SPRINGER BRIEFS IN PHYSICS

Georgios Pastras

The Weierstrass
Elliptic Function

and Applications

in Classical and
Quantum Mechanics
A Primer for Advanced
Undergraduates

@ Springer



SpringerBriefs in Physics

Series Editors

Balasubramanian Ananthanarayan, Centre for High Energy Physics, Indian Institute
of Science, Bangalore, India

Egor Babaev, Physics Department, University of Massachusetts Amherst, Amherst,
MA, USA

Malcolm Bremer, H H Wills Physics Laboratory, University of Bristol, Bristol, UK

Xavier Calmet, Department of Physics and Astronomy, University of Sussex,
Brighton, UK

Francesca Di Lodovico, Department of Physics, Queen Mary University of London,
London, UK

Pablo D. Esquinazi, Institute for Experimental Physics II, University of Leipzig,
Leipzig, Germany

Maarten Hoogerland, University of Auckland, Auckland, New Zealand

Eric Le Ru, School of Chemical and Physical Sciences, Victoria University
of Wellington, Kelburn, Wellington, New Zealand

Dario Narducci, University of Milano-Bicocca, Milan, Italy

James Overduin, Towson University, Towson, MD, USA

Vesselin Petkov, Montreal, QC, Canada

Stefan Theisen, Max-Planck-Institut fiir Gravitationsphysik, Golm, Germany

Charles H.-T. Wang, Department of Physics, The University of Aberdeen,
Aberdeen, UK

James D. Wells, Physics Department, University of Michigan, Ann Arbor, MI,
USA

Andrew Whitaker, Department of Physics and Astronomy, Queen’s University
Belfast, Belfast, UK



SpringerBriefs in Physics are a series of slim high-quality publications encom-
passing the entire spectrum of physics. Manuscripts for SpringerBriefs in Physics
will be evaluated by Springer and by members of the Editorial Board. Proposals and
other communication should be sent to your Publishing Editors at Springer.

Featuring compact volumes of 50 to 125 pages (approximately 20,000—45,000
words), Briefs are shorter than a conventional book but longer than a journal article.
Thus, Briefs serve as timely, concise tools for students, researchers, and professionals.
Typical texts for publication might include:

e A snapshot review of the current state of a hot or emerging field

e A concise introduction to core concepts that students must understand in order
to make independent contributions

e An extended research report giving more details and discussion than is possible
in a conventional journal article

e A manual describing underlying principles and best practices for an experi-
mental technique

e An essay exploring new ideas within physics, related philosophical issues, or
broader topics such as science and society

Briefs allow authors to present their ideas and readers to absorb them with
minimal time investment. Briefs will be published as part of Springer’s eBook
collection, with millions of users worldwide. In addition, they will be available, just
like other books, for individual print and electronic purchase. Briefs are
characterized by fast, global electronic dissemination, straightforward publishing
agreements, easy-to-use manuscript preparation and formatting guidelines, and
expedited production schedules. We aim for publication 8-12 weeks after
acceptance.

More information about this series at http://www.springer.com/series/8902


http://www.springer.com/series/8902

Georgios Pastras

The Weierstrass Elliptic
Function and Applications
in Classical and Quantum
Mechanics

A Primer for Advanced Undergraduates

@ Springer



Georgios Pastras

Institute of Nuclear and Particle Physics
National Centre for Scientific Research
“Demokritos”

Agia Paraskevi, Greece

ISSN 2191-5423 ISSN 2191-5431 (electronic)
SpringerBriefs in Physics
ISBN 978-3-030-59384-1 ISBN 978-3-030-59385-8  (eBook)

https://doi.org/10.1007/978-3-030-59385-8

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-030-59385-8

Dedicated to the memory of my father
Konstantinos



Preface

The field of elliptic functions, apart from its own mathematical beauty, has many
applications in physics in a variety of topics, such as string theory or integrable
systems. Most physics or applied mathematics students, who desire to explore the
field, do not have available time for a full mathematics course. As a consequence,
they have to consult either handbooks of formulae, which do not provide deep
knowledge on the subject, or textbooks for abstract mathematicians, which are
written in a non-familiar language.

This text aims at senior undergraduates in physics or applied mathematics. Of
course, junior graduate students, who are not familiar with the subject of elliptic
functions, will also benefit from this book. The text focuses on the Weierstrass
theory of elliptic functions instead of the Jacobi theory. This is a personal prefer-
ence of the author. At a deeper level this preference originates from the fact the the
Weierstrass elliptic function uniformizes the torus, when expressed as an elliptic
curve.

The text provides a fast, but thorough introduction to the mathematical theory
and then presents some important applications in classical and quantum physics.
I expect the reader to benefit from the structure of this book, based on the following
principle: For a physicist or an applied mathematician, mathematics and physics
should form an endless loop; Better knowledge of mathematics means more tools to
do physics. At the same time, the intuition gained by the solution of physical
problems leads to better understanding of the mathematical tools. Following this, I
believe the simple applications, such as the particle in a cubic potential or the
simple pendulum, will greatly help the reader to develop physical intuition on the
behaviour of the Weierstrass elliptic and related functions.

At the last chapters of the book, some more interesting examples are presented,
such as the n = 1 Lamé problem. Everyone is aware of Bloch’s theorem, however,
very few undergraduates have ever seen a periodic potential where they can specify
the band structure analytically. This can be performed in the case of the n = 1 Lamé
problem, with the help of elliptic functions. The text is supplemented by problems
and solutions to help the reader gain familiarity not only with the notions, but also
with the techniques. The advanced reader will find some more difficult and

vii



viii Preface

interesting problems, which are inspired by contemporary research on classical
string solutions and the sine-Gordon equation, at the last chapter.

For Chaps. 1-3, the reader is required to have basic knowledge on complex
calculus including Cauchy’s residue theorem. For Chap. 4, elementary experience
on classical mechanics is required, mainly on one-dimensional problems and the
conservation of energy. Finally, for Chap. 5, the reader is required to be familiar
with basic quantum mechanics, including Schrédinger’s equation, while some
familiarity with Bloch’s theorem will also be helpful.

I wish to everyone, who desires to explore and conquer the seductive relation
between mathematics and physics, to find this book enjoyable.

Athens, Greece Georgios Pastras
July 2020
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Chapter 1 ®)
The Weierstrass Elliptic Function oo

Abstract The elliptic functions are meromorphic complex functions, which are
periodic in two distinct directions in the complex plane. As such, they are naturally
well-defined on the torus. For this reason, they find numerous applications in physics.
Although their definition is quite simple, it leads to a particularly rich and beautiful
set of properties. In this chapter, we study the generic properties of elliptic functions.
Then, we proceed to construct the Weierstrass elliptic function and study its features,
focusing on those that are particularly useful for its applications in Physics.

1.1 Elliptic Functions

The elliptic functions are defined in a very simple way: they are doubly-periodic
meromorphic functions of one complex variable. Although their definition is quite
simple, it leads to a particularly rich and beautiful set of properties. It is not an
exaggeration to say that a detailed and thorough study of these properties allows an
understanding of the behaviour of the elliptic functions, as intuitive as the one that
everyone has on the behaviour of the simple trigonometric functions.

Historically, the elliptic functions were introduced by Abel in his try to invert
the elliptic integrals. The first original constructions of elliptic functions are due
to Weierstrass [1] and Jacobi [2]. In this book, we focus on the former. The two
constructions are equivalent; it is quite simple to express the Weierstrass’s elliptic
function in terms of Jacobi’s elliptic functions and vice versa.

Excellent pedagogical texts on the subject of elliptic functions are the classic text
by Watson and Whittaker [3] and the more specialized text by Akhiezer [4]. Useful
reference handbooks with many details on transcendental functions, including those
used in this book, are provided by Bateman and Erdélyi, [5], which is freely available
online, as well as the classical reference by Abramowitz and Stegun [6].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020 1
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2 1 The Weierstrass Elliptic Function

1.1.1 Basic Definitions

Let us consider a complex function of one complex variable f (z) obeying the prop-
erty
fG@+20)=f(@), f@E+20)=/f(2), (LD

for two complex numbers w; and w,, whose ratio is not purely real (thus, they
correspond to different directions on the complex plane). Such a function is called
doubly-periodic with periods 2w, and 2w, . A meromorphic, doubly-periodic function
is called an elliptic function.

The complex numbers 0, 2w1, 2w, and 2w; + 2w, define a parallelogram on the
complex plane. Knowing the values of the elliptic function within this parallelogram
completely determines the elliptic function, as a consequence of the property (1.1).
However, instead of 2w and 2w;, one could use any pair of linear combinations of the
latter with integer coefficients, provided that their ratio is not real. In the general case,
the aforementioned parallelogram can be divided to several identical cells. If 2w, and
2w, have been selected to be “minimal”, i.e. if there is no 2w within the parallelogram
(boundaries included, vertices excepted), such that f (z + 2w) = f (), then the
periods 2w, and 2w, are called fundamental periods and the parallelogram is called
a fundamental period parallelogram.

Two points z; and z, on the complex plane whose difference is an integer multiple
of the periods

70 — 21 = 2mw; + 2nwy, m,n € 7, (1.2)

are called congruent to each other. For such points we will use the notation
21~ — 271 =2mw; +2nwy, m,n € 7. (1.3)

Obviously, by definition, the elliptic function at congruent points assumes the same
value,

u~zn=f@)=f(z). (1.4)

A parallelogram defined by the points zg, zo + 2w, 20 + 2w, and zg + 2w, + 2w»,
for any zo, is called a “cell” (Fig.1.1). It is often useful to use the boundary of an
arbitrary cell instead of the fundamental period parallelogram to perform contour
integrals, when poles appear at the boundary of the latter.

Knowing the roots and poles of an elliptic function within a cell suffices to describe
all roots and poles of the elliptic function, as all other roots and poles are congruent
to the former. As such, a set of roots and poles congruent to those within a cell is
called an irreducible set of roots or an irreducible set of poles, respectively.
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Imz

20 + 2w + 2ws
o ®

Fig. 1.1 The fundamental period parallelogram is shaded with blue and an arbitrary cell is shaded
with red. The dashed lines define the period parallelograms

1.1.2 Modular Transformations

Given two fundamental periods 2w; and 2w,, one can define two different periods
as,

®| = aw; + bws, (1.5)

@y = cw + dws, (1.6)
where a, b, ¢, d € Z. Any period in the lattice defined by ) and v}, namely 2w =
2m’w| + 2n'w) is obviously a period of the old lattice, but is the opposite also true?i.e.
are the new periods w] and )} a fundamental pair of periods? In order for the opposite
statement to hold, the area of the period parallelogram defined by the new periods 2w
and 2w} has to be equal to the area of the fundamental period parallelogram defined

by the original ones 2w, and 2w, (see Fig. 1.2). The area of the parallelogram defined
by two complex numbers z; and z is given by

A = [Im (z:22)] . (L.7)
It is a matter of simple algebra to show that
Im (0} @,) = (ad — be) Im (w1@,) .
Thus, the new periods can generate the while original lattice if

ab
cd

‘::l:l, (1.8)

in other words, if
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Imz

2w

Rez

2(,()1

Fig. 1.2 The green periods 2w| = 4w; — 2w, and 2w} = 2w can generate the whole original
lattice. The red periods 20| = 4w + 2w; and 2w} = 2w, generate only half of the original lattice.
For example, there is no way to reach the red-dotted vertex by a linear combination of 2w{ and 2w/
with integer coefficients. The area of the parallelogram defined by 2w/ and 2w} is equal to the area
of the parallelogram defined by the original periods, whereas the one defined by 2w/ and 2w/ has
double this area

ab
(cd) eSL(2,7). (1.9)
It is a direct consequence that an elliptic function necessarily obeys

f (@, o) = f(z o), o)), (1.10)

o\ W
(5)-5(2)

when

where S € SL (2, Z).

1.1.3 Basic Properties of Elliptic Functions

Before we proceed to the specific construction of an elliptic function, it is wise to
study some of the generic properties of elliptic functions. This is going to be useful
in multiple ways. Firstly, these properties are going to hint what are the simplest
possible specific realizations of an elliptic function. Secondly, when we are going to
have a specific elliptic function in hand, it will be possible to distinguish which of its
properties are direct consequences of the fact that it is an elliptic function and which
are unique for the specific realization.
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Theorem 1.1 The sum of residues over an irreducible set of poles of an elliptic
Sfunction vanishes.

To demonstrate this, we use Cauchy’s residue theorem over the boundary of a cell.
By definition, the poles of an elliptic function within a cell is an irreducible set of
poles. Therefore,

1
> Res(fiz)=5—¢ f(dz

z; eirreducible set of poles dcell

20+20 20+2w1+2w
=5 f@dz+ — f(2)dz
27i J., 270 J 420
1 20+2w 1 20
+ 5= f@dz+ — f () dz.
27 J 201420, 270 S0,

Shifting z by 2w; in the second integral and by 2w in the third, yields

1 2042w
E Res (f, zi) = —f [f (@) — f(z+2w)]dz
) ; 2mi J,
z; €irreducible set of poles 20

1 2042wy

3 [f (@) = f(z+2w)]dz,
i J,,

which vanishes as a consequence of f being a doubly periodic function with periods
2w and 2w;. Therefore,

Z Res (f, z;) = 0. (1.12)

z; eirreducible set of poles

Theorem 1.2 An elliptic function with an empty irreducible set of poles is a constant
function.

An elliptic function with no poles in a cell, necessarily has no poles at all, as a pole
outside a cell necessarily would have a congruent pole within the cell. Consequently,
such a function is not just meromorphic, but rather it is analytic. Furthermore, an
analytic function in a cell is necessarily bounded within the cell. A direct consequence
of property (1.1) is that an analytic elliptic function is bounded everywhere. But a
bounded analytic function is necessarily a constant function.

The number of roots of the equation

f@ =2 (1.13)

within a cell is the same for all 7y € C. Before demonstrating this, we will review
some properties of Cauchy’s integral.

Consider a meromorphic function g, with a number of poles #; and roots w; with
multiplicities r; and s; respectively, within a region bounded by a closed contour C.
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The Laurent series of the function g at the regime of a pole or a root zj is
8@ = cnlz—20)" + iz — 20" 4 -

with ¢,, # 0. In the case zg is a oot w;, then m = s; > 0, while in the case zo is a
pole u;, then m = —r; < 0. The derivative of g in the regime of a pole or root is

g @ =men(z—20)"" "+ m+ 1) iz —z0)" + -+

Furthermore, consider an analytic function /. Its Laurent series at the regime of a
pole or root of g is trivially

h(z) ~ h(z0) + ' (20) (z — z0) + - - -

It is a matter of simple algebra to show that the Laurent series of the function hg’/g
at the region of z is

g () _ mh(z0)
g@  z—2

h(2)

1
+mh’ (20) + Cmyt (m +1- c_2) h(z0) + O (z — z0)°.

m

Thus, at any root or pole of the function g, the function hg’/g has a first order pole
with residue mh (zp). It is a direct consequence of Cauchy’s residue theorem that

1 ’
—h() gg((;) =3 sk (wy) =3 i ). (1.14)
J i

2mi C

Let’s now return to the case of an elliptic function f. We would like to calculate
the contour integral of formula (1.14) with 2 (z) = 1, g (z) = f (2) — zp and C being
the boundary of a cell, namely

1 '@

270 Joeen f(2) — 20

The function f — zo is trivially elliptic, while differentiating equations (1.1), one
yields
[ @+20)=f @), f(+2m)=/[(2), (1.15)

implying that f is also an elliptic function with the same periods as f. In an obvious
manner, the function f’ (z)/ (f (z) — zo) is an elliptic function with the same periods
as f. A direct application of the fact that the sum of the residues of an elliptic function
over a cell vanishes (1.12) is

1 f' @

~ 2700 Jyen £ () — 20
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This combined with Eq. (1.14) yields
D si=Y ri=0. (1.16)
J i

Therefore,

Theorem 1.3 The number of roots of the equation f (z) = zg in a cell is equal to the
number of poles of f in a cell (both weighted by their multiplicity), independently of
the value of zy.

This number is called the order of the elliptic function f.
Theorem 1.4 The order of a non-constant elliptic function cannot be equal to 1.

A non-constant elliptic function has necessarily at least one pole in a cell as a con-
sequence of Theorem 1.2, thus its order is at least 1. However, an elliptic function
of order 1 necessarily has only a single first order pole in a cell. In such a case
though, the sum of the residues of the elliptic function in a cell equals to the residue
of this single pole, and, thus, it cannot vanish. This contradicts (1.12) and therefore
an elliptic function cannot be of order one. The lowest order elliptic functions are of
order 2. Such a function can have either a single second order pole or two first order
poles with opposite residues, in any cell.

Theorem 1.5 The sum of the locations of an irreducible set of poles (weighted by
their multiplicity) is congruent to the sum of the locations of an irreducible set of
roots (also weighted by their multiplicity).

To demonstrate this, we will calculate Cauchy’s integral with /2 (z) =z, 8 (z) = f (2)
and as contour of integration C the boundary of a cell. The left hand side of (1.14)
equals

1 zf' (2)

270 Joyer f ()

1 2042w / 1 20+2w1 +2w) ’

_/ Zf(z)d+_/ S @,
Z Z

= ; —F - . az ; o
2mi 0 f(Z) 2mi 0+2w; f(Z)
1 2042w / 1 20 i
b zf' (2) dz+ zf' (2) dz.
270 Jyr20 420, S (2) 270 Joyph2m, f ()

We shift z by 2w; in the second integral and by 2w; in the third one and we get

PO Y <zf’ (@)  (+2w) f (z+2wz)>dZ
2mi f @ [ (4 2w)
R (zf/ () (@+20) f @+ 2601)) dz
27i J, @ f (4 2w)

<0

20
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Using the periodicity properties of f and f’, (1.1) and (1.15) respectively, yields

L 20+20] (zf/ @  (@+2m) f (Z)>d

T 2w Jyy 7@ 7@
L [t (zf/ @  (+20p) f (Z)>d
2mi Jz f@ f@
_ o 2042w f’ (Z)dz w; z0+2w2 f’ (2) .
i Jz f @ i Jz f@

= =22In f (20 +201) ~In f (20)) + 2+ (In f (3 +202) ~In f (20)
Although zo + 2w; ~ z¢p ~ zo + 2w;, due to the branch cut of the logarithmic func-
tion, in general we have that In f (z0+ 2w;) —1In f (z9) =2imm and
In f (zo + 2wy) — In f (z9) = 2inm, withm, n € Z. Thus,
I =2mw; + 2nw, ~ 0.

Finally, applying property (1.14) we get
I = Zriui — ZSJ'U}]',
i J

which implies that

> rjug~ Y siw;, (1.17)
J i

which concludes the proof of Theorem 1.5.

1.2 The Weierstrass Elliptic Function

As we showed in previous section, the lowest possible order of an elliptic function
is 2. This leads to two possible paths to follow. The first path is the construction
of an elliptic function with two first order poles with opposite residues at each cell.
This path leads to Jacobi’s elliptic functions. The other path is the construction of
an elliptic function with a single second order pole in each cell. This path leads to
Weierstrass’s elliptic function. In this book we follow the latter path.

1.2.1 Definition

The construction of an elliptic function with a single second order pole in each cell
is not a difficult task. It suffices to sum an infinite set of copies of the function 1/z2
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each one shifted by 2mw; 4 2nw, for all m, n € Z. The usual convention includes
the addition of a constant cancelling the contributions of all these functions at z = 0
(except for the term with m = n = 0), so that the Laurent series of the constructed
function at the region of z = 0 has a vanishing zeroth order term. Following these
directions, we define,

1 1 |
9=t - . (1.18
" 2 {m,n}z;é:{o,m <(Z +2mw; + 2nw2)2 QCmw; + 2na)2)2> ( )

By construction, this function is doubly periodic with fundamental periods equal to
2a)1 and 20)2.
PE+20)=p @), pE+2w)=p@2). (1.19)

This function is called Weierstrass elliptic function.

1.2.2 Basic Properties

A direct consequence of the definition (1.18) is the fact that the Weierstrass elliptic
function is an even function
P(—2)=p@). (1.20)

Let’s acquire the Laurent series of the Weierstrass elliptic function at the regime
of z = 0. It is easy to show that

1 1 1 & Z\
(z+w)2_E=E;(k+l)(_E> '

Consequently,
QR — k+DHEDE 1 S,
p@)=—>+ ———s =5+ ) &,
72 kX:l: (mm2(0.0) (mw; + na)z)kJrz z2 kzl
where |
a=(k+1 D >

(0.0 (Zmer + 2nwn)

The fact that g is even implies that only the even indexed coefficients do not vanish,
axy+1 =0, (1.21)

L+1) Z 1 )
ary = | |
’ {m,n}#{0,0} Qmw; + 2nwy)* Y
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For reasons that will become apparent later, we define g, and g3 so that

1
p@ =5+ i—ézz - i—;z“ +0 (2%, (1.23)
implying that
1
=60 _— 1.24
g2 m Z (Zma)l =+ ang) ( )
1
= 140 _ 1.25
" 2 mon + 2n0)” e

1.2.3 Weierstrass Differential Equation

By direct differentiation of Eq. (1.18), we express the derivative of Weierstrass func-
tion as

9 () =-2 Z (1.26)

(z + mo) + nwy)®

It follows that the derivative of the Weierstrass elliptic function is an odd function
o' (—2)=—p (2. (1.27)

The Laurent series of  (z), ' (2), > (z) and p’? () at the regime of z = 0 are

p(z>=ziz+§—éz2+§;“+0(z6)
p’(z)z—%+f—éz+%3+(9(z5),
@3(2):% 32;‘;2%2 % 0 (2%,
9/2(Z):%_%%_4§+@(Z2)

Observing these expressions, we realize that there is a linear combination of the
above, which is not singular at z = 0. One can eliminate the sixth order pole by
taking an appropriate combination of > and g>. This leaves a function with a
second order pole. Taking an appropriate combination of the latter and g allows
to write down a function with no poles at z = 0. Trivially, adding an appropriate
constant results in a non-singular function, which is also vanishing at z = 0. The
appropriate combination turns out to be
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97 @) — 49’ @)+ a9 @) + 8 =0(2%).

