
so again the reader is referred to the bibliography for further information. 
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CHAPTER ELEVEN 

The Hydrogen Atom 

In non-relativistic theory the hydrogen atom is one of the few cases for which 
the Schrodinger equation may be solved exactly. For this to be possible the 
proton and electron are assumed to be spinless, and the only role that the pro
ton plays is to provide an attractive Coulombic potential; the finite mass of 
the proton may, of course, be taken into account by using a reduced mass 
for the electron. 

If the proton is regarded as merely an infinitely massive source of electro
static potential, the Dirac equation for the electron may also be solved exactly. 
This chapter is devoted to its solution using this model for a one-electron atom, 
although the more general case where the nucleus has charge Ze is considered, 
since the results demonstrate that relativistic effects are increasingly im
portant for heavy atoms. It is noted that the effect of the finite mass of the 
nucleus could be largely accounted for by using a reduced mass for the elec
tron, although unlike the non-relativistic case this procedure is not exact. Even 
with the simplification of an infinite mass for the nucleus, the mathematics 
involved is tedious though straightforward and for this reason only an outline 
will be given. However, the reader should by now have acquired some facility 
in the manipulations involved in evaluating commutators, for example, and no 
difficulties should be encountered. 

11.1 Non-relativistic theory for a one-electron atom 

The solutions of the non-relativistic Schrodinger equation for a one-electron 
atom are summarized here, since they provide a starting point for the solution 
of the relativistic problem and a number of their properties will be used later. 

194 
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In addition, this brief review facilitates comparison of the relativistic and non
relativistic solutions. 

The non-relativistic Hamiltonian is: 

(1Ll) 

where r is the position of the electron relative to the nucleus and the second 
term represents the potential energy of the electron in the electric field of the 
nucleus. This Hamiltonian commutes with the components of the orbital 
angular momentum operator iii (= r" p), so that X o, f2 and Iz are separately 
constants of motion with the eigenvalues Eo, l(l + 1) and m" respectively. 

If the quantum number n (= 1,2, ... ) is introduced the eigenvalues of the 
Hamiltonian are: 

(11.2) 

where 0: (= e2/2hEoc) is the fine structure constant (Equation 8.85). Using 
spherical polar coordinates (r, e, q;) for the position of the electron relative to 
the nucleus the corresponding eigenfunctions may be written as the product 
of radial and angular parts: 

(11.3) 

for a given value of n the quantum number 1 is restricted to the values 
0, 1, ... , (n - 1), while m, can only take the values I, (/ - 1), ... , - I. All 
solutions with the same value of n have the same energy, so that the energy 
levels exhibit a degeneracy of n 2 • 

The radial functions Rn/(r) may be expressed as: 

[( 2Z)3(n-I-1)!]! 121+1 
nao 2n [en + l)W exp (- p/n)(2p/n) Ln+1 (2p/n), (11.4) 

where 
n-I-I 
~ (-l)k+l[(n + I)W(2p/n)k/(n -1-1- k)!(2l+ 1 + k)!k! 

k=O 

(11.5) 

is an associated Laguerre polynomial, p is a dimensionless quantity: 

p = Zr/ao (11.6) 

and ao (= 41TEoIi2/me2) is the Bohr radius. In general these radial functions ex
hibit nodes, that is they vanish for certain values of r; in particular, the func
tion Rn,(r) has (n - 1- I) nodes. 
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The angular functions Y1ml(0, cp) are of more interest, since they will be 
used to construct the solutions of the Dirac equation. Specifically they are 
spherical harmonics and may be written as: 

Y1ml(0, cp) = [(21 + IX/- ml)!/4n(1 + ml)!]t P1ml(COS 0) exp (imzcp), (11.7) 

where 
(- Itml dZ+ ml 

Pzml(cos 0) = 21/! (sin o)ml (d cos Ormz (sin 0)21 (11.8) 

is an associated Legendre polynomial. These angular functions also have nodes, 
the number being given by the quantum number I. However, the important 
thing to note is that they are eigenfunctions of the operators 12 and Iz : 

(11.9) 

In addition, their behaviour under the operators Ix and Iy may be expressed in 
the following manner: 

1 

I+Y1mz = (Ix + ilY)Y1ml = 

LY1ml = (Ix - ily)Y1m, = 

[(1- ml)(1 + ml + 1)]2 Yz, mz+l; 
1 (11.10) 

[(l + ml)(l- mz + 1 )]2 Y1, mrl . 

The probability density of the electron in an atomic orbital is given by the 
square of the wave function (Equation 11.3). Since the radial and angular 
parts of the wave function have (n -1- 1) and I nodes, respectively, the prob
ability density exhibits (n - 1) nodes. This fact raises the problem of how an 
electron in an atomic orbital crosses these nodes. This question can be dis
missed as being improper, since the uncertainty principle does not permit an 
electron to be located at a node anyway. Alternatively, a node may be regarded 
as being a mathematical concept of no physical Significance. However, it will 
be seen later that in relativistic theory the electron probability densities are in 
fact nodeless. 

This section is concluded by noting certain expectation values, which will 
be of use later. For an electron in an atomic orbital represented by the wave 
function t/lnlml' the expectation values for the operators r- l ,r-2, r-3 and 8(r) 
are given by: 

(r-I ) = Z/aon2; (r-2) = Z2/aijn3(l + i); 

(r-3) = Z3fagn3/(1 + i)(l + 1); (8(r» = 810Z 3/agn31T; 
(11.11) 

for an s orbital (l = 0) the expectation value of r- 3 is infinite and this fact 
causes difficulties in the next section. In addition, the expectation value of p4 
may be determined by first using Equations 11.1 and 11.2 to show that: 
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Thus: 
<p4) = m4c4a4[Z4/n4- 4Z 3ao <r-1)/n2 + 4Z2a~(r-2)] 

(m4c4Z4a4/n 3) [- 3/n + 4/(1 + !)], 

where Equations 11.11 have been used. 

11.2 The non-relativistic approximation of the Dirac equation 

197 

{I 1.12) 

{I 1.13) 

In Chapter 8 the non-relativistic approximation to the Dirac equation was 
developed. The approximate Hamiltonian may be written as: 

{I 1.14) 

where "JC 0 is given by Equation 11.1 and 3C 1 is to be regarded as a perturbation. 
The explicit form of 3C 1 may be obtained by substituting the appropriate 

electromagnetic potentials into Equation 8.142. For a one-electron atom the 
electric potential experienced by the electron isZe/47rEor, but the vector poten· 
tial vanishes. Consequently, the electric field at the electron is Zer/47rEor, 
while the magnetic field is zero. It is easy to show that the divergence of the 
electric field is: 

V.E = Ze1)(r)/Eo 
and that: 

P A E - E A P = - 2E A P = - (Zelil/27r€or), 

where iii is the orbital angular momentum operator. Thus: 

3C 1 = - p4/8m3c2 + (Ze2li2/87rEom2c2)[r-3s.l + 7r1)(r)] 

= - p4/8m3~ + !mc2Za4a8[r-3s.l + 7r1)(r)], 

(IUS) 

(IU6) 

(11.17) 

a result which may be confirmed by referring to the approximate Hamiltonian 
(Equation 9.71) for two electrons and allowing the momentum and spin of 
one of the electrons to vanish; the three terms in Equation 11.17 are, respec
tively, a relativistic correction to the kinetic energy, a spin-orbit coupling term 
and a Darwin-type correction term. 

The perturbation 3C 1 contains the spin-operator s, so that the basis func
tions (Equation 11.3) are not satisfactory as they stand. Since the components 
of s commute with 3C 0, this may be remedied by multiplying each of the orbital 
basis functions by a two-component spin function characterized by the spin 
quantum numbers 8 (= !) and m. (= ± !). Such a spin function is an eigen
function of the operators 82 and 8z with eigenvalues 8(8 + 1) (= 3/4) and m., 
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respectively, and the behaviour of the functions under the operators Sx and 
Sy is given by equations analogous to Equations 11.10 for the corresponding 
orbital angular momentum operators. However, perturbation theory using 
these new basis functions cannot be used directly, since the operator s.l in JC 1 

(Equation 11.17) has non-zero off-diagonal matrix elements between levels 
which are degenerate in zeroth order; the other operators in JC 1 only connect 
levels with different n. This problem may be overcome by choosing new basis 
functions, which are linear combinations of the old, but which are diagonal in 
the operator s.l. One way of doing this is to diagonalize the matrix of s.l for a 
given value of n, but a different approach is used here. 

The root of the problem is that the basis functions are characterized by the 
quantum numbers ml and ms , but that the perturbation JC 1 does not commute 
with the components of the operators I and s. On the other hand [2 and S2 do 
commute with JC b so that [and s are still good quantum numbers. However, 
the components of the total angular momentum operator: 

j = I + s = I + ~Cf, (11.18) 

also commute with JC 1 as one might expect from the results of Section 8.4. 
Thus, instead of using simultaneous eigenfunctions of [2, S2, [z and Sz as a basis, 
a new set of commuting operators may be used to construct new basis func
tions; explicitly these operators may be chosen to be j2, [2, S2 and j z, which 
have the eigenvalues j(j + 1), [(l + 1), s(s + 1) and mj. The way in which the 
two sets of basis functions are related and in particular the identity of the new 
set need not concern us yet and is considered in detail in the next section. The 
advantage of the new set is that they must also be eigenfunctions of the oper
ator s.l with eigenvalues & UU + 1) - 1(1 + 1) - s(s + 1)], since from Equation 
11.18: 

(11.19) 

this relationship also shows that s.l commutes with j2, 12, S2 and JC. 
Of course, the new quantum numbers j and mj are restricted. For a given 

value of j the quantum number mj can only adopt one of the (2j + 1) values j, 
U -1), ... ,- j. More importantly, reference to Equation 11.18 shows that, 
since s = &, the values of the quantum number j can only be (l + &) or (1- ~) 
for a given value of I. In addition, since j is related to the eigenvalue of the 
operator j2, it must be positive, so that for 1=0 the only value that j can take 
is + &, the value - & not being allowed. 

The specific value of j for a given value of 1 indicates whether the electron 
spin is oriented parallel or antiparallel to the total angular momentum. Another 
way of distinguishing these possibilities is to quote the eigenvalue of the 
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operator s.l or the related operator: 

K = cd + I = 2s.l + 1, (11.20) 

whose eigenvalues are given the symbol k. This new quantum number conveys 
no new information, but may be used instead of 1 or j. The reason for its 
introduction here is that its use facilitates the solution of the Dirac equation 
later in this chapter. 

The restrictions on the values of k may easily be determined. From the defi
nition of the operator K (Equation 11.20): 

K2 = 1 + 2(cr.l) + (cr.l)2 

= I +2(cr.l)+/2+icr.(l/\I) 

= 1 + (cr.l) + 12, (11.21) 

where use has been made of the relation 8.40 and the fact that 1/\1 is just 11. 
Substitution for (cr.l) using Equation 11.20 now gives the operator equation: 

(11.22) 
so that: 

1(/+ 1) = k(k-l). (11.23) 

A relationship between j and k may be obtained from Equation 11.19 by sub
stituting for s.l (Equation 11.20), 12 (Equation 11.22) and S2 (= 3/4). The 
resulting operator equation: 

(11.24) 
shows that: 

(11.25) 

Solution of the Equations 11.23 and 11.25, together with a knowledge of the 
allowed values of j and 1 gives the following possible combinations of quantum 
numbers; if k is positive: 

1 = k - 1; j = 1 +! = k - !; k = + 1, + 2, ... , + n; (11.26a) 

while for negative k: 

1 = -k; j = I-t = -k-t; k = -1,-2, ... ,-(n-1). (11.26b) 

Thus, the sign of k indicates whether the electron spin is parallel or anti
parallel to the total angular momentum; k cannot be zero, since j and I must 
both be positive. Again it is noted that k is an additional quantum number 
that gives no extra information bufleads to simplifications later. 

The new set of basis functions, characterized by the quantum numbersj, I, 
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s (= ~), k and mi' can now be used straightforwardly in a first-order perturba
tion treatment, since J( 1 now has no matrix elements between degenerate basis 
functions. The contribution from the first term in the perturbation (Equation 
11.17) is, from Equation 11.13: 

- (p4}/8m 3c2 = (mc2Z 4a4/2n3)[3/4n - 1/(/ + ~)], (11.27) 

while the spin-orbit coupling term gives: 

~mc2Za4a~(r-3s.l} = mc2Z 4a4[j(j + 1)-/(1+ 1)-s(s + 1))/4n3/(1+ ~)(/ +1), 

(11.28) 

where Equations 11.11 and 11.19 have been used. For 1= 0 the expression 
11.28 is strictly indeterminate, since j = s = ~ and both the denominator and 
numerator vanish. However, agreement with experiment is obtained if it is 
taken to be zero, a choice which is confirmed by the exact solution of the 
Dirac equation. Finally, the Darwin-type term makes a contribution: 

(11.29) 

where again Equations 11.11 have been used. Although the spin-orbit term 
vanishes for 1 = 0, this is compensated by the Darwin-type term, which only 
contributes when I is zero. 

To obtain the total first-order correction to the energy provided by the 
perturbation J( 1 the last three equations must be added. In doing this, use may 
be made of the facts that s = ~ and that j can only take the values (/ + ~) and 
(/ - ~). The result for both these possibilities is given by the same expression: 

(11.30) 

For a given value of n the maximum value of j is (n - -!) so that 11.30 is 
negative and the inclusion of relativistic corrections always leads to a lowering 
of the energy. 

The eigenvalues of the approximate Hamiltonian (Equation 11.14) are thus: 

E = mc2{1 - Z2a 2/2n2 - (Z4a4/2n 3)[1/(j +~) - 3/4n) + O(Z6a 6)}. 

(11.31) 

In the non-relativistic theory all levels with the same value of n are degenerate, 
but this degeneracy is lifted when the relativistic corrections are included. 
However, for a given n the energy of a level only depends on the quantum 
number j and not on I. If only the spin-orbit coupling had been included, the 
energy would have been a function of 1 as well, but the relativistic kinetic 
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energy correction ensures that levels characterized by the same values of nand 
j, but different values of I, are degenerate. This degeneracy persists even if the 
Dirac equation for a one-electron atom is solved exactly, as will be seen in 
Section 11.7. 

If the notation used for a level is nlj the first few levels are: 

1s!(k = + 1) 
2 

[2S1 (k = + 1), 2pl(k = - 1)], 2p3f].(k = + 2) 
2 2" 

[3s1 (k = + 1), 3P1 (k = - 1)], [3P3/2(k = + 2), 3d3/2(k = - 2)] , 
2 2 

3ds12(k = + 3) 

(11.32) 

where degenerate levels are enclosed in square parentheses. Of course, each of 
these levels has a further (2j + 1 )-fold degeneracy corresponding to the poss
ible values of m j, but this degeneracy is only removed by an external magnetic 
field. Finally, it should be noted that, although the Dirac theory predicts that, 
for example, the 2S1 and 2P1 levels are degenerate, experiment shows that in 

2 2 

the hydrogen atom the 2s! level has a slightly higher energy than the 2Pt level. 
This effect, which is called the Lamb shift, may be explained by quantum 
electrodynamics and is considered briefly in Section 11.9. 

11.3 The simultaneous eigenfunctions ofj2,jz, [2, S2 and K 

In the preceding section use was made of basis functions which are eigenfunc
tions of the operators j2, 12, S2, K and j z' but they were not related explicitly 
to the original basis functions which are eigenfunctions of [2, S2, Iz and Sz. Their 
identity must now be considered and a number of additional properties estab
lished, since they are to be used in the exact solution of the Dirac equation. 

Since they are linear combinations of the original basis functions, they must 
be two-component functions, which can be written as: 

(11.33) 

where 1/11 and 1/12 are functions of space coordinates only; in this form 1/1 is 
automatically an eigenfunction of S2 with eigenvalue s(s + 1) = 3/4. It is also 
an eigenfunction of 12 with eigenvalue 1(1 + 1), if the two components 1/1 1 and 
1/12 are both chosen to be a product of a radial function and spherical harmonics 
of the same degree: 
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(11.34) 

The relationship between ml and m; may be established by using the condition 
that I/; is to be an eigenfunction of jz: 

where Equation 11.18 and the matrix representation (Equations 1.36) of Oz 

have been used. Reference to Equations 11.9 and 11.34 shows that m; = ml + 1 
and that mj = ml + &. 

The next stage is to show that the radial functions,fl(r) andf2(r), can only 
differ by a constant. To do this use is made of the operator K (Equation 11.20), 
which can be written as a two-by-two matrix with the aid of the matrix repre
sentations of the components of cr: 

(11.36) 

ExpanSion of this relation gives two equations connecting 1/;1 and 1/;2, but only 
one is needed: 

(I 1.37) 

On substitution for I/; 1 and 1/;2 (Equations 11.34) and use of Equations 11.9 
and 11.10 this gives: 

(I 1.38) 

Thusfl andf2 only differ by a constant and I/; can be written as: 

I/; = j(r)x, (11.39) 
where 

(11.40) 

The constants CI and C2 may easily be obtained, since their ratio is given by 
Equation 11.38 and, if fer) is normalized, normalization of I/; requires that 
I cI12 + I c212 = 1. In quoting the results two possibilities may be recognized 
depending on whether k is greater than or less than zero; these two cases are 
distinguished by a superscript + or -, respectively. For k positive (Equations 
11.26a): 
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(11.41) 

where 
(11.42) 

while for k negative (Equations 11.26b): 

(11.43) 

where 

It is also easy to confirm that these two-component angular functions 
X/mj behave in the expected manner under the various operators: 

, '2x/mJ. = ,'(,' + l)X±' " X± = m·x± . , jmj' Z jmj J jmi' 

[(j - mj)(j + mj + 1)]~X~ . 1; 1.mJ+ 

[(j + mj)(j- mj + l)]!X~.mrl; 
(11.45) 

K Xl~ml' ky~ = ± (j + -21 )X~ . ''1mj Imj 

There is one other property of these functions which is needed later, and 
this concerns their behaviour under the operator (a.r)/r, which is the radial 
component of a. It is easy to show that this operator commutes with j, but 
anticommutes with K. Consequently, the result of operating on X;m. with 
(a.r)/r is a function which is also an eigenfunction of P and jz with th~ same 
quantum numbers j and mj. and which is an eigenfunction of K but with an 
eigenvalue differing by a factor of - 1 from that of X:mj . Thus: 

[(a.r)/r ]X~ = ajm'X~ , 01.46) 1mj J 1mj 

where ajmj is a constant that must now be determined. 
It may first be shown that ajmj is independent of mj, since from Equations 

11.45 and 11.46: 

j+ [(a.r)/r] x7m. = [(j - mjXj + mj + 1)]tajm'X~ 1 01.47) J 1 J.mj+ , 
while 

[(a.r)/r]j+~ = [(j-mj)(j+mj+l)]tajm'+IX~ I' (11.48) ''1mj . 1 1. mj+ 

Now, since (a.r)/r and i+ commute, ajmj is the same as aj.mj+l and in future 
the eigenvalue of jz may be omitted. 
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To evaluate at the special case when (J = 0 is considered; the operator 
(a.r)/r is then just az , while for a spherical harmonic: 

1 

Y1ml(J=0) = [(2/+1)/41T)2 omro , 

so that from Equations 11.41 to 11.44: 

Thus for (J = 0: 

[(a.r)/rJ X:mj 

so that aj = 1. The required result is therefore: 

[(a.r)/rJ X:mj = xtmi' 

(11.49) 

(11.50) 

(11.51 ) 

(11.52) 

since, although it has been determined for the special case (J = 0, at is a con
stant and independent of (J, as may be seen by noting that the square of (a.r)/r 
isjust 1 by Equation 8.40. 

11.4 Commutation relations for the Dirac Hamiltonian 

In a one-electron atom the electron experiences no magnetic potential, so that 
the Dirac Hamiltonian is: 

J( = (3mc2 + ca.p - ecp, (11.53) 

where the electric potential cp is Ze/41T€or. Since cp commutes with the orbital 
angular momentum operator Iil, the results of Section 8.4 for a free electron 
still hold and J( does not commute with I or a. However, J( does commute 
with the total angular momentum j (Equation 11.18) and consequently the 
eigenfunctions of the Dirac Hamiltonian are also eigenfunctions of the oper
ators j2 and jz. 

Although the Dirac Hamiltonian also commutes with a2 , it differs from the 
non-relativistic case in that it does not commute with 12 or a.1. Nevertheless, 
the new operator: 

K = (3(a.l + 1) (11.54) 
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does commute with 3(, land jz, and may also be used to classify the eigen
functions of the Dirac Hamiltonian. It is similar to the operator (Equation 
11.20) used in the non-relativistic theory and is denoted by the same symbol, 
but since K now possesses a four-by-four matrix representation no confusion 
should arise. It may be noted that the operator (j(fJ.I) does not commute with 
the Dirac Hamiltonian and the non-relativistic operator was chosen to be 
(fJ.l + 1) rather than fJ.I so that the same eigenfunction k can be used in both 
the exact and the approximate theory. 

Since ;JC, j2, jz and K aU commute with each other, the solutions of the 
Dirac equation are simultaneous eigenfunctions of these operators. However, 
an eigenfunction 'IT must now have four components and may be written in 
terms of two two-component functions, tP'+ and tP-: 

(11.55) 

Since 'IT is to be an eigenfunction of j2,jz and K (Equation 11.54) with eigen
valuesj(j + 1), mj and k, respectively, tP+ and tP- possess the following proper
ties: 

(11.56) 

The last of these three relations is obtained by using the explicit form of the 
Dirac matrix (3; here the operator (fJ.l + 1) has a two-by-two matrix representa
tion and is just the operator (Equation 11.20) used earlier. Comparison of 
Equations 11.56 and 11.45 now shows that the two-component functions 
tP+ and tP - may be taken to be the functions 11.41 and 11.43 of the previous 
section; again two possibilities arise depending on whether k is positive or 
negative. Explicitly: 

'IT = ( tP + _) = (f(r)X~mj), 
tP- g(r)Xjmj 

(11.57) 

where the upper signs refer to k = j + k and the lower to k = - (j + i). 
Finally, we may record that the result of (fJ.r)/r operating on these four

component functions is: 

(11.58) 
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This result may easily be derived by using Equation 11.52 and recalling that 
the four-by-four matrix representation of a is just the direct product of the 
two-by-two representation with the two-by-two unit matrix. 

II.S The Dirac equation in polar coordinates 

The components of the solutions of the Dirac equation have now been expressed 
as the products of radial and angular functions. To proceed further it is neces
sary to express the Dirac Hamiltonian itself in polar coordinates. Substitution 
of Equation 11.57 into the Dirac equation will then give equations for the 
radial functions fer) and g(r). 

