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Foreword

Quantum Theory is about 120 years old, and Quantum Mechanics proper, a truly
spectacular achievement of twentieth century physics, will soon be a century old.
As Abraham Pais once said, quantum theory is ‘a uniquely twentieth century mode
of thought’.

Quantum mechanics has profound geometric and algebraic features, with
probability ideas too playing a crucial role. It has a richness about it, and is still
growing, as seen through the developments of weak measurement, the Zeno effect,
the geometric phase idea, entanglement and quantum information and computation
in recent decades. It is a core subject in the teaching of physics at upper under-
graduate, graduate and research levels. Over a long period of time, a very large
number of texts have been written, several of them becoming classics of the physics
literature. Every teacher of quantum mechanics necessarily has to make some
selection of relatively advanced topics to cover, after the basic or irreducible core
has been presented. Of course, the successful applications are legion.

Pankaj Sharan is a truly gifted and experienced teacher of the subject having
taught it for many decades with passion and enthusiasm. In this book, he has put
together a set of concise treatments of special topics that are usually not found in
most texts. These include the role of particle position as seen in going from the
relativistic to the Galilean domain; a picture of quantum mechanics in the mathe-
matical language of fibre bundles; the basic concepts and calculational methods in
scattering theory such as the Moller and S matrices, and their integral equations; the
formulation of the subject in the classical phase space language based on the
pioneering ideas of Weyl, Wigner and later, Moyal; the motivations for and pos-
sibilities of a nonlinear extension of quantum mechanics; the connection between
the classical idea of inter-particle interaction potential and the typically quantum
idea of particle exchange; and the proof of the Wigner Theorem on representation
of symmetries in the form given by Bargmann. The author's pedagogical skills built
up over many years are evident in every one of these treatments.

This book provides enrichment material for both students and teachers—as
possible projects for individual students to work on and present as special lectures
in a regular course, and for teachers to possibly include some interesting ideas in
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their classroom treatment of the subject. Thanks and congratulations to the author
for this excellent supplementary material every good course on quantum mechanics
can draw upon.

Bengaluru, India N. Mukunda
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Preface

These topics are unusual only in the sense that they are not on the syllabi of most
courses on Quantum Mechanics, and they are usually not treated in textbooks. The
book is based on notes for classroom lectures and group seminars on these topics
given during four decades of my teaching career.

Three of the seven chapters are on the conceptual difficulties students face:
position operators (Chap. 1), plane waves versus real beams of particles (Chap. 3),
and the concept of potential in quantum mechanics (Chap. 6).

The other three chapters are on different ways of looking at quantum theory: the
fibre bundle approach (Chap. 2), and the intimate relation of quantum mechanics to
classical Hamiltonian mechanics. In one case (Chap. 4) one learns how to do
quantum mechanics on the phase space, and in the other (Chap. 5), where quantum
theory itself is a linear Hamiltonian mechanics, the question is posed whether it is
possible to conceive of a non-linear generalization of the theory.

The last chapter is a proof of the Wigner theorem on symmetry transformations.
The theorem is used everywhere, but its proof is omitted in most textbooks. I think
Bargmann’s proof of the theorem presented here is aesthetically appealing and all
students must be encouraged to go through it once.

I hope that this short book will be helpful in motivating students of quantum
mechanics to explore and acquire a deeper understanding of the subject.

New Delhi, India Pankaj Sharan
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Notation

We use both /;w; f ; g, etc., and j/i; jwi; jf i; jgi, etc., for vectors in a Hilbert space
H. The inner product denoted by ð/;wÞ or h/jwi, is linear in the second argument
and anti-linear in the first. The norm jj/jj is the positive square root

ffiffiffiffiffiffiffiffiffiffiffiffiffið/;/Þp

. We
also write the multiplication of a Hilbert space vector j/i or / by a complex
number c from left or from right as convenient: cj/i ¼ j/ic or c/ ¼ /c etc.

An operator in a Hilbert space is written with a ‘hat’: for example bx, when it has
to be distinguished from the corresponding classical quantity x. The hat is omitted
when confusion is unlikely. We use the words ‘self-adjoint’ and ‘Hermitian’
interchangeably. A dagger (y) denotes a Hermitian adjoint, and a (*) the complex
conjugate.

The Minkowski metric in our notation is:

glm ¼
�1

1
1

1

0

B

B

@

1

C

C

A

;

l; m ¼ 0; 1; 2; 3.
Three dimensional vectors are written in bold face p ¼ ðp1; p2; p3Þ or

pi ¼ pi; i ¼ 1; 2; 3.
All the components of momentum 4-vector p ¼ ðp0; p1; p2; p3Þ of a particle of

proper mass m have the physical dimensions of momentum. The 0-component is
also denoted by x at some places, for example: xp ¼ p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2c2
p

. The
energy of the particle is denoted by Ep ¼ cxp. Similarly, all the components of
spacetime 4-vector have dimensions of distance x ¼ ðx0 ¼ ct; x1; x2; x3Þ.

The identity operator or identity matrix will be generically denoted by 1.
Derivatives @f =@xi are often abbreviated by @if or f ;i when there is no confusion.
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Chapter 1
Position Operators of Non-relativistic
Quantum Mechanics

The components of the position operator of a particle in non-relativistic quantum mechanics
are the non-relativistic limits of generators of the pure Lorentz transformations, or the ‘boost
operators’. The non-relativistic limit of the relativistic Poincare group is the Galilean group,
which reveals interesting complications.

1.1 Introduction

The position operators x̂i , i = 1, 2, 3 of a particle in non-relativistic quantum
mechanics are perhaps the most important observables because of their physical
meaning. But any non-relativistic theory can only be the limit of a relativistic theory.
And a position operator in a relativistic theory is a problem because, in a truly rela-
tivistic theory it must be the space part of a 4-vector, whose time-component must be
the physical time. But time is not an operator either in relativistic quantummechanics
or in relativistic quantum field theory. Moreover, the single particle picture itself is
under threat in relativistic quantum theory. Similarly, there are problems associated
with defining a centre of mass for two or more relativistic particles.

These conceptual problems have been thoroughly discussed during the 1960s and
70s. A discussion on the so-called “localization problem” can be found in [1]. A
recent account with older references is [2].

Actually, the simplest view is to regard the position operators, up to a constant
factor, as limits of the three boost operators of relativistic quantum mechanics. This
fact somewhat surprises many practitioners of quantum theory because the boost
operators do not commute among themselves!

Non-relativistic quantum mechanics relies heavily on the commutation relations

[x̂i , p̂ j ] = i�δi j (1.1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
P. Sharan, Some Unusual Topics in Quantum Mechanics,
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2 1 Position Operators of Non-relativistic Quantum Mechanics

which allows a kind of reciprocity between x and p representations. In the x-
representation,

p̂i = −i�
∂

∂xi
(1.2)

act as generators of space translations. Conversely, in the momentum space repre-
sentation,

x̂i = i�
∂

∂ pi
(1.3)

act as generators of translations in the momentum space. But while homogeneity of
space is a symmetry for a free particle, there is no such symmetry as ‘homogeneity of
momentum space’. The symmetry transformation which does change themomentum
is the change from one Galilean inertial frame of reference to the other moving with
a constant velocity with respect to it. In a relativistic theory these changes of inertial
frames become ‘pure’ Lorentz transformations or ‘boosts’. It is these that we turn to
in the next section.

1.2 Spinless Relativistic Particle

Poincare transformations include the Lorentz transformations (rotations and boosts)
as well as pure translations in four-dimensional spacetime. Denote such a transfor-
mation by (a,�) acting on the spacetime points x = (x0, x1, x2, x3) as follows:

(a,�)x = �x + a,

where a is the four vector of translation, and � is a Lorentz matrix, that is, a 4 × 4
real matrix such that

x · x =
∑

μ,ν

ημνx
μxν = −(x0)2 + (x1)2 + (x2)2 + (x3)2

remains unchanged. If y = �x then

x · x =
∑

μ,ν

ημνx
μxν =

∑

μ,ν

ημν y
μyν = y · y,

and so the Lorentz matrix � satisfies

�T η� = η.



1.2 Spinless Relativistic Particle 3

Matrices such as � form a group, L, called the Lorentz group. It follows from this
condition that (det�)2 = 1, and by writing out the 00 element of this equation we
see that �2

00 ≥ 1. The Lorentz group has a subgroup L↑
+ of those matrices for which

det� = +1 and �00 ≥ +1. These are the matrices which are connected to the iden-
tity matrix in a continuous fashion. This group has six parameters corresponding to
rotations in three dimensional space and ‘boosts’, which are Lorentz transformations
corresponding to frames moving with constant relative velocity but with their spatial
axes remaining parallel. Every group element is a product of boosts and rotations. A
general element of L can be obtained by multiplying an element of L↑

+ by the matrix
η (also called time inversion) or−η, (called space inversion or parity), or both. In this
chapter we restrict ourselves to L↑

+. The so-called discrete symmetries represented
by parity and time reversal are treated briefly in the last chapter of this book.

The Poincare group is obtained by adjoining spacetime translations to Lorentz
transformations as shown above. The group multiplications law is

(a2,�2)(a1,�1) = (a2 + �2a1,�2�1),

the identity element is (0, 1) and the inverse is

(a,�)−1 = (−�−1a,�−1).

When we are dealing with only translations (a, 1), or only Lorentz transformations
(0,�) it is convenient to write just (a) or (�).

A relativistic particle of proper massm with zero spin is described by momentum
spacewave functionsψ(p)where p = (p0, p1, p2, p3)but p0 = ωp = √

p2 + m2c2.
For convenience, wewriteψ(p), with the 4-vector p as argument, it being understood
that ψ is actually a function only of p = (p1, p2, p3) and p0 = ωp in what follows.

We can construct a Hilbert space H by restricting functions ψ to be square inte-
grable with respect to the Lorentz invariant volume element

∫
d3p
2ωp

|ψ(p)|2 < ∞.

The inner product inH is defined by

(ψ,φ) =
∫

d3p
2ωp

ψ∗(p)φ(p). (1.4)

It is convenient to use the Dirac’s bracket notation: ψ(p) = 〈p|ψ〉 where |p〉 are
eigenvectors of momentum such that

〈p|k〉 = 2ωpδ
3(p − k).
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The action of Poincare group representation is defined on this basis as

U (a)|p〉 = exp(−i p · a/�)|p〉 = exp[(i p0a0 − ip · a)/�])|p〉, (1.5)

U (�)|p〉 = |�p〉, (1.6)

so that

U (a,�)|p〉 = U (a)U (�)|p〉 = exp(−i�p · a/�)|�p〉. (1.7)

On momentum space wave functions ψ(p) it acts as follows:

(U (a,�)ψ)(p) = exp(−i p · a/�)ψ(�−1 p). (1.8)

Exercise 1.1 Verify (1.8) and check that operators U (a,�) are unitary, and that
they provide a representation of the Poincare group:

U (a1,�1)U (a2,�2) = U (a1 + �1a2,�1�2). (1.9)

1.3 Lie Algebra of the Poincare Group

An infinitesimal boost in 1-direction by a small α so that sinhα ≈ α = v/c is,

� =

⎛

⎜⎜⎝

coshα sinhα 0 0
sinhα coshα 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ = 1 + α

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ + · · · ,

�−1 p = (p0 − αp1, p1 − αp0, p2, p3) + · · · .

Therefore,

(U (�)ψ)(p) = ψ(�−1 p) = [(1 + iαK1/� + · · · )ψ](p)
(K1ψ)(p) = i�p0

∂ψ

∂ p1
, (1.10)

which identifies the generator K1. The twoother generators for boosts canbe similarly
constructed

(K2ψ)(p) = i�p0
∂ψ

∂ p2
, (K3ψ)(p) = i�p0

∂ψ

∂ p3
. (1.11)

For an infinitesimal rotation about the 1-axis,
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� =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ

⎞

⎟⎟⎠ = 1 + θ

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟⎠ + · · · ,

�−1 p = (p0, p1, p2 − θp3, p3 + θp2) + · · · ,

the generator can be identified

(U (�)ψ)(p) = ψ(�−1 p) = [(1 + iθJ1/� + · · · )ψ](p) ,

(J1ψ)(p) = −i�

(
p2

∂ψ

∂ p3
− p3

∂ψ

∂ p2

)
. (1.12)

The other two rotation generators are

(J2ψ)(p) = −i�

(
p3

∂ψ

∂ p1
− p1

∂ψ

∂ p3

)
, (1.13)

(J3ψ)(p) = −i�

(
p1

∂ψ

∂ p2
− p2

∂ψ

∂ p1

)
. (1.14)

For spacetime translations,

a = (a0, a1, a2, a3), U (a) = 1 + i(P0a0 − i Piai )/� + · · · ,

the generators are simply

(Pμ)ψ(p) = pμψ(p). (1.15)

Note that the generators Ji , Ki have physical dimensions of angular momentum (or
action) and Pμ that of momentum. Note also the relativistic invariant definition of
Pμ. The physical, measured energy is cP0 and not cP0 = −cP0.

The Lie algebra, or commutation relations, of the generators of the group are the
following. As the commutator is antisymmetric, of the 10 generators Pμ, Ji , Ki there
are 10 × 9/2 = 45 such commutation relations.Wewrite belowa list of commutation
relations of each type, the other such relations being obtained by renaming of indices.
The total number of relations of a given type is written in a square bracket after one
typical relation.

[Pμ, Pν] = 0, [6] (1.16)

[J1, J2] = i�J3, [3] (1.17)[
Ji , P

0
] = 0, [3] (1.18)

[
J1, P

2
] = i�P3, [9] (1.19)

[J1, K2] = i�K3, [9] (1.20)

[K1, K2] = −i�J3, [3] (1.21)
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[
Ki , P

0
] = i�Pi , [3] (1.22)

[
Ki , P

j
] = i�δ

j
i P

0. [9]. (1.23)

Exercise 1.2 Prove that the generators Ji and Ki are self adjoint with respect to the
inner product defined by (1.4). [The terms produced by differentiatingωp in checking
for the Hermitian nature of Ji cancel.]

1.4 Position Operators of NRQM

We have written ‘NRQM’ for ‘non-relativistic quantum mechanics’. Define

Xi = 1

mc
Ki , (1.24)

then these ‘position operators’ have the following relations with each other and the
momenta Pi .

[X1, X2] = −i

(
�J3
m2c2

)
, and two more (1.25)

[
Xi , P

j
] = i�δ

j
i

(
P0

mc

)
, (1.26)

[
Xi , P

0] = i�

mc
Pi , (1.27)

[
Pi , P j

] = 0. (1.28)

For wave packets of average angular momentum of the order of a few �’s, the
position operators for different directions fail to commute up to a square of the Comp-
ton wavelength ((�/mc)2 ∼ 10−24 m2 for electron mass). Similarly, the commutator
of position and momentum is the standard one only for wave packets of momenta
well below mc so that P0/mc ∼ 1. The commutator with energy is the standard
non-relativistic one for P0 ∼ mc + Pi Pi/2mc.

Under space translations the position operators shift as expected if the average
energy is mostly the rest energy (P0 ∼ mc):

exp(−i Piai )X j exp(i P
kak) = X j − a j

(
P0

mc

)
.

The non-commuting of different X j ’s has a physical interpretation. If we were to
write an uncertainty relation for them in a state ψ, then it will look like
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(�ψX1)(�ψX2) ≥
(

�〈J3〉ψ
m2c2

)
.

Therefore, if we try to make a wave-packet too narrow in the 1-direction, then we
cannot also squeeze it in the 2-direction too much for a given average value of the
orbital angular momentum in the 3-direction. For particles with spin it is even more
complicated.

1.5 Projective Representations

There is a deep connection between continuous symmetries and unitary operators in
Hilbert space. They are connected by Wigner’s theorem. Although we give a proof
of the theorem in the last chapter of this book, it is well to recall the statement here.

The state of a physical system in quantummechanics is described by a unit vector
φ in aHilbert spaceH. But, any other vector which is amultiple of the given vector by
a complex number of modulus unity is equally good to describe the same state. This
is so because all physically measurable predictions of quantummechanics depend on
the expectation values of observables 〈A〉 = (φ, Aφ) or equivalently, on transition
probabilities |(φ,ψ)|2 between two states. These quantities have the same value if φ
and ψ were to be replaced by exp(iα)φ and exp(iβ)ψ, respectively, where α and β
are any real numbers. A number of type exp(iα) is called a ‘phase factor’, or simply
a ‘factor’ when the context is understood.

The set {φ} of all such vectors, that is, all multiples by a phase factor of some
fixed unit vector φ is called a ray. A ray represents a physical state of the system in
the sense that any member of the ray is equally qualified to represent the state. We
say that {φ} is the ray determined by a unit vector φ. Of course, we can choose any
other vector from the same ray and construct the ray by including all its multiples
by phase factors.

A symmetry transformation S is a one-to-one invertible ray mapping such that
the transition probability |(φ,ψ)|2, is the same as |(φ′,ψ′)|2 where φ′ and ψ′ are,
respectively, any members of the mapped rays S{φ} and S{ψ}.

The symmetries obviously form a group, because if twomappings preserve transi-
tion probabilities separately, then their composition also does. The identity mapping
and the inverse mapping are also symmetries.

The ray mappings are very inconvenient to deal with as rays do not even form
a linear space. Therefore it is very useful to have a result like Wigner’s theorem. It
says that for the ray mapping corresponding to a symmetry, there is an underlying
vector mapping, or operator, which is compatible with the ray mapping. This means
that under the action of the operator, vectors in a ray are mapped to vectors in the
mapped ray. This vector mapping, or operator, can be either unitary or anti-unitary
and is determined uniquely except for an unknown phase factor.

Wigner’s theorem applies to one symmetry. When we have a continuous group
of symmetries, like the rotation, or the Poincare group, then we are dealing with an
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infinite number of them, and for each symmetry transformation there is a unitary
operator with an unknown phase factor.

For continuous group of symmetries there can only be unitary operators, no anti-unitary opera-

tors. This is so because the product of two unitary or two anti-unitary operators is always unitary,

and every continuous symmetry transformation can always be written as a product of two similar

symmetry transformations. For example a rotation by a certain angle about an axis is the same as a

product of two rotations by half the angle about the same axis.

For implementing symmetry in quantummechanics we not only need the operator
for each symmetry but these operators should form a representation of the group of
symmetries.

Let the symmetry group be G and its elements be denoted by letters r, s, t etc. If
two symmetry group elements r and s correspond to Ur and Us respectively, then
the symmetry rs ∈ G corresponds to UrUs . But as each unitary operator is known
only up to a factor, we can write

UrUs = ω(r, s)Urs , |ω(r, s)| = 1. (1.29)

The question arises: can we not fix these factors or “unknown phases” of each
unitary operator in such a way so as to avoid the ambiguity altogether? We can start
with the identity e of the group, and since ee = e, fix the phase of Ue such that
ω(e, e) = 1. Moreover, if there are three group elements then using the associative
law

UrUsUt = Ur (ω(s, t)Ust ) = ω(s, t)ω(r, st)Urst

= ω(r, s)UrsUt = ω(r, s)ω(rs, t)Urst ,

we obtain

ω(r, st)ω(s, t) = ω(r, s)ω(rs, t). (1.30)

If f (r) are any phase factors defined on G, with f (e) = 1, and if we change the
unitary operators Ur to U ′

r = f (r)Ur , the above relation will determine another set
of ω’s

ω′(r, s) = ω(r, s)
f (r) f (s)

f (rs)
.

These ω′(r, s) also satisfy the consistency condition (1.30). Two sets of such factors
ω(r, s) and ω′(r, s) are called equivalent.

A representation in which the operators carry phase factors which cannot be cho-
sen to make ω(r, s) = 1 for all group elements is called a projective representation
or a ray representation.

Exercise 1.3 Verify that the condition (1.30) is satisfied by ω′(r, s).
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A unitary representation where we can choose all the factors ω(r, s) equal to 1,
is called a true representation. It is a matter of satisfaction that for Poincare group
the ambiguity in the unknown phases in U (a,�) can be brought down to ±1 using
continuity arguments, and can be further eliminated completely if instead of L↑

+ we
use its covering group SL(2,C) which is simply connected. This is just as well,
because spin half-odd-integer particles are described by SL(2,C) representations
and not by those of L↑

+. The representation we have defined for a relativistic spin
zero particle above is a true unitary representation, without involving any unknown
phases. But its non-relativistic limit, a representation of the Galilean group, turns out
to be a projective representation!

1.6 Non-relativistic Limit

We discuss the non-relativistic limit of the relativistic representation. If |p| << mc,
the inner product can be re-written as

∫
d3p
2ωp

ψ∗(p)φ(p) ≈ 1

2mc

∫
d3p ψ∗(p)φ(p).

We can redefine the inner-product and factor out the constant 1/2mc and simply
write the inner product as

(ψ,φ) =
∫

d3p ψ∗(p)φ(p).

This will affect the self-adjoint property of the generators and we will come to that
later. Moreover, as

p0 ≈ mc + |p|2
2mc

,

we define

EGψ(p) = |p|2
2m

ψ(p).

The momentum generators remain the same

Pi
Gψ(p) = piψ(p),

and we define

KG
i = 1

c
Ki ≈ im�

∂

∂ pi
.
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The other generators Ji retain their form.

TheLie algebra of Poincare group, in the representation for a particle ofmassm, is
reduced to that of the representation of theGalilean groupwhose typical commutators
are:

[
Pi
G, P j

G

]
= 0, (1.31)

[
Pi
G, EG

] = 0, (1.32)
[
JG
1 , JG

2

] = i�JG
3 , (1.33)

[
JG
i , EG

] = 0, (1.34)
[
JG
1 , P2

G

] = i�P3
G, (1.35)

[
JG
1 , KG

2

] = i�KG
3 , (1.36)

[
KG

i , KG
j

] = 0, (1.37)
[
KG

i , P j
G

]
= im�δ

j
i . (1.38)

[
KG

i , EG
] = i�Pi

G . (1.39)

This Lie algebra representation is called a contraction of the Poincare Lie algebra in
the limit of c → ∞. It depends on mass m just as the Poincare representation did.
But whereas the relativistic representation was a true representation, this one gives
a projective representation as we see next.