But, the derivative, as well as powers of an elliptic function are elliptic functions
with the same periods. Therefore, the function ' (z) — 4> (z) + g2 (2) + g3 is
an elliptic function with the same periods as g (z). Since the latter has no pole at
z = 0, it does not have any pole in the fundamental period parallelogram, and, thus,
it does not have any pole at all; it is an elliptic function with no poles. According
to Theorem 1.2, elliptic functions with no poles are necessarily constants and since
©? (2) — 49> (2) + g2 (2) + g3 vanishes at the origin, it vanishes everywhere. This
implies that the Weierstrass elliptic function obeys the differential equation,

9% (@) =49 () — gp (1) — g =0. (1.28)

This differential equation is of great importance in the applications of the Weierstrass
elliptic function in physics. For a physicist it is sometimes useful to even conceive
this differential equation as the definition of the Weierstrass elliptic function.
It turns out that the Weierstrass elliptic function is the general solution of the
differential equation
dy

2
(d—) =4y’ — gy — g3 (1.29)
Z

Performing the substitution y = g (w), the Eq. (1.29) assumes the form

dw\2
<_w> _ 1,
dz
which obviously has the solutions, w = %z + z¢. This implies that y = g (+z + zg)

and since the Weierstrass elliptic function is even, the general solution of Weierstrass
equation (1.29) can be written in the form

y =+ z0). (1.30)

In the following, we will take advantage of Weierstrass differential equation to
deduce an integral formula for the inverse function of g. In order to do so, we define
the function z (y) as

(1.31)

o 1
z(y) == [ —dt.
v VA =gt — g

Differentiating with respect to z, one gets

dy 1 dy\*
dz \/4ys — gy —gs  \dz

We just showed that the general solution of this equation is
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y=p(@@+20).

Since the integral in (1.31) converges, it should vanish at the limit y — oo, i.e.

lim z (y) = 0. This implies that z = z is the position of a pole, or in other words it
y—>00

is congruent to z = 0. This means that
y = (@ +2mo; +2nw) =p (2).

Substituting the above into the Eq. (1.31) yields the integral formula for Weierstrass

elliptic function,
(o)

1
7= —_—dt. (1.32)
p@) 43 — got — g3

One should wonder, how the above formula is consistent with the fact that g is an
elliptic function, and, thus, all numbers congruent to each other should be mapped
to the same value of . The answer to this question is that the integrable quantity in
(1.32) has branch cuts. Depending on the selection of the path from g (z) to infinity
and more specifically depending on how many times the path encircles each branch
cut, one may result in any number congruent to z or —z. A more precise expression
of the integral formula is

o0 1
/ ————dt ~ *£z. (1.33)
»

@ VA4t3 — gt — g3

1.2.4 The Roots of the Cubic Polynomial

We define the values of the Weierstrass elliptic function at the half-periods w;, w,
and w3 := w| + w, as

eri=p(w), e:=pw), e :=gp@). (1.34)
The permutation between the indices of w’s and e’s is introduced for notational
reasons that will become apparent later. The periodicity properties of g combined

with the fact that the latter is an even function, imply that ¢ is stationary at the
half-periods. For example,

9 (@) = —p' (—o1) = —p' Qo —w) = —p' (@1),
implying that o’ (w;) = 0. Similarly one can show that

o' (@1) = o' () = p' (w3) = 0. (1.35)
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Substituting a half-period into Weierstrass equation (1.29) yields
4e} — gre; — g3 = 0. (1.36)

The derivative of g, as shown in Eq. (1.26) has a single third order pole in each cell,
congruent to z = 0. Thus, g’ is an elliptic function of order 3 and therefore it has
exactly three roots in each cell. Since w;, w, and ws all lie within the fundamental
period parallelogram, they cannot be congruent to each other, and, thus, they are these
three roots and there is no other root within the fundamental period parallelogram.
This also implies that w, w; and ws are necessarily first order roots of &’. All other
roots of g’ are congruent to those. Finally, the above imply that when Eq. (1.36) has
a double root, the solution of the differential equation (1.29) cannot be an elliptic
function.

An implication of the above is the fact that the locations z = w|, 7 = w; and
Z = w3 are the only locations within the fundamental period parallelogram, where
the Laurent series of the function g (z) — g (zo) has a vanishing first order term at
the region of zo. Consequently the equation ¢ (z) = fj has a double root only when
Jfo equals any of the three roots e, e, or e3. Since g is an order two elliptic function,
the complex numbers ey, e, and e3 are the only ones appearing only once in a cell,
whereas all other complex numbers appear twice.

Finally, Eq. (1.36) implies that e; are the three roots of the cubic polynomial
appearing in the right hand side of Weierstrass equation, namely

Q1) =4 —got —g3 =4(t —e)) (t —e) (t —€3) . (1.37)

This directly implies that e; obey

e1+e+e3=0, (1.38)
ejey + eres +ezep = —%, (1.39)
e10203 = %. (1.40)

1.2.5 Other Properties
The Weierstrass elliptic function obeys the homogeneity relation
82 &
9 (2 g2, 83) = 1 (uz; = —6) : (1.41)
ut

For the specific case u = i, the above relation assumes the form

© (2; 82, 83) = —9 (iz; &2, —&3) - (1.42)
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Finally, when two of the roots e, e; and e3 coincide, the Weierstrass elliptic
function degenerates to a simply periodic function. Assuming that the moduli g, and
g3 are real, then the existence of a double root implies that all roots are real. When the
double root is larger than the simple root, the Weierstrass elliptic function assumes

the form
360

; 12¢5, —8eg) = =
@(Z’ %o’ 860) ¢+ sinhz( Seoz)’

(1.43)

whereas when the double root is smaller than the simple root, it assumes the form

360

() (1.44)

o (z; 12¢Z, 868) = —ey +

If there is only one triple root, then it must be vanishing, since the three roots sum
to zero. In this case, the Weierstrass elliptic function degenerates to a function that
is not periodic at all, namely

©(z;0,0) = —
Z

1
5 (1.45)

The proofs of the homogeneity relation, as well as the double root limits of the
Weierstrass elliptic function are left as an exercise for the reader.

Problems

1.1 Using the integral formula for the Weierstrass elliptic function (1.32), show that
when g, and g; are real and all roots e, e, and e3 are also real, the half-period
corresponding to the largest root e; is congruent to a real number, whereas the half-
period corresponding to the smallest root e3 is congruent to a purely imaginary
number.

Then, show that when there is one real root and two complex ones, the half-period
corresponding to the real root e, is congruent to both a real and a purely imaginary
number.

1.2 Show that at the limit when two of the roots e, e; and e3 coincide, the Weierstrass
elliptic function degenerates to a simply periodic function and can be expressed in
terms of trigonometric or hyperbolic functions as described by formulae (1.43) and
(1.44). Find the value of the unique period in terms of the double root. Also show
that at the limit all three roots e, e, and e3 coincide, the Weierstrass elliptic function
degenerates to a non-periodic function as described by Eq. (1.45).

1.3 Use the definition (1.18) to deduce the homogeneity property of the Weierstrass
elliptic function (1.41).
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Chapter 2 ®)
The Weierstrass Quasi-periodic oo
Functions

Abstract In the first chapter, we used several times the fact that the derivative of
an elliptic function is also an elliptic function with the same periods. However, the
opposite statement is not correct; the indefinite integral of an elliptic function is not
necessarily an elliptic function. This class of non-elliptic functions typically pos-
sess other interesting quasi-periodicity properties. In this chapter we study two such
quasi-periodic functions, the zeta and sigma functions, which are derived from the
Weierstrass elliptic function. Then, we study their basic properties and express some
very useful theorems. Emphasis is given to the theorems that allow the expression
of any elliptic function in terms of the aforementioned quasi-periodic functions.

The study of Weierstrass quasi-periodic functions requires familiarity with the prop-
erties of Weierstrass elliptic function, at least those studied in Chap. 1. The reader
is encouraged to study the classic texts by Watson and Whittaker [1] and Akhiezer
[2], for more details. The reference handbooks by Bateman and Erdélyi [3] and
Abramowitz and Stegun [4] summarize many formulae on this subject. Some expe-
rience on the use of such handbooks can be proven very useful for the reader.

2.1 Quasi-periodic Weierstrass Functions

2.1.1 The Weierstrass ¢ Function

The Weierstrass ¢ function is defined as

d¢ (2)
=—p (), (2.1)
dz
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020 17
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furthermore satisfying the condition

lim <§ (z) — l) =0, 2.2)
z—0 Z

which fixes the integration constant.
Using the definition (1.18) of the Weierstrass elliptic function g, we find

1
(@) =-
z
1 1 z
+ — + -).
00 \& T 2mor+2nwy - 2moy +2nwy - 2moy + 2nw;)
(2.3)
Weierstrass ¢ function is an odd function.
(=) =—-¢(2). 2.4)

Notice that the definition (2.1) combined with the fact that g is an even function
implies that ¢ is an odd function up to a constant. The condition (2.2) fixes this
constant to zero, so that ¢ is an odd function.

2.1.2 Quasi-periodicity of the Function ¢

Equation (2.3) implies that in each cell defined by the periods of the corresponding
g function, the function ¢ has only a first order pole with residue equal to one.
As such, it cannot be an elliptic function with the same periods as g. Actually, it
cannot be an elliptic function with any periods, since it is not possible to define
a cell where the sum of the residues would vanish. The Weierstrass ¢ function is
quasi-periodic. Its quasi-periodicity properties can be deduced from the periodicity
properties of the Weierstrass g function. More specifically, integrating the relation
© (24 2w;) = o (2), we find

(24 2w) =¢ (z) +c.

The above relation for z = —w; yields ¢ (w;) = ¢ (—w;) + ¢. Since ¢ is an odd
function, the above implies that ¢ = 2¢ (w;), which in turn yields

$ (24 2wi) = ¢ (2) + 28 (o)) - (2.5)
One can easily prove by induction that

¢ (z+2mwy + 2nwn) = ¢ (2) + 2ms (w1) + 2n8 (2) . (2.6)
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The quantities ¢ (w1) and ¢ (w,) are related with an interesting property. Consider
the contour integral

1
I =— ¢ (2)dz.
2mi dcell

Since ¢ has only a first order pole with residue equal to one within a cell, Cauchy
residue theorem implies that
I=1.

Performing the contour integral along the boundary of a cell, we get

20+2w; 2042w +2w;
27l =/ ;(z)dz+/ ¢ (2)dz
0 Z

0+2w;
202w, 20
+/ ¢ (z)dz—i—/ ¢ (z)dz.

0+2w1+2w) 202wy

Shifting z by 2w, in the second integral and by 2w in the third, we yield

z0+2w
2wil = / (€ () —¢(z+2w))dz

20

2042wy
—/ (€ @) —¢(@z+2w))dz

20

z0+2w
_ f € @) — ¢ (2) — 2¢ (w2)) dz

20+2w;
—/ (¢ (@) —¢(2) —2¢ () dz

20

= —4w ¢ (w2) + 4w (w1) .

As aresult, ¢ (w;) and ¢ (w;) are related as

i
¢ (w1) — w18 (o) = > (2.7)

2.1.3 The Weierstrass o Function

Since Weierstrass elliptic function has a single second order pole in each cell, inte-
grating it once resulted in a function (the Weierstrass ¢ function) with a single first
order pole in each cell. Integrating once more would lead to a logarithmic singularity
in each cell. To avoid this, we define the subsequent quasi-periodic function as the
exponential of the integral of the Weierstrass ¢ function.
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The Weierstrass o function is defined as

o’ (2)
={(2), (2.8)
o (2)
together with the condition
im 2 1, (2.9)
7z—0 Z

which fixes the integration constant.
Integrating equation (2.3) term by term results in the following expression for the
o function.

z 2
o) =z l_[ (Z + 2mw; + 2nw, e e +2(2Wl+2”w2)2 ) (2.10)
(.l £(0.0) 2mwy + 2nw;

This implies that o is analytic. At the locations of the poles of , it has first order
roots.

Similarly to the definition of the ¢ function, the definition (2.8) determines o up
to a multiplicative constant. This constant is set by the defining condition (2.9). The
function o is an odd function,

o(—z)=—-0(2). (2.11)

2.1.4 Quasi-periodicity of the Function o

The Weierstrass o function is a quasi-periodic function. Its quasi-periodicity prop-
erties follow from the corresponding properties of the Weierstrass ¢ function. Inte-
grating the Eq.(2.5) yields

Ino (z 4 2w;) =Ino (2) +2¢ (w;) 7 +c,

or
0 (z+2w;) = CeX @ (7),

where C = e°. Substituting z = —w;, we get
0 (@) = Ce g (—w;) = —Ce >0 (wy),

implying, C = —eX@)ei,

function o is

This implies that the quasi-periodicity property of the

0 (z+2w;) = =X @ Eg (2). (2.12)
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Equation (2.12) can be used to prove by induction that

o (Z + 2ma)1 + anz) — (_1)m+n+mne(2m£(w1)+2n{(w2))(z+mw1+nw2)0, (Z) . (213)

2.2 Expression of Any Elliptic Function in Terms of
Weierstrass Functions

A very important application of the specific construction of an elliptic function by
Weierstrass is the fact that the functions g, ¢ or o can be used to express any elliptic
function with the same periods. In this section, we will derive such expressions and
use them in order to deduce interesting properties of a general elliptic function via
its expression in terms of Weierstrass functions.

2.2.1 Expression of Any Elliptic Function in Terms
of p and p’

Let us consider an elliptic function f (z). It can be trivially written as

_ f(z)+f(—z)+f(z)—f(—z)

f@ 5 2% ()

9 (2).

Both functions f(ZHzf(_Z) and f(zz)@_,{z()_ 2 are even. Therefore, in order to express an
arbitrary elliptic function in terms of g and g’, it suffices to find an expression of an
arbitrary even elliptic function in terms of g and g’.

Assume an even elliptic function g (z). As it is even, any irreducible set of poles
of g (z) can be divided to a set of points u; with multiplicity r; and another set of
points congruent to —u; with equal multiplicities. In a similar manner, an irreducible
set of roots of g (z) can be divided to a set of points w; with multiplicities s; and
another set of points congruent to —w; with equal multiplicities. Now consider the

function
[T @) —p w))"

h(z):=g(z) = —.
Gome [1(e @ — o (w)))”

This function is obviously an elliptic function. Furthermore, it has no poles since,
the poles of g (z) are cancelled by the roots of the product in the numerator, the poles
of the numerator are cancelled with the poles of the denominator, and the poles due
to the zero’s of the product in the denominator are cancelled by the zeros of g (z). It
follows that the function / is constant as a result of Theorem 1.2 and therefore,
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[T(p @ —p (w)))”

J

=C .
SO Moo -—pwr

(2.14)

Summarizing, any elliptic function can be written in terms of g (z) and ©' (z)
with the same periods. This expression is rational in g (z) and linear in ' (z).

The above result has some interesting consequences. Consider two elliptic func-
tions f (z) and g (z) with the same periods. Then, they can be both expressed as
functions of g and g’ with the same periods,

fR=F[p@,. 9 @],
§@=G[p@.9 @]

Both functions F and G are rational in their first argument and linear in the second.
Bearing in mind that g (z) and g’ (z) are also connected through the Weierstrass
equation,

97 (2) =49’ (@) — g2 (2) — 83 =0,

one can eliminate g and g’ and result in an algebraic relation between f (z) and g (z).
This means that any pair of elliptic functions with the same periods are algebraically
connected. Two implications of the above sentence are:

1. There is an algebraic relation between any elliptic function and its derivative.
2. There is an algebraic relation between any elliptic function and the same elliptic
function with shifted argument.

An algebraic relation between an elliptic function f and the same elliptic function
with shifted argument reads

Do etw (Z cr (w) f! (z)) =0,

k=1 =1

where ¢; (w) are unspecified functions of w. If one interchanges z and w, they will

get
Do etw (Z a@ f (w)) =0,

k=1 =1

implying that the unknown functions ¢; (w) are necessarily powers of f (w), so

that the sums Y ¢; (w) f! (z) are symmetric polynomials in f (z) and f (w). This
=1
implies that the above equations assume the form of an algebraic relation between

f (), f (w) and f (z + w), i.e. an algebraic addition theorem.
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2.2.2 Expression of Any Elliptic Function in Terms of { and
Its Derivatives

Consider an elliptic function f (z). Assume that u; is an irreducible set of poles of
f (2), which have multiplicities ;. Furthermore, assume that the principal part of
the Laurent series at the region of a pole is given by

@)~ Cir Ci2 Cil

(2 —u;)" (z—u)>  z—u

+0(z—u)’).

Weierstrass ¢ function has a single first order pole with residue equal to one in
locations congruent to z = 0. It follows that the n-th derivative of ¢ has a single
(n + 1)-th order pole and the principal part of its Laurent series in the regime of

z=0is ) )
d;ziz) N (—Z:an Lo(@).
Therefore, the function
g@=f@=-3 (Ci,1§ (z—ui) — ci'2d§(il—z_bm +
| (=), d" e (2~ u,))
(r; — D! dzi—1

has no poles. It is not obvious though whether g (z) is an elliptic function, since
the function ¢ is not an elliptic function. However, all derivatives of ¢ are elliptic
functions, and, thus,

8@ +20) —g@ =) e (& (2—u)—¢ @+ 20 —u;)

= =27 (w;) ZCm =0,

since Y ¢; ;1 is the sum of the residues of the elliptic function f (z) in a cell.

1
Summarizing, the function g (z) is an elliptic function with no poles, and, thus, by
Theorem 1.2, it is a constant function. This means that the original elliptic function
f (z) can be written as

e d e (2 — s
f(Z)=C+ZZ((j)_ l;” :;Z(,-Zq 2y (2.15)

i j=i

It follows that an elliptic function is completely determined by the principal parts
of its Laurent series at an irreducible set of poles, up to an additive constant.
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2.2.3 Expression of Any Elliptic Function in Terms of o

Consider an elliptic function f (z) having an irreducible set of poles u; with mul-

tiplicities r; and an irreducible set of roots w; with multiplicities s;. We recall the

Theorem 1.3, which states that > " s; ~ ) r;. We also recall the Theorem 1.5, which
i J

states that ) s;w; ~ Y rju; . It is always possible to select the irreducible sets of

i J

poles and roots sothat ) s;w; = > r;u;. Inthe following, without loss of generality,
i J

we assume that we have made such a selection.

Consider the function

Har‘ (z —u;)
g@:=f () m

J

Since the function o has a unique first order root in each cell, which is congruent to
the origin, it is obvious that g (z) has neither poles nor roots.

Although it is not obvious, it turns out that the quasi-periodicity property (2.12)
of the function o implies that g (z) is an elliptic function. Indeed,

[To" (@ —u) [](=eetmen)”

o) — i i
2 (2 + 2a%) f(z)no_sj T T

J J

Sr—=>s; ZC(wk)|:(szk)<Zrffzs,>7<2riuifzsjwj):|
=g@CEhH" e b ’ ! =g().

Since g (z) is an elliptic function with no poles, it is a constant function and the
original elliptic function f (z) can be expressed as

[To% (2 —w))

_ J
f@)= C—H rm—— (2.16)

This implies that an irreducible set of poles and roots of an elliptic function
completely determines it, up to a multiplicative constant.
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2.3 Addition Theorems

2.3.1 Addition Theorem for p

Above, we showed that there is an algebraic addition theorem for every elliptic func-
tion. Therefore such an addition theorem exists for the Weierstrass elliptic function,
too.

We define two functions of two complex variables ¢ (z, w) and ¢; (z, w) as

P @) =c(z,w)p @) +c(z,w),
' (w) =c1 (z,w) p (W) + ¢ (z, w),

or in other words,

o Gw) = o' (2) — ' (w)
’ @) —pw)’
@ (w) —p W) e (2)
e (z,w) =
© (2) — o (w)

We also define the function f (x) of one complex variable as

)= (x)—c(z,w) e &) —c(zw).
Clearly, the function f has only one third order pole in each cell, which is congruent
to x = 0. Moreover, by definition it has two first order roots at x = z and x = w.
Theorem 1.3 implies that there is another first order root, which is not congruent to

x = z or x = w. Where does this root lie? Theorem 1.5 implies that the position of
this root is congruent to x = —z — w, i.e.

f(=z—w)=0.
The function g (x) of one complex variable which is defined as,
g () = 9% (1) = (c1 2 w) o () + 2 (2, )%,
clearly vanishes everywhere f (x) vanishes, therefore,
g@=gw)=g(-z—w)=0.

Using the Weierstrass differential equation (1.29), one can write the function g (x)
as,

g () =49 (x) — ¢ (z, w) P* (x)
— Q21 (z,w)er (2, w) + ) o (x) — (3 (2, w) + g3) -
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The fact that g (x) has the three roots x = z, x = w and x = —z — w, implies that
the third order polynomial

Q(P):=4P> - (z,w) P?
— Qe (z,w)er (z, w) + g2) P — (c% (z, w) + g3) (2.17)

has the roots P = g (z), P = g (w) and P = g (—z — w),
0@ =0 w)=0(FK(-z—w)) =0.
In other words, the polynomial Q (P) can be written as
QP)=4P-p@@)P—-—pW)(P—p(-z—w)).

Comparing the coefficients of the second order term of the polynomial Q (P) in
expression (2.17) and the above equation, we find

A (zw) =4(p @)+ o W)+ p(—z — w))

or

/ / 2
1<s@ () —p (w)> ’ (2.18)

petw)=—p@-—p W+ 0@ —p W)

which is the desired addition theorem for the Weierstrass elliptic function. Although
the expression (2.18), which is the traditional form of the addition theorem, involves
the derivative of Weierstrass elliptic function, the latter can be eliminated with the
use of Weierstrass differential equation (1.29) resulting in a purely algebraic relation
between © (2), ¢ (w) and o (z + w).

2.3.2 Pseudo-addition Theorems for ¢ and o

The functions ¢ and o are not elliptic, and, thus, they are not guaranteed to obey
algebraic addition theorems. However, the fact that any elliptic function can be written
as ratio of o functions can be used to deduce pseudo-addition theorems for them.

Consider the function g (z) — g (w) as a function of z. This function, obviously
has a second order pole in each cell, congruent to z = 0. In a trivial manner, it also
has two roots congruent to z = w and z = —w. Consequently, Eq. (2.16) implies
that p (z) — g (w) can be written as

oc(z—w)o (z+w)
0% (2) ’

PR —pw) =A
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Writing down the principal part of the Laurent series of the above relation at the
region of z = 0, we find

1 o (—w)o (w)
2=
implying that ]

The above results in the following pseudo-addition theorem for o functions

- +
P @) —pw) = _0 (Za2 (f)):;(zw) v . (2.19)

Differentiating equation (2.19) with respect to z and w, we arrive at the following
relations,
9 (@)= —TEWTCEEW oy et w) -2 (@),
0°(z) 0" (w)
o(z=w)o (z+w)
02 (z) 0% (w)

(¢ z—w) +¢z+w) —2¢ (w).