To perform the transformation to polar coordinates, we use the fact that, 
from Equation 2.38: 

r A (r A V) = r(r.V) - r2V. (11.59) 

Rearrangement of this equation shows that the operator V may be split into a 
radial and an angular part: 

(11.60) 

The radial part involves (I/r)(r.V), which may readily be shown to be just 
(a/ar), while the angular part contains (r A V), which is related to the orbital 
angular momentum operator lit Thus, the operator ( •. p) is given by: 

•. p = - ili •. V = - (ili/rX •. rxa/ar) - (li/r2 )..(r 1\ 1). (11.61) 

The way in which the angular functions behave under operators involving 
a is already known and Equation 11.61 can be rewritten in terms of a by re
calling that a = pa (Equations 8.19). In addition, the relationship 8.40 shows 
that: 

(a.rXa.l) = ia.(r 1\ I), (I 1.62) 

where the fact that r.l vanishes has been used. Finally, multiplication of both 
sides of Equation 11.54 by (j followed by rearrangement gives: 

a.l = (jK - 1, (11.63) 

so that Equation 11.61 becomes: 

a.p = - (ili/r)p(a.r)[a/ar- (l/rX(jK - 1)]. (I 1.64) 

Substitution of Equation 11.64 into Equation 11.53 now gives the Dirac 
Hamiltonian in polar coordinates: 

3f = (jmc2 -Ze2/4Tr€or-(ilic/r)p(a.r)[a/ar-(I/r)((jK-l)]. (11.65) 



The Hydrogen Atom 207 

In seeking solutions of the equation JC'l' = E'l', substitution of Equation 11.57 
for 'l' and use of the explicit forms of the Dirac matrices (3 (Equation 8.23) 
and p (Equation 8.25) yields a pair of coupled two-component equations. The 
way in which the two-component angular functions behave under the operators 
(a.r)/r and (aJ + 1) is given in Equations 11.58 and 11.56, so that: 

~mJ (11.66) 
[(me2 - Ze2/41T€or - E)[ - (ilie/r)(k + l)g - ilie(ag/ar)]x~ . = 0) 

[(- me2 - Ze2/41T€or - E)g+ (ilie/r)(k -1)[ - ilie(af/ar)]X;mj = 0 . 

The angular functions are now just multiplicative factors and may be dropped. 
The resulting radial equations are simplified by using two new functions: 

F = r[; G = irg. (11.67) 

If, in addition, the fine structure constant a and the energy parameter € 

(= E/me2 ) are introduced, then after division throughout by lie the equations 
become: 

[(me/Ii)(1-€)-Za/rlF-(aG/ar)-kG/r = O} 
[-(me/Ii)(1 +€)-Za/r)G + (aF/ar)-kF/r = 0 . 

(11.68) 

These equations may be checked by considering their non-relativistic limit, 
when the coefficient of G in the second equation is of the order of - 2me/1i 

so that: 
G "" li(aF/ar - kF/r)/2me. (I 1.69) 

Substitution of this into the first of Equations 11.68 now gives: 

a2F/ar2 - k(k - 1)F/r2 - (2me/Ii)[(me/Ii)(l- €) - Za/r)F = 0, (11.70) 

an equation which may be identified with the usual non-relativistic radial 
equation by replacing F by rR, identifying k(k - 1) with l(l + 1) (Equation 
11.23) and allowing for the different energy origins. 

11.6 Solution of the radial equations 

To solve the radial equations (11.68) series solutions are sought, but in doing 
this two conditions may be imposed. First, we may restrict ourselves to bound 
states, so that € (= E/me2 ) is less than unity. Secondly, for bound states it 
must be possible to normalize the eigenfunctions. 

A starting point for the solution is provided by solving the radial equations 
for the special case when r tends to infinity and they reduce to: 



208 Advanced Molecular Quantum Mechanics 

(aG/ar) "" (mc/h){l- e)F} 

(aF/ar) "" (mc/ftXl + e)G . 
(11.71) 

These equations may be uncoupled by substituting one in the other to give 
two second-order equations: 

(a2F/ar2) "" (mc/h)2(1 - ( 2)F; 

the normalizable solutions of which are: 

F "'" CF exp [- (mc/h){l - ( 2)!r]; 

G "" CG exp [- (mc/h)(1 - e2)!r]; 

(l1.72) 

(l1.73) 

the original equations (11.71) show thatthe constantscF andcG are related by: 

(l1.74) 

For bound states it is clear from the definition of e that F and G are both real 
and that CF ~ CG, so that the components of I/J + and 1/1_ may again be thought 
of as the large and small components, respectively. 

The solutions (Equation 11.73) for very large r suggest that the substitu-
tions: 

I 

F = (l + e)' exp (- p/2Xu + v); 
I 

G = {l - e)2 exp (- p/2)(u - v) 
(l1.75) 

may be appropriate, where u and v are new functions of r which, because of 
Equation 11.74, are subject to the condition that v~ uwhen r tends to infmity. 
In Equations 11.75 the new dimensionless variable: 

P = (2mc/h)(l - ( 2)!r (l1.76) 

has been introduced; no confusion should occur between this and the Dirac 
matrix which has the same symbol. Substitution of Equations 11.75 into Equa
tions 11.68 followed by rearrangement and cancellation of the exponential 
terms gives equations in (u + v) and (u - v), but by addition and subtraction a 
pair of coupled equations in u and v themselves are obtained: 

I I } au/ap = [p -Zae{l- e2f2](u/p) + [k-Za(I- e2fi](v/p) 
I I (l1.77) 

av/ap = [Zae{l - (2)-i](v/p) + [k + Za{l - e2fi](u/p) . 

We now investigate the possibility that u and v may be written as ascending 
power series in p: 
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U = /' ~ a pV. v=o v , v = /' i; b p" v=o v , (11.78) 

where one (or both) of ao and bo is non-zero. Substituting in Equations 11.77 
and equating the coefficients of pA+V-l on the two sides of the equations gives: 

(A + v)av = aV - 1 - Za€{1 - e2r~av + [k - Za(1 - €2r!]b v 1 
1 1 (11.79) 

(X + v)bv = Zae(1 - e2r'ibv + [k + Za(1 - e2r'i)av . 

For the special case v = 0, the coefficient aV - 1 is zero by definition and a pair 
of coupled equations in ao and bo results: 

For non-trivial solutions of these equations both ao and bo must in general be 
non-vanishing, so that the series U and v both start at the same power of p. To 
determine this power, that is to determine the value of X in Equations 11.78, 
use can be made of the fact that for non-trivial so~tions the determinant of 

r 

the two-by-two matrix in Equation 11.80 must vartlsh. Expansion of the de-
terminant gives a quadratic equation in X, the solutions of which (are: 

A. = ± (k2 - Z2a2)!. (11.81) 

A decision may be made between the two possibilities for X by invoking 
the condition that the eigenfunctions of the Dirac Hamiltonian must be nor
malizable for bound states. Since the angular functions are already normalized, 
this normalization condition reduces to one for the radial functions: 

(11.82) 

Here use has been made of Equations 11.57 and 11.67 and the fact that F and 
G are both real; the extra factor of ,2 on the left-hand side of the equation 
comes from the· volume element in polar coordinates. Now as p approaches 
zero (F2 + G2) behaves as p2A and for the normalization (Equation 11.82) to 
be possible X must be greater than -~. Since the minimum value that k 2 may 
adopt is + 1, the positive solution for X must be taken. (For k 2 = 1 and Z ~ 
119 the negative solution cannot be excluded, but this possibility may safely 
be ignored until superheavy elements have been made.) Thus for atoms with 
low atomic number X is approximately Ikl. 

To investigate the coefficients av and bv further it is convenient to define a 
new dimensionless quantity: 

n' = - X + Zae(1- e2r~. (11.83) 
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From the second of Equations 11.79 the ratio av/bv is seen to be: 

av/bv = - (n' - v)/[k + Za(1 - e2r~1 = + (n' - v)ao/n'bo, (11.84) 

while use of this result with the first equation gives, after some manipulation, 
the recurrence relation: 

av = - (n' - v)av_dv(2X + v). (11.85) 

This equation leads to the general expression for av : 

(- I)V(n' - v)(n' - v + 1) ... (n' - l)ao 
a = 

v v!(2X + vX2X + v - 1) ... (2X + I) (I 1.86) 

and a similar expression for bv may be obtained using Equation 11.84: 

(-I)V(n' -v+ I)(n' -v+ 2) ... n'bo 
bv = . 

v!(2X + v)(2X + v-I) ... (2X + I) (Il.87) 

The ratio of ao and bo is given by Equation 11.84, but their actual magni
tude is determined by the normalization condition (Equation 11.82). However, 
although X has been chosen so that F and G do not diverge as r approaches 
zero, their behaviour when r becomes infinite has yet to be considered. In 
particular the series u and v must not diverge faster than exp (- p/2) converges 
as r increases. For large values of v both aV/aV-1 and bv/bv- t are approximately 
l/v, so that the series u and v both behave as exp (p) and F and G diverge as 
exp (P/2). This behaviour prevents the normalization that is necessary for 
bound states, but may be avoided by insisting that both the series u and v ter
minate at a finite value of v. Reference to Equations 11.86 and 11.87 
shows that this only happens if n' is a positive integer. The series u then termi
nates at v = n', while v terminates at v = n' + 1. 

The case when n' = 0 requires special consideration, since, although v termi
nates at v = 1, Equation 11.86 shows that the series u only terminates if ao 
itself vanishes and u = O. From Equation 11.84: 

(I 1.88) 

so that this possibility is acceptable provided the denominator does not vanish 
as well as the numerator n'. Now for n' = 0: 

(I 1.89) 

where Equations 11.81 and 11.83 have been used. Solution of this equation 
for k gives: 

(11.90) 
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for the negative solution the denominator in Equation 11.88 vanishes and 
ao/bo is indeterminate, but the positive solution is permissible. Thus there are 
solutions for n' = 0, but they are only allowed if the quantum number k is 
positive. 

To complete the solution of the radial equations for bound states it is only 
necessary to normalize the radial functions, that is to determine the magni
tudes of ao and boo This is not a trivial problem, since F and G involve an ex
ponential and, because ~ is non-integral, fractional powers of p. Nevertheless, 
normalization is possible using gamma functions, which have to be evaluated 
numerically and may be obtained from tables; the inclusion of the details here 
would serve little purpose. 

11.7 The energy levels 

Although the eigenfunctions of the Dirac Hamiltonian have now been deter
mined, the eigenvalues E (= eme2 ) have yet to be found. Now from Equation 
11.83: 

(11.91) 

where ~ is (~- Z2( 2)t and n' is a positive integer or zero. Solution of this 
equation gives: 

E = me2e = me2 [I + (Za/(n' + ~»2rl. (11.92) 

At this stage it is convenient to introduce: 

n = n' + Ikl. (11.93) 

Since n' = 0, 1,2, ... and the minimum value of Ikl is + 1, the new quantum 
number n can be any positive integer but not zero. In addition, for a given 
value of n the maximum value that I k I can take is n, although k = - n is not 
allowed, since this corresponds to n' = ° for which k cannot be negative. Thus, 
the possible values of k for a given n are 1, 2, ... , n if k is positive and - 1, 
- 2, ... , - (n - 1) if k is negative. When it is recalled that k is ± (j + ~), it 
may be seen that j, k, and n can have just the same values as in the approximate 
two-component theory (Equations 11.26) and in particular the new quantum 
number n may be identified with the non-relativistic principal quantum num
ber n. In the four-component theory [is no longer a good quantum number, 
although the large and small components, "'+ and "'_, are separately eigenfunc
tions of [2 as may be seen from Equations 11.41, 11.43 and 11.57. It was for 
this reason that the quantum number k was introduced earlier. Nevertheless, 
it is convenient to use the notation 11.32 for the different levels, the [ value 
for the large components being employed. 
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Substituting for n' and A in Equation 11.92 gives finally for the eigenvalues: 

(11.94) 

This may be expanded as a power series in (Za)2: 

E = me2 [1 - Z2a2/2n2 - (Z4a4/2n3)(l/lkl- 3/4n) + O(Z6a6»); (11.95) 

since Ikl = (j + !), this is the same result as that obtained earlier (Equation 
11.31). However, as Z increases such an expansion becomes less satisfactory, 
since the expansion parameter gets larger, and the exact solution (Equation 
11.94) should be used. 

As for the approximate theory, the exact energy (Equation 11.94) only 
depends on n and I k I, so that degeneracies arise as shown in 11.3 2. 
These degeneracies occur because in a one·e1ectron atom the potential ex
perienced by the electron is Coulombic; in many-electron atoms this is no longer 
true and the degeneracies are removed. However, even in one-electron atoms 
some of the degeneracies are lifted by the Lamb shift, which is the subject of 
Section 11.9. 

11.8 Comparison of Dirac and non-l"elativistic atomic orbitals 

The eigenfunctions of the Dirac Hamiltonian, which may be said to represent 
Dirac orbitals, are four-component functions in contrast to non-relativistic 
atomic orbital functions, which have one component, and the two-component 
functions of the approximate theory. 

It has already been seen that for bound states the two components of a 
Dirac eigenfunction involving the radial function F are the large components, 
while those involving G are the small components. The ratio of the amplitudes 
of the small and large components thus has the approximate magnitude: 

I 

G/F "'" [(1 - e)/(l + €»)2, (11.96) 

where Equations 11.75 have been used. Substitution for € and expansion of this 
ratio as a power series in Zex then gives: 

G/F"'" Za/2n; (11.97) 

classically this is just the ratio of the Bohr velocity of the electron to the 
velocity of light. This shows that for light nuclei the small components are 
indeed not very important, but for large Z their influence is not negligible. 
For instance for Z = 80 and n = 1 the ratio of the small components to the 
large components is approximately 0.3. Even when this is squared to give the 
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ratio of the contributions to the probability density, it is seen that the small 
components are responsible for about ten per cent. 

To compare and contrast relativistic and non-relativistic atomic orbitals, 
approximate Dirac eigenfunctions for n = 1 and n = 2 are used. These are 
given in the table and are correct to order ZOt. They are normalized to this 
order provided each is multiplied by the factor rr-!(Z/ao)3f2, where ao is the 
Bohr radius; in addition, the dimensionless parameter p (Equation 11.76) is to 
this approximation just Zr/ao, the same quantity as that employed in the non
relativistic theory (Equation 11.6). Although these functions become less ac
curate as Z increases, they exhibit the same qualitative features as the exact 
functions, and are easier to handle; the results obtained may be generalized to 
higher values of n without difficulty. 

The probability density distribution I \{I 12 is the real interest, but radial 
parts of the individual components of \{I are considered first; the angular parts 
involve spherical harmonics and do not need special consideration. For each 
four-component function there are two radial functions, one for the large 
components 1(r) and one for the small componentsg(r). For I there are n' or 
(n' - 1) nodes in the radial function depending on whether k is positive or 
negative, respectively. If the value of I appropriate to the large components is 
used, we may say that I has (n -/- 1) nodes. This result is the same as that 
for non-relativistic orbitals and indeed, to the order of accuracy used in the 
table, the radial functions of the large components are the same as those in the 
non-relativistic theory. For g the number of radial nodes is n' regardless of the 
sign of k; this means that when k is positive the large and small components 
have the same number of radial nodes as each other, and in the special case 
when n' = 0 and k can only be positive I and g are both nodeless. The impor
tant thing to note is that, although the large and small components may have 
the same number of radial nodes, a node in g never occurs at the same value of 
p as a node in the corresponding radial function f. 

When I \{I 12 is considered it is immediately apparent from the table that it 
may be factorized into a radial and an angular part. This is because, although 
11/1+ 12 and 11/1_12 have different radial dependences, their angular behaviour is 
similar and the ratio of 11/1+ 12 to 11/1_12 is independent of 0 and cp. 

The radial part of I \{I 12 is thus a linear combination of 1/12 and Ig12. Since 
the large components predominate, the radial dependence is very like that of 
the corresponding non-relativistic orbitals, but unlike these the Dirac orbitals 
have no radial nodes. Although I has nodes at the same places as the corres
ponding non-relativistic radial functions, g never vanishes at these points. As 
an example the 2s! orbital may be considered. At p = 2 both/and the non-

2 

relativistic 2s radial function possess a node, but the node in g occurs at 



Table 11.1. Eigenfunctions of the Dirac Hamiltonian. for a one-electron atom 
correct to order Zcx. Each function should be multiplied by a factor 1T - ~(Z /ao) 312 , 

where ao is the Bohr radius; p is the dimensionless parameter Zr/ao. 

Is! (n = 1,j=~, k = + 1, n' = 0) 
2 

2S1 (n = 2, j = k, k = + 1, n' = 1) 
1 

1 

2../2 

e-P/~1 - p/2) 

o 
kiZcxe-P!2(1 - p/4) cos (J 

!iZcxe-PI2 (1 - p/4) sin (Jeiq, 

2pl (n = 2,j = k, k = - 1, n' = 1) 
2 

1 

4../6 

e-P12p cos () 

e-pl2sin () eiq, 

- (3/2)iZcxe-P/2(1- p/6) 

o 

o 
e-P 

!iZcxe-P sin ()e-iq, 
2 

- kiZcxe -P cos (J 

o ) e-P/2( 1 - p/2) 

tiZcxe-P12 (1 - p/4) sin (Je-iq, 

- kiZcxe-PI2 (1 - p/4) cos () / 

e-pl2 p sin () e - iq, 

1 - e-P12 p cos () 

4../6 0 

- (3/2)iZcxe-PI2(1 - p/6) 
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2P312(n = 2,j = 3/2, k = + 2, n' = 0) 

mj = + 3/2 

1 0 

8 (I/4)iZae-P12p sin 8 cos 8eicP 

(I/4)iZae-P/2p sin2 8e2icP 

e-P/2 p cos 8 

1 - ~e-P/2 p sin 8eicP 

4V3 -(I/8)iZae-PI2p(1-3cos28) 

(3/8)iZae-PI2 p sin 8 cos 8eicP 

215 

-3/2 

o 
1 e -pl2p sin 8e-icP 

8 (1 /4)iZae-PI2p sin2 8e-2icP 

- (I/4)iZae-P/2 p sin 8 cos 8e-icP 

1 
mj = -2" 

1 '-pl2 . 8 -icP 2"e p sm e 

1 e-P/2 p cos 8 

4V3 (3/8)iZae-p /2 p sin 8 cos 8e-icP 

(I/8)iZae-PI2 p(l-3 cos2 8) 

p = 4. In fact igl 2 at p = 2 is of the order of (Z/ao)3Z2a? exp (- 2)/8 and, 
although this is very small, it ensures that the 2s! orbital is radially nodeless . 

• Another qualitative feature of the radial part of Dirac orbitals is that the 
probability charge distribution is slightly contracted compared with the corres
ponding non-relativistic orbitals. This cannot be seen from the approximate 
functions in the table, since the effect is of higher order than Za. However, it 
might be supposed that, since the inclusion of relativistic effects leads to a 
slight lowering of the electron's energy, this corresponds to the electron being 
on average closer to the nucleus. This naive argument also suggests that the 
contraction should be more marked for Ikl = 1 and for low values of n; de
tailed consideration of the exact eigenfunctions shows that these statements 
are correct. 

The angular dependence of Dirac orbitals has yet to be considered. Unlike 
the radial part it is not influenced by the small components, since IW+12 and 
Iw_12 are both proportional to the same angular function. We will see that, in 
contrast to non-relativistic orbitals, there are no angular nodes, but this is to 
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z 

j=312,~I=1/2 ----+--+--1r----
(I+3cos28) 

j=312, InpI =3/2 -+-----+----_+_ 
4sin28 

j=512, ImJI = 312 ----r--+--..-,E---
sin28 (16-15 sin28) 

Fig. 11.1. The angular distribution for selected Dirac orbitals. Each is cylin
drically symmetric about the z axis. 

be regarded as being the result of a correct handling of spin using two-com
ponen t wa vefunctions as in Section 11.3. 

The first thing to note is that the probability density distribution associated 
with a Dirac orbital is independent of the polar coordinate t/J, so that Dirac 
orbitals are all cylindrically symme.tric about the z axis. In addition, the angu
lar dependence of ,,,,,2 depends only on the quantum numbersf and mJ; for 
example, when f = ~ the orbital is sph;erically symmetric as may be seen ex
plicitly for Is!, 2s! and 2p! by reference to the table. 

2 2 2 

When the value off differs from~, the angular dependence is more compli-
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cated, but two limiting cases may be distinguished. For Imj 1 = ! the angular 
dependence resembles a dumb-bell with its axis along the z axis; for j = 3/2 
the angular part of 1'1112 is proportional to (1 + 3 cos2 8) and is plotted in Fig. 
11.1. At the opposite extreme, when Imj 1 takes its maximum value of j, the 
distribution is toroidal and an example of this case is also given; the specific 
case shown is also for j = 3/2, the angular dependence being proportional to 
4 sin 2 8. For intermediate values of m J the orbitals are also toroidal, but with 
a number of lobes, the example in the figure being for j = 5/2 and mj = 3/2, 
for which 1'1' 12 is proportional to sin2 8(16 - 15 sin2 8). 

Although the first angular function shown in the figure is not unlike that of 
a non-relativistic pz orbital, it has no node perpendicular to the z axis. The 
other angular functions are also nodeless, since they are cylindrically symmet
ric about the z axis. The lack of angular nodes is a general property of Dirac 
orbitals. 

We have already seen that relntivistic orbitals have no radial nodes, so that 
it may be concluded that except at the nucleus itself they have no nodes at all; 
there are no radial nodes because the eigenfunctions of the Dirac Hamiltonian 
have four components and the small components prevent them occuring, while 
the lack of angular nodes may be attributed to the fact that the electron has 

• 1 
spm 2· 

This is in sharp contrast to non-relativistic orbitals, which in general have 
both angular and radial nodes, a feature which raises the question of how an 
electron gets from one part of an orbital to another, if there is a node in be
tween. However, this problem no longer arises if relativistic atomic orbitals are 
used, since they are nodeless. 

11.9 The Lamb shift 

Both the exact (Equation 11.94) and approximate (Equation 11.95) eigen
values of the Dirac Hamiltonian for a one-electron atom show that levels 
characterized by the same values of the quantum numbers n and j are de
generate. However, this degeneracy is in fact removed by the Lamb shift, 
which is of quantum electrodynamic origin. The largest manifestation of this 
effect occurs for the n = 2 levels in the hydrogen atom and is illustrated in 
Fig. 11.2, which shows the successive effects on the non-relativistic energy of 
including relativistic effects and the Lamb shift; the energy separations are 

given in terms of frequency (1 GHz = 109 Hz == 0.03336 em-i) and are to be 
compared with the non-relativistic energy lowering of 8.22 X lQsGHz relative 
to the rest energy of the electron. 
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10·9 49 GHz 

Non-felotlvI sflc Relativistic Lomb 'hift 

Fig. 11.2 The effect of relativistic corrections and the Lamb shift on the 
energies of the n = 2 levels in the hydrogen atom. 

