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Preface

The aim of the work we propose is a contribution to the expression of the present
particles theories in terms entirely relevant to the elements of the geometry of the
Minkowski space–time M ¼ R1;3, that is those of the Grassmann algebra ^R4,
scalars, vectors, bivectors, pseudo-vectors, pseudo-scalars of R4 associated with
the signature (1, 3) which definesM, and, at the same time, the elimination of the
complex language of the Pauli and Dirac matrices and spinors which is used in
quantum mechanics.

The reasons for this change of language lie, in the first place, in the fact that this
real language is the same as the one in which the results of experiments are
written, which are necessarily real.

But there is another reason certainly more important. Experiments are generally
achieved in a laboratory frame which is a galilean frame, and the fundamental laws
of Nature are in fact independent of all galilean frame. So the theories must be
expressed in an invariant form. Then geometrical objects appear, whose properties
give in particular a clear interpretation of what we call energy. Also gauges are
geometrically interpreted as rings of rotations of sub-spaces of local orthonormal
moving frames. The energy–momentum tensors correspond to the product of a
suitable physical constant by the infinitesimal rotation of these sub-spaces into
themselves.

The passage of the expression of a theory from its form in a galilean frame to
the one independent of all galilean frame, is difficult to obtain with the use of
complex matrices and spinors language. The Dirac spinor which expresses the
wave function W associated with a particle is nothing else by itself but a column of
four complex numbers. The definition of its properties requires actions on this
column of the Dirac complex matrices.

An immense step in clarity was achieved by the real form w given in 1967 by
David Hestenes (Oersted Medal 2002) to the Dirac W. In this form, the Lorentz
rotation which allows the direct passage to the invariant entities appears explicitly.
In particular the geometrical meaning of the gauges defined by the complex Lie
rings Uð1Þ and SUð2Þ becomes evident.
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It should be emphasized, like an indisputable confirmation of the independent
work of Hestenes, that a geometrical interpretation of the Dirac W had been
implicitly given, probably during the years 1930, by Arnold Sommerfeld in a
calculation related to hydrogenic atoms, and more generally and explicitly by
Georges Lochak in 1956. In these works W is expressed by means of Dirac
matrices, these last ones being implicitly identified with the vectors of the galilean
frame in which the Dirac equation of the electron is written.

But the use of a tool, the Clifford algebra Clð1; 3Þ associated with the space
M ¼ R1;3, introduced by D. Hestenes, brings considerable simplifications. Pages
of calculations giving tensorial equations deduced from the complex language may
be replaced by few lines. Furthermore ambiguities associated with the use of the
imaginary number i ¼

ffiffiffiffiffiffiffi

�1
p

are eliminated. The striking point lies in the fact that
the ‘‘number i’’ which lies in the Dirac theory of the electron is a bivector of the
Minkowski space–time M, a real object, which allows to define, after the above
Lorentz rotation and the multiplication by �hc=2, the proper angular momentum, or
spin, of the electron.

In the same aim, to avoid the ambiguousness of the complex Quantum Field
Theory, due to the unseasonable association i�h of �h and i in the expression of the
electromagnetic potentials ‘‘in quite analogy with the ordinary quantum theory’’
(in fact the Dirac theory of the electron), we give a presentation of quantum
electrodynamics entirely real. It is only based on the use of the Grassmann algebra
of M and the inner product in M.

The more the theories of the particles become complicated, the more the links
which can unify these theories in an identical vision of the laws of Nature have to
be made explicit. When these laws are placed in the frame of the Minkowski
space–time, the complete translation of these theories in the geometry of space–
time appears as a necessity. Such is the reason for the writing of the present
volume.

However, if this book contains a critique, sometimes severe, of the language
based on the use of the complex matrices, spinors and Lie rings, this critique does
not concern in any way the authors of works obtained by means of this language,
which remain the foundations of Quantum Mechanics. The more this language is
abstract with respect to the reality of the laws of Nature, the more these works
appear to be admirable.

Bassan, February 2011 Roger Boudet
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Chapter 1
Introduction

Abstract This chapter is devoted to the replacement of the complex matrices and
spinors language by the use of the real Clifford algebra associated with the Minkowski
space-time.

Keywords U(1) · SU(2) · Rotation groups · Clifford algebra

The following text is a step by step translation from the complex to a real language.
It contains the indication of all that this translation can bring to what is hidden

in the first one, and of what may be unified in what appears as disparate in the
presentation of the U(1), SU(2), SU(3) gauge theories (the third one being to be
replaced by the direct product of three SU (2) × U (1)). This translation leads to a
better comprehension of what is called energy.

We have here made this contribution to the two theories widely verified by exper-
iments, the electron and electroweak theories. Furthermore we propose an extension
to the quarks chromodynamics theory (at present not entirely confirmed), with the
condition of the possibility of a translation into the real language.

All that follows has been found simply by the use of the real Algebra of Space-
Time (STA) [1], that is the Clifford algebra Cl(M) associated with the Minkowski
space M.

The use of this algebra was introduced for the theory of the electron in the fun-
damental article of David Hestenes [2] which introduces a real form for the Dirac
spinor (the foundation of all the present theories of the particles).

Nevertheless the correspondence between the real and the complex languages will
be recalled in detail.

Note that Hestenes has extended the use of the Clifford algebras to domains of
physics other than quantum mechanics (see [3, 4]).

The following properties, established for these theories, are first based on the
definition of an orthonormal moving frame {v, n1, n2, n3}, defined at each point

R. Boudet, Quantum Mechanics in the Geometry of Space–Time, 1
SpringerBriefs in Physics, DOI: 10.1007/978-3-642-19199-2_1,
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2 1 Introduction

x of M , such that the time like vector v is colinear to a probability current j = ρv ∈
M(ρ > 0) of a particle.

The gauges U (1) and SU (2) are the groups of the rotations upon themselves
of the plane generated by {n1, n2}, or “spin plane” [2], and the three-space E3( j)
orthogonal to j generated by {n1, n2, n3} respectively.

A momentum-energy tensor T = ρT0 associated with one of these two gauges, is
defined by a linear application n ∈ M → T0(n) ∈ M which implies the product of a
suitable physical constant by the infinitesimal rotation upon itself of the three-spaces
generated by {v, n1, n2} or {n1, n2, n3} respectively.

The trace of this energy-momentum tensor appears in the first term L I of the
lagrangian of the chosen theory.

Let us denote a · b (written aμbμ when a galilean frame {eμ}, μ = 0, 1, 2, 3, is
used) the scalar product of two vectors a, b ∈ M.

The second term L I I contains terms in the form A · j, B · j , and also sums∑
Wk · jk ( jk = ρnk, k = 1, 2, 3) where A is an electromagnetic potential, B,Wk ∈

M are vectors of space-time (bosons). Note that a term in the form B · ji where ji is
isotropic appears in the electroweak theory.

The invariance in a gauge transformation implies a change in the expression of
A and the bosons, related to the rotation of the spin plane or the three-space E3( j),
and, in this last case, a change in the field associated with the bosons. These changes
are well known. What is less or not at all known is the fact that these changes are
related to the rotation of the spin plane and the three-space E3( j) in the case of
U (1) and SU (2).

It does not seem possible to treat the SU (3)gauge, as it is used in chromodynamics,
with a complete interpretation in the geometry of M. But it is possible, without
changing the standard lagrangian of the this theory, to replace this gauge by the
direct product of three SU (2) × U (1) gauges, simply by the change of the eighth
boson G8 into G8/

√
3, associated with the multiplication by

√
3 of the eighth Gell-

Mann matrice followed by a suitable decomposition of this matrice into the sum of
two matrices each one similar to the third isospin matrice.

If the chromodymanics theory, as it is, at present constructed, were confirmed
by experiments, and if the possibility of the replacement of G8 by G8/

√
3 were

infirm, one would face the following paradox. Two theories (Dirac electron, Glashow-
Weinberg-Salam electroweak), widely confirmed by experiment, would be entirely
enclosed in the geometry of space-time and a third one would not be enclosed.

On the contrary if this replacement were experimentally confirmed, the real space-
time algebra would appear not only as a tool allowing noticeable simplifications in
the calculations of confirmed theories (for the hydrogenic atoms see for example
[5]), but also as a way to put in evidence fundamental properties of these theories,
and at least like the indispensable language of quantum mechanics.

In an Addendum, we have given a geometrical construction of electromagnetism,
which may be applied as well to the electromagnetic properties of charges endowed
with a trajectory, like the ones of the charged particles in quantum mechanics whose
the presence is based on a probability.
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The aim of this Addendum is to show that the use of the complex Quantum Field
Theory (QFT) is not necessary, and that the laws of the electromagnetism may be
deduced from geometrical principles of an extreme simplicity.

Special attention has been brought to the construction of the Lorentz integral of the
retarded potential, because some formulas which may be deduced from this integral
play an important role in the theory of the hydrogen-like atoms [5].

However, concerning the interaction of the electron with a monochromatic elec-
tromagnetic wave in the photoeffect, we have followed what is generally used [6],
but, we repeat, without the recourse to the QFT, that we replace, in a strict equivalent
way, by a Real Quantum Electrodynamics. In addition to the simplicity, the reason
of this replacement lies in the fact that the hidden use of unacceptable artifices, due
to the unseasonable association i� of � and i in the expression of the potential, are
suppressed.
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Chapter 2
The Clifford Algebra Associated with
the Minkowski Space–Time M

Abstract This Chapter is devoted to the first elements of the Clifford algebra Cl(M)
of the Minkowski space–time M when they are applied to quantum mechanics.
A complete description of the Clifford algebra associated with all euclidean space
lies in Chap. 14.

Keywords Grassmann algebra · Inner · Clifford products

2.1 The Clifford Algebra Associated with an Euclidean Space

The physicists construct their experiments in a particular galilean frame {eμ}, the
laboratory frame. The objects and the equations expressing a theory are written in
this frame.

However the laws of Nature are independent of this frame and entities associated
with the particles are to be defined independently of all galilean frame. What is
important is the Lorentz rotation which allows one the writing of these laws.

The recourse to matrices, which are generally used is much more complicated
than the employment of the two following algebras. Furthermore some elements of
the Grassmann algebra of M are relative to real objects which have an important
physical meaning, as for example the proper angular momentum, or bivector spin of
the electron.

In the language of the complex spinors, the imaginary number i = √−1, which
lies in the Dirac equation of the electron, is nothing else but a bivector (a real object!)
which defines, after the above Lorentz rotation and the multiplication by �c/2, this
angular momentum.

The first step in the use of these objects is the writing of the vectors independently
of their components on a frame. Compare the writing aμbν − bμaν , called also
“anti-symetric tensor of rank two”, or simple bivector, with a ∧ b.
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8 2 The Clifford Algebra Associated with the Minkowski Space–Time M

The Clifford algebras are not very well known. But the Clifford algebra Cl(E) of
an euclidean space E = Rp,n−p is certainly the simplest algebra allowing the study
of the properties of the orthogonal group O(E) of E (see Sect. 14.5).

1. The definition and properties of the Grassmann algebra ∧Rn , of the p-vectors,
elements of ∧pRn , and of the inner product between a p-vector and a q-vector
in an euclidean space E = Rp,n−p , are recalled in detail in Chap. 14.

We simply mention here that a p-vector of E is nothing else but what the
physicists call “an antisymmetric tensor of rank p” which is expressed by means
of the components in a frame of E of the vectors of E which define this p-vector.
But the use of the p-vectors does not need the recourse to a frame as it is shown
below.

We will denote by A p ·a, a · A p the inner products of a p-vector Ap by a vector
a of E which correspond to the operation so-called (by the physicists) “contraction
on the indices”. The product a · b(a, b ∈ E) defines the signature R p,n−p of E .
We will use in particular the relation

(a ∧ b) · c = (b · c)a − (a · c)b, a, b, c ∈ E (2.1)

which defines a vector orthogonal to c, situated in the plane (a, b). It will be
employed for the definition of a bivector of rotation.The relation

(B · c) · d = B · (c ∧ d) ∈ R, c, d ∈ E, B ∈ ∧2 E (2.2)

will be also used.

2. The Clifford algebra Cl(E) associated with an euclidean space E is a real
associative algebra, generated by R and the vectors of E , whose elements may
be identified to the ones of the Grassmann algebra ∧E . Furthermore this algebra
implies the use of the inner products in E .

The Clifford product of two elements A, B of Cl(E) is denoted AB and verifies
the fundamental relation

a2 = a · a ∈ R, ∀a ∈ E (2.3)

We simply mention in this chapter the properties we need, the complements lie
in Chap. 14.

If p vectors ai ∈ E are orthogonal their Clifford product verifies

a1...ap = a1 ∧ ... ∧ ap, (ak ∈ E, ai · a j = 0 if i �= j) (2.4)

In particular

a1, a2 ∈ E, a1 · a2 = 0 ⇒ a1 · a2 = a1a2 = a1 ∧ a2 = −a2 ∧ a1 = −a2a1 (2.5)

The even sub-algebra Cl+(E) of Cl(E) is composed of the sums of scalars and
elements a1...ap such that p is even.
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One can immediately deduce from (2.4) that, using an orthonormal frame of E ,
the corresponding frame of Cl(E) may be identified with the frame of ∧E and that
dim(Cl(E)) = dim(∧E) = 2n, dim(Cl+(E)) = 2n−1.

One uses the following operation called “principal anti automorphism”, or also
“reversion”,

A ∈ Cl(E) → Ã ∈ Cl(E) so that (AB)˜ = B̃ Ã

λ̃ = λ, ã = a, λ ∈ R, a ∈ E (2.6)

2.2 The Clifford Algebras and the “Imaginary Number”
√−1

Let {e1, e2} be a positive orthonormal frame of R2,0. We can write

(e2 ∧ e1)
2 = (e2e1)

2 = (−e1e2)e2e1 = −(e1)
2(e2)

2 = −1 (2.7)

So a square root of −1 may be interpreted like a bivector of R2,0, a real object!
Cl+(2, 0) may be identified with the field C of the complex numbers. Note that

the real geometrical interpretation of C, in particular as allowing the definition of the
rotations in the plane (e1, e2) had been found much more before the invention of the
Clifford algebras. For example, using (2.1) one has

(e2 ∧ e1) · e1 = e2, (e2 ∧ e1) · e2 = −e1

which corresponds to the rotation of the vector of the frame through an angle of
π/2. In Cl(M) this relation may be written

i ′e1 = e2e2
1 = e2, i ′e2 = (−e1e2)e2 = −e1e2

2 = −e1, i ′ = e2e1

Let {eμ} a positive orthonormal frame, or galilean frame, of M be. We can write
also

(e2 ∧ e1)
2 = (e2e1)

2 = −1 (2.8)

The “number” i which appears in the Dirac equation of a spin-up electron (for the
spin-down i is replaced by −i) in its writing relative to this frame is nothing else but
the bivector e2 ∧ e1 (see [1, 2]).

This bivector is, after the Lorentz rotation which makes this equation independent
of all galilean frame and a multiplication by �c/2, the bivector spin (�c/2)(n2 ∧ n1)

of the electron that is, multiplied by physical constants, a pure real geometrical object.
Using the same method one can easily establish that another geometrical

object [1], in which the square in Cl(M) is also equal to −1 plays an important
but quite different role. This object is the following 4-vector (in fact independent of
all orthonormal frame, fixed or moving, of M)
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i = e0 ∧ e1 ∧ e2 ∧ e3 = e0e1e2e3 ∈ ∧4 M, so that i2 = −1 (2.9)

It corresponds in physics to the i of the writing F = E + iH of the bivector electro-
magnetic field F ∈ ∧2 M.

So two quite different real geometrical objects, playing a fundamental role in the
particles theories, are represented in the complex language by the same “imaginary
number” i!

Let us denote

ek = ek ∧ e0 = eke0, k = 1, 2, 3 (2.10)

Applying (2.2), (2.1) one deduces

ek · e j = (ek ∧ e0) · (e j ∧ e0) = −ek · e j

−ek · e j = 0 if k �= j, −ek · ek = 1, k, j = 1, 2, 3

and so these bivectors of M may be considered as a frame of a space E3(e0) = R3,0,
and also, as it easy to establish by using ek = eke0,

i = e0e1e2e3 = e1e2e3 = e1 ∧ e2 ∧ e3 ∈ ∧3 E3(e0), i2 = −1 (2.11)

Since the ek and the iek may be considered as bivectors of R1,3 one deduces that
Cl+(1, 3) may be identified with the ring of the Clifford biquaternions Cl(3, 0).

The writing F = E + iH in E3(e0) of F ∈ ∧2 M corresponds to the definitions
(2.10), (2.11).

2.3 The Field of the Hamilton Quaternions and the Ring of the
Biquaternion as Cl+(3, 0) and Cl(3, 0) � Cl+(1, 3)

Hamilton introduced in its theory of the quaternions three objects i, j, k whose square
is equal to −1, so that a quaternion q is in the form

q = d + ia + jb + kc, a, b, c, d ∈ R, i2 = j2 = k2 = −1 (2.12)

verifying

i = − jk, j = −ki, k = −i j (2.13)

It was the first example of the fact that different objects are such that their square is
equal to −1.

In fact i, j, k may be written in the form (with a change of sign with respect to
the initial presentation by Hamilton)

i = e2 ∧ e3 = e2e3 = ie1, j = e3 ∧ e1 = e3e1 = ie2
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k = e1 ∧ e2 = e1e2 = ie3 (2.14)

and their squares in Cl(3, 0) is equal to −1, in such a way that one can write q ∈
Cl+(3, 0).

Furthermore (2.13) may be deduced from this interpretation. For example

i = − jk = −(e3e1)(e1e2) = e2e3

One can write

q = d + ia ∈ Cl+(3, 0) with d ∈ R, ia ∈ ∧2 E3(e0) (2.15)

The biquaternions may be written

Q = q1 + iq2 ∈ Cl(3, 0), q1, q2 ∈ Cl+(3, 0) (2.16)

also as a consequence of (2.10), (2.11)

Q ∈ Cl+(1, 3) → Cl(3, 0) 
 Cl+(1, 3) (2.17)

The Cl+(3, 0) of the Hamilton quaternions, the only field which may be associated
with an euclidean space for n > 2, a privileged algebraic object, which gives a
privileged place to the space of signature (3,0). This field plays an important role in
the theory of the hydrogenic atoms (see [3, p. 930, 4, 5]).

Completing a sentence of the philosopher Kant one can say “The three-space in
which we live is a certitude algebraically apodictic”.

Considering the ring Cl(3, 0) like the algebraic continuation of the field Cl+(3, 0)
and thus Cl+(1, 3) ⇔ Cl(3, 0) like the algebraic continuation on the space R1,3 of
the field Cl+(3, 0) of the Hamilton quaternions (see [6]), one can deduce that the
signature (1, 3) of the Minkowski space–time is privileged too. It is a very agreeable
coincidence between pure data of the human mind and the laws of Nature. Further-
more, there is another important gift of Nature: the Dirac wave function, which is
used not only in the electron theory but also in all the theories of the elementary
particles, quarks and leptons, is, when it is written in real language, an element of
this privileged ring Cl+(1, 3) ⇔ Cl(3, 0).
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Chapter 3
Comparison Between the Real
and the Complex Language

Abstract This Chapter is devoted to the definition of the Hestenes spinor and its
comparison with the Dirac spinor.

Keywords Lorentz rotation · Takabayasi angle · Moving frame

3.1 The Space–Time Algebra and the Wave Function Associated
with a Particle: The Hestenes Spinor

Hestenes has demonstrated in [1] that the wave function, considered in a galilean
frame {eμ}, associated with an electron could be expressed as a biquaternion element
ψ of Cl+(M) and written in the form ([1], Eq. 4.4) (see App. B)

ψ = √
ρeiβ/2 R (3.1)

ρ > 0, β ∈ R, R R̃ = R̃ R = 1, R̃ = R−1, i ∈ ∧4 M, i2 = −1

In fact one can write

ψψ̃ ∈ Cl+(M) ⇒ ψψ̃ = λ+ B + iμ, λ,μ ∈ R, B ∈ ∧2 M

and from (ψψ̃) ˜ = ψψ̃ , B̃ = −B, ĩ = i, we deduce B = 0 and

ψψ̃ = λ+ iμ = ρeiβ,
ψψ̃

ρeiβ
= 1, R = ψ√

ρeiβ/2 ⇒ R R̃ = R̃ R = 1

So R verifies R̃ = R−1 and corresponds to a representation of SO+(M) in Cl+(M),
that is a Lorentz rotation.

The definition of i has been given in Eq. 2.9. The scalar ρ expresses the invariant
probability density. The “angle” β does not intervene in what follows (its role is
evoked below) and may be eliminated in the construction of the following currents.
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Since ai = −ia if a ∈ M, a exp(iβ/2) = (exp(−iβ/2)a, and

a ∈ M ⇒ b = Ra R̃ ∈ M, ψaψ̃ = ρb ∈ M

one can write

ψe0ψ̃ = ρv = j, v2 = 1, ρ > 0 (3.2)

The time-like vector j is the probability current.
Three other currents may be defined

ψekψ̃ = jk = ρnk, n2
k = −1, k = 1, 2, 3 (3.3)

The vectors nk play an important role in the theory of the electron, and, associated
with three bosons, in the electroweak theory, also in the presentation that we propose
of the chromodynamics theory.