—p' (w) = —

Adding them up, we find,

o(z—w)o (z+w)
0% (z) 0 (w)

9 () — ' (w) =-2 CGz+w) —¢@ - (W),

which implies the following pseudo addition theorem for the ¢ function

19' () — ' (w)

- e : 2.20
2@ -p LETW @) (2.20)

Problems

2.1 Use the definitions (2.1) and (2.8) to deduce the homogeneity properties of the
Weierstrass quasi-periodic functions

¢ (2 2. 83) = uL (uz; % %) , 2.21)

1 82 83
0(z;8,8)=—0 (uz; i B (2.22)
2 e
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2.2 In problem 1.2 you showed that the Weierstrass elliptic function degenerates
to simple expressions in terms of trigonometric or hyperbolic functions, when two
roots coincide. Find the corresponding expressions for the functions ¢ and o. You
may use the results of problem 1.2.

2.3 Prove the parity properties of Weierstrass quasi-periodic functions. Namely,

e Show that the definition (2.1) together with the defining condition (2.2) imply that
¢ is an odd function.

e Show that the definition (2.8) together with the defining condition (2.9) imply that
o is an odd function.

2.4 Prove by induction the relations giving the Weierstrass quasi-periodic functions
after a shift of their argument by an arbitrary period in the lattice of the corresponding
Weierstrass elliptic function. Namely,

e Use Eq. (2.5) to prove (2.6).
e Use Eq. (2.12) to prove (2.13).

2.5 Use the addition theorem for Weierstrass elliptic function to show that

2¢% + ese

o Cto)=e + A2 (2.23)
 (2) — e
2¢% + eqe

9@ +w)=e+ =12 (2.24)
o (2) —e3
2¢2 + eze

P E+w) =€+ 2L (2.25)
P () —e

2.6 Use the fact that every elliptic function can be written in terms of the ¢ function
and its derivatives to deduce the pseudo-addition theorem for the ¢ function.

2.7 Use the pseudo-addition theorem of the ¢ function to deduce the addition theo-
rem for the g function.

2.8 Use the addition theorem of the g function to deduce a duplication formula.
Then, Use the fact that ¢ (2z) can be considered an elliptic function with the same
periods as g (z) to express it in terms of ¢ (z) and its derivatives and result in the
same duplication formula. For this purpose, you will find the results of problem 2.5
useful.
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Chapter 3 ®)
Real Solutions of Weierstrass Equation oo

Abstract The simplest applications of the Weierstrass functions in physics are
classical mechanics problems with one degree of freedom, where the Weierstrass
differential equation emerges as the conservation of energy. In such problems, the
moduli are connected to physical quantities, and, thus, they are real. Furthermore, the
unknown function, as well as the independent variable in the Weierstrass differential
equation represent physical quantities, such as position and time, and, thus, they are
real, too. It follows that we need to specify the real solutions in the real domain of
the Weierstrass differential equation, in the special case that the moduli are also real.
This is the task we carry out in this chapter.

The specification of the real solutions in the real domain of the Weierstrass differential
equation (1.29) with real moduli g, and g3 requires familiarity with the properties of
the Weierstrass elliptic function, which were presented in Chap. 1. The reader may
also consult the classic texts [1, 2], as well as the handbooks [3, 4].

3.1 Real Solutions of Weierstrass Equation in the Real
Domain

3.1.1 The Weierstrass Elliptic Function with Real Moduli

As the general solution of equation (1.29) is given in terms of the Weierstrass elliptic
function, we need to study the special properties of the latter in the special case that
the moduli are real.

When the moduli g, and g3 are real, there are two possible cases for the reality
of the three roots:

1. All three roots are real; conventionally we define them such that e; > e; > e3.
In this case, we may select the fundamental half-periods so that w, is real and
wy is purely imaginary. Then, they are given by the expressions,
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w] = , .
' Al—enlG-e)l-e)

" _i/e3 di (32)
R BN Y e Y e ‘

The above expressions imply that at the limit that the two larger roots coincide,
the real half-period diverges, whereas at the limit that the two smaller roots
coincide, the imaginary half-period diverges.

2. There is one real root and two complex ones, which are complex conjugate to
each other; conventionally, we define e; as the real one and we define e¢; and e;3
so that Ime; > 0. In this case, it is not possible to select the fundamental half-
periods as in the case of the three real roots, but we may select them so that they
are complex conjugate to each other. Then, they are given by the expressions,

w1+ wy = " di (3.3)

T, AG—enG-e)—e) '
(e dt

eroer =t /_oo JAl—eNe—D0—e) G4

As the proof of this statement is a little bit technical, we kindly ask the reader to
consent that it is true and continue in order to focus on its implications concerning
the real solutions of the Weierstrass equation. The curious reader may study a proof
of this statement in Sect. 3.2.

3.1.2 The Locus of Complex Numbers z for Whom g (z) Is
Real

We return to the investigation for real solutions of equation (1.29) with real moduli
g» and g3. Since the general solution of the latter is given in terms of the Weierstrass
elliptic function, this investigation requires the specification of the locus of complex
numbers z for whom g (z) is real. A preliminary observation that can be made is
the fact that the Weierstrass elliptic function assumes real values on the real and
imaginary axes. The definition of the elliptic function g (1.18) implies that

© (z; w1, w2) = 0 (T; 01, @) .

The definitions of the moduli g, and g3, as given by Egs. (1.24) and (1.25) imply
that

g2 (w1, @) = g2 (w1, w2), g3 (w1, ) = g3 (w1, w2)
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and consequently,
(25 82, 83) = © (25 82, 83) -

Thus, when the moduli g, and g3 are real, it holds that

(25 82, 83) = (25 82, &3) - (3.5)

The above equation, combined with the fact that g is even, implies that g is real
on the real and imaginary axes. Let x € R, then,

o (x; 82, 83) = o (X; g2, 83) = » (X; &2, 83) , (3.6)
P (ix; 8, 8) = (—ix; g2, 83) = (ix; &, 83) . 3.7)

But is g real on any other points, which are not congruent to the real or imaginary
axes? The answer depends on the reality of the roots e}, e; and e3. The function g is
an elliptic function of order two, and, thus, it assumes any real value (as well as any
complex value) twice in every cell. The only exception to this rule are the three roots
e;, which appear only once, since they correspond to double roots of the equation
g (z) = ¢;. In Fig. 3.1, one cell of g with real moduli is plotted for either three or
one real root.

Dotted points are congruent to a period or a half-period. Grey dots at the boundary
of the plotted cell are congruent to a black dot at another point of the boundary, and
thus, they are not considered to be part of the cell. This also holds for segments that
connect grey dots.

The poles are second order poles with Laurent coefficient equal to one. There-
fore, as one approaches a pole from the real axis, g tends to +o0o0, while when one
approaches a pole from the imaginary axis, g tends to —oo. Finally, as the derivative

Imz Imz
—00 e 2(1.)2
20)2

e (3 —00

‘e &2
PSS e
L 2
2w 2w
three real roots one real root

Fig. 3.1 The values of ¢ on the real and imaginary axes
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of g vanishes only at the half-periods, g is monotonous at the segments between
consequent half-periods and poles.!
Having the above in mind, and carefully following picture 3.1, we observe that

e when there are three real roots, the function g assumes all real values larger than
e twice in the segment [0, 2w/ ] on the real axis; each value appears once in [0, w1 ]
and once in [wy, 2w ]. Similarly, it takes all real values smaller than e3 twice in
the segment [0, 2w, ] on the imaginary axis.

e when there is only one real root, g takes all real values larger than e, twice in the
segment [—w; — w;, w; + w,]. Similarly, it takes all real values smaller than e,
twice in the segment [w; — w;, @ — w;] on the imaginary axis.

Therefore in the case of one real root, the function g assumes all real values
exactly twice in the cell of Fig. 3.1 at positions on the real and imaginary axes.
Indeed, only e, appears once, as it appears only at positions congruent to each other.
Consequently, the function g cannot assume any real value at any other point within
the cell, and, thus all positions where g is real on the complex plane are congruent
to a point either on the real or the imaginary axis.

In the case there are three roots, the function g assumes all real values larger than
e or smaller than e3 exactly twice in the cell at positions on the real and imaginary
axes. This means that there are other positions within the cell, where g is real and
it assumes all real values between e3 and e;. We already know such a point, namely
w3, where the function g assumes the value e;. It is a natural guess that g is real on
the horizontal and vertical axes passing through ws. This is indeed true. Assuming
that x € R and recalling that w, is real, whereas w; is purely imaginary,

P Ix+w) =p(—ix +w)=pix—ow)
=p(x —w +2w) =p (ix+w), (3.8)
Pt =px—w)=p&—w+2wm)=p(x+aw). (3.9

Thus, g assumes the values between e, and e; twice in the segment [w;, w; + 2w;]
on the shifted imaginary axis and the values between e; and e, exactly twice in
the segment [w;, 2w; + w;] on the shifted real axis. It follows that all real numbers
appear twice on the real, shifted real, imaginary and shifted imaginary axes except
for the roots that appear only once. As a result, the function g cannot be real at
any other position within the cell. All positions in the complex plane, where g
assumes real values have to be congruent to points on these four segments. Fig. 3.2
displays these positions as the green lattice. Although the green lattices in the two
cases look identical, notice the important difference; In the case of three real roots, the

!One may think that in order to have a stationary point on the real axis, it suffices that the real part of
g’ vanishes. However, this cannot be the case, as non-vanishing imaginary part of g’ would imply
that g is not real on the real axis, as we have shown. The same applies on the imaginary axis; g is
real on the imaginary axis, implying that &’ is purely imaginary. Therefore, a stationary point on
the imaginary axis is necessarily a root of g&’.
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Imz Imz
w 2w 2w
® 2. 5 1 2
w2 W] W2
L]
10 w 2w Rez 0] ‘W) + w2w] +2ws| Rez
three real roots one real root

Fig. 3.2 The locus of complex numbers z for whom g (z) is real

fundamental period parallelogram contains four cells of the “reality lattice”, whereas
in the case of one real root it contains only two.

Let us make a final comment; One may access all real numbers in a monotonous
manner, performing a walk along the circumference of the rectangle that is defined
by the origin and the three half-periods. Starting from the origin and moving along
the imaginary axis towards the half-period w,, the Weierstrass elliptic function is an
increasing function, assuming all real values smaller than e3. Then, moving along the
horizontal segment connecting w; and w3, it monotonously increases until it reaches
the value e,. Moving along the vertical segment connecting ws to wj, it increases
until it reaches the value e; and finally moving back towards the origin along the real
axis, it continues increasing assuming all real values larger than e;.

3.1.3 Real Solutions of the Weierstrass Equation in the Real
Domain

It is now simple to find what are the real solutions in the real domain of the equation

dy 2 3
—— ] =4y — gy —gs, (3.10)
dx

where g, and g3 are real. We know that in the complex domain, the general solution
of this equation is

y=gx—20), (3.11)

where zo € C. In our problem x and y has to be real. However, z; is a constant of
integration and has no physical meaning. It can assume any complex value, as long
as y is real for any real x. This is equivalent to selecting any line on the complex
plane that is parallel to the real axis. Figure 3.2 clarifies in that when there is only
one real root, all such lines are congruent to the real axis itself. On the contrary, when
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there are three real roots, there are two options, they are congruent to the real axis,
or the real axis shifted by w,. Consequently, the general real solution of (3.10) in
the real domain is

y=& & —x0), (3.12)
where xo € R, when there is one real root and
y=pkx—x) or y=p(x—x+w), (3.13)

where xg € R, when there are three real roots; the appropriate choice depends on
initial conditions, namely it depends on whether the initial value of y lies within
[er, o0) or [e3, e2].

This behaviour of the real solutions may appear a little bizarre at first. In Sect. 4.1,
this will become intuitively clear and obvious for the physicist, through a revealing
example from classical mechanics.

3.2 The Half-Periods for Real Moduli

In Sect. 3.1, we specified the real solutions of the Weierstrass differential equation in
the real domain for real moduli g, and g3. We did so based on the fact that when the
moduli are real the fundamental periods are either a real and purely imaginary one
(when the associated cubic polynomial has three real roots) or complex conjugate to
each other (when it has only one real root). In this section we present a proof of this
statement.

In principle we would like to invert the formulae (1.24) and (1.25) in order to
specify the half-periods w; and w, for given moduli g, and g3. Although it is obvious
that these formulae put certain restrictions on the fundamental periods of Weierstrass
elliptic function when the moduli are real, unfortunately, the problem of inverting
them is very difficult. The reader may find more on the inversion problem in the
chapter on the Theta functions of [1].

For this purpose, we will apply the integral formula for Weierstrass elliptic func-
tion (1.33), for the three half-periods. In all cases, we select the integration path along
the real axis.

Following Sect. 3.1, when the moduli g, and g3 are real, the roots of the cubic
polynomial are either all real or there is one real and two complex ones, the latter
being complex conjugate to each other. In the case there are three real roots, we find

1

- dt = x, 3.14

! / St —en G149
° 1

~ dt =y, 3.15

“ / NI I G-19)
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whereas when there is one real and two complex roots

w3 ™~ f !
e 40 - e (e —Reep)? + (Imey)?)
[ :
w3 ™~
e \/4 (t — e2) ((z — Reey)? + (Imey)?)

dt = x', (3.16)

dt = yr. (3.17)

In both cases, the integrand is real everywhere in the range of integration in the first
integral (the one providing x or x’), whereas it is imaginary everywhere in the range
of integration in the second one (the one providing y or y’). Therefore,

x,x iy, iy e R. (3.18)

The above imply that when there are three real roots the half-period w,; is congruent
to a real number and the half-period w, is congruent to an purely imaginary number,
ie.

x=0C2m;+1)w +2nw,, (3.19)
y =2mywi; + 2ny + 1) ws, (3.20)

where m, ny, mp, n, € Z. On the contrary, when there is only one real root the half-
period w3 = w; + w; is congruent to both a real and a purely imaginary number,
ie.

x'= @k + Do+ QL+ 1) w, (3.21)
VYV =Qk+ Do+ 2h+1)w,, (3.22)

where k], ll, kz, lz e 7.

The integrand in (3.14) never changes sign in the whole integration range. Con-
sequently, as the upper integration limit varies from e; to infinity, the integral mono-
tonically changes from O to its final value x. This means that x is not just a point on
the real axis that is congruent to the half-period w;, but there is no other such position
on the real axis between 0 and x. This implies that 2m; + 1 and 2n; are relatively
prime. In a similar manner, the above statement holds for x’, as well as for y and
y’ on the imaginary axis, and thus the pairs {2m,, 2n, + 1}, {2k; + 1, 2/; + 1} and
{2k, 4+ 1, 21, + 1} are also pairs of relatively prime numbers, i.e.

ged 2my + 1, 2ny) = ged (2my, 20y + 1) =1,
ged 2k + 1,21 + 1) = ged 2k, + 1,20, + 1) = 1.

We may redefine the periods w; and w, with the use of a modular transformation,
as described in Sect. 1.1,
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| = aw| + b},

Wy = cw) + dw),

where ad — bc = 1. Let us select b = —2n; and d = 2m + 1 in the case of three
real roots, whereas we select b = —2/; — 1 and d = 2k; + 1 in the case of one real
root. Then,

x = (ad — bc) o},
y = 2maa + 2ny + 1) ¢) @) + 2mab + 2ny + 1) d) o),
x" = (ad — bc) wi,

YV =(Qka+ Da+ Qh+ 1)) + (2ka+ 1) b+ 2L + 1) d) w).

We managed to eliminate ) in the expressions for x and x’. However, we should
ask whether there exist modular transformations for the specific selections of b and
d made above. In other words, are there integer solutions for a and c¢ to the equation

ad —be = 1 (3.23)

for the specific selections of b and d made above? This equation is a linear Diophan-
tine equation of the form ax + By = y and it is known that such equations have
integer solutions, as long as y is a multiple of the greatest common divisor of « and
B.Inboth cases b and d are relatively prime, and, thus, their greatest common divisor
is equal to one. Therefore, in both cases, Eq. (3.23) does have solutions. The reader
may find more on linear Diophantine equations in any introductory number theory
textbook, e.g. [5]. Furthermore, the parity of the selected b and d implies that in the
case of three real roots, a will be odd, while in the case of one real root a and ¢ have
to be of opposite parity. The above imply that

x=d, (3.24)
y = myo| + (2n) + 1) v}, (3.25)
¥ =, (3.26)
Y = (2K + 1) o] + 26w, (3.27)

where m/, n}, k3, I3, € Z. In both cases, the new lattice has been formed so that the
fundamental period parallelogram has one side parallel to the real axis.

Let us now focus in the case of three real roots. As we commented above, the
Weierstrass function ranges between +o0o and e; between the origin and the real
half-period x. The fact that g is even means that it actually ranges between +o0o and
e in the whole period between —x and x and consequently in the whole real axis.
The periodicity properties of the elliptic functions imply that this holds in any shifted
axis by any multiple of 2w, . If |2n/2 +1 | > 2, then the segment of the imaginary axis
from O to y crosses such a line, and, thus, there is point on this segment where g
takes a value larger or at most equal to e; (see Fig. 3.3).
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- :\_'. Rez

Fig. 3.3 An example of the inconsistency that appears whenever n}, # 0. In this example it is
assumed that m), = n/, = 1. It is evident that z is congruent to a point on the real axis, thus,
© (20) € [e1, +00). At the same time zq lies in the imaginary axis between 0 and y, therefore
& (z0) € (—00, e3]. Obviously, since e > e3, these statements cannot be both true

But we have already stated that Weierstrass function is real on the imaginary axis
and changes monotonically from —co atz = Oto ez at z = y. Since e3 < ey, This is
not possible. Therefore the only consistent possibility is n, = 0 (or n;, = —1) and

x = o,

y = mho| + .
A further modular transformation of the form

AN
W, =y,
A AN "
Wy = MHw; — Wy,
results in

x = of, (3.28)
y =), (3.29)

meaning that when there are three real roots, the two fundamental half-periods can be
selected so that one of them is real and the other purely imaginary. If such a selection
is performed, then their values are equal to x and y, which are given by the integral
formulae (3.14) and (3.15). The case ny = —1 simply results in y = —w}.

In a similar manner, in the case of one real root, monotonicity of the Weierstrass
elliptic function on the imaginary axis between 0 and y’ implies that [, = 1 (or
Iy =—1)and
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’ ’
wy,

X
Y = (2K, + 1) o} + 20).
In this case, it is easy to show that there is no modular transformation that would

preserve the reality of @, and simultaneously set w, to an imaginary value. Such a
transformation would necessarily be of the form

/ 1/
W] = oy,
wy = co| + w)
and it would transform the half-periods to the form,

’
X

ol
y = (2ky +2c + 1) o + 20},

Clearly, the coefficient of w{ cannot be set to zero by such a transformation. On the
contrary, in this case, one may perform the transformation

AN 7
W) = w| + w,,

wlz = — (k; + 1) a);’ — kéa)g,
to find

¥ = + o), (3.30)
y = —of + o}, (3.31)

meaning that w; and w, can be defined so that they are complex conjugate to each
other. If such a selection is performed, then the fundamental half-periods are given
by (x’ + y’) /2, where x” and y’ are given by the integral formulae (3.16) and (3.17)
respectively.
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Chapter 4 ®
Applications in Classical Mechanics e

Abstract In this chapter we study applications of Weierstrass functions in classical
mechanics, particularly in one-dimensional problems. The common characteristic of
these problems is the fact that the Weierstrass differential equation emerges as the
conservation of energy. The benefits of this study are going to be twofold: Firstly,
we are going to obtain analytic solutions to some basic mechanics problems, such
as the cubic potential or the simple pendulum, which allow the comprehension of
the qualitative behaviour of these systems. Secondly, we are going to acquire a
better physical understanding of the properties of the Weierstrass elliptic function,
especially those analysed in Chap.3, through the conception of the latter as the
solution to a mechanical problem.

In the first two chapters we performed a fast introduction to the theory of Weierstrass
elliptic and related functions. In the third chapter we focused on properties of the
latter that are going to be crucial for applications in physics. Although the first three
chapters cover the necessary background material for this chapter, the reader may
find the handbooks [1, 2], which provide fast access to formulae, useful.

4.1 Point Particle in a Cubic Potential

4.1.1 Problem Definition

Firstly, we study a problem where the Weierstrass differential equation emerges
directly as the conservation of energy. We consider a point particle moving in one
dimension under the influence of a force that is a quadratic function of position.
Without loss of generality, we select the origin of the coordinate system as the
position of extremal force and we select units, such that the mass of the particle
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equals 2 and the coefficient of the quadratic term of the force equals 12. With this
conventions, the equation of motion is written as

2% = Fy + 12x%. 4.1)

This equation can be integrated once to the form of conservation of energy. Fixing
the integration constant so that the potential vanishes at x = 0 we get

P4+ V@=E, V) =—Fyx—4x 4.2)

or
=4+ Fox + E. (4.3)

Obviously, there is no local minimum of the potential when Fjy > 0. In this case
all motions of the problem are scattering solutions evolving from 400 to a minimum
value of x and then back to +o0c. On the contrary, as shown in Fig. 4.1, when Fy < 0
there is alocal maximum of the potential at x = xo = +/—Fy/12 and alocal minimum

at x = —xp, and, thus, a range of values for the energy E, namely,
3
Fo\?
|E| < Eg, Eo= -3 ) (4.4)
V (x) V (x)
Ey |
—\/§XO —X‘o );0 \/3%? * *
_ o \
V(x) V(x)
\ L
£ ;
L H X X
e3 e (3] e

Fig. 4.1 The cubic potential for Fy < O (top left) and Fp > O top right. In the case Fyp < O, there
may exist one (bottom right) or two (bottom left) possible motions depending on the value of the
energy
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for whom the equation V (x) = E has three roots and consequently there are two
possible kinds of motion: One of them is a scattering solution evolving from 400 to
a minimum value of x and then back to +00 and the other is an oscillating solution
in the region of the local minimum of the potential.

4.1.2 Problem Solution

In the language of classical mechanics, it becomes obvious why the Weierstrass
differential equation has two independent real solutions when there are three real
roots and only one when there is one real root, as we showed in Chap. 3. The roots
play the role of the extrema of the motion, which are indeed the positions where the
velocity vanishes, as required for the roots. Furthermore, the solution that always
exists is the one defined on the real axis,

x=p(t_t0;_F07_E)’ (45)

which contains the pole, and, thus, it corresponds to the scattering solution. The
solution on the shifted real axis,

x:p(t_to—i_wz;_FOv_Ev)v (46)

is bounded between e3 and e, and corresponds to the oscillating solution in the region
of the local minimum. Finally, we would like to commend that from the point of view
of classical mechanics, it is natural that the Weierstrass elliptic function (or more
literally the solution of the Weierstrass equation) has order equal to two. In every
position there are two possible initial conditions that correspond to the same energy,
depending on the direction of the initial velocity. This is mirrored to the fact that the
same real value appears in two non-congruent positions in every cell. This does not
apply only at the extrema of motion, where the appropriate initial velocity vanishes
and indeed these correspond to the roots of the Weierstrass function, which appear
only once in every cell.