1.7 Phase Factors of the Galilean Group

The Galilean group, like the Poincare group, consists of space and time translations,
rotations and Galilean boosts. If (t, x) and (t ′, x′) are the spacetime coordinates in
two frames, then a group element (τ , a, v, R) where R is a rotation, v the relative
velocity, a the space translation and τ the time translation acts as

t ′ = t + τ , (1.40)

x′ = Rx + vt + a. (1.41)

The groupmultiplication can be obtained bywriting two successive transformations:

(τ1, a1, v1, R1)(τ2, a2, v2, R2) = (τ3, a3, v3, R3) (1.42)

with
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τ3 = τ1 + τ2,

a3 = a1 + R1a2 + v1τ2,

v3 = v1 + R1v2,

R3 = R1R2. (1.43)

For later use, note the inverse of the element

(τ , a, v, R)−1 = (−τ ,−R−1a + R−1vτ ,−R−1v, R−1). (1.44)

In analogy with the relativistic case, we define Galilean transformations on non-
relativistic momentum eigenstates |p〉, normalized as 〈p|p′〉 = δ3(p − p′), as

U (t)|p〉 = exp(ip2/2m�)|p〉, (1.45)

U (a)|p〉 = exp(−ip · a/�)|p〉, (1.46)

U (v)|p〉 = |p + mv〉, (1.47)

U (R)|p〉 = |Rp〉. (1.48)

Therefore,

U (τ , a, v, R)|p〉 = exp
[
i(p′)2τ/2m� − ip′ · a/�

]|p′〉, (1.49)

p′ = Rp + mv.

In order to check whether this provides a representation of the Galilean group, we
apply the two transformations U2 = (τ2, a2, v2, R2) and U1 = (τ1, a1, v1, R1) suc-
cessively on |p〉.

U2|p〉 = exp

[
i

�

(
(p′)2

2m
τ2 − p′ · a2

)]
|p′〉, p′ = R2p + mv2,

and

U1U2|p〉 = exp

[
i

�

(
(p′)2

2m
τ2 − p′ · a2

)]
×

exp

[
i

�

(
(p′′)2

2m
τ1 − p′′ · a1

)]
|p′′〉,

p′′ = R1p′ + mv1 = R1R2p + m(R1v2 + v1) = R3p + mv3.

To put it into standard form for U3, we notice that

p′ = R2p + mv2 = R−1
1 (R1R2p + mR1v2) = R−1

1 (p′′ − mv1).

Since R−1
1 is a rotation,
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(p′)2 = (p′′ − mv1)2 = (p′′)2 + m2v21 − 2mp′′ · v1.

Similarly,

p′ · a2 = R−1
1 (p′′ − mv1) · a2 = (p′′ − mv1) · R1a2.

Substituting these expressions for p′ and collecting terms, we obtain, using the group
multiplication relations (1.43)

U1U2|p〉 = exp

[
i

�

(
mv21
2

τ2 + mv1 · R1a2

)]
× (1.50)

exp

[
i

�

(
(p′′)2

2m
τ3 − p′′ · a3

)]
|p′′〉, (1.51)

= exp

[
i

�

(
mv21
2

τ2 + mv1 · R1a2

)]
U3|p〉. (1.52)

This clearly shows that our representation is not a true representation, but only up to
the phase factor

ω(1, 2) = exp[imv21τ2/2� + imv1 · R1a2/�]. (1.53)

Exercise 1.4 Verify that the Galilean representation phase (1.53) satisfies the asso-
ciativity condition (1.30):

ω(1, 23)ω(2, 3) = ω(1, 2)ω(12, 3).

What is surprising about this phase factor is that according to the group law (1.42)
of the Galilean group the boosts and space translations commute

(0, a, 0, 1)(0, 0, v, 1) = (0, a, v, 1) = (0, 0, v, 1)(0, a, 0, 1),

but in our representation, they do not:

U (a)U (v) = U (v)U (a).

It can be shown that these factors ω cannot be chosen to become equal to one by any
choice of changing to ω′(1, 2) = ω(1, 2) f1 f2/ f12.

However there do exist true representations of the Galilean group. But they are
not physically relevant. See the note in Sect. 1.9.3 below.
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1.8 Problems

Problem 1.1 Consider relativistic spinless particle of mass m whose basis states in
momentum space |p〉 are defined in Sect. 1.2. Construct states

|x〉 = 1

(2π�)3/2

∫
d3p
2ωp

e−i p·x/� |p〉

for any spacetime point x = (x0, x1, x2, x3). Show that

1. U (a,�)|x〉 = |�x + a〉,
2. Calculate the ‘equal time’ product: 〈x0, x|x0, y〉. Can these states |x0, x〉 be eigen-

states of some self-adjoint ‘position operator’?
3. Show that the set of states {|x0, x〉} for constant x0 form a non-orthogonal but

complete set. (Hint: express |p〉 in terms of these states.)
4. If |φ〉 and |ψ〉 are two vectors in the Hilbert space and φ(x) = 〈x |φ〉 and ψ(x) =

〈x |ψ〉 then
[

∂2

∂x02
− ∂2

∂x2
+ m2

]
φ(x) = 0, and

〈φ|ψ〉 = i
∫

x0=const.
d3x

[
φ∗(x)

∂ψ(x)

∂x0
− ∂φ∗(x)

∂x0
ψ(x)

]
.

Problem 1.2 Express Poincare group elements (a,�) as 5 × 5 matrices like

⎛

⎜⎜⎜⎜⎝

�00 �01 �02 �03 a0

�10 �11 �12 �13 a1

�20 �21 �22 �23 a2

�30 �31 �32 �33 a3

0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

acting on column vectors (x0, x1, x2, x3, 1).Work out the Poincare group Lie algebra
from infinitesimal forms (near identity) of these matrices.

Problem 1.3 In order to take the limit of Poincare group to Galilean group as
c → ∞, the factor c in x0 = ct should be separated and transformations expressed
as acting on (t, x1, x2, x3, 1) and not on (x0, x1, x2, x3, 1). Modify the 5 × 5
Poincare transformation matrices above accordingly showing c-dependence. Obtain
the Galilean Lie algebra when c → ∞. That will be the Lie algebra of the Galilean
group, with [KG

i , P j
G] = 0, and not of the representation.

Hint: Only the boost matrices contain c, and a0 will be replaced by τ without the
factor of c to give t → t + τ .
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1.9 Notes and References

1.9.1 Time Translation and Time Evolution

The Poincare group (and the Galilean group) includes space and time translations.
One can ask the question: if time translations are already present, what is the need for
equations of motion? As far as group elements are concerned, there is a unitary oper-
ator for both a group element and its inverse. But time evolution has a meaning only
for forward progress of time. How are time translations related to the Schrödinger
picture or the Heisenberg picture?

The symmetry transformations of the Poincare group represent relations between
two inertial frames of reference. We can think of time evolution as a continuous
change of frame. A frame S′

τ lies in the future of a frame S by an amount τ > 0 if
the coordinate t ′ of S′

τ is related to the time coordinate of frame S by t ′ = t − τ .
Therefore a state ψ seen by S at time t = 0, say, will be seen in the continuously
changing frames S′

τ asψ(τ ) = U (−τ )ψ. This is the time evolution in the Schrödinger
picture.

TheHeisenberg’s way of representing time evolution is through unchanging states
but changing observables. So, if we change the frames S′

τ continuously by changing
τ , the state ψ of the system can be chosen to remain constant but the observables A
evolve with τ so that their expectation values, (which are experimentally measured),
change in the same manner as in the Schrödinger picture:

(ψ, A(τ )ψ) = (ψ(−τ ), Aψ(−τ )).

Since this happens for every state ψ, we get A(τ ) = U (τ )AU (−τ ). If U (τ ) =
exp(i Hτ/�) then the differential form of this relation is

i�
d A(τ )

dτ
= [A(τ ), H ].

In the next chapter we will generalize this idea of continuously changing frames.
Irreducible unitary representations of Poincare group are treated in the classic

paper of Wigner [3].

1.9.2 The Newton–Wigner Position Operator

One can ask the question, for a relativistic particle, why cannot we just define a three
vector X̂i = i�∂/∂ pi as position operators in one frame reference? But these are
unsuitable as observables because they are not self-adjoint. In fact, by the definition
of an adjoint,
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(φ, X̂†
i ψ) = (X̂iφ,ψ) = −i�

∫ (
d3p
2p0

)
∂φ∗

∂ pi
ψ(p)

After an integration by part, we see that

X̂†
i = X̂i − i�pi

(p0)2
.

Therefore, we can define a self-adjoint operator, called the Newton–Wigner operator
as

Xi
NW = X̂i + X̂†

i

2
= i�

∂

∂ pi
− i�pi

2(p0)2
.

This has the advantage that different components of the position operator commute,
and can be simultaneously diagonalized. But a common eigenstate of Xi

NW (that is,
a state “localized” at a given point), when space translated byU (a) is not orthogonal
to the original state.

One can read more about it in the original paper [4], or Sect. 3c of the classic
book by Schweber [5].

1.9.3 Poincare and Galilean Group Representations

Wehave discussed only the Poincare group representation corresponding to a particle
of mass m and spin zero. General irreducible unitary representations of the Poincare
group are characterized or labelled by two quantities: the value of w = PμPμ and a
number swhich can be an integer or a half-odd integer or a real number corresponding
to spin. Ifw is negative, equal to−m2 we get the representation for a particle of finite
massm. Ifw = 0, we get zeromass representations. In this case s can be an integer or
half-odd integer and is called helicity. In w = 0, case, s can also be an arbitrary real
number as well, but this ‘continuous spin’ quantum number is clearly unphysical.
Also unphysical are those representations for which w > 0, or, as we say, Pμ is
space-like.

The Galilean group representation which is derived from the representation of
the Poincare group for finite mass m shows the dependence on m in its Lie algebra
commutator between boost and translation. The Galilean group, of course, requires
them to commute. The true representations of the Galilean group do not seem to
correspond to anything physical.

A very detailed introduction to Lie groups, Lie algebras, and particularly the
Galilean group canbe found in the classic bookbySudarshan andMukunda [6]. Inonu
and Wigner [7] found that the true representations of Galilean group are physically
not relevant, whereas of the physically relevant representations, there is only one
type, and that carries phase factors which cannot be wished away. This paper also
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introduces the idea of group contraction: how one groupG1 reduces to another group
G2 when a parameter on which the group elements of G1 depend, goes to a limiting
value. In the present case of Poincare to Galilean group, it is the velocity of light
c → ∞. Galilean Lie algebra is touched upon briefly in the Sect. 2.4 of the book by
Weinberg [8] from a physicist’s point of view.

A rigorous treatment of the question of true and ray representations is inBargmann
[9] which discusses the Galilean group in Sect. 6 of the paper.
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Chapter 2
A Bundle Picture of QuantumMechanics

The vector that represents the state of a quantum mechanical system depends, apart from
the system itself, on the frame of reference in which the description is being made. There
are an infinite number of frames and there is a vector in a Hilbert space for each of them.
This suggests a vector bundle picture for describing the dynamics of the system. This way
of looking at dynamics is especially useful where change of frames is involved.

Note: In this chapter we use Einstein’s convention of summing over repeated indices
to simplify formulas.

2.1 The Bundle Picture

The concept of state of a physical system in classical or quantum mechanics always
depends on the frame of reference in which the description is being made. Usually,
the frame of reference is fixed and therefore not explicitly mentioned.

A quantum state is described by a vector in a Hilbert spaceH characteristic of the
physical system. There is thus a Hilbert space for each frame of reference to which
the state as seen in that frame belongs. All these spaces, called fibers, are of the
same type because they refer to the same physical system. But quantum mechanical
description has this special feature: a state ψ and the set of observables {Ai }, taken
together, describe the same physics as do states Uψ and observables {U AiU−1},
where U is any unitary operator.

So we have the following ‘bundle’ picture. There is a set X of frames of reference,
and for each frame P in X , there is a fiber of a Hilbert spaceHP which contains the
vectors as observed by P . Let us assume that the frames are labelled by a number
of parameters or ‘coordinates’ x = (x1, . . . , xn) etc. Then we can ask the question:
how is the state ψ ∈ HP of a physical system as seen by the observer in frame P
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(with coordinates x) related to the state as seen by the observer in a neighboring
frame Q (with coordinates x + �x) considering �x to be small?

In general, it is not possible to compare vectors in two different vector spaces
HP and HQ because the states and observables in each frame can be changed by a
unitary operator.

We need two rules: one for identifying the different individual Hilbert spaces
HP , HQ etc., and second, a way of comparing vectors in neighboring spaces. The
first of these rules is called ‘local trivialization’ and the second a law of ‘parallel
transport’.

A trivialization allows us to use the cartesian product X × H for describing the
vectors of all frames in a common Hilbert space, i.e., as elements (x .ψ(x)), where
x represents the frame, and ψ(x) ∈ H, as the state seen by that frame. Two different
trivializations will differ by an x-dependent unitary operator U (x) changing states
(and observables): (x,ψ(x)) being replaced by (x,U (x)ψ(x)).

We use the term ‘trivialization’ here is a limited sense where coordinates of the base manifold X

are not changed, but only the identification of fibers withH changes. The ‘bundle picture’ presented

here has the same mathematical features as in general relativity or Yang–Mills gauge theories. Of

course, the specific base manifold and the fiber in all these cases are different.

2.1.1 Sections

A section is a smooth function which assigns a vector in HP for all frames P ∈ X .
If we have chosen a trivialization then (x,ψ(x)) ∈ X × H is a section. We say that
a section is smooth if ψ(x) changes continuously and smoothly with x . A section is
the mapping x → ψ(x) after we have taken some fixed trivialization.

An orthonormal (o.n.) basis of sections x → φn(x), n = 1, 2, . . . is such that for
each x

(φn(x),φm(x)) = δnm .

Given an o.n. basis of sections every section ψ(x) can be be replaced by its compo-
nents functions, that is, a sequence of complex functions cn(x) = (φn(x),ψ(x)).

2.1.2 Parallel Transport

Let P and Q be two neighboring points in X with coordinates x and x + �x respec-
tively. We treat �xi as infinitesimally small.

Given a vector in Hx at a point P with coordinates x we can compare it with a
vector at Q (with coordinates x + �x) if we provide a rule by which these vectors
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can be brought together. If ψ ∈ Hx+�x at Q is brought to P without change we
expect the transported vector ψ

‖
Q→P

1. to depend linearly under transport: that is, if we bring a linear combination aφ +
bψ from Q to P then the vectors brought at P will be the same linear combination
aφ

‖
Q→P + bψ‖

Q→P ,
2. to remain unchanged if �xi → 0,
3. to preserve inner product that is (φ

‖
Q→P ,ψ

‖
Q→P) = (φ,ψ).

To find the form of such a rule, it is convenient to use an o.n. basis of sections
φn(x). From the first point above if we can define the parallel transport for a basis,
then we can define for any vector, using the linearity.

With this in mind, we write the rule for φr (x + �x) at Q brought to the point P
with coordinates x as (we drop the suffix Q → P in what follows)

φ‖
r = φr (x) + �xiφs(x)�isr (x), (2.1)

where �isr (x) are complex numbers expressing the transported vector in the basis
φr (x). To check if it preserves the inner product, we calculate (keeping to first order
of smallness in �x),

δrs = (φ‖
r ,φ

‖
s ) = δrs + �xi

[
δr t�i ts(x) + �∗

i tr (x)δts
]
,

or,

�irs(x) + �∗
isr (x) = 0,

which shows that �isr is an anti-Hermitian matrix of an operator on H in the basis
{φr }. We can define a Hermitian operator P̂i (x) as

�irs(x) = i(φr (x), P̂i (x)φs(x)), (2.2)

and call it the connection operator with connection components �isr in this basis.

2.1.3 Change of Basis or of Trivialization

A change in trivialization results in a unitary operator Û (x) acting on each of the

spaces Hx . The basis of sections φr (x) now becomes
∼
φr= Û (x)φr (x) = φs(x)Usr

where Usr = (φs(x), Ûφr (x)). Under parallel transport,

∼
φ

‖
r=

∼
φr (x) + �xi

∼
φs (x)

∼
�isr (x),

where
∼
� are the new connection components. On the other hand, when

∼
φr (x +

�x) = φs(x + �x)Usr (x + �x) is brought to x , the coefficientsUsr (x + �x), being
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complex numbers, are brought as such, and contribute an additional term:�xi∂iUsr .
Thus, omitting the arguments x of functions, and keeping to first order in �x ,

∼
φ

‖
r = φsUsr + �xiφs∂iUsr + �xiφt�i tsUsr

= ∼
φr +�xi

∼
φt U

−1
ts ∂iUsr + �xi

∼
φu U

−1
ut �i tsUsr

= ∼
φr +�xi [∼φt U

−1
ts ∂iUsr+

∼
φu U

−1
ut �i tsUsr ].

Comparison shows, written as a matrix,

∼
�i= U−1�iU +U−1∂iU. (2.3)

If the connection components are all zero,�ius = 0, then in some other trivialization,
the connection components are “pure gauge”:

∼
�i tr= U−1

ts ∂iUsr ,

with Usr (x) a unitary matrix dependent on x .

2.1.4 Transport Round a Loop and Curvature

We have discussed the form of a vector φr (Q) parallel transported from a point
Q = {x + �x} to P = {x}. One can ask a question, if a vector is parallel transported
around a closed loop and brought back to the starting point, will it agree with the
initial vector, or not?

We discuss first for an infinitesimally small loop. And, instead of going round
the loop we can equivalently take the vector along two different infinitesimal paths,
having the same starting and ending points, and compare the transported vectors. Let
us take four points with coordinates as shown:

Q = {xi + �1x
i + �2x

i }, Q1 = {xi + �1x
i }, Q2 = {xi + �2x

i }, P = {xi }.

� �

� �

�

�
� �

P

�1

Q1

Q2

�2

Q
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The vector φr (Q) when brought to Q1 is

φ
‖
Q→Q1r

= φr (x + �1x) + �2x
iφs(x + �1x)�isr (x + �1x).

Going through another step and transporting this to P , and keeping to second order
in �x’s,

φ
‖
Q→Q1→Pr = φr (x) + �1x

iφs(x)�isr (x)

+�2x
i [φs(x) + �1x

jφt (x)� j ts(x)][�isr (x) + �1x
j∂ j�isr ]

= φr (x) + �1x
iφs(x)�isr (x) + �2x

iφs(x)�isr (x)

+�2x
i�1x

jφt (x)
[
∂ j�i tr + � j ts(x)�isr (x)

]
.

The other route for transport Q → Q2 → P will give similarly, with the role of �1

and �2 interchanged:

φ
‖
Q→Q2→Pr = φr (x) + �2x

iφs(x)�isr (x) + �1x
iφs(x)�isr (x)

+�1x
i�2x

jφt (x)
[
∂ j�i tr + � j ts(x)�isr (x)

]
.

The difference is therefore,

φ
‖
Q→Q1→Pr − φ

‖
Q→Q2→Pr = �2x

i�1x
jφt (x)Rtri j

where

Rtri j = ∂ j�i tr (x) − ∂i� j tr (x) + � j ts(x)�isr (x) − �i ts(x)� jsr (x) (2.4)

is called the curvature tensor. It is well to remember that indices t, r belong to the
o.n. basis in Hilbert spaceH, whereas i, j run over the variables of the base X . If the
components of the curvature tensor are zero then parallel transport of a vector can
be taken along any path without dependance on the path.

Exercise 2.1 Show that the change in the curvature tensor components, under a

change in the basis sections by φr (x) → ∼
φr= φs(x)Usr is, as a matrix,

∼
R ji= U−1R jiU. (2.5)
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2.2 Covariant Derivative

2.2.1 Covariant Derivative of a Section

The parallel transport law gives us a way to define derivative of sections in any
direction. Given a section x → ψ(x) = cr (x)φr (x) we can bring ψ(x + �x) at Q
to P using (2.1), and find the difference from ψ(x),

ψ
‖
Q→P − ψ(x) = cr (x + �x)[φr (x) + �xi�isr (x)] − cr (x)φr (x)

= �xi φs(x) [∂i cs(x) + �ist ct (x)].

Dividing by the displacement and taking the limit:

Diψ(x) = φs(x)[∂i cs(x) + �ist ct (x)]. (2.6)

If we were to change the trivialization then
∼
φr (x) = φs(x)Usr and express the vector

ψ in both the bases

ψ = csφs = ∼
cr

∼
φr = φsUsr

∼
cr ,

then, suppressing the indices, and using matrix notation,

c = U
∼
c,

∼
c= U−1c.

Using (2.3) and (2.6) we write the covariant derivative in the new trivialization

∼
Di ψ(x) = ∼

φ [∂i
∼
c + ∼

�i
∼
c],

= φU [∂i (U
−1c) + (U−1�iU +U−1∂iU )U−1c],

= φ [U (∂iU
−1)c + ∂i c + �i c + (∂iU )U−1c].

The first and last term in the last line can be added U (∂iU−1) + (∂iU )U−1 =
∂i (UU−1) = 0, Therefore

∼
Di ψ(x) = Diψ(x) and the covariant derivative is inde-

pendent of the trivialization chosen to calculate it. This justifies the name.

2.2.2 Covariant Derivative of an Operator

Let Â be an operator defined inHQ, Q = {x + �x} and let

Ars = (φr (x + �x), Âφs(x + �x))
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be its matrix elements. To define its parallel transport to P = {x}we use the fact that
transport is a linear process which preserves the inner product. Therefore A‖

Q→P has
the same matrix elements in the transported basis. Keeping to first order,

Asr = (φ
‖
s(Q→P), A

‖
Q→Pφ

‖
r(Q→P))

= (φs(x), A
‖
Q→Pφr (x)) + �xi�∗

i ts(x)(φt (x), A
‖
Q→Pφr (x))

+�xi�i tr (x)(φs(x), A
‖
Q→Pφt (x)).

Werealize that Asr (x + �x) and A‖
sr (x) ≡ (φs(x), A

‖
Q→Pφr (x))differ by anorder of

magnitude of�x and become equal as�x → 0. Therefore, using the anti-Hermitian
nature of �,

A‖
sr (x) = Asr − �xi�∗

i ts(x)Atr − �xi�i tr (x)Ast

= Asr + �xi (�ist (x)Atr − Ast�i tr (x)).

Thus the numbers Asr (which are the matrix elements of Â at x + �x) define, by
parallel transport a new operator A‖ through its matrix elements with respect to the
same basis of sections.