Note that, in replacement of the Dirac spinor, an expression similar to Eq. 3.1
has been written in [2] by the employment of the Dirac matrices, but carries more
complications in the use of ψ.

We shall call the biquaternion ψ a Hestenes spinor when it is written in the form
of Eq. 3.1 and applied to the study of quantum mechanics.

Given all the applications in Physics of Cl+(1, 3), Hestenes has given to this ring
the name of Space–Time Algebra (STA) [3].

In the gauge theories the density ρ does not interverne. Only the vectors n1, n2 in
the U (1) gauge, the three vectors nk in the SU (2) one. They play also a role in the
definition of the momentum–energy tensors (see Sects. 5.2 and 8.2.2).

Note on the “angle” β. The role of the Yvon–Takabayasi–Hestenes “angle” β,
which concerns not the vectors but the bivectors of M is obscure.

This “angle” plays no role in the gauge theories but gives an interpretation of the
link electron–positron more satisfactory than the use of the T transform of the C PT
invariance in the passage from the equation of the electron to the one of its associated
positron.

We show in Sect. 7.2 that this interpretation proposed by Takabayasi (see [4],
Eq. 10.3b) is in fact a necessity.

The scalar β was introduced in the theory of the electron by Yvon [5], used by
Lochak [2] in its expression of the wave function of the electron, studied in detail by
Takabayasi [4], and independently rediscovered by Hestenes [1].

The presence in a physical theory of this scalar β is “strange” (as said Louis de
Brogie) with respect to ρ (probability) and R (Lorentz rotation) widely used in the
standard presentation of quantum mechanics. But, because it is an indisputable com-
ponent of a biquaternion, element of Cl+(1, 3), when this biquaternion is considered
as containing a Lorentz rotation R, its necessity is confirmed by the place played
by the biquaternions in physics. We recall that the biquaternions were introduced by
Sommerfeld (see [6]) in the study of the hydrogenic atoms.

We have shown in [7] that β has a value non null, though small, in the solution of
the hydrogen atom, except in the plane x3 = 0.
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One can give to this entity a geometrical interpretation by considering G =
exp(iβ/2)R as defining a group G of transformations X → G XG̃ (see [8]) that we
have called the Hestenes group.

Because ĩ = i, ai = −ia, a ∈ M , this group is reduced to the group of the
Lorentz rotations when X is a vector but it defines a “rotation” if X is a bivector
and the transformation β → β + π allows one to inverse the orientation of a simple
bivector.

If this “angle” plays a role in the passage from a particule to the definition of
its antiparticule, it has no incidence on the gauge theories, for the reason that they
are relative to the rotations of sub-frames of M and so imply only sub-groups of
SO+(1, 3).

3.2 The Takabayasi–Hestenes Moving Frame

The role of the vector j , and so v [given by Eq. 3.2 in STA] in the theory of a particle
whose wave function is a Dirac spinor, is well known.

On the other hand the role of the vectors nk , except the fact that the bivector spin
of the electron is in the form (�c/2)n2 ∧ n1 (“up”) or (�c/2)n1 ∧ n2 (“down”), is
ignored in the standard study of the particles theories. An exception : it appears in
the works on the electron by the Louis de Broglie school during the 1950s (see in
particular [9]) in which was introduced the local orthonormal frame

F = {v, n1, n2, n3}, v = Re0 R̃, nk = Rek R̃ (3.4)

called by Habwachs [9] the Takabayasi moving frame and considered independently
by Hestenes in [1].

These vectors nk also play a fundamental role in the definition of invariant entities,
the gauge theories and the invariant definition of the energy–momentum tensors.

The ring of the finite rotations upon themselves of the sub-frame of F, (n1, n2)

and (n1, n2, n3) are directly related to the U (1) and SU (2) gauges, their infinitesimal
rotations to the definition of momentum–energy tensors. It is impossible to under-
stand the geometrical nature of what we call energy in particles theories without the
consideration of these sub-frames (see Chap. 16).

3.3 Equivalences Between the Hestenes and the Dirac Spinors

In addition to γμ ⇔ eμ, justified in Chap. 15 by Eq. 15.9, one can deduce the
equivalences, not at all evident (see Sect. 15.4), established for the first time by
Hestenes [1],

� ⇔ Q → γ μ� ⇔ eμQe0 (3.5)
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where�may be considered as a Dirac spinor, as far as it is a column of four complex
numbers upon which the Dirac matrices act, and Q is a biquaternion element of
Cl+(1, 3).

Furthermore, in the theories of the spin 1/2 particles one uses the equivalence

i	 = 	i ⇔ ψe2e1 = ψie3e0 = ψie3, i = √−1 ⇔ e2e1 = ie3 (3.6)

whereψ is a Hestenes spinor, which is in addition to Eq. 3.5 the key of the translation
in STA of the Dirac spinor in the theory of the electron.

We recall that the change of i into e2e1 corresponds to the change of i into γ2γ1
already used by Sommerfeld [6] and Lochak [2] in an form given to the Dirac spinor
in which the γμ correspond implicitly to the eμ.

In the theories implying the SU (2) gauge we have replaced the equivalence
Eq. 3.6 by

i	 = 	i ⇔ iψ = ψi, i = √−1 ⇔ i (3.7)

The Dirac current j ∈ M associated with a Dirac spinor	 is given by the equivalence
(see Sect. 15.4)

jμ = 	̄γ μ	 ∈ R ⇔ j = jμeμ = ψe0ψ̃ ∈ M (3.8)

3.4 Comparison Between the Dirac and the Hestenes Spinors

Something is crucial in quantum mechanics : the passage of a theory, expressed with
respect to a galilean frame, to a form invariant with respect to all galilean frame. Only
such a form can give the meaning of the terms of the theory directly with respect to
the space–time.

So the Lorentz rotation R which allows this passage plays a fundamental role.
As we have evoked above, the Dirac spinor	 is nothing else but a column of four

complex numbers and cannot contain by itself a Lorentz rotation. The presence of
such a rotation and its use require the employment of the Dirac matrices. They allow
one to determine the current of the probability density j , also the invariant density
and then the unit vector v.

But the calculation of the other unit vectors is much more difficult with the use
of the Dirac spinors.

The determination of the vectors nk is obtained by one line in STA, that is
Eq. 3.3, followed by the division by ρ = √

j2.
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Part II
The U(1) Gauge in the Complex

and Real Languages. Geometrical
Properties and Relation with the Spin

and the Energy of a Particle of Spin 1/2





Chapter 4
Geometrical Properties of the U(1) Gauge

Abstract A change of gauge and the condition of a gauge invariance, as well on
the wave function of a particle, as upon a potential vector acting on the particle, is
recalled for the complex language and established for the real one.

Keywords U(1) · SO+ (1, 3) · Finite · Infinitesimal rotations · Energy

4.1 The Definition of the Gauge and the Invariance
of a Change of Gauge in the U(1) Gauge

4.1.1 The U(1) Gauge in Complex Language

Let us denote by � the Dirac spinor (defined by a column of four complex numbers
upon which the Dirac matrices can act) associated with a particle. A change of gauge
is defined by the transform

� → � ′ = U� = �U, U = eiχ/2, i = √−1, χ ∈ R (4.1)

where, we recall

i� = �i (4.2)

The number χ may be fixed or dependent on the point x of M and in this cases the
change of gauge is to be said global or local.

4.1.2 The U(1) Gauge Invariance in Complex Language

Let us consider, associated to a particle submitted to a potential A ∈ M, an expression
in the form
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Lμ = ∂μ�i − g Aμ�, (4.3)

where� is a Dirac spinor expressing the wave function of the particle and g a suitable
physical constant.

In the Dirac theory of the electron one has g = q/(�c) where q = −e, e > 0, is
the charge of the electron and so g Aμ has the dimension of the inverse of a length.

In a change of a local gauge like Eq. 4.1, Lμ becomes

L ′
μ =

[
∂μ�i −

(
1

2
∂μχ + g Aμ

)
�

]
U (4.4)

If L ′
μ is chosen in such a way that L ′

μ = LμU, nothing is changed, except the
transform of � into �U, if Aμ is changed into

A′
μ = Aμ − ∂μχ

2g
, A′ = A − ∂χ

2g
∈ M, ∂ = eμ∂μ ∈ M (4.5)

Such a change of the potential A does not affect the field F = ∂ ∧ A associated with
A, because ∂χ is a gradient.

4.1.3 A Paradox of the U(1) Gauge in Complex Language

The definition Eq. 4.1 of the U(1) gauge in complex language leads to a paradox.
Since i is considered as nothing else but the number

√−1, a change of gauge must
be interpreted as related to some abstract property of the wave function �, and, as a
consequence, the number χ has no geometrical meaning. But in a change of gauge
it must be considered with a geometrical meaning, because it appears in addition to
a potential which is a vector of the Minkowski space–time M, and so as a gradient
in M, that is a geometrical object.

Thus a geometrical interpretation of the gauge U (1) appears as a necessity.

4.2 The U(1) Gauge in Real Language

A geometrical interpretation of the U (1) gauge as a sub-group of SO+(1, 3) has been
implicitly contained in [1], explicitly and independently described in [2, 3]. But it
is unknown to most physicists and sometimes violently negated by some of them.
Their reason is related to the meaning of the number i in the theory of the electron
and their ignorance of the relation (4.6): since i� = �i they say that it is impossible
that U (1) may be interpreted as corresponding to a sub-group of SO+(1, 3).
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4.2.1 The Definition of the U(1) Gauge in Real Language

The Dirac wave function being expressed in the form Eq. 3.1 given by Hestenes [3],
Eq. 4.4 transforms Eq. 4.1 into

ψ → ψ ′ = ψU, U = ee2e1χ/2, χ ∈ R (4.6)

where

ee2e1χ/2 = cos(χ/2)+ sin(χ/2)e2e1

Note that ψ is to be multiplied on the right by U = ee2e1χ/2.

But here, what is called a change of gauge U(1) in complex language, corresponds
in STA to

U = ee2e1χ/2, R → R′ = RU = Ree2e1χ/2 (4.7)

which induces a rotation through an angle χ in the plane (n2, n1) :
n′

2 = cosχ n2 + sin χ n1, n′
1 = − sin χ n2 + cosχ n1 (4.8(1))

with

R′e0 R′−1 = e0, R′e3 R′−1 = e3 (4.8(2))

So the replacing of iχ/2 by e2e1χ/2 gives to χ the real geometrical meaning of
an angle.

Furthermore, since the plane (n2, n1) (in “up”, or (n1, n2) in “down”) is the plane
defined by the bivector spin of a particle of spin 1/2, one can give to the U (1) gauge
the following definition:

The U (1) gauge is the ring of the rotations upon itself of the plane defined by the
bivector spin of a particle of spin 1/2.

4.2.2 The U(1) Gauge Invariance in Real Language

The replacing of i = √−1 by the bivector e2 ∧ e1 = e2e1 in Eq. 4.3 gives

Lμ = ∂μψe2e1 − g Aμψ, (4.9)

But here e2e1 is necessarily to be written on the right of ψ, when one can
write �i = i�. Apart from this difference, the calculation is the same as in
Sect. 4.1.2 and gives also Eq. 4.5 but here the paradox evoked above disappears.
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A change of gauge through an angle χ implies

ω → ω′ = ω − ∂χ ∈ M (4.10)

where

ωμ = ∂μn2.n1 = −∂μn1.n2 (4.11)

which expresses the infinitesimal rotation upon itself of the plane (n2, n1).

The invariance is achieved by the change of the potential A

A → A′ = A − ∂χ

2g
(4.12)

as in Eq. 4.5 but with a meaning of χ given by Eqs. 4.8, 4.10, 4.11, whose meanings
are purely geometrical.

But because ∂χ is implied in a change of the potential, we have a hint of the fact
that the vector ω is, multiplied by a suitable physical constant (�c/2 in the case of
the electron), related to the energy of the particle.

It is a first indication of the role played by the infinitesimal rotation upon itself of
the plane (n2, n1) in the geometrical interpretation of the energy associated with the
particle.

As established in Sects. 5.3 and 6.6 for the electron we will be able to insure (see
[4]) that

The infinitesimal rotation upon itself of the plane defined by the bivector spin of a
particle of spin 1/2 defines, multiplied by a suitable physical constant, (�c/2 in the
case of the electron), the energy of the particle.
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Chapter 5
Relation Between the U(1) Gauge, the Spin
and the Energy of a Particle of Spin 1/2

Abstract Real language allows one to put in evidence the relation between the U(1)
Gauge, the Spin and the Energy of a particle of spin 1/2.

Keywords Spin plane · Infinitesimal rotation · Momentum-energy

5.1 Relation Between the U(1) Gauge and the Bivector Spin

In the theory of the electron, the plane (n1, n2) has been called by Hestenes [1], the
“spin plane” because the bivector spin, or proper angular momentum, of the electron
is in the form “spin up”,

σ = �c

2
n2 ∧ n1 (5.1)

In “spin down” n2 ∧ n1 is replaced by n1 ∧ n2.
The relations between the U (1) gauge and the bivector spin of the electron, clearly

established in [2] and discovered independently in [1] is absent in the standard use
of the complex formalism.

5.2 Relation Between the U(1) Gauge and the
Momentum–Energy Tensor Associated
with the Particle

The momentum–energy tensor associated with a particle in the U (1) gauge implies,
for its values v, n1, n2, a linear application from M in M in the form (see Chap. 16)

n ∈ M → N (n) = (�μ · (i(s ∧ n)))eμ (5.2)
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where

�μ = 2(∂μR)R−1, s = n3 = Re3 R−1

which is to be multiplied by ρg1, where g1 is a suitable physical constant (equal to
�c/2 in the case of the electron).

Thus N verifies (16.10)

N (v) = (∂μn2 · n1)e
μ = ω (5.3)

N (n1) = (∂μn2 · v)eμ, N (n2) = −(∂μn1 · v)eμ (5.4)

which expresses the infinitesimal rotation of the sub-frame {v, n2, n1} upon itself
but in such a way that a change of gauge only affects the infinitesimal rotation of the
plane (n2, n1).

5.3 Relation Between the U(1) Gauge and the Energy
of the Particle

The energy E of the electron in a galilean frame {eμ} is defined by the projection on
e0 of the vector (�c/2)ω (see [3, 4])

E = �c

2
N (v) · e0 = �c

2
ω0 (5.5)

So one obtains a remarkable geometrical interpretation of the energy of the elec-
tron: it is the product of physical constants by the infinitesimal rotation of the “spin
plane” upon itself.

That gives a hint of the fact that in general a gauge is closely related to the
infinitesimal rotation of a local sub-frame upon itself.

The relation between the U (1) gauge and the interpretation of the energy is absent
in the use of the complex formalism.
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Chapter 6
The Dirac Theory of the Electron in Real
Language

Abstract This section is devoted to: (a) the real form given by Hestenes to the
Dirac equation, (b) the properties of the Dirac theory which may be deduced when
this equation is written with respect to a particular galilean frame, (c) the principal
invariant entities associated with this equation.

Keywords Current · Bivector spin · Tetrode tensor · Lagrangian

6.1 The Hestenes Real form of the Dirac Equation

In order to avoid all ambiguity concerning the charge of the electron (see [1], p. 98)
in the presentation of the Dirac equation, we will denote by q = −e the charge of
the electron, with e > 0 (as for example in [2], p. 77 and Eq. 5.17).

One can pass immediatly from the Dirac equation in the galilean frame {eμ}

�cγ μ∂μ(i�)− mc2� − q Aμγ
μ� = 0, i = √−1, q = −e, (e > 0) (6.1)

where ∂μ = ∂/∂xμ, to the form given to this equation in ([3], Eq. 2.15),

�ceμ∂μψe2e1e0 − mc2ψ − q Aψe0 = 0, A = Aμeμ ∈ M (6.2)

by using Eqs. 3.6, then 3.5, with Q = ∂μψe2e1. Note that e2e1e0 may be written
ie3.

Multiplying on the right by e0 we obtain a form more appropriated (see
Sect. 7.1 )

�ceμ∂μψe2e1 − mc2ψe0 − q Aψ = 0, A = Aμeμ ∈ M (6.3)

Note that each term of this equation has the dimension of an energy.
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One can find e1e2 in place of e2e1 in this equation ([4], Eq. 5.1). These two
possibilities correspond to the states “up” (e2e1) and “down” (e1e2) of the electron
and are related with the orientation of the bivector spin.

We will work only with Eq. 6.3, the second equation giving results which may be
easily deduced from the change of e2e1 into e1e2.

6.2 The Probability Current

The probability current is given by Eq. 3.2. It is used with the following normalization

ψe0ψ̃ = ρv = j, ρ > 0, v2 = 1,
∫

j0(r)dτ = 1, j0 = j · e0 (6.4)

where the integration of j0 is made in all the three-space E3(e0).

6.3 Conservation of the Probability Current

The probability current j verifies the relation

∂ · j = 0, ∂ = eμ∂μ (6.5)

In fact one has

∂ · j = [eμ∂μ(ψe0ψ̃)]S = [eμ(∂μψ)e0ψ̃]S + [ψe0(∂μψ̃)e
μ]S = I + Ĩ

where [X ]S means the scalar part of X, and the relation [eμY ]S = [Y eμ]S has been
applied.

So one can deduce from Eq. 6.2 after multiplication on the right by e1e2ψ̃

I = [eμ(∂μψ)e0ψ̃]S = 1

�c
[mc2ψe1e2ψ̃ + q Aψe0e1e2ψ̃]S

We can write

I = ρ

�c
[mc2eiβn1n2 + qi An3]S

where vn1n2 = −in3, Ai = −i A has been used. So I is null, as is its reversion Ĩ ,
because no term of the right hand of this equation is a scalar.
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6.4 The Proper (Bivector Spin) and the Total Angular–Momenta

The bivector spin

σ = �c

2
n2 ∧ n1 (6.6)

is easily calculated as explained in Sect. 3.3 .
It defines a plane (n2, n1) which was called, we recall, by Hestenes [4] the “spin

plane”.
The total angular–momentum is defined as

J = x ∧ p + σ (6.7)

where p is defined by Eq. 6.11.

6.5 The Tetrode Energy–Momentum Tensor

The energy–momentum (Tetrode) tensor T [5] of the Dirac electron is a linear
application of M into M , written by Hestenes [3] in STA

n ∈ M → T (n) = �c
([
∂μψie3ψ̃n

]

S
eμ

)
− ρ(v · n)q A ∈ M (6.8)

where ie3 = e0e2e1.
The Hestenes form of T is justified by the correspondence Eq. 6.13 below con-

cerning the trace of this tensor which lies in the lagrangian of the Dirac equation.
We have shown in [6] that

[
∂μψie3ψ̃n

]

S
eμ = ρ

2
(N (n)− (n.s)∂β), ie3 = e0e2e1 (6.9)

where (Eq. C.9)

N (n) = (
μ · (i(s ∧ n)))eμ, 
μ = 2(∂μR)R̃, s = n3 = Re3 R̃

In fact, a simple calculation shows that we can write

∂μψie3ψ̃n = 1

2
(ρ(
μi − ∂μβ)+ i∂μρ)sn

from which, since in particular

[
μisn]S = 
μ · (i(s ∧ n)), [i(∂μρ)sn]S = 0

we deduce Eq. 6.9.
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Writing

T (n) = ρ(T0(n)− (n · v)q A), T0(n) = �c

2
(N (n)− (n · s)∂β) (6.10)

we have, applying Eq. 5.2, the so-called energy–momentum vector

p = T0(v)− q A = �c

2
ω − q A, ω = (∂μn2.n1)e

μ (6.11)

which is, as shown in Sect. 4.2.2, gauge invariant.
A form similar to Eq. 6.10 of the Tetrode tensor, including the presence of ∂β,

has been explicited by Halbwachs [7], but with a mechanical interpretation of N (n)
different from our geometrical one.

The trace of ρT0(n) is

ρT0(e
ν) · eν = �c

[
∂μψe0e2e1ψ̃eν

]

S
δμν = �c

[
∂μψe0e2e1ψ̃

]

V
· eμ (6.12)

where [X ]V means the vector part of X ∈ Cl(M).
So the trace of the tensor ρT0 appears in the lagrangian of the Dirac electron

following the correspondence

�̄γ μi∂μ� ⇐⇒
[
eμ(∂μψe2e1)e0ψ̃

]

S
= eμ ·

[
∂μψe0e2e1ψ̃

]

V
(6.13)

deduced from the two correspondences Eqs. 3.6 then 3.5.
The presence of e0e2e1 in the lagragian is a hint on the fact that the momenum–

energy tensor contains the expression of an infintesimal rotation of the sub-frame
(n0, n2, n1).

6.6 Relation Between the Energy of the Electron and the
Infinitesimal Rotation of the “Spin Plane”

As a confirmation of what we said in Sect. 5.3, the vector

�c

2
ω = p + q A, ω = (∂μn2 · n1)e

μ

is such that ω0 is the energy E of the electron in the galilean frame {eμ} :

E = �c

2
ω0, ω0 = ∂0n2.n1 (6.14)

We have by a direct calculation verified in [6] this property for the hydrogen atom.
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6.7 The Tetrode Theorem

The Tetrode theorem [5] is the following:
“The space–time divergence of the energy–momentum tensor of the Dirac electron

is equal to the density of the Lorentz force acting on the electron".
Let us replace the vectors n by vectors eν of the frame {eμ}. One can write

∂νT ν = ρ(q F.v), T ν = T (eν), F = eν ∧ ∂ν A (6.15)

Chapter. 18 contains a STA proof of the Tetrode theorem which allows one to shorten
the proof given by Tetrode [5], published in 1928 (just after the article of Dirac !).