Although the Lamb shift is a quantum electrodynamic effect and cannot 
be explained fully here , an attempt will be made to indicate its origin, since 
at least two authors have wrongly attributed it to the Zitterbewegung of the 
electron. As we have seen, the concept of Zitterbewegung arises when the non
relativistic approximation to the Dirac Hamiltonian is used (see Section 
8.1O). The Darwin-type term then accounts for the correction to the 

electrostatic interaction energy between the nucleus and the electron due 
to the smearing out of the electron's charge that is associated with the Zitter
bewegung; this correction term was included in the approximate theory of 
Section 11.2. However, if the Dirac equation itself is solved this effect is 
automatically accounted for and mention of the Zitterbewegung is out of 
place and misleading. Moreover, the relativistic corrections to the energy are 
of order mc2Z 40:4 and in particular the Darwin-type correction term in the 
approximate theory may be seen to be of this order by reference to Equation 
11.29. The Lamb shift, on the other hand, is smaller than this by one order 
in 0:. 

The confusion has arisen because an estimate of the magnitude of the 
Lamb shift may be obtained using arguments similar to those used in Section 
8.10 to explain the Darwin term on the basis of the Zitterbewegung. There 



The Hydrogen Atom 219 

it is shown that, if the electron has a highly oscillatory motion superimposed 
on its mean position r, then the correction to an electrostatic interaction 
energy - ef/J(r) is given approximately by: 

(11.98) 

where f/J(r) is the scalar potential and IS is the instantaneous deviation of the 
electron from its mean position. For the Zitterbewegung the time average 
(~2) is of the order of (Ft/mc)2. 

The Lamb shift may be thought of as arising from an additional smearing 
out of the electron's charge that is superimposed on that due to the Zitter
bewegung. This arises from the quantization of the electromagnetic field, 
which is the subject of the next chapter. Nevertheless, we may anticipate this 
discussion to the extent of recognizing that the quantized field has zero-point 
energy in the same way that a quantized harmonic oscillator does. This result 
is not unexpected, since the classical field may be described in terms of a 
collection of classical harmonic oscillators (Section 6.7). Consequently, even 
a field-free vacuum contains electromagnetic energy in the form of so-called 
'vacuum fluctuations', which interact with the electron and cause it to under
go a rapid random motion. Detailed calculations, which cannot be presented 
here, show that for an electron in an atom the mean square deviation of this 
random motion is: 

(11.99) 

which is smaller than that due to the Zitterbewegung by one order in Q. 

If the result (Equation 11.99) is accepted, the crude model of Section 
8.10 may be used to estimate the magnitude of the Lamb shift. In addition 
to (~2) the expression 11.98 involves V2cf>(r) and in a one-electron atom this 

is just - Ze6(r)/eo as may be seen from Equation 11.15. Thus the Lamb 
shift is given by the operator: 

(11.100) 

The expectation value for an electron in a non-relativistic 8 orbital with 
principal quantum number n is from Equations 11.11 just: 

(11.101) 

while in other atomic orbitals it vanishes. Although the model used is crude, 
more sophisticated approaches give the same result for non-relativistic 
orbitals. 

For the hydrogen atom 11.101 gives 1.040 GHz for the Lamb shift of the 
28 level; the 2p levels are unaffected. This is to be compared with 1.058 GHz, 
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the experimental separation of 2s! and 2p!. The discrepancy has been ex-
2 2 

plained to within 1 MHz by relativistic, higher-order quantum electrodynamic 
and other effects. These corrections also produce small shifts in levels other 
than s levels. Lamb shifts have also been observed in the hydrogen atom for 
n > 2 and in other one-electron atoms and they have all been explained 
quantitatively. They also occur in many-electron systems, but are more com
plicated; electron-electron interactions are of course present and full calcu
lations have only been performed for the simplest species. 

11.10 More complicated systems 

So far this chapter has been devoted to the relativistic treatment of one
electron atoms in which the nucleus is assumed to be stationary and spinless. 
It has already been remarked that the finite mass of the nucleus may largely 
be accounted for by using a reduced mass for the electron and, except for 
a few remarks about the influence of nuclear spin, this section is concerned 
with many-electron atoms. 

The presence of a nuclear spin magnetic moment in a one-electron atom 
may be effectively allowed for by using perturbation theory, since the cor
rections introduced are relatively small. If non-relativistic atomic orbitals are 
employed as spatial basis functions, it is appropriate to use a perturbation 
based on the approximate Hamiltonian of chapter 10. In particular the 
nuclear hyperfine interaction arises from the Fermi contact term (10.6f); the 
dipole-dipole term averages to zero for an atom because of its spherical sym
metry. However, it is only permissible to use first-order perturbation theory 
for the Fermi contact interaction, since it has its origin in the Breit operator. 
Indeed, for the hydrogen atom the estimated hyperfme splitting is infinite if 
second-order perturbation theory is used, although the cause of this diver
gence has also been attributed to treating the proton as a point particle. 

An alternative approach is to employ Dirac atomic orbitals but, although 
it is tempting to use, for example, the Fermi contact operator as a pertur
bation, this is not permissible, since it is a non-relativistic operator. If it is 
used, even first-order perturbation theory gives infinite answers, since Dirac 
orbitals with j = ! have weak singularities at the nucleus as the exact radial 
functions of Section 11.6 show. The correct procedure is to substitute the 
vector potential due to the nuclear spin magnetic moment into the Dirac 
Hamiltonian. This gives: 

(11.102) 

as the perturbation, where ex is the Dirac operator. Exact diagonalization of 
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this operator using all Dirac orbitals with the same n as basis functions gives 
the same results as the non-relativistic theory except for a correction of rela
tive order (Za)2. For example, the correction factor for the Is! level is 

2 

(I + 3(Za)2/2 + ... ); correction factors for other levels have been tabulated 
in the literature, but except for large Z they are relatively unimportan t. 

For many-electron atoms perturbation theory must again be used to esti
mate the effect of small terms in the Hamiltonian, such as those involving 
nuclear spin. However, the choice arises as to what electronic basis functions 
to use. The usual approach is to obtain eigenfunctions of the non-relativistic 
Hamiltonian, which consists of the kinetic energy of the electrons and all the 
Coulomb interactions. Even these can only be obtained approximately and in 
general consist of a linear combination of determinants involving one-electron 
functions that have been optimized using a self-consistent field criterion, the 
starting point for the iterative procedure being eigenfunctions for one-electron 
atoms. For inner electrons and heavy nuclei the relativistic corrections are 
relatively large and their calculation by perturbation theory is not very satis
factory. This is becoming a serious drawback, since attention is now being 
focused on inner electrons by the use of experimental techniques such as 
X-ray photoelectron spectroscopy. This situation has led to the use of the 
Dirac Hamiltonian for the individual electrons, since allowance for the relati
vistic corrections involving individual electrons is then automatic; in particu
lar, account is taken of such things as spin-orbit coupling and the relati
vistic corrections to the kinetic energies of the electrons. An appropriate 
procedure is described briefly here; for the details reference must be made 
to the research literature, since the mathematical techniques used are outside 
the scope of this book. 

The approximate Hamiltonian for a many-electron atom may be taken as: 

(11.103) 

where Xi is the Dirac Hamiltonian for electron i and includes the Coulomb 
interaction between the electron and the nucleus. The term representing the 
Coulomb interaction between the electrons is not even approximately Lorentz 
invariant, but the terms that have been omitted from the full Hamiltonian 
may be treated as perturbations on the eigenfunctions of 11.103. Indeed, 
to describe the interaction between two electrons better the Breit operator 
9.41 may be added, but as we have emphasized repeatedly it is only ap
propriate to use it in a first-order perturbation treatment. Other perturbations 
that could be included are those involving the nuclear spin magnetic moment 
and quadrupole moment; electron spin is of course included automatically 
in the Hamiltonian 11.103. The problem then is to find eigenfunctions of 
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11.1 03 that can be used as basis functions for the perturbation treatment. 
Now the eigenfunctions of the operator ~ X j in 11.103 are just products 

I 

of the eigenfunctions of the individual Dirac Hamiltonians X j ; these provide 
suitable starting functions for an iterative procedure. Of course, these 
functions are not unique since permutation of the electrons gives other eigen
functions of :t JC j with the same eigenvalue so that a linear combination of 

i 

these products is taken. The Pauli exclusion principle restricts the possible 
linear combinations to those which are antisymmetric with respect to inter
change of any pair of electrons and this linear combination may conveniently 
be written as a determinant, the elements being (four-component) Dirac 
functions. For closed shell configurations only one determinant is needed, but 
for open shell configurations a linear combination of determinants is neces
sary, although the number involved may be reduced by choosing the com
binations to be eigenfunctions of the total angular momentum operator ~ jj. 

I 

When the Coulomb interaction between electrons is introduced the exact 
eigenfunctions of the Hamiltonian can no longer be written as the product of 
one-electron functions, since a definite energy cannot be associated with an 
individual particle and the probability of an electron being at a particular 
point in space depends on the position of the other electrons. However, it is 
not practicable to obtain exact eigenfunctions of the Hamiltonian (Equation 
1l.103) and an approximation must be made. The usual policy is to assume 
that each electron experiences an average repulsive potential due to the other 
electrons in addition to the attractive potential of the nucleus. With this 
simplification the potential energy of an electron is a function only of its 
distance from the nucleus, although the electrostatic potential is no longer 
Coulombic. This approximation is not too unrealistic since for Dirac atomic 
orbitals closed shells of electrons have spherically symmetric charge distri
butions and this fact does not depend on the assumption of a Coulomb 
potential. 

Thus for a many-electron atom the eigenfunctions of the Hamiltonian are 
assumed to be products of one-electron functions, which are themselves eigen
functions of the operator ;Ifj + V(rj). Since a central field has been assumed, 
the angular dependence of the components of the one-electron functions is 
the same as for a one-electron atom and may be factored out. However, since 
the potential is no longer Coulombic, the resulting radial equations cannot be 
solved analytically and numerical techniques must be used. Of course the 
potential energy V(rj) is an average over all the electrons other than i and a 
knowledge of their radial distributions is necessary for it to be calculated. 
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This means that an iterative procedure must be adopted, the Dirac orbitals 
for a one-electron atom being used to calculate initial potential energies 
VCr;). 

The improved one-electron functions so obtained are then used to obtain 
better potentials and the process repeated until a self-consistent field is 
achieved. This procedure is quite laborious and in practice the whole calcu
lation may be accomplished in one step using the variation method; this has 
the added advantage that the exchange interaction is included, if determin
ental wave functions are used. 

In Section 11.7 it was seen that for one-electron atoms eigenfunctions 
with the same values of nand j are degenerate. These degeneracies of one
electron functions do not occur for many-electron atoms, since the potential 
experienced by an electron is no longer Coulombic. The energy of an electron 
then depends on how effectively it is screened from the nucleus by the other 
electrons. The lower the value of I associated with the large components of a 
one-electron function the lower is its energy; the same situation occurs in the 
non-relativistic theory. 

The wave functions obtained using this self-consistent field approach are 
only approximate, but they may be improved by using techniques, such as 
configuration interaction, which are well established in the non-relativistic 
theory of many-electron atoms. 

The relativistic theory for atoms is thus similar to the non-relativistic 
theory, although the details must be modified to allow for the fact that 
relativistic eigenfunctions have four components; the amount of labour in
volved is greater and the mathematical techniques employed are more sophis
ticated. In addition, it is only comparatively recently that relativistic 

calculations of atomic structure along these lines have been attempted in any 
great number and at present they are by no means routine. For these reasons 
the details are not given here and reference must be made to the speCialist 
literature. 

Finally, a few comments may be made about calculations on molecules 
using relativistic atomic orbitals. Since molecules do not possess spherical 
symmetry, a central-field approximation is not pos&.iJle and the wavefunctions 
cannot be factorized into radial and angular parts. A popular approach in 
non-relativistic theory is to construct one-electron molecular orbitals, which 
are linear combinations of a limited basis set of atomic functions, the variation 
principle being used to calculate the coefficients or other adjustable para
meters. In prinCiple there is no reason why this should not be done using 
relativistic atomic orbitals as a basis. However, although this approach has 
been used for atoms themselves, at the present time little attention appears 
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to have been directed towards the use of relativistic atomic orbitals to de
scribe molecular electronic structure. Recently attempts have been made to 
solve the non-relativistic self-consistent field equations for simple molecules 
by using numerical techniques and in principle this approach could also be 
used in the relativistic theory. 

Bibliography 

Solution of the Dirac equation for the hydrogen atom 

Bethe and Salpeter: pages 63-70. 
Corinaldesi, E., and Strocchi, F. (1963), Relativistic Wave Mechanics, North

Holland, Amsterdam: part II, Chapters 8 and 9. 
Dirac, P. A. M. (1958), Quantum Mechanics, Clarendon Press, Oxford: pages 

269-273. 
Rose: pages 157-181. 
Sakurai: pages 122-131. 

Comparison of Dirac and non-relativistic atomic orbitals 

Bethe and Salpeter: pages 70-71. 
Powell, R. E. (1968), 'Relativistic quantum chemistry. The electrons and the 

nodes', J. Chem. Educ., 45,558. 
Szabo, A. (1969), 'Contour diagrams for relativistic orbitals', J. Chem. Educ., 

46,678. 

The Lamb shift 

Series, G. W. (1957), The Spectrum of Atomic Hydrogen, Clarendon Press, 
Oxford: pages 37-65. 

Sikolov, A. A., Koskutov, Y. M., and Ternov, I. M. (1966), Quantum Mech
anics, Holt, Rinehart and Winston, New York: pages 350-354. 

The introduction of nuclear spin 

Breit, G. (1930), 'Possible effects of nuclear spin on X-ray terms', Phys. Rev., 
35, 1447: relativistic corrections to hyperfine splittings. 

Rose: relativistic corrections to nuclear hyperfine splittings are discussed on 
pages 188-191. 

Velenik, A., Zivkovic, T., de Jeu, W. H., and Murrell, J. N. (1970), 'The 
hydrogen atom in the presence of the Fermi contact interaction', Molec. 
Phys., 18, 693: a demonstration that the Fermi contact operator taken to 
second order with non-relativistic atomic orbitals leads to an infinite hyper
fine splitting. 

Many-electron atoms 

Grant, I. P. (I970), 'Relativistic calculation of atomic structures', Adv. Phys., 
19, 747: a review of relativistic calculations on atoms. 



CHAPTER TWELVE 

Quantum Field Theory 

The classical theory of fields was developed in Chapter 6. In particular, the 
electromagnetic field was considered and it is the quantization of this field 
that is the subject of the present chapter, although it should be noted that 
other fields may be quantized. 

It is, of course, well known that electromagnetic radiation has a quantum 
nature. Indeed, quantum theory originated with Planck postulating that radi
ation of angular frequency w can only have an energy that is an integral 
multiple of nw, where n was a new fundamental constant; this was necessary 
to avoid the so-called ultraviolet catastrophe for black-body radiation. A 
little later Einstein explained the photoelectric effect by proposing that 
electromagnetic radiation consists of massless particles, each with energy 
nw. 

So far we have been concerned with quantized matter moving under the 
influence of electromagnetic fields and the semiclassical approach, which 
treats this radiation classically, has proved quite adequate. However, this 
procedure is not very satisfactory when it comes to determining what effect 
the quantized matter can have on the radiation; here we are thinking particu
larly of time-dependent processes such as the absorption and emission of 
radiation by molecules. Besides, it is inconsistent to treat one part of an 
interacting system quantum-mechanically and the other part classically; for 
example, it is possible to design experiments which in principle would violate 
Heisenberg's uncertainty principle by observing quantized particles with 
classical radiation. 

The last chapter is concerned with the interaction of radiation with matter. 
Here, electromagnetic radiation in free space is discussed. 

225 
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12.1 Quantization of the electromagnetic field 

Before considering the electromagnetic field, the more familiar particle quan
tization is reviewed, since it provides a guide for the quantization of field 
variables. Classically the Hamiltonian of a particle may be expressed in terms 
of its position r and its momentum p conjugate to r. Quantization may then 
be accomplished by making rand p time-independent operators and in par
ticular by identifying p with the operator - i1i(a/ar). This procedure is equiv
alent to imposing the condition that the operators p and r satisfy the com
mutation relations: 

(i,j=x,y,Z). (I 2.1) 

The resulting energy operator is then used in the time-dependent Schrodinger 
equation, JflJl = ilialJl/at, where the wave function lJI is a function of both 
space and time coordinates. 

This suggests that to quan tize the electromagnetic field its energy should 
be expressed in terms of conjugate pairs of field variables; that is, for each 
pair one variable should be the momentum conjugate to the other. Quantiz
ation may then be achieved by interpreting these variables as operators, in
sisting that they satisfy commutation relations analogous to Equations 12.1 
and allowing them to operate on appropriate wave functions. 

In Chapter 6 it was seen that the gauge of the electromagnetic potentials 
can always be chosen so that at all points in space the scalar potential ¢ 

vanishes and the vector potential A satisfies the Coulomb gauge (V.A = 0). 
Thus, the field is determined by three field variables; these are the com
ponents of the vector potential, which is given by Equation 6.65: 

(12.2) 

where 
(12.3) 

and 
(12.4) 

Here the wave vector k and the angular frequency Wk are related by Wk = 
kc, and V, the volume under consideration, may be made arbitrarily large. In 
addition, for each value of k there are two independent polarization vectors 
Eki\. and these are distinguished by the subscript "A(= 1,2). The two possi
bilities for Eki\. are orthogonal to each other and because of the Coulomb 
gauge condition they are both orthogonal to k: 

o. (12.5) 
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The energy of the field is then given by the classical Hamiltonian (Equation 
6.83): 

(12.6) 

Although this Hamiltonian is expressed in terms of pairs of variables, 
qkA and q~, they do not form conjugate pairs and are not appropriate for 
quantization. This situation was remedied in Section 6.7, where the new real 
variables: 

(12.7) 

were introduced, the inverse relation being: 

(12.8) 

There it was shown that PkA may be regarded as the momentum conjugate 
to QkA and that in terms of these new variables the field energy is: 

(12.9) 

Consequently, we consider the theory based on quantization of the conju
gate pairs, Pk}., and QkA. The final justification for this policy is, of course, 
that the resulting theory works. 

To get from the classical theory to the quantum theory the QkA and Pk}., 
are regarded as operators satisfying commutation relations analogous to 
Equations 12.1. Operators corresponding to different values of k or A are 
independent of each other, so that the appropriate commutation relations are: 

[PkA , Qk'X'] = - ili6kk'6AA'; 

[PkA,Pk'A'] = [QkA, Qk'A'] = o. 
(12.10) 

The Hamiltonian (Equation 12.9) is now to be regarded as an operator and 
is to be used in the SchrOdinger equation ;J('w = ilia'll/at. 

For stationary states the Schrodinger equation reduces to 3('11 = Ew and 
this may be solved using the separation of variables method with the result 
that: 

E = ".£ E . 
k,A k}." 

'II = II t/lkA, 
k,A 

where EkA and 1/JkA are the solutions of the separated equation: 

with 

(12.11) 

(12.12) 

(12.13) 

We note that after quantization the field can still be regarded asa collection 
of radiation oscillators, since Equation 12.13 is just the Hamiltonian for a 
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one-dimensional harmonic oscillator. The solution of Equation 12.12 is con
sidered in the next section, but before then other aspects of quantization are 
considered, since the operator forms of the vector potential and the electric 
and magnetic fields are needed later. 

Although qk).. and its complex conjugate qt. cannot be used directly in 
the quantization procedure, they are now to be regarded as operators defined 
by the operator form of Equation 12.8. Using this definition their commu
tation relations may easily be determined from Equations 12.10: 

[qkA' q:'A'] 

[qkA' qlt'A') 

(Fz/2wJf>kk,/jAA' ; 

[qt., q:'A'1 = o. 
(12.14) 

We may now investigate the validity of quantizing the vector potential 
(Equation 12.2) by interpreting qk).. and q:A as time-independent operators. 
This procedure must be consistent with the rest of the quantization scheme 
and to confirm this the Hamiltonian must now be derived from the quantized 
potential. 

To do this the operator forms of the electric and magnetic fields are 
needed. The magnetic field operator is readily shown to be: 

(12.15) 

but a problem arises for the electric field operator, since it is given by 
E = - aA/at and qkA and qt. are both time-independent operators. The 
origin of this difficulty is that we are using the SchrOdinger picture in which 
operators are time independent and the wave functions evolve with time. 
The alternative formalism involves time-dependent operators and time-inde
pendent wave functions. This is the Heisenberg picture, but it may be made 
to coincide with the SchrOdinger picture at t = O. Heisenberg's equation 
of motion (Equation 1.24) shows that: 

(12.16) 

a result that may easily be obtained from Equations 12.8 to 12.10; this is 
analogous to the classical result and may be used in the Schrodinger picture 
at time t = o. The electric field operator is then: 

(12.17) 

Equations 12.15 and 12.17 for the electric and magnetic field operators 
may now be used to determine the Hamiltonian from Equation 6.46: 

(12.18) 
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The manipulations involved are the same as those in the classical derivation of 
Section 6.7 except that it is now important to preserve the order of qkA. and 
q:"', since they do not commute. However, this was anticipated in the classi
cal treatment so that Equation 6.83 is also valid quantum-mechanically: 

(12.19) 

When this Hamiltonian is expressed in terms of the operators PkA, and QkA. 
using Equation 12.8, we recover: 

(12.20) 

so that the quantization procedure outlined is self-consistent. 
The classical derivation of the field momentum in Chapter 6 also needs no 

modification after quantization, since the order of qkA. and q:'" was p,re
served; in addition Equations 12.14 now justify the policy used there of 
ignoring the order of, for examplf, qkA, and qk'A.'. Thus: 

where 
GkA, = wkk(qt.qkA. + qkA.q~ 

= !(k/wJJ(p2kA. + w'QiA.) 

= (k/ Wk}1C kA,' 

(12.21) 

(12.22) 

Finally, we may show that Maxwell's equations for a free field may be 
recovered after quantization. From Equations 12.15 to 12.17 the first pair 
are obtained: 

V.B = 0; V A E = - (aB/at), (12.23) 

but these are merely a consequence of the definition of the electric and 
magnetic fields in terms of the potentials. The divergence of the electric field 
is easily shown to vanish, since in the gauge chosen tP vanishes and A satisfies 
the Coulomb condition (V.A = 0), so that: 

V.E = - a(V.A)/at = O. (12.24) 

The remaining equation is more difficult to obtain. It is iust noted that, 
from Equations 12.16 and 12.17: 

(aE/at) = l; w,(qkA.AkA, + qt.A:,.), k,A. 
while the curl of Equation 12.15 gives: 

V A B = l; k2(qkA,AkA. + q:A.A:0, k,A. 

(12.25) 

(12.26) 
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where 
(12.27) 

has been used. Since Wk = ck, comparison of Equations 12.25 and 12.26 
shows that: 

(12.28) 

which is the required equation. 

12.2 Solution of the one-dimensional hannonic oscillator equation 

For simplicity the subscripts in the one·dimensional harmonic oscillator 
equation may be omitted. Equation 12.12 is then 'J(t/I = Et/I and the Hamil
tonian is given by Equation 12.20 as J( = Hp2 + W 2Q2). The solutions of this 
equation could be obtained by replacing P by - ili(a/aQ) and solving the 
resulting differential equation for t/I in the usual manner. However, for the 
electromagnetic field it is not possible to give a simple physical meaning to 
the operator Q or to wave functions that are functions of Q. As it happens 
interpretations of Q and t/I(Q) are not needed and we choose to solve the 
harmonic oscillator equation in a different way. Furthermore, this alternative 
approach is much more instructive in the present context. 