If we had a section of operators x → Â(x) then Asr in the equation above would
be Asr (x + �x), and the difference of transported operator’s matrix elements with
those of Asr (x) will be

A‖
sr (x) − Asr (x) = Asr (x + �x) − Asr (x) + �xi (�ist (x)Atr − Ast�i tr (x)).

This allows us to define the covariant derivative of an operator matrix elements,
(writing �i as a matrix)

Di Asr (x) = ∂Asr

∂xi
+ [�i , A]sr . (2.7)

2.3 The Base X of Galilean Frames

So far we have focussed our attention on the fibers of the Hilbert space bundle. Now
we look at the structure of the base X of frames of reference. Our starting point
was that frames of reference are related to each other through symmetry operations
such as translation in space and time, or rotations and boosts. These transformations
are not accidental, but reflect the invariance of the metric or the line element of
spacetime. The infinitesimal transformations, determined by these symmetries or
‘isometries’ of spacetime, show up as Killing vector fields. It can be shown that in
an n-dimensional Riemannian space there can be only n(n + 1)/2 such independent
Killing vector fields.
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Starting from a standard frame we can label all other frames by the symmetry
transformation parameters which connect them to the standard frame. Thus there are
as many frames as the group elements of the symmetry transformations, namely, the
ten parameter group of Galilean or Poincare transformations.

We have seen in Chap.1 that all the Galilean frames can be obtained by applying
rotation, boost, and translations in space and time, to some arbitrarily chosen frame
S0:

Sx = (τ , a, v, R)S0, x = (τ , a, v, R)

which corresponds to the transformation

t ′ = t + τ ,

x′ = Rx + vt + a .

We parametrize the rotation R through the Euler angles (rotation by angle φ about
3-axis, a rotation by θ about 1-axis, followed by a rotation of ψ about the 3-axis)

R(ψ, θ,ψ) = R3(ψ)R1(θ)R3(φ). (2.8)

There are thus ten parameters in x = (τ , a, v, R).

2.3.1 The Hypothesis of Parallel Transport

We have seen in Chap.1 that unitary representations of the Galilean or the Poincare
group reflect the equivalence of all frames of reference in the sense that physical mea-
surements will not distinguish one frame from another. In the language of differential
geometry this means that state vectors in various frames related by the unitary oper-
ators of the group element are carried from one frame to another ‘without change’,
or by parallel transport. Therefore, if x → ψ(x) = cr (x)φr (x) is the section deter-
mined by the physical system’s state vector as seen in various frames, the equation
for determining the change from frame at x to x + �x is

Diψ = φs(x)

(
∂cs
∂xi

+ �isr (x)cr (x)

)
= 0. (2.9)

For a trivialization which uses a constant o.n. basis of sections, so that there is no
dependence on x from the basis, we can write directly the Eq. (2.9) with operators
�̂i

�isr (x) = i(φs, �̂iφr ) (2.10)
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as the Schrödinger equation

i
∂ψ(x)

∂xi
= �̂i (x)ψ(x). (2.11)

2.3.2 Calculation of �̂i

The connection operators �i can be calculated by putting all the�x j , j 	= i zero and
looking at the coefficient of�xi . The state� as seen in the frame Sx , x = (τ , a, v, R)

is obtained by the successive unitary operators in reverse order on state �0 in S0:

�x = U (R−1)U (−v)U (−a)U (−τ )�0.

All we need to do is to differentiate this with each of the parameters xi and obtain
the corresponding �̂i using the Schrödinger equation (2.11).

The unitary operators are

U (−τ ) = exp(−i P̂2τ/2m�),

U (−a) = exp(i P̂ · a/�),

U (−v) = exp(imX̂ · v/�),

U (R−1) = exp(iφJ3/�) exp(iθJ2/�) exp(iψJ3/�).

The ten connection operators at different points x = (τ , a, v,ψ, θ,φ) are determined
by the parallel transport hypothesis are:

�̂τ (x) = 1

�

(R−1P̂ − mv)2

2m
= 1

�

(P̂ − mRv)2

2m
, (2.12)

�̂ai (x) = −1

�
(R−1P̂ − mv)i , (2.13)

�̂vi (x) = −1

�
m(R−1X̂)i , (2.14)

�̂ψ(x) = −1

�
(J3 cos θ + J2 sin θ cosφ + J1 sin θ sin φ), (2.15)

�̂θ(x) = −1

�
(J1 cosφ − J2 sin φ), (2.16)

�̂φ(x) = −1

�
J3 . (2.17)

We have chosen a particular order of operators to label frames of reference x =
(τ , a, v, R). The same frames can be labelled in otherways too, leading to connection
operators different from the ones above. But since that would amount to a change by
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unitary operators, the two connection operator sets will be related by the connection
transformation law given in Sect. 2.1.3 above.

2.3.3 Galilean Bundle Curvature is Zero

It is worthwhile to check that all the 45 components of curvature

R ji = ∂

∂x j
�̂i − ∂

∂xi
�̂ j + i[�̂ j , �̂i ], {xi } = (τ , a, v,φ, θ,ψ),

for these 10 connection operators are zero. It should not cause surprise that the
curvature components are zero because they were obtained by the process dU =
(dUU−1)U which is a ‘pure gauge’ term of the transformation formula for the
connection.

But it is still worthwhile to remark that the space translation determined by �̂ai

and boost �̂vi give zero curvature even if they do not commute and give rise to
the non-removable phase factor for the representation as discussed in Sect. 1.7. A
simpler example is the non-commutativity of the angular momentum operators. The
curvature obtained is zero because in going round a loop, the connection operators
in different frames are different, and exactly compensate for the changes due to
non-commutativity.

For the sake of simplicitywe take two cases restricted to one dimension to illustrate
the point. There are only three variables (τ , a, v) with the connection operators

�τ (τ , a, v) = 1

�

(P̂ − mv)2

2m

�a(τ , a, v) = −1

�
(P̂ − mv)

�v(τ , a, v) = −m
1

�
X̂ .

In the first case a frame at (0, 0, 0) is changed to a moving frame (0, 0, v) then time
translated by �τ (0, 0, v) and then brought back to (τ , 0, 0) by �v(τ , 0, v) by reverse
velocity −v. During this process the state ψ0 in frame (0, 0, 0) is seen to change to

e−imv X̂/�e−iτ (P̂−mv)2/2m�eimv X̂/�ψ0 = e−iτ P̂2/2m�ψ0

This is the same as the direct change from (0, 0, 0) to (τ , 0, 0) by �τ (0, 0, 0).
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� �

� �

�

�

� �

(0, 0, 0)

v

−v

(0, 0, v)

(τ , 0, 0)

τ τ

(τ , 0, v)

� �

� �

�

�

� �

(0, 0, 0)

v

−v

(0, 0, v)

(τ , 0, 0)

a a

(τ , 0, v)

Similarly if we choose space translation in place of time translation we get the
same result. We do not get the irremovable phase factor in the representation of
the Galilean group because the connection �a at (0, 0, 0) is −P̂ and at (0, 0, v) is
−(P̂ − mv):

e−imv X̂/�eiτ (P̂−mv)a/�eimv X̂/�ψ0 = eiτ P̂a/�ψ0.

2.4 Application to Accelerated Frames

In the previous sections we have developed a geometric picture. The dynamics of a
system can be reduced to changing frames with respect to time translations as has
already been discussed in Sect. 1.9.1.

If all observers are equivalent, a physical system can be described by state and
observables in any of the frames. However, dynamics requires evolution curvewhich
connects different frames, just as, in the simplest of cases, time translated frames
determine the dynamics.

2.5 Non-inertial Frames

2.5.1 A Linearly Accelerated Frame

Choose a standard frame S0, with a state of the system represented by |�0〉 and
observables X̂, P̂ etc.

Let S be a frame whose origin lies a time τ in the future of the origin of S0. Then
the vector

|�〉 = exp(−i P̂2τ/2m�)|�0〉

represents the same physical state of the system in frame S. The average value of
position 〈X̂〉 ≡ 〈�|X̂|�〉 is related to 〈X̂〉0 ≡ 〈�0|X̂|�0〉 by
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〈X̂〉 = 〈X̂〉0 + 〈P̂〉0
m

τ .

Similarly, if S is displaced by a distance a with respect to S0, then

|�〉 = exp(i P̂ · a/�)|�0〉

is a state with the property that

〈X̂〉 = 〈X̂〉0 − a.

Therefore a wave packet located at some distance x in S0 is seen at x′ = x − a in S.
Moreover,

|�〉 = exp(−imX̂ · v/�)|�0〉

represents a wave packet with no change in location, but the average momentum
changes by

〈P̂〉 = 〈P̂〉0 − mv.

A frame Sτ initially coincident with S0 and moving with constant acceleration g
sees the state �0 as

|�〉τ = exp(−imX̂ · v/�) exp(i P̂ · a/�) exp(−i P̂2τ/2m�)|�0〉, (2.18)

a = gτ 2/2, v = gτ ,

which determines the average values

〈X̂〉τ = 〈X̂〉0 + 〈P̂〉0
m

τ − 1

2
gτ 2,

〈P̂〉τ = 〈P̂〉0 − mgτ .

Differentiating the first of these equations by τ twice we get the Newtonian equations
for the inertial force, (or equivalence principle, so to speak!)

d

dτ
〈X̂〉τ = 1

m
〈P̂〉τ (2.19)

d2

dτ 2
〈X̂〉τ = −g. (2.20)

This is what we expect from Ehrenfest’s theorem. It is instructive to find the Hamil-
tonian in the accelerating frame Sτ . By a simple calculation
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i�
d

dτ
|�〉τ =

[
mgX̂ − (P̂ + mgτ ) · gτ + 1

2m
(P̂ + mgτ )2

]
|�〉τ

=
[

1

2m
P̂2 + mg · X̂ + 1

2
mg2τ 2

]
|�〉τ , (2.21)

which shows the presence of the ‘gravitational’ potential aswell as the extra c-number
term which generates the phase factor

exp

(
−i(m/2�)

∫ τ

0
g2τ 2dτ

)
= exp(−img2τ 3/6�),

identified by Eliezer and Leach [1] for the Schrödinger equation of a linearly accel-
erated particle.

2.5.2 Rotating Frame: Centrifugal and Coriolis Forces

Let the frame S be chosen with the same origin as S0 rotating about the 3-axis with
constant angular velocity ω. The rotation R as function of the parameter τ is

x ′1 = x1 cosωτ + x2 sinωτ ,

x ′2 = x2 cosωτ − x1 sinωτ .

For the free particle the frame

S = (τ )(R)S0

which requires the state �0 seen as

�(τ ) = U (R)−1U (−τ )�0,

where

U (R)−1 = exp(iωτ Ĵ3/�), Ĵ3 = X̂1 P̂2 − X̂2 P̂1,

U (−τ ) = exp(−i P̂2τ/2m�).

The evolution takes place as

i�
d�

dτ
=

(
P̂2

2m
− ω Ĵ3

)

�(τ )

One canwonder, how is this related to the centrifugal and Coriolis forces? A classical
particle has position and velocity simultaneously, and therefore the centrifugal force
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(which depends on position) and the Coriolis force (which depends on velocity) both
determine the trajectory. For a quantum description we can only see the evolution
of a wave packet through Ehrenfest’s theorem. Thus, as first derivatives of average
position we find

d

dτ
〈X̂1〉 = d

dτ
〈�(τ )|X̂1|�(τ )〉

= 1

i�
〈�(τ )|

[

X̂1,
P̂2

2m
− ω Ĵ3

]

|�(τ )〉

= 1

m
〈P̂1〉 + ω〈X̂2〉. (2.22)

Similarly,

d

dτ
〈X̂2〉 = 1

m
〈P̂2〉 − ω〈X̂1〉, (2.23)

d

dτ
〈X̂3〉 = 1

m
〈P̂3〉. (2.24)

Using these the second derivatives can be calculated

m
d2

dτ 2
〈X̂1〉 = 2ω〈P̂2〉 − mω2〈X̂1〉,

m
d2

dτ 2
〈X̂2〉 = −2ω〈P̂1〉 − mω2〈X̂2〉,

m
d2

dτ 2
〈X̂3〉 = 0.

Substituting for 〈P̂2〉 and 〈P̂1〉 from (2.23) and (2.22) respectively, the Coriolis and
centrifugal forces become manifest:

m
d2

dτ 2
〈X̂1〉 = 2ω

d

dτ
〈X̂2〉 + mω2〈X̂1〉, (2.25)

m
d2

dτ 2
〈X̂2〉 = −2ω

d

dτ
〈X̂1〉 + mω2〈X̂2〉, (2.26)

m
d2

dτ 2
〈X̂3〉 = 0. (2.27)

2.6 Problems

Problem 2.1 Let φ(x, t) be a solution of the Schrödinger equation for a (non-
relativistic) free particle:
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i�
∂φ

∂t
= − �

2

2m

∂2φ

∂x2
.

Show that in an accelerated frame t ′ = t, x ′ = x − gt2/2, the wave function

ψ(x ′, t ′) = φ′(x ′, t ′) exp(i S(x ′, t ′)/�), φ′(x ′, t ′) = φ(x = x ′ + gt ′2/2, t = t ′),

satisfies theSchrödinger equation in the accelerated framewith gravitational potential
mgx ′:

i�
∂ψ

∂t ′
= − �

2

2m

∂2ψ(x ′, t ′)
∂x ′2 + mgx ′ψ(x ′, t ′),

provided that S is chosen as

S(x ′, t ′) = −mgt ′x ′ − 1

6
mg2t ′3.

This is the argument used in references in [1].

Problem 2.2 Consider a frame (x ′, y′, t) rotating (with angular velocity ω) in a
circle of radius R about the origin of an inertial frame (x, y, t) such that the origin of
the rotating frame is always on the circle and its x ′ axis always in the radial direction.

Find the Hamiltonian for a free particle of mass m in the rotating frame.

2.7 Notes and References

2.7.1 Bundle Picture

The equation idU = HdtU or idUU−1 = Hdt occurs so often in quantummechan-
ics that it is surprising that the identification of Hdt as a connection 1-form has been
late in coming, although the ideas of differential geometry were being applied to
quantum field theory for quite some time. One reason may be that discussions in
quantum mechanics are predominantly about time evolution and one dimensional
base space is not interesting enough. The relevance of ideas of differential geome-
try came with discovery of the geometric phase where the Hamiltonian depends on
several changing parameters.

Despite that, as far as we know, the first explicit mention of time evolution as
parallel transport occurs in Asorey et al. [2]. The idea was developed by Graudenz
[3], Iliev [4] as a mathematical formalism. It was Chingangbam [5] who applied the
bundle picture to actual problems like the quantummechanics of accelerated frames.
Experimental confirmation of quantum effects of Einstein’s equivalence principle
in non-relativistic as well as relativistic domain is too vast a subject to be included
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here. The reader can follow the recent activity beginning from the paper by Zych and
Brukner [6] and the chapter by Mashhoon [7].

2.7.2 Geometric Phase

Geometric phase also uses the language of a vector bundle, connection and curva-
ture, where the base is not that of frames of reference, but of parameters on which
the Hamiltonian of the system depends. The literature on geometric phase, or the
Berry phase, is vast. It was indeed the ‘phase that launched a thousand scripts’! The
collection of original papers can be found in Shapere and Wilczek [8]. The book by
Bohm et al. [9] is a good introduction. The review by Mukunda and Simon [10] is
devoted to applications of the geometric phase to group representations.
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Chapter 3
A Beam of Particles = A Plane Wave?

Howcan a planewave represent a beamof particles?Andwhat exactly is ‘probability per unit
time’? These questions bother every student of quantum mechanics when they encounter
them in scattering theory. This chapter takes the mystery out of these issues, apart from
offering a very concise introduction to formal scattering theory.

3.1 A Coherent Bunch

In this section we prove a result which is quite general, but which has a special
importance in scattering theory.

A quantum system with translational degrees of freedom has a complete basis of
eigenstates of total momentum labeled as

|p,β〉, 〈p′β′|pβ〉 = 2ωpδ
3(p′ − p)δβ′β, ωp =

√
p2 + m2c2,

where β’s are collective name of eigenvalues of other observables needed for a
complete set of basis states. And, although the result applies equally well to non-
relativistic case, (apart from a normalization factor), we use the relativistic normal-
ization to be specific. The eigenvalues β may be discrete, or continuous, but we
use the notation for discrete values for simplicity. We also refer to the system as a
‘particle’.

Let |φβ0〉 be a state of the system with respect to an observer. We assume the state
to have total momentum close to some fixed value k:

〈pβ|φβ0〉 = f (p)δββ0

with f (p) being sharply peaked around p = k. Normalization of |φβ0〉 requires
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
P. Sharan, Some Unusual Topics in Quantum Mechanics,
SpringerBriefs in Physics,
https://doi.org/10.1007/978-3-030-60418-9_3
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〈φβ0|φβ0〉 =
∫

d3p
2ωp

| f (p)|2 = 1.

Consider the same system as seen by another observer located with respect to the first
observer at a distance −r. If there is translational symmetry, this state is represented
by a unitary translation operator U (−r) acting on |φβ0〉:

U (−r)|φβ0〉 = exp(ir · P̂/�)|φβ0〉,

where P̂ is the operator for total momentum. This state is the same as would be seen
by the original observer had the system as a whole been displaced by a distance r.

Note that we do not assume that the system with state |φβ0〉 is localized at any
point in space. In fact, as we know from non-relativistic quantum mechanics, where
position operators make sense, that a state with linear momentum wave function
f (p) more or less sharply defined, will have a very large wave packet in spatial
dimensions.

Now, imagine a very large number, N , of copies of the system all prepared in
the same identical state |φβ0〉 and then, spatially translated from the place of their
preparation to positions ri , i = 1, . . . , N , the points being distributedwith a uniform,
constant density ρ in space in a very large volume. These systems are then in states
|φi 〉 whose momentum wave-functions are given by

〈pβ|φi 〉 = f (p)δββ0 exp(iri .p/�). (3.1)

We call such a collection of particles a coherent bunch of particles.
Suppose we want to make measurements on an observable B on all these states.

The average of the expectation values of B in these states will be

1

N

∑

i

〈φi |B|φi 〉 = 1

N

∑

i

∫
d3p
2ωp

∫
d3p′

2ωp′
exp[i(p − p′) · ri/�] ×

f (p′)∗ f (p)〈p′β0|B|pβ0〉.

If the points ri are closely spaced, and the volume very large, we can replace the sum
over points ri by ρ

∫
d3r because ρ is constant:

∑

i

[. . . ] =
∫

ρd3r[. . . ] = ρ

∫
d3r[. . . ]. (3.2)

Carrying out the integration over r we get a factor (2π�)3δ3(p − p′) which can be
integrated out as well:

1

N

∑

i

〈φi |B|φi 〉 = 〈B〉 = ρ(2π�)3

N

∫
d3p
2ωp

| f (p)|2
2ωp

〈pβ0|B|pβ0〉.
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If the observable B is such that 〈pβ0|B|pβ0〉 varies smoothly near p = k, then the
matrix element canbepulledout at valuek because that iswhere themain contribution
to the integral comes from, and the expectation value, to a good approximation, is

〈B〉 = ρ(2π�)3

N

1

2ωk
〈kβ0|B|kβ0〉

∫
d3p
2ωp

| f (p)|2

= ρ(2π�)3

N

1

2ωk
〈kβ0|B|kβ0〉, (Relativistic) (3.3)

because the last factor is equal to one. Dramatically, the dependence on details of
the momentum profile of the state |φβ0〉 disappears completely! All that mattered
was that the momentum was sharply peaked around k. We call the formula (3.3) the
(relativistic) “bunch formula”. In fact, if the bunch had been made from a mixture of
several states, all of them with different momentum profiles (but the same β0), and
with a sharp peak at the same value of k, we would have obtained the same result.

Weget the bunch formula for the non-relativistic case ifwe take the non-relativistic
normalization for the momentum states:

〈B〉 = ρ(2π�)3

N
〈kβ0|B|kβ0〉. (Non-relativistic) (3.4)

There is another way to look at this result. If these N particles were inside a large
volume L3 then ρ = N/L3. Let d3k be a small volume element in the momentum
space. The above result (for the non-relativistic case, for example) can then bewritten
as

〈B〉 = 〈kβ0|B|kβ0〉d3k
n

,

where n is the number of ‘cells’ of size h3 in the occupied phase space,

n = L3d3k
h3

, h = 2π� = Planck’s constant .

3.2 Scattering Theory

3.2.1 Scattering States and the Moller Operator

We work with Hamiltonian H of the system, and also with the free Hamiltonian H0

when the interaction is ‘switched off’. Both the operators are defined in a common
Hilbert spaceH.We use the Schrödinger picture where all time dependence is carried
by the states.
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Let �(t0) be the state of the system at some fixed time, say, t = t0. Then the state
at time t is

�(t) = U (t − t0)�(t0), U (t − t0) = exp(−i H(t − t0)/�).

Avectorφ(t0) ∈ Hwould represent the state of the systemwhen free from interaction
at t = t0 if, at any other time t , it is given by

φ(t) = U0(t − t0)φ(t0), U0(t − t0) = exp(−i H0(t − t0)/�).

Now suppose that �(t) is such that it becomes indistinguishable from some free
state φ(t) for large negative t , then we can say that the system behaves like a free
system in remote past, that is, if

lim
t→−∞ �(t) = lim

t→−∞ φ(t).

φ(t)

�(t)

χ(t)

t = −∞
←−

−→
t = +∞

A scattering state �(t0) at time t = t0 is a state such that its ‘ancient history’
�(t) = U (t − t0)�(t0) for large negative times t → −∞ coincides with that of
some free state φ(t) ≡ U0(t − t0)φ(t0):

lim
t→−∞ ‖�(t) − φ(t)‖ = 0. (3.5)

Such a scattering state looks like a free state in remote future too. That is, there is a
free state χ(t0) such that

lim
t→∞ ‖�(t) − χ(t)‖ = 0, (3.6)

where χ(t) = U0(t − t0)χ(t0). The existence of the first limit is equivalent to

lim
t→−∞ ‖�(t) − φ(t)‖ = lim

t→−∞ ‖U (t − t0)�(t0) −U0(t − t0)φ(t0)‖
= lim

t→−∞ ‖�(t0) −U−1(t − t0)U0(t − t0)φ(t0)‖ → 0,

and defines the Moller wave operator �(+):
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�(+) ≡ lim
t→−∞U (t − t0)

−1U0(t − t0). (3.7)

As a result, at t = t0
�(t0) = �(+)φ(t0). (3.8)

It is not necessary to start at time t = t0. We could have started at any finite time t1
and obtained

�(t1) = �(+)φ(t1). (3.9)

Thus, �(+) is actually independent of time. Similarly, for t → ∞ we would get

�(−) ≡ lim
t→+∞U (t − t0)

−1U0(t − t0), (3.10)

and, for any time t ,
�(t) = �(−)χ(t). (3.11)

Not every state can be a scattering state. If H admits bound states, then those certainly
do not go to free states in remote past or future. There are confining Hamiltonians
H which have only bound states, and no scattering states.