6.8 The Lagrangian of the Dirac Electron

Multiplying Eq. 6.2 on the right by ψ̃ and taking the scalar part one has, because
[ψψ̃]S = cosβ, ρv = ψe0ψ̃

L = �ceμ · [(∂μψ)e0e2e1ψ̃]V − mc2 cosβ − A · (qρv) = 0 (6.16)

which is the lagrangian of the Dirac electron and is strictly equivalent to that of the
conventional formalism. It is null when the Dirac equation is satisfied.

6.9 Units

The only constants we will use are the three fundamental constants (revised in 1989
by B. N. Taylor):

(1) the speed of light c = 2.99792458 × 1010 cm sec−1.

(2) the electron charge magnitude e = 4.803 206 × 10−10 (e.s.u.)
(3) the reduced Planck constant � = h/2π = 1.054 572 × 10−27 erg sec.

In addition we will use
(4) the electron mass m = 9.109 389 × 10−28 g. All the other constants used will

be derived from these four ones, in particular
(5) the fine structure constant

α = e2

�c
= 1

137.035 989
(e in e.s.u.) (6.17)

and as unit of length:
(6) the “radius of first Bohr orbit”

a = �
2/(me2) = �/(mcα) = 5.291 772 × 10−9 cm (6.18)
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Note. In other respects one introduces in the expression of the electromagnetic
potentials the factor 1/(4πε0) (the presence of 4π is due to the writing 4π jμ instead
of jμ in the current term of the Maxwell equations) where ε0 is the permitivity of
free space, and e is expressed in e.m.u:

ε0 = 8.854187 × 10−12 F m−1, e = 1.602 1777 × 10−19 (e.m.u.)

That gives (with c expressed in metres) the same value of α with the expression

α = e2

4πε0�c
, (e in e.m.u.) (6.19)

For simplicity and to be in agreement with the largest part of the reference articles
and treatises mentioned here, we will use the former expressions of the potentials
and the constant α, in preference to these letter ones.
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Chapter 7
The Invariant Form of the Dirac Equation and
Invariant Properties of the Dirac Theory

Abstract This section is relative to the invariant form of the Dirac equation and
some fundamental invariant properties of the Dirac theory which may be deduced
from this form.

Keywords Invariance · Positron · Broglie · Lorentz · Einstein formulas

7.1 The Invariant Form of the Dirac Equation

Multiplying on the right Eq. 6.3 first by e2e1 then by ψ−1:
�ceμ∂μψψ

−1 = −(mc2ψe0 + q Aψ)e2e1ψ
−1 (7.1)

where ψ−1 = R−1 exp(−iβ/2)/
√
ρ, we have the following invariant form of the

Dirac equation [1]

�c

2
(eμ�μ + ∂βi + ∂(lnρ)) = −(mc2eiβv + q A)σ0 ∈ ∧1 M ⊕ ∧3 M (7.2)

�μ = 2(∂μR)R−1, σ0 = n2n1 = n2 ∧ n1

This equation corresponds to the state “spin up”. For the state “spin down”, σ0 is to
be changed into −σ0.

We recall that each bivector �μ represents the infinitesimal rotation of the
“Takabayasi–Hestenes proper frame” {v, n1, n2, n3} when the point x moves in the
eμ direction.

This equation may be divided into two parts:

1. The ∧3 M part DI , four real equations implying seven real scalars R, β, is inde-
pendent of ρ.These scalars, associated with the physical constants �, c, q and the
potential A, lead to the construction of all the entities (energy, spin) which are
observable. Note that DI is gauge invariant.
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2. The vector part DI I , four equations implying eight real scalars R, β, ρ, implies
in addition the density ρ which has a probabilistic (or, following the authors,
statistical) meaning.

So one can deduce a particularity of the Dirac theory which may be extended to
the other ones: these theories may be expressed by means of equations implying the
observable physical entities, but these equations contain too many real parameters
with respect to the numbers of equations, to be solved and other equations implying
probabilistic (or statistical) parameters appear as a necessity.

About the link between equations DI and DI I we have established in [2] the
following theorem:

DI I is implied by DI and the three conservation relations

∂μ(ρv
μ) = 0, ∂μ(T

μν) = ρ f ν, ∂μ(S
μνξ ) = (T ξν − T νξ )

where T is the Tetrode tensor, f ∈ M the Lorentz force and S = ρv ∧ σ.
In particular cases of the choice of the potential A, particular solutions of the

equation DI , may lead to the expression of phenomena directly observable (see
Sects. 7.4, 7.5).

7.2 The Passage from the Equation of the Electron
to the One of the Positron

The conditions of the invariance of the Dirac equation when one considers the
positron associated with an electron whose orientation of the spin is given (here
in Eq. 7.1 the one of the bivector n2n1 = n2 ∧ n1) are well known with the stan-
dard operations on the usual presentation of the Dirac equation. These conditions are
obtained by the CPT transforms.

It is easy to obtain the CPT invariance by using Eq. 7.2.

(a) C (Charge) changes q in −q = e > 0.
(b) P (Parity) changes (e2, e1) into (e1, e2) and so n2n1 into n1n2.

(c) T (Time reversion) changes e0 into −e0 and so v in −v.
The left hand part of Eq. 7.2 is unchanged by (a), (b) and (c):

– As a consequence of (b), σ0 is changed into −σ0, so −q(−σ0) = qσ0 and the
charge term in Eq. 7.2 is unchanged.

– As a consequence of (c), −v(−σ0) = vσ0, and the mass term in Eq. 7.2 is
unchanged.

So the right hand part of Eq. 7.2 is unchanged. The left hand part is unchanged
by any of these transforms.

But the T transformation seems imply that the positrons come from the future.
In order to explaining this particularity of the T transformation, where the

positrons could be considered as coming from the future, Stückelberg (1941), then
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Feynman (1948) proposed an interpretation of the T transformation based on “the
idea that a negative which propagates backward in time, or equivalently a positive
energy antiparticle propagating forward in time.” (see [3], p. 77). Such supposition
is based on the relation of v with the charge −e < 0 in the Dirac equation of the
electron and on the relation of −v with the charge e > 0 in the associated equation
of the positron.

In [4], Eq. 10.3b, Takabayasi avoids the change ot v into −v by the following
transform:

(c)′ The angle β is changed into β + π,v remaining unchanged.
As an additional justification of the Takabayasi transformation, one can remark

that:

1. The “angle” β concerns the “rotation” of bivectors, not of vectors, and its change
into β + π, implying the reversal of a bivector, is coherent with the change
n2n1 = n2 ∧ n1 into n1n2 = n1 ∧ n2 implied by the P transformation, which
associates to an electron a positron whose the orientation of the bivector spin is
opposite.

2. The angle β appears in the mass term of the lagragian of the positron in the form
−mc2 cosβ where 0 ≤ β ≤ π, and it is possible that the transformation of β into
β + π, which is in fact the change m for the electron into −m, that is a negative
mass for the positron, is related with the disappearance of the mass in the process
of an annihilation electron–positron.

7.3 The Free Dirac Electron, the Frequency
and the Clock of L. de Broglie

The equation of the free Dirac electron may be deduced from the equation DI simply
by supposing that A = 0 and furthermore that β = 0.

Multiplying Eq. 7.2 on the left by σ0 = n2n1, then taking the vector part of this
new equation, we have

[eμ�μn2n1]V = eμ((�μ.n2).n1) = (∂μn2.n1)e
μ = ω, n2n1 = n2 ∧ n1

and we arrive at

�c

2
ω = mc2v, ω = (∂μn2.n1)e

μ (7.3)

Considering the galilean frame where the electron is at rest, we can write v = e0,

and furthermore x0 = ct gives the proper time t of the free electron.
So the energy of the free electron is

E = �c

2
ω.v = mc2, v = e0 (7.4)
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The introduction of the L. de Broglie frequency

ν0 = mc2

h
= 1

2π
.
c(ω.v)

2
, ω = (∂μn2.n1)e

μ (7.5)

which is so related to the infintesimal rotation of the spin plane upon itself, allows
us to give a geometrical picture of what is called the L. de B. clock.

Let us denote

n1 = cosϕ e1 + sin ϕ e2, n2 = − sin ϕ e1 + cosϕ e2 (7.6)

which corresponds to R = exp(−e2e1ϕ/2).
The angle ϕ is only function of x0 and one deduces

ω = e0 dϕ

dx0 , cω = dϕ

dt
v

Equation 7.5 becomes

ν0 = 1

2

dϕ

dt
· 1

2π
(7.7)

So we can give to the hand of the L. de Broglie clock the following pure geo-
metrical interpretation. It is a vector N of the spin plane such that

N = cos(ϕ/2) e1 + sin(ϕ/2) e2 (7.8)

which runs on the direct direction of the plane (n1, n2), that is, on the dial of the
clock, anti-clockwise.

In the case where the spin is “down”, one can see in the same way that the vector
N is in the form

N = cos(ϕ/2) e1 − sin(ϕ/2) e2 (7.9)

which runs on the inverse direction of the plane (n1, n2), that is, in the dial of the
clock, clockwise.

Passage to the equation of the positron. Because the charge q does not intervene
(it is sufficient that A = 0, a fact which does not forbid to an electron to exist!) the C
transform is not to be considered. The P transform changes in Eq. 7.3 ω into −ω and
so its right-hand part into −mc2v.So it is necessary to suppose that v is changed in −v
and that the positron comes from the future, an hypothesis envisaged by Stückelberg
and Feynman, but which cannot be taken into account because the charge is absent
in the present case, in such a way that this possibility is invalidated, or that m is
changed into −m in agreement with the Takabayasi transform β = 0 + π = π.
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7.4 The Dirac Electron, the Einstein Formula of the Photoeffect
and the L. de Broglie Frequency

We consider the particular, but important case that we have considered in [5], where
the potential A is in the form

A = A0e0 + A3e3 = 0, A0 = g(x0, x3), A3 = f (x0, x3) (7.10)

We can have a solution of the equation DI by assuming that β = 0 and that the spin
plane keeps a fixed direction in such a way that σ0 = n2 ∧ n1 is defined by

n1 = cosφ e1 + sin φ e2, n2 = − sin φ e1 + cosφ e2

Since we have then A.σ0 = 0, Aσ0 = A ∧ σ0, multiplying as before Eq. 7.2 on
the left by σ0 = n2n1, then taking the vector part of this new equation, we have the
equation

�c

2
ω − q A = mc2v, ω = (∂μn2.n1)e

μ (7.11)

similar to Eq. 7.3, but with a potential in addition, and also deduced here from the
DI equation.

The time component of this equation is

�c

2
ω0 − W = mc2v0, W = q A0 (7.12)

where

�c

2
ω0 = hν1, ν1 = 1

2

∂φ

∂t
.

1

2π
(7.13)

Now, assuming the approximation

mc2v0 = mc2
[

1 − v2

c2

]−1/2

� mc2 + 1

2
mv2 (7.14)

and writing mc2 in the form h(mc2/h) = hν0 one deduces

hν − W = 1

2
mv2, ν = ν1 − ν0 (7.15)

that is the formula of the photoeffect introduced by Einstein in 1905.
An important point is to be noticed: the hidden presence of the L. de Broglie

frequency mc2/h in the Einstein formula which has been the starting point, after the
discovery in 1900 by Planck of the quantum of energy hν, of the quantum theory of
the electron.



40 7 The Invariant Form of the Dirac Equation and Dirac Theory

7.5 The Equation of the Lorentz Force Deduced
from the Dirac Theory of the Electron

Considering the same particular case as above, we follows a way with hypothesis
similar to the ones used by Hestenes in [6] and [7], in particular in the fact that the
angle β is null.

Taking the spacetime curl of Eq. 7.11, and since ωμ is a gradient, one obtains

−q F = mc2(∂ ∧ v), F = ∂ ∧ A) (7.16)

We notice that � is eliminated during this operation and so we go towards a classical
theory of the electron.

One can write

−q F.v = mc2(∂ ∧ v).v (7.17)

with, since (∂μv).v = (∂μ(v
2)/2 = 0

(∂ ∧ v).v = (eμ ∧ ∂μv).v = −(v.∂)v
one has

m(V · ∂)V = q

c
F · V, V = cv (7.18)

Now we make the point x as describing one of the current lines C, defined in the
spacetime plane (e0, e3), by Eq. 7.11. One has along C

V = dx

dτ
, (V .∂)V = dV

dτ
= d2x

dτ 2 (7.19)

where τ is the proper time parameter of C, where (V .∂)V corresponds to the deriv-
ative of V along the vector V tangent at the point x to the curve C, that is the
acceleration of the particle.

Equation 7.18 becomes (see [6], Eqs. 3.5)

m
dV

dτ
= q

c
F · V, V = dx

dτ
(7.20)

that is an equation which has exactly the same form as the Lorentz force equation
and, so, may be considered as defining “a trajectory”.

However Eq. 7.20 is to be considered as compatible with Eq. 7.11 whose corre-
sponding integral line defines a current line of the Dirac theory.

Moreover, if we consider C as a trajectory, the plane orthogonal at x to C (which
keeps a fixed direction parallel to the (e1, e2) plane), is nothing else but the “spin
plane” of the Dirac theory.
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In this way we can say that the Planck constant, which appears in Eq. 7.11, and
the spin are hidden parameters of the classical theory of the electron.

But one has to notice that the Dirac theory is reduced here to its dynamical
equation the equation DI . The part of the Dirac theory, equation DI I which implies
the density ρ has not been taken into account.

Furthermore in all that precedes the spacetime curve C is to be considered in the
particular case where it is situated in a spacetime plane and where the space curve
of the electron is a straight line.

7.6 On the Passages of the Dirac Theory to the Classical
Theory of the Electron

In the particular case of a potential in the form of Eq. 7.10, the two points which
are implied in the classical theory of the electron, that is the absence of h and of the
probability density ρ, have been deduced exactly from the Dirac equation, limited
to the dynamic equation DI .

In the case of other forms of the potential A, such that the direction of the spin
plane varies sufficiently slowly in such a way that ωmay be considered as a gradient,
and so � is eliminated, one can deduce from DI as an approximation the classical
behaviour of the electron in presence of the field F = ∂ ∧ A.

And now, we can associated what precedes with the sentence of Einstein, “God
cannot play with dice", about the difference between a classical and a quantum
electron. On one side a particle which may be clearly situated in the space, which has
a trajectory, and on the other an object whose position seems to depend on hazard. In
agreement with the conviction of Einstein, we can say that, in what precedes, nothing
allows one to assert that hazard is to be associated with this object, which the Dirac
height scalars equations cannot specify exactly its position. Four of these equations
are relative to seven scalar variables corresponding to observable entities, and so the
determination of these entities only by means of these equations is impossible. But
and it is only a deficiency of our knowledge, not some caprice of Nature. One scalar
variable and four equations more, and the calculation of these entities is possible,
except the position which may be only approached in a statistical point of view.

However the case treated above of an electron both classical, because it has a
trajectory, and quantal, because it satisfies the Einstein formula of the photoeffect,
appears as a window open to the hitherto inaccessible reality.
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Part IV
The SU(2) Gauge and the Yang–Mills

Theory in Complex and Real Languages





Chapter 8
Geometrical Properties of the SU(2) Gauge and
the Associated Momentum–Energy Tensor

Abstract A change of gauge and the condition of a gauge invariance, both on the
wave function of a particle and upon a potential vector acting on the particle, is
recalled for the complex language and established for the real one.

Keywords Isotriplets · Bivector · Three-space · Infinitesimal rotation

8.1 The SU(2) Gauge in the General Yang–Mills Field Theory
in Complex Language

The Yang–Mills (Y.M.) lagrangian (see [1], p. 8)

L = L I − gL I I : L I = �̄γ μi∂μ�, L I I = �̄γ μBμ� (8.1)

Bμ = 1

2
W k
μτk = 1

2
Wμ

where τk are the isospin (or Pauli) matrices.
In this standard expression the set {τk} is interpreted as the frame {ek} of an

“isotriplet space” isomorphic to R3,0. This space is to be considered as the space
E3(e0) generated by the bivectors of M

ek = ek ∧ e0 = eke0

So the Bμ appear as bivectors of M and W k = eμW k
μ as vectors of M .

A question is the nature of the two components of � on which the matrices τk

act. It is not specified in the treatises I know, except for the electroweak theory.
This question is discussed in [2], Sect. 4.1 that we recall in Chap. 17, and the

conclusion is that in any case� may be an “ordinary” Dirac spinor or� a couple of
Dirac spinors. The only case where the τk may be considered as matrices is the one
where � is a right or a left doublet in the SU (2)× U (1) gauge (see Chap. 9).
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So the SU(2) gauge can be considered as available alone only with the inter-
pretation of the τk not like entities isomorphic to bivectors of M , but as really the
geometrical bivectors defined by Eq. 8.6 below, with the use of the STA.

The conventional gauge SU (2) transformation is achieved by the relation

B ′
μ = U BμU−1 + i

g
(∂μU )U−1

where U belongs to a sub-group of SU (2). Let us denote

�̂μ = 2(∂μU )U−1 (8.2)

in such a way that

B ′
μ = 1

2
W′
μ,

�W ′
μ = UWμU−1 + i

g
�̂μ (8.3)

The associated Y.M. field is

Fνμ = ∂νBμ − ∂μBν − gi(BμBν − BνBμ), F ′
νμ = U FνμU−1 (8.4)

or, with the quality τk = ek of vectors of E3(e0) (bivectors of M) given to the isospin
matrices τk and applying the relation in E3(e0)

− i

2
(ab − ba) = −i(a ∧ b) = a × b

where a × b means the vector product in E3, one obtains

Fνμ = 1

2
(∂νWμ − ∂μWν + gWμ × Wν) (8.5)

We remark on Eq. 8.3 that if Wμ is a bivector, �̂μ is a bivector too.
So the relation F ′

νμ = U FνμU−1 may be deduced from ∂2
νμU = ∂2

μνU by means
of the definition (8.2) which gives the relation Eq. C.19.

We have chosen to use �̂μ = 2(∂μU )U−1 instead of (∂μU )U−1 because it is
already an indication of the geometrical meaning of the gauge.

8.2 The SU(2) Gauge and the Y.M. Theory in STA

8.2.1 The SU(2) Gauge and the Gauge Invariance in STA

All that follows could be simply replaced by supposing that U is considered like an
element of SO+(M). But we prefer to treat, as in [2], Sect. 4.3, the question with the
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use of STA in detail because it brings important elements absent from the standard
theory.

In the SU (2) gauge, the role of the “isocurrents” jk orthogonal to the probability
current j of a particle, whose wave function is an invertible biquaternion ψ , is
important.

We will use the concordances

τk ⇔ ek = ek ∧ e0 = eke0 (8.6)

�̄γ μτk � ⇔ eμ · (ψeke0ψ̃) = eμ · (ψekψ̃) = jμk (8.7)

which will be justified by what follows.
We deduce

L I I = 1

2
�̄γ μWμ� ⇔ 1

2
W k
μeμ · (ψekψ̃) = 1

2
W k · jk (8.8)

where Wμ = W k
μeke0 ∈ ∧2 M and W k ∈ M .

We consider ψ instead of �, and we denote by U a rotation such that

Ue0U−1 = e0, R → R′ = RU ⇒ R′e0 R′−1 = v (8.9)

giving

�μ → �′
μ = �μ + R�̂μR−1, RWμR−1 → R(UWμU−1)R−1 (8.10)

The concordance with the complex L1 requires an interpretation of i� (Eq. 3.7),
that we have introduce in [3], different from the one of Eq. 3.6. Here we will write

i� = �i ⇔ iψ = ψi, i = √−1 ⇔ i (8.11)

Applying the concordances Eqs. (8.11), (3.5) we have

L I = �̄γ μi∂μ� ⇐⇒
[
eμ∂μψie0ψ̃

]

S
= eμ ·

[
∂μψie0ψ̃

]

V
(8.12)

We can write

∂μψie0ψ̃ = 1

2
(ξμv + ρi�μv), ξμ = (∂μρ + iρ∂μβ)i (8.13)

where the ξμ are only function of ρ, β.
Note that ψWμe0ψ̃ = ρRWμR−1 Re0 R−1 = ρRWμR−1v,

L = eμ ·
[

1

2
(ξμv + ρ Jμv)

]

V
, Jμ = i�μ − gRWμR−1 (8.14)
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The gauge transformation defined by U in the complex formalism is nothing else
but a rotation upon itself of the three-space orthogonal at the point x of M to the
probability current j = ρv of the Y.M. particle.

We obtain the geometrical interpretation of the gauge SU (2):
The gauge SU (2), associated with a particle, corresponds to the ring of the rota-

tions in the three-space orthogonal to the time-like vector which is the
probability current of the particle. It is a sub-group of SO+(1, 3).

The gauge transformation leaves v invariant but defines a rotation of the sub-frame
upon {n1, n2, n3} upon itself, ρ, β, and so the ξμ, remaining unchanged.