Finally, let’s make an interesting observation concerning the “time of flight” for
scattering solutions and the period of the oscillating solutions. The former is the
distance between two consecutive poles on the real axis, which obviously equals

Tscallering =2w. 4.7)

Similarly, the period of the oscillating solutions is the distance between two consec-
utive appearances of the same root. This is also clearly

Toscillating = 20w;. (4.8)
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Therefore, for the energies that an oscillating solution exists, the “time of flight”
of the scattering solution and the period of the oscillating solution with the same
energy are equal.

4.1.3 The Role of the Imaginary Period

The Weierstrass elliptic function naturally describes the motion of a point particle
in a cubic potential. The real period of the Weierstrass function (2w, in the case of
three real roots, 2w; in the case of one real root) is equal to the “time of flight” or
the period of the motion. Is there any physical meaning for the imaginary period?

It is easy to answer this question using the homogeneity transformation (1.41).
This relation with the specific selection i = i implies that

0 (z; 82,83) = —p (2; 82, —83) - 4.9)

It is a direct consequence that g (iz; g2, g3) obeys the differential equation,

de (iz; 82, —83)\’ _ .
<+ = —4p* (iz; g2, —83) + 200 (iZ; 82, —83) — &5.

Selecting g, = —Fy and g3 = E, we find that the function g (iz; —Fy, —E) obeys
the differential equation,

—E)\?
a2 )> = —4g’ (iz; —Fy, —E) — Fop (iz; —Fy, —E) — E,

and, thus, it is a solution to another one-dimensional point particle problem, namely,

AV =—E VO =y +Fy=-V0). (4.10)

This is clearly the problem of motion of a point particle in the inverted potential to
that of the initial problem, having the opposite energy.

In this problem, the point particle is moving in the complementary region than

that of the initial problem. This is clearly depicted in Fig. 4.2. The unbounded motion
of the point particle under the influence of the potential V is given by

y=& @ —1);—F,—E), (4.11)
while, when there is a bounded one, it is given by

y=g U — ) +w;—Fy, —E). 4.12)
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Fig. 4.2 The original and inverted point particle problems

The physical importance of the imaginary period is now obvious. The “time of
flight” of the unbounded motion, as well as the period of the bounded motion in this
inverted problem are given by the imaginary period of p (z; —Fy, —E, ), i.e.

Tscattering = Toscillating = _Ziw2~ (413)

4.2 The Simple Pendulum

The Weierstrass elliptic function naturally describes a point particle in a cubic poten-
tial, due to the fact that the conservation of energy takes the form of the Weierstrass
equation (1.29). Its applications though are not limited to this problem. There are
several other important problems with one degree of freedom that can be transformed
to that of a cubic potential with an appropriate coordinate transformation.

4.2.1 Problem Definition and Equivalence to Weierstrass
Equation

One simple and important problem that can be transformed to a cubic potential
problem is the simple pendulum. The equation of motion reads

6 = —w’sinb. (4.14)

It can be integrated once to take the form of energy conservation,

1.
592 +V (@) =E, V(@) =—wcos. (4.15)
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Fig. 4.3 The simple V (x)
pendulum potential I w2

—W

The potential V (0) is plotted in Fig. 4.3. The form of the potential indicates that

e there are no solutions for E < —w?,
2

e there are oscillating solutions for |E| < w”,
e there are continuously rotating solutions for E > w?.

We perform the change of variable

) E
—w cos@:Zy—i—g. (4.16)

Then, the conservation of energy assumes the form

2 2
¥ =4y - <% +w4)y—§<(§) —w4>. (4.17)

This is the standard form of Weierstrass differential equation. The solution for y of
course should be real, but we should also ensure that

E
'Zy—i—g < @?, (4.18)

so that the change of variable (4.16) leads to a real 6.

4.2.2 Problem Solution and Classification of Solutions

The roots of the cubic polynomial in the right hand side of Eq. (4.17) turn out to
acquire simple expressions. After some algebra, this polynomial assumes the form

E E o E o
Q(y)=4<y—§)<Y+g—7>(y+g+7)~ (4.19)
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Thus, the three roots are all real for any value of the energy constant E. They equal

E E 2 E 2
Xp 1= ——+w—, X3 1= e (4.20)

X1 = —,
3 6 2 6 2

We use the notation x; for the roots as given by Eqgs. (4.20) to reserve the notation
e; for the roots appropriately ordered. As there are always three real roots, there are
always two independent real solutions of Eq. (4.17). They are

y=g (@ —1; 8 (E), g (E)), 4.21)
y=p @ —to+w g (E), g (E)), (4.22)
where
E—E2 N CE((EY 4.23
82 ( )—?—i-a), &=73 <§> —w . (4.23)

The ordering of the three roots x; depends on the value of the energy constant E, as
shown in Fig. 4.4. As the roots e; are defined so that e; > e, > e3, the identification
of x; with e; depends on the value of the constant E. The appropriate assignments
are summarized in Table 4.1.

The unbounded solution (4.21) ranges from e; to infinity, whereas the bounded
one (4.22) ranges between e3 and e,. Using the appropriate assignment of roots for
each energy region, we find that the range of —w?cos@ =2y + E/3 =2y + x,
depending on the value of the energy, is given in Table 4.2.

The Table 4.2 clearly implies that the unbounded solution never corresponds to

areal 6. The bounded solution corresponds to a real solution only when E > —w?.

Fig. 4.4 The roots of the Xi
cubic polynomial (4.17) as
function of the energy

constant £ : — X1

w?

\

Ordering of roots

— X3

Table 4.1 The orderings of
the roots x; depending of the
value of the energy

E < —? el = X2, €2 = X3, €3 = X|

IE] < ? el =x2, €2 = X1, €3 = X3

E > o? e| = X1,€e) = X2,€3 = X3
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Table 4.2 The range of —w? cos @ depending of the value of the energy

The range of —w? cos @

For the unbounded solution For the bounded solution
E < —a? [a)z, +oo) [E, —a)z]
|E| < w? [a)z, +oo) [—a)z, E]
E > o? [E, +00) [—w2, wz]

Thus, as expected by the form of the potential, the pendulum problem has a real
solution only when E > —®? and this is given by the bounded solution (4.22).

Since the solution is single valued for cos 6, in order to find an analytic expression
for 8, one has to match appropriate patches, so that the overall solution is everywhere
continuous and smooth. It is not difficult to show that selecting initial conditions, so
that 6 (0) = 0 and 6 (0) > 0, the appropriate expression for the angle theta is

b (—1)L2I‘ZIJ arccos [ (2 (t + w2) + £)], E < o?,
(0l arccos [ (2 +om) + £)] 427 | g+ 1] E > 02
4.24)

It is left as an exercise for the reader to verify that the above expressions are every-
where continuous and smooth.

There is naturally a qualitative change of the form of the solutions at E = w?,
which is mirrored in the ordering of the roots. The period of the oscillatory motions
(E < 0?)is

Toscillating = 4(1)1 . (425)

while the period (or more literally the quasi-period) of the rotating motions (E > ?)
is
Trotating = 2w. (4.26)

The time evolution of 0 is sketched in Table 4.3. The difference between the two
expressions is due to the change of the topology of the solution. A half-period of the
solution corresponds to the transition from the equilibrium position to the maximum
displacement position. In the case of oscillatory motion four such segments are
required to complete a period, as after two segments the pendulum is back at the

Table 4.3 The elliptic solutions of the simple pendulum equation at multiples of the half-period

6 (0) 6 () ) | 0 (3w) 6 (4)
E < —w? -
|E| < w? 0 <n — arccos %) 0 — (n — arccos %) 0
E > o? 0 T 2w 3 4
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equilibrium position but with inverted velocity. On the contrary, in the case of a

rotating solution, the maximum displacement equals i, the velocity is never inverted,
and, thus, only two half-periods are required to complete a period.

4.3 Point Particle in a Hyperbolic Potential

4.3.1 Problems Definition and Equivalence to Weierstrass
Equation

Now let’s consider the case of a point particle moving in one dimension under the
influence of a hyperbolic force. There are four such possible cases, namely,

¥ = »’sinh x, 4.27)
¥ = —w?sinhx, (4.28)
¥ = w®cosh x, 4.29)
¥ = —w? cosh x. (4.30)

We will study all those four cases simultaneously by writing the equation of motion
as

e +te™
—sw-——.

> (4.31)

X =
The parameters s and ¢ take the values 1. Appropriate selection of s and ¢ results
in any of the four possible hyperbolic forces. Equation (4.31) can be integrated once
to yield

0)2

%552 +V@=E, V@)= s (" —te). (4.32)
The potential energy is plotted in Fig. 4.5 for all the four cases that we are studying.
Considering the form of the potential, we obtain a qualitative picture for the behaviour
ofthe solutions. Inthe case s = +1and# = —1, we expect to find oscillating solutions
with energy E > m? and no solutions for E < m?. Inthe case s = —1 and t = —1,
we expect to find two different classes of solutions; for £ < —m? we expect to find
reflecting scattering solutions since the point particle does not have enough energy to
overcome the potential barrier, whereas for E > —m?, we expect to find transmitting
scattering solutions since the particle overcomes the potential barrier. Finally, in the
case t = +1, we expect to find reflecting scattering solutions for all energies.

Performing the change of variable

2

@y E (4.33)
—5— = - —, .
26 T3
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V (x)
— % = —w?sinhx
2 .
m — ¥ = —w?coshx
X
5 i = w?sinh x
-m
i = w?coshx

Fig. 4.5 The potential for the four cases of a hyperbolic force

equation (4.32) takes the standard Weierstrass form

- 3 1, o E(l_, o
y =4y <3E +t4>y+3<9E +t8>. (4.34)
The change of variable (4.33) transforms the problem of the motion of a particle
under the influence of a hyperbolic force to yet another one-dimensional problem,
describing the motion of a particle with zero energy under the influence of a cubic
potential, which has already been studied in Sect. 4.1. The form of (4.33) implies
that real solutions of this equation correspond to real values of the initial variable x
only when 2y — % has the same sign as s.

4.3.2 Four Problems Solved by the Same Expression

Itis interesting to understand how the same equation can be used to describe a variety
of solutions that exhibit qualitatively different behaviour, as suggested by the form
of the potential in the four cases of hyperbolic forces under study.

Equation (4.34) is of the standard Weierstrass form (1.29) with a specific selection
for the constants g, and g3. Equation (4.34) is solved by

y=p (@ g (E,1),8(E 1)), (4.35)
y=p (@ +tw;g(E1),g(E 1)), (4.36)

bearing in mind that the second solution is valid only when there are three real roots.
The coefficients g, and g3 are given by

(E t)—1E2~|—tw4 E.n=-L 1E2+tw4 (4.37)
§2i5.0=73 4 B U=73 g 8 ‘
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and the related cubic polynomial is

1 o* E (1 o*
=4x° — (=E*>+1— —(=E*+1—). 4.38
0 (x) X ( 3 + 7 ) x+ 3 < 9 + 3 (4.38)

The roots of the cubic polynomial can be easily obtained noting that x = E /6 is
one of them. The three roots of Q (x) are

xX; = E X3 = _E + l\/ E? 4 tw®. (4.39)
6 12 4

As in the case of the pendulum, we use the notation x; for the roots of Q (x) as

written in Eqgs. (4.39) and reserve the notation e; for the ordered roots of Q (x). The

roots x; are plotted as functions of the energy constant £ in Fig. 4.6.

The Weierstrass function allows for a unifying description of the elliptic solutions
of both sinh and cosh forces. Different classes of solutions simply correspond to
different orderings of the roots x;. Figure 4.6 suggests that there are four distinct
cases for the ordering of the three roots x;, which are summarized in Table 4.4.

The unbounded solution ranges from e, to infinity when there are three real roots
and from e; to infinity when there is only one real root, whereas the bounded solution
ranges from ez to e,. Using Eq. (4.33), we can specify the range of —s %zex in all
cases. The results are summarized in Table 4.5. In all cases, the sign of —s %zex
does not alternate within its range. Consequently, each solution corresponds to a real
solution for exactly one value of the sign s.

Xi Xi
—x
2
rrll 1 E —m? A 1 E

I > X2 I )

m m
/\ -

cosh force sinh force

Fig. 4.6 The roots of the cubic polynomial (4.38) as function of the energy constant E

Table 4.4 The possible orderings of the roots x;

Reality of roots Ordering of roots
t=+1 3 real roots el = X2,€) = X[, €3 = X3
t=—1,E > o? 3 real roots e] = X1,€3 = X2,€3 = X3
t=-—1,|E| < w? 1 real, 2 complex roots e] = X2,€ = X1, €3 = X3
t=—-1,E < —w? 3 real roots el = X2,€3 = X3,€3 = X]|
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Table 4.5 The solutions for —s %ze" and their range

—s %zex Unbounded range Bounded range
t=+1 2(y—e2) | [2(e1 —e2), +00) [—2(e2 —e3),0]
t=—1,E>aw?|2(y—ep) | [0,4+00) [—2(e1 —e3), —2(e1 —e2)]
t=—1, 2(y—e2) | [0, +00) -
|E| < w?
t=-1, 2(y—e3) | [2(e1 —e3),+00) (0,2 (e2 — e3)]
E < —?

Table 4.6 The extrema of the motion

Unbounded Bounded
x (0) X (Q) X (2Q) x (0) X (Q) X (29Q)
s =—1
t=+1 +00 In 4(‘3:‘)7;22) 400 -
t=-1, +00 —00 +00 -
E > o?
t=-—1, +00 —00 400 -
|E| < w?
t=-1, +00 In ez 4o —00 InHezen) |
E < —w? ¢ "
s =+1
t=+1 - In 4(6;;63) — 00 In 4(6;;63)
t=—1 _ In Heizer) |, Aer—es) In 4ei—e2)
E 2’ w2 w? w?
> w
t=—1, - -
|E| < w?
t=—1, - _
E < —?

In Table 4.6, we sketch the time evolution of each solution. In this table 22 stands
for the real period of y, which is equal to 2w; when there are three real roots and
2 (w1 4 wy) when there is only one real root.

All solutions take the following form

2 E
x (1) =In [_SE (2@ (t +z20:82(E), g3 (E)) — ?)} , (4.40)

for all choices of the overall sign s and an appropriate choice of the complex inte-
gration constant zo. In particular:

e Inthe case s = —1 and t = +1, as expected from the form of the potential, only
reflecting solutions, coming from and going to the right are found for all energies.
In this case there are always three real roots and the solution is given by the
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unbounded solution. If we select initial conditions, so that the particle is at the
minimum position at t = #y, we need to select zop = w; — fy. The “time of flight”
equals 7 = 2w;.

e In the case s = 41 and t = +1, as expected from the form of the potential, only
reflecting solutions, coming from and going to the left exist for all energies. In
this case there are always three real roots and the solution is given by the bounded
solution. Selecting initial conditions, so that the particle is at the maximum position
att = fy, we have to select zo = wr — #y. The “time of flight” equals T = 2w;.

e In the case s = —1 and + = —1, the form of the potential suggests that there are
two possible cases depending on the energy.

— When E < —w?, the particle does not have enough energy to overcome the
potential barrier. Therefore, there are reflecting solutions coming from and going
to either of the two directions. In this case there are three real roots. The particles
coming from the right are described from the unbounded solution, while the
particles coming from the left are described from the bounded solution. Selecting
initial condition, so that the particle is at the extremal position at = #, requires
the selection zp = w; — t for the particles coming from the right and zo =
w1 + wy — 1y for the particles coming from the left. The “time of flight” in both
cases equals 7 = 2w;.

— When E > —?, the particle has enough energy to overcome the potential bar-
rier. Therefore, there are two classes of transmitting solutions coming from either
direction. It is interesting though that the reality of the three roots depends on

whether the energy is smaller or larger than the critical value w?.

When E < ?, there is only one real root and both left-incoming and right-
incoming particles are described by the unbounded solution. The “time of
flight” in both cases equals 7 = ws. Selecting initial conditions such that
the particle at ¢ = 1, lies at the origin, one should select zg = w3/2 — t; for
a particle coming from the right and zo = 3w3/2 — t; for a particle coming
from the left.

When E > w?, there are three real roots. Apart from this, the situation is
similar to the case E < w?, with the substitution of w; with w;.

e Finally, when s = +1 and t = —1, there are oscillatory solutions only when
E > ?, as expected by the form of the potential. The period of the oscillation
equals T = 2w,. Selecting initial conditions so that the particle lies at its minimum
position at t = 1, yields zg = —1o.

Problems

4.1 Find the energies for which the solution for the cubic potential degenerates to
a Weierstrass function with a double root, thus a simply periodic function. Find the
special expressions and the periods of the motion at these limits. Verify that in one
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of these limits, the unique period is equal to the period of small oscillations in the
region of the local minimum.

4.2 In Sect. 4.1, we showed that while the real period of the Weierstrass elliptic
function equals the “time of flight” or the period of the motion of a point particle
with energy E in a cubic potential, the absolute value of the imaginary period equals
the corresponding quantities for the motion of a point particle with energy — E in the
inverted potential. However, the inverted potential is identical to the initial one if a
coordinate reflection is performed. Thus, the absolute value of the imaginary period
should also equal the “time of flight” or period of the motion of a point particle with
energy —E in the initial potential. Verify this using expressions (3.1), (3.2), (3.3)
and (3.4).

4.3 In Sect. 4.1, we showed that when a bounded oscillatory motion exists in a
cubic potential, its period equals the “time of flight” of the scattering solution for the
same energy. This happens due to a discrete symmetry of the conservation of energy
equation that exists when there are three real roots.

More specifically, find how the conservation of energy (4.3) is transformed under
the change of variables

(e1 —e3) (2 — e3)
y—es3 )

X — e3+

Then, find where the segments (—oo0, e3], [e3, e2], [e2, 1] and [e, +00) are
mapped through this coordinate transformation.

Finally, show that the above imply that the period of the oscillatory motion and
the “time of flight” of the scattering solution with the same energy are equal.

4.4 Find the energies for which the solution to the pendulum problem is expressed
in terms of the Weierstrass elliptic function with a double root. Find the special
expressions for the pendulum motion at these limits and verify that in one of the limits
the solution degenerates to the stable equilibrium and simultaneously the period of
motion equals the period of the small oscillations, 27 /w.

4.5 For the motion of a particle in a hyperbolic potential, in the case s = —1,¢ = —1
and E > —w?, which corresponds to the case of transmitting scattering solutions by
a repulsive potential barrier, show that the motion is symmetric around the instant
t = 0, namely show that x (—#) = —x ().

Obviously in the case of reflecting scattering solutions, E < —®?, the symmetry
of the problem implies that x (—#) = x (¢). What has to change in your previous
derivation in this case?

4.6 For the motion of a particle in a hyperbolic potential, inthe case s = +1,1 = —1,
which corresponds to oscillatory motion, the bounds of motion in Table 4.6 look
asymmetric. However, the fact that the potential is even suggests that they should
be symmetric. Verify that they actually are. Furthermore, verify that x (¢ + 7/2) =
—Xx (1), where T 1is the period of the oscillation.
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Show that at the double root limit of the solution, the solution degenerates to the
equilibrium solution and that the period of motion tends to the period of the small
oscillations 27/ w.
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Chapter 5 ®)
Applications in Quantum Mechanics i

Abstract In this chapter, we turn our attention to applications of the Weierstrass
elliptic and related functions in Quantum Mechanics. It is well-known that Bloch’s
theorem implies that periodic potentials have in general a non-trivial band structure.
However, it is not simple to find analytically solvable periodic potentials that demon-
strate this behaviour. In this chapter, we focus on the n = 1 Lamé potential, which is a
one-dimensional periodic potential that can be expressed in terms of the Weierstrass
elliptic function. Its band structure can be analytically specified, using the properties
of the Weierstrass functions.

There are many more interesting problems in classical mechanics that can be treated
with the help of the Weierstrass elliptic function, than those that we studied in the
previous chapter. We may refer to the point particle in a quartic potential, the spherical
pendulum and the symmetric top as three such examples. I believe that the reader,
having studied the cubic potential, the simple pendulum and the hyperbolic potentials,
is prepared well to study any of these problems.

Athis point we change the field of applications of the Weierstrass elliptic function,
in order to demonstrate that these are not limited in the field of classical mechanics.
We focus on one-dimensional periodic potentials in quantum mechanics. In particular
we study a potential, which can be expressed in terms of the Weierstrass elliptic
function, whose band structure can be analytically studied.

It is well known that particles that move in a periodic potential

Vix+a)=V(x) (5.1)
accept as eigenfunctions, Bloch wave solutions of the form

v @) =e™u @), (5.2)
where u (x) is periodic with the same period as the potential

u(x—+a) =ux). (5.3)
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The parameter k is a function of the energy. When & is real, these wavefunctions are
delta-function normalizable, while when k contains an imaginary part these wave-
functions are exponentially diverging. This behaviour leads to the formation of a
band structure, i.e. the energy of the particles is not arbitrary but it is allowed to take
values only within specific intervals. The reader may find more on Bloch’s theorem
at any sufficiently advanced quantum mechanics book, e.g. [3].

Although these are well known facts, itis not simple to find an analytically solvable
periodic potential that demonstrates the formation of an non-trivial band structure.

For this chapter, it is crucial that the reader is familiar with the material of the first
three chapters, especially the second one. These cover all the necessary background
material. The handbooks [1, 2], which provide fast access to formulae and various
properties may prove handy.

5.1 The n = 1 Lamé Potential

5.1.1 The n =1 Lamé Potential and Its Solutions

Let’s consider the periodic potential
Vix)=2px), 5.4

where it is assumed that the moduli g, and g3 are real. The Schrodinger equation
reads
d*y

- ﬁ+2p (x)y = Ay. (5.5)

This is the so called n = 1 Lamé equation—for general n, the potential is given by
V (x) =n(n+ 1) (x). Historically, this equation was studied by Lamé towards
completely different applications [4]. An excellent treatment of this class of ordinary
differential equations in given by Ince in [5].