3.2.2 Scattering Matrix

A system starting out with a free state φ(t) in remote past becomes a free stateχ(t) in
remote future. The two free states, final and initial, are related (using�(−)†�(−) = 1,
proved later), by

χ(t) = �(−)†�(t) = �(−)†�(+)φ(t) ≡ Sφ(t). (3.12)

The operator S is called the scattering matrix or S-matrix. As we shall see, �(+) and
S contain all information about scattering.

3.2.3 Properties of �(±) and S

We now list a number of properties of the Moller operators �(±), and the scattering
matrix S with proofs detailed in a later section.
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(1) �(±) are norm preserving operators

�(+)†�(+) = 1, �(−)†�(−) = 1. (3.13)

But �(+)�(+)† (or �(−)�(−)†) may not be equal to 1. That means, �(±) may not be
unitary if the scattering states do not span the whole Hilbert space H.

(2) �(±) convert U0(t) into U (t):

�(±)U0(t) = U (t)�(±), (3.14)

�(±)H0 = H�(±), (3.15)

�(±)†H = H0�
(±)†. (3.16)

(3) S is unitary.
SS† = S†S = 1. (3.17)

(4) S commutes with the free hamiltonian H0, although it may not commute with the
total Hamiltonian.

SH0 = H0S. (3.18)

(5) There is an integral equation for the Moller operator �(+). Denote V ≡ H − H0,
then

�(+) = 1 + 1

i�

∫ t0

−∞
U0(t − t0)

−1V�(+)U0(t − t0)dt. (3.19)

(6) Similarly, there is an integral equation for the S-matrix:

S = 1 + 1

i�

∫ ∞

−∞
U0(t)

−1V�(+)U0(t)dt. (3.20)

3.3 Transition Rate

Let φ and ξ be two free states at time t = t0 orthogonal to each other, (φ, ξ) = 0.
Let us begin with a large number N of identically prepared systems in the free

state φ(−T1) = U0(−T1)φ, in remote past (T1 a large positive number). In scattering
theory we are interested in a question of the following type: how many of these N
systems will be found in a free state ξ(+T2) = U0(+T2)ξ in some remote future
t = +T2 (T2 being a large positive number)?

If there was no interaction and evolution took place onlywith the freeHamiltonian
H0, then the answer would be zero, because for all values of time t the state φ(t)
would be orthogonal to ξ(t), both states evolving with H0 so that (φ(T2),χ(T2)) = 0.
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As it is, the state φ(−T1) evolves to the scattering state�(t) = �(+)φ(t) and may
have a non-zero probability Pξ�(t) = |(ξ(t),�(t))|2 to be found in a free state ξ(t)
at time t . This probability is zero for large negative times, increases as interaction is
“switched on” and gradually saturates to a constant value Pξ� = |(ξ(T2),�(T2))|2 =
|(ξ(T2),χ(T2))|2 because for large positive times the state again evolves as a free
state χ. Therefore the total number of transitions to state ξ(T2) at time T2 are

N Pξ� = N |(ξ(T2),�(T2))|2.

If we wait for a time �T2 more, the total number of transitions will be

N Pξ� = N |(ξ(T2 + �T2),�(T2 + �T2))|2.

Therefore the number of transitions per unit time or the transition rate is given by

nξ = N
d

dt
|(ξ(t),�(t))|2, (t → ∞) (3.21)

to be evaluated for large times.

The argument given above is based on the assumption that once the system makes
a transition to the free state ξ(t) from �(t) it continues to evolve as a free state from
then on, and does nor revert back again to a scattering state.

Therefore, transitions to ξ occurring at different times keep accumulating and
would be counted among the states which have already made transition to ξ.

At present we do not have a complete theory of measurement in quantummechan-
ics. These issues are not completely understood. But the formulas given below are
based on these assumptions and they agree completely with experimental observa-
tions.

Let us put the transition rate in a more convenient form. For any complex function
A(t) of t such that d A/dt = C/ i

d|A|2
dt

= A∗C
i

− C∗

i
A = 2 Im(A∗C).

Applying this simple identity to A = 〈ξ(t)|�(t)〉 = 〈ξ(t)|�(+)|φ(t)〉 we obtain
d A

dt
= 1

i�

[(
i�

d

dt
〈ξ(t)|

)
|�(t)〉 + 〈ξ(t)|

(
i�

d

dt
|�(t)〉

)]

= 1

i�
[〈ξ(t)|(−H0)|�(t)〉 + 〈ξ(t)|H |�(t)〉]

= 1

i�
〈ξ(t)|V |�(t)〉, V = H − H0
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= 1

i�
〈ξ(t)|V�(+)|φ(t)〉

which identifies the number C of the identity as

C = 〈ξ(t)|V�(+)|φ(t)〉/�.

The transition rate at time t0 is, therefore,

nξ = N2 Im(A∗C)

= 2N

�
Im

[
〈ξ(t0)|�(+)|φ(t0)〉∗〈ξ(t0)|V�(+)|φ(t0)〉

]
,

= 2N

�
Im

[
〈φ(t0)|�(+)†|ξ(t0)〉〈ξ(t0)|V�(+)|φ(t0)〉

]
.

Thus,

nξ = 2N

�
Im〈φ(t0)|B(t0)|φ(t0)〉, (3.22)

where
B(t0) = �(+)†|ξ(t0)〉〈ξ(t0)|V�(+). (3.23)

Note the appearance of the projection operator

Pξ(t0) = |ξ(t0)〉〈ξ(t0)| (3.24)

to the final states.
This is the formula for the number of transitions per unit time if all the N particles

were in the same identical free state φ in remote past. When we apply this formula
to an actual beam we have to replace the particles with the bunch average. That is

nξ = 2N

�
Im

(
1

N

∑

i

〈φi (t0)|B(t0)|φi (t0)〉
)

. (3.25)

We can substitute the “bunch formula” inside the parentheses in the formula above
depending on the situation of the specific case.

To evaluate the above average for large values of t we can choose the fixed ‘origin’
of time t0 large enough to include the time of the duration of interaction.

In practice, both the free states φ(t) and ξ(t) are stationary states with trivial time
dependence exp(−i Et/�). Therefore nξ is actually independent of time.
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3.4 Evaluation of Transition Rate and Cross-Sections

3.4.1 Non-relativistic Scattering from a Potential

The initial free state φ (whose spatial translates constitute the bunch for a beam) is
an eigenstate of the linear momentum |k〉 with energy Ek = |k|2/2m where m is the
mass of the particle. In potential scattering we also look for transitions to final states
with definite energy as well.

With this in mind, let φ(t0) represent a beam with sharp momentum around k,
density ρ, and energy Ek. Let the final state have the sharp energy Ep. Our bunch
formula (3.4) will give the transitions rate

nξ = 2N

�
Im

(
1

N

∑

i

〈φi (t0)|B(t0)|φi (t0)〉
)

= 2N

�

ρ(2π�)3

N
Im 〈kβ0|B(t0)|kβ0〉

= 16π3
�
2 ρ Im 〈kβ0|B(t0)|kβ0〉

= 16π3
�
2 ρ Im 〈kβ0|�(+)†|ξ(t0)〉〈ξ(t0)|V�(+)|kβ0〉

= 16π3
�
2 ρ Im

[
〈ξ(t0)|�(+)|kβ0〉∗〈ξ(t0)|V�(+)|kβ0〉

]
.

It should be noted that there is t0 dependence of φ(t0). Strictly speaking we should
write 〈kβ0, t0| and |kβ0, t0〉, butweomit it to simplifywriting. It should be understood
in the formulas above and below.

Now, we first calculate 〈ξ(t0)|�(+)|kβ0〉 using the integral equation (3.19). Since
both |kβ0〉 and ξ are free states at t = t0 with energies Ek and E f respectively, and
they are chosen to be orthogonal, the first term in the integral equation, the identity
term corresponding to ‘no scattering’, does not contribute. Therefore,

〈ξ(t0)|�(+)|kβ0〉 = 1

i�

∫ t0

−∞
〈ξ(t0)|U0(t − t0)

−1V�(+)U0(t − t0)|kβ0〉dt

= 1

i�

(∫ t0

−∞
ei(E f −Ek)(t−t0)/�dt

)
〈ξ(t0)|V�(+)|kβ0〉

= lim
ε→0

1

Ek − E f + iε
〈ξ(t0)|V�(+)|kβ0〉,

where we have added an infinitesimal quantity −iε to E f − Ek in the exponential to
make the singular integral convergent. Plugging the complex conjugate of this back
this into our formula for nξ we obtain

nξ = 16π3
�
2 ρ Im

[
lim
ε→0

1

Ek − E f − iε

]
|〈ξ(t0)|V�(+)|kβ0〉|2.
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Since we have chosen ξ to be an energy eigenstate, there is really no dependence of
this transition rate on t0, because the phase factors occur inside the modulus square.
From the well known formula

1

x − iε
= P

(
1

x

)
+ iπδ(x) (3.26)

we calculate the imaginary part and get

nξ = 16π4
�
2 ρ δ(Ek − E f )|T (ξ,φ)|2, (3.27)

where we have introduced the transition amplitude

T (ξ,φ) = 〈ξ(t0)|V�(+)|kβ0〉. (3.28)

We choose the final states |ξ(t0)〉 = |p, γ〉 into which transitions are taking place to
lie in a narrow range� ofmomentum spacep and sumover the number of transitions.

|ξ(t0)〉 = |p, γ〉, Ep = |p|2/2m, d3p = m|p|dEpd�p,

∫

�

d3p nξ = 16π4
�
2 ρm|k|

∫

�

|T (p, γ;k,β0)|2d�p. (3.29)

The number of transitions per unit time is proportional to flux, that is density ×
velocity: ρ|k|/m. The cross section σ� is defined as the ratio of number of transitions
in the desired final states (here those in momentum range �) to the initial flux.
Therefore,

σ� = 16π4
�
2m2

∫

�

|T (p, γ;k,β0)|2d�p (3.30)

It is well worth checking the physical dimensions of the cross section as of
an area. Since the momentum eigenstates are normalized as 〈p|p′〉 = δ3(p − p′),
the scattering amplitude T being a matrix element of V�(+) has dimensions of
(energy)×(momentum)−3.

The importance of the integral equation (3.19) is that it can be used to calculate
�(+) by iteration if we can regard the interaction term V as small. To the lowest order,
the Born approximation, �(+)

0 is the identity, and therefore the transition amplitude

T (ξ,φ)

∣∣∣
Born

= 〈pγ|V |kβ0〉. (3.31)

As an exercise one can check that for a central potential V = V (r),

〈k|V |k′〉 = 2

(2π�)2�

∫ ∞

0
r2drV (r)

sin(Kr)

Kr
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where K = |k − k′|/�. With this the differential cross section can be written in the
standard form:

dσ =
∣∣∣∣
2m

�2

∫ ∞

0
r2drV (r)

sin(Kr)

Kr

∣∣∣∣

2

d�k′ . (3.32)

We calculate the Rutherford scattering by a Coulomb potential that is

V (r) = C

r
. (3.33)

The integral in question is singular. We “screen” the Coulomb potential replacing
C/r by C exp(−εr)/r with the understanding that ε → 0. Then

∫ ∞

0
dre−εr sin(Kr) = lim

ε→0

K

ε2 + K 2
= 1

K
,

and the cross section formula is the familiar

dσ

d�
=

(
C

4E

)2 1

sin4(θ/2)
, (3.34)

where K 2
�
2 = |k − k′|2 = 4k2 sin2(θ/2), θ is the angle between k and k′, and E is

the energy E = k2/2m.

3.4.2 Colliding Non-relativistic Beams

A beam of particles collides with a bunch of more or less stationary particles called
the target. This is when we say the scattering in taking place in a ‘lab frame’. We can
also have the situation when the incident beam collides with another beam.

The free momentum states basis in this case can be chosen to be normalized as

〈p1β1,p2β2|p′
1β

′
1,p

′
2β

′
2〉 = δ3(p1 − p′

1)δβ1β
′
1
δ3(p2 − p′

2)δβ2β
′
2
,

where the subscript 1 refers to beam particles and 2 to target particles (or particles
of the other beam). For the sake of clarity, we call the particles of the second beam
as target.

The quantity whose expectation value is to bemeasured on these bunches is B.We
assume that B conserves, that is, commutes with, total linear momentum. Therefore,
defining a reduced quantity b, write

〈p1β1,p2β2|B|p′
1β

′
1,p

′
2β

′
2〉 = δ3(p1 + p2 − p′

1 − p′
2) ×

b(p1β1,p2β2;p′
1β

′
1,p

′
2β

′
2).
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The average value over the colliding bunch is,

〈B〉 = 1

N1N2

∑

i, j

〈φ1iφ2 j |B|φ1iφ2 j 〉

= ρ1ρ2

N1N2

∫
d3r1

∫
d3r2

∫
d3p1

∫
d3p2

∫
d3p′

1

∫
d3p′

2

exp[i(p1 − p′
1) · r1/�] exp[i(p2 − p′

2) · r2/�] ×
f1(p1)∗ f1(p′

1) f2(p2)
∗ f2(p′

2) ×
δ3(p1 + p2 − p′

1 − p′
2)b(p1γ1,p2γ2;p′

1γ1,p
′
2γ2).

Now integration over r1 gives (2π�)3δ3(p1 − p′
1) which removes integration on p′

1.
However, the momentum conserving delta function then becomes δ3(p2 − p′

2). Thus
p′
2 integration can be done. Therefore the r2 integration is vacuous and ρ2

∫
d3r2 =

N2, which cancels with the 1/N2 outside the integral signs.
Due to assumed sharp peaks in f1 and f2 at k1 and k2 respectively, and assuming

the absence of sharp peak at these values in b, we get

〈B〉 = ρ1(2π�)3

N1
b(k1γ1,k2γ2;k1γ1,k2γ2). (3.35)

We are now ready to define cross section for colliding beams, or, as explained above,
beam on target. Two beams with sharp values of momenta k1 and k2 respectively
and other quantum numbers γ1, γ2 respectively collide and scatter. We are interested
in the final states with projection operators

Pξ = |ξ1ξ2〉〈ξ1ξ2| =
∫

�

d3k′
1

∫
d3k′

2|k′
1γ

′
1,k

′
2γ

′
2〉〈k′

1γ
′
1,k

′
2γ

′
2|.

The number of particles making a transition into these final states is

nξ1ξ2 = 2N1N2

�
Im〈B〉,

with B as before given by

B = �(+)†PξV�(+).

The number becomes, using (3.35),

nξ1ξ2 = ρ1N2(2π�)3
2

�
Im b(k1γ1,k2γ2;k1γ1,k2γ2)

where b is defined by (K = k1 + k2, etc.)
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〈k1γ1,k2γ2|B|k′′
1γ1,k

′′
2γ2〉 = δ3(K − K′′)b(k1γ1,k2γ2;k′′

1γ1,k
′′
2γ2).

To calculate this we begin with the general expression

〈k1γ1,k2γ2|�(+)†PξV�(+)|k′′
1γ1,k

′′
2γ2〉

and put k′′
1 = k1,k′′

2 = k2 at the end. Use the (3.19) to write matrix element of �(+)†

in terms of complex conjugate of that of V�(+). There are twomomentumconserving
delta functions, we can integrate over one by changing to variables

∫

�

d3k′
1

∫
d3k′

2 =
∫

�

d3K′
∫

d3k′

where K′ = k′
1 + k′

2 is the total momentum and k′ = (m1k′
2 − m2k′

1)/(m1 + m2)

the relative momentum. For free states the energies are

Ek1k2 = |k1|2
2m1

+ |k2|2
2m2

= |K|2
2M

+ |k|2
2μ

≡ EK + ek = EKk

with M = m1 + m2 as the total mass and μ = m1m2/(m1 + m2) the reduced mass.
We get, separating into total and relative momenta,

〈p1β1,p2β2|V�(+)|p′
1β

′
1,p

′
2β

′
2〉 ≡ δ3(P − P′)T (pβ1β2,p′β′

1β
′
2;P).

Therefore,

〈k1γ1,k2γ2|�(+)†PξV�(+)k′′
1γ1,k

′′
2γ2〉 = δ3(K − K′′) ×

T (k′γ′
1γ

′
2,kγ1γ2;K)∗ × T (k′γ′

1γ
′
2,k

′′γ1γ2;K′) ×
(EKk − EK′k′ − iε)−1.

This defines b in which we put k′′ = k. We can then take the imaginary part, which
gives,

nξ1ξ2 = ρ1N2(2π�)3
2π

�
×

∫

�

d3k′δ(EKk − EK′k′)|T (k′γ′
1γ

′
2,kγ1γ2;K)|2.

Because of K = K′ the energy corresponding to total momentum is already equal,
so EKk − EK′k′ = ek − ek′ . As, in the case of potential scattering, we change

d3k = |k|2d|k|d�k = μ|k|dekd�k
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this gives us the formula for cross section which is now defined as rate of tran-
sitions per target particle, that is a division by N2. The flux is now given by
ρ1 × relative velocity = ρ1|k|/μ. We get

dσ = (2π)4μ2
�
2|T (k′γ′

1γ
′
2,kγ1γ2;K)|2d�′

k (3.36)

This is the same formula as the one for the cross section in scattering by a fixed
potential, with relative momentum |k| = |k′| for the particle momentum and the
reduced mass in place of particle mass. In the center of mass frame, we must put
K = 0.

3.4.3 Relativistic Scattering

Relativistic scattering differs from non-relativistic scattering in following respects.
The process of scattering involves creation or annihilation of particles. Therefore
the time evolution operator generators H0 or H are defined on a much larger Hilbert
space, the Fock space.

Relativistic one-particle states are given as momentum space wave functions in
the basis |pλ〉 with normalization

〈pλ|p′λ′〉 = 2ωpδ
3(p − p′)δλλ′

where ωp = √
p2 + m2c2.

Multi-particle states are defined by tensor products but have to be properly sym-
metrized (or anti-symmetrized) over identical particles.

We consider two colliding beams with momenta sharply defined around p1 and
p2 and spins σ1 and σ2 respectively.

The final state projection operator is taken as

Pξ =
∑

{λ}

∫
d3k1
2ωk1

· · · d
3kn

2ωkn
|k1λ1 . . . knλn〉〈k1λ1 . . . knλn|.

The argument for non-relativistic colliding beams can be repeated almost step by
step except that the total momentum delta function is not integrated and the transition
amplitude matrix is defined by

〈k1λ1 . . . knλn|S|p1σ1p2σ2〉 = 〈k1λ1 . . . knλn|p1σ1p2σ2〉
− 2πi

c
δ4(Pf − Pi ) M(k1λ1 . . . knλn;p1σ1p2σ2).

Here Pf and Pi are, respectively, the total 4-momenta of the final and the initial states,
and a factor 1/c appears because, in our notation, the 0-component of 4-momentum
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has the physical dimension of momentum, whereas the S-matrix contains a factor
δ(E f − Ei ). This amplitudeM (with two initial particles,n final particles, allwith rel-
ativistic normalization) has the physical dimensions of (velocity)×(momentum)2−n .

The cross section can be calculated as (see Problem 3.3 below in Sect. 3.6):

σ = (2π)4

2ωp12ωp2

�
2

(vrelc)

∑

{λ}

∫
d3k1
2ωk1

· · · d
3kn

2ωkn
δ4(Pf − Pi ) ×

|M(k1λ1 . . . knλn;p1σ1p2σ2)|2 (3.37)

where the relative velocity of particles in one beam relative to those in the other is
given by

vrel = c

∣∣∣∣
p1
ωp1

− p2
ωp2

∣∣∣∣ .

3.5 Comments on Formulas of Sect. 3.2.3

3.5.1 Moller Operators

1. Although U (t − t0)−1U0(t − t0) are unitary for all finite t their limits �(±) as
t → ±∞ may not be. For every scattering state there is a free state, but, there
are, for example, bound states which do not go over to free states in remote past
or future. Therefore the mappings �(±) are not one-to-one and invertible as they
should be if they were unitary.

2. �(±) are norm preserving operators:

‖�(+)φ‖ = ‖φ‖, and (3.38)

‖�(−)φ‖ = ‖φ‖ ∀φ ∈ H (3.39)

because they are the limits of norm preserving operators. Thus we can write

�(±)†�(±) = 1. (3.40)

3. �(±) are independent of time. This is because the limit t → ±∞ remains the
same even if the origin of t is changed by a finite constant.

4. �(±)† annihilates bound states:

�(±)†�bd = 0.

This can be seen as follows. Let φ be any free state and � = �(+)φ the corre-
sponding scattering state. All scattering states are orthogonal to the bound states.
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So, (�,�bd) = 0, and therefore (φ,�(+)†�bd) = 0 for any φ ∈ H. Similarly for
�(−)†.

5. As �(±)�(±)†�bd = 0 for all bound states, the operator is a projection on to the
subspace orthogonal to the space of bound states. Thus

�(±)�(±)† = 1 − Pbd = Pscatt

where the operators Pscatt and Pbd are projection operators on the subspaces of
scattering and bound states respectively.

6. For any fixed t ,

U (t)�(±) = lim
s→∓∞U (t)U (s)−1U0(s)

= lim
s→∓∞U (t − s)U0(s − t)U0(t)

= lim
u→∓∞U (u)−1U0(u)U0(t), u = t − s

= �(±)U0(t). (3.41)

Differentiating with respect to t and putting t = 0 gives another useful result,

H�(±) = �(±)H0, (3.42)

and its adjoint equation,

�(±)†H = H0�
(±)†.