We are going to find X such that the change

Wμ → W′
μ = UWμU−1 + X

leaves Jμ, and so L , unchanged:

Jμ = i�μ + R(i�̂μ − g(UWμU−1 + X)R−1) (8.15)

which gives X = (i/g)�̂μ and

W′
μ = UWμU−1 + i

g
�̂μ (8.16)

exactly as in Eq. 8.3 of the complex formalism and with the same field Fνμ.
What is new is the geometrical interpretation of a gauge transformation in SU(2):

a rotation upon itself of the three space E3(v).
We see the geometrical link with the gauge U (1) where the rotation is relative to

the “spin plane”.

8.2.2 A Momentum–Energy Tensor Associated
with the Y.M. Theory

The part of a momentum–energy tensor associated with the Y.M. theory which does
not take into account the Bμ may be written in STA

n ∈ M → T (n) = g1

( [
∂μψie0ψ̃n

]

S
eμ

)
(8.17)

where g1 is a suitable physical constant.
Since, in a U (1) gauge, ψie3 is replaced by ψie0 in an SU (2) gauge, we

deduce (by application of the concordance (8.11) in place of (3.6)) a SU (2) energy–
momentum tensor by replacing, in a U (1) energy–momentum tensor, s = n3 by v.
This tensor ρT0 will be obtained by Eq. 6.10, with v in place of s, S(N ), Eq. 16.12,
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which expresses the infinitesimal rotation upon itself of {n1, n2, n3}, replacing N (n),
and a suitable physical constant g1 in place of �c

n ∈ M → ρT0(n) = ρg1

[
1

2
(S(n)− (n · v)∂β)

]
∈ M. (8.18)

In the gauge SU (2), the energy–momentum tensor contains the infinitesimal
rotation of the three-space orthogonal to the probability current of the particle.

The trace of T (eν) · eν/g1 of T (n)/g1 is

(eν ·
[
∂μψie0ψ̃

]

V
)eμ·eν) = eν ·

[
∂μψie0ψ̃

]

V
δμν = eμ·

[
∂μψie0ψ̃

]

V
= L I (8.19)

in conformity with Eq. 8.12
With the introduction of the physical constant g1 the Lagrangian will be written

in the form

L ′ = g1L I − g2L I I , g = g2

g1
(8.20)

8.2.3 The STA Form of the Y.M. Theory Lagrangian

We can deduce now from Eqs. 8.19, 8.8 the equivalence

L = L I − gL I I ⇔ L = eμ ·
[
∂μψie0ψ̃

]

V
− g

2
W k · jk (8.21)

8.3 Conclusions About the SU(2) Gauge and the Y.M. Theory

Considered separately the SU (2) gauge and the Y.M. theory have no place in the
complex language. The use of STA is a necessity.

The wave function�, on which the isospin matrices act, cannot be either a Dirac
spinor, couple of Pauli spinors, or a couple of Dirac spinors.

The isospin matrices may be interpreted like bivectors of M , and � as corre-
sponding to a Hestenes spinor ψ , invertible biquaternion.

They may be also associated with a bivector a + ib of M (see the three first lines
of Table 1 of [4]).

In any case the SU (2) gauge, considered as alone, cannot be considered as
deduced from complex matrices like the isospin ones, and as associated with a particle
of spin 1/2.

One can remark that, as they are presented in the “complex” language, Sect. 8.1,
it is sufficient to consider the τk as bivectors of M and U not as belonging to a Lie
group but to SO+(M).
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The properties of the Y.M. theory remain with the use of the complex language
in the part SU (2) of SU (2) × U (1) lying in the electroweak theory and in the part
implying the three first Gell-Mann matrices of the chromodynamics one.

In the first theory, the above ψ is a left doublet which may be an invertible
biquaternion. It must be a doublet (left or right?) in the second one because of the
spin 1/2 of the particles which are considered (see the Comments in Sect. 12.1).

If the SU (2) gauge does not lie separately (to our knowledge) in the theories
presently accepted, it is not impossible that it will be used for the explanation of
some phenomena not yet known.
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Chapter 9
Geometrical Properties of the SU(2)× U(1)
Gauge

Abstract After the definition of the left and right doublets associated with two wave
functions, the role of the τk matrices acting on these entities and their geometrical
interpretation is explained.

Keywords Doublets · SU(2) · U(1) · SU(2)× U(1)

9.1 Left and Right Parts of a Wave Function

In this chapter we recall the calculations achieved in [1].
We consider an “ordinary" spinor�, that is a Dirac spinor which may be replaced

by a Hestenes spinor ψ, and so a invertible biquaternion, and its decomposition

� = �L +�R (9.1)

�L = 1

2
(1 − γ 5)�, �R =

(
1

2
(1 + γ 5)

)
� (9.2)

γ 5� = γ 0γ 1γ 2γ 3i�, i = √−1 (9.3)

(see [2], Eq. 5.49) in the so called left and right parts of �.
The equivalences deduced from Eqs. 3.5, 3.6

γ 5 = γ 0γ 1γ 2γ 3i� ⇔
e0e1e2e3ψie3(e0)

4 = −e0e1e2e3ψie3 = −iψie3 = ψe3

1

2
(1 ∓ γ 5)� ⇔ 1

2
(1 ∓ e3)ψ (9.4)

lead in STA to the decomposition
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ψ = ψL + ψR (9.5)

ψL = ψ
1

2
(1 − e3) = ψu, ψR = ψ

1

2
(1 + e3) = ψ ũ (9.6)

u = 1

2
(1 − e3), ũ = 1

2
(1 + e3) (9.7)

u + ũ = 1, uũ = ũu = 0, u2 = u, ũ2 = ũ (9.8)

Note that u, ũ are idempotents.
Let us consider the two following spacetime vectors

j = ψe0ψ̃ = ρv, j ′ = ψe3ψ̃ = ρs, s = n3 (9.9)

We recall that the spacetime vectors j and j ′ are respectively the probability density
and the “spin density" currents of the particle, whose wave function is ψ.

Note that j ± j ′ = ρ(v ± s) are isotropic vectors: ( j ± j ′)2 = 0.
Using

e3ũ = ue3, e0ũ = ue0, ue3 = 1

2
(e0 − e3), ũe0 = 1

2
(e3 + e0) (9.10)

one obtains the “currents”, which have the particularity to be isotropic,

jL = ψue0ũψ̃ = ψue0ψ̃ = 1

2
ψ(e0 − e3)ψ̃ = 1

2
( j − j ′) (9.11)

jR = ψ ũe0uψ̃ = ψ ũe0ψ̃ = 1

2
ψ(e0 + e3)ψ̃ = 1

2
( j + j ′) (9.12)

9.2 Left and Right Doublets Associated with Two Wave Functions

We will only consider the case of the left doublets, the case of the right doublets
giving similar results.

Let two ordinary Dirac spinors�1, �2 be, in their Hestenes form ψ1, ψ2, corre-
sponding to two particles of spin 1/2.

What follows is applicable to all the invertible biquaternions. We define a left
doublet ψL as

ψL = ψ1
L − ψ2

Le1 (9.13)

that we express in the form of a column ψL �
(
ψ1

L

ψ2
L

)

.
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The choice of the vector e1 is arbitrary, all that we need is its orthogonality to e3
(see Nota below).

Each ψ1
L , ψ

2
L verifies the relation

ψαL e3 = −ψαL , (α = 1, 2) (9.14)

One can write, because e2
1 = 1,

−ψLe1 = ψ2 − ψ1e1 ⇔
(
ψ2

ψ1

)
=

(
0 1
1 0

) (
ψ1

ψ2

)
= τ1�L (9.15)

since, furthermore, e2 = e1e3i = −e3ie1, applying (9.14),

−ψe2 = −ψ2i − ψ1ie1 ⇔
(−ψ2i
ψ1i

)
=

(
0 −i
i 0

)(
ψ1

ψ2

)
= τ2�L (9.16)

and since e1e3 = −e3e1, applying (9.14) again,

−ψL e3 = ψ1 + ψ2e1 ⇔
(
ψ1

−ψ2

)
=

(
1 0
0 −1

) (
ψ1

ψ2

)
= τ3�L (9.17)

So one can define three transformations, corresponding to the action of the τk matrices
of the conventional presentation,

ψL → −ψLe1,−ψLe2,−ψLe3 ⇔ �L → τ1�L , τ2�L , τ3�L (9.18)

Assuming that the biquaternion ψL is invertible, that is ψL ψ̄L �= 0 (see a condition
below), we deduce the correspondence similar to Eq. 8.7, except for a change of sign,

�̄Lγ
μτk �L ⇔ −eμ · (ψLeke0ψ̃L) = −eμ · (ψLekψ̃L) = − jμk (9.19)

Nota. The presence of e1 in the biquaternion ψL requires an explanation. The
direction of e3 allows one to define at each point x of M, the directions of the “spin
plane” of the electron and of the neutrino (by means of the orthogonality to the vector
Ree3 R−1

e and the vector Rνe3 R−1
ν ). The choice of the direction of e1 is arbitrary for

defining the direction of this plane for the two particles considered independently.
But a commun choice is a necessity to obtain the correlation of the effect of a U (1)
change of gauge which is a rotation through a same angle χ of these planes upon
themselves [1].

The choice of e1 allows also the translation to STA of the above isospin matrices.
The choice of e2 would be in the same way acceptable but would correspond to a
different but similar form of these matrices.



56 9 Geometrical Properties of the SU(2)× U(1) Gauge

9.3 The Part SU(2) of the SU(2) × U(1) Gauge

The biquaternion ψL is invertible if

ψL ψ̃L = −(X + X̃) �= 0, X = ψ2ue1ψ̃1 (9.20)

which is verified if X is not reduced to a bivector, that we will suppose.
Then we can consider the four currents which are not isotropic

j0
L = ψLe0ψ̄L , j k

L = −ψLekψ̄L (9.21)

They give an orientation to the orthonormal frame { jμL } negative with respect to the
one of the galilean frame {eμ}, but do not change the properties of the SU (2) gauge
as they have been described in Sect. 8.

9.4 The Part U(1) of the SU(2) × U(1) Gauge

A U (1) change of gauge for the doublet is defined in STA by the transforms

ψ1 → ψ1e(±e1e2ϕ/2), ψ2 → ψ2e(±e1e2ϕ/2) (9.22)

Note that the angle ϕ defining this change must be the same for ψ1 and ψ2.

It is possible to deduce from

e(±e1e2ϕ/2)e j e
(∓e1e2ϕ/2) = e j , j = 0, 3 (9.23)

that the product of SU (2) by U (1) is direct.
A precise verification of this property will be achieved in Sect. 10.3.

9.5 Geometrical Interpretation of the SU(2) × U(1) Gauge
of a Left or Right Doublet

Properties similar to the ones of the left doublet may be established for a right doublet.
We deduce from all that precedes the following properties:

1. The SU (2)XU (1) gauge may be applied only to a left or right doublet.
2. A change of such a product of gauges corresponds to a finite rotation in the three

space orthogonal to the timelike current of the doublet and a finite rotation of a
same angle ϕ in the “spin planes" of the particles whose wave functions are ψ1

and ψ2.
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9.6 The Lagrangian in the SU(2) × U(1) Gauge

Since ψL is invertible the langrangian has the same form as in Eq. 8.21, except that,
since the three-space {− j1,− j2,− j3} has an orientation inverse of { j1, j2, j3} and
so S(n) is to be replaced by −S(n) [see Eq. 16.13] in Eq. 8.18 and L I by −L I in
Eq. 8.19 in such a way that L is changed into

L = L I − gL I I ⇔ L = −eμ ·
[
∂μψLie0ψ̃L

]

V
− g

2
W k · jk (9.24)

Taking account this change, all that we have established in Sect. 8.2 is still applicable
to the SU (2)× U (1) gauge of the weak theory.
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Chapter 10
The Electroweak Theory in STA: Global
Presentation

Abstract Since all the necessary equivalences between complex and real language
have been clarified, the electroweak theory may now be exposed only by means of
the use of the STA. This Section relates to the enumeration of the entities implied in
the theory.

Keywords Electron · Neutrino · Doublet · Singlets · Weinberg angle

10.1 General Approach

A presentation of the electroweak theory in STA has been achieved by Hestenes (see
[1–3]). Our approach, achieved quite independently, is different and longer because
we have used in fact a step by step translation of the standard presentation (see in
particular [4] and [5]) into the STA.

The presentation will only concern the leptonic part of the theory in the first
generation (electron and neutrino). The extension to the part of the theory which takes
into account the hadronic currents, associated with the quarks “strange” and “down”,
in the “mixture of Cabibbo”, and “up”, does not present additional difficulties (see
[4], p. 154–157).

As in [6], we have chosen to present the theory in the simplest form but with the
conservation of its fundamental features.

In particular we will not mention the role of entities as hypercharges, certainly
important, but they do not appear in the final results.

As explained in the Abstract we will simply present the theory with the use
of the STA. The agreement with the standard presentation will be insured by the
coincidence of the entities and equations independent of all galilean frame in the two
mathematical, complex and real, approaches.
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10.2 The Particles and Their Wave Functions

Only two leptons are to be considered, the electron and the neutrino.
They will be considered in the “spin up” state.
Their wave functions will be expressed by the Hestenes spinors ψe and ψν in a

galilean frame {eμ}.

10.2.1 The Right and Left Parts of the Wave Functions
of the Neutrino and the Electron

Four wave functions, which may be deduced from these two waves, are considered.
Applying the decomposition Eq. 9.6 to the neutrino and the electron (see [4],

p. 147), we consider the wave functions

ψα = ψαu + ψα ũ = ψαL + ψαR (α = ν, e) (10.1)

with, we recall, u = (1−e3)/2, ũ = (1+e3)/2, and we define the following wave
functions

ψνR = ψν ũ, ψe
R = ψeũ (10.2)

ψνL = ψνu, ψe
L = ψeu (10.3)

10.2.2 A Left Doublet and Two Singlets

Three wave functions are used.
The wave function of the left doublet of the theory is defined with the help of the

left part of the electron and the left part of the neutrino (see [4], p. 147)

ψL = ψνL − ψe
Le1 = ψνu − ψeue1, e1 = e1e0 (10.4)

The two singlets are ψνR and ψe
R .

10.3 The Currents Associated with the Wave Functions

Some of the following currents appear directly in the lagrangian. Others may be
considered as auxiliary.
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10.3.1 The Current Associated with the Right and Left Parts
of the Electron and Neutrino

Using Eqs. 9.12, 9.11 one has for the electron

j e
R = 1

2
( je + j ′

e), j e
L = 1

2
( je − j ′e) (10.5)

that is two isotropic currents, from which one deduces

j e
R + j e

L = je (10.6)

which is a timelike vector as in the Dirac theory of the electron.
In the same way one has for the neutrino

jνR = 1

2
( jν + j ′

ν), jνL = 1

2
( jν − j ′ν), jνR + jνL = jν (10.7)

10.3.2 The Currents Associated with the Left Doublet

These currents are those of Sect. 9 Eq. 9.21

j0
L = ψLe0ψ̄L , j k

L = −ψLekψ̄L (10.8)

which are not isotropic if Eq. 9.20 is satisfied and are defined by

j0
L = (ψνu − ψeue1)e0(ũψ̃

ν + e1ũψ̃e) = ψνue0ψ̃
ν + ψeue0ψ̃

e

j1
L = −(ψνu −ψeue1)e1e0(ũψ̃

ν + e1ũψ̃e) = −(ψνue1 −ψeu)e0(ũψ̃
ν + e1ũψ̃e)

j2
L = −(ψνu−ψeue1)e2e0(ũψ̃

ν+e1ũψ̃e) = −i [(ψνue1−ψeu)e3(ũψ̃
ν+e1ũψ̃e)]

j3
L = −(ψνu − ψeue1)e3(ũψ̃

ν + e1ũψ̃e) = −ψνue3ψ̃
ν + ψeue3ψ̃

e

Recalling that

ek = eke0, k = 1, 2 =⇒ eku = uek, ekũ = ũek

and using Eqs. 9.8, 9.10, 9.11, we can write

j0
L = 1

2
( jν − j ′

ν + je − j ′
e) (10.9)
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j1
L = 1

2
[ψe(e0 − e3)ψ̃

ν + ψν(e0 − e3)ψ̃
e] (10.10)

j2
L = 1

2
i[−ψe(e0 − e3)ψ̃

ν + ψν(e0 − e3)ψ̃
e] (10.11)

j3
L = 1

2
( jν − j ′ν − ( je − j ′

e)) (10.12)

For the proof concerning j2
L we have used

e2 = ie1e3, Qi = i Q, ∀Q ∈ Cl+(M)

Using Eq. 9.23 one can immediately deduce from these expressions of the currents
that a change of gauge U (1), that is a rotation of the same angle in the spin planes of
the electron and the neutrino, corresponding to the transforms of ψα , α = e, ν, into
ψα exp(±e1e2ϕ/2), leaves the jμL unchanged and so does not affect a SU (2) change
of gauge, that is a rotation in the three-space orthogonal to j0

L , which concerns the
vectors j k

L . So one verifies that the product of SU (2) and U (1) in the SU (2)× U (1)
gauge concerning the left doublet is direct.

10.3.3 The Charge Currents

To be in agreement with the conventional presentation of the GSW theory, we intro-
duce the so-called charged current

jC = 1

2
ψe(e0 − e3)ψ̃

ν (10.13)

and its “complex conjugate” [see Eq. 10.15]

j̃C = 1

2
ψν(e0 − e3)ψ̃

e (10.14)

which are of the so-called V-A type, that is “vector-(axial-vector)” (see [4], p. 146), as
that appears from Eqs. 10.15 and 10.16, like the sum of a vector and a pseudo-vector
of M . Indeed one can easily check that if Q1, Q2 ∈ C+(M),

a ∈ M;⇒ Q1aQ̃2 = b + ic

(Q1aQ̃2)˜ = Q2aQ̃1 = b − ic, b, c ∈ M (10.15)

and by another way one can deduce from Eqs. 10.10 and 10.11
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jC = 1

2
( j1

L + i j2
L), j̃C = 1

2
( j1

L − i j2
L) (10.16)

which in agreement with the property (10.15).
Then one can write

j1
L = jC + j̃C , j2

L = i(− jC + j̃C ) (10.17)

10.4 The Bosons and the Physical Constants

10.4.1 The Physical Constants

The fundamental physical constants used are c, �, e, and the angle θ of Weinberg, or
weak mixing angle, so that sin2 θ = 0.234 in the standard model ([5], p. 296, 301).

Two other constants, called g, g′ ([5], Eq. 13.23) and ([4], Eq. 7.50) are deduced
from e and θ :

g sin θ = g′ cos θ = e > 0 (10.18)

(for the choice e > 0 see Sect. 6.1 and [5], Eq. 5.17).

10.4.2 The Bosons

1. The electromagnetic potential A ∈ M .
2. Two massive charged bosons W 1,W 2 ∈ M .
3. Two neutral bosons W 3, B ∈ M and Z ∈ M , which are massive, such that ([4],

Eq. 7.41)

W 3 = sin θ A + cos θ Z , B = cos θ A − sin θ Z , (10.191)

and in another but equivalent presentation ([5], Eqs. 13.19, 13.20)

A = sin θ W 3 + cos θ B, Z = cos θ W 3 − sin θ B, (10.192)

such that W 3, B, θ make the combination sin θ W 3 + cos θ B massless.

10.5 The Lagrangian

The Lagrangian is in the form

L = L I − L I I (10.20)



66 10 The Electroweak Theory in STA: Global Presentation

It contains:

1. A part L I independent of the bosons fields (see Sect. 11.1)

L I = �c(eμ.[(∂μψν)ie3ψ̃
ν]V + eμ.[(∂μψe)ie3ψ̃

e]V ) = Lν + Le (10.21)

in which Lν and Le are nothing else but the traces of the momentum energy
tensors of the neutrino and the electron (minus the term containing the potential).In
particular Le lies in the lagrangian Eq. 6.16 of the Dirac equation of the electron.

2. A part L I I implying the bosons fields

L I I = g

2
(W 1. j1

L + W 2. j2
L + W 3. j3

L)− g′ B.
(

1

2
j0
L + je

R

)
(10.22)

L I and L I I are each cut into several parts with a correspondence between each part
of L I with a part of L I I .
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Chapter 11
The Electroweak Theory in STA: Local
Presentation

Abstract This section is relative to the standard decompositions of the theory into
several parts and the physical meaning of each of its part.