Now that quantization has been accomplished the operators q and q* may 

again be used. However, it is more convenient to define the dimensionless 
operator: 

a = (2w/Ii)~q, (12.29) 

for which the commutation relations are: 

[a, a*] = I; [a, a] = [a*, a*] = 0, (12.30) 

as may be seen by reference to Equations 12.14. The Hamiltonian now be
comes: 

J( = !liw(a*a + aa*), (12.31) 

or using Equations 12.30: 

'J( = liw(a*a +!) = liw(N + !). (12.32) 

The new operator N = a*a is of particular interest, since unlike a and a* 
it is Hermitian. If n is an eigenvalue of N and the corresponding normalized 
eigenfunction is In}, we may write: 

Nln} = nln} (12.33) 

and, since N is Hermitian, n must be real. From Equation 12.32 it is seen that 



Quantum Field Theory 231 

the I n} are also eigenfunctions of Jf with eigenvalues nw(n + D. 
To investigate the properties of N and its eigenvalues, the commutation 

relations of N with a and a* are first determined using Equations 12.30: 

[a,N] [a, a*a] = [a, a*]a = a; 

[a*, N] = [a*, a*a] = a*[a*, a] = - a*. 
(12.34] 

Now, operating on In} with the operator Na* and using these commutation 
relations: 

Na*ln} = (a*N+a*)ln) = a*(N+I)ln} = (n+l)a*ln},(12.35) 

so that a* In) is also an eigenfunction of N and, since the corresponding 
eigenvalue is (n + 1), it must be proportional to In + I): 

(12.36) 

where c+ is a constant. Similarly, it may be shown that aln} is an eigen
function of N with eigenvalue (n - 1): 

Naln} = (aN - a)ln) = a(N - 1)ln> (n -l)aln>, (12.37) 
so that: 

aln> = dn - D. (12.38) 

The proportionality constants c+ and c_ have been introduced because the 
eigenfunctions a* In> and a In> are not necessarily normalized, but they may 
be evaluated by considering: 

(12.39) 
and 

1c_12 = (n la*aln> = (n INln> = n. (12.40) 

The phases of c+ and c_ cannot be determined and it is normal practice to 
I I 

take them to be zero, so that c+ and c_ are (n + 1)2 and n"i, respectively: 

a*ln) = (n + I)! In + D; 
I 

aln> = n2 ln- D. (12.41) 

The next stage in this development is to find the possible values of n. 
From Equation 12.40 it may be seen that n must be positive or zero, since 
1c_12 is obtained by taking a wave function, multiplying it by its complex 
conjugate and integrating over the appropriate space. If n were non-integer it 
would be possible to apply the operator a repeatedly to I n} until an eigen
function with a negative value of n was obtained. However, it is possible for 
n to be an integer, since Equations 12.41 show that this inconsistency does 
not then arise: 

I 

aln>=n'iln-D; ... ; alI) 10>; alO> = 0; (12.42) 
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further application of a can only give zero. We conclude that n is a positive 
in teger or zero. 

The eigenvalues of the Hamiltonian (Equation 12.32) are thus: 

E = Tzw(n + !); n = 0,1,2, ... , (12.43) 

a result in accord with that of the more traditional approach. In addition, we 
may note that the In) are also eigenfunctions of the momentum operator, 
which from Equations 12.22 and 12.29 is: 

G !Tzk(a*a + aa*) 

lik(N + !), (12.44) 
so that: 

Gin) = lik(n + Din). (12.45) 

The eigenvectors I n) may all be expressed in terms of 10), since repeated 
use of Equations 12.41 shows that: 

(12.46) 

For our purposes in the present chapter there is no need to enquire more 
closely into the nature of I n). If, however, the one-dimensional harmonic 
oscillator wave functions are required in terms of the coordinate Q, this 
approach may easily be extended. Provided I Q) is known as a function of Q, 
other eigenfunctions may be generated using Equation 12.46 with a* re-

I 

placed by the operator (w/2Tz). [Q - (li/w)a/aQ]. The explicit form of 10) is 
readily obtained from the equation a I 0) = 0, which is eqUivalent to the dif
ferential equation: 

[a/aQ + (w/Tz)Q] 10) = O. (12.47) 

The normalized solution of Equation 12.47 is just: 

10) = (W/li1T)~ exp (- wQ2/2Tz) (12.48) 

and this too is in agreement with the results of other approaches. 

12.3 Creation and annihilation operators 

In the previous section the energy of the eigenfunction In) for an individual 
radiation oscillator was seen to be Tzw(n + n. The quantum number n may 
be regarded as the number of quanta of energy liw in the oscillator in ad
dition to the zero-point energy of !Tzw. For this reason n is known as the 
occupation number and, since it is the eigenvalue of N, this operator is 
called the number operator. 
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Now a* operating on In> increases the number of quanta by one to give, 
within a numerical factor, the eigenfunction In + I}. Consequently, a* is 
called a creation operator. In the same way a is an annihilation operator, since 
it reduces the occupation number by one. In this terminology it is the quanta 
of energy that are created or annihilated. 

So far we have confined ourselves to just one radiation oscillator, although 
in reality there are an infinite number each characterized by a wave vector k 
and a polarization X. For every oscillator we can define a creation and an
nihilation operator and these are distinguished by the subscripts k and X. 
From Equations 12.14 and 12.29 these may be seen to satisfy the commu
tation relations: 

In addition, a number operator Nk1I, and a Hamiltonian 'JCk1I, may be defined 
for each oscillator and the corresponding eigenfunctions may be designated 
by InkA}. 

The electromagnetic field as a whole is described (Equations 12.11) by an 
eigenfunction which is the product of the eigenfunctions for the individual 
radiation oscillators: 

~A Ink1l,> = InklAl>lnk2A2}··· InkjAj>· .. , 

InklAl' nk2A2'· .. ,nkjAj' ... >. (12.50) 

An operator specific to one wave vector and polarization only acts on the 
corresponding part of the eigenfunction, so that, for example, use of NkiAi 

tells us how many quanta of type kb Ai are present: 

NkjAjlnklAl' nk2A2' .•. ,nkjAi' .•• > 

= nkjAjlnklAl' nk2A2'· •• ,nkjAi'· .. >. 

Thus the total energy of the field is given by: 

as would be expected. 

(12.51) 

(12.52) 

In specifying a state of the field it is only necessary to mention those 
quantum numbers nk1l, that differ from zero, although all the possibilities for 
k and A must be remembered in performing a summation such as in Equation 
12.52 because of the zero-point energy. Thus, if there are no quanta present, 
IOklAl' 0k2A2' ... , 0kjAj' ... } may be abbreviated to I Q) and this is known as 
the vacuum state. 
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Any state of the radiation field may be constructed from the vacuum 
state by using the appropriate creation operators. For a state of the field with 
just one quantum of type k, ~: 

I IlEA> = a:AIO>, 

while for two quanta of the same type: 

121EA> = 2-i(a~YI0), 

(12.53) 

(12.54) 

as may be seen by reference to Equation 12.46. For two quanta of different 
1 

types the factor r 2 does not occur: 

(12.55) 

Finally, we note that, since all creation operators commute with one another 
(Equations 12.49), it does not matter in which order the quanta are created. 

12.4 Photons 

In the last section it was seen that the energy of an electromagnetic field is 
the sum of the quanta of energy associated with the individual radiation 
oscillators. These quanta may be identified with particles or photons and it 
is the purpose of this section to show that this identification is consistent 
with photons being massless particles which obey Bose-Einstein statistics. 

If we consider just one photon with wave vector k and polarization ~, we 
know that it has energy liWJt and, from Equation 12.45, momentum lik. 
Now Equation 4.41 relates the energy E and momentum p of a particle: 

E = c(m2c2 + p2)~, 

so that the mass of the photon is given by: 

Since Wk = ck, Equation 12.57 shows that the photon has no mass. 

(12.56) 

(12.57) 

In this formalism there can be any number of photons in the same state, 
that is having a particular wave vector, polarization and energy. In addition, in 
creating photons from the vacuum state the order of creation is immaterial 
so that the state of the radiation field is symmetric with respect to inter
change of any two photons; this fact depends on the commutation of all 
creation operators. Particles with these properties satisfy Bose-Einstein stat
istics, so that photons are bosons. These remarks apply to any type of particle 
or quantum of energy, for which the creation operators all commute; for 
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example vibrational quanta in a molecular oscillator may be thought of as 
vibrational 'particles' or vibrons. Now Bose-Einstein statistics are obeyed by 
particles with zero or integer spin, so that we might enquire whether the 
photon possesses a spin. In fact it may be shown to have spin one and this 
property is related to the fact that two polarizations are possible for a given 
wave vector (see bibliography). 

Thus the classical wave theory for electromagnetic fields becomes a par
ticle theory on quantization. If there are a great number of photons, the 
occupation numbers nkA become very large and may be regarded as con· 
tinuous variables; this is the classical limit. This situation is to be contrasted 
with classical particle theory, which on quantization becomes a wave theory. 
Both radiation and matter demonstrate a wave-particle duality, but the roles 
are reversed. 

12.5 Zero-point energy and vacuum fluctuations 

Up to now a discussion of the zero-point energy of the radiation field has 
been omitted. For the vacuum state there are no photons, but according to 
Equation 12.52 there is an energy 1: !1iWk associated with the radiation 

k,X 

field and this energy is infmite, since the sum is over all possible wave vectors. 
From Equation 12.45 the field momentum of the vacuum state may be 
seen to be 1: !1ik, but no problem arises here, since for every wave vector k 

k.X 
in the summation there is also a wave vector - k, so that the field momentum 
vanishes. 

Nevertheless, it is disturbing that the vacuum state has an infmite energy. 
This problem may conveniently be ignored by taking the energy of the 
vacuum state to be the origin of the energy scale. This may be achieved 
formally by starting with the classical expression: 

(12.58) 

which on quantization gives: 

JC = 1: nWkNkA' 
k,X 

(12.59) 

In addition, we must impose the rule that in products, such as those in
volved in Equation 12.18, creation operators must always be placed on the 
left of annihilation operators, since, if they are not, it is possible to have a 
creation operator acting directly on the vacuum state and this leads to in
fmite quantities. This restriction may seem a little contrived, but a self
consistent theory can be developed; in effect the zero-point energy of the 
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radiation field is consistently ignored. However, this situation is not very 
satisfying and we consider the zero-point energy more closely. 

The analogy between a radiation oscillator and a molecular vibration has 
been emphasized on a number of occasions. A vibration also has a zero-point 
energy and this may be regarded as a manifestation of Heisenberg's uncer
tainty principle, which may be stated as: 

(AA)(AB) ;;.. I <[A, B1>/2iI; (l2.60) 

the product of the uncertainties in two observables is greater than or equal to 
a quantity which depends on the expectation value of the commutator of 
their operators. For a vibration the vibrational coordinate and the vibrational 
momentum do not commute, so that they cannot both be zero and there 
must always be some energy associated with the vibration. 

In the case of a radiation field it is instructive to consider the commu
tators of the number operator NkJ,. (= at,.akA) with the electric and magnetic 
field operators (Equations 12.1 7 and 12.15). Using Equations 12.29 and 12.49 
these may readily be obtained: 

[NkJ,., E] = - i(nwk/2)~ (akJ,.Ak?. + at..At..); 

[NkJ,., B] = - i(nt2wk)~ (akJ,.k"AkA + at,.k" At..). 
(l2.61) 

Neither of these commutators vanish, so that if the number of photons is 
approximately fixed E and B are uncertain. For the vacuum state there are 
no photons at all so that the electric and magnetic fields are very uncertain. 

The expectation values of the operators E and B in the vacuum state are 
both zero: 

(OIEIO) = (OIBIO) = 0, (l2.62) 

since these operators are linear in creation and annihilation operators. How
ever, the expectation values of & and B2 do not vanish, since they both 
involve the operator akAat.., for which the expectation value in the vacuum 
state is unity. For example it may readily be shown that: 

(01&10) = 1: inWkAkA.At,. 
k.~ 

= 1: nWk/2€O V. 
k.~ 

(l2.63) 

where Equation 12.4 has been used. The sum (Equation 12.63) is infmite 
even if the volume V is allowed to bee.ome infinite, since the number density 
(Equation 6.74) for k is proportional to V. Similarly we may obtain: 

(12.64) 
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and by substituting this and Equation 12.63 into Equation 12.18 and inte
grating over the volume V the zero-point energy, 1: !1iWk, may be recovered. 

k.A 
Thus, in the vacuum state the electric and magnetic fields fluctuate wildly, 

although their expectation values vanish. These are the so-called vacuum 
fluctuations. However, it is not at present clear whether the vacuum fluc
tuations and the zero-point energy are one and the same thing. As we 
have already remarked the latter may be formally removed from the theory, 
but the former may not be avoided so easily. Indeed, the vacuum fluctuations 
do lead to observable effects. For example, they have already been invoked 
(Section 11.9) in a crude explanation of the major part of the Lamb shift. 
However, further discussion of this topic is not possible here, since treating 
the electron as a point charge leads to inf"mities and the circumvention of 
this difficulty involves the more sophisticated techniques of mass and charge 
renormalization. 

12.6 Fermions and second quantization 

The theory that has been developed in this chapter is appropriate to photons, 
but it may readily be adapted to describe other particles that satisfy Bose
Einstein statistics. It is based essentially on the commutation relations (Equa
tion 12.30) for the creation and annihilation operators: 

[a, a*] = 1; [a, a] = [a*, a*] = o. (12.65) 

These relations lead automatically to the possibility of having any number of 
particles in the same state and, in addition, they are responsible for many
particle states being symmetric with respect to interchange of two particles; 
these are the properties characteristic of bosons. 

However, this formalism is not adequate to describe fermions and in par
ticular electrons. These obey Fermi-Dirac statistics, which require that there 
be no more than one particle in a given state and that many-particle states be 
antisymmetric with respect to interchange of two particles. Thus, the Pauli 
exclusion principle must somehow be incorporated into the theory. To con
clude this chapter the way this may be done is described, but a detailed 
discussion would be out of place here. 

Creation and annihilation operators are again used, but these are given the 
new symbols b~ and br , respectively, to distinguish them from the boson 
operators; the label r indicates the one-particle state to which the operators 
apply. However, these operators are required to satisfy the anticommutation 
relations: 

(12.66) 
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where 
[A, B]+ = AB + BA. (12.67) 

As for bosons we may define a vacuum state 10> in which there are no 
particles present. A single-particle state may then be constructed by oper
ating on the vacuum state with a creation operator: 

11r> = b~IO>. (12.68) 

Further application of a creation operator gives a two-particle state: 

b:b~IO> = b:llr> = 11., lr>, (12.69) 

where r :\ s. However, it is not possible to have two particles in the same state, 
since from Equation 12.66: 

(12.70) 

In addition, the anticommutation relations dictate that the two-particle state 
(Equation 12.69) is antisymmetric with respect to interchange of the par
ticles: 

(12.71) 

This is just what is required by the Pauli exclusion prinCiple. 
By analogy with the number operator for bosons we may define the new 

operator: 
(12.72) 

and it may easily be confirmed that this is a fermion number operator: 

NrlO> = b:brIO> = 0; 

N r llr> = Nrb~IO> = b~brb~IO> 

= b:(1-b:br)IO> = b~IO> = 11r>. (12.73) 

The operator N r is said to be idempotent, since its square is equal to itself: 

(12.74) 

where we have used the fact (Equations 12.66) that brbr must vanish. Thus, 
Equation 12.74 shows that: 

(12.75) 

so that the eigenvalues of N r are zero or one, that is, a state r may be un
occupied or occupied by just one fermion; this is consistent with our earlier 
conclusions. 
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The creation and annihilation operators, a* and a, for bosons may be 
expressed in terms of a variable Q and its conjugate momentum P, and indeed 
the theory was developed via P and Q. However, the fermion operators b: 
and br have been introduced directly, but this is necessary, since they cannot 
be associated with a variable and its conjugate momentum. This situation is 
a reflection on the fact that there is no classically measurable field corre
sponding to quantized fermions. 

The use of creation and annihilation operators to describe fermions, and 
in particular electrons, implies that they are to be treated as particles. Yet 
the usual quantum theory uses a wave description for fermions and we might 
enquire how the formalism developed above may be employed. For bosons 
the classical wave theory becomes a particle theory on quantization. In the 
same way the quantum-mechanical wave function for a fermion may be 
treated as a field variable and quantization then gives a particle theory for 
which creation and annihilation operators are appropriate. This procedure is 
known as second quantization for obvious reasons. Its advantage is that it 
provides a convenient way of describing many-particle systems and in par
ticular it may be used to describe situations in which the number of particles 
is not conserved. For example, in Section 9.5 a crude model was given for 
the origin of the electron's g factor anomaly. This involved the creation of a 
virtual electron-positron pair and in the Dirac theory of Chapter 8 this is 
described as the excitation of an electron from the ftlled negative energy 
states; in this theory the number of electrons is conserved, but at the ex
pense of having to describe the electron by a many-particle theory. Using 
second quantization the necessity for particle number conservation disappears. 
In addition, the theory based on second quantization may be used to prove 
the exclusion prinCiple of Pauli. Needless to say these topics cannot be con
sidered further. 
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CHAPTER THIRTEEN 

The Interaction of Radiation and Matter 

The usual approach to the absorption and emission of radiation by matter 
is to use the semiclassical theory in which, although the matter is treated 
quantum-mechanically, the radiation is described classically. For the more 
elementary applications it is possible to obtain the correct results using this 
theory, although it is often necessary to use indirect arguments. In addition, 
there are phenomena which cannot be described by the semiclassical theory. 

However, the quantum theory of radiation that was developed in the 
previous chapter provides an appropriate basis for describing the interaction 
of radiation with quantized matter. Not only does the resulting theory avoid 
the problems of the semiclassical approach, but it is more generally applicable 
and provides a conceptually simpler picture of the processes involved. The 
semiclassical theory is given in many of the more elementary texts and for 
this reason it is not detailed here, although a comparison of the two 
approaches is given in Section 13.5. 

The Hamiltonian for electromagnetic radiation in free space was found in 
the previous chapter. In the first section of this chapter the interaction 
Hamiltonian is considered, but before this may be done we must decide 
what sort of Hamiltonian to use for the description of the quantized matter. 
In much of what follows the interaction of the radiation with a single elec
tron is discussed, but, since the results are to be generalized to a molecule, it 
is appropriate to use a non-relativistic approximation to the Hamiltonian. 
Thus, the theory to be developed is not a relativistic one. However, many of 
the same principles apply if the Dirac Hamiltonian for an electron is used 
and the differences are pointed out at the appropriate place in the develop
ment. As it happens for the phenomena considered here the results are 
identical, to the accuracy employed. 

241 
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13.1 The interaction Hamiltonian 

To illustrate the principles involved the interaction of radiation with a single 
electron is considered, but we may anticipate the generalization of the results 
to molecules by assuming that the electron has discrete energy levels. The 
Hamiltonian for the system may be written as the sum of three parts, one 
for the field, one for the electron and one for the interaction between the 
two: 

Je = Jet + Jee + JCint• (13.1) 

The quantized field Hamiltonian Jet was obtained in the last chapter and, as 
has already been remarked, the non-relativistic approximation is used for the 
electron's Hamiltonian Jee . The interaction Hamiltonian JCint must now be 
discussed. 

The non-relativistic approximation to the Hamiltonian of an electron in 
an electromagnetic field was derived in Chapter 8. This is a semiclassical 
Hamiltonian in the sense that the radiation field was treated classically. From 
this Hamiltonian (Equation 8.142) we may select those terms involving the 
electromagnetic potentials to obtain the semiclassical interaction Hamiltonian: 

JCint = - e¢ + (e/2m)(p.A + A.p) + (e2/2m)A2 + (eli/m)(s.B), (13.2) 

where the symbols have the usual meaning and the term 1T2 /2m has been ex
panded (Section 7.1). There are, of course, smaller terms that could be 
added to this, but they are negligible as far as the time-dependent processes 
considered in this chapter are concerned. When it is recalled that the gauge 
chosen for the potentials is such that tP and V.A vanish at every point in 
space, Equation 13.2 reduces to: 

Jeint = (e/m)(A.p) + (e2/2m)A2 + (eli/m)(s.B). (13.3) 

The semiclassical interaction Hamiltonian (Equation 13.3) may be put in 
a fully quantized form merely by interpreting the vector potential A as the 
linear combination of annihilation and creation operators obtained in the 
last chapter: 

(13.4) 

where the Au. are given by Equation 12.4. The magnetic field B is now also 
an operator and is given by: 

(13.5) 
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In describing the interaction of molecules with electromagnetic radiation 
the interaction Hamiltonian is relatively small and will be taken as a pertur
bation in the subsequent treatment. The total Hamiltonian (Equation 13.1) 
may thus be rewritten as Xo + X,"t. The unperturbed Hamiltonian Xo is the 
sum of the field and electron Hamiltonians and because it contains no inter
action terms its eigenfunctions may be written as a product of the eigen
functions of X, and Xe taken separately. In talking about the state of the 
system we then mean a combined state of electron and photons. 

The perturbation X'"t contains creation and annihilation operators, so 
that it connects states with differing numbers of photons. The terms in
volving A.p and s.B in Equation 13.3 -~e linear in these operators so that 
they have matrix elements between states differing by one photon; it should 
already be apparent that these terms are involved in Single-photon absorption 
and emission phenomena. The remaining term in Equation 13.3 is propor
tional to A2 and is quadratic in creation and annihilation operators so that it 
connects states differing by zero or two photons. It will be seen that, al
though this term can be important in scattering processes, where the number 
of photons is conserved, it is not involved in two-photon absorption or 
emission and it is the A.p term taken to second order that is responsible. 

The interaction Hamiltonian (Equation 13.3) was obtained from the non
relativistic approximation to the Dirac Hamiltonian for the electron and we 
might inquire what would happen if the Dirac Hamiltonian itself was used. In 
this case the perturbation representing the interaction of the electron with 
quantized radiation is: 

X'nt = eccr.A. (13.6) 

This differs from Equation 13.3 in that there is no term in A 2 so that it is not 
obvious that the two interaction Hamiltonians can ever lead to the same 
results for some phenomena. This is a reflection of the fact that the Dirac 
theory of the electron is really a many-particle theory, since it is necessary 
to assume that all the negative energy states are occupied by electrons 
(Section 8.6). For a correct treatment this has to be taken into account, 
since the Dirac operator _ connects positive and negative energy states. How
ever, we will not go into the details, since for the generalization to molecules 
it is more convenient to use Equation 13.3 as the interaction Hamiltonian. 

13.2 Time-dependent perturbation theory 

The interaction Hamiltonian is a relatively small perturbation on molecular 
systems and the phenomena to be discussed in this chapter are described well 
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by time-dependent perturbation theory. This section is devoted to deriving 
those results of this theory that are needed later. This material could have 
been relegated to an appendix, but, although the first-order theory is prob
ably familiar, it is necessary to go to second order to describe some of the 
processes discussed later. The theory developed is quite general, but it should 
be remembered that for our purposes a state describes a system consisting of 
radiation as well as a molecule. 