Physically, this equation means that the energy spectrum of free particle states is
contained in the spectrum of the total Hamiltonian: if φE is an eigenstate of H0

with energy E ,�(±)φE is an eigenstate of H with the same eigenvalue.One should
appreciate that energy eigenvectors of H0 and H may have the same labels, but
those of H0 span the whole space H whereas those of H span only the subspace
of scattering states.

3.5.2 S-Matrix

S is unitary.

SS† = �(−)†�(+)�(+)†�(−) = �(−)†(1 − Pbd)�
(−) = 1

because �(−)†Pbd = 0. Similarly, S†S = 1.
S commutes with the free hamiltonian H0: using (3.15) and (3.16)
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SH0 = �(−)†�(+)H0 = �(−)†H�(+) = H0�
(−)†�(+) = H0S.

The S-matrix may not commute with the total Hamiltonian H .

3.5.3 Integral Equations

1. Define V ≡ H − H0, then

�(+) = 1 + 1

i�

∫ 0

−∞
U0(t)

−1V�(+)U0(t)dt. (3.43)

2. Similarly,

S = 1 + 1

i�

∫ ∞

−∞
U0(t)

−1V�(+)U0(t)dt. (3.44)

As U0(t) is the free evolution operator, it is supposed to be known, and if V can be
considered as small, the first equation (called the Lippmann–Schwinger equation)
provides a way to calculate �(+) by iteration. For example, the zero order approx-
imation to �(+) (for V = 0) is �

(+)
0 = 1, and the first order, called the ‘first Born

approximation’ is, by substituting �
(+)
0 on the right hand side,

�
(+)
1 = 1 + 1

i�

∫ 0

−∞
U0(t)

−1VU0(t)dt . (3.45)

Once �(+) is known, S can be calculated from the second equation above.

Proof for the Integral Equations

Start from the trivial identity

∫ 0

−∞
d

dt
[U (t)−1U0(t)]dt = 1 − �(+).

Inside the integral sign differentiation (using i�dU/dt = HU and i�dU0/dt =
H0U0) gives

�(+) = 1 + 1

i�

∫ 0

−∞
U (t)−1VU0(t)dt.

The adjoint of this equation is

�(+)† = 1 − 1

i�

∫ 0

−∞
U0(t)

−1VU (t)dt. (3.46)
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Similarly,

�(−)† = 1 − 1

i�

∫ ∞

0
U0(t)

−1VU (t)dt. (3.47)

Multiply (3.46) by �(+) on the right and use �(+)†�(+) = 1 to get

�(+) = 1 + 1

i�

∫ 0

−∞
U0(t)

−1VU (t)�(+)dt. (3.48)

This can be written in the desired form by using (3.14):

�(+) = 1 + 1

i�

∫ 0

−∞
U0(t)

−1V�(+)U0(t)dt. (3.49)

Next, from (3.46) and (3.47),

�(+)† − �(−)† = − 1

i�

∫ ∞

−∞
U0(t)

−1VU (t)dt, (3.50)

Multiply on the right by �(+) to get (again using (3.14)),

S = �(−)†�(+) = 1 + 1

i�

∫ ∞

−∞
U0(t)

−1V�(+)U0(t)dt. (3.51)

3.5.4 �(+) and S in Energy Basis

Let |Eα〉 be eigenvectors of H0 with normalization

H0|Eα〉 = E |Eα〉 〈Eα|E ′α′〉 = δ(E − E ′)δαα′

where α are observables other than energy needed to from a complete set of com-
muting observables. Sandwich the integral equation (3.19) in these states, and as

U0(t)|Eα〉 = exp(−i Et/�)|Eα〉,

we obtain,

〈Eα|�(+)|E ′α′〉 = δ(E − E ′)δαα′ + 〈Eα|V�(+)|E ′α′〉
E ′ − E + iε

, (3.52)

where we interpret the singular integral
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∫ 0

−∞
exp[i(E − E ′)t/�]dt = lim

ε→0

∫ 0

−∞
exp[i(E − E ′ − iε)t/�]dt

= lim
ε→0

i�

E ′ − E + iε
.

The sign of iε is chosen to make the integral convergent. Similarly, the equation for
the S-matrix (3.20) can be written

〈Eα|S|E ′α′〉 = δ(E − E ′)δαα′ − 2πiδ(E − E ′)〈Eα|V�(+)|E ′α′〉
≡ δ(E − E ′)δαα′ − 2πiδ(E − E ′)T (Eα, E ′α′). (3.53)

The quantity T (Eα, E ′α′) ≡ 〈Eα|V�(+)|E ′α′〉 occurs very frequently in scattering
theory and is called the off-shell transition amplitude or the off-shell T-matrix. But the
transition amplitude in the equation above occurs with the energy conserving delta
function and is actually the on-shell transition amplitude or T-matrix TE (α,α′) ≡
T (Eα, Eα′).

3.6 Problems

Problem 3.1 Define the Green’s function

GE = 1

i�

∫ 0

−∞
dt exp[i(H0 − E)t/�].

Show that in the coordinate basis |r〉 of a non-relativistic particle of mass m

〈r|GE |r′〉 = − m

2π�2

exp(i pR/�)

R
, p = +√

2mE, R = |r − r′|.

Problem 3.2 Most textbooks discuss non-relativistic potential scattering by assum-
ing the ‘Sommerfeld radiation condition’ in the asymptotic region. That is, for an
incoming beam represented by A exp(ikz), the wave function of the scattered ‘wave’
is assumed to have the form

A

(
eikz + f (θ)

eikr

r

)
, kr → ∞.

Justify this expression from the formal scattering theory.

Hint: The incoming state (at t = 0) φE (0) is an eigenstate of energy with E =
k2�2/2m. Since H�(+) = �(+)H0 (see (3.42)), the scattering state �E (0) = �(+)

φE (0) is also an eigenstate of energywith the same value. Therefore, from the integral
equation for �(+) (3.48),
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�E (0) = φE (0) + 1

i�

∫ 0

−∞
exp(i H0t/�)V exp(−i Et/�)�E (0)

= φE (0) + GEV�E (0),

where GE is as defined in the previous problem. Multiply on the left by 〈r|, use the
result of the previous problem, and the fact that V (r′) is non-zero only in a small
region.

Problem 3.3 Complete the steps for derivation of the relativistic cross-section for-
mula (3.37): (We have omitted the spin variablesσ1,σ2 in the initial state |p1σ1p2σ2〉.
They play no role in the derivation and can be restored in the end.)

σ = (2π)4

2ωp12ωp2

�
2

(vrelc)

∑

{λ}

∫
d3k1
2ωk1

· · · d
3kn

2ωkn
δ4(Pf − Pi ) |M(k1λ1 . . . knλn;p1p2)|2

where we define the relativistic transition matrix M as

〈k1λ1 . . . knλn|V�(+)|p1p2〉 = δ3(P f − p1 − p2)M(k1λ1 . . . knλn;p1p2),

or, equivalently, from

〈 f |S|i〉 = 〈 f |i〉 − 2πi

c
δ4(Pf − Pi ) 〈 f |M |i〉.

Outline of solution: Let |ξ〉 be the final state and |φ1φ2〉 the two-particle initial state.
The number of transitions per unit time for two bunches of size N1 and N2 is given
by

nξ = N1N2
2

�
Im〈φ1φ2|B|φ1φ2〉, B = �(+)†|ξ〉〈ξ|V�(+).

The average over the bunches is

〈φ1φ2|B|φ1φ2〉 = 1

N1N2

∑

i, j

〈φ1iφ2 j |B|φ1iφ2 j 〉,

where |φ1i 〉 are spatially displaced by ri and |φ2 j 〉 by r j . Substituting the wave
functions

〈φ1φ2|B|φ1φ2〉 = 1

N1N2

∑

i, j

∫
d3p′

1

2ωp′
1

∫
d3p′

2

2ωp′
2

∫
d3p1
2ωp1

∫
d3p2
2ωp2

exp(i(p′
1 − p1) · ri ) exp(i(p′

2 − p2) · r j ) ×
f ∗
1 (p′

1) f1(p1) f
∗
2 (p′

2) f2(p2) 〈p′
1p

′
2|B|p1p2〉 (3.54)
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We first calculate

〈p′
1p

′
2|B|p1p2〉 = 〈p′

1p
′
2|�(+)†|ξ〉〈ξ|V�(+)|p1p2〉

= (〈ξ|�(+)|p′
1p

′
2〉)∗〈ξ|V�(+)|p1p2〉.

We have seen from the integral equation for �(+) that (as 〈ξ|p′
1p

′
2〉 = 0)

〈ξ|�(+)|p′
1p

′
2〉 = 〈ξ|V�(+)|p′

1p
′
2〉

E ′ − Eξ + iε
, E ′ = Ep′

1
+ Ep′

2
.

Since total linear momentum is conserved,

〈ξ|V�(+)|p1p2〉 = δ3(Pξ − p1 − p2)M(ξ,p1p2).

Therefore,

〈p′
1p

′
2|B|p1p2〉 = δ3(Pξ − p1 − p2)δ3(Pξ − p′

1 − p′
2) ×

1

E ′ − Eξ − iε
M(ξ,p′

1p
′
2)

∗M(ξ,p1p2).

The two delta factors above can also be written as

δ3(Pξ − p1 − p2)δ3(Pξ − p′
1 − p′

2) = δ3(Pξ − p1 − p2)δ3(p1 + p2 − p′
1 − p′

2)

Substitute this in (3.54) and (1) convert sums over i and j as ρ1
∫
d3r1 and ρ2

∫
d3r2

respectively; (2) integration over r1 produces (2π�)3δ(p′
1 − p1)which allows integral

over p′
1 to be performed; (3) since p′

1 = p1, the delta functions in 〈B〉 make a δ(p′
2 −

p2) so that integral over p′
2 can be performed; (4) the r2 integration is vacuous and

ρ2
∫
d3r2 = N2 which cancels the 1/N2 factor outside. Thus (3.54) becomes (recall

the derivation for the non-relativistic case)

〈φ1φ2|B|φ1φ2〉 = ρ1

N1

1

2ωp12ωp2

(2π�)3

E − Eξ − iε
δ3(Pξ − p1 − p2)|M(ξ,p1p2)|2.

This can be substituted in the formula for nξ . The −iε in the denominator gives
the imaginary part of the factor as energy delta function times π by (3.26), and the
N2 factor can be omitted if we are calculating cross-section per target particle. The
connection of M as a matrix element of V�(+) related to the S-matrix is easily seen
from the integral equation for S.

Problem 3.4 (Relativistic decay rate) The decay rate, of a relativistic particle of
rest-mass m is defined as the fraction of particles making a transition per unit time
from initial state |k0〉 to final states |ξ〉 = |k1λ1 . . . knλn〉. Show that it is given by
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1

τ
= 2π

�

1

2ωk

1

c

∫
d3k1
2ωk1

· · · d
3kn

2ωkn
δ4(Pf − Pi ) |M(k1λ1 . . . knλn;k0)|2, (3.55)

where Pi is the initial 4-momentum vector (ωk0 ,k0) and Pf the total 4-momentum
of the final state.
Hint: In this case there is no need to consider the bunch. The average of B in the
initial state |φ〉 is

〈φ|B|φ〉 =
∫

d3k′

2ωk′

∫
d3k
2ωk

f ∗(k′) f (k) 〈k′|B|k〉,

and, calling the final state as ξ,

〈k′|B|k〉 = δ3(pξ − k)δ3(pξ − k′)
M(ξ;k′)∗M(ξ;k)

E ′ − Eξ − iε
.

The integral on k′ can be done, which puts k′ = k, and as f (k) is peaked around k0,
the matrix elements (including the delta function!) can be pulled out at value k0. So,

nξ = N
2

�
Im 〈φ|B|φ〉

= N
2π

�

1

2ωk0

1

c
δ4(Pξ − Pi )|M(ξ;k0)|2.

Divide by N to get the fraction and integrate over the final states to get the decay rate
formula. Usually, the particle decays in its rest frame where k0 = 0 and ωk0 = mc.

The physical dimensions of M(k1λ1 . . . knλn;k0) is (energy)×(momentum)2−n .

3.7 Notes and References

The probability interpretation of quantum mechanics was first given by Born [1]
in connection with scattering theory. The idea of ‘coherent bunches’ relating actual
number densities of particles to matrix elements of sharp momentum eigenstates has
been used by the present author in classroom teaching. The formal scattering theory
given here closely follows the treatment in Newton’s book [2].

References

1. M. Born, Z. Phys. 38, 803 (1926), an English translation appears in G. Ludwig (ed.), Wave
Mechanics (Pergamon Press, Oxford, 1968)

2. R.G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966)



Chapter 4
Star-Product Formulation of Quantum
Mechanics

Star-product, ( f ∗ g)(q, p) of two functions f (q, p) and g(q, p) on the phase space is a
non-commutative product corresponding to the Hilbert space product f̂ ĝ of operators f̂ and
ĝ. The quantum theory can be developed in analogy with the classical mechanics on the
phase space, not with a Poisson bracket, but with a Moyal bracket ( f ∗ g − g ∗ f )/ i�. This
formulation is also called the deformation theory of quantization.

4.1 Weyl Ordering and the Star-Product

Quantization is the process of arriving at a quantum theory starting from a classical
theory by a set of rules. The usual procedure of assigning to phase space canonical
variables q and p the Hermitian operators q̂ and p̂ in a Hilbert space runs into
‘ordering problems’ when we seek to define observables other than the simplest ones
because operators do not commute. For example, how is q2 p2 to be quantized? If we
take q̂2 p̂2 as the corresponding operator, it is not Hermitian. There are many choices
even for a Hermitian operator: (q̂2 p̂2 + p̂2q̂2)/2 or q̂ p̂2q̂ or (q̂ p̂q̂ p̂ + p̂q̂ p̂q̂)/2 etc.
As part of our quantization procedurewemust also provide (at least for the physically
relevant observables) a rule for defining ordering of operators when converting a
classical phase space quantity into its quantum mechanical counterpart.

One of the oldest ordering rule is due toWeyl. It is simple to state: Let the classical
quantity f (q, p) to be quantized be written as a Fourier transform

f (q, p) =
∫

du dv exp[i(uq + vp)/�] ∼
f (u, v).

The operator f̂ to be associated with f (q, p) by this rule is obtained by this same
formula replacing classical q and p by q̂ and p̂ respectively on the right hand side
in the exponential:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
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f̂ =
∫

du dv exp[i(uq̂ + v p̂)/�] ∼
f (u, v). (4.1)

We note down here the inverse formula which expresses the phase space function
f (q, p) given the operator f̂ :

f (q, p) =
∫

dx exp(i px/�)〈q − x/2| f̂ |q + x/2〉. (4.2)

We will prove this formula in Sect. 4.4 below.

Note: Throughout this chapter we stick to one degree of freedom for writing formulas.
The generalization to many degrees of freedom is straightforward.

Exercise 4.1 Show that if f (q, p) is real then f̂ as defined above will be Hermitian.

We can now ask the natural question: if f̂ corresponds to f (q, p) under Weyl
ordering, and ĝ to g(q, p), is there a function, which under the Weyl rule, will cor-
respond to the product f̂ ĝ?

f (q, p) −→ f̂
g(q, p) −→ ĝ

?? −→ f̂ ĝ

The answer is yes, and the function on phase space is written as ( f ∗ g)(q, p) given
by

( f ∗ g)(q, p) = f (q, p) exp

[
i�

2

↔
P

]
g(q, p) (4.3)

where
↔
P is the Poisson bracket bi-differential operator

↔
P =

←
∂

∂q

→
∂

∂ p
−

←
∂

∂ p

→
∂

∂q
(4.4)

the arrows indicating the direction in which the differential operators act. Thus,

f (q, p)(
↔
P)ng(q, p) =

n∑
r=0

n!
r !(n − r)! (−1)n−r ∂n f

∂qr∂ pn−r

∂ng

∂ pr∂qn−r

and so,

( f ∗ g)(q, p) =
∞∑

r,s=0

(
i�

2

)r+s
(−1)s

r !s!
∂r+s f

∂qr∂ ps
∂r+sg

∂ pr∂qs
. (4.5)
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It is clear that this ‘star-product’ of f and g is not commutative f ∗ g 
= g ∗
f unless f̂ and ĝ commute. And f ∗ g may not be real because f̂ ĝ may not be
Hermitian.

But the star-product is associative, f ∗ (g ∗ h) = ( f ∗ g) ∗ h because the product
of operators f̂ , ĝ, ĥ etc. is associative. A direct proof is still required, but we omit it
here. See references at the end of this chapter.

4.2 Derivation for Star-Product Expression

The product f̂ ĝ

f̂ ĝ =
∫

du dv du′ dv′ exp[i(uq̂ + v p̂)/�] exp[i(u′q̂ + v′ p̂)/�] ∼
f (u, v)

∼
g (u′, v′)

has two operator exponentials. But the commutator of the exponents is a c-number,
commuting with all operators. Using the identity

exp( Â) exp(B̂) = exp( Â + B̂) exp([ Â, B̂]/2) (4.6)

which holds when [ Â, B̂] commutes with both Â and B̂, we obtain therefore

f̂ ĝ =
∫

du dv du′ dv′ exp[i((u + u′)q̂ + (v + v′) p̂)/�]

× exp[−i(uv′ − vu′)/2�] ∼
f (u, v)

∼
g (u′, v′). (4.7)

This looks like theWeyl ordering of some phase space function whose Fourier trans-
form goes with variables (u + u′) and (v + v′) and an extra factor of exp[−i(uv′ −
vu′)/2�]. Instead of changing to those variables we use a trick that simplifies things
enormously. We start with the ordinary product of f (q, p) and g(q ′, p′) at two dif-
ferent points:

f (q, p)g(q ′, p′) =
∫

du dv du′ dv′ exp[i(uq + vp + u′q ′ + v′ p′)/�]

× ∼
f (u, v)

∼
g (u′, v′).

A differential operator like

(
∂

∂q

∂

∂ p′ − ∂

∂ p

∂

∂q ′

)

produces a factor −(uv′ − vu′)/�2 inside the integral sign when acting on f (q, p)g
(q ′, p′). If we then put q = q ′ and p = p′ then
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i�

2

(
∂

∂q

∂

∂ p′ − ∂

∂ p

∂

∂q ′

)
f (q, p)g(q ′, p′)

∣∣∣∣
q=q ′,p=p′

=
∫

du dv du′ dv′ exp[i((u + u′)q + (v + v′)p)/�]

×[−i(uv′ − vu′)/2�] ∼
f (u, v)

∼
g (u′, v′).

We can apply repeated powers of this operator as in an exponential and get

exp

[
i�

2

(
∂

∂q

∂

∂ p′ − ∂

∂ p

∂

∂q ′

)]
f (q, p)g(q ′, p′)

∣∣∣∣
q=q ′,p=p′

=
∫

du dv du′ dv′ exp[i((u + u′)q + (v + v′)p)/�]

× exp[−i(uv′ − vu′)/2�] ∼
f (u, v)

∼
g (u′, v′).

Comparing it with (4.7) above, we see that the left hand side is what we have defined
as ( f ∗ g)(q, p) because converting q and p on the right hand side into q̂ and p̂ we
get precisely f̂ ĝ. This completes the proof for the expression for the star product.

4.3 Wigner Distribution Function

Dynamics, whether classical or quantum mechanical, requires three things: specifi-
cation of state, specification of observables, and equations of motion. We have seen
the correspondence between the observables on the phase space and the Hermitian
(or self-adjoint) operators on Hilbert space through the Weyl ordering. What can we
say about specification of states?

In classical mechanics the variables (q, p) play a double role: they are both coor-
dinates on the phase space as well as, like other observables, functions on it. Strictly
speaking, it is not functions q, p that specify the state, rather it is their specific values
that identify the state. This is clarified if we define the classical state by a distribution
function. For example

ρcl(q, p) = δ(q − q0)δ(p − p0)

is the state corresponding to the phase space point with coordinates (q0, p0). In a
general case the distribution function may not be a sharp Dirac delta function, but
a probability distribution ρ(q, p), positive definite and giving unity when integrated
over the whole phase space. Dynamics will determine trajectories t → (q(t), p(t))
for all the points of the phase space, leading to evolution of the probability distribution
ρ(q, p).

For quantum theory we represent the state by a unit vector ψ in the Hilbert space
of the system. But as we discussed earlier, it is the unit raywhich determines the state,
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all vectors in the ray being equally qualified to represent the same physical state. A
better way to represent the state is to use the projection operator ρ̂ψ = |ψ〉〈ψ|.

We therefore look for a phase-space function ρψ(q, p) which under the Weyl
ordering will produce ρ̂ψ:

ρ̂ψ = |ψ〉〈ψ| =
∫

du dv exp[i(uq̂ + v p̂)/�] ∼
ρ (u, v)

=
∫

du dv exp[iuq̂/�] exp[iv p̂/�] exp[iuv/2�] ∼
ρ (u, v),

where in the second step we have separated the exponents using the identity (4.6).

Once we identify
∼
ρ (u, v) we can construct the phase space function ρψ(q, p). Let

|q ′〉 etc. be the eigenstates of q̂ . By taking matrix element with these eigenstates

ψ(q ′)ψ∗(q ′′) =
∫

du dv exp[iuv/2�] exp[iuq ′/�] 〈q ′| exp[iv p̂/�]|q ′′〉 ∼
ρ (u, v).

As

〈q ′| exp[iv p̂/�]|q ′′〉 = δ(v + q ′ − q ′′)

we get

ψ(q ′)ψ∗(q ′′) =
∫

du exp[iu(q ′ + q ′′)/2�] ∼
ρ (u, q ′′ − q ′).

We can choose variables Q = (q ′ + q ′′)/2 and x = q ′′ − q ′ and invert the Fourier

transform to obtain
∼
ρ and from there

ρψ(q, p) =
∫

dx exp(i xp/�)ψ(q − x/2)ψ∗(q + x/2). (4.8)

The function ρψ(q, p) on phase space is called the Wigner distribution function.
The Wigner distribution function when integrated over the whole phase space

(with a suitable factor) gives unity:

∫
dq dp

(2π�)
ρψ(q, p) =

∫
dq dp

2π�

∫
dx exp(i xp/�)ψ(q − x/2)ψ∗(q + x/2)

=
∫

dq|ψ(q)|2

= 1. (4.9)
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Exercise 4.2 The function ρψ(q, p) can be interpreted as a ‘quasi probability’ den-
sity on the phase space with marginal probabilities for q and p equal to |〈q|ψ〉|2 and
|〈p|ψ〉|2 respectively:

∫
dp

(2π�)
ρψ(q, p) = |〈q|ψ〉|2,

∫
dq

(2π�)
ρψ(q, p) = |〈p|ψ〉|2.