Keywords Charged · Neutral contribution · U(1) · SU(2)× (U1)

11.1 The Two Equivalent Decompositions of the Part L I
of the Lagrangian

One considers:

1. The decomposition Eq. 10.21

L I = Lν + Le (11.1)

2. Another one (see [1], Eq. 7.20)

L I = L I,L + LνI,R + Le
I,R (11.2)

whose terms correspond to the left doublet and the two right singlets.
The definition of L I,L is deduced from Eqs. 3.6, 3.5 and a correspondence analog

to Eq. (B.15 )

�Lγ
μ∂μ�L ⇔ [eμ((∂μψL)ie3)e0ψ̃L ]S = −[eμ(∂μψL)ie0ψ̃L ]S (11.3)

where ue3 = −u has been used.
From ẽ1 = −e1 and properties Eqs. 9.5 to 9.10 one deduces from Eqs. 10.3, 10.4

L I,L = �ceμ ·
[

1

2
((∂μψ

ν)i(e3 − e0)ψ̃
ν)+ 1

2
((∂μψ

e)i(e3 − e0)ψ̃
e)

]

V
(11.4)
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Using again Eqs. 3.6, 3.5 one deduces from Eqs. 10.2, 10.4

LνI,R = �c[eμ(∂μψν)ie3ũe0uψν]S (11.5a)

Le
I,R = �c[eμ(∂μψe)ie3ũe0uψ̃e]S (11.5b)

and since e3ũ = ũ, ũe0u = ũe0

LνI,R = �ceμ ·
[

1

2
((∂μψ

ν)i(e3 + e0)ψ̃
ν)

]

V
(11.6)

Le
I,R = �ceμ ·

[
1

2
((∂μψ

e)i(e3 + e0)ψ̃
e)

]

V
(11.7)

and so, after eliminations

L I = �ceμ.[(∂μψν)ie3ψ̃
ν]V + eμ.[(∂μψe)ie3ψ̃

e]V = Lν + Le (11.8)

in conformity with Eq. 10.21.

11.2 The Decomposition of the Part L I I of the Lagrangian
into a Charged and a Neutral Contribution

The following decomposition in two parts of L I I

L I I = L I I,C + L I I,N (11.9)

implies a surprising particularity, that is a double role to the boson W 3. On one side
it is related with W 1 and W 2 in such a way that the use of the gauge SU2 × U (1)
appears in the lagrangian, and on the other W 3, which appears in the first part, is cut
from these two bosons for being implied in the second part.

The contribution L to the lagrangian of the boson field is expressed into the sum
L I I = L I,C + L I,N where

L I I,C = g

2

(
W 1 · j1

L + W 2 · j2
L

)
(11.10)

L I I,N = g

2
W 3 · j3

L − g′ B ·
(

1

2
j0
L + j e

R

)
(11.11)

(for the standard presentation see [1], Eqs. 7.29 and 7.40)
L I I,C and L I I,N are respectively called the charged and neutral contributions,

because the boson gauge fields imply W 1,W 2 for L I I,C and W 3, B (or A and Z by
means of the Weinberg relations Eq. 10.19) for L I I,N .
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11.2.1 The Charged Contribution

One deduces from Eqs. 10.17, 11.10,

L I I,C =
[
(W 1( jC + j̃C )+ g

2

[
W 2i(− jC + j̃C )

]

S
(11.12)

where [X ]sc means the scalar part of X , or, recalling that ia = −ai if a ∈ M,

L I I,C = g

2
[(W 1 + iW 2) jC + (W 1 − i W 2) j̃C )]S (11.13)

Introducing the “complex” (in fact real since i is real) vectorial boson gauge fields

W ± = 1√
2
(W 1 ∓ iW 2) (11.14)

one has

L I I,C = g√
2
[W− jC + W + j̃C ]S (11.15)

see [1] Eq. 7.30, 7.31, 7.35).

11.2.2 The Neutral Contribution

One considers the following decomposition of L I I,N

L I I,N = L A
C,N + L Z

C,N (11.16)

where L A
C,N and L Z

C,N imply the electromagnetic potential A and the Z boson gauge
field, respectively.

Using g = e/ sin θ, g′ = e/ cos θ and Eq. 10.18 one can write

L A
I I,N = eA ·

[
1

2
( j3

L − j0
L)− j e

R

]

and using Eqs. 10.12, 10.9, 10.6

L A
I I,N = −eA · je = q A. je, q = −e < 0 (11.17)

(as [1] Eq. 7.72) where −eje is to be interpreted now as the current density of charge
of the electron (as in [2], Eq. 5.17 with e > 0).

Also

L Z
I I,N = Z ·

[
1

2
(g cos θ j3

L + g′ sin θ j0
L)+ g′ sin θ jR

]
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and in the same way

L Z
I I,N = Z ·

[
1

2
(g cos θ + g′ sin θ) j3

L + g′ sin θ je

]
(11.18)

One can write

g cos θ = e cos2 θ

sin θ cos θ
, g′ sin θ = e sin2 θ

sin θ cos θ

We introduce the following “current” with the change in this equation of − jem into je
(see [2], Eq. 13.10),

jN = j3
L + 2 sin2 θ je (11.19)

or (see Eq. 10.12)

jN = 1

2
[ψν(e0 − e3)ψ̃

ν − ψe(e0 − e3 − 4 sin2 θe0)ψ̃
e] (11.19)’

This current jN , STA form of jNC , Eq. 7.67 of [1], is equal to 2 j NC where J NC ,

Eq. 13.25 of [2], is deduced from Eqs. 13.1, 13.6.
We obtain the contribution of the Z boson field, Eq. 7.74 of [1]

L Z
I I,N = e

2 sin θ cos θ
Z · jN (11.20)

11.3 The Gauges

Two gauges are present in the theory:

11.3.1 The Part U(1) of the SU(2) × (U1) Gauge

We extract �ceμ · [(∂μψe)ie3ψ̃
e]V from L I and − q A. je from − L I I and we have

LU (1) = �ceμ · [(∂μψe)ie3ψ̃
e]V − q A. je, q = −e < 0 (11.21)

which is nothing else but the part of the lagrangian of the Dirac electron Eq. 6.16,
which, the term −mc2 cosβ being omitted, represents the presence of the U (1)
gauge.
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11.3.2 The Part SU(2) of the SU(2) × (U1) Gauge

Tacking L I,L in L I and g(W k · jk
L )/2 in L I I , we have

L SU (2) = −�ceμ ·[(∂μψL)ie0ψ̃L
]

V − g

2

(
W 1 · j1

L + W 2 · j2
L + W 3 · j3

L

)
(11.22)

in conformity with Eq. 9.24.
The geometrical properties of the changes in the gauges have been treated, for

U (1), and for the part U (2) of SU (2)×U (1) and the relations concerning the bivector
fields (see [1], Eq. 7.26), in Chaps. 4 and 8, respectively.

11.3.3 Zitterbewegung and Electroweak Currents in Dirac Theory

Incorporation of electroweak currents in Dirac theory raises questions about how
that relates to zitterbewegung, another prominent feature of standard Dirac theory.
This issue has been studied by Hestenes [3] who concludes that it suggests further
modification of Dirac theory. We quote from his paper (with adjustments in notation
to conform to the present book):

“The usual Dirac current is given by

J = ψee0ψ̃
e = ψe 1

2
(e0 − e3)ψ̃

e + ψe 1

2
(e0 + e3)ψ̃

e (11.23)

where the right side separates the contribution of left- and -right handed components.
The charged and neutral weak currents are

J− = ψe(e0 − e3)ψ̃
ν =) J̃+ (11.24)

JZ = ψν
1

2
(e0 − e3)ψ̃

ν − ψe 1

2
(e0 − e3 − 4 sin2 θe0)ψ̃

e (11.25)

................
Having aligned the standard model with geometry of the Dirac equation, we notice

that one prominent feature of Dirac theory is missing, namely, the zitterbewegung
(zbw) of the electron.The zbw was discovered and given its name by Schroedinger
in an analysis of free particles solutions of the Dirac equation [4]. It has since been
recognized as a general feature of electron phase fluctuations and proposed as fun-
damental principe of QM ([5, 6]).

One reason that the significance of zbw has been consistently overlooked,
especially in electroweak theory, is that the relevant observables are not among
the so-called “bilinear covariants,” from which observable currents are constructed
in the standard model. I refer to the vector fields ψe1ψ̃ = ρn1 andψe2ψ̃ = ρn2,

identified as observables in ψeμψ̃ = ρnμ. The standard model deals only with
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ψe0ψ̃ = ρn0 andψe3ψ̃ = ρn3, especially in combination to form chiral currents
in Eqs. 11.23, 11.24, and 11.25.

One way to recognize the significance of the observables n2 and n1 is to note
they rotate with twice the electron phase along streamlines of the conserved Dirac
current. The rotation rate for a free electron is the 2me/� ⇔ 1 ZHz (zettaHertz), the
zwb frequency found by Schroedinger. This rate varies in the presence of interactions
but still remains outside the range of direct observation.

Other features of the zbw may be detectable, however. In particular, it has often
been suggested that the electron’s magnetic moment is generated by a circulating
charged current. That suggestion is elevated to a principle by replacing the charged
Dirac current eψe0ψ̃ by the zbw current eψ(e0 − e2)ψ̃ = eρ(n0 − n2). Obviously,
the zbw current is analogous to the left-handed chiral currentψe 1

2 (e0 −e3)ψ̃
ewith e3

replaced by e2.Equation 11.23 expresses the Dirac current as a sum of left- and right-
handed chiral currents. Therefore, we can incorporate zbw into electroweak theory
by dropping the right-handed current and replacing the left-handed current by the
zbw current.

There is no need for a zbw analog to the right-handed chiral current. Looking
over the standard model in the preceding section, it is evident that the right-handed
current plays only a minor role. Its main function is to balance the left-handed current
to produce the Dirac current, as shown in Eq. 11.23. The theory may be simplified
considerably once that function is seen to be unnecessary.”

Note. Multiplied by 1/2, J− and J+ are identical to JC and J̃C of our Eqs. 10.13
and 10.14. JZ is identical to our STA translation jN , Eq. 11.19 ′ , of the standard
expression of the current jNC of [1] (achieved later but independently of the work
of D. Hestenes) and, multiplied by 2, the current J NC of [2].
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Chapter 12
On a Change of SU(3) into Three SU(2)× U(1)

Abstract In the use of the group SU (3), the simple replacement of the eighth
vector G8 by G8/

√
3 allows to replace this group by the direct product of three

SU (2)×U (1). Also it allows the geometrical interpretation of the theories in which
SU (3) is used. A question may be posed: is this change suitable for the Quantum
Chromodynamics Theory?

Keywords Gell-Mann matrices · Gluons · Quarks

12.1 The Lie Group SU(3)

The group implies the use of:

12.1.1 The Gell–Mann Matrices λa

λ1 =
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ , λ2 =
⎛

⎝
0 −i 0
i 0 0
0 0 0

⎞

⎠ , λ3 =
⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ (12.1)

λ4 =
⎛

⎝
0 0 −1
0 0 0
1 0 0

⎞

⎠ , λ5 =
⎛

⎝
0 0 −i
0 0 0
i 0 0

⎞

⎠ (12.2)

λ6 =
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ , λ7 =
⎛

⎝
0 0 0
0 0 −i
0 i 0

⎞

⎠ (12.3)
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λ8 = 1√
3

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠ (12.4)

12.1.2 The Column � on which the Gell–Mann Matrices Act

Let us denote

� =
⎛

⎝
�1
�2
�3

⎞

⎠ (12.5)

this column.

12.1.3 Eight Vectors Ga

Each vector Ga ∈ M is associated with the matrix λa in the product Gaλa.

12.1.4 A Lagrangian

We mention only the part of the Lagrangian of a theory in which SU (3) is used for
the gauges implied by the theory. It is in the form

L = L I − gL I I , L I = �̄γ μi∂μ�, L I I = g�̄γ μGa
μλa� (12.6)

with summation on a = 1, . . . , 8 (see for the Quantum Chromodynamics Theory,
[1], Eq. 14.28, [2], p. 139, [3], p. 266).

12.1.5 On the Algebraic Nature of the �k

In the QCT the�k correspond to the wave functions of particles of spin 1/2. So they
are to be considered in this theory like Dirac spinors.
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12.1.6 Comments

The couple (�1, �2) is manipulated by the matrices (λ1, λ2, λ3) identical to the
matrices τk . So is defined the only sub-group SU (2) of SU (3) which allows one to
consider a Y. M. field and a geometrical interpretation of the gauge associated with
this sub-group.

This triplet of matrices gives a privileged role to the couple (�1, �2).

But given the incompatibilities indicated in Chap. 17 (see also Sect. 8.3), it seems
that, if the�k correspond to the waves functions of particles of spin 1/2, as is the case
in chromodynamics, the spinors �1, �2, must be bound in a right or a left doublet.

In the particular case of the couple (�1, �2), a SU (2)× U (1) gauge appears in
the use of SU (3), with a U (1) gauge and a SU (2) gauge-Y. M.-field which may be
interpreted in the geometry of space–time, as is established in Chap. 3 and 9.

But concerning the couples (�1, �3), (�2, �3) we have not found a possible
interpretation in the real geometry of the Minkowski space–time, by the use of
SU (3), with�k particles of spin 1/2. It is the reason why we will propose the re-
placement of SU (3) by the direct product of three SU (2)× U (1).

Note that SU (3) has been associated via the Gell–Mann matrices by Hestenes
in [4] to bivectors of M. Here we keep the way consistent with the presentation we
have made of SU (2)× U (1) in the GSW theory as a step by step translation in STA
of the standard complex theory.

12.2 A Passage From SU(3) to Three SU(2)× U(1)

In [5] we have presented an arrangement of the λa matrices, giving the part L I I of
the lagrangian in a form strictly equivalent to the one of Eq. 12.6, but modifying
completely its interpretation.

We introduce the vector

Ĝ8 = 1√
3

G8 (12.7)

and, with the aim that the product G8λ8 remains unchanged, we consider the matrix

λ̂8 = √
3λ8 (12.8)

in such a way that

G8λ8 = Ĝ8λ̂8 (12.9)

Then nothing is changed in the value of the lagrangian except, as we are going to
see, the possibility of an other interpretation of the role of the gauges in the theory.
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Indeed we can write

λ̂8 = λ̂1
8 + λ̂2

8 (12.10)

where

λ̂1
8 =

⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ , λ̂2
8 =

⎛

⎝
0 0 0
0 1 0
0 0 −1

⎞

⎠ (12.11)

Introducing the column couples

�12 =
⎛

⎝
�1
�2
0

⎞

⎠ , �13 =
⎛

⎝
�1
0
�3

⎞

⎠ , �23 =
⎛

⎝
0
�2
�3

⎞

⎠ (12.12)

one sees that the sets of the matrices (λ4, λ5, λ̂
1
8) and (λ6, λ7, λ̂

2
8)may be considered

as isospin matrices τk acting on the couples �13 and �23, respectively.
Then L I I may be written in a stictly equivalent way, except for the replacement

of G8 by Ĝ8 = G8/
√

3,

L I I = g
(
�̄12γ

μG3k
μ τk�12 + �̄13γ

μG2k
μ τk�13 + �̄23γ

μG1k
μ τk�23

)
(12.13)

with

G31
μ = G1

μ, G32
μ = G2

μ, G33
μ = G3

μ (12.14)

G21
μ = G4

μ, G22
μ = G5

μ, G23
μ = Ĝ8

μ (12.15)

G11
μ = G6

μ, G12
μ = G7

μ, G13
μ = Ĝ8

μ (12.16)

Now L I I corresponds to the direct product of three SU (2), and if the �ab are
considered as right or left doublets, the theory would imply now the direct product
of three SU (2)× U (1) instead of SU (3).

But, given the form Eq. 12.13 of L I I , the privilege given to the set (λ1, λ2, λ3) in
the fact they are identical to the τk matrices is destroyed. What we have said about
the couple (�1, �2) concerns now the couples (�1, �3) and (�2, �3) which appear
as symmetrical. Furthermore one of the eight vectors, Ĝ8, is used twice, and that
lead to the presence of nine vectors instead of eight. But two of them are identical,
so the presence of eight distinct vectors still remains.

Note that the symmetry of the presence of identical eighth vectors in the couples
(�1, �3) and (�2, �3)would seem particularly convenient in QCT, for the symmetry
of the links u1 − d and u2 − d for the proton, d1 − u, d2 − u for the neutron where
u and d are the quarks “up” and “down”.
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However, this point of view requires a suitable definition of the coupling constant,
because it is necessary to take into account in L I the relation of �1 with�2 and �3
and the relation of �2 with�1 and �3. That may be made, without changing L , by
considering that the coupling constant is ĝ = g/2 in such a way that the relative
part of L I with respect to L I I is multiplied by two. In a change of the gauge, the
three Lorentz rotations U c, like the one U considered in Sect. 8.2, may be chosen
independently.

12.3 An Alternative to the Use of SU(3) in Quantum
Chromodynamics Theory?

If the vectors Ga are called gluons and the �k are wave functions of quarks, all the
definitions of Sect. 12.1 are inside the QCT, in its part concerning the gauge.

The alternative to the theory we have exposed in Sect. 12.2 is based by the re-
placement on G8 by G8/

√
3 and only experiments will be able to give an answer to

the question of its suitability.
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Chapter 13
A Real Quantum Electrodynamics

Abstract A construction of an electromagnetism which may be applied to charges
as well classical as quantum, is proposed. Its applications to the radiations of light by
hydrogenic atoms are recalled. Concerning the interaction between an electron with
plane waves one shows that the complex Quantum Fields Theory may be replaced,
in an equivalent way, by a pure real theory which avoids the recourse to unacceptable
artifices.

Keywords Retarded potentials · Plane wave perturbation

13.1 General Approach

The Quantum Fields Theory (QFT), in which the electromagnetic potentials are
“quantified”, has been used in Quantum Mechanics from 1927 until now. Such a
theory employs a complex language in apparent agreement with the language of
complex matrices and spinors.

Its characteristic lies in the association “i�” of the imaginary number i = √−1
with the reduced Planck constant �, “by exact analogy with the ordinary quantum
theory” ([1], Para. 7, p. 56, lines 10–11), present in particular in the Dirac theory of
the electron.

It is indisputable that the use of this theory has leaded with success to the quasi-
totality of the results in which the interaction between an electron and an electro-
magnetic plane wave is to be considered.

If the QFT is not necessary for the calculation of the levels of energy of the electron
in the Darwin solutions of the Dirac equation in hydrogenics atoms, this theory has
allowed physicists to determine the slight shift (the Lamb shift ) of each of these
levels in the hydrogen atom. This result is considered as the best proof of the validity
of the QFT.
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However some authors have used the so-called “semi-classical treatment of radi-
ations” (see [2], Chaps. X, XIII) in which only the classical theory of the electro-
magnetism is used, in particular for the Lamb shift calculation [3].

In fact, one can find exactly the same results, at least concerning this calculation,
with and without the use of QFT. (Compare [4], Eq. 37 and [5], Eq. 16).

A little group of physicists has considered that the QFT is not a good theory.
For our own part, we will say that the QFT is a theory mathematically irreproach-

able (Chap. 19), leading sometimes to simplifications by the employment of complex
numbers, at other times to complications, but which may lead to the use of doubtful
artifices as soon as a potential in the form q/r is to be used (see [6] and Sect. 19.3).

What follows is a construction of electromagnetism, using only the Grassmann
algebra and the inner product of the Minkowski space–time M. The fundamental
elements of this construction are as suitable to the quantum as the classical theory.

They are based in first place on the properties of the electromagnetic potential,
because, in particular, it is the only electromagnetic entity to be considered in the
Dirac theory in the determination of the levels of energy of the electron in the Darwin
solution of the Dirac equation for the hydrogen-like atoms. It intervenes also in the
Lamb shift calculation (see [1, 7] and Sect. 19.3).

13.2 Electromagnetism: The Electromagnetic Potential

13.2.1 Principles of the Potential

We propose four fundamental principles.
P1. All punctual charge q situated at a point P of the Minkowski space–time M

is endowed with an unitary timelike vector v (such that v2 = 1) called space–time
velocity at P of the charge q.

P2. The electromagnetic action of this charge q on a charge q ′ situed at a point
X ∈ M is such that the vector

−→
P X is isotropic (so that

−→
P X2 = 0), P being situated

in the past of X.
P3. This electromagnetic action is the vector A(X), such that

A(X) = q
v

−→
P X .v

(13.1)

is called retarded potential created at X by the charge q situed at P.
Let us define

−→
P X = r(v + n),

−→
P X · v = r > 0 (13.2)

n · v = 0, n2 = −v2 = −1, (v + n) · v = 1

we can write
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A = q
v

r
(13.3)

P4. The potential A created at a same point X by different charges qi is the vector
sum of their potentials Ai considered separately:

A(X) =
∑

i

qi
vi−−→

Pi X .vi

(13.4)

Note that all the points Pi are all situated on the hyper-cone H(X) whose top is
X and that X cannot coincide with a point Pi .

Note. The expression (13.1) is analog to the Liénard and Wiechert potential which
has been deduced in classical electromagnetism from the integral formula of the
retarded potentials in the case where the charge is a small sphere whose center
describes a straight line.

But here we only associate to the charge a scalar q, a point P of space–time, and
an unit time-like vector v. That may be applied to the cases where:

1. In classical mechanics, the charge describes a trajectory whose tangent vector at
P is v.

2. In quantum mechanics one considers that the presence of the charge q at the point
P is only an eventuality, and that the charge does not have necessarily a trajectory.

13.2.2 The Potential Created by a Population of Charges

Let us consider the case of a numerous population of punctual charges qi each one
situated at a point Pi in a small neighbourhood � of a point P in such a way that
the vector vi of each charge is about the same as an unic vector v.