Consider the functions

o(x +a) —t(da)

o (x)o (£a) (56)

vt (x;a) =

It is easy to verify by direct computation that these functions are both eigenfunctions
of the Schrodinger problem (5.5). Using the defining property of the Weierstrass ¢
and o functions (2.1) and (2.8), we find

d
%:(g(xia)—g(x)qté(a))yi,
X

d2
=t -t @FL@) -~ (@ Eta) )]y
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Then, applying the addition theorems of the Weierstrass g and ¢ functions (2.18)
and (2.20), the above relations can be simplified to the form

dy: 19" (x)F ¢ ()

ix " 2pm-p@ o7
d*ys
= 29 () +9 @) s (5:8)
X

The last equation implies that y, are both eigenfunctions of the problem (5.5),
corresponding to the eigenvalue

h=—p ). (5.9)

As long as the eigenfunction modulus a is not equal to any of the three half-
periods, the two o functions appearing to the numerator of y. do not have roots at
congruent positions. As such, the two wavefunctions are linearly independent and
they provide the general solution. When the modulus a equals any of the half-periods
though, it turns out that

yi (X wi123) =V (x) —er32. (5.10)

For those eigenvalues, there is a second linearly independent solution, which is given

by
V(s wi23) = Ve &) —er32 (¢ (x +wi23) +e130x). (5.11)

5.1.2 Reality of the Solutions

We would like to study whether the eigenfunctions (5.6) are real or not. Firstly, we
consider the case of three real roots. In this case, g (a) will assume all real values if a
runs in the perimeter of the rectangle with corners located at 0, w;, w; and ws. Since
the Weierstrass elliptic function is of order two, for every point in the perimeter of
this rectangle there is another point in the fundamental period parallelogram, where
g assumes the same value. Due to g being an even function, this point is congruent
to the opposite of the initial one. Therefore, the selection of the other point does not
correspond to new eigenfunctions, but simply corresponds to the reflection y, <> y_.
Thus, it suffices to divide our analysis to four cases, one for each side of the rectangle
with corners at the origin and the half-periods. In the following, b is considered always
real.

1. a lies in the segment [0, w;]. Then, a = b and ¢ (a) > e;. In this case, trivially,
the eigenfunctions (5.6) are real as,

yi (x;0) = yx (x;b) = yx (x; b). (5.12)
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2. a lies in the segment [0, w,]. Then, a = ib and g (a) < es. In this case, trivially,
the eigenfunctions (5.6) are complex conjugate to each other as,

v (x;ib) = yx (x;ib) = yx (x; —ib) = y (x;ib). (5.13)

3. a lies in the segment [w;, w3]. Then, a = w, + b and e3 < g (a) < e,. In this
case,
yi (502 +b) =y (x: 02 +b) = yx (x; —w2 +b).

We use the quasi-periodicity properties of functions ¢ (2.5) and o (2.12) to find
that

o Faor£b) T (-antb)x
o (x)o (Fwy £ b)

_ T2 () (v £bFwr)
__—° (xF+wrEtb)e 2 o FE@+h) =20 (@2)x
—0 (x) o (fw; £ b) eF20 () (fwr£bFw,)

o Etmtb)  win
= @2 X: ’ b ,
o ()0 (fan £b)° Yi (¥ @2+ b)

Y (x; —w2+b) =

implying that
y£ (o +b) =yr (x; 02+ b). (5.14)

Therefore, in this case the eigenfunctions (5.6) are real.
4. a lies in the segment [w;, w3]. Then, a = w; +ib and e; < p (a) < e;. In this
case,
yi (5 01 +ib) = yi (x; 01 +ib) = yi (x; 01 — ib).

As in previous case, we use the quasi-periodicity properties of ¢ and o to find

o (x w Fib)
o (x)o (w; Fib)
_ oG ForFib) e (@) FoFibEe) ST (=) 12 (@)

—0 (x) 0 (Fw| F ib) eF2 (@) (ForFibtwr)
_ o FwiFib) oS (@i+ib)x
o (x)o (Fo Fib)

eFe(@ —ib)x

v (x; 01 —ib) =

=y (x; 01 +ib),

meaning that
Vi (X; 01 +ib) = y£ (x; w1 +ib). (5.15)

In this case, the eigenfunctions (5.6) are complex conjugate to each other.

In the case of one real root, the situation is much simpler. o (a) will assume all
real values if @ runs in the union of two segments, one on the real axis with endpoints
0 and w; + w; and one in the imaginary axis with endpoints 0 and w; — ;. Similarly
to the case of three real roots, there are more points where g assumes real values,
but their selection corresponds simply to the reflection y; < y_.
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1. a lies in the segment [0, w; + w>]. Then, a = b and g (a) > e,. This case is
identical to the first case above, and, thus, the eigenfunctions (5.6) are real.

2. a lies in the segment [0, w; — w,]. Then, a = ib and p (a) < e;. This case is
identical to the second case above, and, thus, the eigenfunctions (5.6) are complex
conjugate to each other.

5.1.3 The Band Structure of the n = 1 Lamé Potential: Three
Real Roots

Comparing to the trivial case of a flat potential, we expect that when the eigenfunc-
tions (5.6) are complex conjugate to each other, they are delta function normalizable
Bloch waves, whereas when the eigenfunctions (5.6) are real, they are exponentially
diverging non-normalizable states. However, in order to explicitly show that, we need
to find how the eigenfunctions (5.6) transform under a shift of their argument by a
period of the potential. For this purpose, we need to write the eigenfunctions (5.6)
in the form (5.2). Let us consider the case of three real roots. Then, the period of
the potential equals 2w, . Using the quasi-periodicity property of Weierstrass sigma
function we get,

o(xta+2w)  —eX@EHG (x £4q) tratiey O (X Ea)
o (x +2w) o (a) —eX@)toNg (x)o (da) o (x)o (+a)’

Thus, we may write the eigenfunctions (5.6) as
v (x;a) = ug (x; a) O, (5.16)

where

.o (xxa) :F%x
ug (x;a) = Yo (@) o (@) ) (5.17)

ik (@) = ag (601);1601{ (@) (5.18)

and it holds that uy (x + 2wy; a) = u+ (x; a).
In order to assort these states into non-normalizable states and Bloch waves, we
need to study the function

f(a) =at (w1) —wig(a). (5.19)

This is clearly not an elliptic function, but rather a quasi-periodic function, since it
obeys,

fa+2w) = (a+2w) ¢ (01) — w1 (£ (@) + 2 (1) = f(a), (5.20)
fa+2wm) = (a+2w) (w) —wi (¢ (@) +20 () = f(a) +im. (5.21)
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However, its derivative equals

(@) =¢ () +oip (), (5.22)

which is clearly an order two elliptic function. Therefore, the function f (a) is sta-
tionary exactly twice in each cell. Furthermore, f’ (a) is real, wherever g (a) is real,
thus, everywhere in the space where the modulus a takes values.

Recalling the property (2.7), we can show that the function f (a) takes the fol-
lowing values at the origin and the half-periods:

. 1 ﬂ _
blgg+ F®) = blgg* b O (5-23)
lim f (ib) = = lim. ;”—b‘ — tioo, (5.24)
(@) = o1 (@) — o1 (1) =0, (5.25)
F (@) = 0t (@1) — 01 (@) = i%, (5.26)
£ (@3) = (@1 + 02) ¢ (@1) — o1 (01 + w2) = i%. (5.27)

Since the derivative of f (a) is real at the perimeter of the rectangle with corners
the origin and the three half-periods, it follows that on the sides [0, w;] and [w», w3]
only the real part of f (a) varies, whereas on the sides [0, w;] and [w;, w3] only the
imaginary part of f (a) varies.

Since the real part of f (a) is identical at a = w, and a = w; (it vanishes), the
mean value theorem implies that there is a point in the segment [w,, w3] where the
derivative of f (a) vanishes. In every cell, there is another point, where the derivative
vanishes, which is congruent to the opposite of the above point, and, thus, it is not
congruent to any point of the perimeter of the rectangle with corners at the origin
and the half-periods. Since the derivative of f (a) is an order two elliptic function,
there is no other point in a cell, and, thus, in the aforementioned rectangle, where
f (a) is stationary.

The above, combined with the values of f (a) at the origin and the half-periods,
imply that:

1. At the segment [0, w;], f (a) is everywhere real. It is nowhere stationary in this
segment and therefore, it varies monotonically from —oo at the origin to 0 at w;.
It follows that it vanishes nowhere except at a = w;.

2. At the segment [w;, w3], f (a) is everywhere purely imaginary. It is nowhere
stationary in this segment and therefore, its imaginary part varies monotonically
from O at w; to /2 at ws.

3. At the segment [w;, w3], f (a) has an imaginary part equal to 7 /2. The real
part vanishes at the endpoints of the segment, it reaches a minimum value at the
stationary point of f (a) and it vanishes nowhere expect at the endpoints, since
the derivative of f (a) vanishes only once.
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4. At the segment [0, w;], f (@) is everywhere purely imaginary. It is nowhere sta-
tionary in this segment and therefore, its imaginary part varies monotonically
from 400 at the origin to 7 /2 at ;.

It follows that k (a) is purely imaginary, as required for Bloch waves, in the
segments [0, ;] and [w;, w3] and nowhere else. Thus, the band structure of the
n = 1 Lamé potential, in the case of three real roots, contains a finite “valence” band
between the energies —e| and —e, and an infinite “conduction” band for energies
larger than —e3. The former corresponds to wavefunctions with a parameter a taking
values in the segment [w|, 3], whereas the latter corresponds to wavefunctions with
a parameter a taking values in the segment [0, w;].

5.1.4 The Band Structure of the n = 1 Lamé Potential: One
Real Root

In the case of one real root, the period of the potential equals 2w; + 2w,. We write
the eigenfunctions (5.6) as

ya (x5 @) = uy (x; a) KO (5.28)
where
. okxxa) jFa!u(:]sz;vz)x
Uy (x;a) = o (D o (a)e , (5.29)
ik (a) = al (w) + @) — (w1 + @) § (@) (5.30)
w1 + w;

and uy (x + 2w; 4+ 2wy; a) = uy (x; a).
We now have to study the function

f(a) =ag (w1 +w) — (w1 +w2) ¢ (a). (5.31)
Similarly to the case of three real roots, the function f (a) is quasi-periodic

fa+2w) =(a+2w) ¢ (w + o) — (0 +w) (€ (@) +2¢ (1))

= f(a) —im, (5.32)
fa+2w) = (a+2w) ¢ (w1 + w2) — (w1 + @) (¢ (a) +2¢ (@2))
= f(a)+inm, (5.33)

whereas its derivative equals

(@ = ¢ (01 + ) + (01 + ) p (a), (5.34)
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which is an order two elliptic function. Simple arguments, similar to those we used
in the case of three real roots, imply that f (a) is stationary exactly once in the union
of the segments [0, w; + w;] and [0, w; — w,]. Furthermore, the derivative f’ (a)
is real wherever g (a) is real and therefore only the real part of f (a) varies on
the segment [0, w; + w,], whereas only the imaginary part of f (a) varies on the
segment [0, w; — w,]. We can easily check that

. . w1t w
1 b)=— lim —— = —o0, 5.35
bgg* F® bi% b o ( )
. . . ot w .
Jim £ ) = = Jig S = i 530

[ (w1 +w) = (w1 +w2) & (w1 + @) — (w1 + @) & (w1 + w2) =0, (5.37)
[ (w1 —w) = (w1 —w2) ¢ (w1 + @) — (w1 + @) & (w1 —wr) = —im, (5.38)

and, thus, f (a) is real on [0, w| + w;] and purely imaginary on [0, w; — w,].

The only remaining question to be answered is whether the stationary point of
f (a) belongs in [0, w; + w,] or [0, w; — wy]. In the first case, there is a single
point on [0, w; + w»], where f (a) vanishes, and, thus, it can be considered purely
imaginary, while in the second case there is not. It turns out that the stationary
point lies in [0, | — w;] and therefore f (a) is purely imaginary everywhere on
[0, w; — w,] and nowhere else. Thus, the band structure of the n = 1 Lamé potential,
in the case of one real root, contains only an infinite “conduction” band for energies
larger than —e;.

5.2 The Bounded n» = 1 Lamé Potential

5.2.1 The Bounded n = 1 Lamé Potential and Its Band
Structure

If three real roots exist, the potential V = 2¢ (x 4+ w;,) is also real. Although the
expressions for this potential and the one of the previous section, V =2 (x),
look similar, physically they are very different. While the potential V = 2 (x)
is unbounded and it is singular at all points x = 2nw,, n € Z, the potential V =
26 (x 4+ w») is bounded and smooth everywhere. We may repeat the work done in
the previous section in order to determine the eigenstates and the band structure of
the bounded potential.
Following the previous section, it is trivial to show that the functions

o (x +w xa)

e¥§(a)(x+wz)
o (x +w)o(a)

Y (x5a) =y+ (X +w2;a) =

’

which emerge directly from the eigenfunctions of the unbounded problem (5.6) via
a shift of their argument by w,, obey
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d*Vy (x; a)

Jx? =Q2px+w)+p@)y:(x:a), (5.39)

and, thus, they are both eigenfunctions of the bounded n = 1 Lamé problem, with
an eigenfunction equal to

r=g(a). (5.40)

However, this asymmetric insertion of w, has deprived the eigenfunctions from
their nice reality properties. For example, for real a,

X Fd) @

o(x —w)o (a)

— =28 (w2) (x+wr+a—wy)

_ o(x+wr+a)e (@) (x+wr+a—wy e—{(tl)(x+wz)62§(c¢)w2
—0 (x +w) o (a) e—28 (@) (x+wr—w2)

— ez(wzf(a)*aé“(wz))l//+ (x:a),

Vi (x;a) =

implying that ¥, (x; @) is not real, but it has to be rotated by a constant complex
phase in order to become so. It is left as an exercise to the reader to repeat the algebra
of Sect. 5.1 and show that the eigenfunctions

o (x +wyxa)o (w) ot (Eax

Ve (xia) = o (x4 w)o (wy £a)

(5.41)

have reality properties similar to those of the eigenfunctions of the unbounded Lamé
potential (5.6). It is also left to the reader to verify that the band structure of the
bounded potential is identical to the band structure of the unbounded one.

It is quite interesting that the potentials V = 2 (x) and V = 2 (x + w;) have
the same band structure. As we already commented, the two potentials are quite
dissimilar functions, the unbounded one having second order poles, whereas the
bounded one being smooth, as shown in Fig. 5.1.

V(x) V(%)
2e1 \/ \/ \/ 2es
:53 20)1 4(1)1 6(1)1 2({‘)1 4({)1 6‘.")1
2 } } | x f f I
€2
—e) —-e
263
three real roots —2p(x) one real root
—2p(x + w2)

Fig. 5.1 The band structure of the n = 1 Lamé potential. The shadowed regions correspond to the
allowed bands
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5.2.2 Connection Between the Bounded and Unbounded
n =1 Lamé Problems

The fact that the unbounded and bounded Lamé potentials are isospectral is not a
coincidence. Assume the function

W)= 2@ (5.42)
2(p (x) —e3)
which we will call the “superpotential” and the operators
d + d
A=—+Wkx), Al=——-4+W(h), (5.43)
dx dx
which we will call “annihilation” and “creation” operators respectively. Then,
, d?
AA=——5+ Vi), ©O=W®-W, (5.44)
X
d2
AAT = -5+ Vo(x), Va(x)=W2x)+ W (x). (5.45)
X

It is a matter of algebra to show that for the specific superpotential given by (5.42),
it turns out that

Vix)=2p(x+w)+es, Vo(x)=2p(x)+es. (5.46)

In other words, ~
ATA=H +e;, AA"=H + e3, (5.47)

where H is the Hamiltonian of the unbounded n = 1 Lamé problem and H is the
Hamiltonian of the bounded n = 1 Lamé problem.
Now consider an eigenfunction y of the unbounded problem with energy E, i.e.

Hy = (AA" — e3) y = Ey. (5.48)

Then, the function § = ATy is an eigenfunction of the bounded problem with the
same energy, since

Hy = (ATA—e3) ATy = AT (AA" —e3) y = ATHy = ATEy = E5.  (5.49)
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The above are general characteristics of partner potentials that emerge from a
superpotential. If the reader finds this example attractive enough, so that they desire
to learn more on supersymmetric quantum mechanics, they may consult [6, 7].

Action with the operator A" cannot transform a Bloch wave to an exponentially
diverging function or the other way around. As a result, the two Hamiltonians are
isospectral. It is left as an exercise to the reader to show that indeed

Alys (x;a) = ey (x; a) (5.50)

where yy are given by Eq. (5.6), 11 are given by Eq. (5.41) and c is a constant.

Problems

5.1 Show that the special solution (5.11) is indeed an eigenfunction of the n = 1
Lamé problem, corresponding to an eigenvalue equal to one of the three roots of the
respective Weierstrass elliptic function.

5.2 In order to study the band structure of the n = 1 Lamé problem, we expressed
the problem eigenfunctions as Bloch waves in the form of Eq. (5.16), where the
functions u and k are given by Eqs. (5.17) and (5.18). If this is carried out properly,
the function u will be periodic function with period equal to that of the potential.
Verify that this is indeed correct.

5.3 Show that the eigenfunctions (5.41) of the bounded n = 1 Lamé potential have
the same reality properties as the eigenfunctions (5.6) of the unbounded one.

5.4 Find how the eigenfunctions (5.41) of the bounded n = 1 Lamé potential trans-
form under a shift of their argument by the period of the potential. Once you have
accomplished that, deduce the band structure of the bounded n = 1 Lamé potential.

5.5 Using the addition theorem of the Weierstrass o function (2.19), show that the
eigenstates y., as given by Eq. (5.6) obey the following “‘normalization” properties:

Y+y- =g (x) —p(a), (5.51)
iy —yy- == (a). (5.52)

How are these properties modified for the eigenfunctions of the bounded n = 1
Lamé potential?
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5.6 We have shown that the eigenfunctions of the n = 1 Lamé potential as given
by Eq. (5.6), which correspond to the allowed bands are complex conjugate to each
other. Therefore they can be written in terms of a magnitude and an argument like

yi (x;a) = R (x; a) e P09, (5.53)

Specify the square of the magnitude R? and the derivative of the argument d®/dx
and verify that they are elliptic functions. You may find the results of problem 5.5
useful.

The fact that d®/dx is an elliptic function implies that the argument ® is a
quasi-periodic function with similar behaviour to that of the function ¢. Specify its
quasi-periodicity property in the real axis. Compare with Eq. (5.18). Are the two
expressions compatible?

5.7 Show that the action of the creation operator A™ which is given by Eq. (5.43), on
the eigenstates of the unbounded n = 1 Lamé problem (5.6), results to the eigenstates
of the bounded n = 1 Lamé problem (5.41). Namely, verify that Eq. (5.50) holds
and specify the coefficient c. How does this coefficient compares with the results of
problem 5.5?

5.8 Atthe limit that the two larger roots coincide, the real period diverges. Therefore,
the n = 1 Lamé potential ceases being a periodic potential. Study the bounded poten-
tial at this limit. Find the special form of the wavefunctions and their corresponding
eigenvalues. Then, focus on two special properties:

1. What is the form of the states of the finite allowed band at this limit? What is
their normalization?

2. What is the form of the states of the infinite allowed band? What are the reflection
and transmission coefficients?

The answers you got in the above questions are not a coincidence. Find the partner
potentials that emerge from the superpotential W = /3¢ tanh y/3epx, where ¢ is
the double root, as we did in Sect. 5.2.2, and compare with the double root limit of
the bounded n = 1 Lamé potential. Can you deduce the above properties from this
fact?
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Chapter 6 ®)
Epilogue and Projects for the Advanced e
Reader

Abstract Chapter 5 concludes our short but thorough introduction to the Weierstrass
elliptic function and its applications in Physics. In this last chapter, we provide
three more exercises-projects for the curious and advanced reader. They are inspired
from contemporary research in integrable systems, in particular the sine-Gordon
equation, as well as string theory, in particular the study of classical string solutions
on symmetric spaces.

The presentation of the n = 1 Lamé problem concludes this short introduction to
the Weierstrass elliptic function and its applications in Physics. The applications of
elliptic functions are not limited to this content.

Many more problems in classical mechanics can be analytically solved in terms
of elliptic functions. We may refer to the point particle in a quartic potential, the
spherical pendulum and the symmetric top as three such examples. Furthermore, in
quantum mechanics, potentials of the form

Vx)y=nmn+1De(kx), (6.1)

where n € Z can be analytically solved in terms of elliptic functions and present
amazing features. Such potentials have a richer band structure containing up to n
finite gaps in their spectrum.

The Lamé equation also appears in other problems of classical Physics, whenever
one expresses the Laplace operator in elliptical coordinates. Actually, this is the his-
torical reason for the study of this class of linear differential equations. For example,
elliptic functions will appear if one studies the heat diffusion on the surface of an
ellipsoid by rotation, such as the earth surface.

Furthermore, elliptic functions find applications in many fields of more mod-
ern physics. Several solutions of very interesting integrable systems, such as the
sine-Gordon, the sinh-Gordon or the Korteweg-de Vries (KdV) equation can be ana-
Iytically expressed in terms of elliptic functions. Such solutions can be further used to
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construct analytic string solutions in symmetric spaces, such as dS and AdS spaces,
as well as minimal surfaces in hyperbolic spaces. Elliptic functions also emerge nat-
urally when one calculates string scattering amplitudes for world-sheets that have
the topology of a torus.

Extending this book to these directions is beyond its scope, which is to provide the
students a fast but thorough introduction to the subject, without the need to attend
a whole mathematics course. However, for the curious and advanced reader, we
add three more exercises-projects, which are inspired from current-date research in
integrable systems and string theory.

6.1 Building Sine-Gordon Kinks on Top of an Elliptic
Background

The sine-Gordon equation is a relativistic two-dimensional system, which exhibits
an incredibly rich structure and finds applications in a large variety of sectors in
physics. The sine-Gordon equation reads

%o 3% _ 92

a2 9x? T Axi dx_

¢ = pu’sing. (6.2)

The coordinates x. are defined so that x. = % (x £ 1). This equation can be con-
ceived as the continuous limit of a sequence of coupled pendulums.
This equation accepts an infinite set of vacuum solutions of the form

¢ =2nmw, neZ. (6.3)

If you are familiar with elementary field theory or Noether’s theorem, it is not
difficult to show that the energy and momentum densities are given by

1ag\> 1 [0p\*

c=-(Z) +-(¥) - : 6.4
2(8t> +2(8x) pocose ©4
3¢ 8

- % 6.5)
Jat ox

One fundamental property of the sine-Gordon equation is the fact that its solutions
are connected in pairs, through the first-order differential equations,

) i .
B e i (6.6)
ax; 2 2

do—9p 1 . 9+¢

- _1 , 6.7
ox_ 2 aMSln 2 ©.7)

which are called Bicklund transformations.
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These transformations can be used in order to build solutions out of a given one,
the so called seed solution, without the need of solving second-order equations, but
rather solving first-order ones. The archetypical example is the use of the vacuum
solution ¢ = 0 as the seed solution. This leads to the construction of the solutions

@ = 4arctan e @+ T+ — 4 gretan ey VO (6.8)

where v = i;gi and y = 1/+4/1 — v%. These are the so called kink solutions. These
solutions are of topological nature. They look like a twist of the field that connects
two adjacent vacua.