As we shall see in Sect. 4.5 below, Wigner distributions for two normalized states
φ and ψ allow us to calculate the transition probability

|〈φ|ψ〉|2 = Tr(|φ〉〈φ| |ψ〉〈ψ|) =
∫

dq dp

(2π�)
ρφ(q, p)ρψ(q, p). (4.10)

This, incidentally, also shows that ρψ(q, p) (for any ψ) cannot be a true positive-
definite probability distribution, because if φ and ψ are orthogonal, the left hand side
will be zero. It can be proved that the Wigner function is positive definite only for
Gaussian wave functions.

Exercise 4.3 Calculate the Wigner function for the ground state ψ0 and for the first
level ψ1 of a one-dimensional harmonic oscillator. Estimate the area of phase space
where ρψ1(q, p) is negative.

4.4 Trace of f̂

Let f̂ be an observable with the corresponding phase space function f (q, p). We
show that the trace, (which is actually independent of the basis in which it is taken,
but here we choose |q ′〉 for simplicity), is equal to the integral of f (q, p) over the
phase space:

Tr f̂ =
∫

dq ′〈q ′| f̂ |q ′〉 =
∫

dq dp

(2π�)
f (q, p). (4.11)

The matrix element of f̂ as given by (4.1) is

〈q ′| f̂ |q ′′〉 =
∫

du dv〈q ′| exp[i(uq̂ + v p̂)/�]|q ′′〉 ∼
f (u, v),

=
∫

du exp[iu(q ′ + q ′′)/2�] ∼
f (u, q ′′ − q ′),

where we have taken exactly the same steps as in calculating the matrix elements of
|ψ〉〈ψ| for theWigner distribution. Substituting the expression for the inverse Fourier
transform
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∼
f (u, q ′′ − q ′) =

∫
dq dp

2π�
exp[−iuq/� − i(q ′′ − q ′)p/�] f (q, p)

in the above equation and integrating over u,

〈q ′| f̂ |q ′′〉 =
∫

dq dp

(2π�)
δ

(
q − q ′′ + q ′

2

)
exp[−i p(q ′′ − q ′)/�] f (q, p). (4.12)

Before we complete the proof for the trace formula, let us prove the Weyl inverse
correspondence (4.2) quoted in the very beginning of this chapter. For this purpose

define Q = (q ′ + q ′′)/2 and
∼
q= q ′′ − q ′, then

〈Q− ∼
q /2| f̂ |Q+ ∼

q /2〉 =
∫

dq dp

(2π�)
δ(q − Q) exp(−i p

∼
q /�) f (q, p).

Integrating over q, multiplying both sides with exp(i P
∼
q /�) and integrating with

respect to
∼
q gives the formula (4.2), written for Q, P in place of q, p.

We can now come back to Eq. (4.12) above. Put q ′′ = q ′ in this equation and
integrate over q ′ to give us the result.

4.5 Trace of a Product: Expectation Values

From the formula for the trace (4.11) we know that

Tr( f̂ ĝ) =
∫

dq dp

(2π�)
( f ∗ g)(q, p) =

∫
dq dp

(2π�)
(g ∗ f )(q, p). (4.13)

We now show that provided one of the functions, say, g, vanishes along with its
derivatives at infinitely large values of q and p, then

∫
dq dp

(2π�)
( f ∗ g)(q, p) =

∫
dq dp

(2π�)
f (q, p)g(q, p). (4.14)

The proof is based on the star-product formula and using integration by parts repeat-
edly.

∫
dq dp

(2π�)
( f ∗ g) =

∫
dq dp

(2π�)

∑
r,s

(−1)s

r !s!
∂r+s f

∂qr∂ ps
∂r+sg

∂ pr∂qs

(
i�

2

)r+s

=
∫

dq dp

(2π�)

∑
r,s

(−1)s

r !s! (−1)r+s ∂2(r+s) f

∂qr+s∂ pr+s
g

(
i�

2

)r+s
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=
∫

dq dp

(2π�)
f g

+
∫

dq dp

(2π�)
g

∞∑
n=1

(
− i�

2

)n 1

n!
∂n f

∂qn∂ pn

n∑
r=0

n!
r !s! (−1)n−r

=
∫

dq dp

(2π�)
f g.

All terms n = 1 onwards drop out because of the factor (1 − 1)n .
The main use of the trace of product formula is in calculating expectation values.

If ρψ is the function corresponding to pure normalized state ψ

〈ψ| f̂ |ψ〉 = Tr(|ψ〉〈ψ| f̂ ) =
∫

dq dp

(2π�)
ρψ(q, p) f (q, p). (4.15)

4.6 Eigenvalues

The eigenvalue equation for an observable Âψa = aψa can be written as

Â|ψa〉〈ψa| = a|ψa〉〈ψa| = |ψa〉〈ψa| Â.

Its counterpart in the phase space is

A(q, p) ∗ ρa = ρa ∗ A(q, p) = aρa .

However, the eigenvalue problem in the phase space is neither convenient nor
very useful.

4.7 Dynamics and the Moyal Bracket

The Schrödinger equation, written for a normalized state |ψ〉 in terms of its projection
operator ρ̂ψ = |ψ〉〈ψ| is

i�
dρ̂ψ

dt
= i�

d

dt
(|ψ〉〈ψ|) = Ĥ |ψ〉〈ψ| − |ψ〉〈ψ|Ĥ = [Ĥ , ρ̂ψ]. (4.16)

The projection operator is also called the ‘density matrix’ corresponding to the ‘pure
state’ |ψ〉. If |r〉 is an orthonormal basis then

ρ̂ψ =
∑
r,s

(ψrψ
∗
s ) |r〉〈s| =

∑
r

(|ψr |2)|r〉〈r | +
∑
r 
=s

(ψrψ
∗
s ) |r〉〈s|.
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The first term on the extreme right shows the probabilities of ψ to be in the states
|r〉, and the second contains the quantum interference terms. An operator of the form
ρ = ∑

pr |r〉〈r | without the interference terms is said to represent a ‘mixed’ state if
pr are probabilities, and there are more than one term in the sum. For a pure state
there is no orthonormal basis in which it can be put in the form of a mixed state.

The density matrix equation (4.16) above is analogous to the Liouville equation
of classical probability distribution on the phase space:

dρcl

dt
= {H, ρcl}.

For this reason it is called quantum Liouville equation. This analogy becomes even
more close when ρ̂ψ = |ψ〉〈ψ| is replaced by its counterpart in the phase space as we
see below.

Let ρψ(q, p) be the Wigner function corresponding to the pure state |ψ〉. Then,
the quantum Liouville equation (4.16) can be written in the phase space as

dρψ

dt
= 1

i�
(H ∗ ρψ − ρψ ∗ H) ≡ [H, ρψ]M .

Here we have defined theMoyal bracket between two phase space functions as

[A, B]M = 1

i�
(A ∗ B − B ∗ A) = 2

�
A(q, p) sin

(
�

2

↔
P

)
B(q, p). (4.17)

If we were to expand the sine function, the first term is the classical Poisson bracket
followed by terms with higher powers of �. The quantum Liouville equation in this
version looks like a series in powers of � whose limit as � → 0 is the classical
Liouville equation.

The above discussion is in the Schrödinger picture as it appears in phase space. If
wewere to keep ρψ independent of timewe canwrite the equations for any observable
f as

d f

dt
= [ f, H ]M . (4.18)

The equations of motion for q and p are like the classical equations

dq

dt
= [q, H ]M = ∂H

∂ p
,

dp

dt
= [p, H ]M = −∂H

∂q
.

Because of this, the phase-space volume (the ‘Liouville measure’) is preserved by
time evolution. But in quantum mechanics, trajectories like these do not make sense.
What corresponds to a quantum state is its Wigner function. And that is just a quasi-
probability distribution, which cannot be squeezed in both coordinates and momenta
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at the same time. Moreover, as the Moyal bracket involves infinitely many differ-
entiations for arbitrary functions, it is not clear that the time evolution for general
functions is local.

4.8 Star-Exponential and the Path Integral

The one-to-one correspondence between the Hilbert space operators and phase space
functions corresponding to them allows us to construct the exponential evolution
operator

exp∗(−i t H/�)(q, p) =
∑
n

(
t

i�

)n 1

n! (H ∗ H ∗ · · · ∗ H)(q, p).

From the inverse formula (4.2) we can relate it to the matrix element needed for the
propagator 〈q ′′| exp(−i t Ĥ/�)|q ′〉. Start with

∫
dp

2π�
exp(−i py/�) exp∗(−i t H/�)(q, p)

and substitute for the expression for exp∗(−i t H/�)(q, p). Then,

∫
dp

2π�
exp(−i py/�) exp∗(−i t H/�)(q, p)

=
∫

dx
∫

dp

2π�
exp[i p(x − y)/�]〈q − x/2| exp(−i t Ĥ/�)|q + x/2〉

The integration on p on the right hand side gives the delta function putting x = y.
Redefining q ′′ = q − y/2 and q ′ = q + y/2,

〈q ′′| exp(−i t Ĥ/�)|q ′〉
=

∫
dp

2π�
exp[i p(q ′′ − q ′)/�] exp∗(−i t H/�)

(
q ′′ + q ′

2
, p

)
. (4.19)

The left hand side is related to the path integral of action S([q(τ )]) for all paths q(τ )
with q(0) = q ′ and q(t) = q ′′:

∫
d[q] exp(i S([q])/�)

=
∫

dp

2π�
exp[i p(q ′′ − q ′)/�] exp∗(−i t H/�)

(
q ′′ + q ′

2
, p

)
. (4.20)



4.8 Star-Exponential and the Path Integral 65

The usefulness of the formula is dependent, of course, on the feasibility of calculating
the star exponential in the phase space.

4.9 Problems

Problem 4.1 Show that the Weyl ordering for q2 p2 is

(q2 p2)∧ = 1

6
[q̂2 p̂2 + q̂ p̂2q̂ + q̂ p̂q̂ p̂ + p̂q̂ p̂q̂ + p̂q̂2 p̂ + p̂2q̂2].

By using [q̂, p̂] = i� appropriately, show that we can also write,

(q2 p2)∧ = 1

4
[q̂2 p̂2 + 2q̂ p̂2q̂ + p̂2q̂2]

= 1

4
[ p̂2q̂2 + 2 p̂q̂2 p̂ + q̂2 p̂2].

Hint: Write

δ(u)δ(v) = 1

(2π)2

∫
dqdp exp[−i(qu + pv)]

and differentiate both sides with respect to u and v an appropriate number of times to

get the Fourier transform
∼
f ofmonomials like f = qn pm . TheWeyl ordering formula

(4.1) will then involve differentiating exp[i(q̂u + p̂v)]with respect to u and v a suit-
able number of times before putting both u and v to zero. Effectively, for f = qn pm

itwill involve looking for the coefficient ofunvm in the term (q̂u + p̂v)n+m/(n + m)!.

Remark: TheWeyl ordering for formula qn pm is more convenient in the McCoy [1]
form,

qn pm → (qn pm)∧ = 1

2n

n∑
r=0

n!
r !(n − r)! q̂

n−r p̂mq̂r

= 1

2n

m∑
r=0

m!
r !(m − r)! p̂

m−r q̂n p̂r .

For a proof of the formula see McCoy, Ref. [1]. McCoy had corrected an error in a
similar formula suggested by Born and Jordan.

Problem 4.2 For H(q, p) = (p2 + q2)/2 and F(q, p) = f (H), show that

(H ∗ F)(q, p) = HF − �
2

4
f ′(H) − �

2

4
H f ′′(H).
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Problem 4.3 Choose H as in the previous problem and f (H, t) = exp∗(−i t H/�).
Show that f satisfies

∂ f

∂t
= 1

i�

[
H f − �

2

4
f ′ − �

2

4
H f ′′

]

and verify that it has the solution

f = 1

cos(t/2)
exp

(
2H

i�
tan(t/2)

)
.

Substitute f in the path integral formula (4.20) and obtain the path integral.

4.10 Notes and References

4.10.1 Weyl Correspondence and Wigner Distribution

The Weyl ordering appears in the classic book “The theory of groups and quantum
mechanics” [2]. The quantum mechanics of phase space can be said to have been
started by Wigner [3] when he introduced the phase space function described here.
The original motivation was to apply it to problems of statistical mechanics in situa-
tions where quantum effects can be considered small. As an example, an expansion
of the partition function in powers of � can be made to approximate physical quanti-
ties. This so-called Wigner–Kirkwood expansion (see Kirkwood [4]) lends itself for
symbolic computation through *-product for higher order terms, as in Sharan [5].

4.10.2 Star-Product and Moyal Bracket

Moyal bracket was introduced by Moyal in Ref. [6].
Orderings other than the Weyl ordering can be considered to define phase space

quantities. A good reference is the paper by Agarwal and Wolf [7]. The associative
property of the star product can be followed, apart from other details, in Mehta [8]
and Jordan and Sudarshan [9].

The Moyal bracket when expanded in a series has the first term as the Poisson
bracket, and then other terms have powers of �. This is called by mathematicians as
a deformation of the symplectic structure. An extensive introduction to this ‘defor-
mation theory of quantization’ can be found in the paper by Bayen, Flato, Fronsdal,
Lichnerowicz and Sternheimer [10].

The relation of the path-integral and the star exponential was given in Sharan [11].
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Chapter 5
Can There Be a Non-linear Quantum
Mechanics?

Quantum mechanics can be looked upon as a Hamiltonian theory with linear equations
of motion by choosing the real and imaginary parts of the Schrödinger wave function as
phase-space variables with expectation value of the quantum Hamiltonian as the classical
Hamiltonian. One can ask the question: does there exist a non-linear generalization of this
formalism?

5.1 Hamiltonian Equations in Quantum Mechanics

Let us choose an orthonormal basis |r〉, r, s = 1, 2, . . . and write ψr = 〈r |ψ〉 as
representatives of the state vector |ψ〉. The Schrödinger equation can be expressed as

i�ψ̇r =
∑

s

Hrsψs, r = 1, 2, . . . (5.1)

where Hrs = 〈r |Ĥ |s〉 is the matrix of the Hamiltonian Ĥ in this basis.
For a vector ψ, define real quantities qr , pr , and ρr , θr by

ψr = (qr + i pr )√
2�

= ρr exp(iθr ),

and write the expectation value 〈ψ|H |ψ〉 in terms of qr ’s and pr ’s as

H(q, p) =
∑

r,s

ψ∗
r Hrsψs,

= 1

2�

∑

r,s

[
H+
rs (qrqs + pr ps) + H−

rs (prqs − psqr )
]
, (5.2)
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=
∑

r,s

ρrρs

[
H+
rs cos(θr − θs) + H−

rs sin(θr − θs)
]
, (5.3)

where

Hrs = H+
rs + i H−

rs , H+
rs = H+

sr , H−
rs = −H−

sr .

The real and imaginary parts of Hrs are, as shown, a real symmetric matrix H+ and
a real anti-symmetric matrix H−.

The Schrödinger equation (5.1) and its complex conjugate can be written as

q̇r = ∂H

∂ pr
, ṗr = −∂H

∂qr
. (5.4)

The norm,

‖ψ‖2 =
∑

r

|ψr |2 = 1

2�

∑

r

[q2
r + p2r ] =

∑

r

ρ2r

is preserved by these equations, as expected. Therefore all motion is restricted to the
surface

∑

r

[q2
r + p2r ] = constant, or

∑

r

ρ2e = constant.

5.2 Observables and Poisson Bracket

Any observable represented by a Hermitian matrix can be separated into real and
imaginary parts:

Ars = A+
rs + i A−

rs,

that is, into real symmetric and real anti-symmetric matrices A+ and A− respectively.
The expectation value of A has the standard form

A(q, p) = (ψ, Aψ)

= 1

2�

∑

r,s

[
A+
rs(qrqs + pr ps) + A−

rs(prqs − psqr )
]

(5.5)

=
∑

r,s

ρrρs

[
A+
rs cos(θr − θs) + A−

rs sin(θr − θs)
]
. (5.6)

Note that just as ψ is not directly observable, qr , pr are also not observables.
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Exercise 5.1 Show that if a normalized ψ corresponds to (q, p) and normalized �

to (Q, P) then the transition probability can be written as

|〈�|ψ〉|2 = 1

(2�)2

⎡

⎣
(

∑

r

(qr Qr + pr Pr )

)2

+
(

∑

r

(pr Qr − qr Pr )

)2
⎤

⎦ (5.7)

= 1

(2�)2

∑

r,s

[
(qrqs + pr ps)(Qr Qs + Pr Ps)

+ (prqs − ps pr )(Pr Qs − PsQr )
]
. (5.8)

Let A, B be two Hermitian matrices, and A(q, p) and B(q, p) the observables
constructed as above from the expectation values, and let

[A, B] = i�C.

Then the Poisson bracket

{A, B} =
∑

r

[
∂A

∂qr

∂B

∂ pr
− ∂A

∂ pr

∂B

∂qr

]
(5.9)

corresponds to C .

Proof Writing in matrix notation, let the real part (symmetric) and imaginary part
(antisymmetric) of matrices A and B be respectively a, b, c, d

A = a + ib, B = c + id,

then

i�C = [A, B] = ([a, c] − [b, d]) + i([a, d] + [b, c])
= i[([a, d] + [b, c]) + i([b, d] − [a, c])].

This shows that the real and imaginary parts of the matrix C are

C = 1

�
[([a, d] + [b, c]) + i([b, d] − [a, c])].

On the other hand, using

A(q, p) = 1

2�

∑

r,s

[ars(qrqs + pr ps) + brs(prqs − psqr )] ,

B(q, p) = 1

2�

∑

r,s

[crs(qrqs + pr ps) + drs(prqs − psqr )]
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the Poisson bracket can be calculated

{A(q, p), B(q, p)} = 1

�2

∑

r,s

[
qr [a, c]rs ps + pr [b, d]rsqs

+ qr (ad − cb)rsqs + pr (bc − da)rs ps
]
.

The first two terms on the right hand side can be combined as follows: [a, c] and
[b, d] are antisymmetric matrices because both a and c are symmetric and both b and
d are anti-symmetric. As there is a summation over r and s, only the anti-symmetric
part (prqs − psqr )/2 survives in the [b, d] term and (psqr − prqs)/2 in the [a, c]
term. Interchanging dummy indices r, s we get the first two terms as

−([a, c] − [b, d])rs(prqs − psqr )/2.

Similarly, in the last two terms,

qr (ad)rsqs = (ad)rsqrqs = (1/2)[(ad)rs + (ad)sr ]qrqs = (1/2)[a, d]rsqrqs
where in the last step we use the antisymmetry of d and symmetry of a

(ad)sr qrqs = astdtrqrqs = −drtatsqrqs .

Similarly for the pr ps term. Thus,

{A(q, p), B(q, p)} = 1

2�2
[([a, d] + [b, c])rs(qrqs + pr ps) + ([b, d] − [a, c])rs pr qs ]

= C(q, p).

Exercise 5.2 Use the definition of the Poisson brackets in the (qr , pr ) coordinates
to calculate the bracket in variables ρ2r , θr as

{A, B} = 1

�

∑

r

(
∂A

∂ρ2r

∂B

∂θr
− ∂A

∂θr

∂B

∂ρ2r

)
(5.10)

and

{ρ2r , θs} = 1

�
δrs . (5.11)
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5.3 Symmetry Transformations

An infinitesimal canonical transformation is generated by an observable A(q, p)
through the Poisson bracket:

δqt = ε{qt , A(q, p)}, δ pt = ε{pt , A(q, p)}

which, for an observable constructed of the standard form (5.5) in terms of A±
rs is

δqt = ε

�

∑

s

(
A+
ts ps + A−

tsqs
)

δ pt = − ε

�

∑

s

(
A+
tsqs − A−

ts ps
)

leading to an infinitesimal unitary transformation

ψt + δψt = ψt − iε

�

∑

s

(A+
ts + i A−

ts)ψs =
∑

s

(
1 − iε

�
A

)

ts

ψs .

as expected.

Exercise 5.3 A unitary transformation ψ′ = Uψ withUrs as its matrix is given.Urs

can be separated into its real and imaginary parts as

Urs = urs + ivrs .

Show these matrices satisfy (T denotes transpose)

uuT + vvT = 1 = uT u + vT v, uT v − vT u = 0 = uvT − vuT ,

and give rise to a linear canonical transformation:

(
q ′
p′

)
=

(
u −v

v u

) (
q
p

)
.

All observables, since they correspond to generators of infinitesimal unitary trans-
formations, preserve the norm ‖ψ‖2. This shows up as the vanishing of the Poisson
bracket of the norm square

n = ‖ψ‖2 = 1

2�

∑

r

(q2
r + p2r ) =

∑

t

ρ2t

with any A(q, p) in the standard form. It can be checked immediately. The bracket
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{n, A} =
∑

t,rs

{ρ2t , ρrρs(A+
rs cos(θr − θs) + A−

rs sin(θr − θs))}

= 1

�

∑

t,rs

ρrρs
∂

∂θt
(A+

rs cos(θr − θs) + A−
rs sin(θr − θs))

= 0,

because the derivative with respect to θ turns symmetric cosine into antisymmetric
sine (and vice versa) causing the sum of a product of symmetric and antisymmetric
quantities to zero.

5.4 Eigenvalues

Eigenvector of an observable A in quantum mechanics can be determined as that
ψ which is an extremum of its average value (ψ, Aψ) under variation ψ → ψ +
δψ subject to constraint that ‖ψ‖2 is kept constant. If we introduce a Lagrange’s
multiplier λ then the condition of eigenvector amounts to demanding the extremum
of

(ψ, Aψ) − λ(ψ,ψ),

under free variation of ψ. Let ψ0 be one such extremal point then the corresponding
eigenvalue is just the value of

(ψ, Aψ)

(ψ,ψ)

∣∣∣∣
ψ0

.