Approximate solutions are required for the time-dependent Schrodinger 
equation: 

Jew(t) = iFi(ow(t)/ot), (13.7) 

where Je = Jeo + V and it is assumed that the eigenfunctions of Jeo are 
known: 

(13.8) 

The perturbation V is a time-independent operator, since the Schr6dinger 
picture is being used, but nevertheless it can cause the state of the system 
to change with time. 

The solutions wet) of Equation 13.7 may be written as a linear combin
ation of the eigenfunctions I/In of Jeo: 

(13.9) 

The coefficients cn(t) may be determined by substituting this into Equation 
13.7, reorganizing, multiplying on the left by 1/1: exp (iEkt/ft) and integrating 
over all space. The result is: 

Ck(t) = - (i/Fi) ~ Vkncn(t) exp [i(Ek - En)t/Fi] , 
n 

(13.10) 

where Ck is the derivative of Ck with respect to time and Vkn is the time
independent quantity: 

(13.11) 

Let us consider transitions from an initial state i. For the boundary con
ditions it is assumed that initially, that is at t = - 00, only state i is populated, 
so that: 

(13.12) 

An approximate solution of the coupled differential equations (13.10) may 
now be obtained by substituting this condition and integrating: 

(13.13) 
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The definite integral in Equation 13.13 cannot be evaluated at its lower 
limit. This could be avoided by taking our initial condition to be Cn(O) = lini 

instead of Equation 13.12 so that the integration would be from 0 to t 
(assumed positive). However, this condition corresponds to a sudden and 
artificial turning on of the perturbation at t = O. Not only is this physically 
unreasonable, but also it introduces spurious terms in second order. To cir
cumvent these difficulties the initial condition (Equation 13.12) is retained, 
but a mathematical trick is used. The time-independent perturbation V is re
placed by Vexp (l1t), where 11 is real and positive. This has the effect of 
turning the perturbation on gradually as t increases from -00. The integration 
may then be performed and the original problem recovered by taking the 
limit as 11 goes to zero at the end of the calculation. 

With the replacement of Vby Vexp (l1t) Equation 13.10 becomes: 

the approximate solution being: 

Although this is only an approximate solution, it encourages us to enquire if 
the exact solution of Equation 13.14 may be obtained by merely replacing 
the Vki by some new quantities R ki : 

If this proves successful the identity of the Rki has then to be determined. 
Substitution of Equation 13.16 into Equation 13.14 followed by multi

plication throughout by exp [- i(Ek - Ei)t/Ii -l1t] results in the equation: 

(13.17) 

This may be solved iteratively for Rki and so long as the perturbation is small 
compared with (Ei - En) the resulting series converges rapidly: 

Rki = Vki + ~ Vkn Vni exp (l1t)/(Ei - En + ilil1) 
n 

(13.18) 

although these Rki are time-dependent this dependence is removed when 11 is 
eventually allowed to become zero. Thus, Equation 13.16 is a solution of 
Equation 13.14, the Rki being given by the series 13.18. 

In practice we are interested in the transition from the initial state i to a 
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fmal state f. The probability of the system being in state f at time t is just 
Ict<t) 12 and from Equation 13.16 this is given by: 

(l3.19) 

The transition rate wfi from i to f is obtained by taking the time derivative of 
this probability: 

wfi = dlcf(tW/dt 

(13.20) 

The limit as 11 tends to zero may now be taken. To do this we note that 
the term in curly parentheses in Equation 13.20 is related to a representation 
of a Dirac delta function: 

(13.21) 

If x\:O the limit tends to zero, while for x = 0 the limit is infinite. In 
addition, it may easily be shown that: 

f_: [l1hr(x2 + 112)] dx 

Thus, Equation 13.20 may be replaced by: 

1. (13.22) 

(13.23) 

here, use has been made of the fact (Equation 2.88) that 6(cx) = c-16(x), 
where c is a constant. In this connection we might note that 6(Ef - Ei) has 
the dimensions (energyfl, so that Wfi has the correct dimensions of (timefl. 
Equation 13.23 is to be used in conjunction with Equation 13.18, which in 
the limit as 11 tends to zero becomes: 

the Rfi are called the reaction matrix elements. 
Since it involves a Dirac delta function, Equation 13.23 is an operator 

equation and an appropriate integration must be carried out; the details de
pend on the problem being discussed and are given explicitly for the appli
cations considered later. However, it is apparent from Equation 13.23 that 
energy is conserved in a transition. 

There are difficulties in this approach to time-dependent perturbation 
theory. For example, in the expansion 13.24 the terms for n = i and m = i 
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must be omitted from the summations if infinities are to be avoided. Other 
deficiencies of this theory are discussed in Section 13.8. 

13.3 Matrix elements of the interaction Hamiltonian 

In this section the matrix elements of the individual terms in the perturbation 
(Equation 13.3) are considered, since they are needed in the application of 
Equations 13.23 and 13.24. For convenience, it is assumed that only one 
type of photon is present, the generalization to all types being made later. 
The state of the unperturbed system is then given by an eigenfunction of 
'Jfo (= Jee + Jet): 

lA, nkA) = IA)lnkA)' (13.25) 

where IA) and InkX) are eigenfunctions ofJee and Jet, respectively. 
The perturbation (e/m )(A.p) is linear in creation and annihilation oper

ators, so that its only non-zero matrix elements are of the type: 

(B, nkX - 1 I (e/m)(A.p) lA, nkx) 

= (e/m)(Finkx/2wk V€o)~ Ikx.(BI exp (ik.r)pIA) (13.26) 
and 

(B, nkX + 1 I (e/m)(A.p) lA, nkx) 

= (e/m)(Fi(nkX + 1)/2wkV€o)~lkx.(BI exp(-ik.r)pIA); (13.27) 

in evaluating the radiation part of these matrix elements use has been made 
of Equations 13.4, 12.4 and 12.41. The first of these represents the absorp
tion of a photon by the electron accompanied by a transition from state A 
to state B, while the second corresponds to an emission process. 

The matrix elements (BI exp (± ik.r)pIA> between electron states are en
countered in the semiclassical theory. Since the wavelength k-1 of the radi
ation is normally very large compared with molecular dimensions, it is usual 
to make the long wavelength approximation. This involves taking the origin 
of the electron coordinate r to be in the molecule and expanding the expo
nential as a power series in k.r. This expansion parameter is very small com
pared with one so that only the first term in the expansion need be retained, 
that is, exp (± ik.r) is replaced by unity. The problem now reduces to that 
of evaluating (B I p IA >, but this may be expressed in a more convenient form 
by taking IA> and IB> to be eigenfunctions of the approximate electronic 
Hamiltonian: 

(13.28) 
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where U(r) is a potential function. We then have: 

so that 
[JCe , r] = - (ili/m)p, 

(BlpIA) = (im/Fi)<B1 [JCe , r] IA) 

= (im(EB - EA)/lie)(BlerIA) 

= im(EB - EA)PBA/Fie. 

(13.29) 

(13.30) 

With these approximations the matrix element, Equation 13.26, becomes: 

(B, nkA - 11 (e/m)(A.p) lA, nkA) 

= i(nkAl2Fiwk V€O)~(EB - EA)'kA.PBA, (13.31) 

with a similar expression for 13.27. 
For simplicity only one electron has been considered so far and, in doing 

this, summations and electron and nuclear subscripts have been avoided. How
ever, the preceding development is readily extended to molecules. The per
turbation (e/m)(A.p) must be summed over all electrons and nuclei, but the 
same results are obtained provided IA) and IB) are now eigenfunctions of the 
molecular Hamiltonian and PBA becomes the matrix element of the mol
ecular electric dipole moment between IA) and IB). Consequently these 
matrix elements are responsible for the so-called electric dipole transitions in 
molecules. 

There are situations where PBA vanishes and it is necessary to go to the 
second term in the expansion of exp (± ik.r) to obtain non-zero matrix 
elements: 

(BI exp (± ik.r)pIA) = (BlpIA) ± i<BI(k.r)pIA) + .... (13.32) 

The additional matrix element may be evaluated by splitting it in two: 

(BI(k.r)pIA) = H(BI(k.r)p + (k.p)rIA) 

+ (BI (k.r)p - (k.p)rIA)]. 

By noting that for the electronic Hamiltonian (Equation 13.28): 

(i,j=x,y, z), 

the first part of Equation 13.33 may be shown to be: 

(13.33) 

(13.34) 

t(BI(k.r)p + (k.p)rIA) = (im(EB - EA)/2Fie2 )(BITIA).k, (13.35) 

where the tensor T has components Tij = e2r;rj. On substitution into 
Equations 13.26 or 13.27 the scalar product of Equation 13.35 with IkA 
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must be taken and, since IkA.k vanishes (Equations 12.5), the results are un
altered if the scalar - elr1/3 is added to each of the diagonal elements of T. 
This gives a new tensor a with elements: 

(13.36) 

When we generalize to a molecule, QJj is just the cont ribution of the electron 
to the molecular electric quadrupole moment. In this way matrix elements 
corresponding to electric quadrupole transitions are obtained. 

To evaluate the second part of Equation 13.33 we again recall that we are 
interested in its scalar product with IkA , so that we may use: 

(!3.37) 

this relation also depends on the fact that Ikkk = O. Thus: 

j."".(8 1 (b)P - (k.p),IA ) 

= (m/e )(k" litA).<BI(e!2m)(r I\ p) IA). (!3.38) 

Now (e!2m)(r " p) is the orbital magnetic moment of the electron and ref
erence to Equation 13.5 shows that (k" lkA) is related to the magnetic field 

so that the matrix element (Equation 13.38) gives rise to magnetic dipole 
transitions. 

So far only the first term in the interaction Hamiltonian (Equation 13.3) 
has been considered. The last term (e.li/m)(s.8) also leads to magnetic dipole 
transitions. For illustration the matrix element corresponding to absorption 
is quoted: 

(D, nkA - I 1 (e.li /mXs.B) IA) 

= i(fmkJ,./2wk VEo)~(k " lkA) .(81 (e.li /m)s IA), (13.39) 

where the long wavelength approximation has been used. The similarity to 
the other magnetic dipole matrix element (Equation 13.38) is easily seen. 

The electric quadrupole and magnetic dipole contributions to the matrix 
elements of the interaction Hamiltonian are in general smaller than the 
electric dipole contribution by a factor of order la, where k is the reciprocal 
of the wavelength of the radiation and r is of molecular dimensions. They are 
important when the electric dipole matrix element PBA vanishes or when 
special techniques are employed; for example, it is the magnetic dipole con
tribution that is usually involved in magnetic resonance. In the rest of this 
chapter only the electric dipole contributions are considered, since we are 
interested in principles rather than details, but in practice the other contri
butions may be dealt with in much the same way. 
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There is one term in the interaction Hamiltonian that has yet to be con
sidered, this being (e2/2m)A2. Since it is quadratic in creation and annihil
ation operators, it can connect states differing by zero or two photons and in 
general two types of photon must be considered. Now (e2/2m)A 2 is a much 
smaller perturbation than (e/mXA.p), so that the long wavelength approxi
mation may again be made and only the first term in the expansions of the 
exponentials need be retained. The resulting matrix element connecting states 
with the same total number of photons is: 

(B, nkA - 1, n..:'lI.' + 11 (e2/2m)A2IA, nk'll., n..:?:) 

(13.40) 

Since the eigenfunctions of Xe are orthogonal to one another, this must 
vanish unless A and B are the same electron state. At the end of the last 
section it was seen that energy is conserved in transitions so that the import
ant matrix elements of the type 13.40 are those in which Wk and Wk' are 
equal. This matrix element then corresponds to Rayleigh scattering in which 
the incident and scattered photons have the same energy and the electron 
state is unaltered. The matrix elements of (e2/2m)A 2 between states differing 
by two photons, that is those connecting lA, nk'll., nk''lI.') with IB, nk'll. ± 1, 
nk''lI.' ± 0, are also proportional to (BIA) and are unimportant, since energy 
conservation is not possible if A = B. 

13.4 Absorption and emission 

The absorption of a single photon by a molecule in state A to give the 
molecule in state B may be represented by the equation: 

(13.41) 

where 'Y is a photon. Initially just one type of photon is considered, but 
eventually the summation over all types must be made. Thus, the initial 
state i is lA, nk'll.) and the final state f is I B, nkX - 1). 

The transition rate is given by Equation 13.23: 

(13.42) 

Since it is a single-photon process that is under discussion, only the leading 
term Vfi in the expansion 13.24 for Rfi is relevant; the other terms represent 
many-photon processes, which are discussed later_ This matrix element Vfi 

has been considered already and the major contribution to it is the electric 
dipole contribution given in Equation 13.31. Thus, Equation 13.42 becomes: 
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(13.43) 

where liwkJ E A and E B are the energy of the photon and the molecular 
states A and B respectively. 

So far just one type of photon has been considered and, in addition, 
Equation 13.43 is an operator equation. It is now necessary to sum over 
the photon polarization X and all the possible wave vectors k. To do this it is 
expedient to replace the summation over k by an integration over w and the 
solid angle Q. At the same time a number density p(w) must be introduced 
and from Equation 6.75 this is just Vw2/(21'tc)3. Thus we make the replace
ment: 

(13.44) 

Before performing the integration it is convenient to express nkA in 
Equation 13.43 in terms of the radiation intensity I(w), which is def"med so 
that I( w)dw is the energy per unit volume of radiation with angular fre
quency between w and w + dw; it is assumed here that all polarizations and 
orientations of k are equally likely but the details may be modified to deal 
with other cases. Now each photon contributes an energy liw/ V to the in
tensity, so that: 

(13.45) 

Here the number density p( w) has again been used and the factor 81't arises 
from the sum over the two possible polarizations for each k and integration 
over the orientations of k. On rearrangement Equation 13.45 gives: 

(13.46) 

Using 13.44 and Equation 13.46 the transition rate (Equation 13.43) 
now becomes: 

Wfi = l: f (I(w)/8ec/tX lkA.PBA)26(EB - EA -liw)dwdQ. 
A 

(13.47) 

The sum over X and the angular integration is performed fIrst, the relevant 
part of Equation 13.47 being: 

(13.48) 

The situation is illustrated in Fig. 13.1; XA is the angle between PBA and 
lkA and the angular integration is over 0 and cpo The expression 13.48 
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reduces to: 
(13.49) 

where the trigonometric relations: 

cos Xl = sin (J cos if>; cos X2 = sin (J sin if> (I3.50) 

have been used. The angular integral is now readily evaluated and 13.48 
becomes {81T/3)IPBA I2 , so that the transition rate is: 

(13.51 ) 

k 

Fig. 13.1. The relative orientations of PBA and IkA. 

Finally, the integration over w must be performed and this is readily 
accomplished using Equations 2.82 and 2.88: 

wfi = 1TI{w)IPBA I2/3€o1i 2 

(I3.52) 

where BB+-A is the Einstein coefficient for absorption and, because energy 
is conserved in the transition: 

(I3.53) 

The corresponding emission process, that is: 

B~A +1, (13.54) 
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may be treated in very much the same way. If just one type of photon is con
sidered the initial and final states are IB, nk~) and lA, n~ + 1) respectively 
and from Equation 13.27 the transition rate for emission is: 

Wfj = (rr/V€OXnk~ + 1)wk(.k~.PAB)26(EA - EB + nWk)' (13.55) 

When this is compared with the analogous equation (13.43) for absorption, 
it is noticed that for emission the transition rate may be split into two parts. 
The first is proportional to nk~ and hence to the intensity of the radiation. 
This gives rise to stimulated emission, since it depends on radiation being 
present. The second part is independent of n~ and has no counterpart in ab
sorption. It is responsible for spontaneous emission, since it does not vanish 
when there is no radiation present initially. These two parts are considered 
separately. 

The stimulated emission term is similar to the absorption transition rate 
(Equation 13.43) and may be processed in the same way. Reference to 
Equation 13.52 shows that after the inclusion of all types of photons the 
stimulated emission rate is given by: 

Wfj 1TI(w)IPAB I2/3€on 2 

BA+-BI(w), (13.56) 

where w again satisfies the energy conservation condition (Equation 13.53). 
The Einstein coefficient for stimulated emission BA+-B is precisely the same 
as that for absorption BB+-A' It is emphasized that this emission only occurs 
if there is radiation of the appropriate frequency already present and this is 
why it is said to be stimulated (or induced). 

When nk~ vanishes, Equation 13.55 reduces to the transition rate for 
spontaneous emission. This equation is for one type of photon only and must 
be summed over k and A. The sum over k may be replaced by an integral 
using the prescription 13.44 and the sum over A and the angular integration 
may be performed as for the absorption case, since all directions of emission 
and polarization are equally likely. This gives: 

wfi = f (w3 IPBA 12/31TC 3 €o)6(E A - EB + hw)dw 

w 3 1PBA 12/31TC3 €on 

(13.57) 

where w is given by Equation 13.53 and AA+-B is the Einstein coefficient of 
spontaneous emission. This emission occurs whether radiation of the appro
priate energy is present or not. 
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13.S Comparison of the semiclassical and quantized theories 

In the semiclassical theory the radiation is described classically and in par
ticular the vector potential is a function of space coordinates. The radiation 
can influence a molecule but it cannot be influenced by the molecule in 
return. When the molecule makes a radiative transition the vector potential 
is not affected. This theory works whenever the radiation is sufficiently in
tense that the appearance or disappearance of a single photon has a negligible 
effect on the intensity. 

The details of the use of the semiclassical theory to describe the absorp
tion and emission of radiation is given in many texts. The absorption process 
may be accounted for quite readily with this theory and with some difficulty 
so can stimulated emission. However, the semiclassical theory is incapable of 
describing spontaneous emission, since classically A vanishes when there is 
no radiation and the interaction Hamiltonian disappears. 

The way in which this problem is surmounted is to use Planck's radiation 
law, which may be derived from statistical mechanics, to relate the Einstein 
coefficients of stimulated and spontaneous emission. In addition, this ap
proach shows that the Einstein coefficients of absorption and stimulated 
emission are equal, so that in practice only the absorption process needs to 
be considered in the semiclassical theory. The results are the same as those 
obtained in the previous section. 

If the quantized theory of radiation is used the absorption and emission 
rates are obtained directly and there is no need to invoke Planck's radiation 
law. In addition, both stimulated and spontaneous emission arise in the same 
way. Even when there is no radiation present a molecule may interact with 
the radiation vacuum state and this may be attributed to the presence of the 
vacuum fluctuations (Section 12.5). 

Not surprisingly the quantized theory may be used to derive Planck's 
radiation law. We consider a collection of molecules and a radiation field 
that can exchange energy by the emission and absorption of photons: 

A+'Y~B. (13.58) 

When thermal equilibrium is established the ratio of the numbers of mole
cules in states A and B is given by the Boltzmann law: 

(13.59) 

where nw = EB - EA and k is the Boltzmann constant. Now,NA andNB are 
also related by the equilibrium condition that NA/NB is equal to the ratio of 
the emission rate to the absorption rate. When it is remembered that both 
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stimulated and spontaneous emission are possible, use of Equations 13.52, 
13.56 and 13.57 shows that: 

NA/NB = 1+ (w3n/1r2J(w)c3 ). (13.60) 

Combination of Equations 13.59 and 13.60 now gives: 

J(w) = w 3n/1r2c3 [exp(nw/kn-l], (13.61) 

or in terms of the frequency v rather than the angular frequency w: 

(13.62) 

Although only one frequency of radiation has been considered this equa
tion can immediately be extended to all frequencies if it is assumed that the 
radiation field is surrounded by black walls consisting of molecules capable 
of absorbing and emitting photons of all energies. Equation 13.62 is just 
Planck's radiation law, which gives the energy density of radiation in equi
librium with its surroundings at a temperature T. 

Finally, it may be remarked that the quantized theory provides a more 
appealing physical picture for the interaction of radiation with matter, since 
photons are absorbed and emitted and energy is conserved. Indeed these 
processes may conveniently be described by diagrams. In Fig. 13.2 time in
creases from the bottom to the top of the page, the wavy lines represent pho
tons and the straight lines molecular states; although there is a resemblance, 
these are strictly not Feynman diagrams. In the present instance these dia
grams are trivial, but similar diagrams can be very useful in discussing many
photon processes, since they provide a convenient way of keeping track of all 
the terms in the expansion 13 .24 of the reaction matrix element. 

B A f 

A+"-B 
obIorption 

B 

B-A+" 
emillion 

Y 

Fig. 13.2. Diagrams describing absorption and emission. 
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13.6 Multi-photon processes 

Two-photon absorption has been observed in microwave and radio-frequency 
spectra and also, with the advent of intense laser sources, in the optical 
spectra of, for example, organic crystals. Although only the case of two· 
photon absorption is briefly considered here, the principles may readily be 
extended to emission and multi-photon processes. 

In practice the two photons absorbed are usually of the same frequency, 
but we discuss the general case: 

A + 1 + l' ~ B. (13.63) 

Thus, the initial state is lA, nItA, nk'A') and the final state is I B, nItA - 1, 
nk'A' - 1). The transition rate wfi is given by Equation 13.23, so that a non
zero reaction matrix element Rfi is needed. The first term in the expansion 
13.24 of Rfi is Vo, but this vanishes. In the first place the perturbation 
(e/m)(A.p) only connects states differing by one photon. Secondly, although 
(e 2/2m)A 2 connects states differing by two photons its matrix elements are 
proportional to (BIA), which is zero in this case; this depends on the use of 
the long wavelength approximation, but higher terms in the expansion of 
exp (ik.r) make negligible contributions. 

For a non-zero Rfi it is necessary to go to the second term in its expansion 
and this is just: 

(13.64) 

Only the perturbation (e/m)(A.p) makes a significant contribution and then 
only if the state n is II, nItA, nk'A' - 1) or II, nkA - 1, nk'A'), where I is any 
state of the molecular system. Use of Equation 13.31 then gives: 

Rfi = - (nkAnk'A'/wkWk')~ (2nV€ofl:E (EB - E1)(E1 - EA) X 
1 

[(EItA.PBI)(Ek'A'.P1A)/(EA - E1 + nWk') 

+ (Ek'A,.PBI)(EkA,PIA)/(EA - EI + nWk)]' (13.65) 

This may now be substituted in Equation 13 .23 to give the transition rate. 
As for one-photon processes generalization to all types of photons must be 
made, but this may be accomplished in a similar manner. The details are not 
given here, but it may be noted that the presence of the Dirac delta function 
in Equation 13.23 ensures that the transition rate vanishes unless energy is 
conserved in the overall process: 

(13.66) 
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A few words are appropriate about the molecular states I, which are called 
intermediate or virtual states. They are definite molecular states and as such 
they are eigenfunctions of the molecular Hamiltonian. However, these states 
cannot be observed in the two-photon process. Over the entire process energy 
is conserved, but it is not necessarily conserved while the molecule is in an 
intermediate state. The reason for this is that the lifetime of an intermediate 
state is so short that Heisenberg's uncertainty principle allows there to be some 
uncertainty in its energy. Strictly speaking, the intermediate states include 
continuum states and an appropriate integral over these states should be 
added to the sum over the discrete states in Equation 13.65; however, they 
are usually unimportant because the corresponding energy denominators are 
very large. 