We associate with P the total charge dq included in �.
For applying the Principle P2, we have to take into account the inclusion of �

into the hypercone H(X). That may be done by considering � as generated by an
isotropic vector

ξ = d�(v + n), d� > 0

whose origin describes a portion of plane η orthogonal to v and n. If the size of η is

small with respect to the length r, then the vector
−−→
P ′ X may be considered as isotropic

for any P ′ ∈ � and one can consider that � ⊂ H(X). The portion of plane η is
situed inside in the three-space E3(v) orthogonal to v.

Note that the measure of the projection of� upon E3(v) is dτ0 = dσd�, where
dσ is the area of η, since −ξ.n = d�.

The potential A(X) may be written in the form

A(X) =
∑

P∈�
dq
v

r
=

∑

P∈�
dq

v
−→
P X .v

(13.5)

where � is the reunion of all the domains �.
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The point X cannot belong to the domain �. An exception is envisaged in the
construction of the Maxwell laws, but is outside of the present study.

The above construction is applicable as well:

1. In classical electromagnetism, to a population of distinct charges.
2. In quantum electromagnetism, to the population of eventualities of presence of an

unique charge. dq corresponds then to the product of a constant charge (q = −e
for the electron) by a local presence probability.

13.2.3 Notion of Charge Current

The charge density j (P) associated with a domain of M centered in a point P is, at
the limit where this domain is considered as infinitely small, the quotient of the total
of the charges included in this domain, and the measure of the orthogonal projection
of this domain to the three space E3(v) orthogonal to the common vector v of the
charges. It is called a charges current.

Defining a charge density ρ = dq/dτ0, where dq is the charge contained in
a small neighborhood � of P, one can introduce the notion of charge current
j (P) = ρv and use the formula (13.4) of the retarded potentials, but with the
restrictive condition that, for a given measure dτ0 of the orthogonal projection of
� on E3(v), the shape of� has no incidence (or a weak incidence) on the value of
dq, and so that j is independent on the choice of the point X where the potential A
is considered .

1. In classical electromagnetism, with a population of distinct charges, we will define

j = ρv, ρ = dq

dτ0
(13.6)

2. In quantum electromagnetism, concerning the population of eventualities of pres-
ence of an unique charge q (q = −e < 0 for the electron) we will define

j = qρ0v, dq = qdp, ρ0 = dp

dτ0
> 0 (13.7)

where dp corresponds to the local presence probability of the charge at the points
Pi ∈ �.
Note that, given its definition, the vector j is independent of all galilean frame.
In the use of the charge current in classical or quantum electromagnetism, two

assumptions, confirmed by experimenst, are made, to give an answer to the two
following questions.

1. The current which is defined in a point P is independent of all other point X, in
a strict theory, following the above principles, this current could not be used for
the determination of a potential A(X).



13.2 Electromagnetism: The Electromagnetic Potential 87

2. It is not possible that there exists an accumulation of charges around a point P
and that the current j obey the following property, called the conservation of the
current:

∂. j = 0, ∂ = eμ∂μ (13.8)

1. A way to elude the difficulty of the compatibility of the use of the current in the
determination of the potential at a point X is to admit that the shape of � has no
incidence (or a weak incidence) on the value of dq, so that j is independent of
the choice of the point X where the potential A is considered.

2. In other respects, one adopts the hypothesis that the shape of � and the distrib-
ution of the charges around the point P are not incompatible with the property
Eq. 13.8.

13.2.4 The Lorentz Formula of the Retarded Potentials

Taking into account the definition of the current, the fact, deduced from
Eq. 13. 6 or 13. 7, that vdq = j (P)dτ0 and the two above hypothesis, we can write
Eq. 13. 5 in the form

A(X) =
∑

P∈�

j (P)

r
dτ0 =

∑

P∈�

j (P)
−→
P X .v

dτ0 (13.9)

the sign
∑

corresponding in fact to a summation on the volumes �, dτ0 being
defined as in Sect. 13.2.2 , multiplied by j/r.

One can express this formula, all of whose the terms of are invariant, in a galilean
frame {eμ}.

We can write

v = αe0 + βN , n = βe0 + αN , N · e0 = 0, N2 = −1 (13.10)

in such a way that (v + n)2 = 0 is verified, then

−→
P X = r(v + n) = r(α + β)(e0 + N ) = R(e0 + N ), R = r(α + β). (13.11)

In the definition of the neighbourhood � of P given in Sect. 13.2.2, the passage
to the frame {eμ} leaves the portion of plane η, which is inside the intersection of
E3(v) and E3(e0), unchanged, and in other respect we can write

d�(v + n) = d�(α + β)(e0 + N ) = d�′(e0 + N ), d�′ = d�(α + β)

and so we can define a portion of volume dτ ′ in the galilean frame {eμ}, corresponding
to dτ0, such that
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dτ ′ = dσd�′ = dσd�(α + β) = dτ0(α + β) (13.12)

We deduce that

dτ0

r
= dτ ′

R
(13.13)

and Eq. 13. 9 becomes

A(X) =
∑

P∈�

j (P)

R
dτ ′ (13.14)

Let xμ and aμ of the frame {eμ} be, so that

−→
X P = −−→

P X = (xμ − aμ)eμ, x0 − a0 = −−→
P X .N > 0 (13.15)

Eq. 13.14 may be written

A(x0, xk) =
∫

V

j (x0 − R, ak)

R
dτ ′ (13.16)

R = x0 − a0 =
[
∑

k

(xk − ak)2

]1/2

(13.17)

where V is the volume in the space E3(e0) which is the orthogonal projection upon
E3(e0) of the domain� of M containing all the charges which are the source of the
potential A(X) and dτ ′ = da1da2da3.

This equation is called the Lorentz formula of the retarded potentials.
Note that the equality a0 = x0 − R contains an ambiguity which requires an

explanation. With respect to the integral, a0 is only the time coordinate of the point
P and so is to be considered as independent of the xμ and also the ak though the ak

lie in the R of x0 − R. But in the derivations with respect to the xμ, and only in
these derivations, a0 is to be considered as a function of the xμ.

13.2.5 On the Invariances in the Formula of the Retarded
Potentials

In the integral (13.16), the vector j (P) is independent of all galilean frame.
As an imperative necessity, the quotient dτ ′/R must has this property of invari-

ance.
In what precedes we have shown that this property is verified because dτ is

deduced from the invariant dτ0 and also R is deduced from the invariant
−→
P X , both

in a projection on the three space E3(e0) of the frame {eμ}.
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However this dτ0 has been defined by means of a neighborhood of P included
in the hyper-cone H(X). Given the fact that R is related to the vector

−→
P X , this

definition of dτ0 appears as a necessity.
But the dτ0 which lies in the definition Eq. 13.6 of j (P) is different. The way

given in Sect. 13.2.3 to elude the difficulty presented by the divergence between the
two definitions of dτ0 is a weak point of the formula of Lorentz.

Nevertheless this formula is in agreement with experiments and the approxima-
tions used are to be considered as satisfactory.

13.3 Electrodynamics: The Electromagnetic Field,
the Lorentz Force

13.3.1 General Definition

1. The electromagnetic field is the bivector F

F = ∂ ∧ A ∈ ∧2 M (13.18)

2. The Lorentz force f is the action of an electromagnetic field F on a punctual
charge q ′ situated at a point X, whose velocity at this point is the unit time-like
vector v′, such that

f = q ′ F · v′ = q ′(∂ ∧ A) · v′ ∈ M (13.19)

which has the dimension of a force.

13.3.2 Case of Two Punctual Charges: The Coulomb Law

13.3.2.1 Field of a Punctual Charge at Rest, or Coulomb Field

Suppose an unique charge q situated at a point P, at rest in a galilean frame whose
spacetime vector is v (P describes then a straight line of M), and let {eμ} be the
orthonormal frame such that e0 = v. Consider a point X such that

−→
P X = r(v + n),

−→
P X · v = r > 0

If the point X is at rest in the frame, the time coordinate x0 of X does not intervene
and, since ek = −ek, (k = 1, 2, 3), the operator ∂ expressed in spherical coordinates
is reduced to

∂ = −n
d

dr
, and F = −qn ∧ v d

dr

(
1

r

)
= q

n ∧ v
r2 (13.20)
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13.3.2.2 The Lorentz Force and the Coulomb Law

If two charges q, q ′, situed at points P and X of the spacetime M, are at rest in a
galilean frame whose vector time is v ∈ M, the force f acting on the charge q ′ is
defined by the bivector q ′ F

q ′F = q ′q n ∧ v
r2 ,

−→
P X = r(v + n), v2 = 1 = −n2, v · n = 0 (13.21)

where the vector n ∈ M corresponds to the direction of the oriented straight line
which joins the projections of P and X on the space E(v).

Since the spacetime velocity of the charge q ′ is here v one has, using Eq. 2.1,

f = q ′ F ·v = q ′q n

r2 (13.22)

That is the Coulomb law which is the base of the electrostatic.

13.3.3 Electric and Magnetic Fields

The Electromagnetic bivector field F = ∂ ∧ A is independent of all galilean frame.
But its effects are observed in experiments achieved in a particular galilean frame,
“the laboratory frame” {eμ}.

In a galilean frame a bivector is split into two parts whose properties are geo-
metrically different, one which implies e0, the other which implies only the vectors
ek .

This geometrical difference is the reason for the separation of the field F into two
parts, whose the physical properties, when they are observed in a laboratory galilean
frame, are different.

Let us denote in conformity with the notations of Sect. 2.2

X = X0e0 + �X ∈ M, �X ∧ e0 = X, �X1 ∧ �X2 = −X1∧̂X2 = −i(X1 × X2)

where X2∧̂X1 and X2 × X1 mean here the Grassmann and cross products in R3,0,

defining

akek = �a, �ae0 = a, ∂ = eμ∂μ = e0∂0 − �∂, ∂μ = ∂

dxμ

we can write

F = (e0∂0 − �∂) ∧ (A0e0 + �A) ⇒ F = E + iH (13.23)

with

E = −∂0A − ∇ A0, H = ∇ × A, ∂0 = ∂

dx0 , ∇ = ek
∂

dxk
(13.24)
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13.3.4 Electric and Magnetic Fields Deduced
from the Lorentz Potential

For the calculation of E and H it is convenient to express the Lorentz formula in
E3(e0). Denoting

r = xkek, r′ = akek, R = r − r′, R = |R|, n = R/R, n2 = 1

we deduce

A0(x0, r) =
∫

V

j0(x0 − R, r′)
R

dτ ′, (13.25)

A(x0, r) =
∫

V

j(x0 − R, r′)
R

dτ ′, (13.26)

Since �X1 · �X2 = −X1 · X2, and so −�∂ · �X = ∇ · X, the equation of conservation
takes the form

∂0 j0 + ∇ · j = 0 (13.27)

A complete construction of the two fields is pointed out by Krüger in [8] but we
will consider here simply the case of the long range parts EL(x0, r) and HL(x0, r)
of these fields, which correspond in general to the experimental observations. They
are such that in the derivation of the integrals only the terms containing 1/R are
taken into account, the terms containing 1/R2 being neglected (see [8]).

These two long range fields are in the form

EL (x0, r) = − ∂

∂x0

∫

V

j⊥(x0 − R, r′)
R

dτ ′, (13.28)

HL(x0, r) = − ∂

∂x0

∫

V

n × j⊥(x0 − R, r′)
R

dτ ′ (13.29)

The bivector j⊥ = �j⊥ ∧ e0 is so that �j⊥ is the component of the spatial part �j of
the current vector j, orthogonal to the unit vector �n = (xk − ak)ek/R and is in the
form j⊥ = j − (j · n)n.

Note that the time component j0 of the current does not intervene.
This forms Eqs 13.28 and 13.29 of EL and HL are particularly convenient for the

calculation of the radiations in the hydrogenic atoms (see [9]).
We recall the proof of Eq. 28 (See [8]). One can write
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−[∇ A0(x0, r)]L = −
∫

V

∇ j0(x0 − R, r′)
R

dτ ′ (13.30)

−∇ j0(x0 − R, r′) = − ∂

∂a0 j0(a0, r′)da0

d R
(∂k Rek), a0 = x0 − R

and since

da0

d R
= −1, ∂k Rek = (xk − ak)ek

R
= R

R
= n (13.31)

−∇ j0(x0 − R, r′) = ∂

∂a0 j0(a0, r′)n, a0 = x0 − R (13.32)

with

∂

∂a0 j0(a0, r′)n = ∂

∂a0 j0(a0, r′)da0

dx0 n = ∂

∂x0 j0(x0 − R, r′)n

We are going to use the following relation corresponding to the law of conservation
of the current

∂

∂x0 j0(x0 − R, r′) = −ek .
∂

∂xk
j(x0 − R, r′) (13.33)

Such a relation is ambiguous to the extend that the point where it is applied is
the point P ∈ V and the derivations are associated with the point X. But the fact
that the time component a0 of P is considered as a function a0 = (x0 − R, r′)
of the xμ in j0(x0 − R, r′) in the derivation Eq. 13.30 of the Lorentz formula
Eq. 13.25 implies that a0 is to be also considered as a function of the xμ in the law
of conservation and so in the vector j(x0 − R, r′).

One can write

−ek · ∂

∂xk
j(x0 − R, r′) = −(ek∂k R) · ∂

∂a0 j(a0, r′)da0

d R
(13.34)

and taking account Eq. 13. 31 and

∂

∂a0 j(a0, r′) = ∂

∂a0 j(a0, r′)da0

dx0 = ∂

∂x0 j(x0 − R, r′) (13.35)

one has

−ek · ∂

∂xk j(x0 − R, r′) = n · ∂

∂x0 j(x0 − R, r′) (13.36)

and so
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−∇ j0(x0 − R, r′) = ∂

∂x0 [(j(x0 − R, r′)) · n)n] (13.37)

and we deduce Eq. 13. 28 from Eqs. 13. 24, 13. 36:

EL(x0, r) = − ∂

∂x0

∫

V

j(x0 − R, r′)− [j(x0 − R, r′) · n)n]
R

dτ ′ (13.38)

For the calculation of HL(x0, xk) it is sufficient to replace in Eq. (13.36) the scalar
product by the vector product in such a way that

ek × ∂

∂xk
j(x0 − R, r′) = − ∂

∂x0 (n × j(x0 − R, r′))

One deduces Eq. 13. 29 immediately from this relation, after elimination of the
component of j parallel to n.

The agreement of Eqs. 13. 28, 13. 29 and experiments is confirmed with the ob-
servations of radiations of hydrogen-like atoms, emitted light, spontaneous emission
and Zeemann effect (see [9], Chaps. 2, 6, 7, 14) .

13.3.5 The Poynting Vector

The Poynting vector is defined by the cross product

P = E × H (13.39)

It is related to the electromagnetism energy in the following way (see [10],
Chap. XXXII).

Let us consider an electromagnetism field stored up in a volume V limited by
a surface S. The decreasing  during a time dt of the total energy localized in V
during a time dt is equal to the flux of R through S, during the same time.

 =
∫

S

(E × H).n dσ (13.40)

This flux allows in particular the calculation of spontaneous emission (see [9],
Sects 2.4 and 7.3).

13.4 Electrodynamics in the Dirac Theory of the Electron

We will consider here the case of an electron submitted to a central potential at rest,
for which the Dirac probability current may be clearly defined. This case is relevant
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to the theory of the hydrogen-like atoms in which the kernel may be considered as
punctual, that we have studied in [9] with the help of STA.

It is the reason why we have not evoked the Maxwell laws, which are not to be
taken into consideration in this study.

13.4.1 The Dirac Probability Currents

We will express the E3(e0) space where the kernel is at rest in spherical coordinates
(r, θ, ϕ), with the use of Cl(3, 0)

u = cosϕ e1 + sin ϕ e2, v = − sin ϕ e1 + cosϕ e2

13.4.2 Current Associated with a Level E of Energy

It is in the form (see [9], Sect. 4.2.5)

j0 = a(r, θ)e0, j = b(r, θ)v

and so is independent of x0 and verifies the law of conservation ∂μ jμ = 0.

13.4.2.1 Transition Current Between Two States

The transition current between two states, corresponding to the levels of energy
E1, E2 is such that (see [9], App. 18)

∫
j0(r)dτ = 0 (13.41)

Then the current may be written in the form (see [9], Sect. 5.2)

j = cosωx0 j1 + sinωx0 j2, ω = E2 − E1

�c

j1 = cos εϕ jI + sin εϕ jI I , j2 = − sin εϕ jI + cos εϕ jI I (13.42)

where ε = −1, 0, 1, and

jI = b(r, θ) v, jI I = a(r, θ) u + c(r, θ) e3

This current verifies also the law of conservation ∂μ jμ = 0 (see [9], App. 19).
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13.4.3 Emission of an Electromagnetic Field

Equations (13. 28) and (13. 29) show that if the current j is time-independent the
long range part of the field is null.

As it is the case of the probability current of the state of a bound electron, that
explains the reason why no electromagnetic field may be observed outside a passage
from one state to another.

On the contrary, the transition current between two states depends on the time.
In the Darwin solution this current is time-periodic with a linear or a circular

polarization which allows the observation of the transition (see [9], Chaps. 2 and 5).

13.4.4 Spontaneous Emission

We consider the flux , per unit of time, through a sphere S of large radius, of the
Poynting vector of the field, created by the transition current between two states, of
an electron bound in an atom.

Let us consider  as averaged on a period T = 2πω of the source current,
supposed time-periodic and let us denote by

〈X〉 = 1

T

T∫

0

X dx0

the average of X.
Because E and H = n × E are orthogonal to n we can write for a sphere S of

center 0 of radius R

 = c

4π

∫

S0

〈(E × H) · n〉 R2dσ (13.43)

then

 = c

4π

∫

S0

〈E2〉 R2dσ (13.44)

where S0 is the sphere unity.
The flux allows us to calculate the number of transitions per unit of time, in the

phenomena called “spontaneous emission”.
If we consider the energy E released at each transition, the ratio /E gives the

number of transitions per second.
The number of these transitions may be experimentally observed, and, for compar-

ison, the theoretical calculation is interesting (see [9], Sects. 2.4 and 7.3, in particular
for the transitions 2P1/2 − 1S1/2 and 2P1/2 − 1S1/2).
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13.4.5 Interaction with a Plane Wave

The study of the passage from a level of energy to another one in a hydrogen-like atom
due to the effect of an external monochromatic electromagnetic wave (a photon) is
quite different from that of spontaneous emission which belongs to a simple statistical
way. This effect is studied rather from a probabilistic point of view, in the frame of
an approximation method.

We will recall the results we have given in Chap. 8, App. G and H of [9] with
complement of proof for some of them.

13.4.5.1 An Approximation Method for Time-dependent Perturbation

We will follow the method of perturbation described in Sects. 29, 32 of the book of
Schiff [2]. But here this method will be directly applied to the Dirac instead of the
Schrödinger theory of the electron, and with the use of the real formalism. We recall
the results established in App. G of [9].

Let us consider a wave function ψ in the form

ψ(x0, r) =
∑

n

an(x
0)ψn(x

0, r), an(x
0) ∈ R (13.45)

where each ψn is the solution Eq. 4.5 of [9] for an electron in an hydrogenic atom in
a state of energy En.

We suppose that, at a time t = x0/c, a potential A = Akek, written A = Akek
in Cl(E3), is added to the central potential A0e0 such that eA0 = V (r),
(e = −q > 0).

Defining

gmn = sin(ωmn x0)j1,mn − cos(ωmn x0)j2,mn, ωmn = En − Em

�c
(13.46)

we have (see [9], Eq. G.7 to G.10)

ȧm(x
0) = e

�c

∫
A ·

∑

n

an(x
0)gmn(x

0, r)dτ (13.47)

The perturbation approximation method (see [2], Sect. 29) consists in replacing
A by λA and expressing each an as power series in λ :

an = a(0)n + λa(1)n + λ2a(2)n + · · ·
Each term of the series corresponds to an order of approximation. We will consider

only the first order, which consists in the calculation of a(1)n .

Equating the coefficients of equal power of λ we obtain
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ȧ(1)m (x0) = e

�c

∫
A(x0, r).

∑

n

cngmn(x
0, r)dτ

where cn is a constant which may may be chosen as being δmn.

Now we consider two particular states j and k. The first one will be considered
as the state of the electron before the beginning of the perturbation and the second
one as the expected final state. So we have (see [9], Eq. G.15)

ȧ(1)j (x
0) = e

�c

∫
[A(x0, r).(sinω jk x0)j1, jk(r)− cos(ωmn x0)j2, jk(r))]dτ (13.48)

13.4.5.2 Perturbation by a Plane Wave

Part II of [9] has been devoted to the field created in a transition between two states
corresponding to the levels of energies E1, E2, and the phenomena of spontaneous
emission (in which the final level is lower), in the absence of all external action.

Now we are going to recall the principal results of Part III of [9] in which one takes
into account the effect of a monochromatic electromagnetic wave with a propagation
vector k of magnitude 2πν/c and a polarization whose direction, orthogonal to k,
will be represented by an unit vector L.

When the light of quantum energy hν falls on an electron, bound in an atom,
whose energy is E1 > 0, a quantum may be absorbed and the electron jumps into
a state of energy E2 = E1 + hν. The energy E1 belongs to the discrete spectrum
and E2 may belong to the discrete (bound–bound transition) or to the continuous
spectrum (photoeffect).