In the classical language we are using here, this can be taken over as the extremal
points of

A(q, p) − λn(q, p),

under the free variations of qr , pr , r = 1, 2, . . . . The eigenvalue will correspond to
the value of A(q, p)/n(q, p) at the extremal point.

5.5 Non-linear Quantum Mechanics?

What we did in the last few sections is simply to put the ordinary quantummechanics
into a language of classical mechanics. This is a linear Hamiltonian system of infinite
number of dimensions in the general case, and it has the following features:
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1. The original coordinates qr , pr or ρr , θr do not represent the state completely.
The coordinates qr , pr themselves are not observables.

2. All observables are quadratic in q, p and of the standard form (5.5) or (5.6). Their
eigenvalues can be determined by variational principle applied to A restricted to
the surface of constant n, or by diagonalizing the Hermitian matrix A = A+ +
i A− where

A+
rs = �

2

[
∂2A

∂qr∂qs
+ ∂2A

∂ pr∂ ps

]
, A−

rs = �

2

[
∂2A

∂ pr∂qs
− ∂2A

∂ ps∂qr

]
.

3. Symmetry transformations are determined by linear canonical transformations.
In particular, the equations of motion for observables are linear.

One can naturally ask the question, if quantum theory is equivalent to a classical
mechanical system with a phase space, Poisson bracket, and linear Hamiltonian
equations of motion, could it be that it is a special case of a more general, non-linear
theory?

One can ask a counter question: is there a need to look for a general theory?
Quantummechanics iswell establishedwith no experiment suggesting any conflict so
far despite the fact that its interpretation bymeasurement theory, projection postulate
or collapse of the wave-packet, non-separability etc. are still not well understood.

There are two reasons worth considering for such general theories.
When special relativity was well established, the motivation for searching for a

general theory of relativity came from the fact that the gravitational field (the only
other classical field theory apart form electrodynamics) could not be accommodated
with special theory. The quantum theory is very well adapted to special relativity
theory, but has failed so far to accommodate the general relativistic theory of grav-
itation. Could it be due to the conflict of an essentially linear quantum theory with
an essentially non-linear general relativity?

The second reason, due toWeinberg [3], is this: quantummechanics has been ver-
ified excessively, but not been tested enough in the sense that there are no alternative
theories which can give predictions different from quantummechanics. A non-linear
quantum theory offers a chance: hence the interest.

So, which features of standard quantum theory should we carry over to the general
theory? Following Weinberg we make the following assumptions

1. The non-linear effects are small, therefore the observables have the standard
homogeneous quadratic form plus a non-linear term.

2. The non-linear term to be added are also homogeneous of second degree in qr ’s
and pr ’s, such that

∑

r

(
qr

∂A

∂qr
+ pr

∂A

∂ pr

)
= 2A,

∑

r

(
pr

∂A

∂qr
− qr

∂A

∂ pr

)
= 0. (5.12)

3. All symmetry transformations preserve the norm n.
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The condition 2 above, which we call the ‘Weinberg condition’ ensures that the
state ψ and zψ represent the same physical state with the same average values for
all observables for any complex number z. If we treat ψr and ψ∗

r as independent
variables, the Weinberg condition for A(q, p) = A(ψ,ψ∗) would be written as

∑

r

ψr
∂A

∂ψr
= A =

∑

r

ψ∗
r

∂A

∂ψ∗
r

. (5.13)

Exercise 5.4 Show that theWeinberg condition can be satisfied in theρ, θ expression
for an observable A if

∑

r

ρ2r
∂A

∂ρ2r
= A,

∑

r

∂A

∂θr
= �{n, A} = 0. (5.14)

In the next section we see how one can implement these requirements and see the
non-linear effects in some very simple models.

5.6 Non-linear Terms: Simple Examples

In order to introduce non-linear terms satisfying the Weinberg condition we can
simply take the observables in the standard form (5.5) or (5.6) and substitute the
constant matrices A± into similar (that is, symmetric and anti-symmetric) matrices,
but dependent on (q, p) or (ρ, θ). We take some simple examples to illustrate the
idea.

5.6.1 Example 1: Extra Energy Level

We take a two-level system in the basis of eigenstates E1, E2 of a linear part H0 of
the full Hamiltonian. In the (ρ, θ) coordinates

H0 = E1ρ
2
1 + E2ρ

2
2

which corresponds to the 2 × 2 symmetric matrix H+
0 being diagonal with elements

E1 and E2, and the antisymmetric matrix being zero. We now add a non-linear part
to the symmetric matrix:

(
E1 0
0 E2

)
+ g

(
0 ρ1ρ2/(ρ

2
1 + ρ22)

ρ1ρ2/(ρ
2
1 + ρ22) 0

)

so that the Hamiltonian becomes
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H = E1ρ
2
1 + E2ρ

2
2 + 2g

ρ21ρ
2
2

ρ21 + ρ22
.

As there is no dependence on θ1 or θ2, ρ1, ρ2 are constants in time and the θ’s grow
linearly with t :

θ̇1 = −1

�

∂H

∂ρ21
, θ̇2 = −1

�

∂H

∂ρ22

or,

−�θ̇1 = E1 + 2g

(
ρ22

ρ21 + ρ22

)2

, −�θ̇2 = E2 + 2g

(
ρ21

ρ21 + ρ22

)2

It is clear that the original eigenstates of H0 are also the eigenstates of the non-linear
Hamiltonian with the same eigenvalues E1 and E2 because the additional term is
zero if either ρ21 or ρ22 is zero. This can also be checked directly. A normalized state
starting with (ρ1, ρ2), ρ

2
1 + ρ22 = 1 at time t = 0 will become

(
ψ1(t)
ψ2(t)

)
=

(
ρ1 exp(−i t (E1 + 2gρ42)/�)

ρ2 exp(−i t (E2 + 2gρ41)/�)

)
. (5.15)

Therefore, except for the eigenstates corresponding to E1, E2 (ρ1 = 1, ρ2 = 0 or
ρ2 = 1, ρ1 = 0) which have the usual time dependence exp(−i t E1/�) or exp(−i t
E2/�) respectively, for all other states the relative phase of the two components is
dependent on the initial value of ρ1 (or ρ2).

Let us assume E2 > E1 without any loss of generality, and write E2 − E1 = �E .
Then, there is an additional eigenvalue provided 2g ≥ �E :

E3 = E1 + E2

2
+ g

2
+ (�E)2

8g

corresponding to the eigenvector (in the Hilbert space language of ψr ),

(
ψ1

ψ2

)
=

(
ρ1
ρ2

)
exp(−i E3t/�),

where

ρ1 = 1√
2

(
1 − �E

2g

)1/2

, ρ2 = 1√
2

(
1 + �E

2g

)1/2

.

It should be noted that the extra eigenvalue appears only for 2g > �E .
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5.6.2 Example 2: Asymptotic States

As a second simple example choose

H = E1ρ
2
1 + E2ρ

2
2 + g(ρ21 − ρ22)(θ1 − θ2).

This corresponds to non-linearity in the θ variables due to choosing the 2 × 2 anti-
symmetric H−

rs with

H−
12 = g

ρ21 − ρ22
ρ1ρ2

(θ1 − θ2).

We are also allowing the phases to take all values, not being limited to the range
(0, 2π). In regular quantum mechanics we only require periodic functions of the
phases. The equations of motion are

ρ̇21 = 1

�

∂H

∂θ1
= g

�
(ρ21 − ρ22)

ρ̇22 = 1

�

∂H

∂θ2
= −g

�
(ρ21 − ρ22)

which shows that (ρ21 + ρ22) remains constant and can be chosen to be equal to 1, and
so

ρ21(t) = ρ21(0) exp(2gt/�) + (1 − exp(2gt/�))/2

ρ22(t) = ρ22(0) exp(2gt/�) + (1 − exp(2gt/�))/2.

For θ’s

θ̇1 = −1

�

∂H

∂ρ21
= −1

�
[E1 + g(θ1 − θ2)]

θ̇2 = −1

�

∂H

∂ρ22
= −1

�
[E2 − g(θ1 − θ2)].

Therefore, (if we write �θ = θ2 − θ1 and �E = E2 − E1)

(θ1 + θ2)(t) = (θ1 + θ2)(0) − t (E1 + E2)/�.

and

�θ(t) = �θ(0) exp(−2gt/�) − �E

2g
(1 − exp(−2gt/�)).
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As (ρ21 + ρ22) = 1, the solution for ρ21 and ρ22 shows that the coupling constant g
has to be negative. Therefore all states grow or decay asymptotically to a state with
ρ21 = 1/2, ρ22 = 1/2.

This is an unphysical case as θ1 and θ2 can take arbitrarily large values making
energy negative,

5.7 Problems

Problem 5.1 EveryHamiltonian system preserves the volume elements of the phase
spaceunderHamiltonian evolution. In the formalismofSect. 5.1 verify this statement.
How can one handle a volume element for the infinite dimensional Hilbert space?
Does it make sense to consider probability distributions on this classical space?

Problem 5.2 The Hermitian observables of quantum mechanics have the standard
form (5.5).Whatwill be the expression for the (in general non-Hermitian) product AB
where A and B are Hermitian? Will the expression satisfy the Weinberg condition?
Show that the expressions satisfy the associative law (AB)C = A(BC), as expected.

Problem 5.3 Verify the expressions in Sect. 5.6.1 for the eigenvalue E3 and the
corresponding eigenvector.

5.8 Notes and References

5.8.1 Non-linear Quantum Mechanics

The fact that quantummechanics is a linear Hamiltonian theory has been known from
the very beginning. Dirac [1] in 1927 wrote the Hamiltonian equations derived from
the expectation value of a quantum mechanical operator, identified the canonical
variables and quantized once again, thereby achieving a ‘second quantization’ for
the first time, although the term came to be used much later!

Thematerial in the first four sections of this chapter is based on a 1983 unpublished
Jamia Millia Islamia preprint of the author and Choudhry [2]. In 1989, Weinberg’s
“Testing Quantum Mechanics” paper [3] practically exhausted the possibilities of
non-linear quantum theory,with experimental bounds. The reasoning for suchmodels
goes like this: one of the features of non-linear quantummechanics is the dependence
of the relative phase between two level system (as in the example in Sect. 5.6.1 above)
on the initial state, Under fairly general assumptions this would lead to a broadening
of the incident absorption or emission frequency of radiation causing transitions
between the two levels. A measurement by Bollinger et al. [4] gives an upper limit
on the relative size of the non-linear term in the Hamiltonian as less than 10−20 eV.
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Chapter 6
Interaction = Exchange of Quanta

Interaction between a particle with a potential or between two particles illustrates the fun-
damental fact of quantum theory that exchange of a quantum leads to interaction.

6.1 Non-relativistic ‘Potential’

The concept of force in classical theory or quantum theory is the same. A particle
changes its linear momentum under the influence of a force.

Let |p〉 be the state of a particle with momentum p. If the Hamiltonian is just
P̂2/2m themomentum is constant in time. Since the Hamiltonian determines the time
development, we must include in the Hamiltonian terms which change momentum
in order to introduce force. What kind of operators change momentum? Let us define
an operator h(k) for a fixed k, acting on the basis {|p〉} as

ĥ(k)|p〉 = |p + k〉.

This is not Hermitian, (it is unitary actually), and its adjoint is

ĥ†(k)|p〉 = |p − k〉,

which shows that ĥ†(k) = ĥ(−k).
Of course ĥ(k) gives just a jump, or a kick, to the momentum by a fixed amount

k. A general Hamiltonian will include terms for all k. Let v(k) be a complex number
representing the strength or amplitude of the force for a kick by amount k. We add
to the Hamiltonian the following term:
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Ĥ1 =
∫

d3k[v(k)ĥ(k) + v∗(k)ĥ†(k)]

=
∫

d3k[v(k)ĥ(k) + v∗(k)ĥ(−k)]

=
∫

d3k[v(k) + v∗(−k)] ĥ(k)

≡
∫

d3kV (k)ĥ(k).

From Chap.1 we know what the operator ĥ(k) is:

ĥ(k) = exp(ik · X̂/�),

where X̂ is the position operator. Therefore the term to be added to the Hamiltonian
in the Schrödinger representation acts on the wave functions as

〈x|Ĥ1|ψ〉 =
∫

d3k V (k) exp(ik · x/�)ψ(x) ≡ V(x)ψ(x).

The function V(x), is called the potential of the force. It is sensible to look at the
potential as a classical field which absorbs or emits quanta which can change the
momentum of the particle interacting with it. The quanta of the field are not quan-
tized part of the system, but the picture much looks like the following figure:

�

�
�
�
�
�
�
�

�
�
�
�
�
�

×V

Time

k

p

p+ k

6.2 The Simplest Model of Quanta Exchange

We take two oscillators with frequencies ω and �. One can think of these systems
as ‘fields’ of ‘particles’ or quanta with energy �ω and ��. Thus, the oscillator with
n quanta has energy n�ω above the ground state and similarly, the second with N
quanta has energy N��.
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A simple, exactly solvable, toymodel of these two interacting oscillators illustrates
many features.

6.2.1 The Hamiltonian

Let the two types of ‘particles’ be called B and A. They are described by operators
b, b† anda, a†, the usual ‘ladder’ operators of harmonic oscillatorswith commutation
rules

[b, b†] = 1, [a, a†] = 1, [a, b] = 0, [a, b†] = 0.

The ‘free’, non-interacting, part of the Hamiltonian is

H0 = ��b†b + �ωa†a, (6.1)

omitting the constant ground state energies �ω/2 and ��/2. Energy levels of this
free system are labeled by two integers N and n

EN ,n = N�� + n�ω

The interpretation of these levels is that there are n quanta of the type A and N of B.
The total Hamiltonian including the interaction is now chosen as

H = H0 + �λb†b(a + a†), (6.2)

where λ is a coupling constant of the dimensions of a frequency. The ‘vacuum’ or
zero quanta state of free Hamiltonian is defined by

b�0 = 0, a�0 = 0. (6.3)

This state also happens to be the eigenstate of the total Hamiltonian:

H�0 = 0,

which follows because a† and b commute.

6.2.2 Bare and Dressed States

The number operators for the two particles are NB = b†b and NA = a†a. We see
that
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[H, NB] = 0.

This means that under time evolution a state with some fixed number of the B quanta
retains this number. That is not the casewithAquanta because [H, NA] �= 0.Under an
infinitesimal time evolutionψ → (1 − idt H/�)ψ the interaction term λb†b(a + a†)
causes annihilation or creation of A-quanta but keeps the number of B-quanta the
same. An eigenstate of H with one B-quantum has an indefinite number of A-quanta
around it. The B-quantum acquires a ‘cloud’ of A-quanta around it and we say that
this eigenstate of H is a dressed state. In contrast, the eigenstates of H0 are said to
contain bare B quanta.

6.2.3 Single Dressed B-Particle

We now calculate a single dressed B-particle state. It is a state that contains one bare
B quantum and will have any number of A-quanta in the cloud surrounding it. Let
� be a one B-particle eigenstate of H ,

H� = E�.

Choose � as a superposition of states with one B-particle, and 0, 1, 2, . . . etc. of
A-particles:

� = (d0 + d1a
† + d2(a

†)2 + · · · )b†�0.

We substitute � and compare the coefficients of various powers of a†:

(H − E)� = (�� − E)(d0 + d1a
† + d2(a

†)2 + · · · )b†�0

+�ω(d1a
† + 2d2(a

†)2 + · · · )b†�0

+�λ(d1 + 2d2a
† + 3d3(a

†)2 + · · · )b†�0

+�λ(d0a
† + d1(a

†)2 + · · · )b†�0.

This gives us a sequence of equations, the first three of which are

(�� − E)d0 + �λd1 = 0, (6.4)

(�� − E)d1 + �ωd1 + �λ(2d2 + d0) = 0, (6.5)

(�� − E)d2 + �ω2d2 + �λ(3d3 + d1) = 0. (6.6)

If we argue from a perturbation theory point of view, then as λ → 0, the state� must
become the bare one B-particle state proportional to b†�0. Therefore all di except
d0 must go to zero as λ → 0. In fact we expect d1 = O(λ), d2 = O(λ2) and so on.
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The first equation of the sequence of equations then tells us that (�� − E) =
O(λ2). A look at the second equation tells us that it consists of terms of O(λ3) and
O(λ), which should separately be equated to zero. Therefore

ωd1 + λd0 = 0,

(�� − E)d1 + �λ2d2 = 0.

This fixes

d1 = −λ

ω
d0,

which determines the value of (�� − E) from the first Eq. (6.4)

E = �(� − λ2/ω),

as well as, from (6.5),

d2 = 1

2!
(

−λ

ω

)2

d0.

In the third Eq. (6.6) there are second and fourth order terms in λ. The second order
terms ω2d2 + λd1 is identically zero, and the fourth order terms give

d3 = 1

3!
(

−λ

ω

)3

d0.

The general solution is not difficult to guess:

� = d0 exp

[
−λ

ω
a†

]
b†�0.

The normalization constant d0 can be determined from the condition

1 = (�,�) = |d0|2(�0, exp[−λa/ω] exp[−λa†/ω]bb†�0)

= |d0|2 exp[λ2/ω2],

where we use the identity

exp(A) exp(B) = exp([A, B]) exp(B) exp(A).

Thus the one B-particle dressed state is given by (dropping the over-all phase in �),

� = exp[−λ2/2ω2] exp[−λa†/ω]b†�0, (6.7)
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with eigenvalue

E = �(� − λ2/ω). (6.8)

6.2.4 B-B Effective Interaction

Now we take two B-particles. In perturbation theory the second order terms in inter-
action will involve creation of an A-quantum by one B-particle and its absorption
by the other. This back-and-forth exchange of A by B particles leads to an interac-
tion between the B particles. The A-exchange can be summed or ‘integrated out’ and
replaced by an effective B-B interaction as shown symbolically in the diagram below.
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We notice that the one B-particle dressed state is obtained from the bare one par-
ticle state b†�0 by operating by exp[−λ2/2ω2] exp[−λa†/ω]. We do a little manip-
ulation as follows.

� = exp[−λ2/2ω2] exp[−λa†/ω]b†�0

= exp[−λ2/2ω2] exp[−λa†/ω] exp[λa/ω]b†�0

because exp[λa/ω]�0 = �0. Now use

exp(A) exp(B) = exp([A, B]/2) exp(A + B)

which holds whenever [A, B] commutes with both A and B to get

� = exp[λ(a − a†)/ω]b†�0

The advantage of this manipulation is that the operator exp[λ(a − a†)/ω] is unitary.



6.2 The Simplest Model of Quanta Exchange 87

The two particle dressed-state will similarly involve exp[2λ(a − a†)/ω] acting
on the two particle bare state because there are two factors of exp[λ(a − a†)/ω].
Similarly the three particle dressed state will be a similar operator with 2 replaced
by 3 in the exponent. Let us define a unitary operator

U = exp

[
λ

ω
b†b(a − a†)

]

so that it gives the right factor in the exponent because b†b is the number operator.
This unitary operator changes the bare to dressed states. If we apply it to all our
observables, then the transformed operators are

ã = UaU †

= exp

[
λ

ω
b†b(a − a†)

]
a exp

[
−λ

ω
b†b(a − a†)

]

= a + λ

ω
b†b

where we use the identity

exp[S]A exp[−S] = A + [S, A] + 1

2! [S, [S, A]] + · · · .

Similarly

ã† = a† + λ

ω
b†b,

and

b̃ = exp

[
λ

ω
b†b(a − a†)

]
b exp

[
−λ

ω
b†b(a − a†)

]

= b − λ

ω
(a − a†)b + 1

2!
(

λ

ω

)2

(a − a†)2b − · · ·

= exp

[
−λ

ω
(a − a†)

]
b ,

and

b̃† = b† exp

[
λ

ω
(a − a†)

]
.

We can transform the Hamiltonian in terms of these new operators, by writing the
inverted formulas
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a = ã − λ

ω
b̃†b̃,

a† = ã† − λ

ω
b̃†b̃,

b = exp

[
λ

ω
(a − a†)

]
b̃,

b† = b̃† exp

[
−λ

ω
(a − a†)

]
,

so that

1

�
H = �b†b + ωa†a + λb†b(a + a†)

=
(

� − λ2

ω

)
b̃†b̃ + ωã†ã − λ2

ω
b̃†b̃†b̃b̃.

The Hamiltonian has separated into dressed particles, call them by B̃ created by b̃†

which interact with themselves by the b̃†b̃†b̃b̃ term and a species of free quanta, call
them Ã, which are created by ã†!

6.3 Problems

Problem 6.1 (Annihilation and creation operators of a particle in a potential) The
formalismofSect. 6.1 indirectly uses the annihilationoperatorsa(k) and their adjoint,
the creation operators, a†(k) acting on a background state (ground state or ‘vacuum’),
|0〉, and one particle states as follows:

a(k)|0〉 = 0, for all k,

a†(k)|0〉 = |k〉, for all k,[
a(k), a(k′)

] = 0, [a(k), a†(k′)] = δ3(k − k′), for all k,k′.

Write the expression for the term to be added to the Hamiltonian to generate the
effect of the classical potential.

Problem 6.2 Derive an expression for amplitudes V (k) in (6.1) for transitions
|p〉 → |p + k〉 for the potential (spherical square-well): V(r) = V0 for r ≤ R0 and
zero for r > R0.

Problem 6.3 (Project) Follow the arguments of Sects. 6.2–6.4 for a more realistic
model. B is a massive particle, a ‘spinless fermion’ of rest mass M , and A a much
lighter particle of rest mass μ, a ‘meson’. The free Hamiltonian is
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H0 = Mc2
∫

d3p b†(p)b(p) +
∫

d3p Ep a
†(p)a(p)

where Ep = c
√
p2 + μ2c2. The interaction part of the Hamiltonian is

HI = λ

∫
d3pd3k

(
f (k)b†(p + k)b(p)a(k) + h.c.

)

where ‘h.c.’ denotes the Hermitian conjugate of the previous term, λ an
appropriate coupling constant, and f (k) the coupling strength at momentum k. The
annihilation and creation operators of particles B and A are the standard commuta-
tion/anticommutation relations:

[
a(k), a(k′)

] = 0, [a(k), a†(k′)] = δ3(k − k′), for all k,k′,[
b(k), b(k′)

]
+ = 0, [b(k), b†(k′)]+ = δ3(k − k′), for all k,k′,[

a(k), b(k′)
] = 0, [a(k), b†(k′)] = 0, for all k,k′.