8 8 
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8 

Fig. 13.3. Diagrams describing (a) two-photon absorption: A + -y + -y' ~ B, 
(b) two-photon emission: B ~ A + -y + -y', (c) negligible two-photon absorp
tion and emission processes. 
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The two-photon absorption (Equation 13.63) may be described by the 
diagrams given in Fig. 13.3(a). There is a diagram for each of the two per
turbation terms in Equation 13.65; in one case the photon 'Y is absorbed 
first and in the other it is 'Y'. In Fig. 13.3(b) the corresponding diagrams 
for the two-photon emission process: 

B -+ A + 'Y + 'Y' (13.67) 

are given. Finally, the negligible absorption and emission processes due to the 
perturbation (e2/m)A2 are described by the diagrams in Fig. 13.3(c); in this 
case there are no intermediate states, since the operator A 2 connects states 
differing by two photons and in principle can contribute to the first term 
Vfi in the expansion 13.24 of Rfi. 

13.7 The scattering of photons by molecules 

In the two-photon processes discussed in the last section both photons are 
either absorbed or emitted. However, it is possible for one photon to be 
absorbed and one to be emitted: 

A + 'Y -+ B + 'Y' ; (13.68) 

this process is referred to as scattering. If 'Y and 'Y' both have the same energy 
and A = B we have Rayleigh scattering, while the more general phenomenon 
where 'Y and 'Y' are of different energy and A \ B is known as Raman scat
tering. 

y' 

y 

A 
y 
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y ' 

y 
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Ie) 

Fig. 13.4. Diagrams describing photon scattering: A + 'Y -+ B + 'Y'. 

y ' 

The general process 13 .68 may be described using diagrams as in 
Fig. 13.4. In (a) the photon 'Y is absorbed to give an intermediate state I 
which subsequently emits the photon 'Y" However, there is no reason why 
'Y' should not be emitted before'Y is absorbed and this possibility is illus
trated in (b). The first-order process in which absorption and emission occur 
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simultaneously is shown in (c); this is due to the perturbation (e2/2m)A2 and 
is only important for Rayleigh scattering for which A = B. 

We again consider a single bound electron, but as before the generalization 
to a molecule may be made without difficulty. The initial state for the 
scattering process may be taken as lA, nkA, nk'l.') and the final state as 
I B, nkA - 1, nk'l.' + I}. The matrix element of the perturbation (e2/2m)A 2 be
tween these two states is given by Equation l3.4O. The second-order 
contribution of (e/mXA.p) to the reaction matrix element is given by 
13.64 and in this case the relevant states n are II, nkA -1, nk'l.') and 
II, nkA' nk,l.' + D; the first occurs in diagram (a) in Fig. 13.4 and the second 
in diagram (b). Thus, the matrix element Rfi is given by: 

R fj = [nkl.(nk'A' + 1)/wttwIt'1 ~ (21iV€of l X 

{(e2/i2/m)(EkA.Ek'l.')1iAB - ~ (EB - EI)(EI - EA) X 
I 

[(lkA.PBI)(Ek'l.' .PIA)/(EA - EI -liWk') 

+ (Ek'l.'.PBI)(lkA.PIA)/(EA - EI + liw01}· (13.69) 

This may now be used to calculate the transition rate, but the details of any 
further development depend on the experimental situation under consider· 
ation. Indeed, Equation 13.69 and similar expressions provide a starting point 
for a discussion of many phenomena such as optical rotation and related 
effects as well as Rayleigh and Raman scattering. However, except for a few 
more general remarks, this topic ~ not pursued further. 

If the energy of the incident and scattered photons is much larger than 
the binding energy of the electrons, only the first term in the curly paren
theses of Equation 13.69 is important. The scattering is largely due to the 
process depicted in (c) of Fig. 13.4 and is insensitive to the binding of the 
electron; this is the situation exploited in X-ray diffraction, for example. 
When the photon energy is small the resulting Rayleigh and Raman scattering 
is usually described in terms of molecular polarizability and this section is 
concluded with a demonstration that Equation 13.69 is related to a polariz
ability matrix element for the specific case of Rayleigh scattering, in which 
A = B and Wk = Wit'. 

The initial step is to rewrite the first term in Equation 13.69 in a similar 
form to those involving intermediate states. This is done by noting that, 
because of the commutation relations of p and r: 

i1i(lkA·l k'l.') = (lkA·r)(lk'l.'·P) - (lk'l.'·PXEU·r) 

= ~ [(AlekA·rII}(Jlek'l.'·pIA) 
I 

+ (A lek'A'.pl[)(JllkA.rIA}], (13.70) 
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where the completeness of the intermediate states I has been used. Use of 
Equation 13.30 now shows that: 

(e2Fi 2/m)(lkA.lk'A') = ~ (EI - EA)[(lll,PAI)(lk'A',PIA) 
I 

+ (lk'A'·PAI)(lll·PIA»), (13.71) 

where P AI is the matrix element of er between A and I. The expression in 
Equation 13.69 which is enclosed in curly parentheses now becomes: 

(13.72) 

Since Fiw is assumed to be much smaller than (EI - EA) the terms 
(EI - E A ± Fiw r 1 may be expanded as power series in Fiw/(EI - E A) and only 
the linear terms need be retained. Thus, Equation 13.72 is approximated by: 

~ FiW[(lll'P AI)(I k'A'.PIA) - (lk'A'·P AIXlkA'PIA)] 
I 

- ~ (FiW)2[(lkA'p AI)(lk'A'.PIA) + (I k'A'.PAIXIll'PIA)] /(EI - EA)' (13.73) 
I 

Now the first term vanishes, since it is proportional to the matrix element 
{AI [( IkA.r), (Ik'A,.r)] IA}, so that the reaction matrix element Rfi is fmally 
given by: 

! 
Rfi = - [nkA(nk'A' + 1)] 2 (Fiw/2 VEo) X 

~ [(lkA,PAIXlk'A"PIA) + (lk'A',PAIXlkA,PIA)]/(EI - EA)' (13.74) 
I 

Although Equation 13.74 has been derived for a single bound electron 
Rfi has the same form for a molecule and can be rewritten as: 

I 

R fi = - [nll(nk'A' + 1»)2(Fiw/2 VEo) Ill.{A laIA).lk'A', (13.75) 

where a is the molecular polarizability tensor. This concludes our demon
stration that for low energy photons the Rayleigh scattering may be described 
in terms of the molecular polarizability. 

13.8 Une widths and resonance fluorescence 

It has already been mentioned that the time-dependent perturbation theory 
in Section 13.2 has deficiencies. One of these is that the theory leads to 
transitions that are infinitely sharp, although in practice spectral lines have 
a finite line width. Of course, there are a number of causes for line broadening. 
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For example, in high resolution gas phase studies the Doppler effect and 
pressure broadening are important. However, even if these contributions are 
eliminated there is a residual line width, known as the natural line width, 
which cannot be removed. 

Another difficulty is that the reaction matrix element (Equation 13.69) 
for photon scattering involves the denominator (EA - EI + liw), where liw 
is the energy of an incident photon. If liw is equal to (E1 - EA ) for an inter
mediate state I, then R rj , and hence the transition rate wri' both become 
infmite. This does not, of course, occur in practice, although in the region 
where liw = EI - EA the scattering probability is observed to go through 
a sharp maximum. This phenomenon is called resonance fluorescence. 

Both the natural line width and resonance fluorescence may be attributed 
to the fact that excited states have fmite lifetimes and that this is not ac
counted for in the theory of Section 13.2. Heisenberg's uncertainty prin
ciple, which is stated in Equation 12.60, shows that the lifetime T of a state 
and the uncertainty in its energy are related by: 

T(M) ~ iiI 2, (13.76) 

where we have used the fact that the energy operator is ili(a/at); thus, Mis 
of the order of lilT. For the ground state of a molecule in the absence of 
radiation the lifetime is infmite and the energy is well defmed. However, 
excited states have finite lifetimes, since photon emission is always possible 
even if there is no radiation present. In general the average lifetime of a state 
is,the reciprocal of the sum of the transition rates to all other states. Conse
quently, the energy of an excited state cannot be definite and the energy level 
is smeared out. 

This uncertainty in the energies of excited states means that all spectral 
lines are broadened, since transitions always involve excited molecular states 
even if, as in the case of Rayleigh scattering by a molecule in its ground state, 
the excited states involved are intermediate states. The uncertainty in the 
energies of states was not accounted for in the theory of Section 13.2, since 
in obtaining Equation 13.10 it was assumed that the states are eigenfunctions 
of;](,o and that their energies are constant and independent of time. As a 
result the differential equation 13.10 allows for a build up of a particular 
state by transitions from other states, but it does not accourtt for the de
pletion of that state by transitions from it. This possibility can be allowed 
for phenomenologically by adding an extra term c,,(t) exp (- tI2T,,) to 
Equation 13.10 for c,,(t). Inclusion of this term then leads to finite line 
widths for transitions. 
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These are qualitative considerations, but the results arise naturally in more 
advanced theories. Here, we confme ourselves to an unsophisticated demon
stration that fmite line widths are predicted by quantitative treatments. To 
do this we consider a system consisting of just two states, a and b. Corre
sponding to Equation 13.10 there is then a pair of coupled differential 
equations: 

Ca = - {ilh)VabCb exp [i{Ea - Eb)tlh] 1 
Cb = - {ilh)VbaCa exp [i{Eb - EJtlh] . 

{B. 77) 

To simplify the subsequent development it is assumed that at time (= 0 
only state a is populated, so that 

Ca{O) = 1; (13.78) 

In Section 13.2 initial conditions of this type were deliberately avoided, since 
they give spurious terms in second order, but here only the first-order results 
are considered. 

The qualitative discussion earlier suggests that state a will decay as exp 
{- (ITa)' SO that Ca will decrease as exp (- (12Ta), since the probability of the 
system being in state a is given by !cal 2. Consequently, the trial solution: 

Ca{t) = exp {- tl2T J (13.79) 

is investigated. By substituting this in the second of Equations 13.77 a differ
ential equation in Cb alone is obtained and the solution of this using the 
initial conditions (Equations 13.78) gives: 

Cb = Vba {exp [i{Eb - EJtlh - tl2Ta] -1)/{Ea - Eb - ih/2T J. (13.80) 

The fast of Equations 13.77 may now be used with Equations 13.79 and 
13.80 to determine T~I: 

T~1 = {2ilh)1 VabI 2{1- exp [i{Ea - Eb)tlh + tI2Ta])/{Ea - Eb - ih/2TJ, 

(13.81) 

or neglecting terms in Ta on the right-hand side of this equation: 

the justification for this neglect is that TlT-;.1 is very much smaller than 
(Ea-Eb)· 

Now T~1 is expected to be time independent and indeed this has been 
assumed in obtaining Equation 13.82. Consequently, the limit of Equation 
13.82 is taken as (~OO and to avoid oscillations we employ the same trick 
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as before (Section 13.2) and insert an artificial damping factor, which is 
later made to vanish. Abbreviating (Eo - Eb)/Tt to x, we have: 

Lt [(1- exp (ixt»/x] = - ifoooexp (ixt)dt 
t-.oo 

= - iLt f.ooo exp (ixt - 17t)dt 
'1-.0 

= Lt (x + i17fl 
'1-+0 

= Lt [x/(x2 + 172 ) - i17/(X2 + 172)] 
1)-+0 

= l/x - i1f6(x), (13.83) 

where the representation (Equation 13.21) of a Dirac delta function has 
been used. Thus, Equation 13.82 becomes: 

Reference to Equations 13.9 and 13.79 shows that the imaginary part of 
T~l leads to an energy shift. It is a term like this that is responsible for the 
Lamb shift (Section 11.9), the two levels being an electron plus the vacuum 
state and the electron plus a photon. The electron emits a photon which it 
subsequently absorbs and, since the emission is due to the electron inter
acting with the vacuum state, the vacuum fluctuations may be considered to 
be responsible for the Lamb shift. 

The real part ofT; 1 (Equation 13.84) is just the rate of transition (Equation 
13.23) from state a to state b, so that To is the lifetime of state a in the 
two-level system under consideration. This result is in agreement with the 
qualitative arguments given earlier. 

We are now in a position to consider the line shape associated with the 
transition a to b. At t = 00 the transition is certain to have taken place and 
from Equation 13.80: 

Cb(oo) = - Vbo/(Eo - Eb - iTt/2T J. (13.85) 

The transition probability is then: 

ICb(oo)12 = I VbaI2/[(Eo - Eb)2 + Tt2/4T!]. (l3.86) 

The important thing to note is that this is not proportional to a Dirac delta 
function, but is an ordinary function of the energy difference (Ea - Eb ), so 
that the spectral line associated with the transition is not infmitely sharp. 

If the transition from a to b involves the absorption or emission of a 
photon of energy Ttw by a molecule in state A to give the molecular state 
B, we can write: 

(13.87) 
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The transition probability (Equation 13.86) is then a function of the photon 
energy and is proportional to: 

(13.88) 

Thus, the spectral line corresponding to the transition has the Lorentz shape. 
It is centred on W = Wo and has a width at half height of T~l, so that the 
natural line width is just equal to the transition rate from a to b. 

Although only a two-state system has been considered, the extension to 
more complicated systems yields analogous results, the width of a line being 
the total transition rate to all other states. These considerations also provide 
an explanation for resonance fluorescence, which was mentioned earlier and 
which occurs in scattering processes when the incident photon energy is the 
same as the energy difference between the initial state of the molecule and 
one of the intermediate states. A more sophisticated theory is needed, since 
scattering involves second-order processes, but the result is that the reaction 
matrix element (Equation 13.69) is modified by the replacement of the 
denominator (EA - E] + liWk) by (EA - H] + liWk - iliI2T]) as in the sim
pler example considered here. As a consequence the transition rate does not 
become infinite when E] - EA = liWk' although it does have a maximum in 
agreement with experiment. 
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APPENDIX A 

Units 

This book employs the 'Systeme International d'Unites' (SI). (It is also known 
as the (rationalized) MKSA system, since four of the base Wlits employed are 
the metre, kilogram, second and ampere.) A discussion of the advantages of 
using this system is given in Section 5.1. Here a brief summary is given, with 
particular reference to those units used in this text. For the details of these and 
other units, reference should be made to the bibliography. 

A.I SI units 

There are three types of SI units: base, supplementary and derived. 
(a) The seven base units are regarded as being dimensionally independent: 

SI unit 
Physical q Uan tity Dimension 

Name Symbol 

length metre m L 
mass kilogram kg M 
time second s T 
electric current ampere A A 
thermodynamic temperature kelvin K 
luminous intensity candela cd 
amount of substance mole mol 
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(b) There are two supplementary units: 

Physical quantity 
SI unit 

Name Symbol 

plane angle radian rad 
solid angle steradian sr 

(c) Derived units are employed for all other physical quantities. They are said 
to be coherent, since they are obtained by multiplying and dividing the base 
units without introducing any numerical factors whatsoever. Some of these 
have special names and symbols: 

SI unit 
Physical quantity Dimensions 

Name Symbol Definition 

energy joule J kg m2 S-2 M L2 T-2 
force newton N kg m S-2 M L T-2 
pressure pascal Pa kg m- I S-2 M rl T-2 
power watt W kg m2 S-3 M L2 T-3 

electric charge coulomb C s A T A 
electric potential volt V kg m2 S-3 A-I M L2 T-3 A-I 

difference 
electric resistance ohm 1'2 kg m2 S-3 A-2 M L2 T-3 A-2 
electric farad F kg-I m-2 S4 A2 M- I L-2 T4 A2 

capacitance 
magnetic flux weber Wb kg m2 S-2 A-I M L2 T-2 A-I 

inductance henry H kg m2 S-2 A2 M L2 T-2 A-2 
magnetic flux tesla T kg S-2 A-I M T-2 A-I 

density 
frequency hertz Hz S-1 T- 1 

There are other derived units which have no special names or symbols. Many 
of these are obvious, such as that for density (kg m-3 ), and only the pertinent 
electromagnetic units are given here. For completeness electric charge, electric 
potential and magnetic flux density are included, although their units have 
special names. 
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Physical quantity Symbol for Dimensions SI unit 

electric charge C T A 
electric field strength E Vm-I M L T-3 A-I 
electric displacement D Cm-2 L-2 T A 
permittivity e(D = eE) Fm-I Afl L-3 T4 A2 
electric potential ~ V M L2 T-3 A-I 
electric charge density p Cm-3 L-3 T A 
electric dipole moment Cm L T A 
magnetic field strength H Am-I L- I A 
magnetic flux density B T M T-2 A-I 
permeability Il(B = JlH) Hm-I M L T-2 A-2 
vector potential A Tm M L T-2 A-I 
electric current density j Am-2 L-2 A 
magnetic dipole moment J T- I L2 A 

(d) Decimal multiples (in steps of 103) of SI units are indicated by prefIXes: 

Multiple Prefix Symbol Multiple Prefix Symbol 

10-3 mOO m 103 kilo k 
10-6 micro Il 106 mega M 
10-9 nano n 109 giga G 
10-12 pica P 1012 tera T 
10-IS femto f 
10-18 atto a 

A.2 Conversion from the mixed (Gaussian) CGS system to the SI system 

(a) The conversion of equations expressed in the mixed CGS system to the 
corresponding SI equations only poses problems if electromagnetic quantities 
are involved. For the situations considered in this book the conversion may 
be accomplished using the following table, the quantity in the eGS column 
being replaced by the expression in the SI column. Before the conversion all 
quantities must be expressed in mixed eGS units and after the conversion all 
must be in SI units. 
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Physical quantity 
Dimensions in the mixed 

eGS SI eGS system 

electric charge MII2 L312 T- 1 q q( 41TEo)-1I2 

electric field strength MII2 L- I12 T- 1 E E( 41TEo)112 

electric potential MII2 L 112 T- 1 I/> 1/>( 41TEo) 1/2 

magnetic flux density MII2 L- I12 T- 1 B B(tLo/41Tr l12 

vector potential MII2 L 112 T- 1 A A(tLo/4 1T)-112 

Bohr magneton MII2 L 512 T- 1 
tLB tLB (tLo/ 41T) 1/2 

This table must not be used to provide numerical conversion factors for units, 
since powers of 10 must be introduced to allow for the change from centi
metres and grams to metres and kilograms; this topic is considered below. 
(b) Conversion factors for units are given in the following table: 

Physical quantity Name of unit 
Conversion factor Definition 
(in SI units) of unit 

energy erg 10-7 1O-7 J 
calorie * 4.2 4.2J 
wave number (cm-1) he 102 1. 986 X 10-23 J 
electron volt 1.6022 X 10-19 1.6022 X 

(eV)t 1O-19J 
force dyne 10-5 10-5 N 
electric charge:!: e.S.u. (41TEo)II2 IO-9/2 3.334X 10-toe 
electric field -1 e 10-6 2.998 X 102 e.s.u. cm 

strength:!: Vm- 1 

electric dipole debye (10-18 (41TEo) 112 10-4912 3.334 X 10-30 

moment e.s.u.cm) em 
magnetic flux gauss (G) (/10/ 41T) 112 10- 112 1O-4 T 

density 

* Only an approximate conversion factor is given, since there are various 
types of calories. 
t The electron volt is the product of the charge on the proton and the unit V. 
* Note that the practical CGS units for electric charge and electric potential 
are the coulomb and the volt, respectively, and that these are SI units. 

A.3 Recommended values of fundamental constants 

The uncertainties in these values (one standard-deviation) are indicated by the 
numbers in parentheses; for example, the uncertainty in the velocity of light 
in a vacuum is 0.0000010 X 108 m S-l or 1.0 X 102 m S-I. 
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Fundamental Constant Symbol Value 

velocity of light in a c 2.9979250(10) X 108 ms- 1 

vacuum 
permeability of a vacuum Po 41T X 1O-7 H m- I (exact) 
permittivity of a vacuum -I -2 8.8541853(58) X 1O-12 F m- I Eo = Po c 
fine structure constant 0: = poe2c/2h 7.297351(11) X 10-3 

0:- 1 137.03602(21) 
charge of a proton e 1.6021917(70) X 1O-19C 
Planck constant h 6.626196(50) X lO-34 J s 

fi = h/21T 1.0545919(80) X 10-34 J s 
unified atomic mass mu = m aC2C)/12 1.660531(11) X 1O-27 kg 

constant 
rest mass of electron me 9.109558(54) X 10-31 kg 
rest mass of proton mp 1.672614(11) X 1O-27kg 

mp/me 1836.109(11) 
Rydberg constant R~ = p~mee4 c3 /8h3 1.09737312(11) X 107 m-I 

Bohr radius ao = h 2 /1TPoC 2 mee2 5.2917715(81) X lO-11 m 
Bohr magneton lAB = efi/2me 9.274096(65) X 10-24 JT- I 

nuclear magneton PN = (me/mp)IAB 5.050951(50) X 10-27 JT- I 

free electron g factor 'g 2.0023193 15( 7) 
Boltzmann constant k 1.380622(59) X 10-23 JK- I 

Avogadro constant L 6.022169(40) X 1023 mOrl 
gravitational constant G 6.6732(31) X 10-11 Nm2 kg-2 
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Vector Relations in Three Dimensions 

General relations. The scalar c/J and the components of the vectors A, B, .... 
are all assumed to commute with one another; V is the vector operator with 

components (a/ari). 

A.(BAC) = B.(CAA) = C.(AA B), 

A A (B A C) = (A.C)B - (A.B)C, 

(AAB).(CAD) = (A.C)(B.D)- (A.DXB.C), 

V.(c/JA) = (Vc/J).A + q,(V.A), 

V A (c/JA) = (Vc/J)AA + tP(V AA), 

V(A.B) = (B.V)A + (A.V)B + BA(V AA) + AA(V A B), 

V.(A A B) = (V A A).B - A.(V A B), 

V A (A A B) = A(V.B) - (A. V)B + (B. V)A - (V.A)Is, 

V A (Vc/J) = 0, 

V.(VAA) = 0, 

V A(V AA) = V(V.A)- VZA. 

Special relations involving the position vector r; c5(r) is the Dirac delta function 
(see Section 2.13). 