Using the kink solutions as the seed for a subsequent Bécklund transformation
leads to two-kink solutions and so on. Such solutions describe multiple kinks interact-
ing with each other. It turns out that kinks are never reflected, however the encounter
of two kinks causes a specific time-delay to their propagation.

For a more detailed introduction to the sine-Gordon equation, the reader is referred
to [1, 2].

One may consider solutions of the sine-Gordon equation that depend solely on
time or position. In a trivial manner, in such cases, the sine-Gordon equation (6.2)
degenerates to the equation of the simple pendulum. It follows that such solutions
can be expressed in terms of the Weierstrass elliptic function, as in Sect. 4.2.

1. Write down the solutions of the sine-Gordon equation that depend solely on time
or position in terms of the Weierstrass elliptic function. Study the energy and
momentum densities for these solutions.

2. The apparent advantage of using the elliptic solutions as seeds in the Biacklund
transformations is the fact that they depend on either x or ¢ solely. Express the
Biécklund transformations (6.6) and (6.7) in terms of the time ¢ and position x
instead of the coordinates x..

3. For the moment stick to the solutions that depend solely on time. Calculate
the squares of the quantities cos £, sin ¢ and %—‘f that appear in the Béacklund
transformations in the form that you specified in step 2. Their signs are not
going to play a crucial role, but you can specify them; in general they behave
differently in the case of oscillating and rotating solutions.

4. Use the elliptic solutions as seeds in the Bicklund transformations. You must
notice that one of the two Bicklund transformations has turned into an equation
that contains only the derivative with respect to the position and all other functions
that appear are functions of time solely. Therefore, this can be solved as an
ordinary differential equation, where the undetermined integration constants are
unknown functions of time. For simplicity assume that the parameter a is positive
and larger than one.

5. Once you have solved the above equation, you may substitute the solution
to the remaining Bécklund transformation to find the new solutions. In the
process you may find useful the definitions of two constants, namely D> =
41'1 [uz (a2 + a’z) - ZE] and a, which is defined so that g (a)=

—% + % (a2 + a’2). You may also need to use the results of problem 5.6.
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Check what is the sign of the parameter D?. Does it depend on whether the seed
was representing an oscillating or a rotating solution of the pendulum?

6. Stick to the case D? > 0. The new solutions that you have constructed describe
kinks, i.e. twists of the field that connect adjacent vacua, propagating on top of an
excited background. This is clearer when you consider seeds that correspond to
oscillating solutions of the pendulum. The position of the kink is the center of the
area where the field performs the jump from the region of the one vacuum to the
region of the adjacent one. Locate the position of the kink and study its velocity.
In general this velocity is varying with time, but you will be able to calculate a
well-defined mean velocity. Draw some plots of the velocity as a function of the
parameter a in order to specify whether it is subluminal or superluminal.

7. Find how the solution looks like asymptotically far away from the kink. You
should find that the solution is similar to the seed. What is the effect on this
position-independent background oscillation that the elliptic solution is, by the
passage of the kink? You just found the physical importance of the parameter a
that you defined above.

8. Find the energy and momentum of the kink. At first you may think that the former
is infinite, but this is due to the fact that the seed solution has also infinite energy.
Find the energy of the kink integrating the difference of the energy densities
of the new and seed solutions. You just found the physical importance of the
parameter D that you defined above.

9. Find how the energy of the kink is connected to the effect that it causes on the
background motion of the system. This is an “equation of state” of the system
that in principle can be verified experimentally.

10. You may repeat/modify steps 3 to 9 for the sine-Gordon solutions that depend
solely on position.

If you meet an obstacle that you cannot overcome at any of the steps of the
problem, you may look for hints in [3, 4].

6.2 Building Classical String Solutions on the Sphere

Consider a classical relativistic string propagating in flat spacetime. As it moves, it
carves a two-dimensional sheet, which is usually called the world-sheet of the string.
We parametrize this world-sheet using two parameters; one space-like parameter
x! and one time-like parameter x. You may imagine that the space-like parameter
identifies a point of the string, whereas the time-like parameter is the physical time,
but this is not necessarily exactly true. In any case, this parametrization provides
an embedding of the string world-sheet into the flat spacetime via the embedding
functions X* = X* (xO, xl). The dynamics of the relativistic string are determined
by demanding that the area of the world-sheet is stationary, i.e. the action of the
system is
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S=T f dx’dx'\/—dety,;, (6.9)

where i, j = 0, 1, the constant T is the tension of the string and the 2 x 2 matrix
Vii = Dy v 9X2 38X s the induced metric on the world-sheet. The matrix 7,,, is
equal to n,, = diag{—1, 41, ..., +1} and it is the metric of the Minkowski space.
This is called the Nambu-Goto action.

One can introduce an auxiliary metric field g, which allows the re-expression of
the action in a more handy form, namely,

DG D&
= T/dxodxl,/—detg,-j Z n,“,g“b oxd oxb (6.10)

a,b,u,v

where g% is the inverse matrix of g,;. This is the so-called Polyakov action. It is
completely equivalent to the Nambu-Goto action; one can show this by substituting
the auxiliary field g, using its equations of motion. Both actions (6.9) and (6.10)
have a huge reparametrization symmetry. They are invariant under diffeomorphisms,
i.e. the redefinition of the world-sheet coordinates x° and x', x° — x" (x%, x!),
xl— x! (xo,xl).

Apart from the equations of motion for the embedding functions X*, when one
uses the Polyakov action, they have to take into consideration the equations of motion
for the auxiliary metric field. These are the so-called Virasoro constraints.

One may use part of the diffeomorphism invariance to define world-sheet coor-
dinates x, so that the diagonal elements of the fiducial metric g vanish. Then, the
Polyakov action assumes the form

XM 9XY
S=T fdx*dx Z”w T 6.11)

Such a selection does not completely fix the world-sheet coordinates. The action is
still invariant under redefinitions of the form x* — x'* (x*), X~ = x'” (x’). You
may find more details on string actions in [5].

One can describe a string moving in a submanifold of the original flat spacetime
by introducing a Lagrange multiplier term with the appropriate geometric constraint.
For example a string moving on the surface of a two-dimensional sphere is described
by the action

) AXH" X" .
S=T/dx+dx Z”“”a T Y (x) -r | (6.12)

j=1

The equation of motion for X° assumes the form
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99x0

pree i U X0 = fi () + fo(x0). (6.13)

We may take advantage of the string world-sheet re-parametrization symmetry to
re-define the coordinates x*, so that

fi () =max® = X' =mpxt +m_x". (6.14)

The equations of motion for X i j=1,2,3 assume the form

X1 [ ax X

o X! 6.15
IxTox— R? < oxt dx~ ’ ©.15)

J=

while the equation for the Lagrange multiplier is written as

3
3 (x7) =R (6.16)
j=1

Finally, one has also to satisfy the Virasoro constraints

Saxiaxi ,  oaxiaxi
Z axt ox+t M — 9x~ 0x~ = (6.17)

When the string is propagating in a symmetric space, like the sphere, the equations
above have a very interesting property. There is a non-trivial, non-local coordinate
transformation which transforms them to the equations of an integrable system of
the family of the sine-Gordon equation that you met in the previous problem. This
is the so-called Pohlmeyer reduction. You may find the original work in [6]. In the
case of a string propagating on a two-dimensional sphere, this is the sine-Gordon
equation itself. Indeed if we define the Pohlmeyer field ¢ as,

> 9X7 9xI
a,x_+8,x_7 =mym_COoSsQ, (618)
Jj=1

you may show that the equations of motion imply that ¢ obeys

9% )
——— = sing, 6.19
oxtox- ¢ (6-19)
where u? = —m m_/R?

Although it is trivial to find the solution of the sine-Gordon equation that corre-
sponds to a given string solution, the converse is highly non-trivial, due to the non-
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locality of the Pohlmeyer field definition. However, if you select solutions of the sine-
Gordon equation that depend only on either the space-like parameter x! = x* 4 x~

0 +

or the time-like parameter x” = x* — x this task is possible.

1.

Go back to the previous problem, and write down the solutions of the sine-Gordon
equation that depend solely on time or position. As you already know, these are
connected to the solution of the simple pendulum and they are expressed in terms
of the Weierstrass elliptic function. There are four classes of them: solutions that
depend only on time and solutions that depend only on space; for each of these
two classes, there are solutions that correspond to oscillating motions of the
pendulum and solutions that correspond to rotating motions of the pendulum.
Use the definition of the Pohlmeyer field, in order to write down the equa-
tions of motion for X!, X2 and X3, as linear differential equations with varying
coefficients, which are expressed in terms of the Pohlmeyer field. Substitute
the sine-Gordon solutions from the previous step. Notice that these differential
equations can be solved via separation of variables. Separate the variables and
result in two effective Schrodinger problems with connected eigenvalues. You
will meet a well-known friend from Chap. 5, the n = 1 Lamé equation. Catego-
rize the solutions into three classes depending on whether the eigenvalue of the
trivial problem is positive, negative or vanishing. Bear in mind that the eigen-
functions of both effective Schrodinger problems do not have the interpretation
of a wavefunction, and thus, they can be non-normalizable states in general.

. By now you know the general solution to the equations of motion. Each embed-

ding function X/ is a linear combination of the functions you specified above
for all possible eigenvalues. However it is left to satisfy the geometric constraint
(6.16), as well as the Virasoro constraints (6.17). The form of the geometric
constraint strongly suggests that you should form an ansatz, where the first two
components are the general solution corresponding to a single positive eigen-
value of the trivial effective problem, whereas the third component is given by
the special case of a vanishing eigenvalue of the latter. Demand that the solution
is real, what does this imply for the eigenstates of the n = 1 Lamé problem?
Should they be Bloch waves or non-normalizable states? Find what the geomet-
ric constraint implies for the solution. You will find the results of the problem
5.5 useful.

Finally, express the Virasoro constraints (6.17) in terms of the world-sheet coor-
dinates x° and x'. Use the geometric constraint and by parts integration to write
them so that they contain the second derivatives of the embedding functions. The
latter can be deduced directly from the effective Schrodinger problems. Solve
the Virasoro constraint that does not contain the mixed derivative. Then, show
that the other one is automatically satisfied. You just specified a wide class of
string solutions on the two-dimensional sphere.

Let us now study some basic properties of the solutions that we found. First
express them in spherical coordinates. Show that the string is rigidly rotating
with constant angular velocity. Specify the latter.
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6. It would be nice that the strings we are describing are actually finite. Find a
condition that must be obeyed so that the string is a finite, closed string. Do
not forget that the physical time X° is not proportional to the time-like world-
sheet coordinate x°, but it is given by X° = m,x* 4+ m_x~. In order to find the
appropriate periodicity condition you need to freeze the physical time. It would
be simpler to perform a boost of the world-sheet coordinates x° and x' to new
ones o” and o', so the physical time is proportional to o°.

7. Freeze the physical time X° and study the derivative %' Is it continuous? How

do the points where this derivative is singular look like? What is their velocity?
Do these points appear to all four classes of solutions? What is the value of the
Pohlmeyer field at these points?

8. These solutions have some particularly interesting limits. How do these solutions
look like when the pendulum solution tends to become the vacuum? These limits
are the so called Berenstein-Maldacena-Nastase particle [7] and the giant hoop.

9. How do these solutions look like when the pendulum solution tends to become the
“kink” solution that lies exactly between the oscillating and rotating solutions?
These limits are the giant magnon [8] and single spike [9] limits.

10. Can you find another interesting limit where the solution looks like a rotating

arc of a great circle? These are the Gubser-Klebanov-Polyakov strings [10].

All the limits of steps 8 to 10 were constructed one-by-one via educated ansatz
guesses. It is amazing that with the appropriate use of the Weierstrass elliptic function
and some knowledge on Pohlmeyer reduction you managed to construct them all at
once as members of a much wider family, and furthermore you managed to describe
them with very simple expressions. If you meet an obstacle that you cannot overcome
at any of the steps of the problem, you may look for hints in [11].

6.3 Studying the Stability of Classical String Solutions

In the previous problem you constructed a very wide family of classical string solu-
tions. These find applications in string theory and especially in the field of the holo-
graphic duality. For these applications, it would be nice to know whether these solu-
tions are stable or unstable configurations. The classical treatment is to introduce
small perturbations around these solutions and study their time evolution. In the case
of strings on the two-dimensional sphere, we can be a little smarter than that. As we
discussed in the previous problem, the equations of motion turn out to be equivalent
to the sine-Gordon equation. Therefore, it suffices to study the stability of the cor-
responding solutions of the sine-Gordon equation in order to conclude whether the
corresponding string solutions are stable or not. This is a much simpler task, as the
sine-Gordon equation contains a single degree of freedom.

1. Go back to the first problem and write down the solutions of the sine-Gordon
equation that depend solely on time or position.
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2. Introduce a small perturbation to these solutions. Substitute them in the sine-
Gordon equation and find the linearised equations for the small perturbations that
you introduced. These equations can be solved via separation of variables. You
will meet a well-known friend from Chap. 5, the n = 1 Lamé equation.

3. Recall that the unperturbed sine-Gordon solution you have in hand describes a
finite closed string, and thus, it obeys an appropriate periodicity condition that
you specified in the previous problem. This periodicity condition must be obeyed
by the perturbation, too. Recalling the quasi-periodicity properties of the eigen-
functions of the Lamé problem, express the appropriate periodicity conditions for
the small perturbations in terms of the parameters of the eigenfunctions of the
Lamé problem. Review the previous problem and recall that the physical time X°
is not proportional to the time-like world-sheet coordinate x°, but it is given by
X% = myx* 4+ m_x". In order to express correctly the appropriate periodicity
condition for the perturbation, you need to freeze the physical time. Perform a
boost of the world-sheet coordinates to new ones o” and ¢!, so the physical time
is proportional to o°.

4. Find the time evolution of the small perturbations using the quasi-periodicity
properties of the eigenfunctions of the Lamé problem. Are there perturbations
with appropriate periodicity conditions that lead to instabilities?

5. Go back to the first problem. Compare the stability-instability of a string solution
with the possibility of propagation of a superluminal kink on top of the corre-
sponding sine-Gordon equation solution with velocity equal to the inverse of the
velocity of the boost that connects the world-sheet coordinates o° and o' to x° and
x!. This is not a coincidence; such kink solutions are the full non-linear realiza-
tion of the instability. Actually, you have already built the Pohlmeyer counterpart
of this full non-linear string solution, which exposes the instability, in the first
problem of this chapter.

If you meet an obstacle that you cannot overcome at any of the steps of the
problem, you may look for hints in [12].
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Solutions

Problems of Chap. 1

1.1 We may write the integral formula (1.33) in terms of the roots of the cubic
polynomial as,

:i:Z’V/ —dt=/ dt. (A1)
P VA1 — gt — g3 o) VA —e) (t —ey) (t —e3)

It is obvious that the integrand has branch cuts on the complex plane with endpoints
the three roots. We may select the branch cuts as the red lines in Fig. A.1.

Assume that there are three real roots. We may now apply the integral formula
(A.1) using the right blue path of Fig. A.1 as the integration path. Let w; be the
half-period corresponding to the largest root. Then, we get

+00 1

dt.
SV ¥ o s oy N ey

W ~ (A.2)

Clearly, the integrand is everywhere real (and also positive). It vanishes at infinity as
=32 and it diverges at the left boundary of the integration as (r — e;) /2, therefore
the integral converges. Thus, we showed that the half-period associated with the
largest root is congruent to a real number.

Similarly in the case of the three real roots, we may apply the integral formula
(A.1) using the left blue path of Fig. A.1 as the integration path. Let w, be the
half-period corresponding to the largest root. Then, we get
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Fig. A.1 The branch cuts (red) and the integration paths (blue) used
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The integrand is everywhere real and the integral converges for the same reasons as
in previous case. Thus, the half-period associated with the smallest root is congruent
to a purely imaginary number.

The situation is similar in the case of one real root. The only difference is that
we may use the two different integration paths for the same root. Let w3 be the
half-period corresponding to the real root. For the right blue path of Fig. A.1, we get

+0o0 1
w3 ™~ dt
e VAT —e)(t—e) [ —e3)
oo 1 (A4)
= / dt,
e \/4 [(t —Reer)* + (Ime))?] (t — e2)
whereas for the left blue path of Fig. A.1 we get
1
dt

w3 ’\'/
\/4 [(t — Reen) + (Imep)2] (1 — e2)
(A5)

i / : ! dar.
—0 J4[(t = Reen)? + (imep)?] (e2 — 1)

Both integrands are real and both integrals converge, implying that the half-period
associated with the real root is congruent to both a real and a purely imaginary
number.
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1.2 Suppose that the two larger roots coincide, i.e. ¢ = e, = ep. Then, they are
necessarily positive, as the three roots have to sum up to zero, implying that e; =
—2ey. In this case the Weierstrass differential equation reads,

dy 2 2
(d_> =4(y —eo)” (y + 2eo) .
Z

We perform the change of variable y = ¢y + 3¢,/ f* and then the Weierstrass equa-
tion assumes the form,

f?=3e (1+ f7).

This one can be easily integrated to yield

f =%sinh (V3eoz +¢).

Returning to the initial variable y, we find,

380
=ey+ .
Y EOT Gnn? (v3e0z +¢)

We know that by definition, the Weierstrass elliptic function should have a second
order pole at z = 0. This sets the value of ¢ to inm, n € Z, which implies that

380

sinh? (v/3e0z) (A.6)

2} (z; 12¢Z, —86(3)) =ey+

Therefore, in this case the Weierstrass elliptic function has degenerated to a simply
periodic function. The only period is purely imaginary and it assumes the value
2w =im / m .

Similarly, if the two smaller roots coincide, we have e, = e3 = —ep and e; = 2ey,
where eg > 0. The Weierstrass differential equation reads,

dy 2 2
(d_> =4(y +e)” (y — 2eo) .
Z

We perform the change of variable, y = —ey + 3eo/ f and then the Weierstrass
equation takes the form,

=3¢ (1 7).

This can be easily integrated to yield

f:isin(%z—i—c).
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Returning to the initial variable y, we find,

360

sin® (v3egz + ¢)

Finally, requesting that the Weierstrass elliptic function has a second order pole at
z = 0 sets the constant ¢ to nw, n € Z and we get,

y=—e+

360

(a5 1260, 860) = —eo + S ey

(A7)

Similarly to the previous case, in this double root limit, the Weierstrass elliptic
function has degenerated to a simply periodic function. Its only period is real and
assumes the value 2w, = 7/+/3ep.

Finally, if all three roots coincide, they must be equal to zero, since their sum
should vanish. In this case the Weierstrass differential equation reads,

dy ? 3
— ) =4y
(dZ> Y

This can trivially be integrated to acquire

1

y= (z+0)?*

Once again, we demand that the Weierstrass elliptic function has a double pole at
z = 0. Therefore ¢ = 0 and

1
£ (2:0,0) = Z (A.8)

To sum up, we found that whenever two roots coincide, the Weierstrass elliptic
function degenerates to a function that is not doubly but simply periodic. If all three
roots coincide, the Weierstrass elliptic function degenerates to a function that is not
periodic at all.

1.3 Employing the definition (1.18) of the Weierstrass elliptic function, we have

L
(12)?

D )

(o 2(0.0) (uz + 2mpw; + 2npuen)?  QCmuw, + 2npw,)?

1
— (o, wm) =
"

or

1
EKJ (z; w1, W) = P (UZ; pw1, pws) . (A9)
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Then, the definitions of the moduli g, and g3, (1.24) and (1.25), imply that

1 1
w1, Lwn) = 60 = —go (w1, ),
82 (pwi, pw,) . ;1}2;&%0 ) Cmpor + 2npan)? M4g2( 1, W2)
1 1
wy, Lan) = 140 = —g (w1, ).
83 (nwr, pws) {m,r%é:{o,m Ompon & 2nris) /L6g3( 1, 2)

As a direct consequence of the above, we have

82 83
0 (2 82, 83) = Wp (Mz; F’ E) , (A.10)

which is the desired homogeneity property of the Weierstrass elliptic function.
Problems of Chap. 2

2.1 Integrating the homogeneity property of Weierstrass elliptic function (1.41) and
using the definition (2.1) of the function ¢, we get

82 83
$ (25 82, 83) = ¢ (MZ; —t —6> +c.
ut

The defining condition (2.2), i.e. the fact that ¢ is defined as an odd function, implies
that ¢ = 0, and, thus,

82 83
¢ (23 82, 83) = K¢ (uz; = —6> : (A.11)
neop
Integrating once more and using the definition (2.8) we get

8 &
0 (z; 82, 83) = co (uz; = —6) .
whop

The defining condition (2.9) implies that ¢ = 1/u. Therefore,
1 82 83
0(z;8,8)=—0 (,uz; i B (A.12)
W T

2.2 Let us first consider the case that the two larger roots coincide to the value
eo. In this case, the Weierstrass elliptic function is expressed in terms of hyperbolic
functions as shown in Eq. (1.43). Then, the definition of the Weierstrass zeta function
(2.1) implies that
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¢ (1262, —8e) = — / dzp (z: 1262, —8¢2)

360
——|d L
/ ¢ (eo + sinh? ( 3602))

= —epz + /3eg coth ( 3eoz> +c.

The Laurent series of the function /3e( coth ( 3602) around z = 0 is

1
v 3eg coth( 3eoz> = z + O (2).