The energy of the particle B is assumed to be independent of its momentum.
Refer to Sect. (12a) of Schweber [1] for details.

6.4 Notes and References

It is a pity that quantum theory which had its beginnings in the emission and absorp-
tion of quanta is taught as if non-relativistic quantum mechanics does not require
any mention of creation, annihilation (or emission/absorption) of quanta. This is due
to the extraordinary emphasis on the wave function in the configuration space with
the potential function taken as unchanged classical potential. There is a total disre-
gard for the physically meaningful momentum space. For a proper understanding,
both the configuration space and the momentum space are needed. And the so-called
‘wave-particle’ duality, such a favorite of textbooks, should properly be called and
interpreted as ‘field-particle’ duality.

The model of A and B particles discussed here is a brutally simplified version of
a solvable model discussed in Schweber’s classic book [1].
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Chapter 7
Proof of Wigner’s Theorem

Wigner’s theorem which relates a unitary or anti-unitary operator to a symmetry transfor-
mation is proved following V. Bargmann’s version of the proof.

7.1 Rays and Symmetry Transformation

A ray in a Hilbert space H is the set { f } obtained by multiplying a non-zero vector
f ∈ H with all complex numbers of modulus unity. All vectors in a ray have the
same norm. A vector f ∈ { f } is called a representative of the ray. A unit ray is a ray
such that all the vectors belonging to it have unit norm. A unit ray can be obtained
by taking a unit vector and obtaining the set of all its multiples by phase factors. The
set of all unit rays will be denoted by R0.

A ray { f } multiplied by two different positive numbers α > 0,β > 0,α �= β
gives two distinct rays.

We cannot talk about change in quantities like rays because they cannot be added
or subtracted. We say the state is described by a unit ray, but how do we define the
rate of change of state unless we can subtract the original quantity from the changed
quantity? That is why, although there is a one-to-one correspondence between phys-
ical states and unit rays, we must choose a representative vector to work with in
practice.

A symmetry transformation is a mapping s : R0 → R0 from unit rays to unit
rays such that if { f } → { f ′} = s{ f } and {g} → {g′} = s{g}, then for any vectors
f, g, f ′, g′ belonging to their respective rays,

|( f, g)|2 = |( f ′, g′)|2.
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7.2 Wigner’s Theorem

For the sake of completeness, let us recall that a unitary operator U is a one-to-
one, invertible mapping of the Hilbert space such that for any f, g ∈ H, (U f,Ug) =
( f, g). An anti-unitary operator A is a one-to-one, invertible mapping of the Hilbert
space such that for any f, g ∈ H, (A f, Ag) = ( f, g)∗.

Wigner’s theorem allows us to work with vectors instead of rays.
Let s : R0 → R0 be a symmetry and T a vector mapping T : H → H. We say

that T is compatible with symmetry s if T maps vectors in the unit ray { f } into
vectors in the ray s{ f } for every unit ray { f } ∈ R0.

Exercise 7.1 Which of the following vector mappings can be compatible with some
symmetry transformation?

(i) The constant linear operator f → 2 f for every f ∈ H. (No)
(ii) If {ei }, i = 1, . . . ,∞ is an orthonormal basis inH and f = ∑

i ci ei then T is
defined by T f = ∑

i c
∗
i ei . (Yes)

(iii) T is a unitary operator. (Yes)
(iv) T is an anti-unitary operator. (Yes)
(v) A projection operator PM onto a subspace M ⊂ H. (No)
(vi) A bounded self-adjoint operator A satisfying A2 = 1. (Yes)
(vii) A bounded linear operator J satisfying J 2 = −1. (Yes)

Wigner’s theorem is stated as follows:
Every symmetry transformation s : R0 → R0 determines either a unitary or an

anti-unitary operator compatible with it.
The unitary or anti-unitary nature of the operator is determined by the mapping

s itself and the operator is determined uniquely except for a factor of modulus unity.
The symmetry transformation which has been defined only on the set of unit rays

R0, can be extended to the set of all raysR as follows. Let { f } ∈ R. Then { f/‖ f ‖}
is a unit ray. Define

s{ f } ≡ ‖ f ‖ s{ f/‖ f ‖}.

7.3 Bargmann Invariant

Let f1, f2, f3 ∈ H be three unit vectors. Define a number

�( f1, f2, f3) ≡ ( f1, f2)( f2, f3)( f3, f1).

This is a complex number which actually depends only on the three unit rays
{ f1}, { f2}, { f3} as can be checked by choosing any other representatives eiα f1, eiβ f2,
eiγ f3 in place of f1, f2, f3. We write therefore
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�( f1, f2, f3) = �({ f1}, { f2}, { f3}).

If s is a symmetry transformation we can calculate

�′ = �(s{ f1}, s{ f2}, s{ f3}).

Given a symmetry mapping s,� can be used to test whether the operator determined
by the Wigner theorem is a unitary or an anti-unitary operator. If T is the operator
compatible with s then for unitary T ,

(T f1, T f2) = ( f1, f2),

whereas for anti-unitary T ,

(T f1, T f2) = ( f1, f2)
∗.

Thus in one case �′ = � and in the other �′ = �∗.
Except for the trivial case of a one-dimensional Hilbert space, there will always

be at least three unit rays to check the unitary or anti-unitary nature of a symmetry
transformation by the Bargmann invariant.

7.4 A Lemma

This simple result is at the heart of the proof.
Let e1, . . . , en ∈ H be a finite orthonormal set. We call the set of unit rays

{e1}, . . . , {en} ∈ R0 an orthonormal set of rays. Although there is no inner prod-
uct defined for rays, we can still define two rays as being orthogonal.

Let {e1}, . . . , {en} ∈ R0 be an orthonormal set of rays, and s a symmetry trans-
formation. Let f ∈ H be a vector constructed as a linear combination from repre-
sentatives of the rays of the set:

f =
∑

i

ci fi , fi ∈ {ei }.

Note that f1, . . . , fn is also an orthonormal set of vectors and ci = ( fi , f ). The
lemma is about the structure of a typical vector f ′ in the ray s{ f } mapped by the
symmetry transformation.

Lemma
Any representative vector f ′ ∈ s{ f } can be written as

f ′ =
∑

i

c′
i f

′
i

where f ′
i ∈ s{ei } and |c′

i | = |ci |, i = 1, . . . , n.
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Proof of the Lemma
The set of rays s{e1}, . . . , s{en} ∈ R0 is also orthonormal because s being a symmetry
transformationpreservesmodulus of the inner product.Choose anyvectors f ′

i ∈ s{ei }
and define

c′
i = ( f ′

i , f ′)

Then

|c′
i | = |( f ′

i , f ′)| = |( fi , f )| = |ci |.

And, as |( f, f )|2 = |( f ′, f ′)|2 because f and f ′ belong to rays mapped by s,

‖ f ′ −
∑

c′
i f

′
i ‖2 = ‖ f ′‖2 −

∑
|c′

i |2

= ‖ f ‖2 −
∑

|ci |2
= 0.

This proves that f ′ = ∑
i c

′
i f

′
i .

7.5 Proof of the Theorem

Construction of a vector mapping T compatible with the symmetry transformation
s is carried out in nine steps.

Step 1
Choose a unit vector e0 ∈ H and let {e0} be the corresponding unit ray. Choose any
vector e′

0 belonging to s{e0} and define

T e0 = e′
0. (7.1)

This defines the operator T on a single vector e0. The choice of T is obviously arbi-
trary up to a phase factor.

This is the sole arbitrariness in the definition and construction of T .

Step 2
Let M be the subspace orthogonal to e0

M = { f ∈ H|(e0, f ) = 0}.
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Choose a unit vector e1 in M, that is, e1 is a unit vector orthogonal to e0. We will
now define T on the vector e0 + e1.

As {e0} and {e1} are orthogonal unit rays, according to the Lemma above any
representative of s({e0 + e1}) is of the form a0e′

0 + a1e′′
1 where |a0| = 1, |a1| = 1,

e′′
1 ∈ s{e1} and where the vector e′

0 has already been fixed in step 1 as the represen-
tative from s{e0}.

Of these vectors a0e′
0 + a1e′′

1 in s({e0 + e1}), there is exactly one vector of the
form e′

0 + e′
1, because we can just choose any a0e

′
0 + a1e′′

1 and divide it by a0. Define

T (e0 + e1) = e′
0 + e′

1. (7.2)

This step fixes the vector e′
1.

Step 3
We proceed to define T on a vector of type e0 + be1 where b is a complex number.
T will map e0 + be1 to a vector in s{e0 + be1}.

A vector f ∈ s{e0 + be1} has the form, according to the Lemma, c0e′
0 + c1e′

1
with |c0| = 1, |c1| = |b|. Again, among these vectors is a unique vector of the form
e′
0 + b′e′

1 with |b′| = |b|. Define

T (e0 + be1) = e′
0 + b′e′

1 (7.3)

We now show that not only |b′| = |b|, but their real parts are equal and imaginary
parts equal up to a sign: Re b′ = Re b and Im b′ = ±Im b. This follows from the
property of symmetry transformation

|1 + b|2 = |(e0 + e1, e0 + be1)|2 = |(e′
0 + e′

1, e
′
0 + b′e′

1)|2 = |1 + b′|2,

which implies Re b = Re b′. Moreover, as

|b|2 = (Re b)2 + (Im b)2 = (Re b′)2 + (Im b′)2 = |b′|2,

we also have Im b′ = ±Im b.
For the fixed number b, the choice of b′ was uniquely determined by our con-

struction. Therefore the sign in Im(b′) = ±Im(b) is also fixed. Let us write

b′ = Re b + εbIm b,

where the sign factor εb is +1 or −1.
Actually εb does not depend on b. To see this take two different vectors e0 + b1e1

and e0 + b2e1 and determine e′
0 + b′

1e
′
1 and e′

0 + b′
2e

′
1 by the above procedure. We

have

b′
1 = Re(b1) + εb1 Im(b1), b′

2 = Re(b2) + εb2 Im(b2)
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Using

|(e0 + b1e1, e0 + b2e1)|2 = |(e′
0 + b′

1e
′
1, e

′
0 + b′

2e
′
1)|2

gives |1 + b∗
1b2|2 = |1 + b′

1
∗b′

2|2 which is equivalent to

Re(b1)Re(b2) + Im(b1)Im(b2) = Re(b′
1)Re(b

′
2) + Im(b′

1)Im(b′
2).

But Re(b1) = Re(b′
1) and Re(b2) = Re(b′

2) therefore,

Im(b1)Im(b2) = Im(b′
1)Im(b′

2) = εb1εb2 Im(b1)Im(b2).

This means

εb1εb2 = 1.

In other words, either both εb1 and εb2 are +1 or both −1. We write the common
value of εb as ε1 where the index 1 is to remind that the choice of b′ may still depend
on the choice of e1. From now on we write

T (e0 + be1) = e′
0 + b′e′

1, b′ = Re(b) + ε1Im(b). (7.4)

Step 4
Let e2 be another unit vector inM orthogonal to both e0 and e1. By an exactly similar
procedure that we used in the last step we can define

T (e0 + ce2) = e′
0 + c′e′

2, c′ = Re(c) + ε2Im(c) (7.5)

where e′
2 is the unique vector in the ray s{e0 + e2} of the form e′

0 + e′
2.

Step 5
Now consider the three orthonormal rays {e0}, {e1}, {e2} and apply the Lemma to
vector e0 + e1 + e2. Choose the vector e′

0 + c1e′
1 + c2e′

2 in the ray s{e0 + e1 + e2}.
We must have |c1| = 1 = |c2|. But as

|(e0 + e1, e0 + e1 + e2)|2 = |(e′
0 + e′

1, e
′
0 + c1e

′
1 + c2e

′
2)|2

therefore 4 = |1 + c1|2. This means Re(c1) = 1 and so c1 = 1 because |c1| is already
equal to one. Similarly, taking |(e0 + e2, e0 + e1 + e2)|2 we can prove c2 = 1.

Therefore,

T (e0 + e1 + e2) = e′
0 + e′

1 + e′
2. (7.6)
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Step 6
We try next to define T on a vector of type e0 + be1 + ce2. Choose the unique vector
e′
0 + b′′e′

1 + c′′e′
2 in the ray s{e0 + be1 + ce2}. By taking

|(e0 + e1, e0 + be1 + ce2)|2 = |(e′
0 + e′

1, e
′
0 + b′′e′

1 + c′′e′
2)|2

we get using the by-now-familiar argument b′′ = Re(b) + ε3Im(b) where this ε3 is
peculiar to the ray s{e0 + be1 + ce2}.

We will now discuss the equality

|(e0 + be1, e0 + be1 + ce2)|2 = |(e′
0 + b′e′

1, e
′
0 + b′′e′

1 + c′′e′
2)|2 (7.7)

with b′ = Re(b) + ε1Im(b) and b′′ = Re(b) + ε3Im(b).
Note that although we know that b′′ is determined by the condition that e′

0 +
b′′e′

1 + c′′e′
2 is in the ray s{e0 + be1 + ce2}, b′ is determined by the condition that

e′
0 + b′e′

1 is in the ray s{e0 + be1}. We show below that b′′ = b′.
We get from the above equality (7.7) of transition probabilities

|1 + |b|2|2 = |1 + b′∗b′′|2

or Re(b′∗b′′) = |b|2. This means ε1ε3 = 1 or ε3 = ε1. Thus b′′ = Re(b) + ε3Im(b) =
b′.

Similarly considering

|(e0 + e2, e0 + be1 + ce2)|2 = |(e′
0 + e′

2, e
′
0 + b′e′

1 + c′′e′
2)|2

we get c′′ = Re(c) + ε4Im(c) and by

|(e0 + ce2, e0 + be1 + ce2)|2 = |(e′
0 + c′e′

2, e
′
0 + b′′e′

1 + c′′e′
2)|2

where c′ = Re(c) + iε2Im(c) we get again ε4 = ε2 and c′′ = c′.
Therefore from T (e0 + be1) = e′

0 + b′e′
1 and T (e0 + ce2) = e′

0 + c′e′
2 we infer

that the vector e′
0 + b′e′

1 + c′e′
2 is in the ray s{e0 + be1 + ce2}. We therefore define

T (e0 + be1 + ce2) = e′
0 + b′e′

1 + c′e′
2 (7.8)

b′ = Re(b) + iε1Im(b), c′ = Re(c) + iε2Im(c). (7.9)

Step 7
We now show that actually ε1 = ε2.

Consider the unit vector e3 = (e1 + e2)/
√
2. Define e′

3 = (e′
1 + e′

2)/
√
2.We show

that e′
3 is in the ray s{e3}.

According to the lemma a typical vector in s{e3} is of the form c1e′
1 + c2e′

2 where
|c1| = |c2| = 1/

√
2. Choose the unique vector e′

1/
√
2 + c′

2e
′
2. From |(e0 + e1 +
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e2, e3)|2 = |(e′
0 + e′

1 + e′
2, e

′
1/

√
2 + c′

2e
′
2)|2 we get 2 = |1/√2 + c′

2|2 which implies
c′
2 = 1/

√
2.

We already have

T (e0 + e3) = e′
0 + e′

3. (7.10)

Let us choose from s{e0 + de3} the unique vector e′
0 + d ′e′

3 with d ′ = Re(d) +
iε5Im(d) and define

T (e0 + de3) = e′
0 + d ′e′

3. (7.11)

On the other hand

T (e0 + de3) = T (e0 + de1/
√
2 + de2/

√
2) = e′

0 + d ′′e′
1/

√
2 + d ′′′e′

2/
√
2

with

d ′′ = Re(d) + iε1Im(d), d ′′′ = Re(d) + iε2Im(d).

The comparison of these two definitions gives

ε1 = ε5 = ε2.

Since e1 and e2 could be any two arbitrary orthogonal unit vectors in M, it follows
that there is a common value ε for the whole of M.

Let us define a function χ of complex numbers

χ(c) = Re(c) + iεIm(c). (7.12)

This function which is either χ(c) = c for ε = 1 and χ(c) = c∗ for ε = −1, has the
obvious properties

χ(c + c′) = χ(c) + χ(c′) (7.13)

χ(cc′) = χ(c)χ(c′) (7.14)

χ(c∗) = χ(c)∗, |χ(c)| = |c|. (7.15)

We can summarize the progress so far by saying that T has been defined on all
vectors of the type e0 + f where f ∈ M (recall that M is the subspace orthogonal
to e0) by the equation

T (e0 + f ) = e′
0 + f ′ (7.16)
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where the vector f ′ is uniquely determined. Let us therefore give the definition of T
on all vectors of M by

T ( f ) = f ′, (7.17)

This mapping on vectors ofM satisfies the following rules

T ( f + f ′) = T ( f ) + T ( f ′), (7.18)

T (c f ) = χ(c)T ( f ). (7.19)

Step 8
Finally, define T on any vector of H of the type ae0 + f where f ∈ M by

T (ae0 + f ) = χ(a)e′
0 + T ( f ). (7.20)

This completes the construction of T . As defined it satisfies

T ( f + g) = T ( f ) + T (g), (7.21)

T (c f ) = χ(c)T ( f ). (7.22)

If e is a unit vector then T (e) is also a unit vector and for any numbers a and b

(T (ae), T (be)) = χ(a)∗χ(b) = χ(a∗b).

Since every vector can be expanded in an orthonormal basis from f = ∑
aiei and

g = ∑
b j e j we get

(T ( f ), T (g)) =
∑

χ(a∗
i bi ) = χ(( f, g)). (7.23)

The vector mapping T is the required compatible unitary or anti-unitary operator,
depending on whether χ(c) = c or χ(c) = c∗.

But we must remember the entire construction was made starting from the initial
vector e0. We must prove that it does not matter which vector e0 is chosen in the
beginning.
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7.6 The Final Step

We first prove that if T1 and T2 are two vector mappings compatible with the same
symmetry transformation then they can differ only by a phase factor. Strictly speaking
this holds inHilbert spaces of dimension greater than one. For one dimensional vector
space there can be a unitary as well as an anti-unitary mapping.

Let us first note that if f and g are two linearly independent vectors then the
Schwarz inequality is a strict inequality. The equality holds if and only if the vectors
are proportional. So

|( f, g)|2 < ( f, f )(g, g).

This implies for any vector mapping compatible with a symmetry transformation

|(T ( f ), T (g))|2 < (T ( f ), T ( f ))(T (g), T (g)).

This shows that if f, g are linearly independent then so are T ( f ) and T (g).
Now let T1 and T2 be two operators both compatible with the same symmetry

transformation. As T1( f ) and T2( f ) belong to the same ray they differ by a phase
factor. Let the factor for vector f be written as ω( f ).

T1( f ) = ω( f )T2( f )

where |ω( f )| = 1.
We show that ω( f ) actually does not depend on f . Let f and g be two linearly

independent vectors. Then

T1( f + g) = ω( f + g)T2( f + g) = ω( f + g)T2( f ) + ω( f + g)T2(g)

On the other hand

T1( f + g) = T1( f ) + T1(g) = ω( f )T2( f ) + ω(g)T2(g)

Equating the two and using the linear independence of the vectors T2( f ) and T2(g)

we get

ω( f ) = ω(g) = ω( f + g)

This proves the independence of our construction on any particular choice of e0.
And this completes the proof.
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7.7 Problems

In addition to the continuous spacetime symmetries of the Poincare group, discussed
in the first chapter, the discrete symmetries like the space-inversion or parity, and
time reversal also keep the metric, or the line element of special relativity invariant.
Denote by Is = −η and It = η the 4 × 4 parity and time reversal matrices. Their
product, the space-time inversion Is It ≡ I = −1 is also a symmetry.

It = −Is = η =

⎛

⎜
⎜
⎝

−1
1
1
1

⎞

⎟
⎟
⎠ . (7.24)

Their group multiplication laws with Poincare transformations (a,�), � ∈ L↑
+ are

Is(a,�)I−1
s = (Isa, Is�I−1

s ),

It (a,�)I−1
t = (Ita, It�I−1

t ),

I (a,�)I−1 = (−a,�). (7.25)

Wigner’s theorem assigns operators P, T and I to the symmetries defined by Is, It
and I respectively. These operators could be unitary or anti-unitary, andundetermined
up to a phase factor. Since the squares of all three Is, It and I are equal to the identity
of the group, (which is denoted by the identity operator on theHilbert space of states),
the operators P2, T 2 and I2 must be equal to phase factors ωs,ωt and ωI times the
identity operator, respectively. We are free to choose the phase factor of I so that (as
I = Is It ),

I = PT
P2 = ωs = 1, chosen by convention

T 2 = ωt

I2 = ωI .

The choice P2 = 1 still leaves the parity operator undetermined up to ±1 which can
only be fixed in specific cases.

Problem 7.1 Show that as Is(a, 1)I−1
s = (Isa, 1) and It (a, 1)I−1

t = (Ita, 1), we
must chooseP to be unitary andT to be anti-unitary to avoid these operatorsmapping
states of positive energy into negative energy states.

Problem 7.2 As T is anti-unitary, (and so is I) show that phases ωt and ωI are real,
and therefore equal to ±1.
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Problem 7.3 Derive the multiplication table of the discrete symmetries:

P T I
P 1 I T
T ωtωII ωt1 ωIP
I ωtωIT ωtP ωI1

. (7.26)

Hint: P−1 = P, T −1 = ωtT and I−1 = ωII.
Problem 7.4 Work out the relations (7.25) for infinitesimal generators Pμ, J andK
of Poincare group and P and T .

PPμP−1 = (Is P)μ,

PJP−1 = J,

PKP−1 = −K,

T PμT −1 = (Is P)μ, Is and not It !

T JT −1 = −J,

T KT −1 = K.

Problem 7.5 (Project) Follow the argument for proof of the Wigner theorem as
given in Refs. [3, 4] below.

7.8 Notes and References

Wigner’s theorem was first proved in his original German book of 1931. The English
translation is [1]. We follow the proof of the theorem by Bargmann in Ref. [2]. More
recent and elegant proofs where references to other, earlier, proofs can be found
is a paper by Simon, Mukunda, Chaturvedi and Srinivasan [3], and its follow-up
by Simon, Mukunda, Chaturvedi, Srinivasan and Hamhalter [4]. Among textbooks,
Wigner’s theorem is discussed in Weinberg [5].
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