In this case the potential A is such that

A = eU cos(k · r −� x0 + ξ)L (13.49)

� = 2πν

c
, k = �K, K2 = L2 = 1, K · L = 0

where U is constant and ξ is a phase constant.
The way that we follow here differs partially from the one of [2] but leads to the

same conclusion. It is applied here directly to the Dirac theory of the electron instead
of the Schrödinger one.

We will denote now j = 1, k = 2 with ω21 = ω = (E2 − E1)/�c.
A simple calculation shows that Eq. 13.48 becomes

ȧ(1)1 (x0) = αUL ·
[∫

cos(k · r −� x0 + ξ)(sin(ωx0)j⊥1 − cos(ωx0)j⊥2 )dτ
]

(13.50)
where α = e2/�c (e in e.s.u.) is the fine structure constant and j⊥k is the component
of the vector jk orthogonal to k because L being orthogonal to k, the component of
jk(r) upon the direction of k does not intervene.
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Now we define a vector which plays an important role in the theory of the pertur-
bation by a plane wave (see Chaps. 9, 12, 13 of [9]), also in the Lamb shift calculation
(Addendum of [9])

T⊥
j (k) = 1

2

∫
cos(k.r) j⊥j (r) dτ (13.51)

Note. The factor 1/2 is not present in the usual presentation of these two vectors
because it is present in the usual definition of the transition currents. We have in-
troduced the factor 1/2 in the above definition because it is absent in our definition
of the current between two states (see [9], Chap. 5). The absence of the factor 1/2
in the definition of the transition current appears as a necessity for the concordance
of the theoritical calculation of spontaneous emission and the experimental results
concerning this phenomena (see [9] Sect. 7.3).

Furthermore we will take into account the relation (see [9], Chap. 9, Eq. 9.12)

∫
sin(k · r)dτ = 0 (13.52)

We are going to consider ȧ(1)1 (x0) by developing Eq. 13.50 but with the omission
of the terms implying sin(k · r), because of the relation Eq. 13.52, and also the terms
implying ω +� which are not be taken into account (see [2], Sect. 35) because the
probability of finding the system in the state 2 after the perturbation requires that
ω −� is close to zero.

We will carry out the eliminations like for example

I = cos(k · r − (� x0 − ξ)) sinωx0

I = cos k · r cos(� x0 − ξ) sinωx0 + sin k · r(. . .)

I = cos k · r[(cos� x0 cos ξ + sin� x0 sin ξ) sinωx0] + sin k · r(. . .)

cos� x0 sinωx0 = 1

2
(sin(ωx0 −� x0)+ sin(ωx0 +� x0) = 1

2
sin(ωx0 −�)+· · ·

Taking into account these two omissions and Eq. 13. 51 we obtain

ȧ(1)1 (x0) = αUL · [sin(�x0 + ξ)T⊥
1 (k)− cos(�x0 + ξ)T⊥

2 (k)] (13.53)

where � = ω −�.

(Note. This equation is the same as Eq. H.3, App. H of [9] without the factor 2
which lies in (H.3) because, in this appendix, the factor 1/2 has been omitted in the
definition of T⊥

j (k)).
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We consider the integration with respect to x0 :

a(1)1 (x0) =
x0∫

0

ȧ(1)1 (x)dx (13.54)

which gives

a(1)1 (x0) = αU

�
L · [(cos ξ − cos(ξ +�x0))T⊥

1 (k)+ (sin ξ − sin(ξ +�x0))T⊥
2 (k)]

(13.55)
The average of [a(1)1 (x0)]2 upon the phase factor ξ

〈
[a(1)1 (x0)]2

〉
= 1

2π

2π∫

0

[a(1)1 (x0)]2dξ

leads to the formula

〈
[a(1)1 (x0)]2

〉
= α2U 2

2
([L ·T⊥

1 (k)]2 +[L ·T⊥
2 (k)]2,

sin2((ω −�)x0)/2)

((ω −�)/2)2
(13.56)

which give the probability that a transition in which the system is left in a higher
state (E2 � E1 +� ) has taken place at the time x0.

Otherwise the average 〈〈[a(1)1 (x0)]2〉〉 of [L · T⊥
j (k)]2 on all the directions of L

may be calculated by denoting

[L · T⊥
j (k)]2 = [T⊥

j (k)]2 cos2 η j

where η j is the angle of L and the direction of T⊥
j (k, and writing

1

2π

2π∫

0

[L · T⊥
j (k)]2dη j = [T⊥

j (k)]2 1

2π

2π∫

0

cos2 η j dη j = 1

2
[T⊥

j (k)]2

we obtain

〈〈[a(1)1 (x0)]2〉〉 = α2U 2

4
([T⊥

1 (k)]2 + [T⊥
2 (k)]2)

sin2((ω −�)x0)/2)

[(ω −�)/2]2 (13.57)

These formulas are similar to the one of [2], Eq. 35.16. They show that the
probability for the transition from the state of energy E1 to the state of energy E2 is
maximum (see [2], Fig. 27, p. 198) when � = ω.

For the study of the transition probability between the two states one considers
what is called the matrix element of the transition (see [11], Eq. 59.3) introduced by
H. Hall in 1936
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Dk,L
j = L · T⊥

j (k) (13.58)

which is in a complex form in the standard presentation but, because of the relation
Eq. 13.52, is real a number.

The matrix elements, in their above real form, are used for the calculation of the
photoeffect ([9], Part IV), its inverse phenomena, the radiative recombination (the
emission of a photon after the capture of an electron by a hydrogen-like atom ([9],
Chap. 13) and the Lamb shift.

13.4.6 The Lamb Shift

We have said that the use of the QFT is not necessary for the calculation of the Lamb
shift and that the real language is sufficient.

The Lamb shift calculation implies the sum of three terms, Electrodynamics en-
ergy term WD, the Electrostatic energy term WS, and a term the mass renormalization
term WM which does not imply the electromagnetism.

The real vectors T⊥
j (k) intervene in WD in the form

[T⊥
1 (k)]2 + [T⊥

2 (k)]2 (13.59)

the other scalars of the term being real.
So the problem of the determination of the matrix elements, is exactly the same

for a transition in general and for the term WD of the Lamb shift.
Note that WS, which contains a potential q/r, is also real. It is presented in QFT

in a complex form, which implies for the writing of this potential the use of an artifice
(see Chap. 19).

To sum up, the calculation of the Lamb shift may be expressed, in agreement with
the QFT, entirely in the Real Quantum Electrodynamics (see [9], Addendum).

As an example one can verify (see [9], p. 105) the concordance of the values
calculated in this way of the contribution to the shift of the state 1s of the hydrogen
atom due to all the states 2p of the discrete spectrum (see [9], p. 105) with the QFT
ones of Seke [12].
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Chapter 14
Real Algebras Associated with
an Euclidean Space

Abstract A construction of the Clifford algebra CI(E) associated with an euclidean
space E is proposed. It is based on the Clifford products aA and Aa of a vector a of E
and all element A of the Grassmann algebra of E, which include the inner product of
E, these products being taken as definitions. One deduces then that a(Ab) = (aA)b,
and so that CI(E) is an associative algebra. Its remarkable relation with the group
O(E) is emphasized.

Keywords Grassmann · Inner · Clifford products

14.1 The Grassmann (or Exterior) Algebra of Rn

We recall that ∧Rn is an associative algebra generated by R and the vectors of
Rn such that the Grassmann product a1 ∧ a2 ∧ · · · ∧ ap of vectors ak ∈ Rn is
null if and only if the ak are linearily dependent. If this product is non null, it is
called a simple (or decomposable) p-vector and has the geometrical meaning of a
p-paralleloid (a parallelogram if p = 2). The linear combination of simple p-vectors
is called a p-vector, and the set of the p-vectors is a sub-space of ∧Rn denoted
∧pRn, with ∧0 Rn = R,∧1Rn = Rn, λ ∧ A = A ∧ λ = λA, λ ∈ R.

We recall that ∧Rn is the direct product of the sub-spaces ∧pRn(p = 0, 1, . . . n),
each one of dimension C p

n , and so dim(∧Rn) = 2n, and the relation

a ∧ Ap = (−1)p A p ∧ a, a ∈ Rn, A p ∈ ∧pRn (14.1)

14.2 The Inner Products of an Euclidean Space E = Rq,n−q

We denote a.b ∈ R the scalar (or inner) product of a, b ∈ E defined by the signature
(q, n − q) of E.

R. Boudet, Quantum Mechanics in the Geometry of Space–Time, 105
SpringerBriefs in Physics, DOI: 10.1007/978-3-642-19199-2_14,
© Roger Boudet 2011
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The inner products Ap · a, a · A p of a p-vector Ap by a vector a of E correspond
to the operation so-called (by the physicists) “contraction on the indices” and verify
a · Ap = (−1)p+1 A p · a, a ∈ E, Ap ∈ ∧p E

a · A0 = −A0 · a = 0, A0 ∈ R

The product a · A p is defined by

a · Ap =
p∑

k=1

= (−1)k+1(a · ak)(a1 ∧ · · · ak−1 ∧ ak+1 ∧ · · · ∧ ap) (14.3)

This definition may be written in another presentation.

a · (a1 ∧ Ap−1) = (a · a1)Ap−1 − a1 ∧ (a · A p−1), Ap−1 = a2 ∧ · · · ∧ ap

The sum A of diverse p-vectors allows to write the general formula (whose the
equivalent plays an important role in the theory of the p-forms of a vector space)

a · (b ∧ A) = (a · b)A − b ∧ (a · A), a, b ∈ E, A ∈ ∧E (14.4)

One deduce easily from Eq. 14.3

b · (a · Ap) = −a · (b · A p) (14.5)

Indeed we have

b · (a · Ap) = (a · a1)(b · a2)(a3 ∧ · · · )− (a · a2)(b · a1)(a3 ∧ · · · )+ · · ·
and permuting a and b, we see that Eq. 14.4 is satisfied.

Other properties of the inner product may be found in [1].
Note. A p-vector is nothing else but what the physicists call “an antisymmetric

tensor of rank p” which is expressed by means of the components on a frame of E
of the vectors of E which define this p-vector.

For example a simple bivector a ∧ b of E will be written ai b j − bi a j in a
orthonormal frame {ek} of E .

In what follows we shall express an invariant p-vector by the Grassmann product
of the vectors which define it, independently of all frame.

14.3 The Clifford Algebra Cl(E) Associated with an Euclidean
Space E = R p,n− p

The algebra Cl(E) is a real associative algebra generated by R and the vectors of E
whose elements may be identified to the ones of ∧E .

The Clifford product of two elements A, B of Cl(E) is denoted AB and verifies
the fundamental relation
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a2 = a · a, ∀ a ∈ E (14.6)

from which we deduce

(a + b)2 = a2 + ab + ba + b2 = (a + b) · (a + b) = a · a + 2a · b + b · b

and so

a · b = 1

2
(ab + ba)

Now

ab = 1

2
(ab + ba)+ 1

2
(ab − ba)

and identifying (ab − ba)/2 to a ∧ b, a convention that nothing forbids, one can
write

ab = a · b + a ∧ b, (a, b ∈ E)

in such a way that

a · b = 0 ⇒ ab = a ∧ b = −b ∧ a = −ba

We only mention the properties we need

a A = a · A + a ∧ A, Aa = A · a + A ∧ a, a ∈ E, A ∈ ∧E (14.7)

which generalizes the relation about ab, from which one deduces, taking into account
Eqs. 14.2, 14.1

a · Ap = 1

2
(a A p + (−1)p+1 A pa), a ∧ Ap = 1

2
(a Ap + (−1)p Apa) (14.8)

If p vectors ai ∈ E are orthogonal their Clifford product verifies

a1 . . . ap = a1 ∧ · · · ∧ ap, (ak ∈ E, ai · a j = 0 if i �= j) (14.9)

The even sub-algebra Cl+(E) of Cl(E) is composed by the sums of scalars and
elements a1 . . . ap such that p is even.

One can immediately deduce from Eq. 14.9 that, using an orthonormal frame of
E, the corresponding frame of Cl(E)may be identified to the frame of ∧E and that
dim(Cl(E)) = dim (∧E) = 2n, and dim(Cl+(E)) = 2n−1.

One uses the following operation called “principal antiautomorphism”, or also
“reversion”,

A ∈ Cl(E) → Ã ∈ Cl(E) so that (AB)˜ = B̃ Ã (14.10)
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λ̃ = λ, ã = a, λ ∈ R, a ∈ E

The elements of Cl(E) which are the sum of scalars and elements in the
form a1 . . . ap such that p is even, define an algebra called even sub-algebra
Cl+(E) of Cl(E) whose dimension is 2n−1.

14.4 A Construction of the Clifford Algebra

As a complement of proof of the formulas used in [1] we have acheived in [2] a
construction of Cl(E) in which Cl(E) is built directly on the elements of ∧E in
association with the euclidean structure of E .

Considering Eq. 14.7 as a definition (not as a property) of the Clifford products
a A, Aa,we obtain as a theorem

a(Ab) = (a A)b, a, b ∈ E, A ∈ ∧E (14.11)

which endows ∧E, taking into account the signature of E and the subsequent inner
product, with the structure of an associative algebra, that is the Clifford algebra
Cl(E).

This construction requires a calculation. The definition of Cl(E) given by the
Bourbaki school, based only on the signature of E, is simple. But the proof of a
vector space isomorphism bewteen Cl(E) and ∧ E requires a longer calculation.

One of the advantages of our construction is the fact that it makes directly apparent
the formulas Eqs. 14.7 whose use is important in the application of a Cl(E) to physics.

Using Eq. 14.7 (we repeat considered like an axiom) we can write for a, b ∈
E, A ∈ ∧E

a(Ab) = a · (A · b)+ a ∧ (A · b)+ a · (A ∧ b)+ a ∧ A ∧ b (14.12)

Now in what follows we suppose that A ∈ ∧p E . Then A will be sum of diverse
p-vectors and so any element of ∧E .

Indeed, using Eqs. 14.2, 14.4 and 14.5

a · (A · b) = (−1)p+1a · (b · A) = (−1)pb · (a · A) = (−1)2p(a · A) · b

a ∧ (A · b)+ a · (A ∧ b) = (−1)p+1a ∧ (b · A)+ (−1)pa · (b ∧ A)

= (−1)p+1a ∧ (b · A)+ (−1)p(a · b)A − (−1)pb ∧ (a · A)

= (−1)pb · (a ∧ A)− (−1)p(−1)p−1(a · A) ∧ b
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= (−1)2p(a ∧ A) · b + (a · A) ∧ b
and we obtain

(a · A) · b + (a · A) ∧ b + (a ∧ A) · b + a ∧ A ∧ b = (a A)b (14.13)

and so Eq. (14.11) is verified.

14.5 The Group O(E) in Cl(E)

In a general way, in all Cl(E), the Clifford product a1a2 . . . ap, where (ak ∈
E, a2

k �= 0),may be associated with an isometry in the space E and so Cl(E)
may replace, in a very simple way, the general theory of the representations of the
orthogonal group O(E) in complex spaces.

Consider the relation

y = −bxb, b2 = b · b �= 0, b, x ∈ E (14.14)

Let the decomposition x = x⊥ + x‖ be, where x‖ and x⊥ are parallel and orthogonal
to b, respectively. Equation. 2.5 allows one to write

y = b2(x⊥ − x‖) ∈ E

and we see that the transformation x ∈ E → y ∈ E is a symmetry with respect
to the hyperplan orthogonal to b, followed by the multiplication by the scalar b2.

The relation z = −aya = abxba is a rotation followed by the multiplication by the
scalar a2b2.

So the relation

y = (−1)p Ipx Ĩp, Ip = a1a2 . . . ap, Ĩ p = ap . . . a2a1, a2
k = 1 or − 1

(14.15)
defines an isometry in E .We see the tight links between the orthogonal group O(E)
of the space E and its Clifford algebra Cl(E).

Let κ be the number of ak so that (ak)
2 is negative. The combinations of

(−1)p = ±1 and (−1)κ = ±1 give a hint on the fact that O(E) is separated in
2 or 4 (following the signature) parts.

Note. There exists a proof using Cl(E) (Heinz Krüger 1998, private communica-
tion), quite different of the one of Cartan-Dieudonné, of the Elie Cartan theorem by
which all isometry in E is the product of symetries eachone with respect to a non
isotropic hyperplan.

We have provided, on ground of the E. Cartan theorem, a very short proof of the
following property: O(E)may be separated into at most 2 or 4 connex components
(see [3], p. 134). This proof have been completed by Henri Cartan (1984, private
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communication), by a proof using matricial methods in which this separation is to be
considered as at least 2 or 4. We have then given another proof of this last property
with the help of Eq. 14.15, ([3], p. 134, 135).
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Chapter 15
Relation Between the Dirac Spinor
and the Hestenes Spinor

Abstract One shows that the quaternion and the biquaternion may be considered as
real forms of the Pauli and the Dirac spinors. Then relations with the real Hestenes
spinor are clarified.

Keywords Pauli · Dirac · Hestenes spinor · Quaternion · Biquaternion

15.1 The Pauli Spinor and Matrices

All that follows is to be considered as relative to a frame {eμ}, though the vectors eμ
do not intervene directly.

1. The Pauli spinor ξ is a column ξ of two complex numbers u1,u2 in the form
α + iβ ∈ C, where i is considered as the “imaginary number”

√−1

ξ =
(

u1
u2

)
, u1, u2 ∈ C (15.1)

2. The Pauli matrices are in the form

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(15.2)

and act on the Pauli spinor ξ.

15.2 The Dirac spinor

1. The Dirac spinor is a column� of four complex numbers which may be arranged
into a column of two Pauli spinors
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� =
(
ξ

ξ ′
)

(15.3)

2. The Dirac matrices γ μ are in the form

γ 0 =
(

1 0
0 −1

)
, γ k =

(
0 σk

−σk 0

)
(15.4)

and act on � in such a way that

γ 0� =
(

ξ

−ξ ′
)
, γ k� =

(
σkξ

′
−σkξ

)
(15.5)

Let us consider the matrix with one line

�̄ = �+γ 0, �+ = (ξ+, ξ ′+) (15.6)

where ξ+ = (u∗
1, u∗

2), ξ
′+ = (u′∗

1 , u′∗
2 ) and u∗ means the conjugate complex α − iβ

of u = α + iβ ∈ C.
One has (see Eq. 15.15)

jμ = �̄γ μ� ∈ R, j = jμeμ ∈ M (15.7)

In the Dirac theory of the electron whose wave function is �, j is called the
current of probability of presence of the electron.

Note. There exists a direct relation between the Pauli matrices and the E3 = R3,0

space but it needs the use of the Clifford algebra Cl(E3) (see Chap. 2).
The Pauli matrices obey the same rule as the vectors ek in Cl(E3)

1

2
(σiσ j + σ jσi ) = δi j I, ei .e j = 1

2
(ei e j + e j ei ) = δi j (15.8)

where {e1, e2, e3} is an orthonormal frame of R3,0, the unit matrix I being identified
to 1.

One deduces that there exists a direct relation between the well-known combina-
tion of the Pauli matrices

I, σ1, σ2, σ3, σ2σ3, σ3σ1, σ1σ2, σ1σ2σ3

and a frame of the Grassmann algebra ∧E3, whose dimension is 1 + 3 + 3 + 1 = 8,
composed of scalars, vectors, bivectors (or pseudo-vectors), 3-vectors (or pseudo-
scalars).

In a same way the Dirac matrices obey the same rule as the vectors eμ

1

2
(γiγ j + γ jγi ) = δi j I, ei · e j = 1

2
(ei e j + e j ei ) = δi j (15.9)
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and there exists a direct relation between an analog combination of the Dirac matrices
and a frame of ∧M, whose dimension is 1 + 4 + 6 + 4 + 1 = 16, composed of
scalars, vectors, bivectors, pseudo-vectors, pseudo-scalars.

As evoked in the Preface, the identification of the matrices γμ to the vectors eμ
has been implicitly used by Sommerfeld [1] and Lochak [2] when they expressed
the Dirac spinor by means of the Dirac matrices, but their processes corresponded
implicitly to the abandon of the use of the Dirac spinor as it is defined above. That
was a first approach to the clear real language of the Space–Time Algebra Cl(M),
introduced independently by Hestenes in [3].

It is shown in what follows (see [4]), that the Pauli and Dirac spinors are nothing
else, when the matrices act upon them, but a decomposition of the Hamilton quater-
nion and the Clifford biquaternion, in which the number i has been replaced by the
bivector of M, e2 ∧ e1 whose square in Cl(M) is equal to −1.

15.3 The Quaternion as a Real Form of the Pauli spinor

Using i = − jk one deduces from Eq. 2.12 the following form of a quaternion

q = w + kz − j (−y + kx) = u1 − ju2 (15.10)

A Pauli spinor ξ, associated with the biquaternion q, is represented in the form
of a column vector

ξ =
(

u1
u2

)
⇔ q = u1 − ju2 (15.11)

that is a doublet of “complex numbers” whose the “maginary number”
√−1 is

nothing else but the real bivector k = e1 ∧ e2 = e1e2 = ie3.