Therefore, the defining condition (2.2) implies that the integration constant ¢ van-
ishes. Thus,

¢ (21263, —8e3) = —eoz + /3e0 coth( 3eoz> . (A.13)

In a similar manner, the definition of the Weierstrass sigma function (2.8) implies
that

Ino (Z; 126(2), —8e8) = /dz{ (z; 12eé, —86‘8)
= / (—eoz + +/3eg coth ( 3e0z))
1
= —56012 + In sinh ( 3eoz> +c,

or
o (z; 12¢5, —8e) = ¢ sinh ( 3e0z> e~ 2407

Taylor expanding the above around z = 0 yields

o (z; 12¢, —8e)) = e“y/3eoz + O (%) .
Therefore, the defining condition (2.9) implies that the appropriate value for the
integration constant is given by e¢ = 1/4/3ey, and, thus,
sinh (\/3_60Z) e_%e()zz.
A/ 360

It is trivial to repeat the above for the case that the two smaller roots coincide to
the value —e( and find

o (z: 12¢5, —8e;) = (A.14)
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z (z; 12e§, 8e8) = epz + +/3ep cot ( 3eoz> , (A.15)
sin (v/3e0z) 1,
o (z:12¢],8¢)) = — =L 2%, (A.16)
( 0 0) \/3_8()
2.3 The defining Egs. (2.1) and (2.2) imply that

1 z 1
C(Z)=——/ W) — — dw. (A.17)

Z 0 w

Therefore,

1 —z 1
C(=z2)=—- _/ <KJ (w) — —2) dw
Z 0 w
__l+/‘7( (_ /)_ 1 )d ’
= s A o w (—w’)2 w
Tz 0 P w? v

where we made the change of the integration variable w = —w’ and we used the fact
that g is an even function. The latter implies that

t(—2)=—-¢(2), (A.18)

meaning that ¢ is an odd function.
Similarly, Egs. (2.8) and (2.9) imply

o (2) = zeh G@=3)dw (A.19)
Therefore,
o (=z) = —zel C@=Ddw _ _ =k (s )=z )aw
— el )= dyaw
or else

0 (-z2)=-0(2), (A.20)
meaning that o is an odd function.
2.4 First, we will prove the quasi-periodicity property
§ (24 2mw) + 2nw;) = £ (2) + 2m& (w1) + 2ng (w2) (A.21)

for n = 0, namely,
$(z+2mw)) =& (2) +2ms (w1) . (A.22)
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This trivially holds for m = 0. Assuming that it holds for a given value m, we will
show that it does hold for m + 1. Using property (2.5), we have

(@+2m+ Do) = (z+2mwr) +2¢ (1)
= (2) +2m¢ (wy) +2¢ (1)
=¢{(@+2m~+1)¢ (01).

Similarly, one can show that (A.22) holds for m — 1. Thus, Eq. (A.22) holds for any
m by induction. Therefore, the quasi-periodicity property (A.21) holds for n = 0.
Assuming that it holds for a given value n, we will show that it holds for n + 1. Once
again, using property (2.5), we have

{4+ 2mwr +2(n+ 1) wp) = ¢ (z2+2mw; + 2nwy) + 28 (w2)
= (2) +2m¢ (w1) + 2n (w2) + 2L (w2)
=@ +2m¢ (w) +2(n+ 1) (02).

Similarly, one can show that (A.21) holds for n — 1. Therefore, we have shown that
(A.21) holds for any m and n by induction.
In a similar manner, we proceed to prove the quasi-periodicity property

o (2 + 2mw; + 2nw,) (_1)m+n+mne(2m{(¢ul)+2n{(u)2))(z+mw1+nw2)o_ (2) (A.23)
for n = 0, namely,
o (24 2mw) = (—1)"Fme@GEtmeD 5 7y (A.24)

This property trivially holds for m = 0. Assuming that it holds for a given value of
m, we will show that it does hold for m + 1. Employing property (2.12), we have

o(Z+2m+Dw) = X @)@+ 2martmeon) o (z + 2maw;)

— _62{'((/)1)(Z+(2m+1)a)])(_ l)meZmC(wl)(Z+mw1)O, (Z)

= (- 1)m+162{(wl)((m+1)z+(m2+2m+1)w1)O, (2)

= (_1)(m+1)62(m+l);(wl)(z+(m+l)a)])O_ (2).

Similarly one can show that (A.24) holds for m — 1. Therefore, property (A.24) holds
for any m by induction. This implies that the quasi periodicity property (A.23) holds
for n = 0. Assuming that it does hold for a given value of n, we will show that it
does hold forn + 1,
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0 (24 2mw; +2 (n + 1) wy) = —X¥@IEHIm+2Mar+0) 5 (7 4 ) + 2nws)
— _ezg(wz)(z+2mw1+2nw2+wz)(_1)m+n+mne(2m;(a)1)+2n{(wz))(z+mw1+nw2)a 2)
_ (_1)m+n+l+mneZm§(w1)(z+mw1+nwz)62§(wz)((n+l)z+(mn+2m)w1+(n2+2n+1)wz)6 2)
— (_1)m+n+l+mn82m{(w1)(z+mw1+(n+1)w2)62(n+1)§(wz)(2+mw1+(n+1)w3)
x M2 (@)o1=2¢(@n)wr) ; @)
— (_1)m+n+1+mne(2m§‘(an)+2(n+1){(wz))(ermwl+(n+1)w2)efinmo, )

— (_1)m+(n+l)+m(n+l)e(2m§(w1)+2(n+l)§(w2))(z+mw1+(n+1)wg)g @),

where in the last step we used property (2.7). Similarly, one can show that (A.23)
holds for n — 1, and, thus, for any m and n.

2.5 The addition formula (2.18) implies that

150’(z)—@’(w1))2

@(Z+w1)=—@(2)_@(wl)+<2 0 (2) —p (o1)

Since g (w;) = e; and g is stationary at all half-periods, it follows that

3 1 9@ \
P(Z+w1)——&7(2)—€1+<5m) .

The Weierstrass differential equation (1.29) can be used in order to substitute g’ (z)2
in the above expression. When written in terms of the roots, the Weierstrass equation
assumes the form g’ () =4 (9 (2) —ey) (p (2) — e2) (p (z) — e3), and, thus,

(9 (2) —e) (o (2) — e3)
o (2) —e .

pP@Et+ow)=—p(@) —e +

Finally, using the fact that the three roots sum to zero, we find

e 2) + e + eze 2¢? + ese
0+ o) = 19 (2) + €7 s _, L 2ates (A25)
$(2) —e $(2) —e
Similarly, it can be shown that
2(3% + ejes 26% + eze;
P+ =3+ ——, pEt+w)=e+——:u. (A.26)
$ (2) —e3 (@) —e
2.6 We will write the elliptic function %%, being considered a function of

z, in terms of the Weierstrass function ¢ and its derivatives, taking advantage of
the techniques analysed in Sect. 2.2. In order to do, so we need an irreducible set
of poles of this function and the principal part of its Laurent series at each pole.
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We have already shown in Sect. 1.1 that given a meromorphic function f (z), the
function f’/f has only first order poles at the positions f has a root or a pole with
residues equal to the multiplicity of the root and the opposite of the multiplicity of
the pole respectively. We will apply that for the function g (z) — g (w). The latter
has obviously only a second order pole in a position congruent to z = 0 in each cell.

The function ¢ (z) — g (w) obviously vanishes at z = w and z = —w, which are
not congruent to each other in general. Therefore, since it is a second order elliptic
function, in each cell it has only two first order roots congruentto z = w and z = —w.
Consequently, an irreducible set of poles of the function @(z?——(fo)(w) arez =0,z=w
and z = —w and the corresponding Laurent series read,
/ P 2
20 _ 2 (),
# (2) = (w) z
o' (@) 1 0
= + 0 ((z—w)"),
@) —pw z-w ( )
'@ 1

0
p(z)—p(w)_z+w+0((z+w))'

Similarly, the function — % has poles only at the locations where the function
& (2) — g (w) has roots. We have already shown that an irreducible set of roots of
the latter is z = w and z = —w. The corresponding Laurent series read,
o' (w) o' (w) 0 I 0
- =— 0 (- =——+0(:z- ,
ro—pw ~ Fwe—w o) =g ro(c-w)
o' (w) o (w)

_ _ oy 1 .
R —pw g{)’(—w)(z+w)+0((z+w)) Z+w+0<(z+w))'

Combining the above information, it turns out that the function %% has poles
only at z = 0 and z = —w and the corresponding Laurent series read,

1o @—p' W 1 0
Yo —pmw ~ 2 0E)
1p@—-—p' W 1
2p@-pw 4w

+ 0 ((z +w)°).

The above provides the necessary information in order to write the elliptic function

%% in terms of function ¢ and its derivatives. Applying formula (2.15), we
get

1p' (@) — ' (w)

s =@t w - @+cw).

2 p@)—p W)

Interchanging z and w, we get in a similar manner
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19 () — ' (w)

2 p @) —p W) =¢z+w —¢(w) +c(2).

The above two relations imply that

19' @)= w)

2 () —p(w) ={@z+w) —¢@)—¢(w)+e.

Finally, the fact that g’ and ¢ are odd functions, whereas g is an even function

implies that ¢ = 0, which results in the desired pseudo-addition formula
1p' (@) — ' (w)
S =@ tw) - (@) - (w). (A.27)
2 p()—pw)

2.7 We differentiate the pseudo-addition theorem for Weierstrass ¢ function (2.20)
with respect to z and w. We get

1" (@) () —p W) - @) (e & — e (W)
—BO(Z-I—w)-l-&O(Z):E (p(z)_p(w))g )

1" (w) (P @) —pw)—e W) (@ —e W
—p@E+w) +pw) = 5 0 —p (w))z( )

)

Adding the above two equations yields

—2p @+ w) +p @)+ W
1@ =9 W) @) —pw) - (9 )= p W)’
2 (9 (2) — p ()’
zld@%p%m_lcum—ﬁwv2
2 p@-pw 2\ p@@-pw

The second derivative of Weierstrass elliptic function can easily be expressed
in terms of the Weierstrass elliptic function itself. Differentiating the Weierstrass

differential equation, we get

p" = 6p* — %, (A.28)

which implies that
p" (@) — " (w)=6(p” @) —p* W)).

Therefore, we conclude that

=20 (z+w)+p @) +p (W) =3602 @ —p* ) _ l(p’(z) _@/(w)>2

p@)—pw 2\ p@)-p W)
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and finally,

/ o 2
1(50 ) p(w))’ A2

pliztw) =—p@—pWw) — -
4\ p (@) —p (w)
which is the addition theorem for the Weierstrass elliptic function (2.18).

2.8 The addition formula for Weierstrass elliptic function states that

19 () — g (w))2

mz+w)=—@<2>—5"("’)+(2 £ @ = p W)

The duplication formula requires taking the limit w — z. At this limit the fraction
in the right hand side of the addition formula becomes indeterminate. It is simple
though to use Hospital’s rule to find

lp" @) )2. (A.30)

p 22) = 29 (2) + <§ o

One can eliminate the second derivative of g. For this purpose we have to differ-
entiate the Weierstrass equation to yield

9" (2) = 69 (2) — %. (A.31)

Then, the duplication formula assumes the form

(69° @~ %)°
493 (2) — g2 (2) — 83)

P Q22) =—2p () + i

or
2
30207 (2) + 983 (1) + &
40 (z) '

1
o (2z) = N (2) + (A.32)

Let’s now derive the duplication formula expressing g (2z) in terms of ¢ (z) and
its derivatives. Let 2w; and 2w, be the two fundamental periods of g (z). Then the
function g (2z) is an elliptic function with fundamental periods equal to w; and w,.
This obviously means that it is also an elliptic function with periods 2w; and 2w,,
but in the parallelogram defined by the latter, there exist four fundamental period
parallelograms of g (2z). Therefore, the function g (2z), as an elliptic function with
periods 2w; and 2w is an order 8§ elliptic function with four double poles at positions
congruent to z = 0, z = w;, Z = w; and, z = ws. The principal part of the Laurent
series of g (2z) at each of these poles reads

1
o (2z) = -+ 0((z—20)7).

11
4 (z — zo0)
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We have the necessary data to express g (2z) in terms of the function ¢ (z) and its
derivatives. Formula (2.15) implies that

1 1 1 1
@(2z)=C—Zé/(z)—ZC’(z—wl)—ZC/(z—wz)—ZC/(z—wl—wz)

1 1 1 1
=C+- e — e —p (2 — w3).
+4go(z)+4p(z w1)+4p(z w2)+4p(z w3)

Finding the Laurent series of the above equation at the region of z = 0, we get

1

1
@4_(9(12):C+—+el+€2+63+0(22),

474

implying that C = 0, since the three roots e, e, and e3 sum to zero. Using the results
of problem 2.5, we get

1 1 2¢% + ere3 1 26% +erer 1 26% + eze;
PR22)=-p @+~ e+ L ——+-|a+=2—T)+- [+ 2——].
4 4 (@) —el 4 (@) —e3 4 (@) —e

After some algebra and using the fact that the three roots sum to zero, we get

(2 (e% + e% + e%) + ejex + eres + 6‘361) 0> (2)

1
o (22) = Zso(z) +

9?(2)
(2(ef + 3 + €3) +3e1e2e3) (1) eled + edel + ede?
©7(2) ©”(2)

The fact that the three roots sum to zero can be used to calculate the coefficients
of the above expression. We find,

(e1+er+e3)? = (ef +e3+ e%) +2(e1e2 + ezez +ezer) =0,
which with the help of Eq. (1.39) implies that

e% + e% + e% = % (A.33)

Furthermore,

(e% + e% + e%) (e1 + ey +e3)

3 3,3 2 2 2 2 2 2
=et+e +e3+ (elez + eye3 + eze1 +eje; + ere; + e3el) =0,

(e1 +er +e3)’

= (e? + e + ei) +3 (e%ez +ejes +eje) +eje; +exes + e3ef) + 6¢e1e2e3 = 0.
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Taking into account equation (1.40), the last two equations imply that

3
S+ + el =3eieres = %. (A34)

Finally,
(e1e2 + ere3 + e3e))* = e,zeg + egeg + e%e% + 2e1e2e3 (e1 + e+ €3)
implying that
&2
efe% + e%e% + e%e% = (e1ep + eye; + 6361)2 = 1—2 (A.35)
Putting everything together, we get

2
30207 (2) + 9839 (1) + &
40" (z)

1
p (2z) = 1% (@) + , (A.36)

which is the desired duplication formula.
Problems of Chap. 4

4.1 When the cubic polynomial has a double root e, the third root necessarily equals
—2ey, as the three roots sum to zero. Therefore, the cubic polynomial in such a case
equals,

Q (x) = 4(x — ep)* (x + 2e) = 4x> — 12e3x + 8ep. (A.37)

Thus, a cubic polynomial with a double root obeys
g = 12¢), g3 = —8¢, (A.38)

or
g >0, g —27g;=0. (A.39)

When g3 > 0, the double root is negative, and, thus, the two smaller roots coincide,
whereas when g3 < 0, the double root is positive meaning that the two larger roots
coincide.

In the case of the motion of a particle in a cubic potential, the solution is given by

x=gp (-1t —F,—F), (A.40)
x =g —1t+wy;—Fy, —E), (A.41)

where the second solution exists only when there are three real roots. The moduli
take the values g, = — Fy and g3 = —E and therefore a double root exists when
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Fo\?
Fo<0. E=x(-=). (A.42)

These values correspond to the case the potential that possesses a local minimum
and the energies equal the limiting values for the existence of a bounded motion.

When E = +(—Fy/3)*?, the double root equals ey = (—Fy/12)!/? > 0. There-
fore, the real period diverges, while the imaginary one assumes the value

1
3R\ ¢
2w2=m<—T°) . (A.43)

Formula (1.43) suggests that in this case,

% ! 3!
e ()8 iy
sinh? ((—%)%)

implying that the unbounded and bounded motions degenerate to

1 _3R)\3
)
12 sinh? ((—ﬁ) (t—to))

1

i _3R)2
X = <—E> — ( ]4 ) s (A.46)
12 cosh? ((—%%)Z (t —ty) + l%)

N

, (A.45)

=

respectively. These motions describe a particle having exactly the energy of the local
maximum, in the first case coming from the right and in the second coming from the
left. The particle arrives at the position of the unstable equilibrium in infinite time.

When E = —(—Fy/3)¥? the double root equals eg = —(—Fy/12)'? < 0. The
imaginary period diverges, while the real one assumes the value

2w = n(——>_4. (A.47)

Formula (1.44) suggests that in this case,
1

3 _3R)2
® (Z; —Fy, +<—?) ) = —(—%) + (—4)1’ (A.48)
sin? ((—%)%)

implying that the unbounded and bounded motions degenerate to

ol
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_3R):
‘= <_@) + (=) , (A.49)
12 sin? ((—%) (t —t0)>

1 _ 3F\1
‘= (_@>2 + lim %) = (—ﬂ) . (AS0)
12 7% sin? ((—%)Z (t —to) + ix) 12

respectively. The form of the limit of the bounded motion is also physically expected.
The bounded motion ranges between e3 and e,. Since these two roots coincide,
the bounded motion necessarily degenerates to a constant. The unbounded motion
describes a point particle having exactly the energy of the local minimum coming
from the right and getting reflected by the potential barrier, while the bounded motion
describes a point particle resting at the local minimum equilibrium position.

The period of motion in this case assumes a finite value. The Taylor series of the
potential at the region of the local minimum is

3 1y 2 1\ 3
V(x):—(—?) +2\/—3F0<x+<—%> ) —4<x+<—%> ) .

(A.51)
Since the mass of the point particle has been taken equal to 2, the period of the small
oscillations at the region of the local minimum is equal to

[NE

i

=

2

— T —w, (A.52)
(=12Fy)*

Tsmall =

as expected.
4.2 The cubic polynomial associated with the problem of a point particle with energy
Eis

0 (x) =4x>+ Fox + E.
Let e;, e; and e3 be its three roots, appropriately ordered, as described in Sect. 3.1.
They obviously obey

QO (e;) = 4e} + Foe; + E = 0.
The cubic polynomial associated with the problem of a point particle with energy

—Eis

R(x) =4x>+ Fox — E.
This polynomial obeys

R(—¢) = —4¢} — Foe; — E = —Q (e;) = 0. (A.53)
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In other words, the roots of the problem with inverted energy are just the opposite
of the roots of the initial problem. It is obvious that the appropriate ordering of the
roots of the inverted energy problem is

er (—E)=—e3(E), e(-E)=-er(E), e3(—E)=—ei(E). (A54)

In the case the three roots are real, the above is obvious, since e; > ¢, > €3 = —e; <
—ep < —ej3. In the case there is only one real root, it also holds: e; (—E) has to be
identified to —e, (E), since it has to be real, while e¢; (—E) has to be identified to
—e3 (E), so that it has a positive imaginary part.

In the case of three real roots, we use formula (3.1) to find that

+00 dl
2wy (—E) =
—ey At He)(t+e) [ +e3)
_ /“ dr’ (A.55)
—oo A (er = 1) (e2 — 1) (e3 — ')
= 2iwy (E) = 2w, (E)|,
where we defined #' = —¢. Similarly, in the case of one real root, we use formula
(3.3) to find
+00 dl
2wi (—E) + 2w, (—E) =
: ? e NUreNUte)+e)
/6’2 d[/
= A.56
BNV = YD ey B

= —2i Qw (E) — 2w, (E))
= 201 (E) — 2w, (E)| .
This completes the proof that the absolute value of the imaginary period corresponds

in all cases to the “time of flight” or period of oscillations for a point particle with
opposite energy.

4.3 The conservation of energy in the cubic potential problem reads
243 —Fx=E
or in terms of the roots
P=4(x—e)(x—e)(x —e3). (A.57)

We perform the change of variable x = e3 + W It is a matter of simple
algebra to find that
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(s —e)(es—e),

(v —e3)? ’
(e3—e)(y —e)
X —e1 = )
y—e3
(e3 —e) (y —e1)
X —é€é) = s
y—e3
(e3 —e1) (e3 — e2)
X —e3 = .
y—e3

Thus, in terms of the new variable y, the conservation of energy is written as

(e3—e1)(es —e)” .,

(v —e3)?
24(33 —e)(y—er)(es—e)(y—er)(e3—e)(ez3 —e2)
y—es3 y—e3 y—e3
or
V=4 —e)(y—e)(y—es). (A.58)

Therefore, the conservation of energy is invariant under this transformation. We
could say that the problem has a Z, symmetry, since performing the change of
variable twice leads to the initial variable,

(e3 —e1) (e3 — ) (e3 —e1) (e3 — e2)
x> est et (@—ee—e) =x (A
X —e3 ez + e ()

It is trivial to show that

lim x =e3;, lim x =—00, lim x =400,
y—>—0 y—ey y—)(z;r
limx =¢;, limx=e, lim x =e;3.
y—ey y—e; y—>+00

As a consequence, the following intervals of x are mapped to intervals of y as

(—OO, 63] - (—OO, 63] )
[e3, e2] — [e1, +00),
[ea, e1] — ez, e1],

[e1, +00) — [e3, e2].

That means that the bounded motion in one problem is mapped to the unbounded
motion of the other. Since the problems are identical, the two solutions, oscillatory
and scattering, are also identical,
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Xoscillatory @) = Yoscillatory ®=f@, (A.60)
Xscattering () = Yscattering ) =g, (A.61)
which implies
(e3—e1) (e3 —e2) (e3 —e1) (e3 —e2)
f@)=e O — e g(t) =es 70 —en (A.62)

We do not know the exact form of the oscillatory and scattering motions, however the
above equations connect them in a specific way. Let T’ be the period of the oscillatory
motion and furthermore let the initial condition for the bounded motionbe f (0) = e3.
In an obvious manner, after half a period the particle lies at the other point where its
velocity vanishes f (%) = e,. The connection between the two motions implies that

f(0) =es;, g(0)— o0,

T T
S (E) =ée, § (5) =e,

f(T)=es, g(T)— +oo.

Thus, it turns out that the period of the oscillatory motion and the “time of flight” of
the scattering motion are equal.

4.4 Itis evident in Fig. 4.4 that there are two energies where a double root appears,
namely E = +w’.
For E = w?, the two larger roots coincide,

w?

el = e =¢€y)y= —.