V.r = 3, 
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V Ar = 0, 

(A.V}r = A, 

V(1lr) = - r/r3, 

VZ(1lr) = - V.(r/r3) = - 41Tc5(r), 

Vi(r/lr3) = (4rrI3)c5 uc5(r) + c5 ulr3 - 3r,rj lrs. 
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The deriwtion of other relations is often facilitated by the use of €ijk (see 
Chapter 2). The following sum rules may be useful: 
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radial functions 205, 207 - 211, 
213 
ratio of components 208, 212 

Dirac delta function 29-32, 36 
dimensions 246 
expectation value 196 
one-dimensiona130-31 
representation 30-31, 246 
three-dimensiona130,32 

Dirac equation 111-154 
charge conservation 127 -128 
charge density 128 
complete separation 131-132, 
133, 143-148 
current density 128 
derivation 112-114 
free electron 112-114, 123-125, 
143-153,154 

angular momentum 123-125, 
150-152 
position operator 145 -146, 
149-150 
solution 143-144 
velocity operator 144-145 
Zitterbewegung 145 -146, 
150,151-153,154 

gauge invariance 120 
introduction of fields 120 
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Lorentz invariance 125-128 
matrix representation 119 
negative energy states 114, 119, 
128-131,142,144,148 
non-relativistic approximation 
120-123,131-143 

expansion parameters 132 
Foldy-Wouthuysen transfor
mation 131, 137-143, 
146-153 
gauge invariance 133 
interpretation of terms 143 
method of small components 
131,133-137,142,143,153 
one-electron atom 197-201 
truncation 133 

one-electron atom 194, 204-217, 
224 
positive energy states 119, 
129-130,142,148 
positron 114, 128-131 
probability density 127 
probability current density 127 
relation to Klein-Gordon 
equation 113-114, 119 
similarity transformation 118-119 
spin 120-124 

angular momentum 123 -124 
g factor 124, 174 
magnetic moment 120-122 

spinor 119, 129 
wave function 119 

Dirac Hamiltonian 120 
commutation relations 123-124, 
143-144,151,204-205 
one-electron atom 204 

constants of motion 204-205 
magnitude of terms 132-133, 
180 
polar coordinates 206-207 

Dirac matrices 114-119 
charge conjugation 128-129 
dimensionality 115 -116 
equivalent representation 117 
Hermiticity 118 
standard representation 118, 119 
trace 115 

Dirac operators 112-114 
anticommutation relations 
113-114 
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charge conjugation 128-129 
matrix representation 114-119, 
168-169 
velocity 127,144-145 

Dirac representation 149-153 
momentum 149 
orbital angular momentum 151 
position 149-150 
spin angular momentum 151 

Dirac theory 130-131 
interaction of radiation and 
matter 241, 243 
many-electron atom 221-223 
Maxwell's equations 131 
molecules 223-224 
nuclear hyperfine interaction 
220-221 
nuclei 179-180 
quantum electrodynamics 131 
vacuum state 131 

displacement current 75 
divergence 23, 24-25 

of r 29 
of r/r3 29,32 

Doppler effect 261 
dot product, see scalar product 

effective Hamiltonian 188-192, 193 
basis functions 188 
degenerate perturbation theory 
192,193 
molecular parameters 189, 192 

g factor 191 
rotational constant 190-191 

eigenfunction 2 
harmonic oscillator 232 
Hermitian operator:3 
matrix 36 
one-electron atom 

Dirac theory 205 
non-relativistic approximation 
201-204 
non-relativistic theory 195-196 
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radiation oscillator 232 
eigenvalue 2 

harmonic oscillator 232 
matrix 36 
one-electron atom 

Dirac theory 211-212 
non-relativistic approximation 
200-201 
non-relativistic theory 195 

radiation oscillator 232 
eigenvector, see eigenfunction 
Einstein 54, 225 

principle of relativity 48-49 
Einstein coefficients 

A 253 
absorption 252, 254 
B 252,253 
Planck's radiation law 254 
spontaneous emission 253, 254 
stimulated emission 253, 254 

electric 
charge, see charge 
dipole moment, molecular 248 
dipole transition 248 
displacement D 68 
field gradient tensor 184 
field strength E 67 -68 

see also electromagnetic fields 
potential 65 

see also electromagnetic 
potentials 

quadrupole moment 
molecular 249 
nuclear 183-185 

quadrupole transition 249 
electrodynamics, see quantum 

electrodynamics 
electromagnetic fields 67 -76,85-103 

action 90-92 
additivity 91 
characteristic vibrations 100-102 
conjugate variables 102,226-227 
dimensions 68,267 
equations of motion 90-92, 93 
four-tensor 68-69 

invariants from 70, 91 
Hamiltonian 94-95,100-101,102 

interaction with 
charge 63-84 
moving magnetic moment 72, 
81-84,143,177 

introduction in Dirac equation 
120 
Lagrangian density 90-92 
Lorentz transformation 68-70 
magnitude in atom 132-133 
momentum 94-95,101,102 
moving electron 162-163 
orthogonal to wave vector 100 
Poynting vector 95 
quantization 225-230, 239 
relation to potentials 67 
stationary charge 75-76 
uniform 71-72 
see also quantum theory of 
radiation, radiation oscillator 

electromagnetic potentials 64-66 
dimensions 66,267 
four-vector 65,90 
gauge transformation 70-71 
Lienard-Wiechert 77 
Lorentz transformation 65 
magnetic moment 157-158 
moving charge 76-79 
moving electron 156 -1 59 
relation to fields 67 
retarded 77 
stationary charge 76 
uniform fields 71-72 

electromagnetic wave equation 
95-99, 101-102 
boundary condition 98-99 
damping terms 96 
freespace96-99,lOl-102,109 
gauge transformation 96-97 
Klein-Gordon equation 109 
separation of variables 97 -98 

electromagnetic waves 95 -1 02 
fields 100 
polarization vectors 98 
potentials 98-99 

orthonormalization 98-99, 
100 

wave vector 97 -99 
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see also radiation oscillator 
electron 

fermion 237-239 
inner 11, 180,221 
interaction with radiation 
241-243, 247 -250 
moving 

fields 162-163 
potentials 156-159 

radius 37 
rest energy 143, 177 
rest mass 269 
reduced mass in atom 194,220 
total angular momentum 
124-125, 151 
unsatisfactory wave equations 
104-106,111-112 
see also Dirac equation, free 
electron, two electrons and many 
electrons 

electron orbital motion 
angular momentum 7, 72, 106, 
150-151 
g factor 7 
magnetic moment 7, 72, 106 
Zeeman interaction 106, 1 78 

electron spin 8-11,12,120-125 
angular momentum 8, 11, 
123-125,150--151 

Zitterbewegung 151-152 
contribution to fields 162 
contribution to potentials 
157-158 
Dirac theory 120-125 
function 8, 9,188,197 
gfactor 10, 11, 12, 124, 174-176, 
178,269 
magnetic moment 8, 11, 120-122 

interaction with electric field 
143,177 

matrices 9 
models 10, 151-152 
operators 8-9 

anticommutation relations 9, 
17, 114 
commutation relations 8, 21 
matrix representation 9, 114 
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Thomas precession 81-84 
Zeeman interaction 122, 143, 153, 
177 

electron-electron interaction 
Coulomb repulsion 160,165,177, 
221-223 
Darwin-type term 161, 177 
retarded orbit-orbit 162, 164, 
177 
spin-orbit 11,84, 143, 161, 164, 
177,191,197,200 
spin-other-orbit 162, 163, 164, 
177 
spin-spin 163, 177 
see also Breit equation, two 
electrons and many electrons 

electronic 
contribution to rotational 
constant 191 
motion in molecule 185-186 
wave function test 189, 192 

electron-nuclear interaction 
181-183,187 
Coulomb attraction 182 
Darwin-type term 182 
quadrupole 182 
retarded orbit-orbit 182 
spin-orbit 182 
spin-other-orbit 182, 187 
spin-rotation 187 
spin-spin 182,220-221,224 
spin-vibration 182 

electron-positron pair 130-131, 
175-176 

emission 243, 247,252-253 
diagram 255 
Einstein A and B coefficients 
253 
energy conservation 253 
semiclassical theory 254 
spontaneous 253 
stimulated (induced) 253 
transition rate 253 
see also two-photon processes 

e.m.u.63 
energy 

conservation 246 
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constant of motion 44 
four-momentum time com
ponent 60-61 
Hamiltonian 46 
kinetic 43,44,106,143,177, 
182 

relativistic correction 106, 
143,177,197,200 

mass as 59 
negative 108, 111, 128 
operator 3 
origin shift 105, 133 
photon 234 
potential 43, 44 
rest 59,143,177,182 
total 44, 45 
zero-point 219,233,235-236 

energy levels, see eigenvalues 
Ejjk 17-20 

determinental definition 19, 34 
sum rules 19-20, 271 
vector product 17-18, 34 

EO/(ho 62,91 
equations of motion 38 

charge 67 
continuous system 86-88, 90 
electromagnetic field 90, 91, 
92,93 
Hamilton\g 46 
Heisenberg's 6 
Lagrange's 39-41 
Lorentz 67 
particle 43 

e.s.u.63 
Euler's equations 41 
even operator 138 
even-even operator 167-169 
even-odd operator 167-169 
exchange interaction 223 
excited state lifetime 5,261-263 

imaginary part 263 
Lamb shift 263 
natural line width 261 
real part 263 
uncertainty principle 261 

exclusion principle 11, 12,237-238, 
239 

expectation values 2, 3 
one-electron atom 196-197 
time dependence 5-6 
vacuum state 236 

Fermat's principle of least time 39, 
47 

Fermi contact interaction 
electron-electron 163, 1'77 
nuclear hyperfine 182,220-221, 
224 
restriction on use 220,224 

Fermi-Dirac statistics 11, 237 -238 
fennion 11, 237 -239 

exclusion principle 237 -238 
operators 237-239 

anticommutation relations 
237-238 

second quantization 237 -239 
vacuum state 238 

fields 
scalar 22, 89 
self-consistent 221, 223 
vector 22, 90 
see also electromagnetic fields 

fine structure constant a 132,269 
Fitzgerald contraction 55 
fluctuations, see vacuum fluctuations 
fluorescence, resonance 260-264 
Fo1dy-Wouthuysen representation 

149-153 
Darwin term 152-153 
momentum 149 
orbital angular momentum 151 
position 149-150, 151, 152 
spin angular momentum 151 
Zitterbewegung 150, 151-153 

Fo1dy-Wouthuysen transformation 
Breit equation 166-174, 178 

choice of transformation 
170-171 
classification of operators 
167-169 
transformed Hamiltonian 172, 
173-174 

Dirac equation 131, 137-143, 
153 
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even operator 138 
odd operator 138 
transfonned Hamiltonian 141, 
142-143 

free electron 142, 146-153, 154 
mean operators 150-152, 154 
transfonned Hamiltonian 148 
Zitterbewegung 150, 151-153, 
154 

Hamiltonian 139, 146, 169 
operator 149 
wave function 139, 169 

force 43 
four-current 92-93 
four-dimensional space 36,49,51-53, 

60 
four-momentum 60-61 

continuous system 89 
field 95, 101, 102 

four-position 60 
four-potential 65,90 
four-tensor 61-62 

electromagnetic field 68-69 
antisymmetry 69 
invariants from 70, 91 

Lorentz transformation 62 
unit antisymmetric, see €a(J'Y 1i 

four-vector 36,60-62 
Lorentz transfonnation 60 
scalar product 60 

four-vector operator a/a, a 61 
frame of reference 37 -38 

inertial 38 
free electron 

Dirac equation 112-114, 143-153, 
154 
Dirac position 149 
Fo1dy-Wouthuysen transformation 
146-153,154 
Hamiltonian 143-144,148 
mean orbital angular momentum 
151 
mean position 145-146, 149-150, 
152,154 
mean spin angular momentum 151 
mean velocity 145, 150 
position operator 145-146, 149 
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velocity operator 127, 144-145, 
150 
Zitterbewegung 145-146, 
149-150,151-153,154 

amplitude 146, 153 
frequency 145-146 

free space, see vacuum 
freedom, degrees of 37 
frequency 

Larmor 81 
Thomas 83 
Zitterbewegung 145 -146 

fundamental constants 268-269 

g factor (g value) 7 
electron spin 10, 11, 12, 124, 178 

Dirac theory 124, 174 
experimental value 174, 178, 
269 
models 10, 151-152 
radiative corrections 174-176, 
178,239 
theoretical value 175, 176, 178 

molecular 
effective Hamiltonian 191 
spin-orbit interaction 191 

neutron 181 
nuclear 181 
orbital 7 
proton 181 

Galileo's relativity principle 38 
Galilean transformation 38,48,49 

invariance of physical laws 38 
gamma function 211 
gauge 

Coulomb (radiation) 71, 97 
Lorentz 71, 97 

gauge invariance 71 
Breit equation 166 
Dirac equation 120 
quantum mechanical equations 
107,110 

gauge transformation 70-71 
electromagnetic potentials 
70-71,78,96-97 
Lagrangian 71 
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quantum mechanical equations 
107,110 
wave function 107 

Gauss' 
law 32, 74,94 
theorem 25 

Gaussian (mixed CGS) system 
63-64,66,68, 75 
conversion to SI 

equations 267-268 
units 268 

general relativity 11 
generalized 

coordinates 37, 86 
force 43 
momentum 45 
velocity 38 

gradient 23-24 
of l/r 29 

gravitation 11 
group, Lorentz 54 
gyroscopic motion 81 

Hamiltonian 46-47,59 
Breit 166 
charge 66 
continuous system 89 
density 87, 90 
Dirac 120 
effective 188-192, 193 
electromagnetic field 95, 
100-101,102 
Foldy-Wouthuysen transformation 
139,146,169 
free electron 143-144, 148 
free particle 59 
harmonic oscillator 102,228,230 
interaction of radiation and matter 
244,264 
non-relativistic approximation 

charge 72,105-106 
Dirac 131-143 
electron-nuclear interaction 
181-183 
interaction of radiation and 
matter 242-243,264 
many electrons 176-178 

molecular 179-193 
nuclear 181-182 
particle 59 
one-electron atom 197 
two electrons 155,159-164, 
178 

operator 3, 104 
radiation oscillator 102,227-228 
relation to Lagrangian 46 
spectroscopically useful 185-187, 
192 
spin 191, 193 
two charges 80 

Hamilton's 
equations of motion 46 
principle 38 

harmonic oscillator 230-232,239 
annihilation operator 233, 239 
creation operator 233, 239 
eigenfunctions 232 
eigenvalues 232 
Hamiltonian 102,228,230 
momentum 102 
momentum operator 232 
number operator 232 
occupation number 232 
see also vibration 

heavy atom 11, 180,212,221 
Heisenberg 

equation of motion 6 
picture 5, 228 

relation to Schrodinger picture 
5-6,228 

see also uncertainty principle 
helium 172 
Hermitian 

conjugate 127 
matrix 33 
operator 2-3 

Hermiticity 2-3 
degenerate perturbation theory 
192,193 
Dirac matrices 118 
method of small components 
136-137 
two-electron Hamiltonian 156-157, 
162 



Subject Index 

hexadecapole moment 185 
Hilbert space 2 
homogeneity of space and time 38 
hydrogen atom 194-224 

Dirac equation 194 
magnitude of terms 80, 
132-133 

Lamb shift 217-220, 224 
nuclear hyperfine interaction 
220, 224 
see also one-electron atom 

hyperfine interaction, see nuclear 
hyperfine interaction 

idempotent operator 238 
induced emission, see stimulated 

emission 
induction law 73 
inertia tensor 187 
inertial frame 38 
inner electrons 11, 180, 212 
intensity, radiation 251 
interaction 

Breit 165-166 
charge and field 63-84, 106 

action 64-66, 90,92-93 
equation of motion 67 
Hamiltonian 66,72, 106 
Lagrangian 65 -66 
Lagrangian density 92-93 
Lorentz equation 67 

configuration 223 
Coulomb 160, 165, 177, 182, 
221-223 
Darwin 143, 152-153, 161, 177, 
182,197,200 
diamagnetic 106, 178 
dipo1e-dipole 163, 177, 182,220 
electron and field 143, 177, 
241-243,247-250 
electron-electron 160-164, 177 
electron-nuclear 181-183, 187 
exchange 223 
Fermi contact 163, 177, 182, 
220-221,224 
magnetic moment and field 72, 
81-84,143,177 
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maximum velocity of propagation 
48-49 
nuclear hyperfine 182,220-221, 
224 
nuclear quadrupole 182, 183-185 
nuclear-nuclear 182 
radiation and matter 225, 241-264 

comparison of theories 254-255 
Dirac theory 241,243 
Hamiltonian 242-243, 264 
matrix elements 247-250 
semiclassical theory 225, 241, 
254 

retarded orbit-orbit 162, 164, 
177,182 
spin-orbit 11,84,143,161,164, 
177,182,191,197,200 
spin-other-orbit 162, 163, 164, 
177,182,187 
spin-rotation 183, 187 
spin-spin 163, 177, 182 
spin-vibration 187 
three-body 176, 178 
two charges 79-80, 84 
Zeeman 106, 122, 143,153,177, 
178, 182 

intermediate state 257 
lifetime 257,261,264 
scattering 261, 264 
two-photon processes 
257-258 
uncertainty principle 257, 261 

interval 50-51,52 
invariance 

physical laws 38, 54 
velocity of light 49, 51 
see also Galilean, gauge and 
Lorentz invariance 

isotope shifts 183 
isotropy of space 38 
Itoh 155,176 

ket 2 
kinetic energy 43, 44 

charge 106 
electron 143, 177 
nucleus 182 
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relativistic correction 106, 143, 
177,197,200 

Klein-Gordon equation 108-110 
electromagnetic wave equation 
109 
Lorentz invariance 108 
mesons 109 
negative energy solutions 108 
negative mass solutions 108 
relation to Dirac equation 
113-114,119 
time-ciependent probability 
density 108-109, 112 
unsuitability for electron 110, 112 

Kronecker delta, see 1)ij 

Lagrange's equations of motion 
39-41 
continuous system 86-88 

Lagrangian 39 
addition of time derivative 41 
charge and field 65-66, 92-93 
closed system of particles 42-43 
continuous system 86 
coupled oscillators 86 
density 

charge and field 92-93 
continuous system 86 
electromagnetic field 90-92 
Lorentz invariance 91 

free particle 41-42, 57-58 
Galilean invariance 42 
gauge transformation 71, 90 
invariance to displacement 44 
invariance to rotation 45 
Lorentz invariance 57-58 
molecular 187 
non-relativistic approximation 58 
relation to Hamiltonian 46 
two charges 79-80,160 

Laguerre polynomials 195 
Lamb shift 201, 212, 217-220, 

224,263 
hydrogen atom 217-220 
many-electron atom 220 
model 219 
one-electron atom 201,212,220 

quantum electrodynamics 
218-219,263 
vacuum fluctuations 219 

Laplacian (~) 28 
of llr 29, 32 

Larmor 
frequency 81 
precession 81 

large components 134 
ratio to small components 208, 
212 

laser spectroscopy 256 
laws, see Boltzmann, Gauss', induc-

tion, Newton's and Planck's laws 
Legendre polynomials 196 
Lienard-Wiechert potentials 77 
lifetime 

excited state 5,261-263 
intermediate state 257, 261, 264 
mu-mesons 56 

light 
Fermat's principle 39 
velocity 49, 75, 269 

invariance 49,50,51 
line 

broadening 260-261 
Lorentz shape 263-264 
natural width 261-264 

linear 
combination of basis functions 4 
molecule 187, 192 
operator 2 

long wavelength approximation 247 
Lorentz 54 

contraction 54-55 
equation 67 
gauge 71 
group 54 
line shape 263-264 

Lorentz invariance 
action 57-58,65 
Dirac equation 125-128 
equation of motion for a con
tinuous system 88 
four-tensor equations 62 
four-vector equations 61 
four-vector scalar product 60 
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interval 50-51 
Klein-Gordon equation 108 
Lagrangian 57 -58 
Lagrangian density 91 
Maxwell's equations 54,63, 73 
physical laws 54 

Lorentz transformation 51-54 
electromagnetic fields 68-70 
energy 60-61 
four-tensor 62 
four-vector 60-61 
four-vector operator a/a, Q 61 
general 54 
inverse 53 
momentum 60-61, 125-126 
non-relativistic limit 53 
orthogonal transformation 
52-53,61 
position 51-54 
probability density 127 
probability current density 127 
time 51-54 
velocity 56-57 

magnetic 
dipole moment 

interaction with fields 72, 81, 
143,177 
nuclear 181, 185 
potentials 157 -158 
see also orbital and spin mag
netic moments 

dipole transition 249 
flux density B 64,67-68 

see also electromagnetic fields 
field strength H 64, 68 
monopole 73, 185 
potential 65 

see also electromagnetic 
potentials 

resonance 182, 188,249 
magnet on 

Bohr 122, 269 
nuclear 181 , 269 

magnitude 
Breit operator 166 
terms in Dirac equation 

heavy atom 180 
hydrogen 80,132-133 

many electrons 
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Hamiltonian 176-178 
quantum electrodynamics 176, 
178 
three-body interactions 176 
wave equation 155-178 

many-electron atom 221-224 
angular functions 222 
configuration interaction 223 
degeneracies 212, 223 
determinental wave function 
221,222,223 
Dirac theory 221-223 
exchange interaction 223 
Lamb shift 220 
non-relativistic theory 221 
Pauli exclusion principle 222 
radial equations 222 
self-consistent field 221, 223 
variation principle 223 

many-electron theory 239 
mass 

as energy 59 
negative 108 
photon 234 
polarization 187 
reduced 194, 220 
rest 59 

matrices, see Dirac and Pauli 
matrices 

matrix 
adjoint (Hermitian conjugate) 33 
algebra 33-36 
cofactor 35 
complex conjugate 33 
determinant 34 
diagonal 33 
diagonalization 36 
eigenvalues 36 
eigenvectors 36 
Hermitian 33 
Hermitian conjugate (adjoint) 127 
inverse 34, 35 
multiplication 33 
orthogonal 34 
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product 
Hermitian conjugate 127 
inverse 34 
trace 34 
transpose 33 

representation 
Breit equation 165, 168-169 
Dirac equation 119 
Dirac operators 114-119, 
168-169 
equivalent 117 
spin operators 9, 114 
spinors 119, 167 

similarity transformation 36, 115 
singular 35 
trace 34 
transpose 33 
unit 33 
unitary 34 

matrix element 2 
electric dipole moment 248 
electric quadrupole moment 
248-249 
interaction Hamiltonian 247-250 

long wavelength approximation 
247 

magnetic dipole moment 249 
momentum 247-248 
polarizability tensor 260 
reaction 245-246, 255 
spin operators 9 

matter 
wave-particle duality 235, 239 
see also interaction with radiation 

maximum velocity of interaction 
propagation 48-49 

Maxwell's equations 72-75, 93-94 
charge conservation 94 
Dirac theory 13 1 
electromagnetic waves 95-97 
first pair 72-74, 75 
four-tensor notation 73, 74 
Gauss' law 32, 74, 94 
induction law 73 
Lorentz invariance 54, 63, 73, 74 
quantum theory of radiation 
229-230 

second pair 74-75, 93-94 
mean 

orbital angular momentum 151 
position 145-146, 149-150, 151, 
152,154 
spin angular momentum 151 
velocity 150 

mechanical momentum 66 
mechanics 

classical 37 -47, 48 -4 9 
relativistic 57-59 

meson 56, 109 
theory 181 

method of small components 
Breit equation 166, 178 
Dirac equation 131, 133-137, 142, 
143,153 