Applying (2.13) one can write, because ekqe3 = −iekqie3

e1qe3 = −iqk = jk(u1 − ju2)k = u2 − ju1 ⇔ σ1ξ

e2qe3 = − jqk = − j (u1 − ju2)k = −ku2 − jku1 ⇔ σ2ξ

e3qe3 = −kqk = −k(u1 − ju2)k = u1 − j (−u2) ⇔ σ3ξ

from which one deduce the equivalences with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −k
k 0

)
, σ3 =

(
1 0
0 −1

)
, k = ie3 (15.12)

which explain the form of the σk matrices, and the reason why they obey the same
relations as orthonormal vectors of E3.When they act on a spinor Pauli ξ, the Hamil-
ton quaternion q, corresponding to ξ, is to be multiplied on the left by e1, e2 or e3,

and on the right by e3.
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The conventional writing
√−1ξ is to be interpreted as

√−1ξ =
(

ku1
ku2

)
=

(
u1k
u2k

)

and corresponds to the transformation of q into qk = qie3 = iqe3.

15.4 The Biquaternion as a Real Form of the Dirac spinor

Since iq = qi = q(ie3)e3

� =
(
ξ1
ξ ′

2

)
⇔ Q = q1 + q ′

2e3, q ′
2 = q2ie3 (15.13)

that is a doublet of the Pauli spinors ξ1, ξ ′
2 corresponding to q1, q ′

2.

One can write

eμQe0 ⇔ γ μ� (15.14)

that is Eq. 3.5.
Indeed, for example, since e0 = e0, e0q = qe0, e0q2ie2

3 = −q ′e3e0, e1 = −e1,

one has

e0 Qe0 = q1e2
0 − q ′

2e3e2
0 = q1 − q ′

2e3 ⇔ γ 0�

e1 Qe0 = −e1e0 Qe0 = −(e1q1e3)e3 + e1q ′
2e3 ⇔ γ 1�

One deduces in agreement with Eq. 15.7

�γμ� ⇔ [eμψe0ψ̃]S = eμ · (ψe0ψ̃) = eμ · j = jμ (15.15)

that is Eq. 3.8.
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Chapter 16
The Movement in Space–Time of a Local
Orthonormal Frame

Abstract The Dirac wave function associated with a particle contains a Lorentz
rotation which allows one to deduce a local moving frame. This frame is such that
some of its sub-frames play an important role in the geometrical interpretation of the
gauge and the definition of a momentum-energy tensor associated with the particle.
What follows is a pure geometrical description of a movement of this frame and
its sub-frames independently, except the appellation of some entities, of physical
considerations.

Keywords SO+(E) · Infinitesimal rotation · Local frame · Sub-frames

16.1 C.1 The Group SO+(E) and the Infinitesimal
Rotations in Cl(E)

If both p and κ are even, denoting Ip = R,one can write in place of Eq. 14.15

y = Rx R̃, R̃ = R−1, R R̃ = R̃ R = 1 (16.1)

which defines an element of the group SO+(E) whose representation in Cl(E) is
called Spin(E) (no direct relation with the term spin of quantum mechanichs).

Now consider the transform

b = Ra R̃ (16.2)

where a ∈ E is constant and R is a function of a variable t. We can write

db

dt
= d R

dt
a R̃ + Ra

d R̃

dt
= d R

dt
R̃ Ra R̃ + Ra R̃ R

d R̃

dt
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Denoting

� = 2
d R

dt
R̃ = −2R

d R̃

dt
(16.3)

we can write

db

dt
= 1

2
(�b − b�)

db

dt
= � · b, � ∈ ∧2 E (16.4)

This relation and the fact that � is a bivector are immediately deduced from
Eqs. 14.7, 14.1. � is called the bivector which defines the infinitesimal rotation
associated with the rotation Eq. 16.2.

Equation 2.2 gives (� · b) · b = � · (b ∧ b) = 0 and confirms the orthogonality
of �.b and db/dt deduced from the derivation of the constant b2.

16.2 Study on Properties of Local Moving Frames

Similar studies may be made for all euclidean space. Here we are more particurlarly
interested in M = R1,3, but, for the while, all that follows in this section is quite
independent, except the appellation of some entities, of physical considerations.

16.3 Infinitesimal Rotation of a Local Frame

We consider a fixed positive orthonormal frame {eμ} of M so e2
0 = 1 (timelike)

and e2
k = −1 (spacelike), k = 1, 2, 3, or galilean frame, and denote x = xμeμ =

xμeμ, (eνeμ = δνμ) the current point of M.
Let us consider R ∈ Spin(M) (Lorentz rotation) depending on x = xμeμ ∈ M

with at least double derivatives with respect to ∂μ = ∂/∂xμ.
We will consider the local orthonormal frame

F = {v, n1, n2, n3}, v = Re0 R̃, nk = Rek R̃ (16.5)

or Takabayasi–Hestenes frame associated with a particle.
The infinitesimal rotation of this frame, associated with the variation of the point

x, is defined by the bivectors

�μ = 2∂μR R̃ (16.6)
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which satisfies the property, deduced from ∂2
μνR = ∂2

νμR

∂ν�μ − ∂μ�ν + 1

2
(�μ�ν −�ν�μ) = 0 (16.7)

16.4 Infinitesimal Rotation of Local Sub-Frames

We are interested in the infinitesimal rotations of sub-frames of F upon themselves
in the motion of F associated with the variation of the point x .

1. The infinitesimal rotation of the oriented plane {n2, n1} (which is considered
in the state “up” of the electron, {n1, n2} being considered in the state “down”) may
be defined (see [1]) by the vector, using Eq. 16.4,

ω = ωμeμ, ωμ = �μ · (n2 ∧ n1) = ∂μn2 · n1 = −∂μn1 · n2 (16.8)

This infinitesimal rotation appears in the infinitesimal rotation of the sub-frame
{v, n2, n1} upon itself in “up”, or {v, n1, n2} in “down”.

We have introduced in [2] the linear application N of M into M (tensor)

n ∈ M → N (n) = (�μ · (i(n3 ∧ n)))eμ ∈ M (16.9)

Because of the relations i = vn1n2n3 and

i(n3 ∧ v) = n2 ∧ n1, i(n3 ∧ n1) = n2 ∧ v, i(n3 ∧ n2) = v ∧ n1

�μ · (l ∧ m) = (�μ · l) · m = (∂μl) · m

we can write N (n3) = 0 and

N (v) = (∂μn2.n1)e
μ, N (n1) = (∂μn2.v)e

μ, N (n2) = (∂μv.n1)e
μ (16.10)

The tensor N expresses the infinitesimal rotation of the sub-frame {v, n2, n1}
upon itself.

This tensor appears in the definition of the momentum–energy tensor of the elec-
tron in a form such that

1

2
N (n) = eμ[(∂μR)ie3 R̃]S (16.11)

2. In the same way we have defined in [3] the tensor

S(n) = (�μ.(i(v ∧ n)))eμ (16.12)

and so S(v) = 0 and
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S(n1) = (∂μn2 ·n3)e
μ, S(n2) = (∂μn3 ·n1)e

μ, S(n3) = (∂μn1 ·n2)e
μ (16.13)

The tensor S expresses the infinitesimal rotation of the sub-frame {n1, n2, n3} upon
itself.

This tensor appears in the definition of the momentum-energy tensors in theories
using the SU (2) gauge in a form such that

S(n) = 1

2
eμ[∂μRie0 R̃]S (16.14)

16.5 Effect of a Local Finite Rotation of a Local Sub-Frame

For reasons which appear in the physical theories and which will be alluded to below,
we are going to complicate the above considerations by supposing that the rotation
R is change into RU where U is a finite rotation upon itself of a sub-frame of F.
The group of the rotation U is called a gauge, a local or a global gauge following the
cases where the rotations U are or not considered as depending on the point x .

(1) In what is called the U(1) gauge in the complex language a change of gauge
corresponds in STA to

U = exp(e2e1χ/2), R → R′ = RU = R exp(e2e1χ/2) (16.15)

which induces a rotation through an angle χ in the plane (n2, n1) :
n′

2 = cosχ n2 + sin χ n1, n′
1 = − sin χ n2 + cosχ n1 (16.16)

with R′e0 R′−1 = e0, R′n3 R′−1 = n3.

(2) In the SU(2) gauge, a change of gauge corresponds in STA to

U ∈ Spin(M) : Ue0U−1 = e0, R → R′ = RU ⇒ R′e0 R′−1 = v (16.17)

giving

�̂μ = 2(∂μU )U−1, �μ → �′
μ = �μ + R�̂μR−1 (16.18)

The change leaves v invariant but defines a rotation of the sub-frame upon {n1, n2, n3}
upon itself.

Applying Eq. 16.7 to U, one deduces that the �̂μ verify, if the gauge is local

∂ν�̂μ − ∂μ�̂ν + 1

2
(�̂μ�̂ν − �̂ν�̂μ) = 0 (16.19)
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Chapter 17
Incompatibilities in the Use of the Isospin
Matrices

Abstract Examples are given of the non possibility of the use of isospin matrices
when they act on a Dirac spinor or a couple of Dirac spinors. But they can act on
a right or a left doublet. In this case a faithful translation in the real language is
possible.

Keywords Dirac spinor · Doublet · Isospin matrices

17.1 � is an “Ordinary” Dirac Spinor

1. Consider for example each numbers �̄γ 0τk�

For k = 3, the number is real but for k = 1, 2 the numbers are purely imaginary
and cannot be associated with the numbers W 1

0 ,W 2
0 which are real.

17.2 � is a Couple (�a,�b) of Dirac Spinors

If each �a, �b are “ordinary” Dirac spinors (that is corresponding to invertible
biquaternions), the strict application of the complex formalism associates with each
real vector W k

μ in the form

jμab = �̄aγ
μ�b + �̄bγ

μ�a, kμab = i(�̄bγ
μ�a − �̄aγ

μ�b)

jμa − jμb = �̄aγ
μ�a − �̄bγ

μ�b, (17.1)

respectively.
The association of these vectors with the W k

μ seems incompatible with the role
of the τk as they have been presented in the Y. M. theory of the SU (2) gauge and so
the form of the bivector field associated with vector bosons.
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17.3 � is a Right or a Left Doublet

The τk are considered as acting upon components in the form

�±
l = 1

2
(1 ± γ 5)�l , γ 5 = γ 0γ 1γ 2γ 3i, l = 1, 2 (17.2)

where �l are “ordinary” Dirac spinors, that is which correspond to invertible bi-
quaternions.

In this case the τk may be considered as matrices
These components correspond in STA to non invertible biquaternions ψ±

l ,

deduced from invertible biquaternions ψl , which are arranged in a biquaternion
ψ which may be invertible (Eq. 9.13):

ψ±
l = ψl

1

2
(1 ± e3), ψ = ψ±

1 ± ψ±
2 e1 (17.3)

We emphasize that in this case our transposition is a step by step translation in
STA of the complex formalim.

17.4 Questions about the Nature of the Wave Function

We recall what we have established concerning the Y. M. theory.
There is no problem in the fact that the wave function�, on which the τk matrices

act, is an “ordinary” Dirac spinor, but not if it is a couple of Pauli or Dirac spinors
(as, in this last case, in the chromodynamics theory). As far as that a left or a right
doublet � imposes to this spinor to be invertible, it seems that the only possibility
about the nature of � is to be such a doublet.

So, in the electroweak theory, confirmed by the experiment, where � is a left
doublet, the question is solved. But it remains in all the theories, such as the chro-
modynamics one, in which the τk matrices are used.



Chapter 18
A Proof of the Tetrode Theorem

Abstract The STA Krüger proof is much more shorter than the one of Tetrode.
(That does not take out the merit of this proof achieved just after the publication of
the Dirac equation!)

Keywords Hestenes spinor · Tetrode tensor

What follows is a STA proof due to Heinz Krüger (private communication, 2010).
To be in agreement with the general method of presentation of the theorems we use
in the present book, our writing of the proof is a bit longer than the Krüger one.

One uses the Dirac equation in the form

�ceμ(∂μψ)ie3ψ̃ = (mc2ψ + q Aψe0)ψ̃ (18.1)

One chooses the vectors n as vectors eν of the laboratory frame

T (eν) = �ceμ
[
eν(∂μψ, ie3ψ̃

]

S
− (eν · j)A ∈ M (18.2)

where j = qρv and one writes

T ν = T (eν) = eμ I − (eν · j)A, I = �c
[
eν(∂μψ)ie3ψ̃

]

S
(18.3)

One deduces

∂νT ν = eμ∂ν I − (eν · j)∂ν A − (eν · ∂ν j)A = eμ∂ν I − (eν · j)∂ν A (18.4)

since the conservation of the current implies eν · ∂ν j = 0.
One can write

eμ∂ν I = (∂ν J + ∂νK )eμ (18.5)

with
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∂ν J = �c
[
eν(∂ν(∂μψ))ie3ψ̃

]

S
= �c

[
∂μ(e

ν(∂νψ)ie3)ψ̃
]

S
(18.6)

since ∂ν(∂μX) = ∂μ(∂νX), and applying Eq. 18.1 with the notation eν∂ν in place of
eμ∂μ

∂ν J =
[
(∂μ(mc2ψ + q Aψe0))ψ̃

]

S

∂ν J =
[
(mc2(∂μψ)ψ̃

]

S
+

[
q A(∂μψ)e0ψ̃

]

S
+ (∂μA) · j (18.7)

and

∂νK = �c
[
eν(∂μψ)ie3(∂νψ̃)

]

S
= �c

[
(∂μψ)ie3(∂νψ̃)e

ν
]

S

∂νK = �c
[
eν(∂νψ)e3i(∂μψ̃)

]

S
(18.8)

Applying again Eq. 18.1 but with e3i = −ie3, one has

∂νK =
[
(−(mc2ψ − q Aψe0)(∂μψ̃)

]

S

∂νK = −
[
mc2(∂μψ)ψ̃

]

S
−

[
q A(∂μψ̃)e0ψ

]

S

with

−
[
q A(∂μψ̃)e0ψ

]

S
= −

[
q(∂μψ̃)e0ψ A

]

S
= −

[
q A(∂μψ)e0ψ̃

]

S
(18.9)

where [aX ]S = [Xa]S, a ∈ M, [X ]S = [ ˜X ]S, have been applied for the writing of
Eqs. 18.8 and 18.9.

One can write ((∂μA) · j)eμ = ((∂ν A) · j)eν and using Eq. 2.1 one has

∂νT ν = ((∂ν A) · j)eν − (eν · j)∂ν A = (eν ∧ ∂ν A) · j = F · j (18.10)

and at least

∂νT ν = ρ(q F.v) (18.11)



Chapter 19
About the Quantum Fields Theory

Abstract In QFT the potentials are put in a complex form with the association
� i of � with the number i = √−1 by analogy with the presence of �i in the Dirac
equation. But in this equation i has in fact the meaning of a real bivector of space-time
which has no place in an electromagnetic potential. The results are the same as a real
quantum electrodynamics because, in the calculations, the imaginary parts of these
potentials are null. But when the potential is in the form q/R, the QFT construction
leads to the presence of an unacceptable nonsense.

Keywords Complex potentials · Plank constant · Number i

19.1 On the Construction of the QFT

The quantum fields theory (QFT) was built on the basis of the works of Dirac,
Jordan and Pauli, Heisenberg and Pauli, during the years 1927–1929. It seems that
its purpose is to express as closely as possible the photon like a particle.

Here we are only interested in its application by the points of the theory which
have been used in the Lamb shift calculation.

For describing the two ways of the construction of the QFT leading to this calcu-
lation, we follow the treatise of Heitler [1], considered, at least for a long time, as
the usual reference for the statement of the QFT.

1. A Mathematical Construction
One considers a “vector potential A which ... may be written as a series of plane

waves” ([1] Para 7, p. 56, lines 1–3)

A = A0 + A∗
0 (19.1)

where A0 is complex and A∗
0 is the complex conjugate of A0 ([1], Para 6, Eq. 14).

In such a way that A is real in agreement with “the classical radiation theory” ([1],
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Para 6) and so the laws of the classical electromagnetism may be respected, at least
for a potential which may be written as a series of plane waves.

2. A rule presented as physical
The imaginary number i = √−1 is replaced, in the application of the previous

construction to some operators, by i� where � is the reduced Plank constant. This
replacement is justified “by exact analogy with the ordinary quantum theory” ([1],
Para 7, p. 56, lines 10–11).

The origin of the above rule lies in the fact that � appears in the electromagnetic
fields in quantum theory, and that, in the quantum theory of the electron, the number
i appears in the association i�, with �.

Though the replacement is placed in operators ([1], Para 7, Eq. 6), as a necessity, it
is translated in the expression of the potentials given by Eq. 19.1 which is is considered
as “quantified”.

It is exactly in this way, association i� of � with i, that the potentials appear in
the standard Lamb shift calculation.

19.2 Questions

1. The association of � with i.
This association, “by exact analogy with the ordinary quantum theory” calls we the

following question. The product i� appears in the Dirac equation of the electron. But
in this equation the meaning of “i” is not the imaginary number

√−1 but a bivector
of Space–Time e2 ∧ e1 = e2e1 (or e1e2, following the two possible orientations of
the spin), whose square in STA is equal to −1 and so a real object.

We recall that this explanation of Hestenes in [2] was in some way already
included in the works of Sommerfeld [3] and Lochak [4] in which i was replaced by
γ2γ1 the Dirac matrices γμ being implicitly identified to the vectors eμ of a galilean
frame.

The presence of a bivector in a electromagnetic potential cannot be considered.
So the “exact analogy with the ordinary quantum theory”, that is mostly at this time
the Dirac equation of the electron, seems not appropriate.
2. The decomposition of a potential q/r in plane waves.

Such a decomposition is the source of an artifice, unseen as well by the physicists
who have used it as the ones who use the QFT. We have pointed out this artifice
in [5].

The use of this artifice does not alter the results in the calculation of the Lamb
shift. But it shows that the QFT, despite its mathematical correctness, cannot be be
considered as a physical theory when it is applied to the Lamb shift, though this
calculation is still considered as an “outstanding triumph of the QFT”.
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19.3 An Artifice in the Lamb Shift Calculation

The formula in Heitler [1], Para 34, Eq. (4 ′ ), which allows the calculation of one of
the three terms, the Electrodynamics static term WS, which compose the shift, is the
following:

(
�∗

0 (r)�n(r)
)
(�∗

n (r
′)�0(r′))

|r − r ′|
= 1

2π2�c

∫
[(�∗

0 (r)e
i(k.r)/�c�n(r))(�∗

n (r
′)e−i(k.r′)/�c�0(r′))]d3k

k2 (19.2)

Multiplied by e2/2 (see [1], Para 34, Eq. 43) this formula expresses the contribu-
tion WS of an electron in a state of energy En to the shift of the same electron in a
state of energy E0.

It implies a static potential e/R, where R = |r − r ′| corresponds to the spatial
positions associated with these two states.

One can observe that �c is not in the left hand part of the formula but is present
in the right one. And one deduces that the following equality has been used

1

|r − r′| = 1

2π2�c

∫
ei((k.(r−r ′))/�c) d3k

k2 (19.3)

where

d3k/k2 = sin θdθdϕdk = d�dk

and where the presence of a factor 1/�c in Eq. 19.2 is due to the fact that k has the
dimension of an energy because in exp[i((k/�c) · (r − r ′))] the vector k/�c must
have the dimension the inverse of a length, in such a way that, after the integration,
the dimension of the right part of Eq. 19.3 is the inverse of a length as its left part.

Equation 19.3 is in full agreement with the construction of the QFT: decomposition
of the potential in plane waves (?) by the use of the so called “Fourier transform” of
1/R (see [6], Eq. 16)

1

|r − r′| = 1

2π2

∫
ei(k.(r−r ′) d3k

k2 (19.4)

apparent complex form of the potential, and with the transform i/� = −1/ i�
(allowed by the fact that the imaginery part of (19.3) cancels), association
i� of i with �.

Note that in the article of Kroll and Lamb [6], Eq. 19.4 is identical to Eq. 19.3
from the fact that one writes in this article � = c = 1 (p. 392) and so this notation
is applied to the Eq. 23, which follows this writing of � and c, giving WS (see also
the articles of Dyson, French and Weisskopf of 1949).

We recall the calculation that we have made in [5] in which we have pointed out
the artifice.
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The only explanation of the presence of �c in the right hand part of Eq. 19.3 is
the following.

This presence corresponds to the construction.

1

R
=

(
π

2
× 1

R

)
× 2

π
(19.5)

then

π

2
=

∞∫

0

sin x

x
dx =

∞∫

0

sin(k′ R)
k′ dk′

Denoting k′ = k/�c

π

2
=

∞∫

0

sin(k R/�c)

k′ dk′ (19.6)

and using

sin(k′ R)
k′ R

= 1

2

π∫

0

eik′ R cos θ sin θdθ = 1

4π

π∫

0

2π∫
ei(k′.R)d�

one deduces

1

R
=

⎡

⎣ 1

4π

∞∫

0

π∫

0

2π∫

0

ei(k′.R)dk′d�

⎤

⎦ × 2

π
= 1

2π2�c

∫
ei((k.R)/�c) d3k

k2

that is the formula Eq. 19.3.
One sees on Eqs. 19.5, 19.6 that the Planck constant is introduced inside π/2

(not inside 2/π), an indisputable nonsense!
Nevertheless the use of such a device does not alter the validity of the calculation

of the Lamb shift which remains one of the most admirable work in the theory of the
electron.
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