3

Following the outcome of problem 1.2, the real period of the Weierstrass elliptic
function diverges, whereas the imaginary one assumes the value

.1
2wy =1 —
w

and the Weierstrass elliptic function is expressed in terms of hyperbolic functions as

) _4a)4 8w . w? n w?
Pz 37 27 )7 3 " sinhlwz

The pendulum solution is expressed in terms of the bounded real solution in the real
domain of Weierstrass equation, namely the Weierstrass elliptic function on the real
axis shifted by w»,
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( 40t 8w ) w? w? w? w?
20 = =

RN S N ——
73 27 3 sinh? (wt +i %) 3 cosh®wt

Finally, Eq. (4.16) implies that the degenerate solution is written as

2
cosf = —1+ - (A.63)
cosh“wt
For E = —w?, the two smaller roots coincide.
2
ep=e3=—e)=——.
2 3 0 3

Therefore, the imaginary period diverges, while the real one assumes the value

T T
2(1)1 = = —.
0]

A/ 360

As in problem 4.1, the bounded real solution in the real domain of Weierstrass
equation degenerates to a constant being equal to the double root,

do* 8w w?
20 | ¢t e — | = ——. A.64
KJ( + w2 3 o7 ) 3 ( )
Finally, Eq. (4.16) implies
cosf = 1. (A.65)

This solution describes the pendulum lying at the stable equilibrium position. Con-
sidering this solution as the limit of the oscillatory pendulum motion when the ampli-
tude of the oscillation goes to zero, we conclude that the limit of the period of the
oscillatory motion at zero amplitude is

2w
Toscillaling =4w = Zs (A.66)

as expected.

4.5 Inthe case E > w?, it holds that e; = x;, e; = x, and e3 = x3. Using the addi-
tion formula for the Weierstrass elliptic function yields (2.7)

2 E
x(=t) =1In [E (zp (@1/2—1) — ;)]

]2 1o (@) =9 (—o1/2= 1)\
=In |:w2 <—2@ (@1) =2 (—w1/2 — 1) +2<§ o oD —p /2D ) —261>}

]2 1 9 @/2+D )’
=In |:a)2 (—4e1 —2@(@1/24-[)-{-5(61 —p(w1/2+t)> ):|
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Then, we use the Weierstrass differential equation (1.29) to substitute the derivative
of the Weierstrass function

x (—t)

I [% (7461 2o @124 1) 4@ @/2+0) —e) (@ (@/2+1) —63))}

P @1/24+1) —e
I |:2 (2(—e1 —ey—e3)p(wi/2+1) +2€% +6283>j|

w? P (@1/241) — e

2 26% + eres
=hh|S5|2———]|.
o’ \“p@/24+1) —e
Using the specific form of the roots of our problem, we find

26%+€2€3=2X%+X2X3
E\’ E 1 E 1
=2l=) +|-=+-VE*—o*||—-—= —-VE*?—*
6 12 4
E? E* E’—o* o
BT 7” A TR T

which implies that finally, we get

o
x(—t):ln[ :|
4(p(01/2+1) —er)

2 E
=—1In [—2 <2p (w1/2+1) — —>] =—x(1).
W 3

The case E < w? is identical with the permutation e; < e, @] < w3.

The essential difference between the transmitting solutions and the reflecting
solutions is that in the former case the time of flight equals the real half-period,
while in the latter equals the whole real period. Therefore, in the case of reflecting
solutions, the problem is much simpler, since,

(A.67)

[ 2 E
X (—t) =In (17 (25@ ((,()1 — t) — g)il
: 2 E
=In — (25@ (—w; +1) — —>i| (A.68)
| @ 3
M2 E
=In _07 <2p(a)1+t)—§>] =x(1),

as expected.

4.6 The extrema of motion can be read from Table 4.6. They are In 4(6;—262) and
In ‘%. It is a matter of simple algebra to show that
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(e1 — e3) (e1 — €2) = €7 — (2 + €3) €] + ere3 = 2e] + ezes. (A.69)

4(e1—e3)
P

In problem 4.5 we found that Zef + ere3 = ‘;’—g Therefore, In 4(1;62) = —1In
and consequently the extrema of motion are opposite.

The periodicity property x (T — t) = —x (¢) can be easily proved by repeating
all the steps of problem 4.5 with the substitution t — —f.

The double root limit, as one can easily see in Fig. 4.6 corresponds to E = w?.
In this limit, the two smaller roots coincide to the value e; = e3 = —w?/12. The
oscillatory motion is described by the bounded solution. As shown in problem 4.1,
in this limit, the bounded solution degenerates to a constant equal to the value of the
double root. Consequently,

2 2

2 w w
X(t)zhl [—E (25—;)} =Inl =0, (A7O)

which is indeed the equilibrium position. The real period degenerates to the value

T = 2(1)1 — = —, (A7l)

as expected.
Problems of Chap. 5
5.1 The special solution is

V(s w123) = Ve () —er132 (¢ (x + w123) + e132x)

(A72)
=ys (x; 0123) (¢ (x + @123) +e132%) .

The first and second derivatives of y. (x; a)l,z,g) are given by Eqs. (5.7) and (5.8).
These equations for the solution modulus being equal to any of the half-periods read

dys (v;oi03) 1 ' (x)

dx ) 9 (X) — €132 Y+ (X; 601,2,3) ; (A.73)
d? ;
% = (25@ (x) + 61,3,2) Vi (x; a)1,2,3) . (A.74)

Therefore, we may express the first and second derivatives of y (x; w1$2,3) as,

dy (x; a)l,z,g) _dyi (X; 601,2,3)
dx N dx

(¢ (x + @123) + e132x)
+y: (s w123) (=9 (x + @123) +e132)

and
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25 (.. 20, (s

d y();s;l,zﬁ) _dys (;:2601,2,3) (¢ (x+012) + e13.2%)
,dr+ (x;01,2,3)

dx
—yx (xr1@123) (9 (x + @1,2,3)) (A.75)
= (20 () +e132) (¢ (x +01,23) +e132%) yx (x5 @1,2.3)
o' (x)

P —e132

—p (x+w123)y+ (r;0123) .

+ (—@ (x +w1,2,3) +el,3,2)

(9 (x + @1,2,3) —e1,32) v+ (x; 01,2,3)

The Weierstrass elliptic function, with an argument shifted by a half-period can
be calculated with the use of the addition theorem. This has been done in problem
2.5,

(e132—e32.1) (€132 — €21.3)

o (x+wos)=es+ (A.76)
o (x) —e132
It is a direct consequence that
, (e132—e32.1) (€132 —e213)
[ (x + 0)1,2,3) =-— 5 o (x). (A7)
(60 (x) — 61,3,2)
Combining the above two relations, we find
P (x) ,
— wxFwi3) —e32)+ o (X twins
o e, #l ) )+ 8 ( )
_ 9 (x)  (e132—e321) (€132 — e213)
o (x)—ei32 o (x) —e132
e132—e3n1)le1s2 —exs
_( ) ) oo

(9 (x) — 61,3,2)2

The latter implies that Eq. (A.75) is written as

d*y (x; w123
% = (20 () +e132) (¢ (x + @123) + €132%) 1 (x; w1.2,3)
= (20 (x) +e132) ¥ (x; w123),

(A.78)
meaning that indeed the functions y (x; (,()1’2,3) are eigenfunctions of the n = 1 Lamé
problem with eigenvalues

A= —€1,3,2. (A79)

5.2 We apply the quasi-periodicity properties of the Weierstrass zeta and sigma
functions (2.5) and (2.12) respectively on the definition of the function u (5.17) and
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we get
o (x 4+ 2w £a) e:':“[i‘;’l)(x_,'_zwl)

o (x +2w) o (a)
—o (x +a) ezf(wl)(x;ta+w])
—0 (x) eX@Db+on g (g)

o(xxa) 1040()«;1))(

us (x + 201 a) =

o e 2mn)

o (x)o (a) =ux (x;a).

Thus, indeed, the functions u 4 (x; a) are periodic functions of x with the same period
as the potential.

5.3 We follow the derivation for the unbounded potential. In the following, b is
considered real. For a in the segment [0, @], a = b. Then,

o (x —wyExb)o (—wy) oS b
o(x —wy)o (—wy £b)

o (x +wy £b) e 28 (@) (x£D) 5 (wz)e—i(ib)x
o (x +w) e~ 20 (@)x 5 (4w, £ b) 28 () (£b)
=Y+ (x;D).

Yy (x;0) =

For a in the segment [0, w;],a = ib,

m _ o(x—w Fib)o (_U.)Z) o~ GFib)x
0 (x —wy)o (—wy Fib)

0 (x + wy F ib) e X @IOFD) g ((y,) et (Fib)x

- o (x + wz) e~ 20 (@)x 5 (U)Z F lb) 28 (2)(Fib)

=YL (x;ib).

For a in the segment [w;, w3], a = wy + b,

o —w Fwrxb)o (—w) ¢ Grontbix
0 (x —w)o (—w Fwy £ b)

—0 (x + wy £ wp £ b) e FFD@)CED) 5 ((,) 28 (02)x gL (Fentb)x
- —0 (X + @) e B@3G () £ ) £ b) e CEDL@)ED)

=Yy (x; 02+ D).

Yy (x; 00+ b) =

Finally, for a in the segment [w;, w3],a = w; + ib and

oc(x—wrtw Fib)o (_a)Z)ef{(:twlp'b)x
o (x—w)o (—w £w Fib)

0 (x + Wy F w; F ib) 2F@)=E@)OFD) 5 (4),)FH (@)X p=L (FrFib)x
- 0 (x + @) e Z@g (wy F ;) F ib) e2F @) —C @) (Fib)

Yy (x; 01 +ib) =
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which concludes the derivation of the reality properties of the eigenfunctions of the
bounded n = 1 Lamé problem.

5.4 Following the derivation in the case of the unbounded potential presented in
Sect. 5.1, we have

o (x 420 +wy£a)o (wy)  —eX@CtotoEs (x 4 o) +a) o (wr)
0 (X +20 + )0 (wy£a)  —eX@arortog (x + wy) o (wa + a)
_ A2t oc(x+wrta)o (a)z).
o (x +wy)o (w2 £a)

Thus, we can write the eigenfunctions (5.41) of the bounded problem in the form of
a Bloch wave

Vi (63 @) = us (x; @) eHOY, (A.80)
where
ws (v1q) = I T @2 £ (@) oy (A1)
o(x+w)o (w £a)
ik (a) = ag (1) — o1 (0)7 (A82)

wi

with uy (x 4+ 2w;; @) = u+ (x; a). The function k (a) is identical to the one in the
unbounded potential. Therefore, the band structure of the bounded potential is iden-
tical to the band structure of the unbounded problem.

5.5 By direct computation starting from the expressions (5.6), we find

oxt+ajolx—a p—C@x —t-ax _ _ 7 (x+a)o (x —a)

02 (x)o (a)o (—a) 02 (x)o?(a)

Y+y- =

Using the pseudo-addition formula for the Weierstrass o function (2.19), we get

yiy-=p @) —p@. (A.83)

Similarly, using Eq. (5.7),

Yy — vy = <l P - @ 1o () +e (a)) Ly
2 p()f)(a_)@(a) 2 px)—p) (A.84)
v (o (x) —p (@) =—p (a).
e (x) — g (a)

We repeat for the eigenfunctions (5.41) of the bounded n = 1 Lamé potential
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o@X+mm+a)o(x+wr—a)o? (@) o —C@x ;¢ (—a)x

VY T T wn o @+ @) 0 (@2 —a)
=0(x+a)2+a)0(x+a)2—a) o2 () 62 (a) (A.85)
0% (x + wy) 0% (a) o (wy+a)o (wy—a)
ZKJ(X+(U2)—K9(G)
e; — g (a)
and
o (1o GFw)—p' (@) 1o (x+wm)+e ()
Vv %w_<29u+wa—pw> 2pu+wﬁ—pw>>%w
_ %’ (a) p(x—i—wg)—go(a):_ 9 (a)
P&+ w)—p(a) e3 — g (a) es—p(a)
(A.86)

Therefore the “normalization” of the eigenfunctions of the bounded potential
differs from the “normalization” of the eigenfunctions of the unbounded potential by
afactor of v/e3 — g (a). Of course this is just a constant and it could be included to the
definition of the bounded eigenfunctions. However, such an inclusion would disturb
the reality properties of the eigenfunctions, as the reality of this factor depends on
the value of p (a).

5.6 Itis trivial that the square of the magnitude and the phase are given by

R*=y.y_,
o= L In y—+.
2 oy

It follows that

do iy Yy —ylys iy —ylys

dx 2 y4 y2 2 ey

Thus, as a direct consequence of Eqgs. (5.51) and (5.52) we have

R*(x;a) = p (x) — p (a), (A.87)
ddx;a) i g'(a) . (A.88)
dx 20 (x)—gp(a)

Indeed, both R? and d® /dx are elliptic functions of x.
Using the specific form of the eigenfunctions of the n = 1 Lamé problem (5.6),
we find that the phase ® is given by
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() (.X'; a) = —l— In <W6(5(4)“0))x>
> "\ oa-ao@

i o(x+a)

We used the fact that the Weierstrass zeta and sigma functions are odd. Using the
quasi-periodicity properties of the above functions, we get

(A.89)

d>(x+2a)1;a)=—§ U(x—a+2a)1)>_2C(a)(x+2wl)i|

i — (x + (1) eZ{(w])(x+a+w1)
- _1n <_ —o (x —a) e2§<w1)(x—a+w1)> — 20 (@) (x+ Zwl)]

s T 2¢ (o)) (x+a+wy)
__! 1n<—”(x+a)e )—2§(a)xi|

o (x — a) ezf(wl)(x_a"‘wl)

i < o(x+a-+2w)
n{————

—2i (¢ (w1)a — ¢ (a) wy)

=0 (x;a) =2 (w)a—¢(a)wr).
(A.90)

The above result is obviously compatible with the definition of the function k
(5.18), since
O (x+2wi;a) =D (x;a) + 2wk (a), (A.91)

which implies that the eigenfunctions y can be written as
Vi (x; a) — R (X; Cl) eii(d>(x;a)—k(a))xeiik(a)x =u, ()C; (l) eiik(a)x, (A92)

where 1+ (x; a) = R (x; a) e (®®O—k@)¥ j5 obviously a periodic function with the
same period as the potential.

5.7 Using the formula (5.7) and the definition of the superpotential (5.42), we find

dx o (x)o (*a)
_ 1 <p’ @O F @ P ) O£ _riran
2\ p(x)—pa k) —e)o(x)o(xa)
Je(x,a)ys (x;a).

Alys (v;a) = (_i W m) RACEI RS

The Lamé eigenfunctions themselves are not elliptic functions. However, it is trivial
that the prefactor f. (x, a) is an elliptic function of x, as well as an elliptic function
of a.

Using the pseudo-addition formula for the Weierstrass ¢ function (2.20), we find

fe@,a) =0 () +¢(Fa) -t (x£a)+ ¢ (x+w) =& (x) = (@)
=¢(Fa) -t (xxa)+{(x +w) = (w2).
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Remembering that f3 (x, a) as a function of x is an elliptic function, we may write
it as a ratio of Weierstrass o functions. fi (x, a) is clearly a second order elliptic
function having two first order poles at x = —w, and x = Fa. It also obviously has
a zero at x = 0 since,

J£(0,a) = (£a) — ¢ (£a) + ¢ (w2) — ¢ (w2) =0.

Theorem 1.5 implies that the other zeros should be congruent to x = Fa — w».
Indeed,

Jr (o2 Fa,a) = (+a) = (—w2) +{ (Fa) — { (w2) =0.

The sum of the above poles equals the sum of the zeros, and, thus, we may write

Jx(x,a)as,
o(x)o (x+wyEa)

,a)=C )
fe (x.a) o(x+w)o (x £a)
Requiring that f (x, ) has residue equal to one at x = —w, yields C = %,
and, thus,
o(—wyxa)o(x)o (x +wy Ea)
fr(x,a) = :
o(—wn)o (a)o (x +wy)o (x £a)
Therefore,
A%yi (v a) = oc(—mpxa)o (x)o(x+wyxta) ox=xa) o=t (Eax

o(—m)o(xa)o (x +wy)o (x £a)o (x)o (La)
o (—wry xa)o (x +wy £a) o—CGEax
o (—wy) 02 (fa)o (x + wy)
_ o (wrxa)o(—wrxa)o(x+wy*a)o (a)Z)e—{(ﬂ:u)x
02 (w)) 62 (Fa) o (x+w)o (w xa)

=(pa)—e3) Vs (x;a).

(A.93)

Indeed the action of the creation operator on the eigenfunctions of the unbounded
n = 1 Lamé problem yields the eigenfunctions of the bounded problem multiplied
with a constant. This constant is the same constant appearing in the “normalization”
properties of the eigenfunctions in problem 5.5.

5.8 When the two larger roots coincide to the value ¢y, the Weierstrass elliptic
function degenerates to the form of Eq. (1.43). The real period diverges, whereas the
imaginary period takes the value 2w, = im/+/3eq, as you showed in problem 1.2.
Therefore the potential of the bounded n = 1 Lamé problem degenerates to the form



Solutions 109

b4
Vix)=2 Z+i—;12€2, —8e3>
(x) 59< e, 0 0
660
sinh? («/3601 + l%)

_ 660
0 cosh? (v/3ez)

=2ey +

(A.94)

= 2e

This is an attractive potential, which asymptotically tends to the constant value 2¢q
at £oo. Therefore, its spectrum definitely contains a continuous part corresponding
to the energies that are larger than 2¢(. But 2¢g = —ej3, thus this region of energies
clearly corresponds to the infinite conduction band of the n = 1 Lamé potential.
So, what happens to the finite valence band? This degenerates to a single value of
energy E = —eg = —e; = —e,. As the potential is attractive, in principle it may also
contain bound states. Do the eigenstates of the finite valence band degenerate to a
single bound and thus normalizable state?

In order to answer this question, we need to find the form of the eigenfunctions
of the degenerate bound n = 1 Lamé problem. For this purpose we use the special
form of the zeta and sigma functions in the double root limit that you calculated in
problem 2.2, which are given by Egs. (A.13) and (A.14). Using these formulae the
eigenfunctions of the bounded n = 1 Lamé problem (5.41) assume the form

o (x4 wEa)o (w) p—E G

Ve a) = e @t a)

b

2 2
1 . 1 .
sinh(v3eg(xa)+i T) e*EEO(XiHl bW ”380) sinh(i%)67530<’72 "330>
3

_ A/ 360 ()
= 2 2
. . _1 j_m . o _1 [T
sinh (v3eg(x)+i T) e 2€0 <X+l B 7360) sinh (V3eg(+a)+i %) e 2€0 <i“+’ 2%)

«/360 «/380
% e—(q:eoai«/kocoth( 3ega))x

_ COSh (Q/ 3@0 (X :i: a)) e$\/%(:oth(\/%a)x
cosh ( Seox) cosh ( 3eoa)

= (1 :I:tanh( 3eoa) tanh( Seox)) V30 coth(V3ega)x

(A.95)
The corresponding eigenvalues are

360

_— . A.96
sinh* (v/3epa) ( )

A(a) = —p(a) = —eo —

Let us study the states of the infinite conduction band. These correspond to param-
eters a that lie on the imaginary axis in the segment defined by the origin and the

imaginary half-period w,,i.e.a = ib, where 0 < b < 2;%. These states assume the
form
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Ve (x:a) = (1 + itan <\/3eob> tanh ( 3eox)) etV (Viab)r (A 97)

The corresponding eigenvalues are

360

sin (\/yb)

The range of allowed values of the parameter b implies that the sin in the above
formula takes all values from O to 1, and thus the energy takes all values from +o0o
to 2ey, as expected.

These states asymptotically at x — o0 look like

vy (v a) (l +itan (ﬁb)) ¢l V3eocot(V3eb)x
v (sa) 25 (1 dtan (VBegb ) ) e VITe (V)

AbD)=—p@)=—e+—SF7~ (A.98)

i.e. they are free waves. Actually, this is expected, since the potential asymptoti-
cally tends to a finite value. This also implies that these states are delta-function
normalizable states. Indeed, the asymptotic wavenumber k assumes the value
k = \/3eq cot (v/3eob), which fits exactly what we would expect for a free parti-
cle, namely

E -V (c0) =—e

_ 2 _ 2
+ ( \/3717) — 2ep = 3egcot (,/3eob) e

The above are not surprising. The surprising fact is that the states, which are
asymptotically right-going free waves at —oo, namely the states y., are also right-
going free waves at +o00. The same holds for the left-going states y_. Therefore, the
reflection coefficient vanishes.

Let us now study the appropriate limit of the finite valence band. These states
correspond to parameters a of the form a = w; + ib. However, at the limit we study
w) diverges. Therefore, in order to study the valence band, we need to find the limit
of Yy (x;a +ib), given by (A.95),asa — +ocand 0 < b < F This is easy to
find

1

cosh (v/3epx) (A.99)

lim v (v5a +ib) = (1 :I:tanh( 3e0x)) eV
a— o0

Notice two things:

1. Both eigenfunctions have the same limit. We have seen in Chap. 5 that this occurs
for states that lie at the edges of the allowed bands. This is necessarily the case in
the double positive root limit that we study, since the valence band degenerates
to a single energy value. Actually, this is the reason the whole band has the same
limit.
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2. This eigenfunction is normalizable, since

+oo 1 2
/,oo cosh? (v/3eox) - V3ey

Let us now follow the approach of Sect. 5.2.2, in order to investigate the
above properties of this special potential. We consider the superpotential W =
+/3ep tanh /3epx. It is a matter of trivial algebra to show that the two partner poten-
tials are

66()

_ 2 _ / = = T 27 A\
Vi(x) =W (x) — W (x) =3ep coshz( 390x)’

Vo (x) = W2 (x) + W' (x) = 3ep.

Therefore, if we neglect an overall shift by ej, which is physically unimportant, the
special positive double root limit of the bounded n = 1 Lamé potential (A.94) is
partner of a flat potential.

We know that if y is an eigenfunction of the potential Vi, then Ay =y’ + Wy
will be an eigenfunction of the potential V, with the same energy. Similarly, if y is an
eigenfunction of the potential V5, then ATy = —y’ 4+ Wy will be an eigenfunction of
the potential V| with the same energy. This explains the behaviour of the conduction
band states and the existence of the single bound state that we found above. If we
act with the creation operator on the free wave eigenstates of the flat potential, we
will get

Afelt = (—ik + /3eq tanh 3eox) ek (A.100)

which are the states of the infinite conduction band (A.97) upon the identification
k = /3eqg cot (v/3egb). At the limit x — 00 the action of the creation operator
on a free wave is equivalent to multiplication with —ik % /3¢, and thus, it cannot
transform a right-going wave to a left-going one or vice versa. For this reason the
non-trivial potential (A.94) is reflectionless.

But, what about the discrete spectrum of the two potentials? It is a general fact
in supersymmetric quantum mechanics that the potential V, lacks the energy level
of the ground state of the potential V. This is due to the fact that the latter obeys
Ayp = 0. Indeed, the normalizable state (A.99) obeys

d 1
Ay = (— + +/3ep tanh Ser) — =0. (A.101)
dx cosh 4/3epx

This is the underlying reason the potential (A.94) has one bound state, unlike its
partner, the flat potential.
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