transformed Hamiltonian 137, 
142 

Hermiticity 136-137 
renormalization of wave function 
136-137 

Michelson-Morley experiment 49 
microwave spectroscopy 188,256 
mixed system of units, see Gaussian 

system 
MKSA units 64,265 

see also SI 
molecular 

beam spectroscopy 183 
coordinates 185 -187, 192 
electric dipole moment 248 
electric quadrupole moment 249 
Hamiltonian 179-193 

effective 188-192, 193 
spectroscopically useful 
185-187,192 

Lagrangian 187 
orbitals 223 
parameters 189,192 

g factor 191 
rotational constant 189-191 

polarizability 259-260 
rotation 185, 186 
Schrodinger equation 188-189 
spin-rotation interaction 183, 187 
spin-vibration interaction 187 
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translation 185, 186 
vibration 185, 186 

molecule 
electronic theory 223-224 
interaction with radiation 248, 
249,250-261 
linear 187, 192 
spherical 190-191 

momentum 45, 59 
additivity 45 
canonical 66 
charge 66 
conjugate 45, 66 
constant of motion 44-45 
continuous system 89,90 
density, continuous system 87 -88, 
90 
electromagnetic field 94-95,101, 
102 
four-vector 60-61 
generalized 45 
harmonic oscillator 102 
matrix element 247 -248 
mechanical 66 
operator 3, 104 

harmonic oscillator 232 
radiation oscillator 229 

photon 234 
radiation oscillator 102 
translational 186 
vibrational 186 
see also angular momentum 

monopole, magnetic 73, 185 
Mossbauer spectroscopy 183 
motion, see constants and equations 

of motion 
moving charge potentials 76-79 
moving electron 

fields 162-163 
potentials 156-159 

moving magnetic moment 
interaction with field 72, 81-84, 
143,177 
potentials 157-158 

muItiphoton processes 256-260 
see also scattering, two-photon 
processes 
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multiplication, see matrix and vector 
multiplication 

mu-meson 56 

natural line width 261-264 
lifetime excited states 261-263 
uncertainty principle 261 

negative energy 
components 129, 134 
states 108, III, 128 

Dirac equation 114, 119, 
128-131,142,144,148 
see also positron 

negative mass 108 
see also negative energy states 

neutron 181 
Newton's laws 38,41,49,57 

first 42 
second 43, 57 
third 45 

nodes, one-electron atom 
angular functions 196, 216 
probability density 196, 
213-215,216-217 
radial functions 195, 213 
uncertainty principle 196 

non-relativistic approximation 
Breit equation 166-174, 178 
Dirac equation 120-123, 
131-143,153 
moving charge potentials 78 
one-electron atom 197-201 
relativistic equations 105-106 
two-charge interaction 79-80 
two-electron Hamiltonian 
159-164 

non-relativistic atomic orbitals 
212-217,224 
angular functions 195, 1 96, 216 
comparison with Dirac 212 - 21 7 , 
224 
degeneracies 195 
nodes 196,213,216,217 
probability density 196, 213, 215 
quantum numbers 195 
radial functions 195, 213 
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non-relativistic quantum mechanics 
1-12 
many-electron atom 221 
molecular orbitals 223 
one-electron atom 194-197 
unsatisfactory features 11-12 

normal coordinates 186 
normalization 2 

Dirac orbitals 209, 211 
electromagnetic waves 98-99, 
100 
method of small components 
136-137 

nuclear 
electric moments 185 

quadrupole 183-185 
g factor 181 
Hamiltonian 181-182 
hyperfine interaction 

dipole-dipole 182,220 
Fermi contact 182,220,224 
relativistic correction 221,224 

kinetic energy 182 
magnetic moments 185 

dipole 181, 185 
magnetic resonance 182 
magneton 181, 269 
quadrupole 

interaction 181, 182, 183-185 
tensor 184 

radius 37 
rest energy 182 
size effects 183-185, 192 

isotope shifts 183 
MOssbauer spectroscopy 183 
quadrupole interaction 
183-185 

spin 10, 179, 180-181,183,220 
angular momentum 180 
function 188 
g factor 181 
magnetic moment 181 
Zeeman interaction 182 

states, parity 184, 185 
nuclei 179-185 

as Dirac particles 179-180, 192 
restrictions 180, 192 

large atomic number 180,221 
nuclear-electron interaction, see 

electron-nuclear interaction 
nuclear-nuclear interaction 182-183 

Coulomb repulsion 182 
spin-rotation 183 
spin-spin 182 

number 
conservation 109-110,239 
density, wave vector 99 
operator 232 

commutation relations 233, 
236 
fermion 238 
harmonic oscillator 232 
radiation oscillator 233 

observable 2 
occupation number 232 
octupole moment 185 
odd operator 138 
odd-even operator 167 -169 
odd-odd operator 167-169 
one-electron atom 

Lamb shift 201, 212, 220, 224 
nuclear hyperfine interaction 
220-221,224 

relativistic correction 221 
see also hydrogen atom 

one-electron atom, Dirac theory 
197-221,224 
angular functions 205, 215 -217 
bound states 207-211 
constants of motion 204-205 
degeneracies 212, 217 
eigenvalues 211-212 
Hamiltonian 204 

commutation relations 
204-205 

non-relativistic approximation 
197-205 

angular functions 201-204 
Darwin-type term 197, 200 
degeneracies 200-201 
eigenvalues 200-201 
Hamiltonian 197 
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quantum numbers 198-199, 
201-202 
radial functions 202 
relativistic correction to kinetic 
energy 197,200 
spin-orbit interaction 197, 200 
total angular momentum 198 

normalization 209, 211 
nuclear hyperfine interaction 
220-221 
polar coordinates 206-207 
quantum numbers 205, 209-212 
radial functions 205, 207-211, 
213 
radial equations 207-211 
total angular momentum 204 
see also Dirac atomic orbitals 

one-electron atom, non-relativistic 
theory 194-197 
angular functions 195,196,216 
constants of motion 195 
degeneracies 195 
eigenvalues 195 
expectation values 196-197 
nuclear hyperfine interaction 
220 
quantum numbers 195 
radial functions 195,213 
see also non-relativistic atomic 
orbitals 

operator 2, 3 
angular momentum 6 
annihilation 233, 239 
charge conjugation 129-130 
creation 233, 239 
electromagnetic field 228 
energy 3 
even 138, 167-168 
field momentum 229 
four-vector a lara 61 
Hamiltonian 3 
Hermitian 2-3 
idempotent 238 
linear 2 
mean 149-151 
momentum 3 
number 232, 233, 238 

odd 138, 167-168 
position 3 
spin 8 
vector (V) 22-23 

optical rotation 259 
orbital 
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angular momentum 7, 72, 106, 
123-125,151 
atomic 195-196,212-217,224 
g factor 7 
magnetic moment 7, 72, 106 
molecular 223 
Zeeman interaction 106, 178 

orbit-orbit interaction, retarded 162, 
164,177,182 

orthogonal 
matrix 34 
transformation 52-53,61 

orthogonality 2 
electromagnetic waves 98-99, 
100 
Hermitian operator eigenfunctions 
3 
wave vector 

and fields 1 00 
and polarization vectors 98 

vectors 14 
oscillators 

coupled 86 
see also harmonic and radiation 
oscillators 

oscillatory motion, see 
Zitterbewegung 

overlap integral 4 

paradox, clock 56 
parity of nuclear states 184, 185 
particle 

free 
equations of motion 43 
Hamiltonian 59 
Lagrangian 41-42, 57-58 

quantization 3, 104,226 
see also charge 

Pauli exclusion principle 11, 12, 
237-238,239 

Pauli spin matrices 9,114,116 
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permeability of a vacuum Ilo 64, 75, 
269 

permittivity of a vacuum Eo 64,74, 
269 
relation to J.Lo 75 

permutation symbol, see E/jIz, Ea~'Y6 
perturbation theory 4-5 

see also degenerate and time
dependent perturbation theories 

phase factor of wave function 
energy origin shift 105, 133 
gauge transformation 107 

photoelectric effect 225 
photoelectron spectroscopy 11, 221 
photon 234-235 

absorption 250-252, 254-255, 
256-257 
Bose-Einstein statistics 234-235 
classical limit 235 
emission 252-253, 254-255, 
256 
energy 234 
mass 234 
momentum 234 
scattering 258-260 
spin 235, 239-240 
vacuum state 234, 235-237 
virtual 165, 175,263 
see also quantum theory of 
radiation 

Planck 225 
constant 3, 225, 269 
radiation law 254-255 

polar vector 70 
polarizability, molecular 259-260 

tensor 260 
polarization 

mass 187 
vector 98 

orthogonal to wave vector 98 
sum over 251-252 

polynomials 
associated Laguerre 195 
associated Legendre 196 

position 
Dirac representation 149-150 
four-vector 60 

Foldy-Wouthuysen representation 
149-150,151,152 
Galilean transformation 38 
Lorentz transformation 51-54 
mean 145-146, 149-150, 151, 
152, 154 
operator 3 
vector 29, 37 

positive energy 
components 129, 134 
state 119, 129-130, 142, 148 

positron 128-131 
magnetic moment 175 

potential 
Coulombic 212 
four-vector 65, 90 
non-Coulombic 212, 222, 223 
scalar 65 
vector 65 
see also electromagnetic potentials 

potential energy 43, 44 
Poynting vector 95 
precession 

Larmor81 
Thomas 81-84,143 

pressure broadening 261 
principle 

exclusion 11, 12,237-238, 239 
Fermat's 39,47 
Hamilton's 38 
Heisenberg's 5 
least action 38-39, 47,57-58 
least time 39,47 
Pauli 11, 12,237-238,239 
relativity 

Einstein's 48-49,54 
Galileo's 38, 54 

uncertainty 5 
variation 4 

probability 
amplitude 2 
current density 127 
density 1 

atomic orbitals 196, 213 - 215, 
216-217 
Dirac atomic orbitals 213-215, 
216-217 
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Dirac equation 127 
Klein-Gordon equation 
108-109,112 
Lorentz transformation 127 
time-dependent 108-109, 112 

product, see matrix, scalar and 
vector products 

proton 181 
charge 269 
rest mass 269 

pseudoscalar 70 

quadrupole, see electric quadrupole 
quantization 

electromagnetic field 225-230, 
239 
particle 3, 104, 226 
second 237-239, 240 

quantum electrodynamics 
Breit interaction 165 
Dirac theory 131 
electrongfactor 174-176, 178, 
239 
Lamb shift 218-219, 224, 263 
many electrons 176, 178 
nuclei 180, 192 
second quantization 237-239, 
240 
two electrons ISS, 174 

quantum field theory, see quantum 
electrodynamics, quantum theory 
of radiation 

quantum mechanics, non-relativistic 
1-12 

quantum numbers, one-electron atom 
Dirac theory 205, 209-212 
non-relativistic approximation 
198-199,201-202 
non-relativistic theory 195 

quantum theory of radiation 
225-264 
classical limit 235 
conjugate variables 226-227 

commutation relations 227 
electromagnetic field operators 
228 

commutation relations 236 
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field momentum operator 229 
Hamiltonian 227, 229 
Heisenberg picture 228 
interaction of radiation and 
matter 241-264 

comparison of theories 
254-255 
Hamiltonian 242-243, 264 
see also absorption, emission, 
scattering, two-photon processes 

Maxwell's equations 229-230 
photons 234-235 
Planck radiation law 254-255 
Schrodinger equation 227 
Schrodinger picture 228 
vacuum fluctuations 235-237, 
240,254 

Lamb shift 219, 237 
vacuum state 233-234,235-237 
zero-point energy 219, 233, 
235-237 
see also radiation oscillator 

radial equations 
many-electron atom 222 
one-electron atom 

Dirac theory 207 - 211 
non-relativistic theory 207 

radial functions 
Dirac atomic orbitals 205, 
207-211,213 

nodeless 213 
normalization 209, 211. 

non-relativistic atomic orbitals 
195 

nodes 195,213 
radiation 

black body 225 
classical limit 235 
Einstein 225 
gauge 71 
intensity 251 
interaction with matter 225, 
241 

comparison of theories 
254-255 
quantum theory 241-264 



296 Advanced Molecular Quantum Mechanics 

semiclassical theory 254 
photoelectric effect 225 
Planck 225 
Planck's law 254-255 
ultraviolet catastrophe 225 
wave-particle duality 235, 239 
see also quantum theory of 
radiation, radiation oscillator 

radiation oscillator 102, 227-228 
annihilation operator 233 
creation operator 233 
eigenfunctions 233 
eigenvalues 233 
Hamiltonian 102, 227, 229 
momentum 102,229 
number operator 233 
occupation number 233 
Schrodinger equation 227 
zero-point energy 233, 235-237 

radiative corrections 155 
electron g factor 174-176 
Lamb shift 217-220 

radio-frequency spectroscopy 256 
radius, Bohr 132, 269 
Raman scattering 258-259 
rationalized units 64 

see also SI 
Rayleigh scattering 250, 258-260 

molecular polarizability 259-260 
reaction matrix element 245-246 

diagrams 255 
scattering 259 
two-photon absorption 256 

reduced mass of atomic electron 
194,220 

reference frame 37-38 
relativistic 

corrections 
heavy atom 11, 180,212,221 
kinetic energy 106, 143, 177, 
197,200,221 
nuclear hyperfine interaction 
221,224 
one-electron atom 11, 180, 
197-201,220 
orbital Zeeman interaction 
106 

spin Zeeman interaction 143, 
153,177 

Hamiltonian, free particle 59 
invariance, see Lorentz invariance 
Lagrangian, free particle 57-58 
mechanics 49, 57-59 
momentum, free particle 59 
theory, need for 11-12 
wave equations 104-110 

relativity 
general 11 
principle 

Einstein's 48-49, 54 
Galileo's 38 

special 11, 48-62 
renormalization, method of small 

components 136-137 
repeated subscript summation con

vention 15-16 
representation 

Dirac 149-153 
Dirac delta function 30-31, 246 
Fo1dy-Wouthuysen 149-153 
separable 188 
standard 118, 119 
see also matrix representation 

resonance 
fluorescence 260-264 
magnetic 182, 188,249 

rest energy 59 
electron 143, 177 
nuclear 182 

rest mass 59 
retarded 

orbit-orbit interaction 162, 164, 
177,182 
potentials 77 

rotational 
angular momentum 186-187 
constant 190-191 
wave function 188, 189 

scalar 
field 22,89 
potential 65 

see also electromagnetic 
potentials 
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product 
four-vectors 60 
vectors 14, 15-16 

scattering 243, 258-260 
diagrams 258-259 
intermediate states 261,264 
Raman 258-259 
Rayleigh 250, 258-260 
reaction matrix element 259 
resonance fluorescence 260-264 
X-ray diffraction 259 

Schr6dinger 146 
Schrodinger equation 3-5 

time-dependent 3, 109 
time-independent 4-5 

Schrodinger picture 5, 228 
relation to Heisenberg picture 
5-6,228 
time-dependent perturbation 
theory 244 

second quantization 237-239, 240 
self-consistent field 221,223 
semiclassical theory 225, 241, 254 

comparison with quantum theory 
254-255 
Planck radiation law 254-255 

separable representation 188 
SI 64,66,68, 74, 75,91, 265-269 

advantages 64 
base units 265 
conversion from Gaussian system 
267-268 
decimal multiples 267 
derived units 266 
dimensions 265-267 
fundamental constants 268-269 
rationalized units 64 
supplementary units 266 

similarity transformation 36 
anticommutation relations 115 
Dirac equation 118 
trace 115 

size effects, nuclei, see nuclear size 
effects 

small components 134 
ratio to large 208, 212 
see also method of small com
ponents 
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space 
four-dimensional 36, 49, 51-53 
homogeneity 38 
isotropy 38 

special relativity 11,48-62 
Einstein's principle 48-49 
see also Lorentz transformation 

spectral line 
broadening 260-261 
Lorentz shape 263-264 

spectroscopically useful Hamiltonians 
185-187,192 

spectroscopy 
atomic 7, 8,81, 172 
isotope shifts 183 
laser 256 
magnetic resonance 182, 188, 
249 
microwave 188,256 
molecular beam 183 
Mossbauer 183 
radio-frequency 256 
X-ray photoelectron 11, 221 

spherical harmonics 7, 196 
spin 8 

Hamiltonian 191, 193 
photon 235, 239-240 
see also electron and nuclear spin 

spinor 119 
components 129 

spin-orbit interaction 11, 161, 164, 
177,182,197,200 
molecular g factor 191 
Thomas factor 84, 143 

spin-other-orbit interaction 162, 
163,164,177,182,187 

spin-rotation interaction 187 
spin-spin interaction 163, 177, 182 

see also Fermi contact interaction 
spin-vibration interaction 187 
spontaneous emission 253, 254 

Einstein A coefficient 253 
state 

bound 207-211 
stationary 4 
see also intermediate, negative 
energy, positive energy and 
vacuum states 
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stationary charge 
fields 75-76 
potentials 76 

stationary state 4 
statistics 

Bose-Einstein II, 234-235, 237 
Fermi-Dirac 11,237-238 

stimulated emission 253, 254 
Einstein B coefficient 253 

Stokes' theorem 27 
sum rules 

[)ij 17 
€ijk 19-20, 271 

summation convention 15 -16 
surface element 25 
Systeme International d'Unites, see 

SI 

tensor 
electric field gradient 184 
electric quadrupole 

molecular 249 
nuclear 184 

inertia 187 
molecular polarizability 260 
unit antisymmetric, see €ijk, €a(3'Y li 
see also four-tensor 

Thomas 
factor 84, 143 
frequency 83 
precession 81-84, 143 

three-body interactions 176, 178 
time 

absolute 38, 48 
dilation 55, 56 

mu-mesons 56 
fourth dimension 36, 49,51,60 
homogeneity 38 
principle of least 39, 47 
relative 49 

time-ciependent perturbation theory 
243-247,264 
deficiencies 246-247, 260-261 
energy conservation 246 
initial conditions 244, 245, 262 
reaction matrix element 245-246 
Schrodinger picture 244 

transition rate 246 
two-state system 262-264 

total angular momentum of electron 
124-125,151 

trace of a matrix 34 
invariance to similarity transfor
mations 115 

transformation 
Galilean 38, 48, 49 
orthogonal 52-53, 61 
similarity 36,115,118 
unitary 139, 146, 169 
see also Foldy-Wouthuysen, gauge 
and Lorentz transformations 

transition 
electric dipole 248 
electric quadrupole 249 
magnetic dipole 249 
natural line width 261-264 
rate 246 

absorption 250-252 
emission 253 

translational 
momentum 186 
wave function 188 

triple product of vectors 18-19, 
20-21,270 

two charges 79-80, 84 
in external fields 80 
Hamiltonian 80 
Lagrangian 79-80,160 

two electrons 
Hamiltonian 155, 159-164, 
173-174,178 

Hermiticity 156-157, 162 
see also Breit equation 

two-photon processes 
absorption 243, 256-258 
diagrams 257-258,264 
energy conservation 256 
emission 243, 256, 257-258 
intermediate states 257 
reaction matrix element 256 
see also scattering 

two-state system 262-263 
energy shift 263 
excited state lifetime 263 
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line shape 263-264 

ultraviolet catastrophe 225 
uncertainty principle 5 

energy and time 5 
intermediate states 257 
momentum and position 5 
natural line width 261 
nodes in atomic orbitals 196 
zero-point energy 236 

unit 
antisymmetric tensor, see €ijk, 

€ai3'Y o 
orthogonal vectors 13 -14, I 5 

unitary 
matrix 34 
transformation 139, 146, 169 

units 63-64, 265-269 
CGS 63-64 
conversion 268 
e.m.u. and e.s.u. 63 
Gaussian (mixed CGS) 63-64, 
268 
MKSA 64 
rationalized 64 
SI 64, 265-269 
see also SI 

vacuum 
permeability Ilo 64,75,269 
permittivity €o 64,74,75,269 

vacuum fluctuations 235-237, 240 
Lamb shift 219,237 
spontaneous emission 254 

vacuum state 
Dirac theory 131 
fermion 238 
fluctuations 235-237,240 
radiation 233-234, 235-237 

expectation values 236 
field momentum 235 
Lamb shift 219, 237 
spontaneous emission 254 
uncertainty principle 236 
zero-point energy 235-237 

variation principle 4 
vector 13-14 

algebra 13-32,36 
axial 70 
component 13-14 
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contravariant and covariant 62 
differentiation 22-32, 270-271 

curl 23, 25-27 
divergence 23, 24-25 
gradient 23-24 
Laplacian (Vl) 28 
of products 27 -28, 270 

field 22, 90 
Hilbert space 2 
integral relations 

Gauss' theorem 25 
Stokes' theorem 27 

length 14 
multiplication 14-22 
operator 

del (V) 22-23 
Laplacian (~) 28 

orthogonal 14 
polar 70 
position 29, 37 
potential 65 

see also electromagnetic 
potentials 

Poynting 95 
product 14 

anticommutivity 15, 18 
determinental definition 
14-15,34 
€ijk 17-18,34 

second derivatives 28, 270 
triple products 18-19,20-21, 
270 
unit orthogonal 13 -14 

scalar product of 14, 16 
vector product of 15, 18 

useful relations 270-271 
see also four-, polarization and 
wave vectors 

velocity 
generalized 38 
light 49,75,269 

invariance 49,50,51 
Lorentz transformation 56-57 
maximum 48-49 
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operator 
free electron 144-145 
mean 150 

vibration 
characteristic of field 100-102 
uncertainty principle 236 
zero-point energy 236 
see also harmonic oscillator 

vibrational 
angular momentum 186 
coordinate 186 
momentum 186 
wave function 188 

vibron 235 
vibronic state 188 
virtual 

electron-positron pair 175 -176 
meson field 181 
photon 165, 175, 263 
state, see intermediate state 

wave equation 
gauge invariance 107 
gauge transformation 107 
linear in a/at 109 
many electrons 155 -178 
quadratic in a/at 109 
relativistic 104-110 
see also Breit, Dirac, electromag
netic wave, Klein-Gordon and 
Schr6dinger equations 

wa ve function 1-2 
acceptable 2 
determinental 221, 222, 223 
electronic, test of 189,192 
normalization 2 
orthogonality 2 
phase factor 

energy origin shift lOS, 133 

gauge transformation 107 
spinor 119 

wave vector 97 
number density 99, 25 1 
orthogonal to 

fields 100 
polarization vectors 98 

sum over as integral 99, 25 1 
wave-particle duality 235,239 
world 

line 49, 55 
point 49, 60 

X-ray diffraction 259 
X-ray photoelectron spectroscopy 

11,221 

Zeeman interaction 
electron 

orbital 106, 178 
spin 122, 143, 153, 177 

nuclear 182 
relativistic correction 106, 143, 
153,177 

zero-point energy 
radiation 219, 233, 235-237 
uncertainty principle 236 
vibration 236 

Zitterbewegung 145-146, 150, 
151-153,154 
amplitude 146, 153 
Coulomb interaction correction 
161 
Darwin term 152-153 
electron spin 151-152 
Foldy-Wouthuysen representation 
150,151-153 
frequency 145-146 
mode1151-152 




